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Abstract

Background and aims: Drug use initiation sequences have been the subject of
much research, and theories such as the Gateway Hypothesis have been created
to explain patterns of progression from common to dangerous drugs. This study
uses adult respondent observations from four years of the National Survey on Drug
Use and Health (NSDUH) to uncover complex patterns associated with the age
of first use (AFU) of drugs that are difficult to discern using a priori hypothe-
ses. From these patterns, a classification study is conducted to determine what
AFUs for quasi-legal drugs are most associated with subsequent illicit drug use.
Associations of demographic features with the AFU patterns are explored as well.
Methods: A modification to K-means clustering (KMC) is developed to improve
the partition stability of survey data. This method, stability enhanced K-means
clustering (SEKMC), builds partitions that are based upon relationships among
observations that persist across multiple partitions of bootstrap samples of the
NSDUH data. The computational complexity of the method is overcome through
cluster computing and the development of an algorithm to calculate completely
connected components in a graph in O(V) time. Classification of illicit drug use
as a function of quasi-legal drug AFUs is conducted using decision trees and logis-
tic regression. Descriptive techniques, including a χ2 analysis are applied to the
partitioned data to relate demographic features to AFU patterns. Findings: A
partition of the data is extracted that contains 13 clusters, including ones of note –
early age marijuana initiation, a set of clusters whose commonality is based upon
illicit drug use, and one that indicates a link between prescription drug abuse
and marijuana. Both the decision tree and logistic regression analyses demon-
strate a strong association between early AFU of marijuana and subsequent illicit
drug use. Non-Hispanic Asians are more likely than any other ethnicity to be-
long to a no-use cluster, and respondents with less than high school education are
paradoxically more likely to belong to both the no-use and polyabuse clusters.
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Chapter 1

Introduction

1.1 Overview

Substance abuse has been a problem in the United States since the 19th century

and recent trends in mortality have increased its negative societal impact. Re-

search into usage patterns has been looked to as a way to uncover information

that can guide abuse mitigation policies and reduce substance-related deaths.

The sequence by which subjects initiate the use of drugs1 is of particular interest.

Studying sequences involves difficulties associated with access to data and data

complexity. Data access can be satisfied with the use of large, multiyear cross-

sectional studies. However, researchers have constrained their analysis of these

studies through the use of traditional statistical approaches, particularly hypoth-

esis construction and testing. This study addresses the complexity of a massive

drug-use dataset through cluster analysis, an unsupervised learning method, in an

effort to allow the data to ‘speak for itself.’ Because the dataset is a survey-based

representation of the US population, blind application of machine learning (ML)

1In this study the words ‘drug’ and ‘substance’ refer not only to the FDA Drug Schedule,
but also alcohol and tobacco.
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risks overfitting clusters to the survey. This study addresses this flaw through

the presentation of a modification to KMC that produces clusters that are sta-

ble across multiple versions of the dataset. This method is used to explore the

Gateway Hypothesis, a long standing theory of substance use initiation. It is also

used to explore demographic variations among substance initiation clusters. This

study’s discussion flow is presented in Figure 1.1.

Figure 1.1: Discussion Flow

1.2 History of drug use prior to legalization

Throughout the 20th and 21st centuries, substance abuse has been a subject of

ongoing concern and has caused great harm to the US population. It was recog-

nized as a problem over 100 years ago, and local, state, and Federal governments

have all pursued a variety of policies to mitigate it. One drug, heroin, was initially

created as a medicine in 1898 and has a particularly long history of abuse. New
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York’s Bellevue hospital had its first admission for heroin addiction in 1910. The

Federal government sought to eliminate some substance abuse, beginning with

the Harrison Narcotic Act in 1914. Partly created to comply with international

treaties, the act required the registration and taxation of the manufacture and dis-

tribution of narcotics, which at the time included opium, morphine, heroin, and

coca products (US Drug Enforcement Administration, 2021a, p.12). By 1924, the

US Congress banned all domestic manufacture of heroin (Scott, 1998). Public

concern with substance abuse was not limited to less common drugs – during

this era the Temperance Movement, which believed public health was endangered

by alcohol, was able to pressure Congress into passing the Volstead Act. That

legislation banned the sale and use of alcohol and launched Prohibition (Blocker,

2006).

The 18th Amendment to the US Constitution ended Prohibition, and the US

entered a long period during which tobacco and alcohol were legal, albeit with

increasing restrictions on age-of-use, and all other substances were banned. Nar-

cotics use fell for a time, only to rise again after World War II with the introduction

of synthetic alternatives to morphine such as dilaudid, amadone, and methadone.

Cocaine use also grew during this period (US Drug Enforcement Administration,

2021a, p.20). The use of narcotics, including heroin, rose during the Vietnam

War to the point where on July 14, 1969, President Richard M. Nixon messaged

Congress that, “Within the last decade the abuse of drugs has grown from essen-

tially a local police problem into a serious threat to the personal health and safety

of millions of Americans (US Drug Enforcement Administration, 2021a, p.26).”

Congress responded by passing of the Comprehensive Drug Abuse Prevention

and Control Act on October 27, 1970. The act replaced previous legislation and

provided a combined framework for treatment, rehabilitation, education, regula-

3



tion and enforcement. Title II of the act, commonly known as the Controlled

Substances Act (CSA), includes five schedules that classify controlled substances

according to their relative potential for abuse (US Drug Enforcement Adminis-

tration, 2021a, p.27). Some examples from the current schedule are provided in

Table 1.1 (US Drug Enforcement Administration, 2021b). Notably, alcohol and

tobacco, despite their potential for abuse and addiction, are not covered in the

schedule. On July 1, 1973, the Drug Enforcement Administration (DEA) was

launched, and a long period during which the recreational use of alcohol and to-

bacco was tolerated2, while all other substances, including marijuana, were illegal

unless administered as medicine.

Table 1.1: FDA Drug Schedule

Schedule Definition Examples

I No currently accepted medical use and a
high potential for abuse

heroin, LSD, marijuana, ec-
stasy

II High potential for abuse, with use po-
tentially leading to severe psychological
or physical dependence. These drugs are
also considered dangerous.

hydrocodone, cocaine,
methamphetamine, fentanyl

III Moderate to low potential for physical
and psychological dependence

codeine, ketamine

IV Low potential for abuse and low risk of
dependence

Xanax, Valium, Atavan

V Lower potential for abuse than Sched-
ule IV and consist of preparations con-
taining limited quantities of certain nar-
cotics. Generally used for antidiarrheal,
antitussive, and analgesic purposes

cough syrups with codeine

The effect of these efforts has been arguable at best. The number of Amer-

icans with an illicit drug use disorder has been unchanged in recent years – it

2Alcohol and tobacco, while legal throughout most of the US, have been subjected by the
states to increases in the legal age of use.
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was 3.0% in 2003, and remained at 3.0% in 2019 (Substance Abuse and Mental

Health Administration, 2019a). The number of patients admitted to care for sub-

stance abuse declined from 859 per 100,000 population in 2007 to 719 in 2018.

However, this decline included a shift in the substances that caused admissions

– opiate-related admissions grew 62.5%, and heroin-related admissions grew 67%

(Substance Abuse and Mental Health Administration, 2019b).

1.3 Legalization of illicit substances

A recent shift in substance use has come about as a result of increased access

to marijuana. In the 2000s, public sentiment began to drive the legalization of

marijuana. California declared marijuana to be legal for medicinal use in 1996, an

act that was soon followed by Alaska, the District of Columbia, Maine, Colorado,

Oregon, Washington, Hawaii, and Nevada by 2000. Although marijuana was

not legal for casual use, its prevalence increased steadily (Figure 1.2). In 2002,

6.2% of respondents to a national survey reported marijuana use within the past

month. By 2014 that number increased to 8.4%. Marijuana first became legal

for recreational use by people 21 or older in Colorado and Washington 2012, and

increased usage followed immediately, especially among the young. In 2011, 8%

of survey respondents in Washington reported past-month marijuana usage. By

2014, 10% reported usage, with the largest increase among 18-24 year olds, whose

usage jumped from 15% to 21% (Campo et al., 2016). Legalization has since

progressed to many other states, and it has been followed by a dramatic increase

in marijuana use. As of 2019, national past month usage of marijuana among 12+

year olds has risen to 11.5%.

A dramatic increase in the potency of marijuana has accompanied its rise

5



in usage. Tetrahydrocannabinol (THC) is the primary psychoactive component

of cannabis, and its concentration among sampled products rose from 8.9% in

2008 to 17.1% in 2017. So not only are there more Americans using marijuana,

the substance they are using is much stronger, and these trends may indicate

that people who use cannabis are at greater risk of harm than in previous years

(Chandra et al., 2019).
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Past Month U.S. Marijuana Usage, 1991-2019

Figure 1.2: Past Month Marijuana Usage Among 12+ Year Olds (Substance Abuse
and Mental Health Administration, 2019a)

1.4 An epidemic of fatal substance abuse

The most concerning recent aspect of substance use in the US has been the opioid

epidemic. Since 1999, there has been a marked increase in substance-induced

deaths across all races in the US (Figure 1.3). This rise has been well documented,

and much of it occurs from opioid abuse. Since the middle of the last century, the
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way opioid abusers initiate their habits has changed dramatically. In the 1960s,

over 80% of users’ first opioid abuse was with heroin. In the 2000s, over 70% of

users initiated abuse with prescription opioids. This trend reversed somewhat in

the 2010s as the heroin became the first opioid of abuse for 35% of users (Cicero

et al., 2014).

The rise in opioid deaths has progressed in three overlapping phases (Fig-

ure 1.4). The first wave began with increased prescription of opioids such as

oxycodone and hydrocodone in the 1990s. This increase occurred as attitudes

shifted to help patients avoid pain despite a lack of objective studies to quantify

the risks of an increase in opioid prescriptions (Wilkerson et al., 2016). As a

result, deaths due to this activity have increased since 1999. Abuse deterrent for-

mulas of opioids helped to reduce their misuse (Wilkerson et al., 2016), but other

abuse patterns arose. The second wave began in 2010 as heroin usage increased

and caused a steep increase in overdose fatalities. The third wave began in 2013

and has seen a dramatic rise in deaths due to synthetic opioids such as fentanyl.

Fentanyl, which is approved for cases of extreme pain, is 50 to 100 times more

potent than morphine. Fentanyl abuse presents an extreme challenge because it

is often mixed with heroin or cocaine without the knowledge of the user.

Deaths due to other substances have increased as well. Somewhat masked by

the opioid epidemic is an increase in deaths induced by alcohol. Following a period

of decline from 1999 to 2005, the number of deaths due to alcohol per 100,000

persons has risen steadily (Figure 1.5).
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Figure 1.3: Substance Induced Deaths by Race

(Underlying Cause of Death 1999-2019 on CDC WONDER Online Database,
released in 2020. Data are from the Multiple Cause of Death Files, 1999-2019 ,

2020)
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Figure 1.4: Phases of Opioid Abuse

(Centers for Disease Control and Prevention & Control, 2021)

1.5 Studying sequences of drug use stages

In 2002, the US Government estimated that the annual economic cost of drug

abuse was $180.7 billion (Office of National Drug Control Policy, 2002), and this

was near the beginning of the opioid epidemic. A recognition of the societal impact

of substance abuse has driven a great deal of research in the hope of developing

treatments and policies to improve the situation. Studies include investigation

in virtually every discipline, including epidemiology, physiology, psychiatry, psy-

chology, behavioral science, and statistics. One area of research has been on

understanding the mechanisms and initiation of drug use among adolescents, a

focus that can support prevention strategy and development (Zhang et al., 2021).

Many studies focus on the fact that users necessarily initiate abuse of multiple

substances in a sequence of stages. Identification of predominant sequences of

drug use initiation can help identify populations at risk for progression from legal

9



Figure 1.5: Alcohol and Drug Induced Deaths

(Underlying Cause of Death 1999-2019 on CDC WONDER Online Database,
released in 2020. Data are from the Multiple Cause of Death Files, 1999-2019 ,

2020)
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or less dangerous drugs to more harmful ones (Adler & Kandel, 1981).

In 1975, Denise Kandel published a foundational study that claimed a rigid

progression in substance use (D. Kandel, 1975). She posited that substance use

initiates with beer or wine, progresses to hard liquor and cigarettes, followed by

marijuana, and eventually by other illicit drugs such as LSD or heroin. This

behavior can be described as a progression through a sequence of substance abuse

stages. The zero stage is no-use – a subject has never used a drug. The first stage

occurs with the subject’s first use of any drug, which D. Kandel (1975) maintained

is likely to have been either beer or wine. The second stage continues with use of

either hard liquor or tobacco, then by whichever of those has not yet been used.

The third stage is the subject’s first use of marijuana. Stage four involves use

of other illicit drugs. The sequence is depicted in the flowchart from Kandel’s

original work (Figure 1.6). The numbers in the figure represent the probability of

a respondent’s transition from one stage to the next from the fall of 1971 to the

spring of 1972. Kandel’s idea would evolve into the Gateway Hypothesis, which has

guided some abuse mitigation strategies. Prevention practices aimed at avoiding

early stage substance use at young ages have been shown to lower the probability

of other illicit drug use (G. Botvin et al., 2001; G. J. Botvin et al., 2000; Hawkins

et al., 1992).

As shown in Sections 1.3 and 1.4, US substance use behavior is not static –

it continues to evolve. Therefore, continued study of drug initiation sequences

is required to support the development of new abuse mitigation strategies. Con-

sider a hypothetical example in which a policy maker seeks to minimize the use of

opioids. She develops a program that focuses on tobacco and alcohol prevention

among adolescents because she has reviewed research that claims those are entry

stage drugs strongly associated with later use of other substances. If in fact mari-

11



Figure 1.6: Kandel’s Substance Initiation Stages

(D. Kandel, 1975)

juana has become a common first-use drug also associated with subsequent drugs,

she would overlook a cohort of users that are not interested in tobacco or alcohol.

Similarly, she knows that users often accidentally overdose on fentanyl disguised

as heroin. If she was to learn that users have commonly abused cocaine prior

to initiating heroin, she could include heroin prevention in a treatment regimen

delivered to rehabilitation center patients who were admitted for cocaine use.

The study of drug use initiation sequences is difficult. Two of the biggest

challenges faced by researchers are access to information and data complexity.

1.5.1 The challenge of information access

An investigator is not going to directly observe the drug using behavior of a sig-

nificant number of subjects, and the chance of being present when a user first

initiates use of a substance is negligible. Therefore, studies must rely on third

party observations such as treatment data or on self-reported data from the user.

Verified third party observations would be preferable, and there are datasets that

contain usage information. One is the Treatment Episode Dataset (TEDS), ad-

ministered by Center for Behavioral Health Statistics and Quality of the Sub-

12



stance Abuse and Mental Health Services Administration (SAMHSA), part of the

US Centers for Disease Control. TEDS contains demographic, clinical, and sub-

stance use information associated with patients admitted to and discharged from

substance treatment facilities that report data to state administrations. Unfortu-

nately, TEDS only gathers age of first use (AFU) data regarding the substance(s)

that drove the admission. Also, if a patient has multiple admissions to facili-

ties, there is no way to tie those together due to patient confidentiality. Another

way to gather verified information would be via electronic patient medical records

(EMRs), which can be obtained with redacted identities through collaboration

with insurance companies. However, EMRs will not contain a complete history

of drug AFU information for a patient. Researchers are thus limited to gathering

drug sequence information through surveys of users.

Longitudinal studies consist of multiple surveys administered to a stable set of

respondents over a time horizon. When used to gather drug initiation sequences,

these improve the chance that a user recently initiated a substance and can accu-

rately recall their age when they did so. For example, if a respondent is surveyed

in 10th grade and indicates initiation of alcohol within the past year, their re-

ported AFU is likely to be accurate. When that same respondent is interviewed

in 12th grade, his report of initiated substances since the last survey will also pro-

vide accurate AFUs. Longitudinal studies have been conducted on drug initiation

sequences and have provided valuable insight into user behavior, especially among

adolescents (Fergusson & Boden, 2008; Fergusson et al., 2006; D. B. Kandel et al.,

1992). These surveys are obviously difficult to administer. They require identifi-

cation and tracking of a set of respondents over many years. More importantly,

the time required to track the likely drug initiation horizon of users is long. A

user who started smoking at age 14 could first abuse prescription opioids at age

13



40.

A more common approach is a cross-sectional survey that gathers drug initia-

tion data via recall by the respondents. In this case, the interviewer asks questions

regarding multiple substances, such as, “Have you ever used oxycodone without

having been prescribed it?”, and “At what age did you first use oxycodone with-

out having been prescribed it?” The number of drugs that can be investigated is

only limited by the time available to the interviewer and respondent, so a rich

set of AFU data can be gathered in this fashion. Cross-sectional surveys have

the benefit of scale and repeatability. There are several surveys that have been

administered to thousands of respondents over several decades, including the Na-

tional Survey on Drug Use and Health (NSDUH), administered by SAMHSA, the

National Comorbidity Study (NCS) from Harvard Medical School, and Monitor-

ing the Future (MTF) from the University of Michigan. There have been many

other smaller scale cross-sectional surveys of drug initiation sequences, including

D. Kandel (1975), Adler and Kandel (1981), Fleming et al. (1989), Wagner and

Anthony (2002), and Fuller et al. (2005).

All surveys regarding drug use are subject to measurement error. Both lon-

gitudinal and cross-sectional studies depend on the honesty of their respondents,

who may be motivated to either minimize or embellish their drug use history.

This error can be mitigated somewhat through carefully designed surveys that

use combinations of questions that aim to reduce untruths through inconsistent

answers. Cross-sectional surveys have the additional risk of faulty recall. As a

respondent’s age increases past age-of-first use, their proper recall of that age may

drift. Fortunately, several studies have shown that during the years of young and

middle adulthood, the age-of-first use reported by subjects does not deviate sig-

nificantly with the number of years elapsed since the use occurred (Golub et al.,
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2000; Prusoff et al., 1988; Wittchen et al., 1989).

1.5.2 The challenge of data complexity

The other major challenge to drug initiation sequence research is data complexity.

There are many different substances that a subject may use, and she can first do

so at any point in her life. This results in a great many potential sequences

of substance use initiation. For example, if all substances are grouped into ten

categories, and only the order in which they can be initiated is desired, there are

approximately 3.6 million potential sequences to consider. If instead the AFU

for each drug used by a respondent is taken into account, and the likely age

of initiation horizon is 14-50 years of age, the number of possible AFU sequences

becomes approximately 3610. Of course, not all drug initiation patterns are equally

likely, and the goal of research is to find those that will be observed in a significant

number of subjects.

Many studies have approached this challenge by defining a priori hypothesized

drug sequences, by ignoring AFU as a determining factor of sequence definition,

limiting the substances under consideration, or some combination of the three.

D. Kandel (1975) constructed sequences through observation, but did not consider

AFU within them and limited the study to adolescents. Adler and Kandel (1981)

mirrored this approach. Morrison and Plant (1991) pre-defined subgroups of usage

based upon basic combinations of cannabis and other substances without regard

to AFU and then measured AFU differences across the groups. Based upon prior

research, D. B. Kandel et al. (1992) assumed a basic initiation sequence of alcohol,

cigarettes, marijuana, and other illicit drugs, including prescribed psychoactive

drugs. It then hypothesized slight modifications to this sequence and tested for

them. This study did not consider AFU as a determining factor of the sequences.
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Fleming et al. (1989) was limited to adolescents and a short list of substances

with the goal of validating D. Kandel (1975). Blaze-Temple and Lo (1992) ignored

AFU and examined combinations of a limited set of drugs to determine the most

‘important’ gateway drug. Golub and Johnson (1994) limited the number of

substances in the sequences to normative early stage drugs and sought their role

in later polydrug abuse. Wagner and Anthony (2002) did not develop preconceived

sequences and did measure AFUs, but limited the substances under consideration

and focused on the relationship between the AFU of a drug and the likelihood of

becoming dependent upon it. Fuller et al. (2005) did not consider sequences but

instead analyzed current usage patterns of different age cohorts to infer initiation

sequences among adolescents. Fergusson et al. (2006) and Fergusson and Boden

(2008) focused on a two-stage sequence, marijuana followed by other illicit drugs,

to determine the relationship between levels of marijuana usage and adverse life

events, including initiation of other substances. Degenhardt et al. (2009) did not

define a priori sequences in an evaluation of the relationship between deviations

from the assumed gateway normative progression and drug dependence problems.

It did not consider AFU as a factor in determining the sequences. Keyes et al.

(2016) studied age cohorts from the 1991-2008 Monitoring the Future (MTF)

surveys to seek changing drug use patterns and relationships between adolescent

smoking and later substance use. This study didn’t seek explicit sequences and

respondents were limited to 8th, 10th, and 12th graders. Barry et al. (2016)

obtained AFUs and did not define a priori sequences in an effort to find the

first drug used by eventual polydrug abusers. It limited the study to 8th, 10th,

and 12th graders, which prevents consideration of sequences where drugs were

initiated as adults. Fiellin et al. (2013) examined the dependence of prescription

opioid abuse on the adolescent use of alcohol, tobacco, and marijuana. The study
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did not address later use of other drugs. Lee and Petlakh (2020) ignored both

sequences and AFUs in favor of a binary definition of adolescent marijuana use

and its relationship to later use of other illicit drugs.

Some studies have looked for sequences without pre-definition, considered

AFUs, and evaluated a great number of drugs. Darke et al. (2012) evaluated

the AFUs of a great many drugs and sequences in an effort to see how they

change among age cohorts. This study was limited to a very small (269) set of

respondents. Zhang et al. (2021) built models that predicted the usage probability

of a new drug as a function of the time lapsed from the initial use of a different

drug. This study considered AFU, did not constrain sequences, and evaluated a

great range of substances. The study limited its consideration to users between

14-17 years of age and left alcohol and tobacco out of the design.

1.6 Gaps in the literature

A summary of the aforementioned literature is presented in Table 1.2. For each

study the data source and principal method is listed. The next three columns

indicate whether AFUs were included in the study, whether a large number of

substances are considered, and whether the study did not use a priori sequences.

What is missing from this list is a study that combines an evaluation of many

drugs, consideration of the AFUs for them, and most importantly, an exploration

of the data unencumbered by an expectation of specific sequences. While there

are many more works that discuss substance abuse sequences, one could not be

found that met all of these criteria:

� Makes use of a very large and robust dataset

� Seeks to describe not just drug initiation sequences, but the AFUs associated
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with those sequences

� Avoids the use of a priori hypothesized sequences

� Uses scalable machine learning (ML) techniques to explore data

� Ensures exploration does not overfit survey data, which is necessarily an

approximation of a general population

This study meets these criteria, and by doing so, presents a set of prevalent

substance initiation sequences, including the self-reported age of first use for each

drug in a sequence.

1.7 Addressing the challenges of drug sequence

study

This study addresses the challenges described in Sections 1.5.1 and 1.5.2 by ap-

plying unsupervised machine learning through cluster analysis on the NSDUH

dataset.

1.7.1 National Survey of Drug Use and Health addresses

the challenge of access to information

A proper exploration of substance use initiation patterns requires a dataset that

is designed to adequately reflect a large population, in this case that of the United

States. It must contain enough observations to not only ensure accurate repre-

sentation of the average population, but it must include data that captures the

behavior of small but interesting cohorts. For example, very few Americans are
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heroin users, so a small general survey of the population would be unlikely to in-

terview any. The dataset must also be carefully constructed through stratification

and weighting so that the responses can be extrapolated to the total population.

NSDUH meets these requirements.

SAMHSA is an agency within the U.S. Department of Health and Human

Services whose mission is to reduce the impact of substance abuse and mental

illness on America’s communities. One of SAMHSA’s publications is the NSDUH

– an annually produced dataset that is the result of a massive survey regarding

substance abuse and mental health in the United States. Because it has been

administered since 1971, NSDUH is a well-established source of substance use

information among U.S. residents.

NSDUH explores the use of illicit drugs, alcohol, and tobacco among members

of the U.S. civilian, non-institutionalized population aged 12 or older. The survey

also includes several modules of questions that focus on physical and mental health

issues. Surveys have been conducted periodically since 1971, with the most recent

ones in 1979, 1982, 1985, 1988, and annually from 1990 through 2019 (Center for

Behavioral Health Statistics and Quality, 2020b). Currently, public use files are

available for surveys from 1979 onward. The present study uses data from the

2016-2019 surveys.

NSDUH’s sampling methodology is designed to capture as many geographic

and demographic sections of the United States as possible. Each observation in

the resulting dataset contains a weight which researchers can use to extrapolate

the observation to a section of the population. The sum of the weights of the

observations is equal to the population of the United States as measured by the

most recent census. The survey is large – in 2019, NSDUH contained 55,271

observations gathered from 67,901 interviews conducted by 700 field investigators.
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There are some limitations to NSDUH:

� The data are comprised of self-reports of drug use, and their value depends

on respondents’ truthfulness and memory

� The survey is cross-sectional rather than longitudinal. That is, individuals

were interviewed only once and were not followed for additional interviews

in subsequent years.

� Because the target population of the survey is defined as the civilian, non-

institutionalized population of the United States, a small proportion (ap-

proximately 3 percent) of the population is excluded.

NSDUH contains questions pertaining to drug usage history, physical and mental

health history, and demographic factors. The dataset also contains variables that

have been imputed by SAMHSA to reduce missingness and to improve the accu-

racy of results. For example, if a respondent skips a question regarding whether

she has ever used heroin but subsequently answers a question regarding the last

time she used heroin, an imputed heroin use flag will be positive. SAMHSA recom-

mends that researchers use imputed variables rather than direct responses. There

are thousands of variables in the dataset – in 2019, there were 2,741 variables for

each observation.

The richness of the data in NSDUH allows researchers to explore a great num-

ber of topics. For example, data from 2005-2014 show that there has been an

increase in binge drinking and alcohol use disorder among subjects aged 50 and

over (Han et al., 2017). Another study correlated drug use to employment, finding

that subjects who were unemployed following the 2008 recession were more likely

to have been marijuana users prior to losing their jobs (Compton et al., 2014).
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The AFU data in NSDUH is subject to respondents’ faulty recall of when

they initiated substance use. As discussed in Section 1.5.1, other studies have

shown that respondents exhibit consistency in their survey answers through middle

adulthood. We therefore accept recall inaccuracy as a necessary but minor source

of potential error in our study.

1.7.2 Cluster analysis addresses the challenge of data com-

plexity

A user’s progression through a sequence of drug initiation stages can be gathered

from NSDUH by extracting the AFUs a respondent provides for the substances

covered by the survey. As mentioned in Section 1.5.2, the number of possible first-

use sequences is huge. The researcher must determine how to group sequences

together based upon their similarity into categories that represent common pat-

terns of behavior without guessing at them a priori. This is an example of an

unsupervised learning problem. In unsupervised learning, the researcher seeks

structures, patterns, and relationships among observations without the benefit of

labels that have been assigned to a subset of known data. In the case of the

NSDUH dataset, the researcher wishes to determine a small number of groups

into which the observations can be uniquely placed based upon the similarity of

their drug AFU sequences. Unsupervised aggregation of sequence data into groups

based upon similarity can be done with cluster analysis (Dong & Pei, 2007). Ef-

ficient algorithms such as K-means clustering (KMC) can quickly obtain clusters

from large datasets based upon an inter-observation distance metric defined by

the researcher.

Cluster analysis has been used in prior studies of substance abuse behaviors.
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Young Mun et al. (2008) used the technique to categorize problem behavior among

adolescents. Sevigny and Coontz (2008) applied hierarchical clustering to groups

of individuals based upon arrest patterns and self-reported substance use. Har-

rington et al. (2012) used clustering to find patterns of alcohol and marijuana

usage and frequency. Panlilio et al. (2020) used hierarchical and K-means clus-

tering to determine patterns of drug test results. Cluster analysis has even been

applied to NSDUH data. Wang et al. (2019), Ategbole et al. (2021), and Xie et

al. (2022) conducted principal component clustering for feature reduction in stud-

ies that showed relationships between drug usage and demographic variables and

the need for mental health services. Liew (2016) used cluster analysis to group

military respondents with similar drinking and sociodemographic characteristics.

Despite efforts employed to make NSDUH highly representative of the US

population, it remains a survey administered to a sample of Americans. A clus-

ter analysis performed on NSDUH risks overfitting the survey – the groups may

be very well suited for the survey studied, but less accurate when applied to a

different population sample. A ‘stable’ clustering method is one in which similar

observations are consistently grouped together despite perturbations in the data.

Application of a stability-enhanced clustering method applied to NSDUH or other

substance use initiation data was not found in the literature.

1.8 Contributions of this work

This work makes several contributions to existing knowledge. First, it uses unsu-

pervised learning to explore a very large dataset in order to uncover, without prior

bias, patterns of substance use initiation in the US. Furthermore, it considers age

of first use as a determining feature of these sequences, where most prior work
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has focused only on the order of substance initiation stages. Second, it applies

stability-enhanced clustering methods in determining these patterns in order to

minimize overfitting of the NSDUH study. Third, it presents novel algorithms

and a computational approach to deal with the size and complexity of the data.

Finally, it demonstrates the utility of patterns discovered in the study. Specifi-

cally, it considers the Gateway Hypothesis in light of the patterns discovered here,

and it analyzes variation of membership in the sequence clusters with regard to

demographic features.
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Chapter 2

Methods

2.1 K-Means Clustering

There are many approaches to analyze and derive insights from large, complex

data sets. The most common methodology in the drug abuse and addiction litera-

ture is to use a traditional and formal statistical hypothesis analysis. Researchers

define specific hypotheses regarding drug use patterns, etc. and then analyze the

related subsets of data to determine if there is sufficient evidence to explicitly re-

ject one hypothesis in favor of another. The hypothesis serves to bound the data

by reducing the number of variables considered in the study. NSDUH contains

thousands of features, but a hypothesis test can gather important information

efficiently. For example, one could form the hypothesis, “Heroin users initiate

their drug use differently than non-heroin users.” To test this, a group of heroin

users and a group of non-heroin users can be selected from the database along

with their associated distributions of initial drug use. A statistical test, such as

the χ2 test for independence, can be employed to evaluate the null hypothesis

that the initial drug use distribution is independent of heroin usage. If there is
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sufficient evidence to reject the null hypothesis, we conclude that heroin users do

indeed differ in their drug initiation and we can gather from the test what their

most common first drugs are. This traditional statistical hypothesis methodology

is the gold standard for addressing specific, investigator-defined questions. How-

ever, a drawback of the traditional technique is the very limited nature of the

hypothesis generating process. Specifically, such an approach is not amenable to

broader-based and more general questions. Furthermore, the approach is limited

to addressing only the a priori questions determined by the investigator – there

is little room to let the “data speak for themselves” (Gould, 1981). For instance,

if one seeks to answer the general question, “what drug initiation patterns exist

in the United States”, it is critical to not be limited to only preconceived notions

of drug usage. Rather than construct a massive set of hypotheses, the researcher

wants to use techniques that easily answer this general inquest.

Unsupervised learning is a modern approach to addressing such open and gen-

eral questions. It is best understood through a comparison with its alternative,

supervised learning. Supervised learning includes machine learning methods asso-

ciated with using input data to predict or classify a data observation according to

a known outcome or label. Unsupervised learning is set of techniques that attempt

to identify patterns, structures, and/or relationships among unlabeled data, or at

least data in which a particular outcome variable is of little interest. Unsupervised

learning is often used to uncover aspects of data through exploration that can in

turn be used for more detailed analyses. For example, principal component analy-

sis is a method used to reduce the dimensionality of data by creating new features

from linear combinations of the original input data in such a way as to preserve

the information in a reduced feature set. These features can then be used for

visualization or supervised techniques. Additionally, unsupervised learning can
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be used to directly discover important but hidden structures in the data.

Clustering, an important type of unsupervised learning, is a set of techniques

for finding subgroups, or clusters, in a data set. K-means clustering (KMC) is

a common and well-explored unsupervised learning method. KMC partitions ob-

servations in a dataset into mutually exclusive and exhaustive sets called clusters.

The algorithm seeks to partition the data such that all elements in the same clus-

ter are similar (intracluster similarity) to one another and dissimilar to elements

in other clusters (intercluster dissimilarity). The KMC algorithm was first devel-

oped by Stuart Lloyd at Bell Laboratories in 1957, not formally published until

1982 (Lloyd, 1982), and is often referred to as the Lloyd Algorithm. The for-

mal optimization problem addressed by the Lloyd Algorithm was first described

by MacQueen (1967).1 The goal of the problem is to allocate n observations,

x1, . . . ,xn, each of which has p features, into K subsets. Let C1, . . . , CK be sets

containing observations uniquely allocated to each cluster. Then each of the n

observations is allocated to one and only one cluster:

C1 ∪ C2 ∪ . . . ∪ CK = {x1,x2, . . . ,xn}

Ck ∩ Ck′ = ∅ for all k 6= k′

The allocation of n observations into K clusters is a partition, denoted by S.

Let S denote the set of all possible partitions. Let W (Ck) denote the intracluster

variation among observations within a cluster k. The sum of all intracluster

variations for S is given by
∑K

k=1W (Ck) and is known as inertia, denoted by I.

For a given value of K, the optimal partition, denoted S∗, generates the minimum

1The mathematical notation for the following description of K-means clustering is taken from
James et al. (2013, p. 385-389).
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inertia, I∗, as described in Equation 2.1:

I∗ = min
S

K∑
k=1

W (Ck) (2.1)

Intracluster dissimilarity is determined based on a distance measure calculated

between observations within the same cluster. Squared euclidean distance is com-

monly used. Let each observation xi, for i = 1 . . . n, be represented by a real-value

p-dimensional vector, xi = [xi1, . . . , xip] ∈ Rp. The inertia of cluster k is computed

according to Equation 2.2:

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2 (2.2)

Substitution of 2.2 into 2.1, leads to the complete KMC problem definition – find

S∗ ∈ S to minimize the inertia:

I∗ = min
S

[
K∑
k=1

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2
]

(2.3)

Finding S∗ becomes difficult as n increases in size. A partition of n observations

into K clusters requires the evaluation of

1

K

K∑
k=1

(−1)K−k
(
K

k

)
kn

alternatives (Jain & Dubes, 1988, p.91). In fact, Drineas et al. (2004), Dasgupta

(2007), Aloise et al. (2009) and Mahajan, Nimbhorkar, and Varadarajan (2012)

proved that the problem is NP-hard. For large values of n, finding S∗ is im-

practical. For this reason, the problem is commonly addressed by heuristics that

find local, not global optimum solutions to KMC. That said, the methods are effi-
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cient – Selim and Ismail (1984) prove finite convergence of Lloyd-type algorithms

to either a local optimum or a Kuhn-Tucker point. The simplicity and ease of

implementation of the basic KMC algorithm (Algorithm 1) make it popular.

Algorithm 1 Basic K-Means Clustering Algorithm

Require: Observations X : xi ∈ Rp, i = 1, . . . , n, number of clusters K ∈ Z
1: generate K random p-dimensional centroids, µk for k = 1, . . . , K
2: while Cluster assignments do not change do
3: assign each observation to the nearest centroid to form the clusters
C1, . . . , CK

4: update the cluster centroids of each cluster, µk = 1, . . . , µK by computing
the mean of all observations assigned to each cluster C1, . . . , CK

5: end while

One challenge of KMC is that the practitioner must select the number of

clusters, K, into which the observations will be partitioned. There are many

methods for selecting K, including three popular ones, the elbow method, the

silhouette coefficient method, and the gap statistic method (Yuan & Yang, 2019).

The elbow method is a heuristic that is easy to apply to large datasets. In it,

a sequence of KMC partitions is made, changing the value of K each time. The

total inertia for each partition is calculated and plotted versus K. The plot is then

examined to find an ‘elbow’ – a point at which the inertia drops significantly. This

method is practical, but oftentimes the elbow is not readily apparent.

The silhouette coefficient method (Rousseeuw, 1987) seeks to maximize the

cohesion and resolution of clusters. Cohesion is the similarity of an object to its

cluster, and resolution is the separability between a cluster and its neighbors. For

each value of K under consideration, KMC is run. The average dissimilarity of a

data point xi to all other members of the cluster Ck to which it is assigned is given

by a(xi). The average dissimilarity of xi with all members of another cluster Cj

is given by d(xi, Cj). Define b(xi) = minCj 6=Ck
d(xi, Cj). Then the silhouette s for
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xi is:

s(xi) =
b(xi)− a(xi)

max[a(xi), b(xi)]

The best value for K is the one that maximizes the average s(xi) across all data

points. This method is superior to the elbow method in that it generates a quan-

titative optimum for K. However, it requires that the distances between all data

points be calculated and stored. For large datasets this can be prohibitive.

Tibshirani et al. (2001) formalized an automatic approach to determining the

optimal number of clusters through calculation of the gap statistic. The gap

statistic compares the difference between within-cluster variation of a K cluster

partition of the data with the variation expected under a K cluster partition of a

reference null distribution of data, commonly the uniform or normal distribution.

Like the silhouette method, the gap statistic provides a specific optimum for K,

and there have been subsequent improvements on the method Yan and Ye (2007).

Its drawback is that it is computationally expensive. For every value K, the

algorithm develops multiple sets of Monte-Carlo simulated observations for the

reference distribution and calculates W (Ck) for each. This can be impractical for

large datasets.

Since NSDUH is large, both in terms of the number of observations and fea-

tures, the use of the silhouette coefficient and the gap statistic become impractical.

So while both of these methods may provide more quantitative guidance for de-

termining K, the elbow method is most appropriate for partitioning NSDUH.

2.2 Cluster Stability

Because it is a heuristic-based algorithm, KMC is not guaranteed to converge to

a global optimal solution, and the final cluster assignment is sensitive to both the
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initial random centroids chosen and the particular data sample being analyzed.1.

Ideally, KMC would produce clusters whose members are the same regardless of

starting criteria. This study defines cluster stability as a relative condition. A set

of observations that is consistently grouped into the same cluster over multiple it-

erations of KMC is more stable than a grouping of observations whose membership

varies.

Rand (1971) addresses the question of stability by examining how clusters

changed when constructed from different samples of data. Levine and Domany

(2001) defines a general method to assess the stability of a partition that forms

a basis for other methods, including the approach developed in this research. It

defines two useful concepts. The first is the connectivity matrix, T, which for a

given partition indicates pairwise memberships in the same cluster: Tij = 1 if xi

and xj are in the same cluster, and Tij is zero otherwise. For example, consider a

set of six data elements {1, 2, 3, 4, 5, 6}. If {1, 2} are in cluster C1, {3, 5, 6} are in

cluster C2, and {4} is in its own cluster C3, the connectivity matrix becomes:

T =


1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 1 0 1 1
0 0 1 0 1 1


The second is the figure of merit. Let V denote the set of centroids µ1, . . . , µK

for the initial clusters C1, . . . , CK . Using V , KMC is first run on the complete

dataset to generate a partition S with connectivity matrix T . KMC is then run,

using the same V each time, on m samples of the dataset to generate a set of

partitions S(1), . . . , S(m) with connectivity matrices T (1), . . . , T (m). The figure of

1For a review of methods proposed to improve initial selection of cluster centers, see Celebi
et al. (2013)
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merit, 0 <= M(V ) <= 1, measures the similarity of connectivity matrices, where

1 represents a perfect match in all elements of the compared matrices, and 0

represents no matches in any element of the matrices. This process is repeated

for different sets V , and the best parameter set V ∗ maximizes M(V ).

Ben-Hur et al. (2002) specified a particular figure of merit computation for

cluster similarity analysis. Let two partitions S(1) and S(2) of the same dataset be

represented by their connectivity matrices, T(1) and T(2). Then their similarity

is the number of common edges of the two matrices and is calculated via the dot

product:

T(1) ·T(2) =
∑
i,j

T
(1)
ij T

(2)
ij

which can be normalized into a correlation measure2 that can be used for Levine’s

figure of merit:

M(V ) = cor(T(1),T(2)) =
T(1) ·T(2)√

(T(1) ·T(2))(T(1) ·T(2))

The aforementioned methods are used for comparing the stability of complete

partitions of a dataset. A complementary problem is to create only stable clusters

in the first place. Tibshirani and Walther (2005) defines a way to quantify the

predictive strength of a clustering method. It creates a training and test set from

data and independently partitions each. The cluster centers from the training

set are then used to partition the test data, and the memberships within this

partition are compared to the original independent partition of the test set. Their

method includes an evaluation of the average number of times pairs of observations

appear in clusters drawn from cross-validation folds of a dataset. This measure

2Ben-Hur et al. (2002) also describe two other similarity measures, the matching coefficient
and the Jaccard coefficient.
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was adapted by Tseng and Wong (2005) into a method to determine stable clusters

of data. The authors define an algorithm, referred to as Algorithm A, to identify

candidates for stable clusters by applying KMC to B multiple subsets of the data.

From these runs, clusters are formed by aggregating observations that occur in

the same clusters at least B(1 − α), 0 ≤ α < 1 times, where 1 − α is the desired

‘tightness’.3 The process is repeated for successively decreasing values for K. A

comparison is made across the cluster sets to find one that changes the least from

K = k to K = k − 1. This cluster is defined as stable and is removed from

the dataset. The process is repeated until a number of clusters chosen by the

researcher is found.

This current study builds on Algorithm A from Tseng and Wong (2005) which

is described as Algorithm 2 below. It requires X, a set of N p-dimensional observa-

tions. The desired number of clusters in the partition is given by K. The number

of partitions performed is given by B, a parameter chosen by the researcher. B

must be large enough to allow variation of the partitions, but not so large as not

to be practical. The fraction of observations in each subset of the data is given

by g, 0 < g ≤ 1. The number of partitions in which a pair of observations must

occur in the same cluster is given by B(1− α). The authors settled on values for

α,B, g appropriate for their application through experimentation.

There are some challenges associated with Algorithm 2. The simplest is that it

doesn’t specify in Step 7 whether set selection is with or without replacement. It

therefore allows clusters which may contain non-unique members. Because Tseng

adds an additional step that determines stability across candidate values for K,

this distinction may not be necessary. More importantly, calculating T̄ becomes

3‘Tightness’ and ’stability’ are terms used by the authors, yet are unfortunately not defined
by them.
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Algorithm 2 Tseng and Wong Algortihm A

Require: Observations X : xi ∈ Rp ∀i = 1, . . . , N ; K,B ∈ Z; 0 ≤ g, α ≤ 1
1: for b = 1, . . . , B do:
2: Take a random sample X(b) ∈ X, where X(b) has g|X| members
3: Partition X(b) using KMC into K clusters
4: Let T(b) be the connectivity matrix for the cluster
5: end for
6: Let T̄ = 1

B

∑B
b=1 T(b)

7: Search for a set of observations P1 = {xi} ⊂ X such that T̄xixj
≥ 1 −

α ∀xi,xj ∈ P1. Repeat to find P2, P3, . . . until no further sets can be found.

difficult as the number of observations in X increases. If N = 105, then T̄ contains

1010 elements, each of which is a floating-point value. As such, T̄ would require

4GB of RAM alone, and its calculation needs still more memory.

K-means clustering has been exhaustively studied, yet work on determining

cluster stability is less well explored than other aspects of the method. Most

stability studies have focused on determining if complete partitions of datasets are

stable. Fewer studies have focused on the relative stability of individual clusters

within the partitions. That is, few researchers have considered the value of a

subset of clusters within a partition that are stable even if the remaining ones

are less so. Perhaps the best of these is Tseng and Wong (2005), but it doesn’t

address the computational difficulty of finding relationships among observations

that hold across multiple partitions of a dataset.
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2.3 Stability enhanced K-means clustering through

pair counting

2.3.1 Algorithm development: Unordered pair set gener-

ation

Optimal clustering is the unique solution to Equation 2.3 and results in sets whose

members are fixed. As discussed in Section 2.2, KMC approximates the optimum

partition, and the clusters it generates can change with different initial conditions

for the algorithm. The goal of this study is to find clusters whose memberships

are stable while leveraging the computational efficiency of KMC. The strategy of

the proposed method is as follows:

1. Create a set of bootstrap samples from the dataset

2. Conduct KMC on each of the bootstraps

3. For each bootstrap, create a list of pairs, each of which contains two obser-

vations that occur in the same cluster.

4. Combine the pair lists from the bootstraps into one set and count the number

of times each pair occurs in the combined list. Divide the count by the

number of bootstraps to create a stability index for each pair.

5. Select a threshold value for the stability index and create new clusters from

sets of pairs above the threshold.

This method is very similar to that of Tseng and Wong (2005). However, as

pointed out in Section 2.2, that algorithm requires the generation and storage of a
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connectivity matrix T, which will necessarily be large even if it is sparse. To gener-

ate B partitions, one would have to store B connectivity matrices T(1), . . . ,T(B),

a total of BN2 data elements. A simple modification to the algorithm is to

only store the necessary elements of T, those above the diagonal, which number

BN(N − 1)/2. A dataset of observations from NSDUH 2016-2019 corresponding

to 18+ year-olds contains 170,944 rows. Twenty partitions of it requires storage of

(20)(170,944)(170,943)/2 = 292,216,801,920 elements, a massive amount of data.

Each element of T represents the relationship between a pair of observations.

If observation xi and xj are allocated to the same cluster, their relationship can be

represented as an unordered pair4 of the form (xi,xj). If xi and xj are in different

clusters, the pair (xi,xj) does not exist. So for every cluster Ck, there is a list

of pairs [(xi,xj)] : xi,xj ∈ Ck. In the case where all observations are determined

to be in the same cluster, the list size is equal to the number of elements in the

upper triangle of T minus the diagonal, and no benefit over Tseng’s method is

gained. However, in the case where there are K clusters of equal size N/K, the

total number of pairs becomes B(N/K)(N/K−1)/2. Eleven clusters of equal size

from the dataset would thus have (20)(15,540)(15,539)/2 = 2,414,760,600 pairs.

For large N , the potential ratio of minimum to maximum number of pairs is:

B(N/K)(N/K − 1)/2

BN(N − 1)/2
≈ 1

K2

This study proposes a modification to Tseng’s algorithm that uses pair lists

instead of connectivity matrices to create stable clusters. Steps 1-4 are preserved

from Algorithm 2, and 5-7 are introduced to reduce method complexity:

4Hereafter the term ‘pair’ will mean ‘unordered pair’ for conciseness.
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1. Let the total set of N observations be X, and each individual observation

be xi, 0 ≤ i ≤ N .

2. Let B be the number of bootstrap samples from X to be partitioned

3. Let X(b), 1 ≤ b ≤ B be a bootstrap of X with gN, 0 ≤ g ≤ 1 members.

4. Let K be the number of clusters into which X(b) will be partitioned.

5. Let S(b) indicate a specific KMC partition of X(b), and let C
(b)
k indicate the

kth cluster of Sb.

6. Let l(b) be the labels that indicate the clusters to which the observations X

are assigned in partition S(b), and L be the set of all labels from B partitions.

Each element of l(b) takes the form l
(b)
i = k, where xi ∈ C(b)

k

7. Let uij = (xi,xj) be a pair representing the membership of xi and xj in the

same cluster k, and let U be the list of all pairs u.

Assume that an appropriate value for K is determined using the elbow method

as described in Section 4.2. The complete Stability Enhanced KMC Algorithm is

then given by Algorithm 3.

The sets C1, C2, . . . are candidates for stable clusters. Algorithm 3 is easier to

implement then Tseng’s method because it preserves memory. The use of label

sets rather than connectivity matrices in the clustering steps 1-6 only requires

storage of BN rather than BN2 elements. Generation of the pair list U remains

computationally expensive because it involves a nested loop with N(N − 1)/2

comparisons. Storing U is also expensive because its size is B(N/K)(N/K −

1)/2 ≤ |U| ≤ BN(N − 1)/2. Likewise, creation and storage of U′ is expensive,

and its ultimate size is (N/K)(N/K − 1)/2 ≤ |U′| ≤ N(N − 1)/2. Nevertheless,

Algorithm 3 offers significant savings over Tseng’s.
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Algorithm 3 Stability Enhanced KMC Algorithm

Require: Observations X : xi ∈ Rp, i = 1, . . . , N ; K,B ∈ Z; 0 ≤ g, α ≤ 1; L =
U′ = ∅; U is an empty list

1: for b = 1, . . . , B do:
2: With replacement, create subset X(b) ⊂ X, |X(b)| ≈ gN
3: Using K-means clustering, partition X(b) into K clusters with centroids
{µ} = {µ1, µ2, . . . , µK}

4: Assign to each observation xi ∈ X label l
(b)
i = d such that µd is the closest

centroid to xi.
5: L = L ∪ l(b)

6: end for
7: for b = 1, . . . , B do:
8: for i, j = 1, . . . , N do:
9: if l

(b)
i = l

(b)
j and uij, uji /∈ U then:

10: U = U ∪ {uij}
11: end if
12: end for
13: end for
14: for each distinct uij ∈ U do:
15: Let c be equal to the number of instances of uij in U
16: u′ij = (xi,xj : c)
17: U′ = U′ ∪ {u′ij}
18: end for
19: Search for a set of points C1 ⊂ X such that ∀xi,xj ∈ C1,∃u′xixj

= (xi,xj :
c), c ≥ αB. Repeat to find C2 ⊂ X − C1, C3 ⊂ X − C1 − C2, . . . until no
further sets can be found.
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2.3.2 Algorithm development: Cluster synthesis

Steps 1-6 in Algorithm 2 and steps 1-23 in Algorithm 3 both generate the set of all

pairs from the B partitions. The creation of clusters from the pair list is achieved

in step 7 in Algorithm 2, which is structurally the same as step 24 in Algorithm 3.

This task is not insignificant as it requires the creation of sets from millions of

pairs. Network science affords an elegant way to model this problem.

Consider an undirected graph G whose vertices are the N observations in X.

The edges among vertices are equivalent to the pairs in U′. A weighted edge

between two vertices xi,xj with weight c is given by u′i,j = (i, j : c). Create a

subgraph G(c) by limiting the edges allowed in the graph to those whose weight

is equal to or greater than a given value. A graph including edges that occur in

all partitions of the data is obtained by setting c = B to create G(c) = G(B). As

an example, consider a six node graph G, with nodes 0, 1, 2, 3, 4 and 5. This

graph is depicted in Figure 2.1. Subgraph G(15) contains nodes connected with

edge weights of at least 15, nodes 0, 2 and 3. G(15) contains only one connected

component, and it is a completely connected component because each node can

reach every other node directly.

A connected component C within graph G is a subgraph of G such that each

pair of vertices (xi, xj) ∈ C is connected by a path. A connected component of

subgraph G(c) contains only vertices joined by paths whose weights are at least c.

As c decreases, the number of edges in G(c) increases, as does the average size of

its connected components, while their number decreases. In this graph model, a

connected component of G(c) is equivalent to a subset of X whose members have

been found to be in the same cluster at least c times. Determining the clusters

in U′ for any given stability becomes a matter of selecting the parameter c and
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Figure 2.1: Subgraph G(15) within G

finding the connected components of G(c). This is a well understood problem

that is solved using a breadth first search algorithm, which has complexity of

O(V + E) where V is the number of vertices in a graph, and E is the number

of edges. In this case, V = N , and E = |U′|, which for NSDUH data results

in a large graph and BFS connected component discovery has a complexity of

O(N + |U ′|). Fortunately, the network model of a partition as represented by U′

from Algorithm 3 consists only of components that are complete. This permits

great simplification of connected components discovery via an O(N) algorithm.

The derivation of this algorithm is presented in Appendix A.

In Algorithm 3, the parameter α is the level of stability required for pairs to be

allocated to clusters. The level of stability α is a hyperparameter for the method,

and it can be determined similarly to how K is chosen for KMC – heuristically.

Generate all B subgraphs G(c), 1 ≤ c ≤ B and measure how many connected

components exist for each subgraph. The number of connected components is

plotted versus stability and examination for an elbow in the curve is conducted.

40



The stability value c
B

at which this elbow occurs becomes the selection for α.
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Chapter 3

Data preparation and

implementation

Survey data regarding patterns of drug use is ingested and transformed to accom-

modate the methods described above. To deal with the complexity and compute

requirements associated with the NSDUH dataset, specific cluster computing tech-

niques are leveraged during algorithm implementation.

3.1 Ingestion

This study uses NSDUH survey data from 2016-2019 respondents whose age is

18 or over. This age restriction emphasizes individuals who have had enough

time to initiate the use of multiple drugs. The number of resulting observations

becomes 170,944. Only features that are directly related to AFU and demographic

information are included. The complete list of NSDUH fields used in this study

is enumerated in the Table 3.1. The prefix ‘IR’ is used by SAMHSA to represent

the term ‘imputed-revised’. For these variables, SAMHSA replaced missing values
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with imputed values. The imputation-revised variable’s value arises from one of

three methods: interview responses (no imputation), logical assignment in the

editing process, or statistical imputation. Because SAMHSA recommends the use

of imputed variables wherever possible, they are included in this study instead of

the direct responses in the survey.

NSDUH Field Category Description

RESPID Identification Respondent ID
IRCIGAGE AFU Cigarettes
IRCGRAGE AFU Cigars
IRSMKLSSTRY AFU Smokeless tobacco
IRALCAGE AFU Alcohol
IRMJAGE AFU Marijuana
IRCOCAGE AFU Cocaine
IRCRKAGE AFU Crack
IRHERAGE AFU Heroin
IRHALLUCAGE AFU Hallucinogens
IRINHALAGE AFU Inhalants
IRMETHAMAGE AFU Methamphetamine
IRPNRNMAGE AFU Pain relievers
IRTRQNMAGE AFU Tranquilizers
IRSTMNMAGE AFU Stimulants
IRSEDNMAGE AFU Sedatives
AGE2 Demographics Age
SERVICE Demographics Military service
CATAG6 Demographics Age category
IRSEX Demographics Gender
IRMARIT Demographics Marital status
NEWRACE2 Demographics Race
EDUHIGHCAT Demographics Education
IRWRKSTAT Demographics Work status
GOVTPROG Demographics Govt assistance
INCOME Demographics Income
COUTYP4 Demographics County type
AIIND102 Demographics Native American area
ANALWT C Demographics Person-level sample weight

Table 3.1: NSDUH Variables Included in the Study
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The variable ANALWT C is a metric constructed by SAMHSA to represent

the weight of the observation. This feature can be interpreted as the total number

of individuals in the target population represented by the observation. The sum of

all the weights in the survey equals the size of the population targeted by NSDUH.

ANALWT C must be used to weight analyses using NSDUH to create unbiased

estimates for survey outcomes. Because the dataset considered includes four years

of survey information, ANALWT C is divided by four to create YRWEIGHT, a

factor appropriate to the annual population size.

The goal of this study is to consider drug use progression among categories

similar to those explored by prior researchers. NSDUH gathers AFU data for a

select category of drugs, some of which overlap.1 Data preparation is begun by in-

cluding the non-overlapping AFU data for: cigarettes, cigars, smokeless tobacco,

alcohol, marijuana, hallucinogens, cocaine, crack, heroin, pain relievers, tranquil-

izers, stimulants, sedatives, methamphetamine, and inhalants.2 For prescription

drugs, AFU is defined as the first time a respondent uses the substance without

instructions to do so from a doctor.3 Unfortunately, NSDUH is not consistent in

how it measures AFU across all drug categories. For most drugs the AFU is ob-

tained directly. For example, the question for marijuana use is, ‘How old were you

the first time you used marijuana or hashish?.’ For pain relievers, tranquilizers,

stimulants, and sedatives, AFU data is only obtained in this way if the respondent

used a drug from the category within the past 12 months (Center for Behavioral

Health Statistics and Quality, 2020a, p. 173). This creates a significant number

1NSDUH gathers AFU data as integer values.
2The drugs included in the categories hallucinogens, pain relievers, tranquilizers, stimulants,

sedatives and inhalants are listed in Center for Behavioral Health Statistics and Quality (2020b,
p. 36-91).

3To be consistent, we simplify our description of improper use of prescription medicine as
use throughout this study.
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of missing values for these categories (Table 3.2).

Table 3.2: Missing AFU Values by Category

Category Never Used Used/AFU Known Used/AFU Unknown

Pain relievers 150,839 1,458 18,647
Tranquilizers 161,894 1,082 7,968
Stimulants 160,689 1,084 9,171
Sedatives 166,752 195 3,997

To create a complete view of each respondent’s drug initiation sequence, the

missing values for these drugs must be replaced with imputed data. Troyanskaya et

al. (2001) describe a method to impute missing value using a K-nearest-neighbors

approach. To calculate a value for a missing feature g of observation xi, the mean

of feature g from a fixed number F observations closest to xi is taken. Closeness

is defined in terms of the Euclidean distance between xi and another observation

xj. The distance is calculated as function of all features other than g from the

two vectors. F is selected by the researcher and is a tuning parameter of the

method. In this study, the F = 5 nearest neighbors of an observation are used for

missing value imputation. To reduce the complexity of this study, tuning of this

parameter was not performed.

Cigarettes, cigars, and smokeless tobacco are combined into one category, to-

bacco, represented by the AFU variable IRTOBAGE. Pain relievers, tranquiliz-

ers, stimulants, and sedatives are combined into one representing prescription

drugs with the AFU variable IRSCRIPAGE. Cocaine and crack cocaine are also

combined into one category with the AFU variable IRCOC2AGE. IRTOBAGE,

IRSCRIPAGE and IRCOC2AGE are set as the minima of the sets of AFUs from

which they are drawn:
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IRTOBAGE = min(IRCIGAGE, IRCGRAGE, IRSMKLSSTRY)

IRSCRIPAGE = min(IRPNRNMAGE, IRTRQNMAGE, IRSTMNMAGE, IRSEDNMAGE)

IRCOC2AGE = min(IRCOCAGE, IRCRKAGE)

With this consolidation, the final variables considered in this study are shown in

Table 3.3.

NSDUH Field Category Description

RESPID Identification Respondent ID
IRTOBAGE AFU Tobacco
IRALCAGE AFU Alcohol
IRMJAGE AFU Marijuana
IRCOC2AGE AFU Cocaine
IRSCRIPAGE AFU Prescriptions
IRHALLUCAGE AFU Hallucinogens
IRINHALAGE AFU Inhalants
IRHERAGE AFU Heroin
IRMETHAMAGE AFU Methamphetamine
AGE2 Demographics Age
SERVICE Demographics Military service
CATAG6 Demographics Age category
IRSEX Demographics Gender
IRMARIT Demographics Marital status
NEWRACE2 Demographics Race
EDUHIGHCAT Demographics Education
IRWRKSTAT Demographics Work status
GOVTPROG Demographics Govt assistance
INCOME Demographics Income
COUTYP4 Demographics County type
AIIND102 Demographics Native American area
YRWEIGHT Demographics Person-level sample weight

Table 3.3: Combined and Imputed NSDUH Variables
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To cluster the AFU data a distance between observations must be defined.

This in turn requires that the AFU fields be put into a data structure repre-

senting a point in multi-dimensional space. The combination of AFU variables is

represented by a nine-dimension vector. Each position in the vector represents a

drug (or drug category). For example, the first dimension of the vector is mapped

to tobacco use. The value of the first dimension is the age in years at which the

respondent first used the drug. The valid range of values is the set of integers from

0 through the maximum reported AFU by any respondent. If the respondent did

not use a given substance, the value 991 is put in the corresponding position in

the vector. The value 991 is chosen for two reasons:

� Never using a drug can be thought of as having an AFU equal to infinity.

So a large value must represent no use. 991 is significantly higher than the

maximum lifespan of a human.

� The raw data in NSDUH uses 991 for ‘Never Used’ in AFU values, so that

convention is preserved.

To illustrate, consider a respondent who first used tobacco at age 15, alcohol at

age 16, marijuana at age 20, and no other substances. The vector representing

his usage progression would be

vAFU = [15, 16, 20, 991, 991, 991, 991, 991, 991]

3.2 Network data model

Efficient computation in the study requires use of alternative data structures. To

create an appropriate data model, drug use progression is represented as traver-
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sal across a network. The drug initiation sequence of the hypothetical subject

described above can be represented as a path:

start→ 15 yrs→ tobacco→ 1 yrs→ alcohol→ 4 yrs→ marijuana

This path can be thought of as a traversal through a network where each node

is the use of a drug (plus one start node). The edges of this ten node network

represent the progression between nodes. The node labels for the network rep-

resentation of the drug initiation sequence are shown in Table 3.4. The time

duration between nodes is represented by weights assigned to the edges. The

Table 3.4: Drug Use Progression Network

Node index Drug

0 Start
1 Tobacco
2 Alcohol
3 Marijuana
4 Cocaine
5 Prescription drugs
6 Hallucinogens
7 Inhalants
8 Heroin
9 Methamphetamine

example respondent traverses this network as follows: initiate at the start node,

travel along an edge with weight 15 to tobacco, travel next along an edge with

weight 1 to alcohol, then along an edge with weight 4 to marijuana, and no further

travel occurs (Figure 3.1).

A path can be represented by a 10x10 connectivity matrix G. A non-zero

element Gij represents the time in years from the first use of drug i to the first

use of drug j. Path progression requires that the AFU for drug j must be greater
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Figure 3.1: Network Model of an Example Drug Initiation Sequence

than that of drug i. Because NSDUH captures responses as integers, it is not

uncommon for two drugs to have the same AFU value. To remove this situation,

a random number between 0 and 1 is added to the AFU values, and the elements

of G become real numbers. When Gij = 0, there is no one-step progression from

i to j. Note that drug use may proceed from i to j along an alternate path if

Gik 6= 0 and Gkj 6= 0. The connectivity matrix for the example respondent would

be:
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G =



0.0 15.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0


In most cases, G will be sparse, making the storage in memory of 100 real

numbers inefficient. An edgelist is a better way of representing a sparse graph.

Each edge takes the form e = (i, j : y), where i is the last drug initiated, j is the

next drug initiated, and y is the number of years between AFU of i and j. The

example respondent’s progression is represented by the edgelist:

e = [(0, 1 : 15.1), (1, 2 : 1.4), (2, 3 : 4.2)]

In this case the edgelist e requires the storage of only six integers and three real

numbers, a great savings in memory over G. Network algorithm calculations

become correspondingly more efficient as they are done via loops through the

short edgelist rather than through matrix multiplication.

When presenting results, the names of the drugs replace their corresponding

indices. This allows the reader to easily recognize a path. Using this convention,

the example edgelist becomes:

e = [(start, tobacco : 15.1), (tobacco, alcohol : 1.4), (alcohol,marijuana : 4.2)]

Each of these ways of representing drug use progression is used in this study.

The AFU vector is used in generating clusters of common use patterns. The
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edgelist notations are used to facilitate initial exploration of the data and in pair

construction for stable cluster generation.

3.3 Implementation

Despite its improvements, the application of Algorithm 3 to the entire dataset

of 170,944 observations is expensive. Steps 1-6 of Algorithm 3 are inexpensive

and easy to perform using the entire dataset. Steps 7-23, the steps involving pair

creation and summation, are memory and compute time intensive. Therefore,

all 170,944 observations are used to generate the label sets, and a 30% random

sample of the labeled observations is used for generation of the weighted pair set

U′. Clusters C1, C2, . . . , CK are determined from U′ via the connected component

method described in Section 2.3.2. Each of the remaining 70% of the observations

are then assigned to the cluster whose center is closest. This labeled dataset,

appropriately weighted by the NSDUH survey weights, is then used for analysis.

This process is illustrated in Figure 3.2.

The KMC hyperparameters are:

� Maximum iterations: 1,000

� Number of KMC starts per partition: 20

� Number of clusters4 K: 11

Generation of U′ presents two challenges. The first is that U′ will have between

10,865,003 and 1,314,957,660 pairs (depending on cluster sizes), and assuming that

each pair requires 16 bytes of RAM for two long integers, the list will take between

174MB and 21GB of RAM. The second is that identifying the pairs is a nested

4Determined using the elbow method on an initial partition of the entire dataset in Section 4.2
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Figure 3.2: Stable Clustering Data Flow

loop, which is O(N2) complexity and requires 1,314,957,660 comparisons. The

combination of memory and processing demands is infeasible on a desktop due to

memory constraints. To process the data, a high-memory scalable Spark cluster

with one driver node and a maximum of 8 worker nodes is provisioned. Each node

has 60GB of RAM and 8 CPUs with clock speed of 2,294 MHz. The cluster is

provisioned using Databricks, a cloud-based data warehouse solution running in

an Azure cloud environment.

Choice of data structures and coding methodology greatly affects the perfor-

mance of the routine. A first attempt at implementation of Algorithm 3 mixed

use of Spark dataframes and Python lists. L was read in from a CSV file into a

dataframe. The dataframe was queried to extract the observations for each com-

bination of partition b and cluster label k. Next the observation labels (RESPID)

were placed into a list which was passed into the nested loop (Algorithm 3 steps
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8-17) to create a list of pairs. This list was appended to a master list, U, which

was subsequently converted back to a Spark dataframe for further processing and

storage. The code for this method is shown in Listing 3.1.
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f o r b in range (0 ,B) :
# I n i t i a t e t u p l e l i s t
t u p l e l i s t = [ ]

# Populate t u p l e l i s t
c l u s t s e t = ’ l a b e l s ’ + s t r (b)
f o r c in range (0 , n c l u s t e r s ) :

c l u s t s l i c e = d f c l u s t [ d f c l u s t [ c l u s t s e t ]==c ]
c l u s t l i s t = c l u s t s l i c e . s e l e c t ( ’RESPID ’ ) . rdd .

flatMap ( lambda x : x ) \
. c o l l e c t ( )

f o r i in range (0 , l en ( c l u s t l i s t ) ) :
f o r j in range ( i +1, l en ( c l u s t l i s t ) ) :
i f c l u s t l i s t [ i ] < c l u s t l i s t [ j ] :

t u p l e l i s t . append ( ( c l u s t l i s t [ i ] ,
c l u s t l i s t [ j ] ) )

e l s e :
t u p l e l i s t . append ( ( c l u s t l i s t [ j ] ,

c l u s t l i s t [ i ] ) )

# Convert t u p l e l i s t to dataframe and i n s e r t i n to
permanent t a b l e

columns = [ ’ or ignode ’ , ’ termnode ’ ]
df3 = spark . createDataFrame ( t u p l e l i s t , columns )
df3 . registerTempTable ( ’ t u p l e t b l ’ )
spark . s q l ( ”””

INSERT INTO abuse sequence . tup l ecount s
SELECT DISTINCT orignode , termnode , count (* ) as

tup lecount
FROM t u p l e t b l
GROUP BY orignode , termnode

””” )

Listing 3.1: Tuple Creation by Nested Loop

This method proved to be an inefficient means of executing the algorithm.

Using brute iteration and lists (Algorithm 3 steps 7-18) omits the advantage of

distributed processing made possible by Spark. In fact, those steps took 38,930

seconds to complete, used a maximum 60GB of RAM, and did not leverage the

multitude of processors available in the clusters. To fix this problem, the data

was left in dataframes and Spark SQL was used to generate the pairs. Replacing
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the nested loop in Listing 3.1 with a dataframe JOIN causes Spark to conduct a

broadcast nested loop join across the cluster. The clustering results L are again

read into a dataframe. L is then queried to create small dataframes for each

combination of b and k. These dataframes have only one column – the respon-

dent identifier RESPID. Each single column dataframe is next joined to itself on

unequal matches of RESPID to create a new dataframe with two columns of re-

spondent identifiers. Each row of this dataframe represents a pair with the same

cluster label from a partition. All of the resulting dataframes are concatenated

to create one large dataframe with all of the pairs from the B partitions. Algo-

rithm3 steps 19-22 are completed by performing a simple Spark SQL selection on

this dataframe. The code for this revised approach is shown in Listing 3.2. This

transformation resulted in a wall clock improvement in which construction of the

large pair dataframe took only 2,628 seconds, a savings of 93%5

5Unfortunately, wall clock savings do not translate into reduced compute costs. The total
amount of CPU time used by the Spark join is the same as nested loop execution, it is just
spread across the cluster. Nevertheless, wall clock savings are obviously valuable in ways other
than compute costs.

55



f o r b in range (0 ,B) :
# I n i t i a t e t u p l e l i s t
c l u s t s e t = ’ l a b e l s ’ + s t r (b)

# Generate p a i r s v ia a Spark j o i n
f o r c in range (0 , n c l u s t e r s ) :

d f s l i c e = df2 [ df2 [ c l u s t s e t ]==c ] . s e l e c t ( ’RESPID ’
)

d f s l i c e . createOrReplaceTempView ( ’ t b l s l i c e 1 ’ )
d f s l i c e . createOrReplaceTempView ( ’ t b l s l i c e 2 ’ )
d f t u p l e s e t = spark . s q l ( ”””
SELECT t b l s l i c e 1 .RESPID AS orignode , t b l s l i c e 2 .

RESPID
AS termnode
FROM t b l s l i c e 1 JOIN t b l s l i c e 2
WHERE t b l s l i c e 1 .RESPID < t b l s l i c e 2 .RESPID
””” )

# I n s e r t s e t i n to p e r s i s t e n t t a b l e
d f t u p l e s e t . createOrReplaceTempView ( ’ t b l i n s e r t s l i c e ’ )
spark . s q l ( ”””

INSERT INTO abuse sequence . spa rk tup l e s
SELECT DISTINCT orignode , termnode , count (* ) as

tup lecount
FROM t b l i n s e r t s l i c e
GROUP BY orignode , termnode

””” )

Listing 3.2: Tuple Creation by Spark Join

To generate the stabilized clusters from the pair lists, U′ is stored in a Graph-

Frames data structure and its connected components are found (GraphFrames ,

2021). GraphFrames is a software package that distributes graph processing al-

gorithms across a Spark cluster. As described above, the B = 20 subgraphs

G(c), 1 ≤ c ≤ B are examined, and for each the number of connected components

and the sizes of the largest components are found. Running this process for the

20 subgraphs on the Spark cluster took 2,442 seconds of wall clock time.
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Chapter 4

Results

4.1 Data exploration

4.1.1 Demographics

The working dataset is comprised of the curated AFU and demographic features.

It contains 170,944 observations and 23 variables and represents a sampled popu-

lation of 247,716,947 individuals.1 Basic distributions for the sampled population

are shown in Figure 4.1. Males make up 48.3% and females 51.2% of the popula-

tion, and the largest age cohort is 50-64 years of age followed by 35-49 years of age.

Non-Hispanic whites is the largest ethnic cohort, followed by Hispanics and Non-

Hispanic blacks.2. Individuals tend to be either married or never married, with

smaller cohorts of divorced and widowed individuals. The largest total family in-

come bracket is $75k+, and the second largest is $20k-$49999. Highest educational

attainment is somewhat balanced among high-school graduates with some college

and college graduates, with high-school graduates (no college) next most common.

1Throughout the results discussion, the statistics corresponding to the sampled population,
the respondent counts multiplied by their corresponding weights, are presented.

2We adopt the ethnic naming conventions used by NSDUH in this study
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There is a smaller cohort of individuals who did not graduate from high-school.

NSDUH accounts for population density by mapping the respondents’ counties of

residence into three categories. Large metropolitan counties have the most respon-

dents, followed by small metropolitan ones. Non-metropolitan counties contain

the fewest individuals.

Figure 4.1: Demographic Distributions

4.1.2 Basic drug usage

The vast majority of the population has used at least one substance, with the

long-time licit drugs, alcohol and tobacco, being the most common (Table 4.1).

Marijuana, which is now legal for recreational use in many states, has been used

by almost half of all individuals. Illicit drugs are less common, with hallucinogens

most used among those. The least commonly used drug is heroin, with only 2.1%

of the population indicating any use.
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The average age of first use for most drugs is below 20 years, with tobacco

having the earliest mean AFU at 17.4. Illicit drugs have higher AFUs, with pre-

scription drugs having by far the highest at 35.6 years. Inhalants are a significant

deviation from this pattern with an AFU of 17.9. Fraction of the population that

has used a drug is plotted against its mean AFU in Figure 4.2.

Drug Fraction of Population Mean AFU (years)
Alcohol 85.9% 17.4
Tobacco 65.5% 16.4

Marijuana 48.2% 18.3
Hallucinogens 17.0% 19.6

Cocaine 16.2% 21.8
Prescriptions 13.4% 35.6

Inhalants 9.2% 17.9
Methamphetamine 6.1% 22.3

Heroin 2.1% 24.1

Table 4.1: Fraction of Population Used and Mean AFU by Drug

4.1.3 Drug use pathways

Drug initiation sequences without consideration of AFU are explored prior to

expanding the analysis to include age. This enables the depiction of common pro-

gressions from drug to drug. Without age data, a drug use progression is modeled

as a path through a simple graph with ten nodes, each one corresponding to a

drug (plus one ‘start’ node), with unweighted edges. The edgelist notation is used

to depict paths. Without weights, an edge takes the form ei = (tobacco, alcohol),

and a path is represented by an edgelist:

e = [(tobacco, alcohol), (alcohol,marijuana), (marijuana, cocaine)]
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Figure 4.2: Basic Usage Statistics
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For brevity, the path can be displayed simply as the drugs used in sequence:

[tobacco, alcohol, marijuana, cocaine]

There are a total of 247,716,947 paths through the graph, one for each member

of the population represented by the survey. The fifteen most common paths,

representing 71% of all paths, are shown in Table 4.2. With the exception of

no-usage, the ten most common pathways all initiate with alcohol or tobacco.

However, pathways 11-13 all initiate with marijuana, and those represent 3.7%

of all pathways. These paths are not unexpected given marijuana legalization for

both medical and recreational use.

The first completely illicit drug to occur in this list is cocaine. The second is

improperly used prescriptions. This category was not highlighted in the literature,

and it likely that this pattern is a recent effect of the opioid epidemic. Interestingly,

the second most common pathway containing illicit drugs initiates with alcohol

and jumps directly to prescriptions. According to D. B. Kandel and Yamaguchi

(2002b), this would be considered a random deviation from a normative pattern.

However, it could be that a jump from alcohol to prescription abuse has become

a rare but non-random outcome, once again an effect of the opioid epidemic.

The pathways are portrayed as directed edges through the unweighted graph

in Figure 4.3. The ten nodes associated with start and the nine drugs are shown

in red. Edges are depicted in gray scale, with the darkness of the edge increasing

with the frequency of the edge. Edges among tobacco, alcohol, and marijuana are

most common, followed by edges connecting to prescriptions, hallucinogens, and

cocaine. Edges to heroin are infrequent, but among those, the most common links

are from cocaine and prescriptions.
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Figure 4.3: Drug Use Progression Graph

The normative pattern of first drug initiation with either alcohol or tobacco,

followed by marijuana use, then by illicit drugs, dominates the data. There is a

small set of pathways that likely are non-random and due to marijuana legalization

Path Fraction
[start, alcohol] 16.2%

[start, tobacco, alcohol] 11.9%
[start, none] 10.3%

[start, alcohol, tobacco] 7.3%
[start, tobacco, alcohol, marijuana] 6.1%
[start, alcohol, tobacco, marijuana] 4.3%
[start, tobacco, marijuana, alcohol] 2.6%

[start, alcohol, marijuana] 2.4%
[start, tobacco] 2.3%

[start, alcohol, marijuana, tobacco] 2.3%
[start, marijuana, tobacco, alcohol] 1.4%
[start, marijuana, alcohol, tobacco] 1.3%

[start, marijuana, alcohol] 1.1%
[start, tobacco, alcohol, marijuana, cocaine] 0.7%

[start, alcohol, prescriptions] 0.6%

Table 4.2: Most Common Drug Use Pathways
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and the opioid epidemic. These patterns do not include AFU, which can add

additional insight into drug initiation.

4.2 Initial clustering

This study seeks to answer the question ‘Are there identifiable patterns of pro-

gression of age of first use for drug categories?’ This inquiry is addressed by

clustering the NSDUH observations on the AFU vectors created in Section 3. To

avoid overfitting the NSDUH data and to reduce variation in output clusters, sta-

bility methods are applied, but first a straightforward K-means cluster (KMC)

analysis is performed on the data. Hyperparameters for KMC include the number

of clusters, and the maximum iterations for the algorithm. Additionally, KMC

is run multiple times, with random starting centroids, and the run with lowest

inertia is chosen as the locally optimal clustering. Sci-Kit Learn (Pedregosa et al.,

2011) is used to perform KMC with 1,000 iterations and 20 runs. To determine

the best number of clusters, KMC is run multiple times with increasing numbers

of clusters, K = 2, 3, . . . , 30. Because the dataset is quite large, the elbow method

is used to select K.

Figure 4.4(a) shows that model inertia decreases smoothly with an increas-

ing number of clusters. The elbow at which change in inertia decreases abruptly

is not apparent. A plot of the change in inertia versus the number of clusters

(Figure 4.4(b)) provides better insight into the change in performance of the algo-

rithm. The first point at which the change in inertia makes a significant reversal

occurs at K = 11 clusters. Therefore this point is adopted as the best value for

K.

Clusters can be described several different ways. One is to represent them
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(a)

(b)

Figure 4.4: Model Inertia Change as a Function of K
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in terms of their centroids (Table 4.3). The centroid, or geographic center, of

each cluster is the mean of the nine drug AFU vectors across all of the cluster

members. The centers include some well defined AFU values – those that are

below 100. There are also some well defined no-use AFU values – those that are

equal to or near the ‘never used’ value of 991. In between these two extremes are

values over 100 but still less than 991. For example, in cluster 5, the AFU center

for Prescriptions is 369.0. Such data indicates the presence of observations whose

majority never used prescriptions along with a smaller cohort of users who did.

The four largest clusters comprise over two thirds of the population and are

similar to the most common individual paths found in Section 4.1.3. Cluster 0,

representing 21.0% of the population, is centered on early initiation of tobacco at

17.5, with a delay of one year before alcohol use at 18.4. Cluster 0 can be thought

of as usage only of completely legal drugs initiated at an early age. Cluster 1,

with 19.4% of the population, is centered on tobacco initiation at 16.4 followed

by alcohol at 16.7, and marijuana at 19.7. It is interesting to note that this

cluster, which includes marijuana, involves earlier AFUs for tobacco and alcohol

than Cluster 0. Cluster 2 is centered on only the use of alcohol, and cluster 3

is centered on the absence of any drug use. These large clusters are in line with

expectations of normative initiation sequences. However, several groups have very

different patterns. Cluster 4, representing 6.4% of the population, shows a pattern

of multiple drug initiation around the age of 20, beginning with hallucinogens.

Similarly, cluster 6 initiates with hallucinogens, followed by alcohol, marijuana,

and tobacco. Cluster 7 represents 4.7% of the populations and initiates with

marijuana at 20.4 followed by alcohol at 26.3 and then nothing else. A total of

25.7% of the population is represented by clusters that do not follow the tobacco

→ alcohol → marijuana → other drugs sequence.
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It is important to point out that no respondent would likely have behavior

exactly equal to a cluster center. Full interpretation of each cluster involves an

analysis of the AFU distributions for each drug. Nevertheless, the medoids of

the clusters can be identified. A medoid is the observation within a cluster that

is closest to its geometric center. The medoid can be thought of as a ‘typical’

member of the cluster. Since a medoid likely only used a subset of the ten drugs,

they can be described using pathway notation (Table 4.4). Most of the medoids

are very similar to the cluster centroids.

Cluster
Drug 0 1 2 3 4 5

Tobacco 17.5 16.4 991.0 991.0 58.5 33.3
Alcohol 18.4 16.7 20.2 991.0 22.9 17.3

Marijuana 991.0 19.7 991.0 975.1 23.2 20.0
Cocaine 983.1 991.0 987.6 990.8 21.5 116.6

Prescriptions 945.5 991.0 951.4 966.4 609.1 369.0
Hallucinogens 984.0 991.0 985.3 988.7 19.8 56.0

Inhalants 973.0 933.6 972.6 977.8 991.0 18.3
Heroin 990.4 989.5 991.0 990.5 880.4 799.0

Methamphetamine 987.7 974.0 989.5 990.4 688.5 543.9
Fraction 21.0% 19.4% 17.3% 10.9% 6.4% 5.5%

Cluster
Drug 6 7 8 9 10

Tobacco 31.2 991.0 31.7 17.4 26.8
Alcohol 24.2 26.3 29.3 991.0 27.9

Marijuana 28.5 20.4 31.9 850.9 36.8
Cocaine 991.0 936.3 23.6 987.3 991.0

Prescriptions 752.7 916.1 799.6 963.2 35.4
Hallucinogens 20.4 911.5 991.0 983.0 991.0

Inhalants 869.8 945.9 910.8 974.1 820.9
Heroin 979.0 989.3 952.6 988.2 983.9

Methamphetamine 929.9 982.4 839.8 983.4 958.5
Fraction 4.7% 4.7% 4.4% 2.9% 2.8%

Table 4.3: Basic KMC Geometric Centers
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Table 4.4: Basic KMC Medoids
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4.3 Identification of the Stable Clusters

As mentioned earlier, KMC is applied to multiple bootstrap samples from the

complete dataset and pair generation is performed on a 30% sample of the labeled

observations to form U′. KMC is run on 80% folds of the data sample B = 20

times to create the label sets. Initial clustering (Section 4.2) determined the num-

ber of clusters for the folds: K = 11. Results from the pair formation stage are

summarized in Table 4.5 below. Of the total possible pairs of observations, only

17.3% actually occur, and of those, 69.3% occur in all of the partitions. Figure 4.5

shows that only pairs with α = 1 occur in significant numbers - 69.3%. The sec-

ond largest set occurs at α = 0.05 and contains 7.7% of the pairs. These results

illustrate the instability inherent in KMC – varying partitions arise due to dif-

ferent starting conditions for KMC. KMC methods traditionally involve multiple

partitions for a given value of K to determine the one with lowest inertia, but

they do not evaluate how much the observation labels change among the multiple

runs. As this analysis shows, only a fraction, albeit a large one, of the observations

consistently coexist in the same clusters when KMC is repeated.

Measurement Value
Total Observations (N) 51,283

Partitions (B) 20
Training Fold Size 80%

Possible Pairs 1,314,947,403
Actual Pairs 227,138,275

Highest Stability of any Pairs 1.00
Number of Highest Stability Pairs 157,484,658

Fraction of Highest Pairs 69.3%
Implementation Time (wall clock secs) 3,001

Table 4.5: Pair Creation Results

The 20 subgraphs G(c), 1 ≤ c ≤ B are formed and the elbow method is used
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Figure 4.5: Number of Pairs vs Stability α

to determine the stability α = c
B

at which the number of components changes

most (Figure 4.6). The second subplot shows the first derivative of the connected

components vs stability curve. Two significant shifts in direction occur – one at

α = 0.60, and one at α = 0.85. At α = 0.60 there are 13 connected components in

the corresponding subgraph G(12). At α = 0.85 there are 37 connected components

in G(17). Selecting between these two parameters is somewhat arbitrary, but

37 components is an overly complex partition for this situation. It is therefore

concluded that there are 13 connected components of observations.

The 13 components are the stable clusters for the 30% data sample. The size

of the sample’s represented population in each component is shown in Figure 4.7.

The first three are significantly larger than the rest. The largest cluster contains

29.9% of the population, the second contains 19.8%, and the third 17.4%. Size
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(a)

(b)

Figure 4.6: Change in Number of Connected Components vs Stability α
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begins to decrease with the fourth, which has 10.7%, and the fifth only 5.4% of the

population. The cumulative fraction of sample population in the stable cluster

Figure 4.7: Size of Connected Component α = 0.60

partitioning and in partitioning from the original KMC method are shown in

Figure 4.8. The two curves are similar in shape, but the data is more concentrated

in the stable cluster method than in the basic KMC one.

The entire NSDUH dataset is labeled by mapping each observation to the clus-

ter whose center is nearest. This labeled dataset is the stable cluster partitioning

of the four years of adult respondents to the NSDUH survey.

4.4 Characteristics of the Stable Clusters

The centers of the stable clusters are listed in Table 4.6. The three largest clusters

from the original KMC and the stability methods are very similar with some dif-

ferences in AFU and relative size. Cluster 0, 21.1% of the population, is centered

on initiation of tobacco at age 17 and alcohol at 18. This cluster is nearly identi-
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Figure 4.8: Comparison of Cluster Sizes: Stable vs KMC

cal to cluster 0 from standalone KMC. Cluster 1, the largest cluster representing

25.2% of the population, is centered on initiation of tobacco at 16, marijuana at

19, and alcohol at 35. This cluster differs meaningfully from that of basic KMC,

which was smaller, initiated alcohol prior to marijuana, and had a much lower

mean AFU for alcohol initiation. The third large cluster, 2, accounts for 17.3%

of the population and is centered on initiation of alcohol at 20 and nothing else.

Again, this cluster is nearly identical in size and structure to that of basic KMC.

Cluster 3, like that of basic KMC, represents no usage and represents 10.9% of

the population.

Clusters 4, 6, 7, and 8 all center on polyabuse. Three of the five, clusters 4,5

and 7, have alcohol as the first used drug. Collectively, these polyabuse clusters

represent 21.7% of the population. With the exception of 6, all these polyabuse

clusters are centered on some prescription drug abuse, which wasn’t present in

clusters 0-3.

Cluster 9 is nearly identical to its basic KMC counterpart and centers on
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initiation only of tobacco at age 17 and represents 2.9% of the population. The

remaining clusters are very small, but cluster 10 is interesting in that it centers

on initiation only of marijuana. This cluster was not seen in basic KMC, but

the stable cluster partition does include more clusters, allowing for expression of

patterns not identified in basic KMC.

We can think of each cluster’s medoid (listed in Table 4.7), the observation

closest to the geometric mean, as a ‘typical’ user in the group. Most of the

medoids match the centers very well. For example, the center of 0 is [17.5, 18.4,

991.0, 980.5, 944.1, 983.1, 971.9, ,990.1, 986.9], and its medoid is [17, 18, 991,

991, 991, 991, 991, 991, 991]. The medoids for clusters 4, 6, 7, and 12 differ

somewhat from the cluster centers, but this is expected given the complexity of

the polyabuse clusters.
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Cluster
Drug 0 1 2 3 4 5 6

Tobacco 17.5 16.3 991 991 31.8 991 65.4
Alcohol 18.4 35.0 20.2 991 17 17.6 26.2

Marijuana 991 19.3 991 991 18.7 20.3 26.3
Cocaine 980.5 888.2 988 990.8 179.9 926.2 25.9

Prescriptions 944.1 991 951.4 966.4 464.3 899.6 991
Hallucinogens 983.1 885.6 985.7 989.1 106 901 120.8

Inhalants 971.9 946.2 972.6 977.9 18.3 948 991
Heroin 990.1 989.8 991 990.5 823.9 989.1 895.6

Methamphetamine 986.9 977.7 989.5 990.4 600 976 659.4
Fraction 21.1% 25.2% 17.3% 10.7% 6.3% 4.8% 4.3%

Cluster
Drug 7 8 9 10 11 12

Tobacco 34.7 40.3 17.6 985.7 17.3 81.4
Alcohol 25.9 21.2 991.0 991.0 18.3 386.3

Marijuana 33.4 21.1 986.1 19.7 18.2 845.5
Cocaine 823.9 26.0 984.7 953.3 991.0 964.0

Prescriptions 35.7 34.3 959.7 924.7 178.4 130.5
Hallucinogens 984.1 99.6 985.2 929.0 19.9 19.6

Inhalants 851.6 991.0 977.9 963.7 941.2 797.0
Heroin 985.2 816.1 988.7 991.0 974.3 964.1

Methamphetamine 964.4 616.1 985.2 988.7 719.8 965.9
Fraction 3.5% 2.8% 2.5% 0.2% 1.3% 0.1%

Table 4.6: Stable Cluster Geometric Centers
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Chapter 5

Discussion

5.1 Review

Despite ongoing and various attempts to eliminate or reduce them, drug abuse

and addiction have been persistent problems in the United States. Legalization of

marijuana and decriminalization of other drugs have been accompanied by shifts in

usage patterns. The opioid epidemic, in part driven by an increase in prescriptions

of pain medications, includes the abuse of heroin, fentanyl, and other synthetic

opioids, including prescription medicines. This epidemic has caused the death of

tens of thousands of Americans and has placed a great economic burden on the

nation.

The study of drug initiation sequences contributes to an understanding of usage

patterns and can potentially inform intervention and mitigation strategies to pre-

vent users’ progression from less harmful drugs such as alcohol and marijuana, to

dangerous ones such as heroin and methamphetamine. Initiation sequences have

been studied in the past, but those studies have focused primarily on the sequence

by which drugs are initiated rather than on the combination of sequence and age
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of first use. Prior studies have also limited the number of drugs considered and

have mostly sought to explore a priori hypotheses regarding initiation sequences.

No studies have combined an open exploration of usage patterns, consideration of

a wide variety of drugs, and use of a large dataset.

Two challenges complicate the study of age of first use sequences. The first is

access to information. Researchers cannot practically observe drug initiation and

must rely on self reported information from users. Fortunately, the National Sur-

vey of Drug Use and Health provides a vast amount of survey data gathered over

many years. While it is not perfect, NSDUH is arguably the best resource avail-

able for researchers – it is designed to represent the majority of the US population,

it records AFU values for drugs, and its stability over time allows combination of

data from multiple years.

The second challenge is that of data complexity. There are many possible AFU

sequences, and identifying patterns that can be generalized is computationally

difficult. Prior studies have focused on searches for hypothesized sequences and

have used traditional statistical techniques to evaluate them. This does not entail

an open exploration of data that is unbiased by a priori supposition. Unsupervised

machine learning techniques address this challenge by offering researchers ways to

let patterns in the data emerge. Clustering, and K-means clustering in particular,

is an efficient unsupervised technique capable of handling large datasets.

Because KMC is an heuristic method that identifies local, not global, optima,

it is sensitive to starting conditions. When used on survey data that represents

a larger population, KMC has another drawback – if it did arrive at a globally

optimal solution, it risks overfitting the survey data. Hence a modification to

KMC is required to stabilize its predictions while allowing for application to un-

foreseen data. Other researchers have proposed modifications to KMC to satisfy
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the stability condition, but had not applied them at scale, and the methods would

be unlikely to work practically in such situations.

This study builds on earlier proposals to develop a stability-enhanced KMC

method (SEKMC). SEKMC conducts KMC on multiple bootstrap samples of

a dataset and identifies persistent cluster co-membership pairs of data points.

The pairs that exhibit at least a level of stability specified by the researcher are

included in a set. This pair set is modeled as edges in a network. SEKMC uses list

construction rather than connectivity matrices to limit the computational burden

of the method. During implementation, it uses cluster computing to distribute

pair set formation in order to make practical the execution of the algorithm.

Connected components are identified in the constructed network. Because these

components are completely connected due to the nature of network formation,

SEKMC can benefit from an adjusted algorithm to determine them in O(N)

time. The consequent components are the clusters of drug use initiation sequences

observed in the survey data.

5.2 Findings

Basic exploration of the NSDUH data shows that most of the US adult population

has used alcohol and tobacco at least once, and that a substantial portion has used

marijuana. Initiation of drugs predominantly occurs in the late teens and early

twenties with the notable exception of prescription drug abuse, which tends to

occur later. The most common initiation sequences begin with tobacco or alcohol,

but marijuana has arisen as a common second, or less frequently, first drug in the

sequence.

Initial unstabilized KMC determines that there are 11 clusters of AFU se-
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quences in the NSDUH data. Multiple partitions of 11 clusters are performed

on 20 bootstrap samples of the data. Of all the possible pairs generated by these

partitions, only 17.3% actually occur, illustrating lack of randomness in usage pat-

terns. Out of those pairs, only 69.3% occurred in every partition, demonstrating

the variability of unstabilized KMC.

Results from SEKMC are similar to those of unstabilized KMC with a few

deviations, notably the growth of a cluster where marijuana was the second initi-

ated drug (after tobacco), and alcohol becomes the third: tobacco → marijuana

→ alcohol.1 This largest cluster represents 25.2% of the US adult population and

is centered on very early tobacco initiation at 16.3 followed by marijuana at 19.3.

The late AFU for alcohol at 35 is likely due to the presence of a significant cohort

of no-alcohol-use members. This cluster is worthy of further in-depth study, and

its presence demonstrates the usefulness of this approach – it is unlikely that an

a priori hypothesis would be formed that requires a search for early age tobacco

and marijuana initiators with late or non-existent alcohol initiation.

The second largest cluster is centered on usage of only the traditionally legal

drugs, tobacco and alcohol. The centered AFU for tobacco is 17.5 and for alcohol is

18.4, both below the current legal AFU for both drugs in most states. The largest

cluster, containing more marijuana use, is centered on a lower AFU for tobacco

than the tobacco/alcohol only cluster. This comparison again illustrates utility

of the unsupervised approach – subsequent research can focus on the difference

in AFU between tobacco/alcohol only users and tobacco/alcohol/marijuana or

tobacco/marijuana users. Without unsupervised exploration, a researcher would

have to develop this hypothesis through other means.

A significant portion of the population, 10.7%, did not initiate any drugs.

1In unstabilized KMC, the sequence is tobacco → alcohol → marijuana.
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The aggregation of observations into clusters, including their accompanying de-

mographic features, enables researchers to compare this cluster with the others to

determine if any attributes are more common to non-users than users.

The third largest cluster is centered on alcohol use only, with an AFU of 20.2,

which is near the common legal drinking age of 21. This cluster represents 17.3%

of the population. Interestingly, the clusters centered on the two other most

common drugs are much smaller. The tobacco-only centered clustered center

represents only 2.5% of the population, and the marijuana-only centered a mere

0.2%. From this it is hypothesized that alcohol has been the intoxication drug of

choice among non-polyabuse users, most likely due to its long history of legality. It

is possible that the size of the marijuana-only cluster could grow as its legalization

drives increased usage.

Polyabuse clusters show a great deal of variation, indicating that polyabuse

itself, rather than the sequence of polyabuse, is a defining characteristic of drug

initiation patterns. Nevertheless, some interesting observations regarding these

clusters can be made. For example, there is no cluster centered on polyabuse that

has a low AFU for tobacco, but there are polyabuse clusters whose centers in-

clude early AFU for alcohol and marijuana. This could indicate that polyabusers

are focused on intoxication and tobacco initiation is not a precursor toward such

behavior. Again, this is an hypothesis developed through unsupervised data ex-

ploration and is worthy of further study.

Prescription drug abuse, which has grown since the advent of Oxycontin, oxy-

codone and the like, is associated with the abuse of other drug combinations,

including alcohol/marijuana, and alcohol/marijuana/cocaine. There is no clus-

ter centered on only prescription drug use or on only prescription drugs and the

traditionally legal drugs, tobacco and alcohol. This finding poses a particularly
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interesting hypothesis: are users of only legal drugs less likely to become prescrip-

tion drug abusers even later in life when they may experience a pain treatment

regimen that includes licit opioid use? In light of the probable link between opioid

over-prescription and the current epidemic, this is a fascinating question. Medical

practitioners could be encouraged to use prior drug use history as a screening

question to suggest other pain management techniques prior to opioid prescrip-

tion.

5.3 Limitations of this study

This study uses a static combination of four years’ of NSDUH data. If, as is

surmised, drug use patterns are evolving with changes in legalization and de-

stigmatization, a sequential analysis should be performed. This could be done

by considering overlapping four year blocks, such as 2015-2018, 2016-2019, 2017-

2020, and 2018-2021. To ensure the presence of observations containing the use of

relatively rare drugs such as heroin and methamphetamine, four year, rather than

one year, blocks of data are recommended. Such a sequential study would depict

the transformation of usage through changes in the characteristics and sizes of

stable clusters over time. With SEKMC already defined and demonstrated, such

a study would be easy to conduct.

The most expensive portion of SEKMC is pair generation. The combined

partitions dataset was limited to 30% of the total in this study to manage compute

time and expense. Nevertheless, sensible stable clusters emerged and the time

required to generate them was not prohibitive. Future studies, because they don’t

require the trial and error associated with algorithm development and coding, can

expand to include larger samples or even the entire set of combined partitions.

81



There are other practical ways to limit compute costs. This study used unreserved

clusters, which while flexible are more expensive to provision than reserved ones.

Researchers who can spread costs across multiple studies can use reserved clusters

and thereby greatly reduce the costs of SEKMC.

This study focused on the development of the SEKMC algorithm. Other than

for the determination of K, it did not conduct hyperparameter tuning, which

could improve performance. For example, the number of starting points for KMC

used in generating partitions on folds of the data was not varied. It is possible

that cluster stability can be improved by such tuning.

Finally, the emphasis of this study is on unsupervised learning and the dis-

covery of patterns that can lead to further in-depth analysis. The AFUs of the

observations within each cluster differ from those of the centroid. So interpre-

tation of the clusters must be moderated. For example, it is not proper to say,

“21.1% of US adults initiate tobacco at age 17.5 and alcohol at 18.4 with no fur-

ther drug use.” Instead, one would say, “21.1% of US adults have similarities that

segregate them from other portions of the population, and on average, that cohort

initiates tobacco use at age 17.5, alcohol at age 18.4, and is unlikely to use any

other drug.” Statements such as this are appropriately careful yet still provide

insight into drug use patterns.

5.4 Conclusions

Exploration of large complex datasets can be conducted through unsupervised

machine learning techniques such as cluster analysis. This study improves upon

those techniques by increasing the stability of the underlying methods, in this case

K-means clustering. This study employs those techniques on the NSDUH survey
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to uncover patterns of drug initiation among the US adult population. These

patterns provide unique insight into drug initiation sequences, including the ages

at which drugs are first used. Future studies can build on these findings to explore

novel hypotheses that can in turn guide drug abuse mitigation strategies. The

subsequent chapters of this study provide two examples of the usefulness of stable

cluster data. In the first, a review of the Gateway Hypothesis is conducted. In

the second, demographic feature variation across the clusters is explored.
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Chapter 6

Investigating the Gateway

Hypothesis

6.1 Introduction

An individual can abuse zero, one, some, or many substances. Concern for the

individual grows with the danger posed by the drug – a user of heroin risks im-

mediate death far more than does a user of tobacco alone. Researchers have long

known that a subject’s first used drug is rarely a substance like cocaine or ecstasy,

instead common substances like tobacco and alcohol tend to precede use of more

dangerous or illicit drugs. Denise Kandel formalized a progression of drug use

stages (D. Kandel, 1975). She placed drugs into categories: tobacco, alcohol1,

marijuana, and other illicit drugs. She claimed that drug use began with one

legal drug, either alcohol or tobacco, then progressed to the other legal drug, then

to marijuana, and from marijuana to other illicit drugs. A stage is defined by

the last drug initiated by a user. For example, the first stage would be non-use,

1Kandel’s original work further split alcohol into beer/wine and hard liquor
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and the second would be the use of only tobacco or alcohol. Kandel maintained

that the occupation of a stage does not demand progression to the next stage,

but it is a required precursor to do so. In other words, a marijuana user will not

necessarily use heroin, but before using heroin, a user must have used marijuana.

Kandel’s theory evolved into the Gateway Hypothesis, which has influenced

drug use prevention policy for decades. An assumption made by some policymak-

ers is that if youths are prevented from using alcohol, they will not use marijuana.

If they do not use marijuana, they will not use cocaine (or ecstasy, or heroin,

etc.). This belief has been adopted by US Federal, state, and non-governmental

organizations in efforts to combat drug abuse. For example, the Office for Sub-

stance Abuse Prevention (OSAP) was created by the Anti Drug Abuse Act of

1986 to lead efforts by the Federal Government to prevent substance abuse prob-

lems (Jansen, 1992, p. iii). Kandel’s work guided OSAP to create ‘mass media

efforts [that focused] on preventing use of “gateway” drugs at early ages in an

attempt to reduce the likelihood of developing alcohol and other drug problems

and multi-drug use patterns.’ (Jansen, 1992, p. 35)

In December 2010, the Office of Disease Prevention and Health Promotion

(ODPHP) of the US Health and Human Services Administration (HHS) included

reduction of initial alcohol and marijuana use by adolescents in its Healthy People

2020 national objectives. The Gateway Hypothesis influences actions at the state

level as well. In 2022, the Texas Health and Human Services Commission main-

tained that marijuana use can lead to ‘dependence, addiction, and increased use

of other drugs’ (Texas Health and Human Services, n.d.). In the private sector,

gateway theory has been adopted by non-profit advocacy groups and treatment

facilities. In 2021, the Drug Abuse Resistance Education (D.A.R.E.) program op-

posed marijuana legalization in part because of ‘increased risk of addiction and use
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of other more lethal drugs’ (Drug Abuse Resistance Education Program, 2021). In

2020, Advanced Recovery Systems, a behavioral health company with 750 employ-

ees and $110M of revenue dedicated an entire page to Gateway Drug education

and explained that ‘A gateway drug is a habit-forming drug that can lead to the

use of other, more addictive drugs’ (Advanced Recovery Systems, 2020).

As the popularity of the Gateway Hypothesis grew, so did its number of critics.

Many point out that lower stage drug use is not a determinant of higher stage drug

use, but that is a flawed critique because neither Kandel nor her supporters ever

made such a claim – she said lower stage drug use was a necessary precursor for,

but not a guarantee of higher stage use. Some have disagreed with the rigidity

of the hypothesis – it could be reasonable to conclude that marijuana use can

precede alcohol or tobacco use, especially given the drug’s increasing popularity.

Other debates have centered on ‘which drug is the gateway drug?’ This argument

became public when legalization advocates falsely claimed that D.A.R.E. reversed

its position about marijuana’s status as a gateway drug. Barry et al. (2016)

found that alcohol use precedes that of tobacco or marijuana among polyusers –

individuals who have used many different drugs. Their conclusions were twisted

in reporting by the Washington Post, which used the study to criticize Chris

Christie’s anti-legalization stance during his run for the Republican Presidential

nomination (Ingraham, 2016).

This analysis focuses on the applicability of the Gateway Hypothesis to polyabuse,

which is the use of many different drugs by a subject. This dissertation has shown

that some respondents to the NSDUH survey can be partitioned into clusters

whose most notable feature is polyabuse (Section 4.4). Building on this find-

ing, a two-part analysis is conducted. First, the drug initiation sequences of the

respondents in the polyabuse clusters is examined in more detail to determine
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whether or not users’ behavior adheres to the sequence dictated by the Gateway

Hypothesis. Second, a classification analysis is conducted to determine the rela-

tionship between AFUs of the quasi-legal drugs (tobacco, alcohol and marijuana)

and potential for use of illicit drugs.

6.2 Gateway Hypothesis literature review

The origin of the Gateway Hypothesis2 is credited to Denise Kandel, who with

other researchers proposed that there are developmental stages and sequences of

involvement in drugs (Hamburg, Beatrin A.; Kraemer, Helena C.; Jahnke, 1975;

D. Kandel, 1975). They described a progressive and hierarchical sequence of drug

use stages that begins with one of the traditionally legal substances, tobacco

or alcohol, progresses next to the other, then to marijuana, and then to other

illicit substances such as cocaine, methamphetamine, and heroin. Involvement

in various classes of drugs is not random, but instead follows specific pathways,

and an individual who uses a lower level drug is at risk of progressing to a higher

one. Kandel claims that these pathways adhere to the Guttman scale model

(Guttman, 1944), in which presence in a stage of an ordered sequence indicates

prior presence in all preceding stages. For example, a subject who has used heroin

must have previously used marijuana and the historically legal substances, alcohol

and tobacco. The user will not have progressed from alcohol to heroin without first

using marijuana. Kandel’s theory arose from a longitudinal survey-based study of

New York state high school students (D. Kandel, 1975). It is important to note

that neither Kandel nor other proponents of the Gateway Hypothesis maintain

2Kandel did not coin the term Gateway Hypothesis. Instead, the term Gateway Drug was
popularized by Robert Dupont, who was the Director of the National Institute on Drug Abuse
(Dupont, 1984). Description of the progression of drug use stages as the Gateway Hypothesis
evolved from this term.
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that presence in a lower stage guarantees progression to a higher stage. For

example, most marijuana users will never use heroin. Also, a subject’s progression

can end at any stage. Kandel did however, claim that moving into a stage increases

the risk of progression to subsequent stages.

Since its conception, the Gateway Hypothesis has been explored in subsequent

research. Kandel’s stages were observed internationally in the US, France, Israel

(Adler & Kandel, 1981), Australia (Blaze-Temple & Lo, 1992), Japan (Oh et al.,

1998), Spain (Adrados, 1995) and Scotland (Morrison & Plant, 1991). Other

studies added an analysis of the age of initiation of drugs. Fleming et al. (1989)

found that smoking cigarettes significantly increased the association with mari-

juana use in two years. Golub and Johnson (1994) showed that age-of-first-use of

substances had decreased from the 1920s through the 1970s. Welte and Barnes

(1985) considered age and found that cigarettes form an important step between

alcohol and marijuana use for younger subjects.

The Gateway Hypothesis continued to be studied over several decades, and has

been updated to consider deviations and links to other substance use. Fiellin et al.

(2013) found an association between the use of alcohol, cigarettes, and marijuana

with subsequent abuse of prescription opioids among young men. Keyes et al.

(2016) studied twins and discovered that a prevalence of smoking in 8th and 10th

grade is associated with marijuana and cocaine use in 12th grade. A broad analysis

of the literature was done by Lynskey and Agrawal (2018), who concluded that

the causal link between lower stage and higher stage drugs is heavily debated but

not discounted. Noting some changes in stages among cultures, they suggest that

drug use progression may be a factor of access and accessibility.

A subset of Gateway Hypothesis research operates with an assumption of the

theory’s validity and seeks to explain it. Some studies point to a pharmacological
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basis – for example, Ellgren et al. (2007) found that intraperitoneal exposure to

THC during the peri-pubertal period in rats was associated with an increased use

of opioids. E. R. Kandel and Kandel (2014) observed that mice who were primed

with nicotine exhibited an increased response to cocaine. Other studies focus on

the effect of social factors on drug use stages. Fergusson et al. (2006) found that

associations between regular or heavy cannabis use and use of other illicit drugs

declines with age, and that exposure to the illicit drug market during cannabis

use may increase accessibility to other substances. Wagner and Anthony (2002)

claim that neighborhood and work environment impinge on risk of alcohol and

drug use. Using an ongoing cohort study, Baggio et al. (2015) show that positive

first use experience of cannabis amplifies the association with other illicit drug

use.

A few studies discuss deviations from the normative drug initiation sequence

and why they occur. Baggio et al. (2015) examined the US National Comorbidity

Survey Replication to search for features that could explain deviations. They con-

cluded that differing sequences are not predictive of later drug dependency, but

they did find that adolescents with mental health problems are associated with

sequence deviations. They also found that deviations from the gateway sequence

are rare (5.2%), and that cannabis use has become more common in cohorts born

since 2003. D. B. Kandel and Yamaguchi (2002a) consider the existence of differ-

ent pathways among ethnic groups and use a log-linear analysis to conclude that

the deviations among them are small, and that the alcohol/cigarette to marijuana

to other illicit substances pathway is normative. They assign any deviations from

this pattern to a latent class of users whose behavior is not normative.

A set of prior studies doesn’t focus specifically on the Gateway Hypothesis,

but seeks predictors of late stage drug abuse based upon other drug use and
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demographic features. Lynskey et al. (2003) shows a relationship between early

marijuana use and subsequent illicit drug that persists when other known risk

factors are controlled. Fergusson et al. (2008) finds that environmental factors,

when combined with early marijuana use, increase risk of illicit drug use. Jones

(2013) identifies correlations between heroin and various demographic variables

and drug use behaviors. This study is followed up in Jones et al. (2015), which

describes relationships between cocaine, binge drinking, and marijuana use. Cerdá

et al. (2015) uses hazard models to identify the link between prescription opioid

abuse and subsequent heroin use. Two studies focus attention on age of first use.

Wadekar (2020) correlates early marijuana use and mental illness with opioid use

disorder. And Beattie and Nicholson (2021) finds that heroin use is strongly

correlated to early use of marijuana and cocaine use.

6.3 Gaps in the literature

The Gateway Hypothesis is one of the most explored topics in drug use research.

Nevertheless, opportunities for new insights remain. One is suggested by the

presence of cluster 1 described in Section 4.4, whose center includes marijuana,

rather than alcohol, as the second drug initiated. The Gateway Hypothesis rigidly

maintains that alcohol and tobacco use must precede marijuana use. In light of

recent legalization, it is reasonable to posit that marijuana may displace either

alcohol or tobacco as a first or second drug in the initiation sequence. Deeper

exploration of the stable clusters provides a means to check on the currency of

the Gateway Hypothesis.

Existence of a set of clusters (4, 6, 7, 8) whose common feature is polyabuse

calls for further study of the link between early stage drug use and subsequent
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illicit drug use. The literature has established correlation between factors, includ-

ing early marijuana use, and later illicit drug use. However, no study focuses on

the relationship of tobacco, alcohol, and marijuana AFUs to later stage drug use.

Such a study can answer questions relevant to drug interdiction. For example,

which drug, when used early, is the strongest determinant of later illicit drug use?

Or is there a combination of early tobacco, alcohol, and marijuana use that is a

strong determinant?

6.4 Methods

6.4.1 Evaluating drug initiation sequences in specific clus-

ters

The stability enhanced K-means cluster analysis (SEKMC) conducted above sought

patterns through unsupervised learning, considered age of first use, and was based

upon a large multiyear survey with tens of thousands of respondents, a combined

approach unique in the Gateway Hypothesis literature. The consequent partition

in the study contains a cluster of particular interest. Cluster 1 represents 25.2%

of the surveyed population and its centroid does not adhere to the Gateway Hy-

pothesis: it’s first drug used is tobacco at age 16.3, and instead of progressing to

alcohol, it progresses to marijuana at age 19.3. The size of this cluster indicates

the possible presence of a set of users that is too large to be considered a latent

non-normative class. To determine if this is the case, the respondents in cluster 1

are studied apart from the rest of the NSDUH respondents. The AFU sequences

for this cluster are evaluated with direct measurement of pathway frequencies.
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6.4.2 Predicting later stage drug abuse based upon to-

bacco, alcohol, and marijuana use

Respondents in NSDUH are allocated into two classes. The positive class includes

those who have used illicit drugs – those other than tobacco, alcohol, and mari-

juana. The negative class includes respondents who have used no drugs or those

that have only used the quasi-legal drugs. Prediction of class membership is done

using AFU of tobacco, alcohol, marijuana, and any combination of those three

drugs. Two classification methods are employed, decision tree analysis and logis-

tic regression. The methods are compared for efficacy and the importance of the

AFU features is evaluated to determine what quasi-legal drug use pattern most

strongly affects prediction of illicit drug use.

In both models, the AFU features are transformed to create nearly smooth

value ranges, and the convention of using ‘991’ for no-use is removed. The AFU

for drug j of observation i is given by AFUij. The transformation of this feature is

denoted by xij, where j ∈ [tobacco, alcohol, marijuana] and is defined as follows:

xij =


1

AFUij
, if AFUij < 991, j ∈ [tobacco, alcohol, marijuana]

0, otherwise

Each observation in the NSDUH dataset is assigned into one of two classes, and

the classification of an observation i is denoted as yi. If a respondent has used

any drug other than tobacco, alcohol, or marijuana, it is assigned to the positive
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class (yi = 1). Otherwise it is in the negative class (yi = 0):

yi =


1, if ∃ AFUij < 991, j /∈ [tobacco, alcohol, marijuana]

0, otherwise

Decision tree classification aims to partition datasets into smaller, more homoge-

neous groups. Each node of the tree is a split point at which a set of the data is

divided into two groups based upon the value of a feature selected by the algo-

rithm. The split points are chosen to maximize the homogeneity of the resulting

two subsets of data. The measure of homogeneity used in this study is the Gini

index, which for a two-class problem is given by 2p1p2, where pi is the probability

of an observation’s membership in class i. The algorithm seeks to minimize the

Gini index at each split point. The algorithm continues to build the tree until a

stopping criterion is reached.

The performance of decision tree classification can be improved in various

ways, including the use of random forests. The purpose of this study is to de-

velop an explanatory model, and such methods are not used so as to preserve the

interpretability of the basic tree model. The dataset is split into a training set

containing 75% of the observations and a test set with the remaining 25%. Two

tuning parameters are used, maximum tree depth and the minimum number of

samples in a node required to proceed with a split. The model is trained using 5-

fold cross-validation to maximize the area under receiver operating characteristic

curve (AUROC). The trained model is applied to the test set and the AUROC

and maximum F1-score are calculated. Using the threshold probability at which

the F1-score is maximized, a confusion matrix for the test set is generated. The

observation weights (YRWEIGHT) are used throughout the process to account
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for the population represented by each observation.

Logistic regression is a general linear method that can be used to predict the

probability of an observation’s class membership. Because it is linear, combina-

tions of features are modeled by inclusion in the model definition. For this study,

the model is given by:

log
P (yi = 1)

1− P (yi = 1)
= β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + β7xi7

xi4 = xi1xi2

xi5 = xi1xi3

xi6 = xi2xi3

xi7 = xi1xi2xi3

The tuning parameters used for the logistic regression classification are whether

or not to include the intercept β0, and what type of penalization to use to reduce

the number of significant features (none, L1, L2, both). As with the decision

tree method, data is split into 75% training and 25% test sets, and the model is

trained with 5-fold cross-validation in order to maximize AUROC. The trained

model is applied to the test set to obtain AUROC, maximum F1-score, threshold

probability to generate maximum F1-score, and the confusion matrix at that

threshold.
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6.5 Results

6.5.1 Drug initiation sequences

The most common pathways, those that make up 80% of the population repre-

sented by respondents allocated to cluster 1 are shown in Table 6.1. The two most

common comprise 49.4% of all of the Cluster 1 pathways, and both adhere to the

Gateways Hypothesis – they initiate with either tobacco or alcohol, progress to the

other, and then to marijuana. The next two deviate from the Gateway sequence

– marijuana is the second drug used in these pathways that make up 16.5% of

those in the Cluster 1 population. Other deviations from the Gateway sequence

are seen in the seventh and eighth most common pathways, and these combine to

represent 5.3% of the Cluster 1 population.

Path Fraction
[start, tobacco, alcohol, marijuana] 34.5%
[start, alcohol, tobacco, marijuana] 14.7%
[start, tobacco, marijuana, alcohol] 8.7%
[start, alcohol, marijuana, tobacco] 7.9%

[start, tobacco, alcohol, marijuana, cocaine] 5.1%
[start, tobacco, alcohol, marijuana, hallucinogen] 4.2%

[start, marijuana, tobacco, alcohol] 3.3%
[start, marijuana, alcohol, tobacco] 2.0%

Table 6.1: Most Common Drug Use Pathways in Cluster 1

Drug use progression modeled as traversal through a network is shown in Fig-

ure 6.1. The strongest links in the network are among the early stage quasi-legal

drugs with other heavily weighted links connecting marijuana to cocaine and both

marijuana and alcohol to hallucinogens. Taken together, the common pathway

list and network progression model show that while the centroid of Cluster 1

deviates from the sequence in the Gateway Hypothesis, the cluster’s two most
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common paths actually do adhere to the sequence. However, the cluster exhibits

a multitude of paths in which marijuana is the first, or more commonly second,

drug in the AFU sequence. The combined effect of these paths drives the cluster

center to a low AFU for marijuana use. These observations indicate that the

Gateway Hypothesis drug initiation sequence remains normative, but marijuana

is frequently initiated earlier than that sequence would dictate.

Figure 6.1: Cluster 1 Drug Use Progression Graph

6.5.2 Illicit drug use classification

Results for the two classification models are summarized in Table 6.2 and in Fig-

ures 6.2 and 6.3. The performance of the two classification models was equivalent

and high – both had a test set AUROC of 0.84 and maximum F1-score of 0.67.

The best threshold probability for the decision tree model was 0.38, and that

of the logistic regression model was 0.39. The decision tree confusion matrix is

slightly more accurate than that of the logistic regression one. 83% of illicit drug
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users were properly assigned to the positive class, and 73% of non users were prop-

erly assigned to the negative class. From these results it is concluded that both

models effectively predict illicit drug use based upon AFUs of tobacco, alcohol,

and marijuana, and interpretation of the models offers insights into clear links

between the features and outcome variable.

Model
Metric Decision Tree Logistic Regression
Best Model Max depth = 4 Intercept included

Min sample split = 2.5% No penalty
AUROC 0.84 0.84
Max F1-score 0.67 0.67
Best Threshold 0.38 0.39

Table 6.2: Classification Model Performance

The decision tree classifier is shown in Figure 6.4. The first split (Node 0)

partitions the dataset by whether or not a respondent first used marijuana at or

above age 28.6. If true, the respondent is allocated to Node 1, and if false it is

allocated to Node 2. 91.9% of the Node 1 respondents are in the negative class,

meaning that they do not use other illicit drugs. In contrast, only 44.0% of Node

2 is in the negative class. Node 2 is then split on whether a respondent first used

marijuana at or above age 16.4, and those whose marijuana AFU is below this

amount are allocated to Node 6. Only 30.9% of Node 6 is in the negative class.

The most homogeneous node dominated by the positive class is Node 24, which

contains 32.0% of the illicit drug using population and is determined by marijuana

AFU less than 16.4, alcohol AFU less than 15.4, and tobacco AFU less than 50.

77.5% of Node 24 is in the positive class. The most homogeneous node dominated

by the negative class is Node 13, which contains 39.5% of the non-illicit drug using

population and is determined by marijuana AFU ≥ 58.8, and alcohol AFU ≥ 19.6.

95.2% of Node 13 is in the negative class.
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(a) (b)

(c)

Figure 6.2: Decision Tree Model Performance
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(a) (b)

(c)

Figure 6.3: Logistic Regression Model Performance
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Decision tree model variable importance scores summarize the comparative

degree to which features contribute to dataset partitioning. Marijuana is by far

the most important variable with a score of 0.93. Alcohol’s is much lower at 0.06

and tobacco’s is only 0.01.

The coefficients for the logistic regression model are shown in Table 6.3. Again,

marijuana is the dominant individual AFU feature at 36.65, and the combination

of tobacco and marijuana AFU has the highest coefficient at 114.83. The p-values

for all coefficients except for alcohol/marijuana and tobacco/alcohol/marijuana

are significant.

Feature Coefficient p-value
Intercept -2.96 0.00
Tobacco 3.87 0.00
Alcohol 7.60 0.00

Marijuana 36.65 0.00
Tob/Alc -15.69 1.76e−5

Tob/Mar 114.83 0.00
Alc/Mar -1.59 0.91

Tob/Alc/Mar -247.17 0.09

Table 6.3: Logistic Regression Model Coefficients

6.6 Discussion

The presence of cluster 1, whose centroid has marijuana as the second earliest

drug of initiation suggests drug pathways that deviate from the sequence dictated

by the Gateway Hypothesis and that their potential commonality could refute the

rigidity of gateway theory. Upon deeper inspection, it appears that the Gateway

Hypothesis sequence holds true, even for most of the pathways in cluster 1. It is

concluded that the gateway sequence remains valid for most of the US population.

That said, controlling for age may lead to a different outcome. Marijuana legal-
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Figure 6.4: Decision Tree Model
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ization is a recent phenomenon. Consequently, marijuana may be a first or second

drug in the initiation sequence for younger NSDUH respondents. This study fo-

cuses on adults – an investigation into the early stages of drug use among youths

may lead to very different results. This investigation should be conducted and

data should be segmented by survey year to evaluate whether the commonality of

marijuana as a first or second stage drug is growing.

A set of clusters whose defining characteristic is polyabuse leads to a hypothesis

that specific early stage drug initiation patterns may increase the likelihood of

later illicit drug use. In particular, the AFUs for tobacco, alcohol, and marijuana

can be used to predict such behavior. Classification of illicit drug use using AFUs

for tobacco, alcohol, and marijuana provides overwhelming evidence that early

marijuana use is very highly linked to use of later stage drugs. When present with

early AFUs for alcohol and tobacco, early marijuana use is even more strongly

correlated to subsequent illicit drug initiation. However, neither early tobacco

AFU nor early alcohol AFU, or even a combination of the two, strongly predicts

illicit drug use in the absence of early marijuana AFU. These findings are similar

to those by other authors, but by excluding the presence of other demographic or

environmental factors, this study definitively demonstrates that if indeed there is

a ‘gateway drug’ to illicit drug use, it is marijuana used at an early age.

Future studies should focus on emerging patterns of drug initiation using youth

responses from recent NSDUH studies. If it is shown marijuana use is supplanting

tobacco or alcohol as a first or second initiated drug, there is a cause for concern

– if marijuana AFUs are declining, it is likely that other illicit drug use will be-

come more common. Practitioners should note these findings and end the debate

over the identify of the ‘gateway drug.’ Ample evidence for the danger of early

initiation of marijuana exists now. Policies to reduce potential use of dangerous
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illicit substances should focus on restriction of marijuana access to youths. This is

certainly difficult given the momentum behind marijuana legalization in the US.

However, legalization does not preclude sentencing for marijuana possession by

minors and for distribution of marijuana to teens. Education programs centered

on responsible marijuana use by parents could also be beneficial. The dangers of

youth access to their parents’ marijuana products are higher than breaking into

the liquor cabinet.
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Chapter 7

Demographics and the Stable

Clusters

The stable clusters simplify investigations into relationships between demograph-

ics and drug usage. Without them, researchers must ask very specific questions,

such as “Does the initiation age of tobacco use differ among income categories?”,

and investigating drug use combinations becomes even more onerous. Partitioning

the data into clusters enables the quick and easy determination of such relation-

ships by examination of cluster distribution across demographic groups. If two

or more groups have different distributions, and those differences are significant,

a hypothetical relationship between drug initiation pathways and those groups

exists. Such an analysis is conducted by creating cross-tabulation tables for each

NSDUH demographic variable from Table 3.3 across the clusters.

The χ2 test indicates statistical significance of differing frequencies within a

cross-tabulation table. The influence of each cell provides insight into which par-

ticular combinations of factors most drive significance. Influence in a χ2 table is

a ratio of a cell’s contribution to the overall χ2 statistic divided by total χ2. Let
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a frequency table cell be denoted by c, let its expected frequency be denoted by

fc, its actual frequency by Fc, and its influence by Ic. χ
2 and influence are then

calculated as follows.

χ2 =
N∑
c=1

(fc − Fc)
2

Fc

Ic =

(fc−Fc)2

Fc

χ2

Adult respondent NSDUH observations from 2016-2019 are partitioned into the

13 stable clusters by assigning each data point to the cluster whose mean is closest

to its AFU vector. The frequency of each NSDUH demographic variable among

clusters is shown in Tables B.1 through B.11 in Appendix B. The cross-tabulations

are weighted according to each observation’s representation of the sampled popu-

lation. For ease of analysis, the tables are normalized so that population fractions,

rather than raw counts, of observed frequencies are depicted. Every table exhibits

a significant difference across the clusters for distributions of the demographic

features, as is expected due to the great size of the sampled population.

Some interesting patterns are evident from a scan of the tables. Females, Non-

Hispanic Asians, Pacific Islanders, and Hispanics are more likely to be included in

the no-use cluster, 3 (Table B.5). Respondents aged 65+ are more likely to have

only used tobacco and alcohol than any other cohort (Table B.2). Respondents

with less than a high school education are least likely to be in the early marijuana

cluster 1, and most likely to be in no-use cluster 3.

Such findings can guide researchers to more deeply explore patterns. For

example, the prevalence of no-use among respondents with less than high school

education may seem counter-intuitive, but it is also true that 18-25 year olds are
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the most likely age cohort to be in the no-use cluster (Table B.2). This leads to

a hypothesis that 18-25 year olds, who are more prevalent in the no-use cluster,

are also less likely to complete high school due to their reduced age, and thus age,

not education, is driving the increase in no-use among non-high school graduates.

Examination of this hypothesis is easily accomplished through a cross-tabulation

of no-use cluster 3 by age and education level . The tabulation shows that 22.5%

of 18-25 year olds have not finished high school, but the proportions for other age

cohorts are very similar: 19.3% of 26-34 year olds, 25.7% of 35-49 year olds, 25.7%

of 50-64 year olds, and 27.0% of 65+ year olds. It is concluded that age does not

explain the prevalence of no-use among low education respondents.

The complexity of the cross-tabulations makes direct interpretation difficult,

and the data of most interest is that associated with high influence cells. The

five most influential cells for each table are shown in Table B.12. Each row shows

the feature table, feature value and cluster combination, influence and rank by

influence of the combination in the χ2 table. The table highlights some interesting

findings, including:

� Military service respondents are more likely than expected to be in the

tobacco/alcohol only (0) and no-use (3) clusters and less likely than expected

to be in the alcohol only cluster (2), suggesting a prevalence of tobacco use

in the military.

� Age 50-64 respondents show up in a cocaine cluster (6) more than expected,

possibly due to popularity of cocaine in the 1980s.

� Females are more likely than expected to be in the alcohol only cluster (2)

and males are less likely
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� Non-Hispanic Asians are more likely than expected to be in the no-use clus-

ter (3)

� Respondents who didn’t finish high school and those in the lowest income

category are more likely than expected to be in the no-use cluster(4)

� Those on government assistance are more likely than expected to be in the

no-use and tobacco only clusters (3 and 9), but also in a polyabuse cluster

(5)

This analysis demonstrates the ease by which meaningful hypotheses regarding

the variation of drug initiation patterns as a function of age, education, and

other demographic variables can be synthesized from a partition of complex data

into stable clusters. Future research should expand this investigation to youth

respondents and shifts in cluster frequencies by demographics as a function of

time. One pattern that was not highlighted among the influential table cells

was an obvious demographic predisposition to belong to the early marijuana use

cluster, 1. In fact, only respondents with more than $75,000 of income were more

likely than expected to belong to it. Given the importance of marijuana’s early

AFU in classifying illicit drug users, it is somewhat disappointing not to find an

obvious demographic pointer to early marijuana initiation. Again, a study that

includes youth respondents, whose early stage drug initiations have occurred since

marijuana legalization has become prevalent, may provide enlightening results.
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Chapter 8

Conclusions

Given the continued harmful impact of drug abuse in the United States, it is

important to maintain research to support the development of interdiction and

mitigation methods. Drug use patterns also shift over time as new drugs are

introduced to the population, attitudes towards use change, and most importantly,

legalization of previously illicit substances occurs. These changes require research

to be continually updated and reexamined to ensure the currency of conclusions

used for policy formation.

A vast array of work has been done to understand drug using behavior. One

area is a rich set of literature that examines the sequence in which drugs are initi-

ated. The literature has produced grand theories such as the Gateway Hypothesis

and has established links between the use of some drugs, such as alcohol and mar-

ijuana, with subsequent use of more dangerous drugs. Studying drug initiation

sequencing faces two major challenges. The first, difficulty of information access,

is partially addressed through the availability of large studies, conducted over

many years and involving thousands of subjects, that are managed by institutions

and governments. One of these, the National Survey on Drug Use and Health, is
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well suited for drug initiation sequencing research.

Data complexity, the second challenge, arises from the existence of surveys

like NSDUH, which contains hundreds of features and hundreds of thousands of

observations. While most drug research starts with a priori hypotheses and uses

data to test them, the richness of the NSDUH survey demands that the data

‘speak for itself’ through unsupervised machine learning techniques. One of these

is the partitioning of the data into clusters to uncover patterns of drug initiation

sequences.

By its very nature, data partitioning is computationally complex and partic-

ularly so for large datasets. Methods such as K-means clustering circumvent this

complexity by approximating the optimal partitioning of data through heuristic

techniques. However, partitions produced by KMC vary based upon starting con-

ditions, and even if an optimal partition of a survey could be obtained, it risks

overfitting the survey at the expense of accurately partitioning the represented

population. This study produces a new method for stability enhanced K-means

clustering (SEKMC) that creates partitions based upon observation relationships

that persist across multiple applications of KMC to bootstrap samples of the data.

This method generates millions of observation pairs and as such risks intractabil-

ity. However, two practical techniques demonstrated here make SEKMC possible.

One is the use of cluster computing to distribute expensive operations across mul-

tiple machines. Another is the development of a novel algorithm that leverages

the unique structure of the observation pair data to create completely connected

graph components that correspond to clusters in the data partition, in O(V ) time.

Applying SEKMC to the NSDUH data creates a partition that generates hy-

potheses for research. The idea that individuals who have used drugs beyond

tobacco or alcohol may be more susceptible to prescription drug abuse is very rel-
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evant to the opioid epidemic, which has been fueled in part due to over-prescription

of pain killers. The existence of clusters whose common defining characteristic is

the use of illicit drugs in addition to tobacco, alcohol, and marijuana, leads to a

hypothesis that some combination of AFUs of those quasi-legal drugs may point

to subsequent use of more dangerous ones. This is a form of the Gateway Hypoth-

esis, which maintains that illicit drug use follows, and necessarily doesn’t precede,

use of quasi-legal drugs. This hypothesis is tested via two machine learning meth-

ods, decision tree classification and logistic regression. The methods both boldly

point to a link between early AFU of marijuana and later illicit drug use. This

finding reinforces other studies from the literature and together they demand the

attention of health care policy makers.

Cross-tabulation and χ2 analysis provide a simple but effective means of uncov-

ering other hypotheses regarding drug use behavior. By examining the frequencies

of demographic features across the NSDUH clusters generated by SEKMC, it is

shown that some patterns worthy of further study are present in the data. For

example, the lack of any drug use is more common among certain ethnicities and

education levels. This finding should be explained through literature review and

if necessary additional study.

Opportunities for further research have arisen from this work. The most im-

portant is to apply the SEKMC method to youth respondents of NSDUH. It is

possible that given the state of legalization in the United States, marijuana may

supplant tobacco or alcohol as an early AFU drug among users coming of age

recently. Based upon aforementioned findings, an increase in early use of mari-

juana can certainly lead to elevated use of more dangerous drugs. Another area

for consideration is to develop the AFU sequencing partitions into models based

upon transition probabilities. Finally, the findings from this study should be
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shared with health care practitioners, who can use them to create more effective

mitigation policies.

111



Appendix A

Determining connected

components in a graph whose

components are complete

Define a graph G as a set of n vertices V and a set of m edges E. Each edge

euv ∈ E connects two vertices u, v ∈ V . A connected component C of G is a

subset of the graph for which every node ci ∈ C is reachable by every other node

cj via a path of edges. The breadth first search (BFS) algorithm is used to find

all of the connected components of a graph, and it executes with time complexity

O(V + E).

A component C is complete if every node in the component is connected to

every other by a single edge. This construction of graph G as described in Sec-

tion 2.2 results in a special case where all of the connected components of G are

complete. In this case, the connected components can be determined with time

complexity O(N). First, a review of the BFS method of finding connected com-

ponents of any graph is presented. Then the modified algorithm for the special
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case for connected components that are all complete is developed.

The breadth first search (BFS) algorithm finds the distance between any two

connected vertices of a graph. Cormen et al. (2009, p.595) provide an efficient

version of BFS (Algorithm 4). The efficiency of BFS is due in part to the use

of adjacency lists to store the graph. BFS also includes a concept of ‘distance’

between nodes. Distance is defined as the number of edges traversed from one

node to another, and is discovered during algorithm execution. Distance from

each node u ∈ V to an initial node s is denoted as u.d. The algorithm uses colors

to indicate whether a node has been examined, or visited, and whether or not all

of its neighbors have been visited:

� u.color = WHITE: not visited

� u.color = GREY: visited but neighbors not yet visited

� u.color = BLACK: visited with all of its neighbors visited

For each visited node it also stores the node visited one step prior, u.π. When

first visited, a node is placed into first-in, first-out queue Q. When all neighbors

of a node are visited, it is removed from Q.

When BFS is presented with a graph G containing several connected compo-

nents, it initiates with a node s0 of one component, C0. BFS then traverses C0 and

determines the distances from s0 to each vertex u ∈ C0. If BFS has not yet visited

all the vertices of G, we select an unvisited node s1 and explore its component

C1. This process continues until all vertices of G have been visited and all of its

components have been listed and explored.

BFS runs in O(V + E) time. Initialization is O(1) for each vertex, totaling

O(V ). As it runs, BFS scans the adjacency list for each vertex in the graph. The
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Algorithm 4 Breadth First Search Algorithm

Require: G = (V,E), s : s.color = WHITE, s.d = 0, s.π = ∅
1: for u ∈ G.V − s do:
2: u.color = WHITE
3: u.d =∞
4: u.π = ∅
5: end for
6: Q = ∅
7: Q = Q+ s
8: while Q 6= ∅ do:
9: Pop the node from beginning of Q and denote it u

10: for v in the adjacency list of u do:
11: if v.color = WHITE then:
12: v.color = GREY
13: v.d = u.d+ 1
14: v.π = u
15: Add v to end of Q
16: end if
17: end for
18: u.color = BLACK
19: end while
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total length of all adjacency lists is equal to the number of edges in E, so the total

complexity for BFS is O(V + E). While BFS runs in linear time, it can become

complex for a large graph with many edges. For a complete graph, E ∼ V 2,

forcing BFS to run at O(V 2).

The special case algorithm is now developed. The minimum distance d between

any pair of vertices (u, v) in a graph G with only completely connected components

is either d = 1 or d = ∞ (u cannot be reached from v and vice versa). The

completely connected component C of G necessarily consists of a vertex set for

which the distance du,v = 1, (u, v) ∈ C. This means that when any node u ∈ G is

selected, its adjacency list completely defines the component to which u belongs.

Therefore, all of the components of G are defined as follows. Consider all vertices

of G as unvisited. Select a node u0 from G and mark it as visited by setting

a label u0.component = 0. Similarly mark all nodes v in the adjacency list of

u0 as visited, v.component = 0. This set forms the first cluster C0. Next select

an unvisited node u1 ∈ G and repeat the process to determine C1, each of whose

members are labeled v.component = 1. Continue until there are no more unvisited

nodes in G. This method is summarized in Algorithm 5 below. This algorithm

initiates in O(V ), just like BFS. During progression, it visits every vertex exactly

once. The execution takes O(V ) time, and the total complexity of the algorithm

is the sum of initiation and execution: O(2V ) ∼ O(V ).

By its definition, the graph formed in Section 2.3.2 from the pairs of observa-

tions (U′) contains only complete connected components. We can therefore use

Algorithm 5 to find the clusters of observations from the pair set U′.
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Algorithm 5 Complete Connected Component Enumeration

Require: G = (V,E), c = 0, Q = ∅
1: for u ∈ V do:
2: u.component = ∅
3: Q = Q+ u
4: end for
5: while Q 6= ∅ do:
6: Pop u from beginning of Q
7: u.component = c
8: for v in the adjacency list of u do:
9: v.component = c

10: Q = Q− v
11: end for
12: c = c+ 1
13: end while
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Appendix B

NSDUH Demographic χ2 Results
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Cluster Distribution of SVCFLAG
χ2 = 4,133,495 ; p-value=0.0

Cluster Military service No military service

0 0.198615 0.335873
1 0.248375 0.290806
2 0.180107 0.103705
3 0.114473 0.034583
4 0.063040 0.065446
5 0.049440 0.027745
6 0.041456 0.054121
7 0.035161 0.029516
8 0.028108 0.022177
9 0.025267 0.023300
10 0.002336 0.001165
11 0.012950 0.011329
12 0.000673 0.000234

Table B.1: Cluster Distribution for Military Service

Cluster Distribution of CATAG6
χ2 = 22,315,193 ; p-value=0.0

Cluster 18-25 26-34 35-49 50-64 65+

0 0.118700 0.159363 0.202303 0.186352 0.353664
1 0.233993 0.276418 0.271379 0.283595 0.183271
2 0.180370 0.170987 0.178017 0.157881 0.183904
3 0.157526 0.082501 0.094573 0.089176 0.131047
4 0.046682 0.081499 0.086081 0.074589 0.018608
5 0.092683 0.051303 0.035675 0.047876 0.027871
6 0.020029 0.039665 0.041543 0.070760 0.026564
7 0.056328 0.052712 0.034234 0.027827 0.014796
8 0.038530 0.046966 0.025142 0.027129 0.008469
9 0.023407 0.013544 0.016656 0.024125 0.046669
10 0.006694 0.001638 0.000935 0.002427 0.001006
11 0.024057 0.022401 0.012687 0.007798 0.003994
12 0.001000 0.001004 0.000775 0.000464 0.000136

Table B.2: Cluster Distribution for Age
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Cluster Distribution of IRSEX
χ2 = 8,795,318 ; p-value=0.0

Cluster Male Female

0 0.234781 0.188356
1 0.273990 0.231738
2 0.130683 0.213143
3 0.078396 0.134462
4 0.087121 0.040989
5 0.034923 0.059271
6 0.051216 0.034517
7 0.034528 0.034785
8 0.032216 0.023261
9 0.024791 0.025375
10 0.002242 0.002223
11 0.014339 0.011377
12 0.000774 0.000504

Table B.3: Cluster Distribution for Gender

Cluster Distribution of IRMARIT
χ2 = 12,701,506 ; p-value=0.0

Cluster Married Widowed Divorced/Sep Never Married

0 0.244586 0.328982 0.198370 0.132500
1 0.253497 0.159164 0.283686 0.253353
2 0.185621 0.184273 0.138687 0.165837
3 0.103831 0.171052 0.072046 0.117852
4 0.053737 0.018872 0.077934 0.082157
5 0.039010 0.017831 0.042220 0.071229
6 0.038143 0.026106 0.072257 0.039601
7 0.030136 0.014249 0.034944 0.046718
8 0.017581 0.012274 0.037649 0.043694
9 0.022585 0.060003 0.028940 0.020678
10 0.001275 0.001765 0.001162 0.004546
11 0.009576 0.005368 0.011273 0.020803
12 0.000423 0.000061 0.000832 0.001033

Table B.4: Cluster Distribution for Marital Status
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Table B.5: Cluster Distribution for Ethnicity
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Cluster Distribution of EDUHIGHCAT
χ2 = 10,411,603 ; p-value=0.0

Cluster <High School HS Grad Some Coll Coll Grad

0 0.220598 0.221670 0.194191 0.214550
1 0.188000 0.242733 0.274426 0.262611
2 0.160339 0.156388 0.165487 0.199046
3 0.213918 0.127647 0.079564 0.077539
4 0.040498 0.056191 0.074157 0.066958
5 0.028564 0.039638 0.055201 0.053504
6 0.033596 0.046220 0.048438 0.037571
7 0.021607 0.028025 0.039824 0.039838
8 0.022095 0.028376 0.032881 0.023972
9 0.057037 0.038259 0.017245 0.010178
10 0.004020 0.003129 0.002048 0.001027
11 0.008655 0.011200 0.015886 0.012674
12 0.001073 0.000523 0.000652 0.000534

Table B.6: Cluster Distribution for Education

Cluster Distribution of IRWRKSTAT
χ2 = 10,507,306 ; p-value=0.0

Cluster Empl Full Time Empl Part Time Unemployed Other

0 0.195913 0.172710 0.144428 0.256347
1 0.283926 0.247863 0.248617 0.206705
2 0.170883 0.184146 0.143851 0.176556
3 0.070877 0.114371 0.148107 0.154097
4 0.076212 0.068444 0.078365 0.039912
5 0.049781 0.068094 0.049781 0.035784
6 0.048404 0.039498 0.048231 0.034348
7 0.039834 0.039620 0.041360 0.024128
8 0.031952 0.029739 0.041882 0.018380
9 0.015187 0.017969 0.028232 0.042299
10 0.001620 0.002520 0.004743 0.002713
11 0.014789 0.014147 0.021243 0.008238
12 0.000620 0.000880 0.001160 0.000492

Table B.7: Cluster Distribution for Employment Status
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Cluster Distribution of GOVTPROG
χ2 = 2,183,514 ; p-value=0.0

GOVTPROG Yes No
labels

0 0.172752 0.218838
1 0.250681 0.252438
2 0.137081 0.181051
3 0.138652 0.100764
4 0.073883 0.060995
5 0.044585 0.048144
6 0.049652 0.041073
7 0.035905 0.034397
8 0.037486 0.025479
9 0.040105 0.021903
10 0.003915 0.001875
11 0.013936 0.012566
12 0.001369 0.000478

Table B.8: Cluster Distribution for Government Assistance

Cluster Distribution of INCOME
χ2 = 6,250,598 ; p-value=0.0

Cluster <20k 20k-49999 50k-74999 >75k

0 0.183864 0.219218 0.217367 0.212691
1 0.214517 0.227123 0.257783 0.284005
2 0.151944 0.176179 0.178875 0.177703
3 0.171003 0.127580 0.095881 0.070942
4 0.057001 0.060876 0.063345 0.067556
5 0.044010 0.043625 0.047487 0.051898
6 0.043464 0.039838 0.042787 0.044190
7 0.034507 0.030224 0.032901 0.038779
8 0.033132 0.026526 0.028887 0.025583
9 0.048811 0.032260 0.020486 0.011891
10 0.003783 0.002847 0.001418 0.001467
11 0.012775 0.013192 0.012099 0.012816
12 0.001188 0.000513 0.000685 0.000479

Table B.9: Cluster Distribution for Income
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Cluster Distribution of COUTYP4
χ2 = 2,497,920 ; p-value=0.0

Cluster Large Metro Small Metro Nonmetro

0 0.192035 0.220246 0.264282
1 0.246214 0.259700 0.259461
2 0.186398 0.164771 0.140155
3 0.115595 0.097469 0.096105
4 0.066896 0.062511 0.050533
5 0.053806 0.044314 0.029601
6 0.042266 0.043540 0.041774
7 0.033889 0.036756 0.033301
8 0.027056 0.028822 0.027053
9 0.020193 0.025733 0.042956
10 0.002499 0.002055 0.001559
11 0.012688 0.013268 0.012302
12 0.000465 0.000815 0.000917

Table B.10: Cluster Distribution for County Type

Cluster Distribution of AIIND102
χ2 = 164,129 , p-value=0.0

Cluster Amer Ind Area Not Amer Ind Area

0 0.256769 0.210144
1 0.256870 0.252066
2 0.126620 0.173973
3 0.100353 0.107498
4 0.052869 0.063392
5 0.036400 0.047669
6 0.041077 0.042596
7 0.037427 0.034624
8 0.026097 0.027603
9 0.047704 0.024790
10 0.002645 0.002227
11 0.013728 0.012794
12 0.001440 0.000623

Table B.11: Cluster Distribution for Respondent Located in Indian Area
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Top Five χ2 Influencers by Demographic Field

TABLE VALUE CLUSTER OBSERVED EXPECTED DIFF INDCHI2 INFLUENCE rank

SVCFLAG No military service 0 4.484637e+07 4.758901e+07 -2.742643e+06 1.580636e+05 0.038240 5.0
SVCFLAG Military service 0 7.362860e+06 4.620217e+06 2.742643e+06 1.628081e+06 0.393875 1.0
SVCFLAG Military service 2 2.273377e+06 3.800010e+06 -1.526634e+06 6.133169e+05 0.148377 3.0
SVCFLAG Military service 3 7.581186e+05 2.354449e+06 -1.596330e+06 1.082321e+06 0.261842 2.0
SVCFLAG Military service 5 6.082135e+05 1.041713e+06 -4.334991e+05 1.803966e+05 0.043643 4.0
CATAG6 18-25 0 4.054974e+06 7.199927e+06 -3.144953e+06 1.373726e+06 0.061560 4.0
CATAG6 65+ 0 1.787522e+07 1.065251e+07 7.222706e+06 4.897200e+06 0.219456 1.0
CATAG6 65+ 4 9.405211e+05 3.196994e+06 -2.256473e+06 1.592643e+06 0.071370 2.0
CATAG6 18-25 5 3.166174e+06 1.623355e+06 1.542818e+06 1.466277e+06 0.065708 3.0
CATAG6 50-64 6 4.413909e+06 2.655834e+06 1.758075e+06 1.163787e+06 0.052152 5.0
IRSEX Male 2 1.562361e+07 2.072415e+07 -5.100538e+06 1.255323e+06 0.142726 1.0
IRSEX Female 2 2.731715e+07 2.221661e+07 5.100538e+06 1.170993e+06 0.133138 2.0
IRSEX Male 3 9.372546e+06 1.284048e+07 -3.467932e+06 9.366124e+05 0.106490 5.0
IRSEX Male 4 1.041561e+07 7.562129e+06 2.853482e+06 1.076728e+06 0.122421 3.0
IRSEX Female 4 5.253237e+06 8.106718e+06 -2.853482e+06 1.004396e+06 0.114197 4.0
IRMARIT Widowed 0 4.748924e+06 3.042386e+06 1.706539e+06 9.572340e+05 0.075364 2.0
IRMARIT Never Married 0 9.474925e+06 1.507138e+07 -5.596452e+06 2.078130e+06 0.163613 1.0
IRMARIT Never Married 5 5.093503e+06 3.398118e+06 1.695385e+06 8.458593e+05 0.066595 3.0
IRMARIT Divorced/Sep 6 2.473313e+06 1.457354e+06 1.015960e+06 7.082523e+05 0.055761 4.0
IRMARIT Widowed 9 8.661557e+05 3.622234e+05 5.039323e+05 7.010807e+05 0.055197 5.0
NEWRACE2 NonHisp Asian 2 4.104184e+06 2.420087e+06 1.684097e+06 1.171934e+06 0.048591 4.0
NEWRACE2 NonHisp White 3 9.668107e+06 1.693468e+07 -7.266575e+06 3.118045e+06 0.129281 2.0
NEWRACE2 NonHisp Asian 3 4.253250e+06 1.499462e+06 2.753788e+06 5.057378e+06 0.209690 1.0
NEWRACE2 Hispanic 3 7.098416e+06 4.297504e+06 2.800911e+06 1.825502e+06 0.075689 3.0
NEWRACE2 NonHisp Black 4 4.607117e+05 1.862432e+06 -1.401720e+06 1.054975e+06 0.043742 5.0
EDUHIGHCAT < High School 3 6.550820e+06 3.289023e+06 3.261797e+06 3.234796e+06 0.310691 1.0
EDUHIGHCAT Some Coll 3 6.094122e+06 8.226480e+06 -2.132358e+06 5.527214e+05 0.053087 5.0
EDUHIGHCAT Coll Grad 3 6.148957e+06 8.517258e+06 -2.368301e+06 6.585274e+05 0.063249 4.0
EDUHIGHCAT < High School 9 1.746638e+06 7.684262e+05 9.782119e+05 1.245271e+06 0.119604 2.0
EDUHIGHCAT Coll Grad 9 8.071049e+05 1.989918e+06 -1.182813e+06 7.030672e+05 0.067527 3.0
IRWRKSTAT Other 0 2.106192e+07 1.731654e+07 3.745377e+06 8.100838e+05 0.077097 4.0
IRWRKSTAT Empl Full Time 3 8.707680e+06 1.319519e+07 -4.487514e+06 1.526145e+06 0.145246 2.0
IRWRKSTAT Other 3 1.266090e+07 8.824458e+06 3.836443e+06 1.667898e+06 0.158737 1.0
IRWRKSTAT Other 4 3.279233e+06 5.196978e+06 -1.917746e+06 7.076707e+05 0.067350 5.0
IRWRKSTAT Other 9 3.475364e+06 2.061690e+06 1.413674e+06 9.693382e+05 0.092254 3.0
GOVTPROG Yes 0 7.499065e+06 9.149031e+06 -1.649966e+06 2.975603e+05 0.136276 4.0
GOVTPROG Yes 2 5.950583e+06 7.524844e+06 -1.574261e+06 3.293487e+05 0.150834 3.0
GOVTPROG Yes 3 6.018804e+06 4.662320e+06 1.356485e+06 3.946644e+05 0.180747 1.0
GOVTPROG Yes 8 1.627237e+06 1.197349e+06 4.298880e+05 1.543440e+05 0.070686 5.0
GOVTPROG Yes 9 1.740943e+06 1.089274e+06 6.516683e+05 3.898665e+05 0.178550 2.0
INCOME >75k 1 2.740434e+07 2.432865e+07 3.075691e+06 3.888367e+05 0.062208 5.0
INCOME <20k 3 6.734951e+06 4.230081e+06 2.504870e+06 1.483275e+06 0.237301 1.0
INCOME >75k 3 6.845412e+06 1.036364e+07 -3.518232e+06 1.194363e+06 0.191080 2.0
INCOME <20k 9 1.922430e+06 9.882891e+05 9.341409e+05 8.829594e+05 0.141260 3.0
INCOME >75k 9 1.147403e+06 2.421295e+06 -1.273892e+06 6.702203e+05 0.107225 4.0
COUTYP4 Large Metro 0 2.658303e+07 2.917529e+07 -2.592255e+06 2.303246e+05 0.092207 4.0
COUTYP4 Nonmetro 0 9.336549e+06 7.445781e+06 1.890767e+06 4.801379e+05 0.192215 1.0
COUTYP4 Nonmetro 2 4.951408e+06 6.123965e+06 -1.172556e+06 2.245095e+05 0.089879 5.0
COUTYP4 Nonmetro 5 1.045728e+06 1.678788e+06 -6.330598e+05 2.387227e+05 0.095569 3.0
COUTYP4 Nonmetro 9 1.517541e+06 8.864872e+05 6.310541e+05 4.492217e+05 0.179838 2.0
AIIND102 Amer Ind Area 0 8.419815e+05 6.911157e+05 1.508659e+05 3.293300e+04 0.200653 3.0
AIIND102 Amer Ind Area 2 4.152041e+05 5.684250e+05 -1.532209e+05 4.130119e+04 0.251639 2.0
AIIND102 Amer Ind Area 4 1.733655e+05 2.074152e+05 -3.404971e+04 5.589673e+03 0.034057 5.0
AIIND102 Amer Ind Area 5 1.193620e+05 1.558247e+05 -3.646270e+04 8.532208e+03 0.051985 4.0
AIIND102 Amer Ind Area 9 1.564266e+05 8.228353e+04 7.414309e+04 6.680800e+04 0.407046 1.0

Table B.12: Top Five χ2 Influencers by Demographic Field
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