STAT 312 Lab 10

1. (a) State the Central Limit Theorem.
(b) Let $S_{n} \sim \operatorname{bin}(n, p)$. By thinking of S_{n} as the number of 'successes', represent it as a sum of independent r.v.s (recall that we did exactly this when we discussed the binomial p.g.f. and m.g.f.) and conclude that

$$
\frac{S_{n}-n p}{\sqrt{n}} \xrightarrow{L} N(0, p(1-p)) .
$$

(a) Recall the 'delta method'; state the approximate mean and variance of a function $\psi\left(\bar{Y}_{n}\right)$ of a sample average $\bar{Y}_{n}=n^{-1} \sum Y_{i}$, when the Y_{i} each have mean μ_{Y} and variance σ_{Y}^{2}
(b) Suppose that \hat{p} is the proportion of n individuals exhibiting a certain trait, where p is the probability that an individual exhibits this trait, and let $Z_{n}=$ $\log (\hat{p} /(1-\hat{p}))$ be the 'logit'. This is sometimes preferred to \hat{p} since it is not constrained to lie in $(0,1)$ - it can take on any value and in fact is approximately normally distributed, as you will now show. More precisely, show that

$$
\sqrt{n}\left(Z_{n}-\log \left(\frac{p}{1-p}\right)\right) \xrightarrow{L} N\left(0, \frac{1}{p(1-p)}\right) .
$$

2. Suppose we gather a sample X_{1}, \ldots, X_{n} of i.i.d. observations, obtaining the numerical values x_{1}, \ldots, x_{n}.
(a) If the X_{i} have the d.f. F, then a common estimate of F is the empirical distribution function (e.d.f.)

$$
\hat{F}_{n}(x)=\frac{\# \text { of } X_{i} \text { which are } \leq x}{n}
$$

Make a plot of $\hat{F}_{n}(x)$. Show that $\hat{F}_{n}(x)$ is the average of the i.i.d. r.v.s $Z_{i}=$ $I\left(X_{i} \leq x\right)$, each of which has a Bernoulli distribution with $p=F(x)$.
(b) Apply the WLLN to assert that, for each $x, \hat{F}_{n}(x) \xrightarrow{p r} F(x)$.
(c) Apply the CLT so as to exhibit an appropriately normalized version of $\hat{F}_{n}(x)$ which has a limiting Normal distribution.

Here we have looked at $\hat{F}_{n}(x)$ for fixed x; as x varies we obtain the empirical process, which is one of the most well-studied stochastic processes in Probability Theory.
3. (a) State the Weak Law of Large Numbers.
(b) Let X_{1}, \ldots, X_{n} be a sample from a population with mean μ and variance σ^{2}. Complete the 'application' of Lecture 29 by showing that $S^{2} \xrightarrow{p r} \sigma^{2}$. [Hint: start by showing that

$$
S^{2}=\frac{n}{n-1}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-(\bar{X}-\mu)^{2}\right]
$$

then think about the WLLN and Slutsky's Theorem.]
4. Recall, from Lecture 24, the m.g.f. of a negative binomial r.v. Suppose that $p=p_{r}$ increases with r, in such a way that

$$
r \frac{1-p_{r}}{p_{r}} \rightarrow \lambda>0 \text { as } r \rightarrow \infty
$$

Thus 'successes' are increasingly likely, but more of them are required before the trials can stop. Here you will show that the number of failures before the $r^{t h}$ success, which we now write as N_{r}, has a limiting $\mathbb{P}(\lambda)$ distribution.
(a) First show that the m.g.f. can be written as

$$
E\left[e^{t N_{r}}\right]=\exp \left\{-r \log \left(1-c_{r}\right)\right\}
$$

where $c_{r}=\frac{1-p_{r}}{p_{r}}\left(e^{t}-1\right)$. Note that $c_{r} \rightarrow 0$ as $r \rightarrow \infty$.
(b) Argue that $N_{r} \xrightarrow{L} \mathbb{P}(\lambda)$ iff $-r \log \left(1-c_{r}\right) \rightarrow \lambda\left(e^{t}-1\right)$.
(c) Establish the requirement of (b).
5. Here you will show that the standard normal density $\phi(x)=e^{-x^{2} / 2} / \sqrt{2 \pi}$ really is a density, in that it integrates to 1; i.e. you will show that if we define $I=\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x$, then $I=\sqrt{2 \pi}$. For this, write I^{2} as

$$
I^{2}=\int_{-\infty}^{\infty} e^{-x_{1}^{2} / 2} d x_{1} \cdot \int_{-\infty}^{\infty} e^{-x_{2}^{2} / 2} d x_{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x_{1}^{2}+x_{2}^{2}\right) / 2} d x_{1} d x_{2}
$$

and transform to polar coordinates as described in Lecture 30.

