

Remedial Planning Activities at Selected Uncontrolled in 0 0 Hazardous Waste Sites-Zone II

Environmental Protection Agency Hazardous Site Control Division Contract No. 68-01-7251

86250

FIELDWORK DESIGN INVESTIGATION Volume 2

> ARROWHEAD REFINERY SITE Hermantown, Minnesota

> > EPA WA 129-5NH8

April 30, 1990

Black & Veatch ICF PRC Ecology and Environment

Appendix A SUMMARY OF FIELDWORK

:

.*

GLT932/007.50-11

/

CONTENTS

Volume 2

Appendix

A

Summary of Fieldwork Technical Memorandum 1—Seismic Refraction Survey Attachment A-Time-Distance Plots Technical Memorandum 2-Existing Well Evaluation and In Situ Hydraulic Conductivity Testing Attachment A-Calculation of In Situ Hydraulic Conductivities Technical Memorandum 3-Monitoring Well and **Piezometer Installation** Attachment A-Boring Logs Attachment B-Well Installation Information Attachment C—Well Development Records Technical Memorandum 4—Well Elevation Survey Technical Memorandum 5-Borehole Gamma Logging and Lithologic Correlations Attachment A-Boring Logs Technical Memorandum 6-Soil and Sediment Sampling (Step I) Technical Memorandum 7—Groundwater and Residential Well Sampling (Step I) Technical Memorandum 8—Variable Head Testing Attachment A-Data Plots Technical Memorandum 9—Pump Test Issue in Process Area Technical Memorandum 10—Groundwater Sampling (Step II) Attachment A-Sample Matrix Table for Groundwater Samples Technical Memorandum 11—Subsurface Soil Sampling (Step II) Attachment A-Boring Logs Technical Memorandum 12---Sludge Sampling Attachment A-Sample Matrix for Sludge Samples

- B Analytical Data and Quality Assurance/Quality Control Evaluation of Laboratory Data
- C Hydrogeologic Investigation

GLT978/006.51

FIELDWORK DESIGN INVESTIGATION Volume 2

ARROWHEAD REFINERY SITE Hermantown, Minnesota

EPA WA 129-5NH8

April 30, 1990

.

GLT932/091.51

CHEM HILL

TECHNICAL MEMORANDUM NO. 1

TO:	Fred Bartman/U.S. EPA Remedial Project Manager
FROM:	Randy Videkovich/CH2M HILL Project Manager
PREPARED BY:	Don Johnson
DATE:	May 26, 1987
RE:	Seismic Refraction Survey
PROJECT:	Arrowhead Refinery Fieldwork Design Investigation W68800.FP

INTRODUCTION

A seismic refraction survey was performed at the Arrowhead Refinery site from May 3 to 6, 1987. Twelve spreads were surveyed along the five traverses shown in Figure TM1-1. The survey was performed by Don Johnson and Jewelle Imada of CH2M HILL, assisted by Jerry McLane of PRC.

The survey was performed to determine depth to bedrock at various locations around the site. The information was required to establish if there are any bedrock topographic features that may influence the movement of groundwater from the site. Bedrock valleys may provide preferential pathways for the movement of groundwater from the site. Bedrock ridges may block or divert groundwater movement. The seismic data supplemented existing bedrock depth information.

SUMMARY OF RESULTS

Bedrock depths were estimated to range from 25 to 60 feet below ground surface, the greatest depths being in the process area and at the southern end of the wastewater ditch. A contour map of the bedrock surface was made using the limited survey data.

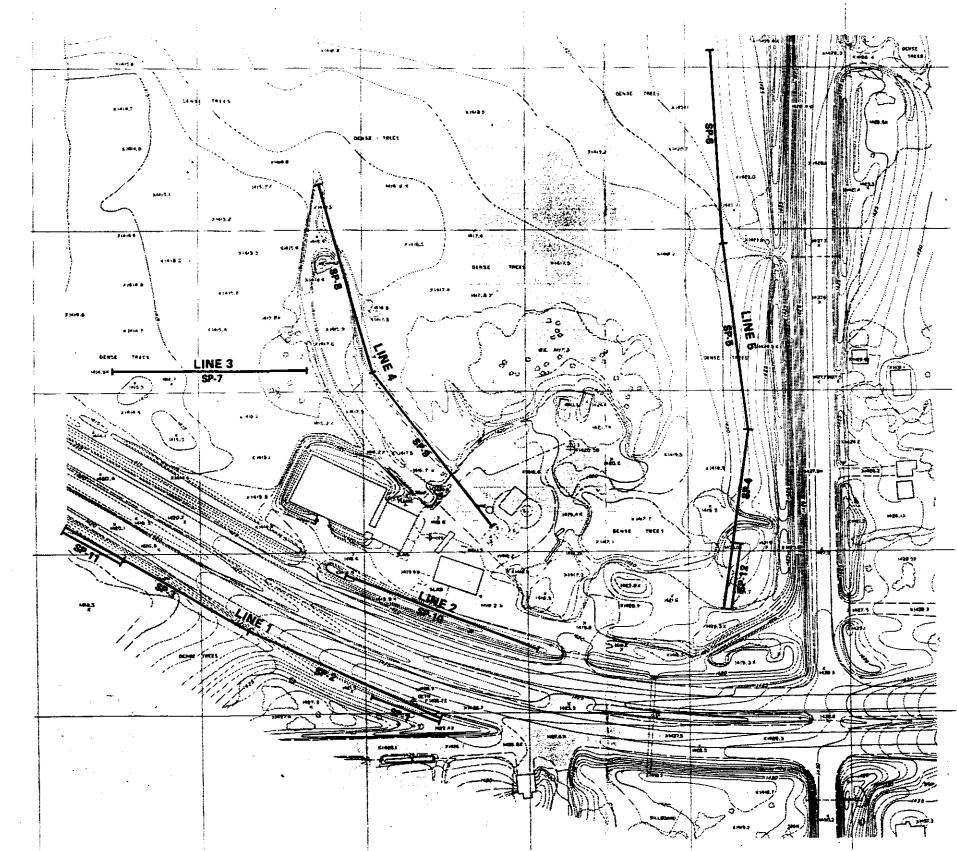
The nature of the interpreted bedrock is unknown. It may be extremely hard packed material, a boulder zone above the bedrock surface, or the base of weathered bedrock. In any case, the data indicate changes in depth of the bedrock surface.

High background noise from the highway and air traffic was occasionally a problem. However, waiting for breaks in the traffic and the use of electronic filters on the data minimized the problem. The shotgun shell seismic sources were adequate most of the time, but were sometimes inadequate for the off-end shots on the 300-foot spreads. TECHNICAL MEMORANDUM NO. 1 Page 2 May 26, 1987 W68800.FP

Spread 4 was unusable because of unrecogniz-able bedrock arrivals, and Spread 3 was unusable because of unreconcilable differences with the detail spread run in the same area.

PROCEDURES

The seismic refraction method consists of measuring the time required for acoustic compressional waves to travel between an impulse source on or near the surface and a number of receivers at known distances from the source. The energy sources used for this survey were shotgun shells. The arrival time of interest is the time of the first arriving wave at each sensor. The raw data consist of travel times and distances which are processed to determine the subsurface layer thicknesses and velocities.


THEORY OF OPERATION

In general, the first arriving wave can be attributed to either a direct wave or a critically refracted wave (Figure TM1-2). The direct wave travels through the near-surface layer along the shortest path between the source and receiver; the critically refracted wave travels along layer boundaries where the lower layer has an appreciably higher wave velocity than the upper layer. The type of wave that arrives first is determined by the subsurface wave velocity distribution and the source-receiver spacing.

For subsurface materials that can be represented by a sequence of horizontal layers whose wave velocity increases appreciably with depth, the first arrival for small source-receiver spacings will be a direct wave through the uppermost layer. As the source-receiver spacing is increased, the first arrival will become a critically refracted wave from the boundary of the first and second layers, with an observed apparent wave velocity equal to the wave velocity of the second layer. For greater spacings, the first arrival will be a critically refracted wave from deeper layer boundaries and the observed apparent velocity will be that of the deeper, high-velocity layers.

Each spread surveyed at the Arrowhead Refinery site consisted of 12 geophones set in a straight line. Initially, a 30-foot spacing was used to separate the geophones, but after the first day, the two geophones at each end of the spread were separated by 15 feet with all others separated by 30 feet. This modifica-tion allowed for better estimation of near-surface velocities. Additional spreads were run using a 10-foot geophone separation. These spreads provided detailed information where the daily review of data indicated additional information was needed to resolve questionable data.

The seismic source used at the site was a 12-gauge black powder blank. Each shell was inserted into a plastic sleeve and detonated in a shothole about 2 feet beneath ground surface using a Betsie downhole seismic tool. A steel pry bar was used to

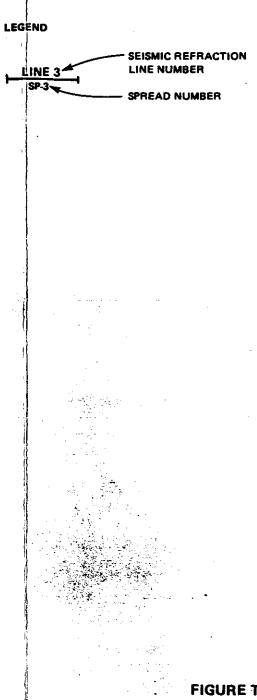
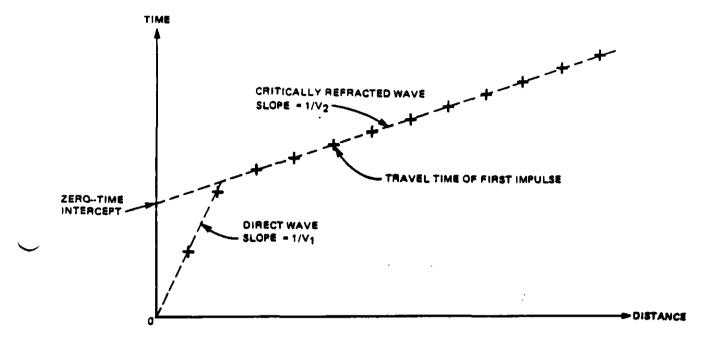
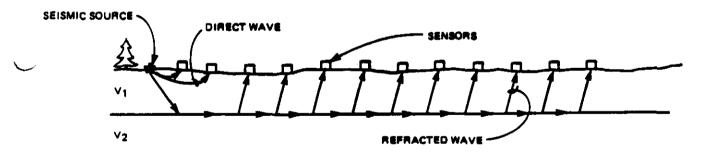




FIGURE TM 1-1 SEISMIC SURVEY SPREAD LOCATIONS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

V1 - VELOCITY IN LAYER 1 V2 - VELOCITY IN LAYER 2

 $v_2 > v_1$

FIGURE TM 1-2 SCHEMATIC SEISMIC REFRACTION SURVEY ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION TECHNICAL MEMORANDUM NO. 1 Page 3 May 26, 1987 W68800.FP

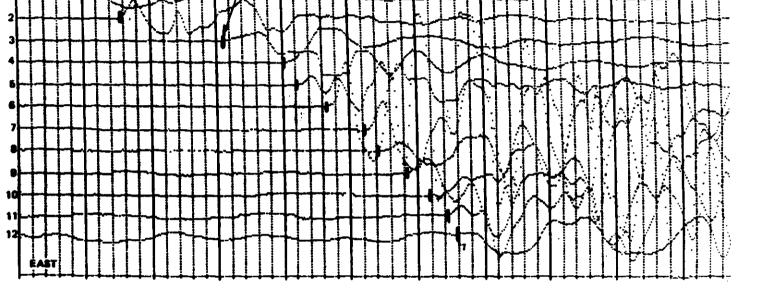
make the shotholes. The blanks were detonated by striking the end of the Betsie downhole tool with a hammer. An impact switch taped to the hammer triggered the seismograph simultaneously with the detonation of the charge.

The shots were performed at each end of each spread, one-half to one spread length beyond each end of each spread (this varied depending on access), and in the middle of each spread. The partially redundant data provided by the multiple shots were required to help pick the first arrival times in noisy data. Additionally, the off-end shots allowed the interpreter to pick more accurate zero-time intercepts (see Figure TM1-2), which were needed to interpret the data.

The data from each shot were displayed on the seismograph's CRT screen. The operator could then determine if the record was adequate to pick the arrival times. When necessary, data from additional shots in the same shothole were added to the existing data stored in the seismograph's memory. This procedure is called stacking, and results in the enhancement of the coherent signal and the partial reduction of the random noise. Once the data on the screen were considered acceptable, a permanent paper copy was made (Figure TM1-3).

INTERPRETATION

Once the data were plotted as time-distance plots (Attachment A), the data were used to estimate layer thicknesses and velocities. Two levels of interpretation were performed.


The simpler, less time consuming method, was performed in the field using procedures described by B. B. Redpath in "Technical Report E-73-4, Seismic Refraction Exploration for Engineering Site Investigations." It was used to estimate bedrock depths only at the end of each spread and at the center shot point. The following steps were performed:

- o First arrival times were picked and plotted on time-distance plots.
- o Layer velocities were estimated by plotting differences in arrival times (Figure TM1-4).
- Layer thicknesses were estimated using either two- or three-layer interpretation equations (Figure TM1-5), assuming horizontal layers. The three-layer interpretation was performed by a com-puter program published by the Bison Corporation.

This method provided quick results on a daily basis and was used to determine if the results were consistent with known subsurface conditions. The estimated velocities also provided a basis for evaluating the velocities calculated in the second method of interpretation.

FIGURE TM 1-3 TYPICAL SEISMIC RECORD ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

SPREAD 10 LINE 1 SHOT IS 10' WEST OF GEOPHONE NO. 1 15' BETWEEN GEOPHONES 1-2 AND 11-12 30' BETWEEN ALL OTHERS

MILLISEC.

30

20

FIRST ARRIVALS

10

0

DECTHONE NO.

WEST

(

40

50

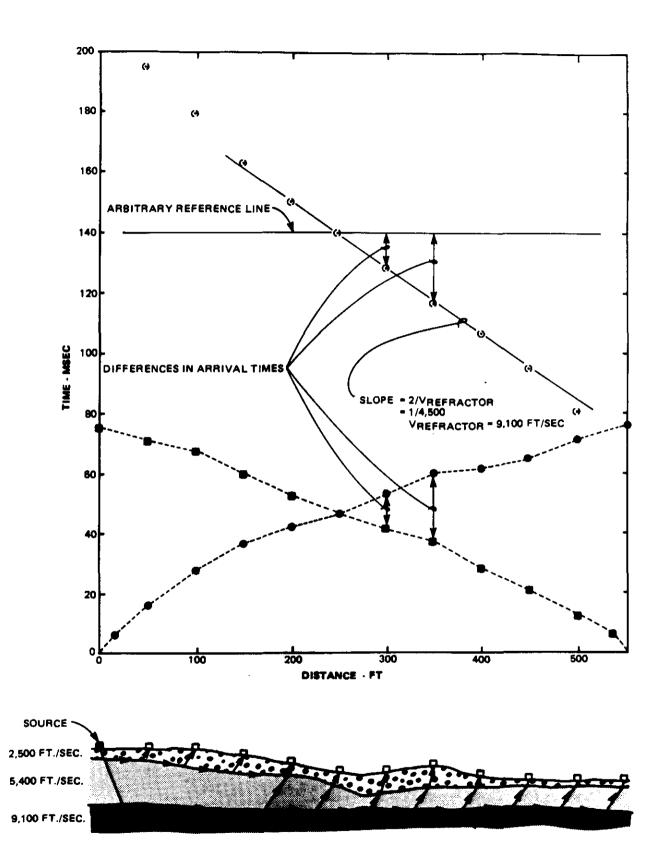


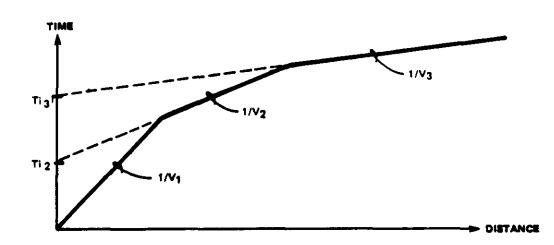
FIGURE TM 1-4 METHOD OF DETERMINING VELOCITIES ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

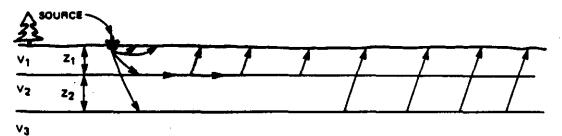
(ADAPTED FROM REDPATH, B.B., 1973)

$$Z_{1} = \frac{T_{12}V_{1}}{2 \cos s} \approx \frac{\overline{P}_{2}V_{1}}{2}$$
$$Z_{2} = \left[\frac{T_{13} - T_{12}}{2 \cos s} \left(\frac{\cos \beta}{\cos s}\right)\right] V_{2} \approx \left[\frac{T_{13} - T_{12}}{2}\right] V_{2}$$

WHERE:

Ti2, Ti3 ARE INTERCEPT TIMES


V1, V2, V3 ARE LAYER VELOCITIES


$$\mathbf{e} = \operatorname{Sin}^{-1} \left(\frac{\operatorname{V}_1}{\operatorname{V}_2} \right); \quad \beta = \operatorname{Sin}^{-1} \quad \left(\frac{\operatorname{V}_1}{\operatorname{V}_3} \right); \quad \delta = \operatorname{Sin}^{-1} \quad \left(\frac{\operatorname{V}_2}{\operatorname{V}_3} \right)$$

COS , COS β AND COS 3 RANGE TYPICALLY BETWEEN 0.8 AND 1.0

FOR THE FIELD INTERPRETATION, THE APPROXIMATE EQUATIONS WERE USED, WHICH ASSUMED ALL COSINE TERMS WERE EQUAL TO 1.0.

÷

 $v_1 < v_2 < v_3$

FIGURE TM 1-5 SEISMIC INTERPRETATION EQUATIONS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

TECHNICAL MEMORANDUM NO. 1 Page 4 May 26, 1987 W68800.FP

The second method of interpretation was performed using a computer method developed for the U.S. Bureau of Mines and published in the USBM Report of Investigations 7595. The program automatically performs weathering and elevation corrections, calculates the depth to a refracting interface, and calculates the time required for an acoustic wave to travel from the shot point to the receiver from the calculated interface. This travel time is then compared to the observed travel time and the interface is adjusted up or down until the calculated travel time best agrees with the observed travel time. As with any computer program, a good deal of discretion must be exercised by the geo-physicist to ensure that the velocities and depths to interfaces make physical and geological sense.

The subsurface model is first approximated using the delay-time method and the model is further refined using the raypath-tracing analysis. The raypath is the actual path of wavefront propagation detected at each geophone. The program uses the raypath technique to test the assumed model, modify the portions of the model that have unacceptable error, and retest the model. The iterative process continues until errors are minimized.

The results of the computer interpretation are studied and if problem areas exist in the interpretation, then the interpreter modifies the input data. The assign-ment of each arrival time to a particular layer often needs to be changed, especially near the breaks in the time-distance curves. Often the first arrival times are adjusted, as the picked times are uncertain in noisy data. When an insufficient number of arrival times are assigned to a particular layer, then the interpreter must declare a velocity for that layer. Several computer runs are required to obtain a reasonable interpretation. This method determines the depths to each layer beneath each geophone and shot point. In this report, only the depths beneath the end and middle shot points were used. The depths calculated at other locations were considered less reliable.

RESULTS

SUMMARY

Three layers were identified from the seismic data based on velocity interpretations. The first layer is the upper layer. The calculated velocities for this layer ranged from 600 to 1,800 feet per second (ft/s). This is typical of unsaturated soils and corresponds to unsaturated fill and undisturbed soil at the site. The second layer is characterized by velocities ranging from 5,000 to 7,500 ft/s, which is typical of saturated, compacted soils. This corresponds to the saturated sediment deposits identified in the boring logs. The seismic data cannot be used to distinguish between soil types. The third layer has estimated velocities between 10,000 and 30,000 ft/s and corresponds to bedrock. The interpreted bedrock surface is shown in Figure TM1-6. It indicates a bedrock valley with a northwest-southeast axis. The greatest depths to bedrock were found in the process area and near southern end of the wastewater ditch, where bedrock depths greater than 50 feet were estimated.

SEISMIC LINE 1

Seismic Line 1 was run along the south side of U.S. 53. The line consists of spreads 1, 2, 3, and 11. Spread 1 was run using a 10-foot geophone spacing to provide information about the shallow layers and also to make familiarization with the equipment easier. Spreads 2 and 3 were run with 30-foot geophone spacings. Spread 11 was run to provide detailed data after the preliminary interpretation estimated depths to bedrock inconsistent (too shallow) with information from boring MW-10. All data collected along Line 1 were noisy because of the traffic along U.S. 53. To the extent possible, shots were set off only during gaps in traffic. Line 1 was also collected on a Sunday, in hopes that traffic would be at a minimum.

The data from Spread 11 was inconsistent with that from Spread 3 and therefore, Spread 3 was considered unusable. Arrival times for Spread 3 were less than those determined for Spread 11 even though shot points were farther away. This is a physical impossibility, and may be due to an improper seismograph setting. Spread 11 was selected as being correct because the first arrivals were easier to pick, the interpreted depths are more consistent with the minimum depth to bedrock at MW-10.

The interpreted results of Line 1 are shown in Figure TM1-7. Bedrock averages between 25 and 35 feet below the ground surface. There is no interpreted depth beneath the eastern end of Spread 11 because of no observed bedrock refractions from that end of the spread. The bedrock velocity at Spread 11 is based on few points and the computer estimated velocity is probably not reliable. Setting it to a velocity consistent with Spreads 1 and 2 does not significantly affect the interpreted depth.

LINE 2

Line 2 consists of a single spread (Spread 10) run along the north side of U.S. 53.

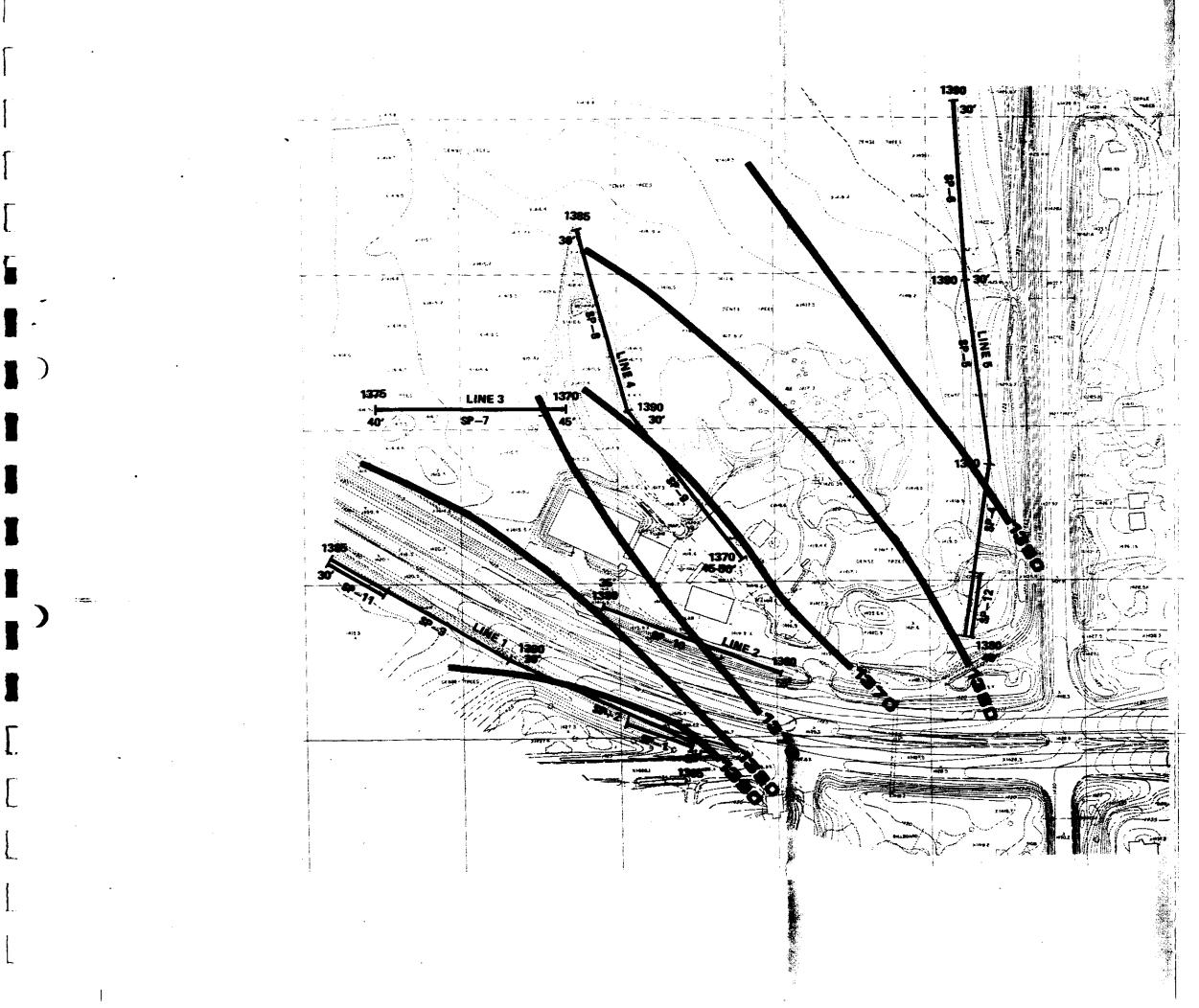
The interpreted bedrock surface is 35 feet beneath the western end of the line and increases to a depth of up to 55 feet beneath the eastern end (see Figure TM1-7). These depths were calculated using a second layer velocity of 7,200 ft/s. If a lower velocity is used, such as 5,500 ft/s to be more consistent with Line 1, the depth beneath the western end would remain the same and the depth at the eastern end would become about 45 feet.

TECHNICAL MEMORANDUM NO. 1 Page 6 May 26, 1987 W68800.FP

The geophones and shots were in the edge of the ditch water and higher upper layer velocities were expected. The velocity of sound in water, which would be the minimum expected velocity, is approximately 4,500 ft/s. Observed velocities lower than this cannot be readily explained, but the effect on the interpretation is not more than a couple of feet.

LINE 3

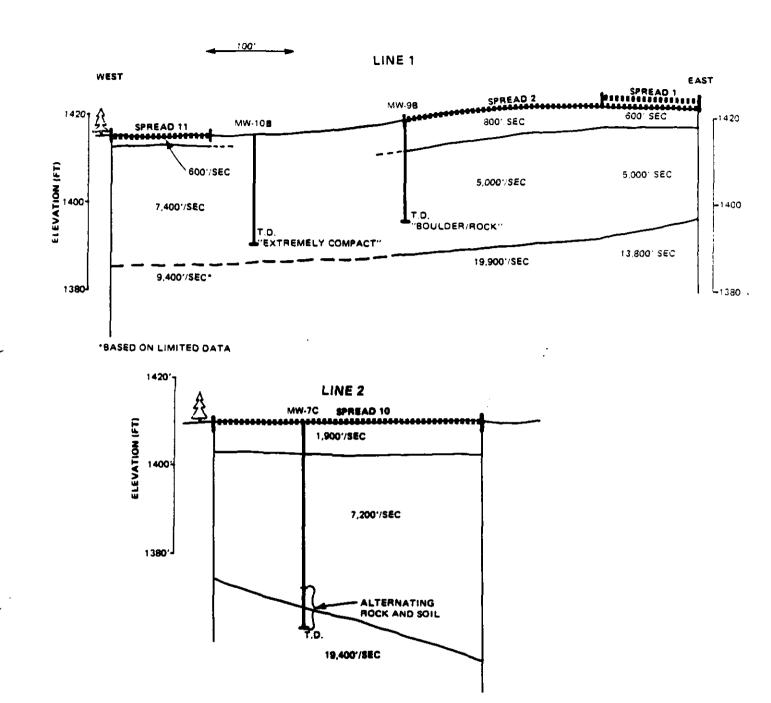
Line 3 is a single spread (Spread 7) that was run east-west. The east end of the line is at MW-2, which penetrated bedrock at a depth of 41 feet. The shot off the east end could not be performed 200 feet off the end as planned, because of the sludge lagoon. It was shot 85 feet off the end instead. The data from that shot, however, could not be used because the first arrival times were inconsistently early, when compared to the other data. The second layer velocity was set at 6,500 ft/s, because the computer calculated ones were unrealistically high (nearly 10,000 ft/s).


Data from Line 3 was very noisy and hard to use and a higher uncertainty may be associated with this line than with the others. Although it appeared that the geophones and the shots were all in saturated soils (peat bog), there is an apparent upper layer velocity less than that of water. The reason for this is unknown, but the interpreted bedrock depth is not affected by more than a couple of feet. Bedrock is estimated to be 30 to 35 feet below the western end and about 45 feet below the eastern end (Figure TM1-8). (Bedrock was encountered at a 41-foot depth at MW-2, at the eastern end.) The interpreted depth of bedrock at the center of the spread is 30 feet.

LINE 4

Line 4 consists of Spreads 8 and 9 and was run nearly north-south along the track between the wastewater ditch and the sludge lagoon. The southern end of Spread 9 ended up in the process area, where hard ground conditions required moving the end shot to between the second and third geophone.

A reading above background from a photo-ionization detector was noted in the shothole at the south end of Spread 9, in the process area. Clean water was added to the hole before shooting to minimize risk of fire and to drive any from the hole. No incident occurred when the shot was detonated.


The estimated bedrock depths range from about 25 feet at the north end of Spread 8 to between 45 and 60 feet at the south end of Spread 9 (Figure TM1-8). These depths are consistent with boring information. The north end of Spread 9 is at MW-12 which was advanced only 15 feet and did not hit bedrock. MW-5 at the southern end of Spread 9 was advanced 50 feet and did not encounter bedrock.

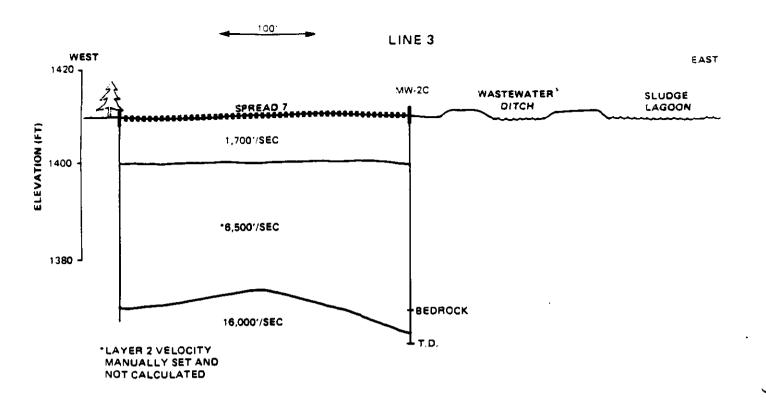

NOTE: ELEVATIONS ROUNDED TO NEAREST 5 FEET.

FIGURE TM 1-6 BEDROCK ELEVATIONS BASED ON SEISMIC REFRACTION SURVEY RESULTS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

FIGURE TM 1-7 INTERPRETED CROSS SECTIONS AT LINE 1 AND 2 ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

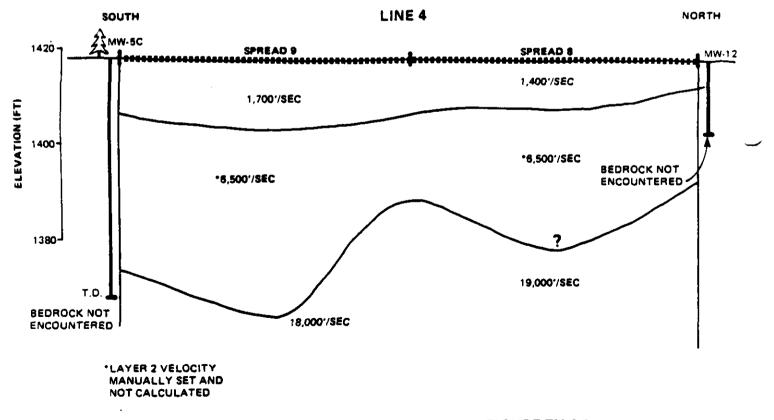
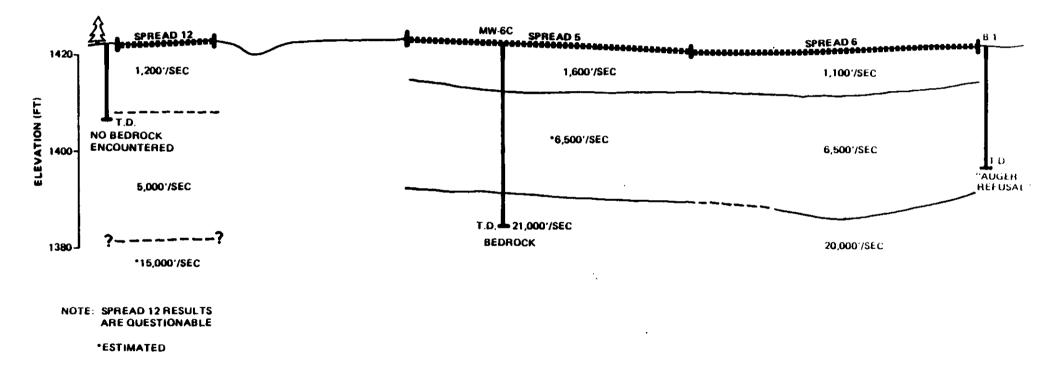


FIGURE TM 1-8 INTERPRETED CROSS SECTION AT LINES 3 AND 4 ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

TECHNICAL MEMORANDUM NO. 1 Page 7 May 26, 1987 W68800.FP

The bedrock surface shown in Figure TM1-8 is the surface generated by the seismic interpretation program. It is based on relatively few data points, and for that reason is probably more irregular than in reality. The surface was smoothed for contouring purposes.

The shot located 200 feet off the south end of Spread 8 was not usable because of high noise and weak signals. The velocity for layer 2 beneath Spread 8 was manually set to 6,500 ft/s because insufficient data points were available for the computer to determine the velocity. Layer 2 velocity beneath Spread 9 was calculated to be 6,200 ft/s, but was manually set to 6,500 ft/s to be consistent with Spread 8.


LINE 5

Spreads 4, 5, and 6 were run north-south to make up Line 5. Spread 12, using 10-foot geophone spacings, was later run at the south end of Spread 4 to provide additional information where the original data were confusing.

Bedrock arrivals were not identified in either Spread 4 or Spread 12. The records were dominated by arrivals from the second layer (5,000 ft/s). Based on Spread 12 data, which is of higher quality than Spread 4 data, bedrock is at least 40 feet deep at the south end of Line 5 (Figure TM1-9). This estimate is based on the assumption that the spread was too short to see bedrock arrivals. If there were bedrock arrivals that were not identified in the data, then the estimated bedrock depth would be less.

Bedrock depths beneath Spreads 5 and 6 are estimated to be between 30 and 35 feet below the surface. The calculated bedrock depth at the southern end of Spread 6 is inconsistent with the results from Spread 5 and the remainder of Spread 6 and was not used. Bedrock velocities are somewhat higher beneath Line 5 than elsewhere in the survey area. At Line 5, the estimated velocities are greater than 20,000 ft/s. Elsewhere they were between 15,000 and 17,000 ft/s. The higher velocities may indicate less weathering or fracturing, or a different rock type.

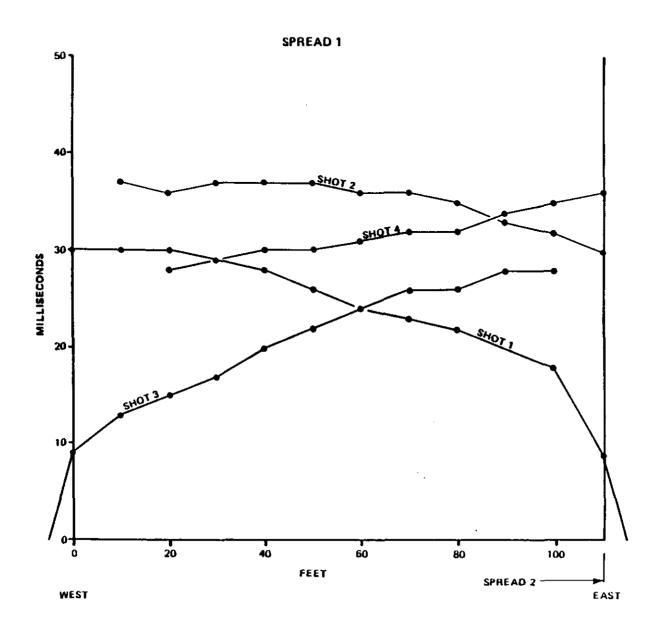
GLT932/008.51

LINE 5

FIGURE TM 1-9 INTERPRETED CROSS SECTION AT LINE 5 ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

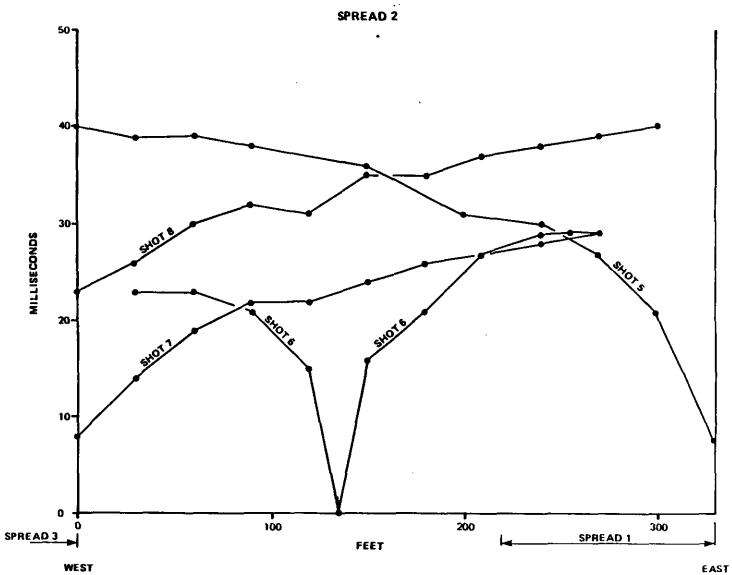
(

TM 1--SEISMIC REFRACTION SURVEY

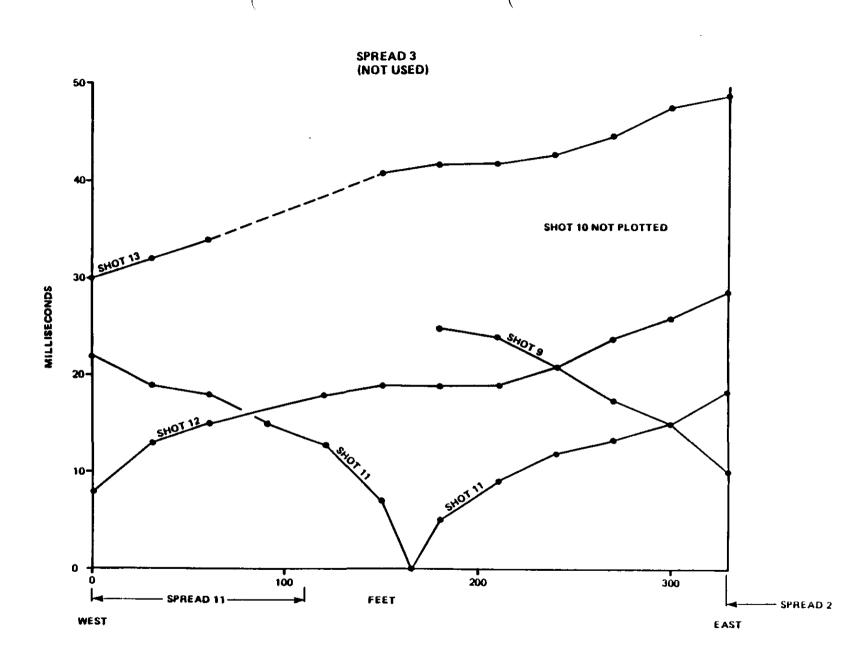

Attachment A TIME-DISTANCE PLOTS

•

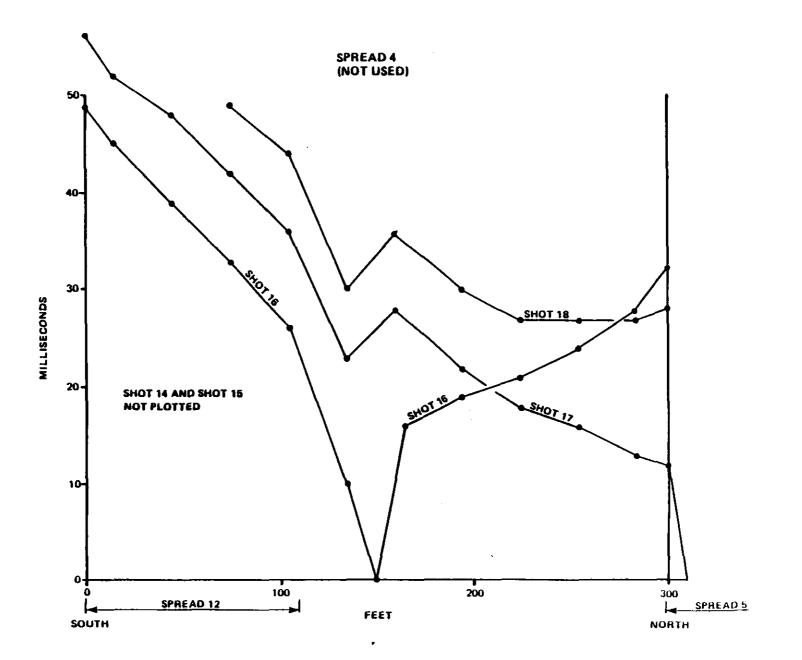
.•


GLT932/007.50-1

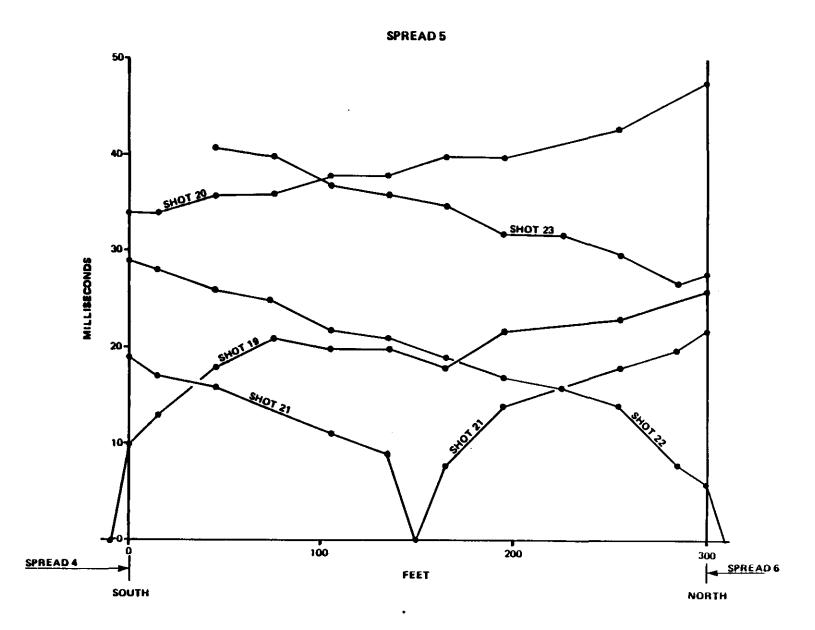
 \smile



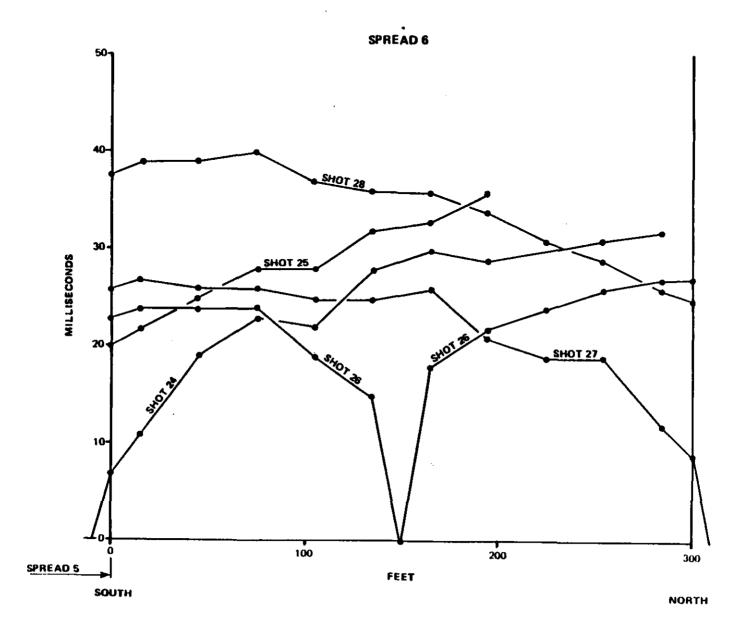
TIME - DISTANCE PLOTS SPREAD 1 ARROWHEAD REFINENY FIELDWORK INVESTIGATION STUDY


1

TIME · DISTANCE PLOTS SPREAD 2 ARROWHEAD REFINERY FIELDWORK INVESTIGATION STUD

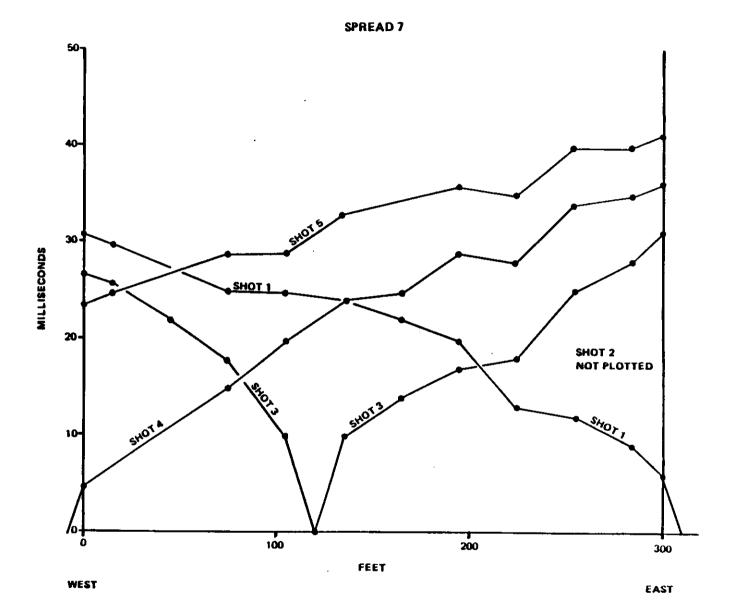


TIME - DISTANCE PLOTS SPREAD 3 ARROWHEAD REFINERY FIELDWORK INVESTIGATION STUDY



.

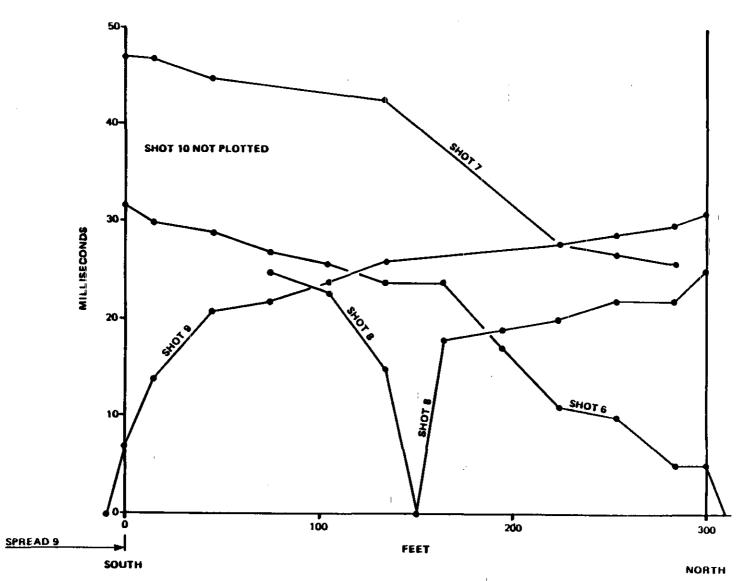
TIME - DISTANCE PLOTS SPREAD 4 ARROWHEAD REFINENCY FIELDWORK INVESTIGATION STUDY


TIME - DISTANCE PLOTS SPREAD 5 ARROWHEAD REFINERY FIELDWORK INVESTIGATION STUDY

.

.

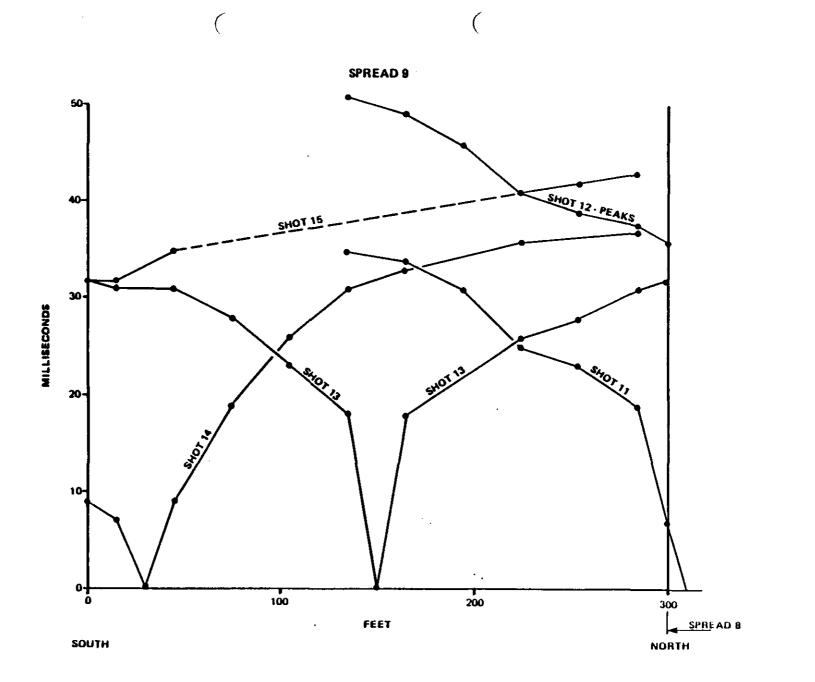
TIME - DISTANCE PLOTS SPREAD 6 ARROWHEAD REFINERY FIELDWORK INVESTIGATION STUDY



P.

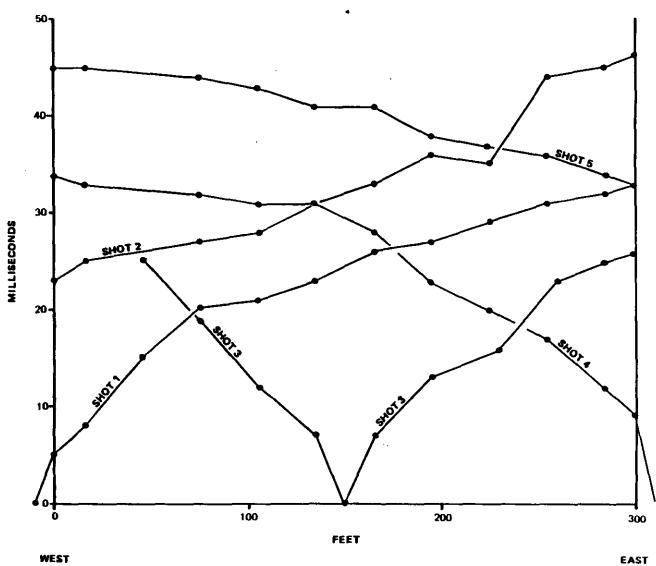
.

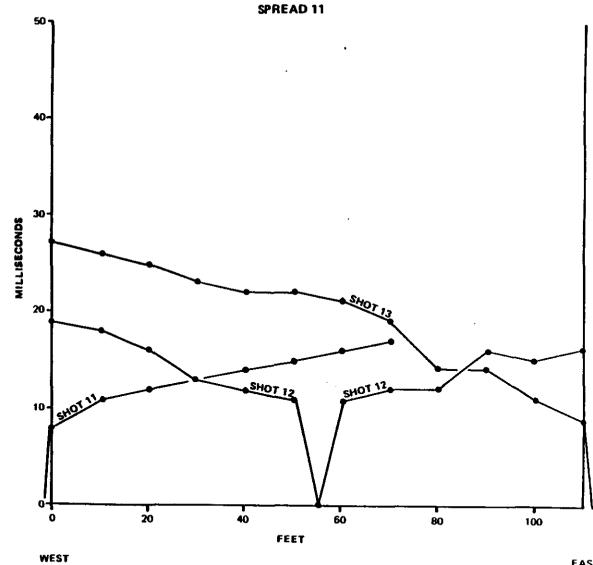
.


TIME - DISTANCE PLOTS SPREAD 7 ARROWHEAD REFINERY FIELDWORK INVESTIGATION STUDY SPREAD 8

I.

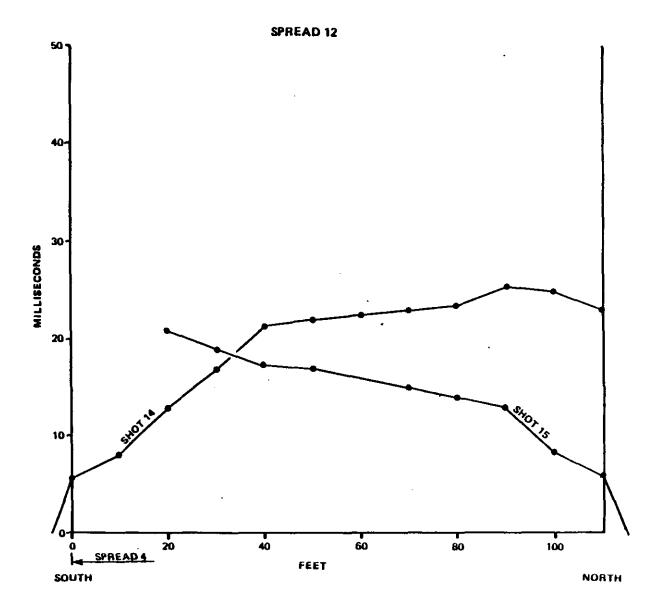
÷.


TIME - DISTANCE PLOTS SPREAD 8 ARROWHEAD REFINENT FIELDWOHK INVESTIGATION STUDY


.

TIME - DISTANCE PLOTS SPREAD 9 ARROWHEAD REFINERY FIELDWORK INVESTIGATION STUDY

TIME - DISTANCE PLOTS SPREAD 10 ARROWHEAD REFINERY FIELDWORK INVESTIGATION STUDY


.

(

.

EAST

TIME - DISTANCE PLOTS SPREAD 11 ARROWHEAD REFINERY FILLOWORK ANY EXTRACTION CONTRACTOR

TIME - DISTANCE PLOTS SPREAD 12 ARROWHEAD REFINERY FIELDWORK INVESTIGATION STUDY

TECHNICAL MEMORANDUM NO. 2

TO:	Fred Bartman/U.S. EPA Remedial Project Manager
FROM:	Randy Videkovich/CH2M HILL Project Manager
PREPARED BY:	Roger Huddleston/CH2M HILL Jewelle Imada/CH2M HILL
DATE:	March 2, 1988
RE:	Existing Well Evaluation and In Situ Hydraulic Conductivity Testing
PROJECT:	Arrowhead Refinery Fieldwork Design Investigation W68802.FI

INTRODUCTION

This memorandum summarizes the field activities at the Arrowhead Refinery site from August 16 to 23, 1987; and presents supporting hydraulic conductivity calculations. The objective of this field activity was to evaluate the existing wells to determine their suitability for use in subsequent investigations.

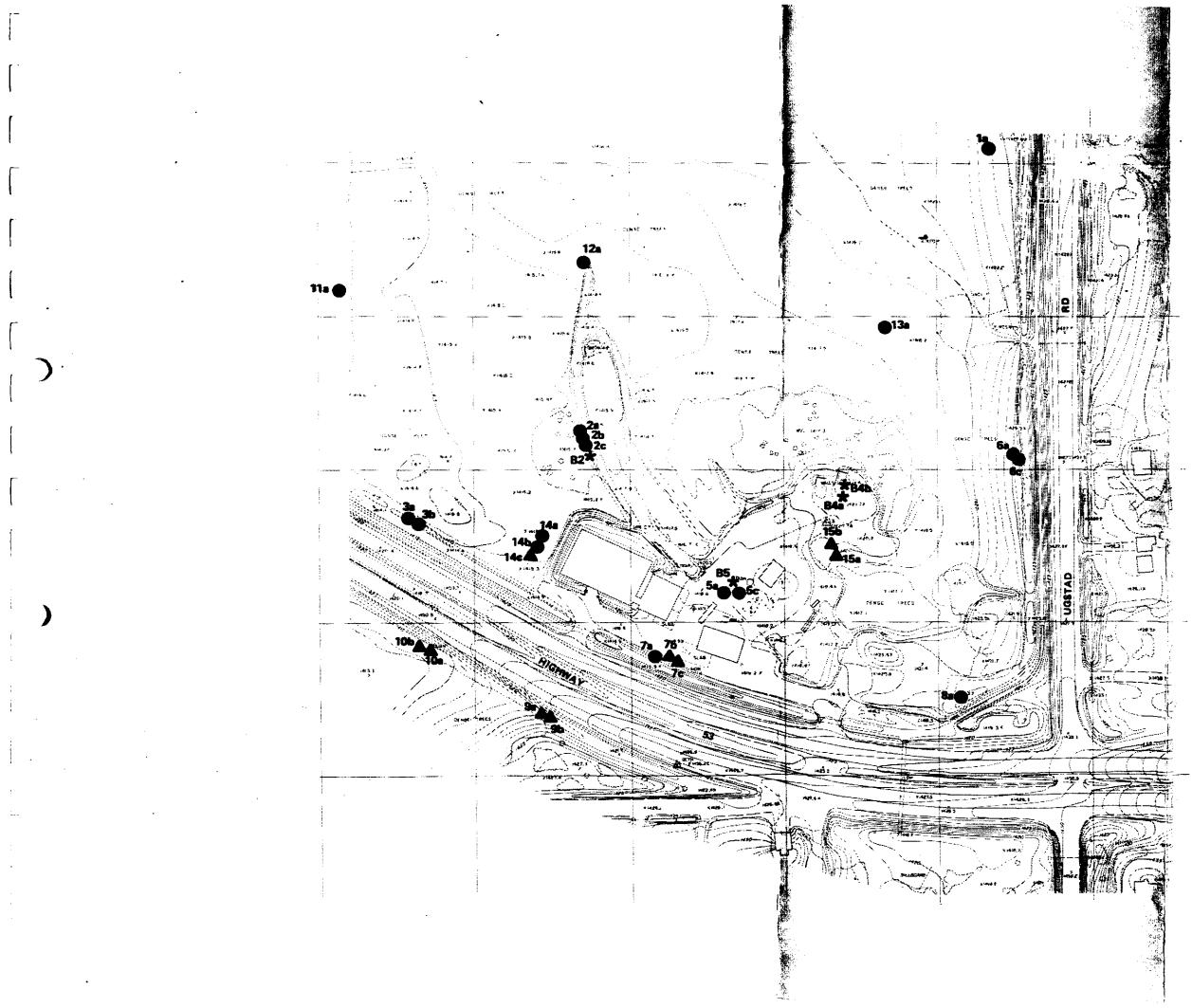
Actual fieldwork consisted of:

- o Collection of water levels from 29 of the 30 existing wells.
- o Redevelopment of appropriate existing wells.
- o In situ hydraulic conductivity measurements (slug tests) on appropriate wells.
- o Construction of two weirs in the EPA ditch for surface water flow measurements.
- o Installation of four staff gauges at various points in the EPA ditch for surface water level measurements.
- o Measuring well depths of 29 of the 30 existing wells.

TECHNICAL MEMORANDUM NO. 2 Page 2 March 2, 1988 W68802.FI

WATER LEVEL MEASUREMENT

Roger Huddleston and Jewelle Imada of CH2M HILL mobilized equipment to Duluth, Minnesota, on Sunday, August 16. On August 17, they toured the site and measured water levels in 29 monitoring wells and 1 MPCA piezometer (Figure TM2-1). Water levels were measured to obtain a general picture of regional depth to groundwater. Groundwater elevations were not calculated because some wells appeared to have shifted due to frost heave.


All wells (new and existing) were surveyed on November 22 to 24 following the installation of the additional wells (see Technical Memorandum No. 4). Using the new surveyed elevations, groundwater elevations were plotted and contoured.

WELL REDEVELOPMENT

Initial site investigations indicated that several onsite wells recovered very slowly when they were purged. (Several wells had to be purged at least 1 day before sampling to obtain an adequate volume of water in the well for sampling.) A possible cause for the slow well recovery was that silt had accumulated in the well screens since they were developed. Well redevelopment was proposed to establish a more representative hydraulic connection between the wells and the aquifers that could result in better producing wells.

A review of existing well logs determined that several wells were screened in either a fine silty lacustrine zone or a glacial till zone. It was suspected that wells screened in those zones would recover slowly, and redevelopment would not greatly improve well capacity or hydraulic connection with the aquifer. Two wells, one screened in the till layer (Well 5c), the other screened in the lacustrine zone (Well 8a), were thought to be representative of the respective units and were chosen as test wells for redevelopment.

An in situ hydraulic conductivity (slug) test was performed in each test well prior to development. Each well was then redeveloped, and a second slug test was performed. The results of each test were calculated and the hydraulic conductivity before development was compared to the hydraulic conductivity after development. The hydraulic conductivity in Well 8a before development was calculated to be 3.9×10^{-5} cm/s, while after redevelopment it was 3.4×10^{-5} cm/s, (see Attachment A for supporting plots and calculations). The hydraulic conductivity in Well 5c before development was calculated to 3.4×10^{-4} cm/s, while after redevelopment it was 3.3×10^{-4} cm/s. Because the hydraulic conductivities changed so little following redevelopment, it was determined that redevelopment of wells screened in lacustrine or till units would not significantly affect the wells' capacities or performance and would not be cost-effective. As a result, only wells screened in the peat or coarser granular units were redeveloped and slug tested.

LEGEND

WELLS FROM PREVIOUS INVESTIGATIONS

PHASE I WELLS

PHASE II WELLS

SOURCE: ARROWHEAD REFINERY RI

FIGURE TM-2-1 WELL LOCATIONS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION TECHNICAL MEMORANDUM NO. 2 Page 3 March 2, 1988 W68802.FI

METHODS

Wells were redeveloped using a Brainard-Kilman hand pump or a PVC bailer. At least 10 well volumes was removed from each well. The development apparatus was decontaminated with a trisodium phosphate wash, a water rinse, and a distilled water rinse between each well.

RESULTS

Twelve wells besides the two test wells were chosen for redevelopment. Wells B2 and B5, installed during the initial FIT investigation, have 1-1/2-inch I.D. PVC risers. The development equipment could not be used on these wells because of the small well diameter. As a result, only 10 wells in addition to the two test wells were redeveloped: Wells MW-1a, MW-2a, MW-3a, MW-7a, MW-7b, MW-9a, MW-10a, MW-12a, MW-14a, and MW-15b. Although geologic interpretation of boring log MW-7a indicates that the well is screened in the lacustrine zone, the formation at Well MW-7a is reportedly coarser than the other lacustrine deposits. Therefore, it was decided that redevelopment of Well MW-7a would probably be beneficial.

The water removed during redevelopment was generally a milky brown color and did not seem to become less turbid after 10 well volumes were removed. Because the wells had already been developed and the water did not appear to clear up, well development was considered complete after 10 well volumes were removed. Additional development (until the water was completely free of sediment) would have required significant additional time and equipment, neither of which was available.

Most wells were redeveloped within 1 day. Well MW-15b, however, recovered much more slowly than would be expected from review of the soil boring log, and only two to three well volumes were removed each day.

HYDRAULIC CONDUCTIVITY MEASUREMENTS

METHODS

In situ hydraulic conductivity tests were conducted using a 5-foot-long, 1-inch-diameter solid PVC slug to displace a column of water. Two tests were performed on each well. First the static water level was measured and the slug was dropped into the well. The level of the falling water column was measured to the nearest 0.01 foot at specific time intervals with an electronic water level indicator. Then the slug was removed and the level of the rising water column was measured. After testing, the slug was decontaminated with a trisodium phosphate wash, water rinse, and distilled water rinse between each well. The water level indicator was decontaminated with distilled water between each well.

TECHNICAL MEMORANDUM NO. 2 Page 4 March 2, 1988 W68802.FI

A slug test was not performed on Well MW-15b because of its slow recovery, so a baildown test was performed instead. The well was bailed dry, and water levels were measured during the day as the well recovered.

Two rising head slug tests were performed on Well B2. Well B2 is so shallow that the displaced water column did not rise above the top of the slug, and falling head water levels could not be measured.

RESULTS

Results of the in situ hydraulic conductivity tests are summarized in Table TM2-1. Supporting calculations are included in Attachment A. Hydraulic conductivities for wells screened in the peat ranged from 7.5 x 10^{-5} to 8.8 x 10^{-3} cm/s, with a logarithmic average hydraulic conductivity of 5.2 x 10^{-4} cm/s. Hydraulic conductivities for wells screened in the granular zones were slightly lower, ranging from 9.8 x 10^{-6} to 3.4 x 10^{-4} cm/s (excluding Well MW-15b). The logarithmic average hydraulic conductivity for wells screened in the granular zones is 1.1×10^{-4} cm/s. Well MW-15b, also screened in the granular zone, had a hydraulic conductivity of approximately 3.5×10^{-6} cm/s, the lowest of any well tested.

WELL DEPTH MEASUREMENTS

The depths of the monitoring wells were measured from September 27 to 29. Casing and riser heights above ground surface and depths to groundwater were also measured (Table TM2-2). The measured well depths were compared to the recorded well depths from the RI report. The objective of this task was to determine which wells have possibly shifted or accumulated silt on the bottom.

Most of the wells measured had less than a 1/2-foot difference between the recorded and measured depths. Well MW-10b was 0.8 foot deeper than recorded so the well was examined for settling during the well elevation survey. Wells MW-12a, MW-2b, and MW-2c had differences in the depth measurements of more than 1 foot, and all had some silt accumulation on the bottom. The depths of all wells was measured once again before purging and groundwater sampling were performed.

GLT932/009.51

Table TM2-1SUMMARY OF HYDRAULIC CONDUCTIVITIES

Well Number	<u>Units</u>	Hydraulic Conducti Before	vity (cm/s) After		
Test Wells					
MW-8A	Lacustrine	3.9 x 10 ⁻⁵	3.4 x 10 ^{-5a}		
MW-5c	Till	3.4 x 10 ⁻⁴	3.3 x 10 ⁻⁴		
Monitoring Wells					
MW-1a	Peat	1.3 x 10 ⁻⁴	1.1 x 10 ⁻⁴		
MW-2a	Peat	7.9 x 10 ⁻⁵	7.5 x 10 ⁻⁵		
MW-3a	Granular	3.4 x 10 ⁻⁴	2.6 x 110 ⁻⁴		
MW-7a	Lacustrine	4.9 x 10 ⁻⁴	4.8 x 10 ⁻⁴		
MW-7b	Granular	9.8 x 10 ⁻⁶	1.6 x 10 ⁻⁵		
MW-9a	Peat	2.0 x 10 ⁻⁴	1.7 x 10 ⁻⁴		
MW-10a	Peat	8.2 x 10 ⁻³	8.8 x 10 ⁻³		
MW-12a	Granular	3.6 x 10 ⁻⁴	3.2 x 10 ⁻⁴		
MW-14a	Granular	1.1 x 10 ⁻⁴	1.1 x 10 ⁻⁴		
MW-15b	Granular	3.5 x 10 ⁻⁶			
B2	Peat	1.2 x 10 ⁻³	1.2 x 10 ^{-3a}		
B5	Peat	9.0 x 10 ⁻⁴	1.3 x 10 ⁻³		

-- = Falling head test not performed because of time constraints. ^aSecond rising head test.

GLT932/010.50

~

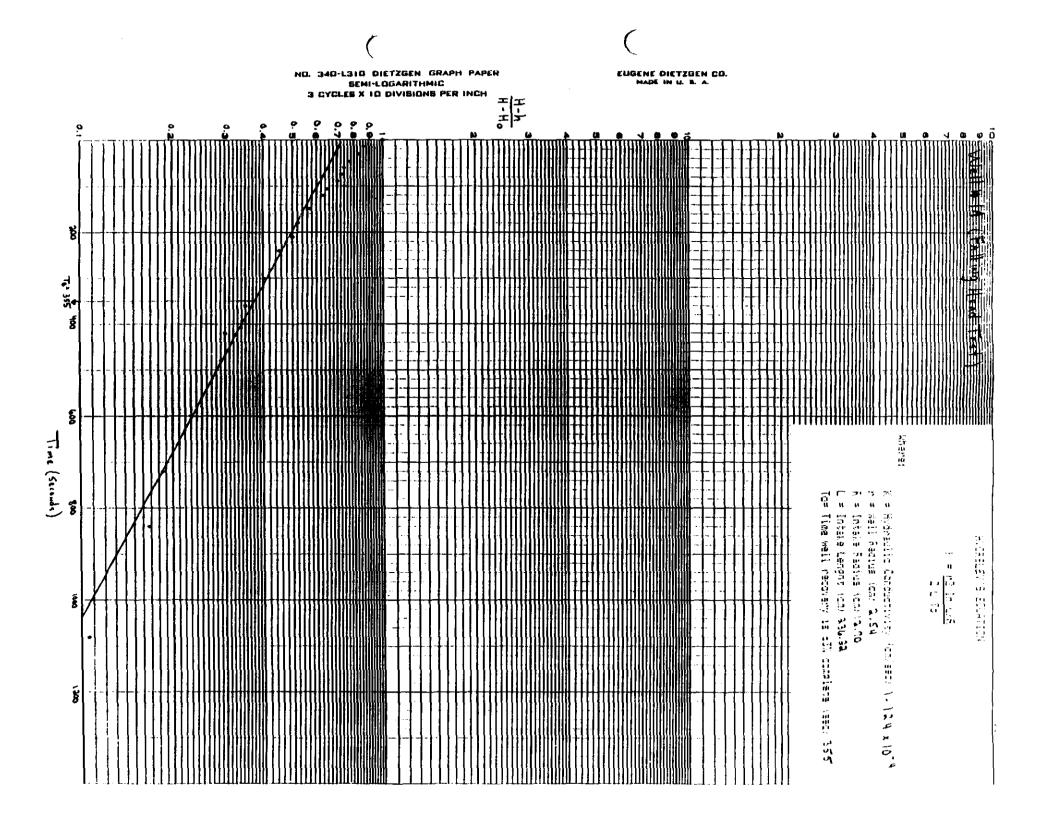
Table TM2-2 WELL MEASUREMENTS

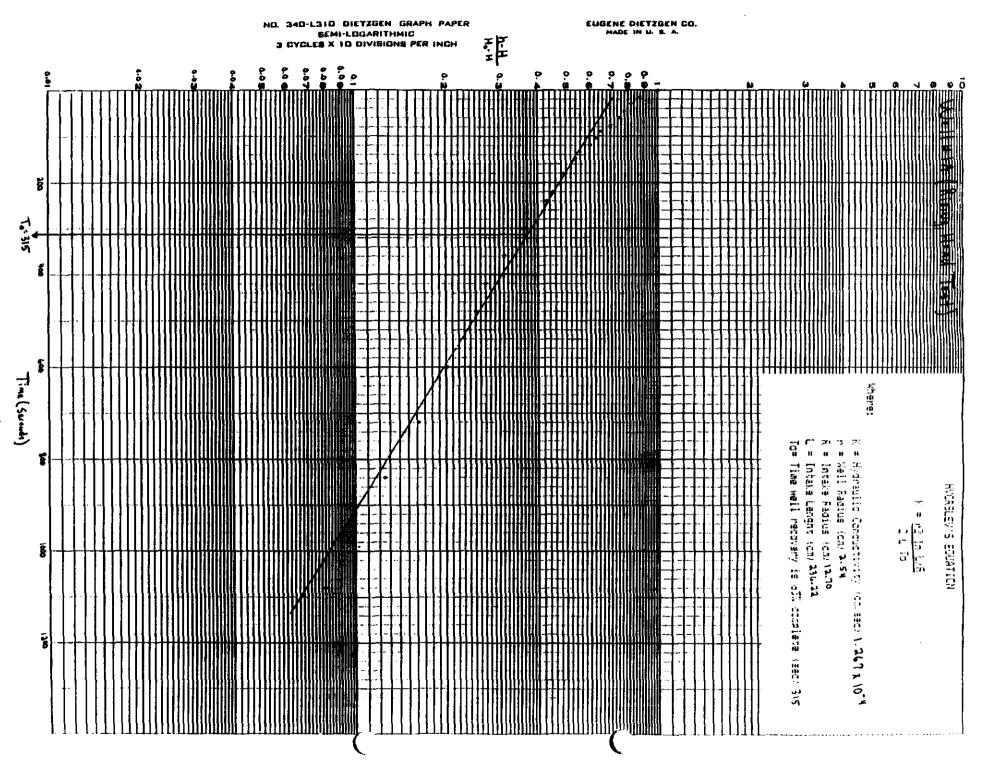
Well No.	Recorded Well Depth * (feet below Ground Surface)	Casing Height (Feet above Ground Surface)	Riser Height (Feet above Ground Surface)	Well Depth (Feet below Top of Riser)	Well Depth (Feet below Ground Surface)	Depth to Groundwater (Feet below Top of Riser)
1a	13.33	3.24	3.14	16.69	13.55	5.25
2a	8	2.59	2.54	9,95	7.41	4.94
2Ь	25	2.94	2.82	26.47	23.65	4.52
2c	38.5	2.55	2.49	39.83	37.34	4.1
B-25	7.5 **	2.84	2.83	9.67	6.84	4.81
3a	15	3.14	3.1	17.67	14.57	4.41
3Ь	22.5	2.76	2.71	24.38	21.67	3.76
B-4a	10 ++		• • •			
8-4b	32 **				•••	
5a	12	2.48	2.42	13.78	11.36	3.68
5c	38.5	2.15	2.1	39.97	37.87	3.57
B-5	30.5 7 ##		3.41	10.07	6.66	
8-3	7	3.47	2.41	10.07	0.00	3.57
6 a	14	2.84	2.82	16.38	13.56	7.16
6c	35	2.85	2.77	37.73	34.96	7.89
7a	13.8	3.00	3.1	16.43	13.33	5.59
7b	24.5	2.85	2.7	26.9	24.20	4.86
7c	36	2.69	2.42	38.51	36.09	4.83
8a	14.25	2.90	2.78	17.52	14.74	7.62
9a	14.5	2.55	2.17	16.43	14.26	4.72
9b	22.5	2.59	2.61	24.39	21.78	5.43
10a	12.5	2.80	2.69	14.31	11.62	3.86
10b	22	2.85	2.61	25.37	22.76	3.35
11 a	14	3.19	3.14	16.66	13.52	2.73
12a	14	2.93	2.88	15.81	12.93	4.68
1 3a	14	2.98	2.9	17.3	14.40	3.09
14 a	15	2.47	2.34	17.32	14.98	2.69
14b	24	2.76	2.71	26.98	24.27	3.0
14c	31.5	1.78	1.68	33.55	31.87	2.25
15a	14.5	•••	•••			
15b	24.5	•••				•••

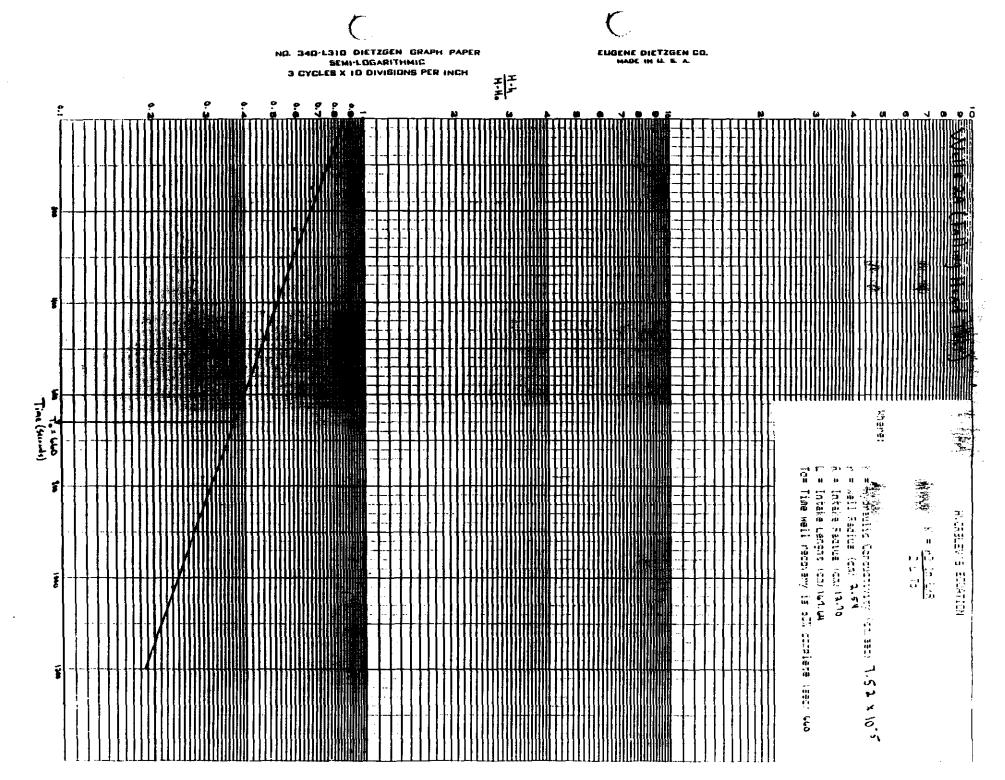
 \checkmark

* Well depths taken from well installation logs from the RI. ** Well depths taken from TAT report.

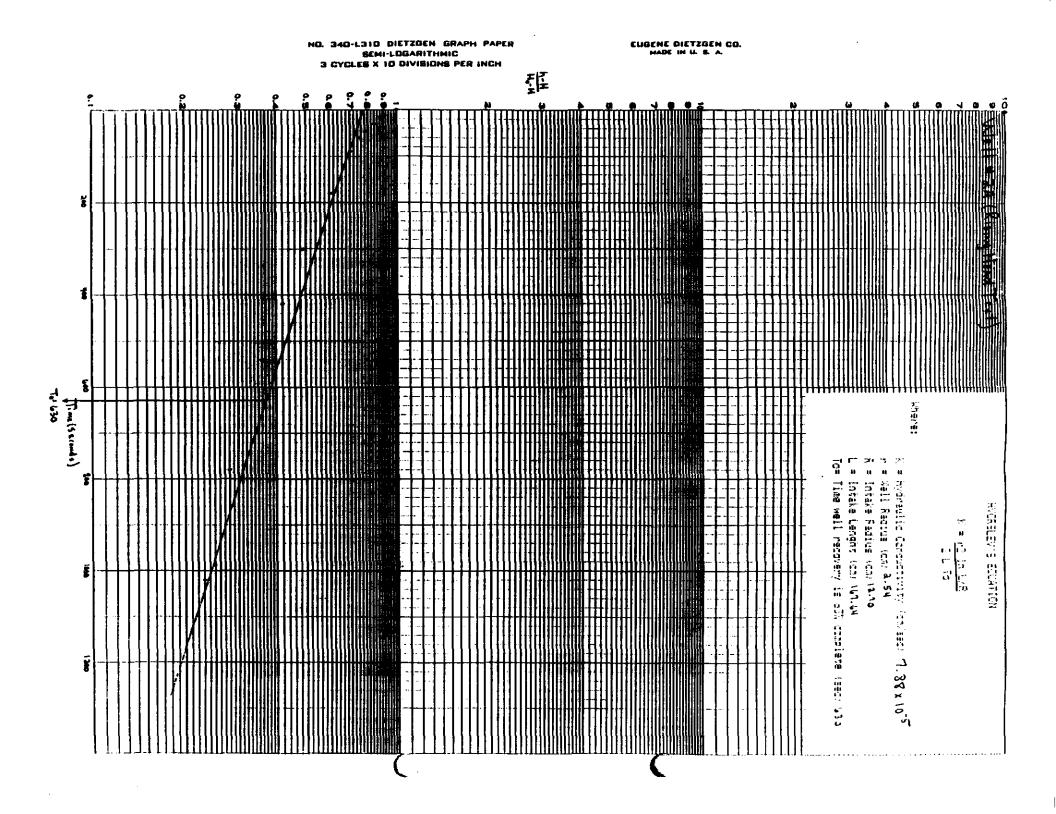
.

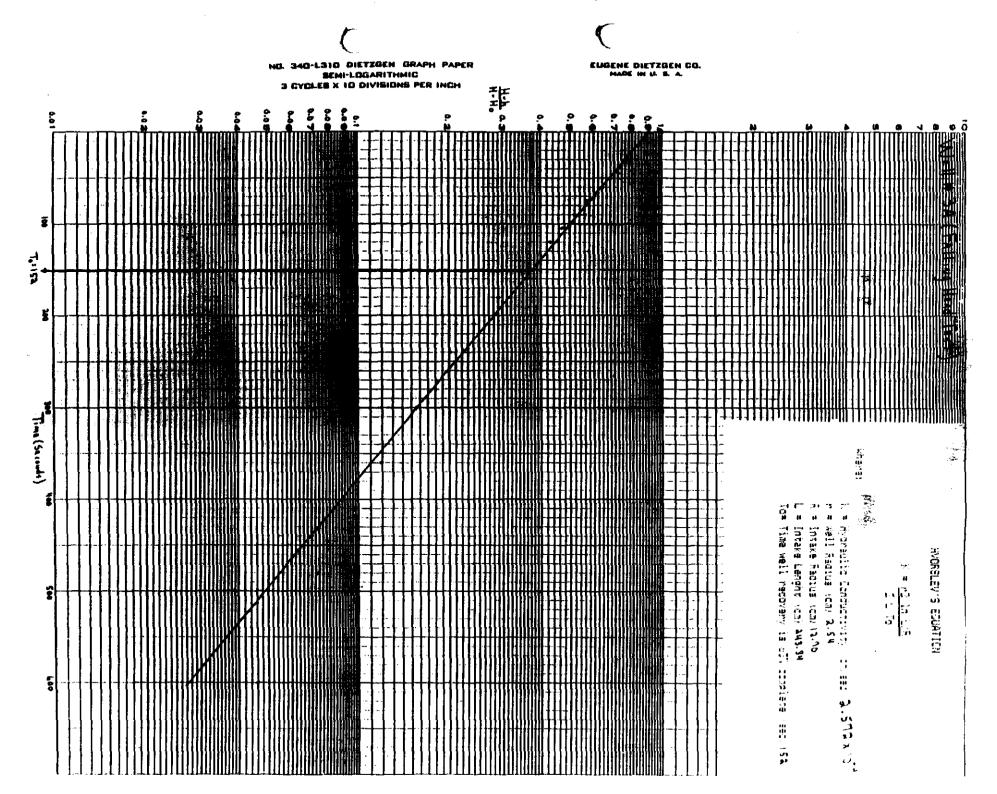

TM 2--EXISTING WELL EVALUATION AND IN SITU HYDRAULIC CONDUCTIVITY TESTS

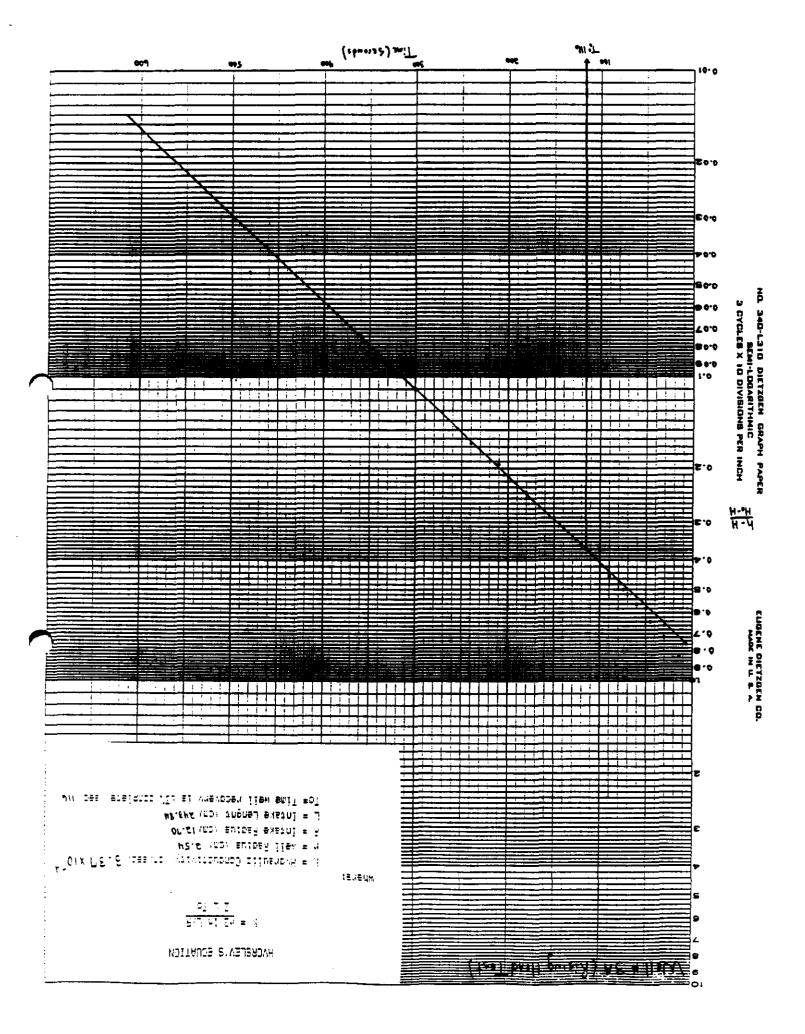

Attachment A CALCULATION OF IN SITU HYDRAULIC CONDUCTIVITIES

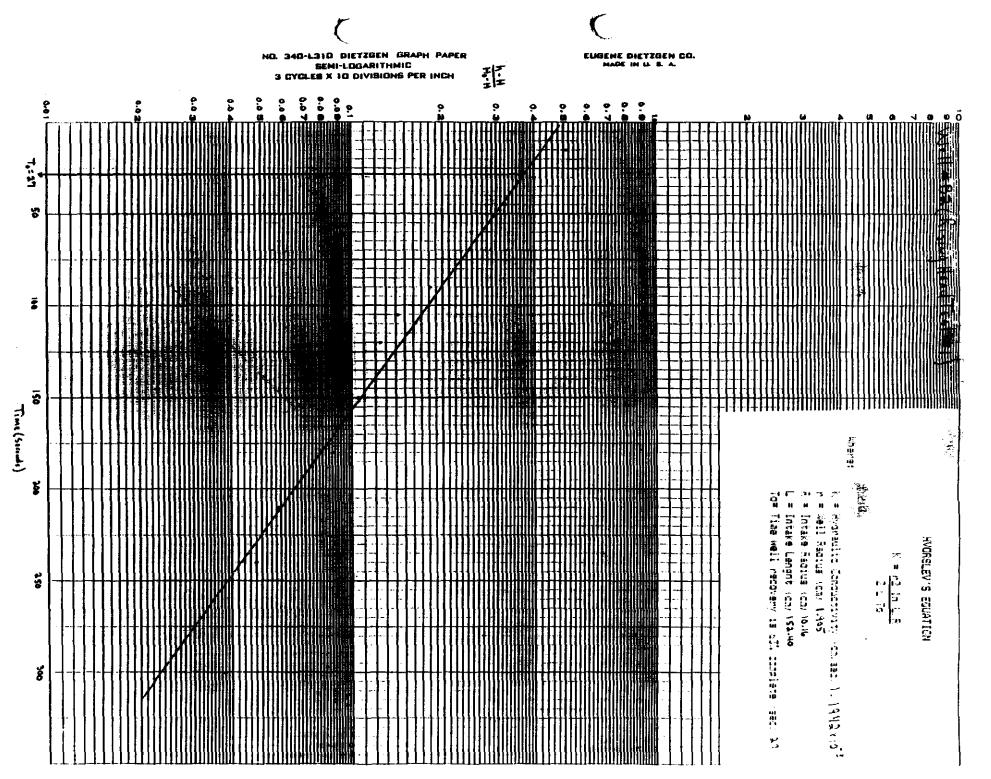

.

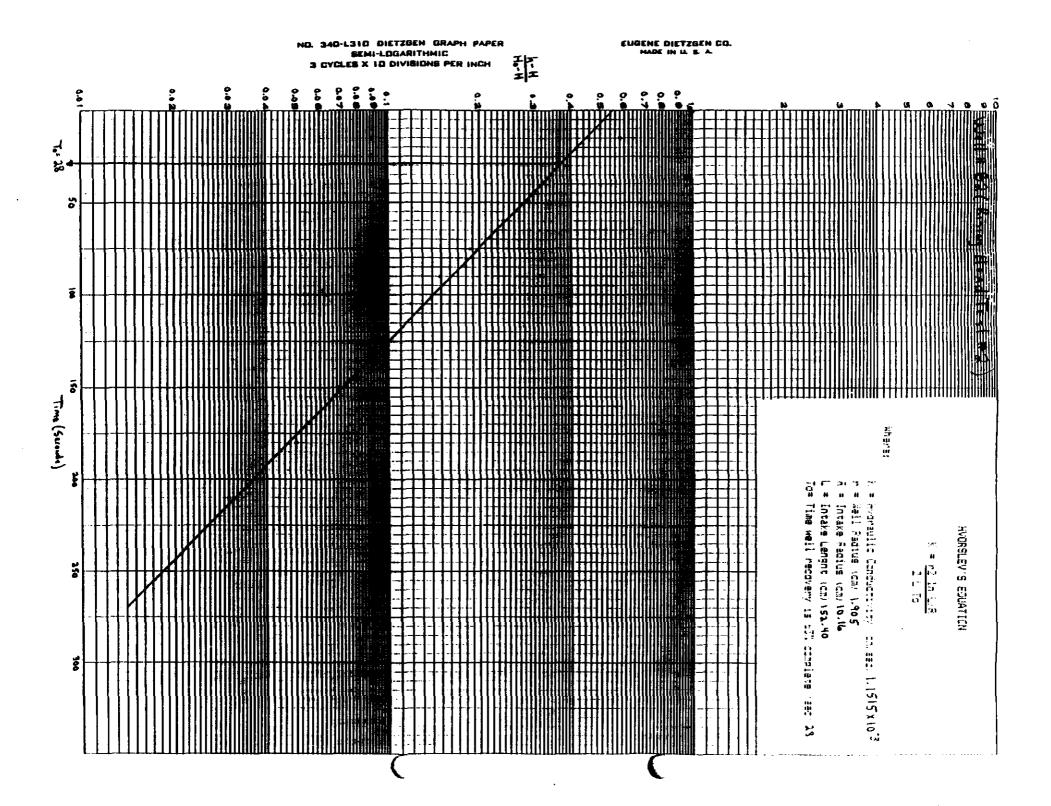
GLT932/007.50-2

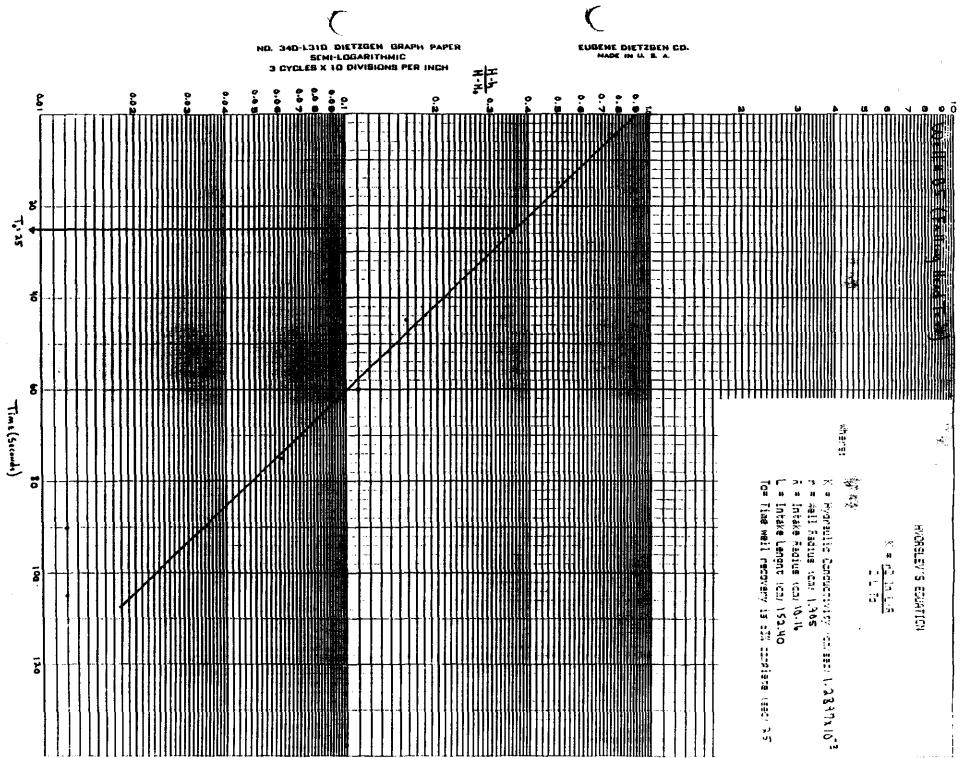

.

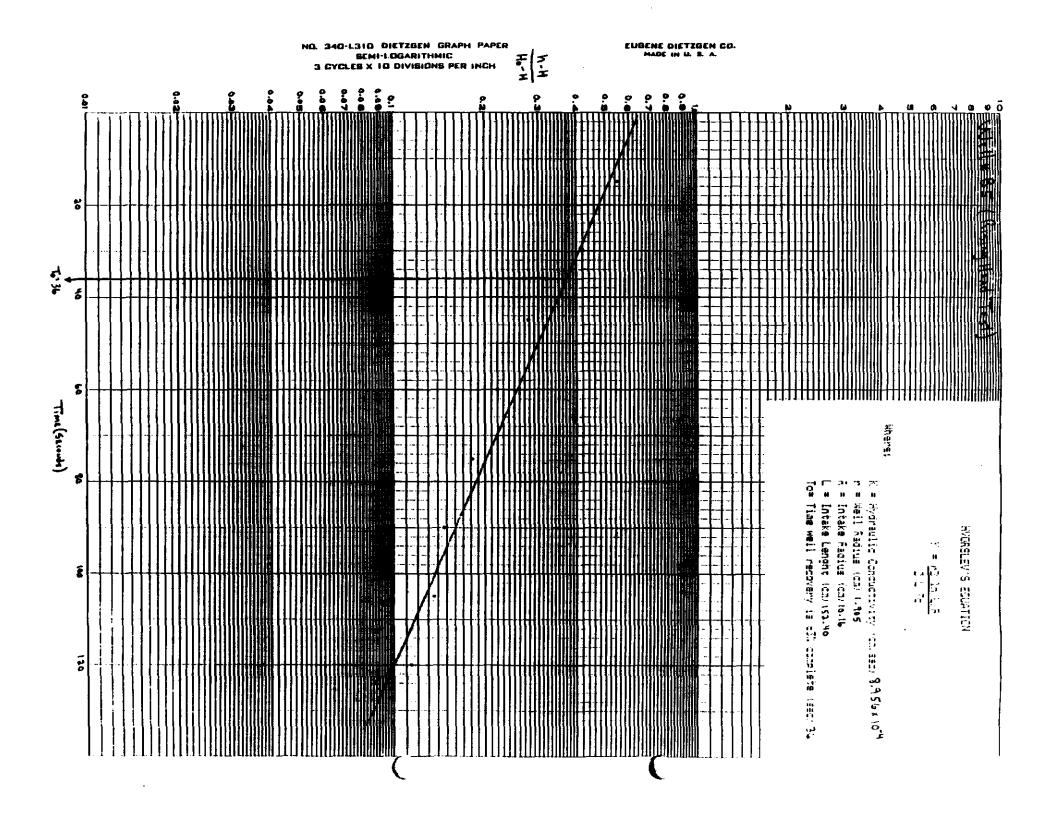


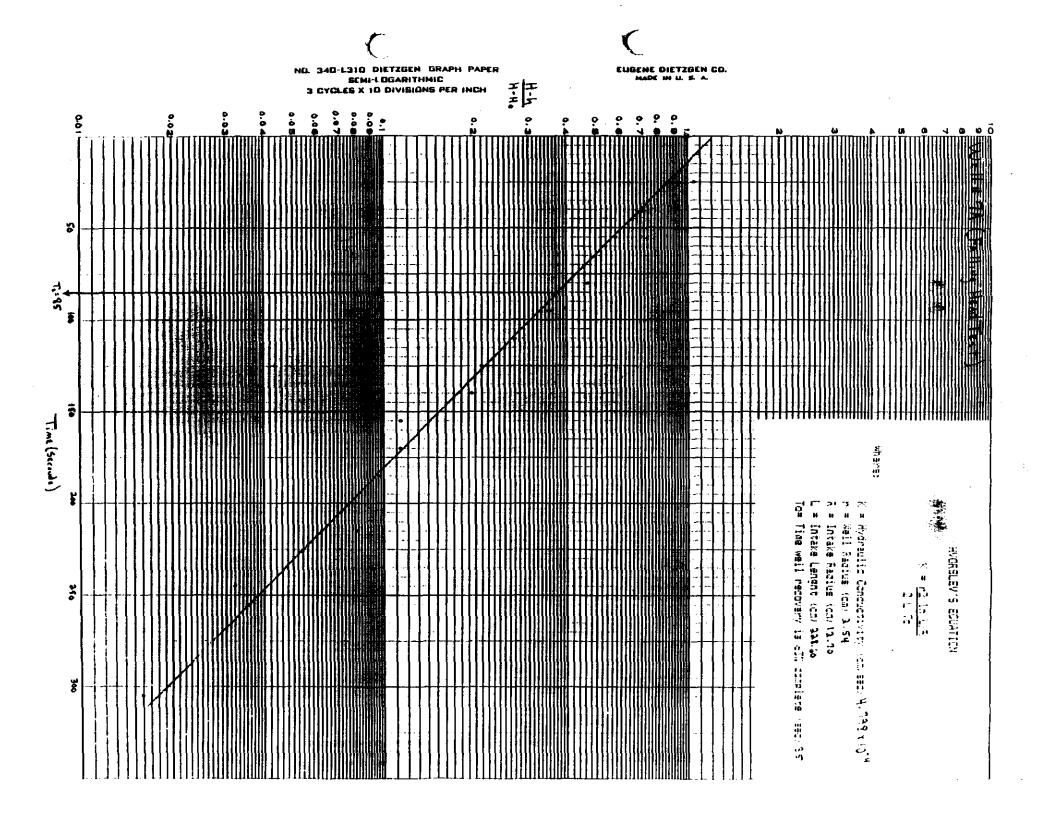


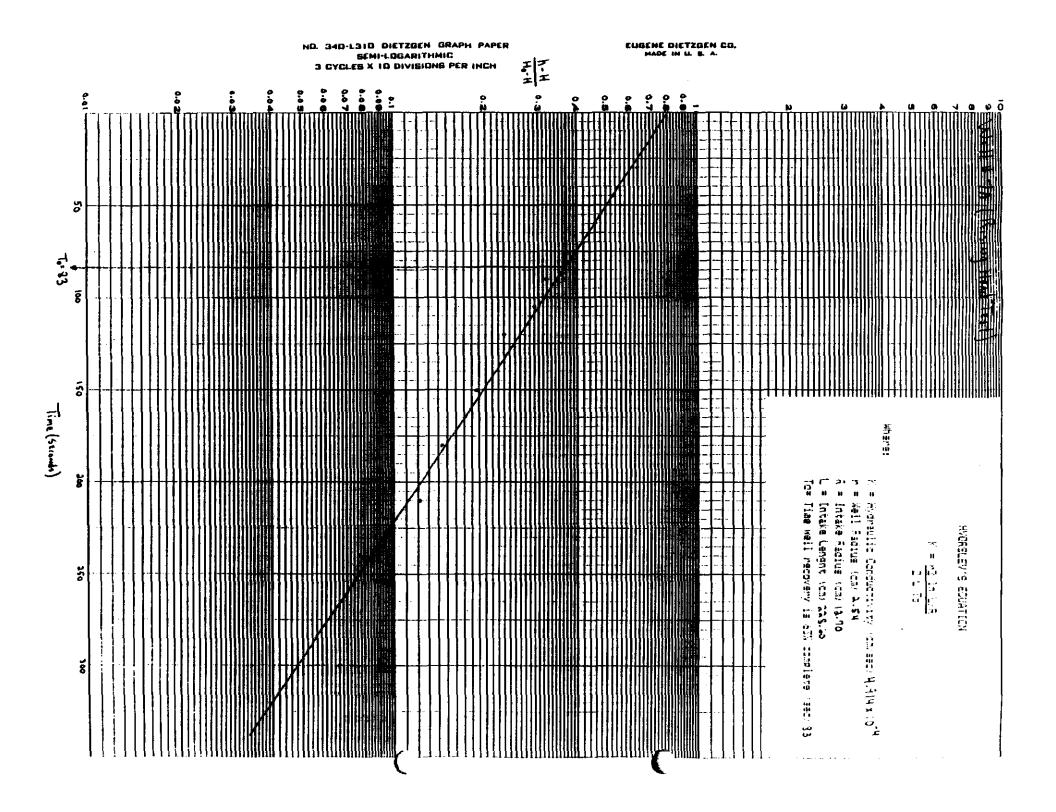

 2^{12} ж., . • • •

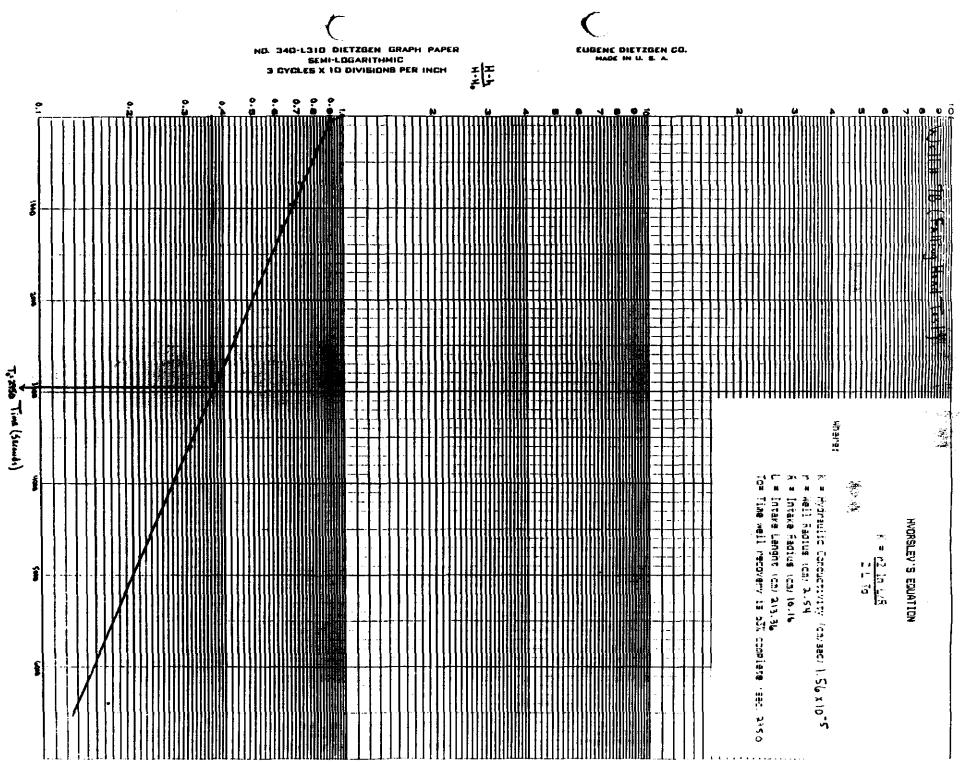


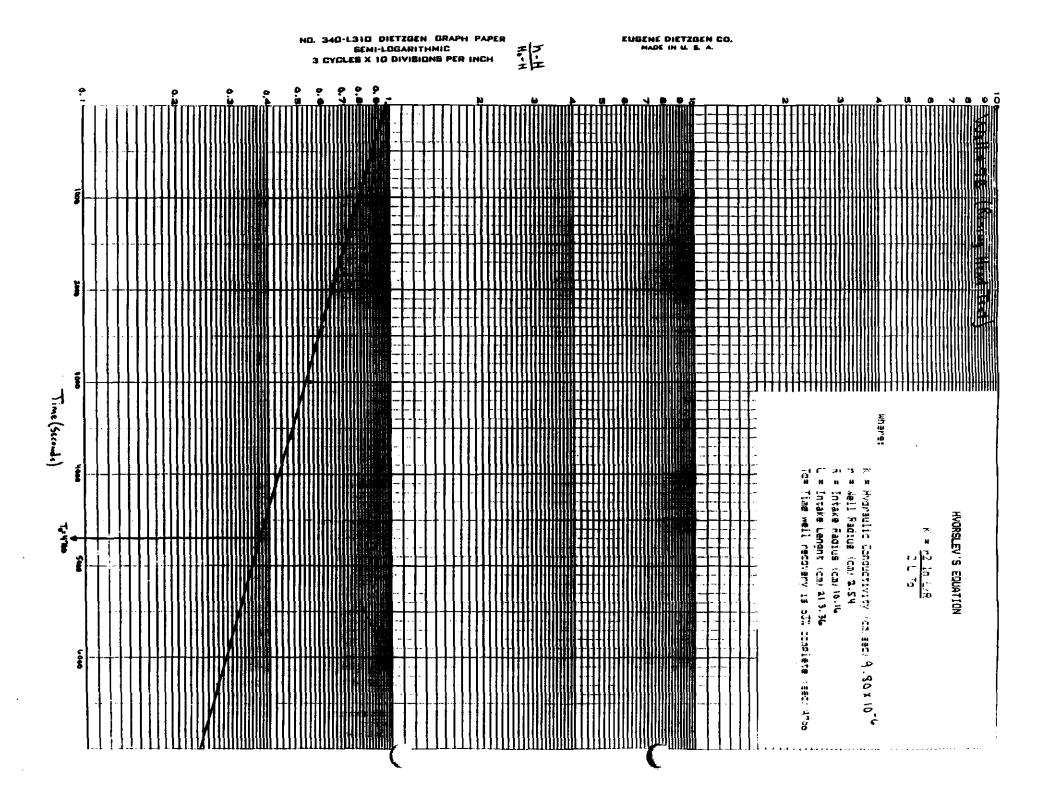

" ""

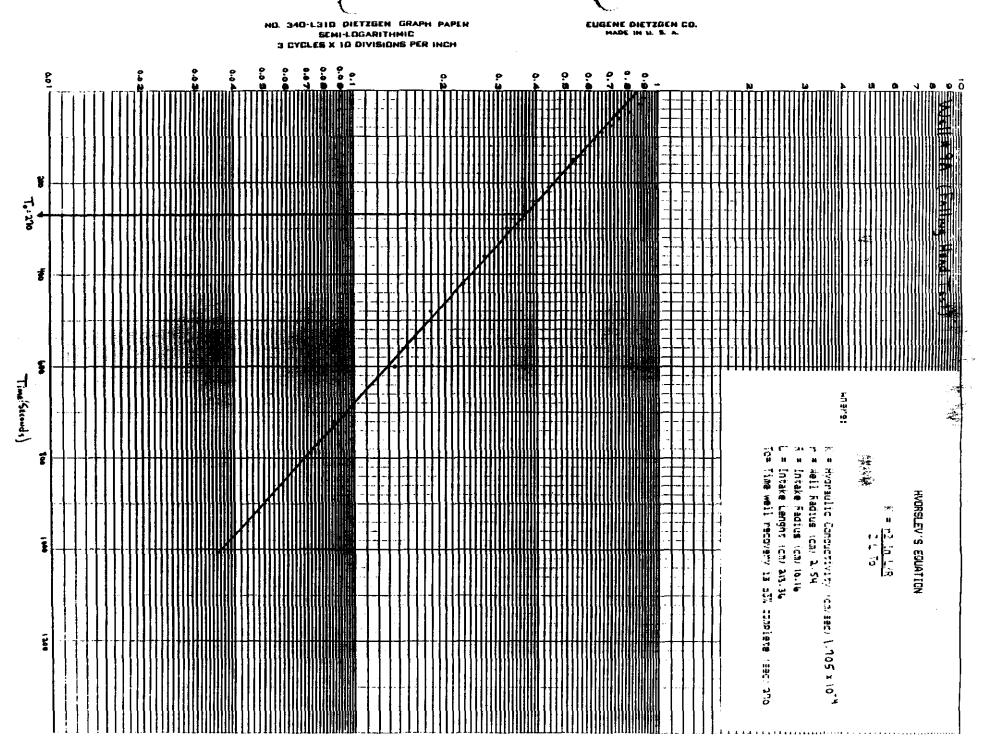


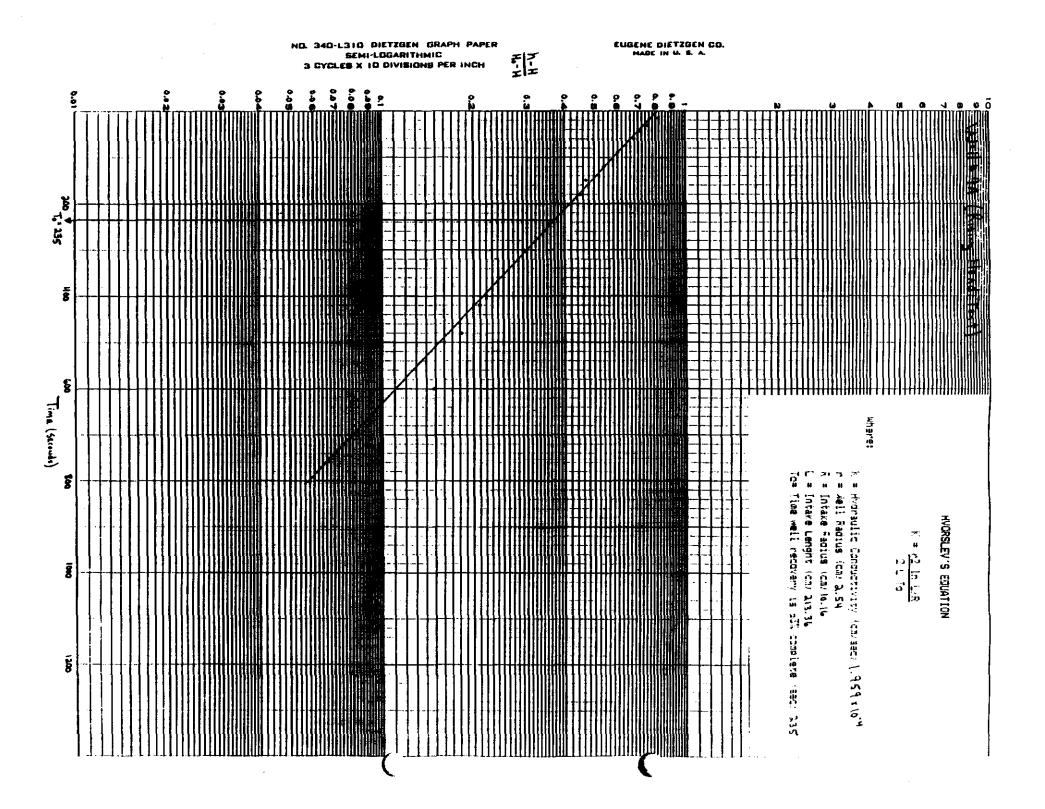


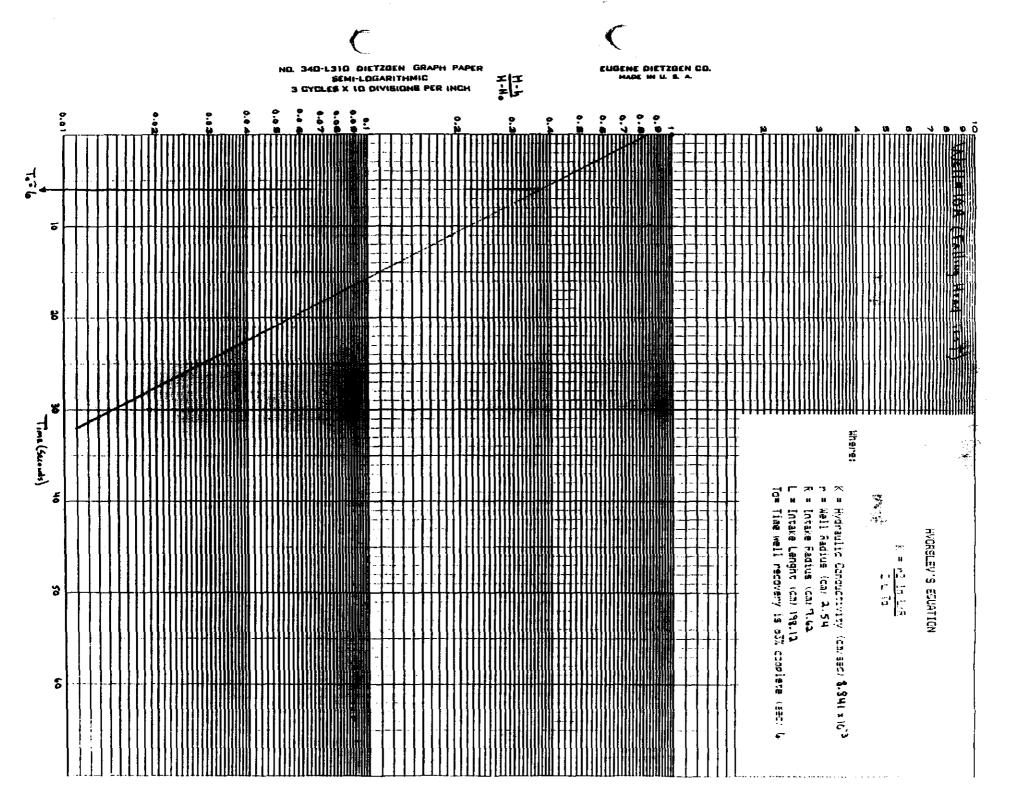

...-

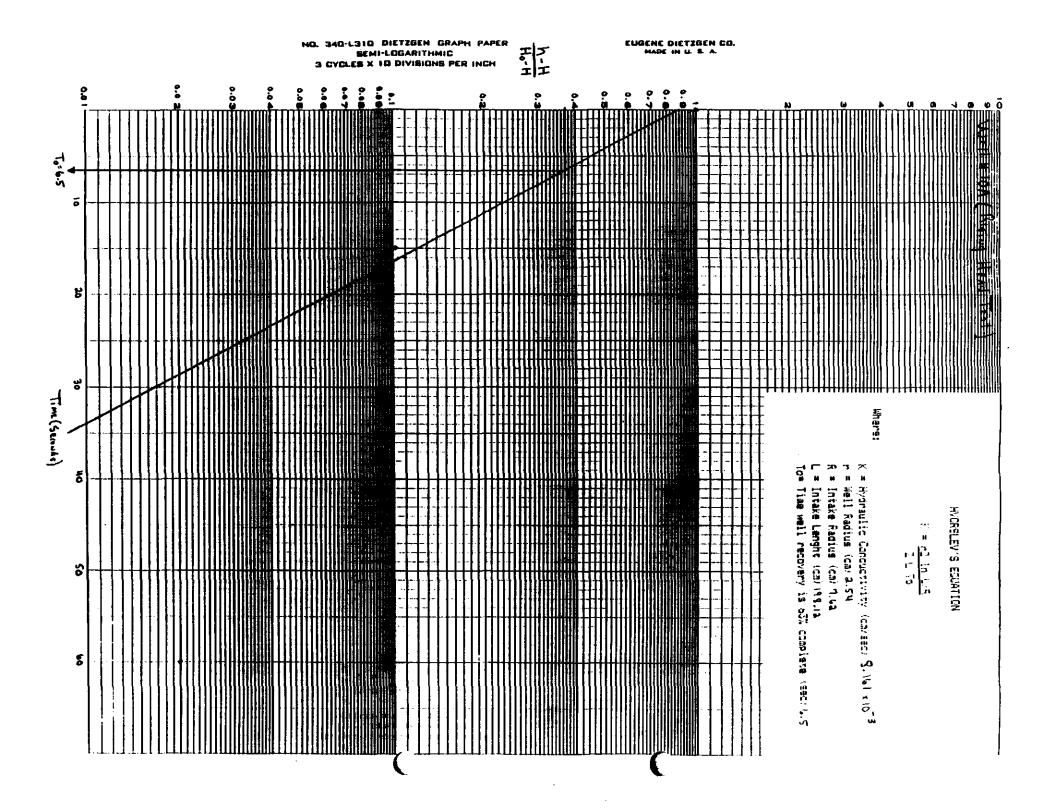


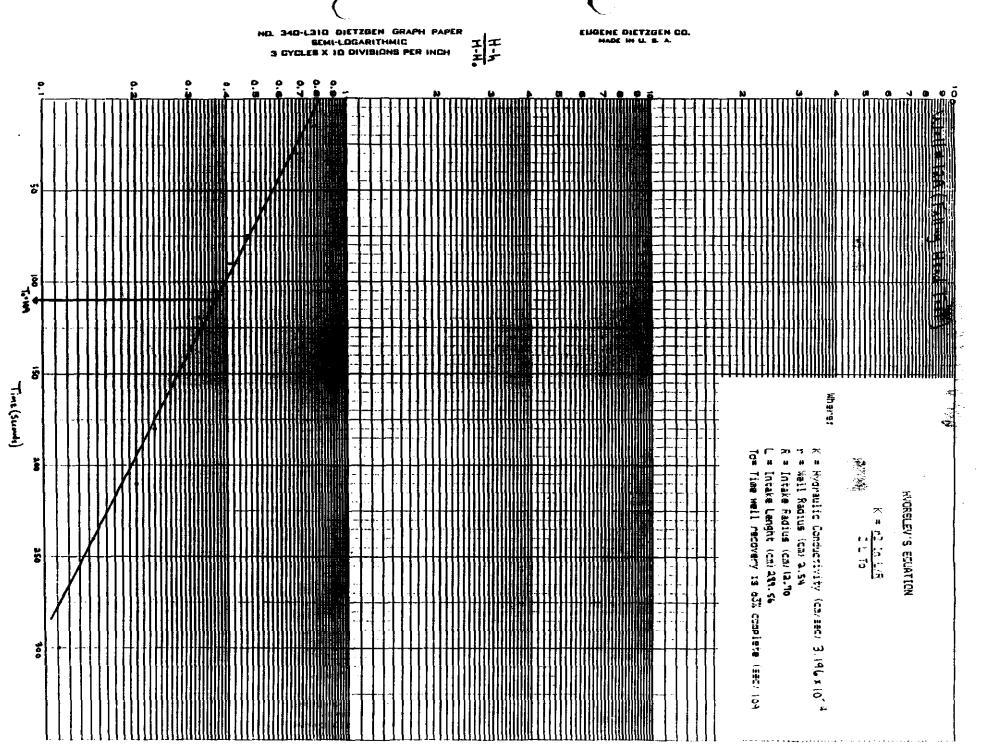


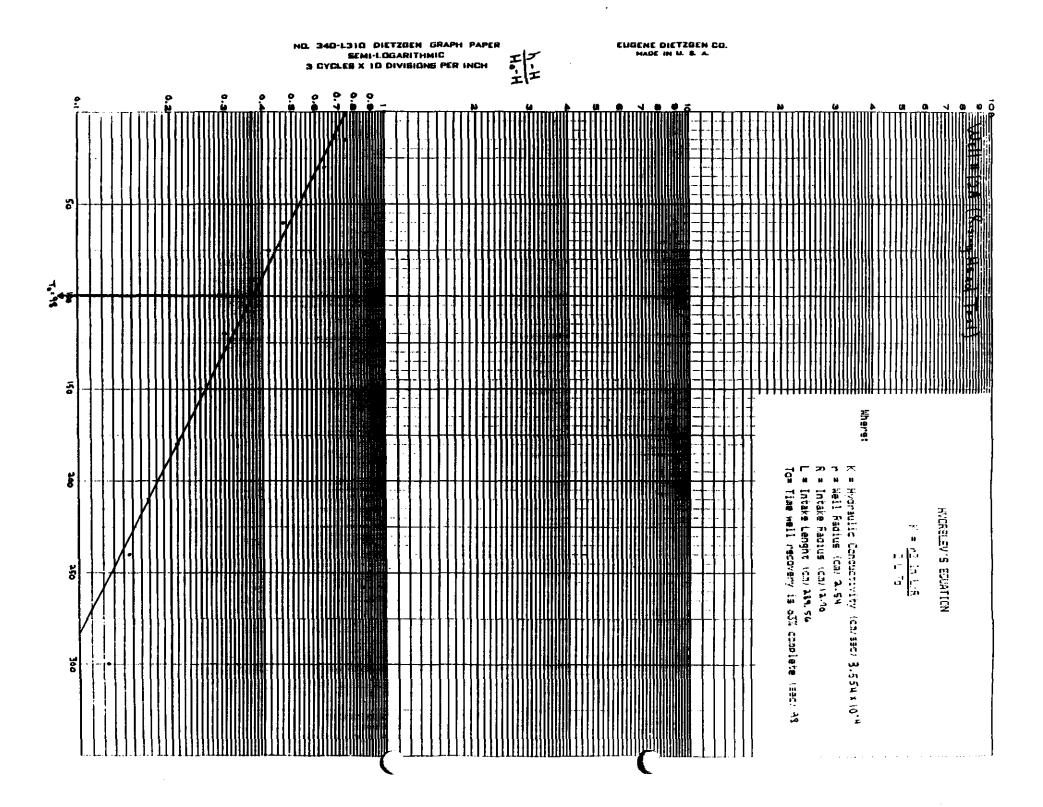


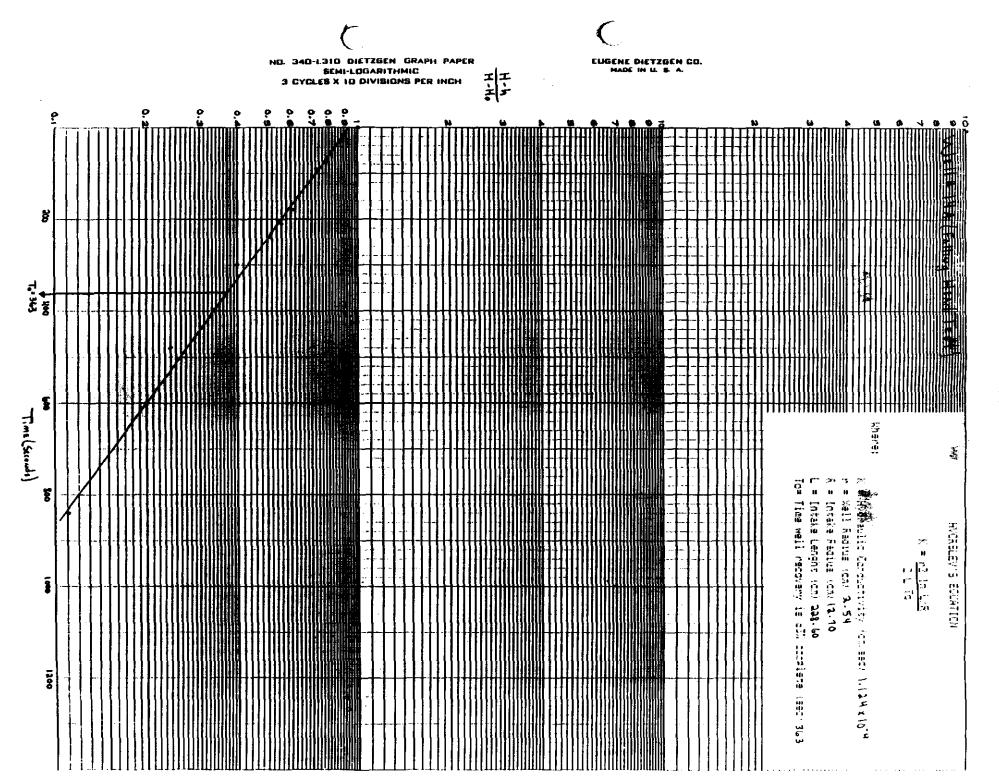




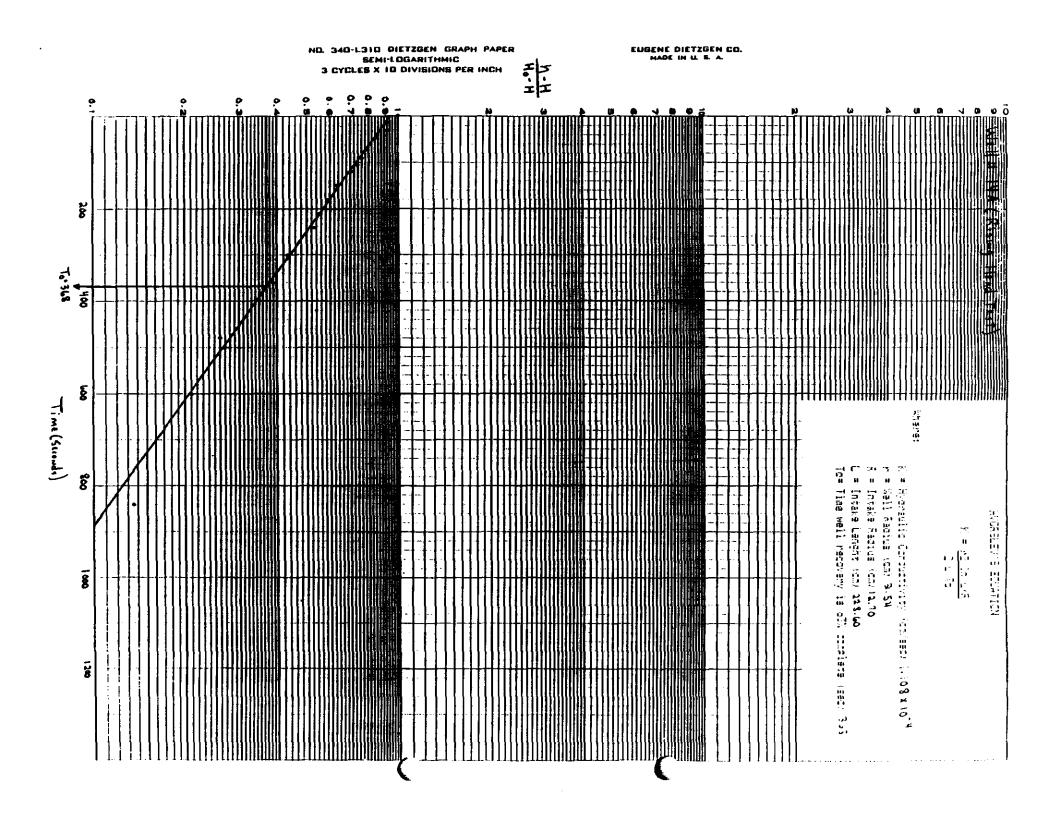


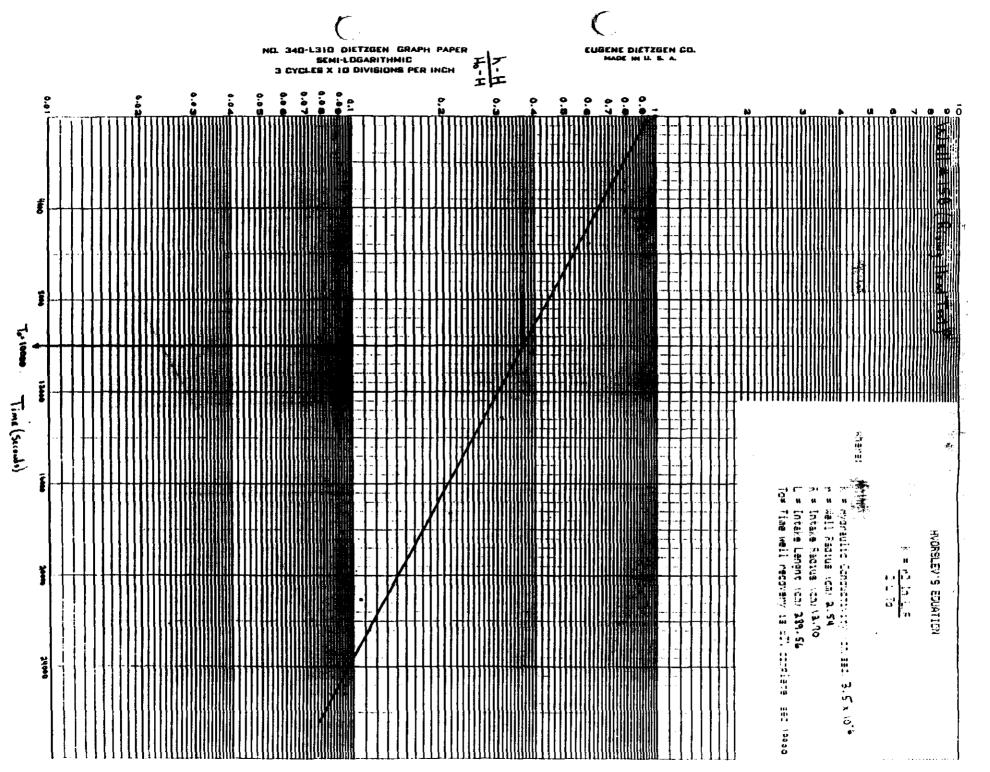


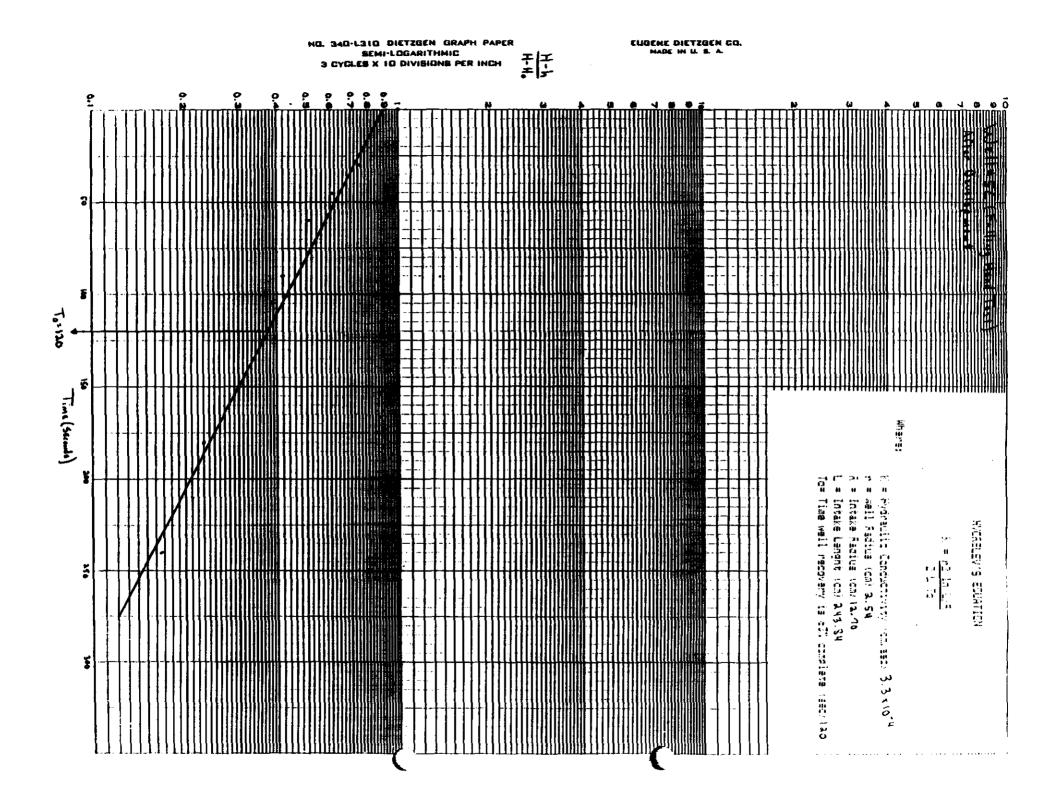


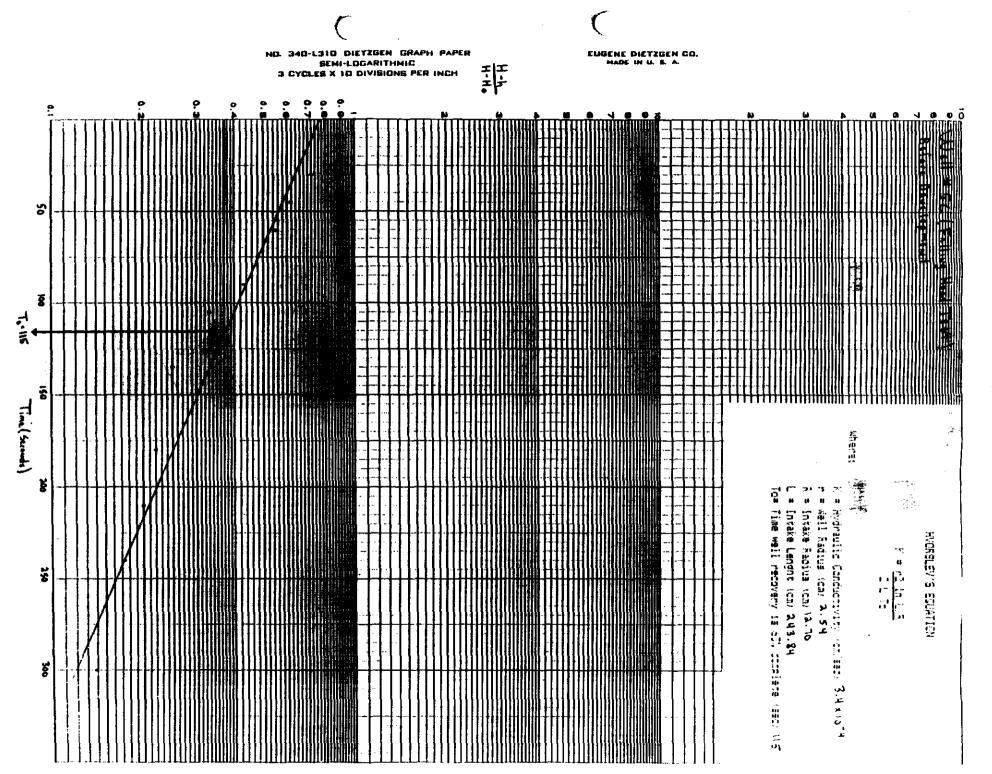

Sau Se

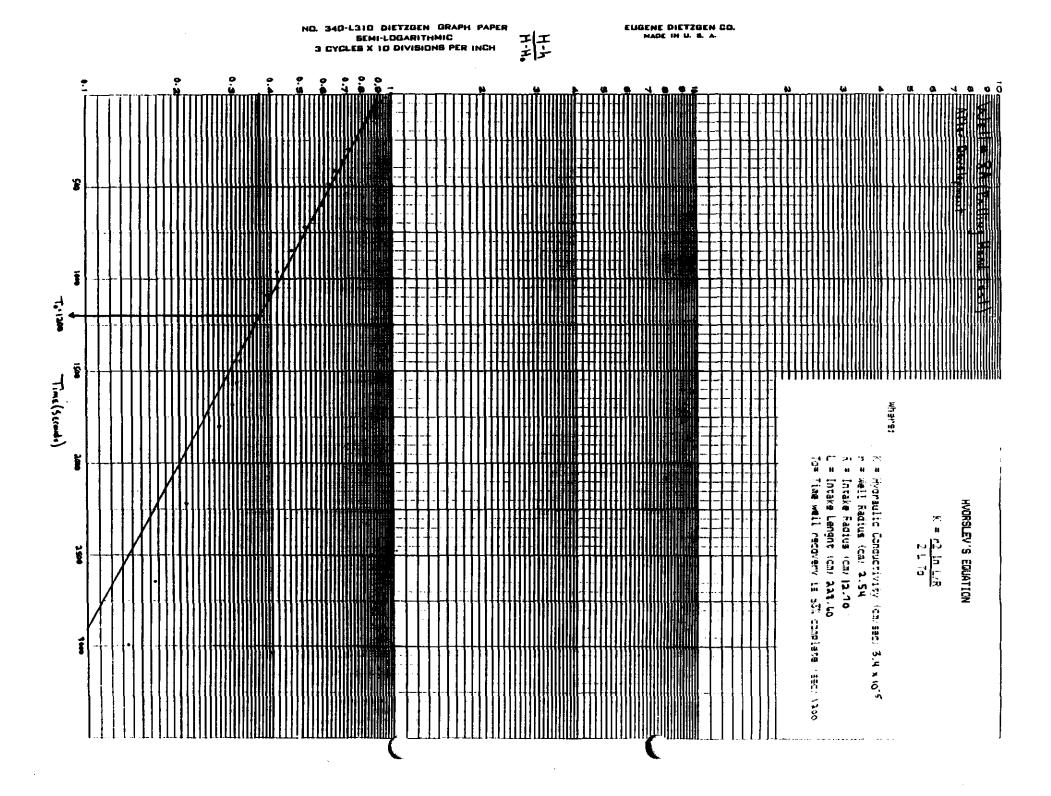
-

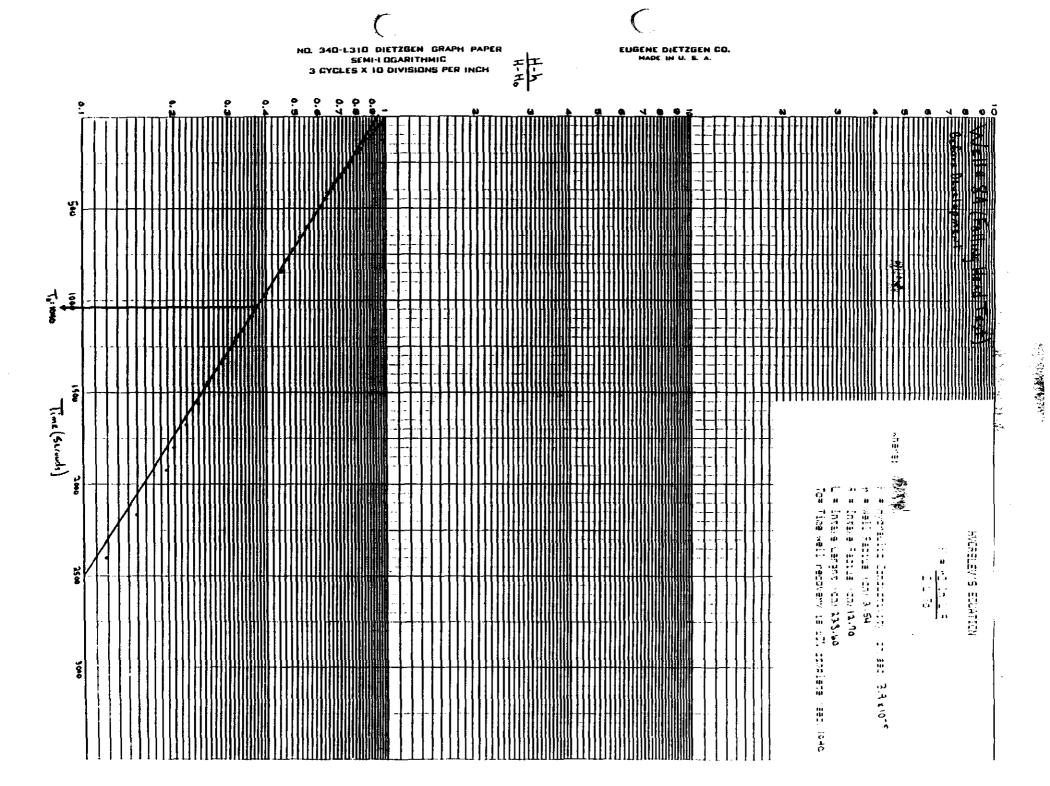





and a second




. nut


 $\{ \cdot \}$

2 1. 建建合金

CKMHILL

TECHNICAL MEMORANDUM NO. 3

TO:	Fred Bartman/U.S. EPA Remedial Project Manager
FROM:	Randy Videkovich/CH2M HILL Project Manager
PREPARED BY:	Cynthia Cruciani/CH2M HILL
DATE:	March 2, 1988
RE:	Monitoring Well and Piezometer Installation
PROJECT:	Arrowhead Refinery Fieldwork Design Investigation W68802.FI

INTRODUCTION

Monitoring wells and piezometers were installed at the Arrowhead Refinery site between September 14 and October 25, 1987. The piezometers were installed to obtain additional data for:

- o Establishing groundwater flow characteristics in the upper granular units (fill and peat)
- o Defining groundwater flow characteristics through the deeper sand and gravel zones (i.e., the lower granular unit)
- o Establishing groundwater flow characteristics in the bedrock
- o Refining hydraulic gradients at the site
- o Refining the lateral and vertical extent of groundwater contamination
- o Obtaining additional subsurface soil samples to provide information regarding the site stratigraphy

This memorandum describes drilling and well installation procedures and also includes boring logs, well installation information, and well development records.

. A 15 TECHNICAL MEMORANDUM NO. 3 Page 2 March 2, 1988 W68802.FI

PERSONNEL

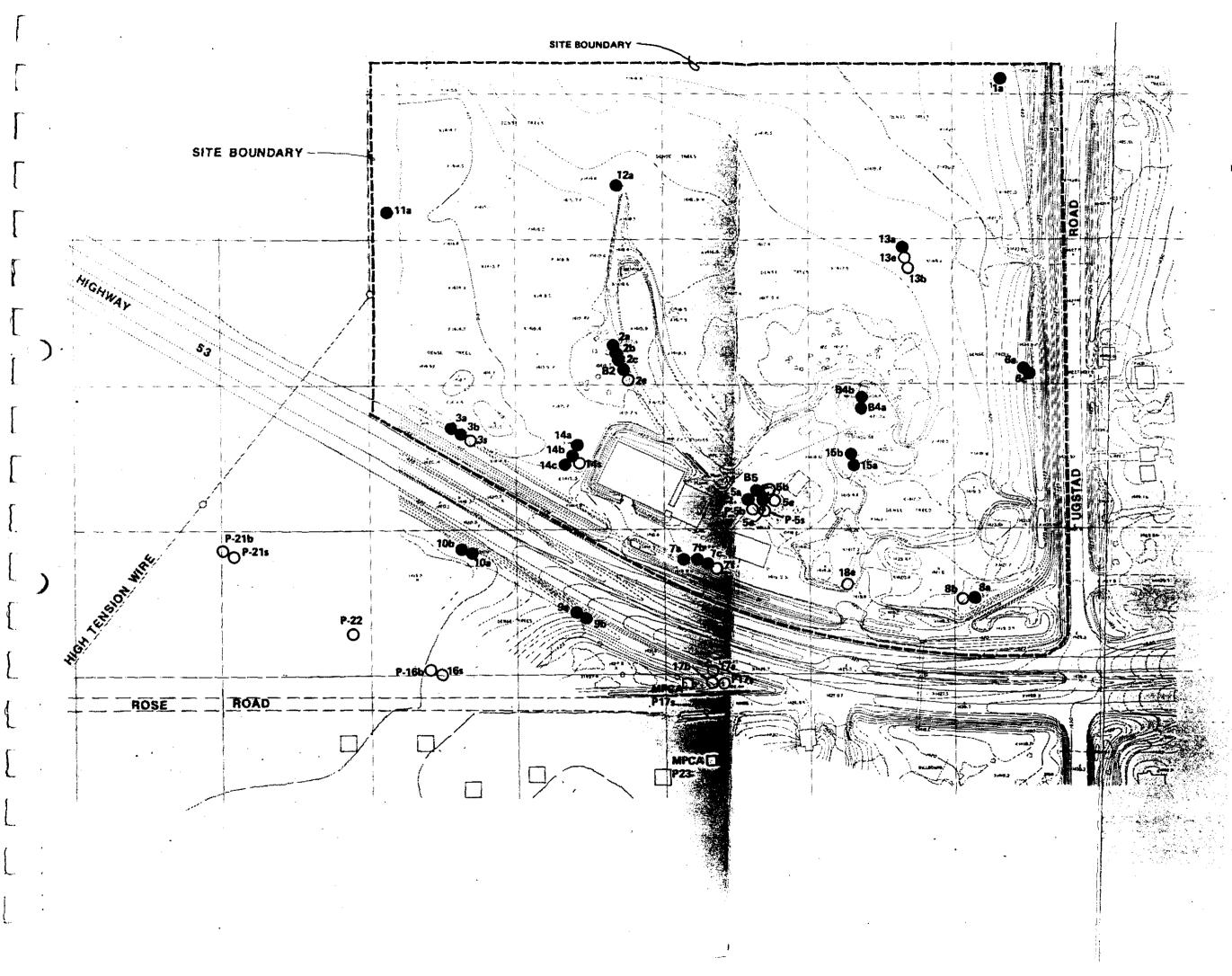
Personnel participating in this task were:

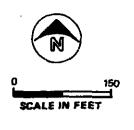
- o Jewelle Imada, CH2M HILL
- o Cynthia Cruciani, CH2M HILL
- o Jim Russell, CH2M HILL
- o Bob Weinschrott, CH2M HILL
- o Jerry McLane, PRC
- o Larry Solhaney, Engineers International
- o Greg Weeks, Engineers International

The drilling and installation of wells and piezometers were subcontracted to STS Consultants, Ltd.

LOCATIONS

Well and piezometer locations were selected on the basis of previous site investigations and the results from the seismic refraction survey (see Technical Memorandum No. 1). The locations were staked out before drilling began by Jewelle Imada and Dave Crisman (MPCA). Actual drill locations were adjusted to accommodate drilling access or similar needs.


Existing and new monitoring well and piezometer locations are shown in Figure TM3-1. Thirteen new wells and 7 new piezometers were installed. The wells installed during this field investigation were screened in the bedrock ("e" designation), the lower granular unit ("b"), or the upper granular unit ("s").


DRILLING PROCEDURES

The borings were drilled using a CME-75 rig or a Mobile B-53 drill rig mounted on an all terrain vehicle carrier. The all terrain vehicle was used in low-lying wet areas and where access to boring locations was particularly difficult. This activity included the drilling of five bedrock wells and eight wells and seven piezometers in the overburden. The time used in completing each individual well is listed in Table TM3-1.

BEDROCK DRILLING

Boreholes for wells placed in the bedrock unit were advanced using telescoped casing methods. Hollow-stem auger drilling methods were used to the depth of the lacustrine unit. When the augers were removed, a 6-inch temporary surface casing was emplaced to prevent cross-contamination from upper to lower units. Rotary

LEGEND

EXISTING WELLS

NEW WELLS (PREFIX P DENOTES PIEZOMETER)

NOTE:

c

.

Suffix a, b, c, d, e and s designate different monitoring wells within a well nest.

- a and s = Shallow wells usually less than 15 ft.
 - = Usually between 20 and 30 ft.
 - Wells in the lower till, between 35 and 40 ft.

 Shallow bedrock wells, estimated depths of 50 or 60 ft.

FIGURE TM 3-1 WELL LOCATIONS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

Table TM3-1 WELL CONSTRUCTION CHRONOLOGY

	Screened	D	Dates		
<u>Well No.</u>	<u>In Unit</u>	Start	End	Total <u>Days</u>	
MW-2e	BR	10-19-87	10-24-87	4.5	
MW-3s	US	09-25-87	09-24-87	0.5	
MW-5b	LG	10-12-87	10-12-87	1.0	
MW-5e	BR	10-07-87	10-10-87	4.0	
MW-7s	UG	10-06-87	10-06-87	0.5	
MW-8b	LG	09-27-87	09-28-87	1.5	
MW-13	LG	10-12-87	10-14-87	3.0	
MW-13e	BR	09-29-87	10-09-87	5.0	
MW-14s	UG	09-26-87	09-26-87	0.5	
MW-16s	ŬĠ	09-16-87	09-16-87	0.5	
MW-16b	LG	09-15-87	09-15-87	1.0	
(Piezometer installed instead: P16b)					
MW-17b	LG	09-23-87	09-23-87	1.0	
MW-17e	BR	09-16-87	09-26-87	6.5	
MW-18e	BR	09-26-87	09-30-87	4.0	
P-5s	UG	10-13-87	10-14-87	2.0	
P-5b	LG	10-08-87	10-09-87	1.0	
(Additional piezometer not originally planned)					
P-17s	UG	0 9-24- 87	09-24-87	1.0	
P-19s	ŪĞ	09-26-87	09-26-87	0.5	
P-20s	ŬĠ				
(P-19s and P-	20s not installed, s	ee text)			
P-21s	UG	0 9- 24-87	09-24-87	0.5	
P-21b	LG	09-23-87	09-24-87	1.0	
P-22s	ŬĠ	09-25-87	09-25-98	0.5	

Notes:

MW = Monitoring Well (Stainless Steel) P = Piezometer (PVC Pipe) BR = Well Screened in Bedrock UG = Well Screened in Upper Granular Unit(s) LG = Well Screened in Lower Granular Unit(s)

GLT932/012.50

TECHNICAL MEMORANDUM NO. 3 Page 3 March 2, 1988 W68802.FI

drilling methods were then used to the top of the bedrock. A second length of narrower, 4-inch casing was seated in rock to provide a conduit for return of bedrock cuttings to the surface. Once the casing was set, the bedrock was cored with an NX core barrel (core diameter of 2.155 inches). The borings were advanced until 10 feet of core was recovered, and the boreholes were reamed to a 4-inch-diameter with a rock bit as required by the Minnesota Department of Health (MDOH) Well Codes.

There was some difficulty in advancing the 4-inch casing to bedrock because of the boulder zone encountered just above the bedrock surface in most locations. Lithology of the boulders included both local and distant bedrock sources, indicating that the zone may be a glacially deposited till unit. The use of the rock bit to drill through 2-to 3-foot boulders did not allow for a wide or straight enough hole to be cased all the way to bedrock. In those cases, the bedrock coring process took longer because of slumping in uncased portions of the hole and in bedrock. Slumping also delayed well placement because the borehole had to be reamed completely to place the well at the desired depth in bedrock.

Soil, drilling mud, and purge water from onsite borings at Well Nests 2 and 5 were screened with an OVA flame-ionization meter and drummed in 55-gallon barrels because of high organic vapor readings.

A 10-foot core was not taken from boring MW-5e because the drillers miscounted the drilling rods and drilled 15 feet into the bedrock with a rock bit.

OVERBURDEN DRILLING

Hollow-stem auger drilling methods were used to advance borings above or to the lacustrine unit for installation of shallow piezometers or monitoring wells. The well screens were placed in upper granular materials. The same general procedure was followed for placing wells screened in the lower granular unit as for those screened in the bedrock, but the 4-inch telescoping casing was not used. Instead, a 6-inch surface casing was used to prevent cross-contamination between the upper and lower granular units. After advancement to the target depth, the wells were installed in the coarse material.

A bentonite drilling mud was used to drill most well holes below the lacustrine unit because of the nature of the coarse material and the silty material within the lower units. The mud facilitated removal of cuttings from the hole better than the use of water alone. The boreholes were thoroughly flushed with clean water to remove drilling mud before the wells were installed.

Health and safety monitoring of downhole and ambient air was conducted during the drilling. HNu photo-ionization meters (calibrated to 68 ppm benzene) and OVA flame-ionization meters (calibrated to 102 ppm methane) were used. Fogging of the UV lamp in the HNu necessitated backup use of the OVA. Elevated concentrations

TECHNICAL MEMORANDUM NO. 3 Page 4 March 2, 1988 W68802.FI

of organic vapors (up to 60 ppm, OVA) were encountered in the breathing zone during the drilling of some onsite wells. When organic vapor readings above level C conditions were encountered, drilling was temporarily halted and the area evacuated until levels dropped back down to safe conditions. A black ooze was brought up from some of the boreholes during the drilling of the shallow zones (approximate range from 0.5 foot to 15 feet at Well Nests 5 and 2).

STRATIGRAPHIC SAMPLING

The deepest well from each well nest was sampled to define the different stratigraphic units. Continuous split-spoon samples were obtained from ground surface to the bottom of the boring. After the split spoons were opened, the samples were logged and screened with an OVA or HNu. A visual description of each sample was recorded on a boring log by the onsite geologist (see Attachment A). A representative sample from each split spoon was then placed into prelabeled jars. At the end of the drilling program, the jars were placed into a 55-gallon drum, labeled, and moved to the central drum storage area.

Soil samples from wells MW-5e and MW-13e were submitted to CLP laboratories for chemical analyses for organic and inorganic compounds and incineration parameters as part of the soil sampling program (see Technical Memorandum No. 6). Laboratory results are discussed in Chapter 4 of this report.

The split spoons and sampling utensils were decontaminated between each sampling interval by rinsing with a trisodium phosphate solution, tap water, methanol, and a final triple rinse of distilled water.

WELL INSTALLATION PROCEDURES

MONITORING WELLS

Well construction diagrams for monitoring wells and piezometers are summarized in Figures TM3-2 and TM3-3; individual well construction diagrams as provided in Attachment B. Monitoring wells consisted of 2-inch-I.D., factory cleaned stainless steel screens and riser pipe. Screens were 0.010-inch, welded, wire-wound, continuous slot type. Teflon O-rings were used at joints to ensure a watertight seal.

Wells were placed into completed boreholes and the annular spaces around the screens were packed with sand. Sand was placed from approximately 1 foot below the base of the screen to at least 1 foot above the top of the screen. A thick, bentonite slurry seal was used above the sand pack for most of the monitoring wells. Two to 10 feet of slurry was used in most cases (see Attachment B). Bentonite-

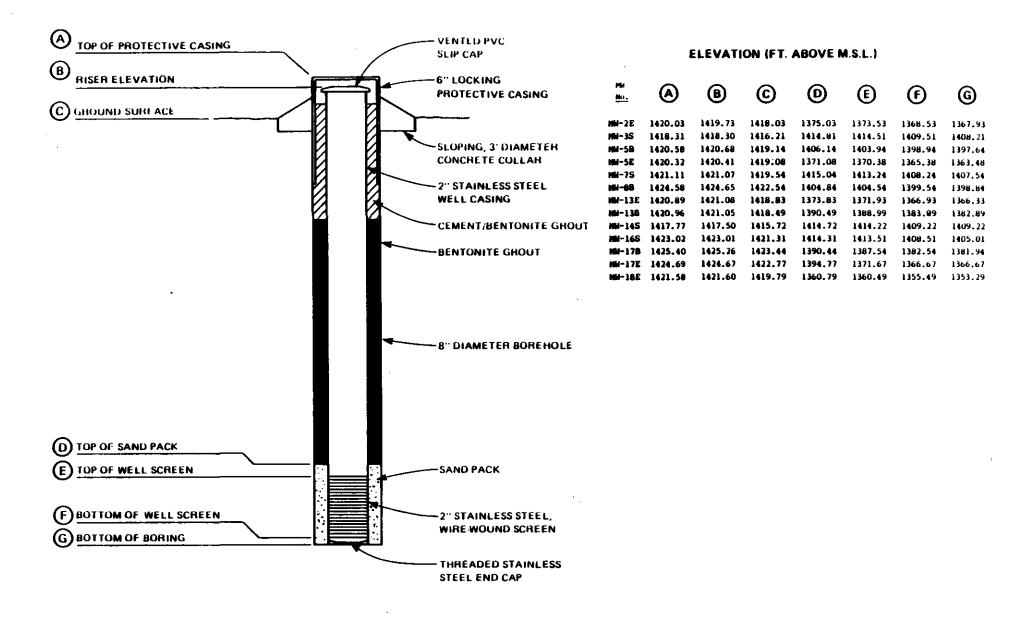
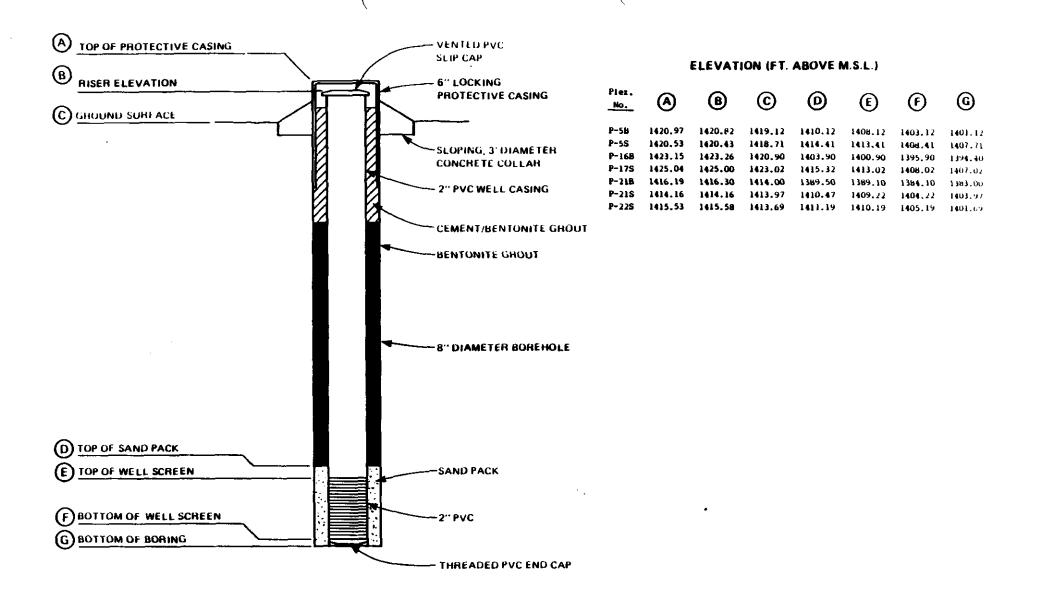



FIGURE TM 3-2 MONITORING WELL INSTALLATION DETAILS ARROWHEAD REFINENT FIELDWORK DESIGN INVESTIGATION

(

FIGURE TM 3-3 PIEZOMETER INSTALLATION DETAILS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

cement grout was then emplaced to the ground surface. The wells were completed with locking protective casings that were grouted in place above the well.

- .

PIEZOMETERS

Piezometers consisted of 1-1/2-inch-diameter, 0.010-inch mill-slotted PVC screen and PVC pipe. Screens were 5 feet in length. Piezometer depths and lengths are designated in piezometer construction diagrams (Attachment B). Piezometer installation was completed in the same manner as for monitoring wells, except that sometimes a bentonite pellet seal was sometimes used instead of bentonite slurry.

The MPCA had requested that a number of piezometers be placed in a wetland area southwest of the site. Piezometer P-20s was planned as the westernmost piezometer in the wetland. However, the MPCA did not obtain access to that location, so the piezometer was not installed.

Piezometer P-19s (south of the southwest corner of the main Gopher Oil building) was also not installed. The piezometer was to be screened in the upper granular unit, but upon drilling the borehole it was found that the upper granular unit does not exist at that location.

A piezometer was installed at boring MW-16b instead of a monitoring well because a lower granular unit was not encountered in which to screen the monitoring well. Piezometer P-16b was placed with the approval of the MPCA and will be used to obtain vertical gradient information.

An additional piezometer was installed at the Well Nest 5 location. Piezometer P-5s was to have been screened in the shallow coarse material. Since it was placed by error below the lacustrine silts in the coarse material, it was relabeled P-5b and Piezometer P-5s was installed in the correct position.

WELL DEVELOPMENT

The new wells and piezometers were developed by Don Johnston (STS Consultants, Ltd) between October 4 and 28. They were developed mainly by removing at least 10 well volumes by pumping with a centrifugal pump or surging with a foot valve attached to a length of PVC pipe. Development continued until the pH and conductivity measurements stabilized. Bedrock Wells 2e, 5e, and 17e stabilized with high pH readings (9.9, 8.4, and 11.2, respectively). The high pH readings may indicate grout contamination. Well development is summarized in Table TM3-2, and the development records are included in Attachment C.

GLT932/011.51

Table TM3-2 WELL DEVELOPMENT SUMMARY

		Time	Volume Removed	Appear Disc	ance of harge	
Location 1997	Development Method	(hr)_	<u>(gal)</u>	Before	After	<u>Comments</u>
MW-2c	Surging	2	22	Turbid	Turbid	
MW-3s	Surging	2	6.5	Opaque	Turbid	
P-5s	Surging	3	20	Opaque	Turbid	Water smelled.
P-5b	Surging	2.5	25	Opaque	Turbid	Water smelled.
MW-56	Pumping	0.5	86	Turbid	Clear	Pumping rate 14.2 gpm.
MW-5e	Surging and Pumping	3	86	Turbid	Clear	Pumping rate 0.5 gpm.
MW-7s	Pumping	1	55	Turbid	Clear	Good well water clear and clean.
MW-86	Surging	2	37	Opaque	Clear	
MW-13b	Surging and Pumping	3	66	Opaque	Clear	Pumping rate 0.5 gpm.
MW-13e	Pumping	1.5	102	Turbid	Clear	
MW-14s	Bailing and Surging	2	12	Opaque	Turbid	
MW-16s	Surging	2	20	Opaque	Turbid	
P-16b	Surging	2	30	Opaque	Turbid	
P-17s	Surging and Pumping	1	180	Turbid	Clear	Pumping rate 12 gpm.
MW-17b	Surging and Pumping	2	100	Turbid	Clear	
MW-17c	Surging	2	80	Turbid	Clear	рН 11.2.
MW-18c	Surging	2	10	Turbid	Turbid	Very slow recharge.
P-21s	Surging	2	20	Opaque	Turbid	
P-21b	Surging	2	25	Opaque	Turbid	
P-22s	Surging	2	10	Opaque	Turbid	

.

TM 3--MONITORING WELL AND PIEZOMETER INSTALLATION

Attachment A BORING LOGS

.

GLT932/007.50-3

.

СКМНЩ	ļ

PROJECT NUMBER

BORING NUMBER			-
MWOZ-	·E	SHEET	1

orS

SOIL BORING LOG	S	oı	L	B	0	R	IN	G	L	O	G
-----------------	---	----	---	---	---	---	----	---	---	---	---

South of sludge lagoon PROJECT ARROWNEAD REFINERY LOCATION 515 FLEVATION ORILLING CONTRACTOR ORILLING METHOD AND EQUIPMENT HSA 31/4 1D to 10.0' - rock bit (mud rotary to bedrock) START 10/19/87 LOGGER (TERALD A. MELANE 10/23/87 FINISH WATER LEVEL AND DATE STANDARD SOIL DESCRIPTION COMMENTS SAMPLE ENETRATIO E TEST DEPTH OF CASING. RECOVER NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY DEPTH DELOW SUMPACE REALL T TYPE AND NUMBER NTERVAL DRILLING RATE. 5-6-6 DRILLING FLUID LOSS. (N) OR CONSISTENCY, SOIL STRUCTURE. MINERALOGY, USCS GROUP SYMBOL TESTS AND INSTRUMENTATION brown silty sand w/ increasingly leg 0 OVA sample silt towards bottom, some gravel (210%) 1.2 >1000ppm sand is med to coarse grained. 2 NO RECOVERY 0 0-0.5' brown s. It, sand and peat evenly distributed, sand is predom. med grained. 4 top as visibly contaminated örgppun Hnu/300 pilm 1.0 o.s. 10 peat oya 6 0-0.3' peat-visibly contaminated with 200ppm over 57 0.3-07 blue grey silty clay, clayer B 0-0.4' blue grey silty clay, clayer VISIBLY CONTINUMET silt w/ = 20-30% beat disseminated throughout sample 300-1000ppm OVA visilly sourced w/ oil VISIBLY CONTAMINATED 1.2 04-1.2' blue grey silty day, day cy sitt 0 brown sandy silt with some grabel, VISIBLY CONTIMUNATED sand is fine to wed grained. 500ppm OVA 1.4 12 brown silty day ~ dayey silt LOppm to 5.0ppm OVA 1.0 14

			. <u></u>		SOIL BORING LO	G
ECT	ATCA	att	AD R	EFINER	LOCATION South of	sludge lagoon
ITION		ND EQU	IPMENT	HSA(3/4	HID) TO 10.0 - Mud rotary to B.R.	
	L ANO 0				START _ 10/19/57_ FINISH 10/23/87	LOGGER GETALD A MEL
67)		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
BUNFACE (MTERVAL	TYPE AND NUMBER	RECOVER'	TEST <u>RESULTS</u> 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	DEPTH OF CASING. DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
14 .	- - - -		1.7'		same as above	0.6 ppm 044
16 -			1.2		trown clayers silt, 1.0 mm thick red clay layers = 20" apont appen throughout sample (VARVES) ?	2.0ppm 0V4
18 - - -			1.2		same as above-tracegravel in lower 0.4'	0.2 ppm OVA
10			1.7		brown clayers silt, 1.0mm thick red clay layers & 2.0" apart oppean throughout sample (vARVES)	o.oppm OVA
·2			1.5'		same as above, except from as'to 1.0' there is a longer of brown sandy sitt w/trace gravel	O.Oppm OM-
24 -			0		NO RECOVERY	Hammen blows indicate + Cat + hi interval contains significant grave(
			1.7		brown clayey sandy silt with ~ 15% gravel, sand is fine to medi. grained - og-1.2' brown clayey silt, no sand or gravel	0.0ppm CVA
28-		<u> </u>	 		or gravel	

·

•

				ſ	PROJECT NUMBER	BORING NUMBER	
MHILL				· -		MW-87-02E	SHEET 3 OF 5
					SO	IL BORING LOG	3
	i.row	UKRO		-INZRY		OCATION SOUTH SIDE	OF SLUDGE LACOC
ATION		·	· · · · · · · · · · · · · · · · · · ·	1 1KA (34	DRULING CONTRACTOR		
LING ME			PMENT.	<u></u>	START 10/19/87		LOGGER GETLALD 4 M
		SAMPLE		STANDARD			COMMENTS
E				PENETRATION TEST RESULTS	NAME, GRADATION O		DEPTH OF CASING.
DEPTH NELOW NUNFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	8"-6"-4" (N)	PARTICLE SIZE DISTRIE MOISTURE CONTENT, RE OR CONSISTENCY. SO MINERALOGY. USCS GR	UTION, COLOR, LATIVE DENSITY IL STRUCTURE, IOUP SYMBOL	DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
28				-	brown sandy silt gravel, mmor clay in boulder from 28.5 downprojure for	with some (15%)	0.0 ppm ova
-			03'		graver, more curry is	1 La 79 51 (rall	
4					poulden from LO.J	Lo be no hould	Arough
30 †						the per man-10	
4					no sample colle		
4					gravel+silts,	minor sand-	٩
4					several large		
1					several large	bon more	
1					(31-32), (33.75-	· 34.5 '), 1	
1					balls of silt; + clay +	in siltcomine	
]					willen a Can	&+anavel maan	
_]					- p m cuuse soon		
5-					· · · · ·		
- 1							
4					с. — — — — — — — — — — — — — — — — — — —		
4					Thick, dense, har	a gravel and	
┥					boulders	ر ^ب	
ļ							
4							
4							
ю-+					· · · · · · · · · · · · · · · · · · ·		
-							
-							
ł							
- 1				-			
		<u> </u>		-	l		

ł.

•

					41,0-
	Figure 1 ROCK CORE LOG, FORM 2113A	Figure	FRACTURE AT 46.5	ZN	
				D RL	46.0
			FRACTURE AT 45.6	/~ /(45.5
		•			450-
	+	•	FRACTURE AT 46.75-	<u>ue(ou</u>	44.5_
C			}	chy	44,0-
			THEND OF KUN 43,5		43.5
	20%	ABAPHIBOLZ (PROBABLY HOR CRELY PLACILLASE AUGITE	FRACTURE AT 43,35	/	
		- 12-12-1		<u>st</u> k	42.5
	THREECHOUT	-CITHOLOGY CONSISTAN	FRACTIVE AT 42.0	EUN	42,0-
	MTHERD IF AT	-ONCY SCIENTLY WE	•]	/ /0	41.5-
(- COARSE GRAINED	FRACTURE AT 41.0'	0% RE	41.0
		Brinican Ionel	FIZST RUN STARTS AT 40.7'	curry	40
	CORING ATE AND SMOOTHNESE CAVING ADD OFFINESE CAVING ADD OFFICEST ALSULTS, ETC.	Mindpallogy, TDTTURE, WEATHERING, HAADNESS, AND ROCK HAADS CHARACTERIETICS	PER FOOT	CORE NUI LENGTH. RCOVER RQD(%) FRACTUR	DEPTH BI SURFACE
	SIZE AND DEFTH OF	NOCK TYPE COLOR	DISCONTINUITIES		
	151	FINISH 10/23/87 LOGG	OUISWENT PROPERTY OF AND STA	WETHOD AND I	WATER LEVEL
	· SUDGE COGENA	LOCATION SOUTH SIDE OF	ELEVATION DIAMOND BIT COTT FAMOR	Andown	PROJECT_
		ROCK CORE LOG			
	smeet 4 or 5	MW-87-02E	PROJECT HUMBER		

•

Слими	u			PROJECT HUMBER		NW-87-02E	SHEET 5	5 00 5
						ROCK CORE LO		
PROJEC	T	Rout	CAD REEINERY			LOCATION SOUTH SIDE	FOR SLUIGE LA	6362
ELEVAT	10N		· · · · · · · · · · · · · · · · · · ·	ID BOCK BIT	GTOR	<u>545</u>		
			EQUIPMENT DIAMON	START 10/			LOGGER CERAL	nΔm
	LEVEL		DISCONT					MMENTS
						ROCK TYPE COLOR.	SIZE AND	DEPTH OF
DEFTH RELOW	COME BUM. A	ROQ (N) FRACTUMES	B DEPTH, TYPE ORIED PLANARITY, INFILL THICKNESS, SURFA THICKNESS		GALTH	MINERALOGY, TEITURE WEATHERING, HARONEI AND ROCK MASS CHARACTERISTICS		ATE ANO IESS, CAVII IS, TEST
						CONTINUOUS STRI	NG	
47,0-	5	\mathbb{N}^{+}	4		4	OF CORE FROM	_	
_	12					LAST PRACTURE A		
和5-	ŚŚ	-	-1		1 h	46.5 DUWN TO P		
480	20					of core at 48,5	-	
100	2 3	-			11	•		
485	2 n d					.*		
/			BOTTOM OF	corE 48.5		•		
						•		
4			4		╡┝			
4			4		┥┝	•		
-			-			•		
4			1		11	•	ļ	
			7][
			4		┥┝	•		
			4		┥┝	•		
-		╎┝╸	-		┥┡		Figure 1 ROCK CORE LO	<u>a</u>
							FORM 2113A	4 9,
-		╞╴┝╍	-		┥┝			
	1							

÷ .

REV 7/86 FORM 071118

PROJECT NUMBER

BORING NUMBER MW-87-35 SHEET / OF /

SOIL BORING LOG

LOCATION WEST OF GOPHER OIL MIZON HEAD REFINERLY PROJECT _ STS ELEVATION DRILLING CONTRACTOR 43/8" (D. HOLON STEM AUGER DRILLING METHOD AND EQUIPMENT. ୨/2୭/୪୦ 9/25/87 LOGGER GETLAND A. MSLANS FINISH START WATER LEVEL AND DATE STANDARD SAMPLE SOIL DESCRIPTION COMMENTS PENETRATION TEST ELEVATION NAME, GRADATION OR PLASTICITY. SYMBOLIC LOG DEPTH OF CASING. TYPE AND NUMBER RECOVERV REQUIT DEPTH BELOW SURFACE NTERVA PARTICLE SIZE DISTRIBUTION, COLOR. DRILLING RATE. 6-6-6 MOISTURE CONTENT, RELATIVE DENSITY DRILLING FLUID LOSS. (N) OR CONSISTENCY, SOIL STRUCTURE. MINERALOGY, USCS GROUP SYMBOL TESTS AND INSTRUMENTATION 0 top 7" brown clayer sandy sitt. trace gravel, sand is med. gr. 0.0 ppm Hnu 13" 4,3,3,3 peat smells oily 0-2' lower 6" peat with minor sanch+ gitt-smells oily 2 clayey peat, peaty clay 0.0 ppm Hnu 5″ 4,4,4,4 luoks + smells slightly 2-4 oily 4 top 6" blue clay-minor peat+silt 6,6, 1,5 lower 11" brown clayey sitt, mottled same as above. 17" 4-6' blue - trace very fine gr. sand 6 top Z" peat -Hm deflection lower 13" - brown sandy solt, solty 15" 6-8' to 4.5 ppm sand-mottled dank brown 8 END OF BORING

		CH2M HILL	
--	--	--------------	--

PROJECT NUMBER

<u>W68802-FI</u>

BORING NUMBER PB7-055

SHEET / OF

SOIL BORING LOG

ARROWHEAD REFINERY HERMANTOWN, MM PROJECT . LOCATION CONSULTING 573 ELEVATION DRILLING CONTRACTOR . <u>6 =18_HSA</u> DRILLING METHOD AND EQUIPMENT_ 10-14-87 10-14-87 LOGGER <u>GREGORY C. WEEK</u> START FINISH WATER LEVEL AND DATE STANDARD SOIL DESCRIPTION COMMENTS SAMPLE PENETRATION TEST NAME. GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE. MINERALOGY, USCS GROUP SYMEOL ELEVATION RECOVERY DEPTH OF CASING. REAULTS 9 TYPE AND NUMBER DEPTH BELOW SURFACE DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION INTERVAL 2 6-4-4-No 1 (N) 0 FOR SOLL DESCRIPTIONS SEE BORING LOG MW87-05E 2.5' 5.0' 7.5 10.0 6 % HSA FROM O' TO 11.0' 12.5.

REV 11/62 FORM 01586

~ .

CH2M ≌HILL

15.0'

PROJECT NUMBER W68802-FI

SHEET 1 or 2

SOIL BORING LOG

BORING NUMBER P87-05B

	ANO C				MENT 4.25 H.5A						
		SAMPLE		STANDARD	SOIL DESCRIPTION		COMMENTS				
NELOW SUMFACE	INTERVAL.	TYPE AND MUMBER	RECOVERY	TEST RESULTS 6"-6"-6" (N1	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	LOG SYMBOLIC	DEPTH OF CASING. ORILLING RATE. ORILLING FLUID LOSS. TESTS AND INSTRUMENTATION				
					FOR SOIL DESCRIPTIONS SEE						
4					BORING LOG MW87-05E.						
4											
ł]					
5-					-						
4											
4					-						
-											
					•						
:0'-					-						
1					-						
]	1				-						
]	İ										
5'-					_						
۲ آ					-						
4					-						
┥	!										
4					-						
0'-					-						
- 1					-						
1					-						
- 4		1			-						

CK.MFHL	

PROJECT NUMBER	BORING NUMBER		_		
W68802-FI	PB7-056	SHEET	<u> </u>	<u>0</u> £	2
SOU	BORINGLOG				

SOIL BORING LOG

PROJECT _______ARCOWHEAD__REFINERY

LOCATION HERMANTOWN MN.

- - -

ELEVATION ____

DRILLING CONTRACTOR ______ LOCATION ______

DRILLING METHOD AND EQUIPMENT 4.25 HSA

WATER LEVEL AND DATE ______ START 10-08-87 FINISH 10-08-87 LOGGER 6166064C. WEEKS

	!	SAMPLE		PENETRATION	SOIL DESCRIPTION	COMMENTS
DEFTH BELOW BURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY	TEST REGULTE 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	DEPTH OF CASING. DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
						· · · ·
4						
4						
17.5	ļ		l			•
ł					4.25 HSA FROM 0' TO 18.0' Sugary C. Weeks.	
]					Guegory C. Weeks.	-
20.0-					_	· _
4						
4						
]						-
-						
4						
]						
4						•
-				}		-
4						
]						
-						•
-						-
4						
]				}		
•						
-		<u> </u>	L			

					PROJECT NUMBER	BORING NUMBER					
					W68802-FI	MW 85-05B	SHEET OF				
RMFHU				_		L BORING LOG					
	A. 0.	en	HEAL	O REFI	VERY	LERMAN	TANIA MIL				
			IPMENT.		25 HSA						
ER LEVEL AND DATE START FINISH FOR START											
- I	_			STANDARD	100 05200		COMMENTS				
5			~	PENETRATIO TEST							
DEPTH BELOW BURYACE	INTERVAL	TYPE AND MUMBER	RECOVERY	REBULTS 6"-6"-6" (N3	NAME, GRADATION OR PARTICLE SIZE DISTRIBL MOISTURE CONTENT. REL OR CONSISTENCY. SOIL MINERALOGY. USCS GRO	ITION. COLOR. ATIVE DENSITY STRUCTURE.	DEPTH OF CASING. DRILLING RATE. ORILLING FLUID LOSS. TESTS AND INSTRUMENTATION				
ł					FOR SOIL DESCR						
4					BORING LOG 1	NW87-05E					
-											
2.5-											
4											
				i							
1											
50-											
4											
-											
-					•						
1											
7.5 -											
1											
4											
- 1	1										
4											
10.0-											
4											
1]							
1											
12.5											
4			!								
-											
4		1		1	. .						
		1			1						

	J
CH.M.HILL	
المنكية	

PROJECT NUMBER	BORING NUMBER				
W68802-FI	MW87-05B	SHEET	1	OF	1
S	OIL BORING LOG				

PROJECT .	<u>ANROWHEAD</u>	REFINERY	LO
	۱	DRILLING CONTRACTO)A

CATION HERMANTAWN MN

.

. . .

<u>HSA</u>

STS CONSULTING

DRILLING METHOD AND EQUIPMENT _______ WATER LEVEL AND DATE

START	10-12-87 FINISH	10-13-87 LOGGER	<u> CRECORY C. WEEK</u>

F SAMPLE		PENETRATION	SON, DESCRIPTION	COMMENTS		
DEPTH BELOW BURFACE (FT)	MTERVAL	TYPE AND NUMBER	RECOVERY (INCHES)	TEST RESULTS 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE. MINERALOGY, USCS GROUP SYMBOL	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
-						
17.5-						-
20.0'-						
 					6.25 HSA FROM O' TO 21' Gugny C. Weeks - E.I.I	
22.5'					Auguy C. Weeks - E. I.L	
						-
	4 4 4					
						-
						-

|--|

PROJECT NUMBER W68802 FI

.

ŧ.

SHEET | OF

SOIL BORING LOG

SORING NUMBER LMW-5-E

LING ME	THOD AN	IO EQUI	IPMENT	<u>HSA</u>			
ER LEVE	L ANO DA	.TE			START _10-7-87 FINISH _10-8-	.87	LOGGER CINDY CRUC
			,	PENETRATION	SOIL DESCRIPTION		COMMENTS
DEPTH BELOW SURFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	TEST - RESULTS 6"-4"-4" (N)	NAME, GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION. COLOR. MOISTURE CONTENT. RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE. MINERALOGY. USCS GROUP SYMEOL	LOG LOG	DEPTH OF CASING. DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
-				12, 13, 14,23	VERY BLACK SILTY CLAY, TRACE SAND, GRAVEL, MOIST WITH - VISIBLE OIL LIKE MATERIAL	62 ML	12 ppm HNU
~ 1				9,12,14,28	BROWN FINE TO COARSE SAND, SOME GRAVEL, MOIST. TRACE - OF OIL LIKE MATERIAL	sw	· .
++ - -				2,2,4,4	DARK BROWN TO FREY SILTY CLAY, TRACE FINE SAND, PLACTE MOIST	CL	5рот Ниц
6				22, 37, 3 9, 34	BROWN SILTY FINE TO COARSE SAND, WELL GRADED GRAVEL	GW	15-20 рот Ниц
¥ -				7,4,20,22	RED BROWN SILTY FINE TO COARSE GRAINED SAND AND GRAVEL	524	2.5 ppm HNH
10 —				7,6, ¹¹ ,13	BROWN SANDY, SILTYCLAY	<i>cy</i> m2	
- 21					-		NO RECOVERY
- 4	$\left - \right $						

	H2M				ſ	PROJECT NUMBER	BORING NUMBER		·····
	HILL					W68802 ET	MW-SE	SHEET Z OF	4
L	J					SOI	L BORING LO	G	
	0.1507	AR	RALL	EAD	REC	EINERY LO	HEPLAN		
						DRILLING CONTRACTOR	T C	LOWN / MINNEGER	<u> </u>
					HSA	1 MND ROTARY			
				111- 141 IST 4 1		START 10/7/87	10/5/67	LAND CILIPE C.	
1					TANDARD				
_		<u> </u>	SAMPLE	l T	PENETRATIO	SOIL DESCRIPTION	, 	COMMENTS	
ELEVATION	DEPTH BELOW SUBFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	85943.78 6"-6"-6" (N)	JAME, GRADATION OR PL PARTICLE SIZE DISTRIBUTION MOISTURE CONTENT, RELATIV OR CONSISTENCY, SOIL STI MINERALOGY, USCS GROUP S	N. COLOR.	DEPTH OF CASING. DRILLING RATE, DRILLING FLUID LOS: TESTS AND INSTRUMENTATION	S.
	- 14				6, 73, 2	RED BROWN CDARS	RAVEL		
	16 -				7, 6, 5, 4	RED BROWN COAR TRACE SILT AND G WITH COBBLES	SE SAND, RAVEL - Sp	1.0 ppm HNI	
	18-								
	-					NO RECOVERY POSSIBLY GRAVEL	·]		
			·						
	20 -			1.3′	ר,8,7	DARK BROWN PLA SOME CLAY, VERY THRONGHONT	STIC SILT, CONSISTER ML	0.2 ppm HNU	
1									
	9 9 9 9 4			1.5'	8, 10, 9, 11	BROWN TO FREY US SILTY CLAY	ERY PLASTIC	4	4
	24-								
					7,9,9,16	LIFHT BROWN TO B CLAY WITH TRACE	ROWN SILTY E GRAVEL CL/M	0.3 ppm HAY	
	26 -				12,13,18,10	SAME AS 24	26' - ce/m	Ipp HNN	
	28 -							· · · · · · · · · · · · · · · · · · ·	
							}		

|--|

W68802 FI

PROJECT NUMBER

SHEET 3 OF 4

SOIL BORING LOG

BORING NUMBER

MW-SE

REFINERY PROJECT ARRAMHEAD LOCATION HERMAN TOWN MINNESOTA STSDRILLING CONTRACTOR ELEVATION HS A Mnp ROTA RY DRILLING METHOD AND EQUIPMENT. 10/7/87 FINISH 10/8/87 LOGGER CINDY CRUCIA~ START WATER LEVEL AND DATE . STANDARD SOIL DESCRIPTION COMMENTS SAMPLE ENETRATION TEST HAME, GRADATION OF PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR. DEPTH OF CASING. ELEVATION đ RESULTS TYPE AND NUMBER RECOVERY DRILLING RATE. DRILLING FLUID LOSS. DEPTH BELOW BUNFACE SYMBOL LOG NTERVA MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE. MINERALOGY, USCS GROUP SYMBOL 6-6-6 TESTS AND INSTRUMENTATION (NS SPOON REFISAL 28 COBBLES PEBBLES OF VARIED 0.2" 18 AFTER 6" LITHOLOGY. SOME BROKEN PIECES. BOULDER 29" 30 BROWN CLAYEY SILT, SOME 1.0 ppm HNU GRAVEL, TRACE SAND, VERY MΥ 6.81 17,14,27 DENSE c2 32 BROWN CLAYEY SILT, TRACE 9.05 AM STARTED ٢٢ 17, 15,10,9 SAND, WET, SOFT USING 330 12 1.31 MANNER OI ppm HNU 3+ BROWN SANDY SILT, SOME FRANK 0.0 ppm HN4 1.11 10,9,18,20 PEBBLE TO 5 mm, WET, SOFT ML 36 OI ppm HAN SAME AS ABOVE **ML** 0,9119,25,32,15 HARD RESISTANCE AT 381 (ROCK?) 38. OVER ORILL NO RECOVERY 40 BROWN. TO BROWN LIGHT VERY DENSE, DRY TO MOIST 19,30,62 GRAVEL, SANDY SILT WITH ML. SOME SAND SEAM(42

REV 11/82 FORM 01586

					1	PROJECT NUMBER	SORING NUMBER	۹			1
						W68802, FI	NW-SE		SHEET 4	OF 4	
L]					sc	DIL BORING	LO	G		
	OUTCT	1 20		n f	RITECT			A6 A 1		-	1
				<u> </u>		ORILLING CONTRACTOR	STC	<u>/</u>			-
				IPMENT	HCA.				·····		-
						START 10/7/87	FINISH 10/8/	87	LOGGER	LANC	- 4 ~ 1
			SAMPLE		STANDARD				COMMEN		7
ELEVATION	DEPTH BELOW BUNFACE	INTERVAL	TYPE AND MUMBER	RECOVERY	TEST <u>RESULTS</u> 6"-6"-6" /NS	LAME, GRADATION OR PARTICLE SIZE DISTRIBUT MOISTURE CONTENT, RELA OR CONEISTENCY, SOIL MINERALOGY, USCS GROU	TION, COLOR. ATIVE DENSITY STRUCTURE	LOG SVABOLIC	DEPTH OF CAS DRILLING RATI DRILLING FLUI TESTS AND INSTRUMENTA	E. O LOSS.	
	42					SAME AS ABOVE			1.5 Ppm HN	ч]
					37,50	}	-				1
						FRACTURED ROC	K/BONLDER - ZOHE		BEDROCH	43 '	
	99										1
	-		•				_			· -	
	- 4						. –			-	1
	4				[[-	{
	- 4						-			-	1
							-			•	4.
	_						-			-	4
							-				
]					-]
]
	1									-	1
	1						-			-	1
	-									-	
	. 4						-		-	-	\sim
	4				4		-			-	1
	4									-	
							-		1	-	1
		ļ									[
					-	1]
	1				· ·	1	-]
	-						-			-	Į
	4						-			•	1
	-		1				-			-	1
							-			-	1
							-				┥
			}		1		-			-	1
			i i				-			-	
			ļ								1
		I	1		1.	1	-			-	ן
				<u> </u>	· ·						t

		PRO	0.18CT NUMBER W68902-FZ	BORING NUMBER MUBT-075	SHEET OF	
				SOI	L BORING LOC	3
	ARI	0w+-	PL REFT		CATION HERIPAN	
			NT_6.25	ORILLING CONTRACTOR	s spirt spoon g	2"
		TE	STANDARD STANDARD	87 START 10/06/27 SOIL DESCRIPTION		OGGER <u>CIES UES</u>
) <u>w</u>	-	9 a 🛓	TEST RESULTS	NAME. GRADATION OF PL		DEPTH OF CASING.

DEPTH RELOW SUMFACE	INTERVA	TYPE AND NUMBER	RECOVER	6"-6"-6" (N)	PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLI LOG	DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
	0' To Z'	/	12"	8-14-1 7-16 (31)	SAND & TORSOIL : Crace grave 1; loase; black-brown. SANDY CLAY : hittle grave'; trace sitt; very stiff; brown. (4,11)	OL CL	DACC - EFSTELSING OVA = OFFITT O905 - SAMPLE PULL O907 - OVA = OFFIT
2.5 -	2' 70 4'	2	18"	9-16-16-18 (32)	SRUDY CLAY : little gravel; trace silt; very stiff; brown (Fill)	CL	0910 - SAMPLE PULL - 0912 - OVA = GUAM
5.0	4' .TO 6'	3	/3"	5-6-4-5 (10)	MED TO COARSE SAND : Some clay; little gravel; trace sit; loose; brown.	SC	0915 - SAMPLE FULL 0917 - OUA = Oppm: DOWN HOLE = Oppm WATER AT 6.0'
7.5 -	4' TO . B'	4	12"	8-19-16-19 (35)	SILTY SAND: /ittle grouel; med dense; brown.	3M	0922 - SAMPLE PULL
-10.0	8' To 10'	5	15"	6-9-9-9 (18)	MED TO coarse gravel: some peobles; little sand; trace silt; med dense; brown. (well graded)	GМ	0930 - SAMPLE PULL 0935 - OUA = Oppm
10.0	10' TO	6	18"	4-3-3-3	as above	GM	0940 - SAMPLE PULL 0945 - OUA = Oppm.
	12'		 	(6)	S1LT: 1005E; EOB AT 12.0'	тL	COUN HOLE = Opport
12.5 -					6.25 NSA from 0' To 12:0'		
							REV 11/62 FORM 0158

. •

12M HILL

PROJECT NUMBER

 BORING NUMBER	
MW-87-88	SHEET

<u> 35 2</u>

SOIL BORING LOG

	AND				(8 10) TO 20' - MUD ROTATZY TO BOTT	/ยา	LOGGER GERALDA MEL
nel.OW Sunface	NTERVAL	TYPE AND MIMBER	RECOVERY	STANDARD PENETRATION TEST RESULTS 6"-4"-4" (N)	SOIL DESCRIPTION NAME. GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION. COLOR. MOISTURE CONTENT. RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE. MINERALOGY. USCS GROUP SYMBOL	SYMBOLIC 100	COMMENTS DEPTH OF CASING. DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
				8,12,16,16	Bown fine sand with some silt+ - gravel, dry -		0.0 pair Hour
2			0.45	7,9,12,11	Brown sandy silt with trace _ fine gravel, moist		0.011111 Hnn
4 +	<u> </u>		0.65	(1,11,13, ()	0.3° Brown sandy silt-damp 0.3 med coarse black sand 0.1 wood		Orophan Hum
	.		1.35	2,2,3,2	MONT DANK BROWN PEAT- FIBROUS		7.0' C.C.ypn Hau.
8 -			0,6	3, 8, 2, 1	0.2' same as above 0.4' gray clayey silt		0.0 jijim Hny
0 -			1.0	4,6,4,5	grey clayer silt, trace med, to. coarse grained sand, trace fine gravel		O. Oppin Han
12+ - -			יצר.	4,6,6,11	grey sandy silt, silty sand- some gravel, trace clay- sand is med to coarse gri		0.0 ppm Hun

REV 11/82 FORM 01586

· ·
CH2M ■HILL

			-	_
PROJE	CT	NU	MŪ	£R.

BORING NUMBER MW- 87- 88

SOIL	BORING	LOG
------	--------	-----

PA	OJECT	AREC	sutte	AD T	LEFINER		<u>UF 01</u>	=FICE	_]
EL.	EVATION				UCA (437	ORILLING CONTRACTOR STS			
DA	ILLING ME	THOD A	NO EQU	IPMENT.	HSA (43/		<u>a</u>	CEDAID & ALLIAN	
~~ 	TER LEVE		ATE			SOU DESCRIPTION	COMMENTS	7	
ELEVATION	DEPTH RELOW SUNFACE	INTERVAL	TYPE AND MUMBER	RECOVERY	TEST <u>REBULTS</u> 6"-9"-6" (N)	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC LOG	DEPTH OF CASING. ORILLING RATE, ORILLING FLUID LOSS. TESTS AND INSTRUMENTATION	
	<i>14</i> - -			1.2'	4,11,72,76	-		C.Oppm Hnu	
	/6 - - - (8 -			1.7*	43 20 16	top 1.3' brown silty sand + _ grave! lower 0.4' brown sandy silt-soud is predom med.gr.		0.0ppm Hnu	
	-			0.7'	15 13 12 12	sand+gravel-poorly sorted all size fractions of sand represented		o.ojinn Hnu	
	20-			0.4'		same as above		0.0 ppm Hun	
	22			01'		gravel-rock fragments minumal necovery.		adppm Hnu	
	24 -	$\overline{\mathcal{N}}$	$\overline{1}$		11	RESAMPLE 22-24'11		1-1-1	1
	22 -			1.7'		top 1.0' sand + gravel-same ar above Lower 0.7'grey clayey silt- minorgravel		Oco ppm Hum	
	24 -					Bottom of Hole 23.7'			

İ	CH2M
ļ	

PROJECT NUMBER

MW-BI-13E SHEET 1 OF 3

SOIL BORING LOG

		lor	NH)		REFINE		H OF	SLIDGE LAGOON
RILLING				PMENT	HOLLON C	TEM AUGER TO 30'-MUD ROTAR START 9/29/87 FINISH 10/9/8	110	
	EVEL AND	_			STANDARD			LOGGER GERAD A. MSLANE
			MPLE		PENETRATION			
DEPTH	SURFACE INTERVAL		TYPE AND MIMBER	RECOVERY		NAME. GRADATION OF PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE. MINERALOGY. USCS GROUP SYMBOL	EVMBOLIC LOG	DEPTH OF CASING. DRILLING RATE. ORILLING FLUID LOSS. TESTS AND INSTRUMENTATION
	2	z		0.7'	3,3,2,3	Top 0.3' peat - then 0.4' Blue grey clayey silt with & - 15-20% peat interspersed		0.0 ррт Нпи
	3 - 2-4	+		1.1'	7,6,6,8	Brownish grey silty clay- clayey silt trace coarse on. sand and fine gravel, trace root hairs		0.0 ppm Hnu
4				1.8	19:15,12, 9	top 0.8' same as above	· · ·	0.0 pmm Hnu -
	7 -6-8	3		0.8	21, 24, 23, 93	brown silty clay - trace fine - gravel + medito course gr. sand trace roof hairs -		0.0 Hnu
9	3 +	0		1.8	5,8,11,9	same as above		0.0 PMU Hnu
10	1 - 10- 2	1Z		1.8	4,6,8,8	top a9 bounsilty clay-frace fine gravel + med to coarse gr. sand trace root hairs lower. ag. brown clayey silt -		0.0 ppm Hnu beginskipping as' intervolation each sp
	- 1 <i>X</i>	X	\mathbb{Z}	$\langle I \rangle$	(M/M	VM/K/M/X/X/X/X/	\mathbb{X}	KAKNY
12:		·		2.0'	5,5,5,11	hown clayey silt- red clay lenses = 1.0mm thick + spaced 1-2" aport oppen throughout sample (varves?)		O.Oppm Hnu
14.	o XX	Λ	$\langle X \rangle$	χ		XXXXXXXXX	\sum	

REV 11/82 FORM D1586

мЦ

.

_			_
PRO	JECT	NUM	48A

MW-87-13E

SHEET 2	0F3
	MU'-5L

SOIL BORING LOG

		,		FINER	LOCATION		
			-	HOLOW STE	MAUSER TO 30'- MUD ROTATLY TO	Bor	TOM OF HOU
			i i la secoli de c		START 9/29/87 FINISH 10/9/		LOGGER GERALD A. MSLAN
TERLEVEL				STANDARO	SOIL DESCRIPTION		COMMENTS
DEPTM BELOW SUNFACE	INTERVAL	TYPE AND MUNBER	RECOVERY	TEST <u>RESULTS</u> 6"-6"-6" (N)	NAME, GRADATION OF PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE. MINERALOGY, USCS GROUP SYMEOL	SVMBOLIC LOG	DEPTH OF CASING. DRILLING RATE, DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
15-16-			2.0'	6,8,10,2	brown clayey silt-red clay lenses = 1.0mm thick + spaced 1-2" apart appear throughout sample (varves ?)		0.0 ppin Hnn
17- 17.5-	V	XX	XX	13/87/53	NO RECOVERY	XX	XXXYXXX
19.5 - 20:0	X	Σ	(<u>X</u>) 1.2'	52,24,12,15	brown sandy clayey silt - some gravel - sand + clay in equal proportions - sand is v. fine to fine on, in upper half - predom, med. gr. in lower half		7. 1X. 7. 1. 1. 0.0 ppm Hnu
22 -			1.5'	23,25,29,17	brown sandy clayers silt, some gravel (= 10%) - sand is predom. fine grained - some med. gr.		o.ohnu
24			1.5'	14 70 130 150	same as above, however matrix contains more clay than above sample		ao hou rock fracquent - stucke in spoon -
26			1.5'	#367,107 ×	top 0.75' brown silt tract fine san minor clay + gravel lower 0.75' brown sandy silt, som gravel, sand is predom med. gr - some clay in matrix	(10%)	0.0 kmu retucof a + 27.4
28-			1.6	63 45 99	brown silty sand, contains some gravelfos for, minor clay, sand is pulson, med 91 some fine + coane grained		0.0 ppm Han refusal at 29.5

.

PROJECT NUMBER

¢

W68802. FJ

BORING NUMBER

SHEET 3 OF 3

1

SOIL BORING LOG

-		- V / 4		REFINER		<u> </u>	DE SLADGE LAG
IVATION					ORILLING CONTRACTOR		
ILLING M	ETHOD /	NO EQU	IPMENT	HSA		10-	
TER LEV	EL AND C					/8/	LOGGER CERALD A. M.
		SAMPLE		STANDARD PENETRATION TEST	SOIL DESCRIPTION	-	COMMENTS
DEPTH BELOW BURFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	RESULT3 6"-6"-6" (N)	IAME, GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMEOL	SYMBOLIC LOG	DEPTH OF CASING. ORILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
30 -					0-0.8'- BROWN SAND, SOME SILT, MED. TO COARSE FRAMED SAND, TRACE GRAV		0.0 pp 404
32			2.01		10 COARSE FRAMEDIAND, TRACE GRAV 0,9-1.3' - SILTY SAND, SANDY SILT WA MED. TO COARSE FRAMEDISAND, TRACE GRAVEL 1.3-2.0' BROWN SAND, MORE SILT, SOME GRAVEL (~ 10%)		
76	Ţ		[BROWN SILTY SAND, SOME GRA	ve	0.0 pph HNY
			1.2.	43,90, 133,×	(~15%), MED. FRANKED SAND		REFNIAL AT 32.4
34-		 			BROWN SANDY SILT, 225%		
-	1		1.0	73, 85, 133 x	GRAVEL, MED. & COARSE GRAM	150 .	0.0 ppm HN4 .
					57-40		REFNSAL AT 35.25
36 -			No	SAMPLE TAKEN	BONLDER FROM 2 35.25 to 37.75', PROBABLY GABBROIC	+ 4 4	
38 -	1					- 	
			No	SAMPLE TAKEN	COARSE FRAVE 25 OR VERY WEATHERED AND FRA CTHRED BEDROCH		
-	1				(GASSROIC)	4)
40-							
	>	ҜҲ		× ×			× × × ×
	1				BEDRICK - GABBRO/AHO, GABBRO CONTAINS & VERY H		ÎITE
	4				90 OF CALCIC PLA FICLASE (75) SEVERAL INTERVALS WITHIN		
	1	ļ			FORE ARE TRNE ANORTHOSIT		
	-				(7903 PLAGICLAIE) HIGHLY WEATHERED AND	4	
	1	1	1	1	FRACTINED	4	ł

			100		MW-87-13E	SHEET C
					ROCK CORE LOG	
PROJECT.	ARR	W	ILAD REFINERY		LOCATION HORTH OF SLI	IDGE LAGOON
			OUIPMENT DIAMOND BIT CORE BA	RRE	STS CONSILITANTS	VERTICAL
WATERLE						GEA
3.5	82		DISCONTINUTIES	-8	LITHOLOGY	COMMENT
			DESCRIPTION DEPTH, TYPE ORIENTATION, ROUGHNESS	-12	AOCK TYPE COLOR, MINERALOGY, TEXTURE	SIZE AND DEPTH GASING, FLUID L CORING RATE AI
DEPTH BALOV		FAACTUNE	PLANARITY, INPILLING MATERIAL AND THICKNESS, SURFACE STAINING, AND TIGHTNESS	CA LA	WEATHERING, HARONESS. AND ROCK MASS CHARACTERISTICS POLICY	SMOOTHNESS. (ROB DROPS, TE RESULTS, ETC.
		ŀ	TOD OF 1076 42 51			
42.5		-	TOP OF CORE 42.5'			+
An 7 -	5				42.5-43.5-Anortha	ste-very a
42.75-	RECONENCY			1	grained (pegmatitic).	7
	3				95% plagicher	a lumblend
13.0-	120			1	5% amphibole (prubo	and normine
ſ	-				this interval is high	e fractured
	%				and weathered 2 Za	preces of
43.5 -	64				this interval is high and weathered 2 ZC make up this interve	Ý
	*				43.5-45.3 Gabbre	> this secti
43.75	u [┝	;	4	is very rich in pla	ageobse wit
	80				the upper 0.3'on so	
44.0-7	a	\vdash	FRACTURE AT 440	-1	to an anorthosite -	the lover.
	1 1			ļ	portion of this in	1 mbie n
<i>99.</i> 07	9			1	"normal" gabbro	throw is n
44.5-			FRACTURE AT 44.5-			
רעידי 			FILALIVIUL AI 44.5 2		Plaquetase ~ 40% Amphibile (Actinditet	Hornblande) 50
94.75-	ł		FRACTURE AT 44.75-7		Mica-(Biotite or Philog	من الم
						1411 ar 1 - 3-1
45.0		\vdash		4	trace augite very coarse grained	7
			PRACTURE AT 45.12	7	somewhat weathered	
45.75						
			FIRST RUN TO 45.3"		· · · · · · · · · · · · · · · · · · ·	ι • •
45.5		-		1		CORE LOG,
ļ					FORM	A 2113A
					•	1
					<u> </u>	<u> </u>

PROJECT HUMBER

BORING NUMBER MW-87-13E

SHEET Z OF Z

ROCK CORE LOG

MOJECT AREOWHEAD REFINER

LOCATION NURTH OF SLUDGE LACOON

ELEVATION _____ ORILLING CONTRACTOR STS ORILLING METHOD AND EQUIPMENT DIAMOND BIT CORE BARREL/SIZE HO 515

- ORIENTATION VERTICAL

WATER LEVEL AND DATE ...

START_ FINISH

LOGGER_

1 ≇ ∈	92			OISCONTINUITIES	LITHOLOGY	COMMENTS
DEFTH BELOW BURFACE (FT)	CONE NUN. LEMETN. AN	1000	FRACTURES PER FOOT	DESCRIPTION DEPTH, TYPE ORIENTATION, ROUGHNESS, PLANARTY, INFILLING MATERIAL AND THICKNESS, SURFACE STAINING, AND TIGHTNESS	ROCK TYPE COLOR. MINERALOGY, TEXTURE WEATHERING, MARDNESS, AND ROCK MARE CHARACTERISTICS	SIZE AND DEPTH OF CASING, FLUID LOSS. CORING RATE AND SMOOTHHESE, CAVING ROO OROPS. TEST RESULTS, ETC.
45.25 - 45.70 - 45.75 - 4 6 .0				Znd RIJN BEGINS FRACTURE AT 45.4	- AT 45.3' GABBRO - COARSE GRA PLAGICLASE JS% AMPHIBOLC (LOOKS LIK	NED L ACTINULITE ZOO
46-25- 46-50-				FRACTIBRE AT	2-3% MICA (BIUTITE THACE AUGITE THIS INTETZUAL IS	SUGHTLY
46.75- 47.0-				FRACTIBRE 46,7'	WEATHERED HOWEN 0.75' OF THIS RUN I WEATERED (ROCK BI EASILY)	HIGHLY
				•		-
-						
					Figure ROCK FORM	CORE LOG,

|--|

PROJECT NUMBER

BORING NUMBER MW-87-145		
MW-81-145	SHEET	1

SOIL BORING LOG

OF

2 14" 14" Lower 4" prot with some grey clay and sand (med gi.) top 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay trace sand high 4" prot with minor si H + clay high 4" pr		-	SOIL BORING		-
TER LEVEL AND DATE START 9/26/82 FINISH 9/26/87 LOGGER GETALD A. MSL STANDARD SOL DESCRIPTION STANDARD STANDARD STANDARD SOL DESCRIPTION STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD OPTIMISTION OR PLASTICITY PARTICLE SIZE DISTRIBUTION COLOR OR CONSISTENCY, SOLL STRUCTURE OR CONSISTENCY, SOLL STRUCTURE OR CONSISTENCY, SOLL STRUCTURE OLICLING RULIO LOSS. OLICLING RULIO LOSS.	DUECT ARROUNT AD T	EFINER	LOCATION IMME	DIATL	4 WEST OF GOPTER C
REAL LEVEL AND DATE STAND DATE STAND DATE STAND DATE STAND DATE SAMPLE STAND DATE STAND DATE STAND DATE SOLD DESCRIPTION COMMENTS SAMPLE STAND DATE STAND DATE STAND DATE COMMENTS STAND DATE STAND DATE STAND DATE STAND DATE COMMENTS STAND DATE STAND DATE STAND DATE STAND DATE COMMENTS STAND DATE STAND DATE STAND DATE COMMENTS UNIT STAND DATE STAND DATE STAND DATE COMMENTS COMMENTS STAND DATE STAND DATE STAND DATE COMMENTS COMMENTS STAND DATE STAND DATE STAND DATE COMENTS COMMENTS STAND DATE STAND DATE STAND DATE COMENTS COMENTS STAND DATE STAND DATE STAND DATE COMENTS COMENTS STAND DATE STAND<		Harow	STEM AUGER (43/81D)		·
SAMPLE STANDARD SOIL DESCRIPTION COMMENTS SAMPLE STANDARD SOIL DESCRIPTION COMMENTS TERT TRATION TREAT TO NOT TREATING COLOR UP DEPTH OF CASING. OF COMMECTIVE ENSITY DEPTH OF CASING. OF COMMECTIVE ENSITY DEPTH OF CASING. DEPTH OF CASING. OF COMMECTIVE ENSITY OF COMMECTIVE ENSITY DEPTH OF CASING. OF COMMECTIVE ENSITY			START _ 9/26/82_ FINISH _ 9/26	/87	LOGGER GERALD A. MAL
NOT NAME GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION. COLOR. MORETARECONTENSITY OR CONSISTENCY. SOIL STRUCTURE. U DEPTH OF CASING. ORICLING RATE. ORICLING PLUID LOSS. TESTS AND INSTRUMENTATION 0	SAMPLE		COL OFSCRIPTION	1	
2 11" dk prown, black, silty sandy - Oily shren but clay, sand predom med. gr. Lower 4" peat with some grey clay and sand (med gr.) top 4" peat with minor silt + clay trace sand middle 4" black loany silt(high % organic moter (prot)) lower 6" grey clayers it, silty clay 0.0 ppm (true 2. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	DEPTH BELOW BURFACE MITERVAL TYPE AND MIMBER MIMBER	TEST RESULTS 6"-6"-6"	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE.	100 SYMBOLIC	ORILLING PATE, DRILLING FLUID LOSS. TESTS AND
4 It is a center with minor sitt + clay trace sand inddir 4" black loany sitt(high % organic mother (prot)) lower 6" grey clayer sitt, sitty clay with some point + fine sand Drown clayer sitt-sitty clay= Some sand + gravel - sond is ned to coarde gr. C.Oppin Huy			clay, sand predom med. gr.		oily sheen but no Hnu deflect
ZZ" brown clayey sitt-silty clay= some sandt gravel-sand is 0.0 ppin Hun med to coarse on.	- - -	[top 44 peat with minor sitt + claip trace sand	kwat	en(prot)) 0.0ppm (tru
	- 22"		some sand+ gravel- sand 15		O. Oppor Hun
			END OF BONING		

	CH2M HILL
l	
i.	

PROJECT NUMBER

S14637	05

SOIL BORING LOG

BORING NUMBER

MW-87-165

LOCATION South side of Highwan 53

ELEVATION _

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGET (43/8 " 10)

WATER LEVEL AND DATE ____

PROJECT _ ARROWHEAD REFINETEM

START 9/16/87 FINISH 9/

9/16/87 LOGGER GERALD A. MICLANS

		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION		COMMENTS
DEPTH RELOW SUMFACE	MTERVAL	TYPE AND NUMBER	RECOVERV	TEST RESULTS 6"-6"-6" (N)	NAME. GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SVMBOLIC LOG	DEPTH OF CASING. ORILLING RATE. ORILLING FLUID LOSS. TESTS AND INSTRUMENTATION
			19"	6,11,11	Reddish brown silty clay - lower 4ª contains gravel (15%) -		
2-			12"	6,5,5,8	Reddish clay with some with, - some course on, sound in lower 5" -		
4-			19"	5,7,11,12	Reddish brown clarg minor gravel. interval gets coarser downwants _ lower 6" silty elayey and - brown = med. 92.		
			24		upper 4" reddish brown clays midd le 12" moun silter sand, carly silt (very fine to fine gr sand) Luna 8" moun silty cand-conser get the middle interval		
8			20'	4,11,18	Reddish brown sandy silt- sand is very fine to fine qr.		
<i>t</i>			24ª		top 10" brown clayey silt w/ Imm thick red clay lences middle 6"- fine gri sand louce 8" sandy silt (sand is fire to - med gri)		
/2 -			24		Reddish brown sandy silt _ (sand is very fine gr.) -		
14 -							

PROJECT NUMBER	BORING NUMBER
	MW-97-165

SHEET Z OF Z

SOIL BORING LOG

	HOD AI	LOGGER Gerald & Mila				
5		AMPLE		STANDARD PENETRATION TEST	SOIL DESCRIPTION	COMMENTS
	INTERVAL	TYPE AND MUMBER	RECOVERY (INCHES)	RESULTS 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
					Reddish brown sandy silt	
			24	2,4,5,9	sand is very fine op.	
; _					Bottom of Hule of 16.0	
4	ĺ					
4						
1						
4						•
4						
1			1			
]						
┥				İ		
4					·	
1						
]						
4						
1						
1		1				
4						
┥						

Ì

.

PROJECT NUMBER

START 9/15/87

BORING NUMBER	
MW-87-16B	SHEET

<u>or</u> Z

LOGGER GERAND A. MELANZ

SOIL BORING LOG

9/15/87

LOCATION S. SIDE OF HWY 53

WATER LEVEL AND DATE _

ELEVATION _____ DRILLING GONTRACTOR ______ DRILLING GONTRACTOR ______ ST S

PROJECT APPLUNHEAD REFINCIZY

1

FINISH

ĺ			SAMPLE	L	STANDARD	SOIL DESCRIPTION		COMMENTS
ELEVATION	DEPTH DELOW SUMFACE	INTERVAL	TYPE AND MUMBER	RECOVERY	TEST RESULTS 6"-4"-6" (N)	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	501 5100 100	DEPTH OF CASING. DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
	0, 1, 0	0-2		ຮ້	8,10,8,L	Dark trown sandy silt - sond 15 very five op. = 15%		
	2	2-4		18"	5,8,10,11	Dark reddish brown sand-some gravel some sith, sample is interbedded with clay lenses up to 2" thick		3.5' 💻
	-	46		20	8,11,12,9	Dark trown sandy silt, sand is very fine grained-saturated		INTERVAL 6'-8' - NUT SAMPLED -
	90 1	8-10		16"	2,5,9,9	Dark brown sandy sitt, silty sand, sond is fine gr, somewhat coarser and more a Gundant than previous sample		-
	10 12			18"	6,15,17,12	Brown sandy sitt, silty sand, grade into price sitt halfway the down + continuer to botton if sample		INTERVAL 10-12' - NOT SAMPLED -
	14			23"	୧, ୫,୮,୫	Dank Grown sitt appears to contain organic material - Imm thick red clay lenses spaced I to Zinches aport oppear in lower half of sample - (VARVES 3) -trace grove!	•	
	16 -			23"		Dank brown silt, some clayey _ silt lanser up to 3" thick _ trace organic maller (root hars) _		
	18 -							

AEV 11/82 FORM 01586

.

|--|

.

			_
PROJEC	TNU	MB	E,A

BORING NUMBER MW-87-168

SHEET	2	0F	

SOIL BORING LOG

	illing me Ter leve					TEM AUGETE (43/8" ID)	·	LOGGER GERALD A MELA
			SAMPLE	l	PENETRATION	SOIL DESCRIPTION		COMMENTS
ELEVATION	DEPTH BELOW SURFACE	INTERVAL	TYPE AND MUMBER	RECOVERY	TEST <u>RESULTS</u> 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC LOG	DEPTH OF CASING. Orilling Rate. Orilling Fluid Loss. Tests and Instrumentation
	18					Darke mown silt, clayer silt lenses up to 3" thick - lower 6" course sand and gravel with some silt.		· · ·
	20 -			12"	8,12,2930	Top 6= - sand and gravel with some sitt. Brown lower 6" sandy sitt u/ some gravel. Brown		
				10"	21,31,38,54	Top 6° coarse and and gravel Lower 4° sandy silt upsome - gravel		
	24		 	14	7,11,12,29	gravelly silt- brown- some same (med-coanse yr.).		<u></u>

	{		14	1,11,1 L, C)	Same (mar cause gr.).		-
- 26 -					_		
							ł
							1
_					-		4
							4
	}	ļ	ļ	j .	-		4
	1				-		ļ
]				-		4
.		}			-		4
			ł				
	<u> </u>			l	•	AEV. 11/82	

REV 11/82 FORM 01586

CH.MHILL

÷

i

.

PROJECT NUMBER

MW-87-17E

SHEET 1 OF 4

SOIL BORING LOG

A LEVE	L AND D	ATE				LOGGER GERALD A . MS
KEPTH KLOW KUNYACE (FT)	UTERVAL	AMPLE AND	RECOVERY	STANDARD PENETRATION TEST REAULTS 6"-6"-4" (N)	SOIL DESCRIPTION NAME, GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE. MINERALOGY, USCS GROUP SYMBOL	COMMENTS DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
-	ن ره		11	4,7,18,18	Brownish red filty cand, minor clay + gravel, trace root hairs, sand is fine to med grained-probably fill?	Dry, Frieble 0.0 ppm Hony
2 -	24		18	10,16,16,11	Reddish brown sand + gravel with some silt, sand is med to coarse grained, grovel is up to 1.5" in tiam, fill?	Dry Frable 0.0 ppm Han
A - 	4-6		18	2,10,14,19	0-5" reddish brown, fine-med gr. sand, dry 5-7" reddish brown silty sand(sand is fine damp. 7-18" reddish brown sand (compe to. very come grained), damp	<u>(</u> .)
• • - -	6-8		n	6.8,8,9	Reddish brown sand, trace gravel, no silt - sand is coarse to very coarse grained - minor fine to med g1.	water at 7.0'
۲ - ۲ - -	8-10		18	7,8,10,1(same as above - except a 2"thick fine gr. sand seam at 9"to 11" below top of sample	
- 0, - -	jo ż		21	7,13,13,17	0-14" Reddish brown sand, trace grau no silt, sand is course to very c grained, minor fine to med gi: 14"-21" sandy gravel, sand is very course grained	l, carse
۱۲ · -			18	8,5,10,7	Reddish brown sand, trace silt+ gravel-sand is coorse to very coarse gr., but not as coarse gr.as above interval (10'-12')	

	_	
PROJË	CT N	UMBER.

MW-87-17E

SHEET	2	OF	4

SOIL BORING LOG

					" 10) to 47.9 ~ MUD ROTARY 378" BIT to 	OGGER GERACHA. MEL
F	1	SAMPLE		PENETRATION	SOIL DESCRIPTION	COMMENTS
DELOW BUNFACE (FT)	MTERVAL	TYPE AND NUMBER	RECOVERY (INCHES)	TEST <u>RESULTS</u> 6"-6"-6" (N)	NAME. GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	DEPTH OF CASING. DRILLING RATE, DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
-	14-16		17	7,8,7,9	0-10" same as above, gradually fines dummants 10-17" brownish red sand, some silt (107) sand is fine to med gri.	
-	16-18		23	5,5,10,10	0-12" brownish red sand with some silt(10%), sand predom. med gr, w trace coarse gr., fines dwnword, 12"23" sandy silt, silty sand, brown, sand is fime to v.fine growned	,
-	1870		24	3,5,6,12	0-8" reddish brown sandy sitt, sand is fine grained, B-23" brownish gray gift, trace clay, no sand 23-24" - brown sand + gravel (sand is coarse gr)
-	2012	 -	24	3,8,11,11	0-4" reddish brown sand, med gr. 4-24" greyish brown sandy sitt grad downwards to silt	ing
•	2274		24	7,8,12,10	brownish grey sitt, with red clay varves limit thick + it to Z" apart - sample contains several lenses, up to 3" thick, of silty sand w/ some gravel	· <u>·</u>
4 -	ar Ve		24	12,13,13,11	browins Laren sitt, with varues like above, single fine gr. sand liense 2" thick appears from 11"-13" below top of sample	-
- -	2628		24	13,13,13,10	browinsh grey silt - trace clay, red clay varves as in upper two samples	

Ск.Міниц

.

PROJECT NUMBER

NW-87-17E

SHEET 3 OF4

SOIL BORING LOG

IA LEVEL				HSA (43/	START 9/16/87FINISH	LOGGER GERALD A. IV
=			£	STANDARD	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW BURFACE (FT)	INTERVAL	TYPE AND MUMBER	RECOVERY (INCHER)	TEST <u>REPULTS</u> 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE. MINERALOGY, USCS GROUP SYMBOL	DEPTH OF CASING. DRILLING RATE. ORILLING FLUID LOSS. TESTS AND INSTRUMENTATION
28				10,11,16,13	0-10"- brownish grey silt, with varves as above 10-24" brownish grey sauch silt with some gravel, saud is predom med. grained, minor fine + course on.	
30 - - - 21			20"	28 15 25 23	grained, minor fine + conse on. 0-14" - brown silt w/ several med gr. sand lenses, froce clay 14"-20" brown silt, some gravel	
31 -			10"	"15 35 32	sand is med grained gravel up to 1.0" in diameter	· · ·
-			15	628 33 31	sandy gravely brown silt~ same as above	
36			20	9 ₂₁ 57 100	0-8 " sandy grovely brown sitt coaractes down words 8-20" sandy gravelly sitt cooract than 0-8" with all (15% sond, 20% graved)
38-			20"	54 67 72 X	browngilt, sand gravel in equal proportions, sand ranges from fine to very coarse grained - encountered	vetusal
40 -			12.	65 100 X	silf, sand + gravel, slightly wall sand than previous (38'-40) sample, (35% to 40%; sand)	refusal

. -

PROJECT NUMBER

BORING NUMBER

SHEET 9 OF 4

SOIL BORING LOG

PROJECT ATTOWHEAD THE FINERY LOCATION INTERSECTION OF TOKE TOAD HWY ST

· 9/16/87 FINISH LOGGER GETTALD A. MELAN; START WATER LEVEL AND DATE STANDARD SOIL DESCRIPTION COMMENTS SAMPL B TRATION Ē TEST RECOVER) NAME, GRADATION OF PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR. DEPTH OF CASING. EBLIL T DEPTH BELOW BURFACE TYPE AND NUMBER NTERVAL DRILLING RATE. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE. MINERALOGY, USCS GROUP SYMBOL 6-6-6 DRILLING FLUID LOSS. CNS TESTS AND INSTRUMENTATION 42 0-4" same as above 4"-6" sandy silt, some gravel, sand is very fine to fine gr. silt, sand and gravel in equal 10 197-4 66,100,XX Lebusal 44 10, 129,106,00 moportions AA AL refusal 46 0-6" some as above ALANK 26,100, x,x 6=11" silty gravely sand ~ 50% met. gr. sand, 25% silt, 25% gravel (I[#] refusal 48 SWITCH TO ROCK BIT AT 47.5 (MUD ROTARY)

The second second second second second second second second second second second second second second second s
CHAMIL

ELEVATION _

545

ROJECT NUMBER

1068802.FI

8081149 NUMBER MW-87-17E

ROCK CORE LOG

PROJECT ARROWHEAD REFINER

.

LOCATION SUITH SIDE OF LACOUN DRILLING CONTRACTOR

- ORIENTATION VERTICAL

DRILLING METHOD AND EQUIPMENT DIAMOND BIT - CORE BARTELL

or á

	1		ATE.		FINI\$H		GERALDA. MYAN
BE	32	<u> </u>			LITH	2067	COMMENTS
DEFTH BELOW BURFACE (FT)	COME MUN.	1 N O O N	FRACTURE: PER FOOT	DESCRIPTION DEPTH, TYPE, GRIENTATION, ADUGHNESS, PLANARITY, INFILLING MATERIAL AND THICKINESS, SURFACE STAINING, AND TIGHTNESS		IV, TEXTURE, IG, HARONESS, MASS	SIZE AND DEPTH OF CASING, RLUID LOSS. CORING RATE AND SMOOTHNESS, CAVING ROD DROPS, TEST RESULTS, ETC.
0.0	ECN I			BEGINNING OF 1St RUN 49.5 FRACTURE 50.4	-PLAGICLAS -PLAGICLAS -AMPHIBOLE BLACK, PR ItURNBLEI	HTEY WEATHER E-GREY (OA E MED GR. OBABLY NDE	ED 175E OR, 75%
7.5- 2.0- 2.5- 3.0-	100% Fur			FRACTURE 52,4	AUGITE ≃5 TRACE BI	% VTIC OR PH	COGOFITZ
3.5- 4D	RECONDRY			FRACTURE 53.3			
4,5-	_			ENTI OF RUN 1 54.9			
5.5 6.5				FRACTURE SS.I	 - -	Figure RÖCK FORM	Core Log,

Ским					PROJECT NUMBER		BORING NUMBER MW-87-17E	SHEET 2 OF 2
							ROCK CORE LOG	
PROJEC	, <u>A</u> R	20	VHK/	id refinited		·	LOCATION SOUTH OF	iludoe lacoon
	ON	00 44		HIPMENT TIAMONT	BIT WRE BA	NEU		
	LEVEL				START9/-	4/87		OGGER GORALDA. MELANE
35	32			01800111		- 5 -	LITHOLOGY	COMMENTS
DEFTH BELOW	CORE MUN. LEMETH. A. MCOURAV	12 000	FAACTURES	DESCRIPTION TYPECONENT PLANARITY, INPILLIN THICKNESS, SUMFAC TIGHTNESS	ATION, ROUGHNESS,		ACCH TYPE, COLOR. MINERALOGY, TEXTURE, WEATHERINE, MARCHESS. AND ROCK MASS CHARACTERISTICS	SIZE AND DEPTH OF CASING, FLUID LOSS. CORING RATE AND SMOOTHNESS, CAVING ROD OROPS, TEST RESULTS, ETC
88 56.5 57.0 57.5 58.0 58.5 59.0	ECONEY RUN 2			TIGHTNESS THIS INTERVAL (1) HIGHLY FRACTUR BRUKEN IN G INUMEROUS SI ALSO NOTICABLY THAN OTHER IM FIZACTURE ST. FILACIULE 58	SOS- STO) IS ED-IT IS RE LANGY CHUNKS MALL PIELET MORE WEATHER TRUALS 33 3 3 0 F CORE +			
							Figu RÖC FOR	re 1 CK CORE LOG, IM 2113A
								959 7/55 - 5089 021114

	J
I I	Ì
FZ	1

W68302.F1	PROJECT NUMBER
MW - 18 €	BORING NUMBER
STERT	

е V

S
Ō
Ξ.
Γ.
00
0
7
Z
ត
Γ-
0
្រា

3		ARR	ARRONHEAD	Ъ	REFINERY	LOCATION	245	200220101012 XZ
9 3	e evation							1
9 1	DRILLING METHOD AND EQUIPMENT				59617	And		
ξ	WATER LEVEL AND DATE	EL AND O				TANT 9/26/82	87	LOGGER L. SALAA
			JAMAT I		STANDARD PENETRATION	SOIL DESCRIPTION		COMMENTS
ION		4		AY.	TEST -	-	LIC	DEPTH OF CASING.
ELEVAT	DEPTH BELOW SURFAC	INTERV/	TYPE AI	RECOVE	34 34	MOUSTLINE CONTENT ADLATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE MINERALOGY, USCS GROUP SYMBOL	SYMBO LOG	OFFICING FLUID LOSS. TESTS AND INSTRUMENTATION
1		-0-1 2,		6;	3, 2, 2, 3	& ROWN SILTY SAND AND GRAVEL		MOIST HAVE
	يم ۱	Ă		4	2 1 2	SILTY SAND , TRACE OF CLAY		- TA
	+							
_	-	7		" Å I	4	GRADES TO PEATY CLAY		0.0 JAPATED
	- -				ł	PEAT AND CLAY SILTY SAND		
	<u> </u>	6-8		÷	1,2,4,4	CAR, LAIT 2" BROWN		GRAVEL MATO 1/2"
	, 1	8-10,	·) Ì	L VI 6 7	- \$1		SATNANTED
	5			L	.			
	; ;	10-12		5	10,10,9	SAME AS ABOVE (SOME CLAY IN SPOON)	<u> </u>	SATHRATED
				<u>ب</u> ر ۲	6.8 10 12	BRUNN SILTY YALL WITH FRANKL		57155
	Ă							
	- - -	· // + (* < !	2 0	0-3" BROWN SILTLY CLAY		SAND IS FINE TO
	~			15	0 , •, -, -, 7	3-10" BLACK SANDY GRAVEL		COARSE
	 • •	16-18				STOWES ON		
	. 81	-2 -2		:		0-20" BROWN SILT		0.0 pp x
	ž			3	11,11,01 (P1			STIFF / IN PERMENE
	, ĉ	20-23		71	13,14,15,12	SAME AS ABOVE		
		22-34		12"	1+518,15,14	SAME NI ABVE		
	¥ I	ř,		•		A REIM AVTO ALTIS MAI		0.0 Fran HAN
_	<u></u>	1			17,29,24,15	3" BAND OF BLACK FRAVEL IN MIDEL OF SAMPLE		
	A. 6	2(-)0		<u>و</u> :		S ALTIS		ANA LOLO'S
	- 87				+1,53 50,0	2)" IN DIAMETER		
		28-30			50	NO SAMPLE		SPLIT SPOON

.

В

REV 11/02 FORM 01586

2 £ 2

ELEVATION

H2M				J	PROJECT NUMBER	NG NUMBER		
Η̈́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́					W 68802, FI M	<u>w-18</u> E	Ξ	SHEET 2 OF 2
				ſ	SOIL BO			
			EAD	REEI	NERY LOCATION	HER	MANT	onn, MN
VATION				<u> </u>	DRILLING CONTRACTOR			
	A DOHTE	ND EQL	IIPMENT		- SPOON SAMPLER/AL			
	L ANO O	ATE			START _ <u>9/26/37</u> _ FINISH	-7/29	182	LOGGER <u>L. JALHANET</u>
		SAMPLE	1	PENETRATIO				COMMENTS
DEFTH BELOW BURFACE	MTERVAL	TYPE AND MUMBER	RECOVERY	TEST RESULTS S"-5"-6" (N)	AME. GRADATION OR PLASTICI PARTICLE SIZE DISTRIBUTION. COLO MOISTURE CONTENT, RELATIVE DENSI OR CONSISTENCY, SOIL STRUCTU MINERALOGY, USCS GROUP SYMBOL	or, Ity Re	SYMBOLIC LOG	DEPTH OF CASING. DRILLING RATE. ORILLING FLUID LOSS. TESTS AND INSTRUMENTATION
30	30-32'		16"	12, 8,20,0	BROWN GRAVELY SILT, GR. up to 1/2"	AVEL -		0.0 ppm ,++4
	32-34'		12"	25,24,20,21	BROWN GRAVELY SILT, VER	Y STIFF T		
34	3 4-X '		12"	30, 21, 23, 40	BROWN, SANDY, GRAVELY SIL	· <i>T</i>		VERY STIFE
. 36 -				<u> </u>				O ppm Hnn
	36-39'		0"		NO SAMPLE			
38 -	38-40		16*	85,100,125, 250	BROWN JAND AND FRAVEL WITH SILT, HIFHLY COMPA- (IMPERMEARLE)	CTE -		VERY STIFF /DRY
	90- 9 2		1)"	91,125	BROWN SAND AND FRAVEL	-		O pp HNN
	1 2-44		6"	150,150,150	BROWN MED. TO COARSE S GRAVEL WITH SILT	AND,		Oppon Hay
44- -	49-96'		4 ″	05/051 051	SAME AS ABUE			Оррт ниц -
46- 47-	\square			< _	ROTARY			
	4 7- 4 9	1	3″	101,101,101	SAME AS ABOVE	+		-
49 - +4.5 -			~		ROTARY			2 1 1
57.5	115- 51.5		4″	19 ,99,99	BROWN SAND AND MED C GRAVEL, LAY IN LAIT	I"		Oppon Have -
52	EZ		K	<u> </u>	ROTARY			<u> </u>
-	52-54		3″	90, 80	BROWN SAND AND FRAV. WITH SMALL AMONNT OF CL AND SILT			1
54-	Z				ROTARY		-21	O PPA HNY
	54.5- 56.5		1"		SILTY SAND AND FRA WITH SOME CLAY	1982 - -		O PPM HNY _ BEAROCH = 56.0' -
56,5 - 57 -		$\overline{\mathbf{Z}}$	2		- ROTARY			
								-

PROJECT NUMBER

NW 87-18E

SHEET / OF 3

ROCK CORE LOG

LOCATION IMMEDIATELY SOUTH OF TRAILER PROJECT ARROWHEAD REFINER ORILLING METHOD AND EQUIPMENT DIAMOND IST CUTE BATLICLE ORIENTATION. LOGGER GERALD A. MALAN 727/87 FINISH WATER LEVEL AND DATE. START_ COME MUN. LENATH. AND MCOVENY (N) R O D (N) FRACTUMES FEA FOOT DISCONTINUITIES LTHOLOGY COMMENTS DEPTH DELOW AOCK TYPE, COLOR, MINERALOGY, TEXTURE, WEATHERING, HARONESS, AND ROCK MASS CHARACTERISTICS SIZE AND DEPTH OF OESCRIPTION CASING, FLUID LOSS. DEPTH, TYPE ORIENTATION, ROUGHNESS. PLANARITY, INPILLING MATERIAL AND THICKNESS, SURFACE STAINING, AND CORING RATE AND SMOOTHNESS, CAVING ROD DROPS, TEST TIGHTNESS RESULTS, ETC. RIN 57.0' BEGINNING OF GABBRU-57 SUGHTLY WEATHERED IF AT ALL 93.8% Recovery 57.5 FRACTURE AT 57.65-PLAGICLAGE 75-80% FRACIURE AT 57.9 -58 FRACTURE AT 50.0 -COARSE GRAINED 585 93. GREY FRACTURE 58.6 -AMPHIBULE (HORN BLEWDE) 59 FRACTURE 59.1 -FINE-MED GRAINED -BLACK 15% 5).**S**. AUGITE-BLACK = 5% FRACTURE GO.L 60 TRACE BIOTITE OR PHLOGOPITE 62.5 FRACTURE AT 61.0-61 61.5 FRACIURE 61.75-2 FRACTURE GZ.O -62 FRACTUR62.65 -62.5 63.0 Figure 1 RŎĊK CORE LOG. **FORM 2113A** 63.5-FRACTURE 63.9'-

8EV 7/86 FORM 02111

ELEVATION _

I	1HOJ	ICT	NUMB	

NUMBER

START_

MW-97-19E

BORING NUMBER

	2		0
SHEET	<u></u>	OF	4

ROCK CORE LOG

PROJECT ARROWHLAD REFINERY

ORILLING CONTRACTOR

ORIENTATION UERTICAL

WATER LEVEL AND DATE _

DAILLING METHOD AND EQUIPMENT DIAMOND BIT CUIZE BATTEL

FINISH_

LOGGER GERALD A. MSLANS

3.0	97			DISCONTINUITIES		LITHOLOGY	COMMENTS
DEPTH DELOW DURFACE (PT)	CORE NUN. LENGTH. AND MCONENT (N	1 0 0 V	FINCTUNES PEN FOOT	DESCRIPTION DEPTH, TYPE, ORIENTATION, ROUGHNESS, PLANARITY, INFILLING MATERIAL AND THICKNESS, SURFACE STAINING, AND TIGHTNESS	COLOR LOS	ACCH TYPE COLOR. MINERALOGY, TEXTURE, WEATHERING, HARONESS, AND ROCK MASE CHARACTERISTICS	SIZE AND DEPTH OF CASING, FLUID LOSS, CORING RATE AND SMOOTHNESS, CAVING ROD DROPS, TEST RESULTS, ETC.
ل ل 6 می							
64.0- W.S-							
				FRACTURE 64.9		•	
65.0-						•	-
₆ ς.ζ-				FRACTURE AT 65.8			-
65.0- 65.5- 6617-							-
665-				Buttom of core 66.5			-
5.0						•	
0							
-				-			
-				•		•	
4						•	-
4				•			
				-		•	
ļ				-		ROCK	1 CORE LOG, 2113A
4						Þ	4
				; ;			BEV 7/65 - 608/4 021114

CHEMHILL

TECHNICAL MEMORANDUM NO. 5

TO:	Fred Bartman/U.S. EPA Remedial Project Manager
FROM:	Randy Videkovich/CH2M HILL Project Manager
PREPARED BY:	Don Johnson/CH2M HILL Project Geophysicist
DATE:	March 2, 1988
RE:	Borehole Gamma Logging and Lithologic Correlations
PROJECT:	Arrowhead Refinery Fieldwork Design Investigation W68802.FL

INTRODUCTION

Gamma logging of 21 selected boreholes was performed at the Arrowhead Refinery site between October 20 and 24, 1987 by Don Johnson, assisted by Jewelle Imada (CH2M HILL) and Greg Weeks (Engineers International). The logging was performed to obtain information that could aid in the interpretation and correlation of lithologic logs. Continuous soil samples had not been collected at all the wells, so gaps exist in the descriptive logs. Descriptions vary between wells because they were logged by different people. The gamma logs provide information to help fill the sampling gaps and to help correlate descriptive logs made by different hydrogeologists.

Figure TM5-1 shows locations of the monitoring wells used for gamma logging. Not all wells were logged. Only the deepest well in each well nest was logged, with two exceptions. At Well Nest 13, both Well MW-13b (35 feet deep) and Well MW-13e (53 feet) were logged. Well MW-13e was subsequently logged when the mistake was discovered. At Well Nest 2, Well MW-2c (39 feet) was logged first because Well MW-2e had not been completed. Well MW-2e (50 feet) was eventually completed in time for it to be logged.

EQUIPMENT AND METHOD

A Mt. Sopris Model 1000-C portable logger with a standard gamma, SP, and single-point resistivity probe was used. The SP and resistivity capabilities were not used.

通知する

TECHNICAL MEMORANDUM NO. 5 Page 2 March 2, 1988 W68802.FL

Before any logging was performed, the location of the sensor in the probe had to be determined. A Coleman lantern mantle, which contains a slight amount of radioactive thorium, was slid along the probe until a maximum signal was obtained. The distance from the sensor to the top of the probe was found to be 3 feet. When setting up the logging unit at each well, the probe was positioned with the top of the probe at the top of the riser. Since the sensor was 3 feet lower, the depth counter was set to 3 feet. The probe was lowered into the well until it rested on the bottom. The actual bottom of the well is 1.7 feet lower than the depth reading because of additional probe length beneath the sensor location.

The gamma log was obtained by engaging the paper drive, lowering the pen, and raising the probe at a rate of 5 to 10 feet per minute. The probe was raised and lowered using a hand-operated winch. The information recorded at each well included location, date, well depth, and scale settings.

After completion of each well log, the probe and affected portion of the cable were decontaminated with a trisodium phosphate wash, a distilled water rinse, a methanol rinse, and another distilled water rinse. Decontamination at the offsite wells consisted of a distilled water rinse only. The logger was hand carried between borings.

RESULTS

GAMMA LOG RESULTS

Four lithologic units are identifiable in the gamma logs (see Attachment A). Peat is characterized by readings around 10 counts per second (cps), silts and sands at 15 to 20 cps, clay at 25 to 30 cps, and bedrock at 5 cps or less. These results are a generalization and exceptions do exist.

The peat identified in the drilling logs exhibited readings of about 10 cps in the gamma logs. The gamma counts in the peat at five wells (Nos. MW-6c, MW-9b, MW-10b, MW-12a, and MW-18e) were at the same level as in the surrounding material (15 to 20 cps). The peat at those locations may have higher silt or sand content than elsewhere. In Well MW-2c, the soil fill above the peat also has a low count rate and cannot be distinguished from the peat in the gamma logs. In Wells MW-5e and MW-18e, the surficial soil has a low count rates but peat was not identified in the lithologic log. The shallow soils with the low gamma counts may be fill (with a lower gamma activity than the native soils), or they may have a high peat content but not high enough to be described as peat.

There is no distinction in the gamma log between the lacustrine or till sediments. There is a small but observable increase in the count rate in some wells that may correspond to the till-lacustrine contact. Wells that exhibit features in their gamma

TABLE TM4-1

ARROWHEAD REFINERY ELEVATION SURVEY NOV 22-24, 1987

.

(Elevations in feet above mean sea level)

WELL		ELEVATIO	N
No.	GROUND		
12a	1418.53		
13a	1418.50		
13b	1418.49		1421.05
13 e	1418.83	1420.89	1421.08
14s	1415.72	1417.77	1417.50
. 14a			1417.86
14b			1418.36
14c			1417.39
110	1415.09	141/.30	1417.39
15a	1420.73	1423.20	1423.11
15b			1422.77
MW-16	1421.31	1423.02	1423.01
P-16	1420.90	1423.15	1423.26
17 s	1423.02	1425.04	1425.00
17b	1423.44	1425.40	1425.26
17e	1422.77	1424.69	1424.67
P-17s	1426.10	1 428. 30	1427.63
18 e	1419.79	1421.58	1421.60
21s	1413.97	1416.16	1416.16
21 3 21b			
210	1414.00	1410.13	1418.30
225	1413.69	1415.53	1415.58
		2-20-00	
235	1430.12	1433.04	1432.33
		•- •	
South Stream Gage	1415.39		Stream gage elevations are
East Stream Gage	1420.32	for t	he top of the staff.
Central Stream Gage	1419.25		
West Stream Gage	1419.06		

TECHNICAL MEMORANDUM NO. 4 Page 2 November 4, 1987 GLO68802.FI

For the old wells, the new elevations differed from the RI data by generally less than 0.1 foot. Differences were greater than 0.2 foot at the following wells:

Well	New Riser Elevation	Old Riser Elevation	<u>Diff.</u>	Comments
B4a B4b	1, 424.22 1, 424.08	1,423.27 1,423.12	0.95 0.96	Casing and ground eleva- tions match.
MW-7a MW-7b MW-7c	1,422.49 1,421.75 1,421.60	1,420.42 1,420.42 1,420.28	2.07 1.33 1.32	Casing and ground eleva- tions differ by similar amount.
MW-10a	1,416.63	1,415.66	0.97	Casing elevation differs by a similar amount. Ground elevations match.
MW-15a MW-15b	1,423.11 1,422.77	1,422.31 1,421.84	0.80 0.93	Casing elevations differ by similar amount. Ground elevations differ by about 0.5 feet.

.

GLT932/093.51

CHEMHILL

TECHNICAL MEMORANDUM NO. 4

TO:	Fred Bartman/U.S. EPA Remedial Project Manager
FROM:	Randy Videkovich/CH2M HILL Project Manager
PREPARED BY:	Don Johnson/CH2M HILL
DATE:	November 4, 1987
RE:	Well Elevation Survey
PROJECT:	Arrowhead Refinery Fieldwork Design Investigation W68802.FI

INTRODUCTION

The Well Installation Task included the surveying of all new wells, existing wells, and staff gauges to determine their elevations relative to a common datum. The elevations of both top of casing and ground surface were measured for wells because some wells appeared to have shifted because of frost heave. The new surveyed elevations were used to determine groundwater flow directions and gradients.

FIELD ACTIVITIES

Well elevations were established in a survey performed by Don Johnson and Jewelle Imada from November 22 to 24, 1987. Elevations were tied into the USGS bench mark located on the south side of U.S. Highway 53 near Well Nest 17. The elevation of the bench mark is 1,426.22 feet above mean sea level (msl).

The survey was performed in five loops starting and ending at a known elevation. Closing a loop in such a manner allows any survey errors to be detected. The greatest closure error was 0.06 foot at the first loop. The closure errors at the other loops were 0.03 foot or less. Loop 1 started and ended at the bench mark. Loop 2 started and ended at Well MW-18e to avoid crossing the highway. The elevation at Well MW-18e was confirmed by surveying it twice. Loops 3 and 4 started and ended at Well MW-18e. Loop 5 used the casing elevation of Well MW-5c determined in Loop 4, which was confirmed by existing data.

Elevations at each well were measured at the top of the protective casing, top of the riser, and ground surface. Existing wells were surveyed to determine if frost heave had occurred. Elevations were also obtained for the tops of the stream staff gauges. Table TM 4-1 lists elevations measured during this surveying effort.

TABLE TM4-1

ARROWHEAD REFINERY ELEVATION SURVEY NOV 22-24, 1987

(Elevations in feet above mean sea level)

WELL		ELEVATIO	N
No.	GROUND	CASING	RISER
1a	1424.06	1427.29	1427.19
2b	1418.05	1421.03	1420.94
2a	1418.19	1420.74	1420.69
2C	1417.94	1420.50	1420.43
2e			1419.73
3s	1416.21	1418.31	1418.30
3 a	1415.64	1418.84	1418.79
3b	1415.70	1418.41	1418.36
B4a	1421.56	1424.33	1424.22
B4b	1421.43	1423.81	1424.08
P-58		1420.53	1420.43
P-5b	1419.12	1420.77	1420.82
5a	1418.64	1421.12	1421.05
5b	1419.14	1420.58	1420.68
5c	1418.95	1421.17	1421.12
5 e	1419.08	1420.32	1420.41
B5	1418.94		
6a	1424.95	1427.80	1427.74
6C	1425.06	1427.85	1427.82
7 s	1419.54	1421.11	1421.07
7a	1419.44	1422.46	1422.49
7b	1419.03	1421.90	1421.75
7c	1419.19	1421.89	1421.60
8a	1423.36	1426.26	1426.14
8b	1422.54	1424.58	1424.65
9a	1419.01	1421.58	1421.23
9b	1419.25	1421.84	1421.85
10a	1413.93	1416.73	1416.63
10b	1413.96	1416.85	1416.60
11a	1414.89	1418.01	1417.98

G		VYH	;1;	ĻŢ)EV.	ELO	PM	EN	TRE	CORI
Stickup Weil #	Above P-8	lab Na Groun 7 — 2 /	me d Sur B D	face Jaie of In:	2. 7. f stailation	<i>(.//.</i> eet	<u>_/// // //</u>	Job Nur Your Na	Stort Date	1 <u>5=6</u> 1 1
linternal	interva Diame	i ter of	Weil f	 Pipe	2	to	Screen Si	⇒t	feet beic ゴル	w ground surfee:
IN	IIT)	IAI							VELOP	MENT
			0 Weli	. feet 3/.85	faet		-		.D. at rizer pipe [incit]	foot of depth
Minimum	n Volur	ne of '	Water	to be Re 					2 3 4 5	0.163 0.367 0.653 1.02
•	•		A11				REC) ser pipe.	
Date	Run	Start Time	Finisi Time	Time	Pumping Rate [gai/min]	Removed	Oraw Rec Down F [feet] [ge	late	Comr	nenta
10-6 [n-x_	/ 2	2:30 10:10	· · · · ·		Bulling Baith	51 51	Dry 7.51 Air- 31	min/ff.	Kuild Drie	
			· · ·	·						
			All				ION		ST ser pipe.	
Date	Samp Numb	1 0		emperatur Corrected Conductivit [yhmae]		Total Volume Removed [gal]	Pumping Rate [gai/min]	Method		menta
10-6			,2	-90 170	<u> </u> ,	1.5	Serin	<u> </u>	Sureini 9 C	interfail
10-6	2	_	F 3	7.07	+	17	1	!	Surger.	
	<u> </u>			BAiled	Re An	ll: 2 tin	<u> </u>	l	<u> </u>	
	1					1			<u> </u>	
	ļ		1			·				
					_		ļ			
		TE.	All	measur	EL .	AFTE taken fi	R D	EVI of ris	ELOPM. er pipe.	ENT
	ate .			1-8-87	-r'				- <u>·</u>	
Static W	Eotto	im of '	Weii A	ifter Devel	opment	32,3	fe	et no[]		

Stickup Weil #	Abave P.F	Jab Ni Grou 2 - 2 2	H, T, T arme) E V Arria r 2.3	ELO haid Rofa **9-24	P)	Job 1 Your	NT RE Jumber 1/25 Name 221 Jan Jest beiov	CORD
Screen I Internal Screen I	ntervo Diame Viateri	:i :ter a: ai	Well P IVC	5,3		to	Screer Materi	n Siat ai	fest belov #10	v ground surface
}			All I						EVELOP: riser pipe.	MENT
Valume Minimum	Botti of Wa Volui	om of ter in me of	Weil Weil Water	feet 9.0 .9 to be Rec	gailons moved				I.D. of riser pipe [inch] 2 3 3 4 5	Gailons per foot of depth 0.163 0.367 0.653 1.02
			All I	_	JMP1				RD rizer pipe.	
Date	Run	Start Time		I	Pumping Reta [gal/min]	Valume Ramoved [gai]	Down [feet]	Recharge Rate [gal/min	Comr 1	nenis
10-6		R: 20	314		Bailin	3		Smin/Ah		
17-8-	2	9	9:30	20	to. Ti-	-5	On.		Sarcial	
Date	Sam	pie	Te	mperctur Corrected	* Tempe-	taken f Totoi Voiume	Pump	top of	rizer pipe.	menta
10-6	Numi			productivity [yhmos] 2 40	7	Removed [gai]	[gat/r	-	1 6	
10-6	12		27.	280	$+\tilde{1}$	12	<u>† – –</u>	- 1 1	to Salzin	
10-6	3		01	270	Y	7		- 1		
10-8	<u> </u>	7 	.2	Routed	7	~5.			Candlato	
							<u> </u>			
	<u> </u>	!_	<u> </u>		- <u> </u>	<u> </u>	<u> </u>		<u> </u>	
							<u> </u>			
-	WĄ	.TE							ELOPM riser pipe.	ENT
	ata		19-8-	87					1	
Statie We Sounded			<u>'3.7</u> Weil Af			10.8				<u> </u>
is there	any s	edime	nt left	at the bo	ottom of t	he weil?	yesC		ณ์	

		147.0	777		1.137		777	57	73.7		
55		VY E		 [-]	Accou	ELU head	ΡN	11	ιŊ.	Stert Date	
Stickup Weil #	Above N/W8	Groun 7-18 F	d Surfa	icsZ	0.5 fi	et 9-30	-87		Jab Nun Your Na	noer. $\frac{94}{7}$	57 haston
Screen I Internai	interva Diama	il Iter of	Well Pi	6.4.3 p=	2	ta	Screen	5. 5.	4. <u>3</u> t	fest bei 7/0	57 haston sw ground zur type 304
IN	LT.	IAL								VELOF Mer pipe.	MENT
Nater La Sounded				feet 66.3	feet				[.	D. at riser pig [inch]	e Gailans p foot of de
inimum	Volur	me of	Water I	to be Rei						2 3 4	0.163 0.367 0.653
for Deve	iopme	nt	(y. Ç.,	geli						5	1.02
	•-		All I			NG takan fi) er pipe.	
Date	Run	Start Time	Finish Time	Elapsed Time	Pumping Rate [gai/min]	Volume Removed [gal]	Oraw Down [feet]	R	ate	Corr	Iments
10-9	/	11:30	12.00			10			recharge	/	<u> </u>
											<u> </u>
									1		
										ST er pipe.	
Date	Som; Numb		h Ca	mperatur Corrected Inductivity [yhmos]	* Tempe-	Totai Volume Removed [gal]	Pumpi	ng	Method		nments
11.9	1	18,	51	70	19	5	-			Surgial ~	
10-9	2	- 9,	5	20	9	10		_	-1/	Vizi- Stori	Mar Luice
			{			<u> </u>		-+			
			<u> </u>			<u> </u>	{				
			1		1						
						- pr. 4		_			
-	WA	TE								ELOPM er pipe.	ENT
00	ite		10-2	_				<u> </u>	<u> </u>		
ilatic W	ater L	evel				<u> </u>					

¥

61		WE]]]	Ī)EV.	EĻC)P]	MF	N	T	R	EC	ORD
	Abave	јов Na Groun	me d Surfa	C <u>/1,////</u> .ce4	1.11 A.1. 4 4	gruhre .	<u> </u>	Ja	ia Nu	. Start Imber	Data	10- 59	6
Neil # ./:	1-87	-215	Do	ite_of in:	stellation	9-23	-8/	۲۰ منت ۲۰	bur N	lame	29m J	ohas:	kan round surfece
nternal	n terva Olame	iter of	Weil Pi	2	ST	to	Scree		•••••	\$10	feet o S/ot-	elow g	round surface
icreen i k	lateric	zi	PV			Rise	r Mater	ial		/0	******		,
IN	IT.	IAI			PR ements							PM	ENT
Nater Le	ivei	<u> </u>	25	feet				-	٦	I.D. of	rizer p	ipe	Galloris per
iounded	Bette	om of	Well	12:15	feet				-	[ir	1ch]	1.1	ant of depth
			19 C		gailans						2		0.163 0.367
				a be Re gai	moved lans	5	•			2 9 7. 1 ¹ 5.	4 . 5	•	0.633
```	12 12				JMPI ements						ipe. "	•	
Cate	Run	Start Time	Finish Time	Elaosed Time	Fumping fate [gai/min]	Vaturne Removed [gal] '	Down	Recht Rat [gal/r	:e	•	Ca	) Timen	ts
0-6	1	_	2;25		Gulani	6.	1125	1/6min/	<i>[4</i> ],	Surgia	- 1	Builed	Dra
2-8	2	10	10:30	25	Surgini		Dre	124.			•		
			<u>}</u>		·	) 	<u> </u>						
· · · · · · · · · · · · · · · · · · ·			All	leasur	BILI	taken' i				—	pe.		
Date	Sam; Numi		n   ca	mperatur orrected nductivit juhmos]	i rature	Total Vaiume Removed [gal]		te M	etheo	4	c	ommer	1 <b>ts</b>
0-6 1	T	6	28	140	17	141	-	- 1	ntis	A cles			- <u>;</u>
0-6	2	6.		2.20		6501	<u> </u>		1/	<u>6 hears</u>	1 2 2	lich to 1	<u>17221</u>
08	3		<u>, /   ·</u>	710		<u>e.17</u>	┼──		_		•		llsassal
!					1 1	aited D	A AM	nth A	5 + 1.10				
					<u> </u>		4			1			
						ļ		<u> </u>		<u> </u>			
 				<u></u>		l	+	[		1			
							1			1			
٦	ΨA	TE			EL 1 ements							ΛĒ1	TN
Da	te.			8-87					- <u>-</u>				
tatie We		avel	4.6										
			Weil Aft	ar Devel	apment sttom of t				<b>10</b> 2				

Internal Screen	Diamet Materia	er of V	Well Pi	nia <u>les c</u>		Rizer	Scree: Moter	n Sid iai	nt	teet bei 10 11/055 5teel	
		AL	D	ATA	PR	RIOR	TC	)	DE	VELOF	
Voiume Minimum	i Bottor of Watu 1 Valum	<u><u><u>9</u></u> m af W er in W</u>	Veil Veil Vater _!	fest .4.2.75	feet gailons moved	•			·	.D. of riser pip [inch] 2 3. 4	fact of 0.1 0.3 0.5
		· · · · · · · · · · · ·			JMPI	NG	RE	C	ORI	 D	1.0
	<del></del>	1			Fumping				of ris	er pipe.	
0ate	Run	Start   Time	Finish Time	Eicpsed Time	Rate [gai/min]	Ramoved	Down	l R	late [/min]	Con مرد ا	nments
10-8	71	<u>7:0</u>	500	no	1	100	\$20	<u></u>		Surgimail	h PUC
										+ For H/4/40	
Date	Sampi Numbe			nperctur arrected nductivity	a Tempe-	taken fi Total Volume Removed		top ing	of ris Method	er pipe.	mments
11)-8		1 10.		yhmes] 700	1 10	[gel]   Z		-		6.101	
10-8	7	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		80	10	10	GAREIN	-		Cinterfie 1	<u>V</u>
10-8	3	18.4		100	10	25	1				
10-8	4	18:4		130	12	60_			 	<u>├──</u> ──	
10-8	6	<u> 8.</u>  8.4		130	10	90	<u> </u>				
										1	
						ļ	ļ			Com Ab to	- <u></u>
		+	- <del> </del>		_ <u>_</u>	<u> </u>	<u> </u>				·
	WAT									ELOPM	ENT
			All 🖬	lessur	ements	taken fi		top	of ris	er pipe.	
			10-8		يرز ويترك ومعالي معالي						1

(7) ×									NT RE					
	<b>,</b> ,	lab N	iame 2	<u>H2M141</u>	[	Record			Start Date. 19	- 7-				
Stickup	Above M///	Grau	und Su	rfaca	/ fe	et 9-7.6	-87	Jab N	lumber. <u>9.4.2.5.9</u> Name <u>Dan Joh</u>					
Screen l	ntervo	<i>i</i> d		uate at ins 56.1		to 57		. Your	Nome	M57.72				
Internai	Diame	iter c	of Weil	Pipe	. Z ^Y		Screen S	iot#	110 5/0 T	ground surrace				
Screen )	Acteri	a3	04	Stuciles 59	<u>f.e/</u>	Rizer	Materiai .		10.5/07 5toin Loss St	e/				
			L	DATA	. PR	IOR	TO	DI	EVELOPI riser pipe.	ادهيين ومناطعتها وموادي وال				
Water La	rvei	B						- 	I.D. of rizer pipe	Gailons per				
Sounded	Batta	am a	t Weil	58,15	feet				[inch]	fact of death				
Valume	of Wa	ter ir	ı Weil.		gailons				2	0.163				
				r to be Rer					· 3	0.367 0.653				
for Deve	iopme	nt	80	, gedi					5	1.02				
				PU	JMPI	NG	REC	OR	D					
•	All measurements taken from top of riser pipe.													
Date	Run	Star . Tim			Fumping Rater [gal/min]	Removed		Rate	Comm	ients				
28-87	1	1:00	11:	7 37	Surcia	8.	Dra		PUC + Cost V	4/41				
10-8-87	2	2	13	Ihr	Surcien	20	DAy							
10-9	3	4:5	_		-17	10	Pry							
10-9	4	4:3	2 0	30 1		70			1					
10-13 10-16	56		All			ZATI taken f			IST riser pipe.					
Date	Samp Numi			Temperatur Corrected Canduativity [uhmas]	Tempe-		Pumping	Meth		nents				
10-5 1	1	4	9.6 1	300	190	2	Sursin		Sarini					
10-8	2	_	0.3	130		8.5	1.7.							
10-9-1	<del>7</del>		10.4	100	+	17	<u>   </u>		In A.t.					
10-8	<u> </u>	_	1.6	2240	- <u>  ×</u>	25	<u> </u>	+		<u> </u>				
108			1,7	2190	- <u> </u>	2		<u></u>						
10-41			1.8	2180	1	45	N	1	Clear V					
10-9	8		1.21	1900	1	65			Clear					
12-131			1	~			1							
1746		.				x 80 T	Fril							
7	WA.	TE		LEV.					ELOPME	ENT				
De			10	12										
Statia Wa	ter Li	evel	- 8,							·				
				Af <b>ter</b> Daveic t at the bo	•	58,2 he weil?	f	lest nac	ā					

	_	11 ype 59	7	( G I A I AC V		·		. –	~1		
LLN.										10 5/0 +	
	T.T.T									VELOPN ser pipe.	MEN'
								-	[ ].	D. of riser pipe	Gailons foot of
idad me o	Ection 6 Wat	m of Y er in V	Veil 231	1710 1,17	feet					2	0.16
mum	Valun	te of Y	Vater i	ta be Rem	aved .					3	0.36 0.63
)evel:	opmen	nt			<b>n</b> 3	· · · · · · · · · · · · · · · · · · ·				5	1.02
				PU	MPI	NG	RE	CC	DRI	)	
			A11 z	nessure:	mentro					er pipe.	
	สินก	Start Time	Finish Time	Tabasa	Rate	Removed	Down	Re	ite	· Comm	enis .
2							Orny	_	=	Incine	
		4	4:15	15		2					
=						6	1, 1			· · ·	·
	6 <u>7:<i>_0</i>4</u> Sampi			mpercture Corrected Inductivity	ments	talcen fi Totai Voiume Removed	Pumpi Rate	go ing	of ris	er pipe. Camn	-
								1		merking 1	Brown
				the second second second second second second second second second second second second second second second s			<u>50141</u>	<u> </u>		FUC TUDINA +	tiot Will
2	5	19/	21	570		Ø			Or.		
	_	<u> 7.</u>	0		10	12	<u> </u>		Och		<u> </u>
						a the second second second second second second second second second second second second second second second					·
					Į					· · · · · · · · · · · · · · · · · · ·	
-+				//"			<u> </u>	-+			
			<u></u>				[				
Ţ	VA'									ELOPME er pipe.	ENT
		e Samp Numb 21 5 21 6 22 6 22 6 22 6 22 6 22 7 21 6 22 6 22 7 21 6 22 7 21 6 22 7 21 7 21 7 21 7 21 7 21 7 21 7 21 7	ded flattom of V         me of Water in V         num Valume of V         Development         P       1         Start         Time         7       2.4         3          16          21       5         22       6         27       7         28       1         8       1         8       1         8       1         7          1          1          1          1          21       5         3          1          21       5         7          8       1         1          1          1          1          1          27          28       1         1          1          1          1	ded Eattom of Weil me of Water in Weil num Volume of Water Development	me of Water in Weil	ded flattom of Weil	ded Battom of Weil	Ideal Battam of Weil $M_{12}^{H_{21}}$ feet         me of Water in Weil $M_{12}^{H_{21}}$ gallans         num Valume of Water to be Removed       Development       gallans         PUMPING REAL       gallans         Run Start       Finish Elapsed       Pumping Rate Removed         Run Start       Finish Elapsed Fumping Rate [gal/min]       Valume Draw Down         Ime Start       Finish Elapsed [gal/min]       Valume Draw Down         7       2       4       47.5       7       2       0.000         7       2       4       47.5       7       2       0.000       1         7       2       4       47.5       7       2       0.000       1       1         7       2       4       47.5       7       2       0.000       1       1       1       1         7       2       4       47.5       7       2       0.000       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td>ded Battam of Weil</td> <td>ded Battom of Weil      </td> <td>ded Battam of Weil       $M_{eld}$       feet       [inch]         me of Water in Weil       $L(L)$       gallons       3         num Valume of Water to be Remaved       3       3         Development       $M_{eld}$       gallons       3         Development       $M_{eld}$ $M_{eld}$ $M_{eld}$ $M_{eld}$ $M_{eld}$         Run       Start       Finish       Elapsed       Pumping Rate [gal/min]       Velume Removed [gal]       Dawn Rate Rate [gal/min]]       Comm         7       1       5/5       Groot       95       $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ <td< td=""></td<></td>	ded Battam of Weil	ded Battom of Weil	ded Battam of Weil $M_{eld}$ feet       [inch]         me of Water in Weil $L(L)$ gallons       3         num Valume of Water to be Remaved       3       3         Development $M_{eld}$ gallons       3         Development $M_{eld}$ $M_{eld}$ $M_{eld}$ $M_{eld}$ $M_{eld}$ Run       Start       Finish       Elapsed       Pumping Rate [gal/min]       Velume Removed [gal]       Dawn Rate Rate [gal/min]]       Comm         7       1       5/5       Groot       95 $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ $\mathcal{F}_{eld}$ <td< td=""></td<>

Weil #	<u>P.</u> §	7-17.	<u>Ş.</u> D	ata of In: 15.0	stallation	9-24-	<u>87</u>		Your N	. Start Date. <u>127</u> . mber. <u>94254</u> ame <u>Oon John</u>	1.5 fz:-
Internal	n tervo Qiame	11 stær af	Weil P		2 *	to <i>1.9</i>	 Scree	n Sic		4/0 21	ground surf
Screen k	lateri	si		<u></u> PV	<u> </u>	Rizer	Mater	iai	<u></u>	<u> </u>	
Weil # Screen li Internai Screen k IN	ĪT	IAL								VELOPA ser pipe.	AENT
Water Le	vei	<u></u>	, 	feet 17, 2					ſ	LD. of riser pipe	Gailons pe foot of dec
Soundad	Batti	om of '	W <b>atil</b>	1,36	feet gailons				-		· <u>·</u> ··································
1				ta be Re	-					3	0.163
				gai						4 5	0.553
				PT	JMPI	NG	नज	C	1RI		
			A11 1					-		ser pipe.	
		Stort	Finish	harge		<u> </u>					
Date	Run	Time	Time		Rota [gai/min]	Removed [gdi]	Down [feet]	[gal	ate /min]	Comments	
10-8	<u>e I III0 II</u>			95	12	180	13		<u>~  </u>	Cleventer 3	min
						3 		) 			
						3		1			
				STA	BILI	ZAT	ION	T	TES	<u>зт</u>	
			All i				_			ser pipe.	
Date	Sem; Numi	P	h c	mperatur Corrected Inductivity [yhmos]	rempe-	Valume	Pump Rat [gai/r		Method	Comm	ienta
10-8	1	8.		640			Sura	/m		FratValus	
10-8	2	64		1160	12	48	12		Isma	Ciptor Sich	
10-8	3	6,1		1160	12	72	1 <u>2</u> 12		<u> </u>		
70 0				1600	1 1 4	/ #1					
					Y'mile e	dec. 2 1	pre tin			<u> </u>	
	<u> </u>		<u> </u>		<u> </u>		<u> </u>			<u>}</u>	
										· · · · · · · · · · · · · · · · · · ·	
			1		1	1	1	1			
۲	N <u>A</u>	TE:	R All 1	LEV	EL 4 ements	AFTE		D	EVI of ris	ELOPME ser pipe.	INT
h	te								1		

Stickup Weil # ./ Screen II Internai Screen II	nterva								Cur III			n stal.
Internai			(	A:		ta	1.5			fect	beiow	<i>چکر کر ہے۔</i> ground
Same 1	Diame	iter of 	Well Pi (	ipe C to The C	$\frac{-2}{\zeta + 1}$		Screen	n Slot	یر بر	105/5+		+
								_				
IN	TT.	IAL								VELC ser pipe.		ME]
Water Le										.D. of riser [inch]	pipe	Galla faat d
						<b>.</b> .			<u> </u> }	- []		
				to be Ren	-				ļ	3	1	į a
for Deve	iopme	nt	1	9 gaile	ana 🔏	•				4 5		
				T T	MPI	NG	ਸਤ		וקו	ר ר		
			ÂU r							ser pipe.		
		Start	1		Pumping	Valume	Grew	<u> </u>				
Date	Run	Time	Time	1 1 1	Rate gat/min]	Ramoved [gai]	Down [feet]	Ra		(	Comme	ents
10-9-57		7:15	335	20		7	ery			Bailet	Ors.	
10-987	_	4:30	44.5	15	~	3	Dn/	· · · .		11	_/	
10-13	3						1 U					
				<u></u>							-	
10-21 1	. []									·		
70-21				neasure	ments		_			ST ser pipe.		
Date	Samp Numb		h Ca		Tempe-	taken f	Pump	top ing		ser pipe.	Camm	nenta
Date 10-9	Numb	ier P	h Ca	mpercture Corrected Inductivity [yhmos] 350	Tempe- rature, [A]C	taken f Tetai Volume Ramoved [gai]	Pump Rat	top ing e πin]	of ris	ser pipe.	Camm	nenta
Date 10-9 10-9	Numi / 2	ier P	h Ca	ncasure mpercture Correctad Inductivity [yhmos]	Tempe- rature,	taken f Totai Volume Ramoved [gal] , 3 4	Pump Rat	top ing e πin]	of ris	ser pipe.	Camm	nenta
Date 10-9 10-9 10-9	Numb / 2 3	168 2:	h Ca	mpercture Corrected inductivity [yhmos] 350 460	Tempe- rature, [A]C	taken f Totai Volume Ramoved [gai] , 3 	Pump Rat	top ing e πin]	of ris	ser pipe.	Camm	nenta
Date 10-9 10-9	Numi / 2	ier P	h Ca	mpercture Corrected Inductivity [yhmos] 350	Tempe- rature, [A]C	taken f Totai Volume Ramoved [gal] , 3 4	Pump Rat	top ing e πin]	of ris	ser pipe.	Camm	
Date 10-9 10-9 10-9	Numb / 2 3	168 2:	h Ca	mpercture Corrected inductivity [yhmos] 350 460	Tempe- rature, [A]C	taken f Totai Volume Ramoved [gai] , 3 	Pump Rat	top ing e πin]	of ris	ser pipe.	Camm	
Date 10-9 10-9 10-9	Numb / 2 3	168 2:	h Ca	mpercture Corrected inductivity [yhmos] 350 460	Tempe- rature, [A]C	taken f Totai Volume Ramoved [gai] , 3 	Pump Rat	top ing e πin]	of ris	ser pipe.	Camm	nenta
Date 10-9 10-9 10-9	Numb / 2 3	168 2:	h Ca	mpercture Corrected inductivity [yhmos] 350 460	Tempe- rature, [A]C	taken f Totai Volume Ramoved [gai] , 3 	Pump Rat	top ing e πin]	of ris	ser pipe.	Сатп	
Date 10-9 10-9 10-9	Numb / 2 3	168 2:	h Ca	mpercture Corrected inductivity [yhmos] 350 460	Tempe- rature, [A]C	taken f Totai Volume Ramoved [gai] , 3 	Pump Rat	top ing e πin]	of ris	ser pipe.		
Date 10-9 10-9 10-9 10-21 1 1 1 1 1 1 1 1 1 1 1 1 1	Numb		h (Cc)	neasure Inductivity [yhmos] 350 460 4720	Tempe- rature, DAIC	taken f Totai Volume Ramoved [gal] ,3 4 10 12	Pump Rat (gai/r		Aethod	ser pipe.		
Date 10-9 10-9 10-21 10-21	Numb			neasure mpercture inductivity [yhmos] 350 460 4720	Tempe- rature, DNIC	taken f Totai Volume Ramoved [gal] , 3 5 10 12 12	Pump Rat [gai/r			ser pipe.		
Date 10-9 10-9 10-21 10-21	Numb / 2 ·/ ·/			neasure mpercture inductivity [yhmos] 350 460 4720	Tempe- rature, DNIC	taken f Totai Volume Ramoved [gal] , 3 5 10 12 12	Pump Rat [gai/r			Ser pipe.		

.

		TITL	ז זי	T			DN	<u>הי</u> ז'	IT REG	<u>de</u> or
		¥1 1.		یا ہے۔ ایران کی	. ۷ <u>نن</u> ا ۷					
<u>K</u>	- Abour	Jab Na Crown	me	<u> </u>	2.6	<u> 11. 4 [[]</u> 	The day	·····	Start Date. 1.0. umber. 942.5- Name .02.1. 170.2 feet below	- <u>87</u>
Scicxup Weil # .	Pr)	165	a surra Da	ica ita of in:	stailation .	9-15-	87	JOD NI Your N	Nome 02 1 70	et en
Screen	Intervo	zi		,25		to	20		feet below	ground surface
internal	Diame	eter of	Weil P?	;₽ ₽₫	<u> </u>		Screen	Siot	105/01	
Screen 1	Materi	ai <i>Y</i> .I	<u></u>	•••••	•••••	Rize	r Material	PVC		
IN	IT:	IAI							EVELOPA	MENT
Water Li	svei	7.8		fæst		,		ſ	1.D. of riser pipe	Gailons per
Sounded	Batte	om of	Well	2745	feet			ļ	[inch]	foot of depth
					gailons				2	0.163
Minimum	Volui	me of	Water 1	to be Re	moved .	-			3 4	0.367 0.633
for Beve	eme	nt	<u>ي د .</u>	gal	002	···			5	1.02
			2	Ρĩ	JMPI	NG	REC	IOR	ת	
			All z					+	iser pipe.	
		Start	Finish	Ecosed	Pumping	Valume	Onew R	echarge		
Date	Run	Time	Тіте		Rate [gai/min]	Removed	Down [feet] [	ate M/min]	Comm	entz
10-6		13:45	4:30		Rudine	<u> </u>				
10-8	2	930	10	30	Belie.	5	- 2	/Min		
					V					
-		<u> </u>		•						
				STA	BILI	ZAT	ION	TE	ST	
		,							iser pipe.	
			Te	noerctur	• Tempe	Total	Pumpin			
Date	Sam; Numi			orrected nductivity	,   rature .	Volume Removed	Rate	Metho	d Comm	lenta
	11444114			[somity	1710	[gai]	[gat/mir	ני		
10-19		16	51	120	12	3	11,6min 14	Suc	For Vulso P	<i>'UC</i>
10-5	2		4	140	2	5		Sare		
10-7	3	<u> </u>	0	140	7	= 10		Care	<u> </u>	
		<u> </u>			ke wind	2.4	<u> </u>			
	, 			Rill 2 1	1	<u></u>				
			<u> </u>							
							1			
					ļ 		<u> </u>			
٦	WA	TE.							ELOPME	INT
			All n	leasure	ements	taken f:	rom to	p of r	iser pipe.	
	rte	1	10-8-	87						
Static We	ster L	svei	7.6:	<u> </u>						
Sounded	Botto	um af V	Veil Aft	er Develo	pment	27.6		feet		· ·
					ittam of t			ПаД		

.

.

•

Water			A11 -			IOR	TO	DE	Start Date	
I C	Level	2.1	Ź	feet 32.(	8 <b>b</b>			•	I.D. of rizer pipe [inch]	Gailans foot of d
Voiume Minimu	i af Wa m Volui	ter in me of	Weil Water t	49 to be Rem	gailons loved	٠			2 3 4	0.163 0.367 0.633
				PU	MPI	NG taken f			D ser pipe.	1.02
Date	Run	Start Time	Finish Time	Time	Pumping Rate gal/min]	Removed	Draw Re Down [feet] [g	Rate	Comm	ents
10-21	17	902	12:15	3	15	66	30- "	5/min	Cleart &	
	1									
			A11 11	leasure	ments				ST ser pipe.	
Date	Samp Numb		""   Ca	mperature lorrected inductivity [yhmos]	Tempe- rature [T]	Totai Volume Removed [gai]	Pumping Rate (gal/min)	Method	Camm	nenta
]	1			2770	5	5	5-	Sure	Buike dry	
10-21	$\frac{1}{1}$	11.					·		CICILA-	
10-21 10-21 117-21	$\frac{1}{2}$	.  Q  \$	3	200	8	20				
10-21	2	12	3	200			Slmin	CHITT	I Claur	
10-21	3	12	3	200 90	9	20		CHITCH	Crinal 4	
10-21	3	12	3	200 90	9	20	- Slmin	Custor		
10-21	3	12	3	200 90	9	20	Slmin			
1					5	1901) 5 15			Buike dry	

									•	
5									T RE	
Stickup	Abave	Job Gri	Name ound S	<i>ر بلر ع</i> استفاده	2,3f	eet	e firm	Jeb Nu	. Start Date. /2- imber. 7. 7.2,579 iame. <i>R.o.a. Jahr</i> .	· Z /
Weil # Screen i	<i>V.?W</i> Intervo	(. <i>8)</i> 11	?13.F	Date of 51,9	Installation .	<i>10.–9-</i> to	-87 46.9	Your N	icme . <u>R.o.n. Jahn</u> feet beiow	ground surface
internal Screen l	0iame Materia	iter_	of We 3 <i>04</i>	I Pipe	Steel Joh	nsan River	Screen Materia	Slot	teet below 105/05 Sturbes Steel	3
		_							VELOP	الجبي يفروا والتركيم مستحسن
		_	, A	l measu	irements	taken f.			iser pipe.	
Water La Sounded	evei Botto		of Well	feet 54.	) feet gailons				I.D. of riser pipe [inch]	Gallons per foot of depth
								· · · [	23	0.16J 0.367
				er to be : 35		•	•		4 5	0.653 1.02
				_	UMPI					
				l measu	irements				iser pipe.	
Date	Run		ne Ti	nish Elapso me Time	[gat/min]	Removed [gai]	Dawn [feet]	Recharge Rate [gai/min]	Comm	ients
10-21	/ Z	9	- [2	60 30 30	1.7	- 45	30	· 1.7	(lend	
				<u></u>	ABILI	7 \ 1	ON	<u>بط بله</u>	9T	
			Al		rements					
Date	Samı Numb		ph	Temperat Carrect Canducti [yhmai	ed roture	Totai Volume Removed [gai]	Pumpi Rate [gai/m	🕺 Metho	d Comr	nenta "
10-21	2		8.8	130	8.	5		list-fai	1. Surani Pill Burtof	FORTV Phys
10-21	3		85	160		7.0			Diritin d	
15-01	4		8.3	210	<	30			Keited Der	
10-21 17 · 61	, 5		8.25	1/0	9 8	43	7,7			
1)-11	7		9	80	P	80	11		12193	
10-21	9		7, <b>5</b> 7,8	80	P	85 102	. 11		C Qumislite	
•	WA	T.			VEL A				ELOPME ser pipe.	ENT
	zte									
Static We			<u> </u>			<u>5</u> 4, 2				•
					elopment battom of t		yes	_		

,

· · · · · · · · ·					C # . #	/		. 701	CI.	lar	~~ /	*********
												ground zur
TU	i 1. T.	LAL				IOR taken f						AENI
Valume Minimum	Botti of Wa Volui	en of ) ter in ) me of )	2 Veil Veil	feet 13.05 (1.7 to be Rem	feet gailons toved			-		.D. at rise [inch 2 3 4	r pípe	Gailens ; faot of de 0.163 0.367 0.633
for Deve	iopme	nt	?/. <b>/</b>	gaila						5		1.02
			All r	-		NG takan t				-	t.	
Dete	Run	Start Time		Elapsed		Volume Removed	Braw	Rech Ra	arge te	,	Comm	ents
10-9	1	12:45	135		1:6	55	<u>- 139</u> 7	1.6	1	Good wi	11 6/00	of clean
								5	•			
				neasure	ments	ZAT taken fi		top (				
Date	Serni Numt		h Ca		ments Tempe-	taken f		ing k		er pipe	Comm	nentz
109-87	Numi	per P	h Ca	neasure Correctad Inductivity [yhmos] /40	ments Tempe- rature [T]	taken f. Totoi Volume Removed [gol]	Pump Rat	ing k	of ris	er pipe	Comm	nents
109-87		P	h Ca	neasure mpercture Correctad Inductivity (yhmos)	Tempe- rature [T]	taken f. Total Volume Removed	Pump Rat	ing k	of ris	er pipe	Comm	
Date 109-87 10-4 10-4 10-9	Numi / Z	P	Te Co Co 2 / 31	mpercture Corrected anductivity (yhmos) /40 4/0	ments Tempe- rature [T] /3 /2	taken f Total Volume Removed [gal]	Pump Rat	ing k	of ris	er pipe	Comm	
109-87 10-4 10-4	Numi / 2 3	- 2 - 2	Te Co Co 2 / 31	mpercture Corrected inductivity [yhmos] /40 4/0 520	Tempe- rature [T] /3 /2 /4	taken f Total Volume Removed [gal] / // // // //	Pump Rat	ing k	of ris	er pipe	Comm	
109-87 10-4 10-4	Numi / 2 3	- 2 - 2	Te Co Co 2 / 31	mpercture Corrected inductivity [yhmos] /40 4/0 520	Tempe- rature [T] /3 /2 /4	taken f Total Volume Removed [gal] / // // // //	Pump Rat	ing k	of ris	er pipe	Comm	
109-87 10-4 10-4	Numi / 2 3	- 2 - 2	Te Co Co 2 / 31	mpercture Corrected inductivity [yhmos] /40 4/0 520	Tempe- rature [T] /3 /2 /4	taken f Total Volume Removed [gal] / // // // //	Pump Rat	ing k	of ris	er pipe	Comm	
104-87 10-4 10-4 10-4	Numi 7 3 4	2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,	7 7 7 7 7 7 7 7 7 7 7 7 7 7	npercture Corrected inductivity [yhmes] /40 4/0 570	ments Tempe- rature [T] /3 /2 /4" /4"	taken f Totai Volume Removed [gal] / // // // // // // // // //	Pump ftat [gai/r		of ris	er pipe	Comm	o pik
104-87 10-4 10-4 10-4	Numi 7 3 4	2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,		LEV	ments Tempe- rature [T] /3 /2 /4" /4" /4" EL	taken f Total Volume Removed [gal] / // // // //	Pump ftat [gai/r				Comm c/gur	o pik

2

j

J

Ĩ

7

1

Screen )	Abave ////// lintervo Diame Materi	Job Na Groun ??81 ster of ai29	me.C. d Surfa b. Da Well Pi YStru	1/., <u>1// //</u> nce	1. Arns 7.3. fi stailation teel.	<u>whad</u> () eet to 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Job No Your 1 Slot slot	Start Date	- 9-87 Tunground zurface
IN		IAL							IVELOPI iser pipe.	MENT
Water La Sounded Volume Minimum for Deve	af Wa I Volu	iter in ' me of	Weil	to be Re	gailans moved .				LD. of riser pice [inch] 2 3 4 5	Gailans per faot of depth 0.163 0.367 0.633 1.02
			· All 1	_	JMPI ments				D iser pipe.	
Date	Run	Start Time	T ·	Elapsed Time	Pumping Rate [gat/min]	Valume Ramoved	Oraw Down	Recharge Rate [gai/min]	Comm	enta
10-9				700				. 6 / 10min		
10-9	2	215	2:30		<u> </u>		ok-			
10-9	7	330	14:30	15		23	Dix.	15/min	Cinterfica pour	1
			All n	mperatur	-	taken f		op of r	ST iser pipe.	
Octe ·	Samı Numi		^m   Ca	arrected nductivit [uhmas]		Voiume Removed [gai]	Rata [gai/m	: _ Metho	d Comn	nenta
10-9	1	8	_	320	10	3	·	Surein	Murkey - lote	A Silk Brown thick
10-1	2			00		6			· · · · · · · · · · · · · · · · · · ·	
10-9	3	$-\frac{7}{7}$		780 820	10	14			merley 1	
10-9	5			820	10	37	-	- 1	Clear Ktak	
								1		/
	 			<u></u>			<u> </u> _		Com Alpha	
	) 					)	<u> </u>		1	
				<u> </u>		]	<u> </u>	1		
-	WA	TE:							ELOPME ser pipe.	INT
	ata		10-1	2						
Static Wa	ater L	avei	6.6							
					apment attom of t		yes			

		<b>1</b> 1		•	CH. WIL	+11 $a$	der to a	r.	_		IT RE			
	Stickup	Ahove	ebb Na • Greun	d Suc	2.0	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••••••••••••••••••••••••••••••••••••		••••	·····	Start Date. 19 Jimber. 94257 Name. Oon Jo. 105/07 105/07	- 0/ 3/		
	Weil #	nw	5B		late of In	steiletien .	10-12-	87		Your N	Vinder Oon Jo	hnste		
	Screen I	ntervo	31		20,	2	to	15,	2		feet bein			
	Internal	Diame	ster of	Weil F	Hge	Z.''.		Screer	1 50	at 2	TIDSLOF	a dicana saliasa		
	Screen )	Vateri	ai <i>Typ</i> e	< 30	1 John	son Styink		Materi	ci .7	VP 30	1 Stuin less	steel		
		Т.Т.	LAL								IVELOP iser pipe.	MENT		
	Wat <b>er</b> Le	- Sami	3-9		faat					٢	I.D. of riser pipe	Gailans per		
	Sounded	Botto	om of '	Weil	22	feet				. •	[inch]	foot of depth		
	Volume	af Wa	ter In '	Weil	7,95	feet gailons					2	0,163		
-					to be Re				ند.		3	0.367		
i	for Deve	ionme	nt	29	ged	lona	•				4	0.653		
ļ												1.02		
•					PI	JMPI	NG	RE	C	OR.	D			
	PUMPING     RECORD       All measurements taken from top of riser pipe.       Date     Run       Start     Finish       Elapsed     Rate       Rate     Comments													
			r	<u> </u>	- <u></u>	dumping	Velume	Denne	_	harge		<u> </u>		
	Date	Run	Start	Finist	Dessed	Rate	Removed	Down		narge late	- Comr	Tenta		
			Time	Time	Time	[gai/min]	[gei]	[feet]	[ge	i/min]	•			
	10-21	1	2:46	17:06	20	14.2	281		7	1.2	Dumand Chor	e a ser		
1		7		1										
			1											
				1						:	)			
					STA		ZATI	- 	•	171127	err .			
					· — — —									
									<u> </u>		iser pipe.			
			. }	T	emperatur	Tempe-	Tatal	Pump	ina (					
	Date	Sam; Numi		h c	Corrected anductivit		Removed	Rati	8	Metho	d Cam	menta		
		1404116			[uhmos]	⁹ [7]	[gal]	[gel/n	nin]					
.	10-21 1	)	17.5	1/4	F70	180	1 70	14.	2	¦	ciat & la	. A INC Fost John		
<pre>/ </pre>	10-21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	فكاليب عكا	560	8.	140	14,2	-			/		
ļ	10-21	2	17		590		170	14.2			1			
1	10-2/ 1	7	12		600	8	213	14.			1			
	10-21	-5	- 1 2,		610	8.	284	14.	_		- <u> </u>			
Ì								1			(n. r. Hoto			
ĺ							1							
ł	1			1										
	i			 }		- <u> </u>				}	1			
	i					1		,						
Ì			-		* ***	د. بر است. بر است.			-					
	Ĩ	VY A	11	-	LEV						ELOPMI			
•.]				<u>A11</u> 1	measur	ements	taken fr	om t	οp	of T	ser pipe.			
	Da	rte	1	10-	22					Ĩ	1			
	Static We	ster L	evel	3.1							)			
	Sau and and	- · ·			<b></b> .		71 7 7							
1						opment ottom of t	12.2	 уезС	. fe	al na 🖾				

Ļ

Stickup Stickup Weil # Screen In Internai	WEIL DEVELOPMENT RECORD Jab Name C.M. M. M. M. A. Artau Rohm. Start Date 10-21-82 Stickup Abave Ground Surface 2,3. feet 3 Jab Number. 942.59 Weil # MW SE Date of Installation 10-10-87 Your Name Ocn Johns 74.4 Screen Interval 53.7 to 48.7 feet below ground surface Internal Diameter of Weil Pipe 2 ¹ Screen Sict. 44.0 Screen Material type 301. Stud Stud Steel Riser Material 94.55 Steel											
	INITIAL DATA PRIOR TO DEVELOPMENT All measurements taken from top of riser pipe.											
Water Level       Test       L.D. at riser pipe       Gailons per fact af depth         Sounded Bottom of Weii       5       feet       [inch]       fact af depth         Valume of Water in Weii       5       gailons       2       0.163         Minimum Volume of Water to be Removed       3       0.367         for Development       5       1.02												
PUMPING RECORD All measurements taken from top of riser pipe.												
Date	Run	Start Time	Time	Time	[gat/min]	Volume Removed [gat]	Down [feet]	R [gcl	ate /min]	Comments		
10-21		307	FA:OA	364	_ح	- 86.	230'		14.5	Clean		
					BILI							
Date	Sam; Numi		h Ca		Tempe-	taken fi Totai Volume Removed [gai]	Pumpi Rate [gai/m	ng	of ri Method	ser pipe.	nents	
10-21	/	7.1	<u> </u>	400	1	5-10	.5		Cideta	Surgini -	Buike da	
10-21	7	<u> </u>		<u>z10</u> 700	8	10	$\frac{1}{5}$			Cintot 1		
10.71	4	19	0	180	8	17	S					
10-21	- 5	- 8,   <i>V</i> ,		<u>40</u> 10	90	250	5		<u> </u>	1		
10-21	7	<i>ð</i> .		50	8	62	<u>.</u> .			444		
10-20	8	9		20	+	65	1.5		1			
10-21	a	- 8	7 1 0	20	Y	86		-	¥	Cam plais		
T	WA	TE								ELOPME ser pipe.	ENT	
				1.2		<u> </u>						
Sounded	Date     /.)~7.2       Static Water Level     3.6       Saunded Bottom of Weil After Development     55.7       s there any sediment left at the bottom of the weil?     yes											

•

_

Weil # . Screen	<i>MU</i> Interva	<i>N 87-</i>	\$ <u>5</u> 0.	ote of in: 2	stailation	9-25 to	-97. 		Your Na	nber. 94255 me Dan John re beior 10	w ground zi
internai Screen	Diame Nateria	itar of	Well P Stri.	ipe	eel type	304 Rizer	Screen Materi	n Sic iai	stain,	[0] [ess_5][r]	
IN		IAI								VELOP ser pipe.	MEN'
Water L	evei Rotto	4.6	2	fest 2.9	fant "				[ ¹ .	.D. at rizer pipe [inch]	Gailons foot of
Volume	of War	ter in	Weil		galions					2	0.16
				ta be Re gai						3 4 5	0.36
					JMPI					-	
								<u> </u>		ser pipe.	
Date	Run	Start Time	Finish Time	Ecosed Time mm	Pumping Rata [gai/min]	Volume Removed [gai]	Down	R	harge  ate /min]	Comr	ments
10-9	1		3.00			3,	On	-	-	Batel Dr.	
10-4	2		13:45				Niv	<u> </u>			
10-9	4	448		15min		2	'			Sailed Dre	
10-22				neasur		taken f	rom (	top		ST mer pipe.	
Date	Samp Numb		²⁷¹   Ca	Corrected inductivit [yhmas]		Voiume Removed [gai]	Pump Rat [gat/r		Method	Carr	menta
10-4			9	560	8	15			Sung	thield Sating	Broa n
10-4	<u> </u>	_	5	630	<u> </u>	3				l	
10-9	7	(e)	5-	630	18	3.5	┼─≿	_		!	
10-22						5.5	<u>}</u>				
10-28	-	- 1	-	<u> </u>	1 -	6.5					
	<u> </u>						<u> </u>			<u> </u>	
	[					<u> </u>	<u> </u>				
1						·····	<u> </u>				
		TTTT	$\mathbf{P}$			ላ ምጥ ቹ	g:	Π	EVE	ELOPM	ENT
	WW /\	والشكر والرار								er pipe.	
	<u></u>		All r	neasur				<u> </u>			

5.										r rec			
		Jab Na	me…L	H. M. H.	/	Accomber	2. [[n.	16 e	9	Start Date. 10. ber. 94259	-21-82		
Stickup wai z	Abave O- e1	Groun	nd Surfa N	ica	et allation	net //)	7	'Job You	Num	ber 19257	ct.		
Screen I	Stickup Abave Ground Surface       7.0.       feet       Job Number.       942.53         Weil #												
Internal Diameter of Well Pipe													
Screen Material. PUC. Riser Material PUC													
INITIAL DATA PRIOR TO DEVELOPMENT All measurements taken from top of riser pipe.													
Water Level													
Sounded Bottom of Well													
(					gailons					2	0.163		
Minimum	Volu	me of	Water	to be Ren	noved _					3	0.367 0.853		
for Deve	iopme	nt		2 gali	0112 					5	1.02		
PUMPING RECORD													
All measurements taken from top of riser pipe.													
· · ·	<u> </u>	<b></b>	1								^		
Date	Run	Start Time	Time	Ecosed Time	Rate [gal/min]	Removed	Down [feet]	Rate [gal/mi	· 1	.Comm	nts		
		2.24				[ga] 25	_	[gel/mi	<b>.</b>				
10-21		3:24	10	2,5		67	Pry		+				
			+							· · · · · · · · · · · · · · · · · · ·			
							·						
		_	_	STA	BIT I	ZAT		נידי ז	75	· ጥ			
			All =			taken f			_	—	(		
				_			<u> </u>		T				
Date	Sam; Numi		ph   ca	iorrected inductivity [yhmos]	Tempe- rature	Volume Removed [gal]	Pump Rat [gai/r	e Met	hod	Camm	ients		
10-21			4	520	10-			5.	ein	Surgio: bo	led Dre		
10-61	.2			370	10	5-			0	<u> </u>	., /		
10-21	3	6	7 450		,0"	8							
10-21	Ŷ		5.9 400		10	15							
10-21	- 5		7	<u>U())</u>	100	20_							
11-21	)	-+7	re/	400	10	25		<u> </u>		C i l			
	l				<u>-</u>					Con det.			
					+		<u> </u>						
							1						
1		יביד	D.	ETT.	ਾ ਜ	ላፑጥፑ	q!	יתת	нV	LOPME	NT		
ľ	** _**		י יייבי דירו∆	. ۷ نشلیسا ۱8857779	د سدند ements	taken fi	rom 1		rise	er pipe			
	rte			i	,								
Static Wa		evelt		{									
			<u>.                                    </u>	1		I			<u> </u>	<u> </u>			
	Sounded Bottom of Weil After Development												

										· · · · · · · · · · · · · · · · · · ·	
Gi		WE	<u>II</u>	$ = \frac{1}{2} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=$	)EV	ELQ	PI	<u></u>	EN	T RE	CORD
		lati Nai	ma . (/	721.4.44	ļ f, H.(.)	w freed Re	Human.			. Start Date	-28-87
Vell #	Adave MW-	87-ZA	a surta Da	ica/.). Ita of in	stailatíon	eet 10-73-	87		Job Nu Your N	mber 97237	- f_
Screen I	ntervo	4	•••••	49,5		to		(5	·····	fest below	ground surface
Internai Samaa i	0iame Interio	itar of a Tv <i>n</i> P	Well Pi 304	Johnson	Z. Stunday	Stad =1	Scree	n Sid	ot	cme	. An ZOU
			<u>`</u>							يصيدك والمتحاف المتراه أرصا ألا	
LN	ĽĽ.	IAL								VELOPM ser pipe.	MENT
Water Le Sounded	wei		· • • • • • • • •	feet	, ·	•			<u>``</u> [	LD. of rizer pice	
						•				[inch]	foot of depth
Volum <b>e</b> Minimum				-	gailans moved					2 - 3	0.163 0.367
for Deve			_							4 5	0.833
				DT	דס ארז	NC	הבכ				
PUMPING RECORD All measurements taken from top of riser pipe.											
Gate	สิบภ	Stort	Finish	Ecosed	Pumping Rate	Volume Removed	Draw	Reg	narge		
	пыл	Time	Time	Time	[gat/min]	[gal]	[feet]	[ga	l/min]	7. 3 Comm	
10-29	1	12:30	3	2.5		10	Orne	10	163	Car huge 2.31	ha
						<u> </u>		}			
								1			
					BILI				-		
							1			ser pipe.	
Date	Sami		느ㅣ┕	, an sei sa	Tempe-	ACITICITA	Pump		Method	Came	nents
	Numi	er [ "	- rua	nductivit [yhmos]	¥ [٣]	Remaved [gai]	[gal/r	nin]			
10-27 1	(	1/0.		870	18	10				Surgin Der	6 Dre
10-28	2	9,	7	400	8		<u> </u>		 		
					- <u>}</u>		<u> </u>			<u> </u>	
						ļ	<u> </u>				
						in a second	┼				
			1		1		1				
Т	γA	TE:								ELOPME ser pipe.	ENT
Da	te				· · · · · · · · · · · · · · · · · · ·					1	
Static Wa	iter L	svel									
					opment attom of t		yesC	fe	et na		

.

:

l

ŀ

1

1

ł

ł

ţ

ŀ

ł

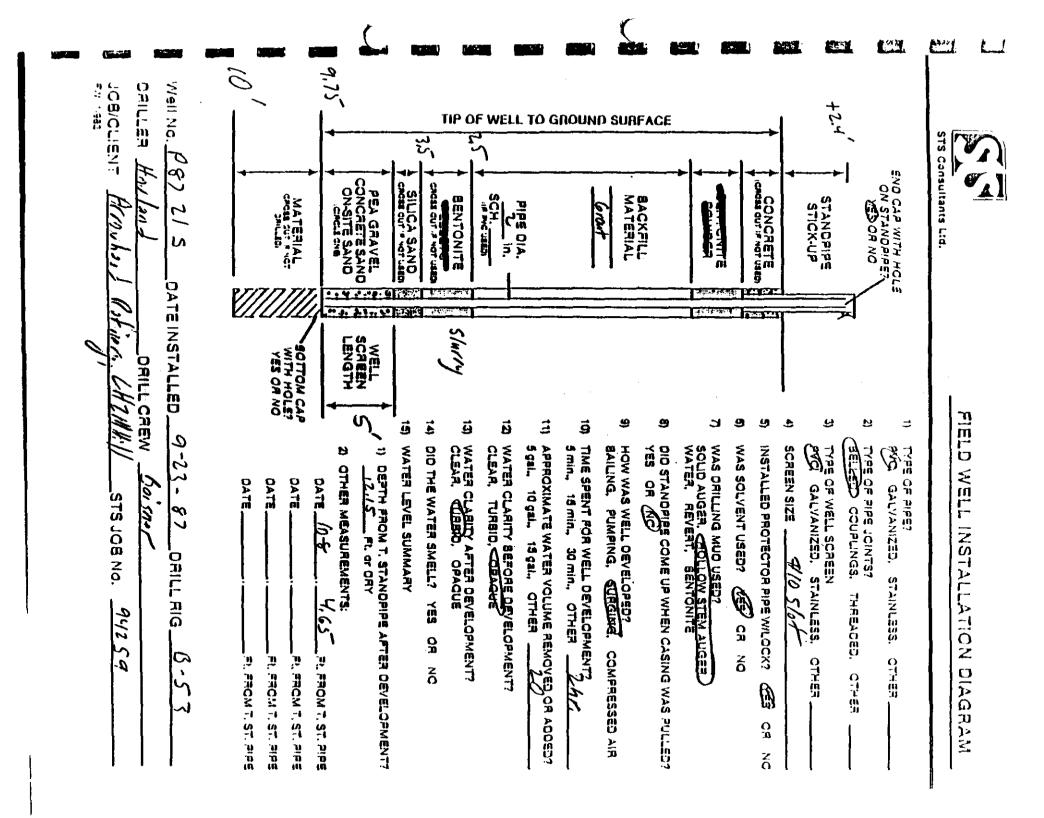
•

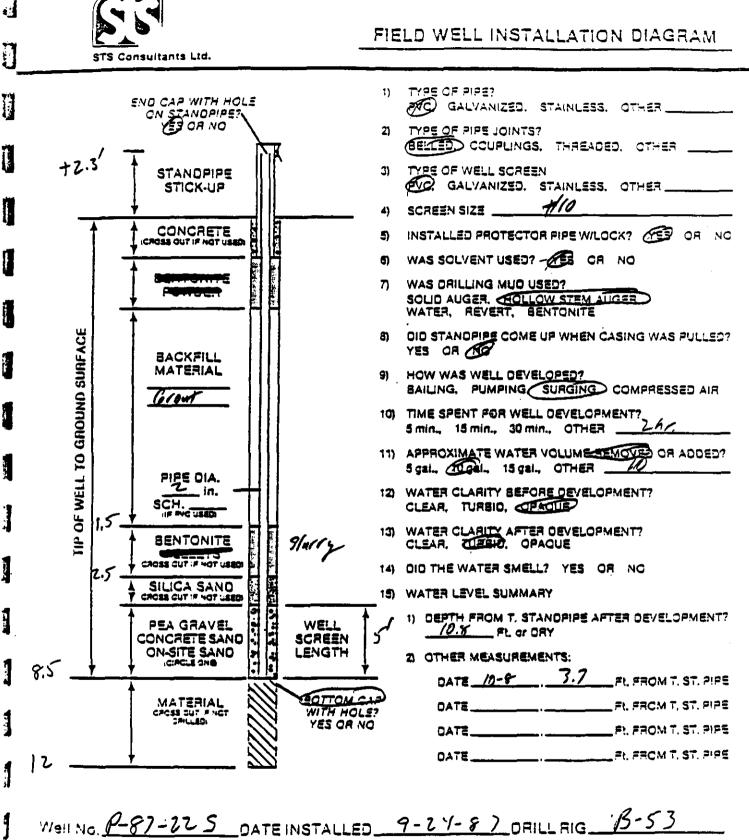
ì

.

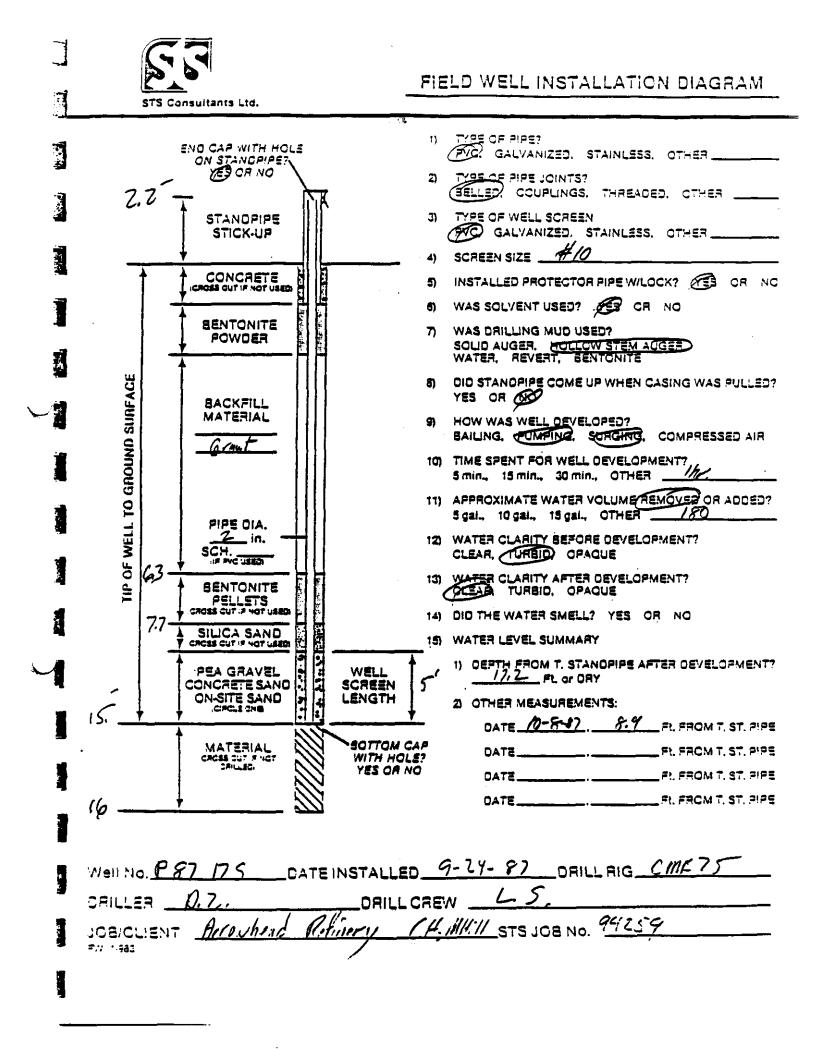
.

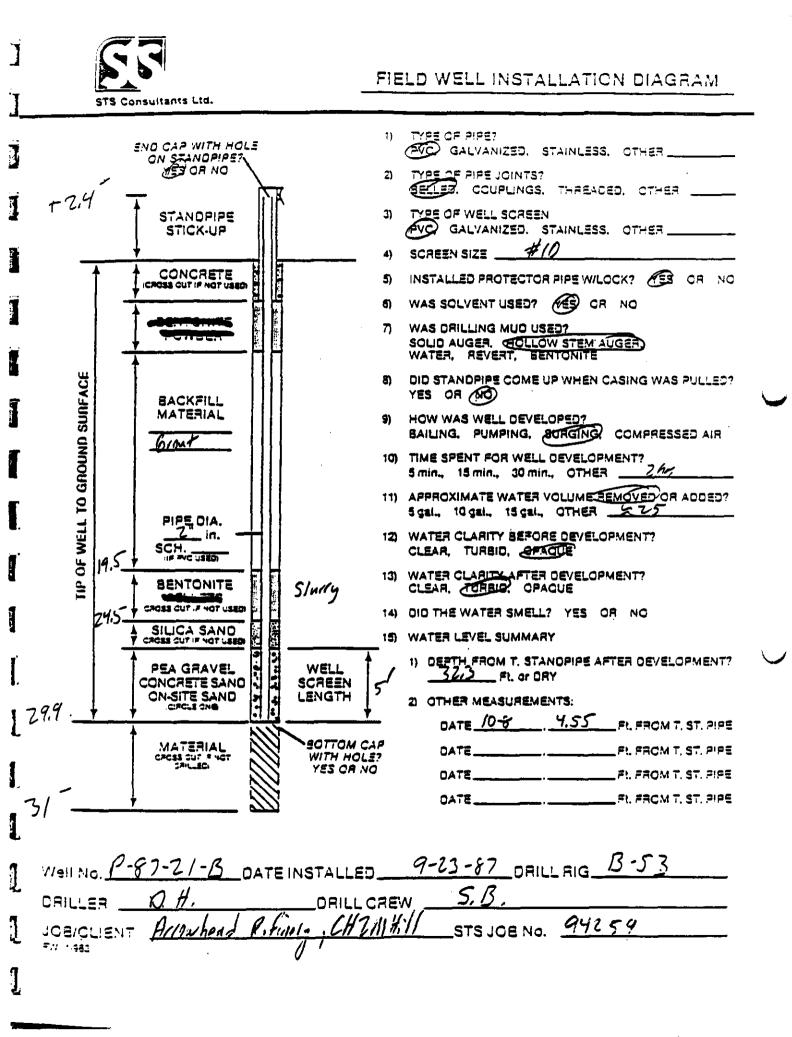
51		W	ŦŢ		)EV	ELO	PM	EN	IT RE	CORD			
Stickup Weil #	Above P-8	Grou 2.5.	ind Su <u>5</u>	urface	stallation	et 10-14-	-87	Jab Ni Your I	umber 44755	5/0-			
Internai	Diame	iter o	f Weil	Pige,			Screen Si	ot	feet below 9.10.5/05	ground surface			
Screen k	lateria	rl		PVC	•••••	Rizer	Material .	<u> </u>	Ç	•••••••••			
	INITIAL DATA PRIOR TO DEVELOPMENT All measurements taken from top of riser pipe.												
Water Le	rvei	3,	<u> </u>	feet				•	LD. of riser pipe	Gailons per foot of depth			
Sounded	Botto	an al	Wedl	-12-3. IiY	feet		· .	H	[inch]				
1					-				2 3	0.163 0.367			
							• •		<b>4</b> <b>5</b>	0.633			
	· ·		·····			210			<b></b>				
	PUMPING RECORD All measurements taken from top of riser pipe.												
Date	Run	Ster Time	t Fini 1 Tin	sh Elapsed Time	Pumping Rate [gal/min]			tate .	Comm	entz S			
10-21	1	3:19	10	5:3		*		•	· · · · · · · · · · · · · · · · · · ·				
			+										
			┽━	•									
`			All		BILI				ST iser pipe.				
Date	Sam; Numt		ph	Temperatur Corrected Conductivit [yhmos]	y [T]	Total Voiume Removed [gal]	Pumping Rate [gai/min]	Metho	d Camn	nentz			
10-21			185	200	120	1		Surgi	n Bailes	Tru .			
10-21	<u></u>		24	380	12.	9		╞╌┝					
10-21	<u> </u>		, <u>5</u> , 9	400	12"	17							
10-21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		7.6	422		19							
							İ	i T	1 12. m/2-0				
							[		· · · · · · · · · · · · · · · · · · ·				
ļ			[			L	ļ	<u> </u>	_ <u></u>				
			<u> </u>			l	1	<u> </u>	+	 I			
	WATER LEVEL AFTER DEVELOPMENT All measurements taken from top of riser pipe.												
	tæ												
Static We	iter L	evel				1			<u>}</u>				
	Sounded Eattom of Weil After Development												


# TM 3--MONITORING WELL AND PIEZOMETER INSTALLATION

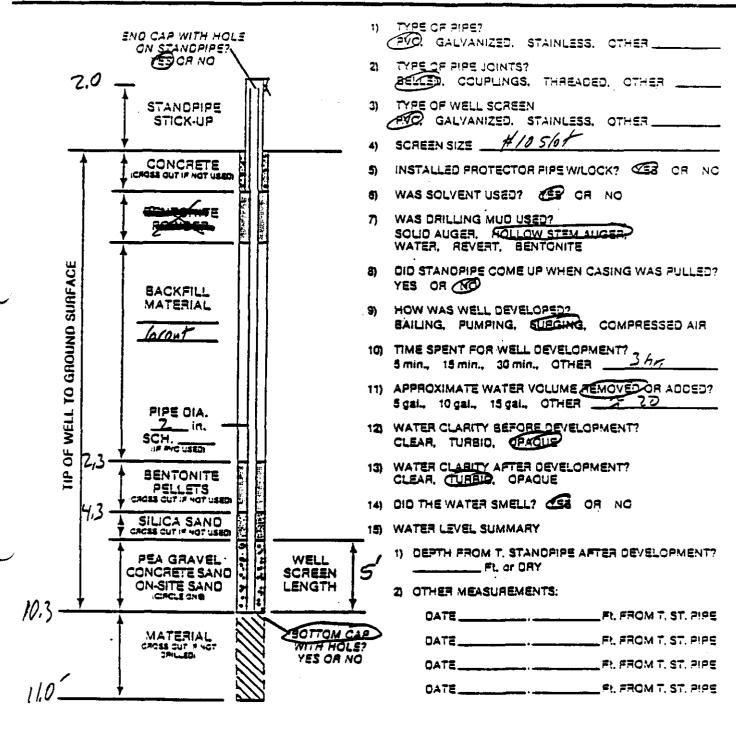

Attachment C WELL DEVELOPMENT RECORDS

.'


GLT932/007.50-5


.



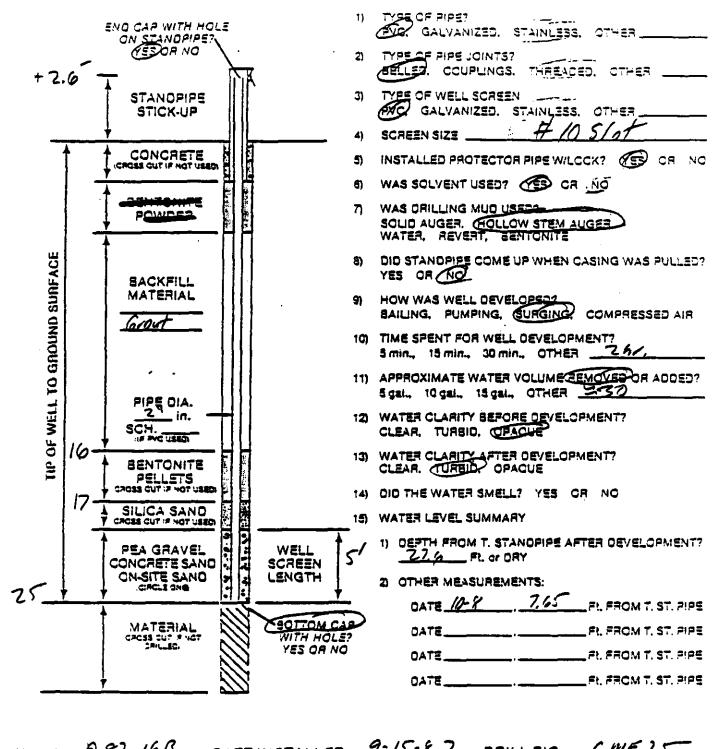


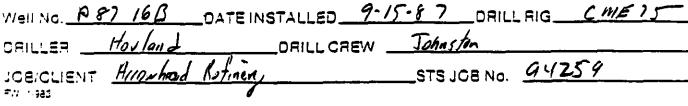

DRILLER <u>O.H.</u> DRILLCREW <u>S.B.</u> JOB/CLIENT <u>Ariawhead Rofinery</u>, <u>CH2111Hill</u> STS JOB NO. <u>94259</u>

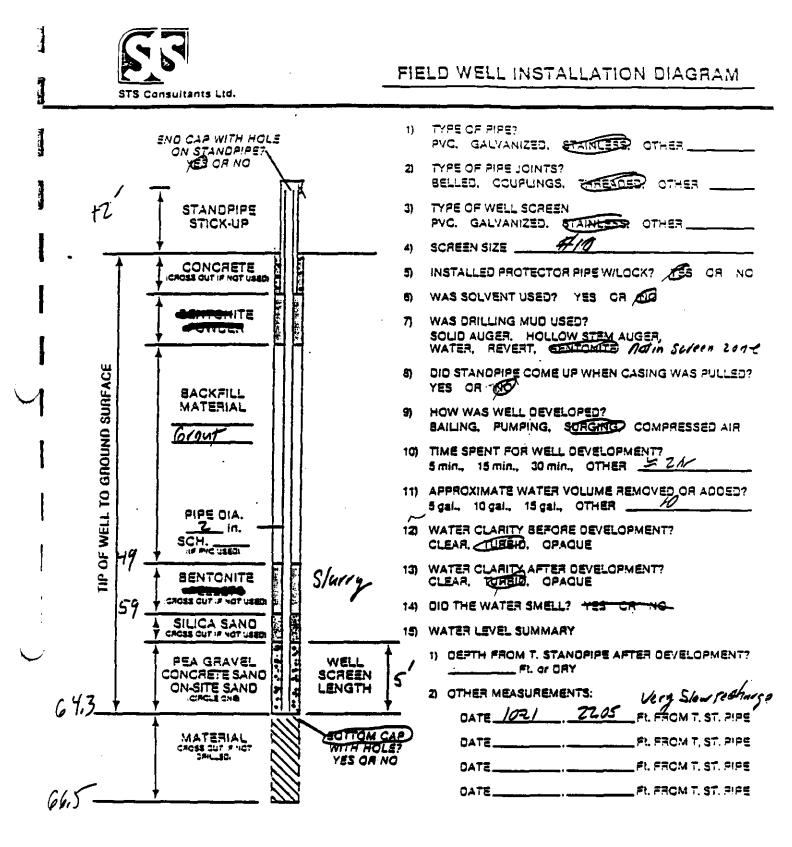








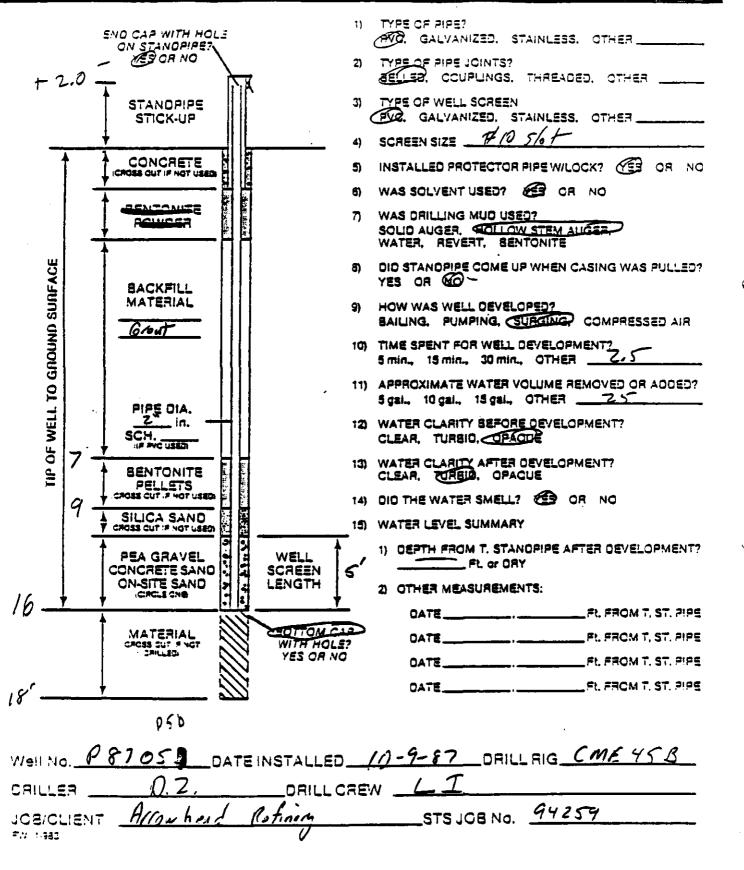


Well No. <u>P87055</u> DATE INSTALLED <u>10-14-87</u> DRILL RIG <u>CME 75</u> DRILLER <u>DZ</u> DRILL CREW <u>DJ</u> JOB/CLIENT <u>Princhend Rofinery</u> STSJOB NO. <u>94259</u> FW 1983

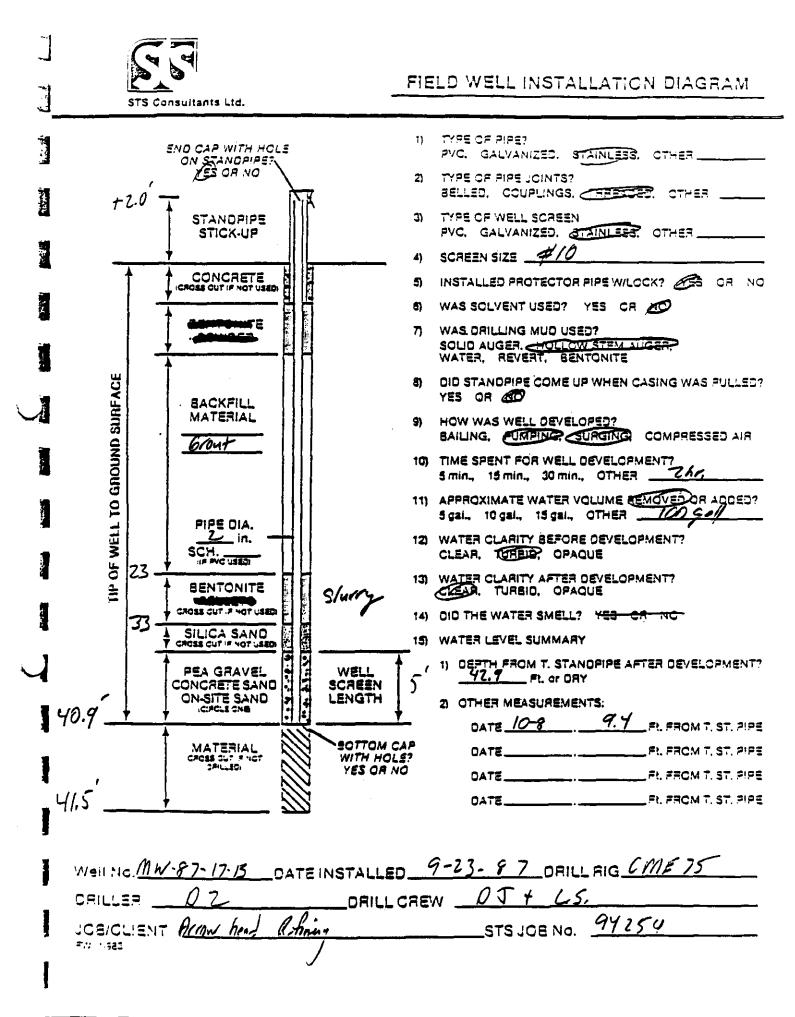



100

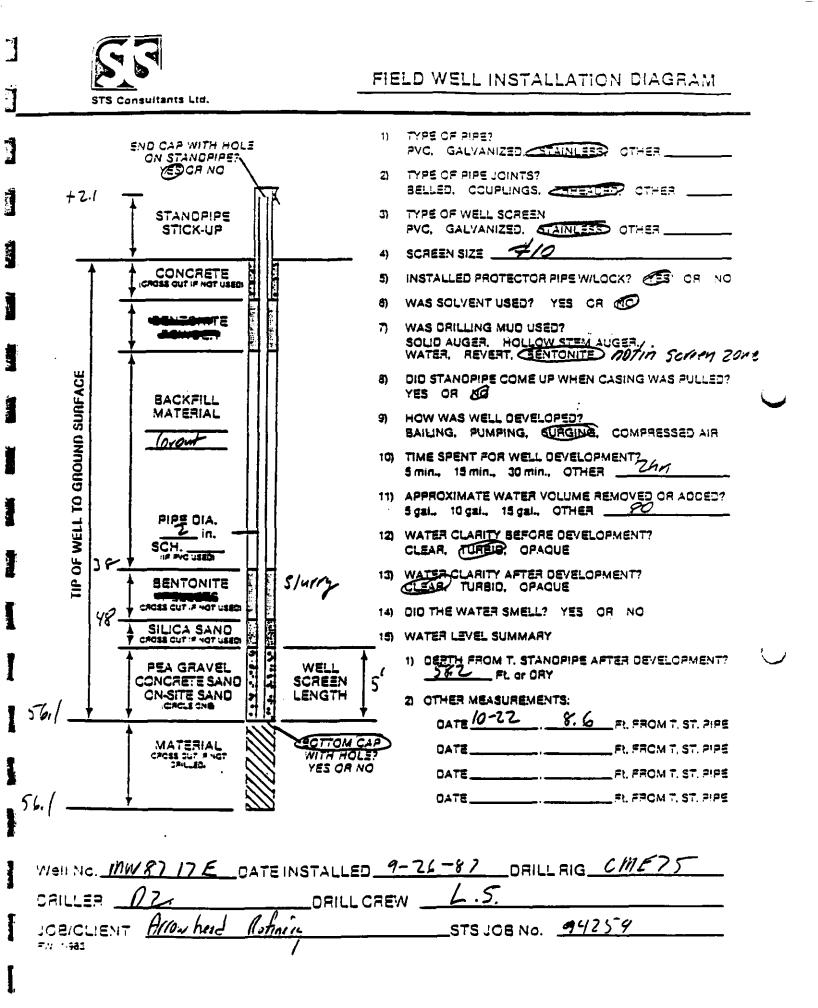
## FIELD WELL INSTALLATION DIAGRAM

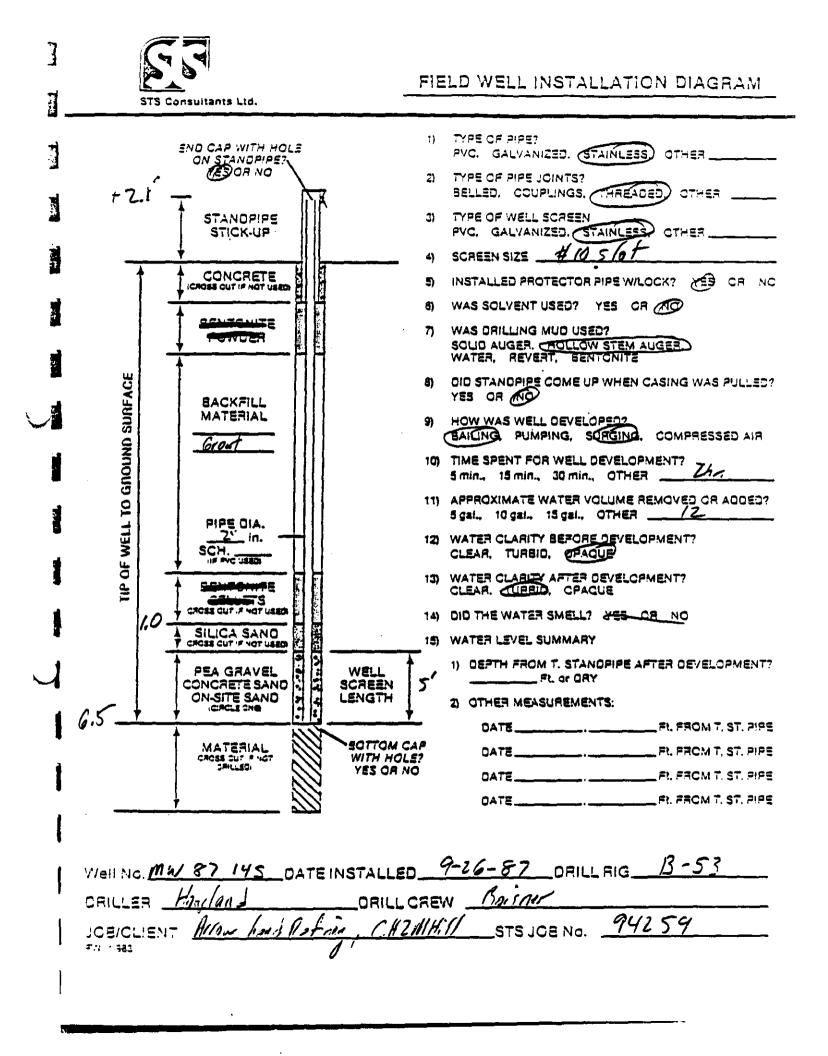


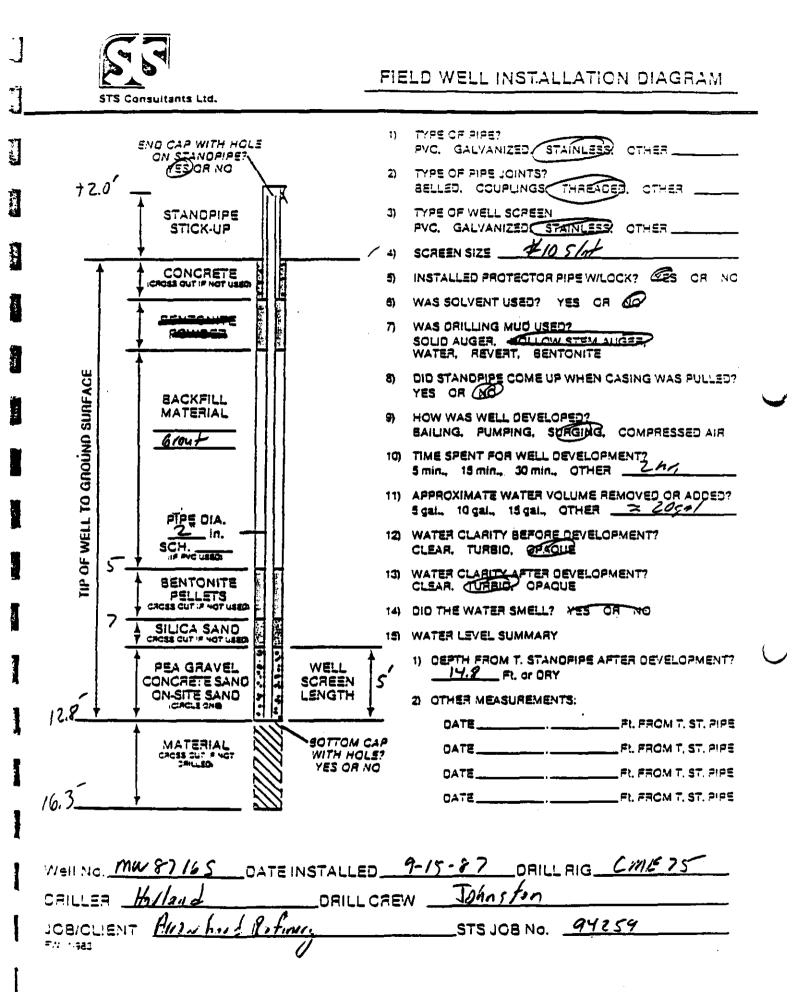


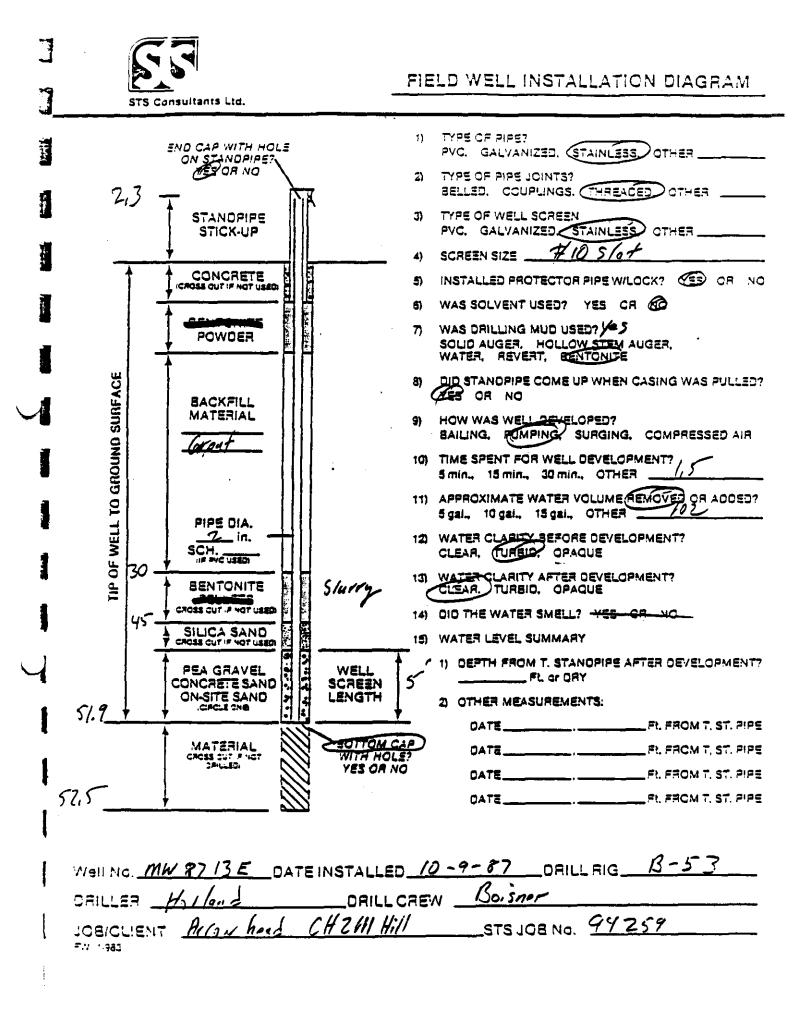




Well No. ML	187 18 E	DATE INSTALLED 9-	<u>30 - 87</u> DRIL	LRIG CME 75
CRILLER	D.Z.		LS.	
JOB/CLIENT	Allow head	Refinern , CHZMHII	STS JOB NO	94259
F.V. 1-982				


5.



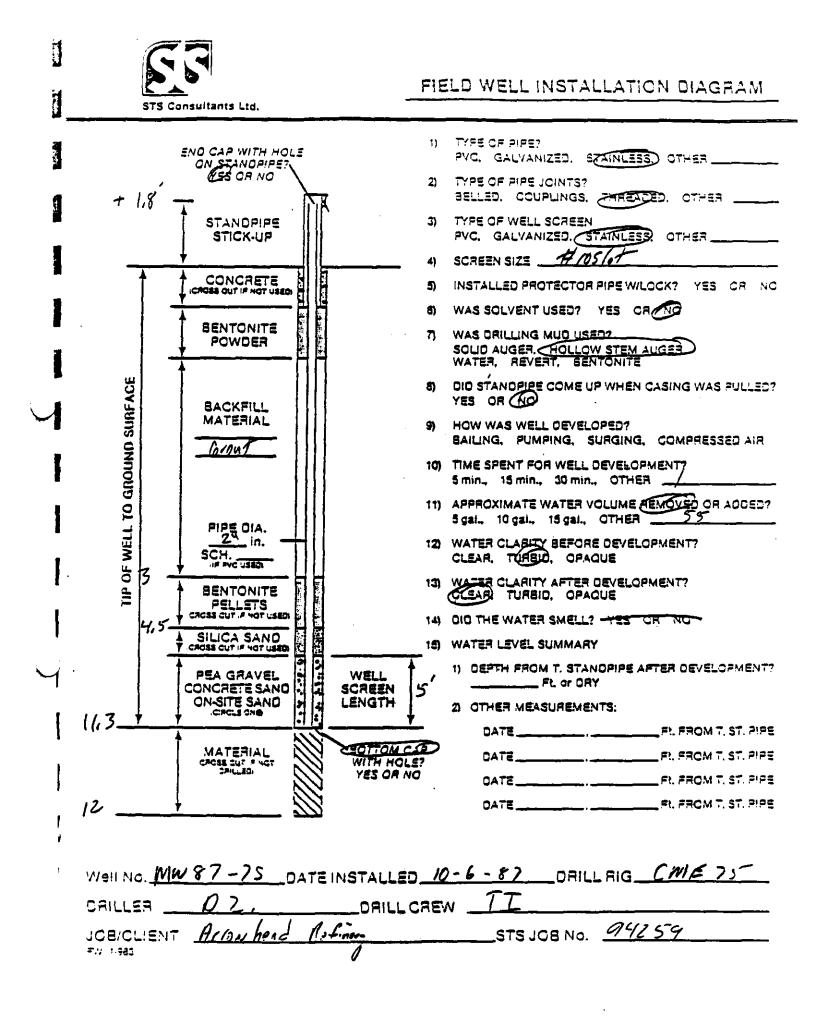



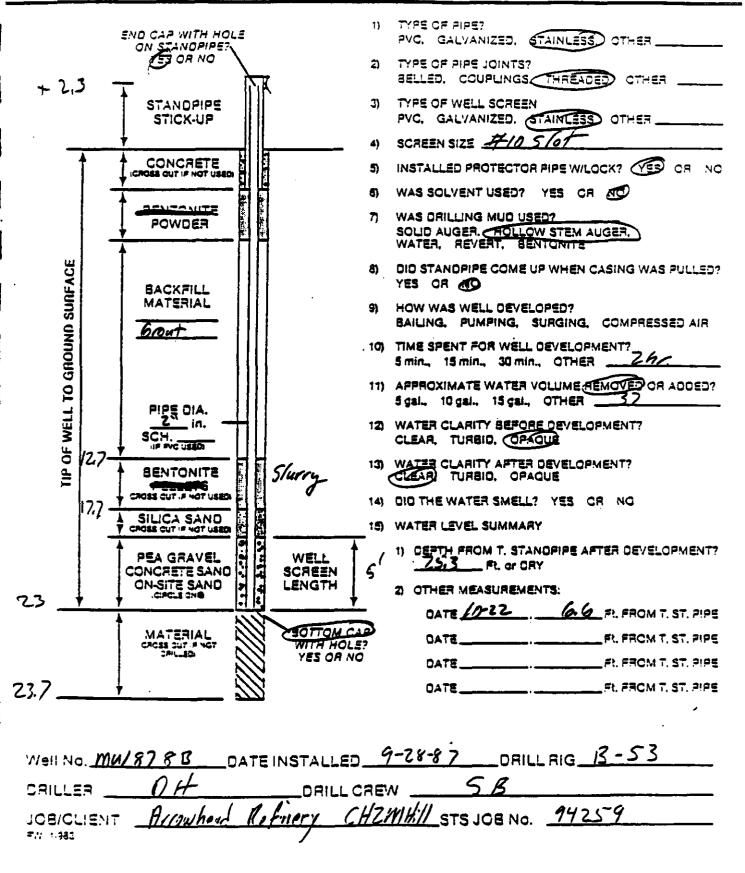

**d**-

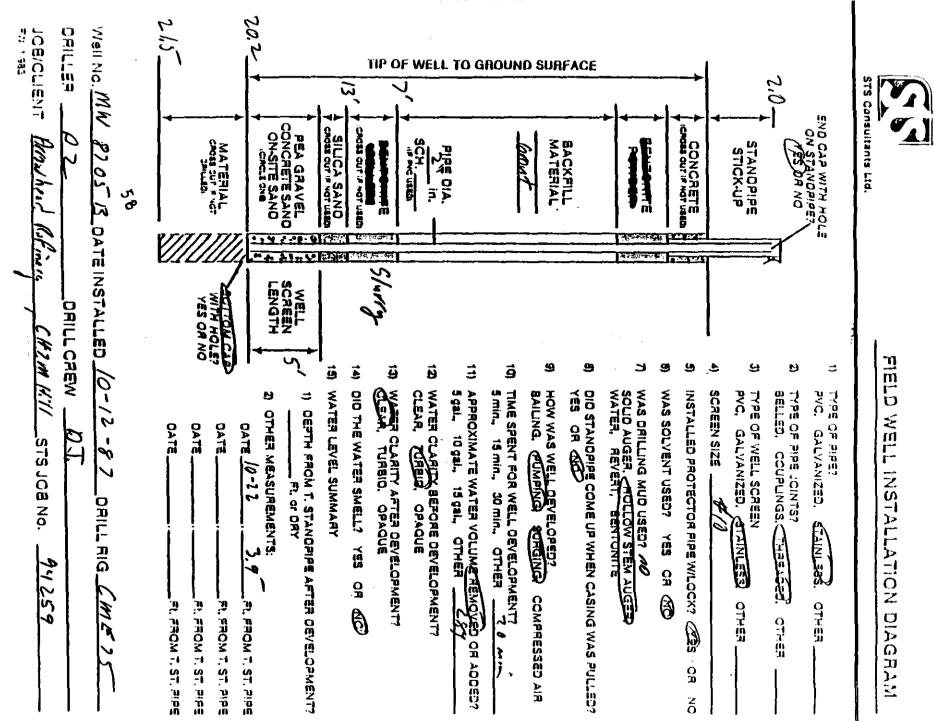






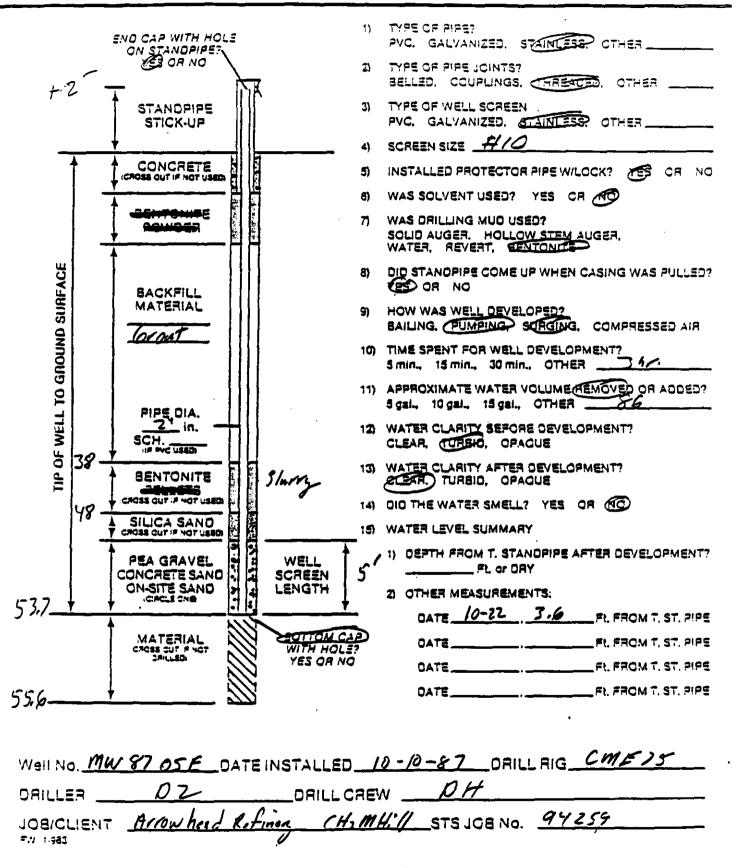




.




Well No. <u>MW 87/3B</u> DATEINSTALLED <u>10-13-87</u> DRILL RIG <u>B-53</u> DRILLER <u>Howload</u> DRILL CREW <u>Baisair</u> JOB/CLIENT <u>Array head</u> <u>CH2M Hill</u> STS JOB No. <u>94259</u> TW 1983

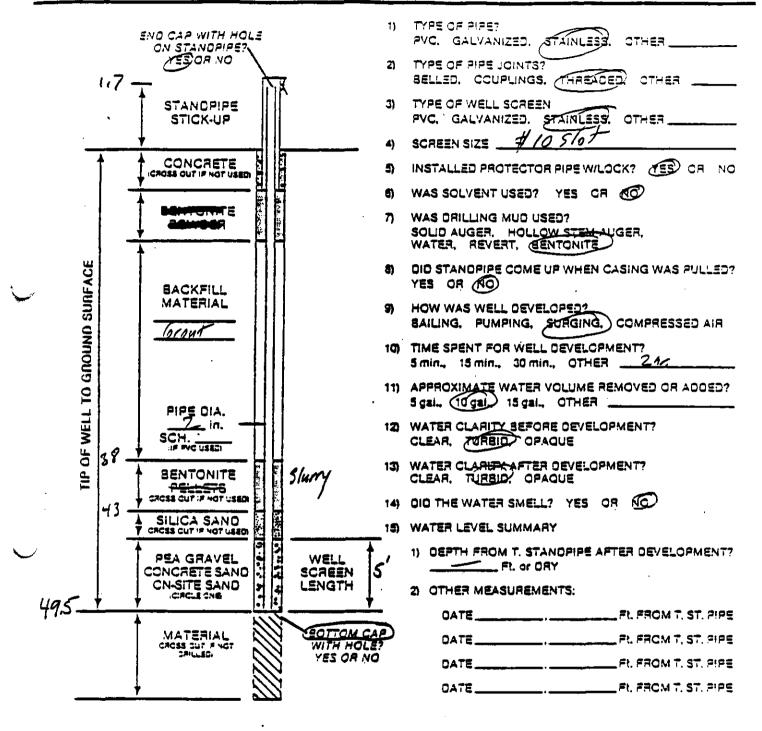






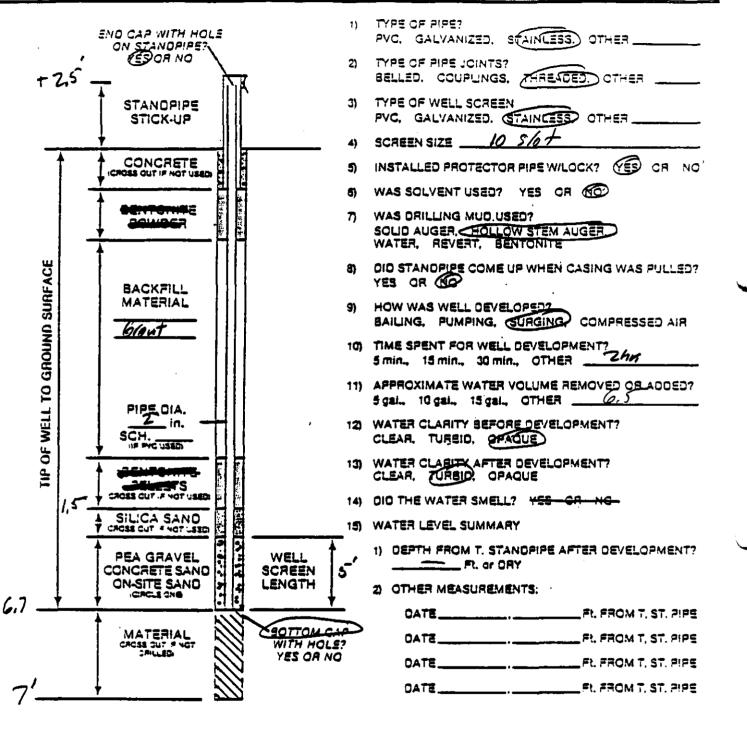


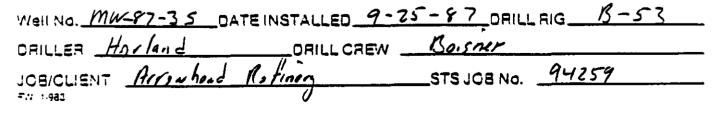

يها <u>اشتجع</u>






____


<u>____</u>___






Well No. MW 87	<u>7-2-6 dateinsta</u>	LLED 10-23-87 OF	AILL RIG 53
		AILLCREW BOISNER	
JOB/CLIENT 1	Armsherd Refinera	CHZMHI STSJOEN	0. 94759
F/7 1983			







## TM 3--MONITORING WELL AND PIEZOMETER INSTALLATION

.

Attachment B WELL INSTALLATION INFORMATION

.•

GLT932/007.50-4

.

<b>OJE</b>			

## SOIL BORING LOG

CH.MHILL

PROJECT ARROWHEAD REFINERY	
ELEVATION	DRILLING CONTRACTOR STS
ELEVATION	MAUGER (43/9" ID)

.

ION FILLD A MILE S.W. OF OFFICE

		-	·				
ST	ART	9/25	/87	 9/	25	87	

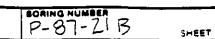
'ER LEVEI	L AND D	ATE			START 9/25/87 FINISH 9/25/87	LOGGER GETTALD A. MSLA
F		SAMPLI		PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH DELOW BUMFACE (F	INTERVAL	TYPE AND NUMBER	RECOVERY (INCHES)	TEST RESULTS 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
2			20	1,3,3,4	Peat+ clay, minor sand+ gravel, lower 6" contains more clay + han peat	0.0 Han clamp
-			14	4,6,5,4	0-8" brownish silty clay with some sandt gravel B"-6" sandy clay with chan sand tense 1.0" thick, trace gravel sand is med. grained	domp 0.04mm
4 -			20	10,15,16,18	0-4" reddish brown silty sandy clay 4"-12" reddish brown silty sand, munorgu sand is med. to coarse grained 12"-20" red clay with some sitt + med.gr	sand saturated
6			24	1977,12,11	0-64 brown silty sand with some grav sound is medite coarse grained. red 6"-24" brownish clayey silt with trace fine to med gr. sand	el, 0.0pp Hnu saturatel
8 -			24	11,11,10,11	0-2" peaty red clay 2"-24" brown clayer sitt with trace fine to med. gr. sand	O. Opporton
10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			24"	12,14,16,16	0-6" brown silty clay, clayey siltwith trace very fine gr. sand brown silty and with trace gravel, sa madto coarse grained 10-24" brown clayey silt with some med. gr.	
					end of boring of 12.0"	
•						

CH.M!	HH

٠

PROJECT NUMBER

BORING	NUMBER	
0 07	218	
P-87	- 210	


SHEET 3 0F3

SOIL BORING LC	)G
----------------	----

					SOIL BORING LO	G
	ARRO	NHE	ad R	EFINCRY		AIL S.W. OF OFFI
UNTION DRILLING CONTRACTOR STS DRILLING METHOD AND EQUIPMENT HSA ~ 314" ID FUR SAMPLING 43/8" ID FUR PIEZOM. CUNSTR.						
			IPMENT	- HIA ~ 7)	START 9/23/87 FINISH 9/24/87	LOGGER GERALD A.M
		SAMPLE		STANGANO		COMMENTS
DEPTH BELOW BURFACE (FT)	NTERVAL	TYPE AND NUMBER	RECOVERY (INCHES)	PENETRATION TEST <u>RESULTS</u> 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	DEPTH OF CASING. ORILLING RATE. DRILLING FLUID LOS TESTS AND INSTRUMENTATION
ġ.			12"	13,15,17,19	top 8"-reddich brown sand, trace silt +gravel, sand predom. med. grs, lower 4" brownish grey clay with minor silt, sand i gravel	saturated
30 -	30- 305'		6"	100,557,7	brown sand, minor silt + gravel~ sand is med to coarse grained, hit boulder at 30.5"	refusal at 30.5' saturated
32					Boltom of hole 30.5'	
					-	

C	.MH	ILE -

PROJECT NUMBER



		2
ET	-	್ನ

SOIL BORING LOG

	ANNON	VICH	r ne	FINERY					
				HSA - 31		6" ID FOR PISTOM			
	EL AND D					LOGGER GEZALD A ME			
-		SAMPLE			SOU DESCRIPTION	COMMENTS			
BELOW SUNFACE (FT)	INTERVAL.	TYPE AND NUMBER	RECOVERY (INCHES)	TEST RESULTS 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR, MONSTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	DEPTH OF CASING. ORILLING RATE. ORILLING FLUID LOSS. TESTS AND INSTRUMENTATION			
	0-2		18"	8,8,9	silty sand, sandy silt with minor gravel, brown- lower 3" is peat	damp o.o hnu			
2 -	2-4		·4"	6,4,4,4	peat with trace fine-med.gr. sand	large chunk of wo plugging spont preventing full recovery damp 0.0 hnu			
4 -	4-6		13"	3,4,6,6	top 3" peat middle 9" black organic rich silty clay lower 6" gray clay, trace silt + fire sand trace gravel	0.0 ppm hnu			
- 6 - - - 0 -	6-8		12"	WEIGHT OF HAMMER 12 X,X,3,6	blursh grey clay-trace silt sample very organic rich (15-20%) organic matter interspersed throughout sample	0.0 ppm Hnz 7.0 water on spo			
	8-10		20"	9,10,11,11	opper 14" - peaty reddish brown clay grading in to brown sitty clay lower 6" silty sand, brown, sand is predom. med gr.	0.0ppm Har. saturated			
- 0  -	10-12		11"	11,8,8,9	brown clayey silt, trace very fine growned sand - no grovel	0.0 ppm Hmn. Saturated			
2 · - -	12-14		19"	81922,25	with trace fine sand	a oppon Hom Socturated avel			



PROJECT NUMBER

P-87-21B

	2		2
SHEET	2	OF	Э

SOIL	BOR	ING	LOG	
------	-----	-----	-----	--

LOCATION FILLD 1/4 MILE S.W. OF OFFICE ARROWHEAD REFINERY BOUFCT STS DRILLING CONTRACTOR ELEVATION HSA ~ 314" ID FOR SAMPLING ~ REAMED WITH 4 3/8" ID FOR PLETOM, CUNETZ. ORILLING METHOD AND EQUIPMENT LOGGER GERALD A. MELANC *9/23/8*7 9/24/97 START FINISH WATER LEVEL AND DATE STANDARD SOIL DESCRIPTION COMMENTS SAMPLE ETRATIO Ē TEST RECOVER! NAME, GRADATION OR PLASTICITY. DEPTH OF CASING. DEPTH BELOW BURFACE COULT TYPE AND NUMBER PARTICLE SIZE DISTRIBUTION, COLOR. ORILLING RATE. DRILLING FLUID LOSS. NTERVA 5-5-5 MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL (N) TESTS AND INSTRUMENTATION 14 brown sandy silt, some clay +gravel, some wood fragments, sand ranges ow ppm Hon 15" 11 27 50 from fine to coarse but is predom. saturated med gr. 16 brown sitty sand, sandy silt with. Dioppen Hun (12₁₈ 21 23 gravel (15%-20%), trace clays sand is med. - coarse gramed, trace fine gr. 17" saturated 18 brown sandy silt -sand is fine to med. grained - less sand + gravel than previous interval (16'-18'), = 10% gravel 0.0ppm Hun 15" 2021 saturated 20 2" of basalt frogment stuck in mouth of span 2 saturch 12 brown setty sand, some gravel (215%), sand is fine to coarse gr. aonm Hnu 1312 1316 but predom, med gr. 12 saturated 24 brown sandy sitt, sitty sand, some grower (~10%) sand predom, fine to med grained, 0.0ppm Hun 10 12 15 8 12" some course on. satural 26 sand+ gravel evenly distributed, some silt 2 5-10%, sand is med. to aoppon Han 110₁₃ 1316 14" very warsegr., munor fune gr. saturated 28

CH2M HILL
--------------

PROJECT NUMBER

 BORING	NUMBER	
P-87-	- 195	

OF 2 SHEET |

# SOIL BORING LOG

- LOCATION Just south of Gupher OIL

ELEVATION .

ORILLING CONTRACTOR DRILLING METHOD AND EQUIPMENT HOLON STEM AUGER (43/9" ID)

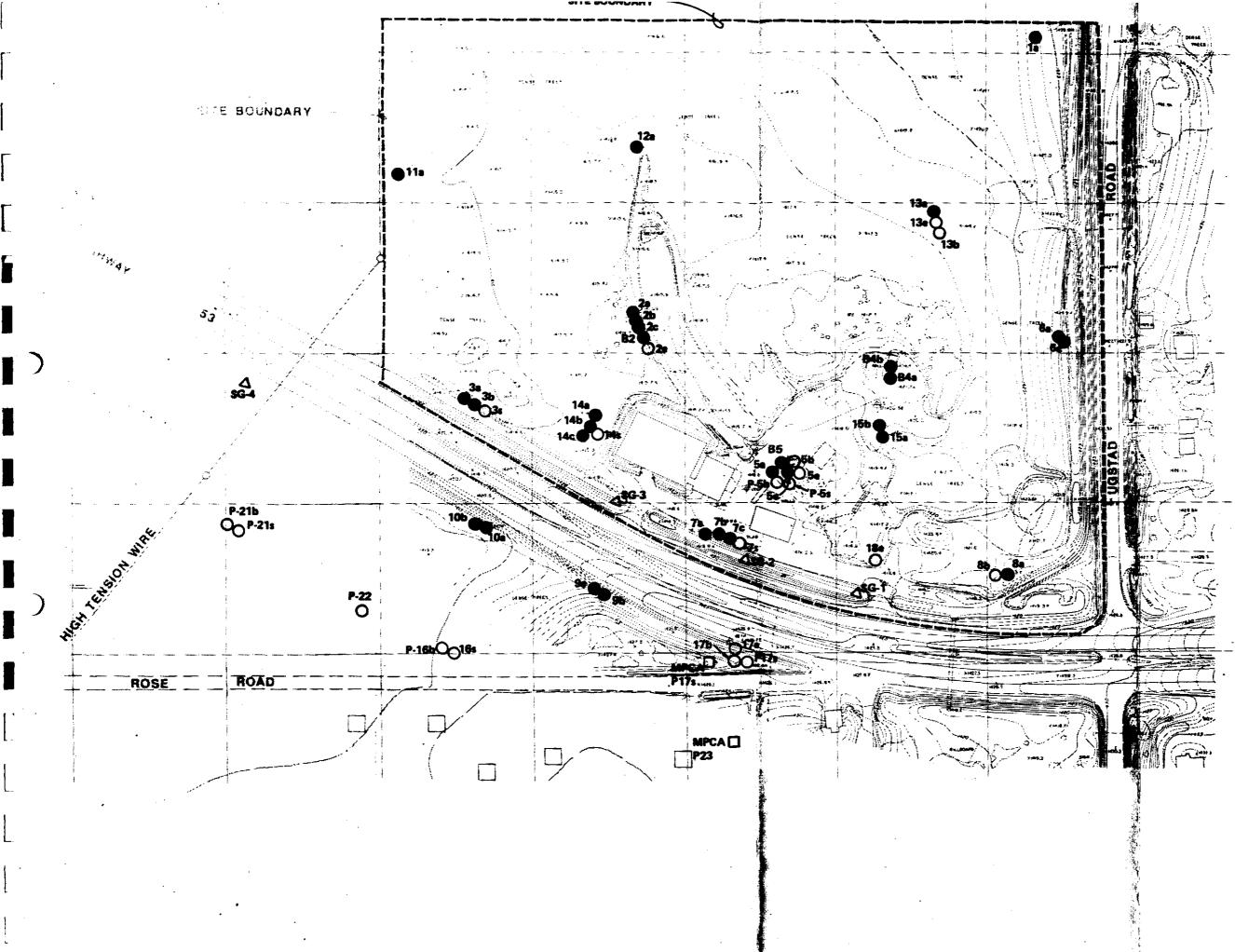
WATER LEVEL AND DATE .

PROJECT ATCROWHEAD REFINERY

START 9/26/87 FINISH 9/27/87 LOGGER GETAD A.MSLANE

ſ			SAMPLE	!	STANDARD	SOIL DESCRIPTION		COMMENTS
ELEVATION	DEPTH BELOW SUMFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	TEST <u>RESULT3</u> 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE. MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC LOG	DEPTH OF CASING. Orilling Rate. Drilling Fluid Loss. Tests and Instrumentation
	- 0 -			16"	2,3,1,3	grey clayer silt, silty clay- mottled brown, minor sand + peat- sand is med.gr		ooppm Huu
	2 -	<u> </u>		18"	3,3,4,5	gray silty clay - trace very - fine grained sand - some roots -		0.0ppm Hnu -
	4			24"	3,3,8,12	top 12" sitty clay, clayer sitt, brown mottled grey some sand (fine to med. gr.) lower 12" sandy sitt, some clay in metry sand gots coarset downwards - lower 6" this interval contains some gravel	of	0.0 ppm Hny -
	- - - -			6"	(6,12, 19,17	Dark brown clayer si H, silty clay		0.0 ppm Hnu water on sporon at -
	8			12"	1416,19,21	reddish brown sandy silty clay, some gravel-sand is med. to coarse grained-minor fine gr. sand		0.0ppm Hnu
	10-			6"	11,11,15,18	same as above - minimal recovery		
	12 -			18"		brownish grey silt, trace fine to med.gr. sand		
	14-							

|--|


PROJECT	NUMBE

BORING NUMBER	
P-87-195	SHEET Z

,		7
-	DF.	6

SOIL BORING LOG

MOJECT ARROWHEAD REFINERING Turt South OF ARTICULTER TE FINER LOCATION DRILLING GONTRACTOR FL EVATION (43/9" ID DRILLING METHOD AND EQUIPMENT LOGGER GEVALD A MELANE 9/27/87 87 START FINISH WATER LEVEL AND DATE STANDARD COMMENTS SAMPLE SOIL DESCRIPTION NETRATION TEST DEPTH OF CASING. ELEVATION NAME, GRADATION OR PLASTICITY. IESULTS 옃 TYPE AND MUMBER RECOVERN DEPTH DELOW \$UNFACE INTERVAL PARTICLE SIZE DISTRIBUTION, COLOR. DRILLING RATE 6-6-6 MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL ORILLING FLUID LOSS. (N) TESTS AND INSTRUMENTATION 14 brownish grey clayey silt oronam Hun (16) 12 22″ lower 10" contains minor med. 12 gr. sand + gravel 13 16 top 10" brownish grey silt, minor clay + sand (med. gn.) some gravel 21 lower B" brown candy silt with some gipuel, sand is fine to med. grained 18" O.Oppor Hun てう , 18 20 18 arey silt some gravel, trace rock frag. in mouth offspoor 6" clay + med, gramed sand 0.0 ppm. flow 20 brown sandy silt, some clay in matrix, some chavel, sand ranges 12, 0.0ppm Hnu from & medium to very course grained. 22 same as above 33 3 114 ×x 8 spoon + angen refused at 22.5 - hole alandoned because hyphraulic oil line blew is spilled oil + in part because larget ynit was not encountered





LEGEND



О

EXISTING WELLS

NEW WELLS (PREFIX P DENOTES PIEZOMETER)

STAFF GAUGE LOCATION

### Δ NOTE:

Suffix e, b, c, d, e and s designed different monitoring wells within well next.

- 15 ft.
  - Usually between 20 and 30 ft.
  - e lower till, 35 and 40 ft.

Shellow bedrock wells estimated depths of 50 or 60 ft.

FIGURE TM 5-1 WELL LOCATIONS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

from rock cores. Coring was started at depths based upon previous drilling and the results of the seismic survey.

The till was identified mainly by the descriptive logs and the standard penetration results. It is characterized by high blow counts (more than 40 blows/foot) and poorly sorted sediments generally consisting of grain sizes ranging from clays to fine sand. Blow counts were usually less than 20 blows/foot. The lacustrine sediment also contain sand and gravel lenses up to 7 feet thick.

The lacustrine sediments are generally composed of well sorted, fine grained sediments, ranging from clay to fine sand. Blow counts were usually less than 20 blows/foot. The lacustrine sediments also contain sand and gravel lenses up to 7 feet thick.

Two sand layers were identified within the lacustrine sediments beneath the southern portion of the site (see Figures TM5-2 and TM5-3). The upper sand layer, referred to as Sand Unit A, is observed at Well Nests 5 (Well MW-5e only), 7, 9, 10, 15, 17, and 21, and at Wells MW-1a, MW-12a, and MW-18e. The extent of this sand lens is shown in Figure TM5-4. The sand observed in Wells MW-1a and MW-12a appears to be a separate lens. Sand Unit A occurs at an elevation of 1,410 feet above msl. The lower sand layer, referred to as Sand Unit B, is seen in Well Nests 3, 5, 7, 8, 9, 14, 15, and 17 (only 5 inches), at Well MW-18e, and possibly at Well Nests 10 and 21. This unit occurs at an elevation between 1,400 and 1,405 feet above msl. Sand Unit B is seen in the cross sections in Figures TM5-2 and TM5-3, and its extent is indicated in Figure TM5-5.

Other sands were observed within the lacustrine sediments in some of the wells, but apparently they are not continuous.

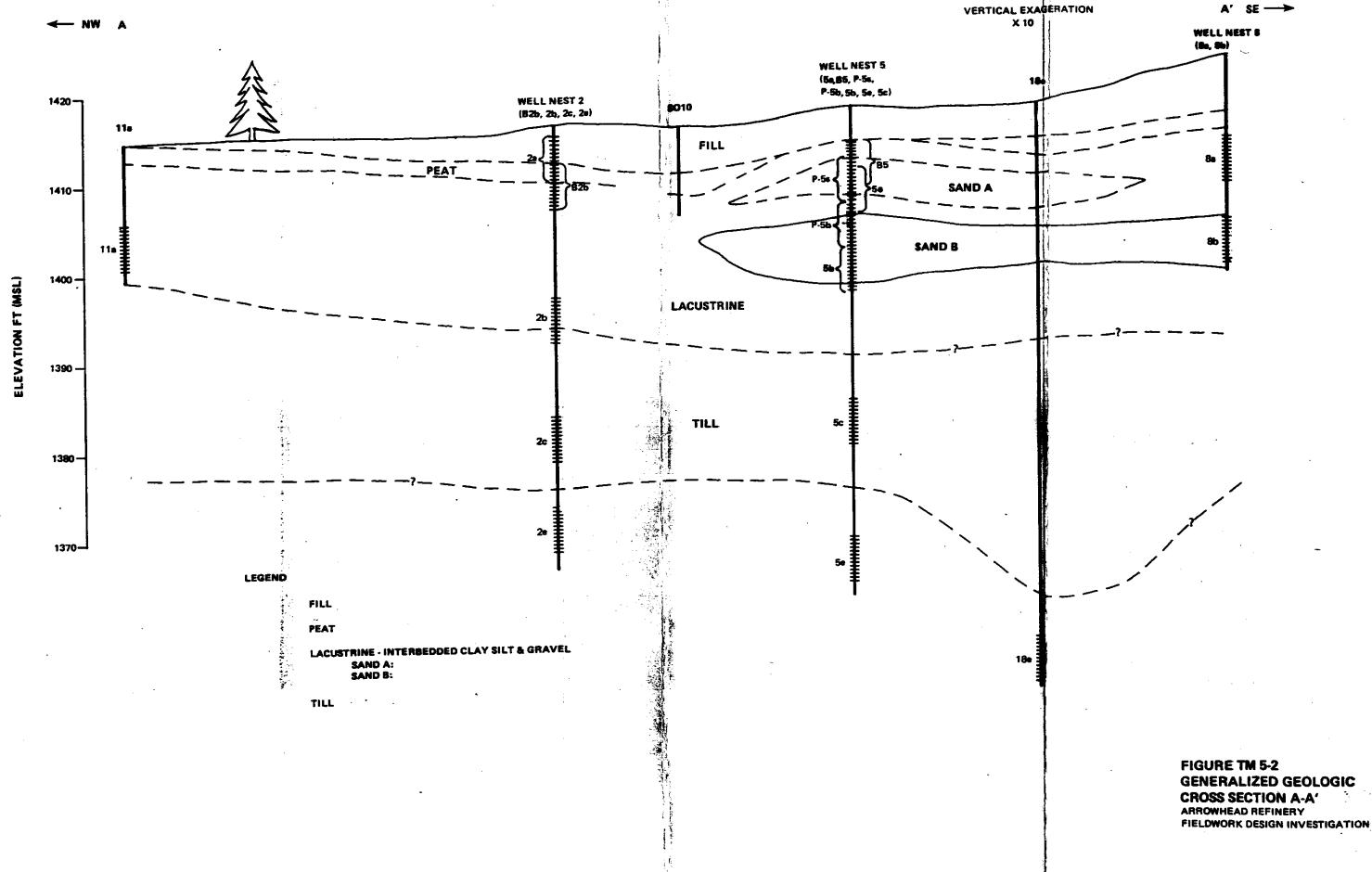
Peat was observed in most of the wells. Where it was not, it was probably removed during surface activities, such as road construction. A layer of fill overlies the peat in a number of locations.

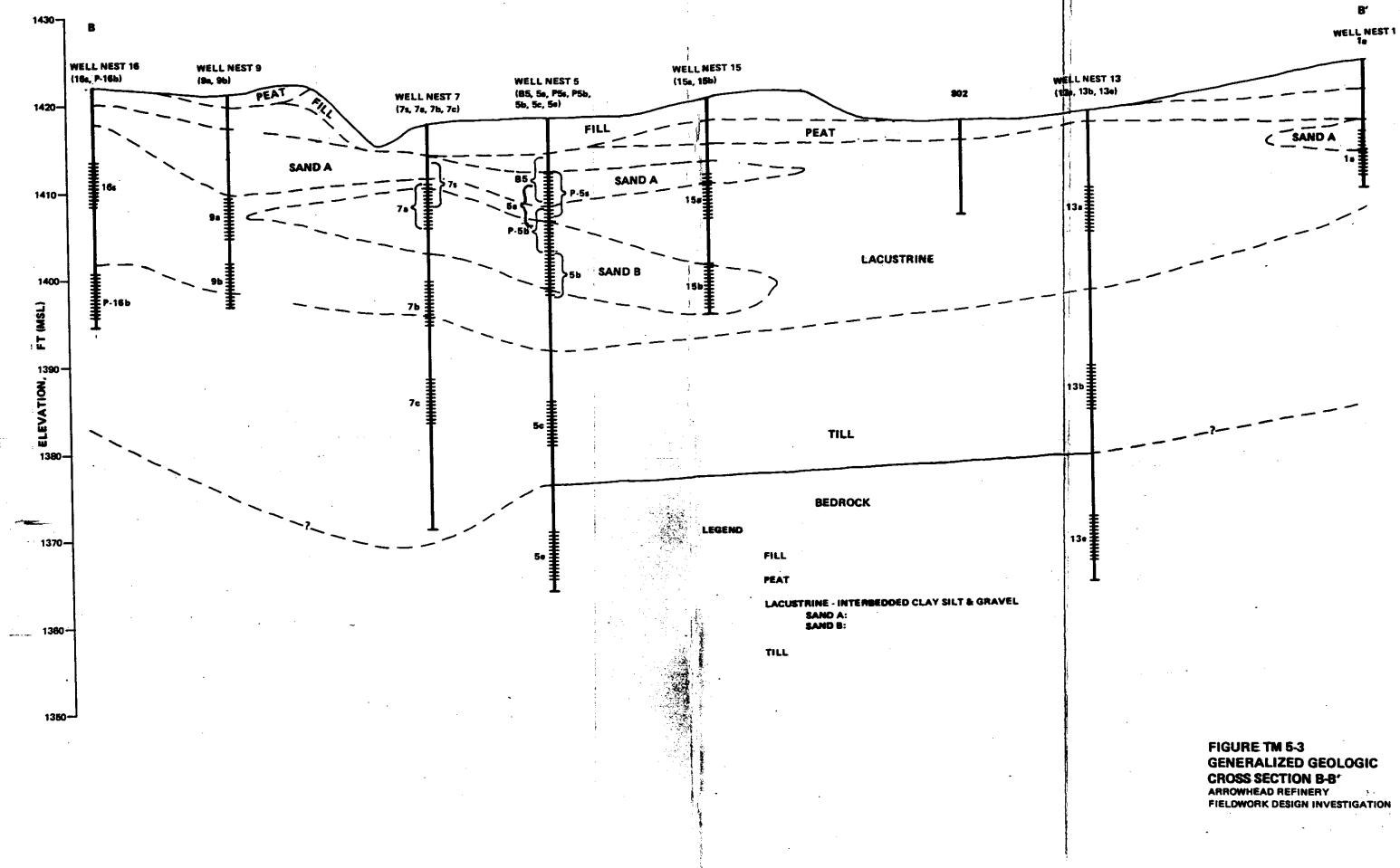
GLT932/094.51

TECHNICAL MEMORANDUM NO. 5 Page 3 March 2, 1988 W68802.FL

logs that may relate to the top of the till are Wells MW-2e, MW-6c, MW-13e, MW-17e, and MW-18e.

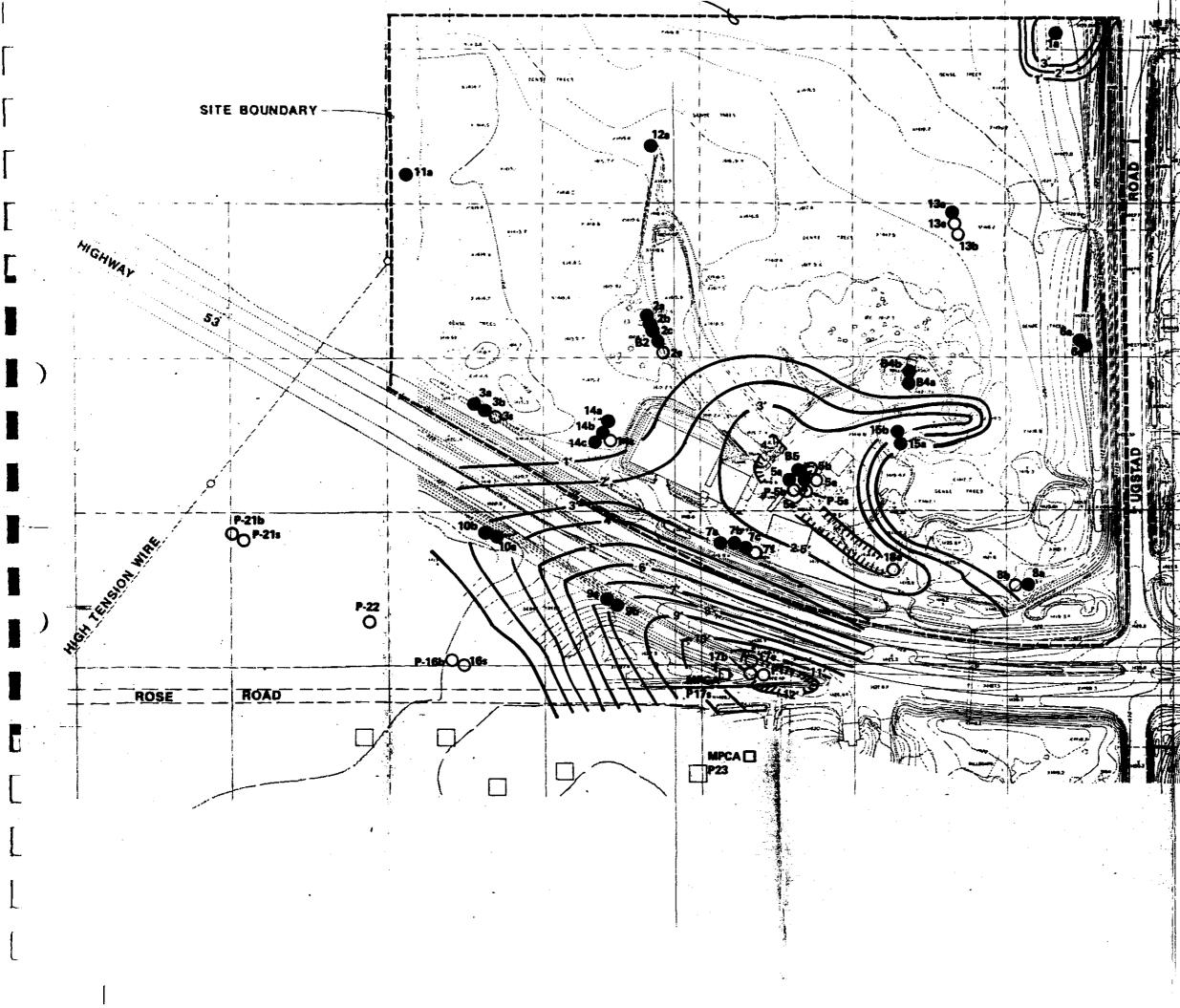
A layer interpreted as clay was detected in eight wells (Nos. MW-2c, MW-6c, MW-9b, MW-10b, MW-11a, MW-12a, MW-14c, and MW-15b). The layer is identified by a count rate of 25 to 30 cps, or about twice the level of the other soils. It was observed at an elevation between 1,405 and 1,410 feet above msl in a number of wells, but was not observed in all intervening wells. The clay has apparently not formed a continuous layer beneath the site. A clay layer is interpreted in the gamma log for Well MW-2c, but was not observed in the log for Well MW-2e just a few feet away. Clay was not always identified in the soil log at the location of the high gamma count.

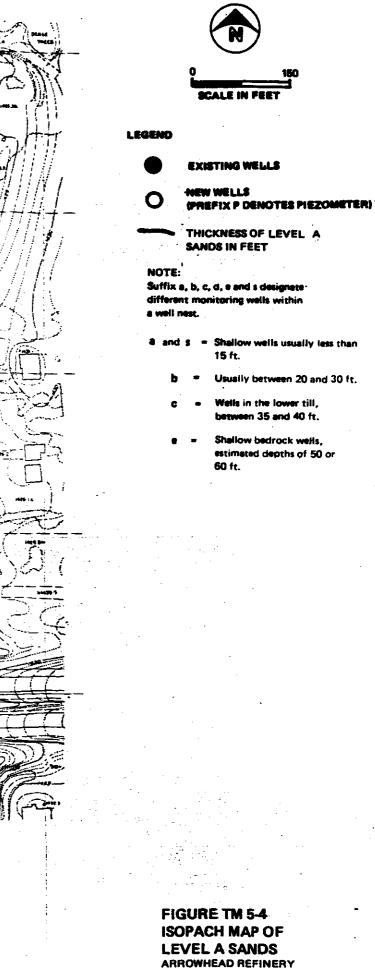

Bedrock was reported in the descriptive logs for Wells MW-2e, MW-5e, MW-13e, MW-17e, and MW-18e. The gamma count rates in Wells MW-2e, MW-17e, and MW-18e drop sharply to less than 5 cps at the reported bedrock contact. The soil log for Well MW-13e identifies the top of bedrock at a depth of about 40 feet below the surface, covered by about 4 feet of weather bedrock (to 36 feet below the surface). The gamma log for Well MW-13e shows a decrease in the gamma count rate (from 15 to 10 cps) at a depth of 35 feet and another slight decrease (to 8 cps) at a depth of 50 feet. It does not have the sharp decrease apparent in the other bedrock wells. The gamma log for Well MW-5e exhibits no decrease at the reported bedrock contact. A 1.5-foot-thick gamma low at a depth of 46 feet below the surface may be due to a boulder or the bedrock. The absence of low gamma counts in the bedrock at Wells MW-5e may have been terminated in a boulder zone rather than in bedrock. No rock cores were obtained to determine the nature of the bedrock reported on the driller's log for Well 5e.


Well 5e was logged twice; once before it had been developed, and once after development. This was done to determine if the drilling mud had any effect on the log. No significant differences were observed.

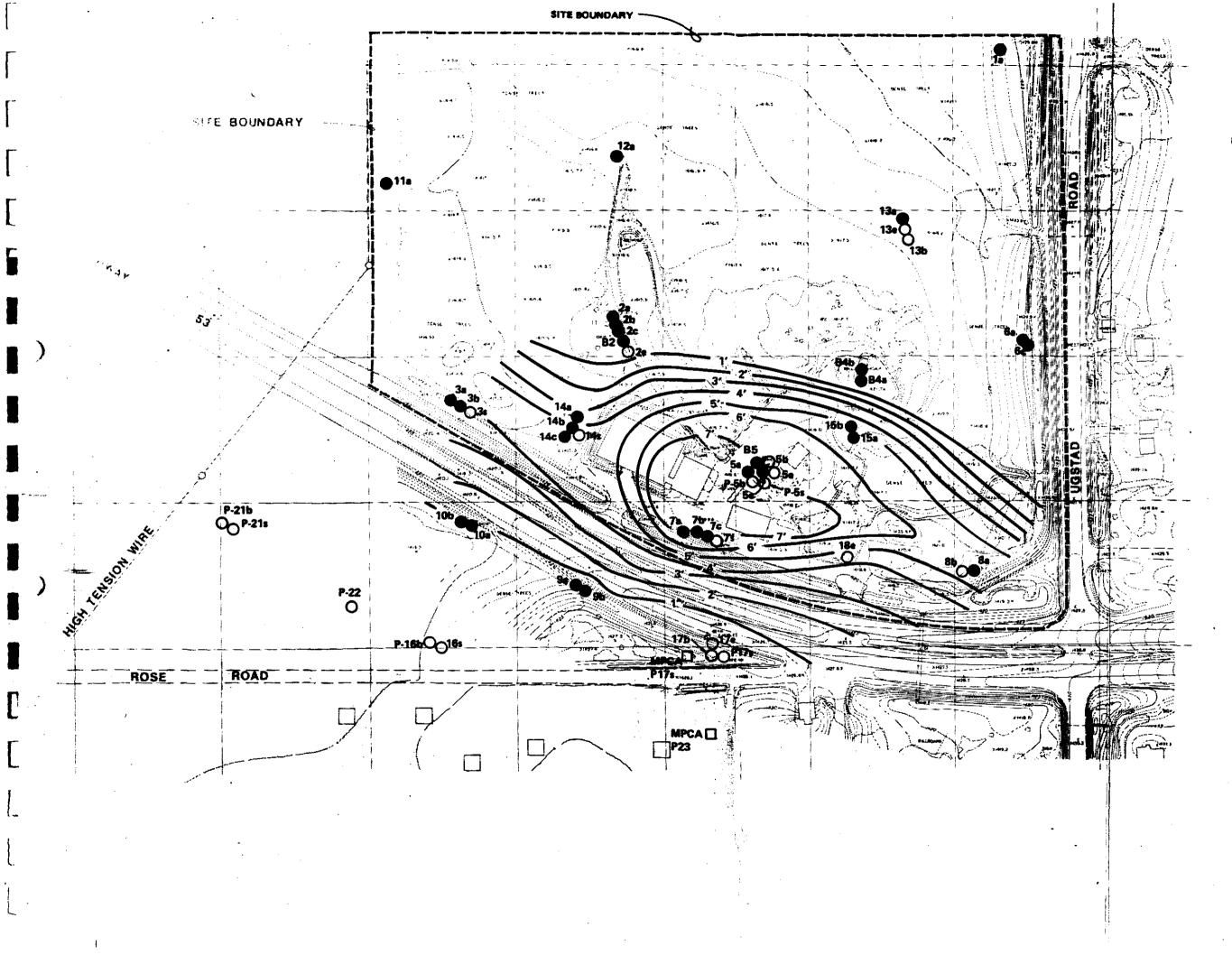
#### **CORRELATION OF LITHOLOGIC UNITS BETWEEN WELLS**

The lithology at each well was interpreted from available information for each well, including the descriptive log, the gamma log, and the standard penetration test results from driving the split spoon. The lithologic units that have been tentatively identified are (from the bottom up) bedrock, till, lacustrine sediments, peat, and fill. Figures TM5-2 and TM5-3 show the lithologic cross sections. Gamma logs and corresponding lithologic logs are included in Attachment A.


Top of bedrock was identified from the geophysical logs and from drilling activities. Auger refusal was used to indicate the top of bedrock in borings drilled during the RI investigation. Boulders in the till may have caused auger refusal above the bedrock. In the drilling performed for this design investigation, top of bedrock was identified







E

L





FIELDWORK DESIGN INVESTIGATION





LEGEND



С

EXISTING WELLS

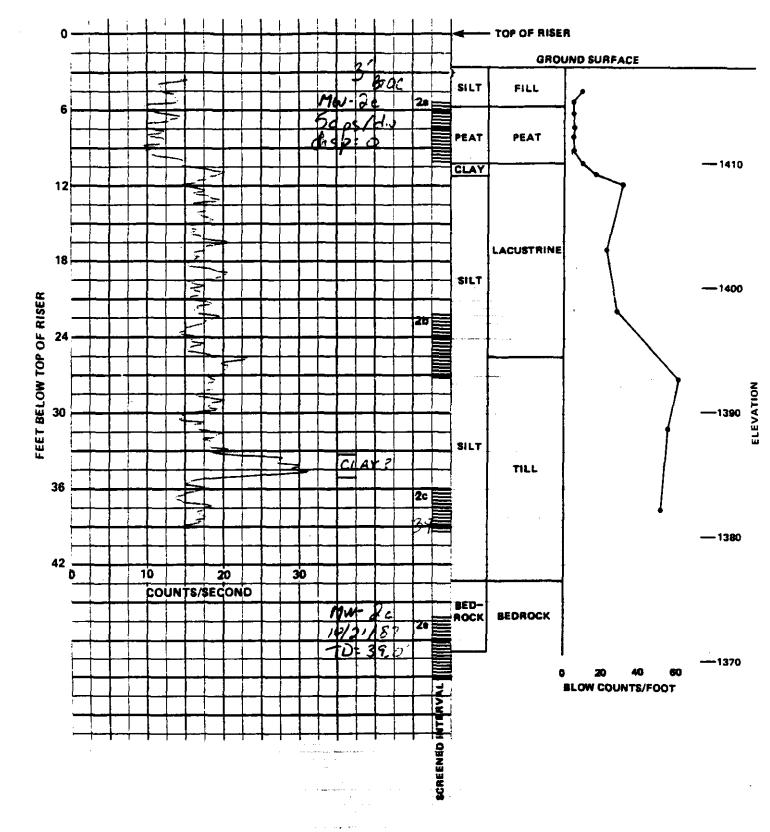
NEW WELLS (PREFIX P DENOTES PIEZOMETER)

THICKNESS OF LEVEL B SANDS IN FEET

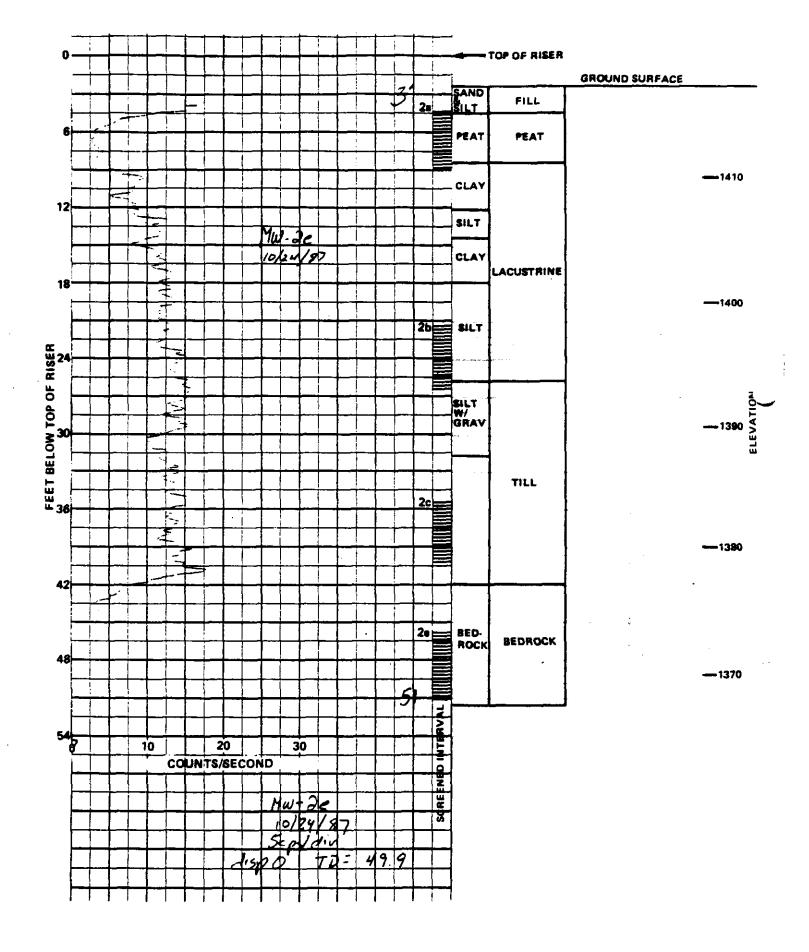
#### NOTE:

Suffix a, b, c, d, e and s designate different monitoring wells within a well nest.

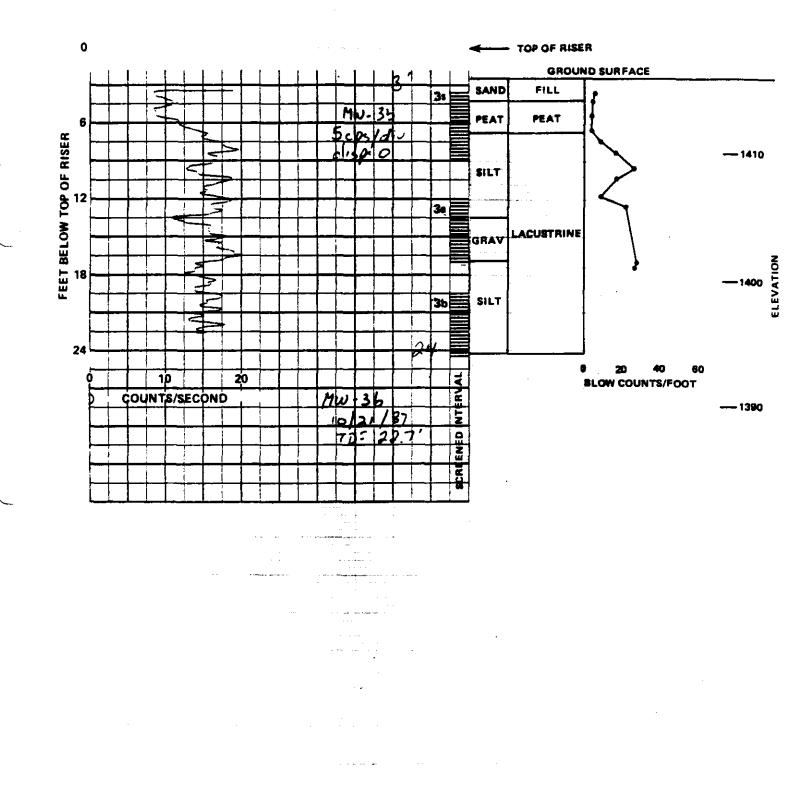
- a and s * Shallow wells usually less than 15 ft.
  - b = Usually between 20 and 30 ft.
  - c = Wells in the lower till, between 35 and 40 ft.
  - e = Shallow bedrock wells, estimated depths of 50 or 60 ft.


FIGURE TM 5-5 ISOPACH MAP OF LEVEL B SANDS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

## TM 5--BOREHOLE GAMMA LOGGING AND LITHOLOGIC CORRELATIONS


Attachment A BORING LOGS

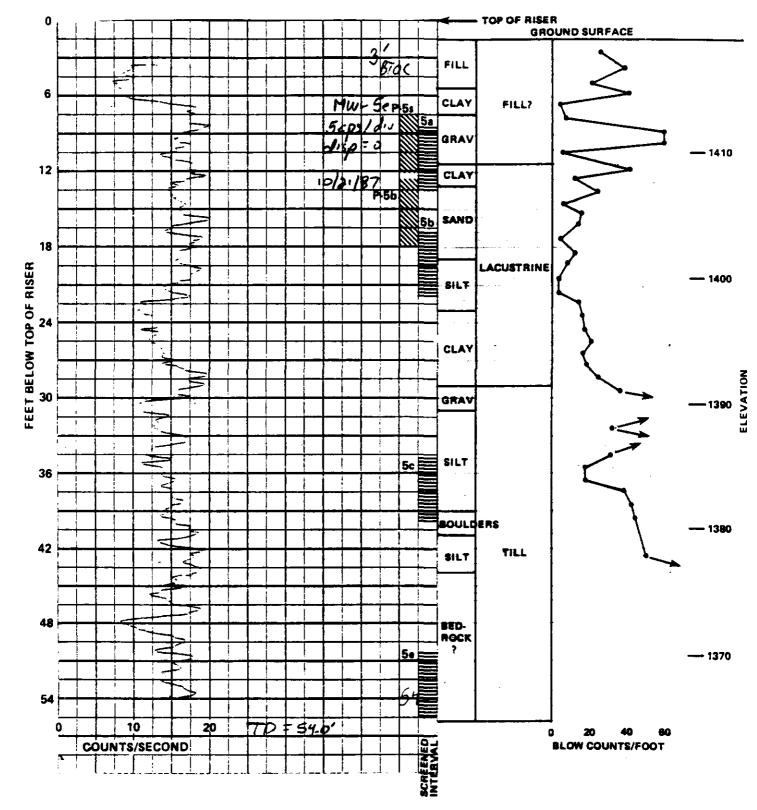
GLT932/007.50-6


,

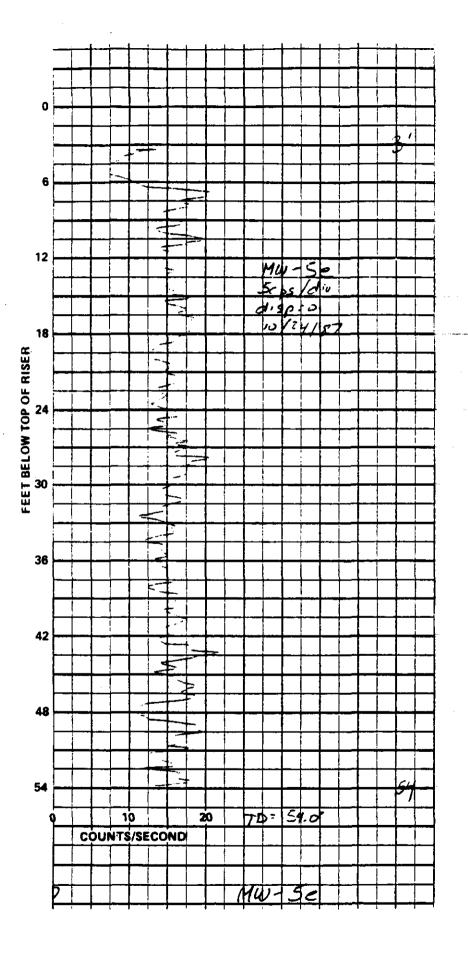



BORING LOGS WELL 2c ARROWHEAD REFINERY

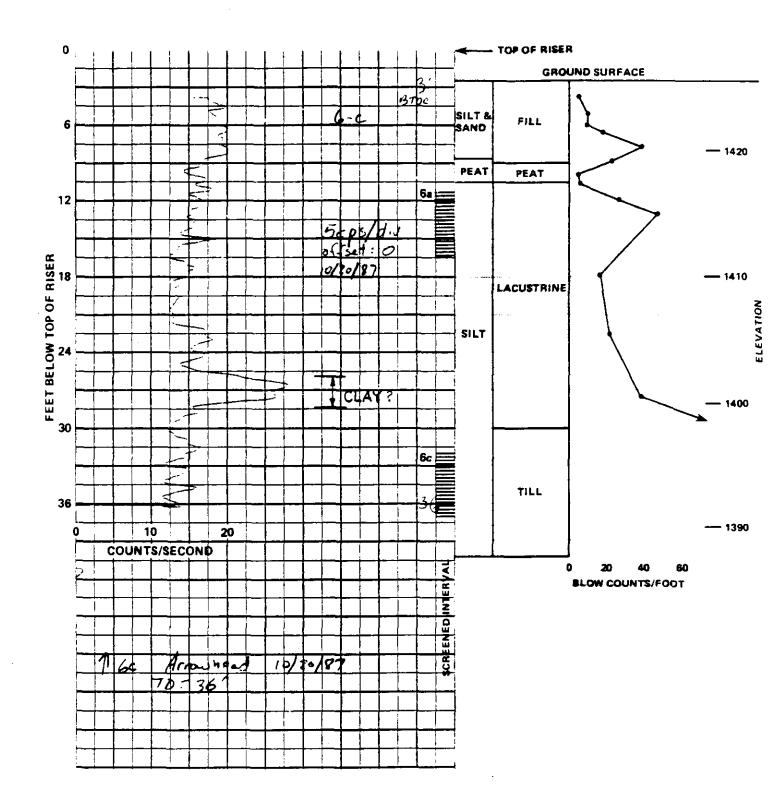



BORING LOGS WELL 20 ARROWHEAD REFINERY



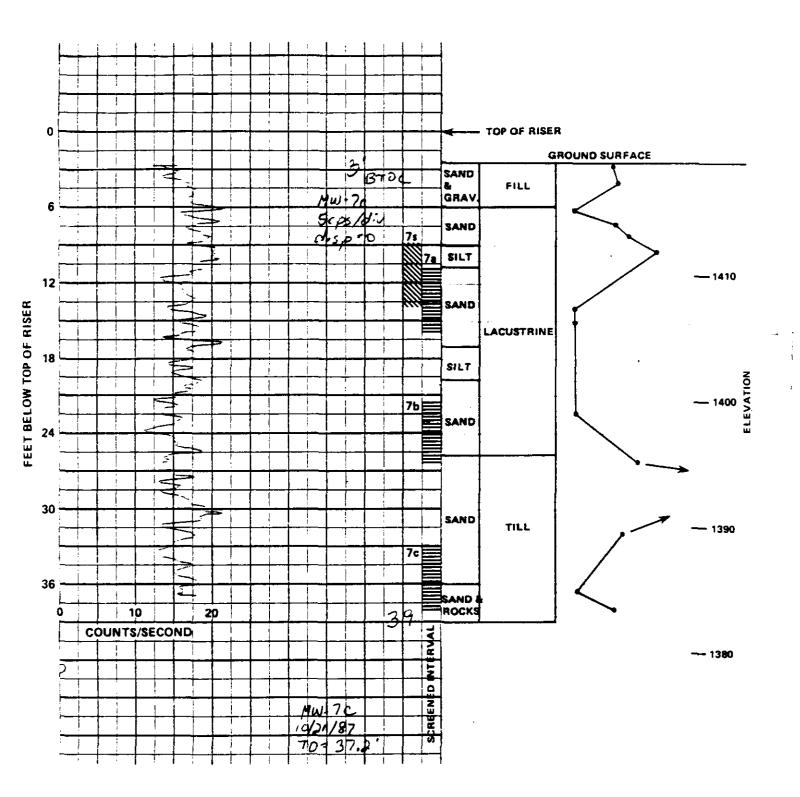

BORING LOGS WELL 3b ARROWHEAD REFINERY

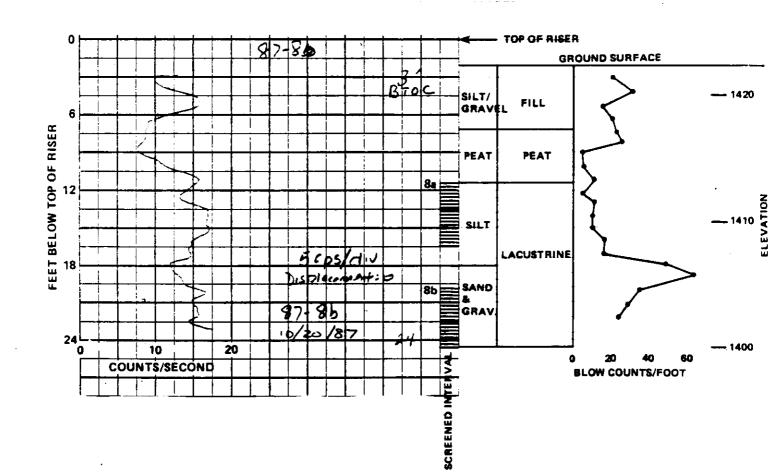



BORING LOGS WELL B-4b ARROWHEAD REFINERY

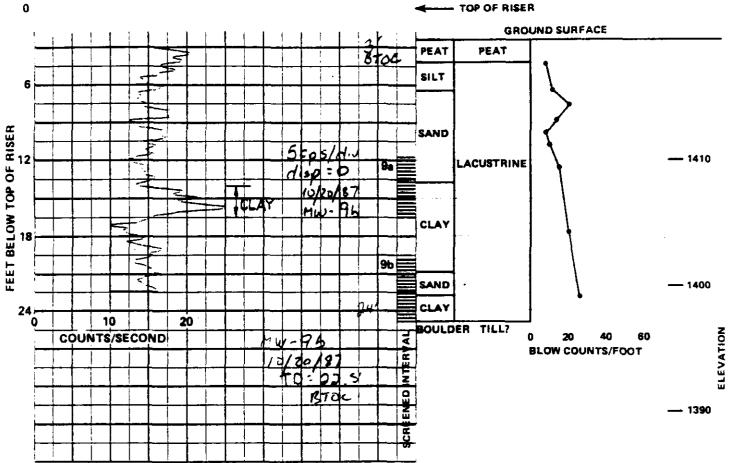


BORING LOGS WELL 50 BEFORE DEVELOPMENT ARROWHEAD REFINERY



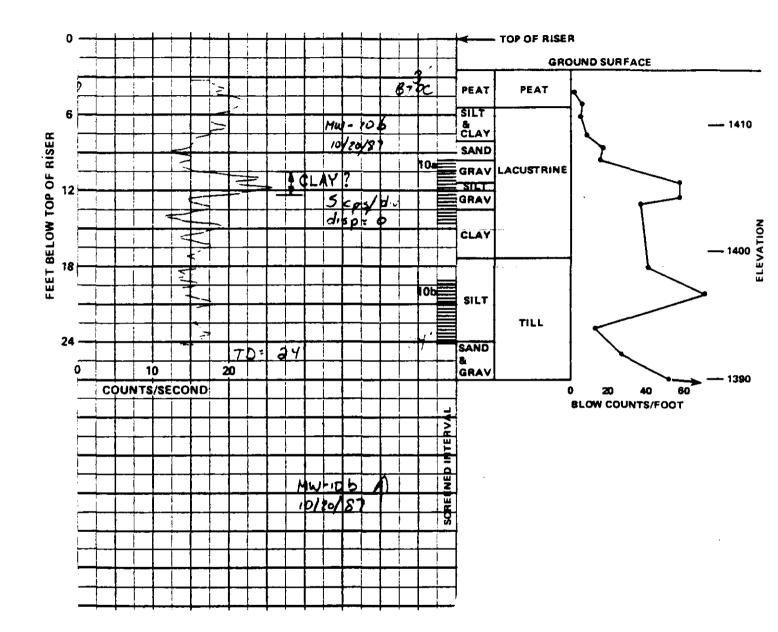


BORING LOGS WELL 50 AFTER DEVELOPMENT ARROWHEAD REFINERY



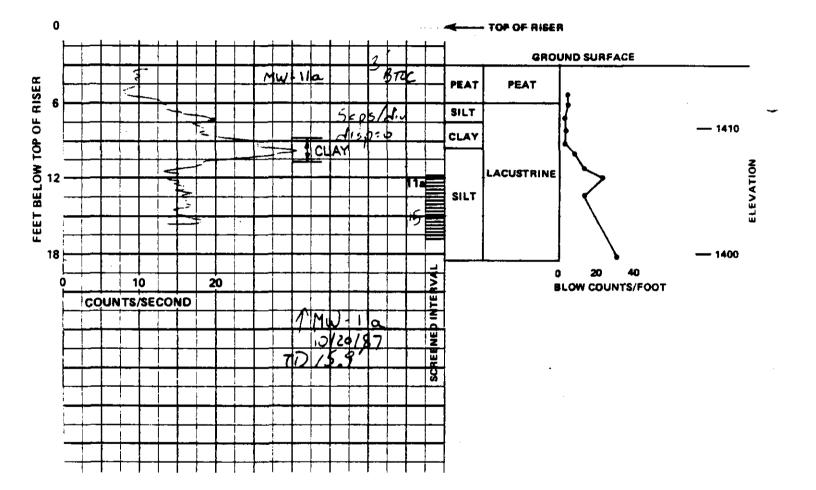

۰-

-



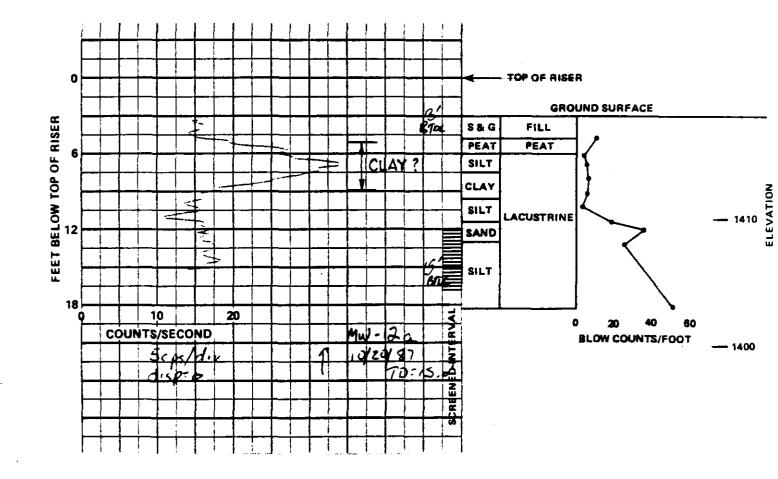


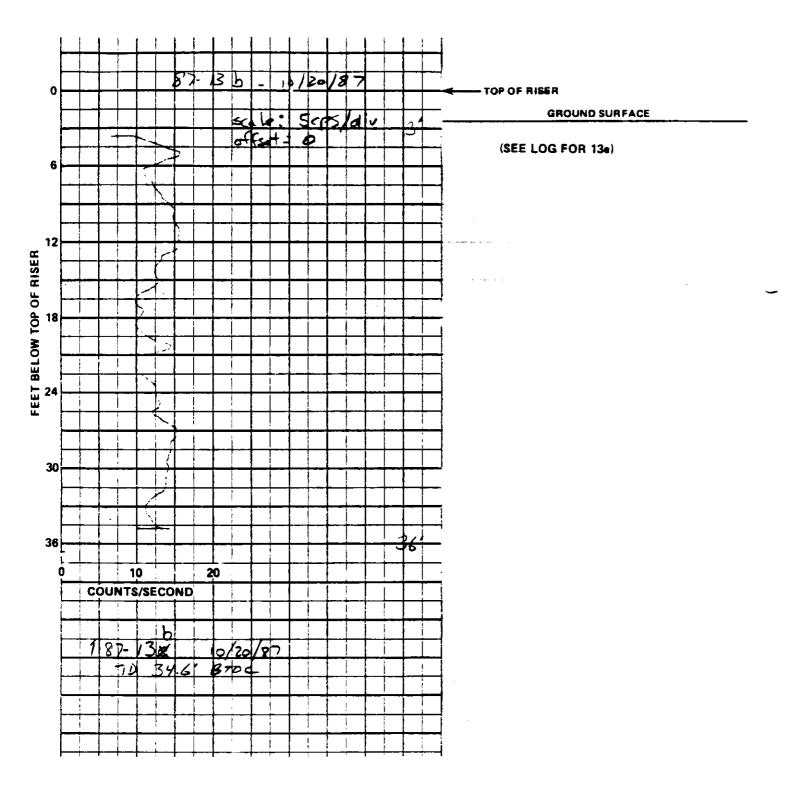

BORING LOGS WELL 85 ARROWHEAD REFINERY




---- 1380

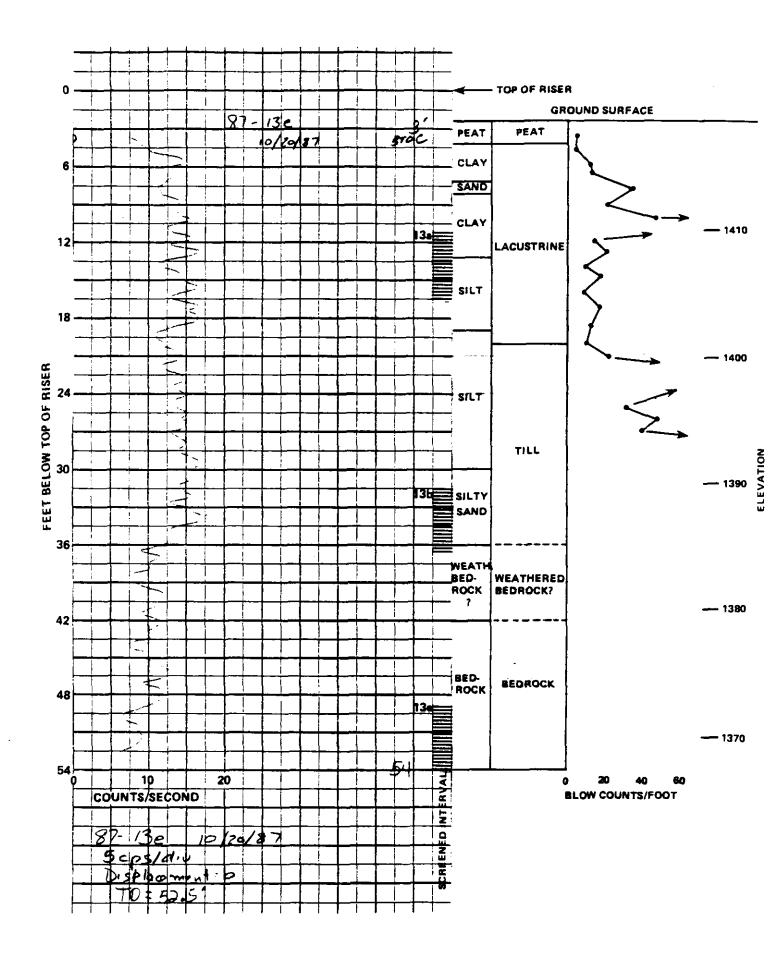
BORING LOGS WELL 96



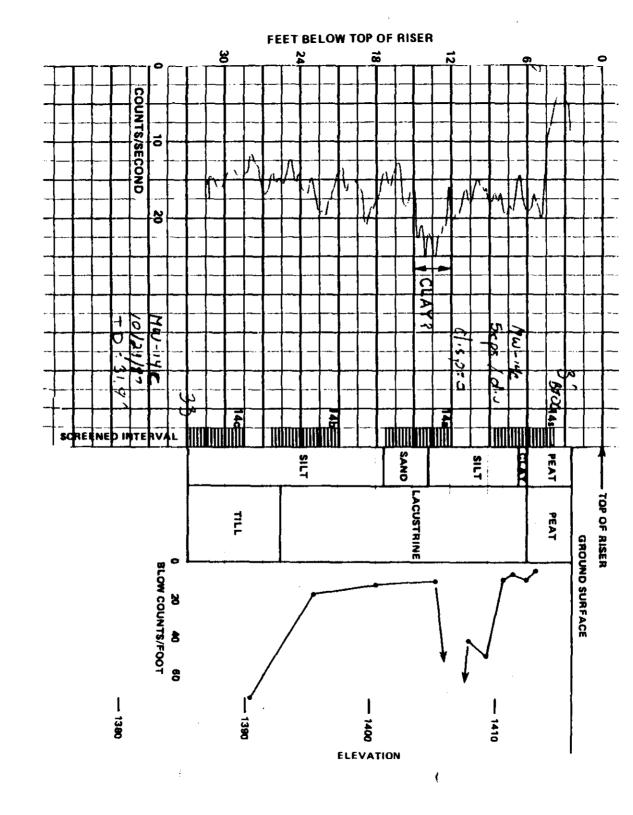


BORING LOGS WELL 10b ARROWHEAD REFINERY



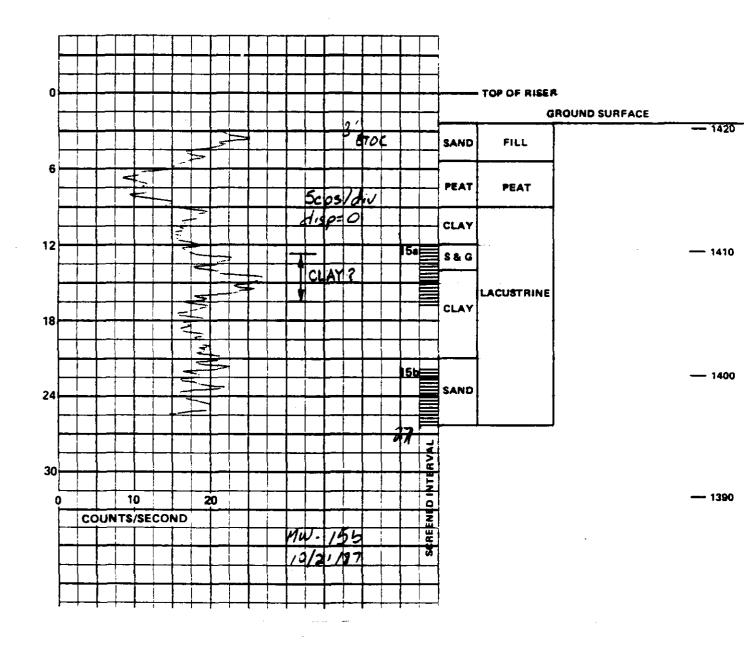
.


BORING LOGS WELL 11a ARROWHEAD REFINERY



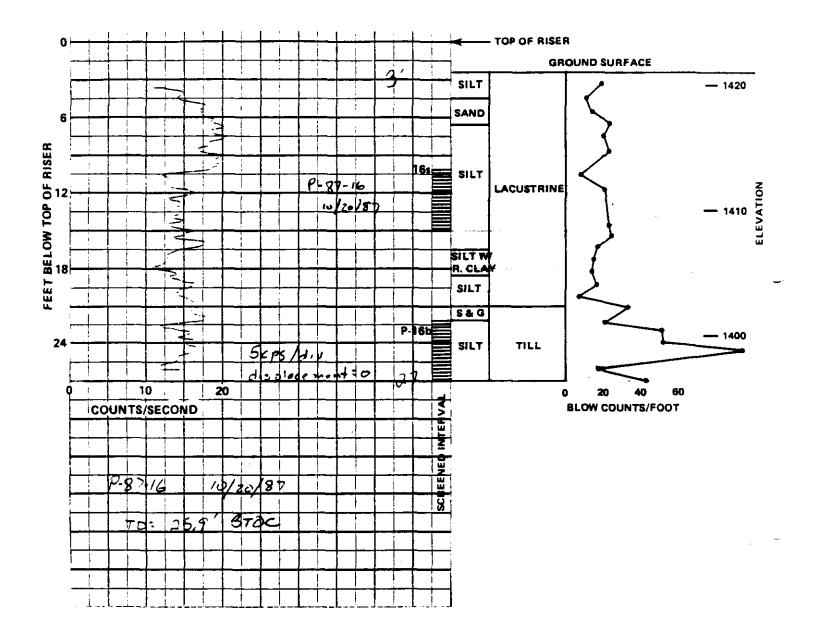



-

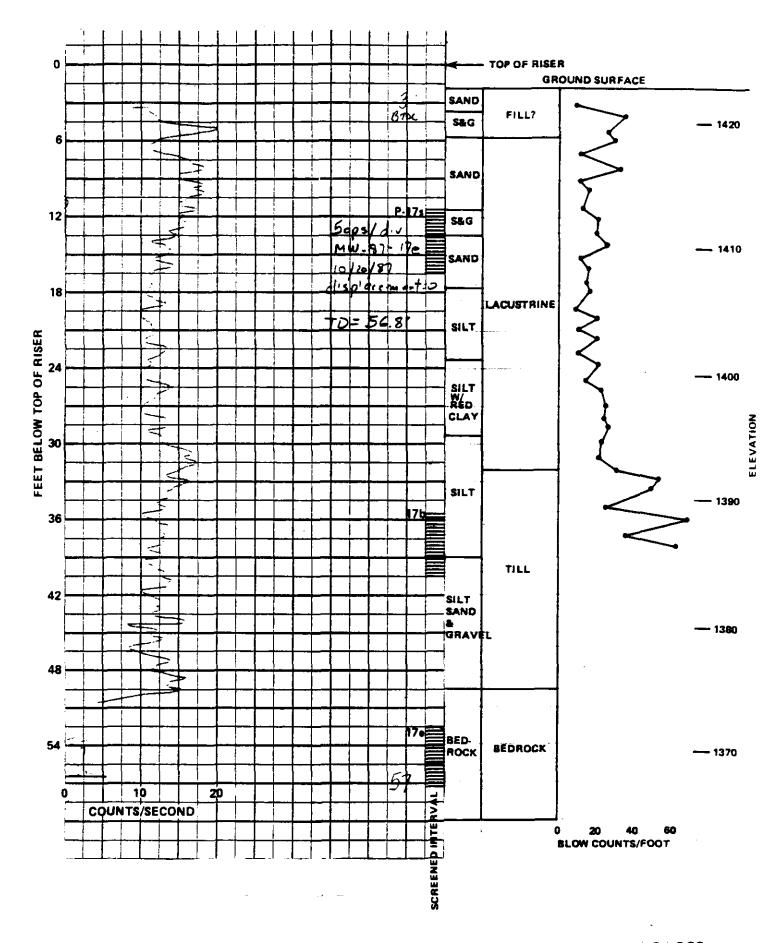

BORING LOGS WELL 13b ARROWHEAD REFINERY



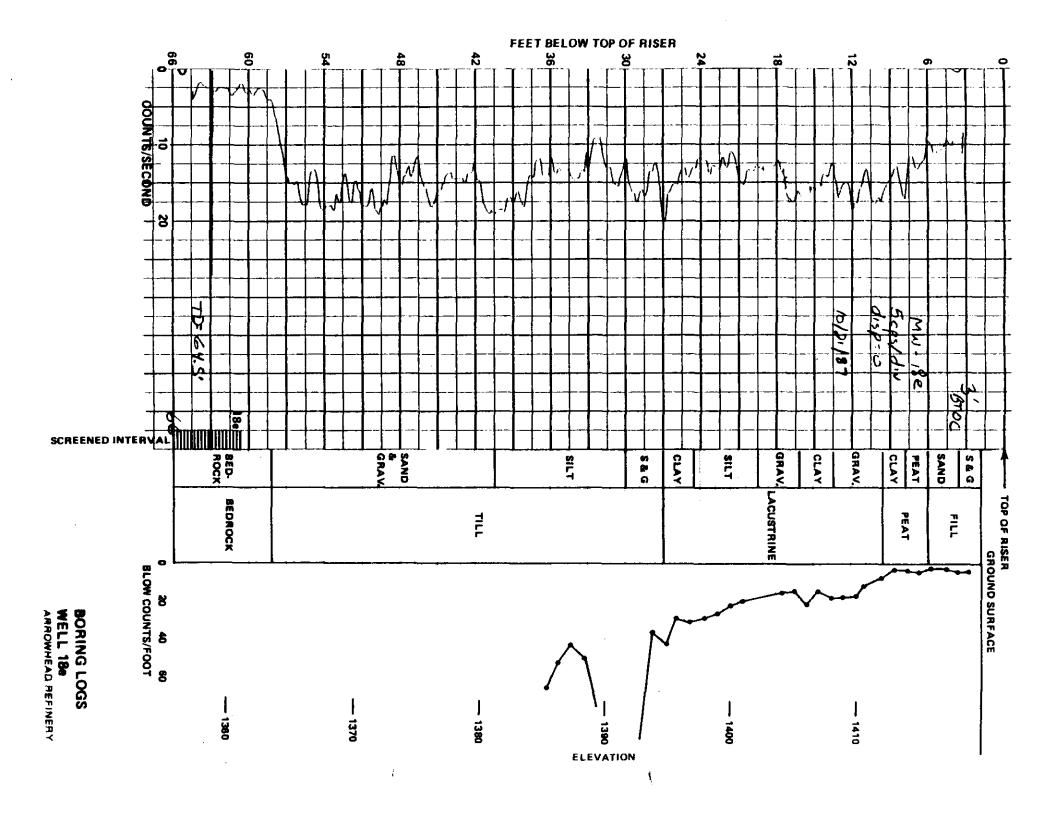
BORING LOGS WELL 130 ARROWHEAD REFINERY

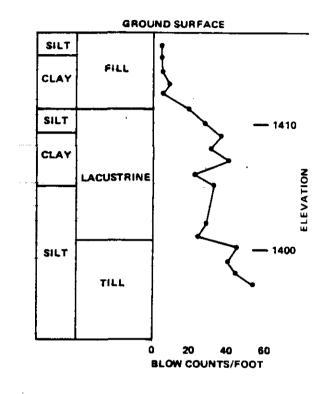





BORING LOGS WELL 15b ARROWHEAD REFINERY


. ·




BORING LOGS WELL P 16 ARROWHEAD REFINERY



BORING LOGS WELL 170 ARROWHEAD REFINERLY

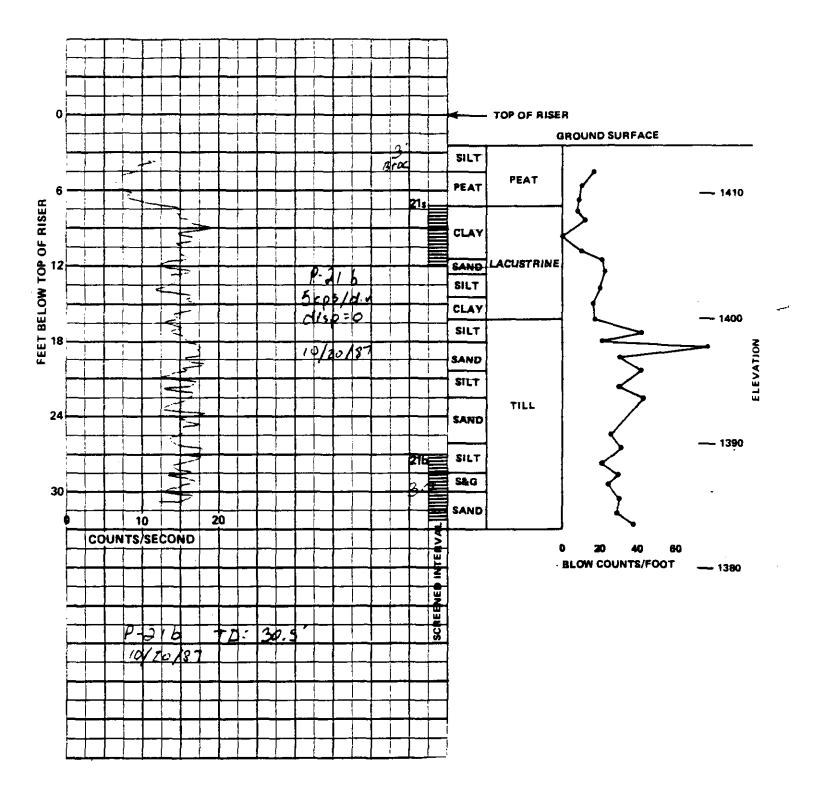




## NOT LOGGED

•

· · · · ·


.

••

.

.

BORING LOGS WELL 19: ARROWHEAD REFINERY



BORING LOGS WELL 216 ARROWHEAD REFINERY

# CHAMHILL

# **TECHNICAL MEMORANDUM NO. 6**

TO:	Fred Bartman/U.S. EPA, Remedial Project Manager
FROM:	Randy Videkovich/CH2M HILL, Project Manager
PREPARED BY:	Jewelle Imada/CH2M HILL
DATE:	February 22, 1988
RE:	Soil and Sediment Sampling (Step I)
PROJECT:	Arrowhead Refinery Fieldwork Design Investigation W68802.FS

### INTRODUCTION

The soil and sediment sampling investigation was undertaken to determine more exactly the nature and horizontal and vertical extent of contaminated soil and sediment. This memorandum includes descriptions of sampling procedures, field observations and measurements, boring logs, and sample matrix tables for the samples collected.

### SURFACE SOIL SAMPLING

Surface soil samples were taken at 11 locations on October 26 and 27, 1987. Surface soil sampling was performed to establish background concentrations in the soil and to refine the lateral extent of soil contamination. The sampling results will be used to evaluate the effects of the wastewater ditch discharge and surface runoff from the sludge lagoon on the level of contaminants found in the surface soil.

### PERSONNEL

The sampling team consisted of:

- o Randy Videkovich, CH2M HILL
- o Jewelle Imada, CH2M HILL
- o Alan Esko, Engineers International
- o Tom Hahne, PRC

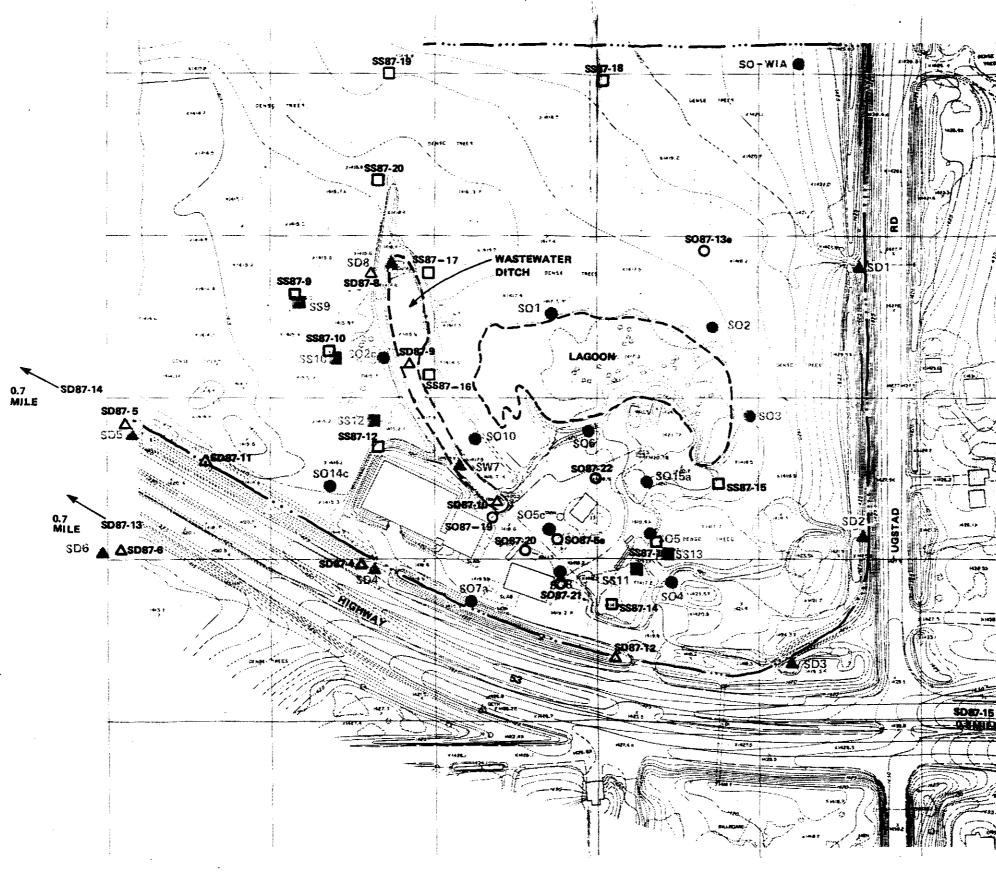
Sample custody was maintained by the sampling team. The CLP paperwork was completed by Cathy Kantowski, Engineers International.

TECHNICAL MEMORANDUM NO. 6 Page 2 February 22, 1988 W68802.FS

### SAMPLING LOCATIONS

The surface soil sampling locations specified in the Work Plan were selected on the basis of previous site investigations. The sampling locations were staked 1 week ahead of sampling. The locations are shown in Figure TM6-1 and briefly described in Table TM6-1. The objectives of sampling for each location are given in the Work Plan.

### SAMPLING PROCEDURES


Surface soil samples were collected to a depth of 1 foot using a stainless steel spoon or a sediment corer. The top 1 inch of soil was scraped aside before the sample was collected. Samples to be analyzed for volatile organic compounds (VOCs) were taken first. These samples were usually placed directly into jars using the stainless steel spoon. If the sediment corer was used, the samples were first placed in a stainless steel bowl and then spooned into the jars. Samples for the other analyses were placed in a stainless steel bowl, composited, and then placed in the sample jars. The outside of the sample jars was decontaminated and the paperwork on each sample was completed.

The sampling equipment was decontaminated between samples by scrubbing in a solution of trisodium phosphate and tap water, followed by a methanol rinse and a triple rinse with distilled water. The equipment was laid on a clean plastic sheet to dry and then placed in clean plastic bags for storage or transport to the next location.

Table TM6-1 summarizes the samples taken and field measurements made at each location. Table TM6-2 lists the samples collected and sent for analysis. The surface soil samples were analyzed for TCL inorganic and volatile and semivolatile organic compounds. To facilitate evaluation of thermal treatment methods, selected samples were also sent to be analyzed for carbon, hydrogen, sulfur, oxygen, nitrogen, ash content, heating value, and total organic carbon. Selected samples were also sent in to be analyzed for polynuclear aromatic hydrocarbons (PAHs) at detection levels lower than those for the Contract Laboratory Program's Routine Analytical Analyses.

### SEDIMENT SAMPLING

Sediment samples were taken at 11 locations on October 27 and 28. The main objectives of the sediment sampling were to establish background concentrations of the sediments, to refine the lateral extent of sediment contamination, and to define the vertical extent of contamination. The results from this task will be used to refine the estimates of the volume of contaminated sediment to be removed in the remedial action.



.

i



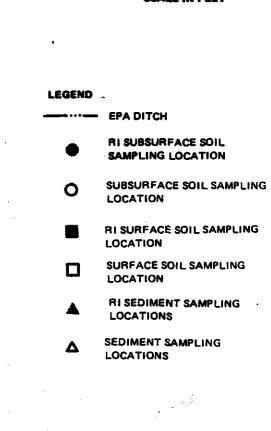



FIGURE TM 6-1 SOIL AND SEDIMENT SAMPLING LOCATIONS (STEP 1) ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

### Table TM6-1 SUMMARY OF SURFACE SOIL SAMPLING

Sample Number	Location	HNu Deflection ^a	Comments and Observations
Inditibel	Location	(ppm)	Comments and Observations
<b>SS87-</b> 9	West of wastewater ditch in area of dead trees, adjacent to SS-9.	None	Fibrous peat.
<b>SS87-10</b>	West of wastewater ditch in area of dead trees, adjacent of SS-10.	None	
SS87-12	West of wastewater ditch in area of dead trees, adjacent to SS-12.	0.4	Water level at ground surface.
\$\$87-13	Adjacent to SS-13.	1.2 (BKG 0.4)	Water level about 1 foot above ground surface. Sample taken with sediment corer. Oily sheen appeared upon distur- bance of soil.
SS87-14	In a low-lying area drain- ing the southeastern por- tion of the site.	1.6 (BKG 0.8)	Water level above ground surface. Oily sheen and petroleum odor noted.
SS87-15	South of sludge lagoon, topographically down- gradient of the lagoon.	0.2	Water level at ground surface.
SS87-16	East of the wastewater ditch, between the waste- water ditch and the sludge lagoon.	0.1	
SS87-17	East of the wastewater ditch, between the waste- water ditch and the sludge lagoon.	0.2	Water level about ½ foot above ground surface. Sample taken with sediment corer. Oily sheen appeared upon distur- bance of soil.
SS87-18	In wetland area north of sludge lagoon and waste- water ditch.	0.5	Dark organic soil.
SS87-19	In wetland area north of sludge lagoon and waste- water ditch.	0.5	
SS87-20	In wooded area northwest of wastewater ditch.	0.5	

^aHNu readings reported in this table were taken of sample in the stainless steel bowl.

GLT932/018.50

#### Table TM6-2

#### SAMPLE MATRIX TABLE FOR SURFACE SOIL SAMPLES

CH2M HILL	CRL		COLLE		a 1 1 200 1 702 1
SAMPLE NUMBER	SAMPLE NUMBER	REPORT NUMBER	DATE	TIME	LABORATORY
\$\$87-09-01	88HV01513	EP 344	10/26/87	1614	META TRACE
		MEC 970			ROCKY MOUNTAIN ANALYTICAL
		3330-E21			HITTMAN
		3330 LT.			
SS87-10-01	88HV01512	EP 343	10/26/87	1606	META TRACE
		MEI 721			ROCKY MOUNTAIN ANALYTICAL
		3330-E20			HITTMAN
		3330-E20			WEYERHAEUSER (TOC ONLY)
SS87-12-01	88HV01\$15	EP 350	10/27/87	825	META TRACE
		MEG 976			ROCKY MOUNTAIN ANALYTICAL
		3330-E23			HETTMAN
	88HV01D15	3330-E45	10/27/87	825	HITTMAN (LL PAHS)
SS87-13-01	88HV01517	EP 352	10/27/87	930	META TRACE
		MEC 978			ROCKY MOUNTAIN ANALYTICAL
۰.		3330-E25			HITTMAN
		3330-E25			WEYERHAEUSER
	88HV01D17	3330-E46	10/27/87	930	HITTMAN (LL PAHS)
SS87-14-01	88HV01516	EP 351	10/27/87	902	META TRACE
		MEG 977			ROCKY MOUNTAIN ANALYTICAL
		3330-E24			HITTMAN
SER7 18 01		EP 353	10/27/87	954	META TRACE
SS87-15-01	88HV01518		10/2//6/	734	
		MEC 979			ROCKY MOUNTAIN ANALYTICAL
		3330-E26			HITTMAN
		3330-E26			WEYERHAEUSER
	86HV01D18	3330-E49 & E60	10/27/87	954	WEYERHAEUSER (TOC AND INCINERATOR)
	00110101010	3330 E47 a 209	(0) 2) / 0)		
SS87-16-01	88HV01520	EP 355	10/27/87	1114	META TRACE
		MEM 458			ROCKY MOUNTAIN ANALYTICAL
		3330-E28			HITTMAN
		*****			
	88HV01D20	3330-E48	10/27/87	1114	HITTMAN (LL PAHS)
SS87-17-01	88HV01519	EP 354	10/27/87	1050	META TRACE
		MEM 457			ROCKY MOUNTAIN ANALYTICAL
		3330-E27			HITTMAN
		3330-E27			WEYERHAEUSER
	88HV01D19	3330-E47	10/27/87	1050	HITTMAN (LL PAHS)
				14/2	HETA TRACE
SS87-18-01	88HV01511	EP 342	10/26/87	1440	META TRACE
		MEI 792			ROCKY MOUNTAIN ANALYTICAL
		3330-E19			HITTMAN
		3330-E19			WEYERHAEUSER

.

6

I.

#### Table TM6-2

#### SAMPLE MATRIX TABLE FOR SURFACE SOIL SAMPLES

CH2M HILL	CRL	TRAFFIC	COLLECTION		a		
SAMPLE NUMBER	SAMPLE NUMBER	REPORT NUMBER	DATE	TIME	LABORATORY		
SS87-19-01	88HV01510	EL 537	10/26/87	1427	META TRACE		
		MEI 787			ROCKY MOUNTAIN ANAYTICAL		
		3330-E18			HITTMAN		
		3330-E18			WEYERHAEUSER		
	68HV01D10	EL 558	10/26/87	1427	META TRACE (ORCANICS)		
SS87-20-01	88HV01514	EP 349	10/26/87	1549	META TRACE		
		MEC 975			ROCKY MOUNTAIN ANALYTICAL		
		3330-E22			HITTMAN		
	88HV01D14	3330-E44	10/26/87	1549	HITTMAN (LL PAHS)		
F887-05-01	88HV01521	EP 356	10/27/87	945	META TRACE		
		MEM 459			ROCKY MOUNTAIN ANALYTICAL		
		3330-E29			HITTMAN		
		3330-E29			WEYERHAEUSER		

a = First laboratory listed for organic analysis Second laboratory listed for inorganic analysis Third laboratory listed for low level PAHs Fourth laboratory listed for TOC and incinerator parameters

.

.

~---

TECHNICAL MEMORANDUM NO. 6 Page 3 February 22, 1988 W68802.FS

### PERSONNEL

The sampling team consisted of:

- o Randy Videkovich, CH2M HILL
- o Jewelle Imada, CH2M HILL
- o Alan Esko, Engineers International
- o Tom Hahne, PRC

Sample custody was maintained by the sampling team. The CLP paperwork was completed by Cathy Kantowski, Engineers International.

### SAMPLING LOCATIONS

The sediment samples were taken from three locations in the wastewater ditch, one in the culvert south of Highway 53, and four in the EPA ditch along Highway 53; three samples were taken in roadside locations along Highway 53 about 0.7 mile from the site to serve as background. The sampling locations are shown in Figure TM6-1 and briefly described in Table TM6-3. The objectives of sampling for each location are given in the Work Plan.

### SAMPLING PROCEDURES

The sediment samples were collected from two separate depths at each location; 0 to 1 foot, and 1 to 2 feet. Samples from the upper layer were taken using a stainless steel spoon. The lower layer was sampled using a stainless steel spoon or a sediment corer. At each location, the samples to be analyzed for VOCs were taken first. The samples taken with the stainless steel spoon were put directly into the VOC vials. If the sediment corer was used, the sample was first placed in a stainless steel bowl and then spooned into the jars. Samples analyzed for the other parameters were placed in a stainless steel bowl, composited, and placed in the sample jars. The outside of the jars was then decontaminated and the paperwork was completed.

The sampling equipment was decontaminated between samples by scrubbing in a solution of trisodium phospate and tap water, followed by a methanol rinse and a triple rinse with distilled water. The equipment was laid on a clean plastic sheet to dry and then placed in a clean plastic bag for storage or transport to the next sampling location.

Table TM6-3 summarizes the samples taken and field measurements made at each location. Table TM6-4 lists the samples collected and sent for analysis. The sediment samples were analyzed for TCL inorganic and volatile and semivolatile organic compounds. To facilitate evaluation of thermal treatment methods, selected samples were sent to be analyzed for carbon, hydrogen, sulfur, oxygen, nitrogen, ash content,

# Table TM6-3 SUMMARY OF SEDIMENT SAMPLING

Sample		HNu Deflection ²	
Number	Location	(ppm)	Comments and Observations
SD87-4	Western section of the U.S. EPA ditch south of Gopher Oil.	None	Small but noticeable flow through culvert. 0-1 foot sample consisted of brown sandy silt. 1-2 foot sample was peat with brown to black silty sand.
SD87-5	Western section of the U.S. EPA ditch about 15 to 20 feet from the cuivert.	None	
SD87-6	Cuivert south of Hwy. 53.	None	Some ice on the water. Approxi- mately 6 inches of water. An oily sheen appeared upon disturbance of sediment.
SD87-8	Near discharge point for the wastewater ditch.	1.0 (0-1') 0.2 (1-2')	Samples consist mainly of organic matter. Both samples appear oily with a petroleum odor.
SD87-9	Middle of wastewater ditch. Sample taken in cattail area east of MW2.	4.0 (0-1') 4-5 (1-2')	Both samples were oily with strong petroleum odor. Problems getting lower sample. Lower sample taken by driving corer down about 2 feet, emptying corer and redriving into the same hole to collect the sample.
SD87-10	Approximately 15 feet north of the southern end of wastewater ditch.	40.0 (0-1') 3-5 (1-2')	Samples taken in level C because of strong petroleum odor and oil layer on water surface. Lower sample taken by driving corer down, empty corer, and driving into the same hole to collect samples. Samples very oily, sent in as medium hazard.
SD87-11	Western section of U.S. EPA ditch, 5 feet west of MW3.	None	Approximately 6 inches of water in ditch.
SD87-12	U.S. EPA ditch.	None	Oily sheen appeared upon distur- bance of sediments.
SD87-13	Roadside ditch 0.7 mile west of the site, south of Hwy. 53.	None	Water level about 6 inches below ground surface.
SD87-14	Roadside ditch 0.7 mile west of the site, north of Hwy. 53.	None	Water at ground surface.
SD87-15	Roadside ditch 3/4 mile east of the site, south of Hwy. 53.	None	1 to 2 feet of peat. Samples were not saturated.

.

^aHNu readings were taken of headspace in sample jars.

.

.

· ---

#### Table TM6-4

#### SAMPLE MATRIX TABLE FOR SEDIMENT SAMPLES

CH2M HILL SAMPLE NUMBER	CRL SAMPLE NUMBER	TRAFFIC REPORT NUMBER	COLLEC DATE	CTION TIME	a LABORATORY
SD87-04-01	88HV01S34	EP 380 MEM 483 3330-E53 3330-E53	10/28/87	1205	A A T S ROCKY MOUNTAIN ANAYTICAL CH2M HILL WEYERHAEUSER
	88HV01D34	3330-E55 & E61	10/28/87	1205	WEYERHAEUSER (TOC & INCINERATOR)
SD87-04-02	88HV01S35	EP 381 MEM 484 3330-E50	10/28/87	1220	A A T S Rocky mountain anaytical Ch2m Hill
SD87~05-01	88HV01530	EP 373 MEM 476 3330-E40 3330-E40	10/28/87	1020	ENERGY ENVIR. ENG. INC. ROCKY MOUNTAIN ANAYTICAL HIITTMAN WEYERMAEUSER
SD87-05-02	88HV01531	EP 374 MEM 477 3330-E41	10/28/87	1025	ENERGY ENVIR. ENG. INC. ROCKY MOUNTAIN ANAYTICAL HITTMAN
SD87-06-01	88HV01S28	EP 363 MEM 466 3330-E36	10/28/87	925	ENERGY ENVIR. ENG. INC. ROCKY MOUNTAIN ANAYTICAL HITTMAN
	88HV01D28	EP 364 MEM 467 3330-E37	10/28/87	925	ENERGY ENVIR. ENG. INC. ROCKY MOUNTAIN ANAYTICAL HITTMAN
SD87-06-02	88HV01529	EP 365 MEM 468 3330-E38	10/28/87	930	ENERGY ENVIR. ENG. INC. ROCKY MOUNTAIN ANAYTICAL HITTMAN
	88HV01D29	EP 366 <i>MEM 469</i> 3330-E39	10/28/87	930	ENERGY ENVIR. ENG. INC. ROCKY MOUNTAIN ANAYTICAL HITTMAN
SD87-08-01	88HV01S38	EP 384 MEM 487 3330-E56	10/29/87	1220	A A T S ROCKY MOUNTAIN ANAYTICAL CH2M HILL
SD87-08-02	88HV01539	EP 385 MEM 488 3330-E54	10/29/87	1228	A A T S Rocky mountain anaytical CH2M Hill
SD87-09-01	88HV01540	EP 386 MEM 489 3330-E57 3330-E57	10/29/87	1310	A A T S ROCKY MOUNTAIN ANAYTICAL CH2M HILL WEYERHAEUSER
SD87-09-02	88HV01S41	EP 387 MEM 490 3330-E55	10/29/87	1420	A A T S Rocky mountain anaytical CH2M Hill
SD87-10-01	88HV02S01	3155-101 3249-101	10/29/87	1510	NANCO LABS JTC ENVIRONMENTAL CONSULTING
SD87-10-02	88HV02502	3155-102 3249-102	10/29/87	1522	NANCO LABS JTC ENVIRONMENTAL CONSULTING

· ·

•

t

#### Table TM6-4

#### SAMPLE MATRIX TABLE FOR SEDIMENT SAMPLES

CH2M HILL AMPLE NUMBER	CRL SAMPLE NUMBER	TRAFFIC REPORT NUMBER	COLLE DATE	TIME	a LABORATORY
SD87-11-01	88HV01S32	EP 378 MEM 481	10/28/87	1130	ENERGY ENVIR. ENG. INC. ROCKY MOUNTAIN ANAYTICAL
		3330-E42 3330-E42			HI TTMAN WEYERHAEUSER
SD87-11-02	88HV01533	EP 379	10/28/87	1146	ENERGY ENVIR, ENG, INC.
		MEM 482 3330-E43			ROCKY MOUNTAIN ANAYTICAL HITTMAN
SD87-12-01	88HV01536	EP 382	10/28/87	1425	A A T S
		MEM 485			ROCKY MOUNTAIN ANAYTICAL CH2M HILL
		3330-E52 3330-E52			WEYERHAEUSER
SD87-12-02	88HV01537	EP 383	10/28/87	1440	A A T S
		MEM 486 3330-E51			ROCKY MOUNTAIN ANAYTICAL CH2M HILL
SD87-13-01	88HV01526	EP 361	10/27/87	1510	ENERGY ENVIR. ENG. INC.
		MEM 464			ROCKY MOUNTAIN ANAYTICAL
		3330-E34			HITTMAN
		3330-E34			WEYERHAEUSER (TOC ONLY)
SD87-13-02	88HV01527	EP 362	10/27/87	1515	ENERGY ENVIR. ENG. INC.
		MEM 465			ROCKY MOUNTAIN ANAYTICAL
		3330-E35			HITTMAN
SD87-14-01	88HV01524	EP 359	10/27/87	1434	META TRACE
		MEM 462			ROCKY MOUNTAIN ANAYTICAL
		3330-E32			HITTMAN
SD87-14-02	88HV01525	EP 360	10/27/87	1439	META TRACE
		MEM 463			ROCKY MOUNTAIN ANAYTICAL
		3330-E33			HITTMAN
SD87-15-01	88HV01522	EP 357	10/27/87	1355	META TRACE
		MEM 460			ROCKY MOUNTAIN ANAYTICAL HITTMAN
		3330-E30			WEYERHAEUSER (TOC ONLY)
		3330-E30			WETERIAEUSER (TOC ONLY)
SD87-15-02	88HV01523	EP 358	10/27/87	1400	META TRACE ROCKY MOUNTAIN ANAYTICAL
		MEM 461			HITTMAN
		3330-E31			
FB87-06-01	88HV01544	EP 391	10/29/87	825	A A T S
		MEM 493			ROCKY MOUNTAIN ANAYTICAL CH2M HILL
		3330-E58 3330-E58			WEYERHAEUSER

a = First laboratory listed for organic analysis
 Second laboratory listed for inorganic analysis
 Third laboratory listed for low level PAHs
 Fourth laboratory listed for TOC and incinerator parameters
 A A T S = American Analytical Technical Service Inc.

~

heating value, and total organic carbon. Selected samples were also sent in to be analyzed for low level PAHs.

### SAMPLING PROBLEMS

Problems in the sediment sampling occurred mainly in the collection of the lower samples. The sediment corer used did not have an effective catch so samples were often lost before they could be placed in the stainless steel bowl. The compactibility of the upper sediment and the depth of water in some locations made the depth of the sample difficult to estimate. The presence of a highly contaminated upper sediment layer or the release of an oily sheen to the surface water upon disturbance of the sediment in the wastewater ditch made it difficult to prevent crosscontamination of the lower samples.

### SUBSURFACE SOIL SAMPLING

1

Collection of subsurface soil samples from 12 locations began on October 12. The objective of the sampling effort was to better define the lateral and vertical extent of soil contamination, especially in the process area. The results of this task will be used to refine the volumes of soil to be removed for remediation of the site.

Sampling was suspended on October 20 because of high organic vapor readings measured with an OVA flame-ionization meter or HNu photo-ionization meter during drilling. Six borings were drilled before sampling was suspended. However, complete sets of samples were collected at only four locations (SO87-5B, SO87-13e, SO87-20, and SO87-21). Drilling at Borings SO87-19 and SO87-22 had to be abandoned because of high organic vapor readings measured during drilling.

### PERSONNEL

The sampling team consisted of:

- o Cindy Cruciani, CH2M HILL
- o Jewelle Imada, CH2M HILL
- o Jim Russell, CH2M HILL
- o Bob Weinschrott, CH2M HILL
- o Greg Weeks, Engineers International
- o Mehdi Geraminegad, E&E
- o Jerry McLane, PRC

Not all personnel were present at the site at the same time. Sample custody was maintained by the sampling team. The CLP paperwork was completed by Cindy Cruciani and Jim Russell. The drilling of the soil borings was subcontracted to STS Consultants, Ltd.

### SAMPLING LOCATIONS

Subsurface soil samples were collected at six locations (two of these correspond to monitoring well locations). The locations of the soil borings were based on the RI results. Soil boring locations were staked out by Jewelle Imada and Dave Chrisman (MPCA) before drilling began. Sampling locations are shown in Figure TM6-1 and briefly described in Table TM6-5. The objectives of sampling for each location are given in the Work Plan.

### SAMPLING PROCEDURES

Soil borings were drilled using a CME-75 rig or a Mobile B-53 drill rig mounted on an all-terrain vehicle carrier. The borings were advanced using hollow-stem augers. Continuous split-spoon samples were obtained from the ground surface using the standard penetration test method. After the split spoon was opened, the sample was logged and screened with an HNu or an OVA. Samples were placed directly into sample jars using a stainless steel utensil.

The exterior of the jars was decontaminated and the paperwork completed. Split spoons and other sampling equipment were decontaminated between samples with a solution of trisodium phosphate and tap water, followed by a tap water rinse, a methanol rinse, and a triple rinse with distilled water.

Subsurface soil boring logs are provided in Attachment A. Table TM6-5 summarizes the samples taken and field measurements made at each location. Table TM6-6 lists the samples collected and sent for analyses. The subsurface soil samples were analyzed for TCL inorganic and volatile and semivolatile organic compounds. Selected samples were sent in to be analyzed for low level PAHs. The visibly contaminated peat and fill samples were packed for later shipment to a lab as medium hazard samples.

### SAMPLING PROBLEMS

The Work Plan had selected 12 locations for the collection of subsurface soil samples. The higher than expected level of contamination of the subsurface soil in the process area precluded completion of the subsurface soil investigation. Health and safety monitoring of air in the breathing zone indicated that level B safety protection was needed instead of level C. Borehole SO87-19 had a reading of more than 80 ppm and borehole SO87-22 had more than 20 ppm, as measured by an OVA. The high readings occurred while drilling through the material at depths of 1 to 6 feet. Breakthrough in level C full face respirator protection occurred as well after only a few minutes of cartridge use. Therefore, borings SO87-19 and SO87-22 were abandoned for health and safety reasons. Because this level of contamination was not expected, subsurface soil sampling was suspended.

#### Table TM6-5 (Page 1 of 3) SUMMARY OF SUBSURFACE SOIL SAMPLING

Boring Number	Location Description	Sample Number	Layer Sampled	<u>Analyses</u> ^a	Depth (ft bgs)	HNu _e or Air (ppm)	OVA Readings ^b Sample ^b (ppm)	Number of Spoons to Collect Samples	Comments and Observations
SO87-5b	In process area. Associated with Well MW-5b.	SO-05-01	Fill	Organic Inorganic	0-4	0.3-0.4	5-100 (50 ppm from headspace measurement*)	8	Fill samples varied from wood fragments to silty clay. Samples were black and oily.
		SO-05-02	Pcat	Organic Inorganic	5-6	0.4	>1,000* (from headspace measurement)	2	Because of poor peat recovery with split spoon, augers were pulled so peat samples could be collected from the auger blades. Peat samples were soaked with black oil. Vinyt chloride drager tube taken of head- space measured 0.3 ppm.
		SO-05-03	Lacustrine silt	Organic Inorganic TOC LL PAH	7-16	0.4	5-30 (50 ppm from headspace measurement*)	12	
		SO-05-04	Outwash	Organic Inorganic TOC LL PAH	18-20	0.4	1-5 (50 ppm from headspace measurements)	5	
		SO-05-05	Till	Organic Inorganic TOC LL PAH	30-30.5	0.2	0.1-2 (0.2-3.3 ppm from headspace measurement)	7	Switched to mud rotary drilling to collect these samples. Replaced 140 lb hammer with 300 lb hammer at about 33 feet bgs. Note: High HNu readings of 60 ppm in breathing zone measured during grouting with about 20 feet of augers in ground. Site was evacuated and volatiles allowed to dissipate. Grouting resumed once readings dropped to 0.6 ppm after about an hour.
SO87-13e	In wetland area north of the sludge lagoon. Associated with Well MW-13b.	SO-13-01	Pcat	Organic Inorganic TOC LL PAH	0-2	0.2	0.2	10	
		SO-13-02	Lacustrine silt	<b>Organic Inorganic TOC LL PAH</b>	5-16.5	0.2	0.2	6	

(

ŧ

### Table TM6-5 (Page 2 of 3)

Boring Number	Location Description	Sample Number	Layer Sampled	Analyses ^a	Depth ((i bgs)	<u>HNu_e or</u> Air (ppm)	OVA Readings ^b Sample ^b (ppm)	Number of Spoons to Collect Samples	Comments and Observations
		SO-13-03	Lacustrine sands	<b>Organic</b> Inorganic TOC LL PAH	30-34	0.2	0.2	4	
		SO-13-04	Till	Organic Inorganic TOC LL PAH	34-35.5	0.2	0.3-0.4	5	
SO87-19	Between Gopher Oil and the southern extent of the waste- water ditch.	SO-19-01	Fill	Organic Inorganic	0-6	1.7- <b>80</b> *	40-100 <b>*</b>	3	Driving spoon from 4-6 feet, OVA readings were measured at 80 ppm in breathing zone. Drillers were evacuated for 15 minutes (OVA reading 2.7 ppm). Went back to borehole to remove split spoon and continue drilling. Drilling stopped because of continued high OVA readings and breakthrough of organic vapor through respirators. Bentonite was placed around augers and in borehole. Augers pulled 2 days later. OVA readings in breathing zone from 40-50 ppm were measured when augers were removed and borehole was grouted.
SO87-20	In process area just north of the auto body shop.	SO-20-01	Fill	Organic Inorganic	0-4	0-0.1	0.5 (400 ppm from headspace measurements*)	2	Fill samples oily. HNu reading suspected to be unreliable because of weather conditions.
		SO-20-03	Lacustrine- silts	Organic Inorganic LL PAH TOC	<b>4</b> -10	0	0 (40 ppm from headspace measurements*)	3	HNu reading suspected to be unreliable because of weather conditions.
SO87-21	About 10 feet east of north- castern corner of auto body shop.	SO-21-01	Fill	Organic Inorganic	0-4	0.7-1.5*	600->1,000 [∙]	2	Fill samples oily.
		SO-21-03	Lacustrine- silts	<b>Organic Inorganic LL PAH TOC</b>	4-10	0.5-2.5*	10->1,000* (0 ppm from head- space measurement with HNu)	3	

#### Table TM6-5 (Page 3 of 3)

Boring	Location	Sample	Layer		Depth	c Air	OVA Readings ^b Sample ^b	Number of Spoons to Collect	
Number	Description	Number	Sampled	Analyses ^a	(ft bgs)	<u>(ppm)</u>	(ppm)	Samples	Comments and Observations
SO87-22	In central loca- tion of process area.	SO-22-01	Fill	<b>Organic</b> Inorganic	0-4	100-200*	>1,000* (HNu reading = >20 ppm)	2	Drilling shut down because of high OVA readings. Grout pour around augers and down borehole and augers pulled.

^a Indicates which analyses the samples were sent in for: TCL organic compounds (volatile and semivolatile) and inorganic constituents, total organic carbon (TOC), low level PAHs. ^bBoth HNu and OVAs were used to monitor drilling. Although the Site Safety Plan called for using the HNu, weather conditions made HNu readings unreliable. OVA readings are designated with an "*." ^cThe HNu or OVA readings in air are measurements taken in the breathing zone. ^dThe HNu or OVA readings of sample refer to measurements taken of sample in split spoons or auger cuttings unless designated as headspace measurements.

(

GLT932/020.50

#### Table TM6-6

#### SAMPLE MATRIX TABLE FOR SUBSURFACE SOIL SAMPLES

.

,

CH2M HILL	CRL	TRAFFIC	COLLE	CTION	a	
SAMPLE NUMBER	SAMPLE NUMBER	REPORT NUMBER	DATE	TIME	LABORATORY	
•	•		•••••	•••••		
SO87-05-01	\$8HV02503	3155-103	10/12/87	1130	NANCO	
		3249-103			JTC ENVIRONMENTAL CONSULTANTS	
SO87-05-02	86HV02S04	3155-104	10/12/87	1230	NANCO	
		3249-104			JTC ENVIRONMENTAL CONSULTANTS	
SO87-05-03	88HV01505	EP 339	10/12/87	115	META TRACE	
		ME1 789			ROCKY MOUNTAIN ANALYTICAL	
		3330-E08			HITTMAN	
		3330-E08			WEYERHAEUSER	
	88HV01R05	3330-E12	10/13/87	115	HITTMAN (LL PAHS)	
SO87-05-04	88HV01504	EP 340	10/12/87	230	META TRACE	
		ME1 790			ROCKY MOUNTAIN ANALYTICAL	
		3330-E07			HITTMAN	
		3330-E07			WEYERHAEUSER	
	88HV01R06	3330-E13	10/13/87	230	HITTMAN (LL PAHS)	
SO87-05-05	88HV01506	EP 341	10/13/87	1030	META TRACE	
		ME1 791			ROCKY MOUNTAIN ANALYTICAL	
		3330-E09			HITTMAN	
		3330-E09			WEYERHAEUSER	
	88HV01R04	EP 376	10/13/87	1030	META TRACE	
		MEM479			ROCKY MOUNTAIN ANALYTICAL	
		3330-E11			HITTMAN	
		3330-E11			WEYERHAEUSER	
SO87-13-01	88HV01\$01	EP 345	10/12/87	1000 -	META TRACE	
		MEG 971			ROCKY MOUNTAIN ANALYTICAL	
		3330-E01			HITTMAN	
		3330-E01			WEYERHAEUSER	
	88HV01R01	3330-Е03	10/12/87	1000	HITTMAN (LL PAHS)	
SO87-13-02	88HV01502	EP 346	10/12/87	1100	META TRACE	
		MEG 972			ROCKY MOUNTAIN ANALYTICAL	
		3330-E02			HITTMAN	
		3330-E02			WEYERHAEUSER	

#### Table TM6-6

#### SAMPLE MATRIX TABLE FOR SUBSURFACE SOIL SAMPLES

.

CH2M HILL	CRL	TRAFFIC	COLLE	CTION	a
SAMPLE NUMBER	SAMPLE NUMBER	REPORT NUMBER	DATE	TIME	LABORATORY
	• •••••				
	58HV01R02	EP 375	10/12/87	1100	META TRACE
		MEM 478			ROCKY MOUNTAIN ANALYTICAL
		3330-E04			HITTMAN
		3330-E03			WEYERHAEUSER
SO87-13-03	88HV01503	EP 347	10/12/87	355	META TRACE
		MEC 973			ROCKY MOUNTAIN ANALYTICAL
		3330-E05			HITTMAN
		3330-E05			WEYERHAEUSER
	88HV01R03	3330-E06	10/12/87	355	HITTMAN (LL PAHS)
SO87-13-04	88HV01507	EP 348	10/13/87	1015	META TRACE
		MEG 974			ROCKY MOUNTAIN ANALYTICAL
		3330-E10			HITTMAN
		3330-E10			WEYERHAEUSER
	88HV01R07	3330-E14	10/13/87	1015	HITTMAN (LE PAHS)
SO87-19-01	88HV02505	3155-105	10/16/87	1020	8 NANCO
		3249-105			TC ENVIRONMENTAL CONSULTANTS
SO87-20-01	88HV02S06	3155-106	10/15/87	904	NANCO
3007-20-01	30/11/02/300	3249-106	(0) (3) 0)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ITC ENVIRONMENTAL CONSULTANTS
		3249-100			
SO87-20-03	88HV01508	EP 369	10/15/87	1000	META TRACE
		MEM 472			ROCKY MOUNTAIN ANALYTICAL
		3330-E16			HITTMAN
		3330-E16			WEYERHAEUSER
SO87-21-01	58HV01507	3155-107	10/15/87	1310	NANCO
		3249-107			JTC ENVIRONMENTAL CONSULTANTS
	88HV02D07	3155-108	10/15/87	1350	NANCO
		3249-108			JTC ENVIRONMENTAL CONSULTANTS
SO87-21-03	88HV01509	EP 372	10/15/87	1500	META TRACE
		MEM 475			ROCKY MOUNTAIN ANALYTICAL
		3330-E17			HITTMAN
		3330-E17			WEYERHAEUSER
SO87-22-01	88HV02508	3155-108	10/19/87	1230	NANCO
		3249-108			JTC ENVIRONMENTAL CONSULTANTS

1

1

1

~

#### Table TM6-6

.

#### SAMPLE MATRIX TABLE FOR SUBSURFACE SOIL SAMPLES

CH2M HILL	CRL	TRAFFIC	COLLECTION		a
SAMPLE NUMBER	SAMPLE NUMBER	REPORT NUMBER	DATE	TIME	LABORATORY
••••••••••••••••••••••					
F887-05-01	88HV01801	EP 377	10/13/87	100	META TRACE
		MEM 480			ROCKY MOUNTAIN ANALYTICAL
FB87-13-01	88HV01B02	3330-E15	10/13/87	130	HITTMAN
		3330-E15			WEYERHAEUSER

a = First laboratory listed for organic analysis
 Second laboratory listed for inorganic analysis
 Third laboratory listed for low level PAHs
 Fourth laboratory listed for TOC

•

# TECHNICAL MEMORANDUM NO. 6 Page 6 February 22, 1988 W68802.FS

The high level of contamination also caused problems with sending samples to the laboratories for analyses. All the fill and peat samples from the process area were visibly contaminated. Because the original sampling plan specified low-level RAS analyses, the samples had to be stored until a laboratory could be found that would accept the samples.

Selected samples were collected for evaluation of thermal treatment parameters (carbon, hydrogen, sulfur, oxygen, nitrogen, ash content, heating value, and total organic carbon). However, a laboratory could not be found to do the analyses so the samples were collected and stored for later shipment.

Another problem encountered was collecting enough sample from a layer for the specified number of analyses. This called for additional borings to be drilled and sampled. (Seven moves were required at SO87-5b.) To avoid excessive equipment moves, a sampling priority was recommended as follows:

L

- 1. TCL volatile organic compounds
- 2. TCL semivolatile organic compounds
- 3. Low level PAHs (if sample not visually contaminated)
- 4. TCL inorganic chemicals
- 5. TOCs (if sample not from fill or peat)
- 6. Thermal treatment parameters

It was decided that a maximum of two additional borings could be used for the collection of addition sample volume. The borings were to be limited to a maximum depth of 20 feet.

The four borings sampled after these decisions were made were not affected by the new procedure because of the analyses specified at these locations and the visual contamination of upper samples.

GLT932/021.51

# **CHAM** HILL

# **TECHNICAL MEMORANDUM NO. 7**

TO:	Fred Bartman/U.S. EPA Remedial Project Manager
FROM:	Randy Videkovich/CH2M HILL Project Manager
PREPARED BY:	Jewelle Imada/CH2M HILL
DATE:	February 22, 1988
RE:	Groundwater and Residential Well Sampling (Step I)
PROJECT:	Arrowhead Refinery Fieldwork Design Investigation W68802.FQ

#### **INTRODUCTION**

Groundwater samples from new and existing monitoring wells and residential wells were taken during Step I of the Fieldwork Design Investigation. The samples were collected between November 9 and 18, 1987. The results of the investigation will be used to refine the nature and extent of groundwater contamination and to resolve inconsistencies between the RI data sampling rounds and differences with MPCA analytical results. This memorandum includes descriptions of the sampling procedures, any field observations and measurements, and sample matrix tables for the samples collected and sent for analyses.

#### PERSONNEL

The sampling team consisted of:

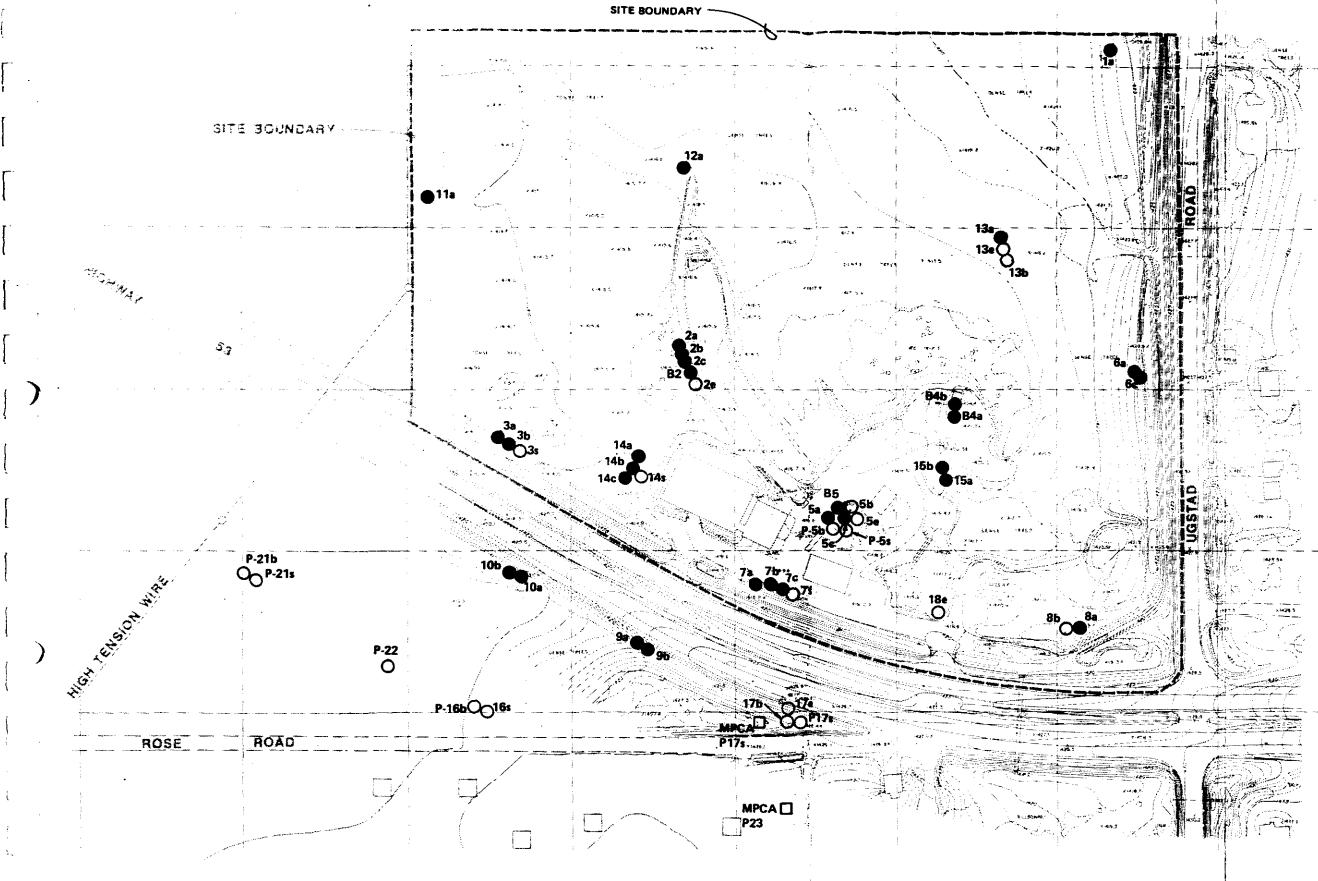
- o Randy Videkovich, CH2M HILL
- o Bryan Laude, CH2M HILL
- o Jeff Keiser, CH2M HILL
- o Steve Keith, CH2M HILL
- o Jewelle Imada, CH2M HILL
- o Alan Esko, Engineers International
- o Tom Hahne, PRC
- o Ken Partymiller, PRC
- o Jean Desruisseaux, PRC

Not all personnel were present at the site at the same time. Sample custody was maintained by the sampling team. The CLP paperwork was completed by Cathy Kantowski (Engineers International) and Bobbie Hughes (CH2M HILL).

# MONITORING WELL SAMPLING

# SAMPLING LOCATIONS

The groundwater samples were collected from 42 new or existing monitoring wells (see Figure TM7-1). Monitoring Well B4a was not sampled because of the high levels of contamination detected previously.


#### SAMPLING PROCEDURES

Before each well was purged and sampled, a water level measurement and a well depth measurement were taken using an electronic water level indicator (Table TM7-1). The measurements were used to verify well depth and to calculate the volume of water to be purged from the well.

The Sampling Plan specified that the wells be purged of five well volumes immediately before sampling. Slow recharge to many of the wells often made this difficult to do. Wells MW-1a, B4b, MW-5a, MW-5b, MW-7s, MW-9b, MW-13a, MW-14s, MW-14a, and MW-17e were purged dry and allowed to recover before sampling (Table TM7-2). All of the wells were purged of five well volumes of water with stainless steel bailers except Wells B2, MW-2e, MW-B5, MW-7c, MW-14b, and MW-18e. Wells B2 and B5 were purged with a peristaltic pump because the wells were too narrow for the bailer and time constraints made purging with a 1-inch bailer difficult. However, Well B4b was bailed with a 1-inch bailer because of pump problems. Well MW-7c was purged with a peristaltic pump because the bailer could not pass a bend in the casing. Five well volumes could not be purged from Wells MW-2e, MW-14b, and MW-18e because of poor recharge, so they were purged dry, left overnight, purged dry again, and sampled once the wells recovered. The bailers for sampling these wells were suspended in the well during recharge and used for the purging and sampling.

Samples were collected by two teams proceeding from the cleanest wells to the most contaminated. The sample jars were filled in the following order: VOCs with low detection limits (if taken), VOCs, semivolatile organic compounds, metals, cyanide, and SAS parameters (COD, TOC, alkalinity, total suspended solids, and oil and grease). The outside of the sampling jars was then decontaminated and the paperwork started. The samples sent for analyses are listed in Table TM7-3.

Samples to be analyzed for metals were filtered and preserved with  $HNO_3$  to a pH of less than 2. Samples to be analyzed for cyanide were preserved with NaOH to a pH



. .



LEGEND



Ο

EXISTING WELLS

NEW WELLS (PREFIX P DENOTES PIEZOMETER)

# NOTE:

Suffix a, b, c, d, e and s designate" different monitoring wells within a well nest.

- a and s = Shallow wells usually less than 15 ft.
  - b = Usually between 20 and 30 ft.
  - c # Wells in the lower till, between 35 and 40 ft.
  - e Shallow bedrock wells, estimated depths of 50 or 60 ft.

FIGURE TM 7-1 WELL LOCATIONS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

# Table TM7-1 (Page 1 of 2) WATER LEVELS AND DEPTH OF WELL

Well <u>Number</u>	Depth to Water Below Top of Riser (ft)	Depth of Well Below Top of Riser (ft)	HNu Readings (ppm)	Comments
MW-1a	5.43*	16.6*	BKG	
MW-2a	5.2	10.47	BKG	
MW-2b	5.3	27.35	BKG	
MW-2c B2	4.88 5.46	40.34	BKG	
MW-2e	4.12	10.26 36.25	BKG BKG	Records indicated well
				depth greater than 50 feet; remeasured before sampling; depth of well 50.75 ft (below top of riser)
MW-3s	3.93	9.4	BKG	- · · · ·
MW-3a	4.37	17.30	BKG	
MW-3b	3.88	24.13	BKG	
B4a	NM	NM	NM	
MW-B4b	7.70	12.4	BKG	
P5s	3.90	6.98	5	
P5b	4.24	17.68	0.5	
MW-5a MW-5b	4.44	14.47	NM 2	
MW-5c	4.04 4.51	22.13 40.88	BKG	
MW-5e	3.80	55.94	BKG	
B5	5.6	10.66	4	
MW-6a	7.81	16.17	BKG	
MW-6c	7.15	37.43	BKG	
MW-7s	4.65	13.04	BKG	
MW-7a	6.09	16.65	BKG	
MW-7b	5.4	27.36	BKG	
MW-7c	5.38	38,82	BKG	
MW-8a	7.83	17.57	BKG	
MW-8b	6.53	24,9	BKG	
MW-9a	5.81*	16.64*	BKG	
· MW-9b	6.08	24.6	BKG	
MW-10a	3.94	14.4	BKG	
MW-10b	3.67	25.67	BKG	
MW-11a	2.92	17.3	NM	
MW-12a	4.75	16.22	BKG	
MW-13a	2.94	17.01	BKG	
MW-13b	2.13	32.64	BKG	
MW-13e	2.15	53.6	BKG	
<b>MW-14s</b>	2.65	8.11	BKG	

۰.

# Table TM7-1 (Page 2 of 2)

Well Number	Depth to Water Below Top of Riser (ft)	Depth of Well Below Top of Riser (ft)	HNu Readings (ppm)	Comments
MW-14a	2.64	16.19	BKG	
MW-14b	3.16	27.04	BKG	
MW-14c	2.2	33.46	BKG	Well may be damaged
				by soil moving
MW-15a	6.2	16.87	BKG	
MW-15b	5.99	26.74	BKG	
MW-16s P16b	7.68	14.82	BKG	
P17s (MPCA)	8.87	27.55 9.9	BKG BKG	
P17s (IVIF CA)	Dry 9.17	NM	BKG	
MW-17b	9.35	44.45	BKG	
MW-17e	8.73	58.72	BKG	
MW-18e	NM	NM	<u>,</u>	Problems with water
				level indicator; well depth measured before sampling
P21s	4.6	12.02	BKG	
P21b	4.59	32.31	BKG	
P22s	3.69	10.4	BKG	
P23s (MPCA)	NM	NM	DRO	
()				
Staff Gauges	Gauge Readings (ft)			
SG1	0.32			Note: Staff gauge
SG2	0.29			readings may not reflect normal water levels. City crew
SG3	0.26			opened the hydrant and let water run into
\$G4	0.46			the U.S. EPA ditch the same day as when staff gauges were read.

NM = Not measuredBKG = HNu reading background* = Readings taken from top of the protective casing

GLT932/022.50

# Table TM7-2 (Page 1 of 2) SUMMARY OF GROUNDWATER SAMPLING

	Total Water	Time Between Purging and	OVA or H	INu Readings ^a			
Well Number	Purged (gal)	Sampling (hr)	In Weil (ppm)	From Water (ppm)	рH	Conductivity (umhos)	Comment and Observation
MW-1a	8	2	BKG*	BKG*	7.4	250	Bailed dry after 4 gal. Water red and silty.
MW-2a	3	0	10*->1,000*	>1,000*	6.7	675	Elevated OVA readings measured while purging; sample taken in Level C, OVA readings 2 to 3 ppm in breathing zone.
MW-2b	10	0	BKG	BKG	7.8	200	
MW-2c	16	õ	2-11*	BKG	7.6	225	
MW-2e		7	30	BKG	8.5	250	Bailed dry after 12 gallons. Purged dry 2 days.
B2	2	Ó	200*-300*	200*-300*	6.8	575	Purged with peristaltic pump.
MW-3s	6	ŏ	BKG	BKG	7.0	625	Turbid; very slow recharging (1 hour to purge 6 gallons).
MW-3a	6	0	BKG	BKG	7.7	225	- 8,
MW-3b	10	ō	BKG	BKG	8.5	250	Turbid.
B4b	8	0.75	NM	NM	7.6	300	Bailed using 1-inch bailer; after waiting 45 min- utes to sample, recharge was only enough to take metals and cyanide samples; VOCs and extractable samples taken next morning.
MW-5a	5	1	BKG	BKG	7.7	500	
MW-5b	10	i	BKG	3*	7.5	625	
MW-5c	17	ō	NM	NM	7.8	225	
MW-5e	45	ŏ	BKG	BKG	8.0	250	
B5	5	ŏ	NM	NM	6.6	600	Well had very strong odor, OVA not working.
MW-6a	8	ŏ	BKG	BKG	6.9	425	Some silt at bottom of well.
MW-6c	30	Ŏ	BKG	BKG	7.4	350	
MW-7s	9	0.5	BKG	BKG	6.7	725	
MW-7a	10	0	BKG	BKG	6.5	650	Oily sheen observed in purge water. Odor also noted.
MW-76	10	2	BKG	BKG	7.3	500	Bailed dry after about 6 gallons.
MW-7c	17	16	NM	NM	7.3	275	Could not get bailer down well, possible bend in casing; purged using peristaltic pump.
MW-8a	5	NR	BKG	BKG	7.1	1,746	
MW-8b	15	NR	BKG	BKG	7.1	2,200	
MW-9a	5	0	BKG	BKG	7.9	950	Purged dry after 4 gallons.
MW-96	8	0.5	1.5*	2*	7.9	800	Purged dry after 5.5 gattons.
MW-10a	5	0	NM	1.5*	8.0	1,150	Turbid.
MW-10b	10	NR	BKG	25*	7.8	1,300	Poor recharge (1 hour to purge 10 gallons).

(

1

	Total Water	Time Between Purging and	OVA or	HNu Readings ^a			
Well Number	Purged (gal)	Sampling (hr)	in Well (ppm)	From Water (ppm)	<u>рН</u>	Conductivity (umhos)	Comment and Observation
MW-11a	7	NR	BKG	BKG	8.1	225	
MW-12a	6	0	BKG	BKG	6.3	195	Turbid, silt on bottom of well.
MW-13a		0.5	BKG	BKG	7.6	250	Purged dry after 5 gallons.
MW-13b	30	0	BKG	BKG	7.6	200	Purged dry after 23 gallons.
MW-13e	50	0	BKG	BKG	7.8	300	Water clear, full recovery.
MW-14s	7	17	BKG	BKG	7.5	375	
MW-14a	7	17	- 50*	0.5-30*	7.2	550	Purged dry after 5 gallons. Aromatic odor noted.
MW-14b		72	600*	>100*	7.3	275	Purged dry after 4 gallons; five well volumes not purged, but purged dry twice and allowed to be recharged for 2 days before sampling.
MW-15c	15	0	2*	80*	8.0	250	Sweet solvent odor noted.
MW-15a	5	Ö	BKG	BKG	6.7	2,750	
MW-15b	10	NR	BKG	BKG	7.6	525	Purged dry after 4 gallons.
MW-16s	7	NR	BKG	BKG	7.2	400	Note: PVC shavings floating in purge water.
MW-17b	32	0	BKG	BKG	7.6	200	
MW-17e	50	0.5	BKG	BKG	12.6	1,800	Some bentonite observed in purge water.
MW-18e		72	BKG	BKG	12.5	1,625	Poor recharge, purged dry 2 days.
FB					7.4	65	· ···· ·······························

"OVA readings are marked with an "*." Readings in the well were taken by placing probe in the well casing. Readings from the water were measured from the water in the bucket during purging of the well.

(

(

NM = Not measured

NR = Not recorded BKG = HNu or OVA reading background

GLT932/023.50

#### Table TM-7-3 SAMPLE MATRIX TABLE FOR GROUNDWATER SAMPLES

CH2M HILL	CRL	TRAFFIC	COLLE	CTION	a
SAMPLE NUMBER	SAMPLE NUMBER	REPORT NUMBER	DATE	TIME	LABORATORY
•••••	•••••	••••••			••••••
MW-82-03	88HV02501	EP 389	11/17/87	1135	Hazleton Laboratories
		MEK 995			Ensenco Corporation
MW-35-01	88HV02527	EQ 119	11/12/87	1525	Spectrix Corporation
		MER 617			Ensenco Corporation
					Spectrix & Calif. Water
					Centec Analytical Services
					Central Regional Laboratory
MW-3A-03	88HV02525	EQ 117	11/12/87	1425	Spectrix Corporation
		MER 615			Ensenco Corporation
					Spectrix & Calif. Water
MW-38-03	88HV02526	EQ 118	11/12/87	1125	Spectrix Corporation
		MER 616			Ensenco Corporation
MW-840-03	88HV02502	EP 390	11/18/87	1550	Hazleton Laboratories
		MEK 996			Ensenco Corporation
MW-5A-03	88HV02542	EQ 135	11/16/87	1506	Hazleton Laboratories
		MER 632			Ensenco Corporation
					Centec Analytical Services (4th)
					Central Regional Laboratory (5th)
MW- 5A-03	86HV02D42		11/16/87	1506	Centec Analytical Services (4th)
					Central Regional Laboratory (5th)
MW-58-01	88HV02543	EQ 137	11/16/87	1533	Hazieton Laboratories
		MER 634			Ensenco Corporation
					Spectrix & Southwest
					Centec Analytical Services
					Central Regional Laboratory
MW-5C-03	88HV02S06	EP 395	11/10/87	1615	spectrix corporation
		MEM 495			Ensenco Corporation
					Centec Analytical Services (4th)
					Central Regional Laboratory (5th)
MW-5E-01	88HV02544	EQ 136	11/16/87	1505	Hazleton Laboratories
-		MER 633			Ensenco Corporation
					Spectrix & Southwest

#### Table TM-7-3 SAMPLE MATRIX TABLE FOR CROUNDWATER SAMPLES

CH2M HILL	CRL	TRAFFIC	COLLE	CTION	a	
SAMPLE NUMBER	SAMPLE NUMBER	REPORT NUMBER	DATE	TIME	LABORATORY	
••••	••••			•••••	•••••	
MW-85-03	88HV02546	EQ 139	11/17/87	1135	Hazleton Laboratories	
		MER 636			Ensenco Corporation	
					Centec Analytical Services (4th)	
					Central Regional Laboratory (5th)	
MW-6A-03	88HV02512	EQ 215	11/11/67	1035	Spectrix Corporation	
		MER 600			Ensenco Corporation	
					Spectrix & Calif. Water	
					Centec Analytical Services	
					Central Regional Laboratory	
MW-6C-03	88HV02513	EQ 103	11/11/87	1020	Spectrix Corporation	
		MER 601			Ensenco Corporation	
					Spectrix & Calif. Water	
					Centec Analytical Services	
				·	Central Regional Laboratory	
MW-7A-03	88HV02503	EP 391	11/10/87	1515	Spectrix Corporation	
		MEK 997			Ensenco Corporation	
					Centec Analytical Services (4th)	
					Central Regional Laboratory (5th)	
MW-7A-03	88HV02D03	EP 392	11/10/87	1515	Spectrix Corporation	
		MEK 998			Ensenco Corporation	
MW-78-02	88HV02533	EQ 125	11/13/87	1125	Spectrix Corporation	
		MER 623			Ensenco Corporation	
					Centec Analytical Services (4th)	
					Central Regional Laboratory (5th)	
MW-7C-02	88HV02545	EQ 138	11/17/87	920	Hazieton Laboratories	
		MER 635			Ensenco Corporation	
					Spectrix & Southwest	
MW-75-01	88HV02504	EP 393	11/10/87	1500	Spectrix Corporation	
		MEK 999			Ensenco Corporation	
					Centec Analytical Services (4th)	
					Central Regional Laboratory (5th)	
MW-8A-03	88HV02505	EP 394	11/10/87	1110	Spectrix Corporation	
		MEM 494			Ensenco Corporation	
MW-88-01	88HV02508	EQ 211	11/10/87	1130	Spectrix Corporation	
		MEM 497			Ensenco Corporation	

.

5

# Table TM-7-3 SAMPLE MATRIX TABLE FOR CROUNDWATER SAMPLES

CH2M HILL	CRL TRAFFIC COLLECTION		CTION	a		
SAMPLE NUMBER	SAMPLE NUMBER	REPORT NUMBER	DATE	TIME	LABORATORY	
			·······			
MW-9A-02	88HV02522	EQ 115 MER 613	11/12/87	1040	Spectrix Corporation	
		MEK 013			Ensenco Corporation	
					Spectrix & Calif. Water	
MW-98-02	88HV02523	EQ 116	11/12/87	1100	Spectrix Corporation	
		MER 614			Ensenco Corporation	
				·	Spectrix & Calif. Water	
MW-10A-02	88HV02520	EQ 112	11/12/87	935	Spectrix Corporation	
		MER 610	117 127 97	733	Ensenco Corporation	
					Spectrix & Calif. Water	
WW-108-02	88HV02521	EQ 113	11/12/87	1015	Spectrix Corporation	
		MER 611			Ensenco Corporation	
					Spectrix & Calif. Water	
MW-11A-03	88HV02516	EQ 104	11/11/87	1130	Spectrix Corporation	
		MER 602		,,,,,,,	Ensenco Corporation	
					Spectrix & Calif. Water	
MW-12A-03	58HV02524	EQ 114	11/12/87	900	Spectrix Corporation	
		MER 612			Ensenco Corporation	
					Spectrix à Calif. Water	
MW-12A-03	88HV02D24	MER 604	11/12/87	900	Ensenco Corporation (2nd)	
MW-13A-03	88HV02510	EQ 215	11/11/87	1230	Spectrix Corporation	
		MEM 603			Ensence Corporation	
					Spectrix & Calif. Water	
MW-13A-03	88HV02D10	EQ 106	11/11/87	1230	Spectrix Corporation	
MW-138-01	88HV02511	EQ 109	11/11/87	1250	Spectrix Corporation	
		MER 607			Ensenco Corporation	
					Spectrix & Calif. Water	
					Centec Analytical Services	
					Central Regional Laboratory	
1111 - 1 3E - A 1		60.314	11/11/87		Spectrix Corporation	
MW-13E-01	88HV02514	EQ 214	11/11/87	1130	Spectrix Corporation Ensenco Corporation	
		MEM 500			Spectrix & Callf. Water	
•						
					Cented Analytical Services	
					Central Regional Laboratory	

~

#### Table TM-7-3 SAMPLE MATRIX TABLE FOR CROUNDWATER SAMPLES

CH2M HELL	CRL	TRAFFIC	COLLE	CTION	a		
SAMPLE NUMBER	SAMPLE NUMBER	REPORT NUMBER	DATE TIME		LABORATORY		
	••••••	•••••		•••••	•••••		
MW-14A-03	88HV02528	EQ 121	11/13/87	930	Spectrix Corporation		
		MER 619			Ensenco Corporation		
					Spectrix & Calif. Water		
					Centec Analytical Services		
					Central Regional Laboratory		
MW-148-03	88HV02529	EQ 122	11/16/87	1010	Hazleton Laboratories		
		MER 620			Ensenco Corporation		
					Centec Analytical Services		
					Central Regional Laboratory		
					Spectrix & Callf. Water .		
MW-14C-02	88HV02S30	EQ 120	11/12/87	1435	Spectrix Corporation		
		MER 618			Ensenco Corporation		
					Spectrix & Calif. Water		
MW-145-01	88HV02531	EQ 123	11/13/87	900	Spectrix Corporation		
		MER 621			Ensenco Corporation		
					Centec Analytical Services		
					Central Regional Laboratory		
					Spectrix à Calif. Water		
MW-15A-02	88HV02537	EQ 128	11/16/87	1055	Hazleton Laboratories		
		MER 626			Ensenco Corporation		
					Spectrix & Southwest		
					Centec Analytical Services		
					Central Regional Laboratory		
MW-15A-02	66HV02D37	EQ 132	11/16/87	1055	Hazleton Laboratories		
		MER 630			Ensenco Corporation		
MW-158-02	88HV02538	EQ 132	11/16/87	1450	Hazieton Laboratories		
		MER 630			Ensenco Corporation		
					Centec Analytical Services		
					Central Regional Laboratory		
					Spectrix & Southwest		
MW-16\$-01	88HV02517	EQ 108	11/11/ <b>87</b>	1522	Spectrix Corporation		
		MER 606			Ensenco Corporation		
					Spectrix a Calif. water		
₩₩-17B-01	68HV02518	EQ 110	11/11/87	1600	Spectrix Corporation		
		MER 608			Ensenco Corporation		
					Spectrix & Calif. Water		

Spectrix & Southwest

CH2M HILL	CRL	TRAFFIC	COLLE	CTION	a
SAMPLE NUMBER	SAMPLE NUMBER	REPORT NUMBER	DATE	TIME	LABORATORY
	·····				•••••••••••••••••••••••••••••••••••••••
WW-17E-01	88HV02519	EQ 111	11/12/87	920	Spectrix Corporation
		MER 609			Ensenco Corporation
					Spectrix à Calif. Water
MW-18E-01	88HV02\$36	EQ 127	11/16/87	900	Hazleton Laboratories
		MER 625			Ensenco Corporation
					Spectrix & Southwest
FB-01-01	86HV02507	EQ 210	11/10/87	1510	Spectrix Corporation
		MEM496			Ensenco Corporation
F8-02-01	86HV02515	EQ 213	11/11/ <b>87</b>	1015	Spectrix Corporation
		MEM 499			Ensenco Corporation
					Spectrix & Calif. Water
<b>BB-03-01</b>	88HV02535	EQ 134	11/16/87	1015	Spectrix (3rd)
FB-04-01	88HV02541	EQ 133	11/16/87	1410	Hazieton Laboratories
		MER 631			Ensenco Corporation

TABLE TM-7-3 SAMPLE MATRIX TABLE FOR CROUNDWATER SAMPLES

a + First laboratory listed for organic analysis
 Second laboratory listed for inorganic analysis
 Third laboratory listed for CODs, TOCs, TSSs and ALKS
 Fourth laboratory listed for oil a grease
 Fifth laboratory listed for Low Level VOCs and PAHs

# TECHNICAL MEMORANDUM NO. 7 Page 3 February 25, 1988 W68802.FQ

of more than 12. The samples taken for COD, TOC, and oil and grease analyses were preserved with  $H_2SO_4$  to a pH of less than 2.

Samples were also collected to measure pH and conductivity in the field (Table TM7-2). Temperature was not measured because of the length of time between sampling and actual measurement at the trailer.

The sampling equipment was cleaned between wells by scrubbing with a solution of trisodium phosphate and tap water, followed by a methanol rinse and a final triple rinse with distilled water. The bailers were laid on a clean plastic sheet to dry and then placed in a clean plastic bag for storage or transport to the next sampling location. The stainless steel wire was initially soaked in a solution of methanol and distilled water, and was rinsed three times with distilled water before use. A new length of wire was used at each sampling location.

Replicates were taken of groundwater samples from Wells MW-13a (organics), MW-12a (inorganics), MW-5a (SAS parameters), MW-15a (organics and inorganics), and MW-7a (organics and inorganics). Field blanks were collected by filling a decontaminated bailer used for sampling with distilled water and transferring the water to the sample containers. Bottle blanks for VOC analyses were taken by pouring HPLC grade water directly into the VOC vials.

# **RESIDENTIAL WELL SAMPLING**

#### SAMPLING LOCATIONS

Residential well samples were collected at 13 locations selected by the U.S. EPA (Figure TM7-2). After the are initially contacted by U.S. EPA, the residents are contacted again by the sampling team and the approximate time of sampling determined.

#### SAMPLING PROCEDURES

Samples from residential wells were taken as close to the wells as possible. Groundwater samples were taken from faucets or from the residential wells (see Table TM7-4), preferably upstream of any filters, water softeners, or other online water treatment systems. The wells were allowed to run for at least 10 minutes before sampling. Samples were collected directly into the sample jars.

Samples were collected by two teams. The sample jars were filled in the following order: VOCs with low detection limits, VOCs, semivolatile organic compounds, metals, cyanide, and mercury. The samples sent for analyses are listed in Table TM7-5.

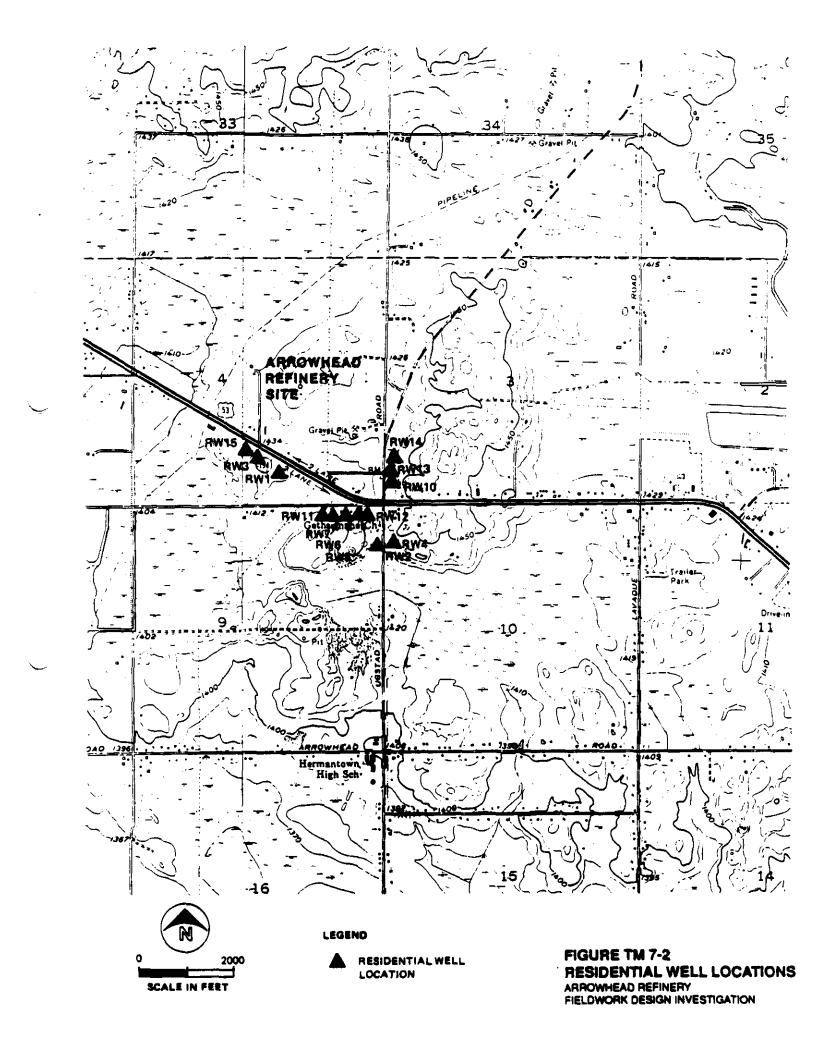
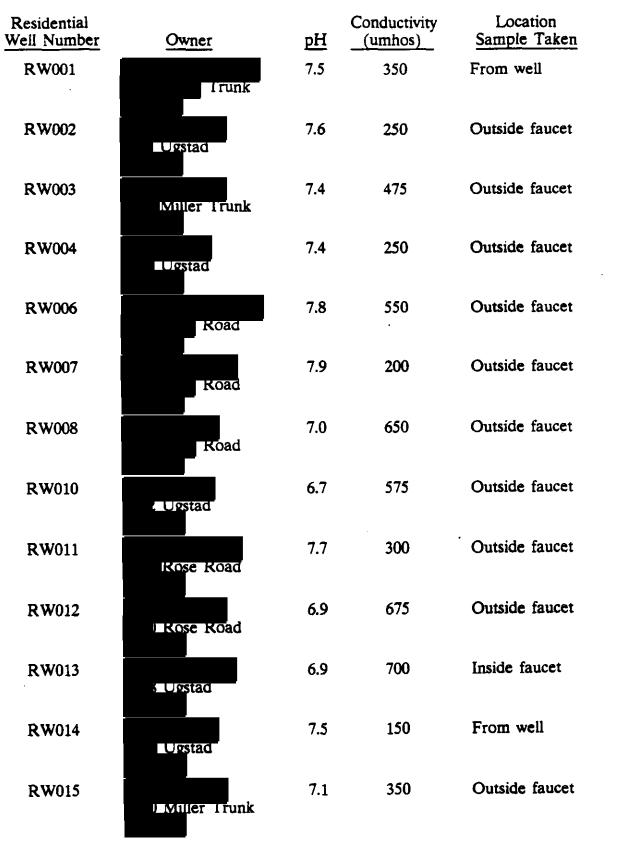




Table TM7-4 SUMMARY OF RESIDENTIAL WELL SAMPLING



GLT932/025.50

~----

•

.

#### TADIE TM-7-5 SAMPLE MATRIX TABLE FOR RESIDENTIAL WELL SAMPLES

CH2M HILL	ILL CRL TRAFFIC COLLECTION		CTION	a	
SAMPLE NUMBER	SAMPLE NUMBER	NUMBER	DATE	TIME	LABORATORY
••••••	• ••••••	•••••		••••••	••••••
RW-01-03	88HV02536	EQ 144	11/18/87	1034	Southwest Laboratory of OK Inc.
		MER 641			Associated Laboratories Inc.
					Southwest Laboratory of OK inc.
RW-02-03	68HV02558	EQ 153	11/18/87	1450	Southwest Laboratory of OK Inc.
		MER 650			Associated Laboratories inc.
			•		Southwest Laboratory of OK inc.
RW-03-03		50 100			continuent interactions of our sec
K#-03-03	88HV02559	EQ 150	11/18/87	1430	Southwest Laboratory of OK Inc.
		MER 647			Associated Laboratories Inc.
					Southwest Laboratory of OK inc.
RW-04-03	88HV02S51	EQ 151	11/18/87	932	Southwest Laboratory of OK inc.
Ku-04-03	00002301	MER 6428	117 107 07	732	Associated Laboratories Inc.
					Southwest Laboratory of OK Inc.
RW-06-03	88HV02553	EQ 149	11/18/87	930	Southwest Laboratory of OK Inc.
		MER 646			Associated Laboratories inc.
					Southwest Laboratory of OK inc.
RW-07-03	88HV02555	EQ 143	11/18/87	1010	Southwest Laboratory of OK Inc.
		MER 640			Associated Laboratories Inc.
					southwest Laboratory of OK inc.
RW-08-03	88HV02550	EQ 142	11/18/87	845	Southwest Laboratory of OK Inc.
		MER 639		•••	Associated Laboratories Inc.
					southwest Laboratory of OK inc.
RW- 10+03	88HV02\$47	50.140	11/17/87	1355	Southwest Laboratory of OK Inc.
KH-10-03	001102341	EQ 140 MER 637		1333	Associated Laboratories Inc.
		MER UJ/			Southwest Laboratory of OK Inc.
RW+11-03	88HV02554	EQ 141	11/18/87	950	Southwest Laboratory of OK Inc.
		MER 638			Associated Laboratories Inc.
					Southwest Laboratory of OK inc.
RW-12-03	88HV02549	EQ 145	11/18/87	820	Southwest Laboratory of OK Inc.
		MER 642			Associated Laboratories Inc.
					Southwest Laboratory of OK Inc.
RW-13-03	88HV02552	EQ 152	11/18/87	910	Southwest Laboratory of OK Inc.
		MER 649		- • •	Associated Laboratories Inc.
					Southwest Laboratory of OK Inc.

#### Table TM-7-5 SAMPLE MATRIX TABLE FOR RESIDENTIAL WELL SAMPLES

CH2M HILL	CRL	TRAFFIC	COLLECTION		a	
SAMPLE NUMBER	SAMPLE NUMBER	NUMBER	DATE	TIME	LABORATORY	
RW-14-03	88HV02557	EQ 146	11/18/87	1320	Southwest Laboratory of OK inc.	
		MER 643			Associated Laboratories Inc.	
					Southwest Laboratory of OK inc.	
RW-15-03	88HV02560	EQ 148	11/18/87	1632	Southwest Laboratory of OK Inc.	
		MER 645			Associated Láboratories inc.	
					Southwest Laboratory of OK inc.	
F8-05-01	88HV02548	EQ 147	11/18/87	835	Southwest Laboratory of OK inc.	
		MER 644			Associated Laboratories inc.	
					Southwest Laboratory of OK Inc.	

a + First laboratory listed for organic analysis
 Second laboratory listed for inorganic analysis
 Third laboratory listed for Low Level PAHs and VOCs

# TECHNICAL MEMORANDUM NO. 7 Page 4 February 25, 1988 W68802.FQ

Samples analyzed for metals were filtered and preserved with  $HNO_3$  to a pH of less than 2. Samples to be analyzed for cyanide were preserved with NaOH to a pH of more than 12. Samples to be tested for mercury were preserved with 20 ml of a 25 percent  $HNO_3$  and 2.5 percent  $K_2Cr_2O_7$  solution.

Samples were also collected to measure pH and conductivity in the field (see Table TM7-4). Temperature was not measured because the length of time between the sampling and actual measurement at the trailer.

Field blanks were collected by pouring distilled water directly into the sample containers.

GLT932/024.51

# CHAMHILL

# **TECHNICAL MEMORANDUM NO. 8**

- TO: Fred Bartman/U.S. EPA Remedial Project Manager
- FROM: Randy Videkovich/CH2M HILL Project Manager

# PREPARED

BY: Daniel J. Plomb/CH2M HILL

**DATE:** March 2, 1988

- **RE:** Variable Head Testing
- PROJECT: Arrowhead Refinery Fieldwork Design Investigation W68802.FI

# INTRODUCTION

Aquifer tests were conducted at the Arrowhead Refinery site between December 14 and 17, 1987. In situ hydraulic conductivities of soil near groundwater monitoring wells and piezometers were measured using variable head (slug) tests. Testing included wells and piezometers installed for the Fieldwork Design Investigation and selected wells from earlier phases. The locations of the wells and piezometers tested are shown in Figure TM8-1. This memorandum describes test methods, data evaluation procedures, test results, and data limitations.

#### VARIABLE HEAD TESTING

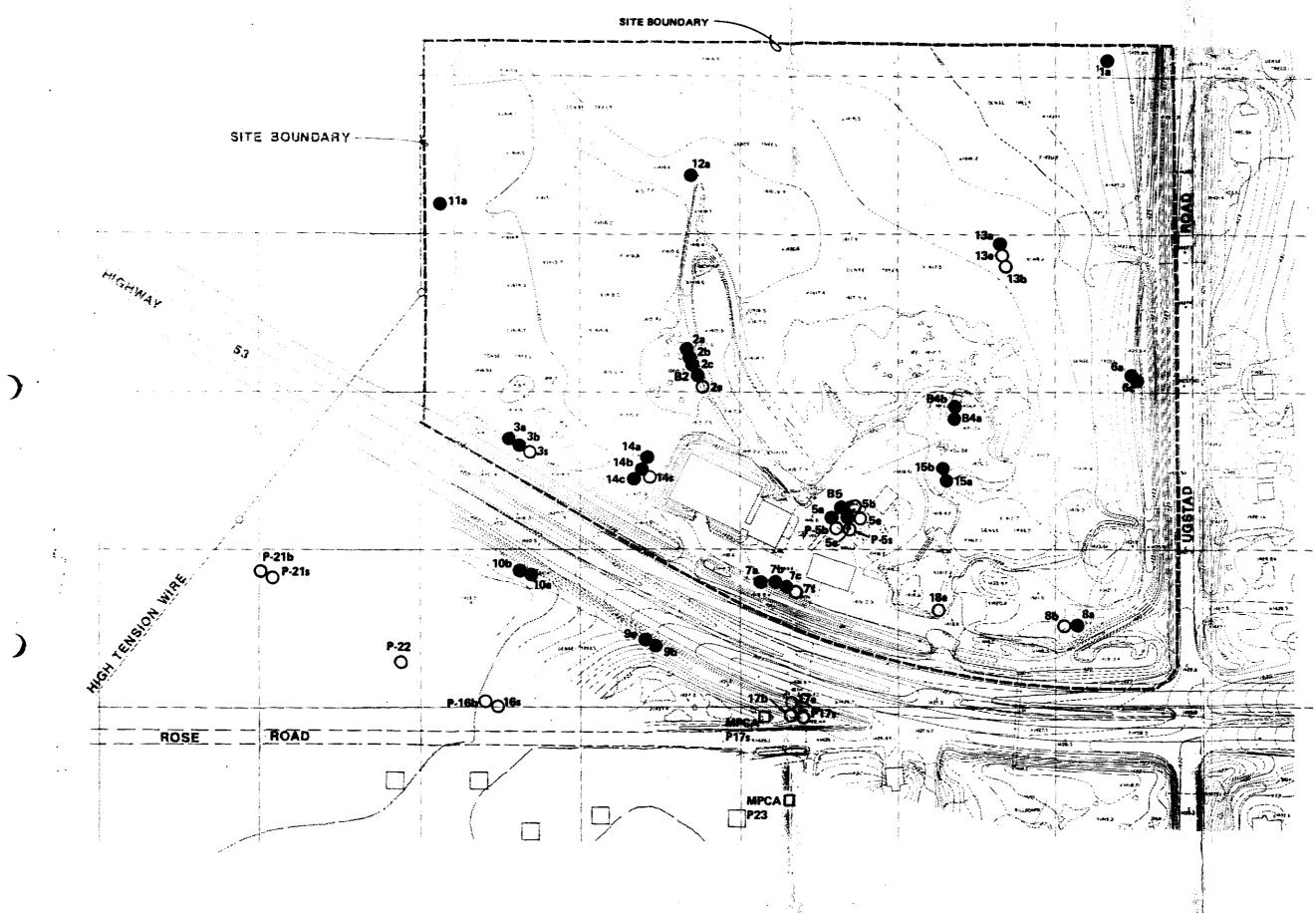
Variable head (slug) tests are single well tests performed to estimate hydraulic conductivity in the vicinity of a well screen by the addition or removal of a known volume of water. The rate at which the water level in the well recovers is measured and used to estimate hydraulic conductivity.

The tests conducted at the Arrowhead Refinery site were "rising" head tests. A known volume of water was displaced from the well to lower the water level. Data were collected while water levels rose during well recovery. Tests were performed by Dan Plomb, Jewelle Imada, and Jeff Keiser of CH2M HILL.

Two methods were used to remove water from wells. The preferred method, using a nitrogen slug, consisted of displacing water from the well with nitrogen gas. The method is preferred because contact between potentially contaminated well water and test equipment and personnel is minimized. The method also reduces the possibility of cross-contamination of well water when test equipment is moved between several

# TECHNICAL MEMORANDUM NO. 8 Page 2 April 14, 1988 W68802.FI

different wells. Use of the nitrogen slug method is limited to wells in which a sufficient volume of water can be displaced from the riser piping without lowering the water level below the top of the well screen. Because nitrogen gas would leak through the screen, it is not physically possible to use this method when the water level goes below the top of the screen. The alternative method, using a PVC slug to displace well water, was used when the screened interval was close to or straddled the water table, or when the location of the well prevented the use of the nitrogen slug method. This method was used at monitoring Wells MW-8b and Piezometers P-21s, P-21b, and P-22s.


The tests performed were evaluated using Hvorslev's method (Cedergren, pp. 66-76; originally presented in U.S. Department of the Army, Corps of Engineers, 1951). The following sections describe the test and data reduction methods used at the Arrowhead Refinery site.

# NITROGEN SLUG METHOD

The test assembly used to displace well water using nitrogen gas is shown in Figure TM8-2. A well head assembly was attached to the top of the riser pipe. A gastight seal between the assembly and riser pipe was obtained with an expandable rubber fitting at the base of the assembly. The well head assembly contains gastight ports for connecting two pressure transducers, a fitting for attaching a pressure regulator, and a vent valve.

The pressure transducers are connected to a data logger. Transducer No. 1 measures total head, which is the sum of the elevation head and pressure head above the transducer. Transducer No. 2 measures the pressure head resulting from the nitrogen gas. In addition to recording head values at discrete time intervals for later analysis, the data logger is programmed to calculate hydraulic conductivity directly in the field using simplifying assumptions regarding aquifer geometry. Therefore, a quick field check on the validity of the data is possible prior to disassembling the equipment.

After the initial water level is noted (prior to pressurizing the system) a column of nitrogen is then placed in the riser pipe. Because the units of the data logger readout are measured in feet of water, the equivalent water height due to the nitrogen pressure head is read directly from transducer No. 2. The amount of pressure head placed in the well is such that water will be displaced at least 3 to 5 feet, but not below the top of the screen. Pressure is controlled by regulators in the nitrogen supply line. The pressure head forces water from the riser casing into the surrounding soil. As the water level in the well decreases under a constant pressure head, the total head (transducer No. 1) decreases. Eventually, total head will return to the initial head value (initial water level), except that now the total head above transducer No. 1 includes the pressure component from the nitrogen gas. At this point the test is started by opening the vent valve to remove the pressure head by depressurizing the system and by starting the data logger. In effect, this is equivalent





LEGEND



0

EXISTING WELLS

NEW WELLS (PREFIX P DENOTES PIEZOMETER)

#### NOTE:

Suffix a, b, c, d, e and s designate different monitoring wells within a well nest.

- and s = Shallow wells usually less than 15 ft.
  - b = Usually between 20 and 30 ft.
  - c = Wells in the lower till, between 35 and 40 ft.
  - Shallow bedrock wells,
     estimated depths of 50 or
     60 ft.

FIGURE TM 8-1 WELL LOCATIONS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATIONS

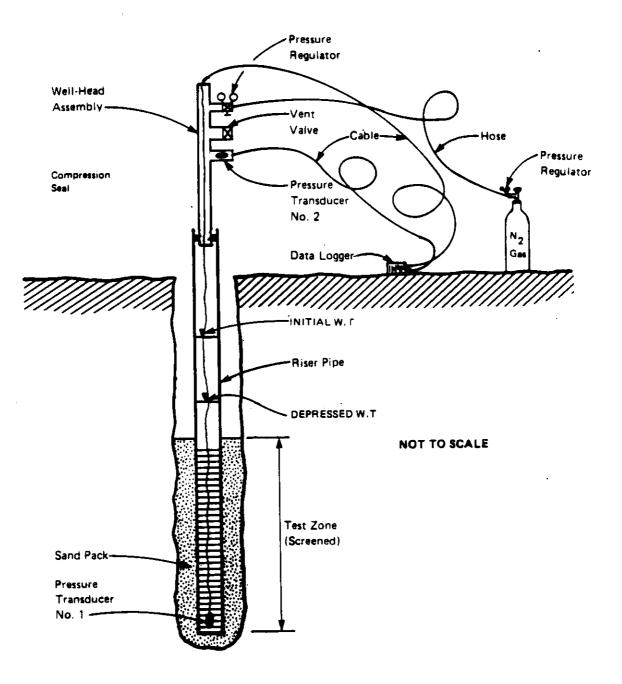



FIGURE TM 8-2 SCHEMATIC DIAGRAM OF SLUG TEST ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION to instantaneously removing a column of water equal to the volume of water displaced by the gas. Water levels are then recorded with time as they recover.

# **PVC SLUG METHOD**

In theory, the PVC slug method is identical to the nitrogen slug method, except that a PVC slug rather than nitrogen gas is inserted in the well to displace the water. The solid PVC slug is inserted into the well, and the water level is allowed to equilibrate. Once the water level has equilibrated, the slug is quickly removed and water level recovery is measured manually over time. This procedure was used only at one well and three piezometers, all of which exhibited slow recovery.

# DATA EVALUATION

A complete discussion of the method and definition of terms is presented by Cedergren. Hydraulic conductivities for each test were calculated using a spreadsheet developed by Jonathan Freese, CH2M HILL, for use on Symphony. The equation used to calculate hydraulic conductivity is:

ſ

$$K = \frac{r^2 \ln (L/R)}{2 L T_o}$$

where:

K = hydraulic conductivity

$$r = well radius$$

- R = borehole radius
- L = screen length
- $T_o =$  basic time lag, determined graphically as the time at which relative recovery is equal to 0.37, or the  $ln((H-h)/(H-H_o)) = -1$  in which  $H_o$  is the initial water level.

#### RESULTS

Test results are summarized in Table TM8-1 and data plots are included in Attachment A. Testing at MW-3s produced erratic data without due explanation, while elsewhere data appeared relatively sound as seen by the low standard deviations. Hydraulic conductivities observed during this phase of testing ranged from  $3.53 \times 10^{-2}$  to  $4.01 \times 10^{-5}$  cm/s. Raw data and data reduction notes are stored in the Arrowhead Refinery site files at CH2M HILL, Milwaukee office.

# Table TM8-1 SUMMARY OF SLUG TEST RESULTS

-----

.

***	- <u>_</u>		
Well Number	Test 1	Test 2	Logarithmic Average
MW-3s		DATA NOT VALID	
MW-5a	3.09 x 10 ⁻⁴	3.65 x 10 ⁻⁴	3.36 x 10 ⁻⁴
MW-5b	3.53 x 10 ⁻²	3.52 x 10 ⁻²	3.53 x 10 ⁻²
MW-5e	7.45 x 10 ⁻⁵	8.35 x 10 ⁻⁵	7.89 x 10 ⁻⁵
MW-5s	2.18 x 10 ⁻⁴	5.97 x 10 ⁻⁵	1.14 x 10 ⁻⁴
Р-5Ъ	3.16 x 10 ⁻⁴	3.09 x 10 ⁻⁴	3.12 x 10 ⁻⁴
MW-7a	5.50 x 10 ⁻⁴	3.98 x 10 ⁻⁴	4.68 x 10 ⁻⁴
MW-7b	1.69 x 10 ⁻⁴	5.01 x 10 ⁻⁴	<b>2.91 x</b> 10 ⁻⁴
MW-7s	5.99 x 10 ⁻⁴	7.29 x 10 ⁻⁴	6.61 x 10 ⁻⁴
MW-8b	1.36 x 10 ⁻⁴	1.19 x 10 ⁻⁴	1.27 x 10 ⁻⁴
<b>MW-</b> 14a	1.07 x 10 ⁻⁴	1.39 x 10 ⁻⁴	1.22 x 10 ⁻⁴
MW-14s	3.55 x 10 ⁻⁴	2.62 x 10 ⁻⁴	3.05 x 10 ⁻⁴
MW-16s	3.17 x 10 ⁻⁵	5.08 x 10 ⁻⁵	4.01 x 10 ⁻⁵
MW-16b	9.54 x 10 ⁻⁴	8.50 x 10 ⁻⁴	9.01 x 10 ⁻⁴
<b>MW-</b> 17s	1.68 x 10 ⁻²	1.88 x 10 ⁻²	1.77 x 10 ⁻²
<b>MW-17</b> b	1.78 x 10 ⁻⁴	2.31 x 10 ⁻³	<b>2.03 x</b> 10 ⁻⁴
P-21s	6.83 x 10 ⁻⁵	9.79 x 10 ⁻⁵	8.18 x 10 ⁻⁵
P-21b	8.92 x 10 ⁻⁵	1.11 x 10 ⁻⁴	9.97 x 10 ⁻⁵
P-22s	2.89 x 10 ⁻⁴	3.03 x 10 ⁻⁴	2.96 x 10 ⁻⁴

GLT932/026.50

# TECHNICAL MEMORANDUM NO. 8 Page 4 April 14, 1988 W68802.FI

# **DATA LIMITATIONS**

The following assumptions are inherent in the theoretical development of Hvorslev's method for analyzing slug test data:

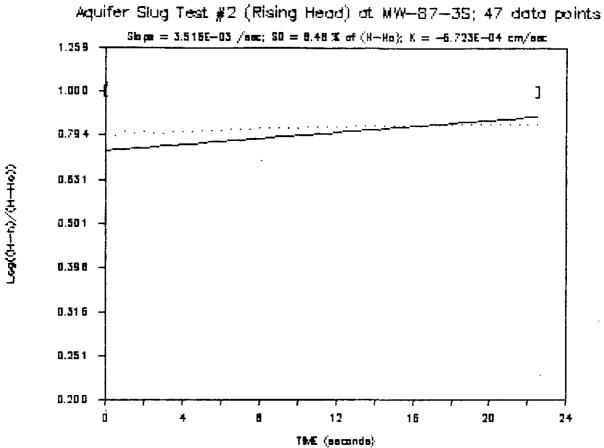
- o Drawdown of the water table around the well is negligible
- o Flow in the unsaturated zone can be ignored
- o Well losses are negligible
- o The aquifer is homogeneous and isotropic

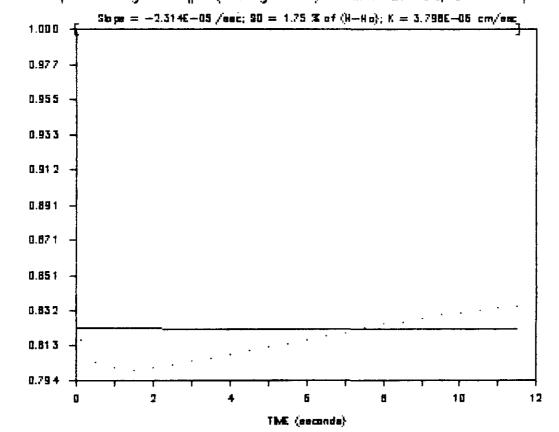
The first three assumptions are probably satisfied at the Arrowhead Refinery site, but the shallow aquifer is neither homogeneous nor isotropic. The data, however, do provide averages of the hydraulic conductivities for the aquifer material near the tested well or piezometer. By comparing the values of hydraulic conductivity obtained, the vertical and horizontal variability of the aquifer is demonstrated.

#### REFERENCES

ſ

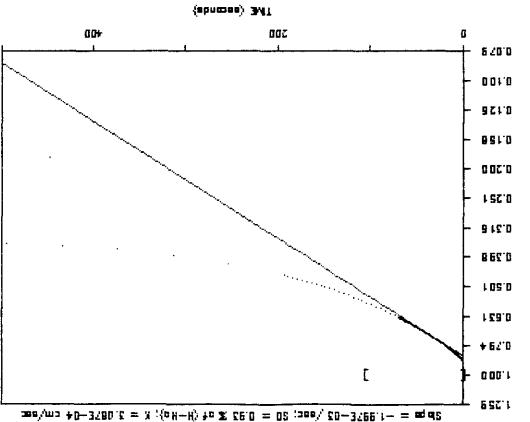
Cedergren, Harry R. Seepage, Drainage and Flow Nets. New York: John Wiley & Sons, Inc. 1977.

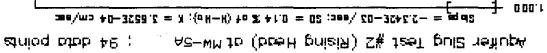

U.S. Department of the Army, Corps of Engineers. *Time Lag and Soil Permeability in Ground-Water Observations*. Bulletin No. 36. Waterways Experiment Station. Vicksburg, Mississippi. 1951. (Written by M. Jull Hvorslev.)

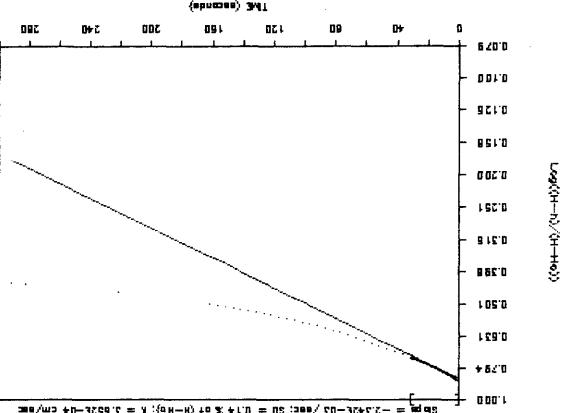

GLT932/027.51

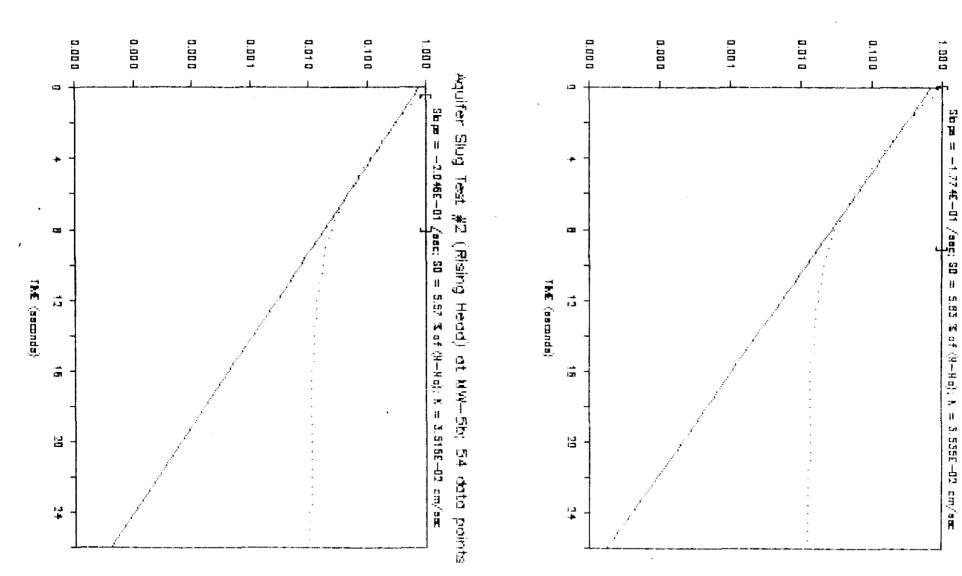
# TM 8--VARIABLE HEAD TESTING

Attachment A DATA PLOTS


GLT932/007.50-7



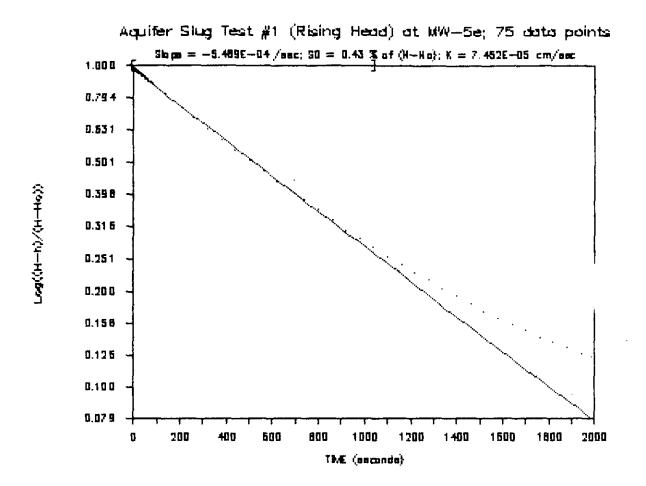



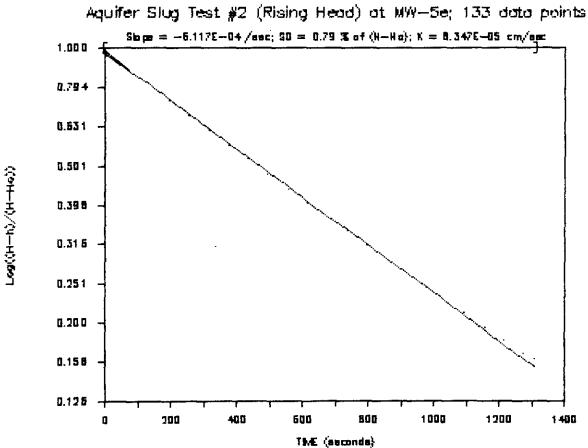


Aquifer Slug Test #3 (Rising Head) at MW-87-3s; 25 data points

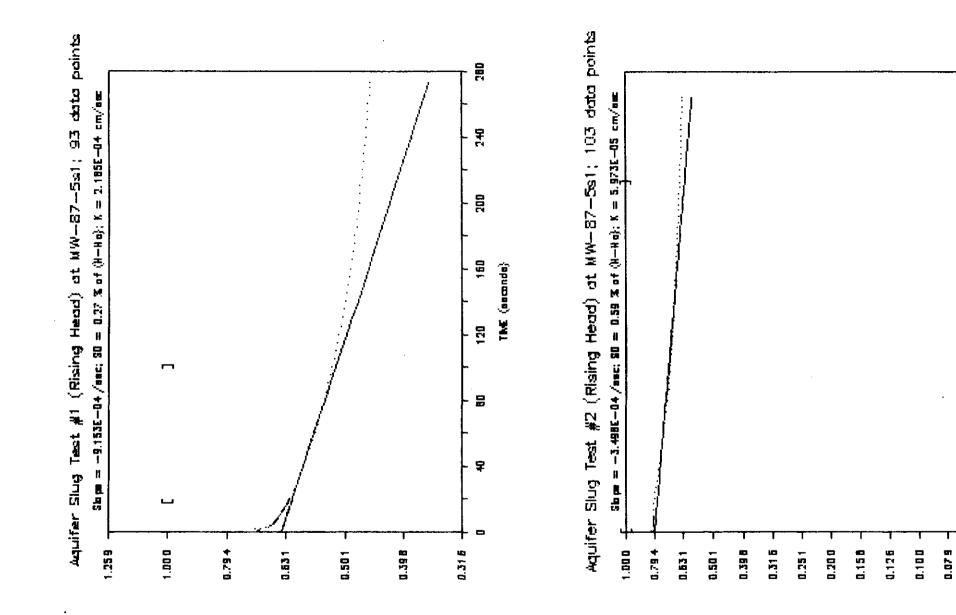
((oH-H)/(H-H0))









Log((H--h)/(H-+Ho))

Log((H--h)/(H-Ho))

Aquifer Slug Test #3 (Rising Head) at WW-5b; 54 data points





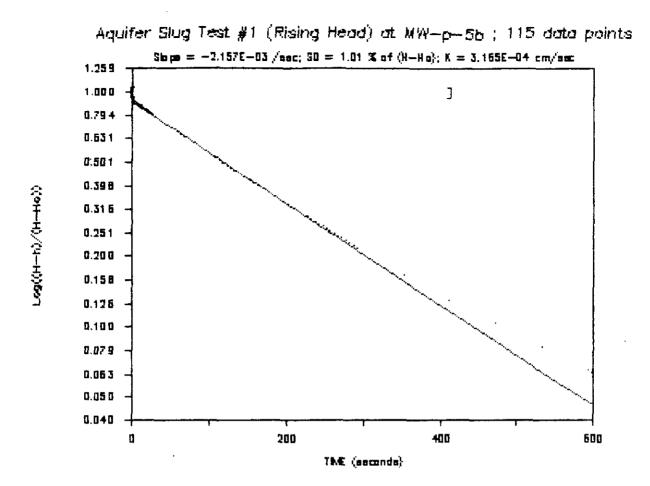


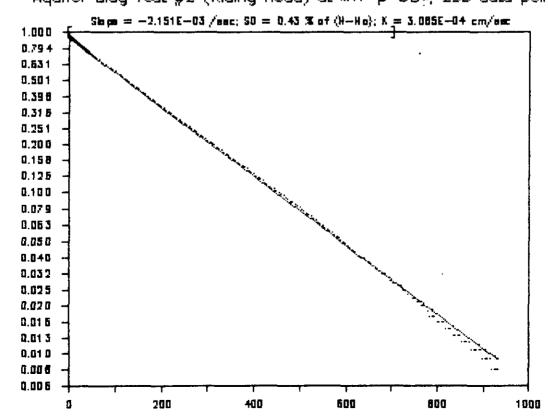
((oH--H)/(u--H))**6**%)

((9H--H)/(4--H))**5**97.

)

₽

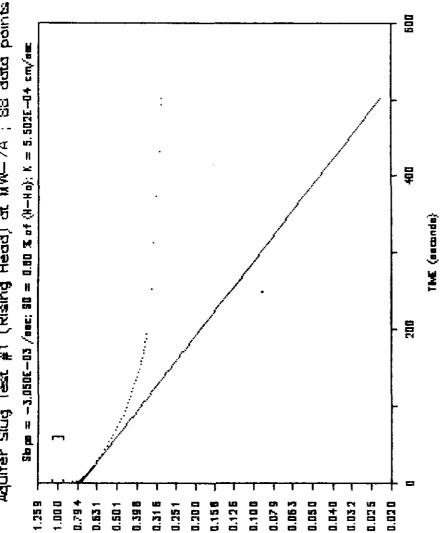

300


The (seconds)

200

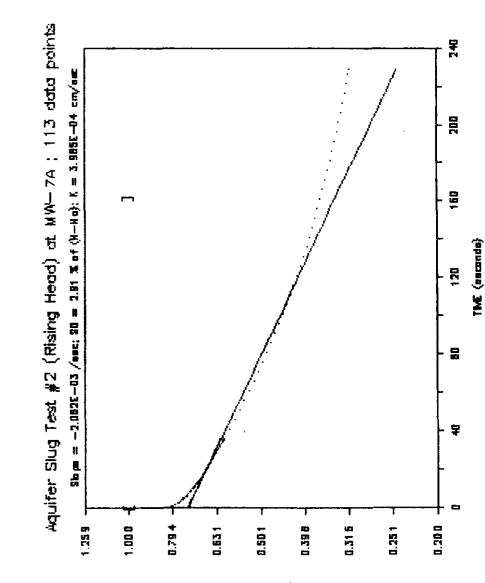
10

0.063

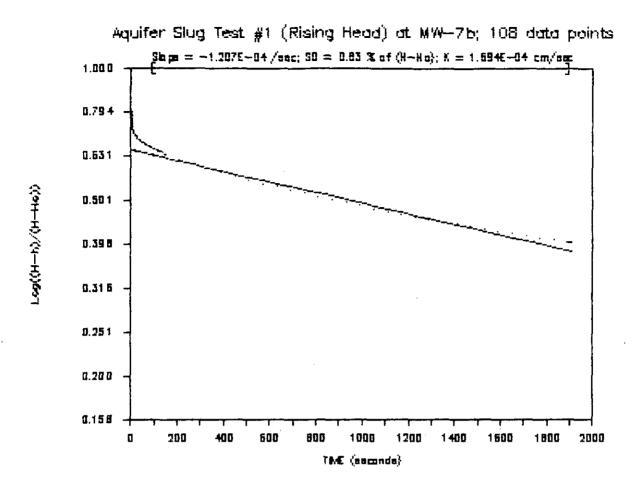


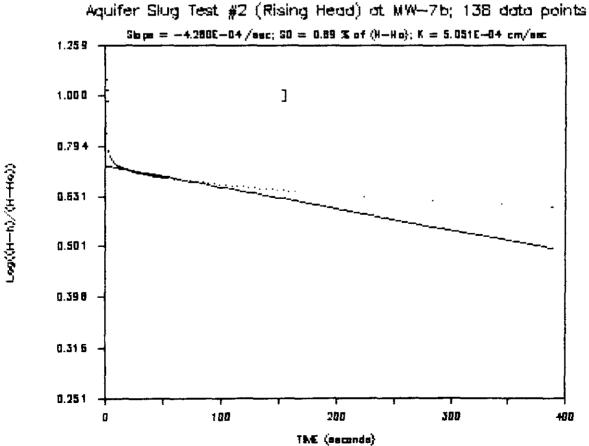


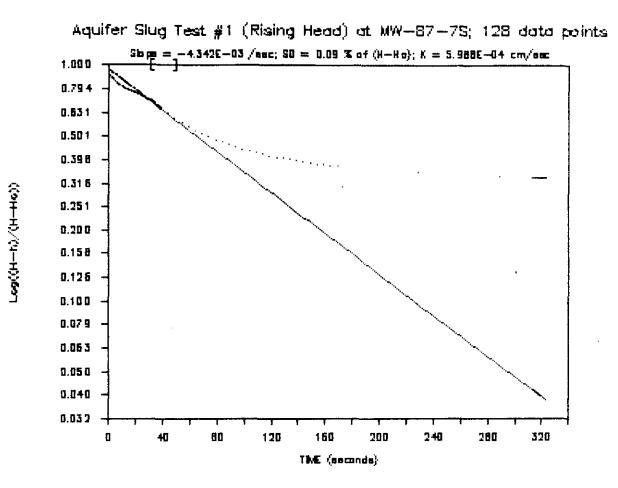

TME (eaconde)

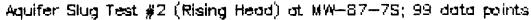

Aquifer Slug Test #2 (Rising Head) at MW-p-5b :; 295 data points

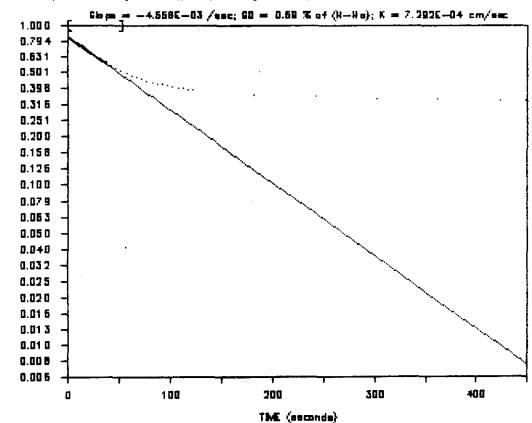
Log((H--h)/(H--Ho))



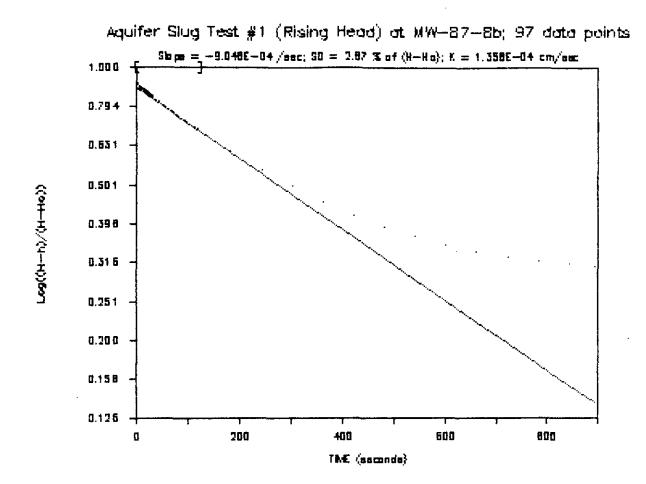



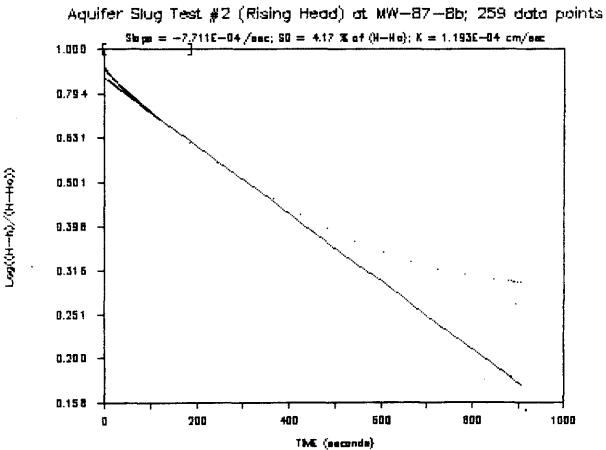


((oH-H)/(u-H))6oT

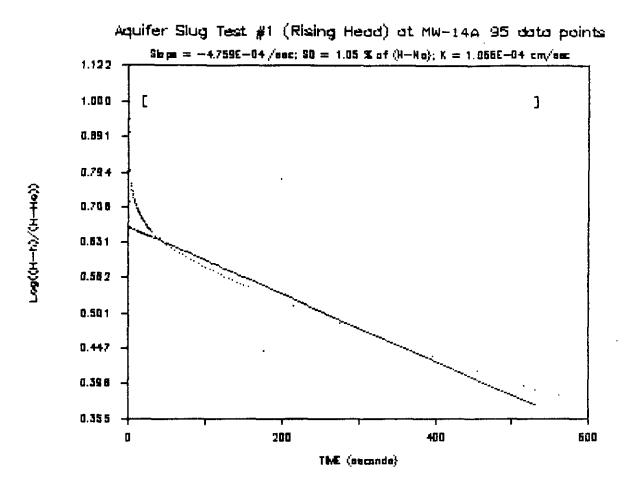


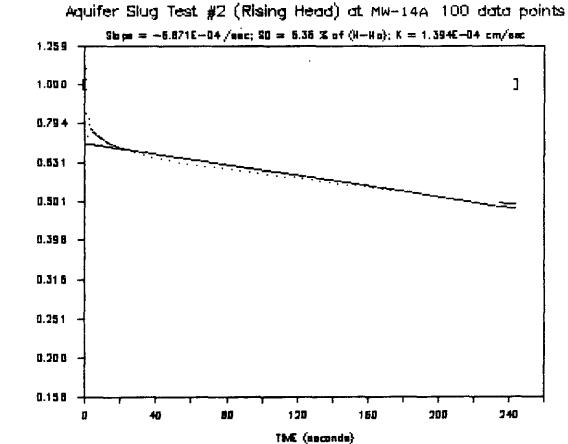


((oH-H)/(u-H))6on



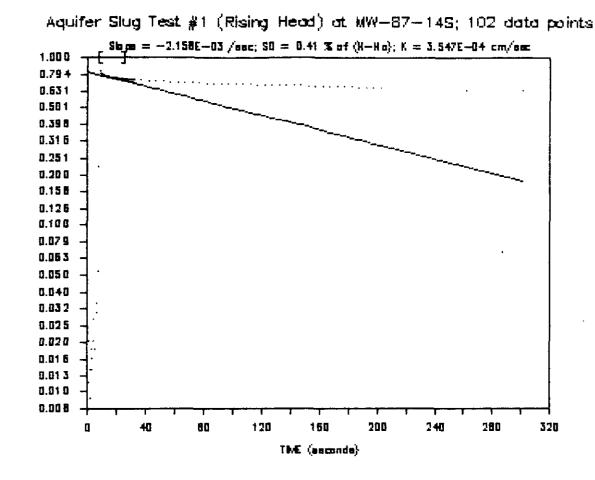


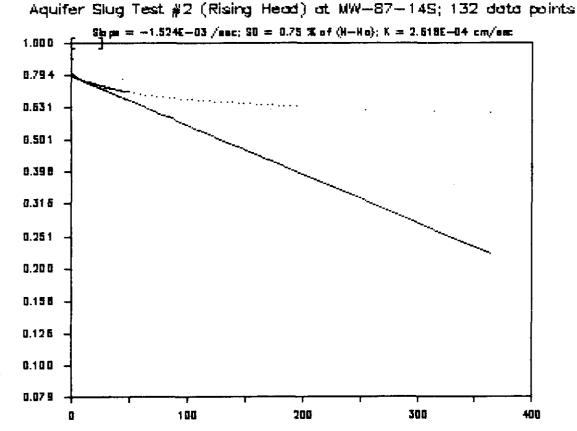




((oH-H)/(H-H0))

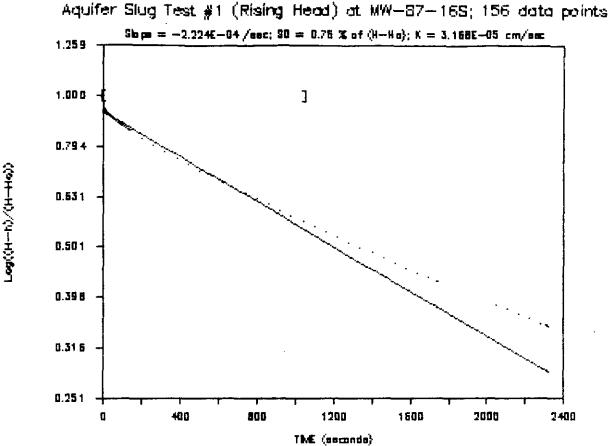


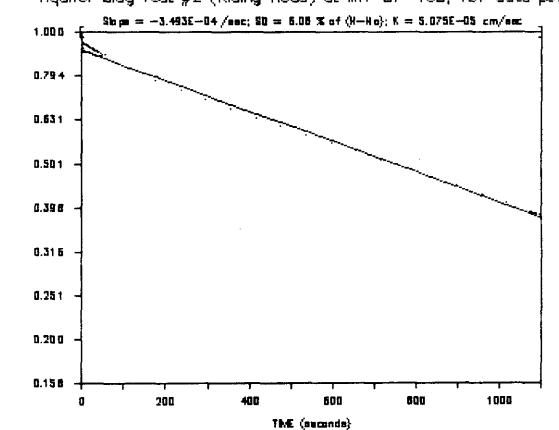







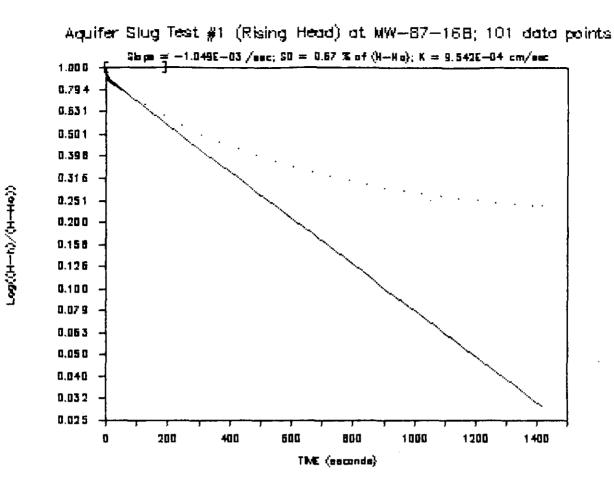

Log((H-h)/(H-Ho))

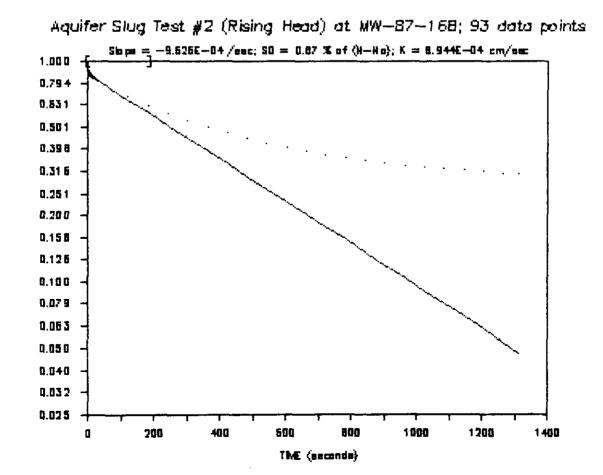


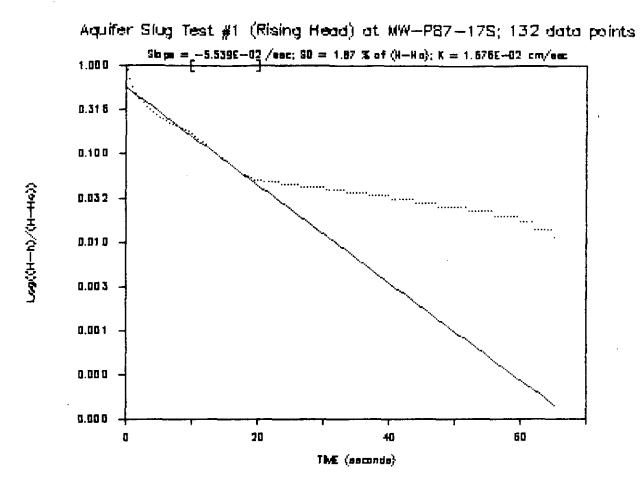

((oH-H)/(H-H0))

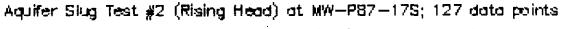
((oH-H)/(H-H0))

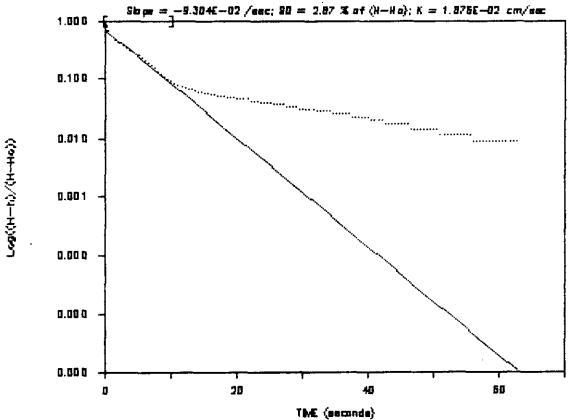

TME (seconds)

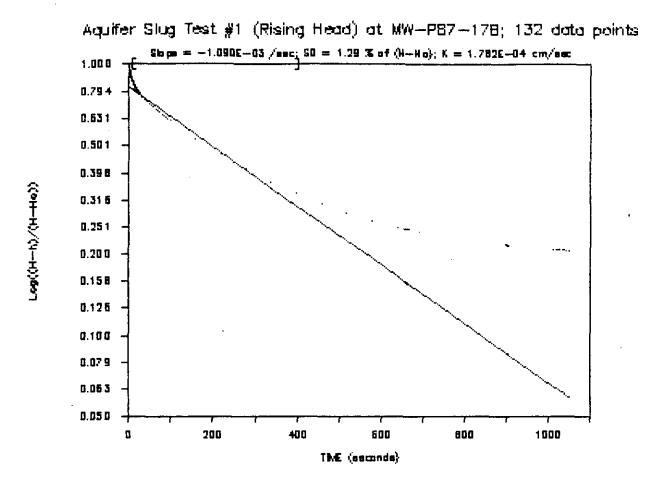


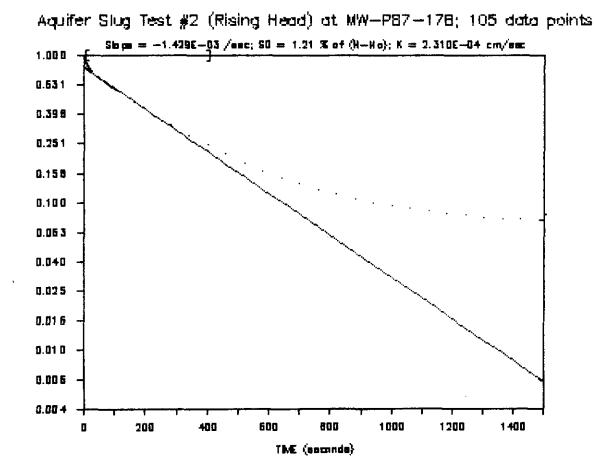




Aquifer Slug Test #2 (Rising Head) at MW-87-16S; 137 data points

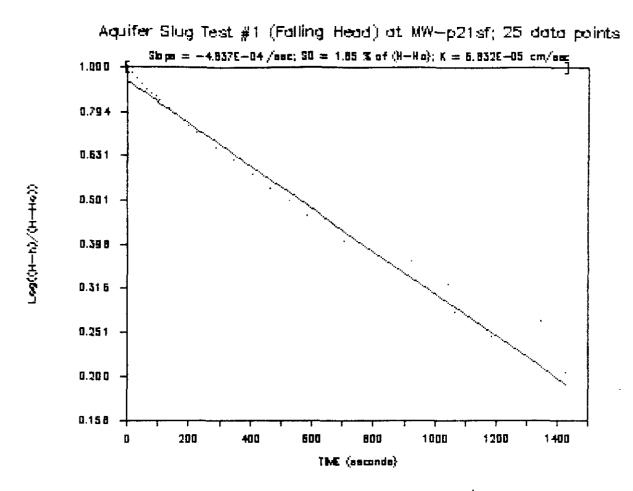

((oH-H)/(U-H))6o1

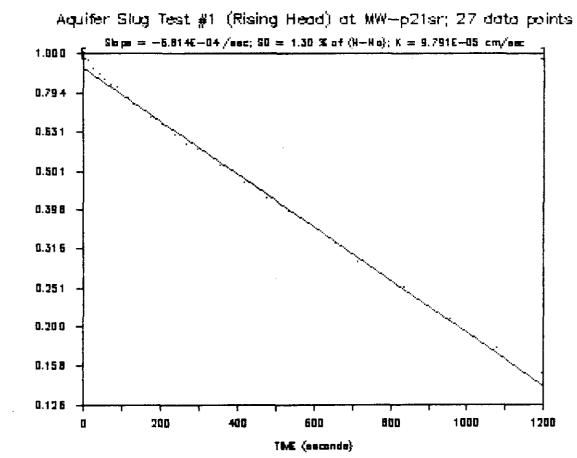


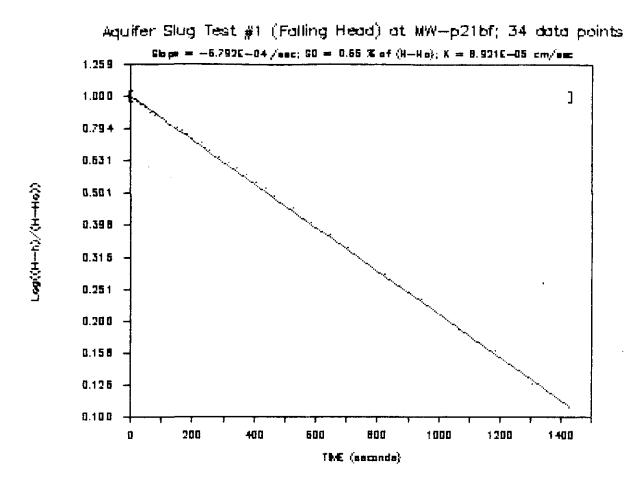


((9H-H)/(H-H))691

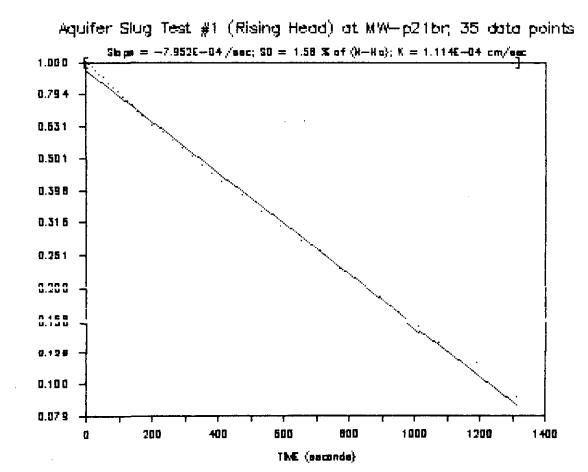




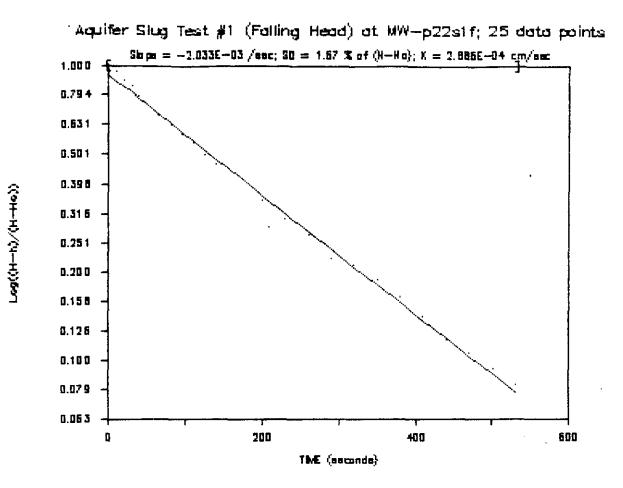



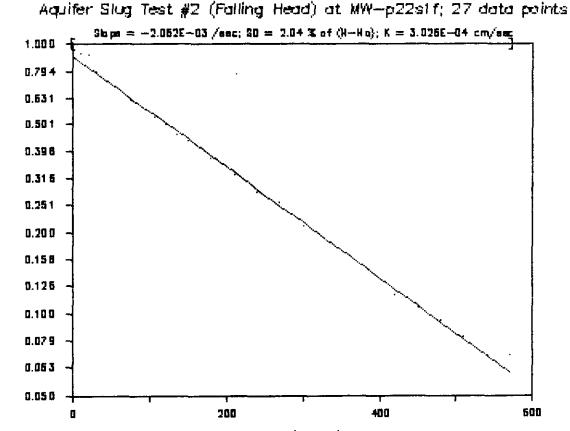




((oH-H)/(H-H0))







((oH-H)/(U-H))6o1





((он−н)/(н−н))6э1





((oH-H)/(H-H))@01

TIME (seconds)

# CHAMHILL

### **TECHNICAL MEMORANDUM NO. 9**

TO:	Fred Bartman/U.S. EPA
FROM:	Randy Videkovich/CH2M HILL
PREPARED BY:	Barbara Grundl/CH2M HILL
DATE:	May 16, 1988
RE:	Pump Test Issue in Process Area
PROJECT:	Arrowhead Refinery Fieldwork Design Investigation GLO68802.R8

The Record of Decision (ROD) issued on September 30, 1986, specified the groundwater remedial response including:

- A system of parallel drains to remove contaminated groundwater from the fill and peat
- A line of 12 wells along the southern boundary of the site to prevent contaminated groundwater from the deeper sediment to leave the site
- o Four additional wells in the process area where contaminated soil is excavated

The ROD also required that additional design investigations be conducted to refine the groundwater remedy. Pump tests were recommended by the U.S. EPA and the MPCA to better define the parameters influencing the design of the groundwater extraction system. The pump tests were to be performed in the process area to characterize flow in and yield from the deeper layers. This information would be used to optimize the extraction well system proposed for this area. The data would be in addition to the hydraulic conductivities obtained from in situ slug testing from August 16 to 23, 1987. In January 1988, CH2M HILL suggested that pump testing be postponed until additional characterization of the chemical quality of the soil, sediment, and groundwater was available. Potential negative impacts of pump testing efforts could then be assessed and the usefulness and feasibility could be determined. The agencies agreed to this approach.

From October 26 to November 18, 1987, additional chemical data were collected for soil, sediment, and groundwater as part of Step I of the Fieldwork Design Investigation. The results of the surface/subsurface soil, sediment, and groundwater sampling in the process area near Well Nest 5 showed that most of the chemical constituents were present in the groundwater and were VOCs. The most prevalent VOCs were vinyl chloride  $(1,100 \ \mu g/l)$ , trans-1,2-dichloroethene  $(270 \ \mu g/l)$ ,

1,1,1 trichloroethane (340  $\mu$ g/l), toluene (340  $\mu$ g/l), ethylbenzene (391  $\mu$ g/l), and total xylenes (240  $\mu$ g/l). They were found in samples from wells screened in the fill and peat layers close to the surface. Results from samples collected from deeper intervals were below CLP contract required detection limits for the same compounds. Thus, contaminants found in the groundwater are limited to the fill and peat layers.

Obtaining information through a pump test about the flow characteristics of the morainal deposit (about 1,382 to 1,410 feet above mean sea level) could cause a negative impact on the quality of the groundwater. The VOCs (solvents and benzene, toluene, and xylenes) have not migrated vertically beyond the fill and peat layer, but pump testing would provide a pathway for the contaminants to migrate vertically to deeper layers. Therefore, pump testing should not be performed in this water bearing unit.

An evaluation of groundwater extraction wells performed during the Feasibility Study (FS) indicated that the production capabilities of the fill and peat are not significant enough to justify the installation of an extraction well in this water bearing unit. The extraction method proposed in the FS for the removal of contaminated groundwater from the shallow units was a system of parallel drains. Thus, it is recommended that no pump testing in the process area be performed.

GLT932/028.51

# CHAMHILL

### **TECHNICAL MEMORANDUM NO. 10**

TO:	Fred Bartman/U.S. EPA Remedial Project Manager
FROM:	Randy Videkovich/CH2M HILL Project Manager
PREPARED BY:	John Gannon/CH2M HILL
DATE:	May 11, 1988
RE:	Groundwater Sampling (Step II)
PROJECT:	Arrowhead Refinery Fieldwork Design Investigation GLO68802.FQ

### INTRODUCTION

Groundwater samples were collected during Step II of the Fieldwork Design Investigation between May 2 and 10, 1988. This memorandum describes the sampling procedures, field observations and measurements, and sample matrix tables for the samples collected.

### PERSONNEL

The sampling team consisted of:

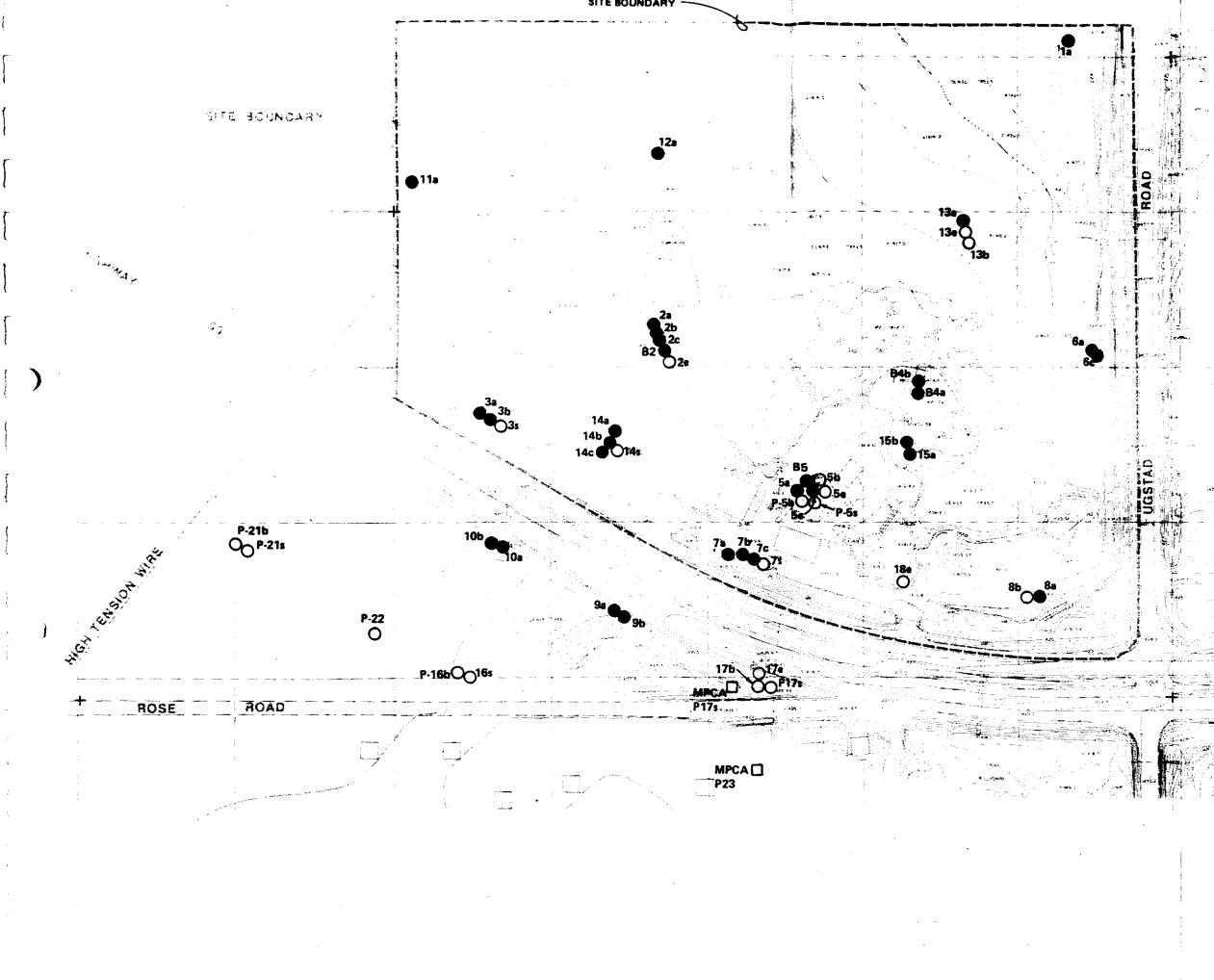
- o Jewelle Imada, CH2M HILL
- o Jeff Keiser, CH2M HILL
- o John Gannon, CH2M HILL
- o Joanne Holzheimer, EWA
- o Kim Paulisch, EWA
- o Alan Esko, Engineers International
- o Cathy Kantowski, Engineers International

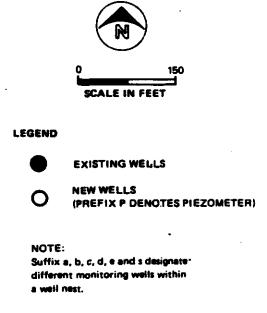
Not all personnel were present at the site for the entire sampling effort. The sampling team maintained sample custody. The CLP paperwork was completed by Cathy Kantowski.

### SAMPLING LOCATIONS

Samples were collected from 40 monitoring wells (Figure TM10-1). Monitoring wells B4a and B5 were not sampled because of consistently high levels of contamination detected in earlier sampling rounds. A groundwater sample was not collected from MW-18e because of visible bentonite contamination.

### SAMPLING PROCEDURES


Water levels and well depths were measured before the wells were purged to calculate the purge volume for the well. Water levels were measured on April 28 before the sampling began. The water level readings were approximately the same as those taken during the Step I sampling, so the purge volumes remained the same (Table TM10-1).


The Sampling Plan required that the wells be purged of five well volumes immediately before sampling. Slow recharge of many of the wells often made purging difficult. Wells MW-3s and MW-7b were purged dry before five well volumes had been collected and were allowed to recover to complete purging and sampling. All of the wells were purged of five well volumes except Wells MW-2e, B4b, MW-14b, and MW-15b, which were purged dry twice and sampled upon recovery because of poor recharge. Groundwater samples collected for the analysis of volatile organic compounds (VOCs) were always collected as soon as there was enough water in the wells to do so.

Samples were collected by two teams, beginning with the cleanest wells. The sample bottles were filled in the following order: VOCs with low detection limits (if taken), VOCs, polynuclear aromatic hydrocarbons (PAHs) with low detection limits (if taken), semivolatile organic compounds, unfiltered metals, cyanide, and filtered metals. Whenever possible, only one 40-ml vial was filled for VOC analyses per bailer of water. The excess water was used to fill the remaining bottles. The outsides of the bottles were then decontaminated. Attachment A is a sample matrix table.

All metal samples were preserved with HNO, to a pH of less than 2. Samples to be analyzed for cyanide were preserved with NaOH to a pH of more than 12. Samples were also collected to measure pH, conductivity, and temperature of each sample location in the field (Table TM10-1).

The sampling equipment was cleaned between wells by scrubbing with a solution of trisodium phosphate and tap water, followed by a methanol rinse and a final triple rinse with distilled water. The bailers were placed in clean plastic bags for storage or transport between sampling locations. The stainless steel wire was soaked in a solution of methanol and distilled water and was triple rinsed with distilled water.





- a and s = Shallow wells usually less than 15 ft.
  - b = Usually between 20 and 30 ft.
  - C = Wells in the lower till, between 35 and 40 ft.
  - e = Shallow bedrock wells, estimated depths of 50 or 60 ft.

- 28 5

Well Number	Total Water Purged (gal)	Time Between Purging and Sampling (hr)	<u>HNu R</u> In Well	eadings (ppm) ^a From Water	<mark>рН</mark>	Conductivity (µmhos/cm)	Temperature (degrees C)	Comment and Observation
MW-la	8	0	BKG	BKG	7.64	450	11	Water red and silty.
MW-2a	3	0	BKG	BKG	6.47	970	11	Water had a strong petroleum odor.
MW-2b	12	0	3-5	2	8.38	275	9.5	
MW-2c	16	0	BKG	BKG	8.47	350	11	Water is cloudy.
MW-2e	16*	2	3-6	2	8.54	325	13	Purged dry after 12 gallons. Purged dry twice prior to sampling.
B2b	2	0	BKG	BKG	6.44	925	10	
MW-3s	6	0.5	BKG	BKG	6.52	950	10	Purged dry after 6 gallons.
MW-3a	6	0	8	BKG	7.61	400	8	Water very turbid.
MW-3b	10	0	8-9	1	7.46	325	10	Water is clear. Good recharge.
B4b	4.5*	4	1	2	8.14	520	13	Used 1-inch bailer to purge the well. Purged dry after 3 gallons. Purged dry twice prior to sampling.
MW-5a	5	0	1	1	8.03	200	10	1 1 2
MW-5b	10	Õ	ī	BKG	7.78	1,025	14	
MW-5c	17	Ō	30	NM	8.34	375	11	
MW-5e	45	Ō	BKG	BKG	8.50	400	12	Water is clear.
MW-6a	8	Ó	BKG	BKG	7.12	700	11	Water is red and silty.
MW-6c	30	Ō	BKG	BKG	7.73	1,000	11	Water is clear.
MW-7s	9	0	BKG	1-2	7.75	1,000	9	
MW-7a	10	0	8-10	BKG	7.51	1,170	9	
MW-7b	18	0.5	1-2	BKG	8.06	800	12	Used 1-inch bailer, bend in casing. Bend above water level. Purged dry after 8 gal- lons.
MW-7c	17	0	20	BKG	8.49	425	11	Used a 1-inch bailer, bend in casing. Bend above water level.
MW-8a	5	0	BKG	BKG	7.25	1,380	12	Slow recharge.
MW-8b	15	0	BKG	BKG	NM	NM	NM	0
MW-9a	5	0	4	BKG	7.57	1,060	9	Water slightly turbid.
MW-9b	8	0	BKG	BKG	7.03	1,100	10	
MW-10a	5	0	BKG	BKG	6.78	1,350	9	
MW-10b	10	0	BKG	BKG	7.20	1,580	11	
MW-11a	7	0	5-8	2-3	6.40	300	8	Water very turbid.
MW-12a	6	0	BKG	8 pm	7.13	300	8	Water slightly turbid.
MW-13a	15	0	BKG	BKĠ	8.18	340	11	2 /
MW-13b	30	0	BKG	BKG	7.95	375	11	Water is clear.

### Table TM10-1 (Page 1 of 2) SUMMARY OF GROUNDWATER SAMPLING

•

ŕ

### Table TM10-1 (Page 2 of 2)

Well Number	Total Water Purged (gal)	Time Between Purging and Sampling (hr)	<u>HNu R</u> In Well	eadings (ppm) ^a From Water	pН	Conductivity (µmhos/cm)	Temperature (degrees C)	Comment and Observation
			·		<u></u>			
MW-13e	50	0	BKG	BKG	7.80	300	10	Water is clear. Good recharge.
MW-14s	7	0	BKG	5-6	7.16	600	12	5
MW-14a	7	0	BKG	8-10	7.07	760	9	Water turbid. Bend in casing made purging difficult.
MW-14b	NR*	5	BKG	BKG	8.32	410	13	Purged dry twice prior to sampling.
MW-14c	15	0	BKG	BKG	8.83	370	11	
MW-15a	NR	0	BKG	BKG	7.47	2,400	12	Purged water is slightly turbid.
MW-15b	8*	2	BKG	BKG	8.47	725	12	Purged dry after 4 gallons. Purged dry twice prior to sampling.
MW-16s	7	0	BKG	BKG	6.73	560	9	Water is red and silty.
MW-17b	32	0	BKG	BKG	8.53	350	12	2
MW-17e	50	0	BKG	BKG	12.07	1,260	13	Some bentonite observed in purged water.

Readings in the well were taken by placing the probe in the well casing. Readings from the water were measured from the water in the bucket during purging.
NM = Not measured.

l

NR = Not recorded.

BKG = HNu reading background. * = Total water purged was less than the required five well locations.

ĺ

GLT932/029.50

### TECHNICAL MEMORANDUM NO. 10 Page 3 May 26, 1988 GLO68802.FQ

The sections of stainless steel cable were also placed in clean plastic bags for storage or transport between sampling locations.

Replicates, triplicates, and matrix spikes were taken of certain groundwater samples (Attachment A). Field blanks were collected by filling a decontaminated bailer used for sampling with HPLC-grade water and transferring the water to sample containers. Bottle blanks for low level VOC analyses were taken by pouring HPLC-grade water directly into the VOC vials.

GLT932/030.51

### TM10--GROUNDWATER SAMPLING (STEP II)

### Attachment A SAMPLE MATRIX TABLE FOR GROUNDWATER SAMPLES

GLT932/007.50-8

· . _

#### SAMPLE MATRIX FOR GROUNDWATER SAMPLES (STEP II) (PAGE 1 OF 5)

1 -

-

#### ANALYSIS NURTHE SAMPLING

.

	: CRL : Sannie	Call	oction	i Routine HS	il VOCs	1 1	lactine HSL	blike	1	HSL IN	nganics	111	1 1	L	au Leve)	VOCs		} 1	La	m Level	PANs		
nepel.	iluster	•	1	: CTE Number				Laboratory				Laboratory	•		Nueber		Laboratory			Nuober		Labora	itery
	: ;			Sample Rep HS	 		Rep HS		:Sanșie 		NS.		Saapie	Kep	īri <b>s</b>	KS		Sangle 	Rep 	Triș	<b>7</b> 3		
	: 000/03514 : 000/03551			(EN203 :	S Cubed	1 <b>EN20</b> 3		S Cubed	: NER926 : NER927			RIML RIML	1					:					
	: <b>000703</b> 513				PE I		EN\$40	PEI	:#ER996		HER956		13784E-93			3784E-1	3 S Cubed				3784E-9	4 Nata I	Chee
	: BENNO3533		1	1		1			10ER997		HER997	RHAL.	1		3784E-94		S Cubed	1					
	: <b>DERVE3520</b> : <b>DERVE3521</b> :	-	i 1	; •		i 1			1				:		37846-15		S Cubed						
	: <b>Dinvi</b> jazi (		1	1					i				:					1					
9-04		5/10/88	• • • • • • •	120547	MEL	IEN547	EW\$49	PEI	:HEN312			RIM,	13784E-00				S Cubed	13704E-01				lata (	Chei
-	. 900003010	; .	;	EN220	PEI	;				JEN314		RHAL.	:	•				1					
	: <b>BENNE</b> 3927	-	ł	:		1			HEISI3				1										
			:	1		1			1	NEN315		RINAL	i •		3784E-82		S Cubel	•		3784E-6		Bata (	<b></b>
	: 000003518 : 000003517	•	1 1	i •		1 1			i f				1 1		3764E-63		5 Culeri			37846-6		lata (	
		-	: : 1550	1		•			1		NEW312							1			-		
	: SEMMETERS		;	1		: E	11556	PEI	1				:					:					
			:	1		1			:		NEN313	RMAL.	1					1					
<u>C-04</u>	: : <b>001/1/</b> 03543	•	i i 1922	: :EN241	S Cubed	: :EN241		S Called	:HERTTQ			RIMAL.	: 3784E-54					, ;3704E-55			3784E-5	5 Bata I	Cher
	1 00HV03043	1	:	:		1 6	8542	S Cubed					: 3	784E-3	6		S Cubed	:					
	: <b>BRING3</b> 578 :	-	1	í ,		<b>1</b>			(NER999)			RMAL.	1 1					1					
				:EN353	PEI	:EN553			INEN318			RNAL	.3764E-89				S Cubet	:3784E-10				Bata 1	Che
	1 BBWWB3012			EN224	PEI		E¥554	PEI	1	#E11320		RINAL.	3	784E-9	11		S Cubed	:	3784E-9	12		lata	Cher
	: amm03831	:	1	1		:			INEN319			RIML.	•					:					
	<b>800003832</b>		1	1		:			:	HEN321		RHAL.	1					:					
75-47	: : 800WE3504	  5/5/80	1 2-3439	: :ENSAS	§ Cubed	1 1 <b>2115</b> 45		S Cubed	: :HEN304			RIM.	: 13784E70				S Cubed	; ;3784E-71				Jata (	Chee
	: SEMVE3537		1	;		1			(HEN305			RIML.	1					1					
3A-64	: 000V03525	;5/3/80	; 1021	:EN218	S Cubed	:EN218		5 Cubed	INER756			RINAL						1					
	ALIZED MINUS	•	I	:		:			(NER957			RIMAL.	1					1					
	: SONVEJS17	-	!			1			:				÷					3784E-L9	37 <b>84</b> E-2			Bata	Che
	1 000V03017 1		:						i 1				i 1					1	31846-1				
<b>18-8</b> 2	: : <b>::::::::::::::::::::::::::::::::::</b>	•	1. 0946	+ HENRIA	5 Cubed	I SENSIA		S Cubed	1 1)#F#944			Rinal.	, !					i					
	<b>1 0011/0</b> 3324		· •/••			1			1060790	HE <b>R14</b> 8		RINAL	:					1					
	: 800/03582		1	1		1			(HER947			RMAL,	:					ł					
	: 00WQ3583		:	1		:			1	HER949		RINNL.	:					ţ					
	:		1	:		:			1				1					1					
	1 800W03S31		1232	188520	S Cubed	IEW\$20		S Cubed				RIMAL.	•					13784E-21				Pata	Cher
	2 BBNY93585	•	1			i			:))ER941			RIMAL.	;					i I		3784E-2	n	lata I	Cher
	: BENV93R04 : BENV93R04	-	i 1	i •		i a			1				•					, !		3784E-2		- Bata I	-
	1 PORTEJAVI	•	•	1		•			."				•					•					

#### SAMPLE MATRIX FOR GROUNDWATER SAMPLES (STEP II) (PAGE 2 OF 5)

#### AMALYSIS DURING SAMPLING

Vell Nober	: : CNL : Samete	: ; Coll	ection	: : (	Routine HS	L VOCs	i Rent	ine HSL	Jillis	: :	HSL loorga	nics (1)	:	t	.ou Level N	NCs		: : :	Los	ı Level P	<b>N</b> is	:
	l Nueber	: Bate	: Time	Sample	•	•	Sapls Rep	HS I	-	Sample		Laborator S	yi ISaaple	SAS Rep	Huaber Trip	ĸ	Laboratory	i Saepte	SAS I Rep	luober Trup	NS	Laboratory
846-04	:	13/10/00 1 1	1 1540	EN221	EW552		ENSSI   ENSSI             			;#EN314 ; ;#EN317 ;		RMAL RMAL	: 3784E-97 : :	1	3784E-98 3784E-99		S Cubed S Cubed S Cubed					Bata Ches
	: 000003500 : 000003522	1	6933 	:E¥548 	EN34	O PEI	1 <b>21/548</b>	E¥548		:NEN310 :NEN311	HEN. Hen		13704E-72	!			S Cubed	137 <b>04</b> E-73 I				Bata Chen
\$C-0]	000/03501 1 000/03535 1 000/03505	:5/5/88 1	•	EN242		S Cabed	EN543	EN243	S Cobed	INEN300 INEN301		AMAL AMAL	3784E-51				S Cabed	13784E-60				Bata Chen
58-42	: : 00HV03507 : 00HV03523 : 00HV03514 : 00HV03517	:	, ; 1114 ; ; ;	:EN547 :	ENSA	7 PEL	E11547			: NEU300 : NEU307 :	NEN Men		<b>13704E</b> -74	i	3784E-76 3784E-77					3784E-78 3784E-79		Data Ches Sata Ches Data Ches Data Ches
SE-02		1 15/3/00 1 1	; ; 1110 ; ;	: :EN344 : :		S Cabed	1 1211344 1 1	·		INEW302		RHAL RHAL	:   3784E-63   	I	3784E-65 3784E-66		S Cubed	; ; <b>3784E-64</b> ; 3 ; ;	784E-6)	,		Pata Chen
 64-64	: 000/VE3515 : 000/VE3532	15/2/88	: 1400 :	:E#504		S Cubed	: :EW304 :		S Cubed	:  HEN920  HEN929		RINAL. RYNAL						: : :				
4C-04	: : : ::::::::::::::::::::::::::::::::	:5/2/88	:   1429 	EN202		S Cubed	1 1 <b>EH505</b> 1		S Cubed	: :HER930 :HER931		RINAL RINAL	::					: : :			_	1
	: 000003534 : 000003834 : 000003571 : 000003572	1			EW535	S Cohed S Cohed				: :#ER985	NER984 NER987	RHAL RHAL RHAL RHAL						: : : :				
	: 000703503 : 000703530		: 1134 :	EW537		S Cubed	EN537		S Cubed	:HER990 :HER991			3784E-68	I			S Cubed	1 13784E-69			3784E-6	V Data Chen
7C-03	: 000403537 : 000403573 : 000403540 : 000403549 : 000403550	: 5/4/88     	: 1507 : :	EW537		5 Cubed	EN939		S Cubed	:HER994 :HER995 :		rnal Rnal	3784E-50	)			S Cubed	, ; ;3784E-51 ; ;		3704E-52 3784E-53		Sata Ches Sata Ches Sata Ches Sata Ches
75- <b>0</b> 2	: 	: 15/4/88	: ; 1000	: :EN223		S Cubed	; ;EN222		S Cabed	:  HER <b>98</b> 2		RMAL.	: 13784E-45	i			S Cubed	:				:

1

(

#### SAMPLE MATRIX FOR GROUNDWATER SAMPLES (STEP II) (PAGE 3 OF 5)

#### ANALYSIS DURING SAMPLING

	: Sanple : Hunber	i 1 1 Bate	: ; Tiee	1 DTR Number Sample Rep HS	Laboratory	1 Routine HSL 1 OTR Number 1 Sample Rep HS	Laboratory	t 1 ITR 1Sample	Nusber Rep	Laboratory NS	: Saepte	SAS Rep	Trip	115	Laboratory	Sample	SAS   Rep	• Level P Nober Trip	<b>115</b>	Laborator
	: 00HVQ3570 : 80HVQ3547	:		;		:		HERTOS		NNAL.	,					: : 3784E-44				Bata Che
	: 80/W03\$21 : 80/W03558	1	ł	1		:EW510   		: HER738 : HER737 :		RIVAL. Kunal.		•				:				
BB -02	: : : ::::::::::::::::::::::::::::::::		1 1637	1 <b>Eu307</b> 1	S Cubed	i ENSØ7	S Cubed	:  HER <b>736</b>  HER <b>737</b>		RMAL RMAL						• • •				
-	: 000W03839 : 000W03875	1	: 0822 :	1EN528				: HER972 : HER973 :		RIVAL, RIVAL,						; ; ;				
-	; ; ####03\$33 ; ####03\$47					IENS29	S Cubed			ilanni, Johni,	1					; ; ;		_		
	: 0011V03528 : 0011V03562	1	1	(ENDID ENDID		1 <b>60315</b> 1		INER951		Rinol. Rinol.						   				
108-03	: : 0000033330 : 0000933564	:5/3/00				1 <b>EN</b> \$17	S Cubed	1 :NER1954 :NER1955		<b>RMAL</b>						1 }				
	: 9911703522 : 8911703589	ļ	1	ł		EW512 		INER943		RNAL RNAL						: :				
	: 00HW03823 : 00HW03881	:	:	1	S Cubed			INER945		RMAL RMAL	1					:				
13A-04	: 500W03617 : 800W03554	:5/2/88 ¦		1EN204	S Cabed	1EN506	S Cubed			RIVAL. RIVAL	•					;				
	: 000003520 : 000003557	15/2/88 1	•			(EN211	S Cubed			rimi. Rimi						:				
	1 BBHV63518	15/2/88 1	:		5 Cubed 5 Cubed	; ; <b>EN507</b> ;		: HER934 : HER935		RINAL Rinal	;									
L4A-04	: BBIN03527	15/3/88	1 1605	EW526	S Cubed		S Cubed	:NER970		RNAL RNAL	3784E-32	 !		37 <b>04E</b> -3	2 S Cubed	* : 3784E-33		•••••		Bata Ches
	: 00WVQ3027 : 00WVQ3S61 :	1	:	:	S Cuber	1 1		: Imer971 I		RNAL						: : :				
	: 88HV93538 : 88HV93574 : 88HV93539	:	: 1615 : :	(EN525 EN525 ; ;	S Cubed	:EN525 :	S Cubed	: MER968 : MER969		rmal Rmal	3784E-57	1			S Cubed	: 3784E-58 : ,				Bata Chen

#### SAMPLE MATRIX FOR GROUNDWATER SAMPLES (STEP II) (PAGE 4 OF 5)

#### AMALYSIS DURING SAMPLING

			ction	: Routine HSL \	VOCs	i I Rautine HSL	<b>NM</b> s	i 1 HSL Inorganic 1	s (1)	i Low Level VOCs		i Low Level	P 1015
:		i i Bate	Time	i 1 OTH Musber & Sample Rep HS	-	Sample Rep - HS	•	Sample Rep HS				Sample Rep Trip	
14C-03	: 880483534 : 880483834	:5/4/88 :	-	-	S Cubed		S Cubed S Cubed	: :	Rhal	13784E-37 1 3784E-39	S Cubed S Cubed	13784E-38	Bata Chen
	: 000/VE3S67 : 000/VE3D00 : 000/VE3D07	:		1 1 1		; ; ;		INER967 1 1	ANAL.			: 3784E-40 : 3784E-41	Bata Chen Bata Chen
	; ; 000003524 ; 000003564 ; 000003864 ; 000003865	:	1515	: 12 <b>1/522</b> 1 1	S Cubed	; ; <b>EU1522</b> ; ;	S Cubed	: :NER764 :NER765 :	RNAL.	: 13784E-28 ; ; 3784E-30 ; 3784E-30 ; 3784E-31	S Cubed S Cubed S Cubed	:	Bata Chen
158-03	: 00HV03541 : 00HV03577	15/4/88		: :EN536 :	S Cubed	: :E¥536 :	S Cubed	: NER790 : NER707	RHAL RHAL	: 3784E-47 3784E	-47 S Cabed		3784E-40 Bata Chem
158-03	: : 80WV03542 : 80WV03577	15/4/88	: : 1410 :	  EN338 	S Cubed	: ; <b>EW338</b> 1	S Cubed	; ;NER992 ;NER993			S Cubed	1 : 3784E-56 :	3784E-56 Bata Chen
	: 000003527 : 000003563 : 000003544 : 000003044	 		1	S Cubed	188516 1 1 1	S Cabed	: NER752 : HER753 ;		•	S Cubed S Cubed		
	: 00/v03540 : 00/v03840 : 00/v03576	1	0755	:EN332 ;	S Cubet	1EN932   		: HER760 ; ; HER761	RMAL RMAL	1 13704E-42 { 1	S Cubed	13704E-43 1 3704E-44 1	Bata Chen
17E-02	: 000ve3532 : 000ve3544 : 000ve3544 : 000ve3545	: 15/3/06 1		: :EW521 :	S Cubed	1 1ENS21 1 1	S Cubed	: 1MER762 1MER763 1	RINAL RINAL	•	S Cubed	; ; ; ;3784E-27	Bata Ches
	: 000V03002 : 000V03557			1ENSLY	S Cubed	1EN517	S Cubed		RHAL RHAL	137 <b>84</b> E-17	S Cubed		Bata Cheo
F007300			0754	i iEN530 i	S Cabed	i  EN230 	S Cubed	1 1MER976 1MER977 1	RNAL RNAL	: 1 <b>3784E</b> -34 :	S Cubed	; ; 3784E-35 ;	Bata Chen
F887406	. <b>BBH</b> VQ3546	: 5/4/00 1		1	S Cubed	-   	S Cabed	• : : NFN 304		; 13784£-36 1 13784£-61	S Cubed	; ; 3784E-62	Data Ches
4	0007E3536	;	1000	1	PEI	: ;		:WE¥307	RMAL		3	тығылы, ₩4, . \ 1 4	VALA L <b>NPS</b>

(

(

#### SAMPLE MATRIX FOR GROUNDWATER SAMPLES (STEP II) (PAGE 5 OF 5)

#### ANALYSIS DURING SAMPLING

Nell Nusber		CRL anple unber	; ;		ection Time		ITR P	wtine Naber Tep	 	s pratory	G Sanp	IR Nue	Li	aboratory	i ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	t Nue	L Inor ober Rep	•	Laboratory	: : :Sample	-	ou Leve Number Trip	 Labo	ratory	; ; : :Sample	Lon SAS D Rep	Level Waber Trip	PAHs NS		boratory	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
F887700	88     88 	HV03524 HV03R02 HV03R03	    5/1			       			 		;		 		IHER32: : :	5				   3704E-06     3704E-88				ubed ubed	: : : : : :				Dai	ta Ches	

.

(1) Inorganics includes unfiltered and filtered metals, and cyanide. ITR numbers for the unfiltererd metals are listed first, followed by the ITR's for the filtered metals and the cyanide.

# CHAMHILL

### **TECHNICAL MEMORANDUM NO. 11**

то:	Fred Bartman/U.S. EPA Remedial Project Manager
FROM:	Randy Videkovich/CH2M HILL Project Manager
PREPARED BY:	John Gannon/CH2M HILL
DATE:	May 24, 1988
RE:	Subsurface Soil Sampling (Step II)
PROJECT:	Arrowhead Refinery Fieldwork Design Investigation

GLO68802.FS

### **INTRODUCTION**

Subsurface soil samples were collected from 10 locations at the Arrowhead Refinery site between May 16 and 19, 1988. The objective of sampling was to define the lateral and vertical extent of soil contamination south of the sludge lagoon in and around the process area. The results of this task will be used to refine the volume of contaminated soil to be removed for remediation of the site.

### SAMPLING LOCATIONS

The soil borings were completed in and around the process area, which was identified by previous investigations as containing the most contaminated soil. Boring locations were initially staked out by Jewelle Imada (CH2M HILL) and Dave Chrisman (MPCA). Sampling locations are shown in Figure TM11-1.

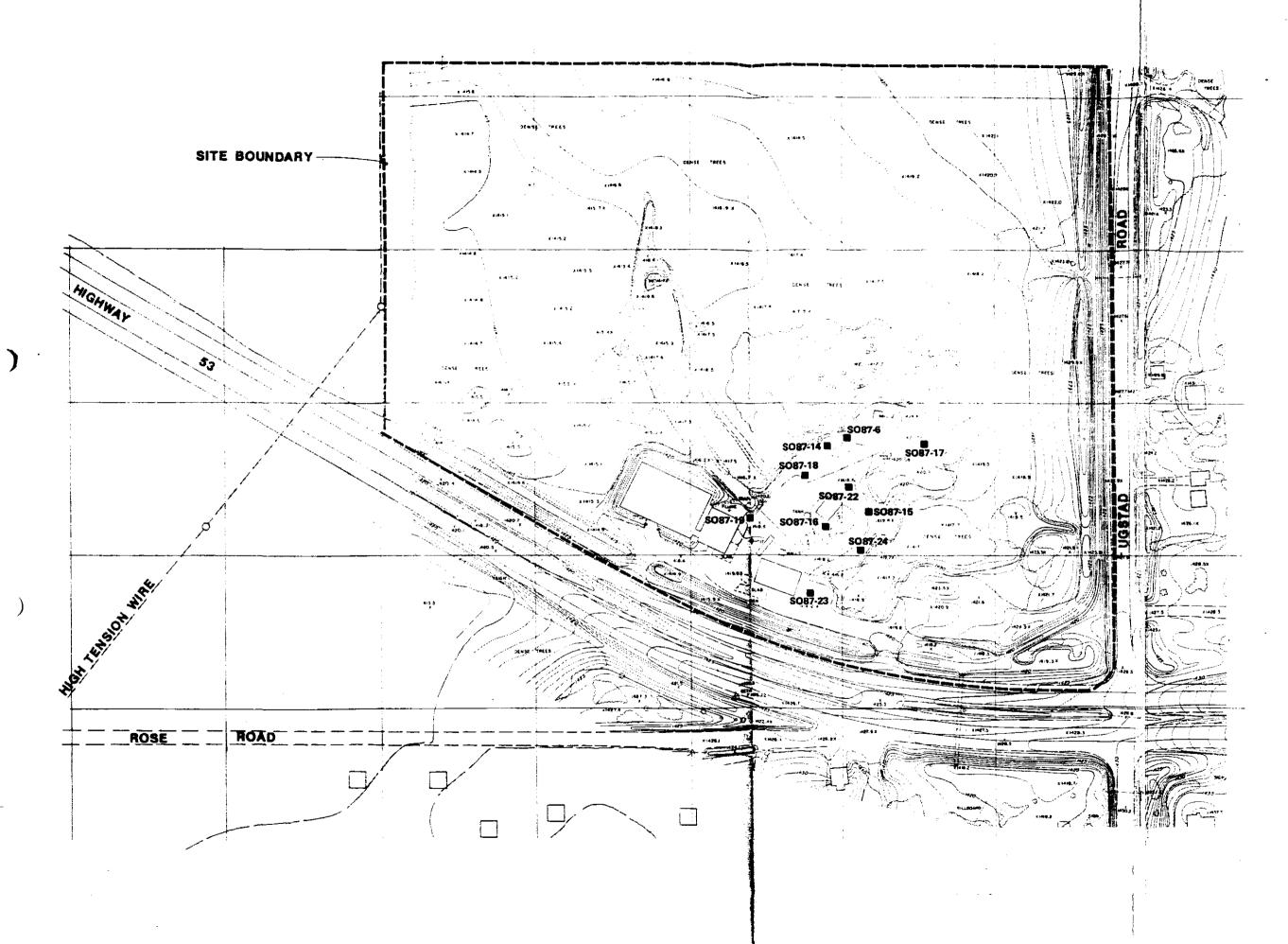
The subsurface soil samples for analytical analyses were collected at three depths. Samples analyzed for incineration parameters were collected from the visibly contaminated soil. RAS samples were taken of the first visibly noncontaminated soil and again 5 feet lower.

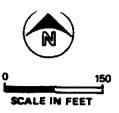
### PERSONNEL

The sampling team consisted of:

- o Roger Huddleston/CH2M HILL, Level B, C, and D Site Safety Supervisor
- o John Gannon/CH2M HILL
- o Greg Weeks/Engineers International
- o Cathy Kantowski/Engineers International

The sampling team maintained sample custody. Drilling was subcontracted to Exploration Technology Incorporated.


### FIELD METHODS


Soil borings were advanced using an all-terrain Diedrich D.50 drill rig. The borings were advanced using 4.25-inch I.D. hollow-stem augers. Continuous subsurface soil samples were obtained with 3-inch O.D. split spoons advanced using a 140-pound hammer. When the drill rod on the hammer broke at boring SO87-14, a 300-pound hammer was used to complete that boring and borings SO87-06 and SO87-17. After each split spoon was opened, each sample was screened with an OVA or an HNu and the soil was logged. Samples were placed directly into sample jars using a stainless steel spatula.

Subsurface soil boring logs are provided in Attachment A. Table TM11-1 is a summary of the subsurface soil sampling. Table TM11-2 lists the samples collected and sent to a CLP laboratory for analysis. The subsurface soil samples were analyzed for TCL inorganic chemicals and volatile and semivolatile organic compounds. Selected samples were also analyzed for low level PAHs, incineration parameters, and total organic carbon.

### HEALTH AND SAFETY

During previous investigations at the Arrowhead Refinery site, drilling activities were terminated in the process area when monitoring of ambient air indicated Level B protection was required to continue the borings. As a result, Level B safety protection was used during this field effort at all of the soil borings except SO87-23. Soil boring SO87-23 was south of the process area and was advanced in Level D safety protection. Continuous monitoring during drilling at this boring indicated higher levels of safety protection were unnecessary.





LEGEND

FDI (STEP II) SUBSURFACE SOIL SAMPLING LOCATION

FIGURE TM11-1 SUBSURFACE SOIL SAMPLING LOCATIONS (STEP II) ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION Appendix B ANALYTICAL DATA AND QUALITY ASSURANCE/ QUALITY CONTROL EVALUATION OF LABORATORY DATA

GLT932/007.50-12

_____ · ·

## Table TM11-1 (Page 1 of 2) SUMMARY OF SUBSURFACE SOIL SAMPLING

Boring No.	Sample No.	Layer Sampled	<u>Analyses^a</u>	Depth (ft bgs)	<u>OVA Ro</u> <u>Air (ppm)</u>	eadings Sample (ppm)	Comments and Observations
SO87-06	01 02 03	Fill Silty Sand Silty Sand	Inc. Complete Organic, Inorganic, L.L. PAH	2-4 12-14 18-20	Background Background Background	50-150 1.0 Background	Sample was black and oily.
SO87-14	01 02 03	Peat Sand/Silt Silty Sand	Inc., TOC Organic, Inorganic Organic, Inorganic	2.5-4.5 6.5-8.0 12-14	Background Background Background	40 2 Background	Sample was black and oily.
SO87-15	01 02 03	Silt/Peat Peat/Clay Sand/Gravel	Inc., TOC Complete Organic, Inorganic, L.L. PAH	0-2 8-10 14-16	20-40 Background 2-3	150 5 1.0	
SO87-16	01 02	Fill Sand/Gravel	Inc., TOC Organic, Inorganic, L.L. PAH	0-2 15-17	Background Background	10 2-3	
	03	Sand/Silt	Organic, Inorganic, L.L. PAH	21-23	Background	2	
SO87-17	01 02	Peat Silt	Inc., TOC Organic, Inorganic, L.L. PAH	<b>4-6</b> 8-10	Background Background	1-5 Background	
	03	Sand	Organic, Inorganic, L.L. PAH	14-16	Background	Background	
SO87-18	01	Fill	Inc., TOC	2-4	Background	>100	Sample taken adjacent to original borehole.
	02	Silt	Organic, Inorganic, L.L. PAH	6-8	Background	5	
	03	Silt/Gravel	Organic, Inorganic, L.L. PAH	12-14	Background	Background	

### Table TM11-1 (Page 2 of 2)

					OVA Re	adings	
Boring	Sample	Layer		Depth		Sample	Comments
<u>No.</u>	No.	Sampled	<u>Analyses</u> ^a	(ft bgs)	<u>Air (ppm)</u>	<u>(ppm)</u>	and Observations
SO87-19	01	Fill	Inc., TOC	0-2	Background	10-20	
5087-19	02	Sand/Gravel	Organic,	10-12	3-4	10-20	
	02	SalteroTavel	Inorganic, L.L. PAH	10-12	J <b>-4</b>	10-20	
	03	Sand	Organic, Inorganic, L.L. PAH	14-16	Background	Background	
SO87-22	01	Fill/Peat	Inc., TOC	2-4	Background	50	Bullet cartridge found in
3087-22	02	Peat/Clay	•	24 6-8	2-3	20	sample.
	02	r cal/Clay	Organic,	0-0	2-3	20	Sample.
			Inorganic, L.L. PAH				
	03	Silt		12-14	Background	1	
	05	5111	Organic, Inorganic,	12-14	Dackground	1	
			L.L. PAH				
SO87-23	01	Fill	Inc., TOC	1-3	Background	Background	
	02	Fill	Organic,	3-5	0.2	10	
			Inorganic,				
			L.L. PAH				
	03	Sand	Organic,	9-11	Background	6	
			Inorganic				
SO87-24	01	Fill	Inc., TOC	0-2	Background	4	
3007-24	02			0-2 4-6	10-20	400	
	02	Peat/Clay	Organic,	4-0	10-20	400	
			Inorganic,				
	03	Silt	L.L. PAH	10-12	Background	1-2	
	05	эш	Organic, Inorganic	10-12	Dackground	1-4	
			morganic				

ı

l

L.L. PAH = Low level polyaromatic hydrocarbons.

Inc. = Incineration parameters. Incineration parameters include ash content, heating value, carbon, oxygen, hydrogen, sulfur, nitrogen, and percent moisture.

.

TOC = Total Organic Carbon.

Complete = Incineration parameters, TOC, organic, inorganic, and L.L. PAH.

GLT932/032.50

#### SAMPLE NATRIX FOR SLUDGE SAMPLING

1

#### ANALYSIS DURING SAMPLING

		: : : ; CRL : ; Sample : ; Number :	Collection		VOCs		i Biliks		i Hetals(1)		Incinerator Parameters (2)		Yiscosity(3)		) 
				: Time	i QTR Hueb	ers Laboratory	rt OTR Nusbe	rs Laboratory	1 ITR Numbers	Laboratory	   SAS Numbers    	Laboratory	ISAS Numbers 1	Laboratory	y: Connents
	t	1		! /	Sample Rep	KS	Saaple Rep	NS	Sample Rep HS		Sample Rep H5(4)		Saaple Rep		-   
CR87-101	01	:80HVQ3S01	4/27/80	0825	ES595	S Cubed	:ES595	5 Cubed	INER907	JTC	3784E-01	Versar	:3784E-01	Versar	Liquid Dily Sludge
	: 03	188WV035021	4/27/88	i 0835	ES397	S Cubed	: :E5597	S Cubed	: NER907	JTL	1 13784E-02	Versar	*		i IPeat
CR87-102	. 01	:88HV03503;	4/27/88	: 0720	:ES598	ES598 S Cabed	1ES578 E	5378 S Cubed	INER910 NER9	10 JTC	:3784E-03 3784E-03	Versar	13784E-03	Versar	Liquid Dily Sludge
		:   88HVD3S04     89HVD3S05		:   0930 	: : :E5600	ESãOO 9 Cubed	: : :E5600 E	\$600 \$ Cubed		12 JTC	1 1 137845-04 37845-04	Versar	1		i Peat
CR97-103		: 89HV03S05; ; 89HV03S04;	4/27/88	: 11 <b>05</b>	i ;E5401	S Cubed	: :E5401	S Cubed	INER913	JTC	13784E05	Versar	; ;3784E-05	Versar	Liquid Gily Sludge
		: :88WV035661 :88WV035661	4/27/88	: : 11 <b>97</b> :	: :E5402     E¥501	ES402 S Cabed S Cabed	i 1E5602 E 1 E11501	3602 S Cubed S Cubed	i: INER914 NER9: I NER924	LA JTC JTC	; 13784E-06 3784E-06 1 3784E-07A	Versar Versar			Crusty Sludge/Filter Cake
	; ; 03 ;	: : 890/V635971 : 890/V038971		: : 1114 :	i  ES403   ES611	S Cubet S Cubet	i 1 <b>65603</b> 1 65611	S Cabel S Cabel	i INER915 I NER923		: 13784E-978 : 3784E-08	Versar Versar		1	Peat
CR97-104	: 01 :	: 88HV03508 :		; 11 <b>33</b>	IE5404 I E5610	5 Cabed S Cubed	1ES604 1 ES610	S Cubed S Cubed	INER916 I NER922	JTC JTC	13784E-09 1 3784E-10	Versar Versar	13784E-09 1 3784E-10		Liquid Dily Sludge
	02	88HV03510	4/27/68	1136	:E5403	S Cubed	1ES405	S Cubed	NER917	JTC		Versar			Crusty Sludge/Filter Cake
	: 03	188HV035071	4/27/88	: 1143	185604	S Cubed	:E5404	S Cubed	INER910	JTC	1 13784E-11	Versar	, 	:	Peat
CR87-105	; 01	:80WV03511	4/27/80	: 1455	:ES407	S Cubed	ES407	S Cubed	:NER919	JTC		Versar	:3784E-14	Versar	Liquid Dily Sludge
	: : 02	100WV03512	4/27/88	: 1 1450 -	E5408	S Cubed	: :E5600	S Cubed	: :NER920	JTC	1 13784E-15	Versar	i 	i	Crusty Sludge/Filter Cake
	1 03 1	: 198HVQ3\$131	4/27/88	; ; 1592	i IES609	S Cubed	; :E5609	S Cubed	i  NER921	JIC	: 13784E-14	Versar	i   		Peat
Field Bla	<b>a</b> k														
F267-100	;	;88HV03R01;	4/27/88	: 1515	:ES502	S Cuber	:ES302	S Cubed	:NER925	JTC -	13784E-13	Versar	;		

1

(1) HSL inorganics excludes cyanides, sulfides, pH, and specific conductance

(2) Incinerator Parameters includes sulfur, chlorine, moisture content

ash content, heating value (DTu) {4) No MS and field blank for moisture, ash, and DTu

## TM12-SLUDGE SAMPLING

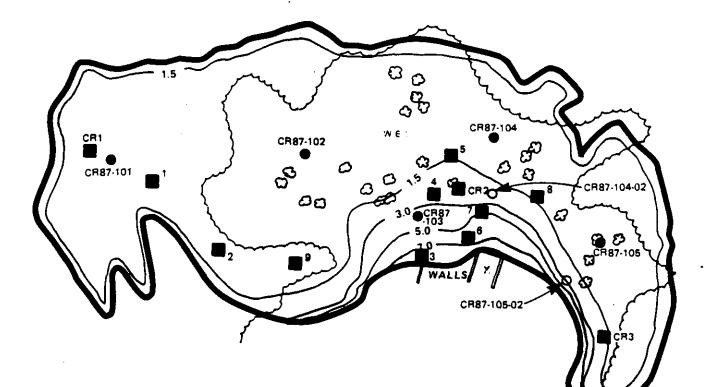
## Attachment A SAMPLE MATRIX FOR SLUDGE SAMPLES

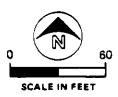
GLT932/007.50-10

### PERSONNEL PROTECTION HEALTH AND SAFETY

The level of protection established in the project Site Safety Plan was followed. Level C protection was adhered to inside the perimeter of the lagoon until HNu monitoring indicated that downgrading to Level D protection would be appropriate. Level B protection was worn when boring into the lagoon, during sampling, and until all sampling equipment had been removed from the lagoon.

### SAMPLE CONTAINER AND PERSONNEL GEAR DECONTAMINATION


The sample jars were protected from contamination during sampling by enveloping them in latex during sampling operations. After sampling, the latex was removed and the exteriors of the sealed bottles were decontaminated with methanol and distilled water.


Personal gear was washed in a tub half filled with a solution of trisodium phosphate (1 pound per 10 gallons of clean water) and then rinsed in a tub of clean water. All wash and rinse water was disposed of in the sludge lagoon.

### SAMPLING EQUIPMENT DECONTAMINATION

Sampling equipment that was to be reused was washed with reagent grade methanol to remove tar deposits after the first sample had been taken. The methanol was first absorbed in a cloth and wiped on the tar areas with no success. Next, a brush was used but with similar results. Thereafter, the trowels were decontaminated as well as possible before reuse.

GLT932/035.51





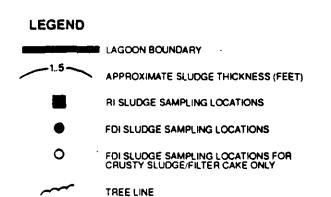



FIGURE TM 12-1 SLUDGE SAMPLING LOCATIONS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

## Table TM12-1 IN-FIELD SAMPLE PARAMETERS

Sample <u>Number</u>	Stratum	Thickness (ft)	$\frac{\text{Density}}{(\text{lb/ft}^3)}$	<u>pH</u>
CR87-101-01	Sludge	0.7	NR	<0.5
CR87-101-03	Peat	ND	71	<0.5
CR87-102-01	Sludge	1.3	1.3	0.5
CR87-102-03	Peat	ND	90	<0.5
CR87-103-01	Sludge	0.5	NR	<0.5
CR87-103-02	Filter Cake	1.1	90	0.5
CR87-103-03	Peat	ND	90	<0.5
CR87-104-01	Sludge	1.1	NR	<0.5
CR87-104-02	Filter Cake	0.4	77	0.5
CR87-104-03	Peat	ND	86	0.5
CR87-105-01	Sludge	1.2	NR	<0.5
CR87-105-02	filter Cake	0.5	86	0.5
CR87-105-03	Peat	ND	94	<0.5

 $\overline{ND}$  = Thickness of the peat was not determined NR = Density of the sludge was not required.

GLT932/034.50

# CHAMHILL

## **TECHNICAL MEMORANDUM NO. 12**

TO:	Fred Bartman/U.S. EPA Remedial Project Manager
FROM:	Randy Videkovich/CH2M HILL Project Manager
PREPARED BY:	Jeffrey J. Lamont/CH2M HILL
DATE:	May 24, 1988
RE:	Sludge Sampling
PROJECT:	Arrowhead Refinery Material Handling/Thermal Treatment Design Investigation GLO68803.F3

#### INTRODUCTION

Sludge samples were taken from the sludge lagoon to refine the nature and extent of contamination and to define the range and variability of the handling and thermal treatment properties of the materials in the lagoon.

Sludge samples were collected on April 27, 1988, from five locations in the sludge lagoon and submitted to the U.S. EPA CLP for analysis. All samples were analyzed for TCL VOCs, metals, semivolatile organic compounds, moisture content, ash content, chlorine content, sulfur content, and Btu value. The oily sludge was also analyzed for viscosity, and the filter cake and peat were analyzed for density in the field. All samples were analyzed for pH in the field using litmus paper. Attachment A is a sample matrix table.

#### PERSONNEL

The sample team consisted of:

- o Jewelle Imada/CH2M HILL
- o Jeffrey Lamont/CH2M HILL
- o Roger Huddleston/CH2M HILL
- o Gregg Weeks/Engineers International

Sample custody and equipment decontamination was maintained by the sampling team. CLP paperwork was maintained by Cathy Kantowski (Engineers International).

#### SAMPLING LOCATIONS

Samples were obtained from five locations (Figure TM12-1), with the actual number of samples being dependent upon the conditions encountered at each location. Samples of filter cake, liquid sludge, and peat were collected at each location if they were present. To gain access to the sampling locations wooden pallets were laid out end to end from the perimeter of the lagoon. Table TM12-1 summarizes sample parameters measured in the field.

#### SLUDGE SAMPLING PROCEDURES AND OBSERVATIONS

Samples were taken from the filter cake layer using a stainless steel trowel. Only the solid or semisolid portion of the top layer was collected. Filter cake was available only near the perimeter of the sludge lagoon at sampling locations CR87-103, CR87-104, and CR87-105. The filter cake layer was 0.4 to 1.1 feet thick, and the filter cake itself had a fine texture and was generally hard and dry. All three samples were field tested for pH, which was 0.5. The samples were also field tested for density using the Corps of Engineers Surface Soil Sampler (ASTM D 2937).

Samples of the liquid oily sludge were taken using a stainless steel trowel. This stratum was encountered at all five sampling locations and was 0.5 to 1.3 feet thick. The pH was less than 0.5 with the exception of CR87-102, which was 0.5. The viscosity of this stratum varied slightly, but in general was quite viscous. Water was observed in pockets throughout the liquid sludge and as a discrete layer immediately above the sludge at locations CR87-102 and CR87-104 and also immediately below the sludge at locations CR87-101, CR87-103, and CR87-104. The water content of the sludge varied considerably between sampling locations. As much water as possible was decanted from the samples before they were placed in sample jars.

Samples were taken from the peat layer using a stainless steel trowel. Peat was encountered at all sampling locations. Depending on the viscosity of the overlying sludge, either a spade was used to remove the sludge or a plastic pail with the bottom cut out was placed tightly against the peat and the excess sludge was removed to allow sampling of the peat. All five peat samples were field tested for pH, which was less than 0.5 for all samples except CR87-104, which was 0.5. These samples were also field tested for density. In all cases, the peat layer was saturated with the oily sludge. Some of the peat samples appeared more or less fibrous than others, and sample CR87-103 had a grainy texture.

Replicate and matrix spike samples were collected by filling a complete set of sample containers immediately after filling the first set with the same sampling equipment. Blanks were made by filling sample containers with clean sand.

ñ 1 - 1 - 1 - 1	929 10'	8 1 6 1	+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	DEPTH BELOW SURFACE	PROJECT <u>A ARA VA</u> ELEVATION DRILLING METHOD AND I WATER LEVEL AND DATE	
	8 +8' 12" 10-12' 5634 18"	-8' 5.5. -8' 5.5. -8' 5.5. -8' 18"			iouipme	
	(23) (23) (23) (29) (29)	1-2-4-5 (9) (9) (25) (25)	(P) (P) (P) (P) (P) (P) (P) (P) (P) (P)	PENETRATION RESULTS FTST 13-19-25		g
EOB 12'	stiff	I I S	(c) (c) (c) (uose) Sond (c) (uose) Sond (c) (c) (c) (c) (c) (c) (c) (c)	SOL DESCRIPTION	Y CITE LOCATION	FROJECT NUMBER
). 	in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se			SYMBOLIC LOG	930 H	LOG *
AEV 11/82 FORM 01586	Visnelly non - Conversionally SVA 2 1-3 por Visnelly not - Continuitated	(H) 9-10 (H) + 1	2 4 Por 2 8 2 Por 2 500 17, 2 500 17, 1 2 3.0 7. 2 3.0	ING FATE		SHEET OF

ĺ

*i* .

1

14	フレフ	713		<pre></pre>	
	o y A	N N - O	ELEVATION DEPTH BELOW SURFACE	PROJECT ARRA WIL TO AND EQUIPMENT	
	- <del>5</del> - 3 - 5		INTERVAL	ARRA WIL	-
5.5. 5.5	5.5. -02 -02	5.5. 5023 -01		BRRA WIL IS AND	
, <i>81</i> , <i>81</i>	» جز ن م	¢."	RECOVERY	ATD 3. S	
-72 -72 (58) (26) (26)	7-6-7-6 [13] (16) (16)	(8) (8)	STANDARD PENETRATION TEST AESULT 6"-6"-6" (N)	REFINERS	
Sandy Silt, brown, wet, true chy and gravel, very stift Poorly Sorth Silving Sand, Grey- ist-brown, wet, truck chy EOB 1:1	Party Sarded Slaver Sand, Brown, mist, loose, Some not, three of grides three of grides three of grides three of grides three of grides party Sorted Silty Sand brown, wer, dense, the chy, three graves	Provly Sartal Cinyon Sand, brown, black layor near surface, moist, laose, some root, moist, laose, some root,	SOIL DESCRIPTION	BY SITE LOCATION HERMAN TAL ORILLING CONTRACTOR ETT 6" 0.0.), Diedvich D.CO START 5/17/88 FINISH 5/17/88 745 LOG	SOIL BORING
(F) (F)	( <i>ets</i> )	(5.0)	SYMBOLIC LOG	- 745 - 745	100 1
STAN Silking Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring Solaring	Single, Air 2 10 ppn MT 2 3.5' Visible to 2 ann MT 2 3.5' Visible to 2 ann MT 2 3.5'	Start @ 705 Thipped 0-11 because of checking because For both Simple and this Some Contraination VISIBLE		TALON, MANNE (AYA	G SHEET OF

		· _		!	_									
_	<u>.</u>	1122	·	<u></u>	1056		1047		ELEVATION	<u>،</u>		:		- 10
	-	4 6 6	= 5	x e_	1 1 5	<u> </u>	A W N	- 0	DEPTH BELOW SURFACE	WATER LEVEL AND DATE	PROJECT PROVINCE AND EQUIPMENT			
				8-18	6-8-		₩ ₩	0-2'	INTERVAL			100		
		5.5.	5	5.5.	5322 52 52 5.5,	<del>د</del> د	5022 -01			AT m	THOD AND EQU			
		24."	, Et	10 %	12"	<i>י</i> ,8	6"		RECOVERY		IIPMENT.	\$	÷	
		-41 -41 -41	7-12-14	(94) (1-81-45	3-3-7-4	ح-٤-٤- <del>٥</del>	(e) +-S-+-S		PENETRATION TEST RESULTS 6"-6"-6" (N)	STANDARD	HLA (6	<b>P</b>		
	F08 ) <del>4</del> .	ady filt brank, wet, in still some gravel, are is subargular - under Crankingalar -	Sandy Silt, home, wet, still trace clay, some grand Conhangelan, maximum diameter 34"	Sandy Silt, brown, met, 4	0-6" Pert, Shick to Soon, ( net 6-12" <u>Lean Clarr</u> , Grey, net, ( soft	Peat, black to brown, wet, - wood piece, 3" in six	0-2" Pearly Sorted Source, black, mist, losse (F.11) 2-6" Peart, black, met	No Split Spoor Sample	NINERALOGY, USCS GROUP SYMBOL	START 3/13/28 FINISH 3/14/83	DRILLING CONTRACTOR ET I		SOIL BORING	
	<u></u>	hire	(me.)	<u>ک</u>	(c.2) (be)	(ra)	(2 e)		SYMBOLIC LOG				רסם 	J
REV 11/82 FORM 01566	<u></u>	trickly san-	OVA 2 2-3,000 . Vicilly ion . Condensionated	Visith hot - gon	OVA = 2000 Sighty A: 2 2-3 pp. Visible contracted in Pear only	Visibly contrainated	Sing antimized	1		CULICOGGER T. M. OKANSK	i   i			_

Č	H2M				[	PROJECT NUMBER	BORING NUMBER					
					-	610, 68802, FS	<u>5087-19</u>	SHEET OF Z				
						· 30	IL BORING L	OG				
PR	OJECT _	ARRI	owhe	20	REFINE	ERT SITE LOCATION HERMANTAWN, MINNESOTA						
	EVATION				- 601		TI					
	ILLING ME				31.51	<u>(6" 0.D.)</u> 	FINISH 5./16/88	BLOGGER J.M. FRANK				
			SAMPLE		STANDARD		<u></u>	COMMENTS				
VIION		TV	UN B	/ERY	TEST RESULTS	SAME. GRADATION OR P	LASTICITY. 9	DEPTH OF CASING. DRILLING RATE				
ELEVATION	DEPTH Below Surface	INTERVA	TYPE AND NUMBER	RECOVERY	6"-6"-6" (N1	MOISTURE CONTENT, RELAT OR CONSISTENCY, SOIL S MINERALOGY, USCS GROUP	TRUCTURE.	DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION				
T	0	<u> </u>	5.5.			·····	ravel,	5 tent @ 1400				
1401	, <u>, , , , , , , , , , , , , , , , , , </u>	0-2'	5019	12"			ter, renaded ) [5p	/   UVA ~ 14				
	í L		-01		-28 (57)	í s	re, maist	Nir + BXL W.T. = 1.5				
	3'-	<b> </b>			(53)	<u> </u>		Visnally Konstranizated				
	_		5.5,	10"	12-24-37	Silty sand with (Pehlles 1-1,5" in	bravel,	OVA 2 20 Mpm .				
1	. 3'-	2-4		ν <b>υ</b>	-23	replaces 1-113 in branch - bla	dinnetri, 50 chi wet	) Villally constantiate				
ľ	ļ	.			(57)	(m. )	-					
1	-'-		ec		4-12-88	Silty Sand With	Gravel	DV42 10-20 pp				
	_,	4-11	5,5,	6"	- 60		et, deure (Sp.					
	5				(100)	Brene TE Binch, M		Visneily				
	,.]					(Fice)	٩ 	Contaminated				
			5.5.	10"	4-8-16-20	Sandy Silt, Grown	, wet,	OVA reading = 1.5,				
[	7	6-8'				Sand is medium gra	ind, trace [Mi					
	Ĺ				(24)	gravel	, T	Nismally contaminates				
	- <u>8</u> '-		╞═╤┥			(and week)						
1	_ }		5.5,	8"	12-17-22	Poorly Sortal Gravel	with Send	OVAZ Spon				
	9'-	8-10'			-18	gravel (1-3"	the disable ! (GP	Visnally contraminate				
	-				(39)	- Jerrei di e	-					
	10'-	<b>  </b>	5. <u>5</u> ,			Prorly Sorted Silty	Sand widt !	DVA 7 10-20 ppm				
	- 	1		<b>Z</b> ¹¹	12-26-21	Franch, brann, wet						
1991	11 4		5019- 02	ч 	-20	gravel . 1/3"-2" is d	inneter.	Visnelly how -				
	. , ]			ļ	(4-7)	(Out wash)		con tominaded				
	12 -		5.5.		18-27-20	Poorly Sor Ind Gravel		OVAZ BEG				
		12-14		24"	-22	brown, wet, dense,	, gravel Kp	Visnally hon-				
						1-2" in diameter	4	contrainented				
	14-		┝━━━╋		(+7)	Appenn to be s		+				
	. 4						+					
1		1		1								

.

CH2M HILL
\$\$HILL

PROJECT NUMBER	BORING NUMBER				
610 68802. FS	5087-19	SHEET	2	OF	2

SOIL BORING LOG

	L ANO DATE		STANDARD	STARTFINISH		LOGGER J.M. MANNAS
	<b>\$AM</b>		PENETRATION	SOIL DESCRIPTION	4	COMMENTS
DEPTH Below Surface	INTERVAL TYPE AND	NUMBER	8"-6"-6" (N)	MANE, GRADATION OR PLASTICITY PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	LOG SYMBOLIC	DEPTH OF CASING. DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
14'- 15'-	5. 14-16 50	19 16"	1 - 1	ist-brank, weit, dense, sand is five grained	(54)	OVAZ BAG For Both Scopic and Air Visnally non-
- 16'-			(51)	- J		condra, nated
- 				-		
-				-		
-				-		
-				-		
				-		
-						
-						
				-		· · · · · · · · · · · · · · · · · · ·
-				-		

ſ		1452	¢	a a	1425 7	<u>, y, t</u>	1503 2		ELEVATION DEPTH BELOW SURFACE	ELEVATION DRILLING M WATER LEV	
	· · · · · ·	2 + 1- 51 - 1			6-8, 2	4	× ×	0-2	INTERVAL	ELEVATION DRILLING METHOD AND E WATER LEVEL AND DATE	ARRITH
-		17.5 -8105	5.5.	.5. 1 <b>8</b> /	5:5. 5213- 14-"	5.5.	01 2.2.		TYPE AND NUMBER RECOVERY	l ĝ k	
		, 36 , 36 (40)	19 19 (45)	7-12-13- 15 (25)	2-10-9-18 81-6-01-7	(7)	+-2-3-2 (5)		PERETRATION TEST RESULTS (N)		
	E08 14	Exterlayered 5:17 (203) and Herely Sorded grands 80%, brown wet, grand is subangular, 5:14 is 54:54	4-14" Clarge Silt, grey, ned, 54:55	<u>clayer</u> <u>Silt</u> , grey, met, Stiff	Sandy Silt, Frey, met, So St	0-2" Pert, brown	Hearly Sorted Silty Frankl, black, some sand, wet, hose (Flace)	No Split Symon Taken	JAME. PARTIC MOISTU MINERA	DRILLING CONTRACTOR ETT	SOIL BOR
		50 50 70	(ar 9) (m7)	2	(xir)	(rd) (5p)	(\$e)		SYMBOLIC LOG		
AEV 11/62FGRM 01586	1 - +	Riv Sample and Riv Withly har Condenningled			Vilibly har- Kin a Bei Man- Vilibly har-	1 I. W.	Ova 2000 ppm Snyi Vilibly Lostaning Split Spoon from I north of original bo	Start & 1415	1 336631,		٤

t

150

a	H2M HILL			-		GLU, 68802, FS 5087		SHEET   OF 2
					,	SOIL BORIN		G
	OJECT	ARA	ROWA	EAE	, REFI	NERY SITE LOCATION HE DRILLING CONTRACTOR ETT	=RMA	ANTONN MILINESC
DRI	EVATION ILLING ME ITER LEVEL			IPMENT	HSA	[1" O.D.] Diedvich D. Sc		300 15 Hammer LOGGER J.M. CANDAN
ſ		T	SAMPLE			CON DESCRIPTION		COMMENTS
ELEVATION	DEPTH BELOW SURFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	TEST RESULTS 6"-6"-6" (N)	HAME. GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION. COLOR. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE. MINERALOGY. USCS GROUP SYMBOL	LOG SYMBOLIC	DEPTH OF CASING. ORILLING RATE. ORILLING FLUID LOSS. TESTS AND INSTRUMENTATION
	0		5.5	8"	2-3-13- 15	Clayey Silt, brown and black moist, soft, some gravel	5. ML	Start @ 1435
	, -	0-2'				(maximum diameter 1") (F142)		OVA 21-5 ppm Sample Visibly contaminated W.T. 21.5'
	2 -	2-4'	5.5.	2"	2-1-2-1	<u>Clayey Silt</u> , brown, wet, Soft	- ~_	OVAZ Ippa
	. 3 -				(3)	(F122)		Visibly Contaminated
10	* - <b>*</b>	۹-6'	5.5. 50-17		2-3-1-2		(pt)	OVA 2 1 ppm-Sppm Sample, Airs Bal
40	_`ح 		-01	-	(4)			Visibly container
	6 -		5.5	8''	2-8-8-7	Poorly sorted Silty Sand, brown, wet, soft	(F.F.)	
		6-8'			(16)	brown, we', soo	4	Visibly contaminat
	8'-	1 1	5.5.		25-38-50	Sandy Silt, brown, wet, Very stiff	-my	CUA 2 Bk G For but Same
-54	9'-	8-10'	50-17 -02	14	(88)	Very stift.		Kisibly non - contaminated
	10'-		5.5,			Sandy Silt, brown, wet,	1.4.1	
	· / -	10 - 12'		24"	35-45- 55-20	diameter 1-1.5"), Given conting on split speen (arsenic?)	<b>%</b> - -	Visibly non - Contaminated
	-'sı		5.5.		(100) 16-13-25 -19	Sandy Silt brown, wet, Solt,		OVAZZ-S ppm
	13'-	12-19'		8"	(38)	Some gravel (maximum diameter 1-2")		Visibly Non - Contaminated
	<i>\</i> ≰′ <b>-</b>	<u> </u>	+					
	ر _ ا		1		1			

•

. . _

REV-11/82 FORM 01586

					P	ROJECT NUMBER	BORING NU			<u> </u>
	H2M HILL				L	620,68802 F.	<u>s 5087</u>	-17	SHEET 2	0F 2
							SOIL BORI	NG LOO	G	
		<u>.                                    </u>				· · · · · · · · · · · · · · · ·				
		ARRO	<u>) h he</u>	EA C	REFINE			ERMILAN	TOWN MIN	иете -
	VATION				HIA	DRILLING CONTRACTOR Diedvich		00.1h	Hammer	
	lling me FER LEVEI			1.5 <u></u>				1/48/1530	LOGGER	
ſ			SAMPLE					<u> </u>	COMN	HENTS
ELEVATION	DEPTH BELOW SURFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	TEST RESULTS 6"-6"-6" (N)	NAME, GRADATION PARTICLE SIZE DISTR MOISTURE CONTENT.F OR CONSISTENCY, S	IBUTION, COLOR. IBLATIVE DENSITY OIL STRUCTURE.	LOG SYMBOLIC	DEPTH OF C ORILLING R DRILLING FI TESTS AND	ATE. LUID LOSS.
픡	14'	Ŋ	== 5.3		19-22-	MINERALOGY. USCS G Poorly Sorted			CUA Z 1	
	-	14-16	50-17	7"	52-37		Silty Sand, en sized	(50)	For both Sample and	+Li
ĺ	– ^كا	17-16	-03	/	(74)	gravel			Sarysh and	i the r.
	_					(OUTWASH)		4		
	16 -		├	<b>-</b>		EOB 16'				<u> </u>
	_							-		
ŀ								4		
	-								·	
	-							4		
	-							4		
	-				]			-		
	-				1			4		
	-		]		ļ			4		
	-				[			4		
	-		}		1			4		
	-				1			-		
					1			4		
	-		<b>\</b>		1			4		
	-						•			
	-	ł		l						
	_	{		}	1					
	-	ł			ļ	1		4		
	-	}		}				4		
	-	}						4		
	-	{		(				4		
	-	ł		ł	{			-		
	-	ł								
ļ	-	ļ	]		]			-		
	-	4		1	1			4		
	-	ļ		(	l	l l				
	_	]		}	ł					

10 1	-12M				F	ROJECT NUMBER	BORING NUM		
	HILL				·	620.68802. FS	5087-	16	SHEET / OF
L					Ì	S S		G LO	G
	JECT _	100	A 2 - 44		REFIN		il.e.		
	JECT	<u>~ \\ \</u>	<u> </u>		<u>REFIN</u>	ERY SITE	LOCATION <u>MER</u>	<u>~~~7</u>	TWN, MINNEROTA
			NO EQU	IPMENT	HSA (	(" O.D.) Diedvich	D.50	- 46	
WAT	TER LEVE			2'		START _5/17/98		185/150	LOGGER J.M. Fan.
			SAMPLE		STANDARD PENETRATION TEST	SOIL DESCRIPT	10N		COMMENTS
ELEVATION	N C V € I	٨٨	AND	VERY	RESULTS	HAME, GRADATION OR PARTICLE SIZE DISTRIBUT	TION, COLOR.	LOG SVMBOLIC	DEPTH OF CASING. ORILLING RATE.
ELEV	DEPT	NTERVA	TYPE AND NUMBER	RECOVERY	(N)	MOISTURE CONTENT, REL OR CONSISTENCY, SOIL MINERALOGY, USCS GROU	STRUCTURE.	SVMB LOG	DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
-+	0	-	5.5.		21-27-10		-1 -1	1.	Start @ 1300
4	. 1	0-2'	5016	8"	-12	mist, trace Silt,	loose	(6P)	OVA 2 13 ppm
1	1 -		-01		(37)				Air & Bkb. Visibly Continue
	. 1					(F144)			
	2'-		5.5		12-11-6-	Poorly Sortal Gravel	black, wet,	<u> </u>	OVAZ Not work
	- '-	2-4'		2."	5	loose, oily liquid		[(4.4)	HAR = 6 ppm
ŀ	_ د			-	(17)	(	•		W;T. = 2'
	4					(FILL)			Viribly contaminat
	· _	. (	5.5.	I	0-2-3-5	Horry Sovied anne	· · · · · · · · · · · · · · · · · · ·	24	HAL 2 40 ppm
5' 4-6' 10" (5			(5)	black, losre, sily	hand in	] <i>(</i> 5+P)	Visibly contamin		
			C7	Sample, trace Si	(#				
	6-					(Fit	1 4	╉╼╍╸┨	
	-	6-8'	S 5.	6"	2-3-6-12		nck, loose,	(re)	Han = 50 - 100 pg
	7	6-5		Ø		oily liquid in	Sample	$\left  \begin{array}{c} 1 \\ 1 \end{array} \right $	Visibly contamin
	_				(7)		-	-	
ł	8'-		5.5,	<u>.                                    </u>	5-9-29-	Silt, brown - 61	- L roft	╉╼╾╉	HAN = 100 MAR
	, -			8"	51	wet, only liqu	id in	(uz)	tririble Con Faminated
	9'~	8-10'			(33)	Splid Spean	•	1 1	Con tanna tel
	-				ره د)	Crock in end of	Spalid Spanner)	1 1	
	18'				100			+-+	Orillay say it's
		10-12 ¹				Possibly inve	۲ <u>/</u> ۲	]	auguing like
	17	•••			1	NI Recover	•>		grand!
	12-					••••••••••••••••••••••••••••••••••••	/ 		<u></u>
	_				100		-	] [	
	13-	12-14				No Recovery		 	
	·							┥╽	
ł	14-					<u></u>		┼╍╍┽	
	•							j i	
	-							7 1	

					ŀ	620, 68802, FS 508	<u>7 - 16</u> ING LO	SHEET 2 OF 2
LE	JECT _				EFINERY	- DRILLING CONTRACTOR - ET I		AWN, MINN ER TA
	LING MI		-		<u> </u>			LOGGER J.M. Gannes
ſ			SAMPLE		STANDARD	SOU DESCRIPTION		COMMENTS
CLEVATION	DEPTH Below Surface	INTERVAL	TYPE AND NUMBER	AECOVERY	TEST <u>RESULTS</u> 6"-6"-5" (N)	IAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC 5	DEPTH OF CASING, DRILLING RATE, ORILLING FLUID LOSS, TESTS AND INSTRUMENTATION
	14.							Problem with gravely angaing 14-15"
8	15'- - 16'-	15-17	5:5 50/6 -02	19"	7-17-18-	Poarly Sorted Sand with Gravel, brown to grey, wet, 1005e, gravel 0.5-1" in dia	(5)0	HAN 22-3 pph Sarphy kirs Ekt
	- 17'				(35)	(Ontrash)	-	Contrainata
ŀ	- '8'	1-7-19	5.5.	·20 *	21-20-17- 12	Poorly Sorted Sand, Brown, 1 bose, sand grain are mun	net, 14. [5p]	HAR = 2-3 ppm
	,				(37)	(Outwark)		Conduction Ach
	≥0'-	19-31	<b>F</b> , <b>S</b>	16"	21-18-15- 15	Poorly Jorted Sand; brown, h losse	(all) - + +	HAR == 6 ppm Vicitis non -
	- 05				(33)		-	contaminated
	22 -	21-21	575, 5016	16"	14-17-14- 13	0-12" <u>Provide South Fand</u> , brown, wet, loose 12-16" <u>Silit</u> , brown, wet, Soft	(5)	Hinh = 2 poph Sangh, Air = 1846
	-		-03		(31)	12-16" <u>Silt</u> , brown, met, Soft		Viliah non-
	23'-					E08 23'	-	
	-							
	-							
ļ	-						]	
	-							
	-							

٠

AEV 11/62 FORM 01586				Į	I			
LL						<b>₽</b> ₽₽		
OVA Z 1990 - Visibly Mr Contrainable -	(13)	brown, wet, loope	10-17-23- 24 (40)	<u>+</u>	5.5	2-14		
out # Appa	(r)	ا فرة الح	5-25-36- 12 (61)	16"	t.c.	10-13'		
OVA 2 Sigon Sugh Air 2 BKG Mility non cantenianal	er s	leat, brown, we Silty Clay, 1t. 18 wet, stiss	(52) 82 -02-51-6	4.B1	5.5.	8-10'		56
_1_11		No recovery	(9) (9)			6		
out a loo pon	(Fed)	Pent, black, wet, some wood chanks (1")	(7)	12"	5.5.	+6	<u>ب</u> ب ب	
A A	(p.4)	Heat, black, wet, wood chunks 2-3" in size (roods?)	13-24-52 -19 (56)	10"	s. s.	÷ +		•
Start @ 730 Ora = 150 per Sun Villed Contrained	(jed) (m7)	5-6" Silt with grand, brack - black, (Fill) 6-8" Pert, black, noist	(22) 13 (22)	s,1	505-	0-2'		8
EPTH OF ( RILLING R RILLING F RILLING F ISTRUME)	SYMBOLIC LOG	MANE, GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	PENETRATION FEST - 6"-6"-6" (N)	RECOVERY	TYPE AND NUMBER	INTERVAL	DEPTH BELOW SURFACE	ELEVATION
COMMENTS		START SUL DESCRIPTION	I.D "			LAND	WATER LEVEL AND DATE	5
			ATA	IPMENT	NO EQU		ELEVATION	0 m
TOWN, MINNESOTA	Service 1	SITE	REFINERY	5k1)	ARRAWNEED	ARE		
G 94 2	Гоg	SOIL BORING						
-	1 1	- 27 CV667		1				

PROJECT NUMBER Π S SORING NUMBER 2 2 -

	6	H2M				٩		BORING NUMBER	
	Ĭ	HILL				·	610.68802,FS	5087-15	
							SOIL	BORING LO	G
	PRO		RRA	WNEA	i)	REFINEN			TOWN MINNESSTA
		VATION			PMENT	41A	- ORILLING CONTRACTOR _E	L D.SO	
		TER LEVE				·		INISH <u>5/18/88</u>	LOGGER J. M. GANNAN
	_			SAMPLE		STANDARD PENETRATION TEST	SOIL DESCRIPTION		COMMENTS
	ELEVATION	DEPTH BELOW BUNFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	88946.78 6"-6"-6" (N)	HAME, GRADATIGN OR PLA PARTICLE SIZE DISTRIBUTION MOISTURE CONTENT, RELATIVI OR CONSISTENCY. SOIL STI MINERALOGY. USCS GROUP S	N, COLOR.	DEPTH OF CASING, DRILLING RATE, ORILLING FLUID LOSS. TESTS AND INSTRUMENTATION
	1	14'		5.5.		7-9-9-9	Party South Sand 1	vith Fravel,	OVA=1 ppm Supp
<b>%</b> 0		- ⁻ -21	p+-16"	5015 -03	18"	(81)	gravel subangular.	loose, Sp -ronidad	Visibly ner- antoniantel
		· 16'					FOR 16'		
		-							
		-						-	
		-							
		_						-	-
		-						4	4
	Í	-						1	1
								4	-
	ĺ							-	-
		-						4	
		-					•	4	
		-				1		+	
		-						4	-
		-				1		]	]
		-						4	-
		_	ļ	1		1		Ļ	-
		-						4	4
		-	1						
								4	
		_	 		_				BEV 11/82 E0840 01546

REV 11/62 FQI

FLD.

68802.

 $\tilde{\mathcal{I}}$ 

BONING N 5087

7-14 MOCA

SHEET

å

	843			740		721			_		
	Ā ū ī				<u> </u>	+ ~	v - 0	ELEVATION DEPTH BELOW SURFACE	WATER LEVEL AND DATE 1.5	PROJECT	
	2-14	10-12'	910"	8.5	÷5'-	4.5'	25	INTERVAL		ANA WAEAD	7 3 3
	5.5. 3014- 03	S.S.	5.5	5.5. 50H- 02	۲. ۲.	5.5. 5014 -01		TYPE AND NUMBER	ATE		
	12"	18."	12*	10"	¢	6"		RECOVERY	Į,	D A	
	15-9-7-7 (16)	(18) 14 14	(z1) 2-5-5	10-15-21- 27 (36)	2-3-4-7 [7]	(7) (7)		PENETTATION TEST - RESULTS 6"-6"-6" (N)	STANDARD	REFINERS	
E08 14.	Pairly Sortal S. Hy sand widt Grand, brown, wet, hose, Grand is removed Crucking diameter 1. (Ontwark)	Sand is subargular	Silt, brank, met, soft, some grand (suburgula to randy)	Sandy 5:14; grey, met, still, Some grand, granel angular. [1" annian diaseda]	Peat, brown, met, same mosts and wood chanks, black lights in sample	finish in sample	No Split Speen taken	SOL DESCRIPTION PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	17 <u>5/19/88</u> FINISH	DRILLING CONTRACTOR ETT	SOIL BOR
	(s ₇ 0)	(fr.)	(m)	(r)	(Fd)	(3d)		SYMBOLIC LOG	12		
- REV 11/12 FORM D1566	The beth Single -	ova = at c Switchal to 300 !! Henner Willing non-contants	din a 2	OVA = 2 pp ~ Sund church = august denn - ang 2' Visiel dan - centeninate	00A = 1-2 ppan Visibly Contrainated	Sinds, All Spon Akt	stand (2) 715 WT.= 1.5' Split Spron refuel 0-2,5'	DEPTH OF CASING. DRILLING RATE DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION	OG3ER _	town, M innegata	1

REV 11/82 FORM D1586

1

	1047					1005		ELEVATION	₹ Ğ ù <i>3</i>	
. 7	i i n	5			· ~ +		- 0	DEPTH BELOW SURFACE	PROJECT ARRAN HEAD ELEVATION DRILLING METHOD AND EQUIPMENT WATER LEVEL AND DATE 3.0	
┞ <u></u>	++	- 10-12		8-9	4	4	0- N	INTERVAL	ARA R	
	5.5.	5. <u>5</u>	Ţ. Ţ.	<i>S</i> : <i>S</i> .	5.5	50%-	5.3.	TYPE AND NUMBER	ARRAW HEAD	
i i	481			- - - -	6"	12"	7"	BECOVERY	D C	· · · · ·
	5-9-15- 17 (24)	6-7-25- 34 (32)	(29) + -2-14-15-	+-5-91-5	3-4- <i>13-1</i> 6 (16)	(7)	7-7-3-4 (7)			
	Poorh Sortal Sitty Sand, Snown, wet, dense, Some gravel	70 2	No Recovery - (Possily Crowd ?) -	Peart, Liven, met, some	Silty Bork Sortal Gravel, - brown - black, wet, loose, - Gravel is rounded Causiana diamote 12, rome Sand (File)	Chanes Silt, black, moist, Saft, Some grand, (black Hick liquid in sample) Hick liquid in sample)	Bearly Sorted S: Hy Sand with Gravel, brach, dry, loose (FILL)	SOIL DESCRIPTION	(6" 0.0) Diedvich D.S.	SOIL BORING LOG
	(Se			(1d)	(5-P)	59	(5re)	SYMBOLIC LOG	THE AN	L0(
J	Condeningty	1	Orillars Frid the tig Self like we were anything through groupel.	Jighthy contrained	OVA = 3-4 ppn	Sample, Air 284	Start & 1002 OVA = 2 - 3 ppn Sude Air = BKG VISIBLY CONTAMINATO	COMME DEPTH OF CAS DRILLING RUT DRILLING FUT DRILLING FUT TESTS AND INSTRUMENTA		G SHEET / OF 2

(

,

ſ		
L	<u>-&gt;</u>	

÷

SOIL	540. 68802. ES	PROJECT NUMBER
SOIL BORING LOG	5087-06	BORING NUMBER
	SHEET 2	
	ç	
i		

ļ

HOJECT NRRAWBEDD REFINERY	RY SITE LOCATION HERMANTEN	N A M	TRYN, MINNEGTA
LEVATION			
ETHOD AND EQUIPMENT HSA	6° a. D. V. Diedich Q.50		
ATER LEVEL AND DATE	START 5/14/22 FINISH 5/14/24 11 10 LOGGER	2511	LOGGER J. M. FARMER
SAMPLE PENETRATION	SOIL DESCRIPTION		COMMENTS
DEPTH BELOW SURFACE INTERVAL TYPE AND NUMBER RECOVERY	MARE. GRADATION OR PLASTICITY. PARTICLE SIZE DISTRIBUTION. COLOR. NOISTURECONTENT. ABLATIVEDENSITY OR CONSISTENCY. SOIL STRUCTURE. MINERALOGY. USCS GROUP SYMBOL	SYMBOLIC LOG	DEPTH OF CASING. ORILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION

	3	1102 14		3 7	ELEVATION DEPTH BELOW	PROJECT ARRATE
		N. I			BELOW SURFACE	
		18-20	11-18	14-16	INTERVAL	HOD A
		5.5	5.5	<b>S</b> .(	TYPE AND NUMBER	ARRATE AD
		244	<i>8</i> ,	Ŧ,	RECOVERY	PROJECT ARRATE IN FAD
· · · · · · · · · · · · · · · · · · ·		13-13-14 -11 (27)	(18) 10 10 10 -9-9-9-	(13)	BUTTATION THET O'-4"-4" (N)	
	E08 20'	And Sortal Silty Sund with Simuel, Snow, wet, dance, grand mudd (mainum directe ")	Beerly Sorted Silty Sand with Frank, brown, wet, base, one coble 2.5" in diamake, grand is rounded	Poorly Sortal Sitty Sand with Gravel, brown, wet, gravel Subangular (1" maximum dianely	SOIL DESCRIPTION HAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	ERY SIT
		(Sre)	(s;o)	(5re)	SYMBOLIC LOG	OLI A
ALTY 11/82 POAM 01366		ova = 846 For both Snyle	OVA & BAG	Andre & And	COMMENTS DEPTH OF CASING. DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION	
[≁] ┖╏┯╾╛┑╾╡┑╾╡┑╌╡╌╸╧╍┍╡╌╴╽╴╸┥╼╎╴╴┪ <u>╸</u> ┨╍╴	- <del>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </del>	<u> </u>	· · · · · (	· · ·	L	JI I I T L

# TM11--SUBSURFACE SOIL SAMPLING (STEP II)

•

a

Attachment A BORING LOGS

-

. •

GLT932/007.50-9

# Table TM11-2 (Page 3 of 3)

CH2M HILL Sample No.	CRL Sample No.	SAS Sample No.	Traffic Report No.	Colle	ction <u>Time</u>	Laboratory
SO87-22-03	88HK04S03 88HK04S03 88HK04S03	 3784E 133	EW580 MEW345 	5/18/88	11: <b>22</b>	Gulf South Chem Tech Data Chem
SO87-23-01	88HIK05S07 88HIK05D07 88HIK05S07	3784E 108 3784E 109 3784E 107	-  	5/1 <b>7/88</b>	7:13	Weyerhauser Weyerhauser Weyerhauser
SO87-23-02	88HK04S93 88HK04D93 88HK04S93 88HK04S93	 3784E 106	EW560 EW561 MEW326	5/17/88	7:17	Gulf South Gulf South Chem Tech Data Chem
SO87-23-03	88HK04S94 88HK04S94		EW562 MEW327	5/17/88	7:40	Gulf South Chem Tech
SO87-24-01	88HK05S08 88HK05S08	3784E 111 3784E 110	-	5/17/88	9:00	Weyerhauser Weyerhauser
SO87-24-02	88HK04S95 88HK04S95 88HK04S95	 3784E 112	EW563 MEW328 	5/17/88	<b>9:07</b>	Gulf South Chem Tech Data Chem
SO87-24-03	88HK04S96 88HK04S96	 	EW564 MEW329	5/17/88	9:28	Gulf South Chem Tech
FB87-800	88HK04R07 88HK04R07 88HK04R07 88HK05R07 88HK05R07		EW567 MEW332  	5/1 <b>7/88</b>	16:30	Gulf South Chem Tech Data Chem Weyerhauser Weyerhauser
FB87-900	88HK04R06 88HK04R06 88HK04R06 88HK05R06 88HK05R06	 3784E 148 3784E 150 3784E 149	EW583 MEW348  	5/19/88	13:25	Gulf South Chem Tech Data Chem Weyerhauser Weyerhauser

GLT932/033.50

•

## TECHNICAL MEMORANDUM NO. 11 Page 3 May 27, 1988 GLO68802.FS

Ambient air around the drilling rig was monitored at each location with an OVA or an HNu. The site safety coordinator remained dressed in Level B equipment at an upwind location and continuously monitored the air with an HNu during drilling. The site safety coordinator maintained continuous visual contact with the sampling crew and was in periodic radio contact with the trailer.

A decontamination line was set up between the process area and the trailer. The line included a boot wash (trisodium phosphate solution), a boot rinse (tap water), a glove wash (trisodium phosphate solution), and a glove rinse (tap water). A 55-gallon drum was used for disposal of safety protective clothing. The decontamination line was used whenever a member of the sampling team left the process area.

The outsides of filled sample jars were decontaminated using distilled water. Split spoons and other sampling equipment were decontaminated between samples using a solution of trisodium phosphate and water, followed by a water rinse, a methonal rinse, and a double rinse with distilled water.

## SAMPLING PROBLEMS

Because of poor split-spoon sample recovery in the peat at SO87-18, two additional borings were advanced to 2 feet below ground adjacent to the original boring. It was also necessary to collect two additional split-spoon samples from the 2- to 4-foot interval to obtain enough sample to submit for laboratory analysis.

Sample recovery was also poor in the sand and gravel units at borings SO87-06 and SO87-16. These two borings had several intervals of no recovery in the split spoons, which probably caused the borings to be deeper than necessary and made it difficult to determine the precise depth of the visually contaminated soil.

GLT932/031.51

# Table TM11-2 (Page 1 of 3) SAMPLE MATRIX TABLE FOR SUBSURFACE SOIL SAMPLES

CH2M HILL Sample No.	CRL Sample No.	SAS <u>Sample No.</u>	Traffic <u>Report No.</u>	Coile Date	ction <u>Time</u>	Laboratory
SO87-06-01	88HK05S10 88HK05S15	3784E 143 3784E 142		5/19/88	10 <del>:</del> 05	Weyerhauser Weyerhauser
SO87-06-02	88HK04S89 88HK04D80 88HK04S89 88HK04D89 88HK04S89 88HK05S16 88HK05S16	  3784E 144 3784E 145 3784E 146	EW576 EW577 MEW341 MEW342   	5/19/88	10:47	Gulf South Gulf South Chem Tech Chem Tech Data Chem Weyerhauser Weyerhauser
SO87-06-03	88HK04S90 88HK04S90 88HK04S90	 3784E 147	EW578 MEW343 	5/19/88	11:05	Gulf South Chem Tech Data Chem
<b>SO87-14-01</b>	88HK05S14 88HK05S14	3784E 139 3784E 138		5/19 <b>/88</b>	7:21	Weyerhauser Weyerhauser
SO87-14-02	88HK04S87 88HK04S87 88HK04S87	 3784E 140	EW581 MEW346	5/19/88	7:40	Gulf South Chem Tech Data Chem
SO87-14-03	88HK04S88 88HK04S88 88HK04S88	 3784E 141	EW582 MEW347	5/19/88	8:43	Gulf South Chem Tech Data Chem
SO87-15-01	88HK05S10 88HK05S10	3784E 122 3784E 121		5/18/88	7:30	Weyerhauser Weyerhauser
SO87-15-02	88HK04S99 88HK04S99 88HK04S99	 3784E 124	EW571 MEW336 	5/18/88	7:56	Gulf South Chem Tech Data Chem
SO87-15-03	88HK04S01 88HK04S01 88HK04S01	 3784E 128	EW573 MEW338 	5/18/88	8:50	Gulf South Chem Tech Data Chem
SO87-16-01	88HK05S09 88HK05D09 88HK05S09	3784E 114 3784E 115 3784E 113	  	5/17/88	13:14	Weyerhauser Weyerhauser Weyerhauser
SO87-16-02	88HK04S97 88HK04S97 88HK04S97	  3784E 116	EW565 MEW330 	5/17/88	14:28	Gulf South Chem Tech Data Chem
SO87-16-03	88HK04S98 88HK04S98 88HK04S98	 3784E 117	EW566 MEW331	5/17/88	15:08	Gulf South Chem Tech Data Chem

.

# Table TM11-2 (Page 2 of 3)

CH2M HILL Sample No.	CRL Sample No.	SAS Sample No.	Traffic Report No.	Collec Date	tion Time	Laboratory
SO87-17-01	88HK05S17 88HK05S17	3784E 152 3784E 151	**	5/19 <b>/88</b>	14:40	Weyerhauser Weyerhauser
SO87-17-02	88HK04S91 88HK04D91 88HK04S91 88HK04D91 88HK04S91	  3784E 154	EW568 EW569 MEW333 MEW334	5/19/88	14:54	Gulf South Gulf South Chem Tech Chem Tech Data Chem
SO87-17-03	88HK04S92 88HK04S92 88HK04S92	 3784D 154	EW570 MEW335	5/19/88	15:19	Gulf South Chem Tech Data Chem
SO87-18-01	88HK05S12 88HK05D12 88HK05S12	3784E 136 3784E 123 3784E 135	 	5/19/88	15:03	Weyerhauser Weyerhauser Weyerhauser
SO87-18-02	88HK04D04 88HK04S04 88HK04S04 88HK04D04 88HK04D04 88HK04S04 88HK05S04 88HK05S13	 3784E 127 3784E 134 3784E 126 3784E 125	EW572 EW574 MEW339 MEW337    	5/18/88	14:25	Gulf South Gulf South Chem Tech Chem Tech Data Chem Data Chem Weyerhauser Weyerhauser
SO87-18-3	88HK04S05 88HK04S05 88HK04D05 88HK04S05	 3784E 129 3784E 137	EW575 MEW340  	5/18/88	14:52	Gulf South Chem Tech Data Chem Data Chem
SO87-19-01	88HK05S06 88HK05D06 88HK05S06	3784E 101 3784E 102 3784E 104	  	5/16/88	14:01	Weyerhauser Weyerhauser Weyerhauser
SO87-19-02	88HK04S85 88HK04D86 88HK04S85 88HK04S85	  3784E 103	EW557 EW558 MEW324 	5/16 <b>/88</b>	14:47	Gulf South Gulf South Chem Tech Data Chem
SO87-19-03	88HK04S86 88HK04S87 88HK04S86	  3784E 105	EW559 MEW325 	5/16/88	15:28	Gulf South Chem Tech Data Chem
SO87-22-01	88HK05S11 88HK05S11	3784E 131 3784E 130	-	5/18/88	10:47	Weyerhauser Weyerhauser
SO87-22-02	88HK04S02 88HK04S02 88HK04S02	  3784E 132	EW579 MEW344 	5/18 <b>/88</b>	10:56	Gulf South Chem Tech Data Chem

Ł

## Appendix B ANALYTICAL DATA AND QUALITY ASSURANCE/QUALITY CONTROL EVALUATION OF LABORATORY DATA

#### INTRODUCTION

All analytical data gathered during the FDI must be evaluated for precision and accuracy. This appendix presents the analytical data collected during the design investigation at the Arrowhead Refinery site and the quality assurance/quality control (QA/QC) evaluation of those data. The purpose of data validation is to characterize the weaknesses of questionable data (possibly limiting its use) and to determine which data are unusable.

The QA/QC procedures stated in the Quality Assurance Project Plan (QAPP) for this project (CH2M HILL, 1987), include both field sampling and laboratory analysis. Data review is performed by U.S. EPA's Region V Central Regional Laboratory (CRL) according to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (U.S. EPA, 1985), Standard Operating Procedure for Contract Compliance Screening (CCS) of Routine Analytical Services Analyses of Inorganics Data (U.S. EPA, 1987), and the Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses (U.S. EPA, 1988). These reviews, plus additional observations by CH2M HILL, are incorporated into the final data validation written for each set of data before to its use. QA/QC, data review procedures, and results of the data validation for the Arrowhead Refinery site are summarized below.

## FIELD AND LABORATORY QA/QC

The analyses discussed below are done to characterize the quality of a data set. They consist of analyzing blank, duplicate, and spike samples to evaluate data precision, accuracy and contamination. The results of the QA/QC analyses are discussed along with the raw analytical data and are used for data review and validation.

## BLANKS

A blank is a clean sample equivalent that is processed and analyzed as a sample to determine the existence and magnitude of potential contamination introduced during sampling or analysis. In the field, HPLC-grade water is used for aqueous blanks, and a clean sand for soil blanks. Field or bottle blanks are treated the same as samples from the field through laboratory analysis and reporting. Laboratory preparation blanks (reagent blanks) are prepared from contaminant-free water in the laboratory and processed along with the samples through each sample preparation and analysis step. Field blanks identify contamination from decontamination, sampling, bottle transport, and laboratory procedures. Bottle blanks identify contamination from bottles and bottles transport. Laboratory blanks identify only laboratory contamination.

## QUANTIFICATION LIMITS

A quantification limit is the minimum amount of a chemical that can be consistently detected and quantified. An individual laboratory's detection limits may be lower than the Contract Required Quantification Limits (CRQL) established for the Contract Laboratory Program (CLP). In a case such as this, data lower than the CRQL are reported; these data are considered estimated because the accuracy of quantification below these levels is uncertain. Contamination or other analytical problems (such as low sample recoveries) may cause the actual quantification limit to be higher than that reported by the laboratory. When that occurs, it is noted in the laboratory validation writeup. Tables A and B present the target compounds or elements analyzed for by the CLP laboratories and the CRQLs.

## SPIKE RECOVERIES

Spike sample analyses are done to determine the effect of the sample matrix on extraction, digestion, and measurement procedures. Spike recoveries are also used to determine the accuracy of the analyses, which is a measure of the agreement between an experimental determination and the true value of the parameter being measured. In general, a known amount of compound is added to a sample, the sample is analyzed, and the amount of spiked compound recovered by analysis is compared to the amount added.

A "surrogate spike" in organic analysis is a compound not expected to be present in environmental samples, but with properties similar to those of the target compounds. It is added to all samples before extraction and other sample preparation. Percent recovery (%R) is calculated by:

%R = SSR/SA x 100%

where:

SSR = quantity measured in spiked sample SA = quantity of spike added

A "matrix spike" consists of target compounds added to a sample just before analysis. It is analogous to the "method spike" done for high concentration inorganic analysis. Both analyses are performed to evaluate matrix effects on the analytical methodology and data accuracy.

Percent recovery for a matrix spike is calculated by:

$$\%R = \frac{SSR-SR}{SA} \times 100\%$$

where:

SR = quantity measured in unspiked sample

The "method spike" for high concentration inorganics and the "spike sample analysis" for low and medium inorganic concentrations are the same. The spike is added

A recovery above the control limits may indicate a high bias in the data, while a recovery below the control limits may indicate a low bias and detection limits higher than those specified by the contract.

## DUPLICATES

Both field and laboratory duplicate samples are analyzed to determine data precision, a measure of the reproducibility of field sampling and analysis. The results are reported as relative percent difference (RPD) and calculated by:

$$RPD = \frac{D1 - D2}{(D1 + D2)/2} \times 100\%$$

where:

D1 = concentration of first duplicate

D2 = concentration of second duplicate

## SERIAL DILUTIONS

For inorganic inductively coupled plasma (ICP) analysis, a serial dilution analysis is done for each set of samples of similar matrix type and concentration. For an analyte concentration at least a factor of 10 above CRQL, the measured concentrations of the undiluted sample and of the sample after a five-fold dilution should agree within 10 percent. If the difference is greater than 10 percent, the results for that compound are considered estimated because of matrix interference.

## INSTRUMENT QC

Other instrument-specific tests include initial and continuing calibration, decafluorotriphenylphosphine (DFTPP) and bromofluorobenzene (BFB) tuning for the GC/MS, and determining the linearity of standard calibration curves by determining the coefficient of correlation (r).

## DATA REVIEW AND VALIDATION

## CRL DATA REVIEW

The U.S. EPA Sample Management Office receives data packages from the laboratories in the CLP and distributes them to the Laboratory Sciences Services Section (LSSS) of the Region V CRL. The LSSS reviews all data packages resulting from regional sampling efforts. The following items are reviewed (as stated in U.S. EPA guidelines):

- o Sample holding times at the CLP laboratory
- o GC/MS tuning and performance (organics)
- o Instrument calibration
- o Blanks

- o Interference check sample analysis (inorganics)
- o Surrogate recoveries (organics)
- o Matrix and analytical spike analysis
- o Duplicate sample analysis
- o **Compound identification (organics)**
- o Overall assessment of data

## DATA VALIDATION

After CH2M HILL receives the CRL-reviewed data packages, the reviewer's comments are summarized in the final data validation before data interpretation by project staff. Any data noted in the review that should be qualified are flagged with the appropriate symbol (Table C). Results for field blanks and field duplicates are reviewed (these may or may not have been considered by the LSSS) and the data further qualified if necessary. Finally, the data set as a whole is examined for consistency, anomalous results, and whether the data are reasonable for the samples involved. Table C lists the data qualifiers used in this project and explanations of their use. Data flagged with a qualifier may be used to varying degrees or may be completely unusable, depending on the type of problem and significance of the data point.

Data review packages are identified by sample case numbers and traffic report numbers for routine analytical services (RAS) and by SAS numbers for special analytical services (e.g., fast turnaround times or high-hazard samples). For RAS samples a case number is assigned to a group of samples collected at one time, and individual samples are assigned unique traffic report numbers to identify them from time of sampling through reporting of the analytical data. For SAS samples, the first four numbers define a group of samples and the final letters/numbers identify individual samples (e.g., SAS 3136-EO1, SAS 3136-EO2).

## GROUNDWATER SAMPLE RESULTS AND QUALITY CONTROL REVIEW (STEP I)

## **INORGANIC CONSTITUENTS**

## **Residential Wells**

Thirteen residential well samples and one field blank were submitted to Associated Laboratories for analysis of metals and cyanide (Case 8510, ITR Nos. MER637-MER650). All samples were analyzed by low concentration procedures. The results for these samples are presented in Table B-4 and are qualified as follows:

- o Spike recovery for mercury (130 percent) is beyond control limits and all positive results are flagged as estimated (J) and may be biased high.
- o The field blank contained barium (36  $\mu$ g/l), calcium (608  $\mu$ g/l), copper (11  $\mu$ g/l), iron (59  $\mu$ g/l), lead (0.62  $\mu$ g/l), magnesium (49  $\mu$ g/l), sodium (1,180  $\mu$ g/l), and zinc (15  $\mu$ g/l). Laboratory blanks contained iron (7.2 to 48  $\mu$ g/l), lead (0.9  $\mu$ g/l), magnesium (39  $\mu$ g/l), manganese (2.5  $\mu$ g/l), sodium (38 to 45  $\mu$ g/l), and zinc (5.4  $\mu$ g/l). Samples associated with

these blanks which contain these contaminants with concentrations less than five times the blank concentration are considered unusable and are flagged "B."

21 × 1

#### **Monitoring Wells**

Fourteen groundwater samples and one field blank were analyzed by Rocky Mountain Analytical Laboratory (RMAL) for metals and cyanide (Case 8510, ITR Nos. MER620, MER625- MER636, MEK995-MEK996). All samples were analyzed by low concentration procedures. The results for these samples are presented in Table B-5 and are qualified as follows:

- Spike sample recovery for lead (74.5 percent) indicates a low bias and all lead data are considered as estimated (J).
- O Aluminum (31.6  $\mu$ g/l), barium (34.3  $\mu$ g/l), calcium (409 to 1,860  $\mu$ g/l), lead (1.2  $\mu$ g/l), magnesium (605  $\mu$ g/l), manganese (11.6  $\mu$ g/l), potassium (126  $\mu$ g/l) and sodium (4,250  $\mu$ g/l) were identified in the field blanks from this sampling period. These blanks also apply to Case 8413 (see below). Samples associated with the field blanks which contain these contaminants with concentrations less than five times the blank concentration are considered unusable and flagged "B."

Thirty-one groundwater samples and two field blanks were analyzed by RMAL for metals and cyanide (Case 8413, ITR Nos. MEK997-MEK999, MEM494-MEM497, MEM499, MEM500, MER600-MER619, MER621-MER624) by low concentration procedures. The results for these samples are presented in Table B-5. This case consisted of two sample digestion groups (SDG) with separate QA/QC analyses and separate data reviews. The data are qualified as follows:

- The spike sample recovery for selenium (0 percent) is below the control limits for the 20 samples associated with SDG No. MEK997 (ITR Nos. MEK997-MEK999, MEM494-MEM500, and MEM600-MEM611). All non-detected selenium results for these samples are considered unusable and flagged "R."
- The percent difference after serial dilution for potassium and sodium are beyond the control limits for the 20 samples associated with SDG No. MEK997. All sodium and potassium results are considered estimated and flagged "J."
- o The field blanks discussed with Case 8510 (above) also apply to these samples.

Twenty-two groundwater samples, including two field blanks and one field duplicate, were analyzed for COD, TSS, TOC and alkalinity by Centec Analytical Services, Inc. (SAS Nos. 3449 E19-E34, E68, E69, E97, E98, E100-E105, E147-E162, E183, and E184). Results are presented in Table B-6. The data are qualified as follows:

• COD was measured in both field blanks (7.7 to 8.5 mg/l). Any sample with COD less than 20 mg/l is considered unusable and flagged "B."

## ORGANIC COMPOUNDS

## **Residential Wells**

Thirteen residential well samples and one field blank were submitted to S-Cubed Laboratory for organics analysis (Case 8510, OTR Nos. EQ140-EQ153). All samples were analyzed by low concentration procedures. The results for these samples are presented in Table B-7 and are qualified as follows:

- The holding time limit was exceeded for sample EQ144 and all positive results for this sample are flagged as estimated (J).
- Method blanks contained the common laboratory contaminants methylene chloride (4.4 to 5.2 µg/l), acetone (16 to 20 µg/l), diethylphthalate (1.7 µg/l), and bis(2-ethylinexyl)phthalate (2 µg/l).
   Samples associated with these blanks which contain these contaminants with concentrations less than 10 times the blank values are considered unusable and flagged "B."
- The field blank contained tetrachloroethene  $(1.2 \ \mu g/l)$  and the common laboratory contaminants methylene chloride  $(1.7 \ \mu g/l)$ , toluene  $(3 \ \mu g/l)$ and bis(2-ethylhexyl)phthalate  $(2.9 \ \mu g/l)$ . Samples associated with this blank which contain these contaminants with concentrations less than 5 times the blank concentration for tetrachloroethene or less than 10 times the blank concentrations of the other detected common laboratory contaminants are considered unusable and flagged "B."

## Monitoring Wells

Fourteen water samples and two field blanks were submitted to Hazleton Laboratories for analysis of organic compounds (Case 8510, OTR Nos. EP389, EP390, EQ122, EQ127-EQ139). Sample EQ134 was analyzed for VOCs only while all other samples were analyzed for VOCs and semivolatile organic compounds (SVOCs). All samples were analyzed by low concentration procedures. The results for these samples are presented in Table B-8 and are qualified as follows:

- o Chloroform (0.7 to 2  $\mu$ g/l) and the common laboratory contaminants methylene chloride (2 to 6  $\mu$ g/l), acetone (5 to 20  $\mu$ g/l), and toluene (0.4 to 2  $\mu$ g/l) were identified in method, field, and bottle blanks. Samples associated with these blanks which contain these contaminants with concentrations less than 5 times the chloroform or 10 times the other detected common laboratory contaminant concentrations in the blanks are considered unusable and flagged "B."
- o Due to calibration outliers, the results for acetone (EQ122, EQ127-EQ130, EQ132, EQ133, EQ135-EQ138, EP390), benzene (EQ139), and methylene chloride (all samples) are considered estimated (J).

Thirty groundwater samples and two blanks were submitted to Spectrix Laboratory for analysis of organic compounds (Case 8413, OTR Nos. EP391-EP395, EQ103, EQ104, EQ106-EQ121, EQ123-EQ126, EQ210, EQ211, EQ213-EQ215). In addition, five samples were reextracted for semivolatile organic compounds only. All samples were analyzed by low concentration procedures. The results for these samples are presented in Table B-8 and are qualified as follows:

- Holding times for the five reextracted samples (EP391, EQ113, EQ115, EQ117, EQ213) were exceeded. Results for these samples are flagged as estimated (J).
- o The common laboratory contaminants methylene chloride  $(\mu g/l)$  and bis(2-ethylhexyl)phthalate (2 to 23  $\mu g/l$ ) were identified in the method and field blanks. Samples associated with these blanks which contain these contaminants with concentrations less than 10 times the blank concentrations are considered unusable and are flagged "B."
- Due to calibration outliers, results for acetone in samples EQ109 and EQ110 and 2-butanone in sample EQ111 are considered estimated and flagged "J."

## Low Detection Limit VOCs

Sixty-nine groundwater samples from residential and monitoring wells, including several sets of field triplicates and two field blanks, were analyzed for low concentration VOCs by Spectrix Laboratory (SAS Nos. 3449 E01-E18, E70-E81, E83, E106-E118, E125-E146, E177-E179). A summary of the results is presented in Table B-9. The data are qualified as follows:

- o Chloroform  $(0.05 \mu g/l)$  and benzene  $(0.12 \mu g/l)$  were measured in the field blanks. Any sample concentration less than five times the blank concentrations for these compounds are considered unusable and flagged "B."
- Surrogate spike recoveries were below control limits for samples E07 (52 percent) and E08 (54 percent). No VOCs were detected in these samples; however, the data may have a low bias and the detection limits may be higher than reported.

## Low Detection Limit PAHs

Sixty-nine groundwater samples from residential and monitoring wells, including several sets of field triplicates and two field blanks, were analyzed by SWOK for low concentration PAHs (SAS Nos. 3449 E37-E67, E82, E84-E96, E99, E120-E125, E163-E176, E180-E182). All data should be considered estimated because of analytical difficulties, except those unusable data where blank contamination was likely. Results are presented in Table B-10. A summary of the QA/QC results and data qualification follows:

 Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were measured in the two field blanks, at concentrations from 0.4 to 0.6 ng/l. Any concentrations less than five times field blank concentrations for these compounds in all samples are considered unusable and flagged "B."

- o The laboratory blank summary form was not included in the data package from the laboratory, although it was stated that no blank concentrations exceeded 5.0 ng/l (5.0 ng/l is the CRQL for this SAS). Pending further information from the laboratory or CRL, any data less than 25 ng/l should be considered suspect. (No PAH concentrations above 25 ng/l were measured in any of these samples.)
- o. Fifty-six out of the sixty-nine samples had surrogate spike recoveries below the control limits. The data set as a whole may be biased low, and any usable data should be considered estimated (J).

• Matrix spike recoveries and duplicate results indicate matrix interference for most of the compounds. There were also at least 20 tentatively identified organic compounds in each sample, with many of them matching library spectra of the target compounds. This suggests analytical problems due to interference and supports qualifying the entire set of usable data as estimated.

## SOIL AND SEDIMENT SAMPLE RESULTS AND QUALITY CONTROL REVIEW (STEP I)

## **INORGANIC CONSTITUENTS**

## High Concentration Soil and Sediment

Nine soil samples, separated into solid and aqueous phases, were analyzed by JTC Environmental Consultants for high concentration metals (SAS Nos. 3249 I01-I09). The results for these samples are presented in Table B-11 and are qualified as follows:

- o The aqueous phase analysis spike recovery for lead (81 percent) is below the control limits and all lead results for aqueous samples are considered estimated and flagged "J."
- o The aqueous phase method spike recoveries are beyond control limits for cadmium (127 percent) and cobalt (69 percent). Results for these contaminants in aqueous samples are flagged as estimated (J).
- o The solid phase spike recoveries for iron (75 percent) and silicon (77 percent) are below the control limits. Results for these contaminants are considered estimated and flagged "J."
- The solid phase method spike recovery for antimony (60 percent) is below the control limit and all results for antimony are flagged as estimated (J).

## Subsurface Soil mer

Eleven subsurface soil samples and one field blank were analyzed by RMAL for low concentration metals (Case 8195, ITR Nos. MEM472, MEM475, MEM478-MEM480, MEI789-MEI791, MEG971-ME6974). Samples MEM472 and MEM475 are included

in QC Report No. 87354, and MEM478-MEM480, MEI789-MEI791, and MEG971-MEG974 are included in QC Report No. 87320. The results for these samples are presented in Table B-12 and are qualified as follows:

- Spike sample recoveries for antimony (51 percent), arsenic (145 percent) and selenium (0 percent) are beyond the control limits for QC Report No. 87354. There were no positive results for these constituents. No flags are necessary for antimony or arsenic, and the non-detected selenium results are considered unusable and flagged "R."
- The spike recovery for lead (52 percent) is below control limits for samples in QC Report No. 87320. All lead data may be biased low and are considered estimated (J).

#### Sediment

Twenty-two sediment samples and one field blank were analyzed by RMAL for low concentration metals (Case 8350, ITR Nos. MEM460-MEM469, MEM476, MEM477, MEM481-MEM490, MEM493). The results for these samples are presented in Table B-13 and are qualified as follows:

- The matrix spike recovery for antimony (55 percent) was below control limits and may indicate a low bias. Results are considered estimated and flagged "J."
- o For lead, the spike recovery (459 percent) and duplicate RPD (70.8 percent) are beyond the control limits so that the data are considered unusable (R).
- o The percent difference after serial dilution for aluminum (15 percent), calcium (262 percent), and manganese (69 percent) indicate interference and the data for these sample constituents are flagged as estimated (J).
- o Duplicate results for copper (41.1 RPD) are beyond the control limits, and these data are considered estimated (J).
- Analysis spike results were beyond the control limits for thallium (all samples), selenium (MEM466-MEM469, MEM477, MEM483-MEM484, MEM486, MEM486-MEM489), arsenic (MEM464-MEM465, MEM476-MEM477, MEM482, MEM490, MEM493), and lead (MEM493). Usable results for these samples are considered estimated (J).
- o Method of standard addition correlation coefficients for arsenic in samples MEM466-MEM469, MEM485 and MEM486 were less than 0.995. These data are considered estimated (J).

#### Surface Soil

Eleven surface soil samples and one field blank were analyzed by RMAL for low concentration metals and cyanide (Case 8195 ITR Nos. MEG970, MEG975-MEG979, MEI721, MEI787, MEI792, MEM457-MEM459). The results for these samples are presented in Table B-14 and are qualified as follows:

- o Matrix spike recovery for lead (131.9 percent) is above the control limits. All lead results may be biased high and are considered estimated (J).
- Matrix spike recovery for cyanide (17 percent) is below the control limits and all cyanide data are considered estimated (J). Detection limits may be higher than those listed and the data may be biased low.
- O Duplicate analysis results for copper are beyond the control limits and all copper results are considered estimated (J).
- The percent difference after serial dilution for calcium (10.3 percent) indicates matrix interference and all calcium data are considered estimated (J).
- High percent moisture resulted in elevated detection limits (above CRQL) for cadmium (MEG970, MEG976, MEI721, and MEM457) and lead (MEG970, MEG976-MEG979, MEI721, and MEM461). Data are reported as less than listed laboratory detection limits (e.g., §49.1 mg/l).

## INCINERATION PARAMETERS IN SOIL AND SEDIMENT

Fourteen surface soil and sediment samples and two field blanks were submitted to Weyerhaeuser for analysis of TOC, heating value, ash content, moisture content, and percent content of carbon, nitrogen, oxygen, and sulfur (SAS Nos. 3330 E18, E19, E25-E27, E29, E30, E34, E40, E42, E49, E52, E53, E55, E57, E58, E60-E62). The results for these samples are presented in Tables B-15 and B-16 and are qualified as follows:

- o Total organic carbon data are estimated (J) because of low spike recoveries (78 and 84 percent).
- o Duplicate sample differences for heating value analyses exceeded 50 Btu/lb. Although the RPD was only 8 percent, these values are considered estimated (J) according to the analytical method.

## **ORGANIC COMPOUNDS**

#### Soil and Sediment

Ten sediment samples were submitted to Energy and Environmental Engineering, Inc. for analysis of organic compounds, including pesticides (Case 8350, OTR Nos. EP361-EP366, EP373, EP374, EP378, EP379). All samples were analyzed by low concentration procedures. The results for these samples are presented in Table B-17 and are qualified as follows:

- All pesticide extraction holding times were exceeded, so all pesticide results are considered estimated and flagged "J."
- Compound degradation during chromatographic analysis, especially noted for DDT, affected samples EP365, EP366, EP373, EP378, and EP379. In samples where DDD/DDE results are positive but DDT was not detected, DDT results are considered unusable (R).

- All endrin and endrin ketone/aldehyde results are flagged as preliminary (P) pending further information from the laboratory.
- One or more VOC surrogate spike recoveries were beyond control limits for samples EP363, EP363RE, EP365, EP365RE, EP378, EP378RE, EP379, and EP379RE. All positive results for these samples are flagged as estimated (J).
- Low recovery for the surrogate spike and one or more SVOC internal standard outliers were identified for samples EP378, EP379, EP379RE, EP361, EP374, EP374RE, EP362, and EP362RE. All positive SVOC results for samples EP361, EP378 and EP379, are estimated (J) and all positive results for sample EP362 are estimated (J) for pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, and benzo(k)fluoranthene.
- The common laboratory contaminants methylene chloride (14 to 21 μg/kg), acetone (15 to 22 μg/kg), toluene (3 to 4 μg/kg) and 2-butanone (19 to 28 μg/kg) were identified in the VOC method blanks. Samples with concentrations of these contaminants less than 10 times the blank concentration are considered unusable and flagged "B."
- Due to calibration outliers the following results are considered estimated
   (J): acetone, 2-butanone, indeno(1,2,3-cd)pyrene, and benzo(g,h,i)perylene (all samples); pyrene, chrysene, and benzo(k)fluoranthene (EP362-EP364, EP366).

Eight sediment samples and one field blank were analyzed by American Analytical Technicals for organic compounds, including pesticides (Case 8350, OTR Nos. EP380-EP387, EP391). All samples were analyzed by low concentration procedures, except EP386 and EP387 which were analyzed as medium-level samples. The results for these samples are presented in Table B-17 and are qualified as follows:

- o Sample EP387 was not associated with any VOC method blank in the laboratory data package. The data for this sample are flagged as preliminary (P) until further information is received.
- o The field blank was contaminated with 2-butanone  $(21 \ \mu g/kg)$  and toluene  $(8 \ \mu g/kg)$ . All positive sample results with concentrations of these contaminants less than 10 times the blank concentrations are considered unusable and flagged "B."
- o The method blanks contained chloroform (0.6 to 0.8  $\mu$ g/kg) and the common laboratory contaminants methylene chloride (8  $\mu$ g/kg) and toluene (0.3  $\mu$ g/kg). Samples with chloroform concentrations less than 5 times the blank concentration or with methylene chloride or toluene concentrations less than 10 times the blank are considered unusable and flagged "B."
- o Samples EP381, EP384, and EP385 each had two surrogate recoveries above the control limits in the SVOC fraction. All SVOC data for these samples are considered estimated (J).

Four sediment samples, twelve surface soil samples, eleven subsurface soil samples, and two blanks were analyzed by MetaTrace, Inc. for low concentration VOCs and SVOCs (Case 8195, OTR Nos. EL557, EL558, EP339-EP360, EP369, EP372, EP375-EP377). Results are presented in Tables B-17, B-18, and B-19 and are qualified as follows:

- Holding times were exceeded for all VOC samples except EP341, EP342, EP347, EP369, and EP377. Those data are considered estimated and flagged "J."
- Holding times were exceeded for SVOC samples EP348, EP369, EP372, EP376, and EP377. The data for these samples are considered estimated and flagged "J."
- o VOC method blanks contained the common laboratory contaminants methylene chloride (2 to 5  $\mu$ g/kg), acetone (26 to 43  $\mu$ g/kg), and toluene (6  $\mu$ g/kg). Samples associated with these blanks which contain these contaminants with concentrations less than 10 times the blank concentration are unusable and flagged "B."
- o The surface and subsurface soil field blanks contained methylene chloride (3 to 10  $\mu$ g/kg), acetone (13  $\mu$ g/kg), dibutylphthalate (120 to 3000  $\mu$ g/kg), bis(2-ethylhexyl)phthalate (81 to 470  $\mu$ g/kg) and di-n-octylphthalate (170  $\mu$ g/kg). Associated sample results with concentrations for these compounds less than 10 times those in the field blanks are considered unusable and flagged "B."
- VOC calibration outliers were identified for methylene chloride (EL557, EL558, EP342-EP344, EP349-EP354) and acetone (EL557, EL558, EP339, EP348, EP369, EP375, EP376). Methylene chloride and acetone results for these samples have been flagged as estimated (J).
- SVOC calibration outliers were identified for bis(2-ethylhexyl)phthalate (EP341, EP348, EP369, EP372), indeno(1,2,3-cd)pyrene (EP341, EP348, EP356-EP358, EP354, EP360), and benzoic acid (EP341, EP348, EP356-EP358, EP354, EP360, EP369, EP372). The results for these compounds are considered estimated (J).
- o Two or more SVOC surrogate recoveries were below control limits but greater than 10 percent for samples EP340, EP339, and EP352. The results for these samples are considered estimated (J).
- o Samples EP343, EP347, EP350, and EP354 had at least two surrogate recoveries below 10 percent. The positive results for these samples are considered estimated (J) while the negative results are considered unusable (R).

## Medium Concentration Soil

Nine soil samples, including one field duplicate, were analyzed for medium concentration organic compounds by Nanco Laboratory (SAS Nos. 3155 I01-I09). Results are presented in Table B-20 and qualified as follows:

- Methylene chloride was measured in the method blank at 0.7 µg/kg.
   Any methylene chloride data less than 10 times the blank concentrations are considered unusable and flagged "B."
- Due to calibration outliers, methylene chloride, 1,2-dichloroethane, acetone, 2-chlorophenol, 2-methylnaphthalene, pyrene, and dieldrin in all samples and phenanthrene in samples I01-I08 should be considered estimated and are flagged "J."

### Low Detection Limit PAHs

Forty-eight soil samples, including several sets of field duplicates and two field blanks, were analyzed for low concentration PAHs by Hittman Ebasco Associates, Inc. (SAS Nos. 3330 E01-E48). The results are presented in Tables B-21 to B-23. Due to several analytical or QA/QC difficulties, some of the data should be considered unusable; the rest should be considered estimated. Data qualifications are summarized as follows:

- o Indeno(1,2,3-cd)pyrene (75 to 130  $\mu$ g/kg), dibenzo(a,h)anthracene (110  $\mu$ g/kg), and benzo(g,h,i)perylene (70 to 120  $\mu$ g/kg) were measured in laboratory blanks. Sample concentrations less than five times blank concentrations for these compounds in associated samples are considered unusable and flagged "B."
- o The surrogate spike compounds specified by the SAS were not used in samples E01 through E15, and the surrogate compounds that were used did not include any PAH compounds. Also, surrogate spikes in samples E16 through E48 were added at 30 times the concentration specified by the SAS. Since there are no useful surrogate recovery data for any of the samples, all usable data should be considered estimated (J).
- Data are reported for samples E20, E23, E25, E28, E33, and E46, both 0 undiluted and after diluting by a factor of 10 or 20. Only diluted results are reported for E21, E24, E26 and E45. No reason was given in the data review of laboratory case narrative for the dilutions. Pending an explanation from the laboratory, the undiluted data should be used where both undiluted and diluted sample data are reported. Compounds measured in samples after dilution that were not detected before dilution include: pyrene, chrysene, dibenzo(a,h)anthracene, and benzo(g,h,i)perviene in sample E20DL; fluoranthene and pyrene in sample E23DL; phenanthrene, anthracene, and benzo(g,h,i)perylene in sample E25DL; phenanthrene, fluoranthene, pyrene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, perylene, and indeno(1,2,3-cd)pyrene in sample E28DL; and chrysene in E46DL. These data are all considered unusable (R) for the diluted samples as listed.
- o Sample E36 was re-analyzed and reported as E36RE, although no reason was given by the laboratory for the re-analysis. Pending an explanation from the laboratory, data from E36 should be used rather than E36RE.

- o Benzo(a)pyrene and perylene were not separated by the laboratory chromatographic analysis, and often the same concentration was reported separately for both in one sample. These data are probably from a single peak and should be reported as benzo(a)pyrene plus perylene.
- Data for sample E11 were not listed on the laboratory form. It is not known whether any PAHs were detected in this sample. (Further information from the laboratory was requested but has not yet been received.)
- Poor reproducibility in field duplicates and matrix spike duplicates were apparent for most of the target PAHs. Several calibration outliers were also reported, involving most of the undiluted and all of the diluted samples. These results support the qualification of all usable data as estimated.

### GROUNDWATER SAMPLE RESULTS AND QUALITY CONTROL REVIEW (STEP II)

### **INORGANIC CONSTITUENTS**

Eight groundwater samples from monitoring wells and one field blank were submitted to Rocky Mountain Analytical Laboratory for metals analyses (Case 9571, MER996, MEW308, MEW310, MEW312, MEW314, MEW316, MEW318, MEW320, MEW322). All samples were analyzed by low concentration procedures. The data is presented in Table B-24 and qualified as follows:

- Calcium (94.4 μg/l) potassium (129.0 μg/l), zinc (6.7 μg/l) and lead (4.7 μg/l) were identified in the preparation blanks. Aluminum (80.4 μg/l) calcium (642 μg/l), lead (3.7 μg/l). magnesium (135 μg/l), potassium (125 μg/l) and zinc (11.1 μg/l) were found in the field blank. Samples associated with these blanks which contain these contaminants at concentrations less than five times the blank concentrations are considered unusable and flagged "B."
- Spike sample recoveries for antimony (72.4 percent) beryllium (71.2 percent), chromium (74.0 percent), silver (50.0 percent) and selenium (27 percent) indicate a low bias. All antimony, beryllium, chromium and silver data are considered estimated (J). All the nondetected results for selenium are considered unusable and flagged "R."
- o Duplicate results for cadmium (200 RPD) and silver (23.2 RPD) are beyond the control limits and these data are considered estimated (J).
- Due to interference effects, the results for arsenic (MER996, MEW310, MEW316, MEW318, MEW 320) and thallium (MER996, MEW308, MEW310, MEW316, MEW318), MEW320) are considered estimated (J).

Nineteen groundwater samples from monitoring wells and one field blank were submitted to Rocky Mountain Analytical Laboratory for metals analysis and nineteen filtered groundwater samples and one filtered field blank for metals and cyanide analyses (Case 9542, MER926-962, MER964, MER965, MER971). All samples were analyzed by low concentration procedures. The results are presented in Tables B-24 and B-25 and qualified as follows:

Unfiltered samples (MER 926-962, even numbered, MER 964)

- O Antimony (42.8 µg/l) was reported in the initial calibration blank and potassium (57.2 µg/l) was reported in the preparation blank. Aluminum (86.3 µg/l), barium (2.0 µg/l), calcium (499 µg/l), iron (73.4 µg/l), and potassium (48.5 µg/l) were found in the field blank. Samples associated with these blanks which contain these contaminants at concentrations less than five times the blank concentrations are considered unusable and flagged "B."
- Spike sample recoveries for antimony (39.2 percent), selenium
   (0 percent) and silver (37.2 percent) indicate a low bias. All antimony, and silver results are considered estimated (J). All the nondetected results for selenium are considered unusable and flagged "R."
- Duplicate results for zinc (22.5 RPD) are beyond the control limits and the data are considered estimated (J).
- The percent difference after serial dilution for barium are beyond the control limits and all barium results are considered estimated (J).
- o Due to interference effects, the results for arsenic (MER939), lead (MER944) and thallium (MER926-942, even numbered, MER946-956, even numbered and MER960-964, even numbered) are considered estimated (J).

Filtered samples (MER926-962, odd numbered, MER965, MER971)

- o Antimony (45.7  $\mu$ g/l) and potassium (16.8  $\mu$ g/l) were identified in the initial calibration blanks. Aluminum (103  $\mu$ g/l), calcium (570  $\mu$ g/l), iron (83.0  $\mu$ g/l) and zinc (6.3  $\mu$ g/l) were found in the field blank. Samples associated with these blanks which contain these contaminants at concentrations less than five times the blank concentrations are considered unusable and flagged "B."
- o Spike sample recovery for silver (41.8 percent) indicates a low bias and all silver data is considered estimated (J).
- o Duplicate results for lead (200 RPD) and vanadium (200 RPD) one beyond the control limits and these data are considered estimated (J).
- Due to interference effects, the results for lead (MER941, MER957), selenium (MER927, MER929, MER937, MER939, MER941, MER951, MER953, MER959, MER961, MER965, MER971) and thallium (MER927-933, odd numbered, MER937-943, odd numbered, MER951-

957, odd numbered, MER961, MER965, MER971) are considered estimated (J).

Eight filtered groundwater samples from monitoring wells and one field blank were submitted to Rocky Mountain Analytical Laboratory for metals and cyanide analyses (Case 9571, MER997, MEW309, MEW311, MEW313, MEW315, MEW317, MEW319, MEW321, MEW323). All samples were analyzed by low concentration procedures. The results are presented in Table B-25 and qualified as follows:

- Zinc (12.6 μg/l) and lead (4.4 μg/l) were reported in the preparation blanks. Antimony (55.1 μg/l) was found in the initial calibration blank. The field blank was found to have aluminum (182 μg/l), barium (35.1 μg/l), calcium (878 μg/l), iron (108 μg/l), magnesium (146 μg/l), and zinc (7.2 μg/l). Samples associated with these blanks which contain these contaminants at concentrations less than five times the blank concentrations are considered unusable and flagged "B."
- Spike sample recoveries for silver (51.8 percent) and lead (63.5 percent) indicate a low bias and all silver and lead data are considered estimated (J).
- o Duplicate results for lead (25.4 RPD) are beyond the control limits, and these data are considered estimated (J).

Seventeen groundwater samples from monitoring weils and two field blanks were submitted to Rocky Mountain Analytical Laboratory for metals analysis and seventeen filtered groundwater samples and two filtered field blanks for metals and cyanide analysis (Case 9542, MEW300-307, MER963, MER966-970, MER972-977, MER980-995, MER998, MER99). All samples were analyzed by low concentration procedures. The results are presented in Tables B-24 and B-25 and qualified as follows:

Unfiltered samples (MEW300-307, even numbered, MER966-970, even numbered, MER972-977, even numbered, MER980-955, even numbered, MER998).

- o Calcium (137  $\mu$ g/l), copper (9.5  $\mu$ g/l), and zinc (12.1  $\mu$ g/l), were identified in the preparation blanks. Aluminum (67.5  $\mu$ g/l), calcium (567  $\mu$ g/l), copper (7.2  $\mu$ g/l), lead (5.6  $\mu$ g/l), magnesium (129  $\mu$ g/l), potassium (55.5  $\mu$ g/l), sodium (2180  $\mu$ g/l), and zinc (5.6  $\mu$ g/l) were reported in the field blanks. Field blanks from Case 9542 above also apply to some samples in this group. Samples associated with these blanks which contain these contaminants at concentration less than five times the blank concentration are considered unusable and flagged "B."
- o Surrogate spike recoveries were outside the control limits for aluminum, selenium, and iron. Aluminum and iron results are considered estimated (J), and selenium results are considered estimated (J) for positive results and unusable for nondetected results (R).

ŧ

0 Due to interference effects, results for lead (MER988), selenium (MER966, MER968, MER988, MER304, MER306), and thallium

(MER966-974 even numbered, MER980-995, even numbered, and MEW300-307, even numbered) are considered estimated.

Filtered samples (MEW300-307, odd numbered, MER963, MER966-970, odd numbered, MER972-977, odd numbered, MEW980-955 odd numbered, and MER995).

- Calcium (156 µg/l), copper (11.3 µg/l), magnesium (120 µg/l), and zinc were found in the preparation blanks. Aluminum (49.8 µg/l), barium (31 µg/l), calcium (905 µg/l), copper (8.6 µg/l), lead (7.6 µg/l), magnesium (17.1 µg/l), and zinc (15.2 µg/l) were reported in the field blanks. Field blanks from Case 9542 above also apply to some samples in this group. Samples associated with these blanks which contain the contaminants at concentration less than five times the blank concentrations are considered unusable and flagged "B."
- Spike sample recovery was outside control limits for silver
   (49.6 percent), lead (74 percent), and selenium (126 percent). Results for these compounds are considered estimated (J).
- Method duplicates were outside the control limits for zinc and results for this compound are considered estimated (J).
- Due to interference effects, results for thallium (MER963, MER967, MER969, MER973, MER975, MER980-995, odd numbered, MER999, MEW300-307, odd numbered), arsenic (MER967, MER969, MER975, MER981, MER983, MER987, MER989, MER993, MER995) and lead (MER977, MER995), are considered estimated.
- o Due to low correlation coefficients, results for lead (MER989) and selenium (MER973, MER975, MER981, MER983, MER989, MER993, MER995, and MER987) are considered estimated (J).

### ORGANIC COMPOUNDS

Ten groundwater samples from monitoring wells and one field blank were submitted to PEI Associates, Inc., for analysis of organic compounds (Case 9571, OTR Nos. EW547-556, EW540). EW550 and EW552 were analyzed for VOCs only and EW556 for semi-volatile organic compounds only (SVOCs). All other samples were analyzed for VOCs and SVOCs. All samples were analyzed by low concentration procedures. EW548 was diluted and reanalyzed. The results for these samples are presented in Table B-26 and qualified as follows:

- o 2-butanone was reported in EW550 and EW555 and a laboratory blank but the spectrum was actually 1,2-dichloroethane-d4.
- o 2-methylnaphthalene was reported in EW554 but due to poor spectral matching and poor retention time matching, EW554 was considered unusable and flagged "R" for this compound.
- o 2-hexanone  $(9 \mu g/l)$  and the common laboratory contaminant, acetone (6 to  $10 \mu g/l$ ) were identified in the laboratory blanks. The common

laboratory contaminants, methylene chloride (5 to 13  $\mu$ g/l) and di-n-butyl phthalate (4  $\mu$ g/l) were found in the laboratory and field blanks and also chloroform (30  $\mu$ g/l) was found in the field blanks. Samples associated with these blanks which contain these concentrations at concentrations less than five times the 2-hexanone or chloroform or 10 times the common laboratory contaminant blank concentrations are considered unusable and flagged "B."

- o Due to calibration outliers, the results for 2-butanone (all samples) are considered unusable and flagged "R" and for bis(2-ethylhexyl) phthalate (all samples) are considered estimated (J).
- o Due to interference effects, the results for 1,2-dichloroethene (EW548) and vinyl chloride (EW548) are considered estimated (J).
- o The holding time for VOC analyses for sample EW540 was exceeded by two days. All aromatic compounds in this sample are considered estimated and flagged "J."

Thirty-nine monitoring well groundwater samples and three field blanks were submitted to S-Cubed Laboratory for analyses of organic compounds (Case 9542, OTR Nos. EW503-EW530, EW532-EW539, EW541-EW547). Samples EW535, EW508, EW527 where analyzed for VOCs only. EW542 and EW524 were analyzed for semivolatile organic compounds (SVOCs) only. All other samples were analyzed for VOCs and SVOCs. Sample EW534 was diluted and reanalyzed. All samples were analyzed by low concentration procedures. The results for these samples are presented in Table B-26 and are qualified as follows:

- o The common laboratory contaminants methylene chloride  $(3-8 \ \mu g/l)$  was found in the field and laboratory blanks. Chloroform  $(32 \ \mu g/l)$  was found in the field blanks. Common laboratory contaminants, acetone  $(9-22 \ \mu g/l)$  and di-n-butyl phthalate  $(8 \ \mu g/l)$  were found in the laboratory blanks. Samples associated with these blanks which contain these contaminants at concentrations less than five times the chloroform or ten times the other detected common laboratory contaminants are considered unusable and flagged "B."
- Due to calibration outliers, the results for 2-butanone (EW534, EW535, EW537, EW539, EW541, EW544) are considered unusable (R) for nondetected results and estimated (J) for detected results. Also due to calibration outliers, the results for acetone are considered estimated (J).
- Surrogate spike recoveries were below control limits for more than one SVOC surrogate for EW534 (9 percent, 9 percent) and EW534RE (8 percent, 9 percent). The data are biased low and all SVOC results for these samples are flagged estimated (J) for detected compounds and unusable (R) for undetected compounds. Detection limits may be higher than reported.
- Matrix spike recovery for sample EW515 was very low (0 percent) for
   4-Nitrophenol. Results for the unspiked sample were considered
   estimated (J) by the CRL Reviewer although no SVOCs were detected.

• The holding times for re-extraction for EW534RE was exceeded. All positive results are considered estimated (J).

### Low Detection Limit VOCs

Twenty-three groundwater samples from monitoring wells including three sets of duplicates and two sets of triplicates, three field blanks, and one bottle blank were submitted to S-Cubed Laboratory for low concentration VOCs analysis (SAS Nos 3784-E17, E24-E26, E28, E30-E32, E34, E36, E37, E39, E42, E45, E47, E49, E50, E54, E56, E57, E59, E61, E63, E65, E66, E68, E70). A summary of the results is presented in Table B-27. The data are qualified as follows:

- 0 Chloroform (0.004 to 24.3  $\mu$ g/l), trichloroethene (0.007 to 0.11  $\mu$ g/l) and tetrachloroethene (0.011 to 0.49  $\mu$ g/l) were identified in the laboratory, field and bottle blanks. Samples associated with these blanks which contain these contaminants at concentrations less than five times the blank concentrations are considered unusable and flagged "B."
- o Due to calibration outliers, the results for tetrachloroethene (all samples) were considered estimated (J) for positive results and unusable (R) for nondetected results.
- o Matrix spike recoveries for Sample E31 were high for vinyl chloride (230, 248 percent) and carbon tetrachloride (149, 190 percent). Results for the unspiked sample were considered estimated (J) by the CRL reviewer, although no carbon tetrachloride was detected.

Fifteen monitoring well groundwater samples including one set of duplicates and four sets of triplicates, one field blank, and one bottle blank were submitted to S-Cubed Laboratory for low concentration VOCs analysis (SAS Nos. 3784-E72, E74, E76, E77, E80, E82, E83, E86, E88, E89, E91, E93-E95, E97-E99). A summary of the results is presented in Table B-27. The data are qualified as follows:

- o Chloroform (0.008 to 23.1  $\mu$ g/l), trichloroethene (0.008 to 0.133  $\mu$ g/l) and tetrachloroethene (0.017 to 0.317  $\mu$ g/l) were found in the laboratory, field and bottle blanks. Samples associated with these blanks which contain these contaminants at concentrations less than five times the blank concentrations are flagged "B" and considered unusable.
- o Matrix spike recoveries for Sample E93 were out of control limits for vinyl chloride (142-147 percent), and benzene (6-44 percent). Positives in the unspiked sample were considered estimated (J) by the CRL Reviewer.

### Low Detection Limit PAHs

Thirty-seven monitoring well groundwater samples including several sets of duplicates and triplicates, and four field blanks were submitted to Datachem Laboratories for low concentration PAH analysis (Case SAS3784, E18-E23, E27, E29, E33, E35, E38, E40-E41, E43, E44, E46, E48, E51-E53, E55-E56, E58, E60, E62, E64, E67, E69, E71, E73, E75, E78, E79, E81, E84, E85, E87, E90, E92, E96, E100). The results are presented in Table B-28. Due to severe analytical or QA/QC difficulties, all nondetected data should be considered unusable (R) and the positive results should be considered estimated (J) except unusable data (B) due to blank contamination. Samples E-46, E90, E92, E96, and E100 were diluted and reanalyzed as quantitative values were out of the range of the standard curve.

Data qualifications are summarized as follows:

- Naphthalene (1 to 3 ng/l), acenaphthene (0.4 ng/l), fluoranthene (0.2 to 2 ng/l), pyrene (0.1 to 1 ng/l), indeno (1,2,3-cd) pyrene (5 ng/l), phenanthrene (1 ng/l), 1-methylnaphthalene (4 ng/l), and
   2-methylnaphthalene (1 ng/l) were measured in the laboratory blanks. Naphthalene (3 to 9 ng/l), phenanthrene (0.7 to 1 µg/l), 1-methylnaphthalene (2 to 6 ng/l) were also found in the field blanks. Sample concentration of these contaminants which are less than five times blank concentrations for these compounds in associated samples are considered unusable and flagged "B."
- Results for surrogate spike and matrix spike analyses were out of control limits for most of the data. Results support the qualification of all usable data as estimated (J).
- Holding times from collection to extraction for all samples was exceeded by one day but should not affect the data quality.
- Poor reproducibility in field duplicates and matrix spike duplicates was apparent for most of the target PAHs. Several calibration outliers were also reported, involving most of the undiluted and the diluted samples. These results support the qualification of all usable data as estimated. All nondetected results are probably unusable (R) with elevated detection limits.

### SUBSURFACE SOIL AND SLUDGE SAMPLES RESULTS AND QUALITY CONTROL REVIEW (STEP II)

### **INORGANIC CONSTITUENTS**

### Subsurface Soil

Twenty-three subsurface soil samples and two field blanks were submitted to Chemtech Consulting Group for metals and cyanide analysis (Case 9692, MEW324-348). All samples were analyzed by low concentration procedures. The results are presented in Table B-29 and qualified as follows:

- o Spike sample recoveries were out of control limits for antimony, copper, manganese, and thallium. Copper, manganese and thallium data are considered estimated (J) and antimony data are considered unusable (R).
- o The percent difference after serial dilution for vanadium are beyond the control limits and all vanadium results are considered estimated (J).

### Sludge

Sixteen sludge samples and one field blank were submitted to JTC Environmental Consultants for metals analysis (Case SAS3249, ITR Nos. MER907, MER909, MER910, MER912-925). All were analyzed by high concentration procedures. All samples were found to be 100 percent solid phase. The results are presented in Table B-30 and qualified as follows:

- Spike sample recoveries for antimony, copper, manganese, nickel, and silver were out of control limits. All antimony, copper and manganese results are considered estimated (J) and all nickel and silver data are considered estimated (J) for positive results and unusable (R) for nondetected results.
- o Duplicate results for barium (40 RPD), iron (57 RPD), lead (39 RPD) and silicon (45 RPD) are beyond the control limits usually set for soil samples although no controls have been specified for these SAS analyses and these data are considered estimated (J).
- o Laboratory control samples were out of the 80-120 percent control limits generally specified for aqueous samples for beryllium, copper, nickel and sodium and these data are considered estimated (J). No control limits were specified for these SAS analyses.
- Correlation coefficients for selenium (MER923) and sodium (MER910) were out of control, and the selenium and sodium results are considered estimated (J) for these samples.

### INCINERATION PARAMETERS IN SOIL AND SLUDGE

### Subsurface Soils

Fourteen subsurface soil samples and two field blanks were submitted to Weyerhaeuser Laboratory for incineration parameter analysis including moisture content, ash content, total moisture, percent volatile matter, percent fixed carbon, heating value, and percent carbon, hydrogen, nitrogen, oxygen and sulfur content (Case SAS3784-E101, E102, E107, E110, E113, E119, E121, E123, E125, E130, E135, E138, E142, E145, E149, E151).

Fourteen subsurface soil samples and two field blanks were also submitted to the Weyerhaeuser Laboratory for TOC analyses (Case SAS3784-E104, E108, E109, E111, E114, E115, E120, E122, E126, E131, E136, E139, E143, E146, E150, E152) for TOC analyses. The laboratory was unable to analyze sample E143 for TOC using the method specified as the sample was too oily. The results are presented in Table B-31 and qualified as follows:

• Method duplicates for percent carbon and hydrogen content were out of control limits (>10 percent RPD per SAS protocol) and samples for these analyses are considered estimated (J).

### Sludge

Fifteen sludge samples and one field blank were submitted to Versar Laboratory for incineration parameter analysis including moisture content, ash content, percent sulfur and chlorine content, and heating value (SAS3784-E01-E16). Six samples were also analyzed for viscosity. The results are presented in Table B-32 and qualified as follows:

o Field duplicate sample differences for heating value analyses for E09 and E10 exceed 59,000 Btu/lb (155 percent RPD) and the results for this parameter are considered estimated (J).

### ORGANIC COMPOUNDS

### Subsurface Soil

Twenty-four subsurface soil samples and two field blanks were submitted to Gulf-South Research Institute for analysis of organic compounds (Case 9629, EW557, EW559-EW583). EW569 was analyzed for VOCs only and EW572 and EW562 were analyzed for SVOCs only. All samples were analyzed by low concentrations procedures. The results are presented in Table B-33 and qualified as follows:

The common laboratory contaminants, methylene chloride  $(4 \ \mu g/kg)$  to 91  $\mu g/kg$ ) and acetone  $(4 \ \mu g/kg)$  to 31  $\mu g/kg$ ) were found in the laboratory and field blanks. In addition, toluene  $(15 \ \mu g/kg)$ , also a common laboratory contaminant was found in one field blank. Samples associated with these blanks which contain these contaminants at concentrations less than 10 times the blank concentrations were considered unusable and flagged "B."

ţ

Due to calibration outliers, the results for 2-Butanone (all samples) were flagged "R," unusable if not detected and "J," estimated for positive results. Also due to calibration outliers, the results for acetone and 4-methyl-2-pentanone (EW567, EW560, EW562-564, EW573-575, EW571, EW579, EW580) are considered estimated (J).

### Sludge

Sixteen sludge samples and one field blank were submitted to to S-Cubed Laboratory for analyses of organic compounds including VOCs, SVOCs, and pesticides/PCBs (Case SAS31551, Set 36, OTR Nos. ES595, ES597, ES598, ES600-611), EW501, EW502). All samples were analyzed by high concentrations procedures. The results for these analyses are presented in Table B-34 and qualified as follows:

- Methylene chloride (0.011 mg/l) was reported in the laboratory blank.
   No data was affected as all concentrations in the samples were greater than 10 times the methylene chloride concentration in the blanks.
- Due to calibration outliers, the results for methylene chloride (all samples), acetone (all samples), tetrachloroethene (EW562, ES604, ES598, ES607, EW601), and 2-butanone (all samples) are considered estimated (J), 4-Methyl-2-Pentanone results (ES597, ES610, ES602) are

considered unusable (R). Also due to calibration outliers, the results for 4,4'-DDD (all samples) and 4,4'-DDT (all samples) are considered estimated (J) and the results for Endosulfan-I (all samples) and Endosulfan-2 (all samples) are considered unusable (R).

 Surrogate spike recoveries were outside of required control limits for VOCs in ES597, and ES607. Positive VOC results were considered estimated (J) for these two samples.

### Low Detection Limit PAHs

Twenty subsurface soil samples and two field blanks were submitted to Data Chem Laboratories for low concentration PAH analysis (Case SAS3784, E103, E105, E106, E112, E116-118, E124, E127-E129, E132-E134, E137, E140, E141, E144, E147, E148, E153, and E154). No positives were detected in the samples. No qualification of the data was necessary. Table B-35 presents the compounds which were analyzed for but not detected.

#### REFERENCES

CH2M HILL. Quality Assurance Project Plan, Arrowhead Refinery Site. August 21, 1987.

U.S. Environmental Protection Agency. Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. 1985.

U.S. Environmental Protection Agency. Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses. 1985.

U.S. Environmental Protection Agency. Standard Operating Procedure for Contract Compliance Screening (CCS) of Routine Analytical Services Analyses of Inorganics Data. 1987.

GLT932/037.51

### Table B-1 TARGET ANALYTE LIST AND CONTRACT REQUIRED QUANTIFICATION LIMITS

Inorganic Target Analyte	Quantification Limit Low Concentration Analysis ^a (µg/l)
Aluminum	200
Antimony	60
Arsenic	10
Barium	200
Beryllium	5
Cadmium	5
Calcium	5,000
Chromium	10
Cobalt	50
Copper	25
Iron	100
Lead	5
Magnesium	5,000
Manganese	15
Mercury	0.2
Nickel	40
Potassium	5,000
Selenium	5
Silver	. 10
Sodium	5,000
Thallium	10
Vanadium	50
Zinc	20
Cyanide	10

^a The quantification limits for samples may be considerably higher depending on the sample matrix. Those for soil are approximately 200 times higher than values listed, in mg/kg units.

[12/87]

GLT932/038.50

# Table B-2 (Page 1 of 4) TARGET COMPOUND LIST AND CONTRACT REQUIRED QUANTIFURATION LIMITS

			Low Conc	fication Limits entration Analysis ^{a,b}
			Water	Soil/Sediment ^c
Vola	tile	CAS Number	<u>(11g/l)</u>	<u>(µg/kg)</u>
<u></u>				
1.	Chloromethane	74-87-3	10	10
2.	Bromomethane	74-83-9	10	10
3.	Vinyl Chloride	75-01-4	10	10
4.	Chloroethane	75-00-3	10	10
5.	Methylene Chloride	7 <b>5-09-2</b>	5	5
6.	Acetone	67 <b>-64-</b> 1	10	10
7.	Carbon Disulfide	75-15-0	5	5
8.	1,1-Dichloroethene	75-34-4	5	5
9.	1,1-Dichloroethane	75-33-3	5	5 5 5
10.	1,2-Dichloroethene (total)	540-59-0	5	<b>5</b> .
11.	Chloroform	67-77-3	5	5
12.	1,2-Dichloroethane	107-06-2	5	5
13.	2-Butanone	78-93-2	10	. 10
14.	1,1,1-Trichloroethane	71-55-6	5	5
15.	Carbon Tetrachloride	56-23-5	. 5	5
16.	Vinyl Acetate	108-05-4	10	10
17.	Bromodichloromethane	75-27-4	5	5
18.	1,1,2,2-Tetrachloroethane	79-34-5	5	5 5 5
19.	1,2-Dichloropropane	78-87-5	5	2
20.	Cis-1,3-Dichloropropene	10061-02-5	5	3
21.	Trichloroethene	79-01-6	5	5 5 5 5 5
22.	Dibromochloromethane	124-48-1	5 5 5	5
23.	1,1,2-Trichloroethane	79-00-5	5	5
24.	Benzene	71-43-2	5 5	5
25.	Trans-1,3-Dichloropropene	10061-01-6	5	<b>.</b>
26.	Bromoform	75-25-2	5	5
27.	2-Hexanone	591-78-6	10	10
28.	4-Methyl-2-pentanone	108-10-1	10	10
39.	Tetrachioroethene	127-18-4	5	5
30.	Toluene	108-88-3	5.	· 5
31.	Chlorobenzene	108-90-7	5	5 5 5
32.	EthyiBenzene	100-41-4	5 5	5
33.	Styrene	100-42-5	5	
34.	Xylenes (total)	133-02-7	5	5 330
35.	Phenol	108-95-2	10	550

Note: Specific quantification limits are highly matrix dependent. The quantification limits listed herein are

provided for guidance and may not always be achievable. ² Quantification limits listed for soil/sediment are based on wet weight. The quantification limits calculated by the laboratory for soil/sediment, calculated on dry weight basis as required by the contract, will be higher. ^b Highconcentration Contract Required Quantification Limits (CRQLs) vary, depending on sample dilution.

^c Medium soil/sediment CRQLs for volatile TCL compounds are 100 times the individual low soil/sediment CRQL; for semivolatile TCL compounds they are 60 times the individual low soil/sediment CRQL.

				ntification Limits concentration Analysis ²		
			Water	Soil/Sediment ^b		
-		CAS Number	<u>(ug/l)</u>	( <u>ug/kg)</u>		
Sou	ivolatile (Continued)					
36	bis(2-Chloroethyl)ether	111 44 4	10	220		
37.	2-Chlorophenol	111-44-4 95-57-8	10	330 330		
38.	1.3-Dichlorobenzene	541-73-1	10	330		
39.	1,4-Dichlorobenzene	106-46-7	10 10	330		
40.	Benzyl Alcohol	100-51-6	10	330		
<del>-</del> 0.	Denzyi Alconor	100-51-0	10	550		
41.	1,2-Dichlorobenzene	95-50-1	10	330		
42.	2-Methylphenol	95-48-7	10	330		
43.	bis(2-Chloroisopropyl)ether	39638-32-9	10	330		
44.	4-Methylphenol	106-44-5	10	330		
45.	N-Nitroso-Dipropylamine	621-64-7	10	330		
46.	Hexachloroethane	67-72-1	10	<b>330</b> .		
47.	Nitrobenzene	98-95-3	10	330		
48.	Isophorone	7 <b>8-59-</b> 1	10	330		
49.	2-Nitrophenol	88-75-5	10	330		
50.	2,4-Dimethylphenol	105-67-9	10	. 330		
5I.	Benzoic Acid	65-85-0	50	1,600		
52	bis(2-Chloroethoxy)methane	111-91-1	10	330		
53.	2,4-Dichlorophenol	120-83-2	10	330		
54.	1,2,4-Trichlorobenzene	120-82-1	10	330		
55.	Naphthalene	91-20-3	10	330		
56.	4-Chloroaniline	106-47-8	10	330		
57.	Hexachlorobutadiene	87-68-3	10	330		
58.	4-Chioro-3-methylphenol					
	(para-chloro-meta-cresol)	59-50-7	10	330		
59.	2-Metsdhylnaphthalene	91-57-6	10	330		
60.	Hexachlorocyclopentadiene	77-47-4	10	330		
61.	2,4,6-Trichlorophenol	88-06-2	10	330		
62.	2,4,5-Trichlorophenol	95-95-4	50	1,600		
63.	2-Chloroanaphthalene	91-58-7	10	330		
64.	2-Nitroaniline	88-74-4	50	1,600		
65.	Dimethyl Phthalate	131-11-3	10	330		
<del>66</del> .	Acenaphthylene	208-96-8	10	330		
67.	2,6-Dinitrotoluene	606-20-2	10	330		
68.	3-Nitroaniline	<del>99-09-</del> 2	50	1,600		
<b>69</b> .	Acenaphthene	83-32-9	10	330		
70.	2,4-Dinitrophenol	51-28-5	50	1,600		
	-					

Note: Specific quantification limits are highly matrix dependent. The quantification limits listed herein are

higher. ^b Highconcentration Contract Required Quantification Limits (CRQLs) vary, depending on sample dilution. ^c Medium soil/sediment CRQLs for volatile TCL compounds are 100 times the individual low soil/sediment CRQL; for semivolatile TCL compounds they are 60 times the individual low soil/sediment CRQL.

provided for guidance and may not always be achievable. ^a Quantification limits listed for soil/sediment are based on wet weight. The quantification limits calculated by the laboratory for soil/sediment, calculated on dry weight basis as required by the contract, will be

			Low Conc	fication Limits entration Analysis ^a
			Water	Soil/Sediment ^b
		<u>CAS Number</u>	(11g/l)	<u>(µg/kg)</u>
Semi	volatile (Continued)			
71.	4-Nitrophenol	100-02-7	50	1,600
72	Dibenzofuran	132-64-9	10	330
73.	2,4-Dinitrotoluene	121-14-2	10	330
74.		84-66-2	10	330
75.	Diethylphthalate 4-Chlorophenyl Phenyl ether	7005-72-3	10	330
75.	ФСлюгоршенут гненут еспет	/003-72-3	10	550
76.	Fluorene	86-73-7	10	330
77.	4-Nitroaniline	100-01-6	50	1,600
78.	4,6-Dinitro-2-methylphenol	534-52-1	50	1.600
79.	N-nitrosodiphenylamine	86-30-6	10	330
80.	4-Bromophenyi Phenyi ether	101-55-3	10	330
	·			
81.	Hexachlorobenzene	118-74-1	10	330
82	Pentachlorophenol	87-86-5	50	1,600
83.	Phenanthrene	85-01-8	10	330
84.	Anthracene	120-12-7	10	330
85.	Di-n-butylphthalate	84-74-2	10	330
86.	Fluoranthene	206-44-0	10	330
87.	Pyrene	1 <b>29-00-0</b>	10	330
88.	Butyl Benzyl Phthalate	85-68-7	10	330
89.	3,3'-Dichlorobenzidine	91 <b>-94-</b> 1	20	660
90.	Benzo[a]anthracene	56-55-3	10	330
91.	Chrysene	218-01-9	10	330
92.	bis(2-ethylhexyl)phthalate	117-81-7	10	330
93.	Di-n-octyl Phthalate	11 <b>7-84-</b> 0	10	330
94.	Benzo(b)fluoranthene	205-99-2	10	330
95.	Benzo k fluoranthene	207-08-9	10	330
96.	Benzo[a]pyrene	50-32-8	10	330
<b>97</b> .	Indeno[1,2,3-cd]pyrene	193-39-5	10	. 330
<b>98.</b>	Dibenz[a,h]anthracene	53-70-3	10	330
<b>99</b> .	Benzo[g,h,i]perylene	191-24-2	10	330
100.	alpha-BHC	319-84-6	0.05	8.0
		210.06 8	0.05	8.0
	beta-HBC	319-85-7	0.05	
	deita-BHC	319-86-8	0.05	8.0 8.0
	gamma-BHC (Lindane)	58-89-9	0.05	
104.	<u>F</u>	76-44-8	0.05	8.0
105.	Aldrin	309-00-2	0.05	8.0

Note: Specific quantification limits are highly matrix dependent. The quantification limits listed herein are provided for guidance and may not always be achievable.

^a Quantification limits listed for soil/sediment are based on wet weight. The quantification limits calculated by the laboratory for soil/sediment, calculated on dry weight basis as required by the contract, will be higher.

higher. ^b Highconcentration Contract Required Quantification Limits (CRQLs) vary, depending on sample dilution. ^c Medium soil/sediment CRQLs for volatile TCL compounds are 100 times the individual low soil/sediment CRQL; for semivolatile TCL compounds they are 60 times the individual low soil/sediment CRQL.

			fication Limits
		Low Cond Water	centration Analysis ^a Soil/Sediment ^b
	CAS Number	(ug/l)	(ug/kg)
Pesticides/PCBs			
106. Heptachior Epoxide	1024-57-3	0.05	8.0
107. Endosufan I	959-98-8	0.05	8.0
108. Dieldrin	<b>60-57-</b> 1	0.10	16.0
109. 4,4'-DDE	72-55-9	0.10	16.0
110. Endrin	72-20-8	0.10	16.0
111. Endosulfan II	33213-65-9	0.10	16.0
112. 4,4'-DDD	72-54-8	0.10	16.0
113. Endosulfan sulfate	1031-07-8	0.10	16.0
114. 4,4'-DDT	50-29-3	0.10	16.0
115. Endrin Ketone	53494-70-5	0.10	16.0
116. Methoxychlor	72-43-5	0.5	80.0
117. Alpha-chlordane	510 <b>3-</b> 71-9	0.05	80.0
118. gamma-chlordane	5103-74-2	0.05	80.0
119. Toxaphene	8001-35-2	1.0	160.0
120. PCB Arochlor-1016	12774-11-2	0.5	80.0
121. PCB Arochlor-1221	11104-28-2	0.5	80.0
122. PCB Arochlor-1232	11141-16-5	0.5	80.0
123. PCB Arochlor-1242	53469-21-9	0.5	80.0
124. PCB Arochlor-1248	12672-29-6	0.5	80.0
125. PCB Arochlor-1254	11097-69-1	1.0	1 <b>60</b> .0
126. PCB Arochlor-1260	11096-82-5	1.0	160.0

Note: Specific quantification limits are highly matrix dependent. The quantification limits listed herein are provided for guidance and may not always be achievable.

^b Highconcentration Contract Required Quantification Limits (CRQLs) vary, depending on sample dilution.

^a Quantification limits listed for soil/sediment are based on wet weight. The quantification limits calculated by the laboratory for soil/sediment, calculated on dry weight basis as required by the contract, will be higher.

^c Medium soil/sediment CRQLs for volatile TCL compounds are 100 times the individual low soil/sediment CRQL; for semivolatile TCL compounds they are 60 times the individual low soil/sediment CRQL.

### Table B-3 DATA QUALIFIERS

Symbol <u>Data Flag)</u>	Definition and Explanation
В	Blank Contamination
	Chemical contaminants were also found in laboratory or field blank. Data were not flagged if sample concentration exceeds blank concentration by at least a factor of 10 for common laboratory contaminants (methylene chloride, acetone, toluene, and phthalate esters), or a factor of 5 for other contaminants. Data not meeting this criterion are flagged and are insidered unusable. Data are not corrected by succenting the blank value.
J	Estimated Value
	Concentration was above the analytical detection limit but less than CRQL.
	Or,
	One or more associated QA/QC parameters were beyond control limits.
R	Unusable Data
Ν	Compound Identification Not Confirmed
	Mass spectrum did not confirm compound ID, but CRL reviewer judges compound identification to be accurate.

હાલન કરવા થયે કહી કુ

GLT932/040.50

## TABLE B-4 ARROWHEAD -FIELDWORK DESIGN INVESTIGATION RESIDENTIAL WELLS ISTEP I) INDRGANIC DATA

-

. .

EAMPLE LOCATION: CRL SAMPLE NAMBER: IND CASE NAMBER: ITR NAMBER: ANON TORY: ANTE SAMPLED:	RW-01-03 88H/02556 8510 8510 8510 8641 841 841 81/18/87	RW-02-03 8811/02558 8510 MER 650 AL4 11/18/87	RW03-03 88HV02S59 8510 4ER 647 AL1 11/18/87	RW-04-63 88HV02551 8510 MER 648 ALI 11/18/87	RW-06-03 88HW02553 85HW 85H 86H 86H 86H 84H 84H 84H 84H 84H 84H 84H 84H 84H 84	RW-07-03 88HV02555 8510 8ER 640 AL1 11/18/87	RW-08-03 881W02556 8516 MER 639 AL1 11/18/87	RW- 10-03 884402547 8510 MER 637 AL1 13/18/87	RW-11-03 66HV02S54 8510 MER 638 AL1 11/16/87	RW- 12-93 8414/02549 8510 #ER 642 AL1 11/18/87
ug/1) .tuhinus										
elentim rsenic arium	2.1 j 49 8	 39 B	1.9   62 ₪	1.5 j 1.5 j 32 b	 26 B	2.1 j 55 a	56 B	50 B	6.3 J 49 B	52 8
eryilium admium Bicium hromium	 45 190 	33500	75 100	0.72 33200	 587 B	20200	1.2	 96200	39900	0.35 j 66700
obait Opper ron zad	  66 B	 	11 B 63 B 0 73 B	20 B 172 B 2.1 B	19 8 34 8 0 9 h	250 8	31 B 167 B	26 B 284 B	 11 8 67 8 1 6 8	37 8 113 8 1.0 0
agnesium Anganese Efcury icket	24000 242	12400 0 80 j	31600 23 U	12500 0.49 j	117 B.	(J800 10 B	29200	26 300 36	27700	32600
olassium elenium ilver odium	••• •760	  6420	+520	5860	157000		39206	( )760	 14300 j	29740
hailium Bradium Inc Yanide	252	••• ••• 64 2.6 j	24 8	48 8	 17 B 2.6 J	 14 B	41 8		217	46 8

"---" - Not detected j - Estimated concentration B - Blank contamination

~

## TABLE 8-4 ARROWHEAD -FIELDWORK DESIGN INVESTIGATION RESIDENTIAL WELLS (SIEP 1) INDRGANIC DATA

.

~

----

SAMPLE LOCATION: CRL SAMPLE ACMBER: SMO CASE NUMBER: ITR NUMBER: LABORTORY: DATE SAMPLED: (Ug/1)	RW- 13-03 847r02552 8510 468 649 AL1 11/18/87	RW- 14-03 <b>\$\$110</b> #\$16 #\$8 643 AL1 11/18/87	RW- 15-03 8814002560 8510 MER 645 AL1 11/18/87	FIELD BLANK BEHVO2S46 B510 MER 644 AL1 11/18/87
Aluminum Selenuim Arsenic Barlum	  65 B	  38 B	53 6	
Beryilium Cadmium Calçium Chromium	11200	21200	47300	608 j
Cobalt Copper Jrun Lead	14 B 156 B	58 B	70 \$0 \$	11 59 B 0.62 B
mègnessum Nanganese Netcury Nickel	34600 7.1.8	9570 6 3 8	i4 100	49 B
Polassium Selenium Silver Sodium		4190 B	 8850	· · i 180
The I I i um Vēnadi um Zinc Cyanide	206	32 0	47 B	15 B

 $\sim$ 

٠

"..." - Not detected j - Estimated concentration B - Blank contamination

.

## TABLÉ B-5 ARRONHEAD - FIELD WORK DESIGN INVESTIGATION GROUNDWATER ISTEP I) INORGANIC DATA

....

 $\sim$ 

.

Page 1 of 4

SAMPLE LOCATION: CRL SAMPLE NAMBER: SAW CASE NAMBER: ITE NAMBER: LABORATORY DATE SAMPLED: (Ug/1)	NW-01A-03 88+1402509 8413 MEM 605 RMAL 11/11/87	MW-02A-03 881W02539 8510 MER 628 RMAL 11/16/87	W-028-03 88HV02534 8413 MER 624 RMAL 11/13/87	MW-02C-03 68HV02S32 8413 MER 622 RMAL 11/13/87	MW-02E-01 88HW02S40 8510 MER 629 RMAL 11/16/87	MF-82-03 881/022501 8510 MEK 995 RMAL 11/17/87	MW-03A-03 88HV02525 8413 MER 615 RMAL 11/12/87	MW-038-03 8817002526 8413 MER 616 RMAL 11/12/87	WW-035-01 88/W02527 0413 MER 617 RMAL 11/12/87	MF-846-03 881702502 8510 MEK 996 RMAL 11/17/87	MW-05A-03 88HV02542 8510 MER 632 RMAL 11/16/87	MW-05A-03 86HV02042 8510 MER 632 RMAL 11/16/87	MW-058-01 8819402543 8510 MER 634 RMAL 11/16/87
A luminum An Limony Ar Senic Bar Jum	70.1 B  19 B	32.4 B  197 j	37.8 k  68.8 k	21 4 6  55.7 6	 38.8 8	24.1 B	29 2 B  24 4 B	26 9 B	27.98	54.4 B	93.3 B	74 74 74 74	  60 B
Serylium Cadmium Calcium Chromium	48900		24500	27500	29300	8 (800	27 300	23200	72200	4 1490	 \$2100	NA NA NA NA	98500
Coball Copper Iron Lead	 09.1 j 1.2 B	5790	50.7 j	35.9 J	 	13.5 j 12600 1.8 B	  47   	 46.9 j 1.1 B	1090	(1.3.)	67.7 J	NA NA NA NA	 70 1
wagnesium wanganese wercury Nickei	14600 5.1 B	3 1400 10 10	11200 45.6 8	11500 37.9 B	9250 6.4 B	28400 1860	13200 34.6 8	11700 29 9 B	27 100 4750	20490 149  7.4 j	29600 127	NA NA NA NA	39800 64
Polassium Selenium Silver Sodium	614 B R  7930 B	2100 j 	444 j 5.5 j 6910 B	911 J  \$ J 6390 B	1680 J	1620 j 19400 B	1200 j 5.1 j 10900 <b>0</b>	1 999  5 9 j 9380 8	3380, j 6 .5 j 33900	1460 J	1260 j  7460 B	NA NA NA NA	1590 j  7500 a
Thailium Vanadium Zinc	<b>5</b> J	3.6 J 67.4	 74.9	  40.9	  	4.8 j 49.7	 		 57. 1	  16.8 j	 16 j	NA NA NA	 15.6 j
Sas ND. 3330E Ol) & Grease (mg/l):			9.2	NA	NA	NA	NA	NA		NA	5.5		[·]

.

"---" - Not detected B - Blank contamination MA - Not analyzed J - Estimated concentration E - Laboratory data not usable

.

## TABLE B-5 ARROMIEAD - FIELD WORK DESIGN INVESTIGATION GROUNDWATER (STEP I) INDEGANIC DATA

-

 $\sim$ 

SAMPLE LOCATION: CHE SAMPLE KUMBER ITE MUMBER LABORTORY DATE SAMPLED: Lug/ij	MW-05C-03 88HW02506 8413 8EM 495 RMAL 11/10/87	NW-D5E-01 864702544 8510 MER 633 RMAL 11/16/87	MV-85-03 ##ffV02546 #\$10 MER 636 RHAL 11/17/87	MW-06A-03 88FW02512 8413 AER 600 RMAL 11/11/87	MM-06C-03 BERN02513 BER 601 MER 601 RMAL 11/11/87	HW-07A-03 #8HW02583 #413 MEK 997 RMAL 11/10/87	NN-074-03 86HN02003 8413 MEK 998 RMAL 11/10/87	MN-078-02 ###W02533 #413 MER 623 RMAL 11/13/87	MN-07C-02 88NV02545 8510 AER 635 RMAL 11/17/87	488-975-01 884992584 8413 8413 8413 8413 8413 8413 8413 84	MR-08A-03 88HV02505 8413 MEM 494 RAAL 11/10/87	MB-088-01 #819/02508 #413 #6#497 #846 11/10/87
A tumi num An Limony Ar Seni C			•••		••••			59 5 a	40.1	27.4 8		
Barium Beryllium Cadmium Caicium Chromium	20.4 B	43.8 B	124 B  56600 5.7 j	40.2 B	26.7 8  42500	108 0	107 B	109 B	3 J. 4 B	73.8 8	358  243000 	310  226000
Cobait Copper Iron Lead	····		51900 1.6 B	1.2 8		 196 1.2 B	 176 I B	64 1 j 3 3 8	11.6 j 38.9 j 1.5 #	 40,3 j 2,1 8	242 1.3 B	722 1.6 B
Magnesium Manganese Mercury Nickel	14300 104	13300 39.4 B	18900 3520	24200 5.3 8	13700 21.5 B	46200 4230	43700 3540	28300 494 	12700 24 8	29700 743	66800 609	10 1000 1860
Patassium Selenium Silver Sodium	851 j R  12309 8	1260 J	3980 j  14100 8	1010 j R  7840 B	\$67 j R  5720 B	1420 J R 16300 B	1510 j R  16100 B	1560 j 1.2 j 5.3 j 13900 6	1400 j 	1450 j R  12400 B	1970 ) R  14400 B	3040 j R 30300 j
Thailium Vanadium Zinc	2.1 j 89.6	2.2 j	 35j 46.8	2.9 j 30.5	2.1 j	4 3 j 207	3.4 j 167	2.2 j 38.7	26	2.8 j 40.1	8.9 j 90.7	1000
Sas No. 33308 Oii & Grease (mg/l):		NA	18 6	••••	***		NA	••••	NA.	····	NA.	NA

"---" - NDI delected 8 - Blank contamination NM - NDI Analyzed J - Estimated Concentration ff - Laboratory data not usable

.

 $\overline{}$ 

Page 2 of 4

## TABLE 8-5 ARRONMEAD - FFELD WORK DESIGN INVESTIGATION GROUNDWATER (STEP +) INORGANIC DATA

 $\checkmark$ 

.

SAMPLE LOCATION: CRL SAMPLE NLMBER: SMO SAMPLE NLMBER: ITR NLMBER: LABORATORY: DATE SAMPLED: (UQ/1)	AW-09A-02 88HV02522 8413 MER 613 RAAL 11/12/87	AW-098-02 88HV02523 8413 ARR 613 RAAL 11/12/87	MW- 10A - 02 88+W02520 8413 MER 610 RMAL 11/12/87	MW- 108-02 88HV02521 8413 4ER 611 RMAL 11/12/87	MW-11A-03 88HW02516 8413 MER 602 RMAL 11/11/87	MW- 12A-D3 88HW02524 8413 MER 612 RMAL 11/12/87	MW- 12A-03 88HV02D24 8413 M&R 604 RMAL 11/11/87	MW-13A-03 88HVG2S10 8413 MEM 603 Real 11/11/87	MW-138-01 &&HW02511 &413 AER 607 RMAL L1/11/87	AW-138-01 8849/02514 8413 Area 500 RAAL 11/11/87	MW- 14A-D3 BBHV02528 B413 MER 619 RMAL 11/13/87	MW- 148-03 8814025140 8510 MER 620 RAAL 11/16/87
Aluminum			25 6			•••	47.2.8	3178	+		•••	
kntimony Arsenic Barium	39.2 8	72 8	110	106 0	12.4 8	15.1 8		21.2	25.4 6	78	128 8	120 8
Beryiilum Cadmium Caiclum Chiclum Chromium	108000	92400	+ 17000	 1 1 <b>800</b>	24800	23700	25600	28400	30800	34 100	75900	35300
lobalt lopper ron ead	10 j 31 5 j 1 7 8	  1.8 8	 32.3 j 1.1 #	 703 7.7	  4.2 B	10.4 j 61.7 j	 128 1.5 8	 36.7 j 1.8 B		  1.6 B	  	70.7 j
agnesium anganese ercuty iickei	33900 538	32000 662	70000 766  # j	102000 424 	10600 17 \$	8920 25.7 6	9750 33 4 8	11000 37 B	10500 24.7 B	12700 56.8 B	31800	16700 162
otassium elekium iliver iodium	931 )	3090 j 6 j 21200 B	2140 j R 28800 j	2880 j R 28800 j	457 j R 5040 B	723 j  7956 8	647 j  5.9 j 5210 8	657 j R 8190 B	993 j R 9420 R	734 j R 9490 B	1950 j 5 j (1300 B	1590 j  14600 <b>\$</b>
Thatiium /anadium Linc	•••• •••	2.6 J	J	3.6 j		•••• •••	  	2.6 j	3.3 J	2.4 4	 2.2 j 4640	20
las ND. 3330E Dii & Grease (mg/i):	NA	NA	NA	NA	MA	NA	NA	NA	•••	•••	5.8	•••

"---" - NOI detected B - Blank contamination NA - NOI Analyzed J - Estimated concentration R - Laboratory data not usable

## TABLE B-5 ARROMIEAD - FIELD WORK DESIGN INVESTIGATION GROUNDWATER (STEP F) INDEGANIC DATA

SAMPLE LOCATION: CRL SAMPLE AUMBER: SMD CASE AUMBER: ITR AUMBER: LABORATORY: DATE SAMPLED: (UQ/1)	48-14C-02 48HV02530 8413 AER 618 RMAL 11/12/87	MW- 145-D1 88HrV02531 8413 468 621 RAAL 11/13/87	MW+ 154-02 08HV02537 0510 MER 626 RMAL 11/16/67	MN- 15A-02 884402D37 8510 MER 630 RMAL 11/16/87	MW- 158-02 88HV02538 8510 468 627 RMAL 11/16/87	400-165-01 88HV02517 8413 #ER 606 RMAL 11/11/87	MR- 178-01 88HV02518 8413 MER 608 RMAL 11/11/87	MW-172-01 8811V02519 8413 MER 609 RMAL 11/11/87	MM-182-01 8811702536 8510 MER 625 RMAL 11/16/87	F1ELD BLANK B8HW02507 8413 MEM 496 RMAL 11/10/87	FIELD BLANK BBIWD2515 B413 MEM 499 RMAL 11/11/87	FIELD BLANK 88HV02541 8510 86H 631 8AAL 8AAL 11/16/87
Aluminum Antimony Arsenic Barium	26 9 B	28.2 B  64.1 B		 78.9 0	56 . 4 B	36.5 B  45.8 B	21.3 B  18.1 B	160 j  91 6 B	276		316 )	  34-3-3-
Beryllium Caduium Calcium Chromlum	25700	49800	507000	493000	77500	•2200	22000	 114000	 86600	409 )	479 j	1840 j
Coball Copper Iron Lead	35.9 j	40.9 j 1. i B	1940	1630	58.8 j	 50 j	····		13.4 J 2.1 B	····	  	 
wagnesium wanganese wercury wickei	12900 39.5 	13800 295	175000 7970 	170000	25200 122	16800 246 7.3 j	14 100 35 . 2 B	···· ···	266			605 j 11.6 j
Potassium Selenium Silver Sodium	1040 J 5.2 J 12000 B	1910 j. 5.5 j 15206 B	2230 j 	2290 j 14600 8	1860 J  8370 B	1160 j R 	643 j f 6030 B	20400 j  87200 j	130006	<b>f</b>	R R 4250 j	126 )
Tha I I Lun Vanadi Lun Zinc		• / 15.• }	10 4 2 9 1 29 6	2.5 j 27	2.2 ;	 4.4 j		6.1 J	3.4 ) 15.6 J	····	 	
Sas No.3330£ Oli & Grease (mg/1):	NÅ	8.9		NA	·	NA	NA	NA	NA		NA	

---- -

-

*.....* 

"---" - NOI detected B - Blank contamination NA - NOI Analyzed J - fisimated concentration E - Laboratory data not usable

Page 4 of 4.

PazAjeue 10N - WN _---_ - WD1 gerecteg

.

3	C 1 1	34	21	13	<b>*</b> 1	5'5	3		•••	3	•••	[4
c	71	310	30	¥2	519		\$16	521	11	•••		)#
A1 INI 783	021	***	1 21	WN .	332	122	9952	512	211	524	551	(Z)
IVE REPRENDED SOFTOR	203	160	560	VN	11	*6	15	26	951	076	09	. <b>B</b> L
(1/1								•••••••••••••				
16 27Whred:	29/11/11	28/95/11	28/61/11	49/25/11	20/91/11	28/91/11	20/01/11	28/21/11	28/01/11	24711751	49751711	
	34440	34445	36995	3449E	34996	36445	34770	34446	36775	36PPC	36995	<b>14775</b>
:YBDTABDI	CENTEC	DEINEC	CENTEC	CENTEC	CENTEC	231N32	CENTEC	CERIEC	CENTEC	CENTEC	CENTEC	CFMER
C M B B B B B B B B B B B B B B B B B B	923/123	0513/4712	6013/2013	<b>493/89</b> 3	9613/56)3	8613/2613	£181/1913	<b>&gt;\$</b> }}{{\$}}	PZ]/EL]	263/163	863/923	23/412
: <b>230W74</b>	1012200	520AH99	PESZOAHEE	£8200408	E#5204488	*****	C#SZOAHUT	975204488	905204499	\$\$HM03213	EL SZOMITE	OSEQNHER
IPLE LOCATION:	CO-VI-##	WW-37-07	WN-38-03	10-50-88	CO-VS-##	20-VS-MW	20-95-00	CO-58	{0-)\$-m	20-V9-MM	E0-39-m	0-41-18

TARLE B-6 Choundik Design investigation Choundik Design investigation Chounding the 13 Chounding pratailies

.

 $\sim$ 

,

 $\sim$ 

.

•

.

## TABLE 8-6 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP I) CONVENTIONAL PARAMETERS

•

1. Sec. 1

-- --

SAMPLE LOCATION: CRI NAMBER: TR NAMBER: LABORATORY: SAS NAMBER: DATE SAMPLED:	NN-78-02 88HV02533 E102/E103 CENTEC 3449E 11/13/87	AW-75-01 46HN02504 E21/E22 CENTEC 3449E 11/10/87	MW- 13E-01 80HVQ2514 E33/E34 CENTEC 3449E 11/11/87	MW- 14A-03 ##IW02528 E 100/E 101 CENTEC 3449E 11/13/#7	NW- 148-03 DBHV02529 E 147/E 148 CENTEC 3449E I 1/16/87	AWY- 145-01 88HW92531 E97/E98 CENTEC 3449E 11/13/87	NW- 15A-02 88HN02S37 E151/E152 CENTEC 3449E 11/16/87	MW- 158-02 881402538 E 159/E 160 CENTEC 3449E 11/16/87	FIELD BLANK 88/W02507 E23/E26 CENTEC 3449E 11/10/87	FIELD BLANK 884702541 E153/E154 CENTEC 3449E 11/16/87
(mg/l)										
TOTAL SUSPENDED SOLIDS ALKALINITY COD TOC	13 213 11 2.4	3   10 2 18 3 9 3 . 2	10 130	8 335 13 5.6	3 184 12 4 2	6 187 15	295 776 270 21	9 194 9.3 1.4	2  8.5	7.70

.

. ~

"...." - Not detected NA - Not analyzed

 $\smile$ 

.

.

SAMPLE LOCATION: CRL SAMPLE NUMBER: SMD CASE NUMBER: OTR NAMBER: LABORATORY: DATE SAMPLED:	AW-05C-03 88HA02506 8413 EP 395 SPECT 11/10/87	JW-05E-01 88HV02544 8510 EQ 136 HAZLE 11/16/87	487-085-03 8817/02546 8518 EQ 139 HAZLE 11/17/87	MW-06A-03 8817402512 8413 60,215 SPECT 11/11/87	AW-D6C-83 88HV02513 8413 EQ 103 SPECT 11/11/87	INF-07A-03 881A02503 8413 EP 391 SPECT 11/10/47	AM-07A-03 88HW02D03 8413 EP 392 SPECT 13/10/87	AW-078-02 886402533 8413 EQ 125 SPECT 11/13/87	MH-67C-62 86H402545 8510 EQ 136 H6ZLE 11/17/87	407-075-01 8814402584 8413 EP 393 SPECT 11/18/87	MW-08A-03 8814/02505 8413 EP 394 SPECT L1/10/87	407-048-01 841702208 8413 EQ 211 SPECT 11/10/47
(UG/1)	•		(DILUTED 28X	-		(VOC DILUTED 20 X)	(VOC DILUTED 50 X)					
VOLATILES ORGANICS:					*************				************			
Acetone	•••	21 8	7 10		***	L 100 J	1500		14 B	•••	•••	
Benzene		•••	100 ]		+	3500 j	4600 J				•••	•••
nethylene Chioride		7 1	100 j	•••	•••			•••	4 B			
Vinyi Chioride			E100	***		•••				•••		
Chieroethane	•••	•••							•••		•••	•••
Chierelorm	•••	28	17 8						38		•••	
1, I-Dichiorethane	•••	•••			+				***	•••	•••	•••
£ thy i benzene	•	***	39.1	•••	•••	220 J	230 J	•••	•••		•••	***
4-Methy I-2-Pentanone			49.3	•••	••••			•••	•-•	***		
Total Xylenss	•••	•••	240	•••	•••	2000 J	2500	•••	••••	***	***	***
Toluene	•-•	28	346	•••	•••	800 J	1300 J	•••	1 8		•-•	*-*
Trans-1, 2-Dicklorethene		21	278	•••		•••		•••	•••	***	•-•	*
1. 1. 1-Trichiorethene	•••	•••	34 1			•••	•••	•••	•••	•••	•••	•••
Trichioroe thene	•••	•••	•••				•••	•••				•••
SEALVOLATILE ORGANICS:									*************			
								·				
Sist2-Ethylhexyl)Phthelat		•••	•••	6 8	6.8	12 🛔	60 8	1 🖷	•••	3.8	3 8	7 🗎
2,4-Dimethyiphenoi			99	•••	•••			•••		•-•	***	
2-nethylphenol	•••		<b>61</b>			••••			***	•••	•••	•••
teph this leng		•••	13 1			71 (	73	•••				•••
Di-n-Bulyiphthelate	•••			•••			••••	•••	•••	***	•••	***
2-aethy inspiritual ene						7 1	• •					•••

.

"---" - Not detected B - Blank contamination NA - Not analyzed § - Estimated concentration

Page 2 of 4.

.

"---" + 102 detected M - Met analyzed J - Estimated concantetion

1.00

.

~

עונאן פוער כאורט ופפ אוצפעים גונטים גונטורגיג סוכניאורכג: גונג איזארגטיין גונג גיווארגט:		4  	 	  		  29/21/21	• t 		• • ····		۲ ۲  د	4 9 9 92 49/91/11
njecoštveve juki cviocies				•••	•••						**	•••
ihi (persene   1-Di chiete (hexe 	•••	 	•••	•••				•••				• •
11 34 000 1 10 194 - 3-1-00 1900 0	•••	•••				•••			•••	***		
state 1° 3-0) cy jet a spece ) i neve	•••				•••	•••			•••		57	1 Z 1 I
i i chioros thens 1, 1-1r i chiore thans			•••				***		•••			••••
WIADTVIITE DECVICE:												
1117-661041042A1)W60010	i č	•••	¥ ZI	9 81	<b>U OL</b>	•••	079	7300	1 01		# Z	•••
• • • • • • • • • • • • • • • • • • •	1 8	•••										
ene i aris Aq		•••	•••	•			•••	•••				•••

OBCYHIC GYL CHONONKEN CELEN I) CHONONKEN - EIETGNOKK DEZICH INAEZICYLION LWFE B-B

n 🕐

****** 

٩.

21111

•

## TABLE 8-7 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION RESIDENTIAL WELLS (STEP 1) ORGANIC DATA

-

,

SAMPLE LOCATION: CRL SAMPLE NUMBER: SAS NUMBER: OTR NUMBER: LABORTORY: DATE SAMPLED	RW-D1-03 88HV02S56 3339E EQ144 S-CUBED 11/18/87	RW-02-03 88HV02S58 3339E EQ153 S-CUBED 11/18/47	Rw-03-03 88HV02559 33396 EQ150 S-CUBED F1/18/47	RW-04-03 88HV02S51 3339E EQ151 S-CUBED 11/18/87	RW-06-03 aaHtv02553 3339E EQ149 S-CUBED II/II/II/II	RW-07-03 88HW02555 3339E EQ143 S-CUBED 11/18/87	RW-08-03 88HV02550 3339£ EQ142 S-CUBED 11/18/87	RW- 10-03 88HV02S47 3339E EQ140 S-CUBED 11/18/87	RW-11-03 88HV02554 3339E EQ141 S-CUBED 11/18/47	RW- 12-03 ##HV02549 33396 EQ145 S-CUBED 11/18/87	RW-13-03 88HV02S52 33396 EQ152 S-CLBED 11/18/87	RW-14-03 881402557 3339E EQ146 S-CUBED 11/18/87	RW-15-03 88HV02560 3339E EQ148 S-CLBED 11/18/87	FIELD BLANK 88HW02548 3339E EQ147 S-CUBED 11/18/87
VOLATILE ORGANIC COMPOUNDS (Ug/l)														
wethylene Chloride 1, 1, 1-Trichloroethane	1.6 8	1.4 8	1.9 B	I.6 B	2.0 B	1.8 B	2.0 8	2.2 B	1.8.6	1.6 B	2.6 8	2.4 B	1.3 1	
Te trach lore thene To luene	1.9 8	i.a a	2.0 8	2.7 B	i.8 B	2.2 8	2.7 8	1.6 B	2.2 8	1.7 B	L.# 6	1.7 8	61 2.8 8	1,2 J 3.0
SEMIVOLATILE ORGANIC COMPOUN (Ug/l)	o													
Diethylphthalate Bis(2-ethylhexyl)phthalate		2.9 B			•••	1,9 B	1.0 B 1.6 B	2.4 6	6.4 B		•••	1.6 8	 111 8	2.9 6

"---" - Not detected 8 - Blank contamination J - Estimated Concentration

.

## TABLE B-8 ARROWMEAD - FIELOWORK DESIGN INVESTIGATION GROUNDWATER (STEP 1) Organic Data

.

**~**•

. چند است

WW-01A-03 881W02589 8413 EQ 187 SPECT 11/11/87	MW-02A-03 86MW02539 8510 EQ 130 MAZLE 11/15/87	AW-028-03 88(11/02534 0413 80 126 8PEC 11/13/07	AW-02C-03 84HV02S32 8413 EQ 124 SPEC 11/13/87	HW-82E-01 86HVQ2540 85H8 EQ 131 H62LE 11/16/87	AM-062-03 68/A/0250   85   6 EP 386 HAZLE 1   / 17/87	AW-83A-03 88H402525 8413 EQ 117 SPEC 11/12/87	AW-038-01 881A02526 8413 EQ 118 SPEC 11/12/87	MT-035-01 08HWQ2527 0413 6Q 114 SPEC 110 11/12/07	JW-848-03 88HV02502 8518 8P 390 HM.ZL.E 11/17/87	MW-05A-03 984402542 8510 EQ 136 HAZLE 11/16/87	AW-058-01 884A02543 8518 EQ 137 HAZLE 11/16/87
				2.6				•••	17 8	10 8	11.4
•-•	15				11						
		3.8		28	2 <b>i</b>	5.5	•••		4.8	5.5	6.8
•••					***				2 1	- i i	
		•••	•••	•••				•••			
•-•				8.9 8	0.7 8	•••			3.8	28	2.8
	28				•••	•-•					
•••	6		•••	•••			•	•••			
•••	•	***	***			•••	•••				
•••	21	•••			4.1			•••			31
31	<u>3 é</u>	31	•••	1 8	2 1	•••	•••	•••	38	2 8	10
•••			***				•••	•••	***	23	4 }
•••	•••	***		***	***				• • •		
•••	•••			•	•••	•••		•••	***	10	
•••••	*							************			
			2.8	•••	10 J			19.8			
						•••					
		•••						***		•••	
		***									
									3 1		
	8 4 8 	A B         A B           44 13         45 10           44 13         45 10           54 10         45 10           57 EQ         134           59 ECT         HAZLE           11/11/87         11/15/47	A B + M02589         A B + M02539         A B + M02539         A B + M025334           64 13         85 10         84 13         87 10         84 13           57 EQ 1107         EQ 126         20 126         27 126           57 ECT         HAZLE         37 ECC         11/13/47            15              15              3         3         3         8            2         8              2         3              2         1               2         1                2         1	A A H M02589     A A H M02539     A A H M02532     A A H M02532       A A H J     A S H M     B A H J     B A H J       E Q 1107     E Q 124     E Q 124     E Q 124       SPECT     H M ZLE     SPEC     SPEC       11/11/47     H / 16/47     11/13/47     11/13/47	A A H M 02589     A A H M 02537       A A H J     A S H M     A S H M     A A H J     A A H J     A A H M 02537       E Q H IF7     E Q H J A B     E Q H J A B     E Q H J A B     E Q H J A B     E Q H J A B       SPECT     H X ZL E     SPEC     SPEC H X ZL E     H X ZL E     H X ZL E       11/11/47     H / 16/47     H / 15/47     H / 15/47     H / 16/47	Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses         Addresses <t< td=""><td>Addrive25586         Addrive25337         Addrive25332         Addrive25332&lt;</td><td>Alt-M025396         Sal-M025337         Sal-M025332         Sal-M025332         Sal-M025331         Sal-M025332         Sal-M025331         <thsal-m025331< th=""> <thsal-m025331< th=""></thsal-m025331<></thsal-m025331<></td><td>ABANG22589         ABANG22534         ABANG22532         ABANG22532         ABANG22531         ABANG252531         ABANG252531         ABANG</td><td>####032586       ###032536       ###002532       ###002532       ###002526       ###02525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###1002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525</td><td>ALL POSSES         ALL POS</td></t<>	Addrive25586         Addrive25337         Addrive25332         Addrive25332<	Alt-M025396         Sal-M025337         Sal-M025332         Sal-M025332         Sal-M025331         Sal-M025332         Sal-M025331         Sal-M025331 <thsal-m025331< th=""> <thsal-m025331< th=""></thsal-m025331<></thsal-m025331<>	ABANG22589         ABANG22534         ABANG22532         ABANG22532         ABANG22531         ABANG252531         ABANG252531         ABANG	####032586       ###032536       ###002532       ###002532       ###002526       ###02525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###1002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525       ###002525	ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POSSES         ALL POS

.

 $\sim$ 

"+++" - Not detected B - Blank contamination NA - Not analyzed J - Estimated value

Page 1 of 4.

## TABLE B-0 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION CROWNDWATER (STEP 1) ORGANIC DATA

.

.

SAMPLE LOCATION: CRL SAMPLE NUMBER: SHO CASE NUMBER: OTR NUMBER: LABORATORY: DATE SAMPLED:	ME-05C-03 88HM02506 8413 EP 395 SPECT 11/10/87	AM-052-01 68/W02544 8516 80 136 MAZLE 11/16/87	MW-083-03 831002546 8510 EQ 139 MZLE 11/17/67	MW-06A-03 841702512 8413 EQ 215 SPECT 11/11/87	AW-86C-83 88H702513 8413 EQ 103 SPECT 11/11/87	400-07A-03 888902503 8413 89 291 SPECT 11/18/87	AW-07A-03 88HW02003 84H3 EP 392 SPECT 11/10/67	AW-078-03 884402533 8413 EQ 128 SPECT L1/13/87	MW-87C-82 83HN02543 85H0 EQ 138 HAZLE 11/17/87	AW-075-01 801702504 8413 84 29 84 29 89 87 87 87 87 87 87 87 87 87 87 87 87 87	##~08A~03 86HW02505 8413 EP 394 SPECT 11/10/87	MR-000-01 00/02200 0413 EQ 211 SPECT 11/10/07
(UG/1)			(DILUTED 20X)			(VOC DILUTED 20 X)	(VOC DILUTED SQ X)					
VOLATILES ORGANICS:												
Acetone		21 8	710			1100 J	1500		14 B			•••
Benzene			100 (	•••		3506 ]	4600 1	•••				
methylene Chieride		7 1	100 1					• • •	4.8		•••	
Vinvi Chioride	•••	"	1 100						•••		•••	•••
Chieroethane		•					•••	• • •			•••	
Chlerolora	•••	2 8	17 8		•••				38	-+-		•••
1, 1-Dichiorethane		•••					•••	•••	•••		•••	
£ Lhy i benzene			39 J			228	230 j		•••			•••
4-dethyl-2-Pentanone						***		***			•••	
Total Xylenet		•	248			2000 1	2500					•••
Toluene		2 8	348			500 j	1300 1		1.8	•••	•	
Trans-1.2-Dicklorethene	•••	3 j	27.0				•••				•••	
1, 1, I-Trichiorethene			34 1	•••	···,			•••		,		
Trichioree thene	•••		•••		•••		•••	•••	•••	•••	•••	***
SEMIVOLATILE ORGANICS:	•••••	•••••	••••••	•••••					• • • • • • • • • • • • • • • • • • • •			
Bis(2-Ethylbexyl)Phtheist	ia 38			6.8		12.8	60 B	1.8	•••	3 8	3.8	7 8
2.4-Dian thy iphenol			99									
2-Methy shere i									•••		•••	•••
with the leng			13 1		***	71 1	73					•••
Di-n-Bulyishtheiste											***	
2- as the inamistical and	•••			•••		7 1	• 1	•••				
********							•					

_

_____

"---" - Not detected 8 - Blank contamination NA - Not analyzed 3 - Estimated concentration

Page 2 of 4.

## TABLE B-B ARROWHEAD - FFELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP 1) Organic Data

.

.

 $\sim$ 

SAMPLE LOCATION: CRL SAMPLE NUMBER: Sing CASE Number: Ote Number: Laboratory: Onte SampleD: (ug/f)	AW-09A-02 88H402522 8413 EQ 118 SPECT 11/12/87	JW-098-02 844402523 8413 60 116 SPECT 11/12/87	487-184-82 884762528 8413 89 112 89 ECT 11/12/87	407-108-82 880-02521 8413 60 113 SPECT 11/12/87	117-03 884902516 8413 60 104 SPECT 11/11/07	MN- 12A-03 88HW02524 8413 EQ 114 SPECT 11/12/87	AW- 13A-63 88HVQ2516 8413 6Q 106 SPECT 11/11/87	AW- 13A-03 88(N02D18 84 13 EQ 196 SPECT 11/11/87	//// 138-01 68/9/02511 6413 69 109 SPECT 11/11/67	AW-13E-01 640402514 6413 69 214 24ECT 11/11/67	AW- 14A-03 644702526 6413 69 125 SPECT 11/13/07	400-148-03 \$44m025148 8516 EQ 122 FMZLE 11/16/87
VOLATILES GEGANICS:				••••••								
Acetone		•••	•••						8 J	•••		28 8
Benzene		•••	•••	•••	•••				•••	•••		
nethylene Chloride		78	•••	•••	•••		38		5 8		4 8	58
vinyî Chiorida			•••		•••	•••	•••		•••	•••	- 44	***
ch joroe thane					•••	•••	•••	•••	•••	•••	•••	
chierolorm		•••	•••	•••								20.
1, 1-Dichierethane		•••	•••			•••	•••	•••	•••		•••	***
Ethyibenzene	•••		***			•••	•••	•••	•••	•••	•••	
4-Methyl-2-Pentanone		*	***			•••	•••	•••	•••	•••	•••	
Total Xylenes	•••	•••	•••				•••	•••	•••	•••	•••	•••
Teluene		•••	•••	•••	***			•••		+	••••	1.
Trans-1, 2-Dichiorethene	•••	•••	•••	•••	•••						45	2 ]
1, 1, I-Trichiorethane		•••	•••	•••	•••	•••	•••	•••	•••	•••		
Trickieres thene	•••	•••	•••	•••					*-*			
SEATVOLATILE ORGANICS:				•••••					••••••			
Bis(2-Ethylhexyl)Phthalat	• 38		12 8	18.8	18 B		840	3200	10 6	3.8	2.8	•••
Diethy johtha ja te	· • • •											•••
2.4-Dian thy isheno i			•••			•••	•••		•••		•••	**-
2-activiphenel		•••	•••	•••	•••			***			***	•••
hash the long	•••				***	•••			•••	•••		
Di-a-outyion the late												

.

 $\overline{}$ 

.

"---" - Not detected & - Blank contamination NA - Not analyzed § - Estimated concentration

************************	**********			**************						*************	••••••		
es el sus del ysue -e - 10	• • •			•••	•••			•••		• • •	•••	•••	
and fails figure	•••			•••	•••		***	•••	***	•••	•••	•••	W
i onarig i yrit an - E		***	***	•••					•••		***	***	¥N
2 * +-D   ## £\$# { #µ#woj		•••	•••		•••	***	•••	•••			•••	•••	<b>WN</b>
#1#(348(1X#4)/413-E)#18	■ <b>31</b> ■	E 9	•••	•••	•••	<b>T</b> 5		099		3 9	32 8	•••	Ŵ
BEWINDFVIILE DECEMICE:													
3- BU LE DOUE	•••			•••		•••		300 ì			•••		•••
Tricking the second					•••								
1.1.1-1+1chine to that a that a			•••		***		•••				***	* * *	
11981-1 3-0149101819698		60						•••					•••
toiuene				E 1	<b>T</b> I	•••	•••		<b>.</b> t			3 8	
tenel Xt latel							•••			***			
4-WELPAL-3-64ULEUDUE				•••	•••	•••		•••	•••			•••	
evezueq;Au13			•••	•••	•••			•••				•••	•••
snadteotoldold-1,1	•••	•••	•••	•••	•••	•••			•••	***	***		
mietotel#D		•••		38	•••	•••	•••	•				<b>T</b> Z	<b>T</b> I
snani so to i do	•••	•••		F 1	+	•••	•••		•••		•••		
Vinyi Chloride		( <b>)</b>		•••			•••		•••	•••		•••	
Mathylane Chlotlde		1 01		• •	3 8	10	15	<b>9</b> CI	<b>* *</b>	1 6	•••		<b>9</b> C
euszuse	•••	•••	•••	***	•	1 7			•••	***	***		
snoj sok			•••	• 1	•••	·	f çi	•••	9 ES	•••	•••	11	14
ADEATHERS ORGANICS:													
(1/80)													
OVIE RYMFED: TREORVICES: OIE MIMEEE: CRF RYMFE: MIMEE: 1 CRF RYMFE MIMEE: 1	11\13\\$} 2bECL EG 130 \$412 \$91403230 \$91403230	11/13/02 26EC1 EG 133 9413 9413 9413 980403231	11/10/01 HV3FE 65 138 65 10 69 10 786-127-03	11/10/92 HVSEE EG 133 9210 924/03832 WM-127-03	11/10/02 HVSE E E0150 02 10 02 10 09 HVD5220 WW-120-03	11/11/02 2b5CL 2d 109 091/03212 706-192-01	25601 25601 65 110 9413 98403219 786-138-01	11/11/02 26EC1 EG 111 991/02218 WR-12E-01	11/10/02 WSTE EG 133 9810 994403229 WR-196-91	11/10/82 2bECL EG 310 991002202 b1EED 0FVW	11/11/91 26ECL Ed 312 9910 991003212 41EED 97998	11/19/82 17/19/82 170 173 1810 19180 19180 86796	11/10/92 14/22 15/20 15/20 15/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/20 10/

.....

•

 $\widehat{}$ 

•

.» 10 * #649

i = Estimated concentration
 iii = Not detected
 ---- = Not detected

## TABLE 8-9 ARROWHEAD - FIELDWORK DESION INVESTIGATION GROUNDWATER (STEP 1) Low Detection Liant Vocs

.

.

-

SAMPLE LOCATION: CRL SAMPLE NAMBER: SAS NAMBER: LABORATORY: DATE SAMPLED: (Ug/1)	AMF- 1A-03 88/NG2509 3449-E01 5PECTE/X 11/11/87	88-24-03 88402539 3449-E129 89ECTE1X 11/16/87	400-2A-03 881002039 3449-E130 \$PECTR1X 11/16/87	MW-2A-03 481702739 3449-E131 SPECTRIX 11/16/87	MW-28-63 684402534 3449-E116 <i>SPECTELX</i> 11/13/67	100-28-03 88002734 3449-8117 896CTR/X 11/13/87	##~20~03 861w02D34 3440-E118 5FECTR/X 11/13/87	MIF-2C-03 #Unid2532 3449-E110 #PECTR1X 11/13/87
Vinyl Chieride		1.0	2.0	8.2	•••	•••	•••	•••
Chierotors		•••	•••		***		•••	
1.2-Dichloroethane	•	•••	•••		•			
Carbon Tetrachieride	•••		•••	•••		•••		
Tr i chtoroe thy tene	•••	•••	•-•		•••	•••	•••	
Banzane		6.7	7.0	8.2	•••	•••	•••	•••
***************************************								

"---" - Not detected 8 - Blank contamination

.

-

.

,

.

 $\sim$ 



.

SAMPLE LOCATION: CRL SAMPLE NAMBER: SAS NAMBER: LABORATOR; DATE SAMPLED: (Ug/1)	MW-2C-03 844v03732 3449-E111 3PECTR1X 11/13/87	MF-2C-03 88HC02D32 3449-E112 SPECTRIX 11/13/87	MV-02E-01 88H002540 3449-E140 SPECTR1X 11/16/87	MW-3A-03 881402525 3449-580 SPECTR1X 11/12/87	MW-35-61 881402527 3449-661 SPECTR1X 11/12/87	MM-58-01 80490243 3449-E144 SPECTR1X 11/16/87	407-58-01 849-02143 3449-6145 SPECTREX 51/16/87	ANY-58-01 8611/02/043 3449-6146 SPECTR1X 11/16/87
Vinyl Chloride	•••	•••	•••	•••	•••		0.30	
Chierotorm	0.15 8	0.11 8					•••	•••
t.2-Dichiorosthane						•••	•••	•••
Carbon Tetrachioride	•••	•••	•••					
Trichloroethyiene			•			•••	•••	
Benzene						•••	Ø. 10 B	•••
••••••								

---- - Not detected # - Blank contamination

## TABLE 8-9 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP 1) Low Detection Limit Vocs

•

.

-

.

.

SAMPLE LOCATION; CRL SAMPLE ALMBER : SAS ALMBRE: LABORATORY: DATE SAMPLED; (Ug/i)	AW-82-01 801402344 3440-2344 3440-2344 3440-2344 80-2344 11/14/87	ANY-82-01 6047082744 3449-2142 892CT01X 51/16/07	ANV-SE-01 801702044 3449-2143 898CTR1X 11/16/87	2007-6A-03 8449-805 3449-805 \$PECTR1X 11/11/87	MW-6A-03 864702713 3449-266 392CTR4X 11/11/67	400-64-83 649-92012 3449-207 SPECTR1X 11/11/87	400-6C-03 600-02513 3440-604 8PECTR1X 51/11/07	MW-78-02 #0440-2533 3449-2113 SPECTR1X 11/13/07
Vinyi Chlaride	•••	•••	•••	•••	•••	•		•-•
Chioroform	•••	•••		•-•	•••	•••		•••
1, 2-Dickieros Ikans	•	•••	•••			•••	•••	
Carbon Tetrachioride	•••	•••	•••	•••	•••			
Tràchloroe thy lene	•••	•••	•••	•••	•••		··-	•••
Benzene	0.11 8	•			•••	•••	•••	•••
			•••••	••••••				•••••

1

.  $\sim$ 

,

"---" - Not detected B - Blank Contamination

## TABLE 8-4 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROLMDRATER (STEP +) LOW DETECTION LIAIT VOCS

SAMPLE LOCATION: CRL SAMPLE NAMBER: SAS NAMBÉR: LABORATORY: DATE SAMPLED: (Ug/i)	100-78-02 481402733 3449-E114 SPECTRIX 11/13/87	MM-78-02 881W62033 3449-6115 8PECTR1X 11/13/87	MI-7C-02 68HV02345 3449-E177 \$PECTQ1X 11/17/87	im-7C-02 6811002045 3449-E176 SPECTR1X 11/17/67	WW-7C-02 88HV02T45 3449-E170 SPECTRIX 11/17/87	₩₩+9Å+02 86HN02522 3449-874 SPECTR1X 11/12/97	MR-64-62 684002722 3446-675 5#6CTELX 11/12/67	MI-94-02 88/002022 3449-276 SPECTR1X 11/12/87
vinyl Chioride		•••	• •••					•••
Chlorolora	•••	•••	•••	•••	•••		•••	•••
1, 2-Dickloroethane				•••	•••		•••	•••
Carbon Tetrachioride		•••	•••				•••	
Trichiorse thy i ene	•••		•	•••	•••		•••	•••
Benzene		•••	•••					

"---" - Not detected B - Blank contamination

.

.

#### TABLE 8-9 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROLMDWATER (STEP 1) LOW DETECTION LIAIT VOCS

.

SAMPLE LOCATION: CRL SAMPLE NAMBER: SAS PANDER: LABORATORY: DATE SAMPLED: (Ng/1)	JW-98-02 694402523 3449-E77 59ECTR1X 11/12/67	Juli - 98 - 92 88440 2723 3446 - 278 SPECTR IX 11/12/47	440-98-92 841v02023 3449-279 896CTB1X 11/12/87	MW- 10A-42 84rw02520 3449-671 SPECTULX 11/12/07	100-02 860702521 3440-272 SPECTR1X 11/12/87	887-114-03 88702516 3449-E03 SPECTR1X 11/11/87	487-12A-03 84649224 3449-673 286CTR1X 11/12/07	MV- 134-03 880702516 3449-E11 SPECTR1X 11/11/67
Vinyl Chioride	•••	•••		•••		•••		+
Chloroform	***	•••		•••		•••	•••	
1, 2-Dichioroethane	•••	•••	•••	•••		•••	***	
Carbon Tetrachloride	•••		•••		•••			
Trichioreethyiene	•••			•••			•••	
8472074	•••	•••				•••		

"---" - Not detected B - Blank contamination

.

		*********	*****************	•••••••••••••••			*****************	***********
anazana	•	•••				•••	•••	•••
ana i yri ac i o i do'i a t	***	•••	•••	•••	•••			
ebitoldastet nodida	•••	•••		•••			•-•	
1, 2-Dichioroethene	•••	•••	•••	•	•••	•••	•••	•••
mieleie/A						•••	8 90'9	1 01 °
Atopt Chioride	•••	•••	•••	•••	•••	•••		•••
Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Co	11/11/81 256CL81X 3440-613 984405613 984405110 986-137-03	11/1/02 266C10/2 266C10/2 98HA0200 98HA0200 98H-17Y-02	81/8/18 2660181X 919-616 88040521 98040521	11/11/11 266CLEIX 2748-E19 26440-E19 264402D11 264-029-01	11/11/02 2b[CLUIX 246-E12 204405[10 78-078-01	20/11/11 X1813945 903-6745 715200409 10-301-000	11/11/92 25652181X 2440-500 95140-514 951-126-01	11/11/01 266CL81X 7940-610 981/02017 981/02017

 $\sim$ 

.

#### TABLE B-9 ARROWMEAD - FIELDWOOK DESIGN INVESTIGATION GROLMDWATER (STEP 1) LOW DETECTION LIMIT VOCS

.

-·-

.

•

SAMPLE LOCATION: CRL SAMPLE HAMBER: SAS HAMBER: LABORATORY: DATE SAMPLED: (49/1)	40-148-63 84092528 3449-E107 \$PECTR1X 11/13/87	ME-144-03 00002728 3440-E108 SPECTR1X 11/13/87	40-144-03 801002028 3449-E100 SPECTR1X 11/13/87	MF-140-03 801702529 3449-E126 SPECTR1X 11/16/07	MW- 148-83 661002720 3449-E127 SPECTR1X 11/16/87	AW- 148-03 881-002029 3440-E 126 89ECTR 12 11/ 16/87	MP-14C-02 88/N02538 3449-803 8PECTR1X 11/12/87	100-145-01 041402531 3449-E106 SPECTR1X 11/13/87
Vinyi Chioride	27		24	•••	0.53	•••	•••	1.2
chleroform	•••	•••			•••			•••
1, 2-Dichloroethane	•••	•••	•••	+	•••	•••	•••	•••
Carbon Tetrachioride		•••		•••				•••
Trichioroethy lene		•••	•••	•••		•••		•••
Senzene			•••	•••		•••	•••	

•

.

"---" - Not detected B - Blank contamination

-

n9/1) Vec Eventreo: 12 aventreo: 13 trevers: 14 eventre ventre: 16 eventre ventre:	11/10/223 2056CJUIX 2010-6123 201-02723 201-120-002	20/91/11 X18L33 <i>8</i> 5 CC13-0446 201204480 20-141-100	11/10/02 266CL81X 2940-6139 894002022 WB-127-02	29/91/11 X   NL33d\$ 2013-609C 90520409 20-021-007	11/10/02 2000/02 2010/02 2010/02 2010/02 2010/02 20-02	2010/10/01 2050/10/20 2050-5120 00/02020 700-127-02	29/11/11 26/528/1X 26/528/12 21/520/108 12-01/12 18-01/12	29/11/11 X1812345 913-6995 915204995 19-921-699
iny chioride	••••	•••	•••				•••	
#101014				•••	•••	•••	P\$ 10	•••
, 2-pi chioros (hans				•••		•••	•••	•••
stitetischietide				····	•••	•••		•••
r i cirto to a dia		•-•		***		•••	•••	•••
000200	•••	•••			•••	8 40'8		•••

 $\sim$ 

.....

---" - Not detected

#### TABLE 8-9 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP 1) LOW DETECTION LIAIT VOCS

 $\overline{}$ 

.

SAMPLE LOCATION: CRL SAMPLE NAMBER: SAS MAMBER: LABORATORY: DATE SAMPLED: (ug/l)	000-176-01 801402310 3440-670 8P6CTN1X 11/11/07	AW- 18E-01 884A02336 3449-E125 8PECTR1X 11/16/87	FIELD BLANK BBING2515 3449-E02 SPECTEIX 11/11/07	FIELD BLANK 80002541 3449-E135 SPECTRIX 11/16/87	BTL BLANK 88HR02535 3449-E136 SPECTR1X 11/16/87
vinyi Chioride		•••	•••		•••
Chieroterm	0.40	B.7	Q.D\$	0.07 B	•••
I. 2-DI Chioroe thane	•••				
Carbon Tetrachioride		•••	***		***
Trichloree thy lene	•••		•••		•••
Senzene		•	0.12	0.7 8	•••
			• • • • • • • • • • • • • • • • • • • •		

"---" - Not detected B - Blank contamination

.

 $\sim$ 

.

•

#### blank contamination telimeted concentration compound identification not confirmed

.....

Benzo(g.h.)) Perviene

.

 					4	-	•
	P	*1	391	1 81	P 1	•	

prezetdina (d.s)snedig	•••	•••	•••			•••				•••	•••
Indeno(1,2,3-cd) Pyrene	•••			***			•••			•••	
Beuzo(#) byrene + Perylane		•••	***	•••		***	***		•••	***	•••
senso(b) (luotanthene	•••		•••	•••		•••	•••	•••		•••	
Chrysone (Chrysone)		•••	•••	•••	•••	•••	•••	•	•••	•••	•••
Benzo(#) Anthracene	••••	•••			••••	•					***************
Fluor an thene		•••		•••							
VUIUTCEUE			•••							•••	
	· · · · · · · · · · · · · · · · · · ·					••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •				***********
ene tâs nanede	•					[ Z'#	•••			•••	
t (not ene V ceutou ( une	•••									***	
•U91616160											
•••••••••••••••••••••••••••••••••••••••											
snel ansidensi vils sa-i		•••	•••			•••				•••	
y ceus bhí thy lene		•••	•••		•••	•-•					
2-we thy I napt the Lene	•••			•••		<b>8</b> 5'0		•••		•••	• • •
ana jant dan		***	•••		+	1 C.A	•••		• • •	•••	
(1/ <b>B</b> u)											*************
(),,										•	•
DV1E ZVWJED:	28/11/11	28/91/11	49/91/11	20/91/11	28/51/11	20/51/13	49/51/11	20/01/61	20/01/11	28/51/11	20/91/11
(YBOTARD@A.)	XDARS	XDHS	XDRS	YONS	XONS	NORS	XORS	XOWS	SNOK	YORS	XXXXIS
2V2 MINUEU:	\$63-6785	2448-6133	3448-6134	3448-6132	763-6775	{38}563-67PC	(20)963-6775	993-4785	693-6PPC	2448-600	3448-E163(#E)
CRL SAMPLE NUMBER:	605204/88	40520AH98	********	6C1204488	TEHNOS234	101003034	12120010T	ECSEGNIER	50150M-100	**************************************	9550AHB\$
SAMPLE LOCATION:	CO-VI-MW	CO-VE-##	WW-5Y-03	78-37-83	CO-UZ-MM	t0-92-MM	WW-38-03	WW-3C-03	10-52-103	WW-3C-07	10-3E-01

*******

---

...

•

*-*

----

---

...

# FOR DELECTION FIWIT FAH CRONDRWLER (SLER I) CRONDRWLER (SLER I) TABLE B-10

.

....

***

•••

*-*

---

---

### TABLE 8-10 ARROWHEAD - FFELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP 1) LOW DETECTION LIBIT PAN

·

 $\sim$ 

.

4

SAMPLE LOCATION: CRL SAMPLE NAMBER: SAS NAMBER: LABORATORY: DATE SAMPLED:	AW-3A-83 88HN02525 3449-668 SWCK 11/12/87	AW-35-01 884002527 3449-661 SWOK 11/12/07	AW-58-01 88HV02543 3449-E167 SWCK 11/16/87	MV-38-61 84/1/20743 3449-2168 SUCK 11/16/67	MF-58-0   881402D43 3449-E169 SWCK 11/16/87	AW-5E-01 88HV02544 3449-£164 SWCK 11/16/67	MII-5E-01 681902744 3449-E165 SINCK 11/16/87	AW-52-01 88(A/82044 3449-2166 SWCK 11/16/87	AW-64-83 68002512 3449-641(RE) SWOK 11/11/87	MW-6A-03 88HW02112 3449-642 SWCK 11/11/87
(ng/1)										
Naph tha i ene 2- he thy inaph tha i ene	· • • • •	•.• B	***	•••	•••	0.7 B	•••		8.3 8	***
a - ac thy innoithe tere A cenaph thy iene 1 - ac thy ianach the lene										
Perylens			·····							
Acenaphtha I ene Fiuozene	•••	•••	•••				•••	•••	•••	•••
Phenanthr ene	0.4 J	2.1 1	•••			•••				
An thracene Flueran thene	• J	2.0 J	•••	•••	•••		+	····		
Pyrene Benzo(a) Anthracene	•••		•••	•••	•••	•••	•••	•••		•••
Chrysene		•••		•••	•••	•••		***		•••
Benzo(b) Fluoranthens Benzo(b) Pyrane + Prylane Indeno(1,2,3-cd) Pyrane		•••		•••		•••		•••		***
***************************************		*************	• • • • • • • • • • • • • • • • • • • •	•••	***	•••	•••	 	***	***
Dibenz(a,h) Anthracene Benzo(g,h, i) Perylene		•••	•••	•••						•••
									****************	***************

-

.

.

"---" - Not detected B - blank contamination J - Estimated concentration N - Compound identification not confirmed

#### TABLE B-10 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROUPDWATER (STEP I) Low Detection Libit Pah

.

SAMPLE LOCATION: CRL SAMPLE AANBER; SAS AAMBER: LABORATORY: DATE SAMPLED:	MW-6A-03 8847402012 3449-543 5W04 11/11/87	MF-6C-03 68HV02513 3449- <i>E40[RE]</i> SVOK 11/11/87	MW-78-02 884702533 3449-591 SWCK 11/13/87	ANY-78-02 88/1702T33 3449-892(88) 5800K 11/13/87	MW-78-02 8814002D33 3449-893 SWOK 11/13/87	ANV-7C-02 85HV02545 3449-E180 SWCK 11/17/67	MH-7C-82 88/ND2T45 3449-E181 SNCK 11/17/87	800-7C-82 860-002D45 3449-8182 50000 11/17/87	400-94-92 881402522 3449-552 5004 11/12/67
(ng/l)									
Naph tha i ene 2-ae thy inaph tha i ene Acceraph thy i ene 1-ae thy i anaph tha i ene	  	0.2 8	  	  	 	0.3 8 9.2 8	0.3 B	•••• ••• •••	••• ••• •••
Pery Lens Aconsphitha Lens Fluorene Phenanthrene		*** ***	  	•••• ••• •••	  				
Anthracene Fluoranthene Pyrene Benzo(a) Anthracene	  	* ••• •••		  					
Chrysens Benzo(b) Fluoranthene Benzo(b) Fluoranthene Indeno(1,2,3-Cd) Pyrene		••• ••• •••		   	•••• ••• •••		····		  
Dibanz(s.h) Anthracané Benzo(g.h,l) Peryiena	· · · · · · · · · · · · · · · · · · ·		••• •••	•••• •••		••••		····	

-----

"---" - Not detected B - blank contamination J - Estimated concentration N - Compound identification not confirmed

#### TABLE 8-10 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP I) LOW DETECTION LIAIT PAN

. .

-- .

SAMPLE LOCATION: CRL SAMPLE ALMBER: SAS MAMBER: LABORTORY: DATE SAMPLED:	MW-9A-02 88HV02722 3449-E63 SNOK 11/12/67	/W-94-02 884002022 3449-864 5800 11/12/87	MW-98-02 88HV02523 3449-865 SMCK 11/12/87	JW-98-02 88HV02T23 3449-866 SWOK 11/12/87	##-96-82 8617/82023 3449-867 5#CK 11/12/87	JW- 164-82 484902528 3449-857 SWOK 11/12/87	AM- 108-82 881402521 3449-858 SUCK 11/12/87	AW- 1 1A- 03 88/14025 16 3449- 839 SWCK 11/ 1 1/67	ANN- 12A-03 800vr02524 3449- 659 SNCK 11/12/07
(ng/l)									
Naph tha lene 2-ae thy i naph tha lene Acenaph thy lene 1-ae thy lanaph tha lene	0.6 B	  	  	0.6 B  			  	0.3 B  	  
Pery lene Acanaphine lene Fluorene Phanachrane	  	  		  	  	  	  	  0.2 j	
Anthracene Fluoranthene Pyrene Benzo(a) Anthracene	  	  	  	***   •	•••• ••• •••	  	•••• • •••	••• ••• •••	  
Chrysene Besze(b) Flueranthene Besze(s) Pyrene + Perylene Indene(1, 2, 3-Cd) Pyrene	   	  				   	   	  	   
Dibenz(s,h) Anthracene Benzo(g,h,i) Peryiene	***	***	•••		•••		•••		•••

.  $\sim$ 

"----" - NOL detected B - blank containntion j - Estimated concentration N - Compound identification not confirmed

#### TABLE 8-10 ARROWNEAD - FIELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP 1) LOW DETECTION LIMIT PAM

 $\sim$ 

.

.

.

SAMPLE LOCATION: CRL SAMPLE NAMBER: SAS NAMBER: LABORTORY: DATE SAMPLED:	AW- (34-03 8849/02510 3449-E47 500K 11/11/87	AN- 134-83 884402718 3449-848 580X 11/11/87	ANY-13A-03 &Arw02D18 3449-849 SHOK 11/11/87	ANV- 138-01 884402511 3449-251 580K 11/11/87	ANY-138-01 8814402711 3449-852 5WOK 11/11/87	AW- 138-81 851402011 3449-853 SWOK 11/11/47	AW- 132-01 864402514 3449-844 SWOK 11/11/87	407-132-01 4494:02114 3449-245 500K 15/15/67	487- 132-01 081+1022014 3449-246 SNGK 11/11/87
(ng/l)									
Naph thailene 2-ae thy Inaph thailene Aconaph thy Iene 1-ae thy Ianaph thailene	·  	  	····		····	 		 	••• ••• •••
Perylene Acenaphthaiene Fluorene Phenanthrene	  	  	 			  	  	 	
Anthracené Fluoranthene Pyréne Benze(a) Anthracene		•••• •••• •••		•••• ••• •••	  	•••• ••• •••	 	  	 
Chrysene Benzo(b) Fluoranthene Benzo(a) Pyrene + Perylene Indeno(1,2,3-Cd) Pyrene				***	••••  •••		  	  	  
Dibenz(a,h) Anthracene Senzo(g,h,i) Perviene	***					•••		*** *	•••

-

"---" - Not detected B - blank containation J - Estimated concentration N - Compound identification not confirmed

#### FON DELECTION FINIT PAH CONDENTER (2154 I) CONDENT DELECTION INVESTICATION TABLE D-10

to(0'y' ;) hethlene				•••	***	•••		
	*		•••	•••	•••	•••		•••
	• • • • • • • • • • • • • • • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •	•••••		•••••••
M0(1'\$')-CQ) bAtaba								
				•••				•••
					•••		•••	
···· ··· ··· ··· ··· ··· ··· ··· ··· ·			••••	***	•••			
10(\$) WERETCOUP	•••			•••	*			•••
···· ··· ··· ··· ··· ··· ···			•••			•-•		
<b> state</b>						•••		
•••• ••• •••	***	•••				-++		***
							***************	
				•••	F 5'0	f €'€	•••	
				•••		•••	•••	•••
seeladidga				***		•••		
ere i	***	~			•••		•••	
		**************						******************
···· ··· ··· ··· ··· ··· ··· ···				•••	•••		•••	
				•••				•••
			•••			•••		•••
{1/								
SCONTES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORES STORE	2012 2778-500 29140-500	2448-583 2448-583 891403038	11/10/92 2000 3146-5130 991403214 981403214	11\10\02 2#CK 3#CK 3448-6131 8#M#3138 WR-148-03	11\10\02 2MOK 2448-6133 88H403038 Mb-148-03	11/13/01 2mck 3440-603 034402230 Wil-14C-03	81/12/01 2005 2993-699 2996-699 2010-593 700-192-01	11/10/01 2005 3107 3140-6110 001403222 901-402 901-127-03

Comband (dentilication
 1 - Estimated concentration
 8 - bist detected

• ••• •---- $\sim$  $\sim$ 

.

## TABLE 8-10 ARROWERD - FIELDWORK DESIGN (NVESTIGATION GROUNDETER (STEP 1) Low Detection Limit Pah

 $\smile$ 

.

SAMPLE LOCATION: CRL SAMPLE NUMBER: SAS Number: Laboratory: Date Sampled:	ANY- 15A-02 884402137 3449-E1714LE) SUCK 11/16/87	AMP-15A-02 844rx02037 3449-£172 \$90K 11/16/87	407-158-82 844702538 3449-E174 SWCK 11/16/87	AW- 158-02 884702736 3449-E178 580K 1 1/ 16/87	ANY- 158-02 8417/02D38 3449-E 176 SWOK 1 1/ 16/87	AM- 165-01 881002517 3449-886 SNOK 11/11/87	NW- 178-8 ( 86/4025 16 3449-855 SNGK ( 1/ / 1/87	ANN= 17 E=0 1 8816/025 19 3449=856 500K 11/11/87	4W-10E-01 80Hx92536 3449-E99(8E) SWOK 11/16/87
(ng/l)									
naph tha Iene 2-ae thy Inaph tha Iene Aconaph thy Iene 1-ae thy Ianaph tha Iene	  	 	  	0.3 B 	 	 	2.4 8 13.2 j 7.4 j	  0.9 0	0.7 0 0.3 0 
Perylene Acenaphthalene Fluorene Phenen threne	  0.6 j	•••	  	  	  	   	 1.1 J 2.6 J	 1.3 j	• •
An thracene Fiuoran thene Pyrene Benzo(a) An thracene			•.4 j 	*** 2 ** ***	 	  	 	···· ··· ···	•
Chrysene Benzo(b) fluoranthene Benzo(a) Pyréne « Perylene Indeno(1,2,3-cd) Pyréne	••• ••• •••	••• •••	•••• -•- •••	***		••• ••• •••	••• ••• •••	• • • • • • • • • • • •	••• ••• •••
Dibenz(a,h) Anthracene Benzo(g,h,l) Perylene	 	 	• • • • • •	• •-•		•••• •••	••• •••	••• •••	•••

.

"---" - Not detected B - blank contamination J - Estimated concentration N - Compound identification not confirmed

### LOW DETECTION LIMIT FAH CONDENDER DESIGN INVESTIGATION CONDENDER DESIGN INVESTIGATION CONDENDER DESIGN INVESTIGATION

.

£4	20/11/11 2005 219-6770 219-6770 213-14	1 11	11/10/05 2005 2146-52 520400 51670 0	DATE SAMPLED: Laboratory: Sat Sample: Laboratory: Laboratory:
				(   <i>/</i> 6v)
N		NÊ	9'8 1'8	કતકો દેતાનું વેલ્લ 2010 મેવુટલો પૂર્વ કરતા છે. આ ગામ ગામ ગામ ગામ ગામ ગામ ગામ ગામ ગામ ગામ
	<b>b</b>	5		courby thy lene
	•••	- T I	•*•	ana i adi Aqua i yétak-
	 		···	818) \$18
			•-•	ceneph that I are
				Eusterne Eusterne Eusterne Eusterne Eusterne Eusterne Eusterne Eusterne Eusterne Eusterne Eusterne Eusterne Eus
			***	peuru (yi eue
				a thracene
			•••	
	•••			Acene Acene
	***			euso(p) i(nocencyóne yrkteue
	•••		***	euso(#) byrene + Perylene
	•••			udeno(1'3'3-C4) 5/1008
	 			909363419'P) YUJYISCOUS
			•••	enetyten (1.1.6)osne

..." - het detected 8 - blan contanination 1 - tatimted concentration 1 - Cathanted concentration 14 - Campound Identification not contitued

~~

.

•

.

.

•

#### TABLE 8-11 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION HIGH CONCENTRATION SOLL AND SEDIAMENT (STEP 1) INDRGANIC DATA

 $\smile$ 

SAMPLE LOCATION: MATRIX: DEPTH: SAMPLE NUMBER: SAS NUMBER: LABORATORY: DATE SAMPLED:	SD67- 10-01 SOIL 85HV02S01 3249-101 jTC 10/29/87	SD87 - 10 - 01 WA TER 84HW02S0   3249 - 101 JTC 10/29/87	5087-10-02 SOIL 88HV02502 3249-102 JTC 10/29/87	5087-10-02 WATER 88HW02502 3249-102 JTC 10/29/87	S087-05-01 S01L (0 - 4') 88HV02S03 3249-103 JTC 10/12/87	S087+05-02 S01L (5 - 6') B8HW02S04 3249-104 JTC 10/12/87	S087 - 19-01 S01L (0 - 6') ##HV02S05 3249 - 105 JTC 10/16/87	S067-20-01 S0iL (0 - 4') 88HV02S06 3249-106 jTC 10/15/87	S087-21-81 S01L (0 - 4*) 884402507 3249-107 jTC 10/15/87	S067-21-01 S04L (0 - 4') ##HV02S07 3249-108 JTC 10/15/87	S087-22-01 S01L (0 - 4*) &&HYV02S08 3249-109 JTC 10/19/87
(mg/kg/dry weight)											
Aluminum Antimony Arsenic Barium	9020 	595	3050	459  	47000  6 13	4290	46200  367	42800  765	39 100  3 19	43600	49600
Beryilium Cadmium Calcium Chromium	5440 57	 986 	4290		16800 46	5600	20 I DD 62	 14200 55	 17200 60	 15 ID0 60	22400 60
Cuball Copper tron Lead	 16500 845	•••	 4590 184	• • • • •	57 4 1600 1360	j 4630 82	75 j 47000 69	70   39700  3770	74 j 49000 256	) 35500 177	52
wagnesium wanganese wercury wolybdenum	1770 142		76	·	10500 548	1560 134 	12600 612	7930 547 	10200 690	9110 419 	11300 649
Nickel Selenuim Silicon Silver	35100	• • • •	 109001	• •••	62 253000		82 205000		46 1 200000	73 J 202000	56 ) 242000
Sodium Thallium Titanium Vanadium Zinc	 993  799	   		····	10300 6250 215		9910 7420 54	9690 4430 853	5330 6620 94	7780	7800
hsolids	86.5	••••	<b>83</b> .1	·····	100	100	93.2	100	100	91.3	100

"---" - Not detected J - Estimated concentration

#### TABLE 8-12 ARROWERAD - FIELDWORK DESION INVESTIGATION SUBSURFACE SOIL (STEP 1) INDEGANIC DATA

.

.

 $\sim$ 

.

SAMPLE LOC: DEPTH: CRL SAMPLE NLMBER: SMO CASE NLMBER: ITR NLMBER: LABORATORY: DATE SAMPLED: (mg/kg dry weight)	S047-05-03 (10-16') Baing 1505 B195 MEI 789 RMAL 10/12/87	\$047-05-04 (18-20') 844401504 8195 841 790 844L 10/12/87	S087-05-05 (38-39.5') 84440(1566 8195 MEI 701 RAAL 10/13/07	50-05-05 (30-39.5') 84W01004 8195 MEM479 RMAL 10/13/87	SQA7 - 13-01 (0-5') 8417001501 8195 MEG 971 RMAL 10/12/07	5087 - 13-02 (\$-12.\$') 84440 1502 8190 846 972 RMAL 10/12/87	S087-13-02 {\$-42.\$'} &&HW01802 &H95 #EM 478 RMAL 10/12/87	5087-13-03 (30-32') 804001503 8195 AEG 973 RMAL 10/12/87	5087-13-84 (33-35.5°) 884001587 8195 AEG 974 RMAL 10/13/87	5087-20-03 (4-10°) 881400568 8195 868 472 8841 16/16/67	S087-21-03 (4-10') 80400509 81400509 MEA 475 RMAL 10/16/87	FFELD BLANK BBHND 180 1 8 195 MEM 468 RMAL 10/13/67
Alupinus	10 106	9590	7580	\$490	12800	10600	11700	6860	\$06 <b>0</b>	\$468	6826	77 j
Antimony Arsenic			7.6 1	6.9.1		•••	7.2 1		9,6 3			
Barium	46 J	23 j	24 1	30 j	84 J	38 j	44 3	30 j	20 )	83 J	40 j	
Beryllium		•••				•••	•••	•••	·····	0.95 j	6.6 J	•••
Cadelue Calciue	12300	12900	10600	13900	9390	18 100	20700		***	4640	15600	
Chronium	12300	12,000	17	19	32	17	10	12600 17	12760	16	13	130 /
Cobait	10 1	9.6 1	9.1.1	6.9 1	••••	7.5 1	6.2 1	23 1	7,13	8.4 1	5.1	••••
Copper	36	45	34	37	47	34	42	62	31	71	44	
tron Lead	22800 41 j	24800 7.1 j	16500 8.7 j	19000 3.3 j	(8300 8.6.)	19100 4.2 j	19700	17596	18580	16000 6.2 J	14500 3.2 J	1 06
	•••••					· • • • • • • • • • • • • • • • • • • •						
Nagane si un Nangane se	7130	6990 537	5190 233	6 150 292	4820 j 177	6450 322	60 10 367	7600	246	5096 248	6378 284	4.9 1
HELCALA			•••							•••		
Nickel	26 j	24 j	22 j	22 1	16 J	. <b>19 j</b>			<b>20 j</b>	22 j	23 J	
Potassium	56 i j	407 J ⁻	460 J	666 J	507 j	642 J	8 14	406 J	516 J	457 ]	618 J	40 j
Selenium Silver									•	•	*	•••
Sodium	•••	•••	650 J	•••	•••	•		•-•	•••	663 J	801 3	
Tha i i i um	•••			•••	•••			•••				
Vanadium Zinc	46 1	39 j \$4 j	37 1	42	66 73 j	48 j 36 j	44 J 42 I	22 j 392 j	40   37	36 j 44	34.1	2.7 1
Cyañide	NE	NR	NR I	NR	NR I	34 J NR	42 j NR	392 j NR	17 J ME	NE NE	40 NR	2.7 j NB
Solids		<b>A6</b>			\$1	45			<b>64</b>	<b>86</b>		190
								•••••••••••••••••••••••••••••••••••••••			••••••••	

1-

.

"---" - Not detected J - Estimated concentration NE - Analysis not required

 $\smile$ 

SAMPLE LOCATION: SMO CASE NUMBER: CRL SAMPLE NUMBER: ITR NUMBER: LABORATORY: DATE SAMPLED:	S087-04-01 8350 88HV01534 MEM 483 RMAL 10/28/87	SD&7-04-02 \$350 \$8HW01S35 MEM 484 RMAL 10/28/87	5087-05-01 8350 88HV01530 MEM 476 RMAL 10/28/87	SD87+05+02 8350 88HV01531 MEM 477 RMAL 10/28/87	SD87-06-01 8350 88HV01S28 MEM 466 RMAL 10/28/87	SD87-06-01 8350 8847011D28 MEM 467 RMAL 10/28/87	SD87-06-02 8350 88HV01S29 MEM 468 RMAL 10/28/87	5087-06-02 8350 88HW01029 MEM 469 RMAL 10/28/87	SD87-08-01 8350 88HV01538 MEM 487 RMAL 10/29/87	5087-08-02 8350 88HV01539 #Em 488 RMAL 10/29/87	SD87-09-01 8350 88HV01540 MEM 489 RHAL 16/29/87	SD67-09-02 8350 88HV0 IS41 MEM 490 RMAL 10/29/87
(mg/kg dry weight)										• • • • • • - • • • • • • • • • • • • •		
Aluminum	4820 j	8540 J	6730 J	10700 \$	4530 )	9560 j	6160 J	7980 }	5620 j	7660 J	10900 J	4860 J
Antimony Arsenic Barlum	9.9 j 55.2 j	8.8 j 53.2 j	68.2 j	142 )	12 J 33 2 J	5 j 36 j	7.2 J 37.1 J	7.2 j 51.6 j	117 )	18.8 90.3 j	53 264	 173 j
Beryilium Cadmium	0.61 j	0.54 j	•••	•••	···		•••			•••		
Calcium Chromium	4400 j 14.\$	4180 j 64.1	7010 j	12600 J 22.3	4160 J 10.5 J	66 10 - j 16 - 3	5000 j 10.8	6450 J 14.3	5220 j 17.6	7030 j 13	16700 j 91.4	17000 1
Coball Copper Iron Lead	i0.3 j 43.5 j 15000 R	10.7 j 50.3 j 15100 22.4 R	54.7 J 17900 \$5.8 R	71.3 J 17300 97.6 R	42.6 J 11300 48.9 R	15.4 j 65 j 19700 33.1 k	8.7 J 35.9 J 11100 16.8 R	10.3 j 41.8 j 12500 17.7 R	59.3 j 18700 k	1.1 j 50.7 j 17300 R	116 J 77700 R	76 100 R
nagnesium manganese Mercury Nickel	4690 j   1170 j   0.56   22.2 j	4520 / 955 j 22.6 j	2426 j 1450 j	4270 j 560 j 23.6 j	2670 / 930 j 13.2 j	7860 671 j 36.4 j	3940 j 212 j 17 4 j	4880 j 272 j 21.9 j	2500 / 153 j	4430 } 196 J 17.4 }	2850   445   52.4	2268 j 410 j 
Potassium Seienium Silver Sodium	314 j  722 j	289 j  506 j		387 )	233 J	304 j	205 j 	241 j 		287 j	····	
Tha Filum Vanadium Zinc Cyanide	26.5 j 267	25.5 j 237	21 j 176	32 j 376	15.2 j 128	30.1 j 135	23.1 j 66.3	31.3 J 70.3	23.6 j 453	29.3 j 219	36.5 J 5890	14.1 J 2170
% Solids	70.4	79.1	20.4	25 . 3	33.3	49.8	64 . 9	61.1	30.2	53.7	16.6	16.9

.

•

"----" - Not detected B - Blank contamination J - Estimated concentration NA - not analyzed R - Laboratory data not usable

#### TABLE 8-13 ARROWITEAD - FIELD WORK DESIGN INVESTIGATION SEDIMENT (STEP 1) INORGANIC DATA

•

.

-

SAMPLE LOCATION SMO CASE NAMBER: CRL SAMPLE NAMBER: ITR NAMBER: LABORATORY: DATE SAMPLED:	SD87-11-01 . 8350 88HW01532 MEM 481 RMAL 10/28/87	SD87-11-02 8350 88HV01533 MEM-482 RMAL 10/28/87	SD67-12-01 8350 88H401536 MEM 485 RMAL 10/26/87	SD&7-12-02 8350 80HV01537 MEM 486 RMAL 10/28/87	SD87 - 1]-01 8350 88HV01526 AEM 464 RMAL 10/27/87	SD87 - 13-02 8350 881400 IS27 MEM 465 RMAL 10/27/87	SD#7-14-01 #195 - &&HV01524 MEM 462 RMAL H0/27/87	SD&7-14-02 8195 8&HVO 1525 #EM 463 RMAL 10/27/87	SD87-15-01 8195 88HV01522 MEM 460 RMAL 10/27/87	SD87-15-02 8195 88HV01523 AEM 461 RMAL 10/27/87	FIELD BLANK 8350 881100 1544 MEM 493 RMAL 10/29/87
(mg/kg dry weight)											
Aluminum Antimoay Arsenic Barium	€3400 }   18.9   95.7	6 160 j  48.3 j	7530 j 9.6 j 114 j	7300-)  (1.1 j 50.# j	679D )  54.1 J	7570 j  61.8 j	22500 12.6 112.1	12100  7.1.1 61.9.1	17600 15.9 87.2 j	17800  21, 1 106	50.4 )  0.75 J
Beryilium Cadmium Caicium Chromium	 6950 j 23.6	9890 j 17,3 j	5050 j 16	0.42 j 6390 j 13.7	6240 } 19.9	7250 j 14.2	16400 j 36	8400 } 18.7	0.41 j 3070 j 37.7	0.59 j  6460 j 28.1	69.1 j
Cobalt Copper Iron Lead	12.3 j 76.0 j 19100 85.5 R	35.3 J 10600 9.2 R	15.4.) 55.3.j 30300 60.1.R	10 j 60.6 j 15900 15.3 ft	62.7 j 7430 15.6 R	34.7 J 7970 15.9 R	104 j 30800 31.1 j	7.2 j 60.4 j 17600 16.9 j	11.6 J 48 j 30700 10.3 j	7.5 j 62.5 j 21300 <8.3	• • •3.5 J 1.4 J
Magnesium Manganese Mercury Nickel	4750 j 1350 j 27.1 j	2960 j 715 j	4680 j 3170 j 	4970 j 700 j 21.6 j	2220 j 60.5 j 13.9 j	2370 j 102 j 11.5 j	7500 294 36.3 j	4380 j 183 25 j	4260 j 370  26.7 j	4470 272  27	4.7 J
Potassium Seienium Siiver Sodium	424 J	   	339 j	347 j  616 j	176 j  	169 j  	#26 j  	430 j  	305 j  969 j	532 j  1210 j	31.5 j
Thaijium Vanadium Zinc Cyanide	41.4 j 199	23 J 45. 4	30.4 j 1350	25.4 j 188	24.9 j 39.7	24 j 38.7	78 102 1.7 j	41.4 J 51.5	 76.8 40.6	49.7 j 79	 
N Soilds	43.3	29.3	39.6	79.1	39.1	40.3	29.3	43.8	\$1.9	67.3	99.9

.

"----" - Not detected B - Blank contamination J - Estimated concentration NA - Not Bhalyzed R - Laboratory data not usable

 $\sim$ 

 $\smile$ 

(mg/kg dry weight) A fuminum Antimony Arsenic Barium Barium	5650  84.3 j	5540  112 J	4700	\$330	7860							
Afuminum Antimony Arsenic Barium	84.3 j	•••			7860							
Arsenic Barium	84.3 j					4690	( 1600	<b>46 I</b> Û	4660	10 100	18200	67 j
Barium	84.3 j				•••			•••		•••	•••	
	• • • • • • • • • • • • • • • • •	112 1		15.5	6.7 J		8   38 5	95.9 1	12.5	10		•••
Hereittigen			120 J	339	44.2.1	62.2 )	30 2 3	93.9 1	239	707 j	114 j	····
				0.91 1	0.4 j							
Cadmium	(8.4	(4.4	(8.8	5.4		<6.8		(8.8				
Catcium	16600 (	16000 1	23200 1	5380 (	45 10	33600 )	8 I 90 j	18300 J	26300 )	46 IO J	16100 )	69.9 1
Chromium	•••	•••	•	19.7	19	•••	15.3			23.4	24.3	•••
Cobail				8 4	7.7 1		8.3 1			10 9 1		•••
Copper	164 ]			167 j	53.5 j		63.4 j			25 9 j	51.2 /	1.9 J
tron	14700	15200	5720	41200	22800	4560	22000	12800	18900	20700	21900	91.5
icad	47 1	<49.6	49.1	<11.6	(7.2	41.9 J	19.2 J	85.7 1	89.4 j	26 4	23 j	
Magnesium	2910	2610 ]	2650	3230 /	5390	3620	57 10	2120 ]	3680 j	3840 )	4190 ;	
wangane se	245	391	336	167	194	477	296	734	7200	728	338	4,1.3
wercury		•••	•••					•••	•••	•-•	•••	•••
NICKEI	•••	•••	•••	24.5 j	22.7 j	•••	23.4 J		•	22.2	25.5	
Potassium		•••	•••	279 j	320 j		424 J	•••	873 j	363 j	451 ]	23.9 j
Selenium	•••			•••	•••	•••			***	•••	'	'
Silver		•••		•••				•••	•••	•••		•••
Sodium		···		+	764 j	•••	1450 J		•-•	•		
Thallium	•-•	•••	•••					•••		•-•		•••
vanadium				32.5 1	40.2 /		39.2 1		14.8 1	54.8	48.8 (	0.44 j
ZIAC	480	801	260	462	55.3		69.2	•••	136	44.8	58.8	•••
Cynanide	•••		***	•••	• • •	•••	•••			•••	•••	
% solids	11.9	11.3	11.4	48.4	77.5	14.8	46.4	(1.2	20.8	67 . 8	24.3	100

"---" - Not delected j - Estimated concentration

•

#### TABLE B-15 ARROMHEAD - FIELDWORK DESIGN INVESTIGATION SURFACE SOIL (STEP 1) INCINERATION PARAMETERS

.

.

17

· **_** .

SAMPLE LOCATION. CRL SAMPLE NUMBER: SAS NUMBER: SAMPLE NUMBER' LABORATORY: DATE SAMPLED	SS87 - 10-01 88440 1512 3330E /E20 WEYER 10/26/87	5587 - 13-01 48+140 15 17 3330E E 23:/ 235 WE VER 10/27/87	SS&7 - 15-01 &BH40 (518 33308 &26/826 &26/826 &84 &84 10/27/87	5587 - 15 - D1 88HVO ID18 3330E E60/E49 WEVER 10/27/87	\$\$67 - 17 - 01 88440 IS 19 3330E E 27 / E 27 WE YER 10/27 / 67	SS87 - 18 - 01 88HV01541 3330E E 19/E 19 WEVER 10/26/87	5587 - 19-01 881490 (510 33306 E187E (8 WEYER 10/26787	FIELD BLANK BBHV0 152 1 3330E E 29/E29 WEVER 10/27/87
INCINERATOR PARAMETERS.								
Moisture Content (%)	~~	40.2	86.3	86 4	88.5	84.2	29.1	40.1
Ash Content (%)	NA	85.6	22.6	216	19.3	21.4	48.7	100.0
Heating Value (8tu/lb)	NA	1847.0 )	7022.0 (	7107 0 (	7753.0 (	7345.0	889.0 1	68.0 j
Carbon Content (%)	NA	9.5	42.9	43.7	44.7	43 3	5.5	<0. F
Nydrogen Content (%)	NA	1.3	4.3	4.2	5.0	4.5	0.6	<d. i<="" td=""></d.>
Nitrogen Content (%)	NA	0.2	1.6	16	2.8	2.1	0.3	<d.1< td=""></d.1<>
Oxygen Content (%)	NA	3.2	28 2	28.5	27.2	28.5	4.7	(0.1
Sullur Content (%)	NA	0.2	0.5	0 5	1.0	0.3	(0.1	(0,1
TOC (mg/g)	410 1	#1.0 I	490.0 1	390 Q I	430.0 i	160.0 1	78.0 1	<1.0 i

.

~

j - Estimated concentration NA - Not analyzed

#### TABLE 8-16 ARROMMEAD - FIELOWORK DESIGN INVESTIGATION SEDIMENT (STEP I) INCINERATION PARAMETERS

.

 $\checkmark$ 

SAMPLE LOCATION: CRL SAMPLE NUMBER: SNO SAS NUMBER: ITR NUMBER: SAS NUMBER: Ladoratory: Date SampleD:	SD87-04-01 881400 1534 8350 MEM 483 3330-E53 WEVER 10/28/87	SD87-04-01 884W01D34 8350 MEM 483 3330-E55 WEVER 10/28/87	SD87-05-02 88HW01839 8350 MEM, 483 3330-E40 WEYER 10/29/87	SD87-09-01 84/W01540 8350 MEM 489 3330-6378661 WEYER 10/29/87	SD87-11-01 880001S32 8350 ME& 481 3330-E42 WEVER 10/28/87	SD87-12-01 884401537 8350 8444 485 3330-852 WEYER 10/28/87	SD87-13-01 8847901526 8350 MEM.464 3330-E34 WEVER 10/27/87	F I ELD BLAN 86HVD 1544 8350 8EM 493 3330- E56 WEVER 10/29/87
noisture Content (%)		25.9	74.5	#5.3	57.9	43.8		«@. 1
sh Content (%)	97.5	97 3	70.1	29.4	46.2	95.4	NA	100.0
mating Value (Blu/Ib)	123.0 1	152.0 1	3055.0 1	77 17 . 8 1	1141.0 1	384.0 1	NA	57.0
arbon Content (%)	0.7	0.0	17.1	40.4	6.9	1.7	NA	40.1
vdrogen Content (%)	0.2	0.3	2.2	5.0	1.0	0.3	NA	40.1
litrogen Content (%)	(0,1	<0.1	0.8	1.3	0.4	<q.1< td=""><td>NA</td><td>40. L</td></q.1<>	NA	40. L
Kygen Content (%)	1.6	1.6	9.6	16.2	5.4	2.6	NA	40.1
uiiur Content (%)	<0.1	<0.1	0.3	7.7	0.1	(0.1	NA	40.1
OC (mg/g)	6.0 J	8.0 j	130.0 j	350.0 J	50.0 j	(5.0 J	120 j	(1.0

.

J - Estimated concentration NA - Not analyzed "---" - Not detected 5 - Biank contamination R - Laboratory data not usable

## TABLE 8-17 ARROWHEAD - FIELDWORK DESION INVESTIGATION SEDIMENT (STEP I) ORGANIC DATA

SAMPLE LOCATION: CRL SAMPLE NAMBER: SAG CASE NUMBER: OTR NAMBER: LABORATORY: DATE SAMPLED:	SD87-04-01 88HV0 (S34 8350 EP 380 AATS 10/28/87	SD87-04-02 88HV01535 8350 EP 381 AATS 10/28/87	\$067-05-01 #84401530 #350 EP 373 E31 10/28/#7	SD&7-05-02 &&Hv01531 &350 EP 374 E31 10/28/87	SD&7-06-01 ##HV01528 #350 &P 363 E31 H0/28/#7	SD87-06-01 88HV01528 8350 EP 363RE E31 10/28/87	SD87-06-01 88HV01D28 8350 8P 364 831 10/28/87	S087-06-02 88HV01S29 8350 EP 365 E31 10/28/87	SD47-06-02 48HV0 1529 8350 EP 365RE E31 10/28/87	SD&7-06-02 &&HV01D29 &350 EP366 E31 10/28/87	SD67-08-01 80HV01538 8350 EP384 AATS 10/29/87
VOLATILE ORGANIC COMPOUNDS (ug/kg dry weight)											
Vinyi Chloride Methylene Chloride Acetone Total 1,2-Dichloroethenes	7 B 11 J	10 B 13	76 8 250 j	 47 8 \$3 8	43 B 39 B	49 8 60 8	27 B 80 B	22 B 270	22 B 140 B	24 8 60 8	 260 620 
Chioroform 2-Butanone 1, 1, 1-Trichloroethane Benzene	12 B	16 B	9 j 110 B 	58 B	17 B	76 B	73 B	93 B	51 B	36 B	150 B 38 J
Totuene Ethylbenzene Total Xylenes	79 6	30 B	90 	13 B	# B 	1 B	6 B 	14 8 	14 B		850 
SEMIVOLATILE ORGANIC COMPOUND (ug/kg dry weight)	)S										
Phenol Diethy iph tha late Fluorene N Ni trosodipheny iamine	***	86 j	170 j	· 110 J	68 J	NÅ NÅ NÅ	56 J	  	NA NA NA NA	77 j 62 j	2800 j
Phenanthrene Anthracene Di -n-Buty Iphtha la te F Luoranthene			350  5 10	350  5 10	  54 j	NA NA NA NA	  40 j	320 / 59 / 610	NA NA NA NA	350 j 64 j 390 j	···· ··· ···
Pyrene Buty ibenzy iph tha late Benzo (a )An thracene b i s (2-E thy lhexy l )Ph tha late		  110 j	5 (0 ) 300 )	340 J 230 J 290 J	54 j 	NA NA NA NA	39 J	350 220 j 120 j	NA NA NA NA	420 j 200 j	
Chrysene Benzo (b) Fluoranthene Benzo (k) Fluoranthene Benzo (a) Pyrene	   	· · · · · · · · · · · · · · · · · · ·	280 j 246 j 240 j	250 j 160 j		NA NA NA NA		250 j 110 j 110 j 210 j	NA NA NA NA	210 j 160 j 160 j 160 j	800 j
Indenoi (1, 2, 3+cd)Pyrene Benzo (g.h.i)Perylene	***	•••			•••	NA NA		120 j 120 j	NA NA		

 $\sim$ 

 $\sim$ 

.

"----" - Not Detected B - Blank Contamination NA - Not analyzed J - Estimated concentration

 $\smile$ 

.

.

.

SAMPLE LOCATION: CRL SAMPLE ALMBER: SMD CASE ALMBER: OTR NUMBER: LABORATORY: DATE SAMPLED:	SD87-08-02 88HV0 1539 8350 EP385 AATS 10/29/87	SD87-09-01 88HV01540 8350 EP386 AATS 10/29/87	SD87-09-02 88HV01S41 8350 EP387 AATS 10/29/87 P.VOCS	SD#7-11-01 #8HW01532 #350 EP378 E31 10/28/87	SD47-11-01 86HV01S32 8350 EP378RE E31 10/28/87	SD87-11-02 88HV01533 8350 EP379 E31 10/28/87	SD87-11-02 B8HV01S33 B350 EP379RE E31 10/28/87	SD87 - 12-01 88HV0 IS36 8350 EP382 AATS 10/28/87	SD87 - 12-02 88HV0 IS37 8350 EP383 AATS 10/28/87	SD87 - 13-01 88HW0 1526 8350 EP361 E31 10/27/87	S087 - 13-02 86HW0 1527 8350 EP362 E31 10/27/87	SD87 - 14-01 8817VD 1524 8195 EP359 META 10/27/87
VOLATILE ORGANIC COMPOUNDS (ug/kg dry weight)												
Vinyi Chloride Methylene Chloride Acetone Total 1,2-Dichloroethenes	10 200	800 376 2500 560	350 1800	24 B 72 B	4 B	 38 B 130 B	71 B 160 J	 97 	240	63 B 27 B	50 8 55 8	30 B 70 S
Chiorolorm 2-Butanone 1, 1, 1-Trichioroethane Benzene	140 B	28 B 1 100 	530 51 J	29 B	53 B	130 B	110 B	24 B	1 FD B	 	43 B	  
Toluene Ethylbenzene Total Xylenes	220 4 j 8	8 10 500 2800	270 330 970	13 B	• • 	640 j 	210 J	130  	\$10	10 8	10 B	··· ···
SEMIVOLATILE ORGANIC COMPOUND (Ug/kg dry weight)	5											
Phenol Diethy iph tha ia te Fluorene N-Ni tro sodipheny lamine	  750 j	30000 j		···· ··· ···	NA NA NA NA	  	NA NA NA NA	140 )	160 j		82 j 89 j	  
Phenanthrene Anthracene Di-n-Guty iph tha la Le Fluoran thene			 	370 j 64 j 480 j	N4 N4 N4 N4	470 j 85 j 	NA NA NA NA	240 }  760 J	340 }  340 J	510 j 91 j  816 j	840 180 j  920	510 } 
Pyrene Buty ibenzy i phtha i a te Benzo (a ) An thracene b i s (2-E thy ihexy i ) Phtha i a te				530 j 220 j	NA NA NA NA	450 J 250 J 93 J	NA NA NA NA	240 j  210 j 180 j	340 j 176 j 230 j	540 J 310 J 100 J	1200 j 450 j	640 320 j 1400
Chrysene Benzo(b) Fluoran thene Benzo(k) Fluoran thene Benzo(a) Pyréne	••• ••• •••	••• •••	 	250 j 	NA NA NA NA	300 j 210 j 210 j 210 j 280 j	NA NA NA NA	170 J	190 j 140 j 170 j 100 j	320 j 120 j 120 j 120 j 310 j	470 j 350 j 360 j	410 j 290 j 290 j 370 j
(ndenoi(1,2,3-cd)Pyrene Benzo(g.h.i)Peryiene	•••	····		 	NA NA	140 j 120 j	NA NA	160 j 150 j	·	140 J		200 j

"---" - Not Detected B - Blank Contamination NA - Not analyzed J - Estimated concentration

 $\smile$ 

#### TABLE 8-17 ARROMHEAD - FIELDWORK DESIGN INVESTIGATION SEDIMENT (STEP 1) ORGANIC DATA

-

.

.

·---. ----- .

SAMPLE LOCATION: CRL SAMPLE NUMBER:	SD67 - 14 - 02 88HV0 1525	SD67-15-01 88HV01522	SD-87-15-02 88HN01523	FIELD BLANK BOHND IS44
SHO CASE NUMBER	8195	8195	8 195	8350
OTR NUMBER:	EP 360	EP 357	EP354	EP 391
LABORATORY:	ME TA	ME TA	ME TA	AATS
DATE SAMPLED	10/27/87	10/27/87	10/27/87	10/31/87

#### VOLATILE ORGANIC COMPOUNDS

Vinyl Chioride		•••	•••	•••
ethylene Chloride	23 8	79 B	76 B	
cetone	)5 B	62 B	•••	• • •
Total 1,2-Dichloroethenes	***	•••	•••	
Chloroform				
2-Butanone				21
I, 1, 1-Trichloroethane				
Senzene	•••		•••	•••
Toluene	** .		2)	
Ethylbenzene			•••	
Total xylenes	· · -			

#### SEMIVOLATILE ORGANIC COMPOUNDS

Phenol	•••		•••	•••
Dietnyiphthaiate	•••	•••	•••	
Fluorene			•••	
N-Ní Lrosodípheny iamine	•••		•••	
Phenan threne	470	40 j	730	
Anthracene	4/0	••• )	57 1	
Di-n-Buty iph the late	3700	5100	5100	
Fluoranthese		3 100	3100	
*****				
Pylene	630	57 j	850	•
Buty ibenzy iph that a te		47 j		•••
Benzo(a)Anthracene	290 /		300 j	•••
bis(2-Ethylhexyl)Phthalate	450 J	530	760	•••
Chi y sene	370 1		411 1	
Banzo(b)Fluoranthene	290 1		220	
Benzo(k) Fluoranthene	290 1	•••	270 1	
Benzo (a ) Pyrene	340 j	• • •	370	
Indeno I ( 1, 2, 3-cd ) Pyrene	44 J	• • •	200 J	
Benzo(g.h.))Perviene		• - •		•••

"•••" - Not Detected B - Blank Contamination NA - Not analyzed j - Estimated concentration

~

#### TABLE B-14 ARROMHEAD - FEELDWORK DESIGN INVESTIGATION SURFACE SOLL (STEP I) ORGANIC DATA

SAMPLE LOC: CRL SAMPLE NUMBER: SMO CASE NUMBER: OTR NUMBER: LABORATORY: DATE SAMPLED:	SS87-09-01 88HW01S13 8195 EP 344 Meta Trace 10/26/87	SS87-10-01 884W01S12 8195 EP 343 Weta Trace 10/26/87	SS#7-12-01 ##HV01515 #195 EP 350 Meta Trace 10/27/#7	5587-13-01 48HW01517 8195 EP 352 Mela Trace 10/27/87	SS87-14-D1 88HV01516 8195 EP 351 Meta Trace 10/27/87	SS87-15-01 88HW01518 8195 EP 353 Meta Trace 10/27/87	SS87-16-01 88HW01S20 8195 EP 355 Mela Trace 10/27/87	SS87-17-01 88HV01\$19 8195 EP 354 Meta Trace 10/27/47	S587-18-01 884W01511 8195 EP 342 Meta Trace 10/26/87	SS87-19-01 80HW01S10 8195 EL 557 Meta Trace 10/26/87	SS&7~19-01 84HVQ1D10 8195 EL 558 Meta Trace 10/26/87	SS87-20-01 B8HW01S14 8195 EP 349 Meta Trace 10/26/87	FIELD BLANK 88HW01521 8195 EP 356 Meta Trace 10/27/87
VOLATILE ORGANIC COMPOUNDS (ug/kg dry weight)													
methylene Chloride Acelone Benzene Toluene Tolai Xylenes	 53 6	250 j  28 8	 390 J	540 J 550 J  	100 j 52 j 38 8 75 j	180 )  	77 j 190 B	470 j 1600 j	90	210 j 160 j 160 j	220 j 110 j  74 j	320 j 840 j	10 B 13 B 2 J
SEWIVOLATILE ORGANIC COMPOUNDS (ug/kg dry weight)						_							
Hexachioroethane Benzoic Acid Naphthalene 2-wethyinaphthalene	••• ••• •••	R R R R	t t t t	  350 j	 2700 9000	  	•••• ••• •••	390 ) R R R	370 j 	···· ····	 170 j 	  	
2-Chloronaph tha lene Fluorene 4.6-Dinitro-2-Methy (pheno) Phenan threne		R R R R	# # # #	990 j 450 j 3000 j 630 j	2400	· · · · · · · · · · · · · · · · · · ·	  	R R R R	  	'	  	•••• ••• •••	
Di-n-Buty iph tha late Fluoran thene Pyrene Buty ibenzy iph tha late	2600 8	k k k k	# # #	2800 8 580 j	3600 B	14000 B 19000	5000 B	2600 8 R R	1200 B 2100 	520 B 600	500 B 749 	4000 8 2100 210 J 140 J	3000
bis(2-Ethylhexyl)Phthalate Chrysene Di-n-Octyl Phthalate Benzolk)Fluoranthene	3800 B	2 2 2 2	# # #	••• ••• •••	1600 B 340 j	<b>8000</b>  520	1300 B	1990 B R R R	13000	640 8  	\$30 B	430 <b>R</b>	470 170 j

"---" - Not detected 8 - Blank contamination J - Estimated concentration R - Laboratory data not usable

.

## TABLE 8-19 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION SUBSURFACE SOIL (STEP I) ORGANIC DATA

.

--

.

.

SAMPLE LOC: DEPTH: CRL SAMPLE NLMBER: SMO SAMPLE NLMBER: OTR NLMBER: LABORATORY: DATE SAMPLED:	S067-03-03 (10-16') 88HW01505 8195 EP 339 Meta Trace 10/12/87	5067-05-04 (16-20°) 84000 1504 8195 EP 340 Meta Trace 10/12/87	5007-05-05 (30-30.5') 880001506 8195 EP 341 Meta Trace 10/13/87	5067-05-05 (30-39.5') 880001004 8195 EP 376 Meta Trace 10/13/87	S047-13-01 (4-5°) 807701301 8195 EP 345 Neta Trace 16/12/87	S087-13-82 (\$-12,5') 860001582 8195 EP 346 Meta Trace 10/12/87	\$087-13-02 (\$~12.8') 884901802 8195 EP 375 Meta Trace 10/12/87	\$087-13-03 (30-32') 881001583 8195 EP 347 Weta Trace 10/12/87	5087-13-04 (33-35.5°) 886061507 8195 8P 346 8eta Trace 10/13/87	5087-20-03 (4-10') 84100 1508 8105 EP 340 Acta Traca 10/16/87	S087-21-03 (4-10°) 841401509 8195 EP 372 Meta Trace 10/16/87	FIELD BLANK 88400 180 1 8195 EP 377 Meta Trace 10/13/87
VOLATHLE ORGANIC COMPOUNDS (ug/kg dry wright)												
kethylene Chloride Acetone Total 1, 2-Dichloroethene 1, 1, 1-Trichloroethane	37 j 160 B 11 j	\$7   33   5	74 33 13	41 j 120 m	50 j 160 B	15 B 250 B	24 B 130 B	10 <b>B</b> 27	27 B 68 B	16 a 133 a	56 j 230 8	3 <b>0</b>
Tr i chioroethene To i vene			40 8	· 15 J		• 1	4 1		4 )	•••		
SERIVOLATILE ORGANIC COMPOUNDS (ug/kg dry moight)												
i sophorone Benzolc Acid Naphtha ione 7-aethy Jaephtha Jene	 		  		  	•••• ••• •••		R R R R	••• ••• •••	120 j	1800 j  176 j 380 j	
Phonanthrana Di-n-Buty iphthe la ta Fluoran thana Pyrona	••• ••• •••	····	180 8	340 B	360 B 978	720 B	128 8	8 8 8	91 8	\$6 j 6 198 j 865 j 836 j	110 j 4700 j 166 j	120 j
bis(2-Ethylbexyl)Phthalata Chryseke Di-n-Octyl Phthalata Benzo(k)Fluorabhene		410 B 	768 8		1106 66 319 j	640 B	500 â	540 B A E E	340 8	2200 j 146 j 1000 j 3100 j	150 B 106 J	•• J

_

"---" - Not detected a - Blank contamination j - Estimated concentration

#### TABLE B-20 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION HIGH CONCENTRATION SEDIMENT AND SURFACE SOLE (STEP 1) DRGANIC DATA

SAMPLE LOCATION: DEPTH: SAMPLE NUMBER: SAS NUMBER: LABORTORY: DATE SAMPLED: VOLATILE ORGANIC COMPOUNDS	SD87 - 10 - 01 88HW02S01 3155 1 - 101 NANCO 10/29/87	SD87-10-02 88HV02S02 31551-102 NANCO 10/29/87	5087-05-01 (0 - 4') 88HV02503 31551-103 NANCO 10/12/87	5067-05-02 (5 - 6') 88HV02504 31551-104 NANCO 10/12/87	5087 - 19-01 (0 - 6') 88HV02505 31551 - 105 NANCO 10716787	SD87-20-01 (0 - 4') 88HV02S06 31551-106 NANCO 10/15/87	S087-21-01 (0 - 4') 88HV02S07 31551-107 MANCO 10/15/87	S087-21-01 {0 - 4`} 88Hv02D07 31551-108 NANCO 19/15/87	5087-22-01 {0 - 4'} 88HV02508 31551-109 NANCO 10/19/87
(mg/kg dry weight)									
wethylene chloride 1.2Dicloroethane Trichlorethene Toluene Total Xylenes	19 ;  	24 j  	19 j	27 / 310 J 56 10, 1 24	20 j 	22    	10 J  	21 j  	3.48 67 j  76
SEMIVOLATILE ORGANIC COMPOLNOS (ug/kg dry weight)			••••••		••••••••••••			•••••	
2-Chlorophenol 1, 1-Dichlorobenzene N-Nitrasa-Di-N-Propylamine 1, 2, 4-Trichlorobenzene				 	· ···			  	&1 j 45 40 j 42 j
2-methy inap tha lene Acenaph tene 1, 2, 4-Dini troto luene Phenan threne	17 J	  		····		•••• ••• •••			44 57 30 j
Anthracene filioranthene Pyrene Dieldrin	•••• ••• •••								13 j 18 j 17 j 46 j

-

•

_

"---" - Not detected J - Estimated concentration

•

### TABLE B-21 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION SURFACE SOIL (STEP I) LOW DETECTION LINIT PARS

 $\overline{}$ 

SAMPLE LOCATION: CRL SAMPLE NUMBER: SAS NUMBER: LABORATORY: DATE SAMPLED: DILUTION FACTOR:	SS&7-09-01 &&HV01513 3330-£21 DL HITTMAN 10/26/87 20	SS87-10-01 88HV01512 3330-E20 HI TTMAN 10/26/87 1	SS87-10-04 88HV01D12 3330-220 DL Hittman 10/26/87 10	SS67 - 12-01 88HV0 IS15 3330 - E23 HI TTMAN 10/27/87 I	5587-12-01 86HW01015 3330-E23 DL HITTMAN 10/27/87 10	SS87-12-01 80HW01D15 3330-223 DL HITTMAN 10/27/87 20	5587 - 13-01 8811001517 3330-225 H1 FTMAN 10/27/88 2	SS87-13-01 88HW01S17 3330-E25 DL HI TTMAN 10/27/87 20	5587-13-01 8817001017 3330-E46 HITTMAN 10/27/87 2	SS87-13-01 88470 ID17 3330-646 OL HI TTMAN 10/27/87 20	5587 - 14-01 884901516 3330-624 DL HI TTMAN 10/27/88 20
lug/kg dry weight)											
Naphthalene 2-wethyinaphthalene Acenaphthylene Acenaphthene	  	  	  		  	•••• ••• •••	260 NJ 360 JN 24 NJ 26 NJ	260 JN	240 NJ 438 NJ 43 NJ 920 NJ	250 NJ 92 Nj	2100 8000 430 NJ
Fluorene Phenanthrene Anthracene Fluoranthene	  4200 Nj	300	•••• ••• •••	380	  960 R 920 R	  790 JN	56 NJ 	480 JN 440 R 150 R 1100 JN	25 NJ 24000 J 21000 NJ 4800 NJ	630 NJ 1200 J	1100 NJ 2400 1200 J
Pyrene Benzo(a)Anthracene Chrysene Benzo(b)Fluoranthene	1700 j  870 jn 	2000 JN	790 k  440 R 1100 Nj		  	••• ••• •••	600 NJ 1400 NJ 4300 NJ	950 JN 2000 JN	495 NJ	910 JN 1000 R	980 NJ 560 NJ 730 NJ
Benzola IPyrene + Perylene Indeno(1,2,3-cd)Pyrene Dibenz(a,h)Anthracene Benzo(g,h, I)Perylene I-wethylnapthalene	740 NJ  	9000 j 6200 nj	1000 j 1400 r 1400 r 1400 r 1200 Nj	420 )	480 NJ	2300 NJ	1600 NJ 2700 NJ  420 NJ	340 NJ 540 R 280 JN	5800 NJ 13000 NJ 17000 NJ 480 JN	4 10 NJ  580 IN 300 NJ	150 NJ 300 NJ 5100

 $\sim$ 

.

"---" - NOT detected J - Estimated concentration N - Compound Identification not confirmed R - Laboratory data not usable

 $\smile$ 

SAMPLE LOCATION: CRL SAMPLE NAMBER: SAS NAMBER: LABORATORY: DATE SAMPLED: DILUTION FACTOR: (ug/kg dry weight)	SS87-15-01 88HV0 (S18 3330-€26 DL HI TTMAN 10/27/87 20	SS&7 - 16 - 0 1 & 8HVO 1520 3330 - E2& HI TTMAN 10/27/87 1	587 - 16 - 0 1 88Hv0 1520 3330 - 628 DL HI TTMAN 10/27/87 10	SS&7- 16-01 8&HVQ 1D2D 3330- E4& Hi FTMAN 10/27/87 1	SS87 - 17 - 0 1 88HV0 15 19 3330 - E27 H1 TTMAN 10/27/87 1	SS87-17-01 88HV01019 3330-E47 HITTMAN 10/27/87 I	SS&7 - 1& - 01 88HV0 IS I I 3330 - E 19 HI TTMAN 10/26/87 1	SS87 - 19-01 884400 IS 10 3330 - E 18 HI TTMAN 10/26/87 I	5587 - 20 - 0 1 88HV0 15 14 3336 - E22 HI TTMAN 10/26/87 1	SS87 - 20 - 0 1 88HV0 1D 14 3330 - E44 HI FTMAN 10/26/87 1	FIELD BLANK 88HW0 1020 3330-E29 H1 TTMAN 10/27/87 1
Naph tha lene 2 - me thy I naph tha lene A cenaph thy lene A cenaph thene	····			· · · · · · · · · · · · · · · · · · ·							···· ···
f luorene Phemanthrene Anthräcene Fluoränthene	6200 NJ	  	530 R  860 R	···· ···	  	···· ···	···· ···· ···	···· ····	200	150 	···· ····
Py rene Benzo (a ) An thracene Chrysene Benzo (b) Fluoran thene	 	 	660 R 490 R 680 R	 	360 NJ 330 NJ	···· ····	320 NJ	  	····	····	····
Benzo(a)Pyrene + Perylene Indeno(1.2,3-cd)Pyrene Dibenz(a.h)Anthracene Benzo(a,h,1)Perylene I-wethylnapthalene		···· ··· ···	370 R 230 R	···· ··· ···	816 NJ 300 NJ  	920 NI   	   	····  	···· ··· ···	···· ····	····

"---" - Not detected j - Estimated concentration N - Compound identification not confirmed R - laboratory data not usable

#### TABLE 8-22 ARROWHEAD - FIELDWORK DESION INVESTIGATION SURSURFACE SOLL (STEP 1) LOW DETECTION LIANT PARS

-

 $\overline{}$ 

SAMPLE LOCATION; DEPTH: CRL SAMPLE NAMBER: SAS NAMBER: Laboratory: Date Sampled: Dilution Factor:	S087-03-03 {10 - 16`} 84440 (585 3330-E06 Hi TTMAN 10/12/47 1	5087-05-03 (16 - 16') 844W0 1808 3330- E 12 HI TTAAN 10/12/87 1	3047-05-04 (18 - 28') 884W81584 3330-807 HITTMAN 18/12/87 I	S047-05-04 (16 - 20') S4HV0 1806 3330-E13 H1TTMAN 10/12/47 I	5087-05-05 (38 - 39.8) 88/W0 (506 2330-609 HI TTMAN 10/13/87 I	5087-05-05 (30 - 30.5) 88/W0 (204 3330-E11 Hi TTMAN 10/13/87 1	5047-13-01 (0 - 5') 864701561 3330-E01 HITTMAN 10/12/87 1	5067-13-01 (0 - 5') 88/W0 (R0 1 3330-603 Hi TTAAN 10/12/87 I	\$047-13-82 (\$ - 12.5) 88/W0 1502 3330-602 H1TTMAN 10/12/87 1	5067-13-02 (5 - 12:8) 86HVQ 1802 3330-804 HI TTMAN 16/12/87 1	5087-13-03 (30 - 32') 884401803 3334-606 Hi Timan 10/12/87 1
(ug/kg dry weight)											
Nephthalana	45 ]	140					•••				
2-de thy i saph tha i ene	66 j	270 )		•••	•••		•••		•••	•••	•••
Acenaphthylene	•••		***		•••			•••		•••	
Acenaphthene	***	•••	***		***	•••	***	•••	***	***	***
			************		••••••						
F Luorene Phenen threne				•••							
Fluoranthene											•••
Pryant	•••	•••	•••		•••		•••	•••		•••	
******		• • • • • • • • • • • • • • • • • • • •	*************							************	•••••
Benzo (a )Anthracene	•••	•	•••	•••			•••		•••		
Chyr sene Benzo (b) Fluo ran thene				***		***			160 /		***
Senzo(1)Py/one + Perviene	79 1	99.1					770 JH				
Indens(1.2.3-cd)Pyrene	•••	•••		•••					•••	•••	***
Dibenz(a, b)Anthracene	•••	•-•		•-•		•••		•••	•••		
Benzo (g. h. i )Perylene	•••	••••	•••	•••	•••	•••	•••	•••	***	•••	***
t-ne thý i nap tha liene	41 JN	130 1		•••	•••		•••	•••	***		***
***************************************			*************								

 $\sim$ 

.

"---" - Not detected j - Estimated concentration N - Compound identification not confirmed B - Laboratory data not usable

#### TABLE 8-22 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION SUBSURFACE SOLL (STEP 1) CON DETECTION LIAST PARS

 $\sim$ 

•

SAMPLE LOCATION: DEPTH: CRL SAMPLE ALMBER: SAS NAMBER: LABORATORY: CATE SAMPLED: DILUTION FACTOR:	5067-13-03 {30 - 32'} 807001503 3330-205 HITTMAN 10/13/87 1	5067-13-04 {33 - 33,8'} #NH01507 3330-E10 HITTMAN 10/13/87 I	5067-13-04 (33 - 33.8') 8Amo 1807 3330-614 Hi Timan 10/13/87 1	5087-20-03 (4 - 10°) 88/W0 ISO8 3330-E 16 Hi TTAAN 10/16/87 1	5047-21-83 (4 - 10°) 884905589 3330-517 Hi TTAAN 10/16/87 1	FIELD BLANK BBH90 3802 3330-E15 Hittaan 10/13/87 1
(ug/kg dry weight)						
haph tha lene 2-as thy inspit the lene Aconspit thy lene Aconspit thene					406 830 76 JN	
Fluorene Phonanthrene Fluoranthrene Pryene	 	···· ····	  	140 160 130	140 260 186 240	
Banzola) Anthracons Chyr sona Banzola i fluoran thona Banzola) Pyrona + Perylana Banzola) Pyrona + Perylana	• • • • • • • • •	  	••••	 77 j 80 j 82 nj	 120 JN	•••• ••• •••
Indeno (1, 2, 3-54)Pyrene Dibenz (s, h)Anthracene Benzo (g, h, i )Perylone t-aethylnep the lone	 		 	54 B  78 B	70 8 190 8 648 8	  

.

"---" - Not detected j - Estimated concentration N - Compound identification not confirmed B - Laboratory data not usably

#### TABLE 0-23 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION SEDIMENT (STEP I) LOW DETECTION LIMIT PAHS

· • •

SAMPLE LOCATION: CRL SAMPLE NUMBER: SAS NUMBER: Laboratory: Date Sampled: Dilution factor (ug/kg dry weight)	SD87-05-01 88440 1530 3330-640 HI TIMAN 10/28/87 1	5047-05-02 48Hv01531 3330-641 HITTMAN 10/28/87 1	SD&7-06-01 ##HVG IS28 3330-E36 HITTMAN 10/27/88 1	SD87-06-01 86HV0 IS28 3330-E36(RE) HI TAAN 10/27/88 1	SD87-06-01 \$8HVG ID28 3330-E37 HI TTAAN 10/28/87 1	SD87-06-02 88HVG 1529 3330-E38 HI TIMAN 10/28/87 1	SD87-06-02 8844001029 3330-E39 Hi TTMAN 10/28/87 1	SD87-11-01 8844901532 3330-642 HITTMAN 10/28/87 1	5087-11-02 88HVQ 1533 3330-843 HI TTMAN 10/28/87 1	S087~13-01 8814V01526 3330-E34 HITTMAN 10/27/87 I	5067 - 13-02 88Hv0 IS27 3330 - 635 HI TTAAN 10/27/88 1
naph tha lene 2- we thy Inaph tha lene Acenaph thy lene Acenaph thane		20 NJ 17 NJ 76 NJ	···		····	• • • • • • •		 31 j 12 j 76 j	10 JN 30 J		···
f i uorene Pheñanthrene Anthra cene F i uoranthene	450 120 470	92 NJ 670 1290	  94 j	•••• ••• ••	150 180	380 91 j 440	52 ) 480 81 ) 340	150 1200 190 2000	62 j 470 74 j 760	880 - 150 840	630 130 500
Pyrene Benzo (a ) an thr cene Chry sene Benzo (b ) Fluoran thene	240 j 280 nj 350	790. j 480 530 729. nj	 57 j 100	76 j 87 Nj	64 j 92 j 110 160	240 J 250 290 350	180 J 130 190 210	1 108 } 840 600 1000	360 j 290 nj 280 400 nj	1000 j 490 640 750	700 j 360 490 520
Benzo(a)Pyrene + Perylene Indeno(1,2,3-cd)pyrene Dibenz(a,h)Anthracene Bezo(g,h,i)perylene 1-methylnapthalene	226 NJ 200  200 	410 NJ 420 NJ 390 34 JN	59 NJ 	   	90 JN 66 NJ 79 J	220 N) 160 72 Nj 160	93 JN 100 86 J	520 NJ 440 100 NJ 500 17 J	210 NJ 140 NJ 41 NJ 150 16 JN	500 NJ 280 93 NJ 280	330 NJ 200 84 NJ 200

. ----

.

"---" - Not detected j - Estimated concentration N - Compound identification not confirmed R - Laboratory data not usable

#### TABLE 8-23 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION SEDIMENT (STEP I) LOW DETECTION LIMIT PAHS

.

SAMPLE LOCATION: CRL SAMPLE ALMAER: SAS NUMBER: LABORATORY: DATE SAMPLED: DILUTION FACTOR	SD87 - 14-0 I 88490 IS24 3330 - 832 HI TYMAN I 0/27/87 I	SD87 - 14-02 86HV0 1525 3330 - £33 HI TTMAN 10/27/87 I	SD#7-14-02 ##HV01525 3330-233 DL H1TTMAN 10/27/#7 10	SD#7 - 15-01 ##HV01522 3330-E30 Hittman 10/27/87 I	SD87-15-02 88HV02523 3330-E31 HITTMAN IO/27/87 I
(ug/kg dry weight)					
Naph tha lene 2-ae thy inaph tha lene Acenaph thy lene Acenaph thane	·		···· ···· ···	···· ····	  67 j
f Luor ene Phenan thr ene An thr acene F Luor an thene	(50 1400 250 1420	560 540	···· ····	99 J 160	88 j 950 250 630
Pyrene Benzo(a)Anthrcene Chrysene Benzo(b)Fluoranthene	1500 j 660 820 1000	580 j 360 490 650	···· ····	110 j 69 j 61 j 94 j	850 j 490 600 690
Benzo(a)Pyrane + Perviene Indeno(1,2,3-cd)pyrene Dibenz(a,h)Anthracene Bezo(g,h,i)perviene 1-Mathy inapthalene	7 IG NJ 360 200 400	390 NJ 280  310	  	61 NJ	450 NJ 260 92 } 290 

.

"---" - Not detected j - Estimated concentration N - Compound identification not confirmed R - Laboratory data not usable

-----

•

٠

.

----

#### TABLE B-24 ARROWHEAD - FIELD WORK DESIGN INVESTIGATION GROUNDWATER (STEP 11) INDRGANIC DATA (UNFILTERED)

SAMPLE LOCATION: CRL SAMPLE NUMBER: HO CASE NAMBER: ITR NUMBER: ABORATORY DATE SAMPLED: Ug/l)	MW-01A-D4 88HV03514 9542 MER 926 RMAL 05/02/88	AW- 024-04 88H703513 9571 ARA 996 RAAL 05/10/88	MW-028-04 \$8H/03510 9571 MEW 312 RAAL 05/16/88	MW-028-04 88HV03D10 9571 MEW 314 RAAL 05/16/88	HW-02C-04 88HV03543 9542 MER 998 RMAL 05/04/88	##-02E-02 &&frv03S04 9542 #EW 304 RMAL 05/05/88	MW-82-04 88HV03512 9571 MEW 318 RAAL 05/10/88	MW-82-04 48HV03D12 9571 MEW 320 RMAL 05/10/88	MW-03A-04 88HW03525 9542 MER 956 RAAL 05/03/88	MW-038-02 88HV03524 9542 MER 946 RMAL 05/03/88	MW-038-02 88HN03D24 9542 MER 948 RMAL 05/03/88	MW-035-02 88HV03531 9542 MER 960 RAAL 05/03/88
luminum	13700	2380	129000	121000	46200	3190 1	192 B	108 6	108000	2220	27 30	16600
ntimony rsenic	6.3 (		6.5 F	7.5 1		•••			85.4			6.2 1
arlum	89.4 j	200 j	404	429	140 J	38.1 j	40.2 j	43.3 J	454 ]	23.7 j	25.5 j	349 j
eryillum		••••	2.4 )	2.9	1.4 \$		· · · · · · · · · · · · · · · · · · ·		3.2 )	····		
i dini Lim			7.1 }	6.5 1								5.5
ticium tromium	65900 26.1	100000 7.6 j	220000 186 j	249000 169 J	72800 73.1	35900 145	114000	117000	178000 120	26500 11.3	27400 9.4 j	86200 53 2
balt	13.7 1	6.3 1	53.6	52.2	34.0 1	·····	••••	•••	55.4			27 j
opper	68.7	11.0	4 10	411	181	26.6 B	•	•••	340	9.3 j	10.7 J	106
non	16800	9670	138000	120000	47800	4400	13400	13600	124000 J 15.0	2550 j	27 10 1	45 100 /
ead	3	248	19 0 8	44.0	9.2	9.Q B	• • •	6.2.8	13.U		····	
agnesium	33000	34600	75700	81400	36300	10600	32200	32000	72200	13400	13800	3 1600
anganese	444 (	1360	2350	2500	662	95.7	1820	1940	3070 j	61.3 j	69.7 j	5670 J
ercufy ickei	111		180	172	137	60. 1			154	6.2 j		49 7
otassium	2220	1640 j	7600	7330	3260 )	1530 )	4570 j	1560 j	7580	( <b>110</b> )	 1170 j	4730 j
elenium	··· #	R	R	#		•••	🕯	R	#	R	R	••• R
iiver Dolium	5890	18900	12.1 J 20800	8.2 J 20000	5.9 J 14200	10400	19500	19500	11.7 j 26500	7930	7 180	4 i j 73200
									••••••••			
hallum							• • •		***	··· ·		
anadius inc	37.1 j 48.9 j	18 2 J 36 7 8	336	299 242	71.6	6.2 J 25 8 6	14.1.8	18.6.8	279 251	7.2 1	6.7 J 7.8 J	66.9 67.0

 $\overline{}$ 

· - - · ·

.

~

-----

"---" - Not detected j - Estimated concentration & - Blank contamination R - Laboratory data not usable

Page 1 of 4.

- - - - - -----

#### TABLE 8-24 ARROWNEAD - FIELD WORK DESIGN INVESTIGATION GROUNDWATER (STEP II) INORGANIC DATA (UNFILTERED)

SAMPLE LOCATION: CRL SAMPLE NUMBER: SMO CASE ALMMBER ITR NUMBER: LABORATORY: DATE SAMPLED: (Ug/i)	MW-08A-04 88HV03521 9542 MER 938 RAAL 05/02/88	MW-088-02 88HV03519 9542 MER 936 RMAL 05/02/88	MW-094-03 88HV03539 9542 MER 972 RMAL 05/04/88	MW-098-03 88H403533 9542 MER 974 RAAL 05/03/88	#W-10A-03 88HV03528 9542 #ER 950 RMAL 05/03/88	MW-106-03 881703530 9542 MER 954 RMAL 05/03/88	MW-11A-D4 88HV03522 9542 MER 942 RMAL 05/03/88	MW-12A-04 88HV03523 9542 MER 944 RMAL 05/03/88	MW- 13A-04 481+V03517 9542 MER 932 RMAL 05/02/48	MV-138-02 88HV03520 9542 MER 940 R4AL 05/02/88	AW-13E-02 88HV03518 9542 AER 934 84AL 05/02/88	MW-14A-04 88HV03527 9542 MER970 RMAL 05/03/88
Aluminum Antimony Arsenic Barium	5580 3.5 j 344 j	2490  356 j	16700  114 J	#400  11# j	26 100 10 . 0 252 J	3630 2.7 j 127 j	10 1000 76 . 4 384 J	12300 6.3 J 70.4 J	167000 115 619 j	298 B  25.2 J	204 B	12800  155 j
Beryilium Cadmium Calcium Chromium	2 10000 37 . 5	5,9 245000 11.6	+ 1 3000 50 . 0	1.0 j 117000 18.6	6.2 144000 47.1	6.9 126000 14.1	3.0 J 174000 106	38200 22. 1	5.3 9.8 317000 141	 36200 38.7	35400 20.9	 96 100 259
Cobalt Copper tron Lead	6.6 j 31.4 14800 j 3.4 j	15.4 j 4260 j	7.5.1 57.1 17600 4.7.1	40 B B 6650 3 1 j	19.1 J 137 38400 J 5.8	12.3 J 4490 J	54.5 370 112000 J 17	6.9 j 68.0 13900 j 2.4 j	94.2 668 164000 j 38.6	567 j	 241 B	12.1 j 79.4 17500 4.9 j
Magnesium Manganese Mercury Nickel	76000 1320 j 21.6 j	\$ 1800 773 J 10.6 J	35700 715 38 9 1	42900 1150 15.7 J	88000 1520 j 52.5	1 10000 468 (  8.2 (	68800 2140 j 145	15500 221 j 21 2 j	1   3000 4 340 - j  242	13000 45.1 J 20.9 J	13300 59.7 J 13.3 J	42200 975 152
Potassium Selenium Silver Sodium	2240 J R 10700	30600 R  69300	2060 j % 4.0 j 46800	3130 J 1 21900	3950 j t 4.9 j 27100	3050 J R 30000	6790 R 9 7 j 13200	1830 j %  6600	9150 11 (5.5 j 20000	998 j R 6270	802 j tt 6740	3250 j tt 4.3 j 12900
Thattium Vanadium Zinc	35.8 j 29.9	10,2 j 9,4 j	40.3 J 39.9 B	19.7 J 21.3 B	75.2 75.9	10.6 j 6.7 j	263 253	28.7 j 30.8	333 4 10	 8.6 j	 2.0 j	34.0 j 47.4 B

.

.....

"---" - Not detected j - Estimated Concentration B - Blank contamination R - Laboratory data not usable

### TABLE 8-24 ARROMMEAD - FIELD WORK DESIGN INVESTIGATION GROUNDWATER (STEP II) INDRGANIC DATA (UNFILTERED)

SAMPLE LOCATION: CRL SAMPLE NUMBER: SMO CASE NUMBER ITH NUMBER: LABORATORY: DATE SAMPLED: (Ug/i)	M9-84b-04 881-703511 9571 AGW 316 RAAL 05/10/88	AW-05A-04 88HV03508 9571 MEW 310 RAAL 05/10/88	MW-058-02 88HV03509 9571 MEW 308 RMAL 05/10/88	489-05C-03 6819903501 9542 AEW 300 RM4L 05/05/88	MW-05E-02 88HV03502 9542 MEW 302 RAAL 05/05/88	MW-06A-04 881403515 9542 MER 928 RM4L 05/02/88	NW-06C-04 88HW03516 9542 MER 930 RAAL 05/02/88	MW-07A-04 88HV03536 9542 MER 984 RMAL 05/04/88	MW-07A-04 \$8H703D36 9542 MER 986 RMAL 05/04/88	MW-078-03 881703503 9542 MER 990 RM41 05/05/68	MW-07C-03 8817/03537 9542 M&R 994 RMAL 05/04/88	АМУ-75-02 88HN03535 9542 МЕК 982 RMAL 03/04/88
Aluminum Antimony Arsenic Barlum	1170  44.9 J	2540  94.6 j	38500 9,9 j 169 j	1750 J 29.0 J	1050 J	79500 37.6 388.j	51.7 j	22700 3.9 J 239	10 1000 4.6 J 587	28200  184 J	60.8 B	39100 2.5 j 429
Beryllium Cadmium Calcium Chromium	52600 78.0 j	 104000	i.2 j 172000 56.3 j	28300	27800 116	2.4 ; 9.3 161000 95.3	44500	134000 66 . 9	3.3 j 9.6 214000 134	1.9 j 5.5 (11000 92.1	39500	1.9 J 113000 112
Cobali Copper Iron Lead	6.0 J 1620 13.4 B	20 I J 3300 13.2 B	30.6 } 437 54400 45.0	11.7 B 1990 4.0 B	12 0 8 1540 j 8 4 8	47.2 j 284 95600 j 10.0	10.4 j	13 6 j 128 26300 9 1	\$6.7 508 123000 28.6	15.2 j 113 32500 6.1 8	 229 j	22.0 j 271 49700 10.1
na gne s i um mangane se ner c'ur y Nicket	26200 234 55.3	19300 330 	70900 944 82.0	17 100 129 	15600 75 9 64 6	63000 1790 j 118	14500 (6.1.) 	56208 7430 52 1	88500 7990 156	43 100 922 76 . 9	15300 58.2	53800 2030 73, 1
Potassium Selenium Silver Sodium	1740 j R  12200	1890 j R  8940	4780 j R 4.2 j 11600	1030 j R 14200	1080 j R  17500	6680 R 8.7 J 14600	921 j R  5220	2890 j R 4.2 j 32600	7050 R 13.3 51300	3720 j 8 4,5 j 18790	1 160 J R 	3260 j R A.9 J 12700
Thailium Vanadium Zinc	 28.2 B	 21.6 B	109 147	  16.8 A	 20.5 B	196 194	  7.6 j	55.0 53.7 B	266 248	72.1 73.7	7,3 8	43.3 93.4

.....

"---" - NOT detected J - Estimated Concentration B - Blank contamination R - Laboratory data not usable

Page 2 of 4.

#### TABLE B-25 ARROWHEAD - FIELD WORK DESIGN INVESTIGATION GROUNDWATER (STEP II) INGRGANCE DATA (FILTERED)

 $\checkmark$ 

.

SAMPLE LOCATION: CRL SAMPLE NAMBER: SMO CASE NAMBER: ITR NAMBER: LABORATORY DATE SAMPLED: (Ug/1)	AW-01A-04 88H703551 9542 MER 927 RMAL 05/02/88	MW-024-04 88HV03533 957   MER 997 RMAL 05/10/88	MW-028-04 88HV03529 9571 MEW 313 RMAL D5/10/88	MW-028-04 08HV03530 9571 MEW 315 RMAL 05/10/88	MW-02C-04 88+W03S78 9542 MER 999 RMAL 05/04/88	JW-02E-02 884403539 9342 AEW 305 8AAL 05/05/88	MW-82-04 #8HV03531 9571 MEW 319 RMAL 05/10/88	MW-B2-04 88HV03532 9571 MEW 321 RMAL 05/10/88	WW-03A-04 88HV03584 9542 MER 957 RMAL 05/03/88	MW-038-02 88H/03582 9542 MER 947 RMAL 05/03/88	MW-038-02 88HV03583 9542 AER 949 RMAL 05/03/88	MW-035-02 881703565 9542 MER 961 RMAL 05/03/88
Aluminum Antimony Arsenic Barium	58.6 B	44.4 B  183 J	 36 5 8	666 8  84 7 8	37.4 8	63.5 B	37.5 B  109 8	  99.1 B	55.2 8  39.7 j	74.4 8  16.7 J	40.3 B  17.3 j	1740  308
Beryilium Cadmium Calcium Chromium	50000	96 IOO	27 200	28400	 30800	32100	994D0	98900	33500	 24600	 24800	7.3 77600
Cobait Copper Fron Lead	 9108	7 160 4 8 8	70.4 B	576 	6.3 B	11.0 B 4.0 B	12500 3 4 B	12600	4.9 J 69.0 B	79.1 B	 147 B 7.1 J	11.5 j 24.2 j 17300 3.0 j
wagnesium wanganese wercury Nickel	14900 	33700 1210 	12306 32.3	12600 45 2	13400 46.5	9140 12.7 j 	29000 1720	28900 17 +0 	15400 398 	12800 21.2 	12800 26.5 	26 100 5 120
Potassium Setenium Silver Sodium	606 j  5500	1550 j  19900	967 j  7260	909 j  7050	963 J  6500	1120 J  8790	1300 }  16300	(380 )  18800	1290 j  17300	894 j  7640	879 j  8060	2620 j  70000
Thalilum Variadlum Zinc	21.2 8	 56.4 B	  14.9 B	26.5 B	•••• ••• •.1 B	10.0 B	 39.8 8	 33.8 B	 13.5 8	 11.3 <b>a</b>	27.5 B	8.5 J 123
Cyanide	• • • • • • • • • • • • • • • • • • •	 	····	•••	•••		····		• • · · · · · · · · · · · · · · · ·	· · · - · · · · · · · · · · · · · · · ·		

-

"---" - Not detected J - Estimated concentration B - Blank contamination R - Laboratory data not usable

# TABLE B-24 ARROWHEAD - FIELD WORK DESIGN INVESTIGATION GROUNDWATER (STEP II) INDRGANIC DATA (UNFILTERED)

SAMPLE LOCATION: CRL SAMPLE MLMBER: SMO CASE NUMBER ITR NUMBER: LABORATORY: DATE SAMPLED: (Ug/I)	MW- 14C-03 88HV03S38 9542 MER 968 RMAL 05/04/88	MW- 14C-03 88HY03S34 9542 MER 966 RMAL 05/04/88	MW- 145-D2 88HV03526 9542 MER 964 RMAL D5/D3/88	MW- 15A-03 88HW03541 9542 MER 988 RMAL 05/04/88	MW- 158-02 88HV03542 9542 MER 992 RMAL 05/04/88	MW- 165-02 88HV03529 9542 AER 952 RMAL 05/03/88	MW-178-02 88HV03540 9542 MER 980 RMAL 05/04/88	MW- 17 E-02 88HW0 3532 9542 MER 962 RMAL 05/03/88	FIELD BLANK 881703802 9542 468 958 884L 05/03/88	FIELD BLANK 884703803 9542 MER 976 RMAL 05/04/88	FIELD BLANK 8817003R01 9542 MEW 306 RMAL 05/05/88	FIELD &LANK 88HV03812 9571 MEW 322 RMAL 05/10/88
Aluminum Antimony Arsenic Barium	1120 J 2.4 J 49.7 J	733 J 2.4 J 24.0 J	7780  3.2 j 138 j	7590 j  3.8 j 196 j	43.3 B  93.2 j	4 10000 105 965 J	3740 J	123 B  66.3 j	86.3 j  2.0 j	67.5 j	44.3 J  	80,4 j 
Beryllium Cadmium Calcium Chromium	37 300 8 . 0 J	28500	 76900 26.3	1.0 j 8.3 502030 23.5	65000	9.8 19.3 607000 1310	27 900 32 . 3	\$2700 10	 499 j	567 B	 341 B	 642 j
Cobait Copper Iron Lead	13.5 B 1530 J 18.2	12.3 8 1020 j 2.4 j	7.6 j 53.5 12400 j 3.2 j	7.4 j 89.9 15000	8.7 B 57.6 J	206 1270 369000 J 20.7	21.2 6 4370 2.5 j	540 j	 73,4 j	7.2 B	5.6	  3.7 B
Nagine sí um Mangane se Mer Cur y Nícké I	17600 227	14400 54.5 	22700 749 j  25.8 j	(75000 3490 23.3 j	14600 73.0 9.3 j	179000 7610 j 0.3 1030	17100 121  21.8 j	1650 j 11 1 j 52 8	 	124 j  	116 j  	135 j  
Potatsium Selenium Silver Sodium	1660 J # 15200	1230 j R 12300	2580 J R 15500	2960 j R 5.4 j 17100	3290 j R 14900	(4200 R 31.9 j 47000	1430 j R  8950 B	15400 R  40600	48.5 8 R 	40.9 j R  2180 j	55.5 j # 	125 B R 
Thà lễ Lụm Và nà Gium Einc	 13.0 8	 11.1 B	62.4 30.3	22.3 j 36.9 6	  11.4 B	964 738	10.5 j 13.0 #	6.6 j 4.3 j	•••	5.0 B	 5.6 B	  11.1 B

~

"---" - NOI delected } - Estimated Concentration B - Blank Contamination R - Laboratory data not usable

Page 4 of 4.

### TABLE 8-28 ARROWHEAD - FILLDWORK DESIGN INVESTIGATION GROLADWATER (STEP III) LOW DETECTION LIANT PAH

SAMPLE LOCATION: CRL SAMPLE RAMBER: SAS NAMBER: LABORATORY: DATE SAMPLED:	MB-035-02 88HV03R06 3784-E22 DATAC 05/03/88	NW-035-02 88HV03807 3784-E23 DATAC 05/03/88	400-846-04 886003511 3784-61000L DATAC 05/10/88	MW- 054 - 04 88HVD 3508 3784 - E7 3 DATAC 057 10788	MW-058-02 #81N03509 3794-175 DATAC 05/10/88	AW- 058 - 02 88Hv035 16 3784 - E78 DATAC 05/ 10/68	NN-058-02 88HV03517 3784-679 DATAC 05/10/86	AW-05C-03 8817/03505 3784-E60 DA YAC 05/05/88	AM-05E-02 88HA03502 3784-E64 DATAC 05/03/88	NW-056-02 88HV03D02 3784-667 DATAC 03/05/88	AW-078-03 88HV03503 3784-669 DATAC 05/05/88	AW-07C-03 4814/03S48 3784-651 DATAC 05/04/88
(ng/1)												
raph tha lene 2-me thy inaph tha lene Acenaph thy lene 1-me thy inaph tha lene	£ £ £	2 2 2 16 5	10 8 R R 110 J	20 8 R 1 j 55 j	54 j 58 j R 190 j	46 j 33 j M \$1 j	58 j 41 j R 93 j	28 N 32 J R 100 J	4 8 4 8 R 14 8	5 8 4 8 R 17 8	3 B H H 7 B	£ £ £ £
Perylens Acenaphthens Fluorens Phenanthrens	R R R R	£ £ R R	R 26 j 44 j R	t t t 4 B	1 2 1 1 5 1	# # # 5 #	# # # 4 #	R R 3 J 3 B	k k R 3 8	# # #	# # #	£ £ £
Anthracene Fluoranthene Pyrene Benzo(a) Anthracene	R R R	R R R R	R R R R	R 2 B 2 B R	R R R	R 5 B 4 B R	R R 3 B R	R 3 B 2 B R	E 2 B 2 B R	R 4 B R	3 ] # #	R R 0.0 D R
Chrysene Benzo(b) Fluoranthene Benzo(a) Pyrene + Perylen Indeno(1,2,3-cd) Pyrene	R R R R	R R R	R R R R	R R R R	R R R	R R R	R R R	R R R + R	R R R R	R R R	E E E E	+ E E E E
Dibenzo(a,h) Anthracene Benzo(g,h,i) Perviene	# #	R R	<b>4</b> <b>8</b>	# #	k k	# #	# #	# #	# #	··· R · R	# #	# #

"----" - Not detected B - blank contamination J - Estimated concentration B - Loboratory data not usable DL - Diluted

Page 2 of 4



### TABLE B-28 ARROWHEAD - FILLOWORN DESIGN INVESTIGATION GROLMOMATER (STEP II) LOW DETECTION LIMIT PAH

SAMPLE LOCATION: CRL SAMPLE NAMBER: SAS NAMBER: LAGORATORY: DATE SAMPLED:	MW-02A-04 88HV03513 3784-696 DATAC 03/10/88	AW-02A-04 88HV03S13 3784-6960L DATAC 05/10/88	AW+ D2B-04 40HV03510 3784-E81 DATAC 05/10/88	MW-028-04 88HV03518 3784-584 DATAC 05/10/88	AW-028-04 88:W03519 3784-685 DATAC 05/10/88	MW-02C-04 88H403543 3784-655 DATAC 05/04/88	лыг-02Е-02 88HV03504 3784-Е71 DATAC 05/05/88	MF-82-94 88H003512 3784-8900L DATAC 05/10/88	MF-82-04 88H003012 5784-8920L 0ATAC 85/18/88	AW-D34-04 88HW03517 3784-E19 DATAC 85/03/88	AW-034-04 884403017 3784-620 DATAC 05/03/88	MF-035-02 884403531 3784-221 DATAC 05/03/08
(89/))												
haph tha lene 2-ae thy Inaph tha lene Acenaph thy lene 1-ae thy Inaph tha lene	280 j 38 j 87 j 570 j	130 j 22 j R 330 j	8 8 8	R R R 3 B	R 4 B R 10 B	# 2 # #	4 B 8 j R 19 B	110 j R 120 j 350 j	120 j 33 j 110 j 370 j	R R R	E E R R	8 8 8 8
Perylene Acenephthene Fluorene Phenanthrene	R R 36 J R	R R 33 J R	t t t t	# # #	R R R	A A R R	R 2 B 3 J R	A E 32 j E	R R 36 J R	R R R R	R R R R	R R R
Anthracene Fluoranthene Pyrene Benzo(a) Anthracene	R R 8,1 B R	R R R	E E E E	R R R	R R I B R	R B 2 B R	3 j R 1 0 R	E E E E	# # # #	R R b B R	# # # #	# # #
Chrysene Benzo(b) Fluoranthene Benzo(a) Pyrone + Perylen Indeno(1,2,3-cd) Pyrone	• ··· · · · · · · · · · · · · · · · · ·	# # #	# # # #	R R R R	# # #	k k f k	R R R	···· # ··· # ··· #	R R R R	A A A	# # #	# # #
Dibenzo(a,h) Anthracene Benze(g,h,i) Perylans	R R	£ R	··· R ··· B	A	# #	# #	R	R	t t	A R	£ \$	# #

 $\widehat{}$ 

~

"---" - Not detected B - blank contamination J - Estimated concentration B - Laboratory data not usable DE - Dijuted

Page 2 of 4.

.

E - FEDOLECOLA GEFE UDE NEEDIG

noiserseacconcentista - 1

a - Blank contamination

.... - NOE GELECER

......

Fettech lot os thene	0.2	t	0 301	
jensene .				
Trischloroethere	P\$0'0	ł	0.063	r
Carbon Terrachioride			•••	
1.2-Dichloroethane			•••	
Chlorolota	2.11		112	
Vinyl Chloride			•••	

	• • • • • • • • • • • • • • • • • • • •	
		(1/60)
88/01/50	88/90/50	DATE SAMPLED:
03810-5	2-COMED	(VROTARORA)
983-782C	953-2825	SAS NUMBER:
609E0MI44	995004488	CBF ZYWGFE MINDER:
316 BLANK	BTL BLANK	SAMPLE LOCATION:

TABLE B-27 ARROWHEAD - FLELDWORK DESICA INVESIICATION Crondrater (5TEF 11) Low Detection Limit Vocs

▶ 10 > añrd

<u>~</u>~.

#### TABLE 8-27 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP II) LOW DETECTION LIBIT VOCS

SAMPLE LOCATION: CRL SAMPLE NUMBER: SAS NUMBER: LABORATORY: DATE SAMPLED: LUG/11	нт- 14С-03 68НW03D34 3784-ё39 S-CLBED 05/04/88	NW-145-02 88HVG3526 3784-628 5-CLB6D 05/03/08	444- 145-02 8814403804 3784-630 5-CLBED 05/03/88	489- 145-02 88H+03R05 3784-{31 S-CUBED 05/03/88	MW- 15A-03 86HV03541 3784-147 S-CUBED 05/04/88	##- 158-03 66HW03542 3784-E49 S-CUBED 05/04/88	ANY- 165-02 88HY03544 3784-624 S-CUBED 05/03/88	NW- 165-02 88HV03D44 3784-625 S-CUBED 05/03/88	MH- 178-02 66HV03546 3784-E42 S-CUBED D5/04/88	NW- 17E-02 88HV03545 3784-E26 5-CL8ED 03/03/88	FIELD BLANK 88HN03R02 3744-E17 S-CUBED 05/03/88	FIELD BLANK BBHWO3R03 3784-E34 S-CLBED 05/04/88	FIELD BLANK 88HW03R01 3784-E61 5-CU8ED 05/05/88	FIELD BLANK 88HVD3RD2 3784-E86 S-CL&ED 05/10/88
vinyi Chioride		Q 545	0.026	0.047 j	···· .	•••								
Chioroform		ũ 023 B		8 116 B			0 264 B	0.21 8	0.052 B	0.122 8	29.6	24.3	14.5	23 1
1.2-Dichloroethane				0.012 J	0.066	0.123	•••							
Carbon Tesrachioride		•••			•••						•••`			
Tr ich lorge Lhene	0 012	Q 244 B	0.137	Q. 131 - B	0.013 8	0.017	0.013 8	0 008 8	0.015 B	0.011 B	0.11	9.061	0.073	1 0.133 j
Benzene				•••			•••		•••	0,016 j	•••			
Tetrachioroethene	0 844 8	0.0 <del>9</del> 2 B	0.068 8	0.098 B	••• 8	0.155 8	0.096 B	0.102 8	0.125 B	8.076 8	0.49	) 0.111	) 0.34	0317
	· • • • • • • • • • • • • • • • • • • •	•••••		•••••		•••••	•••••							•••••

· · · · · ·

---

"---" - Not detected

8 - Blank contamination

J - Estimated concentration

# - Laboratory data not usable

Page 3 of 4

#### TABLE B-27 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP FI) LOW DETECTION LIMIT VOCS

SAMPLE LOCATION: CRL SAMPLE ALMBER: SAS NUMBER: LABORATORY: DATE SAMPLED: (Ug/1)	2007-054-04 88Hrv03508 3784-872 5-CUBED 05/10/88	MW- 058-02 88HW03509 3784-674 5- CLB6D 05/10/68	MW-058-02 88HV03516 3784-676 S-CLBED 05/10/88	300-058-02 88HV03517 3784-877 5-CUBED 05/10/88	MN-05C-03 88HV03S01 3784-E59 S-CLBED 05/05/88	MW-05E-02 00Hv03S02 3784-E63 S-CLBED 05/05/00	MW-05E-02 88HW03506 3784-E65 5-CL8ED 05/05/66	NW-D5E-02 BBHV03507 3784-E66 S-CLBED 05/05/88	MW-078-03 88HV03503 3784-E68 S-CU8ED 05/05/88	MB-07C-03 46HW03537 3784-E50 5-CL8ED 05/04/48	MW-075-02 84HV03535 3784-E45 S-CLBED 05/04/88	MW- 14A-04 88Hv03527 3784-632 S-CL&ED 05/03/88	MW- 148-04 88HW03538 3764-657 S-CLBED 85/04/88	MW- 14C-03 88HW03534 3784-637 5-CUBED 05/04/88
vinyl Chloride	270	1 57	4.21	4.58	0. 191				0.00 <b>1</b> j	, <i>.</i>		0.645		
Chloroform			0.014	0.015	• ···	0.025	0.026 I	8 0 043 i	8 0.DIA 8	0.021 8	•••			0 115
1, 2-Dichioroethane		•••	0.017	j 0.012	۰۰۰ <b>۱</b>					•••	12			
Carbon Tetrachioride		•••		•••					••••					
Tr i ch íor <del>oc thene</del>	230	B 0.047 (	8 0.116	8 0.083	6 0 182	0.006 1	6 a.ae i	B 0.008 i	B 0 004 B	6.024 B		0.038	0.015 B	0.021 8
Benzene				0.04			•	•••		•••		8.022		
Tetrachioroethene		0.072	6 0.075	8 0.064	\$ 0.064 i	B 0.063 I	0.126 (	• ••• I	R 0.056 8	0.062 B	(	t 0.056 D	0.119 8	0 055 8
· · · · · · · · · · · · · · · · · · ·	·												•••••	

• .

"---" - NDL delected

8 - Blank contamination

j - Estimated concentration

A - Laboratory data not usable

Page 2 of 4

aldesu ton stab yrolstods) - #

uojjejjuojuoj pojemijisj - [

B - Blank CONTAMINALION

98139190 ION - ......

. ------0.092 8 8 51110 1 260.0 • - - -... 0.063 A 0.334 9 721:0 9 023 W 9 E10.0 0.205 8 ... ... Tetrachioroethene 990.0 - - -... ... 10.653 ---... ••• - - • ---••• • • • 72.5 - - -. 1 12.7 anasnaä 0 601 0 9 901 0 8 290.0 0.083 8 8 928-0 8 600'0 8 800'0 ... 9 900'0 . .... 8 910'0 . 50'0 8 120.0 9 510.0 Trichioroethene - - -... - - -... ••• ... - - • - - -- - -. . . ---- - -- - -- - -CALGON TELLACHIOLIDE +0.0 90.0 0.042 01113 91110 - - -... . . . ... ... - - -9:432 • • • 1991 0 1-3-D(CU10LOG (UPUG 0.02 8 0.031 8 8 010'0 • - • ... 8 290.0 - - -- - -••• 9 č90 D • - ----E101010101 1 \$10.0 0.024 50.035 767.0 159.0 - - -... . . . ••• 25.1 692.0 1 528 0 AINAL CHIOLIGE ... · - -

-

.

~~~~

|            |                   |             |             |            |            |            |           |             |           |            |           |           |            | (t/6n)             |
|------------|-------------------|-------------|-------------|------------|------------|------------|-----------|-------------|-----------|------------|-----------|-----------|------------|--------------------|
| 88/01/50   | **/01/50          | 01/5D       | 88/01/50    | **/01/50   | ##/\$0/\$0 | 88/90/50   | **/+0/50  | 88/01/50    | 021101981 | 11/01/50   | 40/DI/SQ  | 88/01/50  | 89/01/50   | DV1E 2VW6ED:       |
| G38/12-5   | 2-CI#ED           | 03900-5     | 2-CORED     | 2-COMED    | 2- CLAED   | 03000-5    | 03900-S   | C1010-S     | 5-COMED   | 03010-S    | 03913-5   | 2-COMED   | 2-COMED    | LABORADBAL         |
| 663-P#2C   | 3784-248          | 263-2826    | 163-9825    | 683-7825   | 023-7925   | 953-9820   | P23-982C  | C#3-7#4C    | 7784-682  | 081-1820   | 563-2845  | P63-P825  | 259-44/6   | SAS NUMBER.        |
| SI SCONITE | P115000100        | I I SCOMHTT | \$\$HAD3013 | 21 SE0AH00 | POSCOMINE  | C POCOAHEE | CPSCOAHEE | 6L SEONHINE | 99HA03218 | OI SEDAHOO | LESCONHEE | 98HM03250 | £1 200MIBB | CRL SAMPLE NUMBER: |
| F0-018-WW  | 10-91 <b>5-10</b> | 20-02#-WW   | WW-83-04    | 10-01-mm   | WN-03E-03  | WA-03C-04  | WK-05C-04 | WW-038-04   | WH-038-04 | +0-820-MW  | 10-V20-MW | WA-037-04 | MN-03V-04  | SAMPLE LOCATION:   |
|            |                   |             |             |            |            |            |           |             |           |            |           |           |            |                    |

| SOA LIWIT NOTES            | 1130 403          |
|----------------------------|-------------------|
| ()1 4312) 93TAN            | CEONIN            |
| NOIL DESIGN FINAESTICATION | VIRONARYD - LIEFD |
| 22-8 3191                  | <b>'</b> 1        |

.

\* 10 1 afed

# TABLE 8-26 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROLNDWATER (STEP III) DORGANIC DATA

 $\sim$ 

-

| SAMPLE LOCATION:<br>CRL SAMPLE NUMBER:<br>SMO CASE: NUMBER:<br>DTR NUMBER:<br>ABORATORY:<br>NTE SAMPLED:<br>(1971) | NW-165-02<br>881403529<br>9542<br>EW 516<br>S-CUBED<br>05/03/86 | MN~ 178-02<br>88HV03540<br>9542<br>EW 532<br>S-CUBED<br>05/04/88 | MW- 17E-D2<br>BBHV03532<br>9542<br>EW 521<br>S-CUBED<br>03/03/88 | FIELD BLANK<br>88HW03R02<br>9542<br>EW 519<br>S-CUBED<br>05/03/88 | FIELD BLANK<br>88HV03R03<br>9542<br>EW 530<br>S-CUBED<br>05/04/88 | FTELD BLANK<br>88HW03R01<br>9542<br>EW 546<br>S-CLBED<br>95/05/88 | FJELD BLANK<br>88HV04R 12<br>957 1<br>EW 555<br>PEL<br>05/10/88 |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|
| VOLATILES ORGANICS:                                                                                                | •••••                                                           |                                                                  |                                                                  |                                                                   |                                                                   | ••••••••••••••••                                                  |                                                                 |
| cetone                                                                                                             |                                                                 |                                                                  |                                                                  |                                                                   |                                                                   |                                                                   |                                                                 |
| Benzene                                                                                                            |                                                                 |                                                                  |                                                                  | • • •                                                             |                                                                   |                                                                   | •                                                               |
| 2-Butanone                                                                                                         |                                                                 |                                                                  |                                                                  | •••                                                               |                                                                   | • • •                                                             | 8                                                               |
| Chlorolorm                                                                                                         |                                                                 | •••                                                              |                                                                  | 32                                                                | 32                                                                | 32                                                                | 30                                                              |
| 2-Dichlorgethane                                                                                                   |                                                                 |                                                                  |                                                                  |                                                                   |                                                                   |                                                                   |                                                                 |
| thy ibenzene                                                                                                       |                                                                 | • • • •                                                          |                                                                  |                                                                   |                                                                   |                                                                   |                                                                 |
| otal Xylenes                                                                                                       |                                                                 | • • •                                                            |                                                                  |                                                                   |                                                                   |                                                                   |                                                                 |
| oluene                                                                                                             |                                                                 |                                                                  | 2)                                                               |                                                                   | •••                                                               |                                                                   |                                                                 |
| rans-1, 2-Dichloroethene                                                                                           |                                                                 | •••                                                              | '                                                                |                                                                   |                                                                   | •••                                                               |                                                                 |
| inyl Chloride                                                                                                      | •••                                                             | •••                                                              |                                                                  |                                                                   |                                                                   |                                                                   |                                                                 |
| I Dichloroethene                                                                                                   | - • •                                                           | •••                                                              | •••                                                              | •••                                                               | · · · ·                                                           |                                                                   |                                                                 |
| richioroethene                                                                                                     | • • •                                                           | ···                                                              | •••                                                              |                                                                   |                                                                   |                                                                   |                                                                 |
| ethylene Chioride                                                                                                  | •••                                                             | •••                                                              |                                                                  | •••                                                               | 36                                                                | •••                                                               | 58                                                              |
| ENEVOLATILE ORGANICS:                                                                                              |                                                                 |                                                                  |                                                                  | •••••                                                             |                                                                   |                                                                   | ••••                                                            |
|                                                                                                                    |                                                                 |                                                                  |                                                                  |                                                                   |                                                                   |                                                                   |                                                                 |
| - we thy liphone b                                                                                                 | • • •                                                           | •••                                                              | •••                                                              | •••                                                               |                                                                   | •••                                                               |                                                                 |
| enzore acid                                                                                                        |                                                                 |                                                                  |                                                                  |                                                                   |                                                                   |                                                                   |                                                                 |
| - ne chy i naph tha i ene                                                                                          |                                                                 |                                                                  | • • •                                                            |                                                                   | • • •                                                             | •••                                                               |                                                                 |
| i sež-Ethy lhexy l iPhthalate                                                                                      |                                                                 |                                                                  |                                                                  | •••                                                               | · • •                                                             |                                                                   | • - •                                                           |
| 4 - Dimethy Iphenut                                                                                                | •••                                                             | • • •                                                            | - • •                                                            |                                                                   | · • •                                                             | • • •                                                             |                                                                 |
| we thy iphenol                                                                                                     |                                                                 |                                                                  |                                                                  |                                                                   | • • •                                                             | •••                                                               | • • •                                                           |
| spisthalene                                                                                                        |                                                                 |                                                                  | •••                                                              | •••                                                               |                                                                   |                                                                   | •••                                                             |
| i-m-Buty Johthalate                                                                                                |                                                                 |                                                                  |                                                                  |                                                                   |                                                                   |                                                                   | 4 8                                                             |

"---" - NDI detected B - Blank contamination J - Estimated concentration NA - NDI analyzed R - Laberatory data not usable DL - Diluted

Page 5 of 5.

· · · · · · ·

# TABLE 8-26 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP II) ORGANIC DATA

| SAMPLE LOCATION:<br>CRL SAMPLE NUMBER:<br>SMO CASE NUMBER:<br>OTR NUMBER:<br>LABORATORY:<br>OATE SAMPLED:<br>(UG71) | AW-13A-04<br>88HV03S17<br>9542<br>EW 506<br>S-CLBED<br>05/02/88 | 484-138-02<br>881403528<br>9542<br>6951511<br>8-CL86D<br>05/02/88 | /##- 13E-02<br>88H/03S18<br>9542<br>EW 507<br>S-Cu8ED<br>G5/02/88 | MW- 13E-02<br>86HV03D18<br>9542<br>8W 508<br>5-CU8ED<br>05/02/88 | HW- 14A-04<br>88HV03527<br>9542<br>EW 326<br>S-CLUBED<br>05/03/84 | MW- 14A-04<br>8811V03D27<br>9542<br>EW 527<br>S-CUBED<br>05/03/66 | ##~ 148-04<br>8811403538<br>9542<br>EW 525<br>S-CUBED<br>05/94/88 | JWF- 14C-03<br>68HW03534<br>9542<br>EW 523<br>S-CL&ED<br>05/04/86 | ANY- 14C-03<br>64rv03D34<br>9542<br>EW 524<br>S-CUBED<br>05/04/66 | AW- 145-02<br>88HV03526<br>9542<br>EW 522<br>5+CL&ED<br>05/03/88 | MII- 15A-03<br>8817V03541<br>9542<br>EW 536<br>S-CUBED<br>05/04/66 | AW- 158-03<br>88HV03542<br>9542<br>EW 538<br>5-CUBED<br>05/84/86 |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|
| VOLATILES ORGANICS:                                                                                                 |                                                                 | · · · · · · · · · · · · · · · · · · ·                             | •••••                                                             |                                                                  |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   | •••••••••••••                                                    | ••••••                                                             |                                                                  |
| Acelone                                                                                                             |                                                                 | • • • •                                                           |                                                                   |                                                                  |                                                                   |                                                                   |                                                                   |                                                                   | -                                                                 |                                                                  |                                                                    |                                                                  |
| Benzene                                                                                                             |                                                                 |                                                                   |                                                                   |                                                                  |                                                                   |                                                                   |                                                                   |                                                                   | NA                                                                |                                                                  |                                                                    |                                                                  |
| 2-Bulanone                                                                                                          |                                                                 |                                                                   |                                                                   |                                                                  |                                                                   |                                                                   |                                                                   |                                                                   | NA                                                                |                                                                  | • • •                                                              |                                                                  |
| Chloroform                                                                                                          | •••                                                             | •••                                                               | •••                                                               | •••                                                              | •••                                                               |                                                                   | •••                                                               |                                                                   | NA                                                                |                                                                  | •-•                                                                |                                                                  |
| 1,2-Dichioroethane                                                                                                  | • • •                                                           |                                                                   |                                                                   |                                                                  | •••                                                               | •••                                                               |                                                                   |                                                                   | NA                                                                |                                                                  | ·                                                                  |                                                                  |
| £thylbenzene                                                                                                        |                                                                 | •••                                                               | • • •                                                             |                                                                  |                                                                   |                                                                   |                                                                   | •                                                                 | NA                                                                |                                                                  | •••                                                                |                                                                  |
| Total xylenes                                                                                                       |                                                                 | •••                                                               | •••                                                               |                                                                  | •••                                                               | • • •                                                             |                                                                   | •••                                                               | NA                                                                |                                                                  |                                                                    |                                                                  |
| Toluene                                                                                                             | 1 ]                                                             | 21                                                                | • •                                                               | •••                                                              |                                                                   | • • •                                                             |                                                                   |                                                                   | NA                                                                |                                                                  | •••                                                                | 2 )                                                              |
| Trans-1 2-Dichiorvethene                                                                                            | •••                                                             |                                                                   |                                                                   |                                                                  | 35                                                                | 38                                                                | •••                                                               |                                                                   | -                                                                 | 21                                                               | •••                                                                |                                                                  |
| vinyi chiaride                                                                                                      |                                                                 |                                                                   | • • •                                                             | •                                                                |                                                                   | •••                                                               |                                                                   | •••                                                               | AM.                                                               |                                                                  |                                                                    |                                                                  |
| 1, i Dichioroethene                                                                                                 |                                                                 |                                                                   |                                                                   |                                                                  |                                                                   | * • •                                                             |                                                                   |                                                                   | NA                                                                |                                                                  |                                                                    |                                                                  |
| Trichloroethene                                                                                                     |                                                                 |                                                                   |                                                                   | • - •                                                            | • • •                                                             | · · •                                                             |                                                                   | - • •                                                             | NA                                                                |                                                                  |                                                                    |                                                                  |
| acthylene Chioride                                                                                                  |                                                                 |                                                                   |                                                                   |                                                                  |                                                                   | •••                                                               | • - •                                                             | 98                                                                | -                                                                 |                                                                  | 2 8                                                                | 2 🛎                                                              |
| SEMEVOLATELE ORGANICS                                                                                               |                                                                 |                                                                   |                                                                   |                                                                  |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |                                                                  | • • • • • • • • • • • • • • • • • • • •                            |                                                                  |
| 4-methy lohenul                                                                                                     |                                                                 |                                                                   | •••                                                               | NA                                                               |                                                                   | <b>`</b>                                                          |                                                                   |                                                                   | <b>.</b>                                                          | 5 1                                                              | •••                                                                |                                                                  |
| Benzoic Acid                                                                                                        | • • •                                                           | • • •                                                             |                                                                   | , NA                                                             | •••                                                               |                                                                   | • • •                                                             |                                                                   |                                                                   |                                                                  |                                                                    |                                                                  |
| 2-methy inaphthatene                                                                                                |                                                                 |                                                                   |                                                                   | NA                                                               |                                                                   | NA.                                                               |                                                                   | • • •                                                             | •••                                                               |                                                                  |                                                                    |                                                                  |
| Bist2-Ethylhexyl Philiplate                                                                                         | • • •                                                           | • • •                                                             | •••                                                               | NA                                                               |                                                                   | ~                                                                 |                                                                   |                                                                   |                                                                   |                                                                  |                                                                    |                                                                  |
| 2.4-Dimethylphenol                                                                                                  |                                                                 | - • •                                                             |                                                                   | NA                                                               |                                                                   | NA                                                                |                                                                   | •••                                                               | •••                                                               |                                                                  |                                                                    |                                                                  |
| 2- ne thy iphenol                                                                                                   |                                                                 |                                                                   |                                                                   | NA                                                               |                                                                   | NA                                                                | •••                                                               | •••                                                               | •••                                                               | • • -                                                            | • • •                                                              |                                                                  |
| Mohilhalene                                                                                                         | •••                                                             | •••                                                               |                                                                   | NA                                                               |                                                                   | NA                                                                |                                                                   |                                                                   |                                                                   |                                                                  |                                                                    |                                                                  |
| Di-n-Buty Johtha la te                                                                                              |                                                                 |                                                                   |                                                                   | <b>N</b> 44                                                      |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |                                                                  |                                                                    |                                                                  |

~

"---" - NOT detected B - Blank contamination j - Estimated concentration NG - NOT analyzed R - Laboratory data not usable OL - Diluted

Page 4 of 5.

-----

# TABLE B-26 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP III) ORGANIC DATA

.

~

| SAMPLE LOCATION:<br>CRL SAMPLE NUMBER:<br>SAO CASE NUMBER:<br>OTR NUMBER:<br>LABORATORY:<br>DATE SAMPLED.<br>(Ug/1) | MW-07A-04<br>88HW03D36<br>9542<br>EW 535<br>S-CLBED<br>05/04/88 | 487-078-03<br>8811003503<br>9542<br>69 537<br>5-CL8ED<br>05/05/88 | ##-07C-03<br>88HV03S37<br>9542<br>E# 539<br>S-CLBED<br>05/04/88 | AMY-075-02<br>88HW03535<br>9542<br>EW 533<br>S-CUBED<br>05/04/88 | AW-8A-04<br>88HV03521<br>9542<br>EW 510<br>5-CUBED<br>05/02/88 | AW-068-02<br>88H703519<br>9542<br>EW 509<br>5-CLBED<br>05/02/88 | AMP-09A-03<br>88HTV03539<br>9542<br>EW 528<br>5-CLBED<br>05/04/88 | MW-098-03<br>884903533<br>9542<br>EW 529<br>S-CLBEU<br>05/03/88 | AW- 10A - 63<br>86H/03528<br>9542<br>EW 515<br>5 - CLBED<br>05/03/88 | MP- 108-03<br>88HV03530<br>9542<br>EW 517<br>5-CU8ED<br>05/03/88 | MF-11A-04<br>88HV03522<br>9542<br>8542<br>5-CLBED<br>95/03/88 | MW- 124-04<br>6847493523<br>9542<br>EW 513<br>5-CLBED<br>05/03/88 |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|
| VOLATILES ORGANICS:                                                                                                 | •••••••••••                                                     |                                                                   |                                                                 |                                                                  |                                                                | •••••                                                           |                                                                   |                                                                 |                                                                      |                                                                  |                                                               |                                                                   |
| Acetone<br>Benzene                                                                                                  | 2700<br>3800                                                    |                                                                   | 31 8                                                            |                                                                  |                                                                |                                                                 | 56 B                                                              |                                                                 | •••                                                                  |                                                                  |                                                               |                                                                   |
| 2-Butanone                                                                                                          |                                                                 |                                                                   | *                                                               |                                                                  |                                                                |                                                                 |                                                                   |                                                                 |                                                                      | 22                                                               |                                                               |                                                                   |
| Chiorolore                                                                                                          |                                                                 |                                                                   |                                                                 |                                                                  |                                                                |                                                                 |                                                                   |                                                                 |                                                                      |                                                                  |                                                               |                                                                   |
| 1, 2-Dichioroethane                                                                                                 |                                                                 |                                                                   | •••                                                             |                                                                  |                                                                |                                                                 |                                                                   |                                                                 |                                                                      |                                                                  |                                                               |                                                                   |
| Ethylbenzene                                                                                                        | 870                                                             |                                                                   |                                                                 |                                                                  |                                                                |                                                                 | •                                                                 |                                                                 | • • •                                                                |                                                                  |                                                               |                                                                   |
| Total Hylenes                                                                                                       | 6000                                                            |                                                                   |                                                                 |                                                                  |                                                                |                                                                 |                                                                   | •••                                                             | •••                                                                  |                                                                  |                                                               |                                                                   |
| Toluene                                                                                                             | 5100                                                            |                                                                   |                                                                 |                                                                  |                                                                |                                                                 |                                                                   |                                                                 | • • •                                                                | 1.4                                                              |                                                               | 2 1                                                               |
| Trans-1.2-Dichloroethene                                                                                            | • - •                                                           |                                                                   |                                                                 |                                                                  |                                                                |                                                                 |                                                                   |                                                                 |                                                                      |                                                                  |                                                               |                                                                   |
| vinyi Chioride                                                                                                      | •••                                                             |                                                                   |                                                                 |                                                                  |                                                                |                                                                 |                                                                   |                                                                 |                                                                      |                                                                  |                                                               | •••                                                               |
| L. I Dichloroethene                                                                                                 | • • •                                                           | • - •                                                             | •••                                                             | •••                                                              |                                                                |                                                                 |                                                                   | • • •                                                           | •••                                                                  | • - •                                                            | •••                                                           |                                                                   |
| frichtorvethene                                                                                                     |                                                                 |                                                                   | •••                                                             |                                                                  | •••                                                            | •••                                                             |                                                                   | •••                                                             | •••                                                                  |                                                                  |                                                               |                                                                   |
| wellig fene. Chiur (de                                                                                              | 59                                                              | 36                                                                | 38                                                              | 28                                                               | •••                                                            |                                                                 | 76                                                                |                                                                 |                                                                      | •••                                                              |                                                               | •••                                                               |
| SENTIOLATILE ORGANICS                                                                                               |                                                                 |                                                                   |                                                                 |                                                                  |                                                                |                                                                 |                                                                   |                                                                 |                                                                      |                                                                  |                                                               |                                                                   |
| 4 - we day i placad                                                                                                 | NA                                                              |                                                                   |                                                                 |                                                                  |                                                                |                                                                 | · • ·                                                             | • • •                                                           |                                                                      |                                                                  | •••                                                           |                                                                   |
| HENZULE ACIA                                                                                                        | NA                                                              |                                                                   |                                                                 |                                                                  |                                                                |                                                                 | • • •                                                             |                                                                 |                                                                      | · · ·                                                            |                                                               | •••                                                               |
| 2 - we thy implitual cost                                                                                           | NA                                                              |                                                                   |                                                                 | •••                                                              |                                                                |                                                                 | •••                                                               |                                                                 | •••                                                                  | • - •                                                            |                                                               |                                                                   |
| 61312-Lins Hexyl Philiplate                                                                                         | NA                                                              |                                                                   |                                                                 | • • •                                                            | •••                                                            | 5 (                                                             |                                                                   |                                                                 | •••                                                                  | • • •                                                            |                                                               | •••                                                               |
| 2 4-Dimethy Iphenul                                                                                                 | NA                                                              |                                                                   |                                                                 |                                                                  |                                                                |                                                                 | •••                                                               |                                                                 |                                                                      |                                                                  |                                                               | • • •                                                             |
| 2 - we thy Iphenol                                                                                                  | NA                                                              | • • •                                                             | •••                                                             | • • •                                                            | •••                                                            | •••                                                             | • • •                                                             | - • •                                                           | •••                                                                  |                                                                  |                                                               | •••                                                               |
| Naphthalene                                                                                                         | NA                                                              | •••                                                               | • • •                                                           | • • •                                                            |                                                                | •••                                                             | • • •                                                             | • • •                                                           | •••                                                                  | •••                                                              |                                                               |                                                                   |
| Di-n-Buty Iphthalate                                                                                                | NA                                                              | •••                                                               | •••                                                             | •••                                                              | •••                                                            | •••                                                             | - • •                                                             | •••                                                             |                                                                      | • • •                                                            |                                                               |                                                                   |

"---" - NOT detected B - Blank contamination J - Estimated concentration NA - NOT analyzed R - Laboratory data not usable DL - Diluted

-

14 - 14 14 - 14

الأبار المتعاقب المراج

in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

.

------

# IABLE B-26 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GRUNDWATER (STEP III) ORGANIC DATA

•

---

| SAMPLE LOCATION:<br>CRL SAMPLE ALMBER:<br>SMO CASE MAMBER:<br>DTR MAMBER:<br>LABORATORY:<br>DATE SAMPLED:<br>(W0/1) | 484+035-07<br>884+03531<br>9542<br>68 520<br>5-CUBED<br>05/03/88 | AW-840-04<br>88:003511<br>9371<br>8W 551<br>PEI<br>95/10/88 | AM-840-04<br>88HV03D11<br>9571<br>EW 552<br>PEI<br>05/10/88 | AMY-05A-04<br>88HW03508<br>9571<br>EW 548<br>PEI<br>5/10/88 | 400-05A-04<br>8817/03508<br>9571<br>EW 5480L<br>PÉI<br>05/10/88 | MR-058-02<br>88HV03509<br>957 I<br>EW 547<br>PEI<br>05/10/88 | 2007-05C-03<br>8819/03501<br>9542<br>EW 543<br>S-CLBED<br>05/05/88 | MW-5E-02<br>88HW03502<br>9542<br>EW 544<br>S-CURED<br>05/05/88 | AW-06A-04<br>48H403515<br>9543<br>EW 504<br>5-CLBED<br>05/02/84 | AU-06C-04<br>BBIN03516<br>9542<br>EW 505<br>S-CUIED<br>05/02/88 | MW-07A-04<br>88HV03536<br>9542<br>EW 534<br>S-CU8ED<br>05/04/88 | MN-07A-04<br>88HW03536<br>9542<br>EW 534RE<br>S-CLBED<br>05/04/88 |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|
| VOLATILES ORGANICS:                                                                                                 |                                                                  |                                                             |                                                             |                                                             |                                                                 |                                                              |                                                                    |                                                                |                                                                 |                                                                 |                                                                 | ••••••••••                                                        |
| ••••••••••••••••••••••••••••••                                                                                      |                                                                  |                                                             |                                                             |                                                             |                                                                 |                                                              |                                                                    |                                                                |                                                                 |                                                                 |                                                                 |                                                                   |
| celone                                                                                                              |                                                                  | •••                                                         |                                                             |                                                             | •••                                                             | 7 8                                                          | •••                                                                |                                                                | •••                                                             |                                                                 | 4300                                                            | NA                                                                |
| enzene                                                                                                              | •••                                                              |                                                             | ••••                                                        | •••                                                         |                                                                 | •••                                                          | •••                                                                |                                                                | •••                                                             |                                                                 | 3700                                                            | NA                                                                |
| -Butanone                                                                                                           | •••                                                              | ··· R                                                       | 4                                                           | · A                                                         | ••• #                                                           | · A                                                          |                                                                    | R                                                              | •••                                                             |                                                                 | 8                                                               | NA                                                                |
| hlorolorm                                                                                                           | • • •                                                            |                                                             | •••                                                         | •••                                                         |                                                                 | •••                                                          |                                                                    | •••                                                            |                                                                 | •••                                                             | •••                                                             | <b>744</b>                                                        |
| 2-Dichloroethane                                                                                                    | •••                                                              | •••                                                         |                                                             | •••                                                         |                                                                 |                                                              | •••                                                                |                                                                | •••                                                             | •-•                                                             |                                                                 | NA                                                                |
| Lhy Ibenzene                                                                                                        | • • •                                                            | •••                                                         | •••                                                         |                                                             |                                                                 | • • •                                                        |                                                                    | •••                                                            |                                                                 | •••                                                             | 840<br>6000                                                     | NA                                                                |
| otal Xylenes                                                                                                        |                                                                  | •••                                                         |                                                             | 5.1                                                         | •••                                                             |                                                              | •••                                                                | •••                                                            |                                                                 | •••                                                             | 4900                                                            | NA<br>NA                                                          |
| viuene<br>rans-1,2-Dichioroethene                                                                                   |                                                                  |                                                             |                                                             | 1 C                                                         | 2000                                                            | 120                                                          |                                                                    |                                                                | 31                                                              | <u>+</u> +                                                      | 4400                                                            | NA.                                                               |
| Invi Chioride                                                                                                       |                                                                  |                                                             |                                                             | 490 1                                                       | 620                                                             | 120                                                          |                                                                    |                                                                |                                                                 |                                                                 |                                                                 | NA                                                                |
| i Dichioroethene                                                                                                    |                                                                  |                                                             |                                                             | 440 j                                                       | 020                                                             |                                                              |                                                                    |                                                                |                                                                 |                                                                 |                                                                 | NA                                                                |
| richioroethene                                                                                                      |                                                                  |                                                             |                                                             | 150                                                         | 170                                                             |                                                              |                                                                    |                                                                |                                                                 |                                                                 |                                                                 | 144                                                               |
| ethylene Chioride                                                                                                   | ••••                                                             | 76                                                          | 5 8                                                         | 110 8                                                       | 500                                                             | 6 H                                                          | •••                                                                | 8 R                                                            |                                                                 |                                                                 | 340                                                             | ~                                                                 |
| ENIVOLATILE ORGANICS                                                                                                | ••••••••••••••••                                                 |                                                             |                                                             |                                                             |                                                                 |                                                              |                                                                    |                                                                |                                                                 |                                                                 |                                                                 |                                                                   |
| · · · · · · · · · · · · · · · · · · ·                                                                               |                                                                  |                                                             |                                                             |                                                             |                                                                 |                                                              |                                                                    |                                                                |                                                                 |                                                                 |                                                                 |                                                                   |
| - we thy Loheno I                                                                                                   | 10                                                               | •••                                                         | NA                                                          | • • •                                                       | NA                                                              |                                                              | •••                                                                | • • •                                                          |                                                                 | •••                                                             | 10 1                                                            | 27-1                                                              |
| SIZOIC ACID                                                                                                         | *··-                                                             | •••                                                         | NA                                                          |                                                             | NA                                                              |                                                              |                                                                    |                                                                | •••                                                             |                                                                 | 52 (                                                            | 53 J                                                              |
| we thy inaph that ene                                                                                               | • • •                                                            | •••                                                         | NA                                                          | · · ·                                                       | NA                                                              | • • •                                                        |                                                                    |                                                                |                                                                 | •••                                                             | 26 J                                                            | 26 )                                                              |
| st2-EthylhexyliPhinalate                                                                                            |                                                                  | 31-1                                                        | NA                                                          |                                                             | NA                                                              | •••                                                          | • • •                                                              |                                                                |                                                                 |                                                                 | ··· •                                                           | R                                                                 |
| 4 - Dimethy Iphenol                                                                                                 |                                                                  |                                                             | NA                                                          | · • -                                                       | NA                                                              |                                                              |                                                                    |                                                                |                                                                 | •••                                                             | 10 1                                                            |                                                                   |
| we thy i pitent i                                                                                                   |                                                                  | •••                                                         | NA                                                          | •••                                                         | NA                                                              | • - •                                                        |                                                                    | •••                                                            |                                                                 | •••                                                             | 13 1                                                            | 24 1                                                              |
| un tha l'ene                                                                                                        | •••                                                              | •••                                                         | NA                                                          |                                                             | NA                                                              | •••                                                          | • • •                                                              |                                                                | •••                                                             |                                                                 | 160 J                                                           | 140 J                                                             |
| í-n-Buty Iph Iha la ce                                                                                              |                                                                  | 5 8                                                         | NA                                                          | 7 13                                                        | NA                                                              | 7 18                                                         |                                                                    | •••                                                            |                                                                 | •••                                                             | <b>R</b>                                                        | #                                                                 |

"---" - Not detected B - Blank Contamination J - Estimated concentration NK - Not analyzed R - Laboratery data not usable DL - Diluted

Page 2 of 5

.

.

\_\_\_\_\_

\_\_\_\_\_

### TABLE 8-26 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROUNDWATER (STEP III) ORGANIC DATA

 $\sim$ 

| LMPLE LOCATION:<br>EL SAMPLE HAMBER:<br>NO CASE NAMBER:<br>FR MLMBER:<br>BORATORY:<br>NEE SAMPLED:<br>19/1) | AMP-01A-04<br>884403514<br>9542<br>EW 503<br>5-CLBED<br>05/02/88 | AMY-02A-04<br>8817003513<br>9571<br>6W 540<br>PE1<br>05710786 | MW- 028 - 04<br>44rv035 10<br>957 1<br>EW 549<br>PEi<br>05/ 10/48 | ANV-028-04<br>8814V03010<br>9571<br>EW 550<br>PEI<br>5/10/88 | 400-028-04<br>48+403010<br>9571<br>6W 556<br>PEI<br>05/10/88 | MW-02C-04<br>88HV03543<br>9542<br>EW 541<br>5-CUBED<br>05/04/88 | 400-2C-04<br>88H003D43<br>9542<br>EW 542<br>S-CUBED<br>05/04/88 | HW-02E-02<br>88HV03S04<br>9542<br>EW 545<br>S-CLBED<br>05/05/88 | 400-82-04<br>88003512<br>9371<br>EW 553<br>PE4<br>93710/88 | ANV-82-04<br>8447403012<br>9571<br>EW 554<br>PEI<br>05710788 | MW-03A-04<br>4647003525<br>9542<br>EW 516<br>S-CLBED<br>05/03/88 | AW-038-02<br>88HW03524<br>9542<br>EW 514<br>5-CLBED<br>05/03/86 |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|
| LATILES ORGANICS.                                                                                           |                                                                  |                                                               |                                                                   |                                                              |                                                              |                                                                 | •••••••••••••                                                   | ••••••                                                          |                                                            |                                                              |                                                                  | ••••••••••••                                                    |
| elone                                                                                                       |                                                                  | 68                                                            | • • •                                                             |                                                              | NA                                                           |                                                                 | NA                                                              |                                                                 |                                                            |                                                              |                                                                  | •                                                               |
| nzene                                                                                                       |                                                                  | <i>i</i> ī                                                    |                                                                   |                                                              | NA                                                           |                                                                 | NA                                                              |                                                                 |                                                            |                                                              |                                                                  |                                                                 |
| Butanone                                                                                                    |                                                                  |                                                               | ··· 🛔                                                             | ··· 8                                                        | NA                                                           | ··· 8                                                           | NA                                                              |                                                                 | ··· #                                                      | ··· 👔                                                        |                                                                  | • • •                                                           |
| loroform                                                                                                    |                                                                  | • • • •                                                       | •••                                                               |                                                              | NA                                                           |                                                                 | NA                                                              |                                                                 | •••                                                        |                                                              |                                                                  |                                                                 |
| 2-Dichioroethane                                                                                            |                                                                  |                                                               |                                                                   |                                                              | NA                                                           |                                                                 | NA                                                              | - • •                                                           | •••                                                        |                                                              |                                                                  |                                                                 |
| hyibenzene                                                                                                  |                                                                  | 7 1                                                           |                                                                   |                                                              | NA                                                           |                                                                 | NA                                                              |                                                                 |                                                            |                                                              | •••                                                              |                                                                 |
| al Xylenes                                                                                                  |                                                                  | 9 i                                                           | • • •                                                             | • • •                                                        | NA                                                           |                                                                 | NA                                                              |                                                                 |                                                            | •••                                                          |                                                                  |                                                                 |
| uene                                                                                                        |                                                                  |                                                               |                                                                   |                                                              | NA                                                           |                                                                 | NA                                                              | •••                                                             |                                                            |                                                              | <sup>-</sup>                                                     |                                                                 |
| ins-1 2-Dichloroethene                                                                                      |                                                                  |                                                               |                                                                   |                                                              | NA                                                           |                                                                 | NA                                                              |                                                                 | •••                                                        |                                                              |                                                                  | •••                                                             |
| wi Chioride                                                                                                 | •••                                                              | 3 1                                                           |                                                                   |                                                              | NA                                                           |                                                                 | NA                                                              |                                                                 |                                                            |                                                              |                                                                  |                                                                 |
| Dichloroethene                                                                                              | •••                                                              | •••                                                           | •••                                                               |                                                              | NA                                                           |                                                                 | NA                                                              |                                                                 |                                                            |                                                              |                                                                  |                                                                 |
| chioroethene                                                                                                | •••                                                              |                                                               |                                                                   |                                                              | NA                                                           |                                                                 | NA                                                              |                                                                 |                                                            |                                                              |                                                                  | •••                                                             |
| thy tene Chilor Hie                                                                                         |                                                                  |                                                               | 10 <b>a</b>                                                       | 78                                                           | NA.                                                          | 78                                                              | NA                                                              |                                                                 | 10 B                                                       | 18                                                           |                                                                  |                                                                 |
| NEVOLATIEL ORGANICS                                                                                         | • • • • • • • • • • • • • • • • • •                              |                                                               |                                                                   |                                                              |                                                              | •••••                                                           | • • • • • • • • • • • • • • • • • • • •                         |                                                                 |                                                            | •••••                                                        |                                                                  |                                                                 |
|                                                                                                             |                                                                  |                                                               |                                                                   |                                                              |                                                              |                                                                 |                                                                 |                                                                 |                                                            |                                                              |                                                                  |                                                                 |
| we this fightenic f                                                                                         |                                                                  |                                                               |                                                                   | NA                                                           |                                                              |                                                                 |                                                                 |                                                                 |                                                            | ` . <b></b>                                                  |                                                                  |                                                                 |
| IZOFC ACId                                                                                                  |                                                                  |                                                               |                                                                   | NA                                                           |                                                              |                                                                 |                                                                 |                                                                 |                                                            |                                                              |                                                                  |                                                                 |
| ethy inaphtha i ene                                                                                         |                                                                  |                                                               |                                                                   | NA                                                           |                                                              |                                                                 |                                                                 |                                                                 |                                                            | ··· #                                                        |                                                                  |                                                                 |
| 12-Film Hexy LiPhihalate                                                                                    |                                                                  |                                                               |                                                                   | NA                                                           |                                                              |                                                                 |                                                                 |                                                                 |                                                            |                                                              |                                                                  |                                                                 |
| -Dimethy iphenol                                                                                            |                                                                  | 7.1                                                           |                                                                   | NA                                                           |                                                              |                                                                 |                                                                 |                                                                 |                                                            |                                                              |                                                                  |                                                                 |
| e thy Laheno i                                                                                              |                                                                  |                                                               | - • •                                                             | NA                                                           |                                                              |                                                                 |                                                                 |                                                                 |                                                            |                                                              | • • •                                                            |                                                                 |
| hthalene                                                                                                    |                                                                  | 2.1                                                           |                                                                   | NA                                                           |                                                              |                                                                 |                                                                 |                                                                 |                                                            | • • • •                                                      |                                                                  |                                                                 |
| n-Butvionthalate                                                                                            |                                                                  | 4.6                                                           | 5.8                                                               | NA                                                           |                                                              |                                                                 |                                                                 |                                                                 | 5 8                                                        | 5 8                                                          |                                                                  |                                                                 |

"---" - NDI desected B - Blank contamination J - Estimated concentration NA - Not analyzed R - Laboratory data not usable DL - Diluted

Page 1 of 5.

-----

### TABLE 8-25 ARROWHEAD - FIELD WORK DESIGN INVESTIGATION GROUNDWATER (STEP 11) INDRGNIC DATA (FILTERED)

| SAMPLE LOCATION:<br>CRL SAMPLE NAMBER:<br>SMD CASE NAMBER:<br>ITR NAMBER:<br>LABORATORY<br>DATE SAMPLED:<br>(Ug/1) | MW- 148-04<br>88HV03574<br>9542<br>MER 969<br>RMAL<br>05/04/88 | MW+ 14C+03<br>88H1003569<br>9542<br>46R 967<br>RMAL<br>D5/04/88 | AW-145-02<br>88HV03560<br>9542<br>AER 965<br>RAAL<br>05/03/88 | MW- 15A-03<br>881N03577<br>9542<br>Afr 989<br>RMAL<br>05/04/88 | 400 - 158-03<br>88HV03579<br>9542<br>MER 993<br>RMAL<br>05/04/88 | MW- 165-02<br>8811V03563<br>9542<br>MER 953<br>RMAL<br>05/03/88 | AM- 178-02<br>88/m03576<br>9542<br>468 981<br>RMAL<br>95/04/88 | MW-17E-02<br>88HV03566<br>9542<br>MÉR 963<br>RMAL<br>05/03/88 | FIELD BLANK<br>BAHW03559<br>9542<br>MER 959<br>RMAL<br>05/03/88 | FIELD BLANK<br>8844033568<br>9542<br>MER 977<br>RMAL<br>05/04/88 | FIELD BLANK<br>884903536<br>9542<br>AEW 307<br>RMAL<br>05/05/86 | FIELD BLANK<br>88H403\$24<br>9571<br>MEW 323<br>RMAL<br>03/10/48 |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|
| Aluminum<br>Antimony<br>Arsenic<br>Batium                                                                          | 72.5 8                                                         | 41.4 8                                                          | <br><br>99 1 J                                                | 60.5 B                                                         | 1230<br><br>35.4 8                                               | 84.7 8<br><br>94.7 J                                            | 37.3 8<br><br>2.6 j<br>54.4 8                                  | <br><br>88 3 j                                                | 103 j<br>                                                       | 47.2 j<br><br>31.0 j                                             | 49.8 j<br><br>19 3 j                                            | 182 )<br><br>35. 1 )                                             |
| Beryliium<br>Cadnium<br>Calcium<br>Chromium                                                                        | <br>34100                                                      | 27000                                                           | <br>64500                                                     | 493000                                                         | 79300<br>15.6                                                    | 64 100                                                          | 23200                                                          | 74800                                                         | <br>570 j                                                       | ••••<br>905 j                                                    | 624 B                                                           | <br>476 j                                                        |
| Cobail<br>Copper<br>Iron<br>Lead                                                                                   | 10.4 B                                                         | 8.3 B                                                           | 7 i j<br>i jo B<br>2 4 j                                      | 51.6 B<br>1000<br>15.2 j                                       | 10 4 6<br>1640                                                   | 10 4 J<br>100 6                                                 | 11.3 8<br>2.8 8                                                | 11 3 B                                                        | •3 0 J                                                          | <br>8.6 8<br>                                                    | 6 2 8<br><br>7 6 1                                              | 108                                                              |
| Magnesium<br>Manganese<br>Mercurs<br>Nickel                                                                        | 16400<br>178<br>                                               | 13600                                                           | 19800<br>530                                                  | 17 2000<br>3260                                                | 23200<br>153<br>8.5 j                                            | 17000<br>262<br><br>                                            | 15200                                                          | 1050  <br><br>                                                | <br>                                                            | 171 <b>A</b>                                                     | 145 B                                                           | 146 j                                                            |
| Polassium<br>Selettium<br>Silver<br>Sodjum                                                                         | 1520 j<br><br>13700                                            | 1030 J                                                          | 1700 j<br><br>15000                                           | 2060 j<br><br>16400                                            | 2940 j<br>                                                       | ##2 j<br><br>10400                                              | 934 j<br><br>8120                                              | 14500<br>                                                     |                                                                 | ••••<br>•••<br>•••                                               | <br><br>                                                        |                                                                  |
| Thailium<br>Vanadium<br>Zinc                                                                                       | <br>10.4 B                                                     |                                                                 | 7 2 j<br>23 0 0                                               | 24.2 B                                                         | <br><br>0.2.0                                                    | 30.0 8                                                          | 10.4 8                                                         | 9.4 B                                                         | <br>6.3 j                                                       |                                                                  |                                                                 | 7.28                                                             |
| Cyanide                                                                                                            | ····                                                           | •••                                                             | · • •                                                         |                                                                | •••                                                              |                                                                 | •••                                                            | •-•                                                           | <b>-</b>                                                        | ····                                                             |                                                                 | •••                                                              |

-----

.

"---" - Not detected j - Estimated concentration g - Blank contamination R - Laboratory data not usable

Page 4 of 4.

......

# TABLE 0-25 ARROWHEAD - FIELD WORK DESIGN INVESTIGATION GROUNDWATER (STEP II) INGRGNIC CATA (FILTERED)

-----

| SAMPLE LOCATION:<br>CRL SAMPLE NUMBER:<br>SAO CASE NUMBER:<br>ITR NUMBER:<br>LABORATORY<br>DATE SAMPLED:<br>(Ug/1) | MW- 08A - 04<br>88HV0 3558<br>9542<br>AER 939<br>RMAL<br>05/02/88 | MW-048-02<br>46HV03556<br>9542<br>MER 937<br>RMAL<br>05/02/48 | MW-09A-03<br>88HV03575<br>9542<br>MER 973<br>RMAL<br>05/04/88 | HW-098-03<br>88HH03567<br>9542<br>MER 975<br>RHAL<br>05/03/88 | MW-10A-03<br>884703562<br>9542<br>MER 951<br>RMAL<br>05/03/88 | MW- 108-03<br>881403564<br>9542<br>MER 955<br>RMAL<br>03/03/88 | MW- 51A-04<br>88HV03580<br>9542<br>MER 943<br>RMAL<br>05/03/88 | AW- 12A-04<br>48HW03581<br>9542<br>AKR 945<br>RAAL<br>05/03/88 | MW- 13A-04<br>8847V03554<br>9542<br>AFR 933<br>RAAL<br>05/02/08 | MW- 138-02<br>88HN03557<br>9542<br>MER 941<br>RMAL<br>85/02/68 | MW- 13E-02<br>88HV03555<br>9542<br>MER 935<br>RAAL<br>05/02/88 | 48-14A-04<br>88HWQ3S61<br>9542<br>AER 971<br>RAAL<br>05/03/88 |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|
| Aluminum<br>Antimony<br>Arsenic<br>Barium                                                                          | 2.0 j<br>331                                                      | 326                                                           | <br><br>66.6 B                                                | 67.7 B<br><br>119 J                                           | 152 B<br><br>147 j                                            | 4.1 j<br>126 j                                                 | 62.6 j                                                         | 109 8<br><br>58.7 J                                            | 260 B<br><br>93.1 J                                             | 43.7 J                                                         |                                                                | 53.1 B<br><br>125 J                                           |
| Beryllium<br>Cadmium<br>Calcium<br>Chromium                                                                        | <br>197000                                                        | 22 1000                                                       | 93700                                                         | <br>1 14000                                                   | 1 18000                                                       | 5.3<br>124000                                                  | 28300                                                          | 26500                                                          | <br>30700                                                       | 39360                                                          | 34000                                                          | <br>78500                                                     |
| Coba I I<br>Copper<br>I ron<br>Lead                                                                                | 6.4 j<br>3840                                                     | <br>102 B                                                     | 8 3 8<br>2 9 j                                                | 9.8 8<br>122 8<br>4.3 J                                       | 7. F'J<br>312 B                                               | 6.0 j<br>174 m                                                 | 9.3 j<br>175 B<br>2.0 j                                        | 7 5 J<br>143 8                                                 | 12.3 j<br>360 B                                                 |                                                                | ····<br>···<br>···                                             | 65,9 B                                                        |
| nagnessum<br>nanganese<br>nercury<br>Nickel                                                                        | 69300<br>996<br>                                                  | 73600<br>592                                                  | 29200<br>524<br>                                              | 4)400<br>990<br>                                              | 71100<br>770<br>                                              | 107000<br>430                                                  | 10600<br>26.9<br>                                              | 10200<br>34 2                                                  | 12200<br>47.3                                                   | 13900<br>46.3                                                  | 12700<br>46 6                                                  | 34200<br>576                                                  |
| lotassium<br>jelenium<br>jilver<br>jodium                                                                          | 1780 j<br>                                                        | 30300                                                         | 898 j<br><br>4 1700                                           | 26 10 J                                                       | 1920 j<br><br>23800                                           | 2850 j<br><br>30 i 00                                          | 556 j<br><br>5330                                              | 664 j<br><br>\$950                                             | \$78 j<br><br>6 170                                             | 1500 j<br><br>7870                                             | 642 J<br><br>5520                                              | 1700 j<br><br>13300                                           |
| ika I i i un<br>ranadi un<br>tinc                                                                                  | <br>35. 1                                                         |                                                               | 27 . 5 8                                                      | <br>19.0 B                                                    | 29.1 B                                                        | <br><br>6.5 8                                                  | <br><br>12.7 6                                                 | <br><br>14.7 B                                                 | <br>18.1 8                                                      | <br><br>9.4 A                                                  | <br><br>9.0 B                                                  | 35.6                                                          |
| Cyanide                                                                                                            | •••                                                               |                                                               |                                                               | •                                                             |                                                               | •••                                                            |                                                                |                                                                |                                                                 | •••                                                            |                                                                |                                                               |

"---" - NOL detected J - Estimated concentration B - Blank contamination R - Laboratory data not usable

Page 3 of 4.

# TABLE B-25 ARROWHEAD - FIELD WORK DESIGN HNVESTIGATION GROUND WATER (STEP +1) INDRGNIC DATA (FILTERED)

| SAMPLE LOCATION:<br>CRL SAMPLE ALMOER:<br>SND CASE ALMOER<br>ITR ALMOER<br>LABORATORY:<br>DATE SAMPLED:<br>(Ug/L) | AW-84b-04<br>88HV03534<br>9571<br>AEW 317<br>RMAL<br>05/10/88 | AW-05A-04<br>8847403522<br>9571<br>AEW 311<br>RAAL<br>05710/88 | AW-058-02<br>88HV03523<br>9571<br>AEW 309<br>RMAL<br>05/10/88 | MW-05C-03<br>8841403535<br>9542<br>MEW 301<br>RMAL<br>05/05/88 | MW+05E+02<br>8811V03537<br>9542<br>MEW 303<br>RMAL<br>05/05/88 | MW-06A-04<br>88HV03552<br>9542<br>MER 929<br>RMAL<br>05/02/88 | MW-06C-04<br>86(W03S53<br>9542<br>MER 931<br>RMAL<br>05/02/68 | MW-07A-04<br>88HV03571<br>9542<br>MER 985<br>RMAL<br>05/04/88 | MW-074-04<br>881403572<br>9542<br>AER 987<br>RMAL<br>05/04/00 | ME-078-03<br>881703538<br>9542<br>MER 991<br>RMAL<br>05/05/88 | MW-07C-03<br>88HW03573<br>9542<br>M&R 995<br>RMAL<br>05/04/88 | MW-075-02<br>88HVQ3570<br>9542<br>468 983<br>RMAL<br>05/04/88 |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| A Í UIBÍ NUM<br>A N Í Í MDNY                                                                                      |                                                               |                                                                | 69.9.8                                                        |                                                                | ·                                                              |                                                               | 175 B                                                         | 38.3 8                                                        | 42.4 0                                                        | 36.3 6                                                        |                                                               |                                                               |
| Ar senic<br>Barium                                                                                                | 40.2 8                                                        | 613 B                                                          | 61 7 B                                                        | 46.8 B                                                         | 40 7 B                                                         |                                                               | 307j                                                          | 170 8                                                         | 134 N                                                         | 108 ]                                                         | 28.6.8                                                        | 110 8                                                         |
| Serylium<br>Cadmium<br>Cadmium<br>Cafelum<br>Chromium                                                             | 44600                                                         | <br>94800                                                      | <br>123000                                                    | 25500<br>                                                      | <br>26 180                                                     | 79100                                                         | 45600<br>6 4 j                                                | 117000                                                        | LLL<br>Stead<br>Stead                                         | 78406                                                         | <br>37 400                                                    | 99800                                                         |
| obalt<br>opper<br>ron<br>ead                                                                                      | <br><br>                                                      | <br><br>8 5 8                                                  | <br>130 6<br>6 8 8                                            | 8.6 B                                                          | 988<br>                                                        | 11.9 J<br>3 I J                                               | 264 B<br>2 4 J                                                | 968<br>1410                                                   | 12.3 <b>b</b><br>1286                                         | 11.4 B<br>67 3 J                                              | 7.9 B                                                         | 11.0 B                                                        |
| agiesium<br>anganese<br>ei cury<br>i chei                                                                         | 27900<br>144<br>6.3 j                                         | 15900<br>269                                                   | 46900<br>71 8                                                 | 16000<br>91.9                                                  | 15 100<br>49 5                                                 | 23709                                                         | 14800<br>24 9                                                 | 48500<br>6860                                                 | 45908<br>6230                                                 | 3000g<br>265                                                  | 13 30G<br>48 . 6                                              | 4 3 206<br>1 2 3 0                                            |
| ota ssium<br>etersium<br>ilver<br>odium                                                                           | 9250                                                          | 1180 J<br><br>\$470                                            | 1500 J                                                        | 860 j<br>                                                      | i 888<br>00441                                                 | 770 j<br><br>7040                                             | 985 j<br><br>5500                                             | 1390 J<br><br>32700                                           | 1370 j<br>                                                    | 1290 )                                                        | 1120 j<br>                                                    | 1100 j<br>                                                    |
| hailius<br>anadius<br>Inc                                                                                         | <br><br>.0.7 B                                                | <br>17.8 B                                                     | <br>32.2 B                                                    | •••<br>•••<br>•.•                                              | <br><br>10:4 8                                                 | 31.9                                                          | <br><br>8.8 8                                                 | <br><br>36:# B                                                | 39 6 8                                                        | 33.9 8                                                        | <br><br>6.8 B                                                 | <br><br>                                                      |
| yani de                                                                                                           |                                                               |                                                                |                                                               |                                                                | •••                                                            |                                                               |                                                               | •••                                                           |                                                               |                                                               |                                                               | •••                                                           |

.

\_

.

"---" - NOT detected J - Estimated Concentration 8 - Blank Contamination R - Laboratory data not usable

Page 2 of 4.

### TABLE 8-28 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROLINDWATER (STEP ()) LOW DETECTION LIAIT PAH

.

•

-

Page 3 of 4.

| SAMPLE LOCATION:<br>CHL SAMPLE NAMBER:<br>SAS NAMBER:<br>LABORATORY:<br>DATE SAMPLED:     | AW-07C-03<br>88HV03549<br>3784-852<br>DATAC<br>05/04/88 | MW-07C-03<br>80HV03550<br>3784-853<br>DATAC<br>05/94/88 | AW- 075-02<br>88Hv03547<br>3784-246DL<br>DATAC<br>05/04/88 | MW- 14A-04<br>86/W03527<br>3784- E33<br>DATAC<br>95/93/88 | MN- 148-04<br>88HV03538<br>3784-558<br>DATAC<br>05/04/88 | MW- 14C-03<br>88HV03534<br>3784-E38<br>DaTaC<br>05/04/88 | 4W-14C-03<br>86HVQ3R08<br>3784-£40<br>DATAC<br>05/04/88 | INF- 14C-03<br>88/1903809<br>3784-E41<br>DATAC<br>85/04/88 | MU-145-02<br>88HV03526<br>3784-E29<br>DATAC<br>85/03/88 | AW- 154-03<br>88HM03541<br>2784-648<br>DATAC<br>85/04/88 | AW- 158-03<br>88HV03542<br>3784-856<br>DATAC<br>05/04/88 | MN- 178-02<br>86HV03540<br>3784-E43<br>DATAC<br>05/04/88 |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| (ng/1)                                                                                    |                                                         |                                                         |                                                            |                                                           |                                                          |                                                          |                                                         |                                                            |                                                         |                                                          |                                                          |                                                          |
| Naph tha lene<br>2-me thy inspit tha lene<br>Acenaph thy lene<br>1-me thy inaph tha lene  | #<br>#<br>#                                             | #<br>#<br>#                                             | 350 j<br>£<br>£<br>200 j                                   | t<br>t<br>t                                               | . 38<br>R<br>R                                           | 6 8<br>2 8<br>8<br>6 8                                   | 58<br>R<br>R<br>28                                      | 3 B<br>R<br>R<br>3 B                                       | 4<br>2 4<br>8                                           | #<br>#<br>#<br>#                                         | B<br>B<br>B<br>B                                         | 3 B<br>#<br>#                                            |
| Perview<br>Access the<br>fluorene<br>Phenanthrene                                         | R<br>R<br>R<br>R                                        | R<br>R<br>R<br>R                                        | #<br>#<br>#                                                | R<br>R<br>R<br>R<br>R                                     | &<br>&<br>&<br>&                                         | R<br>R<br>R<br>R                                         | R<br>R<br>R<br>R                                        | R<br>R<br>R                                                | 8<br>8<br>8<br>8                                        | R<br>R<br>R<br>R                                         | #<br>#<br>#<br>#                                         | #<br>#<br>#<br>#                                         |
| An thracene<br>Fluoran thene<br>Pyrene<br>Benzo(a) An thracene                            | R<br>R<br>1 B<br>R                                      | B<br>B<br>B<br>B                                        | ••• R<br>••• R<br>••• R<br>••• R                           | ••• 8<br>••• 8<br>1 6<br>8                                | R<br>R<br>R                                              | R<br>R                                                   | k<br>k<br>k<br>k                                        | R<br>R<br>R<br>R                                           | A<br>2 B<br>1 B<br>A                                    | t<br>t<br>t<br>t                                         | 8<br>8<br>8<br>8                                         | 8<br>8<br>8<br>8                                         |
| Chrysene<br>Benzo(b) Fluoranthene<br>Benzo(s) Pyrene + Parylen<br>Indeno(1,2,3-Cd) Pyrene | R<br>R                                                  | 8<br>8<br>8<br>8                                        | #<br>#<br>#                                                | R<br>R<br>R                                               | R<br>R<br>R<br>R                                         | R<br>R<br>R<br>R                                         | £<br>£<br>£                                             | 8<br>8<br>8                                                | A<br>A<br>A<br>R                                        | R<br>R<br>R                                              | R<br>R<br>R<br>R                                         | #<br>#<br>#<br>#                                         |
| Dibenzo(a, h) Anthracene<br>Benzo(a, h, i) Perylene                                       | k<br>k                                                  | <b>k</b><br><b>k</b>                                    | #<br>k                                                     | A<br>A                                                    | #<br>#                                                   | ê<br>â                                                   | 8                                                       | #<br>#                                                     | #<br>#                                                  | 8                                                        | #<br>#                                                   | R<br>R                                                   |

.

"---" - Not detected B - blank contamination J - Estimated concentration R - Laboratory data not usable DL - Diluted

.

Anna 201 0.001 Encipsion Total Total dan ar An An An An An An An An An An

# 7ABLE 8-20 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION GROLDWATER (STEP 41) LOW DETECTION LIART PAM

| SAMPLE LOCATION:<br>CRL SAMPLE NUMBER:<br>SAS NUMBER:<br>LAGORATORY:<br>DATE SAMPLED:         | AW- 178-92<br>884703040<br>3784-844<br>DATAC<br>05/04/86 | MW-17E-D2<br>88HN03545<br>3784-E27<br>DATAC<br>05/03/88 | FJELD BLANK<br>880703R02<br>3784-E18<br>DATAC<br>05/03/88 | FIELD BLANK<br>86HV03803<br>3784-E35<br>DATAC<br>05/04/88 | FJELD BLANK<br>8817003801<br>3784-E62<br>DATAC<br>05/05/88 | FIELD BLANK<br>881903802<br>3784-E87<br>DATAC<br>05/10/88 |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
| (ng/))                                                                                        |                                                          |                                                         |                                                           |                                                           |                                                            |                                                           |
| Amph tha i ene<br>2-ae thy I naph tha i ene<br>ACenaph thy i ene<br>1-ae thy I naph tha i ene | R<br>0,9 B<br>R<br>+ R                                   | R<br>4 B<br>R<br>14 B                                   | 3 8<br>R<br>R<br>R                                        | 9 8<br>8<br>8<br>11                                       | 3 8<br>8<br>8<br>2 8                                       | #<br>#<br>#<br>6 8                                        |
| Perylene<br>Acenaphthene<br>Fluorene<br>Phenanthrene                                          | R<br>R<br>R                                              | R<br>R<br>R<br>6 J                                      | #<br>#<br>#<br>0.7 #                                      | R<br>R<br>R<br>I B                                        | 8<br>8<br>8<br>8                                           | R<br>R<br>R                                               |
| Anthracene<br>Fluoranthene<br>Pyrene<br>Banzo(a) Anthracene                                   | 8<br>8<br>8                                              | £<br>2 8<br>2 6<br>8                                    | B<br>B<br>B<br>B                                          | R<br>R<br>R<br>R                                          | R<br>R<br>R<br>R                                           | £<br>£<br>£                                               |
| Chrysene<br>Benzo(b) Flueranthene<br>Benzo(a) Pyréne + Perylene<br>Indeno(1,2,3-cd) Pyréne    | A<br>B<br>B<br>B                                         | 1<br>1<br>1<br>1                                        | £<br>£<br>£                                               | k<br>R<br>E<br>A                                          | £<br>£<br>£                                                | £<br>£<br>£                                               |
| Dibenzo(a.h) Anthracene<br>Benze(g.h.i) Perylene                                              | 8<br>8                                                   | #<br>#                                                  | A<br>R                                                    | &<br>&                                                    | • A<br>••• A                                               | R<br>R                                                    |

"---" - Not detected B - blank contamination j - Estimated conceptration R - Laboratory data not usable OL - Dijuted

----

#### Page 4 of 4.

.

.

٠

| IC DVIV            | INDECVA               |
|--------------------|-----------------------|
| (1) (2156 (1)      | os Joviansans         |
| HEVOLESIANE NOISIG | VEROMAEND - FLEEDMORK |
| 6Z-R               | 31841                 |

.C 10 1 9849

| V1 VG                | ) IN          | 1 MOB CVI |
|----------------------|---------------|-----------|
| (++ d715)            | 110           | S JOVIN   |
| NOTION TRACELLOW FOR | 5 <b>1</b> (1 | FEDWORK   |
| 41                   |               | 33094     |

| ¥ 201105 ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 06                                                               | 06                                                                                   | 98                                                                     | 69                                                                                   | 02                                                                                      | 58                                                                                       | 68                                                                         | C#                                                                     | 78                                                                  | 99                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|
| Thai i tum<br>Vanadi um<br>Zinc<br>Cyani de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | **<br>**<br>**                                                   | 54<br>f 85                                                                           | es<br>fos                                                              | 09<br>90                                                                             | 65<br>f TP                                                                              | 12<br>1 12<br>1 12<br>1 12                                                               | C9<br>1 OC                                                                 | 6t<br>f 5i                                                             | 67<br>1 11                                                          | 29<br>29<br>109                                                              |
| Potsarum<br>Selenum<br>Mulbos<br>Mulbos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0171<br><br>[ 782                                                | 1240<br><br>                                                                         | 0201<br>     <br>  1   224                                             | 1330<br>                                                                             | 1390                                                                                    | 0501<br>                                                                                 | 0521<br><br>f acc                                                          | 1 09¥<br><br>1 22\$                                                    | 1 SPP<br>                                                           | 091                                                                          |
| Ni CKG (<br>WG ( CR) /<br>WB WB WG 26<br>WB WB 23 JW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54<br>510 1<br>5185                                              | 1 950<br>0916                                                                        | EF<br>1-922<br>0119                                                    | 38<br>180 t                                                                          | 34<br>334  <br>2840                                                                     | 907Ur<br>264  <br>36                                                                     | 07<br>542<br>8118                                                          | 50<br>161<br>2020                                                      | 31<br>522 1<br>8718                                                 | 35<br>                                                                       |
| 1641<br>100<br>1601<br>1641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P S<br>00112<br>1 Th<br>F C 6                                    | 39<br>33000<br>34 1<br>13                                                            | 9 8<br>31900<br>5 12<br>1 5<br>1 0<br>1                                | 5°5<br>005#1<br>f 2P<br>CI                                                           | 2'5<br>00911<br>1 57<br>1 2'6                                                           | 52<br>52260<br>421<br>11                                                                 | 5°C<br>00161<br>f PS<br>Cl                                                 | 11<br>00511<br>1 19<br>1 2 T                                           | 6 9<br>000Fi<br>1 04<br>1 F 6                                       | 34<br>38000<br>47 1                                                          |
| Chronium<br>Caleium<br>Beryliium<br>Beryliium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61<br>00201<br>8 2<br>6 1                                        | 51<br>18000<br>51<br>121                                                             | 11<br>13010<br>1 2<br>1 2                                              | 12<br>0022<br>6 9<br>0 2                                                             | \$1<br>00101<br>9`\$<br>C`1                                                             | 56<br>00281<br>5 8<br>9 1                                                                | 91<br>0226<br>919<br>211                                                   | 2'0<br>2052<br>2'7<br>[ 5'0                                            | 5'0<br>0120<br>9 F<br>5 0                                           | 52<br>D290<br>01<br>0`2                                                      |
| A tuminut<br>Artanit<br>Artanic<br>Artanic<br>Artani<br>Artani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23 1<br>1 1 1<br>8<br>8                                          | ₹∠<br>₹ 8`1<br>¥<br>00601                                                            | 5 15<br>5 7 1<br>8 8                                                   | 19<br>f C 1<br>¥<br>00101                                                            | f 22<br>f C'i<br>19<br>1991 2                                                           | 56<br>1 2 1<br>2 200771                                                                  | E <u>L</u> L<br>F 0't<br>W<br>D\$96                                        | 54 }<br>1 2 1<br>1 2 1<br>2 2<br>2 0<br>2 2<br>9                       | [ 91<br>P'P<br>3<br>0985                                            | 44<br>5'1]<br>4<br>5'1]<br>4<br>7                                            |
| Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>Стана<br>С | 02/10/08<br>02/10/08<br>02/0<br>09/20<br>11/5-14/1<br>2012-07-05 | 02/18/08<br>02/18/08<br>02/08/07<br>08/07/09<br>08/07/09<br>2082-09-05<br>2082-09-05 | 02/10/00<br>02/10/00<br>020<br>06030<br>06030<br>0004200<br>2001-00-03 | 02/10/88<br>CHEWLECH<br>WEM. 390<br>88H/07895<br>88H/07895<br>(8'2-8,)<br>2092-14-05 | 02/10/08<br>CHRWLECH<br>WER 24<br>WER 24<br>BBHK0428<br>15-14,3<br>202-14-0<br>202-14-0 | 88/81/50<br>H33[W347<br>97[ M3W<br>6296<br>655903498<br>1_01-81<br>1_02-81<br>20-51-2005 | 02/19/99<br>CHWIECH<br>8050<br>8050<br>90140000<br>119-10, J<br>2092-10-00 | 02/11/00<br>CHEWLECH<br>WER 330<br>000000020<br>112-11, 1<br>2001-1005 | 02/11/98<br>CHW1ECH<br>WEM 23<br>HEM 0420<br>(51-53,)<br>2092-16-03 | 02/10/10/00<br>CHEWLECH<br>WEM 333<br>00/50<br>00/50<br>10-10_1<br>200%-15_0 |

-----

Capacial Cristics data not usable
 Cantanination
 Catanination
 Catanination
 Mut delected

ан. 19

### TABLE B-29 ARROM-EAD - FIELDWORK DESIGN INVESTIGATION SUBSURFACE SOIL (STEP 11) INORGANIC DATA

| SAMPLE LOCATION:<br>DEPTH:<br>CRL SAMPLE ALMBER:<br>SHO CASE ALMBER:<br>ITR ALMBER:<br>LABORATORY:<br>OATE SAMPLED:<br>(mg/kg dry weight) | S087-17-02<br>(8-10°)<br>88HK04D91<br>9629<br>MEW 334<br>CHEMTECH<br>05/19/88 | SQ\$7-17-03<br>[14-16']<br>\$8HK04592<br>9629<br>#EW 335<br>CHEMTECH<br>05/19/88 | S087 - 18-02<br>(6-8')<br>88HKD4SD4<br>9629<br>#EW 339<br>CHEMEE(11<br>05/18/88 | 5087 - 18 - 02<br>(6-8')<br>88HK04D04<br>9629<br>MEW 337<br>ChémTECH<br>05/18/88 | S087 · 18 · 03<br>(12 · 14 <sup>-</sup> )<br>88HK04S05<br>9629<br>MEW 340<br>CHEMTECH<br>05/16/08 | 5087-19-02<br>(10-12')<br>881404585<br>9429<br>MEW 324<br>CHEW 324<br>CHEW 324 | S087 - 19 - 03<br>(14 - 16')<br>88HK04586<br>9628<br>MEW 325<br>CHEWTECH<br>05/16/88 | S087-22-02<br>(6-8`)<br>88HK04502<br>9629<br>MEW 344<br>CHEWTECH<br>05/18/86 | S087-22-03<br>(12-14°)<br>88H004583<br>9629<br>MEW 345<br>CHEWIECH<br>05/18/88 | 5087-23-02<br>(3-5')<br>884604593<br>884604593<br>8849<br>889<br>889<br>889<br>889<br>889<br>889<br>889<br>889<br>88 |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| A luminum<br>Antimony<br>Arsenic<br>Barium                                                                                                | 1 1500<br>••• R<br>1 . 5 . J<br>55                                            | 10300<br>R<br>2 0 j<br>41 j                                                      | 11400<br>R<br>2, 3- J<br>68                                                     | 9760<br>k<br>3 a<br>66                                                           | 12600<br>#<br><br>51                                                                              | 13900<br>R<br>1.6 J<br>63                                                      | 7990<br>R<br>1:0 j<br>28 j                                                           | 16100<br>R<br>1.7 J<br>210                                                   | 7520<br>R<br>I I J<br>33 J                                                     | 13800<br>R<br><br>76                                                                                                 |
| Beryllium<br>Cadmium<br>Calcium<br>Chromium                                                                                               | 2 3<br>7 1<br>8160<br>22                                                      | 1.9<br>7.0<br>13200<br>19                                                        | 1.9<br>8.2<br>12600<br>27                                                       | 1 5<br>5.4<br>18700<br>26                                                        | 2<br>9.4<br>17600<br>23                                                                           | 2.0<br>12<br>16090<br>25                                                       | 15<br>65<br>16800<br>16                                                              | i .2 j<br>8,6<br>10206<br>36                                                 | 1.6<br>6.6<br>11300<br>14                                                      | 1.6<br>6.0<br>5540<br>19                                                                                             |
| Cobait<br>Copper<br>1100<br>Lead                                                                                                          | 12<br>64 j<br>21400<br>15                                                     | 12<br>50 j<br>19500<br>15                                                        | 11 j<br>46 j<br>23300<br>13                                                     | 10  <br>33  <br>14500<br>15                                                      | 12<br>58 j<br>24300<br>3.0                                                                        | 16<br>92 j<br>31900<br>33                                                      | 97j<br>43j<br>19100<br>42                                                            | 7.2 j<br>174 j<br>14900<br>16                                                | 7.7 j<br>36 j<br>17400<br>9.1                                                  | 11 j<br>63 j<br>17100<br>7.2                                                                                         |
| nagnesium<br>nanyanese<br>nercury<br>Nickel                                                                                               | 5890<br>400 j<br>27                                                           | 7040<br>276 j<br>25                                                              | 74 10<br>207 1<br><br>32                                                        | 10680<br>155 j<br><br>40                                                         | 7900<br>333 j<br>0.60<br>34                                                                       | 8450<br>396 j<br><br>36                                                        | 6030<br>290 j<br>33                                                                  | 4830<br>173 j<br><br>36                                                      | 5740<br>324 j<br>20                                                            | 5110<br>154 j<br><br>26                                                                                              |
| Potassium<br>Setenium<br>Silver<br>Sodium                                                                                                 | 602 )<br><br>1330                                                             | 595 j<br><br>1510                                                                | 358 J<br><br>1410                                                               | 292 )<br><br>1350                                                                | 545 j<br><br>1640                                                                                 | 1170<br>1.7 j<br>1540                                                          | 609 j<br>                                                                            | 437 j<br><br>1.9 j<br>1306 j                                                 | 582 j<br><br>1230                                                              | 692 (<br><br>280 (                                                                                                   |
| Thatiium<br>Vanadium<br>Zinc<br>Cyanide                                                                                                   | <br>47 j<br>84<br>                                                            | 46 j<br>46                                                                       | 63 j<br>66                                                                      | 56 j<br>111                                                                      | 58 J<br>57                                                                                        | 96 j<br>76                                                                     | 43 j<br>49                                                                           | 48 j<br>104                                                                  | 36 j<br>37                                                                     | 70 j<br>67                                                                                                           |
| h Solids                                                                                                                                  | 89                                                                            | 86                                                                               | 80                                                                              | 76                                                                               | 91                                                                                                | 89                                                                             | 90                                                                                   | 59                                                                           | **                                                                             | 80                                                                                                                   |

 $\sim$ 

---

"---" - Not detected j - Estimated concentration B - Glank contamination R - Laboratory data not usable

Page 2 of 3.

| SAMPLE LOCATION.<br>DEPTH:<br>CAL SAMPLE NUMBER:<br>SAO CASE MAMBER: | 5087-23-03<br>(9-11')<br>884604594<br>8629 | 5087 - 24 - 02<br>(4 - 6°)<br>8816(0595<br>9639 | 5067 - 24 - 03<br>(10-12')<br>84HK 04596<br>9629 | FIELD BLANK<br>Bahkoaro7<br>9629 | 116LD BLANK<br>885604806<br>9629 |
|----------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------|----------------------------------|
| ITR NUMBER<br>LABORATORY<br>Date Sampled<br>(mg/kg dry weight)       | MEN 327<br>CHEMTECH<br>05/17/88            | MEN 324<br>CHEMTECH<br>05/17/00                 | AEW 329<br>CHEMTECH<br>05/17/44                  | MEW 332<br>CHEMTECH<br>05/17/00  | AER 348<br>CHEATECH<br>05/19/08  |
| i umi num                                                            | 7410                                       | 11500                                           | 5860                                             |                                  | 5                                |
| unt immy                                                             |                                            | <b>-</b><br>; :                                 | •••<br>: · ·                                     | ::                               | ::                               |
| AL FUN                                                               | ;;                                         | 1 21                                            |                                                  |                                  |                                  |
| tervi i tum                                                          | 101                                        |                                                 | 0.7.1                                            |                                  |                                  |
| Caderi va                                                            |                                            | :                                               |                                                  | :                                | :                                |
| cal cium<br>Chromium                                                 | 6340<br>16                                 | 14900<br>20                                     | 5290<br>L1                                       | ;:                               | 1 992                            |
| cota I I                                                             | 9 5 1                                      |                                                 | 4 11                                             |                                  |                                  |
| copper                                                               | - 5                                        | 1 9/                                            | - 11                                             | 2.7 1                            | 1.7.6                            |
| l ron<br>Lead                                                        | 15400<br>7 9                               | 11200                                           | 12200                                            | 72<br>0.96 J                     | <br>                             |
|                                                                      | 4250                                       | 3270 1                                          | 5140                                             |                                  | 1.001                            |
| angule se                                                            | 1.002                                      | 450                                             | 261                                              | 1.2.1                            |                                  |
| mercury<br>Nickel                                                    | ; <b>2</b>                                 | ::                                              | . *                                              | ::                               | :::                              |
| 2012 SSIUM                                                           | 1 844 1                                    | 2720 1                                          | 210 1                                            |                                  | 1 911                            |
| ielenium.                                                            |                                            |                                                 |                                                  | :                                |                                  |
| 51 kr                                                                | 1 2 1                                      | :                                               | -                                                |                                  | :                                |
| sodium.                                                              | 1 792                                      | 845 )                                           | 470 1                                            | :                                | 1 699                            |
| that I tum                                                           | 1                                          | :                                               | :                                                | :                                | :                                |
| /anadium                                                             | 1 51                                       | 28 )                                            | 1 8                                              | :                                | :                                |
| Zinc                                                                 | \$                                         | 92                                              | 4                                                | 1.4.5                            | 2.2 )                            |
| cyanide                                                              | :                                          | :                                               |                                                  |                                  |                                  |
| Solids                                                               | 3                                          | 5                                               | 62                                               | ā                                | ġ                                |

"---" - No! detected J = Estimated concentration B = Blank Contamination E - Laboratory data not usable

ARROMITAD - FIEDWORK DESIGN INVESTIGATION SUBSURFACE SOLL (STEP 11)

)

)

1. 11. A. A. A.

•

-

#### 111 4315) 320115 VUROWIEVD - FIELD WORK DESIGN INVESTIGN 0C-9 318VE

YERD DINYDRONE

unipos 1.0.0641 .... . . . . a ... .... B ----**3** .... . . . . 194115 20 .... . ... **2** ---1 6 5010 1 0 0102 1.4.00005 1 0.000601 1 a'oocce 1 0 00+22 1 0.0045 1 0.0965 1 0.0475 1 0.0000 0031115 1.0.00127 . . . ... mulna192 ... \*\*\* ---... ... ... ... .... ---. . . . . . . . . ----..... .... ..... ..... . . . . . . . . . . . . . ..... . . . . . . . ..... ...... ¥ --a .... . ... ¥ ···· 10.51 **a** --**a** ... ¥ ---HICKE 8 ---1 0:59 1 0'0¥ ... • • • ------• - -... ------••• ... ---Ainciaw - - -... .... E 0'99 .... .... ... ... ... ... ... 25 20 20 20 0.0001 0.0641 wn i saub w 0.0578 910265 0.0562 0.6125 3310'0 1390 0 0.0201 0.0021 1320.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ ........ . . . . . . . . . . . . . . . . . . . . .......... . . . . . . . . . . . . . . . . . . . ........... . . . . . . . . . [ 0'00991 1 0 00261 1 8100261 1 0'00CSI F 0'02FC 1 0'001C1 1 0'215 F 8'00521 1 0.00+01 1 0 0595 1.0:0099 1 0 00201 1 0 00111 9937 1 8.291 2340.4 1 1 0.0071 1 0 156 1 0.79 1100 1 0 0099 1 0.0015 190003 ---.... 1 0.451 1 0'05 1 8.611 1 0119 1 0 00 1.0.65 ... ... . . . ------• • • --------... ---114402 ... ... ---... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . ..... ..... . . . . . . . . . 00100100 - - -0°0C ... 0.15 \*\*-... ... 33.0 ... ... ... 5210 0 214010 0.0111 0.0012 12010 0.0081 4030.0 3610 0 0.0776 3460 0 3480.0 1012102 ... ... .... uniup () ---\*\*\* ... ------... ... ... • • • .... • • • ---••• ------· · · ... ... --militum . . . . . . . . . . . . . . . . . ...... ...... ..... . . . . . . . - . *.* . . . . . . . . . . . ----. . . . . . . . . . . . . . . . . . . . . . 5100.0 5050 0 1 1.0.946 1.0.0001 1 0.517 1 0'0921 1 0.566 1 0 0951 1.0.0081 1 0 0+91 1390.0 1 um ( 1 89 ---... ... ... ... ... **VL SEVIC** • • • • • • ---------... ••• - • • ---... • • • ... ... ------• - -Augustan a . 0405 010161 53606.0 0.00501 0.00205 0.00741 0.0948 3050 0 0.0251 3360.0 0.0261 muniting A ----..... ----......... . . . . . . . . . . . . ....... ......... ......... . . . . . . . . . . . . . . . . . . . . . . . . ...... ......... (61/00) 220115 200115 200115 1434 1734 AND BELTH BWD BRAILS 100115 1434 200115 1114 SIN79900 11/12/10 11/12/10 11/11/10 99/12/99 99/12/99 04/31/88 01/22/10 11/12/10 11/22/70 11/22/90 11/12/10 OVIE 2VM FED: 110 110 ANDI VNOUVI 110 110 110 110 211 110 110 211 \_ 2TL 226 J3W 916 139 WER 923 \$16 930 PE6 839 PI6 23W C16 33W 216 33 016 U3W 406 ¥3W 204 131 -----900C0AH89 805C04489 -----205004188 900004488 905E0AH88 SOSCONHEE POSTONIO COSCOMINE 101403203 105104400 CEF 2VMLFE HTMBEB: 18-101-2110 10-101-2882 C841-103-03 CE-COI - (93) 20-201-2883 CK81-107-83 10-001-2003 C##1-103-03 C881-103-01 C0-101-2883 10-101-2983 INDELVION BIGHTS

010051

---

- • •

...

. . . . . . . .

...

0.0001

....

•••

...

......

...

.........

8.0005

....

---

---

----

...

81029

0.0411

....

...

. . . . . . .

...

9.772

0.044

...

....

......

---

-----

....

- - -

----

- - .

Page 1 of 2.

81655

0.004

----

• • •

...

. . . . . . . .

...

1306.0

8.448

-----

---

....

---

1 - Ettimpteg couceuttetiou 09109180 10N - .---

g - Foreteteth dets not novels

01215

...

...

- - -

...

. . . . . .

. . . . . . . .

0'665

---

• • •

...

. . . . . . . .

010651

---

- - -

- - -

. . . . . . .

...

. . . . . . . . .

mulberry

muins#17

WO111TH1

. . . . . . . . .

STUC

• 5.8

n se generation generation u hi na sana an sa Tina santa na sa Santa na santa Santa na santa santa

A supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised to the supervised

.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | <br>                           |          |             |       |                           |     |           |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|----------|-------------|-------|---------------------------|-----|-----------|------------|
| UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.491       | 96.30                          | 0        | 0711        |       | *29                       | 0   | 0'500     | •••        |
| mulben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •••         |                                |          | ••          |       | ••                        |     | •••       | •••        |
| muins)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1441      | -                              | -        | ••          |       | 101                       |     | •••       |            |
| uniiit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | <br>-<br>                      |          | ••          |       | <br>                      |     |           | ····       |
| au i b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 0299                           |          | ••          |       | ••                        | + - | 0.0122    | 1          |
| 1941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                | <b>¥</b> | ••          |       |                           |     |           | 8          |
| licon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f 0'006CF   | 31900                          |          | 0622        |       | 00285                     |     | 0.0008    | 0.000421 1 |
| mulasi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | <br>•<br>• • • • • • • • • • • | •••      |             |       | ••                        |     |           | ····       |
| (exe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 0'52      | 29                             | 1.0      | ••          |       | 95                        | l e |           | 1          |
| r cury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | -                              | -        | ••          |       |                           | -   | •••       |            |
| at 30566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •••         |                                | -        | ••          |       | ••                        |     |           |            |
| âue z j na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0701      | <br>3430                       | 0        | 0961        |       | 3420                      | 0   | 0.0001    |            |
| pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 0.0011    | 11300                          | 1 0      | 51200       | 1.0   | 50100                     | 1 0 | 8-08951   | 1          |
| UO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 0.0575    | 5140                           |          | 0891        |       | 2260                      | 1.0 | 0.176     | ···· [     |
| 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••         | 85                             | f Q      | - 6CL       | - F ( | 92                        | f o |           |            |
| 1189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <br>-<br>                      |          | ••          |       | · ·                       |     |           | ····       |
| un juo Ji                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •••         | <br>17                         | 0        | 11          |       | ••                        | •   | •••       |            |
| muist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.0401      | 0580                           | 0        | 0499        | •     | 2380                      | 0   | 0.0641    |            |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | •••         | -                              | • •      | ••          |       | ••                        | •   | •••       |            |
| mn   A.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | <br>•                          | •        |             | -     | ••                        | •   | •••       |            |
| wn ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0.929     | <br>0021                       | 1 0      | 0045        | 1.1   | 0000                      | f o | 0 0150    | 1          |
| 260JC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •••         | -                              | • •      |             |       | ••                        | -   |           | •••        |
| Aucury 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •••         | -                              |          | ••          |       |                           |     |           |            |
| wnujwn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.001.0     | <br>0+62                       | 0        | 3120        |       | 0776                      | ŋ   | 0 0691    | 0.954      |
| (81)/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | <br>                           |          |             |       |                           |     |           |            |
| : 2 TH SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FILTER CARE | TA39                           |          | 3000 1S     |       | AD 1887.011               | 3 W | TA39      |            |
| :03J4WVS 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88/22/98    | 94/22/90                       |          | 88/12/08    |       | 88/12/90                  |     | 04/31/98  | 94/31/88   |
| VAOT AROA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) JTC       | 211                            |          | 211         |       | 21(                       |     | 511       | 51(        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 214 838     | 816 X3W                        |          | 616 X3W     |       | WEE 230                   |     | 126 834   | 926 ¥3W    |
| C SAMPLE NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01 55 04188 | 0500440                        |          | I I SCONHEE |       | 21 SCOAHBE<br>-SOI - 2883 |     | THIND3213 | 105000498  |
| WOLE LOCATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CE81-104-03 | 101 - 7882 -                   |          | -\$01-2483  |       |                           |     |           | NV18 013 H |

.

TARROWHEAD - FILE B-30 SEUDCE (STEP 14) SEUDCE (STEP 14) SEUDCE (STEP 14)

 $\sim$ 

6786 3 OL 3"

.

.

.

,

#### TABLE 8-31 ARROWHEAD - FIELD WORK DESION INVESTIGATION SUBSURFACE SOLL (STEP 11) INCINERATION PARAMETERS

.

.

SAMPLE LOCATION: CRL SAMPLE NUMBER: 5087-16-01 5087-18-02 5087-06-01 5047-06-02 5067-14-01 S067 - 15 - D1 5087-16-01 5047-17-01 5087-18-01 5087-18-91 5087-19-01 5087 - 19-0 1 S087-22-01 Bark05511 80HK05515 844605516 881605514 881K055 10 881605509 68HK05517 84HK 055 12 444665D12 88HK05513 8816 85506 84HK05006 3764-E 102 SAS NUMBER: 3784-E142 3784-E145 3784-6138 3784-6121 3784-6113 3784-E151 3784-E135 3784-€123 3784-E125 3744-2101 3784-E130 LABORATORY: WEVER WEVER WEYER 05/19/88 WEYER WEYER WEVER WEYER WEYER WEVEN WEVER WEVER WEYER WEVER 05/19/48 45/19/88 05/19/48 05/19/48 45/19/88 DATE SAMPLED: 05/18/88 05/17/88 05/17/88 05/18/88 05/16/48 05/16/88 45/16/44 . . . . . . . . . . . . . . . . . . . *. .* moisture Content (%) as Rec'd moisture Content (%) Air Dried Total moisture (%) as Rec'd 38.1 2.0 39.3 3.0 10.5 8.7 35.4 13 6 5.4 NA 19.3 24.6 12.7 6. L 7.5 22.9 1.0 4.3 ... 1.5 1.4 NA . . . 1.1 1.4 \*\*\* 2.4 13.2 9.2 36.4 47.1 25.1 13.7 4.3 97.5 6.8 NM. . . 24 8 Ash Content (%) 51.5 98.1 86.5 85 1 NA 46.2 79.0 90.6 97.4 90.9 74.5 Volatile Matter (%) ...... ...... . . . . . . ..... ----.... . . . . . . ..... ..... ----. . . . . . . . . 6.0 3.4 46.2 2.8 13.1 12.8 17 NA 12.7 23.4 3.2 9.5 3.3 23.1 Fixed Carbon (5) Heating Value (8TU/15) 2.3 ... ... ... ... AR. 1.1 .... ---.... ---.... 1320 1475 1791 2092 ... 842 767 NA 844 ... 44 2233 Carbon Content (%) 36.6 1 ... 10.9 1 5.9 1 13.6 1 6.1.1 ... 8.4.1 2.7 1 MA 4.5 1 1.0.1 12.5 1 ------..... . . . . . . ..... - - - - -. . . . . . . . . . ••••• . . . . . . .... ..... ..... ..... . . . *. .* . . . . Hydrogen Content (%) 6.1.1 ••• ... ... 1.4 1 · · · ---... ---... NK •-• ... Nitrogen Content (%) Oxygen Content (%) Suifur Content (%) .... ... --. - - -..... · · · • - -... ... NA • • • ... . . . 3.8 1.9 4.4 5.8 2.5 MA 6.4 7.4 3.4 2.6 4.7 2.5 9.0 2.1 ... - - + - - -... NA 1.5 ---... ... -------2.1 .......... ..... ...... . . . . . . . . . . . . . . . . . . . . . . . . - - - - - -..... ...... ......

| SAMPLE LOCATION:<br>CRL SAMPLE NAMBER;<br>SAS NAMBER: | 5087-06-81<br>88/K05515<br>3784-E143 | 5087-86-02<br>88HK05516<br>3784-E146 | 5087-14-01<br>88/805514<br>3784-E139 | 5087-15-01<br>884605510<br>3784-£122 | 5067-16-01<br>88HK0550%<br>3784-E114 | 5087-16-03<br>881805069<br>3784-E115 | 5087 - 17 - 0 1<br>88HK055 17<br>3784 - E 152 | 5067-18-01<br>8646.05512<br>3784-E136 | 5067-18-91 | 5087 - 18 - 82<br>881K 03584<br>3784 - £ 126 | 5087 - 19 - 8 1<br>8816 05586<br>3784 - E 184 | 5867-19-01 | \$067-72-01<br>#84605511<br>3784-E131 |
|-------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------|---------------------------------------|------------|----------------------------------------------|-----------------------------------------------|------------|---------------------------------------|
| 10C (mg/g)                                            | •                                    | 0.7                                  | <b>64</b> .1                         | 38.8                                 | 33.4                                 | 19.3                                 | 34.3                                          | 60.6                                  | NA         | 12.4                                         | 8.9                                           | -          | 59.1                                  |

-

"---" - Not detected

NA - Not analyzed

J - Estimated concentration

\* - Sample could not be analyzed by taboratory

Page 1 of 2.

| SAMPLE LOCATION:<br>CRL SAMPLE ALMBER:<br>SAS ALMBER:<br>LABURATORY:<br>DATE SAMPLED: | 5087-23-01<br>88HK05507<br>3784-E107<br>WEYER<br>05/17/88 | 5007-23-01<br>WEYER<br>95/17/88 | 5087 - 24 - 01<br>88HK 05508<br>3784 - E I 10<br>WEYER<br>05/17/88 | FIELD BLANK<br>881403R07<br>3784-E119<br>WEYER<br>03/17/88 | FIELD BLAN<br>##HK05806<br>3784-E149<br>WEVER<br>05/19/88 |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
| moisture Content (5) as Rec'd                                                         |                                                           |                                 | <br>4.4                                                            | ·····                                                      |                                                           |
| moisture Content (%) Air Dried                                                        | 1.9                                                       | NA                              | 5.1                                                                | •••                                                        |                                                           |
| Total moisture (b) as Rec'd                                                           | 14.8                                                      | NA                              | 5.5                                                                |                                                            |                                                           |
| ASA Content (B)                                                                       | <b>92</b> . r                                             | NA                              | <b>69</b> . 1                                                      | 106.1                                                      | 10 <b>9</b> . í                                           |
| voiatile matter (%)                                                                   | 7.6                                                       | NA                              | F1.4                                                               |                                                            |                                                           |
| Fixed Carbon (%)                                                                      | ***                                                       | NA                              |                                                                    |                                                            |                                                           |
| Heating value (BTU/Ib)                                                                | 336                                                       | NA                              | 1728                                                               |                                                            | +                                                         |
| Carbon Content (%)                                                                    | 3.3 j                                                     | NA                              | 9.3 j                                                              | ••• ·                                                      |                                                           |
| Hydrogen Content (%)                                                                  |                                                           | NA                              | 1.1.1                                                              |                                                            |                                                           |
| Nitrogen Content (%)                                                                  | •••                                                       | NA                              |                                                                    |                                                            |                                                           |
| Oxygen Content (%)                                                                    | 4.6                                                       | NA                              |                                                                    |                                                            | ••••                                                      |
| Sulfur Content (%)                                                                    |                                                           | NA                              | - • -                                                              |                                                            |                                                           |

| SAMPLE LOCATION:   | 5087-23-01 | 5087 • 23 • 0 1 | 5087-24-01 | FIELD BLANK | FIELD BLANK |
|--------------------|------------|-----------------|------------|-------------|-------------|
| CRE SAMPLE NEMBER: | 88HK05507  | 881K05007       | 88HK05508  | 881K05807   | 48HK05806   |
| SAS NEMBER:        | 3784-E108  | 3784 • E 109    | 3784-E111  | 3784-E120   | 3784-E150   |
| TOC (#9/8)         | 3.7        | 11.8            | 14.0       | 0.4         | 0.4         |

**41**4

,

"---" - Not detected NA - Not analyzed -f - Estimated concentration - - Sample could not be analyzed by Jaboratory

#### Page 2 of 2.

#### TABLE B-32 ARROWHEAD - FIELD WORK DESIGN INVESTIGATION SLUDGE (STEP JF) INCINERATION PARAMETERS

| SAMPLE LOCATION:       | CR87 - 101-01 | CR47-101-03 | CR87-102-01                                                                                                                              | CR47 - 102-03 | CR87-103-01                  | CR87-103-02 | CR87 - 103-02 | CR67-103-03 | CR87 - 184-8 1                                                                                                                          | CR87 - 104 - 0 1             |
|------------------------|---------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------|-------------|---------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CRL SAMPLE NUMBER:     | 88HW03501     | 8814003502  | 88HV03503                                                                                                                                | 8814003505    | 88HV035504                   | 8844003506  | 88HV03006     | 881403507   | 8811V0 3508                                                                                                                             | 8817053008                   |
| SAS NAMBER:            | 3784-E01      | 3784-E02    | 3784-{03                                                                                                                                 | 3784 - 804    | 3784-E05                     | 3784-806    | 3784 - E88    | 3784-607    | 3744 - 609                                                                                                                              | 3784 - E 10                  |
| LABORATORY             | VERSAR        | VERSAR      | VERSAR                                                                                                                                   | VERSAR        | VERSAR                       | Versan      | VERSAR        | VER5AR      | VERSAR                                                                                                                                  | VERSAR                       |
| DATE SAMPLED:          | 04/27/88      | 04/27/88    | 04/27/88                                                                                                                                 | 04 / 27 / 88  | 04/27/88                     | 04/27/88    | 04/27/88      | 04/27/88    | 04/27/88                                                                                                                                | 04/27788                     |
| COMMENTS:              | SLLIDGE       | PEAT        | SLUDGE                                                                                                                                   | PEAT          | SLUDGE                       | Filter Cake | FILTER CAKE   | PEAT        | SLUDGE                                                                                                                                  | SLUDGE                       |
| Sulfur Content (%)     | 2. 10         | 3.29        | 1.7)                                                                                                                                     | 2.47          | 4 . 38                       | 2.9         | 3.67          | 4.43        | 2.38                                                                                                                                    | 2.24                         |
| Chiorine Content (%)   | 0, 13         | 0.14        |                                                                                                                                          | 0.12          |                              |             |               |             |                                                                                                                                         |                              |
| Moisture Content (%)   | 35.7          | 26.4        | 39.5                                                                                                                                     | 28.6          | 10 . 4                       | 14.6        | 21.9          | 6.25        | 29.3                                                                                                                                    | 27                           |
| Ash Content (%)        | 6, 14         | 13.9        | 5.89                                                                                                                                     | 6.08          | 9 . 5                        | 34.1        | 42.5          | 22.4        | 7.15                                                                                                                                    | 7.53                         |
| Heating Value (&Turib) | 8120          | 8740        | 7920                                                                                                                                     | 7850          | 9220                         | 7160        | 6300          | 7900        | 8600 i                                                                                                                                  | 68469 1                      |
| <b>Vi sco i i ty</b>   |               | NA.         | 168,000 # 40<br>degrees C<br>61,200 # 50<br>degrees C<br>36,000 # 60<br>degrees C<br>23,400 # 70<br>degrees C<br>6,610 # 82<br>degrees C | NA.           | semi-solid Ø<br>82 degrees C | <b>NM</b> . | •••           | ••••        | 74,600 0 40<br>degrees C<br>47,100 0 50<br>degrees C<br>32,200 0 60<br>degrees C<br>26,200 0 70<br>degrees C<br>7,560 0 40<br>degrees C | semi-sotid &<br>Ba degrees C |

~

 $\overline{}$ 

"----" - Not detected

NA - NEL analyzed

j - Estimated concentration

Page 1 of 2.

#### TABLE 8-32 ARROWHEAD - FIELD WORK DESIGN INVESTIGATION SLUDGE (STEP 11) INCINERATION PARAMETERS

· \_\_\_\_

| SAMPLE LOCATION:<br>CRL SAMPLE NUMBER:<br>SAS NUMBER:<br>LABORATORY | CR 87 - 104 - 02<br>88HW035 10<br>3784 - E 12<br>VERSAR | CR87- 104-03<br>881W03509<br>3784-E11<br>VERSAR | CR67 - 105 - 0 1<br>8814/035   1<br>3784 - E 14<br>VERSAR | CR87 - 105 - 02<br>86HV035 12<br>3784 - E 15<br>VERSAR | CR87- 105-D3<br>881W035 I 3<br>3784-E 16<br>VERSAR | FIELD BLANK<br>BBHVD3R01<br>3784-EI3<br>VERSAR |
|---------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|------------------------------------------------|
| DATE SAMPLED:<br>COMMENTS:                                          | 04/27/00<br>Filter Cake                                 | 04/27/88<br>PEAT                                | 04/27/88<br>SLUDGE                                        | 04/27/88<br>Filter Cake                                | 04/27/88<br>PEAT                                   | 04/27/88                                       |
| Sullur Content (%)                                                  | 4. 17                                                   | 5.75                                            | 6.33                                                      | 2.77                                                   | 4. 19                                              | ••••                                           |
| Chierine Content (%)                                                | •••                                                     |                                                 |                                                           |                                                        | 0.14                                               |                                                |
| Holsture Content (%)                                                | 12.0                                                    | 14. F                                           | 39.8                                                      | 20.0                                                   | 24.8                                               |                                                |
| Ash Content (%)                                                     | 15.2                                                    | 9.39                                            | 6.79                                                      | 32.7                                                   | 9.13                                               | 99.9                                           |
| Heating value (STU/16)                                              | 8360                                                    | 19806                                           | 6890                                                      | 9600                                                   | 7290                                               | 102                                            |
| vi sce si ty                                                        | NK                                                      | -                                               | semi-solid e                                              | -                                                      | ~                                                  | salid e sa                                     |
|                                                                     |                                                         |                                                 | 89 degrees C                                              |                                                        |                                                    | degrees C                                      |

"---" - Not detected

NA - Not analyzed

J - Estimated concentration

Bernstein Steine A
 Bernstein Steine A
 Bernstein Steine A
 Bernstein Steine A
 Bernstein Steine A
 Bernstein Steine A

Page 2 of 2.

• •

-

-

# TABLE B-33 ARROWIEAD - FLELDWORL DESIGN INVESTIGATION SUBSURFACE SOIL (STEP II) ORGANIC DATA

.

.

,

| MAPLE LOCATION:<br>EPTN:<br>LE SAMPLE ALMBER:<br>NO CASE ALMBER:<br>TR PALMBER:<br>NBORA FORY:<br>NE ALMPLED:<br>NO STURE:<br>NO STURE: | S087-06-02<br>(12-14-)<br>88HK04589<br>9629<br>EW 576<br>CS81<br>05719788<br>10 | S087-06-02<br>(12-14')<br>89%K04D89<br>9629<br>EW 577<br>CSR(<br>85/19/48<br>17 | 5087-06-03<br>(18-20')<br>84HK04590<br>9629<br>EW 578<br>CSR1<br>05/19/68<br>16 | 5087 - 14 - 02<br>(6.5 - 6.0 <sup>-</sup> )<br>88H504587<br>9429<br>EW 581<br>CS81<br>05/19/88<br>10 | S087-14-03<br>(12-14')<br>88HK04588<br>9629<br>EW 582<br>GSR(<br>05/19/46<br>17 | S087-15-02<br>(8-10')<br>88HK04S99<br>9629<br>EW 571<br>CSR(<br>05/18/88<br>16 | S087-15-03<br>(14-14')<br>881%04S01<br>9629<br>EW 573<br>CSR1<br>05/18/88<br>17 | S087-16-82<br>(15-17')<br>88HK04597<br>9529<br>EW 565<br>CS81<br>85/17/66<br>13 | S067-16-03<br>(21-23')<br>88HK04598<br>9629<br>EW 566<br>CS6 (<br>05/17/66<br>15 | 5067-17-02<br>(8-10')<br>864K6459)<br>9629<br>EW 968<br>CSR1<br>05/19/88<br>11 | 5087-17-02<br>(8-10')<br>861664001<br>9629<br>EW 569<br>CSA1<br>65/19/88<br>11 |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| LATILE ORGANIC COMPOLADS                                                                                                                |                                                                                 |                                                                                 |                                                                                 |                                                                                                      |                                                                                 |                                                                                |                                                                                 |                                                                                 |                                                                                  |                                                                                |                                                                                |
| thylene Chiaride                                                                                                                        | 27 🖬                                                                            | 27 8                                                                            | 39 8                                                                            | 22 8                                                                                                 | 65 8                                                                            | 270 8                                                                          | 1 10 B                                                                          | 23 8                                                                            | 25 B                                                                             | 66 B                                                                           | 61.6                                                                           |
| tone                                                                                                                                    | 62.8                                                                            | 44 8                                                                            | 21 8                                                                            | 25 8                                                                                                 | 20 🔒                                                                            | 41.4                                                                           | 37 8                                                                            | 40 8                                                                            | 24 8                                                                             | 53 🗎                                                                           | 52 6                                                                           |
| bon Disulfide                                                                                                                           |                                                                                 | *                                                                               | •••                                                                             |                                                                                                      |                                                                                 |                                                                                | +                                                                               | 21                                                                              | •••                                                                              |                                                                                |                                                                                |
| 41 1,2-Dichioroethene<br>. I-Trichioroethane                                                                                            |                                                                                 | *                                                                               |                                                                                 | •                                                                                                    |                                                                                 |                                                                                |                                                                                 | •••                                                                             | •••                                                                              | •••                                                                            |                                                                                |
| chloroethene                                                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                                      |                                                                                 |                                                                                |                                                                                 |                                                                                 |                                                                                  |                                                                                |                                                                                |
| uene                                                                                                                                    | 48.6                                                                            | 19 8                                                                            | 34.8                                                                            | 25 8                                                                                                 | 110 8                                                                           | 44.8                                                                           | 95.8                                                                            |                                                                                 |                                                                                  | 120 8                                                                          | 41 8                                                                           |
| e thy 1-2-Pentanone                                                                                                                     | 41                                                                              |                                                                                 |                                                                                 |                                                                                                      |                                                                                 |                                                                                |                                                                                 | 71                                                                              |                                                                                  | 120 0                                                                          | */ *                                                                           |
| vibenzene                                                                                                                               | <b>i</b> i                                                                      | • • •                                                                           |                                                                                 | •••                                                                                                  |                                                                                 | 9 1                                                                            |                                                                                 |                                                                                 |                                                                                  |                                                                                |                                                                                |
| the                                                                                                                                     | 21                                                                              | •••                                                                             | •••                                                                             |                                                                                                      |                                                                                 | 12 '                                                                           |                                                                                 |                                                                                 |                                                                                  | 13                                                                             |                                                                                |
| Butanone                                                                                                                                | 8                                                                               | ··· R                                                                           | ··· R                                                                           | ··· #                                                                                                | #                                                                               |                                                                                | 8                                                                               | · · · · · ·                                                                     | 🖷                                                                                |                                                                                |                                                                                |
| NEVOLATILE ORGANIC COMPOLINDS                                                                                                           | • • • • • • • • • • • • • • • • • • • •                                         |                                                                                 |                                                                                 |                                                                                                      | •••••                                                                           | •••••                                                                          |                                                                                 | ••••••                                                                          |                                                                                  |                                                                                |                                                                                |
|                                                                                                                                         |                                                                                 |                                                                                 |                                                                                 |                                                                                                      |                                                                                 |                                                                                |                                                                                 |                                                                                 |                                                                                  |                                                                                |                                                                                |
| no i<br>Ni tha i ene                                                                                                                    |                                                                                 | 170 j<br>140 j                                                                  |                                                                                 |                                                                                                      | •••                                                                             | 390 j                                                                          | 120 }                                                                           |                                                                                 | ·                                                                                | •••                                                                            | NA                                                                             |
| ie thy I hadh liha j ene                                                                                                                |                                                                                 | 270 1                                                                           |                                                                                 |                                                                                                      |                                                                                 |                                                                                |                                                                                 |                                                                                 |                                                                                  |                                                                                | NA<br>NA                                                                       |
| han threne                                                                                                                              |                                                                                 |                                                                                 |                                                                                 |                                                                                                      |                                                                                 |                                                                                |                                                                                 |                                                                                 |                                                                                  |                                                                                | NA                                                                             |
| h-Buty in the late                                                                                                                      | 330 j                                                                           | 190 j                                                                           | 250 1                                                                           | 130 1                                                                                                | 150 (                                                                           |                                                                                |                                                                                 |                                                                                 |                                                                                  | 250 1                                                                          | NA NA                                                                          |
| oranthene                                                                                                                               | '                                                                               |                                                                                 |                                                                                 |                                                                                                      |                                                                                 |                                                                                |                                                                                 |                                                                                 |                                                                                  |                                                                                | NA.                                                                            |
| (2-Ethy Mexy ( )Phtha (a te                                                                                                             |                                                                                 | •                                                                               | •••                                                                             | •••                                                                                                  | 130 (                                                                           | •••                                                                            | 110 1                                                                           | 140 (                                                                           | <b>92</b> (                                                                      | 120 (                                                                          | NA                                                                             |
| ysene                                                                                                                                   |                                                                                 | •••                                                                             | •••                                                                             |                                                                                                      |                                                                                 |                                                                                |                                                                                 |                                                                                 |                                                                                  |                                                                                | NA                                                                             |
| n-Octvi Phthalate                                                                                                                       |                                                                                 | • • •                                                                           |                                                                                 |                                                                                                      |                                                                                 |                                                                                |                                                                                 |                                                                                 |                                                                                  |                                                                                | 14                                                                             |

~

-----

"..." - Not detected 8 - Biank contamination 3 - Estimated concentration Nn - Not analyzed R - Laboratory data not usable

Page 1 of 3.

----

#### TABLE B-33 ARRONHEAD - FIELDWORK DESIGN INVESTIGATION SUBSURFACE SOIL (STEP 11) ORGANIC DATA

\$067+19-03 5087-22-03 5087-23-02 SAMPLE LOCATION: 5067-17-03 5087-18-02 5087-18-02 \$087-18-03 S067-19-02 5067-22-02 5067-23-02 5067-23-03 DEPTH: CRL SAMPLE NUMBER SND CASE NUMBER: OTR NUMBER: (12-14') 88HK04505 (14-16') 88HK04586 (6-8°) 88/#04502 (3-5') 884K04593 (14-16') 84HK04592 (12 14 ) (3-5) ##H604D93 (9-11) 88HK04594 (6-8 ) (6-4') (10-12)) 884604503 88HK04504 88HK04585 9629 9629 9629 9629 9629 9629 9629 9629 9629 9629 9629 EW 570 EN 572 EW 574 EW 575 EW 557 EW 559 E# 579 EW 580 EW 560 EW 561 EW 547 CSRI GSRI CSI I LABORA TORY: GSRI GSRI GSRI GSILI CSRI CSR I GSRI CSEI DATE SAMPLED: 05/19/88 05/18/88 05/18/88 03/18/88 05/16/88 05/16/88 05/18/66 05/18/88 05/17/88 05/17/80 05/17/88 & HOISTURE: 10 18 39 19 13 9 22 11 13 11 18 (UG/KG) VOLATILE ORGANIC COMPOLNOS acthylene Chioride 67 B 96 B 36 B 92 B 140 8 51 B 70 B 32 B 48 B 800 8 54 B 51 B 290 8 80 8 23 8 NA NA NA NA 210 8 Acetone Carbon Disullide .... .... .... .... .... NA NA - - -. . . - • -- + • Total 1,2-Dichloroethene • • • NA - - + ... • • • - - -- - -• • • ••• NA NA ... 1, 1, I-Trichloroethane • • • NA ... ... - - ----... ... ------... NA Trichioroethene ... NA . . . . . . - - -... ... ---... 67 B 15 J 6 J 75 8 110 B 40 8 16 8 70 B NA 240 53.8 NA 11 B Toluene 4-methy1-2-Pentanone NA ... ... ---... - - -NA ... ------Ethylbenzene NA ---••• 20 J • • • • • • ---• • • 6 ) NA Xy I ene 2- Bu Lanone 26 71 • • • 50 • - - -110 ---- • • ---NA NA --- 8 NA · · · · --- 8 ··· # --- 8 --- # --- # --- 8 NA --- 8 ..... ..... . . . . ..... -----. . . . . . . ..... ...... ----..... ........... SERIVOLATILE ORGANIC COMPOLNDS Pheno i - - -... ... **.**.. ... ------... **.**... • - -... Naph tha liene ... ... 1400 ... • • • • • • ••• ------••• ... 2-sethy inaph tha i ene ... ... • • • ••• ... ---2800 • • • ••• - - -- - -Phenanthrene Di-n-Butyiphthaiate ... ... • • • ... ---**.** - - -... ... ------- - -78 ] \$20 ... 200 J ••• ... 670 | ... ---390 ... Flueranthene bl st2-Ethylhexyl)Phthalate - - -. . . ... .... ---... ... ... ... - - -. . . 200 / - - -... ... 200 1 ---... 190 J 47 j .95 / • • • ---• • • ---• • • Chrysene ... ---Di-n-Octyl Phihalate - - -... ... ... - - ----... -----------------........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -----. . . . . . . . ...... . . . . . . . . . ..........

.

.

"-..." - Not detected B - Bfank Contamination

1.54

91. • 1

J - Estimited concentration

NA - NOL analyzed

4.5

R - Laboratory data not usable

Page 2 of 3.

| VCETOUS                    | 8 071      | 83.8       | 34 8                                    | 8 10         |
|----------------------------|------------|------------|-----------------------------------------|--------------|
| ethylene Chioride          | 1 091      | 9 09t      | 8 16                                    | 30 R         |
| ADTATILE ORCANIC COMPOUNDS | •          |            |                                         |              |
|                            | ••••••     |            | • • • • • • • • • • • • • • • • • • • • |              |
| -: 3MUT210M #              | 12         | 91         | 2                                       | 1            |
| 09184 2VW6150              | 88/21/50   | 88721750   | ##//L/SO                                | 88/61/50     |
| LABORATORY.                | C281       | 1850       | C281                                    | 1852         |
| CTR NAME TO                | C95 M3     | 195 MJ     | (95 M)                                  | C85 #3       |
| SHO CY25 WINES             | 6296       | 6296       | 6736                                    | 6296         |
| CEF 2YMbre HIMPER:         | \$65703488 | 965203488  | 10210 14188                             | 903203488    |
| :HL430                     | C.9-23     | ( 10-13 )  |                                         |              |
| SAMPLE LOCATION:           | 2092-24-03 | 2017-24-03 | XNY78 (01314                            | 3NY10 (01314 |

----

340 1

----

...

---

• • •

...

1 \*\*

8 82

•••

...

...

•••

---

• • •

- - -

1 08

1.

...

- - -

· · ·

•••

•••

...

8 ---

- - -

...

•••

...

- - -

•••

- - -

\* 5

...

...

• - -

...

• - •

•••

---

- - -

---

8 ...

•••

• - -

51

....

• • •

. . .

---

...

...

---

• • •

•••

---

...

---

8 ....

•••

•••

...

---

...

...

•••

•••

٠

aldesu jon atab vietaindes - B W - WI SUPIATED B - Blank Contamination

DI-U-OCLA) butterist Catalogue 9132-Ethipeckibuterist 1-u-Onchiputeri Dueverinces Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butterist Butt

\*\*\*\*\*\* SEWLADLATE ORGANIC CONPOLATE

3-me tak ( veby sys ( cue heby sys ( eve by eve

4-We (µA) - 3-6eu (suoue to ( neue

1, 1, 1-Trichlaroethane

Total 1,2-Dickloroethene Carbon Disulties

3-80(18)08-2

xA | GUG E CUA | PENSEUG

Trichlorocthene

VEVELO DINYORD SUBSURFACE SOIL (STEP 11) VIEROWHEND - FIELDHORK DESIGN INVESTIGATION CC-0 110VI

E 10 E 9849

~

.

...." - Not gelected J - Estimated Concentration "---" - Not gelected

| - col<br>- col<br>- col                         | ¥<br>¥                                | ¥<br>¥                               | ¥<br>¥                                 | ¥<br>¥                                    | *<br>*<br>                              | ¥<br>¥                                     | ¥ •••<br>¥ •••                              | ¥ ···<br>¥ ···                       | ¥<br>¥                               | ¥<br>¥                                 | 3<br>3<br>1 96                         | ¥<br>¥                                    |                                       |
|-------------------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|---------------------------------------|
| 000 ·                                           |                                       |                                      | •-•                                    | •••                                       |                                         |                                            |                                             |                                      | •••                                  |                                        | f #C                                   |                                           |                                       |
| HON EVELOS:                                     | 01                                    | 50                                   | 01                                     | 01                                        | 01                                      | 30                                         | 82                                          | 30                                   | 39                                   | <b>Q1</b>                              | 01                                     | 01                                        | 30                                    |
| 1001401                                         |                                       |                                      |                                        |                                           |                                         |                                            |                                             |                                      |                                      |                                        |                                        |                                           |                                       |
| Bùtylonthala                                    |                                       | ••••                                 | ••••                                   | •••                                       |                                         | •••                                        | ·····                                       | ••••                                 |                                      |                                        | <br>Г КЕ                               |                                           |                                       |
| 14) heren i vec<br>1913 heren i vec             |                                       |                                      |                                        | ( ))                                      |                                         |                                            | 1 27                                        |                                      | *                                    |                                        |                                        |                                           | 09                                    |
| 1000124                                         |                                       |                                      | (12                                    |                                           |                                         | 1 88                                       |                                             |                                      | 1 95                                 |                                        |                                        |                                           | 071                                   |
| ມູດຄະບຸດ                                        | f 0Z                                  |                                      |                                        | 30 1                                      |                                         |                                            |                                             |                                      |                                      |                                        | •••                                    |                                           |                                       |
| •1 #1 #43 #4( ] Ax#4) A43 #-                    | 1 92                                  | F IS                                 | 24.3                                   | 1 11                                      | •••                                     |                                            |                                             |                                      | •••                                  | F 40                                   |                                        |                                           | •••                                   |
| ans i ad a dan i ya                             | 1 90                                  | [ []                                 |                                        | 1 96                                      | •••                                     |                                            |                                             | 1 09                                 | ( 27                                 | 1 96                                   |                                        | •-•                                       | 001                                   |
| ION EVELOU:                                     | 01                                    | 30                                   | 01                                     | Ot                                        | 01                                      | 30                                         | 30                                          | 30                                   | 30                                   | 81                                     | 01                                     | 01                                        | 30                                    |
| OLATILE ORGANIC COMPOUND                        |                                       |                                      |                                        |                                           |                                         |                                            |                                             |                                      |                                      |                                        |                                        |                                           |                                       |
|                                                 |                                       | *                                    | ·····                                  |                                           |                                         | *                                          |                                             | •••                                  |                                      |                                        | <br>#                                  |                                           |                                       |
| curocostpene                                    |                                       | •                                    |                                        | •••                                       | •••                                     | •                                          |                                             |                                      |                                      |                                        |                                        |                                           |                                       |
| anone:                                          | •••                                   | 1 69                                 |                                        | •••                                       | •••                                     | •••                                        | 1.91                                        |                                      |                                      | •••                                    |                                        |                                           | •••                                   |
| 904                                             |                                       | [ []                                 | £ 9°2                                  |                                           |                                         |                                            | •••                                         | f (g)                                |                                      |                                        | [ @1                                   |                                           |                                       |
| :ue<br>1   0   0 = [UEU6                        | 57                                    | f CY<br>f L'6                        |                                        | <b>5</b> .5                               | E : E<br>F 1 : 1                        |                                            |                                             | L'#                                  | •••                                  | ● 'C                                   | F 95'e                                 |                                           |                                       |
| - It ichtoroe shane                             | 91                                    | í si                                 | •••                                    |                                           |                                         |                                            |                                             |                                      |                                      |                                        |                                        |                                           |                                       |
| tene Chloride                                   | 1 21                                  |                                      |                                        | •••                                       | •••                                     | 1 5                                        |                                             |                                      | •••                                  | E •                                    | f 2°+                                  |                                           | C'9                                   |
|                                                 | 1.1                                   | 5'2                                  | 9.2                                    | L'T                                       | 8.S                                     | 3.9                                        | 6.6                                         | ¥'Z                                  | £'8                                  | 3'9                                    | τ.τ                                    | L'E                                       | 3.6                                   |
| ITON EVELOR:                                    | 01                                    | 011                                  | 0'1                                    | 0.1                                       | 0.1                                     | 01                                         | 0.1                                         | 0'1                                  | <b>•</b> *•                          | 0°1                                    | 0'1                                    | 0.1                                       | 01                                    |
| ITE DECENIC CONDOLIDE                           |                                       |                                      |                                        |                                           |                                         |                                            |                                             |                                      |                                      |                                        |                                        |                                           |                                       |
|                                                 | •••••                                 | ••••••                               |                                        |                                           |                                         |                                            | •••••••••••••••••••••••••••••••••••••••     |                                      |                                      |                                        |                                        | •••••                                     | · · · · · · · · · · · · · · · · · · · |
| NES:<br>Sympted<br>Lawyer:<br>Ymuten:           | 20005<br>94132198<br>2-CORED<br>E8288 | 6641<br>04/31/00<br>2-COUED<br>68261 | 2FFDCE<br>04\51\99<br>2-CFBED<br>E2209 | 21 (1005<br>0+133 198<br>2-01860<br>52000 | 27.0005<br>04\31\98<br>2+C0860<br>62901 | 1111EE CVKE<br>01/31/98<br>2-COBED<br>5203 | 111118 CVRE<br>04/31/89<br>2-CCRED<br>ER201 | 6541<br>04/31/08<br>2-CONED<br>52007 | 6641<br>04/33/09<br>2-CORED<br>62911 | 2FCDCE<br>04\51\99<br>2-CFBED<br>62904 | 2Fr0CE<br>94/31/4#<br>2-Cr0ED<br>52010 | LIFLER CWE<br>04/31/09<br>2-CMED<br>52002 | 6571<br>04/31/88<br>2-07860<br>52009  |
| 4740455;<br>1940-56 (4740456;<br>16 (70421104); | 15515<br>1050003201<br>10-101-2980    | 31921<br>994403203<br>58924-101-03   | 1991<br>991403203<br>5892-103-01       | 11211<br>891403202<br>C891-103-03         | 31221<br>991403204<br>CK85-102-01       | 31221<br>####03209<br>CK#1-107-03          | 31521<br>99000000<br>591403000              | 31221<br>884403205<br>5845-102-02    | 31221<br>9814403095<br>0845-102-03   | 21551<br>88%A03208<br>C882-101-01      | 21321<br>991403009<br>CH\$2-107-01     | 19510<br>884403218<br>5494-104-03         | 1221<br>991402200<br>591402200        |

0454415 0414 211055 5116 14) 211055 61216 14) 211055 6-14 211055 6-14

5496 1 01 3.

|                                                                                                                         | TABLE B-34<br>ARROWHEAD - FIELDWORK DESIGN INVESTIGATION<br>SLUDGE (STEP II)<br>ORGANIC DATA |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| SAMPLE LOCATION:<br>CRL SAMPLE NAMBER;<br>SAS NAMBER:<br>DTR NAMBER:<br>ABORTORY;<br>ATE SAMPLED<br>CommENTS;<br>HP/Ng) | 48HW03511<br>31551<br>ES607                                                                  | CR87-103-02<br>884w03512<br>31551<br>E5608<br>S-CLBED<br>64/27/88<br>FILTER CAKE | 88HV03513<br>31551<br>85609<br>5-CLBED<br>04/27/88 | FIELD BLANK<br>88HV03R01<br>31551<br>88502<br>5-CLMED<br>04/27/88 |  |  |  |  |  |  |
| OLATILE ORGANIC COMPOLINDS                                                                                              |                                                                                              |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |
| DIEUTION FACTOR:<br>H:                                                                                                  |                                                                                              | 1.0<br>2.5                                                                       | 1.0<br>2.6                                         | 1.0<br>6.4                                                        |  |  |  |  |  |  |
| ethylene Chioride                                                                                                       | 7 1                                                                                          |                                                                                  |                                                    | •••                                                               |  |  |  |  |  |  |
| . I. V-Trichioreethane                                                                                                  |                                                                                              |                                                                                  |                                                    | •••                                                               |  |  |  |  |  |  |
| richteroethone<br>Siuene                                                                                                | 15 j<br>66 j                                                                                 | 3.9                                                                              |                                                    |                                                                   |  |  |  |  |  |  |
| ce tone                                                                                                                 |                                                                                              | 15 /                                                                             |                                                    |                                                                   |  |  |  |  |  |  |
| -Butanone                                                                                                               |                                                                                              |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |
| e trackior oe thene<br>- Me thy I - 2 - Pentanone                                                                       | 7.3 J                                                                                        | <br>                                                                             |                                                    | ···                                                               |  |  |  |  |  |  |
|                                                                                                                         |                                                                                              |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |
| ILUTION FACTOR:                                                                                                         | 20                                                                                           | 10                                                                               | 20                                                 | 1.0                                                               |  |  |  |  |  |  |
| - ne thy I naph tha I one                                                                                               | 50 1                                                                                         |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |
| isi2-ethylhexyl)phthelate                                                                                               | •••                                                                                          | 34 j                                                                             | 55 J                                               |                                                                   |  |  |  |  |  |  |
| henen threne                                                                                                            |                                                                                              |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |
| teno i<br>Liitta i ene                                                                                                  | 110 /                                                                                        | 25 J                                                                             |                                                    |                                                                   |  |  |  |  |  |  |
| inchyl Phihaiate                                                                                                        |                                                                                              |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |
| i-R-Buty iph the late                                                                                                   | •••                                                                                          | •••                                                                              | •••                                                |                                                                   |  |  |  |  |  |  |
| ESTICIDE/PCBs                                                                                                           |                                                                                              |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |
| ILUTION FACTOR:                                                                                                         | 20                                                                                           | 10                                                                               | 20                                                 | .1.0                                                              |  |  |  |  |  |  |
| *******************************                                                                                         |                                                                                              |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |
| .4 - DOD                                                                                                                |                                                                                              |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |
| ,4' - DDT<br>ndowillan-1                                                                                                |                                                                                              |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |
| ndo sui lan-2                                                                                                           |                                                                                              |                                                                                  |                                                    |                                                                   |  |  |  |  |  |  |

.

"---" - Not detected j - Estimated Concentration R - Laboratory data not usable

#### Page 2 of 2.

.

.....

#### TABLE B-35 ARROWHEAD - FIELDWORK DESIGN INVESTIGATION SUBSUIFACE SOLL (STEP 11)-LOW DETECTION LIMIT PARS

-

.

| SAMPLE LOCATION:<br>CRL SAMPLE NUMBER:<br>SAS NAMBER:<br>LABORATORY:<br>DATE SAMPLED:<br>5 MOISTURE:<br>LUG/LB) | 5087-06-02<br>88/K04589<br>3784-E144<br>DATACHEM<br>05/19/88<br>10 | S087-06-D3<br>88HK04590<br>3784-E147<br>DAT4-CHEM<br>05/19/88<br>16 | SD87 - 14-02<br>881K04587<br>3784 - E 140<br>DATACHEM<br>05/19/86<br>14 | 5087 - 14-03<br>88HK04588<br>3784 - E 141<br>Datachem<br>05/19/88<br>14 | 5087 - 15-02<br>884604599<br>3784-E124<br>DATACHEM<br>05/18/88<br>15 | 5087 - 15 - 03<br>88H04501<br>3784 - E 128<br>DATACHEM<br>05/18/88<br>15 | 5007 - 16 - 02<br>48HRQ4597<br>3784 - E i 16<br>DATACHEM<br>05 / 17 / 84<br>1 i | S087 - 16-03<br>88HK04S98<br>3784 - E 117<br>DA TACHEm<br>05/17/88<br>13 | 5087 - 17 - 02<br>88HK04591<br>3784 - E 153<br>DATACHEM<br>057 19788<br>13 | SQ87 - 17-03<br>88HK04592<br>3784 - £ 154<br>DATACHÉM<br>05/19/88<br>12 | 5087 - 18-02<br>88HK04D04<br>3784 - E 127<br>DATACHEM<br>05/18/88<br>58 | 5087-18-02<br>86HK04504<br>3784-2 134<br>OATACHEM<br>05/18/88<br>19 | 5087 - 18 - 03<br>88HK04DD5<br>3784 - E129<br>DATACHEM<br>05/18/88<br>10 | 5087-18-03<br>88HK04505<br>3784-{137<br>DATACHEM<br>05/18/88<br>10 |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|
| raph tha tene<br>2- we thy Inaph tha i ene<br>Acenaph thy Lene                                                  |                                                                    |                                                                     |                                                                         |                                                                         |                                                                      |                                                                          |                                                                                 |                                                                          | •••                                                                        |                                                                         |                                                                         |                                                                     |                                                                          |                                                                    |
| Acenaph thene                                                                                                   | •••                                                                | •••                                                                 |                                                                         | •••                                                                     |                                                                      | •••                                                                      |                                                                                 | •••                                                                      | •••                                                                        | •••                                                                     |                                                                         | ···•                                                                |                                                                          |                                                                    |
| Fluorene<br>Phenanthrene                                                                                        |                                                                    |                                                                     | •••                                                                     |                                                                         |                                                                      |                                                                          | •                                                                               |                                                                          |                                                                            |                                                                         | •••                                                                     | •••                                                                 | •••                                                                      |                                                                    |
| Fluoranthène<br>Pyrene                                                                                          |                                                                    |                                                                     | ••••                                                                    |                                                                         |                                                                      |                                                                          | •••                                                                             | •••                                                                      | ••••                                                                       |                                                                         | •••                                                                     |                                                                     |                                                                          | •••                                                                |
| Benzo(a)Anthracene<br>Chyr sene                                                                                 |                                                                    |                                                                     |                                                                         | •••                                                                     |                                                                      |                                                                          |                                                                                 | ···                                                                      |                                                                            |                                                                         |                                                                         |                                                                     | •••                                                                      | •••                                                                |
| Benzo(B)Fivoranthene<br>Benzo(B)Pyrene                                                                          | •••                                                                |                                                                     |                                                                         |                                                                         |                                                                      |                                                                          | •••                                                                             | •••                                                                      |                                                                            |                                                                         | <br>                                                                    |                                                                     |                                                                          | •••                                                                |
| Indeno(1,2,3-cd)Pyrene                                                                                          | •••                                                                |                                                                     |                                                                         | •••                                                                     |                                                                      | •••                                                                      | •••                                                                             | •••                                                                      |                                                                            | •••                                                                     | •••                                                                     | •••                                                                 | •••                                                                      | •                                                                  |
| An thracene<br>Benzo (g, h, i )Perviene                                                                         |                                                                    |                                                                     |                                                                         |                                                                         |                                                                      |                                                                          |                                                                                 |                                                                          |                                                                            |                                                                         |                                                                         |                                                                     |                                                                          |                                                                    |
| 1-methy inap the lene                                                                                           |                                                                    | ••••                                                                |                                                                         | •••                                                                     | •••                                                                  | •••                                                                      |                                                                                 | •••                                                                      |                                                                            |                                                                         | •••                                                                     | •••                                                                 |                                                                          | •••                                                                |

#### "---" - Not detected

a an an

•

Page i of 2

,

#### TABLE 8-35 ARROWHEAD - FEELDWORK DESIGN INVESTIGATION SUBSURFACE SOIL (STEP II) LOW DETECTION LIMIT PAHS

Page 2 of 2.

.

. . .....

| SAMPLE LOCATION:<br>CRE SAMPLT NUMBER:<br>SAS NUMBER:<br>LABORATORY:<br>DATE SAMPLED:<br>b MOISTURE:<br>(Ug/LQ) | 5067-19-02<br>884604545<br>3784-£103<br>04740464<br>05/16/88<br>19/16/88 | 5087 - 19-03<br>88HK04586<br>3784 - £105<br>DA TACHEA<br>05/16/88<br>11 | 5087-22-02<br>88/#04502<br>3784-£132<br>0ATACHEM<br>85/18/88<br>26 | 5087-22-03<br>884404503<br>3784-£133<br>DATACHEM<br>05/18/86<br>13 | 5067-23-02<br>86H004593<br>3784-2106<br>DATACHEM<br>05/17/88<br>19 | 5087-24-02<br>88HK04595<br>3784-E112<br>DATACHEN<br>05/17/88<br>61 | FIELD BLANK<br>84HK04R07<br>3784-EII#<br>DATACHEM<br>05/17/68<br>0 | F1ELD BLANK<br>BBHKO4R06<br>3784-E348<br>DATACHEM<br>DATACHEM<br>05/19/88<br>0 |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|
| haph that ene                                                                                                   |                                                                          |                                                                         | ***                                                                |                                                                    |                                                                    |                                                                    |                                                                    | ·····                                                                          |
| 2- methy inaph that ene                                                                                         |                                                                          |                                                                         |                                                                    |                                                                    |                                                                    |                                                                    |                                                                    |                                                                                |
| Acenaph thy Lene                                                                                                | · •••                                                                    |                                                                         | •••                                                                |                                                                    |                                                                    |                                                                    |                                                                    | •••                                                                            |
| Acenaphthene                                                                                                    |                                                                          |                                                                         | ·                                                                  | •••                                                                |                                                                    |                                                                    | •••                                                                | •••                                                                            |
| Fluorene                                                                                                        |                                                                          |                                                                         |                                                                    |                                                                    |                                                                    |                                                                    |                                                                    | ••••••••••••••••••••••••••••••••••••••                                         |
| Phenan threne                                                                                                   |                                                                          | ••-                                                                     |                                                                    |                                                                    | •••                                                                | ••-                                                                |                                                                    | •••                                                                            |
| Fluoranthene                                                                                                    |                                                                          | •••                                                                     |                                                                    | • • •                                                              | •••                                                                |                                                                    |                                                                    | •••                                                                            |
| Pyrene                                                                                                          | •••                                                                      | ••••                                                                    | •••                                                                | •••                                                                | •                                                                  |                                                                    |                                                                    | •••                                                                            |
| Benzola JAnthracene                                                                                             |                                                                          |                                                                         |                                                                    |                                                                    | •••••••                                                            | ***                                                                |                                                                    | •••                                                                            |
| Chyr sene                                                                                                       |                                                                          |                                                                         | •••                                                                |                                                                    |                                                                    |                                                                    |                                                                    |                                                                                |
| Benzo(b)Fluoranthene                                                                                            |                                                                          |                                                                         |                                                                    |                                                                    | • • •                                                              |                                                                    |                                                                    |                                                                                |
| Senzo(\$)Pyrene                                                                                                 |                                                                          | •••                                                                     | •••                                                                | •••                                                                | •••                                                                |                                                                    | •                                                                  |                                                                                |
|                                                                                                                 |                                                                          |                                                                         |                                                                    |                                                                    |                                                                    |                                                                    |                                                                    | ••••••                                                                         |
| Indeno(1,2,3-cd)Pyrene                                                                                          | •••                                                                      | - • •                                                                   |                                                                    |                                                                    | •••                                                                |                                                                    | •••                                                                | •••                                                                            |
| Anthracent                                                                                                      | •••                                                                      |                                                                         |                                                                    | •••                                                                |                                                                    | •••                                                                | •••                                                                |                                                                                |
| Senzo(S.h. i )Perylene                                                                                          | •••                                                                      | •••                                                                     | •••                                                                | •••                                                                | •••                                                                | •••                                                                |                                                                    |                                                                                |
| t-we thy insp that end                                                                                          | •••                                                                      |                                                                         | •••                                                                | •••                                                                | •••                                                                | •••                                                                | ·                                                                  |                                                                                |

\_\_\_\_

"---" - NOt detected

### Appendix C HYDROGEOLOGIC INVESTIGATION

.

· ...

¶£V

GLT932/007.50-13

)

ì

### Appendix C HYDROGEOLOGIC INVESTIGATION

This appendix discusses the hydrogeology of the Arrowhead Refinery site by incorporating data from the Fieldwork Design Investigation (FDI) with the RI data. The hydrogeologic investigation included reviewing existing data, performing new fieldwork, and interpreting field data. The interpretation of the site geology and hydrogeology in the RI has been revised to reflect the additional information collected during the FDI.

### **RI RESULTS AND OBSERVATIONS**

### GEOLOGY

)

)

Based on the results of the RI, the geology at the Arrowhead Refinery site was divided into five layers: fill, peat, outwash, morainal till, and bedrock. The fill material averages 4 feet in thickness. The underlying peat layer, which is zero to 4 feet thick, is underlain by a glacial outwash layer consisting of interbedded clay, silt, and sand and gravel layers 10 to 25 feet thick. Below the outwash is a 20- to 25-foot thick morainal till layer. The morainal till layer grades vertically from silty sand or sandy silt to a sand with some gravel, a trace of silt, and weathered fragments of gabbro. The morainal till overlies a heavily fractured gabbroic bedrock.

### HYDROGEOLOGY

The water table underlying the site is shallow, generally zero to 4 feet below ground surface, and occurs within the peat or overlying fill deposit. Groundwater flow, as determined by groundwater level data, is generally to the southwest with gradients ranging from 0.0007 to 0.01 ft/ft. Upward vertical gradients suggested that the site may be a groundwater discharge area during part of the year.

### **OBJECTIVES**

The specific objectives of the hydrogeologic investigation were to define or further investigate:

- The existence of a low permeability layer underlying the peat. Review of the boring logs from the RI indicated that a continuous layer of silty clay from 1 to 15 feet thick may exist beneath the peat.
- The groundwater flow characteristics and the aquifer properties in the different stratigraphic units.
- o The existence of high permeability layers in addition to the sand and gravel units encountered during the RI fieldwork. High permeability units may influence groundwater flow, and therefore the contaminant transport, beneath the site.

- o The composition, fracturing, and depth of bedrock. Little was known about the bedrock because it was encountered in only two borings during the RI.
- The effect of the EPA drainage ditch on groundwater flow at the site. Water level information collected during the RI indicated that the ditch may be a discharge area. If so, the ditch could affect contaminant transport.
- o The vertical gradients at the site. There are upward vertical gradients in some parts of the site during certain times of the year. This indicates that at those times the site is a discharge area. The upward gradients may affect the migration of contaminants.

### SUMMARY OF FDI ACTIVITIES

Fieldwork activities conducted between May and December 1987 consisted of:

- o Seismic refraction surveys to delineate the bedrock surface
- o Drilling and installation of 13 monitoring wells and 7 piezometers
- o Drilling and sampling of four additional soil borings in the process area
- o Borehole geophysical logging to aid in the interpretation and correlation of boring logs
- o Measurements of water level
- o In situ hydraulic conductivity testing
- o Construction of two weirs and installation of four staff gauges in the U.S. EPA ditch
- o Surveying of elevations of new and existing wells, piezometers, and staff gauges

The procedures, field observations, and results of these field activities are described in the Technical Memorandums in Appendix A.

### **RESULTS OF FDI ACTIVITIES**

### SITE GEOLOGY

Subsurface geologic data were obtained from borings conducted at 23 locations during the RI and 21 locations during the FDI. Data from soil borings conducted from previous EPA investigations (in 1980) were also used. Monitoring well and soil boring numbers and date drilled are included in Table C-1. The locations of the

# Table C-1 SOIL BORING AND MONITORING WELL INSTALLATION SUMMARY

WELLS:

)

)

| Pre-RI Wells        | s: (installed by U. | .S. EPA in 198 | 30)         |
|---------------------|---------------------|----------------|-------------|
| В2ъ                 | B4b                 |                |             |
| B4a                 | B5                  |                |             |
|                     |                     | -h 1094)       |             |
| <u>Phase I RI</u> : | (installed Decem    | ider 1984)     |             |
| 1a                  | 3b                  | 7a             | 14a         |
| 2a                  | 5a                  | 8a             | 14Ъ         |
| 2b                  | 5c                  | 11 <b>a</b>    |             |
| 2c                  | ба                  | 1 <b>2a</b>    |             |
| 3a                  | 6с                  | 1 <b>3a</b>    |             |
| Phase II RI:        | (installed June     | 1985)          |             |
| 7ъ                  | 9a                  | 1 <b>4c</b>    |             |
| 7c                  | 9Ъ                  | 15a            |             |
| 10 <b>a</b>         | 10Ъ                 | 15Ъ            |             |
| FDI Wells:          | (installed Septem   | nber-October   | 1987)       |
| 2e                  | 5 <b>e</b>          | 1 <b>4s</b>    | 17e         |
| 3s                  | 7s                  | P16s           | 18 <b>e</b> |
| P5s                 | 8b                  | 16b            | P21s        |
| Р5ь                 | 13 <b>e</b>         | P17s           | Р21ь        |
| 5Ъ                  | 13b                 | 1 <b>7</b> ь   | P22s        |
| SOIL BORINGS:       |                     |                |             |
| Phase II RI:        | (installed May-J    | June 1985)     |             |
| S01                 | S03                 | S05            | S08         |
| S02                 | S04                 | S06            | <b>S</b> 10 |
| Step I FDI:         | (installed Septer   | nber-Novembe   | er 1987)    |
| SO87                | -19 SO87-22         |                |             |
| SO87                |                     |                |             |
| SO87                |                     |                |             |
| Step II FDI:        | (installed May      | 1988)          |             |

| SO87-06 | SO87-16 | SO87-19 | SO87-24 |
|---------|---------|---------|---------|
| SO87-14 | SO87-17 | SO87-22 |         |
| SO87-15 | SO87-18 | SO87-23 |         |

· ...

GLT932/042.51

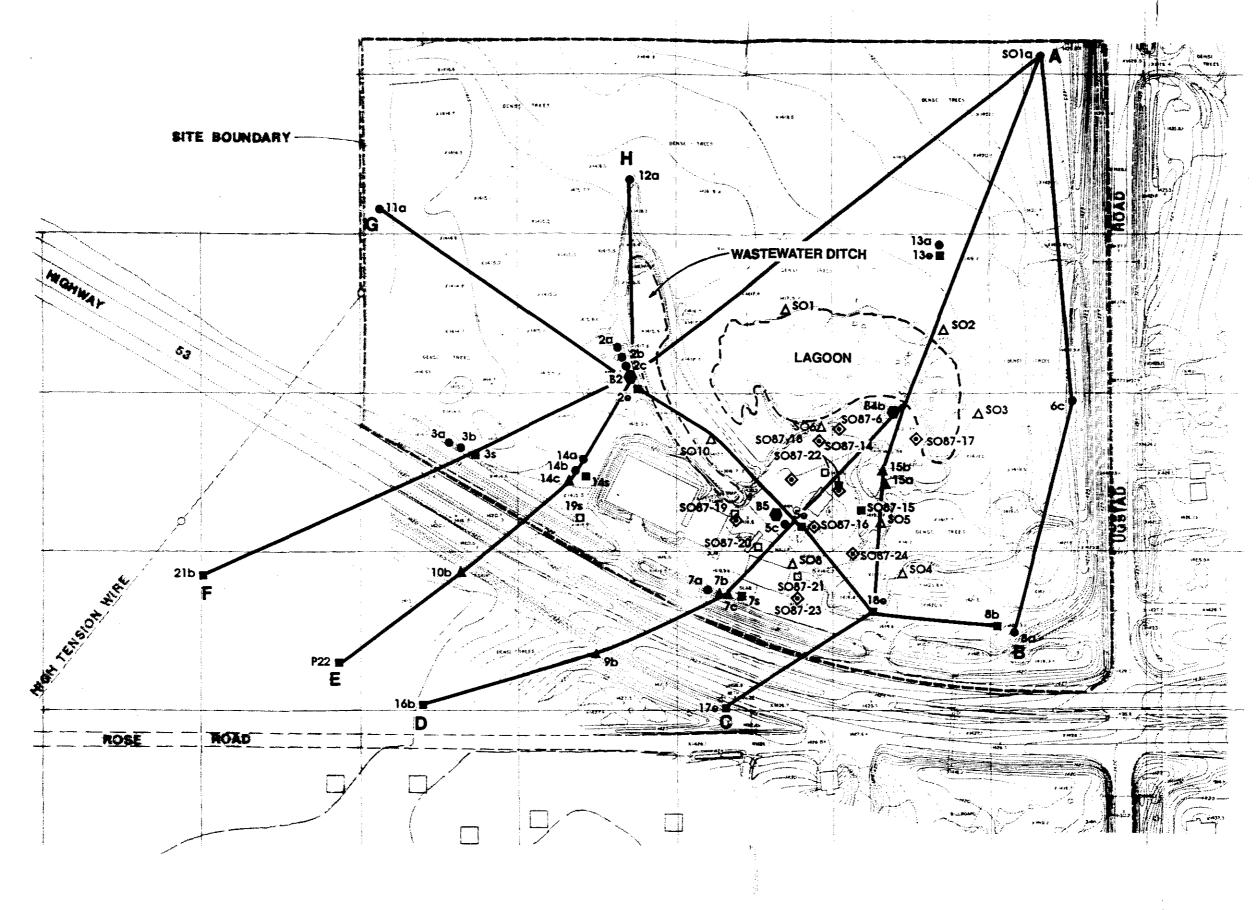
borings, monitoring wells, and geologic cross sections are shown in Figure C-1. Figures C-2 through C-7 are typical generalized geologic cross sections.

Based on RI data and the FDI geologic and hydrogeologic information, the subsurface geology at the site has been redefined into four units: fill, peat and clay, morainal deposits, and bedrock. This interpretation, which is somewhat different from that in the RI, is discussed in greater detail below.

#### Fill

According to the FDI data, the nature and distribution of the fill was consistent with the results of the RI. The fill material consists of loose to dense dark brown or black sand, silty sand, or sandy silt and is gravelly in some areas. The thickness of the fill ranges from zero to 7 feet. Fill occurs primarily in the south central portion of the site just north of Highway 53 at the Gopher Oil building and the auto body shop, and in the process area and along the wastewater ditch. Fill was also encountered in borings immediately adjacent to the EPA ditch along Highway 53 and Ugstad Road and south of Highway 53. In most places, the fill overlies peat.

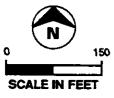
Fill in the process area was sandier and contained more gravel compared to other areas of the site. The fill was probably used to stabilize building locations and roadways in the process area, and to construct the berm that forms the southern boundary of the sludge lagoon. Finer-grained fill material composed primarily of silt appears to be associated with the construction of the wastewater ditch and the EPA ditch.


#### Peat and Clay

**Peat.** The nature and distribution of peat at the site were also consistent with the results of the RI. The peat is soft to medium stiff, black to brown, and fibrous and contains wood chips. It ranges in thickness from zero to 7.5 feet and occurs at the surface in the western portion of the site and just north of the lagoon (Figures C-2, C-4, and C-5). In other areas of the site where peat is present, it occurs below the fill or sludge.

The peat is continuous across the site except in the southern portion. In soil borings S08, S087-20, S087-21, and S087-23 (near the auto body shop), Well Nest 7, and abandoned piezometer 19s (along the driveway for Gopher Oil and the auto body shop), peat was not encountered during drilling. Peat in these areas was probably removed when the area was filled or when the buildings were constructed. The peat layer is also continuous off site south of Highway 53, except at well locations 16 and 17 where peat was probably removed during highway construction.

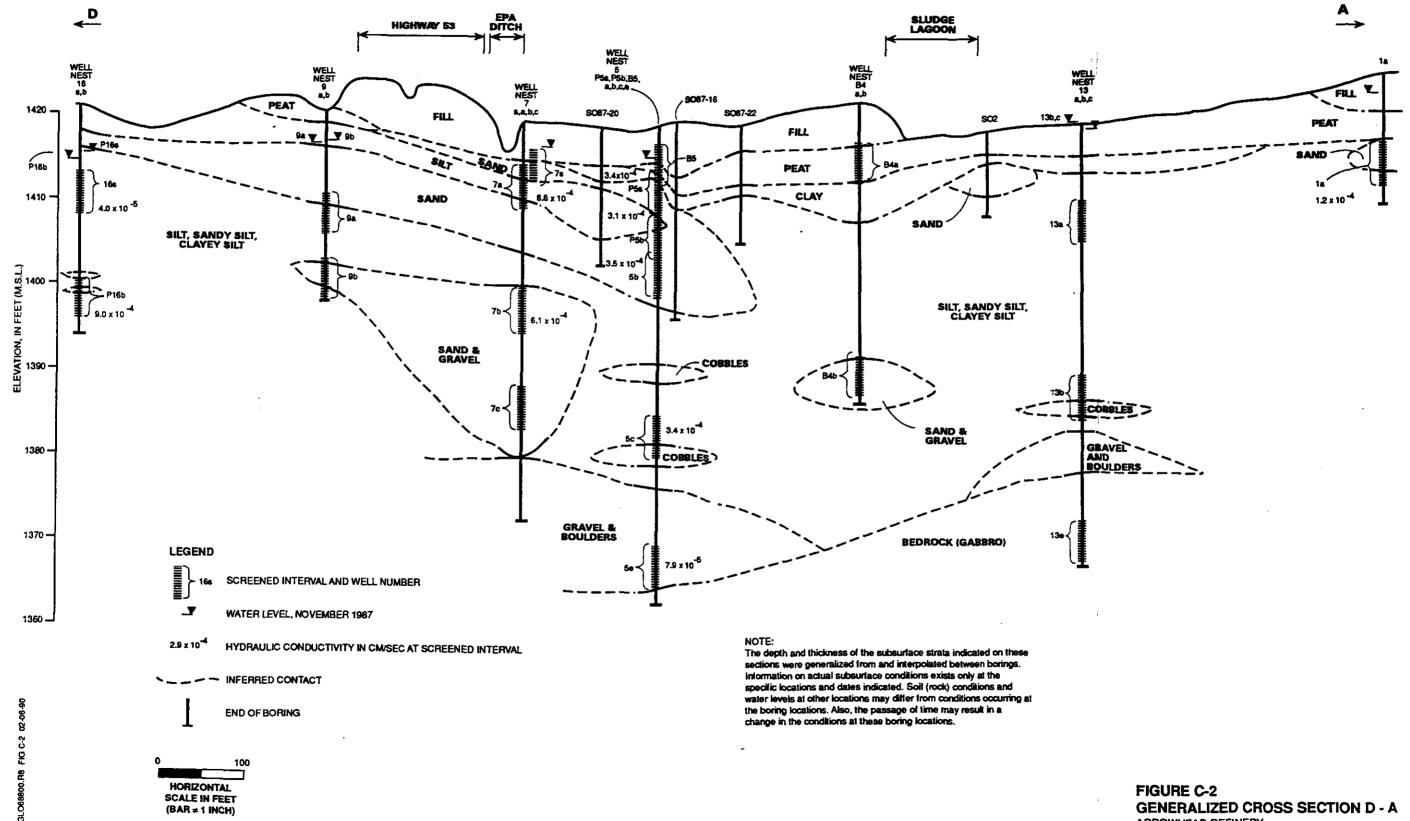
#### Clay


Clay. Underlying the peat in most borings is a medium stiff to stiff, gray, blue gray, green, or yellow brown clay to silty clay that is zero to 5 feet thick. Compared to silty clays in the till unit, it is softer (as indicated by blow counts), has a higher clay content, and usually contains little to no sand and no gravel. It is often mottled or a different color than the silty clays of the till, which are usually brown.



1

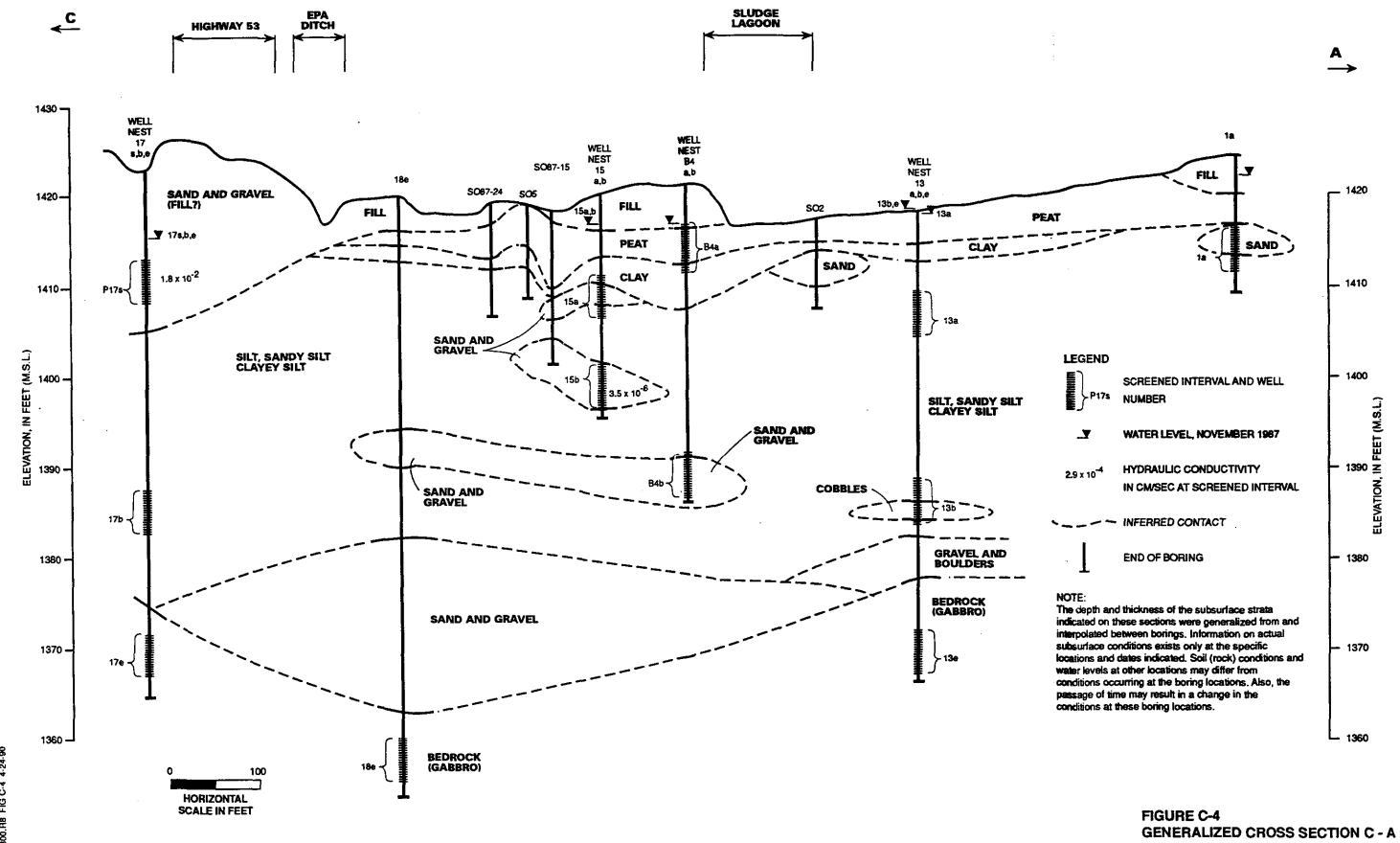
Ĺ


X




# LEGEND

- RI PHASE I SOIL BORING
   MONITORING WELL INSTALLED
- ▲ RI PHASE II SOIL BORING
- A RI PHASE II SOIL BORING MONITORING WELL INSTALLED
- FDI STEP I SOIL BORING
- FDI STEP I SOIL BORING MONITORING WELL INSTALLED
- WELLS FROM PREVIOUS
- FDI STEP II SOIL BORING
- CROSS SECTION LOCATIONS

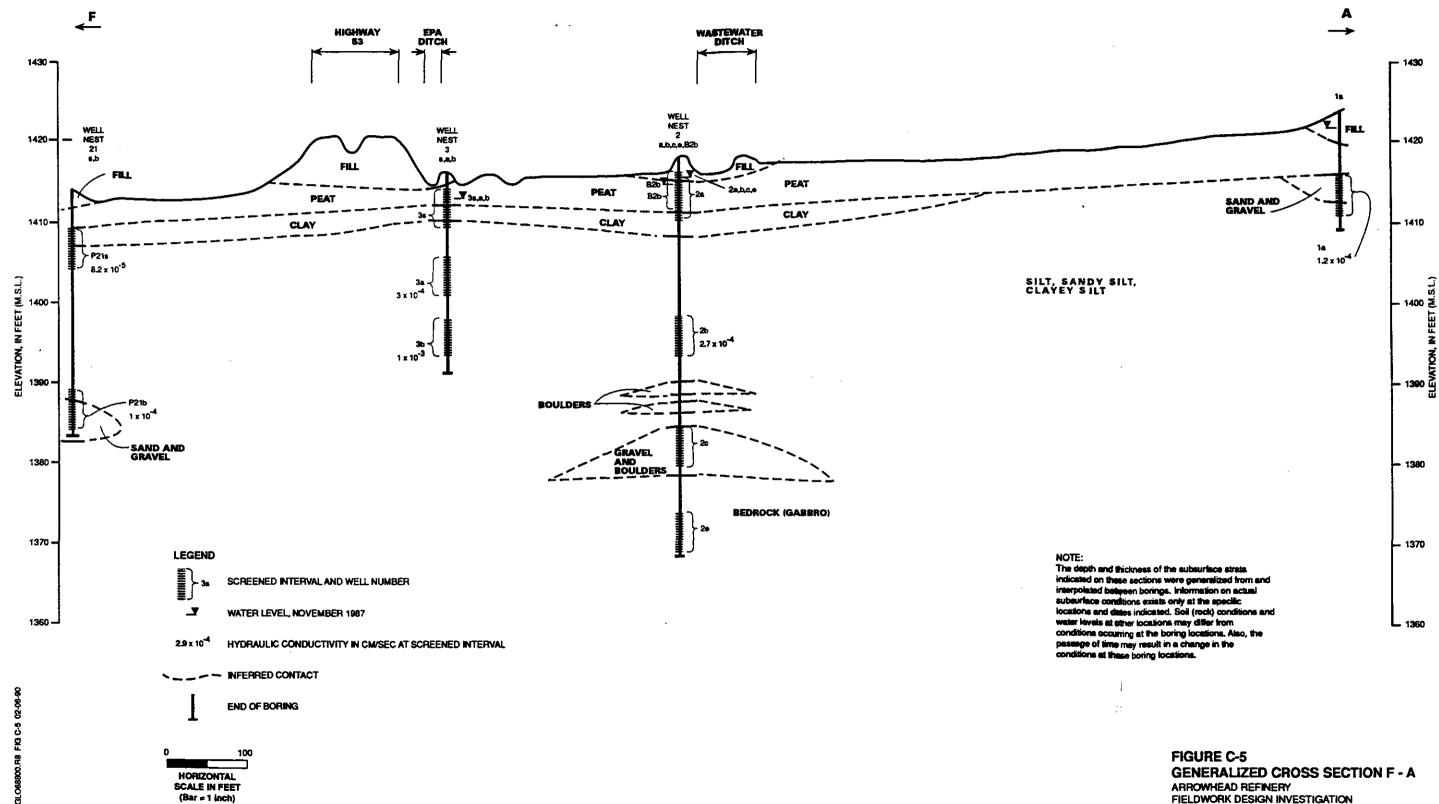

FIGURE C-1 LOCATION OF CROSS SECTIONS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION



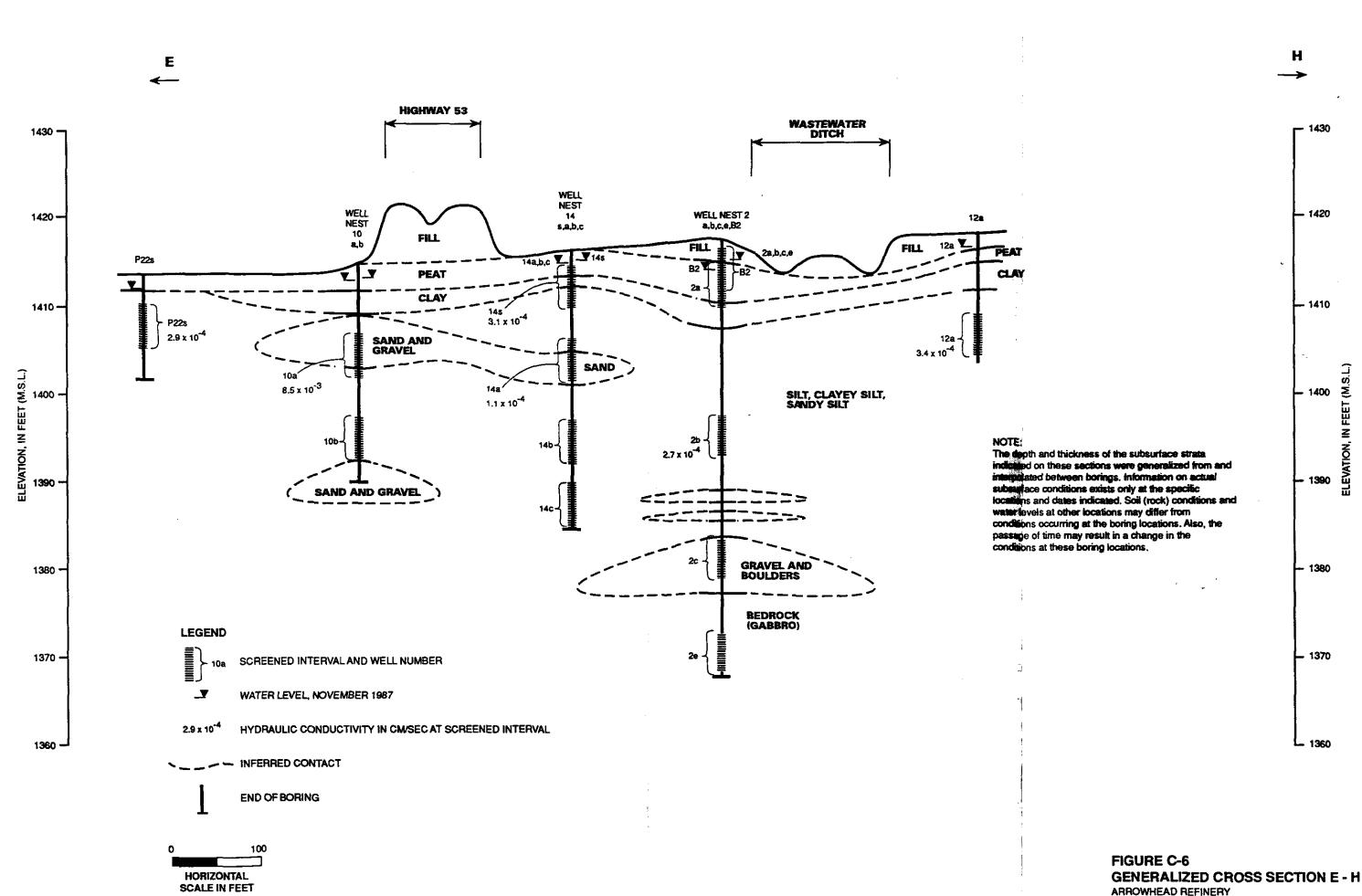


02-12-90 ္ပိ 5 GL O68800.R8

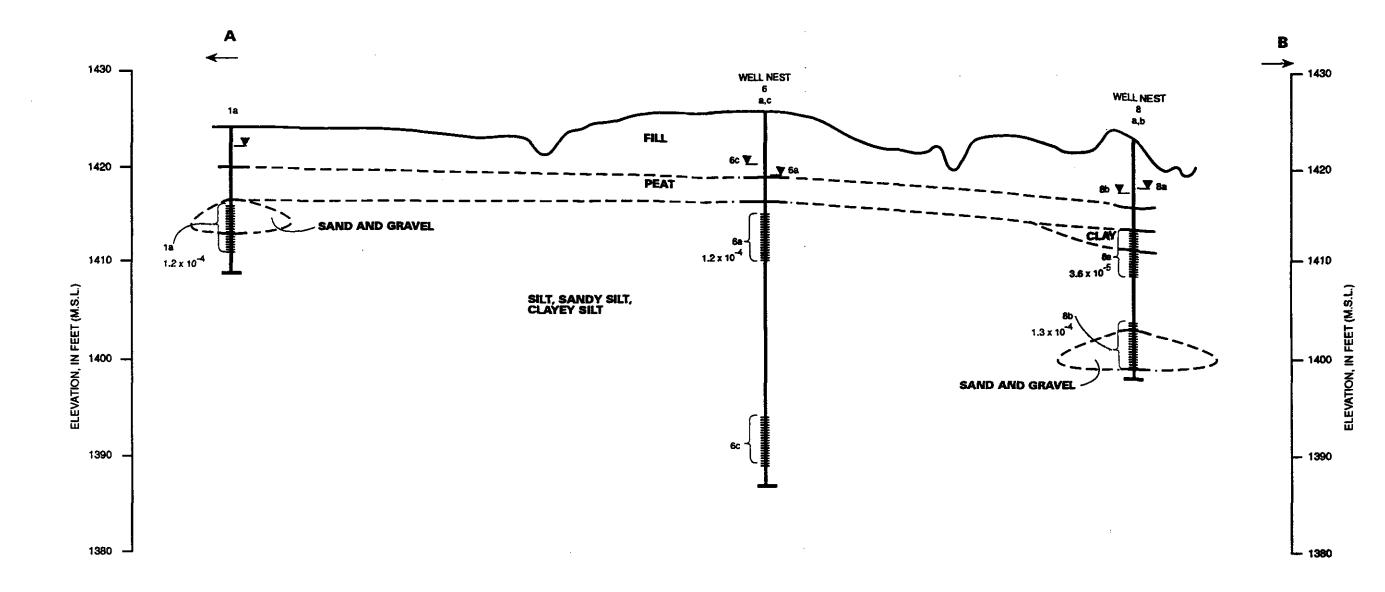
**FIGURE C-3 GENERALIZED CROSS SECTION G - B** ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION




8 -54 ð С Ц GLQ


)

)


---



1



12-90 ģ **8**00 ē 3800.RB GLOG



#### LEGEND

- SCREENED INTERVAL AND WELL NUMBER
- J WATER LEVEL, NOVEMBER 1987
- 2.9 x 10<sup>-4</sup> HYDRAULIC CONDUCTIVITY IN CM/SEC AT SCREENED INTERVAL
- - END OF BORING
- HORIZONTAL SCALE IN FEET

#### NOTE:

The depth and thickness of the subsurface strata indicated on these sections were generalized from and interpolated between borings. Information on actual subsurface conditions exists only at the specific locations and dates indicated. Soil (rock) conditions and water levels at other locations may differ from conditions occurring at the boring locations. Also, the passage of time may result in a change in the conditions at these boring locations.

GLO68600.R8 FIG C-7 02-06-90

FIGURE C-7 GENERALIZED CROSS SECTION A - B ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION The clay unit appears to be continuous beneath most of the site (Figures C-2 through C-6) and was encountered beneath the peat in most of the soil borings except near the autobody shop and Gopher Oil. The clay layer was absent in borings near the auto body shop (SO87-20, SO87-21, SO87-23, and Well Nest 7) and Gopher Oil (SO87-19 and abandoned piezometer 19s). The clay unit in this area, like the peat may have also been removed during construction of the buildings and roadways. The clay was also absent in borings (SO1a and Well Nests 6 and 18) which are adjacent to the EPA ditch along U.S. 53 and Ugstad Road.

# Morainal Deposit

Below the peat and clay units is a morainal deposit consisting of mixed glacial outwash and till that is made up primarily of very stiff, brown silt, sandy silt, or clayey silt. The deposit sometimes grades to silty sand or silty clay, but the primary constituent of the deposit is silt. Within the morainal deposit are dense to very dense lenses of sand and gravel, 3 to 20 feet thick. Boulder and cobble zones 1 to 8 feet thick commonly occur in the bottom 15 feet of the deposit (Figures C-2 through C-6). The morainal deposit is 30 to 53 feet thick beneath the site.

The amount of coarser materials generally increases with depth in the morainal deposit, as seen in Figures C-2 and C-4, primarily because of the cobble and boulder zones. Also, the sand content of the deposit increases to the south and the clay content increases to the north beneath the site.

In the RI, the deposits below the peat-clay layer and above the bedrock were divided into glacial outwash and glacial morainal units. The existence of a glacial outwash unit was based on the presence of the sand and gravel layers within siltier materials. However, the FDI results show that the sands and gravels are neither as prevalent nor as extensive as concluded in the RI. The sands and gravels do not appear to occur in layers, but rather in discontinuous lenses within the silts. An exception to the discontinuity of the sands and gravels are the two lenses shown in geologic cross section D-A (Figure C-2) which appear to be continuous from monitoring well location 9 northeast to soil boring SO87-16. However, the lenses are continuous only to the northeast and do not appear to be continuous in a southeast/northwest direction because they are not present at boring locations 2, 6, 13, 14, or 16 (Figure C-3).

The existence of a glacial morainal deposit was assumed in the RI because of the boulder and cobble zones found in the deeper borings. Because of the similarity in the composition and hydraulic properties of the "outwash" and "morainal till," the two are now treated as one unit and referred to as the morainal till. Based on the boring logs, it appears that the unit is typical of ice contact deposits, which rapidly change in composition both laterally and vertically.

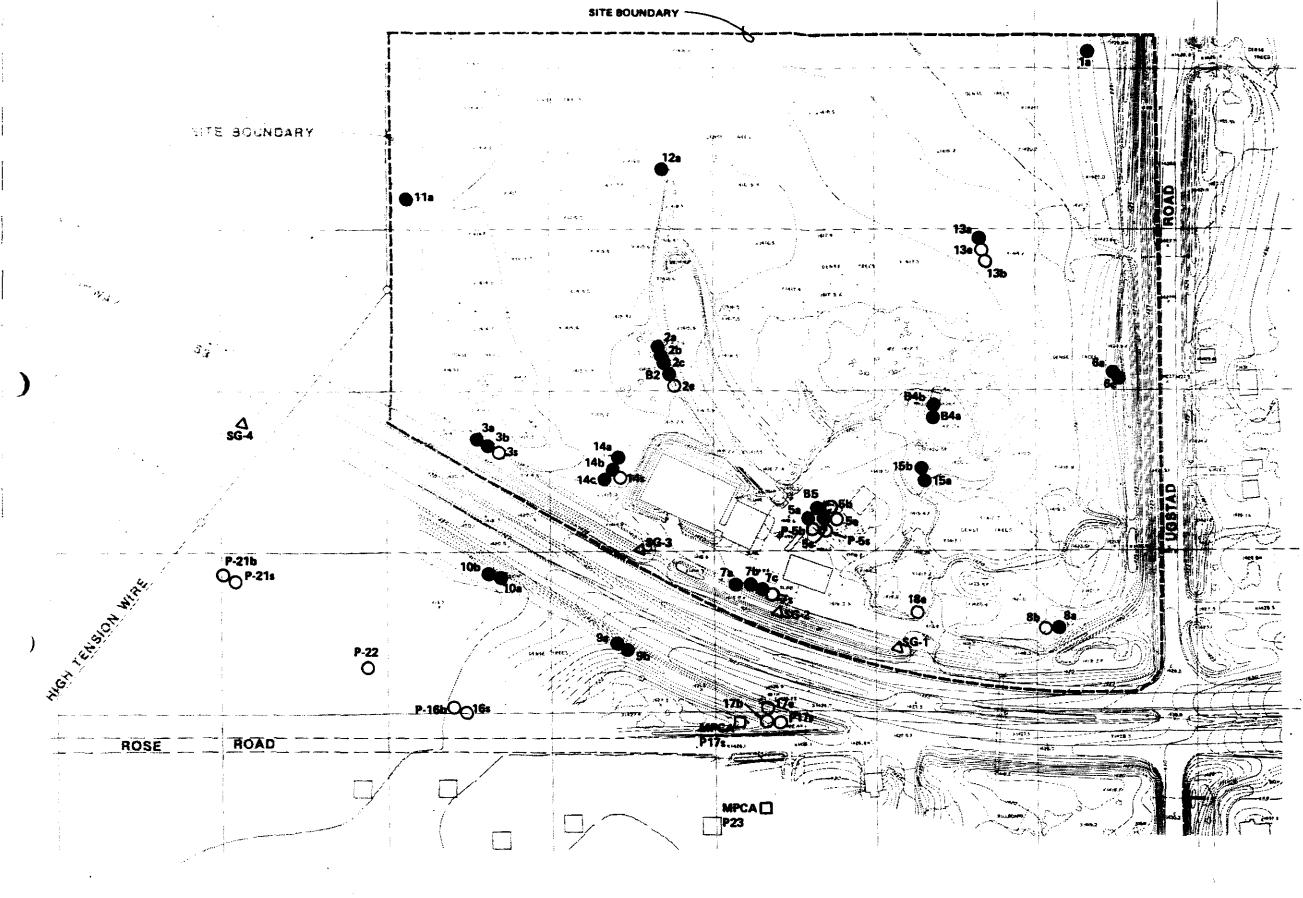
# Bedrock

Bedrock was encountered during the RI in of only two borings (2c and 6c), so a seismic survey was conducted as an initial investigation of the bedrock. The data from the survey were used to establish the possible existence of any bedrock topographic features that could influence the movement of groundwater beneath the site. The results of the geophysical survey indicate that depth to bedrock ranges from 25 to 60 feet below the ground surface. An apparent bedrock valley extends from the vicinity of monitoring well 18e to the northwest across the site. The existence of a bedrock valley is confirmed by the depths to bedrock in the process area and at the southern end of the wastewater ditch (see Technical Memorandum No. 1 in Appendix A). Depths to bedrock are greatest in those portions of the site.

The nature of the bedrock could not be determined from the results of the seismic survey. The bedrock surface generated from the seismic data could represent extremely hard packed material, a boulder zone above the bedrock surface, or the base of the weathered bedrock.

Five bedrock wells were drilled to verify the results of the seismic survey. A 10-foot core of bedrock was taken from each of the boreholes except 5e. During drilling at that location, it was difficult to determine whether bedrock, weathered bedrock, or a boulder zone had been reached. According to well development and recovery data and the gamma log from 5e, it appears that a boulder zone rather than bedrock had been reached when the boring was terminated.

The depths to bedrock in borings confirmed the existence of a bedrock low in the southern portion of the site at monitoring well location 18e (Figure C-3), where bedrock was encountered at an elevation of 1,364 feet above msl. In borings 2e, 6c, 7c, 13e, and 17e, bedrock was encountered at elevations of 1,375 to 1,380 feet above msl. Although the true depth to bedrock could not be determined at well location 5, it was estimated to be 50 feet or more below the surface at an elevation of approximately 1,365 feet (Figure C-2).


The bedrock samples retrieved from cores consisted of fractured, coarse to very coarse grained hornblende gabbro with small amounts of augite and biotite. Most of the bedrock core was very competent (recovery rates between 90 and 100 percent) with evidence of slight weathering. Multiple fractures (6 to 12 per 10-foot core) were also noted.

# SITE HYDROGEOLOGY

# INTRODUCTION

Fifty-two groundwater monitoring wells and seven piezometers have been installed at the Arrowhead Refinery site. Thirteen of the monitoring wells and all seven piezometers were installed during the FDI. All other monitoring wells were installed before or during Phases I and II of the RI. The well numbers and dates installed are summarized in Table C-1. Well construction information is summarized in Table C-2. Water levels collected from the wells since June 1986 are provided in Attachment A. Most of the water level data were collected by the MPCA or CH2M HILL.

Well locations are shown in Figure C-8 and the screened intervals of each well are shown in the geologic cross sections included in Figures C-2 through C-7. Water levels obtained from the wells in November 1987 are also shown on the geologic cross sections.





LEGEND



Ο

Δ

EXISTING WELLS

NEW WELLS (PREFIX P DENOTES PIEZOMETER)

STAFF GAUGE LOCATION

NOTE:

Suffix a, b, c, d, e and s designate different monitoring wells within a well nest.

and s = Shellow wells usually less than 15 ft.

- Usually between 20 and 30 ft.

; - Wells in the lower till, between 35 and 40 ft.

 Shallow bedrock wells, estimated depths of 50 or 60 ft.

FIGURE C-8 WELL LOCATIONS ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

# Table C-2

# MONITORING WELL CONSTRUCTION INFORMATION

| Well<br>NO.<br>1a | Screen<br>Bottom<br>Elev.<br>1410.73 | Surf<br>Elev.<br>1424.06 | Riser<br>Elev.<br>1427.19 | Casing<br>Elev.<br>1427.29 |
|-------------------|--------------------------------------|--------------------------|---------------------------|----------------------------|
| 2a                | 1410.19                              | 1418.19                  | 1420.69                   | 1420.74                    |
| 2b                | 1395.05                              | 1418.05                  | 1420.94                   | 1421.03                    |
| 2c                | 1379.44                              | 1417.94                  | 1420.43                   | 1420.50                    |
| 8-2b•             | 1407.48                              | 1418.28                  | 1419.98                   | 1421.00                    |
| 2e                | 1368.53                              | 1418.03                  | 1419.73                   | 1420.03                    |
| 3 s               | 1409.51                              | 1416.21                  | 1418.3                    | 1418.31                    |
| 3 a               | 1400.64                              | 1415.64                  | 1418.79                   | 1418.84                    |
| 3 b               | 1393.20                              | 1415.70                  | 1418.36                   | 1418.41                    |
| B-4a              | 1411.06                              | 1421.56                  | 1424.22                   | 1424.33                    |
| B-4b              | 1386.33                              | 1421.43                  | 1424.08                   | 1423.81                    |
| P5s               | 1408.41                              | 1418.71                  | 1420.43                   | 1420.53                    |
| P5D               | 1403.12                              | 1419.12                  | 1420.82                   | 1420.77                    |
| 5a                | 1406.64                              | 1418.64                  | 1421.05                   | 1421.12                    |
| 5D                | 1398.94                              | 1419.14                  | 1420.68                   | 1420.58                    |
| 5c                | 1380.45                              | 1418.95                  | 1421.12                   | 1421.17                    |
| 5e                | 1365.38                              | 1419.08                  | 1420.41                   | 1420.32                    |
| B-5               | 1408.34                              | 1418.94                  | 1421.36                   | 1422.42                    |
| 6a                | 1410.95                              | 1424.95                  | 1427.74                   | 1427.80                    |
| 6C                | 1390.06                              | 1425.06                  | 1427.82                   | 1427.85                    |
| 7\$               | 1408.24                              | 1419.54                  | 1421.07                   | 1421.11                    |
| 7a                | 1405.64                              | 1419.44                  | 1422.49                   | 1422.46                    |
| 7b                | 1394.53                              | 1419.03                  | 1421.75                   | 1421.90                    |
| 7c                | 1383.19                              | 1419.19                  | 1421.60                   | 1421.89                    |
| 8a                | 1409.11                              | 1423.36                  | 1426.14                   | 1426.26                    |
| 8b                | 1399.54                              | 1422.54                  | 1424.65                   | 1424.58                    |
| 9a                | 1404.51                              | 1419.01                  | 1421.23                   | 1421.58                    |
| 9b                | 1396.75                              | 1419.25                  | 1421.85                   | 1421.84                    |
| 10a               | 1401.43                              | 1413.93                  | 1416.63                   | 1416.73                    |
| 10b               | 1391.96                              | 1413.96                  | 1416.60                   | 1416.85                    |
| 11a ·             | 1400.89                              | 1414.89                  | 1417.98                   | 1418.01                    |
| 12a               | 1404.53                              | 1418.53                  | 1421.42                   | 1421.45                    |
| 13a               | 1404.50                              | 1418.50                  | 1421.46                   | 1421.54                    |
| 13b               | 1383.99                              | 1418.49                  | 1421.05                   | 1420.96                    |
| 13e               | 1366.93                              | 1418.83                  | 1421.08                   | 1420.89                    |

•

.

.

# Table C-2

# MONITORING WELL CONSTRUCTION INFORMATION

| Weil<br>NO. | Screen<br>Bottom<br>Elev. | Surf.<br>Elev. | Riser<br>Elev. | Casing<br>Elev. |
|-------------|---------------------------|----------------|----------------|-----------------|
| P 14s       | 1409.22                   | 1415.72        | 1417.50        | 1417.77         |
| 14a         | 1400.59                   | 1415.59        | 1417.86        | 1418.04         |
| 14b         | 1391.66                   | 1415.66        | 1418.36        | 1418.43         |
| 14c         | 1384.19                   | 1415.69        | 1417.39        | 1417.50         |
| 15a         | 1406.23                   | 1420.73        | 1423.11        | 1423.20         |
| 15b         | 1396.04                   | 1420.54        | 1422.77        | 1422.99         |
| 16s         | 1408.51                   | 1421.31        | 1423.01        | 1423.02         |
| P16b        | 1395.9                    | 1420.9         | 1423.26        | 1423.45         |
| P17s-MPCA   | 1411.1                    | 1426.1         | 1427.63        | 1428.3          |
| P17s        | 1408.02                   | 1423.02        | 1425           | 1425.04         |
| 17b         | 1382.54                   | 1423.44        | 1425.26        | 1425.4          |
| 17e         | 1366.67                   | 1422.77        | 1424.67        | 1424.69         |
| 18e         | 1355. <b>49</b>           | 1419.79        | 1421.6         | 1421.58         |
| P21s        | 1404.33                   | 1413.97        | 1416.16        | 1416.16         |
| P21b        | 1384.1                    | 1414           | 1416.3         | 1416.19         |
| P225        | 1405.19                   | 1413.69        | 1415.58        | 1415.53         |
| P23s        |                           | 1430.12        | 1432.33        | 1433.04         |

4

# STAFF GAGE

| SC-1 | 1420.32 |
|------|---------|
| SG-2 | 1419.25 |
| ŠČ-3 | 1419.06 |
| ŠČ-4 | 1415.39 |

# \* MEASUREMENT TAKEN FROM THE TOP OF RISER

· ·

. . .

# Table C-4 SUMMARY OF HORIZONTAL GROUNDWATER GRADIENTS

 $\mathbf{T}_{i}$ 

| Unit             | Month          | Gradient |
|------------------|----------------|----------|
| , Fill-Peat-Clay | November 1987  | 0.0052   |
| ,,               |                |          |
| Morainal Deposit | April 1987     |          |
|                  | NE quarter of  | 0.011    |
|                  | NW quarter of  | 0.0044   |
|                  | S half of site | 0.0064   |
|                  | Average        | 0.0073   |
|                  | July 1987      |          |
|                  | NE quarter of  | 0.011    |
|                  | NW quarter of  | 0.0051   |
|                  | S half of site | 0.0055   |
|                  | Average        | 0.0071   |
|                  | September 1987 |          |
|                  | NE quarter of  | 0.011    |
|                  | NW quarter of  | 0.0044   |
|                  | S half of site | 0.0048   |
|                  | Average        | 0.0066   |
|                  | November 1987  |          |
|                  | NE quarter of  | 0.0089   |
|                  | NW quarter of  | 0.0053   |
|                  | S half of site | 0.0042   |
|                  | Average        | 0.0061   |
| Bedrock          | November 1987  | 0.0059   |

GLT932/044.50

.

.

# Table C-5 SUMMARY OF VERTICAL GROUNDWATER GRADIENTS (June 1987 to March 1988)

| Weil<br>Pair   | Mean<br>Vertical<br><u>Gradient</u> * | Range of<br><u>Vertical Gradients</u> <sup>a</sup> | Upward<br>Gradients/<br>Total |
|----------------|---------------------------------------|----------------------------------------------------|-------------------------------|
| 2а-b<br>3а-b   | -0.02<br>-0.011                       | -0.053 to -0.0018<br>-0.044 to 0.16                | 16/16<br>11/12                |
| B5-5a          | -0.44                                 | -0.62 to 0.082                                     | 7/8                           |
| 14s-a          | -0.049                                | -0.02 10 0.002                                     | 1/1                           |
| 21s-b          | -0.0099                               | -0.012 to -0.0075                                  | 2/2                           |
| 2b-c           | 0.02                                  | 0.00073 to 0.083                                   | 0/16                          |
| 3s-a           | -0.044                                | -0.12 to -0.0011                                   | 3/3                           |
| B4a-b          | 0.0092                                |                                                    | 0/1                           |
| 5a-b           | -0.016                                | -0.036 to -0.0039                                  | 3/3                           |
| 5Ъ-с           | 0.0049                                | 0.00054 to 0.012                                   | 0/3                           |
| ба-с           | -0.021                                | -0.049 to 0.047                                    | 14/17                         |
| 7s-a           | 0.0096                                | 0.0077 to 0.012                                    | 0/2                           |
| 7a-b           | -0.0089                               | -0.12 to 0.097                                     | 10/16                         |
| 7ь-с           | -0.013                                | -0.090 to 0.025                                    | 8/17                          |
| 8a-b           | 0.051                                 | 0.020 to 0.094                                     | 0/4                           |
| 9a-b           | 0.0049                                | -0.045 to 0.026                                    | 3/16                          |
| 1 <b>0а-</b> ь | -0.016                                | -0.036 to 0.082                                    | 10/12                         |
| 13a-b          | -0.02                                 |                                                    | 1/1                           |
| 14a-b          | -0.0024                               | -0.0056 to 0.0022                                  | 10/12                         |
| 14 <b>b-c</b>  | 0.014                                 | -0.0054 to 0.14                                    | 2/12                          |
| 15a-b          | -0.0052                               | -0.11 to 0.089                                     | 7/17                          |
| 16s-b          | 0.018                                 | 0.004 to 0.075                                     | 1/4                           |
| 2с-е           | -0.0034                               | -0.0064 to -0.00091                                | 4/4                           |
| 5с <b>-е</b>   | 0.0051                                | -0.004 to 0.019                                    | 1/3                           |
| 13b-13e        | 0.001                                 |                                                    | 1/1                           |
| 17 <b>b-e</b>  | 0.012                                 | -0.0088 to 0.013                                   | 3/4                           |

<sup>a</sup>Negative vertical gradients indicate upward gradients.

GLT932/045.50

Slug tests were performed during the RI and FDI to evaluate hydraulic conductivity. The range, mean, and log average of the conductivities for each unit are listed in Table C-3. The log average, calculated by averaging the log of each hydraulic conductivity (rather than averaging the actual conductivity values) and taking the inverse log of the average, is considered to be more representative of actual hydraulic conductivity within each unit than the mean hydraulic conductivity value. Vertical and horizontal groundwater gradients were calculated from the water levels and water table maps (see Tables C-4 and C-5).

Using the calculated hydraulic conductivities and horizontal gradients and an estimated effective porosity, groundwater velocities were calculated for the fill-peatclay and morainal deposit. The calculations, average velocities, and maximum and minimum velocity for each unit are included in Table C-6.

The hydrogeology of each major stratigraphic unit including the fill-peat-clay unit, the morainal deposit, and bedrock is discussed below. Because only one well is screened in the fill, the hydrogeology of the fill is discussed with that of the peat-clay unit.

# **FILL-PEAT-CLAY UNIT**

Figure C-9 is a water table map of the fill-peat-clay unit for November 1987. Eight wells are screened in the unit. Because so few wells are screened in the unit and the unit appears to be hydraulically connected to the underlying morainal deposit (discussed in the following section), a water table map of the fill-peat-clay was contoured for 1 month only. Water levels and the wells used to construct the map are summarized in Table C-7.

Water levels are zero to 4 feet below ground surface, and in most parts of the site, the water table occurs in the fill-peat-clay unit. Based on the water levels in six of the eight wells, flow in the unit is toward the west-southwest. The horizontal groundwater gradient in the fill-peat-clay unit for November 1987 was 0.0052 ft/ft.

The highest and lowest hydraulic conductivities calculated for the fill-peat-clay unit were  $1.8 \times 10^{-2}$  cm/s and  $7.7 \times 10^{-5}$  cm/s (Table C-3). The highest hydraulic conductivity in this unit was measured for the fill found at P17s. The fill consists of sand and gravel probably used in the construction of the highway (see Figure C-4).

Using the values for hydraulic conductivities, an estimated effective porosity of 0.55 and a horizontal groundwater gradient of 0.0052 ft/ft, maximum and minimum groundwater velocities of 0.001 cm/s (1.7 ft/day) and 2.7 x  $10^{-6}$  cm/s (0.007 ft/day) were calculated for the unit. Using the log average hydraulic conductivity for the fill-peat-clay of 4.3 x  $10^{-4}$  cm/s and the same horizontal groundwater gradient and porosity, an average groundwater flow velocity of 1.5 x  $10^{-5}$  cm/s (0.04 ft/day) in the unit was calculated.

To assess the potential for downward vertical flow and contaminant migration from the fill-peat-clay to the lower morainal layer, vertical gradients were evaluated from the water level data (see Table C-5). The water level data from six well nests (2a-b, 3s-a, B4a-b, B5-5a, 14s-a, and 21s-b) were used to represent the flow from the fillpeat-clay to the deeper morainal deposit. The calculated gradients were mainly upward from the morainal layer to the fill-peat-clay layer indicating that the

# Table C-3 HORIZONTAL HYDRAULIC CONDUCTIVITY

| Unit                                                                              | Well<br>No.                                                                      | Hydraulic<br>Cond.<br>(cm/s)                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fill-Peat-<br>Clay                                                                | 2a                                                                               | 7.7 x 10 <sup>-5</sup>                                                                                                                                                                                                                                                                              | Not tested: B2, 3s, B4a, B5                                                                                                                                                 |
| Chay                                                                              | P14s<br>P 17s<br>P21s                                                            | 3.1 x 10 <sup>-4</sup><br>1.8 x 10 <sup>-2</sup><br>8.2 x 10 <sup>-5</sup>                                                                                                                                                                                                                          | Range: $1.8 \times 10^{-2}$ to $7.7 \times 10^{-5}$<br>Mean: $4.6 \times 10^{-3}$<br>Log Average: $4.3 \times 10^{-4}$                                                      |
| Glacial Till<br>(Silt, clayey<br>silt, sandy<br>silt)                             | 2b<br>3a<br>3b<br>6a<br>8a<br>9a<br>12a<br>14a<br>P16s<br>P16b<br>17b<br>P22s    | $2.7 \times 10^{-4}$ $3.0 \times 10^{-3}$ $1.0 \times 10^{-3}$ $1.2 \times 10^{-4}$ $3.7 \times 10^{-5}$ $2.0 \times 10^{-4}$ $3.4 \times 10^{-4}$ $1.2 \times 10^{-4}$ $4.0 \times 10^{-5}$ $9.0 \times 10^{-4}$ $2.0 \times 10^{-4}$ $3.0 \times 10^{-4}$                                         | Not tested: 6c, 10b, 11a, 13a, 14b, 14c<br>Range: 1.0 x 10 <sup>-3</sup> to 3.7 x 10 <sup>-5</sup><br>Mean: 3.2 x 10 <sup>-4</sup><br>Log Average: 2.1 x 10 <sup>-4</sup>   |
| Glacial Till<br>(Sand and<br>gravel<br>lenses,<br>cobble and<br>boulder<br>zones) | 1a<br>5b<br>P5b<br>5c<br>7s<br>7a<br>7b<br>8b<br>10a<br>15b <sup>a</sup><br>P21b | $\begin{array}{c} 1.2 \times 10^{-4} \\ 3.4 \times 10^{-4} \\ 3.5 \times 10^{-2} \\ 3.1 \times 10^{-4} \\ 3.4 \times 10^{-4} \\ 6.6 \times 10^{-4} \\ 4.9 \times 10^{-4} \\ 2.9 \times 10^{-4} \\ 1.3 \times 10^{-4} \\ 8.5 \times 10^{-3} \\ 3.5 \times 10^{-6} \\ 1.0 \times 10^{-4} \end{array}$ | Not tested: 2c, B4b P5s, 7c, 9b, 13b, 15a<br>Range: 3.5 x 10 <sup>-2</sup> to 3.5 x 10 <sup>-6</sup><br>Mean: 4.2 x 10 <sup>-3</sup><br>Log Average: 5.6 x 10 <sup>-4</sup> |

ţ

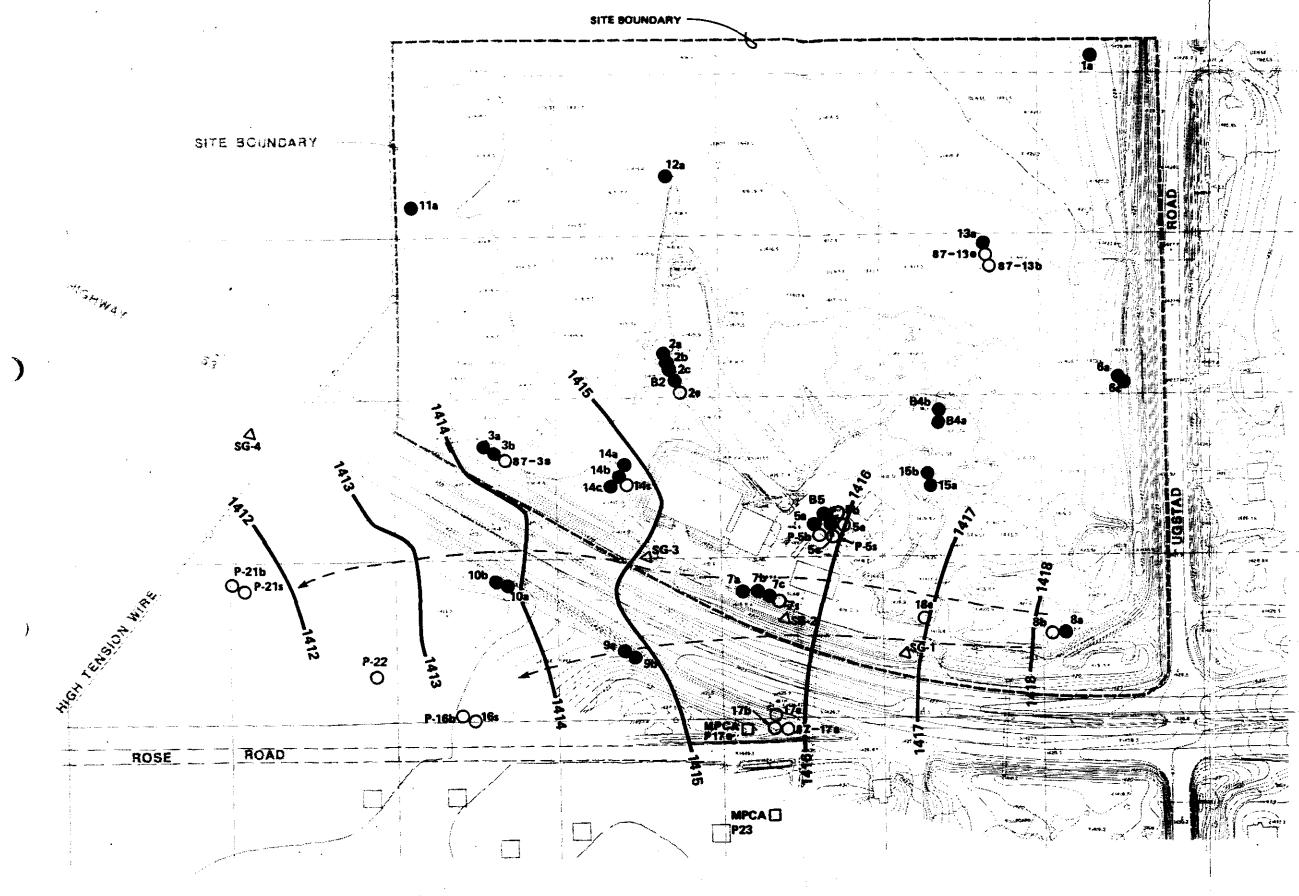
Note: Log Average for all wells screened in till:  $3.3 \times 10^{-4}$ . \*Hydraulic conductivity results suspect, value not included in averages.

GLT932/043.51

# Table C-6 GROUNDWATER VELOCITIES

| Effective<br>Porosity <sup>a</sup> (n) | Horizontal<br>Gradient (i)   | Hydraulic<br><u>Conductivity (K)</u>     | Groundwater<br>Velocity <sup>c</sup>          |           |
|----------------------------------------|------------------------------|------------------------------------------|-----------------------------------------------|-----------|
| Fill-Peat-Clay                         |                              |                                          |                                               |           |
| 0.15                                   | 5.2 x 10 <sup>-3</sup> ft/ft | 1.8 x 10 <sup>-2</sup> cm/s              | 0.001 cm/s<br>(1.7 ft/day)                    | (highest) |
| 0.15                                   | 5.2 x 10 <sup>-3</sup> ft/ft | 7.7 x 10 <sup>-5</sup> cm/s              | 2.7 x 10 <sup>-6</sup> cm/s<br>(0.007 ft/day) | (lowest)  |
| 0.15                                   | 5.2 x 10 <sup>-3</sup> ft/ft | 4.3 x 10 <sup>-4</sup> cm/s <sup>b</sup> | 1.5 x 10 <sup>-5</sup> cm/s<br>(0.04 ft/day)  | (average) |
| Morainal Deposit                       |                              |                                          |                                               |           |
| 0.25 (sand)                            | 6.8 x 10 <sup>-3</sup> ft/ft | 3.5 x 10 <sup>-2</sup> cm/s              | 9.5 x 10 <sup>-4</sup> cm/s<br>(2.7 ft/day)   | (highest) |
| 0.10 (silt)                            | 6.8 x 10 <sup>-3</sup> ft/ft | 3.7 x 10 <sup>-5</sup> cm/s              | 2.5 x 10 <sup>-6</sup> cm/s<br>(0.007 ft/day) | (lowest)  |
| 0.20 (avg.)                            | 6.8 x 10 <sup>-3</sup> ft/ft | 3.3 x 10 <sup>-4</sup> cm/s <sup>b</sup> | 1.1 x 10 <sup>-5</sup> cm/s<br>(0.03 ft/day)  | (average) |

<sup>a</sup> Assumed values for effective porosity. <sup>b</sup>Log average hydraulic conductivity. <sup>c</sup>Calculated from equation: velocity = (K x i)/n, from Freeze and Cherry (1979).


GLT932/046.50

# Table C-7 WELL NUMBERS AND WATER LEVELS USED IN CONSTRUCTION OF WATER TABLE MAPS

|                | Well        | Water<br>Level* | Water<br>Level*  | Water<br>Level*  | Water<br>Level*   |
|----------------|-------------|-----------------|------------------|------------------|-------------------|
| Unit           | Number      | <u>04/14/87</u> | <u>07/07/87</u>  | <u>09/21/87</u>  | <u>11/09/87</u>   |
| Fill-Peat-Clay |             |                 |                  |                  | 1,415.49          |
|                | 3s          |                 |                  |                  | 1,414.37          |
|                | <b>B</b> 5  |                 |                  |                  | 1,415.76          |
|                | 1 <b>4s</b> |                 | ***              |                  | 1,414.85          |
|                | 17s         |                 |                  |                  | 1,415.83          |
|                | P21s        |                 |                  |                  | 1,411.56          |
| Morainal       | 1a          | 1,422.43        | 1,421.62         | 1,422.06         | 1,421.87          |
| Deposit        | 2c          | 1,416.15        | 1,415.56 (2b)    | 1,415.85 (2b)    | 1,415.64 (2b)     |
|                | 3b          | 1,415.16        | 1,414.12         | 1,414.60         | 1,414.48          |
|                | B4b         | 1,418.06        |                  |                  | 1,416.38          |
|                | 5c          | 1,417.51        | 1,416.70         | 1,416.94         | 1,416.64 (5b)     |
|                | ба          | 1,420.83        | 1,419.48         | 1,419.99         | 1,419.93          |
|                | 7a          | 1,417.04        | 1,416.45         | 1,416.72         | 1,416.35          |
|                | 8a          | 1,418.91        | 1,417.75         | 1,418.53         | 1,418.31          |
|                | 9a          | 1,417.21        | 1 <b>,416.29</b> | 1,416.55         | 1,415.42          |
|                | 1 <b>0b</b> | 1,413.65        | 1,412.10         | 1,413.30         | 1,41 <b>2.93</b>  |
|                | 11 <b>a</b> | 1,416.08        | 1,414.37         | 1,415.16         | 1,415.06          |
|                | 1 <b>2a</b> | 1,416.91        | 1,415.84         | 1 <b>,416.69</b> | 1,416.67          |
|                | 1 <b>3a</b> | 1,419.18        | 1,417.62         | 1,418.54         | 1,418.52          |
|                | 1 <b>4a</b> | 1,415.83        | 1,414.92         | 1,415.48         | 1,415.22          |
|                | 15a         | 1,417.52        | 1,416.83         | 1 <b>,416.93</b> | 1 <b>,416.9</b> 1 |
|                | P16b        |                 |                  | 1,415.33         | 1,414.39          |
|                | P17s        |                 | 1,416.60         | 1,416.27         | 1,415.92 (17b)    |
|                | P21b        |                 | · ••••           |                  | 1,411.71          |
|                | P22         |                 |                  |                  | 1,411.39          |
| Bedrock        | 2 <b>e</b>  |                 |                  |                  | 1,415.61          |
|                | 13 <b>e</b> |                 |                  |                  | 1,418.93          |
|                | 17 <b>e</b> |                 |                  |                  | 1,415.94          |
|                | 1 <b>8e</b> |                 |                  |                  |                   |

\*Water levels measured relative to mean sea level (msl). --- No water level measured that month.

GLT932/047.51





LEGEND

NEW WELLS 0 (PREFIX P DENOTES PIEZOMETER)

STAFF GAUGE LOCATION Δ

- 1418 - GROUNDWATER ELEVATION

DIRECTION OF POTENTIAL GROUNDWATER FLOW

NOTE: Suffix a, b, c, e and s designate different monitoring wells within a well nes

- a and s Shallow weils usually less than 15h.
  - Usually between 20 and 30 ft.
  - Wells in the lower till С between 35 and 40 ft.
  - Shallow bedrock wells, . estimated depths of 50 or 60 ft.

FIGURE C-9 GROUNDWATER ELEVATIONS IN FILL/PEAT/CLAY NOVEMBER 1987 ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

Arrowhead site is a groundwater discharge area. Although the data are limited, the upward vertical gradients do not appear to be a related to any seasonal fluctuations in the water levels. In well pair 2a-b for example, water levels were measured monthly from November 1986 through December 1987 (except April 1987) and all of the calculated gradients were upward. The mean gradients of all six well pairs ranged from -0.02 to -0.4 ft/ft (negative vertical gradients indicate upward gradients).

# **MORAINAL DEPOSIT**

The configuration of the water table elevations in the glacial till unit for April, July, September, and November 1987 are summarized in Figures C-10 through C-13. The water levels used for mapping (Table C-7) were from wells screened nearest the surface and completely within the morainal deposit at each location.

In general, minimal seasonal variation can be seen in the water table maps for the morainal deposit. Groundwater elevations range from about 1,412 to 1,422 feet above msl for each month. The highest water levels of the 4 months were recorded in April and the lowest in November, however, the differences in the water levels in individual wells from month to month were less than 1 foot. Groundwater flow is from the northeast to the southwest. The groundwater gradients are slightly steeper in the northeast quarter of the site compared to the northwest quarter and the southern half. A groundwater discharge area is indicated by converging flow lines on the water table elevations and contours in the wetland area southwest of the site between Highway 53 and Rose Road.

The water table surface is flattened somewhat in the process area and near the auto body repair shop, particularly on the April and September maps. In that area, the fill is thicker and sandier than in the rest of the site. Therefore, there could be a higher rate of infiltration and recharge in those areas compared to the rest of the site. Higher recharge rates could cause the flattening of the water table.

The configuration of the water table in the southern half of the site in November 1987 differs somewhat from the other maps. The November contours indicate that the EPA drainage ditch is a groundwater recharge area. At the time the water levels and staff gauge measurements were taken, a fire hydrant adjacent to the drainage ditch near Well Nest 7 had been opened and more water than usual was in the ditch, probably causing the drainage ditch to act as a recharge area for the month of November only.

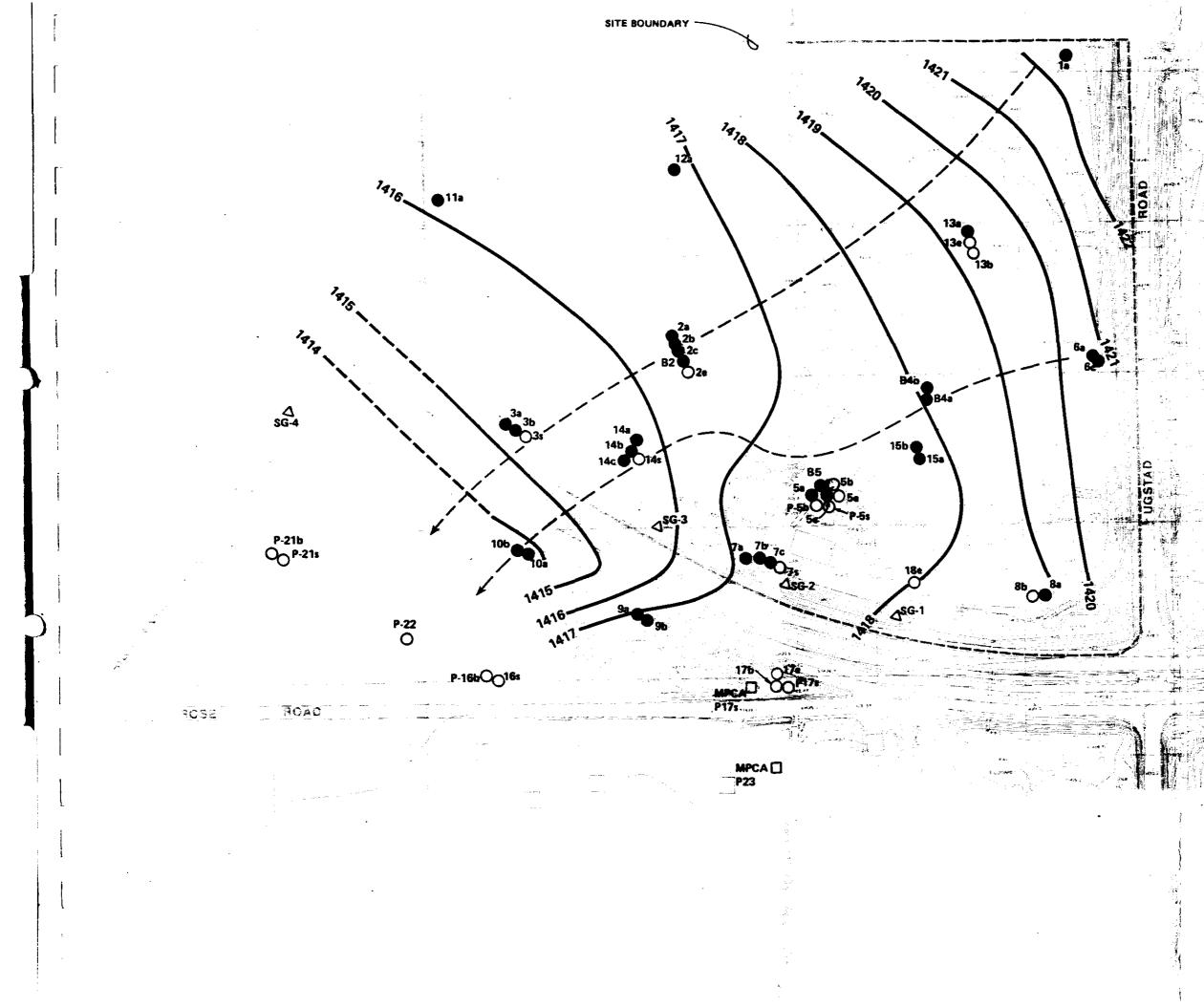
The horizontal gradients in the morainal deposit are fairly consistent throughout the site and from month to month. The steepest gradient was measured in the northeast corner of the site in April (0.011 ft/ft) and the shallowest in the southern half of the site in November (0.0042 ft/ft; see Table C-4).

The log average hydraulic conductivity calculated for wells screened in the silty portions of the morainal deposit is  $2.1 \times 10^4$  cm/s. The log average conductivity of the sand and gravel units within the deposit is  $5.6 \times 10^4$  cm/s, and the log average conductivity of the deposit as a whole is  $3.3 \times 10^4$  cm/s. The highest and lowest hydraulic conductivities calculated for the morainal deposit were  $3.5 \times 10^2$  cm/s and  $3.7 \times 10^{-5}$  cm/s. Using these values, estimated porosities (from Freeze and Cherry 1979) of 0.25 (for sand) and 0.10 (for silt) and a horizontal groundwater gradient of

0.0068 ft/ft, maximum and minimum groundwater velocities of  $9.5 \times 10^{-4}$  cm/s (2.7 ft/day) and  $2.5 \times 10^{-6}$  cm/s (0.007 ft/day) were calculated for the unit. Using the log average hydraulic conductivity for the morainal deposit of  $3.3 \times 10^{-4}$  cm/s, the same horizontal groundwater gradient, and an average porosity of 0.30, an average groundwater flow velocity of  $1.1 \times 10^{-5}$  cm/s (0.03 ft/day) in the unit was calculated.

The mean vertical groundwater gradients (Table C-5) are variable in the morainal deposit, indicating upward flow in the unit in some areas and downward flow in others. However in most cases, the vertical gradients are small. Average gradients ranged from -0.02 to 0.5 ft/ft. The variations in water levels in the well nests appear to be attributable to localized variations in stratigraphy.

Flow in the morainal deposit is similar to flow in the fill-peat-clay unit. Flow directions and horizontal groundwater gradients are nearly identical. Differences in the water table maps between the morainal deposit and the fill-peat-clay appear to be caused by the lack of water level measurements in the latter from the northern half of the site. A lack of wells screened in the fill-peat-clay in that portion of the site limits the extent to which the water table can be contoured in that unit. Based on the similarity of flow and water levels (see Table C-7), it appears that the fill-peat-clay unit and the morainal deposit are hydraulically connected.


#### **BEDROCK UNIT**

Water levels were obtained from three bedrock wells in November 1987. The water table configuration is shown in Figure C-14 and the water levels and well numbers are listed in Table C-7. Groundwater flow in the bedrock unit is toward the southwest and the horizontal groundwater gradient is calculated to be 0.006 ft/ft. Again, flow in the bedrock is in the same direction, horizontal gradients are similar to the morainal deposit and the fill-peat-clay unit, and vertical gradients (Table C-5) from the fill-peat-clay and morainal deposit to the bedrock are very small. This indicates the bedrock unit is hydraulically connected with the morainal deposit.

Slug tests to evaluate hydraulic conductivity were not conducted in wells screened in the bedrock. Therefore, no groundwater velocity in the unit was calculated.

The vertical gradients from the morainal unit to the bedrock was calculated for the three bedrock wells. The vertical gradients were very small, ranging from -0.02 to -0.004 ft/ft. The vertical gradients were all upward indicating that groundwater is flowing from the bedrock to the morainal unit.

GLT932/041.51





# LEGEND

| EXISTING WELLS |  |
|----------------|--|
|                |  |

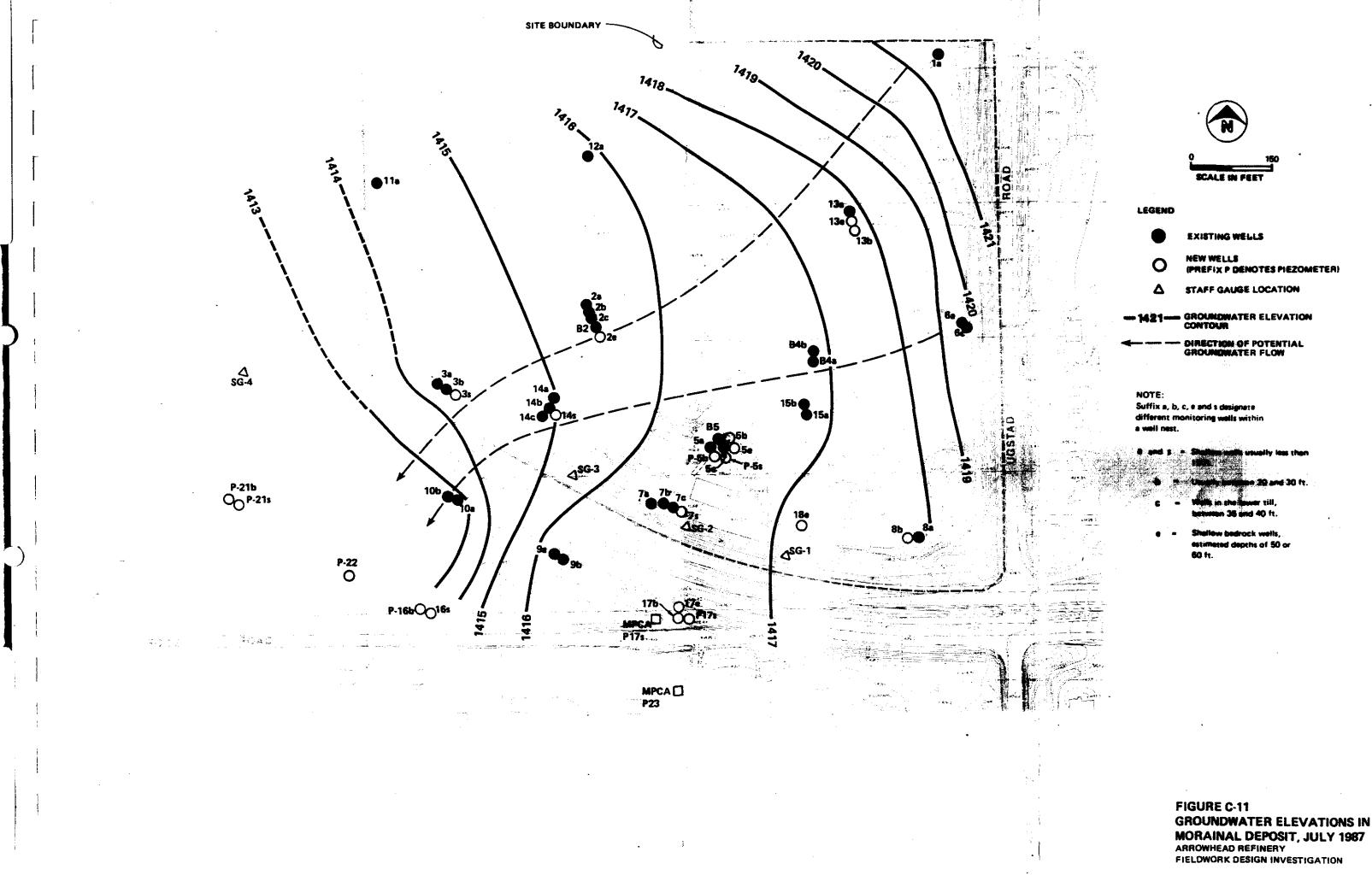
O (PREFIX P DENOTES PIEZOMETER)

STAFF GAUGE LOCATION

DIRECTION OF POTENTIAL GROUNDWATER FLOW

# NOTE:

2.4


Suffix a, b, c, e and s designate different monitoring wells within a well nest.

and s = Studies with usually less than

Wells is the lower till, between 35 and 40 ft.

Shellow bedrock wells, estimated depths of 50 or 60 ft.

FIGURE C-10 GROUNDWATER ELEVATIONS IN MORAINAL DEPOSIT, APRIL 1987 ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION



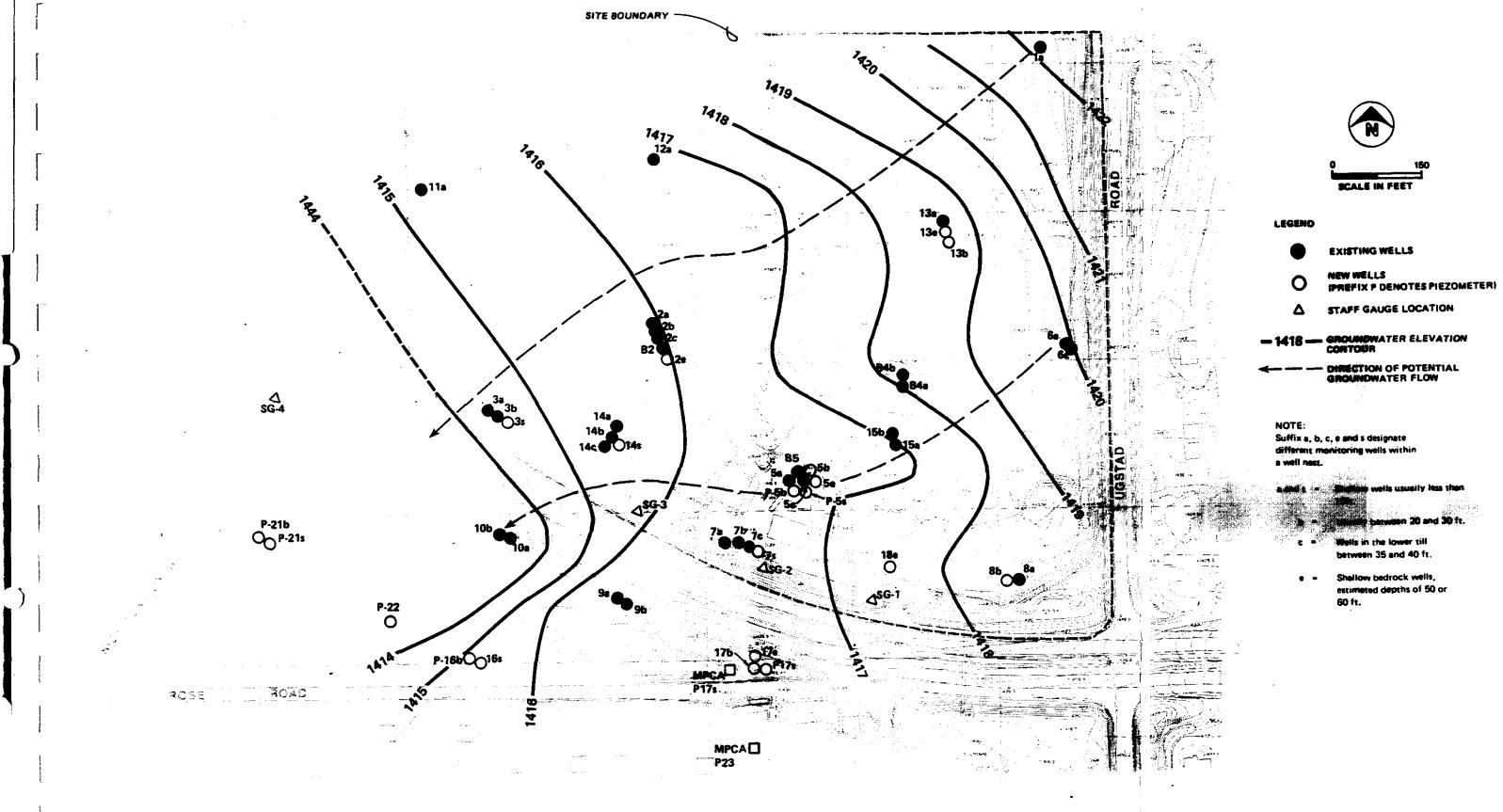



FIGURE C-12 GROUNDWATER ELEVATIONS IN MORAINAL DEPOSIT, SEPTEMBER 1987 ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

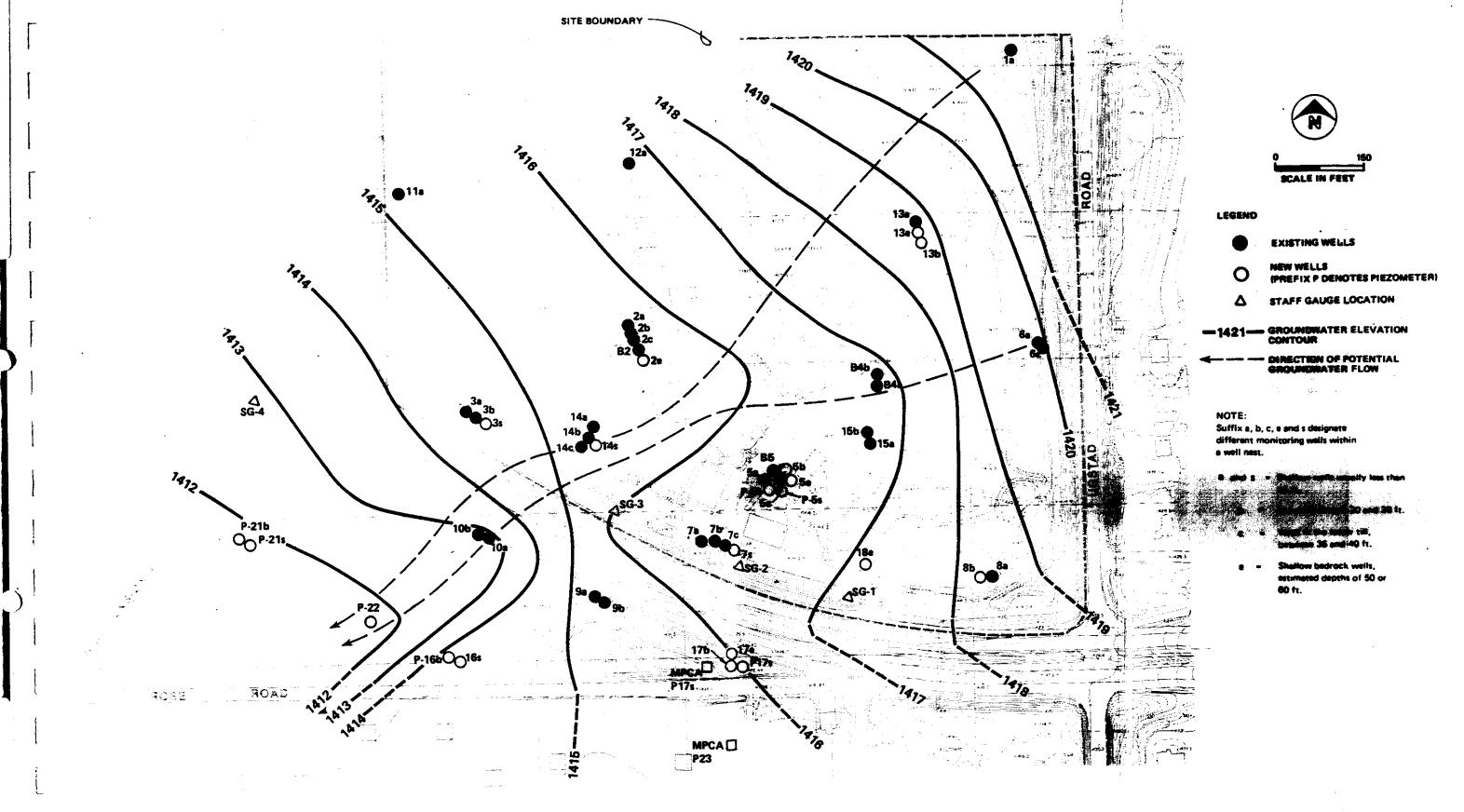
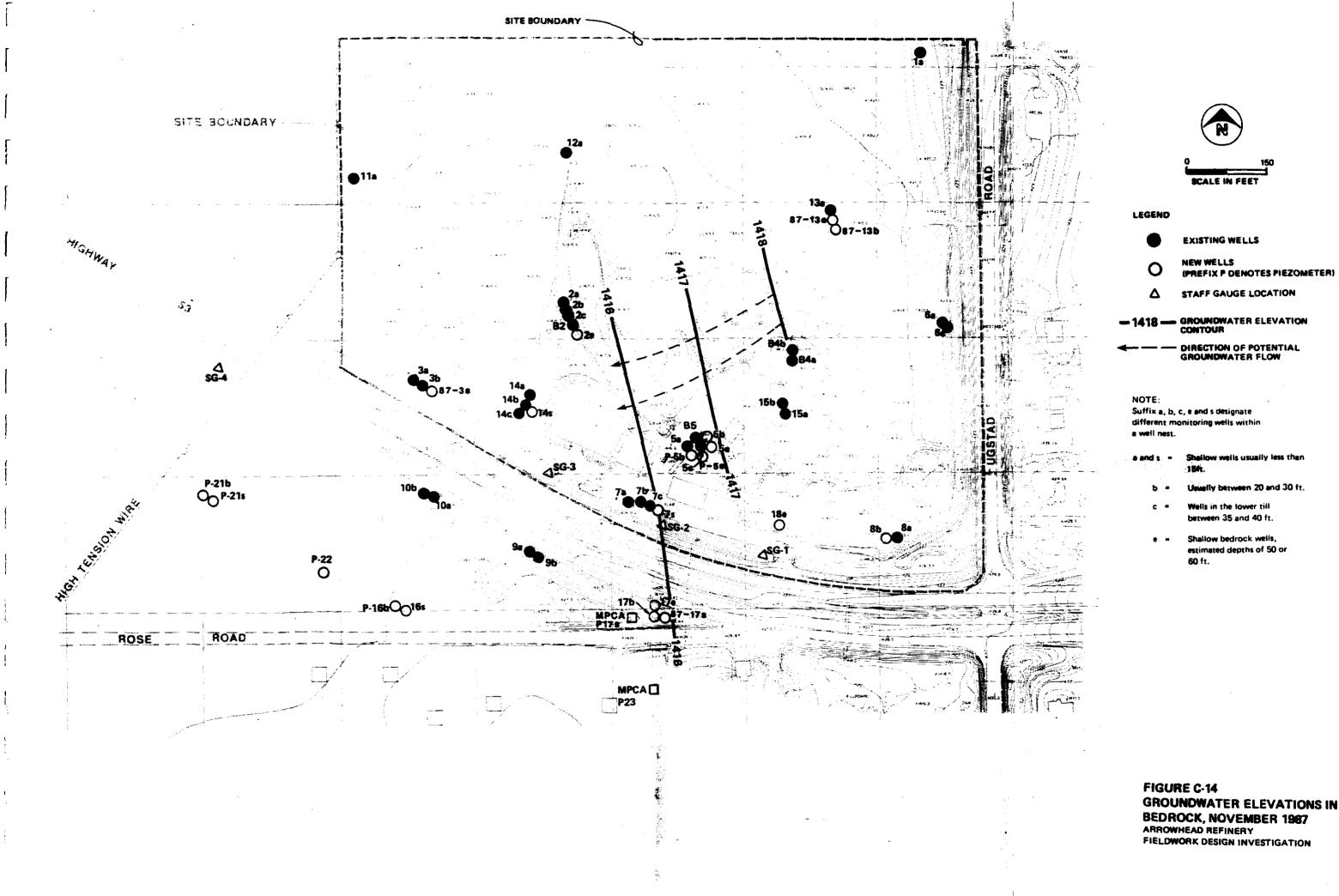




FIGURE C-13 GROUNDWATER ELEVATIONS IN MORAINAL DEPOSIT, NOV. 9, 1987 ARROWHEAD REFINERY FIELDWORK DESIGN INVESTIGATION

14 A.

8



GROUNDWATER ELEVATIONS IN



Black & Vealch ICF PRC Ecology and Environment ÷