
Current Conditions Report for the DuPont East Chicago Facility Volume 2: Book 2

Prepared for

E.I. du Pont de Nemours and Company

Prepared by

Appendixes

Where to Find CCR Items Listed in Attachment II of the Order within this CCR Document

Facility Information

Physical and Environmental Quality Conditions

- Site Topography and Easements
 - Site Topography (Plate 1)
 - Property Maps, Easements, and Rights-of-Way
- Meteorology/Wind Directional Information
- Geologic and Soil Information
 - U.S. Department of Agriculture Soil Survey for Lake County
 - Phase II Soil Boring Logs (MW4 through MW20)
 - Phase III Cone Penetrometer Testing (CPT) Stratigraphic Logs
- Monitoring Network Information
 - Monitoring Sites Installed by U.S.G.S.
 - Summary of DuPont Monitoring Well Construction Information
 - Technical Memorandum No. 1: Phase II Groundwater Assessment Field Work Implementation
 - Phase III Monitoring Wells and Piezometers
 - Re-surveying of Monitoring Well Elevations
- Groundwater/Surface Water Hydraulic Information
 - Pre-1990 Groundwater Level Data
 - Phase II Groundwater/Surface Water Level Data
 - Phase III Groundwater Level Data
 - Phase III Hydraulic Conductivity Information
 - Spring Flow Data
 - U.S.G.S. Water Level Information
- Environmental Quality Information
 - Phase I Groundwater Data
 - Soil Quality Data Collected for IDEM
 - Phase II Quality Assurance Project Plan
 - Phase II Groundwater and Surface Water Quality Data and Associated Data Validation
 - Spring Quality Data

- Sewer Sample Results and Comparision to Nearby Spring and Nearby Groundwater Quality
- Phase III Quality Assurance Project Plan
- Phase III Unsaturated Soil and Groundwater Quality Data
- Phase III Supplemental Groundwater Quality Data (Pumping Test Data)
- U.S.G.S. Groundwater Quality Data
- Property Transfer Study—Conoco Area
- Constituent Distribution Diagrams

Production and Waste Management Information

- Summary of Raw Materials, Products, and Waste Streams by Manufacturing Process
- Relevant Information from the Phase I Groundwater Assessment Report
 - Phase I Waste Management Unit Information
 - Appendix A. Information Sources and Document Reference List
 - Appendix B. Detailed Production History
 - Appendix C. Process Flow Sheets for Chemicals with Productions for Longer Than 25 Years
 - Appendix D. Miscellaneous Process Flow Sheets
 - Appendix E. Waste Management Flow Charts
- Line Shutdown and Facility Dismantlement
 - List of Facilities Dismantled
 - Procedures for Dismantlement
- Identification of Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs)
- Flue Dust Information

Offsite Information

Agency Contacts, Adjacent Property Owners, and Nearby Wells

- Agency Contacts Familiar with Environmental Issues at the Facility
- Adjacent Property Owners
- Wells within One Mile of the DuPont East Chicago Facility

Ecological Information

- Natural Areas Located Nearby
- Ecological Habitats and Species within the Region Identified by Others
 - List of Endangered, Threatened and Rare (ETR) Species
 - List of Native Plants and Exotics
 - Morton Arboretum Information

۷

11 %

Neighborhood Information

- Potentially Sensitive Receptors
- Riley Park Area Information
 - Riley Park Water Quality Results
 - Riley Park Sewer Survey
 - Riley Park Well and Basement Sump Survey Results
- East Branch of the Grand Calumet System
 - 100-Year Flood Plain
 - Streamflow

÷.

1001749D.DOC

Where to Find CCR Items Listed in Section I of Attachment II of the AOC within this CCR Document (Page 1 of 2)

CCR Items Listed In Section I of Attachment II of the Order	Text Chapter ID	Table (T) or Figure (F) No.	Appendix ID
A. Facility Background			
1. Maps		· · · · · · · · · · · · · · · · · · ·	
General geographic location	1, 2	F1-1, F2-1	
Property line; adjacent property	2	F2-3	Property Maps, Easements, Rights-of-Way; and Adjacent Property Owners
Topography and surface drainage	2	F2-6, F2-9	Site Topography (Plate 1) and East Branch of the Grand Calumet System for 100-Yr Flood Plain
Tanks, buildings, utilities, paved areas, easements, rights-of-way	2	F2-9	Property Maps, Easements, and Rights-of-Way and Phase I Waste Management Unit Information for Tanks
Solid or hazardous waste treatment, storage, or disposal areas	3	• T3-3 F3-6	Identification of SWMUs and AOCs, Phase I Waste Management Unit Information, and Appendix E— Waste Management Flow Charts
Product and waste USTs or piping		F3-9	Identification of SWMUs and AOCs
Surrounding land uses	2	F2-4, F2-5	
Wells at and within 1 mile of the facility	2	F2-17	Monitoring Network Information and Wells within On Mile of the DuPont East Chicago Facility
Wind rose and meteorology	2		Meteorology (Wind Directional Information)
2. History of Ownership	3		
3. Spill Information	3	T3-3, T3-4; F3-8, F3-9	Phase I Waste Management Unit Information and Identification of SWMUs and AOCs
4. Permits, Enforcement Actions and Responses, List of Studies	3, 4	Permits: T3-5 Actions: T3-6 Studies: T4-1	
5. Description of Habitat Types	2, 5	T5-2	Ecological Habitats and Species within the Region
6. Description of Plants and Animals	2, 5	T5-2	Ecological Habitats and Species within the Region

0

Where to Find CCR Items Listed in Section I of Attachment II of the AOC within this CCR Document (Page 2 of 2)

CCR Items Listed In Section I of Attachment II of the Order	Text Chapter ID	Table (T) or Figure (F) No.	Appendix ID
B. Preliminary Assessment of Nature and Extent			
1. Summary of Source Areas of Contamination	3		Phase I Waste Management Unit Information
Location of units/areas	3	F3-6, F3-7, F3-8, F3-9	
Quantity of wastes			Phase I Waste Management Unit Information
Type of hazardous waste or constituents			Phase I Waste Management Unit Information
Areas where additional information is necessary	4		
Results of RFA and summary of suggested actions			
2. Preliminary Assessment of Degree and Extent of Contamination			
Description of extent of contamination for each medium	4		Environmental Quality Information
Map of sampling locations/source areas/plumes	4	F4-2 through 4-7b	Constituent Distribution Diagrams
General assessment of data quality	4	T4-2	
Previous Investigations List and Agency Contacts	4	T4-1	Agency Contacts Familiar with Environmental Issues
3. Preliminary Assessment and Description of Potential Pathways			
Migration pathways	5	F5-4a, F5-4b, F5-5	
Physical property of contaminants	5	T5-1	
Assessments of offsite migration of contamination	5		Riley Park Area Information
4. Description of Potential Impacts on Human Health and Environment	5		Neighborhood Information
C. Interim / Stabilization Measures	······································	· · · ·	
Objectives of ISMs: Mitigation	3		Line Shutdown and Facility Dismantlement
Design, construction, operation and maintenance requirements	-+		
Schedule for design, construction and monitoring			••
Schedule for progress reports			
Data to support future interim measures			

-- = Not applicable or none.

(1-s) < s < 1

 \sim

Spring (Seep) Quality Data

(collected by CH2M HILL 1991-92)

Spring (Seep) Quality Data

(collected by CH2M HILL 1991–92) Groundwater Spring Evaluation One-time Monitoring Report for the Groundwater Seep (April 1991) March Monthly Monitoring Report April Monthly Monitoring Report May Monthly Monitoring Report June Monthly Monitoring Report July Monthly Monitoring Report August Monthly Monitoring Report September Monthly Monitoring Report October Monthly Monitoring Report November Monthly Monitoring Report December Monthly Monitoring Report One-time Monitoring Report for the Groundwater Seeps 2 and 3 (1992) January Monthly Monitoring Report February Monthly Monitoring Report March Monthly Monitoring Report April Monthly Monitoring Report May Monthly Monitoring Report

Sampling and Analysis

In 1990 and early 1991, three springs were found along the Grand Calumet River (see attached figure). For several months, discharge rates were measured, and the springs (referred to in the attached data sheets as spring) were sampled and analyzed for major ions, selected metals, other inorganics, and selected water quality parameters.

Results

The attached tables summarize the analyses on samples taken from the springs. Tables 1 through 3 list the results of all sampling events for the three springs.

Discussion

Spring to Spring Comparison

Spring 2 generally had the highest concentrations of metals and inorganics, followed by Springs 3 and 1 (see Tables 1 through 3). The only spring with pH less than 6 was Spring 2. The pH at spring 2 ranges from 5 to 6.7, with a mean value of 5.8.

Spring to Groundwater Comparison

The springs were found to contain the same constituents and constituent concentrations as nearby groundwater monitoring wells and groundwater grab samples collected during Phase III. Table 4 compares selected spring and groundwater sampling results. The quality of Spring 1 water was similar to that collected from MW-3 and has the highest spring arsenic concentration at 1.7 μ g/L. (Arsenic was not consistently detected in the other springs.) Generally, the constituent concentrations of Spring 2 correlate with those in nearby monitoring well MW-5. In addition, the constituent concentrations of Spring 3 correlate with those of monitoring well MW-4.

This generalization was documented in the One-Time Monitoring Report for Seep 1 (Spring 1) provided to U.S. EPA in April 1991.

-

Table 1 Groundwater Seep 1 Analytical Data Du Pont, East Chicago

Date of Sa	mple: 3/	28851 15/91		129198 3/21/91		129745 3/28/91		130113 4/4/91a		130114 4/4/91t		130967 4/11/91	131461 4/18/91		131844 4/25/91		132290 5/2/91a		132291 5/2/91b		132803 5/9/91		137120 5/16/91		141634 5/23/91		141977 5/30/91	14247 6/06/9	
• <u> </u>	Notes:											0.12									0.07		0.78		0.07			1.25	
AVERAGE FLOW RATE (gpm)	(.).41		0.01		0.10		0.32				0.13	1.57		1.12		0.48				0.97		0.78		0.87		1.2	1.25	
WATER QUALITY																													
PARAMETERS (mg/l)																	_				_				_				
BOD-Five Day		<1		<1		2	1	4	l	4	J	1	<1		<1		5		<1		2		2		2		3		
COD		72	J	36	J	7	J	46	J	33	1	<3	13		3		29	J	59	J	13		<3		16		<3	<3	
Chloride		40		26		32		28		34		30	32		36		16		32		38		28		42		26	26	
Fats, Oils & Grease		<1		<1		i		<1		<1		<1	1	J	I	В	1	J	3	1	1		1	J	2	В	<1	1	
Fluoride		1.1		0.9		0.9		1.6	J	1.0	1	0.7	1.0	J	1.0		0.1		1.0		0.9	J	2.8		0.7		0.9	0.8	1
Nitrogen, Ammonia).37		0.42		0.42		0.28		0.26		0.26	0.39		0.42		0.41		0.45		0.47		0.61		0.75		0.66	0.56	_
Nitrogen, Nitrate		NA		0.04		0.07		0.2		0.16		0.25	0.64		0.81		0.16		0.18		1.12		2.31		2.22		0.71	1.43	3
Nitrogen, Nitrite		NA		<0.01		<0.01		<0.01		<0.01		<0.01	<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01		<0.01	<0.01	
Total Dissolved Solids		020		934		1200		1180	J	1170	J	1260	1240		1370		1370		1380		1420		1420		1400		1420	1360	
Total Suspended Solids *		12		2	J	32	J	6		9		4	8		3		4		<1		7		11		8	В	4	11	
Sulfate		590		570		733		700		740		740	810		790		1120		930		830		790		770		790	870	
pH (lab) *	-	7.3	J	7.3		7.5		7.2		7.2		7.2	7.2		7.3		7.2		7.2		7.0		7.0		7.2		7.I	7.0	
TRACE INORGANIC COMPOUNDS (mg/l)																													
Arsenic	0.	088		0.097		0.029		0.030		0.028		0.056	0.045	J	0.052	J	0.045		0.046		0.052	J	0.071	J	0.015		0.085	0.073	
Copper	<(0.01		0.005		<0.050		<0.050		<0.050		< 0.02	<0.010		<0.010		<0.010		<0.010		<0.050		<0.050		<0.050		<0.050	<0.050)
Zinc	0.1	956		0.502	J	0.477	J	0.452		0.443		0.388	1.26		1.03		0.452	В	0.465	В	0.676		0.373		0.496		0.717	0.981	

*Sample fraction not filtered.

NA denotes not analyzed.

No value indicates no sample.

J indicates estimate value.

B indicates blank contaminated

UJ indicates estimated, value

probably low. < indicates less then listed detectiion limit.

Table 1Groundwater Seep 1 Analytical DataDu Pont, East Chicago

-

Date o	Lab ID: of Sample: Notes:	142473 6/06/91		143057 6/13/91		143439 6/20/9		143833 6/27/91		144148 7/2/1991	a	144149 7/2/911		144650 7/11/91		145143 7/18/91		145559 7/25/91		146136 8/1/1991		146137 8/1/1991	Ь	8/8/91 covered	146983 8/15/91		14751 8/22/9		147899 8/29/91	
AVERAGE FLOW RATE (gpm)				1.15		0.88		0.18		0.93				0.72		0.48		0.35		0.28		· , •		by GCR 0	0.37		0.38		0.36	
WATER QUALITY PARAMETERS (mg/ BOD-Five Day COD Chloride Fats, Oils & Grease Fluoride Nitrogen, Ammonia Nitrogen, Nitrate Nitrogen, Nitrate Nitrogen, Nitrite Total Dissolved Solids Total Suspended Solids Sulfate pH (lab) *		<1 13 26 1 0.8 2.56 3.46 <0.01 1400 7 840 7,1	ſ	NA 29 20 NA 0.6 0.46 0.94 0.04 380 8 490 7.0	l	NA 26 28 NA 1.1 0.60 0.31 <0.01 1410 19 780 6.9	ſ	NA 29 24 NA 1.5 1.03 0.08 <0.01 1260 71 850 7.0		NA 29 28 NA 1.3 0.76 0.28 <0.01 1310 23 800 6.8	В	NA 29 24 NA 1.0 0.77 0.13 <0.01 1220 38 800 6.8	В	NA 39 20 NA 0.8 <0.01 NA 1320 135 900 7.0	l	NA 7 26 NA 0.9 0.58 0.53 <0.01 1550 236 800 7.0	1 B	NA <3 28 NA 1.0 0.75 0.32 <0.01 1240 178 810 7.0	J	NA 33 26 NA 0.9 0.67 0.10 <0.01 1310 27 800 6.8	J B	NA 16 28 NA 0.9 0.86 0.08 <0.01 1370 18 900 6.8	J B		NA 46 10 NA 0.8 0.41 0.07 <0.01 1490 13 900 7.1	J B J B	NA <3 26 NA 1.1 0.51 0.6 1420 62 800 7.0	В	NA 13 30 NA 0.6 0.43 0.09 <0.01 1360 13 800 7.0	J B
TRACE INORGANIC COMPOUNDS (mg/l) Arsenic Copper Zinc)	0.071 <0.050 0.977		0.034 NA 0.454	В	0.099 NA 0.634	В	0.065 NA 0.473	В	0.180 NA 1.038		0.169 NA 0.932		0.132 NA 0.553		0.104 NA 0.260	В	<0.005 NA 0.513	в	0.022 NA 0.551		0.022 NA 0.606			0.024 NA 0.225		<0.005 NA 0.359		<0.04 NA 0.349	

Notes:

*Sample fraction not filtered.

NA denotes not analyzed.

No value indicates no sample.

J indicates estimate value.

B indicates blank contaminated

UJ indicates estimated, value

probably low.

< indicates less then listed detection limit.

 \bigcirc

-

Table 1 Groundwater Seep 1 Analytical Data Du Pont, East Chicago

D	Lab ID: ate of Sample: Notes:		i	148709 9/12/91		148710 9/12/91		149109 9/19/91	9/26/91 No Data	10/3/91 No Data	10/10/91 No Data	10/17/91 No Data	10/24/91 No Data	152268 10/31/91	15281 11/7/9		153959 11/21/91	11/28/91 No Data
AVERAGE FLOW RATE (gpm)		0.48		0.56				0.05	0	0	0	0	0	0.78	0.29	0	0.24	0
WATER QUALITY PARAMETERS																		
BOD-Five Day		NA		NA		NA		NA						NA	NA		NA	
COD		3	J	7	J	<3		13	J					33	B 59		49	
Chloride		78		24		24		28						18	20		24	
Fats, Oils & Greas	e	NA		NA		NA		NA						NA	NA		NA	
Fluoride		0.9	J	0.5	J	0.6	J	1.0						0.9	0.8		0.8	
Nitrogen, Ammoni	a	1.06		0.79		0.68		0.46						0.4	0.5		0.54	
Nitrogen, Nitrate		0.31	J	0.22		0.19		0.42						0.35	1.35	J	0.28	J
Nitrogen, Nitrite		< 0.01		<0.01		< 0.01		<0.01						<0.01	0.01		<0.01	
Total Dissolved Se	olids	1340		1140		1310		1200						1260	3090		1200	
Total Suspended S	olids *	8		3		9		<1						10	475		17	
Sulfate		900		800		900		800						800	800		800	
pH (lab) *		7.0		6.8		6.9		7.5						71	7.1		6.8	
TRACE INORGAN COMPOUNDS (1																		
Arsenic	-	0.096		1.69	J	1.39	J	1.32	J					0.100	0.052	J	0.116	J
Copper		NA		NA		NA		NA						NA	NA		NA	
Zinc		0.565		0.562		0.785		0.060	В					0.977	0.377		0.735	

Notes:

*Sample fraction not filtered.

NA denotes not analyzed. No value indicates no sample.

J indicates estimate value.

B indicates blank contaminated

UJ indicates estimated, value

probably low.

< indicates less then listed detectiion limit.

Lab ID: Date of Sample: Notes:	12/5/91		155139 12/12/91	155515 12/18/91	12/26/91 No Data	1/2/92 No Data	1/9/92 No Data	1/15/92 No Data	1/22/92 No Data	1/29/92 No Data	2/6/92 No Data	2/13/92 No Data	2/20/92 No Data	2/26/92 No Data	3/4/92 No Data
			··				· · · · ·								
AVERAGE FLOW RATE (gpm)	0.24		0.68	0.32	0	0	0	0	0	0	0	0	0	0	0
WATER QUALITY PARAMETERS (mg/l)															
BOD-Five Day	NA		NA	NA											
COD	170		49	14											
Chloride	24		14	18											
Fats, Oils & Grease	NA		NA	NA											
Fluoride	0.8		0.9	1.1											
Nitrogen, Ammonia	0.08		0.46	0.92											
Nitrogen, Nitrate	0.80		0.64	0.20											
Nitrogen, Nitrite	<0.01		<0.01	<0.01											
Total Dissolved Solids	1170		1020	1220											
Total Suspended Solids *	129		9	146	J										
Sulfate	700	J	900	800											
pH (lab) *	6.9		6.8	7.0											
FRACE INORGANIC COMPOUNDS (mg/l)															
Arsenic	0.102		0.060	0.045											
Copper	NA		NA	NA											
Zinc	0.898	J	0.840	0.355											

Table1Groundwater Seep 1 Analytical DataDu Pont, East Chicago

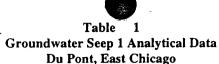
-

NA denotes not analyzed.

No value indicates no sample.

J indicates estimate value.

B indicates blank contaminated


UJ indicates estimated, value

probably low. < indicates less then listed

detectiion limit.

-

163139 Lab ID: 160376 160875 5/14/92 5/21/92 5/28/92 3/25/92 4/2/92 4/9/92 4/15/92 4/23/92 4/30/92 5/7/92 Max Average Date of Sample: 3/12/92 3/19/92 No Data Notes: No Data AVERAGE FLOW 0.15 0.07 0 0 0 0.35 0 0 0 0 0 0 1.57 0.30 RATE (gpm) WATER QUALITY PARAMETERS (mg/l) **BOD-Five** Day NA 5 3 NA NA 170 32 COD 57 В 8 В 26 В 78 27 Chloride 10 14 14 J Fats, Oils & Grease NA NA 3 1 NA Fluoride 0.98 0.96 0.32 2.8 0.9 0.45 0.37 2.56 0.60 Nitrogen, Ammonia 0.87 0.63 Nitrogen, Nitrate 1.03 J 1.47 3.46 0.32 J 0.2 Nitrogen, Nitrite < 0.01 < 0.01 0.01 0.6 1291 Total Dissolved Solids 1100 1130 864 3090 475 46 Total Suspended Solids * 3 В <1 6 В 795 Sulfate 779 725 637 1120 pH (lab) * 6.9 6.9 6.8 7.5 7.0 TRACE INORGANIC COMPOUNDS (mg/l) 0.0238 0.18 Arsenic 0.073 J 0.032 J 1.69 0.005 0.005 Copper NA NA NA Zinc 1.26 0.764 4.66 J 4.66 0.72

Notes:

*Sample fraction not filtered.

NA denotes not analyzed.

No value indicates no sample.

J indicates estimate value.

B indicates blank contaminated

UJ indicates estimated, value

probably low. < indicates less then listed

detectiion limit.

1

Lab 1D:

Date of Sample: 7/2/91 7/11/91 7/18/91 7/25/91 8/1/91 8/8/91 8/15/91 8/22/91 8/29/91 9/5/91 9/12/91 9/19/91 9/26/91 10/3/91 10/10/91 10/17/91 Notes: No Data N

AVERAGE FLOW RATE (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WATER QUALITY PARAMETERS (mg/l) BOD-Five Day COD Chloride Fats, Oils & Grease (FOG) * Fluoride Nitrogen, Ammonia Nitrogen, Ammonia Nitrogen, Nitrate Nitrogen, Nitrate Nitrogen, Nitrate Total Dissolved Solids Total Suspended Solids * Sulfate pH (lab) *																
COMPOUNDS (mg/l) Arsenic Cadmium																
Chromium Copper Lead																
Mercury Zinc																
Notes: *Sample fraction not filtered. NA denotes not analyzed. No value indicates no sample J indicates estimated value. B indicates blank contaminated											,					

~

Sp2c	hem	b
------	-----	---

Table 2 Groundwater Seep 2 Analytical Data Du Pont, East Chicago

-

1	Lab ID: Date of Sample: Notes:		152265 10/31/91	152812 11/7/91	153437 11/14/91	153960 11/21/91	154410 11/28/91	154694 12/5/91	155140 12/12/91	155516 12/18/91	155756 12/26/91	155913 1/2/92	156346 1/9/92
AVERAGE FLOW RATE (mg/l)		0	8.8	9.5	4.72	17.62	10.22	12.9	16.83	12.0	9 0	6.92	8.24
WATER QUALITY PARAMETERS													
BOD-Five Day			2	<1	NA	1	<1	I	1	<1			
COD			29 B		65	36 326	26 360	96 340	39 240	11 250	61 48	10 E 230	3 44 B 254 J
Chloride			420	520	400	320 <1	.300 >	.340 <1	240	2.50		200 2 E	
Fats, Oils & Greas	e (FOG) 📍		<1 J	2 3.8	3.6	3.7	4.9	2.2	1.9	1.9	2.5	1.5	1.5
Fluoride			2.9 6.6	3.8 10.3	10.6	9.8	4.2 9.4	1.49	7.58	5.2	6.2	6.9	7.4
Nitrogen, Ammoni	ia		38.2	37.3 J	38.2 J	28.8 J	20.6	14.7	14.7	11.5	13.3	11.2	10,1
Nitrogen, Nitrate			<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01
Nitrogen, Nitrite Total Dissolved So			4040	4460	4450	3980	3580	3050	2720	2840	2760 J		
Total Suspended S			9	6	5	5	1	3	<1	4		2010	
Sulfate	0005		2800	3200	3200	2900	250	2000 J	1900	1800	1800	1900	1900
pH (fab)			59	59	5.7	5.6	5.8	5.6	57	5.6	5.9	61	5.7
TRACE INORGAN COMPOUNDS () Arsenic Cadmium			<0.0050	<0.0050 J	<0.0050 J	<0.0050 J	<0.0050	<0.0050	<0.0050	<() ()()5()	<0.0050	<() ()05()	<() ()()5()
Chromium Copper Lead			<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<().()5()
Mercury Zinc			26.9	21.0	23.5	16.5	22.6	18.6 J	[4.9	13.4	15.8	17.9	17.0

Notes:

*Sample fraction not filtered NA denotes not analyzed.

No value indicates no sample.

J indicates estimated value.

B indicates blank contaminated

Table 2 Groundwater Seep 2 Analytical Data Du Pont, East Chicago

Date of S	lab ID: ample: Notes:	156681 1/15/92	15704 1/22/9		157408 1/29/92	158025 2/6/92		158494 2/13/92	158974 2/20/92		159332 2/26/92	159873 3/4/92	160377 3/12/92	160876 3/19/92		161355 3/25/92	161920 4/2/92
AVERAGE FLOW RATE (mg/l)		10.97	3	95	5.37	6.49		4.10	14.65		12.05	10.30	15.08	11.87		11.92	10.08
WATER QUALITY																	
PARAMETERS (mg/l)											•	2		2		-	
BOD-Five Day		<br		2	1 40 B	<1	n	<i 70 В</i 	<1 17	n	2	2 17 E	<2 14 E	<2	Б	<2 49 B	62
COD Chloride		218		22 B 00	40 B 299	290	в	70 В 350	370	в	<10 342	290	290	24()		216	210
Fats, Oils & Grease (FOG)		254 2	.,		299 <2	290 <1			370 <1		.342	290 <1	29() <1	240 4	-	- 14	210 <1
Fluoride		4.5	1 .	1 J .4 J	3.7	3.12	t	3.8	3.9	r	3.2 J	3.7	2.22	2.23	D	3.25	1.96
Nitrogen, Ammonia		4.5 8.60			9.68	10.9	J	13.3	.9 10.0	J	12.2	12.0	8.8	58		6.1	1.50
Nitrogen, Nitrate		9 80	7. 9.		8.37	7.92		9.40 J	7.57	r	7.54 J	8.07			1	8.2	5.44
Nitrogen, Nitrite		<0.01	<()		<0.01	<0.01		<0.01	<0.01	J	<0.01	<0.01	<0.01	<0.01	,	<0.01	• <0.01
Total Dissolved Solids		3094	.34		3400	3370		3500	3690		3460	3150		2730		2683	2997
Total Suspended Solids *		2		13	.1400 <1	3370			10	ы	.1400			27.10		11	11
Sulfate		2100)0 J	2200 J	2000		2900	2400		2100 J	2000	1690	1730		1680	1530
pH (lab) *		5.6		9	5.8	5.8		5.8	6.7	,	5.9	5.9	6.0	5.9		6.0	5.9
TRACE INORGANIC																	
COMPOUNDS (mg/l) Arsenic Cadmium		<(),()()5()	<() ()()	50	<0.0050	<().()()5()		<0.0050	0.0078	J	<0.0050	<0.0050	<0.0050	<() ()()5()		<0.0050	<0 (0050
Chromium																	
		<0.050	<(),()	0	<0.010	<0.010		<0.010	<0.010		<0.010	<0.010	<().()5()	<()()5()		<0.010	<0.010
Copper Lead		<0.0.00	<0.0	0	<0.010	<0.010		C 0.010	CO.010		20.010	20.010	20.0.0	CO 0.00		como	\$0.010
Mercury																	
Zinc		18.9	17	3	18.3 J	19.4		21.2	14.6	ī	15.5 J	13.8	13.1	122		11.8	13.4
Zinc		10.2		.'	10.7 9	17.4		ar birte	17.0	,	1.1.1.1	10	4.5.1				• • •

Notes:

*Sample fraction not filtered

NA denotes not analyzed. No value indicates no sample.

J indicates estimated value.

B indicates blank contaminated

~

Sp2chemb

Table2Groundwater Seep 2 Analytical DataDu Pont, East Chicago

-

Date of 9	Lab ID [.] Sample Notes	162541 4/9/92	163140 4/15/92	163677 4/23/92a		163678 4/23/92b		164312 4/30/92		164740 5/7/92	165096 5/14/92		165661 5/21/92	5/28/92 No Data	Average
AVERAGE FLOW RATE (mg/l)		7.32	8.22	9.58				5.1		5.65	4 05		1.64		9]7
WATER QUALITY															
PARAMETERS (mg/l)				_	_	_									
BOD-Five Day		B <1	<1		B	7		<		NA	NA		NA		2 69
COD		B 17 1			в		В	16	В	NA	NA		NA		40.85
Chloride		210	226	216		230		232		NA	NA		NA		284 ()4
Fats, Oils & Grease (FOG)) *	<2	<5	<5		<5		<5		NA	NA		NA		3 22
Fluoride		0.99	1.02	0.98		0.98		1.01		NA	NA		NA		2.69
Nitrogen, Ammonia		12.5	5.5	17.2		17.8		20.0		NA	NA		NA		9.60
Nitrogen, Nitrate		6.24	7.1	6.37		5.84		187		NA	NA		NA		12.91
Nitrogen, Nitrite		< 0.01	< 0.01	<0.01		<0.01		< 0.01		NA	NA		NA		
Total Dissolved Solids		2817	2540	2790		2760		274()	J	NA	NA		NA		3152 50
Total Suspended Solids *		5	11 H		1	4	3	</td <td></td> <td>NA</td> <td>NA</td> <td></td> <td>NA</td> <td></td> <td>5 87</td>		NA	NA		NA		5 87
Sulfate		1540	1570	1870		1520		1620		NA	NA		NA		2035.71
pH (lab) *		6.0	6.1	5.9		5.9		5.0		NA	NA		NA		5 84
TRACE INORGANIC COMPOUNDS (mg/l)															
Arsenic		<0.0050	<0.010	<0.0100		< 0.0100		<0.0050		< 0.0050	<0.0050		<0.0050		
Cadmium		C0.00.00	C 0.010	\$0.0100		CO.0100		CO.0000		0.048	0.043		0.038		
Chromium										< 0.040	<0.043	,	<0.038		0.04
		0.013 E	8 0.179	0.023	D	0.026	D	<0.010		NA	<0.040 NA				
Copper		0.015 6	D.179	0.025	D	0.020	D	<0.010		0.083 J			NA -0.080		0.06
Lead											<0.080		<().()8()		0.08
Mercury		12.0				12.1				<0.0002	<0.0002		<0.0002		
Zinc		12.9	1 12.3	12.9		13.1		14.7		NA	NA		NA		16.55

Notes:

*Sample fraction not filtered.

NA denotes not analyzed.

No value indicates no sample.

J indicates estimated value.

B indicates blank contaminated

-

Table 3Groundwater Seep 3 Analytical DataDu Pont, East Chicago

1

Date	Lab ID: of Sample. Notes:_	7/2/91 No Data	7/11/91 No Data	7/18/91 No Data	7/25/91 No Data	146139 8/1/91	8/8/91 No Data	146985 8/15/91	8/22/91 No Data	147900 8/29/91	148386 9/5/91	9/12/91 No Data	9/19/91 No Data	9/26/91 No Data	10/3/91 No Data	10/10/91 No Data	10/17/91 No Data	10/24/91 No_Data
AVERAGE FLOW RATE (gpm)		()	0	0	0	0.10	0	0.61	0	0.47	0.26	0	0	0	0	0	0	0
WATER QUALITY PARAMETERS (mg/))																	
BOD-Five Day						3		4		6	4							
COD						10		20	J	13	23 J							
Chloride						24		26	В	34	68							
Fats, Oils & Grease						<1		2		<1	2							
Fluoride						1.9 J		1.0	3	0.6 J	1.0 J							
Nitrogen, Ammonia						2.7		4.0		3.61	4.6							
Nitrogen, Nitrate						0.72 B		0.31	В	0.26 B	0.50 J							
Nitrogen, Nitrite						< 0.01		<0.01		<0.01	< 0.01							
Total Dissolved Solids						2930		3530		2880	2900							
Total Suspended Solids	٠					63		69		429	46							
Sulfate						2100		2600		900	1770							
pH (lab) *						6.1		6.1		6.2	6.4							
TRACE INORGANIC COMPOUNDS (mg/l)																		
Arsenic						<0.0050		0.0100		<0.004	< 0.0050							
Copper						0.124		<0.010		0.037	0.013							
Zinc						2.974		35.8		27.1	28.1							
Notes: *Sample fraction not filte	red																	

NA denotes not analyzed.

No value indicates no sample.

J indicates estimated value.

B indicates blank contaminated

Sp3chemb

Table 3Groundwater Seep 3 Analytical DataDu Pont, East Chicago

I	Lab ID: Date of Sample. Notes	152266 10/31/91	152813 11/7/91	11/14/91 No Data	11/21/91 No Data	11/28/91 No Data	12/5/91 No Data	12/12/91 No Data	155517 12/18/91	1 2/26/9 1 No Data	1/2/92 No Data	1/9/92 No Data	1/15/92 No Data	1/22/92 No Data	1/29/92 No Data	2/6/92 No Data	2/13/92 No Data	2/20/92 No Data
AVERAGE FLOW RATE (gpm)		0.53	0.22	0	0	0	0	0	0.33	U	0	0	0	0	()	0	0	0
WATER QUALITY PARAMETERS (
BOD-Five Day		2	7						6 J									
COD		26 B	65						14									
Chloride		22	32						28									
Fats, Oils & Grease		I J	7						<1]									
Fluoride		2 1	37						3.1									
Nitrogen, Ammoni	3	2.0	21.0						17.2									
Nitrogen, Nitrate		0.53	0.60 J						0.20									
Nitrogen, Nitrite		<()()]	0.02						<0.01									
Total Dissolved So	līds	2400	1190						2890									
Total Suspended S	olids •	49	100						214 J									
Sulfate		800	2300						2100									
рН (lab) 👎		6.6	6.5						6.2									
TRACE INORGAN COMPOUNDS (r																		
Arsenic	-	<()()()5()	0.0055 1						<0.0050									
Copper		<0.010	<()()()						<0.010									
Zinc		21.1	134						16.0									

*Sample fraction not filtered

NA denotes not analyzed.

No value indicates no sample

J indicates estimated value

B indicates blank contaminated

1

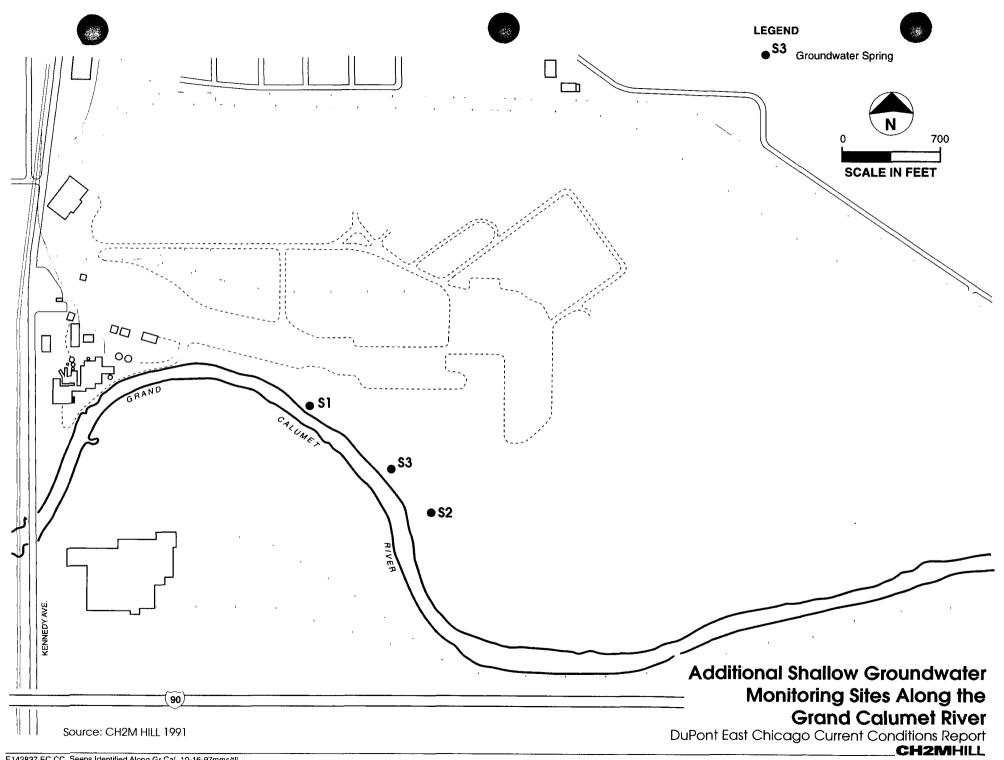
Table 3 Groundwater Seep 3 Analytical Data

Du Pont, East Chicago

D	Lab ID: ate of Sample: Notes:	2/26/92 No Data	3/4/92 No Data	3/12/92 No Data	3/19/92 No Data	3/25/92 No Data	4/2/92 No Data	4/9/92 No Data			5/7/92 No Data			5/28/92 No Data /	Average
AVERAGE FLOW		0	0	0	0	0	0	0	0	0	0	0	0	0	0.36
RATE (gpm)															
WATER QUALITY															
PARAMETERS (n	ng/1)														
BOD-Five Day															4.57
COD															24.4
Chloride															33.4
Fats, Oils & Grease															3 00
Fluoride															1.91
Nitrogen, Ammonia															7.87
Nitrogen, Nitrate															0.45
Nitrogen, Nitrite															0.02
Total Dissolved Soli															2674
Total Suspended Sol	ids *														1.38.6
Sulfate															1796
pH (lab) *															6.30
TRACE INORGANIC															
COMPOUNDS (mg	:/1)														
Arsenic															0.01
Copper															0.06
Zine															20.6
Notes.															
*Sample fraction not f															

NA denotes not analyzed No value indicates no sample. J indicates estimated value. B indicates blank contaminated

~


TABLE 4

Comparison of Spring and Groundwater Quality

	Mean Constituent Concentrations (mg/L) by Location								
Constituent	S 1	MW-3	S2	MW-5	S3	MW-4			
Chloride	27	37.5	267	434	33	48			
Fluoride	0.9	1.4	2.6	12	1.7	1.8			
Sulfate	795	1030	1,935	5,715	1,773	1,900			
Zinc	0.72	0.07	15.4	10.6	18.2	0.72			
Arsenic	0.18	1.15	<0.01	0.24	0.01	0.085			
рН	7.0	6.8	5.8	6.4	6.3	6.82			

in the second se

E142837.EC.CC Seeps Identified Along Gr Cal 10-16-97mms/tll

One-Time Monitoring Report for the Groundwater Seep at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. Du Pont de Nemours & Company

April 11, 1991

Missing Information

Note:

The attached One-Time Monitoring Report (April 1991) is lacking the laboratory data sheets for the inorganic analyses. It is believed that they were in the original report and have been misplaced from the file.

INTRODUCTION

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, Du Pont is submitting this report characterizing the quality of the groundwater seep at Du Pont's East Chicago Plant. This report contains the results of the "one-time monitoring program" specified in U.S. EPA's request.

SAMPLE COLLECTION AND ANALYSIS

As a direct result of actions taken by Du Pont to eliminate the seep, discharge was not occurring in mid- and late February (O.J. Meyer, Du Pont). U.S. EPA's request received on February 15, 1991, requesting Du Pont to implement a "one-time monitoring program" at the seep could not be honored. The seep reappeared on March 4, 1991 (Gene Hartstein, Du Pont). Upon discovery Du Pont asked CH2M HILL to implement the "one-time monitoring program." These sampling activities were performed on March 6, 1991. At the time of sampling, the flow rate of the seep was measured at 0.33 gallons per minute (gpm).

The "one-time monitoring program" consisted of collecting and analyzing two grab samples from the seep "for the Priority Pollutants (40 CFR 423, Appendix A, Numbers 001-013) using U.S. EPA methods 1624 and 1625, and for Priority Pollutants (40 CFR 423, Appendix A, Numbers 114-128) using U.S. EPA method 40 CFR 136, Appendix C." In addition, an attempt was made "to identify and quantify the ten (10) largest, non-Priority Pollutant peaks on the reconstructed gas chromatogram (ion plots), excluding unsubstituted aliphatic hydrocarbons and any peaks less than 10 times higher than the adjacent background noise."

Because the U.S. EPA's request called for the analysis of total priority pollutant metal concentrations, unfiltered samples were collected and analyzed. To determine how much of the resulting concentrations could be attributed to the resuspension of fines and debris due to mud flat erosion or turbidity induced during sampling, portions of the samples were filtered and analyzed for the same inorganic constituents as the unfiltered samples. The filtered concentrations better represent the quality of seep discharge as it reaches the land surface.

The samples (SP-1 and SP-2) were preserved as necessary and shipped via overnight courier to CH2M HILL's analytical laboratory in Montgomery, Alabama. Selected analyses were subcontracted to Analytical Technologies, Inc. in Fort Collins, Colorado (volatiles and semivolatiles) and Reservoirs Environmental Services, Inc. in Denver, Colorado (asbestos).

To allow data users to compare these results with groundwater quality data generated during the Phase II Groundwater Assessment, an additional sample (SP-3) was collected and sent to National Environmental Testing, Inc. (NET) for analysis. Though not specifically requested, these data are included for U.S. EPA review. This sample was preserved and shipped in a consistent manner.

ANALYTICAL RESULTS AND INTERPRETATION

Table 1 summarizes the analytical results of the "one-cime monitoring program" for the seep. All laboratory data sheets for the field samples collected and analyzed are provided in Attachment 1. Attachment 2 contains a data validation summary of quality assurance/quality control (QA/QC) information associated with the analysis of the samples.

No volatile organics, semivolatile organics, pesticides, PCBs, asbestos, BOD-Five Day, cyanide, antimony, beryllium, mercury, silver, or thallium were detected in the grab samples. Only one peak was observed in the chromatograms when searching for nonpriority pollutants at concentrations above background noise. The peak was a semivolatile organic constituent that could not be identified by the library search.

On March 6, 1991, seep water contained low COD and low levels of the nitrogen constituent in ammonia. Low to trace fats, oil and grease were detected. Trace inorganic priority pollutants detected in both of the filtered samples at concentrations above the method detection limits were: o Arsenic (at 0.043 to 0.046 mg/l); o Total Chromium (at 0.0045 mg/l); o Copper (estimated at 0.0115 mg/l); and o Zinc (at 1.10 to 1.13 mg/l).

None of the other priority pollutant inorganics (antimony, beryllium, cadmium, lead, mercury, nickel, selenium, silver, or thallium) were detected in the filtered samples.

The total dissolved solids concentrations (1090 and 1100 mg/l) of the samples are not comprised of priority pollutants. The seep sample is collected off the mud flat where sanitary wastes from the combined sewer system outfall are discharged during periods of overflow. Evidence of sanitary wastes and debris can be seen along the bank at the seep site. Given these conditions, this waste may be contributing to the concentrations observed. This contribution cannot be distinguished from that provided by the groundwater.

CONCLUSIONS

Based on the existing data and analytical results of the "one-time monitoring program," many of the constituents analyzed in the grab samples should be eliminated from future monitoring programs. These constituents include the following: volatile organics, semivolatile organics, pesticides, PCBs, asbestos, BOD-Five Day, cyanide, antimony, beryllium, chromium, copper, lead, mercury, nickel, selenium, silver, and thallium.

Total dissolved solids observed are comprised primarily of cations and anions that are typically present in groundwater. Seep water quality is similar to that detected at monitoring wells installed near the seep (MW-3 and MW-15) as displayed in Figure 1. TABLE 1

CONSTITUENTS DETECTED IN SEEP WATER ONE-TIME MONITORING PROGRAM MARCH 6, 1991

Sample ID:	SP-1	SP-1	SP-2	SP-2
Lab:	CH2M HILL	CH2M HILL	CH2M HILL	CH2M HILL
Lab ID:	17988001/	S17989001	17988002/	s17989002
	17989001		17988003/	
			17989002	
Filtered (Yes/No):	No	Yes	No	Yes
WATER QUALITY PARAMETERS (mg/l)				
COD	27	NA	47	NA
Chloride	47.9	NA	46.5	NA
Fats, Oils & Grease (FOG)	4.0	NA	1.0	NA
Fluoride	0.33	NA	0.33	NA
Nitrate/Nitrite		NA		NA
Nitrogen, Ammonia	0.47	NA	0.20	NA
Solids, Dissolved	1100	NA	1090	NA
Solids, Suspended	18	NA	45	NA
Sulfate	584	NA	540	NA
pH (field)	6	NA	6	NA
TRACE INORGANIC COMPOUNDS (ug/l))			
Arsenic	0.0663 J	0.0455	0.137 J	0.0429
Cadmium			0.0072	
Chromium, Total	0 .0099 J		0.0296	0.0045 J
Copper	0.0076 J		0.017 J	0.0115 J
Lead	0.0212 J		0.0659 J	1
Nickel			0.0105 J	l
Selenium	0.00099 J			
Zinc	1.35	1.13	1.94	1.10

Notes:

J qualifier denotes estimated value. NA denotes not analyzed. No value denotes not detected.

Comments:

No volatile organic compounds detected. No semivolatile organic (acid and base/neutral) compounds detected.

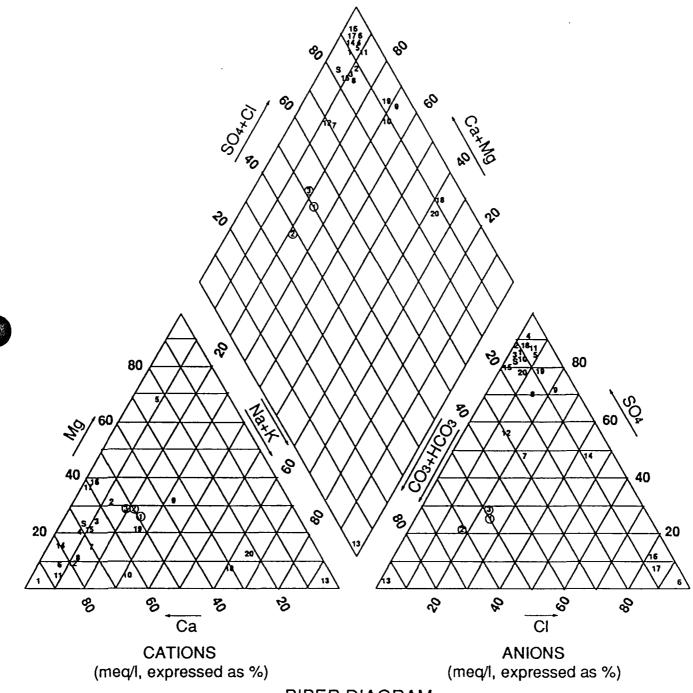
No pesticide/PCB compounds detetected.

No asbestos detected.

No BOD-Five Day detected.

No cyanide detected.

No antimony, beryllium, mercury, silver, or thallium detected.


In addition, no lead, nickel, or selenium detected in filtered samples.

LEGEND

MW-5 SAMPLE SEPT. 1990

② SW-2 SAMPLE SEPT.1990

S SEEP SAMPLE MAY1990

PIPER DIAGRAM

GROUNDWATER, SURFACE WATER, & SEEP ION BALANCE DU PONT EAST CHICAGO PLANT Attachment 1 Laboratory Data Sheets One-Time Monitoring Program

.

FORM 1 ANALYSIS DATA SHEET GENERAL CHEMISTRY LEVEL 2 & 3

	Client Samp	ole Number
Lab Name: <u>CH2M HILL LABORATORIES</u>	SP-1	
	h Number(s): <u>1798</u>	39
Matrix (soil/water): <u>WATER</u>	Date Collected:	03/06/91
<pre>% Solids (if soil):N/A</pre>	Date Received:	03/07/91
	Lab Sample ID:	17989001

METHOD	ANALYTE	CONCENTRATION	CONC. UNITS	DATE ANALYZED
ALINOD				
EPA405.1	BOD 5 DAY	<10	mg/L	03/07/91
EPA325.1	CHLORIDE	47.9	Mg/L	03/19/91
EPA410.4	COD	27	mg/L	03/20/91
EPA340.2	FLUORIDE	0.33	Mg/L	03/14/91
EPA353.2	NO3/NO2	<0.05	mq/L	03/07/91
EPA350.2	AMMONIA-N	0.47	mg/L	03/12/91
EPA413.1	OIL&GREASE	4.0 LSEM	mq/L	03/20/91
EPA375.4	SULFATE	4.0 29.2-584 4/11/9	/ mg/L	03/19/91
EPA160.1	TDS	1100	mg/L	03/11/91
EPA160.2	TSS	18	mg/L	03/08/91
· · · ·	· <u>····································</u>			
			····	1

FORM 1 - GENERAL CHEMISTRY

Mary Wisdom

FORM 1 ANALYSIS DATA SHEET GENERAL CHEMISTRY LEVEL 2 & 3

	Client Samp	ole Number
Lab Name: <u>CH2M HILL LABORATORIES</u>	SP-2	
	Number(s): <u>1798</u>	39?
Matrix (soil/water): <u>WATER</u> Da	ate Collected:	03/06/91
% Solids (if soil): <u>N/A</u> Da	ate Received:	03/07/91
La	ab Sample ID:	17989002

EPA405.1 BOD 5 DAY <10 mg/L 03	NALYZED 3/07/91 3/19/91 3/20/91
	<u>3/19/91</u> 3/20/91
	3/20/91
	2/1//01
EPA340.2 FLUORIDE 0.33 mg/L 03	<u>3/14/91</u>
	<u>3/07/91</u>
	3/12/91
	3/20/91
$[\underline{BPA375.4}] = \underline{SULFATE} = \underline{727.0} \underline{570} = \underline{1} \underline{mq7L} = \underline{10}.$	3/19/91
	3/11/91
EPA160.2 TSS 45 mg/L 0.	3/08/91

St 191 Comments: Error in reporting per phone conversation of Man 4/111 _____ of CH2m HILL LABORATORIES or 4/11/91 Wisdon

FORM 1 - GENERAL CHEMISTRY

Attachment 2 Data Validation Summary One-Time Monitoring Program

.

:

÷

TO:	Pixie Newman/CH2M HILL John Fleissner/CH2M HILL
FROM:	Dan MacGregor/CH2M HILL
DATE:	April 10, 1991
SUBJECT:	Data validation for Du Pont-East Chicago, Indiana seep samples.
PROJECT:	CHI28770.B0.SP

INTRODUCTION

This memorandum presents the data validation discussion for analytical results for the "onetime monitoring program" samples collected on March 6, 1991 at the Du Pont plant in East Chicago, Indiana.

Duplicate seep samples were analyzed for the priority pollutant list compounds by CH2M HILL's Laboratory in Montgomery, Alabama. CH2M HILL subcontracted out the volatile and semivolatile analysis to Reservoirs Analytical Technologies Inc. in Fort Collins, Colorado, and the asbestos analysis to Environmental Services, Inc. in Denver, Colorado. Sampling and transporting of samples was performed under strict chain-of-custody procedures. QA/QC data included: chain of custody forms, holding time data, method blank data and results, sample duplicate results, instrument calibration data, ICP interference check sample data, post digestion spike data, matrix spike and matrix spike duplicate (MS/MSD) results, and laboratory control spike results.

VOLATILE AND SEMIVOLATILE ORGANIC ANALYSIS

The volatile organics (VOA) and semivolatile organics (SVOA) were analyzed by isotopic dilution methods. These methods call for stable isotopically labeled analogs of each compound to be added to the sample, acting as an internal standard and recovery. Due to these methods containing this internal quality control, QA/QC checks, other then holding time and blank data, are not required. No compound detections were found in either of these samples. The library compound search performed with these methods yielded only two detections, both with the SVOA analysis. These detections were not identifiable by the library search.

BLANKS: The laboratory blank and reagent blank quantitation sheets were inspected for possible contaminants. All blanks were free of compound concentrations at levels equal to or greater than their reporting limits.

HOLDING TIMES: These samples met the holding time requirements for organic analyses.

PESTICIDE AND PCB ANALYSIS

No pesticide or PCB detections were found. The data were validated as described below.

BLANKS: The laboratory blank quantitation sheets were inspected for possible contaminants. All blanks were free of compound concentrations at levels equal to or greater than their reporting limits.

QA/QC PARAMETERS: The following QA/QC parameters were validated and no deficiencies were noted: instrument initial and continuing calibration data, holding time data, matrix spike and matrix spike duplicate (MS/MSD) results, surrogate spike results, and DDT/endrin degradation data.

INORGANIC ANALYSIS

BLANKS: The laboratory blank quantitation sheets were inspected for possible contaminants. All blanks were free of compound concentrations at levels equal to or greater than their reporting limits.

QA/QC PARAMETERS: The following QA/QC parameters were validated and no deficiencies were noted: holding time data, instrument initial and continuing calibration, ICP interference check sample data, and laboratory control spike results. Spike sample recoveries were within control limits for all compounds except for arsenic, which had a high recovery, and selenium, which had a low recovery. Results for these compounds are qualified as estimated "J". Post digestion recoveries were within control limits for all compounds except selenium, which had a low recovery. No additional qualifiers were added to the selenium data due to it already being qualified as estimated. Duplicate analysis results were within control limit for all compounds except lead, this result will be qualified as estimated "J".

Inorganic results that are less than the reporting limit but greater than or equal to the instrument detection limit are qualified as estimated "J".

DUPLICATES

As a measure of precision, the duplicate seep sample results were assessed. Results for all analysis compared well.

CHAIN OF CUSTODY

The chain of custody forms were reviewed for accuracy and completeness. The necessary information was provided and was found to be accurate. All requested analyses were performed and the data packages were complete.

RESULTS

In validating the sample data, an error in the sulfate result was noted, this error was confirmed by the laboratory and corrected results were forwarded. With previously noted qualifiers, the results for all analysis were found to be acceptable and valid.

March Monthly Monitoring Report for the Groundwater Seep at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. Du Pont de Nemours & Company

April 11, 1991

ì.

CHI120/056.51

INTRODUCTION

In response to U.S. EPA's Section 308 Information Request, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for March 1991 specified in U.S. EPA's request.

SAMPLE COLLECTION AND ANALYSIS

Samples of the groundwater seep were obtained March 15, 21, and 28, 1991. The flow rate of the seep varied between 0.26 and 0.52 gallons per minute (gpm) on March 15; between no flow and 0.03 gpm on March 21; and between 0.03 and 0.20 gpm on March 28.

The "monthly monitoring program" sampling activities typically consisted of obtaining an 8-hour composite sample of grab samples collected at 0-, 4-, and 8-hour intervals. Based on a conversation with Mr. Novak of U.S. EPA on March 20, 1991, the sampling program was modified to allow for filtering of samples prior to analysis. Filtering was implemented on March 21; however, sample fractions for fats, oil and grease and total suspended solids analyses were duplicated and the duplicates left unfiltered for analysis. On March 28, the sample fractions for fats, oil and grease, total suspended solids, and pH were collected but not filtered. All other sample fractions were filtered. The March 28 protocol for filtering will be continued for the remainder of the "monthly monitoring program."

Also during that conversation, CH2M HILL and Du Pont came to believe that grab sampling instead of composite sampling was authorized. Clarification (indicating that only composite sampling was authorized) was received too late on March 21 to allow the sampling crew to collect a composite sample. Composite sampling was resumed on March 28.

After sample collection and preservation (as necessary), the sample is shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The sample is then analyzed for the following constituents specified in U.S. EPA's request: BOD-Five Day, COD, ammonia-N, nitrate and nitrite, sulfate, chloride, fluoride, oil and grease, total dissolved solids, total suspended solids, arsenic, copper, zinc, and pH. In addition, the seep flow rate is measured and recorded.

ANALYTICAL RESULTS AND INTERPRETATION

Table 1 summarizes the analytical results of the "monthly monitoring program" for the seep during the month of March. Attachment 1 provides laboratory data sheets for the seep samples collected and analyzed during March for the "monthly monitoring program."

Attachment 2 contains a review of the quality assurance/quality control (QA/QC) associated with the analysis of the March seep samples.

Several of the constituents being monitored have concentrations periodically at or below method detection limits. This is true for BOD-Five Day, fat, oil and grease, and copper. If these conditions persist, these constituents should be dropped from the "monthly monitoring program."

CONCLUSIONS

The flow rate of the seep has varied from a very small rate, 0.52 gpm, to no flow. Although it was possible to collect samples during each of the sampling events, it is conceivable that weekly sampling events may be missed if the seep is not flowing during the scheduled sampling event.

The seep's flow rate varies significantly over time. In some instances, this variability has limited the ability to collect an 8-hour composite sample. Variations in seep flow rate are considerably greater than variations in seep water quality. Given these conditons, it is recommended that the sampling program be switched from collection of an 8-hour composite to collection of a grab sample.

.

TABLE 1

,

CONSTITUENTS DETECTED IN SEEP WATER MARCH MONTHLY MONITORING PROGRAM MARCH 1991

Sample ID:	DEC-SP-03-01	DEC-SP-03-02	DEC-SP-03-03
Lab:	NET	NET	NET
Lab ID:	128851	129198/	129745
		(129354)	
Date:	3/15/91	3/21/91	3/28/91
Filtered (Yes/No):	No	Yes	Yes
AVERAGE FLOW RATE (gpm)	0.41	0.01	0.10
WATER QUALITY PARAMETERS (mg/l)			1
BOD-Five Day			2 J
COD	72 J	. 36 J	7 J
Chloride	40	26	32
Fats, Oils & Grease (FOG)		/(1*)	1*
Fluoride	1.1	0.9	0.9
Mîtrogen, Ammonîa	0.37	0.42	0.42
Nitrogen, Nitrate	NA	0.04	0.07
Nitrogen, Nitrite	NA		
Nitrogen, Nitrate+Nitrite	1.37	NA	NA
Total Dissolved Solids	1020	934	1200
Total Suspended Solids	12	2 J/(54*)	32* J
Sulfate	590	570	733
pH (lab)	7.3 J	7.3	7.5*
TRACE INORGANIC COMPOUNDS (mg/l)			
Arsenic	0.0880	0.0970	0.0290
Copper			
Zinc	0.956 J	0.502 J	0.477 J

Notes:

*Sample fraction not filtered. NA denotes not analyzed.

No value denotes not detected.

:

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Pixie Newman CH2M HILL 1890 Maple Suite 200 Evanston, IL 60201 04/11/1991

Sample No.: 129198

Job No.: 91.0085

	C-SP-2; Grab Liquid Pont East Chicago
--	--

Date Taken:		Date Received:	03/22/1991
Time Taken:	10:44	Time Received:	09:55

Zinc

1988 - 1989 - 1980 - 19

0.502

mg/L

Kelly Don

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

0

ANALYTICAL REPORT

Ms. Pixie Newman 04/08/1991 CH2M HILL Sample No.: 1890 Maple 129198 Suite 200 Evanston, IL 60201 Sample Description: DEC-SP-2; Grab Liquid DuPont East Chicago 03/21/1991 Date Received: 03/22/1991 Date Taken: Time Taken: 10:44 Time Received: 09:55 BOD, Five Day <1. mg/L Chloride 26. mg/L COD, Total 36. mg/L Fluoride 0.9 mg/L N-Ammonia 0.42 mg/L N-Nitrate 0.04 mg/L N-Nitrite <0.01 mg/L Oil & Grease <1. mg/L 7.3 pН units Solids, Total Dissolved 934. mg/L Solids, Total Suspended 2. mg/L Sulfate 570. mg/L Arsenic GFAA 0.0970 mg/L 0.005 mg/L Copper KEQQ Jones

Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Mr. Dan MacGregor CH2M HILL 310 West Wisconsin Ave Suite 700 P.O. Box 2090 Milwaukee WI 53201 04-01-91

Sample No.: 128851

Sample Description DEC-SP-01; Composite Project No. CHI28770.BO.SP; DuPont East Chicago(SEEP)

Date Taken: 03-15-91

Date Received: 03-18-91 0800

*BOD - Five Day	<1.	mg/L
Chloride	40.	mg/L
COD	72.	mg/L
Fluoride	1.1	mg/L
Fats, Oils & Grease (FOG)	<1.	mg/L
Nitrogen, Ammonia	0.37	mg/L
Nitrogen, Nitrate+Nitrite	1.37	mg/L
*pH	7.3	units
*Solids, Dissolved	1020.	mg/L
Solids, Suspended	12.	mg/L
Sulfate	590.	mg/L
Arsenic	0.0880	mg/L
Copper	<0.01	mg/L
Zinc	0.956	mg/L
*Received past holding time.	nelly yours	

Kelly Jones Project Manager

NET NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Pixie Newman 04/11/1991 CH2M HILL 1890 Maple Sample No.: 129198 Suite 200 Evanston, IL 60201 Job No.: 91.0085 DEC-SP-2; Grab Liquid Sample Description: DuPont East Chicago 03/21/1991 Date Taken: Date Received: 03/22/1991 Time Taken: 10:44 Time Received: 09:55 BOD, Five Day <1. mg/L Chloride 26. mg/L COD, Total 36. mg/L Fluoride 0.9 mg/L N-Ammonia 0.42 mg/L N-Nitrate 0.04 mg/L N-Nitrite <0.01 mq/L Oil & Grease <1. mg/L 7.3 pН units Solids, Total Dissolved 934. mg/L Solids, Total Suspended 2. mg/L Sulfate 570. mg/L Arsenic 0.0970 mg/L lu Vo Copper mg/L

> Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Pixie Newman CH2M HILL 1890 Maple Suite 200 Evanston, IL 60201 04/08/1991

Sample No.: 129198

Sample Description:	DEC-SP-2; Grab Liquid
	DuPont East Chicago

Date Taken:	03/21/1991	Date Received:	03/22/1991
Time Taken:	10:44	Time Received:	09:55

Zinc

0.502 mg/L

KElly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

mg/L

0

ANALYTICAL REPORT

Ms. Pixie Newman CH2M HILL 1890 Maple Suite 200 Evanston, IL 60201

Solids, Total Suspended

04/03/1991

54.

Sample No.: 129354

Sample Description:	DEC-SP-2; Grab Liqui DuPont East Chicago	d	
Date Taken: 03/21/19 Time Taken: 10:44		Date Received: Time Received:	03/22/1991 09:55
Oil & Grease		1.	mg/L

150Qr んとう Kelly Project Manager

NATIONAL ENVIRONMENTAL ® TESTING, INC.

NET Midwest, Inc. **Bartlett Division** 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

2.

32.

7.

0.9

0.42

0.07

1.

7.5

32.

733.

<0.01

1200.

0.0290

<0.050

0.477

Ms. Pixie Newman CH2M HILL 1890 Maple Avenue Suite 200 Evanston, IL 60201 04/10/1991

Sample No.: 129745

Date Received:

Time Received:

91.0236

Sample Description: DEC-SP-03-03 CHI28770.B0.SP; DuPont

Date	Taken:	03/28/1991
Time	Taken:	•

BOD, Fix Chloride COD, Tot Fluoride N-Ammoni	e cal e ia	
N-Nitrat		
N-Nitrit	ce	
Oil & Gi	rease	
pH		
Solids,	Total	Dissolved
	Total	Suspended
Sulfate		
Arsenic		
Copper		
Zinc		

mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L units mg/L mg/L mg/L mg/L mg/L

mg/L

3/29/9/ das

04/01/1991

09:18

Kelly Jones

Kelly Jones Project Manager

TO:	Pixie	Newman/CH2M HILL
	John	Fleissner/CH2M HILL

FROM: Dan MacGregor/CH2M HILL

DATE: April 11, 1991

SUBJECT: Data validation for Du Pont-East Chicago, Indiana seep samples.

PROJECT: CHI28770.B0.SP

INTRODUCTION

This memorandum presents the data validation discussion for the inorganic analytical results for samples collected on March 15, 21, and 28, 1991 at the Du Pont plant in East Chicago, Indiana. This seep sampling was done in compliance with the U.S. EPA requested "monthly monitoring program."

These seep samples were analyzed for major ions and selected metals by NET laboratories in Bartlett, Illinois. Sampling and transporting of these samples were performed under strict chain-of-custody procedures. Requested QA/QC data were limited to holding time data, chain of custody forms, calibration and procedure blank results, continuing calibration recovery results, sample duplicate results, matrix spike and matrix spike duplicate (MS/MSD) results, and laboratory spike results. The QA/QC and sample data were reviewed as described below.

HOLDING TIMES

The holding times for these inorganic analyses were inspected. All holding times were met, except for BOD and pH from the March 15th sampling and BOD from the March 28th sampling. The results for these analyses will be qualified as estimated "J".

CHAIN OF CUSTODY

The chain of custody forms were reviewed for accuracy and completeness. All necessary information was provided and was found to be accurate. All requested analyses were performed and the data packages were complete.

BLANKS

The calibration and procedure blank results were inspected for possible contaminants. The majority of blanks were free of compound concentrations at levels equal to or greater than their reporting limits. The procedure blank for the March 21st and 28th sample data contained low levels of copper. As a result, copper from the March 21st sampling was changed to <0.005 ppm, and the March 28th result did not contain copper, thus no qualifying action was required. Low levels of zinc were found in all procedure blanks, all zinc results were consequently qualified as estimated "J".

CONTINUING CALIBRATION RECOVERIES

Continuing calibration recoveries were within control limits for all compounds except, COD from the March 15th and 21st analyses, and total suspended solids from the March 21st and 28th analyses. The sample results for these parameters for these sampling dates will be qualified as estimated "J".

LABORATORY SPIKES

All laboratory spike recoveries were within control limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE FORTIFICATIONS

All matrix spike and matrix spike duplicate results were within control limits.

RESULTS

The results from these sampling events were compared with each other and with previous seep results. The majority of compound concentrations compared well. COD appears to be decreasing with time. With the exception of previously noted qualifiers, the results were found to be complete and accurate.

April Monthly Monitoring Report for the Groundwater Seep at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. Du Pont de Nemours & Company

May 10, 1991

CHI120/056.51

÷,

INTRODUCTION

In response to U.S. EPA's Section 308 Information Request, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for April 1991 specified in U.S. EPA's request.

SAMPLE COLLECTION AND ANALYSIS

Samples of the groundwater seep were obtained April 4, 11, 18, and 25, 1991. The flow rate of the seep averaged 0.32 gallons per minute (gpm) on April 4; 0.013 gpm on April 11; 1.57 gpm on April 18; and 1.12 gpm on April 25.

The "monthly monitoring program" sampling activities consisted of obtaining 8-hour composite samples of seep water collected at 0-, 4-, and 8-hour intervals. Seep flow rates were measured and recorded at each interval. Sample fractions collected for oil and grease, total suspended solids, and pH analyses were not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The samples were then analyzed for the following

1

constituents specified in U.S. EPA's request: BOD-five day, COD, ammonia-N, nitrate and nitrite, sulfate, chloride, fluoride, oil and grease, total dissolved solids, total suspended solids, arsenic, copper, zinc, and pH.

For quality assurance/quality control (QA/QC) purposes, a duplicate sample was collected on April 4.

On April 4, grab samples were collected at each composite sampling interval to compare their anaytical results to the composite sample analytical results.

ANALYTICAL RESULTS AND INTERPRETATION

Tables 1 and 2 summarize the analytical results of the "monthly monitoring program" for the seep during the month of April. The analytical results for the duplicate samples collected on April 4 are shown separated by a slash in the first data column of Table 1. All laboratory data sheets for the seep samples collected and analyzed during April for the "monthly monitoring program" are provided in Attachment 1. Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the April seep samples.

Four of the constituents being monitored have concentrations consistently at or below method detection limits: BOD-five day, oil and grease, nitrite, and copper. Reported concentrations for COD, ammonia-N, and nitrate were only slightly above their respective method detection

limits in the "one-time monitoring program" sample collected on March 6, 1991, and have remained at these levels throughout the "monthly monitoring program."

The remaining constituents analyzed as part of the "monthly monitoring program" for the seep have remained at relatively consistent levels over this reporting period. The only exception was the zinc concentration which appears to be directly related to seep flow rate.

Table 2 contains the analytical results of the duplicate pair of composite samples and the three grab samples obtained on April 4. Analytical results for each grab sample obtained compare well with those for the composite samples.

Only one constituent in each grab sample was detected at a level greater than 50-percent different than either of the composite samples. In the 0-hour grab sample, total suspended solids was detected at a level greater than 50-percent higher than in either of the composite samples. In both the 4- and 8-hour grab samples, COD was not detected, whereas in the composite samples COD was detected at 46 and 33 mg/l.

CONCLUSIONS

Based on the seep water analytical results obtained during March and April, it is recommended that the following constituents be eliminated from the "monthly monitoring program": BOD-five day, COD, nitrate, nitrite, ammonia-N, oil and grease, and copper.

3

Comparison of the analytical results for the grab samples and the composite samples obtained from the seep on April 4 supports the recommendation in the "March Monthly Monitoring Report" to switch to the collection of a grab sample instead of the 8-hour composite sample currently being collected.

The switch to grab sampling from composite sampling, and the elimination of laboratory analysis of the seven constituents recommended above, should be implemented as soon as possible.

TABLE 1

-

CONSTITUENTS DETECTED IN SEEP WATER APRIL MONTHLY MONITORING PROGRAM APRIL 1991

Sample ID:	DEC-SP1-4-1T	DEC-SP1-4-2T	DEC-SP1-4-3T	DEC-SP1-4-4T	
Lab:	NET	NET	NET	NET	
Lab ID:	130113/	130967	131461	131844	
	130114				
Date:	4/4/91	4/11/91	4/18/91	4/25/91	
Filtered (Yes/No):	Yes	Yes	Yes	Yes	Average
AVERAGE FLOW RATE (gpm)	0.32	0.13	1.57	1.12	0.78
WATER QUALITY PARAMETERS (mg/l)					
BOD-Five Day	43/43	1	•		2
COD	46J/33J		13	3	14
Chloride	28/34	30	32	36	32
Oil and Grease	*/*	*	1*J	1*8	1*
Fluoride	1.6J/1.0J	0.7	1.0J	1.0	1.0
Nitrogen, Ammonia	0.28/0.26	0.26	0.39	0.42	0.34
Nitrogen, Nitrate	0.20/0.16	0.25	0.64	0.81	0.47
Nitrogen, Nitrite	1				
Total Dissolved Solids	1180J/1170J	1260	1240	1370	1260
Total Suspended Solids	6*/9*	4*	8*	3*	6*
Sulfate	700/740	740	810	790	760
pH (lab)	7.2*/7.2*	7.2*	7.2*	7.3*	7.2*
TRACE INORGANIC COMPOUNDS (mg/l)					
Arsenic	0.030/0.028	0.0560	0.0451	0.052J	0.046
Copper	1				
Zinc	0.452/0.443	0.388	1.26	1.03	0.78

Notes:

 α_{i}

* Sample fraction not filtered.

No value denotes not detected.

J denotes estimated value.

B denotes blank contamination.

A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging.

TABLE 2

COMPARISON OF COMPOSITE SAMPLE ANALYTICAL RESULTS TO GRAB SAMPLE ANALYTICAL RESULTS

	Composite Sample	0-Hour Sample	4-Hour Sample	8-Hour Sample
Sample ID:	DEC-SP1-4-1T	DEC-SP1-4-1A	DEC-SP1-4-18	DEC-SP1-4-1C
Lab:	NET	KET	NET	NET
Lab ID:	130113/ 130114	130115	130116	130117
Date:	4/4/91	4/4/91	4/4/91	4/4/91
Filtered (Yes/No):	Yes	Yes	Yes	Yes
FLOW RATE (gpm)	0.32 (avg)	0.20	0.46	0.30
WATER QUALITY PARAMETEPS (mg/l)				
BOD-Five Day	4J/4J	5J	5J	3J
C00	46J/33J	42J		
Chloride	28/34	26	28	30
Oils and Grease	*/*	*	*	*
Fluoride	1.6J/1.0J	1.0J	0.9J	0.9J
Nitrogen, Ammonia	0.28/0.26	0.19	0.24	0.31
Nitrogen, Nitrate	0.20/0.16	0.14	0.10	0.10
Nitrogen, Nitrite Total Dissolved Solids	/	1000 /		44/01
	1180J/1170J	1090J	1100J	1160J 6*
Total Suspended Solids	6*/9*	27*	12*	•
Sulfate	700/740	740	720	780
pH (lab)	7.2*/7.2*	7.3*	7.0*	7.2*
TRACE INORGANIC COMPOUNDS (mg/l)				
Arsenic	0.030/0.028	0.019	0.027	0.045
Copper	/			
Zinc	0.452/0.443	0.328	0.462	0.460
21nc	0.452/0.443	0.328	0.462	0.460

÷

Notes: * Sample fraction not filtered. No value denotes not detected. J denotes estimated value.

Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

1

.

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Evanston, IL 60201

04/26/1991

Sample No.: 130113

Sample Description: DEC-SP1-4-1T CHI28770.BO.SP; DuPont

04/04/1991 Date Taken: Time Taken: 08:00

BOD, Five Day 4. Chloride 28. COD, Total 46. Fluoride 1.6 N-Ammonia 0.28 N-Nitrate 0.20 N-Nitrite <0.01 Oil & Grease <1. pН 7.2 Solids, Total Dissolved Solids, Total Suspended 1180. 6. Sulfate 700. Arsenic, AA 0.030 Copper, ICP <0.050 Zinc, ICP 0.452

Job No.: 91.0363

Date Received:

Time Received:

04/05/1991

09:50

Tielly Done

Kelly Jones Project Manager

Page 1

NATIONAL ENVIRONMENTAL TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Evanston, IL 60201

04/26/1991

Sample No.: 130114

Job No.: 91.0363

Sample Description: DEC-FRSP1-4-1T CHI28770.BO.SP; DuPont

Date Taken: 04/04/1991 Time Taken: 08:00

Date	Received:	04/05/1991
Time	Received:	09:50

mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
units
mg/L
mg/L
mg/L
mg/L

mg/L

mg/L

mg/L

Kelly Jones

Kelly Jones Project Manager

Page 2

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Evanston, IL 60201 04/26/1991

Sample No.: 130115

Job No.: 91.0363

Sample Description: DEC-SP1-4-1A CHI28770.BO.SP; DuPont

Date Taken: 04/04/1991 Time Taken: 09:41 Date Received: 04/05/1991 Time Received: 09:50

> mg/L mg/L mg/L mg/L mg/L

mg/L mg/L units mg/L mg/L mg/L

mg/L

mg/L

mg/L

BOD, Five Day	5.
Chloride	26.
COD, Total	42.
Fluoride	1.0
N-Ammonia	0.19
N-Nitrate	0.14
N-Nitrite	<0.01
Oil & Grease	<1.
pH	7.3
Solids, Total Dissolved	1090.
Solids, Total Suspended	27.
Sulfate	740.
Arsenic, AA	0.019
Copper, ICP	<0.050
Zinc, ICP	0.328

KElly

Kelly Jones Project Manager

NET NATIONAL ENVIRONMENTAL TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

0

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Evanston, IL 60201 04/26/1991

Sample No.: 130116

Job No.: 91.0363

Sample Description: DEC-SP1-4-1B CHI28770.BO.SP; DuPont

Date Taken: 04/04/1991 Time Taken: 13:17

Date	Received:	04/05/1991
Time	Received:	09:50

mg/L

units

BOD, Five Day	5.
Chloride	28.
COD, Total	<3.
Fluoride	0.9
N-Ammonia	0.24
N-Nitrate	0.10
N-Nitrite	<0.01
Oil & Grease	<1.
pH	7.0
Solids, Total Dissolved	1100.
Solids, Total Suspended	12.
Sulfate	720.
Arsenic, AA	0.027
Copper, ICP	<0.050
Zinc, ICP	0.462

Kelly

Kelly Jones Project Manager

Page 4

Tel: (708) 289-3100 Fax: (708) 289-5445

Ē

Ē

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Evanston, IL 60201 04/26/1991

Sample No.: 130117

Job No.: 91.0363

Sample Description: DEC-SP1-4-1C CHI28770, BO, SP: DW

Date Taken: 04/04/1991 Time Taken: 17:54

BOD, Five Day Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite Oil & Grease pH Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, AA Copper, ICP Zinc, ICP

CHI28770.BO.SP; DuPont

3.

30.

<3.

0.9

<1.

7.2

6.

1160.

780.

0.045

0.460

<0.050

0.31

0.10

<0.01

Date Received: 04/05/1991 Time Received: 09:50

Kelly Jones

Kelly Jones Project Manager

Page 5

NET NATIONAL ENVIRONMENTAL TESTING, INC.

Zinc, ICP

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

mg/L

ANALYTICAL REPORT

Ms. Susan Molholland 04/26/1991 CH2M HILL 1890 Maple Av. Sample No.: 130967 Suite 200 Evanston, IL 60016 Job No.: 91.0526 Sample Description: DEC-SP1-4-2T CHI28770.B0.SP; DuPont Date Taken: 04/12/1991 04/11/1991 Date Received: Time Taken: 17:00 Time Received: 09:45 BOD, Five Day 1. mg/L Chloride 30. mg/L COD, Total <3. mg/L Fluoride 0.7 mg/L N-Ammonia 0.26 mg/L N-Nitrate 0.25 mg/L N-Nitrite <0.01 mg/L Oil & Grease <1. mg/L pH 7.2 units Solids, Total Dissolved Solids, Total Suspended 1260. mg/L 4. mg/L 740. Sulfate mg/L Arsenic, AA 0.0560 mg/L Copper, ICP <0.020 mg/L

íely.

0.388

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

04/19/1991

09:40

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Avenue Evanston, IL 60201

Sample Description:

05/09/1991

Sample No.: 131461

Job No.: 91.0639

Date Received:

Time Received:

DEC-SP1-04-3T CH128770.B0.SP; DuPont

Date Taken: 04/18/1991 Time Taken: 00:00

BOD, Five Day Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite	<1. 32. 13. 1.0 0.39 0.64 <0.01	mg/L mg/L mg/L mg/L mg/L mg/L
Oil & Grease	1.	mg/L
pH	7.2	units
Solids, Total Dissolved	1240.	mg/L
Solids, Total Suspended	8.	mg/L
Sulfate	810.	mg/L
Arsenic, ICP	0.045	mg/L
Copper, ICP	<0.010	mg/L
Zinc, ICP	1.26	mg/L

KElly

KeTly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Avenue Evanston, IL 60201

05/09/1991

Sample No.: 131844

Job No.: 91.0784

Sample Description: DEC-SP1-4-4T; Comp. CH28770.B0.SP; DuPont

Date Taken: 04/25/1991 Time Taken: 08:00

	04/26/1991 09:30
	mcr / T.

BOD, Five Day Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite Oil & Grease pH Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, ICP Copper, ICP	<1. 36. 3. 1.0 0.42 0.81 <0.01 1. 7.3 1370. 3. 790. 0.052 <0.010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L
Copper, ICP Zinc, ICP	<0.010 1.03	mg/L mg/L

KElly

Kelly Jones Project Manager

Page 1

Attachment 2 Data Validation Summary Monthly Monitoring Program

*

CHEMIHILL

то:	Pixie Newman/CHI Susan Mulholland/CHI
FROM:	Dan MacGregor/GLO
DATE:	May 8, 1991
SUBJECT:	Data Validation for Seep Samples Du Pont East Chicago, Indiana
PROJECT:	CHI28770.B0.MR

INTRODUCTION

This memorandum presents the data validation discussion for the inorganic analytical results for samples collected on April 4, 11, 18 and 25, 1991, at the Du Pont plant in East Chicago, Indiana. Seep sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Seep samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-ofcustody procedures. Requested QA/QC data were limited to holding time data, chain-ofcustody forms, calibration and procedure blank results, initial calibration verification and standard recoveries, continuing calibration recovery results, sample duplicate results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/QC and sample data were reviewed as described below.

HOLDING TIMES

Inspection of holding times for the inorganic analyses showed that all holding times were met.

CHAIN OF CUSTODY

The chain of custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

BLANKS

The calibration and procedure blank results were inspected for possible contaminants. Most blanks were free of compound concentrations at levels equal to or greater than their reporting limits. The procedure blank for the April 4 sample data contained 130 ppm of total dissolved solids (TDS). The TDS concentration in the blank is approximately one-tenth the average sample concentration. The blank TDS concentration was determined to be insignificant in comparison to the sample concentrations, and thus the sample TDS results were not qualified. Oil and grease contamination at 2 ppm was found in the April 25 calibration blank, so all oil and grease results from that date were qualified as "B," blank contaminated. The procedure blank for the April 11 sample data contained low levels of copper. The April 11 sampling did not detect copper, so no qualifying action was required.

INITIAL CALIBRATION VERIFICATION AND STANDARD RECOVERIES

The initial calibration verification and standard recoveries were generally within control limits. Fluoride recoveries from the April 4 and 18 sampling were outside control limits. BOD recoveries from the April 4 and 25 samplings were below control limits. The sample results for these parameters for these sampling dates were qualified as "J," estimated.

CONTINUING CALIBRATION RECOVERIES

Continuing calibration recoveries were within control limits for all compounds except, fluoride from the April 18 sampling date. Fluoride recovery from that date was low, and so the fluoride result was qualified as "J."

LABORATORY SPIKES

The laboratory spike recoveries were below control limits for TDS (April 4) and oil and grease (April 18 and 25). The sample results for those parameters will be qualified as "J." All other laboratory spike recoveries were within control limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE FORTIFICATIONS

Generally the matrix spike and matrix spike duplicate results were within control limits. BOD and COD from the April 4 sampling were outside the control limits, as was arsenic from the April 18, and 25 sampling. Sample results for these parameters from these dates are qualified as estimated "J." RESULTS

During the April 4 sampling event, duplicate composite samples (DEC-SP1-4-1T and DEC-FRSP1-4-1T) were taken along with individual grab samples taken at specified times during the day (DEC-SP1-4-1A at 9:41, DEC-SP-1-4-1B at 13:17, and DEC-SP1-4-IC at 17:54). The individual grab samples compared well among themselves for all parameters except COD. The COD level was high in the initial sample, and then was less than the reporting limit in the next two samples. COD concentrations can vary greatly from sampling period to sampling period. The COD values associated with the site are typically very low. At these levels organic matter on glassware or from the atmosphere can cause variability in the results. The duplicate composite sample results compared closely with the grab sample results. Excluding the variability of the COD results, the difference in results from the two sampling plans are analytically insignificant. The results from this month's sampling events were compared with previous seep results, and the sample results compared well. With the exception of previously noted qualifiers, the results were found to be complete and accurate.

May Monthly Monitoring Report for the Groundwater Seep at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. Du Pont de Nemours & Company

June 12, 1991

4

CHI120/056.51

INTRODUCTION

In response to U.S. EPA's Section 308 Information Request, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for May 1991 specified in U.S. EPA's request.

SAMPLE COLLECTION AND ANALYSIS

Samples of the groundwater seep were collected on May 2, 9, 16, 23, and 30, 1991. The flow rate of the seep averaged 0.48 gallons per minute (gpm) on May 2; 0.97 gpm on May 9; 0.78 gpm on May 16; 0.87 gpm on May 23; and 1.2 gpm on May 30.

The "monthly monitoring program" sampling activities consisted of obtaining an 8-hour composite sample of seep water collected at 0-, 4-, and 8-hour intervals, once per week. Seep flow rates were measured and recorded at each sampling interval. Sample fractions collected for oil and grease, total suspended solids, and pH analyses were not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The samples were then analyzed for the following

constituents specified in U.S. EPA's request: BOD-five day, COD, ammonia-N, nitrate, nitrite, sulfate, chloride, fluoride, oil and grease, total dissolved solids, total suspended solids, arsenic, copper, zinc, and pH.

For quality assurance/quality control (QA/QC) purposes, a duplicate sample and a field blank were collected on May 2.

ANALYTICAL RESULTS AND INTERPRETATION

Table 1 summarizes the analytical results of the "monthly monitoring program" for the seep during the month of May. The analytical results for the duplicate samples collected on May 2 are shown separated by a slash in the first data column of Table 1. All laboratory data sheets for the seep samples collected and analyzed during May for the "monthly monitoring program" are provided in Attachment 1. Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the May seep samples.

Three of the constituents being monitored have concentrations consistently at or below method detection limits: oil and grease, nitrite, and copper. Reported concentrations for BOD-five day and COD were only slightly above their respective method detection limits in the "one-time monitoring program" sample collected on March 6, 1991, and have remained at these levels throughout the "monthly monitoring program." The remaining constituents analyzed as part of the "monthly monitoring program" for the seep have remained at relatively consistent levels over the reporting period with the following exceptions: ammonia-N, nitrate, arsenic, and zinc. Ammonia-N levels have ranged from 0.41 to 0.75 mg/l; nitrate levels have ranged from 0.16 to 2.31 mg/l; arsenic levels have ranged from 0.015 to 0.085 mg/l; and zinc levels have ranged from 0.373 to 0.717 mg/l. As was the case in April, zinc concentration appears to increase with increases in seep flow rate.

Although minor variations have been observed from week to week, average parameter values for the two sets of complete monthly monitoring data (April and May) are very similar (Table 2).

TABLE 1

,

CONSTITUENTS DETECTED IN SEEP WATER MAY MONTHLY MONITORING PROGRAM MAY 1991

	Sample ID: Lab:	DEC-SP1-5-1T	DEC-SP1-5-2T	DEC-SP1-5-3T	DEC-SP1-5-4T	DEC-SP1-5-5T	
	Lab: Lab 10:	NET	NET	NET	NET	NET	
		132290/ 132291	132803	137120	141634	141977	
	Date:	5/2/91	5/9/91	5/16/91	5/23/91	5/30/91	
	Filtered (Yes/No):	Yes	Yes	Yes	Yes	Yes	Average
ł	AVERAGE FLOW RATE (gpm)	0.48	0.97	0.78	0.87	1.2	0.86
5	WATER QUALITY PARAMETERS (mg/l)						
	BOD-Five Day	5/	2	2	2	7	2
	COD	29J/59J	13		16		15
	Chloride	16/32	38	28	42	26	32
	Oil and Grease	1*J/3*J	1*	1*J	2*B		1*
	Fluoride	0.1/1.0	0.9J	2.8	0.7	0.9	1.2
	Nitrogen, Ammonia	0.41/0.45	0.47	0.61	0.75	0.66	0.58
	Nitrogen, Nitrate	0.16/0.18	1.12	2.31	2.22	0.71	1.3
	Nitrogen, Nitrite	1					
	Total Dissolved Solids	1370/1380	1420	1420	1400	1420	1400
	Total Suspended Solids	4*/*	7*	11*	8*J	4*	6*
	Sulfate	1120/930	830	790	770	790	840
	pH (lab)	7.2*/7.2*	7.0*	7.0*	7.2*	7.1*	7.1*
٦	TRACE INORGANIC COMPOUNDS (mg/l)						
	Arsenic	0.0450/0.0460	0.052J	0.0710J	0.015	0.0850	0.054
	Copper	1					,
	Zinc	0.4528/0.4658	0.676	0.373	0.496	0.717	0.544

Notes:

ł

* Sample fraction not filtered.

No value denotes not detected.

J denotes estimated value.

B denotes blank contamination.

A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging.

TABLE 2

_

AVERAGE CONCENTRATIONS IN SEEP WATER MONTHLY MONITORING PROGRAM

	April	May
AVERAGE FLOW RATE (gpm)	0.78	0.86
WATER QUALITY PARAMETERS (mg/l)		
BOD-Five Day	2	2
COD	14	15
Chloride	32	32
Oil and Grease	1*	1*
Fluoride	1.0	1.2
Nitrogen, Ammonia	0.34	0.58
Nitrogen, Nitrate	0.47	1.3
Nitrogen, Nitrite		
Total Dissolved Solids	1260	1400
Total Suspended Solids	6*	6*
Sulfate	760	840
pH (lab)	7.2*	7.1*
TRACE INORGANIC COMPOUNDS (mg/l)		
Arsenic	0.046	0.054
Copper		
Zinc	0.78	0.544

Notes:

ĩ

* Sample fraction not filtered. No value denotes not detected.

A value of one-half the detection limit used in averaging not detected value The average value of the duplicate sample results used in overall averaging.

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave. Suite 200 Evanston, IL 60201 05/16/1991

Sample No.: 132290

Job No.: 91.0939

Sample Description: DEC-SP1-5-1T CH128770.B0.MS; DuPont

Date Taken: 05/02/1991		e Received:	05/03/1991
Time Taken: 08:00		e Received:	09:45
BOD, Five Day Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite Oil & Grease pH Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, AA Copper, ICP Zinc, ICP	5. 16. 29. 0.1 0.41 0.16 <0.01 1. 7.2 1370. 4. 1120. 0.0450 <0.010 0.452		ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L

KEDLY Kel M Jones

Project Manager

1

NET NATIONAL ENVIRONMENTAL TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

0

ANALYTICAL REPORT

<1.

32.

59.

1.0

0.45

0.18

3.

7.2

<1.

930.

0.0460

<0.010

0.465

<0.01

1380.

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave. Suite 200 Evanston, IL 60201 05/16/1991

Sample No.: 132291

Job No.: 91.0939

Date Received:

Time Received:

Sample Description: DEC-FRSP1-5-1T CH128770.B0.MS; DuPont

Date Taken: 05/02/1991 Time Taken: 08:00

BOD, Five Day Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite Oil & Grease pH
Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, AA Copper, ICP Zinc, ICP

mg/L mg/L mg/L mg/L mg/L units mg/L mg/L mg/L mg/L mg/L mg/L

05/03/1991

09:45

mg/L

mg/L

mg/L

Kelly Jones Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave. Suite 200 Evanston, IL 60201 05/16/1991

Sample No.: 132292

Job No.: 91.0939

Sample Description: DEC-FBSP1-5-1T CH128770.B0.MS; DuPont

Date Taken: 05/02/1991 Time Taken: 08:00

Date	Received:	05/03/1991
Time	Received:	09:45

BOD, Five Day Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite Oil & Grease pH Solids, Total Dissolved Solids, Total Suspended	1. 2. 20. <0.1 0.05 0.59 <0.01 3. 5.5 7.	mg/L mg/L mg/L mg/L mg/L mg/L units mg/L
Oil & Grease	3.	mg/L
рH	5.5	units
Solids, Total Dissolved	7.	mg/L
Solids, Total Suspended	4.	mg/L
Sulfate	<4.	mg/L
Arsenic, AA	<0.0050	mg/L
Copper, ICP	<0.010	mg/L
Zinc, ÍCP	0.048	mg/L

Kelly Jones

Kelly Jones Project Manager NATIONAL ENVIRONMENTAL ® TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

0

ANALYTICAL REPORT

Ms. Susan Mulholland 05/23/1991 CH2M HILL 1890 Maple Av. Sample No.: 132803 Suite 200 Job No.: 91.1095 Evanston, IL 60016 Sample Description: DEC-SP1-5-2T CH28770.B0.MS; DuPont Date Taken: 05/09/1991 Date Received: 05/10/1991 Time Taken: 16:00 Time Received: 10:00 BOD, Five Day 2. mg/L Chloride 38. mg/L COD, Total 13. mg/L Fluoride 0.9 mg/L N-Ammonia 0.47 mg/L N-Nitrate 1.12 mg/L N-Nitrite <0.01 mg/L Oil & Grease 1. mg/L 7.0 рH units Solids, Total Dissolved 1420. mg/L Solids, Total Suspended 7. mg/L Sulfate 830. mg/L Arsenic, AA 0.052 mg/L <0.050 Copper, AA mg/L KElly Zinc, AA mg/L 76 Kelly Jones

Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Avenue Evanston, IL 60201 05/31/1991

Sample No.: 137120

Job No.: 91.1220

Sample Description: DEC-SP1-5-3T; Composite CH128770.30.MS; DuPont

Date Taken: 05/16/1991 Time Taken:

	Received:	05/17/1991
Time	Received:	10:00

BOD, Five Day Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite Oil & Grease pH Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, AA Copper, AA Zinc, AA	2. 28. <3. 2.8 0.61 2.31 <0.01 1. 7.0 1420. 11. 790. 0.0710 <0.050 0.373	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L
--	--	--

Kelly Jones

Kelly Jones Project Manager

 NATIONAL
 ENVIRONMENTAL
 TESTING, INC.

NET Midwest, Inc. **Bartlett Division** 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

mg/L

mg/L

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Avenue Suite 200 Evanston, IL 60201

Copper, AA

Zinc, AA

06/11/1991

Sample No.: 141634

Job No.: 91.1396

Sample Description: DEC-SP1-5-4T CH128770.B0.3S; DuPont

Date Taken: 05/23/1991 Time Taken: 08:00	Time Received:	09:45
BOD, Five Day2.Chloride42.COD, Total16.Fluoride0.7N-Ammonia0.75N-Nitrate2.22N-Nitrite<0.01		mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

<0.050

0.496

KElly Jones

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Mr. Susan Mulholland CH2M HILL 1890 Maple Avenue Suite 200 Evanston, IL 60201

06/11/1991

Sample No.: 141977

Job No.: 91.1492

Sample Description: DEC-SP1-5-5T; Comp CH128770.BO.MS; DuPont

Date	Taken:	05/30/1991
Time	Taken:	10:00

Date Received:	05/31/1991
Time Received:	10:00

3. 26. <3. 0.9 0.66 0.71 <0.01 <1. 7.1 1420. 4. 790. 0.0850 <0.050	mg/L mg/L mg/L mg/L mg/L mg/L units mg/L mg/L mg/L mg/L mg/L
	mg/L mg/L
	26. <3. 0.9 0.66 0.71 <0.01 <1. 7.1 1420. 4. 790. 0.0850 <0.050

KE00 .. Kelly Jones Project Manager

MEMORANDUM

CHAMHILL

TO: Pixie Newman

FROM: Dan MacGregor/GLO

DATE: June 12, 1991

SUBJECT: Data Validation for Seep Samples Du Pont East Chicago, Indiana

PROJECT: CHI28770.B0.MR

INTRODUCTION

This memorandum presents the data validation discussion for the inorganic analytical results for samples collected on May 2, 9, 16, 23, and 30, 1991, at the Du Pont plant in East Chicago, Indiana. Seep sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Seep samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-of-custody procedures. Requested QA/QC data were limited to holding time data, chain-of-custody forms, calibration and procedure blank results, initial calibration verification and standard recoveries, continuing calibration recovery results, sample duplicate results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/QC and sample data were reviewed as described below.

HOLDING TIMES

Inspection of holding times for the inorganic analyses showed that all holding times, with the exception of total suspended solids (TSS) from the May 23 sampling, were met. The TSS result from that date was qualified as estimated "J."

CHAIN OF CUSTODY

The chain of custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

M E M O R A N D U M Page 2 June 12, 1991 CHI28770.B0.MR

BLANKS

A field blank was collected and analyzed as part of the May 2nd sampling event. The field blank contained low levels of BOD, chloride, COD, ammonia, nitrate, oil and grease, and total suspended and dissolved solids. The field blank water was a commercially available brand of distilled water. The quality of this water is unknown, thus making it inappropriate to qualify any data results based on this information. The field blank results demonstrate that any contamination that was occurring was of analytically insignificant proportion.

The calibration and procedure blank results were inspected for possible contaminants. All but two blanks were free of compound concentrations at levels equal to or greater than their reporting limits. Oil and grease contamination, at 2 ppm, was found in the May 23 procedure blank, and zinc at 0.037 ppm was found in the May 2 procedure blank. The oil and grease and zinc results from these dates were qualified as blank contaminated "B."

INITIAL CALIBRATION VERIFICATION STANDARD RECOVERIES

The initial calibration verification standard recoveries were generally within control limits. The fluoride recovery from the May 9 sampling was above control limits, and the arsenic recovery from the May 16 sampling was below control limits. The sample results for these parameters for these sampling dates were qualified as "J," estimated.

CONTINUING CALIBRATION RECOVERIES

Continuing calibration recoveries were within control limits for all compounds except arsenic from the May 16 sampling and total COD from the May 2 sampling. Due to the arsenic result from this date being previously qualified as estimated, no further qualifying action was required for arsenic. The COD results from the May 2 sampling were qualified as estimated "J."

LABORATORY CONTROL SPIKES

The oil and grease laboratory control spike recoveries were below control limits for the May 2, 16, and 23, sampling dates. The sample result for oil and grease from the May 23 sampling date had been previously qualified as blank contaminated, so this result required no further

M E M O R A N D U M Page 3 June 12, 1991 CHI28770.B0.MR

qualifying action. The May 2 and 16 results were qualified as estimated "J." All other laboratory spike recoveries were within control limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE FORTIFICATIONS

Generally the matrix spike and matrix spike duplicate results were within control limits. Oil and grease from the May 16 sampling, arsenic from the May 9 sampling, and zinc from the May 2 sampling were outside control limits. Sample results for oil and grease and arsenic from their respective dates were qualified as estimated "J." The May 2 zinc results were previously qualified as blank contaminated, so no additional qualifiers for this compound were required.

RESULTS

During the May 2 sampling event, duplicate composite samples (DEC-SP1-5-1T and DEC-FRSP1-5-1T) were taken. These sample results did not compare well. The duplicate sample results varied by as much as a factor of ten. The sample results associated with the site are typically very low. At these levels some variance should be expected. To further check sample precision, results from this month's sampling events were compared with previous seep results. In reviewing these results it was noted that the results from this round of sampling fell into the range of previous sample results, so no qualifying action due to poor sample precision was taken.

With the exception of previously noted qualifiers, all results were found to be complete and accurate.

CHI181/012.51

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Evanston, IL 60201 07/09/1991

Sample No.: 143833

Job No.: 91.2024

Sample Description: DEC-SP1-6-3 CHI28770.B0.MS; DuPont

Date Taken:	06/27/1991	Date Received:	06/28/1991
Time Taken:	13:22	Time Received:	10:00

Chloride	24.	mg/L
COD, Total	29.	mg/L
Fluoride	1.5	mg/L
N-Ammonia	1.03	mg/L
N-Nitrate	0.08	mg/L
N-Nitrite	<0.01	mg/L
рН	7.0	units
Solids, Total Dissolved	1260.	mg/L
Solids, Total Suspended	71.	mg/L
Sulfate	850.	mg/L
Arsenic, AA	0.0650	mg/L
Zinc,ICP	0.473	mg/L

Kelly Jones Kelly Jones

Project Manager

June Monthly Monitoring Report for the Groundwater Seep at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. Du Pont de Nemours & Company

July 10, 1991

•

CHI120/056.51

INTRODUCTION

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep referenced in that request at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for June 1991.

SAMPLE COLLECTION AND ANALYSIS

Samples of the groundwater seep were collected on June 6, 13, 20, and 27, 1991. The flow rate of the seep averaged 1.25 gallons per minute (gpm) on June 6; 1.15 gpm on June 13; 0.88 gpm on June 20; and 0.18 gpm on June 27.

The June "monthly monitoring program" sampling activities consisted of obtaining a grab sample of seep water once per week. Seep flow rates were measured and recorded at each sampling interval. Sample fractions collected for oil and grease, total suspended solids, and pH analyses were not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The samples collected on June 6 were analyzed for the following constituents specified in U.S. EPA's request: BOD-five day, COD, ammonia-N,

1

nitrate, nitrite, sulfate, chloride, fluoride, oil and grease, total dissolved solids, total suspended solids, arsenic, copper, zinc, and pH. The samples collected later in the month were analyzed for all of the constituents listed above, except BOD-five day, oil and grease, and copper. Du Pont received verbal approval from U.S. EPA to eliminate these three constituents from the monthly monitoring program prior to the collection of the seep sample during the second week of June.

For quality assurance/quality control (QA/QC) purposes, a duplicate sample was collected on June 6.

ANALYTICAL RESULTS AND INTERPRETATION

Table 1 summarizes the analytical results of the "monthly monitoring program" for the seep during the month of June. The analytical results for the duplicate samples collected on June 6 are shown separated by a slash in the first data column of Table 1. All laboratory data sheets for the seep samples collected and analyzed during June for the "monthly monitoring program" are provided in Attachment 1. Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the June seep samples.

Seep constituents remained at relatively consistent levels during June with the following exceptions: ammonia-N, nitrate, and total suspended solids. Ammonia-N levels ranged from 0.46 to 2.56 mg/l; nitrate levels ranged from 0.08 to 3.46 mg/l; and total suspended solids

2

levels ranged from 7 to 71 mg/l.

Average parameter values for the three sets of complete monthly monitoring data (April, May, and June) are shown in Table 2.

TABLE 1

CONSTITUENTS DETECTED IN SEEP WATER JUNE MONTHLY MONITORING PROGRAM JUNE 1991

Sample ID:	DEC-SP1-G-1	DEC-SP1-6-2T	DEC-SP1-6-3	DEC-SP1-6-3	
Lab:	NET	NET	NET	NET	
Lab ID:	142472/	143057	143439	143833	
	142473				
Date:	6/6/91	6/13/91	6/20/91	6/27/91	
Filtered (Yes/No):	Yes	Yes	Yes	Yes	Average
AVERAGE FLOW RATE (gpm)	1.25	1.15	0.88	0.18	0.87
WATER QUALITY PARAMETERS (mg/l)					
BOD-Five Day	1/	NA	NA	NA	NC
COD	/13	29	26	29	23
Chloride	26/26	20	28	24	25
Oil and Grease	1*/1*	NA	NA	NA	NC
Fluoride	0.8J/0.8J	0.6	1.1	1.5	1.0
Nitrogen, Ammonia	0.56/2.56	0.46	0.60	1.03	0.91
Nitrogen, Nitrate	1.433/3.463	0.94	0.31	0.08	0.94
Nitrogen, Nitrite	1	0.04			0.01
Total Dissolved Solids	1360/1400	380	1410	1260	1110
Total Suspended Solids	11*/7*	8*	19*	71*	27*
Sulfate	870/840	490J	780J	850	740
pH (Lab)	7.0*/7.1*	7.0*	6.9*	7.0*	7.0*
TRACE INORGANIC COMPOUNDS (mg/l)					
Arsenic	0.073/0.071	0.0340	0.0990	0.0650	0.068
Copper	/	NA	NA	NA	NC
Zinc	0.981/0.977	0.454B	0.634B	0.4738	0.635

Notes:

* Sample fraction not filtered.

No value denotes not detected.

NA denotes not analyzed.

NC denotes not calculated (constituent eliminated from monthly monitoring program).

J denotes estimated value.

B denotes blank contamination.

A value of one-half the detection limit used in averaging not detected values.

The average value of the duplicate sample results used in overall averaging.

÷

TABLE 2

AVERAGE CONCENTRATIONS IN SEEP WATER MONTHLY MONITORING PROGRAM

April	May	June
0.78	0.86	0.87
2	2	NC
14	15	23
32	32	25
1*	1*	NC
1.0	1.2	1.0
		0.91
0.47	1.3	0.94
		0.01
1260	1400	1110
6*		27*
760	-	740
7.2*	7.1*	7.0*
0.046	0.054	0.068
		NC
0.78	0.544	0.635
	2 14 32 1* 1.0 0.34 0.47 1260 6* 760 7.2*	0.78 0.86 22141532321*1*1.01.2 0.34 0.58 0.47 1.3126014006* $ć*$ 7608407.2*7.1* 0.046 0.054

Notes:

* Sample fraction not filtered. No value denotes not detected.

NC denotes not calculated (constituent eliminated from monthly monitoring program). A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging.

Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

·

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

T66T 8 7 100T

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave Suite 200 Evanston, IL 60201

06/25/1991	1
Sample No. 142472	ل
Job No.: 91.1642	

Sample	Description:	DEC-SP1-G-1	
		CH128770.B0.SP;	DuPont

Date Taken: Time Taken:		Date Received: Time Received:	
TIME IUNCIII	03100	TIME RECEIVED.	09.30

BOD, Five Day	1.	mg/L
Chloride	26.	mg/L
COD, Total	<3.	mg/L
Fluoride	0.8	mg/L
N-Ammonia	0.56	mg/L
N-Nitrate	1.43	mg/L
N-Nitrite	<0.01	mg/L
Oil & Grease	1.	mg/L
рН	7.0	units
Solids, Total Dissolved	1360.	mg/L
Solids, Total Suspended	11.	mg/L
Sulfate	870.	mg/L
Arsenic, AA	0.073	mg/L
Copper, ICP	Kelly Jones 050	mg/L
	Keffy Jones Project Manager	

NET NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

0

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave Suite 200 Evanston, IL 60201 06/25/1991

Sample No.: 142472

Job No.: 91.1642

Sample Description: DEC-SP1-G-1 CH128770.B0.SP; DuPont

Date Taken:	06/06/1991	Date Received:	06/07/1991
Time Taken:	09:00	Time Received:	09:30

Zinc, ICP

0.981 mg/L

Kelly Jones

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave Suite 200 Evanston, IL 60201 06/25/1991

Sample No.: 142473 Job No.: 91.1642

Sample Description: DEC-FRSP1-G-1 CH128770.E0.SP; DuPont

Date Taken:		Date Received:	06/07/1991
Time Taken:	09:00	Time Received:	

BOD, Five Day	<1.	mg/L
Chloride	26.	mg/L
COD, Total	13.	mg/L
Fluoride	0.8	mg/L
N-Ammonia	2.56	mg/L
N-Nitrate	3.46	mg/L
N-Nitrite	<0.01	mg/L
Oil & Grease	1.	mg/L
рН	7.1	units
Solids, Total Dissolved	1400.	mg/L
Solids, Total Suspended	7.	mg/L
Sulfate	840.	mg/L
Arsenic, AA	0.071	mg/L
Copper, ICP	Kelly Jones	mg/L
	Kelly Jones	

Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave Suite 200 Evanston, IL 60201 06/25/1991

Sample No.: 142473

Job No.: 91.1642

Sample	Description:	DEC-FRSP1-G-1	
-	_	CH128770.B0.SP;	DuPont

 Date Taken:
 06/06/1991
 Date Received:
 06/07/1991

 Time Taken:
 09:00
 Time Received:
 09:30

Zinc, ICP

0.977 mg/L

KED Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave Suite 200 Evanston, IL 60201 07/01/1991

Sample No.: 143057 Job No.: 91.1772

Sample Description:	DEC-SP1-6-2T
	CHI28770.B0.MS DuPont

Date Taken:		Date Received:	06/14/1991
Time Taken:	12:00	Time Received:	10:45

Chloride	20.	mg/L
COD, Total	29.	mg/L
Fluoride	0.6	mg/L
N-Ammonia	0.46	mg/L
N-Nitrate	0.94	mg/L
N-Nitrite	0.04	mg/L
рН	7.0	units
Solids, Total Dissolved	380.	mg/L
Solids, Total Suspended	8.	mg/L
Sulfate	490.	mg/L
Arsenic, AA	0.0340	mg/L
Zinc, ICP	0.454	mg/L

Kelly Jones Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave Suite 200 Evanston, IL 60201

07/03/1991

Sample No.: 143439 Job No.: 91.1913

Sample Description: DEC-SP1-6-3 CH128770.B0.MS; DuPont

Date Taken: Time Taken:		Date Received: Time Received:	
----------------------------	--	----------------------------------	--

Chloride	28.	mg/L
COD, Total	26.	mg/L
Fluoride	1.1	mg/L
N-Ammonia	0.60	mg/L
N-Nitrate	0.31	mg/L
N-Nitrite	<0.01	mg/L
рН	6.9	units
Solids, Total Dissolved	1410.	mg/L
Solids, Total Dissolved Solids, Total Suspended	1410. 19.	mg/L mg/L
Solids, Total Suspended	19.	mg/L

Kelly Dones Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Evanston, IL 60201 07/09/1991

Sample No.: 143833

Job No.: 91.2024

Sample	Description:	DEC-SP1-6-3	
		CHI28770.B0.MS;	DuPont

Date Taken:	06/27/1991	Date Received:	
Time Taken:	13:22	Time Received:	10:00

Chloride	24.	mg/L
COD, Total	29.	mg/L
Fluoride	1.5	mg/L
N-Ammonia	1.03	mg/L
N-Nitrate	0.08	mg/L
N-Nitrite	<0.01	mg/L
рН	7.0	units
Solids, Total Dissolved	1260.	mg/L
Solids, Total Suspended	71.	mg/L
Sulfate	850.	mg/L
Arsenic, AA	0.0650	mg/L
Zinc,ICP	0.473	mg/L

KElly

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Evanston, IL 60201

07/09/1991 Sample No.: 143833

Job No.: 91.2024

Sample Description: DEC-SP1-6-3 CHI28770.B0.MS; DuPont

NATIONAL ENVIRONMENTAL ® TESTING, INC.

Date Taken:	06/27/1991	Date Received:	06/28/1991
Time Taken:	13:22	Time Received:	10:00

Chloride	24.	mg/L
COD, Total	29.	mg/L
Fluoride	1.5	mg/L
N-Ammonia	1.03	mg/L
N-Nitrate	0.08	mg/L
N-Nitrite	<0.01	mg/L
pH	7.0	units
pH Solids, Total Dissolved	7.0 1260.	units mg/L
-		
Solids, Total Dissolved	1260.	mg/L
Solids, Total Dissolved Solids, Total Suspended	1260. 71.	mg/L mg/L

KElly Kelly Jones Project Manager

Attachment 2 Data Validation Summary Monthly Monitoring Program

TO:	Pixie Newman/CHI Susan Mulholland/CHI
FROM:	Dan MacGregor/GLO
DATE:	July 8, 1991
SUBJECT:	Data Validation for Seep Samples Du Pont East Chicago, Indiana
PROJECT:	CHI28770.B0.MR

INTRODUCTION

This memorandum presents the data validation discussion for the inorganic analytical results for samples collected on June 6, 13, 20, and 27, 1991, at the Du Pont plant in East Chicago, Indiana. Seep sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Seep samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-ofcustody procedures. Requested QA/QC data were limited to holding time data, chain-ofcustody forms, calibration and procedure blank results, initial calibration verification and standard recoveries, continuing calibration recovery results, sample duplicate results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/QC and sample data were reviewed as described below.

HOLDING TIMES

Inspection of holding times for the inorganic analyses showed that all holding times were met.

CHAIN OF CUSTODY

The chain of custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

BLANKS

The calibration and procedure blank results were inspected for possible contaminants. Zinc was found in the June 13, 20, and 27 procedure blanks. Zinc results from these dates were qualified as blank contaminated "B." All other blanks were free of compound concentrations at levels equal to or greater than their reporting limits.

INITIAL CALIBRATION VERIFICATION STANDARD RECOVERIES

The initial calibration verification standard recoveries were generally within control limits. Fluoride and nitrate recoveries from the June 6 sampling were above control limits, as was the zinc standard recovery from the June 13 sampling. The June 6 fluoride and nitrate sample results were qualified as "J," estimated. Due to the zinc result from the June 13 sampling date being previously qualified as blank contaminated, no further qualifying action was taken.

CONTINUING CALIBRATION RECOVERIES

Continuing calibration recoveries were found to be within control limits for all compounds.

LABORATORY CONTROL SPIKES

All laboratory spike recoveries were within control limits. No qualifying action was required.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE FORTIFICATIONS

Generally the matrix spike and matrix spike duplicate results were within control limits. Nitrite from the June 6 sampling, and sulfate from the June 13 and 20 samplings were found to have high relative percent differences. The June 6 sampling contained no nitrite so no qualifying action for this compound was required. The sulfate results for the two above mentioned dates were qualified as estimated "J."

RESULTS

Duplicate samples (DEC-SP1-G-1 and DEC-FRSP1-G-1) were taken during the June 6th sampling event, these sample results compared well. The results from this round of sampling were compared, and found to be consistent, with data from previous sample events.

With the exception of previously noted qualifiers, all results were found to be complete and accurate.

July Monthly Monitoring Report for the Groundwater Seeps at the DuPont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

August 23, 1991

¢.

INTRODUCTION

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991 and U.S. EPA's amended Information Request dated June 27, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep (Groundwater Seep 1) referenced in the original request and the other two groundwater seeps (Groundwater Seeps 2 and 3) referenced in the amended request at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for July 1991.

SAMPLE COLLECTION AND ANALYSIS

The July "monthly monitoring program" sampling activities consisted of monitoring groundwater seep conditions and obtaining a grab sample from each seep, if possible, once per week. Monitoring was performed on July 2, 11, 18, and 25, 1991. Seep flow rates were measured and recorded during each sampling event (Table 1). Samples were collected from Groundwater Seep 1 on July 2, 11, 18, and 25. Samples from Groundwater Seeps 2 and 3 were not collected because the seeps were either dry or submerged* at the time. Sample fractions collected for total suspended solids and pH analyses were not filtered. All other sample fractions were filtered.

Note:

When a groundwater seep becomes submerged beneath the surface of a water body, it (by definition) is no longer a seep and technically is no different than the rest of the groundwater discharge to that surface water body. There is no simple way to measure and distinguish this discharge from the rest of the groundwater discharge to the Grand Calumet River.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The samples collected from Groundwater Seep 1 were analyzed for the following constituents: COD, ammonia-N, nitrate, nitrite, sulfate, chloride, fluoride, total dissolved solids, total suspended solids, arsenic, zinc, and pH. The samples collected from Groundwater Seeps 2 and 3 were to be analyzed for all of the constituents listed above, plus BOD-five day, oil and grease, and copper, as originally requested. In the amended request, BOD-five day, oil and grease, and copper were dropped from the Groundwater Seep 1 monitoring.

For quality assurance/quality control (QA/QC) purposes, a duplicate sample was collected from Groundwater Seep 1 on July 2.

ANALYTICAL RESULTS AND INTERPRETATION

Table 2 summarizes the analytical results of the "monthly monitoring program" for the month of July. The analytical results for the duplicate samples collected on July 2 are shown separated by a slash in the first data column of Table 2. All laboratory data sheets for samples collected and analyzed during July for the "monthly monitoring program" are provided in Attachment 1. Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the July seep samples.

Groundwater Seep 1 constituents remained at relatively consistent levels during July with the following exceptions: COD and total suspended solids. COD levels ranged from less than 3 to 39 mg/l and total suspended solids levels ranged from 23 to 236 mg/l.

Comparing the July data to that collected in preceding months, several observations were made. The average COD level for July was consistent with the range of COD level averages during April, May, and June (Table 3). The July average for total suspended solids was higher than the averages for the preceding months. Arsenic levels appear to be higher in July than in the preceding months.

GROUNDWATER SEEP FLOW RATES (GPM)

.

Date	Groundwater Seep 1	Groundwater Seep 2	Groundwater Seep 3
			
July 2	0.93	NP**	NP**
July 11	0.72	NP*	NP**
July 18	0.48	NP*	NP**
July 25	0.35	NP*	NP**

Notes:

NP* denotes not present. No flow. Groundwater seep location dry.

.

NP** denotes not present. Groundwater seep location submerged below river surface. When a groundwater seep becomes submerged beneath the surface of a water body, it (by definition) is no longer a seep and technically is no different than the rest of the groundwater discharge to that surface water body. There is no simple way to measure and distinguish this discharge from the rest of the groundwater discharge to the Grand Calumet River.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 1 JULY MONTHLY MONITORING PROGRAM JULY 1991

Sample ID: Lab: Lab ID:	DEC-SP1-7-1 NET 144148/	DEC-SP1-7-2 NET 144650	DEC-SP1-7-3 NET 145143	DEC-SP1-7-4 NET 145559	
Date:	144149 7/2/91	7/11/91	7/18/91	7/25/91	
Filtered (Yes/No):	Yes	Yes	Yes	Yes	Average
AVERAGE FLOW RATE (gpm)	0.93	0.72	0.48	0.35	0.62
WATER QUALITY PARAMETERS (mg/l)					
COD	29/29	39	7		19
Chloride	28/24	20	26	28	25
Fluoride	1.3/1.0	0.8J	0.9J	1.5J	1.1
Nitrogen, Ammonia	0.768/0.77B		0.58B	0.75	0.53
Nitrogen, Nitrate	0.28/0.13	**	0.53	0.32	0.35
Nitrogen, Nitrite	1	**			
Total Dissolved Solids	1310/1220	1320	1550	1240	1340
Total Suspended Solids	23*/38*	135*	236*J	178*	145*
Sulfate	800/800	900	800	810	830
pH (lab)	6.8*/6.8*	7.0*	7.0*	7.0*	7.0*
TRACE INORGANIC COMPOUNDS (mg/l)					
Arsenic	0.1800/0.1690	0.1320	0.104	UJ	0.103
Zinc	1.038/0.932	0.553	0.260B	0.513B	0.578

Notes:

* Sample fraction not filtered.

**Sample analyzed, in error, for Nitrate + Nitrite (0.11 mg/l) instead of Nitrate and Nitrite. No value denotes not detected.

NA denotes not analyzed.

J denotes estimated value.

B denotes blank contamination.

UJ denotes not detected and possibly biased low.

A value of one-half the detection limit used in averaging not detected values.

The average value of the duplicate sample results used in overall averaging.

•

•

•

AVERAGE CONCENTRATIONS GROUNDWATER SEEP 1 MONTHLY MONITORING PROGRAM

	April	May	June	July
AVERAGE FLOW RATE (gpm)	0.78	0.86	0.87	0.62
WATER QUALITY PARAMETERS (mg/l)				
COD	14	15	23	19
Chloride	32	32	25	25
Fluoride	1.0	1.2	1.0	1.1
Nitrogen, Ammonia	0.34	0.58	0.91	0.53
Nitrogen, Nitrate	0.47	1.3	0.94	0.35
Nitrogen, Nitrite			0.01	
Total Dissolved Solids	1260	1400	1110	1340
Total Suspended Solids	6*	6*	27*	145*
Sulfate	760	840	740	830
pH (lab)	7.2*	7.1*	7.0*	7.0*
TRACE INORGANIC COMPOUNDS (mg/l)				
Arsenic	0.046	0.054	0.068	0,103
Zinc	0.78	0.544	0.635	0.578

Notes:

* Sample fraction not filtered.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging.

•

.

Attachment 1 Laboratory Data Sheets Monthly Monitoring Program ۰.,

;

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave. Suite 200 Evanston, IL 60201

07/22/1991

Sample No.: 144148 Job No.: 91.2119

Sample Description:	DEC-SP1-7-1	
	CH128770.B0.MS;	DuPont

Date Taken:		Date Received:	07/03/1991
Time Taken:	08:08	Time Received:	09:45

Chloride	28.	mg/L
COD, Total	29.	mg/L
Fluoride	1.3	mg/L
N-Ammonia	0.76	mg/L
N-Nitrate	0.28	mg/L
N-Nitrite	<0.01	mg/L
pH	6.8	units
Solids, Total Dissolved	1310.	mg/L
Solids, Total Suspended	23.	mg/L
Sulfate	800.	mg/L
Arsenic, AA	0.1800	mg/L
Zinc, ICP	1.038	mg/L

Jones Keł Project Manager

Page 1

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave. Suite 200 Evanston, IL 60201

÷

07/22/1991

Sample No.: 144149 Job No.: 91.2119

Sample Description:	DEC-FRSP1-7-1
	CH128770.B0.MS; DuPont

Date Taken:	07/02/1991	Date Received:	07/03/1991
Time Taken:	08:08	Time Received:	

Chloride	24.	mg/L
COD, Total	29.	mg/L
Fluoride	1.0	mg/L
N-Ammonia	0.77	mg/L
N-Nitrate	0.13	mg/L
N-Nitrite	<0.01	mg/L
рН	6.8	units
Solids, Total Dissolved	1220.	mg/L
Solids, Total Suspended	38.	mg/L
Sulfate	800.	mg/L
Arsenic, AA	0.1690	mg/L
Zinc, ICP	0.932	mg/L

Jong ly Project Manager

Page 2

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Sue Mulholland CH2M HILL 1890 Maple Avenue Suite 200 Evanston, IL 60201 07/25/1991

Sample No.: 144650 Job No.: 91.2279

Sample Description:	DEC-SP1-7-2
	CHI28770.B0.MS;Dupont-East

Date Taken:	07/11/1991	Date Received:	07/12/1991
Time Taken:	12:28	Time Received:	

Chloride	20.	mg/L
COD, Total	39.	mg/L
Fluoride	0.8	mg/L
N-Ammonia	<0.01	mg/L
Nitrate + Nitrite	0.11	mg/L
рН	7.0	units
Solids, Total Dissolved	1320.	mg/L
Solids, Total Suspended	135.	mg/L
Sulfate	900.	mg/L
Arsenic, AA	0.1320	mg/L
Zinc, ICP	0.553	mg/L

mes Kelly Jones

Project Manager

Page 1

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Avenue Suite 200 Evanston, IL 60201 08/07/1991

Sample No.: 145143 Job No.: 91.2424

Sample Description:	DEC-SP1-7-3
-	CHI 28770.B0.MS; DuPont

Date Taken:		Date Received:	07/19/1991
Time Taken:	12:02	Time Received:	09:00

Chloride	26.	mg/L
COD, Total	7.	mg/L
Fluoride	0.9	mg/L
N-Ammonia	0.58	mg/L
N-Nitrate	0.53	mg/L
N-Nitrite	<0.01	mg/L
рН	7.0	units
Solids, Total Dissolved	1550.	mg/L
Solids, Total Suspended	236.	mg/L
Sulfate	800.	mg/L
Arsenic, AA	0.104	mg/L
Zinc, ICP	0.260	mg/L

Kelly , yones

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Avenue Suite 200 Evanston, IL 60201 08/09/1991

Sample No.: 145559

Job No.: 91.2565

Sample Description: DEC-SP1-7-4 CHI28770.B0.MS; DuPont

07/25/1991 09:30		Date Received: Time Received:	, ,
al Dissolved al Suspended	28. <3. 1.0 0.75 0.32 <0.01 7.0 1240. 178. 810. <0.005 0.513		mg/L mg/L mg/L mg/L mg/L units mg/L mg/L mg/L mg/L mg/L

alick' Kelly Jones

Project Manager

Page 1

Attachment 2 Data Validation Summary Monthly Monitoring Program

*

MEMORANDUM

TO: Pixie Newman/CHI Susan Mulholland/CHI

FROM: Dan MacGregor/GLO

DATE: August 26, 1991

SUBJECT: Data Validation for Groundwater Seep Samples Du Pont East Chicago, Indiana

PROJECT: CHI28770.B0.MR

INTRODUCTION

This memorandum presents the data validation discussion for the inorganic analytical results for groundwater seep samples collected on July 2, 11, 18, and 25, 1991, at the Du Pont Plant in East Chicago, Indiana. Sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Samples were analyzed for major ions and selected metals by NET Laboratories in Barlett, Illinois. Sample collection and transport were performed under strict chainof-custody procedures. Requested QA/QC data were limited to holding time data, chain-of-custody forms, calibration and procedure blank results, initial calibration verification and standard recoveries, continuing calibration recovery results, sample duplicate results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/QC and sample data were reviewed as described below.

HOLDING TIMES

Inspection of holding times for the inorganic analyses showed that all holding times were met.

CHAIN OF CUSTODY

The chain of custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

M E M O R A N D U M Page 2 August 26, 1991 CHI28770.B0.MR

BLANKS

The calibration and procedure blank results were inspected for possible contaminants. Zinc was found in the July 18 and 25 procedure blanks. Zinc results from these dates were qualified as possibly blank contaminated "B." Ammonia was found in the July 2, 11, and 18 procedure blanks. Ammonia results from the July 2 and 18 sampling dates were qualified as possibly blank contaminated. No ammonia was detected in the July 11 seep sample, thus no qualifying action was required with this sample. Any other compounds that may have been present were at concentrations equal to or less than their reporting limits.

INITIAL CALIBRATION VERIFICATION STANDARD RECOVERIES

The initial calibration verification standard recoveries were all within control limits. Initial calibration results for total suspended solids (TSS) were not provided for the July 11 sample results. No qualifying action was taken.

CONTINUING CALIBRATION RECOVERIES

Continuing calibration recoveries were found to be within control limits for all compounds, except fluoride. Fluoride results from the July 11, 18 and 25 samplings dates were outside control limits. The fluoride results from these dates were qualified as estimated "J."

LABORATORY CONTROL SPIKES

All laboratory spike recoveries were within control limits. No qualifying action was required.

M E M O R A N D U M Page 3 August 26, 1991 CHI28770.B0.MR

MATRIX SPIKE/MATRIX SPIKE DUPLICATE FORTIFICATIONS

Generally the matrix spike and matrix spike duplicate results were within control limits. The relative percent difference (RPD) for fluoride and TSS were outside control limits for the July 18 sampling date, and the zinc and arsenic recoveries from the July 25 sampling date were below control limits. Due to the zinc and fluoride results for these dates being previously qualified no further qualifying action was taken. Arsenic was not detected in the July 25 sampling and as a result the less than value was qualified as not detected and possibly biased low "UJ." The TSS result from the July 18 sampling was qualified as estimated "J."

RESULTS

Duplicate samples (DEC-SP1-7-1 and DEC-FRSP1-7-1) were collected during the July 2 sampling event. These sample results compared well. The results from July's sampling were compared, and found to be generally consistent, with data from previous sampling events. One exception is the arsenic results from the July 2 and 11 sampling events. Arsenic has been routinely found in Seep 1 samples, but the values associated with these sampling dates are two to three times the average of the previously analyzed samples. After reviewing the data and discussions with NET laboratory personnel, the values appear to be valid.

The lab performance for this month of sampling was poor, 30% of all results from the July 18 and 25 sampling dates required qualification.

With the exception of previously noted qualifiers, all results were found to be complete and accurate.

CHI120/044.51

August Monthly Monitoring Report for the Groundwater Seeps at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

September 24, 1991

CHI185/035.51

Introduction

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, and U.S. EPA's amended Information Request dated June 27, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep referenced in the original request (Groundwater Seep 1) and two other groundwater seeps referenced in the amended request (Groundwater Seeps 2 and 3) at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for August 1991.

Sample Collection and Analysis

The August "monthly monitoring program" sampling activities consisted of monitoring groundwater seep conditions and obtaining a grab sample from each seep, if possible, once per week. Monitoring was performed on August 1, 8, 15, 22, and 29, 1991. Seep flow rates were measured and recorded during each sampling event (Table 1). Samples were collected from Groundwater Seep 1 on August 1, 15, 22, and 29. Samples from Groundwater Seep 2 were not collected because the seep was not present (it was either dry or submerged^{*}) at monitoring times. Samples from Groundwater Seep 3 were collected on

*Note:

When a groundwater seep becomes submerged beneath the surface of a water body, it (by definition) is no longer a seep and technically is no different than the rest of the groundwater discharge to that surface water body. There is no simple way to measure and distinguish this discharge from the rest of the groundwater discharge to the Grand Calumet River.

August 1, 15, and 29. Groundwater Seep 3 was not present on August 22. On August 8, all three groundwater seeps were submerged beneath the Grand Calumet River surface.

Sample fractions collected for oil and grease, total suspended solids, and pH analyses were not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The samples collected from Groundwater Seep 1 were analyzed for the following constituents: chemical oxygen demand (COD), ammonia-N, nitrate, nitrite, sulfate, chloride, fluoride, total dissolved solids, total suspended solids, arsenic, zinc, and pH. The samples collected from Groundwater Seep 3 were analyzed for all of the constituents listed above, plus biological oxygen demand (BOD-five day), oil and grease, and copper, as originally requested. In the amended request, BOD-five day, oil and grease, and copper were dropped from the Groundwater Seep 1 monitoring requirements.

For quality assurance/quality control (QA/QC) purposes, a field blank and duplicate samples from Groundwater Seep 1 were collected on August 1.

Analytical Results and Interpretation

فناعدون ويتجوز ويتجوز والمحديد

Tables 2 (Groundwater Seep 1) and 3 (Groundwater Seep 3) summarize the analytical results of the "monthly monitoring program" for the month of August. The analytical results for the duplicate samples collected on August 1 are shown separated by a slash in the first data column of Table 2. All laboratory data sheets for samples collected and analyzed during August for the "monthly monitoring program" are provided in Attachment 1. Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the August groundwater seep samples.

Except for COD, Groundwater Seep 1 constituents remained at relatively consistent levels during August. COD levels ranged from less than 3 to 46 mg/l. Groundwater Seep 3 constituent levels were relatively consistent for at least two of the three August Groundwater Seep 3 data sets. Generalizations regarding trends in water quality can be formulated when more data are available for this groundwater seep.

Comparing the August Groundwater Seep 1 data to that collected in preceding months for Groundwater Seep 1, several observations were made. The average COD level for August was consistent with the range of COD level averages during April, May, June, and July (Table 4). Nitrate, arsenic, and zinc levels appear to be lower in August than in the preceding months.

GROUNDWATER SEEP FLOW RATES (GPM) AUGUST MONTHLY MONITORING PROGRAM AUGUST 1991

Date	Groundwater Seep 1	Groundwater Seep 2	Groundwater Seep 3
			<u> </u>
August 1	0.28	NP*	0.10
August 8	NP**	NP**	NP**
August 15	0.37	NP*	0.61
August 22	0.38	NP*	NP**
August 29	0.36	NP*	0.47

Notes:

NP* denotes not present. No flow. Groundwater seep location dry.

NP** denotes not present. Groundwater seep location submerged below river surface. When a groundwater seep becomes submerged beneath the surface of a water body, it (by definition) is no longer a seep and technically is no different than the rest of the groundwater discharge to that surface water body. There is no simple way to measure and distinguish this discharge from the rest of the groundwater discharge to the Grand Calumet River.

.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 1 AUGUST MONTHLY MONITORING PROGRAM AUGUST 1991

Sample ID: Lab:	DEC-SP1-8-1 NET	DEC-SP1-8-3 NET	DEC-SP1-8-4 NET	DEC-SP1-8-5 NET	
Lab ID:	146136/ 146137	146983	147511	147899	
Date:	8/1/91	8/15/91	8/22/91	8/29/91	
Filtered (Yes/No):	Yes	Yes	Yes	Yes	Average
AVERAGE FLOW RATE (gpm)	0.28	0.37	0.38	0.36	0.35
WATER QUALITY PARAMETERS (mg/l)					
COD	33/16	46J		13	21
Chloride	26/28	108	26	30	23
Fluoride	0.9J/0.9J	0.8J	1.1	0.61	0.9
Nitrogen, Ammonia	0.67/0.86	0.41	0.51	0.43	0.53
Nilrogen, Nitrate	0.108/0.088	0.07B	0.078	0.098	0.08
Nitrogen, Nitrite	1		0.6		0.15
Total Dissolved Solids	1310/1370	1490	1420	1360	1400
Total Suspended Solids	27*/18*	13*	62*	13*	28*
Sulfate	800/900	900	800	800	840
рН (lab)	6.8*/6.8*	7.1*	7.0*	7.0*	7.0*
TRACE INORGANIC COMPOUNDS (mg/l)					
Arsenic	0.022/0.022	0.0240			0.017
Zinc	0.551/0.606	0.225	0.359	0.349	0.378

÷

Notes: * Sample fraction not filtered.

No value denotes not detected.

J denotes estimated value.

B denotes blank contamination.

A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging.

•

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 3 AUGUST MONTHLY MONITORING PROGRAM AUGUST 1991

Sample ID: Lab: Lab ID: Date: Filtered (Yes/No):	DEC-SP3-8-1 NET 146139 8/1/91 Yes	DEC-SP3-8-3 NET 146985 8/15/91 Yes	DEC-SP3-8-5 NET 147900 8/29/91 Yes	Average
AVERAGE FLOW RATE (gpm)	0.10	0.61	0.47	0.39
WATER QUALITY PARAMETERS (mg/l)				
BOD-Five Day	3	4	6	4
COD	10	20J	13	14
Chloride	24	268	34	28
Fluoride	1.9J	1.0J	0.6J	1.2
Nitrogen, Ammonia	2.7	4.0	3.61	3.4
Nitrogen, Nitrate	0.72B	0.31B	0.26B	0.43
Nitrogen, Nitrite				
Oil and Grease	*	2*	*	1*
Total Dissolved Solids	2930	3530	2880	3110
Total Suspended Solids	63*	69*	429*	190*
Sulfate	2100	2600	900	1900
pH ((ab)	6.1*	6.1*	6.2*	6.1*
TRACE INORGANIC COMPOUNDS (mg/l)				
Arsenic		0.0100		0.005
Соррег	0.124		0.037	0.055
Zinc	2.974	35.8	27.1	22.0

Notes:

1

.

* Sample fraction not filtered.

No value denotes not detected. J denotes estimated value.

B denotes blank contamination.

A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging.

.

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 1 MONTHLY MONITORING PROGRAM 1991

	April	May	June	July	August
AVERAGE FLOW RATE (gpm)	0.78	0.86	0.87	0.62	0.35
WATER QUALITY PARAMETERS (mg/l)					
COD	14	15	23	19	21
Chloride	32	32	25	25	23
Fluoride	1.0	1.2	1.0	1.1	0.9
Nitrogen, Ammonia	0.34	0.58	0.91	0.53	0.53
Nitrogen, Nitrate	0.47	1.3	0.94	0.35	0.08
Nitrogen, Nitrite			0.01		0.15
Total Dissolved Solids	1260	1400	1110	1340	1400
Total Suspended Solids	6*	6*	27*	145*	28*
Sulfate	760	840	740	830	840
pH (lab)	7.2*	7.1*	7.0*	7.0*	7.0*
TRACE INORGANIC COMPOUNDS (mg/l)					
Arsenic	0.046	0.054	0.068	0.103	0.017
Zínc	0.78	0.544	0.635	0.578	0.378

Notes:

:

* Sample fraction not filtered.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging.

Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

•

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave Suite 200 Evanston, IL 60201 08/20/1991

Sample No.: 146136

Job No.: 91.2711

Sample Description: DEC-SP1-8-1 CH128770.B0.MS; DuPont

I	ate Taken: 08/01/1991 Time Taken: 08:46 TEPA Cert. No. 100221		Date Received: Time Received: WDNR Cert. No.	10:30
)	Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite pH Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, AA Zinc, ICP	26. 33. 0.9 0.67 0.10 <0.01 6.8 1310. 27. 800. 0.022 0.551		mg/L mg/L mg/L mg/L mg/L units mg/L mg/L mg/L mg/L

Heal E Clephan

Neal E. Cleghorn Project Manager

Page 1

NET NATIONAL ENVIRONMENTAL TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave Suite 200 Evanston, IL 60201 08/20/1991

Sample No.: 146137

Job No.: 91.2711

Sample Description: DEC-FRSP1-8-1 CH128770.B0.MS; DuPont

Date Taken: 08/01/1991 Time Taken: 08:46 IEPA Cert. No. 100221		Date Received: Time Received: WDNR Cert. No.	10:30
Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite pH Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, AA Zinc, ICP	28. 16. 0.9 0.86 0.08 <0.01 6.8 1370. 18. 900. 0.022 0.606		mg/L mg/L mg/L mg/L mg/L units mg/L mg/L mg/L mg/L mg/L

Heal E Clephan

Neal E. Cleghorn Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Evanston, IL 60201 09/05/1991

Sample No.: 146983 Job No.: 91.2953

Sample Description: DEC-SP1-8-3 CHI28770.B0.MS; DuPont

Date Taken: 08/15/1991	Date Received:	08/16/1991
Time Taken: 13:14	Time Received:	10:00
IEPA Cert. No.: 100221	WDNR Cert. No.:	999447130

Chloride	10.	mg/L
COD, Total	46.	mg/L
Fluoride	0.8	mg/L
N-Ammonia	0.41	mg/L
N-Nitrate	0.07	mg/L
N-Nitrite	<0.01	mg/L
рН	7.1	units
Solids, Total Dissolved	1490.	mg/L
Solids, Total Suspended	13.	mg/L
Sulfate	900.	mg/L
Arsenic, AA	0.0240	mg/L
Zinc, ICP	0.225	mg/L

KElle Jones Project Manager

Page 1

NET NATIONAL ENVIRONMENTAL TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

0

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Avenue Suite 200 Evanston, IL 60201 09/09/1991

Sample No.: 147511 Job No.: 91.3099

Sample Description: DEC-SP1-8-4 CHI28770.B0.MS; DuPont

Date Taken:	08/22/1991	Date Received:	08/23/1991
Time Taken:	11:30	Time Received:	10:00
IEPA Cert. N	0.: 100221	WDNR Cert. No.:	999447130

Chloride	26.	mg/L
COD, Total	<3.	mg/L
Fluoride	1.1	mg/L
N-Ammonia	0.51	mg/L
N-Nitrate	0.07	mg/L
N-Nitrite	0.6	mg/L
рН	7.0	units
Solids, Total Dissolved	1420.	mg/L
Solids, Total Suspended	62.	mg/L
Sulfate	800.	mg/L
Arsenic, AA	<0.005	mg/L
Zinc, AA	0.359	mg/L

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 09/09/1991 CH2M HILL 1033 University Place Sample No.: 147899 Suite 300 Evanston, IL 60201-3137 Job No.: 91.3229 Sample Description: Seep 1;DEC-SPI-8-5 DuPont East Chicago Seep 1 Date Taken: 08/29/1991 Date Received: 08/30/1991 Time Taken: 08:15 Time Received: 10:00 IEPA Cert. No. 100221 WDNR Cert. No. 999447130 Chloride 30. mg/L COD, Total 13. mg/L Fluoride 0.6 mg/L N-Ammonia 0.43 mg/L N-Nitrate 0.09 mg/L N-Nitrite <0.01 mg/L pН 7.0 units Solids, Total Dissolved 1360. mg/L Solids, Total Suspended 13. mg/L Sulfate 800. mg/L Arsenic, AA <0.04 mg/L Zinc, ICP 0.349 mg/L

KElly

KeNly Jones Project Manager

Page 1

NATIONAL ENVIRONMENTAL TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

0

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave Suite 200 Evanston, IL 60201 08/20/1991

Sample No.: 146139 Job No.: 91.2712

Sample Description: DEC-SP3-8-1 CH128770.B0.3S; DuPont

Date Taken: 03/01/1991 Time Taken: 10:24 IEPA Cert. No. 100221		Date Received: Time Received: WDNR Cert. No.	10:30
BOD, Five Day Chloride	3. 24.		mg/L mg/I
COD, Total	10.		mg/L mg/L
Fluoride	1.9		mg/L
N-Ammonia	2.7		mg/L
N-Nitrate	0.72		mg/L
N-Nitrite	<0.01		mg/L
Oil & Grease	<1.		mg/L
рН	6.1		units
Solids, Total Dissolved	2930.		mg/L
Solids, Total Suspended	63.		mg/L
Sulfate	2100.		mg/L
Arsenic, AA	<0.005		mg/L
Copper, ICP	0.124		mg/L
Zinc, ICP	2.974		mg/L

Heal E Clephan

Neal E. Cleghorn Project Manager

Page 4

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL	09/04/1991	
1890 Maple Av. Suite 200	Sample No.: 1	46985
Evanston, IL 60201	Job No.: 91.2	954
Sample Description: DEC-SP3-8-3 CHI28770.B0.3R		
Date Taken: 08/15/1991 Time Taken: 15:25 IEPA Cert. No.: 100221	Date Received: Time Received: WDNR Cert. No.	10:00
BOD, Five Day	4.	mg/L
Chloride	26.	mg/L
COD, Total	20.	mg/L
Fluoride	1.0	mg/L
N-Ammonia	4.0	mg/L
N-Nitrate	0.31	mg/L
N-Nitrite	<0.01	mg/L
Oil & Grease	2.	mg/L
рН	6.1	units
Solids, Total Dissolved	3530.	mg/L
Solids, Total Suspended	69.	mg/L
Sulfate	2600.	mg/L
Arsenic, AA	0.0100	mg/L
Copper, ICP Kelly Jones	<0.010 es anager	mg/L
• Project Ma	anager	

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Evanston, IL 60201 09/04/1991

Sample No.: 146985 Job No.: 91.2954

Sample Description: DEC-SP3-8-3 CHI28770.B0.3R

Date Taken: 08/15/1991 Time Taken: 15:25 IEPA Cert. No.: 100221

Zinc, ICP

Date Received: 08/16/1991 Time Received: 10:00 WDNR Cert. No.: 999447130

35.8 mg/L

Kelly

Kelur Jones Project Manager

Page 2

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Evanston, IL 60201 09/09/1991

Sample No.: 147900

Time Received: 10:00

WDNR Cert. No. 999447130

Job No.: 91.3230

Date Received:

Sample Description: Seep 3; DEC-SP3-8-5 DuPont East Chicago Seep 1

6.

34.

13.

0.6

3.61

0.26

<1.

6.2

<0.01

2880.

429.

900.

<0.004

0.037

27.1

Date Taken: 08/29/1991 Time Taken: 09:16 IEPA Cert. No. 100221

BOD, Fiv	ve Day			
Chloride	2 -			
COD, Tot	al			
Fluoride				
N-Ammonia				
N-Nitrate				
N-Nitrite				
Oil & Gi	rease			
pH				
Solids,	Total	Dissolved		
Solids,	Total	Suspended		
Sulfate				
Arsenic, AA				
Copper, ICP				
Zinc, IC	CP			

08/30/1991

KElle

Kelly Jones Project Manager

Page 1

Attachment 2 Data Validation Summary Monthly Monitoring Program

M E M O R A N D U M

TO:	Pixie Newman/CHI
	Susan Mulholland/CHI

FROM: Dan MacGregor/GLO

DATE: September 16, 1991

SUBJECT: Data Validation for Groundwater Seep Samples Du Pont East Chicago, Indiana

PROJECT: CHI28770.B0.MR

Introduction

This memorandum presents the data validation discussion for the inorganic analytical results for groundwater seep samples collected on August 1, 15, 22, and 29, 1991, at the Du Pont Plant in East Chicago, Indiana. Sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-of-custody procedures. Requested QA/QC data included holding time data, chain-of-custody forms, calibration and method blank results, initial calibration verification and standard recoveries, continuing calibration recovery results, sample duplicate results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/QC and sample data were reviewed as described below.

Holding Times

Inspection of holding times showed that the holding time requirements as specified by the EPA Methods for Chemical Analysis of Water and Wastes were met.

Chain of Custody

The chain-of-custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

Blanks

The field blank sampled and analyzed with the August 1 samples contained concentrations of chloride (4 mg/L), ammonia (0.05 mg/L), and nitrate (0.04 mg/L). As a result, the following results were qualified as possibly blank contaminated and flagged with a "B":

M E M 0 R A N D U M Page 2 September 16, 1991 CHI28770.B0.MR

- The nitrate results from August 1
- The chloride and nitrate results from August 15
- The nitrate result from August 22
- The nitrate results from August 29

The calibration and procedure blank results were inspected for possible contaminants. The calibration blanks were free of compound concentrations equal to or greater than compound reporting limits. Zinc was found in the August 1 method blank, and ammonia was found in the August 15 method blank. The concentrations of these method blank contaminants were at least a factor of five lower than their corresponding sample concentrations. Subsequently, data qualification was not necessary.

Initial Calibration Verification Standard Recoveries

With one exception, the initial calibration verification standard recoveries were all within control limits, ± 10 percent of true value. The fluoride recovery associated with the August 29 data was outside control limits. As a result, the fluoride results from that date were qualified as estimated and flagged with a "J."

Continuing Calibration Recoveries

Continuing calibration recoveries were found to be within control limits for all compounds except fluoride and COD. Fluoride results from the August 1 and 15 samplings and COD from the August 15 sampling were outside the ± 10 percent control limit. The fluoride and COD results for their respective dates were qualified as estimated "J."

Laboratory Control Spikes

The laboratory spike recoveries were within the control limit of ± 20 percent of true value. No qualifying action was required.

Matrix Spike / Matrix Spike Duplicate Fortifications

The matrix spike and matrix spike duplicate results, with one exception, were within control limits. The relative percent difference for oil and grease was outside control limits for the August 29 sample. Oil and grease were not detected in the sample, and thus data qualification was not required.

M E M 0 R A N D U M Page 3 September 16, 1991 CHI28770.B0.MR

Duplicates

Duplicate samples (DEC-SP1-8-1 and DEC-FRSP1-8-1) were taken during the August 1 sampling event. Three compounds had relative percent differences greater than the 25 percent control limit. Upon reviewing previous months' results with results from this round of sampling, it was determined that this round of analytical results were consistent with previous results and thus no qualifiers were added.

Results

Generally sample results were found to be complete and accurate. With the exception of the qualified samples, the Groundwater Seep 3 results appear to be valid and usable. The Groundwater Seep 1 arsenic result from August 29 had a detection limit of 0.04 mg/L. This detection limit is a factor of 10 greater than the expected detection limit. This increase in the detection limit resulted from NET being required to subcontract out its arsenic analyses, in this instance to a laboratory with a higher arsenic detection limit. Unfortunately, when arsenic appears it is at a concentration between 0.004 mg/L and 0.04 mg/L, rendering the arsenic data unusable. With the exception of qualified data and the aforementioned arsenic result, the data results from Groundwater Seep 1 appear to be valid and usable.

CHI185/034.51

September Monthly Monitoring Report for the Groundwater Seeps at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

October 23, 1991

2

CHI185/035.51

Introduction

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, and U.S. EPA's amended Information Request dated June 27, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep referenced in the original request (Groundwater Seep 1) and two other groundwater seeps referenced in the amended request (Groundwater Seeps 2 and 3) at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for September 1991.

Sample Collection and Analysis

The September "monthly monitoring program" sampling activities consisted of monitoring groundwater seep conditions and obtaining a grab sample from each seep, if possible, once per week. Monitoring was performed on September 5, 12, 19, and 26, 1991. Seep flow rates were measured and recorded during each sampling event (Table 1). Samples were collected from Groundwater Seep 1 on September 5, 12, and 19. Samples from Groundwater Seep 2 were not collected because the seep was not present at the monitoring times. A sample was collected from Groundwater Seep 3 on September 5. Groundwater Seep 3 was not present on September 12 and 19. None of the three groundwater seeps were present on September 26.

Sample fractions collected for oil and grease, total suspended solids, and pH analyses were

1

not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The samples collected from Groundwater Seep 1 were analyzed for the following constituents: chemical oxygen demand (COD), ammonia-N, nitrate, nitrite, sulfate, chloride, fluoride, total dissolved solids, total suspended solids, arsenic, zinc, and pH. The sample collected from Groundwater Seep 3 was analyzed for all of the constituents listed above, plus biological oxygen demand (BOD-five day), oil and grease, and copper, as originally requested. In the amended request, BOD-five day, oil and grease, and copper were dropped from the Groundwater Seep 1 monitoring requirements.

For quality assurance/quality control (QA/QC) purposes, duplicate samples from Groundwater Seep 1 were collected on September 12.

Analytical Results and Interpretation

Tables 2 and 3 summarize the analytical results of the "monthly monitoring program" for the month of September for Groundwater Seeps 1 and 3, respectively. The analytical results for the duplicate samples collected on September 12 are shown separated by a slash in the second data column of Table 2. All laboratory data sheets for samples collected and analyzed during September for the "monthly monitoring program" are provided in Attachment 1.

Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the September groundwater seep samples.

With few exceptions, Groundwater Seep 1 constituents remained at relatively consistent levels during September. Comparing the September Groundwater Seep 1 data to that collected in preceding months for Groundwater Seep 1 (Table 4), the following observations were made:

- The average COD, fluoride, and total suspended solids concentrations for September were lower than all previous months in the "monthly monitoring program."
- The average chloride, sulfate, and arsenic concentrations for September were higher than all previous months in the "monthly monitoring program."

Generalizations regarding trends in Groundwater Seep 3 water quality can be formulated when more data are available for this groundwater seep.

GROUNDWATER SEEP FLOW RATES (GPM) SEPTEMBER MONTHLY MONITORING PROGRAM SEPTEMBER 1991

Date	Groundwater Seep 1	Groundwater Seep 2	Groundwater Seep 3
September 5	0.48	NP*	0.26
September 12	0.56	NP*	Nb***
September 19	0.05	NP*	NP*
September 26	NP*	NP*	NP*

Notes:

NP* denotes not present. No flow. Groundwater seep location dry.

NP** denotes not present. Groundwater seep location submerged below river surface. When a groundwater seep becomes submerged beneath the surface of a water body, it (by definition) is no longer a seep and technically is no different than the rest of the groundwater discharge to that surface water body. There is no simple way to measure and distinguish this discharge from the rest of the groundwater discharge to the Grand Calumet River.

NP*** denotes not present. No flow. Groundwater seep location wet, but no flow to river.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 1 SEPTEMBER MONTHLY MONITORING PROGRAM SEPTEMBER 1991

Sample ID:	DEC-SP1-9-1	DEC-SP1-9-2	DEC-SP1-9-3	
Lab:	NET	NET	NET	
Lab ID:	148385	148709/ 148710	149109	
Date:	9/5/91	9/12/91	9/19/91	
Filtered (Yes/No):	Yes	Yes	Yes	Average**
AVERAGE FLOW RATE (gpm)	0.48	0.56	0.05	0.36
WATER QUALITY PARAMETERS (mg/l)				
COD	3J	7J/	13J	7
Chloride	78	24/24	28	43
Fluoride	0.9J	0.5J/0.6J	1.0	0.8
Nitrogen, Ammonia	1.06	0.79/0.68	0.46	0.75
Nitrogen, Nitrate	0.31J	0.22/0.19	0.42	0.31
Nitrogen, Nitrite		1		
Total Dissolved Solids	1340	1140/1310	1200	1260
Total Suspended Solids	8*	3*/9*	*	5*
Sulfate	900	800/900	800	850
pH (lab)	7.0*	6.8*/6.9*	7.5*	7.1*
TRACE INORGANIC COMPOUNDS (mg/l)				
Arsenic	0.096	1.69J/1.39J	1.32J	0.99
Zinc	0.565	0.562/0.785	0.060B	0.433

Notes:

÷

* Sample fraction not filtered.

**Average based on three sampling events.

No value denotes not detected.

J denotes estimated value.

B denotes blank contamination.

A value of one-half the detection limit used in averaging not detected values.

The average value of the duplicate sample results used in overall averaging.

-

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 3 SEPTEMBER MONTHLY MONITORING PROGRAM SEPTEMBER 1991

Sample ID:	DEC-SP3-9-1
Lab:	NET
Lab ID:	148386
Date:	9/5/91
Filtered (Yes/No):	Yes
AVERAGE FLOW RATE (gpm)	0.26
WATER QUALITY PARAMETERS (mg/l)	
BOD-Five Day	4
COD	23 J
Chloride	68
Fluoride	1.0J
Nitrogen, Ammonia	4.6
Nitrogen, Nitrate	0.50J
Nitrogen, Nitrite	
Oil and Grease	2*
Total Dissolved Solids	2900
Total Suspended Solids	46*
Sulfate	1770
pH (lab)	6.4*
TRACE INORGANIC COMPOUNDS (mg/l)	
Arsenic	
Copper	0.013
Zinc	28.1

Notes:

•

.

* Sample fraction not filtered. No value denotes not detected. J denotes estimated value. B denotes blank contamination.

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 1 MONTHLY MONITORING PROGRAM 1991

	April	May	June	July	August	September
AVERAGE FLOW RATE (gpm)	0.78	0.86	0.87	0.62	0.35	0.36
WATER QUALITY PARAMETERS (mg/l)						
COD	14	15	23	19	21	7
Chloride	32	32	25	25	23	43
Fluoride	1.0	1.2	1.0	1.1	0.9	0.8
Nitrogen, Ammonia	0.34	0.58	0.91	0.53	0.53	0.75
Nitrogen, Nitrate	0.47	1.3	0.94	0.35	0.08	0.31
Nitrogen, Nitrite			0.01		0.15	
Total Dissolved Solids	1260	1400	1110	1340	1400	1260
Total Suspended Solids	6*	6*	27*	145*	28*	5*
Sulfate	760	840	740	830	840	850
pH (lab)	7.2*	7.1*	7.0*	7.0*	7.0*	7.1*
TRACE INORGANIC COMPOUNDS (mg/l)						
Arsenic	0.046	0.054	0.068	0,103	0.017	0.99
Zinc	0.78	0.544	0.635	0.578	0.378	0.433

Notes:

* Sample fraction not filtered.

No value denotes not detected. A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging.

ļ

Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201-3137 09/23/1991

Sample No.: 148385 Job No.: 91.3349

Sample Description: DEC-SP1-9-1 CHI28770B0.MS; DuPont

Date Taken:	09/05/1991	Date	Received:	09/06/1991
Time Taken:	08:51	Time	Received:	10:00
IEPA Cert. N	0.: 100221	WDNR	Cert. No.:	999447130

Chloride	78.	mg/L
COD, Total	3.	mg/L
Fluoride	0.9	mg/L
N-Ammonia	1.06	mg/L
N-Nitrate	0.31	mg/L
N-Nitrite	<0.01	mg/L
pH	7.0	units
Solids, Total Dissolved	1340.	mg/L
Solids, Total Suspended	8.	mg/L
Sulfate	900.	mg/L
Arsenic, AA	0.096	mg/L
Zinc, ICP	0.565	mg/L

KElle KeUy Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 53201 09/27/1991

Sample No.: 148709 Job No.: 91.3457

Sample Description: DEC-SP1-9-2 CH128770.B0.MS; DuPont

Date Taken: Time Taken:		Received: Received:	
IEPA Cert. No		Cert. No.:	

Chloride	24.	mg/L
COD, Total	7.	mg/L
Fluoride	0.5	mg/L
N-Ammonia	0.79	mg/L
N-Nitrate	0.22	mg/L
N-Nitrite	<0.01	mg/L
pH	6.8	units
Solids, Total Dissolved	1140.	mg/L
Solids, Total Suspended	3.	mg/L
Sulfate	800.	mg/L
Arsenic, AA	1.69	mg/L
Zinc, ICP	0.562	mg/L

Kel() Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 53201 09/27/1991

Sample No.: 148710

Job No.: 91.3457

Sample Description: DEC-FRSP1-9-2 CH126770.B0.MS; DuPont

Date Taken: 09/12/1991	Date Received: 09/13/1991
Time Taken: 09:37	Time Received: 10:00
IEPA Cert. No.: 100221	WDNR Cert. No.: 999447130

Chloride	24.	mg/L
COD, Total	<3.	mg/L
Fluoride	0.6	mg/L
N-Ammonia	0.68	mg/L
N-Nitrate	0.19	mg/L
N-Nitrite	<0.01	mg/L
рн	6.9	units
pH Solids, Total Dissolved	6.9 1310.	units mg/L
Solids, Total Dissolved	1310.	mg/L
Solids, Total Dissolved Solids, Total Suspended	1310. 9.	mg/L mg/L

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201-3137 10/04/1991

Sample No.: 149109 Job No.: 91.3557

Sample Description: DEC-SP1-9-3 CHI28770.B0.MS; DuPont

Date Taken: 09/19/1991	Date Received:	
Time Taken: 11:00	Time Received:	10:00
IEPA Cert. No.: 100221	WDNR Cert. No.:	999447130

Chloride	28.	mg/L
COD, Total	13.	mg/L
Fluoride	1.0	mg/L
N-Ammonia	0.46	mg/L
N-Nitrate	0.42	mg/L
N-Nitrite	<0.01	mg/L
рН	7.5	units
Solids, Total Dissolved	1200.	mg/L
Solids, Total Suspended	<1.	mg/L
Sulfate	800.	mg/L
Arsenic, AA	1.32	mg/L
Zinc, ICP	0.060	mg/L

Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201-3137 09/23/1991

Sample No.: 148386

Job No.: 91.3350

Sample Description: DEC-SP3-9-1 CHI28770.B0.3R; DuPont

Date Taken:	09/05/1991	Date	Received:	09/06/1991
Time Taken:	11:00	Time	Received:	10:00
IEPA Cert. N	0.: 100221	WDNR	Cert. No.:	999447130

BOD, Five Day 4. mg/L Chloride 68. mg/L COD, Total 23. mg/L Fluoride 1.0 mg/L N-Ammonia 4.6 mg/L N-Nitrate 0.50 mg/L N-Nitrite <0.01 mg/L Oil & Grease 2. mq/L 6.4 pН units Solids, Total Dissolved 2900. mg/L Solids, Total Suspended 46. mg/L Sulfate 1770. mg/L Arsenic, AA <0.0050 mg/L Copper, ICP 0.013 mg/L

-n=01 Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201-3137 09/23/1991

Sample No.: 148386

Job No.: 91.3350

Sample Description: DEC-SP3-9-1 CHI28770.B0.3R; DuPont

 Date Taken:
 09/05/1991
 Date Received:
 09/06/1991

 Time Taken:
 11:00
 Time Received:
 10:00

 IEPA Cert.
 No.:
 100221
 WDNR Cert.
 No.:
 999447130

Zinc, ICP

28.1 mg/L

Kelly Jones Project Manager

Attachment 2 Data Validation Summary Monthly Monitoring Program

MEMORANDUM

TO:	Pixie Newman/CHI				
	Susan Mulholland/CHI				

FROM: Dan MacGregor/GLO

DATE: October 9, 1991

SUBJECT: Data Validation for Groundwater Seep Samples Du Pont East Chicago, Indiana

PROJECT: CHI28770.B0.MR

Introduction

This memorandum presents the data validation discussion for the inorganic analytical results for Groundwater Seep 1 samples collected on September 5, 12, and 19, 1991, and a Groundwater Seep 3 sample collected on September 5 at the Du Pont Plant in East Chicago, Indiana. Sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transportation were performed under strict chain-of-custody procedures. Requested QA/QC data included holding time data, chain-of-custody forms, calibration and procedure blank results, initial calibration verification standard recoveries, continuing calibration recovery results, sample duplicate results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/QC and sample data were reviewed as described below.

Holding Times

Inspection of holding times showed that the holding time requirements, as specified by the U.S. EPA *Methods for Chemical Analysis of Water and Wastes*, were met.

Chain of Custody

The chain-of-custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

MEMORANDUM Page 2 CHI28770.B0.MR October 9, 1991

Blanks

The calibration and procedure blank results were inspected for possible contaminants. The calibration blanks were free of compound concentrations equal to or greater than compound reporting limits. Zinc was found in the September 5 and 19 procedure blanks. The zinc concentration in the September 5 procedure blank was at least a factor of five smaller than the corresponding Groundwater Seeps 1 and 3 zinc concentrations, making data qualification unnecessary. The zinc result for the September 19 Groundwater Seep 1 sample was qualified as possibly blank contaminated and flagged with a "B."

Initial Calibration Verification Standard Recoveries

The initial calibration verification standard recoveries were generally within control limits, ± 10 percent of true value. Fluoride recoveries associated with the September 5 and 12 results were outside the control limit. As a result, sample results associated with these recoveries were qualified as estimated and flagged with a "J."

Continuing Calibration Recoveries

Continuing calibration recoveries were found to be within control limits for all compounds except COD and arsenic. COD results from the September 5, 12, and 19 samplings and arsenic from the September 12 and 19 samplings were outside the ± 10 percent control limit. The COD results for those dates and arsenic from the September 12 and 19 sampling dates were qualified as estimated and flagged with a "J."

Laboratory Control Spikes

Except for the September 12 COD recovery, the laboratory spike recoveries were within the control limit of ± 20 percent of true value. The September 12 COD result had been qualified previously, so no additional qualifying action was required.

MEMORANDUM Page 3 CHI28770.B0.MR October 9, 1991

Matrix Spike/Matrix Spike Duplicate Fortifications

The matrix spike and matrix spike duplicate results were generally within control limits. Nitrate recoveries were high for the September 5 sampling data, and the nitrite recoveries associated with the September 12 and 19 sampling data were also high. September 5 nitrate results for Groundwater Seeps 1 and 3 were qualified as estimated and flagged with a "J." Nitrite was not detected in the September 12 and 19 samplings and thus no data qualification was required.

Duplicates

Duplicate samples DEC-SP1-9-2 and DEC-FRSP1-9-2 were taken during the September 12 sampling. The precision associated with the samples was good, and the percent difference between compounds was generally less than the 25 percent control limit. The Groundwater Seep 1 analytical results were consistent with previous results, and no qualifiers were added as a result of imprecision.

Results

Groundwater Seep 1 results from this round of sampling were found to be generally consistent when compared with data from previous sample events. The one set of Groundwater Seep 3 results were compared with August results for Groundwater Seep 3. The results were generally consistent, but the Groundwater Seep 3 data are still too limited to make data observations.

With the exception of the qualified results, the results for Groundwater Seeps 1 and 3 appear to be valid and usable.

CHI185/036.51

October Monthly Monitoring Report for the Groundwater Seeps at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

November 22, 1991

CHI185/035.51

۲.

擽

Introduction

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, and U.S. EPA's amended Information Request dated June 27, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep referenced in the original request (Groundwater Seep 1) and two other groundwater seeps referenced in the amended request (Groundwater Seeps 2 and 3) at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for October 1991.

Sample Collection and Analysis

The October "monthly monitoring program" sampling activities consisted of monitoring groundwater seep conditions and obtaining a grab sample from each seep, if possible, once per week. Monitoring was performed on October 3, 10, 17, 23 and 31, 1991. Seep flow rates were measured and recorded during each sampling event (Table 1). Samples were collected from Groundwater Seeps 1, 2, and 3 on October 31. Groundwater seep samples were not collected at any other time in October because none of the three groundwater seeps were present at the monitoring times.

Sample fractions collected for oil and grease, total suspended solids, and pH analyses were not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The sample collected from Groundwater Seep 1 was analyzed for the following constituents: chemical oxygen demand (COD), ammonia-N, nitrate, nitrite, sulfate, chloride, fluoride, total dissolved solids, total suspended solids, arsenic, zinc, and pH. The samples collected from Groundwater Seeps 2 and 3 were analyzed for all of the constituents: listed above, plus biological oxygen demand (BOD-five day), oil and grease, and copper, as originally requested. In the amended request, BOD-five day, oil and grease, and copper were dropped from the Groundwater Seep 1 monitoring requirements.

For quality assurance/quality control (QA/QC) purposes, a field blank was collected on October 31.

Analytical Results and Interpretation

Tables 2, 3, and 4 summarize the analytical results of the "monthly monitoring program" for the month of October for Groundwater Seeps 1, 2, and 3, respectively. All laboratory data sheets for samples collected and analyzed during October for the "monthly monitoring program" are provided in Attachment 1.

Attachment 2 contains a data validation summary of QA/QC information associated with

2

the analysis of the October groundwater seep samples.

Comparing the October 31 Groundwater Seep 1 data to that collected in preceding months for Groundwater Seep 1 (Table 5), the following observations were made:

- The chloride concentration on October 31 was lower than all previous months in the "monthly monitoring program."
- The COD and zinc concentrations on October 31 were higher than all previous months in the "monthly monitoring program."
- All October 31 data were similar to data obtained in previous months.

Generalizations regarding trends in water quality for Groundwater Seeps 2 and 3 can be formulated when more data are available for these groundwater seeps.

GROUNDWATER SEEP FLOW RATES (GPM) OCTOBER MONTHLY MONITORING PROGRAM OCTOBER 1991

Date	Groundwater Seep 1	Groundwater Seep 2	Groundwater Seep 3
October 3	NP***	NP*	NP***
October 10	NP*	NP*	NP***
October 17	NP*	NP*	NP***
October 23	NP***	NP***	NP***
October 31	0.78	8.1	0.54

Notes:

NP* denotes not present. No flow. Groundwater seep location dry.

NP** denotes not present. Groundwater seep location submerged below river surface. When a groundwater seep becomes submerged beneath the surface of a water body, it (by definition) is no longer a seep and technically is no different than the rest of the groundwater discharge to that surface water body. There is no simple way to measure and distinguish this discharge from the rest of the groundwater discharge to the Grand Calumet River.

NP*** denotes not present. No flow. Groundwater seep location wet, but no flow to river.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 1 OCTOBER MONTHLY MONITORING PROGRAM OCTOBER 1991

Sample ID: Lab:	DEC-SP1-10-5 NET
Lab ID:	152268
Date:	10/31/91
Filtered (Yes/No):	Yes
AVERAGE FLOW RATE (gpm)	0.78
WATER QUALITY PARAMETERS (mg/l)	
COD	33B
Chloride	18
Fluoride	0.9
Nitrogen, Ammonia	0.4
Nitrogen, Nitrate	0.35
Nitrogen, Nitrite	
Total Dissolved Solids	1260
Total Suspended Solids	10*
Sulfate	800
pH ((ab)	7.1*
TRACE INORGANIC COMPOUNDS (mg/l)	
Arsenic	0.100
Zinc	0.977

Notes:

.

* Sample fraction not filtered. No value denotes not detected.

B denotes blank contamination.

.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 2 OCTOBER MONTHLY MONITORING PROGRAM OCTOBER 1991

Sample ID:	DEC-SP2-10-5
Lab:	NET
Lab ID:	152265
Date:	10/31/91
Filtered (Yes/No):	Yes
AVERAGE FLOW RATE (gpm)	8.1
WATER QUALITY PARAMETERS (mg/l)	
BOD-Five Day	2
COD	29B
Chloride	420
Fluoride	2.9
Nitrogen, Ammonia	6.6
Nitrogen, Nitrate	38.2
Nitrogen, Nitrite	
Oil and Grease	J*
Total Dissolved Solids	4040
Total Suspended Solids	9*
Sulfate	2800
pH (lab)	5.9*
TRACE INORGANIC COMPOUNDS (mg/l)	
Arsenic	
Соррег	
Zinc	26.9

Notes:

¢

* Sample fraction not filtered. No value denotes not detected. B denotes blank contamination.

J denotes estimated value.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 3 OCTOBER MONTHLY MONITORING PROGRAM OCTOBER 1991

Sample ID: Lab: Lab ID: Date: Filtered (Yes/No):	DEC-SP3-10-5 NET 152266 10/31/91 Yes
AVERAGE FLOW RATE (gpm)	0.54
WATER QUALITY PARAMETERS (mg/l)	_
BOD-Five Day	2
COD	26B
Chloride	22
Fluoride	2.1
Nitrogen, Ammonia	2.0
Nitrogen, Nitrate	0.53
Nitrogen, Nitrite	
Oil and Grease	1.1*
Total Dissolved Solids	2400
Total Suspended Solids	49*
Sulfate	800
pH (lab)	6.6*
TRACE INORGANIC COMPOUNDS (mg/l) Arsenic Copper	
Zinc	21.1

.

Notes: * Sample fraction not filtered.

No value denotes not detected. B denotes blank contamination.

J denotes estimated value.

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 1 MONTHLY MONITORING PROGRAM

199	1
-----	---

	April	May	June	July	August	September	October**
AVERAGE FLOW RATE (gpm)	0.78	0.86	0.87	0.62	0.35	0.36	0.78
WATER QUALITY PARAMETERS (mg/l)							
COD	14	15	23	19	21	7	33
Chloride	32	32	25	25	23	43	18
Fluoride	1.0	1.2	1.0	1.1	0.9	0.8	0.9
Nitrogen, Ammonia	0.34	0.58	0.91	0.53	0.53	0.75	0.4
Nitrogen, Nitrate	0.47	1.3	0.94	0.35	0.08	0.31	0.35
Nitrogen, Nitrite			0.01		0.15	••••	0.00
Total Dissolved Solids	1260	1400	1110	1340	1400	1260	1260
Total Suspended Solids	6*	6*	27*	145*	28*	5*	10*
Sulfate	760	840	740	830	840	850	800
pH (lab)	7.2*	7.1*	7.0*	7.0*	7.0*	7.1*	7.1*
TRACE INORGANIC COMPOUNDS (mg/l)							
Arsenic	0.046	0.054	0.068	0,103	0.017	0.99	0.100
Zinc	0.78	0.544	0.635	0.578	0.378	0.433	0.977

Notes:

* Sample fraction not filtered.

**October values derived from one sampling event. Values are not averages.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging. Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201-3137 11/18/1991

Sample No.: 152268

Job No.: 91.4348

Sample Description: DEC

DEC-SP1-10-5 CH128770.B0.MS;DuPont East

Date Taken: 10/31/1991 Time Taken: IEPA Cert. No. 100221		Date Received: Time Received: WDNR Cert. No.	09:45
Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite pH Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, AA Zinc, ICP	18. 33. 0.9 0.4 0.35 <0.01 7.1 1260. 10. 800. 0.100 0.977		mg/L mg/L mg/L mg/L mg/L units mg/L mg/L mg/L mg/L mg/L

Kelly

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 11/18/1991 CH2M HILL 1033 University Place Sample No.: 152265 Suite 300 Evanston, IL 60201-3137 Job No.: 91.4348 Sample Description: DEC-SP2-10-5 CH128770.B0.MS; DuPont East Date Taken: 10/31/1991 Date Received: 11/01/1991 Time Taken: 13:30 Time Received: 09:45 IEPA Cert. No. 100221 WDNR Cert. No. 999447130 BOD, Five Day 2. mg/L Chloride 420. mg/L COD, Total 29. mg/L Fluoride 2.9 mg/L N-Ammonia 6.6 mg/L N-Nitrate 38.2 mg/L N-Nitrite <0.01 mg/L Oil & Grease <1. mg/L pН 5.9 units Solids, Total Dissolved 4040. mg/L Solids, Total Suspended 9. mg/L Sulfate 2800. mg/L <0.0050 Arsenic, AA mg/L Copper, ICP <0.010 mg/L Zinc, ICP 26.9 mg/L

Kelly Jones

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 11/18/1991 CH2M HILL 1033 University Place Sample No.: 152266 Suite 300 Evanston, IL 60201-3137 Job No.: 91.4348 Sample Description: DEC-SP3-10-5 CH128770.B0.MS; DuPont East Date Taken: 10/31/1991 Date Received: 11/01/1991 Time Received: 09:45 Time Taken: 11:35 IEPA Cert. No. 100221 WDNR Cert. No. 999447130 BOD, Five Day 2. mg/L Chloride 22. mg/L COD, Total Fluoride 26. mg/L 2.1 mg/L N-Ammonia 2.0 mg/L N-Nitrate 0.53 mg/L N-Nitrite <0.01 mg/L Oil & Grease 1. mg/L pН 6.6 units Solids, Total Dissolved 2400. mg/L Solids, Total Suspended 49. mg/L Sulfate 800. mg/L Arsenic, AA <0.0050 mg/L Copper, ICP <0.010 mg/L Zinc, ICP 21.1 mg/L

KElly S Kelly Jones

Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 11/18/1991 CH2M HILL 1033 University Place Sample No.: 152267 Suite 300 Evanston, IL 60201-3137 Job No.: 91.4348 Sample Description: DEC-FP-10-5 CH128770.B0.MS; DuPont East Date Taken: 10/31/1991 Date Received: 11/01/1991 Time Taken: 14:50 Time Received: 09:45 IEPA Cert. No. 100221 WDNR Cert. No. 999447130 BOD, Five Day <1. mg/L Chloride 2. mg/L COD, Total 33. mg/L Fluoride mg/L 0.2 N-Ammonia <0.1 mg/L N-Nitrate 0.03 mg/L N-Nitrite <0.01 mg/L Oil & Grease <1. mg/L pH 5.6 units Solids, Total Dissolved Solids, Total Suspended 2. mg/L 1. mg/L Sulfate <4. mq/L Arsenic, AA <0.0050 mg/L Copper, ICP <0.010 mg/L Zinc, ICP 0.035 mg/L

KElly Don:

Kelly Jones Project Manager

Page 3

Attachment 2 Data Validation Summary Monthly Monitoring Program

TO:	Pixie Newman/CHI Susan Mulholland/CHI
FROM:	Dan MacGregor/GLO
DATE:	November 19, 1991
SUBJECT:	Data Validation for Groundwater Seep Samples Du Pont East Chicago, Indiana
PROJECT:	CHI28770.B0.MR

Introduction

This memorandum presents the data validation discussion for the inorganic analytical results for Groundwater Seeps 1, 2, 3, and a field blank, collected on October 31, 1991, at the Du Pont Plant in East Chicago, Indiana. Sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-of-custody procedures. Requested QA/QC data included holding time data, chain-of-custody forms, calibration and procedure blank results, initial calibration verification standard recoveries, continuing calibration recovery results, field blank results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/QC and sample data were reviewed as described below.

Holding Times

Inspection of holding times showed that the holding time requirements, as specified by the EPA Methods for Chemical Analysis of Water and Wastes, were met.

Chain of Custody

The chain-of-custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

Blanks

The calibration and procedure blank results were inspected for possible contaminants. These blanks were free of compound concentrations equal to or greater than compound reporting limits.

The field blank contained low levels of chloride, COD, fluoride, nitrate, TDS, TSS, and zinc. These compound concentrations, With the exception of COD, were a factor of ten or less than their correlating sample concentrations. The field blank COD result, 33 mg/L, is probably a result of sample bottle contamination. The groundwater seep sample COD values were qualified as blank contaminated, and flagged with a "B." The other compounds detected in the field blank were at low enough concentrations that data qualification was not required.

Calibration Recovery Results

The initial calibration verification (ICV) standard recoveries were within the EPA established control limits of \pm 10% of true value. Continuing calibration recoveries were also found to be within these control limits. No qualifying action was required as a result of initial or continuing calibration recoveries.

Laboratory Control Spikes

Except for an oil & grease recovery, the laboratory spike recoveries were within the control limit of $\pm 20\%$ of true value. As a result of the low oil & grease laboratory control recovery, Seeps 2 and 3 oil & grease results were qualified as estimated and flagged with a "J."

Matrix Spike/Matrix Spike Duplicate Fortifications

The matrix spike and matrix spike duplicate results were within EPA and methodology control limits. No data qualifying action was required.

Sample Results and Conclusions

Future COD groundwater seep sample results in the range of 0 mg/L to 150 mg/L should be considered possibly blank contaminated and reviewed closely.

The Groundwater Seeps 1 and 3 results from this round of sampling were compared, and found to be generally consistent with data from previous sample events. The amount of Groundwater Seep 2 data is too limited to make data observations.

With the exception of the qualified results, this round of sample results are valid and useable.

November Monthly Monitoring Report for the Groundwater Seeps at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

December 27, 1991

Introduction

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, and U.S. EPA's amended Information Request dated June 27, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep referenced in the original request (Groundwater Seep 1) and two other groundwater seeps referenced in the amended request (Groundwater Seeps 2 and 3) at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for November 1991.

Sample Collection and Analysis

The November "monthly monitoring program" sampling activities consisted of monitoring groundwater seep conditions and obtaining a grab sample from each seep, if possible, once per week. Monitoring was performed on November 7, 14, 21, and 26, 1991. Groundwater seep flow rates were measured and recorded during each sampling event (Table 1). Samples were collected from Groundwater Seeps 1, 2, and 3 on November 7. On November 14 and 26, Groundwater Seeps 1 and 3 were not present. Consequently, samples were collected from Groundwater Seep 2 only. Groundwater Seeps 1 and 2 were present and sampled on November 21. Groundwater Seep 3 was not present.

Sample fractions collected for oil and grease, total suspended solids, and pH analyses

were not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The samples collected from Groundwater Seep 1 were analyzed for the following constituents: chemical oxygen demand (COD), ammonia-N, nitrate, nitrite, sulfate, chloride, fluoride, total dissolved solids, total suspended solids, arsenic, zinc, and pH. The samples collected from Groundwater Seeps 2 and 3 were analyzed for all of the constituents listed above, plus biological oxygen demand (BOD-five day), oil and grease, and copper, as originally requested. In the amended request, BOD-five day, oil and grease, and copper were dropped from the Groundwater Seep 1 monitoring requirements.

Analytical Results and Interpretation

Tables 2, 3, and 4 summarize the analytical results of the "monthly monitoring program" for the month of November for Groundwater Seeps 1, 2, and 3, respectively. All laboratory data sheets for samples collected and analyzed during November for the "monthly monitoring program" are provided in Attachment 1.

Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the November groundwater seep samples. Comparing the November Groundwater Seep 1 data to that collected in preceding months for Groundwater Seep 1 (Table 5), the following observations were made:

•

- The average COD, total dissolved solids, and total suspended solids concentrations for November were higher than all previous months in the "monthly monitoring program."
- Except those previously noted, all November data were similar to data obtained in previous months.

Generalizations regarding trends in water quality for Groundwater Seeps 2 and 3 can be formulated when more data are available for these groundwater seeps.

GROUNDWATER SEEP FLOW RATES (GPM) NOVEMBER MONTHLY MONITORING PROGRAM NOVEMBER 1991

Date	Groundwater Seep 1	Groundwater Seep 2	Groundwater Seep 3
November 7	0.29	9.5	0.22
November 14	NP***	4.7	NP*
November 21	0.24	17.6	¥1>***
November 26	NP****	10.2	NP****

Notes:

NP* denotes not present. No flow. Groundwater seep location dry.

NP** denotes not present. Groundwater seep location submerged below river surface. When a groundwater seep becomes submerged beneath the surface of a water body, it (by definition) is no longer a seep and technically is no different than the rest of the groundwater discharge to that surface water body. There is no simple way to measure and distinguish this discharge from the rest of the groundwater discharge to the Grand Calumet River.

NP*** denotes not present. No flow. Groundwater seep location wet, but no flow to river.

NP**** denotes not present. Groundwater seep location frozen.

•

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 1 NOVEMBER MONTHLY MONITORING PROGRAM NOVEMBER 1991

Sample ID: Lab: Lab ID: Date: Filtered (Yes/No):	DEC-SP1-11-1 NET 152811 11/7/91 Yes	DEC-SP1-11-3 NET 153959 11/21/91 Yes	Average
AVERAGE FLOW RATE (gpm)	0.78	0.24	0.51
WATER QUALITY PARAMETERS (mg/l) COD Chloride Fluoride Nitrogen, Ammonia Nitrogen, Nitrate Nitrogen, Nitrite Total Dissolved Solids Total Suspended Solids Sulfate pH (lab)	59 20 0.8 0.5 1.35J 0.01 3090 475* 800 7.1*	49 24 0.8 0.54 0.28J 1200 17* 800 6.8*	54 22 0.8 0.5 0.82 0.01 2100 250* 800 7.0*
TRACE INORGANIC COMPOUNDS (mg/l) Arsenic Zinc	0.052J 0.377	0.116J 0.735	0.084 0.556

Notes:

•'

* Sample fraction not filtered.

No value denotes not detected.

J denotes estimated value. A value of one-half the detection limit used in averaging not detected values.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 2 NOVEMBER MONTHLY MONITORING PROGRAM NOVEMBER 1991

Sample 1D:	DEC-SP2-11-1	DEC-SP2-11-2	DEC-SP2-11-3	DEC-SP2-11-4	
Lab:	NET	NET	NET	NET	
Lab ID:	152812	153437	153960	154410	
Date:	11/7/91	11/14/91	11/21/91	11/26/91	
Filtered (Yes/No):	Yes	Yes	Yes	Yes	Average
AVERAGE FLOW RATE (gpm)	9.5	4.7	17.6	10.2	10.5
WATER QUALITY PARAMETERS (mg/l)					
BOD-Five Day		NA	1		0.7
COD	49	65	36	26	44
Chloride	520	400	326	360	400
Fluoride	3.8	3.6	3.7	4.9	4.0
Nitrogen, Ammonia	10.3	10.6	9.8	9.4	10.0
Nitrogen, Nitrate	37.3J	38.2J	28.8J	20.6	31.2
Nitrogen, Nitrite					
Oil and Grease	2*	1*	*	*	1*
Total Dissolved Solids	4460	4450	3980	3580	4120
Total Suspended Solids	6*	5*	5*	1*	4*
Sulfate	3200	3200	2900	250	2400
pH (lab)	5.9*	5.7*	5.6*	5.8*	5.8*
TRACE INORGANIC COMPOUNDS (mg/l)					
Arsenic	J	J	j		
Copper					
Zinc	21.0	23.5	16.5	22.6	20.9

Notes:

.

* Sample fraction not filtered. No value denotes not detected.

NA denotes not analyzed.

J denotes estimated value. A value of one-half the detection limit used in averaging not detected values.

,

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 3 NOVEMBER MONTHLY MONITORING PROGRAM NOVEMBER 1991

Sample ID: tab:	DEC-SP3-11-1
	NET
Lab ID:	152813
Date:	11/7/91
Filtered (Yes/No):	Yes
AVERAGE FLOW RATE (gpm)	0.22
WATER QUALITY PARAMETERS (mg/l)	
BOD-Five Day	7
C00	65
Chloride	32
Fluoride	3.7
Nitrogen, Ammonia	21.0
Nitrogen, Nitrate	0.601
Nitrogen, Nitrite	0.02
Oil and Grease	7*
Total Dissolved Solids	1190
Total Suspended Solids	100*
Sulfate	2300
рН (lab)	6.5*
TRACE INORGANIC COMPOUNDS (mg/l)	
Arsenic	0.0055J
Copper	
Zinc	13.4
Notes:	

• 1

Notes: * Sample fraction not filtered. No value denotes not detected. J denotes estimated value.

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 1 MONTHLY MONITORING PROGRAM 1991

	April	May	June	July	August	September	October**	November
AVERAGE FLOW RATE (gpm)	0.78	0.86	0.87	0.62	0.35	0.36	0.78	0.51
WATER QUALITY PARAMETERS (mg/l)								
COD	14	15	23	19	21	7	33	54
Chloride	32	32	25	25	23	43	18	22
Fluoride	1.0	1.2	1.0	1.1	0.9	0.8	0.9	0.8
Nitrogen, Ammonia	0.34	0.58	0.91	0.53	0.53	0.75	0.4	0.5
Nitrogen, Nitrate	0.47	1.3	0.94	0.35	0.08	0.31	0.35	0.82
Nitrogen, Nitrite			0.01		0.15			0.01
Total Dissolved Solids	1260	1400	1110	1340	1400	1260	1260	2100
Total Suspended Solids	6*	6*	27*	145*	28*	5*	10*	250*
Sulfate	760	840	740	830	840	850	800	800
рН (lab)	7.2*	7.1*	7.0*	7.0*	7.0*	7.1*	7.1*	7.0*
TRACE INORGANIC COMPOUNDS (mg/l)								
Arsenic	0.046	0.054	0.068	0.103	0.017	0.99	0.100	0.084
Zinc	0.78	0.544	0.635	0.578	0.378	0.433	0.977	0.556

Notes:

* Sample fraction not filtered.

**October values derived from one sampling event. Values are not averages. No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging.

Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

٠.

.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 12/18/1991 CH2M HILL 1033 University Place Sample No.: 152811 Suite 300 Evanston, IL 60201 Job No.: 91.4479 Sample Description: DEC-SP1-11-1 CHI28770.BO.MS; Du Pont 11/07/1991 Date Taken: Date Received: 11/08/1991 Time Taken: 12:35 Time Received: 10:00 IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 Chloride 20. mg/L COD, Total 59. mg/L Fluoride 0.8 mg/L N-Ammonia 0.5 mg/L N-Nitrate 1.35 mg/L N-Nitrite 0.01 mg/L 7.1 pН units Solids, Total Dissolved 3090. mg/L Solids, Total Suspended 475. mq/L Sulfate 800. mg/L Arsenic, AA 0.052 mg/L Zinc, ICP 0.377 mg/L

Kelly yones Kelly Jones

Kelly Jones Project Manager

Page 1

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

12/18/1991

Sample No.: 152812 Job No.: 91.4479

Sample Description: DEC-SP2-11-1 CHI28770.BO.MS; Du Pont

11/07/1991 Date Received: Date Taken: 11/08/1991 Time Taken: 13:25 Time Received: 10:00 IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130

BOD, Five Day <1. mq/L Chloride 520. mg/L COD, Total 49. mg/L Fluoride 3.8 mq/L N-Ammonia 10.3 mg/L N-Nitrate 37.3 mg/L N-Nitrite <0.01 mg/L Oil & Grease 2. mq/L 5.9 units βH 4460. Solids, Total Dissolved mg/L Solids, Total Suspended 6. mg/L Sulfate 3200. mg/L Arsenic, AA <0.0050 mg/L Copper, ICP mg/L <0.010

Kelly(Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 12/18/1991

Sample No.: 152812

Job No.: 91.4479

Sample Description: DEC-SP2-11-1 CHI28770.BO.MS; Du Pont

Date Taken: 11/07/1991 Time Taken: 13:25 IEPA Cert. No.: 100221

Zinc, ICP

•

21.0 mg/L

Date Received: 11/08/1991 Time Received: 10:00

WDNR Cert. No.: 999447130

KElly

Kelly Jones Project Manager

Page 3

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 12/18/1991

Sample No.: 152813 Job No.: 91.4479

Sample Description: DEC-SP3-11-1 CHI28770.BO.MS; Du Pont

	Date Receiv		
Time Taken: 13:05	IIME RECEI	veu:	10:00
IEPA Cert. No.: 100221	WDNR Cert.	No.:	999447130

BOD, Five Day	7.	mg/L
Chloride	32.	mg/L
COD, Total	65.	mg/L
Fluoride	3.7	mg/L
N-Ammonia	21.0	mg/L
N-Nitrate	0.60	mg/L
N-Nitrite	0.02	mg/L
Oil & Grease	7.	mg/L
рН	6.5	units
Solids, Total Dissolved	1190.	mg/L
Solids, Total Suspended	100.	mg/L
Sulfate	2300.	mg/L
Arsenic, AA	0.0055	mg/L
Copper, ICP	Kelly Jones	mg/L

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

÷

12/18/1991

Sample No.: 152813

Job No.: 91.4479

Sample Description: DEC-SP3-11-1 CHI28770.BO.MS; Du Pont

Date Taken: 11/07/1991 Time Taken: 13:05 IEPA Cert. No.: 100221

Zinc, ICP

13.4 mg/L

Date Received: 11/08/1991 Time Received: 10:00

WDNR Cert. No.: 999447130

Kelly Jones

Kelly Jones Project Manager

Page 5

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 12/18/1991

Sample No.: 153437 Job No.: 91.4614

Sample Description: DEC-SP2-11-2 CH128770.BO.MS; Du Pont

Date Taken: 11/14/1991	Date Received:	11/15/1991
Time Taken: 07:55	Time Received:	10:30
IEPA Cert. No.: 100221	WDNR Cert. No.:	999447130

Chloride 400. mg/L COD, Total 65. mg/L Fluoride 3.6 mg/L N-Ammonia 10.6 mg/L N-Nitrate 38.2 mg/L <0.01 N-Nitrite mg/L Oil & Grease 1. mg/L 5.7 units pН Solids, Total Dissolved 4450. mg/L Solids, Total Suspended 5. mg/L Sulfate 3200. mg/L Arsenic, AA <0.0050 mg/L Copper, ICP <0.010 mg/L Zinc, ICP 23.5 mg/L

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

.1

12/13/1991

Sample No.: 153959 Job No.: 91.4767

Sample Description: DEC-SP1-11-3 CH128770.B0.MS;DuPont East

Date Taken: 11/21/1991	Date Received:	11/22/1991
Time Taken: 08:10	Time Received:	10:00
IEPA Cert. No.: 100221	WDNR Cert. No.:	999447130

Chloride	24.	mg/L
COD, Total	49.	mg/L
Fluoride	0.8	mg/L
N-Ammonia	0.54	mg/L
N-Nitrate	0.28	mg/L
N-Nitrite	<0.01	mg/L
pH	6.8	units
Solids, Total Dissolved	1200.	mg/L
Solids, Total Suspended	17.	mg/L
Sulfate	800.	mg/L
Arsenic, AA	0.116	mg/L
Zinc, ICP	0.735	mg/L

. (Ray Kalick) Kelly Jones

Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 12/13/1991

Sample No.: 153960 Job No.: 91.4767

Sample Description: DEC-SP2-11-3 CH128770.B0.MS;DuPont East

Date Taken: Time Taken:			Received: Received:	
IEPA Cert. No	.: 100221	WDNR	Cert. No.:	999447130

BOD, Five Day			1.	mg/L	
Chloride			326.	mg/L	
COD, Total			36.	mg/L	
Fluoride			3.7	mg/L	
N-Ammonia			9.8	mg/L	
N-Nitrate			28.8	mg/L	
N-Nitrite			<0.01	mg/L	
Oil & Grease			<1.	mg/L	
рН			5.6	units	
Solids, Total Dissolved			3980.	mg/L	
Solids, Total Suspended			5.	mg/L	
Sulfate			2900.	mg/L	
Arsenic, AA			<0.0050	mg/L	
Copper, ICP		RX00	<0.010	mg∕L	
	for	Kelly Jones Project Manager			

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 12/13/1991

Sample No.: 153960

Job No.: 91.4767

Sample Description: DEC-SP2-11-3 CH128770.B0.MS;DuPont East

Date Taken: 11/21/1991 Time Taken: 09:00 IEPA Cert. No.: 100221

Zinc, ICP

Time Receive

16.5

Date Received: 11/22/1991 Time Received: 10:00 WDNR Cert. No.: 999447130

mg/L

(Ray Kalek.) Relly Jones

Helly Jones Project Manager

Page 3

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 12/18/1991

Sample No.: 154410 Job No.: 91.4865

Sample Description: DEL-SP2-11-4 CH128770.B0.MS; DuPont

 Date Taken:
 11/26/1991
 Date Received:
 11/27/1991

 Time Taken:
 08:15
 Time Received:
 10:00

 IEPA Cert.
 No.:
 100221
 WDNR Cert.
 No.:
 999447130

BOD, Five Day	<1.	mg/L
Chloride	360.	mg/L
COD, Total	26.	mg/L
Fluoride	4.9	mg/L
N-Ammonia	9.4	mg/L
N-Nitrate	20.6	mg/L
N-Nitrite	<0.01	mg/L
Oil & Grease	<1.	mg/L
рН	5.8	units
Solids, Total Dissolved	3580.	mg/L
Solids, Total Suspended	1.	mg/L
Sulfate	250.	mg/L
Arsenic, AA	<0.0050	mg/L
Copper, ICP	y Jones	mg/L

Kell**ý** Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

12/18/1991

Sample No.: 154410

Job No.: 91.4865

Sample Description: DEL-SP2-11-4 CH128770.B0.MS; DuPont

Date Taken: 11/26/1991 Time Taken: 08:15 IEPA Cert. No.: 100221

Date Received: 11/27/1991 Time Received: 10:00 WDNR Cert. No.: 999447130

Zinc, ICP

22.6 mg/L

Kelly

Kelly Jones Project Manager

Page 2

Attachment 2 Data Validation Summary Monthly Monitoring Program

•

-

TO:	Pixie Newman/CHI Susan Mulholland/CHI
FROM:	Lori J. Bootz/GLO
DATE:	December 20, 1991
SUBJECT:	Data Validation for Groundwater Seep Samples Du Pont East Chicago, Indiana
PROJECT:	CHI28770.B0.MR

Introduction

This memorandum presents the data validation discussion for the inorganic analytical results for Groundwater Seep 1 samples collected on November 7, and 21, 1991, and Groundwater Seep 2 samples collected on November 7, 14, 21, and 26, 1991, and a Groundwater sample collected from Seep 3 on November 7, 1991, at the Du Pont Plant in East Chicago, Indiana. Sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-of-custody procedures. Requested QA/QC data included holding time data, chain-of-custody forms, calibration and procedure blank results, initial calibration verification standard recoveries, continuing calibration recovery results, field blank results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/QC and sample data were reviewed as described below.

Holding Times

Inspection of holding times showed that the holding time requirements, as specified by the EPA <u>Methods for Chemical Analysis of Water and Wastes</u>, were met with the exception of the following instances: one total suspended solids (TSS) sample and three total dissolved solid (TDS) samples exceeded their 7-day holding time by one day. In this reviewers opinion, the qualification of TSS and TDS results is inappropriate for missing a holding time by one day.

Chain of Custody-

The chain-of-custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

Blanks

The calibration and procedure blank results were inspected for possible contaminants. These blanks were free of compound concentrations equal to or greater than compound reporting limits.

Cclibration Recovery Results

Except for arsenic recoveries, the initial calibration verification (ICV) and continuing calibration verification (CCV) standard recoveries were within the EPA established control limits of + 10% of true value.

Arsenic ICV and CCV standard recoveries were below the 10% control limit. The arsenic results for groundwater seep samples collected November 7, 14, and 21, 1991 were qualified as estimated and flagged with a "J."

Laboratory Control Spikes

The laboratory spike recoveries were within the EPA control limit of $\pm 20\%$ of true value. No qualifying action was required as a result of laboratory control spikes.

Matrix Spike/Matrix Spike Duplicate Fortifications

Except for nitrate, the matrix spike and matrix spike duplicate results were within EPA and methodology control limits for all parameters. Nitrate recoveries were low for all samples except for the Seep 2 sample collected on November 26, 1991. Nitrate results associated with these low recoveries were qualified as estimated and flagged with a "J".

Sample Results and Conclusions

The Groundwater Seeps 1 and 3 results from this round of sampling were compared, and found to be generally consistent with data from previous sample events. The amount of Groundwater Seep 2 data is too limited to make data observations.

:

In this round of data validation, eleven typographical errors were encountered in the data tables. These errors required clarification from the lab, via phone, and subsequent reissuing of the corrected tables. Future data reviews will have to pay attention to this issue to ensure that this problem has been resolved.

With the exception of the qualified results, this round of sample results are valid and useable.

December Monthly Monitoring Report for the Groundwater Seeps at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

January 23, 1992

Introduction

0

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, and U.S. EPA's amended Information Request dated June 27, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep referenced in the original request (Groundwater Seep 1) and two other groundwater seeps referenced in the amended request (Groundwater Seeps 2 and 3) at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for December 1991.

Sample Collection and Analysis

The December "monthly monitoring program" sampling activities consisted of monitoring groundwater seep conditions and obtaining a grab sample from each seep, if possible, once per week. Monitoring was performed on December 5, 12, 18, and 26, 1991. Groundwater seep flow rates were measured and recorded during each sampling event (Table 1). Samples were collected from Groundwater Seeps 1, 2, and 3 on December 18. On December 5 and 12, Groundwater Seep 3 was not present. Consequently, samples were collected from Groundwater Seeps 1 and 2 only. Groundwater Seep 2 was present and sampled on December 26. Groundwater Seeps 1 and 3 were not present.

Sample fractions collected for oil and grease, total suspended solids, and pH analyses

were not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The samples collected from Groundwater Seep 1 were analyzed for the following constituents: chemical oxygen demand (COD), ammonia-N, nitrate, nitrite, sulfate, chloride, fluoride, total dissolved solids, total suspended solids, arsenic, zinc, and pH. The samples collected from Groundwater Seeps 2 and 3 were analyzed for all of the constituents listed above, plus biological oxygen demand (BOD-five day), oil and grease, and copper, as originally requested. In the amended request, BOD-five day, oil and grease, and copper were dropped from the Groundwater Seep 1 monitoring requirements.

Analytical Results and Interpretation

Tables 2, 3, and 4 summarize the analytical results of the "monthly monitoring program" for the month of December for Groundwater Seeps 1, 2, and 3, respectively. All laboratory data sheets for samples collected and analyzed during December for the "monthly monitoring program" are provided in Attachment 1.

Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the December groundwater seep samples.

2

Comparing the December Groundwater Seep 1 data to that collected in preceding months for Groundwater Seep 1 (Table 5), the following observations were made:

Ń

- The average COD concentration for December was higher than all previous months in the "monthly monitoring program."
- The average pH for December was slightly lower than all previous months in the "monthly monitoring program."
- Except those previously noted, all December data were similar to data obtained in previous months.

Tables 6 and 7 present average concentrations of constituents analyzed in Groundwater Seep 2 and 3 samples, respectively, for each month that these seeps have been included in the "monthly monitoring program." Generalizations regarding trends in water quality for Groundwater Seeps 2 and 3 can be formulated when more data are available for these groundwater seeps.

3

GROUNDWATER SEEP FLOW RATES (GPM) DECEMBER MONTHLY MONITORING PROGRAM DECEMBER 1991

Date	Groundwater Seep 1	Groundwater Seep 2	Groundwater Seep 3
December 5	0.24	12.9	NP****
December 12	0.68	16.8	NP***
December 18	0.32	12	0.33
December 26	NP*	9.0	NP*

Notes:

NP* denotes not present. No flow. Groundwater seep location dry.

NP** denotes not present. Groundwater seep location submerged below river surface. When a groundwater seep becomes submerged beneath the surface of a water body, it (by definition) is no longer a seep and technically is no different than the rest of the groundwater discharge to that surface water body. There is no simple way to measure and distinguish this discharge from the rest of the groundwater discharge to the Grand Calumet River.

NP*** denotes not present. No flow. Groundwater seep location wet, but no flow to river.

NP**** denotes not present. No flow. Groundwater seep location frozen.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 1 DECEMBER WONTHLY MONITORING PROGRAM DECEMBER 1991

Sample ID: Lab: Lab ID: Date: Filtered (Yes/No):	DEC-SP1-12-1 NET 154693 12/5/91 Yes	DEC-SP1-12-2 NET 155139 12/12/91 Yes	DEC-SP1-12-3 NET 155515 12/18/91 Yes	Average
AVERAGE FLOW RATE (gpm)	0.24	0.68	0.32	0.41
WATER QUALITY PARAMETERS (mg/l)				
COD	170	49	14	78
Chloride	24	14	18	19
Fluoride	0.8	0.9	1.1	0.9
Nitrogen, Ammonia	0.08	0.46	0.92	0.49
Nitrogen, Nitrate	0.80	0.64	0.20	0.55
Nitrogen, Nitrite				
Total Dissolved Solids	1170	1020	1220	1140
Total Suspended Solids	129*	9*	146J*	90*
Sulfate	700 J	900	800	800
pH (lab)	6.9*	6.8*	7.0*	6.9*
TRACE INORGANIC COMPOUNDS (mg/l)				
Arsenic	0.102	0.060	0.045	0.069
Zinc	0.898J	0.840	0.355	0.700

Notes:

×,

* Sample fraction not filtered.

No value denotes not detected.

J denotes estimated value. A value of one-half the detection limit used in averaging not detected values.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 2 DECEMBER MONTHLY MONITORING PROGRAM DECEMBER 1991

•

Sample ID: Lab: Lab ID: Date: Filtered (Yes/No):	DEC-SP2-12-1 NET 154694 12/5/91 Yes	DEC-SP2-12-2 NET 155140 12/12/91 Yes	DEC-SP2-12-3 NET 155516 12/18/91 Yes	DEC-SP2-12-4 NET 155756 12/26/91 Yes	Average
AVERAGE FLOW RATE (gpm)	12.9	16.8	12	9.0	13
WATER QUALITY PARAMETERS (mg/l)					
BOD-Five Day	1	1	J	5J	2
COD	96	39	11	61	52
Chloride	340	240	250	48	220
Fluoride	2.2	1.9	1.9	2.5	2.1
Nitrogen, Ammonia	1.49	7.58	5.2	6.2	5.1
Nitrogen, Nitrate	14.7	14.7	11.5	13.3	13.6
Nitrogen, Nitrite					
Oil and Grease	*	1*	J*	J*	1*
Total Dissolved Solids	3050	2720	2840	2760J	2840
Total Suspended Solids	3*	*	4J*	4*	3*
Sulfate	2000 J	1900	1800	1800	1900
pH (lab)	5.6*	5.7*	5.6*	5.9*	5.7*
TRACE INORGANIC COMPOUNDS (mg/l) Arsenic Copper					
Zinc	18.6J	14.9	13.4	15.8	15.7

Notes:

ŕ

* Sample fraction not filtered.

No value denotes not detected.

NA denotes not analyzed.

J denotes estimated value. A value of one-half the detection limit used in averaging not detected values.

TABLE 4

-

v

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 3 DECEMBER MONTHLY MONITORING PROGRAM DECEMBER 1991

Sample ID:	DEC-SP3-12-3
Lab:	NET
Lab ID:	155517
Date:	12/18/91
Filtered (Yes/No):	Yes
AVERAGE FLOW RATE (gpm)	0.33
WATER QUALITY PARAMETERS (mg/l)	
BOD-Five Day	6J
COD	14
Chloride	28
Fluoride	3.1
Nitrogen, Ammonia	17.2
Nitrogen, Nitrate	0.20
Nitrogen, Nitríte	
Oil and Grease	J*
Total Dissolved Solids	2890
Total Suspended Solids	214J*
Sulfate	2100
pH (lab)	6.2*
TRACE INORGANIC COMPOUNDS (mg/l)	
Arsenic	
Copper	
Zinc	16.0

* Sample fraction not filtered. No value denotes not detected. J denotes estimated value.

TABLE 5

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 1 MONTHLY MONITORING PROGRAM 1991

	April	Мау	June	July	August	September	October**	November	December
AVERAGE FLOW RATE (gpm)	0.78	0.86	0.87	0.62	0.35	0.36	0.78	0.51	0.41
WATER QUALITY PARAMETERS (mg/l)									
COD	14	15	23	19	21 23	7	33	54	78
Chloride	32	32	23 25	25	23	43	18	22	19
Fluoride	1.0	1.2	1.0	1.1	0.9	0.8	0.9	0.8	0.9
Nitrogen, Ammonia	0.34	0.58	0.91	0.53	0.53	0.75	0.4	0.5	0.49
Nitrogen, Nitrate	0.47	1.3	0.94	0.35	0.08	0.31	0.35	0.82	0.55
Nitrogen, Nitrite			0.01		0.15			0.01	
Total Dissolved Solids	1260	1400	1110	1340	1400	1260	1260	2100	1140
Total Suspended Solids	6*	6*	27*	145*	28*	5*	10*	250*	90*
Sulfate	760	840	740	830	840	850	800	800	800
pH (lab)	7.2*	7.1*	7.0*	7.0*	7.0*	7.1*	7.1*	7.0*	6.9*
TRACE INORGANIC COMPOUNDS (mg/l)									
Arsenic	0.046	0.054	0.068	0.103	0.017	0.99	0.100	0.084	0.069
Zinc	0.78	0.544	0.635	0.578	0.378	0.433	0.977	0.556	0.700

Notes:

* Sample fraction not filtered.

**October values derived from one sampling event. Values are not averages.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging.

- 1	•	B	t.	c	
	~	Ð	-	5	

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 2 MONTHLY MONITORING PROGRAM 1991

	July	August	September	October**	November	December
AVERAGE FLOW RATE (gpm)	NP	NP	NP	8.1	10.5	13
WATER QUALITY PARAMETERS (mg/l)						
BOD-Five Day				2	0.7	2
COD				29	44	52
Chloride				420	400	220
Fluoride				2.9	4.0	2.1
Nitrogen, Ammonia				6.6	10.0	5.1
Nitrogen, Nitrate				38.2	31.2	13.6
Nitrogen, Nitrite						
Oil and Grease				*	1*	1*
Total Dissolved Solids				4040	4120	2840
Total Suspended Solids				9*	4*	3*
Sulfate				2800	2400	1900
pH (lab)				5.9*	5.8*	5.7*
TRACE INORGANIC COMPOUNDS (mg/l)						
Arsenic						
Copper						
Zinc				26.9	20.9	15.7
				/	/	

Notes:

* Sample fraction not filtered.

**Values derived from one sampling event. Values are not averages.

NP denotes not present.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values.

The average value of the duplicate sample results used in overall averaging.

TABLE 7

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 3 MONTHLY MONITORING PROGRAM 1991

	July	August	September**	October**	November**	December**
AVERAGE FLOW RATE (gpm)	NP	0.39	0.26	0.54	0.22	0.33
WATER QUALITY PARAMETERS (mg/l)						
BOD-Five Day		4	4	2	7	6
COD		14	23	26	65	14
Chloride		28	68	22	32	28
fluoride		1.2	1.0	2.1	3.7	3.1
Nitrogen, Ammonia		3.4	4.6	2.0	21.0	17.2
Nitrogen, Nitrate		0.43	0.50	0.53	0.60	0.20
Nitrogen, Nitrite					0.02	
Oil and Grease		1*	2*	1*	7*	*
Total Dissolved Solids		3110	2900	2400	1190	2890
Total Suspended Solids		190*	46*	49*	100*	214*
Sulfate		1900	1770	800	2300	2100
pH (lab)		6.1*	6.4*	6.6*	6.5*	6.2*
TRACE INORGANIC COMPOUNDS (mg/l)						
Arsenic		0.005			0.0055	
Copper		0.055	0.013			
Zinc		22.0	28.1	21.1	13.4	16.0

Notes:

* Sample fraction not filtered.

**Values derived from one sampling event. Values are not averages.

NP denotes not present.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values.

The average value of the duplicate sample results used in overall averaging.

Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

- 53

• •.

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 12/23/1991

Sample No.: 154693

Job No.: 91.4947

Sample Description: DEC-SP1-12-1

DEC-SP1-12-1 CHI28770.B0.MS; DuPont

Date Taken: 12/05/1991 Time Taken: 10:20 IEPA Cert. No. 100221		Date Received: Time Received: WDNR Cert. No.	10:00
Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite pH Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, AA Zinc, ICP	24. 170. 0.8 0.08 0.80 <0.01 6.9 1170. 129. 700. 0.102 0.898		mg/L mg/L mg/L mg/L mg/L units mg/L mg/L mg/L mg/L mg/L

dealE

Neal E. Cleghorn Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 01/02/1992 CH2M HILL 1033 University Place Sample No.: 155139 Suite 300 Evanston, IL 60201 Job No.: 91.5088 Sample Description: DEC-SP1-12-2 CH128770.B0.MS; DuPont 12/12/1991 Date Taken: Date Received: 12/13/1991 Time Taken: 09:31 Time Received: 10:00 IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 Chloride 14. mg/L COD, Total 49. mg/L Fluoride 0.9 mg/L N-Ammonia 0.46 mg/L N-Nitrate 0.64 mg/L N-Nitrite <0.01 mg/L pH 6.8 units Solids, Total Dissolved 1020. mg/L Solids, Total Suspended 9. mg/L Sulfate 900. mg/L Arsenic, AA 0.060 mg/L Zinc, ICP 0.840 mg/L

Kelly Jones KeMy Jones Project Manager

Page 1

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 53201

Sample Description:

01/10/1992

Sample No.: 155515 Job No.: 91.5202

DEC-SP1-12-3 CHI28770.B0.MS; DuPont

Date Taken: 12/18/1991	Date Received:	12/19/1991
Time Taken: 10:45	Time Received:	
IEPA Cert. No.: 100221	WDNR Cert. No.: 9	999447130

Chloride	18.	mg/L
COD, Total	14.	mg/L
Fluoride	1.1	mg/L
N-Ammonia	0.92	mg/L
N-Nitrate	0.20	mg/L
N-Nitrite	<0.01	mg/L
pH	7.0	units
Solids, Total Dissolved	1220.	mg/L
Solids, Total Suspended	146.	mg/L
Sulfate	800.	mg/L
Arsenic, AA	0.045	mg/L
Zinc, ICP	0.355	mg/L

Kelly Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 12/23/1991 CH2M HILL 1033 University Place Sample No.: 154694 Suite 300 Evanston, IL 60201 Job No.: 91.4947 Sample Description: DEC-SP2-12-1 CHI28770.B0.MS; DuPont Date Taken: 12/05/1991 Date Received: 12/06/1991 Time Taken: 10:40 Time Received: 10:00 WDNR Cert. No. 999447130 IEPA Cert. No. 100221 BOD, Five Day 1. mq/L Chloride 340. mg/L COD, Total 96. mg/L Fluoride mg/L 2.2 N-Ammonia 1.49 mg/L N-Nitrate 14.7 mg/L N-Nitrite <0.01 mg/L Oil & Grease <1. mg/L units рH 5.6 Solids, Total Dissolved Solids, Total Suspended 3050. mg/L mg/L 3. Sulfate 2000. mg/L Arsenic, AA Copper, ICP <0.0050 mg/L <0.010 mg/L Zinc, ICP 18.6 mg/L

Heat E Clephan

Neal E. Cleghorn Project Manager

Ē

•

L

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 01/02/1992

Sample No.: 155140 Job No.: 91.5088

Sample Description: DEC-SP2-12-2 CH128770.B0.MS; DuPont

Date Taken: 12/12/1991	Date Received: 12/13/199	1
Time Taken: 10:15	Time Received: 10:00	
IEPA Cert. No.: 100221	WDNR Cert. No.: 999447130	

BOD, Five Day	1.	mg/L
Chloride	240.	mg/L
COD, Total	39.	mg/L
Fluoride	1.9	mg/L
N-Ammonia	7.58	mg/L
N-Nitrate	14.7	mg/L
N-Nitrite	<0.01	mg/L
Oil & Grease	1.	mg/L
рН	5.7	units
Solids, Total Dissolved	2720.	mg/L
Solids, Total Suspended	<1.	mg/L
Sulfate	1900.	mg/L
Arsenic, AA	<0.0050	mg/L
Copper, ICP	KElly Done 010	mg/L
	Kery Jones	

кему Jones Project Manager

Page 2

Tel: (708) 289-3100 Fax: (708) 289-5445

12/13/1991

10:00

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

01/02/1992

Sample No.: 155140

Job No.: 91.5088

Date Received: Time Received:

Sample Description: DEC-SP2-12-2 CH128770.B0.MS; DuPont

Date Taken: 12/12/1991 Time Taken: 10:15 IEPA Cert. No.: 100221

Zinc, ICP

14.9 mg/L

WDNR Cert. No.: 999447130

KELL

Kelly Jones Project Manager

Page 3

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 53201 01/10/1992

Sample No.: 155516 Job No.: 91.5202

Sample Description: DEC-SP2-12-3 CHI28770.B0.MS; DuPont

	Date Received: Time Received:	
IEPA Cert. No.: 100221	WDNR Cert. No.:	999447130

BOD, Five Day		<1.	mg/L
Chloride	:	250.	mg/L
COD, Total		11.	mg/L
Fluoride		1.9	mg/L
N-Ammonia		5.2	mg/L
N-Nitrate		11.5	mg/L
N-Nitrite		<0.01	mg/L
Oil & Grease		<1.	mg/L
pH		5.6	units
Solids, Total Dissolved		2840.	mg/L
Solids, Total Suspended		4.	mg/L
Sulfate		1800.	mg/L
Arsenic, AA		<0.0050	mg/L
Copper, ICP		<0.010	mg/L
	Kelly You		
	Really Jone	S	

Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 53201 01/10/1992

Sample No.: 155516 Job No.: 91.5202

Sample Description: DEC-SP2-12-3 CHI28770.B0.MS; DuPont

Date Taken: 12/18/1991 Time Taken: 11:50 IEPA Cert. No.: 100221

Zinc, ICP

13.4 mg/L

Time Received: 10:00

Date Received: 12/19/1991

WDNR Cert. No.: 999447130

Jones Kelly

Kelly Jones Project Manager

Page 3

Ē

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 01/14/1992

Sample No.: 155756 Job No.: 91.5279

Sample Description: DEC - SP2-12-4 CHI28770.B0.MS; Dupont

 Date Taken:
 12/26/1991
 Date Received:
 12/27/1991

 Time Taken:
 10:15
 Time Received:
 10:00

 IEPA Cert.
 No.:
 100221
 WDNR Cert.
 No.:
 999447130

BOD, Five Day 5. mg/L Chloride 48. mg/L COD, Total 61. mg/L Fluoride 2.5 mg/L N-Ammonia 6.2 mg/L N-Nitrate 13.3 mg/L N-Nitrite <0.01 mg/L Oil & Grease <1. mg/L 5.9 pН units Solids, Total Dissolved 2760. mg/L Solids, Total Suspended 4. mg/L Sulfate 1800. mg/L Arsenic, AA <0.0050 mg/L Copper, ICP <0.010 mg/L 500 Kell (A) Jones

Page 1

Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 01/14/1992

Sample No.: 155756 Job No.: 91.5279

Sample Description: DEC - SP2-12-4 CHI28770.B0.MS; Dupont

Date Taken: 12/26/1991 Time Taken: 10:15 IEPA Cert. No.: 100221

Zinc, ICP

15.8 mg/L

Time Received: 10:00

Date Received: 12/27/1991

WDNR Cert. No.: 999447130

Kelly Jones

Kelly Jones Project Manager

Page 2

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 53201

01/10/1992

Sample No.: 155517 Job No.: 91.5202

Sample Description: DEC-SP3-12-3 CHI28770.B0.MS; DuPont

Date Taken: 12/18/1991	Date Received:		12/19/1991
Time Taken: 11:15	Time Received:		10:00
IEPA Cert. No.: 100221	WDNR	Cert. No.:	999447130

BOD, Five Day	6.	mg/L
Chloride	28.	mg/L
COD, Total	14.	mg/L
Fluoride	3.1	mg/L
N-Ammonia	17.2	mg/L
N-Nitrate	0.20	mg/L
N-Nitrite	<0.01	mg/L
Oil & Grease	<1.	mg/L
рН	6.2	units
Solids, Total Dissolved	2890.	mg/L
Solids, Total Suspended	214.	mg/L
Sulfate	2100.	mg/L
Arsenic, AA	<0.0050	mg/L
Copper, ICP	TElly Jones	mg/L
	KellyJones	

Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 53201

01/10/1992

Sample No.: 155517 Job No.: 91.5202

Sample Description: DEC-SP3-12-3 CHI28770.B0.MS; DuPont

Date Taken: 12/18/1991 Time Taken: 11:15 IEPA Cert. No.: 100221 Date Received: 12/19/1991 Time Received: 10:00 WDNR Cert. No.: 999447130

Zinc, ICP

16.0 mg/L

Kelle

Kelly Jones Project Manager

Page 5

Attachment 2 Data Validation Summary Monthly Monitoring Program

.

;

MEMORANDUM

то:	Pixie Newman/CHI Susan Mulholland/CHI
FROM:	Lori J. Bootz/GLO
DATE:	January 16, 1992
SUBJECT:	Data Validation for Groundwater Seep Samples Du Pont, East Chicago, Indiana

PROJECT: CHI28770.B0.MR

Introduction

This memorandum presents the data validation discussion for the inorganic analytical results for Groundwater Seep 1 samples collected on December 5, 12, and 18, 1991; Groundwater Seep 2 samples collected on December 5, 12, 18, and 26, 1991; and Groundwater Seep 3 samples collected on December 18, 1991, at the Du Pont Plant in East Chicago, Indiana. Sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-of-custody procedures. Requested QA/QC data included holding time data, chain-of-custody forms, calibration and procedure blank results, initial calibration verification standard recoveries, continuing calibration recovery results, field blank results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/QC and sample data were reviewed as described below.

Holding Times

Inspection of holding times showed that the holding time requirements, as specified by the U.S. EPA's <u>Methods for Chemical Analysis of Water and Wastes</u>, were met with the exception of the following instances. BOD-five day samples collected on December 18, 1991, exceeded the 48-hour holding time by one day. Results for Groundwater Seeps 2 and 3 associated with this analysis were qualified as estimated and flagged with "UJ" and "J" respectively. Total suspended solids collected on December 18, 1991, exceeded the 7-day holding time by two days. Results for Groundwater Seeps 1, 2 and 3 associated with this analysis were qualified and flagged with a "J". BOD-five day samples collected on December 26, 1991, exceeded holding times by six days. The Groundwater Seep 2 result associated with the analysis was qualified as estimated and flagged with a "J". Total

dissolved solids collected on December 26, 1991, exceeded the 7-day holding time by four days. The Groundwater Seep 2 result was qualified as estimated and flagged with a "J".

Chain of Custody

The chain-of-custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

Blanks

The calibration and procedure blank results were inspected for possible contaminants. With the exception of copper and zinc, these blanks were free of compound concentrations equal to or greater than compound reporting limits.

Copper and zinc were found in the January 9 procedure blanks. The zinc concentration was at least a factor of three hundred smaller than the corresponding Groundwater Seep 2 zinc concentration, making data qualification unnecessary. The corresponding copper result of Groundwater Seep 2 was below the detection limit, indicating that qualifying action is unnecessary.

Calibration Recovery Results

The initial calibration verification (ICV) standard recoveries were within the EPA established control limits of \pm 10% of true value. With the exception of zinc recoveries, the continuing calibration verification (CCV) recoveries were within the EPA established control limits of \pm 10% of true value.

A CCV zinc standard yielded recovery above the 10% control limit for the groundwater seep samples collected on December 5, 1991. The associated samples were qualified as estimated and flagged with a "J".

Laboratory Control Spikes

The laboratory spike recoveries were within the EPA control limit of $\pm 20\%$ of true value with the exception of oil and grease. Groundwater seep samples collected December 18 and 26, 1991, were qualified as estimated and flagged with a "UJ" due to low recoveries of oil and grease.

Matrix Spike/Matrix Spike Duplicate Fortifications

Except for sulfate, the matrix spike and matrix spike duplicate results were within EPA and methodology control limits. Groundwater seep samples collected December 5, 1991 did not

meet the EPA $\pm 25\%$ spike recovery value for sulfate. The groundwater seep sample sulfate values associated with these high recoveries were qualified as estimated and flagged with a "J".

Sample Results and Conclusions

The Groundwater Seeps 1, 2 and 3 results from this round of sampling were compared, and found to be generally consistent with data from previous sample events.

With the exception of the qualified results, this round of sample results are valid and useable.

CHI185/008.51

One-Time Monthly Monitoring Report for the Groundwater Seeps 2 and 3 at the DuPont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

January 27, 1992

••

- TO: Gene Hartstein/Du Pont O.J. Meyer/Du Pont Norman Griffiths/Du Pont David Epps/DERS
- FROM: Susan Mulholland/CH2M HILL Erik Spande/CH2M HILL Pixie Newman/CH2M HILL

DATE: January 27, 1992

SUBJECT: Report of One-Time Monitoring at Groundwater Seeps 2 and 3 Du Pont East Chicago Plant

In response to U.S. EPA's amended Section 308 Information Request dated June 27, 1991, Du Pont is submitting this "one-time monitoring program" report characterizing the quality of Groundwater Seeps 2 and 3 at Du Pont's East Chicago Plant. The groundwater seeps are located along the Grand Calumet River (see enclosed figure).

As specified in U.S. EPA's original Section 308 Information Request dated February 13, 1991, two grab samples were collected from Groundwater Seeps 2 and 3. These samples were analyzed for priority pollutants using U.S. EPA Methods 1624 and 1625 and priority pollutants using the U.S. EPA methods described in 40 CFR 136, Appendix C. In addition, the water quality parameters specified for the "monthly monitoring program" were analyzed. The fraction of each sample for inorganics analysis was split for analysis of total and dissolved inorganics. Although the U.S. EPA's Request specified total concentrations, dissolved concentrations were analyzed because these are more representative of the quality of the groundwater discharge than total concentrations including suspended solids.

A duplicate sample from each groundwater seep was also sent to a second laboratory for analysis. The results of these analyses are for quality assurance purposes, as well as, consistency with the "monthly monitoring program," the samples for which are being analyzed by this laboratory.

Groundwater Seep 2 was sampled April 4, 1991, and Groundwater Seep 3 was sampled April 25, 1991. Laboratory analyses for organics, pesticides/PCBs, and inorganics of Groundwater Seep 2 and 3 samples were validated (Attachments 1 and 2), resulting in the qualification of specified constituents (Tables 1 and 2).

TABLE 1

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 2

Sample ID: Lab: Lab ID:	DEC-SP2-4-1 CH2M HILL 18272001/ 18276001/ 18426001	DEC-SP2-4-1 CH2M HILL S18272001	DEC-FRSP2-4-1 CH2M HILL 18272002/ 18276002/ 18426002	DEC-FRSP2-4-1 CH2M HILL S18272002	DEC-SSP2-4-1 NET 130118/ 132608
Filtered (Yes/No):	No	Yes	No	Yes	No *
WATER QUALITY PARAMETERS (mg/l)					
Alkalinity, (CaCO3) Bicarb.	NA	NA	NA	NA	66
Alkalinity, (CaCO3) Carb.	NA	NA	NA	NA	
BOD-Five Day		NA		NA	3
COD		NA		NA	20
Chloride	121	NA	124	NA	126
Fluoride	0.60	NA	0.60	NA	1.5
Nitrate + Nitrite	4.55	NA	4.42	NA	3.11**
Nitrogen, Ammonia	14.8	NA	15.0	NA	1.18
Solids, Dissolved	1,720	NA	1,740	NA	1,580
Solids, Suspended	8	NA	8	NA	1
Sulfate	984	NA	977	NA	1,040
pH (field)	5.0	NA	5.0	NA	5.0
Oil and Grease	1.7	NA	1.8	NA	
TRACE INORGANIC COMPOUNDS (mg)	(1)				
Aluminum	NA	NA	NA	NA	0.28
Beryllium		0.0014 B	0.00081 E	•	
Cadmium	0.0203	0.0184	0.0212	0.0204	
Calcium	NA	NA	NA	NA	220
Chromium, Total	0.0029 J		0.0049 J		
Copper	0.0089 B		0.0144 B	0.0085 B	
Iron	NA	NA	NA	NA	0.275
Lead	0.0055 J	0.0024 J	0.0043 J	0.0028 J	
Magnesium	NA	NA	NA	NA	110
Manganese	NA	NA	NA	NA	0.863
Mercury	0.00018 B	0.00018 B	0.00018 B	0.00018 B	
Nickel	0.0135 J	0.0161 J	0.0181 J	0.0150 J	
Potassium	NA	NA	NA	NA	7.61
Selenium	0.0013 B				
Silver	0.0068 B		0.0081 E	}	
Sodium	NA	NA	NA	NA	29.3
Zinc	5.05 J	4.87 J	4.94 J	4.89 J	4.69

Notes:

* Inorganic compounds sample fraction filtered.

**Value represents nitrate detected. No nitrite detected.

No value denotes not detected.

NA denotes not analyzed.

B qualifier denotes blank contamination.

J qualifier denotes estimated value.

Comments regarding constituents not detected:

No pesticides/PCBs detected in Groundwater Seep 2.

No known volatile or semivolatile organic (acid and base/neutral) compounds detected in Groundwater Seep 2. No antimony, arsenic, barium, cobalt, cyanide, thallium, or vanadium detected in Groundwater Seep 2.

No asbestos fibers greater than 10 um in length detected in Groundwater Seep 2.

TABLE 2

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 3

Sample ID: Lab: Lab ID:	DEC-SP3-4-4A CH2M HILL 18424001/ 18425001	DEC-SP3-4-4A CH2M HILL S18424001	DEC-SP3-4-4B CH2M HILL 18424002/ 18425002	DEC-SP3-4-4B CH2M HILL S18424002	DEC-SSP3-4-48 NET 131855
Filtered (Yes/No):	No	Yes	No	Yes	No "
WATER QUALITY PARAMETERS (mg/l)					
Alkalinity, (CaCO3) Bicarb.	NA	NA	NA	NA	188
Alkalinity, (CaCO3) Carb.	NA	NA	NA	NA	
BOD-Five Day		NA		NA	1
COD		NA		NA	7
Chloride	27.8	NA	25.6	NA	26
Fluoride	0.94	NA	0.96	NA	1.1
Nitrate + Nitrite		NA	0.23	NA	1.72**
Nitrogen, Ammonia	1.5	NA	0.9	NA	0.68
Solids, Dissolved	2830	NA	2860	NA	2600
Solids, Suspended	83	NA	57	NA	52
Sulfate	1690	NA	1650	NA	1700
pH (field)	6.51	NA	6.65	NA	6.65
Oil and Grease	1.4	NA	1.5	NA	1
TRACE INORGANIC COMPOUNDS (mg)	٦)				
Aluminum	NA	NA	NA	NA	0.08
Arsenic	0.0038 B	0.00095	B 0.0054	B 0.0032	B 0.004
Cadmium	0.0069	0.0064	0.0081	0.0066	
Calcium	NA	NA	NA	NA	460
Iron	NA	NA	NA	NA	20.4
Lead	0.0056 B		0.0042	В	
Magnesium	NA	NA	NA	NA	90
Manganese	NA	NA	NA	NA	0.611
Nickel	0.0582	0.0626	0.0682	0.0717	
Potassium	NA	NA	NA	NA	1
Selenium	0.0138 J	0.0094	J 0.0051	J	0.004
Silver			0.0044	B 0.0057	В
Sodium	NA	NA	NA	NA	82
Zinc	10.6	9.95	11.6	11.1	9.17
VOLATILE ORGANIC COMPOUNDS (ug	/1)				
Methylene chloride	128	NA NA	15	B NA	
Trichlorofluoromethene	9 J	NA	23	J NA	NA

Notes:

* Inorganic compounds sample fraction filtered.

** Value represents 1.71 mg/l nitrate and 0.01 mg/l nitrite.

No value denotes not detected.

NA denotes not analyzed.

B qualifier denotes blank contamination.

J qualifier denotes estimated value.

Comments regarding constituents not detected:

No pesticides/PCBs detected in Groundwater Seep 3.

No known semivolatile organic (acid and base/neutral) compounds detected in Groundwater Seep 3.

No antimony, barium, beryllium, chromium, cobalt, copper, cyanide, iron, mercury, thallium, or vanadium detected in Groundwate No asbestos fibers greater than 10 um in length detected in Groundwater Seep 3. ATTACHMENT 1

GROUNDWATER SEEP 2 DATA VALIDATION

DU PONT, EAST CHICAGO, INDIANA

MEMORANDUM

TO: Pixie Newman/CHI Susan Mulholland/CHI

FROM: Dan MacGregor/GLO

DATE: May 8, 1991

- SUBJECT: Groundwater Seep 2 Data Validation Du Pont, East Chicago, Indiana
- PROJECT: CHI28770.B0.2R

INTRODUCTION

This memorandum presents the data validation discussion for analytical results for samples collected on April 4, 1991 at the Du Pont Plant in East Chicago, Indiana. The sampling was performed in accordance with the requirements of the one-time monitoring program for Groundwater Seep 2.

Duplicate seep samples were analyzed for the priority pollutant list compounds by CH2M HILL's laboratory in Montgomery, Alabama. CH2M HILL subcontracted the volatile and semivolatile chemical analyses to Reservoirs Analytical Technologies, Inc., in Fort Collins, Colorado. Sample collection and transport were performed under strict chainof-custody procedures. The data were validated by procedures analogous to the U.S. EPA's Laboratory Data Validation Functional Guidelines. QA/QC data included: chain-of-custody forms, holding time data, method blank data and results, sample duplicate results, instrument calibration data, ICP interference check sample data, post-digestion spike data, matrix spike and matrix spike duplicate (MS/MSD) results, and laboratory control spike results.

VOLATILE AND SEMIVOLATILE ORGANIC ANALYSIS

The volatile organic analysis (VOA) and semivolatile organic analysis (SVOA) were performed using U.S. EPA isotopic dilution methods 1624 and 1625, respectively. These methods call for stable, isotopically labeled analogs of each compound to be added to the sample, acting as an internal standard and recovery. Because both methods exercise this internal quality control, QA/QC checks other then holding time and blank data are not required. No compounds were detected in either sample. The library compound search

M E M O R A N D U M Page 2 May 8, 1991

performed with these methods yielded one detection in each SVOA sample. The detections were not identifiable by the library search.

BLANKS: The laboratory blank and reagent blank quantitation sheets were inspected for possible contaminants. All blanks were free of compound concentrations at levels equal to or greater than their reporting limits.

HOLDING TIMES: The samples met the holding time requirements for organic analyses.

PESTICIDE AND PCB ANALYSIS

No pesticides or PCBs were detected.

QA/QC PARAMETERS: The following QA/QC parameters were reviewed, and no deficiencies were noted: holding time data, instrument initial and continuing calibration results, process blank results, DDT/endrin degradation results, surrogate spike results, and MS/MSD results. Because there were no detections, validation of duplicate results was not possible.

INORGANIC ANALYSIS

Zinc, cadmium, and lead were the only metals detected above the reporting limit.

BLANKS: Initial and continuing calibration and preparation blank data were inspected for possible contaminants. Beryllium, mercury, silver, zinc, selenium, and copper were found to be low level contaminants. Zinc is the only one of these metals that was detected in the samples at an appreciable level. Because the zinc concentrations in the samples were significantly (i.e., 50 times) greater than the zinc concentration in the blanks, the blank concentration was deemed insignificant and no qualifiers were added to the sample zinc results. All other detections of these chemicals were qualified as "B," blank contaminated.

QA/QC PARAMETERS: The following QA/QC parameters were validated, and no deficiencies were noted: holding time data, instrument initial and continuing calibration, ICP interference check sample data, and duplicate results. Laboratory control spikes for antimony, silver, zinc, and lead had low recoveries. Due to silver being previously qualified as blank contaminated, the additional "J," estimated qualifier was not added. All other

M E M O R A N D U M Page 3 May 8, 1991

detections of these compounds are qualified as "J," estimated. Post-digestion recoveries were within control limits for all chemicals except antimony and selenium, whose recoveries were low. Because the one detection of selenium was previously qualified as blank contaminated, no additional qualifiers were added.

Inorganic results that are less than the reporting limit but greater than or equal to the instrument detection limit are qualified as "J."

CHAIN OF CUSTODY

The chain-of-custody forms were reviewed for accuracy and completeness. The necessary information was provided and was found to be accurate.

RESULTS

The samples were analyzed for the priority pollutant list compounds. The semivolatile compound phenanthrene was not reported on the results page. After discussions with the laboratory performing this analysis it was determined that phenanthrene was analyzed and should have been reported at < 10 μ g/L. Except for phenanthrene, the organics data was found to be complete and acceptable.

The inorganic analytical performance was poor. Many elements were found to be either blank contaminants or found to have poor analytical recovery. Cadmium is the only inorganic element remaining unqualified.

With the previously noted qualifiers, the results for all analyses were found to be acceptable and valid.

ATTACHMENT 2

GROUNDWATER SEEP 3 DATA VALIDATION

DU PONT, EAST CHICAGO, INDIANA

MEMORANDUM

TO: Pixie Newman/CHI Susan Mulholland/CHI

FROM: Lori J. Bootz/GLO

DATE: January 8, 1992

SUBJECT: Groundwater Seep 3 Data Validation Du Pont, East Chicago, Indiana

PROJECT: CHI28770.B0.3R

INTRODUCTION

This memorandum presents the data validation discussion for analytical results for samples collected on April 25, 1991 at the Du Pont Plant in East Chicago, Indiana. The sampling was performed in accordance with the requirements of the one-time monitoring program for Groundwater Seep 3.

Duplicate seep samples were analyzed for the priority pollutant list volatile, semivolatile and inorganic compounds, with select conventional parameters. The analyses were primarily performed by CH2M HILL's laboratory in Montgomery, Alabama. CH2M HILL subcontracted the volatile, semivolatile and asbestos chemical analyses to Reservoirs Analytical Technologies, Inc., in Fort Collins, Colorado. Sample collection and transport were performed under strict chain-of-custody procedures. The data were validated by procedures analogous with the U.S. EPA's Laboratory Data Validation Functional Guidelines. QA/QC data included: chain-of-custody forms, holding time data, method blank data and results, sample duplicate results, instrument calibration data, ICP interference check sample data, post-digestion spike data, matrix spike and matrix spike duplicate (MS/ MSD) results, and laboratory control spike results.

VOLATILE AND SEMIVOLATILE ORGANIC ANALYSIS

The volatile organic analysis (VOA) and semivolatile organic analysis (SVOA) were performed using U.S. EPA isotopic dilution methods 1624 and 1625, respectively. These methods call for stable, isotopically labeled analogs of each compound to be added to the sample, acting as an internal standard and recovery. Because both methods exercise this M E M O R A N D U M Page 2 January 8, 1991

internal quality control, QA/QC checks other then holding time and blank data are not required.

Methylene chloride was detected in the VOA samples. This detection was found to be due to laboratory contamination, therefore, the methylene chloride results were qualified as probably blank contaminated, flagged with a "B", and are not to be used in making project decisions.

The library compound search revealed that trichlorofluoromethane was detected in each VOA sample. The average trichlorofluoromethane concentration was 16 μ g/L. This concentration is an estimate only. Other tentatively identified compound detections were not identifiable.

The EPA method 1625 SVOA sample analysis resulted in no compound detections being made, with the exception of one tentatively identified compound found in sample SP3-4-4A, which was unidentifiable.

BLANKS: The laboratory blank and reagent blank quantification sheets were inspected for possible contaminants. The VOA laboratory blank contained methylene chloride, and as previously discussed all corresponding results were qualified as probably blank contaminated. All SVOA blanks were free of compound concentrations at levels equal to or greater than their reporting limits.

HOLDING TIMES: The samples met the holding time requirements for organic analyses.

PESTICIDE AND PCB ANALYSIS

No pesticides or PCBs were detected.

QA/QC PARAMETERS: The following QA/QC parameters were reviewed, and no deficiencies were noted: holding time data, instrument initial and continuing calibration results, process blank results, DDT/endrin degradation results, MS/MSD results and surrogate spike results. As a result of no compound detections being made, the accuracy of duplicate results could not be determined.

M E M O R A N D U M Page 3 January 8, 1991

INORGANIC ANALYSIS

Zinc, cadmium, nickel and lead were the only metals detected above the reporting limit.

BLANKS: Initial and continuing calibration and preparation blank data were inspected for possible contaminants. Lead was found to be a low level contaminant. The detections of lead were qualified as probably blank contaminated and flagged with a "B."

QA/QC PARAMETERS: The following QA/QC parameters were validated, and no deficiencies were noted: holding time data, instrument initial and continuing calibration, ICP interference check sample data, and duplicate results.

Selenium was detected in the samples at concentrations less than the method detection limit but greater than the instrument detection limit, therefore these results were considered as estimated and flagged with a "J".

Post-digestion recoveries were within control limits for all elements except selenium, whose recovery was below acceptable QC limits. As previously stated, selenium results were qualified as estimated due to low concentrations, and subsequently, no additional qualifiers were added.

CHAIN OF CUSTODY

The chain-of-custody forms were reviewed for accuracy and completeness. The necessary information was provided and was found to be accurate.

ASBESTOS ANALYSIS

The asbestos analysis was performed using method EPA 600/M4/82-020. Asbestos was detected in one of the two samples. One asbestos matrice was detected in the duplicate sample at a concentration equal to the method detection limit. Due to only one matrice being found, the sample result was qualified as estimated and flagged with a "J."

QA/QC PARAMETERS: The following QA/QC parameters were validated, and no deficiencies were noted: holding time data, method blank data and sample preparation data.

M E M O R A N D U M Page 4 January 8, 1991

RESULTS

The samples were analyzed for the priority pollutant list compounds. There were no true organic detections. Trichlorofluoromethane was detected as a tentatively identified compound. The organics data was found to be complete and acceptable.

The inorganic analytical performance was complete and acceptable. Selenium was detected at concentrations less than or equal to the method detection limit and lead was found to be a low level laboratory contaminant. All lead results were qualified as blank contaminated and flagged with a "B." All selenium results were qualified as estimated and flagged with a "J."

With the exception of previously noted qualified results, the sample results for all analyses were found to be acceptable and valid.

INORGANIC DATA PACKAGE

.

•

WET CHEMISTRY DATA

000045

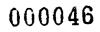
.

CASE NARRATIVE General Chemistry

Batch Number: <u>18272</u>

Client/Project: <u>DUPONT - EAST CHICAGO</u>

- I. Holding Time: All criteria met.
- II. Analysis:


A.	Calibration:	Acceptance criteria met.
в.	Blanks:	Acceptance criteria met.
с.	Matrix Spike:	Acceptance criteria met.
D.	Duplicate Analysis:	Acceptance criteria met.
E.	Lab Control Sample:	Acceptance criteria met.
F.	Other:	The matrix spike and duplicate results associated with 18272 are in-house batch specific results.

III. I certify that this data package is in compliance with the terms and conditions agreed to by the client and CH2M HILL, both technically and for completeness, for other than the conditions detailed above.

SIGNED:

DATE: _____

Kevin A. Sanders Inorganic Division Manager

COVER PAGE GENERAL CHEMISTRY ANALYSES DATA PACKAGE Level 2 and 3

Lab Name:	CH2M HILL LABORATORIES	Batch Number(s):	18272
_			
Client/Proje	ect: <u>DUPONT - EAST CHICAGO</u>	Project No:	<u>CHI28770.B0.SP</u>
Client Sample ID <u>DEC-SP2-4-1</u> <u>DEC-FRSP2-4-</u>	CH2M HILL/LMG Lab Sample ID <u>18272001</u> -1 18272002	(lab name) Lab Sample ID	(lab name) Lab Sample ID
DEC-FRSF2-4-		·	<u></u>
<u>.</u>			
· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · ·		
<u> </u>	<u> </u>		
<u></u>			
		·	·····
			······
		······	
·····			
Comments:			

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	 Name:	Kevin A. Sanders

Date:

Title: Inorganic Division Manager

COVER PAGE - GEN.CHEM.

FORM 1 ANALYSIS DATA SHEET GENERAL CHEMISTRY LEVEL 2 & 3

	<u>Client Sample Number</u>
Lab Name: <u>CH2M HILL LABORATORIES</u>	DEC-SP2-4-1
B	Batch Number(s): <u>18272</u>
Matrix (soil/water): <u>WATER</u>	Date Collected: 04/04/91
<pre>% Solids (if soil): <u>N/A</u></pre>	Date Received: 04/06/91
	Lab Sample ID: <u>18272001</u>

METHOD	ANALYTE	CONCENTRATION	CONC. UNITS	DATE ANALYZED
EPA405.1	BOD, 5-DAY	<10	mq/L	04/06/91
EPA325.1	CHLORIDE	121	mg/L	04/19/91
EPA410.4	COD	<20	mg/L	04/18/91
EPA340.2	FLUORIDE	0.60	mg/L	04/17/91
EPA353.2	NITRATE/NITRITE	4.55	mq/L	04/11/91
EPA350.2	AMMONIA	14.8	mq/L	04/16/91
EPA375.4	SULFATE	984	mq/L	04/17/91
EPA160.1	TDS	1720	mq/L	04/11/91
EPA160.2	TSS	8	mq/L	04/11/91
				_
	·			
·····				
·				
				1

Comments:

٢.

FORM 1 - GENERAL CHEMISTRY

000048

FORM 1 ANALYSIS DATA SHEET GENERAL CHEMISTRY LEVEL 2 & 3

Client Sample Number

Lab Name: CH2M HILL LABORATORIES

Crient Dumpre number

DEC-FRSP2-4-1

Batch Number(s): <u>18272</u>

Matrix (soil/water): <u>WATER</u> Date of the soil of soil of the soil of the soil of the soil of the solution of t

Date Collected: <u>04/04/91</u> Date Received: <u>04/06/91</u>

Lab Sample ID: <u>18272002</u>

METHOD	ANALYTE	CONCENTRATION	CONC. UNITS	DATE ANALYZED
EPA405.1	BOD, 5-DAY	<10	mg/L	04/06/91
EPA325.1	CHLORIDE	124	mg/L	04/19/91
EPA410.4	COD	<20	mg/L	04/18/91
EPA340.2	FLUORIDE	0.60	mq/L	04/17/91
EPA353.2	NITRATE/NITRITE	4.42	mq/L	04/11/91
EPA350.2	AMMONIA	15.0	mq/L	04/16/91
EPA375.4	SULFATE	977	mq/L	04/17/91
EPA160.1	TDS	1740	mq/L	04/11/91
EPA160.2	TSS	8	mq/L	04/11/91
			·	
			_	
·····				
		- <u> </u>		
		1 1		· · · · · · · · · · · · · · · · · · ·
	1	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
	1	1		1
	· · · · · · · · · · · · · · · · · · ·			1
				†
I				

Comments:

FORM 2 INITIAL AND CONTINUING CALIBRATION VERIFICATION GENERAL CHEMISTRY LEVEL 2 & 3

Lab Name: _____CH2M_HILL LABORATORIES _____ Batch Number(s): 18272

		<u>INITI2</u>	L CAL	BRATION		CONT	INUING C	CALIBR/	ATION	
ANALYTE	Conc.			•						
	Units			& Rec.			% Rec.	True	Found	% Rec.
CHLORIDE*	mg/L		54.35			49.94	96.8			
CHLORIDE**	mg/L		50.26	97.4		48.66	94.3			
NO3/NO2	mg/L	2.20	2.16	98.1	2.20	2.18		2.20	2.13	96.8
NO3/NO2 -	mq/L				2.20	2.20	100.0			
SULFATE	mg/L	25.00	26.57	106.3						

Control Limits: 90.0-110.0 (except as noted) * DATA FOR SAMPLES ANALYZED WITH A DILUTION FACTOR OF 10. ** DATA FOR SAMPLES ANALYZED WITH A DILUTION FACTOR OF 5.

FORM 2 - GENERAL CHEMISTRY

FORM 3 BLANKS GENERAL CHEMISTRY LEVELS 2 & 3

Lab Name: <u>CH2M HILL LABORATORIES</u> Batch Number(s): <u>18272</u>

Preparation Blank Matrix (soil/water): <u>WATER</u>

·					· · · · · · · · · · · · · · · · · · ·
ANALYTE	Initial Calib. Blank	Con Calibra 1	tinuing ation Blank 2	Method Blank	Conc. Units
BOD, 5-DAY	N/A	N/A	N/A	<2	mq/L
CHLORIDE	<1.0	<1.0	<1.0	<1.0	mq/L
COD	N/A	N/A	N/A	<20	mq/L
FLUORIDE		N/A	N/A	<0,10	mq/L
NITRATE/NITRITE	<0.05	<0.05	<0.05	<0.05	mq/L
AMMONIA	N/A	N/A	N/A	<0.1	mq/L
SULFATE	<1.0	<1.0	<1.0	<1.0	mq/L
TDS	N/A	N/A	N/A	<10	mg/L
TSS	N/A	N/A	N/A	<4	mg/L

COMMENTS:

FORM 5 MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY LEVEL 2 & 3

<u>Client Sample Number</u>

MATRIX SPIKE

Lab	Name	<u>CH2M</u>	HILL	LABORATORIES	
Mati	cix (s	soil/wa	ter):	WATER	

Batch Number(s): 18272

% Solids (if soil): <u>N/A</u>

Lab Sample ID:

Analyte	Control Limit %R 85-115	Spiked Sample Result (SSR) 35.63	Sample Result (SR) 12.20	Spike Added (SA) 25.0	% R 93.7	Conc. Units
COD	85-115	508.92	<20	500.0	101.8	mg/L
<u>NO3/NO2</u>	85-115	2.42	1.37	1.00	105.0	mg/L
AMMONIA	85-115	20.17	1.13	21.20	95.1	mg/L
SULFATE	85-115	36.10	9.0	25.0	108.4	mg/L
			· · · · · · · · · · · · · · · · · · ·			
						<u>-</u>
·						
		·				
						<u> </u>
					·	

Comments: THESE MATRIX SPIKE RESULTS ARE IN-HOUSE BATCH SPECIFIC SPIKE RESULTS.

FORM 5A MS/MSD SAMPLE RECOVERY GENERAL CHEMISTRY LEVEL 2 & 3

Client Sample Number

MS/MSD

Lab	Name:	_ <u>CH2M</u>	HILL	LABORATORIES
Mati	rix (e	soil/wa	ter):	WATER
% Sc	olids	(if so	il):	N/A

Batch Number(s): <u>18272</u>_____

Lab Sample ID: _____

MATRIX SPIKE

ANALYTE	Spike Control Limit % Rec	Sample Result (SR)	Spike Added (SA)	<u>M</u> Spiked Result (SSR)		Conc. Units
FLUORIDE	85-115	1.13	1.00	2.16	103.0	_mg/L
			······			

MATRIX SPIKE DUPLICATE

ANALYTE	Spike Control Limit % Rec	<u>MSD</u> Spiked Result % 1 (SSR)	R RPD	Duplicate Control Limit RPD	Conc. Units
FLUORIDE	85-115	2.22 109	.0 2.7	20	mg/L
		┝┼╌╍───┤───		╂┨─────────────────────────────────────	+
l				╂╂╾─────╂	
				↓↓ ↓	I

Comments: THE MS/MSD RESULTS ARE IN-HOUSE BATCH SPECIFIC RESULTS.

FORM 6 DUPLICATES GENERAL CHEMISTRY LEVEL 2 & 3

<u>Client Sample Number</u>

DUPLICATE

Lab Name: <u>CH2M_HILL_LABORATORIES</u>

Matrix (soil/water): <u>WATER</u> Batch Number(s): <u>18273</u>

% Solids (if soil): ___N/A___

% Solids for Duplicate: <u>N/A</u>

Lab Sample ID:

Analyte	Control Limit	Sample (S)	Duplicate (D)	Conc. Units	RPD
CHLORIDE	20	12.2	11.1	mq/L	9.4
COD	20	<20	<20	mg/L	ND
NO3/NO2	20	1.37	1.35	mq/L	1.5
AMMONIA	20	<0.1	<0.1	mg/L	ND
SULFATE	20	9.0	8.7	mg/L	3.4
					_
]					-
					4
		ļ			
					. <u> </u>
	╺╉┈────╴┧				
		 .		Į	

Comments: <u>THESE DUPLICATE RESULTS ARE IN-HOUSE BATCH SPECIFIC RESULTS.</u> ND = THE RPD COULD NOT BE DETERMINED AS THE SAMPLE AND DUPLICATE RESULTS WERE LESS THAN THE DETECTION LIMIT.

FORM 6 - GENERAL CHEMISTRY

FORM 7 LABORATORY CONTROL SAMPLE GENERAL CHEMISTRY LEVEL 2 & 3

Lab Name: <u>CH2M HILL LABORATORIES</u> Batch Number(s): <u>18272</u>

ľ				AOUEOUS			SOLID			T
	<u>ANALYTE</u>	Conc.	True	Found	8	True	Found	8	Limits	
ŀ		Units			Rec		1 1	Rec		
	BOD, 5-DAY	mg/L	200.0	196.7	98.3				80-120	
	CHLORIDE	mg/L	51.6						88-109	
ł	COD	mq/L	162.30	174.55	107.5				90-108	
	FLUORIDE	mq/L	2,75	2,77	100.7				80-120	
	NO3/NO2	mq/L	2.20	2.08	94.5				91-104	
	AMMONIA	mq/L	5.50	5.25	95.4				87-105	
	SULFATE	mq/L	25.00	26.70	106.8				86-115	
	TDS	mq/L	408	431	105.6				80-120	
ŀ	TSS	mq/L	31.5	35.0	111.1				80-120	
						1				
l										
		1				1				
ŀ			1			1				
			1			1				
			1							
						1				
i		1	1			1				
		<u>+</u> +	1			1				
		11					 -		·····	l
										1
		++					<u>├─────</u>			
ľ		++	1			<u> </u>	┝───┼			
ł			1			<u> </u>	┠─────┼		<u> </u>	1
		++	1			+	╂			
		+	+			+	┠──────╂			H
Í.		.+					↓			11

Comments:

FORM 10 DETECTION LIMITS GENERAL CHEMISTRY LEVEL 2 & 3

b Name: <u>CH2M HILL LABORATORIES</u> Batch Number(s): <u>18272</u>

ANALYTE	Method	Method Detection Limit	Reporting Limit	Conc. Units
BOD, 5-DAY	EPA405.1	2	2	mg/L
CHLORIDE	EPA325.1	0.28	1.0	mq/L
COD	EPA410.4	20	20	mg/L
FLUORIDE	EPA340.2	0.10	0.10	mg/L
NITRATE/NITRITE	EPA353.2	0.05	0.05	Mg/L
AMMONIA	EPA350.2	0.1	0.1	mg/L
SULFATE	EPA375.4	0.9	1.0	mg/L
TDS	EPA160.1	10	10	mg/L
TSS	EPA160.2	4	4	mg/L
·				
·				
н. 				
				I
1				
·				
	L			

Comments:

. / 10. yr

CHAIN-OF-CUSTODY

						Ĺ		FOR	LABI	JSE	0	NĽ	1		Ca). (: ¢	100	L 4	ool	nt	41	
		NET		NAT ENV TES	IOI IR TIN				28 10 ESA 23	77 77 Rifi		8¢ 1/9	r Sf Fro			NE Bai 850 Bai	T Mi rtleti) We rtleti	idwe t Div est B t, IL ()8) 2	st, Ir ision artle 6010 89-3	nc. ht Ro 3	bad	-	
							L COC		2	JCE			50	=									
				CH2	10 1	N:	ANA F	SEAT -		PH S			55 77	-	RE						De El		١
Cli	Len	t CHam HII						T	Pro							<u> </u>	<u> </u>	10					لك-
					LHO	a	AND	laur	Na		, ρ	DN	Τ.	-8	` \ \$	7	Ch	10	٩66	Ð			
Ado	ire lep	Report to: SV ss 1890 M EVANSION hone # (708)	NPLE V, IL	F AV 60		6 6	0	1	Col	lea	cte	ed :	-	:						<u> </u>			
L		[700]	000-	14/							2,6			1 ×	<u></u>								J
[Collectio	n Infor	nation					Ī	Ø	<u>ح</u> وق	No Ho	1		Para	note	rs -						
Samp ID		Sampling Location	Date	Time	G R A B	C O M P	Sample Type	No. of Con- tainer	OLD	1/RB 6	ANNAL - US	HINL FLUORIDA	nerels < 0	ولمعاطم									
DEC- -4-1	392		41447	14:57	X		001	2	$\widehat{(}$							(li	Ra	m	en	23	l a	she
			1		ŀ			2	Beste	Ð	1	1				$\frac{1}{1}$					Sc.		
							<u> </u>	2	3,4	۲ <u>۲</u>	<i>.</i>		Ω			17					P7 1		<u> </u>
	J							2						\$		T	5	1/2	kal	pu	5.	in	AOX
DEC-	FR	192-4-1	4/4/4	件刃	*		002	2		١						T							-
-								ン			1	1				T	₽	ks	a	57	Z		F
								ン					3										
								З						2	-								
		HETWON BLANK					Zwi																
Rem	ar)	is: Constant	LUA	<u>bo</u> _1	mu)	ha	lla	(wi	it .	₩,	91	4	¥1c	ìns	σ	1_1	<u>or</u>	m	Vr-	6			
		Relinquished	by:				e Tim				Red	cei	vec	1 b	y:					Da	te	Ti	me
E	RI	- SPANPE		<u></u>	4	44	1 14.5	2			<u> </u>	<u>-</u>									-		
fu	1 67	oing Notes/Lab 04394739 0439472483	2		5		_i		Recei				N - A	1	Mi u			- b		4-6	41	091	5
		les Field Filt s Intact Upon				_× _×	C Yes C Yes	5 _ 5 _		10 10			N	/A						1		ы	1
<u> </u>						<u> </u>									00)0	05	58	Ļ	M	sty	419	;

.

April 26, 1991

CHI28770.B0.SP

Ms. Susan Mulholland CH2M HILL/CHI 1890 Maple Avenue Suite 200 Evanston, Illinois 60201

RE: Analytical Data for DuPont-East Chicago, LMG Laboratory No. 18272

Dear Ms. Mulholland:

On April 6, 1991, the CH2M HILL Montgomery Laboratory received two samples with a request for analysis of selected inorganic parameters.

The analytical results and associated quality control data are enclosed. Any unusual difficulties encountered during the analysis of these samples are discussed in the case narratives.

If you should have any questions concerning the data, please inquire.

The CH2M HILL policy is to store samples for up to 30 days after reporting. If you desire, our laboratory will maintain your samples for a longer period at a cost of \$5.00 per sample per month. Samples determined to be hazardous can either be returned to you or disposed of at a cost of \$25.00 per sample.

Sincerely,

Warda d. Nall

Wanda L. Hall Data Package Supervisor

Enclosures

cc: Mr. Dan MacGreggor/GLO

TABLE OF CONTENTS

CH2M HILL Laboratory No. 18272

No. List of Inorganic EPA-defined Qualifiers
Sample Cross-reference ii CATIONS DATA PACKAGE 1 Case Narrative 2 Cover Page 3 Analytical Results of Field Samples 3 DEC-SP2-4-1 (LMG #18272001) DEC-SP2-4-1S (LMG #18272001SOL)
Sample Cross-reference ii CATIONS DATA PACKAGE 1 Case Narrative 2 Cover Page 3 Analytical Results of Field Samples 3 DEC-SP2-4-1 (LMG #18272001) DEC-SP2-4-1S (LMG #18272001SOL)
CATIONS DATA PACKAGE
CATIONS DATA PACKAGE
Case Narrative 2 Cover Page 3 Analytical Results of Field Samples 3 DEC-SP2-4-1 (LMG #18272001) DEC-SP2-4-1S (LMG #18272001SOL)
Cover Page 3 Analytical Results of Field Samples 3 DEC-SP2-4-1 (LMG #18272001) DEC-SP2-4-1S (LMG #18272001SOL)
Analytical Results of Field Samples DEC-SP2-4-1 (LMG #18272001) DEC-SP2-4-1S (LMG #18272001SOL)
Analytical Results of Field Samples DEC-SP2-4-1 (LMG #18272001) DEC-SP2-4-1S (LMG #18272001SOL)
DEC-SP2-4-1 (LMG #18272001)
DEC-SP2-4-1S (LMG #18272001SOL) 5
•
DEC-FRSP241S (LMG #18272002SOL)
Cyanide Native 8
Quality Control Data
Initial & Continuing Cal. Verification
Blank Data 13-15
ICP Interference Check Sample
Spike Sample Recovery 17-20
Post Digest Spike Sample Data
Duplicate Sample Data
Laboratory Control Sample
Instrument Detection Limits
ICP Interelement Correction Factors
ICP Linear Ranges
Preparation Log
Analysis Run Log
GENERAL CHEMISTRY DATA
Case Narrative
Cover Page
Analytical Results of Field Samples
DEC-SP2-4-1 (LMG #18272001)
$DEC-FRSP2-4-1 \qquad (LMG \#18272002) \qquad$
Quality Control Data
Initial & Continuing Cal. Verification
Blank Data
Spike Sample Recovery
Duplicate Sample Data
MS/MSD Summary
Laboratory Control Sample
Detection Limits
Copy of Chain-of-custody 57-58

EPA QUALIFIERS

INORGANIC ANALYSES

- C (Concentration) Qualifier -- Enter "B" if the reported value obtained was less than the CRDL but greater than or equal to the IDL. Enter "U" if the value was less than the IDL or was not detected.
- o Q Qualifier -- Entries and their meanings are:
 - E The reported value is estimated because of interference. An explanatory comment must be included under "Comments" on the Cover Page if the problem applies to all samples in this data package or on the individual FORM I if it is an isolated problem.
 - M Duplicate injection precision was not met (two analyses of the same sample did not agree).
 - N Spiked sample recovery not within control limits.
 - S The reported value was determined by the Method of Standard Additions (MSA).
 - W Post-digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50 % of spike absorbance.
 - * Duplicate analysis not within control limits.
 - + Correlation coefficient for the MSA is less than 0.995.

Entering "S", "W", or "+" is mutually exclusive. No combination of these qualifiers can appear in the same field.

- o M (Method) Qualifier -- Enter one of the following:
 - P ICP
 A Flame AA
 F Furnace AA
 CV Manual Cold Vapor AA
 AV Automated Cold Vapor AA
 AS Semi-Automated Spectrophotometric
 C Manual Spectrophotometric
 T Titrimetric
 - NR Analyte was not required by your lab

TABLE 1

SAMPLE CROSS-REFERENCE SUMMARY

CH2M HILL Laboratory No. 18272

CH2M HILL Sample No.	Sample Description					
18272001	SAMPLE DEC-SP2-4-1	04/04/91	1457	GRAB		
18272002	SAMPLE DEC-FRSP2-4-1	04/04/91	1457	GRAB		

ii

CATIONS DATA PACKAGE

- .

CASE NARRATIVE Cations

Batch Number: 18272

Client/Project: <u>DUPONT - EAST CHICAGO</u>

- I. <u>Holding Time</u>: All holding times were met.
- II. Analysis:
 - A. <u>Blanks</u>: All acceptance criteria were met.
 - B. <u>Calibration</u>: All acceptance criteria were met.
 - C. <u>ICP Interference Check Sample</u>: All acceptance criteria were met.
 - D. <u>Spike Sample Analysis</u>: Prespike and postspike recoveries outside criteria are flagged accordingly.
 - E. <u>Duplicate Sample Analysis</u>: All acceptance criteria were met.
 - F. <u>Laboratory Control Sample Analysis</u>: All acceptance criteria were met.
 - G. <u>ICP Serial Dilution</u>: Not required for this level QC.
 - H. <u>Other</u>: Batch specific QC samples for cyanide are also contained within this data package.
- III. I certify that this data package is in compliance with the terms and conditions agreed to by the client and CH2M HILL, both technically and for completeness, for other than the conditions detailed above.

SIGNED:

DATE: 26APR91

Kevin A. Sanders Inorganic Division Manager

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

COVER PAGE - INORGA	ANIC ANALYSES	5 DATA PAG	KAGE		
Lab Name: CH2M_HILL_MGM	Contract:	18272			Q
Lab Code: NA Case No.: 18272	SAS No.:	18272_	SDG No.:1	.8272_	
30W No.: 7/88_					
EPA Sample No. RSP2-41 RSP241D RSP241S	Lab Sampl 1827200 S1827200 S1827200 1827200 1827200 1827200 S1827200	22020 0220 0225 0225 0225 0120 010 010 015 015 015 X XD			
Vere ICP interelement corrections app	lied ?		Yes/No	NO_	
Vere ICP background corrections appli If yes - were raw data generated			Yes/No	YES	
application of background correc			Yes/No	NO_	
Comments:BATCH_SPECIFIC_QC_SAMPLES_FO DATA_PACKAGEDATA_PACKAGE	R_CYANIDE_AR	E_ALSO_CO	NTAINED_WI	THIN_THI	[s

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the fanager's designee, as verified by the following signature.

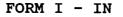
Signature:	da 2000	Name:	Kevin A. Sanders
)ate: _	25APR91	Title:	Inorganic Division Mgr

COVER PAGE - IN

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

DEC-SP2-4-1 Lab Name: CH2M_HILL_MGM_____ Contract: 18272____ Lab Code: NA____ Case No.: 18272 SAS No.: 18272_ SDG No.: 18272_ Lab Sample ID: 18272001___ Matrix (soil/water): WATER Date Received: 04/06/91 Level (low/med): LOW___


_0.0

% Solids:

Concentration Units (ug/L or mg/kg dry weight): UG/L_

		· · · · · · · · · · · · · · · · · · ·	r	r 1				
	CAS No.	Analyte	Concentration	с	Q	м		
	7429-90-5	Aluminum	·	-	<u>.</u>	NR		
	7440-36-0	Antimony	53.3	ប	N	P		
	7440-38-2	Arsenic	0.60	ט		F	1	
	7440-39-3	Barium				NR		
	7440-41-7	Beryllium	0.13	ប		P_		
	7440-43-9	Cadmium	20.3			P _		
	7440-70-2	Calcium				NR		
	7440-47-3	Chromium_	2.9	B		P		
	7440-48-4	Cobalt				NR		
	7440-50-8	Copper	8.9	B		P_		
	7439-89-6	Iron				NR		
	7439-92-1	Lead	5.5			F_		
	7439-95-4	Magnesium				NR	1	
	7439-96-5	Manganese				NR		
	7439-97-6	Mercury	0.18			CV		
	7440-02-0	Nickel	13.5	В		P_		
	7440-09-7	Potassium				NR		
	7782-49-2	Selenium_	1.3	B	W	F_		
	7440-22-4	Silver	6.8	В	<u>N</u>	P_		
	7440-23-5	Sodium				NR		
	7440-28-0	Thallium_	1.5	ប		F_		
	7440-62-2	Vanadium_				NR		
	7440-66-6	Zinc	5050			P_		
		Cyanide	3.6	U		CN		
	<u></u>	I		_			ļ	
Color Before:	CLEAR	Clarit	ty Before: CLEA	AR_	_	Тех	xture:	N/A
Color After:	CLEAR	Clari	ty After: CLEA	AR_	_	Art	tifacts	•
	LIFIER_REFL		PRESPIKE_RECOVI	ERY	THE_	"W"_	_REFLEC	rs

POOR_RECOVERY_OF_THE_ANALYTICAL_POSTSPIKE.____

0.0.0.004

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

DEC-SP2-4-1S

000005

7/88

Lab Name: CH2M_HILL_MGM_____ Contract: 18272___

Lab Code: NA____ Case No.: 18272 SAS No.: 18272_ SDG No.: 18272_ Matrix (soil/water): WATER Lab Sample ID: S18272001_ Date Received: 04/06/91 Level (low/med): LOW___

% Solids: __0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	1	T				·	
	CAS No.	Analyte	Concentration	c	Q	м	
	7429-90-5	Aluminum				NR	
	7440-36-0	Antimony	53.3	ប៊	<u> </u>		
			0.60		N	P F	
	7440-38-2	Arsenic	0.60	"		5	
	7440-39-3	Barium		B		NR	
	7440-41-7	Beryllium	1.4	в		P	
	7440-43-9	Cadmium	18.4			P	
	7440-70-2	Calcium				NR	
	7440-47-3	Chromium_	2.6	Ū		P	
	7440-48-4	Cobalt		_		NR	
	7440-50-8	Copper	2.2	ប		P NR	
	7439-89-6	Iron					
	7439-92-1	Lead	2.4	B		F	
	7439-95-4	Magnesium				NR	
	7439-96-5	Manganese				NR	
	7439-97-6	Mercury	0.18	B		CV	
	7440-02-0	Nickel	16.1	B		P	
	7440-09-7	Potassium				NR	
	7782-49-2	Selenium	0.90	Ū		F_	
	7440-22-4	Silver	4.0	U		P_	
	7440-23-5	Sodium				NR	
	7440-28-0	Thallium	1.5	ប		F	
	7440-62-2	Vanadium		Ŭ		NR	
	7440-66-6	Zinc	4870	-		P	
	/440 00 0	Cyanide		-		NR	
		cyaniue		-			
	I	.			l	I I	
Color Before:	CLEAR	Clari	ty Before: CLE	AR_	_	Texture:	N/A_
Color After:	CLEAR	Clari	ty After: CLE	AR_	_	Artifacts:	
Comments: THESE_DATA_	ARE_FOR_SOL	UBLE_ANALY	res				

FORM I - IN

EPA SAMPLE NO.

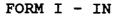
1 INORGANIC ANALYSES DATA SHEET

Lab Name: CH2M_HILL_MGM_____ Contract: 18272____

__0.0

DEC-FRSP2-41

06


Lab Code: NA_____ Case No.: 18272 SAS No.: 18272_ SDG No.: 18272_ Lab Sample ID: 18272002___ Matrix (soil/water): WATER Date Received: 04/06/91 Level (low/med): LOW

% Solids:

Concentration Units (ug/L or mg/kg dry weight): UG/L_

		· · · · · · · · · · · · · · · · · · ·	·····				
	CAS No.	Analyte	Concentration	с	Q	м	
	7429-90-5	Aluminum		-			
•	7440-36-0	Antimony	53.3	ប	N	P	
·	7440-38-2	Arsenic	0.60	υ	^		
	7440-39-3	Barium	0.00	0			
~	7440-41-7	Beryllium	0.81	B			
	7440-43-9	Cadmium	21.2				
	7440-70-2	Calcium		-			
	7440-47-3	Chromium	4.9	B			
_	7440-48-4	Cobalt		Ъ	· · · · ·		
	7440-50-8	Copper	14.4	Ē			
	7439-89-6	Iron		Ы			
	7439-92-1	Lead	4.3	-			
	7439-92-1	Magnesium	4.3	-			
	7439-96-5	Magnesium		-			
	7439-90-5	Mercury	0.18	B			
	7440-02-0	Nickel		B		- 1 1	
	7440-02-0	Potassium	10.1	Р	· · · · · ·		
			0.90	ប៊		- 1 1	
	7782-49-2	Selenium_		_	NT		
		Silver	8.1	B	N	P_	
	7440-23-5	Sodium		=		NR	
	7440-28-0	Thallium_	1.5	ַּש			
	7440-62-2	Vanadium_		_		NR	
	7440-66-6	Zinc	4940	=		P	
		Cyanide	3.6	Ū			
]			_		_	
olor Before:	CLEAR	Clarit	cy Before: CLEA	R_	_	Texture: N/	A
olor After:	CLEAR	Clarit	cy After: CLEA	R		Artifacts:	
			-	_	-	Artifacts:	

SOFTWARE_LIMITATIONS.

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: CH2M_HILL_MGM_____ Contract: 18272____

DEC-FRSP241S

00000

7/88

Lab Code: NA____ Case No.: 18272 SAS No.: 18272_ SDG No.: 18272_ Matrix (soil/water): WATER Lab Sample ID: S18272002 Level (low/med): LOW____ Date Received: 04/06/91 __0.0

% Solids:

Concentration Units (ug/L or mg/kg dry weight): UG/L

		· ······			, .
CAS No.	Analyte	Concentration	с	Q	м
7429-90-5	Aluminum		-		NR
7440-36-0	Antimony	53.3	ប	N	P
7440-38-2	Arsenic	0.60	U		F
7440-39-3	Barium		_		NR
7440-41-7	Beryllium	0.13	ប៊		P
7440-43-9	Cadmium	20.4			P
7440-70-2	Calcium				NR
7440-47-3	Chromium	2.6	ប		P
7440-48-4	Cobalt				NR
7440-50-8	Copper	8.5	B	<u> </u>	P
7439-89-6	Iron				NR
7439-92-1	Lead	2.8	B		F
7439-95-4	Magnesium				NR
7439-96-5	Manganese		-		NR
7439-97-6	Mercury	0.18	B		CV
7440-02-0	Nickel	15.0	B		P
7440-09-7	Potassium				NR
7782-49-2	Selenium	0.90	ប		F
7440-22-4	Silver	4.0	Ŭ		P
7440-23-5	Sodium				NR
7440-28-0	Thallium	1.5	ប		F
7440-62-2	Vanadium				NR
7440-66-6	Zinc	4890	-		P
140 00 0	Cyanide	1000			NR
			-		
	· I	I	- 1	I	· I
CLEAR	Clari	ty Before: CLE	AR_	_	Texture: N/A
CLEAR	Clarit	ty After: CLE	AR		Artifacts:

Comments:

Color Before

Color After:

THESE_DATA_ARE_FOR_SOLUBLE_ANALYTES. EPA_SAMPLE_NAME_WAS_MODIFIED_FROM_DEC-FRSP2-4-1_TO_DEC-FRSP241, DUE TO SOFTWARE_LIMITATIONS._____

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

Lab Name: CH2M HILL I	ICM	Con	tract: 18272	xxxx
Jab Name: CH2M_HIDU_I				1
Lab Code: NA	Case No.:	18272	SAS No.: 18272_	SDG No.: 18272_
<pre>fatrix (soil/water):</pre>	WATER		Lab Samp]	le ID: XXXXXXXX
Level (low/med):	LOW		Date Rece	eived: 06/28/89
3 Solids:	0.0			
Concentra	ation Units	(ug/L or	mg/kg dry weight):	UG/L_

CAS No. Concentration C Μ Analyte Q NR 7429-90-5 Aluminum Antimony_ 7440-36-0 NR NR 7440-38-2 Arsenic Barium NR 7440-39-3 Beryllium NR 7440-41-7 Cadmium NR 7440-43-9 7440-70-2 Calcium NR NR 7440-47-3 Chromium Cobalt NR 7440-48-4 7440-50-8 Copper NR NR 7439-89-6 Iron Lead 7439-92-1 NR 7439-95-4 NR Magnesium NR 7439-96-5 Manganese 7439-97-6 NR Mercury 7440-02-0 Nickel NR 7440-09-7 Potassium NR NR 7782-49-2 Selenium Silver NR 7440-22-4 Sodium 7440-23-5 NR _ Thallium 7440-28-0 NR Vanadium NR 7440-62-2 7440-66-6 Zinc NR 3.6 U Cyanide CN Clear Before: CLEAR Clarity Before: CLEAR N/A____ Texture: Color After: CLEAR Clarity After: CLEAR Artifacts: ____

:omments: THIS_IS_THE_NATIVE SAMPLE ASSOCIATED WITH THE BATCH SPECIFIC QC FOR CYANIDE.

FORM I - IN

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

 Lab Name: CH2M_HILL_MGM______
 Contract: 18272_____

 Lab Code: NA_____
 Case No.: 18272_SAS No.: 18272_SDG No.: 18272_

 Initial Calibration Source:
 (EPA 0690)____

 Continuing Calibration Source:
 (EPA 0690)___

Concentration Units: ug/L

Analyte	Initia True	al Calibra Found	ation %R(1)	True	Continui Found	ng Cal %R(1)	ibration Found	%R(1)	м
Aluminum			· · · · · ·		· · · · · · · · · · · · · · · · · · ·				NR
Antimony	1956.0	1919.52	98.1	1956.0	1931.67	98.8	1902.51	97.3	
Arsenic	37.9	- 38.66	102.0	37.9	37.27	98.3	36.01	95.0	F
Barium								-	NR
Beryllium	510.0	494.82	97.0	510.0	497.14	97.5	499.90	98.0	P_
Cadmium _	498.0	484.24	97.2	498.0	487.34	97.9	488.52	98.1	P
Calcium _						-			NR
Chromium_	510.0	501.54	98.3	510.0	509.72	99.9	509.19	99.8	P_
Cobalt _								-	NR
Copper	519.0		93.7	519.0	488.09	94.0	487.83	94.0	P
Iron									NR
Lead	39.0	41.46	106.3	39.0	38.45	98.6	40.94	105.0	F_
Magnesium									NR
Manganese									NR
Mercury	4.9	4.55	_92.9	4.9	4.99	101.8	4.77	97.3	CV
Nickel	497.0	493.93	_99.4	497.0	496.68	_99.9	493.99	_99.4	P_
Potassium									NR
Selenium_	41.6	42.40	101.9		40.14	96.5	38.02		F_
Silver	498.0	490.28	98.4	498.0	494.20	_99.2	494.64	99.3	P
Sodium									NR
Thallium_	38.9	37.43	_96.2	38.9	41.35	106.3	41.96	107.9	F_
Vanadium_									NR
Zinc	3316.0	_3230.80	_			_98.1	_3249.34	_98.0	P_
Cyanide	37.6	37.30	_99.2	37.6	37.26	_99.1	40.19	106.9	CN
					۱ <u> </u>	l	l		

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: CH2M_HILL_MGM_____Contract: 18272____Lab Code: NA____Case No.: 18272 SAS No.: 18272_ SDG No.: 18272_Initial Calibration Source:(EPA 0690)___Continuing Calibration Source:(EPA 0690)___

Concentration Units: ug/L

	·								
Analyte	Initia True	al Calibr Found	ation %R(1)	True	Continui Found	ng Cali %R(1)	ibration Found	%R(1)	M
Aluminum_ Antimony_ Arsenic Barium Beryllium Carrium				1956.0 	_1901.02	_97.2 	1942.53	_99.3	NR P_ NR NR NR NR
Carlum Chromium Cobalt Copper Iron									NR NR NR NR NR
Lead Magnesium Manganese Mercury				4.9	4.55				NR NR NR CV
Nickel Potassium Selenium Silver Sodium									NR NR NR NR NR
Thallium_ Vanadium_ Zinc Cyanide				37.6	40.17	 106.8	38.71	 103.0	NR NR NR CN
		I	I	I	I	I		l	

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: CH2M_HILL_MGM_____Contract: 18272____Lab Code: NA____Case No.: 18272SAS No.: 18272_Initial Calibration Source:(EPA 0690)___Continuing Calibration Source:(EPA 0690)___

Concentration Units: ug/L

Analyte	Initia True	l Calibr Found	ation %R(1)	True	Continui: Found	ng Cali %R(1)	ibration Found	%R(1)	M
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium									IR NR
Zinc Cyanide				37.6	38.75	103.1	35.18	93.6	NR CN

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: CH2M_HILL_MGM_____ Contract: 18272____

Lab Code: NA____ Case No.: 18272 SAS No.: 18272_ SDG No.: 18272_ Initial Calibration Source: (EPA 0690)___

Continuing Calibration Source: (EPA 0690)___

Concentration Units: ug/L

Analyte	Initia True	al Calibr Found	True	Continui Found	ng Cal: %R(1)	%R(1)	M
Aluminum_		[NR
Antimony						 	NR
Arsenic							NR
Barium							NR
Beryllium							NR
Canaium							NR
Callum							NR
Chromium_							NR
Cobalt							NR
Copper							NR
Iron							
Lead					<u> </u>		NR
Magnesium			 				NR
Manganese							NR
Mercury							NR
Nickel							NR
Potassium							NR
Selenium_			 				NR
Silver							NR
Sodium			 			 	NR
Thallium_							NR
Vanadium							NR
Zinc							NR
Cyanide			 37.6	35.34	_94.0		CN

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

3 BLANKS

Lab Name: CH2M_HILL_MGM_____ Contract: 18272____

Lab Code: NA____ Case No.: 18272 SAS No.: 18272_ SDG No.: 18272_ Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L_

Analyte Aluminum_ Aluminum_ Antimony_ Arsenic Barium Barium Beryllium Cadmium Calcium Chromium Copper Iron Lead Magnesium Magnesium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	Initial Calib. Blank (ug/L) 53.3 0.6 0.1 3.7 2.6 2.2 1.3 0.2 8.6 0.9 4.9 1.5 1.5 3.9 3.6		Cont: 1 		$\begin{array}{c} \text{ling Calib:}\\ \text{lank (ug/L)}\\ 2\\ \hline \\ 53.3\\ \hline \\ 0.6\\ \hline \\ 0.7\\ \hline \\ 3.7\\ \hline \\ -3.5\\ \hline \\ -3.5\\ \hline \\ -3.5\\ \hline \\ 0.2\\ \hline \\ 1.3\\ \hline \\ 0.2\\ \hline \\ 8.6\\ \hline \\ 0.9\\ \hline \\ 4.1\\ \hline \\ 1.5\\ \hline \\ 3.9\\ \hline \\ 3.6\\ \hline \end{array}$) c ī	3		Preparation Blank C 53.3 Ū 0.6 U 1.4 B 3.7 U 2.6 U 2.6 U 1.3 U 0.2 B 8.6 U 0.9 U 9.6 B 1.5 Ū 3.9 Ū 3.6 U	M NR P F NR P NR P NR P NR F NR F NR F NR	
Cyanide	3.6	U _	3.6_	U	3.6_	U 	3.6_	Ū	3.6 U	CN_	

3 BLANKS

 Lab Name: CH2M_HILL_MGM_____
 Contract: 18272____

 Lab Code: NA____
 Case No.: 18272
 SAS No.: 18272____

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L_

Analyte	Initial Calib. Blank (ug/L)	С	Cont: 1		uing Calib lank (ug/L) 2		tion 3	с	Prepa- ration Blank C	M
Aluminum			·							NR
Antimony			53.3	ប		-			53.3 Ū	P -
Arsenic									0.6 U	F
Ba ri um								121		NR_
Beginglium										P
Cadmium		_		_		_		_		P
Calcium		_		_		_		_		NR_
Chromium_		_		_			· · · · · · · · · · · · · · · · · · ·	_		P
Cobalt		_		-		_		_		NR_
Copper		_		-		-		_		P
Iron Lead		-		_		-	. <u> </u>			NR_ F
Magnesium		—		-		-		-		r NR
Manganese		-		-		-		-		NR_NR_
Mercury		-		-		-		-		CV_
Nickel		-		-		-		-		₽ ^{′−}
Potassium		-		-		-		-		NR
Selenium				-		-		-		F
Silver -	· · · · · · · · · · · · · · · · · · ·			-		-		-	4.0 U	P
Sodium				-		-		-		NR
Thallium_								_		F
Vanadium								$\left \right $		NR_
Zinc		_		_						P
Cyanide		_	3.6_	U	3.6_	Ü	3.6_	ប		CN_
	<u></u>	_		1_		_	[_	.	

3 BLANKS

Lab Name: CH2M_HILL_MGM_____ Contract: 18272____

Lab Code: NA____ Case No.: 18272 SAS No.: 18272_ SDG No.: 18272_

Preparation Blank Matrix (soil/water): _____

Preparation Blank Concentration Units (ug/L or mg/kg): _____

	Initial									Ţ	T	
	Calib.		0+		sing Onlike		- d a m		Duanc			
			Cont		uing Calib	ra	cion		Prepa-			
3	Blank	~		В. С	lank (ug/L))	•		ration			
Analyte	(ug/L)	С	1	С	2	С	3	С	Blank	C	M	
Aluminum_				T_							NR	
Antimony						-		-			NR	
Arsenic						-		1-1			NR	
Barium		 				-		-		-	NR	
Beryllium											NR	34
Cadmium								$\left - \right $			NR_	
Calcium											NR_	
Chromium_											NR_	
Cobalt											NR_	
Copper				1_							NR_	
Iron				_		_					NR_	
Lead											NR_	
Magnesium				_							NR_	
Manganese		1_		_							NR_	
Mercury				1_		_					NR_	
Nickel				_							NR_	
Potassium	······	_		_		_					NR_	
Selenium_				-							NR_	
Silver	<u> </u>			-		_					NR_	
Sodium		_		_		_		_			NR_	
Thallium_		_				-		_			NR_	
Vanadium_		_		_		_					NR_	
Zinc		_		-		_				_	NR_	
Cyanide		 _'	3.6_	ប៊		_		_		_	CN_	
I		 _'		1_	I	_	l			_		

: · · ·

4 ICP INTERFERENCE CHECK SAMPLE

Lab Name:CH2M_HILL_MGM_____Contract:18272____Lab Code:NA____Case No.:18272SAS No:18272__SDG No.:18272_ICP ID Number:PE-PLASMA 2__ICS Source:EPA (1287)___

Concentration Units: ug/L

	Tı Sol.	rue Sol.	Ini Sol.	itial Found Sol.	đ	Sol.	Final Found Sol.	đ
Analyte	A	AB	A	AB	%R	A	AB	%R
Aluminum_						·		
Antimony_						ļ ———		
Arsenic Barium								
Beryllium		472		487.4	103.3		492.9	104.4
Cadmium		958			_88.9			_90.2
Calcium				00110				
Fomium_ Balt	25	525	22	529.8	100.9	20	542.6	103.4
Copper		523		508.8	97.3		514.3	98.3
Iron								
Lead							<u> </u>	
Magnesium				<u> </u>				
Manganese Mercury								
Nickel		940		900.6	95.8		899.1	95.6
Potassium						<u> </u>		
Selenium_								
Silver		990		968.9	_97.9		965.5	_97.5
Sodium								
Thallium_ Vanadium						<u> </u>		
Zinc		1026		1032.2	100.6		1039.9	101.4

NET NATIONAL ENVIRONMENTAL TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 05/03/1991 CH2M HILL 1890 Maple Av. Sample No.: 130118 Suite 200 Chicago, IL 60201 Job No.: 91.0364 Sample Description: DEC-SSP2-4-1 CH128770.B0.SP; Du Pont Date Taken: 04/04/1991 Date Received: 04/05/1991 Time Taken: 14:58 Time Received: 09:50 Alkalinity, bicarb (CaCO3) 66. mq/L Alkalinity, carbonate (CaCO3) <1. mq/L BOD, Five Day 3. mg/L Chloride 126. mg/L COD, Total Cyanide, total 20. mg/L <0.001 mg/L Fluoride 1.5 mg/L N-Ammonia 1.18 mg/L N-Nitrate 3.11 mg/L N-Nitrite <0.01 mg/L Oil & Grease <1. mg/L Solids, Total Dissolved 1580. mg/L Solids, Total Suspended 1. mg/L Sulfate 1040. mg/L Aluminum, ICP 0.37 mg/L Antimony, ICP Arsenic, AA Barium, ICP <0.50 mg/L <0.005 mg/L <0.020 mg/L Beryllium, ICP <0.0050 mg/L Cadmium, ICP <0.040 mg/L Chromium, ICP <0.040 mg/L Cobalt, ICP Copper, ICP <0.10 mg/L <0.050 mg/L Iron, ICP Lead, ICP 0.275 mg/L <0.080 mg/L Magnesium, AA 110. mg/L 0.018 Manganese, ICP mg/L Mercury, CVAA Nickel, ICP Potassium, AA <0.0002 mg/L <0.050 mg/L 7.61 mg/L

Kel E C quorn Project Manager

NATIONAL ENVIRONMENTAL ® TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Chicago, IL 60201 05/03/1991

Sample No.: 130118

Job No.: 91.0364

Sample Description: DEC-SSP2-4-1 CH128770.B0.SP; Du Pont

Date Taken: 04/04/1991 Time Taken: 14:58

Date	Received	04/05/1991
Dutt	necet veu.	
Timo	Received:	00.50
1 7 11 6	VECETAER'	09.00

Selenium, AA	<0.1	mg/L
Silver, ICP	<0.050	mg/L
Sodium, AA	29.3	mg/L
Thallium, ICP	<0.20	mg/L
Vanadium, ICP	<0.050	mg/L
Zinc, ICP	4.69	mg/L
Zinc, ICP	4.69	mg/L

- pl.

Neal E. Cleghórn Project Manager

Page 2

NET Midwest, Inc. **Bartlett Division** 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

130118

04/05/1991

09:50

ug/L

ug/L

ug/L

ug/L

91.0364

ANALYTICAL REPORT

Ms. Susan Mulholland 05/03/1991 CH2M HILL 1890 Maple Av. Sample No.: Suite 200 Chicago, IL 60201 Job No.: Sample Description: DEC-SSP2-4-1 CH128770.B0.SP; Du Pont Date Taken: 04/04/1991 Date Received: Time Taken: 14:58 Time Received: PESTICIDES/PCB - 8080 AQUEOUS Aldrin <0.05 <0.05 alpha-BHC beta-BHC <0.05 delta-BHC <0.05 gamma-BHC (Lindane) <0.05 Chlordane <0.5

NATIONAL ENVIRONMENTAL ® TESTING, INC.

ug/L ug/L 4,4'-DDD <0.1 ug/L 4,4'-DDE <0.1 ug/L 4,4'-DDT <0.1 ug/L Dieldrin <0.1 ug/L Endosulfan I <0.05 ug/L Endosulfan II <0.1 ug/L Endosulfan sulfate <0.1 ug/L Endrin <0.1 ug/L <0.1 Endrin aldehyde uq/L ug/L Heptachlor <0.05 Heptachlor epoxide <0.05 ug/L Methoxychlor <0.5 ug/L Toxaphene <0.5 ug/L PCB-1016 <1.0 ug/L PCB-1221 <1.0 ug/L ug/L PCB-1232 <1.0 PCB-1242 <1.0 ug/L PCB-1248 <1.0 ug/L PCB-1254 <1.0 ug/L PCB-1260 <1.0 ug/L

IE Cler

Neal E. Cleghorn Project Manager

Page 3

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Chicago, IL 60201 05/03/1991

Sample No.: 130118

Job No.: 91.0364

Sample Description: DEC-SSP2-4-1 CH128770.B0.SP; Du Pont

Date Taken: 04/04/1991 Time Taken: 14:58 Date Received: 04/05/1991 Time Received: 09:50

ACID CMPDS	- 8270 AQUEOUS	
2-Chlorophenol	<10.0	ug/L
2,4-Dichlorophenol	<10.0	ug/L
2,4-Dimethylphenol	<10.0	ug/L
2,4-Dinitrophenol	<50.0	ug/L
2-Methyl-4,6-dinitrophenol	<50.0	ug/L
2-Methylphenol (o-Cresol)	<10.0	ug/L
4-Methylphenol (p-Cresol)	<10.0	ug/L
Cresols, Total	<10.0	ug/L
4-Nitrophenol	<50.0	ug/L
Pentachlorophenol	<50.0	ug/L
Phenol	<10.0	ug/L
2,4,5-Trichlorophenol	<10.0	ug/L
2,4,6-Trichlorophenol	<10.0	ug/L

Eclestion

Neal E. Cleghorn Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland Sample No.: 130118 Job No.: 91.0364 Sample Description: DEC-SSP2-4-1 CH128770.B0.SP; Du Pont 04/04/1991 Date Taken: Date Received: Time Taken: 14:58 Time Received: 09:50 BASE/NEUTRALS - 8270 AQUEOUS Acenaphthene <10.0 ug/L Acenaphthylene <10.0 ug/L Aniline <10.0 ug/L Anthracene <10.0 ug/L Benzidine <50.0 ug/L Benzo(a) anthracene <10.0 ug/L Benzo(b)fluoranthene <10.0 ug/L <10.0 Benzo(k) fluoranthene ug/L <10.0 Benzo(g,h,i)perylene ug/L Benzo(a)pyrene <10.0 ug/L Benzyl butyl phthalate <10.0 ug/L Bis(2-chloroethoxy)methane <10.0 ug/L Bis(2-chloroethyl)ether <10.0 ug/L Bis(2-chloroisopropyl)ether <10.0 ug/L Bis(2-ethylhexyl)phthalate <10.0 ug/L 4-Bromophenyl phenyl ether <10.0 ug/L 4-Chloroaniline <20.0 ug/L 2-Chloronaphthalene <10.0 ug/L 4-Chlorophenyl phenyl ether <10.0 ug/L <10.0 Chrysene ug/L Dibenzo(a,h)anthracene <10.0 ug/L Dibenzofuran <10.0 ug/L Di-n-butyl phthalate <10.0 ug/L 1,2-Dichlorobenzene <10.0 ug/L 1,3-Dichlorobenzene <10.0 ug/L 1,4-Dichlorobenzene <10.0 ug/L 3,3'-Dichlorobenzidine <20.0 ug/L Diethyl phthalate <10.0 ug/L <10.0 Dimethyl phthalate ug/L 2,4-Dinitrotoluene ug/L <10.0

Neal Έ. Project Manager

Page 5

	NATIONAL
	ENVIRONMENTAL
	" TESTING, INC.

CH2M HILL 1890 Maple Av. Suite 200 Chicago, IL 60201 05/03/1991

04/05/1991

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Chicago, IL 60201 05/03/1991

Sample No.: 130118

Job No.: 91.0364

Sample Description: DEC-SSP2-4-1 CH128770.B0.SP; Du Pont

Date Taken: 04/04/1991 Time Taken: 14:58 Date Received: 04/05/1991 Time Received: 09:50

BASE/NEUTRALS - 8270 AQUEOUS

	$M_{\text{TMPP}} = 0210 \text{ MÅ0T}$	2002
2,6-Dinitrotoluene	<10.0	ug/L
Di-n-octyl phthalate	<10.0	ug/L
Fluoranthene	<10.0	ug/L
Fluorene	<10.0	ug/L
Hexachlorobenzene	<10.0	ug/L
Hexachlorobutadiene	<10.0	ug/L
Hexachlorocyclopentadiene	<10.0	ug/L
Hexachloroethane	<10.0	ug/L
Indeno(1,2,3-cd)pyrene	<10.0	ug/L
Isophorone	<10.0	ug/L
2-Methylnaphthalene	<10.0	ug/L
Naphthalene	<10.0	ug/L
2-Nitroaniline	<50.0	ug/L
3-Nitroaniline	<50.0	ug/L
4-Nitroaniline	<50.0	ug/L
Nitrobenzene	<10.0	ug/L
N-Nitrosodimethylamine	<10.0	ug/L
N-Nitrosodi-n-propylamine	<10.0	ug/L
N-Nitrosodiphenylamine	<10.0	ug/L
Phenanthrene	<10.0	ug/L
Pyrene	<10.0	ug/L
1,2,4-Trichlorobenzene	<10.0	ug/L
		.

Heal E Clephan

Neal E. Cleghorn Project Manager

Page 6

NATIONAL ENVIRONMENTAL ® TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

0

ANALYTICAL REPORT

Ms. Susan Mulholland 05/03/1991 CH2M HILL 1890 Maple Av. Sample No.: 130118 Suite 200 Chicago, IL 60201 Job No.: 91.0364 Sample Description: DEC-SSP2-4-1 CH128770.B0.SP; Du Pont Date Taken: 04/04/1991 Date Received: 04/05/1991 Time Taken: 14:58 Time Received: 09:50 VOLATILES - 8240 AQUEOUS Acetone <10.0 uq/L Benzene <1.0 ug/L Bromodichloromethane <1.0 ug/L Bromoform <1.0 ug/L Bromomethane <10.0 ug/L 2-Butanone (MEK) <10.0 ug/L Carbon disulfide <5.0 ug/L Carbon tetrachloride <1.0 ug/L Chlorobenzene <1.0 uq/L Chloroethane <10.0 ug/L 2-Chloroethylvinyl ether <5.0 ug/L Chloroform <1.0 ug/L Chloromethane <10.0 ug/L Dibromochloromethane <1.0 ug/L 1,2-Dichlorobenzene <1.0 ug/L 1,3-Dichlorobenzene <1.0 ug/L 1,4-Dichlorobenzene <1.0 ug/L 1,1-Dichloroethane <1.0 ug/L 1,2-Dichloroethane <1.0 uq/L 1,1-Dichloroethene <1.0 ug/L cis-1,2-Dichloroethene <1.0 ug/L trans-1,2-Dichloroethene <1.0 ug/L <1.0 1,2-Dichloropropane ug/L cis-1,3-Dichloropropene <1.0 ug/L trans-1,3-Dichloropropene <1.0 ug/L ND ug/L 1,3-Dichloropropylene Ethylene dibromide ND ug/L Ethyl benzene <1.0 ug/L <10.0 2-Hexanone ug/L Methylene chloride <5.0 uq/L

la Neal E. Cleanorn

Project Manager

Page 7

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Chicago, IL 60201			05/03/1991 Sample No.: Job No.: 91.	
Sample Description:	DEC-SSP2-4 CH128770.B	-	Pont	
Date Taken: 04/04/199 Time Taken: 14:58	91		Date Received Time Received	l: 04/05/1991 l: 09:50
vo	DLATILES -	B240 AOUE	ous	
4-Methyl-2-pentanone				ug/L
Styrene		<5.0		ug/L
1,1,2,2-Tetrachloroe	ethane	<1.0		ug/L
Tetrachloroethene		<1.0		ug/L
Toluene		<1.0		ug/L
1,1,1-Trichloroethar		<1.0		ug/L
1,1,2-Trichloroethar	ne	<1.0		ug/L
Trichloroethene		<1.0		ug/L
Vinyl acetate		<10.0		ug/L
Vinyl chloride		<10.0		ug/L
o-Xylene		<5.0		ug/L
m,p-Xylenes		<5.0		ug/L

Clegnorn Neal E. Project Manager

NATIONAL ENVIRONMENTAL ® TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 05/03/1991 CH2M HILL 1890 Maple Av. Sample No.: 130123 Suite 200 Chicago, IL 60201 Job No.: 91.0364 Sample Description: Trip Blank CH128770.B0.SP; Du Pont Date Taken: Date Received: 04/05/1991 Time Taken: Time Received: 09:50 VOLATILES - 8240 AQUEOUS Acetone <10.0 ug/L Benzene <1.0 ug/L Bromodichloromethane <1.0 ug/L Bromoform <1.0 ug/L Bromomethane <10.0 ug/L 2-Butanone (MEK) <10.0 ug/L Carbon disulfide <5.0 ug/L Carbon tetrachloride <1.0 ug/L Chlorobenzene <1.0 ug/L Chloroethane <10.0 ug/L 2-Chloroethylvinyl ether <5.0 ug/L Chloroform <1.0 ug/L Chloromethane <10.0 ug/L Dibromochloromethane <1.0 ug/L 1,2-Dichlorobenzene <1.0 ug/L 1,3-Dichlorobenzene <1.0 ug/L 1,4-Dichlorobenzene <1.0 ug/L 1,1-Dichloroethane <1.0 ug/L 1,2-Dichloroethane <1.0 ug/L 1,1-Dichloroethene <1.0 uq/L cis-1,2-Dichloroethene <1.0 ug/L trans-1,2-Dichloroethene <1.0 uq/L 1,2-Dichloropropane <1.0 ug/L cis-1,3-Dichloropropene <1.0 ug/L trans-1,3-Dichloropropene <1.0 uq/L1,3-Dichloropropylene ND ug/L Ethylene dibromide ND ug/L Ethyl benzene <1.0 ug/L 2-Hexanone <10.0 ug/L Methylene chloride <5.0 ug/L The

> Neal E. Cleghorn Project Manager

NATIONAL ENVIRONMENTAL ® TESTING, INC.

NET Midwest, Inc. **Bartlett Division** 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Av. Suite 200 Chicago, IL 60201

05/03/1991

Sample No.: 130123

Job No.: 91.0364

Sample Description:

Trip Blank CH128770.B0.SP; Du Pont

Date Taken: Time Taken:

Date Received: 04/05/1991 Time Received: 09:50

VOLATILES	- 8240 AQUEOUS	
4-Methyl-2-pentanone (MIBK)	<10.0	ug/L
Styrene	<5.0	ug/L
1,1,2,2-Tetrachloroethane	<1.0	ug/L
Tetrachloroethene	<1.0	ug/L
Toluene	<1.0	ug/L
1,1,1-Trichloroethane	<1.0	ug/L
1,1,2-Trichloroethane	<1.0	ug/L
Trichloroethene	<1.0	ug/L
Vinyl acetate	<10.0	ug/L
Vinyl chloride	<10.0	ug/L
o-Xylene	<1.0	ug/L
m,p-Xylenes	<1.0	ug/L

15 11.

Neal E. Cleghorn Project Manager

Page 10

PROJEC CAID& CLIENT	NAME				NAME UT - PAST (NICA 60	# 0 F	CLIE 18 21	NT ADI 190 VANS	DRESS MAF		HONE AVE	NUMB	ER	~ <u>~</u>)8(56 ~9	490		
C6	lam HI	u /	CN,	1			 			AN	ALYSES	REQU	ESTED			T		
PROJEC	T MANAG	SER			COPY TO:				309-	*	្រុ							
			ind'	(11)	DAN MEGRACOR/BID	N T		5	1	20	ي بر لا	RINS				R + BOWARC		
REQUES	TED CON	IP. DATE			SAMPLING REQUIREMENTS] ^ .	5	695	2	Š	2 5	55	K			43		TO A STATE OF A S
2-4	vk 7	AT			SDWA NPDES RCRA OTHER	N E R	- 604	1	SA.	5	CNU	1-41	C PR	Sat		VAPA VAPA		BS
STA NO.	DATE	TIME		€ S 2 O 1 L	SAMPLE DESCRIPTIONS (12 CHARACTERS)	s S	NOA-	SVOR	PESMICIERS, PCB	ACTALS REPAINDE	YOTA CHURTED	AMAON 14 -N, COD, NITAAN + NARIYE	OIL F GRASE	1551	BOR	CARFOUND BUCAR BU		REMARKS
<u>├</u> ───	4/4/91	14:58	. ,	(DEC 5592-4-1	18	×	ĸ	x	8	۲ ا	r	v	ĸ	r	×		
	· · · ·			-	······································	2	r					` -				<u> </u> ~		
				+			<u> ``</u>	<u> </u>			+			<u>†</u>		+		
				+				<u> </u>	<u> </u>		<u> </u>			<u> </u>				
	<u> </u>		╉														NI AV IN CH	
		<u> </u>	┼╌┾╸	+							<u> </u>			<u> </u>				
l			╅╸╂			· · · · ·	<u> </u>	 	<u> </u>				l					
	· · · · ·																	\$ 1 500 ml poly w/HRO3 field filtered for metals analysis
				-										<u> </u>		1		and tald anothe aid
				1			<u> </u>									1		Marina Writegers
		<u> </u>		+-	· · · · · · · · · · · · · · · · · · ·		1		<u> </u>	 				<u> </u>				
			+ +	-								<u> </u>		<u> </u>			· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·													
		<u> </u>	+	+		+	<u> </u>		<u> </u>								<u>6</u>	
<i>f</i>			++	+		╂──	 					·		<u> </u>		+		
SAMPLE		D_TIT X E			DATE/TIME	RELI	NQUISI	L HED BY	[L	1	I	<u> </u>	DATE	/TIMF	<u> </u>		HAZWRAP/NEESA Y N
	BRAND	R/Arp	3009	•	DATE/TIME 4(4(9) 14758	E	RIC	<u>SPA</u>	NDE	_				41		<u>i</u> 1'	1:00	QC LEVEL 4 2 3
RECEIV	ED BY:				DATE/TIME	RELI	NQUISI	HED BY	/ :					DATE	/TIME			COC
RECEIVI	ED BY:				DATE/TIME	RELI	NQUISI	HED BY	<i>(</i> :					DATE	/TIME			COSTOEAL Ph
RECEIVE		lina	 A		DATE/TIME 415/91 0950	SAM UPS	PLE SH BU	IIPPED S				ОТНІ	ER	!		AIR BIL	.L# 04	37472493
REMAR	ks Plan	e cal	X X	lu:A	an Mulhalland u	0/91	ert	ions	01	607	me	~~					EN EN	COC O LIMS BEVIEWED

MHILL Economists Scientists lient: CH2M HILL/CHI 1890 MAPLE AVENUE SU EVANSTON, IL 60201	REPORT OF ANALY	Pr	S oject Number: PONT EAST CHI	CH128770	05/10/9 .B0.SP
			boratory Numb		
tten: MS. SUSAN MULHOLLAND) :====================================		te Received:		
ample Description: DEC-SP3- aboratory Sample Number: 18		llected: 04/2	5/91 Matri	x: WATER	
Analytical Parameter	Method	Rep Limit	Result	Units	Ana Da
Silver	EPA200.7/SW6010	10	<10	ug/L	05/10/
Soluble Silver	EPA200.7/SW6010	10	<10	ug/L	05/10/
Arsenic	EPA206.2/SW7060	10	<10	ug/L	05/01/
Soluble Arsenic	EPA206.2/SW7060	10	<10	ug/L	05/01,
Beryllium	EPA200.7/SW6010	5	<5	ug/L	05/10,
Soluble Beryllium	EPA200.7/SW6010	5	<5	ug/L	05/10
BOD, 5 Day	EPA405.1	10	<10	mg/L	04/26,
BOD 5, Date In	EPA405.1		04/26/91	••••	
BOD 5, Date Out	EPA405.1		05/01/91		
Cadmium	EPA200.7/SW6010	5	6.9	ug/L	05/10,
Soluble Cadmium	EPA200.7/SW6010	5	6.4	ug/L	05/10,
Chloride	EPA325.1	5.0	27.8	mg/L	04/29,
Cyanide, Distilled	EPA335.2	5.0	<5.0	ug/L	04/29/
Chemical Oxygen Demand	EPA410.4	20	<20	mg/L	05/02,
Chromium	EPA200.7/SW6010	10	<10	ug/L	05/10,
Soluble Chromium	EPA200.7/SW6010	10	<10	ug/L	05/10/
Copper	EPA200.7/SW6010	25	<25	ug/L	05/10,
Soluble Copper	EPA200.7/SW6010	25	<25	ug/L	05/10/
Fluoride	EPA340.2	0.10	0.94	mg/L	05/09,
Hercury	EPA245.1/SW7470	0.2	<0.2	ug/L	05/02,
Soluble Mercury	EPA245.1/SW7470	0.2	<0.2	ug/L	05/02,
Ammonia-N	EPA350.2	0.1	1.5	mg/L	05/08
Nickel	EPA200.7/SW6010	40	58	ug/L	05/10
Soluble Nickel	EPA200.7/SW6010	40	63	ug/L	05/10/
Nitrate/Nitrite-N	EPA353.3/354.1	0.05	<0.05	mg/L	05/01/
Oil and Grease	EPA413.1	0.1	1.4	mg/L	05/01/
Lead	EPA239.2/SW7421	3	6	ug/L	05/01/
Soluble Lead	EPA239.2/SW7421	3	<3	ug/L	05/01/
Antimony	EPA200.7/SW6010	60	<60	ug/L	05/10/
Soluble Antimony	EPA200.7/SW6010	60	<60	ug/L	05/10/
Selenium	EPA270.2/SW7740	25	<25	ug/L	05/02/
Soluble Selenium	EPA270.2/SW7740	25	<25	ug/L	05/02
Sulfate	EPA375.4	50.0	1690	mg/L	05/07,
Total Dissolved Solids	EPA160.1	10	2830	mg/L	04/30/

Reviewed by: ____

INRPRPT(v910124)

19 Jan

Planners SM Hill. Economists	REPORT OF ANALY			Deter	05/10/0
Scientists	REPORT OF ANALI	TICKE RESULTS		Date:	05/10/9
lient: CH2M HILL/CHI					
1890 MAPLE AVENUE	SUITE 200	Pro	ject Number	: CHI28770	.BO.SP
EVANSTON, IL 6020	1		ONT EAST CH		
		Lab	oratory Num	ber: 18424	ŀ
Atten: MS. SUSAN MULHOLL	AND		e Received:		
		************	**============	**********	*=========
aboratory Sample Number:		************	**============	**********	Ana Dat
Analytical Parameter	18424001 Date Col	lected: 04/25	/91 Matr:	ix: WATER	
Analytical Parameter	18424001 Date Col Method	lected: 04/25 Rep Limit	/91 Matr: Result	ix: WATER Units	05/02/9
Analytical Parameter Thallium Soluble Thallium	18424001 Date Col Method EPA279.2/SW7841	lected: 04/25 Rep Limit 10	/91 Matr: Result <10	ix: WATER Units ug/L	05/02/9
Sample Description: DEC-Si Laboratory Sample Number: Analytical Parameter Thallium Soluble Thallium Total Suspended Solids Zinc	18424001 Date Col Method EPA279.2/SW7841 EPA279.2/SW7841	lected: 04/25 Rep Limit 10 10	/91 Matr: Result <10 <10	Lx: WATER Units ug/L ug/L	Ana Dat 05/02/9 05/02/9 05/01/9 05/10/9

Results for non-aqueous matrices are based on dry sample weight unless noted otherwise.

Reviewed by:

INRPRPT(v910124)

•

Economists Scientists CH2M HILL/CHI	REPORT OF ANALY		-		05/10/9
1890 MAPLE AVENUE			oject Number:		
EVANSTON, IL 60201	L		PONT EAST CHI		
			boratory Numb		•
tten: MS. SUSAN MULHOLLA			te Received:	• •	*======
Sample Description: DEC-SE					
aboratory Sample Number:	18424002 Date Col	lected: 04/2	5/91 Matri	x: WATER	
Analytical Parameter	Nethod	Rep Limit	Result	Units	Ana Dat
Silver	EPA200.7/SW6010	10	<10	ug/L	05/10/9
Soluble Silver	EPA200.7/SW6010	10	<10	ug/L	05/10/9
Arsenic	EPA206.2/SW7060	10	<10	ug/L	05/01/9
Soluble Arsenic	EPA206.2/SW7060	10	<10	ug/L	05/01/9
Beryllium	EPA200.7/SW6010	5	<5	ug/L	05/10/9
Soluble Beryllium	EPA200.7/SW6010	5	<5	ug/L	05/10/9
BOD, 5 Day	EPA405.1	10	<10	mg/L	04/26/9
BOD 5, Date In	EPA405.1		04/26/91		
BOD 5, Date Out	EPA405.1		05/01/91	••••	
Cadmium	EPA200.7/SW6010	5	8.1	ug/L	05/10/9
Soluble Cadmium	EPA200.7/SW6010	5	6.6	ug/L	05/10/9
Chloride	EPA325.1	5.0	25.6	mg/L	04/29/9
Cyanide, Distilled	EPA335.2	5.0	<5.0	ug/L	04/29/9
Chemical Oxygen Demand	EPA410.4	20	<20	mg/L	05/02/9
Chromium	EPA200.7/SW6010	10	<10	ug/L	05/10/9
Soluble Chromium	EPA200.7/SW6010	10	<10	ug/L	05/10/9
Copper	EPA200.7/SW6010	25	<25	ug/L	05/10/9
Soluble Copper	EPA200.7/SW6010	25	<25	ug/L	05/10/9
Fluoride	EPA340.2	0.10	0.96	mg/L	05/09/9
Hercury	EPA245.1/SW7470	0.2	<0.2	ug/L	05/02/9
Soluble Mercury	EPA245.1/SW7470	0.2	<0.2	ug/L	05/02/9
Ammonia-N	EPA350.2	0.1	0.9	mg/L	05/08/9
Nickel	EPA200.7/SW6010	40	68	ug/L	05/10/9
Soluble Nickel	EPA200.7/SW6010	40	72	ug/L	05/10/9
Nitrate/Nitrite-N	EPA353.3/354.1	0.05	0.23	mg/L	05/01/9
Oil and Grease	EPA413.1	0.1	1.5	mg/L	05/01/9
Lead	EPA239.2/SW7421	3	4	ug/L	05/01/9
Soluble Lead	EPA239.2/SW7421	3	<3	ug/L	05/01/9
Antimony	EPA200.7/SW6010	60	<5 <60	ug/L	05/10/9
Soluble Antimony	EPA200.7/SH6010	60	<60	ug/L	05/10/9
Selenium	EPA270.2/SW7740	25	<25	ug/L	05/02/9
Soluble Selenium	EPA270.2/SW7740	25	<25	ug/L	05/02/9
Sulfate	EPA375.4	50.0	1650	-	05/02/9
		~~.~	1030	mg/L	03/0//9

Reviewed by: _____

INRPRPT(v910124)

.....

Economists	REPORT OF ANAL	YTICAL RESULTS	5	Date:	05/10/9
Scientists					
Client: CH2M HILL/CHI					
1890 MAPLE AVENUE	SUITE 200	Pro	ject Number	: CHI28770	.BO.SP
EVANSTON, IL 6020	1	DUF	PONT EAST CH	ICAGO SEEP	,
		Lab	oratory Num	ber: 18424	
Atten: MS. SUSAN MULHOLL	AND	Dat	e Received:	04/26/91	
		llected: 04/25	5/91 Matr:	IIIII IIIIIII	822222
aboratory Sample Number:		Llected: 04/25 Rep Limit	i/91 Matr: Result	IIIII IIIIIIII	====== Ana Dat
aboratory Sample Number: Analytical Parameter	18424002 Date Co			ix: WATER Units	
aboratory Sample Number: Analytical Parameter Thallium	18424002 Date Co Nethod	Rep Limit	Result	ix: WATER	Ana Dat 05/02/9 05/02/9
Analytical Parameter Thallium Soluble Thallium	18424002 Date Co Method EPA279.2/SW7841	Rep Limit	Result <10	ix: WATER Units ug/L	05/02/9
Sample Description: DEC-S Saboratory Sample Number: Analytical Parameter Thallium Soluble Thallium Total Suspended Solids Zinc	18424002 Date Co Method EPA279.2/SW7841 EPA279.2/SW7841	Rep Limit 10 10	Result <10 <10	ix: WATER Units ug/L ug/L	05/02/9 05/02/9

Results for non-aqueous matrices are based on dry sample weight unless noted otherwise.

Reviewed by:

INRPRPT(v910124)

.

•

May 28, 1991

CHI28770.B0.SP

Ms. Susan Mulholland CH2M HILL/CHI 1890 Maple Avenue Suite 200 Evanston, Illinois 60016

RE: Analytical Data for DuPont-East Chicago SEEP, LMG Laboratory No. 18425

Dear Ms. Mulholland:

On April 26, 1991, the CH2M HILL Montgomery Laboratory received two samples with a request for analysis of selected organic parameters.

The analytical results and associated quality control data are enclosed. The volatile and semivolatile analyses were performed at Analytical Technologies, Inc. Their report is enclosed.

If you should have any questions concerning the data, please inquire.

The CH2M HILL policy is to store samples for up to 30 days after reporting. If you desire, our laboratory will maintain your samples for a longer period at a cost of \$5.00 per sample per month. Samples determined to be hazardous can either be returned to you or disposed of at a cost of \$25.00 per sample.

Sincerely,

Unida d. Nall

Wanda L. Hall Data Package Supervisor

Enclosures

cc: Mr. Dan MacGreggor/GLO

TABLE 1

SAMPLE CROSS-REFERENCE SUMMARY

CH2M HILL Laboratory No. 18425

CH2M HILL Sample No.	Sample Description		,
18425001	SAMPLE DEC-SP3-4-4A	04/25/91	grab
18425002	SAMPLE DEC-SP3-4-4B	04/25/91	grab

QUALITY ASSURANCE DATA REVIEW

The data contained in the following report has been reviewed and approved by the appropriate supervisory personnel listed below:

Steve Workman, GC/HPLC/Inorganics Supervisor

Alex Blanche, GC/GCMS Supervisor

CERTIFICATION

Analytical Technologies Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the method employed.

P.03

P.04

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Method 1625

Client Name: <u>CH2M_Hill</u>	Client Project ID: <u>Batch 18425</u>
Matrix (soil/water): <u>Water</u>	Client Sample ID: <u>18425001</u>
Sample wt/vol: <u>1000 mL</u>	Lab Sample ID: <u>91-04-153-01</u>
Level (low/med):2 Low	Date Received: 04/27/91
Column: (pack/cap) <u>Cap</u>	Date Analyzed: 05/13/91
Fraction: <u>Acid/Base</u>	Dilution Factor: <u>1</u>

CAS NO.		NCENTRATION UNITS g/L or ug/kg): <u>ug/L</u>
62-75-9	N-Nitrosodimethylamine_	< 50
109-06-8	alpha-Picoline	< 50
100-42-5	Styrene	< 10
111-44-4	Styrene bis(2-Chloroethyl)ether	< 10
108-95-2	Phenol	< 10
95-57-8	Phenol	< 10
124-18-5	n-C10 Decane	< 10
	1,3-Dichlorobenzene	< 10
	1,4-Dichlorobenzene	
99-87-6	p-Cymene	< 10
95-50-1	1,2-Dichlorobenzene	< 10
108-60-1	bis(2-Chloroisopropyl)e	ther < 10
621-64-7	N-Nitrosodi-n-propylami	ne < 20
	Hexachloroethane	
	Nitrobenzene	
	Isophorone	
	2-Nitrophenol	
105-67-9	2,4-Dimethylphenol	
111-91-1	bis(2-Chloroethoxy)meth	ane < 10
120-83-2	2,4-Dichlorophenol	<_10
	1,2,4-Trichlorobenzene_	
	Naphthalene	< 10

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Method 1625

CAS NO.		CONCENTRATION UNITS (ug/L or ug/kg): <u>ug/L</u>	
		4.10	
	alpha-Terpineol	< 10	
112-40-3	n-C12 Dodecane		
	Hexachlorobutadiene	< 10	
	4-Chloro-3-methylphenol		
	Hexachlorocyclopentadie		
//-4/-4	2,4,6-Trichlorophenol	< 10	
88-06-2	2,4,6-Trichlorophenol	< 10	
95-95-4	2,4,5-Trichlorophenol	< 10	
91-58+7	2-Chloronaphthalene	< 10	
92-52-4	Biphenyl		
933-75-5	2, 3, 6-Trichlorophenol	< 10	
	n-C14 Tetradecane	< 10	
101-84-8	Diphenyl ether		
131-11-3	Dimethyl phthalate	< 10	
208-96-8	Acenaphthylene		
606-20-2-4	Acenaphthene	< 10	
83-32-9	Acenaphinene	< 50	
51428-5	2,4-Dinitrophenol	< 10	
		< 50	
100-02-7	4-Nitrophenol		
	2,4-Dinitrotoluene		
	beta-Naphthylamine	< 50	<u> </u>
	Fluorene	< 10	
	n-C16 Hexadecane	< 10	
84-66-2	Diethyl phthalate	< 10	
7005-72-3	4-Chlorophanyl phenyl e	ther < 10	
	2-Methy1-4,6-dinitrophe		
	Diphenylamine	< 20	
	N-Nitrosodiphenylamine_		
122-66-7	1,2-Diphenylhydrazine	< 20	
101-55-3	4-Bromophenylphenyl eth	er< 20	
118-74-1	Hexachlorobenzene	< 10	·

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Method 1625

CAS NO.		CONCENTRATION UNITS (ug/L or ug/kg) <u>ug/L</u>	
87-86-5	Pentachlorophenol	< 10	
132-65-0	Dibenzothiophene	< 10	
593-45-3	n-C18 Octadecane	< 10	
85-01-8	Phenanthrene	< 10	
120-12-7	Anthracene	< 20	
86-74-8	Carbazole	< 10	
84-74-2	Di-n-butyl phthalate	< 10	
112-95-8	n-C20 Eicosane	< 10	
205-44-0	Fluoranthene	< 10	
92-87-5	Benzidine	< 50	
129-00-0	Pyrene	< 10	
629-97-0	n-C22 Docosane	< 10	
85-68-7	~Butylbenzyl phthalate	< 10	
646-31-1	n-C24 Tetracosane	< 10	
56-55-3	Benzo(a)anthracene	< 10	
91-94-1	3,3-Dichlorobenzidine	< 50	
218-01-9	Chrysene		
117-81-7	bis(2-Ethylhexyl)phthal	late< 10	
630-01-3	n-C26 Hexacosane	< 10	
117-84-0	Di-n-octyl phthalate	< 10	
630-02-4	n~C28 Octacosane	< 10	
205-99-2	Benzo(b)fluoranthene	< 10	
207-08-9	Benzo(k) fluoranthene	< 10	
50-32-8	Benzo(a) pyrene	< 10	
638-68-6	n-C30 Triacontane	< 10	
193-39-5	Indeno(1,2,3-cd)pyrene_	< 20	
53-70-3	Dibenzo(a,h)anthracene	< 20	
191-24-2	Benzo(g,h,i)perylene	< 20	

 1F
 IF

 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

 TENTATIVELY IDENTIFIED COMPOUNDS

 Lab Name: ATI

 Client Name: CH2M Hill

Lab Code: <u>N/A</u> Case No.:<u>N/A</u>

Matrix:(soil/water) WaterSample wt/vol:1000 (g/mL) mLLevel:(low/med)Low* Moisture:not dec.N/Adec.Extraction:(SepF/Cont/Sonc)GPCCleanup:(Y/N)NpH:N/A

Lab Sample ID: <u>91-04-153-01</u> Date Received: <u>04/27/91</u> Date Analyzed: <u>05/13/91</u> Dilution Factor: <u>1</u> Acid/Base: <u>Acid</u>

SDG No.:<u>N/A</u>

Number TICs found:1

CONCENTRATION UNITS: (ug/L or ug/Kg)<u>ug/L</u>

SAS No.: N/A

COMPOUND NAME	RT	EST. CONC.	Q
UNKNOWN COMPOUND	27:48	13 .	J
			-
	······································		
		·	

J - Estimated Concentration

1/87 Rev.

P.08

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Method 1625

Client Name: <u>CH2M Hill</u>	Client Project ID: <u>Batch 18425</u>
Matrix (soil/water): <u>Water</u>	Client Sample ID: <u>18425002</u>
Sample wt/vol: <u>1000 mL</u>	Lab Sample ID: <u>91-04-153-02</u>
Level (low/med):2 Low	Date Received: 04/27/91
Column: (pack/cap) <u>Cap</u>	Date Analyzed: 05/13/91
Fraction: <u>Acid/Base</u>	Dilution Factor: 1

CAS NO.	COMPOUND CONCENTRATION UNITS (ug/L or ug/kg): ug/L	
62-75-9	N~Nitrosodimethylamine_	< 50
109-06-8	alpha-Picoline	< 50
100-42-5	Styrene	< 10
111-44-4	bis (2-Chloroethyl) ether	< 10
108-95-2	Phenol	< 10
95-57-8	2-Chlorophenol	< 10
	n-Cl0 Decane	< 10
541-73-1	1, 3-Dichlorobenzene	< 10
106-46-7	1,4-Dichlorobenzene	< 10
	p-Cymene	< 10
95-50-1	1,2-Dichlorobenzene	< 10
108-60-1	bis(2-Chloroisopropyl)e	ther < 10
621-64-7	N-Nitrosodi-n-propylami	ne < 20
67-72-1	Hexachloroethane	< 10
	Nitrobenzene	
	Isophorone	< 10
88-75-5	2-Nitrophenol	< 20
	2,4-Dimethylphenol	< 10
111-91-1	bis(2-Chloroethoxy)meth	ane< 10
120-83-2	2,4-Dichlorophenol	< 10
	l,2,4-Trichlorobenzene_	< 10
91-20-3	Naphthalene	< 10

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Method 1625

CAS NO.	CONCENTRATION UNITS COMPOUND (ug/L or ug/kg): <u>ug/l</u>	
98-55-5	alpha-Terpineol	< 10
112-40-3	n-Cl2 Dodecane	< 10
87-61-6	1,2,3-Trichlorobenzene	< 10
87-68-3	Hexachlorobutadiene	< 10
59-50-7	Hexachlorobutadiene	< 10
77-47-4	Hexachlorocyclopentadiene	< 10
88-06-2	2,4,6-Trichlorophenol	< 10
95-95-4	2,4,5-Trichlorophenol	< 10
91+58+7++++++	2-Chloropaphthalene	< 10
92-52-4	Biphenyl 2,3,6-Trichlorophenol	< 10
933-75-5	2,3,6-Trichlorophenol	< 10
629-59-4	n-Cl4 Tetradecane	< 10
101-84-8	Diphenyl ether	< 10
/ 131-11-3	Dimethyl phthalate	< 10
208-96-8	Acenaphthylene	< 10
606-20-2	2,6-Dinitrotoluene	< 10
83-32-9	Acenaphthene	< 10
51-28-5	2,4-Dinitrophenol	< 50
132-64-9	Dibenzofuran	< 10
100-02-7	4-Nitrophenol	< 50
121-14-2	2,4-Dinitrotoluene	< 10
91-59-8	beta-Naphthylamine	< 50
86+73+7	Fluorene	< 10
544-76-3	n-C16 Hexadecane	< 10
84-66-2	Diethyl phthalate	< 10
7005-72-3	4-Chlorophenyl phenyl ethe	er
	2-Methyl-4,6-dinitropheno:	1
TSS-22-4	Diphenylamine	< 20
	NNICROSOGIPHENYIAMINE	< 20
T	1,2-Diphenylhydrazine	< 20
110-24-1	4-Bromophenylphenyl ether	< 20
TT0-/4-1		

800000

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Method 1625

CAS NO.		CONCENTRATION UNITS (ug/L or ug/kg) <u>ug/L</u>	
87-86-5	Pentichlorophenol	< 10	
132-65-0	Dibenzothiophene	< 10	
593-45-3	n-C18 Octadecane	< 10	
85-01-8	Phenanthrene	< 10	
120-12-7	Anthracene	< 20	
86-74-8	Carbazole	< 10	
84-74-2	Di-n-butyl phthalate	< 10	
112-95-8	n-C20 Eicosane	< 10	
206-44-0	Fluoranthene	< 10	
92-87-5	Benzidine	< 50	
129-00-0	Pyrene	< 10	
629-97-0	n-C22 Docosane	< 10	
85-68-7	Butylbenzyl phthalate	< 10	
646-31-1	n-C24 Tetracosane	< 10	
56-55-3	Benzo(a)anthracene	< 10	
91-94-1	3,3-Dichlorobenzidine_	< 50	
218-01-9	Chrysene	< 10	
117-81-7	bis(2-Ethylhexyl)phthal	late < 10	
630-01-3	n-C26 Hexacosane	< 10	
	Di-n-octyl phthalate		
630-02-4	n-C28 Octacosane	< 10	
205-99-2	Benzo(b) fluoranthene	< 10	
207-08-9	Benzo(k) fluoranthene	< 10	
	Benzo(a)pyrene		
638-68-6	n-C30 Triacontane	< 10	
193-39-5	Indenc(1,2,3-cd)pyrene	< 20	
53-70-3	Dibenzo(a,h)anthracene_	< 20	
191-24-2	Benzo(g,h,i)perylene	< 20	

No TICs found

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Method 1625

•

Client Name: <u>CH2M_Hill</u>	Client Project ID: <u>Batch 18425</u>
Matrix (soil/water): <u>Water</u>	Client Sample ID: <u>18425003</u>
Sample wt/vol: <u>1000 mL</u>	Lab Sample ID: <u>91-04-153-00</u>
Level (low/med):2 Low	Date Received: 04/27/91
Column: (pack/cap) <u>Cap</u>	Date Analyzed: <u>05/13/91</u>
Fraction: <u>Acid/Base</u>	Dilution Factor: <u>1</u>

CAS NO.		ONCENTRATION UNITS ug/L or ug/kg): <u>ug/L</u>
60-75-0	N-Nitrosodimethylamine	< 50
020/309	alpha-Picoline	< 50
		< 10
	Styrene	r < 10
18296-2	Dis(2-chioroechyr)eche Dhanol	< 10
95-57-8	Phenol	< 10
124-18-5	ClO Decane	< 10
	1,3-Dichlorobenzene	
106-46-7	1,4-Dichlorobenzene	< 10
99-87-6	p-Cymene	< 10
95-50-1	l,2-Dichlorobenzene	< 10
108-60-1	bis(2-Chloroisopropyl)	ether < 10
621-64-7	N-Nitrosodi-n-propylam	ine < 20
67-72-1	Hexachloroethane	< 10
98-95-3	Nitrobenzene	< 10
78-59-1	Isophorone	< 10
88-75-5	2-Nitrophenol	< 20
105-67-9	2,4-Dimethylphenol	< 10
111-91-1	2,4-Dimethylphenol bis(2-Chloroethoxy)methethory	hane < 10
120-83-2	2,4-Dichlorophenol	< 10
120-82-1	1,2,4-Trichlorobenzene	< 10
	Naphthalene	

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Method 1625

CONCENTRATION UNITS

CAS NO.	COMPOUND (u	g/L or ug/kg): <u>ug/L</u>
AA 55 5		
98-55-5-4	alpha-Terpineol	< 10
	n-C12 Dodecane	
87-61-6	I, 2, 3-Trichioropenzene	< 10
87-68-3	Hexachlorobutadiene	< 10
59-50-7		e < 10
//=4/=4======	Hexachlorocyclopentadien	
88-06-2	2,4,6-Trichlorophenol	
95-95-4	2,4,5-Trichlorophenol	
91-58-7	2-Chloronaphthalene	< 10
92-52-4	Biphenyl	< 10
933-75-5	2,3,6-Trichlorophenol	< 10
	n-Cl4 Tetradecane	
	Diphenyl ether	
	Dimethyl phthalate	
	Acenaphthylene	
606-20-2	2,6-Dinitrotoluene	< 10
	Acenaphthene	< 10
51-28-5	2,4-Dinitrophenol	< 50
132-64-9	Dibenzofuran	< 10
	4-Nitrophenol	
121-14-2	2,4-Dinitrotoluene	< 10
91-59-8	beta-Naphthylamine	< 50
86-73-7	Fluorene	< 10
544-76-3	n-C16 Hexadecane	< 10
84-66-2	Diethvl phthalate	< 10
7005-72-3	4-Chlorophenyl phenyl et	her < 10
534-52-1	2-Methyl-4,6-dinitrophen(01 < 20
122-39-4	Diphenylamine	< 20
86-30-6	N-Nitrosodiphenylamine	< 20
122-66-7	1,2-Diphenylhydrazine	< 20
101-55-3	4-Bromophenylphenyl ether	r < 20
118-74-1	Hexachlorobenzene	< 10

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Method 1625

CAS NO.		CONCENTRATION UNITS (ug/L or ug/kg) <u>ug/L</u>	
87-86-5	Pentachlorophenol	< 10	
132-65-0	Dibenzothiophene	< 10	
593-45-3	n-C18 Octadecane	< 10	
85-01-8	Phenanthrene	< 10	
120-12-7	Anthracene	< 20	
86-74-8	Carbazole	< 10	
84-74-2	Di-n-butyl phthalate	< 10	
112-95-8	n-C20 Eicosane	< 10	
206-44-0	Fluoranthene	< 10	
92-87-5	Benzidine	< 50	
129-00-0	Pyrene	< 10	
529-97-0	n-C22 Docosane	<u> </u>	
85-68-7	Butylbenzyl phthalate	< 10	
546-31-1	n-C24 Tetracosane	< 10	
56-55-3	Benzo(a)anthracene	< 10	
91-94-1	3,3-Dichlorobenzidine	< 50	
218-01-9	Chrysene	< 10	
117-81-7	bis(2-Ethylhexyl)phthal	ate< 10	
530-01-3	n-C26 Hexacosane	< 10	
L17-84-0	Di-n-octyl phthalate	< 10	
530-02-4	n-C28 Octacosane	< 10	
205-99-2	Benzo(b)fluoranthene	< 10	
207-08-9	Benzo(k)fluoranthene	< 10	
50-32-8	Benzo(a)pyrene	< 10	
538-68-6	n-C30 Triacontane	< 10	
193-39-5	Indeno(1,2,3-cd)pyrene_	< 20	
53-70-3	Dibenzo(a,h)anthracene_	< 20	
191-24-2	Benzo(g,h,i)perylene	< 20	

VOLATILE ORGANICS DATA SHEET

Method 1624

Lab Name: Analytical Technologies

1

Client Name: CH2M Hill

Client Project ID: Batch 18425

Matrix (soil/water): Water

Dilution Factor:

Column (pack/cap): Pack

Lab Sample ID: 91-04-153-01

18425001

Client Sample ID:

Sample wt/vol: 5 mL

Level (low/med): Low

Date Received: 04/29/91

Date Analyzed: 05/06/91

% Moisture: N/A

Concentration (ug/L or ug/kg):	ug/L	
COMPOUND NAME	Concentration	Q
Chloromethane	< 50	
Bromomethane	< 50	
Vinyl chloride	< 10	
Chloroethane	< 50	
Methylene chloride	12	В
Acetone	< 50	
Acrolein	< 50	
Acrylonitrile	< 50	
1,1-Dichloroethene	< 10	
1,1-Dichloroethane	< 10	
trans-1,2-Dichloroethene	< 10	
Diethyl ether	< 50	
Chloroform	< 10	
2-Butanone	< 50	
1,2-Dichloroethane	< 10	
1,1,1-Trichloroethane	< 10	
Carbon tetrachloride	< 10	
Bromodichloromethane	< 10	
1,2-Dichloropropane	< 10	
trans-1,3-Dichloropropene	< 10	
Trichloroethene	< 10	
Benzene	< 10	
Dibromochloromethane	< 10	
1,1,2-Trichloroethane	< 10	
2-Chloroethyl vinyl ether	< 10	
Bromoform	< 10	
p-Dioxane	< 100	
1,1,2,2-Tetrachloroethane	< 10	
Tetrachloroethene	< 10	
Toluene	< 10	
Chlorobenzene	< 10	
Ethylbenzene	< 10	

B - Found in reagent blank.

000013

Client Sample ID:

VOLATILE ORGANICS DATA SHEET Tentatively Identified Compounds

Lab Name: Analytical Technologies18425001Client Name: CH2M HillLab Sample ID: 91-04-153-()1Client Project ID: Batch 18425Sample wt/vol: 5 mLClient Project ID: Batch 18425Level (low/med): LowMarrix (soil/water): WaterDate Received: 04/29/91Dilution Factor: 1Date Analyzed: 05/06/91Column (pack/cap): Pack% Moisture: N/A

Concentration (ug/I	_ or ug/kg):	ug/L	
COMPOUND NAME	RT	Concentration	Q
Trichlorofluoromethane	9:27	9	Ĵ
	-		

J - Estimated Concentration

* H

VOLATILE ORGANICS DATA SHEET

Method 1624

Lab Name: Analytical Technologies

1

Client Name: CH2M Hill

Client Project ID: Batch 18425

Matrix (soil/water): Water

Dilution Factor:

Column (pack/cap): Pack

Lab Sample ID: 91-04-153-02

18425002

Client Sample ID:

Sample wt/vol: 5 mL

Level (low/med): Low

Date Received: 04/29/91

Date Analyzed: 05/06/91

% Moisture: N/A

Concentration (ug/L or ug/kg):	ug/L	
COMPOUND NAME	Concentration	Q
Chloromethane	< 50	
Bromomethane	< 50	
Vinyl chloride	< 10	ł
Chloroethane	< 50	
Methylene chloride	15	B
Acetone	< 50	
Acrolein	< 50	
Acrylonitrile	< 50	
1,1-Dichloroethene	< 10	
1,1-Dichloroethane	< 10	
trans-1,2-Dichloroethene	< 10	
Diethyl ether	< 50	
Chloroform	< 10	
2-Butanone	< 50	
1,2-Dichloroethane	< 10	
1,1,1-Trichloroethane	< 10	
Carbon tetrachloride	< 10	
Bromodichloromethane	< 10	
1.2-Dichloropropane	< 10	
trans-1,3-Dichloropropene	< 10	
Trichloroethene	< 10	
Benzene	< 10	
Dibromochloromethane	< 10	
1,1,2-Trichloroethane	< 10	
2-Chloroethyl vinyl ether	< 10	
Bromoform	< 10	1
p-Dioxane	< 100	
1,1,2,2-Tetrachloroethane	< 10	
Tetrachloroethene	< 10	
Toluene	< 10	
Chlorobenzene	< 10	
Ethylbenzene	< 10	

B - Found in reagent blank.

000015

VOLATILE ORGANICS DATA SHEET

Tentatively Identified Compounds

Lab Marras Analysian Technologia	18425002
Lab Name: Analytical Technologies	Lab Sample ID: 91-04-153-02
Client Name: CH2M Hill	•
Client Project ID: Batch 18425	Sample wt/vol: 5 mL
Matrix (soil/water): Water	Level (low/med): Low
	Date Received: 04/29/91
Dilution Factor: 1	Date Analyzed: 05/06/91
Column (pack/cap): Pack	

%	Mo	isture	: N	/A
---	----	--------	-----	----

Client Sample ID:

Concentration (ug/	L or ug/kg):	ug/L	
COMPOUND NAME	RT	Concentration	Q
COMPOUND NAME Trichlorofluoromethane		Concentration 23	Q J

J - Estimated Concentration

Method 1624

Reagent Blank

Client Sample ID:

Lab Name: Analytical Technologies

1

Client Name: CH2M Hill

Client Project ID: Batch 18425

Matrix (soil/water): Water

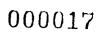
Dilution Factor:

Column (pack/cap): Pack

Lab Sample ID: Reagent Blank

Sample wt/vol: 5 mL

Level (low/med): Low


Date Received: N/A

Date Analyzed: 05/06/91

% Moisture: N/A

Concentration (ug/L or ug/kg):	u	g/L	
COMPOUND NAME	Concentrati	Ón	Q
Chloromethane	<	50	
Bromomethane	<	50	
Vinyl chloride	<	10	
Chloroethane	<	50	
Methylene chloride		29	
Acetone	<	50	
Acrolein	<	50	
Acrylonitrile	<	50	
1,1-Dichloroethene	<	10	
1,1-Dichloroethane	<	10	
trans-1,2-Dichloroethene	<	10	
Diethyl ether	<	50	
Chloroform	<	10	
2-Butanone	<	50	
1,2-Dichloroethane	<	10	
1,1,1-Trichloroethane	<	10	
Carbon tetrachloride	<	10	
Bromodichloromethane	<	10	
1,2-Dichloropropane	<	10	
trans-1,3-Dichloropropene	<	10	
Trichloroethene	<	10	
Benzene	<	10	
Dibromochloromethane	<	10	
1,1,2-Trichloroethane	<	10	
2-Chloroethyl vinyl ether	<	10	
Bromoform	<	10	
p-Dioxane	<	100	
1,1,2,2-Tetrachloroethane	<	10	
Tetrachloroethene	(<	10	
Toluene	<	10	
Chlorobenzene	<	10	
Ethylbenzene	<	10	

No TIC's found.

CHEM HILL WALITY ANALYTICS		V V V			******					n			1	
CHAIN OF CUSTODY RECORD		S I I		Asb Asb										
PROJECT NUMBER PROJECT NAME	"				AND P	HONE	NUMB	ER -S		AUT	,		FOR LAB USE ONLY	
CHIZ 877 10, BURSP DUPONT ENGT CNICADO SECT	ő												LAB# 18425	
CHOM HILL /CHI	F				AN/	ALYSES	REQU	ESTED					LAB#	
PROJECT MANAGER SUSAN MULTERILAND/CN1 DAN MACGPELDR/GLD			5									Ă B	PROJECT NO. CHIT 28170. BO. SP AGM (VENIFIED.	
REQUESTED COMP. DATE SAMPLING REQUIREMENTS	Â	1624	÷69	Ś								l D	AGIN $4 - 30$ VERIFIED, 4/29/9/0HS QUOTE# BS	
	E	17	1										QUOTE# BS AU24 NO. OF SAMP PG OF	
STA C G S O R O M A I SAMPLE DESCRIPTIONS NO. DATE TIME P B L (12 CHARACTERS)	S	VoA	SVOA	ASSEND									NO. OF SAMP PG OF	
4/25 × DEC-SP3-4-4A	2	2										001	40. me w/ NCI, 40. ml"NO TEEDT	•
	1												215-L AMBER GLASS	•
	12			2	ļ		ļ						2-L AMBER 6LASS	•
- ()		0										7		
O 465 X DEC-5	2	2										002	40 nl W/1K1, 40 nl "DUTEET" DIS-L AMBER GLASS	•
	1	 		2			+					1	2-1 WIBER GLASS	4
											۲ ا			
HALYSIS 495 1621 1 ANALYSIS 513-4-478	2	2	-		I -		RAV	<u> </u>	Bun	NK		203	40 me w/ 11 1, 40 me "NO TREA "	•
1625 ASBESTOS				4	aq	†/	Æ	0	 				· ·····	
CLEVEL _2 DATE DUE 7 OCLEVEL _2 DATE DUE 5/				-		- 0	7 0		1			ZW	NOTE - NO SAMPLES ADE	
EPORT TO E. RAMUCHAKINGEPORT TO E. RAMUCHAKI	1G						pen						FIED FILTORED	
108 Feel LABATT INIT SHOP Feel Reservoir En the S037970490 503797050	En 1	te li					NA				1			
													TO CHOM HILL	
EAK SPANDE/NYDROGES 405991 46000		ious io P		ane	k				DATE 17	/IMF	17	00	HAZWRAP/NEESA Y (N) QC LEVEL 1 (2)3 DN HJULSE QC	
RECEIVED BY: DATE/TIME	RELI	NQUIS	HED BY	:					DATE	/TIME			ANA REQ LOD TEMP, SOC	
RECEIVED BY: DATE/TIME	RELI	NQUISI	HED BY	:			<u> </u>		DATE	/TIME			CUST SEAL CLES PARTICO	
RECEIVED BY LAB: DATE/TIME 42691 0900	SAM UPS		IIPPED S F		н		OTH	ER			AIR BIL	^{L#} C	43741.2261	
PLEASE CALL SUSAN MUCHOLIAND WQUESTIONS AND COMMENTS														

REV 6/89 F	ORM 340
------------	---------

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave. Evanston, IL 60201 05/21/1991

Sample No.: 131855

Job No.: 91.0789

Sample Description: DEC-SSP3-4-4B CH128770.B0.SP; DuPont

Date Taken: 04/25/1991 Time Taken: 00:00

Date Received:	04/26/1991
Time Received:	09 : 30

Alkalinity, bicarb (CaCO3) Alkalinity, carbonate (CaCO3) BOD, Five Day Chloride COD, Total Cyanide, total Fluoride N-Ammonia N-Nitrate	188. <2. 1. 26. 7. <0.002 1.1 0.68 1.71	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L
N-Nitrite Oil & Grease	0.01 1.	mg/L
Solids, Total Dissolved	2600.	mg/L
Solids, Total Suspended	52.	mg/L
Sulfate	1700.	mg/L
Aluminum, ICP	0.08	mg/L
Antimony, ICP	<0.50	mg/L
Arsenic, ICP		mg/L
Barium, ICP	0.004	mg/L
Barryllium TOD	<0.50	mg/L
Beryllium, ICP	<0.050	mg/L
Cadmium, ICP	<0.010	mg/L
Calcium, ICP	460.	mg/L
Chromium, ICP	<0.040	mg/L
Cobalt, ICP		mg/L
Copper, ICP	<0.010	mg/L
Iron, ICP	20.4	mg/L
Lead, ICP	<0.080	mg/L
Magnesium, ICP	90.	mg/L
Manganese, ICP	0.611	mg/L
Mercury, CVAA	<0.0002	mg/L
Nickel, ICP	<0.050	mg/L

Neal E. Cleghorn Project Manager

NET NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave. Evanston, IL 60201 05/21/1991

Sample No.: 131855

Job No.: 91.0789

Sample Description: DEC-SSP3-4-4B CH128770.B0.SP; DuPont

Date Taken: 04/25/1991 Time Taken: 00:00

	Received:	04/26/1991
Time	Received:	09:30

Potassium, ICP	1.	mg/L
Selenium, ICP	0.004	mg/L
Silver, ICP	<0.050	mg/L
Sodium, ICP	82.	mg/L
Thallium, ICP	<0.20	mg/L
Vanadium, ICP	<0.50	mg/L
Zinc, ICP	9.17	mg/L

Heal E Clephan

Neal E. Cleghorn Project Manager

Page 2

Tel: (708) 289-3100 Fax: (708) 289-5445

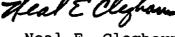
ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave. Evanston, IL 60201

05/21/1991

Sample No.: 131855

Job No.: 91.0789


Sample Description: DEC-SSP3-4-4B CH128770.B0.SP; DuPont

Date Taken: 04/25/1991 Time Taken: 00:00

Date Received: 04/26/1991 Time Received: 09:30

VOLATILE TARGET COMPOUNDS

	INKGEI COMPOUNDS	
Chloromethane	<10.	ug/L
Vinyl chloride	<10.	ug/L
Bromomethane	<10.	ug/L
Chloroethane	<10.	ug/L
1,1-Dichloroethene	<1.0	ug/L
Carbon disulfide	<1.0	ug/L
Acetone	<10.	ug/L
Methylene chloride	<5.0	ug/L
trans-1,2-Dichloroethene	<1.0	ug/L
1,1-Dichloroethane	<1.0	ug/L
Vinyl acetate	<10.	ug/L
2-Butanone	<10.	ug/L
cis-1,2~Dichloroethene	<1.0	ug/L
Chloroform	<1.0	ug/L
1,1,1-Trichloroethane	<1.0	ug/L
1,2-Dichloroethane	<1.0	ug/L
Benzene	<1.0	ug/L
Carbon tetrachloride	<1.0	ug/L
1,2-Dichloropropane	<1.0	ug/L
Trichloroethene	<1.0	ug/L
Bromodichloromethane	<1.0	ug/L
2-Chloroethylvinyl ether	<1.0	ug/L
trans-1,3-Dichloropropene	<1.0	ug/L
4-Methyl-2-pentanone	<10.	ug/L
Toluene	<1.0	ug/L
cis-1,3~Dichloropropene	<1.0	ug/L
1,1,2-Trichloroethane	<1.0	ug/L
Dibromochloromethane	<1.0	ug/L
2-Hexanone	<10.	ug/L
Tetrachloroethene	K1.8 /	ug/L
	Heat E Clyham	27

Neal E. Cleghorn Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave. Evanston, IL 60201 05/21/1991

Sample No.: 131855

Job No.: 91.0789

Sample Description: DEC-SSP3-4-4B CH128770.B0.SP; DuPont

NATIONAL ENVIRONMENTAL ® TESTING, INC.

Date Taken: 04/25/1991 Time Taken: 00:00 Date Received: 04/26/1991 Time Received: 09:30

VOLATILE TARGET COMPOUNDS

Chlorobenze	ene	<1.0	ug/L
Ethylbenzer	ne	<1.0	ug/L
meta & para	a-Xylene	<1.0	ug/L
Bromoform	-	<1.0	ug/L
Styrene		<1.0	ug/L
ortho-Xyler	ne	<1.0	ug/L
1,1,2,2-Tet	rachloroethane	<1.0	ug/L
1,3-Dichlor	robenzene	<1.0	ug/L
1,4-Dichlor	robenzene	<1.0	ug/L
1,2-Dichlor	robenzene	<1.0	ug/L

Heal E Cleshon

Neal E. Cleghorn Project Manager

Page 4

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1890 Maple Ave. Evanston, IL 60201 05/21/1991

Sample No.: 131855

Job No.: 91.0789

Sample Description: DEC-SSP3-4-4B CH128770.B0.SP; DuPont

NATIONAL ENVIRONMENTAL ® TESTING, INC.

Date	Taken:	04/25/1991
Time	Taken:	00:00

	Received:	
Time	Received:	09:30

PESTICIDE/PCB TARGET COMPOUNDS

. P	'ESTICIDE/PCB TARGET COMPOUNDS	
Aldrin	<0.05	ug/L
alpha-BHC	<0.05	ug/L
beta-BHC	<0.05	ug/L
delta-BHC	<0.05	ug/L
gamma-BHC (Lindane)		ug/L
Chlordane	<0.5	ug/L
4,4'-DDD	<0.1	ug/L
4,4'-DDE	<0.1	ug/L
4, 4' - DDT	<0.1	ug/L
Dieldrin	<0.1	ug/L
Endosulfan I	<0.05	ug/L
Endosulfan II	<0.1	ug/L
Endosulfan sulfate	<0.1	ug/L
Endrin	<0.1	ug/L
Endrin aldehyde	<0.1	ug/L
Heptachlor	<0.05	ug/L
Heptachlor epoxide	<0.05	ug/L
Methoxychlor	<0.5	ug/L
Toxaphene	<0.5	ug/L
PCB-1016	<1.0	ug/L
PCB-1221	<1.0	ug/L
PCB-1232	<1.0	ug/L
PCB-1242	<1.0	ug/L
PCB-1248	<1.0	ug/L
PCB-1254	<1.0	ug/L
PCB-1260	<1.0	ug/L

Heal E Clesham

Neal E. Cleghorn Project Manager

January Monthly Monitoring Report for the Groundwater Seeps at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

February 24, 1992

Introduction

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, and U.S. EPA's amended Information Request dated June 27, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep referenced in the original request (Groundwater Seep 1) and two other groundwater seeps referenced in the amended request (Groundwater Seeps 2 and 3) at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for January 1992.

Sample Collection and Analysis

The January "monthly monitoring program" sampling activities consisted of monitoring groundwater seep conditions and obtaining a grab sample from each groundwater seep, if possible, once per week. Monitoring was performed on January 2, 9, 15, 22, and 29, 1992. Groundwater seep flow rates were measured and recorded during each sampling event (Table 1). Samples were collected from Groundwater Seep 2 on each monitoring date. Groundwater Seeps 1 and 3 were not present during any of the monitoring events. Consequently, no samples were collected from Groundwater Seeps 1 or 3 in January.

Sample fractions collected for oil and grease, total suspended solids, and pH analyses were not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. When collected, the samples from Groundwater Seep 1 are analyzed for the following constituents: chemical oxygen demand (COD),^{*} ammonia-N, nitrate, nitrite, sulfate, chloride, fluoride, total dissolved solids, total suspended solids, arsenic, zinc, and pH. The samples collected from Groundwater Seeps 2 and 3 are analyzed for all of the constituents listed above, plus biological oxygen demand (BOD-five day), oil and grease, and copper, as originally requested. In the amended request, BOD-five day, oil and grease, and copper were dropped from the Groundwater Seep 1 monitoring requirements.

Analytical Results and Interpretation

Table 2 summarizes the analytical results of the "monthly monitoring program" for the month of January for Groundwater Seep 2. All laboratory data sheets for samples collected and analyzed during January for the "monthly monitoring program" are provided in Attachment 1.

Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the January groundwater seep samples.

Comparing the January Groundwater Seep 2 data to that collected in previous months for Groundwater Seep 2 (Table 3), the following observations were made:

- The average flow rate in January was lower than all previous months in which Groundwater Seep 2 was flowing.
- The average COD concentration for January was higher than all previous months in the "monthly monitoring program."
- The average nitrate concentration for January was lower than all previous months in the "monthly monitoring program."
- Except those previously noted, all January data were similar to data obtained in previous months.

GROUNDWATER SEEP FLOW RATES (GPM) JANUARY MONTHLY MONITORING PROGRAM JANUARY 1992

Date	Groundwater Seep 1	Groundwater Seep 2	Groundwater Seep 3
		·	
January 2	NP*	6.9	NP*
January 9	NP*	8.2	NP*
January 15	NP*	6.8	NP*
January 22	NP*	4.0	NP*
January 29	NP*	5.4	NP*

Notes:

NP* denotes not present. No flow. Groundwater seep location dry.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 2 JANUARY MONTHLY MONITORING PROGRAM JANUARY 1992

Sample ID: Lab:	DEC-SP2-1-1 Net	DEC-SP2-1-2 NET	DEC-SP2-3-1 NET	DEC-SP2-1-3 Net	DEC-SP2-1-1 NET	
Lab ID:	155913	156346	156681	157045	157408	
Date:	1/2/92	1/9/92	1/15/92	1/22/92	1/29/92	
Filtered (Yes/No):	Yes	Yes	Yes	Yes	Yes	Average
AVERAGE FLOW RATE (gpm)	6.9	8.2	6.8	4.0	5.4	6.3
WATER QUALITY PARAMETERS (mg/l)						
BOD-Five Day	5J			2	1	2
COD	10B	44B	218	22B	40B	70
Chloride	230	254J	254	300	299	270
Fluoride	1.5	1.5	4.5J	4.4J	3.7	3.1
Nitrogen, Ammonia	6.9	7.4	8.60	7.45	9.68	8.0
Nitrogen, Nitrate	11.2	10.1	9.80	9.47	8.37	9.79
Nitrogen, Nitrite						
Oil and Grease	2*B	*	2*	1*J	*	1*
Total Dissolved Solids	2870J	3109	3094	3400	3400	3200
Total Suspended Solids	1*J	4*	2*	13*	*	4*
Sulfate	1900	1900	2100	2900J	2200J	2200
pH (lab)	6.1*	5.7*	5.6*	5.9*	5.8*	5.8*
TRACE INORGANIC COMPOUNDS (mg/l) Arsenic						
Copper						
Zinc	17.9	17.0	18.9	17.3	18.3J	17.9
Notes:						

Notes: * Sample fraction not filtered. No value denotes not detected.

B denotes blank contaminated.

J denotes estimated value. A value of one-half the detection limit used in averaging not detected values.

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 2 MONTHLY MONITORING PROGRAM 1991/1992

	July	August	September	October**	November	December	January
AVERAGE FLOW RATE (gpm)	NP	NP	NP	8.1	10.5	13	6.3
WATER QUALITY PARAMETERS (mg/l)							
BOD-Five Day				2	0.7	2	2
COD				29	44	52	70
Chloride				420	400	220	270
Fluoride				2.9	4.0	2.1	3.1
Nitrogen, Ammonia				6.6	10.0	5.1	8.0
Nitrogen, Nitrate				38.2	31.2	13.6	9.79
Nitrogen, Nitrite							
Oil and Grease				*	1*	1*	1*
Total Dissolved Solids				4040	4120	2840	3200
Total Suspended Solids				9*	4*	3*	4*
Sulfate				2800	2400	1900	2200
pH (lab)				5.9*	5.8*	5.7*	5.8*
TRACE INORGANIC COMPOUNDS (mg/l)							
Arsenic							
Copper							
Zinc				26.9	20.9	15.7	17.9
Natao.					,		

Notes:

* Sample fraction not filtered.

**Values derived from one sampling event. Values are not averages.

NP denotes not present.

.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values.

The average value of duplicate sample results used in overall averaging.

Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 01/13/1992 CH2M HILL 1033 University Place Sample No.: 155913 Suite 300 Evanston, IL 60201-3137 Job No.: 92.0013 Sample Description: DEC-SP2-1-1 CHI28770.B0.MS; DuPort Date Taken: 01/02/1992 Date Received: 01/03/1992 Time Taken: 12:00 Time Received: 10:00 IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 BOD, Five Day 5. mg/L Chloride 230. mg/L COD, Total 10. mg/L Fluoride 1.5 mg/L N-Ammonia 6.9 mg/L N-Nitrate 11.2 mg/L N-Nitrite <0.01 mg/L Oil & Grease 2. mg/L pН 6.1 units Solids, Total Dissolved 2870. mg/L Solids, Total Suspended 1. mg/L Sulfate 1900. mg/L Arsenic, AA <0.0050 mg/L 582940 Copper, ICP KEller mg/L Kell Jones

Project Manager

Page 1

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201-3137 01/13/1992

Sample No.: 155913

Job No.: 92.0013

Sample Description: DEC-SP2-1-1 CHI28770.B0.MS; DuPont

Date Taken:			Received:	
Time Taken:	12:00	Time	Received:	10:00
IEPA Cert. No	o.: 100221	WDNR	Cert. No.:	999447130

Zinc, ICP

17.9 mg/L

Kelly Jones Project Manager

NATIONAL ENVIRONMENTAL ® TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

01/31/1992

Sample No.: 156346

Job No.: 92.0129

Sample Description: DEC-SP2-1-2 CH128770.B0.MS; DuPont

Date Taken: 01/09/1992 Time Taken: 10:01 IEPA Cert. No. 100221	Time	Received: 01/10/1992 Received: 10:00 Cert. No. 999447130
BOD, Five Day Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite Oil & Grease pH Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, AA Copper, AA Zinc, AA	<1. 254. 44. 1.5 7.4 10.1 <0.01 <1. 5.7 3109. 4. 1900. <0.0050 <0.050 17.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

na Kalicki Kelly Jones Project Manager

NET NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 01/31/1992 CH2M HILL 1033 University Place Sample No.: 156681 Suite 300 Evanston, IL 60201 Job No.: 92.0215 Sample Description: DEC-SP2-3-1 CH128770.B0.MS; DuPont Date Taken: 01/15/1992 Date Received: 01/16/1992 Time Taken: 10:30 Time Received: 10:00 IEPA Cert. No. 100221 WDNR Cert. No. 999447130 BOD, Five Day <1. mg/L Chloride 254. mg/L COD, Total 218. mg/L Fluoride 4.5 mg/L N-Ammonia 8.60 mg/L N-Nitrate 9.80 mg/L N-Nitrite <0.01 mg/L 2. Oil & Grease mg/L pН 5.6 units Solids, Total Dissolved Solids, Total Suspended 3094. mg/L 2. mg/L Sulfate 2100. mg/L Arsenic, AA Copper, AA <0.0050 mg/L <0.050 mg/L Zinc, AA 18.9 mg/L

Kalick, Kelly Jones

Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

mg/L

mg/L

mg/L

mg/L

mg/L

mq/L

mg/L

mq/L

units

mg/L

mg/L

mg/L

mg/L

mg/L

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

NET

02/10/1992

2.

300.

22.

4.4

7.45

9.47

<0.01

1.

5.9

13.

3400.

2900.

<0.0050

Sample No.: 157045 Job No.: 92.0316

Sample Description: DEC-SP2-1-3 CH128770.B0.MS;DuPont East

NATIONAL ENVIRONMENTAL ® TESTING, INC.

Date Taken: 01/22/1992	Date Received: 01/23/19	92
Time Taken: 12:50	Time Received: 10:00	
IEPA Cert. No.: 100221	WDNR Cert. No.: 99944713	0

BOD, Five Day Chloride

COD, Total

Fluoride

N-Ammonia

N-Nitrate N-Nitrite

Oil & Grease

pН

Solids, Total Dissolved Solids, Total Suspended

Sulfate

Arsenic, AA

Copper, ICP

<0.010 ハトハ Kellý Jones Project Manager

Page 1

NET NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 02/10/1992

Sample No.: 157045

Job No.: 92.0316

Sample Description: DEC-SP2-1-3 CH128770.B0.MS;DuPont East

 Date Taken:
 01/22/1992
 Date Received:
 01/23/1992

 Time Taken:
 12:50
 Time Received:
 10:00

 IEPA Cert.
 No.:
 100221
 WDNR Cert.
 No.:
 999447130

Zinc, ICP

17.3 mg/L

isoly Kelly Jones Project Manager

Page 2

,

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 02/12/1992 CH2M HILL 1033 University Place Sample No.: 157408 Suite 300 Evanston, IL 60201 Job No.: 92.0429 Sample Description: DEC-SP2-1-1 CHI28770.B0.MS; DuPont East Date Taken: 01/29/1992 Date Received: 01/30/1992 Time Taken: 10:30 Time Received: 10:00 IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 BOD, Five Day 1. mg/L Chloride 299. mg/L COD, Total 40. mg/L Fluoride 3.7 mg/L N-Ammonia 9.68 mg/L N-Nitrate 8.37 mg/L N-Nitrite <0.01 mg/L Oil & Grease <2. mg/L 5.8 pН units Solids, Total Dissolved 3400. mg/L Solids, Total Suspended <1. mg/L Sulfate 2200. mg/L Arsenic, AA <0.0050 mg/L Copper, ICP <0.010 mg/L Jones Project Manager

/ Page 1

NET NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 02/12/1992

Sample No.: 157408

Job No.: 92.0429

Sample Description: DEC-SP2-1-1 CHI28770.B0.MS;DuPont East

 Date Taken:
 01/29/1992
 Date Received:
 01/30/1992

 Time Taken:
 10:30
 Time Received:
 10:00

 IEPA Cert.
 No.:
 100221
 WDNR Cert.
 No.:
 999447130

Zinc, ICP

18.3 mg/L

Kalicki Kelly Jones (Project Manager

/ Page 2

Attachment 2 Data Validation Summary Monthly Monitoring Program

MEMORANDUM

CHEMHILL

TO:	Pixie Newman/CHI
	Susan Mulholland/CHI

FROM: Dan MacGregor/GLO

- **DATE:** February 24, 1992
- SUBJECT: Data Validation for Grounwater Seep Samples Du Pont, East Chicago, Indiana

PROJECT: CHI28770.B0.MR

Introduction

This memorandum presents the data validation discussion for the inorganic analytical results for Grounwater Seep 2 samples collected on January 2, 9, 15, 22, and 29, 1992, at the Du Pont Plant in East Chicago, Indiana. Grounwater Seeps 1 and 3 were not flowing during any of the sampling events. Sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-of-custody procedures. Requested QA/QC data included holding time data, chain-of-custody forms, calibration and procedure blank results, initial calibration verification standard recoveries, continuing calibration verification recovery results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/ QC and sample data were reviewed as described below.

Holding Times

Inspection of holding times showed that the holding time requirements, as specified by the U.S. EPA's *Methods for Chemical Analysis of Water and Wastes*, were met except for the January 2 sample's total dissolved solids analysis. The holding time for that analysis was exceeded by one day. The sample result is qualified as estimated and flagged with a "J."

Chain of Custody

The chain-of-custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

Blanks

The calibration and procedure blank results were inspected for possible contaminants.

The calibration blank and procedure blank associated with the January 2 sample each contained oil and grease at a concentration of 1 mg/l. The data are qualified as estimated and flagged with a "B."

The procedure blanks associated with the samples collected on January 2, 22, and 29 contained low-level concentrations of copper and zinc. Copper was not detected in the groundwater seep samples. The concentrations of zinc in the groundwater seep samples were significantly greater than the blank concentrations, and so no data qualifying action was taken.

COD values less than 150 mg/l are qualified as blank contaminated and flagged with a "B." This qualification is a consequence of the latest field blank (November 1991) containing significant concentrations of COD.

Calibration Recovery Results

Initial calibration verification (ICV) standard recoveries were within the EPA's established control limits of \pm 10 percent of true value, with the exception of the January 9 chloride ICV recovery which was greater than the 110 percent control limit.

The continuing calibration verification (CCV) recoveries were also, generally, within the calibration control limits. The CCV recoveries for fluoride (January 15) and zinc (January 29) were outside the \pm 10 percent control limit.

Sample results associated with the poor calibration recoveries were qualified as estimated and flagged with a "J."

Laboratory Control Spikes

Except for the oil and grease recoveries associated with the January 2, 9, 22, and 29 sampling dates and the January 2 BOD recovery, the laboratory spike recoveries were within the control limit of \pm 20 percent of true value. The January 22 oil and grease result and the January 2 BOD result were qualified as estimated and flagged with a "J." The oil and grease results for the other samples were either previously qualified or were nondetects.

M E M O R A N D U M Page 3 February 24, 1992 CHI28770.B0.MR

Matrix Spike/Matrix Spike Duplicate Fortifications

The matrix spike and matrix spike duplicate results associated with the following samples and sample parameters were outside EPA or method control limits:

- January 2—oil and grease and total suspended solids
- January 15—fluoride
- January 22—fluoride and sulfate
- January 29—sulfate

Associated sample results were qualified as estimated and flagged with a "J."

Sample Results and Conclusions

The sample results associated with Groundwater Seep 2 from this round of sampling were compared and found generally to be consistent with data from previous sampling rounds. The only noted anomaly is the COD value from the January 15 sample, which appears several orders of magnitude greater than previous average results.

The unqualified results are valid and usable and should be used as reported. The results qualified as estimated are true detections, but because the magnitude of the detection is an estimate, the results can be used qualitatively but not quantitatively. The results qualified as probably being blank contaminated should not be used to make project decisions.

CHI185/014.51

February Monthly Monitoring Report for the Groundwater Seeps at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

March 24, 1992

CHI185/035.51

Introduction

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, and U.S. EPA's amended Information Request dated June 27, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep referenced in the original request (Groundwater Seep 1) and two other groundwater seeps referenced in the amended request (Groundwater Seeps 2 and 3) at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for February 1992.

Sample Collection and Analysis

The February "monthly monitoring program" sampling activities consisted of monitoring groundwater seep conditions and obtaining a grab sample from each groundwater seep, if possible, once per week. Monitoring was performed on February 6, 13, 20, and 26, 1992. Groundwater seep flow rates were measured and recorded during each sampling event (Table 1). Samples were collected from Groundwater Seep 2 on each monitoring date. Groundwater Seeps 1 and 3 were not present during any of the monitoring events. Consequently, no samples were collected from Groundwater Seeps 1 or 3 in February.

Sample fractions collected for oil and grease, total suspended solids, and pH analyses were not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. When collected, the samples from Groundwater Seep 1 are analyzed for the following constituents: chemical oxygen demand (COD), ammonia-N, nitrate, nitrite, sulfate, chloride, fluoride, total dissolved solids, total suspended solids, arsenic, zinc, and pH. The samples collected from Groundwater Seeps 2 and 3 are analyzed for all of the constituents listed above, plus biological oxygen demand (BOD-five day), oil and grease, and copper, as originally requested. In the amended request, BOD-five day, oil and grease, and copper were dropped from the Groundwater Seep 1 monitoring requirements.

Analytical Results and Interpretation

Table 2 summarizes the analytical results of the "monthly monitoring program" for the month of February for Groundwater Seep 2. All laboratory data sheets for samples collected and analyzed during February for the "monthly monitoring program" are provided in Attachment 1.

Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the February groundwater seep samples.

Comparing the February Groundwater Seep 2 data to that collected in previous months for Groundwater Seep 2 (Table 3), the following observations were made:

• The average ammonia-N concentration and pH for February were higher than all previous months in the "monthly monitoring program."

- The average nitrate concentration for February was lower than all previous months in the "monthly monitoring program."
- Except those previously noted, all February data were similar to data obtained in previous months.

GROUNDWATER SEEP FLOW RATES (GPM) FEBRUARY MONTHLY MONITORING PROGRAM FEBRUARY 1992

Date	Groundwater Seep 1	Groundwater Seep 2	Groundwater Seep 3
<u> </u>			
February 6	NP*	6.5	NP*
February 13	NP*	4.1	NP*
February 20	NP*	14.6	NP*
February 26	NP*	12.0	NP*

Notes:

NP* denotes not present. No flow. Groundwater seep location dry.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 2 FEBRUARY MONTHLY MONITORING PROGRAM FEBRUARY 1992

Sample ID:	DEC-SP2-2-1	DEC-SP2-2-2	DEC-SP2-2-3	DEC-SP2-2-4	
Lab:	NET	NET	NET	NET	
Lab ID:	158025	158494	158974	159332	
Date:	2/6/92	2/13/92	2/20/92	2/26/92	
Filtered (Yes/No):	Yes	Yes	Yes	Yes	Average
AVERAGE FLOW RATE (gpm)	6.5	4.1	14.6	12.0	9.3
WATER QUALITY PARAMETERS (mg/l)					
BOD-Five Day				2	
COD	37B	70B	178	-	30
Chloride	290	350	370	342	340
Fluoride	3.12J	3.8	3.9J	3.2J	3.5
Nitrogen, Ammonia	10.9	13.3	10.0	12.2	11.6
Nitrogen, Nitrate	7.92	9.40J	7.57J	7.54J	8.11
Nitrogen, Nitrite					
Oil and Grease	*	2*J	*	*	*
Total Dissolved Solids	3370	3500	3690	3460	3510
Total Suspended Solids	9*	*	10*B	1*	5*
Sulfate	2000	2900	2400J	2100J	2400
pH (lab)	5.8*	5.8*	6.7*	5.9*	6.1*
TRACE INORGANIC COMPOUNDS (mg/l)					
Arsenic			0.0078J		
Copper					
Zinc	19.4	21.2	14.6J	15.5J	17.7

Notes:

* Sample fraction not filtered.

No value denotes not detected.

B denotes blank contaminated.

J denotes estimated value.

A value of one-half the detection limit used in averaging not detected values. Average values below the detection limit shown as not detected values.

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 2 MONTHLY MONITORING PROGRAM 1991/1992

	July	August	September	October**	November	December	January	February
AVERAGE FLOW RATE (gpm)	NP	NP	NP	8.1	10.5	13	6.3	9.3
WATER QUALITY PARAMETERS (mg/l)								
BOD-Five Day				2		2	2	
COD				29	44	52	70	30
Chloride				420	400	220	270	340
Fluoride				2.9	4.0	2.1	3.1	3.5
Nitrogen, Ammonia				6.6	10.0	5.1	8.0	11.6
Nitrogen, Nitrate				38.2	31.2	13.6	9.79	8.11
Nitrogen, Nitrite								
Oil and Grease				*	1*	1*	1*	*
Total Dissolved Solids				4040	4120	284 0	3200	3510
Total Suspended Solids				9*	4*	3*	4*	5*
Sulfate				2800	2400	1900	2200	2400
pH (lab)				5.9*	5.8*	5.7*	5.8*	6.1*
TRACE INORGANIC COMPOUNDS (mg/l)								
Arsenic								
Copper								
Zinc				26.9	20.9	15.7	17.9	17.7

Notes:

* Sample fraction not filtered.

**Values derived from one sampling event. Values are not averages.

NP denotes not present.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values.

Average values below the detection limit shown as not detected values.

The average value of duplicate sample results used in overall averaging.

Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

NATIONAL ENVIRONMENTAL ® TESTING, INC. NET

NET Midwest, Inc. **Bartlett Division** 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 02/25/1992 CH2M HILL 1033 University Place Sample No.: 158025 Suite 300 Evanston, IL 60201 Job No.: 92.0600 Sample Description: DEC-SP2-2-1 CH128770.B0.MS; DuPont Date Taken: 02/06/1992 Date Received: 02/07/1992 Time Taken: 10:40 Time Received: 10:00 IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 BOD, Five Day <1. mg/L Chloride 290. mg/L COD, Total 37. mg/L Fluoride 3.12 mg/L N-Ammonia 10.9 mg/L N-Nitrate 7.92 mg/L N-Nitrite <0.01 mg/L Oil & Grease <1. mg/L 5.8 units рH Solids, Total Dissolved 3370. mg/L Solids, Total Suspended 9. mg/L Sulfate 2000. mg/L Arsenic, AA <0.0050 mg/L Copper, ICP <0.010 mg/L

Jones Project Manager

NATIONAL ENVIRONMENTAL ® TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 02/25/1992

Sample No.: 158025

Job No.: 92.0600

Sample Description: DEC-SP2-2-1 CH128770.B0.MS; DuPont

 Date Taken:
 02/06/1992
 Date Received:
 02/07/1992

 Time Taken:
 10:40
 Time Received:
 10:00

 IEPA Cert.
 No.:
 100221
 WDNR Cert.
 No.:
 999447130

Zinc, ICP

19.4 mg/L

KE00 Kelly Jones Project Manager

Page 2

NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 03/02/1992 CH2M HILL 1033 University Place Sample No.: 158494 Suite 300 Evanston, IL 60201-3137 Job No.: 92.0693 Sample Description: DEC-SP2-2-2 CH128770.B0.MS; DuPont Date Taken: 02/13/1992 Date Received: 02/14/1992 Time Taken: 11:00 Time Received: 10:00 IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 BOD, Five Day <1. mg/L Chloride 350. mg/L COD, Total 70. mg/L Fluoride 3.8 mg/L N-Ammonia 13.3 mg/L N-Nitrate 9.40 mq/L N-Nitrite <0.01 mg/L Oil & Grease 2. mg/L 5.8 * pH units Solids, Total Dissolved 3500. mg/L Solids, Total Suspended <1. mg/L Sulfate 2900. mg/L Arsenic, AA <0.0050 mg/L Copper, ICP <0.010

*Received past holding time

Yones Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

.

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201-3137 03/02/1992

Sample No.: 158494

Job No.: 92.0693

Sample Description: DEC-SP2-2-2 CH128770.B0.MS; DuPont

Date Taken: 02/13/1992 Time Taken: 11:00 IEPA Cert. No.: 100221

Date	Receiv	red:	02/14/1992
Time	Receiv	red:	10:00
WDNR	Cert.	No.:	999447130

Zinc, ICP

21.2

KEll Kelly Jones

Yelly Jones Project Manager

Page 2

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Mr. Dan McGregor CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

03/11/1992

Sample No.: 158974

Job No.: 92.0825

Sample Description: DEC-SP2-2-3 CH123770.B0.MS; Dupont

Date Taken: 02/20/1992 Time Taken: 11:40 IEPA Cert. No. 100221		Date Received: Time Received: WDNR Cert. No.	10:00
BOD, Five Day Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite Oil & Grease pH Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, AA Copper, ICP Zinc, ICP	<1. 370. 17. 3.9 10.0 7.57 <0.01 <1. 6.7 3690. 10. 2400. 0.0078 <0.010 14.6		mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

NATIONAL ENVIRONMENTAL ® TESTING, INC.

Ms. Susan Mulholland 03/10/1992 CH2M HILL 1033 University Place Sample No.: 159332 Suite 300 Evanston, IL 60201 Job No.: 92.0909 DEC-SP2-2-4 Sample Description: CHI28770.B0.MS; Chcg. Seep Date Taken: 02/26/1992 Date Received: 02/27/1992 Time Taken: Time Received: 10:00 IEPA Cert. No. 100221 WDNR Cert. No. 999447130 BOD, Five Day 2. mg/L Chloride 342. mg/L COD, Total <10. mg/L Fluoride 3.2 mg/L N-Ammonia 12.2 mg/L N-Nitrate 7.54 mg/L N-Nitrite <0.01 mg/L mg/L Oil & Grease <1. 5.9 units *pH Solids, Total Dissolved Solids, Total Suspended 3460. mg/L mg/L 1. 2100. Sulfate mg/L Arsenic, AA Copper, ICP <0.0050 mg/L <0.010 mg/L 15.5 Zinc, ICP mg/L

*Received past holding time.

Kelly Jone Kelly Jones Project Manager

Page 1

Attachment 2 Data Validation Summary Monthly Monitoring Program

MEMORANDUM

TO:	Pixie Newman/CHI Susan Mulholland/CHI
FROM:	Dan MacGregor/GLO
DATE:	March 18, 1992
SUBJECT:	Data Validation for Groundwater Seep Samples Du Pont, East Chicago, Indiana

PROJECT: CHI28770.B0.MR

Introduction

This memorandum presents the data validation discussion for the inorganic analytical results for Groundwater Seep 2 samples collected on february 6, 13, 20, and 26, 1992, at the Du Pont Plant in East Chicago, Indiana. Groundwater Seeps 1 and 3 were not flowing during any of the sampling events. Sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-of-custody procedures. Requested QA/QC data included holding time data, chain-of-custody forms, calibration and procedure blank results, initial calibration verification standard recoveries, continuing calibration verification recovery results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/ QC and sample data were reviewed as described below.

Holding Times

Inspection of holding times showed that the holding time requirements, as specified by the U.S. EPA's *Methods for Chemical Analysis of Water and Wastes*, were met.

Chain of Custody

The chain-of-custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

Blanks

The calibration and procedure blank results were inspected for possible contaminants.

The calibration blank associated with the February 20 sample contained total suspended solids (TSS) at a concentration of 4 mg/l. The February 20 TSS result is qualified as blank contaminated and flagged with a "B."

Low-level concentrations of copper and zinc were found in the procedure blanks. Copper was not detected in the groundwater seep samples. The concentrations of zinc in the groundwater seep samples were significantly greater than the blank concentrations, thus no data qualifying action was taken.

COD values less than 150 mg/l are qualified as blank contaminated and flagged with a "B." This qualification is a consequence of the latest field blank (November 1991) containing significant concentrations of COD.

Calibration Recovery Results

Initial calibration verification (ICV) standard recoveries were within the EPA's established control limits of \pm 10 percent of true value, with the exception of the February 20 and 26 zinc ICV recoveries which were greater than the 110 percent control limit.

The continuing calibration verification (CCV) recoveries were also, generally, within the calibration control limits. The CCV recoveries for fluoride (February 6) and arsenic (February 20) were outside the \pm 10 percent control limit.

Sample results associated with the poor calibration recoveries were qualified as estimated and flagged with a "J."

Laboratory Control Spikes

The laboratory spike recoveries were within the control limit of ± 20 percent of true value.

M E M O R A N D U M Page 3 March 18, 1992 CHI28770.B0.MR

Matrix Spike/Matrix Spike Duplicate Fortifications

The matrix spike and matrix spike duplicate results associated with the following samples and sample parameters were outside EPA or method control limits:

- February 13—oil and grease, and nitrate
- February 20—fluoride, nitrate, and sulfate
- February 26—fluoride, nitrate, and sulfate

Associated sample results were qualified as estimated and flagged with a "J."

Sample Results and Conclusions

The sample results associated with Groundwater Seep 2 from this round of sampling were compared and found generally to be consistent with data from previous sampling rounds.

The unqualified results are valid and usable and should be used as reported. The results qualified as estimated are true detections, but because the magnitude of the detection is an estimate, the results can be used qualitatively but not quantitatively. The results qualified as probably being blank contaminated should not be used to make project decisions.

CHI185/014.51

	FEDERAL.	USE THIS AMBILL FOR SHIPMENTS WITHIN THE CON USE THE INTERNATIONAL AIM INVITULL FOR SHIPMEN QUESTIONS? CALL 800-238-5355	rtinental U.S.A., alaska and hannan. NTS TO PUERTO INCO AND ALL NON U.S. LOCATION TOLL FREE. 20	AIRBILL PACKAGE 204	4458091 🔾
(L L S AND PLACE AGE.		4445809] ^{En} Date <i>3/24/92</i>			331° -
C E LABELS AN		ALHOLLAND (214	e Number (Very Important) To (Recipie +980-2170 Department/Floor No. Company	nt's Name) Please Print ENE HARTSTEIN	Cipient's Phone Number (Very Important) 2/19) 39/1-460/
C E OF THESE I	CH2M HILL Street Address 5339 ALPHA RI		Exact Stree	I. DU PONT DE NEPOCI Address (We canno Daline or P.O. Zo Codes) 215 KENNEDY A	
AOVE ONE	City DALLAS	State Z/P Rec TX 7	5240 EA	ST (HICAGO IN	ZIP Required 46312 500
CUSTOMER: CUSTOMER: PLEASE REMOVE ONE IT ABOVE THE AIRBILL	CHI 2877	ORMATION (optional) (First 24 characters will app Ø. B. Ø. M. Went's FedEx Acct. No. 3 Bill 3rd Party FedEx Acct. No. 3 Fill in Account Number Sount Number	•	IF HOLD FOR PICK-UP, Print FEDEX Address Here Street Address City State	
	SERVICES (Check only one box)	5 DELIVERY AND SPECIAL HANDLIN (Check services required)	IG GALAGES WEIGHT YOUR DECL In Prunde Only (See not		Lease Charges
с) 204 504	Priority Overnight Centry to red baness moment 11 VOUR 16 FEDEX LETTER • 56 FEDEX LET 12 FEDEX PAK • 52 FEDEX PAK	HULD FUR PER-UP (Fells Boc H) HULD FUR PER-UP (Fells Boc H) Control Performance R* DELIVER SATURDAY (Evis charge) ER* 3 (Not investigate to all locatione)		current Service Guide, evalable upon reguest. See back of sender 5 this actual for information. Service constitions many service Goude Overright Service. See U.S. Government Service Guide for details. We will not be responsible for any claim in excess of \$100 per p whether the result loss, demage, delay, non-delivery, micidalivery, formation, unless you declare a higher value, pay an additional char document your actual loss for a lampic claim. Lineations found in the Federal Express. Service Guide apply. Your right to recover from Express for any loss, including interins value of the package, loss	copy of Declared Value Charge 5
4458 4458	13 FEDEX BOX 53 FEDEX BOX 14 FEDEX TUBE 54 FEDEX TUBE Economy Two-Day Government Over Memory by second burness deriv Government Over Memory burness		Total Total Total ,DIM SHIPMENT (Chargeable Weight)	income interest, proti, attorney's test, costs, and offer forms of whether direct incidental consequential or special is imited to the get \$100 or the declared value specified to the left, Recovery cannol actual documented lose. The maximum Declared Value for Addit to FedEr Pak peckages is \$100.000. In the event of unitmely delivery, Federal Express will at your request some Smitations, return all imagenotation charges gets. See Service	International Second Total Charges
1 1 4 1 5 6	30 ECONOMY 46 CUTER 41 DOVT 41 DACKAGE for Even Lang of an package over 150 ba.)	8 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	□x <u>₩</u> _x <u>H</u> =	for further information. IDS. Sender authorizes Federal Express to deliver this shipment obtaining a delivery signature and shall indemnity and hold have Federal Express from any claims resulting therefrom.	REVISION DATE 6/91 PART #137204 FXEM 1/92 without E-convar mono
: • •	TO CARL INCOME OVERNIGHT 70 OF PREIGHT ** 80 FT TWO-DAY Contrained servation required † Develop contrainers rive be later in some succe. **Call for delivery schedule.	11 DESCRIPTION 12 HOLIDAY DELIVERY (it offered) (Edite charge)	Received At 1 □ Regular Stop 3 □ Drop Box 4 □ BSC 2 □ On-Call Stop 5 □	Release Signature:	9 1990-91 FEDEX PRINTED IN U.S.A

March Monthly Monitoring Report for the Groundwater Seeps at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

April 22, 1992

Introduction

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, and U.S. EPA's amended Information Request dated June 27, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep referenced in the original request (Groundwater Seep 1) and two other groundwater seeps referenced in the amended request (Groundwater Seeps 2 and 3) at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for March 1992.

Sample Collection and Analysis

The March "monthly monitoring program" sampling activities consisted of monitoring groundwater seep conditions and obtaining a grab sample from each groundwater seep, if possible, once per week. Monitoring was performed on March 4, 12, 19, and 25, 1992. Groundwater seep flow rates were measured and recorded during each sampling event (Table 1). Samples were collected from Groundwater Seep 2 on each monitoring date. Groundwater Seep 1 was not present on March 4 and March 25, therefore, samples were collected from Groundwater Seep 1 on March 12 and March 19 only. Groundwater Seep 3 was not present during any of the monitoring events. Consequently, no samples were collected from Groundwater Seep 3 in March.

Sample fractions collected for oil and grease, total suspended solids, and pH analyses were not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The samples from Groundwater Seep 1 are analyzed for the following constituents: chemical oxygen demand (COD), ammonia-N, nitrate, nitrite, sulfate, chloride, fluoride, total dissolved solids, total suspended solids, arsenic, zinc, and pH. The samples collected from Groundwater Seeps 2 and 3 are analyzed for all of the constituents listed above, plus biological oxygen demand (BOD-five day), oil and grease, and copper, as originally requested. In the amended request, BOD-five day, oil and grease, and copper were dropped from the Groundwater Seep 1 monitoring requirements.

Analytical Results and Interpretation

Tables 2 and 3 summarize the analytical results of the "monthly monitoring program" for the month of March for Groundwater Seeps 1 and 2, respectively. All laboratory data sheets for samples collected and analyzed during March for the "monthly monitoring program" are provided in Attachment 1. Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the March groundwater seep samples.

Comparing the March Groundwater Seep 1 data to that collected in previous months for Groundwater Seep 1 (Table 4), the following observations are made:

4

 The average flow rate for March was lower than all previous months in the "monthly monitoring program" in which Groundwater Seep 1 was flowing.
 However, in January and February, Groundwater Seep 1 was not flowing during monitoring events.

• The average zinc concentration for March was higher than all previous months in the "monthly monitoring program."

 The average chloride, total dissolved solids, and total suspended solids concentrations for March were lower than all previous months in the "monthly monitoring program."

• Except those previously noted, all March data were similar to data obtained in previous months.

Comparing the March Groundwater Seep 2 data to that collected in previous months for

Groundwater Seep 2 (Table 5), the following observations are made:

- The average flow rate for March was higher than all previous months in the "monthly monitoring program" in which Groundwater Seep 2 was flowing.
- The average oil and grease concentration for March was higher than all previous months in the "monthly monitoring program."
- The average chloride, nitrate, total dissolved solids, and zinc concentrations for March were lower than all previous months in the "monthly monitoring program."
- Except those previously noted, all March data were similar to data obtained in previous months.

GROUNDWATER SEEP FLOW RATES (GPM) MARCH MONTHLY MONITORING PROGRAM MARCH 1992

Date	Groundwater Seep 1	Groundwater Seep 2	Groundwater Seep 3
March 4	NP*	10.3	NP*
March 12	0.15	15.1	NP*
March 19	0.07	11.9	NP***
March 25	NP*	11.9	NP*

Notes:

NP* denotes not present. No flow. Groundwater seep location dry.

NP** denotes not present. Groundwater seep location submerged below river surface. When a groundwater seep becomes submerged beneath the surface of a water body, it (by definition) is no longer a seep and technically is no different than the rest of the groundwater discharge to that surface water body. There is no simple way to measure and distinguish this discharge from the rest of the groundwater discharge to the Grand Calumet River.

NP*** denotes not present. No flow. Groundwater seep location wet, but no flow to river.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 1 MARCH MONTHLY MONITORING PROGRAM MARCH 1992

Sample ID:	DEC-SP1-3-2	DEC-SP1-3-3	
Lab:	NET	NET	
Lab ID:	160376	160875	
Date:	3/12/92	3/19/92	
Filtered (Yes/No):	Yes	Yes	Average
AVERAGE FLOW RATE (gpm)	0.15	0.07	0.11
WATER QUALITY PARAMETERS (mg/l)			
COD	57B	88	30
Chloride	14	14J	14
Fluoride	0.98	0.96	0.97
Nitrogen, Ammonia	0.87	0.45	0.66
Nitrogen, Nitrate	0.321	1.03J	0.68
Nitrogen, Nitrite			
Total Dissolved Solids	1100	1130	1100
Total Suspended Solids	3*B	*	2*
Sulfate	779	725	752
pH (lab)	6.9*	6.9*	6.9*
TRACE INORGANIC COMPOUNDS (mg/l)			
Arsenic	0.073J	0.032J	0.052
Zinc	1.26	0.764	1.01

Notes:

* Sample fraction not filtered. No value denotes not detected.

B denotes blank contaminated. J denotes estimated value.

A value of one-half the detection limit used in averaging not detected values.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 2 MARCH MONTHLY MONITORING PROGRAM MARCH 1992

Sample ID:	DEC-SP2-3-1	DEC-SP2-3-2	DEC-SP2-3-3	DEC-SP2-3-4	
Lab:	NET	NET	NET	NET	
Lab ID:	159873	160377	160876	161355	
Date:	3/4/92	3/12/92	3/19/92	3/25/92	
Filtered (Yes/No):	Yes	Yes	Yes	Yes	Average
AVERAGE FLOW RATE (gpm)	10.3	15.1	11.9	11.9	12.3
WATER QUALITY PARAMETERS (mg/l)					
BOD-Five Day	2				
COD	17B	14B	1B	49B	20
Chloride	290	290	240J	216	260
Fluoride	3.7	2.22	2.23	3.25	2.8
Nitrogen, Ammonia	12.0	8.8	5.8	6.1	8.2
Nitrogen, Nitrate	8.07J	7.06J	6.6J	8.2	7.5
Nitrogen, Nitrite					
Oil and Grease	*	*	4*B	14*	5*
Total Dissolved Solids	3150J	1290	2730	2683	2460
Total Suspended Solids	4*J	*	5*	11*	5*
Sulfate	2000	1690	1730	1680	2000
pH (lab)	5.9*	6.0*	5.9*	6.0*	6.0*
TRACE INORGANIC COMPOUNDS (mg/l)					
Arsenic					
Copper					
Zinc	13.8	13.1	12.2	11.8	12.7

Notes: * Sample fraction not filtered. No value denotes not detected.

B denotes blank contaminated.

J denotes estimated value. A value of one-half the detection limit used in averaging not detected values. Average values below the detection limit shown as not detected values.

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 1 MONTHLY MONITORING PROGRAM 1991/1992

	April	Мау	June	July	August	September	October**	November	December	January/ February	March
AVERAGE FLOW RATE (gpm)	0.78	0.86	0.87	0.62	0.35	0.36	0.78	0.51	0.41	NP	0.11
WATER QUALITY PARAMETERS (mg/l)											
COD	14	15	23 25	19	21	7	33	54	78		30
Chloride	32	32	25	25	23	43	18	22	19		14
Fluoride	1.0	1.2	1.0	1.1	0.9	0.8	0.9	0.8	0.9		0.97
Nitrogen, Ammonia	0.34	0.58	0.91	0.53	0.53	0.75	0.4	0.5	0.49		0.66
Nitrogen, Nitrate	0.47	1.3	0.94	0.35	0.08	0.31	0.35	0.82	0.55		0.68
Nitrogen, Nitrite			0.01		0.15			0.01			
Total Dissolved Solids	1260	1400	1110	1340	1400	1260	1260	2100	1140		1100
Total Suspended Solids	6*	6*	27*	145*	28*	5*	10*	250*	90*		2*
Sulfate	760	840	740	830	840	850	800	800	800		752
pH (lab)	7.2*	7.1*	7.0*	7.0*	7.0*	7.1*	7.1*	7.0*	6.9*		6.9*
TRACE INORGANIC COMPOUNDS (mg/l)											
Arsenic	0.046	0.054	0.068	0.103	0.017	0.99	0.100	0.084	0.069		0.052
Zinc	0.78	0.544	0.635	0.578	0.378	0.433	0.977	0.556	0.700		1.01

Notes:

* Sample fraction not filtered.

**October values derived from one sampling event. Values are not averages.

NP denotes not present.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values. The average value of the duplicate sample results used in overall averaging.

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 2 MONTHLY MONITORING PROGRAM 1991/1992

.

	July/August/September	October**	November	December	January	February	March
AVERAGE FLOW RATE (gpm)	NP	8.1	10.5	13	6.3	9.3	12.3
WATER QUALITY PARAMETERS (mg/l)							
BOD-Five Day		2		2	2		
COD		29	44	52	70	30	20
Chloride		420	400	220	270	340	260
Fluoride		2.9	4.0	2.1	3.1	3.5	2.8
Nitrogen, Ammonia		6.6	10.0	5.1	8.0	11.6	8.2
Nitrogen, Nitrate		38.2	31.2	13.6	9.79	8.11	7.5
Nitrogen, Nitrite							
Oil and Grease		*	1*	1*	1*	*	5*
Total Dissolved Solids		4040	4120	2840	3200	3510	2460
Total Suspended Solids		9*	4*	3*	4*	5*	5*
Sulfate		2800	2400	1900	2200	2400	2000
pH (lab)		5.9*	5.8*	5.7*	5.8*	6.1*	6.0*
TRACE INORGANIC COMPOUNDS (mg/l)							
Arsenic							
Copper							
Zinc		26.9	20.9	15.7	17.9	17.7	12.7

Notes:

* Sample fraction not filtered.

**Values derived from one sampling event. Values are not averages.

NP denotes not present.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values.

Average values below the detection limit shown as not detected values.

The average value of duplicate sample results used in overall averaging.

Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

;•

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

03/31/1992

Sample No.: 160376

Job No.: 92.1187

Sample Description: DEC-SP1-3-2 CH128770.B0.MS;DuPont East

NATIONAL ENVIRONMENTAL ® TESTING, INC.

Date 1'aken: 03/12/1992 Time Taken: 09:40 IEPA Cert. No. 100221		Date Received: Time Received: WDNR Cert. No.	10:00
Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite pH Solids, Total Dissolved Solids, Total Suspended Sulfate Arsenic, AA Zinc, AA	14. 57. 0.98 0.87 0.32 <0.01 6.9 1100. 3. 779. 0.073 1.26		mg/L mg/L mg/L mg/L mg/L units mg/L mg/L mg/L mg/L mg/L

KElly Dow Kelly Jones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

NE

04/03/1992

Sample No.: 160875

Job No.: 92.1302

Sample Description: DEC-SP1-3-3 CH128770.B0.MS;DuPont-East

NATIONAL
 ENVIRONMENTAL
 TESTING, INC.

Date Taken: 03/19/1992 Time Taken: 10:20 IEPA Cert. No. 100221		Date Received: Time Received: WDNR Cert. No.	10:00
Chloride COD, Total Fluoride N-Ammonia N-Nitrate N-Nitrite pH Solids, Total Dissolved Solids, Total Suspended	14. 8. 0.96 0.45 1.03 <0.01 6.9 1130. <1.		mg/L mg/L mg/L mg/L mg/L units mg/L mg/L
Sulfate Arsenic, AA Zinc, ICP	725. 0.032 0.764		mg/L mg/L mg/L mg/L

*pH received past Holding Time.

KElly Kelly Jones

Project Manager

Page 1

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

03/24/1992

Sample No.: 159873

Job No.: 92.1045

Sample Description: DEC-SP2-3-1

CHI28770.B0.MS; DuPont-East

03/04/1992 Date Taken: Time Taken: 12:00 IEPA Cert. No. 100221

Date Received: 03/05/1992 Date Received: 03/05/19 Time Received: 10:00 WDNR Cert. No. 999447130

			Date
Parameter	Result	Units	Analyzed
BOD, Five Day	2.	mg/L	03/06/1992
Chloride	290.	mg/L	03/20/1992
COD, Total	17.	mg/L	03/16/1992
Fluoride	3.7	mg/L	03/18/1992
N-Ammonia	12.0	mg/L	03/12/1992
N-Nitrate	8.07	mg/L	03/20/1992
N-Nitrite	<0.01	mg/L	03/10/1992
Oil & Grease	<1.	mg/L	03/20/1992
рH	5.9	units	03/05/1992
Solids, Total Dissolved	3150.	mg/L	03/13/1992
Solids, Total Suspended	4.	mg/L	03/14/1992
Sulfate	2000.	mg/L	03/18/1992
Arsenic, AA	<0.0050	mg/L	03/11/1992
Copper, ICP	<0.010	mg/L	03/17/1992
Zinc, ICP	13.8	mg/L	03/17/1992

Kelly (N). Jones

Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

mg/L

ANALYTICAL REPORT

NATIONAL ENVIRONMENTAL ® TESTING, INC.

NET

Zinc, AA

Ms. Susan Mulholland 03/31/1992 CH2M HILL 1033 University Place Sample No.: 160377 Suite 300 Evanston, IL 60201 Job No.: 92.1187 Sample Description: DEC-SP2-3-2 CH128770.B0.MS; DuPont East Date Taken: 03/12/1992 Date Received: 03/13/1992 Time Taken: 10:20 Time Received: 10:00 IEPA Cert. No. 100221 WDNR Cert. No. 999447130 BOD, Five Day <2. mg/L Chloride 290. mg/L COD, Total 14. mg/L Fluoride 2.22 mg/L N-Ammonia 8.8 mg/L N-Nitrate 7.06 mg/L N-Nitrite <0.01 mg/L Oil & Grease · <1. mg/L units pH 6.0 Solids, Total Dissolved 1290. mg/L Solids, Total Suspended <1. mg/L 1,690. Sulfate mg/L Arsenic, AA <0.0050 mg/L Copper, AA <0.050 mq/L

13.1

c002 Kelly' Jones Project Manager

Page 2

NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103)

E

Ē

Ē

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 04/03/1992

Sample No.: 160876

Job No.: 92.1302

Sample Description: DEC-SP2-3-3 CH128770.B0.MS;DuPont-East

BOD, Five Day<2.	: 03/19/1992 : 11:25 No. 100221	Date Received: 03/20/1992 Time Received: 10:00 WDNR Cert. No. 999447130
N-Ammonia5.8mg/LN-Nitrate6.6mg/LN-Nitrite<0.01	240. al 1. 2.23 a 5.8 e 6.6 e <0.01	mg/L mg/L mg/L mg/L mg/L units mg/L mg/L mg/L mg/L mg/L mg/L

*pH received past Holding Time.

KElly Welly Jones

Project Manager

Page 2

NET NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

0

ANALYTICAL REPORT

Ms. Susan Mulholland 04/08/1992 CH2M HILL 1033 University Place Sample No.: 161355 Suite 300 Evanston, IL 60201 Job No.: 92.1413 Sample Description: DEC-SP2-3-4 CH128770.B0.MS; DuPont-East Date Taken: 03/25/1992 Date Received: 03/26/1992 Time Taken: 09:55 Time Received: 10:42 IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 BOD, Five Day <2. mg/L Chloride 216. mg/L COD, Total 49. mg/L Fluoride 3.25 mg/L N-Ammonia 6.1 mg/L N-Nitrate 8.2 mg/L N-Nitrite <0.01 mg/L Oil & Grease 14. mg/L pН 6.0 units Solids, Total Dissolved 2683 mg/L Solids, Total Suspended 11. mg/L Sulfate 1680. mg/L Arsenic, AA <0.0050 mg/L Copper, ICP <0.010 mg/L aves

Page 1

Kelly Gones Project Manager

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 04/08/1992

Sample No.: 161355

Job No.: 92.1413

Sample Description: DEC-SP2-3-4 CH128770.B0.MS;DuPont-East

 Date Taken:
 03/25/1992
 Date Received:
 03/26/1992

 Time Taken:
 09:55
 Time Received:
 10:42

 IEPA Cert.
 No.:
 100221
 WDNR Cert.
 No.:
 999447130

Zinc, ICP

11.8 mg/L

J/one/s Project Manager

,

Page 2

Attachment 2 Data Validation Summary Monthly Monitoring Program

÷

MEMORANDUM

TO:	Pixie Newman/CHI Susan Mulholland/CHI
FROM:	Dan MacGregor/GLO
DATE:	April 16, 1992
SUBJECT:	Data Validation for Groundwater Seep Samples Du Pont, East Chicago, Indiana

PROJECT: CHI28770.B0.MR

Introduction

This memorandum presents the data validation discussion for the inorganic analytical results for Groundwater Seep 2 samples collected on March 4, 12, 19 and 25, 1992, and Seep 1 samples collected on March 12 and 19, 1992 at the Du Pont Plant in East Chicago, Indiana. Groundwater Seep 3 was not flowing during any of the sampling events, and Seep 1 was not flowing during the March 4 and 25, 1992 sampling events. Sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-of-custody procedures. Requested QA/QC data included holding time data, chain-of-custody forms, calibration and procedure blank results, initial calibration verification standard recoveries, continuing calibration verification recovery results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/ QC and sample data were reviewed as described below.

Holding Times

Inspection of holding times showed that the holding time requirements, as specified by the U.S. EPA's *Methods for Chemical Analysis of Water and Wastes*, were met with the exception of total dissolved solids (TDS) and total suspended solids (TSS) from the March 4 sampling. The TDS and TSS results from the March 4 sampling are qualified as estimated and flagged with a "J."

Chain of Custody

The chain-of-custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

Blanks

The calibration and procedure blank results were inspected for possible contaminants.

The calibration blank associated with the March 12 sample contained TSS at a concentration of 2 mg/l. The March 12 TSS result is qualified as blank contaminated and flagged with a "B."

Low-level concentrations of TDS (March 12 and 19) and oil & grease (March 19) were found in the procedure blanks. The concentrations of TDS in the groundwater seep samples were significantly greater than the blank concentrations, thus no data qualifying action was taken. The oil & grease result from the March 19 sampling is qualified as blank contaminated and flagged with a "B."

COD values less than 150 mg/l are qualified as blank contaminated and flagged with a "B." This qualification is a consequence of the latest field blank (November 1991) containing significant concentrations of COD.

Calibration Recovery Results

The following initial calibration verification (ICV) standard recoveries were not within the EPA's established control limits of \pm 10 percent of true value.

- March 4-oil & grease, and arsenic
- March 12–COD, arsenic, and oil & grease
- March 19-arsenic, and oil & grease
- March 25–BOD, and arsenic

The continuing calibration verification (CCV) recoveries were, with one exception, within the calibration control limits. The CCV recovery for chloride (March 19) was below the \pm 10 percent control limit.

Sample results that are greater than their associated reporting limits and associated with poor calibration recoveries were qualified as estimated and flagged with a "J."

Laboratory Control Spikes

A TDS (March 4) and three oil & grease (March 4, 12, and 19) laboratory spike recoveries were outside the control limit of \pm 20 percent of true value. The March 4 TDS result was previously qualified as estimated, and no true detections of oil & grease were found, so no qualifying action was taken as a result of these poor recoveries.

M E M O R A N D U M Page 3 March 18, 1992 CHI28770.B0.MR

Matrix Spike/Matrix Spike Duplicate Fortifications

The matrix spike and matrix spike duplicate results were generally within EPA or method control limits. Nitrate from the March 4, 12, and 19 sampling events was outside control limits. The nitrate results from these sampling dates were qualified as estimated and flagged with a "J."

Sample Results and Conclusions

The sample results associated with Groundwater Seeps Nos. 1 and 2 from this round of sampling were compared and found generally to be consistent with data from previous sampling rounds.

The unqualified results are valid and usable and should be used as reported. The results qualified as estimated are true detections, but because the magnitude of the detection is an estimate, the results can be used qualitatively but not quantitatively. The results qualified as probably being blank contaminated should not be used to make project decisions.

CHI185/014.51

April Monthly Monitoring Report for the Groundwater Seeps at the Du Pont East Chicago Plant East Chicago, Indiana

.

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

May 26, 1992

Introduction

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, and U.S. EPA's amended Information Request dated June 27, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep referenced in the original request (Groundwater Seep 1) and two other groundwater seeps referenced in the amended request (Groundwater Seeps 2 and 3) at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for April 1992.

Sample Collection and Analysis

The April "monthly monitoring program" sampling activities consisted of monitoring groundwater seep conditions and obtaining a grab sample from each groundwater seep, if possible, once per week. Monitoring was performed on April 2, 9, 15, 23, and 30, 1992. Groundwater seep flow rates were measured and recorded during each sampling event (Table 1). Samples were collected from Groundwater Seep 2 on each monitoring date. Groundwater Seep 1 was not present on April 2, 9, 23, and 30, therefore, samples were collected from Groundwater Seep 3 was not present during any of the monitoring events. Consequently, no samples were collected from Groundwater Seep 3 in April.

1

1

Sample fractions collected for oil and grease, total suspended solids, and pH analyses were not filtered. All other sample fractions were filtered.

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The samples from Groundwater Seep 1 are analyzed for the following constituents: chemical oxygen demand (COD), ammonia-N, nitrate, nitrite, sulfate, chloride, fluoride, total dissolved solids, total suspended solids, arsenic, zinc, and pH. The samples collected from Groundwater Seeps 2 and 3 are analyzed for all of the constituents listed above, plus biological oxygen demand (BOD-five day), oil and grease, and copper, as originally requested. In the amended request, BOD-five day, oil and grease, and copper were dropped from the Groundwater Seep 1 monitoring requirements.

In an April 21, 1992, letter to Du Pont, U.S. EPA confirmed that for the months of April and May 1992, Groundwater Seeps 1, 2, and 3, need only be analyzed for five parameters: arsenic, cadmium, chromium, lead, and mercury. Unfortunately, the written correspondence was received after the April monthly monitoring was completed and the April samples were already analyzed or in the process of being analyzed for the constituents specified in the original Information Request and the amendment to it. The May monitoring will include only the analysis of the five parameters listed in U.S. EPA's April 21, 1992, letter. Du Pont understands that no additional information will be required under this Information Request after submitting the May Monthly Monitoring Report, due to U.S. EPA on July 1, 1992.

Analytical Results and Interpretation

Tables 2 and 3 summarize the analytical results of the "monthly monitoring program" for the month of April for Groundwater Seeps 1 and 2, respectively. All laboratory data sheets for samples collected and analyzed during April for the "monthly monitoring program" are provided in Attachment 1.

Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the April groundwater seep samples.

Comparing the April Groundwater Seep 1 data to that collected in previous months for Groundwater Seep 1 (Table 4), the following observations are made:

- The nitrate and zinc concentrations corresponding to the one sampling event in April were higher than all of the previous months' averages in the "monthly monitoring program."
- The chloride, fluoride, total dissolved solids, and sulfate concentrations, as

well as, the pH, corresponding to the one sampling event in April were lower than all of the previous months' averages in the "monthly monitoring program."

• Except those previously noted, all April data were similar to data obtained in previous months.

Comparing the April Groundwater Seep 2 data to that collected in previous months for Groundwater Seep 2 (Table 5), the following observations are made:

- The average fluoride, nitrate, and sulfate concentrations for April were lower than all previous months in the "monthly monitoring program."
- The average ammonia and copper concentrations for April were higher than all previous months in the "monthly monitoring program."
- Except those previously noted, all April data were similar to data obtained in previous months.

4

GROUNDWATER SEEP FLOW RATES (GPM) APRIL MONTHLY MONITORING PROGRAM APRIL 1992

Date	Groundwater Seep 1	Groundwater Seep 2	Groundwater Seep 3
April 2	NP*	10.1	NP*
April 9	NP*	7.3	NP*
April 15	0.34	8.2	NP***
April 23	NP*	9.6	NP*
April 30	NP*	5.1	NP*

Notes:

,9 14

> NP* denotes not present. No flow. Groundwater seep location dry. NP** denotes not present. Groundwater seep location submerged below river surface. When a groundwater seep becomes submerged beneath the surface of a water body, it (by definition) is no longer a seep and technically is no different than the rest of the groundwater discharge to that surface water body. There is no simple way to measure and distinguish this discharge from the rest of the groundwater discharge to the Grand Calumet River.

.

NP*** denotes not present. No flow. Groundwater seep location wet, but no flow to river.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 1 APRIL MONTHLY MONITORING PROGRAM APRIL 1992

Sample ID:	DEC-SP1-4-3
Lab:	NET
Lab ID:	163139
Date:	4/15/92
Filtered (Yes/No):	Yes
AVERAGE FLOW RATE (gpm)	0.34
WATER QUALITY PARAMETERS (mg/l)	
COD	268
Chloride	10
Fluoride	0.32
Nitrogen, Ammonia	0.37
Nitrogen, Nitrate	1.47
Nitrogen, Nitrite	0.01
Total Dissolved Solids	864
Total Suspended Solids	6*B
Sulfate	637
pH (lab)	6.8*
TRACE INORGANIC COMPOUNDS (mg/l)	
Arsenic	0.0238
Zinc	4.66J

Notes:

* Sample fraction not filtered. No value denotes not detected. B denotes blank contaminated. J denotes estimated value.

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 2 APRIL MONTHLY MONITORING PROGRAM APRIL 1992

Sample ID:	DEC-SP2-4-1	DEC-SP2-4-2	DEC-SP2-4-3	DEC-SP2-4-4	DEC-SP2-4-5	
Lab:	NET	NET	NET	NET	NET	
Lab ID:	161920	162541	163140	163677/ 163678	164312	
Date:	4/2/92	4/9/92	4/15/92	4/23/92	4/30/92	
	Yes	Yes	• •			
Filtered (Yes/No):	165	res	Yes	Yes	Yes	Average
AVERAGE FLOW RATE (gpm)	10.1	7.3	8.2	9.6	5.1	8.1
WATER QUALITY PARAMETERS (mg/l)						
BOD-Five Day	1B			58/7B		2
COD	62B	17B	20B	18B/19B	16B	27
Chloride	210	210	226	216/230	232	220
Fluoride	1.96	0.99	1.02	0.98/0.98	1.01	1.19
Nitrogen, Ammonia	11.41	12.5	5.5	17.2/17.8	20	13
Nitrogen, Nitrate	5.44	6.24	7.1	6.37/5.84	1.87	5.4
Nitrogen, Nitrite				1		
Oil and Grease	*	*	*	*/*	*	*
Total Dissolved Solids	2997	2817	2540	2790/2760	2740J	2770
Total Suspended Solids	11*	5*	11*B	7*J/4*J	*	7*
Sulfate	1530	1540	1570	1870/1520	1620	1590
pH (lab)	5.9*	6.0*	6.1*	5.9*/5.9*	5.0*	5.8*
TRACE INORGANIC COMPOUNDS (mg/l)						
Arsenic				/		
Copper		0.013B	0,179	0.023B/0.026B		0.045
Zinc	13.4	12.9J	12.3J	12.9/13.1	14.7	13.3

100 Notes:

* Sample fraction not filtered.

No value denotes not detected.

B denotes blank contaminated.

J denotes estimated value. A value of one-half the detection limit used in averaging not detected values. Average values below the detection limit shown as not detected values. The average value of the duplicate sample results used in overall averaging.

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 1 MONTHLY MONITORING PROGRAM 1991/1992

	April	May	June	July	August	September	October**	November	December	january/ F e bruary	March	April**	
AVERAGE FLOW RATE (gpm)	0.78	0.86	0.87	0.62	0.35	0.36	0.78	0.51	0.41	NP	0.11	0.34	
WATER QUALITY PARAMETERS (mg/l)													
COD	14	15	23 25	19	21 23	7	33	54	78		30	26	
Chloride	32	32	25	25	23	43	18	22	19		14	10 1	
Fluoride	1.0	1.2	1.0	1.1	0.9	0.8	0.9	0.8	0.9		0.97	0.32	
Nitrogen, Ammonia	0.34	0.58	0.91	0.53	0.53	0.75	0.4	0.5	0.49		0.66	0.37	
Nitrogen, Nitrate	0.47	1.3	0.94	0.35	0.08	0.31	0.35	0.82	0.55		0.68	1.47	
Nitrogen, Nitrite			0.01		0.15			0.01				0.01	
Total Dissolved Solids	1260	1400	1110	1340	1400	1260	1260	2100	1140		1100	864	
Total Suspended Solids	6*	6*	27*	145*	28*	5*	10*	250*	90*		2*	6*	
Sulfate	760	840	740	830	840	850	800	800	800		752	637	
pH (lab)	7.2*	7.1*	7.0*	7.0*	7.0*	7.1*	7.1*	7.0*	6.9*		6.9*	6.8*	
TRACE INORGANIC COMPOUNDS (mg/l)													
Arsenic	0.046	0.054	0.068	0.103	0.017	0.99	0.100	0.084	0.069		0.052	0.0238	
Zinc	0.78	0.544	0.635	0.578	0.378	0.433	0.977	0.556	0.700		1.01	4.66	

Notes:

* Sample fraction not filtered.

**October 1991 and April 1992 values derived from one sampling event. Values are not averages.

NP denotes not present.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values.

The average value of the duplicate sample results used in overall averaging.

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 2 MONTHLY MONITORING PROGRAM 1991/1992

	July/August/September	October**	November	December	January	February	March	April
AVERAGE FLOW RATE (gpm)	NP	8.1	10.5	13	6.3	9.3	12.3	8.1
WATER QUALITY PARAMETERS (mg/l)								
BOD-Five Day		2		2	2			2
COD		29	44	52	70	30	20	27
Chlorid e		420	400	220	270	340	260	220
Fluoride		2.9	4.0	2.1	3.1	3.5	2.8	1.19
Nitrogen, Ammonia		6.6	10.0	5.1	8.0	.11.6	8.2	13
Nitrogen, Nitrate		38.2	31.2	13.6	9.79	8.11	7.5	5.4
Nitrogen, Nitrite								
Oil and Grease		*	1*	1*	1*	*	5*	*
Total Dissolved Solids		4040	4120	2840	3200	3510	2460	2770
Total Suspended Solids		9*	4*	3*	4*	5*	5*	7*
Sulfate		2800	2400	1900	2200	2400	2000	1590
pH (lab)		5.9*	5.8*	5.7*	5.8*	6.1*	6.0*	5.8*
TRACE INORGANIC COMPOUNDS (mg/l)								
Arsenic								
Copper								0.045
Zinc		26.9	20.9	15.7	17.9	17.7	12.7	13.3

Notes:

* Sample fraction not filtered.

**October 1991 values derived from one sampling event. Values are not averages.

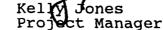
NP denotes not present.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values.

Average values below the detection limit shown as not detected values.

The average value of duplicate sample results used in overall averaging.


Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland 04/23/1992 CH2M HILL 1033 University Place Sample No.: 161920 Suite 300 Evanston, IL 60201 Job No.: 92.1554 Sample Description: DEC-SP2-4-1 CH128770.B0.MS; DuPont-East 04/02/1992 04/03/1992 Date Taken: Date Received: Time Taken: 10:25 09:40 Time Received: IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 BOD, Five Day 1. mg/L Chloride 210. mg/L COD, Total 62. mg/L Fluoride 1.96 mg/L N-Ammonia 11.41 mg/L N-Nitrate 5.44 mg/L N-Nitrite <0.01 mg/L Oil & Grease <1. mg/L 5.9 units pН Solids, Total Dissolved 2997. mg/L Solids, Total Suspended 11. mg/L Sulfate 1530. mg/L Arsenic, AA <0.0050 mg/L Copper, ICP <0.010 mg/L

NET NATIONAL ENVIRONMENTAL TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 04/23/1992

Sample No.: 161920

Job No.: 92.1554

Sample Description: DEC-SP2-4-1 CH128770.B0.MS;DuPont-East

Date Taken:			Received:	
Time Taken:	10:25	Time	Received:	09:40
IEPA Cert. No	.: 100221	WDNR	Cert. No.:	999447130

Zinc, ICP

13.4 mg/L

Kelly Jor Kelly Jones

Project Manager

NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

units

mg/L

mg/L

mg/L

mg/L

mg/L

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 04/30/1992

<1.

210.

17.

0.99

12.5

6.24

<0.01

<2.

6.0

5.

2817.

1540.

0.013

<0.0050

Sample No.: 162541

Job No.: 92.1698

Sample Description: DEC-SP2-4-2 CH128770.B0.M5;DuPont-East

Date Taken: 04/09/1992	Date Received:	04/10/1992
Time Taken: 09:40	Time Received:	10:25
IEPA Cert. No.: 100221	WDNR Cert. No.:	999447130

BOD, Five Day

Chloride COD, Total

Fluoride

N-Ammonia

N-Nitrate

N-Nitrite

Oil & Grease

рН

Solids, Total Dissolved Solids, Total Suspended

Sulfate

Arsenic, AA

Copper, ICP

Manager

Page 1

NATIONAL ENVIRONMENTAL ® TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 04/30/1992

Sample No.: 162541

Job No.: 92.1698

Sample Description: DEC-SP2-4-2 CH128770.B0.MS;DuPont-East

Date Taken: 04/09/1992 Time Taken: 09:40 IEPA Cert. No.: 100221 Date Received: 04/10/1992 Time Received: 10:25 WDNR Cert. No.: 999447130

Zinc, ICP

12.9 mg/L

Kelly Jones

Kelly Jones Project Manager

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

05/12/1992

Sample No.: 163139 Job No.: 92.1816

Sample Description: DEC-SP1-4-3 CH123770.B0.MS;DuPont-East

Date Taken: 04/15/1992		Received:	
Time Taken: 10:30	Time	Received:	10:30
IEPA Cert. No.: 100221	WDNR	Cert. No.:	999447130

Chloride	10.	mg/L
COD, Total	26.	mg/L
Fluoride	0.32	mg/L
N-Ammonia	0.37	mg/L
N-Nitrate	1.47	mg/L
N-Nitrite	0.01	mg/L
рН	6.8	units
Solids, Total Dissolved	864.	mg/L
Solids, Total Suspended	6.	mỹ/L
Sulfate	637.	mg/L
Arsenic, AA	0.0238	mg/L
Zinc, ICP	4.66	mg/L

ones Project Manager

NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 05/12/1992

Sample No.: 163140 Job No.: 92.1816

Sample Description: DEC-SP2-4-3 CH128770.B0.MS;DuPont-East

Date Taken: 04/15/1992	Date Received:	04/16/1992
Time Taken: 11:10	Time Received:	10:30
IEPA Cert. No.: 100221	WDNR Cert. No.:	999447130

BOD, Five Day	<1.	mg/L
Chloride	226.	mg/L
COD, Total	20.	mg/L
Fluoride	1.02	mg/L
N-Ammonia	5.5	mg/L
N-Nitrate	7.1	mg/L
N-Nitrite	<0.01	mg/L
Oil & Grease	<5.	mg/L
рН	6.1	units
Solids, Total Dissolved	2540.	mg/L
Solids, Total Suspended	11.	mg/L
Sulfate	1570.	mg/L
Arsenic, AA	<0.010	mg/L
Copper, ICP	Ranes 0.179	mg/L

()Kelly Jones Project Manager

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 05/12/1992

Sample No.: 163140

Job No.: 92.1816

Sample Description: DEC-SP2-4-3 CH128770.B0.MS;DuFont-East

Date Taken:	04/15/1992	Date	Received:	04/16/1992
Time Taken:	11:10	Time	Received:	10:30
IEPA Cert. No	.: 100221	WDNR	Cert. No.:	999447130

Zinc, ICP

12.3 mg/L

Kelly Jones

NATIONAL ENVIRONMENTAL TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 05/14/1992

.

Sample No.: 163677

Job No.: 92.1968

Sample Description: DEC-SP2-4-4

CH128770.B0.MS; DuPont-East

Date Taken: 04/23/1992 Time Taken: 10:10 IEPA Cert. No. 100221 Date Received: 04/24/1992 Time Received: 12:00 WDNR Cert. No. 999447130

			Date
Parameter	Result	Units	Analyzed
BOD, Five Day	5.	mg/L	04/24/1992
Chloride	216.	mg/L	04/29/1992
COD, Total	18.	mg/L	05/11/1992
Fluoride	0.98	mg/L	04/30/1992
N-Ammonia	17.2	mg/L	05/07/1992
N-Nitrate	6.37	mg/L	05/04/1992
N-Nitrite	<0.01	mg/L	04/28/1992
Oil & Grease	<5.	mg/L	05/07/1992
рН	5.9	units	04/24/1992
Solids, Total Dissolved	2790.	mg/L	04/29/1992
Solids, Total Suspended	7.	mg/L	05/02/1992
Sulfate	1870.	mg/L	04/29/1992
Arsenic, AA	<0.0100	mg/L	05/13/1992
Copper, ICP	0.023	mg/L	04/29/1992
Zinc, ICP	12.9	mg/L	04/29/1992

Toni Gartner Division Manager

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 05/14/1992

Sample No.: 163678

Job No.: 92.1968

Sample Description: DEC-FRSP2-4-4 CH128770.B0.MS;DuPont-East

Date Taken: 04/23/1992 Time Taken: 10:10 IEPA Cert. No. 100221 Date Received: 04/24/1992 Time Received: 12:00 WDNR Cert. No. 999447130

			Date
Parameter	Result	Units	Analyzed
80D, Five Day	7.	mg/L	04/24/1992
Chloride	230.	mg/L	04/29/1992
COD, Total	19.	mg/L	05/11/1992
Fluoride	0.98	mg/L	04/30/1992
N-Ammonia	17.8	mg/L	05/07/1992
N-Nitrate	5.84	mg/L	05/04/1992
N-Nitrite	<0.01	mg/L	04/28/1992
Oil & Grease	<5.	mg/L	05/07/1992
pH	5.9	units	04/24/1992
Solids, Total Dissolved	2760.	mg/L	04/29/1992
Solids, Total Suspended	4.	mg/L	05/02/1992
Sulfate	1520.	mg/L	04/29/1992
Arsenic, AA	<0.0100	mg/L	05/13/1992
Copper, ICP	0.026	mg/L	04/29/1992
Zinc, ICP	13.1	mg/L	04/29/1992

hu

Toni[®] Gartner Division Manager

NATIONAL ENVIRONMENTAL TESTING, INC.

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

05/18/1992

Sample No.: 164312

Job No.: 92.2099

Sample Description: DES-SP2-4-5 CHI28770.B0.MS;DuPont-East

Date Taken: 04/30/1992 Time Taken: 12:05 IEPA Cert. No. 100221 Date Received: 05/01/1992 Time Received: 10:50 WDNR Cert. No. 999447130

			Date
Parameter	Result	Units	Analyzed
BOD, Five Day	<1.	mg/L	05/01/1992
Chlori de	232.	mg/L	05/14/1992
COD, Total	16.	mg/L	05/18/1992
Fluoride	1.01	mg/L	05/06/1992
N-Annonia	20.	mg/L	05/07/1992
N-Nitrate	1.87	mg/L	05/08/1992
N-Nitrite	<0.01	mg/L	05/02/1992
Oil & Grease	<5.	mg/L	05/13/1992
*pH	5.0	units	05/01/1992
Solids, Total Dissolved	2740.	mg/L	05/14/1992
Solids, Total Suspended	<1.	mg/L	05/06/1992
Sulfate	1620.	mg/L	05/14/1992
Arsenic, AA	<0.0050	mg/L	05/06/1992
Copper, ICP	<0.010	mg/L	05/11/1992
Zinc, ICP	14.7	mg/L	05/12/1992

*Sample received past holding time.

mes Kelly N. Vonjes

Project Manager

Attachment 2 Data Validation Summary Monthly Monitoring Program

MEMORANDUM

TO:	Pixie Newman/CHI Susan Mulholland/CHI
FROM:	Lori Bootz/GLO
DATE:	May 21, 1992
SUBJECT:	Data Validation for Groundwater Seep Samples Du Pont, East Chicago, Indiana
PROJECT:	CHI28770.B0.MR

Introduction

This memorandum presents the data validation discussion for the inorganic analytical results for Groundwater Seep 2 samples collected on April 2, 9, 15, 23 and 30, 1992, and Seep 1 samples collected on April 15, 1992 at the Du Pont Plant in East Chicago, Indiana. Groundwater Seep 3 was not flowing during any of the sampling events, and Seep 1 was not flowing during the April 2, 9, 23 and 30, 1992 sampling events. Sampling was performed in compliance with the U.S. EPA-requested "monthly monitoring program."

Samples were analyzed for major ions and selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-of-custody procedures. Requested QA/QC data included holding time data, chain-of-custody forms, calibration and procedure blank results, initial calibration verification standard recoveries, continuing calibration verification recovery results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/ QC and sample data were reviewed as described below.

Holding Times

Inspection of holding times showed that the holding time requirements, as specified by the U.S. EPA's *Methods for Chemical Analysis of Water and Wastes*, were met with the exception of total dissolved solids (TDS) from the April 30 sampling and total suspended solids (TSS) from the April 23 sampling. The Seep 2 TDS result from the April 30 sampling and the Seep 2 TSS results from the April 23 sampling are qualified as estimated and flagged with a "J."

Chain of Custody

The chain-of-custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

M E M O R A N D U M Page 2 March 18, 1992 CHI28770.B0.MR

Blanks

The calibration and procedure blank results were inspected for possible contaminants.

The calibration and procedure blanks associated with the April 15 sample contained TSS at a concentration of 6 mg/l. The April 15 TSS results are qualified as blank contaminated and flagged with a "B."

Low-level concentrations of TDS (April 23) and nitrate (April 2 and 9) were found in the calibration blanks. The concentrations of TDS and nitrate in the groundwater seep samples were significantly greater than the blank concentrations, thus no data qualifying action was taken.

A field blank was collected during the April 23 sampling. COD, BOD, and copper concentrations were found at concentrations greater than the method reporting limits. As a result, COD values less than 85 mg/l, BOD values less than 40 mg/l, and copper values less than 0.130 mg/L are qualified as possibly blank contaminated and flagged with a "B."

Calibration Recovery Results

The following initial calibration verification (ICV) standard recoveries were not within the EPA's established control limits of ± 10 percent of true value.

- April 2–BOD, arsenic and COD
- April 9–BOD and arsenic
- April 15–COD and zinc
- April 23–COD
- April 30-COD and oil & grease

The continuing calibration verification (CCV) recoveries were, with two exceptions, within the calibration control limits. The CCV recoveries for arsenic and zinc (April 9) were below the \pm 10 percent control limit.

Sample results that are greater than their associated reporting limits and associated with poor calibration recoveries were qualified as estimated and flagged with a "J."

Laboratory Control Spikes

The laboratory control spike (LCS) recoveries were within the $\pm 20\%$ percent control limit. The laboratory did not analyze a LCS for oil & grease with the April 2 and 9 sampling.

Matrix Spike/Matrix Spike Duplicate Fortifications

M E M O R A N D U M Page 3 March 18, 1992 CHI28770.B0.MR

The matrix spike (MS) and matrix spike duplicate (MSD) results were generally within EPA or method control limits. Copper from the April 23 sampling event was outside control limits for the MSD. As a result of the Seep 2 copper results being previously qualified for field blank contamination, no additional data qualification was taken.

Sample Results and Conclusions

The sample results associated with Groundwater Seeps Nos. 1 and 2 from this round of sampling were compared and found generally to be consistent with data from previous sampling rounds.

The unqualified results are valid and usable as reported. The results qualified as estimated are true detections, but because the magnitude of the detection is an estimate, the results can be used qualitatively but not quantitatively. The results qualified as probably being blank contaminated should not be used to make project decisions. May Monthly Monitoring Report for the Groundwater Seeps at the Du Pont East Chicago Plant East Chicago, Indiana

Prepared by CH2M HILL on behalf of E.I. du Pont de Nemours & Company

June 29, 1992

Introduction

In response to U.S. EPA's Section 308 Information Request dated February 13, 1991, and U.S. EPA's amended Information Request dated June 27, 1991, Du Pont is submitting this monthly monitoring report characterizing the quality of the groundwater seep referenced in the original request (Groundwater Seep 1) and two other groundwater seeps referenced in the amended request (Groundwater Seeps 2 and 3) at Du Pont's East Chicago Plant. This report contains the results of the "monthly monitoring program" for May 1992.

Sample Collection and Analysis

The May "monthly monitoring program" sampling activities consisted of monitoring groundwater seep conditions and obtaining a grab sample from each groundwater seep, if possible, once per week. Monitoring was performed on May 7, 14, 21, and 28, 1992. Groundwater seep flow rates were measured and recorded during each sampling event (Table 1). Samples were collected from Groundwater Seep 2 on May 7, 14, and 21. Groundwater Seeps 1 and 3 were not present during any of the monitoring events. Consequently, no samples were collected from Groundwater Seeps 1 and 3 in May.

1

After the samples were collected, filtered, and preserved, as appropriate, the samples were shipped via overnight courier to National Environmental Testing, Inc. (NET) analytical laboratory in Bartlett, Illinois. The samples were analyzed for the following constituents: arsenic, cadmium, chromium, lead, and mercury. In an April 21, 1992, letter to Du Pont, U.S. EPA confirmed that for the months of April and May 1992, Groundwater Seeps 1, 2, and 3, need only be analyzed for these five constituents. Du Pont understands that no additional information will be required under this Information Request after submitting this May Monthly Monitoring Report.

Analytical Results and Interpretation

Table 2 summarizes the analytical results of the "monthly monitoring program" for the month of May for Groundwater Seep 2. All laboratory data sheets for samples collected and analyzed during May for the "monthly monitoring program" are provided in Attachment 1.

Attachment 2 contains a data validation summary of QA/QC information associated with the analysis of the May groundwater seep samples.

Comparing the May Groundwater Seep 2 data to that collected in previous months for Groundwater Seep 2 (Table 3), the following observations are made:

- The average flow rate of Groundwater Seep 2 in May was lower than in all previous months in the "monthly monitoring program."
- The average arsenic concentration was below the detection limit in May as in all previous months in the "monthly monitoring program."
- Other constituents analyzed in May were not analyzed in any other month in the "monthly monitoring program" per the original and amended requests.

TABLE 1

GROUNDWATER SEEP FLOW RATES (GPM) MAY MONTHLY MONITORING PROGRAM MAY 1992

Date	Groundwater Seep 1	Groundwater Seep 2	Groundwater Seep 3
	<u> </u>		<u></u>
May 7	NP*	5.7	NP*
May 14	NP*	4.1	NP*
May 21	NP*	1.6	NP*
May 28	NP*	NP*	NP*

Notes:

NP* denotes not present. No flow. Groundwater seep location dry.

TABLE 2

CONSTITUENTS DETECTED IN GROUNDWATER SEEP 2 MAY WONTHLY MONITORING PROGRAM MAY 1992

Sample ID: Lab: Lab ID:	DEC-SP2-5-1 NET 164740	DEC-SP2-5-2 NET 165096	DEC-SP2-5-3 NET 165661	
Date: Filtered (Yes/No):	5/7/92 Yes	5/14/92 Yes	5/21/92 Yes	Average
AVERAGE FLOW RATE (gpm)	5.7	4.1	1.6	3.8
TRACE INORGANIC COMPOUNDS (mg/l) Arsenic Cadmium Chromium Lead	0.048 0.083j	0.043J	0.038	0.043
Mercury				

Notes:

No value denotes not detected.

B denotes blank contaminated.

J denotes estimated value. A value of one-half the detection limit used in averaging not detected values. Average values below the detection limit shown as not detected values.

- 21

TABLE 3

AVERAGE CONCENTRATIONS IN GROUNDWATER SEEP 2 MONTHLY MONITORING PROGRAM 1991/1992

	July/August/September	October**	November	December	January	February	March	April	May
AVERAGE FLOW RATE (gpm)	NP	8.1	10.5	13	6.3	9.3	12.3	8.1	3.8
WATER QUALITY PARAMETERS (mg/l)									
BOD-Five Day		2		2	2			2	NA
COD		29	44	52	70	30	20	27	NA
Chloride		420	400	220	270	340	260	220	NA
Fluoride		2.9	4.0	2.1	3.1	3.5	2.8	1.19	NA
Nitrogen, Ammonia		6.6	10.0	5.1	8.0	11.6	8.2	13	NA
Nitrogen, Nitrate		38.2	31.2	13.6	9.79	8.11	7.5	5.4	
Nitrogen, Nitrite		20.2	31.2	12.0	9.19	0.11	1.5	2.4	NA
Oil and Grease		*	1+			*	F - -	*	NA
			1*	1*	1*		5*		NA
Total Dissolved Solids		4040	4120	2840	3200	3510	2460	2770	NA
Total Suspended Solids		9*	4*	3*	4*	5*	5*	7*	NA
Sulfate		2800	2400	1900	2200	2400	2000	1590	NA
pH (lab)		5.9*	5.8*	5.7*	5.8*	6.1*	6.0*	5.8*	NA
TRACE INORGANIC COMPOUNDS (mg/l)									
Arsenic						•			
Copper								0.045	NA
Zinc		26.9	20.9	15.7	17.9	17.7	12.7	13.3	NA
		20.7	23.7		11.7		12.1	C.C.	10

Notes:

* Sample fraction not filtered.

**October 1991 values derived from one sampling event. Values are not averages. NA denotes not analyzed. Constituent dropped from monthly monitoring program.

NP denotes not present.

No value denotes not detected.

A value of one-half the detection limit used in averaging not detected values. Average values below the detection limit shown as not detected values.

The average value of duplicate sample results used in overall averaging.

Attachment 1 Laboratory Data Sheets Monthly Monitoring Program

•

NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201

05/18/1992

Sample No.: 164740

Job No.: 92.2213

Sample Description: DEC-SP2-5-1 CH128770.B0.MS;DuPont-East

Date Taken: 05/07/1992	Date Received:	05/08/1992
Time Taken: 10:10	Time Received:	10:20
IEPA Cert. No.: 100221	WDNR Cert. No.:	999447130

Arsenic, AA	<0.0050	mg/L
Cadmium, ICP	0.048	mg/L
Chromium, ICP	<0.040	mg/L
Lead, ICP	0.083	mg/L
Mercury, CVAA	<0.0002	mg/L

Manager

NET NATIONAL ENVIRONMENTAL TESTING, INC. NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 05/26/1992

Sample No.: 165096

Job No.: 92.2301

Sample Description: DLC-Sp2-5-2 CH128770.B0.MS;Dupont-East

Date Taken: 05/14/1992	Date Received:	05/15/1992
Time Taken: 10:15	Time Received:	10:35
IEPA Cert. No.: 100221	WDNR Cert. No.:	999447130

Arsenic, AA	<0.0050	mg/L
Cadmium, ICP	0.043	mg/L
Chromium, ICP	<0.040	mg/L
Lead, ICP	<0.080	mg/L
Mercury, CVAA	<0.0002	mg/L

KElly Jones Kelly Jones Project Manager

NET Midwest, Inc. Bartlett Division 850 West Bartlett Road Bartlett, IL 60103

Tel: (708) 289-3100 Fax: (708) 289-5445

ANALYTICAL REPORT

Ms. Susan Mulholland CH2M HILL 1033 University Place Suite 300 Evanston, IL 60201 06/02/1992

Sample No.: 165661

Job No.: 92.2433

Sample Description: DEC-SP2-5-3 CH128770.B0.MS;DuPont-East

Date Taken: 05/21/1992	Date Received:	
Time Taken: 10:50	Time Received:	11:20
IEPA Cert. No.: 100221	WDNR Cert. No.:	999447130

Arsenic, AA	<0.0050	mg/L
Cadmium, ICP	0.038	mg/L
Chromium, ICP	<0.040	mg/L
Lead, ICP	<0.080	mg/L
Mercury, CVAA	<0.0002	mg/L

Kelly Jones

Kelly Jones Project Manager

Attachment 2 Data Validation Summary Monthly Monitoring Program

÷.,

ГО:	Pixie Newman/CHI
	Susan Mulholland/CHI

FROM: Lori Bootz/GLO

DATE: June 12, 1992

SUBJECT: Data Validation for Groundwater Seep Samples Du Pont, East Chicago, Indiana

PROJECT: CHI28770.B0.MR

Introduction

This memorandum presents the data validation discussion for the inorganic analytical results for Groundwater Seep 2 samples collected on May 7, 14 and 21, 1992 at the Du Pont Plant in East Chicago, Indiana. Groundwater Seeps 1 and 3 were not flowing during any of the sampling events. Due to a sampling program change approved by Region 5 EPA, the May seep samples were analyzed for five parameters: arsenic, cadmium, chromium, lead and mercury. Sampling was performed in compliance with the updated U.S. EPA-requested "monthly monitoring program."

Samples were analyzed for selected metals by NET Laboratories in Bartlett, Illinois. Sample collection and transport were performed under strict chain-of-custody procedures. Requested QA/QC data included holding time data, chain-of-custody forms, calibration and procedure blank results, initial calibration verification standard recoveries, continuing calibration verification recovery results, matrix spike and matrix spike duplicate results, and laboratory spike results. The QA/QC and sample data were reviewed as described below.

Holding Times

Inspection of holding times showed that the holding time requirements, as specified by the U.S. EPA's *Methods for Chemical Analysis of Water and Wastes*, were met.

Chain of Custody

The chain-of-custody forms were reviewed for accuracy and completeness. All necessary information was provided and found to be accurate. All requested analyses were performed, and the data packages were complete.

Blanks

The calibration and procedure blank results were inspected for possible contaminants.

The procedure blank associated with the May 21 sample contained lead at a concentration of 0.171 mg/l. The May 21 lead result was reported as less than the method detection limit, thus no data qualifying action was taken.

Calibration Recovery Results

The following initial calibration verification (ICV) standard recoveries were not within the EPA's established control limits of \pm 10 percent of true value.

- May 7–Arsenic and lead
- May 14–Arsenic, cadmium and chromium
- May 21–Arsenic and lead

The continuing calibration verification (CCV) recoveries were, with two exceptions, within the calibration control limits. The CCV recoveries for arsenic associated with the May 7 and May 21 samples were below the \pm 10 percent control limit.

Sample results that are greater than their associated reporting limits and associated with poor calibration recoveries were qualified as estimated and flagged with a "J."

Laboratory Control Spikes

The laboratory control spike (LCS) recoveries were within the $\pm 20\%$ percent control limit.

Matrix Spike/Matrix Spike Duplicate Fortifications

The matrix spike (MS) and matrix spike duplicate (MSD) results were within EPA or method control limits.

Sample Results and Conclusions

The unqualified sample results associated with Groundwater Seep No. 2 from this round of sampling are valid and usable and should be used as reported. The results qualified as estimated are true detections, but because the magnitude of the detection is an estimate, the results can be used qualitatively but not quantitatively.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

REPLY TO THE ATTENTION OF:

APR 2 1 1992

WCC-15J

<u>CERTIFIED MAIL</u> P 679 172 265 <u>RETURN RECEIPT REQUESTED</u>

Mr. E. F. Hartstein Plant Manager E.I. DuPont 5215 Kennedy Avenue East Chicago, Indiana 46312

> Re: Section 308 (Clean Water Act) Information Request E.I. DuPont de Nemours & Co., Inc. NPDES Permit No. IN0000329 Docket No. V-W-91-308-11

Dear Mr. Hartstein:

This letter confirms the April 3, 1992, telephone conversation between Mr. James Novak of my staff and Mr. O. J. Meyer regarding the above referenced information request. They agreed that for the months of April and May 1992, seeps numbered 1, 2 and 3 need only be analyzed for five parameters: arsenic, cadmium, chromium, lead, and mercury.

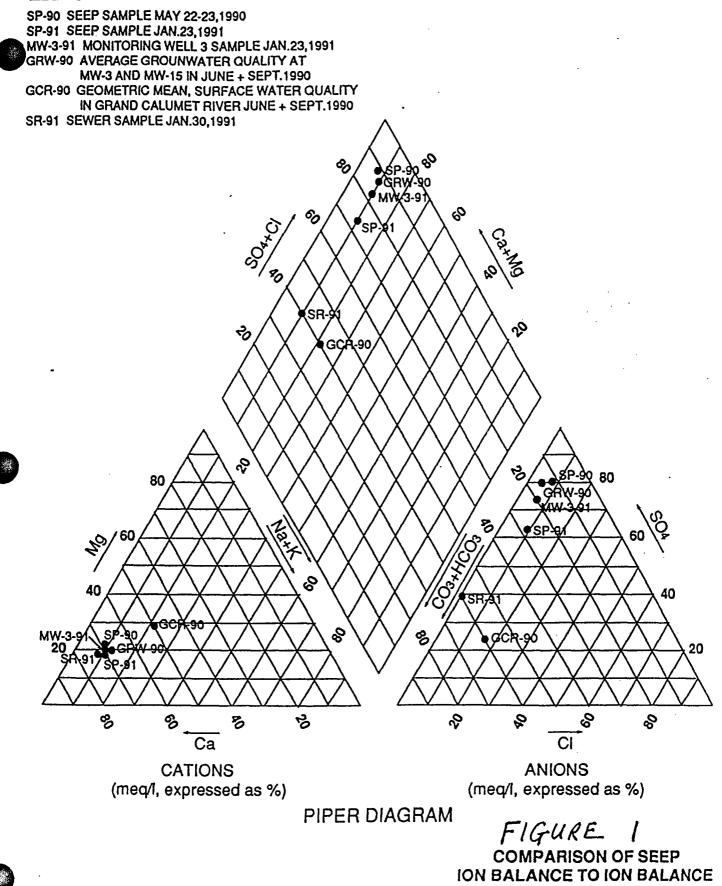
Upon receipt of the above requested data for the months of April and May, no additional information will be required under this action. If you have any questions, please call Mr. Novak at (312) 886-0177.

Sincerely yours,

Dale S. Bryson Director, Water Division

cc: Joe Thomas, IDEM Lee Bridges, IDEM

Sewer Sample Results and Comparison to Nearby Spring (Seep) and Nearby Groundwater Quality


Sewer Water and Sediment Sampling

In January 1991, a single water sample and a single sediment sample were collected from the abandoned process sewer near the AgChem building (E-04 in Figure 3-5). In addition, samples were collected from monitoring well MW3, near the terminus of the sewer and Spring 1, at the waterway bank near the terminus of the sewer. The samples were DE-CON-A (for the sewer water sample), DE-CON-B (for the sewer sediment sample), DE-SP-A and DE-SP-B (for the spring samples), and DE-MW3-A (for monitoring well MW-3). The water samples were analyzed for a variety of analytes (see attached data sheets).

Using the attached Piper diagram, water quality data from the sewer sample were compared to the MW-3 data, Spring 1 data, and the 1990 East Branch water quality data. Water chemistry for the sewer water sample was found to fall between groundwater/ spring data and the East Branch water quality data on the Piper diagram but is closer to the waterway data. This suggests that water in the sewer is neither groundwater nor surface water but liquid left within the abandoned sewer.

The sewer water, sewer sediment, MW-3, and spring samples were analyzed for diuron, fenuron, hexazinone, linuron, and siduron. Siduron (750 μ g/L) and hexazinone (1,590 μ g/L) were detected in the water sample from the sewer. Both pesticides were manufactured at the AgChem building. Hexazinone was observed in the regular and duplicate samples from Spring 1 (near the sewer terminus) at levels just above the method detection limit. Pesticides were not detected in the MW-3 sample or the sewer sediment sample. Because these analyses were only performed once for a limited number of samples, the representativeness of these results has not been established.

LEGEND

FOR OTHER WATER AT OR NEAR DU PONT EAST CHICAGO PLANT Attachment Sewer Water Sample Analysis (DE-CON-A)

- 34

February 21, 1991

CH128770.B0.SP

Ms. Pixie Newman CH2M HILL/CHI 1890 Maple Avenue Suite 200 Evanston, Illinois 60201

RE: Analytical Data for DuPont-East Chicago, LMG Laboratory No. 17706

Dear Ms. Newman:

On January 31, 1991, the CH2M HILL Montgomery Laboratory received one sample with a request for analysis of selected inorganic parameters.

The analytical results and associated quality control data are enclosed. The Boron analysis was performed at our Redding, California laboratory. A copy of their report is enclosed.

If you should have any questions concerning the data, please inquire.

The CH2M HILL policy is to store samples for up to 30 days after reporting. If you desire, our laboratory will maintain your samples for a longer period at a cost of \$5.00 per sample per month. Samples determined to be hazardous can either be returned to you or disposed of at a cost of \$25.00 per sample.

Sincerely,

y Janda L. Hall

Wanda L. Hall Data Package Supervisor

Enclosures

cc: Mr. John Flessner/GLO

TABLE OF CONTENTS

.

CH2M HILL/LMG Laboratory No. 17706

	Page
	No.
Sample Cross-reference	i
INORGANIC DATA	
Case Narrative (Cations)	1
Case Narrative (General Chemistry)	2
Analytical Results of Field Samples	
DE-CON-A (LMG #17706001)	3
Quality Control Data	
Method Blank (LMG #177062W1)	4
Copy of Boron Report from CH2M HILL/LRD	5-7
Copy of Chain-of-custody	8

TABLE 1

SAMPLE CROSS-REFERENCE SUMMARY

CH2M HILL Laboratory No. 17706

CH2M HILL Sample No.

Sample Description

17706001

SAMPLE DE-CON-A

01/30/91

1400 GRAB

 \mathbf{O}

i

CASE NARRATIVE Cations

Batch Number: 17706

Client/Project: <u>DUPONT EAST CHICAGO</u>

- I. <u>Holding Time</u>: All holding times were met.
- II. Analysis:
 - A. <u>Blanks</u>: All acceptance criteria were met.
 - B. <u>Calibration</u>: All acceptance criteria were met.
 - C. <u>ICP Interference Check Sample</u>: All acceptance criteria were met.
 - D. <u>Spike Sample Analysis</u>: All acceptance criteria were met.
 - E. <u>Duplicate Sample Analysis</u>: All acceptance criteria were met.
 - F. <u>Laboratory Control Sample Analysis</u>: All acceptance criteria were met.
 - G. <u>ICP Serial Dilution</u>: Not required for this level QC.
 - H. <u>Other</u>: The Boron analysis was performed at our Redding, California laboratory. A copy of their report is enclosed.
- III. I certify that this data package is in compliance with the terms and conditions agreed to by the client and CH2M HILL, both technically and for completeness, for other than the conditions detailed above.

SIGNED:

DATE: ZIFCE

Kevin A. Sanders Inorganic Division Manager

000001

CASE NARRATIVE General Chemistry

Batch Number: 17706

DATE: ZIFGB9

Client/Project: DUPONT EAST CHICAGO

I. Holding Time: All criteria met.

II. Analysis:

A.	Calibration:	Acceptance criteria met.
в.	Blanks:	Acceptance criteria met.
с.	Matrix Spike:	Acceptance criteria met.
D.	Duplicate Analysis:	Acceptance criteria met.
E.	Lab Control Sample:	Acceptance criteria met.
F.	Other:	None.

III. I certify that this data package is in compliance with the terms and conditions agreed to by the client and CH2M HILL, both technically and for completeness, for other than the conditions detailed above.

SIGNED:

Kevin A. Sanders

Inorganic Division Manager

EVANSTON Atten: MS. PIXI	L/CHI LE AVENUE SUITE 200 , IL 60201		LYTICAL RE	Project N DUPONT EA Laborator Date Rece	ST CHI y Numb ived:	CHI28770 CAGO er: 17706 01/31/91	
Laboratory Sample	on: DE-CON-A 1400 GR e Number: 17706001		ollected:	01/30/91	Matri	x: WATER	
Analytical Parameter	 M	ethod	Det Lim	it Res	ult	Units	Ana Date
Soluble Aluminum	EPA20	0.7/\$₩6010	200	<2	:00	ug/L	02/11/9
Alkalinity as CaCO3	EP	A310.1	1	5	45	mg/L	02/14/9
Soluble Arsenic	EPA20	6.2/SW7060	. 10	1	3	ug/L	02/12/9
Boron	EPA20	0.7/546010	20	2	51	ug/L	02/06/9
Soluble Barium	EPA20	0.7/546010	200	<2	00	ug/L	02/09/9
Soluble Calcium	EPA20	0.7/506010	50	1	60	mg/L	02/11/9
Soluble Cadmium	EPA20	0.7/\$₩6010	5	<	5	ug/L	02/11/9
Chloride	EF	A325.1	1.0	7	.9	mg/L	02/14/9
Cyanide, Distilled	EF	A335.2	5.0	93	.2	ug/L	02/14/9
Chemical Oxygen Deman	d EP	A410.4	60	16	10	mg/L	02/07/9
Soluble Chromium	EPA20	0.7/546010	10	<	10	ug/L	02/09/9
Soluble Copper	EPA20	0.7/5₩6010	25	<	25	ug/L	02/09/9
Fluoride	EP	A340.2	0.10	0.	38	mg/L	02/05/9
Soluble Iron	EPA20	0.7/5₩6010	100	<1	00	ug/L	02/10/9
Soluble Mercury	EPA24	5.1/SW7470	0.2	<0	.2	ug/L	02/08/9
Soluble Potassium	EPA20	0.7/\$₩6010	5	<	5	mg/L	02/09/9
Soluble Magnesium	EPA20	0.7/546010	5	23	.2	mg/L	02/10/9
Soluble Manganese	EPA20	0.7/506010	15	2	50	ug/L	02/09/9
Soluble Sodium		0.7/\$₩6010	5	16	.2	mg/L	02/09/9
Ammonia-N		A350.2	0.1		.1	mg/L	02/12/9
Soluble Nickel	EPA20	0.7/546010	40	<	40	ug/L	02/09/9
Soluble Lead	EPA23	9.2/507421	3		4	ug/L	02/12/9
Soluble Antimony		0.7/506010	60	<	60	ug/L	02/18/9
Sulfate		A375.4	10.0		48	-3, - mg/L	02/08/9
Total Kjeldahl Nitrog		A351.3	0.1	-	.6	mg/L	02/11/9
				••			

COMMENT: NA = NOT APPLICABLE.

Reviewed by:

INRPRPT(v910124)

000003

CH2M HILL

2567 Fairlane Drive, P.O. Box 230548. Montgomery, Alabama 36116

Planners FMHILL Economists Scientists Client: CH2M HILL/CHI	REPORT OF ANALY	TICAL RESULTS		Date: (02/21/9
1890 MAPLE AVENUE EVANSTON, IL 6020		DUPON	EAST CHI		.BO.SP
tten: MS. PIXIE NEWMAN		Date B	Received:		
ample Description: METHO	D BLANK				
Analytical Parameter	Method	Det Limit	Result	Units	Ana Da
Soluble Aluminum	EPA200.7/SW6010	200	<200	ug/L	
Alkalinity as CaCO3	EPA310.1	1	NA	ng/L	02/14/
Soluble Arsenic	EPA206.2/SW7060	10	<10	ug/L	02/12/
Boron	EPA200.7/SW6010	20	<20	ug/L	02/06/
Soluble Barium	EPA200.7/SW6010	200	<200	ug/L	02/09/
Soluble Calcium	EPA200.7/SW6010	5.0	<5.0	mg/L	02/11/
Soluble Cadmium	EPA200.7/SW6010	5	<5	ug/L	02/11/
Chloride	EPA325.1	1.0	<1.0	mg/L	02/14/
Cyanide, Distilled	EPA335.2	5.0	<5.0	ug/L	02/14/
Chemical Oxygen Demand	EPA410.4	20	<20	mg/L	02/07/
Soluble Chromium	EPA200.7/SW6010	10	<10	ug/L	02/09/
Soluble Copper	EPA200.7/SW6010	25	<25	ug/L	02/09/
Fluoride	EPA340.2	0.10	<0.10	mg/L	02/05/
Soluble Iron	EPA200.7/SW6010	100	<100	ug/L	02/10/
Soluble Mercury	EPA245.1/SW7470	0.2	<0.2	ug/L	02/08/
Soluble Potassium	EPA200.7/SW6010	5	<5	mg/L	02/09/
Soluble Magnesium	EPA200.7/SW6010	5.0	<5.0	mg/L	02/10/
Soluble Manganese	EPA200.7/SW6010	15	<15	ug/L	02/09/
Soluble Sodium	EPA200.7/SW6010	5	<5	mg∕L	02/09/
Ammonia-N	EPA350.2	0.1	<0.1	mg/L	02/12/
Soluble Nickel	EPA200.7/SW6010	40	<40	ug/L	02/09/
Soluble Lead	EPA239.2/SW7421	3	ر ح	ug/L	02/12/
Soluble Antimony	EPA200.7/SW6010	60	<60	ug/L	02/09/
Sulfate	EPA375.4	1.	<1.0	mg/L	02/08/
Total Kjeldahl Nitrogen	EPA351.3	0.1	<0.1	mg/L	02/11/
		20	<20		02/09/

COMMENT: NA = NOT APPLICABLE.

Reviewed by:

INRPRPT(v910124)

 $0\,0\,0\,0\,0\,4$

205.271 1444

CASE NARRATIVE Metals

28679

- I. <u>Holding Time</u>: All holding times were met.
- II. Analysis:
 - A. <u>Blanks</u>: All acceptance criteria were met.
 - B. <u>Calibration</u>: All acceptance criteria were met.
 - C. <u>ICP Interference Check Sample</u>: All acceptance criteria were met.
 - D. <u>Spike Sample Analysis</u>: All acceptance criteria were met.
 - E. <u>Duplicate Sample Analysis</u>: All acceptance criteria were met.
 - F. <u>Laboratory Control Sample Analysis</u>: All acceptance criteria were met.
 - G. <u>ICP Serial Dilution</u>: Not required for this level QC.
 - H. <u>Other</u>: None.
- III. I certify that this data package is in compliance with the terms and conditions agreed to by the client and CH2M HILL, both technically and for completeness, for other than the conditions detailed above.

Signed: Fred Bickell Cations Supervisor

___ Date:__________

000005

CH2M HILL

Engineers Planners					
Economists					
Scientists	REPORT OF AN	NALYTICAL RE	SULTS	Date:	02/12/91
Client: CH2M HILL/LMG					
2567 FAIRLANE DR.			Project Num	ber: CHI2877	0.B0.SP
P.O. BOX 230548			DUPONT EAST	CHICAGO/SEE	P CHAR.
MONTGOMERY, AL 361	23-0548		Laboratory	Number: 2867	19
Atten: MS. EMILY RAMUCHAK			Date Receiv	ed: 02/01/91	
Sample Description: DE-CON-	A LM17706001				
Laboratory Sample Number: 2	3679001 Date	Collected:	01/30/91 M	atrix: WATEP	t
Analytical Parameter	Method	Det Lim	it Result	Units	Ana Date
Soluble Boron	EPA200.7	20	251	ug/L	02/06/91

Yaw Reviewed by:

INRPRPT(v910124)

					•••••
Analytical Parameter	Method	Det Limit	Result	Units	Ana Date
Sample Description: METHOD BLANK Laboratory Sample Number: 28679ZW1	Dat	e Collected: 02/01/91	Matrix:	WATER	BLANK
P.O. BOX 230548 MONTGOMERY, AL 36123-0548 Atten: MS. EMILY RAMUCHAK	=======	DUPONT	EAST CHICAC ory Number: ceived: 02,	GO/SEEE 28679 /01/91	CHAR.
Client: CH2M HILL/LMG 2567 FAIRLANE DR.		Project	: Number: CH	1729776	
Planners MHILL Economists Scientists REPO	ORT OF	ANALYTICAL RESULTS		Date:	02/12/91

Vawley

Reviewed by:

INRPRPT(v910124)

PROJEC		R	PRC		NAME HARACTERIZATION	- 0 F	CH	NT ADD DM (E DO	HILL	,184	70 N	APU	E AV	نگ 10			FOR LAB USE ONLY
DU	PONT 6	EAST	CHI	C 46	0							REQUE					
PROJEC		FR			COPY TO:	- 8	6	85							·	A B	PROJECT NO. CHIZ 28770 · BU. SP
PIKI	E NEU	man /	C 10 1		JOHN FLEBSNER/GLC		ורבע	Fictor. Bencon. Bullin								B	ACK VERIFIED 68 44/91 2/4/91 7745
REQUE	STED CON	IP. DATE			SAMPLING REQUIREMENTS	_	Le la			ц			YIIY		. 1	Ď	QUOTE#1
STA NO.	DATE	TIME	M	GS RO AI BL	SAMPLE DESCRIPTIONS (12 CHARACTERS)	RS	METALS	CHLORIDE	FLUORIDE	SULFATE	NH3	3×1	ALKAUNITY	tiaoo	LOND		NO. OF SAMP PG OF OF COR
	1/30/91	2:00		X	PE- (DN - A	5	x	X	Χ	x	λ	\mathbf{X}	х	χ	\mathbf{x}	001	METALS SAMPLE NEEDS TO
	1.				· 												BE FILTERED, HAVE
																- Ful	INCLUDED AN ACIDATES
																	AND UNACIDIFIED WATER
	ļ																SAMPLE. USE WHICH COR
	ļ								6	-							13 APPROPRIATE.
					ANALYSIS DOP-02		pri	ter v to no	and	enst	el i	st.					METALS: AS, AI, Sb, B, B,
					OCLEVEL DATE DU	E 2/19	191		•	(AI	rs) (5					Cd, Ca, Cr, Cn, Fe, Pb, mg
																	Mn, Ha, Ni, K, Na, Zn
				_	REPORT TO E. RAMUCI												FILTR, DGW, D66, 79
					SHIP Fed XLABL P.D. SC43879212	INIT	15										
						_											
SAMPLI Eich	D BY AND	TITLE	 2	<u>_</u>	DATE/TIME	RELI	L L L L L L L L L L L L L L L L L L L		SP	and	2e_			DATE 1	/IIM5 3079	?1 2;50	HAZWRAP/NEESA Y (N) QC LEVE(1) 2 3
RECEIV					DATE/TIME			IED BY:						DATE	/TIME		ANA REQ WAS TEMP HAL
RECEIV	ED BY:	= · <i>·</i>			DATE/TIME	RELIN	QUISH	IED BY:						DATE	/TIME		CUST SEAL 400 400 Ph 22/42 (cu) SAMPLE COND. WITCH OF and
X	ED BY LAB:	\sim			DATE/TIME	SAM UPS				> hai	ND	ОТНЕ	R		^	IR BILL#63	52 14924 1 NTERED ALACTOR ALASSIS
REMAR	KSU MALS S	DADE	(s)	NE	D W AE FILTERE	».											NTERED AND BORFIEWED ALLAIKI

Attachment Seep and MW3 Sample Analyses (DE-SP-A and B and DE-MW-3-A

March 19, 1991

CH128770.BO.SP

Ms. Pixie Newman CH2M HILL/CHI 1890 Maple Avenue Suite 200 Evanston, IL 60201

RE: Analytical Data for DuPont-East Chicago, LMG Laboratory No. 17643

Dear Ms. Newman:

On January 24, 1991, the CH2M HILL Montgomery Laboratory received three samples with a request for analysis of selected inorganic parameters.

The analytical results and associated quality control data are enclosed. This is a corrected report reflecting the changes we discussed during late February 1991.

If you should have any questions concerning the data, please inquire.

The CH2M HILL policy is to store samples for up to 30 days after reporting. If you desire, our laboratory will maintain your samples for a longer period at a cost of \$5.00 per sample per month. Samples determined to be hazardous can either be returned to you or disposed of at a cost of \$25.00 per sample.

Sincerely,

Wanda L. Hall

Data Package Supervisor

Enclosures

cc: Mr. Dan McGregor/GLO Mr. John Flessner/GLO

Engineers Planners HMHILL Economists Scientists Client: CH2M HILL/CH1	REPORT OF ANALY	TICAL RESULTS		Date: (02/15/9
1890 MAPLE AVENUE EVANSTON, IL 6020		SEEP (CHARACTER		BO.SP
Atten: MS. PIXIE NEWMAN		Date 1	Received:	• •	
Sample Description: DE-SP	-A 0915 GRAB				======
aboratory Sample Number:	17643001 Date Col	lected: 01/23/92	1 Matr:	ix: WATER	
Analytical Parameter	Hethod	Det Limit	Result	Units	Ana Dat
Soluble Aluminum	EPA200.7/SW6010	200	<200	ug/L	02/02/
Alkalinity as CaCO3	EPA310.1	1	155	mg/L	01/31/
Soluble Arsenic	EPA206.2/SW7060	10	53	ug/L	02/02/
Soluble Boron	EPA200.7	20	253	ug/L	01/30/
Soluble Barium	EPA200.7/SW6010	200	<200	ug/L	02/02/
Soluble Calcium	EPA200.7/SW6010	50	160	mg/L	02/05/
Soluble Cadmium	EPA200.7/SW6010	5	<5	ug/L	02/02/
Chloride	EPA325.1	1.0	26.1	mg/L	02/14/
Cyanide, Distilled	EPA335.2	0.005	0.008	mg/L	02/04/
Chemical Oxygen Demand	EPA410.4	20	222	mg/L	02/07/
Soluble Chromium	EPA200.7/SW6010	10	<10	ug/L	02/02/
Soluble Copper	EPA200.7/SW6010	25	<25	ug/L	02/02/
Fluoride	EPA340.2	0.10	0.34	mg/L	02/05/
Soluble Iron	EPA200.7/SW6010	100	1800	ug/L	02/02/
Soluble Mercury	EPA245.1/SW7470	0.2	<0.2	ug/L	01/29/
Soluble Potassium	EPA200.7/SW6010	5.0	<5.0	mg/L	02/02/
Soluble Magnesium	EPA200.7/SW6010	5.0	23.7	mg/L	02/02/
Soluble Manganese	EPA200.7/SW6010	15	510	ug/L	02/02/9
Soluble Sodium	EPA200.7/SW6010	5.0	29	mg/L	02/02/9
Ammonia-N	EPA350.2	0.1	<0.1	mg/L	02/11/9
Soluble Nickel	EPA200.7/SW6010	40	<40	ug/L	02/02/9
Soluble Lead	EPA239.2/SW7421	3	<3	ug/L	01/31/9
Soluble Antimony	EPA200.7/SW6010	60	<60	ug/L	02/04/9
Sulfate	EPA375.4	10.0	346	mg/L	01/29/
	EPA351.3	0.1	2.7	mg/L	02/13/9
Total Kjeldahl Nitrogen					

COMMENT: NA = Not applicable.

Reviewed by:

INRPRPT(v910124)

CH2M HILL

Planners Economists Scientists Client: CH2M HILL/CHI	REPORT OF ANALY	TICAL RESULTS	5	Date:	02/15/9
1890 MAPLE AVENUE EVANSTON, IL 6020		SEI Lai	oject Number: EP CHARACTERI Doratory Numb ce Received:	ZATION per: 17643	
ample Description: DE-SP aboratory Sample Number:	-B 0940 GRAB	lected: 01/23		.x: WATER	========
Analytical Parameter	Method	Det Limit	Result	Units	Ana Dat
Soluble Aluminum	EPA200.7/SW6010	200	<200	ug/L	02/02/9
Alkalinity as CaCO3	EPA310.1	1	151	mg/L	01/31/9
Soluble Arsenic	EPA206.2/SW7060	10	55	ug/L	02/02/9
Soluble Boron	EPA200.7	20	238	ug/L	01/30/9
Soluble Barium	EPA200.7/SW6010	200	<200	ug/L	02/02/9
Soluble Calcium	EPA200.7/SW6010	50	160	mg/L	02/05/9
Soluble Cadmium	EPA200.7/SW6010	5	<5	ug/L	02/02/9
Chloride	EPA325.1	10.0	29.1	mg/L	02/14/9
Cyanide, Distilled	EPA335.2	0.005	0.011	mg/L	02/04/9
Chemical Oxygen Demand	EPA410.4	20	296	mg/L	02/07/9
Soluble Chromium	EPA200.7/SW6010	10	<10	ug/L	02/02/9
Soluble Copper	EPA200.7/SW6010	25	<25	ug/L	02/02/9
Fluoride	EPA340.2	0.10	0.30	mg/L	02/05/9
Soluble Iron	EPA200.7/SW6010	100	1900	ug/L	02/02/9
Soluble Mercury	EPA245.1/SW7470	0.2	<0.2	ug/L	01/29/9
Soluble Potassium	EPA200.7/SW6010	5.0	<5.0	mg/L	02/02/9
Soluble Magnesium	EPA200.7/SW6010	5.0	24.3	mg/L	02/02/9
Soluble Manganese	EPA200.7/SW6010	15	530	ug/L	02/02/9
Soluble Sodium	EPA200.7/SW6010	5.0	29.2	mg∕L	02/02/9
Ammonia-N	EPA350.2	0.1	<0.1	mg/L	02/11/9
Soluble Nickel	EPA200.7/SW6010	40	<40	ug/L	02/02/9
Soluble Lead	EPA239.2/SW7421	3	<3	ug/L	01/31/9
Soluble Antimony	EPA200.7/SW6010	60	<60	ug/L	02/04/9
Sulfate	EPA375.4	10.0	383	mg/L	01/29/9
Total Kieldahl Nitzegen	EPA351.3	0.1	6.6	mg/L	02/13/9
Total Kjeldahl Nitrogen				•	

COMMENT: NA = Not applicable.

INRPRPT(v910124)

CHARACTER CLient:	Engineers Planners Economists Scientists CH2M HILL/CHI	REPORT OF ANALY	TICAL RESULTS		Date: (02/15/91
	1890 MAPLE AVENUE SUI	TE 200	Proje	ct Number:	CH128770	BO.SP
	EVANSTON, IL 60201		SEEP	CHARACTER	ZATION	
			Labor	atory Numb	per: 17643	
Atten:	MS. PIXIE NEWMAN			Received:	• •	
	Description: DE-MW3-A				==========	========
Laborat	ory Sample Number: 176	43003 Date Col	llected: 01/23/9	1 Matri	LX: WATER	
Analytica	al Parameter	Method	Det Limit	Result	Units	Ana Date
Soluble /	Aluminum	EPA200.7/SW6010	200	<200	ug/L	02/05/91
Alkalini	ty as CaCO3	EPA310.1	1	216	mg/L	01/31/91
Soluble /	Arsenic	EPA206.2/SW7060	1000	3552	ug/L	02/02/91
Soluble B	Boron	EPA200.7	20	323	ug/L	01/30/91
Soluble B	Barium	EPA200.7/SW6010	200	<200	ug/L	02/05/91
Soluble (Calcium	EPA200.7/SW6010	50	300	mg/L	02/05/91
Soluble (Cadmium	EPA200.7/SW6010	5	<5	ug/L	02/05/91
Chloride		EPA325.1	10.0	30.8	mg/L	02/14/91
Cyanide,	Distilled	EPA335.2	0.005	<0.005	mg/L	02/04/91
Chemical	Oxygen Demand	EPA410.4	20	24	mg/L	02/07/91
Soluble (Chromium	EPA200.7/SW6010	10	<10	ug/L	02/05/91
Soluble (Copper	EPA200.7/SW6010	25	<25	ug/L	02/05/91
Fluoride		EPA340.2	0.10	0.12	mg/L	02/05/91
Soluble 1	Iron	EPA200.7/SW6010	0.1	12.1	mg/L	02/05/91
Soluble I	lercury	EPA245.1/SW7470	0.2	<0.2	ug/L	01/29/91
Soluble I	Potassium	EPA200.7/SW6010	5.0	5.5	mg/L	02/05/91
Soluble P	lagnes i um	EPA200.7/SW6010	5.0	57	mg/L	02/05/91
Soluble P	langanese	EPA200.7/SW6010	15	1300	ug/L	02/05/91
Soluble S	Sodium	EPA200.7/SW6010	5.0	42.6	mg/L	02/05/91
Ammonia-I	4	EPA350.2	0.1	1.5	mg/L	02/11/91
Soluble #	lickel	EPA200.7/SW6010	40	<40	ug/L	02/05/91
Soluble I	Lead	EPA239.2/SW7421	3	<3	ug/L	01/31/91
Soluble /	Antimony	EPA200.7/SW6010	60	<60	ug/L	02/04/91
Sulfate		EPA375.4	50.0	744	mg/L	01/29/91
Total Kje	eldahl Nitrogen	EPA351.3	0.2	3.0	mg/L	02/13/91
Soluble	Zinc	EPA200.7/SW6010	20	49	ug/L	02/05/91

COMMENT: NA = Not applicable.

INRPRPT(v910124)

Reviewed by:

Planners Economists Scientists Lient: CH2M HILL/CHI	REPORT OF ANALY	TICAL RESULTS	5	Date:	02/15/91
1890 MAPLE AVENUE EVANSTON, IL 6020 tten: MS. PIXIE NEWMAN		SEI Lai	oject Number: EP CHARACTERI coratory Numb te Received:	ZATION Der: 17643	
ample Description: METHO					
aboratory Sample Number:		lected: 01/2	5/91 Matri	x: WATER	BLANK
nalytical Parameter	Method	Det Limit	Resul t	Units	Ana Dat
Soluble Aluminum	EPA200.7/SW6010	200	<200	ug/L	02/02/9
Alkalinity as CaCO3	EPA310.1	1	NA	mg/L	01/31/9
Soluble Arsenic	EPA206.2/SW7060	10	<10	ug/L	02/02/9
Soluble Boron	EPA200.7	20	<20	ug/L	01/30/9
Soluble Barium	EPA200.7/SW6010	200	<200	ug/L	02/02/9
oluble Calcium	EPA200.7/SW6010	5.0	<5.0	mg/L	02/02/9
soluble Cadmium	EPA200.7/SW6010	5	<5	ug/L	02/02/9
Chloride	EPA325.1	1.0	<1.0	mg/L	02/14/9
Cyanide, Distilled	EPA335.2	0.005	<0.005	mg/L	02/04/9
Chemical Oxygen Demand	EPA410.4	20	<20	mg/L	02/07/9
Soluble Chromium	EPA200.7/SW6010	10	<10	ug/L	02/02/9
Soluble Copper	EPA200.7/SW6010	25	<25	ug/L	02/02/9
luoride	EPA340.2	0.10	<0.10	mg/L	02/05/9
Soluble Iron	EPA200.7/SW6010	100	<100	ug/L	02/02/9
Soluble Mercury	EPA245.1/SW7470	0.2	<0.2	ug/L	01/29/9
oluble Potassium	EPA200.7/SW6010	5.0	<5.0	mg/L	02/02/9
oluble Magnesium	EPA200.7/SW6010	5.0	<5.0	mg/L	02/02/9
oluble Manganese	EPA200.7/SW6010	15	<15	ug/L	02/02/9
Soluble Sodium	EPA200.7/SW6010	5.0	<5.0	mg/L	02/02/9
Ammonia-N	EPA350.2	0.1	<0.1	mg/L	02/11/9
Soluble Nickel	EPA200.7/SW6010	40	<40	ug/L	02/02/9
Soluble Lead	EPA239.2/SW7421	3	<3	ug/L	01/31/9
Soluble Antimony	EPA200.7/SW6010	60	<60	ug/L	02/04/9
Sulfate	EPA375.4	1.0	<1.0	mg/L	01/29/9
Total Kjeldahl Nitrogen	EPA351.3	0.1	<0.1	mg/L	02/13/9

COMMENT: NA = Not applicable.

Reviewed by:

INRPRPT(v910124)

Attachment Sewer Water, Sewer Sediment, Seep and Monitoring Well MW-3 Pesticide Analyses

Sec.

SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA ROAD • POST OFFICE DRAWER 28510 • SAN ANTONIO, TEXAS, USA 78228-0510 • (512) 684-5111 • TELEX 244846 Chemistry and Chemical Engineering Division Department of Environmental Sciences

March 18, 1991

CH₂ M Hill 310 W. Wisconsin Avenue, Suite 700 Post Office Box 2090 Milwaukee, Wisconsin 53201

Attn: Mr. Dan McGregor

Subject: Sample Result Forms SwRI Project 01-3784-032

Dear Dan:

Enclosed please find the result forms you requested.

If you have any questions please call me at (512) 522-3051 or fax inquiries to (512) 522-3649.

Very truly yours

Herbert J. Schattenberg, JI Senior Research Scientist

HJS:tg

Jab Name: S w R I	WQCBLANK
Client: CH2M HILL	
AATRIX: (soil/water) WATER	Lab Sample ID:WQCBLANK
Sample wt/vol: 500 (g/ml) ML	Lab File ID: AØ1FE6
Level: (low/med) LOW	Date Received: ØØ-ØØ-ØØ
% Dry weight: NA	Date Extracted: Ø1-28-91
Extraction: (SepF/Cont/Sonc) SEPF	Date Analyzed: Ø2-Ø1-91
<pre>FPC Cleanup: (Y/N) N pH: 6.Ø</pre>	Dilution Factor: 1.00

CONCENTRATION UNITS:

SAMPLE NO.

COMPOUND	(ug/	L or ug,	/Kg)_	ug/L_ Q
		1.00		
Fenuron	i	1ØØ 1ØØ	i	U TT
Siduron		100	ļ	U U
Hexazinone		100	i	Ū
Diuron	¦	100	ł	U

FORM I PEST

.

	SAMPLE NO.
ab Name: SwRI	WQCBLANK
lient: CH2M HILL	
ATRIX: (soil/water) WATER	Lab Sample ID:WQCBLANK
ample wt/vol: 500 (g/ml) ML	Lab File ID: A01FE13
evel: (low/med) LOW	Date Received: 00-00-00
Dry weight: NA	Date Extracted: Ø2-Ø1-91
xtraction: (SepF/Cont/Sonc) SEPF	Date Analyzed: Ø2-Ø2-91
PC Cleanup: (Y/N) N pH: 6.Ø	Dilution Factor: 1.00

CONCENTRATION UNITS:

(ug/L or ug/Kg)_ug/L_ Q

COMPOUND			ିର୍
Fenuron	100	:	U
Linuron	100	1	U
Siduron	100	Ì	U
Hexazinone	100	1	U
Diuron	100		U

	SAMPLE NO.
Lab Name: SwRI	SOIL BLK
Client: CH2M HILL	
MATRIX: (soil/water) SOIL	Lab Sample ID:SOIL BLK
Sample wt/vol: 3Ø (g/ml) G	Lab File ID: AØ5FE6
Level: (low/med) LOW	Date Received: 00-00-00
% Dry weight: 100	Date Extracted: Ø2-Ø5-91
<pre>Sxtraction: (SepF/Cont/Sonc) SONC</pre>	Date Analyzed: Ø2-Ø5-91
JPC Cleanup: (Y/N) N	Dilution Factor: 1.00
COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)_ug/Kg_ Q
Fenuron	100 U

1ØØ

1ØØ

1ØØ

1ØØ

. :

U

U

U

U

FORM I PEST

----Linuron

----Hexazinone_

-----Siduron

----Diuron

ab Name: SwRI	DE-SP-A
lient: CH2M HILL	
ATRIX: (soil/water) WATER	Lab Sample ID:DE-SP-A
ample wt/vol: 500 (g/ml) ML	Lab File ID: AØ1FE7
evel: (low/med) LOW	Date Received: Ø1-24-91
Dry weight: NA	Date Extracted: Ø1-28-91
xtraction: (SepF/Cont/Sonc) SEPF	Date Analyzed: Ø2-Ø1-91
PC Cleanup: (Y/N) N pH: 6.6	Dilution Factor: 1.00

CONCENTRATION UNITS: (ug/L or ug/Kg)_ug/L_

SAMPLE NO.

Q

COMPOUND

 -----Fenuron
 100
 U

 -----Linuron
 100
 U

 -----Siduron
 100
 U

 -----Biduron
 100
 U

 -----Diuron
 100
 U

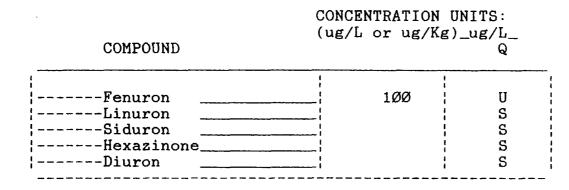
	SAMPLE NO.
Lab Name: S w R I	DE-SP-B
Client: CH2M HILL	
MATRIX: (soil/water) WATER	Lab Sample ID:DE-SP-B
Sample wt/vol: 500 (g/ml) ML	Lab File ID: AØ1FE8
Level: (low/med) LOW	Date Received: Ø1-24-91
% Dry weight: NA	Date Extracted: Ø1-28-91
Extraction: (SepF/Cont/Sonc) SEPF	Date Analyzed: Ø2-Ø1-91
<pre>FPC Cleanup: (Y/N) N pH: 7.2</pre>	Dilution Factor: 1.00

CONCENTRATION UNITS:

COMPOUND	(ug/)	L or ug,	/Kg)	ug/L_ Q	
Fenuron Fenuron Siduron Hexazinone Diuron		100 100 100 200 100		U U U	

	SAMPLE NO.			
ab Name: SwRI	DE-MW3-A			
lient: CH2M HILL				
ATRIX: (soil/water) WATER	Lab Sample ID:DE-MW3-A			
ample wt/vol: 500 (g/ml) ML	Lab File ID: AØ1FE9			
evel: (low/med) LOW	Date Received: Ø1-24-91			
Dry weight: NA	Date Extracted: Ø1-28-91			
xtraction: (SepF/Cont/Sonc) SEPF	Date Analyzed: Ø2-Ø1-91			
PC Cleanup: (Y/N) N pH: 7.2	Dilution Factor: 1.00			

CONCENTRATION UNITS:


(ug/L or ug/Kg)_ug/L_ Q

١

COMPOUND

				ţ
Fenuron	100	i	U	Ì
Linuron	100	i	U	İ
Siduron	100	į	U	İ
Hexazinone	100	İ	U	i
Diuron	100	i	U	i

	SAMPLE NO.
Lab Name: S w R I	WQC-MS
Client: CH2M HILL	
1ATRIX: (soil/water) WATER	Lab Sample ID:WQC-MS
Sample wt/vol: 500 (g/ml) ML	Lab File ID: A01FE10
Level: (low/med) LOW	Date Received: Ø1-24-91
% Dry weight: NA	Date Extracted: Ø1-28-91
Extraction: (SepF/Cont/Sonc) SEIF	Date Analyzed: Ø2-Ø1-91
<pre>3PC Cleanup: (Y/N) N pH: 6.0</pre>	Dilution Factor: 1.00

Lab Name: S w R I	DE-CON-A
Client: CH2M HILL	
1ATRIX: (soil/water) WATER	Lab Sample ID:DE-CON-A
Sample wt/vol: 500 (g/ml) ML	Lab File ID: AØ1FE14
Level: (low/med) LOW	Date Received: Ø1-31-91
% Dry weight: NA	Date Extracted: Ø2-Ø1-91
<pre>Sxtraction: (SepF/Cont/Sonc) SEPF</pre>	Date Analyzed: Ø2-Ø2-91
PC Cleanup: (Y/N) N pH: 6.4	Dilution Factor: 1.00

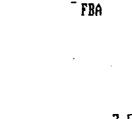
CONCENTRATION UNITS:

(ug/L or ug/Kg)_ug/L_ Q

SAMPLE NO.

COMPOUND

		1		1
Fenuron	100		U	Ì
Linuron	100	ļ	U	Í
Siduron	75Ø			Ì
Hexazinone	159Ø			Ì
Diuron	100		U	1


	SAMPLE NO.
Lab Name: S w R I Client: CH2M HILL	DE-CON-B
1ATRIX: (soil/water) SOIL	Lab Sample ID:DE-CON-B
Sample wt/vol: 30 (g/ml) G	Lab File ID: AØ5FE7
Jevel: (low/med) LOW	Date Received: Ø1-31-91
6 Dry weight: 70.6	Date Extracted: Ø2-Ø5-91
Extraction: (SepF/Cont/Sonc) SONC	Date Analyzed: Ø2-Ø5-91
JPC Cleanup: (Y/N) N	Dilution Factor: 1.00
	CONCENTRATION UNITS:

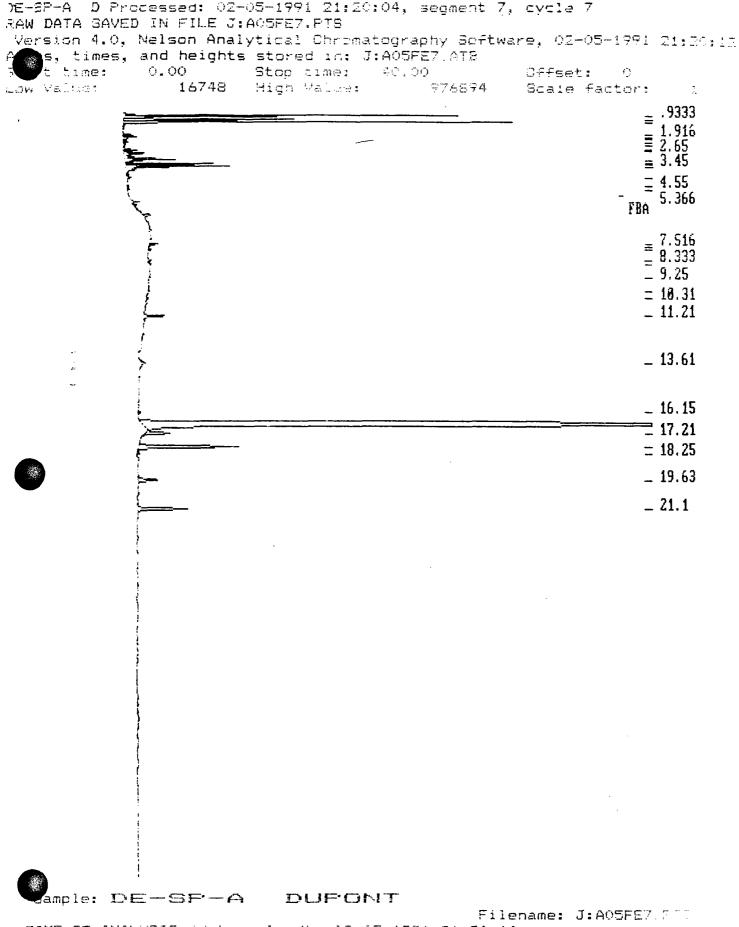
ł

(ug/L or ug/Kg)_ug/Kg_ COMPOUND ର ----Fenuron 142 U -----Linuron 142 U -----Siduron 142 U ----Hexazinone___ 142 U U ----Diuron 142 1 _ _

SAMPLE RAW DATA

DE-SP-A D Processed: 02-01-1991 19:58:21, segment 7, cycle 7 DATA SAVED IN FILE E:A01FE7.PTS R sion 4.0, Nelson Analytical Chromatography Software, 02-01-1991 19:58:25 Areas, times, and heights stored in: E:A01FE7.ATB Start time: 0.00 Stop time: 35.00 Offset: Ø High Value: 937616 Low Value: 5353 Scale factor: 1 .6666

= 7.573


Sample: DE-SP-A DUPONT

Filename: E:A01FE7.

TIME OF ANALYSIS (data upload): 02-01-1991 19:58:23

Peak#	F	Ret. Time	Area	Height
1		0.67	698,692	931,669
2	١	7.57 FAMFUR	131,490	17,457
3		7.92	23,034	3,391
		_		

Fors-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E: A01FE7.PTS

TIME OF ANALYSIS (data upload): 02-05-1991 21:20:10

Instrument: HF5390 Column Type: CAPILLARY Detector: ECD This analysis was performed on Column #2 COL1:DB608 COL2:DB5

Mobile phase: HELIUM

.

Peak#	Ret. Time	Area	Height
1	0.93	1,720,683	504,838
. جمر حد	1.13	1,279,749	308.363
3	1.27	2,024,262	703,665
4	1.92	40,419	13,572
5	2.00	38,604	24,817
6	2.12	51,097	9,461
7	2.32	22,256	8,706
8	2.45	11,402	3,121
9	2.65	28,306	12.567
10	2.73	69,204	25,228
11	3.18	583,371	90,747
12	3.37	55,092	13,851
13	3.45	415,719	157-616
14	3.57	637.071	186,573
15	4.10	26,159	7,011
16	4.55	8,927	2,736
17	4.75	12,023	4,34E
18	5.37	35,060	13.886
19	5.52	16,698	4,494
20	5.70	• 4,777	2.037
21	5.83	3,437	3,329
22	6.07	63,510	13,435
23	7.52	43.683	15,047
24	7.67	10,309	3.992
25	7.80	29,337	E,3Io
26	8.33	34,119	<u>6.77</u> *
27	8.55	5,651	<u> </u>
28	9.25	11,527	<u></u>
29	9.93	15,806	J. 424
30	10.32	11,789	
31	11.22	167,419	36. 457
	13.62	51,687	7 , 4.7
33	16.15	27,014	a ,
34	16.83	14,351,985	<u> </u>
35	17.22	293,025	12,
36	17.93 DBC	1,204,040	
37	13.25	27,392	

ample Name: DE-SP-A DUPDNT mount injected: 1.5 uL Date & Time of cata upload: 02-05-1991 21/20:10 //// Filensae: J: A05FE7

sinic: Matheda M:DTMPLOT Interface#: 2 Cycle#: 7

Feek#	Ret. Time	$\Delta r \simeq a$	
	17.53	220.243	
			CC TT
	اردا های این میشود. مستحدید این مسیر میروند است. استان میروند این میروند این میروند این میروند این میروند این میروند این میروند این		

Forg-VIII information saved to disk as INTF-13A,105 in the NELBON subdirectory. J: AOSFE7.PTS

DE-SP-B D Frocessed: 02-01-1991 20:50:03, segment 8, cvcle 8 RAW DATA SAVED IN FILE E:A01FE8.PTS Version 4.0, Nelson Analytical Chromatography Software, 02-01-1991 20:50:05 Areas, times, and heights stored in: E:A01FE8.ATB Start time: 0.00 Stop time: 35.00 Offset: 0 Low Value: 5337 High Value: 933316 Scale factor: 1 .6666

FBA

_ 7.566

Sample: DE-SP-B DUPONT

Filename: E:A01FE8.

TIME OF ANALYSIS (data upload): 02-01-1991 20:50:05

Sample Name: DE—SP—B DUFONT Amount injected: 1.5 uL

.Filename:E:A01FE8 Date & Time of data upload: 02-01-1991 20:50:05 Acqui sition Method: M:SASPEST

Mobile phase: Helium

Peak#	Ret. Time	Area	Height
1	0.67	697,411	927,328
2	7.57 FAMPUL	134,991	17,919
3	7.92	23,528	3,484

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A01FEB.PTS

Harris Contraction of the second seco

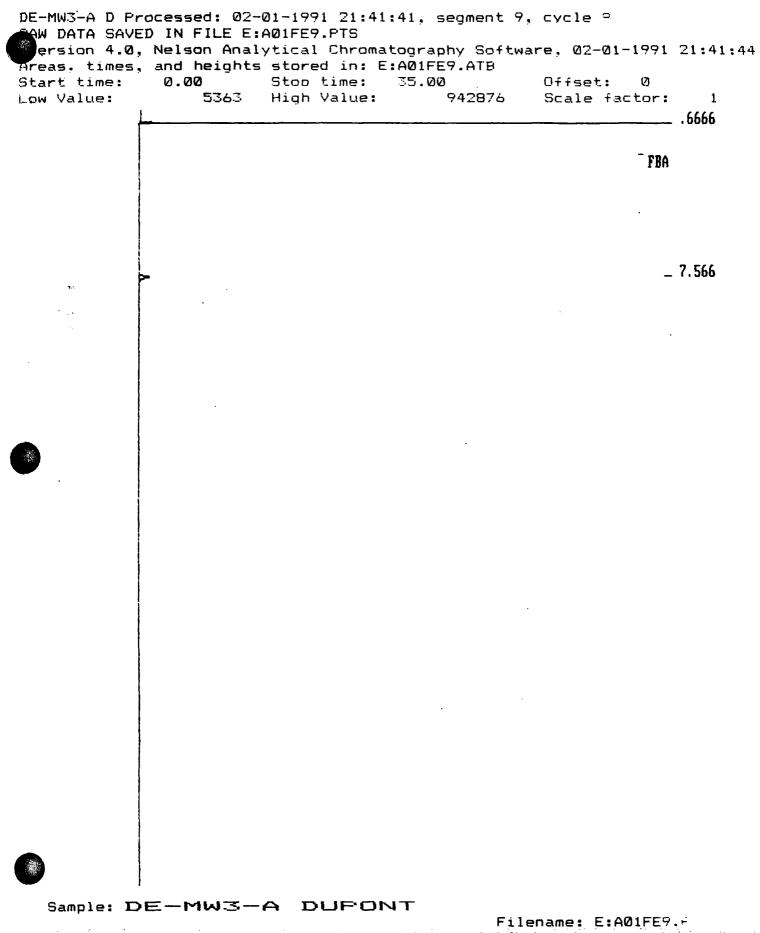
rst timet M Salteri D		Stop time: High Value:		Cffset: Scale factor:	
					9333 2
					2 3.183 4.016
ţ	`=			FBA	- -
	North Contraction of the second second second second second second second second second second second second se			-	_ 6.833
	ب ل کی				= 7.666 8.416
	f i i				9,783
	<u></u>				_ 11.23
	}				_ 13.03
				-	_
					_ 16.15
			<u> </u>		■ 17.21 = 18.26
					_ 19.1 _
	; ;				_ 21.11

Sample: DE-SF-B DUPONT

•

Filename: J:A05FE8.7 TIME OF ANALYSIS (data upload): 02-05-197. 02:11:55

Mobile phase: HELIUM


.

Peak#	Rat. Time	Area	Haic
4).7 <u>7</u>	2,029,561	740,073
2		1,613,938	388,637
3	1.27	2,421,254	934.272
4	1,43	9,793	J. 457
5		117,359	27,187
<u> </u>	میں ہے۔ بین قرب اور میں	61,160	12,354
7	ing ang in in	25,417	10,221
3	2.45	10,646	3.030
7	그 4월	33,037	15,565
	and the second sec	68,209	24,963
	3.18	529,782	36,877
12	3.37	38,748	10,611
13	3.45	433,333	171,447
14	3.57	574,710	183,887
15	4.02	20,096	4.506
16	4.10	41,791	9,857
······································	4.55	10.715	3,220
18	4.75	14,681	3,988
19	5.37	54,794	
20	5,52	30,807	6,269
21	5.70	7,879	3,060
22	5.83	9,975	2,833
23	\$.07	62,553	a de la companya. A companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp
24	6.83	13,713	
25	7.53	28,718	3,751
26	7.67	12,383	· · · · · · · · · · · · · · · · · · ·
27	7.85	49,469	4 77 1 (4.2
	<u> </u>	6,356	
29	8.33	19,477	E. TOT
30	8.42	10,321	4.031
31	8.67	139,771	
32	9.78	19,393	
33 .	11.23	157,753	ZA, T
34	13.03	98,856	
T	13.52	70,532	i de la companya de
	15.15	18,929	
37	16.83	14,308,941	Q:O

Continued...

Farel f		Ar de	
		264,105	
	17.97 DBC	1,185,392	1. 77 (7. 1. 4. Am
40	18.07	24,595	/1
41	19.10	42,723	
	19.63	219,719	
43	21.12	547,982	97. 114

Forg-VIII information mayed to disk as INTE-10A.105 in the NELSON subdirectory. J:AOSFEB.PTS

TIME OF ANALYSIS (data upload): 02-01-1991 21:41:42

Detector: 0 This analysis was performed on Column #1

Mobile phase: Helium

Peak#	Ret. Time	Area	Height
1	0.67	705,403	936,869
2	7.57 FAMPUR	129,300	17,219

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A01FE9.PTS

eas, times, art time: w Value:	and heights 0.00	<pre>s stored in: 3 Stop time:</pre>	:A05FE7.ATB 40.00	Scale factor:	<u>1</u>
				· =	. 9333
2				Ē	1.916 2.733
•				=	3.566
i	le-			- 504	5.366
	J.			=	6.466
				=	7.583 8.416
_				-	11.21
					13.03
2 75				-	19.09
. 198.5					
	·				16.83
	,			-	17.91
	_			-	19.63
	: : :			-	21.1
	-				
	1				

3

Mobile phase: HELIUM

Peak#	Rel. Time	Anga	Heito A
<u><u></u></u>	0.73	1,603,785	571,513
2	<u>1.12</u>	1,628,249	388,789
	<u> </u>	2,741,758	725,449
÷1	1,72	14,359	5,128
5	2.00	50,777	25,770
6	2.08	39,779	9,557
7	2.22	16,428	5,306
8	2.32	40,513	15,604
9 9	2.45	11,672	3,223
10	2.73	136,301	26.648
11	I.13	682.654	74,120
12	3.37	40,870	12,130
13	3.45	230,362	75 386
14	3.57	458.770	144.107
15	4,08	26,679	7,974
10	4.27	5,938	2.434
17	5.37	64,514	26.780
18	5.40	5,260	26. 980 2.743
17	5.70	9,358	4,397
20	5.83	17,873	6.199
Z1	5.07	70,313	
22	6.47	13,473	4
	6.83	18,928	A. 530
24	7.58	44,286	10,391
25	7.85	21,462	3,751
24	8.42	25,182	7.27
27	11.22	251 663	58.97
29	13.03	61,638	15.573
29	16.83	14,500,533	716 ,7
30	17.22	251,502	39.875
31	17.72 000	1,326,036	199.000
32	17.63	251,233	<u>199.00</u> 37.75
	21.10	555,121	93.359

Fora-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. J:AO5FE9.PTS

eas, times, art time: w Value:	0.00	Stop		35.00	Uffset: Scale fa		1
Ļ.	,		<u></u> -		 	-	. 6666
						[–] FBA	
							5.413
+ 	-						6.473 7.566
ſ						_	
	~						
					,		

;

TIME OF ANALYSIS (data upload): 02-02-147: 02:00:05

A:05

Mobile phase: Helium

Feak#	Ret. Time	Area	Height
1	0.67	705,371	910,029
2	0.75	12,624	1,796
3	7 1.25	21,492	12,557
4	5.41	17,332	6,841
5	€-6.47	32,942	6,867
6	7.57 Famfur	135,306	18,377
7	\$ € 7.91	186,815	27,046

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A01FE14.PTS

an dan tan ang tan ang tan ang tan ang tan ang tan ang tan ang tan ang tan ang tan ang tan ang tan ang tan ang	ou neignt≞ .00	ytical Chron stored : Stop time: High Va';	1:405FE1 10-00	E.ATE	04Esat	• (1)	
							. 9333
2							1.916 2.65
							3.45 4.266
	هـ لايـ					_ = DDA	5.366
	ر لو م						6.466 7.35 8.166 9.25
	}						8,166
						-	. 9.25 . 10. 31
	<u> </u>						. 11.21
-						_	13.03
						-	
	•					_	16.15
;	<u></u>						17.21
						Ξ	18.28
	2 					-	19.63
i,						_	21.1

Sample: DE-CON-A DUPONT

Filename: J:AO5FE15.377 TIME OF ANA //SIS (data upload) -02-06-1791 04:13:52

.

Amount_inje Filename:J:			Cone of	data upload	: 02-06-1	.991 04:13:32	
itico Metho	MIETMPLOT	-					
•				Interfact	≥#: 2	Cyclo 4: 15	
- 字名字常子家家家家家	医苯苯苯苯苯苯基	(宋宋宗宋宋宋书)	- 注東東京 -	********	*) · · · · · · · · · · · · · · · · · · ·	<pre>kx ¥ x x x x x x y y x x</pre>	
. ແລະວາມການ ເວັນ	FFE890		Colum	n Type: CAPIE			
Ceteczon: F	• ?	This analy COLUMD360	E WAS	s performed	or foluma	n 教会	

3

Poak#	Het. Timo	<u>Area</u>	Height
1	0.95	2,354,009	952,937
معند من من من من من من من من من من من من من	1.13	679,777	156.674
3	1.27	1,939,088	689,371
4	1.58	15,097	4,041
5	1.72	47,484	15,530
<u>4</u>	2.00	174,215	56.929
7	2.22	51,323	20,103
3	2.32	50.882	21,571
7	2.65	172,644	35 954
10	3.18	962,156	121.501
1 4	3.37	63,584	17.095
12 .	3.45	524,847	243.578
13	3.57	546,155	170.140
14	3.72	87.03	23,542
	3.35	52,364	10.083
16	4.00	22,870	<u> </u>
	4.08	31,354	5,105
18	4.27	10,614	3,020
19	4.75	12,880	4,465
<u> </u>	4.87	9,048	5.4 04
	5.37	99,962	<u>معنی در در دور به در .</u> محمد معرومین از معرو رین از محمد محمد به کار معمد
	5.60	46,472	
	5. 70	23,125	7 , - - <u></u>
	<u> </u>		<u> </u>
<u> </u>	<u> </u>	<u> 23,4</u> 34 <u> </u>	
- <u>2</u> su 	6.47	24,513	<u></u>
27	6.62	12,043	a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l La companya de la comp
28	6.82	12.045	<u></u>
27	7.00	9,932	<u> </u>
30	7.20	2,324	
	<u> </u>	93,275	<u> </u>
	7.35		
		10,871	<u> </u>
	7.62	17,986	<u> </u>
34	7.73	19,301	44
35	7.70	<u> </u>	
	<u> </u>	9,406	
	<u> </u>	3,969	
38	5.32	3.67	······································

Page 1

Continued...

- * * * * * * * * * * * * * * * * * * *	*****	· * * * * * * * * * * * * * * * * * * *	《米米米米米米米米米	**产产员需出出来出来**	***************	
Sample Name: DE-C	DN-A	DUFON	T			
Gample Name: DE-C: Amount injected: 1.5	uL					
Filename:J:A05FE 15		umer tef dista	a upload:	02-06-1991	04:10:ET	Arres

sition Method: M:DTMFLOT

interfacet: 2 Dycled: 13

<u>Feaka</u>	<u>Seti Time</u>	<u> </u>	Helant
	and a pro- and a second second second second second second second second second second second second second second second	<u> </u>	
4.5	8.35	10,746	1 .015
<u>Λ</u>	7.25	17,278	
42	2.73	9,290	之,54岁
43		18,005	A, 45:
44	<u>N 1.22</u>	240,954	55,357
45	12.02	482,7.9	124.3.1
46	13.53	11,700	2,156
4.7	16,13	<u>40,5</u> C	6,817
48	16.83	14,405,107	919,256
49 /	17.22	192, 20	28,441
<u> </u>	IT.T DBC	1,237.954	181,303
	10.22	155,476	24.683
52	19.52	12,731	2,499
53	17.63	235.772	36,819
54	21.10	557,691	94,387

Fors-VIII information saved to disk as INTF-13A.136 in the NELSON subdiractory. J:AOSFE15.PTS

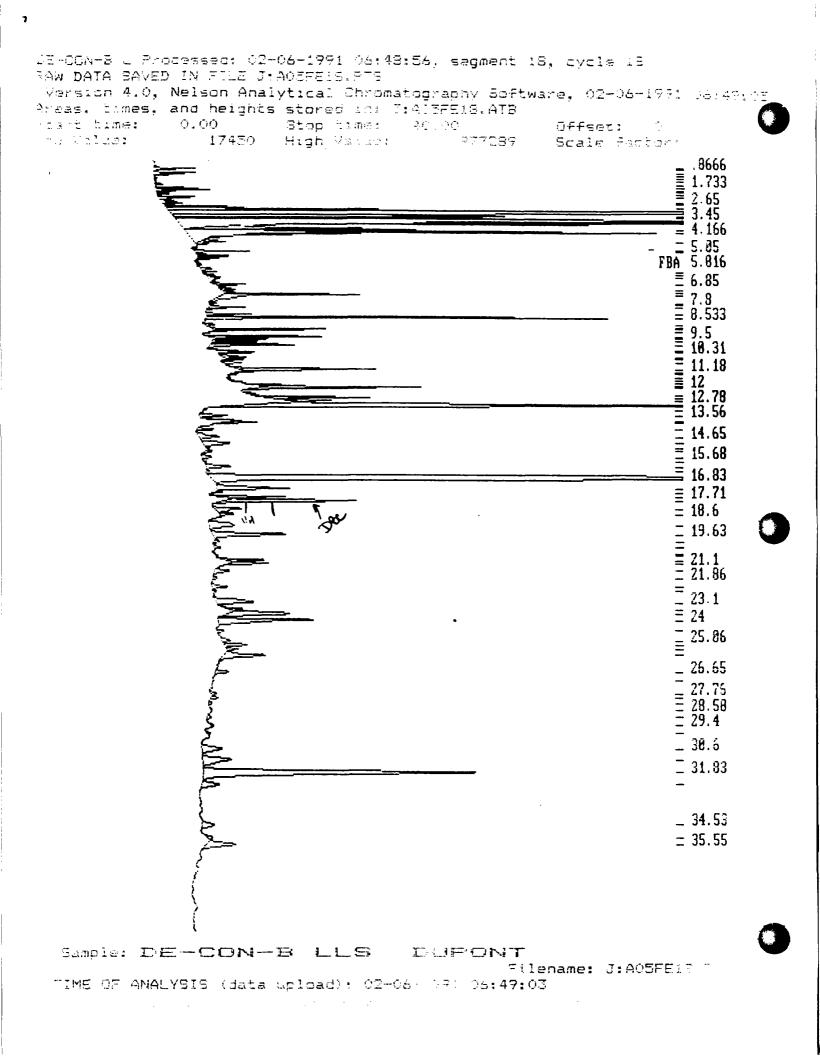
Processed: 02-05-1991 22:06:25. segment 7, cycle 7 DE-CON-B . RAW DATA SAVED IN FILE E:A05FE7.PTS Version 4.0, Nelson Analytical Chromatography Software, 02-05-1991 22:06:28 Areas, times, and heights stored in: E:A05FE7.ATB 0.00 Stop time: Start time: 35.00 Offset: Ø Low Value: 5336 High Value: 944692 Scale factor: 1 .6666

FBA

_ 7.56

Sample: DE-CON-B DUPONT LLS

Filename: E:A05FE7.F ft.


TIME OF ANALYSIS (data upload): 02-05-1991 22:06:27

and the second second

Peak#	Ret. Time	Area	Height
1	. 0.67	677,508	938,725
2	7.56 Famplen	90,090	11,850
······································			

Fore-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A05FE7.PTS

1

Gample Name: DE-CON-B LLS DUPONT Ancunt injected: 1.5 uL Date & Time of data volcad: 02-06-1991 04:49/07 Fllphame:J:A05FE18 a eran Maxorda MaDIMPLOT Encerface#: 2 Overe#: 15 "王王:211月12月17月来来来这次说完,我们就是我们的这些,你的这些你的,你们还是我们的,我们也能能能能能。" Column Types CARILLARY 2、14月1日**日報:11日**日日1月日日日日 and a second second second second second second second second second second second second second second second This analysis was performed on Column #1 TOULIEBSUE DES DES Medile pases: HELIUM Operating conditions: 60deg-1min-25dcg/min-200deg-4deg/min-275ceg-15min

Ferre with area free than 1500 are not listed below.

Parkt	en en en en en en en en en en en en en e	Area	مردد و میشد مدینو مربطیا
- 	0.37	51,394	10,386
	<u>0.93</u>	250,383	76,495
	1.13	367,402	76,524
4	1.27	54,337	22,352
<u> </u>	1.47	14,494	5,493
		10,671	2,646
7	1.73	42,383	13,683
	1.92	145,998	50,830
7	2.00	272,234	78,115
10	2.12	115,015	33,307
11	2.22	79,315	21.379
12	2.40	269,853	<u>65.233</u>
······································	2.55	175,299	24,388
14	2.73	74,166	35,577
	2.92	836,688	141.402
16	3.05	1,575,466	448.254
17	3.35	3,371,689	400,4±S
18	3.45	2,876.319	555,860
17	3.60	13,621,091	715,616
20	4.02	1,723,303	410,587
21	4.17	6,381,261	849,621
	4.55	287,405	47,812
	5.05	35,123	14,755
24	5.15	448,285	100,157
- 	5.52	141,280	40,759
ta in	5.82	28,348	V.151
27	6.07	95,164	20,043
28	6.20	72,859	27.199
19	6.33	35,122	15,940
30	6.48	236,535	24,07.
	6.95	215,729	56,761
32	7.10	94,549	24,953
33	7.22	69,037	20.847
_ 34	7.35	1,081,630	249.201
1015	7.30	33,111	
36	7.33	14,362	
37	S.00	312,055	аналананананананананананананананананана

7

ĺ.

Page 1 Continued...

- -

***************************************	(宋书书云云东京唐书末来来来来来来来来来来来来来来来来来来来来)
Sample Name: DE-CON-B LLS	DUPONT
Amount injected: 1.5 uL	
Gilename:J:A05FE18 Date & Tipe :	:6 dina a uleat: 02-06-1 791 Cat49:0700
sition Method: M:DTMPLOT	
·	interface#: •2

Tea: t	Set. Tuse	<u>Area</u>	(101.5 ML
36		280,461	57 BSG
35		2,220,295	
40	3. 70	90,505	27.913
41	7.03	9.013	2,583
42	7.12	647,177	202.721
43	7.05	94.275	79,707
<i>4.4</i>	7.50	657,362	<u> </u>
45	7.62	312,443	94 , i 24
46	7.77	336,096	82,277
47	7.92	<u> </u>	153,671
48	10.27	59,484	17,782
47	10.32	148,564	46,464
50	10.55	229,178	33,996
51	10.67	143,740	
52	10.53	. 42, 003	32.062
		1,102,727	244,243
Ξ4		91,978	73.177
<u> </u>	11.43	44,445	
56	11.56	20,675	<u> </u>
57	11.72	13,345	
	11.90	29,429	4.830
57	12.00	107.505	<u>5,65</u>
<u> </u>	12.10	1,253,968	231.771
	12.32		<u> </u>
	12.63	757,683	163,077
53	12.78	289,876	
	13.08	7,426.527	511,447
<u> </u>	13.27	21,241	5,419
	13.57	274, 507	<u> </u>
	13.82	<u> </u>	
	13.90	200,238	47.77
47	14.27	154,611	
70	14.65	341,325	
······	14.95	504, 549	30,142
72	15.25	33,418	<u> </u>
	15.38	91,445	
74	15.48	150,245	<u>:6.797</u>
75		18.757	
	16.17	344,520	47.
77	16.38	29,073	47.
78	16.83	13,415,818	<u></u>
- <u></u>		.097.225	
30	17.48	77,097	
	17.72	614,554	
	······································		

. . .

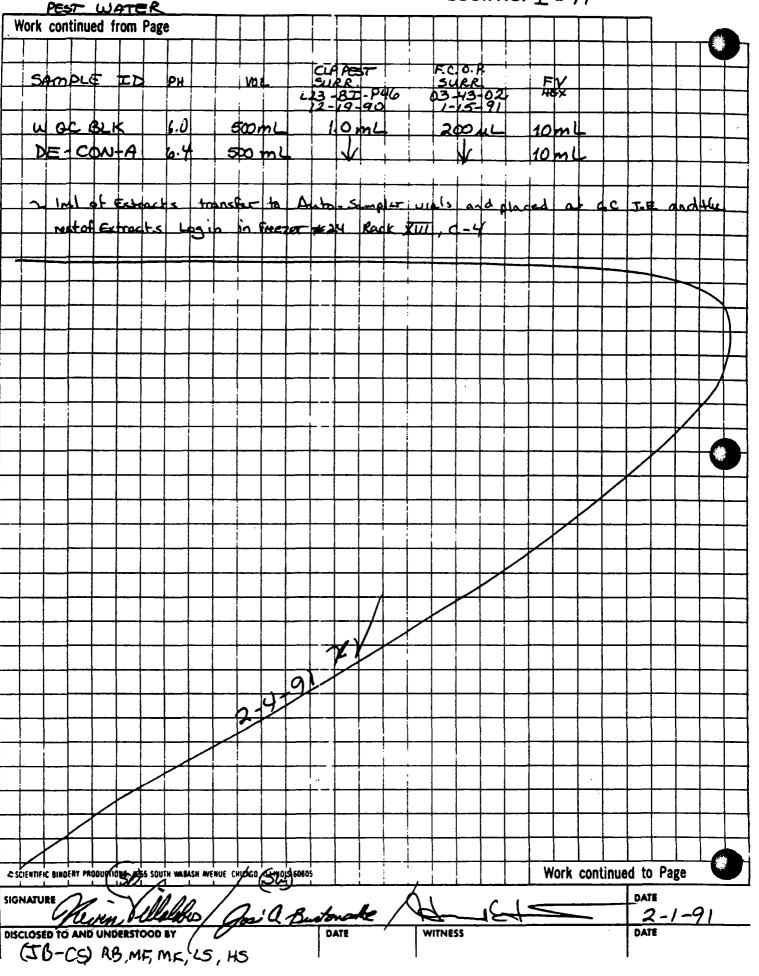
lightinued...

• • • • •	米米米米米米米米米 米米米米米米米米米米米米米米米米米米米米米米米米米米米
Bambie Name: DE-CON-	B LLS DUPONT
Amount objected: 1.5 ML	
Telemana: J:ACGHE1S Dat	e % Tise of saca usitad: 02-06-1991 06:49:01
ello vit Matched, Mal CTMPLOT	
1	interfacea: Cyales: L
5.5.4.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	医波波测试试验 化无力化因子 化电压电路 医脊髓膜 医脊髓炎 医原外球菌 化乙基苯基苯乙基 化分子

. £ /

	kat. T.an	<u> Area</u>	
	17.93 NBC	1.451.559	THE ZOUTH OF
	112 JTT	391,454	48,3
	18.40	108,264	and the second second second second second second second second second second second second second second second
	19.18	661,963	45.115
54	17.63	1.171.236	172,
	19.98	46,471	3.170
32	20.30	82.938	
37	20.60	4,843	1,130
90	20.73	21,638	4,45:
71	20.95	344,095	65,483
=	21,10	380,760	71,899
93	21.50	231,208	26,429
7A	21.27	54,161	8,369
<u>e</u>	22.32	213,159	27,670
74	22.53	37,850	£.796
97	23.10	810,360	67,717
75	23.45	125.932	
- çç	23.68	1,182,672	113.677
100	24.00	1,522,973	171.897
101	24.55	98,686	13,431
102	25.07	174,174	: 6,7 75
. 193	25.27	278,274	44 4777 44 44 77
104	25.48	114,902	20.869
100	25.80	767,625	73.86E
106	26.65	208,119	23,975
	27.08	16,172	
:08	27.77	73,847	9,717
1.09	27.97	101,547	<u>1 51</u>
110	28.25	47,387	6, 381
111	28.58	25,445	
	28.96	60,614	innigi in an Airtean ann
113	29.40	37,943	4. d. t. t. t.
::4	29.82	42,609	##* ··· *
115	30.60	544,844	35.7
1:4	31.17	852,306	
117	31.83	<u> </u>	497
1 1 4	32.47	384,488	ار بوهد. در از م
:17	34.53	318,333	
120	35.22	85.913	
121	35.55	739,743	

VIII information saved to disk as INTF-13A.LOG in the NELBON succinectory. J:AO5FE18.PTS


EXTRACTION SHEETS

PROJECT NO. 01-51184-030 27 Dupart TITLE IP-71 BOOK NO. DATERS Work continued from Page P AST. F.C. DP Deport MSSda F.V. 1-23-BI-PHO 03-43-08 07-02-0191 SAMPLE IS pH vol. 12-19-90 Hert 1-15-91 Wac BLK. 6D 500mL 1.DmL 10ml addu NE-SP-A 6.6 DE-SP-B 7.2 DE-MW3-A 1.2 Wac MS 6D LOCATION: Freezer #24; Pach I; B-5. ELTRACT 10000úc SOOML 10000L x 250"3/42 = 500 ng m 500 mc 6.2 ° .28-91 Nork continued 30 (545) SIGNATURE -+ Goil Bo 128.91 TVESS (JB-CS), HS, MK, MF, LS, RB

TITLE DUPONT

PROJECT NO. 01-3784-032

BOOK NO. I - 91

33

	JOIL RE-1	RUN	BOOK NO.	<u>71</u>	
Nork continued from Page					÷ .
	· · · · · · · · · · · · · · · · · · ·	CLP SOIL	FC OP SUER		F.V.
SAMPLE ID.	SAMP LUT	12 PIX-25-1 1-11-91	1-15-91		(HEX)
					<u>-</u>
SMB	3/00	100 pl	200 ML	· · · · ·	10 ml
DE-CON-B(COMP		- 4	L		
REC. STD.			200 ML		L
	1			· · · · · · · · · · · · · · · · · · ·	
Autor SERED	TO DANO	34 OF this A	book FOR 61	DEUX INTE	
PERE PERE	- in prige			1	
FUTAL I	VATIONI: T	Mcenar Deli	RACKET, F	2 1 2_r -	311 1 1 4 4
EL MUICIS LA		KEZYMAT,	ICITCA ALL E		<u>rrvæ.</u>
`					
		·····	· · · · · · · · · · · · · · · · · · ·		×
۱ ۲ ــــــــــــــــــــــــــــــــــــ		····		┝╾┼─┼─┼	<u> </u>
	!	······			
					\sum
					1
	-+-+-+-+			┟╼┠╌┠╌┝	}
<u> </u>		<u>+ + + + + + + + + + + + + + + + + + + </u>	┽╾┼╌┼╾┼╼		
		+ + + + + + + + + + + + + + + + + + + +	┽╍┼╸┼╸┼╸	┝╾┼╼┾─┼╴	/-
		<u>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ </u>	+ + + - + - +		÷/
		┥─┼╶┼─┼─┼─	+	┝╌┼╌┝╌┝	- <u>/</u>
		<u></u>	<u>↓ ↓ ↓ ↓ ↓</u>		/
					i
					!
					1
1		g par		┟╌┼╌┼╌	-+
			╪╌╪╾╄╾ᡲ╼╄╾╸	╋╍╋╌╋╌╋╌	
			┼╴┼╶┽╌┽╌	┥╌┥╶╎╴┤ ╴	
		+ + + + + + + + + + + + + + + + + + + +	┿┾┾┼┼	┼╾┾╶┼─┼	
			┶┶┶┶	╞╍┼╌┼╌┼	-
		+-+	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	
					· · · ·
SCIENTIFIC BINDERY PRODUCTIONS, 1255 SOUT	TH WABASH AVENUE, CHICAGO (LL.)	NDIS 60605		Work continu	ed to Page
SIGNATURE (SP)	(5m) (1) 1(╾┷╾╾┶┯╾┽┯┈╌┷┯╾┑	•	DATE 2-5-
DISCLOSED TO AND UNDERSTOOD	fand	DATE	WITNESS		DATE

STANDARDS RAW DATA

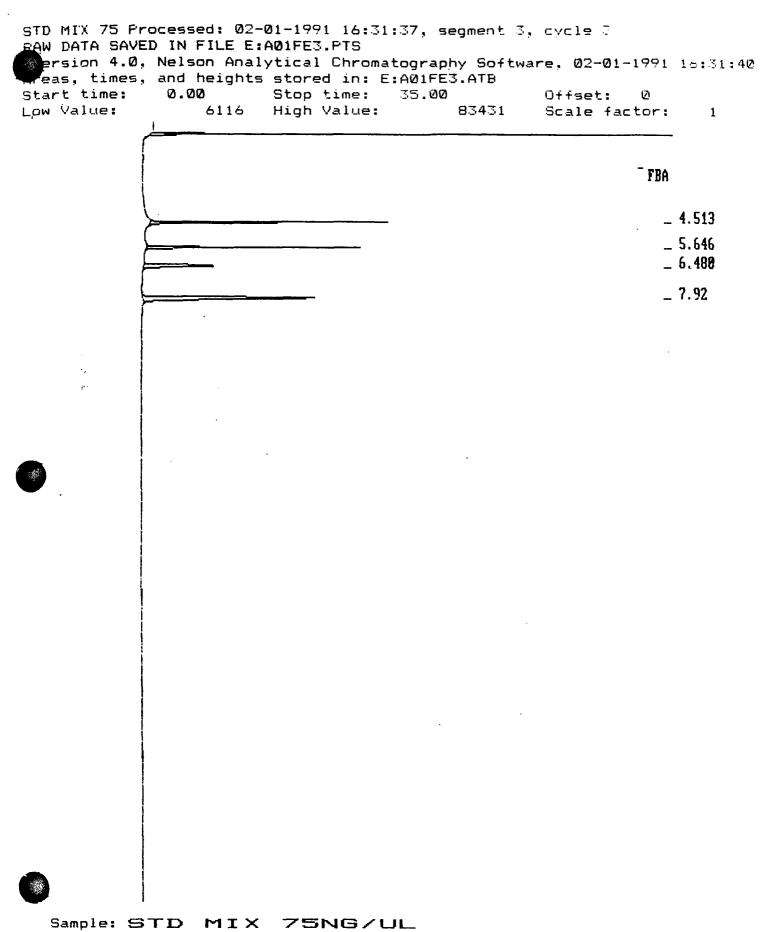
,

.

.

W DATA SAVED) IN FILE E: Nelson Analy	AØ1FE2.PTS /tical Chromat			15:40:03
Areas, times,	-				
Start time:	0.00	Stop time:	35.00	Offset: Ø	
Low Value:	6108	High Value:	71974	Scale factor:	: 1
				⁻ FBA)
<u> </u>	· }			 .	_ 4.513
	· · · · · · · · · · · · · · · · · · ·				- 5.653

_ 6.493


_ 7.946

Sample: STD MIX 100 NG/UL

Filename: E:A01FE2.PTS TIME OF ANALYSIS (data upload): 02-01-1991 15:40:01

Peak#		Ret. Time	Area	Height
1		0.62	68,044	64,662
2	Fenuren	4.51	113,702	51,836
3	Linuron	5.65	114,760	44,316
4	Sideron	6.49	95,728	14,438
5	Velpar	7.95	252,595	36,279

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A01FE2.PTS

t

Filename: E:A01FE3.F TIME OF ANALYSIS (data upload): 02-01-1991 16:31:38

من من من من من من من من من من من من من م	***************************************
Sample Name: STD	MIX 75NG/UL
Amount injected: 1.5 •Filename:E:A01FE3	Date & Time of data upload: 02-01-1991 16:31:38 Acqu
sition Method: M:SASPE	ST Interface#: Ø Cycle#: 3

Instrument: HP5890 Detector: 0	Column Type: CAPILLARY-DB5 This analysis was performed on Column #1

Mobile phase: Helium

3

Peak#		Ret. Time	Area	Height
1		0.62	71,844	76,098
2	Fenuron	4.51	76,979	34,467
3	Linuren	5.65	79,607	31,109
4	Siduron	5.48	66,734	10,131
5	Velpor	7.92	176,390	25,022

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A01FE3.PTS

	D IN FILE E: Nelson Anal	AØ1FE4.PTS ytical Chroma		+, c∨cle 4 ware, 02-01-199	91 17:23:23
Areas, times, Start time: Lpw Value:	0.00 6120	Stop time: High Value:	35.00	Offset: 0 Scale factor	••• 1
				⁻ Fl	BA

_ 4.513

_ 5.646 _ 6.473

_ 7.92

.

۱

Sample: STD MIX 50 NG/UL

.

Filename: E:A01FE4.FT TIME OF ANALYSIS (data upload): 02-01-1991 17:23:21

Mobile phase: Helium

Peak#	Ret. Time	Area	Height
1	0.62	72,482	71,946
2 Fenuron	4.51	46,857	20,140
3 Linuren	5.65	51,063	19,849
4 Siduren	6.47	43,750	6,737
5 Yelpar	7.92	117,326	16,754

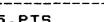
Fore-VIII information saved to disk as INTF-13A.LO6 in the NELSON subdirectory. E:A01FE4.PTS

STD M	IX 25 Pro	poessed: 02-0	01-1991 18:14	4:59, segment 5,	cvcle 5	
RAW D	ATA SAVEI) IN FILE E:	A01FE5.PTS			
ers	10n 4.0,	Nelson Analy	ytical Chroma	atography Softwa	re, 02-01-1991	18:15:02
Greas	, times,	and heights	stored in: (E:A01FE5.ATB		
Start	time:	0.00	Stop time:	35.00	Offset: Ø	
Low V	alue:	6110	High Value:	109222	Scale factor:	1

- FBA - 4.533 - 5.653 - 6.466 - 7.92

Sample: STD MIX 25 NG/UL

Filename: E:A01FE5.F' TIME OF ANALYSIS (data upload): 02-01-1991 18:15:00


Sample Name: STD MIX 25 NG/UL Amount injected: 1.5 uL Date & Time of data upload: 02-01-1991 18:15:00 Filename:E:A01FE5 Acqu sition Method: M:SASPEST Interface#: Ø

Cycle#: 5 Instrument: HP5890 Column Type: CAPILLARY-DB5 This analysis was performed on Column #1 Detector: Ø

Mobile phase: Helium Operating conditions: 60-0.5MIN-30DEG/MIN-270DEG-2.5DEG/MIN-270DEG-10MIN Peaks with area less than 10000 are not listed below.

Peak#		Ret. Time	Area	Height
1		0.62	86,421	101,927
2	Fenuron	4.53	16,845	5,685
3	Linkron	5.65	22,671	8,549
4	Siduron	6.47	20,010	3,061
5	relpar	7.92	54,847	7,780

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E: A01FE5.PTS

W DATA SAVE	ce file reac D IN FILE E: Nelson Anal	02-1991 02:51:41, hed at cycle 15 A01FE15.PTS ytical Chromatogr stored in: E:A01	aphy Softwa	•	1 02:51:45
	0.00	Stop time: 35. High Value:	00	Offset: Ø Scale factor	: 1
				⁻ FB	— A _ 4.506
					_ 5.64 _ 6.473
					_ 7.913
۰ ۸: معر					
			•		
с.					
Sample: S		75 NG/UI upload): 02-02-14	Fil	ename: E:A01FE 3	15.P1-

Sample Name: STD MIX 75 NG/UL Amount injected: 1.5 uL Date & Time of data upload: 02-02-1991 02:51:43 Silename:E:A01FE15 Acar sition Method: M:SASPEST Interface#: Ø Cvcle#: 15

Instrument: HP5890 Column Type: CAPILLARY-DB5 Detector: 0 This analysis was performed on Column #1

Mobile phase: Helium

Operating conditions: 60-0.5MIN-30DEG/MIN-270DEG-2.5DEG/MIN-270DEG-10MIN Peaks with area less than 10000 are not listed below.

Peak#		Ret. Time	Area	Height
1		0.62	86,715	101,743
2	Fenuron	4.51	65,582	28,111
3	Linuron	5.64	69,867	26,515
4	Siduron	6.47	59,817	9,152
5	Velpor	7.91	157,903	22,343

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A01FE15.PTS

STD MIX 75 Processed: 02-05-1991 17:48:03, segment 2, cycle 2 RAW DATA SAVED IN FILE E:A05FE2.FTS Version 4.0, Nelson Analytical Chromatography Software, 02-05-1991 17:48:06 Areas, times, and heights stored in: E:A05FE2.ATB art time: 0.00 Stop time: 35.00 Offset: Ø Scale factor: Value: 6111 High Value: 75941 1 [–] FBA _ 4.5 _ 5.64 _ 6.473 _ 7.986 Sample: STD MIX 75NG/UL Filename: E:A05FE2.PTS

TIME OF ANALYSIS (data upload): 02-05-1991 17:48:05

•

Ret. Time	Area	Height
0.62	70,169	69,152
4.50 Fenuron	47,189	21,256
5.64 Linuron	50,327	19,440
6.47 Siduren	42,067	6,263
7.91 Velgar	111,051	15,741
	0.62 4.50 Feruron 5.64 Linuron 6.47 Siduron	0.62 70,169 4.50 Fenuron 47,189 5.64 L.nuron 50,327 6.47 Siduron 42,067

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A05FE2.PTS

STD MIX 50 Processed: 02-05-1991 18:39:40, segment 3, cycle 3 RAW DATA SAVED IN FILE E:A05FE3.PTS Version 4.0, Nelson Analytical Chromatography Software, 02-05-1991 18:39:44 Areas, times, and heights stored in: E:A05FE3.ATB art time: 0.00 Offset: Stop time: 35.00 Ø w Value: 94742 6148 High Value: Scale factor: 1 [–] FBA _ 4.506 _ 5.64

Sample: STD MIX 50 NG/UL

and a second second second second second second second second second second second second second second second

et ma

Filename: E:A05FE3.F

_ 6.466

_ 7.986

TIME OF ANALYSIS (data upload): 02-05-1991 18:39:42

Peak#	Ret. Time	Area	Height
1	0.62	77,277	87,834
2	4.51 Fenuron	27,943	11,674
3	5.64 Linuron	31,364	12,118
4	6.47 Siduron	27,133	4,097
5	7.91 Yelpar	72,126	10,218

Fore-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A05FE3.PTS

STD MIX 25 Processed: 02-05-1991 19:31:23, segment 4, cvcle 4 RAW DATA SAVED IN FILE E:A05FE4.PTS Version 4.0, Nelson Analytical Chromatography Software, 02-05-1991 19:31:25 reas, times, and heights stored in: E:A05FE4.ATB art time: 0.00 Stop time: 35.00 Offset: 0 Cow Value: 6142 High Value: 76761 Scale factor: 1

> _ 5.64 _ 6.46 _ 7.913

_ 4.526

Sample: STD MIX 25 NG/UL

12

s.

Filename: E:A05FE4.PT9 P:31:25

TIME OF ANALYSIS (data upload): 02-05-1991 19:31:25

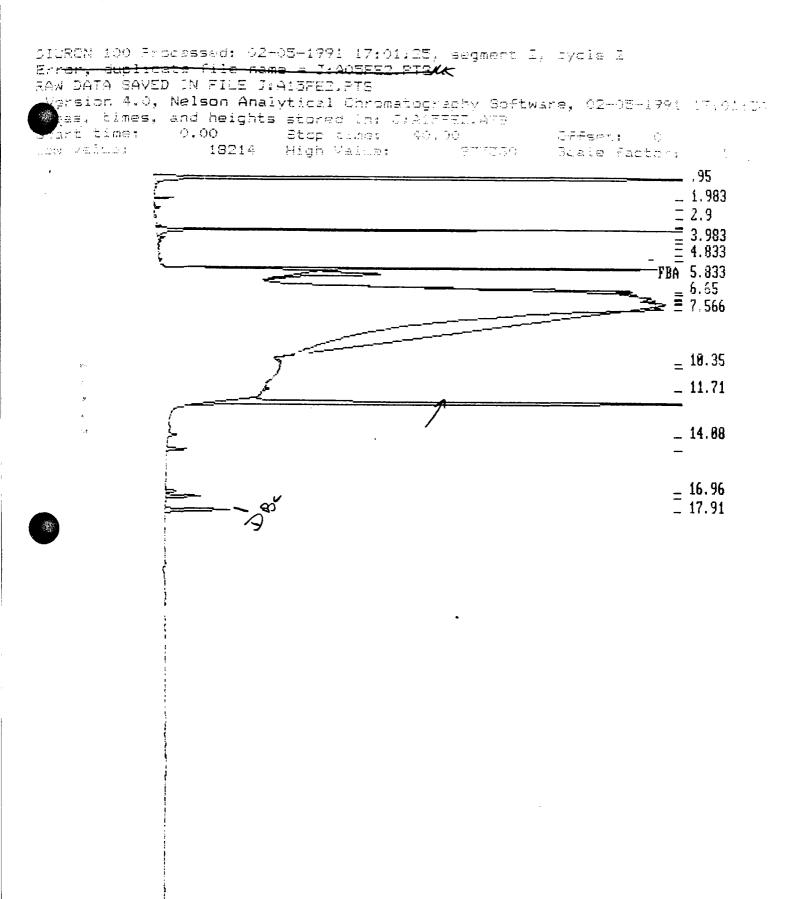
· . · .

Mobile phase: Helium

Peak#	Ret. Time	Area	Height
1	0.62	72,239	69,767
2	4.53 Fenuron	8,833	3,017
3	5.64 Linuron	13,815	5,188
4	6.46 Siduron	12,291	1,866
5	7.91 Velpar	33,287	4,695

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A05FE4.PTS

eas, times, an	d height: .00	lytical Chromato s stored in: E:A Stop time: 3 High Value:	05FE10.ATB 5.00	Offset: Ø	
				- Гва	
Ĺ				-	4.5
		_			5.64 6.473
				-	7.913
- 16					
**					
				,	


~

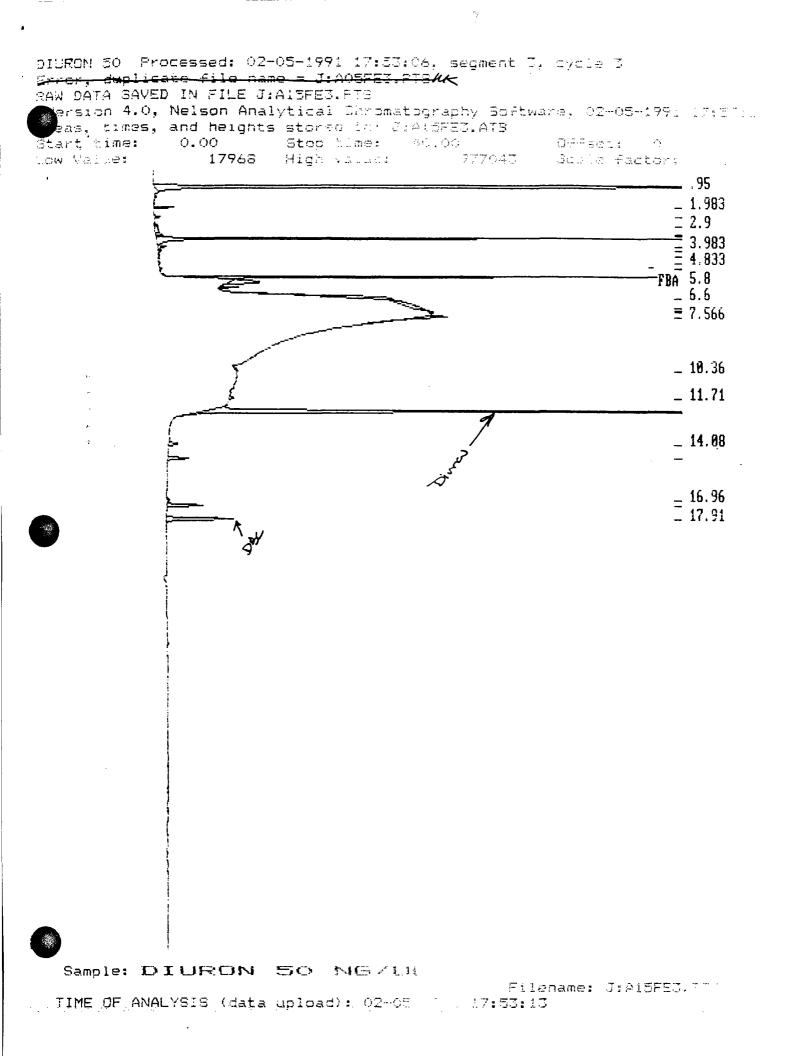
•

Peak#	Ret. Time	Area	Height
1	. 0.62	80,351	98,091
2	4.50 Fenuron	60,617	27,208
3	5.64 Linkron	62,513	24,178
4	6.47 Siduron	53,055	7,847
5	7.91 Velpar	138,470	19,424

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A05FE10.PTS

Sample: DIURON 100 NG/UL

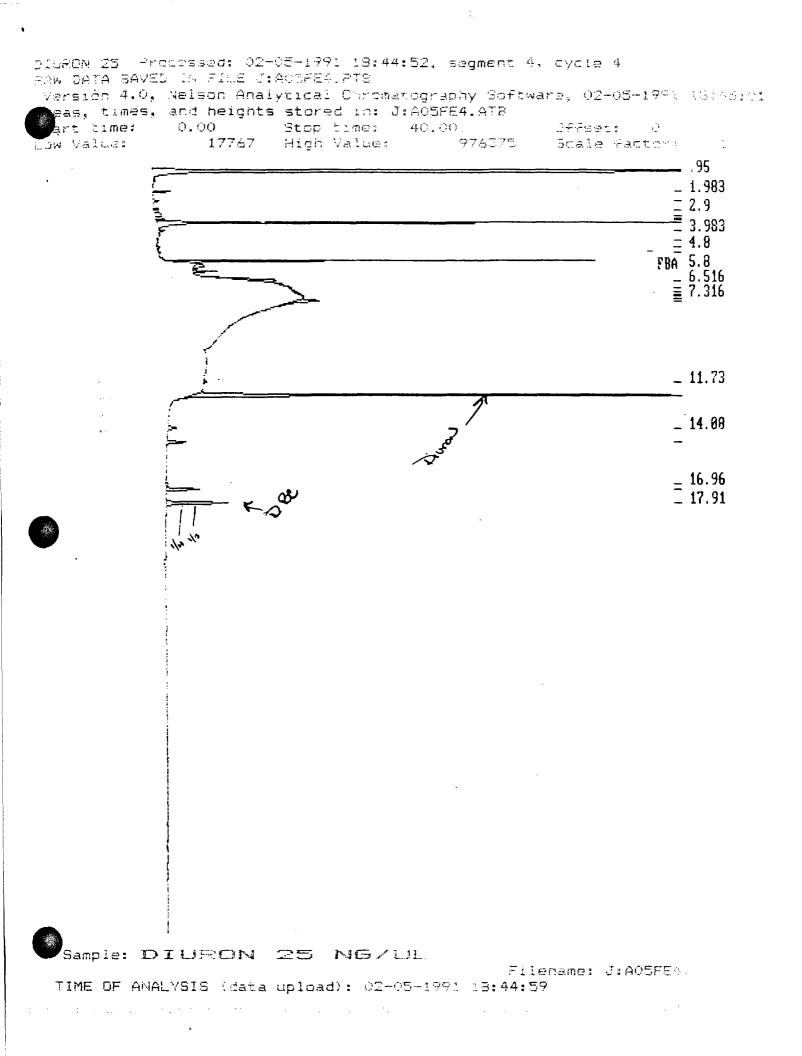
Filename: J:A15FE2.71. TIME OF ANALYSIS (data upload): 02-05-1701 17:01:32



Mobile chase: HELICH

Feak#	Ret. Time	Area	Heidha
1	0,75	7,555,861	954,284
2	1.53	87,827	36,988
	2.45	51,603	11,019
4	2. 70	25.040	4,453
3	ing ing ing ing ing ing ing ing ing ing	47,824	7,706
	三.4回	34,938	9,415
	3.57	3,365,486	951,948
=======================================	3.78	78,755	14,184
	4.20	28,205	3,082
10	4.33	7,188	1.879
: 1	4.33	18,954	4,400
12	5.12	12,470	4,030
1	5.40	10,624	4,529
<u>1</u> 4	5.53	4,448,264	840.541
	3.83	1,497,362	145.269
	4.65	1,413,281	142,250
-7	6.83	1/4,115	19.47
18	7.00	55,648	<u>(3.)47</u> 10,137
17	7.12	32,364	20,007
	7.23	33,069	5,426
	7.30	132,053	
	7.57	:6,219,905	46,311
	10.35	48,763	
	10.57	7,104	
20	11.72	50,226	7. 3e f
Diuro.		S/UC 7.426,575	224.7
	14.08	109,860	* Ø
	14.82	207,064	35.717
	16.97	119,262	
 	17.22	378,571	41,851
		D.1 ~5/42 755.791	117.19

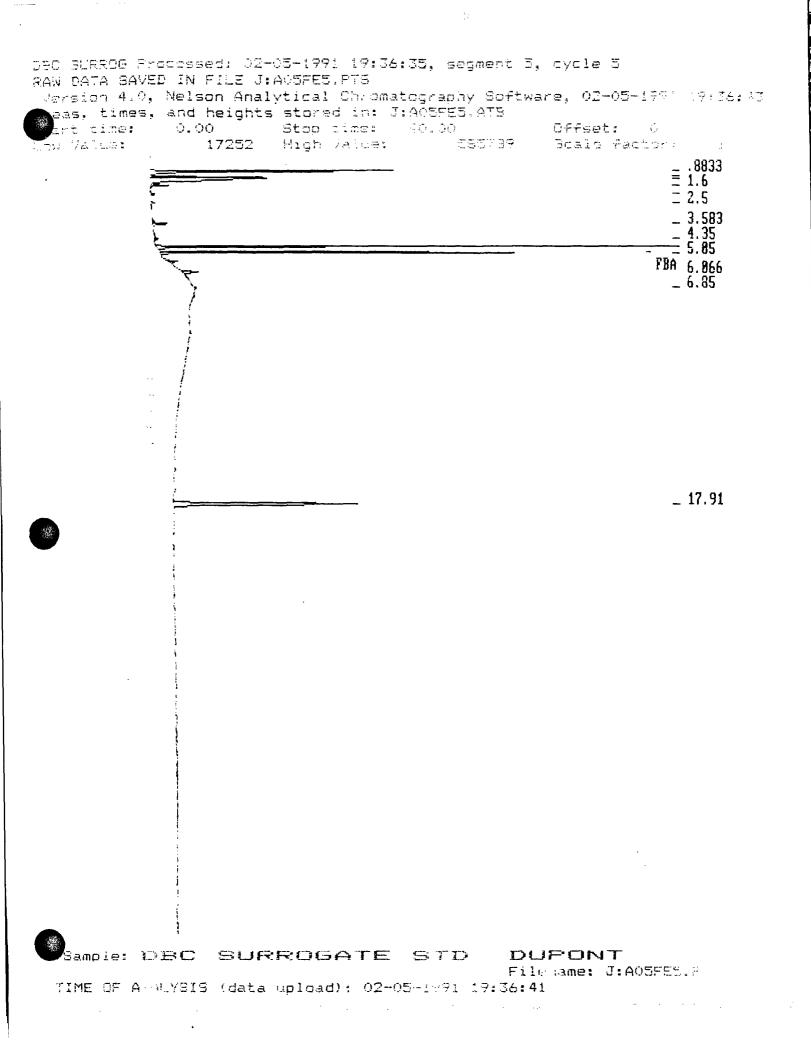
Fora-VIII information saved to disk as INIF-IGA.LOG in the NELSON subdirectory. J:A15FE2.PTS


Meeile prase: VELLUM

Teansting ichoitions: 60aeg-imun-15aeg/min-200deg-4deg/min-275deg-15kun kaskkassississikkekkakkakkekkekkekkek Poass wint uusa loss then uTAA and not listed below.

Peak#	Ret. line	<u>Aciaa</u>	Height
<u>.</u>	0.95	7,583,827	953, 382
-	1.75	37,215	36,209
	. 2.45	46,108	10,528
4	2.90	33,796	6,329
3	3.33	68,775	10,038
	3.43	51,306	11,702
7	J.57	<u> </u>	952,048
e	5.98	83,993	14.672
7	4.20	28,196	4,990
10	4.43	5,785	1,854
	4.83	15,900	4.201
12	5.12	11,843	3,910
	5.40	9,024	4,271
14	5.52	3,374,491	9 00,201
	5. <u>6</u> 0	560,019	
1.1	5.60	728,594	52.441
1.7	7.10	446,390	19,280
18	7.23	21,457	3 ,9%+
	7.33	49,048	<u>9,3</u> ;
20	7.57	421,782	53.4th
2:	10.37	41,019	2 .4877
	11.72	45,752	<u>2.407</u> 7.20
23 Diuron	12.43	5 p ns/4c 6,243,121	67 6,80
	14.08	111,520	
	14.82	219,076	37.8
	16.97	26,589	
27	17.22	417,321	<u> </u>
23 DBC	17.92	0.1~5/4, 789,960	а стан. Алана и с

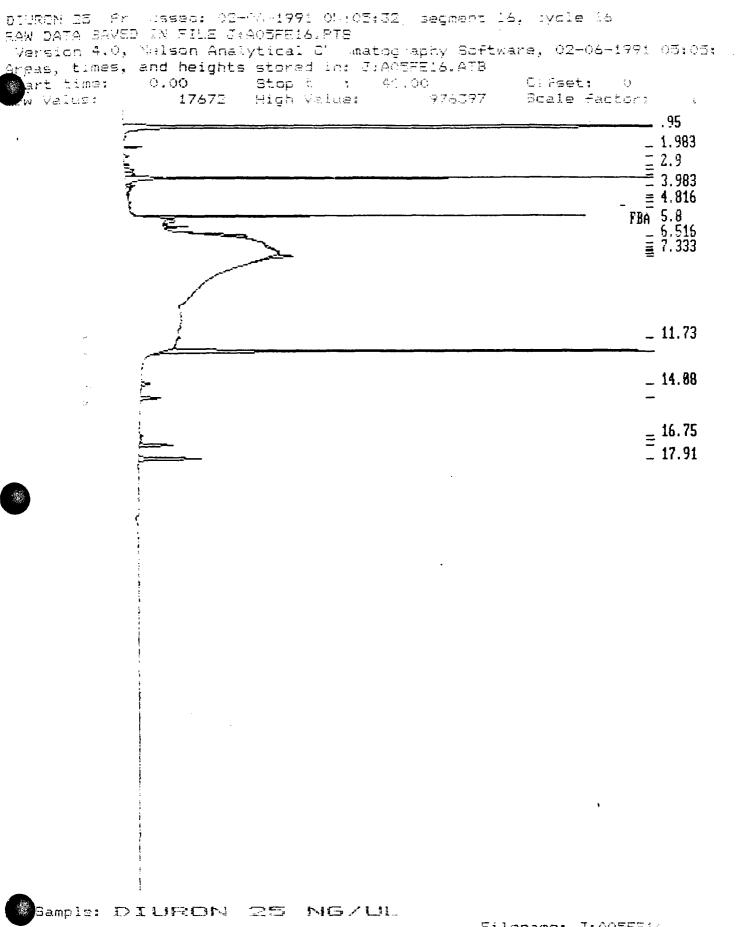
Forg-VIII information saved to disk as INTF-13A.LOS in the NELSON subdirectory. J:A15FE3.PTS



N bole phases HELIUM

F	Ret. 7 me	ng/ul arac	Hølart
1	5.95	7,728,738	957.140
		80,067	31,168
	2.43	43,548	10,234
	2,70	40,168	9,056
	3.19	135,309	11,270
ć	<u> </u>	73,153	13,644
	3.43	62,670	14.417
	3.57	3,548,231	748,832
- 9	3.98	. 37,933	10.02;
10	4.43	7,616	1.075
11	4.80	21,609	4.825
12	5.12	10,963	3.607
	5.40	8,904	4,250
14	5.52	2,179,396	751,192
is	5.80	157,821	17, 207
16	<u> </u>	124,548	44,153
17	6.52	417,919	47.500
18	5.88	82,936	<u> 3.816</u>
<u>i</u> 🤉	7:10	46,174	<u>e.717</u>
20	7.23	13,463	3,261
21	7.32	14,384	I.656
22	7.43	4,014	<u>i,157</u>
	7.57	<u>309,487</u>	41.589
24	11.73	72,682	7,472
25 Diuron	12.42	<i>25</i> 4,561,824	883,975
2.6	14.08	105,343	14,716
	14.92	199.,542	34,867
23	16.97	25,462	4.071
29	17.22	388,231	<u>60,2:</u>
30 DBC	17.92	0,1 726,415	<u> </u>

Form-VIII information saved to disk as INTF-13A.LOS in the NELSON subdirectory. J: AOSFE4.PTS



Mobile phase: HELIUM

2

Peak#	Ret. Time	Area	.Heichtig
1	0.83	328,247	260,541
2	<u> </u>	151,5 3	48,338
	1.23	1,263,612	124,469
4	1.60	53.9 (3	19.307
5	2.05	12,066	4,313
6	2.50	14 - 1	3.418
7	<u> </u>	57.492	15,116
8	4.35	11.337	3.675
9	4.75.	1.321,589	EUC, Les
10	5.05	896,513	
11	5.50	50,325	
12	6.07	73,7 3	16,760
1 3	5.35	7,620	2,257
14 DBC	0,115 17.90	1,275,781	
	UL UL		

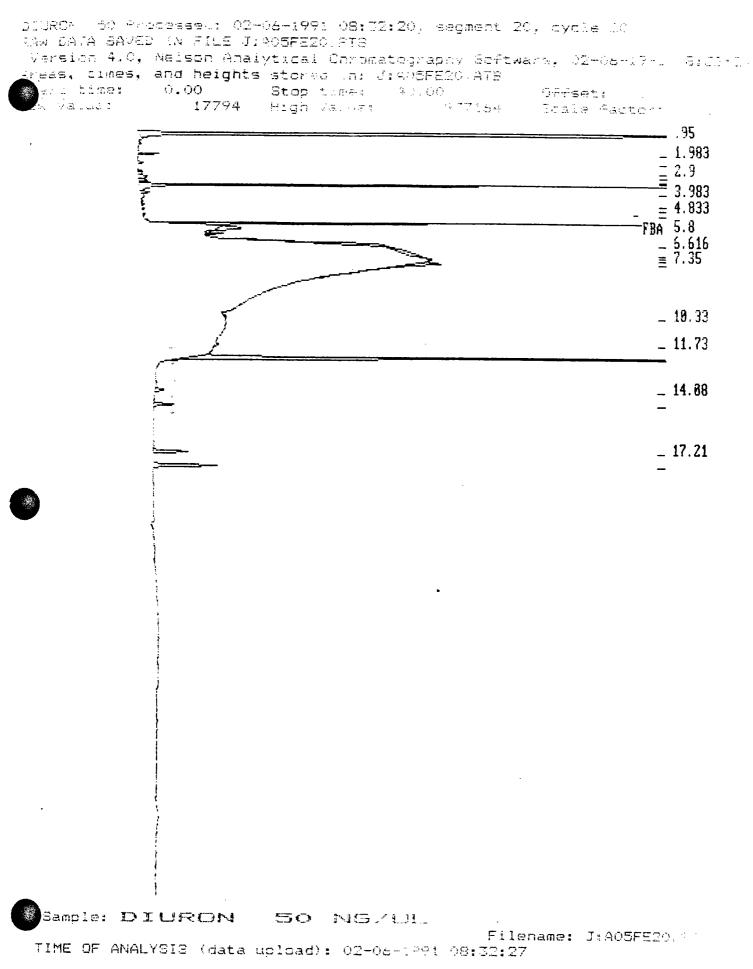
Form-VIII information and to disk as INTF-15A, LOG in the AELGON subdirectory. J: AOS: E5.PTS

TIME OF ANALYSIS (data upload): 02-06- 11 05:05:39

Filename: J:A05FE14 05:05:39

d. Method: M:DTMFLOT

L



Cost unyot: HFED90 Iciumo Type: CAPILLARY Totector: ECD Thus analysis was performed on Column #2 ICL::D3608 ICL2:D85

Motile phase: HELIUM

Peak#	Ret. Tima	ns/uc Area	
- -		7,662,967	937.313
2	<u>:.</u> 79	80.394	31,723
	2.45	40,779	9,047
- <u>1</u>	2.90	48,001	9,003
5		180,393	17.936
<u> </u>	5.43	202,816	17,707
7	3.57	3,574,605	953,720
3	3,78	95.017	15.962
	4.13	13,963	
10	4.58	8,573	and the second se
11	4.52	21,560	
· - · · · · · · · · · · · · · · · · · ·	5.12	11,642	
· · ·	3.40	13,073	
1.1	5.52	2.325,181	772
	5.30	137,944	
	e.07	126,154	44.1
	6. 22	157,646	
* 17 	6.38	62,073	· · · ·
	7.12	47,517	
20	7.22	16,294	
	7.33	24,952	
	7.43	6,347	· · · · · · · · · · · · · · · · · · ·
23	7.57	358,940	··· ···
	11.73	23,743	
= Diuron	12.42	25 4,411,979	
	14.08	107,488	
	14.82	204,240	······································
28	16.75	28,544	
	16.97	22,255	
	17.22	391,194	
DBC	17.92	0,1 755,581	

Form-VIII information saved to disk as INTE-13A.LOS in the NELGON subdirectory. J: A05FE16.PTS

5.

179

r :

.

≓wak#	Rot. Timo	NS/W Area	Heicht
-	0.95	7,427,749	954,546
2	1.78	56.522	38,325
	2.45	37,793	8,803
4	2.90	42,386	7,924
	T 1 -	158,245	15,506
6	J. 33	82.465	12,840
7	3.43	67,530	14,820
3	3.57	3,415,906	953,315
	3.98	93,737	16,532
	4.50	24,077	5.751
<u>. 1</u>	4.30	18,419	A 950
1	5.12	12,270	4,070
	5.40	10,782	5,260
1 1	5.52	2.388.323	876.340
	5.30	384,672	42,103
14	5.62		32,007
17	7.10	361,139	17 31
18	7.23	21.714	5. 64:
	7.35	34,979	
	7.57	296,190	47.071
	10.33	30,741	2,252
الله المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي ا المحالي المحالي	11.73	43,475	7, 17
Diuron	12.43	50 3,702,083	571.197
	14.08	:10,554	1 . .
25	14.82	208,985	36,111
<u> </u>	17.22	406,186	
IT DBC	17.93	D ,1 753,537	<u>114.a</u> T

Form-VIII information saved to tisk as INTE-13A,LOG in the NELBON subdirectory. J:AOSFE20.PTS

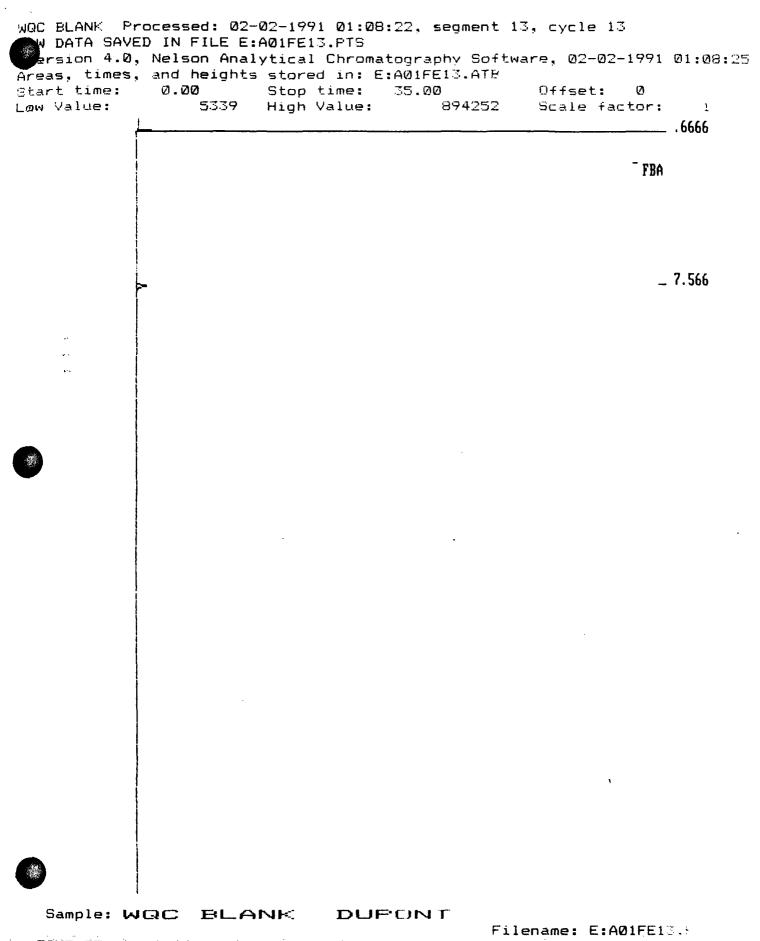
QC BLANKS RAW DATA

times, and height time: 0.00 Alue: 5352	s stored in: E:A	950607	Offset: Ø Scale factor:	
<u> </u>				. 6666
			[–] FBA	
~			-	7.566

•

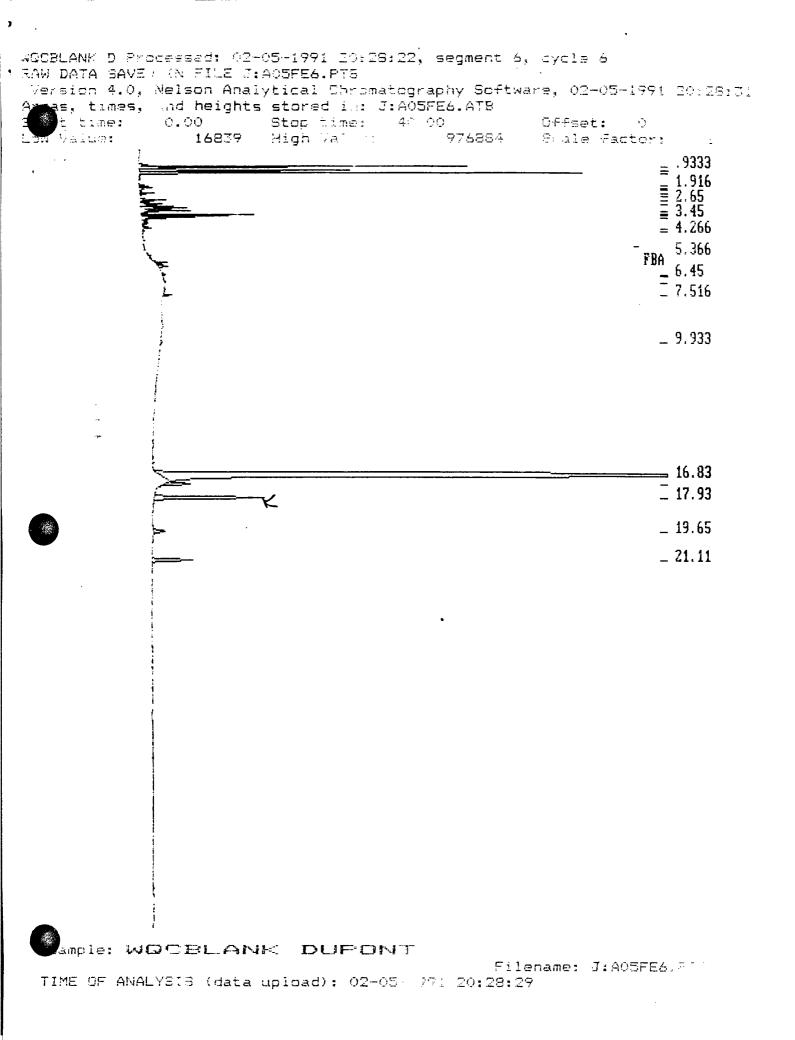
Filename: E:A01FE6.PT TIME OF ANALYSIS (data upload): 02-01-1991 19:06:45

Sample Name: WQCBLANK DUFONT Amount injected: 1.5 uL Filename:E:A01FE6 Date & Time of data upload: 02-01-1991 19:06:45 Acqu sition Method: M:SASPEST Interface#: 0 Cycle#: 5 Instrument: HP5890 Column Type: CAPILLARY-DB5 Detector: Ø This analysis was performed on Column #1


Mobile phase: Helium Operating conditions: 60-0.5MIN-30DEG/MIN-270DEG-2.5DEG/MIN-270DEG-10MIN Peaks with area less than 10000 are not listed below.

Peak#	Ret. Time	Area	<u>Height</u>
1	0.67	701,280	944,706
2	7.57 FAMFUR	108,433	14,307

Fore-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A01FE6.PTS



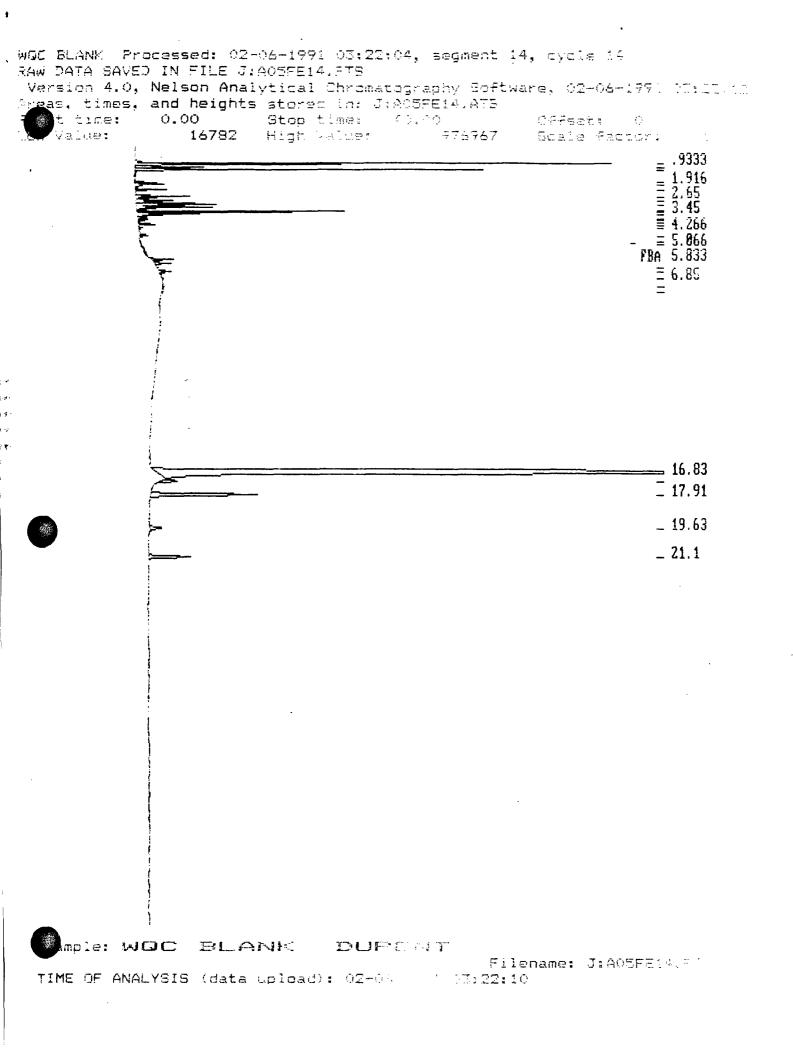
TIME OF ANALYSIS (data upload): 02-02-1-+1 01:08:24

Peak#	Ret. Time	Area	<u>Height</u>
1	0.67	702,970	888,216
2	7.57 Fampur	127,368	16,909

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A01FE13.PTS

Amount injected: 1.5 uL

Fliename:J:AO**5FE6** Date & Give of data volcad: 02-05-1991 20:28:29 Active ethics Mathod: M:DTMPLOT


Metile chase: HELIUM

<u> – Cakit</u>	Pat. Time	Area	Height
<u></u>	<u>, 93</u>	1,574,146	592,169
	1.13	1,573,016	380,516
	:	2,336,661	302,568
<u> </u>	1.72	27,518	9,535
2	2.00	o2.054	24,219
	2.03	46,224	9,755
7		67,622	28,494
8	2.45	14,529	3,759
÷	2.63	171,647	47,156
10	2.85	217,982	39,638
11	3.18	566,244	91,351
12	3.37	42,125	11,147
13	고 수맛	503,454	204,457
14	3.57	302,316	97, 177
15	4.08	51,051	16.277
16	4.27	9,679	ತ,ತಮ
17	5.37	3,328	1,678
18	5.52	16,537	3,151
17	5.83	35,059	24.072
20	6.07	77,154	15,270
21	5.45	16,714	5.100
22	6.55	8,495	4,321
	6.87	13,541	2.37
2.4	7.52	45,404	15,73
	7.93	15,449	3,584
25	16.33	14,390,023	716,507
27	17.22	293,785	45,135
28	17.93 DBC	1,317,677	178.77
29	19.35	162,335	
30	21.12	440,400	72,0

Form-VIII information saved to disk as INTE-13A.106 in the NELSON subdirectory. J:AOSFE6.PTS

Sample Name: WOC BLANK DUPONT

Amount injected: 1.5 uL

Date & Fire of data upload: 02-06-1991 03:22: 0 Filename:J:A05FE14 eition Matnod: M:DTMPLOT

Interface#: 2 二 ②マロスや昔も (1)ろ instrukent: FTECC Column Type: CAFILLARY Pris analysis was performed on Column #2 Detectr 800 CCL1:08608 CCL2:DB5

Mobile phase: HELIUM

dperading %insitions: 6udeg-imin-25deg/min-200deg-4deg/min-275deg-15m m Peaks with area loss than 1300 are not listed below.

Peak#	Ret. Time	<u> Area</u>	Heisat
÷	0.93	2,337,403	362,713
2		532,2%3	124,866
3	1. 27	1,740,522	630,675
<i>с</i> ;	1.92	48,981	16.645
5	2.00	139,914	52,931
	2.32	130,516	56,817
7	2.65	320,104	98,852
ę	<u> </u>	325,6 %	66,362
9	3.05	886.220	144, 21
10	3.37	57,955	17.165
11	. 45	905.354	372,507
iZ	3.57	364,068	112.971
13	3.73	91,462	17,765
1.1	3.85	55,706	17,48
15	4,00	5,846	17.945 2.673
16	4.08	83.343	30.272
17	4.27	13,781	7,767
18	4.63	34,414	14,340
17	4.93	3,483	1,700
20	5.07	5 145	2,640
	5.27	7,580	
22	5.35	22,2279	
23	5.83	161.146	41
24	6.07	102,658	
25	6.27	6,752	
26	6.47	33,150	
27	6.85	11,565	, ,
28	7.27	6,667	
29	7.52	12,102	
30	16.83	14,377,470	715
31	17.22	181,139	· · · · ·
32	17.92 DBC	1.274,041	1.7
	19.63	160,845	
34	21.10	465 853	

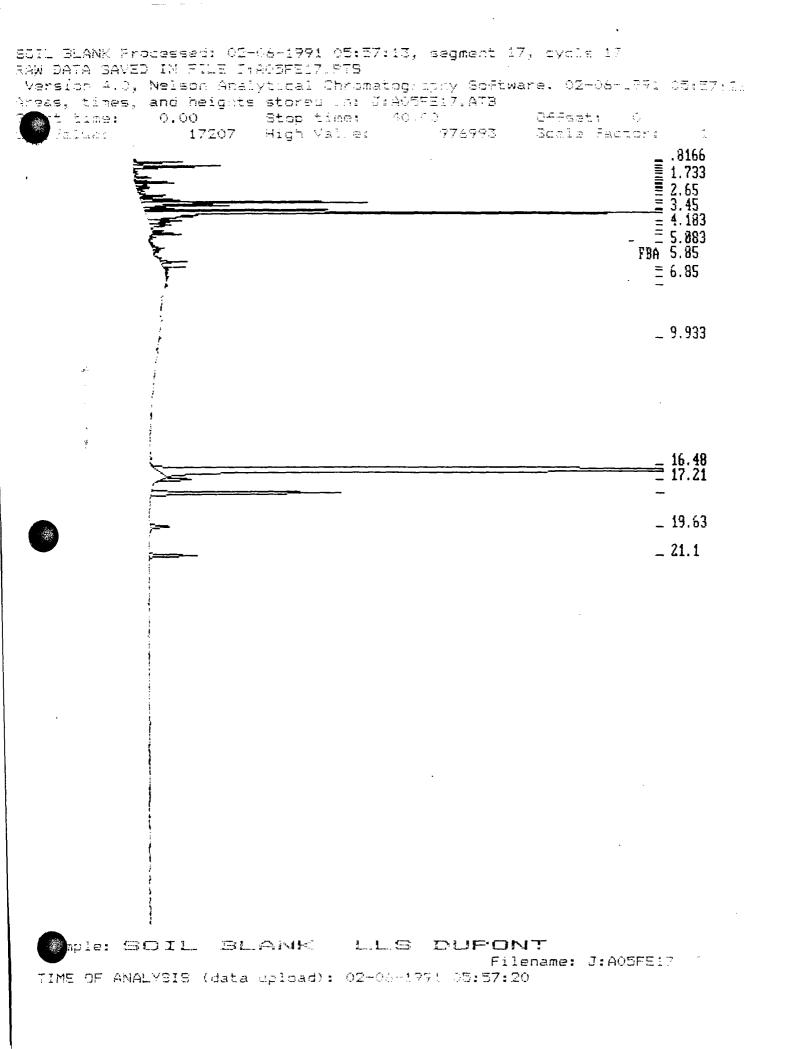
Form-VIII information and to disk as INTF-13A.LOG in the WELSON successform. J: AODAFE14.PTS

t time: Value:	0.00 5330	A05FE6.ATB 35.00 929316	Offset: Scale fact	Ø .or: 1
				[–] FBA
	~			_ 7.56
	4. 			
	, 			
	2			

---- · -

•

i...



Detector: 0 This analysis was performed on Column #1

Peak#	Ret. Time	Area	Height
1	0.67	670,726	923,359
2	7.56 Fam lun	92,475	12,194

Fore-VIII information saved to disk as INIF-13A.LOG in the NELSON subdirectory. E:A05FE6.PTS

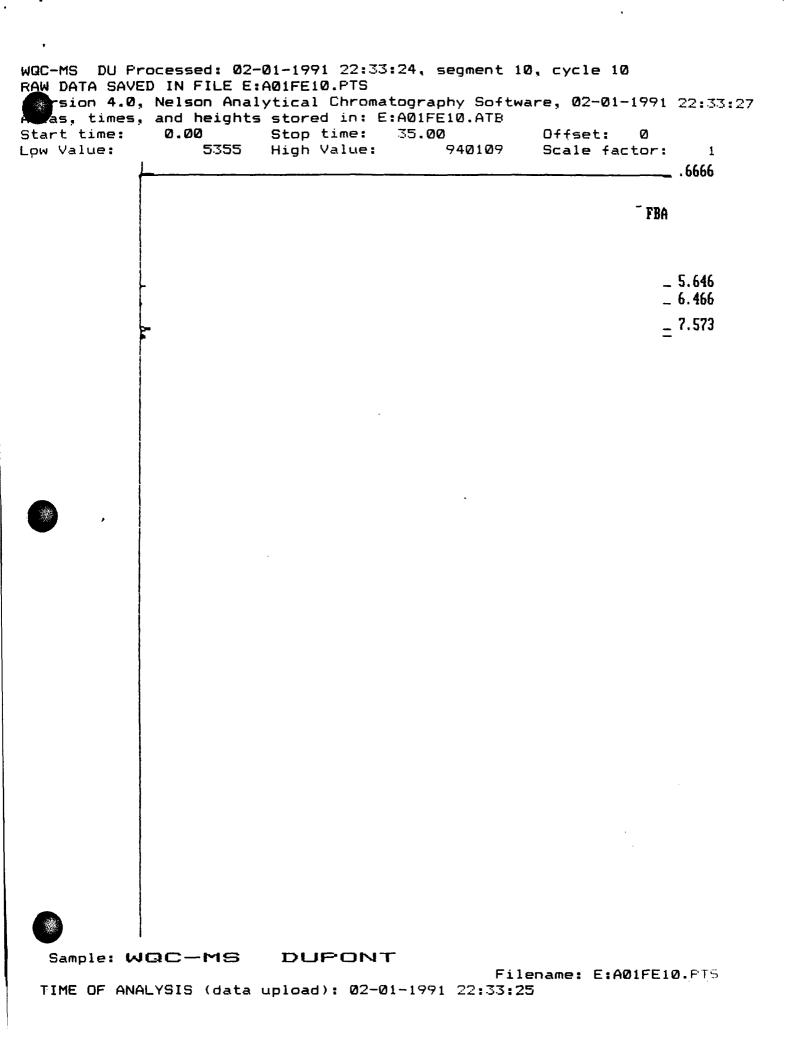
CCL1: D5605 _____55

Peak#	Ret. Time	Area		
1 	0.82	13,529	5,16	
2		273,147	89.35	
3	1.13	704,770	157.333	
4	1.27	71.064	23.90	
3	1.43	20,627	7,27	
6		41.175	7,44	
7	1.73	96.43t	31.19	
3	1.72	61,805	22,09	
9	2.09	215,134	70,57	
10	2 :2	95,479	. 7.67	
11	2,22	97,516		
12	2.32	48,721	21,14	
4	2.45	60,139	17.7	
:4	2.65	247,415	F0,37	
15	2.72	405,107		
16	3.05	1.381,691	407,53	
17	3.37	198,786	54,92	
13	3.45	716.211	331.52	
19	3.58	5,461,370	935.30 735.30 18.30 37.34 19.30	
20	3.78	387,504		
21	4.18	175,458		
22	4.47	41,338	19.80	
23	4.63	241,521		
	5.08	28,530	5.50	
25	5.22	17,529		
26	5.32	85,309		
27	5.5%	58,216		
28	5.77	8,307		
29	5.85	38,415	7 7 7	
30	5.07	155,047	4.E. (2)	
	5.33	100, 577		
	6.47	22,274	27 (1) 27 (1) 27 (1)	
33		15,030	·•• -	
34	7.27	15,467		
35	9.93	17,001		
<u> </u>	<u>i</u> <u></u> i <u></u> 2.48	9,334		
37	16.83	14,320,715		

The star <u>Acte a</u> <u>.....</u> <u>و او باد</u> روم و است او مواد ما الآر او مر <u>377, 937</u> _____ 17.90 NOL <u>2,280.473</u> * : ; 241,955 4.0 17.52 2...10503.828 35.sFJ

.

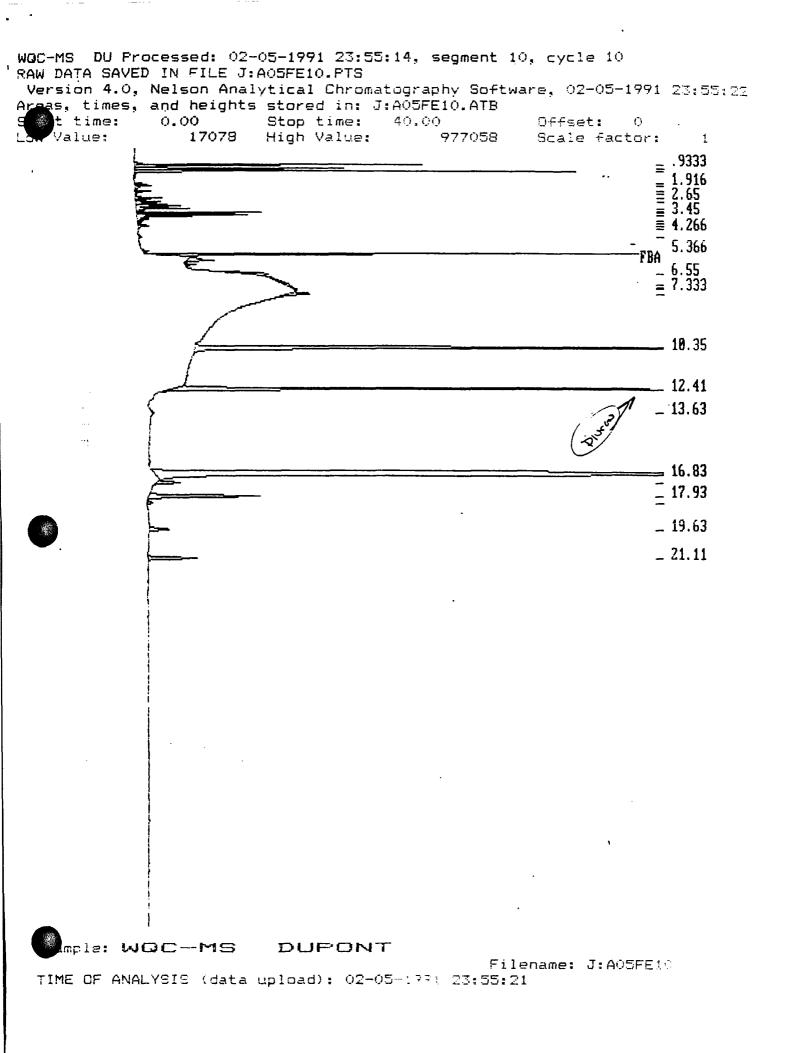
•


Form-VIII information saved to disk as INTF-13A.LOG in the VELSON subdirectory. J:AOSFE17.PTS

- 	
	-

QC SPIKE RAW DATA

•


.

Mobile phase: Helium

Peak#	Ret. Time	Area	Height
1	0.67	698,062	934,086
2	0.74	10,052	2,392
3	5.65 Linuron	20,934	7,974
4	6.47 Siduron	17,685	2,717
5	7.57 FAMFUR	124,829	16,744
6	7.92 Velpar	57,260	8,305

Fora-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. E:A01FE10.PTS

Filename:J:A05FE10 Date % Time of data upload: 02-05-1991 23:50:21 Acco sition Method: M:DTMPLOT

Mobile chase: HELIUM

1 0.73 1.543.517 520,034 2 1.13 1.603.607 376.773 3 1.27 2.432.971 797.156 4 1.72 36.937 12.490 5 2.00 113.513 30.877 4 1.72 36.937 12.490 5 2.00 113.513 30.877 4 2.32 67.342 28.736 7 2.455 16.480 4.079 8 2.655 197.766 48.199 7 2.855 243.023 44.870 10 3.18 578.444 76.397 11 3.37 49.942 12.815 12 3.45 544.457 224.287 13 3.57 735.802 197.257 14 3.87 27.587 3.875 15 4.00 25.872 5.44.857 16 4.08 86.047 20.207 7 4.27 7.249 2.557 14 5.83 27.583 47.458	Preak #	Ret. Time	Area	Height
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
3 1.27 2.432.971 797.156 4 1.92 36.739 12.490 5 2.00 13.513 30.877 6 2.32 69.342 28.736 7 2.45 16.480 4.079 8 2.65 187.766 48.198 7 2.85 243.023 44.870 10 3.18 578.446 76.397 11 3.37 48.942 12.816 12 3.45 544.457 224.287 13 3.57 735.802 199.257 14 3.87 27.587 3.872 15 4.00 25.872 5.448 16 4.08 86.047 20.207 17 4.27 7.249 2.557 18 4.63 14.287 5.98.275 19 5.37 37.969 11.433 20 5.552 2.721.482 978.275 21 5.83 297.583 47.663 22 6.07 55.366 19.557 <t< td=""><td></td><td></td><td></td><td></td></t<>				
4 1.92 $36,939$ 12,490 5 2.00 113,513 $30,877$ 6 2.32 $67,342$ $28,736$ 7 2.45 $164,480$ $4,079$ 8 2.65 $187,766$ $48,198$ 9 2.85 $243,023$ $44,870$ 10 5.18 $578,446$ $76,897$ 11 3.37 $48,942$ 12.816 12 3.45 $564,487$ $224,287$ 13 3.57 $735,802$ $197,287$ 14 5.872 5.472 5.446 15 4.00 $25,872$ 5.446 14 5.87 $27,587$ 3.875 15 4.00 $25,872$ 5.446 16 4.08 $86,047$ $20,207$ 7 4.27 $7,249$ 2.557 18 4.63 $14,287$ 5.985 20 5.52 $2,721,482$ $978,275$ 21 5.93 $287,583$ $47,643$ <t< td=""><td></td><td></td><td></td><td></td></t<>				
5 2.00 113.513 30.877 6 2.32 67.342 28.736 7 2.45 16.480 4.079 8 2.65 187.766 48.198 7 2.85 243.023 44.870 10 3.18 578.446 76.977 11 3.37 48.942 12.815 12 3.45 564.457 224.287 13 3.57 735.302 197.237 14 3.87 27.587 3.872 15 4.00 25.872 5.448 16 4.08 86.047 20.207 17 4.27 7.249 2.555 18 4.63 14.287 5.735 19 5.37 37.969 11.433 20 5.52 2.721.482 978.275 21 5.83 287.55 34.43 22 6.07 55.586 19.55 23 6.55 387.855 34.33 24 7.08 216.210 9.37	4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	2.00		
72.4516,4804,07982.65187,76648,19872.85.243,02344,870103.18578,44676,397113.3748,94212.816123.45564,457224,287133.57735,802197,257143.8727,5873,873154.0025,8725,446164.0886,04720,207174.277,2492,355184.6314,2873,935195.3737,96911,432205.522,721,482978,275215.93287,59347,661226.0755,58619,553236.55397,85534,36247.08216,2107,37257.2215,9065,51236.55234,86635,5247.08216,2107,37257.2215,9065,51277.55234,86635,52810.356,388,396849,-12912.42Diuren4,641,4884,473013,6317,2736,473116,8314,353,2879713217.92262,62240,3317.9316,23234,947203418.27633234,947216				
82.65187.76648.19872.95243.02344.870103.18578.44676.397113.3748.94212.816123.45564.457224.287133.57735.802197.257143.8727.5873.873154.0025.8725.445164.0886.04720.207174.277.2492.555184.6314.2875.952205.522.721.482978.275215.93287.58347.662226.0755.58619.557236.55387.8553.43247.08216.2107.37257.2219.9065.37267.3332.9736.35277.55234.86635.512810.356.388.3969.847.12912.42Diuron4.641.48874.9213114.8314.353.2879.655327.35234.86635.51236.55387.8553.43247.08216.2107.51257.2219.9065.513310.356.388.3969.847.13013.6317.2736.253217.22262.62240.3317.9314.334.8462063418.2763.24216.3519.6313.642206 </td <td>7</td> <td>2.45</td> <td></td> <td></td>	7	2.45		
72.85243.02344,870103.18578,44676,877113.3748,94212,816123.45564,457224,287133.57735,802199,257143.8727,5873,875154.0025,8725,448164.0886,04720,207174.277,2492,355184.6314,2875,955195.3737,96911,433205.522,721,482978,275215.83287,59347,662226.0755,58619,555236.55387,85534,33247.08216,2107,33277,55234,86635,32810.356,388,396847,122912.42Diuron4,641,4892912.42Diuron4,641,4893013.6317,2735,353115.8314,353,2873217.22262,62240,3317,9733418.2763,2423519.63234,9473519.63234,947	8	2.45		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11			
13 3.57 $735,802$ $197,257$ 14 3.87 $27,587$ 3.873 15 4.00 $25,872$ $5,448$ 16 4.08 $86,047$ $20,207$ 17 4.27 $7,249$ $2,557$ 18 4.63 $14,287$ $5,935$ 19 5.37 $37,969$ $11,433$ 20 5.52 $2,721,482$ $978,275$ 21 5.83 $287,583$ $47,463$ 22 6.07 $55,586$ $19,551$ 23 6.55 $387,855$ $34,33$ 24 7.08 $216,210$ $7,37$ 25 7.22 $15,906$ $5,51$ 26 $7,333$ $32,973$ $6,171$ 25 7.22 $15,906$ $5,51$ 26 $7,333$ $32,973$ $6,171$ 27 7.55 $234,866$ $35,51$ 29 $12,42$ $Diuron$ $4,641,488$ 991 30 $13,63$ $17,273$ 3.51 31 $16,833$ $14,353,287$ 927 32 $17,22$ $262,622$ $40,33$ 33 $17,93$ $Db < 1,334,846$ 206 34 $18,27$ $63,242$ $16,3242$ 35 $19,63$ $234,947$ 37	12			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	3.57		
15 4.00 $25,872$ $5,448$ 16 4.08 $86,047$ $20,207$ 17 4.27 $7,249$ $2,355$ 18 4.63 $14,287$ $3,985$ 19 5.37 $37,969$ $11,433$ 20 5.52 $2,721,482$ $978,275$ 21 5.83 $287,583$ $47,663$ 22 6.07 $55,586$ $19,551$ 23 6.55 $387,855$ $34,33$ 24 7.08 $216,210$ $7,571$ 25 7.22 $15,906$ 5.71 26 7.33 $32,973$ $6,571$ 27 7.55 $234,866$ 3551 23 10.35 $6,388,396$ 845.516 27 7.55 $234,866$ 3551 23 10.35 $6,388,396$ 845.516 27 7.55 $234,866$ 3551 23 10.35 $6,388,396$ 927.526 31 $14,353,287$ 927.526 32 17.93 $14,353,287$ 927.526 33 17.93 166.526 $40,353$ 34 18.27 $63,242$ $40,356$ 34 18.27 $63,242$ 16.526 $34,947$ 37.566 33.676 33.676	<u>.</u>	3.87		
16 4.08 86.047 20.207 17 4.27 7.249 2.355 18 4.63 14.287 5.985 19 5.37 37.969 11.433 20 5.52 $2.721.482$ 978.275 21 5.83 287.583 47.665 22 6.07 55.586 19.551 23 6.55 387.855 34.33 24 7.08 216.210 7.57 25 7.22 15.906 5.51 26 7.33 32.973 $6.55.51$ 23 10.35 $6.389.396$ 849.57 26 7.33 32.973 $6.55.51$ 23 10.35 $6.389.396$ 849.57 29 12.42 $Diuron$ $4.641.488$ $4.67.57$ 30 13.63 17.273 $9.67.57$ 31 16.83 $14.353.287.56$ $924.57.57$ 32 17.93 $DB < 1.334.846$ $206.57.57$ 34 18.27 63.242 $16.57.57$ 35 19.63 234.947 $37.57.57$		4.00		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	4.08	86,047	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.7	4.27		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	4.63	14,287	
21 5.83 287.583 47.663 22 6.07 55.586 19.537 23 6.55 387.855 34.33 24 7.08 216.210 9.37 25 7.22 15.906 5.737 26 7.33 32.973 6.357 27 7.55 234.866 35.77 23 10.35 $6.388.396$ 847.77 29 12.42 $Diuron$ $4.641.488$ 9.77 30 13.63 17.273 3.77 31 14.833 $14.353.287$ 9.67 32 17.22 262.622 40.77 33 17.93 $DB <$ $1.334.846$ 200 18.27 63.242 10.377 35 19.63 234.947 37	19	5.37	37,969	11,435
22 6.07 $55,596$ $19,557$ 23 6.55 $387,855$ $34,837$ 24 7.08 $216,210$ $9,877$ 25 7.22 $15,906$ $5,777$ 26 7.33 $32,973$ $6,3777$ 27 7.55 $234,866$ $35,777$ 28 10.35 $6,388,376$ $849,777$ 29 12.42 Diuron $4,641,488$ $9,7777$ 30 13.63 $17,273$ 3.77777 31 $14.353,287$ 96 927777 32 17.22 $262,622$ $40,77777$ 33 17.93 $DB \leq$ $1,334,846$ $20777777777777777777777777777777777777$	20	5.52	2,721,482	978,275
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	5.83	287,583	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	6.07	55,586	19,550
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	6.55	387,855	
26 7.33 $32,973$ 6.33 27 7.55 $234,866$ $35,7$ 23 10.35 $6.388,376$ 847.5 29 12.42 $Diuron$ $4.641,488$ 97.5 30 13.63 $17,273$ 97.5 31 $14.353,287$ 96.5 92.5 32 17.22 262.622 40.5 33 17.93 $DB <$ $1.334,846$ 200 34 18.27 63.242 10.5 35 19.63 $234,947$ 37.5	24	7.08	216,210	9.87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25		15,906	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	7.33	32,973	÷,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	7.55	234,866	<u>35,</u> F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	10.35	6,388,396 A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	12.42 Diuron	4,641,488	1 391
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	16.83	14,353,287	920
34 18.27 63.242 16 35 19.63 234,947 37			262,622	<u>40,</u>
<u> </u>	33	17.93 DBC	1,334,846	200
	34	18.27	63,242	
<u>36</u> <u>21.12</u> <u>528,147</u> <u>8</u> ⁻	35	19.63	234,947	
	35	21.12	528,147	<u> </u>

Form-VIII information saved to disk as INTF-13A.LOG in the NELSON subdirectory. J: AOSFE10.PTS

CUSTODY FORMS

				Suit Sampl	e Control Re	cord				
BNA PEST HERB	VET NET INORG	OTHER :		Locat	Location: FREEzer 24					
Project:	01-3794-03	2_ Dete:	7.5-91	2-5-51	2-5-91				1	1
Case : [Client :]	RE-RU	Time:	5:1504	52Cm	Rea			<u> </u>		
-	KE-RIG			ME	WAA				1	
s	AMPLES XTRACTS	Reason:	- · · · · · · · · · · · · · · · · · · ·		nalysis			<u> </u>	·	
					TION	LOCA			T I ON) °
Sample I		Metrix	106-11	E aut /	IN	aut	[14	aut	<u>t</u> IN	
SM	3	Soil	PACK ZI BI	IK	RackII					
DE-CO	N-Blcomp)									
REC.S	TD.				$ \Psi $!	
	-last									- -
										- -
		<u>_</u>			•					- -
<u></u>		<u> </u>		· · · · · · · · · · · · · · · · · · ·						
						·				
<u></u>				<u> </u>	<u> </u>	·			·	_ _
	· · · · · · · · · · · · · · · · · · ·				ļ				·	
										Ē
						-				
									· · · · · · · · · · · · · · · · · · ·	- -
				 	1				•	
	<u></u>				<u>.</u>		<u> </u>		:	- -
				 						- -
	·			<u> </u>					1	╌┝╴
			· · · ·	-						_
				[<u> </u>		-		
	•					·.				
, <u></u>				T					1	-۲
				1	1	:				-۲
					+	<u> </u>	+	, ,		╞
					+	<u> </u>	<u> </u>		+	- -
	·			<u></u>			<u> </u>	[+	-
	••••	····		<u> </u>			ļ	<u> </u>		_┝
	<u></u>				<u></u>			ļ	 	₋┝
	<i>'*</i>			T :						_L
			• • •							
					1				-	-
		+		and the second second		-	+			-†-

For Change of Customy Record refer to the back of this page.

Rev sed 25

	Suit: Semple Control Record										
ENA PEST HERB	WET OTHER:			Location:		500.201	1424				
	21-37-84-0			1-28.91	7.1.91		10 5 -				
Case :	NIPONT						2-5-91		··		
			Initials:	a:45pm LML		1545		18:00		Ļ	
ম_ ম_	NIPLES KTRACTS		Reason:	unc	WAA			WAA		:	_
					analy		a maly si			T I ON	0:1
Sample I	.D.		letrix	LOG-IN	OUT	IN IN		11	OUT	1.1	
Daci	BLK_	5	ATER	eack I B-5	Kgekt B-5	KackI B-5	RackI B-S	Kack		·	
NE-SI	2-A		1								
NE-SI	D.B									1	
NF-MI	D3-A									1	
WWX-1			$\overline{\mathbf{V}}$			V	V	V			
						· ·					$\overline{\mathbf{x}}$
\sim		\nearrow		$\overline{}$	/				\sim	<i>`</i>	- ->
							F		······	;	-}
<u></u>						<u> </u>	-}			· · · · · · · · · · · · · · · · · · ·	
						<u></u>	·				
						<u> </u>	·			·	
								+		·	- 🔅
						<u> </u>				·	
						<u> </u>	. 			·	_ _
						L				! 	_
		_								: 	
										- 	
			·· ·			T			-	1	
						1		 		1	+
			• • • •			1	•	1		1	
	·				 	+		+		+ !	- -
					- F	<u> </u>	-	+	<u> </u>	;	
	· · · · ·			<u></u>		<u> </u>		+	 	1	
.		 	·			<u> </u>	_ <u>_</u>	<u> </u>	ļ	+	
، او در می باد ما ا			• • <u>-</u>					ļ		+	
نام والاقور معرود	• ••• •							ļ		+	
	·····				<u> </u>			· · · · · ·			
				+					·		
		1			1					1	
:		-			1-1	+				~	
<u> </u>		ŧ		+		ور و و و و و و و و و و و و و و و و و و					

for Change of Customy Record refer to the back of this page.

			Suit: Sample	Control Re	cord				
BNA VET - PEST MET - HERB LINORG	OTHER: Location: Freezer# 24 RACK XVI. C-4 OTHER: OTHER:								
Project: 0/-3784-0		2/1/91	2/1/91	2/1/91	2-5-91	2.5.91		1	T
Client : SUPONT	Time:			19:50	16:00	18:00			-
	Initials:			WAA		WAA			
SAMPLES	Reason:		1						0:5
Sample 1.D.	Netrix	LOG-IN	analy aut	TION	a nalys			TION	
WRC BIK	WATER	XVI-C,4		XXX-CY		777-0,4		· · · ·	- '
DE-CON-A			-I-		1 J	V		:	-}
			<u>├</u> ──		├ ───				
END								· ···	
				·		<u> </u>		· · · · · · · · · · · · · · · · · · ·	
<u> </u>	<u> </u>	L	╂────			 i			-}
	ļ	<u> </u>	<u> </u>	L					-
~			<u> </u>	<u>}</u>	·	<u> </u>			
	<u> </u>	 		<u> </u>	·}			·	_}
· · · · · · · · · · · · · · · · · · ·				<u> </u> -	·}		ļ	•	_}
			 			ļ		· ·	
·				ļ		<u> </u>		· ·	_
					ļ	ļ		, 	
·		L		<u> </u>					
								1	
								1	
	· · ·	•••		Τ			-		
		1	1					1	-
				1		1		1	
			<u>†</u>	1					
	<u> </u>				·			1	
		<u> </u>		+	<u>}</u>	+	· [1	
						+		+	
			+				·	-	
			+	÷		+	·	+	
			+	+		·····		+	
		T					·]	+	
	······································	_					ļ		
					-			ŗ	_
: :	-		A. 38 .31	1 DE 18.	1		ł		

*

,

for Change of Custody Record refer to the back of this page.

Rev sed 25/2

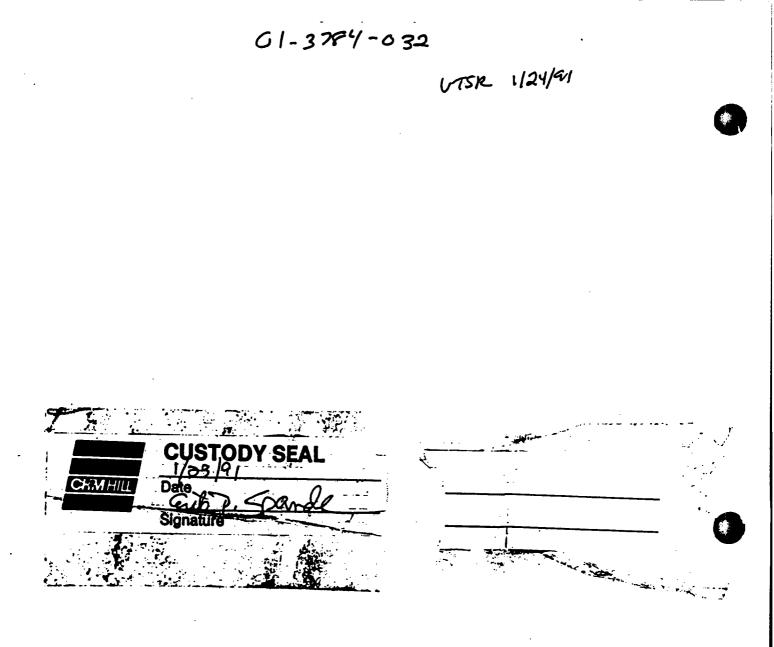
CHAIN OF CUSTODY RECORD

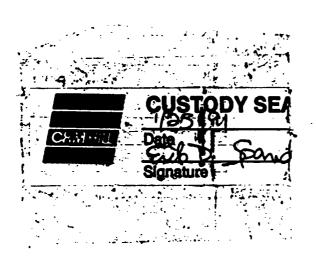
CHI 29	PROJECT NUMBER PROJECT NAME HI 20770. BP. SP SEEP CHARACTERIZATION CLIENT NAME CHOM HILL REPRESENTING											NUMB		AVE	NUE				
		CH2M I AST C				F	<u> </u>		/		_	REQU	the second second second second second second second second second second second second second second second s					LADA	
	CT MANA				COPY IO:	ŝ	i										L	MOJECT NO.	新た た 見 見 見 の た
PIXIE	NEWM	AN/C	HI		JOHN FLUSSNER/GLO	N T				(DIURON)			:				•	ACK	
	STED CON				SAMPLING REQUIREMENTS SDWA NPDES RCRA OTHER] [.			DIN							D D	QUOTE#	at (SE) or and the
			 .			E N	20	2	2									NO. OF SAMP	
STA NO.	DATE	TIME	C G O R M A P B	5 S 2 O 1 I 1 L	SAMPLE DESCRIPTIONS (12 CHARACTERS)	RS	HEXAZINONE	SIDURON	LINURON	Karmex								REM	ARKS
	1-23-91	09:15	×	Γ	DE-SP-A	2	×	X	×	x								Gord	
		09:40	X		DE - SP - B	2	X	×	X	X		ļ							
		08:28	×	:	DE - MN3 - A	2	x	×	x	x									
		†		\uparrow								 							
																		COOLER # 31	
	 																	SWRT # 81-37	84-032
	}	 				}													
<u> </u>				 			 												•··
SAMPLE	D BY AND	TILE	II	_ <u>L</u> ,	DATE/TIME 1/23/9/ /1:09	PEU			 \@ra	le	L	I	L	DATE/	/TIME 3/9]);/(C	HAZWRAP/NEESA Y QC LEVEL 1 2 3	N
RECEIVE	RECEIVED BY: DATE/TIME				RELI	NQUISI	HED BY	:					DATE	/TIME			COC	ICE	
RECEM	RECEIVED BY: DATE/TIME				DATE/TIME	RELI	NQUISI	HED BY	:					DATE	/TIME		<u> </u>	ANA REQ CUST SEAL SAMPLE COND.	remp Ph
Pra	ED BY LAB	ec.	8		DATE/TIME 01-24-41 10:00	SAM UPS	PLE SH BU	IPPED S (FI	ED-EX) н/	ND	ОТНІ	ER		^	JR BILL	63	52149171	
REMARI																	ITERED CO	EWED	

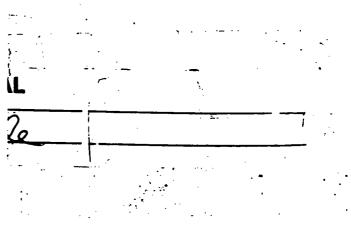
SUUIMWESI MESEANUMINSIIIUIE

CUSTODY TRANSFER FORM

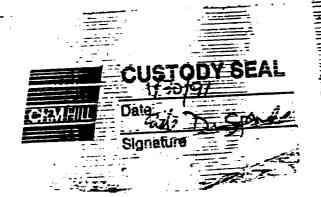
		BI-3784-032
Sampling Site E.I. Du PONT EAST CHICACO, IN	Sample Type (Air, Water, etc.)	Ship To: E.I. D. ANT de No HILLES ATTN: DR O. J. MEYER 5215 KENNEDY AVE E. CHICAGO, IND 46312
Sampling Personnel DAVID SHEKOSKI ERIC SPANDE (name) (phone) (dete) (time)	Sample Condition (pH, Temp, etc.)	Name of Shipper: $\frac{HERB}{5WRJ}$ <u>6228</u> <u>CMLEBRA</u> <u>RD</u> Address: <u>SAN</u> <u>ANTONIO</u> , <u>74</u> 7823 Telephone: <u>512-522</u> 3051 Date Shipped: <u>01-21-91</u> Air Bill No. <u>5W1</u> 162724
Sample ID	Description 1 LITTER AMBER BTLS W/I COOLER # 31	Sample Condition on Receipt (temperature, breakage, etc.)
Additional Information:		Received by:

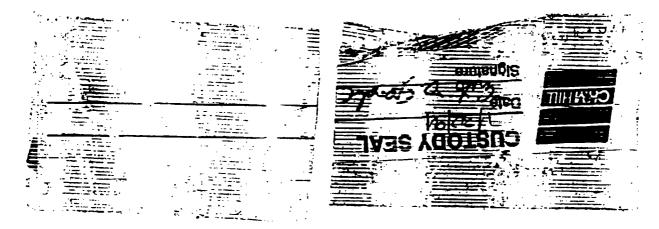

3


Date: 1-22-91 SURE Las rec' Time: _______ 1/24/41 10:00 1


CUENT	T NUM		PR Sc	OJE EI		NAME (THAR ACT CT	-120 F70N	, O F	CLIE CH EV	NT ADD	RESS HILL	,ic	600		 su,te	ייאר,		FOR LAB U	SECULY
Pu	PONT	Enst	CH) IC	A (50		1	 			ANA	LYSES	REQUES					
	T MAN	NGER OMAN	/c1	• •		COPY TO: JONN FLE	ISSNER/610					RON)					Â	PROJECT NO.	
EQUES	TED CC	MP. DATE			╡	SAMPLING	REQUIREMENTS	İ Å	U C U			DIV							the second state
						SDWA NPDES	RCRA OTHER	N E	ZIN ON	So	RON	521	NURON						
STA NO.	DATE	ПМЕ	С 0 М Р	G R A B	5 0 1 1	SAMPLE DI (12 CHA	SCRIPTIONS RACTERS)	Ŝ	HEFAZINON	SIDLRON	LINURON	KARMEY (DIVRON)	FINU						ARKS
	130	a 2:00		X		DE- (ON .	·	2	X	K	x	X	×		-			TE-CON-B 19	ASOL
_		1 2:00		X		DE-100-		4	Y	X	x	x	R					SAMPLE. PLE	ASE LOM-
			Π		Τ			[,			ł.	POSITE SI	IMPLES
_					T		<u></u>											IN ANALYSIS	OF FOR
																		PESTICIDES	
			+		_}										 	_	· ·		<u> </u>
	 	-					·												
					I	·····									 			······	
							······								 				
Eilo	DIVA	Dand	<u> </u>			DATE/TIME 1/30/9/	2100		nio			le	l		DATE/TIN 1/30		50	HAZWBAY/NEMA 7 QC LEVEL 1 2 3	
ECENE	u				┦	DATE/TIME DATE/TIME			VQUISH VQUISH				<u>. </u>		DATE/TIN DATE/TIN			COC ANA REE CURT SEAL	ICI TEMP Ph
530	DBYIA	Reen	18	,	╉	DATE/TIME 01-31-91	09:30	SAM UPS	PLE SH		D-EX) ha		OTHER	 	AIR BI	L# 63	52149263	

,


REV 6/89 FORM 340



01-3784-032

•

. . .

FEDERAL	UESTIONS? CALL 000-238-5355 TOL	L FREE.		AIRBILL MCKAGE TRACKING NUMBER	, J 352]	L49263
13M635		niter (Alex Innotent) -] To (R <u>ecipient</u> a NelTe) f	RECIPIEN		9/10
CHLID L'SHEKOSK	(1	72-2425 Depentment/Floor No.	HERB SCH	HTIEDERKE	() Department/Floor No.
310 H HISCONSIN	State ZIP Required	203	GA20 C	ULEURA KU	зыю Тх .75	цин - - Д.26
CHI- 38770: 64. S	P anti Acca, Ina. 3] an tra Party partia Acca in 77 3 2 A VIII A Cart A The Party Party Acca in 77 3 2 A VIII A Cart A The Party Party Acca in the			= 1-3A Shill	200	
	DELIVERY AND SPECIAL HANDLING 1			Cash Received Received Received Received Received Received Received ED Crip To Hoad	Fectoral Express Use Base Churges U Declared Velue Charge Other 1	
10 1	4	Total Total	maight Survey X	Rollin R. th		Oligie 2 / Iotal Anerges
Economy Service Heavy Hills Service Heavy Bundley Any Heavy Hills Service Heavy Bundley Any Heavy Hills Bal Data by Hy Holdson Heavy Hy Hang Heavy Hy Holdson Heavy Hy Holdson Heavy Hy Holdson Heavy Hy Hang Heavy Hy Hy Hang Heavy Hy Hy Hy Hang Heavy Hy Hy Hang Heavy Hy Hy Hang Heavy Hy Hy Hang Heavy Hy Hy Hy Hy Hy Hy Hy Hy Hy Hy Hy Hy Hy		/1 0 Regular State /1 0 Regular State 2 0 On Call State	ACA 3D Dop Box a ¹ g D BSC Pres	(Time Received FedSy 1-31-9/	Employee Number	
10 CL SERVICE 10 CL MEDITINE 10 CL MEDITINE 10 CL ME	12 NOLIDAT DELMENT # series	FedEx Emp No	Date/	Time /	1	USA

01-3784232 VT5R.01-31-81

FIELD ASSESSMENT PROCEDURES

1949 - N. W. S. -

OUTLINE

Section 8 -

- 1.0 INTRODUCTION
- 2.0 STRATIGRAPHY SOUNDING
- 3.0 SOIL SAMPLING
- 4.0 WATER SAMPLING
- 5.0 FIELD QUALITY CONTROL PROGRAM
- 6.0 SAMPLE PRESERVATION, HANDLING, AND DOCUMENTATION
- 7.0 ON-SITE LABORATORY ANALYSIS
- 8.0 HEALTH AND SAFETY
- Attachment 1 Subsurface Environmental Assessment Laboratory (SEAL) Statement of Capabilities

i

- Attachment 2 Field Activity Log Sheet
- Attachment 3 Chain-of-Custody Form
- Attachment 4 Sample Preparation and Analysis Methods for Metals
- Attachment 5 SEAL Health and Safety Plan

FIELD ASSESSMENT PROCEDURES

1.0 INTRODUCTION

Procedures to be used for sample collection, screening, and analysis of groundwater and soil during the field assessment are described in this section. The Du Pont East Chicago Plant Phase III subsurface investigation will use Conoco's Subsurface Environmental Assessment Laboratory (SEAL). Conoco Inc. is a wholly owned subsidiary of E. I. du Pont de Nemours & Company, Inc. (Du Pont).

SEAL, which uses traditional cone penetrometer technology, was developed to provide a state-of-the-art field investigation system for subsurface environmental projects. Unique designs and sampling innovations provide quality environmental sampling along with on-board analytical capabilities for obtaining physical and chemical data for groundwater and soil. The specific operating procedures and capabilities of the SEAL unit are discussed in Attachment 1.

SEAL was chosen for this investigation because of its ability to gather high quality soil and groundwater samples quickly, efficiently, and safely. SEAL can also operate in temperatures below freezing. SEAL's on-board gas chromatograph (GC) will be used to screen samples for volatiles, but only for a portion of the work. The bulk of the samples taken by SEAL will require a metals analysis. For this reason, Conoco's Mobile Lab will be on-site and fitted with an Atomscan Sequential ICP. The ability to generate "same day" screening results will allow for optimizing SEAL and its workplan since it can take many samples in a short period of time. This will become especially important during plume delineation.

Deviations from the procedures provided in this section may be required due to circumstances arising during the course of the field assessment. Any deviations from the specified program and the purpose for the deviation will be clearly documented in the daily field activity logs. Deviations will be closely scrutinized to determine what additional work may be necessary to complete the goals of this investigation.

2.0 STRATIGRAPHY SOUNDING

Prior to sampling, SEAL will be used to determine the shallow geology across the East Chicago Plant site. Earlier studies show that in some locations, the shallow geology is mostly fine-grained loose sand underlaid by a confining clay at a depth of 25-30 feet. The water table is from zero to eight feet below surface and varies within the plant site. A site-wide investigation is needed to better understand and define the local geology and groundwater conditions.

Stratigraphy will be determined using an electronic piezocone deployed by SEAL. This device, which measures about 1.44 inches in diameter, uses metallic strain gauges to measure tip and sleeve friction resistances. These resistances are influenced by the type of geology encountered as the cone is hydraulically deployed by SEAL's 20-ton ram assembly. A computer records resistance data and calculates an accurate description of the subsurface strata. These data can be immediately printed and

plotted on SEAL to provide preferred sampling depth information as well as cross sectional plots. An example printout and plot is shown in Attachment 1.

The electronic piczocone also provides pore pressure data and is useful for determining the water table and future water sampling depths.

To better characterize the site geology, at least thirty site-wide locations will undergo stratigraphy sounding. More locations may be required if it is found that the geology changes significantly between locations. All locations will be surveyed for elevation. All stratigraphy soundings will be advanced through the upper sand and at least two feet into the confining clay layer.

3.0 SOIL SAMPLING

SEAL will also be used to collect soil samples in the vadose zone. At least two 2-foot cores will be taken between zero and eight feet below surface. The intervals chosen for sampling will be field selected using the data generated during the stratigraphy sounding. The purposes of this sampling are to identify and eventually delineate local "hot spots" and to determine potential groundwater contamination sources. Initially, all sample locations will be set up on a 200-foot grid system across several areas of the site.

SEAL's unique soil sampling techniques and equipment allow for discrete samples to be taken from the selected intervals. A two-foot-long, one-inch diameter sample chamber remains sealed as it is deployed to the top of the desired interval. The conical tip along with the sealing "O"-ring is unlocked at the sampling depth by slightly retracting the connecting rods. A tremie line is then lowered through the hollow connecting rods and will lock onto the sampler's tip so that it can be removed. Soil is collected in the two-foot chamber as the sampler is advanced an additional two feet. The cutting edge of the sampler is fitted with a self-sealing sand catcher to prevent loss of the sample.

The sample is retrieved by fully retracting the connecting rods and removing the sample chamber. The sample is then separated into two one-foot sections by unscrewing the two-foot sample chamber. The sample may need to be extruded, but in most cases, will fall out since the cutting edge is slightly smaller than the sample chamber. When feasible, the sample will be shaved prior to being transferred into appropriate sample containers.

The entire procedure will be repeated for deeper sampled intervals using a clean sampler. Decontamination procedures are discussed in Section 5.0. It may be necessary to use a larger 1.5-inch diameter sampler to collect enough sample for analysis. The larger sampler is simply a scaled-up version of the one mentioned above.

4.0 WATER SAMPLING

Groundwater samples will also be collected using SEAL. Using the pore pressure and stratigraphic data, two depths from each location will be selected for groundwater

sampling. It is desired to know the conditions of groundwater near the top and bottom of the conductive zone, therefore, two depths at each location will be sampled.

SEAL is capable of collecting groundwater samples by several methods depending upon the analytical needs and the type of strata where the samples are to be taken. All methods employ the use of a retractable screen which remains sealed as it is deployed to the desired sampling depth. The screen is then exposed to the formation by retracting the connecting rods a distance equal to the length of the screen. Water can then be removed by three different methods.

The first and most popular method is to use a septum-top evacuated tube which contacts a septum on the sampler through a double needle. The evacuated tube then fills with water. The second method is to use a bailer through the hollow connecting rods in a manner similar to bailing a screened well. The third method is to pump the water using a peristaltic pump. Of course this is limited to shallow (<25 feet) depths. The plan is to pump 'he water, but field conditions may require another method.

The water samples will be taken from the same hole as the soil samples. After sampling water from the top of the aquifer, the screen will be fully retracted and the rods will be fitted with a clean sealed sampler to be deployed to the bottom of the aquifer. Water samples will be transferred to the appropriate sample containers and immediately sent to the on-site mobile lab for analysis which is described in Section 7.0. Appropriate documentation will accompany each sample as discussed in Section 6.0.

5.0 FIELD QUALITY CONTROL PROGRAM

To ensure and maintain high quality data, several measures are necessary before, during, and after each sampling event. These measures include:

- Documentation
- Equipment Decontamination
- Sampling Equipment Blanks
- Equipment Calibration
- Field Blanks and Duplicates

5.1 Documentation

The SEAL operator will maintain a field log for all SEAL activities. This log will include sample locations, depths, sampling time, and procedures for sampling. It will also be used to log sample descriptions, weather conditions, and any anomalies noted during the activities. A copy of the field activity log sheet is shown in Attachment 2. In addition to the field log, sample chain-of-custody forms will accompany all samples delivered to the field lab or shipped to an outside laboratory. The next section discusses this in more detail. The chain-of-custody form the will be used is shown in Attachment 3.

Stratigraphy data, interpretations, plots, and the field activity log will be kept in loose leaf binders and indexed by location number. Additional information or notes may be added throughout the project.

5.2 Equipment Decontamination

To ensure sample integrity, all sampling equipment will be decontaminated prior to its use. Soil and water samplers will be dismantled and thoroughly washed using a five step decontamination procedure:

- 1. Water/Alconox detergent scrub to remove visible solids.
- 2. DI water/Alconox detergent brushing
- 3. DI water/mild acid rinse
- 4. DI water rinse
- 5. Methanol rinse

Disposable PVC gloves will be used to handle all samplers and will be discarded after each sampling event.

5.3 Sampling Equipment Blanks

To verify the effectiveness of the decontamination procedure, periodic equipment blanks will be taken. This will be accomplished by randomly selecting and subjecting clean samplers to rinseate samples or equipment blanks. The blanks will undergo analysis for the same parameters of the soil and water samples. The results will be documented in the field activity log sheet.

All equipment or solutions that could create a pathway for cross contamination will be subject to random blanks. This includes soil and water samplers, pump hose, sample handling tools, and decontamination rinse water.

5.4 Equipment Calibration

SEAL utilizes few pieces of equipment that require calibration. The reliability or calibration of the electronic piezocone will be verified prior to any stratigraphy soundings. This equipment will check tip and sleeve friction resistances.

Buffer solutions for pH and specific conductance will be used daily to check and calibrate the instruments.

Analytical standards will be run on both the SEAL GC and the ICP. These are discussed in detail in Section 7.0 and in Attachment 4.

5.5 Field Blanks and Duplicates

Periodic duplicate samples of both soil and water will be taken to further establish confidence in the sampling and analytical methods. The duplicate samples will be given a unique identification number to distinguish them from the primary samples.

During sampling, occasional field blanks will be collected to determine potential absorption of contaminants from the air or contaminated containers. Only DI water will be used for the blanks. Field blank vials will be filled at the sampling location by pouring the water directly into the vial. The sample will be logged on the chain-of-custody of analyzed using SEAL's GC.

6.0 SAMPLE PRESERVATION, HANDLING, AND DOCUMENTATION

6.1 Preservation

Sample preservation is needed to retard biological action and hydrolysis, and to reduce absorption effects. Preservation methods include pH control, preservative agents, refrigeration, and protection from light. The methods to be used for this investigation are as follows:

Water Samples

- Volatiles 40 ml VOA with Sodium thiosulfate and refrigerate to 4°C.
- Metals 125 ml darkened polyethylene bottle with nitric acid to pH<2 and refrigerate to 4°C.

Soil Samples

- Volatiles 125 ml glass widemouth, no preservative
- Metals 125 ml glass widemouth, no preservative

Soil samples will be preserved in the field immediately after sample collection by placing the samples in SEAL's on-board refrigerator. Most samples will be immediately delivered to the on-site lab for analysis.

Samples that are selected for analysis by a contract laboratory will be transferred into an insulated ice chest containing ice.

6.2 Documentation

Proper documentation includes items other than just the chain-of-custody. To prevent misidentification of samples, legible labels will be affixed to each sample container. These labels will remain durable and legible even when wet and will contain the following information:

Project name or ID number Sampling point ID Initials of collector Date of collection Analysis required

Samples delivered for immediate on-site analysis will also be labeled but may not carry all of the above information.

In cases where samples will be shipped off-site, a security seal will be placed on the sample container and on the shipping container to ensure the samples are not disturbed during transportation. Seals will not be necessary for samples being analyzed on-site.

A field log book containing sampling information will be maintained for all sample collection activities. This information will include:

- Sampling point ID
- Sampling interval depth
- Sampling procedures or methods
- Containers used, type
- Climatic conditions
- Sampling start and end time, military
- Field observations
- Sample observations (color,odor,etc.)

A chain-of-custody form will be employed that allows for the possession and handling of samples to be retraced from the time of collection through contract laboratory analysis. All sample containers will be labeled to prevent misidentification.

Chain-of-custody form will be used for all samples, even those delivered on-site for immediate analysis. This allows for maximum flexibility in deciding which samples need to shipped to a contract laboratory. Attachment 3 presents a chainof-custody form that will be used. Persons relinquishing and receiving the samples will sign and date the form.

A copy of the chain-of-custody will be placed in the loose leaf binder in a dedicated section.

6

A logbook or a computerized log will be maintained in the on-site laboratory in order to document the processing steps applied to the sample. All information relevant to the preparation and analysis of the sample will be noted including time and date. Results of standards will also be maintained.

The results of on-site analytical work will be transferred to the loose leaf binder on a daily basis. Each results report will show only results for samples taken at a single location. More than one report can be generated for each location. This will facilitate keeping the data indexed by location only. Duplicate reports will also be kept by the analyst.

7.0 ON-SITE LABORATORY ANALYSES

The sampling plan calls for two soil and two water samples to be taken from each location. Measurements of pH, temperature, and specific conductance will be completed for water immediately after the sample is taken. In nearly all cases, both soil and water samples will be analyzed for metals using the on-site mobile laboratory. It is expected that some samples will be analyzed using both the mobile lab and SEAL's on-board GC. Selected samples will be sent to an outside contract lab for confirmation analyses.

Instrumentation for the metals analysis will include microwave digestion and a Thermo Jarrell Ash AtomScan 16 Sequential ICP Spectrometer. The metals to be analyzed are:

Aluminum Antimony Arsenic Barium Cadmium Chromium Lead Nickel Zinc

Attachment 4 gives the details on sample preparation and analysis methods for metals.

Some samples from the old Trichlorofluoromethane plant area will be analyzed/ screened using SEAL's on-board GC. Compounds for screening include:

1,2-Dichloroethane	Trichlorofluoromethane
1,1,2-Trichloroethane	Benzene
Perchloroethylene	Ethylbenzene
Trichloroethylene	Toluene
Carbontetrachloride	Xylen e

SEAL's GC is a HP 5890 Series II GC connected to a Tekmar 7050 carousel headspace autosampler. For chlorinated organics screening, an ELCD detector will be used. Volatile aromatic compounds (BTEX) will use a PID detector. By taking sample splits, several samples will be run before switching detectors. The detection limits achievable depend upon the standards and project demands. For this work, detection limits will be about 50 ppb. Standards are run on a daily basis to ensure the screening integrity.

Both water and soil samples are placed in pre-weighed 20 ml septum-top headspace vials. The vials are heated and sampled by the headspace autosampler. The sampled vapor is then automatically carried through the GC column. The printout from the integrator can be compared to the standard and concentrations calculated.

All information generated during the analysis will be kept in the loose leaf binder and indexed by location. Data from standards will be kept in a separate section in the loose leaf binder.

Both the GC and ICP will be used to run equipment rinscate blanks and field blanks. These will be indexed on a location basis.

8.0 HEALTH AND SAFETY

The most important concern for any site assessment is that the work is carried out in a safe manner. There are risks associated with any physical activities, especially when heavy equipment is involved. Add in the potential for toxic exposure and the risks increase significantly. SEAL was designed to minimize these risks. This is evident in nearly all of the ancillary equipment on-board the truck. In addition, all personnel have had many hours of safety training, including the OSHA 1910.120 40-hour class. Safety will not be compromised for any reason. Independent audits are welcome. Attachment 5 is the Health and Safety Plan for SEAL.

8.1 SEAL'S Safety Features

A unique rod decontamination device is used to clean the outside of the rods as they are retracted and pulled from the ground. This device effectively wipes, washes, and rinses the rod to reduce the potential for contact and vaporization of the contaminants. The wastewater from this unit is collected and transferred to the on-board stainless steel waste disposal tank.

Since some work occurs beneath the cabin of the truck, a video camera is set up below and the monitor is near the truck operator in the cabin. This is to ensure that any hydraulic movement that occurs while working under the truck is directed by the person doing the work.

The floor of the truck's cabin is nearly six feet off of the ground. A ladder is used to enter the truck and a handrail and grab rails are located on the truck's door and near the door.

A grounding rod located at the rear of the truck will be driven into the ground at each location during threatening weather. Work will cease during local lightning storms. A combustible gas monitor along with an hydrogen sulfide gas monitor will be used to sniff the area where the rod enters the ground. The alarms are located in the cabin.

A hood is also in the cabin and is used for sample handling when volatile contamination is potentially present.

Local emergency phone numbers will be posted inside the cabin. A cellular telephone will also be available on-board SEAL.

MSDS sheets for all chemical materials are available and found in the bookshelf and on the wall of the support vehicle. A copy of SEAL's Health and Safety Plan is also located on the bookshelf.

First aid kits are located on SEAL and in the support vehicle. An eyewash station, fire extinguishers, and three five minute escape pack respirators are also located on SEAL.

8.2 Personnel Protection

Approved safety glasses with non-flexible side shields and steel-toed boots are the required personnel protection. Hard hats will be worn in the required areas and in areas where overhead hazards exist. Hard hats are not required inside SEAL's cabin.

Disposable PVC gloves will be worn when handling rods and samples. For added wear protection, leather gloves can be worn over the PVC gloves. Other types of gloves are available for decontamination washing etc.

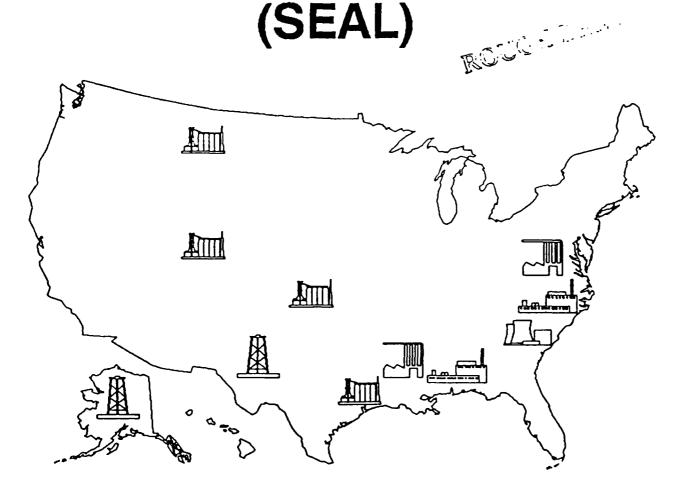
Tyvek coveralls and long-term breathing equipment are not stock items on SEAL. The use of these is expected to be very limited. Nomex coveralls are available.

8.3 Pre-Sampling Safety Requirements

Great forces and pressures are generated as the cone rod is deployed by SEAL. Because of this it is necessary to probe each location before sampling. Also, the appropriate site excavation permit will be obtained prior to field work. In areas where the presence of pipelines is unknown, it may be necessary to use a metal detector to locate nearby metallic obstructions.

The height of the truck is 13'6". In some plants, overhead pipe racks are a problem. This should be explored prior to mobilization. The weight of the truck is nearly 50,000 lbs and does require a firm base. Sampling on inclines is not recommended. The decision of what an unsafe surface is is left up to the truck operator.

amr/jfw924


ATTACHMENT 1

Subsurface Environmental Assessment Laboratory

(SEAL)

Statement of Capabilities

SUBSURFACE ENVIRONMENTAL **ASSESSMENT LABORATORY**

CONOCO'S COMMITMENT

TO THE

ENVIRONMENT

STATEMENT OF CAPABILITIES

INTRODUCTION

Conoco Inc. has developed a state-of-the-art field investigation system which has coupled cone penetrometer technology with quality environmental sampling and on-board analytical capabilities that provide on-site, subsurface screenings and characterization in addition to environmental assessments for remediation.

Due to various factors, such minimal waste generation costs, quality in-situ sampling, and onsite analyses/screening, the use of our technology and expertise in the field of cone penetrometry and sample analysis can reduce the time required and, therefore, the overall cost, especially when compared to conventional drilling rigs or other subsurface investigative tools.

ON-SITE SERVICES

- Geologic/Geophysical Characterization
- Groundwater Flow Characterization
- Environmental Sampling (Water, Soil, Vapor)
- Monitoring (Long- or Short-Term)
- Analytical Chemistry
- Data Interpretation (Geological and Chemical)

OFF-SITE CONOCO ENVIRONMENTAL SERVICES

- Conoco-Ponca City backup offers expertise in Geotechnical Interpretations.
- Conoco-Ponca City backup offers expertise in the analysis of samples.
- Confidentiality is maintained within Du Pont.

APPLICATIONS

- Detect, delineate, and monitor subsurface contamination.
- Collect discrete, depth-specific, quality soil, water, or vapor samples.
- Provide increased accuracy and efficiency in the placement of monitoring systems.
- Installation of monitoring systems.
- Identification and quantification of contamination.
- Immediate in-depth backup support

METHODS

Location Safety Evaluation

Prior to penetration of the surface at all locations, each site is surveyed for possible subsurface obstructions. The methods used to locate buried objects are: 1) studying maps of the area, 2) communications with supervisory personnel, 3) hand probing to six feet, and 4) use of an industrial metal detector.

STRATIGRAPHY

Stratigraphic information is generated with an electronic cone that measures tip resistance, friction resistance, inclination, temperature, and in certain instances, dynamic pore pressure. A hydraulic ram pushes the cone and steel support rods into the ground at 2 cm/sec. A computer records and produces an immediate printout of all measured data, via link to the cone by a threaded cable. Tip and friction resistance values are used to calculate soil behavior type, and in some cases, dynamic pore pressure data is also generated. Pore pressure data allows for a more precise determination of water tables and can be used to determine groundwater flow direction in an aquifer. Pore pressure dissipation tests can also be completed using the Piezocone to help determine hydraulic conductivity.

As soundings occur, the computer collects and records data at 5 cm intervals. An interpretive software program calculates soil type every 25 cm based on an average of the 5 cm interval data points. Example data are located in the appendices.

GROUNDWATER SAMPLING

Groundwater samples are collected by one of two methods depending upon the customers needs and types of soils where the samples are to be collected. The BAT Groundwater Monitoring System is used when samples are collected from distinct water producing zones. The sampling system consists of a sleeve-covered hollow tip enclosed by a 40-micron filter. After the tip has been pushed to the proper depth, the rods are retracted just enough to remove the cover from the filter. A 35 or 150 ml evacuated vial with a double ended needle connected is lowered through the rods by cable to connect with the septum located on the hollow tip. The system is purged accordingly to ensure the collection of a representative sample. The second method is utilized when collection of water is required from less porous saturated soils. This system consists of a sleeve-covered 1 meter length of perforated pipe fitted with the appropriate mesh sized screen that is pushed to the proper depth. The screen is then exposed by retracting the push rods. A stainless steel bailer is used to collect the sample after proper purging.

The sample is then placed in appropriate containers and sealed. Conductivity, pH, and temperature readings are recorded immediately. When analyses are to be conducted on SEAL, a representative portion of the water collected is placed in a headspace vial.

SOIL SAMPLING

Soil samples of all types can be collected with the Conoco Soil Sampling Device. Two basic core sizes, either 1- or 1.75-inch diameter by any length up to 6 feet, can be collected. The water tight sealed sampler is pushed to the desired depth and retracted to release the tip

which opens the sampler. The hollow sampler is then pushed the required distance to collect the sample. A sand catcher developed by Conoco is used to ensure the collection and containment of very fluid types of soils.

The soil sample cores are removed from the collection tube and placed in sample jars and sealed. When analyses are to be conducted using SEAL, a representative portion of the core is placed in a headspace vial.

SOIL VAPOR SAMPLING

Both systems for groundwater sampling are also used for soil vapor collection. The BAT system is for small volumes of vapor needed for screening. The larger screen device is used if a large volume is collected into air bags.

MONITOR WELL INSTALLATION

Current capabilities enable SEAL to set 1-inch O.D. slotted PVC to any depth penetrable. Slot sizes available are .006-, .008-, and .010-inch.

Steel rods containing the PVC rods are pushed to the desired depth and then retracted, leaving the PVC rods in place and the slotted PVC exposed. If needed, the annulus produced by the removal of the steel rods can be sealed between the screen and ground surface by our special grout mixture and/or bentonite. The top of the PVC is covered with a threaded cap. When no longer needed, the PVC is removed below ground level and the remaining in-ground PVC is cemented full.

SEAL ANALYTICAL

Field analyses by SEAL are intended for screening purposes only. Approved laboratory analysis is suggested for obtaining EPA protocol reportable data.

A Hewlett-Packard 5790 Gas Chromatograph equipped with a Flame Ionization Detector (FID) and Photo Ionization Detector (PID) in series with a Hewlett-Packard 19395A Headspace Extractor is used for obtaining qualitative and quantitative data. The same set-up is also utilized for quick-screening of samples by utilizing direct injection.

For each soil analysis, a weighted aliquot of soil (approximately 10 gm) is placed into a preweighed headspace vial. For each water analysis, 10 ml of water is placed in a headspace vial. The vials are septa-capped, headspace extraction vials. For soil vapor analysis, direct injection to the GC is utilized specifically, using a gas-tight syringe. Minimum detection limits for most hydrocarbons is 50 ppb. Standards are run each day that analyses are run. These standards are utilized for qualitative as well as quantitative results.

QUALITY CONTROL

Numerous field blanks and equipment blanks are analyzed daily to define any problems that might arise concerning cross contamination. Cleaning of all equipment is accomplished by washing with Alconox detergent, acid rinsing, double rinsing with distilled water, and rinsing with methanol. Samples are stored in an on-board refrigerator. EPA approved sample containers and handling methods are used.

ROD DECONTAMINATION SYSTEM

A decontamination system, developed by Conoco, is used to remove soil and contamination from the surface of the down-hole rods and sampling equipment as they are withdrawn from the ground. The decontamination system consists of hydraulic driven brushes that remove gross contamination (soil), a hot water wash, and a rinse to remove chemical contamination. A vacuum line collects the spent water and soil for proper disposal. This system minimizes the spillage of soil and water and provides protection for the operators.

GROUTING SYSTEM

A unique grouting system seals the holes from the bottom up, ensuring hydraulic integrity. Grouting rods are immediately inserted down an existing hole created by the sounding routine or sampling procedure. Grout is pumped, by a positive displacement pump, through tubing threaded inside the rods, then the rods are retracted slowly, allowing the grout to fill the hole, then the holes are sealed off by hand. The non-shrinking grout used is a mixture of Portland Cement, an accelerator (calcium chloride), a fluid loss additive (D-73), and a dispersant (D-65). This grout mixture has been approved by all states currently utilizing SEAL.

ADVANTAGES OF SEAL

- Complete one-stop service
- In-depth technical backup
- Fast and reliable
- Eliminates well drilling problems and costs
- Data is immediately available
- Accurate and detailed data
- Reproducible
- No excess wastes for disposal
- More economical than conventional methods
- More data for the dollar

For More Information Contact:

Joel Wilson (405) 767-2413, DUCOM 442-2413 P. O. Box 1267 Ponca City, OK 74603

amr/dlr1491

David Richter (405) 767-5043, DUCOM 442-5043 P. O. Box 1267 Ponca City, OK 74603

· Conoco Inc.

Operator :MIKE KASL CFT Date :03-06-90 14:27 On Site Loc:LOCATION #8 Cone Used :0291 JOD NO. :HOLE-01 Water table (meters) : 1.2 Tot. Unit Wt. (avg) : 150 pcf -----De (ave) Ee (ave) Se (ave) CICIII ----C - The Court

Su	·SPT	Гня	Eq - Ur	SOIL BEHAVIOUR TYPE	SIGV	Rť (avg)	Fs (avg)	Qc (avg)	fH	DEPT
tsf	N	deg.	(2)		(tsf)	(X)	(tsf)	(tsf)	(feet)	(meters)
2.1	8	UNDED	UNDEND	sandy silt to clayey silt	8.09	2.00	0.44	22.00	2.46	0.75
.5	5	UNDFD	UNDEND	clay	0.22	3.71	0.21	5.60	3.28	1.00
.6	7	UNDED	UNDEND	clay	0.28	7.53	0.51	6.80	4.10	1.25
1.2	15	UNDED	UNDEND	clay	8.32	5.68	8.74	13.00	4.92	1.50
1.1	7	UNDED	UNDEND	silty clay to clay	0.36	3.48	8.48	11.60	5.74	1.75
ż.7	11	UNDFD	UNDEND	sandy silt to clayey silt	0.39	2.35	0.66	28 . 89	6.56	2.00
UNDEFINED	18	42-44	70-80	sand to silty sand	8,43	0.89	0.66	74.40	7.38	2.25
UNDEFINED	17	42-44	60-70	sand to silty sand	0.46	0.99	0.70	71.00	8,28	2.50
UNDEFINED	27	44-46	70-80	sand to silty sand	0.50	1.16	1.28	111.00	9.62	2.75
UNDEF INED	31	44-46	88-98	sand	0.54	0.85	1.39	163.80	9.84	3.90
UNDEFINED	34	44-46) 98	sand	0.57	0.90	1.59	176.20	10.66	3.25
UNDEF INED	37	44-46	80-90	sand to silty sand	0.61	1.06	1.63	154.00	11.48	3, 50
UNDEFINED	38	42-44	70-80	sand to silty sand	8.64	1.00	1.27	126.20	12.30	3.75
UNDEFINED	35	42-44	78-88	silty sand to sandy silt	0.68	1.60	1.75	108.80	13.12	4.00
5.6	18	UNDFD	UNDEND	sandy silt to clayey silt	0.72	1.52	8.42	27.48	13.94	4.25
2.3	9	UNDFD	UNDEND	sandy silt to clayey silt	0.75	1.34	0.33	24.40	14.76	4.58
2.7	11	UNDED	UNDEND	sandy silt to clayey silt	8.79	1.70	0.49	29.00	15.58	4.75
UNDEFINED	11	36-38	(40	silty sand to sandy silt	8.82	1.36	0.47	34.80	16.40	5.00
1.6	7	UNDED	UNDEND	sandy silt to clayey silt	0.86	1.51	8.27	18.00	17.22	5.25
1.4	7	UNDED	UNDEND	clayey silt to silty clay	0.89	2.42	0.37	15.40	18.04	5.50
1.2	7	UNDED	UNDFND	clayey silt to silty clay	0.93	2.34	0.33	14.20	18.86	5.75
1.3	7	UNDED	UNDEND	clayey silt to silty clay	8.97	2.40	0.36	15.00	19.69	6.08
1.8	5	UNDED	UNDEND	sandy silt to clayey silt	1.00	1.13	8.14	12.40	20.51	6.25
1.2	5	UNDED	UNDEND	sandy silt to clayey silt	1.04	1.01	6.14	13.68	21.33	6.58
1.4	6	UNDED	UNDFND	sandy silt to clayey silt	1.67	1.10	8.18	16.00	22.15	6.75
1.4	6	UNDED	UNDEND	sandy silt to clayey silt	1.11	1.13	0.18	16.00	22.97	7.06
1.3	6	UNDED	UNDEND	sandy silt to clayey silt	1.15	1.26	0.19	14.88	23.79	7.25
1.5	7	UNDED	UNDFND	sandy silt to clayey silt	1.18	1.69	8.29	17.28	24.61	7.58
1.9	18	UNDED	UNDEND	clayey silt to silty clay	1.22	3.35	8.73	21.88	25.43	7.75
1.0	6	UNDFD	UNDEND	clayey silt to silty clay	1.25	2.31	0.28	12.20	26.25	8.00
1.9	10	UNDFD	UNDEND	clayey silt to silty clay	1.29	2.90	0.61	21.08	27.07	8.25
2.8	19	UNDED	UNDFIND	silty clay to clay	1.33	4.39	1.34	30.40	27.89	8.58
2.3	17	UNDFD	UNDEND	silty clay to clay	1.36	3.75	0.97	26.00	28.71	8.75
2.3	12	UNDED	UNDEND	clayey silt to silty clay	1.40	3.05	0.78	25.60	29.53	9.00
1.8	10	UNDED	UNDEND	clayey silt to silty clay	1.43	2.32	8.49	21.00	30.35	9.25
2.0	11	UNDED	UNDFND	clayey silt to silty clay	1.47	2.55	0.59	23.20	31.17	9.50
5.3	9	UNDFD	UNDEND	sandy silt to clayey silt	1.51	1.64	8.48	24.40	31.99	9.75
1.8	8	UNDED	UNDEND	sandy silt to clayey silt	1.54	0.91	0.19	20.60	32.81	10.00

Dr - All sands (Jamiolkowski et al. 1985) PHI - Robertson and Campanella 1983

Su: Nk= 10

**** Note: For interpretation purposes the PLOTTED CPT PROFILE should be used with the TABULATED OUTFUT from CPTINIR1 (v 3.04) ****

Conoco Inc.

Operator :MIKE KASL On Site Loc:ÉOCATION #8 Page No. 2

11 X

Su	SPT	FHI	Eq - Dr	SOIL BEHAVIOUR TYPE	SIGV	Rf (avg)	Fs (avg)	Qc (avg)	TH	DEF
tsf	N	deg.	(7)		(tsf)	(X)	(tsf)	(tsf)	(feet)	eters)
3.	 15	UNDED	UNDEND	sandy silt to clayey silt	1.58	1.69	8.64	38.00	33.63	10.25
3.	16	UNDED	UNDFND	sandy silt to clayey silt	1.61	2.85	0.86	42.00	34.45	10.50
3.	16	UNDFD	UNDEND	sandy silt to clayey silt	1.65	2.18	0.89	40.80	35.27	18.75
4.	18	UNDFD	UNDEND	sandy silt to clayey silt	1.68	2.39	1.14	47.60	36.09	11.00
3.	13	UNDFD	UNDEND	sandy silt to clayey silt	1.72	1.84	0.65	35.28	36.91	11.25
3.	13	UNDFD	UNDEND	sandy silt to clayey silt	1.76	1.98	0.66	33.20	37.73	11,58
ĉ.	11	UNDFD	UNDEND	sandy silt to clayey silt	1.79	1.66	0.47	28.48	38.55	11.75
2	10	UNDED	UNDEND	sandy silt to clayey silt	1.83	1.37	0.36	26.00	39.37	12.03
1.0	8	UNDED	UNDEND	sandy silt to clayey silt	1.86	0.94	0.21	21.80	40.19	12.25
2. :	9	UNDFD	UNDEND	sandy silt to clayey silt	1.90	1.31	0.32	24.28	41.01	12.50
1.	8	UNDED	UNDEND	sandy silt to clayey silt	1.94	1.04	0.21	20.40	41.83	12.75
2.1	9	UNDFD	UNDFND	sandy silt to clayey silt	1.97	1.15	8.27	23.40	42.65	13.00
2.3	10	UNDED	UNDEND	sandy silt to clayey silt	2.01	2.24	8.57	25.60	43.47	13.25
2.1	12	UNDFD	UNDEND	sandy silt to clayey silt	2.64	1.98	8.62	31.40	44.29	13.50
2.3	10	UNDFD	UNDFND	sandy silt to clayey silt	2.68	1.45	0.37	25.80	45.11	13.75
1.5	7	UNDFD	UNDEND	sandy silt to clayey silt	2,12	1.13	0.22	19.28	45.93	14.00
1.0	9	UNDFD	UNDEND	sandy silt to clayey silt	2.15	0.95	0.21	22.40	46.75	14.25
1.	8	UNDFD	UNDEND	sandy silt to clayey silt	2.19	0.95	0.20	21.00	47.57	
1.1	9	UNDFD	UNDFND	sandy silt to clayey silt	2.22	1.15	0.26	22.20	48.39	5
2. 3	12	UNDFD	UNDFND	sandy silt to clayey silt	2.26	1.34	8.42	31.00	49.21	15.00
UNDEFINE	8	(30	(48	silty sand to sandy silt	2.29	0.61	0.15	24.48	50.03	15.25
1.9	9	UNDFD	UNDEND	sandy silt to clayey silt	2, 33	0.95	0.22	23.28	50.85	15, 58
1.4	7	UNDED	UNDEND	sandy silt to clayey silt	2.37	0.86	0.16	18.40	51.67	15.75
1.5	8	UNDFD	UNDFND	sandy silt to clayey silt	2.48	0.98	8.19	19.88	52.49	16.20
2.0	12	UNDED	UNDEND	sandy silt to clayey silt	2.44	1.92	0.59	38.60	53.31	16.25
2.4	11	UNDED	UNDEND	sandy silt to clayey silt	2.47	1.65	0.48	28.89	54.13	16.50
2.2	18	UNDED	UNDEND	sandy silt to clayey silt	2.51	1.29	0.35	26.80	54.95	16.75
2.3	10	UNDFD	UNDEND	sandy silt to clayey silt	2.55	1.26	6.35	27.48	55.77	17.00
UNDEFINEL	12	30-32	{40	silty sand to sandy silt	2.58	1.40	0.52	37.00	56.59	17.25
UNDEFINED	9	(30	(48	silty sand to sandy silt	2.62	0.96	0.28	29.40	57.41	17.50
UNDEFINE	9	(30	(40	silty sand to sandy silt	2.65	0.82	8.24	29.60	58.23	17.75
UNDEFINE	8	(30	(48	silty sand to sandy silt	2.69	8.35	8.09	24.88	59 . 6 6	18.00
2.5	11	UNDFD	UNDFND	sandy silt to clayey silt	2.73	1.69	6,50	29.88	59.88	18.25
3.4	15	UNDFD	UNDEND	sandy silt to clayey silt	2.76	2.50	0.99	39.40	68.70	18.50
3.9	21	UNDFD	UNDEND	clayey silt to silty clay	2.80	3.31	1.46	44.20	61.52	18.75
4.6	17	UNDFD	UNDEND	sandy silt to clayey silt	2.83	2.41	1.08	44.80	62.34	19.00
5.2	22	UNDFD	UNDFND	sandy silt to clayey silt	2,87	3.00	1.73	57.60	63.16	19,25
5.6	22	UNDFD	UNDEND	sandy silt to clayey silt	2.91	3.07	1.74	56.80	63.98	19.50
4.	20	UNDED	UNDEND	sandy silt to clayey silt	2.94	2.96	1.55	52.40	64.80	19.75
UNDEF INEL	150	40-42	78-88	sand to silty sand	2.98	1.60	3.86	241.40	65.62	20.00
UNDEFINE	>50	38-40	60-70	silty sand to sandy silt	3.01	2.16	3.95	183.20	66.44	20.25
UNDEFINED) 50	38-40	70-80	sand to silty sand	3.05	1.86	4.42	237.48	67.26	20.50

Dr - All sands (Jamiolkowski et al. 1985) PHI - Robertson and Campanella 1983 Su: Nk= 10

Conoco Inc.

Operator :MIKE KASL

On Site Loc:LOCATION #8

Page No. 3

Su	SPT	FH1	Eq - Dr	SOIL REHAVIOUR TYPE	SIGV	Rf (avg)	Fs (avg)	Qc (avg)	н	DEPT
tsf	N	deg.	(%)		(tsf)	(X)	(tsf)	(tsf)	(feet)	eters)
UNDEFIN)50	39-40	60-78	silty sand to sandy silt	3.08	2.22	4.34	195. CO	68.08	20.75
UNDEFINE)58	40-42	88-98	sand to silty sand	3.12	2.15	7.85	364.20	68.90	21.00
UNDEFINE) 50	38-40	70-80	silty sand to sandy silt	3.16	2.28	5.46	239.00	69.72	21.25
UNDEFINE	15	38-32	(48	silty sand to sandy silt	3.19	1.41	8.67	47.20	70.54	61.50
UNDER INE	ίŚ	38-32	(40	silty sand to sandy silt	3.23	1.83	1.23	67.00	71.36	21.75
UNDEFINE	11	(38)	(48	silty sand to sandy silt	3.26	1.10	8.39	35.60	72.18	22.00
3.	17	UNDED	UNDEND	sandy silt to clayey silt	3.30	1.82	0.79	43.20	73.00	22.25
3.	15	UNDED	UNDEND	sandy silt to clayey silt	3.34	1 58	8.62	38.60	73.82	22.58
3.	15	UNDED	UNDEND	sandy silt to clayey silt	3.37	2.65	1.06	40.00	74.64	22.75
4.	16	UNDFD	UNDFND	sandy silt to clayey silt	3.41	3.04	1.43	47.20	75.46	23.00
4.	18	UNDED	UNDEND	sandy silt to clayey silt	3.44	2.64	1.23	46.60	76.28	23.25
4.	18	UNDED	UNDEND	sandy silt to clayey silt	3.48	ĉ.91	1.39	47.80	77.10	23 . 50
3.	17	UNDFD	UNDEND	sandy silt to clayey silt	3.52	2.95	1.30	44.00	77.92	23.75
3.	16	UNDFD	UNDEND	sandy silt to clayey silt	3.55	2.96	1.23	41.60	78.74	24.88
4.	24	UNDFD	UNDEND	clayey silt to silty clay	3.59	3.32	1.63	49.20	79.56	24,25
5.	31	UNDED	UNDEND	clayey silt to silty clay	3.62	3.57	2.31	64.88	88.38	24.58
3.	17	UNDED	UNDEND	sandy silt to clayey silt	3.66	2.78	1.24	44.60	81.28	24.75
3.	15	UNDFD	UNDEND	sandy silt to clayey silt	3.70	2.85	8.79	38.80	82.62	25.00
3.	19	UNDFD	UNDFND	clayey silt to silty clay	3.73	3.12	1.25	40.08	82.84	ය.ය
3.	17	UNDED	UNDEND	sandy silt to clayey silt	3.77	2.53	1.13	44.60	83.66	25.58
4.	24	UNDED	UNDEND	clayey silt to silty clay	3.80	3, 23	1.60	49.60	84.48	25.75
8.	34	UNDED	UNDEND	sandy silt to clayey silt	3.84	2.88	2.58	89.60	85.30	26.00
Э.	47	UNDED	UNDEND	clayey silt to silty clay	3.87	3.81	3.71	97.40	86.12	36.25
UNDER INE	35	34-36	40-50	silty sand to sandy silt	3.91	2.10	2.30	109.60	86.94	26.50
3.	16	UNDED	UNDEND	sandy silt to clayey silt	3.95	2.21	0.92	41.60	87.76	26.75
UNDEFINE	43	34-36	50-60	silty sand to sandy silt	3.98	1.82	2.46	134.80	88.58	27.80
9.	40	UNDFD	UNDFND	sandy silt to clayey silt	4.82	2.97	3.14	105.60	89.40	27.25
3.	15	UNDED	UNDEND	sandy silt to clayey silt	4.85	2.68	1.03	39.40	90.22	27.50
2.	13	UNDED	UNDEND	sandy silt to clayey silt	4, 89	2. 32	0.81	35.00	91.84	27.75
7.	32	UNDED	UNDEND	sandy silt to clayey silt	4.13	3.06	2.54	83.00	91.86	28. 88
UNDER INE) 50	36-38	60-70	silty sand to sandy silt	4.16	2.19	4.31	196.60	92.68	28.25
12.) 58	UNDFD	UNDEND	sandy silt to clayey silt	4.28	3.55	4.71	132.80	93.50	28.50
7.	33	UNDED	UNDEND	sandy silt to clayey silt	4.23	2.91	2.52	86.60	94.32	28.75
6.	29	UNDED	UNDEND	sandy silt to clayey silt	4.27	3.43	2.62	76.68	95.14	29.00
7.	30	UNDED	UNDEND	sandy silt to clayey silt	4.31	2.52	1.99	78.80	95.96	29.25
3.	17	UNDED	UNDEND	sandy silt to clayey silt	4.34	2.03	0.89	44.00	96.78	29.50
ċ.	13	UNDFD	UNDEND	sandy silt to clayey silt	4.38	2.67	0.91	34.28	97.68	29.75
4.	21	UNDED	UNDEND	sandy silt to clayey silt	4.41	2.35	1.30	55.40	98.43	32. 22
3.	15	UNDED	UNDEND	sandy silt to clayey silt	4.45	2.25	0.91	48.20	99.25	38.25
UNDEFINE	UDF	UNDFD	UNDFIND	undefined	4.48	-29255.33	-13106.39	44.80	100.07	38.50

Dr - All sands (Jamiolkowski et al. 1985) PHI -

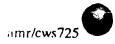
Robertson and Campanella 1983

Su: Nk= 10

ATTACHMENT 2

•

42 - 12 1


Field Activity Log Sheet

FIELD ACTIVITY LOG SHEET

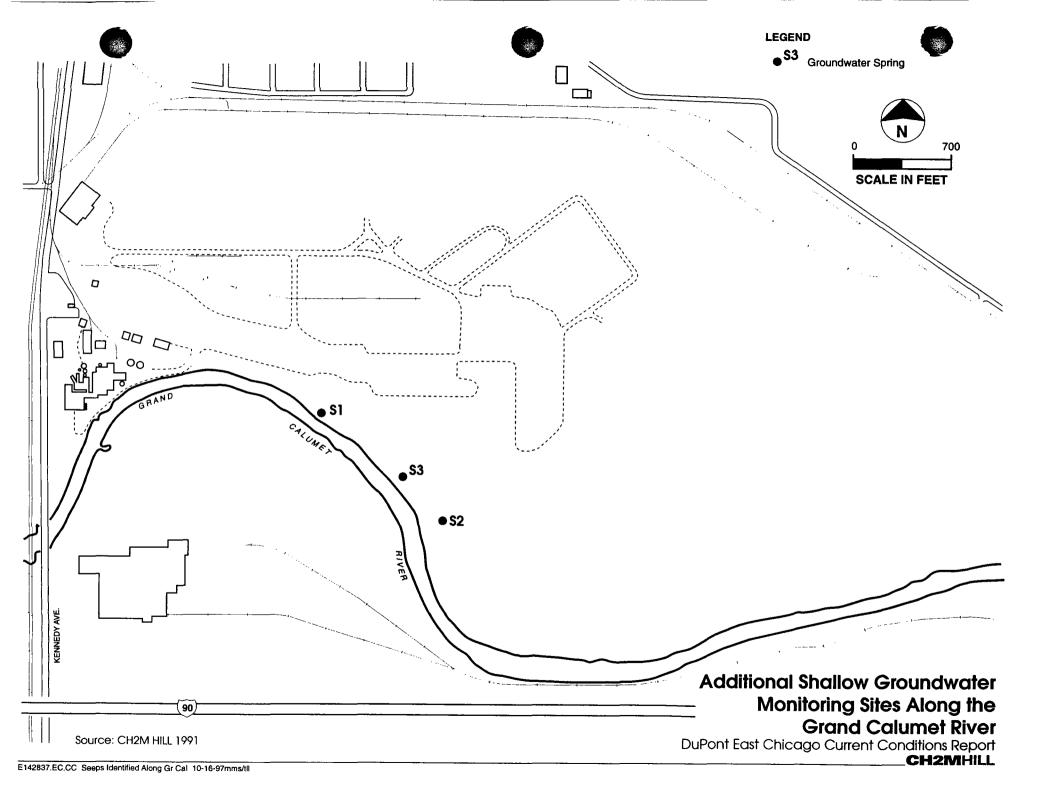
.

Proj. Consul	roj. Consultant:, Company:												
Date	Start Time	End Time	Location	File	Cone Strat.	Soil	Water	Mont.	Depth (ft)	Hole No.	Reason for Stopping 1. Tip Pressure 2. Predetermined Depth 3. Friction 4. Inclination 5. Hydraulic Pressure	Grouting: F - Funnel T - Tubing D - Downhole	Comments
		}											
	1												·
	1												
	1												
	1												
	1			1	1								
	1												

ATTACHMENT 3

Chain-of-Custody Form

Conoco Inc. Research and Engineering


Environmental Sample Chain of Custody and Log

No.00542?

	Facility Name			Transporter Name Transporter Address Telephone No.															
_	Facility Address	· ·	Telephor	ne No.	Transporter Add	ress							T	elep	hor	e N	0.		
			()		Method of Shipp								11)				
	Facility Supervisor																	·	
	Process Producing Sample			<u></u>	Special Shipping	Ins	tructions								_				
1111	Employee(s) Sampling				Remarks		موسيد. م												
	Other Employee(s) Handling								Τ		T			<u> </u>	T	\square	<u> </u>		
_	i				L	Tco	Containers Analysis Req.												
	Sample I.D. No. and Description	Date	Time	Sample Type	Total Volume			Analysis Req. Preservative											
																T			
			 								+-	┣┠-			┞┈┠	-	+	┝╌┼╸	+
			<u>↓</u>	<u> </u>		+					╉╾	┝╾┼		+	╞╌┠	-+-	+-	┠╌┼╴	
ĺ			t			1-			-		┿─	┝╌╀╸	-		╞╼╂	-	+-		- <u></u>
										1	1					T	T		
						ļ				_							1_		
		-+	+			┢──		+		4-	+		╶┽╸	<u> </u>				┝╌┝	+
						<u> </u>					+	$\left - \right $	-{-	┼╌╢		-+-			
	· · · · · · · · · · · · · · · · · · ·		<u>†</u>			1					1-		-				+		- <u>†</u> - ·
			↓	<u> </u>					$ \rightarrow $					1_1			+_		
			<u> </u>	<u> </u>		╂—		<u> </u>			+				┝╼╊	-+-	+	┝╼┼╴	
			<u>∤</u>	<u> </u>		╂──								+-		-+-		┠╍┽╸	+
			<u> </u>	<u> </u>		+				-	\uparrow	\vdash	+-			-+-	+	\vdash	-+
											1_								T
			ļ			┢												┟↓	+
	Employee Sampling	Received by	<u></u>	l	Date/Tin	ne	Condition o	of samples upon	arr	ival	at fu	nal d	esti	natio	on		1		
	Relinguished by	Received by			Date/Tin	ne		<u> </u>											
ures	Relinguished by	Received by			Date/Tin	ne	e Signature Date								 •				
IPufi	Relinguished by	Received by			Date/Tin	ne	Temp. of san	nples on arrival at	des	tinat	ion (Temp). ser	Isitiv	e an	alysi	s on	Y)	
0	Relinguished by	Received by			Date/Tin	ne					<u> </u>								
1	Relinguishe	Received by			Date/Tin	ime Signature													

1.	\mathcal{O}	· · · · · · · · · ·	s	·	
,			UTSR 01/24/4	t	
	UESTIONS? CALL 600-238-5355 TO	L FREE	AIRBILL PACKIGE TRACKING NGMBER	635214917	רי
From (Your Name) Please Print	1-=3-	nber (Very Imponent) 🔊 To (Recipi		NT'S COPY	
DAVID L SHEKOS	ki	72-2424 HER Department/Poor No. Company SOL1	B SCHMTTENDERE	Department/Fi	iooi Na
SHORT ADDRESS	State ZIP Required	č.:	OLCULLERA RO	no. Zy + Coder.) CHD State ZIP Required TX 78 200	
TOUR INTERNAL BILLING REFERENCE INFORMAT	TON (Fist 24 characters will appear on invoice.)		IF HOLD FOR PICK-UP, Print EEL Street Actress		
	NER ACCL NO. 3 343 34 Party Fores Acct No.		RG-ICH		
SERVICES Creeck only are bacj (Priority Overnight Service Codery by near Service Codery by near Service Codery by near Service Codery by near Service Codery by near Service Codery by near Service Codery by near Coder Coder Code Coder Coder Code Coder Coder Code Coder Coder Code Coder Coder Code Coder Coder Code Coder Coder Code Coder Coder Code Coder Coder Code Coder Coder Coder Code Coder Coder Coder Code Coder Cod	DELIVERY AND SPECIAL HANDLING I	FedEx 27	Ser Carl Received	Conter 1 Sale Zip Conter 2 Total Charges Ex Employee Nymber AAT at 1501 Firem POTMAT AT 1501 Firem POTM	Charge
10abary combined may "Declared Video Linit STOR. In Later in some areas. "Call for earlingy schedule.	12 ADLOUT SELMENT # ST	Emp No.		USA USA	

Phase III Quality Assurance Project Plan

(DERS 1992)

- Field assessment procedures
- Mobile lab ICP procedures

ATTACHMENT 4

•

Sample Preparation and Analysis Methods for Metals

FALCON-3005

ACID DIGESTION OF WATERS FOR TOTAL RECOVERABLE OR DISSOLVED METALS FOR ANALYSIS BY ICP SPECTROSCOPY

1.0 SCOPE AND APPLICATION

- 1.1 Method 3005 is an acid digestion procedure used to prepare soils, surface water, and ground water samples for analysis by inductively coupled argon plasma spectroscopy (ICP). This procedure is used as a screening technique and does not satisfy the quality control (QC) requirements of 40 CFR 136 and SW846 ICP methods. Samples prepared by method 3005 will be analyzed by ICP for Sb (antimony).
- 1.2 The analysis of digestate following the 3005 procedure reflects either total recoverable metals, dissolved metals, or suspended metals, depending upon whether the sample is filtered at the time of collection, prior to acidification with nitric acid for preservation.
- 1.3 Method 3005, a soft digestion, is presently the only digestion procedure recommended for Sb by SW846. It yields better recoveries than either Method 3010 or 3020. There is no hard digestion for Sb approved for SW846 at this time. However, 200.7 does not make this distinction.

2.0 SUMMARY OF METHOD

- 2.1 <u>Total recoverable metals (TRM)</u>: The entire sample is acidified at the time of collection with nitric acid. At the time of analysis the sample is heated with acid and substantially reduced in volume. The digestate is filtered and diluted to volume, and then is ready for analysis.
- 2.2 <u>Dissolved metals (DM)</u>: The sample is filtered through a 0.5 um filter at the time of collection and the liquid phase is then acidified (in the field) with nitric acid. At the time of analysis the sample is heated with acid and substantially reduced in volume. The digestate is again filtered (if necessary) and diluted to volume. It is then ready for analysis.

3.0 INTERFERENCES

3.1 The analyst should be cautioned that this digestion procedure may not be sufficiently vigorous to destroy some metal complexes. It is for this reason that "total recoverable metals" are reported.

4.0 APPARATUS AND MATERIALS

- 4.1 Griffin beaker, 200 mL capacity, borosilicate glass or polypropylene (approved for hot plate use).
- 4.2 Graduated cylinder, 50 mL, calibrated "to deliver".

- 4.3 Sample bottle, 60 mL, high density polyethylene, and a phenolic cap with a polyethylene liner.
- 4.4 Hot plate, controllable at 90° 95°C. Calibrate the temperature adjustment knob using a thermometer immersed in sand. Monitor the temperature on the hot plate continuously using the same technique.
- 4.5 Qualitative filter paper and filter funnel.

5.0 REAGENTS

- 5.1 Water supply purified with a Milli-Q system. The water must be monitored daily, when in use, using the conductivity meter. Records of monitoring are kept in a log book maintained for each system according to the EVSD SOP for this purpose.
- 5.2 Concentrated nitric acid, J. T. Baker, Instra-analyzed, or an equivalent purity is used for digestion.
- 5.3 Concentrated hydrochloric acid, J. T. baker, reagent grade, or an equivalent purity is used for digestion.
- 5.4 Refer to the ICP QC Standards Preparation SOP for instructions on how to prepare secondary spike standards.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

- 6.1 All sample containers used in the laboratory must be prewashed with detergent, acids, and purified water. A conventional dishwasher is used for preliminary cleaning of labware. Acid soaking and rinsing with purified water should be done just prior to use.
- 6.2 Sampling and preservation:
 - 6.2.1 Total recoverable metals: All samples must be acidified at the time of collection with HNO_3 (5 mL/L).
 - 6.2.2 Dissolved and suspended metals: All samples must be filtered through a 0.5 um filter and then acidified at the time of collection with HNO₃ (5 mL/L). The filter and/or filtrate is returned to the lab for analysis. The volume filtered must be recorded and provided to the Inorganic Prep. Lab for suspended solids assays. See step 7.8.
- 6.3 Safety:
 - 6.3.1 Standard laboratory safety precautions should be adhered to at all times. Refer to the Research and Engineering Safety Manual for required procedures.

- 6.3.2 Assume that all samples are hazardous. The use of fume hoods, safety glasses, lab coats, and protective gloves is mandatory at all times. Concentrated acids should be stored and transported in rubber buckets. The Safety Manual discusses use of face shields, gloves, aprons, gauntlets, fume hoods, and other protective measures when handling caustic materials.
- 6.3.3 Do not use cracked, chipped or otherwise damaged or stressed glassware. Dispose of or have repaired any damaged glassware.
- 6.3.4 Material Safety Data Sheets are available in the Library for all common laboratory chemicals. Obtain an MSDS from thee supplier on any new chemicals ordered for the laboratory. Provide a copy to the Library and to the Research and Engineering Industrial Hygiene Officer. Inform your Supervisor about any new or suspected hazards which have come to your attention.
- 6.3.5 Follow only prescribed procedures for disposal of samples and laboratory chemicals.

7.0 PROCEDURE

- 7.1 Enter the customer sample I.D., the project no. and dash no., the date collected, and the due date into the digestion log book. Verify that either TRM, TDM, or TSM has been requested by the client before proceeding further.
- 7.2 Organize samples into batches not exceeding twenty per batch. Each batch should be composed of samples of a similar matrix type destined for analysis on a given instrument and by a given method. Note the start date, the matrix type, the digestion method, and the method of analysis in the digestion log book. Arrange sample containers and labware to be assigned to each sample neatly in columns/rows on the lab bench. Each column will correspond to one sample.
- 7.3 Mix the sample thoroughly prior to opening the sample container. Note the presence of suspended solids in the digestion log book (comments column). The pH of each sample is checked prior to digestion by using a disposable pipet and pH indicating paper. The pH value is recorded in the digestion log book.
- 7.4 Measure about 45 mL of sample into a graduated cylinder, and follow the rest of the procedure (for a soil, use a weight of 1 gram). Use a disposable pipet to bring the total volume of sample in the graduated cylinder up to the 50 mL mark. Transfer the sample aliquot into a 200 mL beaker. Mark the sample identification on the beaker with a felt tip pen.
- 7.5 Add 2 mL of concentrated nitric acid and 5 mL of concentrated HCl to the beaker. Use a dispenser and allow the acid to slowly run down the inside

wall of the beaker into the liquid sample. This will prevent sputtering and loss of liquid due to localized heating upon addition of acid.

7.6 Cover the beaker with a ribbed watch glass if available. Place on a hot plate located inside a fume hood which has been designated for 3005 use. Heat at 90° - 95°C until the volume has been reduced to 15 - 20 mL.

CAUTION: Do not boil. Some metal chlorides are volatile and can easily be lost during this step.

Do not allow the digestate to evaporate to dryness. Start over with fresh sample if this inadvertently occurs.

- 7.7 Remove the beaker and allow to cool. Pour the digestate back into the original graduated cylinder used to measure out the sample. Rinse down the beaker walls and watch glass and add this rinsate to the graduated cylinder. Filter at this step only if there is concern that insoluble materials may clog the nebulizer. The filter and funnel must be thoroughly precleaned and rinsed with 1:1 HNO₃ to prevent contamination during the filtering process. Bring the total volume up to 50 mL using a disposable pipet and purified water.
- 7.8 Place a sample label on the 60 mL polyethylene bottle set aside during the staging process (see 7.2). Fill this labeled bottle from the graduate cylinder containing the diluted digestate.
- 7.9 Note the date completed and if filtration was done in the digestion log book.
- 8.0 QUALITY CONTROL (QC)
 - 8.1 Each batch must contain one method (digestion) blank (MB). The method blanks are employed with each batch of samples digested to monitor impurity levels. If the method blank assay indicates metals are present above instrument detection limits (IDL's), reagents and glassware should be checked for sources of impurities. If impurities in the method blank exceed PQL's, analyses should be suspended until the problem is corrected. Method blanks results may be control charted and posted as a Lab metric to monitor performance.

9.0 ADDITIONAL INFORMATION

- 9.1 Method 3005 Digestion Logbook. See Appendix A.
- 9.2 Chain of Custody Form. See Appendix B

REFERENCES

1. "Test Methods for Evaluating Solid Waste, SW846", 3rd Ed., Rev. 0, Sept., 1986, Method 3005. 2. 40 CFR 136, July, 1990.

PREPARED BY:

1 P F

H. L. Gearhart Senior Research Associate Environmental Services Division

Original Issue - October 1991

amr/FA3005.hlg

Blackoll

S. L. Blaylock Chemist Environmental Services Division

ENVIRONMENTAL SERVICES DIVISION METHOD

EVSD-FALCON3015

MICROWAVE ASSISTED ACID DIGESTION OF AQUEOUS SAMPLES

1.0 SCOPE AND APPLICATION

- 1.1 Method 3015 is used for the preparation of aqueous samples and wastes that contain suspended solids for analysis, by graphite furnace atomic absorption spectroscopy (GFAA), by direct aspiration flame atomic absorption spectroscopy (DAAA), or by inductively coupled argon plasma spectroscopy (ICP). This procedure is given in SW846 Revision 0, November 1990.
- 1.2 Samples prepared by method 3015 using nitric acid digestion may be analyzed by GFAA, DAAA, or ICP for the following metals:

Note: 1. *Cannot be analyzed by DAAA

2.0 SUMMARY OF METHOD

2.1 Nitric acid (HNO₃) is added to the aqueous sample in a 120 mL Teflon digestion vessel. The vessel is capped and heated in a microwave unit. After cooling, the vessel contents are filtered, centrifuged, or allowed to settle in a clean sample bottle for analysis.

3.0 INTERFERENCES

3.1 Very reactive or volatile materials that may create high pressures when heated may cause venting of the vessels with potential loss of sample and analytes. Samples that contain carbonates or other carbon dioxide generating compounds may cause enough pressure to vent the vessel. If this situation is anticipated, the analyst may wish to use a smaller sample.

4.0 APPARATUS AND MATERIALS

- 4.1 Microwave unit providing programmable power with a minimum of 574 watts, which can be programmed to within \pm 10 watts of the required power. The microwave unit cavity is corrosion resistant and well ventilated. All electronics are protected against corrosion for safe operation.
- 4.2 Graduated cylinder, 100 mL, calibrated "to deliver", polypropylene.
- 4.3 Sample bottle, 125 mL, high density polyethylene, and a phenolic cap with a polyethylene liner.
- 4.4 Teflon PFA digestion vessels (120 mL capacity) capable of withstanding pressures up to 7.5 \pm 0.7 atm (110 \pm 10 psi) and capable of controlled pressure relief at pressures exceeding 7.5 \pm 0.7 atm.
- 4.5 A rotating turntable within the microwave unit to insure homogeneous distribution of microwave radiation. The speed of the turntable should be a minimum of 3 rpm.
- 4.6 Analytical balance, 300 g capacity, minimum \pm 0.01 g.
- 4.7 Quantitative filter paper, Whatman No. 41 and disposable polypropylene filter funnel.

5.0 REAGENTS

- 5.1 Water supply purified with a Milli-Q system. The water must be monitored daily, when in use, using the conductivity meter. Records of monitoring are kept in a log book maintained for each system according to the EVSD SOP for this purpose.
- 5.2 Concentrated nitric acid, J. T. Baker, Instra-analyzed, or an equivalent purity is used for digestion.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

- 6.1 All digestion vessels and sample containers used in the laboratory must be prewashed with detergent, acids, and purified water, or if disposable, have been shown to be free from contamination by results from blank assays.
 - 6.1.1 Digestion vessels should be cleaned prior to use by leaching with hot (1:1) hydrochloric acid for a minimum of two hours followed by leaching with hot (1:1) nitric acid for a minimum of two hours, rinsed with Milli-Q water, and dried in a dust free environment.
- 6.2 Sampling and Preservation
 - 6.2.1 All aqueous samples must be acidified at the time of collection with HNO_3 (5 mL/L) or to a pH < 2.

- 6.3 Safety
 - 6.3.1 Standard laboratory safety precautions should be adhered to at all times. Refer to the Research and Engineering Safety Manual for required procedures.
 - 6.3.2 Assume that all samples are hazardous. The use of fume hoods, safety glasses, lab coats, and protective gloves is mandatory at all times. Containers of concentrated acid should be stored and transported in rubber buckets. The Safety Manual discusses use of face shields, gloves, aprons, gauntlets, fume hoods, and other protective measures when handling caustic materials.
 - 6.3.3 Do not use cracked, chipped, or otherwise damaged or stressed glassware. Dispose of, or have repaired, any damaged glassware.
 - 6.3.4 Material Safety Data Sheets are available in the Library for all common laboratory chemicals. Obtain an MSDS from the supplier on any new chemicals ordered for the laboratory. Provide a copy to the Library and to the Research and Engineering Industrial Hygiene Officer. Inform your Supervisor about any new or suspected hazards which have come to your attention.
 - 6.3.5 Follow only prescribed procedures for disposal of samples and laboratory chemicals.
 - 6.3.6 There is a possibility that acid gases, released when sample containers vent inside the oven, may corrode the safety devices that prevent the microwave magnetron from shutting off when the door is opened. This can result in unsafe operator exposure to microwave energy. Use only a microwave unit with corrosion resistant safety devices to prevent this from occurring.
 - 6.3.7 Do not use sealed digestion containers without pressure relief valves for microwave digestions by this method. Only unlined PFA Teflon containers with pressure relief mechanisms are considered acceptable at present.

7.0 PROCEDURE

- 7.1 Enter the customer sample I.D., the project no. and dash no., the date collected, and the due date into the digestion log book. Verify that each metal assay has been requested by the client before proceeding further.
- 7.2 Organize samples into batches not exceeding eleven per batch. Note the start date, the matrix type, the digestion method, and the method of analysis in the digestion log book. Arrange sample containers and labware to be assigned to each sample neatly in columns/rows on the lab bench. Each column will correspond to one sample. Weigh each digestion vessel to the nearest 0.01 g.

- 7.3 Mix the sample thoroughly prior to opening the sample container. Note the presence of suspended solids in the digestion log book (comments column). The pH of each sample is checked prior to digestion by using a disposable pipet and pH indicating paper. The pH value is recorded in the digestion log book.
- 7.4 Measure about 40 mL of sample into a graduated cylinder. Use a disposable pipet to bring the total volume of sample in the graduated cylinder up to the 45 mL mark. Transfer the sample aliquot into a Teflon digestion vessel. Enter the identification number on the vessel in the digestion log for each sample.
- 7.5 Add 5 mL of concentrated nitric acid to each vessel. Cap and weigh each vessel to the nearest 0.01 g.
- 7.6 A blank sample of reagent water is treated in the same manner as the samples. When fewer than the recommended number of samples are to be digested, fill the remaining digestion vessels with 40 mL water and 5 mL nitric acid.
- 7.7 Set the power program to bring the samples to $160^{\circ} \pm 4^{\circ}$ C in 10 minutes and to 165° -170°C during the second 10-minute interval.
- 7.8 At the end of the microwave program, allow the vessels to cool for at least 5 minutes in the unit before removal to avoid possible injury. When the vessels have cooled to room temperature, weigh and record the weight of each vessel assembly. If the weight has decreased by more than 10 percent, discard the sample and reprocess.
- 7.9 Complete the sample preparation by carefully uncapping and venting each vessel in a fume hood. Transfer the sample to a precleaned polyethylene bottle. If particulates are present, the sample may be filtered and allowed to settle prior to analysis.
- 7.10 Filter at this step only if there is concern that insoluble materials may clog the nebulizer. The filter and funnel must be thoroughly precleaned and rinsed with 1:1 HNO₃ to prevent contamination during the filtering process. Filter into a second precleaned polyethylene bottle.
- 7.11 Place a sample label on the 125 mL polyethylene bottle and set aside for analysis.
- 7.12 Note the date completed and if filtration was done in the digestion log book.

8.0 QUALITY CONTROL (QC)

8.1 Method blanks are employed with each batch of samples digested to monitor impurity levels. If the method blank assay indicates metals are present above instrument detection limits (IDL's), reagents and glassware should be checked for sources of impurities. If impurities in the method blank exceed PQL's, analyses should be suspended until the problem is corrected. 8.2 Other quality control measures, including duplicate and/or replicate analyses, may be done at the discretion of the analyst.

REFERENCES

1. "Test Methods for Evaluating Solid Waste, SW846", 3rd Ed., Rev. 0, November 1990, Method 3015.

PREPARED BY:

P.M. R.F

H. L. Gearhart Senior Research Associate Environmental Services Division

Original Issue - October 1991

amr/3015.hlg

-> Frola (100-S. L. Blaylock

S. L. Blaylock Chemist Environmental Services Division

ENVIRONMENTAL SERVICES DIVISION METHOD

EVSD-FALCON3051

MICROWAVE ASSISTED ACID DIGESTION OF OILS, SEDIMENTS, SOILS AND SLUDGES

1.0 SCOPE AND APPLICATION

- 1.1 Method 3051 is used for the preparation of nonaqueous samples and wastes for analysis by graphite furnace atomic absorption spectroscopy (GFAA), by direct aspiration flame atomic absorption spectroscopy (DAAA), or by inductively coupled argon plasma spectroscopy (ICP). This procedure is given in SW846 Revision 0, November 1990.
- 1.2 Samples prepared by Method 3051 using nitric acid digestion may be analyzed by GFAA, DAAA, or ICP for the following metals:

Aluminum	Magnesium		
Antimony	Manganese		
Arsenic	Mercury		
Barium	Molybdenum		
Boron	Nickel		
Beryllium	Potassium		
Cadmium	Selenium		
Calcium	Silver		
Chromium	Sodium		
Cobalt	Strontium		
Copper	Thallium		
Iron	Vanadium		
Lead	Zinc		

Note: 1. Certain elements may require addition of hydrochloric acid (e.g., Sb) for quantitative recovery. This may be done at the end of the digestion cycle with a 3-5 minute reheating period.

2.0 SUMMARY OF METHOD

2.1 Ten mL of nitric acid (HNO₃) is added to 0.5 g of sample in a Teflon digestion vessel. The vessel is capped and heated in a microwave unit. After cooling, the vessel contents are filtered, centrifuged, or allowed to settle in a clean sample bottle for analysis.

3.0 INTERFERENCES

3.1 Very reactive or volatile materials that may create high pressures when heated may cause venting of the vessels with potential loss of sample and analytes.

Samples that contain carbonates or other carbon dioxide generating compounds may cause enough pressure to vent the vessel. If this situation is anticipated, the analyst may wish to use a smaller sample.

4.0 APPARATUS AND MATERIALS

- 4.1 Microwave unit providing programmable power with a minimum of 574 watts, which can be programmed to within \pm 10 watts of the required power. The microwave unit cavity is corrosion resistant and well ventilated. All electronics are protected against corrosion for safe operation.
- 4.2 Graduated cylinder, 100 mL, calibrated "to deliver," polypropylene.
- 4.3 Sample bottle, 125 mL, high density polyethylene, and a phenolic cap with a polyethylene liner.
- 4.4 Teflon PFA digestion vessels (120 mL capacity) capable of withstanding pressures up to 7.5 \pm 0.7 atm (110 \pm 10 psi) and capable of controlled pressure relief at pressures exceeding 7.5 \pm 0.7 atm.
- 4.5 A rotating turntable within the microwave unit to insure homogeneous distribution of microwave radiation. The speed of the turntable should be a minimum of 3 rpm.
- 4.6 Analytical balance, 300 g capacity, minimum \pm 0.01 g.
- 4.7 Quantitative filter paper, Whatman No. 41 and disposable polypropylene filter funnel.

5.0 REAGENTS

- 5.1 Water supply purified with a Milli-Q system. The water must be monitored daily, when in use, using the conductivity meter. Records of monitoring are kept in a log book maintained for each system according to the EVSD SOP for this purpose.
- 5.2 Concentrated nitric acid, J. T. Baker, Instra-analyzed, or an equivalent purity is used for digestion.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

- 6.1 All digestion vessels and sample containers used in the laboratory must be prewashed with detergent, acids, and purified water, or if disposable, have been shown to be free from contamination by results from blank assays.
 - 6.1.1 Digestion vessels should be cleaned prior to use by leaching with hot (1:1) hydrochloric acid for a minimum of two hours followed by leaching with hot (1:1) nitric acid for a minimum of two hours, rinsed with Milli-Q water, and dried in a dust free environment.

- 6.2 Sampling and Preservation
 - 6.2.1 All aqueous samples must be preserved at the time of collection by storing at 4°C.
- 6.3 Safety
 - 6.3.1 Standard laboratory safety precautions should be adhered to at all times. Refer to the Research and Engineering Safety Manual for required procedures.
 - 6.3.2 Assume that all samples are hazardous. The use of fume hoods, safety glasses, lab coats, and protective gloves is mandatory at all times. Containers of concentrated acid should be stored and transported in rubber buckets. The Safety Manual discusses use of face shields, gloves, aprons, gauntlets, fume hoods, and other protective measures when handling caustic materials.
 - 6.3.3 Do not use cracked, chipped, or otherwise damaged or stressed glassware. Dispose of, or have repaired, any damaged glassware.
 - 6.3.4 Material Safety Data Sheets are available in the Library for all common laboratory chemicals. Obtain an MSDS from the supplier on any new chemicals ordered for the laboratory. Provide a copy to the Library and to the Research and Engineering Industrial Hygiene Officer. Inform your Supervisor about any new or suspected hazards which have come to your attention.
 - 6.3.5 Follow only prescribed procedures for disposal of samples and laboratory chemicals.
 - 6.3.6 There is a possibility that acid gases, released when sample containers vent inside the oven, may corrode the safety devices that prevent the microwave magnetron from shutting off when the door is opened. This can result in unsafe operator exposure to microwave energy. Use only a microwave unit with corrosion resistant safety devices to prevent this from occurring.
 - 6.3.7 Do not use sealed digestion containers without pressure relief valves for microwave digestions by this method. Only unlined PFA Teflon containers with pressure relief mechanisms are considered acceptable at present.

7.0 PROCEDURE

7.1 Enter the customer sample I.D., the project number and dash number, the date collected, and the due date into the digestion log book. Verify that each metal assay has been requested by the client before proceeding further.

- 7.2 Organize samples into batches not exceeding eleven per batch. Note the start date, the matrix type, the digestion method, and the method of analysis in the digestion log book. Arrange sample containers and labware to be assigned to each sample neatly in columns/rows on the lab bench. Each column will correspond to one sample. Weigh each digestion vessel to the nearest 0.001 g.
- 7.3 Mix the sample thoroughly prior taking an aliquot.
- 7.4 Weigh 0.5 g of sample to the nearest 0.001 g into a preweighed digestion vessel. Enter the identification number on the vessel in the digestion log for each sample.
- 7.5 Add 10.00 mL (use a Rainen pipette) of concentrated nitric acid to each vessel inside a fume hood. Cap and weigh each vessel to the nearest 0.001 g.
- 7.6 A blank digestion vessel is treated in the same manner as the samples with addition of 10.00 mL nitric acid. When fewer than the recommended number of samples are to be digested, fill the remaining digestion vessels with 10 mL nitric acid.
- 7.7 Set the power program to bring the samples to $175^{\circ} \pm 4^{\circ}$ C in 5.5 minutes and to $175^{\circ} 180^{\circ}$ C during the next 4.5-minute interval.
- 7.8 At the end of the microwave program, allow the vessels to cool for at least 5 minutes in the unit before removal to avoid possible injury. When the vessels have cooled to room temperature, weigh and record the weight of each vessel assembly. If the weight has decreased by more than 10 percent, discard the sample and reprocess.
- 7.9 Complete the sample preparation by carefully uncapping and venting each vessel in a fume hood. Add 40 mL of Milli-Q water. Transfer the diluted sample to a precleaned polyethylene bottle. If particulates are present, the sample may be filtered and allowed to settle prior to analysis.
- 7.10 Filter at this step only if there is concern that insoluble materials may clog the nebulizer. The filter and funnel must be thoroughly precleaned and rinsed with 1:1 HNO₃ to prevent contamination during the filtering process. Filter into a second precleaned polyethylene bottle.
- 7.11 Place a sample label on the 125 mL polyethylene bottle and set aside for analysis.
- 7.12 Note the date completed and if filtration was done in the digestion log book.

8.0 QUALITY CONTROL (QC)

8.1 Method blanks are employed with each batch of samples digested to monitor impurity levels. If the method blank assay indicates metals are present above instrument detection limits (IDL's), reagents and glassware should be checked

for sources of impurities. If impurities in the method blank exceed PQL's, analyses should be suspended until the problem is corrected.

8.2 Other quality control measures, including duplicate and/or replicate analyses, may be done at the discretion of the analyst.

REFERENCES

1. "Test Methods for Evaluating Solid Waste, SW846", 3rd Ed., Rev. 0, November 1990, Method 3051.

PREPARED BY:

L. Souhart

H. L. Gearhart Senior Research Associate Environmental Services Division

Original Issue - October 1991

amr/3051.hlg

ia Cici

S. L. Blaylock Chemist Environmental Services Division

ENVIRONMENTAL SERVICES DIVISION METHOD

FALCON ICP

INDUCTIVELY COUPLED PLASMA ATOMIC ABSORPTION EMISSION SPECTROSCOPY

1.0 SCOPE AND APPLICATION

- 1.1 Inductively coupled plasma atomic emission spectroscopy (ICP) determines trace elements including metals in solution. The method is applicable to a large number of metals. Various matrices, including ground water, aqueous samples, and soils may be analyzed. Digestion prior to analysis is required for soils.
- 1.2 The method is based upon SW846 Method 6010. However, EPA protocol QC is not followed. Procedures described fulfill general requirements for screening samples for trace metals. Elements for which the method are applicable are listed in Table 1. Detection limits will vary with the matrices and model of spectrometer. Conoco currently uses a Thermo Jarrell Ash Atomscan 16 Sequential ICP. Estimated LDRs provide concentration ranges for clean aqueous samples.

2.0 SUMMARY OF METHOD

- 2.1 Prior to analysis, soil samples will be digested using microwave techniques. Water samples will be analyzed without digestion. If aqueous samples show excessive turbidity, Method 3005 or microwave digestion may be used at discretion of analyst. Before collection of the sample, a decision must be made as to the type of data required (dissolved, total recoverable, or total) so that the appropriate preservation and pretreatment steps may be accomplished. Filtration, acid preservation, etc., are to be performed at the time the sample is collected or as soon as possible thereafter.
- 2.2 The method describes the sequential multielemental determination of elements by ICP. This procedure is for field screening, and does not satisfy the quality control requirements of SW846 Method 6010 (3rd Ed., Update 1, Dec., 1987) or Method 200.7 (40 CFR 136, Appendix C, July 1, 1990). Method 6010 can be reported if all EPA QC requirements must be met.

The method measures element-emitted light by optical spectrometry. Samples are nebulized and the resulting aerosol is transported to the plasma torch. Element-specific atomic-line emission spectra are produced by a radio-frequency inductively coupled argon plasma. The spectra are dispersed by a grating monochrometer, and the intensities of the lines are monitored by a photomultiplier tube. Background correction is required for trace element determination. Background must be measured adjacent to analyte lines on samples during analysis. The position selected for background measurement, on either or both sides of the analytical line, will be determined by the complexity of the spectrum adjacent to the analyte line. The position used must be free of

TABLE 1 RECOMMENDED WAVELENGTHS AND DETECTION LIMITS (UG/L)

		IDL*	MDL	PQL
Element	Wavelength	Est'd.	Meas'd.	Est'd.
Aluminum	308.215	45	20	20
Antimony	206.838	32	40	250
Arsenic	193.696	53	20	100
Boron	249.678	-	2050	
	249.773	5	-	-
Barium	493.40 9	-	2	20
	455.403	2	-	-
Beryllium	313.042	0.3	3	10
Bismuth	223.061	-	30	100
Cadmium	228.802	-	3	10
	226.502	4	-	-
Calcium	317.933	10	3 5	10
Chromium	267.716	7	5	25
Cobalt	228.616	7	5	10
Copper	324.754	6	2	10
Iron	259.940	7	10	50
Indium	230.606	-	25	250
Lithium	670.784	5	-	-
Lead	220.353	42	70	250
Magnesiu	279.079	30	30	100
m				
Manganese	257.610	2	20	25
Molybdenu	202.030	8	6	50
m		_	_	
Nickel	231.604	15	10	100
Phosphoro	178.287	-	30	150
us				
	213.618	51	-	-
Potassium	766.491	**	800	2500
Selenium	196.026	75	30	100
Silver	328.068	7	5	10
Silica	288.158	58	8	500
(SiO ₂)	500.005			
Sodium	588.995	29	10	750
Strontium	421.552	-	2	25
T:4 =	407.771	0.3		25
Titanium	334.941	- 40	2	25
Thallium	190.864	40	80 7	100
Vanadium Zino	292.402	8	7	25 25
Zinc Zirconium	213.856 339.192	4	2 3	25 10
	337.172		3	10

Note:

*EPA-600/4-79-017, "Inductively Coupled Plasma-Atomic Emission Spectroscopy-Prominent Lines." Given as a guide only.

**Highly dependent upon operating conditions and plasma position.

spectral interference and reflect the same change in background intensity as occurs at the analyte wavelength measured. Background correction is not required in cases of linebroadening where a background correction measurement would actually degrade the analytical result. The possibility of additional interferences named in Section 3.0 should also be recognized and appropriate corrections made; tests for their presence are described in Step 8.5.

3.0 INTERFERENCES

3.1 Spectral interferences are caused by : (1) overlap of a spectral line from another element; (2) unresolved overlap of molecular band spectra; (3) background contribution from continuous or recombination phenomena; and (4) stray light from the line emission of high-concentration elements. Spectral overlap can be compensated for by computer-correcting the raw data after monitoring and measuring the interfering element. Unresolved overlap requires selection of an alternate wavelength. Background contribution and stray light can usually be compensated for by a background correction adjacent to the analyte line.

Previous experience with the sample matrix, or information from a companion technique for trace metal assays, can be used to verify the absence of spectral interference from an element in a sample. Potential spectral interferences for the recommended wavelengths are given in Table 2, Reference 1. The data in Table 2 are intended as rudimentary guides for indicating potential interferences; for this purpose, linear relations between concentration and intensity for the analytes and the interferences can be assumed.

- 3.2 Physical interferences are effects associated with the sample nebulization and transport processes. Changes in viscosity and surface tension can cause significant inaccuracies, especially in samples containing high dissolved solids or high acid concentrations. If physical interferences are present, they must be reduced by diluting the sample or by using a peristaltic pump. Another problem that can occur with high dissolved solids is salt buildup at the tip of the nebulizer, which affects aerosol flow rate and causes instrumental drift. The problem can be controlled by wetting the argon prior to nebulization, using a tip washer or diluting the sample. Also, it has been reported that better control of the argon flow rate improves instrument performance; this is accomplished with the use of a mass flow controller.
- 3.3 Chemical interferences include molecular compound formation, ionization effects, and solute vaporization effects. Normally, these effects are not significant with the ICP technique. If observed, they can be minimized by careful selection of operating conditions (incident power, observation position, and so forth), by buffering the sample, by matrix matching, and standard addition procedures. Chemical interferences are highly dependent on matrix type and the specific analyte element.

4.0 APPARATUS AND MATERIALS

4.1 Thermo Jarrell Ash Atomscan 16 Sequential ICAP.

4.2 Apparatus required for digestion and sample preparation can be found in separate SOPs.

5.0 REAGENTS

- 5.1 Water supply purified with a Milli-Q system must be available. The water must be monitored daily, when in use, using a conductivity meter. Records of monitoring are kept in a log book maintained for each system according to the EVSD SOP for this purpose.
- 5.2 Concentrated nitric acid, J. T. Baker, Instra-analyzed, or an equivalent purity.
- 5.3 Nitric acid (1:1). Add 500 mL concentrated HNO₃ to 400 mL of Milli-Q water and dilute to 1 liter. Add acid slowly to the water with vigorous stirring. Do not allow the solution to overheat. Pour the acid down the sides of the container to avoid sputtering.
- 5.4 Concentrated hydrochloric acid, J. T. baker, reagent grade, or an equivalent purity.
- 5.5 Hydrochloric acid (1:1). Add 500 mL concentrated HCl to 400 mL of Milli-Q water and dilute to 1 liter. Add acid slowly to the water with vigorous stirring. Do not allow the solution to overheat. Pour the acid down the sides of the container to avoid sputtering.
- 5.6 Calibration stock standards and working standards see the ICP Standards Preparation SOP.
- 5.7 Instrument check standard see the ICP Standards Preparation SOP.
- 5.8 Interference check solution see the ICP Standards Preparation SOP.
- 5.9 Two types of blanks are required for the analysis. The calibration blank is used in establishing the analytical curve and rinsing between samples, and the reagent blank is used to correct for possible contamination resulting from the acids used in the sample digestion
 - 5.9.1 The calibration blank is prepared by diluting 2 mL of (1:1) HNO₃ and 10 mL of (1:1) HCl to 100 mL in water. Prepare a sufficient quantity each day to flush the system between standards and samples.
 - 5.9.2 The reagent blank must contain all the reagents and in the same volumes as used in processing the samples. The reagent blank must be carried through the complete digestion/preparation procedure and contain the same acid concentration as the sample solution used for analysis.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

- 6.1 All sample containers used in the laboratory must be prewashed with Alconox detergent, acids, and purified water. Acid soaking and rinsing with purified water should be done just prior to use.
- 6.2 Sampling and preservation:
 - 6.2.1 Aqueous samples for total, total recoverable, and dissolved metals must be acidified with HNO₃ (5 mL/L) or to a pH of < 2 at the time of collection.
 - 6.2.2 Nonaqueous samples should be stored at 4°C (refrigerator or ice chests) and analyzed as soon as possible.
- 6.3 Safety:
 - 6.3.1 Standard laboratory safety precautions should be adhered to at all times. Refer to the Research and Engineering Safety Manual for required procedures.
 - 6.3.2 Assume that all samples are hazardous. The use of fume hoods, safety glasses, lab coats, and protective gloves is mandatory at all times. Concentrated acids should be stored and transported in rubber buckets. The Safety Manual discusses use of face shields, gloves, aprons, gauntlets, fume hoods, and other protective measures when handling caustic materials.
 - 6.3.3 Do not use cracked, chipped, or otherwise damaged or stressed glassware. Dispose of or have repaired any damaged glassware.
 - 6.3.4 Material Safety Data Sheets are available in the Library for all common laboratory chemicals. Obtain an MSDS from the supplier of any new chemicals ordered for the Laboratory. Provide a copy to the Library and to the Research and Engineering Industrial Hygiene Officer. Inform your supervisor about any new or suspected hazards which have come to your attention.
 - 6.3.5 Follow only prescribed procedures for disposal of samples and laboratory chemicals.

7.0 **PROCEDURE**

7.1 Set up the instrument with the proper operating parameters established in manufacturer's instructions. Check the Digestion Lab Log Sheet accompanying each batch of samples to determine which elements are to be analyzed. Verify that the appropriate QC samples have been included.

- 7.2 Initialize the instrument and verify background assignments using a mixed standard. Verify subtraction method using wavelength scans from an actual sample before proceeding with the analyses.
- 7.3 Calibrate the instrument using mixed calibration standards. Verify the reliability of calibrated standards periodically using standards from a separate supplier. Flush the system with the calibration blank between each standard. Use the average intensity of three exposures for both standardization and sample analysis to reduce random error. Normally, calibration (two point for each element) will be accomplished using a calibration blank (zero concentration values) and a standard blends containing each of the elements of interest at 10 ug/mL, except Ca, Al, Mg, Fe, and silver which will be at 100 and 1.0 ug/mL, respectively.
- 7.4 Once initial calibrations have been done and before beginning a sample run, reanalyze the high mixed calibration standards as if each were a sample. Concentration values should not deviate from actual values by more than 10 percent. If they do, follow the instrument manufacturer's instructions to correct this condition.
- 7.5 Flush the system with the calibration blank solution for at least 1 minute between all analyses.
- 7.6 Analyze the instrument check standard and the calibration blank after each 10 samples or 1 hour of operation, whichever is shorter.
- 7.7 The chronology of analyses should follow the following general pattern:

CAL BLK; CAL1; CAL2 (opt.); CAL3 (opt.); CALCHK; IEC; 10 Samples; CAL BLK; INSTR CHK STD; 10 Samples; CAL BLK; INSTR CHK STD.

7.8 Calculations: If dilutions were performed, the appropriate factors must be applied to sample values. All results should be reported in mg/L (liquids) to the thousandths place and up to three significant figures. Reagent blanks may be subtracted from sample results if the analyst deems it necessary.

8.0 QUALITY CONTROL

- 8.1 All pertinent data must be maintained in a hardcopy file with the corresponding batch file information of samples for which it was collected. This includes digestion method blanks and calibration data. Copying may be necessary to fulfill this requirement.
- 8.2 Dilute and reanalyze all samples which exceed the $1/2 \times LDR$ for each element.
- 8.3 Employ a minimum of one method (digestion) blank (MB) per dilution batch (~20) to determine if contamination or memory effects are occurring.

It is recommended that whenever a new or unusual sample matrix is encountered, a series of tests be performed prior to analysis. Matrix spike addition: An analyte spike added to a portion of a prepared sample, or its dilution, should be recovered to within 75 to 125 percent of the known value. The spike addition should produce a minimum level of 10 times and a maximum of 100 times the instrument detection limit. If the spike is not recovered within the specified limits, a matrix effect should be suspected.

CAUTION: Use a wavelength scan for the elements of interest to determine if spectral overlap may be occurring.

- 8.4 Check the instrument standardization by analyzing appropriate check standards as follows.
 - 8.4.1 Check the instrument calibration using a calibration blank and two appropriate standards (see 7.3 and 7.6).
 - 8.4.1.1 The results of the initial calibration verification (7.3) must agree within 10 percent.
 - 8.4.1.2 The results of subsequent instrument check standard assays must agree within 10 percent of the expected value; if not, terminate the analysis, correct the problem, and recalibrate the instrument, and reanalyze the previous samples run since the last valid check.
 - 8.4.1.3 The calibration blank should not show any elements at values > the reporting threshold (PQL); if not, correct the problem.
 - 8.4.2 Interelement correction factors must be verified at the beginning of each analytical run. Do this be analyzing the interference check sample. Results should be within 20 percent of the true value obtained in 8.4.1.1.
 - 8.4.2.1 The elements which generally are considered to be major potential interferents are aluminum, calcium, magnesium, and iron.
 - 8.4.2.2 The daily IEC check is performed by analyzing a blend containing all elements of interest including the major interferents at a significantly higher concentration than the interferees. See 5.9. This solution is made using appropriate dilutions of Standards, containing the interferents at relatively high concentration.
- 8.5 A quality control sample obtained from a source independent of the calibration standards must be used periodically to verify the calibration standards. A fresh dilution of this sample should be used to monitor the standards. Periodic checks should agree within 10 percent of the true value listed on the control sample. If not prepare fresh calibration standard solutions and recheck.

7

9.0 ADDITIONAL INFORMATION

- 9.1 Instrument Run Log: Record all analyses (calibration, QC, and samples in the Log Book. A Log should be prepared for each instrument. The pages should all be signed by the analyst. Information must include sample i.d., project/dash nos., digestion methods performed, standard solutions used (referenced to Standards Prep. Log.), date of analysis, dilution factors, weights for solid samples, notebook references, and software file numbers. Other comments may be added as well, at the discretion of the analyst.
- 9.2 Analyst Green Notebook: Special calculations may be necessary for certain situations. These should be entered into the Analysts Green Notebook. The notebook and page number should then be entered as a reference in 7.7. Conoco R&E procedures must be followed for all Green Notebook records.
- 9.3 Project Files: Hardcopy of all raw data and preliminary reports must be maintained by the Lab Staff. These files will be kept on a daily basis. The Instrument Run Log may then be used to recover Project related data from the files, by referencing analysis dates and project numbers.
- 9.4 Digestion Lab Log Sheet. A log sheet filled out by the Digestion Lab will accompany each batch of samples to the Instrument Lab. This will reflect which method is needed for assay, and it will list the parameters to be determined. The analyst must mark samples complete on this form and return the finished samples together with the form to the Digestion Lab. The Form allows for the analyst to request rework on samples as well, if that is deemed necessary for some reason by the analyst (e.g. redigest, or redigest and spike).
- 9.5 Reports will be generated by the analyst using the Environmental Sample Analysis Results Load Sheet.

REFERENCES

- 1. "Test Methods for Evaluating Solid Waste, SW846", 3rd Ed., Revision 1, December 1987, Method 6010.
- 2. 40 CFR 136, Appendix C, Method 200.7, July 1, 1990.

PREPARED BY:

Harry L. Gearhart Senior Research Associate Environmental Services Division

amr/falcon.hlg

Sheri L. Blaylock Chemist Environmental Services Division

8

ATTACHMENT 5

~

SEAL Health and Safety Plan

4.0 SAFETY

4.1 General Information

Personnel working aboard SEAL are required to be familiar with the truck's safety features and the safety manuals provided in the Manuals Bookshelf. Most importantly, operators must be familiar and understand this document, the <u>Operation and Safety Manual for the Subsurface Environmental Assessment Laboratory (SEAL)</u>. Personnel must also be familiar with Hazcom procedures and know how these procedures pertain to each work site.

4.2 Reporting of Accident, Injury or Illness

Personnel working on SEAL will report any accident, injury or illness to the appropriate supervisor immediately at Conoco in Ponca City. In case of accident or injury, the person in charge will accompany the employee to the medical office on-site or in instances of variable sites, to the nearest emergency room location. A cellular phone on-board SEAL can be used to contact emergency services if needed.

4.3 Hazard Communication Procedures

Personnel working on SEAL will complete and document Hazcom Training and will be familiar with all Hazcom procedures. Documentation will be available for inspection concerning any and all training required for working on specific sites including TSD sites. Employees will review MSDSs and other safety information before work begins.

4.4 Safety Equipment

4.4.1 First Aid Kit

A first aid kit is attached to the wall above the tool box by the rear exit door. The kit includes:

- Bandages
- Tape
- Skin Disinfectant
- First Aid Cream
- Instant Ice Packs

4.4.2 Eye Wash Apparatus

Two sealed, 32 oz, eye wash containers with eye cup are located for easy access on the truck. One is located on the wall by the hydraulic controls, the other is located above the sink. All personnel will be instructed as to their use. The bottles are labeled with an expiration date of approximately two (2) years. Unsealed bottles are discarded.

4.4.3 Fire Extinguishers

There are four (4) fire extinguishers on the truck. One fire extinguisher is located in the cab; two extinguishers are located inside the cabin; one in the front and one in rear of the cabin; one extinguisher is located on the outside rear of the truck next to the generator. Three are dry chemical A & B, and the fourth is a Halon A, B, and C rated (next to generator).

4.4.4 Eye Protection

Safety glasses will be required to be worn at all times while the truck is in operation. Safety glasses and/or goggles will be provided to visitors. Glasses are kept in the lockers. Safety glasses must be fitted with inflexible side shields.

4.4.5 Gloves

Appropriate gloves will provided. Nitrile rubber gloves are to be worn while handling hazardous materials. Work gloves are to be worn while operating the cone penetrometer system. Applicable gloves will be worn while operating the cone penetrometer, water, or soil sampling devices, and while grouting and decontaminating equipment.

4.4.6 Foot Protection

All personnel working on-board SEAL are required to wear steeltoed footwear.

4.4.7 Communication Radios and Telephone

A 2-way General Electric Radio is mounted in the cab. Also on board is a hand-held radio that can be carried away from the truck. A cellular telephone is located in the rear of the truck. Emergency numbers will be posted at every plant location.

4.4.8 Disposable Coveralls

Disposable coveralls are kept in the lockers located in the front portion of the cabin.

4.4.9 Hard Hats

Hard hats are kept in the lockers located in the front part of the cabin. Hard hats are not required unless required by the plant or where overhead hazards exist.

4.4.10 Truck backup alarm

When the truck's transmission is placed in reverse, the backup alarm immediately begins sounding. This alarm can be heard very easily by anyone at the rear of the truck.

4.4.11 Outside Mounted Trouble Lights

These lights are located on the exterior of SEAL. One is located at the rear of the truck next to the Onan generator. One each is located on each side of the truck above the decontamination systems location. The switch for turning these lights on is located beneath the hydraulic controls in the truck's cabin.

4.5 Truck Cabin Safety Features

The cabin has the following built-in safety features:

- Two Entrance-Exit Doors. Both doors are located on the right side of the truck and can be opened from inside or outside. Doors can be opened from inside when the truck is locked. One ladder is designated for each door and is attached to hooks immediately below doors. Each door has safety chains extending across the opening securely fastened on each side.
- Hand holds. Adjacent to each doorway are two hand holds. Each hand hold is strongly secured to the truck and facilitate the safe use of the ladders. The rear door is fitted with a handrail.
- Windows. There are four windows, two windows on each side of the truck.
- Ventilation System. The ventilation system is described in Section 3.1.3.
- Decontamination System. The decontamination system is described in Section 3.1.7.
- Model 2180 Single Channel Hydrogen Sulfide Gas Monitor 1188. Described in section 3.1.9.
- Model 480 Single Channel Combustible Gas Monitor 0689. Described in section 3.1.9.
- In-cabin hydraulic system splash guards and containment cables are in place.

4.6 Operational Safety Precautions

The following items will be part of the standard operating safety precautions:

- The Hydrogen Sulfide and Combustible Gas Monitors will be on at all times.
- Ventilation system should be operated whenever MSDS items are being handled in the cabin area, especially when working at sites of known contamination.
- Chemicals shall be properly stored in cabinets/refrigerator when not in use.
- Smoking will not be permitted on the SEAL.
- Eating must be confined to the mechanical front section of the cabin area at all times. Personnel should, however, abstain from eating on SEAL when working at probable contaminated sites and should, at these particular sites, leave the truck and eat at an appropriate facility.
- All work areas will be routinely cleaned with appropriate cleaners.
- Compressed gas cylinders are loaded aboard from the R&D West dock.
- If cylinders must be loaded or unloaded in the field, personnel will load and unload in pairs. Loading and unloading will be done from ground level without ladders, or from a truck bed.
- Checklists addressing routine procedures for the truck will be used and documented. These checklists are located in Section 8.0 of this manual. These include:

Pre-Trip/Post-Trip Truck Maintenance and Safety Preparation Pre-Trip General Equipment and Safety Preparation SEAL Operators Hazcom On-Site Site Preevaluation Pre-Setup Pre-Operation Post-Operation

4.7 Literature

The following manuals are kept in the Manuals Bookshelf in the cabin of the truck and in Ponca City at 117B RE:

- SEAL Operation/Safety Manual
- MSDS Notebook
- R&D East Safety Manual
- NAP Safety Manual
- First Aid Manual
- Du Pont Physical Distribution Guidelines
- Safety Manual for Geophysical Field Operations

0

- Manual for Field Operations
- A Chemical Health and Safety Reference Guide
- Federal Motor Carrier Safety Regulations Pocketbook
- Driver's Pocket Guide to Hazardous Materials (Sixth Edition)
- 5890 Gas Chromatograph Reference Manual
- 5890 Gas Chromatograph User's Manual
- HP 3396A Integrator Operating and Reference Manual
- Optiflow 520 Digital Flowmeter Operation Manual
- Mettler PM4600 Delta Range Balance Operation Manual
- Mopet Motorized Pipetter Operation Manual
- HP ColorPro Graphics Plotter Operation Manual
- Okidata Microline 320 Printer Operation and Setup Manual
- TI-60 Calculator Operating Manual
- Tekmar Autosampler Manual
- ELCD Manual
- O.I. PID Manual
- O.I. FID Manual
- Cone Penetration Test Data Interpretation Routine Program Instruction Manual
- Model 1057-24 Inverter Users Manual
- Guidelines for Use and Interpretation of the Electronic Cone Penetration Test
- Extended Field Computer System Operation and Instruction Manual
- BAT Groundwater Monitoring System Instruction Handbook
- Fisher TW-6 Pipe and Cable Locator Operation Manual
- Sperry-Vickers Hydraulic Valve Components and Flow Control Valve Information and Overhaul Manual
- Chronomite Instant-flow Water Heater Manual
- Dayton Wet-Dry Vacuum Manual
- Chemgrout Mini-Grout Pump Manual
- Webasto Diesel-Powered Water Heater Manual
- Model 2180 Hydrogen Sulfide Gas Monitor 1188 Manual
- Model 480 Combustible Gas Monitor 0689 Manual

5.0 STANDARD OPERATING PROCEDURES

Immediate decisions concerning any procedures in this section can be made quickly by referencing the SEAL EVALUATION DECISION TREE (Section 7).

5.1 Site Preevaluation

Site preevaluation is the first step in standard operation of SEAL. A precvaluation consists of an on-site visit in advance to using SEAL. See step 1.0 in SEAL Evaluation Decision Tree for these procedures and steps. During the pre-site visit a complete list of compounds and the estimated concentrations that may be encountered must be provided. Also a determination must be made if samples are to be collected, and if so, what are the analyses to be run. If analyses are to be run, a complete list of the particular compounds and at what levels of detection required, must be produced for this particular work-site. This information must be evaluated and compared to the limits of SEAL's analytical system before a commitment to this particular site's work.

5.2 Site Evaluation

A site evaluation will include the following reviewed information:

- Stratigraphy maps
- Survey information
- Location of subsurface utilities, underground tanks, pipelines, and product lines.
- Location of overhead utilities and obstructions
- Additional information obtained from local personnel.

As a precautionary procedure the Fisher Metal Detector will be used to detect underground metal objects. It must be noted here that the metal detectors reliability can only be accepted if there are not any topographical metal objects within 25 feet of area that is being surveyed. Bright spray paint will be used to mark any underground hazards detected. The site sampling points will be clearly marked with paint. The location of all surface and subsurface obstacles will be so indicated on the site map. The sampling sites will be indicated on the site map. The site map will be permanently attached to the official log-book.

Overall height of the truck (13' 4") and weight (46,000 lbs) will be addressed when assessing the site.

In order to level the truck with the jacks, the slope of the surface must not exceed 6%.

- 5.3 Operating Procedures for Truck
 - 5.3.1 Hydraulic System

- 1. Truck is set at the specific idle speed of 1400 RPM and the hydraulic system engaged.
- 2. Operator levels truck from inside cabin adjusting the four leveling cylinders as per instructions. It should be noted here that when the site is located on unlevel ground the truck should be parked perpendicular to the slope and not parallel and should be pointed downhill so as to keep the rear axles closer to the ground, therefore keeping the major weight of the truck closer to the ground.
- 3. When sounding is to begin, operator uses the hydraulic control levers to lower the ram with the jaw-locked rods into the ground.
- 4. Operator may elect to use hydraulic drill to break open hard surface before penetration of rods or the dummy tipped rod can be used to break through asphalt, or other hard surface material.
- 5. When decontamination system is to be used the hydraulic drill must be disconnected and the decontamination hydraulic lines connected in their place.

HAZARDS/RESPONSE

- 1. High-pressure lines leaking or breaking: Alsorb II Absorbent Sheets which are 100% polypropylene are carried on board to soak up spills of hydraulic oil. Tools are available for repairing any problem. Wherever possible, exposed hydraulic lines are covered with splash-guards. Lines are also equipped with retainers which will not allow the lines to flail freely if connections break.
- 2. High temperature and repeated exposure to hydraulic oils is discussed on the MSDS sheet.
- 3. Leveling cylinders will be secured in up position with special locking devices before moving.
 - 5.3.2 Backing Of Truck

Whenever possible, while backing the truck the second operator will stand to the driver's side of the truck toward the rear area to help direct driver.

- 5.3.3 Truck Setup
 - 1. Set emergency brake
 - 2. Set engine idle-speed at 1400 RPM
 - 3. Engage hydraulic pump per Truck Operating Manual
 - 4. Turn on air line to cabin

- 5. Insert grounding rod into ground
- 6. Start Onan Generator per Generator Operating Manual
- 7. Turn on ventilation system and check flowmeter indicating system is operating
- 8. Observe all hydraulic lines outside of cabin at this time
- 9. Upon entering cabin turn on both Gas Monitors
- 10. Remove safety caps from gas cylinders, attach lines from regulators and turn on all appropriate gases to Gas Chromatograph
- 11. Place oil in headspace analyzer
- 12. Turn on all instruments except computer
- 13. Level truck utilizing bubble level located on ram
- 14. Reference now to the appropriate section for a particular operation
- 5.4 Operating Procedures for Standard Electronic Cone

MATERIALS

Electronic Cone Driving Ram Cone Rods Computer

- 1. The particular cone to be used should be attached to the computer cable and allowed to warm up with the computer.
- 2. To begin sounding attach the appropriate rods to the cone and insert them into the holding jaws.
- 3. The baseline is set on the computer. If beginning baseline is appropriate, we are ready to begin the actual sounding.
- 4. Determination for using the decontamination system should be completed now. If the system will be needed, it should be installed in place now.
- 5. The insertion of the cone through the soil is carried out at a rate of 2 cm/sec. Rods are attached one at a time as the rods are lowered. When the desired depth is reached, or the maximum resistance is reached, the rods are withdrawn one at a time reversing the same method used during insertion.
- 6. Data obtained during sounding is printed out and recorded as it is obtained.
- 7. Rods are retrieved by exactly the opposite procedures for sounding. If decontamination is to be implemented, follow the decontamination procedures in Section 5.7.

8. Grouting of the hole will now be implemented using the appropriate technique. Refer to Section 5.8.

HAZARDS/RESPONSE

- 1. Placement of hands and location of computer cable during sounding are the most important items to be addressed by the second operator. Keep cable organized at all times. While ram is being moved up or down do not place hands in or around ram. Be aware of other operators actions at all times during sounding.
- 2. Handling of the cone itself is very important. The tips are pointed and sharp. Wear gloves at all times when handling the cones and rods.
- 3. The first 15 feet of penetration can be critical due to the unknown aspect of subsurface obstructions. During this time operators must be alert. Special attention must be given the gas detection system. Special attention must be given to the EFCS, specifically inclination and tip resistance. Gas Chromatograph runs must not be started at this time.
- 4. If decontamination system is being used during retrieving, be sure to turn off decontamination system before bringing cone through the system apparatus.
- 5. If decontamination system is being used be sure to detach computer cable-end to cone until cone has gone through the decontamination system.

5.5 Operating Procedure for Piezometer Cone

MATERIALS

- Piezometer Cone Driving Ram Cone Rods Computer Filter Stones Rubber retainer rings
- 1. Prior to actual assembly of the system, the filter stones must be deaired. With this process the filter stones are placed in a jar of glycerin which is placed in a small ultrasonic bath which is kept under vacuum and heated to over 100°C but not over 175°C. The filter stones must be totally submersed in the glycerin. They are allowed to deair for at least 24 hours. The top is placed immediately on the jar when completed. This operation is best completed in the home laboratory.
- 2. The cone should be attached to the computer cable and allowed to warm up with the computer.
- 3. Place cone in vice with tip end up and remove tip to expose the void chamber. This area must be deaired by flushing with a 50/50 solution of glycerin and water using a hypodermic needle.

- 4. Remove the cone from vice and place upside down in bucket of clean water. Remove a filter stone from storage and insert it onto tip and screw tip into void chamber.
- 5. Apply rubber retaining ring around the filter stone.
- 6. To begin sounding, remove cone from bucket and attach the appropriate rods to the cone and insert them into the holding jaws.
- 7. From here on follow procedures outlined in Section 5.4 on sounding.
- 8. Piezometer Cone Dissipation Test is now carried out pausing during penetration. The dissipation test can be performed at any depth. The rate of dissipation of excess pore pressure to a certain percentage of the equilibrium pore pressure is measured.
- 9. From here on follow procedures outlined in Section 5.4 on ending of sounding.

HAZARDS/RESPONSE

Refer to Section 5.4 Hazards/Response for Electronic Cone.

- 5.6. Sampling Procedures
 - 1. Check sample bottles or tubes to see that labels are correct and that preservatives have been added if required. If samples are extremely contaminated refer to Section 5.6.4 on Hazcom procedures for labeling.
 - 2. Fill field blanks.
 - 3. Complete sampling with as little agitation as possible if liquid or gas.
 - 4. With water samples, fill sample bottles (add preservatives for chlorine and other oxidizers if needed). Fill in the order: volatile organics, TOX, TOC, semi-volatile organics, and inorganics.
 - 5. Measure pH, temperature and conductivity. Equipment is to be calibrated against known standards prior to use.
 - 6. Attach security seals.
 - 7. Record field conditions and note appearance and odor of sample on the field log sheets.

- 8. Rinse outside of sample bottle and place on ice.
- 9. Clean equipment appropriately.

5.6.1 Water Sampling Procedures

MATERIALS

BAT Sampling System
Single-ended 35 mL sample container with screw top containing flexible discs and washers
Chain of weights
Air driven vacuum pump for evacuating container
Reel of wire (50 m) with shackle and length markers
Bolt M 8 x 30 mm for removing filter tips
Double-ended hypodermic needles
Guide sleeve/spring assembly
Sample container housing
Single-ended hypodermic needles
Syringe (20 mL)
BAT Enviroprobe
BAT Sampling Rods

- 1. Determination of decontamination needs should be addressed before beginning, according to procedures in Section 5.7. If decontamination is required the inner washing brushes and seals in the decontamination system must be changed out with the small cone-rod size taken out and the larger BAT-rod size inserted.
- 2. Sample containers, which consist of the flexible disc, TEFLON washer, plastic top with septum and the single-ended glass tube itself, are prepared in the lab prior to on-site use by boiling or autoclaving for 10 minutes at 105°C.
- 3. The containers are evacuated on-site since the container must be at a lower pressure than the groundwater at the filters tip. This is accomplished by using the air powered vacuum pump with short tube and needle attached.
- 4. The sampling unit is now assembled. The stainless steel tip is attached to the appropriate rods with water sampling mechanism attached.
- 5. The complete mechanism is lowered to the predetermined depth using the penetrometer ram system. The rods are then retracted exposing the sampler screen.
- 6. The desired depth is measured using the attached numbered trigger wire mechanism.
- 7. Lowering of the weighted mechanism triggers the needle from the sample container to the tip itself. Filling will now take place.

- 8. Upon completion of filling, the mechanism is raised out of the rods.
- 9. The sample container is then removed from the mechanism.
- 10. Purging is usually required at least once, and depending on the sample characteristics as to clarity, could need purging several times before a suitable sample is collected.
- 11. The container is then stored appropriately until analyses are going to be run.
- 12. The rods are removed from the ground.
- 13. Grouting procedures in Section 11 should now be followed.

HAZARDS/RESPONSE

- 1. Hypodermic needles: Care will be taken to avoid accidents with needles. Needle tips will have covers attached and taped and placed in disposal containers.
- 2. Water sample vials do not pose a hazard unless broken. These containers are septasealed vials.
- 3. Contaminated rods and equipment will be cleaned with the decontamination system per Section 5.7.
- 4. Contaminated Piezometers will be disassembled and cleaned in the sink using proper ventilation and washing procedures.
- 5. Samples will be handled in the ventilation hood.
- 6. Special attention should be given to the decontamination system to ascertain that the brushes and seals have been changed to the BAT rod size.
 - 5.6.2 Soil Sampling Procedures

MATERIALS

Stainless Steel Soil Tubes Tip Assembly Tremme Line Catch Assembly BAT Rod Adapter

- 1. Be sure all sampling equipment has been properly cleaned and kept in clean storage prior to assembly of soil sampler.
- 2. PVC gloves are worn during assembly of sampler which is completed per SEAL instructional training. Prior determination of core length is advisable before assembly.

- 3. Attach assembled sampler to BAT sampling rods and prepare in ram assembly for penetrating.
- 4. Lower sampler to predetermined depth and retract three inches to unlock tip mechanism. Lower tremme line to retract tip to top of sampler. Push sampler to fill correct length of soil tubes.
- 5. Retract rods with sampler attached. Remove sample tubes and place in sealed plastic bags. PVC gloves are worn at all times while handling sample tubes.
- 6. Remove soil cores from tube inside the vent hood area. Samples are placed in appropriate sample containers. If field analyses are to be done, these are prepared at this time also.
- 7. Sampling equipment is stored in sealed bags until washed and decontaminated.

HAZARDS/RESPONSE

- 1. Pointed sampler tip Always be aware of sharpness of tip.
- 2. Soil Sample Tubes will be open on both ends, therefore when handling, use PVC surgical gloves.
- 3. Contaminated rods will be cleaned with the decontamination system.
- 4. Soil Sampling device will be washed and decontaminated if needed using Alconox detergent and rinsed with deionized water.
- 5. Do not poke fingers through the sand catcher.
 - 5.6.3 Soil-Gas Sampling Procedures

Refer to operating procedures for water sampling (Section 5.6.1).

5.6.4 Procedures for Packaging and Shipping Samples

- 1. Dry inside of shipping container
- 2. Place at least 2 layers of bubble pack on bottom of container
- 3. Place open drum liner inside container
- 4. Wrap larger bottles in bubble pack and smaller bottles in styrofoam holders. Bottles should be chilled prior to shipping.
- 5. Place bottles and holders inside plastic bags in the container. Bottles should be upright and packed as tightly as possible.
- 6. Fill the plastic bag with wet ice (do not use dry or blue ice).
- 7. Remove air from top portion of plastic bag, twist excess plastic tightly and wrap with ties.

- 8. Note sample dates and times on chain-of-custody. Finish filling out sample log sheet and chain-of-custody. Remove back copy of these forms for truck file.
- 9. Place chain-of-custody and sample log sheet in the plastic folders and place in the container on top, outside of the plastic bag.
- 10. Close container and seal tightly with strapping tape.
- 11. Place security seal on the strapping tape at the point where the container lid and bottom meet.
- 12. Ship priority-one (overnight) via Federal Express, Airborne, etc.
- 13. Notify laboratory destination of shipment.
- 14. When shipping samples that are suspected of contamination of greater than 1%, Hazcom Labels must be on the sample bottles. Hazcom procedures must be followed also when shipping.

5.7 Decontamination Procedures

- 1. The decontamination system will only be used when ground penetration is proceeding in areas where known toxic compounds are suspected in high concentrations.
- 2. The system should already be in place according to instructions when beginning sounding or sampling.
- 3. Attach hydraulic lines to decontamination system (DS) fittings on bulkhead on floor below hydraulic controls in cabin and beneath truck.
- 4. Switch on front tank water heater.
- 5. Switch on Wet-Vac system.
- 6. Turn on valve on water supply.
- 7. When retrieving the rods from the ground turn on the DS so it is running at the same time. Be sure system is turning in the clockwise direction by referring to directions on lever control. After one rod is above the jaws and ready to remove, turn off the DS. Continue this procedure until completed.
- 8. Do not run the electronic cones thru the DS. Clean the cones immediately in sink in the truck.
- 9. Do not run the soil sampler thru the DS. Clean the soil sampler in sink in the truck.
- 10. When decontamination is complete turn off water and wet-vac.

HAZARDS/RESPONSE

- 1. When friction reducer is being used the reducer must be removed before entering the DS housing.
 - 5.8 Operating Procedures for Grouting

MATERIALS

Cement System Grout Class A-Type I Portland Cement Calcium Chloride D65 Dispersant D73 Fluid loss additive Water Stirrer Flexible 3/8 in PVC tubing Chemgrout Mini-Grout Pump Mixing containers (5 gal plastic) Disposal containers (5 gal plastic) Disposal containers (5 gal plastic with lids) Clamp Adapting Rods Rubber gloves Safety glasses

Hand spade

Dust mask

5.8.1 Mixing of Grout

Before going to the field the grout system components can be premixed into two mixing components. Twenty-five lbs of cement are mixed with .07 lb of D65 and .5 lb of Calcium Chloride. Ninehundred fifty mLs of D73 are mixed with 1.3 gallons of water.

When SEAL is going to be away from Ponca City for extended stays, the three additives are carried on board in premeasured amounts. The D73 is carried in 1000 mL plastic containers, the .5 lb of Calcium Chloride and D65 are also carried in a sufficient sized plastic containers. The cement is purchased while on the road.

Calculations must be completed before grouting a specific hole to determine the exact amount of grout needed to fill the particular hole. This is done to ensure that there will be no voids left in the hole. The grout is mixed in a five gallon bucket. The mixing is accomplished with an air-powered drill with stirrer attached. The air line outlet is located underneath the right front cabin door. The mixing proportions should be 1.3 gallons of water for each 25 lbs of grout material. The 25 lbs of grout is equal to 3 gallons of grout. The basic formula for determining the amount of grout is very important. The grout will setup very quickly; therefore, it is very important to mix only what is needed per opening or openings that are being grouted at one time. Approximately 3.0 gallon of mixed grout will fill a 20 ft hole.

Personnel will wear rubber gloves, safety glasses, dust mask, and long sleeved clothing. An abundance of water will be available at all times.

5.8.2 Technique No. 1

Technique No. 1 utilizes 3/8 inch PVC tubing which has been marked in meter lengths. This tubing is kept in fifty foot lengths and handled as rolls. The tubing is lowered the known depth of the hole. If the tubing mark matches the hole depth, grouting then begins. The tubing is connected to the grout pump. As the hole is filled, the tubing is pulled up slowly. Care must be taken to top off the opening properly to ensure there is no spillage on the surface. Any excess grout material is pumped into appropriate containers and the pump and tubing are flushed with water immediately. The flushing material is also collected into 5 gallon containers for disposal or can be used to mix grout for further grouting later. The disposal container is discarded according to specific site procedures and is documented.

5.8.3 Technique No. 2

This technique is utilized if it is determined the hole did collapse. This is determined by lowering the weighted tape measure down the hole from within the truck and comparing the measured depth with the computer print out depth reading. This technique is also utilized if the specific site requirements require downhole grouting. Technique No. 2 utilizes a 3/8" flexible PVC tubing threaded through sounding rods. A throw-a-way replaceable tip is inserted in the first rod. The rods are lowered down an existing hole to the desired depth. If the area is a contaminated area the rods must be inserted through the DS as described in Section 5.7. The top end is connected to the grout pump. When the desired depth is reached, the rods are backed off approximately 6 inches. Grout is then pumped down the tube to disengage the tip. The rods are raised 2 cm/sec as the grout is being pumped. Pumping is ceased as the top rod is removed. Repeat this procedure until end of rod reaches the top of the hole. Clean water is then pumped thru the system to flush out any excess grout. The excess is pumped into five gallon containers for future proper disposal according to specific site procedures and will be documented.

5.8.4 Technique No. 3

The truck is moved a short distance to allow ease of access to the hole. A funnel is inserted into the hole and the mixed grout is poured down the hole until the hole is full at ground level. If the calculated amount of grout isn't accepted by the hole, insert the 3/8 inch PVC tubing down the hole and force grout down using the grout pump until hole is completely filled. Rinse funnel into liquid disposal container. If tubing is used also flush into the liquid disposal container with water until clean. The disposal container is disposed of according to the specific site procedures and will be documented.

HAZARDS/RESPONSE

- 1. Grouting material may be a skin irritant. Avoid prolonged exposure to skin. Wash off with water. Breathing of the dust should be avoided.
- 2. MSDS sheets for the grouting materials are on the truck.
- 3. Product or other materials may surface from the hole while grouting is in progress. Immediately clean up the material and place in five gallon buckets and seal. These will be disposed of according to the specific sites procedures and will be documented.
 - 5.9 Analytical Procedures

5.9.1 Analysis of Water Samples

- 1. Personnel will be wearing PVC surgical gloves before beginning analysis.
- 2. Sample preparation is carried out under the fume hood located on the lab top.
- 3. Ten mL of sample is removed from water sampling bottle container or storage sample bottle located in the refrigerator, and placed in the 20 mL headspace vial using a pipetter. The vial is immediately sealed and placed in the Tekmar Autosampler. GC analysis then begins according to the particular analytical method used.
- 4. Unused sample is discarded into the liquid waste disposal system and the sample containers are discarded to the glass waste disposal system, or placed in storage for further analyses.

5.9.2 Analysis of Soil Samples

- 1. Operators will at all times be wearing PVC surgical gloves to avoid exposure and contamination of sample.
- 2. Sample preparation will be carried out using the ventilation system and hood.

- 3. Samples are removed from core tubes and placed in appropriate analysis container.
- 4. For on-board analysis, 10 gm of soil are placed in a 20 mL headspace vial. The vial is placed in the Tekmar autosampler. GC analysis is run according to a specific method.
- 5. Unused portion of sample will be discarded or resealed and stored for further analyses.

5.9.3 Analysis of Soil-Gas Samples

Refer to operating procedures for water analysis (Section 5.9.1).

HAZARDS/RESPONSE

4.

5.

ŝ.

- 1. Before starting up GC and autosampler, all fittings pertaining to any of the gases that are being used must be checked for leaks and be totally secured.
- 2. Detectors on the GC are very hot and contact with them must be avoided.
- 3. Hands will be kept dry when handling any cables connected to the analytical equipment.

samples will be assumed contaminated therefore handle all samples accordingly.

Assorted glassware is being used therefore care will be taken to avoid broken pieces.

Reusable contaminated hardware and glassware will be washed in Alconox and thoroughly rinsed with deionized water.

5.10 Sampling and Stratigraphy Quality Assurance/Quality Control

In order to ensure the accuracy of stratigraphy data collected with the cone penetrometer system, correlations are made with existing soil core or well log data where they exist.

Soil samples are collected from distinct zones for visual confirmation by trained geologists.

Depth readings are made continuously with a mechanical/electronic recording device. These readings are confirmed by two methods. Rods are one meter in length and the number of rods used are counted. When soil conditions permit (non-collapsing hole) a measuring tape is lowered into the hole.

Automatic equipment decontamination is completed between samples and between holes.

Prior to collection of water samples for analyses, the equipment volume is purged and discarded.

Soil samples are collected directly into cleaned stainless steel tubes.

Equipment blanks, trip blanks, and duplicates are taken as needed, for both water and soil samples. Matrix spiked duplicates are also prepared, as needed.

Each site is flagged and staked for later survey or mapping.

6.0 REVISION AND UPDATING PROCEDURES

Continuous revisions are expected due to additions to the truck and alterations to operating procedures. Scheduled revisions will be completed yearly or as needed.

.

7.0 OPERATIONAL DECISION TREE

Step 1.0 Site Preevaluation

Identifying and Evaluating Physical Limitations

Height with bellows down	< 13 ft 6 in - STOP > 13 ft 6 in - CONTINUE
Height with bellows up	< 18 ft - STOP > 18 ft - CONTINUE
Weight	< 25 tons - STOP > 25 tons - CONTINUE
Width	< 8 ft - STOP > 8 ft - CONTINUE
	> 6% Grade - STOP < 6% Grade - CONTINUE

Ground surface conditions unable to support truck - STOP

Step 2.0 Site Evaluation

2.1 Stratigraphy Assessment

Ground Penetrable

Hand-Probe Penetration < 10 ft - STOP > 10 ft - CONTINUE

2.2 Soil/Water/Soil-gas Sampling Assessment

Probe unable to penetrate to predetermined sampling depth - STOP.

Determine if depth is sufficient for sampling.

Probe penetrates to predetermined depth - CONTINUE.

2.3 Analytical Capability Assessment

Required detection levels of components attainable - CONTINUE.

Required detection levels of components non-attainable - STOP.

Step 3.0 Subsurface Obstruction Assessment

Locations of utilities, pipelines, and tanks specifically indicated on site map - CONTINUE.

Locations not specifically indicated - STOP.

Local personnel specifically indicate locations - CONTINUE.

Local personnel do not know locations - STOP.

Assess all questionable locations using metal detection and specific assessments by SEAL personnel.

Step 4.0 On-Site Operation Evaluations

4.1 Truck Setup Preparation

Combustible gas detector siren not sounding - CONTINUE.

Combustible gas detector siren sounding - STOP.

Operate ventilation fan until detector siren stops - CONTINUE.

Upon entering cabin check hydrogen gas cylinder for leakage - CONTINUE.

Truck leveling is completed - CONTINUE.

Truck cannot be leveled - STOP.

Reposition truck - CONTINUE.

Repositioning not possible - STOP.

If relocating position too close to proximity that it will not help - ELIMINATE LOCATION.

4.2 Sounding

Computer baseline satisfactory - CONTINUE.

Unsatisfactory baseline - STOP.

Calibrate Cone - CONTINUE.

No downhole contamination suspected - CONTINUE.

Downhole contamination suspected - STOP.

Install decontamination unit and confirm operation - CONTINUE.

Immediate friction and/or tip quit indication - STOP.

Relocate to next location - CONTINUE.

Intermittent quit indications - STOP.

Damage to equipment imminent - STOP.

Quit indications due to very tight soils - CONTINUE.

Severe buckling of 1/8 in inside sleeve and/or rebounding of sounding tubes over one inch - STOP.

No buckling or rebounding CONTINUE until complete refusal.

4.3 Soil/Water/Soil-Gas Sampling

No downhole contamination suspected - CONTINUE.

Downhole contamination suspected - STOP.

Install decontamination unit and confirm operation - CONTINUE.

4.4 Grouting

Non-collapsed hole. Move truck and begin grouting using Technique I or III - CONTINUE.

Collapsed hole. Begin grouting using Technique II - CONTINUE.

Step 5.0 Emergency Evaluations and Responses

5.1 Follow these specific procedures during the first fifteen feet of ground penetration:

DO NOT LEAVE CABIN.

Keep doors shut and ladders up.

Pay close attention to rods and gas detection monitors.

5.2 Combustible or H_2S gases detected with aid of gas detection monitors.

Turn all systems off IMMEDIATELY.

Evacuate truck immediately.

Turn off generator.

Evacuate area - keep people away.

Notify proper authorities.

5.3. Subsurface obstructions detected by Cone Responses.

Remove rods from ground immediately.

Turn off all systems.

Review site problem.

8.0 CHECKLISTS

8.1 Pre-Trip General Equipment & Safety Preparation

DATE _____

SIGNATURE

SAFETY EQUIPMENT

- () Fire Extinguishers (4)
- () First Aid Kit Band-Aids Tape First aid cream Instant ice packs Disinfectant Concentrated eye wash
- () Safety eye-wear
- () Ear protection
- () Foot protection
- () Eye wash containers in date
- () Gloves
- () Hard hats
- () Communication radio and batteries
- () Extra batteries all sizes
- () Safety cones and barrier ribbon
- () Nomex clothing

OPERATING SUPPLIES

- () Paper towels
- () Detergent soap
- () Waste containers
- () Deionized water
- () Syringes
- () Scrubbers
- () Gloves
- () Solvents
- () GC Standards
- () Plumbing supplies
- () Grouting supplies
- () Decontamination supplies
- () Sample bottles
- () Chain-of-custody forms
- () Sample labels
- () UHP Gas cylinders
- () General tools
- () Snoop leak detection fluid

- () Headspace vials and supplies
 () Integrator paper
 () BAT water sampling supplies
 () PVC well setting supplies
 () Continuous core soil sample supplies

8.2 SEAL Operators

DATE _____

SIGNATURE _____

- () Driver log book
- () Driver medical card
- () Commercial drivers license
- () Restrictions

8.3 Laboratory Hazard Communication Program Checklist

DATE _____

SIGNATURE _____

<u>MSDS'S</u>	YES	NO
1. Are all MSDS's received in the laboratory direct from vendors copied and sent to the R&E Industrial Hygienist?	()	()
2. Are all laboratory MSDS's filed in an appropriate manner, and made accessible to employees 24 hours per day?	()	()
3. Have employees been trained to access a MSDS?	()	()
4. Have employees been trained to understand the MSDS ?	()	()
VESSEL/CONTAINER LABELING		
1. Have Hazard Identification Tags been prepared for each vessel greater than 12 liters in vol.?	()	()
2. Have Hazard Identification Tags been attached to these vessels?	()	()
3. Have all portable containers been properly labeled (as a minimum, permanent ink covered with transparent tape)?	()	()
4. Are all sample containers properly labeled (as a minimum, permanent ink covered with transparent tape)?	()	()
5. Are all samples/containers etc., shipped with the appropriate label, and MSDS (or cover letter explaining health and physical hazards)?	()	()
6. Have procedures been implemented to insure that labels on incoming containers are not removed, defaced, or covered up?	()	()

8.4 Employce Information and Training

Training Provided By Health, Safety, and Environmental Group

			YES	NO
1.	Have employees received initial generic Hazard Com. Training (available during New Employee Orientation Part A, or by request)?		()	()
2.	Have employees received OSHA 1910.120 training and/or refresher?		()	()
<u>Tr</u>	aining Provided By Individual Group Supervisors			
1.	Has a training program been established to train all employees regarding each health and physical hazard in their work area?		()	()
2.	Does the training program include provisions for training employees upon the introduction of a new hazard into the workplace?		()	()
3.	Have employees been informed of the visual appearance or smell of the chemicals to which they may be exposed so they will know when they are being released into the atmosphere?		()	()
4.	Have employees been informed of the measures they can take to protect themselves from chemical hazards?		()	()
5.	Does the training program indicate specific procedures, work practices, and proper use of personal protective equipment?		()	()
6.	Have employees been informed of R&E's vessel and container labeling procedure?		()	()
7.	Does the training program include provisions for informing employees of hazards associated with non-routine tasks?		()	()
8.	Do you have an outline of the training presented to employees including a listing of audiovisual aids?		()	()
G	ROUP SUPERVISOR			
S	GNATURE	DATE		

Site Preevaluation

DATE

SIGNATURE _____

- () Stratigraphy maps
- () Surface maps
- () Survey information
- () Type of service required
- () Special problems
- () Located water line
- () Located gas line
- () Located telephone line
- () Located electrical lines
- () Located sewer lines
- () Located other lines
 - list _____
- () Metal detector survey
- () Hand-driven rod probe survey
- () Work locations identified with paint marks
- () Locations accessible (See section--Decision tree)
- () Familiar with site safety requirements
- () Previous subsurface work on file
- () Name and phone number of site manager
- () Phone numbers of all utility companies
- () Phone numbers of emergency units
- () Potential contaminants identified
- () Contaminants MSDS on file

8.5

8.6 Pre-Sctup

DATE _____

SIGNATURE

- () Utility locations identified
- () Locations identified as to metal detection
- () Hazcom procedures identified
- () Identification of nearest telephones
- () Identification of nearest emergency station
- () Utility shutoffs identified
- () Safety barriers erected
- () Operational safety equipment in place

8.7

Pre-Operation Checklist (Individual Location)

DATE _____

SIGNATURE _____

OPERATORS _____

- () Disengage transmission
- () Set emergency brake
- () Turn on utility air
- () Start generator
- () Start diesel-powered water heater
- () Turn on computer system
- () Turn on gas detection system
- () Check for air flow through gas detection system
- () Install decontamination system
- () Turn on compressed gases
- () Check for leaks
- () Startup all analytical systems
- () Metal detector scan of area
- () Pull up to specific site
- () Disengage transmission
- () Set emergency brake
- () Engage hydraulic system and set engine speed to 1200 RPM
- () Ground truck
- () Release safety chains
- () Level truck
- () Raise bellows

*All discrepancies should be noted on reverse side

8.8 Post-Operation Checklist (Individual Location)

DATE _____

SIGNATURE _____

- () Hole sealed
- () Area cleared of debris
- () Waste containers capped
- () Equipment secured
- () Lower bellows
- () Lower truck
- () Retrieve grounding rod
- () Turn off diesel-powered water heater
- () Disengage hydraulic system

*All discrepancies should be noted on reverse side

8.9 Completed Site Post-Operation Checklist

DATE _____

SIGNATURE _____

OPERATORS _____

- () All truck systems off
- () All holes sealed
- () Waste tanks emptied
- () All waste, liquid and solid, disposed of according to specific procedures of site (receipt and documentation must be attached)
- () Water tanks emptied
- () All equipment secured
- () Remove decontamination system from beneath truck
- () Compressed gas cylinders turned off and capped
- () Hookup all utilities that were required off
- () Notebooks and checklists completed
- () Complete map with work locations
- () Notify facility manager and safety personnel

*All discrepancies should be noted on reverse side

8.10 Pre-Trip/Post-Trip Truck Maintenance and Safety Preparation Checklist

UNIT NO	
MAKE	
YEAR	
DATE	
MILEAGE	

- () General condition-exterior
- () Cab condition-interior
- () Radios
- () Parking brake on-start engine
- () Low air warning device
- () Tractor protection valve on
- () Tach at 1000 RPM-air pressure buildup
- () Tractor protection valve off
- () Engine off-compressor system air leak test
- () Tachograph, (Tampering)?, Tachometer, Gauges, Horn, Wipers and Visors
- () Heater-Defroster, Air-Conditioner
- () Windshield, Cab Glass, Mirrors
- () Foot Pedals-condition
- () Steering wheel
- () Safety equipment
- () Fire extinguisher Inspection date _____ Make _____ UL Rating _____
- () First Aid Kit
- () Accident reporting kit
- () Emergency reflective triangles

- () Spare bulbs and fuses
- () Scat belts
- () All wheels, lugs, and tires
- () Headlights, turn signals, clearance, road spot lights
- () Front suspension-alignment
- () Fuel leaks
- () Peep window, right door
- () Exhaust system
- () Battery mounts, covers, cables
- () Fuel tank and cap
- () Cab reflectors
- () Deck plates
- () Unloading or backup lights
- () Air hoses
- () Electrical cord and connectors
- () Frame, suspension, cross-members and brakes
- () License plate-bracket
- () Tractor air tanks
- () Cab steps and grab handle
- () Chock blocks-secured

8.11 Gas Monitor Calibration

DATE _____

SIGNATURE _____

Calibration of H₂S and Combustible Gas Monitors.

Equipment Used: 1% propane calibration gas in air, with 0-4 liter rotometer on bottle. H₂S permeation device for H₂S sample.

This procedure to be used with system vacuum pump.

Combustible Gas:

Connect lower suction line to calibration gas bottle. Adjust rotometer for 2 liter flow. Adjust gas monitor to read 49% on meter. Disconnect calibration gas bottle and recheck zero adjustment.

H₂S Gas Detector:

A Kintee permeation type device was used to set H_2S concentration. Permeation tube characteristics determine needed flow rates for a particular H_2S concentration. Calibration information is provided with each tube.

Connect lower suction hose to Kintec gas span output. Adjust flow rate for approximately 100 ppm. Adjust upper level to desired reading. Monitor for 30 min. Disconnect Kintec. Let system air out. Reconnect Kintec again. Adjust flow rate for approximately 20% of full scale. Adjust lower level adjustment for desired reading.

Repeat procedure for confirmation of desired readings.

NOTE: Adjustment procedures are described in monitor manuals in SEAL.

Manuals show devices and calibration techniques at the sensor. Calibration with flow from the input was used to confirm that the sensor reading reflects funnel input. Calibration of the sensors directly does not ensure that the meter reading will correspond to the input of the funnel.

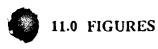
9.0 TRUCK LICENSING, REGISTRATION, AND INSPECTION

SEAL is Proportionally Registered in the following States with license No. P69145:

Alabama
Arizona
Arkansas
California
Colorado
Connecticut
Florida
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maryland

Michigan Minnesota Massachusetts Missouri Montana Nebraska New York North Carolina North Dakota Oklahoma Oregon Pennsylvania South Carolina South Dakota Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming

Owned & operated by Conoco R&E, Ponca City, Oklahoma.



10.0 RECORDS

Permanent bound notebooks are maintained for the SEAL. Those being:

Operation Log Analysis Log Checklist Log Reports

.

. . .

Mobile Lab ICP Procedures

ويستعلمه والمستعلمات والمتركم والمستعد و

ENVIRONMENTAL SERVICES DIVISION METHOD

FALCON ICP

HLG

INDUCTIVELY COUPLED PLASMA ATOMIC ABSORPTION EMISSION SPECTROSCOPY

1.0 SCOPE AND APPLICATION

- 1.1 Inductively coupled plasma atomic emission spectroscopy (ICP) determines trace elements including metals in solution. The method is applicable to a large number of metals. Various matrices, including ground water, aqueous samples, and soils may be analyzed. Digestion prior to analysis is required for soils.
- 1.2 The method is based upon SW846 Method 6010. However, EPA protocol QC is not followed. Procedures described fulfill general requirements for screening samples for trace metals. Elements for which the method are applicable are listed in Table 1. Detection limits will vary with the matrices and model of spectrometer. Conoco currently uses a Thermo Jarrell Ash Atomscan 16 Sequential ICP. Estimated LDRs provide concentration ranges for clean aqueous samples.

2.0 SUMMARY OF METHOD

- 2.1 Prior to analysis, soil samples will be digested using microwave techniques. Water samples will be analyzed without digestion. If aqueous samples show excessive turbidity, Method 3005 or microwave digestion may be used at discretion of analyst. Before collection of the sample, a decision must be made as to the type of data required (dissolved, total recoverable, or total) so that the appropriate preservation and pretreatment steps may be accomplished. Filtration, acid preservation, etc., are to be performed at the time the sample is collected or as soon as possible thereafter.
- 2.2 The method describes the sequential multielemental determination of elements by ICP. This procedure is for field screening, and does not satisfy the quality control requirements of SW846 Method 6010 (3rd Ed., Update 1, Dec., 1987) or Method 200.7 (40 CFR 136, Appendix C, July 1, 1990). Method 6010 can be reported if all EPA QC requirements must be met.

The method measures element-emitted light by optical spectrometry. Samples are nebulized and the resulting aerosol is transported to the plasma torch. Element-specific atomic-line emission spectra are produced by a radio-frequency inductively coupled argon plasma. The spectra are dispersed by a grating monochrometer, and the intensities of the lines are monitored by a photomultiplier tube. Background correction is required for trace element determination. Background must be measured adjacent to analyte lines on samples during analysis. The position selected for background measurement, on either or both sides of the analytical line, will be determined by the complexity of the spectrum adjacent to the analyte line. The position used must be free of

TABLE 1 RECOMMENDED WAVELENGTHS AND DETECTION LIMITS (UG/L)

		r		
		IDL*	MDL	PQL
Element	Wavelength	Est'd.	Meas'd.	Est'd.
Aluminum	308.215	45	20	20
Antimony	206.838	43 32	20 40	20 250
Arsenic	193.696	53	40 20	100
Boron	249.678	23	2050	100
101011	249.773	5	2050	
Barium	493.409	5	2	20
Darium	455.403	2	2	20
Beryllium	313.042	0.3	3	10
Bismuth	223.061	0.5	30	100
Cadmium	228.802	_	3	100
Cuumum	226.502	4	,	10
Calcium	317.933	10	3	10
Chromium	267.716		5	25
Cobalt	228.616	7	5	10
Copper	324.754	6	2	10
Iron	259.940	7	10	50
Indium	230.606	-	25	250
Lithium	670.784	5		
Lead	220.353	42	70	250
Magnesiu	279.079	30	30	100
m				
Manganese	257.610	2	20	25
Molybdenu	202.030	8	6	50
m				
Nickel	231.604	15	10	100
Phosphoro	178.287	-	30	150
us				
	213.618	51	-	-
Potassium	766.491	**	800	2500
Selenium	196.026	75	30	. 100
Silver	328.068	7	5	10
Silica	288.158	58	8	500
(SiO ₂)				
Sodium	588.995	29	10	750
Strontium	421.552	•	2	25
	407.771	0.3	-	-
Titanium	334.941	-	2	25
Thallium	190.864	40	80	100
Vanadium	292.402	8	7	25
Zinc	213.856	2	2	25
Zirconium	339.192	-	3	10

Note:

*EPA-600/4-79-017, "Inductively Coupled Plasma-Atomic Emission Spectroscopy-Prominent Lines." Given as a guide only. **Highly dependent upon operating conditions and plasma position.

spectral interference and reflect the same change in background intensity as occurs at the analyte wavelength measured. Background correction is not required in cases of linebroadening where a background correction measurement would actually degrade the analytical result. The possibility of additional interferences named in Section 3.0 should also be recognized and appropriate corrections made; tests for their presence are described in Step 8.5.

1.2.2

3.0 INTERFERENCES

3.1 Spectral interferences are caused by : (1) overlap of a spectral line from another element; (2) unresolved overlap of molecular band spectra; (3) background contribution from continuous or recombination phenomena; and (4) stray light from the line emission of high-concentration elements. Spectral overlap can be compensated for by computer-correcting the raw data after monitoring and measuring the interfering element. Unresolved overlap requires selection of an alternate wavelength. Background contribution and stray light can usually be compensated for by a background correction adjacent to the analyte line.

Previous experience with the sample matrix, or information from a companion technique for trace metal assays, can be used to verify the absence of spectral interference from an element in a sample. Potential spectral interferences for the recommended wavelengths are given in Table 2, Reference 1. The data in Table 2 are intended as rudimentary guides for indicating potential interferences; for this purpose, linear relations between concentration and intensity for the analytes and the interferences can be assumed.

- 3.2 Physical interferences are effects associated with the sample nebulization and transport processes. Changes in viscosity and surface tension can cause significant inaccuracies, especially in samples containing high dissolved solids or high acid concentrations. If physical interferences are present, they must be reduced by diluting the sample or by using a peristaltic pump. Another problem that can occur with high dissolved solids is salt buildup at the tip of the nebulizer, which affects aerosol flow rate and causes instrumental drift. The problem can be controlled by wetting the argon prior to nebulization, using a tip washer or diluting the sample. Also, it has been reported that better control of the argon flow rate improves instrument performance; this is accomplished with the use of a mass flow controller.
- 3.3 Chemical interferences include molecular compound formation, ionization effects, and solute vaporization effects. Normally, these effects are not significant with the ICP technique. If observed, they can be minimized by careful selection of operating conditions (incident power, observation position, and so forth), by buffering the sample, by matrix matching, and standard addition procedures. Chemical interferences are highly dependent on matrix type and the specific analyte element.

4.0 APPARATUS AND MATERIALS

- 4.1 Thermo Jarrell Ash Atomscan 16 Sequential ICAP.
 - 3

4.2 Apparatus required for digestion and sample preparation can be found in separate SOPs.

5.0 REAGENTS

- 5.1 Water supply purified with a Milli-Q system must be available. The water must be monitored daily, when in use, using a conductivity meter. Records of monitoring are kept in a log book maintained for each system according to the EVSD SOP for this purpose.
- 5.2 Concentrated nitric acid, J. T. Baker, Instra-analyzed, or an equivalent purity.
- 5.3 Nitric acid (1:1). Add 500 mL concentrated HNO₃ to 400 mL of Milli-Q water and dilute to 1 liter. Add acid slowly to the water with vigorous stirring. Do not allow the solution to overheat. Pour the acid down the sides of the coutainer to avoid sputtering.
- 5.4 Concentrated hydrochloric acid, J. T. baker, reagent grade, or an equivalent purity.
- 5.5 Hydrochloric acid (1:1). Add 500 mL concentrated HCl to 400 mL of Milli-Q water and dilute to 1 liter. Add acid slowly to the water with vigorous stirring. Do not allow the solution to overheat. Pour the acid down the sides of the container to avoid sputtering.
- 5.6 Calibration stock standards and working standards see the ICP Standards Preparation SOP.
- 5.7 Instrument check standard see the ICP Standards Preparation SOP.
- 5.8 Interference check solution see the ICP Standards Preparation SOP.
- 5.9 Two types of blanks are required for the analysis. The calibration blank is used in establishing the analytical curve and rinsing between samples, and the reagent blank is used to correct for possible contamination resulting from the acids used in the sample digestion
 - 5.9.1 The calibration blank is prepared by diluting 2 mL of (1:1) HNO₃ and 10 mL of (1:1) HCl to 100 mL in water. Prepare a sufficient quantity each day to flush the system between standards and samples.
 - 5.9.2 The reagent blank must contain all the reagents and in the same volumes as used in processing the samples. The reagent blank must be carried through the complete digestion/preparation procedure and contain the same acid concentration as the sample solution used for analysis.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

- 6.1 All sample containers used in the laboratory must be prewashed with Alconox detergent, acids, and purified water. Acid soaking and rinsing with purified water should be done just prior to use.
- 6.2 Sampling and preservation:
 - 6.2.1 Aqueous samples for total, total recoverable, and dissolved metals must be acidified with HNO₃ (5 mL/L) or to a pH of < 2 at the time of collection.
 - 6.2.2 Nonaqueous samples should be stored at 4°C (refrigerator or ice chests) and analyzed as soon as possible.
- 6.3 Safety:
 - 6.3.1 Standard laboratory safety precautions should be adhered to at all times. Refer to the Research and Engineering Safety Manual for required procedures.
 - 6.3.2 Assume that all samples are hazardous. The use of fume hoods, safety glasses, lab coats, and protective gloves is mandatory at all times. Concentrated acids should be stored and transported in rubber buckets. The Safety Manual discusses use of face shields, gloves, aprons, gauntlets, fume hoods, and other protective measures when handling caustic materials.
 - 6.3.3 Do not use cracked, chipped, or otherwise damaged or stressed glassware. Dispose of or have repaired any damaged glassware.
 - 6.3.4 Material Safety Data Sheets are available in the Library for all common laboratory chemicals. Obtain an MSDS from the supplier of any new chemicals ordered for the Laboratory. Provide a copy to the Library and to the Research and Engineering Industrial Hygiene Officer. Inform your supervisor about any new or suspected hazards which have come to your attention.
 - 6.3.5 Follow only prescribed procedures for disposal of samples and laboratory chemicals.

7.0 **PROCEDURE**

7.1 Set up the instrument with the proper operating parameters established in manufacturer's instructions. Check the Digestion Lab Log Sheet accompanying each batch of samples to determine which elements are to be analyzed. Verify that the appropriate QC samples have been included.

- 7.2 Initialize the instrument and verify background assignments using a mixed standard. Verify subtraction method using wavelength scans from an actual sample before proceeding with the analyses.
- 7.3 Calibrate the instrument using mixed calibration standards. Verify the reliability of calibrated standards periodically using standards from a separate supplier. Flush the system with the calibration blank between each standard. Use the average intensity of three exposures for both standardization and sample analysis to reduce random error. Normally, calibration (two point for each element) will be accomplished using a calibration blank (zero concentration values) and a standard blends containing each of the elements of interest at 10 ug/mL, except Ca, Al, Mg, Fe, and silver which will be at 100 and 1.0 ug/mL, respectively.
- 7.4 Once initial calibrations have been done and before beginning a sample run, reanalyze the high mixed calibration standards as if each were a sample. Concentration values should not deviate from actual values by more than 10 percent. If they do, follow the instrument manufacturer's instructions to correct this condition.
- 7.5 Flush the system with the calibration blank solution for at least 1 minute between all analyses.
- 7.6 Analyze the instrument check standard and the calibration blank after each 10 samples or 1 hour of operation, whichever is shorter.
- 7.7 The chronology of analyses should follow the following general pattern:

CAL BLK; CAL1; CAL2 (opt.); CAL3 (opt.); CALCHK; IEC; 10 Samples; CAL BLK; INSTR CHK STD; 10 Samples; CAL BLK; INSTR CHK STD.

7.8 Calculations: If dilutions were performed, the appropriate factors must be applied to sample values. All results should be reported in mg/L (liquids) to the thousandths place and up to three significant figures. Reagent blanks may be subtracted from sample results if the analyst deems it necessary.

8.0 QUALITY CONTROL

- 8.1 All pertinent data must be maintained in a hardcopy file with the corresponding batch file information of samples for which it was collected. This includes digestion method blanks and calibration data. Copying may be necessary to fulfill this requirement.
- 8.2 Dilute and reanalyze all samples which exceed the $1/2 \times LDR$ for each element.
- 8.3 Employ a minimum of one method (digestion) blank (MB) per dilution batch (~20) to determine if contamination or memory effects are occurring.

It is recommended that whenever a new or unusual sample matrix is encountered, a series of tests be performed prior to analysis. Matrix spike addition: An analyte spike added to a portion of a prepared sample, or its dilution, should be recovered to within 75 to 125 percent of the known value. The spike addition should produce a minimum level of 10 times and a maximum of 100 times the instrument detection limit. If the spike is not recovered within the specified limits, a matrix effect should be suspected.

CAUTION: Use a wavelength scan for the elements of interest to determine if spectral overlap may be occurring.

8.4 Check the instrument standardization by analyzing appropriate check standards as follows.

80

ĩ

- 8.4.1 Check the instrument calibration using a calibration blank and two appropriate standards (see 7.3 and 7.6).
 - 8.4.1.1 The results of the initial calibration verification (7.3) must agree within 10 percent.
 - 8.4.1.2 The results of subsequent instrument check standard assays must agree within 10 percent of the expected value; if not, terminate the analysis, correct the problem, and recalibrate the instrument, and reanalyze the previous samples run since the last valid check.
 - 8.4.1.3 The calibration blank should not show any elements at values > the reporting threshold (PQL); if not, correct the problem.
- 8.4.2 Interelement correction factors must be verified at the beginning of each analytical run. Do this be analyzing the interference check sample. Results should be within 20 percent of the true value obtained in 8.4.1.1.
 - 8.4.2.1 The elements which generally are considered to be major potential interferents are aluminum, calcium, magnesium, and iron.
 - 8.4.2.2 The daily IEC check is performed by analyzing a blend containing all elements of interest including the major interferents at a significantly higher concentration than the interferees. See 5.9. This solution is made using appropriate dilutions of Standards, containing the interferents at relatively high concentration.
- 8.5 A quality control sample obtained from a source independent of the calibration standards must be used periodically to verify the calibration standards. A fresh dilution of this sample should be used to monitor the standards. Periodic checks should agree within 10 percent of the true value listed on the control sample. If not prepare fresh calibration standard solutions and recheck.

9.0 ADDITIONAL INFORMATION

- 9.1 Instrument Run Log: Record all analyses (calibration, QC, and samples in the Log Book. A Log should be prepared for each instrument. The pages should all be signed by the analyst. Information must include sample i.d., project/dash nos., digestion methods performed, standard solutions used (referenced to Standards Prep. Log.), date of analysis, dilution factors, weights for solid samples, notebook references, and software file numbers. Other comments may be added as well, at the discretion of the analyst.
- 9.2 Analyst Green Notebook: Special calculations may be necessary for certain situations. These should be entered into the Analysts Green Notebook. The notebook and page number should then be entered as a reference in 7.7. Conoco R&E procedures must be followed for all Green Notebook records.
- 9.3 Project Files: Hardcopy of all raw data and preliminary reports must be maintained by the Lab Staff. These files will be kept on a daily basis. The Instrument Run Log may then be used to recover Project related data from the files, by referencing analysis dates and project numbers.
- 9.4 Digestion Lab Log Sheet. A log sheet filled out by the Digestion Lab will accompany each batch of samples to the Instrument Lab. This will reflect which method is needed for assay, and it will list the parameters to be determined. The analyst must mark samples complete on this form and return the finished samples together with the form to the Digestion Lab. The Form allows for the analyst to request rework on samples as well, if that is deemed necessary for some reason by the analyst (e.g. redigest, or redigest and spike).
- 9.5 Reports will be generated by the analyst using the Environmental Sample Analysis Results Load Sheet.

REFERENCES

- 1. "Test Methods for Evaluating Solid Waste, SW846", 3rd Ed., Revision 1, December 1987, Method 6010.
- 2. 40 CFR 136, Appendix C, Method 200.7, July 1, 1990.

PREPARED BY:

Harry L. Gearhart Senior Research Associate Environmental Services Division

amr/falcon.hlg

Sheri L. Blaylock Chemist Environmental Services Division

ENVIRONMENTAL SERVICES DIVISION METHOD

EVSD-FALCON3015

MICROWAVE ASSISTED ACID DIGESTION OF AQUEOUS SAMPLES

1.0 SCOPE AND APPLICATION

- 1.1 Method 3015 is used for the preparation of aqueous samples and wastes that contain suspended solids for analysis, by graphite furnace atomic absorption spectroscopy (GFAA), by direct aspiration flame atomic absorption spectroscopy (DAAA), or by inductively coupled argon plasma spectroscopy (ICP). This procedure is given in SW846 Revision 0, November 1990.
- 1.2 Samples prepared by method 3015 using nitric acid digestion may be analyzed by GFAA, DAAA, or ICP for the following metals:

Aluminum Antimony	Magnesium Manganese
Arsenic*	Molybdenum
Barium	Nickel
Beryllium	Potassium
Cadmium	Selenium*
Calcium	Silver
Chromium Cobalt	Sodium
	Thallium Vanadium
Copper Iron	Zinc
Lead	

Note: 1. *Cannot be analyzed by DAAA

2.0 SUMMARY OF METHOD

2.1 Nitric acid (HNO₃) is added to the aqueous sample in a 120 mL Teflon digestion vessel. The vessel is capped and heated in a microwave unit. After cooling, the vessel contents are filtered, centrifuged, or allowed to settle in a clean sample bottle for analysis.

3.0 INTERFERENCES

3.1 Very reactive or volatile materials that may create high pressures when heated may cause venting of the vessels with potential loss of sample and analytes. Samples that contain carbonates or other carbon dioxide generating compounds may cause enough pressure to vent the vessel. If this situation is anticipated, the analyst may wish to use a smaller sample.

HLG

4.0 APPARATUS AND MATERIALS

- 4.1 Microwave unit providing programmable power with a minimum of 574 watts, which can be programmed to within \pm 10 watts of the required power. The microwave unit cavity is corrosion resistant and well ventilated. All electronics are protected against corrosion for safe operation.
- 4.2 Graduated cylinder, 100 mL, calibrated "to deliver", polypropylene.
- 4.3 Sample bottle, 125 mL, high density polyethylene, and a phenolic cap with a polyethylene liner.
- 4.4 Teflon PFA digestion vessels (120 mL capacity) capable of withstanding pressures up to 7.5 \pm 0.7 atm (110 \pm 10 psi) and capable of controlled pressure relief at pressures exceeding 7.5 \pm 0.7 atm.
- 4.5 A rotating turntable within the microwave unit to insure homogeneous distribution of microwave radiation. The speed of the turntable should be a minimum of 3 rpm.
- 4.6 Analytical balance, 300 g capacity, minimum \pm 0.01 g.
- 4.7 Quantitative filter paper, Whatman No. 41 and disposable polypropylene filter funnel.

5.0 REAGENTS

- 5.1 Water supply purified with a Milli-Q system. The water must be monitored daily, when in use, using the conductivity meter. Records of monitoring are kept in a log book maintained for each system according to the EVSD SOP for this purpose.
- 5.2 Concentrated nitric acid, J. T. Baker, Instra-analyzed, or an equivalent purity is used for digestion.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

- 6.1 All digestion vessels and sample containers used in the laboratory must be prewashed with detergent, acids, and purified water, or if disposable, have been shown to be free from contamination by results from blank assays.
 - 6.1.1 Digestion vessels should be cleaned prior to use by leaching with hot (1:1) hydrochloric acid for a minimum of two hours followed by leaching with hot (1:1) nitric acid for a minimum of two hours, rinsed with Milli-Q water, and dried in a dust free environment.
- 6.2 Sampling and Preservation
 - 6.2.1 All aqueous samples must be acidified at the time of collection with HNO_3 (5 mL/L) or to a pH < 2.

- 6.3 Safety
 - 6.3.1 Standard laboratory safety precautions should be adhered to at all times. Refer to the Research and Engineering Safety Manual for required procedures.
 - 6.3.2 Assume that all samples are hazardous. The use of fume hoods, safety glasses, lab coats, and protective gloves is mandatory at all times. Containers of concentrated acid should be stored and transported in rubber buckets. The Safety Manual discusses use of face shields, gloves, aprons, gauntlets, fume hoods, and other protective measures when handling caustic materials.
 - 6.3.3 Do not use cracked, chipped, or otherwise damaged or stressed glassware. Dispose of, or have repaired, any damaged glassware.
 - 6.3.4 Material Safety Data Sheets are available in the Library for all common laboratory chemicals. Obtain an MSDS from the supplier on any new chemicals ordered for the laboratory. Provide a copy to the Library and to the Research and Engineering Industrial Hygiene Officer. Inform your Supervisor about any new or suspected hazards which have come to your attention.
 - 6.3.5 Follow only prescribed procedures for disposal of samples and laboratory chemicals.
 - 6.3.6 There is a possibility that acid gases, released when sample containers vent inside the oven, may corrode the safety devices that prevent the microwave magnetron from shutting off when the door is opened. This can result in unsafe operator exposure to microwave energy. Use only a microwave unit with corrosion resistant safety devices to prevent this from occurring.
 - 6.3.7 Do not use sealed digestion containers without pressure relief valves for microwave digestions by this method. Only unlined PFA Teflon containers with pressure relief mechanisms are considered acceptable at present.

7.0 PROCEDURE

- 7.1 Enter the customer sample I.D., the project no. and dash no., the date collected, and the due date into the digestion log book. Verify that each metal assay has been requested by the client before proceeding further.
- 7.2 Organize samples into batches not exceeding eleven per batch. Note the start date, the matrix type, the digestion method, and the method of analysis in the digestion log book. Arrange sample containers and labware to be assigned to each sample neatly in columns/rows on the lab bench. Each column will correspond to one sample. Weigh each digestion vessel to the nearest 0.01 g.

- 7.3 Mix the sample thoroughly prior to opening the sample container. Note the presence of suspended solids in the digestion log book (comments column). The pH of each sample is checked prior to digestion by using a disposable pipet and pH indicating paper. The pH value is recorded in the digestion log book.
- 7.4 Measure about 40 mL of sample into a graduated cylinder. Use a disposable pipet to bring the total volume of sample in the graduated cylinder up to the 45 mL mark. Transfer the sample aliquot into a Teflon digestion vessel. Enter the identification number on the vessel in the digestion log for each sample.
- 7.5 Add 5 mL of concentrated nitric acid to each vessel. Cap and weigh each vessel to the nearest 0.01 g.
- 7.6 A blank sample of reagent water is treated in the same manner as the samples. When fewer than the recommended number of samples are to be digested, till the remaining digestion vessels with 40 mL water and 5 mL nitric acid.
- 7.7 Set the power program to bring the samples to $160^{\circ} \pm 4^{\circ}$ C in 10 minutes and to 165° -170°C during the second 10-minute interval.
- 7.8 At the end of the microwave program, allow the vessels to cool for at least 5 minutes in the unit before removal to avoid possible injury. When the vessels have cooled to room temperature, weigh and record the weight of each vessel assembly. If the weight has decreased by more than 10 percent, discard the sample and reprocess.
- 7.9 Complete the sample preparation by carefully uncapping and venting each vessel in a fume hood. Transfer the sample to a precleaned polyethylene bottle. If particulates are present, the sample may be filtered and allowed to settle prior to analysis.
- 7.10 Filter at this step only if there is concern that insoluble materials may clog the nebulizer. The filter and funnel must be thoroughly precleaned and rinsed with 1:1 HNO₃ to prevent contamination during the filtering process. Filter into a second precleaned polyethylene bottle.
- 7.11 Place a sample label on the 125 mL polyethylene bottle and set aside for analysis.
- 7.12 Note the date completed and if filtration was done in the digestion log book.

8.0 QUALITY CONTROL (QC)

8.1 Method blanks are employed with each batch of samples digested to monitor impurity levels. If the method blank assay indicates metals are present above instrument detection limits (IDL's), reagents and glassware should be checked for sources of impurities. If impurities in the method blank exceed PQL's, analyses should be suspended until the problem is corrected.

8.2 Other quality control measures, including duplicate and/or replicate analyses, may be done at the discretion of the analyst.

REFERENCES

1. "Test Methods for Evaluating Solid Waste, SW846", 3rd Ed., Rev. 0, November 1990, Method 3015.

PREPARED BY:

PART

H. L. Gearhart Senior Research Associate Environmental Services Division

Original Issue - October 1991

amr/3015.hlg

i Cal S. L. Blavlock

٠.

S. L. Blaylock – Chemist Environmental Services Division

ENVIRONMENTAL SERVICES DIVISION METHOD

EVSD-FALCON3051

HLG

MICROWAVE ASSISTED ACID DIGESTION OF OILS, SEDIMENTS, SOILS AND SLUDGES

1.0 SCOPE AND APPLICATION

- 1.1 Method 3051 is used for the preparation of nonaqueous samples and wastes for analysis by graphite furnace atomic absorption spectroscopy (GFAA), by direct aspiration flame atomic absorption spectroscopy (DAAA), or by inductively coupled argon plasma spectroscopy (ICP). This procedure is given in SW846 Revision 0, November 1990.
- 1.2 Samples prepared by Method 3051 using nitric acid digestion may be analyzed by GFAA, DAAA, or ICP for the following metals:

Aluminum	Magnesium
Antimony	Manganese
Arsenic	Mercury
Barium	Molybdenum
Boron	Nickel
Beryllium	Potassium
Cadmium	Selenium
Calcium	Silver
Chromium	Sodium
Cobalt	Strontium
Copper	Thallium
Cobalt	Strontium
Iron	Vanadium
Lead	Zinc

Note: 1. Certain elements may require addition of hydrochloric acid (e.g., Sb) for quantitative recovery. This may be done at the end of the digestion cycle with a 3-5 minute reheating period.

2.0 SUMMARY OF METHOD

2.1 Ten mL of nitric acid (HNO₃) is added to 0.5 g of sample in a Teflon digestion vessel. The vessel is capped and heated in a microwave unit. After cooling, the vessel contents are filtered, centrifuged, or allowed to settle in a clean sample bottle for analysis.

3.0 INTERFERENCES

3.1 Very reactive or volatile materials that may create high pressures when heated may cause venting of the vessels with potential loss of sample and analytes.

Samples that contain carbonates or other carbon dioxide generating compounds may cause enough pressure to vent the vessel. If this situation is anticipated, the analyst may wish to use a smaller sample.

4.0 APPARATUS AND MATERIALS

- 4.1 Microwave unit providing programmable power with a minimum of 574 watts, which can be programmed to within \pm 10 watts of the required power. The microwave unit cavity is corrosion resistant and well ventilated. All electronics are protected against corrosion for safe operation.
- 4.2 Graduated cylinder, 100 mL, calibrated "to deliver," polypropylene.
- 4.3 Sample bottle, 125 mL, high density polyethylene, and a phenolic cap with a polyethylene liner.
- 4.4 Teflon PFA digestion vessels (120 mL capacity) capable of withstanding pressures up to 7.5 \pm 0.7 atm (110 \pm 10 psi) and capable of controlled pressure relief at pressures exceeding 7.5 \pm 0.7 atm.
- 4.5 A rotating turntable within the microwave unit to insure homogeneous distribution of microwave radiation. The speed of the turntable should be a minimum of 3 rpm.
- 4.6 Analytical balance, 300 g capacity, minimum \pm 0.01 g.
- 4.7 Quantitative filter paper, Whatman No. 41 and disposable polypropylene filter funnel.
- 5.0 REAGENTS
 - 5.1 Water supply purified with a Milli-Q system. The water must be monitored daily, when in use, using the conductivity meter. Records of monitoring are kept in a log book maintained for each system according to the EVSD SOP for this purpose.
 - 5.2 Concentrated nitric acid, J. T. Baker, Instra-analyzed, or an equivalent purity is used for digestion.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

- 6.1 All digestion vessels and sample containers used in the laboratory must be prewashed with detergent, acids, and purified water, or if disposable, have been shown to be free from contamination by results from blank assays.
 - 6.1.1 Digestion vessels should be cleaned prior to use by leaching with hot (1:1) hydrochloric acid for a minimum of two hours followed by leaching with hot (1:1) nitric acid for a minimum of two hours, rinsed with Milli-Q water, and dried in a dust free environment.

- 6.2 Sampling and Preservation
 - 6.2.1 All aqueous samples must be preserved at the time of collection by storing at 4°C.

6.3 Safety

- 6.3.1 Standard laboratory safety precautions should be adhered to at all times. Refer to the Research and Engineering Safety Manual for required procedures.
- 6.3.2 Assume that all samples are hazardous. The use of fume hoods, safety glasses, lab coats, and protective gloves is mandatory at all times. Containers of concentrated acid should be stored and transported in rubber buckets. The Safety Manual discusses use of face shields, gloves, aprons, gauntlets, fume hoods, and other protective measures when handling caustic materials.
- 6.3.3 Do not use cracked, chipped, or otherwise damaged or stressed glassware. Dispose of, or have repaired, any damaged glassware.
- 6.3.4 Material Safety Data Sheets are available in the Library for all common laboratory chemicals. Obtain an MSDS from the supplier on any new chemicals ordered for the laboratory. Provide a copy to the Library and to the Research and Engineering Industrial Hygiene Officer. Inform your Supervisor about any new or suspected hazards which have come to your attention.
- 6.3.5 Follow only prescribed procedures for disposal of samples and laboratory chemicals.
- 6.3.6 There is a possibility that acid gases, released when sample containers vent inside the oven, may corrode the safety devices that prevent the microwave magnetron from shutting off when the door is opened. This can result in unsafe operator exposure to microwave energy. Use only a microwave unit with corrosion resistant safety devices to prevent this from occurring.
- 6.3.7 Do not use sealed digestion containers without pressure relief valves for microwave digestions by this method. Only unlined PFA Teflon containers with pressure relief mechanisms are considered acceptable at present.

7.0 PROCEDURE

7.1 Enter the customer sample I.D., the project number and dash number, the date collected, and the due date into the digestion log book. Verify that each metal assay has been requested by the client before proceeding further.

- 7.2 Organize samples into batches not exceeding eleven per batch. Note the start date, the matrix type, the digestion method, and the method of analysis in the digestion log book. Arrange sample containers and labware to be assigned to each sample neatly in columns/rows on the lab bench. Each column will correspond to one sample. Weigh each digestion vessel to the nearest 0.001 g.
- 7.3 Mix the sample thoroughly prior taking an aliquot.
- 7.4 Weigh 0.5 g of sample to the nearest 0.001 g into a preweighed digestion vessel. Enter the identification number on the vessel in the digestion log for each sample.
- 7.5 Add 10.00 mL (use a Rainen pipette) of concentrated nitric acid to each vessel inside a fume hood. Cap and weigh each vessel to the nearest 0.001 g.
- 7.6 A blank digestion vessel is treated in the same manner as the samples with addition of 10.00 mL nitric acid. When fewer than the recommended number of samples are to be digested, fill the remaining digestion vessels with 10 mL nitric acid.
- 7.7 Set the power program to bring the samples to $175^{\circ} \pm 4^{\circ}$ C in 5.5 minutes and to $175^{\circ} 180^{\circ}$ C during the next 4.5-minute interval.
- 7.8 At the end of the microwave program, allow the vessels to cool for at least 5 minutes in the unit before removal to avoid possible injury. When the vessels have cooled to room temperature, weigh and record the weight of each vessel assembly. If the weight has decreased by more than 10 percent, discard the sample and reprocess.
- 7.9 Complete the sample preparation by carefully uncapping and venting each vessel in a fume hood. Add 40 mL of Milli-Q water. Transfer the diluted sample to a precleaned polyethylene bottle. If particulates are present, the sample may be filtered and allowed to settle prior to analysis.
- 7.10 Filter at this step only if there is concern that insoluble materials may clog the nebulizer. The filter and funnel must be thoroughly precleaned and rinsed with $1:1 \text{ HNO}_3$ to prevent contamination during the filtering process. Filter into a second precleaned polyethylene bottle.
- 7.11 Place a sample label on the 125 mL polyethylene bottle and set aside for analysis.
- 7.12 Note the date completed and if filtration was done in the digestion log book.

8.0 QUALITY CONTROL (QC)

8.1 Method blanks are employed with each batch of samples digested to monitor impurity levels. If the method blank assay indicates metals are present above instrument detection limits (IDL's), reagents and glassware should be checked

for sources of impurities. If impurities in the method blank exceed PQL's, analyses should be suspended until the problem is corrected.

8.2 Other quality control measures, including duplicate and/or replicate analyses, may be done at the discretion of the analyst.

REFERENCES

1. "Test Methods for Evaluating Solid Waste, SW846", 3rd Ed., Rev. 0, November 1990, Method 3051.

PREPARED BY:

L.A.hat

H. L. Gearhart Senior Research Associate Environmental Services Division

Original Issue - October 1991

amr/3051.hlg

Ha Coch

S. L. Blaylock Chemist Environmental Services Division

FALCON-3005

HLG

ACID DIGESTION OF WATERS FOR TOTAL RECOVERABLE OR DISSOLVED METALS FOR ANALYSIS BY ICP SPECTROSCOPY

1.0 SCOPE AND APPLICATION

- 1.1 Method 3005 is an acid digestion procedure used to prepare soils, surface water, and ground water samples for analysis by inductively coupled argon plasma spectroscopy (ICP). This procedure is used as a screening technique and does not satisfy the quality control (QC) requirements of 40 CFR 136 and SW846 ICP methods. Samples prepared by method 3005 will be analyzed by ICP for Sb (antimony).
- 1.2 The analysis of digestate following the 3005 procedure reflects either total recoverable metals, dissolved metals, or suspended metals, depending upon whether the sample is filtered at the time of collection, prior to acidification with nitric acid for preservation.
- 1.3 Method 3005, a soft digestion, is presently the only digestion procedure recommended for Sb by SW846. It yields better recoveries than either Method 3010 or 3020. There is no hard digestion for Sb approved for SW846 at this time. However, 200.7 does not make this distinction.

2.0 SUMMARY OF METHOD

- 2.1 <u>Total recoverable metals (TRM)</u>: The entire sample is acidified at the time of collection with nitric acid. At the time of analysis the sample is heated with acid and substantially reduced in volume. The digestate is filtered and diluted to volume, and then is ready for analysis.
- 2.2 <u>Dissolved metals (DM)</u>: The sample is filtered through a 0.5 um filter at the time of collection and the liquid phase is then acidified (in the field) with nitric acid. At the time of analysis the sample is heated with acid and substantially reduced in volume. The digestate is again filtered (if necessary) and diluted to volume. It is then ready for analysis.

3.0 INTERFERENCES

3.1 The analyst should be cautioned that this digestion procedure may not be sufficiently vigorous to destroy some metal complexes. It is for this reason that "total recoverable metals" are reported.

4.0 APPARATUS AND MATERIALS

- 4.1 Griffin beaker, 200 mL capacity, borosilicate glass or polypropylene (approved for hot plate use).
- 4.2 Graduated cylinder, 50 mL, calibrated "to deliver".

- 4.3 Sample bottle, 60 mL, high density polyethylene, and a phenolic cap with a polyethylene liner.
- 4.4 Hot plate, controllable at 90° 95°C. Calibrate the temperature adjustment knob using a thermometer immersed in sand. Monitor the temperature on the hot plate continuously using the same technique.
- 4.5 Qualitative filter paper and filter funnel.

5.0 REAGENTS

- 5.1 Water supply purified with a Milli-Q system. The water must be monitored daily, when in use, using the conductivity meter. Records of monitoring are kept in a log book maintained for each system according to the EVSD SOP for this purpose.
- 5.2 Concentrated nitric acid, J. T. Baker, Instra-analyzed, or an equivalent purity is used for digestion.
- 5.3 Concentrated hydrochloric acid, J. T. baker, reagent grade, or an equivalent purity is used for digestion.
- 5.4 Refer to the ICP QC Standards Preparation SOP for instructions on how to prepare secondary spike standards.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

- 6.1 All sample containers used in the laboratory must be prewashed with detergent, acids, and purified water. A conventional dishwasher is used for preliminary cleaning of labware. Acid soaking and rinsing with purified water should be done just prior to use.
- 6.2 Sampling and preservation:
 - 6.2.1 Total recoverable metals: All samples must be acidified at the time of collection with HNO₃ (5 mL/L).
 - 6.2.2 Dissolved and suspended metals: All samples must be filtered through a 0.5 um filter and then acidified at the time of collection with HNO₃ (5 mL/L). The filter and/or filtrate is returned to the lab for analysis. The volume filtered must be recorded and provided to the Inorganic Prep. Lab for suspended solids assays. See step 7.8.
- 6.3 Safety:
 - 6.3.1 Standard laboratory safety precautions should be adhered to at all times. Refer to the Research and Engineering Safety Manual for required procedures.

- 6.3.2 Assume that all samples are hazardous. The use of fume hoods, safety glasses, lab coats, and protective gloves is mandatory at all times. Concentrated acids should be stored and transported in rubber buckets. The Safety Manual discusses use of face shields, gloves, aprons, gauntlets, fume hoods, and other protective measures when handling caustic materials.
- 6.3.3 Do not use cracked, chipped or otherwise damaged or stressed glassware. Dispose of or have repaired any damaged glassware.
- 6.3.4 Material Safety Data Sheets are available in the Library for all common laboratory chemicals. Obtain an MSDS from thee supplier on any new chemicals ordered for the laboratory. Provide a copy to the Library and to the Research and Engineering Industrial Hygiene Officer. Inform your Supervisor about any new or suspected hazards which have come to your attention.
- 6.3.5 Follow only prescribed procedures for disposal of samples and laboratory chemicals.

7.0 **PROCEDURE**

- 7.1 Enter the customer sample I.D., the project no. and dash no., the date collected, and the due date into the digestion log book. Verify that either TRM, TDM, or TSM has been requested by the client before proceeding further.
- 7.2 Organize samples into batches not exceeding twenty per batch. Each batch should be composed of samples of a similar matrix type destined for analysis on a given instrument and by a given method. Note the start date, the matrix type, the digestion method, and the method of analysis in the digestion log book. Arrange sample containers and labware to be assigned to each sample neatly in columns/rows on the lab bench. Each column will correspond to one sample.
- 7.3 Mix the sample thoroughly prior to opening the sample container. Note the presence of suspended solids in the digestion log book (comments column). The pH of each sample is checked prior to digestion by using a disposable pipet and pH indicating paper. The pH value is recorded in the digestion log book.
- 7.4 Measure about 45 mL of sample into a graduated cylinder, and follow the rest of the procedure (for a soil, use a weight of 1 gram). Use a disposable pipet to bring the total volume of sample in the graduated cylinder up to the 50 mL mark. Transfer the sample aliquot into a 200 mL beaker. Mark the sample identification on the beaker with a felt tip pen.
- 7.5 Add 2 mL of concentrated nitric acid and 5 mL of concentrated HCl to the beaker. Use a dispenser and allow the acid to slowly run down the inside

wall of the beaker into the liquid sample. This will prevent sputtering and loss of liquid due to localized heating upon addition of acid.

7.6 Cover the beaker with a ribbed watch glass if available. Place on a hot plate located inside a fume hood which has been designated for 3005 use. Heat at 90° - 95°C until the volume has been reduced to 15 - 20 mL.

CAUTION: Do not boil. Some metal chlorides are volatile and can easily be lost during this step.

Do not allow the digestate to evaporate to dryness. Start over with fresh sample if this inadvertently occurs.

- 7.7 Remove the beaker and allow to cool. Pour the digestate back into the original graduated cylinder used to measure out the sample. Rinse down the beaker walls and watch glass and add this rinsate to the graduated cylinder. Filter at this step only if there is concern that insoluble materials may clog the nebulizer. The filter and funnel must be thoroughly precleaned and rinsed with 1:1 HNO₃ to prevent contamination during the filtering process. Bring the total volume up to 50 mL using a disposable pipet and purified water.
- 7.8 Place a sample label on the 60 mL polyethylene bottle set aside during the staging process (see 7.2). Fill this labeled bottle from the graduate cylinder containing the diluted digestate.
- 7.9 Note the date completed and if filtration was done in the digestion log book.
- 8.0 QUALITY CONTROL (QC)
 - 8.1 Each batch must contain one method (digestion) blank (MB). The method blanks are employed with each batch of samples digested to monitor impurity levels. If the method blank assay indicates metals are present above instrument detection limits (IDL's), reagents and glassware should be checked for sources of impurities. If impurities in the method blank exceed PQL's, analyses should be suspended until the problem is corrected. Method blanks results may be control charted and posted as a Lab metric to monitor performance.

9.0 ADDITIONAL INFORMATION

- 9.1 Method 3005 Digestion Logbook. See Appendix A.
- 9.2 Chain of Custody Form. See Appendix B

REFERENCES

1. "Test Methods for Evaluating Solid Waste, SW846", 3rd Ed., Rev. 0, Sept., 1986, Method 3005.

2. 40 CFR 136, July, 1990.

PREPARED BY:

Jeanhat

H. L. Gearhart Senior Research Associate Environmental Services Division

Original Issue - October 1991

amr/FA3005.hlg

ار جنو

Blayfold

5

S. L. Blaylock Chemist Environmental Services Division

P.02/02 P.02

Quanterra and You. **A Perfect Fit.**

Quanterra, Inc., provides full-service environmental Interatory testing and analytical services through a fully integrated and functional network of fixed and deployed laboratories, Quanterra, Inc. has earned its position as the undisputed leader of analytical services in every markat including government, engineering and consult-ing films, and Fortune 500 companies by providing reliable data. Explore the ways Quanterra can it into your future in the following position:

LABORATORY MANAGER

Requirements include a BS degree in Chemistry or equivalent as well as 7+ years' of taboratory experience. Previous background as an Operations Manager or Group Lander and a solid knowledge of productivity Improvement techniques are also necessary.

The selected professional will be responsible for compliance with health, human resources, safety and quality assurance programs in all laboratory areas, coordinate the work of laboratory groups, and assists in sot-Ing priorities to effectively minimize costs, acheduling conflicts or delays. Maintaining adequate staffing to meet sales and workload goals will also be involved.

Quantarra, Inc., offers a competitive compensation peckage and comprehensive banefit program. Qualified candidates should send a resume, with salary history and regularments, in strict confidence, to: Questerre, Inc., Dept. LNDP-810,4955 Yarrow Street, Arvada, OO. 80002. EOE MARADAV

> **A History Based** On innovation.

QUANTERRAVIDE10.0XD

uanterra.

303 689 0389 ** TOTAL PAGE.002 **

PAGE.002

HARRY L. GEARHART 11 Burr Oak Stillwater, OK 74075-8329

CURRICULUM VITAE

Education

B.S., Biology/Chemistry, Creighton University, 1964 M.S., Chemistry, Creighton University, 1970 Ph.D., Analytical Chemistry, University of Arizona, 1973

Work History

1996-Present	DuPont, Principal Consultant - Corporate
	Consultant for Environmental Methods &
	Lab Network System Administrator
1991-1996	Conoco, Senior Consultant - Administrator/Quality Assurance Director,
	DuPont Laboratory Network System
1989-1991	Conoco, Research Associate - Environmental Services Division Organics
4 . j.	Analysis Group Supervisor
1981-1989	Conoco, Research Chemist - Research and Development Dept.
1973-1981	Oklahoma State University, Chemistry Department, Assistant/Associate
	Professor of Analytical Chemistry
1965-1967	U.S. Army, Communications Officer, Yakima Firing Center, Yakima, WA

Professional Affiliations

Oklahoma Department of Environmental Quality Commission for Laboratory Certification American Petroleum Institute Environmental Work Group

Memberships

American Chemical Society, Analytical Chemistry Division Sigma Xi Research Society

Experience Summary

Over twenty-two years experience in research and development and environmental applications of methods for the determination of metal and organic analytes. Responsibilities have included establishment of corporate environmental quality assurance standards, providing technical oversight of corporate and outsourced environmental laboratory services, auditing commercial laboratories, consulting on environmental data base development, establishment of laboratory methods and procedures, facilitating group efforts in reengineering work processes, and supervision, mentoring, training, and selection of laboratory personnel.

As DuPont Laboratory Network System Administrator, accountable as a corporate resource to provide: technical and business oversight of the DuPont Laboratory Network System; and technical consulting, mediation, and advocacy activities relating to environmental analytical methodologies and corporate data usability/defensibility issues both within the company, and on behalf of the company to outside agencies on an international, national, and state level.

Experience Specifics

Assisted in development of corporate environmental laboratory network, providing technical and quality assurance expertise. As System Administrator, was responsible for establishing corporate quality standards and monitoring quality performance of network laboratories and managing an auditing program. Set policies and procedures for day-to-day business dealings with commercial laboratory service providers, to include laboratory selection, deliverables evaluation, implementation of contract specifications, etc. Acted as a resource in establishing contract language and business strategies.

Consulted in development and evolution of corporate environmental data base, particularly in terms of data structure design. Established quality assurance policies related to data base. Developed systems for laboratory performance auditing program.

Coordinated third-party data validation services for the corporation.

Provided on-site assessment and consulting for DuPont Asia-Pacific business unit during the establishment of business agreements with laboratories in China, Taiwan, and Singapore.

Assisted corporate negotiations with EPA Regions II, III, IV, V, VI, and VII.

Developed generic quality assurance project plan for corporate use as basis for customized client plans.

Selected by Oklahoma Speaker of the House to serve as member of Department of Environmental Quality Commission for Laboratory Certification. Commission membership includes only three people from industry.

Established organics and metals laboratories for Conoco Environmental Services Division. Developed corporate RCRA standard operating procedures for metals (including inductively coupled plasma spectroscopy and graphite furnace atomic absorption spectroscopy) and organics (including volatile and semivolatile organics methods by gas chromatography and gas chromatography - mass spectrometry). Acted as supervisor of the Environmental Organics Analysis Group.

Established on-site metals laboratory for remediation project at the DuPont Pompton Lakes Works in New Jersey. This included developing standard operating procedures and record-keeping procedures, selecting laboratory personnel, and training laboratory personnel.

As research chemist, worked with gas chromatography, gas chromatography - mass spectrometry, liquid chromatography - mass spectrometry, gas chromatography - Fourier transform infrared spectroscopy, and other ancillary techniques. Conducted sample analysis; developed methods; purchased, set up and operated new instrumentation; conducted training workshops; provided interface with project teams; and published five papers, twenty-one research reports, and approximately fifty technical service reports.

As professor at Oklahoma State University, conducted an active research program, taught undergraduate and graduate courses in analytical chemistry, and published sixteen papers.

Recent Awards and Recognition

Į

ŧ7

- DuPont Specialty Chemicals 1995 Top Ten Achievement Award for "Establishment of a National Laboratory Program" (team effort).
- DuPont Special Achievement Award 1994 for team effort to significantly improve the efficiency of the Chambers Works Plant Groundwater Monitoring Program.
- DuPont Asia-Pacific Internal Partnering Award, 1992.
- DuPont Pontchartrain Works Certificate of Excellence Award, 1991, in recognition of quality work and customer focus.
- Conoco Special Achievement Award for "Establishment of Environmental Organics Laboratory," 1990.

۰.

Harry L. Gearhart 6/13/97

CORPORATE ENVIRONMENTAL SERVICES CONSULTANT

Basic Purpose/Accountabilities

Accountable as a corporate resource to provide:

- technical and business oversight of the commercial lab services
- provide consulting and advocacy activities relating to environmental methodologies within the company and for the company to outside agencies
- provide mediation/advocacy on corporate data usability & defensibility issues

Primary Functions/Responsibilities

Represent corporate interests in contract administration activities (i.e. ongoing business dealings) with commercial labs

Network with B.U.'s to develop corporate business strategies relating to laboratory services

- Establish corporate quality standards for environmental methodologies from service providers
- Establish policies and procedures for review and acceptance data/deliverables from labs
- Manage/implement a laboratory audit and performance assessment program for selection and periodic review
- Coordinate/implement managed outsourcing of data validation services for corporate needs
- Act as corporate advocate to assist with environmental regulatory issues on an international, national, state, and regional level

Other Functions/Responsibilities

- Assist in establishment of policies and procedures for Lab Service Coordinators to conduct managed outsourcing with commercial laboratories
- Provide guidance in coordination of lab services, quality control review of data, and reporting

Act as technical consultant to I.S. staff for data base architecture and design

Act as resource to Corporate Procurement staff to assist with contract language and strategies

•

Take an active role to mentor, train, and assist/advise in career development of others