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1. INTRODUCTION

A Siegel disk for a rational map of degree two or more of the Riemann
sphere is an invariant topological disk on which the map acts as an irrational
rotation. Such rotation domains were predicted by Fatou in the 1920’s, but
nobody knew whether they actually existed until 1942 when Siegel constructed
many of them by a highly innovative argument.

Understanding the dynamics of a rational map in the presence of a Siegel
disk is often difficult. The orbit structure of such a map is extremely fragile,
that is you can easily destroy it by perturbing the map within the family of all
rational maps of the same degree. These maps lack the hyperbolicity property
that has proved so fruitful in dynamics. Life becomes somewhat easier if you
focus only on polynomial maps with Siegel disks, as you can eliminate some
irrelevant features. But the characteristic difficulties of the problem remain
there, even if you narrow down your study to maps as simple as quadratic
polynomials.

That gives me enough of an excuse to consider only quadratic polynomials
in the present paper. Some of the results extend with no significant effort
to higher degree polynomials or general rational maps, but I will not discuss
them. Also missing will be the study of Cremer points, which has many par-
allels to the Siegel case and is equally interesting and challenging. The paper
is divided into two parts of roughly equal length. The first half is a survey
of known results, along with many questions which deserve to be addressed
in any attempt to understand Siegel disks. The second half is an expository
account of a recent joint work with Carsten L. Petersen [28] which gives a com-
plete understanding of quadratic Siegel polynomials for almost every rotation
number. Though this part is more technical in nature, I will try to keep the
overall exposition as elementary as possible. However, some familiarity with
holomorphic dynamics is inevitably required.

" Based on the author’s talk at John Milnor’s 70th birthday conference “Around Dynam-
ics” at Stony Brook in March 2001.
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2. PRELIMINARIES

Consider the quadratic polynomial Py : z — €2z + 22 which has a fixed
point at the origin with the multiplier P;(0) = ¢*®. Throughout this paper
we assume that the rotation number # € T = R/Z is irrational. In this case,
the fixed point 0 is said to be irrationally indifferent. Note that you do not lose
generality if you work with quadratics of this special form, since any quadratic
polynomial with a fixed point of multiplier e*™® is affinely conjugate to Pj.

The polynomial Py is said to be linearizable near the fixed point 0 if there
exists a holomorphic change of coordinates ¢ in a neighborhood of 0, called
a linearizing map, which conjugates P, to the rigid rotation Ry : z +— €2™2.
In this case, the maximal linearization domain A around 0 is an open simply-
connected set called the Siegel disk of Py. Thus, Py : A — A acts as an
irrational rotation by the angle # and one has the following commutative dia-
gram:

Such P is called a Siegel quadratic. In the complementary case, when Py is
not linearizable in any neighborhood of 0, we say that P, is a Cremer quadratic
and the fixed point 0 is a Cremer point.

Perhaps I should emphasize that the linearizability of Py is a topological not
an analytic property. By this I mean that the existence of a homeomorphic
linearizing map implies the existence of a holomorphic one. In fact, if A is
a local homeomorphism satisfying h o Pj = Ry o h near 0, then for small
e >0, U = h}(D(0,¢)) is a topological disk containing the fixed point 0
and is invariant under the action of Py. Let ¢ : U — D denote a conformal
isomorphism given by the Riemann mapping theorem which satisfies ¢(0) = 0.
Then Schwarz lemma, tells us that o Pjop~! : D — D is the rigid rotation Ry,
meaning that ¢ is a holomorphic linearizing map for P. It follows in particular
that a Cremer quadratic is not linearizable even in the weaker topological sense.

It is well known that to study the behavior of orbits near an irrationally
indifferent fixed point, one has to take into account the arithmetical properties
of the rotation number #. Various arithmetical classes of irrational numbers
arise this way and play a major role in the theory. Here, I will quickly recall
some of them, as they come up in the rest of the paper.
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Consider the continued fraction expansion
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where the a, are positive integers uniquely determined by 6. The rational
convergents of 6 are defined by

Pn _ 1

G2t 1
Gn,
If we set pg = ¢_; =0 and p_; = ¢y = 1, the rational convergents are given by

the recursions
Pn = GpPn—1 + Pn—2
dn = Qn qn—1 + dn—-2,

for n > 1. It follows in particular that ¢, > ¢,_1 and ¢, > 2¢,_2, and so
¢, — 400 at least exponentially fast. Since by classical number theory
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we conclude that p, /g, — 0 at least exponentially fast.
For our purposes, the following classes of irrational numbers in T will be
important:

e The class D, of Diophantine numbers of order v > 2. By definition,
6 € D, if there is a constant C' > 0 such that |§ —p/q| > C ¢~ for all
rational numbers p/g. One has

0 € D, < sup n+1

o
n qn

The class D of all Diophantine numbers is the union J,, D,. Thus

1<—i—oo

1
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e The class of irrationals of bounded type. By definition, € is bounded

type if sup,, a,, < +00. Since
i1 < Gnt1 _ y1 -+ n—1
n n

the sequence {a,} is bounded if and only if {g,+1/¢,} is. Therefore,

< Gp+1 + 15

f is bounded type < 6 € D,.
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e The class Q of irrationals of quadratic type. By definition, # € Q if 6 is

a root of a quadratic polynomial with integer coefficients. One has
0 € Q< {a,} is eventually periodic.

Eventually periodic means that there is a p > 1 such that a,4, = a,
holds for all large n.

The class J{ of irrationals of Herman-Yoccoz type. By definition, 8 €
H if every analytic circle diffeomorphism with rotation number 6 is
analytically linearizable. An explicit arithmetical description for J is
given by Yoccoz [35]. A closely related class H' D H is defined as
follows: @ € H' if every analytic circle diffeomorphism with rotation
number €, with no periodic orbit in a neighborhood of the circle, is
analytically linearizable [23].

e The class B of irrationals of Brjuno type. By definition, 6 € B if

< lo
Z g dn+1 < too
gn

n=1

For v > 2, we have the proper inclusions

0CD,CD,CDCHEB.

It is not hard to check that for v > 2 the Diophantine class D, (hence D, H
and B) has full measure, while Dy (hence Q) has zero measure in the circle T.

3. SIEGEL VvS. CREMER

The so-called “center problem” proposed by Poincaré asks when a holomor-
phic germ z — >z + O(2?) is linearizable near its indifferent fixed point 0.
Here is a brief chronology of various attempts to solve this problem which I
have taken from Milnor’s book [22]:

e (1912) Kasner conjectured that every holomorphic germ with an irra-

tionally indifferent fixed point must be linearizable.

e (1917) Pfeiffer constructed the first example of a non-linearizable holo-

morphic germ with an irrationally indifferent fixed point [29].

e (1919) Julia “proved” that indifferent fixed points of rational maps are

never linearizable [18]. However, his proof was incorrect.

e (1927) Cremer proved that for a generic 6, every indifferent fixed point

of a rational map with rotation number 6 is non-linearizable [6].

e (1942) Siegel proved the first positive result by showing that if § € D,

then every germ z — €22 + O(2?) is linearizable near the origin [31].
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Siegel’s result was generalized in 1967 by Brjuno who showed the linearization
is possible when 6 belongs to the larger class B [3]. The question of optimality
of the Brjuno’s condition remained open until 1988 when Yoccoz proved that
whenever § ¢ B, there exists a non-linearizable germ z — €™z + O(2?)
[34]. Shortly after, he strengthened this by proving that when 6 ¢ B, the
quadratic polynomial P has periodic orbits in every neighborhood of the fixed
point 0 [36]. Evidently, the existence of such small cycles is an obstruction to
linearizability.

Theorem 3.1 (Siegel, Brjuno, Yoccoz). The quadratic polynomial Py is lin-
earizable near 0 if and only if 6 € B.

This theorem is a definitive answer to the local linearization problem for qua-
dratic polynomials. However, as is often the case, the global dynamical picture
is what you really want to understand. From this perspective, the theorem
gives no clue as to what is going on in a large scale, especially in the presence
of a critical point.

To get started, consider the quadratic Py for a fixed rotation number 6 € B.
Let ¢ = —e?™ /2 be the unique critical point of Py and 8 = 1 — €™ be the
fixed point other than 0. This fixed point is always repelling (it pushes away
nearby points) since |Py(5)| > 1. Define the filled Julia set of Py as

K = K(Py) = {z € C: the forward orbit {P;"(2)},>0 is bounded},

and the Julia set J = J(P) as the topological boundary of K. From classical
Fatou-Julia theory [22] we know that both K and J are non-empty (for exam-
ple they contain ¢ and ), totally invariant, compact and connected subsets of
the plane. The interior of K decomposes into infinitely many connected com-
ponents consisting of the Siegel disk A and its iterated preimages. Hence, for
a z € C there are three possibilities: (i) z ¢ K in which case P;"(z) — oo as
n — 00; (ii) z € int(K) in which case there exists a smallest integer & > 0 such
that Pg*(z) € A; (iii) 2 € 9K = J in which case the behavior of the orbit of z
is highly non-trivial and often difficult to understand. Fig. 1 shows the filled
Julia set K for the golden mean rotation number (v/5 —1)/2 =[1,1,1,...].
The filled Julia set K is full in the sense that C \ K has a single connected
component €2 containing co. This basin of infinity consists of all points which
tend to oo under the iterations of Pp; it is simply-connected and totally invari-

ant. There exists a unique conformal isomorphism ) : CD =0 satisfying
(00) = oo and 9'(0c0) = 1 which conjugates the squaring map to the action

of P on €

»(2%) = Py((2)).
The image R; = ¥{re?™ : r > 1} of the radial line at angle ¢ € T is called the
external ray at angle t. We say that R; lands at p € J if p = lim,_,; ¥(re? ),
The external rays define an analytic foliation of the basin of infinity that is
invariant under the action of Py since Py(R;) = Ry (see Fig. 1).
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FiGurEe 1. The filled Julia set of the golden mean quadratic
Py, with § = (v/5 —1)/2 = [1,1,1,...]. The Siegel disk A is
the large domain to the left of the critical point ¢ at the center
of the picture. The external rays at angles t = 0,1/2,1/4 and
3/4 landing at the fixed point 8 and its preimages are shown.
Also shown is the ray R, landing at the critical value Py(c),
its two preimages R 2, R(u+1)/2 landing at the critical point c,
and four further preimages. Here w = [2°,2!,21 22 23 25 | |~
0.709803, where the powers of 2 form the Fibonacci sequence.

Understanding the landing pattern of these external rays is important for
the following reason. Call two angles s,t € T equivalent if R; and R; land at
the same point of the Julia set J. We call this relation ray equivalence. If .J is
locally-connected, the theorem of Carathéodory in conformal mapping theory
guarantees that ¢ extends continuously to the boundary circle; in particular,
all external rays land. It easily follows that J is homeomorphic to the quotient
of T by this ray equivalence relation. Thus, knowing how the external rays
land allows you to build the Julia set up to homeomorphism at least when J

is locally-connected.

4. A SURVEY OF WHAT IS KNOWN

What follows is a survey of some of the results on the global dynamics of
Siegel quadratics. They are presented as attempts to answer four questions
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that one may consider “fundamental” in this subject. Let me say right at the
outset that despite important progress in recent years, none of these funda-
mental questions is yet fully addressed in a satisfactory way.

e “What can be said about the topology of the boundary 0A? How tame or wild
a continuum can it be?”

In the 1980’s, Douady and Sullivan asked if the boundary of every Siegel
disk of a rational map must be a Jordan curve [8]. This problem is still open,
even for quadratic polynomials:

Question 1. Is the boundary 0A always a Jordan curve?

I should mention here Herman’s construction of a smooth diffeomorphism of
the 2-sphere which is analytically conjugate to an irrational rotation of a topo-
logical disk whose boundary is a pseudo-circle [11]. Apparently he believed
that Douady-Sullivan’s question has a negative answer for polynomials of high
degrees [14].

In [30] Rogers studied the topological structure of the boundaries of Siegel
disks. He showed that if 0A fails to be a Jordan curve, it must be either
essentially tame (something like a Jordan curve with a sequence of topologist’s
sine curves implanted on it) or a horribly complicated continuum. This is the
content of part (ii) of the following result.

Theorem 4.1 (Rogers).

(i) If OA is arcwise-connected (in particular, if it is locally-connected),
then it s a Jordan curve.

(i) Let ¢ : A — D be any conformal isomorphism. Then either ¢ extends
continuously to OA or else OA is an indecomposable continuum.

Recall that a continuum is indecomposable if it is not the union of two proper
subcontinua. If A fails to be a Jordan curve for some 6, it would be natural
to ask which of the alternatives in (ii) can actually take place:

Question 2. Can 0A ever be an indecomposable continuum?

Another terrifying (or beautiful, depending of what kind of mathematician
you are) scenario is that A may separate the plane into more than two con-
nected components.

Question 3. Can C \ JA have more than two connected components?

A positive answer would imply 0A is indecomposable and equal to the entire
Julia set J! In this case, one would obtain an example of “Lakes of Wada”
[15], with the Siegel disk A and its iterated preimages as the lakes, the basin of
infinity €2 as the ocean, and the Julia set J as the dry land. I must admit that
such a scenario sounds very unlikely, but keep in mind that Lakes of Wada
do occur in the simplest nonlinear dynamical systems [16]. In any case, if you
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were to rule out the existence of Lakes of Wada, the most natural strategy
would be to show that the repelling fixed point g is off 0A, for this would
immediately imply 0A # J.

Question 4. Is it true that the repelling fixed point 5 of Py is always off 0A?

A natural approach to this question would be to consider the perturbation
Py, (2) = re¥™ 7 4+ 22 for 0 < r < 1, which has an attracting fixed point at
the origin and a repelling fixed point at 3, = 1 — re?™. The question would
then be whether the distance of 3, to the linearization domain of 0 for Py, is
greater than some ¢ > 0 independent of 7.

e “What can be said about the metric structure of 0A? When is it a quasicircle?
What is its Hausdorff dimension?”

Recall that a quasicircle is the image of the round circle under a quasiconfor-
mal map of the plane. Alternatively, one can characterize quasicircles among
Jordan curves by Ahlfors’s bounded turning condition [1]: Each pair of points
z,w on a Jordan curve v divide it into two closed arcs. Let [z, w] denote the
arc with smaller Euclidean diameter. Then < is a quasicircle if there exists
a constant C' > 0 such that diam[z,w] < C|z — w| for every pair of points
z,w € 7. Quasicircles first appeared in conformal dynamics as limit sets of
quasi-Fuchsian groups. The introduction of quasiconformal maps to iteration
theory revived the interest in them. They occur, for example, as the Julia set
of z — 2% + ¢ for small |c|.

The most studied and best understood Siegel quadratics are those with
bounded type rotation numbers. Their Siegel disks turn out to be well-behaved
from both the topological and metric point of view.

Theorem 4.2. Suppose 0 € D,.

(i) (Ghys-Douady-Herman-Shishikura-Swiatek) The boundary A is a qua-
sicircle containing the critical point c [8].
(ii) (Petersen) The Julia set J is locally-connected and has measure zero
[26].
(iii) (McMullen) The Hausdorff dimension of J is less than 2 [21].
(iv) (Graczyk-Jones) The Hausdorff dimension of OA is greater than 1 [9].

Fig. 2 shows the details of the golden mean Siegel disk. I will not say anything
about the proof of (iii) and (iv) here. However, later in §5, I will describe in
detail the proof of a much more general result which includes (i) and (ii) as a
special case. Part (i) has been recently generalized to cubic Siegel polynomials
(37].

The converse of (i) above is also true. It has been attributed to Herman,
but the only written proof that I am aware of is due to Petersen [27].

Theorem 4.3 (Petersen). If 0A is a quasicircle containing the critical point
c, then 0 € D,.
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FIGURE 2. Siegel disk of the golden mean quadratic and its
magnification near the critical point.

The assumption ¢ € 0A is quite essential, as A can be a quasicircle for
some unbounded type rotation numbers and in these cases ¢ ¢ A; compare
Theorem 4.7 below.

When the rotation number € is of quadratic type, more can be said about
OA. This case has been the subject of extensive numerical studies by physicists
since the early 1980’s, largely due to the fact that the corresponding quadratics
exhibit interesting self-similarity and universality phenomena.

Theorem 4.4 (McMullen). If 6§ € Q, then the boundary OA is self-similar
about the critical point c.

Roughly speaking, the theorem says that for some suitable A > 1, the succes-
sive blow-ups of OA near c under L : z — A(z—c)+c converge to a well-defined
curve which is invariant under L (compare Fig. 2).

Before I move on, let me include the following amusing question, apparently
asked by Carleson, about the golden mean Siegel quadratic:

Question 5. Let §# = (v/5—1)/2=[1,1,1,...]. Is it true that

= d |Py(c)| = min |2|?
el = max|z| and |Py(c)| = min 2]

Computer experiments seem to confirm this and one might suspect that some-
thing deep is going on here, but so far there has been no rigorous explanation
for it.

You may wonder how regular the boundary of a Siegel disk can get. An
easy application of Schwarz reflection principle shows that the boundary of a
Siegel disk can never be real analytic. However, Perez-Marco has constructed
examples of holomorphic germs with Siegel disks whose boundaries are smooth
or even quasi-analytic [24]. It would be interesting to show that some of these
germs can be realized as a quadratic polynomial.
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Question 6. Does there exist a rotation number # € B for which 0A is smooth
or even quasi-analytic?

Another metric quantity associated with 0A is its Hausdorff dimension.
When 6 € Dy, we know that 1 < dim(0A) < 2 (the lower bound is Theo-
rem 4.2(iv) and the upper bound follows from the fact that A is a quasicircle).
It would be interesting to understand the behavior of the dimension function.

Question 7. What can be said about the function 6 — dim(0A) when 0 € B?
Can it take the values 1 or 27

Evidently, a positive answer to Question 6 provides an example with dimension
1. On the other hand, there are indications that 0A might actually have
dimension 2 (see the discussion leading to Question 17).

e “What prevents P from being linearizable in a domain larger than A?”

It was widely believed in the early 1980’s that the boundary of a Siegel
disk of a rational map must contain a critical point. This was thought to be
the obstruction to extending the linearizing map beyond the boundary of such
Siegel disks. In [10] Herman provided some support for this common belief.
In particular, he showed

Theorem 4.5 (Herman). If @ € H, the critical point ¢ belongs to OA.

Herman'’s original proof deals with the Diophantine class D, but his proof works
equally well for the larger class H. I should point out that this theorem can
now be proved with minimal effort using Perez-Marco’s idea of “hedgehogs”
(see [23] and [38]). Carleson and Jones have given a harmonic analysis proof
for the weaker fact that ¢ € 0A for almost every 6, but their proof does not
specify such angles [5].

It had been observed earlier by Douady and Sullivan that a Siegel disk with
no critical point on its boundary would cause topological complications by
forcing the Julia set to be non locally-connected [8]:

Theorem 4.6 (Douady-Sullivan). Ifc ¢ 0A, then J cannot be locally-connected.

In fact, assuming J is locally-connected, consider the set £ C T of the angles of
all the external rays that land on 0A. This F is a compact non-empty subset
of the circle which is mapped homeomorphically onto itself by the doubling
map t +— 2t (mod Z). It is then easy to see, using the expanding property of
the doubling map, that E has to be a finite set, which is a contradiction since
OA is infinite.

The following theorem of Herman which appeared later in 1986 put things in
much better perspective and also showed the above theorem is non-void [13]:

Theorem 4.7 (Herman). There exist rotation numbers 6 € B \ H for which
0A is a quasicircle, but the entire orbit {P;™(c)}n>o is disjoint from 0A. In
particular, the Julia set of Py is not locally-connected.
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Inspired by Theorem 4.5 and Theorem 4.7, we ask:
Question 8. Is it true that ¢ € 0A if and only if § € H?

Recall that the omega-limit set w(c) is the set of accumulation points of the
forward orbit { P;"(c) }»>0 of the critical point. By classical Fatou-Julia theory,
0A C w(c) C J. Moreover,

Theorem 4.8 (Mané). For every 0 € B, the critical point c is recurrent:
c € w(c).

In fact, there is nothing to prove if ¢ € JA. Assuming ¢ ¢ OA and c is not
recurrent, it follows from the work of Mafié in [20] that the invariant set A
is expanding. But this easily leads to a contradiction; see [38] for details.

Question 9. How large w(c) can get? Can it be equal to J? Can it contain
any periodic point?

Herman’s Theorem 4.7 shows that the critical point may not be the obstruc-
tion to extending the linearization to a domain larger than A. In such cases,
the obstruction may be the existence of periodic orbits in every neighborhood
of OA. This is certainly the case whenever ¢ ¢ OA and 6 belongs to the arith-
metical class H' [38]. It is interesting to pinpoint the precise condition on 6
for which this takes place:

Question 10. For what rotation numbers # € B is A accumulated by peri-
odic orbits? Does this set contain B ~\ H?

Somewhat curiously, this question has to do with accessibility of the critical
point. The subject is a neat example of how combinatorics, plane set topology
and complex analysis interact, so let me say a few words on it.

Fix a 6§ € B and consider the Julia set J of the quadratic Py. A point in J
is called accessible if it is the landing point of some external ray (see the end
of §3 for definitions). A point in J is biaccessible if it is the landing point of
two or more external rays. Alternatively, z € J is biaccessible if J \ {z} is
disconnected. As an example, the fixed point 3 is always accessible but never
biaccessible, since it is the landing point of the unique ray Ry. On the other
hand, if a ray R; lands at the critical point ¢, then the symmetric ray R;;1/,
must also land at c. It follows that c is biaccessible if it is accessible at all.

The following theorem determines all possible biaccessible points in the Julia
set of a Siegel quadratic [38]. The proof uses the theory of “hedgehogs” in an
essential way.

Theorem 4.9 (Zakeri). Fiz 6 € B and suppose z € J is biaccessible. Then z
is pre-critical, that is there exists an integer n > 0 such that P;"(z) = c.

In particular, the critical point c is either inaccessible or the landing point
of eractly two external rays. To see this, note that if R; lands at ¢, so does
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Rit1/2- If a third ray R, landed at c, the critical value Py(c) would be the
landing point of the distinct rays Ry and Rys. By the above theorem, the
critical value would then have to be pre-critical, forcing ¢ to be periodic. This
would be impossible since A C w(c).

Naturally, one wants to know what two rays, if any, would land at c¢. Here
a purely combinatorial scheme comes into play. Let m : T — T denote the
doubling map m(t) = 2t (mod Z). Given any closed semicircle A, = [t/2, (t +
1)/2], the restriction m|4, can be extended in an obvious way to a degree 1
monotone map my of the circle by sending the entire interval T \ A; to the
single point t. Let p(t) be the rotation number of m;, that is the limit

) x

(4.1) lim ———= (modZ)
where m; : R — R is any lift of m; and z( is any real number. The graph
of the function p : T — T is a “devil’s staircase.” In fact, given a rational
number p/q in the reduced form, we have

pHp/g) = [t7,t7], where t~= > 27 and t'= Y 27

0<r/s<p/q 0<r/s<p/q

while for an irrational number € we have

(4.2) O =t= Y 2,

0<r/s<0

and the sums are taken over all rational numbers /s (reduced or not). It is
not hard to show that ¢ — p(t) is continuous and monotone; see [4] for further
details.

Given an irrational 6, (4.2) gives an explicit description of the associated
angle t = p (). Of course you can then reverse this process and recover
6 from (4.1). However, a simple observation allows you to put this reverse
computation in a more elegant form: the orbit of ¢ under the doubling map
is contained in A; when 6 = p(t) is irrational. This means that the my-
and m-orbits of ¢ are identical, and have the same cyclic order as the orbit
0 — 20 — 30 — - -- of the angle # under the rotation Ry. If 0.¢1t5t5-- - is the
binary expansion of ¢, it follows that

m?"(O.tltgtg . ) = m°"(0.t1t2t3 . ) = O.tn+1tn+2tn+3 et

It is then easy to check that

e ok 7 T s o A
0 = p(t) = lim —— nl
n—00 n
In other words, € is the frequency of digit 1 in the binary expansion of ¢.
Based on such purely combinatorial observations, it is easy to verify the
following:
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Theorem 4.10. Let 6 € B. If the external rays at angles w/2 and (w+ 1)/2
land at the critical point ¢ of Py, then 0 = p(w).

Now suppose c is accessible and U is the component of C\ (R, /2 UR(11)/2U
{c}) containing the Siegel disk A. If there is a periodic orbit of Py in U other
than the indifferent fixed point 0, it is necessarily a repelling orbit and hence
there are finitely many external rays landing at each point of it [22]. The
angles of these external rays form a finite invariant subset of the semicircle
A,. This implies § = p(w) is rational, which is a contradiction.

Corollary 4.11. If the critical point c is accessible and off the boundary 0A,
then OA cannot be accumulated by periodic orbits.

Question 11. For what rotation numbers # € B is the critical point ¢ acces-
sible? Does this happen precisely when 6 € H?

In view of Corollary 4.11, affirmative answers to Question 8 and Question 10
would imply that c is inaccessible when 6 ¢ K.

e “What can be said about the dynamics of the Siegel quadratic Py on QA"

Another interesting set of questions arise when one considers the action of
Py on the boundary of the Siegel disk. They also shed light on some of the
questions we asked before.

When 0A is a Jordan curve, the theorem of Carathéodory shows that the
linearizing map of A induces a homeomorphism A — S, so Py|sa is topo-
logically conjugate to the rigid rotation Ry. In particular, every boundary
point has a dense orbit. Herman has proved a weaker statement without the
assumption of A being a Jordan curve [10]:

Theorem 4.12 (Herman). Fiz 0 € B and let i be the harmonic measure on
O0A (obtained by pushing forward Lebesgue measure on the unit circle under
the Riemann map of A). Then the support of u is OA, and Py|aa is ergodic
with respect to p. In particular, p-almost every point in A has a dense orbit.

This theorem naturally leads to the following question:

Question 12. Is it true that for every 8 € B and every z € 0A the orbit of z
is dense in 0A?

A positive answer would be a step towards showing that 0A is always a Jordan
curve. At the other extreme, let me mention the following related question
asked by Milnor:

Question 13. Can Py|ya ever have a periodic orbit?

Evidently the answer is negative in the case OA is a Jordan curve (see also
Theorem 4.13(i) below). But the question seems to be very difficult in general.

Here is a rather surprising question, the importance of which has been shown
in the work of Herman [10]:
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Question 14. Is Py|sa always injective?

In fact, Py|ga is known to be injective in the following cases: (i) when 0A is
a Jordan curve; (ii) when the critical point ¢ is accessible; (iii) when ¢ ¢ 0A
[38]. It is also easy to see using the Maximum Principle that Py|sa is injective
on the set of points in dA which are accessible from within A.

Injectivity of Py|sa has nice implications:

Theorem 4.13. Let Py|sa be injective. Then

(i) C N\ OA has exactly two connected components.
(ii) Pyloa has no periodic orbits.

The first statement holds since otherwise A = J (see the comments after
Question 3) and Pylsa would be 2-to-1. The second statement follows, for
example, from Petersen [25]: A periodic point on JA must belong to the
boundary of a preimage of A other than A. Each such point will eventually
map to the critical point by injectivity of Pylga. But this is impossible since
the critical point cannot be periodic.

5. A NEW DEVELOPMENT

In [28], Petersen and the author introduced the new arithmetical class €
consisting of all irrational numbers 6 = [a1, as, as, . ..] in T for which

loga, = O(v/n)  asn — +oo.

It is not hard to check that Dy C € C D, for every v > 2. Moreover, it follows
from a theorem of Khinchin [19] that € has full measure in T.

Theorem 5.1 (Petersen-Zakeri). If 0 € €, then the Julia set of Py is locally-
connected and has measure zero. In particular, 0A is a Jordan curve passing
through the critical point.

If 0 belongs to the full measure set € \ D, it follows from Theorem 4.3 that
OA is a Jordan curve but not a quasicircle (compare Fig. 3).

The theorem gives a complete description of the combinatorics and topology
of the Julia set and the dynamics of Py on it for almost every rotation number
. In fact, it follows from the discussion at the end of §3 that when 6 € &£ the
Julia set J is homeomorphic to the quotient of the circle by the ray equivalence
relation, and the action of P on J is topologically conjugate to the action of
the doubling map on this quotient. But by Theorem 4.9 and Theorem 4.10, the
ray equivalence is generated by the pair (w/2, (w+ 1)/2) and all its preimages
under the doubling map. Since w is uniquely determined by the rotation
number 6, it follows that for § € &€, the Julia set J can be constructed up to
homeomorphism in a combinatorial way, only with knowledge of 6.

The rest of this paper will be devoted to a rather long sketch the proof of
Theorem 5.1; see [28] for more technical details. The argument contains, as a
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FIGURE 3. The picture on the left is the filled Julia set of the
quadratic Py for § = [a,as,as,...] &~ 0.446746, where a, =
|eY™|. The boundary of the Siegel disk, emphasized in black, is
a Jordan curve but not a quasicircle. The picture in the middle
is a close up of this boundary and the one on the right is a further
magnification near the critical point. Notice how the geometry

of the boundary differs from the bounded type case quasicircle
in Fig. 2.

special case, the proof of Theorem 4.2(i)-(ii). I will assume some familiarity
with the theory of quasiconformal mappings, as in [1].

Fix an irrational number § € T. Following Douady [8], we consider the
degree 3 Blaschke product

omit 2 [ #—3
D2 e
forz—e™z (1—3z)’

which has a double critical point at 1, a zero at 3, a pole at 1/3, and superat-
tracting fixed points at 0 and oc. The restriction fy|g: is a critical circle map,
that is a real-analytic homeomorphism with a critical point at 1. We choose
the (unique) parameter ¢ = t(f) € T so that fy|s: : S' — S! has rotation
number 6. Fig. 4 left shows the Julia set of fj.

By a theorem of Yoccoz [33], there exists a unique homeomorphism h :
St — S! with h(1) = 1 such that ho fylg1 = Rgo h. Let H : D — D be any
homeomorphic extension of A and define

fo(2) if |2 > 1
Fy(z) = Fyu(z) = { (H Yo Ryo H)(2) if 2| <1

Then Fy is a degree 2 topological branched covering of the sphere. It is holo-
morphic outside of D and topologically conjugate to the rigid rotation R, on
D. This is a synthetic model for the Siegel quadratic Py.

By way of comparison, if there is any correspondence between Py and Fy, the
Siegel disk A for P should correspond to the unit disk for Fy, so the preimages
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FIGURE 4. Left: The Julia set of the Blaschke product f, for
0 = [ay, ag,as, . ..] ~ 0.446746, where a, = |evV™|. Computation
gives t(6) ~ 0.441759 for this value of §. Right: The “Julia set”
of the synthetic model Fy. After a David surgery, this synthetic
Julia set maps to the Julia set of the quadratic Py shown in
Fig. 3 left.

of A should correspond to the iterated Fyp-preimages of the unit disk, which we
call drops (these are the teardrop shaped regions in Fig. 4 right). The basin
of attraction of infinity for Py should correspond to a similar basin A(co) for
Fy (which is the immediate basin of infinity for f;). By imitating the case
of polynomials, we define the “filled Julia set” K(Fy) as C \ A(oo) and the
“Julia set” J(Fy) as the topological boundary of K(Fy), both of which are
independent of the homeomorphism H.

By the work of Petersen in [26] which utilizes the so-called “complex a priori
bounds,” we know that J(Fy) is locally-connected and has measure zero for all
irrational numbers #. Thus, the local-connectivity statement in Theorem 5.1
will follow once we prove that for # € € there exists a homeomorphism ¢ : C —
C such that ¢ o Fy o ¢=! = P;. The measure zero statement in Theorem 5.1
will follow if we show that ¢ is absolutely continuous.

The basic idea described by Douady in [8] is to choose the homeomorphic
extension H in the definition of Fjy to be quasiconformal. This turns out to
be possible precisely when 6 is bounded type. In fact, by the theorem of
Beurling-Ahlfors [1], an orientation-preserving circle homeomorphism A has a
quasiconformal extension to the disk if and only if it is quasisymmetric in the
sense that its lift h to R satisfies

h(z +t) — h(z)
Sup sup = = < +00.
zeR >0 h(z) — h(x —t)
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On the other hand, the existence of “real a priori bounds” for critical circle
maps (see [12] and [32]) implies

Theorem 5.2 (Herman—gwiatek). The linearizing map h : S — S! is qua-
sisymmetric if and only if 0 € Ds.

Thus, assuming € € D,, one can choose a quasiconformal extension H : D — D
of h. Let uy = (OH/OH)dz/dz be the Beltrami differential of H in D. We
can make pupy into an Fy-invariant Beltrami differential iy in the plane by
saturating it as follows: Let U be any drop and F;* be the first iterate which
maps U conformally to D. Define iy in U as the pull-back (F;*)*uy. On
the unit disk set iy = py. This defines fiy in the interior of K(Fp). To
complete the definition, simply set piy = 0 anywhere else. The Beltrami
differential iy is called the saturation of ug; that gy is Fy-invariant is clear
from its definition. Since the iterated inverse branches of Fy used for pulling
back are all conformal, they do not increase the dilatation, so iy has bounded
dilatation. The measurable Riemann mapping theorem [2] then shows that
ig can be integrated by a quasiconformal homeomorphism ¢ : C — C, which
means its Beltrami differential 1, is equal to iy almost everywhere. It follows
that P = ¢ o Fy o ¢! is a quasiregular degree 2 branched covering of C
which preserves the zero Beltrami differential, hence it is holomorphic. Since
P~!(c0) = oo, the map P must be a quadratic polynomial. With appropriate
normalization, we obtain P = P, and ¢ is the desired conjugacy between Fj
and Py. This proves Theorem 4.2(i)-(ii).

It is clear from Theorem 5.2 that to go beyond the bounded type rotation
numbers, we have no choice but to give up the above quasiconformal surgery.
The main idea of [28] is to use extensions H which are no longer quasicon-
formal, but their dilatation grows in a controlled fashion. What gives this
approach a chance to succeed is David’s theorem on integrability of certain
Beltrami differentials with unbounded dilatation. A measurable (—1,1) form
i in a domain U is called a David-Beltram: differential if there are positive
constants C, a, ¢ such that

(5.1) area{z € U: |p|(z) > 1 —e} < Ce ¥ forall € < &.

In other words, the area of the set of points where the dilatation of u is
large must be exponentially small. In [7], David showed that the measurable
Riemann mapping theorem holds for the class of David-Beltrami differentials:

Theorem 5.3 (David). Every David-Beltrami differential p in a domain U is
integrable, that is there exists an orientation-preserving homeomorphism ¢ :

U= o(U) in Wbl (U) whose Beltrami differential p,, coincides with p almost
everywhere in U. This ¢ is unique up to postcomposition with a conformal
map, and s absolutely continuous in the sense that area 2 = 0 if and only if

area o(E) = 0.
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A homeomorphism ¢ in the Sobolev class I/Vli’cl for which p, is a David-Beltrami
differential is called a David homeomorphism.

To carry out a non-quasiconformal surgery in the unbounded type case, let
us consider the following statements:

A. The rotation number 6 of Fy|s: belongs to the arithmetical class €.

B. The homeomorphism % : S! — S! which linearizes Fy|s: has a David
extension H : D — D.

C. The saturation of every David Beltrami-Differential in D by Fj is a
David-Beltrami differential in C.

The main ingredient of the proof of Theorem 5.1 is then to show the implica-
tions
A=B=C

In fact, given a # € &, the implication A = B tells us that A has a David
extension H to D, and the implication B = C guarantees that the satura-
tion of the Beltrami differential of H in ID is an Fy-invariant David-Beltrami
differential in C. Integrating this differential by Theorem 5.3 gives a David
homeomorphism ¢ for which ¢ o Fy o ¢=! is a quadratic polynomial with a
Siegel disk of rotation number . Theorem 5.1 follows since ¢, being David, is
an absolutely continuous homeomorphism.

So let me address these implications separately. A piece of notation will be
useful in what follows. For positive quantities a and b, the notation

a<b

means that there exists a universal constant C' > 0 such that a < Cb. The
notation

axb
means that ¢ < b and b < a, that is there exists a universal constant C > 0
such that C~1b < @ < C'b. In this case, we say that a and b are comparable.

e Outline of the proof of A = B

For convenience, think of the circle maps Fj, Ry and h as homeomorphisms
on the real line which commute with the translation x — z + 1 (this can
be achieved by lifting them via the exponential map z +— exp(2miz)). The
goal is then to construct an extension of h to the upper half-plane H, which
commutes with the translation z — z 4+ 1, whose Beltrami differential satisfies
the David’s condition (5.1) on the vertical strip 0 < Rz < 1. Following Yoccoz,
we construct two combinatorially equivalent, affine cell decompositions I'r and
['r of H, one using Fyp and the other one using Ry. For each n, consider the
finite segment {F} 7 (0)}o<j<q, of the backward orbit of 0 and translate it by Z
to obtain a “lattice” in R. Above each point x in this lattice, mark the point
x + 1y € H, where y is the average distance of x to its two neighbors in the
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Crrr [ [rr] Trr ] | ] T 1 T [ |

X1+ Ony X304 X204 X, 0 Xq, Xgyr Gy

FIGURE 5. Part of the cell decomposition I'p constructed using
the rigid rotation Ry. Some cells of level n — 1, n, and n + 1
are shown. In this example a, = 3 and a,; = 4. Fach marked
point x; is the lift of the preimage Fa_j (1) of the critical point.

lattice. Repeat this for every n, and mark all the points obtained this way in
H. These points form the vertices of the cells in I'r. A similar construction
with Ry defines the cells in I'g, and the conjugacy h between Fjy and Ry
gives a correspondence between cells in I'p and I'g. The cells are arranged in
horizontal layers labeled by their level n. The closer a cell is to the boundary
of H, the larger its level will be. The Euclidean diameter of an n-cell, that is a
cell of level n, decays exponentially in n. Each n-cell is bounded by an “upper
edge,” two “sides edges” and k “lower edges” with k = a,41 or an11 + 1 (see
Fig. 5).

The cells in both I'r and I'g have bounded geometry independent of the
rotation number @, that is they do not look too stretched out either horizontally
or vertically. For Iy this statement is easy to verify but for I'r it follows from
Herman-Swiatek’s real a priori bounds. What makes the cells in I'r and I'p
different is the relative size of their lower edges: for an n-cell in I'g all the
lower edges have roughly the same length, but for an n-cell v in I'p, the j-th
lower edge (counted from left or right) has length comparable to

diam(~)
min{j, k+1—j}?
In other words, the relative size of the lower edges of v decreases quadratically
from both sides (see Fig. 6). Of course, this phenomenon becomes relevant
only when a,; (hence k) is very large.

Now extend h to a homeomorphism H : H — H as follows: Let H map the
boundary of each cell v € I'r affinely to the boundary of the corresponding cell
~" € T'g. To define H in the interior of these cells, it will be more convenient to
map 7y and ' quasiconformally to the unit disk, with the upper edges mapped
to the arc [(, ¢?], the left edges mapped to [¢?, ¢?], and the right edges mapped
to [¢7,(]; here ¢ = e"™/*. The lower edges of v and 7 are mapped into subarcs
of [¢%,¢7], which in the case of v have quadratically decreasing lengths and

(5.2)
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FIGURE 6. A typical cell v € I'r and its corresponding cell
~'" € T'gr. The number k of lower edges is 14 in this example.
They shrink quadratically in size for v and have roughly the same
length for v'. The normalizing maps ¢ and v are quasiconformal
with dilatation independent of vy and +'. The induced boundary
map St — S! has a quasiconformal extension D — D with real
dilatation < (logk)?.

in the case of 7' have comparable lengths (see Fig. 6). This normalization
process can be done with a dilatation independent of v and +' since the cells
have bounded geometry. The induced boundary map S* — S! can be arranged
to be the identity on S\ [¢5,("]. Its action on each of the arcs [¢?, —i] and
[—4,¢™] is by (5.2) reminiscent of a hyperbolic Mébius transformation which
fixes the endpoints of the arc and is repelling at —i. Using a construction of
Strebel, it is not hard to show that this boundary map has a quasiconformal
extension to a map D — D whose real dilatation is < (logk)? < (loga,1)?.
But since 6 € &, we have loga, < \/n, and so this real dilatation is < n.
Back to the original extension problem, it follows that H extends to the upper
half-plane, and the real dilatation of H is < n on the union of n-cells of I'r
whose area in the strip 0 < Rz < 1 is known to be exponentially small in n.
This is precisely the David’s condition (5.1).

e Outline of the proof of B = C

This is the most non-trivial step in the proof of Theorem 5.1. It amounts to
showing that if y is a David-Beltrami differential in I, then the saturation p
will be a David-Beltrami differential in C. For e > 0 small, let Ap(e) = {2z €
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D : |p|(2) > 1 —€}. More generally, for a drop U, define
Ay(e)={z€ U : |p|(z) > 1 —¢€}.

Think of the regions Ap(e) and Ay (e) as “red zones” in D and U respectively,
where the dilatation is large. Our goal is to show that if the area of red in D
is exponentially small in ¢, so is the total area of red in the plane (remember
that there is no red outside the union of drops).

Let Uy denote the unique preimage of D other than D (in Fig. 4 right, Uy
is the prominently visible drop attached to I at the critical point z = 1).
Let g denote the univalent branch of F, ' mapping D to Up. Since Fj has a
critical point at 1 € 0U,, this g distorts areas a great deal in the vicinity of
the critical value Fy(1). However, if area Ap(e) is exponentially small in €, so
is area Ay, (¢) = area g(Ap(e)).

For any drop U, let gy : Uy — U be the inverse of the iterate F,;* which
maps U to Uy conformally (in particular, gy, = id). It easily follows from the
definition of saturation that

Av(e) = gu(Au, (€))-

This, in particular, shows that the red zone is backward invariant. Now, each
gu has a univalent extension to a neighborhood of U, whose size depends on
U. If we knew that all the gy had bounded distortion independent of U, we
could conclude that the proportion of red in U is comparable to the proportion
of red in Uj:

area Ay(e) _ areagy(Ay,(e)) _ area Ay, (e)

= = = area Ay, ().
area U area gy (Uy) area Uy rea Auy (€)

This would imply
area{z € C: |i|(z) > 1 — ¢} = area Ap(e) + Z area Ay (¢)
U

< area Ap(e) + area Ay, (¢) Z area U
U

< area Ap(e) + area Ay, (¢) area K(Fy).

Since area Ap(e) and area Ay, (g) are both exponentially small in &, so is the
area on the left. This would show that z is a David-Beltrami differential in C.

Unfortunately, that the gy have uniformly bounded distortion is wishful
thinking. In fact, the recurrence of the critical point z = 1 forces the distortion
of gy = F, e_k to grow arbitrarily large as £k — 400 at least when U has its root
on the unit circle. The red zone occupies almost all of such a drop U (compare
Fig. 7).

To circumvent this difficulty, we change the strategy: Starting with U, and
taking backward iterates, we can guarantee bounded distortion for gy for some
time and the red zone will be small. When the distortion of gy begins to get so
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FiGUuRE 7. The shaded region in each drop is the “red zone”
where the dilatation of 1 is larger than 1 — . The area of this
region in D is exponentially small. The first pull-back to the
drop U, introduces some distortion near z = 1 (the red zone in
Uy is much thicker there) but still keeps the area exponentially
small. However, a long pull-back along a drop U with the root
on S! introduces so much distortion that almost all of U becomes
red.

big to interfere with the area bounds, the drop U is considerably red, but by
this time U is extremely small, so it would not hurt the area bound much to
ignore the distortion issue and assume all of U is red. This is the philosophy
behind the argument, but one needs a great deal of technicalities to make it
work.

Formally, we define a Borel measure v on D by

v(E) = area E + Zarea (9v 0 g(F)).
U
Clearly v is absolutely continuous with respect to Lebesgue measure on I, but
we prove the much sharper estimate
(5.3) v(E) < (area E)°  for some § > 0.

This key inequality immediately proves the exponential estimate we are after,
since it shows

area{z € C: [fi|(z) > 1 — e} = v(Ap(e)) < (area Ap(e))® < e/
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FIGURE 8. The nested pieces P, around the critical value Fy(1)
and the difference sets D,,. Although the pull-backs gy o g do
not have bounded distortion on D, their distortion restricted to
each D,, is bounded.

whenever ¢ < g9. The proof of (5.3) is based upon constructing a sequence of
dynamically defined “puzzle pieces”

ﬁ)PlDPQD"'

nesting down to the critical value Fy(1). Each P, is a closed topological disk
which intersects S! along a non-degenerate interval having Fy(1) almost in its
middle (see Fig. 8). We also define the difference sets

Dy=D~P, and D,=P,~ P, for n>1.

The pieces P, and D, have nice geometry which help establish (5.3). First,
using real a priori bounds, it is not hard to show that there isa 0 < o7 < 1
such that

(5.4) o} < area P, < area D,,.

On the other hand, a very careful inductive analysis of the pull-backs of P,,
which must be the most non-trivial estimate in the entire proof, shows that
there is a 0 < 05 < 1 such that

(5.5) v(D,) <v(P,) < 03.
The estimates (5.4) and (5.5) together imply
(5.6) v(D,) < area(D,)"

for some 0 < 0; < 1 (any 0 < §; < logoy/logoy will do). This establishes (5.3)
for the pieces D,. To deduce the general case, one needs a further estimate:
The Euclidean diameter of D, is shown to be comparable to the Euclidean
distance of D, to the critical value Fy(1). Thus, by Kéebe distortion theorem,
the univalent maps gy o g have uniformly bounded distortion on D,,, so that

area(gy o g(F)) _ areaF

(5.7) whenever £ C D,,.

area(gy o g(Dy)) ~ area D,
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Now is the endgame: take any measurable set £ C D and decompose it into
the disjoint union of E,, = E N D,,. Then, by (5.6) and (5.7),

v(E,) = area E, + Zarea(gU og(En))
U

E,
< area (area D, + z area(gU ° Q(Dn))>
U

area D,

area F,

N

D,
area D,, v(Dn)

v(D,) ( area F,
" (area D,)"

1-6;
) (area E,,)°

area D,
which gives
(5.8) v(E,) < (area E,)"

Choose any 0 < § < d; and set do = d; — §. Then, by (5.8) and Hélder
inequality, we obtain

E) < Z(area B,
n=0

o 1-6 /o 6
(Z area E,) 52/ (1= 5)) (Z area En>
n=0 n=0
o 1-6
(ZO’ néa/(1- 6) (area E)°
n=0
< areaE

This finishes the proof of (5.3), hence the implication B = C, hence Theo-
rem 9.1.

The idea of David surgery and the proof of Theorem 5.1 generates a series
of new questions. For example,

Question 15. Let f : S' — S! be a critical circle map with irrational rotation
number 6, and let A : S! — S! be the unique normalized homeomorphism
which conjugates f to Ry. What is the optimal arithmetical condition on #
which guarantees h has a David extension to the unit disk?

The proof of Theorem 5.1 shows that this optimal class contains &; there is
some heuristic evidence that shows € might indeed be the optimal condition.

One can go farther as to ask, in the spirit of Beurling-Ahlfors theory, what
conditions guarantee the existence of David extensions for general circle home-
omorphisms:
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Question 16. Find a necessary and sufficient condition for a circle homeo-
morphism to have a David extension to the disk.

While it is not hard to find some sufficient conditions, I am not aware of any
concrete necessary condition for this extension problem.

The boundary 0A of the Siegel disk of a quadratic P for a bounded type
0 € D, is a quasicircle, so it has Hausdorff dimension < 2. By Theorem 5.1
and Theorem 4.3, when 6 € £ \ D,, this boundary is a David circle (the image
of the round circle under a David homeomorphism) but not a quasicircle. In
this case, it is natural to ask how large the dimension of 0A can get. It can be
shown that, unlike quasicircles, there are David circles of Hausdorff dimension
2 [39]. Inspired by this, we ask:

Question 17. Are there rotation numbers # € & ~ Dy for which 0A has
Hausdorff dimension 27

I suspect the answer is yes, but I do not yet have a proof.

REFERENCES

[1] L. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, 1966.

[2] L. Ahlfors and L. Bers, Riemann mapping’s theorem for variable metrics, Ann. of
Math. 72 (1960) 385-404.

[3] A. Brjuno, The divergence of transformations to normal form of differential equa-
tions, Dokl. Akad. Nauk SSSR 174 (1967) 1003-1006.

[4] S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots, and the devil’s
staircase, Math. Proc. Cambridge Philos. Soc. 115 (1994) 451-481.

[5] L. Carleson and T. Gamelin, Complex dynamics, Springer-Verlag, New York, 1993.

[6] H. Cremer, Zum Zentrumproblem, Math. Ann. 98 (1927) 151-163.

[7] G. David, Solutions de l’équation de Beltrami avec ||| = 1, Ann. Acad. Sci. Fenn.
Ser. A T Math. 13 (1988) 25-70.

[8] A. Douady, Disques de Siegel at aneaux de Herman, Seminar Bourbaki, Astérisque
152-153 (1987) 151-172.

[9] J. Graczyk and P. Jones, Geometry of Siegel disks, manuscript, 1997.

[10] M. Herman, Are there critical points on the boundaries of singular domains? Comm.
Math. Phys. 99 (1985) 593-612.

[11] M. Herman, Construction of some curious diffeomorphisms of the Riemann sphere,
J. London Math. Soc. (2) 34 (1986) 375-384.

[12] M. Herman, Conjugaison quasi-symetrique des homeomorphismes analytique du cer-
cle a des rotations, manuscript, 1986.

[13] M. Herman, Conjugaison quasi-symetrigue des diffeomorphismes du cercle a des
rotations et applications auz disques singuliers de Siegel, manuscript, 1986.

[14] M. Herman, Some open problems in dynamical systems, Proceedings of the Interna-
tional Congress of Mathematicians, Vol. IT (Berlin, 1998). Doc. Math. 1998, Extra
Vol. I1, 797-808.

[15] J. Hocking and G. Young, Topology, 2nd edition, Dover Publications, Inc., New
York, 1988.

[16] J. Hubbard, The forced damped pendulum: chaos, complication and control, Amer.
Math. Monthly 106 (1999) 741-758.



158 S. Zakeri

[17] B. Jones, A note on homogeneous plane continua, Bull. Amer. Math. Soc. 55 (1949)
113-114.

[18] G. Julia, (Fuvres de Gaston Julia, vol. ITI, Gauthier-Villars, Paris, 1969.

[19] A. Khinchin, Continued fractions, Dover Publications, Inc., New York, 1997.

[20] R. Maiié, On a theorem of Fatou, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993) 1-11.

[21] C. McMullen, Self-similarity of Siegel disks and Hausdorff dimension of Julia sets,
Acta Math. 180 (1998) 247-292.

[22] J. Milnor, Dynamics in one complex variable: Introductory lectures, Friedr. Vieweg
& Sohn, Braunschweig, 1999.

[23] R. Perez-Marco, Fized points and circle maps, Acta Math. 179 (1997) 243-294.

[24] R. Perez-Marco, Siegel disks with quasi-analytic boundary, manuscript, 1997.

[25] C. L. Petersen, On the Pommerenke-Levin- Yoccoz inequality, Ergodic Theory Dy-
nam. Systems 13 (1993) 785-806.

[26] C. L. Petersen, Local connectivity of some Julia sets containing a circle with an
irrational rotation, Acta Math. 177 (1996) 163-224.

[27] C. L. Petersen, On critical quasicircle maps, manuscript, 1999.

[28] C. L. Petersen and S. Zakeri, On the Julia set of a typical quadratic polynomial
with a Siegel disk, to appear in Ann. of Math.

[29] G. Pfeifer, On the conformal mapping of curvilinear angles; the functional equation
o[f(2)] = a1¢(x), Trans. Amer. Math. Soc. 18 (1917) 185-198.

[30] J. Rogers, Singularities in the boundaries of local Siegel disks, Ergodic Theory Dy-
nam. Systems 12 (1992) 803-821.

[31] C. L. Siegel, Iteration of analytic functions, Ann. of Math.(2) 43 (1942) 607-612.

[32] G. Swiatek, On critical circle mappings, Bol. Soc. Brasil. (N.S.), 29 (1998) 329-351.

[33] J. C. Yoccoz, Il n’y a pas de contre-exemple de Denjoy analytique, C. R. Acad. Sci.
Paris Sér. I Math. 298 (1984) 141-144.

[34] J. C. Yoccoz, Linéarisation des germes de difféomorphismes holomorphes de (C,0),
C. R. Acad. Sci. Paris Sér. I Math. 306 (1988) 55-58.

[35] J. C. Yoccoz, Recent developments in dynamics, Proceedings of the International
Congress of Mathematicians in Ziirich, Birkh&user Verlag, 1994.

[36] J. C. Yoccoz, Petits diviseurs en dimension 1: Théoréme de Siegel, nombres de
Bruno et polynémes quadratiques, Astérisque 231 (1995) 3-88.

[37] S. Zakeri, Dynamics of cubic Siegel polynomials, Comm. Math. Phys., 206 (1999)
185-233.

[38] S. Zakeri, Biaccessibility in quadratic Julia sets, Ergodic Theory Dynam. Systems
20 (2000) 1859-1883.

[39] S. Zakeri, Hausdorff dimension and David homeomorphisms, manuscript, 2001.



