
Iteration, Inequalities, and
Differentiability in Analog
Computers
Manuel Lameiras Campagnolo
Cristopher Moore
José F. Costa

SFI WORKING PAPER: 1999-07-043

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent theviews of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our externalfaculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, orfunded by an SFI grant.©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensuretimely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rightstherein are maintained by the author(s). It is understood that all persons copying this information willadhere to the terms and constraints invoked by each author's copyright. These works may be reposted onlywith the explicit permission of the copyright holder.www.santafe.edu

SANTA FE INSTITUTE

Iteration, Inequalities, and Di�erentiability

in Analog Computers

Manuel Lameiras Campagnolo1;2, Cristopher Moore2, and Jos�e F�elix Costa3

1 Departamento de Matem�atica, Instituto Superior de Agronomia, Lisbon University
of Technology, Tapada da Ajuda, 1399 Lisboa Cx, Portugal mlc@math.isa.utl.pt

2 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
moore@santafe.edu

3 Departamento de Inform�atica, Faculdade de Ciências, Lisbon University, Bloco C5,
Piso 1, Campo Grande, 1700 Lisboa, Portugal fgc@di.fc.ul.pt

Abstract. Shannon's General Purpose Analog Computer (GPAC) is an
elegant model of analog computation in continuous time. In this paper,
we consider whether the set G of GPAC-computable functions is closed
under iteration, that is, whether for any function f(x) 2 G there is a
function F (x; t) 2 G such that F (x; t) = f t(x) for non-negative integers
t. We show that G is not closed under iteration, but a simple extension
of it is. In particular, if we relax the de�nition of the GPAC slightly
to include unique solutions to boundary value problems, or equivalently
if we allow functions xk�(x) that sense inequalities in a di�erentiable
way, the resulting class, which we call G + �k, is closed under iteration.
Furthermore, G + �k includes all primitive recursive functions, and has
the additional closure property that if T (x) is in G+�k, then any function
of x computable by a Turing machine in T (x) time is also.

Key words: Analog computation, recursion theory, iteration, di�erentially algebraic

functions, primitive recursive functions

1 Introduction

There has been a recent resurgence of interest in analog computation, the theory

of computers whose states are continuous rather than discrete (see for instance

[BSS89,Meer93,SS94,Moo98]). However, in most of these models, time is still dis-

crete; just as in classical computation, the machines are updated with each tick

of a clock. If we are to make the states of a computer continuous, it makes sense

to consider making its progress in time continuous too. While a few e�orts have

been made in this direction, studying computation by continuous-time dynami-

cal systems [Moo90,Moo96,Orp97,Orp97a,SF98], no particular set of de�nitions

become widely accepted, and the various models do not seem to be equivalent

to each other. Thus analog computation has not yet experienced the uni�cation

that digital computation did through Turing's work in 1936.

In this paper we go back to the roots of analog computation theory by starting

with Claude Shannon's General Purpose Analog Computer (GPAC). This was

de�ned as a mathematical model of an analog device, the Di�erential Analyser,

the fundamental principles of which were described by Lord Kelvin in 1876

[Tho76]. The Di�erential Analyser was developed at MIT under the supervision

of Vannevar Bush and was indeed built in 1931, and rebuilt, with important

improvements, in 1941. The Di�erential Analyser's input was the rotation of

one or more drive shafts and its output was the rotation of one or more output

shafts. The main units were gear boxes and mechanical friction wheel integrators,

the latter invented by the Italian scientist Tito Gonella in 1825 [Bow96].

Just as polynomial operations are basic to the Blum-Shub-Smale model of

analog computation [BSS89], polynomial di�erential equations are basic to the

GPAC. Shannon [Sha41] showed that the GPAC generates exactly the di�eren-

tially algebraic functions, which are unique solutions of polynomial di�erential

equations. This set of functions includes simple functions like ex and sinx as

well as sums, products, and compositions of these, and solutions to di�eren-

tial equations formed from them such as f 0 = sin f . Pour-El [PE74] made this

proof rigorous by introducing the crucial notion of the domain of generation,

thus showing that the di�erentially algebraic functions are precisely equivalent

to GPAC.

Rubel [Rub93] proposed the Extended Analog Computer (EAC), which com-

putes all functions computed by the GPAC but also produces the solutions of

a broad class of Dirichlet boundary-value problems for partial di�erential equa-

tions. Rubel stresses that the EAC is a conceptual computer and that it is not

known if it can be realized by actual physical, chemical or biological devices.

The gamma function � (x) is computable by the EAC but not by the GPAC,

since it is not di�erentially algebraic [Ost25,Rub89b].

Another extension of the GPAC, the set of R-recursive functions, was pro-

posed by Moore [Moo96]. Here we include a zero-�nding operator analogous

to the minimization operator � of classical recursion theory. In the presence of

a liberal semantics that allows functions to be composed with other functions

even when they are unde�ned, this permits contraction of in�nite computations

into �nite intervals, and renders the arithmetical and analytical hierarchies com-

putable through a series of limit processes similar to those used by Bournez in

[Bou99]. However, such an operator is clearly unphysical, except when the func-

tion in question is smooth enough for zeroes to be found in some reasonable

way.

The �-hierarchy strati�es the class of R-recursive functions according to the

number of nested uses of the zero-�nding operator. Moore calls the lowest level

M0, where � is not used at all, the \primitive R-recursive functions." In this

paper, we will further restrict our de�nition of integration by requiring functions

and their derivatives to be bounded in the interval on which they are de�ned,

and we will show below that the resulting subset G of M0 coincides with the set

of GPAC-computable functions.1

We propose here a new extension of G. We keep the operators of the GPAC

the same | integration and composition | but add piecewise-analytic basis

functions such as �k(x) = xk�(x) where �(x) is the Heaviside step function

�(x) = 1 for x � 0 and �(x) = 0 for x < 0. Allowing these functions can be

thought of as allowing our analog computer to measure inequalities in a (k� 1)-

times di�erentiable way. By adding these to the basis set, we get a class G + �k

for each k. These functions are unique solutions of di�erential equations such

as xy0 = ky if we de�ne two boundary conditions rather than just an initial

condition, which is a slightly weaker de�nition of uniqueness than that used by

Pour-El to de�ne GPAC-computability.

Iteration is a basic operation in recursion theory. If a function f(x) is com-

putable, so is F (x; t) = f t(x), the t'th iterate of f on x. We will ask whether

these analog classes are closed under iteration, in the sense that if f(x) is in the

class, then so is some F (x; t) that equals f t(x) when t is restricted to the natural

numbers. Our main result is that G + �k is closed under iteration for any k > 1,

but G is not.

1 It is erroneously stated in [Moo96] that all of M0 is GPAC-computable; this is false
since M0 contains non-analytic functions like

p
x2 = jxj. Bounding the derivatives

prevents such functions.

We will start by recalling the theory of R-recursive functions [Moo96] and

establishing the equivalence between GPAC and G, the class of primitive R-

recursive functions whose derivatives are bounded on the interval on which they

are de�ned. Then, we relax our notion of uniqueness and show how the functions

�k can be de�ned using boundary value problems. Adding these functions to the

GPAC gives the classes G + �k.

We then de�ne the iteration functional and show that G is not closed under

it. In particular, the iterated exponential function is not in G. In G + �k, on the

other hand, we can build \clock functions" such as those used in [Bra95,Moo96]

to show that G + �k is closed under iteration for any k > 1. It then follows that

G + �k includes all primitive recursive functions. Furthermore, G + �k is closed

under time complexity, in the sense that if T (x) is in G + �k, then so is any

function computable by a Turing machine in T (x) steps. Finally, we end with

some open questions, such as whether G + �k includes the Ackermann function.

2 GPAC and R-recursive functions

The general-purpose analog computer (GPAC) is a general model of a computer

evolving in continuous time. The outputs are generated from the inputs by means

of a dependence de�ned by a �nite directed graph (not necessarily acyclic) where

each node is either an adder, a unit that outputs the sum of its inputs, or an

integrator, a unit with two inputs u and v that outputs the Riemann-Stieltjes

integral
R
u dv. These components are used to form circuits like the one in �gure 1,

which calculates the function sin t.

- - --

- -
�1

t

R
R

Rcos t

sin t

� sin t

Fig. 1. A simple GPAC circuit that calculates sin t. Its initial conditions are sin(0) = 0
and cos(0) = 1. The output w of the integrator unit

R
obeys dw = u dv where u and v

are its upper and lower inputs.

Shannon [Sha41] showed that the class of functions generable in this abstract

model is the set of solutions of a certain class of systems of quasilinear di�erential

equations. Later, Pour-El [PE74] made this de�nition more precise, by requiring

the uniqueness of the solution of the system for all initial values belonging to

a closed set with non-empty interior called the domain of generation of the

initial condition. We give here the general de�nition of a GPAC-computability

for functions of several variables.

De�nition 1 (Shannon, Pour-El). A real-valued function y : Rm ! R of m

independent variables x = (x1; :::; xm) is GPAC-computable on a closed subset

D of Rm if there exists a vector-valued function y(x) = (y1(x); :::; yn(x)) for

some n, and an initial condition y(x0) = y0 where x0 2 D, such that:

1. y(x) = y1(x).

2. y = (y1; :::; yn) is the unique solution on D of a system of partial di�erential

equations of the form

A(x;y)y0 = B(x;y) (1)

satisfying the initial condition y(x0) = y0, where A and B are n � n and

m �m matrices respectively and y0 is the n �m matrix of the derivatives

of y with respect to x. Furthermore, A and B must be linear in 1 and the

variables x1; :::; xm, y1; :::; yn.

3. (x0;y0) has a domain of generation, that is, the solution to (1) remains

unique under suÆciently small perturbations of the initial condition.

We say that a vector-valued function y : Rm ! Rk for k > 1 is GPAC-

computable if each of its components are.

Here y2; : : : ; yn are additional variables representing the computer's internal

states, and y = y1 is its output. Note that the above de�nition implies that if

y(x) is GPAC-computable, then restricting any subset of the variables xi results

in a GPAC-computable function of the remaining variables, since A and B are

then linear in 1 and the remaining variables. In particular, if we restrict all the

variables but one, the resulting function of one variable is GPAC-computable.

We will use this fact for the proof of proposition 12.

The following fundamental result [Sha41,PE74,LR87] establishes, for func-

tions of one variable, a relationship between GPAC-computability and the class

of di�erentially algebraic functions, that is, solutions of polynomial di�erential

equations. We use y(n) to denote the n'th derivative of y.

Proposition 2 (Shannon, Pour-El, Lipshitz, Rubel). Let I and J be closed

intervals of R. If y is GPAC-computable on I then there is a closed subinterval

I 0 � I and a polynomial P (x; y; y0; :::; y(n)) such that P = 0 on I 0. If y(x) is the

unique solution of P (x; y; y0; :::; y(n)) = 0 satisfying a certain initial condition on

J then there is a closed subinterval J 0 � J on which y(x) is GPAC-computable.

Next we recall recursion theory on the reals [Moo96], which is de�ned in

analogy with classical recursion theory. A function h : D � Rm ! Rn is R-

recursive if it can be inductively de�ned from the projections Ui(x) = xi, the

constants 0 and 1, and the following operators.2

{ Composition: if a p-ary function f and functions g1; : : : ; gp of the same arity

are R-recursive, then h(x) = f(g1(x); :::; gp(x)) is R-recursive.

{ Integration: if f and g are R-recursive then the function h satisfying the

equations h(x; 0) = f(x) and @yh(x; y) = g(x; y; h(x; y)) is R-recursive,

de�ned on the largest interval containing 0 on which it is �nite and unique.

{ �-recursion (Zero-�nding): if f is R-recursive, then h(x) = �yf(x; y) =

inffy 2 R j f(x; y) = 0g is R-recursive whenever it is well-de�ned, where the
in�mum is de�ned to �nd the zero of f(x; �) closest to the origin, that is, to
minimize jyj. If both +y and �y satisfy this condition we return the negative
one by convention.

Clearly, this de�nition is intended as a continuous analog of classical recur-

sion theory [Odi89], replacing primitive recursion and zero-�nding on N with

integration and zero-�nding on R.

The class of R-recursive functions is very large. It contains many tradition-

ally uncomputable functions, such as the characteristic functions of sets in the

arithmetical and analytical hierarchies [Moo96,Odi89]. However, we can stratify

this class by counting the number of nested uses of the �-operator: de�ne Mj

as the set of functions de�nable from the constants 0, 1, �1 with composition,

integration, and j or fewer nested uses of �. (We allow �1 as fundamental since

otherwise we would have to de�ne it as �y[y+1]. This way, Z and Q are contained

in M0.) We call this the �-hierarchy.

Unlike the classical case in which one � suÆces, we believe that the contin-

uous �-hierarchy is distinct. For instance, the characteristic function �Q of the

rationals is in M2 but not in M1 [Moo96]. If � is not used at all we get M0, the

\primitive R-recursive functions." M0 contains most common functions such as

x+ y, xy, ex, sinx, the inverses of these when de�ned, and constants such as e

and �. However,M0 also contains some functions with discontinuous derivatives,

such as jxj =
p
x2 and the sawtooth function sin�1(sinx).

To restrict M0 further, and to make it more physically realistic, we require

that functions de�ned by integration only be de�ned on the largest interval

containing 0 on which they and their derivatives are bounded. This corresponds

2 Strictly speaking, the projection and identity functions can be de�ned by integrating
unit vectors.

to the physical requirement of bounded energy in an analog device. We call this

operator bounded integration, and call the resulting class G. To make this last

de�nition more precise, we de�ne G recursively as the smallest class of functions

de�ned on some domain D � Rm ! Rn containing 0, 1, �1 and the projections,

and which is closed under composition and bounded integration. Functions in G
are analytic, since constants and projections are analytic and composition and

bounded integration preserve analyticity.

Next, we establish the equivalence between GPAC and G for functions of sev-

eral variables on their domains. We also notice that those models are equivalent

to the class of dynamical systems of the form y0 = R(x;y) where R is rational,

that is, a quotient of two polynomials. This was shown in the context of control

theory by Wang and Sontag [WS92].

Proposition 3. Let y : D � Rm ! Rn , with D closed and bounded. The

following propositions are equivalent.

1. y is GPAC-computable,

2. y is the unique ow of a dynamical system y0 = R(x;y), where R is a matrix

of rational functions,

3. y belongs to G.

Proof. (1) 2) This is given in the proof of theorem 2 in [PE74].

(2) 3) Both polynomials and the function f(x; y) = x=y are de�nable in G
where the latter is de�ned either for y > 0 or y < 0 [Moo96]. By composition,

these give us any rational function away from its singularities, and y such that

y0 = R(x;y) is de�nable in G by integration.

(3) 1) The projections and the constants 0 and 1 are clearly GPAC-

computable. Since functions in G are de�ned from simpler ones by composition

and integration, we just have to show that GPAC-computability is preserved

under both these operators.

For composition, Shannon [Sha41, theorems IV and VII] showed that if two

functions f and g are GPAC-computable then their composition h = f Æ g is

also. In terms of circuits like those shown in �gures 1 and 2, we simply plug the

outputs of one function into the inputs of another.

For integration, we use the diagram in �gure 2. Here we combine an integrator

and an adder to match the de�nition of integration used in [Moo96]. ut

In the rest of the paper, we will use G interchangeably for the GPAC-

computable functions, the di�erentially algebraic functions, and the subset of

M0 formed by bounded integration. In the next section, we will consider a nat-

ural extension of G.

-
- -
- - - -

-- -
g

x f

R
P

y

h

Fig. 2. A GPAC circuit for the de�nition of integration used in [Moo96], where
h(x; 0) = f(x) and @yh(x; y) = g(x; y; h).

3 Extending GPAC with boundary value problems

3.1 The class �

We will extend G with a set of functions �k(x) = xk�(x), where �(x) is the

Heaviside step function

�(x) =

�
1 if x � 0
0 if x < 0

Each �k(x) can be interpreted as a function which checks inequalities such as

x � 0 in a di�erentiable way, since �k is (k�1)-times di�erentiable. We will show

in this section that allowing those functions is equivalent to relaxing slightly

the de�nition of GPAC by considering a two point boundary value problem for

equation (1), instead of just an initial condition. In this section we will consider

the case where y is a function of one variable and A and B are scalars, so

A(x; y) y0 = B(x; y) where A and B are linear in 1, x, and y.

De�nition 4. The function y belongs to the class � if it is the unique solution

on I = [x1; x2] � R of

(a0 + a1x+ a2y) y
0 = b0 + b1x+ b2y (2)

with boundary values y(x1) = y1 and y(x2) = y2.

For instance, the di�erential equation xy0 = 2y with boundary values y(1) =

1 and y(�1) = 0 has a unique solution on I = [�1; 1], namely y = 0 for x < 0

and y = x2 for x � 0, that is, y = x2�(x). If, instead, the boundary values are

y(1) = y(�1) = 1 then the solution is y = x2 and is in G.
Note that (2) de�nes a rational ow,

y0 =
b0 + b1x+ b2y

a0 + a1x+ a2y
(3)

Such a ow may have singularities (x0; y0), de�ned by

a0 + a1x0 + a2y0 = b0 + b1x0 + b2y0 = 0 (4)

At such a point, y0 is unde�ned and the ow can branch into many di�erent

trajectories. Since the lines a0 + a1x0 + a2y0 = 0 and b0 + b1x0 + b2y0 = 0

typically cross at one point, this singularity is usually unique.3 Thus we can say

that functions in � ful�ll a condition similar to, but somewhat weaker than, the

domain of generation of Pour-El. Note that functions in � are di�erentiable and

continuous on their domains.

Next, we show that y is piecewise GPAC-computable on I :

Proposition 5. Let y be a function in � de�ned on I = [x1; x2] from equa-

tion (2) with boundary values y(x1) = y1 and y(x2) = y2. Let (x0; y0) be the

singularity de�ned above. Then, either y is GPAC-computable on I or there

are two GPAC-computable functions, f1 and f2, such that y can be written

as y(x) = f1(x) if x1 � x � x0 and y(x) = f2(x) if x0 � x � x2, with

f1(x0) = f2(x0) = y0.

Proof. We consider two cases. If x0 62 I or y(x0) 6= y0, then the ow's trajectory

will not pass through the singularity (x0; y0). Then y is de�ned uniquely by the

initial condition y(x1) = y1 and is therefore in G.
Now suppose that x0 2 I and y(x0) = y0. Since the singularity (x0; y0) is

unique, equation (2) with initial condition y(x1) = y1 has a unique and therefore

GPAC-computable solution ~f1 that coincides with y on [x1; x0). Now, since y

is continuous at x0, the limit limx!x�
0

~f1(x) exists and equals y0. Let f1 be an

extension of ~f1 on x0 such that f1(x0) = y0. Then, f1 is de�ned on [x1; x0].

Moreover, since y0(x0) exists and is �nite, the left derivative of f1 at x0 exists

and is �nite too: its value is also y0(x0). Therefore, f1 is the unique solution of

(2) with initial condition y(x1) = y1 on [x1; x0] and is GPAC-computable. The

proof that f2 is GPAC-computable on [x0; x2] is similar. ut

The last results show in particular that each branch of a function y in � is

analytic and, therefore, it can be written as one power series f1(x) =
P

i �
(1)
i (x�

x0)
i on [x1; x0] and another power series f2(x) =

P
i �

(2)
i (x � x0)

i on [x0; x2],

with y0(a) = �
(1)
1 = �

(2)
1 . Consequently, y(x) is continuously di�erentiable.

Let's look closer at the class � and see which functions belong to it. If y

belongs to � then it must satisfy the rational ow in equation (3). If we transform

3 If these lines are parallel, we have a rational ow such as y0 = (x+y)=(x+y+1) and
the solution is in G wherever it is de�ned. If they coincide, then a0 + a1x + a2y =
C(b0 + b1x+ b2y) for constant C, and the solution of y0 = C is trivially in G.

our variables to x � x0 and y � y0 we obtain an equivalent equation where

a0 = b0 = 0 and the singularity is at (0; 0). Functions in � then satisfy an

equation of the form

(a1x+ a2y) y
0 = b1x+ b2y (5)

Consider now the interval [0; �] for small �. We saw that it is possible to write

y(x) =
P

i �ix
i on [0; �] since each branch of y is analytic. Then, equation (5)

turns into

�1 + 2�2x+ ::: =
(b1 + b2�1)x+ b2�2x

2 + :::

(a1 + a2�1)x+ a2�2x2 + :::

on (0; �] (note that y(0) = 0 in the new variables). Taking the limit x ! 0+ of

both sides we get

�1(a1 + a2�1) = b1 + b2�1 (6)

Since �1 = y0(0) exists and is real, the discriminant of (6) must ful�ll r =

(b2 � a1)
2 + 4a2b1 � 0. >From now on we'll just consider the case r > 0.

Our next goal is to show that all functions in � belong, under linear trans-

formations, to a simple class of functions. Formally, we will prove that

Proposition 6. For any function y(x) which solves equation (5) with r = (b2�
a1)

2 + 4a2b1 > 0, there is an invertible linear transformation
�
X
Y

�
= T

�
x
y

�
with

T22 6= 0 such that Y = c�jX j if x � 0 and Y = c+jX j if x > 0, for some

constants c�; c+ 2 R and some > 1.

Proof. Consider the following linear autonomous system in two dimensions,

dz

dt
= Az with z =

�
x

y

�
and A =

�
a1 a2
b1 b2

�
(7)

It is easy to show that the trajectories of z(t) in the (x; y)-plane must solve (5)

when a1x + a2y 6= 0. The shape of the trajectory near the origin depends on

the eigenvectors and eigenvalues of A. Since the discriminant r of equation (6)

is positive by assumption, A has two distinct real eigenvalues 1; 2 = (b2+a1�p
r)=2. These must have the same sign, or all trajectories diverge from the origin

[HK91] so a2b1 < b2a1.

Since A is invertible in non-trivial cases of (5), it can be diagonalized with

some linear transformation T . Thus we can convert (7) to dw
dt = Dw where

w = Tz andD = TAT�1 is the diagonal matrix whose entries are the eigenvalues

1, 2 of A. The solution of this new system is w = (c1e
1t; c2e

2t) for arbitrary

constants c1 and c2. If we write X and Y for w1 and w2 respectively, eliminating

t gives either X = 0 or

Y = c jX j where = 2=1 and c = c2=c
2=1
1 (8)

for each branch of the trajectory coming out of the origin. We can assume that

 > 1 by switching the two coordinates if necessary, and writing X and Y for w2

and w1 instead. Since the two branches must meet in a di�erentiable way, they

are either both vertical or both satisfy (8) for some > 1, possibly with di�erent

constants c = c+; c� on each side. Finally, for the solution y(x) in the original

coordinates to be di�erentiable at x = 0, Y must have a nonzero coeÆcient in

y, i.e. T22 6= 0. This is shown in �gure 3. ut

-

6

x

y

�
�
�
��

�
�
�
��

X=0

���
��

�����

Y=0

�

�

�

�

�

�
a1x+a2y=0� 2X+1Y=0

Fig. 3. The relevant directions of the (x; y)-plane for solutions of equation (5). The
dotted line shows a function of the form discussed in proposition 6 in the neighborhood
of (0; 0).

3.2 The classes G + �k

We have then a class of GPAC-computable functions G and a class � that contains

some functions which don't belong to G. In analogy with oracles, for any function
f we will de�ne the class G+f as the smallest class of functions containing 0, 1,

�1, the projections and f , and which is closed under composition and bounded

integration. We can de�ne G + S for sets of functions S in the same way. In

physical terms, these classes represent the functions computable by a GPAC

with an expanded set of components, namely integrators, adders, and \black

boxes" that compute f .

In this subsection, we discuss the family of classes G+�k, where we adjoin the
function �k(x) = xk�(x). First, we show that this family, with the appropriate

k, contains any function in the class � as de�ned above.

Proposition 7. If y(x) 2 � is of the form de�ned in proposition 6 with exponent

 then y(x) 2 G + �.

Proof. We know from proposition 6 that each branch of any function y(x) in �

must satisfy a pair of equations of the form

F�(x; y) = Y � c�jX j = T21x+ T22y � c�jT11x+ T12yj = 0 (x < 0)
F+(x; y) = Y � c+jX j = T21x+ T22y � c+jT11x+ T12yj = 0 (x � 0)

Next we will de�ne a function F (x) in G + � such that F = F� if x < 0 and

F = F+ if x � 0. Wherever y is de�ned, the sign of X is either the same as that

of x or �x. In the former case, we let

F (x) = T21x+ T22y � c+�(x) + c��(�x)
and in the latter we switch c+ and c�.

Finally, we use the implicit function theorem to show that y can be de�ned

in G + �k. Necessary conditions are ful�lled since F (x; y) is continuously di�er-

entiable and @yF (0; 0) = T22 6= 0. Therefore, F (x; y) = 0 de�nes implicitly a

function y(x) in a neighborhood of 0. On that neighborhood, y(x) is de�nable

in G + �k by integration: y0(x) = �@xF (x; y(x))=@yF (x; y(x)), with the initial

condition (x; y) = (0; 0). ut
The classes G+�k for various k inherit their various degrees of di�erentiability

from �k. Thus G+�k represents the power of a GPAC which can check inequalities

in a (k � 1)-times di�erentiable way:

Proposition 8. Any function in G + �k is (dke � 1)-times di�erentiable.

Proof. Composition and bounded integration preserve j-times di�erentiability

for any j, and �k is (dke � 1)-times di�erentiable. ut
The classes G + �k then form a distinct hierarchy:

Proposition 9. If 1 < j < k, G + �k � G + �j . Moreover, if k � j � 1, this

inclusion is proper.

Proof. The function y = xa satis�es the di�erential equation xy0 = ay and the

initial condition y(1) = 1. If a > 1, its derivative goes to zero at x = 0, so xa

is GPAC-computable for x � 0. Then since �k(x) = �j(x)
a where a = k=j > 1,

�k 2 G + �j so G + �k � G + �j follows by de�nition. If k � j � 1, this inclusion

is proper since anything in G + �k is (dke � 1)-times di�erentiable but �j is not.

ut
In the next section, we will compare G and G + �k and show that G lacks an

important closure property | closure under iteration | which these extensions

G + �k possess.

4 Iteration and primitive recursive functions

For any function f , we de�ne its iterate F (x; t) = f t(x), where f t(x) denotes the

result of t successive applications of f on x (note that f0(x) = x). Iteration is

a fundamental operation in the classical theory of computation, as the following

result makes clear:

Lemma 10. ([Odi89, proposition I.5.9 and remark]) The class of primitive re-

cursive functions is the smallest class of functions that: 1) contains the zero,

successor, and projection functions; 2) is closed under composition; and 3) is

closed under iteration.

In this section, we will prove that G is not closed under iteration, but that

G + �k is closed under iteration for any k > 1. This last result together with the

preceding lemma show that the class of primitive recursive functions is contained

in G + �k. Here we adopt the convention that a function on N is in an analog

class C if some extension of it to R is, i.e. if there is some function ~f 2 C that

matches f on inputs in N.

To prove that G is not closed under iteration, we use a result of di�erential

algebra regarding the iterated exponential function expn(x) de�ned by exp0(x) =

1 and expn(x) = exp(expn�1(x)). The following lemma is a particular case of a

more general theorem of Babakhanian [Bab73, Theorem 2].

Lemma 11. For each n � 0, expn(x) satis�es no non-trivial algebraic di�eren-

tial equation of order less than n.

Then this gives us the following:

Proposition 12. G is not closed under iteration. Speci�cally, there is no GPAC-

computable function F (x; n) of two variables that matches the iterated exponen-

tial expn(x) for n 2 N.

Proof. If such a function F (x; n) is GPAC-computable, it must satisfy a system

of di�erential equations Ay0 = B, where y1 = F , of some �nite degree d. As we

pointed out after the de�nition of GPAC-computability in section 2, if we �x n

the resulting function expn of x has to satisfy a system of degree less than or

equal to d. But lemma 11 says this is impossible for n > d, so by making n large

enough we obtain a contradiction. ut

Now, we show that G + �k is closed under iteration. To build the iteration

function we use a pair of \clock" functions to control the evolution of two \sim-

ulation" variables, similar to the approach in [Bra95,Moo96]. Both simulation

variables have the same value x at t = 0. The �rst variable is iterated during an

unit period while the second remains constant (its derivative is kept at zero by

the corresponding clock function). Then, the �rst variable remains steady dur-

ing the following unit period and the second variable is brought up to match it.

Therefore, at time t = 2 both variables have the same value f(x). This process

is repeated until the desired number of iterations is obtained.

Proposition 13. G + �k is closed under iteration for any k > 1. That is, if f

of arity n belongs to G + �k then there exists a function F of arity n+1 also in

G + �k, such that F (x; t) = f t(x) for t 2 N.

Proof. For simplicity, we will show how to iterate functions of one variable. Our

simulation variables will be y1 and y2, and our clock functions will be �k(sin�t)

and �k(� sin�t). We then have the following system of equations:

j cos(�t=2)jk+1 y01 = ��(y1 � f(y2)) �k(sin�t)
j sin(�t=2)jk+1 y02 = ��(y2 � y1) �k(� sin�t)

(9)

Note that jxjk can de�ned in G + �k as jxjk = �k(x) + �k(�x).
We will prove that y1(2t) = y2(2t) = f t(x) for all integer t � 0. We will

consider the case where k > 1 is an odd integer; for even k the proof is slightly

more complicated, and for non-integer k equation (9) seems to lack a closed-

form solution, although the proof still holds. Suppose our initial conditions are

y1(0) = y2(0) = x. On the interval [0; 1], y02(t) = 0 because �k(� sin�t) = 0.

Therefore, y2 remains constant with value x. The solution for y1 on this interval

is then

y1(t) = f(y2) + cE cos2
k+1

(�t=2)

where E is a �nite expression of the form exp(
P

j �j cos(j�t)) depending only

on k, and c is a constant such that y1(0) = y2(0) = x. Thus y1(1) = f(y2). A

similar argument for y2 on [1; 2] shows that y2(2) = y1(2) = f(x), and so on for

y1 and y2 on subsequent intervals.

To check the di�erentiability of y1 and y2, note that on [0; 1] the derivative

of y1 is then given by

y01(t) = �cE
cos2

k+1

(�t=2) sink(�t)

cosk+1(�t=2)

This can be simpli�ed to

y01(t) = �2k�cE cos2
k+1

�1(�t=2) sink(�t=2):

using the relation sin 2s = 2 sin s cos s. It is then easy to see that at least the

�rst k � 1 right derivatives of y1 vanish at t = 0 and at least the �rst k � 1 left

derivatives vanish at t = 1. Moreover y1 is constant on the interval [1; 2] since

�k(sin�t) = 0, so we conclude that y1 is (k� 1)-times di�erentiable on [0; 2] and

on subsequent intervals. The proof for y2 is similar.

For general k, the proof relies on the local behavior of equation (9) in the

neighborhood of x = 2t and x = 2t + 1 for t 2 N. For instance, as t ! 1 from

below, (9) becomes

� y01 = �2k+1(y1 � f(y2))

to �rst order in � = 1� t. The solution of this is

y1(�) = C�2
k+1

+ f(y2)

for constant C, and y1 rapidly approaches f(y2) no matter where it starts on

the real line. Similarly, y2 rapidly approaches y1 as t! 2, and so on, so for any

integer t > 1, y1(2t) = y2(2t) = f t(x). Thus we have shown that F (x; t) = y1(2t)

can be de�ned in G + �k, so G + �k is closed under iteration. ut

As an example, in �gure 4 we iterate the exponential function, which as we

pointed out in proposition 12 cannot be done in G. Note that this is a numerical

integration of (9) using standard packages, so this system of di�erential equations

actually works in practice.

Using lemma 10 gives the following corollary, again with the convention that

G + �k includes a function on N if it includes some extension of it to R:

Corollary 14. G + �k contains all primitive recursive functions.

Proof. Since G + �k contains the zero function Z(x) = 0, the successor function

S(x) = x + 1, and the projections Un
i (x) = xi, and since it is closed under

composition and iteration, it follows from lemma 10 that G + �k contains all

primitive recursive functions. ut

Furthermore, since for any Turing machine M, the function F (x; t) that

gives the output of M on input x after t steps is primitive recursive, and since

G + �k is closed under composition, we can say that G + � is closed under time

complexity in the following sense:

Proposition 15. If a Turing machine M computes the function h(x) in time

bounded by T (x), with T in G + �k, then h belongs to G + �k.

In fact, it is known that ows in three dimensions, or iterated functions in two,

can simulate arbitrary Turing machines. In two dimensions, these functions can

1 2 3 4 5 6
t

b

a

1
e

e^e

y1,y2

Fig. 4. A numerical integration of the system of equations (9) for iterating the ex-
ponential function. Here k = 2. The values of y1 and y2 at t = 0; 2; 4; 6 are 0, 1, e,
and ee respectively. On the graph below we show (a) the clock functions �2(sin(�t)),
�2(sin(��t)) and (b) the functions j cos(�t=2)j3, j sin(�t=2)j3.

be in�nitely di�erentiable [Moo90], piecewise-linear [Moo90,KCG94], or closed-

form analytic and composed of a �nite number of trigonometric terms [KM99].4

Thus there are explicitly de�nable functions in G + �k, or even G, that can be

used to make proposition 15 constructive.

Since any function computable in primitive recursive time is primitive recur-

sive, proposition 15 alone does not show that G + �k contains any non-primitive

recursive functions on the integers. However, if G+�k contains a function such as

the Ackermann function which grows more quickly than any primitive recursive

function, this proposition shows that G + �k contains many other non-primitive

recursive functions as well.

5 Conclusion and open problems

It was already believed that analog computers like Shannon's GPAC are not as

powerful as Turing machines, since certain functions that are computable in the

sense of recursive analysis (Euler's � , for instance) are not GPAC-computable

[PE74,Rub89a]. However, this argument is based on two non-equivalent de�ni-

tions of computability for real functions, one being related to e�ective conver-

gence of rational sequences [Grz57,PER89], and the other being GPAC-computability.

Here we have given a clearer answer to this question by exploring the property

of closure under iteration.

We have shown that G + �k includes all primitive recursive functions. One

can ask if it includes non-primitive recursive functions such as the Ackermann

function. It is believed, but not known [Hay96], that all di�erentially algebraic

functions are bounded by some elementary function, i.e. expn(x) for some n,

whenever they are de�ned for all x > 0. To match this conjecture that functions

in G have elementary upper bounds, we suggest the following:

Conjecture 16. Functions f(x) in G+�k have primitive recursive upper bounds

whenever they are de�ned for all x > 0.

We might try proving this conjecture by using numerical integration; for in-

stance, GPAC-computable functions can be approximated by recursive functions.

However, strictly speaking this approximation only works when a bound on the

derivatives is known a priori [VSD86] or on arbitrarily small domains [Rub89a].

If this conjecture is false, then proposition 15 shows that G + �k contains a wide

variety of non-primitive recursive functions.

4 In [KM99] a simulation in one dimension is achieved, but at the cost of an exponential
slowdown.

As we saw, most commonly used functions in mathematics are generable by

a GPAC. However, this is not the case for functions like Euler's � , Riemann's

� and solutions to the Dirichlet problem on a disk [PE74,Rub88]. It is known

that if the GPAC is extended with a restricted limit operator then Euler's � and

Riemann's � functions become computable [Rub93] and, therefore, G is strictly

included in G + lim. As we saw, G + �k is larger than G. It would be interesting

to compare G + �k + lim with G + �k or G + lim.

Acknowledgements. C.M. wishes to thank Olivier Bournez for pointing out a

number of problems with the de�nition of integration in [Moo96], Bruce Litow,

Ariel Scolnicov, John Tromp, and Eduardo Sontag for helpful conversations,

and Molly Rose and Spootie the Cat for their support. M.L.C. thanks Eve-

lyne Hubert for some remarks concerning real power series solutions of alge-

braic di�erential equations. This work was partially supported by FCT PRAXIS

XXI/BD/18304/98, FLAD 754/98, JNICT COMBINA PBIC/C/TIT/2527/95.

References

[Bab73] A. Babakhanian. Exponentials in di�erentially algebraic extension �elds. Duke
Math. J., 40:455{458, 1973.

[BSS89] L. Blum, M. Shub, and S. Smale. On a theory of computation and complex-
ity over the real numbers: NP-completeness, recursive functions and universal
machines. Bull. Amer. Math. Soc. 21:1{46, 1989.

[Bou99] O. Bournez. Achilles and the tortoise climbing up the hyper-arithmetical
hierarchy. Theoretical Computer Science, 210(1):21{71, 1999.

[Bow96] M.D. Bowles. U. S. technological enthusiasm and the British technological
skepticism in the age of the analog brain. IEEE Annals of the History of

Computing, 18(4):5{15, 1996.
[Bra95] M. S. Branicky. Universal computation and other capabilities of hybrid and

continuous dynamical systems. Theoretical Computer Science, 138(1), 1995.
[Grz57] A. Grzegorczyk. On the de�nition of computable real continuous functions.

Fund. Math., 44:61{71, 1957.
[HK91] J. Hale and H. Ko�cak. Dynamics and Bifurcations. Springer-Verlag, 1991.
[Hay96] W. K. Hayman. The growth of solutions of algebraic di�erential equations.

Rend. Mat. Acc. Lincei s.9, v. 7: 67-73, 1996.
[KCG94] P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional

dynamical systems. Theoretical Computer Science, 132:113{128, 1994.
[KM99] P. Koiran and C. Moore. Closed-form analytic maps in one or two dimensions

can simulate Turing machines. Theoretical Computer Science, 210:217{223,
1999.

[LR87] L. Lipshitz and L. A. Rubel. A di�erentially algebraic replacement theorem,
and analog computation. Proceedings of the A.M.S., 99(2):367{372, 1987.

[Meer93] K. Meer. Real number models under various sets of operations. Journal of

Complexity 9:366{372, 1993.
[Moo90] C. Moore. Unpredictability and undecidability in dynamical systems. Physical

Review Letters, 64:2354{2357, 1990.

[Moo96] C. Moore. Recursion theory on the reals and continuous-time computation.
Theoretical Computer Science, 162:23{44, 1996.

[Moo98] C. Moore. Dynamical recognizers: real-time language recognition by analog
computers. Theoretical Computer Science 201:99-136, 1998.

[Odi89] P. Odifreddi. Classical Recursion Theory. Elsevier, 1989.
[Orp97] P. Orponen. A survey of continuous-time computation theory. Advances in

Algorithms, Languages, and Complexity (D.-Z. Du and K.-I Ko, Eds.), 209-224.
Kluwer Academic Publishers, Dordrecht, 1997.

[Orp97a] P. Orponen. On the computational power of continuous time neural networks.
Proc. SOFSEM'97, the 24th Seminar on Current Trends in Theory and Practice
of Informatics, 86-103. Lecture Notes in Computer Science, Springer-Verlag,
1997.

[Ost25] A. Ostrowski. Zum H�olderschen satz �uber � (x). Math. Annalen, 94:248{251,
1925.

[PE74] M. B. Pour-El. Abtract computability and its relation to the general purpose
analog computer. Transactions of A.M.S., 199:1{28, 1974.

[PER89] M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics.
Springer-Verlag, 1989.

[Rub88] L. A. Rubel. Some mathematical limitations of the general-purpose analog
computer. Advances in Applied Mathematics, 9:22{34, 1988.

[Rub89a] L. A. Rubel. Digital simulation of analog computation and Church's thesis.
The Journal of Symbolic Logic, 54(3):1011{1017, 1989.

[Rub89b] L. A. Rubel. A survey of transcendentally transcendental functions. Amer.

Math. Monthly, 96:777{788, 1989.
[Rub93] L. A. Rubel. The extended analog computer. Advances in Applied Mathemat-

ics, 14:39{50, 1993.
[Sha41] C. Shannon. Mathematical theory of the di�erential analyser. J. Math. Phys.

MIT, 20:337{354, 1941.
[SS94] H. Siegelmann and E. D. Sontag. Analog computation via neural networks.

Theoretical Computer Science 131:331{360, 1994.
[SF98] H. T. Siegelmann and S. Fishman. Analog Computation with Dynamical Sys-

tems. Physica D 120:214{235, 1998.
[Tho76] W. Thomson. On an instrument for calculating the integral of the product of

two given functions. Proc. Royal Society of London, 24:266{268, 1876.
[VSD86] A. Vergis, K. Steiglitz, and B. Dickinson. The complexity of analog compu-

tation. Mathematics and Computers in Simulation, 28:91{113, 1986.
[WS92] Y. Wang and E. D. Sontag, Algebraic di�erential equations and rational con-

trol systems. SIAM J. Control and Opt. 30:1126-1149, 1992.

