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1 Heisenberg vertex algebras (chiral algebras for free
bosons)

Let b be a finite-dimensional inner product vector space over R with the inner product (-, -).
Let h = h ® C[t,t '] ® Ck be the Heisenberg algebra associated to h with the commutator
formula given by

[a®@t™,b®t"] = m(a,b)dminok,
[a®t™ k] =0

for a,b € h and m,n € Z. Note that b is vector space over R while 6 is a vector space over C.
Let by = b @tC[t], h- =h @t 'C[t""] and by = h @ t° © Ck. These are all Lie subalgebras
of b.

 Let b act on the one-dimensional space C as 0 and k acts on C as 1. Then C becomes an
b+ @ ho-module. By the Poincaré-Birkhoff-Witt theorem, the induced module U () ®ur(

~ ~

b+@ho)
C is linearly isomorphic to U(h_) ®@¢c C ~ 5(6_). In particular, S(h_) is equipped with an
G-module structure under this linear isomorphism. The grading on 6_ gives a grading on
S(h_) called weight. It is easy to verify that this grading on S(h_) is grading-restricted; in
fact, it is easy to verify that S(ﬁ_)(n) = 0 when n < 0 and dim 5(6_)(n) < 0.

The G—module structure on S (6,) can also be obtained explicitly as follows: For a € b

~

and n € Z, we define the action of a(n) on S(h_) by

a(n)(a(=m)---a(=n)) = a(n)ar(=n1) - - - ax (=)

when n < 0 for ay,...,ax € h and nq,...,nx € Z,
k
a(n)(ai(—n1) -+ ap(—ny)) = Z air(—n1) -+ ai1(—ni—1)[a(n), a;(—ni)] @i - - - ap(—ny)
=1



when n > 0 and
k(ai(=n1) - ap(—np)) = (ar(=n1) - - - ax(—ni)).

Then it is easy to verify that S (6 ) with this action of b is an h-module.
Fora € b, let a(z) =", ,a(n)z™"".

Proposition 1.1. For a,b € b, we have
[a(z1),b(w2)] = (a,b) (21— 22) 7 — (=22 + 21) 7). (1.1)

Proof. Note that by definition, k acts on S(ﬁ_) as 1 € C. For a,b € b,

[a(z1),b(x2)] = Z [a(m), b(n)]aT™ oy

m,neL

= Z (a, b)mSpminory ™ tay™ !

= —(a, b)Znﬂf Lpynt

= —(a, b)ﬁ_:cl > aja !

proving (|1.1)). |

Let Lg; 1(0) be the operator on S(

(
nv forvES(ﬁ )(n)- We denote 1 € S(
the form

_) giving the grading on S(h_), that is, L 1(0)v =

b
b_) by Lgi y- Then S(h_) is spanned by elements of

ar(—ni) - ak(—”k)ls(a,)

for ay,...,a; € h and nq,...,n, € Z,. We define an operator Ls(ﬁ,)(_m on S(ﬁ_) b
LS(?,_)(—l)al(—nl) T ak(—nk)ls(ﬁ_)

= Z niar(—na) - aim1(=ni—1)ai(—ng — Daipa (=nit1) - - ar(—ng)lgg ).

Proposition 1.2. The series a(z) for a € b and the operators Lgg ((0) and Lgg ((—1)
have the following properties:

1. Fora €, [Lg; (0),a(z)] = rLa(z) + a(z).

2. Lgi (=D1g5 =0, [Lgg y(—1),a(x)] = La(z) fora € b.
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3. Foraeh, a(z)ly; € S(h_)[[z]]. Moreover, lim,_q a(@)lg; ) = a(—1)1g; .
4. The vector space S(FA),) s spanned by elements of the form

ar(—n1) -+ ar(—n)lgg
foray,...;ar € andny,...,ng € Z,.

5. Fora,bep,
(21 — 29)%a(21)b(x2) = (21 — 12)%b(w2)a(xy).

Proof. Properties 1-4 are easily verified using the definitions. Property 5 follows from
Proposition (1.1} |

We shall give the definition of grading-restricted vertex algebra later. Here we first state
the main result of this section assuming the reader knows this definition. This theorem
follows easily from a general theorem we shall discuss later. So the proof will be given after

~

the general theorem is proved. Using 1' we can prove that for aj,...,ax € h, v € S(h_),

~

and v € S(h_),
(v, a1(21) - - ar(2)v)

is the expansion in the region |z;| > --- > |z;| > 0 of a rational function denoted by

R((v',a1(z1) - - ax(24)0)

in z1,...,%; with the only possible poles at z; = 0 and z; — z; = 0 for 4,5 = 1,...,k. See
Section 4 for more details.

Theorem 1.3. The vector space 5(6_) equipped with the the vertex operator map YS(G,)
defined by

<U/7YS(6_)(041(_”1) T ak(_nk)ls(ﬁ_)a z2)v)
= Resg, o+ Resg—o§ ™+ § G L R, an (6 + 2) - aw( + 2)v)) (1.2)
foray,...,ar €h, v E 5(6_) and v' € 5(6_)’ and the vacuum lgg  is a grading-restricted

vertex algebra. Moreover, this is the unique grading-restricted vertex algebra structure on
S(h-) with the vacuum 1g; | such that Y(a(—1)1,2) = a(zx) for a € b.

In the study of representations of Heisenberg algebras, an operation on Heisenberg op-

~

erators called normal ordering is very useful. For operators a;(ny),...,ax(ng) on S(h_), we
define the normal ordered product

cay(ny) - ag(ng) g

to be the operator obtained by taking the product of these operators in an order such that
a;(n;) with n; € N are always to the right of those a;(n;) with n; € —Z,. Note that a;(n;)
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with n; € N commute with themselves. So the normal ordered product can also be defined
by taking the product these operators in an order such that a;(n;) with n; € N are always
to the right of all the other a;(n;).

We now discuss what is called the stress-energy tensor in physics. Let {u’}™" be an
orthonormal basis of . The stress-energy tensor is defined to be the series

Note that though u'(z) is a formal Laurent series and u*(x)u’(x) is not well defined in general,
the normal ordered product °u(z)u’(x)° is well defined. By definition

dim b

T(e) = 5 3 sul(e)u(e):
i=1
dlmh

P ICCHIE

i=1 k€Z leZ
dlmb

—Z ch’u —k)ea "2

nGZ i=1 k€Z

x) = Z Ls(é_)(n)x’"’z.

nez

We write

Then for n € Z,

dlmh dlmh dlmb
S SPIICIIIECHEES 3 pRRTIEAIY 3) prrmr
i=1 k€eZ =1 ke—Zy i=1 keN
(1.3)
Let 1 dim b
w=g Z u'(—1)%1
1=1

We now calculate T'(z)w, which will be used to give the example of what we call the conformal
element for the Heisenberg vertex operator algebra in Subsection 5.6.

Lemma 1.4. We have

m
-1 + hl’—4

5 + G(x), (1.4)

where G(z) € S(h_)[[z]].



Proof. By definition,
Ju' (z)u' (2) gu (—1)71
= > sul(Ryu(Dsul (=1)* 127

k,l€Z
= Z Zu Duf (—1)%1z7 72 4 Z Z u' (D' (k)u? (—1)21=F12
k€Z leN kEZ le—Zy
=y Z i (kyut (D! (1) 125172 4265 Y (k) (—1) 10748
keZ 1=0 k<—2
+Z S wOui (k) (=112 Y0 W (Dl (k) (1)1 (1.5)
k=01lc—Z+ k€—Z4 le—Z4

Note that the last term in the right-hand side of (L.5) is in S(h_)[[z]]. So we need only
calculate the first two terms. By the commutator relations for the Heisenberg algebra, we
have

"(0)u’ (1)1 =0,
H()u! (—1)*1 = 2(u', w )u? (—1)1 = 26;u7 (—1)1,
“0)u! (—=1)*1 = 0.

8 2

Then

keZ 1=0
keZ
1
=20; Y u' (k) (—1)1a7F 7 4 26, Y i (k)ud (—1)1aF
k=—2 k<—2

1
=26 > u(k)u (—1)1a7F 0 + 20, Y wl (k) (—1)1a 7
k=—2 k<—2
= 26;u' (=2)w! (=1) 1z~ + 20, u' (—1)u! (1) 127> + 2(51-2j~1x’4
+ 265 u' (k)u? (—1)1z7*3
k<—2

(1.6)



and

= 26;u' (—2)u? (1)1 + 260" (—1)wd (~ 1)1 + 25, Y w'(D)u (—=1)1e™'~* (1.7)

Note that the last terms in both (1.6) and (1.7) are in S(h_)[[z]]. Sustituting (1.6) and
(1.7) into (1.5)), taking sum over ¢,j = 1,...,dim b, dividing both sides by 4 and using the
definition of w and Lg (—1), we obtain

dim b dim b dim b
1 . . 1 . . 1
T(x)w = Z Siul (—=2)ud (=1) 1z~ + 3 Z Siul (=1)ud (=1) 122 + 3 Z 02127
t,5=1 1,5=1 ij=1
1 dim b 1 dim b
+5 Z 0y Y ui(k)ud (—1)1e 7t 5 Z Siul(—2)u? (1)1
i,j=1 k<—2 1,j=1
1 dimb 1 dim b
% j % j —[-3
+3 ]ZZI 20;5u' (= 1)u (1)1 + 5 JZ:l 5 z<22u (D (=11

+ >0 Y d (k) (1)1

keE—Zy le—T,

dim b dim b
1 , d
=3 Z 2u' (—=2)u'(—=1)1x ' + 2= Z u'(—1)u'(—1)1z 2 lmbl 1+ G(2)
=1 2,7=1
= Lgg_y(—Dwz™ + 2wz~ + H; Doty G(),
where
1 dim b 1 dim b
Gla) =5 " 6y Yy w (k) (1)1 4+ 2 %75, - () (1)1
2,7=1 k<—2 2,7=1 l<—-2

+ > i (k)u (—1) 1

ke—Z, le—7.,

e S(b-)[[])-
n

We now state the following result whose proof will be given in Subsection 5.6 using ({1.4)):

Theorem 1.5. The element w is a conformal element of the grading-restricted vertex algebra
S(h-). In particular, S(h_) is a vertex operator algebra (see Definition .
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2 Lattice vertex algebras (chiral algebras for free bosons
on tori)

Let L be a positive-definite even lattice of rank n with nondegnerate symmetric Z-linear form
(,-). Then h = L®zR is an n-dimensional vector space over R with a positive definite bilinear
form still denoted by (+,-). Then we have the Heisenberg algebra h=h® C[t,t™ '] & Ck. As
in the preceding section, we also have the subalgebras h, = b ® tClt], h. =h® tIC[t
and hy = h ® t° ® Ck. Given a module M for the abelian Lie algebra h @ t° = b, let
6+ act on M as 0 and k acts on M as 1. Then M becomes an 6+ &) Go—module. By the

~

Poincaré-Birkhoff-Witt theorem, the induced module U (h)®U(6+ Sho) M is linearly isomorphic

to U(ﬁ,)@M = S(ﬁ,)@)M. In particular, S(&)@M is equipped with an h-module structure
under this linear isomorphism.
Fix a basis aq,...,a, of L. We define a Z-linear map € : L x L — Z by

Qi) 1>
E(aiaaj):{é ]) l<j;

fori,j=1,...,r. Let L = {1, -1} x L. Define a multiplication on L by
0,a)-(,0) = (07(=1)“*P o+ j3)

for 0,7 € {1,—1} and «, 8 € L. We have a surjective map ~ : L — L defined by 0,0) =«
for 0 € {1,—1} and o € L. We also have an injective map from {1,—1} to L defined by
0 +— (0,0) for 6 € {1, —1}. It is clear that these maps are homomorphisms of groups and we
have the exact sequence

1—{1,-1} = L—L —1,

that is, L is a central extension of L by the group {1, —1}. The commutator map ¢ : L x L —
Z,/27 of this central extension is given by ¢(a, 8) = (a, §) + 2Z. We shall denote (1,«a) € L
by e, for a € L and (0,0) by 0 for 0 € Z/2Z. Then

(0, ) = be,, = €0

and
ety = (1) ey,

Let C[L] be the group algebra of L. We shall use e® to denote the element o € L in
C[L]. Then in C[L], we have e%e? = e+ for o, 3 € L. We have an action of the abelian Lie
algebra h ® t° = h on C[L] by (a @ t°) - e* = (a,a)e®. Then C[L] is an h ® t>-module. We
also have an action of L on C[L] defined by (8, a) - e = (§(—=1)“@P))eatF for § € {1,—1}
and «, 8 € L. In particular, e, - € = (=1)@e**5 for o € L and 0 - e# = e, Tt is clear
that this action gives C[L] an L-module structure.

Let Vi, = S(h_) ® C[L]. The grading on h_ gives a grading on S(h_) called weight and

we give a grading on C[L] also called weight by defining the weight of e* to be %(a,a).



These gradings give a grading on V also called weight. Then we have Vi = [[,c,(VZ)m)
where (V7)) is the homogeneous subspace of Vi, of weight n. It is clear that V7, is grading-

restricted since the gradings on S(h_) and C[L] are both grading restricted. In fact since L
is positive definite, we have (V1)) = 0 when n < 0.

As is discussed above, we have an h-module structure on V=S (h_) ® C[L]. Since C[L]
is an L-module, V;, = S(b )®C[L] is also an L-module with L acts only on C[L]. We denote
the action of a®t™ on Vg by a(n) fora € handn € Z. Fora € b, let a(z) =Y, , a(n)z™™ 1.
For o € L, for simplicity, we shall also use e* to denote 1 ® e* € V. For a € L and a formal
variable z, we define 2% - (u ® €®) = 2(*#) (u ® ¢°) for u € S(h_) and 5 € L. For o € L, let

Yy, (€%, ) = exp (— Z #x”) exp <— Z @x") eqr® € (End V) [[z, 27 1]].

n<0 n>0

For a vector space M, let [ - dx: M[[z]] ® 2 *M[[z"']] = aM|[z]] ® 2~ M[[z""]] be the
linear map given by the integrating the formal series in M|[z]] @ x=2M|[[x~!]] with constant
terms being 0. Then the images of M|[[z]] and z72M[[z~!]] are M [[z]] and ' M|[[z~]],
respectively. For a € b, let a(z)t =>_ a(n)z™ "V and a(z)” = >, , a(n)z"'. Then
a(z) = a(z)™ + a(x)” +a(0)x~t. Also

/a(m)+dx == @w,
/a(x)_d:v ==Y @w.

n<0

neEZy

Thus we have
YVL (ea’ ZL') _ ef a(a:)’dxef a(:c)*da:eaxa
for v € L.

We need the following commutator formulas:

Proposition 2.1. Fora,be b, o, € L, we have

[a(z1), b(x2)] = (a,b) (21 — 22) ™% = (=29 +21) %),
[a(z1), Yy, (%, 22)] = (a, @) (w1 — 22) ™" = (=22 + 21) ") Yy (e, 22),

[YVL (€a7 1’1), YVL (e/j7 1’2)] = (('1'1 - xZ)(aﬂ) - (—$2 + xl)(aﬂ)) ’
. €f oa(xl)’dxlef,B(xg)’dxzefa(:c1)+dx16f,3(r2)+dx2

cacplal,  (23)

where forn € Z, (x1 —x2)" and (—x2+x1)" means their binomial expansions in nonnegative
powers of xo and x1, respectively.

Proof. The proof of (2.1)) is completely the same as that of ((1.1)) above.



For a € h and a € L, taking b = « in (2.1]), we obtain

[a(z1)*, a(2)*] =0,
[a(0), a(2)*] =0,
Toalzy) | = (@)
[a($l) ) ( 2) ] (xl —1’2)2’ (26)
B (a0
[a($1) ,Oé({ITQ) ] - (1'2 _ xl)g' (27)

Applying the map [ - dzs to both sides of (2.4)—(2.7) and then switch the order of the

commutators, we obtain

[/ afxs)Fdwy, a(x)*| =0, (2.8)

{ / axy)Edry, a(0)| =0, (2.9)

|:/Oé(.’132)_d$27a($1)+ =— (@, @) + (a,a)j (2.10)

X1 — X2 g

Ua(@)w@,a(xl)—_ G (2.11)

b
To — 1

where in (2.10)), the term _ (o)

From ([2.8)—(2.11)), we obtain

efa(xg)ideCL(xl)ieffoz(:rg)idxg _ a(xl)i7

appears because the constant term of f - dxy must be 0.

efa(:rg)idxga(o)effa(:pg)idxg _ a(O),

efa(xg)*dxga(l,l)-i—e—fa(a:z)*dxz _ a(x1)+ . (G, Oé) + (CL, Oé)

T1 — To T
el @) e (g ymem Salwa) e — g )= M?
Ty — @1
or equivalently,
a(x1>iefa(zg)idm2 _ efa(rz)idxza@l)i’ (2.12)
CL(O)efa(xg)idzg _ efa(wz)idma(())’ (2.13)
a(z,)Tel @@ der — o[ eea)dwa g+ 4 ( @.2) (a’a)) el elw2)"dez, (2.14)
T1 — To 1
a(xl)’efo‘(“)m“ _ efa(mg)*dxza(.z.l)* + Mefa(mﬁdwz_ (2.15)

To — T

10



On the other hand, for u € S(h_) and 8 € L,

a(0)eqrs(u ® e”)
= (=) D2k 0,0+ B)(u @ )
= (—1) @z (a,a)(u @ ) + (=1) @ zf (a, B) (u @ e*HF)
= (a,0)e,r5(u® ) + eqa5a(0)(u® e”).
Thus we obtain
a(0)eq,zy = (a, a)eaxs + eqxsal(0). (2.16)

Using (2.12)-(2.16]), we have

a(zy)Yy, (e, x2)

= a(q;l)Jref0(12)_dwzefa($2)+dmzeaxg + a(xl)*efa(wz)_dxzefa($2)+dmeaxg

_|_ @(O)xflef a(x2)7d$2€fa(x2)+dx2€axg

_ ef a(azg)’dmefoa(xg)er:L‘geaxga(xl)—Q— + ( (CL, O[) N (CL, Ck)) ef a(azg)’drgefa(xz)er:r}Qeaxg
L1 — T2 1

+ efa(:(;g)*d:cgef oa(a:g)+dx26axaa($l)— + (CL, Oé) efa(a:g)’drgef oa(xz)er:L‘geaxoz
2 Ty — T 2

+ efa(mg)_dzgef O‘(”)m“eaxg‘a(O)xfl + (CL, Oé) efa(zg)_dzzefoz(:rg)""dxgeaxg
T
=Yy, (e, xa)a(x1) + (a,a) ((21 — x9) 7" = (=22 + 21) ") Yy (e, 22).

This is (2.2).
Taking a € h to be § € L C b in (2.11)), we obtain

[ﬁ<x2)—7 6fa(331)+d1‘1] — (Oé, /8) efoz(:ltl)-"dl‘l. (217)

X1 — T2

Applying — [ - dzy to both sides of (2.17), we obtain

{_/5($2)_dx2,ef‘”‘(”“)+dxl}
= ((Oé, 6) log(xl — ZL’Q) — (a’ B) log xl) efa(x1)+dar1

N .
= log (1 — —) el o)t dny, (2.18)

xy
From ([2.18)), we obtain

~d +d -d L2 () +d
e—fﬁ(m) z2€fa(331) I1€f,3(932) w2 (122 efa(ﬂfl) 1

11



or equivalently,

+d —d L2 (@) -d +d
efa(ml) a:lefﬁ(xg) w2 (122 efﬁ(xg) mgefa(:rl) 2

For u € 5(6—) and v € L, we have
rieg(u®e’) = (—1)6(6’7)xga’6)+(a”)(u ® 1),
epri(u®@e’) = (—1)6(6’7)x§a’7) (u® €ﬂ+7).

Therefore we obtain

xieg = xga’ﬁ)e/gx‘f.

Using (12.19) and (2.20]), we obtain

YVL (eav x1>YVL (667 xQ)

_ efa(ml)—dxlefa(z1)+dxleax?ef Blas)~daz 5(x2)+dmeﬂx§

= (21 — 22)

From , we also obtain
Yy, (€7, 29) Yy, (e, 21)

_ (IQ - xl)(a,ﬁ) efﬁ(zg)*dxgefa(ccl)*dxl6f6($2)+da:2efa(x1)+dxleﬁea$?x )

(a,8) €f a(:):l)_dxlefﬁ(xz)_dmgefa(xl)""dxl efﬁ(x2)+dxzeaeﬁx?x )

(2.19)

(2.20)

(2.21)

(2.22)

Since the commutator map of the central extension L is ¢(a, 8) = (o, 8) + 27Z, we have

egea = (—1)*Pegep.
Thus the right-hand side of (2.22)) is equal to

(_$2 + xl)(aﬁ) ef a(@)"der [ Bx2)~dzs [ a(z1)tde el 5($2)+dr26aeﬁx?x

From (221)-(223), we obtain (2.3).

(2.23)

Let Ly, (0) be the operator on Vj, giving the grading on V7, that is, Ly, (0)v = nv for

v € (Vi)(n)- Note that V7, is spanned by elements of the form

ar(—=ny) - - ap(—ny)e’

for ay,...,ar € b, ny,...,n, € Z, and § € L. We define an operator Ly, (—1) on V, by

Ly, (—1)ai(—nq) - - ar(—ny)e’

k
= anﬁh(—nl) @iy (=) ai(=ni — Daip (=) -+ - ar(—nk)e
i=1

+ CL1<—7L1) e ak(—nk)ﬁ(—l)eﬁ.

We denote ¢ € V, by 1y, .

12



Proposition 2.2. The series a(x) for a € b, Yy, (e%, ) for a € L and the operators Ly, (0)
and Ly, (—1) have the following properties:

1. For a € b, [LVL(O) a(x)] = di (x) + a(z) and for a € L, [Ly,(0),Yy, (e*, z)] =
xYVL(e ,x) + 3 (o, @)Yy, (e, x).

(e”
2. Ly(=1)1y, = 0, [Ly(-1),a(z)] = d%a(:c) for a € b and [Ly(—1),Yy, (e* x)] =
LYy, (e*,x) fora € L.

3. Fora € b and a € L, a(z)ly,, Yy, (e*, z)1ly, € Vi[[z]]. Moreover, lim,_,oa(x)ly, =
a(—1)1y, and lim, o Yy, (e*, )1y, = e*.

4. The vector space Vi, is spanned by elements of the form

aj(—nq) -+ - ap(—ng)e”
=ay(—ny) - ar(—ng)ealy,

= Res,, - - - Res,, 7™ -+ -x,:nka:,;ilal(xl) eag(z) Yy, (€%, xpg1) 1y, (2.24)
foray,...;ar €, ny,....,np €Z, and o € L.
5. Fora,bep,
(21 — 29)%a(21)b(x2) = (21 — 12)%b(w2)a(xy).
Foraeb and a € L,
(x1 — z2)a(z1)Yy, (€%, x9) = (21 — 22) Yy, (€%, x3)a(zy).
Fora,p €L,
(xl - Q:2)7(047@}/\@ (€a> xl)YVL (657 332) = (131 - x2)7(a’5)YVL (eﬁv x2>YVL (eav 1’1)
when (a, 5) < 0 and
YVL (eaa Z’l)YVL (667 x?) - YVL (667 'TQ)YVL (eaa :L‘l)
when (o, B) > 0.

Proof. Property 1 can be verified by the definition of Ly, (0) and straightforward calcula-
tions.

The first two formulas in Property 2 can also be verified by the definition of Ly, (—1)
and straightforward calculations. Here we prove the third equality. We first need several

commutator formulas. For o € L, from [Ly(—1),a(z)] = 2 a(z) whose proof we omitted,
we obtain
_ d 3
[LVL(—1>,()[(I') ] = % Oé(l’) )
d
[Ly, (=1), () "] = %a(aﬁ)* — a(0)z 2.



Applying [ - dz to both sides, we obtain

[LVL(—l),/a(w)_dx] = % (/a(az)‘dm) —a(-1), (2.25)
[LVL(—1),/a(x)+dx] = %/a(z)+dx+a(0)x—1. (2.26)

By the definition of Ly, (—1), for a product A of operators of the form a(—m) for a € h and
m € Zy, [Ly,, Al is a linear combinations of products of the operators of the same form. In
particular, [Ly, (—1), A] commutes with e,z®. For such a product A and 5 € L,

Ly, (—1)eqz®Ae?
= Ly, (—1 )Aeaxo‘eﬁ

[Ly, (—1), Aleaz¥e” + ALy, (—1)eq
= eqt®[Ly, (—1), Ale? + 2P (1) O‘B)ALV (—1)et?
= eat[Ly, (=1), Ale” + 2D (=)D A(a + B)(~1)e**?
= eqx®[Ly, (—1), Ale? + 2@ (—1)@D Aq(—1)e P 4 @A (1) AF(—1) P
= eq®[Ly, (—1), Ale® + a(—1)eqz® Ae” + Aeqz*B(—1)e”
= e,x[Ly, (—1), A]eﬁ + a(—1)eqz®Ae’ + eqr® ALy, (—1)(u ® €°)

= e, Ly, (—1)Ae” + a(—1)e,2® Ae”,

where we have used the fact that S (6_) is a commutative algebra and e, and z* commute
with A. So we obtain the commutator formula

Ly, (—1), eq2z?] = a(—1)e z®. (2.27)
For u € 5(6,) and € L,
a(0)eq(u® e’) =

|
—~
~—
—~
®
Q
~—
_.I_
Q)
Q
—~
(==
~—
—~
®
Q]
~—

which gives us the commutator formula
[06(0)7 ea] = (Ck, a)ea- (228)

Using the fact that [a(—1), -] is a derivation on the algebra of operators on V7, as coefficients,
we have

[a(—1), ¢f 2@ ] — fa@ s {a(—n, / a(x)wx]
= el @ (1), —a(1)] 27!

_ efa(:v)*’d:v(()é?a)xfl.
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Note that both [Ly, (—1), ] and % are derivations on the algebra of series in x with

operators on Vi, as coefficients. Using these properties, (2.25)), (2.26) and (2.27) and the

formula d
%xa = a(0)z“z 1,
we have
(L, (=1), Y (v, (€%, )]
_ [LVL (_1>7 efa(m)_dxefa(w)+dxeaxa]
_ [LVL(_1)7 efa(z)’d:c]efa(;pfrdcceal_a + efa(z)’d:c[LVL(_l)’ €fa(x)+dx}€al’a
+ efa(:(;)’dxefa(:c)+dac [LVL (_1)’ eaa:a]

= ¢f ale)dz |:LVL(—1),/Oé(ZL‘)_d$:| el a@)Tdrg g

+ el 0@ drg [ afa)*da [LVL(_D, / a(x)+dx} €at®

+ efa(x)’da:efa(z)+dz&(_1)ea$a

- d
_ JJal@)7ds [ 2 - o . Ja(z)Tdx a
e <d:v </ a(x) dz) af 1)) e eal

_ d
+ ef ol@)dr o [ alz)Tdz (d_ / a(z)tdx + Oz(U)xl) eax”
x

+ efa(x)_dwefa(z)+dza(_1)eaxa

- d -
— eJowr e (d_ / a(:ﬁ)daﬁ) of e g, g _ o el drg ()] 0@ iz, o
T

dx

_ d _
+ ef ol@)dr o [ a(z)Tdz (— / a(Iﬁda:) eqr® + el @ dref “(’”)er’”a(o)x*leaxo‘

+ efa(z)_dmefa(r)+dma(_1)eaxa

_ ief a(z) " dx €f a(w)""d:pea‘ra + ef a(x) " dx ief a(z)Tdx Cal®
dz dz

+ ef a(z)_dmef a(z)+dm€aa(0)xax—1

d _
_ _ef a(x) dwefa(m)+dzeaxa

C dx
d [e%
= %YVL(Q ,T). (2.29)
Properties 3 and 4 are clear. Property 5 follows immediately from Proposition [2.1 [

Just as in the Heisenberg case in the preceding section, we first state the following main
result of this section assuming the reader knows grading-restricted vertex algebra:

15



Theorem 2.3. The vector space Vi, equipped with the the vertex operator map Yy, defined
by

(W' Yy, (1(=nq) - - - agp(—ng)e, 2)v)

= Resg,—o -+ - Resg,—o&7™ - & G RV, an (&1 + 2) -+ (& + 2) Yo, (€%, G + 2)v

)v))-
(2.30

)

and the vacuum 1y, is a grading-restricted vertex algebra. Moreover, this is the unique
grading-restricted vertex algebra structure on Vi, with the vacuum 1y, such thatY (a(—1)1,z) =
a(x) fora € h and Y(e*,x) =Yy, (e*,x) for a € L.

3 Grading-restricted vertex algebras

For a Z-graded vector space V' =[], ., Vin), let V' =[1],,c4 V(Z) be its graded dual space and
V= [1,.cz Vin) be its algebraic completion. On V' and V', we use the topology given by the
dual pair (V, V). For n € N, a sequence (or more generally a net) {f,,} in Hom(V®---@V, V)
is convergent to f € Hom(V®---@V,V)ifforvy,...,v, € Vandv' € V', (v, fo(v1®---®v,))
is convergent to (v/, f(v; ® --- ® v,)). In particular, analytic maps from a region in C to
Hom(V®" V) make sense. For a C-graded vector space, we use the same notations and
definition of convergence.
We give the definition of grading-restricted vertex algebra first.

Definition 3.1. A grading-restricted vertex algebrais a Z-graded vector space V' = [T, o, Vin),
equipped with a linear map

Yy : VRV = Vo,
u® v Yy (u,x)v,

or equivalently, an analytic map

Yy : C* — Hom(V @ V, V),
2= Yy(s2) tu®@v = Yy (u, 2)v

called the vertex operator map and a vacuum 1 € V(o) satisfying the following axioms:

1. Axioms for the grading: (a) Grading-restriction condition: When n is sufficiently neg-
ative, V() = 0 and dimV},) < oo for n € Z. (b) L(0)-commutator formula: Let
Ly(0) : V.=V be defined by Ly (0)v = nv for v € V(). Then

[Ly(0), Yy (v, x)] = x%Yv(v, z) + Yy (Ly(0)v, x)

forvelV.
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2. Axioms for the vacuum: (a) Identity property: Let 1y be the identity operator on V.
Then Yy (1,2) = 1y. (b) Creation property: For u € V, lim,_,o Yy (u, )1 exists and is
equal to u.

3. L(—1)-derivative property and L(—1)-commutator formula: Let Ly (—1) : V — V be
the operator given by

d
Ly(—1)v = lim EYV(U x)1l

z—0

for v € V. Then for v e V,

%YVO), J}) = Yv(Lv(—l)U, l’) = [LV(_1>7YV(U7‘T)]‘

4. Duality: For uy,us,v € V and v € V', the series

(W', Yy (w1, 21)Yy (ug, 22)0), (3.1)
(W', Yy (ug, 29) Yy (u1, 21)0),
(W, Yv (Yv(u1, 21 — 22)uz, 22)0),

are absolutely convergent in the regions |z1| > |z2| > 0, |20| > |21] > 0, |22] > |21 —22] >
0, respectively, to a common rational function in z; and 2z, with the only possible poles
at 21,29 = 0 and 21 = 2.

Remark 3.2. In Definition 3.1} the duality property can be stated separately as three
axioms, that is, the rationality (the convergence of 7 and to rational functions
in the regions |z1| > |22 > 0, |22] > |z1] > 0 and |z2| > |21 — 22| > 0, respectively), the
commutativity (the statement that the rational functions to which and converge
are equal) and the associativity (the statement that the and are equal in the region
|z1] > |22] > |21 — 22| > 0). These axioms are not independent. In fact, the associativity
follows from the rationality and commutativity (see [FHL]) and the commutativity also
follows from the rationality and associativity (see [Hua2]).

Definition 3.3. A quasi-vertex operator algebra or a Mdbius vertex algebra is a grading-
restricted vertex algebra (V, Yy, 1) together with an operator Ly (1) of weight 1 on V' satis-

fying

[Ly (=1

), Lv(D] = —2Lv(0),
[Lv (1), Yv (v,

)] = Yv(Lv(1>?}7$) +21}Yv(Lv<O)U ZE) +x Yv(Lv( 1)U ZE)
forve V.

Definition 3.4. Let V; and V5 be grading-restricted vertex algebras. A homomorphism from
V1 to Vs is a grading-preserving linear map g : V3 — V5 such that gYy, (u, z)v = Yy, (gu, x)gv.
An isomorphism from V; to V5 is an invertible homomorphism from V; to V5. When V; =
Vo =V, an isomorphism from V to V is called an automorphism of V.
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Definition 3.5. Let (V, Yy, 1) be a grading-restricted vertex algebra. A conformal element
of V' is an element w € V satisfying the following axioms:

1. There exists ¢ € C such that Yy (w, z)w is equal to Ly (—1)wz™! + 2wz™2 4 £127* plus
a V-valued power series in .

2. Ly(—1) = Res,Yy(w,z) and Ly(0) = Res,zYy(w,z) (Res, being the operation of
taking the coefficient of 27! of a Laurent series).

A grading-restricted vertex algebra equipped with a conformal element is called a vertex
operator algebra (or, more consistently, grading-restricted conformal vertex algebra).

4 A construction theorem

Let V = [1,.cz Vin) be a Z-graded vector space such that V(,,y = 0 for n sufficiently negative
and dim V{,,) < oo for n € Z. Since dim V{,,) < oo for n € Z, we have V = (V')*. Elements of
Vin) is said to have weight n. Let Ly (0) : V' — V be the operator defined by the grading on
V, that is, by Ly (0)v = nv for v € V{,,). Then for a € C, the operator e*“v(® on V' defined
by ev 0y = ey for v € V(n) has a natural extension to V. For n € Z, we use 7, to denote
the projection from V or V to Vin-

An operator O on V satisfying [Ly(0), O] = nO is said to have weight n. Similarly for
operators on the graded dual V' of V.

Lemma 4.1. Let ¢(x) = Y., o, dnz "' € (End V)[[x.a™]]. If there exists wt ¢ € Z such
that

Ly (0), 6(a)] = r--6(x) + (Wi 6)(a),

then ¢, € Hom(V,V') is homogeneous of weight wt¢ —n — 1. In particular, for v € V,
¢(x)v as a Laurent series in x has only finitely many negative power terms and for v’ € V',
(V' p(x)-) as a Laurent series with coefficients in V' has only finitely many positive powers

of .

Proof. Taking the coefficients of the bracket formula for Ly (0) and ¢(z), we obtain that ¢,
is of weight wt ¢ —n — 1. Since V{,y = 0 for n sufficiently negative and the weight of ¢, is
wtop —n — 1, for v € V, ¢(x)v has only finitely many negative power terms and for v' € V',
(', ¢(x)-) as a Laurent series with coefficients in V' has only finitely many positive powers
of x. x

Let ¢'(z) € (End V)[[z,z7!]] for i € I and 1 € Vg). Write ¢'(z) = >, 5 ¢ha """ for
i € I. Assume that ¢'(z) € (End V)[[z,z7']] for i € I and 1 € V| satisfy the following
conditions:

1. For i € I, there exists wt ¢’ € Z such that [Ly(0), ¢'(z)] = z-L¢'(z) + (wt ¢')¢' ().
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2. There exists an operator Ly (—1) on V such that Ly (—1)1 = 0 and [Ly(—1), ¢'(z)] =
L gi(x) for i € 1.

3. Foriel, ¢'(x)1 € V[[z]].

4. The vector space V' is spanned by elements of the form ﬁ}l e qﬁﬁfkl for i1,...,ix € 1
and nq,...,ng € Z.

5. For 7,5 € I, there exists N;; € Z, such that
(21 — $2)N”¢i(951)¢j(372) = (71 — 33'2)N”¢j<55'2)¢i(951)- (4.1)

Proposition 4.2. Let V =[], Vin) be a Z-graded vector space, ¢ for i € I linear maps
from V to V[z,z7Y]], or equivalently, analytic maps from C* to Hom(V,V), Ly (—1) an
operator on V and 1 € V(o). Assume that they satisfy Conditions 1-4. Then Condition 5 is
equivalent to the following two conditions:

6. Forv' € V', v eV and iy,... i € I, the series (v',¢"(z) -+ ¢™(2x)v) (a Laurent
series in zi,...,zr with complex coefficients) is absolutely convergent in the region
|z1| > -+ > |z| > 0 to a rational function R((V', ¢ (21) - ¢ (2)v)) in 21,..., 2
with the only possible poles at z; =0 fori=1,...,k and z; = 2 for j # [. In addition,
the order of the pole z; = z is independent of ¢ for n # j,1, v and v' and the order
of the pole z; = 0 is independent of ¢ for n # j and v'.

7. ForveV,v eV’ iy iy e 1,
R((v', 6" (21)9" (22)v)) = R((v', ¢"(22)9" (21)v)).

Proof. Exercise: Prove that Conditions 6 and 7 imply Property 5.
Now we assume that Property 5 holds. Consider the Laurent series

[T (2 — ) Vra (0, 6 (1) - -~ 87 (i) (4.2)

1<p<q<k

For 1 <1 <k, using (4.1]), the Laurent series (4.2) is equal to

[T (2 =) Voo (v, 6™ (@) - ¢ (21m0) 6™ (210) - -~ S () $7 (1)), (4.3)

1<p<q<k

By Lemma , (4.3) has only finitely many negative power terms in x;. So the same is true
for (4.2)). On the other hand, using (4.1)) again, (4.2)) is equal to

H (ajp - xQ)Nipiq <Ul> ¢il ($l)¢i1 (.171) T ¢il71 (.’Il'l—1>¢il+1 (Z’l+1) cee ¢lk (a:k)v> (44)

1<p<q<k
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By Lemma again, has only finitely many positive power terms in x;. So the same
is true for . Thus must be a Laurent polynomial in z;. Since this is true for
1 <1<k, is a Laurent polynomial in xq, ..., x.

For fixed 1 < p < ¢ < k, the expansion coefficients of

(v, p(@1) -+ dlan)v) (4.5)
as Laurent series in x; for [ # p, q are of the form
<U’, .. ;{; = ¢ (x ») ?;:1 e ﬁfqill P (xq) j{;;;ll e ;’“kv> (4.6)

for ny € Z, | # p,q. Clearly contains only finitely many negative powers in z, and
finitely many positive powers in z,. But we have shown that when multiplied by (x, —
x,)Nre, it becomes a Laurent polynomial. Thus must be the product of a Laurent
polynomial in z, and x, and the expansion of (z, —x,) "#7 as a Laurent series in nonnegative
powers of z,. Since p and ¢ are arbitrary, we see that with x1, ...,z substituted by

21, ..., 2k 18 equal to the product of a Laurent polynomial in zq, ..., z; and the expansion of
[Ti<pcqen(2p — 2g)7™7e in the region [21] > -+ > [2] > 0. This is Condition 6. Condition 7
follows immediately from Condition 6 in the case k = 2 and (4.1)). |

Proposition 4.3. The space V, the fields ¢ for i € I, Ly (—1) and 1 have the following
properties:

8 ForaeC andie I, evOgi(z)e olv0) = colwtd) gi(gog).

k
9. Ly(~1)¢i1 -+ ¢ 1 = Z g (- ]¢nj_1) gk
j=1
10. For a € C, z € C* satisfying |z| > |a| and i € I, vV g (2)e v (") = ¢i(2 4 a) .

11. The operator Ly(—1) has weight 1 and its adjoint Ly (—1)" as an operator on V' has
weight —1 (the weight of an operator on V' is defined in the same way as that of an
operator on V). In particular, e?*v=V'v € V' for z € C and v' € V',

12. ForveV,v e V' and o € Sy,
R((v', 6" (21) - 6" (z)v)) = R({V', "D (2(1)) + 679 (2519 )))-
Proof. These properties follow immediately from Conditions 1-7. [

We now define a vertex operator map. We first give the motivation of this definition.
The vertex operator map we want to define is a map

Yy :C* — Hom(V®V,V),
z = Yy(,2)u®ve Yy(u, ).
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We define Yy (¢" 11,2)v = ¢'(z)v for i € I and v € V. The vertex operator map should
satisfy the rationality and associativity property. In particular, we should have

R((', Yy (¢" (&1) -+ 6" (&)1, 2)v)) = R((v, 6" (&1 + 2) -+ - 6™ (& + 2)v))

for iy,...,ip € [,veEV and v € V',
Motivated by this associativity formula, we define the vertex operator map as follows:
Forv e V', veV, iy,...,ip €I, mq,...,my € Z, we define Yy, by

<UI7 YV( %1 T (b;’;k]_’ Z>U>
= Resg,—0 - Resg,—o&7™ - - T R((V, 9" (& + 2) - ¢ (&, + 2)v)). (4.7)
Note that for a meromorphic function f(£), Rese—of(§) means expanding f(£) as a Laurent
series in 0 < [¢| < r for r sufficiently small so that no other poles are in this disk and then
taking the coefficient of £~1. We can also expand f(£) as a Laurent series in a different region.
In general, the coefficient of £! in this Laurent series might be different from Rese_of(&).
Also note that the order to take these residues is important. Different orders in general give

vertex operators for different elements.
Since V = (V')*, for fixed ¢}, --- ¢k 1,v € V, the formula above indeed gives an element

Yo (@, - om, 12w €V,

mi

which in turn gives ' '
Yy (o, - qﬁiﬁkl,x)v € Vlx, 271

Since there might be relations among elements of the form ¢f}u e qbijfbkl, we first have to
show that the definition above indeed gives a well-defined map from C* to Hom(V ® V, V).
Let ¢° be the map from C* to Hom(V,V) given by ¢°(z) = 1y. Let wt¢? = 0. Then
Conditions 1 to 5 and Properties 6 to 12 above still hold for ¢, i € I = I U {0}. Then any
relation among such elements can always be written as

k

2 i i
Z/\pgbnlllf 1 =0
p=1

forsomei?élzandm?GZ,p:1,...,q,j:1,...,k.
Lemma 4.4. If
q .
D Abap 01 =0,
= 1 k
then .
> AResg o+ Resg o8y -+~ & R((W, 6 (€1 + 2) -+ (& + 2)v) = 0
p=1
forveV andv € V.
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Proof. By Condition 4, we can take v to be of the form gzﬁflll e gb{{ll. Moreover, in this case,

R((t, ¢ (1) - ' (1) 03, -+ - o 1))
= Resg,—0- - RGSQ:oCl QR 9 (1) - 0 (2) ¢ (G) - 9 (G)L)).

Then
Resg,—o - - Resg, 67" -+ E7VR((0, ¢ (€1 + 2) -+~ 6% (& + 2)0))
— Rese,_o ReSgk:oﬂnf . .gl’:iReSCFO - Resg ool -+ ("
R((v, ¢ (& + 2) -+ ¢ (& + 2)¢7 (G1) -+ 9(Q)1))
= Resg,—0 - - - Res&c:oﬂ”f . 'f;aneScl:O - Resg—oC -+ ("
R((v', ¢ (1) -+ " (Q)T (&1 + 2) -+ % (& + 2)1))
= Resg,—0 " - - Resﬁk:offﬁ . 'szzReScl:o - Resg =t -+ (" -
R VY ¢ (G = 2) - (G — 2)0 () - ¢ (E)1))
= Res¢,—o - - - Resq o - (-
R Y G (G = 2) e (G = D)0k b 1)),
Thus

> ARese, o - Rese, o€ -+ E/FR((V, ¢ (€1 + 2) - - & (& + 2)0))
p=1

q
— Z MRese,—o - - - Resg ol -+ ¢
p=1

'R((eZLV Oy ¢]1(< _ z) ¢jl(Cl — 2)#37 . ¢;§21>)

= Resg=0 - - Resg=o(i" - (" -
B << vy (G —2) (G — 2 (Z Ap(bll "'(b;flil) >>
proving the lemma. '

From this lemma, we see that the vertex operator map Yy is well defined. We are now
ready to formulate and prove the main result of this section.

Theorem 4.5. Let V =[], ., Vin) be a Z-graded vector space, @' fori € I linear maps from
V to V[z,z71]], or equivalently, maps from C* to Hom(V, V), Ly (—1) an operator on V and
1 € V). Assume that they satisfy Conditions 1-5. Then the triple (V,Yy,1) is a grading-
restricted vertex algebra generated by ¢* |1 for i € I. Moreover, this is the unique grading-

restricted vertex algebra structure on V' with the vacuum 1 such that Y (¢' |1, z) = ¢'(2) for
1el.
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Proof. The vertex operator map Yy is clearly analytic. The grading-restriction axiom is by
assumption satisfied. The L(—1)-bracket formula follows from Condition 2 and the definition
of Yy,. The identity property and the creation property also follow from of the definition of
Yy.
Let Ly (0)" be the adjoint operator of Ly (0). For v/ € V', v € V| 4,...,i € I and
Niy...,N € Z, a € C*
<v aLV(O)Y (0, - ¢”“ 1, z)a” )
— <aLv(0) Yy (o - ka 1,2)a” (0)U>
~ Reseuoo-  Resgofl -+ RGO 606 +2) -+ 64(61 + )~ D)
= Resg,—o - - Resg—o&" - G R((V, ™V V¢ (& + 2) - - ™ (& + 2)a v Ov))
— Resg,—g - - - Resg, o€ - - - £Ma™ " V0O RO ¢ (a&y + az) - - - ¢* (a& + az)v))
= Res¢,—0 - - - Res¢, ot -+ - (1 Fa™ ¢t wt @'k —k—ny =g
R((v',¢" (G + az) -+ ¢ (G + az)v)
= (v, Yy (a™v @ gl . k1, az)v)).
This formula implies the L(0)-bracket formula.
From Condition 2 and the definition of Y3, we obtain

d

V(6 o1, 2) = Ly (=), Yo (0 641, )]
From Property 9 and the definition of Yy, we obtain
d )
V(6 o1, 2) = Yo (D (16 41, 2).

Applying both sides of this formula to 1, taking the limit z — 0 and then using the creation
property, we obtain

Ly(—1)¢l - ¢k 1 = hm diYV( g1, 2)1

The L(—1)-derivative property is proved.
Let {e, }nez be a homogeneous basis of V' and {e/, } ¢z its dual basis in V’. Then we have

(W, Yy (o - o1 Zl)YV( Sl 1, 20)0)
= W V(g o, Zl)€n><€%aYV( o1, 20)v)

neL
=) Resg—o- - Resg=o(l" - ({*Resg,—o - - - Resg o™ - §™ -
nez
R((v',¢" (G + 21) -+ 9™ (G + Zl)€n>)R(< / <Z5j1 (&1 4 22) - " (& + 22)v)
= Resg—o - - - Resg —0Ci™ - (1 *Resg, —o - - - Resg,—o&]™ - ™
R, (Gt 21) - (G A+ 2)en)) R((ey, ¢ (€ 22) - 7 (& + 22)0).
nez
(4.8)
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By Condition 6, when |z1| > -+ > |z544] > 0,

DR, " (1) - ™ (z)en) R({er, ¢ (214) - @ (212)0))

ne”Z
= S 6 1) - 6 (2 )en) (e, ¢ (1) - (s )0)
neZ
= (V0" (21) - 6" (24)" (2141) - - " (1)) (4.9)
is absolutely convergent to the rational function
R((v, ¢" (21) -+~ " (21)¢" (2h1) - - " (21s1)V)) (4.10)

in 21,..., 2k On the other hand, since the only possible poles of are z; — z; = 0
for ¢ # j and z; = 0, there is a unique expansion of such a rational function in the region
\z1]s oo 2k > Jzesals o 2o >0, 2 # zifori # 5,4, 5=1,...,kand i, j = k+1,..., k+I
such that each term is a product of two rational functions, one in z, ..., 2, and the other in
Zk41y - - -5 2k Oince the left-hand side of is a series of the same form and is absolutely
convergent in the region |z1| > -+ > |zx44| > 0 to , it must be absolutely convergent
in the larger region |z|, ..., |zk| > |zkv1l,- - - |262] >0 zz#z] fori#j,1,j = ,k and
i,j=k+1,....k+1to (4.10).

Substituting (; + 2 for z; for i = 1,..., k and &; + 2, for 2,4 for j = 1,...,[, we see that

Z R((V', ¢ (G + 21) - - 0™ (G + 21)en) ) R((€r,, ¢ (€1 + 22) - - - ¢ (& + 22)0))

neL

is absolutely convergent to

R((V', 0" (C1+21) - 0™ (G + 21) " (&1 4 22) - - ¢ (& + 22)v))

when |C1+Zl| Sl al > &t 2l G2 >0, ¢ # G ford, g = ,k and &; # &
fori,j = l When |z| > |z > 0 we can always find sufficiently small nelghborhood
of 0 such that When Ciyov oy Cpy&a, -+, & are in this neighborhood, (¢ + 21|, ..., | + 21| >
&1 + 22|, ..., |& + 22| > 0 holds. Thus we see that when |z1| > |23| > 0, the right-hand side
of is absolutely convergent to

Res¢,—o - - - Resg, =01 - - - (¥ Resg =0 - - - Resg =061 e
R((V',¢" (C1+21) -+ d)lk(fk + Zl)¢]l(€1 + z9) - (& + 22)0)). (4.11)

This is a rational function in z; and z, with the only possible poles at z1, z0 = 0 and z; = 25.
In particular, the left-hand side of (4.8)), that is,

<v',YV(¢;1 . qb““ 1,2)Yy (o - gbjl 1, z0)v), (4.12)

is absolutely convergent in the region |z;| > |23 > 0 to this rational function.
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We have proved the rationality of the product of two vertex operators. We are ready to
prove the commutativity. The calculation above also shows that

W', Yy ( ﬁ}“ e gb{'jlll, 20) Y ( f;l c k1, 2)v) (4.13)
is absolutely convergent to the rational function

RGS&:Q e ReSgl:()fInl e glmlReSQ:O R ReSCkZOC?I ce C}?k

RV, ¢ (& + 20) -+ (& + 22)9" (G + 21) -+ - ¢ (G + 21)0)),
(4.14)

in the regions |z3| > |21| > 0, respectively. By Property 12, the rational functions and
(4.14]) are equal. Thus and are absolutely convergent in the regions |z1| > |z9| >
0 and |zo| > |z1| > 0, respectively, to a common rational function with the only possible
poles at 21 = 29, 21 = 0 and 2z, = 0.

We now prove the associativity. For ¢y,... %%, J1,.-.,50 € [, my,...,my € Z, v € V and
v' € V', using the expansion of ¢ (&;),...,¢"* (&) and the definition of Yy, we have

(W, Y (0 (21) - & (2)80h, -+~ Blh, 1, 2)0)

= Z <’U’,YV( ;11... ;12 77111 Z;{bll’z)z})Zl_pl_l"‘Zk_pk_l

D1y PLEL
- Z Resc,—o - - - Resg,—oCP - - - (P*Resg,— - - - Rese,—f™ - - - €™ -
D1y PLEL
R((v, 0" (G +2) - 9™ (G + 2)0 (G4 2) - ¢ (G + 2)o) i 7T
(4.15)
We now expand
R((, ¢ (G +2) - - ™ (G + 2)¢" (&1 + 2) - - ¢ (& + 2)v))
as a Laurent series Y ., fi(Ciy oo Gom1, 61, -+, &5 2)¢. 7 in ¢ in the region 2|, [C1l, - - -, |Cho1] >
1Ce| > |&1], - - - &, where fi(Ch,y -y Chety 1y - - -5 &, 2) are Tational functions in ..., Goo1, &1y - -+, &
and z. Then in the region that the Laurent series expansion holds, we have
Z ReSCkZOC]I;k (Z fl(Clv sy gk—l; 517 cee afla Z)Ck_l_1> Zk_pk_l
PLEZ leZ
= Z fpk(gla s 7Ck—17€17 S 7517 Z)Zk_pk_l
PLEZL
= R((v, 0" (1 + 2) -+ "1 (o1 + 2)8™ (21 + 2)" (61 + 2) -+ - 7 (& + 2)0)).
(4.16)

Repeating this step for the variables (j_1, ..., (i, we see that the right-hand side of (4.15)) is
equal to the expansion of

Resg,—o - Resg—o€]" - §R((v', " (z1+2) - - ¢ (21 +2) @7 (G1+2) -+ @7 (G+2)v)) (4.17)
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as a Laurent series in zj ...,z in the region |z| > |z1] > -+ > |z| > 0. Thus the left-
hand side of (4.15)) is absolutely convergent to (| ) in the region for this Laurent series
expansion. In particular, in the region |z| > |z| > <> |z >0,

<v’,Yv(¢“(21)~~¢"’“( RO, ol 1, 2)v)
= Resg,—o - - - Resg,= 051 : ml :
R((v', " (z1 + 2) (o + 2) ¢ (G 4 2) - @6+ 2)v)). (4.18)

Now we have

W', Yy (Y5 ( . gb”“l 21 — 29)@)} 31 jl 1 , 22)U)
=§:wﬂ@@m@wxe (O B L — gl g 1)
neZ
= ZW, Yy (en, z2)v)Res¢ =0 - - - Resq =o' -+ G
nez
-R({e,,, ¢il(C1 + 21— 29) - - Yol (Ce+ 21— 22) : ¢Jl 1)). (4.19)
But by (4.18), in the region |2| > [(1 + 21 — 22| > -+ > |(x + 21 — 22| > 0, we have

Z(U', Vi (en, 22)0) (€7, 0" (C1 + 21 — 22) -+ - 0™ (G + 21 — 22) P00, -+ - Bk, 1)

ne”Z
= (v, YV(¢i1<C1 +21 - 2'2) (G4 2 — )L - Wmll 2)v)
= Resg,—0 - - - Resg &1 - - ml :

R((V, ¢“(C1 + 21) (G + 21) 8" (& + 20) - - (& + 20)0)).
(4.20)

The right-hand side of (4.20)) is a rational function in (i,...,(s, 21 and zp with the only
possible poles (; —(; = 0, for ¢ # 7, (;+21 = 0, (;+ 21 —22 = 0 and 2z = 0. There is a unique

expansion of such a rational function in the region |25 > |1+ 21 — 22|, ..., [Ck + 21 — 22| > 0,
G # (i fori#3j,4,7=1,...,k, such that each term is a product of two rational functions,
one in 2z, and the other in (7,...,(; and z;. Since

Z@I, Vv (en, 22)0) R((e7,, 9" (C1 421 = 22) -+ 9 (G + 21 — 22) @0 -+ 601, 1))

nez

is a series of the same form and is equal to the left-hand side of (4.20)) in the region |z;| >
|G+ 21 — 22| > -+ > |C + 21 — 22| > 0, it must be absolutely convergent to the right-hand

side of (4.20]) in the larger region |z| > [(1 + 21 — 22|, ..., |Gk + 21 — 22| > 0. Thus we obtain
D (W Yo (en, 22)0)R({€), 6 (G 4 21— 22) -+ 6™ (G + 21 — 20) 08, -+ $l1, 1))
nez

ml

= Resg, =0 - - - Resg, =081

R((v, ¢”(C1 + 21) - 0% (G + 21) 7 (G 4 22) - P& + 22)v))
(4.21)
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in the region |29 > (1 + 21 — 22, ..., |(x + 21 — 22| > 0. Thus when |z2| > |21 — 23] > 0, the
right-hand side of (4.19) is absolutely convergent to

Resc,—o - - - Resg, —o(T - - - C,;”“Resﬁzo . R?szzof{nl - ™ |
R, 0" (G4 21) - 9% (G + 21) " (&1 + 22) - - - @& + 2z2)v)),
(4.22)

which is proved above to be equal to the left hand side of in the region |z;| > |z2| > 0.
The associativity is proved.

To prove the uniqueness, we need only show that any grading-restricted vertex super-
algebra structure on V' with the vacuum 1 must have the vertex operator map defined by
(4.7). But this is clear from the motivation that we discussed before the definition of
the vertex operator map Yj . [ |

We call the grading-restricted vertex algebra given in Theorem [4.5] the grading-restricted
vertex algebra generated by ¢', i € I. The maps ¢°, i € I, are called the generating fields of
the grading-restricted vertex algebra V.

Remark 4.6. In the proof of Theorem we gave a proof of the associativity using the
the definition (4.7]) of the vertex operators. But the associativity can also be obtained by
quoting Proposition 3.6.1 in [FHL].

Proof of Theorem [1.9. By Proposition [I.2} Conditions 1-5 needed in_Theorem are
satisfied by S(h-), a(x) for a € b, Lg; 1(0) and Lgg ((—1). By Theorem , Theorems
is proved. [ |

Proof of Theorem [2.3. By Proposition 2.2 Conditions 1-5 needed in Theorem are
satisfied by V7, a(z) for a € b, Yy, (e*, ) for o € L, Ly, (0) and Ly, (—1). By Theorem [4.5]
Theorems [2.3] is proved. n

5 Some properties of grading-restricted vertex alge-
bras

5.1 Operator product expansion

Let V' be a grading-restricted vertex algebra. For ui,us, v € V and v' € V', by definition,
(W', Yy (ur, 21) Yy (ug, 22)0)
is absolutely convergent in the region |z;| > |23 > 0 and
W Yy (Y (ur, 21 — 22)ug, 22)0)
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is absolutely convergent in the region |za| > |z; — 22| > 0. Since (V')* is canonically iso-
morphic to V =[], ., Vin), Y (u1, 21) Yy (us, 22)v (when |21] > [22] > 0) and Yy (Yy (ug, 21 —
29)Us, 29)v (When |23 > |21 — 22| > 0) as elements of (V')* will be viewed as elements of V.
Since v is arbitrary, Yy (ug, 21) Yy (ug, 22) (when |z1| > |2z2| > 0) and Yy (Yy (uq, 21 — 22)usg, 22)
(when |25| > |21 — 22| > 0) are maps from V to V. Then we obtain the associativity

Yv(ul, Zl)Yv(UQ, 22) = Yv(Yv(ul, 1 — ZQ)UQ, 2’2) (51)

in the region |z1| > |z2| > |21 — 22| > 0. Since Yy (uy,z) € V((z)), we have Yy (uy, x)ug =
> ez (Y )n(ur)ugz ™ for (Yy ), (u1)us € V and there exists N € N such that (Yy ), (u1)us =
0 for n > N. Then we have

Yo (Yo (ur, 21 — 22)up, 22) = Yy (Y )n(ua)ua, 22) (21 — 22) "1,

n<N

in the region |z9| > |21 — 22| > 0. From this expansion and (5.1]), we obtain

Yy (ug, 21) Yy (ug, z0) = Z Yy (Yo )n(ur)ug, 20) (21 — 29) "1 (5.2)

n<N

in the region |z1| > |22 > |21 — 22| > 0. The formula (5.2)) is called the operator product
expansion of the fields or vertex operators Yy (uy, z1) and Yy (ug, 22). The terms that are

singular in the right-hand side of (5.2)) are

N

D Vo ((Yo)n(un)us, 25) (21 — 22) ™"

n=0

These singular terms are the only useful terms in the calculations of the commutators of the
fields or vertex operators Yy (ug, z1) and Yy (ug, 22). So physicists usually write the operator
product expansion with only these singular terms as

Yy (ug, 21) Yy (ug, z9) ~ ZYV((Yv)n(ul)ug, 2) (21 — z) "L (5.3)

n=0

Example 5.1. By Theorem , S (6,) has a structure of a grading-restricted vertex algebra.
As usual, we use Ys(ﬁ,) to denote its vertex operator map. It is easy to see from the definition
of the vertex operator map in the preceding section, we see that Yy \(a(—1)1,z) = a(z)
for a € h. Then the operator product expansion of a(z;) and b(z,) is

a(z1)b(z2) = YS(G_)(G<_1)1> Zl)YS(r}_)(b(_l)la 22)
=Yg ) (Ys_)(a(=1)1, 21 — 22)b(—=1)1, 25) (5.4)
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in the region |z1]| > |22] > |21 — 22| > 0. But
YS(G,)(G(_DL 21 — 29)b(—=1)1 = a(z; — 22)b(—1)1
= Za(n)b(—l)l(zl )

= (a,0)1(z1 — 22) 2+ > a(n)b(—1)1(z — )" (5.5)

ne—7Z4

Substituting the right-hand side of (5.5 into the right-hand side of (5.4]), we obtain the

explicit form

a(z1)b(z2) = (a,b) (21 — z2) " + Z Yoy (a(n)b(=1)1, z0) (21 — zp) "1 (5.6)

ne—7Zy

of the operator product expansion of a(z;) and b(z2) Since the only singular term in z; — 25

in the right-hand side of (5.9) is (a,b)(2; — 22) 72, we obtain
a(z1)b(z2) ~ (a,b)(z1 — 22) 7> (5.7)

The last formula can also be calculated using the commutator formula (1.1). Apply both
sides of 1) to v € S(h_) and then rewrite the resulting formula as

a(x1)b(x2)v — (a,b) (21 — 22) v = b(xs)a(z1)v — (a,b)(—z2 + 1) 0. (5.8)

Note that the left-hand side has only finitely many negative powers of x5 and the right-
hand side of has only finitely many negative powers of 1. Thus both sides of have
finitely many negative powers of both x; and 5. Let f(x1,23) be this Laurent series with
finitely many negative powers of x; and z5. We can write f(z1,x2) as f(za + (21 — x2), 22)
and expand it as a Laurent series in x5 and x; — x5 with only nonnegative powers of 1 — 5.
We use f(z + (x1 — x2),22) to denote this expansion. So we obtain the operator product
expansion
a(x1)b(z2)v = (a,b) (21 — 22) 2v + [z + (11 — T2), 22).

Since the expansion of f(xy 4 (x1 — 3), x2) contain only nonnegative powers of x; — x5 and
v is arbitrary, we obtain ([5.7)).

Example 5.2. By Theorem [2.3] V, has a structure of a grading-restricted vertex algebra.
We use Yy, to denote its vertex operator map. Then from the definition of the vertex
operator map in the preceding section, we see that Yy, (a(—1)1,2) = a(z) for a € b and
Yy, (e®, z) is exactly the vertex operator associated with e = 1 ® e* € V. So the operator
product expansion of a(z;) and Yy, (e, z2) is

a’(’Zl)YVL (6a7 22) = YVL (a(_l)L Zl)YVL (eav 22)
=Yy, (Y, (a(—1)1, 21 — 2z3)e”, 25) (5.9)
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in the region |z1]| > |22] > |21 — 22| > 0. But

Yv, (a(—1)1, 21 — z9)e® = a(z; — z2)e”

—Za ¥z —2zg) "t

nel

= (a,a)e™(z1 — 2) 7" + Z (21— 29) " (5.10)

ne—724

Substituting the right-hand side of (5.10) into the right-hand side of (5.9, we obtain the
explicit form

a(z1)Yy, (e*, 1) = (a,a)Yy, (e, 20) (21 — 22) ' + Z Yy, (a(n)e®, z)(z1 — 20) "1 (5.11)

ne—7Z4

of the operator product expansion of a(z;) and Yy, (e®, z) Since the only singular term in
21 — 29 in the right-hand side of (5.11)) is (a, @)Yy, (e, 22)(21 — 22) !, we obtain

a(z1)Yy, (e%, 1) ~ (a,a)Yy, (e, z) (21 — z2) "

This last formula can also be obtained using the commutator formula (2.2]) using the same
method as in the preceding example.

5.2 The Jacobi identity

Let §(x) = ), ., «" be the formal delta function. Then we have the basic property of 0(x):
For any formal Laurent series f(x) with coefficients in a vector space such that f(z)d(x) and

f(1) is well defined,
f(@)é(x) = f(1)(x).

We need to consider the following three formal delta functions:

T1—T —T2+ T o+ T
x01(5< ! 2),95015(#),:5115( 2 0).
o) Xo Iy

In these formal expressions, we always expand a binomial as a formal Laurent series in
nonnegative powers in the second formal variable. It is easy to check directly that the
following identity holds:

_1 1 — X9 -1 —T9 + X1 ] To + Xg
zy 0 ( " > xy 0 (—xo ) =z, 0 (—xl > : (5.12)
+x T —x
(2R — gt (). 1
1 ( o ) 7 (5.13)

Let V' be a grading-restricted vertex algebra. For uj,us,v € V and v' € V', the duality
property says that (3.1]), (3.2) and (3.3]) are absolutely convergent in the regions |z1| > |z2| >
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0, |22 > |z1| > 0, |22] > |21 — 22| > 0, respectively, to a common rational function in z; and
zo with the only possible poles at 21,25 = 0 and z; = 25. This common rational function

can be written explicitly as %, where f(z1,27) is a polynomial in z; and z and
1~2
r,s,t € N. We multiply the Laurent polynomial J;(fésfj) in the formal variable z(, r1 and x-
1270

to both sides of ([5.12]) to obtain the identity
2516 (551 - 332) f(z1,22) w516 (—1'2 + 331) f(@1,22) — 7l (5172 + 3?0) f(xl,ﬂﬁz)‘

t t t
T rirse T riXs5T] 1 Tia5T]

(5.14)

Using the basic property of the formal delta function, we can rewrite (5.14)) as
:L‘EI(S (.171 _.TQ) f(l'l,xg) —1'61(5 (—I’Q +.f131) f(ﬂl'l,xg)
Zo

alas(ry — x9)t Zo rixy(—xe + 1)

= 2716 (xQ i x“) ( floy, z) (5.15)

1 To + xo) ST

Note that (xl—lm)t in — gs(f;£f2£2)t is expanded in nonnegative powers of x5. We already know
12

that 1} is absolutely convergent in the region |z1| > |z3| > 0 to % In other words,
1~2

the expansion of Tfs(zl’zf) ;- as a Laurent series in z; and 2y in the region |z1| > |23 > 0 is
z173(71—22)

exactly 1) This is the same as saying that % as a formal Laurent series in x;
and 9 obtained by expanding m in nonnegative powers of x5 is exactly

(W', Yy (uy, x1) Yy (ug, m2)v). (5.16)
So we can replace ﬁﬁ—liy in ([5.15) by (5.16]). Similarly, we can replace % and

f(]? » L ) 3

m in (5.14 by

(v, Yy (ug, 22) Yy (u1, 21)v)
and

(UI, Yv (Yv (uq, zo)us, $2)U>a

respectively. Thus we obtain

—T2 + T

Zo

x50 <x1 — xQ) W', Yy (ur, 21) Yy (ug, 12)0) — 2516 (

Zo

) (v, Yvr (ug, 22) Yy (u1, £1)v)

= 131_15 (3&: $0) <U/, Yv<Yv(U1, l’o)Ug, $2)U>.
1

Since v" and v are arbitrary, we obtain the following Jacobi identity:

— rn—r _ —x9+ T
Ty ) ( 1x 2)YV(U1,$1)YV(U27$2) - 95015 (%) YV(U2,5E2)YV(U1,I1)
0 0
_ To+ o
=T 1(5 ( 2£L‘ 0) Yv(Yv(U1,$0)U2,$2). (517)
1
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5.3 Skew-symmetry
Replacing uy, ug, x1, 2 and g in (5.17) by us, ui, 2, r1 and —xg, respectively, we obtain

— T2 — 7T _ —x1+
—90015( 2 . 1>YV(U2,$2)YV(U1,$1)+96015 (—1$ 2)YV(U2,I1)YV(U2,$1)
— %o -
=20 (“; x“) Yo (Yo (us, —w0)ur, 1) (5.18)
2

Since the left-hand sides of ((5.18)) and (5.17)) are equal, the right-hand sides are also equal.

So we obtain

1 — Zo

_ To+ T -
T ( 2 0) Yo (Yo (ur, mo)ug, x2) = 258 (

T

) Yv(Yv(UQ,—ZL'())Ul,iL‘l). (519)

T2

Using ([5.13]) and the basic property of the formal delta function in the right-hand side of
(5.19), we see that (5.19)) becomes

To + X

g

) <x2 i xo) Yy (Yy (us, 20)ug, w2) = 2710 (

X1

) Yv (Yv (ug, —x0)u1, xo+20). (5.20)

From the L(—1)-derivative property

d
%YV(YV@L% —900)“17 $2) = YV(LV(_l)YV<U2a —900)“17 $2),
2
we obtain o
ﬁYV(YV@LZa —xo)ul, .TQ) = Yv(Lv(—l)nYV(’UQ, —$0)U1, SL’Q) (521)
2

for n € N. For f(xs) € V((x2)), we have the formal Taylor’s theorem

n n
Zp d

n! dzh

f(l‘g + $0) = Z

neN

(22). (5.22)

Applying both sides of ([5.20]) to 1, using the formal Taylor’s theorem ([5.22)) with f(z5) =
Yv (Yv (ug, —x0)us, x2)1, using (5.21)), taking Res,,, letting 25 = 0 and then replacing xy by
x, we obtain the skew-symmetry

" _
Yy (ug, x)ug = Z FLV(—l)”YV(ug, —T)uy = evLv( 1)Yv(u2, —)uy. (5.23)

neN

5.4 Commutator and associator formula

For a formal Laurent series f(z) in z, we use Res,f(z) to denote the coefficient of z~*
term in f(z). Now taking Res,, on both sides of the Jacobi identity (5.17)), we obtain the
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commutator formula for vertex operators:
Yy (ur, 1) Yy (ug, 22) — Yy (ug, 22) Yy (u1, 1)

= Res,, 270 (xg 7o

X1

) Yv(YV(ul,fL’o)UQ,J]Q). (524)

Taking Res,, on both sides of the Jacobi identity ([5.17)) and using (5.13)) and the basic
property of the formal delta function, we have

Yv (Yv (ur, xo)ug, 22)
= Res,, 250 (xl — 2

) YV(U1,SU1)YV<U27372)
Zo

—T2 + T

Zo

) Yv (ur, 1) Yy (ug, z2)

— Res,, 2516 ( ) Yv (ug, 22) Yy (uy, 1)

i —|—ZU2
T
—T9 + X1

Zo

) Yv (ur, xo + 22) Yy (ug, o)

= Res,, 7,0 (

— Res,, 7,16 ( ) Yy (ug, x2) Yy (u1, 21)

Zo + X9
T

= Res,, 270 (

—XT2 -+ T

—1
— Res,,z, 0 (
Lo

) YV(U2,IIJ2)YV(U1>$1)
= Yy (u1, 2o + x2) Yy (uz, x2)

— Res,, 7510 (M) Yv (ug, x2) Yy (ug, z1). (5.25)

Zo

Moving the first term in the right-hand side of ([5.25)) to the left-hand side, we obtain the

associator formula for vertex operators:
Yy (Yv (ur, wo)ug, T2) — Yy (ur, o + 22) Yy (U, 72)

= —Res,, 7,0 (M) Yv (ug, x2) Yy (uy, 7). (5.26)

Zo
5.5 Weak commutativity and weak associativity

Since Yy (u1, zg)us is a formal Laurent series with only finitely many negative powers in xo,
there exists N € Z, such that z)Yy(uy,o)us € V|[zo)]. Multiplying (1 — 22)" to the
right-hand side of the commutator formula (5.24]), using the basic property of the formal
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delta function and using the fact that Res,, of a formal power series is 0, we obtain

T2 + Zo
T

Res,, (21 — 22) V270 ( ) Yy (Yv (ur, o) ug, 22)

:1:2;— IO) YV(YV<U17 flfo)u2, 532)
1

— 0. (5.27)

_ N, .1
= Res,,zy x; 0 (

Thus (z; — x2)"Y multiplied to the left-hand side of (5.24)) is also 0. So we obtained the weak
commutativity:

(z1 — )Yy (uy, 21) Yy (ug, 220) = (21 — 22)V Yy (ug, 20) Yy (uy, 21). (5.28)

Similarly, since Yy (uq,x1)v is a formal Laurent series with only finitely many negative
powers in 1, there exists N € Z, such that 22Yy (uy, 21)v € V[z1]]. Multiplying (zg+x2)™
to the right-hand side of the associator formula , applying the result to v, using the
basic property of the formal delta function and using the fact that Res,, of a formal power
series is 0, we obtain

—T9 + Xy

—Res,, (zg + 22) Ny 6 (
o

> Yv(UQ, I'Q)Yv(ul, 1131)’1}

—l‘zx—+l‘1) Yy (ug, 22) Yy (ur, 21)v
0

— 0. (5.29)

_ N, 1
= —Res,, x] x50 (

Thus (21 — z2)" multiplied to the left-hand side of (5.24)) and then applied to v is also 0. So
we obtained the weak associativity:

(20 + 22) VYo (Yor (un, 20 )ua, 12)v = (w0 + 22) Yy (uy, 2o + 22) Yy (ug, 72)v. (5.30)

Weak commutativity and weak associativity can also be obtained directly from the duality
property in the definition of grading-restricted vertex algebra.

5.6 Conformal element and Virasoro operators
Let w be a conformal element of V' (see Definition [3.5). Then

Yy (w, 2)w = Ly (—Dwz ™! 4+ 2wz™2 + glx_4 + G(z), (5.31)
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where G(z) € V[[z]]. Using the commutator formula ([5.24) with u; = us = w, we obtain
Yy (w, 1) Yy (ug, 72) — Yy (w, 29) Yy (us, 71)

= Res,, 270 (xg + :BO) Yv (Vv (w, zo)w, 2)
xy
T2 + g -2, -1
Yv(Ly(—1)w, x2) + 2Res,,xy “x; 6§
Z1

513'2—|—Q?0

i) -+ o
I

= Res, 75 270 ( ) Yy (w, x2)

l’g—i—xo

+ gResxoat(j%l_lé ( ) Vi (1, 25) 4+ Resy,x7 '8 (

(T2 0O 1 0 (o c 0 [
- 2) %y, 207125 (2 ) vy L2 32
] 5( )8952 v(w, z9) + 227 83:25( ) v(w, z2) + 51 83:%5 o) (5.32)

) Yy (G(0), 2)

€ T

T T

where in the last equality, we have used the L(—1)-derivative property, the formal Taylor’s
theorem (5.22)) applied to x7'9 (9”2;—1“) and the fact G(zo) € V|[zo]].
Writing

Y(w,x) = Z:Lv(n)x’"’2

€Ecl

and then taking the coefficients of 27™ 2z, 2 in ([5.32), we obtain the Virasoro relations

Lv(m)Lv<n) — Lv(TL)Lv(m)
= Res,, Res,, o ot (Ve (w, 1) Y (ug, 23) — Yy (w, 22) Yy (ug, 1))
mi1 ni1 g (L2) 0
= Res,, Res,, o bt tats (I_1) a—mYV(w, )
0 i)

+ QReleResxngng“a:fla—xzé <x—1> Yy (w, x2)

3
c 0 z
m+1,n+1,_.—1 2

+ —Res, Res,.. 2" a7 —=0 | —

197wl 2 ors \z;

0
= Resmxg“”*za—YV (w, 2) + 2(m + 1)Resg, 25 Yy (w, 29)
)
c

+ E(m + 1)m(m — 1)Res,, x5+

=(—m—n—2)Ly(m+n)+2(m+1)Ly(m+n)+ 1—62(771 + )m(m — 1)0mino

3 m>6m+n70. (533)

c
= (m=mn)Ly(m+mn) + —(m
It is also easy to see by reversing the proof above that if the Virasoro relations ((5.33)) holds,
then ([5.31]) holds. Thus we can replace (5.31)) in Definition by (5.33]).
Proof of Theorem . By the definition of Y , we have

u'(—1)*1 = Res,, gy "' (0)u’ (—1)1 = ResmoarleS(ﬁi)(ui(—l)l,xo)ui(—l)l.
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Using this and the first equality in ((5.25)), we have

Yy (u' (1)1, z5)
= Resxox51YS(ﬁ_)(YS(G_)WZ(—UL zo)u'(—=1)1, z2)

= Resyy " Res, 756 (;) Yoo (! (=)L) Yy (u'(~1)1, )
0

—T9 + Xy

— Res,, 75 'Res,, 7516 (
Lo

) Voo (6 (~1)L,22) Yy (w'(—1)L,1)

= Res,, (11 — z2) u' (21)u'(22) — Resy, (—xo + 21) "' (22)u’ (21)

= (Z u'(—m — 1)x72n> u'(x3) + u'(z2) Z u'(=m — 1)zy’

meN me—2Zy
= cu'(my)u'(w9)°. (5.34)
Uisng (5.34)) and the definition of T'(z), we obtain Yy (w,z) = T(x). By (1.4),
dim b

Yoy (w,x)w = Lgg )(—1)wx_1 + 2wz 4 1z * + G(2).

The other property for Lg ((—1) and Lgg (0) can be verified using the formula (1.3).
We omit the proofs here. |

6 Meromorphic open-string vertex algebra

The following definition is from [HuaT7]:

Definition 6.1. A meromorphic open-string vertex algebra is a Z-graded vector space V =
ez Viny (graded by weights) equipped with a linear map

Yy :V = (End V)[[z,z7Y]
u YV(UVT)’

or equivalently, a linear map

Yy : VeV — V(zz
u®@v — Yy(u,x)v

called vertex operator map a vacuum 1 € V, satisfying the following conditions:
1. Lower bound condition: When n is sufficiently negative, V() =0 .

2. Properties for the vacuum: Yy (1,z) = 1y (the identity property) and for u € V,
Yy (u,2)1 € V[[z]] and lim,_,o Yy (u, z)1 = u (the creation property).
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3. Rationality: For uy,...,u,,v € V and v € V', the series

<U/7 YV(ub Z1) o 'YV(Un, Zn)U>

= (v, Yy (ur, 1) - Yy (U, 7,)0) (6.1)

converges absolutely when |z;| > - -+ > |z,| > 0 to a rational function in zy,. .., z, with
the only possible poles at z; =0 for¢=1,...,nand z; = z; for ¢ # j. For uy,up,v € V
and v' € V', the series

(W Yy (Y (u1, 21 — 22)us, 22)0)

= (', Yv (Yv (u1, mo)uz, 22)v) (6.2)

TO=R1—22, L2=22

converges absolutely when |z3| > |23 — 23| > 0 to a rational function with the only
possible poles at z; =0, zo = 0 and z; = 2».

4. Associativity: For uy,us,v € V, v € V', we have
<U,, Yv(ul, Zl)Yv(Ug, ZQ)?J> = <’Ul, Yv(Yv(Ul, Z1 — ZQ)UQ, ZQ)U> (63)
when |z1| > |z9| > |21 — 23] > 0.
5. d-bracket property: Let dy be the grading operator on V', that is, dyu = mu for m € Z
and u € Viy,y. Foru €V,
d
[dy, Yy (u,z)] = Yy (dyu,z) + $%YV<U, x). (6.4)
6. The D-derivative property and the D-commutator formula: Let Dy : V' — V be defined
by
Dy (u) = 1i d Yy (u,z)1
viu) = IILI(I] d viu,T
for u € V. Then for u e V,

d
—Yy(u,z) = Yy(Dyu,x)

dx
= [Dv,Yv(u7 ZL’)] (65)

A meromorphic open-string vertex algebra is said to be grading restricted if dim V) < oo
for n € Z. Homomorphisms, isomorphisms, subalgebras of meromorphic open-string vertex
algebras are defined in the obvious way.
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We shall denote the meromorphic open-string vertex algebra defined above by (V, Yy, 1)
or simply by V. For v € V, we call the map Yy (u,z) : V — V|[z,27!]] the vertex operator
associated to u.

A grading-restricted vertex algebra is a grading-restricted meromorphic open-string ver-
tex algebra.

We now recall the notion of open-string vertex algebra from [HK]:

Definition 6.2. An open-string vertex algebra is an R-graded vector space V =[]
(graded by weights) equipped with a vertez map

Vin)

neR
Y9:V xR, — Hom(V,V)
(u,r) = YO(u,r)
such that for » € Ry the map given by u — Y (u,r) is linear, or equivalently,

YO (VeV)xR, — V
(u@v,r) = YOu,rh

such that for » € R, the map given by u® ~ YO (u,r)v is linear, a vacuum 1 € V and an
operator D € End V' of weight 1, satisfying the following conditions:

1. Vertex map weight property: For ny,ny € R, there exist a finite subset N(ny,ng) C R
such that the image of (Hn€n1+Z Vi) @ Hengrz V(n)) xR, under Y? isin HneN(mmHZ Vin)-

2. Properties for the vacuum: For any r € R, Y9(1,7) = 1y (the identity property) and
lim, 0 YO (u, )1 exists and is equal to u (the creation property).

3. Local-truncation property for D': Let D' : V! — V' be the adjoint of D. Then for any
v’ € V', there exists a positive integer k such that (D")*v' = 0.

4. Convergence properties: For vy,...,v,,v € V and v € V', the series
W, YOy, r) - YO (v, r)v)
converges absolutely when r; > --- > r, > 0. For vy,v,v € V and v’ € V', the series
(W, YO(YO(v1,70)va, 72)0)
converges absolutely when ry > rg > 0.
5. Associativity: For vi,v,v € V and v/ € V',
W, YO (v1,7m)Y O (va, m0)v) = (', YO (YO (01,71 — 12)vg,72)0)

for r1, 79 € R satisfying ry > ry > ry —ry > 0.
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6. d-bracket property: Let d be the grading operator on V, that is, du = mu for m € R
and u € Vi) For u € V, YO(u,r) as a function of r € Ry valued in Hom(V,V)
is differentiable (that is, for v € V, o' € V', (v/,Y(u,7)v) as a function of r is
differentiable) and

d
[d,YO(u,r)] = YO(du,r) + rd—YO(u, r). (6.6)
r
7. D-derivative property: We still use D to denote the natural extension of D to Hom(V, V).
For u € V,
d
d—YO(u,r) = [D,Y%(u,r)] = Y°(Du,r). (6.7)
r

The open-string vertex algebra defined above is denoted by (V,Y 9,1, D) or simply V.

A meromorphic open-string vertex algebra is indeed an open-string vertex algebra.

Let b be a vector space over C equipped with a nondegenerate bilinear form (-,-). The
Heisenberg algebra 6 associated with b and (-, -) is the vector space h® [t, t '] ® Ck equipped
with the bracket operation defined by

[a®@t™ b@1t"] = m(a,b)dmninok,

[a®tmvk] = 0,

for a,b € h and m,n € Z. It is a Z-graded Lie algebra. In particular, we have the universal
enveloping algebra U(h) of h. The universal enveloping algebra U(h) is constructed as a
quotient of the tensor algebra T'(h) of the vector space h. We have a triangle decomposition

b @ hoh,
where
b = pet'Cit ),
Gf = h&tCt,
hp = b CoaCk
~ hpCk,
h ~ HeC

are subalgebras of b.
The meromorphic open-string vertex algebras and left modules in the present paper are

~ ~

constructed from left modules for a quotient algebra N (h) of the tensor algebra 7'(h) such

~ ~

that U(h) is a quotient of N(h). Let I be the two-sided ideal of T'(h) generated by elements
of the form
(Rt @bt") — (b®t") ® (a®@t™) —m(a,b)dpin ok,
(@@t o dat’) - (bat) @ (aeth),
(a2t @k -—k® (a®t)
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forme€Z,,n€~Zy, k€ Z\{0} and [ € Z. Let N(h) = T(h)/I. By definition, we see

that U(h) is a quotient algebra of N(b). A
We have the following Poincaré-Birkhof-Witt type result for N(h);

~

Proposition 6.3. As a vector space, N(b) is linearly isomorphic to
T(h-) ® T(h+) ® T(h) ® T(Ck) (6.8)

where T(h_), T(hy), T(h) and T(CK) are the tensor algebras of the vector spaces h_, b4, b
and Ck, respectively.

~

Now we construct left modules for N (). Let M be a left T'(h)-module. We define the
action of k on M to be 1 and the actions of elements of h; on M to be 0. Then M is also
a left module for the subalgebra N (6+ ) 60) of N (6) generated by elements of 6+ and 60.
We consider the induced left module N (6) QN (s o) M. By Proposition , we see that
N(h) N (b, why) M is linearly isomorphic to T(h_) ® M. We shall identify N(h) DN b, @by M
with T(h_) @ M. The left N(h)-module structure on T'(h_) ® M can be obtained explicitly
by using the commutator relations defining the algebra N (§) and the left N (b, @ bo)-module
structure on M.

For a left N (6)—m0dule, we denote the representation images of a ® t" € 6 for a € h and
n € Z acting on the left module by a(n). Then the left N'(§)-module T'(h_) @ M constructed
from a left T'(h)-module M is spanned by elements of the form a;(—ny) - - - ax(—ny)w, where
ai,...,a € 6, ny,...,ng € Z, and w € M.

Given a left N (6)—module, we define a normal ordering map ° - ¢ from the space of
operators on the left module spanned by operators of the form a;(n;) - - - ax(ng) to itself by
rearranging the order of a;(ny), ..., ax(ng) in ai(ny) - - - ax(ng) by moving a;(n;) with n; <0
to the left, a;(n;) with n; > 0 to the middle and a;(n;) with n; = 0 to the right but keeping
the orders of a;(n;) with n; < 0, with n; < 0 or with n; = 0. For example,

ca1(—1)az(0)as(4)as(0)as(—3)as(—1)az(10):
= a1(—1)as(—3)ag(—1)az(4)ar(10)az(0)ay(0).

More explicitly,
car(ny) -+ ap(ne) S = ae)(No1)) =+ Aok (Mo (k)

where o € S}, is the unique permutation such that
o(l) <. <o(a),

ola+1) <--- <o(f),
o(f+1) < <a(k),

Ng(1) - - - 7n0'(a) < 07
No(at1)s - - N (B) > 0,
no’(,3+1)7 cee ;na(k) = 07

40



for some integers o and [ satisfying 0 < o < § < k.

Given an induced left N(h)-module W = T(h_ )M, aq,...,ar € hand my,...,my € Z,
we define the vertex operator Yy (a1 (—myq) - - - ax(—my)1, x) associated to a(—my) - - - ag(—my)1 €

~

T(h-) by

Yw(ai(=myq) -+ - ag(—my)1, )

_ ;(mll_ N <dii:1_lla1(x)> (mkl_ o (dcf;:k_llak(x)) 3 (6.9)

where
a;(x) = Z a;(n)x~"t
nez
fori=1,...,k and a;(n) fori = 1,... k and n € Z are the representation images of a; ® t"
on W.

Theorem 6.4. The triple (T(G_), Yoe ) 1) defined above is a meromorphic open-string ver-

tex algebra. In the case that b is finite dimensional, (T(G_), Yooy 1) is a grading-restricted
meromorphic open-string vertex algebra.

7 A quick guide to the representation theory of Lie
algebras

The material in this section are notes I wrote before. They provide a guide to the
theory of finite-dimensional Lie algebras. I will not lecture on this material sys-
tematically in the class. Instead I will briefly discuss some of them when I need
to quote some results on finite-dimensional Lie algebras. The main reference for
this section is [Huml).

Definition 7.1. A Lie algebra is a vector space L over a field F equipped with a bracket
operation [-,-] : L ® L — L satisfying the following conditions:

1. The skew-symmetry: For x,y € L,
[,y] = —y, x].
2. The Jacobi identity: For x,y,z € L,

[137 [y,ZH + [y7 [Z,SL‘H + [Z; [I,y]] =0.

A homomorphism from a Lie algebra L, to another Lie algebra L, is a linear map f from L,
to Lo such that for x,y € Ly, f([x,y)1) = [f(x), f(y)]2, where [-,]; and [+, -]5 are the bracket
operations for L; and Lg, respectively. An isomorphism from a Lie algebra to another Lie
algebra is an invertible homomorphism of Lie algebras.
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Example 7.2. Let A be an associative algebra. We define a bracket operation [-,:] by
la,b] = ab — ba| for a,b € A. Then A equipped with this bracket operation is a Lie algebra.
In particular, for a vector space M, the space End M of all linear operators on M is an
associative algebra. Then we have a Lie algebra structure on End M. We shall denote this
Lie algebra by gl(M).

Definition 7.3. Let L be a Lie algebra. A representation of L is a vector space M and a
homomorphism p of Lie algebra from L to gl(M). The vector space M equipped with the
representation p is called a module for L or an L-module. For an L-module, we shall denote
p(x)y for x € L and y € M by zy. A homomorphism of L-modules from an L-module
M, to another L-module M, is a linear map from M; to M, such that f(zy) = xf(y) for
r € L and y € M;. An isomorphism from an L-module to another L-module is an invertible
homomorphism of L-modules.

Definition 7.4. Let L be a Lie algebra. A subalgebra of a Lie algebra L is a subspace N of
L such that the bracket operation [-, -] for L maps N x N to N. An ideal of L is a subalgebra
I of L such that [z,y] € I for v € I and y € L. Let I be an ideal of L. Then L/I has a
natural structure of a Lie algebra and is called the quotient of L by I. L is said to be simple
if the only ideals of L are 0 and L and in addition, [L, L] # 0.

Definition 7.5. Let L be a Lie algebra. Let L) = [L, L], L® = [LMW LOW] ... LO =
[L0=D L@=1] . The Lie algebra L is said to be solvable if L) = 0 for some i.

Proposition 7.6. Let L be a Lie algebra.
1. If L is solvable, then all subalgebras and homomorphism images of L are solvable.
2. If I is a solvable ideal of L such that L/I is also solvable, then L is solvable.
3. If I and J are solvable ideals of L, then so is I + J.
4. There is a unique maximal solvable ideal of L.

Proof. Part 1 follows immediately from the definitions.

Let I be a solvable ideal of L such that L/I is also solvable. Then there exists m € Z
such that (L/1)™ = 0, or equivalently, L™ C I and there exists n € Z, such that 1™ = 0.
Since L™ C I and I™ = 0, we have L") = (L)) < [ = 0 proving that L is
solvable.

By the standard homomorphism theorem, we know that (I + J)/J is isomorphic to
I/(INJ). Since I/(INJ) is a homomorphism image of I, it is solvable. So (I +.J)/J is also
solvable. But J is also aolvable. By Part 2, we see that I 4+ J is solvable.

Let S be a maximal solvable ideal (a solvable ideal such that any solvable ideal containing
S must be equal to S). Let I be any solvable ideal. Then S+ I is also a solvable ideal. Since
S + I contains S, S+ I = S or equivalently, I C S. Thus such an S is unique. |
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Definition 7.7. The unique maximal solvable ideal of L given in the proposition above is
called the radical of L and is denoted Rad L. A Lie algebra is said to be semisimple if its
radical is 0.

Definition 7.8. Let L be a vector space. The tensor algebra generated by L is the space

T(L) =] "

neN

where N is the set of nonnegative integers and L®" is the tensor product of n copies of L
(when n = 0, L®® = F), with the tensor product of elements as the multiplication. Let L
be a Lie algebra. The the quotient of T'(L) by the two sided ideal I of T'(L) generated by
elenets of the form @y —y®x — [z, y| for z,y € L is an associative algebra. This associative
algebra is called universal enveloping algebra of L and is denoted by U(L).

We shall use z1 - - - z,, for xq,...,x, € L to denote the element r; ® -+ ®x, + I of U(L).
Then we see that U(L) is spanned by elements of this form. In particular, elements of the
form x for x € L form a subspace of U(L) linearly isomorphic to L.

Proposition 7.9. A vector space M is an L-module if and only if it is a U(L)-module.
Proof. Let M be an L-module. For zy ---x, € U(L) and y € M, we define

(371---:En)y =$1(($ny))

Since M is an L-module, it is easy to see that this is well defined, that is, if z; - - - x,, is equal
to a linear combination of elements of the same form, then the action of this element on y
defined above and by using the linear combination give the same result. It is also easy to
see that this action gives a U(L)-module structure on M.

Conversely, given a U(L)-module M, since L can be viewed as a subspace of U(L), we
have an action of L on M. Using the definition of U(L) and the meaning of U(L)-module,
we see that M with this action of L is an L-module. |

Definition 7.10. Let L be a Lie algebra. Let L' = [L, L], > = [L, L], ..., L' = [L, L*"1],
.... A Lie algebra is said to be nilpotent if L' = 0 for some i € Z, .

It is clear that L' = LM and L™ c L for i > 1. So we have:
Proposition 7.11. Let L be a Lie algebra. Then L is solvable if L or [L, L] is nilpotent. W

Theorem 7.12 (Cartan’s criterion). Let M be a finite-dimensional vector space and L be
a subalgebra of the Lie algebra gl(M). If Tr xy = 0 for all x € [L, L] and y € L, then L is
solvable.

The proof is omitted. See [Hum]| for a proof.

43



Definition 7.13. Let L be a Lie algebra. A representation p : L — gl(M) is said to be
fauthful if ker p = 0. In this case, the L-module M is also said to be faithful.

Definition 7.14. Let L be a finite-diemnsional Lie algebra and p : L — gl(M) a faithful
representation of L. Define a bilinear form §, : L ® L — F by B,(z,y) = Trp(z)p(y) for
x,y € L. Let L be a finite-dimensional Lie algebra. The Killing form of L is the bilinear
form k = (,q for the adjoint representation ad on L itself defined by (ad z)y = [z,y] for
z,y € L.

Exercise 7.15. Verify that the bilinear form (3, is associative, that is, 8,([x,y], z) = B,(z, [y, 2])
for z,y,z € L.

Proposition 7.16. Let L be a finite-diemnsional semisimple Lie algebra and p : L —
gl(M) a finite-diemnsional faithful representation of L. Then f3, is nondegenerate, that is,
Bo(x,y) =0 for all y € L implies v = 0.

Proof. Let S={x € L|B,(x,y) =0forally € L} (S is called the radical of 5,). We need
to show that S = 0.

Since p(S) is a subalgebra of gl(M), we can apply Cartan’s criterion to p(S). Since
Tr p(x)p(y) = By(x,y) = 0 for x € S and y € L, we certainly have Tr 2y = 0 for = €
[p(S), p(S)] and y € p(S). Thus p(S) is solvable. Since p is faithful, S is isomorphic to p(S)
and is therefore also solvable. Since L is semisimple, S = 0. |

Since 3, is nondegenerate, it gives an isomorphism from L to the dual space L* of L
by x € L — B,(z,-). Let {x1,...,2,} be a basis of L and {z7,...,z}} the dual basis. By
definition, we have

i (;) = 0y

for i, = 1,...,n. Using the inverse of the isomorphism from L to L*, we see that the basis
{z%,..., 2} corresponds to another basis {y1,...,y,} of L and satisfies

ﬁp(xh y]) = 5@

for i, =1,...,n. We shall also call this basis the dual basis of {x1,...,x,} with respect to
the bilinear form B, or simply the dual basis of {z1,...,z,}.

Definition 7.17. Let L be a finite-dimensional semisimple Lie algebra and p : L — gl(M)
a finite-dimensional faithful representation of L, or equivalently, M is an L-module. The
Casimir element of M is

Qu = Zp(mi)p(yi) € End M.
i=1

Exercise 7.18. Verify that the definition of the Casimir element above is independent of
the choice of the basis {z1,...,2,}.

Proposition 7.19. Suppose that p is a faithful representation of L. Then the Casimir
element commutes with p(x) for x € L.
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Proof. Let
[, 2] =) aiz;
j=1
and

[z, yi] = Z bijy;
j=1

for7=1,...,n. Then we have

n

Qi = E ijOjk

=1
n

= > ayBplwy,u)

Jj=1

= BP([xvxi]’yk)
= B[z x], yr)
= _ﬁp(xiu [x7yk])

n

= = byB(riy,)
j=1

= = by
j=1

= —by
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fori,k=1,...,n. Thus

[o(2), Q]

n

> lo(@), p:)p(ys)]

=1

> pl@p(ea)ply:) = > plwi)p(y:)p(x)

n n

> (p(@)p(xi)p(y) — p(x:)p(x)p(y) + D (plai)p(x)p(y:) — pla:)p(y:)p(z)

i=1 i=1
n

> _lo(@), plwa)loly) + 3 p(i)lp(x), p(y:)]

i=1

Z plla, z))ply:) + Z EAYERT)

> ayp(x)ply) + Y bip(zi)p(y;)

ij=1 ij=1
Z (aij + bji)p(x;)p(yi)
ij=1

0,

proving that Q,; commutes with p(z) for x € L.

Let M; and M5 be modules for a Lie algebra L. We now give a tensor product module of
M; and M,: Consider the tensor product vector space M; ® M,. Define an action of L on

M, ® M, by

r(y1 @ Y2) = 2y1 @ Y2 + Y1 ® TY2

for x € L, y; € My and y, € Mo.

Exercise 7.20. Verify that M; ® M, with this action of L is indeed an L-module.

Let M; and M, be modules for a Lie algebra L. We next give an L-module structure on
the vector space Hom(M;, M) of all linear maps from M; to Ms: Define an action of L on
Hom(Ml, Mg) by

(xf)(y) = 2 f(y1) — f(wy)

for z € L, f € Hom(M;, M) and y; € M.

Exercise 7.21. Verify that Hom(M;, M) with this action of L is indeed an L-module.

Let M be an L-module. We now consider then special case that M; = M and My = F

with the trivial L-module structure (the action of elements of L on F is 0).
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Hom(M, F) and we obtain an L-module structure on M*. This is called the contragredient
module of M. We can also give the action of the action of L on M* directly by

(xf)(y) = —f(zy)

forxel, fe M*and y € M.
In the rest of this section, we assume that F is algebraic closed of characteristic 0.

Theorem 7.22 (Weyl). A finite-dimensional module for a finite-dimensional semisimple
Lie algebra is completely reducible.

Proof. We need only prove that an exact sequence
0> M - M — My —0

of finite-dimensional L-modules is split. Equivalently, we need only prove that for a finite-
dimensional L-module M and a finite-dimensional L-submodule M, there exists a finite-
dimensional L-module M5 such that M is isomorphic to M; & M,.

If indeed we can find such M, then the projection p from M to M; is a homomorphism
of L-modules. The projection p can be characterized as the linear map from M to M; such
that ply, = Iy, and kerp is isomorphic to M,. So to prove the theorem, we need only to
find a homomorphism of L-modules from M to M; such that its restriction to M; is the
identity and its kernel is isomorphic to M.

To find such a homomorphism of L-modules from M to M;, we consider Hom(M, M).
We have given an L-module structure to this space. Such a homomorphism, if it exists, must
belong to the subspace M of Hom(M, M;) consisting of elements whose restriction to M is
proportional to the identity operator on M;. On the other hand, we certainly do not want
elements in this subspace whose restrictions to M; are 0. Let M be the space of all such
elements. We claim that M is an L-submodule of Hom(M, M;) and M is an L-submodule
of M. In fact, for f € M, there exists A € F such that f|y, = A;,. Then for z € L and
y e M, (zf)(y) = xf(y) — f(zy) = Axy — Axy = 0. Thus (zf)|a, = 0. The same proof
also shows that M is an L-submodule of M. Note that M /M is one-dimensional because
modulo elements of M1, elements of M are determined completely by its restrictions on M.
If M can be decomposed as a direct sum of the L-submodule M; and a one-dimensional
L-submodule of M; C Hom(M, M), then we can choose the homomorphism we are looking
for to be a basis of this one-dimensional subspace of Hom(M, Mj).

We now prove that M can be decomposed as a direct sum of the L-submodule M; and
a one-dimensional L-submodule of M. We have proved that (zf)|y, = 0 for z € L. So
M C My for x € L. Thus L acts on the one-dimensional L-module M/M; trivially. In
particular, the L-module M /M, is isomorphic to the trivial L-module F.

We use induction on the dimension of M. When the dimension of M is 1, M can cer-
tainly be decomposed as a direct sum of the L-submodule M; = 0 and one-dimensional
L-submodule M of M. Now assume that when the dimension of M is less than k, the
decompostion holds. We now consider the case that the dimension of M is k. If M; is not
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irreducible, then there exists a nonzero proper L-submodule M/ of M;. Then the dimension
of M/M/ is less than k and (M /M) /(M;/M]) is one-dimensional. By induction assump-
tion, There is a one-dimensional L-submodule of M /M such that M /M] is the direct sum
of M;/M/ and this one-dimensional L-submodule. But any L-submodule of M /M is of
the form M /M, where M is an L-submodule of M. Now M/ is an L-submodule of M such
that M /M, is one-dimensional. So we can use our induction assumption again to obtain
a one-dimensional L-submodule X such that M is the direct sum of M/ and X. We know
that M/ M} N My/M, =0, X € M and X "M, =0. So X N M; = 0. Thus

dim M = dim M; + 1 = dim M; + dim X.

Since both M; and X are L-submodules of M and their intersection is 0, their direct sum
must be M.

We still need prove the case that M is irreducible. If p is not faithful, then we consider
the quotient L/kerp. The representation p induces a faithful representation of L/ ker p.
Since L is semisimple, Rad L = 0. The quotient as a homomorphism image of L is also
semisimple. The complete reducibility of M as an L-module is equivalent to the complete
reducibility of L/ker p. Thus we can assume that p is faithful. Since the Casimir element
Qs commutes with p(z) for x € L, Q) is in fact a homomorphism of L-modules from M to
itself. In particualr, Q,;(M;) C M; and ker ), is an L-submodule of M. Since L acts on
M /M trivially, so does Q. So Tr2y; = 0 on M /M. But since M; is irreducible, Qy,
acts as a scalar on M. This scalar cannot be 0 since TrQ2;; = dim L. Hence ker 2;; must
be a one-dimensional L-submodule of M such that ker Q;; N My = 0. Thus M is the direct
sum of M and ker ;. [ |

Let Z(L) be the center of L, that is
Z(L)={x€L|[z,y =0fory e L}.

Then by definition,
Z(L) = kerady,

and Z(L) is a solvable ideal of L.
Lemma 7.23. A Lie algebra L is semisimple if and only if all abelian ideals of L are 0.

Proof. Any abelian ideal of L is a solvable ideal of L and hence is in Rad L. Thus Rad L =0
implies that all abelian ideals of L are 0.

Conversely, assume that all abelian ideals of L are 0. Since Rad L is a solvable ideal
of L, there exists n € Z, such that (Rad L)™ = 0 and (Rad L)Y # 0. If n # 1, then
Rad L)Y is a nonzero abelian ideal of L. Contradiction. So n = 1, that is, Rad L = 0. B

Theorem 7.24. A Lie algebra L is semisimple if and only if its Killing form is nondegen-
erate.
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Proof. Assume that L is semisimple. Then Rad L = 0. Let S be the radical of the Killing
form k, that is,
S={xeL|k(z,y) =0forall y € L}.

Then for x € S and y € L (in particular for y € [S,5]), k(z,y) = 0. By Cartan’s criterion,
ady, S is solvable. Since L is semisimple, kerad, = Z(L) C Rad L = 0. So S is also solvable.
Thus S C Rad L = 0, proving that x is nondegenrate.

Conversely, assuming that the radical S of the Killing form & is 0, we want to prove that
L is semisimple. We prove that all abelian ideals of L are 0. Let I be an abelian ideal of L.
Forx € [ and y € L, ((ady x)(ady, y))? maps L to [I,I]. Since [ is abelian, [I,I] = 0. Thus
((adz x)(adf, y))* = 0. Since the eigenvalues of any nilpotent operator are 0, we have

k(x,y) = Tr(ady z)(ady y) = 0.
So x € S =0 and thus z = 0, proving that I = 0. |

Before we discuss construct representations of semisimple Lie algebras, we need the fol-
lowing result from linear algebra:

Theorem 7.25. Let T' be a linear operator on a finite-dimensional vector space M. Then
there exist a unique diagonalizable (or semisimple) operator Ty and a unique nilpotent oper-
ator T,, on M such thatT =T, +T,,.

Proof. Choose an ordered basis B = {uj,...,u,} such that under this basis, the matrix
[T)s of T is a Jordan canonical form. Then [T]z = S + N where S is a diagonal matrix
whose diagonal entris are eigenvalues of T"and N is a nilpotent Jordan canonical form whose
eigenvalues are 0. Let T and 7,, be the linear operators whose matrices under the basis B
are S and N, respectively. Then we have T' =T, + T,,. Clearly, T and T,, are unique.

We can also obtain 7T and 7;, and the decomposition T' = Ty + T}, using generalized
eigenspaces of T" as follows: Let a4, ..., a; be distinct eigenvalues of T and M,,, ..., M,, the
corrsponding eigenspaces. Then M = @®F M, . Define T, : M — M by T,(u) = a;u for
u € M,,. Then Ty is certainly diagonalizable or semisimple. Let 7,, = T — T§. It is easy to
see that T, is nilpotent. By definition, we have T' =T, + T,,. [ |

Now we discuss representations of
sl(2,F) ={A € Mo | TrA = 0}
with the bracket operation defined by
[A,B] = AB — BA
for A, B € sl(2, F). The Lie algebra sl(2, F) has a basis consisting the elements

=(55) =(10) =0 %)

Their brackets or commutators are given by

[hv ZL’] = 2z, [ha y] = —2y, [x7y] = h.
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Exercise 7.26. Prove that sl(2, F) is semisimple.

Since s[(2, F) is semisimple, we need only discuss finite-dimensional irreducible sl(2, F)-
modules and how arbitrary finite-dimensional sl(2, F)-modules decompose into these finite-
dimensional irreducible s((2, F)-modules. We shall discuss only finite-dimensional irreducible
s[(2, F)-modules below.

First we need:

Lemma 7.27. Let p : sl(2,F) — gl(M) be a representation of sl(2,F). Then p(h) is
semistmple.

Proof. Since any sl(2, F)-module is completely reducible, M is a direct sum of irreducible
s[(2, F)-submodules of M. To prove that p(h) is semisimple, it is enough to prove that the
restriction of p(h) to each of these irreducible s[(2, F)-submodules is semisimple. So we can
assume that M is irreducible.

From the formulas for [h, x| and [h,y], we see that adg2 #) h is semisimple. Then since
p is a homomorphism of Lie algebras, ad,i2,7)) p(h) is semisimple.

Since sl(2, F) is semisimple (actually it is simple), we have [sl(2, F), sl(2, F)] = sl(2, F).
Then we have [p(sl(2, F)), p(sl(2, F))] = p(sl(2,F)). Thus we have

p(sl(2, F)) = [p(sl(2, F)), p(sk(2, F))] C [gU(M), gl(M)] = sI(M).

In particular, p(h) € sl(M). If we let p(h) = p(h)s + p(h), be the Jordan decomposition of
the linear operator p(h) on M, by definition, Trp(h), = 0, that is, p(h), € sl(M). Thus we
also have p(h)s € sl(M).

Let B = {uy,...,u,} be a basis of M such that under this basis, the matrix [p(h)|s of
p(h) is a Jordan canonical form. Then the matrix [p(h)s]s of p(h)s under B is a diagonal
matrix diag (ai,...,a,) where ay,...,a, are eigenvalues of p(h). Take a basis of gl(M) to
be the set of linear operators T;; € g[(M ) whose matrices under the basis B of M are Ej;
fori,7 =1,...,n where E;; is the matrix whose only nonzero entry is 1 at the i-th row and
the j-th column. Then it is easy to verify by direct calculations that £;; are generalized
eigenvectors of the action of [p(h)]z on the space M,, of n X n matrices by the bracket
operation with eigenvalues a; — a;, that is,

(s — (@ —a) L) (s — (@ —ap)T). Ey) -] = 0

for sufficiently large k. Also, E;; are eigenvectors of the action of [p(h)s|g = diag (a4, ..., ay)
on the space M,,«,, of n x n matrices by the bracket operation with eigenvalues a; —a;. Thus
for the corresponding linear operators on M, we also have

k

Ve

(adgan p()* Ty = [(p(h) = (a5 — a;)Iar). -+ [(p(h) = (a5 — a;)Iar), Tg] -] = 0

and Tj; are eigenvectors for adgy p(h)s with eigenvalues a; — a;. Since adgy p(h)
maps p(sl(2,F)) to itself, p(sl(2,F)) is also a direct sum of generalized eigenspace of the
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operator adgas) p(h). In particular, adgn p(h)s also maps p(sl(2,F)) to itself. More-
over, the discussion above shows that adg p(h)s restricted to p(sl(2,F)) is semisimple,
adgiary p(h) — adgary p(h)s restricted to p(sl(2,F)) is nilpotent and adgs) p(h)s com-
mutes with adg) p(h) — adgry p(h)s. Thus adgary p(h)s|psi2,.7))) and (adgan p(h) —
adgi(ar) p(h)s)|psic2,7))) are the semisimple and nilpotent parts, respectively, of ad i, 7)) p(h) =
adgiary p(R)|psi2,7))- But we already showed that ad,i2,7)) p(h) is semisimple. So

ad 12,7 P(h) = adgiary p(R)s|psi2.7)))-

Since sl(2, F) is semisimple, ad,2,7)) is faithful. Hence we have p(h) = p(h)s, proving that
p(h) is semisimple. |

Let M be a finite-dimensional s[(2, F)-module. Then M is the direct sum of the eigenspaces
M,, of h with eigenvalues \; of h, respectively, for i = 1,..., k. For A # \;, we let M, = 0.

Then we have
M =[] M.
\EF

Definition 7.28. The eigenvalues \; for ¢+ = 1,..., k are called weights of h or weights of the
corresponding eigenvectors and the eigenspaces M), for i = 1,..., k are called weight spaces
of h. An nonzero element v € M is called a mazimal vector if xv = 0.

Theorem 7.29. Let M be a finite-dimensional irreducible s1(2, F)-module. Let m = dim M —
1. Then we have:

1. M =11 Mp_2; and dim M,,_o; =1 fori=0,...,m.
2. Up to nonzero scalar multiples, M has a unique maximal vector in M,,.

3. Let vg € M, be a maximal vector of M, v_1 = 0 and v; = %y"vo for i € N. Then
v; # 0 and the action of sl(2,F) on M is given by hv; = (m — 2i)v;, yv; = (i + 1)v;
and zv; = (m — i+ 1)v; for i € N. In particular, up to isomorphisms, there exists at
most one irreducible s\(2, F)-module of dimension m + 1 for m € N.

Proof. Since the action of h on M is semisimple, we have M = [],_» M. Since M is finite
dimensional, there must be A € F such that M, # 0 but M,,» = 0. Take any nonzero
element vy € M. Then

hxvg = xhvg + 2xv9 = Avy + 2209 = (A + 2) 200

and thus zvy € My,2 = 0. So vy is a maximal vector. Let v; = %yivo for « € N. Using
the bracket formulas for x,y and h, we have hv; = (A — 2i)v;, yv; = (i + 1)v;41 and zv; =
(A—1i+1)v;_q fori e N.

Since M is finite dimensional, there must be m € N such that vg,...,v,, # 0 but
Uma1 = 0. Since v,,11 = 0, v; = 0 for ¢ > m + 1. Since vy, ..., v, are eigenvectors for h with
distinct eigenvalues, they must be linearly independent. Also vy, ..., v,, span a vector space
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which is invariant under the action of x,y and h. So vy,...,v,, span a submodule of M.
Since M is irreducible, M must be equal to this submodule. So we see that M has a basis
{vo,...,um}. Since 0 = zvpyy1 = (A —m — 1+ 1)v, and v, # 0, we obtain A = m. Part 1
follows immediately.

Assume that there is another maximal vector u. Then u = agvg + - -+ + v, and

TU = QpTVy + * * + + ATV, = 1MV + ozg(m - 1)2}1 + -+ Um1.
Since u is a maximal vector,
aymug + as(m — vy + -+ + vy, = zu = 0.

Thus we have a; = - -+ = a,, = 0 and u = vy, proving Part 2.
Part 3 follows immediately. |

The theorem above gives the classification of irreducible sl(2, F)-modules. We still need
to establish the existence. To establish the existence, we need the following Poincar’e-
Birkhoff-Witt theorem in the case of finite-dimensional Lie algebras:

Theorem 7.30 (Poincaré-Birkhoff-Witt). Let L be a finite-dimensional Lie algebra and
{uy,...,u,} an ordered basis of L. Then elements of the form

u’l;l .. 'ulk

for k€ N and 1 <i; <ip <n form a basis of U(L) (when k =0, the element is 1).

We omit the proof here. See [Huml].

We also need the following construction of “induced modules:”

Let L be a finite-dimensional Lie algebra and L, a subalgebra of L. Then U(L;) can
be embedded into U(L) as a subalgebra. Let M; be an Li;-module. Then U(L) ® M; is a
U(L)-module. Let I be the U(L)-submodule of U(L) ® M; generated by elements of the
form ab ® ¢ — a ® be for a € U(L), b € U(Ly) and ¢ € M; where be is the action of b on
c. Then (U(L) ® My)/I is also a U(L)-module and thus an L-module. This L-module is

denoted by Indggg)Ml or U(L) ®u(r,) My and is called an induced module.

Proposition 7.31. Let L be a finite-dimensional Lie algebra and Ly and Lo are subalgebras
o L such that L = L1 @ Ly. Then the universal enveloping algebra U (L) is linearly isomorphic

Proof. We choose an ordered basis {uy,...,ur} of Ly and an ordered basis {vy,...,v;} of
Ly. Then {uy,...,ug,v1,...,u} is a basis of L. By the Poincar’e-Birkhoff-Witt theorem,
elements of the form

u’Ll DY ulpvjl DY qu

forpgeN,1<i <.--<ij,<kand 1<y <-.--<j, <[ form a basis of U(L). But also
by the Poincar’e-Birkhoff-Witt theorem, the set of elements of the form
uil ...uip ®Uj1 'UJ

q
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forp,geN,1<i <. <ij,<kand 1<y <---<j, <[l form a basis of U(Ly) ® U(Ls).
It follows that U(L) is linearly isomorphic to U(L;) ® U(Ls). |

Now come back to sl(2, F)-modules. Let L; = Fx + Fh and Ly = Fy. Then sl(2, F) =
L, Ly. Consider a one-dimensional vector space Fvy with a basis vg. For m € N, we define
an action of Ly on on Fug by zvg = 0 and hvg = muy. It is easy to see that this action gives
an L;-module structure to Fvg. Now we have the induced module U(sl(2, F)) @y (1) Fvo for
s[(2, F). By the proposition above, this induced module is linearly isomorphic to the vector
space (U(L2) ® U(L1)) ®u(r,) Fvo which in turn is linearly isomorphic to the vector space
U(Ls) ® Fug. From the definition of Ly we see that U(Ls) ® Fug has a basis consiting of
+y" ® vg. From this basis, we see that the induced module U(sl(2, F)) Qu(r,) Fuo is infinite
dimensional and is not what we are interested. What we are interested are finite dimensional
and irreducible.

To obtain irreducible modules, we consider maximal submodules of U (sl(2, F))®uz,)F vo.
In fact, let J be the sum of all submodules of U(sl(2, F)) @y (r,) Fvo which does not contain
1 ® vg. Then J is also a submodule. It is maximal because any submodule larger than this
one must contain the element 1 ® vy and thus is equal to U(sl(2, F)) ®u(r,) Fvo. Thus we
obtain an irreducible sl(2, F)-module (U(sl(2,F)) ®u(r,) Fvo)/J.

Moreover, we have:

Theorem 7.32. The dimension of the irreducible sI(2, F)-module (U (sl(2, F))®ur,)Fvo)/J
s m+ 1.

Proof. We first prove that in this irreducible s[(2, F)-module, w = y™ ™! @ vy = 0. It is easy
to see that

zw=zy"" @uvy = y"Mr@uvg—m(m+ 1)y vy + (m+1)y"h ® vy
= "M @avg —m(m+ 1)y @ vy + (m+ 1)y™ @ hug
= —m(m+1)y" @ vy +m(m+ 1)y™ ® vy
= 0.

Thus w is also a maximal vector. But an s[(2, F)-module cannot have more than one linearly
independent maximal vector (see exercise below). Since the weight of w is not m, we must
have w = 0, that is, y™ ™! @ vy = 0.

We now have y' ® vy = 0 for i > m + 1. Since U(sl(2, F)) ®u(r,) Fuvo is linearly
isomorphic to the space U(Ls) ® Fuvy which has a basis consisting of %yz ® vy, we see that
(U(s1(2,F)) ®u(r,) Fro)/J is linearly spanned by elements of the form %y ® vy for i < m.
Thus (U(sl(2, F)) @u(r,) Fro)/J is finite dimensional. Since the weight of vy is m, by the
theorem we proved before, dim(U (sl(2, F)) ®u(r,) Fvo)/J = m + 1. |

Exercise 7.33. Prove that maximal vectors for the module (U(sl(2, F)) ®u(z,) Fvo)/J are
unique up to a nonzero scalar.
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Corollary 7.34. There is a bijection between the set N of nonnegative integers and the set
of equivalence classes of finite-dimensional irreducible sl(2, F)-modules.

Now we quickly discuss the representation theory of general finite-dimensional semisimple
Lie algebras. We shall describe only the main constructions and state the main results
without giving any proofs.

Let L be a finite-dimensional semisimple Lie algebra. Then there must be a semisimple
element of L. A toral subalgebra of L is a subalgebra of L consisting of semisimple elements.

Proposition 7.35. A toral subalgebra of L is an abelian Lie algebra.

Now we take a maximal toral subalgebra H of L, that is, a toral sublagebra of L such that
any toral subalgebra containing H must be H. Since H is abelian and commuting operators
have same eigenvectors, L is a direct sum of common eigenspaces of elements of H. For any
eigenvector x of elements of H, there exists a € H* such that

[h, z] = a(h)z.
Let ® be the space of all nonzero such @ € H* and let
Lo={ze€L]|[hx] =a(h)rforhe H}.

Then we have

L:LoﬁéHLa.

acd
0€ H*isin ® and H C L,. It can be proved that Ly = H. Thus we have

L=Ho [] L

acd

It can be proved that one can find a basis A of the real vector space E spanned by
elements of ® such that A C ® and any element of ® can be written as a linear combination
of elements of A with either nonnegative coefficients or nonpositive coefficients. Elements of
® are called roots. Elements of A are called simple roots. We fix a choice of A = {ay, ..., o }.

Let M be an L-module. As in the case for sl(2, F), the actions of elements of H on M
must be semisimple. Since H is abelian, the actions of elements of H on M commute with

each other. Thus
M= ] M,

AEH*

where

My, ={x € M | hx = A(h)z, for h € H}

for A € H*. When M, # 0, we say that \ is a weight of M and M, the weight space of

weight A. Let {\1,..., \;} be a basis of E' determined by
2()\“ Oéj)
iR DA
(@5, ;)
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fori,j =1,...,1, where (-, -) is the bilinear form on F induced from the Killing form on H.
A weight A is said to be dominant if it is a linear combination of \q, ..., \; with nonnegative
coefficients and is said to be integral if it is a linear combination of Aq, ..., \; with integral
coefficients. A weight is dominant integral if it is dominant and integral. Then we have the
following result:

Theorem 7.36. Let L be a finite-dimensional semisimple Lie algebra. Then there is a
bijection from the set At of dominant integral weights to the set of equivalence classes of
finite-dimensional irreducible L-modules.

The proof of this theorem is in spirit the same as the corresponding theorem above when
L =sl(2,F).

8 Affine Lie algebras (Wess-Zumino-Novikov-Witten
models)

In this section, we will provide constructions of the vertex algebras associated to affine Lie
algebras and their modules. We begin with the vertex algebras.

8.1 Construction of the grading-restricted vertex algebra V(/,0)

(This subsection was written by Jason Saied.)

Let g be a finite-dimensional Lie algebra with symmetric invariant bilinear form (-|-). We
define the affine Lie algebra g by

§=90C[t, 17" ®Ck,
where k is central and
[CL ® tma b ® tn] = [a> b] ® tm+n + 5m+n,0m(a’|b)k'

(This is a central extension of the loop algebra g @ C[t,t7!]. See [K, Section 7].) In this
note, we will write a(n) instead of a ® t™. We write g = g_ @ go ® g+, where g, is the span
of all a(n) with a € g and n > 0, g_ is the span of all a(n) with a € g and n < 0, and g is
the span of k and all a(0) with a € g.

Fix ¢ € C. Let C; be a copy of C, with the structure of a module for gy & g, by defining
a(n)l =0 for all a € g and n > 0, and k1 = ¢. Now define

V(£,0) = U(8) ®ugomas) Cr

where U(-) is the universal enveloping algebra. (See [Huml Section 17].) When ¢ is under-
stood, we will use the notation V' := V(¢,0). V is a U(g)-module under left multiplication.
(Note that V' is nothing but the induced U(§)-module constructed from the U(go & g+ )-
module C,.)

Let 1:=1® 1 € V. Recall that k1 = /¢1 and if n > 0, a(n)1 = 0.
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Proposition 8.1. V' is canonically linearly isomorphic to U(g_) by the map determined by
aj(ny) -+ ag(ng)l — ag(ng) - - - ar(ng),

where all n; < 0.

Proof. By the Poincare-Birkhoff-Witt (PBW) Theorem (see [Huml, Section 17], the multi-
plication map

¢:U(g-) @U(go ® g+) = U(g)

is a linear isomorphism. Then
V =U(8) @ugoms) Ce = (U(0-) @ U(80 © 8+)) Qugoms;) Ce 2 U(g-) @ Ce = U(g-),
where = denotes linear isomorphism and all the maps are canonical. O

We put a grading on V' by defining (V) to be the span of all a;(n;)az(ns) - - - a;(n;) ® 1
such that —n = n;+---+n,. It is easy to check that applying the affine Lie algebra relations
to an element of (V')(,) gives a sum of terms in (V')(,), so this is well-defined. We have

V=]V

neL

Define the spaces
V' =TV and V =[] Vi

nez neZ

where V(Z) is the dual space of V).
Proposition 8.2. V() =0 for n <0. V(o) = C1. V{,, is finite-dimensional for all n € Z.

Proof. The first part is clear from Proposition . It is also clear that V|g) is one-dimensional.

Let n > 0, and let {aq,...,a,} be a basis for g. Then {a;(—m):i,meZ,1<i<r,m>
0} is a basis for g_. Order the basis lexicographically, in ¢ then m. Taking a PBW basis for
U(g-), we see that V{,) is spanned by

{ai,(—nq1) - a;, (=)l : 1 <4y <ig--- <4 <r,0<n;,n +---+n =n}.

Since the positive integer n has only finitely many partitions and there are finitely many a;,
this is a finite set. O

We will now define the maps needed for our construction of the vertex algebra structure
on V. For a € g and z € C*, define

by



When working with formal series rather than complex variables, we will use the notation
a(x) = Z a(n)z™" 1,
ne”L

where x is a formal variable.

Proposition 8.3. Given v' € V' andv € V, (v',a(z)v) is a rational function with the only
possible pole at z = 0.

Proof. It suffices to consider v = a;(—n1) -+~ a(—ny)1 € V and v' € V). We have

(W' a(z)ar(—ny) - ay(—ny)1) = Z(v’, a(n)ay(—ny) - - ay(—ny)1) 2"

neE”L

Since v’ € Vi), by how we defined our grading the term (v', a(n)ai(—n1) - ai(—m)1) is 0
unless n —ny — -+ —n; = h. Then

W' a(2)ai(—n1) - ai(—ny)) = (W', a(h 4+ ny + -+ m)ay(—ny) - - - ay(—ny))zBFmttn)=1

This is a monomial in z or 27!, so it is a rational function with the only possible pole at

z=0. O

This proves that for all a € g, a(z) is an analytic map from C* to Hom(V, V), as defined
in [Hua9). We now show that the maps a(x) satisfy the conditions given in Section [d| Let
L(0) be the grading operator on V.

Claim 8.4. The maps a(x) satisfy Condition 1:

[L(0), a(z)] = xd%ja(m) + a(z).

Proof. We compute that for n € Z and n; > 0,
[L(0), a(n)]ar(=n1) - - - (=)
= L(0)a(n)ay(—nq) - - - a;(—my) — a(n)L(0)ay (—ny) - - - a;(—ny)

=g+ +n—n)a(n)a(—ny) - a;(—ny) — (nq + - -+ + ny)a(n)ay(—nq) - - - a;(—ny)
= —na(n)a(—ny) - - a(—ny),

SO

[L(0), a(n)] = —na(n)
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Then

= > (-mamy!
= Z(—n — Da(n)z™™ 1 + Z a(n)z™"!
d

]

Further, it is clear that a(n) is a homogeneous linear map of weight —n and that
a(x) =3, cpa(n)z™" ! is precisely the decomposition into homogeneous components given
by Lemma {4.1]

Define a linear map L(—1) € End(g) by L(—1)(k) = 0 and L(—1)(b(n)) = —nb(n — 1).
It is easy to check that this defines a derivation on g and therefore U(g). We then observe
that L(—1)|y_) maps into U(g-), so we may view L(—1) as a derivation on U(g_). Using
the isomorphism V = U(g_), this allows us to define L(—1) as a linear map on V' by

L(—=1)ai(ny) - ar(ng)1 :== L(—=1)(a1(nq) - - - ax(ng))1 and L(—1)1 = 0.
Claim 8.5. L(—1) and the maps a(x) satisfy Condition 2: L(—1)1 =0 and

L(-1),a(2)] = ().

Proof. We compute that for n € Z and n; > 0, using the fact that L(—1) is a derivation on
U(g),

Jar(=na) - - ar(—ny)
= —na(n — 1)ay(—nq) - - a;(—my)1
+a(n)L(=1)(ar(=m) - a(=m))1 = a(n)L(=1)(ar(=n1) - - - ar(=m))1
= —na(n — 1)ay(—nq) - - - a;(—my)1

Then [L(—1),a(n)] = —na(n — 1) as operators on V', so
[L(=1),) "a(n)z™ ' =Y [L(=1),a(n)]z™" " = (~n)a(n — Dz~ " = d%a(x).

nel nez neZ
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Claim 8.6. Condition 3 is satisfied: lim,_,oa(z)1 = a(—1).
Proof. We note that

a(x)l = Z a(n)lz™" ' = Z a(n)lz "1,

nez n<0

This has only nonnegative powers of x, and as x — 0, we are left with only the constant
term a(—1). O

Remark 8.7. Condition 4 follows from Proposition|8.1].

We now introduce a lemma on formal series which will come in handy. Recall that
o(w) =3 cq "
Lemma 8.8 (|LL|, Proposition 2.3.7). If m >n >0, then

m a " —1 1 o

Exercise 8.9. Prove this lemma on your own.
Claim 8.10. For a,b € g, we have the following identity of formal series:
(z1 — m9)%a(z1)b(22) = (21 — 22)*b(21)a(21).

Proof. We have

a(xq1)b(xs)
_ZZ —n 1$2—m 1
nEZ meZ
= b(zz)a(z1) + ) > ([a,b](m +n) + Spinon(alb)k)ay ™ ay ™!
nEZ mEZ
b(xs)a(xy) +ZZabm—|—n gyt Z(|b)kxml_m1
nEZ meZ meZ

Then it suffices to show that when multiplied by (z; — z2)?, the second and third terms are
zero. We compute the following, applying Lemma in the final line:

(21 — 29)° Z Z[a, bl(m +n)z;" ey ™ ! = (21 — 29) Z Z o, b)(p)z P gy

neZ meZ PEZ mEZ

= (21— @2)’[a,0)(1) Y a'ey™!

meZ

= [a,0)(21) (21 — 22)* Y 75" (i_;)

mEZ

= [a,b](x1) (21 — 22)° 0 (%)
= 0.
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Similarly,

(xl—:cz)QZ m(alb)ka tay™ k(a|b)(x; — x2) mem Lpymt

meZ meZ

= k(a|b)ay (z; — 25)? Z g (%)m—1

meZ

= k(alb)(z1 — 22)%25" 8215 ( )
=0.

Then Theorem [4.5] gives a grading-restricted vertex algebra structure on V' (¢,0).

8.2 V(¢,0) as a vertex operator algebra

(This subsection was written jointly with with Jason Saied.)

We show in this subsection that V' = V(¢,0) has a conformal element and therefore is
a vertex operator algebra. See Definition [3.5] In this section, we assume that the invariant
bilinear form on g is positive definite (for example, in the case that § is semisimple and the
form is obtained from the Killing form).

Define Q € U(g) by

where {u’: 1 <14 < dimg} is an orthonormal basis for g with respect to the form (-,-). Q is
called the Casimir element of g. (In Definition [7.17} we have introduced a Casimir element
associated to a representation of a finite-dimensional Lie algebra.)

We add the assumption that Q acts on g by a scalar 2hY, where hY € C. In particular,
this assumption is satisfied if g is a simple Lie algebra. In fact, g with the adjoint action is a
faithful module of g. By Proposition [7.19] 2 acting on g commutes with ad a for every a € g.
Since g is simple, 2 must act as a scalar, which we denote by 2h". (See [Huml|, Section 6.)

We then define w € V() by

dim g dim g

1 . , 1 ,
_ D (=11 = —— {(—1)21.
“ 2(e+hV);“( Ju'(=1) 2(e+hV);“( )
. . (dimg
Theorem 8.11. V(¢,0) is a VOA with conformal element w and central charge T

Proof. We need to calculate Yy (s0)(w, z)w. We first calculate
Yooy (W' (—1)°1, z)w
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for i,7 =1,...,dimg. By the definition of Yy (s, we have
u'(—1)?1 = Res,,xg ' (zo)u' (—1)1 = Resyzy  Yirro) (v (—1)1, zo)u'(—1)1.
Using this and the first equality in ((5.25)), we have

Yv(&o) (UZ(—]_)Q]., 1'2)
= ReSxUJTSlYV(g’[)) (Y V (£,0) (Ul(—l)l, ZL'())UZ(—l)]_, l’z)

- , ,
= Res,, 75 ' Res,, 7y 15( . 2> Yveo)(u'(=1)1, 21) Yy 0y (u'(=1)1, z2)
0
— Res,,z; 'Res,, 7516 (%) Yv(eo)(u'(=1)1, 29) Yy 0y (u'(=1)1, 21)
0

= Res,, (71 — z2) 'u'(21)u'(22) — Resy, (—xo + 21) M (22)u’ (1)

= (Z u'(—m — 1)1"271) u'(wg) + u'(x9) Z u'(—m — 1)z | . (8.10)

meN me—27Z4

Using w € Vig), Viuy(€,0) = 0 for n < 0 and u'(p)u‘(q) = u'(q)u’(p) for p # —q¢ and
1=1,...,dimg, we obtain

Yv(&o) (ul(—1)21, ZEQ)W

- (Z u'(—m — 1)x§”> u'(z9)w + u'(22) Z u'(—m — 1y | w

meN mE—Z+
= Z Zuz(—m — Du'(n)way "t + Z Z — Dway!
meN neZ meE—Z4 nEL
= Z u'(—m — D) (n)wzy "1 + Z u'(n)u'(—m — Dwzy "
0<m<n<2 —3<m<n<m+3<2
2
= Z u'(—m — ' (2wl 3 + Z Ju' (Dwzh ™% 4+ u'(—1)u’ (0)way !
m=0
0
+Zu( )u! wx2"4—|—z wx2"3+z (0)wzy ™% + Fj(x29)
n=-3 n=-—2 n=—1

= 2u' (=3)u' (2)wry ' + 2u' (—2)u' (Dwzy ' + 2u' (= 1)u' (0)wzy b + 2u’ (—2)u' (2)wwy 2
4 2u (=D’ (Dwzy 2 + u'(0) 2wy ? + 2u' (—1)u' (2)wzy ® + 2u’ (0)u (1)wzy®
4+ 2u(0)u' (2)way * 4+ u' (D' (Dwzy* + Fy(a), (8.11)

where Fj(z3) € V(£,0)[[z2]] for i =1,...,dimg.
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Using the commutator formula for the affine Lie algebra operators, the formulas

u',u'] = [u ] = [[u’, w], [u', u’]] = 0,

the fact that {u’}{™9 is an orthonormal basis and the invariance of the bilinear form (-, ),

we have
u'(2)u! (—1)*1 =0, 8.12
u'(1)u! (—1)*1 = [[u', o], v/ ] (= 1)1 + 205,07 (—1)1, 8.13)
u'(0)u! (=1)"1 = [u', o’](=1)u! (1)1 + o (—1)[u’, ’}(~1)1
_ Z:g ([, ], _ D1+ z:g ([u', u], uF)u? (—1)u®(=1)1
dlmg dlmg
— Z 1)1+ Z w(—1)uF(—=1)1. (8.14)
Using the defintion of w
Z[[uj,ui],ui] = Z[ul, [u', u!]] = Qu? = 2hVu?,
Z[[ul,u]],uj] = Z[uj, (!, u']] = Qu* = 2hVu’
and f , we obtain
u'(2)w = 0, (8.15)
(1) = m ;([[ui,uj], W(=1)1 + 268, (—1)1) = wi(=1)1, (8.16)
u(0)w = £+ ) 2 ; ul, uF (=1 (1)1 + (', [u?, uf])ud (= 1)uF(~1)1)
dim g dim g
£+ ) Zl ; ¥, w])d (=1)uf(=1)1 + (o', [u!, uf])u! (= 1)uF(—1)1)

=0.

(8.17)
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From (8.15)—(8.17)), we obtain

u'(0)’w =0, (8.18)
u'(0)u'(1)w = 0, (8.19)
u'(1)u'(1)w = (1. (8.20)

Substituting (8.12)—(8.20)) into the right-hand side of (8.11]), summing over i and using the
formula
Ly o (—)u'(—1)1 = u'(=2)u'(—1) + u'(—1)u'(—2)1 = 2u* (—2)u' (1)1,

we obtain
dim g

Z Yv(g’o) (Ul(—l)Q]_, 33'2)&1
i=1

dimg dim g dimg dimg
:ZQUi( 2)u +22u 1:L’2_2+Z€1x2 —|—ZF (x2)

dim g
=2(0+ hY) Ly oy (—Dwzy ' +4(0 + b )wzy? + (dim glay ! + Z Fi(z3). (8.21)

i=1

Note that the formula Dividing both sides of (8.21)) by 2(¢+h") and let G(z3) = m S

we obtain c
Yv(e,0)(w, 22)w = Lv(g,o)(—l)wxgl + 2wx2_2 + §1x2_4 + G(x9),

where
(dim g

Y
Using the commutator formula for Yy (s, we have
[a(z1), Yv(e0)(w, 72)]
= [Yvo(a(=1)1,21), Yy 0)(w, 22)]

To+ T
= Resg,1; 0 ( : 0) Yy (00)(Yv (o) (a(—1)1, z)w, 22)
To+ X o
= ZResxO < 237 0) Yvoy(a(n)w, zo)ag ™" (8.22)
1
nez

for a € g. From (8.12)—(8.14]) and the fact that {u‘},c; is a basis of g, by writing a € g as a
linear combination of u’ for ¢ € I, we obtain

a(2)u!(-1)*1 =0, (8.23)

a(D)w/(-1)%1 = [[a w], u?](=1)1 + 20(a, v )u'(— 1)1, (8.24)

a(0)w? (—1)°1 =Y (a, [, u")uF (—1)wd (= 1)1+ Y (a, [0, uf])d (~1)uf(—1)1.  (8.25)
k=1 k=1
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From (8.23)—(88.25)), we obtain

a(2)w =0, (8.26)
a(l)w = a(—1)1, (8.27)
a(0)w = 0. (8.28)

Using (8.26))—(8.28)) and the formal Taylor’s theorem, we see that the right-hand side of (8.22))
becomes

T2 + Xo

Res,,z;'6 ( . > Yv(z,o)(a(—l)law)x(;z
1

_ x .
—ZZResmk,d i 115( 2) a(n)zy e,

nez kEN
[z e
= Z %xl 15 (—2) a(n)xy™ ! (8.29)
nez 2 T1

Taking the coefficient of 7™ 2,2 for m € Z on the left-hand sides of (8.22) and the right-
hand side of (8.22)), we obtain

[a(m), Resg, 22 Yv (1,0 (w, 22)] = ma(m). (8.30)

Taking the coefficient of x7" 'x,' for m € Z on the left-hand sides of (8.22)) and the right-
hand side of (8.22)), we obtain

la(m), Resz, Yy ,0)(w, 22)] = ma(m —1). (8.31)
Since Yy (,0)(w, x2)1 € V (£, 0)[[z2]],
Resg, 22Yv 0,0y (w, 22)1 = Resg, Yy (4,0)(w, 22)1 = 0. (8.32)
From — and the definitions of Ly (¢,0)(0) and Ly 0 (—1), we obtain

[a(m), Resz, 22Yv (1,0 (w, 22)] = [a(m), Ly (,0)(0)],
[a(m), Resy, Yy (e,0)(w, 22)] = [a(m), Ly (e,0)(—1)],
Res,, 29Yv 0,0y (w, 22)1 = Ly (00)(0)1,
Resz, Yv,0)(w, 22)1 = Ly r0)(—=1)1.

From these formulas, we obtain

Ly 1,0)(0) = Resg,22Yv (0,0 (w, T2),
Lv(gyo)(—l) = ReSxQYV(&O) (w, :152).

Thus w is a conformal element and V' (¢,0) is a vertex operator algebra. [

The proof of this theorem can be found in [LL], pages 210-213. Although they constructed
the map Y (v, z) in a different style, this proof does not refer to the particular construction
of Y(v,x).
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8.3 Construction of the vertex operator algebra L(/,0)

Even for simple g and ¢ € Z,, the vertex operator algebra V(¢,0) is in fact not the vertex
algebra for the Wess-Zumino-Witten model associated. We need to take an irreducible
quotient of V(¢,0).

Let 1(¢,0) be the maximal proper submodule of the g-module V' (¢,0). In fact, it is easy
to see that I(£,0) exists: Consider all g-submodules of V/(£,0) that do not contain 1. In
particular, homogeneous elements of these ﬁ-submodules have weights greater than 0. Take
1(2,0) to be the sum of all such g-submodules. Then 1 ¢ I(¢,0) since 1 has weight 0. 1(¢,0)
is maximal. Let L(¢,0) = V/(£,0)/I(¢,0). Then as a g-module, L(¢,0) is irreducible, that is,
there is no g-submodule of L(¢,0) that is not 0 or L(¢,0) itself.

We take the vacuum of L(¢,0) to be the equivalent class of the vacuum of V'(¢,0). We
define the vertex operator map Y70y : L(¢,0) ® L(¢,0) = L(¢,0)((x)) by

YL(Z,O) (U + [(6, 0), .T) (U + I(ﬁ, O)) = YV(Z,O) (U, [L’)U + [(f, O)

The vacuum 1) is defined to 1y + 1(¢,0) and in the case £ + h¥ # 0, the conformal
element w0y is defined to be wy (g0 + 1(£,0).

Theorem 8.12. The graded vector space L((,0) equipped with Yioy and 1 is a grading-
restricted vertex algebra. When €+ h" # 0, L(€,0) equipped with Yie0y, 110y and wre) is
a vertex operator algebra.

Proof.  We need only verify that Y7, ) is well defined; all the axioms can be verified using
the properties of V(¢,0). To prove that Y is well defined, we need only show that
Yv o) (u, z)v € I(£,0)((x)) when one of u and v is in 1(¢,0). Since I(¢,0) is a g-submodule
of V(¢,0), we have a(z)v € I(¢,0)((z)) for a € g and v € I(£,0). Then by the definition of
the vertex operator map Yy (o) (see , we have

(W', Yvo)(ar(m) - ap(mp)1, 2)v)
= Resg o - Resg, &1 - L R((V, a1 (&1 + 2) - - - ag (& + 2)v)) (8.33)

foray,...,ap € g,my,...,myp € Z,v € V(£,0)and v’ € V(£,0)". To prove that Yy 0 (u,z)v €
I(£,0)((x)) foru € V(¢,0) and v € I(£,0), we need only prove Yy )(ai(m1) - - - ap(ms)1, 2)v €
I(¢,0)((x)) for ay,...,a; € g, my,...,my € Z and v € 1(£,0). Let I(£,0)° be the annihila-

tor of I(¢,0), that is, the subspace of V(¢,0)° containing all linear functionals v" on V(¢,0)

such that (v',v) = 0 for all v € I(¢,0). Then Yy (g0 (ai(my)---ar(mi)l,z)v € I(£,0)((x))

if and only if (v, Yy (e0)(a1(m) - - - ar(my)1, z)v) = 0 for all o' € 1(¢,0)°. From ({8.33)) and

a(x)v € I1(£,0)((x)) for a € g and v € I(¢,0), we see that the right-hand side of (8.33)) is 0

for all ' € 1(¢,0)°. Thus the left-hand side of is also 0 for all v’ € I(¢,0)°.

We also need to prove Yy (o0y(u, z)v € I(£,0)((z)) for uw € I(¢,0) and v € V(£,0). Since
L(—1) can be expresed as a linear combination of products of a(n) for a € g and n € Z and
I(4,0) is a g-submodule of V' (¢,0), we have L(—1)I(¢,0)v € I(¢,0) for v € I(¢,0). Then by
the skew-symmetry ,

Yv(e0)(u, 2)v = exL(’l)YV(gyo) (v, —x)u € I1(£,0)((x)).
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The vertex operator algebra underlying the Wess-Zumino-Witten model associated to a
finite-dimensional simple Lie algebra g and a level ¢ € Z, is exactly L(¢,0). In this case,
there is an explicit formula I(¢,0) = U(g)ep(—1)*t11, where 6 is the highest root of g and
ep is a root vector in gy (see [K] and [LL]).

9 Virasoro vertex operator algebras (minimal mdels)

In this section, we will introduce the basic ingredients of the Virasoro vertex operator alge-
bras. But all the proofs will be left as exercises.
Let £ = [],,c; CL, 4+ C] be a vector space with with a basis {L,,,c}. We define a bracket
operation for £ by
1

[Lin, Lp) = (m —n) Ly n + E(m3 — M) 0m+n,0Cs

for m,n € Z.
Exercise 9.1. Prove that £ equipped with the bracket operation is a Lie algebra.

The Lie algebra L is called the Virasoro algebra.The center element ¢ usually acts as a
fixed number ¢ on an £-module. THis number is called the central charge of the module. In
Subsection 8.2, we have shown that V(¢,0) is a £-module for the Virasoro algebra £ with
the central charge ¢ = eﬁ?vg‘

To construct a vertex operator algebra, we first need to construct an £-module. We use
the same induced module construction as we have done for the Heisenberg and affine Lie
algebras. The Virasoro algebra has a triangle decomposition £ = L, & Ly & L_, where
Ly = HnE:tZ+ CL,, and Ly = Cly & Cc. Let ¢ € C and C, be the one-dimensional vector
space C with ¢ acts on C. as the number c¢. Let £, and Ly acts on C, as 0. Then C,
becomes a module for the subalgebra £, @ L,. Let M(c,0) = U(L) ®¢,ac, Cc (where 0
denotes that Ly acts on C, as 0). Then M(c,0) is an £-module. By the Poincaré-Birkhoff-
Witt theorem, as a vector space M(c,0) is isomorphic to U(L-) @ C. which is in turn
linearly isomorphic to U(L_). We shall denote the action of L,, on M(c,0) by L(n) and the
element 1 ® 1 € U(L) ®¢, ez, Cc by 1. Then M(c,0) is spanned by elements of the form
L(—nq) - L(—ng)1 for ny, ... ,n, € Z.

For the vertex operator algebra, unlike in the affine Lie algebra case, we need to take a
further quotient. Let (L(—1)1) = U(L)L(—1)1 be the submodule of M(c,0) generated by
L(-1)1. Let V(c,0) = M(c,0)/(L(—1)1). The action of L, on V(c,0) is still denoted by
L(n). Then using the Virasoro braket relations, we see that V(c,0) is spanned by elements
of the form L(—ny)--- L(—ng)1 for ny,...,ng € Zy + 1.

Define the weight of L(—n;) - - - L(—ng)1 to be ny+- - -+ny. Then V(c,0) = [],,cny Vin) (¢, 0),
where V(,,)(c,0) is the subspace of V(c,0) consisting of elements of weight n. Let T'(z) =
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> nez L(n)x™"2. This is the generating field for V(¢,0). We already have an operator
L(-1).

Exercise 9.2. Using the construction theorem in Section 4 to prove that V(c,0) has a
structure of grading-restricted vertex algebra. By Theorem [4.5 you need only prove that
V (e, 0) together with the generating field T'(z), L(—1) and 1 satisfies the five conditions in
Section 4.

Exercise 9.3. Prove that w = L(—2)1 € V(¢,0) is a conformal element of V(c,0). In
particular, V'(c,0) is a vertex operator algebra.

The vertex operator algebra for the minimal model is not V(¢,0). As in the case of
Wess-Zumino-Novikov-Witten modules, we have to take a further irreducible quotient.
Let I(c,0) be the maximal proper submodule of the £-module V (¢, 0).

Exercise 9.4. Prove that I(c,0) exists.
Let L(c¢,0) = V(c,0)/1(c,0). Then as a L-module, L(c,0) is irreducible.

Exercise 9.5. Define the vertex operator map Y0y for L(c,0). Then prove that L(c,0)
equipped with Y7 0) and 1 is a vertex operator algebra.

10 Quantum vertex algebras

We have introduced meromorphic open-string vertex algebras with one example in Section
6. But in general, without the commutativity or the commutator formula, it is not easy to
obtain substantial results. So from this point of view, it is natural to study meromorphic
open-string vertex algebras satisfying a weak version of the commutativity. This is what
I call quasi-commutative meromorphic open-string vertex algebras. This is in the spirit
of quantum vertex algebras but the examples of quantum vertex algebras are much more
complicated. Here we first introduce an analytic notion of quasi-commutative vertex algebra
which is much stonger than the one introduced by Etingof and Kazhdan in [EK].

Definition 10.1. A quasi-commutative meromorphic open-string vertex algebra is a mero-
morphic open-string vertex algebra satisfying following quasi-commutativity: For uy,us € V,
there exist ¢;(z) € Clz,z™!] and u},ub € V for i = 1,..., k such that for v € V and v’ € V",

k
R((V", Yy (u1, 21) Y (ug, 20)v) = Zci(zg — 21) RV, Yy (ul, 20) Yy (Ul 21)0)).

i=1
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The same proof of the Jacobi identity in Subsection 5.2 gives us the quasi-Jacobi identity

) <x1 — x2) Yy (ur, 1) Yy (u2, 22)

Zo

k
_ —T2t+ i i
=) %' (#> ¢i(—x0) Yy (us, 22) Yy (ui, 21)

x
i=1 0

=210 ($2 i IO) Yy (Yv (ur, o)uz, x2) (10.34)

I
and the quasi-commutator formula

k

YV(U17$1 Yv U2,=’702 ZCz 5130 YV U27$2)YV(U17$1)
=1

T + Zo
T

= Res,, 270 ( ) Yv (Yv (uy, zo)us, ) (10.35)
All the properties we proved in Section 5 can be generalize to such a quasi-commutative
meromorphic open-string vertex algebra.

Problem 10.2. Construct an example of quasi-commutative meromorphic open-string ver-
tex algebra.

We now introduce quantum vertex algebra in the sense of Etingof and Kazhdan. The idea
is to view quantum vertex algebras as formal deformations of vertex algebras. We briefly
explain what is a formal noncommutative deformation of a commutative associative algebra.
Let A be a commutative associative algebra with the multiplication -. Let h be a formal
variable. We conside the C[[h]]-module A[[h]]. A formal noncommutative deformation of A
is A[[h]] together with an associative multiplication -, on A[[h]] such that -, b=a-b+ hB
for a,b € A and B € A[[h]]. Note that we do not require a -, b be commutative. We also
note that A is in fact isomorphic to A[[h]]/hA[[h]] as a commutative associative algebra.
In general, we can consider a C[[h]]-module A together with an associative multiplication
such that the multiplication induced on A/hA is a commutative associative algebra. Then
A is a noncommutative deformation of A/hA. Such formal deformations are also called
deformation quantization.

We now want to apply the same idea to vertex algebras. Let V' be a grading-restricted ver-
tex algebra. We consider V[[h]]. Then a formal noncommutative deformation of V' is roughly
speaking V[[h]] together with a vertex operator map Y;* : V[[A]] ® V[[h]] = V[[R]]((x)) sat-
isfying the associativity and all the other properties for a meromorphic open-string vertex
algebra. But to get nice properties, we still need to give a quasi-commutativity type property.

For a vector space Vp, let V' = V;[[h]]. Let

Vi((z)) = {Z anz~"" | for every M € N, a, € WMV for n >> 0} .

neL
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Given a C[[h]]-linear map

S: VeV -sVeVeC((z)h]
s @ up — S(x)(ug ® uy),

for uy, us € V, there exists u!, ub and ¢;(z) € C((x))[[h]] for i = 1,..., k such that S(x)(us ®

uy) = Zfﬂ uh ® uj ® ci(w).
We define So1(z) : VeV =V ®VeC((x))[[h]] by

Sa1(z)(u ® v) = 012(S(z) (v @ u))

where 015 is the permutation switch 1 and 2. We also define Sipp(z) : VoVeV —
VeVeVeC((z) by

Si2(2)(v1 ® v2 ® v3) = S(x)(v1 ® v2) ® vs.

Similarly we also have Si3(z) and Sys(x). We also have Ss1(x), Sso(z) and more generally
Sij(x) on Ve for i, =1,...n.

Definition 10.3. A quantum vertex algebra is a C[[h]]-module of the form V = Vj[[h]],
equipped with a vertex operator map

Yy : (Vo @ Vo)[[h]] = Vi((2))
u® v Yy (u,x)v,

a vacuum 1 € V and a C[[h]]-linear map

S: VeV VeV eC(x)]h)

k
Uy @ uy = S(x)(ug @ uy) = Zull ® uh @ c;(z)
i=1

such that S(z)(us ® u1) = uy ® u; mod h satisfying the following axioms:

1. Axioms for the vacuum: (a) Identity proerty: Yy (1,2) = 1y. (b) Creation property:
Forv e V, Yy (v,2)1 € V[[z]] and lim, 0 Yy (v,2)1 = v.

2. L(—1)-derivative property and L(—1)-commutator formula: Let Ly (—1) be the C|[h]]-
linear map L(—1) : V — V defined by

d
Ly(—1)v = lim d—YV(v,x)l

z—0 dx
for v € V. Then

%YV@,@ = Yo (Lv(=1)v,2) = [Ly(~1), Yy (v, 2)].
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3. Weak associativity: For ui,us,v € V and M € N, there exists N € Z, such that
(20 + 22) VYo (Yo (u, 20)v, 3) = (20 + 22)" Yor (u, 29 + 22) Yy (v, 25) mod RMV.
4. Weak S-commutativity: For uy,us € V and M € N, there exists N € Z, such that
(xl - $2)NYV(U1, Il)YV(U2, 152)

(x1 — x9) N Z Ty — T1 Yv(u2,x1)Yv(u2,x2) mod hM.

=1

5. Unitarity and Yang-Bazter relation for S:

821(1’2 — 131)8(131 - LUQ) = 1V®V7 (1036)
512(331 - 1’2)513(1’1 - -733)523(-752 - 353) = 523(1’2 - 333)513(-731 - 553)513(5131 - 9U2)-
(10.37)

Remark 10.4. The heuristic meaning of the unitarity for S: If S(z; — x2) can be written
as e/®1=22)K where K is an operator satisfying 015 K015 = K, then

821(x2 _ 171) — 67;(432—351)0'12K0'12 — ei(xl—xg)algﬁo‘m — ei(xl—mz)K — S(l‘l _ LUQ).
So (10.36|) becomes
S(l‘l - JTQ)S([El — 1‘2) = 1V®V-

This says exactly that S(zy — x2) is unitary.

Remark 10.5. The heuristic meaning of the Yang-Baxter relation for S: See Fig. (will give
a picture for this).

Examples of quantum vertex algebras are constructed using modules for quantum affine
Lie algebras such that when we set h = 0, we obtain the vertex algebra associated to affine
Lie algebras constructed in Subsection 8.1. See [EK].

11 Modules

11.1 Definition and properties of modules

Roughly speaking, a module for a grading-restricted vertex algebra V' is C-graded vector
space W = [],,cc Wiy egipped with a vertex operator map Yy : V@ W — W((z)) and an
operator Ly (—1) satisfying all the axioms for a grading-restricted vertex algebra that still
make sense. But we have to consider more general types of modules.
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Definition 11.1. Let V' be a grading-restricted vertex superalgebra. A generalized V -module
is a C-graded vector space W =[], .c Wiy equipped with a vertez operator map

Y : VoW = W((x)),
u®w— Yy (u,x)w

satisfying the following axioms:

1. Axioms for the gradings: There are operators Ly (0), Ly (0)s and Ly (0)x on W such
that Ly (0) = Lw(0)s + Lw(0)n, Lw(0)sv = nv for v € W, , Lw(0)y is nilpotent
(for w € W, there exists K € N such that (L (0)y)%w = 0), and

[Lw (0), Yiy (v, x)] = x%YW(v, z) + Yw(Ly(0)v, x)

forveV.
2. Identity property: Let 1y be the identity operator on W. Then Yy (1,2) = 1y

3. L(—1)-derivative property: There exists Ly (—1) : W — W such that for u € V,

d

EYW(%Z) = Yw (Lv(=1)u, 2) = [Lw(=1), Y (u, 2)].

4. Duality: For uy,us € V, w € W and w’ € W', the series

<wl7 YW(ula Zl)YW(UQ, ZQ)U}),
(W', Y (ug, 22)Yw (u1, 21)w),
<UJ/7 Yw(Yv(Ul, Z1 — ZQ)UQ, 22)’u}>

are absolutely convergent in the regions |z;| > |23 > 0, |23] > |21| > 0, |22| > |21 —22] >
0, respectively, to a common rational function in z; and 2z, with the only possible poles
at 21,29 = 0 and z; = 29.

A lower-bounded generalized V-module is a generalized V-module (W, Yy, Ly (0), Ly (—1))
such that W}, = 0 when Rn is sufficiently negative. A grading-restricted generalized V -
module is a lower-bounded generalized V-module (W, Yy, L (0), Ly (—1)) such that dim W, <
00. An ordinary V -module or simply a V -module is a grading-restricted generalized V-module
(W, Yw, Lw(0), Ly (—1)) such that Ly (0)y = 0. When V is a vertex operator algebra, a
lower-bounded generalized V -module or grading-restricted generalized V -module or an ordi-

nary V-module is such a V-module when V' is viewed as a grading-restricted vertex algebra
such that L(0) = Res,xYw (w,z) and Ly (—1) = Res,Yw (w, x).

All the properties for grading-restricted vertex algebras and vertex operator algebras
that still make sense also hold for modules. Here we state these properties without proofs.
The proofs are the same as those for grading-restricted vertex algebras and vertex operator
algebras.
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Operator product expansion For uy,uy € V, there exists N € N such that Yy (uy, x)us =
> ey (Y ) (ur)ugz ™" (see Subsection 5.1). Then

Yo (ur, 20)Yiw (uz, 22) = > Vi (Y ) (wr)uz, 22) (21 = 25) 7"

~ > Y (V) )z, 25) (21 — 25)

n=0

The Jacobi identity For uq,us € V,

— 11— _ —To+ T
) ( 13[; 2)YW(u1,x1)YW(u2,x2) — 510 (%) Y (ug, x2) Yw (ug, 1)
0 0
=a7'0 (%; :170) Y (Y (u1, zo)uz, T2). (11.38)
1

Commutator formula For uy,us € V,
YW(Ul,l’l)Yw(UQ, 36’2) - YW(U2, x2>YW(u17$1)

= Resxoxflé (Q:Q + 1'0) Yw(Yv(Ul, ZL‘())UQ, l’g). (1139)
T

Associator formula For uq,us € V,
Y (Yv (ur, o) ug, x2) — Y (w1, 2o + x2) Y (ug, x2)

= —Res,, 7,0 ( ) Yy (ug, z2) Y (ug, 7). (11.40)

—T2 + T

Zo

Weak commutativity For uy,us € V', there exists N € N such that

(33'1 — xz)NYW(Ul, l’l)Yw<U2, .]72) = (.lel — $2)NYW(UQ,$1)Y{/V(U1,.Z’1). (1141)

Weak associativity For uy € V and w € W, there exists N € N such that
($0 + [L’Q)NYW(Yv(U,l, l’o)UQ, ZL‘Q)U) = (1’() + ZL'Q)NYW(Ul, To + ZL’Q)Yw(Ug, JTQ)U} (1142)

for us € V.

Virasoro operators Let V be a vertex operator algebra with the conformal element w.
Write Yy (w,z) =Y. _, Ly (n)z~" 2 Then

(L (m). Ly ()] = (m = ) L (m + ) + 55 (m* = m)ning

for m,n € Z.
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Definition 11.2. A generalized V -submodule of a generalized V-module W is a generalized
V-module (Wp,Yw,) such that Wy is a graded subspace of W and Y, = Yw|vew, A
generalized V-module W is said to be irreducible if there is no nonzero proper V-submodule of
W. Lower-bounded generalized V -submodules, grading-restricted generalized V -submodules,
(ordinary) V -submodules and the corresponding irreducbible ones are defined in the obvious
way.

11.2 Modules for Heisenberg vertex operator algebras

Recall in Section 2, we have the group algebra C[L] for a lattice. We now consider the group
algebra C[h]. We use the same notation to denote e* to denote the the basis element o € b
in C[h] but note that now « does not have to be in a lattice L. Note that for each o € b,
Ce® is a subspace of C[b].

Let M(1,0) = S(h_) @Ce®. We define the action of the Heisenberg algebra b on M (1, a)
in the same way as in Section 2; a®t" for n # 0 acts only on 5(6,) and a®t° acts only on e®
by a(0)e® = (a,a)e”, and k acts on M (1,«) as 1. THis explains our notation: 1 in M(1, «)
is used to denote that the center k acts as 1. Then as in Section 2, it is easy to verify that
M(1, @) becomes an h-module. As in Section 2, we use a(n) to denote the action of a®¢" on
M(1,«). Then M(1,«) is spanned by elements of the form a;(—ny) - - - ax(—ny)e® for k € N,
ai,...,ar €hand ny,...,ng € Z,.

We define the weight of ai(—n1) - - - ap(—nk)e® to be ny +- - - +ny+ (e, @). In particular,

the weight of e* is (o, ). Then M(1,a) = [],c1 M (o) is a space graded by

2 (a,00)+N

%(a, a) + N. The same argument as for 5(6_) shows that M (1, «) is grading restricted, that

is, Mpj(a) = 0 when n — 3(ov, @) < 0 and dim M, (o) < o0.

Let L be an even positive definite lattice. For a € L, M(1, ) is in fact a ﬁ—submodule

~

of the vertex operator algebra V, = S(h_) ® C[L]. Then we have a vertex operator map Yy,

for V. By definition, Yy, (u,z)v € M(1,a) foru € S(h_)®C ~ S(h_) and v € M (1, ). We
define Yy(1,0) = Yv, | S(h)eM(1,0)" Then since V7, is a vertex operator algebra, all the axioms

~

for (M (1, ), Yar(1,0) being a S(h-)-module are satisfied.
For a € h but not in any even positive lattice, we cannot use grading-restricted vertex

algebras associated to a lattice. This construction of S(h_)-module does not work . For such
a, we will give the construction of an S(h_)-module structure on M(1, ) after we prove a
construction theorem for modules. In this construction theorem, we shall need some formal
series of operators called generator fields. These can be obtained from generalizations of the
vertex operators Yy, (e, x) in Section 2. Here we define these generator fields and give their

properties. R
For a € b, we define v*(z) : S(h_) — M(1,a) by

P (@)ar(=na) - - ar(=nx)1
a(n)

=exp | — Z @x” exp [ — Z —2 " | ay(—nq) -+ ag(—ng)e®

n
ne—7Z4 nEZy
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for ay,...,ar € hand ny,...,n; € Z,. In the case that a € L for a even positive definite
lattice,

v (x)ar(—ny) - ap(—ng)1 = Yy, (€%, 2)a1(—nq) - - - ag(—ng) 1.
Note that (2.12)—(2.11) still hold for o € h. Also by definition,
a(0)p*(z)ar(—n1) - - - ax(—nx)1

= (a,a)exp | — Z @x_” exp | — Z %n)x_" aj(—ny) - ap(—ng)e”

— (a, @) (2)ar (—mn) -+~ ap( =)L + 62 (@)a(0)ar (—mn) - -~ ag(—mi)1.

From these formulas, by the same calculations as in Section 2, we obtain the following weak
commutativity between a(z;) and ¢*(z5) for a,a € b:

(21 — z2)a(21)* (22) = (21 — 22)Y* (w2)a(71).

We now give the theorem for M(1, a) but we prove only the irreducibility here; the proof
of the (ordinary) module structure will be given in the next section.

Theorem 11.3. For a € h, M(1,a) has a structure of irreducible (ordinary) S(h_)-module.

Proof. As we mentioned, the proof that M(1,a) is a grading-restricted (ordinary) S(h_)-
module will be given later. Here we show that M (1, «) is in fact irreducible.

~

Assume that Wy is a nonzero S(h_)-submodule of M (1, ). From the commutator formula
(12.55( with uy = a(—1)1 and us = b(—1)1, we obtain

[aW (m)v bW(n)] = m(a7 b)5m+n,0

—m—1

for m,n € Z, where aw (m) and by (n) are given by Yy (a(-1)1,2) = >, a(m)x and
Y (b(=1)1,2) =3, ., b(n)z~""'. In particular, we see that W is an h-module. Since W is
a S(h_)-submodule of M(1, ), this h-module structure must be induced from the h-module
structure on M(1,a). So W is a h-submodule of M (1, ).

Since M (1, ) is grading restricted, W as a submodle must also be grading-restricted.
Since W is nonzero, there exists homogeneous w € W such that any element of W of weight
less than wtw is 0. In particular, 6+ annihilates w since elements of 6+ lowers the weights.
Since M(1,) = S(h_) ® Ce®, we see that the only elements annihilated by b are those in
Ce®. Thus w = Xe® for some A € C. Then W = M(1,«). So W cannot be proper. |

11.3 A construction theorem for modules

(The material in subsection incorporated some of the writings by Jason Saied.)

We now give a construction theorem for modules. The theorem that we present below is
a special case of Theorem 4.3 in [Hual0].
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In the construction of grading-restricted vertex algebras in Section 4, we start with a
grading-restricted vector space V', a set of generating fields ¢(z) for i € I, a vacuum 1 and
an operator Ly (—1) on V satisfying the five conditions in the section. For modules, we will
start with a C-graded vector space W, a set of generating fields ¢ (x) on W for i € I (here
I is the same index set as the one for the algebra), an operator Ly (—1) on W satisfying
some conditions. But for modules, these are not enough. We have to introduce a set of what
we will call ”generator fields” ¢, (x) for a € A.

Here we explain why we need these generator fields. In the proof of Lemma [4.4]in Section
4, we have to express an element v on which the generating fields act using these generating
fields acting on the vacuum. But for a module, the generating fields ¢i;,(x) act on W and it
is impossible to express w € using these generating fields acting on the vacuum. To give a
construction theorem for modules, we have to introduce some fields which give elements in
W when applied to the vacuum in the algebra V.

Note that in the properties of modules in the preceding subsection, there is no skew sym-
metry since it does not make sense. In fact skew-symmetry is what motivates the definition
of what we call generator fields. We first give this motivation.

Let W be a generalized V-module. In [FHL], a linear map

Yy W x V. — W((z)),

w® v Y (w, z)v

is defined by Y%, (w, z)v = e*tw DYy, (v, —2)w for v € V and w € W. Replacing z¢ and
Zo in the weak associativity ([12.58)) by x; and —x5, we obtain

(1’1 — $2)NYW(Yv(U1, $1)U2, —l’g)w = ((L’l — ZL’Q)NYW(U1, r1 — JTg)Yw(Ug, —JTQ)UJ (1143)

for uy,uy € V and w € W. Applying e*22w (=1 to both sides of (11.43) from the left, us-
ing the definition of Y%, and the L(—1)-conjugation property e”2w(=DYy (uy, z; — x5) =
Y (ug, z1)e*2Ew (=1 (obtained by exponentiating the L(—1)-derivative property [Ly (—1), Yiy (u1, 71)] =
LYy (u1, 1) and the formal Taylor’s theorem) and then replacing u; by v and removing us,

we see that ((11.43)) becomes
(21 — 22) VY (w0, 22) Y (v, 1) = (21 — 22) Yiw (v, 21) Yipry (w0, 22). (11.44)

Note that is of the same form as the weak commutativity but with Yy (ug, 22)
replaced by Y%, (w, o).

Let M be a subspace of W such that W is spanned by coefficients of formal series of
the form Y (v, z)w for v € V and w € W. Then we say that W is generated by M and M
is a set of generators of W. We also call Y (w,z) for w € M a generator fields of W.
Let ¢(z) = Yy (v,z) be a generating field of V. We use ¢(x) to denote the generator field
YW, (w, z). Then the weak commutativity becomes

(w1 — 22) V(1) (22) = (21 — 32) Vi (w2) P(21).
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We shall use generator fields and this weak commutativity as additional data and properties
in the construction theorem for modules.

Let V be a grading-restricted vertex algebra. We assume that V' is a grading-restricted
vertex algebra generated by ¢'(z) = Yy (¢" ;1,x) for i € I, where ¢*(x) is homogeneous with
respect to weights, ¢' ; is the constant term of ¢*(z), and ¢* ;1 = lim, o ¢'(z)1 (see Section
4 and [Hua9]). Let wt ¢’ be the weight of ¢* 1.

We shall give a construction of lower-bounded generalized V-modules. The construction
is based on the following data and assumptions:

Data 11.4. (a) Let W =[], .c W}y be a C-graded vector space such that W,) = 0 if #(n)
is sufficiently negative.

(b) Let ‘
P W — W((x))

w e Gy (@yw = 3 (@l Jawa

nez

for i € I (the same index set I for the generating fields for V') be linear maps called
generating field maps.

(c) Let
Uiy 2V = W((2))

v Yy (o =Y (Wi )pva !

neL

for a € A be linear maps called generator field maps.
(d) Let Ly (0), Ly (—1) be linear operators on W.

Assumption 11.5. The data given in Data satisfy the following properties:

1. There exist semisimple and nilpotent operators Ly (0)g and Ly (0)y on W such that
Lw(0) = Lw(0)s + Lw(0)n. For w € W, L(0)w = nw. For i € I,

L 0), 6 (0)] = 263 (2) + (wi) iy ().

For a € A, there exists wtvf, € C and, when Ly (0)ny¢§, (z) # 0, there exists
Ly (0)y(a) € A such that

L (O (2) — i ()L (0) = -y o) + (i Wy (o) + OO ),

where 5" OV (2) = 0 when Ly (0)y8, (z) = 0.
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2. Fori el and a € A,
‘ d
L (1), Gip ()] = iy ()

and
d

L (=1)vw (@) = ¥ (@) Ly (=1) = —diy (2).

3. For a € A, ¢, (x)1 € W][[z]] and the constant term (¢f,)_11 = lim, o9, (x)1 is
homogeneous.

4. The vector space W is spanned by elements of the form
foriy,...,ir€l,a € A,n,ny,...,ngy € Z,and v € V.

5. For 7,5 € I, there exists M;; € Z, such that
(21 = 29)" [y (1), Gy (22)] = 0.
6. For i € I and a € A, there exists M;, € Z, such that
(21— x2) My (1) (2) = (w1 — o) Mioay (22) 9" (21).

We have the following results analogous to Proposition

Proposition 11.6. Assume that the data given in Data satisfy only the parts on ¢y,
for i € I of Conditions 1—4 in Assumption 11.5. Then Conditions 5 and 6 in Assumption
11.5 are equivalent to the following three conditions:

7. Forw e W ,weW,iy,...,ip €1 and a € A, the series
(W', ¢4y (21) - - b (20) Vi (2) 67 (1) - - 0™ (2040 )0)

is absolutely convergent in the region |z1| > -+ > |zi| > |2| > |zke1| > -+ > 2| >
0 > 0 to a rational function

R((w', ¢4t (21) - - b (21) U5 (2) 0™ (2041) - -+ 8™ (2 V)

W 215y 2y 2y Zhtls - - - 2kt With the only possible poles at z; =0 fori=1,... k+1,
2=0,zj =2y forj#mand z; =z forj=1,...,k+1. In addition, the order of the
pole z; = z,, depends only on gblvjv and gb%”, the order of the pole z; = z depends only
on gbi}v and Vy;, the order of the pole z; = 0 depends only gb;]v and v and the order of
z =0 depends only on ¢y, and v.

8 ForweV,w eV iy, el,
R((w', ¢y, (21) 13 (22)w)) = R((w', 47 (22) by (21)w)).
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9.

ForveV, weW iel anda€ A,
R((w', ¢y (1)1 (22)0)) = R((w', ¥y (22) 9" (21)w)).

The proof of these two results is essentially the same as the proof of Proposition 1.2 So
we omit it here.

Proposition 11.7. The space V, the fields ¢* fori € I, Ly(—1) and 1 have the following
properties:

10.

11.

12.

13.

14.

ForaeC,iel anda€ A,
ecLW(O)(b%/(x)echW(O) — ec(wt¢i)¢€/v(ecx)

Y

GCLW(0)¢%/(x)€—CLV(O) — €C(Wt¢i)77/)%/v(ecl').

Foriy,...;ig€l,ny,....nx €Z,ac€c A,neZ andv eV,
Ly (0) (634 )y =+ + D1k e (Vi )0

= Z((bﬁ/)nl T ( g/il)nj—f

(=5 = D))y + (WES) G, ) (O Dy (61D (v
+ (@i (@) (1= DR+ (98 05) () + (g O ), ) v
(G- (6o () Ly ()0

and

Ly (= 1) (04 )y -+ (D18 g (Wi )0
k . .
= (@ nn (O Dy (=15 (811 D) (D D = (D18 Iy (W )
(#/%/)m T (¢%/)nk(_”(w%/)nfl>v
( %/)m T (¢%/)nk (¢%/)nLV(_1)U

ForceC, z € C~ satzsfymg |z| > la|, i € I and a € A, eLw (=Dt (2)e clw(=1) =
¢z (Z—I—C) and eLw (= ¢z ( ) —cLy(—1) ¢z ( )

The operator Ly (—1) has weight 1 and its adjoint Ly (—1)" as an operator on W' has
weight —1. In particular, e**wV'w' € W' for 2 € C and w' € W'.

ForveV,w eW' and o € S,

R((w', p1(21) - - r(z1)v)) = RUW', 001)(201) -+ - Poti) (Zo(i))0),

where one of p; is Vi, for some a € A and the others are either in {¢"}ier when they
are to the right of V%, or in {dY, bier when they are to the left of V%,.
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These properties follows easily from Conditions 1-9 in Assumption and Proposition
11.6, We also omit the proof of Proposition [11.7]
We define a vertex operator map

Y : VoW — W((z))
v w — Y (v, x)w

<w/’YW( 37111 o ¢i¢zk17 Z)"LU>
= Resg,—o - Resg—o&™ - § R (W', 04y (€1 + 2) - - iy (& + 2)w)) (11.45)

for i1,...,i, € I, my,...,my € Z, w € W and w’ € W’. But as in the definition of the
vertex operator map for the algebra V' given by , we first have to prove that the vertex
operator map Yy, is well defined. In fact, only in the proof of this well-definedness we need
the generator fields ¢, for a € A.

Lemma 11.8. [f
q .
Z)‘pqﬁﬁp : "¢;§P1 =0,
— 1 k

then
4 P P -p -p
" AResgoo - Resgof " 670 R (', 66+ 2) - o (& + 2)w)) =0
p=1

forw e W and w' € W'.
Proof. By Condition 4 in Assumption [11.5] we can take w to be of the form

for v € V. But by Consdition 4 in Section 4, we can take v to be of the form ¢! - .- ¢f1.
Moreover, in this case,

R, 0" (21) -+ &% () (D4} s+ (D4} I (U3 n s -+ 6121)
= Res¢,—o - - - Resg,—oRes¢Res,, —o - - - Res,, o -+ - "t -+ -l

RV, ¢ (21) - ¢ (1)U () (G1) -+ - Q)™ (Cr) -+ 6% () 1)).

Then the other steps of the proof is the same as that of (4.4), except that here we use
pProperty 14 in Proposition [11.7, We omit these steps. [

Theorem 11.9. The graded vector space W together with Yy : VQW — W ((z)) defined by
is a lower-bounded generalized V -module. Moreover, (W, Yy ) is the unique structure
of a lower-bounded generalized V -module on W such that Yy (¢' ,1,x) = ¢'(z) fori e I.
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Note that since the definition of Yy does not use v, the proof of Theorem also
does not need vjj,. Thus the proof of Theorem is the same as that of Theorem [4.5]
except that ¢’ are replaced by ¢%,. We omit the proof.

Proof of the module structure in Theorem . We take I = b and ¢f, , (x) = a(z)
for a € h. We also A = {a} and ¢, . (x) = ¢¥*(z). See the preceding subsection. Then
M(1,a), a(x) for a € b and ¢* satisfy Assumption [I1.5. By Theorem [I1.9, M(1,a) has a
structure of (ordinary) S(h-)-module. |

11.4 Modules for V(¢,0)

(This subsection was written by Jason Saied, with some minor additions.)

We now wish to construct modules for V- = V(£,0). To begin, let M be a finite-
dimensional module for g. Similarly to above, make M into a module for go® g by defining,
for a € g, m € M, and n > 0, a(0)m := am (the action of a € g on m € M), a(n)m =0,
and km = ¢m. We then let W be the induced g-module

—~

W = U(9) @ugomss) M.

We will often omit the tensor product symbol when writing elements of W: form € M ,
1 ® m will be written as m.
Recall the Casimir element

where {u’ : 1 < i < dimg} is an orthonormal basis for g with respect to the form (-, ).
Since M is a g-module, ) acts on M. We denote the action of w on M by 2, and this
is the Casimir operator on M introduced in Section 7. Since M is finite dimensional, it
is a finite direct sum of irreducible g-modules by Theorem [7.22] On each irreducible g-
submodule, by Proposition 2y commutes with the action of elements of g and thus
must be proportional to the identity operator on this submodule. So M is a direct sum of
eigenspaces of {2,,. For an element m in an eigenspace of €2;;, we define its weight, denoted
by wtm, to be the eigenvalue of ), associated to the eigenvector m divided by 2(¢ 4+ hY).

We then define L(0) on W by defining
L (0)ai(ny) - - - ag(ng)m = (=ng — - -+ — ng + wtm)m.

Our generating fields are the maps aw (z) : W — W ((z)) for a € g, where for w € W,

aw (z)w := Z a(n)wz™" 1,

nez

and a(n) is the multiplication operator.
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With the exception of those involving the as-yet-undefined generator fields, the conditions
needed to prove that W is a module can be proven in the same way as they were proven
for V. Rather than constructing the generator fields directly, we will construct W in a
different (more abstract) way involving several quotients, then prove the two constructions
are isomorphic.

Define -

M=U@g o MeCtt')aV.

This has the structure of a U(g)-module by left multiplication. We will often omit the tensor
products when the context is clear.
Note that by the PBW Theorem, M is spanned by elements of the form

k"aj(ny) - ag(ng) @ (met") @v

with a; € g, nj,n € Z, r € Zy, m € M, and v € V.
Put a grading on M by defining, for homogeneous v € V,

Ly (0)k"ay(ny) -+ ar(ng) @ (m@t") @ v
=(—ny—--—ng+wtm—n—1+wtv)k"a;(ny) - ap(ng) @ (met")@v

and extending linearly. As above, one must check that this grading is well-defined, in that
any other expression for an element of M will be given the same conformal weight. This
follows because the only relations are the affine Lie algebra relations in U(g), and it is easy
to check that they preserve conformal weight.

Remark 11.10. Note that we are abusing notation by calling this map Ly (0) when we are
not acting on the module W yet. We choose to do so, rather than changing the name of the
map every time we take a quotient.

We also define Ly, (—1), motivated by condition 2 of Assumption by extending
[Lw (=1), aw(n)] = —naw(n — 1),

and
Lw(=1)(m @) = (m @ ") Ly(=1) = —p(m @ t*~").

We will construct a module for V' by imposing the following relations on M.
1. ForveViaegneZ,meM,and p € Z,
(a(n)(m @) — (m @ t')a(n))v = (a(n — 1)(m @ P — (m @ t'™)a(n — 1))v.

Let J; be the U(g)-submodule of M generated by these relations.

We will abbreviate these relations as
[a(n),m @ t*] = [a(n — 1), m @ t**].
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They are sufficient for Condition 6 of Assumption In fact, the relations equivalent
to Condition 6 are

2(a(n)(m @) — (m @ t*)a(n))v = (a(n — 1)(m @ t"*) — (m @ " a(n — 1))
+(a(n+ D(m P 1) — (m et Ha(n +1))v

[a(n),m @] = [a(n — 1),m @ '] + [a(n + 1),m @ t*1].

. Form € M and p > 0,
(m®t")1 =0.

Let J; be the U(g)-submodule of M generated by these relations. They are necessary
for condition 3 of Assumption [11.5]

. For a € g and m € M,
a(0)(m@t ™1 = ((am) @t 1)1.
We also impose the relation that for m € M and v € V,
k(imeat v =¢{(mat .

Let J3 be the U(g)-submodule generated by these relations. They are needed to take
the module relations of M into account. No relation for a(n), n > 0, is needed, because
it will be implied by the above.

Define My = M/(J; + Jo + J3).
Notice that Ji,Jo, and J3 are generated by Ly (0)-homogeneous elements, so the sub-

module generated by all of them is Ly (0)-graded, implying that in the quotient, Ly (0) is
still well-defined. We also have the following result for Ly (—1).

Proposition 11.11. Fori = 1,2,3, Ly (—1)J; C J;. Lw(—1) descends to an operator on

Proof. For Jy, this is a tedious but routine calculation.
For J5, we simply compute that

Ly(—1)(m®t")1 = —p(m @ t*1)1.

The right-hand side is visibly a multiple of a generator of J5, except for the p = 0 case where
we simply get 0.
For J3, we have

Ly (=1)a(0)(m @ t*)1 = 0 — pa(0)(m @ '~ 1)1 € Js.

Then Ly (—1) preserves J; + Jy + J3, so it is a well-defined operator on the quotient
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We have the following corollary of our relations.

Corollary 11.12. In Mg,
a(n)(m @ t*)1 = a(0)(m & "1,
form>0me M,a€g, andp € Z.
Proof. Using the relations from J;, we have
a(n)(m@t")1 =a(n — 1D)(m @ P11 + (m @ t")a(n)l — (m @ ' a(n — 1)1.
If n > 1, the latter two terms are 0 due to the relations in V| giving
a(n)(m@t*)1 = a(n — 1)(m @ *T1)1.
The claim follows by induction. O]
Proposition 11.13. ]\72 1s spanned by elements of the form
ai(ny) -« - ag(ng)(m @ t9)1

fora; € g,n; <0,p<—1,me M. With respect to the Ly (0)-grading, MQ 18 lower-bounded
and has finite-dimensional graded components.

Proof. The second claim easily follows from the first.
Recall that M and therefore M, is spanned by elements of the form

w=Kk"aj(ny) - ag(ng)(mt")by(s1) - - by(s;)1

with a;,b; € g, n;,s5,n € Z, r € Z,, m € M, and v € V. By the relations of J;, we may
assume 7 = 0.
Rewrite the relations of J; as

(m @ t")a(n) = a(n)(m@t*) + (m @t Ha(n +1) —a(n + 1)(m @ t*1).

This allows us to write w as a sum of terms with either a shorter V' component or a V' com-
ponent with lower conformal weight. By induction, since an element of V' with a sufficiently
low conformal weight is equal to zero, w is a sum of terms of the form

aj(ny) - - ag(ng)(m e t*)1

where a; € g, n;,p € Z, r € Z,, and m € M.
By the PBW Theorem, we need only consider elements of the form

ar(n) -~ ()b (0) - bi(O)es(r1) - - (1) (m @ 7)1,
where ny,- -+ ,ng <0 and rq,--- 7y > 0. Using Corollary [I1.12] this is equal to
ai(ny) -+ ap(ng)bi(0) -+ b(0)er(0) - - - es(0)(m @ #1471,
By the relations of Js, this is 0 unless
ptrit--+re<—1L
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Theorem 11.14. MQ is a module for V(¢,0) as a grading-restricted vertex algebra, with
generating fields

aw(z) = Z a(n)z™ "1

neL
for a € g and generator fields

Ule) = Y (me et

nez
form e M.

Proof. We must only check the conditions in Assumption [I1.5] Conditions 1,2, and 5 follow
as in the proof that V(¢,0) is a grading-restricted vertex algebra. Condition 3 follows from
the relations of J;. Condition 4 follows from the previous proposition.

Finally, recall the relations of J;: for a € g,m € M, and p,n € Z,

[a(n),m @] = [a(n — 1), m @ t'*1].
It is an easy exercise to see that this is simply the component form of
(21 — @) aw (21)Y5 (22) = (21 — 22) Y7 (22)ay (21),
giving Condition 6. [

There is one problem with the module ]\%: it is not compatible with the vertex operator
algebra structure on V(¢,0). We will remedy this issue with another quotient. Let Yy, be

the vertex operator of V(¢,0) acting on its module MQ, and write

Yig, (w, ) = Z Lozt

nez
Now let J; be the U(g)-submodule of M, generated by the relation
L_i(m®t")1 = Ly(-1)(m®t*)1,
where m € M and p € Z. We can then define
W = M,/ J,.

Proposition 11.15. Ly (0) and Lw(—1) preserve Jy. Both maps descend to operators on
w.

Proof. First we show that Ly, (0) preserves J4 by showing that the generators of J; are graded
with respect to Ly (0). We calculate

L (0) Ly (—1)(m ® t*)1 = —pLy (0)(m @ "~ 1)1
= (wtm —(p—1) = 1)(~p(m @ )1)
= (wtm — p) L (—1)(m ® t*)1.
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Since w € V(z), by the Ly (0) property of Y; we have

[Lw(0), L_1] = Res,[Lw (0), Y+ (w, x)]

» " Mo

d
= Res,o— Yz (w, ) + 2V (w, 7)
x

d
- L—la
SO
LW(O)L,l(m X tp)]_ = Lfle(O)O’n X tp)]_ -+ L,l(m X tp)]_
= (wtm —p)L_1(m & t?)1.
So

L (0)(L_y — Lyy(=1))(m @ #*)1 = (wtm — p)(L_y — Ly (—1))(m @ t*)1.

The proof that Ly, (—1) preserves J, is similar, using the Ly (—1) property of Y7; instead.
]

Theorem 11.16. W is a module for V.=V (¢,0) as a vertex operator algebra.

Proof. The Conditions 1-6 in Assumption all follow from the relevant versions for MQ,
giving us the structure of a module for V' = V(f, 0) as a grading-restricted vertex algebra.
To claim that W is a module for V' as a vertex operator algebra we must only verify that
Ly (0) = Ly and Ly (—1) = L_; as operators on W. Proposition gives Ly (—1) = L_;.
We still need to prove Ly (0) = Ly

The same calculations as those from f gives

[aw (m), Resz,z2Yw (w, x2)] = maw (m). (11.46)
The same calculation as given by ({8.10]) gives
Yv(ui(—1>2]_, Z’Q)
(Z Uy (—m — 1)} ) Wy (29) + uly (2) Z Ul (—m — 1) | . (11.47)
me—724

Applying both sides of (11.47)) to an element w € M and using u}y, (n)w = 0 for n > 0, we
obtain

Yy (u'(—1)%1, 25)w

— (Z wly (—m — 1)} ) uly (w2)w + uly () | Y upy(—m = D)2 | w

meN mG—Z+

meN ne—N

= (Z Uiy (—m — 1)} ) Z wly (n)ay ™ + uly (22)uly (0) s Mw. (11.48)
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Taking the coefficients of X, 2 on both sides of (11.48)), we obtain
Res,, 72 Yy (u'(—1)%1, 20)w = uly (0)uly, (0)w = u'u'w. (11.49)

Summing over ¢ = 1,...,dim g on both sides of (11.49) and then dividing the results by
2(¢ + hY), we obtain

Resg, 2o Y (w, 22)1 = (wtw)w = Ly (0)w.
Thus we proved that

[a(m), Resg, oY (w, 22)] = [a(m), Ly (0)],
Resy,zoYiy (w, x2)1 = Ly (0)1.

From these formulas, we obtain

Ly (0) = Resg,z2Yw (w, x2).

Proposition 11.17. W is spanned by elements of the form
ay(ny) - ag(ng)(m et 1)1

fora; € g, n; <0, and m € M. With respect to the Ly (0)-grading, W is lower-bounded and
has finite-dimensional graded components.

Proof. The second claim follows immediately from Proposition [11.13| and the definition of
W. For the first claim, recall that by Proposition [11.13] W is spanned by elements of the
form

w=aj(ng)---ag(ng)(met*)1
for a; € g, n; <0, p < —1, and m € M. Recall that

Ly (1) (m @)1 = —p(m @ P11,
Then for p < —1, (m ® t?)1 is proportional to
Lur(=1) 7 (m @ t 1)1,
so up to a scalar, w has the form
ay(ny) - ag(ng) (Lw (=1)) P (m @t 1.
By the relations of J4, we may rewrite this as
ay(ny) - ap(ng)(L_y) P H(m @t 1.
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Recall the construction of the vertex operator Yy in Theorem Since w is expressed
using only operators of the form a(n) (a € g,n € Z) acting on 1, the formula for Y} indicates
that the components of Yy (w, ) should be expressible only in terms of linear combinations
of products of operators of the form a(n) (a € g,n € Z). (Explicitly, the formula for the
components of Yy (w, z) in terms of the operators a(n) is given in formula (6.2.44) of [LL].)
This will allow us to rewrite w as a linear combination of terms in the desired form. We will
sketch this procedure now.

First, use the affine Lie algebra relations to move all operators of the form a(n), n >
0, to the right of other operators of the form a(s). Then as in Proposition , use
Corollary to get rid of the operators a(n) with n > 0, possibly increasing the power of
t in the terms. Since p started as —1, the powers of ¢ arising here will either be nonnegative,
making the whole term 0 due to the relations of Jy, or —1. Then the nonzero part of the
expression is a linear combination of terms of the form

ay(ny) - ag(ng)(m et 1)1

for a; € g, n; < 0, and m € M. Again using the affine Lie algebra relations, move the
operators of the form a(0) to the right of the other operators of the form a(n), and apply
the relations of J3 to get rid of the operators a(0) (possibly changing m to another element
of M in the process). This leaves us only with terms of the desired form. ]

We typically use the notation
aj(ny) - - ag(ng)m

to represent the element
ar(ny)---ap(ng)(met 1)1 € W.

This is how we reconcile the given construction of the module W with the object W defined
earlier.

12 Intertwining operators

Intertwining operators among modules are the main objects to study in conformal field
theories. As for any quantum field theory, a chiral conformal field theories are determined by
its chiral correlation functions. Intertwining operators correspond to three-point correlation
functions on genus-zero Riemann surfaces (conformally equivalent to the Riemann sphere
CU {0} by the uniformization theorem). Axioms for conformal field theories require that n-
point correlation functions on Riemann surfaces of arbitrary genera be obtained from three
point correlation functions together with the vacuum and the Virasoro operators. Thus
the construction and study of chiral conformal field theories are the same as the study of
intertwining operators together with the Virasoro operators and the vacuum.

The vacuum is in a vertex operator algebra. The Virasoro operators act on modules for
the vertex operator algebra. But intertwining operators involve three modules, corresponding
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to three points on the Riemann sphere C U {0}. In this section we introduce intertwining
operators and give their basic properties. The deep results are the convergence, associativity,
modular invariance of intertwining operators and their consequences including the Verlinde
formula and modular tensor category structures. We will not be able to prove them this
semester. But we shall discuss some of them briefly below. The precise formulations and
proofs will be given in next semester’s continuation of this course. I will also continue to
write these lecture notes.

12.1 Definition

Intertwining operators were introduced in mathematics in [FHL]. Here we use a modified
version of the definition given in [Hua9] by adding logarithmic terms since our modules are
in general generalized modules. We define the notion of intertwining operators for grading-
restricted vertex algebras. In the case that V is a vertex operator algebra, the definition is
completely the same.

Definition 12.1. Let V be a grading-restricted vertex algebra and Wi, W5, W3 lower-bounded
generalized V-modules (grading-restricted generalized V-modules and ordinary V-modules
are special cases). An intertwining operator of type (WZVSVQ) is a linear map
Y WioW, — Ws{r}logz]
w) @wy = Y(wy, x)ws

(where Wi{z}[logz] is the space of formal series of the form Y71 > e an gz (log z)* for
an i € W5 and z and log z is formal variables such that % log x = 7 !) satisfying the following
axioms:

1. L(0)-bracket formula: For w, € Wh,

Ly, (0)Y (w1, z) — Y(wi, z) L, (0) = %y(wh z) + Y (Lw, (0)wy, o).

2. L(—1)-derivative property: For wy € Wy,

V() = Yiw (D (=1, 2) = Ly (<)Y (n,2) = Yo, ) Ly (1),

3. Duality with vertex operators: For v € V, wy € Wy, and wy € Wy, wi € Wy, for any
single-valued branch [(z;) of the logarithm of 25 in the region 2z # 0, 0 < arg 2, < 27,

the series
(w3, Y, (u, 21)V (w1, 22)ws) ; (12.50)
13:6”1(22),716@
(wy, Y(w1, v2) Yoy, (u, 21)wz) ; (12.51)
x'g:enl(zg)’ne(c
(Wi, Y(Yw, (u, 21 — 29)w1, 2)ws) (12.52)
mgzenl(zg)’ne(c
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are absolutely convergent in the regions |z1| > |z2| > 0, |22 > |z1] > 0, |z2] >
|21 — 29| > 0, respectively, to a common analytic function in z; and z and can be
analytically extended to a multivalued analytic functions with the only possible poles
z1 = 0 and z; = 29 and the only possible branch point z, = 0.

The set of all intertwining operators of type (WVIVSVQ) clearly form a vector space. The
dimension of this space is called the fusion rule of type (Wlf/;,%) and is denoted by NV%WQ.

12.2 Examples for Heisenberg vertex operator algebra

~

We have constructed S(h_)-modules M(1,«) for o € b in Subsection 11.2 and 11.3. Let L
be a positive definite even lattice in h and oy, as € L. Then we have three S (6,)—modules
M(1,0q), M(1,a3) and M (1,7 + ). Recall from Sections 2 and Section 4 that we have a
lattice vertex operator algebra V with the vertex operator Yy, . Note that M(1,aq) C V,

and M (1, az) C Vi,. We define

V:M(,a1) @ M(1,a0) = M(1, a1 + ag){x},
w1 @ wy — y(wl,x)wQ

by Y(wy,z)wy = Yy, (wy,x)we. Then the map Y is an intertwining operator of type
(M%(;l‘j)“}\j(ol‘i2)) In fact, from the definition of the vertex operator Yy,, we know that
V(wy,x)wy is in M (1,1 + ag)((z)). The axioms of intertwining operators are satisfied
because Yy, satisfies these axioms.

These intertwining operators are not typical enough because Y(wi,x)ws is in fact a
Laurent series, not a series with nonintegral powers of the variable. To give examples with
nonintegral powers, we have to consider § (6,)—modules which are graded by nonintegers.
We can choose oy, as € b such that %(al, aq) and %(ag, ap) are not integers. In this case, the
intertwining operators can be constructed in the same way. But we omit the construction

and discussion here.

12.3 Basic properites

From the definition of intertwining operator, we can derive some of their basic properties in
the same way as those of vertex operator lagebras and modules. But we should note that
there is one crucial difference between intertwining operators and vertex operators for an
algebra or a module: Intertwining operators are in general not Laurent series and thus give
multivalued analytic functions, not rational functions. This makes the study of intertwining
operators much more difficult than vertex operators for an algebra or a module. On the other
hand, when we discuss only one intertwining operators, as in the definition of intertwining
operator above, the multivalued analytic functions we have to work with is not too far away
from rational functions. So in this subsection, we discuss only those properties involving one
intertwining operator. The major results in conformal field theory and in the representation
theory of vertex operator algebras are about properties of two or more intertwining operators.
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In the next two subsections, we will discuss the statements of two major properties. The
proofs of these major properties will be discussed in next semester’s course, which will be a
continuation of this course.

Let Y be an intertwining operator of type ( Wa 2). Then we have the following properties:

W1 Ws

Correlation function of one intertwining operator and one vertex operator for a
module Let

F(<wé7 YW3 (u7 Zl)y(wh x2>w2>>7
F(<wé7 y<w1? x2>YW2 (ua Zl>w2>>7
F(<wg’>’ y(YW1 (uv Rl — 22)w1a x2)w2>)

be the multivalued function obtained by analytically extending the sums of the series ((12.50)),
(12.51]) and (|12.52)). Then they are of the form

i,k\%1, Z T,
S R g (12.53)

21 (21— 2) k2
for polynomials g; x(z21, z2) of 21 and 2z, Mk, Nk, Pk € N, r; € C satisfying 0 < R(r;) < 1

fori=1,...,N. In the case that wy, we and w} are homogeneous, N can be taken to be 1
and ry, can be taken to be —wt wj + wt w; + wt ws.

Operator product expeansion For u € V and w; € Wy, there exists N € N such that
Yiv, (u, 2)w =37 (Yw)n(u) = wa™"'. Then

Yoy (u, 20)P(wr, 22) = Y V(Y Jn(w)wr, 20) (21 = 20) "

n<N

~ ST V(Y aw)wr, 22) (21 — 22) 7"

The Jacobi identity For v € V and w; € Wy,

_ r1 — X _ —x + x
o0 ( lx 2>YW3(U>$1)y(w1,CE2) — 150 (—235 1) Y(wi, x2) Y, (u, 1)
0 0
= xfl(s <x2;_ '/L‘O) y(YW1 ('U/, .TO)UJ1,$2). (1254)
1

Commutator formula For uq,us € V,
Yw, (Ua 371)3)(101, 1752) - y<w1; xz)YWQ (U, 1’1)

= Resy,x7 10 (‘7"2 i xo) VY, (u, To)wy, ). (12.55)

T
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Associator formula For uq,us, € V,
Y(Yw, (u, zg)wn, x2) — Y, (u, 2o + 2) Y (w1, )

—l’zx—+$1> V(wy, z2)Yw, (u, x1). (12.56)
0

= —Res,, 7,0 (

Weak commutativity For u € V and w; € Wy, there exists NV € N such that
(21 — 22) VY, (u, 21)V(wy, 29) = (21 — 22) Y V(w1 1) Yiw, (u, 21). (12.57)
Weak associativity For u € V and wy € W, there exists N € N such that
(20 4+ 22) Y V(Yiw, (u, 20 w1, m2)wy = (20 + T2)™ Yiv, (u, 20 + 22) Y (w1, T2)w, (12.58)
for wy € Wj.

i)

The skew-symmetry isomorphism Given an intertwining operator ) of type (Wle

and p € Z, define

Q) : Wo @ Wy — Wi{x}log x]
wy ® w1 — (V) (we, x)wy

by
Qn(y) (wQ’ x)wl = el”LW3(*1)y(UJ1, y)w2|yn:en(2p+1)7r1xnylogyzlogx+(2p+l)ﬂ-i

W3

for wy; € Wy and wy € Wa. Then Q,()) is an intertwining operator of type ( ) Moreover,

WaW;
for p € Z, €2, is a linear isomorphism from the space of intertwining operators of type (WVIV‘;*VQ)
to the space of intertwining operators of type (W‘;Vé’vl)

The proofs of these properties are analogous to the proofs of the corresponding properties
for grading-restricted vertex algebras and are omitted here.

12.4 Tensor products of modules

We have mentioned above that for two V-modules W7 and W5, W7 ® W5 is not a V-module.
But tensor products for V-modules are important. They describe interations of the quantum
objects whose state spaces are W and W5. Mathematically tensor products also give us new
V-modules. Using intertwining operators, we can introduce a notion of tensor product of two
V-modules. Such a tensor product does not always exist. In order to prove the existence, V'
must satisfies certain conditions. In this subsection we give the definition of tensor product
V-module of two V-modules. But we will not discuss the existence of the tensor product
V-modules.

Our definition of tensor product V-module is given in terms of intertwining operators.
To motivate our definition of tensor product V-module, we first give a definition of tensor
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product of two vector spaces using analogues of intertwining operators. Let W7, W5 and W3
be vector spaces. A bilinear map I : Wy x Wy — W3 is called an intertwining operator of type

(WVIV‘;”’%). We call a pair W3, I) consisting of a vector space W3 and an intertwining operator [
3

of type (WZVWQ) a product of W; and W5. We define a tensor product vector space of W, and
W5 to be a product (W) ® Ws, ®) such that the following universal property holds: Given
any product (W3, I) of Wy and Wy, there exists a unique linear map f : Wi ® Wy — W3 such
that I = f o ®.

Exercise 12.2. Let C(W; x W3) be the free vector space generated by the direct product
Wy x Ws. Let Wi ® Wy be the quotient vector space C(W; x W3)/J, where J is the subspace
of W x Wy spanned by elemenets of the form (Awy,wy) — (wq, Aws), Awq, wy) — (Awy, ws),
(w1 + W1, we) — (wy, we) — (W1, ws) and (wy, wy + we) — (w1, we) — (w1, Ws) for wy,w; € Wi,
wy, W € Wy and A € C. We use w; ® ws to denote the coset (wq,ws)+J. Let @ : Wy x Wy —
W1 ® W5 be the projection map. Prove that ® is an intertwining operator of type (%f@w‘g 2)
and (W) ® Wy, ®) is a tensor product vector space of Wy and Ws.

We now give the definition of tensor product V-module of two V-modules. For simplicity,
we work with the category of lower bounded generalized V-modules. For other categories
of V-modules, the definition is the same except that we replace the words “lower bounded
generalized V-module” by the names for the types of V-modules in the other categories.

One crucial new feature for the tensor product V-module is that it involves z € C*.

Definition 12.3. Let z € C* and W; and W5 lower-bounded generalized V-modules. A
P(z)-product of Wy and Wy is a pair (W3, I) consisiting of a lower-bounded generalized V-
module W3 and the value I = Y)(-, 2)- : W; @ Wy — W3 of an intertwining operator Y(-, z)- :
Wy @ Wy — Wi{z}logz| at z (with the choice of the value logz = log |z| + i arg z where
0 <argz < 2m). A P(z)-tensor product of Wy and W5 is a P(z)-product (W, Mp.) Wy, Mp(2))
such that the following universal property holds: Given any P(z)-product (W3, ) of Wy and
W5, there exists a unique module map f : W Mp,) Wy — W3 such that I = f o ®, where
[+ Wipi) Wy — Wiy is the unique extenstion of f to W; Xp) W, (note that f as a
module map must preserve wegihts).

The first question about the P(z)-tensor product is its existence. For vector spaces, the
existence is easy (see . But for V-modules, it is not trivial in general. As we mentioned
above, in general the P(z)-tensor product might not exist. Under certain conditions, the
existence of P(z)-tensor product was proved in [HL] and [Hua6].

The category of V-mdules form a braided tensor category under certain conditions on
V' or a modular tensor category under stronger conditions. The two difficult part of the
construction is the construction of the associativity isomorphism and the proof of the rigidity.
These two difficult parts corresponding to the associativity of intertwining operators and
the modular invariance of intertwining operators, respectively. See [Hual|, [Hua3], [Huad],
[Huab], [Huab] and [HLZ3].
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12.5 The first major property: Associativity

We shall give the statement of, but not prove, the associativity of intertwining operators.
When some other conditions are satisfied, this associativity is equivalent to the operator
product expansion of intertwining operators. In a work [MS] of Moore and Seiberg, the
operator product expansion (called chiral vertex operators by Moore and Seiberg) is one
of the two major assumptions used to derive Verlinde formula which was conjectured by
E. Verlinde and a set of polynomial equations which led to the notion of modular tensor
category.

Before we formulate the associativity, we first have to formulate the convergence of prod-
ucts and iterates of intertwining operators.

Convergence and extension property of products of n intertwining operators Let
Wo, Wi, .. . W1, Wi, ..., W,_1 be lower-boundedd gNeneralized V-modules and Yi,..., ),

. .. W Wi Wn_ .
..., YV, intertwining operators of types (W1 QWI), cee (Wi wl), e (Wn Wn1+1)’ respectively. For
wy € Wi, ..o wng1 € Wip and w() € Wy, the series

<w67 yl (w17 21) e yn(wna Zn)wn-i-l)

in complex variables z1, . .. z, is absolutely convergent in the region |z;| > -+ > |z,| > 0 and
its sum can be analytically continued to a multivalued analytic function

F<<u/1> yl(wlv 21) o 'yn(wnv Zn)un+l>)

on the region

{(z1,...,20) | 2 #0,2, — z; # 0 for i # j} C C"
and the only possible singular points z; = 0,00 and z; = z; are regular singular points. (A
regular singular point of a multivalued analytic function is a point on which the function is
not defined but in the neighborhood of the point, the function can be expanded as a series
in powers of the variables and a polynomial in the logarithms of the variables.)

Using the skew-symmetry isomorphism above, we see that the iterate of two intertwining
operators can be written as the product of two intertwining operators. So we have the
following result:

Proposition 12.4. Let Wy, Wy, W3, Wy, W be lower-bounded generalized V -modules. As-
sume that the convergence and extension property of products of 2 intertwining operators
holds. Then for lower-bounded generalized V -module W and intertwining operators Vs and

Vi of types (Wzvévg) and (WYVE,VQ), respectively, the series

<wﬁla y3(y4<w17 <1 22)w27 22)w3>

is absolutely convergent in the region |zo| > |21 — 22| > 0 for wy € Wi, we € Wy, ws € Wi
and w), € W; and can be analytically extended to a multivalued analytic function

F((wy, Vs(Va(ws, 21 — z9)wa, 22)w3))
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on the region

{(2172’/2) | 21, %2 7é Oa £ — %2 7é 0} C Cz

with the only possible singular points zy = 0,00, 25 = 0,00 and z; = z; are reqular singular
points.

The proof of this proposition is easy but we also omit it here.
We are ready to state precisely the associativity or the operator product expansion of
intertwining operators.

Associativity of intertwining operators Let Wy, Wy, W3, Wy, W5 be lower-bounded
generalized V-modules and ) and )% intertwining operators of types (WYVé[/5) and (W?/ivs),
respectively. There exist a lower-bounded generalized V-module Wy and intertwining opera-
tors V3 and Y, of the types (WZV;%) and (WYV%), respectively, such that for wy; € Wy, wy € W,
ws € W3 and w) € Wy,

F((wy, Vi(wi, 21) Vo (w2, 22)ws)) = F((wy, V3(Va(wr, 21 — 22) w2, 22)ws)).

Another important property following immediately from the associativity of twisted in-
tertwining operators and the skew-symmetry isomorphism is the commutativity of twisted
intertwining operators:

Commutativity of twisted intertwining operators Let W, Ws, W3, Wy, W5 be lower-
bounded generalized V-modules and Y; and )% intertwining operators of types (WYV?%) and
(WZV%,3), respectively. There exist a lower-bounded generalized V-module Wy and inter-
twining operators Y3 and )Y, of the types ( Wa ) and ( We ), respectively, such that for

, , W2 WG Wl WB
wy € Wi, wy € Wy, ws € Wi and wy € W4,

F({wy, Vi(wi, 21)Va(wa, 22)ws)) = F({w, Vs(ws, 22)Va(wr, 21)ws)).

The associativity of intertwining operators was proved when V' satisfies certain conditions.
See [Huall, [Hua3|, [HLZ1], [HLZ2], [Hua6] and [Huall].

12.6 The second major property: The modular invariance

To formulate the modular invariace, we first have to introduce geometrically-modified inter-
twining operators and the convergence of g-traces of products of such operators.

Given an intertwining operator ) of type (WYV‘%) and wy € Wi, we have an operator (ac-
tually a series with linear maps from Wj to Wj as coefficients) V) (wy, z). The corresponding

geometrically-modified operator is

yl (u<q;:>w17 Qz)u
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where ¢° = 2™ U(q.) = (2miq.)* Qe 274 and A; € Cfor j € Z, are defined by

1 0

i) = o J
9 log(1 + 2miy) = | exp ]EXZ: Ay’ o Y.
+

See [Huad| for details.

In general we have to take pseudo-traces instead of just g-traces of products of intertwin-
ing operators. For simplicity, Here we discuss only ¢-traces. In this case, we consider only
(ordinary) V-mdoules.

Convergence and extension property of g-traces of products of n geometrically-

modified intertwining operators Let W; and W, for i = 1,...,n be (ordinary) V-
Wi

modules, and ); for ¢« = 1,...,n intertwining operators of types (W-W-)’ respectively, where

we use the convention Wy = W,,. For w; e W;, 1 =1,...,n,

L(0)—=£
Teyy, V1 (UG wr, 4ay) - VaU(Ge S0, g2 Jgr 2

is absolutely convergent in the region 1 > |g,,| > ... > |q.,| > |¢-| > 0 and can be extended
to a multivalued analytic function

Fy, oy (wi, . .,wp; 21,00, 203 7).

in the region (1) > 0, 2z; # 2, + +m7 for i # j, ,m € Z.

Modular invariance of intertwining operators For (ordinary) V-modules W; and w; €
Witori=1,...,n,let Fy,, ., bethe vector space spanned by functions of the form

¢
Fyly---7y7z(w17 <oy Wns 21y - 00 2 7—)

for all (ordinary) V-modules W; for i = 1,...,n + 1, all intertwining operators }; of types
(V~Vi71

W~W) forv=1,...,n , respectively. Then for

( ?; ? ) € SL(2,7),

= 1\ 1\ 21 Zn QT+
Wi, ... W, Yo ;
oI\ \ 7 4§ breo\yr+6 YT +0 YT+ AT+ 4

is in Fuy,wp,-
The modular invariance of intertwining operators was proved when V' satisfies certain
conditions. See [Huad].

95



References

[EK]

[FHL]

[FLM]

[Hual]

[Hua2]

[Hua3]

[Huad]

[Huab]

[Hua6]

[Hua7]

[Huag]

[Hua9]

[Hual0]

P. Etingof and D. Kazhdan, Quantization of Lie bialgebras, Part V: Quantum
vertex operator algebras, Sel. math. (New ser.) 6 (2000) 105-130

I. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex
operator algebras and modules, Memoirs American Math. Soc. 104, 1993.

[. B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the
Monster, Pure and Appl. Math., Vol. 134, Academic Press, Boston, 1988.

Y.-Z. Huang, A theory of tensor products for module categories for a vertex
operator algebra, IV, J. Pure Appl. Alg. 100 (1995) 173-216.

Y .-Z. Huang, Generalized rationality and a Jacobi identity for intertwining oper-
ator algebras, Selecta Math. 6 (2000), 225-267.

Y .-Z. Huang, Differential equations and intertwining operators, Comm. Contemp.

Math. 7 (2005), 375-400.

Y .-Z. Huang, Differential equations, duality and modular invariance, Comm. Con-
temp. Math. 7 (2005), 649-706.

Y.-Z. Huang, Rigidity and modularity of vertex tensor categories, Comm. Con-
temp. Math. 10 (2008), 871-911.

Y .-Z. Huang, Cofiniteness conditions, projective covers and the logarithmic tensor
product theory, J. Pure Appl. Alg. 213 (2009), 458-475.

Y .-Z. Huang, Meromorphic open-string vertex algebras, J. Math. Phys. 54 (2013),
051702.

Y .-Z. Huang, A cohomology theory of grading-restricted vertex algebras, Comm.
Math. Phys. 327 (2014), 279-307.

Y.-Z. Huang, Two constructions of grading-restricted vertex (super)algebras, J.
Pure Appl. Alg. 220 (2016), 3628-3649.

Y.-Z. Huang, A construction of lower-bounded generalized twisted modules
for a grading-restricted vertex (super)algebra, Comm. Math. Phys. (2019),
https: //doi.org/10.1007 /s00220-019-03582-6; arXiv:1903.00737.

Y.-Z. Huang, On the applicability of logarithmic tensor category theory, to ap-
pear; arXiv:1702.00133.

Y.-Z. Huang and L. Kong, Open-string vertex algebras, tensor categories and
operads, Comm. Math. Phys. 250 (2004), 433-471.

96



[HL]

[HLZ1]

[HLZ2]

[HLZ3]

[Hum)|

Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories
for a vertex operator algebra, III, J. Pure. Appl. Alg., 100 (1995), 141-171.

Y .-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, VI:
Expansion condition, associativity of logarithmic intertwining operators, and the
associativity isomorphisms; arXiv:1012.4202.

Y .-Z. Huang, J. Lepowsky and L. Zhang, Logarithmi tensor category theory, VII:
Convergence and extension properties and applications to expansion for inter-
twining maps; arXiv:1110.1929.

Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory,
VIII: Braided tensor category structure on categories of generalized modules for
a conformal vertex algebra, to appear; arXiv:1110.1931.

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad-
uate Texts in Math., Vol. 9, Springer-Verlag, New York, 1972.

V. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge Univ. Press, Cam-
bridge, 1990.

J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and Their Rep-
resentations, Progress in Math., Vol. 227, Birkhauser, Boston, 2003.

G. Moore and N. Seiberg, Classical and quantum conformal field theory, Comm.
Math. Phys. 123 (1989), 177-254.

E. Verlinde, Fusion rules and modular transformations in 2D conformal field the-
ory, Nucl. Phys. B300 (1988), 360-376.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, 110 FRELINGHUYSEN RD., PISCAT-
AWAY, NJ 08854-8019
E-mail address: yzhuang@math.rutgers.edu

97



	Heisenberg vertex algebras (chiral algebras for free bosons)
	Lattice vertex algebras (chiral algebras for free bosons on tori)
	Grading-restricted vertex algebras
	A construction theorem
	Some properties of grading-restricted vertex algebras
	Operator product expansion
	The Jacobi identity
	Skew-symmetry
	Commutator and associator formula
	Weak commutativity and weak associativity
	Conformal element and Virasoro operators

	Meromorphic open-string vertex algebra
	A quick guide to the representation theory of Lie algebras
	Affine Lie algebras (Wess-Zumino-Novikov-Witten models) 
	Construction of the grading-restricted vertex algebra V(,0)
	V(,0) as a vertex operator algebra
	Construction of the vertex operator algebra L(, 0)

	Virasoro vertex operator algebras (minimal mdels)
	Quantum vertex algebras
	Modules
	Definition and properties of modules
	Modules for Heisenberg vertex operator algebras
	A construction theorem for modules
	Modules for V(,0)

	Intertwining operators
	Definition
	Examples for Heisenberg vertex operator algebra
	Basic properites
	Tensor products of modules
	The first major property: Associativity
	The second major property: The modular invariance


