165 Classic 8-bit era Programmable Sound Generator AY-3-8913

165 : Classic 8-bit era Programmable Sound Generator AY-3-8913

  • Author: ReJ aka Renaldas Zioma
  • Description: The AY-3-8913 is a 3-voice programmable sound generator (PSG) chip from General Instruments. The AY-3-8913 is a smaller variant of AY-3-8910 or its analog YM2149.
  • GitHub repository
  • GDS submitted
  • HDL project
  • Extra docs
  • Clock: 2000000 Hz
  • External hardware: DAC (for ex. Digilent R2R PMOD), RC filter, amplifier, speaker

picture

How it works

This Verilog implementation is a replica of the classical AY-3-8913 programmable sound generator. With roughly a 1500 logic gates this design fits on a single tile of the TinyTapeout.

The goals of this project

  1. closely replicate the behavior and eventually the complete design of the original AY-3-891x with builtin DACs
  2. provide a readable and well documented code for educational and hardware preservation purposes
  3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and validation against the original chip behavior.

Chip technical capabilities

  • 3 square wave tone generators
  • A single white noise generator
  • A single envelope generator able to produce 10 different shapes
  • Chip is capable to produce a range of waves from a 30 Hz to 125 kHz, defined by 12-bit registers.
  • 16 different volume levels

Registers The behavior of the AY-3-891x is defined by 14 registers.

Register Bits used Function Description
0 xxxxxxxx Channel A Tone 8-bit fine frequency
1 ....xxxx —//— 4-bit coarse frequency
2 xxxxxxxx Channel B Tone 8-bit fine frequency
3 ....xxxx —//— 4-bit coarse frequency
4 xxxxxxxx Channel C Tone 8-bit fine frequency
5 ....xxxx —//— 4-bit coarse frequency
6 ...xxxxx Noise 5-bit noise frequency
7 ..CBACBA Mixer Tone and/or Noise per channel
8 ...xxxxx Channel A Volume Envelope enable or 4-bit amplitude
9 ...xxxxx Channel B Volume Envelope enable or 4-bit amplitude
10 ...xxxxx Channel C Volume Envelope enable or 4-bit amplitude
11 xxxxxxxx Envelope 8-bit fine frequency
12 xxxxxxxx —//— 8-bit coarse frequency
13 ....xxxx Envelope Shape 4-bit shape control

Square wave tone generators Square waves are produced by counting down the 12-bit counters. Counter counts up from 0. Once the corresponsding register value is reached, counter is reset and the output bit of the channel is flipped producing square waves.

Noise generator Noise is produced with 17-bit Linear-feedback Shift Register (LFSR) that flips the output bit pseudo randomly. The shift rate of the LFSR register is controller by the 5-bit counter.

Envelope The envelope shape is controlled with 4-bit register, but can take only 10 distinct patterns. The speed of the envelope is controlled with 16-bit counter. Only a single envelope is produced that can be shared by any combination of the channels.

Volume Each of the three AY-3-891x channels have dedicated DAC that converts 16 levels of volume to analog output. Volume levels are 3 dB apart in AY-3-891x.

Historical use of the AY-3-891x

The AY-3-891x family of programmable sound generators was introduced by General Instrument in 1978. Soon Yamaha Corporation licensed and released a very similar chip under YM2149 name.

Both variants of the AY-3-891x and YM2149 were broadly used in home computers, game consoles and arcade machines in the early 80ies.

The AY-3-891x chip family competed with the similar Texas Instruments SN76489.

The original pinout of the AY-3-8913

The AY-3-8913 was a 24-pin package release of the AY-3-8910 with a number of internal pins left simply unconnected. The goal of AY-3-8913 was to reduce complexity for the designer and reduce the foot print on the PCB. Otherwise the functionality of the chip is identical to AY-3-8910 and AY-3-8912.

             ,--._.--.
      GND ---|1    24|<-- /cs*
     BDIR -->|2    23|<--  a8*
      BC1 -->|3    22|<-- /a9*
      DA7 <->|4    21|<-- /RESET
      DA6 <->|5    20|<-- CLOCK
      DA5 <->|6    19|--- GND
      DA4 <->|7    18|--> CHANNEL C OUT
      DA3 <->|8    17|--> CHANNEL A OUT
      DA2 <->|9    16|    not connected
      DA1 <->|10   15|--> CHANNEL B OUT
      DA0 <->|11   14|<-- test*
    test* <--|12   13|<-- VCC
             `-------'
      * -- omitted from this Verilog implementation

Difference from the original hardware

This Verilog implementation is a completely digital and synchronous design that differs from the original AY-3-8913 design which incorporated internal DACs and analog outputs.

Audio signal output While the original chip had no summation The module provides two alternative outputs for the generated audio signal:

  1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
  2. pseudo analog output through Pulse Width Modulation (PWM)

Master output channel In contrast to the original chip which had only separate channel outputs, this implementation also provides an optional summation of the channels into a single master output.

No DC offset This implementation produces output 0/1 waveforms without DC offset.

No /A8, A9 and /CS pins The combination of /A8, A9 and /CS pins orginially were intended to select a specific sound chip out the larger array of devices connected to the same bus. In this implementation this mechanism is omitted for simplicity, /A8, A9 and /CS are considered to be tied low and chip behaves as always enabled.

Synchronous reset and single phase clock The original design employed 2 phases of the clock and asynchronous reset mechanism for operation of the registers.

To make it easier to synthesize and test on FPGAs this implementation uses single clock phase and synchronous reset for registers.

The reverse engineered AY-3-891x

This implementation would not be possible without the reverse engineered schematics and analysis based on decapped AY-3-8910 and AY-3-8914 chips.

How to test

The data bus of the AY-3-8913 chip has to be connected to microcontroller and receive a regular stream of commands. The AY-3-8913 produces audio output and has to be connected to a speaker. There are several ways how the overall schematics can be established.

8-bit parallel output via DAC One option is to connect off the shelf data parallel Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins and route the resulting analog audio to piezo speaker or amplifier.

  uController             AY-3-8913  
  ,---------.            ,---._.---. 
  |         |    2 Mhz ->|CLK  SEL0|<-- 0
  |    GPIOx|----------->|BC1  SEL1|<-- 0
  |    GPIOx|----------->|BDI      |         ,----------.
  |    GPIOx|----------->|DA0  OUT0|-------->|LSB       |
  |    GPIOx|----------->|DA1  OUT1|-------->|          |  
  |    GPIOx|----------->|DA2  OUT2|-------->|   pDAC   |  Headphones
  |    GPIOx|----------->|DA3  OUT3|-------->|    or    |      or    
  |    GPIOx|----------->|DA4  OUT4|-------->| RESISTOR |    Buzzer    
  |    GPIOx|----------->|DA5  OUT5|-------->|  ladder  |         /|
  |    GPIOx|----------->|DA6  OUT6|-------->|          |     .--/ |
  |    GPIOx|----------->|DA7  OUT7|-------->|MSB       |-----|    |
  `---------'            `---------'         `----------'     `--` |
                                                               |  `|
                                                               |
                                                          GND ---  

AUDIO OUT through RC filter Another option is to use the Pulse Width Modulated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based integrator:

  uController             AY-3-8913
  ,---------.            ,---._.---. 
  |         |    2 Mhz ->|CLK  SEL0|<-- 0
  |    GPIOx|----------->|BC1  SEL1|<-- 0
  |    GPIOx|----------->|BDIR     |
  |    GPIOx|----------->|DA0      |
  |    GPIOx|----------->|DA1      |
  |    GPIOx|----------->|DA2      |          C1
  |    GPIOx|----------->|DA3      |     ,----||----.
  |    GPIOx|----------->|DA4      |     |          | 
  |    GPIOx|----------->|DA5      |     |  Op-amp  |        Speaker     
  |    GPIOx|----------->|DA6 AUDIO|     |   |X     |            /|
  |    GPIOx|----------->|DA7  OUT |-----+---|-X    |   C2   .--/ |
  `---------'            `---------'         |  }---+---||---|    |
                                          ,--|+/             `--` |
                                          |  |/               |  `|
                                          |                   |
                                     GND ---             GND ---  

Separate channels through the Op-amp The third option is to externally combine 4 channels with the Operational Amplifier and low-pass filter:

  uController             AY-3-8913
  ,---------.            ,---._.---. 
  |         |    2 Mhz ->|CLK  SEL0|<-- 0
  |    GPIOx|----------->|BC1  SEL1|<-- 0
  |    GPIOx|----------->|BDIR     |
  |    GPIOx|----------->|DA0      |
  |    GPIOx|----------->|DA1      |
  |    GPIOx|----------->|DA2      |           C1
  |    GPIOx|----------->|DA3      |      ,----||----.
  |    GPIOx|----------->|DA4      |      |          | 
  |    GPIOx|----------->|DA5     A|---.  |  Op-amp  |        Speaker
  |    GPIOx|----------->|DA6     B|---+  |   |X     |            /|
  |    GPIOx|----------->|DA7     C|---+--+---|-X    |   C2   .--/ |
  `---------'            `---------'          |  }---+---||---|    |
                                           ,--|+/             `--` |
                                           |  |/               |  `|
                                           |                   |
                                      GND ---             GND ---  

Summary of commands to communicate with the chip

The AY-3-8913 is programmed by updating its internal registers via the data bus. Below is a short summary of the communication protocol of AY-3-891x. Please consult AY-3-891x Technical Manual for more information.

BDIR BC1 Bus state description
0 0 Bus is inactive
0 1 (Not implemented)
1 0 Write bus value to the previously latched register #
1 1 Latch bus value as the destination register #

Latch register address First, put the destination register adress on the bus of the chip and latch it by pulling both BDIR and BC1 pins high.

Write data to register Put the desired value on the bus of the chip. Pull BC1 pin low while keeping BDIR pin high to write the value of the bus to the latched register address.

Inactivate bus by pulling both BDIR and BC1 pins low.

Register Format Description Parameters
0,2,4 ffffffff A/B/C tone period f - low bits
1,3,5 0000FFFF —//— F - high bits
6 000fffff Noise period f - noise period
7 00CBAcba Noise / tone per channel CBA - noise off,
cba - tone off
8,9,10 000Evvvv A/B/C volume E - envelope on,
v - volume level
11 ffffffff Envelope period f - low bits
12 FFFFFFFF —//— F - high bits
13 0000caAh Envelope Shape c - continue, a - attack, A - alternate, h - hold

Note frequency

Use the following formula to calculate the 12-bit period value for a particular note:

$$ tone period_{cycles} = clock_{frequency} / (16_{cycles} * note_{frequency}) $$

For example 12-bit period that plays 440 Hz note on a chip clocked at 2 MHz would be:

$$ tone period_{cycles} = 2000000 Hz / (16_{cycles} * 440 Hz) = 284 = 11C_{hex} $$

An example to play a note at a maximum volume

BDIR BC1 DA7..DA0 Explanation
1 1 xxxx0000 Latch tone A coarse register address $0 = 0000_{bin}$
1 0 xxxx0001 Write high 4-bits of the 440 Hz note $1 = 0001_{bin}$
1 1 xxxx0001 Latch tone A fine register address $1_{dec} = 0001_{bin}$
1 0 00011100 Write low 8-bits of the note $1C_{hex} = 00011100_{bin}$
1 1 xxxx1000 Latch channel A volume register address $8 = 1000_{bin}$
1 0 xxx01111 Write maximum volume level $15_{dec} = 1111_{bin}$ with the envelope disabled
Timing diagram

CLK   ____      ____      ____      ____      ____      ____         
   __/    `____/    `____/    `____/    `____/    `____/    `____ ...
    |         |         |         |         |         |
    |         |         |         |         |         |

BDIR ______    ______    ______    ______    ______    ______
   _/      `__/      `__/      `__/      `__/      `__/      `__

BC1  _______             _______            ________
   _/       `___________/       `__________/        `___________

DA7..DA0_____  ________  ________  ________  ________  ________
   _/  0000  `/xxxx0001`/  0001  `/00011100`/  1000  `/xxx01111`
      latch     write     latch      write    latch     

Externally configurable clock divider

SEL1 SEL0 Description Clock frequency
0 0 Standard mode, clock divided by 8 1.7 .. 2.0 MHz
1 1 —–//—– 1.7 .. 2.0 MHz
0 1 New mode for TT05, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz
SEL1 SEL0 Formula to calculate the 12-bit tone period value for a note
0 0 $clock_{frequency} / (16_{cycles} * note_{frequency})$
1 1 —–//—–
0 1 $clock_{frequency} / (2_{cycles} * note_{frequency})$
1 0 $clock_{frequency} / (128_{cycles} * note_{frequency})$

IO

# Input Output Bidirectional
0 DA0 - multiplexed data/address bus audio out (pwm) (in) BC1 bus control
1 DA1 - multiplexed data/address bus digita audio least significant bit (in) BDIR bus direction
2 DA2 - multiplexed data/address bus digita audio (in) SEL0 clock divider
3 DA3 - multiplexed data/address bus digita audio (in) SEL1 clock divider
4 DA4 - multiplexed data/address bus digita audio (out) channel A (PWM)
5 DA5 - multiplexed data/address bus digita audio (out) channel B (PWM)
6 DA6 - multiplexed data/address bus digita audio (out) channel C (PWM)
7 DA7 - multiplexed data/address bus digita audio most significant bit (out) AUDIO OUT master (PWM)

Chip location

Controller Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux tt_um_chip_rom (Chip ROM) tt_um_factory_test (TinyTapeout 05 Factory Test) tt_um_loopback (TinyTapeout 05 Loopback Test Module) tt_um_Leaky_Integrate_Fire_nfjesifb (Leaky Integrate and Fire Neuron Model) tt_um_topModuleKA (Time Multiplexed Neuron Ckt) tt_um_sap_1 (SAP-1 Computer) tt_um_lif (Leaky Integrate-and-Fire Neuron (Verilog Demo)) tt_um_jleugeri_ticktocktokens (TickTockTokens) tt_um_LSNN (Spiking LSTM Network) tt_um_if (Integrate-and-Fire Neuron. (Verilog Demo)) tt_um_mihailocode_neural_network (Neural network on chip) tt_um_hls_lfi (Simple Leaky Integrate and Fire (LIF) Neuron) tt_um_diadatp_spigot_e (e Spigot) tt_um_kskyou (Continued Fraction Calculator) tt_um_wokwi_380005495431181313 (Water Pump Controller) tt_um_EventFilter (Event Denoising Circuit) tt_um_wokwi_380416099936681985 (7 segment seconds (Verilog Demo)) tt_um_freq_hcohensa (Frequency Encoder/Decoder) tt_um_wokwi_380410498092232705 (UART Greeter with RNN Module) tt_um_wokwi_380120751165092865 (WS2812B LED strip driver) tt_um_wokwi_380408486941145089 (Tiny Tapeout 5 Workshop) tt_um_wokwi_380409169798008833 (Tiny Tapeout 1) tt_um_wokwi_380409488188706817 (Supercon Workshop) tt_um_matrix_multiplier (Matrix Multiplier) tt_um_wokwi_380408594272345089 (Clock Divider) tt_um_wokwi_380408784463076353 (Binary Counter) tt_um_wokwi_380408396356749313 (ring osc test) tt_um_7segx4_clock_abhishek_top (7 segment clock with 4 digits) tt_um_wokwi_380409481852161025 (test001) tt_um_hodgkin_huxley (Hodgkin-Huxley Chip Design) tt_um_wokwi_380408823952452609 (Character Selector) tt_um_wokwi_380409904919056385 (Intructouction to PRBS) tt_um_wokwi_380409081067502593 (tto5 Supercon Project) tt_um_jmadden173_delta_modulation (Delta Modulation Spike Encoding) tt_um_wokwi_380409086743445505 (GameOfLife) tt_um_reflex_game (Reflex Game) tt_um_wokwi_380409019830656001 (Logic Gates Tapeout) tt_um_Fiona_CMU (Stream Cipher w/ LSR) tt_um_wokwi_380409532780455937 (tt5modifyd) tt_um_alu_chip (ALU Chip) tt_um_wokwi_380408936929183745 (Tapeout Test) tt_um_rjmorgan11_calculator_chip (Calculator chip) tt_um_wokwi_380409369220404225 (Shifty Snakey) tt_um_synth_GyanepsaaS (Synth) tt_um_wokwi_380408774591779841 (Sawtooth Generator) tt_um_wokwi_380197591775930369 (Blinking A) tt_um_wokwi_380409393770716161 (Supercon 2023) tt_um_mvm (Sparsity Aware Matrix Vector Multiplication) tt_um_wokwi_380408455148316673 (Ring Oscillator and Clock Source Switch) tt_um_mv_mult_alrdelcr (Matrix Vector Multiplication (Verilog Demo)) tt_um_wokwi_380416361853146113 (IDK WHAT TO DO) tt_um_wokwi_379319062779062273 (7-segment display logic system ) tt_um_wokwi_380409568391147521 (Hardware Trojan Example) tt_um_wokwi_379824923824476161 (Analog Clock) tt_um_wokwi_380145600224164865 (7 segment display) tt_um_wokwi_379889284755158017 (W_Li_10/28) tt_um_wokwi_380408409844584449 (Supecon Gate Play) tt_um_manjushettar (ECE 183 - Integrate and Fire Network Chip Design) tt_um_wokwi_380409236812508161 (tto5) tt_um_rebel2_balanced_ternary_ALU (REBEL-2 Balanced Ternary ALU) tt_um_wokwi_380229599886002177 (Stochastic Multiplier) tt_um_jeffdi_seven_segment_seconds (7 segment seconds - count down) tt_um_wokwi_380416616536542209 (TT05 Submission) tt_um_lif_n (Leaky Integrate-and-Fire Neuron) tt_um_wokwi_379764885531576321 (Count via LFSR) tt_um_dlmiles_tt05_i2c_bert (I2C BERT) tt_um_loopback_ericsmi (tt05-loopback tile with input skew measurement) tt_um_flappy_vga_cutout1 (Flappy VGA) tt_um_async_proc_paulschulz (Asynchronous Parallel Processor Demonstrator) tt_um_wokwi_380055891603379201 (Hex Countdown) tt_um_nickjhay_processor (Matrix multiply coprocessor (8x8 1bit)) tt_um_htfab_cell_tester (Standard cell generator and tester) tt_um_wta (Winner-Take-All Network (Verilog Demo)) tt_um_muncherkin_lioncage (Lion cage) tt_um_seven_segment_seconds_ksandov4 (Brain Inspired Random Dropout Circuit) tt_um_seanvenadas (Event-Based Denoising Circuit) tt_um_wokwi_378231665807713281 (RAM cell test) tt_um_rejunity_ay8913 (Classic 8-bit era Programmable Sound Generator AY-3-8913) tt_um_rnn (RNN (Demo)) tt_um_gharenthi_top (STDP Neuron) tt_um_SNN (Basic Spiking Neural Network) tt_um_btflv_8bit_fp_adder (8 bit floating point adder) tt_um_perceptron (Perceptron Hardcoded) tt_um_jkprz (Cheap and quick STDP) tt_um_topLevel_derekabarca (Brain-Inspired Oscillatory Network) tt_um_uwuifier (UART uwuifier) tt_um_perceptron_connorguzi (Perceptron and basic binary neural network) tt_um_hadirkhan10_lif_neuron (Leaky Integrate-and-Fire Neuron) tt_um_wokwi_380119282165535745 (7 segment seconds) tt_um_uabc_electronica_2023 (UABC-ELECTRONICA) tt_um_proppy_bytebeat (bytebeat) tt_um_meriac_play_tune (Super Mario Tune on A Piezo Speaker) tt_um_wrapper_inputblackboxoutput (Byte Computer) tt_um_vhdl_seven_segment_seconds (7 segment seconds (VHDL Demo)) tt_um_cejmu (4-Bit ALU) tt_um_rejunity_sn76489 (Classic 8-bit era Programmable Sound Generator SN76489) tt_um_minipit_stevej (Miniature Programmable Interrupt Timer) tt_um_gchenfc_seven_segment_gerry (7-segment Name Display) tt_um_supertails_tetris (Tetris) tt_um_mabhari_seven_segment_seconds (Simple_Timer-MBA) tt_um_njzhu_uart (UART Receiver) tt_um_wokwi_376553022662786049 (AGL CorticoNeuro-1) tt_um_adaptive_lif (Leaky-Integrated Fire Neuron) tt_um_myuart (MyUART) tt_um_wokwi_380438365946734593 (UART test) tt_um_tkmheart (Heart Rhythm Analyzer) tt_um_stdp (Spike-timing dependent plasticity (Verilog Demo)) tt_um_wokwi_380465686251921409 (Tiny Tapeout 5 TM project1) tt_um_thermocouple (Thermocouple-to-temperature converter (digital backend)) tt_um_wokwi_380412382001715201 (Naive 8-bit Binary Counter) tt_um_asinghani_tinyscanchain_tt05 (tinyscanchain Test Design) tt_um_carlosgs99_cro_udg (6 digit chronometer.) tt_um_suhrojo (Convolutional Network Circuit Chip Design) tt_um_mvm_ (Matrix Vector Multiplication Accelerator) tt_um_perceptron_neuromeme (Perceptron (Neuromeme)) tt_um_czlucius_alu (4 Bit ALU) tt_um_BNNNeuron (Binary Neural Network (Verilog Demo)) tt_um_urish_skullfet (SkullFET) tt_um_ja1tye_sound_generator (Wavetable Sound Generator) tt_um_jaylennee_wta_pwm (PWM signal generation with Winner-Take-All selection) tt_um_joerdsonsilva_top (Multimode Modem) tt_um_toivoh_synth (Analog emulation monosynth) tt_um_tiny_game_of_life (Tiny Game of Life) tt_um_mingkaic1_stack_machine (Stack Machine) tt_um_morningjava_top (ChipTune) tt_um_urish_silife (Game of Life 8x8 (siLife)) tt_um_tt05_analog_test (TT05 Analog Testmacro (Ringo, DAC)) tt_um_wokwi_380409528895479809 (RBUART) tt_um_mattngaw_fp8 (8-bit Floating-Point Adder) tt_um_chip_inventor_music__6_bit_count (6 bit Counter and Piano Music created by Chip Inventor) tt_um_4_bit_pipeline_multiplier (4 Bit Pipelined Multiplier) tt_um_wokwi_380477805171811329 (2-Bit ALU + Dice) tt_um_wokwi_380490286828784641 (TT02 Wokwi 7seg remake) tt_um_wokwi_380361576213660673 (ping pong asic) tt_um_prg (A Boolean function based pseudo random number generator (PRNG)) tt_um_digital_clock_sellicott (Digital Desk Clock) tt_um_haozhezhu_top (4-bit FIFO/LIFO) tt_um_top_mole99 (One Sprite Pony) tt_um_GrayCounter_ariz207 (4 bit Sync Gray Code Counter) tt_um_clkdiv (Clock and Random Number Gen) tt_um_matt_divider_test (TT05 Analog Test) tt_um_tomkeddie_a (VGA Experiments) tt_um_rejunity_rule110 (Rule110 cell automata) tt_um_no_time_for_squares_tommythorn (No Time for Squares) tt_um_urish_silife_max (Game of Life 8x32 (siLife)) tt_um_gfg_development_tros (TROS) tt_um_chatgpt_snn_mtomlin5 (ChatGPT designed Spiking Neural Network) tt_um_ks_pyamnihc (Karplus-Strong String Synthesis) tt_um_dinogame (VGA Dino Game) tt_um_himanshu5_prog_chipTop (Dual Compute Unit) tt_um_rtfb_collatz (Collatz conjecture brute-forcer) tt_um_retospect_neurochip (Field Programmable Neural Array) tt_um_urish_dffram (DFFRAM Example (128 bytes)) tt_um_rejunity_snn (Chonky SNN) tt_um_hh (Hodgkin-Huxley Neuron) tt_um_wokwi_377426511818305537 (PRBS Generator) tt_um_devinatkin_stopwatch (Stop Watch) tt_um_algofoogle_vga_spi_rom (vga_spi_rom) tt_um_blink (RO and counter) tt_um_ttl74hc595_v2 (8-Bit Shift Register with Output Latches 74HC595) tt_um_psychogenic_neptuneproportional (Neptune guitar tuner (proportional window, version b, debug output on bidir pins, larger set of frequencies)) tt_um_urish_simon (Simon Says game) tt_um_kianV_rv32ima_uLinux_SoC (KianV uLinux SoC) tt_um_urish_ringosc_cnt (Ring oscillator with counter) tt_um_sunaofurukawa_cpu_8bit (cpu_8bit) tt_um_vga_clock (VGA clock) tt_um_seven_segment_seconds (7 segment seconds (Verilog Demo)) tt_um_frequency_counter (Frequency counter) tt_um_rgb_mixer (RGB Mixer) tt_um_MichaelBell_spi_peri (SPI Peripheral) tt_um_multiplexed_clock (Multiplexed clock) tt_um_psychogenic_shaman (Shaman: SHA-256 hasher) tt_um_yubex_metastability_experiment (metastability experiment) Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available