AfriSAR: the campaign and a tomographic analysis

Ja

Valentine Wasik Pascale Dubois-Fernandez Xavier Dupuis

Cédric Taillandier

ONERA

TOTAL

ONERA THE FRENCH AEROSPACE LAB

• Why this campaign?

- Collect data to support the development of the BIOMASS mission [1]
- Concept verification, algorithms development for geophysical estimation, ...
- Associated campaign for TOTAL : potential of radar and optical acquisitions for hydrocarbon exploration and environmental protection

• Where?

- o Gabon (Africa)
- Map large areas of tropical forests
- o 100t-500t/ha biomass range

Gabon

• How?

- Airborne acquisitions (and ground measurements)
- Radar (L and P band)
- Hyperspectral (VNIR and SWIR)

[1] : Le Toan *et al.* 'The BIOMASS Mission : Mapping global forest biomass to better understand the terrestrial carbon cycle', Remote Sensing of Environment, 2011.

2 Atelier radar 2017 - Télédétection radar : applications continentales

• Who?

ESA sponsored campaign

- $\circ~$ ONERA SETHI (France) and DLR F-SAR (Germany)
- Ground measurements by University College London (Simon Lewis) and CESBIO
- Great scientific support from local agencies (AGEOS: Gabon space agency;

ANPN: Gabon National Park Agency)

On ONERA side

- $\circ~$ Additional funding from CNES
- \circ TOTAL

Collaboration with NASA (UAVSAR + LVIS)

• When?

Different seasons

- July 2015 SETHI ONERA Dry season
- February 2016 FSAR DLR Wet season
 - UAVSAR + LVIS acquisitions (NASA)
- \rightarrow Influence of the disturbances on the estimation techniques
 - o **Season**
 - \circ Weather
 - o Soil moisture

ΟΤΑΙ

A large team 10 ONERA, 4 AvDEF, 1 ESA, 2 CESBIO + ANPN + AGEOS + DLR

Radar configuration

JERS LHH MOSAIC of GABON

R: LHH-1 (Oct-Nov, 1996) G: LHH-2 (Jan-Mar, 1996) B: Ratio LHH-1/LHH-2 Sites for AfriSAR Airborne Campaign

Main Study Area La Lopé National Park

Rabi

Mondah

Mabounie

The sites: La Lopé - National Park

- Patchy forests and savannas
 - Marked topography
 - o Plots: 100t/ha to 500t/ha
 - Selected with the help of ANPN (National Park Agency Lee White)

Photos: CESBIO

ONERA

THE FRENCH AEROSPACE LA

La Lopé site: LIDAR

Digital Terrain Model (ground height)

Canopy Height Model (vegetation height)

- LIDAR data provided by S. Saatchi JPL
- Date: 2013

Tomographic analysis from SETHI acquisitions over La Lopé

Tomography SAR

Tomography SAR :

Use information collected by sensors at different altitudes to estimate a vegetation profile *

- * power of the backscattered response of the scatterers as a function of their height
- \rightarrow Estimation of the ground and the canopy height
- \rightarrow Analysis of vegetation and ground properties

La Lopé TomoStack

10 flights \rightarrow *L* = 160m synthetic vertical antenna

	Flight ID : 20150705-B	AfriSAR 3
ID	05/07/2015 (B)	
1	TomoSAR	Lope-M2-20950-P+L (0m)
2	66	Lope-M2-20685-P+L (-80m)
3	66	Lope-M2-20750-P+L (-60m)
4	66	Lope-M2-20880-P+L (-20m)
5	66	Lope-M2-20980-P+L (+10m)
6	66	Lope-M2-21080-P+L (+40m)
7	66	Lope-M2-21145-P+L (+60m)
8	"	Lope-M2-21210-P+L (+80m)
9	"	Lope-M2-20685-P+L (-80m)
10	"	Lope-M2-20980-P+L (+10m)
11	Calibration	Libreville- Cal-20060-P+L

z 10 flights **ró ró**i **ró f**60m **ró**-

Resolution for tomography : ~6m at -3dB in near range for Capon

ONERA

THE FRENCH APPOSPACE LA

La Lopé - TomoStack

• Preparing the TomoStack:

- Standard SAR processing (projection into the master trajectory -> flight 10)
- Use of a Digital Elevation Model (DEM) for topography calibration Here: TanDEM-X* DEM
 - * Satellite data (X-band) : little penetration in the vegetated cover

Phase correction of the TomoStack

Phase screens [1]

- o Residual phases on the data
- Mostly dued to misknowledge on the trajectory of the flights
- o Can provoke defocusing and strong side lobes in the tomographic profiles
- \rightarrow Need to be corrected

Correction procedure :

- Estimation of the phase screens for each flight (based on phase linked approach [2])
- Correction of the data

• Tomographic estimators on the corrected data stack

- o Here : Capon estimator [3] for the vegetation profile
- o Classic non parametric estimator
- Resolution at -3dB : ~6m (near range)

[3] : Stoica and Moses, Introduction to Spectral Analysis, Englewood Cliffs, NJ: Prentice Hall, 1997

Estimated phase screen on image 1

ONERA

THE FRENCH APPOSPACE LA

Examples of results:

Sliding windows: 33x33 pixels

Polarisation mode : HV

Sliding windows: 33x33 pixels

Τοται

Τοται

Identification of ROI

ONERA

THE FRENCH AEROSPACE LAB

TOTAL

Tomographic analysis on ROI

SAV1

Savanna region Low vegetated areas Almost flat area

Colonizing forest (savanna borders) Very young forest Flat area

OKO2

Mono-specy: Okoumé Homogeneous high trees Former plantation Flat area

MIX1

Photos : Afrisar report + CESBIO

Multiple species Multiple growing states Moderate slope

Tomographic analysis on ROI

SAV1

Savanna region Low vegetated areas Almost flat area

COL3

Colonizing forest (savanna borders) Very young forest Flat area

OKO2

Mono-specy: Okoumé Homogeneous high trees Former plantation Flat area

MIX1

Photos : Afrisar report + CESBIO

Multiple species Multiple growing states Moderate slope

Capon normalized profiles HV

Conclusion on the tomographic analysis

- The profiles are well correlated to the LIDAR data (ground and canopy heights)
- There is a definite sensitivity of the profiles to the type of forest and the histogram of height (given by LIDAR)
 - Future work will include exploration of the effect of topography
- Qualitative results for the moment
 - Future work will include estimation of the ground and canopy heights

Thank you for your attention

Acknowledgements: ESA, AGEOS, ANPN, DLR, CESBIO, IRD, CNES, TOTAL, UCL

23 Atelier radar 2017 - Télédétection radar : applications continentales

