GDDs for Timing PGR Applications: Impact on growth & performance

Bill Kreuser, Ph.D. http://turf.unl.edu

Growing Turf Program at University of Nebraska-Lincoln

- 40+ undergraduate turfgrass science majors - Steady increase
 - High job placement
- Expansive undergrad internship program
 - Increases our exposure
 - Expands student's experiences
- Broad range of research
 - Drs. Amundsen, Gaussoin, Kreuser & New Prof Soon

Today's Road Map

- PGR Introductions
- Modeling PGR performance with GDDs
 - Primo Maxx
 - Anuew
 - Class B PGRs and their combinations
- Why even use PGRs?
- Wrap-up

	Classification of PGI	Rs
		Common Examples
Class A: (Type II)	Late Gibberellic Acid Inhibitors	Trinexapac-ethyl Prohexadione-Ca
Class B:	Early Gibberellic Acid Inhibitors	Paclobutrazol
(Type I)		Flurprimidol
Class C:	Cell Division Inhibitors	Mefluidide
Class D:	Herbicides	Glyphosate
Class E:	Plant Hormones/Mimics	Ethephon
Class F:	Naturally Occurring PGRs	Humic Acids

It can be re-applied as often as desired

GDD models created to determine ideal GDD re-application intervals

- Primo applied to <u>Creeping</u> <u>Bentgrass</u> research <u>Green</u>
- Collected clippings daily
- Re-applied Primo Maxx at various GDD intervals or every four weeks
- Observe which threshold provided consistent growth suppression

Country Club Of VA, Richmond, example

- Apr 20, 1st Primo application
- 5.5 oz/A or 0.125 oz/M all season
- Until June 17, apps needed based on 150 GDD trigger every 7 to 12 days
- After June 17, GDD spray trigger < 7 days, so added in Cutless at 10 oz/A to maintain weekly sprays until 14-Aug, then back to Primo-only until Oct 3
- Average GDD interval between apps: 160

Country Club Of VA, Richmond, example

Troy Fink quote:

"Regulation was the best I've ever had. Clippings would barely cover the bottom of the bucket to a 1-inch depth. If weather interfered with proper 150 GDD timing, an increase in clippings was always seen, but re-applying at next application would bring everything back to normal."

Etiolation caused by Xanthomonas reduced by TE

Impact of biostimulants and trinexapac-ethyl on etiolation (caused by Xanthomonas translucens) in creeping bentgrass putting green turi in Raleigh, NC during fall 2011. Values within a treatment grouping followed by the same letter do not significantly differ by Tukey's HSD test, $\alpha = 0.05$.

	Etiolation (%) ^a				
	23-Sep	27-Sep	30-Sep	13-0ct	AUEPC
Biostimulant					
Knife Plus	24 a	25 a	13 a	10 a	219 a
CytoGro	16 a	21 a	7 a	7 a	158 a
Astron	28 a	36 a	8 a	12 a	252 a
Nitrozyme	24 a	26 a	10 a	10 a	208 a
BioMax	19 a	29 a	8 a	12 a	209 a
PerkUp	15 a	24 a	7 a	6 a	167 a
Non-treated	20 a	28 a	7 a	9 a	201 a
Trinexapac-ethyl	Interval (TEI) ^d			
7 d	2 b	7 b	2 b	1 b	38 b
14 d	4 b	15 b	2 b	2 b	78 b
None	56 a	60 a	22 a	25 a	489 a

Etiolation Summary

- Unclear connection between Primo and 2 types of bacterial etiolation
 - In Roberts data, turf quality never declined
- Some bacteria make GA & this may be why Primo effects could be negated
- Many supers have gone to Primo + Cutless low rate summer combos as a stronger anti-GA combo against etiolation

Today's Road Map

- PGR Introductions
- Modeling PGR performance with GDDs
 - Primo Maxx
 - Anuew
 - Class B PGRs and their combinations
- Why even use PGRs?
- Wrap-up

Goal: Develop GDD models for all PGRs

Questions:

- Can root absorbed Class B PGRs be modeled?
- Do Class B PGRs have a strong rebound?
- Can mixing PGRs improve control?

Objective:

Create GDD models for Class B PGRs

Methods: Locations and Treatments

Locations:

- 2009 Penncross green in Madison, WI
- 2014 L-93 green in Mead, NE

Treatments (3 replicates)

- Non-treated control
- Paclobutrazol (Trimmit 2SC)
 0.19 kg a.i. ha⁻¹ (11 oz acre⁻¹)
 - 1000 GDD
 - 400 GDD (2009) & 300 GDD (2014)

• Still question about rate, species, mowing height

Multiple PGRs studied in 2015 Nebraska, Texas Tech, Arkansas • Trimmit, Cutless, Legacy, Musketeer • Variable rates in Nebraska – 2 to 3 rates (lowest label to highest label) Quick Results Still strongly correlated Evidence of rate response Sometimes the model is not symmetrical

Active Ingredient	Common Name	Growth Suppression	Duration of Effect	Ideal GDD
Trinexapac-ethyl	Primo Maxx	20%	800 GDD	230 GDD
Paclobutrazol	Trimmit	30-50%*	850-950 GDD*	280-310 GDD*
Flurprimidol	Cutless	20-30%*	600-800 GDD*	210-270 GDD*
Anuew	Prohexadione- Ca	25%	840 GDD	280 GDD
Flurprimidol + Trinexapac-ethyl	Legacy	20-35%*	810-910 GDD*	270-300 GDD*
Flurprimidol + Paclobutrazol + Trinexapac-ethyl	Musketeer	25-40%*	880 GDD	290

Today's Road Map

- PGR Introductions
- Modeling PGR performance with GDDs
 - Primo Maxx
 - Anuew
 - Class B PGRs and their combinations
- Why even use PGRs?
- Wrap-up

- Increased color, quality and density
- Increased water use efficiency
 - Slightly lower ET (King et al., 1997: Marcum and Jiang, 1998; Ervin and Koski, 2001)
 - Increase salinity tolerance and improved dry down
 (Jiang and Fry, 1998; Pessaraki et al., 2006)
- Improved heat stress tolerance
 - More stress hormones and antioxidants (Ervin and Zhang, 2003)
- Increase sod storage life in heat (Heckman et al., 2001 & 2002)
- Increased non-structural carbohydrates
 - During suppression phase (Han et al., 1998 & 2004; Richie 2001; and Ervin and Zhang, 2007)

			chlo	oror	hvll			
Table 1: Effe kg·ha ⁻¹ (a phyll cond	ects of trir .i.) on mes centration (exapac-et sophyll ce of Kentuci	hyl (TE) lls and c cy bluegr	(0.27 hloro- rass.	2	4	3	5
Observation	Control	Treated	Р	CV (%)	~	Contro	\mathcal{Q}	~
	Mesophyll	cells (4 wk	:)		-			C
No./mm ²	550	750	0.003	22.4	-	100		
Length (µm)	56	45	0.001	13.5			1	
Width (µm)	32	30	0.160	11.7				
Chlo	rophyll con	tent (mg-g	1 FW)		075	100		-
2 WAT - a	2.71	2.94	0.170	13.0	-	6(. 6	
b	1.31	1.60	0.001	11.3			-	-
Tota	1 (4.02	4.55	0.004	8.4	(A)		M.	5.0
4 WAT - a	2.76	2.65	0.010	3.3	5	Primo	2	~~
b	0.62	1.10	0.033	53.3		B-6.5	-	ha y
Tota	1 3.39	3.74	0.110	13.3		من المنا		

in, HortSci. 1998; Crop Sci. 2001; HortS	ci, 2001 U	ntreated Primo
Species	Tillers per Primo	4 inch plug No Primo
Perennial ryegrass	341	203
Kentucky bluegrass	266	233
Zoysia	338	301

Primo: Rooting increase for C3? Colorado (Ervin) PR: no effect PR: no effect KBG: no effect Auburn (Walker, Guertal) Iowa State (Christians) CB: no effect CB: no effect Virginia Tech (Schmidt, Zhang) Kansas State (Fry, Marcum) CB: no effect PR: no effect Finder Finder CB: no effect Finder

TE Increases Visual Contrast of *Poa annua* in bentgrass

- Differences in Color
 - Response
 - Poa = Lighter Green
 - Bent = Darker Green
- Grass Species Segregate Out

Less Leaf
 Inter-mixing

Studied PGRs Effect on Ball Roll

- Research Questions & Objectives
- 1. When are putting greens fastest?
- 2. How Do PGRs affect ball roll distance
 - 1. Within a day?
 - 2. Over the course of 10 days?
- 3. Does Clipping Yield influence Ball Roll Distance?

Details of the Experiment

- Bent/Poa Putting Green
- Treatments
 - Primo (0.125 oz/M @ 200GDD)
 - Trimmit & Cutless (0.25 oz/M @ 300GDD)
- Measured
 - Clipping Yield Daily
 - Ball Roll After Mowing, After Rolling, Afternoon

Ball Roll Summary.....

- Ball roll greatest 4 to 5 days after daily rolling
- As quality declined, ball roll declines
- PGRs had a small benefit on ball roll distance
- Ball roll not directly related to clipping yield
- Management Strategies:
 - Grow healthy turfgrass
 - Roll once daily prior to an event
 - Use PGRs to increase plant health despite variable effect on ball roll

Today's Road Map

- PGR Introductions
- Modeling PGR performance with GDDs
 - Primo Maxx
 - Anuew
 - Class B PGRs and their combinations
- Why even use PGRs?
- Wrap-up

Effective PGR Use on Cool-Season Turf

- All PGR can be modeled with GDDs
 - Calendar-based intervals inefficient
 - Rate impacts magnitude much more than duration
 - Higher mowed turf more susceptible
- PGR benefits are real when suppression phase maintained
 - Green speed benefits are minimal
- Download our Excel Tracker Version 2.2015 – Watch for the launch of our GreenKeeper app

