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1 Heisenberg vertex algebras (chiral algebras for free

bosons)

Let h be a finite-dimensional inner product vector space over R with the inner product (·, ·).
Let ĥ = h ⊗ C[t, t−1] ⊕ Ck be the Heisenberg algebra associated to h with the commutator
formula given by

[a⊗ tm, b⊗ tn] = m(a, b)δm+n,0k,

[a⊗ tm,k] = 0

for a, b ∈ h and m,n ∈ Z. Note that h is vector space over R while ĥ is a vector space over C.
Let ĥ+ = h⊗ tC[t], ĥ− = h⊗ t−1C[t−1] and ĥ0 = h⊗ t0 ⊕ Ck. These are all Lie subalgebras
of ĥ.

Let ĥ+ act on the one-dimensional space C as 0 and k acts on C as 1. Then C becomes an
ĥ+⊕ ĥ0-module. By the Poincaré-Birkhoff-Witt theorem, the induced module U(ĥ)⊗U(ĥ+⊕ĥ0)

C is linearly isomorphic to U(ĥ−) ⊗C C ' S(ĥ−). In particular, S(ĥ−) is equipped with an
ĥ-module structure under this linear isomorphism. The grading on ĥ− gives a grading on
S(ĥ−) called weight. It is easy to verify that this grading on S(ĥ−) is grading-restricted; in
fact, it is easy to verify that S(ĥ−)(n) = 0 when n < 0 and dimS(ĥ−)(n) <∞.

The ĥ-module structure on S(ĥ−) can also be obtained explicitly as follows: For a ∈ h
and n ∈ Z, we define the action of a(n) on S(ĥ−) by

a(n)(a1(−n1) · · · ak(−nk)) = a(n)a1(−n1) · · · ak(−nk)

when n < 0 for a1, . . . , ak ∈ h and n1, . . . , nk ∈ Z+,

a(n)(a1(−n1) · · · ak(−nk)) =
k∑
i=1

a1(−n1) · · · ai−1(−ni−1)[a(n), ai(−ni)]ai+1 · · · ak(−nk)
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when n ≥ 0 and
k(a1(−n1) · · · ak(−nk)) = (a1(−n1) · · · ak(−nk)).

Then it is easy to verify that S(ĥ−) with this action of ĥ is an ĥ-module.
For a ∈ h, let a(x) =

∑
n∈Z a(n)x−n−1.

Proposition 1.1. For a, b ∈ h, we have

[a(x1), b(x2)] = (a, b)
(
(x1 − x2)−2 − (−x2 + x1)−2

)
. (1.1)

Proof. Note that by definition, k acts on S(ĥ−) as 1 ∈ C. For a, b ∈ h,

[a(x1), b(x2)] =
∑
m,n∈Z

[a(m), b(n)]x−m−1
1 x−n−1

2

=
∑
m,n∈Z

(a, b)mδm+n,0x
−m−1
1 x−n−1

2

= −(a, b)
∑
n∈Z

nxn−1
1 x−n−1

2

= −(a, b)
∂

∂x1

∑
n∈Z

xn1x
−n−1
2

= −(a, b)
∂

∂x1

(
(x1 − x2)−1 − (−x2 + x1)−1

)
= (a, b)

(
(x1 − x2)−2 − (−x2 + x1)−2

)
,

proving (1.1).

Let LS(ĥ−)(0) be the operator on S(ĥ−) giving the grading on S(ĥ−), that is, LS(ĥ−)(0)v =

nv for v ∈ S(ĥ−)(n). We denote 1 ∈ S(ĥ−) by 1S(ĥ−). Then S(ĥ−) is spanned by elements of
the form

a1(−n1) · · · ak(−nk)1S(ĥ−)

for a1, . . . , ak ∈ h and n1, . . . , nk ∈ Z+. We define an operator LS(ĥ−)(−1) on S(ĥ−) by

LS(ĥ−)(−1)a1(−n1) · · · ak(−nk)1S(ĥ−)

=
k∑
i=1

nia1(−n1) · · · ai−1(−ni−1)ai(−ni − 1)ai+1(−ni+1) · · · ak(−nk)1S(ĥ−).

Proposition 1.2. The series a(x) for a ∈ h and the operators LS(ĥ−)(0) and LS(ĥ−)(−1)
have the following properties:

1. For a ∈ h, [LS(ĥ−)(0), a(x)] = x d
dx
a(x) + a(x).

2. LS(ĥ−)(−1)1S(ĥ−) = 0, [LS(ĥ−)(−1), a(x)] = d
dx
a(x) for a ∈ h.
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3. For a ∈ h, a(x)1S(ĥ−) ∈ S(ĥ−)[[x]]. Moreover, limx→0 a(x)1S(ĥ−) = a(−1)1S(ĥ−).

4. The vector space S(ĥ−) is spanned by elements of the form

a1(−n1) · · · ak(−nk)1S(ĥ−)

for a1, . . . , ak ∈ h and n1, . . . , nk ∈ Z+.

5. For a, b ∈ h,
(x1 − x2)2a(x1)b(x2) = (x1 − x2)2b(x2)a(x1).

Proof. Properties 1–4 are easily verified using the definitions. Property 5 follows from
Proposition 1.1.

We shall give the definition of grading-restricted vertex algebra later. Here we first state
the main result of this section assuming the reader knows this definition. This theorem
follows easily from a general theorem we shall discuss later. So the proof will be given after
the general theorem is proved. Using (1.1), we can prove that for a1, . . . , ak ∈ h, v ∈ S(ĥ−),
and v′ ∈ S(ĥ−)′,

〈v′, a1(z1) · · · ak(zk)v〉

is the expansion in the region |z1| > · · · > |zk| > 0 of a rational function denoted by

R(〈v′, a1(z1) · · · ak(zk)v〉)

in z1, . . . , zk with the only possible poles at zi = 0 and zi − zj = 0 for i, j = 1, . . . , k. See
Section 4 for more details.

Theorem 1.3. The vector space S(ĥ−) equipped with the the vertex operator map YS(ĥ−)

defined by

〈v′,YS(ĥ−)(α1(−n1) · · ·αk(−nk)1S(ĥ−), z)v〉
= Resξ1=0 · · ·Resξk=0ξ

−n1
1 · · · ξ−nkk ξ−1

k+1R(〈v′, a1(ξ1 + z) · · · ak(ξk + z)v〉) (1.2)

for a1, . . . , ak ∈ h, v ∈ S(ĥ−) and v′ ∈ S(ĥ−)′ and the vacuum 1S(ĥ−) is a grading-restricted
vertex algebra. Moreover, this is the unique grading-restricted vertex algebra structure on
S(ĥ−) with the vacuum 1S(ĥ−) such that Y (a(−1)1, z) = a(x) for a ∈ h.

In the study of representations of Heisenberg algebras, an operation on Heisenberg op-
erators called normal ordering is very useful. For operators a1(n1), . . . , ak(nk) on S(ĥ−), we
define the normal ordered product

◦
◦a1(n1) · · · ak(nk) ◦◦

to be the operator obtained by taking the product of these operators in an order such that
ai(ni) with ni ∈ N are always to the right of those ai(ni) with ni ∈ −Z+. Note that ai(ni)
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with ni ∈ N commute with themselves. So the normal ordered product can also be defined
by taking the product these operators in an order such that ai(ni) with ni ∈ N are always
to the right of all the other ai(ni).

We now discuss what is called the stress-energy tensor in physics. Let {ui}dim h
i=1 be an

orthonormal basis of h. The stress-energy tensor is defined to be the series

T (x) =
1

2

dim h∑
i=1

◦
◦u

i(x)ui(x) ◦◦ .

Note that though ui(x) is a formal Laurent series and ui(x)ui(x) is not well defined in general,
the normal ordered product ◦◦u

i(x)ui(x) ◦◦ is well defined. By definition

T (x) =
1

2

dim h∑
i=1

◦
◦u

i(x)ui(x) ◦◦

=
1

2

dim h∑
i=1

∑
k∈Z

∑
l∈Z

◦
◦u

i(k)ui(l) ◦◦x
−k−l−2

=
∑
n∈Z

1

2

dim h∑
i=1

∑
k∈Z

◦
◦u

i(k)ui(n− k) ◦◦x
−n−2.

We write
T (x) =

∑
n∈Z

LS(ĥ−)(n)x−n−2.

Then for n ∈ Z,

LS(ĥ−)(n) =
1

2

dim h∑
i=1

∑
k∈Z

◦
◦u

i(k)ui(n−k) ◦◦ =
1

2

dim h∑
i=1

∑
k∈−Z+

ui(k)ui(n−k)+
1

2

dim h∑
i=1

∑
k∈N

ui(n−k)ui(k).

(1.3)
Let

ω =
1

2

dim h∑
i=1

ui(−1)21.

We now calculate T (x)ω, which will be used to give the example of what we call the conformal
element for the Heisenberg vertex operator algebra in Subsection 5.6.

Lemma 1.4. We have

T (x)ω = LS(ĥ−)(−1)ωx−1 + 2ωx−1 +
dim h

2
x−4 +G(x), (1.4)

where G(x) ∈ S(ĥ−)[[x]].
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Proof. By definition,

◦
◦u

i(x)ui(x) ◦◦u
j(−1)21

=
∑
k,l∈Z

◦
◦u

i(k)ui(l) ◦◦u
j(−1)21x−k−l−2

=
∑
k∈Z

∑
l∈N

ui(k)ui(l)uj(−1)21x−k−l−2 +
∑
k∈Z

∑
l∈−Z+

ui(l)ui(k)uj(−1)21x−k−l−2

=
∑
k∈Z

2∑
l=0

ui(k)ui(l)uj(−1)21x−k−l−2 + 2δij
∑
k<−2

ui(k)uj(−1)1x−k−3

+
2∑

k=0

∑
l∈−Z+

ui(l)ui(k)uj(−1)21x−k−l−2 +
∑
k∈−Z+

∑
l∈−Z+

ui(l)ui(k)uj(−1)21x−k−l−2. (1.5)

Note that the last term in the right-hand side of (1.5) is in S(ĥ−)[[x]]. So we need only
calculate the first two terms. By the commutator relations for the Heisenberg algebra, we
have

ui(0)uj(−1)21 = 0,

ui(1)uj(−1)21 = 2(ui, uj)uj(−1)1 = 2δiju
j(−1)1,

ui(0)uj(−1)21 = 0.

Then

∑
k∈Z

2∑
l=0

ui(k)ui(l)uj(−1)21x−k−l−2

= 2δij
∑
k∈Z

ui(k)uj(−1)1x−k−3

= 2δij

1∑
k=−2

ui(k)uj(−1)1x−k−3 + 2δij
∑
k<−2

ui(k)uj(−1)1x−k−3

= 2δij

1∑
k=−2

ui(k)uj(−1)1x−k−3 + 2δij
∑
k<−2

ui(k)uj(−1)1x−k−3

= 2δiju
i(−2)uj(−1)1x−1 + 2δiju

i(−1)uj(−1)1x−2 + 2δ2
ij1x

−4

+ 2δij
∑
k<−2

ui(k)uj(−1)1x−k−3

(1.6)
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and

2∑
k=0

∑
l∈−Z+

ui(l)ui(k)uj(−1)21x−k−l−2

= 2δij
∑
l∈−Z+

ui(l)uj(−1)1x−l−3

= 2δiju
i(−2)uj(−1)1 + 2δiju

i(−1)uj(−1)1 + 2δij
∑
l<−2

ui(l)uj(−1)1x−l−3 (1.7)

Note that the last terms in both (1.6) and (1.7) are in S(ĥ−)[[x]]. Sustituting (1.6) and
(1.7) into (1.5), taking sum over i, j = 1, . . . , dim h, dividing both sides by 4 and using the
definition of ω and LS(ĥ−)(−1), we obtain

T (x)ω =
1

2

dim h∑
i,j=1

δiju
i(−2)uj(−1)1x−1 +

1

2

dim h∑
i,j=1

δiju
i(−1)uj(−1)1x−2 +

1

2

dim h∑
i,j=1

δ2
ij1x

−4

+
1

2

dim h∑
i,j=1

δij
∑
k<−2

ui(k)uj(−1)1x−k−3 +
1

2

dim h∑
i,j=1

δiju
i(−2)uj(−1)1

+
1

2

dim h∑
i,j=1

2δiju
i(−1)uj(−1)1 +

1

2

dim h∑
i,j=1

δij
∑
l<−2

ui(l)uj(−1)1x−l−3

+
∑
k∈−Z+

∑
l∈−Z+

ui(l)ui(k)uj(−1)21x−k−l−2

=
1

2

dim h∑
i=1

2ui(−2)ui(−1)1x−1 + 2
1

2

dim h∑
i,j=1

ui(−1)ui(−1)1x−2 +
dim h

2
1x−4 +G(x)

= LS(ĥ−)(−1)ωx−1 + 2ωx−1 +
dim h

2
x−4 +G(x),

where

G(x) =
1

2

dim h∑
i,j=1

δij
∑
k<−2

ui(k)uj(−1)1x−k−3 +
1

2

dim h∑
i,j=1

δij
∑
l<−2

ui(l)uj(−1)1x−l−3

+
∑
k∈−Z+

∑
l∈−Z+

ui(l)ui(k)uj(−1)21x−k−l−2

∈ S(ĥ−)[[x]].

We now state the following result whose proof will be given in Subsection 5.6 using (1.4):

Theorem 1.5. The element ω is a conformal element of the grading-restricted vertex algebra
S(ĥ−). In particular, S(ĥ−) is a vertex operator algebra (see Definition 3.5).
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2 Lattice vertex algebras (chiral algebras for free bosons

on tori)

Let L be a positive-definite even lattice of rank n with nondegnerate symmetric Z-linear form
(·, ·). Then h = L⊗ZR is an n-dimensional vector space over R with a positive definite bilinear
form still denoted by (·, ·). Then we have the Heisenberg algebra ĥ = h⊗C[t, t−1]⊕Ck. As
in the preceding section, we also have the subalgebras ĥ+ = h ⊗ tC[t], ĥ− = h ⊗ t−1C[t−1]
and ĥ0 = h ⊗ t0 ⊕ Ck. Given a module M for the abelian Lie algebra h ⊗ t0 = h, let
ĥ+ act on M as 0 and k acts on M as 1. Then M becomes an ĥ+ ⊕ ĥ0-module. By the
Poincaré-Birkhoff-Witt theorem, the induced module U(ĥ)⊗U(ĥ+⊕ĥ0)M is linearly isomorphic

to U(ĥ−)⊗M = S(ĥ−)⊗M . In particular, S(ĥ−)⊗M is equipped with an ĥ-module structure
under this linear isomorphism.

Fix a basis α1, . . . , αr of L. We define a Z-linear map ε : L× L→ Z by

ε(αi, αj) =

{
(αi, αj) i > j
0 i ≤ j

for i, j = 1, . . . , r. Let L̂ = {1,−1} × L. Define a multiplication on L̂ by

(θ, α) · (τ, β) = (θτ(−1)ε(α,β), α + β)

for θ, τ ∈ {1,−1} and α, β ∈ L. We have a surjective map ¯ : L̂ → L defined by (θ, α) = α
for θ ∈ {1,−1} and α ∈ L. We also have an injective map from {1,−1} to L̂ defined by
θ 7→ (θ, 0) for θ ∈ {1,−1}. It is clear that these maps are homomorphisms of groups and we
have the exact sequence

1→ {1,−1} → L̂−̄→L→ 1,

that is, L̂ is a central extension of L by the group {1,−1}. The commutator map c : L×L→
Z/2Z of this central extension is given by c(α, β) = (α, β) + 2Z. We shall denote (1, α) ∈ L̂
by eα for α ∈ L and (θ, 0) by θ for θ ∈ Z/2Z. Then

(θ, α) = θeα = eαθ

and
eαeβ = (−1)ε(α,β)eα+β.

Let C[L] be the group algebra of L. We shall use eα to denote the element α ∈ L in
C[L]. Then in C[L], we have eαeβ = eα+β for α, β ∈ L. We have an action of the abelian Lie
algebra h ⊗ t0 = h on C[L] by (a ⊗ t0) · eα = (a, α)eα. Then C[L] is an h ⊗ t0-module. We
also have an action of L̂ on C[L] defined by (θ, α) · eβ = (θ(−1)ε(α,β))eα+β for θ ∈ {1,−1}
and α, β ∈ L. In particular, eα · eβ = (−1)ε(α,β)eα+β for α ∈ L and θ · eβ = θeβ. It is clear
that this action gives C[L] an L̂-module structure.

Let VL = S(ĥ−) ⊗ C[L]. The grading on ĥ− gives a grading on S(ĥ−) called weight and
we give a grading on C[L] also called weight by defining the weight of eα to be 1

2
(α, α).
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These gradings give a grading on VL also called weight. Then we have VL =
∐

n∈Z(VL)(n)

where (VL)(n) is the homogeneous subspace of VL of weight n. It is clear that VL is grading-

restricted since the gradings on S(ĥ−) and C[L] are both grading restricted. In fact since L
is positive definite, we have (VL)(n) = 0 when n < 0.

As is discussed above, we have an ĥ-module structure on VL = S(ĥ−)⊗C[L]. Since C[L]
is an L̂-module, VL = S(ĥ−)⊗C[L] is also an L̂-module with L̂ acts only on C[L]. We denote
the action of a⊗tn on VL by a(n) for a ∈ h and n ∈ Z. For a ∈ h, let a(x) =

∑
n∈Z a(n)x−n−1.

For α ∈ L, for simplicity, we shall also use eα to denote 1⊗ eα ∈ VL. For α ∈ L and a formal
variable x, we define xα · (u⊗ eβ) = x(α,β)(u⊗ eβ) for u ∈ S(ĥ−) and β ∈ L. For α ∈ L, let

YVL(eα, x) = exp

(
−
∑
n<0

α(n)

n
x−n

)
exp

(
−
∑
n>0

α(n)

n
x−n

)
eαx

α ∈ (End VL)[[x, x−1]].

For a vector space M , let
∫
· dx : M [[x]]⊕ x−2M [[x−1]]→ xM [[x]]⊕ x−1M [[x−1]] be the

linear map given by the integrating the formal series in M [[x]]⊕ x−2M [[x−1]] with constant
terms being 0. Then the images of M [[x]] and x−2M [[x−1]] are xM [[x]] and x−1M [[x−1]],
respectively. For a ∈ h, let a(x)+ =

∑
n∈Z+

a(n)x−n−1 and a(x)− =
∑

n∈Z− a(n)x−n−1. Then

a(x) = a(x)+ + a(x)− + a(0)x−1. Also∫
a(x)+dx = −

∑
n>0

a(n)

n
x−n,∫

a(x)−dx = −
∑
n<0

a(n)

n
x−n.

Thus we have
YVL(eα, x) = e

∫
α(x)−dxe

∫
α(x)+dxeαx

α

for α ∈ L.
We need the following commutator formulas:

Proposition 2.1. For a, b ∈ h, α, β ∈ L, we have

[a(x1), b(x2)] = (a, b)
(
(x1 − x2)−2 − (−x2 + x1)−2

)
, (2.1)

[a(x1), YVL(eα, x2)] = (a, α)
(
(x1 − x2)−1 − (−x2 + x1)−1

)
YVL(eα, x2), (2.2)

[YVL(eα, x1), YVL(eβ, x2)] =
(
(x1 − x2)(α,β) − (−x2 + x1)(α,β)

)
·

· e
∫
α(x1)−dx1e

∫
β(x2)−dx2e

∫
α(x1)+dx1e

∫
β(x2)+dx2eαeβx

α
1x

β
2 , (2.3)

where for n ∈ Z, (x1−x2)n and (−x2 +x1)n means their binomial expansions in nonnegative
powers of x2 and x1, respectively.

Proof. The proof of (2.1) is completely the same as that of (1.1) above.
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For a ∈ h and α ∈ L, taking b = α in (2.1), we obtain

[a(x1)±, α(x2)±] = 0, (2.4)

[a(0), α(x2)±] = 0, (2.5)

[a(x1)+, α(x2)−] =
(a, α)

(x1 − x2)2
, (2.6)

[a(x1)−, α(x2)+] = − (a, α)

(x2 − x1)2
. (2.7)

Applying the map
∫
· dx2 to both sides of (2.4)–(2.7) and then switch the order of the

commutators, we obtain[∫
α(x2)±dx2, a(x1)±

]
= 0, (2.8)[∫

α(x2)±dx2, a(0)

]
= 0, (2.9)[∫

α(x2)−dx2, a(x1)+

]
= − (a, α)

x1 − x2

+
(a, α)

x1

, (2.10)[∫
α(x2)+dx2, a(x1)−

]
= − (a, α)

x2 − x1

, (2.11)

where in (2.10), the term − (a,α)
x1

appears because the constant term of
∫
· dx2 must be 0.

From (2.8)–(2.11), we obtain

e
∫
α(x2)±dx2a(x1)±e−

∫
α(x2)±dx2 = a(x1)±,

e
∫
α(x2)±dx2a(0)e−

∫
α(x2)±dx2 = a(0),

e
∫
α(x2)−dx2a(x1)+e−

∫
α(x2)−dx2 = a(x1)+ − (a, α)

x1 − x2

+
(a, α)

x1

,

e
∫
α(x2)+dx2a(x1)−e−

∫
α(x2)+dx2 = a(x1)− − (a, α)

x2 − x1

,

or equivalently,

a(x1)±e
∫
α(x2)±dx2 = e

∫
α(x2)±dx2a(x1)±, (2.12)

a(0)e
∫
α(x2)±dx2 = e

∫
α(x2)±dx2a(0), (2.13)

a(x1)+e
∫
α(x2)−dx2 = e

∫
α(x2)−dx2a(x1)+ +

(
(a, α)

x1 − x2

− (a, α)

x1

)
e
∫
α(x2)−dx2 , (2.14)

a(x1)−e
∫
α(x2)+dx2 = e

∫
α(x2)+dx2a(x1)− +

(a, α)

x2 − x1

e
∫
α(x2)+dx2 . (2.15)
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On the other hand, for u ∈ S(ĥ−) and β ∈ L,

a(0)eαx
α
2 (u⊗ eβ)

= (−1)ε(α,β)x
(α,β)
2 (a, α + β)(u⊗ eα+β)

= (−1)ε(α,β)x
(α,β)
2 (a, α)(u⊗ eα+β) + (−1)ε(α,β)x

(α,β)
2 (a, β)(u⊗ eα+β)

= (a, α)eαx
α
2 (u⊗ eβ) + eαx

α
2a(0)(u⊗ eβ).

Thus we obtain
a(0)eαx

α
2 = (a, α)eαx

α
2 + eαx

α
2a(0). (2.16)

Using (2.12)–(2.16), we have

a(x1)YVL(eα, x2)

= a(x1)+e
∫
α(x2)−dx2e

∫
α(x2)+dx2eαx

α
2 + a(x1)−e

∫
α(x2)−dx2e

∫
α(x2)+dx2eαx

α
2

+ a(0)x−1
1 e

∫
α(x2)−dx2e

∫
α(x2)+dx2eαx

α
2

= e
∫
α(x2)−dx2e

∫
α(x2)+dx2eαx

α
2a(x1)+ +

(
(a, α)

x1 − x2

− (a, α)

x1

)
e
∫
α(x2)−dx2e

∫
α(x2)+dx2eαx

α
2

+ e
∫
α(x2)−dx2e

∫
α(x2)+dx2eαx

α
2a(x1)− +

(a, α)

x2 − x1

e
∫
α(x2)−dx2e

∫
α(x2)+dx2eαx

α
2

+ e
∫
α(x2)−dx2e

∫
α(x2)+dx2eαx

α
2a(0)x−1

1 +
(a, α)

x1

e
∫
α(x2)−dx2e

∫
α(x2)+dx2eαx

α
2

= YVL(eα, x2)a(x1) + (a, α)
(
(x1 − x2)−1 − (−x2 + x1)−1

)
YVL(eα, x2).

This is (2.2).
Taking a ∈ h to be β ∈ L ⊂ h in (2.11), we obtain

[β(x2)−, e
∫
α(x1)+dx1 ] =

(α, β)

x1 − x2

e
∫
α(x1)+dx1 . (2.17)

Applying −
∫
· dx2 to both sides of (2.17), we obtain[

−
∫
β(x2)−dx2, e

∫
α(x1)+dx1

]
= ((α, β) log(x1 − x2)− (α, β) log x1) e

∫
α(x1)+dx1

= log

(
1− x2

x1

)(α,β)

e
∫
α(x1)+dx1 . (2.18)

From (2.18), we obtain

e−
∫
β(x2)−dx2e

∫
α(x1)+dx1e

∫
β(x2)−dx2 =

(
1− x2

x1

)(α,β)

e
∫
α(x1)+dx1 ,

11



or equivalently,

e
∫
α(x1)+dx1e

∫
β(x2)−dx2 =

(
1− x2

x1

)(α,β)

e
∫
β(x2)−dx2e

∫
α(x1)+dx1 . (2.19)

For u ∈ S(ĥ−) and γ ∈ L, we have

xα1 eβ(u⊗ eγ) = (−1)ε(β,γ)x
(α,β)+(α,γ)
1 (u⊗ eβ+γ),

eβx
α
1 (u⊗ eγ) = (−1)ε(β,γ)x

(α,γ)
1 (u⊗ eβ+γ).

Therefore we obtain
xα1 eβ = x

(α,β)
1 eβx

α
1 . (2.20)

Using (2.19) and (2.20), we obtain

YVL(eα, x1)YVL(eβ, x2)

= e
∫
α(x1)−dx1e

∫
α(x1)+dx1eαx

α
1 e

∫
β(x2)−dx2e

∫
β(x2)+dx2eβx

β
2

= (x1 − x2)(α,β) e
∫
α(x1)−dx1e

∫
β(x2)−dx2e

∫
α(x1)+dx1e

∫
β(x2)+dx2eαeβx

α
1x

β
2 . (2.21)

From (2.21), we also obtain

YVL(eβ, x2)YVL(eα, x1)

= (x2 − x1)(α,β) e
∫
β(x2)−dx2e

∫
α(x1)−dx1e

∫
β(x2)+dx2e

∫
α(x1)+dx1eβeαx

α
1x

β
2 . (2.22)

Since the commutator map of the central extension L̂ is c(α, β) = (α, β) + 2Z, we have

eβeα = (−1)(α,β)eαeβ.

Thus the right-hand side of (2.22) is equal to

(−x2 + x1)(α,β) e
∫
α(x1)−dx1e

∫
β(x2)−dx2e

∫
α(x1)+dx1e

∫
β(x2)+dx2eαeβx

α
1x

β
2 . (2.23)

From (2.21)–(2.23), we obtain (2.3).

Let LVL(0) be the operator on VL giving the grading on VL, that is, LVL(0)v = nv for
v ∈ (VL)(n). Note that VL is spanned by elements of the form

a1(−n1) · · · ak(−nk)eβ

for a1, . . . , ak ∈ h, n1, . . . , nk ∈ Z+ and β ∈ L. We define an operator LVL(−1) on VL by

LVL(−1)a1(−n1) · · · ak(−nk)eβ

=
k∑
i=1

nia1(−n1) · · · ai−1(−ni−1)ai(−ni − 1)ai+1(−ni+1) · · · ak(−nk)eβ

+ a1(−n1) · · · ak(−nk)β(−1)eβ.

We denote e0 ∈ VL by 1VL .
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Proposition 2.2. The series a(x) for a ∈ h, YVL(eα, x) for α ∈ L and the operators LVL(0)
and LVL(−1) have the following properties:

1. For a ∈ h, [LVL(0), a(x)] = x d
dx
a(x) + a(x) and for α ∈ L, [LVL(0), YVL(eα, x)] =

x d
dx
YVL(eα, x) + 1

2
(α, α)YVL(eα, x).

2. LV (−1)1VL = 0, [LV (−1), a(x)] = d
dx
a(x) for a ∈ h and [LV (−1), YVL(eα, x)] =

d
dx
YVL(eα, x) for α ∈ L.

3. For a ∈ h and α ∈ L, a(x)1VL , YVL(eα, x)1VL ∈ VL[[x]]. Moreover, limx→0 a(x)1VL =
a(−1)1VL and limx→0 YVL(eα, x)1VL = eα.

4. The vector space VL is spanned by elements of the form

a1(−n1) · · · ak(−nk)eα

= a1(−n1) · · · ak(−nk)eα1VL
= Resx1 · · ·Resxkx

−n1
1 · · ·x−nkk x−1

k+1a1(x1) · · · ak(xk)YVL(eα, xk+1)1VL (2.24)

for a1, . . . , ak ∈ h, n1, . . . , nk ∈ Z+ and α ∈ L.

5. For a, b ∈ h,
(x1 − x2)2a(x1)b(x2) = (x1 − x2)2b(x2)a(x1).

For a ∈ h and α ∈ L,

(x1 − x2)a(x1)YVL(eα, x2) = (x1 − x2)YVL(eα, x2)a(x1).

For α, β ∈ L,

(x1 − x2)−(α,β)YVL(eα, x1)YVL(eβ, x2) = (x1 − x2)−(α,β)YVL(eβ, x2)YVL(eα, x1)

when (α, β) < 0 and

YVL(eα, x1)YVL(eβ, x2) = YVL(eβ, x2)YVL(eα, x1)

when (α, β) ≥ 0.

Proof. Property 1 can be verified by the definition of LVL(0) and straightforward calcula-
tions.

The first two formulas in Property 2 can also be verified by the definition of LVL(−1)
and straightforward calculations. Here we prove the third equality. We first need several
commutator formulas. For α ∈ L, from [LV (−1), α(x)] = d

dx
α(x) whose proof we omitted,

we obtain

[LVL(−1), α(x)−] =
d

dx

∫
α(x)−,

[LVL(−1), α(x)+] =
d

dx
α(x)+ − α(0)x−2.
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Applying
∫
· dx to both sides, we obtain[

LVL(−1),

∫
α(x)−dx

]
=

d

dx

(∫
α(x)−dx

)
− α(−1), (2.25)[

LVL(−1),

∫
α(x)+dx

]
=

d

dx

∫
α(x)+dx+ α(0)x−1. (2.26)

By the definition of LVL(−1), for a product A of operators of the form a(−m) for a ∈ h and
m ∈ Z+, [LVL , A] is a linear combinations of products of the operators of the same form. In
particular, [LVL(−1), A] commutes with eαx

α. For such a product A and β ∈ L,

LVL(−1)eαx
αAeβ

= LVL(−1)Aeαx
αeβ

= [LVL(−1), A]eαx
αeβ + ALVL(−1)eαx

αeβ

= eαx
α[LVL(−1), A]eβ + x(α,β)(−1)ε(α,β)ALVL(−1)eα+β

= eαx
α[LVL(−1), A]eβ + x(α,β)(−1)ε(α,β)A(α + β)(−1)eα+β

= eαx
α[LVL(−1), A]eβ + x(α,β)(−1)ε(α,β)Aα(−1)eα+β + x(α,β)(−1)ε(α,β)Aβ(−1) eα+β

= eαx
α[LVL(−1), A]eβ + α(−1)eαx

αAeβ + Aeαx
αβ(−1)eβ

= eαx
α[LVL(−1), A]eβ + α(−1)eαx

αAeβ + eαx
αALVL(−1)(u⊗ eβ)

= eαx
αLVL(−1)Aeβ + α(−1)eαx

αAeβ,

where we have used the fact that S(ĥ−) is a commutative algebra and eα and xα commute
with A. So we obtain the commutator formula

[LVL(−1), eαx
α] = α(−1)eαx

α. (2.27)

For u ∈ S(ĥ−) and β ∈ L,

α(0)eα(u⊗ eβ) = (−1)ε(α,β)α(0)(u⊗ eα+β)

= (α, α)(−1)ε(α,β)(u⊗ eβ) + (α, β)(−1)ε(α,β)(u⊗ eβ)

= (α, α)eα(u⊗ eβ) + (α, β)eα(u⊗ eβ)

= (α, α)eα(u⊗ eβ) + eαα(0)(u⊗ eβ),

which gives us the commutator formula

[α(0), eα] = (α, α)eα. (2.28)

Using the fact that [α(−1), ·] is a derivation on the algebra of operators on VL as coefficients,
we have

[α(−1), e
∫
α(x)+dx] = e

∫
α(x)+dx

[
α(−1),

∫
α(x)+dx

]
= e

∫
α(x)+dx [α(−1),−α(1)]x−1

= e
∫
α(x)+dx(α, α)x−1.
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Note that both [LVL(−1), ·] and d
dx

are derivations on the algebra of series in x with
operators on VL as coefficients. Using these properties, (2.25), (2.26) and (2.27) and the
formula

d

dx
xα = α(0)xαx−1,

we have

[LVL(−1), Y (VL(eα, x)]

= [LVL(−1), e
∫
α(x)−dxe

∫
α(x)+dxeαx

α]

= [LVL(−1), e
∫
α(x)−dx]e

∫
α(x)+dxeαx

α + e
∫
α(x)−dx[LVL(−1), e

∫
α(x)+dx]eαx

α

+ e
∫
α(x)−dxe

∫
α(x)+dx[LVL(−1), eαx

α]

= e
∫
α(x)−dx

[
LVL(−1),

∫
α(x)−dx

]
e
∫
α(x)+dxeαx

α

+ e
∫
α(x)−dxe

∫
α(x)+dx

[
LVL(−1),

∫
α(x)+dx

]
eαx

α

+ e
∫
α(x)−dxe

∫
α(x)+dxα(−1)eαx

α

= e
∫
α(x)−dx

(
d

dx

(∫
a(x)−dx

)
− α(−1)

)
e
∫
α(x)+dxeαx

α

+ e
∫
α(x)−dxe

∫
α(x)+dx

(
d

dx

∫
a(x)+dx+ α(0)x−1

)
eαx

α

+ e
∫
α(x)−dxe

∫
α(x)+dxα(−1)eαx

α

= e
∫
α(x)−dx

(
d

dx

∫
a(x)−dx

)
e
∫
α(x)+dxeαx

α − e
∫
α(x)−dxα(−1)e

∫
α(x)+dxeαx

α

+ e
∫
α(x)−dxe

∫
α(x)+dx

(
d

dx

∫
a(x)+dx

)
eαx

α + e
∫
α(x)−dxe

∫
α(x)+dxα(0)x−1eαx

α

+ e
∫
α(x)−dxe

∫
α(x)+dxα(−1)eαx

α

=

(
d

dx
e
∫
α(x)−dx

)
e
∫
α(x)+dxeαx

α + e
∫
α(x)−dx

(
d

dx
e
∫
α(x)+dx

)
eαx

α

+ e
∫
α(x)−dxe

∫
α(x)+dxeαα(0)xαx−1

=
d

dx
e
∫
α(x)−dxe

∫
α(x)+dxeαx

α

=
d

dx
YVL(eα, x). (2.29)

Properties 3 and 4 are clear. Property 5 follows immediately from Proposition 2.1.

Just as in the Heisenberg case in the preceding section, we first state the following main
result of this section assuming the reader knows grading-restricted vertex algebra:
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Theorem 2.3. The vector space VL equipped with the the vertex operator map YVL defined
by

〈v′,YVL(α1(−n1) · · ·αk(−nk)eα, z)v〉
= Resξ1=0 · · ·Resξk=0ξ

−n1
1 · · · ξ−nkk ξ−1

k+1R(〈v′, a1(ξ1 + z) · · · ak(ξk + z)YVL(eα, ξk+1 + z)v〉).
(2.30)

and the vacuum 1VL is a grading-restricted vertex algebra. Moreover, this is the unique
grading-restricted vertex algebra structure on VL with the vacuum 1VL such that Y (a(−1)1, x) =
a(x) for a ∈ h and Y (eα, x) = YVL(eα, x) for α ∈ L.

3 Grading-restricted vertex algebras

For a Z-graded vector space V =
∐

n∈Z V(n), let V ′ =
∐

n∈Z V
∗

(n) be its graded dual space and

V =
∏

n∈Z V(n) be its algebraic completion. On V and V ′, we use the topology given by the

dual pair (V, V ′). For n ∈ N, a sequence (or more generally a net) {fn} in Hom(V ⊗· · ·⊗V, V )
is convergent to f ∈ Hom(V ⊗· · ·⊗V, V ) if for v1, . . . , vn ∈ V and v′ ∈ V ′, 〈v′, fn(v1⊗· · ·⊗vn)〉
is convergent to 〈v′, f(v1 ⊗ · · · ⊗ vn)〉. In particular, analytic maps from a region in C to
Hom(V ⊗n, V ) make sense. For a C-graded vector space, we use the same notations and
definition of convergence.

We give the definition of grading-restricted vertex algebra first.

Definition 3.1. A grading-restricted vertex algebra is a Z-graded vector space V =
∐

n∈Z V(n),
equipped with a linear map

YV : V ⊗ V → V [[x, x−1]],

u⊗ v 7→ YV (u, x)v,

or equivalently, an analytic map

YV : C× → Hom(V ⊗ V, V ),

z 7→ YV (·, z)· : u⊗ v 7→ YV (u, z)v

called the vertex operator map and a vacuum 1 ∈ V(0) satisfying the following axioms:

1. Axioms for the grading: (a) Grading-restriction condition: When n is sufficiently neg-
ative, V(n) = 0 and dimV(n) < ∞ for n ∈ Z. (b) L(0)-commutator formula: Let
LV (0) : V → V be defined by LV (0)v = nv for v ∈ V(n). Then

[LV (0), YV (v, x)] = x
d

dx
YV (v, x) + YV (LV (0)v, x)

for v ∈ V .
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2. Axioms for the vacuum: (a) Identity property: Let 1V be the identity operator on V .
Then YV (1, x) = 1V . (b) Creation property: For u ∈ V , limx→0 YV (u, x)1 exists and is
equal to u.

3. L(−1)-derivative property and L(−1)-commutator formula: Let LV (−1) : V → V be
the operator given by

LV (−1)v = lim
x→0

d

dx
YV (v, x)1

for v ∈ V . Then for v ∈ V ,

d

dx
YV (v, x) = YV (LV (−1)v, x) = [LV (−1), YV (v, x)].

4. Duality: For u1, u2, v ∈ V and v′ ∈ V ′, the series

〈v′, YV (u1, z1)YV (u2, z2)v〉, (3.1)

〈v′, YV (u2, z2)YV (u1, z1)v〉, (3.2)

〈v′, YV (YV (u1, z1 − z2)u2, z2)v〉, (3.3)

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1−z2| >
0, respectively, to a common rational function in z1 and z2 with the only possible poles
at z1, z2 = 0 and z1 = z2.

Remark 3.2. In Definition 3.1, the duality property can be stated separately as three
axioms, that is, the rationality (the convergence of (3.1), (3.2) and (3.3) to rational functions
in the regions |z1| > |z2| > 0, |z2| > |z1| > 0 and |z2| > |z1 − z2| > 0, respectively), the
commutativity (the statement that the rational functions to which (3.1) and (3.2) converge
are equal) and the associativity (the statement that the (3.1) and (3.3) are equal in the region
|z1| > |z2| > |z1 − z2| > 0). These axioms are not independent. In fact, the associativity
follows from the rationality and commutativity (see [FHL]) and the commutativity also
follows from the rationality and associativity (see [Hua2]).

Definition 3.3. A quasi-vertex operator algebra or a Möbius vertex algebra is a grading-
restricted vertex algebra (V, YV ,1) together with an operator LV (1) of weight 1 on V satis-
fying

[LV (−1), LV (1)] = −2LV (0),

[LV (1), YV (v, x)] = YV (LV (1)v, x) + 2xYV (LV (0)v, x) + x2YV (LV (−1)v, x)

for v ∈ V .

Definition 3.4. Let V1 and V2 be grading-restricted vertex algebras. A homomorphism from
V1 to V2 is a grading-preserving linear map g : V1 → V2 such that gYV1(u, x)v = YV2(gu, x)gv.
An isomorphism from V1 to V2 is an invertible homomorphism from V1 to V2. When V1 =
V2 = V , an isomorphism from V to V is called an automorphism of V .
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Definition 3.5. Let (V, YV ,1) be a grading-restricted vertex algebra. A conformal element
of V is an element ω ∈ V satisfying the following axioms:

1. There exists c ∈ C such that YV (ω, x)ω is equal to LV (−1)ωx−1 + 2ωx−2 + c
2
1x−4 plus

a V -valued power series in x.

2. LV (−1) = ResxYV (ω, x) and LV (0) = ResxxYV (ω, x) (Resx being the operation of
taking the coefficient of x−1 of a Laurent series).

A grading-restricted vertex algebra equipped with a conformal element is called a vertex
operator algebra (or, more consistently, grading-restricted conformal vertex algebra).

4 A construction theorem

Let V =
∐

n∈Z V(n) be a Z-graded vector space such that V(n) = 0 for n sufficiently negative

and dimV(n) <∞ for n ∈ Z. Since dimV(n) <∞ for n ∈ Z, we have V = (V ′)∗. Elements of
V(n) is said to have weight n. Let LV (0) : V → V be the operator defined by the grading on
V , that is, by LV (0)v = nv for v ∈ V(n). Then for a ∈ C, the operator eaLV (0) on V defined
by eaLV (0)v = eanv for v ∈ V(n) has a natural extension to V . For n ∈ Z, we use πn to denote
the projection from V or V to V(n).

An operator O on V satisfying [LV (0), O] = nO is said to have weight n. Similarly for
operators on the graded dual V ′ of V .

Lemma 4.1. Let φ(x) =
∑

n∈Z φnx
−n−1 ∈ (End V )[[x.x−1]]. If there exists wtφ ∈ Z such

that

[LV (0), φ(x)] = x
d

dx
φ(x) + (wtφ)φ(x),

then φn ∈ Hom(V, V ) is homogeneous of weight wtφ − n − 1. In particular, for v ∈ V ,
φ(x)v as a Laurent series in x has only finitely many negative power terms and for v′ ∈ V ′,
〈v′, φ(x)·〉 as a Laurent series with coefficients in V ′ has only finitely many positive powers
of x.

Proof. Taking the coefficients of the bracket formula for LV (0) and φ(z), we obtain that φn
is of weight wtφ − n − 1. Since V(n) = 0 for n sufficiently negative and the weight of φn is
wtφ− n− 1, for v ∈ V , φ(x)v has only finitely many negative power terms and for v′ ∈ V ′,
〈v′, φ(x)·〉 as a Laurent series with coefficients in V ′ has only finitely many positive powers
of x.

Let φi(x) ∈ (End V )[[x, x−1]] for i ∈ I and 1 ∈ V(0). Write φi(x) =
∑

n∈Z φ
i
nx
−n−1 for

i ∈ I. Assume that φi(x) ∈ (End V )[[x, x−1]] for i ∈ I and 1 ∈ V(0) satisfy the following
conditions:

1. For i ∈ I, there exists wtφi ∈ Z such that [LV (0), φi(x)] = x d
dx
φi(x) + (wtφi)φi(x).
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2. There exists an operator LV (−1) on V such that LV (−1)1 = 0 and [LV (−1), φi(x)] =
d
dx
φi(x) for i ∈ I.

3. For i ∈ I, φi(x)1 ∈ V [[x]].

4. The vector space V is spanned by elements of the form φi1n1
· · ·φiknk1 for i1, . . . , ik ∈ I

and n1, . . . , nk ∈ Z.

5. For i, j ∈ I, there exists Nij ∈ Z+ such that

(x1 − x2)Nijφi(x1)φj(x2) = (x1 − x2)Nijφj(x2)φi(x1). (4.1)

Proposition 4.2. Let V =
∐

n∈Z V(n) be a Z-graded vector space, φi for i ∈ I linear maps

from V to V [[x, x−1]], or equivalently, analytic maps from C× to Hom(V, V ), LV (−1) an
operator on V and 1 ∈ V(0). Assume that they satisfy Conditions 1–4. Then Condition 5 is
equivalent to the following two conditions:

6. For v′ ∈ V ′, v ∈ V and i1, . . . , ik ∈ I, the series 〈v′, φi1(z1) · · ·φik(zk)v〉 (a Laurent
series in z1, . . . , zk with complex coefficients) is absolutely convergent in the region
|z1| > · · · > |zk| > 0 to a rational function R(〈v′, φi1(z1) · · ·φik(zk)v〉) in z1, . . . , zk
with the only possible poles at zi = 0 for i = 1, . . . , k and zj = zl for j 6= l. In addition,
the order of the pole zj = zl is independent of φin for n 6= j, l, v and v′ and the order
of the pole zj = 0 is independent of φin for n 6= j and v′.

7. For v ∈ V , v′ ∈ V ′, i1, i2 ∈ I,

R(〈v′, φi1(z1)φi2(z2)v〉) = R(〈v′, φi2(z2)φi1(z1)v〉).

Proof. Exercise: Prove that Conditions 6 and 7 imply Property 5.
Now we assume that Property 5 holds. Consider the Laurent series∏

1≤p<q≤k

(xp − xq)Nipiq 〈v′, φi1(x1) · · ·φik(xk)v〉. (4.2)

For 1 ≤ l ≤ k, using (4.1), the Laurent series (4.2) is equal to∏
1≤p<q≤k

(xp − xq)Nipiq 〈v′, φi1(x1) · · ·φil−1(xl−1)φil+1(xl+1) · · ·φik(xk)φil(xl)v〉. (4.3)

By Lemma 4.1, (4.3) has only finitely many negative power terms in xl. So the same is true
for (4.2). On the other hand, using (4.1) again, (4.2) is equal to∏

1≤p<q≤k

(xp − xq)Nipiq 〈v′, φil(xl)φi1(x1) · · ·φil−1(xl−1)φil+1(xl+1) · · ·φik(xk)v〉. (4.4)
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By Lemma 4.1 again, (4.4) has only finitely many positive power terms in xl. So the same
is true for (4.2). Thus (4.2) must be a Laurent polynomial in xl. Since this is true for
1 ≤ l ≤ k, (4.2) is a Laurent polynomial in x1, . . . , xk.

For fixed 1 ≤ p < q ≤ k, the expansion coefficients of

〈v′, φ(x1) · · ·φ(xk)v〉 (4.5)

as Laurent series in xl for l 6= p, q are of the form

〈v′, φi1n1
· · ·φip−1

np−1
φip(xp)φ

ip+1
np+1
· · ·φiq−1

nq−1
φiq(xq)φ

iq+1
nq+1
· · ·φiknkv〉 (4.6)

for nl ∈ Z, l 6= p, q. Clearly (4.6) contains only finitely many negative powers in xq and
finitely many positive powers in xp. But we have shown that when multiplied by (xp −
xq)

Npq , it becomes a Laurent polynomial. Thus (4.6) must be the product of a Laurent
polynomial in xp and xq and the expansion of (xp−xq)−Npq as a Laurent series in nonnegative
powers of xq. Since p and q are arbitrary, we see that (4.5) with x1, . . . , xk substituted by
z1, . . . , zk is equal to the product of a Laurent polynomial in z1, . . . , zk and the expansion of∏

1≤p<q≤k(zp − zq)−Npq in the region |z1| > · · · > |zk| > 0. This is Condition 6. Condition 7
follows immediately from Condition 6 in the case k = 2 and (4.1).

Proposition 4.3. The space V , the fields φi for i ∈ I, LV (−1) and 1 have the following
properties:

8. For a ∈ C and i ∈ I, eaLV (0)φi(x)e−aLV (0) = ea(wtφi)φi(eax).

9. LV (−1)φi1n1
· · ·φiknk1 =

k∑
j=1

φi1n1
· · ·φij−1

nj−1
(−njφ

ij
nj−1)φij+1

nj+1
· · ·φiknk1.

10. For a ∈ C, z ∈ C× satisfying |z| > |a| and i ∈ I, eaLV (−1)φi(z)e−aLV (−1) = φi(z + a) .

11. The operator LV (−1) has weight 1 and its adjoint LV (−1)′ as an operator on V ′ has
weight −1 (the weight of an operator on V ′ is defined in the same way as that of an
operator on V ). In particular, ezLV (−1)′v′ ∈ V ′ for z ∈ C and v′ ∈ V ′.

12. For v ∈ V , v′ ∈ V ′ and σ ∈ Sk,

R(〈v′, φi1(z1) · · ·φik(zk)v〉) = R(〈v′, φiσ(1)(zσ(1)) · · ·φiσ(k)(zσ(k))v〉).

Proof. These properties follow immediately from Conditions 1–7.

We now define a vertex operator map. We first give the motivation of this definition.
The vertex operator map we want to define is a map

YV : C× → Hom(V ⊗ V, V ),

z 7→ YV (·, z)· : u⊗ v 7→ YV (u, z)v.
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We define YV (φi−11, z)v = φi(z)v for i ∈ I and v ∈ V . The vertex operator map should
satisfy the rationality and associativity property. In particular, we should have

R(〈v′, YV (φi1(ξ1) · · ·φik(ξk)1, z)v〉) = R(〈v′, φi1(ξ1 + z) · · ·φik(ξk + z)v〉)

for i1, . . . , ik ∈ I, v ∈ V and v′ ∈ V ′.
Motivated by this associativity formula, we define the vertex operator map as follows:

For v′ ∈ V ′, v ∈ V , i1, . . . , ik ∈ I, m1, . . . ,mk ∈ Z, we define YV by

〈v′, YV (φi1m1
· · ·φikmk1, z)v〉

= Resξ1=0 · · ·Resξk=0ξ
m1
1 · · · ξ

mk
k R(〈v′, φi1(ξ1 + z) · · ·φik(ξk + z)v〉). (4.7)

Note that for a meromorphic function f(ξ), Resξ=0f(ξ) means expanding f(ξ) as a Laurent
series in 0 < |ξ| < r for r sufficiently small so that no other poles are in this disk and then
taking the coefficient of ξ−1. We can also expand f(ξ) as a Laurent series in a different region.
In general, the coefficient of ξ−1 in this Laurent series might be different from Resξ=0f(ξ).
Also note that the order to take these residues is important. Different orders in general give
vertex operators for different elements.

Since V = (V ′)∗, for fixed φi1m1
· · ·φikmk1, v ∈ V , the formula above indeed gives an element

YV (φi1m1
· · ·φikmk1, z)v ∈ V ,

which in turn gives
YV (φi1m1

· · ·φikmk1, x)v ∈ V [[x, x−1]].

Since there might be relations among elements of the form φi1m1
· · ·φikmk1, we first have to

show that the definition above indeed gives a well-defined map from C× to Hom(V ⊗ V, V ).
Let φ0 be the map from C× to Hom(V, V ) given by φ0(z) = 1V . Let wtφ0 = 0. Then
Conditions 1 to 5 and Properties 6 to 12 above still hold for φi, i ∈ Ĩ = I ∪ {0}. Then any
relation among such elements can always be written as

q∑
p=1

λpφ
ip1
mp1
· · ·φi

p
k

mpk
1 = 0

for some ipj ∈ Ĩ and mp
j ∈ Z, p = 1, . . . , q, j = 1, . . . , k.

Lemma 4.4. If
q∑
p=1

λpφ
ip1
mp1
· · ·φi

p
k

mpk
1 = 0,

then
q∑
p=1

λpResξ1=0 · · ·Resξk=0ξ
mp1
1 · · · ξ

mpk
k R(〈v′, φi

p
1(ξ1 + z) · · ·φi

p
k(ξk + z)v〉) = 0

for v ∈ V and v′ ∈ V ′.
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Proof. By Condition 4, we can take v to be of the form φj1n1
· · ·φjlnl1. Moreover, in this case,

R(〈v′, φi
p
1(z1) · · ·φi

p
k(zk)φ

j1
n1
· · ·φjlnl1〉)

= Resζ1=0 · · ·Resζl=0ζ
n1
1 · · · ζ

nl
k R(〈v′, φi

p
1(z1) · · ·φi

p
k(zk)φ

j1(ζ1) · · ·φjl(ζl)1〉).

Then

Resξ1=0 · · ·Resξk=0ξ
mp1
1 · · · ξ

mpk
k R(〈v′, φi

p
1(ξ1 + z) · · ·φi

p
k(ξk + z)v〉)

= Resξ1=0 · · ·Resξk=0ξ
mp1
1 · · · ξ

mpk
k Resζ1=0 · · ·Resζl=0ζ

n1
1 · · · ζ

nl
l ·

·R(〈v′, φi
p
1(ξ1 + z) · · ·φi

p
k(ξk + z)φj1(ζ1) · · ·φjl(ζl)1〉)

= Resξ1=0 · · ·Resξk=0ξ
mp1
1 · · · ξ

mpk
k Resζ1=0 · · ·Resζl=0ζ

n1
1 · · · ζ

nl
l ·

·R(〈v′, φj1(ζ1) · · ·φjl(ζl)φi
p
1(ξ1 + z) · · ·φi

p
k(ξk + z)1〉)

= Resξ1=0 · · ·Resξk=0ξ
mp1
1 · · · ξ

mpk
k Resζ1=0 · · ·Resζl=0ζ

n1
1 · · · ζ

nl
l ·

·R(〈ezLV (−1)′v′, φj1(ζ1 − z) · · ·φjl(ζl − z)φi
p
1(ξ1) · · ·φi

p
k(ξk)1〉)

= Resζ1=0 · · ·Resζl=0ζ
n1
1 · · · ζ

nl
l ·

·R(〈ezLV (−1)′v′, φj1(ζ1 − z) · · ·φjl(ζl − z)φ
ip1
mp1
· · ·φi

p
k

mpk
1〉).

Thus
q∑
p=1

λpResξ1=0 · · ·Resξk=0ξ
mp1
1 · · · ξ

mpk
k R(〈v′, φi

p
1(ξ1 + z) · · ·φi

p
k(ξk + z)v〉)

=

q∑
p=1

λpResζ1=0 · · ·Resζl=0ζ
n1
1 · · · ζ

nl
l ·

·R(〈ezLV (−1)′v′, φj1(ζ1 − z) · · ·φjl(ζl − z)φ
ip1
mp1
· · ·φi

p
k

mpk
1〉)

= Resζ1=0 · · ·Resζl=0ζ
n1
1 · · · ζ

nl
l ·

·R

(〈
ezLV (−1)′v′, φj1(ζ1 − z) · · ·φjl(ζl − z)

(
q∑
p=1

λpφ
ip1
mp1
· · ·φi

p
k

mpk
1

)〉)
= 0,

proving the lemma.

From this lemma, we see that the vertex operator map YV is well defined. We are now
ready to formulate and prove the main result of this section.

Theorem 4.5. Let V =
∐

n∈Z V(n) be a Z-graded vector space, φi for i ∈ I linear maps from

V to V [[x, x−1]], or equivalently, maps from C× to Hom(V, V ), LV (−1) an operator on V and
1 ∈ V(0). Assume that they satisfy Conditions 1–5. Then the triple (V, YV ,1) is a grading-
restricted vertex algebra generated by φi−11 for i ∈ I. Moreover, this is the unique grading-
restricted vertex algebra structure on V with the vacuum 1 such that Y (φi−11, z) = φi(z) for
i ∈ I.
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Proof. The vertex operator map YV is clearly analytic. The grading-restriction axiom is by
assumption satisfied. The L(−1)-bracket formula follows from Condition 2 and the definition
of YV . The identity property and the creation property also follow from of the definition of
YV .

Let LV (0)′ be the adjoint operator of LV (0). For v′ ∈ V ′, v ∈ V , i1, . . . , ik ∈ I and
n1, . . . , nk ∈ Z, a ∈ C×

〈v′, aLV (0)YV (φi1n1
· · ·φiknk1, z)a

−LV (0)v〉
= 〈aLV (0)′v′, YV (φi1n1

· · ·φiknk1, z)a
−LV (0)v〉

= Resξ1=0 · · ·Resξk=0ξ
n1
1 · · · ξ

nk
k R(〈aLV (0)′v′, φi1(ξ1 + z) · · ·φik(ξk + z)a−LV (0)v〉)

= Resξ1=0 · · ·Resξk=0ξ
n1
1 · · · ξ

nk
k R(〈v′, aLV (0)φi1(ξ1 + z) · · ·φik(ξk + z)a−LV (0)v〉)

= Resξ1=0 · · ·Resξk=0ξ
n1
1 · · · ξ

nk
k a

wtφi1+···wtφikR(〈v′, φi1(aξ1 + az) · · ·φik(aξk + az)v〉)
= Resζ1=0 · · ·Resζk=0ζ

n1
1 · · · ζ

nk
k awtφi1+···wtφik−k−n1−···−nk ·
·R(〈v′, φi1(ζ1 + az) · · ·φik(ζk + az)v〉)

= 〈v′, YV (aLV (0)φi1n1
· · ·φiknk1, az)v〉).

This formula implies the L(0)-bracket formula.
From Condition 2 and the definition of YV , we obtain

d

dz
YV (φi1n1

· · ·φiknk1, z) = [LV (−1), YV (φi1n1
· · ·φiknk1, z)].

From Property 9 and the definition of YV , we obtain

d

dz
YV (φi1n1

· · ·φiknk1, z) = YV (LV (−1)φi1n1
· · ·φiknk1, z).

Applying both sides of this formula to 1, taking the limit z → 0 and then using the creation
property, we obtain

LV (−1)φi1n1
· · ·φiknk1 = lim

z→0

d

dz
YV (φi1n1

· · ·φiknk1, z)1.

The L(−1)-derivative property is proved.
Let {en}n∈Z be a homogeneous basis of V and {e′n}n∈Z its dual basis in V ′. Then we have

〈v′, YV (φi1n1
· · ·φiknk1, z1)YV (φj1m1

· · ·φjlml1, z2)v〉

=
∑
n∈Z

〈v′, YV (φi1n1
· · ·φiknk1, z1)en〉〈e′n, YV (φj1m1

· · ·φjlml1, z2)v〉

=
∑
n∈Z

Resζ1=0 · · ·Resζk=0ζ
n1
1 · · · ζ

nk
k Resξ1=0 · · ·Resξl=0ξ

m1
1 · · · ξ

ml
l ·

·R(〈v′, φi1(ζ1 + z1) · · ·φik(ζk + z1)en〉)R(〈e′n, φj1(ξ1 + z2) · · ·φjl(ξl + z2)v〉)
= Resζ1=0 · · ·Resζk=0ζ

n1
1 · · · ζ

nk
k Resξ1=0 · · ·Resξl=0ξ

m1
1 · · · ξ

ml
l ·

·
∑
n∈Z

R(〈v′, φi1(ζ1 + z1) · · ·φik(ζk + z1)en〉)R(〈e′n, φj1(ξ1 + z2) · · ·φjl(ξl + z2)v〉).

(4.8)
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By Condition 6, when |z1| > · · · > |zk+l| > 0,∑
n∈Z

R(〈v′, φi1(z1) · · ·φik(zk)en〉)R(〈e′n, φj1(zk+1) · · ·φjl(zk+l)v〉)

=
∑
n∈Z

〈v′, φi1(z1) · · ·φik(zk)en〉〈e′n, φj1(zk+1) · · ·φjl(zk+l)v〉

= 〈v′, φi1(z1) · · ·φik(zk)φj1(zk+1) · · ·φjl(zk+l)v〉 (4.9)

is absolutely convergent to the rational function

R(〈v′, φi1(z1) · · ·φik(zk)φj1(zk+1) · · ·φjl(zk+l)v〉) (4.10)

in z1, . . . , zk+l. On the other hand, since the only possible poles of (4.10) are zi − zj = 0
for i 6= j and zi = 0, there is a unique expansion of such a rational function in the region
|z1|, . . . , |zk| > |zk+1|, . . . , |zk+l| > 0, zi 6= zj for i 6= j, i, j = 1, . . . , k and i, j = k+1, . . . , k+ l
such that each term is a product of two rational functions, one in z1, . . . , zk and the other in
zk+1, . . . , zk+l. Since the left-hand side of (4.9) is a series of the same form and is absolutely
convergent in the region |z1| > · · · > |zk+l| > 0 to (4.10), it must be absolutely convergent
in the larger region |z1|, . . . , |zk| > |zk+1|, . . . , |zk+l| > 0, zi 6= zj for i 6= j, i, j = 1, . . . , k and
i, j = k + 1, . . . , k + l to (4.10).

Substituting ζi + z1 for zi for i = 1, . . . , k and ξj + z2 for zk+j for j = 1, . . . , l, we see that∑
n∈Z

R(〈v′, φi1(ζ1 + z1) · · ·φik(ζk + z1)en〉)R(〈e′n, φj1(ξ1 + z2) · · ·φjl(ξl + z2)v〉)

is absolutely convergent to

R(〈v′, φi1(ζ1 + z1) · · ·φik(ζk + z1)φj1(ξ1 + z2) · · ·φjl(ξl + z2)v〉)

when |ζ1 + z1|, . . . , |ζk + z1| > |ξ1 + z2|, . . . , |ξl + z2| > 0, ζi 6= ζj for i, j = 1, . . . , k and ξi 6= ξj
for i, j = 1, . . . , l. When |z1| > |z2| > 0, we can always find sufficiently small neighborhood
of 0 such that when ζ1, . . . , ζk, ξ1, . . . , ξl are in this neighborhood, |ζ1 + z1|, . . . , |ζk + z1| >
|ξ1 + z2|, . . . , |ξl + z2| > 0 holds. Thus we see that when |z1| > |z2| > 0, the right-hand side
of (4.8) is absolutely convergent to

Resζ1=0 · · ·Resζk=0ζ
n1
1 · · · ζ

nk
k Resξ1=0 · · ·Resξl=0ξ

m1
1 · · · ξ

ml
l ·

·R(〈v′, φi1(ζ1 + z1) · · ·φik(ζk + z1)φj1(ξ1 + z2) · · ·φjl(ξl + z2)v〉). (4.11)

This is a rational function in z1 and z2 with the only possible poles at z1, z2 = 0 and z1 = z2.
In particular, the left-hand side of (4.8), that is,

〈v′, YV (φi1n1
· · ·φiknk1, z1)YV (φj1m1

· · ·φjlml1, z2)v〉, (4.12)

is absolutely convergent in the region |z1| > |z2| > 0 to this rational function.
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We have proved the rationality of the product of two vertex operators. We are ready to
prove the commutativity. The calculation above also shows that

〈v′, YV (φj1m1
· · ·φjlml1, z2)YV (φi1n1

· · ·φiknk1, z1)v〉 (4.13)

is absolutely convergent to the rational function

Resξ1=0 · · ·Resξl=0ξ
m1
1 · · · ξ

ml
l Resζ1=0 · · ·Resζk=0ζ

n1
1 · · · ζ

nk
k ·

·R(〈v′, φj1(ξ1 + z2) · · ·φjl(ξl + z2)φi1(ζ1 + z1) · · ·φik(ζk + z1)v〉),
(4.14)

in the regions |z2| > |z1| > 0, respectively. By Property 12, the rational functions (4.11) and
(4.14) are equal. Thus (4.12) and (4.13) are absolutely convergent in the regions |z1| > |z2| >
0 and |z2| > |z1| > 0, respectively, to a common rational function with the only possible
poles at z1 = z2, z1 = 0 and z2 = 0.

We now prove the associativity. For i1, . . . , ik, j1, . . . , jl ∈ I, m1, . . . ,ml ∈ Z, v ∈ V and
v′ ∈ V ′, using the expansion of φi1(ξ1), . . . , φik(ξk) and the definition of YV , we have

〈v′, YV (φi1(z1) · · ·φik(zk)φj1m1
· · ·φjlml1, z)v〉

=
∑

p1,...,pk∈Z

〈v′, YV (φi1p1 · · ·φ
ik
pk
φj1m1
· · ·φjlml1, z)v〉z

−p1−1
1 · · · z−pk−1

k

=
∑

p1,...,pk∈Z

Resζ1=0 · · ·Resζk=0ζ
p1
1 · · · ζ

pk
k Resξ1=0 · · ·Resξl=0ξ

m1
1 · · · ξ

ml
l ·

·R(〈v′, φi1(ζ1 + z) · · ·φik(ζk + z)φj1(ξ1 + z) · · ·φjl(ξl + z)v〉)z−p1−1
1 · · · z−pk−1

k .

(4.15)

We now expand

R(〈v′, φi1(ζ1 + z) · · ·φik(ζk + z)φj1(ξ1 + z) · · ·φjl(ξl + z)v〉)

as a Laurent series
∑

l∈Z fl(ζ1, . . . , ζk−1, ξ1, . . . , ξl, z)ζ
−l−1
k in ζk in the region |z|, |ζ1|, . . . , |ζk−1| >

|ζk| > |ξ1|, . . . , |ξl|, where fl(ζ1, . . . , ζk−1, ξ1, . . . , ξl, z) are rational functions in ζ1, . . . , ζk−1, ξ1, . . . , ξl
and z. Then in the region that the Laurent series expansion holds, we have∑

pk∈Z

Resζk=0ζ
pk
k

(∑
l∈Z

fl(ζ1, . . . , ζk−1, ξ1, . . . , ξl, z)ζ
−l−1
k

)
z−pk−1
k

=
∑
pk∈Z

fpk(ζ1, . . . , ζk−1, ξ1, . . . , ξl, z)z
−pk−1
k

= R(〈v′, φi1(ζ1 + z) · · ·φik−1(ζk−1 + z)φik(zk + z)φj1(ξ1 + z) · · ·φjl(ξl + z)v〉).
(4.16)

Repeating this step for the variables ζk−1, . . . , ζ1, we see that the right-hand side of (4.15) is
equal to the expansion of

Resξ1=0 · · ·Resξl=0ξ
m1
1 · · · ξ

ml
l R(〈v′, φi1(z1+z) · · ·φik(zk+z)φj1(ξ1+z) · · ·φjl(ξl+z)v〉) (4.17)
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as a Laurent series in z1 . . . , zk in the region |z| > |z1| > · · · > |zk| > 0. Thus the left-
hand side of (4.15) is absolutely convergent to (4.17) in the region for this Laurent series
expansion. In particular, in the region |z| > |z1| > · · · > |zk| > 0,

〈v′, YV (φi1(z1) · · ·φik(zk)φj1m1
· · ·φjlml1, z)v〉

= Resξ1=0 · · ·Resξl=0ξ
m1
1 · · · ξ

ml
l ·

·R(〈v′, φi1(z1 + z) · · ·φik(zk + z)φj1(ξ1 + z) · · ·φjl(ξl + z)v〉). (4.18)

Now we have

〈v′, YV (YV (φi1n1
· · ·φiknk1, z1 − z2)φj1m1

· · ·φjlml1, z2)v〉

=
∑
n∈Z

〈v′, YV (en, z2)v〉〈e′n, YV (φi1n1
· · ·φiknk1, z1 − z2)φj1m1

· · ·φjlml1〉

=
∑
n∈Z

〈v′, YV (en, z2)v〉Resζ1=0 · · ·Resζk=0ζ
n1
1 · · · ζ

nk
k ·

·R(〈e′n, φi1(ζ1 + z1 − z2) · · ·φik(ζk + z1 − z2)φj1m1
· · ·φjlml1〉). (4.19)

But by (4.18), in the region |z2| > |ζ1 + z1 − z2| > · · · > |ζk + z1 − z2| > 0, we have∑
n∈Z

〈v′, YV (en, z2)v〉〈e′n, φi1(ζ1 + z1 − z2) · · ·φik(ζk + z1 − z2)φj1m1
· · ·φjlml1〉

= 〈v′, YV (φi1(ζ1 + z1 − z2) · · ·φik(ζk + z1 − z2)φj1m1
· · ·φjlml1, z2)v〉

= Resξ1=0 · · ·Resξl=0ξ
m1
1 · · · ξ

ml
l ·

·R(〈v′, φi1(ζ1 + z1) · · ·φik(ζk + z1)φj1(ξ1 + z2) · · ·φjl(ξl + z2)v〉).
(4.20)

The right-hand side of (4.20) is a rational function in ζ1, . . . , ζk, z1 and z2 with the only
possible poles ζi−ζj = 0, for i 6= j, ζi+z1 = 0, ζi+z1−z2 = 0 and z2 = 0. There is a unique
expansion of such a rational function in the region |z2| > |ζ1 + z1− z2|, . . . , |ζk + z1− z2| > 0,
ζi 6= ζj for i 6= j, i, j = 1, . . . , k, such that each term is a product of two rational functions,
one in z2 and the other in ζ1, . . . , ζk and z1. Since∑

n∈Z

〈v′, YV (en, z2)v〉R(〈e′n, φi1(ζ1 + z1 − z2) · · ·φik(ζk + z1 − z2)φj1m1
· · ·φjlml1〉)

is a series of the same form and is equal to the left-hand side of (4.20) in the region |z2| >
|ζ1 + z1 − z2| > · · · > |ζk + z1 − z2| > 0, it must be absolutely convergent to the right-hand
side of (4.20) in the larger region |z2| > |ζ1 + z1− z2|, . . . , |ζk + z1− z2| > 0. Thus we obtain∑

n∈Z

〈v′, YV (en, z2)v〉R(〈e′n, φi1(ζ1 + z1 − z2) · · ·φik(ζk + z1 − z2)φj1m1
· · ·φjlml1〉)

= Resξ1=0 · · ·Resξl=0ξ
m1
1 · · · ξ

ml
l ·

·R(〈v′, φi1(ζ1 + z1) · · ·φik(ζk + z1)φj1(ξ1 + z2) · · ·φjl(ξl + z2)v〉)
(4.21)
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in the region |z2| > |ζ1 + z1 − z2|, . . . , |ζk + z1 − z2| > 0. Thus when |z2| > |z1 − z2| > 0, the
right-hand side of (4.19) is absolutely convergent to

Resζ1=0 · · ·Resζk=0ζ
n1
1 · · · ζ

nk
k Resξ1=0 · · ·Resξl=0ξ

m1
1 · · · ξ

ml
l ·

·R(〈v′, φi1(ζ1 + z1) · · ·φik(ζk + z1)φj1(ξ1 + z2) · · ·φjl(ξl + z2)v〉),
(4.22)

which is proved above to be equal to the left hand side of (4.8) in the region |z1| > |z2| > 0.
The associativity is proved.

To prove the uniqueness, we need only show that any grading-restricted vertex super-
algebra structure on V with the vacuum 1 must have the vertex operator map defined by
(4.7). But this is clear from the motivation that we discussed before the definition (4.7) of
the vertex operator map YV .

We call the grading-restricted vertex algebra given in Theorem 4.5 the grading-restricted
vertex algebra generated by φi, i ∈ I. The maps φi, i ∈ I, are called the generating fields of
the grading-restricted vertex algebra V .

Remark 4.6. In the proof of Theorem 4.5, we gave a proof of the associativity using the
the definition (4.7) of the vertex operators. But the associativity can also be obtained by
quoting Proposition 3.6.1 in [FHL].

Proof of Theorem 1.3. By Proposition 1.2, Conditions 1–5 needed in Theorem 4.5 are
satisfied by S(ĥ−), a(x) for a ∈ h, LS(ĥ−)(0) and LS(ĥ−)(−1). By Theorem 4.5, Theorems 1.3
is proved.

Proof of Theorem 2.3. By Proposition 2.2, Conditions 1–5 needed in Theorem 4.5 are
satisfied by VL, a(x) for a ∈ h, YVL(eα, x) for α ∈ L, LVL(0) and LVL(−1). By Theorem 4.5,
Theorems 2.3 is proved.

5 Some properties of grading-restricted vertex alge-

bras

5.1 Operator product expansion

Let V be a grading-restricted vertex algebra. For u1, u2, v ∈ V and v′ ∈ V ′, by definition,

〈v′, YV (u1, z1)YV (u2, z2)v〉

is absolutely convergent in the region |z1| > |z2| > 0 and

〈v′, YV (YV (u1, z1 − z2)u2, z2)v〉
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is absolutely convergent in the region |z2| > |z1 − z2| > 0. Since (V ′)∗ is canonically iso-
morphic to V =

∏
n∈Z V(n), YV (u1, z1)YV (u2, z2)v (when |z1| > |z2| > 0) and YV (YV (u1, z1 −

z2)u2, z2)v (when |z2| > |z1 − z2| > 0) as elements of (V ′)∗ will be viewed as elements of V .
Since v is arbitrary, YV (u1, z1)YV (u2, z2) (when |z1| > |z2| > 0) and YV (YV (u1, z1− z2)u2, z2)
(when |z2| > |z1 − z2| > 0) are maps from V to V . Then we obtain the associativity

YV (u1, z1)YV (u2, z2) = YV (YV (u1, z1 − z2)u2, z2) (5.1)

in the region |z1| > |z2| > |z1 − z2| > 0. Since YV (u1, x) ∈ V ((x)), we have YV (u1, x)u2 =∑
n∈Z(YV )n(u1)u2x

−n−1 for (YV )n(u1)u2 ∈ V and there exists N ∈ N such that (YV )n(u1)u2 =
0 for n > N . Then we have

YV (YV (u1, z1 − z2)u2, z2) =
∑
n≤N

YV ((YV )n(u1)u2, z2)(z1 − z2)−n−1.

in the region |z2| > |z1 − z2| > 0. From this expansion and (5.1), we obtain

YV (u1, z1)YV (u2, z2) =
∑
n≤N

YV ((YV )n(u1)u2, z2)(z1 − z2)−n−1 (5.2)

in the region |z1| > |z2| > |z1 − z2| > 0. The formula (5.2) is called the operator product
expansion of the fields or vertex operators YV (u1, z1) and YV (u2, z2). The terms that are
singular in the right-hand side of (5.2) are

N∑
n=0

YV ((YV )n(u1)u2, z2)(z1 − z2)−n−1.

These singular terms are the only useful terms in the calculations of the commutators of the
fields or vertex operators YV (u1, z1) and YV (u2, z2). So physicists usually write the operator
product expansion with only these singular terms as

YV (u1, z1)YV (u2, z2) ∼
N∑
n=0

YV ((YV )n(u1)u2, z2)(z1 − z2)−n−1. (5.3)

Example 5.1. By Theorem 1.3, S(ĥ−) has a structure of a grading-restricted vertex algebra.
As usual, we use YS(ĥ−) to denote its vertex operator map. It is easy to see from the definition

of the vertex operator map in the preceding section, we see that YS(ĥ−)(a(−1)1, x) = a(x)

for a ∈ h. Then the operator product expansion of a(z1) and b(z2) is

a(z1)b(z2) = YS(ĥ−)(a(−1)1, z1)YS(ĥ−)(b(−1)1, z2)

= YS(ĥ−)(YS(ĥ−)(a(−1)1, z1 − z2)b(−1)1, z2) (5.4)
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in the region |z1| > |z2| > |z1 − z2| > 0. But

YS(ĥ−)(a(−1)1, z1 − z2)b(−1)1 = a(z1 − z2)b(−1)1

=
∑
n∈Z

a(n)b(−1)1(z1 − z2)−n−1

= (a, b)1(z1 − z2)−2 +
∑

n∈−Z+

a(n)b(−1)1(z1 − z2)−n−1. (5.5)

Substituting the right-hand side of (5.5) into the right-hand side of (5.4), we obtain the
explicit form

a(z1)b(z2) = (a, b)(z1 − z2)−2 +
∑

n∈−Z+

YS(ĥ−)(a(n)b(−1)1, z2)(z1 − z2)−n−1 (5.6)

of the operator product expansion of a(z1) and b(z2) Since the only singular term in z1 − z2

in the right-hand side of (5.9) is (a, b)(z1 − z2)−2, we obtain

a(z1)b(z2) ∼ (a, b)(z1 − z2)−2. (5.7)

The last formula can also be calculated using the commutator formula (1.1). Apply both
sides of (1.1) to v ∈ S(ĥ−) and then rewrite the resulting formula as

a(x1)b(x2)v − (a, b)(x1 − x2)−2v = b(x2)a(x1)v − (a, b)(−x2 + x1)−2v. (5.8)

Note that the left-hand side (5.8) has only finitely many negative powers of x2 and the right-
hand side of (5.8) has only finitely many negative powers of x1. Thus both sides of (5.8) have
finitely many negative powers of both x1 and x2. Let f(x1, x2) be this Laurent series with
finitely many negative powers of x1 and x2. We can write f(x1, x2) as f(x2 + (x1 − x2), x2)
and expand it as a Laurent series in x2 and x1−x2 with only nonnegative powers of x1−x2.
We use f(x2 + (x1 − x2), x2) to denote this expansion. So we obtain the operator product
expansion

a(x1)b(x2)v = (a, b)(x1 − x2)−2v + f(x2 + (x1 − x2), x2).

Since the expansion of f(x2 + (x1 − x2), x2) contain only nonnegative powers of x1 − x2 and
v is arbitrary, we obtain (5.7).

Example 5.2. By Theorem 2.3, VL has a structure of a grading-restricted vertex algebra.
We use YVL to denote its vertex operator map. Then from the definition of the vertex
operator map in the preceding section, we see that YVL(a(−1)1, x) = a(x) for a ∈ h and
YVL(eα, x) is exactly the vertex operator associated with eα = 1⊗ eα ∈ VL. So the operator
product expansion of a(z1) and YVL(eα, z2) is

a(z1)YVL(eα, z2) = YVL(a(−1)1, z1)YVL(eα, z2)

= YVL(YVL(a(−1)1, z1 − z2)eα, z2) (5.9)
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in the region |z1| > |z2| > |z1 − z2| > 0. But

YVL(a(−1)1, z1 − z2)eα = a(z1 − z2)eα

=
∑
n∈Z

a(n)eα(z1 − z2)−n−1

= (a, α)eα(z1 − z2)−1 +
∑

n∈−Z+

a(n)eα(z1 − z2)−n−1. (5.10)

Substituting the right-hand side of (5.10) into the right-hand side of (5.9), we obtain the
explicit form

a(z1)YVL(eα, x) = (a, α)YVL(eα, z2)(z1 − z2)−1 +
∑

n∈−Z+

YVL(a(n)eα, z2)(z1 − z2)−n−1 (5.11)

of the operator product expansion of a(z1) and YVL(eα, x) Since the only singular term in
z1 − z2 in the right-hand side of (5.11) is (a, α)YVL(eα, z2)(z1 − z2)−1, we obtain

a(z1)YVL(eα, x) ∼ (a, α)YVL(eα, z2)(z1 − z2)−1.

This last formula can also be obtained using the commutator formula (2.2) using the same
method as in the preceding example.

5.2 The Jacobi identity

Let δ(x) =
∑

n∈Z x
n be the formal delta function. Then we have the basic property of δ(x):

For any formal Laurent series f(x) with coefficients in a vector space such that f(x)δ(x) and
f(1) is well defined,

f(x)δ(x) = f(1)δ(x).

We need to consider the following three formal delta functions:

x−1
0 δ

(
x1 − x2

x0

)
, x−1

0 δ

(
−x2 + x1

x0

)
, x−1

1 δ

(
x2 + x0

x1

)
.

In these formal expressions, we always expand a binomial as a formal Laurent series in
nonnegative powers in the second formal variable. It is easy to check directly that the
following identity holds:

x−1
0 δ

(
x1 − x2

x0

)
− x−1

0 δ

(
−x2 + x1

x0

)
= x−1

1 δ

(
x2 + x0

x1

)
, (5.12)

x−1
1 δ

(
x2 + x0

x1

)
= x−1

2 δ

(
x1 − x0

x2

)
. (5.13)

Let V be a grading-restricted vertex algebra. For u1, u2, v ∈ V and v′ ∈ V ′, the duality
property says that (3.1), (3.2) and (3.3) are absolutely convergent in the regions |z1| > |z2| >
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0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0, respectively, to a common rational function in z1 and
z2 with the only possible poles at z1, z2 = 0 and z1 = z2. This common rational function
can be written explicitly as f(z1,z2)

zr1z
s
2(z1−z2)t

, where f(z1, z2) is a polynomial in z1 and z2 and

r, s, t ∈ N. We multiply the Laurent polynomial f(x1,x2)
xr1x

s
2x
t
0

in the formal variable x0, x1 and x2

to both sides of (5.12) to obtain the identity

x−1
0 δ

(
x1 − x2

x0

)
f(x1, x2)

xr1x
s
2x

t
0

− x−1
0 δ

(
−x2 + x1

x0

)
f(x1, x2)

xr1x
s
2x

t
0

= x−1
1 δ

(
x2 + x0

x1

)
f(x1, x2)

xr1x
s
2x

t
0

.

(5.14)
Using the basic property of the formal delta function, we can rewrite (5.14) as

x−1
0 δ

(
x1 − x2

x0

)
f(x1, x2)

xr1x
s
2(x1 − x2)t

− x−1
0 δ

(
−x2 + x1

x0

)
f(x1, x2)

xr1x
s
2(−x2 + x1)t

= x−1
1 δ

(
x2 + x0

x1

)
f(x1, x2)

(x2 + x0)rxs2x
t
0

. (5.15)

Note that 1
(x1−x2)t

in f(x1,x2)
xr1x

s
2(x1−x2)t

is expanded in nonnegative powers of x2. We already know

that (3.1) is absolutely convergent in the region |z1| > |z2| > 0 to f(z1,z2)
zr1z

s
2(z1−z2)t

. In other words,

the expansion of f(z1,z2)
zr1z

s
2(z1−z2)t

as a Laurent series in z1 and z2 in the region |z1| > |z2| > 0 is

exactly (3.1). This is the same as saying that f(x1,x2)
xr1x

s
2(x1−x2)t

as a formal Laurent series in x1

and x2 obtained by expanding 1
(x1−x2)t

in nonnegative powers of x2 is exactly

〈v′, YV (u1, x1)YV (u2, x2)v〉. (5.16)

So we can replace f(z1,z2)
zr1z

s
2(z1−z2)t

in (5.15) by (5.16). Similarly, we can replace f(x1,x2)
xr1x

s
2(−x2+x1)t

and
f(x1,x2)

(x2+x0)rxs2x
t
0

in (5.14) by

〈v′, YV (u2, x2)YV (u1, x1)v〉
and

〈v′, YV (YV (u1, x0)u2, x2)v〉,
respectively. Thus we obtain

x−1
0 δ

(
x1 − x2

x0

)
〈v′, YV (u1, x1)YV (u2, x2)v〉 − x−1

0 δ

(
−x2 + x1

x0

)
〈v′, YV (u2, x2)YV (u1, x1)v〉

= x−1
1 δ

(
x2 + x0

x1

)
〈v′, YV (YV (u1, x0)u2, x2)v〉.

Since v′ and v are arbitrary, we obtain the following Jacobi identity:

x−1
0 δ

(
x1 − x2

x0

)
YV (u1, x1)YV (u2, x2)− x−1

0 δ

(
−x2 + x1

x0

)
YV (u2, x2)YV (u1, x1)

= x−1
1 δ

(
x2 + x0

x1

)
YV (YV (u1, x0)u2, x2). (5.17)
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5.3 Skew-symmetry

Replacing u1, u2, x1, x2 and x0 in (5.17) by u2, u1, x2, x1 and −x0, respectively, we obtain

−x−1
0 δ

(
x2 − x1

−x0

)
YV (u2, x2)YV (u1, x1) + x−1

0 δ

(
−x1 + x2

−x0

)
YV (u2, x1)YV (u2, x1)

= x−1
2 δ

(
x1 − x0

x2

)
YV (YV (u2,−x0)u1, x1). (5.18)

Since the left-hand sides of (5.18) and (5.17) are equal, the right-hand sides are also equal.
So we obtain

x−1
1 δ

(
x2 + x0

x1

)
YV (YV (u1, x0)u2, x2) = x−1

2 δ

(
x1 − x0

x2

)
YV (YV (u2,−x0)u1, x1). (5.19)

Using (5.13) and the basic property of the formal delta function in the right-hand side of
(5.19), we see that (5.19) becomes

x−1
1 δ

(
x2 + x0

x1

)
YV (YV (u1, x0)u2, x2) = x−1

1 δ

(
x2 + x0

x1

)
YV (YV (u2,−x0)u1, x2 +x0). (5.20)

From the L(−1)-derivative property

d

dx2

YV (YV (u2,−x0)u1, x2) = YV (LV (−1)YV (u2,−x0)u1, x2),

we obtain
dn

dxn2
YV (YV (u2,−x0)u1, x2) = YV (LV (−1)nYV (u2,−x0)u1, x2) (5.21)

for n ∈ N. For f(x2) ∈ V ((x2)), we have the formal Taylor’s theorem

f(x2 + x0) =
∑
n∈N

xn0
n!

dn

dxn2
f(x2). (5.22)

Applying both sides of (5.20) to 1, using the formal Taylor’s theorem (5.22) with f(x2) =
YV (YV (u2,−x0)u1, x2)1, using (5.21), taking Resx1 , letting x2 = 0 and then replacing x0 by
x, we obtain the skew-symmetry

YV (u1, x)u2 =
∑
n∈N

xn

n!
LV (−1)nYV (u2,−x)u1 = exLV (−1)YV (u2,−x)u1. (5.23)

5.4 Commutator and associator formula

For a formal Laurent series f(x) in x, we use Resxf(x) to denote the coefficient of x−1

term in f(x). Now taking Resx0 on both sides of the Jacobi identity (5.17), we obtain the
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commutator formula for vertex operators:

YV (u1, x1)YV (u2, x2)− YV (u2, x2)YV (u1, x1)

= Resx0x
−1
1 δ

(
x2 + x0

x1

)
YV (YV (u1, x0)u2, x2). (5.24)

Taking Resx1 on both sides of the Jacobi identity (5.17) and using (5.13) and the basic
property of the formal delta function, we have

YV (YV (u1, x0)u2, x2)

= Resx1x
−1
0 δ

(
x1 − x2

x0

)
YV (u1, x1)YV (u2, x2)

− Resx1x
−1
0 δ

(
−x2 + x1

x0

)
YV (u2, x2)YV (u1, x1)

= Resx1x
−1
1 δ

(
x0 + x2

x1

)
YV (u1, x1)YV (u2, x2)

− Resx1x
−1
0 δ

(
−x2 + x1

x0

)
YV (u2, x2)YV (u1, x1)

= Resx1x
−1
1 δ

(
x0 + x2

x1

)
YV (u1, x0 + x2)YV (u2, x2)

− Resx1x
−1
0 δ

(
−x2 + x1

x0

)
YV (u2, x2)YV (u1, x1)

= YV (u1, x0 + x2)YV (u2, x2)

− Resx1x
−1
0 δ

(
−x2 + x1

x0

)
YV (u2, x2)YV (u1, x1). (5.25)

Moving the first term in the right-hand side of (5.25) to the left-hand side, we obtain the
associator formula for vertex operators:

YV (YV (u1, x0)u2, x2)− YV (u1, x0 + x2)YV (u2, x2)

= −Resx1x
−1
0 δ

(
−x2 + x1

x0

)
YV (u2, x2)YV (u1, x1). (5.26)

5.5 Weak commutativity and weak associativity

Since YV (u1, x0)u2 is a formal Laurent series with only finitely many negative powers in x0,
there exists N ∈ Z+ such that xN0 YV (u1, x0)u2 ∈ V [[x0]]. Multiplying (x1 − x2)N to the
right-hand side of the commutator formula (5.24), using the basic property of the formal
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delta function and using the fact that Resx0 of a formal power series is 0, we obtain

Resx0(x1 − x2)Nx−1
1 δ

(
x2 + x0

x1

)
YV (YV (u1, x0)u2, x2)

= Resx0x
N
0 x
−1
1 δ

(
x2 + x0

x1

)
YV (YV (u1, x0)u2, x2)

= 0. (5.27)

Thus (x1−x2)N multiplied to the left-hand side of (5.24) is also 0. So we obtained the weak
commutativity:

(x1 − x2)NYV (u1, x1)YV (u2, x2) = (x1 − x2)NYV (u2, x2)YV (u1, x1). (5.28)

Similarly, since YV (u1, x1)v is a formal Laurent series with only finitely many negative
powers in x1, there exists N ∈ Z+ such that xN1 YV (u1, x1)v ∈ V [[x1]]. Multiplying (x0 +x2)N

to the right-hand side of the associator formula (5.26), applying the result to v, using the
basic property of the formal delta function and using the fact that Resx1 of a formal power
series is 0, we obtain

−Resx1(x0 + x2)Nx−1
0 δ

(
−x2 + x1

x0

)
YV (u2, x2)YV (u1, x1)v

= −Resx1x
N
1 x
−1
0 δ

(
−x2 + x1

x0

)
YV (u2, x2)YV (u1, x1)v

= 0. (5.29)

Thus (x1−x2)N multiplied to the left-hand side of (5.24) and then applied to v is also 0. So
we obtained the weak associativity:

(x0 + x2)NYV (YV (u1, x0)u2, x2)v = (x0 + x2)NYV (u1, x0 + x2)YV (u2, x2)v. (5.30)

Weak commutativity and weak associativity can also be obtained directly from the duality
property in the definition of grading-restricted vertex algebra.

5.6 Conformal element and Virasoro operators

Let ω be a conformal element of V (see Definition 3.5). Then

YV (ω, x)ω = LV (−1)ωx−1 + 2ωx−2 +
c

2
1x−4 +G(x), (5.31)

34



where G(x) ∈ V [[x]]. Using the commutator formula (5.24) with u1 = u2 = ω, we obtain

YV (ω, x1)YV (u2, x2)− YV (ω, x2)YV (u1, x1)

= Resx0x
−1
1 δ

(
x2 + x0

x1

)
YV (YV (ω, x0)ω, x2)

= Resx0x
−1
0 x−1

1 δ

(
x2 + x0

x1

)
YV (LV (−1)ω, x2) + 2Resx0x

−2
0 x−1

1 δ

(
x2 + x0

x1

)
YV (ω, x2)

+
c

2
Resx0x

−4
0 x−1

1 δ

(
x2 + x0

x1

)
YV (1, x2) + Resx0x

−1
1 δ

(
x2 + x0

x1

)
YV (G(x0), x2)

= x−1
1 δ

(
x2

x1

)
∂

∂x2

YV (ω, x2) + 2x−1
1

∂

∂x2

δ

(
x2

x1

)
YV (ω, x2) +

c

12
x−1

1

∂3

∂x3
2

δ

(
x2

x1

)
, (5.32)

where in the last equality, we have used the L(−1)-derivative property, the formal Taylor’s

theorem (5.22) applied to x−1
1 δ

(
x2+x0
x1

)
and the fact G(x0) ∈ V [[x0]].

Writing

Y (ω, x) =
∑
∈∈Z

LV (n)x−n−2

and then taking the coefficients of x−m−2
1 x−n−2

2 in (5.32), we obtain the Virasoro relations

LV (m)LV (n)− LV (n)LV (m)

= Resx1Resx2x
m+1
1 xn+1

2 (YV (ω, x1)YV (u2, x2)− YV (ω, x2)YV (u1, x1))

= Resx1Resx2x
m+1
1 xn+1

2 x−1
1 δ

(
x2

x1

)
∂

∂x2

YV (ω, x2)

+ 2Resx1Resx2x
m+1
1 xn+1

2 x−1
1

∂

∂x2

δ

(
x2

x1

)
YV (ω, x2)

+
c

12
Resx1Resx2x

m+1
1 xn+1

2 x−1
1

∂3

∂x3
2

δ

(
x2

x1

)
= Resx2x

m+n+2
2

∂

∂x2

YV (ω, x2) + 2(m+ 1)Resx2x
m+n+1
2 YV (ω, x2)

+
c

12
(m+ 1)m(m− 1)Resx2x

m+n−1
2

= (−m− n− 2)LV (m+ n) + 2(m+ 1)LV (m+ n) +
c

12
(m+ 1)m(m− 1)δm+n,0

= (m− n)LV (m+ n) +
c

12
(m3 −m)δm+n,0. (5.33)

It is also easy to see by reversing the proof above that if the Virasoro relations (5.33) holds,
then (5.31) holds. Thus we can replace (5.31) in Definition 3.5 by (5.33).

Proof of Theorem 1.5. By the definition of YS(ĥ−), we have

ui(−1)21 = Resx0x
−1
0 ui(x0)ui(−1)1 = Resx0x

−1
0 YS(ĥ−)(u

i(−1)1, x0)ui(−1)1.
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Using this and the first equality in (5.25), we have

Y S(ĥ−)(u
i(−1)21, x2)

= Resx0x
−1
0 YS(ĥ−)(YS(ĥ−)(u

i(−1)1, x0)ui(−1)1, x2)

= Resx0x
−1
0 Resx1x

−1
0 δ

(
x1 − x2

x0

)
YS(ĥ−)(u

i(−1)1, x1)YS(ĥ−)(u
i(−1)1, x2)

− Resx0x
−1
0 Resx1x

−1
0 δ

(
−x2 + x1

x0

)
YS(ĥ−)(u

i(−1)1, x2)YS(ĥ−)(u
i(−1)1, x1)

= Resx1(x1 − x2)−1ui(x1)ui(x2)− Resx1(−x2 + x1)−1ui(x2)ui(x1)

=

(∑
m∈N

ui(−m− 1)xm2

)
ui(x2) + ui(x2)

 ∑
m∈−Z+

ui(−m− 1)xm2


= ◦
◦u

i(x2)ui(x2) ◦◦ . (5.34)

Uisng (5.34) and the definition of T (x), we obtain YS(ĥ−)(ω, x) = T (x). By (1.4),

YS(ĥ−)(ω, x)ω = LS(ĥ−)(−1)ωx−1 + 2ωx−2 +
dim h

2
1x−4 +G(x).

The other property for LS(ĥ−)(−1) and LS(ĥ−)(0) can be verified using the formula (1.3).
We omit the proofs here.

6 Meromorphic open-string vertex algebra

The following definition is from [Hua7]:

Definition 6.1. A meromorphic open-string vertex algebra is a Z-graded vector space V =∐
n∈Z V(n) (graded by weights) equipped with a linear map

YV : V → (End V )[[x, x−1]]

u 7→ YV (u, x),

or equivalently, a linear map

YV : V ⊗ V → V [[x, x−1]]

u⊗ v 7→ YV (u, x)v

called vertex operator map a vacuum 1 ∈ V , satisfying the following conditions:

1. Lower bound condition: When n is sufficiently negative, V(n) = 0 .

2. Properties for the vacuum: YV (1, x) = 1V (the identity property) and for u ∈ V ,
YV (u, x)1 ∈ V [[x]] and limx→0 YV (u, x)1 = u (the creation property).

36



3. Rationality: For u1, . . . , un, v ∈ V and v′ ∈ V ′, the series

〈v′, YV (u1, z1) · · ·YV (un, zn)v〉

= 〈v′, YV (u1, x1) · · ·YV (un, xn)v〉
∣∣∣∣
x1=z1,...,xn=zn

(6.1)

converges absolutely when |z1| > · · · > |zn| > 0 to a rational function in z1, . . . , zn with
the only possible poles at zi = 0 for i = 1, . . . , n and zi = zj for i 6= j. For u1, u2, v ∈ V
and v′ ∈ V ′, the series

〈v′, YV (YV (u1, z1 − z2)u2, z2)v〉

= 〈v′, YV (YV (u1, x0)u2, x2)v〉
∣∣∣∣
x0=z1−z2, x2=z2

(6.2)

converges absolutely when |z2| > |z1 − z2| > 0 to a rational function with the only
possible poles at z1 = 0, z2 = 0 and z1 = z2.

4. Associativity: For u1, u2, v ∈ V , v′ ∈ V ′, we have

〈v′, YV (u1, z1)YV (u2, z2)v〉 = 〈v′, YV (YV (u1, z1 − z2)u2, z2)v〉 (6.3)

when |z1| > |z2| > |z1 − z2| > 0.

5. d-bracket property: Let dV be the grading operator on V , that is, dV u = mu for m ∈ Z
and u ∈ V(m). For u ∈ V ,

[dV , YV (u, x)] = YV (dV u, x) + x
d

dx
YV (u, x). (6.4)

6. The D-derivative property and the D-commutator formula: Let DV : V → V be defined
by

DV (u) = lim
x→0

d

dx
YV (u, x)1

for u ∈ V . Then for u ∈ V ,

d

dx
YV (u, x) = YV (DV u, x)

= [DV , YV (u, x)]. (6.5)

A meromorphic open-string vertex algebra is said to be grading restricted if dimV(n) <∞
for n ∈ Z. Homomorphisms, isomorphisms, subalgebras of meromorphic open-string vertex
algebras are defined in the obvious way.
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We shall denote the meromorphic open-string vertex algebra defined above by (V, YV ,1)
or simply by V . For u ∈ V , we call the map YV (u, x) : V → V [[x, x−1]] the vertex operator
associated to u.

A grading-restricted vertex algebra is a grading-restricted meromorphic open-string ver-
tex algebra.

We now recall the notion of open-string vertex algebra from [HK]:

Definition 6.2. An open-string vertex algebra is an R-graded vector space V =
∐

n∈R V(n)

(graded by weights) equipped with a vertex map

Y O : V × R+ → Hom(V, V )

(u, r) 7→ Y O(u, r)

such that for r ∈ R+ the map given by u 7→ Y O(u, r) is linear, or equivalently,

Y O : (V ⊗ V )× R+ → V

(u⊗ v, r) 7→ Y O(u, r)v

such that for r ∈ R+ the map given by u⊗ 7→ Y O(u, r)v is linear, a vacuum 1 ∈ V and an
operator D ∈ End V of weight 1, satisfying the following conditions:

1. Vertex map weight property: For n1, n2 ∈ R, there exist a finite subset N(n1, n2) ⊂ R
such that the image of

(∐
n∈n1+Z V(n) ⊗

∐
n∈n2+Z V(n)

)
×R+ under Y O is in

∏
n∈N(n1,n2)+Z V(n).

2. Properties for the vacuum: For any r ∈ R+, Y O(1, r) = 1V (the identity property) and
limr→0 Y

O(u, r)1 exists and is equal to u (the creation property).

3. Local-truncation property for D′: Let D′ : V ′ → V ′ be the adjoint of D. Then for any
v′ ∈ V ′, there exists a positive integer k such that (D′)kv′ = 0.

4. Convergence properties: For v1, . . . , vn, v ∈ V and v′ ∈ V ′, the series

〈v′, Y O(v1, r1) · · ·Y O(vn, rn)v〉

converges absolutely when r1 > · · · > rn > 0. For v1, v2, v ∈ V and v′ ∈ V ′, the series

〈v′, Y O(Y O(v1, r0)v2, r2)v〉

converges absolutely when r2 > r0 > 0.

5. Associativity: For v1, v2, v ∈ V and v′ ∈ V ′,

〈v′, Y O(v1, r1)Y O(v2, r2)v〉 = 〈v′, Y O(Y O(v1, r1 − r2)v2, r2)v〉

for r1, r2 ∈ R satisfying r1 > r2 > r1 − r2 > 0.
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6. d-bracket property: Let d be the grading operator on V , that is, du = mu for m ∈ R
and u ∈ V(m). For u ∈ V , Y O(u, r) as a function of r ∈ R+ valued in Hom(V, V )
is differentiable (that is, for v ∈ V , v′ ∈ V ′, 〈v′, Y O(u, r)v〉 as a function of r is
differentiable) and

[d, Y O(u, r)] = Y O(du, r) + r
d

dr
Y O(u, r). (6.6)

7. D-derivative property: We still useD to denote the natural extension ofD to Hom(V , V ).
For u ∈ V ,

d

dr
Y O(u, r) = [D, Y O(u, r)] = Y O(Du, r). (6.7)

The open-string vertex algebra defined above is denoted by (V, Y O,1, D) or simply V .
A meromorphic open-string vertex algebra is indeed an open-string vertex algebra.
Let h be a vector space over C equipped with a nondegenerate bilinear form (·, ·). The

Heisenberg algebra ĥ associated with h and (·, ·) is the vector space h⊗ [t, t−1]⊕Ck equipped
with the bracket operation defined by

[a⊗ tm, b⊗ tn] = m(a, b)δm+n,0k,

[a⊗ tm,k] = 0,

for a, b ∈ h and m,n ∈ Z. It is a Z-graded Lie algebra. In particular, we have the universal
enveloping algebra U(h) of h. The universal enveloping algebra U(h) is constructed as a
quotient of the tensor algebra T (h) of the vector space h. We have a triangle decomposition

ĥ = ĥ− ⊕ ĥ0 ⊕ ĥ+,

where

ĥ− = h⊗ t−1C[t−1],

ĥ+ = h⊗ tC[t],

ĥ0 = h⊗ C⊕ Ck

' h⊕ Ck,

h ' h⊗ C

are subalgebras of ĥ.
The meromorphic open-string vertex algebras and left modules in the present paper are

constructed from left modules for a quotient algebra N(ĥ) of the tensor algebra T (ĥ) such
that U(ĥ) is a quotient of N(ĥ). Let I be the two-sided ideal of T (ĥ) generated by elements
of the form

(a⊗ tm)⊗ (b⊗ tn)− (b⊗ tn)⊗ (a⊗ tm)−m(a, b)δm+n,0k,

(a⊗ tk)⊗ (b⊗ t0)− (b⊗ t0)⊗ (a⊗ tk),
(a⊗ tl)⊗ k− k⊗ (a⊗ tl)
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for m ∈ Z+, n ∈ −Z+, k ∈ Z \ {0} and l ∈ Z. Let N(ĥ) = T (ĥ)/I. By definition, we see
that U(ĥ) is a quotient algebra of N(ĥ).

We have the following Poincaré-Birkhof-Witt type result for N(ĥ);

Proposition 6.3. As a vector space, N(ĥ) is linearly isomorphic to

T (ĥ−)⊗ T (ĥ+)⊗ T (h)⊗ T (Ck) (6.8)

where T (ĥ−), T (ĥ+), T (h) and T (Ck) are the tensor algebras of the vector spaces ĥ−, ĥ+, h
and Ck, respectively.

Now we construct left modules for N(ĥ). Let M be a left T (h)-module. We define the
action of k on M to be 1 and the actions of elements of ĥ+ on M to be 0. Then M is also
a left module for the subalgebra N(ĥ+ ⊕ ĥ0) of N(ĥ) generated by elements of ĥ+ and ĥ0.
We consider the induced left module N(ĥ) ⊗N(ĥ+⊕ĥ0) M . By Proposition 6.3, we see that

N(ĥ)⊗N(ĥ+⊕ĥ0) M is linearly isomorphic to T (ĥ−)⊗M . We shall identify N(ĥ)⊗N(ĥ+⊕ĥ0) M

with T (ĥ−)⊗M . The left N(ĥ)-module structure on T (ĥ−)⊗M can be obtained explicitly
by using the commutator relations defining the algebra N(ĥ) and the left N(ĥ+⊕ ĥ0)-module
structure on M .

For a left N(ĥ)-module, we denote the representation images of a⊗ tn ∈ ĥ for a ∈ h and
n ∈ Z acting on the left module by a(n). Then the left N(ĥ)-module T (ĥ−)⊗M constructed
from a left T (h)-module M is spanned by elements of the form a1(−n1) · · · ak(−nk)w, where
a1, . . . , ak ∈ ĥ, n1, . . . , nk ∈ Z+ and w ∈M .

Given a left N(ĥ)-module, we define a normal ordering map ◦
◦ · ◦◦ from the space of

operators on the left module spanned by operators of the form a1(n1) · · · ak(nk) to itself by
rearranging the order of a1(n1), . . . , ak(nk) in a1(n1) · · · ak(nk) by moving ai(ni) with ni < 0
to the left, ai(ni) with ni > 0 to the middle and ai(ni) with ni = 0 to the right but keeping
the orders of ai(ni) with ni < 0, with ni < 0 or with ni = 0. For example,

◦
◦a1(−1)a2(0)a3(4)a4(0)a5(−3)a6(−1)a7(10) ◦◦

= a1(−1)a5(−3)a6(−1)a3(4)a7(10)a2(0)a4(0).

More explicitly,
◦
◦a1(n1) · · · ak(nk) ◦◦ = aσ(1)(nσ(1)) · · · aσ(k)(nσ(k)),

where σ ∈ Sk is the unique permutation such that

σ(1) < · · · < σ(α),

σ(α + 1) < · · · < σ(β),

σ(β + 1) < · · · < σ(k),

nσ(1), . . . , nσ(α) < 0,

nσ(α+1), . . . , nσ(β) > 0,

nσ(β+1), . . . , nσ(k) = 0,
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for some integers α and β satisfying 0 ≤ α ≤ β ≤ k.
Given an induced left N(ĥ)-module W = T (ĥ−)⊗M , a1, . . . , ak ∈ h and m1, . . . ,mk ∈ Z+,

we define the vertex operator YW (a1(−m1) · · · ak(−mk)1, x) associated to a1(−m1) · · · ak(−mk)1 ∈
T (ĥ−) by

YW (a1(−m1) · · · ak(−mk)1, x)

= ◦
◦

1

(m1 − 1)!

(
dm1−1

dxm1−1
a1(x)

)
· · · 1

(mk − 1)!

(
dmk−1

dxmk−1
ak(x)

)
◦
◦ , (6.9)

where
ai(x) =

∑
n∈Z

ai(n)x−n−1

for i = 1, . . . , k and ai(n) for i = 1, . . . , k and n ∈ Z are the representation images of ai ⊗ tn
on W .

Theorem 6.4. The triple (T (ĥ−), YT (ĥ−),1) defined above is a meromorphic open-string ver-

tex algebra. In the case that h is finite dimensional, (T (ĥ−), YT (ĥ−),1) is a grading-restricted
meromorphic open-string vertex algebra.

7 A quick guide to the representation theory of Lie

algebras

The material in this section are notes I wrote before. They provide a guide to the
theory of finite-dimensional Lie algebras. I will not lecture on this material sys-
tematically in the class. Instead I will briefly discuss some of them when I need
to quote some results on finite-dimensional Lie algebras. The main reference for
this section is [Hum].

Definition 7.1. A Lie algebra is a vector space L over a field F equipped with a bracket
operation [·, ·] : L⊗ L→ L satisfying the following conditions:

1. The skew-symmetry: For x, y ∈ L,

[x, y] = −y, x].

2. The Jacobi identity: For x, y, z ∈ L,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

A homomorphism from a Lie algebra L1 to another Lie algebra L2 is a linear map f from L1

to L2 such that for x, y ∈ L1, f([x, y]1) = [f(x), f(y)]2, where [·, ·]1 and [·, ·]2 are the bracket
operations for L1 and L2, respectively. An isomorphism from a Lie algebra to another Lie
algebra is an invertible homomorphism of Lie algebras.
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Example 7.2. Let A be an associative algebra. We define a bracket operation [·, ·] by
[a, b] = ab− ba] for a, b ∈ A. Then A equipped with this bracket operation is a Lie algebra.
In particular, for a vector space M , the space End M of all linear operators on M is an
associative algebra. Then we have a Lie algebra structure on End M . We shall denote this
Lie algebra by gl(M).

Definition 7.3. Let L be a Lie algebra. A representation of L is a vector space M and a
homomorphism ρ of Lie algebra from L to gl(M). The vector space M equipped with the
representation ρ is called a module for L or an L-module. For an L-module, we shall denote
ρ(x)y for x ∈ L and y ∈ M by xy. A homomorphism of L-modules from an L-module
M1 to another L-module M2 is a linear map from M1 to M2 such that f(xy) = xf(y) for
x ∈ L and y ∈M1. An isomorphism from an L-module to another L-module is an invertible
homomorphism of L-modules.

Definition 7.4. Let L be a Lie algebra. A subalgebra of a Lie algebra L is a subspace N of
L such that the bracket operation [·, ·] for L maps N×N to N . An ideal of L is a subalgebra
I of L such that [x, y] ∈ I for x ∈ I and y ∈ L. Let I be an ideal of L. Then L/I has a
natural structure of a Lie algebra and is called the quotient of L by I. L is said to be simple
if the only ideals of L are 0 and L and in addition, [L,L] 6= 0.

Definition 7.5. Let L be a Lie algebra. Let L(1) = [L,L], L(2) = [L(1), L(1)], . . . , L(i) =
[L(i−1), L(i−1)], . . . . The Lie algebra L is said to be solvable if L(i) = 0 for some i.

Proposition 7.6. Let L be a Lie algebra.

1. If L is solvable, then all subalgebras and homomorphism images of L are solvable.

2. If I is a solvable ideal of L such that L/I is also solvable, then L is solvable.

3. If I and J are solvable ideals of L, then so is I + J .

4. There is a unique maximal solvable ideal of L.

Proof. Part 1 follows immediately from the definitions.
Let I be a solvable ideal of L such that L/I is also solvable. Then there exists m ∈ Z+

such that (L/I)(m) = 0, or equivalently, L(m) ⊂ I and there exists n ∈ Z+ such that I(n) = 0.
Since L(m) ⊂ I and I(n) = 0, we have L(m+n) = (L(m))(n) ⊂ I(n) = 0, proving that L is
solvable.

By the standard homomorphism theorem, we know that (I + J)/J is isomorphic to
I/(I ∩J). Since I/(I ∩J) is a homomorphism image of I, it is solvable. So (I +J)/J is also
solvable. But J is also aolvable. By Part 2, we see that I + J is solvable.

Let S be a maximal solvable ideal (a solvable ideal such that any solvable ideal containing
S must be equal to S). Let I be any solvable ideal. Then S+ I is also a solvable ideal. Since
S + I contains S, S + I = S or equivalently, I ⊂ S. Thus such an S is unique.
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Definition 7.7. The unique maximal solvable ideal of L given in the proposition above is
called the radical of L and is denoted Rad L. A Lie algebra is said to be semisimple if its
radical is 0.

Definition 7.8. Let L be a vector space. The tensor algebra generated by L is the space

T (L) =
∐
n∈N

L⊗n,

where N is the set of nonnegative integers and L⊗n is the tensor product of n copies of L
(when n = 0, L⊗0 = F), with the tensor product of elements as the multiplication. Let L
be a Lie algebra. The the quotient of T (L) by the two sided ideal I of T (L) generated by
elenets of the form x⊗y−y⊗x− [x, y] for x, y ∈ L is an associative algebra. This associative
algebra is called universal enveloping algebra of L and is denoted by U(L).

We shall use x1 · · ·xn for x1, . . . , xn ∈ L to denote the element x1⊗ · · · ⊗ xn + I of U(L).
Then we see that U(L) is spanned by elements of this form. In particular, elements of the
form x for x ∈ L form a subspace of U(L) linearly isomorphic to L.

Proposition 7.9. A vector space M is an L-module if and only if it is a U(L)-module.

Proof. Let M be an L-module. For x1 · · ·xn ∈ U(L) and y ∈M , we define

(x1 · · ·xn)y = x1(· · · (xny) · · · ).

Since M is an L-module, it is easy to see that this is well defined, that is, if x1 · · ·xn is equal
to a linear combination of elements of the same form, then the action of this element on y
defined above and by using the linear combination give the same result. It is also easy to
see that this action gives a U(L)-module structure on M .

Conversely, given a U(L)-module M , since L can be viewed as a subspace of U(L), we
have an action of L on M . Using the definition of U(L) and the meaning of U(L)-module,
we see that M with this action of L is an L-module.

Definition 7.10. Let L be a Lie algebra. Let L1 = [L,L], L2 = [L,L1], . . . , Li = [L,Li−1],
. . . . A Lie algebra is said to be nilpotent if Li = 0 for some i ∈ Z+.

It is clear that L1 = L(1) and L(i) ⊂ Li for i ≥ 1. So we have:

Proposition 7.11. Let L be a Lie algebra. Then L is solvable if L or [L,L] is nilpotent.

Theorem 7.12 (Cartan’s criterion). Let M be a finite-dimensional vector space and L be
a subalgebra of the Lie algebra gl(M). If Tr xy = 0 for all x ∈ [L,L] and y ∈ L, then L is
solvable.

The proof is omitted. See [Hum] for a proof.
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Definition 7.13. Let L be a Lie algebra. A representation ρ : L → gl(M) is said to be
faithful if ker ρ = 0. In this case, the L-module M is also said to be faithful.

Definition 7.14. Let L be a finite-diemnsional Lie algebra and ρ : L → gl(M) a faithful
representation of L. Define a bilinear form βρ : L ⊗ L → F by βρ(x, y) = Trρ(x)ρ(y) for
x, y ∈ L. Let L be a finite-dimensional Lie algebra. The Killing form of L is the bilinear
form κ = βad for the adjoint representation ad on L itself defined by (ad x)y = [x, y] for
x, y ∈ L.

Exercise 7.15. Verify that the bilinear form βρ is associative, that is, βρ([x, y], z) = βρ(x, [y, z])
for x, y, z ∈ L.

Proposition 7.16. Let L be a finite-diemnsional semisimple Lie algebra and ρ : L →
gl(M) a finite-diemnsional faithful representation of L. Then βρ is nondegenerate, that is,
βρ(x, y) = 0 for all y ∈ L implies x = 0.

Proof. Let S = {x ∈ L | βρ(x, y) = 0 for all y ∈ L} (S is called the radical of βρ). We need
to show that S = 0.

Since ρ(S) is a subalgebra of gl(M), we can apply Cartan’s criterion to ρ(S). Since
Tr ρ(x)ρ(y) = βρ(x, y) = 0 for x ∈ S and y ∈ L, we certainly have Tr xy = 0 for x ∈
[ρ(S), ρ(S)] and y ∈ ρ(S). Thus ρ(S) is solvable. Since ρ is faithful, S is isomorphic to ρ(S)
and is therefore also solvable. Since L is semisimple, S = 0.

Since βρ is nondegenerate, it gives an isomorphism from L to the dual space L∗ of L
by x ∈ L 7→ βρ(x, ·). Let {x1, . . . , xn} be a basis of L and {x∗1, . . . , x∗n} the dual basis. By
definition, we have

x∗i (xj) = δij

for i, j = 1, . . . , n. Using the inverse of the isomorphism from L to L∗, we see that the basis
{x∗1, . . . , x∗n} corresponds to another basis {y1, . . . , yn} of L and satisfies

βρ(xi, yj) = δij

for i, j = 1, . . . , n. We shall also call this basis the dual basis of {x1, . . . , xn} with respect to
the bilinear form βρ or simply the dual basis of {x1, . . . , xn}.

Definition 7.17. Let L be a finite-dimensional semisimple Lie algebra and ρ : L → gl(M)
a finite-dimensional faithful representation of L, or equivalently, M is an L-module. The
Casimir element of M is

ΩM =
n∑
i=1

ρ(xi)ρ(yi) ∈ End M.

Exercise 7.18. Verify that the definition of the Casimir element above is independent of
the choice of the basis {x1, . . . , xn}.

Proposition 7.19. Suppose that ρ is a faithful representation of L. Then the Casimir
element commutes with ρ(x) for x ∈ L.

44



Proof. Let

[x, xi] =
n∑
j=1

aijxj

and

[x, yi] =
n∑
j=1

bijyj

for i = 1, . . . , n. Then we have

aik =
n∑
j=1

aijδjk

=
n∑
j=1

aijβρ(xj, yk)

= βρ([x, xi], yk)

= −βρ([xi, x], yk)

= −βρ(xi, [x, yk])

= −
n∑
j=1

bkjβρ(xi, yj)

= −
n∑
j=1

bkjδij

= −bki
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for i, k = 1, . . . , n. Thus

[ρ(x),ΩM ] =
n∑
i=1

[ρ(x), ρ(xi)ρ(yi)]

=
n∑
i=1

ρ(x)ρ(xi)ρ(yi)−
n∑
i=1

ρ(xi)ρ(yi)ρ(x)

=
n∑
i=1

(ρ(x)ρ(xi)ρ(yi)− ρ(xi)ρ(x)ρ(yi)) +
n∑
i=1

(ρ(xi)ρ(x)ρ(yi))− ρ(xi)ρ(yi)ρ(x)

=
n∑
i=1

[ρ(x), ρ(xi)]ρ(yi) +
n∑
i=1

ρ(xi)[ρ(x), ρ(yi)]

=
n∑
i=1

ρ([x, xi])ρ(yi) +
n∑
i=1

ρ(xi)ρ([x, yi])

=
n∑

i,j=1

aijρ(xj)ρ(yi) +
n∑

i,j=1

bijρ(xi)ρ(yj)

=
n∑

i,j=1

(aij + bji)ρ(xj)ρ(yi)

0,

proving that ΩM commutes with ρ(x) for x ∈ L.

Let M1 and M2 be modules for a Lie algebra L. We now give a tensor product module of
M1 and M2: Consider the tensor product vector space M1 ⊗M2. Define an action of L on
M1 ⊗M2 by

x(y1 ⊗ y2) = xy1 ⊗ y2 + y1 ⊗ xy2

for x ∈ L, y1 ∈M1 and y2 ∈M2.

Exercise 7.20. Verify that M1 ⊗M2 with this action of L is indeed an L-module.

Let M1 and M2 be modules for a Lie algebra L. We next give an L-module structure on
the vector space Hom(M1,M2) of all linear maps from M1 to M2: Define an action of L on
Hom(M1,M2) by

(xf)(y1) = xf(y1)− f(xy1)

for x ∈ L, f ∈ Hom(M1,M2) and y1 ∈M1.

Exercise 7.21. Verify that Hom(M1,M2) with this action of L is indeed an L-module.

Let M be an L-module. We now consider then special case that M1 = M and M2 = F
with the trivial L-module structure (the action of elements of L on F is 0). Then M∗ =
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Hom(M,F) and we obtain an L-module structure on M∗. This is called the contragredient
module of M . We can also give the action of the action of L on M∗ directly by

(xf)(y) = −f(xy)

for x ∈ L, f ∈M∗ and y ∈M .
In the rest of this section, we assume that F is algebraic closed of characteristic 0.

Theorem 7.22 (Weyl). A finite-dimensional module for a finite-dimensional semisimple
Lie algebra is completely reducible.

Proof. We need only prove that an exact sequence

0→M1 →M →M2 → 0

of finite-dimensional L-modules is split. Equivalently, we need only prove that for a finite-
dimensional L-module M and a finite-dimensional L-submodule M1, there exists a finite-
dimensional L-module M2 such that M is isomorphic to M1 ⊕M2.

If indeed we can find such M2, then the projection p from M to M1 is a homomorphism
of L-modules. The projection p can be characterized as the linear map from M to M1 such
that p|M1 = IM1 and ker p is isomorphic to M2. So to prove the theorem, we need only to
find a homomorphism of L-modules from M to M1 such that its restriction to M1 is the
identity and its kernel is isomorphic to M2.

To find such a homomorphism of L-modules from M to M1, we consider Hom(M,M1).
We have given an L-module structure to this space. Such a homomorphism, if it exists, must
belong to the subspaceM of Hom(M,M1) consisting of elements whose restriction to M1 is
proportional to the identity operator on M1. On the other hand, we certainly do not want
elements in this subspace whose restrictions to M1 are 0. Let M1 be the space of all such
elements. We claim thatM is an L-submodule of Hom(M,M1) andM1 is an L-submodule
of M. In fact, for f ∈ M, there exists λ ∈ F such that f |M1 = λIM1 . Then for x ∈ L and
y ∈ M1, (xf)(y) = xf(y) − f(xy) = λxy − λxy = 0. Thus (xf)|M1 = 0. The same proof
also shows thatM1 is an L-submodule ofM. Note thatM/M1 is one-dimensional because
modulo elements ofM1, elements ofM are determined completely by its restrictions on M1.
If M can be decomposed as a direct sum of the L-submodule M1 and a one-dimensional
L-submodule ofM1 ⊂ Hom(M,M1), then we can choose the homomorphism we are looking
for to be a basis of this one-dimensional subspace of Hom(M,M1).

We now prove that M can be decomposed as a direct sum of the L-submodule M1 and
a one-dimensional L-submodule of M. We have proved that (xf)|M1 = 0 for x ∈ L. So
xM ⊂ M1 for x ∈ L. Thus L acts on the one-dimensional L-module M/M1 trivially. In
particular, the L-module M/M1 is isomorphic to the trivial L-module F .

We use induction on the dimension of M. When the dimension of M is 1, M can cer-
tainly be decomposed as a direct sum of the L-submodule M1 = 0 and one-dimensional
L-submodule M of M. Now assume that when the dimension of M is less than k, the
decompostion holds. We now consider the case that the dimension of M is k. If M1 is not
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irreducible, then there exists a nonzero proper L-submoduleM′
1 ofM1. Then the dimension

ofM/M′
1 is less than k and (M/M′

1)/(M1/M′
1) is one-dimensional. By induction assump-

tion, There is a one-dimensional L-submodule ofM/M′
1 such thatM/M′

1 is the direct sum
of M1/M′

1 and this one-dimensional L-submodule. But any L-submodule of M/M′
1 is of

the form M̃/M′
1 where M̃ is an L-submodule ofM. NowM′

1 is an L-submodule of M̃ such
that M̃/M′

1 is one-dimensional. So we can use our induction assumption again to obtain
a one-dimensional L-submodule X such that M̃ is the direct sum of M′

1 and X. We know
that M̃/M′

1 ∩M1/M′
1 = 0, X ⊂ M̃ and X ∩M′

1 = 0. So X ∩M1 = 0. Thus

dimM = dimM1 + 1 = dimM1 + dimX.

Since both M1 and X are L-submodules of M and their intersection is 0, their direct sum
must be M.

We still need prove the case thatM1 is irreducible. If ρ is not faithful, then we consider
the quotient L/ ker ρ. The representation ρ induces a faithful representation of L/ ker ρ.
Since L is semisimple, Rad L = 0. The quotient as a homomorphism image of L is also
semisimple. The complete reducibility of M as an L-module is equivalent to the complete
reducibility of L/ ker ρ. Thus we can assume that ρ is faithful. Since the Casimir element
ΩM commutes with ρ(x) for x ∈ L, ΩM is in fact a homomorphism of L-modules fromM to
itself. In particualr, ΩM(M1) ⊂M1 and ker ΩM is an L-submodule of M. Since L acts on
M/M1 trivially, so does ΩM . So TrΩM = 0 on M/M1. But since M1 is irreducible, ΩM

acts as a scalar on M1. This scalar cannot be 0 since TrΩM = dimL. Hence ker ΩM must
be a one-dimensional L-submodule ofM such that ker ΩM ∩M1 = 0. ThusM is the direct
sum of M1 and ker ΩM .

Let Z(L) be the center of L, that is

Z(L) = {x ∈ L | [x, y] = 0 for y ∈ L}.

Then by definition,
Z(L) = ker adL

and Z(L) is a solvable ideal of L.

Lemma 7.23. A Lie algebra L is semisimple if and only if all abelian ideals of L are 0.

Proof. Any abelian ideal of L is a solvable ideal of L and hence is in Rad L. Thus Rad L = 0
implies that all abelian ideals of L are 0.

Conversely, assume that all abelian ideals of L are 0. Since Rad L is a solvable ideal
of L, there exists n ∈ Z+ such that (Rad L)(n) = 0 and (Rad L)(n−1) 6= 0. If n 6= 1, then
Rad L)(n−1) is a nonzero abelian ideal of L. Contradiction. So n = 1, that is, Rad L = 0.

Theorem 7.24. A Lie algebra L is semisimple if and only if its Killing form is nondegen-
erate.
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Proof. Assume that L is semisimple. Then Rad L = 0. Let S be the radical of the Killing
form κ, that is,

S = {x ∈ L | κ(x, y) = 0 forall y ∈ L}.
Then for x ∈ S and y ∈ L (in particular for y ∈ [S, S]), κ(x, y) = 0. By Cartan’s criterion,
adL S is solvable. Since L is semisimple, ker adL = Z(L) ⊂ Rad L = 0. So S is also solvable.
Thus S ⊂ Rad L = 0, proving that κ is nondegenrate.

Conversely, assuming that the radical S of the Killing form κ is 0, we want to prove that
L is semisimple. We prove that all abelian ideals of L are 0. Let I be an abelian ideal of L.
For x ∈ I and y ∈ L, ((adL x)(adL y))2 maps L to [I, I]. Since I is abelian, [I, I] = 0. Thus
((adL x)(adL y))2 = 0. Since the eigenvalues of any nilpotent operator are 0, we have

κ(x, y) = Tr(adL x)(adL y) = 0.

So x ∈ S = 0 and thus x = 0, proving that I = 0.

Before we discuss construct representations of semisimple Lie algebras, we need the fol-
lowing result from linear algebra:

Theorem 7.25. Let T be a linear operator on a finite-dimensional vector space M . Then
there exist a unique diagonalizable (or semisimple) operator Ts and a unique nilpotent oper-
ator Tn on M such that T = Ts + Tn.

Proof. Choose an ordered basis B = {u1, . . . , un} such that under this basis, the matrix
[T ]B of T is a Jordan canonical form. Then [T ]B = S + N where S is a diagonal matrix
whose diagonal entris are eigenvalues of T and N is a nilpotent Jordan canonical form whose
eigenvalues are 0. Let Ts and Tn be the linear operators whose matrices under the basis B
are S and N , respectively. Then we have T = Ts + Tn. Clearly, Ts and Tn are unique.

We can also obtain Ts and Tn and the decomposition T = Ts + Tn using generalized
eigenspaces of T as follows: Let a1, . . . , ak be distinct eigenvalues of T and Ma1 , . . . ,Mak the
corrsponding eigenspaces. Then M = ⊕ki=1Mai . Define Ts : M → M by Ts(u) = aiu for
u ∈ Mai . Then Ts is certainly diagonalizable or semisimple. Let Tn = T − Ts. It is easy to
see that Tn is nilpotent. By definition, we have T = Ts + Tn.

Now we discuss representations of

sl(2,F) = {A ∈M2×2 | TrA = 0}

with the bracket operation defined by

[A,B] = AB −BA

for A,B ∈ sl(2,F). The Lie algebra sl(2,F) has a basis consisting the elements

x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Their brackets or commutators are given by

[h, x] = 2x, [h, y] = −2y, [x, y] = h.
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Exercise 7.26. Prove that sl(2,F) is semisimple.

Since sl(2,F) is semisimple, we need only discuss finite-dimensional irreducible sl(2,F)-
modules and how arbitrary finite-dimensional sl(2,F)-modules decompose into these finite-
dimensional irreducible sl(2,F)-modules. We shall discuss only finite-dimensional irreducible
sl(2,F)-modules below.

First we need:

Lemma 7.27. Let ρ : sl(2,F) → gl(M) be a representation of sl(2,F). Then ρ(h) is
semisimple.

Proof. Since any sl(2,F)-module is completely reducible, M is a direct sum of irreducible
sl(2,F)-submodules of M . To prove that ρ(h) is semisimple, it is enough to prove that the
restriction of ρ(h) to each of these irreducible sl(2,F)-submodules is semisimple. So we can
assume that M is irreducible.

From the formulas for [h, x] and [h, y], we see that adsl(2,F) h is semisimple. Then since
ρ is a homomorphism of Lie algebras, adρ(sl(2,F)) ρ(h) is semisimple.

Since sl(2,F) is semisimple (actually it is simple), we have [sl(2,F), sl(2,F)] = sl(2,F).
Then we have [ρ(sl(2,F)), ρ(sl(2,F))] = ρ(sl(2,F)). Thus we have

ρ(sl(2,F)) = [ρ(sl(2,F)), ρ(sl(2,F))] ⊂ [gl(M), gl(M)] = sl(M).

In particular, ρ(h) ∈ sl(M). If we let ρ(h) = ρ(h)s + ρ(h)n be the Jordan decomposition of
the linear operator ρ(h) on M , by definition, Trρ(h)n = 0, that is, ρ(h)n ∈ sl(M). Thus we
also have ρ(h)s ∈ sl(M).

Let B = {u1, . . . , un} be a basis of M such that under this basis, the matrix [ρ(h)]B of
ρ(h) is a Jordan canonical form. Then the matrix [ρ(h)s]B of ρ(h)s under B is a diagonal
matrix diag (a1, . . . , an) where a1, . . . , an are eigenvalues of ρ(h). Take a basis of gl(M) to
be the set of linear operators Tij ∈ gl(M) whose matrices under the basis B of M are Eij
for i, j = 1, . . . , n where Eij is the matrix whose only nonzero entry is 1 at the i-th row and
the j-th column. Then it is easy to verify by direct calculations that Eij are generalized
eigenvectors of the action of [ρ(h)]B on the space Mn×n of n × n matrices by the bracket
operation with eigenvalues ai − aj, that is,

[

k︷ ︸︸ ︷
([ρ(h)]B − (ai − aj)In), · · · , [([ρ(h)]B − (ai − aj)In), Eij] · · · ] = 0

for sufficiently large k. Also, Eij are eigenvectors of the action of [ρ(h)s]B = diag (a1, . . . , an)
on the space Mn×n of n×n matrices by the bracket operation with eigenvalues ai−aj. Thus
for the corresponding linear operators on M , we also have

(adgl(M) ρ(h))kTij = [

k︷ ︸︸ ︷
(ρ(h)− (ai − aj)IM), · · · , [(ρ(h)− (ai − aj)IM), Tij] · · · ] = 0

and Tij are eigenvectors for adgl(M) ρ(h)s with eigenvalues ai − aj. Since adgl(M) ρ(h)
maps ρ(sl(2,F)) to itself, ρ(sl(2,F)) is also a direct sum of generalized eigenspace of the
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operator adgl(M) ρ(h). In particular, adgl(M) ρ(h)s also maps ρ(sl(2,F)) to itself. More-
over, the discussion above shows that adgl(M) ρ(h)s restricted to ρ(sl(2,F)) is semisimple,
adgl(M) ρ(h) − adgl(M) ρ(h)s restricted to ρ(sl(2,F)) is nilpotent and adgl(M) ρ(h)s com-
mutes with adgl(M) ρ(h) − adgl(M) ρ(h)s. Thus adgl(M) ρ(h)s|ρ(sl(2,F))) and (adgl(M) ρ(h) −
adgl(M) ρ(h)s)|ρ(sl(2,F))) are the semisimple and nilpotent parts, respectively, of adρ(sl(2,F)) ρ(h) =
adgl(M) ρ(h)|ρ(sl(2,F))). But we already showed that adρ(sl(2,F)) ρ(h) is semisimple. So

adρ(sl(2,F)) ρ(h) = adgl(M) ρ(h)s|ρ(sl(2,F))).

Since sl(2,F) is semisimple, adρ(sl(2,F)) is faithful. Hence we have ρ(h) = ρ(h)s, proving that
ρ(h) is semisimple.

LetM be a finite-dimensional sl(2,F)-module. ThenM is the direct sum of the eigenspaces
Mλi of h with eigenvalues λi of h, respectively, for i = 1, . . . , k. For λ 6= λi, we let Mλ = 0.
Then we have

M =
∐
λ∈F

Mλ.

Definition 7.28. The eigenvalues λi for i = 1, . . . , k are called weights of h or weights of the
corresponding eigenvectors and the eigenspaces Mλi for i = 1, . . . , k are called weight spaces
of h. An nonzero element v ∈M is called a maximal vector if xv = 0.

Theorem 7.29. Let M be a finite-dimensional irreducible sl(2,F)-module. Let m = dimM−
1. Then we have:

1. M =
∐m

i=0Mm−2i and dimMm−2i = 1 for i = 0, . . . ,m.

2. Up to nonzero scalar multiples, M has a unique maximal vector in Mm.

3. Let v0 ∈ Mm be a maximal vector of M , v−1 = 0 and vi = 1
i!
yiv0 for i ∈ N. Then

vi 6= 0 and the action of sl(2,F) on M is given by hvi = (m − 2i)vi, yvi = (i + 1)vi
and xvi = (m − i + 1)vi for i ∈ N. In particular, up to isomorphisms, there exists at
most one irreducible sl(2,F)-module of dimension m+ 1 for m ∈ N.

Proof. Since the action of h on M is semisimple, we have M =
∐

λ∈FMλ. Since M is finite
dimensional, there must be λ ∈ F such that Mλ 6= 0 but Mλ+2 = 0. Take any nonzero
element v0 ∈Mλ. Then

hxv0 = xhv0 + 2xv0 = λxv0 + 2xv0 = (λ+ 2)xv0

and thus xv0 ∈ Mλ+2 = 0. So v0 is a maximal vector. Let vi = 1
i!
yiv0 for i ∈ N. Using

the bracket formulas for x, y and h, we have hvi = (λ − 2i)vi, yvi = (i + 1)vi+1 and xvi =
(λ− i+ 1)vi−1 for i ∈ N.

Since M is finite dimensional, there must be m ∈ N such that v0, . . . , vm 6= 0 but
vm+1 = 0. Since vm+1 = 0, vi = 0 for i ≥ m+ 1. Since v0, . . . , vm are eigenvectors for h with
distinct eigenvalues, they must be linearly independent. Also v0, . . . , vm span a vector space
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which is invariant under the action of x, y and h. So v0, . . . , vm span a submodule of M .
Since M is irreducible, M must be equal to this submodule. So we see that M has a basis
{v0, . . . , vm}. Since 0 = xvm+1 = (λ −m − 1 + 1)vm and vm 6= 0, we obtain λ = m. Part 1
follows immediately.

Assume that there is another maximal vector u. Then u = α0v0 + · · ·+ αmvm and

xu = α0xv0 + · · ·+ αmxvm = α1mv0 + α2(m− 1)v1 + · · ·+ αmvm−1.

Since u is a maximal vector,

α1mv0 + α2(m− 1)v1 + · · ·+ αmvm−1 = xu = 0.

Thus we have α1 = · · · = αm = 0 and u = α0v0, proving Part 2.
Part 3 follows immediately.

The theorem above gives the classification of irreducible sl(2,F)-modules. We still need
to establish the existence. To establish the existence, we need the following Poincar’e-
Birkhoff-Witt theorem in the case of finite-dimensional Lie algebras:

Theorem 7.30 (Poincaré-Birkhoff-Witt). Let L be a finite-dimensional Lie algebra and
{u1, . . . , un} an ordered basis of L. Then elements of the form

ui1 · · ·uik

for k ∈ N and 1 ≤ i1 ≤ ik ≤ n form a basis of U(L) (when k = 0, the element is 1).

We omit the proof here. See [Hum].
We also need the following construction of “induced modules:”
Let L be a finite-dimensional Lie algebra and L1 a subalgebra of L. Then U(L1) can

be embedded into U(L) as a subalgebra. Let M1 be an L1-module. Then U(L) ⊗M1 is a
U(L)-module. Let I be the U(L)-submodule of U(L) ⊗M1 generated by elements of the
form ab ⊗ c − a ⊗ bc for a ∈ U(L), b ∈ U(L1) and c ∈ M1 where bc is the action of b on
c. Then (U(L) ⊗M1)/I is also a U(L)-module and thus an L-module. This L-module is

denoted by Ind
U(L)
U(L1)M1 or U(L)⊗U(L1) M1 and is called an induced module.

Proposition 7.31. Let L be a finite-dimensional Lie algebra and L1 and L2 are subalgebras
o L such that L = L1⊕L2. Then the universal enveloping algebra U(L) is linearly isomorphic
to U(L1)⊗ U(L2).

Proof. We choose an ordered basis {u1, . . . , uk} of L1 and an ordered basis {v1, . . . , vl} of
L2. Then {u1, . . . , uk, v1, . . . , vl} is a basis of L. By the Poincar’e-Birkhoff-Witt theorem,
elements of the form

ui1 · · ·uipvj1 · · · vjq
for p, q ∈ N, 1 ≤ i1 ≤ · · · ≤ ip ≤ k and 1 ≤ j1 ≤ · · · ≤ jq ≤ l form a basis of U(L). But also
by the Poincar’e-Birkhoff-Witt theorem, the set of elements of the form

ui1 · · ·uip ⊗ vj1 · · · vjq
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for p, q ∈ N, 1 ≤ i1 ≤ · · · ≤ ip ≤ k and 1 ≤ j1 ≤ · · · ≤ jq ≤ l form a basis of U(L1)⊗ U(L2).
It follows that U(L) is linearly isomorphic to U(L1)⊗ U(L2).

Now come back to sl(2,F)-modules. Let L1 = Fx+ Fh and L2 = Fy. Then sl(2,F) =
L1⊕L2. Consider a one-dimensional vector space Fv0 with a basis v0. For m ∈ N, we define
an action of L1 on on Fv0 by xv0 = 0 and hv0 = mv0. It is easy to see that this action gives
an L1-module structure to Fv0. Now we have the induced module U(sl(2,F))⊗U(L1)Fv0 for
sl(2,F). By the proposition above, this induced module is linearly isomorphic to the vector
space (U(L2) ⊗ U(L1)) ⊗U(L1) Fv0 which in turn is linearly isomorphic to the vector space
U(L2) ⊗ Fv0. From the definition of L2 we see that U(L2) ⊗ Fv0 has a basis consiting of
1
i!
yi ⊗ v0. From this basis, we see that the induced module U(sl(2,F))⊗U(L1) Fv0 is infinite

dimensional and is not what we are interested. What we are interested are finite dimensional
and irreducible.

To obtain irreducible modules, we consider maximal submodules of U(sl(2,F))⊗U(L1)Fv0.
In fact, let J be the sum of all submodules of U(sl(2,F))⊗U(L1)Fv0 which does not contain
1⊗ v0. Then J is also a submodule. It is maximal because any submodule larger than this
one must contain the element 1 ⊗ v0 and thus is equal to U(sl(2,F)) ⊗U(L1) Fv0. Thus we
obtain an irreducible sl(2,F)-module (U(sl(2,F))⊗U(L1) Fv0)/J .

Moreover, we have:

Theorem 7.32. The dimension of the irreducible sl(2,F)-module (U(sl(2,F))⊗U(L1)Fv0)/J
is m+ 1.

Proof. We first prove that in this irreducible sl(2,F)-module, w = ym+1⊗ v0 = 0. It is easy
to see that

xw = xym+1 ⊗ v0 = ym+1x⊗ v0 −m(m+ 1)ym ⊗ v0 + (m+ 1)ymh⊗ v0

= ym+1 ⊗ xv0 −m(m+ 1)ym ⊗ v0 + (m+ 1)ym ⊗ hv0

= −m(m+ 1)ym ⊗ v0 +m(m+ 1)ym ⊗ v0

= 0.

Thus w is also a maximal vector. But an sl(2,F)-module cannot have more than one linearly
independent maximal vector (see exercise below). Since the weight of w is not m, we must
have w = 0, that is, ym+1 ⊗ v0 = 0.

We now have yi ⊗ v0 = 0 for i ≥ m + 1. Since U(sl(2,F)) ⊗U(L1) Fv0 is linearly
isomorphic to the space U(L2) ⊗ Fv0 which has a basis consisting of 1

i!
yi ⊗ v0, we see that

(U(sl(2,F)) ⊗U(L1) Fv0)/J is linearly spanned by elements of the form 1
i!
yi ⊗ v0 for i ≤ m.

Thus (U(sl(2,F)) ⊗U(L1) Fv0)/J is finite dimensional. Since the weight of v0 is m, by the
theorem we proved before, dim(U(sl(2,F))⊗U(L1) Fv0)/J = m+ 1.

Exercise 7.33. Prove that maximal vectors for the module (U(sl(2,F))⊗U(L1) Fv0)/J are
unique up to a nonzero scalar.
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Corollary 7.34. There is a bijection between the set N of nonnegative integers and the set
of equivalence classes of finite-dimensional irreducible sl(2,F)-modules.

Now we quickly discuss the representation theory of general finite-dimensional semisimple
Lie algebras. We shall describe only the main constructions and state the main results
without giving any proofs.

Let L be a finite-dimensional semisimple Lie algebra. Then there must be a semisimple
element of L. A toral subalgebra of L is a subalgebra of L consisting of semisimple elements.

Proposition 7.35. A toral subalgebra of L is an abelian Lie algebra.

Now we take a maximal toral subalgebra H of L, that is, a toral sublagebra of L such that
any toral subalgebra containing H must be H. Since H is abelian and commuting operators
have same eigenvectors, L is a direct sum of common eigenspaces of elements of H. For any
eigenvector x of elements of H, there exists α ∈ H∗ such that

[h, x] = α(h)x.

Let Φ be the space of all nonzero such α ∈ H∗ and let

Lα = {x ∈ L | [h, x] = α(h)x for h ∈ H}.

Then we have
L = L0 ⊕

∐
α∈Φ

Lα.

0 ∈ H∗ is in Φ and H ⊂ Lα. It can be proved that L0 = H. Thus we have

L = H ⊕
∐
α∈Φ

Lα.

It can be proved that one can find a basis ∆ of the real vector space E spanned by
elements of Φ such that ∆ ⊂ Φ and any element of Φ can be written as a linear combination
of elements of ∆ with either nonnegative coefficients or nonpositive coefficients. Elements of
Φ are called roots. Elements of ∆ are called simple roots. We fix a choice of ∆ = {α1, . . . , αl}.

Let M be an L-module. As in the case for sl(2,F), the actions of elements of H on M
must be semisimple. Since H is abelian, the actions of elements of H on M commute with
each other. Thus

M =
∐
λ∈H∗

Mλ

where
Mλ = {x ∈M | hx = λ(h)x, for h ∈ H}

for λ ∈ H∗. When Mλ 6= 0, we say that λ is a weight of M and Mλ the weight space of
weight λ. Let {λ1, . . . , λl} be a basis of E determined by

2(λi, αj)

(αj, αj)
= δij
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for i, j = 1, . . . , l, where (·, ·) is the bilinear form on E induced from the Killing form on H.
A weight λ is said to be dominant if it is a linear combination of λ1, . . . , λl with nonnegative
coefficients and is said to be integral if it is a linear combination of λ1, . . . , λl with integral
coefficients. A weight is dominant integral if it is dominant and integral. Then we have the
following result:

Theorem 7.36. Let L be a finite-dimensional semisimple Lie algebra. Then there is a
bijection from the set Λ+ of dominant integral weights to the set of equivalence classes of
finite-dimensional irreducible L-modules.

The proof of this theorem is in spirit the same as the corresponding theorem above when
L = sl(2,F).

8 Affine Lie algebras (Wess-Zumino-Novikov-Witten

models)

In this section, we will provide constructions of the vertex algebras associated to affine Lie
algebras and their modules. We begin with the vertex algebras.

8.1 Construction of the grading-restricted vertex algebra V (`, 0)

(This subsection was written by Jason Saied.)

Let g be a finite-dimensional Lie algebra with symmetric invariant bilinear form (·|·). We
define the affine Lie algebra ĝ by

ĝ = g⊗ C[t, t−1]⊕ Ck,

where k is central and

[a⊗ tm, b⊗ tn] = [a, b]⊗ tm+n + δm+n,0m(a|b)k.

(This is a central extension of the loop algebra g ⊗ C[t, t−1]. See [K, Section 7].) In this
note, we will write a(n) instead of a⊗ tn. We write ĝ = ĝ− ⊕ ĝ0 ⊕ ĝ+, where ĝ+ is the span
of all a(n) with a ∈ g and n > 0, ĝ− is the span of all a(n) with a ∈ g and n < 0, and ĝ0 is
the span of k and all a(0) with a ∈ g.

Fix ` ∈ C. Let C` be a copy of C, with the structure of a module for ĝ0⊕ ĝ+ by defining
a(n)1 = 0 for all a ∈ g and n ≥ 0, and k1 = `. Now define

V (`, 0) = U(ĝ)⊗U(ĝ0⊕ĝ+) C`,

where U(·) is the universal enveloping algebra. (See [Hum, Section 17].) When ` is under-
stood, we will use the notation V := V (`, 0). V is a U(ĝ)-module under left multiplication.
(Note that V is nothing but the induced U(ĝ)-module constructed from the U(ĝ0 ⊕ ĝ+)-
module C`.)

Let 1 := 1⊗ 1 ∈ V . Recall that k1 = `1 and if n ≥ 0, a(n)1 = 0.
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Proposition 8.1. V is canonically linearly isomorphic to U(ĝ−) by the map determined by

a1(n1) · · · ak(nk)1 7→ a1(n1) · · · ak(nk),

where all ni < 0.

Proof. By the Poincare-Birkhoff-Witt (PBW) Theorem (see [Hum, Section 17], the multi-
plication map

φ : U(ĝ−)⊗ U(ĝ0 ⊕ ĝ+)→ U(ĝ)

is a linear isomorphism. Then

V = U(ĝ)⊗U(ĝ0⊕ĝ+) C`
∼= (U(ĝ−)⊗ U(ĝ0 ⊕ ĝ+))⊗U(ĝ0⊕ĝ+) C`

∼= U(ĝ−)⊗ C`
∼= U(ĝ−),

where ∼= denotes linear isomorphism and all the maps are canonical.

We put a grading on V by defining (V )(n) to be the span of all a1(n1)a2(n2) · · · al(nl)⊗ 1
such that −n = n1 + · · ·+nl. It is easy to check that applying the affine Lie algebra relations
to an element of (V )(n) gives a sum of terms in (V )(n), so this is well-defined. We have

V =
∐
n∈Z

V(n).

Define the spaces

V ′ =
∐
n∈Z

V ∗(n) and V =
∏
n∈Z

V(n),

where V ∗(n) is the dual space of V(n).

Proposition 8.2. V(n) = 0 for n < 0. V(0) = C1. V(n) is finite-dimensional for all n ∈ Z.

Proof. The first part is clear from Proposition 8.1. It is also clear that V(0) is one-dimensional.
Let n > 0, and let {a1, . . . , ar} be a basis for g. Then {ai(−m) : i,m ∈ Z, 1 ≤ i ≤ r,m >

0} is a basis for ĝ−. Order the basis lexicographically, in i then m. Taking a PBW basis for
U(ĝ−), we see that V(n) is spanned by

{ai1(−n1) · · · ail(−nl)1 : 1 ≤ i1 ≤ i2 · · · ≤ il ≤ r, 0 < ni, n1 + · · ·+ nl = n}.

Since the positive integer n has only finitely many partitions and there are finitely many ai,
this is a finite set.

We will now define the maps needed for our construction of the vertex algebra structure
on V . For a ∈ g and z ∈ C∗, define

a(z) : V → V

by

a(z) =
∑
n∈Z

a(n)z−n−1.
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When working with formal series rather than complex variables, we will use the notation

a(x) =
∑
n∈Z

a(n)x−n−1,

where x is a formal variable.

Proposition 8.3. Given v′ ∈ V ′ and v ∈ V , 〈v′, a(z)v〉 is a rational function with the only
possible pole at z = 0.

Proof. It suffices to consider v = a1(−n1) · · · al(−nl)1 ∈ V and v′ ∈ V ∗(h). We have

〈v′, a(z)a1(−n1) · · · al(−nl)1〉 =
∑
n∈Z

〈v′, a(n)a1(−n1) · · · al(−nl)1〉z−n−1

Since v′ ∈ V ∗(h), by how we defined our grading the term 〈v′, a(n)a1(−n1) · · · al(−nl)1〉 is 0
unless n− n1 − · · · − nl = h. Then

〈v′, a(z)a1(−n1) · · · al(−nl)〉 = 〈v′, a(h+ n1 + · · ·+ nl)a1(−n1) · · · al(−nl)〉z−(h+n1+···+nl)−1.

This is a monomial in z or z−1, so it is a rational function with the only possible pole at
z = 0.

This proves that for all a ∈ g, a(z) is an analytic map from C× to Hom(V, V ), as defined
in [Hua9]. We now show that the maps a(x) satisfy the conditions given in Section 4. Let
L(0) be the grading operator on V .

Claim 8.4. The maps a(x) satisfy Condition 1:

[L(0), a(x)] = x
d

dx
a(x) + a(x).

Proof. We compute that for n ∈ Z and ni > 0,

[L(0), a(n)]a1(−n1) · · · al(−nl)
= L(0)a(n)a1(−n1) · · · al(−nl)− a(n)L(0)a1(−n1) · · · al(−nl)
= (n1 + · · ·+ nl − n)a(n)a1(−n1) · · · al(−nl)− (n1 + · · ·+ nl)a(n)a1(−n1) · · · al(−nl)
= −na(n)a1(−n1) · · · al(−nl),

so
[L(0), a(n)] = −na(n).
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Then

[L(0), a(x)] = [L(0),
∑
n∈Z

a(n)x−n−1]

=
∑
n∈Z

[L(0), a(n)]x−n−1

=
∑
n∈Z

(−n)a(n)x−n−1

=
∑
n∈Z

(−n− 1)a(n)x−n−1 +
∑
n∈Z

a(n)x−n−1

= x
d

dx
a(x) + a(x).

Further, it is clear that a(n) is a homogeneous linear map of weight −n and that
a(x) =

∑
n∈Z a(n)x−n−1 is precisely the decomposition into homogeneous components given

by Lemma 4.1.
Define a linear map L(−1) ∈ End(ĝ) by L(−1)(k) = 0 and L(−1)(b(n)) = −nb(n − 1).

It is easy to check that this defines a derivation on ĝ and therefore U(ĝ). We then observe
that L(−1)|U(ĝ−) maps into U(ĝ−), so we may view L(−1) as a derivation on U(ĝ−). Using
the isomorphism V ∼= U(ĝ−), this allows us to define L(−1) as a linear map on V by

L(−1)a1(n1) · · · ak(nk)1 := L(−1)(a1(n1) · · · ak(nk))1 and L(−1)1 = 0.

Claim 8.5. L(−1) and the maps a(x) satisfy Condition 2: L(−1)1 = 0 and

[L(−1), a(x)] =
d

dx
a(x).

Proof. We compute that for n ∈ Z and ni > 0, using the fact that L(−1) is a derivation on
U(ĝ),

[L(−1), a(n)]a1(−n1) · · · al(−nl)1
= L(−1)(a(n)a1(−n1) · · · al(−nl))1− a(n)L(−1)(a1(−n1) · · · al(−nl))1
= −na(n− 1)a1(−n1) · · · al(−nl)1
+ a(n)L(−1)(a1(−n1) · · · al(−nl))1− a(n)L(−1)(a1(−n1) · · · al(−nl))1
= −na(n− 1)a1(−n1) · · · al(−nl)1.

Then [L(−1), a(n)] = −na(n− 1) as operators on V , so

[L(−1),
∑
n∈Z

a(n)x−n−1] =
∑
n∈Z

[L(−1), a(n)]x−n−1 =
∑
n∈Z

(−n)a(n− 1)x−n−1 =
d

dx
a(x).
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Claim 8.6. Condition 3 is satisfied: limx→0 a(x)1 = a(−1).

Proof. We note that

a(x)1 =
∑
n∈Z

a(n)1x−n−1 =
∑
n<0

a(n)1x−n−1.

This has only nonnegative powers of x, and as x → 0, we are left with only the constant
term a(−1).

Remark 8.7. Condition 4 follows from Proposition 8.1.

We now introduce a lemma on formal series which will come in handy. Recall that
δ(x) =

∑
n∈Z x

n.

Lemma 8.8 ([LL], Proposition 2.3.7). If m > n ≥ 0, then

(x1 − x2)m
(

∂

∂x1

)n
x−1

2 δ

(
x1

x2

)
= 0.

Exercise 8.9. Prove this lemma on your own.

Claim 8.10. For a, b ∈ g, we have the following identity of formal series:

(x1 − x2)2a(x1)b(x2) = (x1 − x2)2b(x1)a(x1).

Proof. We have

a(x1)b(x2)

=
∑
n∈Z

∑
m∈Z

a(n)b(m)x−n−1
1 x−m−1

2

= b(x2)a(x1) +
∑
n∈Z

∑
m∈Z

([a, b](m+ n) + δm+n,0n(a|b)k)x−n−1
1 x−m−1

2

= b(x2)a(x1) +
∑
n∈Z

∑
m∈Z

[a, b](m+ n)x−n−1
1 x−m−1

2 −
∑
m∈Z

n(a|b)kxm−1
1 x−m−1

2 .

Then it suffices to show that when multiplied by (x1 − x2)2, the second and third terms are
zero. We compute the following, applying Lemma 8.8 in the final line:

(x1 − x2)2
∑
n∈Z

∑
m∈Z

[a, b](m+ n)x−n−1
1 x−m−1

2 = (x1 − x2)2
∑
p∈Z

∑
m∈Z

[a, b](p)xm−p−1
1 x−m−1

2

= (x1 − x2)2[a, b](x1)
∑
m∈Z

xm1 x
−m−1
2

= [a, b](x1)(x1 − x2)2
∑
m∈Z

x−1
2

(
x1

x2

)
= [a, b](x1)(x1 − x2)2x−1

2 δ

(
x1

x2

)
= 0.
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Similarly,

(x1 − x2)2
∑
m∈Z

m(a|b)kxm−1
1 x−m−1

2 = k(a|b)(x1 − x2)2
∑
m∈Z

mxm−1
1 x−m−1

2

= k(a|b)x−1
2 (x1 − x2)2

∑
m∈Z

m

x2

(
x1

x2

)m−1

= k(a|b)(x1 − x2)2x−1
2

∂

∂x1

δ

(
x1

x2

)
= 0.

Then Theorem 4.5 gives a grading-restricted vertex algebra structure on V (`, 0).

8.2 V (`, 0) as a vertex operator algebra

(This subsection was written jointly with with Jason Saied.)

We show in this subsection that V = V (`, 0) has a conformal element and therefore is
a vertex operator algebra. See Definition 3.5. In this section, we assume that the invariant
bilinear form on ĝ is positive definite (for example, in the case that ĝ is semisimple and the
form is obtained from the Killing form).

Define Ω ∈ U(g) by

Ω =

dim g∑
i=1

uiui,

where {ui : 1 ≤ i ≤ dim g} is an orthonormal basis for g with respect to the form (·, ·). Ω is
called the Casimir element of g. (In Definition 7.17, we have introduced a Casimir element
associated to a representation of a finite-dimensional Lie algebra.)

We add the assumption that Ω acts on g by a scalar 2h∨, where h∨ ∈ C. In particular,
this assumption is satisfied if g is a simple Lie algebra. In fact, g with the adjoint action is a
faithful module of g. By Proposition 7.19, Ω acting on g commutes with ad a for every a ∈ g.
Since g is simple, Ω must act as a scalar, which we denote by 2h∨. (See [Hum], Section 6.)

We then define ω ∈ V(2) by

ω =
1

2(`+ h∨)

dim g∑
i=1

ui(−1)ui(−1)1 =
1

2(`+ h∨)

dim g∑
i=1

ui(−1)21.

Theorem 8.11. V (`, 0) is a VOA with conformal element ω and central charge
` dim g

`+ h∨
.

Proof. We need to calculate YV (`,0)(ω, x)ω. We first calculate

YV (`,0)(u
i(−1)21, x)ω

60



for i, j = 1, . . . , dim g. By the definition of YV (`,0), we have

ui(−1)21 = Resx0x
−1
0 ui(x0)ui(−1)1 = Resx0x

−1
0 YV (`,0)(u

i(−1)1, x0)ui(−1)1.

Using this and the first equality in (5.25), we have

Y V (`,0)(u
i(−1)21, x2)

= Resx0x
−1
0 YV (`,0)(YV (`,0)(u

i(−1)1, x0)ui(−1)1, x2)

= Resx0x
−1
0 Resx1x

−1
0 δ

(
x1 − x2

x0

)
YV (`,0)(u

i(−1)1, x1)YV (`,0)(u
i(−1)1, x2)

− Resx0x
−1
0 Resx1x

−1
0 δ

(
−x2 + x1

x0

)
YV (`,0)(u

i(−1)1, x2)YV (`,0)(u
i(−1)1, x1)

= Resx1(x1 − x2)−1ui(x1)ui(x2)− Resx1(−x2 + x1)−1ui(x2)ui(x1)

=

(∑
m∈N

ui(−m− 1)xm2

)
ui(x2) + ui(x2)

 ∑
m∈−Z+

ui(−m− 1)xm2

 . (8.10)

Using ω ∈ V(2), V(n)(`, 0) = 0 for n < 0 and ui(p)ui(q) = ui(q)ui(p) for p 6= −q and
i = 1, . . . , dim g, we obtain

Y V (`,0)(u
i(−1)21, x2)ω

=

(∑
m∈N

ui(−m− 1)xm2

)
ui(x2)ω + ui(x2)

 ∑
m∈−Z+

ui(−m− 1)xm2

ω

=
∑
m∈N

∑
n∈Z

ui(−m− 1)ui(n)ωxm−n−1
2 +

∑
m∈−Z+

∑
n∈Z

ui(n)ui(−m− 1)ωxm−n−1
2

=
∑

0≤m≤n≤2

ui(−m− 1)ui(n)ωxm−n−1
2 +

∑
−3≤m≤n≤m+3≤2

ui(n)ui(−m− 1)ωxm−n−1
2

+ Fi(x2)

=
2∑

m=0

ui(−m− 1)ui(2)ωxm−3
2 +

1∑
m=0

ui(−m− 1)ui(1)ωxm−2
2 + ui(−1)ui(0)ωx−1

2

+
0∑

n=−3

ui(n)ui(2)ωx−n−4
2 +

1∑
n=−2

ui(n)ui(1)ωx−n−3
2 +

2∑
n=−1

ui(n)ui(0)ωx−n−2
2 + Fi(x2)

= 2ui(−3)ui(2)ωx−1
2 + 2ui(−2)ui(1)ωx−1

2 + 2ui(−1)ui(0)ωx−1
2 + 2ui(−2)ui(2)ωx−2

2

+ 2ui(−1)ui(1)ωx−2
2 + ui(0)2ωx−2

2 + 2ui(−1)ui(2)ωx−3
2 + 2ui(0)ui(1)ωx−3

2

+ 2ui(0)ui(2)ωx−4
2 + ui(1)ui(1)ωx−4

2 + Fi(x2), (8.11)

where Fi(x2) ∈ V (`, 0)[[x2]] for i = 1, . . . , dim g.
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Using the commutator formula for the affine Lie algebra operators, the formulas

[ui, ui] = [uj, uj] = [[ui, uj], [ui, uj]] = 0,

(ui, uj) = δij.

(ui, [ui, uj]) = ([ui, ui].uj) = 0,

([ui, uj], uj) = (ui, [uj, uj]) = 0,

([ui, [ui, uj]], uj) = −([ui, uj], [ui, uj]),

the fact that {ui}dim g
i=1 is an orthonormal basis and the invariance of the bilinear form (·, ·),

we have

ui(2)uj(−1)21 = 0, (8.12)

ui(1)uj(−1)21 = [[ui, uj], uj](−1)1 + 2`δiju
j(−1)1, (8.13)

ui(0)uj(−1)21 = [ui, uj](−1)uj(−1)1 + uj(−1)[ui, uj](−1)1

=

dim g∑
k=1

([ui, uj], uk)uk(−1)uj(−1)1 +

dim g∑
k=1

([ui, uj], uk)uj(−1)uk(−1)1

=

dim g∑
k=1

(ui, [uj, uk])uk(−1)uj(−1)1 +

dim g∑
k=1

(ui, [uj, uk])uj(−1)uk(−1)1. (8.14)

Using the defintion of ω

dim g∑
i=1

[[uj, ui], ui] =

dim g∑
i=1

[ui, [ui, uj]] = Ωuj = 2h∨uj,

dim g∑
j=1

[[ui, uj], uj] =

dim g∑
j=1

[uj, [uj, ui]] = Ωui = 2h∨ui

and (8.12)– (8.14), we obtain

ui(2)ω = 0, (8.15)

ui(1)ω =
1

2(`+ h∨)

dim g∑
j=1

([[ui, uj], uj](−1)1 + 2`δiju
i(−1)1) = ui(−1)1, (8.16)

ui(0)ω =
1

2(`+ h∨)

dim g∑
j=1

dim g∑
k=1

(
(ui, [uj, uk])uk(−1)uj(−1)1 + (ui, [uj, uk])uj(−1)uk(−1)1

)
=

1

2(`+ h∨)

dim g∑
j=1

dim g∑
k=1

(
(ui, [uk, uj])uj(−1)uk(−1)1 + (ui, [uj, uk])uj(−1)uk(−1)1

)
= 0. (8.17)
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From (8.15)–(8.17), we obtain

ui(0)2ω = 0, (8.18)

ui(0)ui(1)ω = 0, (8.19)

ui(1)ui(1)ω = `1. (8.20)

Substituting (8.12)–(8.20) into the right-hand side of (8.11), summing over i and using the
formula

LV (`,0)(−1)ui(−1)21 = ui(−2)ui(−1) + ui(−1)ui(−2)1 = 2ui(−2)ui(−1)1,

we obtain
dim g∑
i=1

YV (`,0)(u
i(−1)21, x2)ω

=

dim g∑
i=1

2ui(−2)ui(−1)x−1
2 +

dim g∑
i=1

2ui(−1)ui(−1)1x−2
2 +

dim g∑
i=1

`1x−4
2 +

dim g∑
i=1

Fi(x2)

= 2(`+ h∨)LV (`,0)(−1)ωx−1
2 + 4(`+ h∨)ωx−2

2 + ` dim g1x−4
2 +

dim g∑
i=1

Fi(x2). (8.21)

Note that the formula Dividing both sides of (8.21) by 2(`+h∨) and letG(x2) = 1
2(`+h∨)

∑dim g
i=1 Fi(x2),,

we obtain
YV (`,0)(ω, x2)ω = LV (`,0)(−1)ωx−1

2 + 2ωx−2
2 +

c

2
1x−4

2 +G(x2),

where

c =
` dim g

`+ h∨
.

Using the commutator formula for YV (`,0), we have

[a(x1), YV (`,0)(ω, x2)]

= [YV (`,0)(a(−1)1, x1), YV (`,0)(ω, x2)]

= Resx0x
−1
1 δ

(
x2 + x0

x1

)
YV (`,0)(YV (`,0)(a(−1)1, x0)ω, x2)

=
∑
n∈Z

Resx0x
−1
1 δ

(
x2 + x0

x1

)
YV (`,0)(a(n)ω, x2)x−n−1

0 (8.22)

for a ∈ g. From (8.12)–(8.14) and the fact that {ui}i∈I is a basis of g, by writing a ∈ g as a
linear combination of ui for i ∈ I, we obtain

a(2)uj(−1)21 = 0, (8.23)

a(1)uj(−1)21 = [[a, uj], uj](−1)1 + 2`(a, uj)ui(−1)1, (8.24)

a(0)uj(−1)21 =

dim g∑
k=1

(a, [uj, uk])uk(−1)uj(−1)1 +

dim g∑
k=1

(a, [uj, uk])uj(−1)uk(−1)1. (8.25)
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From (8.23)–(8.25), we obtain

a(2)ω = 0, (8.26)

a(1)ω = a(−1)1, (8.27)

a(0)ω = 0. (8.28)

Using (8.26)–(8.28) and the formal Taylor’s theorem, we see that the right-hand side of (8.22)
becomes

Resx0x
−1
1 δ

(
x2 + x0

x1

)
YV (`,0)(a(−1)1, x2)x−2

0

=
∑
n∈Z

∑
k∈N

Resx0
xk0
k!

dk

dxk2
x−1

1 δ

(
x2

x1

)
a(n)x−2

0 x−n−1
2

=
∑
n∈Z

d

dx2

x−1
1 δ

(
x2

x1

)
a(n)x−n−1

2 (8.29)

Taking the coefficient of x−m−1
1 x−2

2 for m ∈ Z on the left-hand sides of (8.22) and the right-
hand side of (8.22), we obtain

[a(m),Resx2x2YV (`,0)(ω, x2)] = ma(m). (8.30)

Taking the coefficient of x−m−1
1 x−1

2 for m ∈ Z on the left-hand sides of (8.22) and the right-
hand side of (8.22), we obtain

[a(m),Resx2YV (`,0)(ω, x2)] = ma(m− 1). (8.31)

Since YV (`,0)(ω, x2)1 ∈ V (`, 0)[[x2]],

Resx2x2YV (`,0)(ω, x2)1 = Resx2YV (`,0)(ω, x2)1 = 0. (8.32)

From (8.30)–(8.32) and the definitions of LV (`,0)(0) and LV (`,0)(−1), we obtain

[a(m),Resx2x2YV (`,0)(ω, x2)] = [a(m), LV (`,0)(0)],

[a(m),Resx2YV (`,0)(ω, x2)] = [a(m), LV (`,0)(−1)],

Resx2x2YV (`,0)(ω, x2)1 = LV (`,0)(0)1,

Resx2YV (`,0)(ω, x2)1 = LV (`,0)(−1)1.

From these formulas, we obtain

LV (`,0)(0) = Resx2x2YV (`,0)(ω, x2),

LV (`,0)(−1) = Resx2YV (`,0)(ω, x2).

Thus ω is a conformal element and V (`, 0) is a vertex operator algebra.

The proof of this theorem can be found in [LL], pages 210-213. Although they constructed
the map Y (v, x) in a different style, this proof does not refer to the particular construction
of Y (v, x).
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8.3 Construction of the vertex operator algebra L(`, 0)

Even for simple g and ` ∈ Z+, the vertex operator algebra V (`, 0) is in fact not the vertex
algebra for the Wess-Zumino-Witten model associated. We need to take an irreducible
quotient of V (`, 0).

Let I(`, 0) be the maximal proper submodule of the ĝ-module V (`, 0). In fact, it is easy

to see that I(`, 0) exists: Consider all ˆ̂g-submodules of V (`, 0) that do not contain 1. In

particular, homogeneous elements of these ˆ̂g-submodules have weights greater than 0. Take
I(`, 0) to be the sum of all such ˆ̂g-submodules. Then 1 6∈ I(`, 0) since 1 has weight 0. I(`, 0)

is maximal. Let L(`, 0) = V (`, 0)/I(`, 0). Then as a ˆ̂g-module, L(`, 0) is irreducible, that is,

there is no ˆ̂g-submodule of L(`, 0) that is not 0 or L(`, 0) itself.
We take the vacuum of L(`, 0) to be the equivalent class of the vacuum of V (`, 0). We

define the vertex operator map YL(`,0) : L(`, 0)⊗ L(`, 0)→ L(`, 0)((x)) by

YL(`,0)(u+ I(`, 0), x)(v + I(`, 0)) = YV (`,0)(u, x)v + I(`, 0).

The vacuum 1L(`,0) is defined to 1V (`,0) + I(`, 0) and in the case ` + h∨ 6= 0, the conformal
element ωL(`,0) is defined to be ωV (`,0) + I(`, 0).

Theorem 8.12. The graded vector space L(`, 0) equipped with YL(`,0) and 1 is a grading-
restricted vertex algebra. When `+ h∨ 6= 0, L(`, 0) equipped with YL(`,0), 1L(`,0) and ωL(`,0) is
a vertex operator algebra.

Proof. We need only verify that YL(`,0) is well defined; all the axioms can be verified using
the properties of V (`, 0). To prove that YL(`,0) is well defined, we need only show that
YV (`,0)(u, x)v ∈ I(`, 0)((x)) when one of u and v is in I(`, 0). Since I(`, 0) is a ĝ-submodule
of V (`, 0), we have a(x)v ∈ I(`, 0)((x)) for a ∈ g and v ∈ I(`, 0). Then by the definition of
the vertex operator map YV (`,0) (see (4.7), we have

〈v′, YV (`,0)(a1(m1) · · · ak(mk)1, z)v〉
= Resξ1=0 · · ·Resξk=0ξ

m1
1 · · · ξ

mk
k R(〈v′, a1(ξ1 + z) · · · ak(ξk + z)v〉) (8.33)

for a1, . . . , ak ∈ g, m1, . . . ,mk ∈ Z, v ∈ V (`, 0) and v′ ∈ V (`, 0)′. To prove that YV (`,0)(u, x)v ∈
I(`, 0)((x)) for u ∈ V (`, 0) and v ∈ I(`, 0), we need only prove YV (`,0)(a1(m1) · · · ak(mk)1, z)v ∈
I(`, 0)((x)) for a1, . . . , ak ∈ g, m1, . . . ,mk ∈ Z and v ∈ I(`, 0). Let I(`, 0)0 be the annihila-
tor of I(`, 0), that is, the subspace of V (`, 0)0 containing all linear functionals v′ on V (`, 0)
such that 〈v′, v〉 = 0 for all v ∈ I(`, 0). Then YV (`,0)(a1(m1) · · · ak(mk)1, z)v ∈ I(`, 0)((x))
if and only if 〈v′, YV (`,0)(a1(m1) · · · ak(mk)1, z)v〉 = 0 for all v′ ∈ I(`, 0)0. From (8.33) and
a(x)v ∈ I(`, 0)((x)) for a ∈ g and v ∈ I(`, 0), we see that the right-hand side of (8.33) is 0
for all v′ ∈ I(`, 0)0. Thus the left-hand side of (8.33) is also 0 for all v′ ∈ I(`, 0)0.

We also need to prove YV (`,0)(u, x)v ∈ I(`, 0)((x)) for u ∈ I(`, 0) and v ∈ V (`, 0). Since
L(−1) can be expresed as a linear combination of products of a(n) for a ∈ g and n ∈ Z and
I(`, 0) is a g-submodule of V (`, 0), we have L(−1)I(`, 0)v ∈ I(`, 0) for v ∈ I(`, 0). Then by
the skew-symmetry (5.23),

YV (`,0)(u, x)v = exL(−1)YV (`,0)(v,−x)u ∈ I(`, 0)((x)).
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The vertex operator algebra underlying the Wess-Zumino-Witten model associated to a
finite-dimensional simple Lie algebra g and a level ` ∈ Z+ is exactly L(`, 0). In this case,
there is an explicit formula I(`, 0) = U(ĝ)eθ(−1)`+11, where θ is the highest root of g and
eθ is a root vector in gθ (see [K] and [LL]).

9 Virasoro vertex operator algebras (minimal mdels)

In this section, we will introduce the basic ingredients of the Virasoro vertex operator alge-
bras. But all the proofs will be left as exercises.

Let L =
∐

n∈ZCLn+Cc be a vector space with with a basis {Ln, c}. We define a bracket
operation for L by

[Lm, Ln] = (m− n)Lm+n +
1

12
(m3 −m)δm+n,0c,

[c, Ln] = 0,

for m,n ∈ Z.

Exercise 9.1. Prove that L equipped with the bracket operation is a Lie algebra.

The Lie algebra L is called the Virasoro algebra.The center element c usually acts as a
fixed number c on an L-module. THis number is called the central charge of the module. In
Subsection 8.2, we have shown that V (`, 0) is a L-module for the Virasoro algebra L with
the central charge c = `dim g

`+h∨
.

To construct a vertex operator algebra, we first need to construct an L-module. We use
the same induced module construction as we have done for the Heisenberg and affine Lie
algebras. The Virasoro algebra has a triangle decomposition L = L+ ⊕ L0 ⊕ L−, where
L± =

∐
n∈±Z+

CLn and L0 = Cl0 ⊕ Cc. Let c ∈ C and Cc be the one-dimensional vector
space C with c acts on Cc as the number c. Let L+ and L0 acts on Cc as 0. Then Cc

becomes a module for the subalgebra L+ ⊕ L0. Let M(c, 0) = U(L) ⊗L+⊕L0 Cc (where 0
denotes that L0 acts on Cc as 0). Then M(c, 0) is an L-module. By the Poincaré-Birkhoff-
Witt theorem, as a vector space M(c, 0) is isomorphic to U(L−) ⊗ Cc which is in turn
linearly isomorphic to U(L−). We shall denote the action of Ln on M(c, 0) by L(n) and the
element 1 ⊗ 1 ∈ U(L) ⊗L+⊕L0 Cc by 1. Then M(c, 0) is spanned by elements of the form
L(−n1) · · ·L(−nk)1 for n1, . . . , nk ∈ Z+.

For the vertex operator algebra, unlike in the affine Lie algebra case, we need to take a
further quotient. Let 〈L(−1)1〉 = U(L)L(−1)1 be the submodule of M(c, 0) generated by
L(−1)1. Let V (c, 0) = M(c, 0)/〈L(−1)1〉. The action of Ln on V (c, 0) is still denoted by
L(n). Then using the Virasoro braket relations, we see that V (c, 0) is spanned by elements
of the form L(−n1) · · ·L(−nk)1 for n1, . . . , nk ∈ Z+ + 1.

Define the weight of L(−n1) · · ·L(−nk)1 to be n1+· · ·+nk. Then V (c, 0) =
∐

n∈N V(n)(c, 0),
where V(n)(c, 0) is the subspace of V (c, 0) consisting of elements of weight n. Let T (x) =
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∑
n∈Z L(n)x−n−2. This is the generating field for V (c, 0). We already have an operator

L(−1).

Exercise 9.2. Using the construction theorem in Section 4 to prove that V (c, 0) has a
structure of grading-restricted vertex algebra. By Theorem 4.5, you need only prove that
V (c, 0) together with the generating field T (x), L(−1) and 1 satisfies the five conditions in
Section 4.

Exercise 9.3. Prove that ω = L(−2)1 ∈ V (c, 0) is a conformal element of V (c, 0). In
particular, V (c, 0) is a vertex operator algebra.

The vertex operator algebra for the minimal model is not V (c, 0). As in the case of
Wess-Zumino-Novikov-Witten modules, we have to take a further irreducible quotient.

Let I(c, 0) be the maximal proper submodule of the L-module V (c, 0).

Exercise 9.4. Prove that I(c, 0) exists.

Let L(c, 0) = V (c, 0)/I(c, 0). Then as a L-module, L(c, 0) is irreducible.

Exercise 9.5. Define the vertex operator map YL(c,0) for L(c, 0). Then prove that L(c, 0)
equipped with YL(c,0) and 1 is a vertex operator algebra.

10 Quantum vertex algebras

We have introduced meromorphic open-string vertex algebras with one example in Section
6. But in general, without the commutativity or the commutator formula, it is not easy to
obtain substantial results. So from this point of view, it is natural to study meromorphic
open-string vertex algebras satisfying a weak version of the commutativity. This is what
I call quasi-commutative meromorphic open-string vertex algebras. This is in the spirit
of quantum vertex algebras but the examples of quantum vertex algebras are much more
complicated. Here we first introduce an analytic notion of quasi-commutative vertex algebra
which is much stonger than the one introduced by Etingof and Kazhdan in [EK].

Definition 10.1. A quasi-commutative meromorphic open-string vertex algebra is a mero-
morphic open-string vertex algebra satisfying following quasi-commutativity: For u1, u2 ∈ V ,
there exist ci(x) ∈ C[x, x−1] and ui1, u

i
2 ∈ V for i = 1, . . . , k such that for v ∈ V and v′ ∈ V ′,

R(〈v′, YV (u1, z1)YV (u2, z2)v〉 =
k∑
i=1

ci(z2 − z1)R(〈v′, YV (ui2, z2)YV (ui1, z1)v〉).
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The same proof of the Jacobi identity in Subsection 5.2 gives us the quasi-Jacobi identity

x0
−1δ

(
x1 − x2

x0

)
YV (u1, x1)YV (u2, x2)

−
k∑
i=1

x−1
0 δ

(
−x2 + x1

x0

)
ci(−x0)YV (ui2, x2)YV (ui1, x1)

= x−1
1 δ

(
x2 + x0

x1

)
YV (YV (u1, x0)u2, x2) (10.34)

and the quasi-commutator formula

YV (u1, x1)YV (u2, x2)−
k∑
i=1

ci(−x0)YV (ui2, x2)YV (ui1, x1)

= Resx0x
−1
1 δ

(
x2 + x0

x1

)
YV (YV (u1, x0)u2, x2) (10.35)

All the properties we proved in Section 5 can be generalize to such a quasi-commutative
meromorphic open-string vertex algebra.

Problem 10.2. Construct an example of quasi-commutative meromorphic open-string ver-
tex algebra.

We now introduce quantum vertex algebra in the sense of Etingof and Kazhdan. The idea
is to view quantum vertex algebras as formal deformations of vertex algebras. We briefly
explain what is a formal noncommutative deformation of a commutative associative algebra.
Let A be a commutative associative algebra with the multiplication ·. Let h be a formal
variable. We conside the C[[h]]-module A[[h]]. A formal noncommutative deformation of A
is A[[h]] together with an associative multiplication ·h on A[[h]] such that a ·h b = a · b+ hB
for a, b ∈ A and B ∈ A[[h]]. Note that we do not require a ·h b be commutative. We also
note that A is in fact isomorphic to A[[h]]/hA[[h]] as a commutative associative algebra.
In general, we can consider a C[[h]]-module A together with an associative multiplication
such that the multiplication induced on A/hA is a commutative associative algebra. Then
A is a noncommutative deformation of A/hA. Such formal deformations are also called
deformation quantization.

We now want to apply the same idea to vertex algebras. Let V be a grading-restricted ver-
tex algebra. We consider V [[h]]. Then a formal noncommutative deformation of V is roughly
speaking V [[h]] together with a vertex operator map Y h

V : V [[h]]⊗ V [[h]]→ V [[h]]((x)) sat-
isfying the associativity and all the other properties for a meromorphic open-string vertex
algebra. But to get nice properties, we still need to give a quasi-commutativity type property.

For a vector space V0, let V = V0[[h]]. Let

Vh((x)) =

{∑
n∈Z

anx
−n−1 | for every M ∈ N, an ∈ hMV for n >> 0

}
.
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Given a C[[h]]-linear map

S : V ⊗ V → V ⊗ V ⊗ C((x))[[h]]

u2 ⊗ u1 7→ S(x)(u2 ⊗ u1),

for u1, u2 ∈ V , there exists ui1, u
i
2 and ci(x) ∈ C((x))[[h]] for i = 1, . . . , k such that S(x)(u2⊗

u1) =
∑k

i=1 u
i
2 ⊗ ui1 ⊗ ci(x).

We define S21(x) : V ⊗ V → V ⊗ V ⊗ C((x))[[h]] by

S21(x)(u⊗ v) = σ12(S(x)(v ⊗ u))

where σ12 is the permutation switch 1 and 2. We also define S12(x) : V ⊗ V ⊗ V →
V ⊗ V ⊗ V ⊗ C((x)) by

S12(x)(v1 ⊗ v2 ⊗ v3) = S(x)(v1 ⊗ v2)⊗ v3.

Similarly we also have S13(x) and S23(x). We also have S31(x), S32(x) and more generally
Sij(x) on V ⊗n for i, j = 1, . . . n.

Definition 10.3. A quantum vertex algebra is a C[[h]]-module of the form V = V0[[h]],
equipped with a vertex operator map

YV : (V0 ⊗ V0)[[h]]→ Vh((x))

u⊗ v 7→ YV (u, x)v,

a vacuum 1 ∈ V and a C[[h]]-linear map

S : V ⊗ V → V ⊗ V ⊗ C((x))[[h]]

u2 ⊗ u1 7→ S(x)(u2 ⊗ u1) =
k∑
i=1

ui1 ⊗ ui2 ⊗ ci(x)

such that S(x)(u2 ⊗ u1) = u2 ⊗ u1 mod h satisfying the following axioms:

1. Axioms for the vacuum: (a) Identity proerty: YV (1, x) = 1V . (b) Creation property:
For v ∈ V , YV (v, x)1 ∈ V [[x]] and limx→0 YV (v, x)1 = v.

2. L(−1)-derivative property and L(−1)-commutator formula: Let LV (−1) be the C[[h]]-
linear map L(−1) : V → V defined by

LV (−1)v = lim
x→0

d

dx
YV (v, x)1

for v ∈ V . Then

d

dx
YV (v, x) = YV (LV (−1)v, x) = [LV (−1), YV (v, x)].
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3. Weak associativity: For u1, u2, v ∈ V and M ∈ N, there exists N ∈ Z+ such that

(x0 + x2)NYV (YV (u, x0)v, x2) = (x0 + x2)NYV (u, x0 + x2)YV (v, x2) mod hMV.

4. Weak S-commutativity: For u1, u2 ∈ V and M ∈ N, there exists N ∈ Z+ such that

(x1 − x2)NYV (u1, x1)YV (u2, x2)

= (x1 − x2)N
k∑
i=1

ci(x2 − x1)YV (ui2, x1)YV (ui2, x2) mod hM .

5. Unitarity and Yang-Baxter relation for S:

S21(x2 − x1)S(x1 − x2) = 1V⊗V , (10.36)

S12(x1 − x2)S13(x1 − x3)S23(x2 − x3) = S23(x2 − x3)S13(x1 − x3)S13(x1 − x2).
(10.37)

Remark 10.4. The heuristic meaning of the unitarity for S: If S(x1 − x2) can be written
as ei(x1−x2)K , where K is an operator satisfying σ12Kσ12 = K, then

S21(x2 − x1) = ei(x2−x1)σ12Kσ12 = ei(x1−x2)σ12Kσ12 = ei(x1−x2)K = S(x1 − x2).

So (10.36) becomes
S(x1 − x2)S(x1 − x2) = 1V⊗V .

This says exactly that S(x1 − x2) is unitary.

Remark 10.5. The heuristic meaning of the Yang-Baxter relation for S: See Fig. (will give
a picture for this).

Examples of quantum vertex algebras are constructed using modules for quantum affine
Lie algebras such that when we set h = 0, we obtain the vertex algebra associated to affine
Lie algebras constructed in Subsection 8.1. See [EK].

11 Modules

11.1 Definition and properties of modules

Roughly speaking, a module for a grading-restricted vertex algebra V is C-graded vector
space W =

∐
n∈CW[n] eqipped with a vertex operator map YW : V ⊗W → W ((x)) and an

operator LW (−1) satisfying all the axioms for a grading-restricted vertex algebra that still
make sense. But we have to consider more general types of modules.
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Definition 11.1. Let V be a grading-restricted vertex superalgebra. A generalized V -module
is a C-graded vector space W =

∐
n∈CW[n] equipped with a vertex operator map

YW : V ⊗W → W ((x)),

u⊗ w 7→ YW (u, x)w

satisfying the following axioms:

1. Axioms for the gradings: There are operators LW (0), LW (0)S and LW (0)N on W such
that LW (0) = LW (0)S + LW (0)N , LW (0)Sv = nv for v ∈ W[n] , LW (0)N is nilpotent
(for w ∈ W , there exists K ∈ N such that (LW (0)N)Kw = 0), and

[LW (0), YW (v, x)] = x
d

dx
YW (v, x) + YW (LV (0)v, x)

for v ∈ V .

2. Identity property: Let 1W be the identity operator on W . Then YW (1, z) = 1W .

3. L(−1)-derivative property: There exists LW (−1) : W → W such that for u ∈ V ,

d

dz
YW (u, z) = YW (LV (−1)u, z) = [LW (−1), YW (u, z)].

4. Duality: For u1, u2 ∈ V , w ∈ W and w′ ∈ W ′, the series

〈w′, YW (u1, z1)YW (u2, z2)w〉,
〈w′, YW (u2, z2)YW (u1, z1)w〉,
〈w′, YW (YV (u1, z1 − z2)u2, z2)w〉

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1−z2| >
0, respectively, to a common rational function in z1 and z2 with the only possible poles
at z1, z2 = 0 and z1 = z2.

A lower-bounded generalized V -module is a generalized V -module (W,YW , LW (0), LW (−1))
such that W[n] = 0 when <n is sufficiently negative. A grading-restricted generalized V -
module is a lower-bounded generalized V -module (W,YW , LW (0), LW (−1)) such that dimW[n] <
∞. An ordinary V -module or simply a V -module is a grading-restricted generalized V -module
(W,YW , LW (0), LW (−1)) such that LW (0)N = 0. When V is a vertex operator algebra, a
lower-bounded generalized V -module or grading-restricted generalized V -module or an ordi-
nary V -module is such a V -module when V is viewed as a grading-restricted vertex algebra
such that L(0) = ResxxYW (ω, x) and LW (−1) = ResxYW (ω, x).

All the properties for grading-restricted vertex algebras and vertex operator algebras
that still make sense also hold for modules. Here we state these properties without proofs.
The proofs are the same as those for grading-restricted vertex algebras and vertex operator
algebras.
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Operator product expansion For u1, u2 ∈ V , there existsN ∈ N such that YV (u1, x)u2 =∑
n≤N(YV )n(u1)u2x

−n−1 (see Subsection 5.1). Then

YW (u1, z1)YW (u2, z2) =
∑
n≤N

YW ((YV )n(u1)u2, z2)(z1 − z2)−n−1

∼
N∑
n=0

YW ((YV )n(u1)u2, z2)(z1 − z2)−n−1.

The Jacobi identity For u1, u2 ∈ V ,

x−1
0 δ

(
x1 − x2

x0

)
YW (u1, x1)YW (u2, x2)− x−1

0 δ

(
−x2 + x1

x0

)
YW (u2, x2)YW (u1, x1)

= x−1
1 δ

(
x2 + x0

x1

)
YW (YV (u1, x0)u2, x2). (11.38)

Commutator formula For u1, u2 ∈ V ,

YW (u1, x1)YW (u2, x2)− YW (u2, x2)YW (u1, x1)

= Resx0x
−1
1 δ

(
x2 + x0

x1

)
YW (YV (u1, x0)u2, x2). (11.39)

Associator formula For u1, u2 ∈ V ,

YW (YV (u1, x0)u2, x2)− YW (u1, x0 + x2)YW (u2, x2)

= −Resx1x
−1
0 δ

(
−x2 + x1

x0

)
YW (u2, x2)YW (u1, x1). (11.40)

Weak commutativity For u1, u2 ∈ V , there exists N ∈ N such that

(x1 − x2)NYW (u1, x1)YW (u2, x2) = (x1 − x2)NYW (u2, x1)YW (u1, x1). (11.41)

Weak associativity For u1 ∈ V and w ∈ W , there exists N ∈ N such that

(x0 + x2)NYW (YV (u1, x0)u2, x2)w = (x0 + x2)NYW (u1, x0 + x2)YW (u2, x2)w (11.42)

for u2 ∈ V .

Virasoro operators Let V be a vertex operator algebra with the conformal element ω.
Write YW (ω, x) =

∑
n∈Z LW (n)x−n−2. Then

[LW (m), LW (n)] = (m− n)LW (m+ n) +
c

12
(m3 −m)δm+n,0

for m,n ∈ Z.
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Definition 11.2. A generalized V -submodule of a generalized V -module W is a generalized
V -module (W0, YW0) such that W0 is a graded subspace of W and YW0 = YW |V⊗W0 . A
generalized V -module W is said to be irreducible if there is no nonzero proper V -submodule of
W . Lower-bounded generalized V -submodules, grading-restricted generalized V -submodules,
(ordinary) V -submodules and the corresponding irreducbible ones are defined in the obvious
way.

11.2 Modules for Heisenberg vertex operator algebras

Recall in Section 2, we have the group algebra C[L] for a lattice. We now consider the group
algebra C[h]. We use the same notation to denote eα to denote the the basis element α ∈ h
in C[h] but note that now α does not have to be in a lattice L. Note that for each α ∈ h,
Ceα is a subspace of C[h].

Let M(1, α) = S(ĥ−)⊗Ceα. We define the action of the Heisenberg algebra ĥ on M(1, α)
in the same way as in Section 2; a⊗tn for n 6= 0 acts only on S(ĥ−) and a⊗t0 acts only on eα

by a(0)eα = (a, α)eα, and k acts on M(1, α) as 1. THis explains our notation: 1 in M(1, α)
is used to denote that the center k acts as 1. Then as in Section 2, it is easy to verify that
M(1, α) becomes an ĥ-module. As in Section 2, we use a(n) to denote the action of a⊗ tn on
M(1, α). Then M(1, α) is spanned by elements of the form a1(−n1) · · · ak(−nk)eα for k ∈ N,
a1, . . . , ak ∈ h and n1, . . . , nk ∈ Z+.

We define the weight of a1(−n1) · · · ak(−nk)eα to be n1 + · · ·+nk+ 1
2
(α, α). In particular,

the weight of eα is 1
2
(α, α). Then M(1, α) =

∐
n∈ 1

2
(α,α)+NM[n](α) is a space graded by

1
2
(α, α) +N. The same argument as for S(ĥ−) shows that M(1, α) is grading restricted, that

is, M[n](α) = 0 when n− 1
2
(α, α) < 0 and dimM[n](α) <∞.

Let L be an even positive definite lattice. For α ∈ L, M(1, α) is in fact a ĥ-submodule
of the vertex operator algebra VL = S(ĥ−)⊗C[L]. Then we have a vertex operator map YVL
for VL. By definition, YVL(u, x)v ∈M(1, α) for u ∈ S(ĥ−)⊗C ' S(ĥ−) and v ∈M(1, α). We
define YM(1,α) = YVL|S(ĥ−)⊗M(1,α). Then since VL is a vertex operator algebra, all the axioms

for (M(1, α), YM(1,α) being a S(ĥ−)-module are satisfied.
For α ∈ h but not in any even positive lattice, we cannot use grading-restricted vertex

algebras associated to a lattice. This construction of S(ĥ−)-module does not work . For such
α, we will give the construction of an S(ĥ−)-module structure on M(1, α) after we prove a
construction theorem for modules. In this construction theorem, we shall need some formal
series of operators called generator fields. These can be obtained from generalizations of the
vertex operators YVL(eα, x) in Section 2. Here we define these generator fields and give their
properties.

For α ∈ h, we define ψα(x) : S(ĥ−)→M(1, α) by

ψα(x)a1(−n1) · · · ak(−nk)1

= exp

− ∑
n∈−Z+

α(n)

n
x−n

 exp

−∑
n∈Z+

α(n)

n
x−n

 a1(−n1) · · · ak(−nk)eα
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for a1, . . . , ak ∈ h and n1, . . . , nk ∈ Z+. In the case that α ∈ L for a even positive definite
lattice,

ψα(x)a1(−n1) · · · ak(−nk)1 = YVL(eα, x)a1(−n1) · · · ak(−nk)1.
Note that (2.12)–(2.11) still hold for α ∈ h. Also by definition,

a(0)ψα(x)a1(−n1) · · · ak(−nk)1

= (a, α) exp

− ∑
n∈−Z+

α(n)

n
x−n

 exp

−∑
n∈Z+

α(n)

n
x−n

 a1(−n1) · · · ak(−nk)eα

= (a, α)ψα(x)a1(−n1) · · · ak(−nk)1 + ψα(x)a(0)a1(−n1) · · · ak(−nk)1.

From these formulas, by the same calculations as in Section 2, we obtain the following weak
commutativity between a(x1) and ψα(x2) for a, α ∈ h:

(x1 − x2)a(x1)ψα(x2) = (x1 − x2)ψα(x2)a(x1).

We now give the theorem for M(1, α) but we prove only the irreducibility here; the proof
of the (ordinary) module structure will be given in the next section.

Theorem 11.3. For α ∈ h, M(1, α) has a structure of irreducible (ordinary) S(ĥ−)-module.

Proof. As we mentioned, the proof that M(1, α) is a grading-restricted (ordinary) S(ĥ−)-
module will be given later. Here we show that M(1, α) is in fact irreducible.

Assume thatW0 is a nonzero S(ĥ−)-submodule ofM(1, α). From the commutator formula
(12.55 with u1 = a(−1)1 and u2 = b(−1)1, we obtain

[aW (m), bW (n)] = m(a, b)δm+n,0

for m,n ∈ Z, where aW (m) and bW (n) are given by YW (a(−1)1, x) =
∑

m∈Z a(m)x−m−1 and

YW (b(−1)1, x) =
∑

n∈Z b(n)x−n−1. In particular, we see that W is an ĥ-module. Since W is

a S(ĥ−)-submodule of M(1, α), this ĥ-module structure must be induced from the ĥ-module
structure on M(1, α). So W is a ĥ-submodule of M(1, α).

Since M(1, α) is grading restricted, W as a submodle must also be grading-restricted.
Since W is nonzero, there exists homogeneous w ∈ W such that any element of W of weight
less than wtw is 0. In particular, ĥ+ annihilates w since elements of ĥ+ lowers the weights.
Since M(1, α) = S(ĥ−)⊗ Ceα, we see that the only elements annihilated by ĥ+ are those in
Ceα. Thus w = λeα for some λ ∈ C. Then W = M(1, α). So W cannot be proper.

11.3 A construction theorem for modules

(The material in subsection incorporated some of the writings by Jason Saied.)

We now give a construction theorem for modules. The theorem that we present below is
a special case of Theorem 4.3 in [Hua10].
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In the construction of grading-restricted vertex algebras in Section 4, we start with a
grading-restricted vector space V , a set of generating fields φi(x) for i ∈ I, a vacuum 1 and
an operator LV (−1) on V satisfying the five conditions in the section. For modules, we will
start with a C-graded vector space W , a set of generating fields φiW (x) on W for i ∈ I (here
I is the same index set as the one for the algebra), an operator LW (−1) on W satisfying
some conditions. But for modules, these are not enough. We have to introduce a set of what
we will call ”generator fields” ψaW (x) for a ∈ A.

Here we explain why we need these generator fields. In the proof of Lemma 4.4 in Section
4, we have to express an element v on which the generating fields act using these generating
fields acting on the vacuum. But for a module, the generating fields φiW (x) act on W and it
is impossible to express w ∈ using these generating fields acting on the vacuum. To give a
construction theorem for modules, we have to introduce some fields which give elements in
W when applied to the vacuum in the algebra V .

Note that in the properties of modules in the preceding subsection, there is no skew sym-
metry since it does not make sense. In fact skew-symmetry is what motivates the definition
of what we call generator fields. We first give this motivation.

Let W be a generalized V -module. In [FHL], a linear map

Y W
WV : W × V → W ((x)),

w ⊗ v 7→ Y W
WV (w, x)v

is defined by Y W
WV (w, x)v = exLW (−1)YW (v,−x)w for v ∈ V and w ∈ W . Replacing x0 and

x2 in the weak associativity (12.58) by x1 and −x2, we obtain

(x1 − x2)NYW (YV (u1, x1)u2,−x2)w = (x1 − x2)NYW (u1, x1 − x2)YW (u2,−x2)w (11.43)

for u1, u2 ∈ V and w ∈ W . Applying ex2LW (−1) to both sides of (11.43) from the left, us-
ing the definition of Y W

WV and the L(−1)-conjugation property ex2LW (−1)YW (u1, x1 − x2) =
YW (u1, x1)ex2LW (−1) (obtained by exponentiating the L(−1)-derivative property [LW (−1), YW (u1, x1)] =
d
dx
YW (u1, x1) and the formal Taylor’s theorem) and then replacing u1 by v and removing u2,

we see that (11.43) becomes

(x1 − x2)NY W
WV (w, x2)YV (v, x1) = (x1 − x2)NYW (v, x1)Y W

WV (w, x2). (11.44)

Note that (11.44) is of the same form as the weak commutativity (12.57) but with YW (u2, x2)
replaced by Y W

WV (w, x2).
Let M be a subspace of W such that W is spanned by coefficients of formal series of

the form Y (v, x)w for v ∈ V and w ∈ W . Then we say that W is generated by M and M
is a set of generators of W . We also call Y W

WV (w, x) for w ∈ M a generator fields of W .
Let φ(x) = YV (v, x) be a generating field of V . We use ψ(x) to denote the generator field
Y W
WV (w, x). Then the weak commutativity (11.44) becomes

(x1 − x2)Nφ(x1)ψ(x2) = (x1 − x2)Nψ(x2)φ(x1).

75



We shall use generator fields and this weak commutativity as additional data and properties
in the construction theorem for modules.

Let V be a grading-restricted vertex algebra. We assume that V is a grading-restricted
vertex algebra generated by φi(x) = YV (φi−11, x) for i ∈ I, where φi(x) is homogeneous with
respect to weights, φi−1 is the constant term of φi(x), and φi−11 = limx→0 φ

i(x)1 (see Section
4 and [Hua9]). Let wtφi be the weight of φi−11.

We shall give a construction of lower-bounded generalized V -modules. The construction
is based on the following data and assumptions:

Data 11.4. (a) Let W =
∐

n∈CW[n] be a C-graded vector space such that W[n] = 0 if <(n)
is sufficiently negative.

(b) Let
φiW : W → W ((x))

w 7→ φiW (x)w =
∑
n∈Z

(φiW )nwx
−n−1

for i ∈ I (the same index set I for the generating fields for V ) be linear maps called
generating field maps.

(c) Let
ψaW : V → W ((x))

v 7→ ψaW (x)v =
∑
n∈Z

(ψaW )nvx
−n−1

for a ∈ A be linear maps called generator field maps.

(d) Let LW (0), LW (−1) be linear operators on W .

Assumption 11.5. The data given in Data 11.4 satisfy the following properties:

1. There exist semisimple and nilpotent operators LW (0)S and LW (0)N on W such that
LW (0) = LW (0)S + LW (0)N . For w ∈ W[n], L(0)w = nw. For i ∈ I,

[LW (0), φiW (x)] = x
d

dx
φiW (x) + (wtφi)φiW (x).

For a ∈ A, there exists wtψaW ∈ C and, when LW (0)Nψ
a
W (x) 6= 0, there exists

LW (0)N(a) ∈ A such that

LW (0)ψaW (x)− ψaW (x)LV (0) = x
d

dx
ψaW (x) + (wtψaW )ψaW (x) + ψ

LW (0)N (a)
W (x),

where ψ
LW (0)N (a)
W (x) = 0 when LW (0)Nψ

a
W (x) = 0.

76



2. For i ∈ I and a ∈ A,

[LW (−1), φiW (x)] =
d

dx
φiW (x)

and

LW (−1)ψaW (x)− ψaW (x)LV (−1) =
d

dx
ψaW (x).

3. For a ∈ A, ψaW (x)1 ∈ W [[x]] and the constant term (ψaW )−11 = limx→0 ψ
a
W (x)1 is

homogeneous.

4. The vector space W is spanned by elements of the form

(φi1W )n1 · · · (φ
ik
W )nk(ψ

a
W )nv

for i1, . . . , ik ∈ I, a ∈ A, n, n1, . . . , nk ∈ Z, and v ∈ V .

5. For i, j ∈ I, there exists Mij ∈ Z+ such that

(x1 − x2)Mij [φiW (x1), φjW (x2)] = 0.

6. For i ∈ I and a ∈ A, there exists Mia ∈ Z+ such that

(x1 − x2)MiaφiW (x1)ψaW (x2) = (x1 − x2)MiaψaW (x2)φi(x1).

We have the following results analogous to Proposition 4.2:

Proposition 11.6. Assume that the data given in Data 11.4 satisfy only the parts on φiW
for i ∈ I of Conditions 1–4 in Assumption 11.5. Then Conditions 5 and 6 in Assumption
11.5 are equivalent to the following three conditions:

7. For w′ ∈ W ′, w ∈ W , i1, . . . , ik+l ∈ I and a ∈ A, the series

〈w′, φi1W (z1) · · ·φikW (zk)ψ
a
W (z)φi1(zk+1) · · ·φik(zk+l)v〉

is absolutely convergent in the region |z1| > · · · > |zk| > |z| > |zk+1| > · · · > |zk+l| >
0 > 0 to a rational function

R(〈w′, φi1W (z1) · · ·φikW (zk)ψ
a
W (z)φi1(zk+1) · · ·φik(zk+l)v〉)

in z1, . . . , zk, z, zk+1, . . . , zk+l with the only possible poles at zi = 0 for i = 1, . . . , k + l,
z = 0, zj = zm for j 6= m and zj = z for j = 1, . . . , k+ l . In addition, the order of the

pole zj = zm depends only on φ
ij
W and φimW , the order of the pole zj = z depends only

on φ
ij
W and ψaW , the order of the pole zj = 0 depends only φ

ij
W and v and the order of

z = 0 depends only on ψaW and v.

8. For w ∈ V , w′ ∈ V ′, i1, i2 ∈ I,

R(〈w′, φi1W (z1)φi2W (z2)w〉) = R(〈w′, φi2W (z2)φi1W (z1)w〉).
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9. For v ∈ V , w′ ∈ W ′, i ∈ I and a ∈ A,

R(〈w′, φiW (z1)ψaW (z2)v〉) = R(〈w′, ψaW (z2)φi(z1)w〉).

The proof of these two results is essentially the same as the proof of Proposition 4.2. So
we omit it here.

Proposition 11.7. The space V , the fields φi for i ∈ I, LV (−1) and 1 have the following
properties:

10. For a ∈ C, i ∈ I and a ∈ A,

ecLW (0)φiW (x)e−cLW (0) = ec(wtφi)φiW (ecx),

ecLW (0)ψaW (x)e−cLV (0) = ec(wtφi)ψiW (ecx).

11. For i1, . . . , ik ∈ I, n1, . . . , nk ∈ Z, a ∈ A, n ∈ Z and v ∈ V ,

LW (0)(φi1W )n1 · · · (φ
ik
W )nk(ψ

a
W )nv

=
k∑
j=1

(φi1W )n1 · · · (φ
ij−1

W )nj−1
·

·
(

(−nj − 1)(φ
ij
W )nj + (wtφij)(φ

ij
W )nj

)
(φ

ij+1

W )nj+1
· · · (φikW )nk(ψ

a
W )nv

+ (φi1W )n1 · · · (φ
ik
W )nk

(
(−n− 1)(ψaW )n + (wtψaW )(ψaW )n + (ψ

LW (0)N (a)
W )n

)
v

+ (φi1W )n1 · · · (φ
ik
W )nk(ψ

a
W )nLV (0)v

and

LW (−1)(φi1W )n1 · · · (φ
ik
W )nk(ψ

a
W )nv

=
k∑
j=1

(φi1W )n1 · · · (φ
ij−1

W )nj−1
(−nj(φ

ij
W )nj−1)(φ

ij+1

W )nj+1
· · · (φikW )nk(ψ

a
W )nv

+ (φi1W )n1 · · · (φ
ik
W )nk(−n(ψaW )n−1)v

+ (φi1W )n1 · · · (φ
ik
W )nk(ψ

a
W )nLV (−1)v

12. For c ∈ C, z ∈ C× satisfying |z| > |a|, i ∈ I and a ∈ A, ecLW (−1)φiW (z)e−cLW (−1) =
φiW (z + c) and ecLW (−1)ψiW (z)e−cLV (−1) = ψiW (z + c).

13. The operator LW (−1) has weight 1 and its adjoint LW (−1)′ as an operator on W ′ has
weight −1. In particular, ezLW (−1)′w′ ∈ W ′ for z ∈ C and w′ ∈ W ′.

14. For v ∈ V , w′ ∈ W ′ and σ ∈ Sk,

R(〈w′, ϕ1(z1) · · ·ϕk(zk)v〉) = R(〈w′, ϕσ(1)(zσ(1)) · · ·ϕσ(k)(zσ(k))v〉),

where one of ϕj is ψaW for some a ∈ A and the others are either in {φi}i∈I when they
are to the right of ψaW or in {φiW}i∈I when they are to the left of ψaW .
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These properties follows easily from Conditions 1–9 in Assumption 11.5 and Proposition
11.6. We also omit the proof of Proposition 11.7.

We define a vertex operator map

YW : V ⊗W → W ((x))

v ⊗ w 7→ YW (v, x)w

by

〈w′,YW (φi1m1
· · ·φikmk1, z)w〉

= Resξ1=0 · · ·Resξk=0ξ
m1
1 · · · ξ

mk
k R

(
〈w′, φi1W (ξ1 + z) · · ·φikW (ξk + z)w〉

)
(11.45)

for i1, . . . , ik ∈ I, m1, . . . ,mk ∈ Z, w ∈ W and w′ ∈ W ′. But as in the definition of the
vertex operator map for the algebra V given by (4.7), we first have to prove that the vertex
operator map YW is well defined. In fact, only in the proof of this well-definedness we need
the generator fields ψaW for a ∈ A.

Lemma 11.8. If
q∑
p=1

λpφ
ip1
mp1
· · ·φi

p
k

mpk
1 = 0,

then

q∑
p=1

λpResξ1=0 · · ·Resξk=0ξ
mp1
1 · · · ξ

mpk
k R

(
〈w′, φi

p
1
W (ξ1 + z) · · ·φi

p
k
W (ξk + z)w〉

)
= 0

for w ∈ W and w′ ∈ W ′.

Proof. By Condition 4 in Assumption 11.5, we can take w to be of the form

(φj1W )n1 · · · (φ
jl
W )nl(ψ

a
W )nv

for v ∈ V . But by Consdition 4 in Section 4, we can take v to be of the form φq1r1 · · ·φ
qs
rs1.

Moreover, in this case,

R(〈v′, φi
p
1(z1) · · ·φi

p
k(zk)(φ

j1
W )n1 · · · (φ

jl
W )nl(ψ

a
W )nφ

q1
r1
· · ·φqsrs1〉)

= Resζ1=0 · · ·Resζl=0ResζResη1=0 · · ·Resηs=0ζ
n1
1 · · · ζ

nl
l ζ

nηr11 · · · ηrss ·
·R(〈v′, φi

p
1(z1) · · ·φi

p
k(zk)ψ

a
W (ζ)φj1(ζ1) · · ·φjl(ζl)φq1(ζ1) · · ·φqs(ζl)1〉).

Then the other steps of the proof is the same as that of (4.4), except that here we use
pProperty 14 in Proposition 11.7. We omit these steps.

Theorem 11.9. The graded vector space W together with YW : V ⊗W → W ((x)) defined by
(11.45) is a lower-bounded generalized V -module. Moreover, (W,YW ) is the unique structure
of a lower-bounded generalized V -module on W such that YW (φi−11, x) = φi(x) for i ∈ I.
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Note that since the definition of YW does not use ψaW , the proof of Theorem 11.9 also
does not need ψaW . Thus the proof of Theorem 11.9 is the same as that of Theorem 4.5,
except that φi are replaced by φiW . We omit the proof.

Proof of the module structure in Theorem 11.3. We take I = h and φaM(1,α)(x) = a(x)

for a ∈ h. We also A = {α} and ψaM(1,α)(x) = ψα(x). See the preceding subsection. Then

M(1, α), a(x) for a ∈ h and ψα satisfy Assumption 11.5. By Theorem 11.9, M(1, α) has a
structure of (ordinary) S(ĥ−)-module.

11.4 Modules for V (`, 0)

(This subsection was written by Jason Saied, with some minor additions.)
We now wish to construct modules for V = V (`, 0). To begin, let M be a finite-

dimensional module for g. Similarly to above, make M into a module for ĝ0⊕ ĝ+ by defining,
for a ∈ g, m ∈ M , and n > 0, a(0)m := am (the action of a ∈ g on m ∈ M), a(n)m := 0,

and km := `m. We then let W̃ be the induced ĝ-module

W̃ := U(ĝ)⊗U(ĝ0⊕ĝ+) M.

We will often omit the tensor product symbol when writing elements of W̃ : for m ∈ M ,
1⊗m will be written as m.

Recall the Casimir element

Ω =

dim g∑
i=1

uiui,

where {ui : 1 ≤ i ≤ dim g} is an orthonormal basis for g with respect to the form (·, ·).
Since M is a g-module, Ω acts on M . We denote the action of ω on M by ΩM and this
is the Casimir operator on M introduced in Section 7. Since M is finite dimensional, it
is a finite direct sum of irreducible g-modules by Theorem 7.22. On each irreducible g-
submodule, by Proposition 7.19, ΩM commutes with the action of elements of g and thus
must be proportional to the identity operator on this submodule. So M is a direct sum of
eigenspaces of ΩM . For an element m in an eigenspace of ΩM , we define its weight, denoted
by wtm, to be the eigenvalue of ΩM associated to the eigenvector m divided by 2(` + h∨).

We then define L(0) on W̃ by defining

LW̃ (0)a1(n1) · · · ak(nk)m = (−n1 − · · · − nk + wtm)m.

Our generating fields are the maps aW (x) : W̃ → W̃ ((x)) for a ∈ g, where for w ∈ W̃ ,

aW (x)w :=
∑
n∈Z

a(n)wx−n−1,

and a(n) is the multiplication operator.
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With the exception of those involving the as-yet-undefined generator fields, the conditions
needed to prove that W̃ is a module can be proven in the same way as they were proven
for V . Rather than constructing the generator fields directly, we will construct W in a
different (more abstract) way involving several quotients, then prove the two constructions
are isomorphic.

Define
M̃ := U(ĝ)⊗ (M ⊗ C[t, t−1])⊗ V.

This has the structure of a U(ĝ)-module by left multiplication. We will often omit the tensor
products when the context is clear.

Note that by the PBW Theorem, M̃ is spanned by elements of the form

kra1(n1) · · · ak(nk)⊗ (m⊗ tn)⊗ v

with ai ∈ g, ni, n ∈ Z, r ∈ Z+, m ∈M , and v ∈ V .

Put a grading on M̃ by defining, for homogeneous v ∈ V ,

LW (0)kra1(n1) · · · ak(nk)⊗ (m⊗ tn)⊗ v
= (−n1 − · · · − nk + wtm− n− 1 + wt v)kra1(n1) · · · ak(nk)⊗ (m⊗ tn)⊗ v

and extending linearly. As above, one must check that this grading is well-defined, in that
any other expression for an element of M̃ will be given the same conformal weight. This
follows because the only relations are the affine Lie algebra relations in U(ĝ), and it is easy
to check that they preserve conformal weight.

Remark 11.10. Note that we are abusing notation by calling this map LW (0) when we are
not acting on the module W yet. We choose to do so, rather than changing the name of the
map every time we take a quotient.

We also define LW (−1), motivated by condition 2 of Assumption 11.5, by extending

[LW (−1), aW (n)] = −naW (n− 1),

and
LW (−1)(m⊗ tp)− (m⊗ tp)LV (−1) = −p(m⊗ tp−1).

We will construct a module for V by imposing the following relations on M̃ .

1. For v ∈ V, a ∈ g, n ∈ Z,m ∈M, and p ∈ Z,

(a(n)(m⊗ tp)− (m⊗ tp)a(n))v = (a(n− 1)(m⊗ tp+1)− (m⊗ tp+1)a(n− 1))v.

Let J1 be the U(ĝ)-submodule of M̃ generated by these relations.

We will abbreviate these relations as

[a(n),m⊗ tp] = [a(n− 1),m⊗ tp+1].
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They are sufficient for Condition 6 of Assumption 11.5. In fact, the relations equivalent
to Condition 6 are

2(a(n)(m⊗ tp)− (m⊗ tp)a(n))v = (a(n− 1)(m⊗ tp+1)− (m⊗ tp+1)a(n− 1))v

+ (a(n+ 1)(m⊗ tp−1)− (m⊗ tp−1)a(n+ 1))v

or
[a(n),m⊗ tp] = [a(n− 1),m⊗ tp+1] + [a(n+ 1),m⊗ tp−1].

2. For m ∈M and p ≥ 0,
(m⊗ tp)1 = 0.

Let J2 be the U(ĝ)-submodule of M̃ generated by these relations. They are necessary
for condition 3 of Assumption 11.5.

3. For a ∈ g and m ∈M,

a(0)(m⊗ t−1)1 = ((am)⊗ t−1)1.

We also impose the relation that for m ∈M and v ∈ V ,

k(m⊗ t−1)v = `(m⊗ t−1)v.

Let J3 be the U(ĝ)-submodule generated by these relations. They are needed to take
the module relations of M into account. No relation for a(n), n > 0, is needed, because
it will be implied by the above.

Define M̃2 = M̃/(J1 + J2 + J3).
Notice that J1, J2, and J3 are generated by LW (0)-homogeneous elements, so the sub-

module generated by all of them is LW (0)-graded, implying that in the quotient, LW (0) is
still well-defined. We also have the following result for LW (−1).

Proposition 11.11. For i = 1, 2, 3, LW (−1)Ji ⊆ Ji. LW (−1) descends to an operator on

M̃2.

Proof. For J1, this is a tedious but routine calculation.
For J2, we simply compute that

LW (−1)(m⊗ tp)1 = −p(m⊗ tp−1)1.

The right-hand side is visibly a multiple of a generator of J2, except for the p = 0 case where
we simply get 0.

For J3, we have

LW (−1)a(0)(m⊗ tp)1 = 0− pa(0)(m⊗ tp−1)1 ∈ J3.

Then LW (−1) preserves J1 + J2 + J3, so it is a well-defined operator on the quotient

W = M̃/(J1 + J2 + J3).
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We have the following corollary of our relations.

Corollary 11.12. In M̃2,

a(n)(m⊗ tp)1 = a(0)(m⊗ tp+n)1,

for n ≥ 0,m ∈M,a ∈ g, and p ∈ Z.

Proof. Using the relations from J1, we have

a(n)(m⊗ tp)1 = a(n− 1)(m⊗ tp+1)1 + (m⊗ tp)a(n)1− (m⊗ tp+1)a(n− 1)1.

If n ≥ 1, the latter two terms are 0 due to the relations in V , giving

a(n)(m⊗ tp)1 = a(n− 1)(m⊗ tp+1)1.

The claim follows by induction.

Proposition 11.13. M̃2 is spanned by elements of the form

a1(n1) · · · ak(nk)(m⊗ tp)1

for ai ∈ g, ni ≤ 0, p ≤ −1, m ∈M . With respect to the LW (0)-grading, M̃2 is lower-bounded
and has finite-dimensional graded components.

Proof. The second claim easily follows from the first.
Recall that M̃ and therefore M̃2 is spanned by elements of the form

w = kra1(n1) · · · ak(nk)(m⊗ tn)b1(s1) · · · bl(sl)1

with ai, bi ∈ g, ni, si, n ∈ Z, r ∈ Z+, m ∈ M , and v ∈ V . By the relations of J3, we may
assume r = 0.

Rewrite the relations of J1 as

(m⊗ tp)a(n) = a(n)(m⊗ tp) + (m⊗ tp−1)a(n+ 1)− a(n+ 1)(m⊗ tp−1).

This allows us to write w as a sum of terms with either a shorter V component or a V com-
ponent with lower conformal weight. By induction, since an element of V with a sufficiently
low conformal weight is equal to zero, w is a sum of terms of the form

a1(n1) · · · ak(nk)(m⊗ tp)1

where ai ∈ g, ni, p ∈ Z, r ∈ Z+, and m ∈M .
By the PBW Theorem, we need only consider elements of the form

a1(n1) · · · ak(nk)b1(0) · · · bl(0)c1(r1) · · · cs(rs)(m⊗ tp)1,

where n1, · · · , nk < 0 and r1, · · · , rs ≥ 0. Using Corollary 11.12, this is equal to

a1(n1) · · · ak(nk)b1(0) · · · bl(0)c1(0) · · · cs(0)(m⊗ tp+r1+···+rs)1.

By the relations of J2, this is 0 unless

p+ r1 + · · ·+ rs ≤ −1.
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Theorem 11.14. M̃2 is a module for V (`, 0) as a grading-restricted vertex algebra, with
generating fields

aW (x) =
∑
n∈Z

a(n)x−n−1

for a ∈ g and generator fields

ψmW (x) =
∑
n∈Z

(m⊗ tn)x−n−1

for m ∈M .

Proof. We must only check the conditions in Assumption 11.5. Conditions 1,2, and 5 follow
as in the proof that V (`, 0) is a grading-restricted vertex algebra. Condition 3 follows from
the relations of J2. Condition 4 follows from the previous proposition.

Finally, recall the relations of J1: for a ∈ g,m ∈M , and p, n ∈ Z,

[a(n),m⊗ tp] = [a(n− 1),m⊗ tp+1].

It is an easy exercise to see that this is simply the component form of

(x1 − x2)2aW (x1)ψmW (x2) = (x1 − x2)2ψmW (x2)aV (x1),

giving Condition 6.

There is one problem with the module M̃2: it is not compatible with the vertex operator
algebra structure on V (`, 0). We will remedy this issue with another quotient. Let YM̃2

be

the vertex operator of V (`, 0) acting on its module M̃2, and write

YM̃2
(ω, x) =

∑
n∈Z

Lnx
−n−1.

Now let J4 be the U(ĝ)-submodule of M̃2 generated by the relation

L−1(m⊗ tp)1 = LW (−1)(m⊗ tp)1,

where m ∈M and p ∈ Z. We can then define

W = M̃2/J4.

Proposition 11.15. LW (0) and LW (−1) preserve J4. Both maps descend to operators on
W .

Proof. First we show that LW (0) preserves J4 by showing that the generators of J4 are graded
with respect to LW (0). We calculate

LW (0)LW (−1)(m⊗ tp)1 = −pLW (0)(m⊗ tp−1)1

= (wtm− (p− 1)− 1)(−p(m⊗ tp−1)1)

= (wtm− p)LW (−1)(m⊗ tp)1.
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Since ω ∈ V(2), by the LW (0) property of YM̃2
we have

[LW (0), L−1] = Resx[LW (0), YM̃2
(ω, x)]

= Resxx
d

dx
YM̃2

(ω, x) + 2YM̃2
(ω, x)

= L−1,

so

LW (0)L−1(m⊗ tp)1 = L−1LW (0)(m⊗ tp)1 + L−1(m⊗ tp)1
= (wtm− p)L−1(m⊗ tp)1.

So
LW (0)(L−1 − LW (−1))(m⊗ tp)1 = (wtm− p)(L−1 − LW (−1))(m⊗ tp)1.

The proof that LW (−1) preserves J4 is similar, using the LW (−1) property of YM̃2
instead.

Theorem 11.16. W is a module for V = V (`, 0) as a vertex operator algebra.

Proof. The Conditions 1-6 in Assumption 11.5 all follow from the relevant versions for M̃2,
giving us the structure of a module for V = V (`, 0) as a grading-restricted vertex algebra.
To claim that W is a module for V as a vertex operator algebra, we must only verify that
LW (0) = L0 and LW (−1) = L−1 as operators on W . Proposition 11.15 gives LW (−1) = L−1.
We still need to prove LW (0) = L0

The same calculations as those from (8.22)–(8.30) gives

[aW (m),Resx2x2YW (ω, x2)] = maW (m). (11.46)

The same calculation as given by (8.10) gives

Y V (ui(−1)21, x2)

=

(∑
m∈N

uiW (−m− 1)xm2

)
uiW (x2) + uiW (x2)

 ∑
m∈−Z+

uiW (−m− 1)xm2

 . (11.47)

Applying both sides of (11.47) to an element w ∈ M and using uiW (n)w = 0 for n > 0, we
obtain

Y V (ui(−1)21, x2)w

=

(∑
m∈N

uiW (−m− 1)xm2

)
uiW (x2)w + uiW (x2)

 ∑
m∈−Z+

uiW (−m− 1)xm2

w

=

(∑
m∈N

uiW (−m− 1)xm2

) ∑
n∈−N

uiW (n)x−n−1
2 w + uiW (x2)uiW (0)x−1

2 w. (11.48)
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Taking the coefficients of X−2
2 on both sides of (11.48), we obtain

Resx2x2YV (ui(−1)21, x2)w = uiW (0)uiW (0)w = uiuiw. (11.49)

Summing over i = 1, . . . , dim g on both sides of (11.49) and then dividing the results by
2(`+ h∨), we obtain

Resx2x2YW (ω, x2)1 = (wtw)w = LW (0)w.

Thus we proved that

[a(m),Resx2x2YW (ω, x2)] = [a(m), LW (0)],

Resx2x2YW (ω, x2)1 = LW (0)1.

From these formulas, we obtain

LW (0) = Resx2x2YW (ω, x2).

Proposition 11.17. W is spanned by elements of the form

a1(n1) · · · ak(nk)(m⊗ t−1)1

for ai ∈ g, ni < 0, and m ∈M . With respect to the LW (0)-grading, W is lower-bounded and
has finite-dimensional graded components.

Proof. The second claim follows immediately from Proposition 11.13 and the definition of
W . For the first claim, recall that by Proposition 11.13, W is spanned by elements of the
form

w = a1(n1) · · · ak(nk)(m⊗ tp)1

for ai ∈ g, ni ≤ 0, p ≤ −1, and m ∈M . Recall that

LW (−1)(m⊗ tp)1 = −p(m⊗ tp−1)1.

Then for p < −1, (m⊗ tp)1 is proportional to

LW (−1)−p−1(m⊗ t−1)1,

so up to a scalar, w has the form

a1(n1) · · · ak(nk)(LW (−1))−p−1(m⊗ t−1)1.

By the relations of J4, we may rewrite this as

a1(n1) · · · ak(nk)(L−1)−p−1(m⊗ t−1)1.
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Recall the construction of the vertex operator YW in Theorem 11.9. Since ω is expressed
using only operators of the form a(n) (a ∈ g, n ∈ Z) acting on 1, the formula for YW indicates
that the components of YW (ω, x) should be expressible only in terms of linear combinations
of products of operators of the form a(n) (a ∈ g, n ∈ Z). (Explicitly, the formula for the
components of YW (ω, x) in terms of the operators a(n) is given in formula (6.2.44) of [LL].)
This will allow us to rewrite w as a linear combination of terms in the desired form. We will
sketch this procedure now.

First, use the affine Lie algebra relations to move all operators of the form a(n), n >
0, to the right of other operators of the form a(s). Then as in Proposition 11.13, use
Corollary 11.12 to get rid of the operators a(n) with n > 0, possibly increasing the power of
t in the terms. Since p started as −1, the powers of t arising here will either be nonnegative,
making the whole term 0 due to the relations of J2, or −1. Then the nonzero part of the
expression is a linear combination of terms of the form

a1(n1) · · · ak(nk)(m⊗ t−1)1

for ai ∈ g, ni ≤ 0, and m ∈ M . Again using the affine Lie algebra relations, move the
operators of the form a(0) to the right of the other operators of the form a(n), and apply
the relations of J3 to get rid of the operators a(0) (possibly changing m to another element
of M in the process). This leaves us only with terms of the desired form.

We typically use the notation

a1(n1) · · · ak(nk)m

to represent the element
a1(n1) · · · ak(nk)(m⊗ t−1)1 ∈ W.

This is how we reconcile the given construction of the module W with the object W̃ defined
earlier.

12 Intertwining operators

Intertwining operators among modules are the main objects to study in conformal field
theories. As for any quantum field theory, a chiral conformal field theories are determined by
its chiral correlation functions. Intertwining operators correspond to three-point correlation
functions on genus-zero Riemann surfaces (conformally equivalent to the Riemann sphere
C∪ {0} by the uniformization theorem). Axioms for conformal field theories require that n-
point correlation functions on Riemann surfaces of arbitrary genera be obtained from three
point correlation functions together with the vacuum and the Virasoro operators. Thus
the construction and study of chiral conformal field theories are the same as the study of
intertwining operators together with the Virasoro operators and the vacuum.

The vacuum is in a vertex operator algebra. The Virasoro operators act on modules for
the vertex operator algebra. But intertwining operators involve three modules, corresponding
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to three points on the Riemann sphere C ∪ {0}. In this section we introduce intertwining
operators and give their basic properties. The deep results are the convergence, associativity,
modular invariance of intertwining operators and their consequences including the Verlinde
formula and modular tensor category structures. We will not be able to prove them this
semester. But we shall discuss some of them briefly below. The precise formulations and
proofs will be given in next semester’s continuation of this course. I will also continue to
write these lecture notes.

12.1 Definition

Intertwining operators were introduced in mathematics in [FHL]. Here we use a modified
version of the definition given in [Hua9] by adding logarithmic terms since our modules are
in general generalized modules. We define the notion of intertwining operators for grading-
restricted vertex algebras. In the case that V is a vertex operator algebra, the definition is
completely the same.

Definition 12.1. Let V be a grading-restricted vertex algebra andW1,W2,W3 lower-bounded
generalized V -modules (grading-restricted generalized V -modules and ordinary V -modules
are special cases). An intertwining operator of type

(
W3

W1W2

)
is a linear map

Y : W1 ⊗W2 → W3{x}[log x]

w1 ⊗ w2 7→ Y(w1, x)w2

(where W3{x}[log x] is the space of formal series of the form
∑K

k=0

∑
n∈C an,kx

n(log x)k for
an,k ∈ W3 and x and log x is formal variables such that d

dx
log x = x−1) satisfying the following

axioms:

1. L(0)-bracket formula: For w1 ∈ W1,

LW3(0)Y(w1, x)− Y(w1, x)LW2(0) =
d

dx
Y(w1, x) + YW (LW1(0)w1, x).

2. L(−1)-derivative property: For w1 ∈ W1,

d

dx
Y(w1, x) = YW (LW1(−1)w1, x) = LW3(−1)Y(w1, x)− Y(w1, x)LW2(−1).

3. Duality with vertex operators: For u ∈ V , w1 ∈ W1, and w2 ∈ W2, w′3 ∈ W ′
3, for any

single-valued branch l(z2) of the logarithm of z2 in the region z2 6= 0, 0 ≤ arg z2 ≤ 2π,
the series

〈w′3, YW3(u, z1)Y(w1, x2)w2〉
∣∣∣∣
xn2 =enl(z2),n∈C

, (12.50)

〈w′3,Y(w1, x2)YW2(u, z1)w2〉
∣∣∣∣
xn2 =enl(z2),n∈C

, (12.51)

〈w′3,Y(YW1(u, z1 − z2)w1, x2)w2〉
∣∣∣∣
xn2 =enl(z2),n∈C

(12.52)
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are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| >
|z1 − z2| > 0, respectively, to a common analytic function in z1 and z2 and can be
analytically extended to a multivalued analytic functions with the only possible poles
z1 = 0 and z1 = z2 and the only possible branch point z2 = 0.

The set of all intertwining operators of type
(

W3

W1W2

)
clearly form a vector space. The

dimension of this space is called the fusion rule of type
(

W3

W1W2

)
and is denoted by NW3

W1W2
.

12.2 Examples for Heisenberg vertex operator algebra

We have constructed S(ĥ−)-modules M(1, α) for α ∈ h in Subsection 11.2 and 11.3. Let L
be a positive definite even lattice in h and α1, α2 ∈ L. Then we have three S(ĥ−)-modules
M(1, α1), M(1, α2) and M(1, α1 + α2). Recall from Sections 2 and Section 4 that we have a
lattice vertex operator algebra VL with the vertex operator YVL . Note that M(1, α1) ⊂ VL
and M(1, α2) ⊂ VL. We define

Y : M(1, α1)⊗M(1, α2)→M(1, α1 + α2){x},
w1 ⊗ w2 7→ Y(w1, x)w2

by Y(w1, x)w2 = YVL(w1, x)w2. Then the map Y is an intertwining operator of type(
M(1,α1+α2)

M(1,α1)M(1,α2)

)
. In fact, from the definition of the vertex operator YVL , we know that

Y(w1, x)w2 is in M(1, α1 + α2)((x)). The axioms of intertwining operators are satisfied
because YVL satisfies these axioms.

These intertwining operators are not typical enough because Y(w1, x)w2 is in fact a
Laurent series, not a series with nonintegral powers of the variable. To give examples with
nonintegral powers, we have to consider S(ĥ−)-modules which are graded by nonintegers.
We can choose α1, α2 ∈ h such that 1

2
(α1, α1) and 1

2
(α2, α2) are not integers. In this case, the

intertwining operators can be constructed in the same way. But we omit the construction
and discussion here.

12.3 Basic properites

From the definition of intertwining operator, we can derive some of their basic properties in
the same way as those of vertex operator lagebras and modules. But we should note that
there is one crucial difference between intertwining operators and vertex operators for an
algebra or a module: Intertwining operators are in general not Laurent series and thus give
multivalued analytic functions, not rational functions. This makes the study of intertwining
operators much more difficult than vertex operators for an algebra or a module. On the other
hand, when we discuss only one intertwining operators, as in the definition of intertwining
operator above, the multivalued analytic functions we have to work with is not too far away
from rational functions. So in this subsection, we discuss only those properties involving one
intertwining operator. The major results in conformal field theory and in the representation
theory of vertex operator algebras are about properties of two or more intertwining operators.
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In the next two subsections, we will discuss the statements of two major properties. The
proofs of these major properties will be discussed in next semester’s course, which will be a
continuation of this course.

Let Y be an intertwining operator of type
(

W3

W1W2

)
. Then we have the following properties:

Correlation function of one intertwining operator and one vertex operator for a
module Let

F (〈w′3, YW3(u, z1)Y(w1, x2)w2〉),
F (〈w′3,Y(w1, x2)YW2(u, z1)w2〉),

F (〈w′3,Y(YW1(u, z1 − z2)w1, x2)w2〉)

be the multivalued function obtained by analytically extending the sums of the series (12.50),
(12.51) and (12.52). Then they are of the form

K∑
k=0

N∑
i=1

gi,k(z1, z2)

z
mi,k
1 (z1 − z2)ni,kz

pi,k
2

z
ri,k
2 (log z2)k (12.53)

for polynomials gi,k(z1, z2) of z1 and z2, mi,k, ni,k, pi,k ∈ N, ri ∈ C satisfying 0 ≤ <(ri) < 1
for i = 1, . . . , N . In the case that w1, w2 and w′3 are homogeneous, N can be taken to be 1
and r1,k can be taken to be −wtw′3 + wtw1 + wtw2.

Operator product expeansion For u ∈ V and w1 ∈ W1, there exists N ∈ N such that
YW1(u, x)w =

∑
n≤N(YW )n(u) = wx−n−1. Then

YW3(u, z1)Y(w1, z2) =
∑
n≤N

Y((YW1)n(u)w1, z2)(z1 − z2)−n−1

∼
N∑
n=0

Y((YW1)n(u)w1, z2)(z1 − z2)−n−1.

The Jacobi identity For u ∈ V and w1 ∈ W1,

x−1
0 δ

(
x1 − x2

x0

)
YW3(u, x1)Y(w1, x2)− x−1

0 δ

(
−x2 + x1

x0

)
Y(w1, x2)YW2(u, x1)

= x−1
1 δ

(
x2 + x0

x1

)
Y(YW1(u, x0)w1, x2). (12.54)

Commutator formula For u1, u2 ∈ V ,

YW3(u, x1)Y(w1, x2)− Y(w1, x2)YW2(u, x1)

= Resx0x
−1
1 δ

(
x2 + x0

x1

)
Y(YW1(u, x0)w1, x2). (12.55)
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Associator formula For u1, u2 ∈ V ,

Y(YW1(u, x0)w1, x2)− YW3(u, x0 + x2)Y(w1, x2)

= −Resx1x
−1
0 δ

(
−x2 + x1

x0

)
Y(w1, x2)YW2(u, x1). (12.56)

Weak commutativity For u ∈ V and w1 ∈ W1, there exists N ∈ N such that

(x1 − x2)NYW1(u, x1)Y(w1, x2) = (x1 − x2)NY(w1, x1)YW2(u, x1). (12.57)

Weak associativity For u ∈ V and w2 ∈ W2, there exists N ∈ N such that

(x0 + x2)NY(YW1(u, x0)w1, x2)w2 = (x0 + x2)NYW3(u, x0 + x2)Y(w1, x2)w2 (12.58)

for w1 ∈ W1.

The skew-symmetry isomorphism Given an intertwining operator Y of type
(

W3

W1W2

)
and p ∈ Z, define

Ωp(Y) : W2 ⊗W1 → W3{x}[log x]

w2 ⊗ w1 7→ Ωn(Y)(w2, x)w1

by
Ωn(Y)(w2, x)w1 = exLW3

(−1)Y(w1, y)w2|yn=en(2p+1)π1xn,log y=log x+(2p+1)πi

for w1 ∈ W1 and w2 ∈ W2. Then Ωp(Y) is an intertwining operator of type
(

W3

W2W1

)
. Moreover,

for p ∈ Z, Ωp is a linear isomorphism from the space of intertwining operators of type
(

W3

W1W2

)
to the space of intertwining operators of type

(
W3

W2W1

)
.

The proofs of these properties are analogous to the proofs of the corresponding properties
for grading-restricted vertex algebras and are omitted here.

12.4 Tensor products of modules

We have mentioned above that for two V -modules W1 and W2, W1⊗W2 is not a V -module.
But tensor products for V -modules are important. They describe interations of the quantum
objects whose state spaces are W1 and W2. Mathematically tensor products also give us new
V -modules. Using intertwining operators, we can introduce a notion of tensor product of two
V -modules. Such a tensor product does not always exist. In order to prove the existence, V
must satisfies certain conditions. In this subsection we give the definition of tensor product
V -module of two V -modules. But we will not discuss the existence of the tensor product
V -modules.

Our definition of tensor product V -module is given in terms of intertwining operators.
To motivate our definition of tensor product V -module, we first give a definition of tensor
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product of two vector spaces using analogues of intertwining operators. Let W1, W2 and W3

be vector spaces. A bilinear map I : W1×W2 → W3 is called an intertwining operator of type(
W3

W1W2

)
. We call a pair W3, I) consisting of a vector space W3 and an intertwining operator I

of type
(

W3

W1W2

)
a product of W1 and W2. We define a tensor product vector space of W1 and

W2 to be a product (W1 ⊗W2,⊗) such that the following universal property holds: Given
any product (W3, I) of W1 and W2, there exists a unique linear map f : W1⊗W2 → W3 such
that I = f ◦ ⊗.

Exercise 12.2. Let C(W1 ×W2) be the free vector space generated by the direct product
W1×W2. Let W1⊗W2 be the quotient vector space C(W1×W2)/J , where J is the subspace
of W1 ×W2 spanned by elemenets of the form (λw1, w2)− (w1, λw2), λ(w1, w2)− (λw1, w2),
(w1 + w̃1, w2)− (w1, w2)− (w̃1, w2) and (w1, w2 + w̃2)− (w1, w2)− (w1, w̃2) for w1, w̃1 ∈ W1,
w2, w̃ ∈ W2 and λ ∈ C. We use w1⊗w2 to denote the coset (w1, w2)+J . Let ⊗ : W1×W2 →
W1 ⊗W2 be the projection map. Prove that ⊗ is an intertwining operator of type

(
W1⊗W2

W1W2

)
and (W1 ⊗W2,⊗) is a tensor product vector space of W1 and W2.

We now give the definition of tensor product V -module of two V -modules. For simplicity,
we work with the category of lower bounded generalized V -modules. For other categories
of V -modules, the definition is the same except that we replace the words “lower bounded
generalized V -module” by the names for the types of V -modules in the other categories.

One crucial new feature for the tensor product V -module is that it involves z ∈ C×.

Definition 12.3. Let z ∈ C× and W1 and W2 lower-bounded generalized V -modules. A
P (z)-product of W1 and W2 is a pair (W3, I) consisiting of a lower-bounded generalized V -
module W3 and the value I = Y(·, z)· : W1⊗W2 → W 3 of an intertwining operator Y(·, x)· :
W1 ⊗W2 → W3{x}[log x] at z (with the choice of the value log z = log |z| + i arg z where
0 ≤ arg z < 2π). A P (z)-tensor product of W1 and W2 is a P (z)-product (W1�P (z)W2,�P (z))
such that the following universal property holds: Given any P (z)-product (W3, I) of W1 and
W2, there exists a unique module map f : W1 �P (z) W2 → W3 such that I = f̄ ◦ ⊗, where
f̄ : W1 �P (z) W2 → W 3 is the unique extenstion of f to W1 �P (z) W2 (note that f as a
module map must preserve wegihts).

The first question about the P (z)-tensor product is its existence. For vector spaces, the
existence is easy (see 12.2). But for V -modules, it is not trivial in general. As we mentioned
above, in general the P (z)-tensor product might not exist. Under certain conditions, the
existence of P (z)-tensor product was proved in [HL] and [Hua6].

The category of V -mdules form a braided tensor category under certain conditions on
V or a modular tensor category under stronger conditions. The two difficult part of the
construction is the construction of the associativity isomorphism and the proof of the rigidity.
These two difficult parts corresponding to the associativity of intertwining operators and
the modular invariance of intertwining operators, respectively. See [Hua1], [Hua3], [Hua4],
[Hua5], [Hua6] and [HLZ3].
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12.5 The first major property: Associativity

We shall give the statement of, but not prove, the associativity of intertwining operators.
When some other conditions are satisfied, this associativity is equivalent to the operator
product expansion of intertwining operators. In a work [MS] of Moore and Seiberg, the
operator product expansion (called chiral vertex operators by Moore and Seiberg) is one
of the two major assumptions used to derive Verlinde formula which was conjectured by
E. Verlinde and a set of polynomial equations which led to the notion of modular tensor
category.

Before we formulate the associativity, we first have to formulate the convergence of prod-
ucts and iterates of intertwining operators.

Convergence and extension property of products of n intertwining operators Let
W0,W1, . . .Wn+1, W̃1, . . . , W̃n−1 be lower-boundedd generalized V -modules and Y1, . . . ,Yi,
. . . ,Yn intertwining operators of types

( W0

W1 W̃1

)
, . . . ,

( W̃i−1

Wi W̃i

)
, . . . ,

(
W̃n−1

Wn Wn+1

)
, respectively. For

w1 ∈ W1, . . . , wn+1 ∈ Wn+1 and w′0 ∈ W ′
0, the series

〈w′0,Y1(w1, z1) · · · Yn(wn, zn)wn+1〉

in complex variables z1, . . . zn is absolutely convergent in the region |z1| > · · · > |zn| > 0 and
its sum can be analytically continued to a multivalued analytic function

F (〈u′1,Y1(w1, z1) · · · Yn(wn, zn)un+1〉)

on the region
{(z1, . . . , zn) | zi 6= 0, zi − zj 6= 0 for i 6= j} ⊂ Cn

and the only possible singular points zi = 0,∞ and zi = zj are regular singular points. (A
regular singular point of a multivalued analytic function is a point on which the function is
not defined but in the neighborhood of the point, the function can be expanded as a series
in powers of the variables and a polynomial in the logarithms of the variables.)

Using the skew-symmetry isomorphism above, we see that the iterate of two intertwining
operators can be written as the product of two intertwining operators. So we have the
following result:

Proposition 12.4. Let W1,W2,W3, W4,W be lower-bounded generalized V -modules. As-
sume that the convergence and extension property of products of 2 intertwining operators
holds. Then for lower-bounded generalized V -module W and intertwining operators Y3 and
Y4 of types

(
W4

W6 W3

)
and

(
W6

W1 W2

)
, respectively, the series

〈w′4,Y3(Y4(w1, z1 − z2)w2, z2)w3〉

is absolutely convergent in the region |z2| > |z1 − z2| > 0 for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3

and w′4 ∈ W ′
4 and can be analytically extended to a multivalued analytic function

F (〈w′4,Y3(Y4(w1, z1 − z2)w2, z2)w3〉)
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on the region
{(z1, z2) | z1, z2 6= 0, z1 − z2 6= 0} ⊂ C2

with the only possible singular points z1 = 0,∞, z2 = 0,∞ and zi = zj are regular singular
points.

The proof of this proposition is easy but we also omit it here.
We are ready to state precisely the associativity or the operator product expansion of

intertwining operators.

Associativity of intertwining operators Let W1, W2, W3, W4, W5 be lower-bounded
generalized V -modules and Y1 and Y2 intertwining operators of types

(
W4

W1 W5

)
and

(
W5

W2 W3

)
,

respectively. There exist a lower-bounded generalized V -module W6 and intertwining opera-
tors Y3 and Y4 of the types

(
W4

W6 W3

)
and

(
W6

W1 W2

)
, respectively, such that for w1 ∈ W1, w2 ∈ W2,

w3 ∈ W3 and w′4 ∈ W ′
4,

F (〈w′4,Y1(w1, z1)Y2(w2, z2)w3〉) = F (〈w′4,Y3(Y4(w1, z1 − z2)w2, z2)w3〉).

Another important property following immediately from the associativity of twisted in-
tertwining operators and the skew-symmetry isomorphism is the commutativity of twisted
intertwining operators:

Commutativity of twisted intertwining operators Let W1, W2, W3, W4, W5 be lower-
bounded generalized V -modules and Y1 and Y2 intertwining operators of types

(
W4

W1 W5

)
and(

W5

W2 W3

)
, respectively. There exist a lower-bounded generalized V -module W6 and inter-

twining operators Y3 and Y4 of the types
(

W4

W2 W6

)
and

(
W6

W1 W3

)
, respectively, such that for

w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′4 ∈ W ′
4,

F (〈w′4,Y1(w1, z1)Y2(w2, z2)w3〉) = F (〈w′4,Y3(w2, z2)Y4(w1, z1)w3〉).

The associativity of intertwining operators was proved when V satisfies certain conditions.
See [Hua1], [Hua3], [HLZ1], [HLZ2], [Hua6] and [Hua11].

12.6 The second major property: The modular invariance

To formulate the modular invariace, we first have to introduce geometrically-modified inter-
twining operators and the convergence of q-traces of products of such operators.

Given an intertwining operator Y of type
(

W3

W1 W2

)
and w1 ∈ W1, we have an operator (ac-

tually a series with linear maps from W2 to W3 as coefficients) Y1(w1, z). The corresponding
geometrically-modified operator is

Y1(U(qz)w1, qz),
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where qz = e2πiz, U(qz) = (2πiqz)
L(0)e−L

+(A) and Aj ∈ C for j ∈ Z+ are defined by

1

2πi
log(1 + 2πiy) =

exp

∑
j∈Z+

Ajy
j+1 ∂

∂y

 y.

See [Hua4] for details.
In general we have to take pseudo-traces instead of just q-traces of products of intertwin-

ing operators. For simplicity, Here we discuss only q-traces. In this case, we consider only
(ordinary) V -mdoules.

Convergence and extension property of q-traces of products of n geometrically-
modified intertwining operators Let Wi and W̃i for i = 1, . . . , n be (ordinary) V -

modules, and Yi for i = 1, . . . , n intertwining operators of types
(W̃i−1

WiW̃i

)
, respectively, where

we use the convention W̃0 = W̃n. For wi ∈ Wi, i = 1, . . . , n,

TrW̃n
Y1(U(qz1)w1, qz1) · · · Yn(U(qzn)wn, qzn)q

L(0)− c
24

τ

is absolutely convergent in the region 1 > |qz1| > . . . > |qzn| > |qτ | > 0 and can be extended
to a multivalued analytic function

FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; τ).

in the region =(τ) > 0, zi 6= zj + l +mτ for i 6= j, l,m ∈ Z.

Modular invariance of intertwining operators For (ordinary) V -modules Wi and wi ∈
Wi for i = 1, . . . , n, let Fw1,...,wn be the vector space spanned by functions of the form

F
φ

Y1,...,Yn(w1, . . . , wn; z1, . . . , zn; τ)

for all (ordinary) V -modules W̃i for i = 1, . . . , n + 1, all intertwining operators Yi of types(W̃i−1

WiW̃i

)
for i = 1, . . . , n , respectively. Then for(

α β
γ δ

)
∈ SL(2,Z),

FY1,...,Yn

((
1

γτ + δ

)L(0)

w1, . . . ,

(
1

γτ + δ

)L(0)

wn;
z1

γτ + δ
, . . . ,

zn
γτ + δ

;
ατ + β

γτ + δ

)
is in Fw1,...,wn .

The modular invariance of intertwining operators was proved when V satisfies certain
conditions. See [Hua4].
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