DRAFT

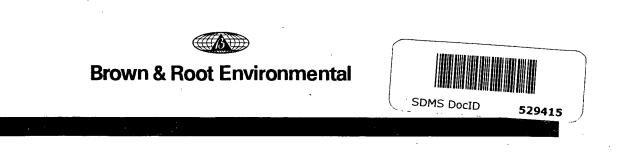
Superfund Records Center SITE: Kaymark BREAK: OTHER:

RI98163D

TECHNICAL MEMORANDUM

FIELD INVESTIGATION AND ENVIRONMENTAL SAMPLING OF OPERABLE UNIT NO. 2

RAYMARK INDUSTRIES, INC. SITE STRATFORD, CONNECTICUT


RESPONSE ACTION CONTRACT (RAC), REGION I

For U.S. Environmental Protection Agency

> By Brown & Root Environmental

EPA Contract No. 68-W6-0045 EPA Work Assignment No. 013-RICO-01H3 B&RE Project No. 7607

May 1998

DRAFT

TECHNICAL MEMORANDUM

FIELD INVESTIGATION AND ENVIRONMENTAL SAMPLING OF OPERABLE UNIT NO. 2

RAYMARK INDUSTRIES, INC. SITE STRATFORD, CONNECTICUT

RESPONSE ACTION CONTRACT (RAC), REGION I

For U.S. Environmental Protection Agency

> By Brown & Root Environmental

EPA Contract No. 68-W6-0045 EPA Work Assignment No. 013-RICO-01H3 B&RE Project No. 7607

May 1998

Heather M. Ford Project Manager

George D. Gardner, P.E. Program Manager

TABLE OF CONTENTS DRAFT TECHNICAL MEMORANDUM RAYMARK OPERABLE UNIT NO. 2 STRATFORD, CONNECTICUT

SECTION

PAGE

1.0	INTR	ODUCTION
. ,	1.1	Purpose of Report/Scope of OU2 Field Investigation
	1.2	Report Organization
	1.3	Study Area Background1-4
		1.3.1 History of Raymark Facility and Environs
		1.3.2 Topographic and Surface Features
		1.3.3 Facility Operating History1-7
		1.3.4 Manufacturing Processes1-8
		1.3.5 Environmental Permits1-12
		1.3.6 Study Area Description and Setting
		1.3.7 Other On-Going Activities1-15
•		1.3.8 Previous Investigations1-15
2.0	1997	SUBSURFACE INVESTIGATIONS2-1
	2.1	Installation of Well Points2-1
		2.1.1 Groundwater Profiling2-2
		2.1.2 Groundwater Profiling Sampling2-2
	2.2	Installation of Groundwater Monitoring Wells2-3
		2.2.1 Soil Sampling
		2.2.2 Vibrasonic Drilling2-10
		2.2.3 Groundwater Sampling2-11
	2.3	Piezometer Installation2-11
	2.4	Topographic Survey2-11
3.0	PHYS	SICAL CHARACTERISTICS OF THE STUDY AREA
	3.1	Surface Features and Land Use
	3.2	Regional Geology3-2
		3.2.1 Regional Surficial Geology 3-2
		3.2.2 Regional Bedrock Geology
	3.3	Hydrogeology3-4
		3.3.1 Groundwater Classification and Water Supply
		3.3.2 Regional Hydrogeology
		3.3.3 Study Area Hydrogeology
	•	3.3.4 Surface Water Hydrology 3-17
	3.4	Meteorology 3-18

i

TABLE OF CONTENTS DRAFT TECHNICAL MEMORANDUM RAYMARK OPERABLE UNIT NO. 2 STRATFORD, CONNECTICUT

SECTION

PAGE

PAGE

4.0	NAT	JRE AND EXTENT OF CONTAMINATION	4-1
	4.1	Nature and Extent of Groundwater Contamination	4-1
		4.1.1 Volatile Organic Compounds	
	,	4.1.2 Other Groundwater Contaminants	4-10
5.0	CON	CLUSIONS AND RECOMMENDATIONS	5-1
	5.1	Conclusions	5-1
	5.2	Recommendations	5-2
REFERE	NCES		

TABLES

NUMBER

2-1	Well Construction Details	2-4
2-2	Groundwater Elevation Summary	2-7

APPENDICES

APPENDIX A	BORING AND WELL CONSTRUCTION LOGS	
APPENDIX B	MAPS	
APPENDIX C	CHEMICAL DATA	

1.0 INTRODUCTION

This technical memorandum defines the nature and extent of groundwater contamination resulting from past disposal practices, beneath and downgradient of the Raymark Industries, Inc. Facility (Raymark Facility), located in Stratford, Fairfield County, Connecticut. This report was prepared by Brown & Root Environmental (B&RE), formerly Halliburton NUS Corporation (HNUS), for the U.S. Environmental Protection Agency (EPA) under RAC Work Assignment No. 013-RICO-01H3, Contract No. 68-W6-0045, to fulfill the requirements for Raymark Operable Unit No. 2 (OU2). This report also incorporates information previously compiled by EPA, the owners of the Raymark Facility, owners of properties surrounding the Raymark Facility, and B&RE under ARCS Work Assignment Nos. 42-1LH3 and 47-1LH3, Contract No. 68-W8-0117. This technical memorandum was developed based on the original Work Plan (June 1997), Work Plan Amendment No. 2, Revision 1.0 (December 1997), and Work Plan Amendment No. 3 (December 1997). Efforts to evaluate the extent of soil, sediment, and surface water contamination in and around the Raymark Facility are being conducted by B&RE under Raymark Operable Unit No. 3 (OU3), RAC Work Assignment No. 002-RICO-01H3.

This technical memorandum is the first step in preparing a remedial investigation (RI). This memorandum has been presented in accordance with the format of *Interim Final Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA* (EPA, 1988). Use of this format will allow subsequent reports to be incorporated directly into the document in preparation for creating an RI/Feasibility Study (FS). This format is consistent with the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986 and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP).

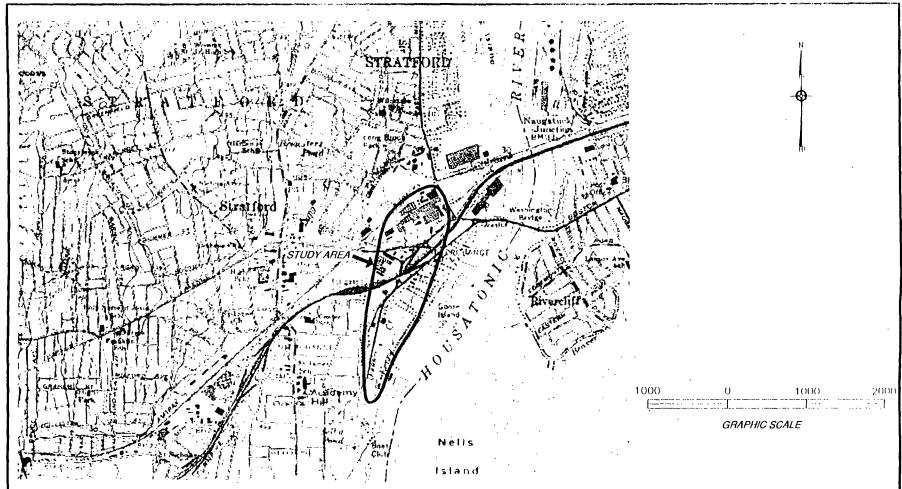
RI98163D

Raymark - Ferry Creek, OU2

1.1

Purpose of Report/Scope of OU2 Field Investigation

This technical memorandum documents the extent of groundwater contamination associated with the Raymark Facility (Figure 1-1 identifies the study area). The overall objectives of the technical memorandum are to compile and evaluate available data needed to characterize the study area conditions, and to determine the extent of contamination in the groundwater impacted by the disposal of waste from the Raymark Facility.


This technical memorandum will also present data limitations and identify issues that may need to be addressed in order to prepare a Risk Assessment, an RI, and an FS.

1.2 Report Organization

This technical memorandum is organized as follows (this is modified from the approved Work Plan (June 1997)):

- Section 1.0, Introduction, discusses the purpose and scope of the technical memorandum, summarizes the study area background and history, presents a summary of the previous field investigation activities conducted within the study area, and describes the organization of this technical memorandum.
- Section 2.0, Study Area Investigations, presents a summary of the current field work, which provides a basis for this technical memorandum.
- Section 3.0 Physical Characteristics of the Study Area, presents descriptions of surface features and land uses, geology, hydrogeology, surface water hydrology, and meteorology.

1-3

CONN

QUADRANGLE LOCATION

BASEMAP: PORTIONS OF THE FOLLOWING U.S.G.S. QUADRANGLE MAPS	BRIDGEPORT, CONN., 1970 (PHOTOREVISED: 1984) AND MILFORD, CONN., 1960,
(PHOTOREVISITED: 1984); SCALE ALTERED .	

	STUD	Y AREA		FIGURE	1-1
	OPERABLE	UNIT N	0. 2	ATTA	(fff
RAYMARK	INDUSTRIES,	INC	STRATFORD, CI		+ <u>+</u>
URAWN BY	LG DEWSNAP .	REV.	0	Brown & Root E	nvironmental
CHECKED BY F	EM FORD	DATE:	01 JUNE 98	55 Jonspin Road	Wilmington, MA 01887
SCALE /	S SHOWN	FILE NO : DA	WG\RAYMARK\USCSMAP2	(978)658	7899

DRAFT

- Section 4.0, Nature and Extent of Contamination, discusses the potential sources, contaminant presence, and contaminant distribution in soils, surface water, and sediment in the study area. This is an abbreviated discussion based on the limitations of the field work.
- Section 5.0, Summary and Conclusions, restates the principal findings of the RI and recommends remedial action objectives.

1.3 Study Area Background

This section summarizes the history of the study area and vicinity, describes the study area, identifies other on-going activities associated with the Raymark Facility, and summarizes the types of investigations previously conducted at the Raymark Facility and its environs.

1.3.1 History of Raymark Facility and Environs

The Raymark Facility, formerly named Raybestos - Manhattan Company, was located at 75 East Main Street in Stratford, Fairfield County, Connecticut at latitude 41°12′02.5″N and longitude 73°07′14.0″W (see Figure 1-1). The Raymark Facility operated from 1919 until 1989, when the plant was shut down and permanently closed. The facility was demolished and a cap was placed over the contaminated areas on the property in 1996 and 1997. Based on Stratford tax map information, this former Resource Conservation and Recovery Act (RCRA) facility occupied 33.4 acres and manufactured friction materials containing asbestos and non-asbestos components, metals, phenol-formaldehyde resins, and various adhesives. Primary products were gasket material, sheet packing, and friction materials including clutch facings, transmission plates, and brake linings. As a result of these activities, soils at the Raymark Facility have been contaminated primarily with asbestos, lead, and polychlorinated biphenyl compounds (PCBs).

During the Raymark Facility's 70 years of operation, it was common practice for the company to dispose of manufacturing waste at locations both on the facility and within the Town of Stratford. A number of these off-the-facility "locations," contained levels of asbestos, lead, and PCBs that may pose a threat to public health, and were remediated under EPA CERCLA time-critical removal actions. The remediated locations are residential properties that were designated a health threat, and were excavated under EPA direction to abate the public health threat that may have existed. The excavated material from these residential locations was stored at the Raymark Facility. Waste from one municipal property, Wooster Middle School, was also excavated and stored at the Raymark Facility.

Fill was also disposed on several commercial and municipal properties within Stratford while the company was operating; these properties are currently under investigation by EPA Raymark Operable Unit 3 (OU3).

Between 1919 and 1984, low-lying portions of the Raymark Facility were filled with manufacturing waste materials from various plant manufacturing operations. The filling of those areas, principally low-lying areas, occurred over the life of the facility operations, and progressed generally from north to south, across the Raymark Facility. New buildings and parking areas were constructed over these filled areas as the manufacturing facility expanded.

The Raymark Facility was underlain by an extensive drainage system network. This network collected waters and wastes from the manufacturing operations and diverted it into the facility drainage system. The system also collected stormwater runoff. These liquids were transported through the drainage system network, mixed with lagoon wastewaters, and discharged to Ferry Creek.

During peak operations at the Raymark Facility, approximately two million gallons of water were used for plant processes each day. Wastewater from facility operations was collected and discharged to a series of four settling lagoons located in the southwestern corner and along the southern property boundary near Longbrook Avenue and the Barnum Avenue Cutoff. The wastewater consisted of liquid from the acid treatment plant, residue from the wet dust collector and paper making line, non-contact cooling water, and water from the solvent recovery plant operations.

These lagoons also received stormwater drainage and surface water runoff. Solids were allowed to settle in Lagoon Nos. 1, 2, and 3 prior to discharge of clarified wastewater and unsettled solids to Lagoon No. 4, that in turn discharged directly into Ferry Creek. Discharge of wastewater to Lagoon Nos. 1, 2, and 3 ceased in 1984. These lagoons were closed in December 1992 and January 1993. During the fall of 1994, stormwater drainage that exited the Raymark Facility through Lagoon No. 4 was diverted around this lagoon and connected directly to the storm sewer, which ultimately discharges to Ferry Creek. Lagoon No. 4 was closed in early 1995.

During the operation of the lagoons, the settled material in the lagoons was periodically removed by dredging. During the facility's 70 years of operation, it was common practice to dispose of both this dredged lagoon waste and other manufacturing waste as "fill" material (referred to as "soil-waste" in this technical memorandum) both at the Raymark Facility and at various locations in Stratford. Several of these locations that received soil-waste are included within the area designated as "the study area".

1.3.2 Topographic and Surface Features

The study area (see Figures 1-1 and 3-1) includes the Raymark Facility and an area southeast of the facility that contains a groundwater plume that has migrated from the Raymark Facility. The study area is primarily composed of commercial users with some residential areas located on the eastern edge of the study area. A major highway (Interstate 95) crosses through the study area. As discussed above, the study area has been filled with materials classified as Raymark soil-waste. Maps have been prepared under the Raymark OU3 RI that indicate how thick this soil-waste is on the various properties.

Raymark - Ferry Creek, OU2

The properties abutting the Raymark Facility are a mix of residential, commercial, industrial, and road and railroad rights-of-way. The Raymark Facility is bordered on the northwest by railroad tracks, a commercial metal plating company (a RCRA regulated facility), as well as the former Raybestos Memorial baseball field (a removal action under CERCLA was conducted in 1993 at this location). The southern end of the property is bordered by Longbrook Avenue and a small commercial lot with several small retail stores. Barnum Avenue and Interstate 95 lie to the southeast; and on the northeastern end of the property is East Main Street (Connecticut Highway 110), with residential homes, a gasoline station, and another small commercial lot with retail stores.

In addition, three RCRA-regulated facilities are located in the immediate vicinity of the Raymark Facility. The impact of these facilities is not the subject of this report. Each facility, however, does or did handle hazardous contaminants, such as toluene, benzene, and 1,1,1-trichloroethene, that are also present on the Raymark Facility. This technical memorandum addresses the presence of on-site groundwater contamination and the movement of this groundwater contamination off-site; it does not address possible sources of off-site contamination, although off-site sources may be contributing to the groundwater contamination.

1.3.3 Facility Operating History

The Raymark Facility operated from August 1919 until September 1989, when plant operations ceased and the plant was shut down. The Raymark Facility produced and manufactured products mainly for the automotive industry. The manufacturing of these products generated waste.

During operations at the Raymark Facility, the plant used large amounts of water. During peak production, approximately two million gallons were used for plant processes each day. Municipal water was used for both contact and non-contact cooling water. To supplement this source, Raymark installed an additional on-site supply well. The well, located in the northern corner of the facility, was used for non-contact cooling water.

Facility water was recirculated, with some percentage reinjected back into the on-site well; the remaining water was discharged through the facility drainage system. After this use in the plant, the process water was discharged to a series of four settling lagoons located on the property. The water flowed from the lagoons to Ferry Creek.

The settled material in these lagoons was periodically removed and disposed of either on site or off site as a "fill" material. In addition, waste was taken directly from the manufacturing process as "off-specification" material and disposed of as "fill." These waste materials were disposed of at various locations around Stratford, including within this study area. Some of these wastes were later excavated and transported from residential properties back to the facility during EPA time-critical removal actions.

In 1992, EPA issued Raymark a CERCLA 106 Removal Order and work plan designed to abate the danger or threat to public health and welfare, and the environment posed by four open lagoons containing asbestos, metals, solvents, and PCBs; a hazardous waste pile; buildings and land containing hazardous substances; large tanks of questionable integrity containing asbestos and hazardous substances; and the potential for hazardous substances to migrate off site.

1.3.4 Manufacturing Processes

The following narrative presents a summary of plant operations and waste handling practices for Raymark's manufacturing operations (see the OU1 RI for further details).

1.3.4.1 Phenolic Resin Manufacturing

Solid and liquid phenolic resin was manufactured at the Raymark Facility. The resin was produced in five or six pressure vessels; companion tanks held the raw product. After production, the liquid resins were transferred to the plant floor to be used to manufacture plant goods or to set in order to be used in solid form. Prior to use, the solid resins were

pulverized on site to meet product specifications, and then transferred to the plant floor for use.

1.3.4.2 Brake Lining Production

Brake lining production began by adding dry asbestos materials, liquid phenolic resins, and solvents (to thin the resins) to the mixers located on the plant floor. The mixers operated for approximately 1 hour until the liquid resin had penetrated and coated all the dry materials. This mixture, resembling a soft heavy mud, was formed into brake lining parts that were then baked in ovens for 6 hours. The end product was a hard material that was machined to the specifications of a finished brake lining. As necessary, materials that were trimmed and ground during the machining operations and not used in the finished product were disposed of on or off site as fill/soil-waste; after 1984, these process wastes were shipped off site in containers and disposed of legally.

During the machining operations, waste particulates were collected in a wet-type dust collection system. Particulates collected from the system were mixed with process water and pumped to the on-site lagoons as a 90/10 water/dust slurry mixture. The slurry mixture settled out in the lagoons and eventually filled them. When a lagoon was filled, the slurry mixture would be diverted to another lagoon, to allow time (several months) to dewater. The dewatered material in the lagoon was excavated and disposed of either on site or off site. After 1984, the waste particulates were collected in dry dust collectors and disposed of off site in 1 cubic yard bags.

1.3.4.3 Automatic Transmission Plates Production

An automatic transmission plate is a clutch plate used in the automotive industry. The process of producing clutch plates began by creating a mixture of asbestos, other components, and water and forming a paper-like sheet of material. This sheet was rolled onto a machine roller, saturated with phenolic resin, and then oven dried and cured. The clutch plates were machined to specifications from these sheets and the finished clutch

plate was bonded on each side of a steel core. As in the brake lining production, the final product produced machining particulates that were collected in the dust collection system, mixed into a wet slurry, and pumped to the lagoons to settle. This system was later replaced in 1984 by the dry dust collectors.

In the early 1980s, the process was modified to allow water to be reused and captured into the manufacturing process, resulting in no water discharge. In addition, the dry asbestos used in the original manufacturing of the paper-like material was replaced with a cotton-type material, so the próduct became asbestos-free.

The Raymark Facility molded (raw) steel into a steel core onto which the clutch plate was mounted. After molding, the steel core was degreased, etched to specification, coated with a phenolic resin, and allowed to dry. The clutch plate was then mounted to the steel core.

A specialty heavy-duty clutch was also manufactured on the Raymark Facility. The process of mixing the asbestos, resins, and water mixtures to produce heavy-duty clutches was similar to that used to produce the automatic transmission clutch plates.

1.3.4.4 Gasket Material Manufacturing

Gasket material was produced in large rubber sheets. The rubber sheets contained naphtha, toluene, asbestos, phenolic resins, and various fillers. The process began by mixing asbestos, latex, rubber cement, and rubber together until the mix was homogeneous. The mix was then loaded onto a roller machine, where it was flattened into a sheet. The sheet was removed and laid out on a large table for cutting. The gaskets were then cut to specification.

The trim from cutting was repulverized and re-used in the process. Vapors were collected and passed through the activated carbon solvent recovery plant. Prior to the mid- 1980s, no vapor collection/handling occurred.

1.3.4.5 Disc Brake Pad Manufacturing Operations

Asbestos, glass, and semi-metallic disc brakes were manufactured at the Raymark Facility. Asbestos disc brakes were composed of asbestos, phenolic resin, and fillers; glass disc brakes, of fiberglass, phenolic resin, and fillers; and semi-metallic disc brakes, of steel wool, phenolic resin, and fillers. The operations to process these disc brake pads involved mixing components in plant mixers until a homogenous mixture was coated completely with phenolic saturate, pouring the mixture into electronically heated molds to form a hard part, and machining this part into the needed specified product size.

Waste generated from the machining process was collected in the dust collector system, and transported as described above, as a water/waste slurry mixture to the on-site lagoons. After 1984, dry dust collectors collected the particulate matter and the material was disposed of off site in 1 cubic yard bags. The trim and off-specification material, if not pulverized for reuse, was disposed of as fill.

1.3.4.6 Miscellaneous Activities

The following activities also occurred on the Raymark Facility:

- Process steam generation The Raymark Facility generated steam from August 1919 until the early 1940s. Steam was generated from coal burning steam boilers. The coal was delivered by rail directly onto the facility by the railroad spur that still exists. The coal was stored in the area surrounding the boiler house and heavy equipment moved it around the plant. No figures are available on the quantity of coal used.
- The steam boilers The boilers were converted to oil in the early 1940s.
 Number 6 fuel oil was stored in the two 50,000 gallons tanks still on the facility next to the old boiler house. No figures are available on quantities of oil used.

- Material storage Numerous tanks were located throughout the facility to store raw product, manufactured goods not yet turned into a product, and waste products remaining from the various manufacturing processes.
- Dry trim reclamation The materials that were trimmed from the baked products (dry trim) were stored outside under a roof on the asphalt pavement. The trim re-use process consisted of using hammer mills to pulverize the waste trim. As dry trim re-use occurred more frequently during later years of facility operations, particulates from this process were collected in a separate dry dust collector system and bagged for disposal.
- Finished products These materials were stored on site pending off-site shipment to customers.

1.3.5 Environmental Permits

The Raymark Facility was subject to the requirements of both state and federal permits.

1.3.5.1 RCRA Activities

Raymark filed a Notification of Hazardous Waste Activity form on August 15, 1980, under the name of Raybestos Friction Materials Company. The activities delineated on this form indicated that the company generated, treated, stored, and disposed of hazardous wastes such as solvents, acetone, formaldehyde, toluene, sludge from lime treatment generated from steel finishing operations, asbestos, acids, phenols, methyl ethyl ketone, and ignitable, corrosive, and toxic wastes.

On November 12, 1980, the notification was expanded to include the activities and quantities listed below for each waste activity. However, the quantities listed below were the total permitted quantities and not the actual quantities or units reportedly used at Raymark.

- More than 2.5 billion gallons of lead-contaminated waste liquid flowed through the on-site lagoons each year (6 million gallons of the 2.5 billion gallons was treated each year).
- Container storage handled approximately 23 million gallons of toxic, ignitable, corrosive, and acidic wastes each year.
- Tank storage handled approximately 10 million gallons of waste yearly.
- The incinerator processed approximately 240,000 gallons per year of toxic and ignitable wastes.

In 1986, Raymark filed a permit application for the various Raymark Facility activities under the name of Raymark Industries, Inc. At that time, the original RCRA Part A notification was re-filed, and the on-site activities and waste generated were significantly reduced. The activities described in that submittal included 7,040 gallons of liquid container waste, 150 cubic yards of solid container waste stored on the property, and an approximately 7-acre landfill on the property (the "landfill" is the lagoons shown on Figure 1-2). Each of these activities appeared to include the handling of ignitable, toxic, corrosive, and toluene-contaminated wastes.

The facility closed in September 1989. In 1990, pursuant to a RCRA 3007 information request, Raymark indicated it still had significant quantities of waste and unused products remaining on site. Some of these waste products were 400,000 gallons of an asbestos slurry in tanks and 1,700 cubic yards of unfinished asbestos product. These wastes have been removed from the Raymark Facility.

No further formal closure of any of the RCRA units/activities (incinerator, tank storage, and container storage) has been performed to date. The four lagoons most recently located on site (also called ponds and landfills throughout the life of the facility) have been temporarily

closed. (Temporarily closed means that the immediate environmental problem has been addressed, but a long-term solution has not been developed). Three of the lagoons stopped receiving waste in 1984 and were temporarily closed in December 1992 and January 1993 under an EPA order. The fourth lagoon was temporarily closed in 1994. In 1993, on-site storm water was rerouted around Lagoon No. 4 so the storm water no longer discharged into Lagoon No. 4. The facility cleanup/remediation was conducted under the CERCLA program, and the on-site sources (lagoons, tanks, incinerator) have been removed and/or remediated as part of the long-term solution.

1.3.5.2 Wastewater Activities

The Raymark Facility had a 2.5 million gallon per day water and wastewater discharge flow from the plant operations into the lagoons for discharge into Ferry Creek. This discharge was permitted under the State of Connecticut National Pollution Discharge Elimination System (NPDES) program from the early 1970s until the early 1990s, with volumes decreasing as plant activities were reduced. The activities permitted included: acid treatment plant wastewater, dust collection system wastewater, noncontact cooling water, and solvent recovery plant wastewater. A separate permit was issued for an extraction well, which was installed on site to remove groundwater contaminated with toluene from the aquifer and discharge it to the sanitary sewer. The toluene contamination was the result of a spill that occurred on site in 1984.

1.3.6 Study Area Description and Setting

The area identified as the study area for this technical memorandum includes groundwater under and around the Raymark Facility and under downgradient properties impacted by the disposition of the Raymark Facility soil-waste. The Raymark Facility and properties downgradient of the Raymark Facility have been affected by wastewater discharge, stormwater drainage, sediment runoff, surface water runoff, manufacturing waste direct deposition, and contaminant migration in groundwater.

1.3.7 Other On-Going Activities

Activities undertaken in the vicinity of the study area that are related to the investigations conducted to support this technical memorandum include:

- Raymark Facility Closure The property has been capped by EPA under the U. S. Army Corps of Engineers Total Environmental Restoration Contract (TERC). A pump and treatment system is in place that is removing toluene from the groundwater; operation and maintenance activities will be conducted by the Connecticut Department of Environmental Protection (CT DEP). The effects of this operation on groundwater are unknown at this time.
- Remedial Investigation Activities B&RE is developing an RI for Raymark OU3 to evaluate the nature and extent of contamination, and associated public health and environmental risks within Ferry Creek, other ecological areas, and on adjacent properties associated with the disposal or deposition of soil-waste from the Raymark Facility. The OU3 RI is being conducted concurrently with this OU2 technical memorandum work assignment and includes the source areas above the downgradient properties within the study area.

1.3.8 Previous Investigations

A substantial number of field investigations relating to soil, sediment, surface water, and groundwater have been conducted at the Raymark Facility and its environs since 1954. This section presents a brief description of investigations performed to characterize the extent of contamination resulting from past disposal of Raymark Facility waste materials (soil-wastes). Previous investigations performed by B&RE and B&RE operating as HNUS; Environmental Laboratories, Inc. (ELI); Roy F. Weston, Inc. (Weston); Foster Wheeler Environmental Corporation (Foster Wheeler); CT DEP; Connecticut Department of Public Health and Addiction Services (CT DPHAS) under cooperative agreement with the Agency for Toxic Substances and Disease Registry (ATSDR); and the National Oceanic

Atmospheric Administration (NOAA) are presented in the paragraphs below and on Table 1-1. Some of this information will be used in the RI.

Additional investigations performed at the Raymark Facility to characterize the on-site materials and facility setting are summarized in the *Final RCRA Facility Investigation Report, Raymark Industries, Inc.* (ELI, 1995) and the *Final Remedial Investigation Report, Raymark Industries, Inc. Facility* (HNUS, 1995). Further evaluation of the impacts to ponds, wetlands, and other properties resulting from contamination from the Raymark Facility are currently being conducted by B&RE under Raymark - OU3, RAC I W.A. 002-RICO-01H3.

1.3.8.1 Subsurface Investigations

This subsection presents the subsurface field investigations conducted within the study area.

Vertical Sampling Program (1993)

Between July and October 1993, subsurface soil samples were collected by a number of contractors under the ARCS and TERC programs from the Morgan Francis property, the Spada property, the Patterson property on Clinton Avenue, properties along Elm Street, and properties along 3rd/4th/5th Avenue as part of the Expanded Site Inspections (ESIs)/Vertical Sampling Program (VSP). Reports were prepared by Weston for five disposal areas located within the study area.

The subsurface soil sampling (borings) was conducted to provide information regarding the presence, waste characteristics, and extent of contamination. Soil horizons were selected, and individual sample collection locations were based on EPA recommendations, visual field observations, and data from Ground Penetrating Radar (GPR) interpretations. Subsurface soil samples collected from various locations and depths at each property were screened for lead, asbestos, and PCBs using EPA-approved screening methods.

Approximately 15 percent of the samples were submitted for confirmatory analysis through the EPA Contract Laboratory Program (CLP); these samples were analyzed for Target Compound List (TCL) VOCs, TCL SVOCs, TCL pesticides/PCBs, and target analyte list (TAL) metals. Selected samples were also analyzed under the EPA Special Analytical Services (SAS) program for PCDD/PCDT, PCB (Aroclor 1262 and 1268), Toxicity Characteristic Leaching Procedure (TCLP), and Multiple Extraction Procedure (MEP).

Comprehensive Site Investigation Sampling Program (1994 - 1995)

Using data developed by others, Comprehensive Site Investigation (CSI) reports were prepared in 1994 and 1995 for properties under investigation as part of the Stratford Superfund Sites program. The purpose of the CSIs was to determine the extent and magnitude of lead, PCBs, and asbestos contamination in surface and subsurface soils associated with Raymark Facility waste disposal. The CSI reports were designed to provide site-specific data necessary to proceed with the Stratford Superfund Sites Removal Action Program. The information contained in the reports was based on the subsurface samples taken under the vertical sampling program (1993).

Final CSI Reports were completed in 1995, and were presented in the final technical memorandum, Compilation of Existing Data, RI/FS, Raymark - Ferry Creek (B&RE, 1997).

Removal Actions Post-Excavation Program (1994 - 1996)

Specific site property excavations were performed based in part on the data in the CSIs. Upon completion of the excavations, subsurface samples were collected based on a systematic grid approach for each property excavated, to ensure that the contaminated materials were removed. Grid intersections were set at 15-foot intervals; samples were collected at depths of 0 to 3 inches from each exposed wall, base, and perimeter of an excavated grid using a pre-cleaned iron shovel or hand trowel. Samples were composited from each exposed surface and screened at the on-site laboratory for asbestos, lead, and PCBs. Approximately 10 percent of the samples were submitted for confirmatory analysis

at an off-site laboratory. Once the contaminated materials were removed, the areas were backfilled with clean fill and seeded.

Post-Excavation Record Plans were prepared for these properties. The Post-Excavation Record Plans documented the soil removal action clean-up activities conducted at each property and showed that the established clean-up criteria had been achieved. These properties are considered clean and no further actions are anticipated.

Phase | Remedial Investigation (1993 - 1995)

From 1993 through 1995, HNUS conducted treatability studies, performed surface and subsurface field work, and developed an RI/FS. This investigation was conducted under ARCs Work Assignment No. 42-1LH3, Contract No. 68-W8-0117. Field work activities were divided into two tasks: a subsurface field investigation and a surface sampling investigation for identified non-residential properties. The activities conducted as part of the field investigation were a soil boring and sampling program, a salinity survey, a GPR survey, and a topographic survey. The investigation also included advancing soil borings for groundwater monitoring well installations. Two of the soil borings were advanced 20 feet into bedrock. Soil samples were taken from the soil borings. Subsequent work included four rounds of groundwater, surface water, and sediment sampling.

Offsite Monitoring Well Installation (1996)

Seven borings were advanced and then monitoring wells were constructed on the easterly side of the Raymark Facility. The wells were sampled by U.S. EPA in 1996. The wells are included in the data for the OU2 technical memorandum.

Phase II Site Investigation (1997)

Following a review of all the data from 1992 through 1996, B&RE identified data gaps. These data gaps indicated the need to collect additional field data (soils, surface water, and sediments) to finalize the RI, and support the Risk Assessment and the FS for the OU3 study area. Field investigations and sample collection were conducted during July and August 1997. Field activities included advancing soil borings and collecting soil samples, and collecting surficial soil and sediment samples. This work is described in detail under Section 2.0 and is the primary basis of this OU2 technical memorandum.

1.3.8.2 Surface Investigations

This subsection presents the surface field investigations conducted within the study area.

Surface Water and Sediment Investigations (1992-1994)

Surface water and sediment sampling was conducted by EPA and its contractors, and the various contractors hired by Raymark Industries Inc. at the Raymark Facility and environs, from 1992 through 1994 to determine whether site contaminants were migrating off the property. The sampling was conducted to assess a series of four lagoons located at the Raymark Facility in the southwestern corner and along the southern property boundary near Longbrook Avenue and the Barnum Avenue Cutoff (see Figure 2-1). These lagoons, frequently referred to as settling basins or ponds, received stormwater drainage, surface water runoff, and wastewater from various on-site operations. Solids were allowed to settle in Lagoon Nos. 1, 2, and 3 prior to discharge of clarified wastewater and unsettled solids into Lagoon No. 4, which discharged into a culverted tributary that directly discharged into Ferry Creek.

Fifteen sediment samples were collected along Ferry Creek, including the lagoon No. 4 discharge point, and in the Housatonic River. Samples were submitted to EPA-approved laboratories for analysis of VOCs, SVOCs, PCBs, metals, cyanide, dioxin/furan, and asbestos. Numerous site-related organic and inorganic contaminants were detected at elevated levels.

Surface water samples were collected to characterize both the quantity and quality of drainage discharges into and out of Lagoon No. 4. After installation of the surface stormwater drainage diversion system around Lagoon No. 4, the outlet to this lagoon (Station No. 5) was resampled in October 1993. Samples were submitted for laboratory analysis of VOCs, SVOCs, PCBs, metals, cyanide, sulfide, chlorinated herbicides, organophosporous pesticides, dioxin/furan, and asbestos (ELI, 1994). These sampling rounds confirmed that the site had discharged contaminated materials/water into Ferry Creek.

Fish, Shellfish, and Eel Sampling (1993)

In October 1993, the EPA and CT DEP sampled fish and shellfish from various water bodies around Stratford. The CT DEP collected shellfish samples from the Housatonic River and Ferry Creek. The EPA collected freshwater fish samples from five ponds within Stratford, including Selby Pond. Another 1993 study, prepared by CT DPHAS under. cooperative agreement with the ATSDR, found elevated levels of PCBs, particularly Aroclor 1262, which is a Raymark-waste indicator, in eels from Selby Pond. As a result of the study, an eel consumption health advisory was issued, recommending that consumption of eels from Selby Pond be limited to not more than one meal per month.

Soil Sampling (1993)

Numerous surface soils were sampled around Stratford to identify the extent of contamination on properties where Raymark waste was disposed. Residential properties were sampled, evaluated, and waste was excavated as appropriate. Commercial and wetland properties were sampled, and have been evaluated; no cleanup has yet occurred.

Ecological Risk Assessment (1996-1998)

An Ecological Risk Assessment report was prepared for EPA Region I by NOAA and their contractor (NOAA, 1998). This assessment addressed the risks to ecological receptors

posed by Raymark Facility hazardous wastes present in Ferry Creek, portions of the Housatonic River, and associated wetlands.

Selby Pond Investigation and Sampling (1996)

Based on the results of two rounds of surface water and sediment sampling conducted at Selby Pond as a part of the Phase I RI, additional investigations were carried out at Selby Pond in three phases.

The Phase I investigation was performed from September 3, 1996 through September 6, 1996. The objective of Phase I activities was to obtain information related to the depth and physical composition of the sediment material within Selby Pond and the surrounding wetlands. The results of the Phase I investigation were used to direct the subsequent field sampling under Phase II.

The Phase II investigation was performed from November 5, 1996 through November 16, 1996. The objective of the Phase II activities was to define the nature and extent of contamination within the Selby Pond site. Activities included collecting surface water samples, surficial sediment samples, and deep sediment core samples. The samples were analyzed using EPA-approved laboratories for TCL VOCs, TCL SVOCs, TCL pesticides/PCBs, and TAL metals. Sediment samples were also analyzed for dioxins/furans and asbestos.

Based on an evaluation of the data from Phases I and II, and qualitative evaluations of human health and ecological considerations, an evaluation was conducted to determine whether a non-time-critical removal action (NTCRA) at Selby Pond was warranted. No additional field work sampling was conducted to support this assessment. However, previous data collected by the EPA, the CT DEP, and the CT DPHAS under cooperative agreement with the ATSDR, was reviewed to support the human health risk evaluation. The Phase III assessment concluded that a separate non-time-critical removal action was

not warranted. This area is now being reevaluated as part of the on-going activities described under Section 1.2.3.

2.0 1997 SUBSURFACE INVESTIGATIONS

This section presents a description of the field investigations performed in 1997 to characterize the Raymark Facility off-site contamination. This information will be used along with subsurface data collected in previous investigations cited in Section 1.2.8 to meet the objectives of the RI. The field activities performed during 1997 include:

- Installing well points
- Monitoring well installation
- Sampling soil
- Sampling groundwater
- Installing piezometers
- Surveying

Each of these activities is described by a brief presentation of the work performed in the subsections below. Discussion of the results of sample analysis is presented in Section 4. and on Figures 4-1, 4-2, and 4-3.

2.1 Installation of Well Points

In order to profile the groundwater leaving the Raymark Facility property, small diameter well points were advanced using a vibrating direct push technology at 77 locations. During advancement of the well points, groundwater sampling was performed at discrete vertical locations. These investigations were performed in July and August 1997. Historical conditions of the area, and limited historical analytical data, were used as assumptions in selecting the well point locations. After advancement, each well point location was surveyed; each appears on Figure 1-1.

RI98163D

2.1.1 Groundwater Profiling

The 77 well points were advanced to profile the groundwater around the Raymark Facility and to follow contaminant movement off site of the Raymark Facility. The depth of the well points ranged from approximately 10' feet to 140 feet. (The interpretation of these well points is presented in Section 4.0. A more comprehensive discussion of these data will be presented in the RI report to be completed later.) Well points were generally physically located on properties based on a grid of the assumed contaminant area downgradient of the Raymark Facility. The specific location of the well point was based on the current information regarding the nature and extent of contaminants on and around the Raymark Facility. Each well point was advanced to refusal, using a six-wheel all-terrain vehicle. If refusal was encountered at less then 30 feet, a second attempt was made within a pre-selected 10-foot radius of the refusal point. Refusal was defined as zero movement of the vibratory bit within a 10-minute period. These shallow refusal points provided valuable subsurface information using optical survey techniques (see Figure 1-1).

A 5-foot section of the leading end of the pipe was slotted with 0.010-inch-size openings (+/-0.005-inch). The bottom of each drive point was equipped with a steel conical-shaped tip with an O-ring. The length of solid pipe sections varied from 10 to 20 feet. The well points were installed without using drilling water, or producing any soil cuttings. Soil samples were not collected during the installation of the well points.

After the well points were advanced and groundwater samples were collected, the well point was abandoned by filling with a bentonite slurry mixture.

2.1.2 Groundwater Profiling Sampling

During the installation of the well points, groundwater samples were collected every 10 feet and at the point of refusal, using a peristaltic pump. At each sample location, the initial water level was recorded, groundwater was purged, and a VOC headspace reading

DRAFT

was taken; the field parameters of temperature, pH, and specific conductance were measured every 2 to 3 minutes during sampling. Once these parameters were stabilized over a 10-minute period, a sample was collected and sent off site for rapid turnaround analysis of 1,1,1-trichoroethane; 1,1-dichoroethane; 1,1-dichoroethene; vinyl chloride; toluene; benzene; ethylbenzene; and xylene. Approximately 10 percent of all the samples collected were sent off for confirmation analysis under the CLP program. Samples under the CLP were analyzed for VOCs and metals.

For samples with PID readings above 10 ppm, a sample was automatically collected and sent for chemical analysis, regardless of the stabilization criteria. The sample interval then dropped to 5 feet for measuring the stabilization criteria, although no sample was taken unless the PID reading was above 10 ppm.

2.2 Installation of Groundwater Monitoring Wells

In order to characterize and identify the presence of contaminants in the soil, determine the extent of soil and groundwater contamination, and delineate the Raymark Facility off-site groundwater plume, 32 soil borings were advanced and completed as monitoring wells based on the results of the profiling and other historic references. The monitoring wells were generally installed in 10 clusters, in a shallow, intermediate, and deep arrangement. One single well was also installed at an upgradient location. Because the actual depths were less than the estimated depths, additional wells were collected in each monitoring well. Soil samples were collected from areas that indicated high PID readings, or showed visible contamination.

Monitoring wells were also installed at the Raymark Facility itself. These wells, and the off-site wells, are shown on Figure 1-1. The information presented in Section 4.0 was based on the information provided from borings and monitoring wells both on and off the Raymark Facility. Details on well construction and water level elevations are shown on Tables 2-1 and 2-2 and in the boring logs in Appendix C.

2-3

Raymark - Ferry Creek, OU2

TABLE 2-1 WELL CONSTRUCTION DETAILS OPERABLE UNIT 2 RAYMARK SUPERFUND SITE STRATFORD, CONNECTICUT

	T	NORTHING	EASTING	1	TOP OF	TOP OF	INNER	PROTECTIVE	1	WELL	1.	<u> </u>	r	DEPTH		•		T · ·	T	T		·
		ICT Orld	ICT Orld	OROUND	INNER	PROTECTIVE	CASING	1.		CASING	• •	1	DEPTH	BOTTOM	MIDPOINT	ELEVATION	ELEVATION	ELEVATION	LENOTH			
1				ELEVATION	CANNG	CASING		CASING	BOREHOLE		WILL	WELL	TOP OF		O₽		BOTTOM OF		07			
		System NAC		R-NOVD 24	BLEVATION	ELEVATION	STICK UP		DIAMETER	SCREEN	INSIGE	SCREEN	SCREEN	SCREEN	SCREEN		ECREEN IR					
WELL IDENTIFIER	PROPERTY	27]	NAD 27]		M-NOVD 29)	NOVD 28	<u></u> (n)	STICK UP (IL)	[m.]	MATERIAL	DIAMETER	SLOT Ne.	[FL 895]	IL BOS	(R. 80E)	NOVD 29	NOVD 29	R-NOVD 21		FILTER PACK	DRILLING METHOD	CONSULTANT
MW-2178	242 HOUSATONIC	131192.63	497902 52	16 23	18 01	16 26	-0 22	0 03	. 5	PVC	2	10	45.0	70 0	67 5	-28 8	-53 8	-413	25.0	00 Sand	Sonic	BARE
MW-217D	242 HOUSATONIC 448 HOUSATONIC	131192 63	497902 82		15 97	18 26	-0.26	0 03		PVC	2	10	25 0	350	30 0	-8.0	-16.6	-13 8	10.0	00 Sand	Sonic	BARE
MW-214D	448 HOUSATONIC	132052 93	498466 43	20 05	19 73	20 02	0 32	-0 03	65	PVC PVC	2	10 20	42 8	47 8	453	-22 8	-27 8	-25 3	60	00 Send	Sonic .	BARE
MW-2148	448 HOUSATONIC	132049 13	498468 43		19 73	20 02	-0 32	-0 02	6 75	PVC		10	123	27.3	19.0	70	-73	03	10.0	0 Sand 00 Sand	Sonic Sonic	BARE
MW-2158.	73 WILLOW	131902 84	497806 02		20 39	20 65	-0 27 .	-0 01	45	Sch 40 PVC		1	28 0	380	330	-7.3	-17.3	-12.3	100	DON Sand	Sonk	BARE
MW-2168	73 WILLOW	131902 84	497806 02		20 41	20 65	-0 25	-0 01	0.75	PVC	1-2-	10	90	190	14 0	11.7	117	6.7	10 0	00 Sand	Sonic	BARE
MW-2168	73 WELOW	135386 26	497845 29	31 21 .	30 89	31 23	-0 32	0 02	5	Sch 40 PVC	2	10	40.7	65.7	53 2	-95	-34 5	-22 0	25 0	DO Sand	Sonic	BARE
MW 1100	COMM PROP.	131745 11	497515 36		944	964	0 18	0 02		Sch 40 PVC	2	10	42.8	52 5	47 5	-32 9	-42 9	-37 9	100	Slice Sand	Drive and Wesh	Halburton NUE
MW-110M	COMM PROP.	131755 23			9 27	9 66	-0.39	0.00		Sch 40 PVC		10	18.0	28 0	23 0	-0.3	-183	-13 3	10.0	Slike Sand	Drive and Wash	Halburton NUS
MW-1105	COMM PROP.	131764 22	497631.19		9 62		-0 18	0.00		Sch 40 PVC		10	8.0	14.0	110	10	-42	-12	60	Slice Sand	Drive and Wash	Halburton NUR
MW-111D	COMM PROP.	131686 46	497278 83		. 12 33	12 49	1 83	1 99	<u> </u>	Sch 40 PVC		10	793	89.3	64.3	-68 8	-78 8	-73 8	10.0	Silice Sand	Orive and Wash	Halburian NL38
MW-111M MW-1118	COMM PROP.	131673.91	497278 64		12 70	12 98	1 90	2 18		Sch 40 PVC	<u>_</u> ;	10	24 0	34 0	29.0	-132	-23 2	-18 2	10 0	Silica Sand Silica Sand	Drive and Wesh Drive and Wesh	Helburton NUS Helburton NUS
MW-1128	COMM PROP.	131497 63	497572 09		6 4 2	6 32	-0 51		:	Sch 40 PVC		1-10-	470	57 0	52 0	-40 1	-50.1	-45.1	10.0	SEce Sand	Drive and Wash	Heliounton NUS
MW-112D	COMM PROP.	131490 02	497562 87		. 674	7 02	- 0 30	-0 02		Sch 40 PVC	1 2	10	38.0	42.0	40.0	-310	-35 0	-330	40	SEce Send	Drive and Wesh	Helburtion NUS
MW-112M	COMM PROP.	131501 80	497560 83	7.13	6.76	7.1	-0 37	-0 03		Sch 40 PVC	2	10	24 0	340	29.0	-16 9	-26 9	-21.9	10.0	Silice Sand	Drive and Wesh	Nelburlion NUS
MW-1138	COMM PROP.	130739 62	497208 17	71	8 95	92	1 86	2 10		Sch 40 PVC	2	10	96 5	106.5	101 5	-89 4	-194	-94.4	10 0	Silica Sand	Drive and Wash	Hallburton NUS
MW-113M	COMM PROP.	130743 91	497191 63		6 76	9,14	1 66	2 04	6	Sch 40 PVC	2	10	28 0	380	33 0	-20 9	30 9	-25 9	100	Slica Sand	Orive and Wesh	Halburton NUS
MW-1	CONTRACT PLATING	134144 75	497222 45	10 1	10 53	19 21	0 43	111	. NA	NA	NA_	NA	98	19 8	14.0	0.3	-17	33	10.0	NA	NA	NA
MW-10	CONTRACT PLATING	134307 27	497633 96		22 30	22 36	1 85	1 03	NA	NA	NA	NA	13 0	23 0	100	13	-25	25	10.0	NA	NA	NA
MAN-JA	CONTRACT PLATING	133872 36	497178 26		18 93	20 32	0.18	121	NA	NA	NA	NA	10 0	200	15.0	1	-09	41	10.0	NA	NA	NA . NA
MW-JA	CONTRACT PLATING	133545 62	496810 61	22 07	22 06	23 07	-0 40	1 23	NA NA	NA NA	NA NA	- MA	15 0	22 0	170			- 15	15 0	NA	NA NA	NA
MAN-S	CONTRACT PLATING	133822 44	496993 56		17 25	1744	-0 15	0.04	.NA	NA	- MA	- m	03	183	133			41	100	NA	NA	NA
												<u> </u>	<u> </u>			- <u></u>	+	+		1		
1000-E	CONTRACT PLATING	133853 20	497063 64	17.39	17 19	20 09	-0 20	2 70	I NA	NA	NA	NA		18.0	130		-05	1 44	100	NA ·	NA	NA .
NW T	CONTRACT PLATING	134030 08	497292 81	10.47	19 86	19 39	1 39	1 52	NA	NA	NA	NA	29 0	390	340	-10.5	-20 5	-15.5	100	NA	NA	NA
NW-1	CONTRACT PLATINO	134070 72	497279 35	18 08	10 13	196	0.05	1 52	NA	NA .	NA	NA	10.0	20.0	150	0.1	-19	3.1	10.0	NA	NA	NA
MW-9	CONTRACT PLATING	134251.93	497416 55	20 36	21 05	21 81	149	145	NA	NA	NA	NA .	13 0	23.0	180	74	-26	24	10 0	NA	NA	NA
MW-BR-1	CONTRACT PLATING	134067 29	497285 10	18 02	19 49	19.7	147	1 68	NA	NA	NA	NA	32 6	42 5	37 5	-14 5	-24 5	-19.5	10 0	NA	NA	NA
MW-BR-2	CONTRACT PLATING	133978 37	497270 48	19 13	19 79	21.17	0 66	2 04	NA	NA ·	NA	NA	45 0	55 0	50 0	-25.9	-35 9	-30 9	10.0	NA	NA	NA
MW-X	CONTRACT PLATING	134494 29	497478 40	20 83	21 90	22.79	1 07	1 96	NA	NA	NA	NA	16 6	26 8	215	4.3	-57	-07	10.0	NA	NA	NA
MW-Y	CONTRACT PLATING	133732 19	497040 27	23 1	23.76	24 07	0 58	0 97	NA	NA	NA	NA	15.0	25 0	20 0	0.1	-1.9	31	10 0	NA	NA	NA
NW-Z PZ-12	CONTRACT PLATING	134176 81	497402 63	21 01	22 42	22 93	141	0.05	NA	NA NA	NA NA	NA	18.5	26 5	215	45	-55	-05	10 0	NA .	NA	NA NA
PZ-12 PZ-13	CONTRACT PLATING	133921 55	497003 26	18 82	20 28	20 36	1.76	1 M	NA	NA	NA	NA	75	17.6	12.8	110	. 10	60-	1 100	NA	NA	NA
P2-14	CONTRACT PLATING	133983 72	497124 43		20 27	20 31	170	1 02	NA	NA	NA	- NA	1 60	180	130	10 5	0.8	55	100	INA	NA	NA
MW-201D	DOT	133933 92	459265 17	14 92	14 71	14 91	-0 21	-0 01	6	Sch 40 PVC	2	10	32.7	377	35 2	-17.0	-22 0	-20 3	50	Silice Send	Orive and Wash	Halburton NUS
LIN# 202D	DOT	133536 47	498966 24	11 66	11 35	11 68	-0 31	0 02		Sch 40 PVC	2	10	290	340	315	+17.3	-22 3	-19 8	50	Slice Sand	Drive and Wesh	Hallburton NUS
MW-2030	DOT	133683 68	499211 07	13 24 -	12 98	13 26	-0 26	0.02	•	Sch 40 PVC	2	10	24 0	290	26 5	-10 8	-15 8	-13 3	50	Slice Send	Drive and Wash	Halburton NUE
MA# 204D	DOT	133420 60	498512 98	115	11 27	11 52	-0 23	0 02	4	Sch 40 PVC	2	10	45 0	60.0	47 5	-33 8	-30 5	-36 0	80	Slice Sand	Drive and Wash	Halburton NUS
MW-206D	100	133347 10	498434 00		17 99	18 24	-0 25 -	0.00		Sch 40 PVC	2	10	67 8	62 6	60 1	-39.4	-44.4	-419	50	Silice Send	Drive and Wash	Hellburton NUS
MW-206D	DOT	133929 77	498974 03		11 04	11 61	-0 55	0 02		Sch 40 PVC		10	60 6	65.6	63.1	-490	-54 0	-51 5	60	Silica Sand	Drive and Wash	Hallburton NLIS
MW-206M	DOT	133809 04	498890 69	12 21	11 91	12 23	-0 30	0 02	6	PVC	2	10	27 0	34.0	30 5	-14 0	-21 8	-10 3	70	00 Sand	Sonic	BARE
MW-207D	Dor	133286 60	498178 82	20 27	20 09	20 32	-0.18	0 05		PVC PVC	2	10	95 5	21 0	135	-75 2	-8 8	-1.3	15.0	OQ Sand Silice Sand	Sonic Drive and Wash	BARE . Helburton NUS
MW-207M	Dot	133386 35	498194 88	20 37	20 11	20 39	-0.26	0 02		PVC	1 2	10	42.0	52.0	47.0	-216	-316	-28 6	10.0	00 Send	Sonic	BARE
MW-2078	DOT	133398 35	488184 56	20 37	20 12	20 39	-0 25	0 02		PVC	 _ ; _	- .	150	30.0	22.5	54	16		15.0	00 Sand	Sonic	BARE
WW-2118	DOT	133226 42	498185 45		19 25	19 56	-0 33	-0.02		PVC	1	10	155.0	170 0	162.5	-135.4	-150.4	-142.9	15.0	00 Sand	Sank	BARE
MW-211D	DOT	133232.39	498191 52	19 56	19 29	19 57	-0 27	0 01	1 1	PVC	1 2	10	128 0	143 0	135.6	-108 4	-123 4	-115 9	150	00 Sand	Sonic	BARE
MW-211M	DOT	133232.39	498191 52	19 56	19 28	19 57	-0 20	0.01 .		PVC	2	10	97.0	104 5	100 8	-77 4	-84 9	-012	7.5	00 Sand	Sonic	BARE
MW-2115	DOT	133226 42	498185 45	19 58	19 24	19 56	-0 34	-0 02		PVC	2	10	12 0	27 0	195	78	-7.4	01	15.0	00 Sand	Sonic	BARE
MW-212B	001	132473 80	497644 24		11 82	12 03	-0 21	0.00	4.5	Sch.40 PVC	2	6	690	84.0	78.5	-57.0	-72 0	-64 5	15 0	00 Sand	Sonic	BARE
MW-212D	DOT	132474.10	497649 67		11 02	12 06	-0 22	0 02	1	PVC	2	6	50 0	\$5.0	52 6	-38 0	-43 0	-40 8	60	00N Send	Sonic	BARE
MW-212M	DOT	132474 18	497649 67	12 04	1177	12 06	-0 27	0.02		PVC	2	20	38 0	430	40 5	-26 0	-310	-20 5	60	0 Send	Sonic	BARE
MW-212S	DOT	132473 80	497644 24	12 03	11 83	12 03	-0 20	0.00	875	Sch 40 PVC	2	20	7.0	22 0	14 5	50	-10 0	-25	15.0	0 Sand	Sonic	BARE
FCP-1	FERRY CREEK	132123 22	497132 62			4 39	· ·	4 40	0 62	Sleel	0 62	10	11.5	13.5	125	-11.5	-13 5	-125	20	NA	Orive Point	BARE
FCP-1 Surf Walar FCP-2	FERRY CREEK	132123 22	487132 82		<u>⊦ · · ·</u>	4 39		4 40	0.52	Steal	0 52	10	115	13.5	125	-115	-13 5	-125	20	NA	Drive Point	BARE
FCP-2 Surf. Water	FERRY CREEK	131605 53	497435 20		<u> </u>	643		· 7 12	NA	Steel	0 62	10	110	13.0	120	-117	-137	-127	20	NA NA	Drive Point Drive Point	BARE
FCP-3	FERRY CREEK	131524 84	497597 97			5 51	<u> </u>	6 99	0 62	Steal	0 62	10	120	14 0	130	-13 5	-137	-14 5		NA	Orive Point	BARE
FCP-3 Surf Water	FERRY CREEK	132123 22		-147	t	5 51		6 34	NA	Sleel	1 0 62	10	120	140	130	-136	-15 5	-14.5	20	NA .	Drive Point	BARE
MW-2138	MINOR AND BURR	132526 06			· 22 81	23 13	0 29	0 03	5	PVC	1 2	10	37 5	52 5	45.0	-144	-294	21.9		00 Send	Sonic	BARE

Notes ft = Feet in = Inches BGS=Betow Ground Surface SS-Stahless Steet NA-NOL Available -=NOL Applicable *=Wells That Could Not Be Located During This Investigation

TABLE 2-1

WELL CONSTRUCTION DETAILS OPERABLE UNIT 2

RAYMARK SUPERFUND SITE

STRATFORD, CONNECTICUT

PAGE 2 OF 3

Ŕ	
861	
16	
ω	
Ο	

	PAGE 2 OF 3		NORTHING	EASTING		TOP OF	TOP OF	INNER	PROTECTIVE	r				<u> </u>					T				
									FROIDCINE		WILL		1		DEPTH								1 1
		(ICL OUR	(CT Grid					CASING			-				MIDPOINT							1 1
Bertary II Bertary Be			System NAD	Bystem				STICK UP								SCREEN							i I
MAX MAX <td>WELL IDENTIFIER</td> <td>PROPERTY</td> <td>27)</td> <td>NAD 27)</td> <td>ľ.</td> <td>MANGVO 28</td> <td>ML-NOVO 285</td> <td>194</td> <td>STICK UP (IL)</td> <td></td> <td>67.1</td> <td>FILTER PACK</td> <td>DRILLING METHOD</td> <td>CONSULTANT</td>	WELL IDENTIFIER	PROPERTY	27)	NAD 27)	ľ.	MANGVO 28	ML-NOVO 285	194	STICK UP (IL)											67.1	FILTER PACK	DRILLING METHOD	CONSULTANT
	MW-2130	MINOR AND BURR	132526 06	498368 78	23 1	22 01		-0 29			PVC	2								15 0			
Mill Mill <th< td=""><td>MW-2135</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>2</td><td>10</td><td></td><td>28 0</td><td>20 5</td><td>10.1</td><td>-4.9</td><td></td><td>15 0</td><td>00 Sand</td><td>Sonic</td><td>BARE</td></th<>	MW-2135									1		2	10		28 0	20 5	10.1	-4.9		15 0	00 Sand	Sonic	BARE
MB31 MB31 MB31 M1 M1 M1 M1												2								10 0			
MAX MS MAX MS MAX MS </td <td></td>																							
Million Million <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																							
Maint Objek Maint Maint <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
MANDER MANDER Diff 16 Diff 21 Diff 21 <thdiff 21<="" th=""> <thdiff 21<="" th=""> <thdif< td=""><td>NAM- 1028</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdif<></thdiff></thdiff>	NAM- 1028									1		·											
MARK MARK Diski J Diski J <thdiski j<="" th=""> <thdiski j<="" th=""> <th< td=""><td>MW-103D</td><td></td><td>131757 04</td><td></td><td></td><td></td><td>15 59</td><td></td><td></td><td>6</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thdiski></thdiski>	MW-103D		131757 04				15 59			6		1											
MBMU MEMOUNTAGE DIBUTE MINUT 1	MAN-103M											2								10 0	Sand		Helburten HUS
WE MAD MADE ALF MADE Shift 10 1077 117 101 1017 <td></td> <td>He Eurlen NUS</td>																							He Eurlen NUS
Construct Deal 16 High 17 M. High 17 M. High 18 M. High 18 M. M. M.																							
CEGID NYMMON FALLET Disks 15 UM UT UM UM UM UM UM </td <td></td> <td>Drive end Wash</td> <td></td>																						Drive end Wash	
Control Design () Design () <thdesign ()<="" th=""> <thdesign ()<="" th=""> <thdes< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA</td><td></td></thdes<></thdesign></thdesign>																						NA	
Coll Anamon Coll Main <	PC-01M																				NA	NA	
C-10 MANUME / CLUTY 13773 100000 1000000 1000000 10000000000 1000000000000000000000000000000000000	PC-018	RAYMARK FACEITY	134069 67	498947 54	NA	19 81	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		-10.5	.30	15.0	NA	NA	Fester Wheeler
C453 Antimask Acciry DDDD MA D13 MA MA MA MA <th< td=""><td>PC-020</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	PC-020																						
Constructory Disple Has Into and Pole Has Has <td></td>																							
C2-302 NAMADEX ACTITY 103/11 11/11 101 11/11																							
C4302 NAMAGE X4177 1939 10 141/2 45 NA P2 27 NA	PC-025																					NA	
Decision Decision Mail and Market PACELTY Total Big 17 State Market PACELTY Total Big 17 State Market PACELTY	PC-03D																					NA	
CAUMARY ACLITY 1940 14 140 NA 140 110 1	PC-038	RAYMARK FACLITY	134355 27	498739 63	NA	22 21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			12	10.0	NA	NA	Foster Wheeler
Column Productive Display Total	PC-048																				NA		
PC-680 NATURE (ACLIT US3 20 CHE32 0 NA																							
Resolution Antimetry Accistry 1939 E3 6940 B MA NA NA NA														-									
Constant Active Name																							
PC-058 PANAMERY FAGLITY J1989 F0 FMA PA PA PA PA PA																							
Code Animality Factury Distands Sortex Fraid Name Na	PC-055										NA			NA							NA	NA	
PC-064 PAXIMANY FACUITY 15472 194 NA NA NA NA NA	PC-068	RAYMARK FACLITY	134665 32			17.41	NA	NA	NA	NA	NA			NA							#1 Send	Sonic	Failer Wheeler
Construint Construint Construint Construint Number Accurry Distribution	PC-060									6													
PC078 NAVMARY ACLITY 13400 F46 4950 7.0 NA																							
NATURAN FACUTY 13326 31 0326 42 04 19 NA																							
CE-080 NAMMOR FACULY 1332731 632600 NA 1931 HA NA <																							
PC-000 PAYNARK FAGLITY 133316 03 89116 13 NA IA NA	PC-080																					2	
PC:095 AVAMARY ACLIY 13316 12 49913 35 NA 194 NA NA <thna< th=""> NA NA</thna<>	PC-085					19 22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.5	-0.5	-1.0	15 0	NA	NA	Fatler Wheeler
PC-100 PXMAUK FACELTY 1311313 19716 48 VA 2073 NA	PC-090																						
PC-100 NAYMARK FACETY 1341931 97164.48 14A 123 1316 14A 14A <th1a< th=""> 14A 14A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></th1a<>																							
PC-10M PAYMARK FACLITY 134192 07 9776 132 140 NA						1		1															
PC-105 PC																							
PC-119 PC-119 PC-119 PC-119 PC-119 PC-119 PC-119 PC-119 PC-110 PC	PC-105																						
PC-110 NATMARK FACLITY 13316141 47862531 NA NA <td>PC-118</td> <td></td> <td>the second s</td>	PC-118																						the second s
PC-118 RVMARK FACLITY 13375 89 47788 78 FA 22 43 NA NA </td <td>PC-110</td> <td>RAYMARK FACLITY</td> <td>13376141</td> <td>497892 31</td> <td>NA</td> <td>22 41</td> <td>NA</td> <td></td> <td></td> <td>NA</td> <td></td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>-28.3</td> <td>-10.3</td> <td></td> <td>10 0</td> <td></td> <td></td> <td></td>	PC-110	RAYMARK FACLITY	13376141	497892 31	NA	22 41	NA			NA		NA	NA	NA	NA	NA	-28.3	-10.3		10 0			
PC:156 PAYMARK FACLITY 13342.01.7 0375.12 NA State	PC-11M															_							
PC:100 AVMANDR FACLITY 13342043 9775174 NA																							
PC-158 RAYMARK FACLITY 1336121 471640 FC 13 RAYMARK FACLITY 133612 4716 FC 13 RAYMARK FACLITY 133612 FC 13 RAYMARK FACLITY 133612 FC 13 RAYMARK FACLITY 133612 FC 14 F																							
PC-188 RAYMARK FACLITY 1339931 9744015 MA 1921 NA 192 NA	PC-125																						
PC-13D RAYMANDR FACLITY 133501.31 697443.28 I.A. 19.13 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A	PC-138																				NA		
PC-118 AV1ANK FACLITY 33388 27 4742 89 FA 19.30 NA 14 NA NA NA NA NA NA NA 90 50 10 13 180 NA NA Fait Management PC-118 AV1ANK FACLITY 33553 34 89563 1 NA 24 44 NA 14 NA NA 14 13 353 34 180 NA NA NA Fait Management PC-110 RAVIANK FACLITY 13353 34 89563 1 NA 24 44 NA NA NA NA 14 NA NA NA 14 NA NA 14 13 353 4 18 000 Sand Sant; Freder Winner PC-113 RAVIANK FACLITY 13353 4 89583 1 NA 24 44 NA NA 14 14 14 14 14 14 14 14 14 14 14 14 14	PC-130		133901.91			19 13	NA	NA	NA	NA	NA					NA					NA	NA	Fatler Wheeler
PC:168 PAYMARK FACELITY 133553 9 61560 27 NA 24 64 NA	PC-13M									a second s											····	NA	
PC-110 RAYMANK FACLITY 123553 24 69735 32 NA 24 69 NA NA NA NA 14 4 5 65 3 5 NA NA NA 15 3 31 8 256 13 6 000 Band Sonk: Freder Winnehe PC-115 RAYMANK FACLITY 12334 64 69736 11 NA 24 64 NA NA NA NA 5 55 2 5 NA NA NA 14 NA 74 7,6 0 1 35 000 Band Sonk: Freder Winnehe PC-150 RAYMANK FACLITY 12334 64 69736 11 NA 23 74 NA 14 14 3.1 3 -36 1 -276 150 NA NA 14 NA 14 PC-150 RAYMANK FACLITY 12334 76 6730 07 NA 23 74 NA NA NA NA NA NA NA NA NA 14 NA 14 74 7,0 1 30 60 Band Sonk: Freder Winnehe PC-150 RAYMANK FACLITY 12334 76 6730 07 NA 23 74 NA NA NA NA NA NA 14 NA 14 NA 15 7,3 0 6 NA NA 14 NA 14 NA 15 0 1,3 0,4 12 1 1 0,3 14 12 1 1 0,3 14 12 1 1 0,3 14 12 1 1 0,3 14 12 1 1 0,3 14 12 1 1 0,3 14 12 1 1 0,3 14 12 1 1 0,4 14 14 14 14 14 14 14 14 14 14 14 14 14																					····	NA	
PC-145 RAYMARK FACLITY 13335646 4973318 04 NA 24 64 NA NA NA NA 66 55 2 5 NA NA NA 7.4 7.6 0.1 150 000 Sand Sorie Fadir Winawar PC-158 RAYMARK FACLITY 133343 64 69730111 NA 23 7.6 NA A A 7.6 0.1 150 000 Sand Sorie Fadir Winawar PC-150 RAYMARK FACLITY 13347 64 87300 07 NA 23 7.1 NA A A 7.1 0 170 30 50 NA NA NA Fadir Winawar PC-150 RAYMARK FACLITY 13347 64 69300 07 NA 23 7.1 NA A NA 60 170 30 50 NA NA NA Fadir Winawar PC-150 RAYMARK FACLITY 13347 64 130 04 1 NA 23 7.1 NA A NA FADIR TA 1.5 0 170 30 50 NA NA NA Fadir Winawar PC-150 RAYMARK FACLITY 13347 64 130 NA 14 NA A NA										NA NA													Fasier Wheeler
PC-150 RAYMARK FACLITY 133343 94 9730111 NA 23 74 NA													+										
PC-15D RAYNARK FACILITY 13334776 48730007 NA 2371 NA A A A A A A A A A A A A A A A A A A A	PC-158									1 NA			1 14										
PC-135 PAYNAURK FACELITY 133346.27 493364.03 NA 23 64 NA	PC-150																						
PC-168 PAYNANRK FACILITY 133529 97 49704 97 14 27 20 NA -77 8 -92 8 -15.3 15.0 NA NA NA Feder Winedie	PG-155	RAYMARK FACLITY	133346 27			23 54	NA	NA	NA	NA	NA			NA					04		NA	NA	Faster Wheeler
	PC-168	RAYMARK FACLITY	133529 97	497048 91	114	27 20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	.17 0	-92 8	-15.3	15 0	NA	NA	Fester Wheeler

, i

i.

.

.

Noles' fl =Feel

-=Not Applicable *=Weils That Could Not Be Located During This Investigation

TABLE 2-1 WELL CONSTRUCTION DETAILS

OPERABLE UNIT 2

RAYMARK SUPERFUND SITE

STRATFORD, CONNECTICUT

		NORTHING	EASTING		TOP OF	TOP OP	INNER	PROTECTIVE		WELL				DEPTH								
		ICT GINE	ICT Grid	GROUND	INNER	PROTECTIVE	CASING			CASING	ļ		DEPTH	BOTTOM	MIDPONT	ELEVATION	ELEVATION	EL EVATION	LENGTH	1		
			•	BLEVATION	CASING	CASING		CASING	BOREHOLE	ANO	WELL	WELL	TOP OP	OF	07	TOP OF	BOTTOM OF		OF			
		System NAD	System	[#L-NGVD 29]	BLEVATION	ELEVATION	STICK UP			SCREEN	INSIDE	SCREEN	SCREEN	SCREEN	SCREEN	SCREEN PL	SCREEN IT.	OP SCREEN	SCREEN	i i		1
NELL IDENTIFIER	PROPERTY	177	NAD 271		IN-NOVO 28)	R-HOVD 291	(71.)	STICK UP (R.)	pn.)	MATERIAL	DIAMETER	SLOT No.	(R. BOS)	M. 808)	(ft. 805)	NOVD 19	NGVD 29	(R. NOVD 29)	(ft.)	FILTER PACK	DRILLING METHOD	CONSULTAN
C-160	RAYMARK FACEITY	133525 49	497049 84	NA	27.20	NA	NA	NA	NA	NA	, NA	NA	NA	NA	NA	-40.3	-03 3	-55 8	15 0	NA	NA	Foster Wheele
-C-16M	RAYMARK FACILITY	133520 27	497051.66	NA	27 24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-10.3	-203	-23 3	100	NA	NA	Faster Wheeld
PC-165	RAYMARK FACLITY	133526.73	497047 61	NA	27 17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	98	-5 2	23	15 0	NA	NA	Faster Wheel
AN-2080	STRAT, SHOP, CENTER	133364 44	496911 62	23 99	23 71	23 95	-0 28	-0.04		PVC	2	20	65 0	730	690	-41.0	-490	-450		0 Send	Sonic	BARE
AW-208M	STRAT. SHOP. CENTER	133365 29	496906 89	23.7	23 53	23 73	-0.17	0.03		PVC	2	20	46 25	55 25	50.0	-226	-316	-27.1	90	0 Sand	Sonic	BARE
AN-2085	STRAT, SHOP, CENTER	133364 44	496911 62	23 99	23 75	23 95	-0 24	-0.04		PVC	2		130	280	20 8	110	-40	3.5	15.0	00 Sand	Sonic	BARE
AN 2098	STRAT SHOP. CENTER	132927 03	496916 27	12 26	12 07	12 25	-0 19	-0.01		PVC	2	10	85.0	100.0	92 5	-72.7	-07.7	-80,2	15.0	00 Sand	Sonic	84.RE
MW-209D	STRAT SHOP. CENTER	132931.11	496921 02	12 29	12 01	12 20	-0 28	-0 01	6	PVC	1 2	10	583	68 3	633	-400	-56 0	-510	10.0	00 Sand	Sonic	BARE
AN-2095	STRAT. SHOP CENTER	132926 63	496929 85	12 67	12 25	12 62	-0 32	0.05	•	PVC	2	6	50	13.0		76	-04	34		DON Sand	Senic	BARE
WW-210D	STRAT. SHOP CENTER	132587 42	497239 56	10 28	10 06	10 34	-0 32	-0.04		PVC	2	20	27 0	32 0	29 8	-18 6	-216	-19.1	50	0 Sand	Senic	BARE
AN 2105	STRAT. SHOP. CENTER	132587 42	497239 58	10 38	10 05	10 34	-0 33	-0 04		PVC	2	10	70	22 0	14.6	34	-11.6	-4.1	150	00 Send	Sonic	BARE
RA-1D'	SYNTHETIC PROD.	NA	NA	11 26	10 88	NA	-0 30	NA		SS	2	10	22 0	27 0	24 5	-107	-157	-13 2	50	No 1 Sand	Hollow Stam Auger	Conesloge Re
CRA-1S'	SYNTHETIC PROD	NA	NA	11 22	10 84	NA	-0 38	NA		SS	2	10	55	10 5		57	0.7	32	80	No. 1 Sand	Hollow Stem Auger	Conestege Re
CRA 20	SYNTHETIC PROD	133289 63	498037 13	11 32	10 98	11,32	-0 34	0.00		SS	2	10	20 0	25 0	22 5	-87	-137	-112	80	No 1 Send	Hollow Stem Auger	Conestoge Re
CRA 25	SYNTHETIC PROD.	133289 23	438042 01	11 31	10 98	11 33	-0 33	0 02		55	1	10	85	10 5		50	0.0	3.3	60	No 1 Sané	Hollow Stem Auger	Concelege Ro
CRA3'	SYNTHETIC PROD	NA	NA	7.9	7 43	NA	-0 47	A41	•	55	2	10	30		55	49	-0,1	24	50	No 1 Sand	Hollow Stem Auger	Constlogs Re
RA-4D	SYNTHETIC PROO	133170.10	498022 97	4 85	8 58	8 68	-0 27	0.03	NA	55	2	10	18 0	23 0	20.5	-92	-14.2	-117	50	NA	NA	Conssiego Re
CRA-4S	SYNTHETIC PROD.	133167 62	498021 05	8 96	8 59	1 96	-0 37	0.00	•	\$\$	2	10	40	90	6.5	50	00	2.6	80	No. 1 Sand	Hollow Stem Auger	Conceloge Re
CRA SD	SYNTHETIC PROD	133181 06	497980 90	\$ 77	944	979	-0 33	0 02	NA	\$5	2	10	18.0	23 0	20 5	-0 2	-13 2	-10,7	60	NA	NA	Conestage-Ro
CRASS	SYNTHETIC PROD.	133183 80	497985 15	9 17	9 50	9 70	-0 27	0.01	NA	55	2	10	40	90	65	58	08	3.3	50	NA	NA	Conesiege Ra
CRASD	SYNTHETIC PROD.	133114 65	497958 00	10 12	9 77	10 16	-0 35	0.04		55	2	10	18.0	23 0	20.5	-7.9	-12 9	-10.4	50	No 1 Sand	Hollow Stem Auger	Conestege Ro
CRAIS	SYNTHETIC PROD	133124.38	497957 07	10 18	9 97	10 24	-0 21	0.06		SS	2	10	50	10.0	75	62	0.2	27	50	No 1 Sand	Hollow Stem Auger	Cone slege Re
CRAI	SYNTHETIC PROD.	133278 35	497841 53	12 95	12 50	12 98	-0 45	0 03	•	35	2	10 .	50	10 0	7.6		30	5.5	50	No 1 Sand	Hollow Stem Auger	Conesioga Re
WW-18	THE DOCK	134405 81	498891 22	16 63	16 17	16 62	-0 46	-0 01	•	Sch 40 PVC	2	10	69 5	74 5	670	-42 9	-67.9	-50 4	15 0	Morte Sand	Hollow Stem Auger	AKRF, Inc.
AV IM	THE DOCK	134489 32	498885 29	16.34	15 01	14 36	.0 33	0.02	•	PVC	2	10	310	36 0	335	-14.7	-197	-17.2	50	Morie \$1 Sand	Hollow Stem Auger	AICRF, Inc.
AW-15	THE DOCK	134490 81	498894 09	16.55	16 33	16 57	-0 22	0 02	•	Sch 40 PVC	2	10		10 0	13.0	0.6	-1.5	3.6	100	Morie #1 Sand	Hollow Stem Auger	AKRF, Inc.
AW-25	THE DOCK	134385 22	499027.74	17 37	17.11	17 38	-0 26	0.01	•	Sch 40 PVC	2	10	80	18.0	13.0	94	-06	44	10.0	Morte Sand	Hollow Stem Auger	AKRF, Inc.
AN 18	THE DOCK	134160 95	499078 43	16 37	16 02	16.36	-0 35	-0 01	•	Sch 40 PVC	2	10	80	18 0	130	14	-16	34	10.0	Morte Sand	Hollow Stem Auger	AKPE Inc.
W-48	THE DOCK	134947 05	499531 03	14 62	14 31	14 63	-0 31	0 01	4	Sch 40 PVC	2	10	36.2	612	437	-216	-36 6	-29.1	15.0	Morte Sand	Hollow Stent Auger	AKRF, Inc.
AW-4M	THE DOCK	134945 54	499538 07	14 82	14 30	14 62	-0 24	0 00	4.25 to 8	Sch 40 PVC	2	10	19.3	24 3	21.0	-4.7	-9.7	-72	80	Morie Sand	Hollow Stem Auger	AKRF, Inc.
WW-4S	THE DOCK	134940 88	499532 77	14 72	14 34	14 71	-0.38	-0 01	4 25 to 8	Sch 40 PVC	2	10	70	170	120	11	-23	27	10 0	Morie Sand	Hollow Stem Auger	AKRF, Inc.

RI98163D

Notes: ft.=Feet In =Inches BGS=Below Ground Surface SS=Stainless Steel NA=Not Available =Not Applicable ==Not Applicable ==Wolf That Could Not Be Located During This Investigation DRAFT

TABLE 2-2 GROUNDWATER ELEVATION SUMMARY OPERABLE UNIT 2 RAYMARK SUPERFUND SITE STRATFORD, CONNECTICUT

	1		TOPOF	TOP OF	DEPTH TO	,	14/4	OPCINE
							WATER	GROUND
			INNER	PROTECTIVE	GROUNDWATER	1	LEVEL	WATER
			CASING	CASING	BELOW		MEASURE	•
			ELEVATION	ELEVATION	MONITORING	MONITORING	MENT	ELEVATION
WELL IDENTIFIER	PROPERTY	AQUIFER	(ft-NGVD 29)	(ft-NGVD 29)	POINT (ft.)	POINT	DATE	(ft-NGVD 29)
MW-217B	242 HOUSATONIC	BEDROCK	16.01	16.26	······································	TIC	12/1/97	. 2.12
MW-217D	242 HOUSATONIC	DEEP	15.97	16.26		TIC	12/1/97	2,19
MW-214D	448 HOUSATONIC	DEEP	19,73	20.02		TIC	12/1/97	2.47
MW-214M	448 HOUSATONIC	INTERMEDIATE	19.37	19.85	16.89	TIC	12/1/97	2.48
MW-214S	448 HOUSATONIC	SHALLOW	19.73	20.02	17.26	TIC	12/1/97	2.47
MW-215B	73 WILLOW	BEDROCK	20.39	20.65	17 98	TIC	12/1/97	2.41
MW-215S	73 WILLOW	SHALLOW	20.41	20.65	17.96	тіс	12/1/97	2.45
MW-216B	73 WILLOW	BEDROCK	30.89	31.23	26.51	TIC	12/1/97	4.38
MW-110D	COMM. PROP.	IDEEP	9.44	9.64	7.17	TIC	12/1/97	2.27
MW-110M	COMM. PROP.	INTERMEDIATE	9.27	9.66	7.07	TIC	12/1/97	2.20
MW-110S	COMM. PROP.	SHALLOW	9.62	9.8		TIC	12/1/97	9.01
MW-111D	COMM. PROP.	DEEP	12.33	12,49		TIC	12/1/97	2.21
MW-111M	COMM. PROP.	INTERMEDIATE	12.70	12.98		TIC	12/1/97	2.34
MW-111S	COMM, PROP.	SHALLOW	12.03	12.3		TIC	12/1/97	2.30
MW-112B	COMM. PROP.	BEDROCK	6 42	6.92		TIC	12/1/97	2.23
MW-112D	COMM, PROP.	DEEP	6.74	7.02		TIC	12/1/97	2.23
MW-112M	COMM. PROP.	INTERMEDIATE	6.76	7.1		TIC	12/1/97	2.22
MW-113B	COMM. PROP.	BEDROCK	8 96	9.2		TIC	12/1/97	1.60
MW-113M	COMM. PROP.	INTERMEDIATE	8.76	9.14		TIC	12/1/97	1.88
MW-1	CONTRACT PLATING	SHALLOW	18,53	19.21		TPC	12/1/97	4 55
MW-10	CONTRACT PLATING	SHALLOW	22.38	22.36	NA	NA	NA	NA
MW-2A	CONTRACT PLATING	SHALLOW	18.93	20.32	15.77	TPC	12/1/97	× 4 55
MW-3A	CONTRACT PLATING	SHALLOW	17.97	19.68	15.23	TPC	12/1/97	4 45
MW-4	CONTRACT PLATING	SHALLOW	22.06	23.07		TPC	12/1/97	4.74
MW-5	CONTRACT PLATING	SHALLOW	17.25	17.44		TPC	12/1/97	4.74
MW-6	CONTRACT PLATING	SHALLOW	17.25	20.09		TPC	12/1/97	4.86
MW-7	CONTRACT PLATING	INTERMEDIATE	19.86	19.99		TIC ·	12/1/97	4.80
MW-8	CONTRACT PLATING	SHALLOW	19.00	19.6	And the second sec	TPC	12/1/97	4.47
MW-9	CONTRACT PLATING	SHALLOW	21.85	21.81		TIC	12/1/97	4.50
MW-BR-1	CONTRACT PLATING	INTERMEDIATE	19.49	19.7		TIC	12/1/97	4.47
MW-BR-2	CONTRACT PLATING	INTERMEDIATE	19.49	21.17		TPC	12/1/97	4 43
MW-X	CONTRACT PLATING	SHALLOW	21.90	22.79		TPC	12/1/97	4.41
MW-Y	CONTRACT PLATING	SHALLOW	21.90	22.79				4.41
MW-Z	CONTRACT PLATING	SHALLOW	22.42	22.93			12/1/97	4.70
PZ-12	CONTRACT PLATING	SHALLOW	18.71	18.8				5 03
PZ-12	CONTRACT PLATING	SHALLOW	20.28	20.36			12/1/97	4 57
PZ-13 PZ-14	CONTRACT PLATING	SHALLOW	20.28	20.36			12/1/97 12/1/97	4 57
MW-201D	DOT	DEEP	14 71	14.91			12/1/97	4 54 3.49
MW-202D		DEEP	11 35	11.68				3.49
MW-202D	DOT		12.98	13.26			12/1/97	
MW-203D	DOT		12.98		-		12/1/97	3.39
MW-205D	DOT	IDEEP		11.52			12/1/97	3.27
MW-206D	-	DEEP	17 99	18.24			12/1/97	3.23
	DOT		11 04	11.61			12/1/97	3.37
MW-206M	DOT	SHALLOW	11.91	12.23			12/1/97	3.45
MW-206S	DOT		11.90	12.23			12/1/97	3.44
MW-207D	DOT		20.09	20.32			12/1/97	3.28
MW-207M	DOT		20.11	20.39	A REAL PROPERTY AND A REAL		12/1/97	3.25
MW-207S	DOT	SHALLOW	20.12	20.39			12/1/97	3.23
MW-211B	DOT	BEDROCK	19 25	19.56			12/1/97	3.17
MW-211D	DOT	DEEP	19.29	19.57			12/1/97	3.01
MW-211M	DOT		19.28	19.57			12/1/97	3.08
MW-2115	DOT	SHALLOW	19.24	19.56			12/1/97	3.22
MW-212B	DOT	BEDROCK	11.82	12.03			12/1/97	1.23
MW-212D	DOT	DEEP	11.82	12.06	9.36	TIC	12/1/97	2.46

Notes: ft = Feet

÷

NGVD=National Geodetic Vertical Datum NAD=North American Datum TIC=Top of Inner Casing TPC=Top of Protective Casing NA=Not Available

TABLE 2-2 GROUNDWATER ELEVATION SUMMARY OPERABLE UNIT 2 RAYMARK SUPERFUND SITE STRATFORD, CONNECTICUT PAGE 2 OF 3

PAGE 2 OF 3			TOP OF	TOP OF	DEPTH TO	1	WATER	GROUND
			INNER		GROUNDWATER		LEVEL	WATER
	· .			1	1	1	-	1
			CASING	CASING	BELOW		MEASURE	ELEVATION
			ELEVATION	ELEVATION	MONITORING	MONITORING	MENT	(ft-NGVD
WELL IDENTIFIER	PROPERTY	AQUIFER	(ft-NGVD 29)	(ft-NGVD 29)	POINT (ft.)	POINT	DATE	29)
MW-212S	IDOT	SHALLOW	11.83	12.03			12/1/97	2.42
FCP-1	FERRY CREEK	INTERMEDIATE	NA	439.	2.27	TIC	12/1/97	2.12
FCP-1 Surf. Water	FERRY CREEK	SURFACE WATER		4.39	. 3.05		12/1/97	1.34
FCP-2	FERRY CREEK	INTERMEDIATE	NA	6 43			12/1/97	2.39
FCP-2 Surf. Water	FERRY CREEK	SURFACE WATER		6 43	4.11		12/1/97	2.32
FCP-3	FERRY CREEK	INTERMEDIATE	NA	5.51			12/1/97	2.31
FCP-3 Surf. Water	FERRY CREEK	ISURFACE WATER		5.51		TIC	12/1/97	2.19
MW-213B	MINOR AND BURR	BEDROCK	22.81	23.13	L	TIC	12/1/97	2.53
MW-2135	MINOR AND BURR	SHALLOW	22.78	23.13			12/1/97	2.58
MW-101D	MORGAN FRANCIS	DEEP	10.56	10 71		TIC	12/1/97	2.29
MW-101M	MORGAN FRANCIS		11.21	11.36			12/1/97	2.17
MW-1015	MORGAN FRANCIS	SHALLOW	10.51	10 61			12/1/97	3.83
MW-102D ,	MORGAN FRANCIS		11.80	12.05			12/1/97	- 2.56
MW-102M	MORGAN FRANCIS		11 30	11 73			12/1/97	3.31
MW-1025	MORGAN FRANCIS	SHALLOW	11 40	11.74			12/1/97	4.48
MW-103D	MORGAN FRANCIS	DEEP	15 42	15.59		·	12/1/97	0.29
MW-103M	MORGAN FRANCIS		15.02	15.13		· · · · · · · · · · · · · · · · · · ·	12/1/97	2.29
MW-104D			11 03	11.2			12/1/97	1.96
MW-104M	MORGAN FRANCIS		11.44	11.56			12/1/97	
MW-104S PC-01B	RAYMARK FACILITY	BEDROCK	10.99 18.79	10.99 NA			12/1/97	3.97
PC-01D	RAYMARK FACILITY	IDEEP	18.79	NA	15.25 15.17	TIC	12/1/97 12/1/97	3.54 3.59
PC-01M	RAYMARK FACILITY		18.69	NA	15.17	TIC	12/1/97	3.593.54
PC-01S	RAYMARK FACILITY	SHALLOW	18.81	NA		TIC		
PC-02B	RAYMARK FACILITY	BEDROCK	15.20	NA	· · · · · · · · · · · · · · · · · · ·		12/1/97	3.61 2.87
PC-028	RAYMARK FACILITY	DEEP	15.20	NA			12/1/97	3.22
PC-02D .	RAYMARK FACILITY	INTERMEDIATE	15.10	· NA	11 87		12/1/97	3.22
PC-02S	RAYMARK FACILITY	SHALLOW	15.07	NA		TIC	12/1/97	3.25
PC-028	RAYMARK FACILITY	BEDROCK	22.22	NA		TIC	12/1/97	3.52
PC-03D	RAYMARK FACILITY	DEEP	22.22	NA		TIC	12/1/97	3.59
PC-035	RAYMARK FACILITY	SHALLOW	22.21	NA		TIC	12/1/97	3.59
PC-04B	RAYMARK FACILITY	BEDROCK	13.88	NA			12/1/97	3 45
PC-04D	RAYMARK FACILITY	DEEP .	14 09	NA			12/1/97	3.60
PC-04S	RAYMARK FACILITY	SHALLOW	14.08	NA			12/1/97	3.59
PC-05B	RAYMARK FACILITY	BEDROCK	20.64	NA			12/1/97	3 47
PC-05D	RAYMARK FACILITY	DEEP	20.60	NA			12/1/97	3 60
PC-05M	RAYMARK FACILITY	INTERMEDIATE	20.63	NA			12/1/97	3,65
PC-05S	RAYMARK FACILITY	SHALLOW	20.49	NA			12/1/97	3.79
PC-06B	RAYMARK FACILITY	BEDROCK	17.41	NA			12/1/97	3 50
PC-06D	RAYMARK FACILITY	DEEP	17.52	NA			12/1/97	3.61
PC-06M	RAYMARK FACILITY	INTERMEDIATE	17.48	NA			12/1/97	3 68
PC-06S	RAYMARK FACILITY	SHALLOW	17.43	NA			12/1/97	3 80
PC-07S	RAYMARK FACILITY	SHALLOW	22.60	NA			12/1/97	3.63
PC-08B	RAYMARK FACILITY	IBEDROCK	19.22	NA			12/1/97	6.13
PC-08D	RAYMARK FACILITY	DEEP	19.31	NA			12/1/97	3.33
PC-085	RAYMARK FACILITY	SHALLOW	19.22	NA			12/1/97	3 34
PC-09D .	RAYMARK FACILITY	DEEP	19 41	NA			12/1/97	3.23
PC-09S	RAYMARK FACILITY	SHALLOW	19.49	NA			12/1/97	3.27
PC-10B	RAYMARK FACILITY	BEDROCK	20.73	NA			12/1/97	3.83
PC-10D	RAYMARK FACILITY	DEEP	20.73	NA			12/1/97	4 05
PC-10M	RAYMARK FACILITY	INTERMEDIATE	20.71	NA			12/1/97	4 01
PC-10S	RAYMARK FACILITY	SHALLOW	20.72	NA			12/1/97	4 11
PC-11B	RAYMARK FACILITY	BEDROCK	22.51	NA			12/1/97	3.69
PC-11D	RAYMARK FACILITY	DEEP	22.41	NA			12/1/97	3.50
PC-11M	RAYMARK FACILITY	INTERMEDIATE	22.46	NA			12/1/97	3.57

NGVD=National Geodetic Vertical Datum NAD=North American Datum TIC=Top of Inner Casing TPC=Top of Protective Casing NA=Not Available

Raymark - Ferry Creek, OU2

TABLE 2-2 GROUNDWATER ELEVATION SUMMARY OPERABLE UNIT 2 RAYMARK SUPERFUND SITE STRATFORD, CONNECTICUT PAGE 3 OF 3

PAGE 3 OF 3			TOP OF INNER CASING ELEVATION	TOP OF	DEPTH TO	MONITORING	MENT	GROUND WATER ELEVATION (ft-NGVD
				PROTECTIVE				
				CASING				
				ELEVATION				
PC-11S	RAYMARK FACILITY	BEDROCK	22.43	NA			12/1/97	3.44
PC-12B		DEEP	21 72	NA			12/1/97	3.25
PC-12D	RAYMARK FACILITY	SHALLOW	21 78	NA			12/1/97	3.16
PC-12S			21.72	. NA		· · · · · · · · · · · · · · · · · · ·	12/1/97	3 18
PC-13B	RAYMARK FACILITY	IBEDROCK	19.21	NA			12/1/97	4 34
PC-13D	RAYMARK FACILITY			NA	· · · · · · · · · · · · · · · · · · ·	····	12/1/97	4 31
PC-13M			19 28	NA		•	12/1/97	4 38
PC-13S	RAYMARK FACILITY	SHALLOW'	19.30	NA			12/1/97	4.35
PC-14B	RAYMARK FACILITY	BEDROCK	24.84	NA		• • • • • • • • • • • • • • • • • • • •	12/1/97	4.36
PC-14D	RAYMARK FACILITY	DEEP	24.55	NA	_		12/1/97	3.39
PC-14S	RAYMARK FACILITY	SHALLOW	24.64	NA			12/1/97	3 90
PC-15B	RAYMARK FACILITY	BEDROCK	23.74	NA			12/1/97	3 7 3
PC-15D	RAYMARK FACILITY	DEEP	23.71	NA			12/1/97	3.77
PC-15S	RAYMARK FACILITY	SHALLOW	23.64	NA			12/1/97	4 25
PC-16B	RAYMARK FACILITY	BEDROCK	27 20	NA			12/1/97	4.52
PC-16D	RAYMARK FACILITY	DEEP	27.20	NA			12/1/97	4.42
PC-16M	RAYMARK FACILITY	INTERMEDIATE	27 24	NA			12/1/97	4.44
PC-165	RAYMARK FACILITY	SHALLOW	27.17	NA			12/1/97	4.59
MW-208D	STRAT. SHOP CENTER		23.71	23.95			12/1/97	4 55
MW-208M	STRAT. SHOP. CENTER		23.53	23.73	18 99	TIC	12/1/97	4 54
MW-208S	STRAT. SHOP. CENTER		1 23 75	. 23 95	19 12	TIC	12/1/97	4.63
MW-209B	STRAT. SHOP. CENTER		12 07	12 25			12/1/97	4.27
MW-209D		DEEP	12.01	12 28			12/1/97	4.26
MW-2095	STRAT. SHOP CENTER		12.25	12.62			12/1/97	5.91
MW-210D	STRAT. SHOP CENTER		10.06	10.34	7 66	TIC	12/1/97	2.40
MW-2105	ISTRAT. SHOP CENTER	SHALLOW	10 05	. 10 34	7 69	TIC .	12/1/97	2.36
CRA-1D	SYNTHETIC PROD.	INTERMEDIATE	10 88	NA	NA	NA	NA ·	NA
CRA-1S	SYNTHETIC PROD.	SHALLOW	10.84	NA	NA	NA .	NA	NA
CRA-2D	SYNTHETIC PROD	INTERMEDIATE	10 98	11 32	7 83	TIC	12/1/97	3.15
CRA-2S	SYNTHETIC PROD	SHALLOW	10.98	11 33	· 785	TIC	12/1/97	3.13
CRA-3	SYNTHETIC PROD	SHALLOW	7.43	NA	NA	NA ·	NA	NA
CRA-4D	SYNTHETIC PROD	INTERMEDIATE	8 58	8 88 · .	5 53	TIC	12/1/97	3 05
CRA-4S	ISYNTHETIC PROD	SHALLOW	8 59	8 96	5 54	TIC	12/1/97	3 05
CRA-5D	ISYNTHETIC PROD.	INTERMEDIATE	9 44	9.79	6 46	TIC	12/1/97	2.98
CRA-5S	SYNTHETIC PROD	SHALLOW	9 50	9 78	6 43	TIC	12/1/97	3 07
CRA-6D	SYNTHETIC PROD	INTERMEDIATE	977	10 16	6 91	TIC	12/1/97	2.86
CRA-6S	SYNTHETIC PROD.	SHALLOW	9 97	10.24	7 02	TIC	12/1/97	2.95
CRA-8	SYNTHETIC PROD.	SHALLOW '	12.50	12 98	9.39	TIC	12/1/97	3 1 1
MW-1B	THE DOCK	BEDROCK	16 17	16 62	12.99		12/1/97	3.18
MW-1M	THE DOCK	INTERMEDIATE	16.01	16 36			12/1/97	3.50
MW-1S	THE DOCK	SHALLOW	16 33	16 57	12 01		12/1/97	3.50
WW-2S	THE DOCK	SHALLOW	17 11	17.38			12/1/97	3.51
WW-35	THE DOCK	SHALLOW	16.02	16.36			12/1/97	3.47
MW-4B	THE DOCK	BEDROCK	14.31	14 63			12/1/97	3.36
MW-4M	THE DOCK	INTERMEDIATE	14.31	14.62			12/1/97	3.55
WW-4S	THE DOCK	SHALLOW	14.38	14.02				
airr-40			14 34	14/1 '	10 80	TIC	12/1/97	3.54

Notes: ft = Feet NGVD=National Geodetic Vertical Datum NAD=North American Datum TIC=Top of Inner Casing TPC=Top of Protective Casing NA=Not Available

ς

÷.

2.2.1 Soil Sampling

Soil samples were collected during the advancement of the deepest soil boring at each single or cluster location. At each sample location, soil was extruded from the vibrasonic rig sampler unit into 5-foot long polyethylene bags/sleeves. The sleeve was transferred to a flat work area and VOCs were measured at 0.5 foot intervals by a PID probe inserted into the plastic sleeves. Thirty-one soil samples were collected and sent off for rapid turnaround VOC screening. The target VOCs were: vinyl chloride; 1,1-dichloroethene; 1,1-dichloroethene; 1,2-dichloroethene (total); 1,2-dichloroethane; 1,1,1-trichloroethane; and xylenes (total).

If the field PID readings were greater than 10 ppm in the vicinity of the bedrock, then approximately 20 feet of the bedrock was drilled and a monitoring well was installed. If PID readings were less than 10 ppm, then a deep overburden well was installed just above the bedrock. All soil samples were obtained from the deepest boring; no samples were obtained from the shallow or intermediate well locations. These soil descriptions and PID readings were used as a tool for determining the location and length of the well screen. Samples were generally taken in areas where high PID readings were found.

In addition, samples were collected for grain size analysis, both sieve analysis, and hydration. Samples for total organic carbon analysis were collected from the upgradient boring.

2.2.2 Vibrasonic Drilling

The 8-inch monitoring wells were installed using the vibrasonic drill rig. After drilling, a two-inch schedule 40 PVC well was installed with the appropriate slotted well screen. The well screen slot sizes were 0.006, 0.010, and 0.020 inches. The screen location was based on an analysis of the soil samples collected in the field during advancement of the boring and VOC headspace results. Well screen length was 5- to 25-feet long. All waste

-1-1

derived from the field work was transported to a central field location and drummed or tanked for disposal off site by another contractor.

2.2.3 Groundwater Sampling

Groundwater samples were collected from the newly installed monitoring wells, and other wells in the surrounding area that were identified as useful and pertinent to this investigation. Samples were collected using a low-stress methodology. Samples were analyzed for: VOCs, SVOCs, pesticides/PCBs, metals (lead and copper), sulfate, chloride, total alkalinity, and nitrate/nitrite. In addition, the water level, pH, temperature, specific conductance, dissolved oxygen, salinity, turbidity, and pumping rate in each monitoring well was recorded.

2.3 Piezometer Installation

A field modification was made to include the installation of three piezometers in Ferry Creek. This change was made because, as a result of groundwater sampling, it appears that the Raymark Facility contamination may be discharging into Ferry Creek. In addition, piezometers were installed to measure the creek water level to evaluate tidal impacts. Samples of stream water were initially obtained and screened for VOCs. Subsequent samples were obtained during the groundwater sampling of the monitoring wells. Samples were analyzed for VOCs, SVOCs, pesticides/PCBs, metals, sulfate, chloride, alkalinity, and nitrate/nitrite.

2.4 Topographic Survey

A well location and elevation topographic survey was conducted to locate the monitoring wells and drive points sampled during the field effort and to produce this technical memorandum. The horizontal control was tied into the USGS - National Geodetic Survey 1927 datum. The vertical control was established using the USGS - National Geodetic Survey 1929 vertical datum.

3.0 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

This section summarizes the physical characteristics of the study area and region in which the study area is situated. The surface features and land uses are described in Section 3.1. Discussions of related geology, hydrogeology, surface water hydrology, and meteorology are presented in Sections 3.2 through 3.5, respectively.

3.1 Surface Features and Land Use

The study area is part of the Housatonic River basin, a tidally influenced system. The study area encompasses the groundwater under the Raymark Facility, and the surrounding commercial and residential properties. The study area is typically bordered by residential or commercial properties, highways or streets, or by water bodies such as Ferry Creek or the Housatonic River.

The lower reaches of Ferry Creek and the Housatonic River are used for recreational fishing and boating. The mouth of the Housatonic River is considered to be a recreational fishery and a potential source of human food-chain organisms. Coastal waterways are assumed to support various recreational activities, as well as recreational and commercial fishing. The lower Housatonic River, near the mouth of Ferry Creek, contains important commercial seed beds for oyster cultivation. EPA representatives have observed people crabbing from the Ferry Creek flood control barrier located on Broad Street.

The topography of the study area is relatively flat. Based on a review of USGS topographic maps, the majority of the study area lies at topographic elevations at, or below approximately 10 feet National Geodetic Vertical Datum (NGVD).

The entire study area is located within the 100-year floodplain, as indicated on Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps for Stratford, Connecticut (FEMA, 1992) and as presented in the U.S. Army Corps of Engineers Hydrologic Evaluation of the study area. The 100-year frequency base flood elevation is

10.1 feet NGVD; the 10-year frequency flood elevation is 8.5 feet NGVD (USACE, 1998, Hydrologic Evaluation of Areas of Concern Report)

State- or federally-listed threatened species reported to exist in the vicinity of the study area include the Least Tern, the Atlantic Sturgeon, and occasional transient Bald Eagles and Peregrine Falcons (NOAA, 1998; CTDEP, 1997; USDOI, 1997).

The principal industries within the Stratford community include manufacturing of aircraft, air conditioning, chemicals, plastic, paper, rubber goods, electrical and machine parts, and toys. The Stratford Town Clerk reported the latest (1997) estimate for the population of the Town of Stratford as 47,230 people within the 19.9 square miles (12,736 acres) of the town. This is a decrease from the last census in 1990, when the population was listed as 49,389.

3.2 Regional Geology

This section provides a brief description of the geology of the region, as well as that of the study area. Additional detailed geologic data is being developed by the USGS for inclusion in the future OU2 RI (Groundwater).

3.2.1 Regional Surficial Geology

The Raymark Facility is located within the lower Housatonic River Basin. Surficial geology within the lower Housatonic River Basin has been shaped by glaciation. The two most recent periods of glaciation, which moved to the south and then to the southwest, are responsible for shaping the bedrock morphology (Flint, 1968). During the last deglaciation, the glaciers deposited a thin mantle of till overlying bedrock. The till consists of a non-stratified, non-sorted deposit of rock particles that varies in size from clay to boulder. The thickness of the till varies from O to 200 feet.

In the lower Housatonic River Basin, the median till thickness is 30 feet (Wilson et al., 1974). Till is commonly exposed in areas of relatively high elevation, and is generally covered by sediments of post-till age within the valleys. The most volumetrically important of the post-till sediments is stratified drift. Stratified drift consists of layers of sand and gravel with lesser amounts of silt and clay deposited by glacial meltwaters. Stratified drift covers 16 percent of the area of the lower Housatonic River Basin, and generally occurs as narrow belts in stream valleys and lowlands (Wilson et al., 1974).

Swamp and marsh deposits are present in lowlands and in proximity to the Housatonic River. Swamp and marsh deposits consist of silt, sand, and clay-sized particles interbedded with organic fragments and peat deposits up to 10 feet thick. Swamp and marsh deposits, where present, commonly overlie stratified drift. Due to the practice of filling in lowland areas (see discussion below), fine grained swamp and marsh deposits, including peat, are commonly found underlying fill deposits.

3.2.2 Regional Bedrock Geology

The summary of the bedrock geology presented in this technical memorandum is based on referenced geologic maps and the review of boring logs for 11 borings that were cored into bedrock or were advanced to the top of bedrock in or near portions of the study area. Six of these borings were cored into bedrock to confirm the depth to bedrock, and to provide rock core for evaluation and description; five borings were advanced to the top of bedrock, however coring was not conducted to confirm bedrock depths at these locations. Eight of the eleven borings were advanced during the HNUS Phase I Remedial Investigation (HNUS, 1995). Three additional bedrock borings were advanced by B&RE in September and October 1997. The borings with bedrock information are located only in the southern and northeastern portion of the study area on properties surrounding Ferry Creek.

The study area is located in the Connecticut Valley Synclinorium of Connecticut's Western Uplands, according to the "Bedrock Geological Map of Connecticut" (CT GNHS, 1985). The regional bedrock setting consists of a series of meta-sedimentary and meta-volcanic rocks of the Early and Middle Paleozoic Age, generally foliated, with foliation trending northeast-southwest, in a large syncline. These rocks are mainly schists, gneisses, and granites. The sequence was tightly folded and subjected to progressive regional metamorphism, ranging from chlorite to kyanite grade. A high angle fault is mapped approximately 1 mile to the southeast of the study area, across the Housatonic River, generally trending southwest to northeast (CT GNHS, 1985). The implication of this fault and any related splay faulting to local geology and contaminant transport is not within the scope of work for this technical memorandum.

Bedrock underlying the study area is mapped as the Derby Hill Schist, a mainly medium- to fine-grained, thinly laminated, greenish-gray to medium dark-gray chloritic muscovite schist, which is Lower to Middle Ordovician in age. This rock type is composed mainly of quartz, muscovite, chlorite, and sodium plagioclase, with accessory minerals (Fritts, 1965). The boring logs from investigations by HNUS/B&RE within the study area typically describe the observed rock core as a foliated, quartz-rich, chlorite-mica-schist, which is medium- to coarse-grained, and usually green or gray. In some coring runs, high angle schistosity was observed to be common; weathered vertical fractures were also noted.

3.3 Hydrogeology

The following sections present an overview of the regional and site hydrogeology; a more detailed discussion of the study area-specific hydrogeology will be presented in the OU2 RI. See Figure 3-1 (in Appendix B) to identify the Raymark Facility and the surrounding study area.

One hundred fifty-three monitoring wells located on the Raymark Facility and the surrounding study area were involved in this investigation. Monitoring well locations are shown on Figure 3-1. Sixty-one of these monitoring wells were pre-existing. Thirty-two monitoring wells and three piezometers were installed by B&RE in conjunction with this investigation. Four monitoring wells were installed on the "Dock Property" by AKRF Inc. in 1997. Fifty-three monitoring wells were installed on the Raymark Facility by Foster

Wheeler Corporation in 1997. The location of each of these monitoring wells was surveyed by B&RE and entered into the B&RE database. This survey information and all available well construction details (including the associated consultant) for each monitoring well are presented in Table 2-1.

On December 1, 1997, B&RE personnel measured water levels within the 153 monitoring wells selected for use in this investigation to obtain a synoptic measurement of the groundwater elevations. These monitoring wells included 25 wells screened within bedrock (bedrock wells), 57 wells screened across the water table (shallow overburden wells), 36 wells screened within the deep overburden (deep overburden wells), and 35 wells screened across intermediate levels of the overburden (intermediate overburden wells). Water level elevations were subsequently calculated and are presented in Table 2-2.

3.3.1 Groundwater Classification and Water Supply

Groundwater within and surrounding the study area has been classified as GB (unsuitable for drinking without treatment) by CT DEP. The Town of Stratford public drinking water is supplied primarily by the Bridgeport Hydraulic Company. The source of the public drinking water is Trapp Falls Reservoir in Chilton, Connecticut, located approximately 5 miles north of the study area. There are no known public water supply sources within a 4-mile radius of the Raymark Facility (Roy F. Weston, Inc., 1993). The remainder of the drinking water is supplied by private drinking water wells within Stratford. An estimated 1 to 2 percent of the population within 3 miles of the site may use private groundwater supply wells (Roy F. Weston, Inc., 1993). These locations, however, have been determined to be up-gradient of the Raymark Facility (Hill, 1993).

Raymark - Ferry Creek, OU2

3.3.2 Regional Hydrogeology

Regional hydrogeologic units consist of unconsolidated overburden deposits, including till, stratified outwash, swamp and marsh deposits, and an upper fractured bedrock unit. The nature of these units is presented in Section 3.2. Regional groundwater flow is generally toward the Housatonic River (HNUS 1995). The USGS has been tasked by EPA to prepare a detailed geologic and hydrogeologic evaluation, and the results of their work will be presented in a separate document at a future date.

Groundwater in the vicinity of the Raymark Facility has been divided into two hydrostratigraphic units: the overburden and bedrock aquifers. The overburden aquifer can be further subdivided according to lithological variations within the unconsolidated deposits.

3.3.2.1 Regional Overburden Aquifer

The overburden aquifer consists of the following unconsolidated deposits in the region:

Glacial till, deposited by glacier ice, is variable in thickness, forming a discontinuous mantle over bedrock. The till consists of a non-stratified, poorly sorted mixture of coarse (pebbles/cobbles/boulders) and fine (sand/silt/clay) fractions, with the coarse fraction generally not exceeding 20 percent. The glacial till is usually very dense, and commonly has low to very low hydraulic conductivity. Till often lies directly on the bedrock surface, but is discontinuous and absent in many areas.

Ice-contact stratified drift includes sand, gravel, silt, and clay, frequently poorly sorted with abrupt changes in grain size. These deposits were made in streams and local ephemeral lakes in close relation to melting glacier ice, and often grade into outwash sediments. Ice-contact stratified drift deposits are dense to medium dense, and usually less dense than the till. The stratified drift usually has hydraulic conductivities that range in the moderate to high range, although discontinuous layers of finer grained silts and sandy silts with lower hydraulic conductivities frequently occur throughout the drift.

Glacial outwash deposits are predominant in the stream valleys, and consist of highly stratified sand, silty sand, and gravelly sand. Beds are not persistent, and individual lenses attain thicknesses of tens of feet, and thin out or are truncated over short distances. Outwash units in the vicinity of the study area generally consist primarily of sands with up to 50 percent gravel, grading up-valley (northward). Glacial outwash deposits usually are medium dense, and less dense than the till. Glacial outwash usually has high to moderate hydraulic conductivities, with occasional layers of finer grained silts and sandy silts with lower hydraulic conductivities.

Swamp and marsh deposits are present in lowlands and in proximity to the Housatonic River. Tidal marshes are also present in this area. Swamp and marsh deposits consist of silt, sand, and clay-sized particles interbedded with organic fragments and peat deposits. Due to the practice of filling in lowland areas, fine-grained swamp and marsh deposits, including peat, are commonly found underlying fill deposits. The oldest marshes in the western coastal area of Connecticut (2,000 to 4,000 years old) have peat deposits of approximately 10 feet. The marsh and swamp deposits have a highly variable range of hydraulic conductivities, with peat, sands and predominately organic layers having the high to moderate hydraulic conductivities, and the silts and organic silts having low to very low conductivities.

Fill and Raymark soil-wastes that occur in large areas of lowlands in Stratford were filled (deposits made by human activity) as part of property development, and road and railroad construction activities. Fill frequently included various manufacturing and/or construction debris. In general, fill consists of silty sand, gravel, and top soil, with or without artificial debris intermixed. In densely populated areas, fill frequently underlies lawns, driveways, and streets. Some of the fill previously deposited in Stratford consisted of by-products from the process operations at the Raymark Facility. The by-product fill, otherwise known as Raymark soil-waste, is considered to be a source of hazardous materials in the study

area. The fill and Raymark soil-wastes are estimated to have high to moderate hydraulic conductivities.

Based on the subsurface geology, the overburden aquifer was divided into the stratified drift aquifer and the till aquifer in the water resources investigation conducted by Wilson et al., 1974. On a regional basis, the stratified drift aquifer consists of the "ice-contact stratified drift" and "glacial outwash deposits" described above, and is volumetrically the most important aquifer in terms of water supply. As stated in Section 3.3.1, the overburden aquifer is not reported to be used for drinking water within a 4-mile radius of the Raymark Facility.

Within the lower Housatonic River Basin, the thickness of the stratified drift aquifer varies from about 10 feet in many small valleys to 200 feet within larger valleys. The boundaries of the stratified drift aquifer generally consist of underlying till and/or bedrock and, occasionally, overlying peat deposits, which can locally serve as confining layers. Estimated values for the transmissivity of the stratified drift aquifer within the lower Housatonic River Basin range from 2,700 ft²/day in headwater areas, small valleys, and along the margins of larger valleys to 20,000 ft²/day in parts of the Naugatuck and Housatonic River valleys (Wilson et al. 1974).

The till aquifer reaches a thickness of 200 feet within the lower Housatonic River Basin. The median till thickness in 240 bedrock wells within the lower Housatonic River compiled in a previous study (Wilson et al. 1974), however, was only 30 feet. The absence of stratification and sorting gives the till aquifer its characteristic low hydraulic conductivity and limits the use of this aquifer as a water source.

The primary source of recharge to the overburden aquifer is through the infiltration of precipitation. Between 1931 and 1960, annual precipitation on the lower Housatonic River Basin ranged from 33 inches to 64 inches and averaged 47 inches (U.S. Weather Bureau, 1958 and 1964). Approximately half of this precipitation returns to the atmosphere by evapotranspiration (Wilson et al. 1974). The remainder is divided between

Raymark - Ferry Creek, OU2

surface water runoff and infiltration. Surface infiltration is impeded throughout much of the study area because much of the area is paved, or under roof, with surface flow diverted through storm drains. Infiltration to the overburden aquifer on the former Raymark Facility has been reduced and/or eliminated by an impermeable cap installed on site during 1997.

3.3.2.2 Regional Bedrock Aquifer

The bedrock characteristics of the regional bedrock aquifer are discussed in Section 3.2. Two hundred ninety-four bedrock wells located within the lower Housatonic River Basin were studied by Wilson et al. (1974) to determine the range in yield of bedrock wells within the basin. Yields varied from less than 1 gallon per minute (gpm) to more than 20 gpm. The median yield in bedrock wells directly overlain by stratified drift was 7-gpm. Bedrock wells overlain by till, which has a lower hydraulic conductivity than stratified drift, had a median yield of only 5.5 gpm. This suggests a hydraulic connection exists between the overburden and bedrock within the basin, and that the hydraulic conductivity of the material overlying the bedrock has an effect on the amount of water available to a given bedrock well.

Primary porosity was largely removed from the sedimentary protolith of the bedrock of the lower Housatonic River Basin during lithification and metamorphosis. Groundwater flow in the bedrock, therefore, generally occurs within fractures (secondary porosity). The magnitude and direction of groundwater flow within bedrock depends on the size, spacing, connection, and orientation of fractures and/or faults within the bedrock. Specific information concerning the bedrock aquifer, such as the configuration of the potentiometric surface, aquifer thickness, flow directions, hydraulic gradients, hydraulic conductivity, and flow rates was not available at the time this technical memorandum was written. See Section 3.4.2 for specific hydrogeological information concerning the Raymark Facility itself.

3.3.3 Study Area Hydrogeology

This section presents the study area hydrogeology based on site-specific information collected by B&RE, Foster Wheeler Corporation, and other consultants. As in the regional discussion, groundwater underneath the Raymark Facility has been divided into two hydrostratigraphic units: the overburden and bedrock aquifers. The hydrogeology of the study area is complex because of the wide variety of unconsolidated units, the presence of fractured bedrock, and the local influence of surface water bodies, including the Housatonic River and Ferry Creek. Adding to the complexity is the fact that the Housatonic River and lower Ferry Creek are influenced by tidal fluctuations, in addition to the normal fluctuations that occur in streams and rivers. The presence of peat and silt deposits throughout the overburden adds further complexity to the interpretation of the hydrogeology. The EPA has tasked the USGS to evaluate, interpret, and provide a report on the geology and hydrogeology provides only a summary of the information, and preliminary interpretations for the purpose of identifying the needs, if any, for further subsurface investigation, sampling, and analysis.

3.3.3.1 Study Area Overburden Aquifer

The study area is located in the Stratford outwash plain, on the western Housatonic River valley floor. The surficial deposits immediately underlying the study area are mapped as Stratford outwash sediments, artificial fill, i.e., fill and Raymark soil-wastes as defined in this memorandum, and swamp/marsh deposits (Flint, 1968).

Boring logs and well construction logs for these locations have been included in this report in Appendix A.

Borings logs from this, and previous investigations, indicate that the geology and unconsolidated deposits are consistent with that described for the region, and that the overburden immediately beneath the Raymark Facility consists of Raymark soil-waste fill

Raymark - Ferry Creek, OU2

(composed primarily of asbestos fill and construction debris), ice-contact stratified drift, glacial till, and peat and swamp deposits (BCA, 1988; Raymark, 1991).

Stratified drift deposits consist of fine to coarse-grained sand with fine to medium-grained gravel with traces of clay. The thickness of the overburden materials ranges from 20 to 30 feet in the central portion of the Raymark Facility to greater than 90 feet in the northwest corner of the property. Till reaches an estimated thickness of 26 feet in the northwest corner of the property (BCA, 1988; Raymark, 1991). Additionally, a layer of peat up to 10 feet thick has been reported along the eastern portion of the Raymark Facility (Roy F. Weston 1993). No continuous gravel or clay layers have been reported beneath the Raymark Facility, but silt, clay, and silty peat layers have been observed within the study area. These may locally create confined conditions within the overburden aquifer.

Among the borings completed in conjunction with this study, significant silt/clay layers were intersected from 38 to 42 feet below ground surface (bgs) in soil boring 208 (associated with monitoring well MW-208D), and from 29 to 44 feet bgs in soil boring 211 (associated with MW-211B). Large peat deposits were observed from 10 to 15 feet bgs in soil boring 209 (associated with MW-209B).

The saturated thickness of the overburden aquifer varies from about 0 feet in the two areas shown on Figure 3-2 (Appendix B), to about 133 feet at MW-206B.

On December 1, 1997, water levels were measured in 57 shallow overburden wells to obtain a synoptic measurement of the water level conditions. These measurements were used to create Figure 3-2 (Appendix B), which contours the elevation of the water table throughout the study area. Two areas are shown on Figure 3-2 (Appendix B) where the base of the overburden, i.e., bedrock interface with the overburden, lies above the water table, and the overburden is unsaturated. One such area bounds the contours to the northwest. The other area of unsaturated overburden is the result of an apparent bedrock knob that occurs in the eastern portion of the site.

Figure 3-2 (Appendix B) indicates that groundwater in the shallow overburden generally flows to the east-southeast, with a trough in the water table centered around monitoring wells MW-212S, MW-215S, and MW-217S in the southern portion of the site. The trough is roughly coincidental with the location of the Ferry Creek drainage area, and the creek may be a local groundwater discharge area, thereby causing the trough. Figure 3-2 (Appendix B) suggests that a groundwater divide may exist to the west of MW-209S.

In general, flow in the shallow overburden is toward the Housatonic River. The extent of the river's influence on water levels cannot be specified, however, due to a lack of water level data directly adjacent to the Housatonic River. As a part of this investigation, B&RE installed three piezometers in Ferry Creek (FCP-1, FCP-2, and FCP-3). During the December 1, 1997 water level round, water levels were taken within these piezometers and in the surface water at the base of the piezometers (Table 2-2); the water level measurements show groundwater was discharging as base flow to Ferry Creek on that day.

Equipotential lines in Figure 3-2 (Appendix B) are more widely spaced in the northeast portions of the site than in the southwest portions of the site. Correspondingly, values for the hydraulic gradient in the northeast portions of the site range from 0.003 to 0.001, while the hydraulic gradient in the southwest portions of the site ranges from 0.004 to 0.013. A simple analysis utilizing Darcy's Law indicates that, for a given specific discharge, hydraulic gradient increases as a result of decreasing hydraulic conductivity and/or decreasing aquifer thickness (Domenico and Schwartz, 1990). This suggests that a zone of lower hydraulic conductivity and/or decreased saturated thickness may occur in the southwest portion of the study area. This is also the area where groundwater may be discharging to Ferry Creek, which would also influence the hydraulic gradient.

A more detailed analysis of the geometry of the overburden aquifer was not within the scope of this technical memorandum. This issue will be examined further in the RI, once the geological summary being completed by the USGS can be juxtaposed with these hydrogeological observations. B&RE's brief examination of geological data noted that the zone of highest hydraulic gradient (0.013) occurs in the southern portion of the study area, in the vicinity of monitoring wells MW-101, MW-102, MW-111, MW-104, MW-208, MW-209S, and MW-210S. The high gradients may be due to the presence of overburden deposits with low hydraulic conductivities, such as the silty peat layer that occurred from 10 to 15 feet bgs in soil boring 209. MW-209S is screened from 5 to 13 feet bgs, within the silty peat layer.

Water levels were measured in 36 deep overburden wells on December 1, 1997. Deep overburden wells include those wells screened in the lower third of the overburden at a given location. These measurements were used to create Figure 3-3 (Appendix B), which contours the elevation of the potentiometric surface for the deep overburden throughout the study area. As in the previous figure, two areas of unsaturated overburden occur on site. One such area bounds the contours to the northwest. The other area of unsaturated overburden is the result of a bedrock knob that occurs in the eastern portion of the site. Groundwater flow in the deep overburden is generally similar to that of the shallow overburden. Groundwater generally flows toward the east-southeast or toward the Housatonic River. The horizontal hydraulic gradient ranges from 0.003 to 0.001 in the northeast portion of the study area and from 0.007 to 0.003 in the southwest portion of the study area. Again, this variation in hydraulic gradient is likely due to variations in hydraulic conductivity and/or aquifer thickness laterally across the study area.

Groundwater elevations within shallow overburden and deep overburden monitoring wells at the same well cluster location were compared to estimate groundwater flow conditions and roughly estimate the vertical hydraulic gradients across the study area. The Housatonic River and Ferry Creek are apparent groundwater discharge areas for the region and local area, and as such, water level differences between wells at different depths within the same cluster are difficult to interpret with respect to vertical hydraulic gradients; exact measurements over a period of time are required to accurately assess the vertical gradients.

Raymark - Ferry Creek, OU2

Table 2-2 presents the groundwater elevation data taken on the December 1, 1997 synoptic round of measurement. In general, the vertical gradients were slightly downward, with total head differences between the shallow and deep overburden wells in a cluster being less than 0.10 feet, and with many less than 0.05 feet. This small difference in water level measured may fall within the margin of error for the measurement methods used. The only significant gradients measured were in the southwest portions of the study area, west of Ferry Creek at well clusters MW-101, MW-102, MW-104, and MW-109 where the differences in water levels between the shallow and deep overburden wells were on the order of 1.5 to 2.0 feet. Measurements recorded in the cluster at MW-110 produced the highest downward gradient, which was over 4 feet, however, this may have been an erroneous measurement, and it was not included as a data point for this evaluation. Further readings are required to determine the water level status in this cluster.

Slightly upward hydraulic gradients were detected in well clusters MW-207, MW-210, MW-212, PC-04, and PC-11; however, the differences in water levels between the shallow and deep wells in the clusters was less than 0.10 feet, and as stated above, may be within the margin of error of the measurement technique.

Upward vertical gradients were also measured between the shallow groundwater in the sediments beneath Ferry Creek, and the surface water levels, as indicated in the data for piezometers FCP-1, FCP-2, and FCP-3 in Table 2-2. The vertical upward gradient between the shallow aquifer and Ferry Creek is consistent with the interpretation that Ferry Creek is a local discharge area for groundwater, as indicated by the water table contours and the trough in those contours in the Ferry Creek drainage area, as shown on Figure 3-2 (Appendix B).

A review of previous studies in the study area shows that little data exist concerning the characteristics of the overburden (or bedrock) aquifer. Parameters such as transmissivity, storativity, and specific yield are not well understood across the study area. Hydraulic conductivity can be roughly approximated using boring log descriptions or applying Hazen's

method to appropriate grain-size analyses (Freeze and Cherry, 1979). Assuming the overburden is homogeneous with an effective porosity of 0.2 and a horizontal hydraulic conductivity of 10⁻⁴ m/s (typical for mixed sands and gravels such as stratified drift deposits), groundwater flow velocity varies from 0.14 to 1.85 feet per day within the shallow overburden and varies from 0.14 to 1.00 feet per day in the deep overburden.

3.3.3.2 Bedrock Aquifer

Bedrock underlying the study area is mapped as the Derby Hill Schist, a mainly medium- to fine-grained, thinly laminated, greenish-gray to medium dark-gray chloritic muscovite schist, which is Lower to Middle Ordovician in age. This rock type is composed mainly of quartz, muscovite, chlorite, and sodium plagioclase, with accessory minerals (Fritts, 1965). The boring logs from investigations by HNUS/B&RE within the study area typically describe the observed rock core as a foliated, quartz-rich, chlorite-mica-schist, which is medium- to coarse-grained, and usually green or gray. In some coring runs, high angle schistosity was observed to be common; weathered vertical fractures were also noted.

,-

The elevation of the top of bedrock varies from a high of approximately 17.7 feet NGVD (13.5 feet bgs) at MW-216B, located in the northwest portion of the study area, to a low of approximately -129.4 feet NGVD (149.0 feet bgs) at MW-102D, located in the central portion of the study area. A "Bedrock Elevations" plan prepared by the Army Corps of Engineers TERC contractor, Foster Wheeler (no date) for the Raymark Facility shows that the bedrock surface varies significantly over short distances, and contains deep depressions and troughs. For example, several of the bedrock depressions and troughs beneath the Raymark facility are 30- to 40-feet deep when compared to the surrounding bedrock surfaces. The widely varying elevations in the bedrock surface make interpretation of the groundwater flow in the bedrock very difficult. Although there are numerous bedrock borings beneath the Raymark Facility that allow a detailed bedrock surface to be mapped, there is not enough data beyond the facility to accurately delineate the details of the bedrock surface.

The top of bedrock is overlain by overburden consisting of till in some areas, and by stratified drift in others. The overlying material is significant because the decreased hydraulic conductivity of the till deposits limit the hydraulic connection between the overburden and bedrock where till is present. EPA has tasked the USGS to prepare a representation of bedrock surface topography, and the lateral extent of till; these items are critical for interpreting the water level and groundwater flow characteristics beneath the study area. Geological constraints, such as depth to bedrock, presence/absence of till, etc., may shed light on the pattern of groundwater discharge into/from the bedrock into/from the overburden.

On December 1, 1997 a synoptic measurement of water levels was made in monitoring wells in the study area, including 25 bedrock wells. As stated above, detailed bedrock surface topography and additional bedrock monitoring wells are needed to accurately interpret the groundwater flow conditions within the bedrock; however, Figure 3-4 presents a preliminary interpretation of the potentiometric surface within the bedrock aquifer throughout the study area. Figure 3-4 (Appendix B) indicates that groundwater in the bedrock generally flows to the east-southeast, although there is a trough in the potentiometric surface centered around monitoring well MW-212B in the southern portion of the site. The trough likely indicates the presence of a transmissive zone within the bedrock aquifer, such as along a fault and/or fracture zone, which may serve as a conduit for the flow of contaminants within the bedrock. There are no significant groundwater divides indicated by Figure 3-4 (Appendix B), although there are ridges in the potentiometric surface of limited extent centered around monitoring well PC-15B, and around PC-03B and PC-01B.

Although less pronounced than in the overburden aquifer, the horizontal hydraulic gradient within the bedrock aquifer appears to be higher in the southwest portion of the site than in the northeast portion of the site. The hydraulic gradient varies from 0.003 to 0.008 across the southwest portion of the site and from 0.002 to 0.008 across the northeast portion of the site flux is constant throughout the site, this indicates the

Raymark - Ferry Creek, OU2

bedrock aquifer may have a slightly higher transmissivity in the northeast portion of the site than in the southwest portion.

Groundwater elevations within deep or intermediate overburden and bedrock monitoring wells at the same well cluster location were compared to determine the status of vertical hydraulic gradients between the overburden and the bedrock across the study area. The differences in water level measurements between the deep or intermediate overburden aquifers ranged from 0.01 feet to 2.8 feet, with most differences under 0.20 feet; 8 of the 23 clusters were under 0.10, which may be within the margin of error for the measurement methods that were used.

Vertical gradients were both upward and downward between the bedrock and the overburden aquifers, with 9 of the 23 clusters showing upward gradients, 8 of these had slightly higher water levels in the bedrock wells, and 1 (PC-08) showed a 2.8 foot higher water level in the bedrock well of the cluster. The clusters showing the upward hydraulic gradients are mainly beneath the boundaries of the former Raymark Facility.

Downward hydraulic gradients were measured throughout the area, with water level differences being less than 0.20 feet between the overburden and bedrock wells in a cluster, except for the MW-212 cluster, which had a 1.23 foot difference between the overburden and bedrock wells.

Hydraulic conductivity estimations for bedrock are difficult and open to numerous interpretations because bedrock conductivities occur through the fractures and joints in the rock, and not through a porous medium, such as sand. A discussion of the bedrock hydraulic conductivity will be presented in the RI.

3.3.4 Surface Water Hydrology

The study area is located in the Housatonic Main Stem Regional Drainage Basin. Long Island Sound receives the area's entire drainage, via the Housatonic River. Major surface

water features that lie wholly or partially within the study area include Ferry Creek, portions of the Housatonic River, and Selby Pond.

Ferry Creek, the Housatonic River, and Selby Pond are all tidally influenced. The Housatonic River is tidally influenced 11 miles upstream of the mouth of Ferry Creek, at the Derby Dam in Derby, Connecticut (Weston, 1993). Although tide gates are present at the Broad Street crossing of Ferry Creek, these gates are ineffective at preventing backwater from high tides from passing upstream into Ferry Creek, therefore, Ferry Creek is tidally influenced in the study area (USACE, 1998). Selby Pond is located approximately 550 feet south of Ferry Creek, and is assumed to exchange tidal flow with Ferry Creek through an open drainage channel that connects to a 12-inch internal diameter reinforced concrete pipe and tidal creek channel, which then connects with Ferry Creek, a tributary of the Housatonic River (HNUS, 1997a).

The Housatonic River is listed as Class SC/SB water, Coastal Marine Surface Waters, with an average discharge of 3,400 cubic feet per second at its mouth (Weston, 1993).

The study area is urban, and more than 60 percent covered with pavement or under roof, and local surface runoff is diverted to storm drains. The Raymark Facility was remediated with an impermeable cap, and surface runoff is diverted into storm drains.

3.4 METEOROLOGY

The local NOAA Climatological Station is located at the Bridgeport - Sikorsky Airport, approximately 2 miles from the study area. For more than 30 years, data from this station have been used to describe the climate in the area. A summary of these data is provided below.

The Town of Stratford, Fairfield County, Connecticut is located in a temperate-humid climate, characterized by highly changeable weather and large daily and annual temperature variations that are influenced by Long Island Sound and the Atlantic Ocean.

There are monthly, seasonal, and annual variations in temperature and wind, as well as precipitation, which is in the form of both rain and snow.

July is the warmest month, with an average temperature of 73.7 degrees F. Average wind speed and direction for the warmest months is 10.2 miles per hour (mph) to the southwest. The coldest month is January, with an average temperature of 28.9 degrees F. Average wind direction and speed for the colder portion of the year is 13.3 mph to the northwest. Normal annual precipitation for the area is 41.66 inches of rain, with a regular distribution throughout the year. Snow fall typically occurs between November and April, with a mean of 25 inches per year (NOAA, 1993).

4.0 NATURE AND EXTENT OF CONTAMINATION

This section details the type and existence of groundwater contamination under and downgradient of the Raymark Facility. Discussion focuses on the nature and extent of contamination of volatile organic compounds in the groundwater.

4.1 Nature and Extent of Groundwater Contamination

The nature and extent of groundwater contamination at the former Raymark Facility and in groundwater surrounding the facility are based on both field screening data and CLP data gathered from one round of groundwater sampling conducted in 1997. The field screening was conducted during August-September and groundwater sampling for CLP analysis was conducted in November-December. The field screening data were collected during the advancement of the direct push well points. These direct push well points were advanced at the site to assist in locating permanent groundwater monitoring wells. Therefore, the direct pushwell data are limited to VOCs and dissolved metals.

A correlation of the field screening and CLP VOC data was conducted. The results of this comparison indicated that the correlation coefficients were above 0.98. The comparison memo is presented in Appendix C. Based on the good correlation between the results of the screening and the CLP VOC analyses of groundwater samples, the field screening results were used to determine the extent of the contamination plume.

During the CLP analysis, many of the samples were diluted due to high concentrations of one or more contaminants. This dilution resulted in elevated quantification limits. For the purpose of this technical memorandum, an elevated quantification limit is assumed to be a VOC non-detected result above 10 ug/l; many quantification limits were as high as 15,000 ug/l (PC-02B for tetrachloroethene). In order to not skew the concentrations of contaminants upward, all non-detected results at quantitation limits above 10 ug/l were removed from the database.

Non-detected sample results that have reported limits of 10 and 5 ug/l were included in the database. A value equal to one half the quantitation limit, 5.0 and 2.5 ug/l, respectively, was used for non-detected compounds.

The high quantitation limits for non-detected VOCs arise the following problems: First, the range of contaminant concentrations indicated by the plume maps (to be presented in the following sections) probably represents minimum values. Elevated quantitation limit samples are typically at or adjacent to source areas. Excluding sample data non-detected results with elevated quantitation limits underestimates the range of contaminant concentrations because the plume map does not include all the VOCs present. Second, the maximum concentrations of contaminants of interest may not be represented on the plume maps.

The lateral and downgradient extent of the plume may be smaller than these data indicate, because the contaminant non-detected concentrations of 10 and 5 ug/l were set at 5 and 2.5 ug/l, respectively, resulting in a larger plume.

The results of these data analysis are presented below by contaminant.

4.1.1 Volatile Organic Compounds

The nature and extent of VOCs detected in groundwater during the 1997 sampling event are presented in the following subsections. The extent of contamination is based on the distribution of the following site-related contaminants:

• Tetrachloroethene (PCE)

Trichloroethene (TCE)

1-1-1 Trichloroethane (TCA)

- Vinyl chloride
- Toluene

This list of contaminants was selected based on a review of the Raymark Facility analytical results. This technical memorandum only evaluates VOCs as the indicator of the groundwater plume. Other contaminants will be discussed in the RI report.

4.1.1.1 Tetrachloroethene (PCE)

Tetrachloroethene was reported as positive results in 40 out of the 331 groundwater samples analyzed. Almost half of the non-detected results for PCE (140 samples) are greater than 10 ug/l due to analytical limitations (high dilutions) caused by high concentrations of other VOCs. Data usability of the non-detected results is limited to quantitation limits below or equal to 10 ug/l (151 samples). Therefore, only 57.7 percent of the samples analyzed provided usable results.

The limited number of usable data points impacts the ability of this sampling event to fully characterize the nature and extent of PCE. Elevated PCE quantitation limits occurred at locations containing high concentrations of other VOCs, within the center of a contaminant plume, and/or at suspected source areas.

PCE concentrations in groundwater samples collected from the surficial aquifer ranged from 57J ug/l (DP8-1A-2934) to 0.8J ug/l (MW-112B) and concentrations in the upper bedrock ranged from 88J (PC-16B) to 1J ug/l (MW-203D). Tetrachloroethene concentrations are presented in Appendix C. The Connecticut Ground Water Protection Criteria of 5.0 ug/l, (Reference) was exceeded in 14 of the samples and 5 samples have PCE concentrations equal to the Groundwater Protection Criterion of 5.0 ug/l.

4.1.1.2 Trichloroethene (TCE)

Trichlorethene was reported as positive results in 159 out of the 331 groundwater samples analyzed. Most of the non-detected results for TCE (100 samples) are greater than 10 ug/l due to analytical limitations (high dilutions) caused by high concentrations of other VOCs. Data usability of the non-detected results is limited to quantitation limits

below or equal to 10 ug/l (72 samples). Therefore, 78.2 percent of the samples analyzed provided usable results for TCE.

The limited number of usable data points impacts the ability of this sampling event to fully characterize the nature and extent of TCE. Elevated TCE quantitation limits typically occurred at locations containing high concentrations of other VOCs within the center of a contaminant plume and/or at suspected source areas.

TCE concentrations in groundwater samples collected from the surficial aquifer ranged from 7,700J ug/l (PC-14D) to 3:0J ug/l (MW-217D) and concentrations in the upper bedrock ranged from 3,200 ug/l, (PC-12B) to 7.0J ug/l, (MW-1B). Trichloroethene concentrations are presented in Appendix C. The Connecticut Groundwater Protection Criterion of 5.0 ug/l, (Reference) was exceeded in 136 of the samples and 2 samples have TCE concentrations equal to the Groundwater Protection Criterion of 5.0 ug/l.

4.1.1.3 1-1-1 Trichloroethane (TCA)

1,1,1-Trichloroethane was reported as positive results in 168 out of the 331 groundwater samples analyzed. Forty-five of the non-detected results for TCA are greater than 10 ug/l due to analytical limitations (high dilutions) caused by high concentrations of other VOCs. Data usability of the non-detected results is limited to quantitation limits below or equal to 10 ug/l (118 samples). Therefore, 86.4 percent of the samples tested provided usable results.

The limited number of usable data points impacts the ability of this sampling event to fully characterize the nature and extent of TCA. Elevated TCA quantitation limits typically occurred at locations containing high concentrations of other VOCs, within the center of a contaminant plume, and/or at suspected source areas.

TCA concentrations in groundwater samples collected from the surficial aquifer ranged from 80,000 ug/l (PC-02D) to 0.7J ug/l, (MW-102M) and concentrations in the upper

DRAFT

bedrock ranged from 185,000 ug/l (PC-02B) to 1J ug/l, (PC-14B). Concentrations of 1-1-1 Trichloroethane are presented in Appendix C. The Connecticut Ground Water Protection Criterion of 200 ug/l, (Reference) was exceeded in 98 of the samples and 2 samples have concentrations equal to the Groundwater Protection Criterion of 200 ug/l.

4.1.1.4 Vinyl Chloride

Vinyl chloride was reported as positive results in 84 out of the 331 groundwater samples analyzed. Almost half of the non-detected results for vinyl chloride (120 samples) are greater than 10 ug/l due to analytical limitations (high dilutions) caused by high concentrations of other VOCs. Data usability of the non-detected results is limited to quantitation limits below or equal to 10 ug/l (127 samples). Therefore, 63.7 percent of the samples analyzed provided usable results.

The limited number of usable data points impacts the ability of this sampling event to fully characterize the nature and extent of the contaminants. Elevated vinyl chloride quantitation limits typically occurred at locations containing high concentrations of other VOCs, within the center of a contaminant plume, and/or at suspected source areas.

Vinyl chloride concentrations in groundwater samples collected from the surficial aquifer ranged from 680 ug/l (PC-14S) to 0.8J ug/l (MW-104M) and concentrations in the upper bedrock ranged from 97 ug/l ((PC-12B) to 1J ug/l (PC-03B). Vinyl chloride concentrations are presented in Appendix C. The Connecticut Groundwater Protection Criterion of 1.0 ug/l, (Reference) was exceeded in 79 of the samples and 4 samples have concentrations equal to the Groundwater Protection Criterion of 1.0 ug/l.

4.1.1.5 Toluene

Toluene results from three samples were rejected during data validation. Toluene was reported as positive results in 50 out of the 328 remainder groundwater samples analyzed. Almost half of the non-detected results for toluene (133 samples) are greater than 10 ug/l

due to analytical limitations (high dilutions) caused by high concentrations of other VOCs. Data usability of the non-detected results is limited to quantitation limits below or equal to 10 ug/l (145 samples). Therefore, 59.4 percent of the samples tested provided usable results.

The limited number of usable data points impacts the ability of this sampling event to fully characterize the nature and extent of the contaminants. Elevated toluene quantitation limits typically occurred at locations that contained high concentrations of other VOCs, within the center of a contaminant plume, and/or at suspected source areas.

Toluene concentrations in groundwater samples collected from the surficial aquifer ranged from 170,000 ug/l (PC-04S) to 1.1 ug/l, (AA-DPA3-2-2025) and concentrations in the upper bedrock ranged from 6J ug/l (MW-4B) to 3J ug/l, (PC-14B). Toluene concentrations are presented in Appendix C. The Connecticut Ground Water Protection Criterion of 1,000 ug/l, (Reference) was exceeded in seven of the samples.

4.1.1.6 Total VOCs

The extent of the groundwater contamination was estimated by using the total concentration of VOCs detected at each sampling location. These data include both the CLP and field screening data. This approach was used to help provide a more complete picture of the plume size and orientation given the limitations in the data caused by the detection limits. Analyzing the available data, it was determined that no single VOC was dominant throughout the study area. Most of the VOCs within the study area were also identified on the Raymark Facility.

The groundwater total VOC plume evaluation consists of preparing three horizontal slices. Slice No. 1 was constructed at elevation -20 NGVD, (1929), Slice No. 2 was constructed at elevation -60 NGVD, (1929), and Slice No. 3 was constructed at elevation -100 NGVD, (1929). The slices have been constructed in this manner until the surficial and bedrock geology sections are completed by the USGS. A limitation in selecting the location of the slices based on elevation is that each slice contains data from both the overburden and bedrock aquifers. This is due to the high amount of bedrock relief, i.e. deep valley and shallow bedrock. This mixing of overburden and bedrock data points has to be kept in mind during the evaluation of the plume maps presented in this section. When the geology section for the RI report is completed, the plume maps will be updated using selected hydrostragraphic units.

Slice No. 1 (Elev. -20 ft)

The total VOC concentration plume for Slice No. 1 is presented on Figure 4-1 (Appendix B). Slice No. 1 consists mostly of overburden data points. The areas containing bedrock data points include the northeast boundary of the Raymark Facility and an area of elevated bedrock along Willow Avenue.

A review of Figure 4-1 (Appendix B) indicates that there are three total VOCs hot spots within the plume. The northern-most hot spot is located in the vicinity of the toluene spill (toluene concentration of 170,000 ug/l in monitoring well PC-04S) located in the northeast portion of the Raymark Facility. It should be mentioned here that the highest concentration represented graphically in Figure 4-1 (Appendix B) is much less that the reported concentration at PC-04S. This is because the elevation of the horizontal plume slice is below the elevation of the monitoring well PC-04S.

A second hot spot is located within the Raymark Facility property at its southwest corner. This hot spot is believed to be associated with lagoons 1, 2, and 3 or other activities at this portion of the site. Concentrations of total VOCs are lower compared to the northern plume. This may be related to the type of site activities and or the time when these activities occurred.

The third hot spot is located south of the Raymark Facility centered south of Interstate 95 in the vicinity of the intersection of Ferry Boulevard and Homestead Avenue. This hot spot is also believed to be associated, in part, with the Raymark Facility because the north

Raymark - Ferry Creek, OU2

trailing edge extends onto the Raymark Facility. However, it is also possible that some of the contaminants detected in this hot spot may be associated with other sources.

Slice No. 1 was also compared to the water table map presented on Figure 3-2 (Appendix B). A comparison of these figures indicates that in general the shape of the plume and the hot spots is consistent with the suspected source areas and the general groundwater flow directions toward Ferry Creek. There are some areas that are anomalous, such as the western edge of the total VOC plume at the Stratford Shopping Center. This portion of the plume is cross gradient from the Raymark source area. The northern edge of the plume extends beyond the plume area expected based on the interpreted groundwater flow directions. The northwest edge of the plume extends upgradient and off the Raymark Facility.

Slice No. 2 (Elev. - 60 ft.)

The total VOC concentration plume for Slice No. 2 is presented on Figure 4-2 (Appendix B). Slice No. 2 consists mostly of bedrock data points. The areas containing overburden data points include the southern end of the plume near the intersection of Ferry Boulevard and Ferry Creek and the northern boundary of the Raymark Facility.

A review of Figure 4-2 (Appendix B) indicates that the plume area is somewhat smaller than the Slice No. 1 plume and that an elongated hot spot is located in the vicinity of the intersection of Ferry Boulevard and Interstate 95., This elongated hot spot is orientated roughly along a northeast to southwest line.

Slice No. 2 indicates a more diffuse plume compared to Slice No. 1 and extends further into the Ferry Creek area south of Ferry Boulevard. This plume appears to be somewhat larger at the 5,000 ug/l isoconcentration and a lower maximum concentration compared to Slice No. 1. This larger apparent area of 5,000 ug/l may be due to this slice being deeper in the aquifer system and therefore farther from the source areas. The farther from the source area, the greater the dilution of the dissolved contaminants. This interpretation of

the plume will have to be refined when the bedrock and overburden geology section for the RI has been completed.

Slice No. 2 was also compared to the deep overburden aquifer groundwater map presented on Figure 3-3 (Appendix B). A comparison of these figures indicates that in general the shape of the plume and the hot spot is consistent with the suspected source areas and the groundwater flow directions toward Ferry Creek. There are some areas that are anomalous, such as the western edge of the plume at the Stratford Shopping Center. This portion of the plume is cross gradient from the Raymark source area. The northern edge of the plume extends beyond the expected plume area based on the interpreted groundwater flow directions. The northwest edge of the plume extends upgradient and off the Raymark Facility.

Slice No. 3 (Elev. -100 ft)

The total VOC concentration plume for Slice No. 3 is presented on Figure 4-3 (Appendix B). Slice No. 3 consists mostly of bedrock data points. The areas containing overburden data points are limited to the southern end of the plume near the intersection of Ferry Boulevard and Ferry Creek.

A review of this figure indicates a large hot spot located in the vicinity of Lagoon No. 4. This hot spot extends west to the edge of the Raymark Facility and south where it approaches Interstate 95. The plume extends south of Interstate 95 and toward the intersection of Ferry Creek Boulevard and Ferry Creek.

A review of bedrock groundwater map, Figure 3-4 (Appendix B), indicates that the plume does in general follow the groundwater flow direction. One exception is the contaminants detected at the Stratford Shopping Center located west and cross gradient.

A comparison of the three slices indicates that, in general, the plumes' size decrease the deeper the plume. This interpretation should be used with caution because there are fewer

Raymark - Ferry Creek, OU2

deep data points. This decrease in deep data points could play a role in the apparent decrease in the plume size with depth. This is especially true when it is realized that most of the bedrock data is limited to the upper portion of the bedrock.

4.1.2 Other Groundwater Contaminants

The extent of other groundwater contaminants, semi-volatile organic compounds, pesticides/PCBs, and metals will be discussed in the RI. This technical memorandum only evaluates total VOCs because these contaminants represent the largest database; VOCs are easily screened in the field and were used to determine the location of permanent groundwater monitoring wells. The groundwater analytical results for other contaminants are presented in Appendix C.

CONCLUSIONS AND RECOMMENDATIONS

This section presents the conclusions and recommendations for additional work. These conclusions and recommendations may be revised when the geology section has been completed by the USGS.

5.1 Conclusions

5.0

An evaluation of the overburden and bedrock geology is being prepared by the USGS for the RI. When this evaluation and presentation of the site-specific geologic conditions are completed, a more complete understanding of the nature and extent of the contaminants can be prepared. Using the geologic information, hydrostratigraphic units can be assigned and the groundwater flow system can be better evaluated and compared to the contaminant distribution.

Because the complete evaluation of the geologic conditions of the site is not yet available, the VOC data have been analyzed using a general approach, i.e. by evaluating horizontal slices through the site. This approach resulted in including chemical data from both the bedrock and overburden, which provides a general understanding of the nature and extent of the contaminants. The nature and extent of the contaminants will be revised based on the geologic data when those data are finally presented.

The groundwater conclusions that can be reached from currently available data are as follows:

- Groundwater, in general, flows south from the Raymark Facility toward the Spada Property and Ferry Creek, a potential groundwater discharge area.
- The VOC contaminants of concern have been released at the Raymark Facility under the OU1 RI.

RI98163D

- The contaminants of concern have also been released at other sites in the vicinity of the Raymark Facility.
- The exact concentration of the VOC contaminants has been masked, to some degree, by elevated quantitation limits caused by high concentrations of other VOCs.
 - The extent and/or source of the contaminants upgradient of the Raymark Facility is not known. The cross-gradient extent and/or source of the contaminants at the northeast corner of the Raymark Facility (the Dock Property), and southwest of the Raymark Facility under the Stratford Shopping Center is not fully understood. These interpretations are applicable to both the overburden and bedrock aquifers in these areas.
- The hydraulic connection between groundwater and surface water has not been evaluated.
 - The distribution of contaminants within both the overburden and bedrock aquifers needs to be refined when the geology section of the RI is completed. This refinement is expected to include dividing the overburden into units such as aquitards and aquifers.

5.2 **Recommendations**

It is recommended that additional work be conducted at the site. This proposed work will provide data to determine the maximum extent of the contaminants in both the overburden and bedrock aquifers.

The proposed additional work is presented below:

- A complete groundwater sampling round should be conducted. Analytical methods or multiple analysis should be selected that will produce lower quantitation limits for contaminants of interest. These alternate methods could be used at monitoring well locations where the current data indicate high concentrations of one or more VOCs.
- At least three monitoring well clusters should be installed between the Housatonic River and Ferry Boulevard south of the Dock property. These wells will provide groundwater elevations that can be used to supplement the existing groundwater monitoring network. The objective of these wells is to determine if the Housatonic River is a discharge or recharge point for groundwater within the study area.
- Additional groundwater monitoring well clusters, (at three locations) should be installed in the vicinity of the Stratford Shopping Center. These clusters should include both overburden and bedrock wells. At present, the source of the contaminants detected at the shopping center is not known. A review of the current groundwater maps and the VOC data does not provide an explanation for the source of these contaminants. These proposed well clusters would provide data to evaluate the nature and potential source or sources of these contaminants.
- The upgradient groundwater flow directions and contaminant distribution should be evaluated with a series of monitoring wells. Groundwater contaminants have been detected upgradient of the Raymark Facility at Contract Plating and along Frog Pond Road, located north of the toluene plume.
- A bedrock monitoring well should be installed on the Morgan Francis property. The current data indicate bedrock contaminants upgradient of the property and across Ferry Boulevard. These bedrock monitoring wells have total VOCs concentrations in the thousands of ppb range. The southern extent of these contaminants and the ultimate discharge point of the contaminants has to be determined. It is estimated that three monitoring well clusters need to be installed downgradient of the Morgan

Francis property and one bedrock well installed on the Morgan Francis property. After an evaluation of the data gathered from the proposed monitoring wells, the ultimate discharge point of the bedrock contaminants can be estimated and that location evaluated by installing groundwater monitoring wells.

- Hydraulic conductivity testing should be conducted at overburden and bedrock monitoring wells. These tests will provide data to be used in the hydrogeology section to aid in selecting hydrostratigraphic units.
- Short term, 12 hour, aquifer tests may be needed at selected locations. The objective of these tests is to determine the nature of the hydraulic connection between the bedrock and overburden aquifers. These tests should be conducted in areas that do and do not have till overlying the bedrock. The number and location of these tests should be determined when the geology section of the RI has been completed.
- A tidal influence study should be conducted using the proposed monitoring well clusters adjacent to the Housatonic River, select monitoring wells on the Spada property, and overburden and bedrock monitoring wells located on or in the vicinity of the Morgan Francis property. The objective of this study is to evaluate what influence changes in surface water elevation, caused by tidal fluctuation, have on groundwater flow directions and rate. A tidal study will also provide data to evaluate the hydraulic connection between the groundwater and surface water bodies. The tidal influence study should include monitoring the surface water elevation in Ferry Creek, the Housatonic River, and Long Island Sound.
- The actual number and location of the proposed monitoring wells presented here should be refined when the USGS has completed evaluating site-specific geologic conditions. When the site-specific geologic conditions have been evaluated, a more complete and precise evaluation of the groundwater flow directions and

. . -

contaminant transport can be performed. This evaluation should be performed before monitoring well locations are selected.

1

REFERENCES

BCA (Buounicore-Cashman Associates, Inc.), April, 1988. "Draft Preliminary Assessment Report EPA Approved Groundwater Assessment Program Supplemental Site Investigation for Raymark Facility Site - Stratford, Connecticut."

Crowley, W.P., The Bedrock Geology of the Long Hill and Bridgeport Quadrangles: Connecticut Geological and National History Survey Quadrangle Report 24, 81 p.

Domenico, P.A., and F.W. Schwartz, 1990. <u>Physical and Chemical Hydrogeology</u>. New York, John Wiley, 824p.

Flint, R.F., 1968. The Surficial Geology of the Ansonia and Milford Quadrangles: Connecticut Geological and National History Survey Quadrangle Report 23, 36 p.

Fritts, C.E., 1965. Bedrock Geologic Map of the Milford Quadrangle, Milford, Connecticut: Department of the Interior, U.S. Geological Survey

Freeze, R.A. and J.A. Cherry, 1979. <u>Groundwater</u>. Englewood Cliffs, N.J., Prentice Hall, Inc., 604 p.

Hill, M. (EPA). September 8, 1993. Letter to J. Kelly (Roy F. Weston/ARCS Team), RE: Comments on Draft Site Inspection Report, Raymark Industries, Inc., Stratford, Connecticut, TDD No. 9202-02-AWS.

Raymark (Raymark Industries, Inc.), March 15, 1991. "Draft - Detailed Work Plan Under EPA Order 87-1057 Requiring Sampling, Analyses, and Reporting for Determination of the Presence or Release of Hazardous Waste at Raymark Industries - Stratford, Connecticut."

Rodgers, J. (Connecticut Geological and National History Survey), 1985. Bedrock Geological Map of Connecticut: Scale 1:25,000.

Raymark - Ferry Creek, OU2

Roy F. Weston, Inc., 1993. "Final Site Inspection Report for Raymark Industries, Stratford, Connecticut." September 30, 1993.

Town Planning and Zoning Commission, Stratford, Connecticut, 1988. Wetlands and Water Resources Map: Revised August 1992.

Weather Bureau, 1958, Climatic Summary of the United States--Supplement for 1931 through 1952.

Weather Bureau, 1964, Climatic Summary of the United States--Supplement for 1951 through 1960.

Wilson, W.E., Burke, E.L., and Thomas, C.E. JR, 1974. "Water Resources Inventory of Connecticut, Part 5, Lower Housatonic River Basin." Connecticut Water Resources Bulletin No. 19 (Prepared by the US Geological Survey), 79 p.

APPENDIX A BORING AND WELL CONSTRUCTION LOGS

			······		N					
	-			`	141. 141.	•	\sim			
			ase 1 Groundwate	r Investia	ation §	· ·		во	RING NO. : 206M	
	CT NO: _	7607-03 Jow M	<u>يون م</u>	TR	ANSCRIBE	D BY:			ART DATE: <u>10-22-9</u> MPLETION DATE:	<u>) </u>
DRILLE	ED BY (Co	mpany/	Driller): <u>Alliance /</u>	<u> </u>	Ball			MC	DN. WELL NO.:	
GRD. S	URFACE	ELEVA		EL	EVATION	FRON		CH	ECKED BY :	·
DEPTH (FEET)	PID PER	SAMP REC.	SAMPLING TIME	DEPTH MAT'L	SOIL DENSITY/	Ī		USCS	REMARKS	FIELD
(FEEI)	6"	1	8	CHG.	CONSIS.		MATERIAL	or ROCK	(moisture condition; odors; geological classification;	SCREENING DATA
	(ppm)	SAMP LENG.	SAMPLE NO. (QA/QC STATUS)	WELL PROFL	or ROCK HARD.	CLR	CLASSIFICATION	BRKN	rock weathering; etc.)	METHOD = [PID, Jar HS]
0	<u> </u>	(11)		(ft)		V	Gran Serfale			
	0.0	5.5/10	0850 5-1			Brown	(f) SAND sine silt, some directics, the day	58	Tepsoil	
2	0.0					it Jay	(F) SAWD, some ongoler (F) grovel, some little	59		
	0.0					5-14		· · ·		
4	0.0		· ,						- /	
<u> </u>	1.0 1.4 6.0						· · · · · · · · · · · · · · · · · · ·			
	C.D					PK	< Wh	┣───		
6						8m	- 50ma 5117			
						1 the second	(F) SHND Solve (F-c) arrowed are what to		-	
8	<u> </u>			ļ			rounded, <2" dian), trace 5"+			
	ļ							<u> </u>		
10					i	┼┼╌				
				╞		1		<u> </u>		
ļ	0.0	9/10	0900 5-2			DX 7	(f) SAND Sum grant (and had < 2" tim)	L		
12	0.0						little, (m-c) Sound + mach sitt			
	0.0	5/5					F-C) SAND 1: 111 Ground (rounded <2"Hay)	SW		
14	0.0					11-				
- <u>'</u> -	0.0					╎╎──	(F-) SAND and gravel (f-c, rounded, clides)	entra	······	·
	0.0			ļ	· · · ·	Notes 1	(F-95AND china gravit (rec frinking, crain)	>#/67	154	
6	0.0/0.7	5/10	6920 5-3			6: 7096	(Fig SAND I AND grow of [rounded = 0,5 dim	SW	2' foll over al sampler	
				· · ·	<u> </u>		<u> </u>		Drawm & Doot	Environmental
			ONIC ORING: 6" + 6" vibrate,		c. Id wash	•			Brown & Root	
METHO	D OF SOIL	SAMPLIN	IG: 4° vibrate + apin 174° vibrate + apin 174° vibrate + spin + wa	•						3
GROU	NDWATER L	EVELS:			644 O P	w za	í P .		BORING NO	D: 206M
	OBSERVA	TIONS:					~ 20-38 DNMY 2.5 Feet,		PAGE:	1 of 3

								•
BORIN			ise 1 Groundwater	Investio:	ation		BORING NO. : 206 M	
PROJE	CT NO:	7607*03	20				START DATE: 10-12-17	·
LOGGE	ED BY:	A mel	lu -	TR	: COMPLETION DATE:			
DRILLE	D BY (Co	mpany/	Driller): <u>Alliance /</u>	R Ball	MON. WELL NO.:	<u> </u>		
GRD. S		ELEVA	TION:	EL	EVATION	FRON	A: CHECKED BY :	- · ·
DEPTH	PID ·	SAMP	SAMPLING	DEPTH	SOIL			FIELD
(FEET)	PER 6"	REC.	TIME	MAT'L CHG/	DENSITY/ CONSIS.		MATERIAI or (moisture condition; odors;	SCREENING
[SAMP	SAMPLE NO.	WELL	or ROCK	CLR		DATA METHOD =
16	(ppm)	LENG. (ft)	(QA/QC STATUS)	PROF'L (ft)	HARD.			[PID, Jar HS]
	0.0/07					1 alerin		
	0 0/1.4							
18	0.02.7					general a	(5-2) SAND and grown (Frond al Cased SW/6P	
	P.8							
<u> </u>	<u> 1.9</u> 4.1					┟┨┷	┟╴╂┉───╌╴────┼┉───┤────┤────┤	20-22.5
20								Ure it
ł			. ·					1.1 000
			· · ·			-		•
22						┞╌┠╌╴	V	
							Lost Zear of	
24			i i			Π	çun p /L	
<u> </u>	<u> </u>							/
						ļ		25.275
. 26	21	1%3	1020 5-4			groy	(m-c) SAND trace grand frey rounded, c 0.25 12 SP	5.0
		117	10 S- 1		·			6.0
	0.4					<u> </u>		30.0
28	0,9						E-C) SAND Some growth (anded, CO.S") SW	2750
	0.1						track fines silt	25-275
30	6.0					<u> </u>		$\boldsymbol{\zeta}$
<u> </u>	20		*				<u>↓</u>	32.3
	8.D					Vellers	- Gravel (< 2"dium)	
32	1.1]		· [/]
			· · · · · · · · · · · · · · · · · · ·	l			<u></u>	

· ·

·

(-

1

····· · ···· · ·

TYPE OF DRILLING RIG: SONIC		Brown & Root Environmental
METHOD OF ADVANCING BORING METHOD OF SOIL SAMPLING: 4" V METHOD OF ROCK CORING: 4" VB	vibrate + spin	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	PID cal check prior to Hundripace 106 ppm v/100 ppm Iso budy line "" " after the " Ill ppm " "	BORING NO.: 206M PAGE: 2 of 3

.

PROJE	CT NO:	7607*03	ase 1 Groundwater 320 w// Driller): <u>Alliance /</u>	TRA	NSCRIBE	D BY:		ST. CO	RING NO. : <u>206</u> M ART DATE: <u>10-72-0</u> MPLETION DATE: DN. WELL NO.:	17
GRD. S	URFACE	ELEVA	TION:	EL	EVATION	FROM	:		ECKED BY :	
DEPTH (FEET) 32	PID PER 6" (ppm)	SAMP REC. 7 SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MATL CHG/ WELL PROFL (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS]
	0.7		(cent.) 5 - 4			reter	** see page2	SW		32.5-35.0
34	1.2		13.51			Drauf				
	0.5		124				(F) SAMD, trace Sitt, no apound	SP		3.1
36	1.7							~ 1		35.0-1
]					(F-m) SAND / iAif g-oval (rounded < 14m)	X		2.4
38]					brown file.			
			i tob 38							
	<u> </u>	-				ļ				
	<u> </u>									
						<u> </u>				
		-						•		

TYPE OF DRILLING RIG: Sonic			Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash		
GROUNDWATER LEVELS: OTHER OBSERVATIONS:		•	BORING NO.: 7.06 M PAGE: 3 of 3

					· .	. 1 .			7676	۱. میر
	G LOG FO		ase 1 Groundwate	r Investia	ation			BO ST	RING NO. : 207M ART DATE: 10-10-	97
LOGGE	D BY:	Joe "	nello	TR/		D BY:		CO	MPLETION DATE:	
DRILLE GRD. S	D BY (Co URFACE	mpany/l ELEVA	Driller): <u>Alliance /</u> TION:	<u>Kon</u> EL	Ball EVATION	FROM	:		DN. WELL NO.: IECKED BY ;	
DEPTH (FEET)	PID PER 6" (ppm)	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QAVQC STATUS)	DEPTH MAT'L CHG/ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS]
0	1.5	(ff) 4'/5'	13"° S-1	(ft) _0,25		DK Brave	brage Surface Organic (1) SAND and SICT		Tayson , damp	,
. 2	5.5 03	75				Bown	(F-m) SAND, trace 374, no gravel	SP	damp	
	75 9.7					ut gray			@1.5 fluss dry	
. 4.	3.6		•		•	ļ			By other a picco of rounded 2"diam opened	
									Fining downwirds Letten 60%(F)sond	
6	2.2	8'/10'	1305 5-2			Brown	(f-m) SAND, trace (c) send, no silt, trace (f) good		scashells from 5-8+695	
	4.1	/	, ,			·	-(ronnded)			
8	10.5								:	
	23.9						(F) SAND trace silt, trace (F) grave (counded)			
10	6.7 208.									
	72.5		,			<u> </u>	(F)SAND and Gravel (answer resubrounded,			
12	28.2						<1" diam), trace sitt		@ 12 fbgs a 1" layer	
	22,6		•				f		of asphalt groud	
14										
			<u></u>							
16	3.9 2.6	7.5/10	134° S-3				(f-c) SAND some (f) growel, notines	SW	·	

سنجد ددد

TYPE OF DRILLING RIG: Sonic		Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash	
GROUNDWATER LEVELS: OTHER OBSERVATIONS: All recovered soils and	included in accounty macanements, and PIP Screening every 6".	BORING NO.: 207 PAGE: of

PROJE LOGGE DRILLE	CT NO: _ D BY:	7607*03 mpany/l	Driller): Alliance /	TR/			······	BORING NO. : <u>207</u> START DATE: <u>10 - 6 - 97</u> COMPLETION DATE: MON. WELL NO.? CHECKED BY :			
DEPTH (FEET)	PID PER 6 (ppm)	SAMP REC. / SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHGJ WELL PROF'L (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS]	
	3.0		5-3(cont.)			,	·		Belding phones visible		
18	2.0 0.5 14.0						(F-m) SAND no filt, no grova	SP	· · · · · · · · · · · · · · · · · · ·	-	
	7.0					Yellowist					
20	7.3					o sange	· · · · · · · · · · · · · · · · · · ·			-	
22	<u>).1</u> <u>1.9</u> 2.7				· · · · · · · · · · · · · · · · · · ·	T I		- <u></u>			
	5.2					,					
24							(F-C) SAND some for avail (rounded) trace si lit (F) SAND and Silt	SW		-	
	7.8	10-51				Bon	(C) SAND and Silt	SM		-	
26	6.6	10.5/10	1410 5-4			yelprish promise	E)SAMD trace silt in graved	SP		-	
28	50,6]				$\left \cdot \right $				-	
	26-3					$\left \right $,	·	-	
30	137					Wyray	(E) SAND and Silt	SM ¹ .		-	
	107	1.				3			·	1	
32	131					¢.	(5) SAND, trace silt no graves	SP	\downarrow		

N 2

ì

. -

TYPE OF DRILLING RIG: Sonic	1. A.			 · · · · · · · · · · · · · · · · · · ·	Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 6" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash	99 41 1	ц		
GROUNDWATER LEVELS:			•		BORING NO.: 207 PAGE: 2 of 6

É. .

PROJE LOGGE DRILLE	CT NO: _ D BY:	7607*03	Driller):	oundwate	· · · · ·	ation ANSCRIBE EVATION			STA CO MO	RING NO. : _ ART DATE: _ MPLETION [N. WELL NO ECKED BY :	<u>10-10-9</u> DATE:	7
DEPTH (FEET) 32	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	T SAMI	IPLING IME & PLE NO. : STATUS)	DEPTH MAT'L CHGJ WELL PROF'L (ft)	SOIL DENSITY/ CONSIS, or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMA (moisture cond geological class rock wasther	ition; odors; ssification;	FIELD SCREENING DATA METHOD = [PID, Jar HS]
	156 86	i					w/gray	(F) SANDAND SILT, no gravel	SM			
34	58 71 69		ł			· ·		(FISAND track Silt , regravel	SP			
36	7 2	105/	1425	S-5				(F-m) SAND, trace silt, he graved	ST	· · · · · · · · · · · · · · · · · · ·		
20	21	10.5/10	רין	2-2			WIGA	(F)SAND and SILT, to 4 clay, no groved			1	
38	16					· · ·		The set of	///		1	
	16											
10	21										· .	
	60 38 21											
42	86	-						(f) SAWD trace sitt, no grove	SP			
44	82 196						<u> </u>			 		
11	22	Certer										45-47.5 58pp
46	1.80.0 0,0		1500	S-6				FISAND trace silt, no grave	SP			70/P
,	13	/10		.			'	CIERCE ZIE, NO JUNO		· <u>····</u> ····		47,5-50
48	22			,				······································			,	15.2

TYPE OF DRILLING RIG: SONIC METHOD OF ADVANCING BORING: 6° + 8° vibrate, spin, METHOD OF SOI L SAMPLING: 4° vibrate + spin METHOD OF ROCK CORING: 4° vibrate + spin + wash	and wash	Brown & Root Environmental
GROUNDWATER LEVELS: OTHER OBSERVATIONS:		BORING NO.: 207 PAGE: <u>3</u> of <u>6</u>
· · ·		

									2 ·		
PROJEC LOGGE DRILLEI	BORING LOG FOR: Phase 1 Groundwater Investigation BORING NO. : 207 PROJECT NO: 7607*0320 START DATE: 10-10-01 LOGGED BY: 300 (Company/Driller): Alliance / Ren Bell TRANSCRIBED BY: COMPLETION DATE: 10-10-01 DRILLED BY (Company/Driller): Alliance / Ren Bell MON. WELL NO.: 10-10-01 GRD. SURFACE ELEVATION: ELEVATION FROM: CHECKED BY :										
DEPTH (FEET) ЧЧ	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG <i>J</i> WELL PROF'L (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS]	
50	1605			-		spelborn' 5 (mg li	trace (M) sand no (m) sand	58	1 or piller of subcounded		
52	17 16 10									40-57.5 14.3	
54	الك المرابع الك المرابع		* .								
	2,7 3						trace (m) Sand		trace	52.5-55 1.4	
56	6.8 5.9	9'/ _{10'}	15'5 S-7				(F-C)SAND little(< 1596) grovel (rounded < 0.75 in. diam) by filt.	SW		55.57.5	
58	10.0 5. 9.7						· · · · · · · · · · · · · · · · · · ·			55.57.5 1.64PM 57.5-60	
60	9.2 9.2 4.1 5.3			·		1	S. H, trace (F) gand (E-C)SAND little (<15%) grovel (rounded	ML	Q 62 Alagh & 5 that gyde of Qean Parkill	6.7917	
62	7,3 7,7 4,8 2,4			-	· · · · · · · · · · · · · · · · · · ·		KO.75 in diam) no silt	<u> </u>		60-62.5 2.1 pm	
64	1.6 15.2 8.2									62.5-6517	

...

. ----

-

.

. . .

TYPE OF DRILLING RIG: SONIC		Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 6" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:		BORING NO.: 267
OTHER OBSERVATIONS.		PAGE: 4_ of 6_

. м. Ц.

			····					· · · · · · · · · · · · · · · · · · ·		14				
PROJE LOGGE DRILLE	BORING LOG FOR: Phase 1 Groundwater Investigation PROJECT NO: 7607*0320 LOGGED BY: 1000000000000000000000000000000000000										BORING NO. : <u>207</u> START DATE: <u>10-10-91</u> COMPLETION DATE: MON. WELL NO.: CHECKED BY :			
DEPTH (FEET)	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (f)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHGJ WELL PROF'L (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR		MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS]			
	5.7		5-7(cont.) 1540 5-8			olive		SAND, frace sitt, track grover (counted)	SW		65-70			
66	42 80. 16.	9/10	10 5-8		· ·	aray	(+-C)	SAMD, trace silt, trace groud (comoded	SW		9.1			
68	40									· · · · · · · · · · · · · · · · · · ·	- (
70	25 19 26										7075			
72	5.6 15 5.3 6.1										. [,]			
	10 4.4 8.6				· · · · · · · · · · · · · · · · · · ·									
74	7.2									· · · ·	75-80			
76	1.4 1.6 1.1	10/10	15 50 S-9					~			4			
78	5.2 9,8 5.5													
80	5.10							,						

.

TYPE OF DRILLING RIG: Sonic		Brown & Root Environmental
METHOD OF ADVANCING BORING; 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING; 4" vibrate + spin METHOD OF ROCK CORING; 4" vibrate + spin + wash	and wash	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:		BORING NO .: 207
OTTER OBSERVATIONS.		PAGE: <u>5</u> of <u>6</u>

PROJE LOGGE DRILLE	CT NO: D BY: D BY (Co	7607*03 ۲۵۰۰ ۴ ۲۵۰۰ ۲	^v Lilø Driller): <u>Alliance /</u>	TR Ron	ANSCRIBE			ST/ CO MO	RING NO. : <u>207</u> ART DATE: <u>10-10-9</u> MPLETION DATE: N. WELL NO.:	7
GRD. S DEPTH (FEET)	URFACE PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	TION: SAMPLING TIME & SAMPLE NO. (QAVQC STATUS)	EL DEPTH MAT'L CHGJ WELL PROF'L (ft)	EVATION SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL	CH USCS or ROCK BRKN	ECKED BY : REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENI DATA <i>METHOD</i> [PID, Jar H
d'i	35 59 8.7		S-9(6-1.)			Mary Ash		SP		80-85
86	7.0 3.6 8.2						<1" diam)		· · · · · · · · · · · · · · · · · · ·	3.2
84	20						· · · · · · · · · · · · · · · · · · ·			a0
	1.6			 .	-					85-90
86	0.7	7/10	16° 5-10							F 1,7
88	0,3 6.3 8.8									
	4.3									
90	0.6					14 17 12. 16 14 19 19 19 19 19 19 19 19 19 19 19 19 19				· .
92	3.1		· ·							
		-			} ·					
94									······································	
		∤ ╋╴───		ł						
96		1	EOB 95000		<u> </u>	<u> </u>	I			
			ONIC ORING: 6" + 8" vibrate,		nd wash				Brown & Root	Environment
METHO	D OF SOIL	SAMPLIN	NG: 4" vibrate + spin 3: 4" vibrate + spin + wa	•		1914 -				3
	DWATER I OBSERVA		- -						BORING NO	
	<u> </u>		ending	Ho	meter	1913	274 upprar. 500gal used - 200 untai	ned	PAGE:	<u>_6</u> of <u>6</u>

BORING	G LƯƠN FC	DR:	ase I Groundy	ater I	innestiz.	tion,	Ray more OUD	BO	RING NO. : 208	· ·
				TO				ST	ART DATE: <u>9-29-4</u>	
			Driller): <u>ALLE</u>		ANSCRIBE	UBT			MPLETION DATE: N. WELL NO.:	
	URFACE				EVATION	FROM	- <u></u>		ECKED BY :	
[
DEPTH (FEET)	BLOWS PER	SAMP REC.	SAMPLING TIME	DEPTH MAT'L	SOIL -	history .		USCS	REMARKS	FIELD SCREENING
(FEEI)	6	/	&	CHGJ	CONSIS.	• •	MATERIAL	ROCK	(moisture condition; odors; geological classification;	DATA
· ·		SAMP	SAMPLE NO.	WELL	or ROCK	CLR	CLASSIFICATION	BRKN	rock weathering; etc.)	METHOD =
0		LENG. (FT)	(QA/QC STATUS)	PROFIL	HARD.					<u>[]</u>
	0.0	4.5/6	0825 S-1		Moiss-Wer	DK.	Organics + Sitts, trace (+-2) sand + Growel	Topshi	Topsoil	
	0.0	* le - x	00 0-	1.5		Bren				•
2		·····	_		Den Meist	Brown	Silty (F) Sand, trace gravel (sub-rounded,	SM	- No Bedding Planes	
	0,0			3.0			< 1.5" diam) trace clay	·	2-6" of moderately cohesive soil	
4	0,0				Dry	H. Rowan	Inorganic Silt and (V. e) Sand, frace	ML		
	0.0	*****				0.001	grovel (sub-rounded to sub-augular, <1.5 "			• •
		****			· .		grover (succession to sub-august, 1.0 .			. И
6	0.0						diam.)		Boulder in Sampler bit - musconite + etre rich	
_ <u>_</u>	0.0	65/10	0849 S-2							•
Ø	0.0									- []
8	0,0	mo	-	8.0					Change Starts w/a 5"	-
	0,0				Dryth	Drawn	(DSand and Silt, trace (m-i) Sand, trace	SM	layer of DK brown	
10	0.0				· · ·		grove (subrounded, < 1.5 ° diam.)			
	0.0									
	0.0							<u> </u>		• • • • • • • • • • • • • • • • • • • •
12						· .	- · · · · · · · · · · · · · · · · · · ·			.
	0.0				*	Ride sh Brown			· ·	
	0.0					<u>9101/1</u>	<u> </u>			-
14		Man.					· · · · · · · · · · · · · · · · · · ·			
	0.0									
16	0.0									- П
	I	I			L		<u> </u>	I	LI	

الورز الدارين بعد والمستقار التنبس

TYPE OF DRILLING RIG: SONIC	Brown & Root Environmental
METHOD OF ADVANCING BORING: Vibrate + Wash 1 spin METHOD OF SOIL SAMPLING: Vibrate + Spin METHOD OF ROCK CORING: Vibrate + Spin	
GROUNDWATER LEVELS: OTHER OBSERVATIONS: Maistarle, Dry, Damp, Maist, Wet	BORING NO .: 208

PROJE	CT NO:	7609 \$	ase 1 Grandu 10320 Lile Driller): <u>AL(L</u>				Ray more OUD	ST/ CO	RING NO. : <u>208</u> ART DATE: <u>9-29-</u> MPLETION DATE: _	
	D BY (Co URFACE	mpany/	Driller): <u>ALLE</u>	ANCE	EVATION	FROM	·····		DN. WELL NO.:	
<u> 3RU. 5</u>			TION:				л.			
DEPTH (FEET) /6	PID BLOWS PER 6	SAMP REC. / SAMP LENG. (FT)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG <i>I</i> WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR		USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID (frm)
_	0.6	4.5/10	0950 5-3		Dry-Domp	Reduct	(DSand and Silt. tran (5-0) sand, trace grows	SM		
18	0.0		-				(Entrandud- suborgator, «1.5M diam.)			1
	0.3									4
20	0.0	~~~~	-	4						+
22 .	0.0 2.9 0.0	****** ****	-	±7.4 ↓	Pamp Moist	4.010 9592	(f)Sand and Silt	SM		+ 0,0 +
24	0.0	~~								+ ·
	0.0 3,1 0.0					[0.0
26	0.0	,	10" S-4			 				+
28	0.0									+
	0.0							1		+.
0	0.0					Brun	Silt and 10 Sand	ML-SM	Slightly more silt	†
	0.0									4.6
32	0.0									T

TYPE OF DRILLING RIG: 50NIC		Brown & Root Environmental
METHOD OF ADVANCING BORING: METHOD OF SOI L SAMPLING; METHOD OF ROCK CORING:		
GROUNDWATER LEVELS:		BORING NO .: 208
OTHER OBSERVATIONS:	•	Page 2 of 5

,

ði kar að skriftir í skriftir skrifti

PROJE LOGGE DRILLE	DRING LUG FOR: Plase 1 Grandwater Investigation Raymon Old BORING NO.: 208 COJECT NO: 9609 #0320 START DATE: 9-29-97 GGED BY: 30L MUN0 TRANSCRIBED BY: COMPLETION DATE: 9-29-97 KILLED BY (Company/Driller): Allawe E MON. WELL NO.: 000000000000000000000000000000000000									
DEPTH (FEET)	BLOWS PER 6"	T	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	and the second second second second	SOIL DENSITY/ CONSIS. or ROCK HARD.	A	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD =
32							· · · · · · · · · · · · · · · · · · ·	 		[PID (rem)
34			man							in the second se
36			4			┨───┦	ff) Sand Some silt, trace	SM	More (2) Smull than silt	
		6/10	1050 S-5	1			(1. a Har Daula and Links			
38		with the second	- ,						······	
					• <u> </u>	Yellinos Brown	Silt and Clay inerganic, med-	CLO	Η	
40							Plasticity-			
									•	0.0
42		-						,		
		bar				12003) 13-0-14	(1 9) JUNA SAME GRAVEN (SHERBHARD - SHERBAND,	GW		
44		~	mon			 	K3" pliam) trace fines		· · · · · · · · · · · · · · · · · · ·	1.1.
46					-	ur.				0.0/2.8
<u>טר</u>		01.0	***	40		Gray				6.5 4
48		8/10	")-6	7701		Barn		{───┤		6.5

 1 .	BORING NO.: 205
i .	Part
	1 age > 06 3
	1

LOGGE DRILLE GRD. S	CT NO: _ D BY: D BY (Co URFACE	Jol IV impany/ ELEVA	ALLID Driller): ALLE TION:	TR/ Arr<@ EI				CO MO	ART DATE: <u>9-29-9</u> MPLETION DATE: DN. WELL NO.: IECKED BY :	
DEPTH (FEET)	BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MATL CHGJ WELL PROFL	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	7 MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; goological classification; rock weathering; stc.)	FIELD SCREENING DATA METHOD = []
50		~~~~ ~~~~	S-6 (Cant.)					GW		5.0
52		~~~~			· · · · · · · · · · · · · · · · · · ·					5.2
54		v		· ·						fran .
56		L!	<u> </u>	<u> </u>	 '	<u> </u> '	(f.c) Sond, trace silt		No Growt, (+>c) sund POH	5.4
58	1,1 3,1 2,6 1.7 4,5	10/10	5-7 1195		Wert		(f-c)Sand and Grovel (randed + subangabr, \$2" diam) trace filt	GW		3.9
60	2.7 4.9 7.6 7.6 7.6								· · · · · · · · · · · · · · · · · · ·	6.4
62	6,5 5.0 9,7	man -	1 . T			PK 6mm	- little sitt and chy	GM		4.5

n de la managementation -

· ·· · · ··· ·

TYPE OF DRILLING RIG: SONIC	Brown & Root Environmental
METHOD OF ADVANCING BORING: METHOD OF SOI L SAMPLING: METHOD OF ROCK CORING:	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	BORING NO.: 20P
<u> </u>	 Page 9 of 5

 $\lambda_{1} = \frac{1}{2}$, $\lambda_{2} = \frac{1}{2}$, $\lambda_{1} = \frac{1}{2}$

PROJE LOGGE DRILLE	GLOGF CTNO: DBY: DBY (Co URFACE	<u>7601</u> うっし ファレ	<u>Mullo</u> Driller): _		TR #~< <i>Œ</i>	مرور میں	D BY:		ST. CC MC	RING NO. : <u>208</u> ART DATE: <u>9-29-9</u> MPLETION DATE: N. WELLINO.: IECKED BY :	<u>1</u>
DEPTH (FEET)	BLOWS PER 6	[SAMF Til SAMP	PLING ME & LE NO. STATUS)	DEPTH MATL CHGJ WELL PROFL	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENIN DATA METHOD [PID (Prm
66	5,4 8-0 17,9 26,7	um				Ann	Brown	(M) Sand, trace (F+i) sand, trace (good, their (F-c) Sand and Grovel (rounded to sub-angula			4.2
_68	8.9	7/9	1230	5-8				<z"diam.)< td=""><td><u> </u></td><td>·</td><td>4.6</td></z"diam.)<>	<u> </u>	·	4.6
70	9.7 20.2 21.7 7.6	une				Vorin		(f-c) Sand and Grover (rounded to subaryuter <1.5" diam.) it 12" Silt, trace Clay			7.1
12	10.8 11.1 23.9 21.2		Ω.				reddin Brown	to sub-angular, & 1" Diam.) trace silt		2" piece of Schot growy	6.8
14	19.4 10,9 7.8	7	B ⁵⁰	5-9		25% RQD	DK Geny	(t-1) Sand + Gravel + track 5: H Schist Bedrack ; mica rich	GW BR		
76							. 	w/Vertical Foliation			
78			Es Q								+
			EOB								
METHO	F DRILLING D OF ADVA D OF SOI L D OF ROCH	NCING B	DRING: G:							Brown & Root	
	DWATER L OBSERVAT						· · ·			BORING N Page 5 pg	

									•	
							· · · · · · · · · · · · · · · · · · ·		_'	
										۱ ۰
										_
BORING PROJE	G LOG FO CT NO: _])R: <u>Pha</u> 7607*0?	ase 1 Groundwater 320	<u>(Investige</u>	<u>ition</u>	·		BO ST/	RING NO. : <u>58</u> 200 ART DATE: <u>10/8/9</u> 7	<u>1</u>
LOGGE	ED BY: 🔎	Holden /	Reff Marthing	TR/	ANSCRIBE	D BY:	A B Tolder	CO	MPLETION DATE:	
GRD. S	D BY (Con URFACE	mpany/L ELEVA	/Driller): <u>Alliance /</u> \TION:	Ron B ELI	EVATION I	FROM			N. WELL NO.: MWA	<u>0913</u> 73
DEPTH (FEET)	PID PER 6	SAMP REC. / SAMP	SAMPLING TIME & SAMPLE NO.	DEPTH MAT'L CHGJ WELL	SOIL DENSITY/ CONSIS. or ROCK	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; atc.)	FIELD SCREENING DATA METHOD =
0	(ppm)	LENG. (ft)	(QA/QC STATUS)	PROF'L (ft)	HARD.				TOCK WOALTOTHIN, ave.)	[PID, Jar HS]
1	8.5		5-1,1430		· · · · · · · · · · · · · · · · · · ·	OLER	silly Gradly SAND	sn-sm	Dry, Fill	
2	9.0	1/	-,	T	1	$\left[\begin{array}{c} \\ \end{array} \right]$	Mostly F-LRS SAND, Some FERS		cenant, back,	
	19.6	5.7/	1	(- †	ı,	IT 1	ang grovel (upto 4")		sloss_	
	30.4	111	, , _ !	t	í	BLack	Petslerm QOOR		* ****	
	35.9	1	10/8/97	1 1		Red				
<u> </u>	14.4		10/9/97	1 1	[]	a.s r GR	MUD, PARK CREY, Silfy Govel.	GM	Broken Concrete,	
7	16.5	1 1	5-2,000	1 1			Old files		Reber	
-	0	1 1	>~,	()	[]	++-+	Ula hies	++	14 Or	
۲ ۵	17.3	1 1	1 '	+	·'	H	Tor, old portung by material			
4 	25.2 30	a/10	1	1 1		Ħ	roofing material, asphalt shingles, and scop wood, silly mup			
10	36.2		ر. ۱		-BF gou	K I				
11	45.6		1 '	()	-191 - 000 -	Pr	PEAT togenic silt	РТ	Roote + Fibrous	· · ·
12	77.4	1	1	1	/'		· · · · · · · · · · · · · · · · · · ·		Orgonic	
13	52.4	1	1 '	1 1	I'	├				
14	32.6	1 1	1		 ']		- 	·	
15	0	I mil	l'	4 1	·	<u> </u> '	L			
16	ŏ	10/10	5-3; 1020	<u> </u> '	I'	top	SAND, ned	SP	· ·	_

TYPE OF DRILLING RIG: Sonic	Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, and wash METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	BORING NO .: 58 20 9
Ry boken from coring concrete whether @ 0820 on 10/9 antill 1000	PAGE: <u>1</u> of <u>5</u>

		G LOG F		ase 1 Groundwate	<u>r Investig</u>	ation	•		BO	RING NO. : <u>_ 58209</u> ART DATE: <u>し(オイ</u> ダ	7
. 1	LOGGE	DBY: 🦼	21folder	1 macmanus	TR	ANSCRIBE	D BY:	: AB Holder	CO	MPLETION DATE: 101	12/47
l	DRILLE	D BY (Co URFACE		Driller): <u>Alliance /</u>	<u> </u>	Ball EVATION	EPOL	4.		N. WELL NO.: <u>אי אי</u> ECKED BY :	<u>098+5</u>
	DEPTH (FEET)	PID PER 6"	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MATL CHGJ WELL PROFL	a contracto contracto de la contracto	CLR	MATERIAL	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS]
	16	NO	(ft)		<u>(ft)</u>	 					[FID, Jar h5]
L	17	04	1	5-3 cout.			tor	SAND, med	SP.		-
	18	NP 19.4	{				GR	silly med SAMD	sm]
	19	60]				tor	SAND, AL	SP		
	20	45.2			ļ .						1
-		4.7	}								· .
-	21	11.5	ł				<u> </u>	<u> </u>	<u> </u>		{
	22	6.0	1				ļ	<u></u>	ļ		
	23	4.6	1				Ľ	V			
	24	11.7	ļ				er	SAND, fine	SP		
	25	4.1 NP				<i>i.</i>					
	26			5-4			ter	SAND, med	SP		1
			1	1025			(1 ·
Г	21										1
4	25		6/10								28-30.5(0)
£]	29		1								Į
	30	┝──┝──	ł	•							

TYPE OF DRILLING RIG: SONIC			<u></u>	Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash			
GROUNDWATER LEVELS:	·	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	BORING NO .: 56209
OTHER OBSERVATIONS:	•			PAGE: 2 of 5

								···· · · · · ·			
						-					,
PROJEC	CT NO:	7607*03	ase 1 Groundwater					<u></u>	ST/	RING NO. : <u>56209</u> ART DATE: <u>6/179</u> MPLETION DATE: <u>40</u>	7
LOGGED BY: Alfriden/D Macmanus TRANSCRIBED BY: Alfriden DRILLED BY (Company/Driller): Alliance / Row Ball GRD. SURFACE ELEVATION: ELEVATION FROM:									МО	N. WELL NO.: <u>mu 20</u> ECKED BY :	
DEPTH (FEET)	PID PER 6" (ppm)	SAMP REC. 7 SAMP LENG. (M)	SAMPLING TIME & SAMPLE NG. (QAVQC STATUS)		SOIL DENSITY/ CONSIS. or ROCK HARD.	T		MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; ociors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS]
23	ND		5-4 cont.	· · · · ·		GR	Silty	Mel SAND	sm		
34 35	2				·						33-35 appm
36	ILS NO NO		5-5			GR		I SAND	SP		35-37.5 Opm
31 31	N0 6.5 NB	7/10			· · · · · ·		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
3 9 40								{	_		37.5-140 oppm
чі					· · ·						40-425 Officer
42 43							<u> </u>				42.5-45
<u> </u>	┝╼╾╂╼╍	!!		,							מקט
45 46		<u> </u>	5-6					· · · · · · · · · · · · · · · · · · ·		· ·	45-47.5 Opm
<u>47</u> 48	NO		1050				— ,				47.5-50 0000

TYPE OF DRILLING RIG: Sonic	Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 6" vibrate, spin, and wash METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	
GROUNDWATER LEVELS:	BORING NO .: 58209
OTHER OBSERVATIONS:	PAGE: 3 of 5

· .

					•			· · ·		
									x	
							· · · · · · · · · · · · · · · · · · ·			
				• .						
										I.
			x					_		
			ase 1 Groundwate	r investig	ation	<u></u>			RING NO. : 58209	
			20 Macmanus	TD			AB Holder	SI/	ART DATE: <u>679</u> MPLETION DATE: 60	1 A Jun
			Driller): Alliance /		Ball	וזסט		MO	N. WELL NO.: mu 20	AR+5
GRD. S	URFACE	ELEVA	TION:	EL	EVATION	FROM	f:	CH	ECKED BY :	
DEPTH (FEET)	PID PER 6*	SAMP REC.	SAMPLING TIME	DEPTH MATL CHGJ	SOIL DENSITY/ CONSIS		MATERIAL	USCS or ROCK	REMARKS (moisture condition; odors;	FIELD SCREENING
	•	SAMP	SAMPLE NO.	WELL	or ROCK	CLR	CLASSIFICATION	BRKN	geological classification; rock weathering; etc.)	DATA METHOD =
પા	(ppm)	LENG. (ft)	(QAQC STATUS)	PROF'L	HARD.					[PID, Jar HS]
	0		5-6 cont							
49	4		5-0 000							
58	<u> </u>									~ ~ ~ ~
	5.5		-		·					50-52.5 opm
51	0					tar	med SAND	50		- pp
-52	20			l	2	•		ł		
	8				}					52.5-55
53	0 }}			· .					·	Oppm
54	14									
	35									
55	.19						¥			
56	3.6		5-7 1110			tow	F-m SAND, for silf	SM		
	0									55-51.5
57	0 16.T			1		[<u> </u>		· · · · · · · · · · · · · · · · · · ·	Oppm
55	14.1			1	ĺ	·	· ·			
	0	10/10				GR				575-60
59	11.5			F	 	GIC	F-LOS SAND, For Govel			o ppm
60	14.2			1		tor	F-m samo, tr silt	SM		
	62.3					1		SP		. I
61	46.8					++++	Med SAND	· 21		60-62.5
62	70.1			<u> </u>		t-in	FINE SAND	SP		Sppm
63	12.5		<i>,</i>				med spho	SP		· · ·
	20.1	· ·		• 1		tou	rica spec	- 27		625-15
લ્પ	54.9									"ppm

91 94.4			
	•	· ·	· · · · · · · · · · · · · · · · · · ·
TYPE OF DRILLING RIG: SONIC	, .		Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 6" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash		
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	······································		BORING NO .: 56209
· · · · · ·		· · ·	 PAGE: _ 4 of 5

•

· ·

							······································			
`										
			ase 1 Groundwater	r Investia	ation		······································		RING NO. : 58209	
			20 Macmanus	тр			AB Holder	ST/	ART DATE: <u>6/1/9</u> MPLETION DATE: 6	a lur
DRILLE	D BY (Co	mpany/	Driller): Alliance /	Ror	Ball		- • • • • • • • • • • • • • • • • • • •	MC	N. WELL NO .: mu 20	
GRD. S	URFACE	ELEVA		EL	EVATION	FROM	:	CH	ECKED BY :	
DEPTH (FEET)	PID PER 6	SAMP REC. / SAMP	SAMPLING TIME & SAMPLE NO.	DEPTH MATL CHGJ WELL	SOIL DENSITY/ CONSIS. or ROCK	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	F SCR D ME
64	(ppm)	LENG. (ft)	(QA/QC STATUS)	PROFL (ft)	HARD.				Took wedulaing, ac.,	[PID
65	100						tr silt	SP		
	80		5-8					SP	<u> </u>	
66	12.7)130			ton	Coorse SAND	<u>></u>		65-6 10
67	33.2					ļ		ļ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
68	74.B 74.6						·			(1-
69	20.7					tur	Rive SAND w/cobbles			
70	52.4					GROW		BRKN		
			C-9							
			/145				baken during corring	 		
					L	 	Since weathered surfaces	<u> </u>		
75							Not able to determine Fasture oriented	<u> </u>		
			८-١ ٥			Gream	Anguber source, matty med foord.		Pulverived bedreck,	
			1216				· · · ·		dies not bolk lite	
80			·							
80							· · · · · · · · · · · · · · · · · · ·		SAND in over broken	
							·			
85										
				Г.,	1	1	1 .	1		
		1	C-11				Schist			

TYPE OF DRILLING RIG: Sonic		Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash	
GROUNDWATER LEVELS: OTHER OBSERVATIONS: Core from 75-85 " Was	but down hole that to be retrieved.	BORING NO.: 58209 PAGE: 5 of 5

PROJEC LOGGE DRILLEI	CT NO: _ D BY:	7607*03 T_L // mpany/	n 2110 Driller): <u>Alliance /</u>		BORING NO. : <u>210 (Nω)</u> START DATE: <u>10-26-97</u> COMPLETION DATE: <u>10-26-97</u> MON. WELL NO.: <u>710 D. 5</u> CHECKED BY :					
DEPTH (FEET) Ô	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHGJ WELL PROF'L (ft)	SOIL DENSITY/ CONSIS. & ROCK HARD.	CLR	MATERIAL CLASSIFICATION Asphalt SurFace 4"	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS]
2	1.7	3 <i>.5/5</i>	11 ³⁰ S-1			PK GIPVI	(GRAVEI (remaind-ongular, 1-3" disn)	6M	Fill Dry hoist pieces of file pieces of file (Probably ACM)	
Ч 6 (2,1 3,4	10/10	1203 5-2			PK Brown YUGANI	Picies + cruched white fibrans Til (m)SAND, little grand (Fm)SAND, trace silt, no ground	, Fill SP SP	Dry Tile church from a bine 2'thick	
3.94	4.7 3.5 3.4 0.1		Ic J-C		· · · · · · · · · · · · · · · · · · ·	0~~~gL	- 1: tille Silt trace grovel from der ett) SP	2' +h/cK'	
10	7.6				· · · · · · · · · · · · · · · · · · ·		(F-C) SAND trace 51 H, little vor ded gravel < 2"diam)	SW	,	
12	945 2,3 6,1 7.9 5.0					Branny	(f-m)SAND, trace Silt, no grovel	SP		
16	8.2	8/10	12'5 5-3	r I				USP		

• • •-

. -

TYPE OF DRILLING RIG: Sonic	······································	Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, and wash METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	· · · · · · · · · · · · · · · · · · ·	
GROUNDWATER LEVELS: OTHER OBSERVATIONS: ACM- Asbertos Conteining Material.		BORING NO.: 20 PAGE: 01 3

BORING		DR. Ph	ase 1 Groundwate	r Investia	ation		-	BO	RING NO. : _ <u>210 (</u> *	,ev
PROJE		<u>7607*03</u>	20					ST	ART DATE: 10-26-	97
	D BY: D BY (Co	mpany/	Driller): <u>Alliance /</u>	- TR	ANSCRIBE Ball	D BA:			MPLETION DATE:	
GRD. S	URFACE	ELEVA	TION:	EL	EVATION	FROM	:	CH	ECKED BY :	3
DEPTH (FEET)	PID PER 6" (ppm)	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG/ WELL PROF'L	SOIL DENSITY/ CONSIS, or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENII DATA METHOD [PID, Jar H
	17	(ft)	(cont) 53	(n)		Ban	NF-M SAND, frace silt, trace growed	SP	· · · · · · · · · · · · · · · · · · ·	
18	7.4		(court) 5 5	l.		1	(rounded < 1" diam)		· · ·	-
	4.1 5.1							╞╌┠╾╌	· · · · · · · · · · · · · · · · · · ·	
20	26									-
	5.8 3.7				}					-
72	<u> </u>						· · · · · · · · · · · · · · · · · · ·			-
	3.1							┼╌╂──	· · ·	-
24	1.7						•	┼┼──	· · · · · · · · · · · · · · · · · · ·	-
							(F-m) SAND and (C) Grave formater, <4 thm	1	Grand my include Somp boulde piece	
น		6/8	1230 5-4	+ .			(F-C) SAWD I H 5% grovel (rounded,	SW	<20% (E) Som &	25-28
	1.2 3.2	18	1230 S-4 grain-stru taken		}		(1.5 din)			0.4 mer
28	2.0 4,9		grain-si		·				· · · · · · · · · · · · · · · · · · ·	
	2.9 2.7		taken				· · · · · · · · · · · · · · · · · · ·			32
30	2,8		_			··		┟╌┠──		28
	1.8 3.0]			······································	<u>├</u> - <u></u>	· · · · · · · · · · · · · · · · · · ·	0.1 PT
32	0.4				·					-
<u> </u>	L	ل			L	<u> </u>	: رم	724	bys then Beloc.	<u> </u>
TYPE O	F DRILLING	RIG: S	onic		·····		/•	291	Brown & Roo	t Environmenta
METHO METHO	D OF ADVA D OF SOI L	NCING B	ORING: 6" + 8" vibrate G: 4" vibrate + spin : 4" vibrate + spin + wa	•	ndiwash		•			3
GROUN	DWATER L	EVELS:				:	······································		BORING N	0.:0
OTHER	OBSERVA	FIONS:			•		·		PAGE:	2_of 3

PROJEC LOGGE DRILLEI	CT NO: _ D BY:	7607*03 ₩₩ mpany/	Driller): Alliance /	ST. CO MC	RING NO. : <u>2/0</u> ART DATE: <u>10-26-9</u> MPLETION DATE: <u>10-0</u> N. WELL NO.: <u>2100</u> , ECKED BY :					
depth (feet) 32	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MATL CHGJ WELL PROFL (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moistura condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS]
34	· · · · · · · ·	5.5/	(Cont.) 5-4 1300 C-1		45% ROD		C-C)SHND < 15% grower (rounded. - Sanist	SW BR	Boulder in very bottom Broken - 41 Comportant	
36		/ ·					- 70° Follotion - 1° thick Qte win (where)		Competent	
38						<u> </u> - <u> </u> 	- I mich lefte van (Unite)			
40			EOB 40.00	•			- Ormyl dyrits		Broken - up	
42					·····	· · · ·			· ·	
44					······					
46										
48							Ļ			

TYPE OF DRILLING RIG: SONIC		Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	·	BORING NO.: 2/0
		PAGE: of

UFW - abundanced BORING NO.: 210 (old) BORING LOG FOR: Phase 1 Groundwater Investigation START DATE: 10-20-97 PROJECT NO: 7607*0320 LOGGED BY: Joy Mello TRANSCRIBED BY: COMPLETION DATE: 10-20-97 DRILLED BY (Company/Driller): Alliance / Ron Ball MON. WELL NO .: GRD. SURFACE ELEVATION: **ELEVATION FROM:** CHECKED BY : DEPTH PID SAMP SAMPLING USCS FIELD DEPTH SOIL RFMARKS (FEET) PER REC. TIME MATL DENSITY/ or SCREENING (moisture condition; odors; MATERIAL 6" CHGJ CONSIS. ROCK 1. DATA geological classification; SAMP SAMPLE NO. WELL or ROCK CLR BRKN **CLASSIFICATION** rock weathering: etc.) METHOD = LENG. (QA/QC STATUS) PROF1 HARD. (ppm) O Acphalt Surface, (4") [PID, Jar HS] (ft) (ft) 4/5 SAND Little (F) argved (Submarler <2" die 0850 5-1 0.0 Hr. Brown SW) Sω ን 0.0 trous Sitt ት 0.0 0.0 Silt trace piece of port M Y" AL 0.0 SAND times silt, picer of 0.0 ٢P SP 4 (64) 0.0 Sulungetor 3" dian SAND trace (F) grover subranded 0,0/0 45/8 くし 0910 5-2 6 sω 此514. 4" down calle 0.0/0 8 2 0.0 10 Æ lineaments Visible 12 red 230% VF) SAND 58 Sittseme Grong Pisce & marter Schipt SP 14 0 1139 30% RQD Gray BR BR Schist 9.5/10 Bidrock Broken - up C-1 (mica + et rich 25% ROD 12 Vontical Islintion 16 Competent

TYPE OF DRILLING RIG: Sonic		Brown & Root Environmental	
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash		
GROUNDWATER LEVELS: Beliver to be Conter observations:	13 fbqs where red color shange lineamonts exist.	BORING NO.: 210 PAGE: 1_of 2	

						•				
							·			-
	••									•
					• .					
BORING	G LOG FO	DR: <u>Pha</u>	ase 1 Groundwate	r Investig	ation			во	RING NO. : 210 (old)
PROJE	CT NO: _ D BY:	7607*03	20					ST/	ART DATE: 10-20-9 MPLETION DATE:	1
DRILLE	D BY (Co	mpany/	Driller): Alliance /	- k	MANSCRIBE		·	MO	N. WELL NO.:	
GRD. S	URFACE	ELEVA		EL	EVATION	FROM		<u>CH</u>	ECKED BY :	
DEPTH (FEET)	PID PER 6	SAMP REC. / SAMP	SAMPLING TIME & SAMPLE NO.	DEPTH MAT'L CHGJ WELL	SOIL DENSITY/ CONSIS. or ROCK	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification;	FIELD SCREENING DATA METHOD =
16	(ppm)	LENG. (ft)	(QA/QC STATUS)	PROF'L (ft)	HARD.	· ·			rock weathering; etc.)	[PID, Jar HS]
18			(cont.) C-1			601-	Schist Bedrock - (mica +gtz rich)	BR	Biskoprap	
10						- 	- Vertical folicition		j.	
22				2.					Competent	
24	3.4					<u>`</u>				
26	1.4								Broken Up	
28	0	65/10	1220 C-2		30% ROD	Grey-			Competent	
30	0					green			J	[
32	0								Bolling	
<u> </u>	0			l	<u> </u>				Sitte up	
36	3.0			- -	20% RAD	gran-			¥	
38		5/10	۲-3		CU I I OF	gran			Competime	
40							-			
10 42						·	<u> </u>	·	Brokm-np	
					· · · · · · · · · · · · · · · · · · ·	 	├ <i>├</i>			
44	U				· · ·		├ ─── ↓			
46			EOB 454695							
48					l_,	L	L			

•

-- -

TYPE OF DRILLING RIG: S	onic				Brown & Root Environmental
METHOD OF ADVANCING B METHOD OF SOI L SAMPLIN METHOD OF ROCK CORING	IG: 4" vibrate + spin	end wash			
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	Depth interval	ohonge from	page 1. No recharge	from top 20 faut of bedrock.	BORING NO.: <u>210</u> PAGE: <u>2</u> of <u>2</u>
	····	. 1	1 1 1 +1 f 1		•

ĵ.												
			4 is an application of the property and the second seco			`.	· · · · · · · · · · · · · · · · · · ·	4.4	·			
												. .
PROJE LOGGE DRILLE	CT NO: _ D BY:	<u>7607*03</u> う _こ に M mpany/	LINØ Driller): <u>Alliance /</u>	TR	ANSCRIBE				ST. CC MC	MPLETION	<u></u>	
DEPTH (FEET)	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MATL CHGJ WELL PROFL (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR			USCS or ROCK BRKN	REM. (moisture con geological c	ARKS ndition; odors; lassification; vering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS]
	0.3	35/5	1550 S-1			Brown		link (<15%) growel (rounded to	SP	Daimp,		-
2	0.3	/3				L+ Brown	· · · · ·	ngular, < 2"digun), trace aspinit		Dry	it	:
	0.0							orgonics (grass), 3" fices of		Shell @	36497	
4							Concr	11. O 2.5 Flass no finas				
										, 	·····	
6	0.0	6/10	1605 S-2			. 		trade shells, li Hiz gravel (rounded		· 		
8	0.9	•					<1"die	<u>m</u>]				
<u> </u>	3.9				ļ			· ·	· · · · ·			,
10	1.0							•		<u> </u>		
	0.0					<u> -</u>	*		 .			
12	1.7									badding u	··sib]+	
						<u> </u>						
14						<u> </u>						
· · ·		-7	1(15 (2	ł								
16	2.1	7/10	16" S-3		· .	<u> </u>		l	ļ	l		
TYPE O	F DRILLING	RIG: S	onic						•		Brown & Root	Environmental
METHO	D OF SOI L	SAMPLIN	ORING: 6" + 8" vibrate, G: 4" vibrate + spin :: 4" vibrate + spin + wa		nd wash		-		•			
GROUN	DWATER L	EVELS:	=2K, 7++		94 - DTI			. I			BORING NO	: 21
	JUJLINA		·							•	PAGE:	of

ج

		-	······································				· ·			
			•		· .		$\mathbf{\hat{v}}$			
Proje Logge Drille	CT NO: D BY:	7607*03 ∑ <u>a</u> ⊈ f [⊄] mpany/	الدا\ه Driller): <u>Alliance /</u>	TR/	ANSCRIBE		· · ·	ST/ CO MC	RING NO. : <u>211</u> ART DATE: <u>10-10-9</u> MPLETION DATE: N. WELL NO.: ECKED BY :	7
DEPTH (FEET)	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MATL CHGJ WELL PROFL (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = (PID, Jar HS)
	25		S-3(cont.)		· · · ·	·		SP		
18	6,2									
20	5,1 1.0 1.9				· · · · · · · · · · · · · · · · · · ·					
	42		· · ·					<u> </u>	· · · · · · · · · · · · · · · · · · ·	
12	4.0					 	<u></u>			
24									· · · · · · · · · · · · · · · · · · ·	
						Gray		ļ		
26	4.4	10/10	16:5 S-4			<u> </u>				
28	2.8 1.9 0.6 4.4						+ +ray (m) Sand		· · · · · · · · · · · · · · · · · · ·	
30	3.0				-	DK	Vramic SILT 535% binn peat	OL	Organie Odar	
32	0.0		· · ·	. ·		UK Brown	Organic SILT + 53%			

TYPE OF DRILLING RIG: SONIC			Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash		
GROUNDWATER LEVELS: OTHER OBSERVATIONS:			BORING NO.: 211 PAGE: 2 of 1

			·	1	- • •					
	SLOG FO		ase 1 Groundwater					BO ST/	RING NO. : _ 211 ART DATE: _ <u>(6 - 10 - 11 -</u>	
LOGGE	D BY:			TR/	ANSCRIBE	D BY:		CO	MPLETION DATE:	`
	D BY (Co URFACE	mpany/	Driller): <u>Alliance /</u>		EVATION	FROM	•	MC CH	N. WELL NO.:	
	ORFACE	ELEVA			EVATION					· · · · · · · · · · · · · · · · · · ·
DEPTH (FEET)	PID PER	SAMP REC.	SAMPLING TIME	DEPTH MATL	SOIL DENSITY/		i	USCS	REMARKS	FIELD SCREENING
	6"	/ SAMP	& SAMPLE NO.	CHG/ WELL	CONSIS. or ROCK	CLR	MATERIAL	ROCK	(moisture condition; odors; geological classification;	DATA
32	(ppm)	LENG.	(QA/QC STATUS)	PROF'L (ft)	HARD.		CLASSIFICATION	BRNN	rock weathering; etc.)	METHOD = [PID, Jar HS]
	2.1		5-4 (cart)		Med. Plost.	pk Prous	Brganic Clay (Fat)	OH	Organic Oder	
34	3.3							· · · ·		
-27	3,4						(E) (DAID	SP		
	1.1	10	1450 5-5				(f) SAND			
36	0.9	14/10	11° 3- 3		low physin.	51020	Silt little clay little plat trace	OL		
	23						(f-c) sand, trace rounded graval			
39	3.6									
	4.9						little (f-c) sand, trace pead		·	
40	6.0									
	7.2				high plast.	904	CLAY and SILT, little (F-1) sound, track	OH		
42	3.7				F	- <u>r</u> r	nonver (rounded, < " diam)			
	3.8									
44	3.8						· ·			1- 115
	5.2					bray	SILT and (F) SAND, trace grover log-moded	MUSE		45-475
46	10 1	7/10	1488 S-6				(Yy dim), trace clay			
	2.8	11								47.5-50.0
48	7.4									4.9
<u> </u>	4. 5		L	L	l.,	L	I	L	L	<u> </u>

. .

.

TYPE OF DRILLING RIG: SONIC	· · ·	(Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash		
GROUNDWATER LEVELS: OTHER OBSERVATIONS:			BORING NO.: 2 [/ PAGE: 3_ of 1

PROJE LOGGE DRILLE	CT NO: ED BY:	7607*03 Jou 内ィ Ompany/	∟)(₀ Driller): <u>Alliance /</u>	BORING NO. : 211 START DATE: <u>10-10-97</u> COMPLETION DATE: MON. WELL NO.: CHECKED BY :						
DEPTH (FEET) ҶѴ҉	PID PER 6" (ppm)	SAMP REC. 7 SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHGJ WELL PROF'L (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD.	 CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENIN DATA METHOD = [PID, Jar HS
	6.4 4.0					gray	ESAMD and SILT trace Elgravel	SP/ML		12.5
50	<u>43</u> 58				·	 			-	50-52.5
	4.4			· ·	·	 	/			
52	7.2]				<u> </u>				52.5.55
54	4.0	1			·	<u> </u>	(F.c) SAND and little silt, trace graves	SW		6.0
	が						(ASKOD and Silt, trace grand) (4-c) SAVD 1: H& Silt no grand	SP		55-575
56	64	69/10	17°° S-7				(E-C)SAND, trace site trace randed arough			1.7
	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		bottom 3ft							
58	1.6	1	lost while retriculng			L				575-00
	4.2 5.6 3.9		Sample 30		:	<u> </u>	-			3.8
60	7.6				, 	Bown				60-62.5
1	8.3		grainsize				- little arevel (rounded,			4.3

TYPE OF DRILLING RIG: SONIC METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash	Brown & Root Environmental
GROUNDWATER LEVELS: OTHER OBSERVATIONS:		BORING NO.: 2-11 PAGE: of
	-	

PROJE LOGGE DRILLE	CT NO:	7609 # Juc 14 ompany/	۲0320 ۱/۱/۵ Driller): <u>A</u>	TR	ANSCRIBE	ED BY:	. Ray мог. <u>ХИД</u> :	ST. CO MC	RING NO. : <u>2 </u> ART DATE: <u> 6- /0-9</u> MPLETION DATE: DN. WELL NO.: ECKED BY :	<u> </u>
DEPTH (FEET)	BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHGJ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD =
			S-7(cont.)							•
66	4.9	10/10	0745, 10 -11-97	[Bow	(FC) SAND some gravel (rounded, <2"dim)	SW		65-67.5
 	3. n <u>4.6</u>		S-8 .			 	no fines	ļ		0.0
68	4.7	[]	F			Yellowiny	· · · · · · · · · · · · · · · · · · ·			625-70
70	4,6	}				ange		SP		0.0
10	17		-			┼╌┼╴	(PSAND, no fines, no growd	17		72.5
72	8.0 5.6					┟╌┼╴	(F-c) SAND some grown (rounded, <1" diam.)	5~	ho fines	
	5.5	[]			•		(F)SAND, no Fines, segrand	SP		5.4 5.4 75-77.5
71	12									5.1
	66	L						· .		75-77.
76	3.3	9.5/	S-9.			$\left - \right $		 		- 1.1
78	2.2					┟╌┠╴			· · · · · · · · · · · · · · · · · · ·	- 77.5-80.
18	5,9					┼╌┼╼	(f-c) SAND some growel (rounded, =1.5" dim)	51.)	· · · · · · · · · · · · · · · · · · ·	3.2
80	-17					┟┼╴	(t-c) SAND Some Gravel (rounded, Sis ding)			· ·

TYPE OF DRILLING RIG: SONIC	1.		Brown & Root Environmental
METHOD OF ADVANCING BORING: METHOD OF SOI L SAMPLING: METHOD OF ROCK CORING:	-	 ·	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	/	. 1	BORING NO.: 211 Page 5 of 11
	•	:	

PROJE LOGGE DRILLE	CT NO:	7609 x Joy 1 ompany	<u>#032</u> 0 <u>mu\lo</u> /Driller): <u>A</u> L(L	TR			Raymorn 12	ST/ CO MO	RING NO. : 21 ART DATE: 10-10- MPLETION DATE: N. WELL NO.: ECKED BY :	<u>.</u>
DEPTH (FEET) 80	BLOWS PER 6"	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG <i>J</i> WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weethering; etc.)	FIELD SCREENING DATA METHOD = [P]] To HS
82 84	3 22 2 17 17 14 6.8		S-9(^{(un+,})			Y . Am 1	(f-c) SAND, 50% gravel (muled, <2" 5 dimm), he fines	5₩		80-82.5 6.0 82.5-85
88	0.2 0.3 5.1 0.9 1.2 2.2 0.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	10/10	0835 <u>5-</u> 10				f-C) SAND IIHE growd (romled <1"diam) S trace silt	SW	· 	6.4 95-87.5 4.8 87.5-90 5.6
	23 16 1.5 6.4 38 42 12 12 16 44						(f) SAND 1:44 < K& silt, ho ground S (A-M) SAND, trace <38 silt, he ground S	P SP		40-925 6.9 97.5-95
96	18	9.5/10	0855 S-11							23
METHO	DRILLING	NCING B	ORING: ZIG: 7 CLL	page	1.	<u> </u>	· · · · · · · · · · · · · · · · · · ·	×. 	Brown & Root	
GROUN	DWATER L OBSERVA	EVELS:						•	BORING NO Rage 6 of	D.: <u>211</u>

1			TION:		EVATION	FROM			ECKED BY :	
ертн Еет) 16	BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG <i>J</i> WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENIN DATA METHOD =
*	0.0 4,2 16		S-11 (cont.)		:	yellowith Orange	f-JSAND, trace gravel (rouded < Xy diam)	SW		95-97.5
18	17		-				trau silt			7.1
0	13.4 78		-				f) SAND, Leave Silt, ne gravel	SP		47.5-100 47.5-100 43
z	37 21 31	 	grainsize 100-102.5							100 - 102.5
4	15 33 40 36 21		100-107. 5							100 65
6		7.5/	0920 S-12				(FIM) SAMD, no silt, trace groud	SP		102 5 1
8	<u>u.</u> 0.0 0.0		••		 		(rounded, < /4" diam)			105-107.5 NS
	3.0 0.0 7.3									107.5-110
0	<u>156</u> <u>3.3</u> 11					v				3
2	21		•		· · · · · · · · · · · · · · · · · · ·	· · · · ·				110-11-5
		RIG: 50	ANTC			· · · ·			Brown & Root	Environmente

ILLED BY): <u>7607</u> <u>Joc</u> (Company/ CE ELEVA	Driller): <u>ALLE</u>	TR Arree /	ANSCRIBE	D BY:		CO MC	ART DATE: <u>10-10-</u> MPLETION DATE: N. WELL NO.: ECKED BY :	
	VS SAMP	SAMPLINO TIME & SAMPLE NO. (QAVQC STATUS)	DEPTH MAT'L CHG/ WELL PROF'L	SOIL DENSITY/ CONSIS. Gr ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN SP	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = []
119		_			felburge orange	(f-m) SAND 15 11 ground (rounded, <1" diam) trace 5:11	58		6.7
16 5.5 0.0 1.1	6/10	1000 5-13	-			(f-m) StWD, truce silt, no gravel	st.		115-1125
118 16 17 31 31						(E-c) SAND and GRAVEL (muded, < 1"dian) + C3 & silt	Stud/Ga		13
10 57						tru) SHIND little (<156) gymes (randed, < 3/8" diane), traces sitt	SP		10-122.5
124							· · · · · · · · · · · · · · · · · · ·		111.5-125 8.2 8.2
126 6.7.	4.5/10	1015 5-14				(F-C) SAND some grovel (rounded, <3" diam) little Silt	SW	× *: (13
28 <u>9</u> 7 28 <u>9</u> 7		•				-5 airm 11: tile >ilt			
YPE OF DRILL IETHOD OF AI IETHOD OF SO IETHOD OF RO	VANCING BO	DRING: Z SOD	page	1	· · · · · · · · · · · · · · · · · · ·		· .	Brown & Root	Environmental
BROUNDWATE OTHER OBSER	R LEVELS:	· · ·			•		·····	BORING NO	D: <u>211</u>

							·- ·			
							·			· · ·
BORING	S LOG FO	DR: Pha	ase 1 Groundwater	Investio	ation			во	RING NO. : 211	• , .
PROJE	CT NO: _	7607*03	20					ST	ART DATE: <u>10-10-97</u> MPLETION DATE:	1
DRILLE	D BY (Co	mpany/l	Driller): Alliance /	Ren_	Ball			MC	N. WELL NO.:	
	URFACE				EVATION	FROM	:	3000000000	ECKED BY :	
DEPTH (FEET)	PID PER	SAMP REC.	SAMPLING TIME	DEPTH MATL	SOIL DENSITY/		MATERIAL	USCS or	REMARKS (moisture condition; odors;	FIELD SCREENING
128	6" (ppm)	/ SAMP LENG. (ft)	& SAMPLE NO. (QAVQC STATUS)	CHG/ WELL PROF'L (ft)	CONSIS. or ROCK HARD.	CLR	CLASSIFICATION	ROCK BRKN	geological classification; rock weathering; etc.)	DATA <i>METHOD =</i> [PID, Jar HS]
<u> </u>	95 159		5-14 (cont.)	1	· ·	Willing O Sano				127.5-130
130	235							1		-11
	<u></u>		•				· · · · · · · · · · · · · · · · · · ·			130 - 132 5
132									· ·	-50
										135
134										132 5- 135
										8-
136	270	10/10	1025 5-15				(f-m) SAND train sitt no gravel	SP		135-137.5
	672 436 395		. NIL			<u> </u>				304
138	227		grain size 135-139				× × × × × × × × × × × × × × × × × × ×			307
	328						F-OSAIND, trace (f) group, tracisit	SW		151.0
140	286						((ALID < 30%)) <3%			140-142-5
142	119		<i>,</i>		· ·		f-c) SAND some (f) gravel, trace site	SW		
110	186 138 276						10	ct.)	· · · · · · · · · · · · · · · · · · ·	1425-145
144	315 87 95						(f) SAND some sitt 1: He silt 1: the	SW		1423
	<u>95</u> 64		· · · · · · · · · · · · · · · · · · ·		L	\downarrow	(+)SAND some sitt 1: Hle silt, 1: tile grown (runded <3" diam)	SP		
TYPE O	F DRILLING	RIG: S	onic				dana (Mana and Mani)		Brown & Root	Environmental
METHO	D OF SOI L	SAMPLIN	ORING: 6" + 8" vibrate, IG: 4" vibrate + spin 5: 4" vibrate + spin + wa		id wash					3
	DWATER L								BORING NO	
	SUGENVA	10113.							PAGE:	9 of 11

-

st. a i

PROJE LOGGE DRILLE	CT NO:	7607*0: Ĵ€₹/_] ompany/	Mulle Driller): <u>Alliance /</u>	- TR	ation ANSCRIBE ເອັດ.ນ EVATION			ST. CO MC	RING NO. : 711 ART DATE: <u>0 - 70 - 10</u> MPLETION DATE: DN. WELL NO.: IECKED BY :	17
DEPTH (FEET) 144	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MATL CHGJ WELL PROFL (R)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR		USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS
			S-15 (cont.)			Goog	SILT some (f-0) sond, some gravel (4"dian)	ML	Boulder @ 144 Fbas	145- 147
146	60	45	1150 5-16				trace Clay			109
148	Wer				·	<u>`</u>				147.5-15
	150				· · · ·					231
150				}	· · ·	9K gray	Wenthered bedrock (schist)			
		5/10	140° C-1	4	0%. RQD	7-7-	Schist (mice + gtz) rich	3 Ř		
152		1 / 10					-horizontal feliation			
						• •	· · · · · · · · · · · · · · · · · · ·			
154		1								
		1							· · · · · · · · · · · · · · · · · · ·	
156	<u> </u>					. 		<u>.</u>		
176										

TYPE OF DRILLING RIG: Sonic		Brown & Root Environmenta
METHOD OF ADVANCING BORING: 6° + 8° vibrate, spin, and wash METHOD OF SOI L SAMPLING: 4° vibrate + spin METHOD OF ROCK CORING: 4° vibrate + spin + wash		
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	<u></u>	BORING NO.: 21) PAGE: 10 of 1
	······································	<u></u>

-										
	7									
PROJE LOGGE	CT NO: _ D BY:	7607*03 Jun 1	Mello			D BY:	·*	ST/	RING NO. : 21) ART DATE: 10-10- MPLETION DATE: 10-	47
DRILLE	D BY (Co	mpany/	Driller): Alliance /	Ron	ANSCRIBE			MO	N. WELL NO.: 211 B	
DEPTH (FEET)	PID PER 6"	SAMP REC. / SAMP	SAMPLING TIME & SAMPLE NO,	DEPTH MAT'L CHGJ WELL	SOIL DENSITY/ CONSIS. or ROCK		MATERIAL CLASSIFICATION	USCS or ROCK BRKN	ECKED BY : REMARKS (molsture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD =
160	(ppm)	LENG. (ft)	(QA/QC STATUS)	PROF'L (ft)	HARD.					[PID, Jar HS]
		5/10	145° C-2		0% RQD	Gory	Schist (mica + gte rich)	BR		
162							- horizontal foliation			
									Very broken up	
164									¥	
166										
168										
	·			-						
170		h					N/			
			EOB 171							
172										
174					-					
175		~					,			
176		_ ·					······································			
·			· · · · · · · · · · · · · · · · · · ·						Brown & Poot	

TYPE OF DRILLING RIG: SONIC		Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, and wash METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash		
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	· · · · · · · · · · · · · · · · · · ·	BORING NO : 211 PAGE: 1 of 1

.

			/ ··•						PgloF	0		
	PROJE LOGGE DRILLE	GLUGF CTNO: DBY: DBY (Co URFACE	9609 eff Ma mpany/	eMany Driller):	15	TR. '#~< <i>E</i>	ANSCRIBE	D BY:	······································	ST. CO MC	RING NO. : <u>2.12</u> ART DATE: <u>09.125.1°</u> MPLETION DATE: <u></u> N. WELL NO.: ECKED BY :	17
	DEPTH (FEET)	PID PER 6 (PPM) SL REDIVIS	SAMP REC. / SAMP LENG.	T SAMF	PLING IME & PLE NO. STATUS)	DEPTH MATL CHGJ WELL PROFL	SOIL DENSITY/ CONSIS or ROCK HARD	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD =
[-	6.1 5,8	3.5	1148	T	\$ "		DK BRN.	ORGANICS, SAND, DRY	SW	DRY	
51 -	2	5.5	35		5-1	3.0'		phony	GRAVE , POORly GRADED, DRY.	GP	DRY	
	3.	3.4				50			· · · · · · · · · · · · · · · · · · ·	· .		
}	4	14,6	1'8"				· · · · · · · · · · · · · · · · · · ·		¥			-
52_	5			1159	5-7			Prouv	GRAVELY SAND	SW	moist	
Ļ	6	18.1	30	-						┢╧═╸		
	7	4.3						(aborno)	@men sand, with stones	<u>5W</u>	BROWN, MOISTIN	t
	8	227										
	9	47.6	1.41					8401			and the t	
53_	١¢	68,2	46/	1320				beaut	COARSE SOND with GRAVEL	51	Repoist brown	
~		70.7	10		5-3							
	12	48					• 			 ,		
	13	87						Respective	_	┦────	REDOIST / WET	
	_14	48						. Beon	megium sand	SP	REDOISHIDROWN	
	15	33								· · ·		
L	16	132			<u>i</u>				¥		I	
:		FDRILLING						• .			Brown & Root	Environmental
Ĩ	METHO	D OF ADVA D OF SOIL D OF ROCK	SAMPLIN	G:								
		DWATER L OBSERVAT							1		BORING NO	<u>:58-212</u>

١

DRILLE	D BY (Co URFACE	mpany/	<u>r Manus</u> Driller): <u>ALLE</u> TION:	WCE	ANSCRIBE		· · · · · ·	MC	DMPLETION DATE: DN. WELL NO.: IECKED BY :	
DEPTH (FEET)	PID PER 6 (PIM) Screening	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG./ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENII DATA METHOD [JH5/PJ
17	12		1345	17/		REDI	MUD SOND	5P	wet	
18	11.A					brown	COARSE SONDY BGRAVEL	GW	wet	
19	5.6							•	1	
20	20.4	8/					· .			
21	23,4 29,6	/16								
22	8.9		;							
23	17.0			-						- <u></u>
24	26.9		·					·		
25	65									
26	74.5					¥	¥		V	
27	2.2		1420			Jeans	copesel sand	SW	wet	
28	50 9,0 9-1								· · · · · · · · · · · · · · · · · · ·	
29	10.8									
30	110						COARSE SON DY GRAnel	GN	wet	
31	12.9				·				<u> </u>	0.8%
32	13.5					tan			wet	
TYPE O	F DRILLING	RIG: 50	Ohic		· · · ·				Brown & Root	Environmer
	D OF ADVA D OF SOI L		G:	,	·	â				

	GRD. S		ELEVA	Driller): <u>ACCL</u> TION:	EL	EVATION	FRON			N. WELL NO.: ECKED BY :	
	DEPTH (FEET)	PID BLOWS PER 6 (PPM)	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG/ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PPm] JHS
	47	7.8					Berny	Fivesand	5P	30:4(46-485)	38.4 (46-48
	48	36.3									
	49	145						· · · ·		278(18:5-51)	27.8 (48.5-5
	50	151	9.5/								-
	51	66.6	/10		50.5_		TRN	Fine sand, trace GRAVEL	SP	、	
	52	32.5			51.5_		822	FINE SAND	SP	8.4.1 	17.1 (51-53.5
	53	55.7				•					
	54	84.8 27.0			535-		Ban	FINE SAND	SP		28.3(53.5-
	65	11,2 127 146								BROWN with IRON Story Streak	s(Rep)
┢	<u>56</u> 57	<u>99</u> 219		· .			Rect	FINESAND			11.1 (56-59)
	58	36 28.4 51.2	6/5	-			542				
	59	14.0 19.7	-15				PLOJ GREV	Five san Dano (motiled)		Possibly Galance	8.8(59-60)
\mathbf{h}	61	24.6			· .		GROCH	FAMILE COMPRESSED Calcity with CAVISTALS OF GOILD TO WITH CAVISTALS OF GOILD TO WISHIDATOR ROCK		Possibly German	3.5(40'-61')

TYPE OF DRILLING RIG: SONIC	Brown & Root Environmental
METHOD OF ADVANCING BORING: METHOD OF SOI L SAMPLING: METHOD OF ROCK CORING:	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	BORING NO.: <u>48-212</u>

. ..

.ogge Drille	D BY: D BY (Co URFACE	mpany/	Driller): <u>ALL</u>	TR #~ <i>⊆Œ</i>	ANSCRIBE	D BY:	·	<u>x ous</u> <u>pg S of 6</u>	START DATE: <u>9/a#/99</u> COMPLETION DATE: MON. WELL NO.: CHECKED BY :			
DEPTH (FEET)	BLOWS PER 6		SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)		SOIL DENSITY/ CONSIS. or ROCK HARD.			MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARH (moisture condition geological classifi rock weathering	n; odors; SCREENING ication; DATA	
2						GREY	schi	6824,	Booken Rock			
3	•	1.5% /5							·			
24		15					┟╌╌┠			-		
<u>,5</u>							╞╧╼┨					
26		· · ·	·							• .		
7								Lost 1' of recovery				
8 ,9		3.			·		60	weathered				
<u>я</u> Ю		-110-			·			in quartite				
71		ر_					INTEL	DUS- CONGLOMERATE	· · · · ·			
72			· · · · · · · · · · · · · · · · · · ·		·		1	THEFTE, KIKILE,		-		
73			· .		·····					<u></u>		
14		· ·						· · · · · · · · · · · · · · · · · · ·				
45				<i>.</i>			-					
76				· -	,						·	
				•			-			·	· · · ·	
TYPE OF	DRILLING	RIG: 50	0hIc	<u> </u>	·		<u> </u>	· · · · · · · · · · · · · · · · · · ·	·	Brown	& Root Environmental	
METHOD) OF ADVA) OF SOI L) OF ROCK	NCING BO	DRING: G:			φ γ	· . ·			(
GROUN	OWATER L		· · · · · · · · · · · · · · · · · · ·							BOF	RING NO .: 58-212	

REC. / SAMP SAM	MPLING TIME & IPLE NO. C STATUS)	DEPTH MAT'L CHG <i>I</i> WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification;	FIELD SCREENING DATA
		·				Dittat	rock weathering; etc.)	METHOD =
			•	LEAN	SILT, MEDIUM plasticity	ML	wet	10.7(3)
		· .			.			V
		346		Barry	FINE-MEDIUM SOND	3W	wet	
								4.8 (34.
								9.7 (36-38
		· · ·		Ben	Medium sans	58	-	
								1
								12.7 (38.5.
	•	. [
		-40.5-	•	BRUN	UPPEL SAND	- <u>5</u> P	-	
						с,		10.4 (411-43
		-42.5-	·		¥		- '	
	м.,	·		BRUN	Finesano	SP.	、 	•
		, ,	-					43,7(435-41
		46_						
•						•		
RIG' CANTC							Brum & Daat	Envimonatel
			-42.5- -46 RIG: 50NIC	-46	-46	-40.5 -40.5 -42.5 -42.5 -46	-40.5 -40.5 -42.5 -42.5 -46	-ep.5 -ep.5 -y2.5

GRD. S	D BY (Co URFACE	mpany/	Driller): <u>ACC</u> TION:	EL	EVATION	FRON	6 of t		MON. WE	ELL NO.: D BY :	
DEPTH (FEET) }6	BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO, (QAVQC STATUS)	DEPTH MAT'L CHG <i>I</i> WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD	CLR	MATERIAL	USC OI ROO BRI	CS F r (moist CK geok	REMARKS ture condition; odors; ogical classification; k weathering; etc.)	FIE SCRE DA METI
77							GREENish broken schist, w/ quartzite intrusions	Brd	- 1		
78			[1	Pa	a		
79								17			
80											
81											
82											
83											
84				•							
85							· · ·				
86			· · · · · · · · · · · · · · · · · · ·					-1			,
										RE33.1'@ 1828	
										, to bottom of hole	
			• .						525	5 GAILONS OFW	atori
					-		· · · · · · · · · · · · · · · · · · ·				•
								•			

. . .

.

......

• .

÷ (

METHOD OF SOI L SAMPLING: METHOD OF ROCK CORING:	2	· · ·		,	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:			i		BORING NO .: 218

: ~

					涛	
•	•	a	. •	. :5		

F	PROJE LOGGE DRILLE	CT NO: _ D BY:	7607*03 ∑₀ レ № mpany/	20 1 ullo Driller):	oundwater	- TR	ation ANSCRIBE & A\\ EVATION		· · · · · · · · · · · · · · · · · · ·		9 (BORING NO. : 2/3 START DATE: 10-21-0 COMPLETION DATE: MON. WELL NO.: CHECKED BY :	17
Γ	DEPTH (FEET)	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	SAN T SAMI	APLING IME & PLE NO. ; STATUS)	DEPTH MAT'L CHGJ WELL PROF'L (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIA	L	USC or ROC BRK	S REMARKS (moisture condition; odors;	FIELD SCREENIN DATA METHOD (PID, Jar HS
	2 Ч		Ч/5	0835	5-1			PK Brown Xellaris brange	(F-C) SAWD some grad		SM SP	l dry	
	6	0.3 Ø.0 2.4 13.9 40 71	6/10	08 ⁵⁰	5-2				↓ (f-m) SAND 1, H4 ⁶¹⁵⁹⁴ 5;	<i>I</i> + '		Asphalt in top of Sample, obviously Sbush from surface - 2.5 feat of Slough	
	10	1,1 5 8 9,9 11,2 6.6		- - -								· · · · · · · · · · · · · · · · · · ·	
_	14	0.3	6/10	69 ⁰⁰	5-3	-			F-w)SAND 11Hhc 5%5			a pisce of it growt rounded a pice of "growth	

· · ·

.

METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, and wash METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	
GROUNDWATER LEVELS: 64 @ 20 Flags during direct pron profile program in Angust. OTHER OBSERVATIONS:	BORING NO .: 213
2-Webs installed Win SB-213: MW-213B + MW-213S	PAGE: of

•

•

									ć	, - w [*] .
BORIN		OR· Ph	ase <u>1 Groundwate</u>	r Investio	otion			BO	RING NO - 2/3	
PROJE	CT NO:							ST	RING NO. : 213 ART DATE: 10-21-9	7
logg Drilli	ED BY: ED BY (Co	mpany/	Driller): <u>Alliance /</u>	TR	ANSCRIBE	D BY:		CO	MPLETION DATE: N. WELL NO.:	
	SURFACE			EL	EVATION	FRON	:		ECKED BY :	
DEPTH (FEET)	PID PER 6"	SAMP REC. / SAMP	SAMPLING TIME & SAMPLE NO.	DEPTH MAT'L CHG./ WELL	SOIL DENSITY/ CONSIS. or ROCK	CLR	MATERIAL	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification;	FIELD SCREENING DATA
16	(ppm)	LENG.	(QAVQC STATUS)	PROF'L (ft)		JACAN	CLASSIFICATION		rock weathering; etc.)	METHOD ≈ (PID, Jar HS)
	00		(Lont.) 5-3				(f-m) SAND trace silt	58	· · · · · · · · · · · · · · · · · · ·	
18	5.3	1	Control of the second s				(F-c) SAND, little gural i punded < 3/4" dian			
	1.2	1		· .		┝╼╞╼	fran gilt	1		
20	11.9 19.3 21.9						(F) SAND, +- out silt, + -ou (m) Sand	5P	Wet Meist	
	20.6					┝┼╼				
22	4.4						(F) SAND Some Sitt	5M		
			· · ·				(f-c) FAND, linfer (f) ground, troce silt	5W		
24		1	brain bick				(F-c) GRAVEL al (F-c) SAND) (HLE S. H	GW		
]								27
26	0.8	4/4	S-4	Ť			(F-C) SAND trave (f) grand true silt	SW		26-27 808 ppm 28-29 1.1 pm
	9.9 22.9]/ 7					(A) SAND trace silt	SP		
28	279		Grain size				(E-C) GRAVEL and (E-C) SAMP 1. HE SIL	GW		28-29
	4.2	1			· · · ·		(m) SAND, trow (F) groved, trow silv	SP		1.1 m
30		5.5/6	(-1	ł	50% ROD	GMY	Schist (Micq + &tz rich)	BR	Broken - Mp	
							-Vertical foliation	<u> </u>	Competent	

TYPE OF DRILLING RIG: Sonic		· · ·	•	Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 6" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash			
GROUNDWATER LEVELS: OTHER OBSERVATIONS:				BORING NO.: 2/3 PAGE: 2 of 3

			· .	•						
								•		۱ ۱
	·									
BORING	G LOG FO	DR: <u>Ph</u>	ase 1 Groundwate	r Investia	ation			BO ST	RING NO. : 213 ART DATE: <u>/6-21-9</u>	7
LOGGE	D BY:	Joe		TR.	ANSCRIBE			CO	MPLETION DATE:	• <u>•</u> ••••••••
GRD. S	URFACE	ELEVA	TION:		EVATION	FROM	:	CH	ECKED BY :	
DEPTH (FEET)	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QAVQC STATUS)	DEPTH MAT'L CHG/ WELL PROF'L (R)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA <i>METHOD =</i> [PID, Jar HS]
34			(cont.) Cont			gray-	Scheer - (Mint QTz Rich)			<u></u>
36		241.0	135 0 2		0% ROD		- Vertical foliation			
38		×/{S	1 C-2						7/5 Some Ruy Lumith	
40		a/	120 6-3	t	··· ·					,
42		8/10	p" (-3	. •	20% ROD	.			Boken- Np	
44		-1.							· · · · · · · · · · · · · · · · · · ·	•
46						. -			·ν ·	
48					<u> </u>			<u> </u>	Competent	•
50		2/	1310 C-4	t	16% RQD				compitant	
52		2/3			ļ		ļ	· ·	Bokn-up	
54			63 EOB		·		V		V	
56							· · · · · · · · · · · · · · · · · · ·			·.
58					· · ·					
60		,			·					•
62	· · · · · · · ·			· ·	· ·			· .		
.64				<u> </u>			L			<u>,</u>
TYPE O	F DRILLING	RIG: S	onic		: 	·			Brown & Root	Environmental

METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	j and wash	· · ·	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:			BORING NO.: 213 PAGE: 3 of 3

• . •

GRD. S	D BY (Co URFACE PID BLOWS	ELEVA	TION:		El		FRON	Л: 		CH	IECKED		
DEPTH (FEET)	PER 6"	REC. / SAMP	SAN	MPLING TIME & MPLE NO.	DEPTH MAT'L CHG/ WELL	SOIL DENSITY/ CONSIS. or ROCK	CLR		MATERIAL	USCS or ROCK BRKN	(moistu	EMARKS re condition; odors; ical classification; weathering; etc.)	FIELD SCREENING DATA METHOD =
0	(ppm) 5	LENG. (FP) 8//	1	S-1	PROF'L (F+) 0.13	HARD.	Black		aft Surface			. ,,	<u>[</u>
2		8/6		9-T	<u></u>		Black	J"T	app Surface Nc (f-c) SAND go no Fines((30%), some title provel (c 15%) (sub counded < 14 diam)	SM	Wet	to moist	.
		1	•				1,05%	(5-1)	SAND and GRAVEL (rounded to	SW	Dan		-
4		1	l						brounded, <4" diam) trace fines		Dom	/	†
	<u> </u>				1			\					-
6	<u> </u>	106	0089			·							-
		19/9	09**	S-2		-		·		┨┨			-
8	5].	}				┼┼╴	·		┨┨	╂──╂		-
. 10		ł							··	$\left - \right $	┼─┼		- .
						,		<u> </u>					-
12	10	1 ·				· .	•						~
	5	1			¶ ·	• .							_
14			ĺ.				<u> .</u>	· _ ·		 _ 	 		-
	15	1	0930	A >	1 15		Velkut	H ()			<u> </u>		-
16	15 2	10/10		S-3	· · · · ·		Orma		SAND little gravel (rounded, < 1"dram) a Gines < 3%	ISW	Domp	to moist	
TYPE O		3 RIG: 🗲	SHIC				. 70.0		,		-	Brown & Root	Environmental
METHO	D OF ADV/ D OF SOIL D OF BOC	ANCING B . SAMPLII K CORING	IORING: NG: Yu'	Vibrity 9 1 Core -	Vibrate,	spin y Wi	1 307 114 (71	ex en	"+, 55 F45 Y) to 56 fbgs				3
						-7-97, 04						BORING NO	214

RD. SI	URFACE	ELEVA	Driller): <u>ALLC</u> TION:	EL	EVATION	FRO	<u>M:</u>			ON. WELL NO.:	
PTH EET)	PID BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG./ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR		MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENIN DATA METHOD =
	2-5		S-3(cont.)								
Ś	3			· *						More fines	
	9				· · ·					Wet	
	9 20	-		±u	<u>,</u>		<u> </u>		*		-
	13					Jeller Ome	m	SAMD, trace (f) Sond, trace fines, lograce	SP	wit	
	40	-									ł
	30						ļ.				
	2	-							_		-
	·		<u></u>						_		Ļ
	18 10.1 6.1	8/10	10° S-4		· .		-	V	¥		
	20	-	. ,			┞┨		c) SAND, fine gravel (rounded to sub-model	SW		ŀ
<u> </u>	38	-			·			<0.75° dinm)	<u>_</u>	V	ŀ
-	46.4				· · · · · ·		<u>(m)</u>	SAND, no Fines	SP	W/grave)	\vdash
>	62			, .	· ·		<u> `</u>			·	-
	75 52		** 1	,			, 		<u>SP</u>	No gravel	-
[]	l	•			¥	<u> </u>	V		<u></u>	

· . .

. . .

GROUNDWATER LEVELS: OTHER OBSERVATIONS:

•

BORING NO.: 214 Pare 2 of \$

BORING	FC و	DR: <u>P4</u>	ase 1 Grounde	ater I	investig .	hior	Ray	Horn UD		BOR	ING NO. :	-
PROJEC	CT NO: _ D BY:	1604 4	0320		ANSCRIBE				•	STAR	RT DATE: <u>/// 7~ 1 7</u> IPLETION DATE:	
DRILLE	D BY (Co	mpany/l	Driller): <u>A L (r</u>	ANCE	Ron B	a))				MON	I. WELL NO.:	
<u>GRD. SI</u>	JRFACE	ELEVA		EL	EVATION	FRO	M:	· · · · · · · · · · · · · · · · · · ·		CHE	CKED BY :	1
DEPTH (FEET)	PER 6	SAMP REC. /	SAMPLING TIME &	DEPTH MAT'L CHGJ	SOIL DENSITY/ CONSIS.			MATERIAL	RO	аr XCK	REMARKS (moisture condition; odors; geological classification;	FIELD SCREENII DATA
32		SAMP LENG. (147)	SAMPLE NO. (QA/QC STATUS)	WELL PROFL	or ROCK HARD.	CLF		CLASSIFICATION	BRI		rock weathering; etc.)	METHOD
24	62075	~				radd Oran	# (m)	AND , no fines		~	W/grqvel	ļ
34		n	-						SF SF		No march	
36	70 0. 8.	19/10	1030 5-5	•					SP		no gravel	
	24	₩ ₩	37.5-39					AND and GRAVEL (rounded to subrough	<u>g</u> 5W	v (Fine grovel	(24.1)
38	65.1		-				21	lionn) nofines				
	80.6	-	58-214-3941 - grain 4720			┝╌┝		AND no Finasi no gravel	SI		no gravel	
40	73 37		-				<u>_</u>	· · · · · · · · · · · · · · · · · · ·	S		no gravet	
42	43					┝╌┼╴		······	┽╂			67
	51											The second secon
44	64 56					1	- 			<u> </u>		
46		8/7	P45 5-6			reduce		·	S P		no gravel	-33.7-
	33.5	Heria					_	nd and some silt (C30%), some	SN		w/o clay	t

· ·

...

TYPE OF DRILLING RIG: SONIC	<u> </u>	Brown & Root Environmental
METHOD OF ADVANCING BORING: METHOD OF SOI L SAMPLING: METHOD OF ROCK CORING:	Esie page 2	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:		BORING NO.: 214 Page 3 of \$

48 12.6 23 50 47 91.0 69.9 36.7 52 20.1 22.1 22.1 23.6 15.0 54 37 33 13 56 	3.5/4	S-6 (Cont.) C-1			ct gray Fray	(angular 1 Clay ^{<15} SCHIST	to sounded (bos %. - mica + g	ne grevel 230% -J.<3" diam) 1146 -tz rich	SM-SC BRB	wfclay	8.2/4.8
50 90 91.0 69.9 16.7 20.1 52 22.4 25.6 15.0 54 27 54 33 13	3. <i>5</i> /4				Group	Chy «15 SCHIST	"lo. - mica + g		2 Pg		8.2/4.8
52 52 52 52 52 54 54 54 57 54 57 53 53 53 53 53 53 53 53 53 53	3. <i>5/</i> y	C-1			Grand	SCHIST	- MICA & g	te rich	899		8. 2/4.8
52 286 15.0 54 33 13	3. <i>5</i> /y	C-1	• •	· · · · · · · · · · · · · · · · · · ·	Grand	SCHIST	- mich & g	to rich	12 P 2		-
54 <u>37</u> 33 13	3.5/4	C-1							1218	<u> </u>	-
					1	·	- Vertical	folgetion	· .	·	
	-			·		· •		<u> </u>			-
56 	1	4				· .		* *			- -
	- ·		-				, 	· · · · · · · · · · · · · · · · · · ·		Fracture Zone 1ft think @ 55.0 fg	E ·
	1							*, 	· ·		- ,
	-			· ·	·		·			·	- ·
	1					· · · · · · · · · · · · · · · · · · ·	······································	· · · ·			-
	4		· · ·			r	· · · · · · · · · · · · · · · · · · ·	<u></u>		· · ·	-
	4							<u> </u>			-
····	1 .						· -				-
<u></u>	1	,						. •	·	•	_
	1	•	:			к. 		<u> </u>			· · · · · · · · · · · · · · · · · · ·
TYPE OF DRILLING	G RIG: 5	SONIC					····	<u> </u>		Brown & Root	Environmental
METHOD OF ADVA METHOD OF SOIL METHOD OF ROCI	ANCING B	BORING: 2 Ser	Page	1							3

• _____

			: .								
BORING	: FC LCus FC	DR: PA	ase 1 Grandy	nter I	ivvestig .	tion .	Raymorn OUD		во	RING NO. : 2/5	
PROJE		7607	40320						ST	ART DATE: <u>10-6-9</u>	7
			<u>42 0</u> Driller): <u>4L(</u>		ANSCRIBE	D BY:	e			MPLETION DATE: N. WELL NO.: _2/5	····
	URFACE			EL	EVATION	FROM	:			ECKED BY :	,
DEPTH	PID	SAMP	SAMPLING	DEPTH	SOIL				CS		FIELD
(FEET)	PER	REC.	TIME	MATL	DENSITY/		MATERIAL		or	REMARKS (moisture condition; odors;	SCREENING
	67	7 SAMP	& SAMPLE NO.	CHG/ WELL	CONSIS. or ROCK	CLR	CLASSIFICATION		NCK RKN	goological classification;	DATA METHOD =
0	(ppm)	LENG. (Pt)	(QA/QC STATUS)	PROFL (Ft)	HARD.	l .				rock weathering; etc.)	{]
	2	4/5	1000 S-1	0.5	· ·	RIN K	Asphalt Cover	-		Dry, FILL	
	<u> </u>	1/5			Made Densing		(F-c) SAND and Gravel (counded + ,	0	ม	Dr.	
2	<u>y</u>					orenos			<u>N</u>	7-	
ļ	- Ă					 	sub-amption (< 3" diam), no fines	11			
Ч	3]			· · · · · · · · · · · · · · · · · · ·				
							· · ·				1
6	3	51	1040 S-2	1					\top		1 -
0	-1	5/10					· · · · · · · · · · · · · · · · · · ·		┨──		-
	2						· · · · · · · · · · · · · · · · · · ·		╂──		
8	3								4		- · -
	3			=9			215% <3% AM		¥		
10	- <u>}</u> - <u>}</u>		-				(F) SAND ittle (m) Sind trace Silt (inches)	S	P	Some bedding	
							(inta clump), one piece of growed			lineaments	
2							rounded 1'diam. @ 11fbgs				1
			أشربه				100.000 10.001.15 11105		-	Fining downwards	
14					<u></u>			┼╌┨		1	1 1
			. *					++			i i
				<u>= 15</u>			< 15%	4	[V Dry	
16	3	3/4	1050 S-3)	Sanger 1	(f-c) SAND little gravel (subcounded to	SI	N	Wet 1	1
						•					
	DRILLING							•		Brown & Root	Environmental
	D OF ADVA D OF SOI L	SAMPLIN	ORING: 64 + 8"	Vi dente j Spin	Sbirls mys	h					

• .

- -

BORING NO .: 215

Page 2 of 3

METHOD OF SOIL SAMPLING: 9" Vibrate + Spin METHOD OF ROCK CORING: 4" Vibrate, Spin, & Wath

GROUNDWATER LEVELS: OTHER OBSERVATIONS:

. .

1

) BY (Co	mpany/	Driller): <u>ALL</u>	ANCE /	Ron B	11		MC	DN. WELL NO.: 25	
BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG <i>J</i> WELL PROF'L	SOIL DENSITY/ CONSIS, or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENIN DATA METHOD
3	• • • •	5-3(unt.)	<u>= 17.</u>		-	subrounded, <1" diam), no fines	SW	Wer	-
4		• • .			Gray +	(f) SAND, line fines	SP	Some building	-
			219				·	lineaments	-
	-2/3 W~~	" ^s C-1	,	0% RAD	Gray		BR		-
	ممم			no		Vertical folication		a Eli fa ta	-
							·	Zone 018.57475	-
	/3	11°° C-2		20%200			· .		-
			-			· · · · · · · · · · · · · · · · · · ·			-
	0							· · · · · · · · · · · · · · · · · · ·	-
	0/25	12 6-3		25% KQU					-
				·					-
	~~~~~								
	•~~			·					<b>-</b> .
	محم			·				2 ft fracture Zone	-
	ممم					, 、		CU 20. 8 + 098	_
	BY: BY (Co IRFACE BLOWS PER	$\begin{array}{c} \text{DBY:} \underline{J_{a \perp} N} \\ \text{DBY:} (Company/) \\ \text{IRFACE ELEVA} \\ \text{BLOWS} \\ \text{PER} \\ 6^{\circ} \\ 1 \\ \text{SAMP} \\ \text{REC.} \\ 1 \\ \text{SAMP} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	JRFACE ELEVATION:         BLOWS       SAMP         PER       '         SAMP       SAMPLING         TIME       '         SAMP       SAMPLE NO.         LENG.       (QAVQC STATUS)         3       '	Derive the second seco	Derive the second seco	Derive the second seco	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

-----

GROUNDWATER LEVELS: OTHER OBSERVATIONS:

....

BORING NO.: 2/5 Page 2 of 3

. . . . .

. . . . . . . . . .

.*

·

PROJE LOGGE DRILLE	CTNO:	7607 # Jee  * ompany/	10320 110 Driller): <u>AL(</u> 2	TR		D BY:	Raymorn OUD	ST/ CO MC	RING NO. : <u>2(5</u> ART DATE: <u>/0-6-7</u> MPLETION DATE: <u>/0-</u> N. WELL NO.: <u>40-6</u> ECKED BY :	6-97
DEPTH (FEET)	BLOWS PER 6"	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MATL CHGJ WELL PROFL	SOIL DENSITY/ CONSIS. & ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD =
		1000	(-3 (cont) (-4			V		V		í
34		v-~	- (- 1		25% RQI	bray	Schigt - mica + gh_nich - Vertical foliation	BR		-
	·						- Vertical foliation			- ,
36		·								-
38						- <u>-</u>				-
						<u> </u>		-	· · · · · · · · · · · · · · · · · · ·	-
40			EOB							-
										-
42									· · · · · · · · · · · · · · · · · · ·	-
44						<b> </b>		·   · ·		- 1
	`				·····	<b> </b>		<u>`</u>		-
46										-
				. '					·	- j
48					<b>,</b>					
TYPE O		RIG: 5	ONIC	<u> </u>		······	<u></u>	<u> </u>	Brown & Root	Environmental
METHO	D OF ADVA D OF SOI L D OF ROCK	SAMPLIN	G: SSUU	Page	1					
	DWATER L					£. §			BORING NO Page 3	

	7			· · · · · · ·				··· · · · · · · · · · · · · · ·		
PROJE LOGGE DRILLE	CT NO:	7609 502 / 502 /	<u>+0320</u> <u>hclio (PE+c)</u> Driller): <u>A</u> ((I	TR.	ANSCRIBE	ED BY:	· · · · · · · · · · · · · · · · · · ·	ST CC MC	DRING NO. : 216 ART DATE: 9/25/97 DMPLETION DATE: DN. WELL NO.: IECKED BY :	
DEPTH (FEET)	PID BLOWS PER 6 (PPm) Scruting	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MATL CHGJ WELL PROFL	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID (PPP)]
1	5.1 NA 4.5 6.1 5.6	3'/3' \$1	1100	<b>9</b> ⁴ 2'6 ⁴¹		DK Brown Red- brown Lt.	Silt, (P) Sand, trace gravel (subrounded)	DISOIL OL-SM SM	Moist, tapsoil Dry Fill?	0.0
3 4 5	4.0 0.0	3/3'	11 ³⁰ -0305 ToC	ww	-	Gray Yellow- Orangy		SP	Pry Dry	0.0 -
67	5.3 0.0	↑ 52 8.5'/	12 00 - 0709 TOC							Ø.0
8 9 10	3.6 0.0 1.8 0.0	/8.5	(w/Dap)							
11			-/012 ToC	12'6"			Silt, trace growel (<3"0.D., subrounded), trace (9) soud		J	0.0
13 14 15	ŇA	↑ 53	vmmmm		-RQD=0%	Ut . Bray Bray	· · · · · · · · · · · · · · · · · · ·	ML Roc <b>K</b>	Dry, Wenthmid rack / Kack Flower	0.0
16		C1 ↓	•			V	$\downarrow$	¥	· · ·	

	· · ·		e	•		· · ·
TYPE OF DRILLING RIG: 50	hlc		/	م م اند		Brown & Root Environmental
METHOD OF ADVANCING BO METHOD OF SOI L SAMPLING METHOD OF ROCK CORING:	RING: 11 - Advance a : 475 OD10' Long Same as soil sam	Sample casing as retation pling except water is	g toto bit 5 added		÷	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	······			I '		BORING NO.: 216
	<b>,</b>				÷.,	Page I of 1

ojec Ggei Illei	ST NO: _ D BY:	7609 <b>₩</b> <u>500 №</u> mpany/I	0320  2]]0 Driller):	TR ₩< <i>Œ</i>	ANSC	CRIBE	D B	Y: _			ST/ CO MO	RING NO. : <u>2 16</u> ART DATE: <u>9 /23/9</u> MPLETION DATE: N. WELL NO.: ECKED BY :	<u>7</u>
EPTH EET)	BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MATL CHGJ WELL PROFL	DEN CO or F	OIL ISITY/ NSIS. ROCK NRD.	CLI	R	MATERIAL CLASSIFICATION	RC	CS or CCK KN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [ ]
7		CI (cant.)			0%	RQD	DK Gay		Schist (vert. foliotions, mica rich)	Roc	K		
8													
٩		5/5											
0							$\prod$		· · ·				
1									· ·				H -
2		C2										Iron-oxide Staining trace White crashile	-
3		5/51										Bustz	-
4		↓		-		1	┟╌┼╴		•				-
5			·										-
6													-
7		C3										······	
8		7.5% /10'			┠──┤		┟╌┼╴	-†-					
29		J.					┠╌┠╴	╈			$\vdash$		
0		Ť			┝┷┟		┠┼╴	+				Rapid rock coring	
							┠╌┠╍				$\left  - \right $		-
2							╞┼╴					······································	

METHOD OF ADVANCING BORING: METHOD OF SOI L SAMPLING: METHOD OF ROCK CORING:	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	BORING NO.: 216 Page 2 of 4.

•

PROJE LOGGE DRILLE	CT NO:	7609 1 Joe 1 mpany/	40320 1ello Driller): <u>Alu</u>	TR ₩< <i>Œ</i>	ANSCRIBE	ED BY:		ST. CO MC	PRING NO. : <u>216</u> ART DATE: <u>9/22/92</u> MPLETION DATE: DN. WELL NO.: ECKED BY :	
DEPTH (FEET)	BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QAVQC STATUS)	DEPTH MATL CHGJ WELL PROFL	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock westhering; etc.)	FIELD SCREENING DATA METHOD = [ ]
33		<u>C</u> 3			O% RQD	PL. Gray	Schist (Vert. Foliations, mica rich)	Bed Rock		
34	,	(cont.)				[		· /		
35		₩.				· .				-
36										-
37		64				1				
38		<b>J</b>								
39		11/1				• •		· ·	· ·	
40		1/10								· ·
41										
42				,			· · · · · · · · · · · · · · · · · · ·			-
43										
44									· · · · · · · · · · · · · · · · · · ·	
45						<u> </u>		•	· .	
46										
47		C5		,		<u> </u>			· · ·	
48		V	•				· · · · · · · · · · · · · · · · · · ·			
المسينية	J	L		L	·	L	1		L <u></u>	······································
	DRILLING						· · · · · · · · · · · · · · · · · · ·		Brown & Root	Environmental
METHON METHON	D OF ADVA D OF SOIL D OF ROCK	SAMPLIN CORING	G:		÷ ,			<u></u>		
GROUN	DWATER L	EVELS:					· · ·		BORING NO	.: 216

GROUNDWATER LEVELS: OTHER OBSERVATIONS:

. ~

Page 3 of 4

· .		CT NO.	DEADY	10320 Mello Driller): AL(1				Raymorn OUD	ST CC MC	DRING NO. : <u>216</u> ART DATE: <u>9/23/9</u> DMPLETION DATE: DN. WELL NO.:	7
	GRD. S DEPTH (FEET)		1	TION: SAMPLING TIME & SAMPLE NO. (QAVQC STATUS)	EL DEPTH MATL CHGJ WELL PROFL	EVATION SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	CH USCS ar ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD =
	49 50		C5 ((617.)	· · · ·			pk Gray	Schist (Vert. Foliations, mica rich)	BR		
	51 52		6/10'							Quartz Vein 1" thick	
(	53 51										
	55 56	·									
	57 58		C6 ↓								
	59 60		8/10'								
	61 62					·······		a A		trace pyrite erystals	
3' {	66			•	•	,					<u> </u> 
	TYPE OF	DRILLING	EOB=	66 fbys DNIC				· · · · · · · · · · · · · · · · · · ·		Brown & Root	Environmental
	METHO	O OF ADVA	SAMPLIN	G:	J		) 7				

_ 14 a · .

	• • •								•	na n	
PROJE LOGGE DRILLE	CT NO: _ D BY:	7607*03 イッチ M mpany/	20 LII o Driller):	roundwate	TR/	ation ANSCRIBE (a - Ball EVATION		· · · · · · · · · · · · · · · · · · ·	ST/ CO MO	RING NO. : 217 ART DATE: <u>10-22-97</u> MPLETION DATE: N. WELL NO.: ECKED BY :	
DEPTH (FEET)	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	SAM	MPLING TIME & IPLE NO. C STATUS)	DEPTH MATL CHGJ WELL PROFL (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD:	CLR	MATERIAL CLASSIFICATION Apphalt Surface 3"thick	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA <i>METHOD</i> = [PID, Jar HS]
	1.9	5/5	1145	51			PR Brown	15 Chin 615% 116 5375	SP	-	
2	4.0						K+ Brown	(f) SAND, 1: Mic gravel (f-c, rounded,	•	Dry	
	2.2							(1) SAND, 1: HIL Gravel (f-c, rounded, (f) SAND, 1: HIL gravel (f-c, rounded, <2"dinm) trees (; 1+.			
<u> </u>	0.0				]		velo-rol	(FU)SAND some ground (Fre, rounded	ςŴ		
	0.0		L					62 diny, trace sitt			
_6	0.0	8/10	12**	S-2				(F. c) SHWD and GRHVEL (F-C,	SW/W		
							<b> . </b>	rounded, < 25 diam)			· .
8				,			┤ <u></u> ┤				
							╢				
10							┼┼	(F-m) (2601/5 1:44 <15%) 1:1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	SP	~	
	7.7						┨──	FRAND little silt little grove	75		
R	6. 0.0						┨──	(annulor-tounded, < 0.5" dian)			
- 14	1.9								,		
					· ·		╏┨╌╍╸				
1'0	0,0	7/10	1210	5-3				(f-c) SAWD 1: H12 grow of rounded to a polar,	SW		
·	·				.L	······································	é	B SLE page 2 for contination of a	A second s	ricl	
					spin ar	id wash .				Brown & Root	Environmental
METHO	D OF SOI L	SAMPLIN	G: 4" vibri						`,		3
GROUN	DWATER L	EVELS:								BORING NO	): 217
UTHER	ODUCRYA							· · · · · · · · · · · · · · · · · · ·		PAGE:	of

······

. ·

· • · · · • ·

	CT NO: _ D BY:	7607*03	Driller): <u>Alliance /</u>	TR/				ST/ CO MO	RING NO. : <u>2 7</u> ART DATE: <u>]:-13-6</u> MPLETION DATE: N. WELL NO.: ECKED BY :	<u></u>
DEPTH (FEET)	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHGJ WELL PROF'L (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [PID, Jar HS]
18 .			(cart.) 5-3 15-19 6 min fire	~		Plack yennin	(F) SAND shaw Silt trace clay	SW V SP	1-foor that Block resider - probably sour (sac Nore book) Aroch No pdor Wet	<u>17-18</u> 0.0
24 26 28 30 32	0.0 0.0 13.4 0.6 13.4 6.4 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	10/10	1300 5-4 26-35 900-5124			117	(F-m)SAND trace silt No groved) r5(3) 75 fbg 5	SP		25-27.5 0 27-5-30.0 27-5-30.0 27-5-30.0 20-32.5 30-32.5 0.0

TYPE OF DRILLING RIG: Sonic		Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:		BORING NO.: 217 PAGE: 2 of 4

						•				017	
PROJE	CT NO: _ D BY:	<u>7607°03</u> Jul	320 Mello	roundwate	TR	ANSCRIBE	D BY		ST. CC	RING NO. : <u>217</u> ART DATE: <u>10-23-</u> MPLETION DATE: <u></u>	
DRILLE	D BY (Co URFACE	mpany/	Driller):	Alliance /	Ronf	<u>کمر//</u> EVATION		· · · · · · · · · · · · · · · · · · ·		ON. WELL NO.; ECKED BY :	
DEPTH (FEET)	PID PER 6"	SAMP REC. /	SAN T	APLING IME &	DEPTH MAT'L CHGJ	SOIL DENSITY/ CONSIS.		MATERIAL	USCS or ROCK	REMARKS (moisture condition; odors; geological classification;	FIELD SCREENING DATA
32	(ppm)	SAMP LENG. (ft)		PLE NO. STATUS)	WELL PROF'L (ft)	or ROCK HARD.	CLR	CLASSIFICATION	BRKN	rock weathering; etc.)	METHOD = [PID, Jar HS]
	0.0		(cont.)	5-4			- graun	(E-m) SAND, trace sitt, No groved	S¥	Wit	37.5-35
34	0.0						$\left  \right $		┨┨──	<b>  </b>	35.36
36	0.0		1340	5-5			4) groy				0.0
0	Ø.0	3.2/5	1900		36	40% RQD		Schizz (mica + gtz mich)	BR	Computert	
38		- 15		•	1			- near vortical follotion		4	1
40			l					} 	<b>_</b>	Brokn-Up	
10		•						atevain @ 41 flags 2" long		Competent	
12		3.45	1435	5-2		60% ROD				Bieka-hr	
44.										Competer	
46 4 <b>5</b>		1/1		<u> </u>	ł	0% RQD		Que 11 - @ 47 Fugs 1.5" 10 mg	· ·		
48 476	;	8/10	.   .	<u> </u>	Ť	25% ROD		Qre Vein @ 48 + 6-7 1.5" long		Brokm-nr	
52 98		1			ł.		┝╌┠╌╴			Competent_	

METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:		BORING NO.: 217
change in depth scale	@ 41 fbg6 to 2 fact per havie line	PAGE: <u>3</u> of <u>7</u>

RD. SI	URFACE		Driller): <u>AL(L</u> TION:	EL	EVATION	FROM		<u> </u>	ECKED BY :	
ертн Еет) 56	BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG <i>J</i> WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR		USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD =
-8		5/5	1000 6-5		60%RQD	Gray- grad	Schrst (mica + gtz rich)	BR	0.0fffmin discharge rate (41-61 Flogs)	
0			10-24-97				-55° Folation			
2			1130 6-6	:	20%R0	>	· ·		0.1++/Smin rachange tate	
4		6/10	marc							
6		m					-			
8									~~	· ·
0	······		EOB 71F635				•			
2										,
14							, 			
6										
8										
0										
2.									-	
4										<u> </u>
6					·		······································			<del></del>
8			١					·		

-- - .

•

¥

-----

.

GROUNDWATER LEVELS: OTHER OBSERVATIONS:

.

BORING NO .: 217 Page 4 of 4 ٦.

				• .				PgloF	0	<del>م</del> ر	
۳.	PROJE LOGGE DRILLE	CT NO:	<u>7609</u> eff Mo mpany/	<u>103</u> 20 20005 Drillen: <u>Alu</u>	TR/	مرینه می ANSCRIBE EVATION	D BY:	Raymon OUD	BO ST CO MC	RING NO. : <u>212</u> ART DATE: <u>09/25/</u> MPLETION DATE: N. WELL NO.: ECKED BY :	17
	DEPTH (FEET)	PID PER 6 (PPM) SCREDUNG	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG/ WELL PROF'L	SOIL DENSITY/ CONSIS. & ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD =
(	1	6.1 5.8	3.6	1148	¢"		ΧŻ.	ORGANICS, SAND, DRY	SW	DRY	
si -	2	5,5	/36		3.0'	· · ·	6000th	GRAVEL, POORLY GRADED, DRY	GP	DRY	
	3	3.4 9.2			>∾						
}	4	14.6	e_ie.					V			-
52-	5		18	1159			prous	GRAVEIN SAND	SW	moist	
_ [	6	18.1	30		. <u>.</u>	_					
Τſ	7	8.6					(approved)	@min sand, with stones	5W	BROWN, MOIST/W	t
	8	224				•			•		
	9	77.6						$\downarrow$			
	Id	68,2	46%	1320			Reo/	COARse sand with GRAvel	SW	REDDISH BROWN	-
43-		70.7	10							**	
	12	48				·			-		
	13	87-							·		
	14	मष्ठ				 	Resp	mesium sano	SP	REDOIST DROWN	
	15	33	•			۰.				·	
	16	132						·		· .	
۱ ب	TYPE O	F DRILLING	RIG' S	NIC						Brown & Root	Environmental
· •	METHO	D OF ADVA D OF SOI L D OF ROCK	NCING BO	DRING: G:		, 	•		•• ,		3
:		DWATER L OBSERVAT		· · · · · · · · · · · · · · · · · · ·						BORING NO	D:: <u>58-212</u>

· ·		)	•				-	, PG Z oF (	<u> </u>		· · · · · · · · · · · · · · · · · · ·	······································
		CT NO: D BY: D BY (Co URFACE	06004	<u>+03</u> 20 <u>+ Manus</u> Driller): <u>A</u> [[				Raymork OUD	ST. CO MC	ART DA	NO. : ATE: TION DATE: LL NO.: D BY :	
	DEPTH (FEET)	PID BER 6 (PIM) Screening	REC. / SAMP	SAMPLING TIME & SAMPLE NO, (QA/QC STATUS)	DEPTH MATL CHGJ WELL PROFL	SOIL DENSITY/ CONSIS, or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	(moistu	EMARKS ire condition; odors; gical classification; weathering; etc.)	FIELD SCREENING DATA METHOD = [JH5/PI9]
	17	12		1345	17/		BUD	MED SOND	5P	wet	· · ·	
	18				4		brown	COARSE SONDY	GW	wet		· · · · · · · · · · · · · · · · · · ·
	19	5.6							•••			
	20	20,4	8/ /10		4		_ _				· .	·
44-1	21	29.6	10									
	22	17.0		· · · · · · · · · · · · · · · · · · ·	'		_ <u> </u> -					
	23	28.0					$\left  \right $	·····	·			
	24	269			-	·	╏╍┼∸					
		8.5					┝╌┼╸			- -		
ľ	26	765		1420			-X	COPESE SAND	SW	V me	L	
	28	2.2		• • •			2444		<u> </u>	we	ג	
-5-	29	9-1									· .	
	30	(0,B 6.8 11.Q						COARSE SON DY GRANEL	GN	we	+	
	31	12.6	⁻								<u></u>	0. 8 30+0
	32	10.1					tan	SILTIMADUM MASTIC	AQ1	V		
v							Frank		······································			· · · · · · · · · · · · · · · · · · ·
	METHO METHO	D OF ADVA D OF SOIL D OF SOIL D OF ROCH	NCING B	ORING: G:	<b>_</b>	·	3.e .					Environmental
		OBSERVAT		· .		•					BORING NO	D: <u>5B-ZIZ</u>

ROJE OGGE RILLE	CT NO: D BY:	760 9 1 5. Mux mpany/	hanus Driller): <u>Alu</u>	TR/ '#~< <i>@</i>	ANSCRIBE	D BY:	* *	BO ST CO MC	RING NO. : ART DATE: MPLETION DATE: DN. WELL NO.: ECKED BY :	
DEPTH FEET)	BLOWS PER 6		SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHGJ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odore; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [JHS/PID]
53	11.6		· · · · ·			Lt. BRW	SILT, MEDIUM phasticity	ML	wet	10.7(31.5 +0)
21	12.7				· · ·		<b>5</b>		· · · · · · · · · · · · · · · · · · ·	
35	31.3			346		800	FINE-MEDIUM SOUD	3W	veet	
36	25.0						1	· ·		4.8 (34.5 to)
AM	MM									9.7 (36-38.5)
37	20.2			· ·	• .	Benzo	Medium sand	SP		
58	31,9			·					<u>, , , , , , , , , , , , , , , , , , , </u>	
9	45.0		· · ·			t				12-7 (38.5.41)
10	91.6			1.					· ·	
11	\$2.7			-40.5-	•	Bur			······	
12	10,1		.~	· ·		1000	COPPER SOND	<u> </u>		10.4 (41, 43.5)
13	5 5			-42.5-					· · · · · · · · · · · · · · · · · · ·	
14	<u>64/1</u> 132	-				DOLLA	Finesano	SP		Ä
15	109					19-2000	1		. (	43,743.5-46
	28.0			1			<u></u>	·	· · · · · · · · · · · · · · · · · · ·	
16	90.9			- 46	•	<u> </u>	¥			
<u>wm</u>				I,				4	· · · · · · · · · · · · · · · · · · ·	
	DRILLING				<u> </u>	-			Brown & Root	Environmental
AFTHO		NCING BO		1	•					

	BORIN PROJE LOGGE DRILLE	G LUS F( CT NO: ED BY: ED BY (Co SURFACE	OR: <u>1</u> 7607 <u>7</u> 5. 0 mpany/ ELEVA	lase 1 Grandu 10320 Manus Driller): <u>ALLE</u>	TRA TRA Arre E	ANSCRIBE	Here	Raymor- OU2 PG H OF 6	ST. CO MC	RING NO. : <u>58-212</u> ART DATE: MPLETION DATE: DN. WELL NO.: IECKED BY :	
Г	DEPTH (FEET)	PID BLOWS PER 6" (PPM)	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG <i>I</i> WELL PROF'L	SOIL DENSITY/ CONSIS. & ROCK HARD.			USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = [ PPm (JHS]
	47	7.8					Berny	Finesand	58	30,4(46'485)	38.4 (46-48.5)
	48	36.3 118 111								27.8(48.5-51)	27.8(48.5-51)
	<u>49</u> 50	1745	9.5		c					<i>_</i>	
2	51	66.6	/10		30.5		EN N	FINE SAND, TRALE GRANEL	3P		
	52	72.5			51.5_		845	FINE SAND	SP_	012-1	94(31-53,5)
	53	5,7					BEN	·	ļ	** ** **	
	54	84.8 27/2 70/2			53.5~		priv	FINE SAND	SP	BROWN with	28,3535556
	55	127				 	. •			ROM Struck Streak	STRED LATER
Ţ	56	<u>90</u> 219		· · ·			and				ar a share and
	57	36				· ·	1927 1927	FINESAND			11 (86, 59)
	58	28.4	ÉL.								
٩	59	19.7 19.7	75			<u></u>		k calce			
	:60	24.6		LAN LO MARKER	<b>梁</b> 子子		GREY	Fire sono ano ( ( nottled) calcite Favile compressed ( with		Possibly General and	A CARACTERS
L	61	2.0						CArcife Forments			3.5(40-61)
								CALCIE INTMENTS			<b>*</b>

· . .

• ---

•

,

. ..

•

. .......

· · · · ·

TYPE OF DRILLING RIG: SONIC	Deeg.	59.54%	Brown & Root Environmental
METHOD OF ADVANCING BORING: METHOD OF SOI L SAMPLING: METHOD OF ROCK CORING:	verg	, <b>( )</b>	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:			BORING NO.: <u>49-717</u>

· .

	Logge Drille		mpany/	Driller): ALL	TR/ <u>~~c<i>G</i></u> EL		D BY:	MON. WELL NO.:	
ſ	DEPTH (FEET)	BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG/ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.		MATERIAL CLASSIFICATION	FIELD SCREENING DATA METHOD =
	62						GREY	schist, GRey, Boxen Rock	· ·
-	63	·	1.5/						
59	64		15						
1	65		<u>·</u>				,		•
Į	66								•
Ī	67		 					1 Lost 2' of recovery	
	68		4		· ·			w suthered	· · · · · · · · · · · · · · · · · · ·
	69		310					schist w/ quartite	
	70		.10					INTEUSIONS- CONGLOMERATE	
	71							with gubetz, prrite,	
	72								
	73					<u> </u>	· ·		
	74								
	75			·• ·					
	76					<u> </u>	·		
	TYPE O		RIG: 5	OHIC	<u> </u>	· · }		Brown & Root I	Environmental
	METHO	D OF ADVA D OF SOI L D OF ROCK	NCING BO SAMPLIN	DRING: G:	<b>I</b>				
		DWATER L OBSERVAT						BORING NO	:58-212

,

			ase 1 Groundwate	r Investiga	ation			BO	RING NO. : 209 D ART DATE:	
LOGGE	CT NO: _ D BY:	FM	colo	TR/	NSCRIBE	D BY:		CO	MPLETION DATE:	
DRILLEI	D BY (Co	mpany/	Driller): <u>Alliance /</u>							
	JRFACE	ELEVA		EL	EVATION	FROM			ECKED BY :	
DEPTH (FEET)	PID PER 6"	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG <i>J</i> WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD ==
· Đ	(PP''')	(ft)		(ft)			Asphalt Surface	<u></u>		[PID, Jar HS]
2		4.5/5	6×50 S-1			Baun	Brick, Concrise filt black arganic	Fill		
4	<u> </u>						Brick, Concrite filt black arganic Flav kyer (6")			
6		./		<b>-</b>					~ Concrete hotten	
ß		6/10	0910 - 5.2			:	Qtz Baulder	1		
17								PT	-	
12							brann fibrous Peat	PT	Organic Odor	à
<u>\</u> 4							AKa	ľ i		
16	Ø	8/10	0950 5-3			Bigun		SP	Pear in Topot 5-3	
18		10					graved < 1" d. um,		Y	
20						bray	graved < 1" d. lom, from SAND in Hy little "Sundar			
22							gravit citations			
ટપ				, , , , , , , , , , , , , , , , , , ,	-			.[		
26	D	21.	100 5-4			Ψ	- trace (C) sand	Ψ		
28		5/1.				$\prod$	(f-m) Sand tracesit trace	SA		
30						$\mathbf{V}_{\perp}$	(f-m) Sand traces it trace randed graved <1"			
32	0					V				

. .

· .

· · ·

.

TYPE OF DRILLING RIG: SONIC		······································		Brown & Root Environmental
METHOD OF ADVANCING BORING: 6" + 8" vibrate, spin, METHOD OF SOI L SAMPLING: 4" vibrate + spin METHOD OF ROCK CORING: 4" vibrate + spin + wash	and wash		•	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	<u></u>			BORING NO.: PAGE: of

PROJEC LOGGE DRILLE	CT NO: _ D BY:	7607*03	Driller): Alliance /	TR/	ation ANSCRIBE EVATION			ST. CO MC	RING NO.: ART DATE: MPLETION DATE: N. WELL NO.: ECKED BY :	
DEPTH (FEET)	PID PER 6" (ppm)	SAMP REC. / SAMP LENG. (ft)	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MATL CHGJ WELL PROF'L (ft)	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA <i>METHOD</i> = [PID, Jar HS]
74 36) 38	· · · · · · · · · · · · · · · · · · ·	9/ ₁₈	S-11/cant= 1010 S-5			13 ran	(FC) SAND trace gilt trace rounded ground (F-m) GAND trace Gilt	54 5W SP		
40 12 44							F) SAVAD from Sitt no ground	SP		
44	0 	7/10	1028 5-6	-			(F-in) 5 this france Silt no grand	SP		
52) 54								· · · · · · · · · · · · · · · · · · ·		=75 fbgs
5 50		<b>9</b> 10					Run Time 1 hr Qtz grovel (white, milky, clover, gray) - Bink grovel too (feldoper of the Q	BR		75 thes Beckock
Sid St						_	Iron Oxide Staining on Schist grow	Ζ.	3" d'anster	· ·
			onic ORING: 6" + 8" vibrate	<b></b>	d wash				Brown & Root	Environmental

METHOD OF ADVANCING BORING: 6 + 6 vibrate, spin, METHOD OF SOI L SAMPLING: 4* vibrate + spin METHOD OF ROCK CORING: 4* vibrate + spin + wash			· · ·	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:	· .	 · · · · · · · · · · · · · · · · · · ·	· ·	BORING NO .:
UTHER OBSERVATIONS.		 		PAGE: of

· •

PROJE LOGGI	ECT NO: ED BY:	7601	10320		ANSCRIBE	•	Raymor. OUD	CO	RING NO. : 53-70 ART DATE:	>9 [47
GRD. S	SURFACE	ELEVA		EL	EVATION	FROM	:		ECKED BY :	
DEPTH (FEET)	BLOWS PER 6"	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG/ WELL PROF'L	SOIL DENSITY/ CONSIS. OF ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD =
	8,5		5-1		· · · ·	arero	Stilly Gowelly SAND.	Sm-GM	Ay, Fill.	
2	19.0	5.7	1430				mostly F-crs Sanp, some F-crs		cement, hrick	<u> </u>
	19.6	75	~			· ·	any govel. Govel up to 4."		aloss	
ч	30,4		17			Bloul	ang govel. Grand up to 4!"		<i>V</i> .	I I
5	35.9 117.0		10/8/97	+		d-gr	Black his pel open			
6 -	181.0		1019197				APPENDIAL DEPENDENTING	GM		
7	14.4 14.6 16.5		T.				Oldties	<u> </u>		<b>-</b>
8	D 3.6 17.3						TAR-OLD PARKING Lot with			_ <b>-</b>
9	19.8 ZS.Z 30	9/10					ROFING MTL -Aspalt shinkles		-	+
10	30	.110					and scrap wood, siltymud			
11	42,7					~		DT		
13	48.7 37.4						PRAT, bROWIN	r I	Roots creanic. + Fibrous	+
19	40.1 524 28.4									+ 1
15	28.4 32.6 36.7		•						•	
11			· ·				₩			+- H
				·						
METHO	OF DRILLING DO OF ADVA DO OF SOI L DO OF ROCI	NCING B	ORING: IG:	]		, x &				ot Environmental
	OBSERVA								BORING	NO.:

، ^ع. م. بوس	PROJE	CT NO: D BY: D BY (Co	7601 #	Drillen: ALL	-	Raymori- OUD	BORING NO. : <u>58-209</u> START DATE: <u>1018</u> COMPLETION DATE: MON. WELL NO.: CHECKED BY :				
	DEPTH (FEET)	BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHGJ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD = []
	16	NDNDNN						MED SOND	SP		-
	18 18	N 9 ND 19.4				· · ·		silty merson , GREY	<u>5</u> M		· _
	19	60.7 45.2 52.0	101.0								_
	20 21	4.7	1910	5-3				meo sano, tari	5P		
	22 23	10 60 77-1-		100							
	24	101									-
	25 26	20				·	- 	fine sand, GREY	SRI_	· · · · · · · · · · · · · · · · · · ·	
	27		6/10	g_4 1025			·	med sanditan	50		
	28			1023							-
	30										`
Į		V	]	•							
	METHO	F DRILLING D OF ADVA D OF SOI L D OF ROCK	NCING BO SAMPLIN	DRING: G:	L]				•	Brown & Root I	

. .

3

BORING NO .:_

3

GROUNDWATER LEVELS: OTHER OBSERVATIONS:

BORING LUG FOR:       PLASE 1 Grandwater Investigation Raymon Out       BORING NO.:       58 209         PROJECT NO: <u>7607 #0320</u> START DATE:         LOGGED BY:											
DEPTH (FEET) ጎነ	BLOWS PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHGJ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR	MATERIAL CLASSIFICAT		K (moistur geologi	EMARKS e condition; odors; cal classification; vesthering; etc.)	FIELD SCREENING DATA METHOD =
32							$\checkmark$				
33							siltymes sand	GREY SM			
34											-
35	X							·			1 -
36	11.5 NO		5-5	· .			Fine sano, GRE	Y 58			·
37	ND		5-5 1030				1				
38	0 0	10									-
39	0				·						
40	00							······································			
41	000	-			·						-
42	0	t i						· · ·			
43	0 S	• •								····	
44	0	)									
45	0							·			•
41	0 0	- Graditan	5-6	Ŧ	······		¥				- 
47	Ø	10	(050.								
TYPE OF DRILLING RIG: 50 NJC     Brown & Root Environmental											
METHO	METHOD OF ADVANCING BORING: METHOD OF SOI L SAMPLING: METHOD OF ROCK CORING:										
	GROUNDWATER LEVELS: BORING NO.:										

· · ·

BORING LOG FOR: Place 1 Grandwater Investigation, Raymork OUD BORING NO.: 38-209										
PROJECT NO: 7607 #0320 LOGGED BY TRANSCRIBED BY:							START DATE: COMPLETION DATE:			
DRILLED BY (Company/Driller): <u>ALLIANCE</u> MON. WELL NO.:										
										·
DEPTH (FE&T) 47	PER 6 PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG/ WELL PROF'L	SOIL DENSITY/ CONSIS or ROCK HARD	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD =
45	0									
	- 1	•								·
49		]					·			
40	1,0	1 .					V			
51	5,5	4					MUD SAND TAN	SP.		
	30			·	······································					
52	24				·					
53	0 33		·		· · · · ·					
64	11	1								
59	35						V			
56	3.6	{	3-7				F-MSAND, tr silt	SM		
57	00		(1 16							
58	16.8									
59	0	15/15			>		- F-CR SAND, Forme FSC	rvel		
60	18.8 14.2			·						
61	62.3	· [								
62	468 570 70,1	]			-		-Fine sano, tan-			
63	12,5						-Fine sano, tan-			
							÷		•	

TYPE OF DRILLING RIG: SONIC	•	· · · · · · · · · · · · · · · · · · ·	Brown & Root Environmental
METHOD OF ADVANCING BORING: METHOD OF SOI L SAMPLING: METHOD OF ROCK CORING:	• ·		
GROUNDWATER LEVELS: OTHER OBSERVATIONS:			BORING NO.:

FE

							Raymorn OUD	BO	RING NO. : 5020	» 9
PROJE		7604 8	0320	тр		יאם ח		S1/	ART DATE: MPLETION DATE:	
		mnany/	Driller) ALLE	 •~< <i>E</i>	ANSCRIDE				N. WELL NO.: _	
GRD. S	URFACE	ELEVA		EL	EVATION	FROM			ECKED BY :	
DEPTH (FEET)	BLOWS PER 6"	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG./ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD		MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA <i>METHOD</i> =
64 65	44.9 57.9 100						true silt			
	103 80	<u></u>	5 - 8	÷#	-		N Han		· · · · · · · · · · · · · · · · · · ·	
66	12.7	05 05	1130				COARSE SOND FON	58		
67	24,7 33.2 30.2	ch ch	•••				· · ·			·····
68	34.6						V			
69	20.7						Fine savo with cobbles, tan	5P		
7¢	57.4						FRACTURED ROCK (Schist)			•
71		Í	C-9	r.			(bRotten DURING CORING?)	1		
72					•		( services and )			
73							•	· · · · · ·	-	
74					*	•		1	ζ	
75										
					· .		CRUSHED Stove ( (RUSHED			-
75 05 90						· · · ·	DURING RELOVERS/)			
90			-				schist	1		
								1		
L		1	L	I	l,		······································	I	L	

•

----

.

TYPE OF DRILLING RIG: SONIC	•	·· .		Brown & Root Environmental
METHOD OF ADVANCING BORING: METHOD OF SOI L SAMPLING: METHOD OF ROCK CORING:	•	<b>.</b> .	· · · · ·	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:				BORING NO.:

	LOGGE	CT NO: _ D BY:	Joe M	1010 1010 Driller): <u>AL</u> (2	TR/	ANSĊRIBE	D BY:	- <u></u> ·	co	ART DATE: <u>9-23-9</u> MPLETION DATE: DN. WELL NO.:	
	GRD. S	URFACE	ELEVA			EVATION	FROM	;		ECKED BY :	
V :m	DEPTH (FEET)	PIOW6 PER 6	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHG/ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK . HARD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENIN DATA' METHOD =
	•			1100	9#	·	DKar	Topsail Organic, DK Brown, roots	øl-sm		
	2	4/56.1		÷				Find a benut add room	SM	dry	
%   !	3	4.440		5-1	2		,	- Sand + 6 rowel, Lt gray	SP-SM	dry	•
	1	0.0 C. O					Juter - Oringe	Sand (Are) & frond (F-6) Susround - Charlor.	SP	chry .	<u>, , , , , ,</u>
	3	0.0		3-5 TOU				- grown of to 3.5 diam	3	dry	•
ŀſ	б	00		· ,			·			dry	
1	2	0.0		7-9 TOC W/Dup					1		
	8	0.0									
	. 7	0.0				. ;	•				
	<i>1</i> 0 ·	<u>6.0</u> <u>6.0</u>		10.5-17.5 TOC		· · .	· · ·				
	ıi 🛛	0.0									
f	n	0.0			mon-		LT. Gray	Frace Silt trace grows 34 80 competende take Fine Sal	ML		
┡	13	0.0			12.5						
F	14				17.5			Rock - Schist Vertical folations	BR		
F	15							- mica rich	BR	· · ·	
┦	16			н.							<u> </u>

-- - -

1

-

.

.....

. ₁ •

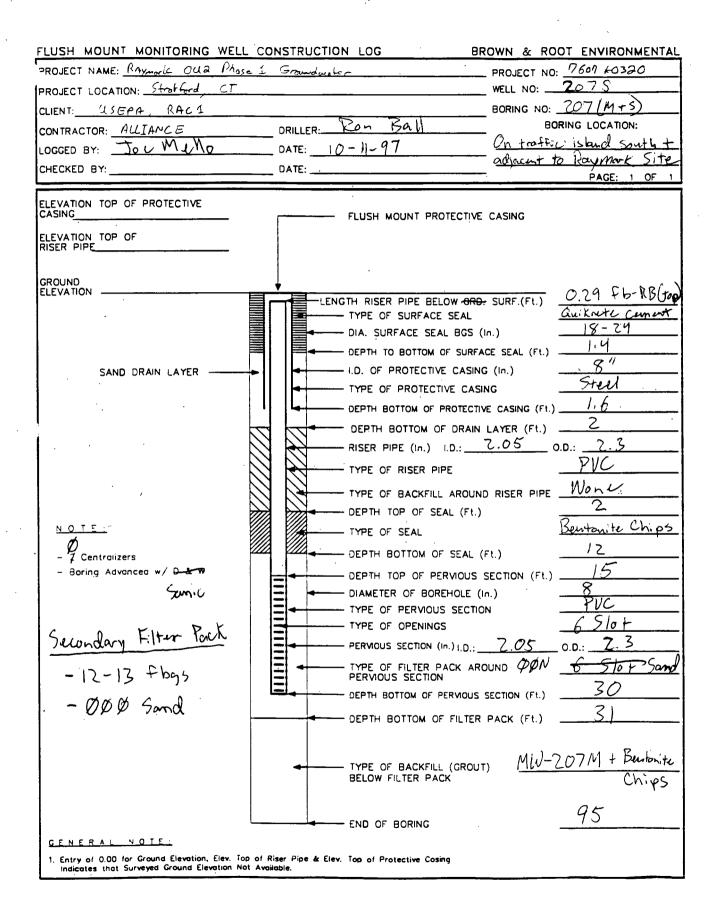
METHOD OF ADVANCING BORING: METHOD OF SOIL SAMPLING: METHOD OF ROCK CORING: GROUNDWATER LEVELS: -572 + h75 OTHER OBSERVATIONS: Page / OF

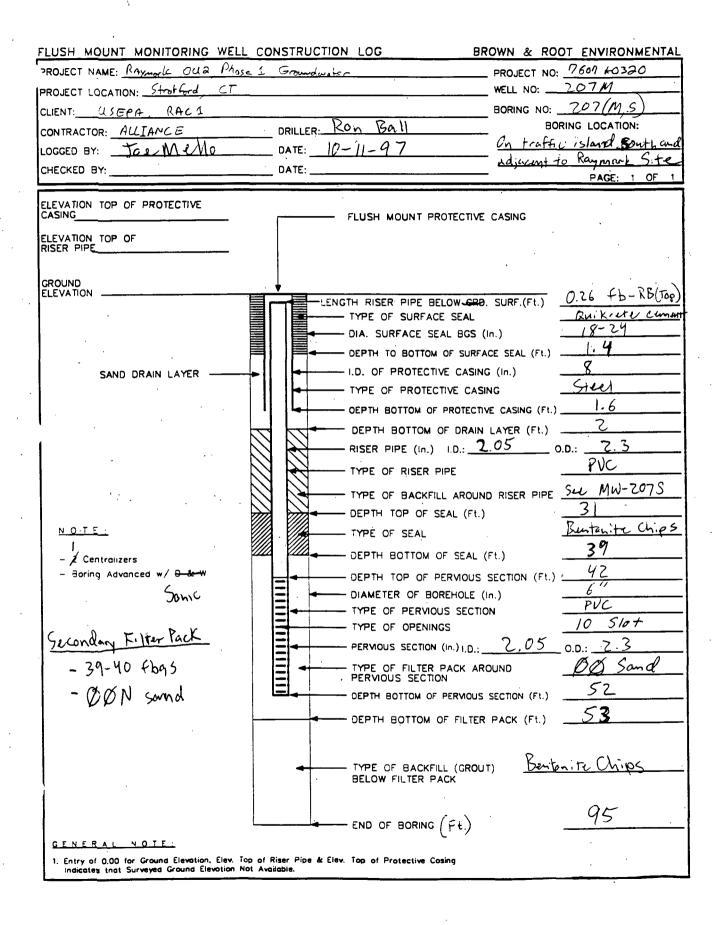
ROJE( DGGE RILLEI		7669 ₩ mpany/[	0320 Driller): <u>AL(</u> 2	TR/ #**< <i>G</i>	ANSC	RIBE	-	Ray mon OUD	CC MC	PRING NO. :       216         ART DATE:       9-23-4         DMPLETION DATE:          DN. WELL NO.:          DECKED BY :	
DEPTH (FEET) / 6	BLOWS PER 6		SAMPLING TIME & SAMPLE NO. (QAVQC STATUS)	DEPTH MAT'L CHG <i>I</i> WELL PROF'L	SC DENS CON or R( HAI	DIL SITY/ ISIS. OCK RD.	CLR	MATERIAL CLASSIFICATION	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA METHOD == [ ]
17					0%	{24°	DK	Schrist Vertical Foliotions	Rock		-
18								-mica rich			Γ Π
19										Iron -oxida Statining trace white Scats	
20								Move	1	trace white Roarts	<b>f</b> .
21		5/51	-						1		F H
22		-1-				1		t	+	· · · · ·	F · H
23						$\mathbf{T}$			+		
24			`			+		· · · · · · · · · · · · · · · · · · ·	+		F H
25											╞──╢
26		7.5 //01				├──		······································			
27	- <u></u>	10								·	- 4
24										· · · · · · · · · · · · · · · · · · ·	-
29					-			· · · · · · · · · · · · · · · · · · ·			-
30											-
										Quick Antontia	
<u>_31</u>								  -		- up.cn	
32		I		l				L			
TYPE OF		RIG: 50	041c	<u> </u>	···=···					Brown & Rool	Environmental
METHO	D OF ADVA		DRING: G:	J			r <u>i</u>	· ·			

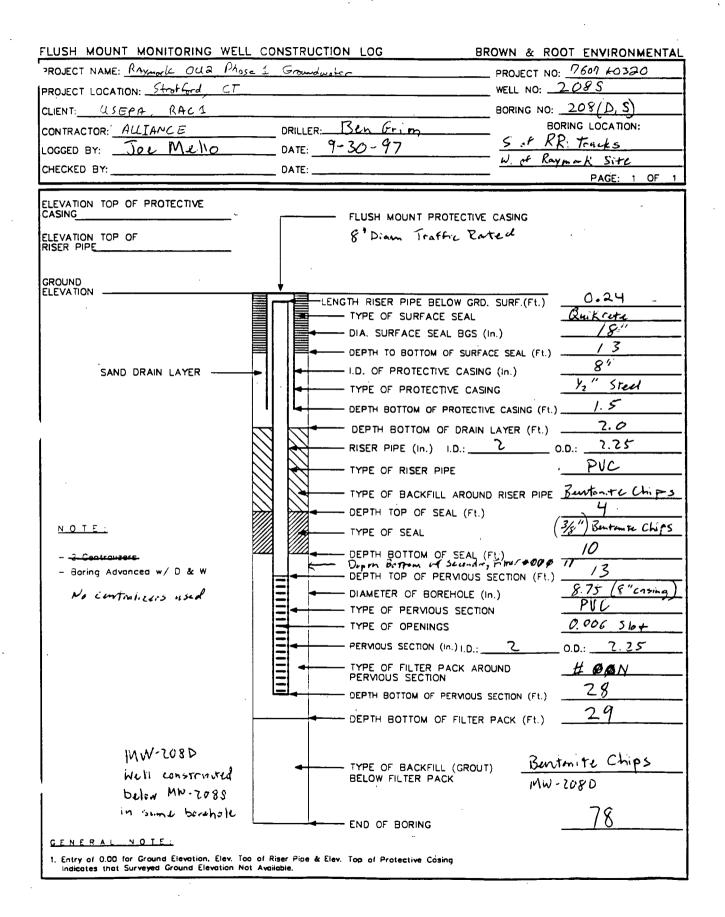
· · · · · · ·

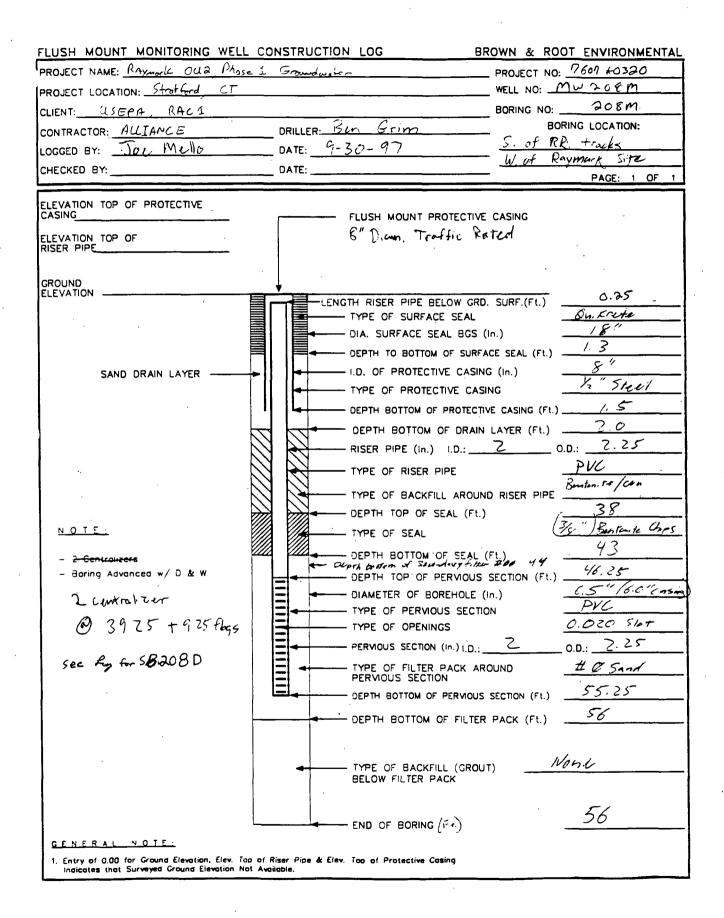
PROJE	CT NO:	7607 2	NA LANK				<u>、れっ〜</u> ED BY		oud		ST CC	ART DAT	E: DN DATE:	1
GRD. S	URFACE	ELEVA		EL	EVA	TION	FROM	A:		<b>-</b>	CH	ECKED E	BY :	
DEPTH (FEET) 3 C	BLOWS PER 6	SAMP REC. 7 SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHGJ WELL PROF'L	DE CC or	SOIL NSITY/ DNSIS. ROCK ARD.			MATER		USCS or ROCK BRKN	(moisture geologica	MARKS condition; odors; al classification; athering; etc.)	FIELD SCREENING DATA METHOD =
33				<u> </u>	0%	≥4″	PK	Schist 1	Redrock		Rack			· · · ·
34						T	17		rich		-	Quick	Ponthalla	
35			-			$\uparrow$							1 1	
36		[ <u></u> _				1					- <del></del>	Buck /	unto tres	
			E08					·	•					
					<u> </u>		┨───		<u>.</u>	·····				-
·			-			· · ·		·		<u> </u>	-			- H
					┝──		<u> </u>	<u> </u>	. <u>.</u>	······			·····	- 4
		<u>_</u>					<u> </u>					·		- H
<u> </u>							<u>`</u>	· · ·		·····				- 4
				-		·	<u> </u>	·		<u></u>				
					<u> </u>						.	·		- 14
·							ļ							- 14
							<b> </b>		· · · · · ·		· · · · ·			-
					>					·	<u> </u>			_
					L		<u> </u>		··	<u> </u>				- L
			!	. '				<u> </u>	-	······································				1
<b></b>	FDRILLING								•				Brown & Root	

BORING	G LUG F	OR:	ase I Groundy	nter I	investiga	tion,	Raymorn OUD	-1	BO	RING NO. :	<u> </u>
PROJE	CT NO:	76078	<b>10320</b>					ち	ST/	ART DATE: MPLETION DATE:	
DRILLE	D BY (C	ompany/	Driller): ALLE	ANCE					MO	N. WELL NO.:	
GRD. S	URFACE	ELEVA		EL	EVATION	FRON			CH	ECKED BY :	
DEPTH (FEET)	BLOWS PER 6"	SAMP REC. / SAMP LENG.	SAMPLING TIME & SAMPLE NO. (QA/QC STATUS)	DEPTH MAT'L CHGJ WELL PROF'L	SOIL DENSITY/ CONSIS. or ROCK HARD.	CLR		`	USCS or ROCK BRKN	REMARKS (moisture condition; odors; geological classification; rock weathering; etc.)	FIELD SCREENING DATA <i>METHOD</i> =
176							GROPALISH HOAVED SCHUST will				11
77		1				]	GREENish broken schist, w/ quartzite intrusions	ľ	2001x		
78							<u> </u>		ran		
79											
80											
81				1		1					
8Z									1.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
83											· ,
84					·	· ·					•
85			·····						1		
86									T		
							· · ·			water@33.1'@1828	ves
										sugth to bottom of hole	
							······································			525 GAILONS OFW	
						<u> </u>				×	
								†			
					,,			†			
L		·	··	I		1		ł			

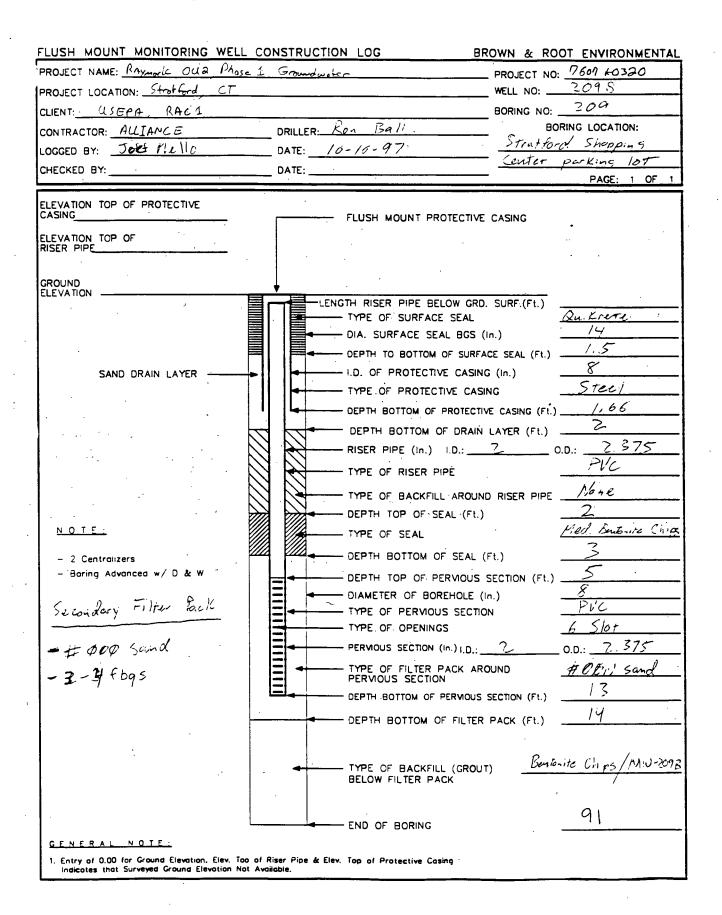

TYPE OF DRILLING RIG: SONIC	- 4		Brown & Root Environmental
METHOD OF ADVANCING BORING: METHOD OF SOI L SAMPLING: METHOD OF ROCK CORING:		<i>.</i>	
GROUNDWATER LEVELS: OTHER OBSERVATIONS:			BORING NO.:
•		 	


 $\sim$ 


.


FLUSH MOUNT MONITORING WELL CONSTRUCTION LOG BROWN & ROOT ENVIRONMENTAL PROJECT NO: 7601 +0320 PROJECT NAME: RAymork OUZ Phose 1 Grounder PROJECT LOCATION: _Strotford 2065 CT WELL NO: _ BORING NO: 206M, S CLIENT: USEPA, RAC 1 Ron Ba M BORING LOCATION: CONTRACTOR: ALLIANCE ORILLER: DOTLand: Nor Rtz 95 meno LOGGED BY: _ رحدا DATE: -former weigh Station CHECKED BY: DATE: PAGE: 1 OF ELEVATION TOP OF PROTECTIVE CASING FLUSH MOUNT PROTECTIVE CASING ELEVATION TOP OF GROUND ELEVATION LENGTH RISER PIPE BELOW GRD. SURF.(Ft.) Quiktete Cement TYPE OF SURFACE SEAL 18-24 DIA. SURFACE SEAL BGS (In.) 4 DEPTH TO BOTTOM OF SURFACE SEAL (Ft.) 8 I.D. OF PROTECTIVE CASING (In.) SAND DRAIN LAYER Stee TYPE OF PROTECTIVE CASING 1.6 DEPTH BOTTOM OF PROTECTIVE CASING (Ft.) 2 DEPTH BOTTOM OF DRAIN LAYER (Ft.) 2.3 RISER PIPE (In.) I.D.: 2.03 0.D.: PVC TYPE OF RISER PIPE None TYPE OF BACKFILL AROUND RISER PIPE 2 DEPTH TOP, OF SEAL (Ft.) Bantaite Chips NOTE TYPE OF SEAL 4 DEPTH BOTTOM OF SEAL (FL) 6 - Boring Advanced w/ DEPTH TOP OF PERVIOUS SECTION (Ft.) 9 No Secondary Filter Rock DIAMETER OF BOREHOLE (In.) PVC TYPE OF PERMOUS SECTION No centralizers 10 Slot TYPE OF OPENINGS 0.D.: <u>7</u>. 3 PERMOUS SECTION (In.) I.D.: 2.03 # OB sond TYPE OF FILTER PACK AROUND PERVIOUS SECTION 21 DEPTH BOTTOM OF PERMOUS SECTION (Ft.) 22 DEPTH BOTTOM OF FILTER PACK (Ft.) Bentonite Chips/MW-206 TYPE OF BACKFILL (GROUT) BELOW FILTER PACK END OF BORING ENERAL NOTE: Entry of 0.00 for Ground Elevation, Elev. Too of Riser Pipe & Elev. Top of Protective Casing indicates that Surveyed Ground Elevation Not Available.

FLUSH MOUNT MONITORING WELL CONSTRUCTION LOG BROWN & ROOT ENVIRONMENTAL PROJECT NAME: RAXmark OU2 Phase 1 Goundarias PROJECT NO: 7601 40320 206N PROJECT LOCATION: Strotford WELL NO: _ CT CLIENT: USEPA, RACI BORING NO: 206M, 5 Ron Ball BORING LOCATION: CONTRACTOR: ALLIANCE DRILLER: DOT land h. of Rte95 · Joe Mello 10-22-97 LOGGED BY: __ DATE: - Former weigh station CHECKED BY: DATE: PAGE: 1 OF ELEVATION TOP OF PROTECTIVE CASING FLUSH MOUNT PROTECTIVE CASING ELEVATION TOP OF GROUND ELEVATION LENGTH RISER PIPE BELOW GRD. SURF. (Ft.) Quikrete coment TYPE OF SURFACE SEAL 18-24 DIA. SURFACE SEAL BGS (In.) -4 DEPTH TO BOTTOM OF SURFACE SEAL (Ft.) С - I.D. OF PROTECTIVE CASING (In.) SAND DRAIN LAYER Steel TYPE OF PROTECTIVE CASING 1.6 DEPTH BOTTOM OF PROTECTIVE CASING (Ft.) S DEPTH BOTTOM OF DRAIN LAYER (Ft.) ·Z. 3 2.03 RISER PIPE (In.) I.D.: ____ 0.D.: PUC TYPE OF RISER PIPE MW-ZO65 TYPE, OF BACKFILL AROUND RISER PIPE 22 DEPTH TOP OF SEAL (Et.) Bentenite Chips N O TYPE OF SEAL 25 DEPTH BOTTOM OF SEAL (Ft.) -> Centronzers Some 27 - Boring Advanced w/ DEPTH TOP OF PERMOUS SECTION. (Ft.) 6 DIAMETER OF BOREHOLE (In.) No Secondary Filter Pack No Centralizers PVC TYPE OF PERVIOUS SECTION 10 Slot TYPE OF OPENINGS o.d.: <u>2</u>. 3 PERMOUS SECTION (In.) I.D.: _ 2.03 TYPE OF FILTER PACK AROUND PERVIOUS SECTION # OO SAND 34 Slipcap -W/ surens DEPTH BOTTOM OF PERMOUS SECTION (Ft.) 35 DEPTH BOTTOM OF FILTER PACK (Ft.) Burtanite Chips TYPE OF BACKFILL (GROUT) BELOW FILTER PACK END OF BORING GENERAJ Entry of 0.00 for Ground Elevation. Elev. Too of Riser Pipe & Elev. Top of Protective Cosing Indicates that Surveyed Ground Elevation Not Available.

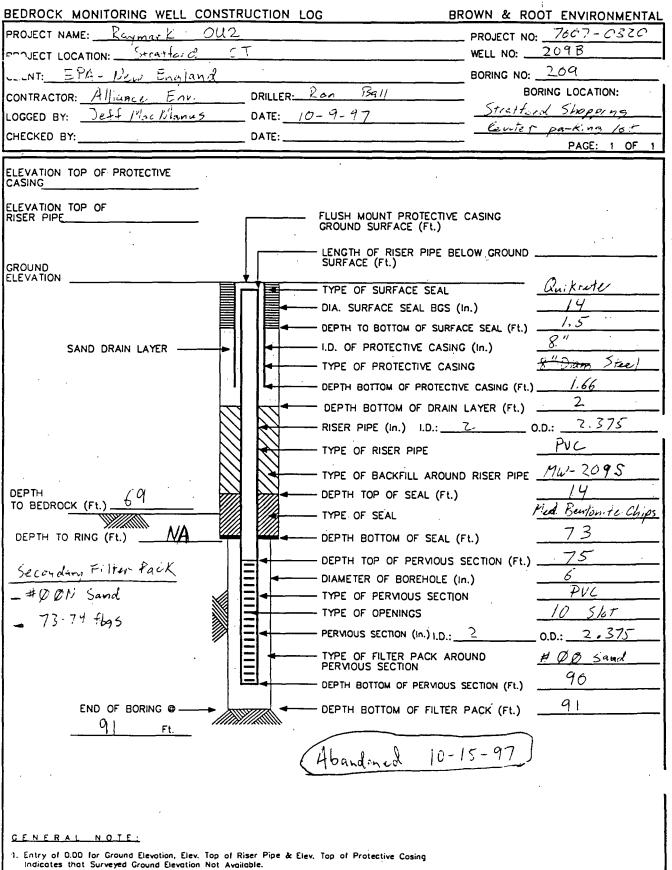


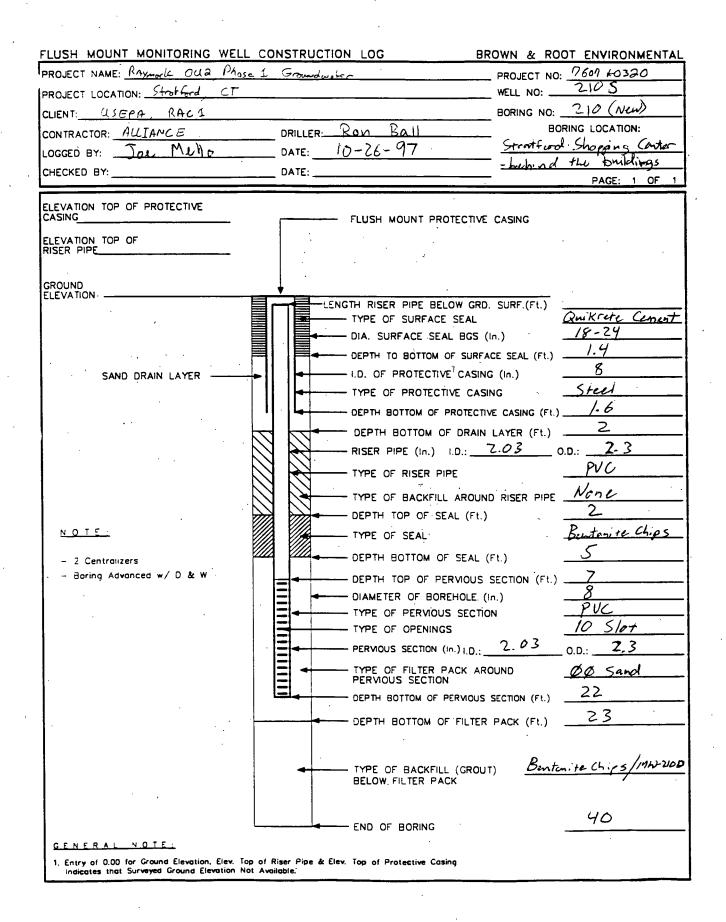


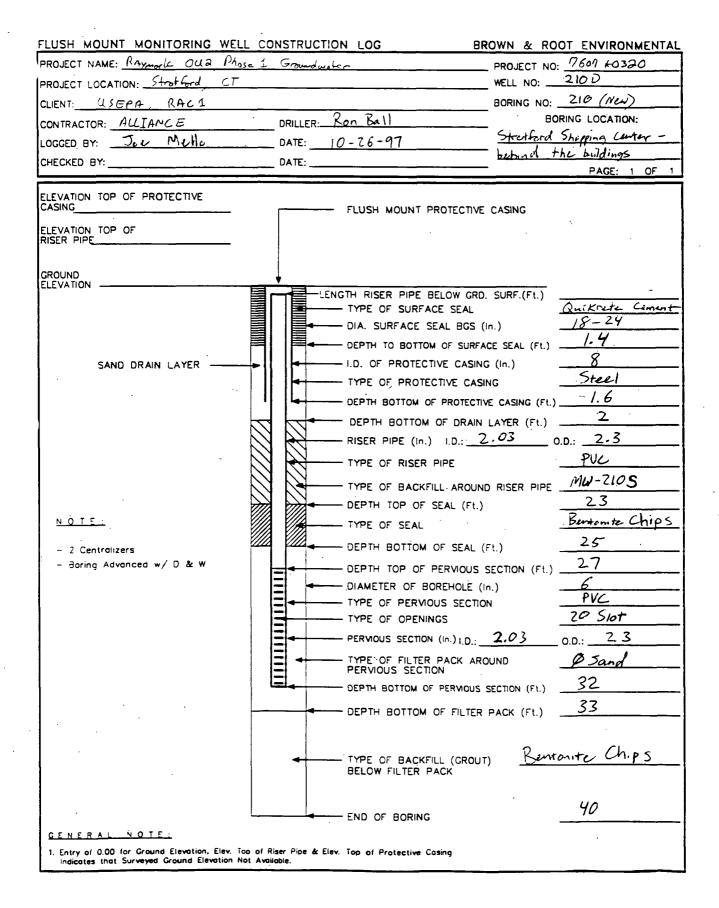


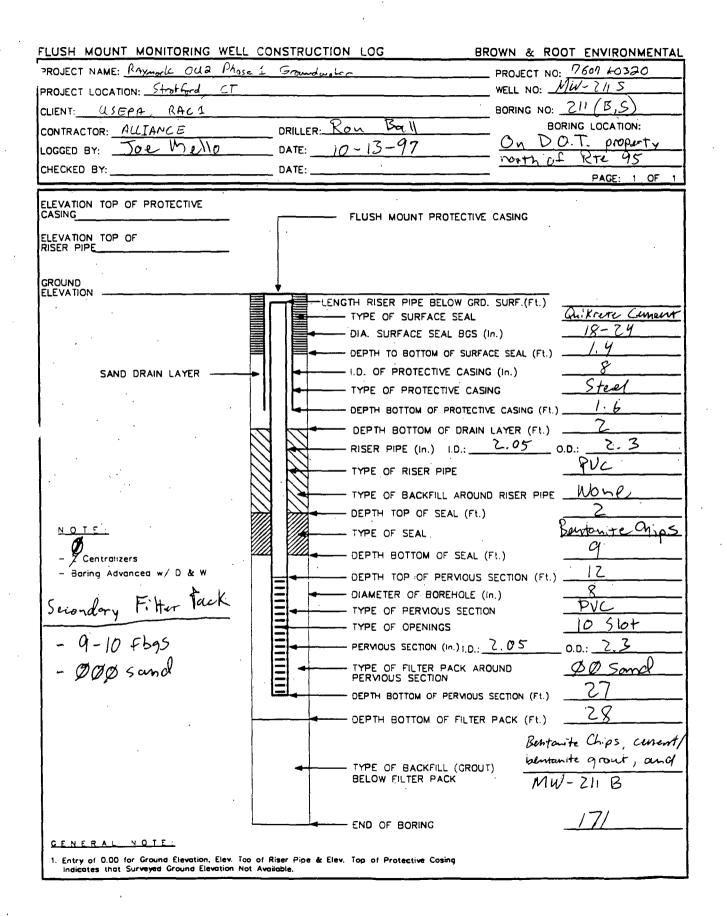


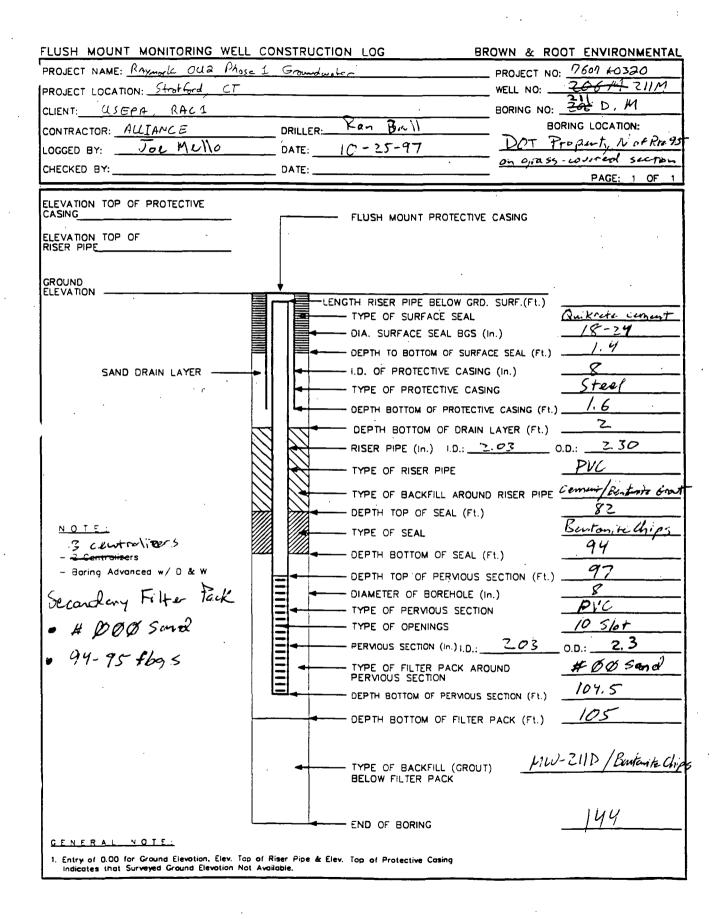

FLUSH MOUNT MONITORING WELL CONSTRUCTION LOG BROWN & ROOT ENVIRONMENTAL PROJECT NAME: RAYMORIC OUZ Phose 1 Groundwater PROJECT NO: 7601 +0320 WELL NO: M ZOSD PROJECT LOCATION: _ Stratford CT BORING NO: _208(0,5) CLIENT: USEPA, RACI BORING LOCATION: DRILLER: Ben Grim CONTRACTOR: ALLIANCE S. of Railroad Tracks DATE: 4-29-97 LOGGED BY: THE MULT W. . F Ringing & SITE CHECKED BY: DATE: PAGE: 1 OF ELEVATION TOP OF PROTECTIVE CASING FLUSH MOUNT PROTECTIVE CASING ELEVATION TOP OF 8" Diam Traffic Rooted GROUND ELEVATION LENGTH RISER PIPE BELOW GRD. SURF.(Ft.) 0.26 QuiKrete - TYPE OF SURFACE SEAL 181 ** * DIA. SURFACE SEAL BGS (In.) 1. 3 OEPTH TO BOTTOM OF SURFACE SEAL (Ft.) I.D. OF PROTECTIVE CASING (In.) SAND DRAIN LAYER ** Steel TYPE OF PROTECTIVE CASING - OEPTH BOTTOM OF PROTECTIVE CASING (Ft.) 20 DEPTH BOTTOM OF DRAIN LAYER (Ft.) 7.25 - RISER PIPE (In.) I.D.: _____ 0.D.: MW-2085 . PVC - TYPE OF RISER PIPE WEN constructed TYPE OF BACKFILL AROUND RISER PIPE MW-2085/Burgen above MW-2080. 80-61.Z 29 DEPTH TOP OF SEAL (Ft.) 15 same borehold <u>NOTE</u>: Bentin te Ching 1/81 TYPE OF SEAL 61.Z DEPTH BOTTOM OF SEAL (Ft.) PEPTH BOTTOM OF SEAL (Ft.) DEPTH TOP OF PERVIOUS SECTION (Ft.) - 2-Gentrouzers 62,5 - Boring Advanced w/ D-1-W 5.5 1/6 Easing Sonic DIAMETER OF BOREHOLE (In.) B.DZO SMY PUC TYPE OF PERMOUS SECTION -0.020 5/0+ TYPE OF OPENINGS 2″ 2.25" PERMOUS SECTION (In.) I.D.: O.D.: ____ 1 - Centralizer used TYPE OF FILTER PACK AROUND PERVIOUS SECTION #Ø Sand at 60 Fbas 73 DEPTH BOTTOM OF PERMOUS SECTION (Ft.) DEPTH BOTTOM OF FILTER PACK (Ft.) Bentonite Chips TYPE OF BACKFILL (GROUT) BELOW FILTER PACK 18 END OF BORING GENERAL NOTE Entry of 0.00 for Ground Elevation, Elev. Too of Riser Pipe & Elev. Top of Protective Casing Indicates that Surveyed Ground Elevation Not Available.





			ſ	
FLUSH MOUNT MONITORING WELL C	ONSTRUCTIO		NOWN & RO	OT ENVIRONMENTAL
PROJECT NAME: Raymork OU2 Phose 1				7601 +0320
PROJECT LOCATION: Strotford CT		· · · · · · · · · · · · · · · · · · ·	WELL NO:	5 A (7 D
CLIENT: LSEPA, RACI		,	BORING NO:	209D
CONTRACTOR: ALLIANCE		lon Ball		RING LOCATION:
LOGGED BY: Joy Mello		0-22-97	Stratford	Shapping Center
CHECKED BY:	DATE:		por 15.mg	lot - Front
			-	PAGE: 1 OF 1
ELEVATION TOP OF PROTECTIVE		· · · · · · · · · · · · · · · · · · ·		· ·
CASING		FLUSH MOUNT PROTECTIVE	CASING	
ELEVATION TOP OF RISER PIPE				
GROUND				·
ELEVATION		OTH RISER PIPE BELOW GRD	SURF (Ft.)	-
		TYPE OF SURFACE SEAL		anikrets Concrete
		DIA. SURFACE SEAL BGS (	In.)	18-24
	■	DEPTH TO BOTTOM OF SURFA	CE SEAL (Ft.)	1.4
SAND DRAIN LAYER	│	I.D. OF PROTECTIVE CASING	G (In.)	8
_	◀	TYPE OF PROTECTIVE CASH	NG	Steel
	╵╎╴│┖ब┼───	DEPTH BOTTOM OF PROTECTIV	Æ CASING (Ft.)	1.6
		DEPTH BOTTOM OF DRAIN		
	] <del>R\</del>	RISER PIPE (In.) I.D.:	2.03	D.D.: <u>2.3</u>
	] <del>}∖</del>	TYPE OF RISER PIPE		PVC
		TYPE OF BACKFILL AROUNI	) RISER PIPE	Cement/Bentonite Grant
		DEPTH TOP OF SEAL (Ft.)		34
NOTEI		- TYPE OF SEAL		Benton. 74 Chips
		DEPTH BOTTOM OF SEAL (	5+ )	54
- 2 Centralizers - Boring Advanced w/ D-&-W				59.3
Senic	Ξ	DEPTH TOP OF PERVIOUS		6
C day Filter Pack	=	- DIAMETER OF BOREHOLE (I - TYPE OF PERVIOUS SECTIO		PUC
Secondary Filter Pack • OØØ Sand		TYPE OF OPENINGS		10 Slot
· noo Sand		PERMOUS SECTION (In.) I.D.:	2.03	0.D.: 7.3
• 54-55 Fbgs		TYPE OF FILTER PACK ARC		OØ Sand
• 59-55 tbgg		PERMOUS SECTION		68.3
		DEPTH BOTTOM OF PERMOUS	SECTION (Ft.)	
		DEPTH BOTTOM OF FILTER	PACK (Ft.)	69
		TYPE OF BACKFILL (GROUT	$\sim N$	lonk
		BELOW FILTER PACK	/	·
		- END OF BORING		69
GENERAL NOTE:				
1. Entry of 0.00 for Grouno Elevation, Elev. Top of	Riser Pipe & Elev.	Top of Protective Casing		
Indicates that Surveyed Ground Elevation Not Av	oiloble.			


t

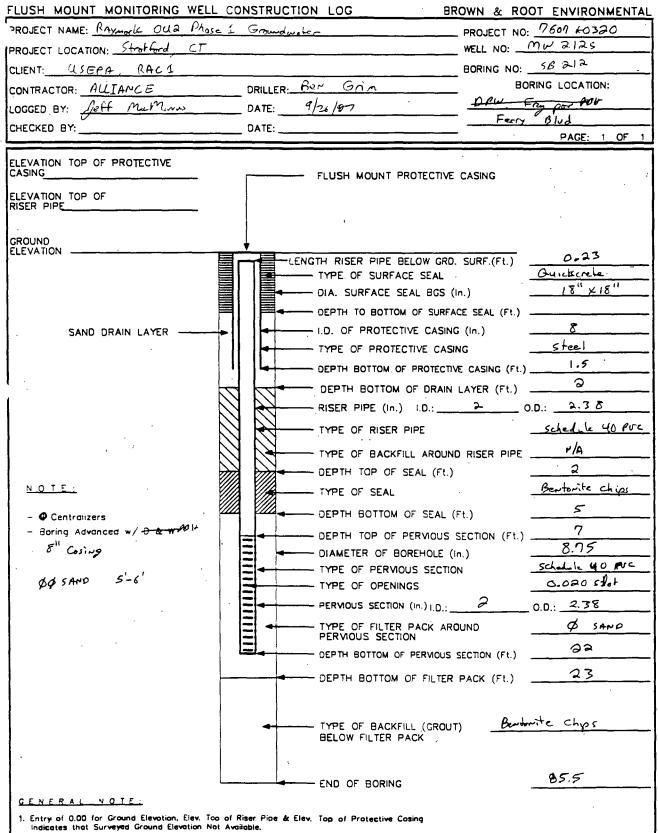

.


FLUSH MOUNT MONITORING WELL CONSTRUCTION LOG BROWN & ROOT ENVIRONMENTAL PROJECT NAME: RAYmork OU2 Phose 1 Groundwater PROJECT NO: 7607 40320 WELL NO: ______ - 209B PROJECT LOCATION: Strotford CT BORING NO: 309 B / New) CLIENT: USEPA, RACI BORING LOCATION: Ron Bol! CONTRACTOR: ALLIANCE DRILLER:__ Stratford Shapping 15-97 10 -MARAIO LOGGED BY: Jmi DATE: Center - Parking LOT. CHECKED BY: DATE: PAGE: 1 OF ELEVATION TOP OF PROTECTIVE CASING FLUSH MOUNT PROTECTIVE CASING ELEVATION TOP OF GROUND ELEVATION LENGTH RISER PIPE BELOW GRD. SURF. (Ft.) Robar evisional Qui, Krete Comunt - TYPE OF SURFACE SEAL 18-24/Surface - DIA. SURFACE SEAL BGS (In.) 1.4 DEPTH TO BOTTOM OF SURFACE SEAL (Ft.) X - I.D. OF PROTECTIVE CASING (In.) SAND DRAIN LAYER -Stell - TYPE OF PROTECTIVE CASING 1.6 DEPTH BOTTOM OF PROTECTIVE CASING (Ft.) 2 DEPTH BOTTOM OF DRAIN LAYER (Ft.) 7.3 RISER PIPE (In.) 1.D.: 2.05 0.0.: PVL TYPE OF RISER PIPE - TYPE OF BACKFILL AROUND RISER PIPE Contract Bentin to grow 77 DEPTH TOP OF SEAL (Ft.) 22 amon tella NOTE TYPE OF SEAL 82 - Z Centronzers DEPTH BOTTOM OF SEAL (Ft.) - Baring Advances w/ D & W 85 DEPTH TOP OF PERMOUS SECTION (FU) Some 5 DIAMETER OF BOREHOLE (In.) PUC Schondory Filter Ponk TYPE OF PERVIOUS SECTION TYPE OF OPENINGS 10 slot 2.05 2.3 - DOO SAND PERMOUS SECTION (In.) I.D.: 0.**D**.: TYPE OF FILTER PACK AROUND PERVIOUS SECTION FOO Sand 82-83 F6as 100 DEPTH BOTTOM OF PERMOUS SECTION (Ft.) 100 5 101 DEPTH BOTTOM OF FILTER PACK (Ft.) TYPE OF BACKFILL (GROUT) BELOW FILTER PACK 101 END OF BORING GENERAL NOTE Entry of 0.00 for Ground Elevation, Elev. Too of Riser Pipe & Elev. Top of Protective Casing Indicates that Surveyed Ground Elevation Not Available.





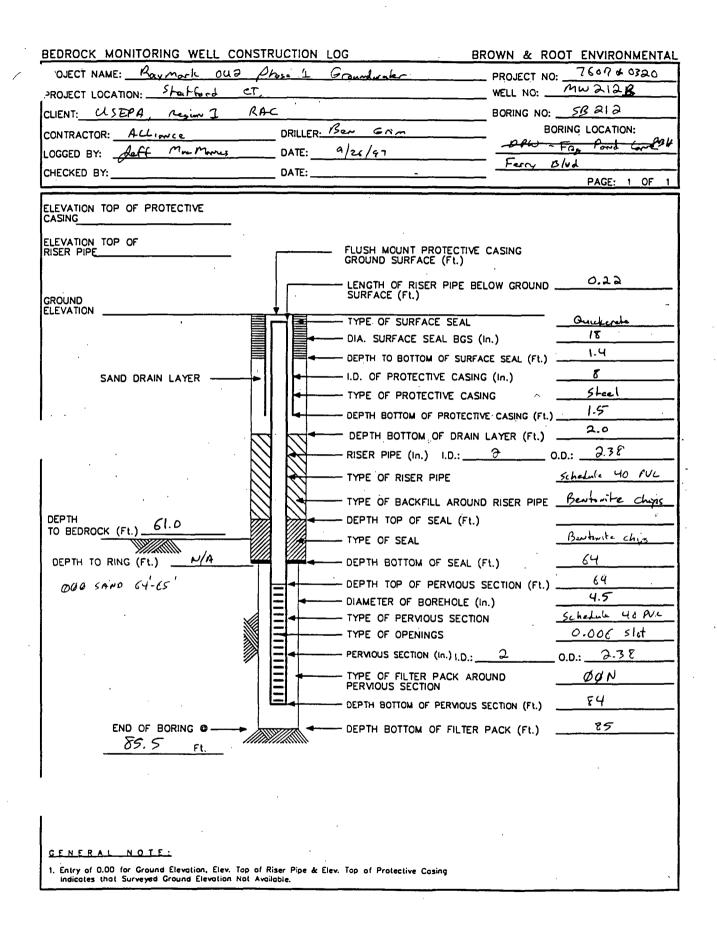




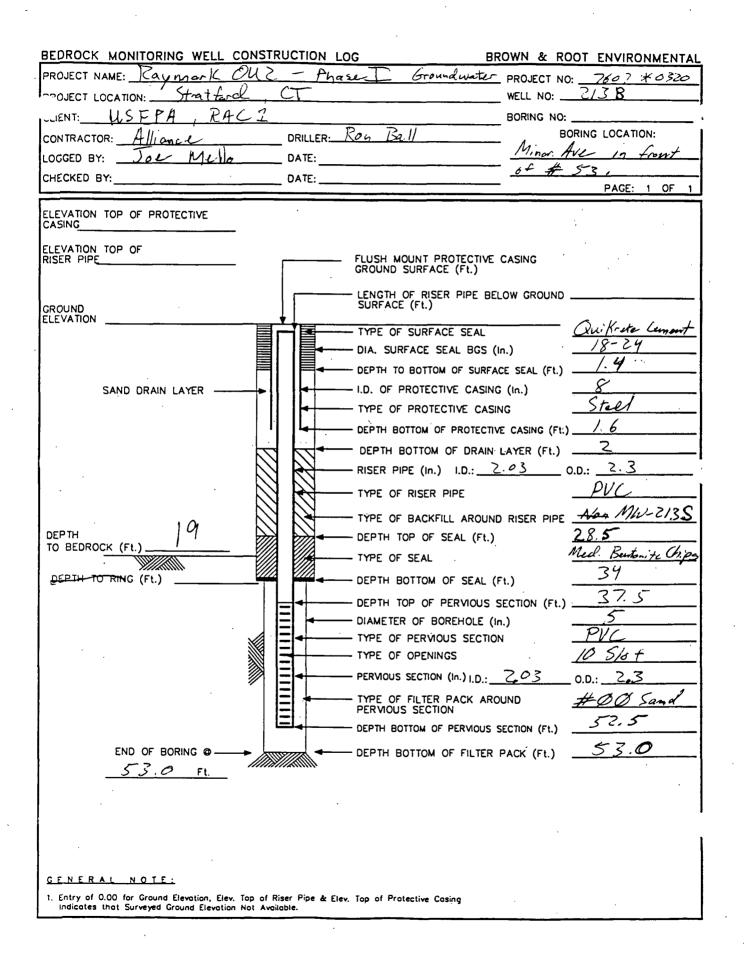



FLUSH MOUNT MONITORING WELL CONSTRUCTION LOG BROWN & ROOT ENVIRONMENTAL PROJECT NO: 7601 40320 PROJECT NAME: RAYMORIC OUS Phase 1 Groundwisher WELL NO: _____ 211 D PROJECT LOCATION: Strotford CT BORING NO: 211 D, M CLIENT: USEPA, RACI BORING LOCATION: Ron Ba CONTRACTOR: ALLIANCE DRILLER: DOT Procenty, Nof Rts 'S )01 10-25-97 Mella LOGGED BY: DATE: grass covered sution <u>0</u>7 🕈 CHECKED BY: DATE: PAGE: 1 OF ELEVATION TOP OF PROTECTIVE CASING_ FLUSH MOUNT PROTECTIVE CASING ELEVATION TOP OF GROUND ELEVATION LENGTH RISER PIPE BELOW GRD. SURF.(Ft.) Quikrete Cem TYPE OF SURFACE SEAL ÷. 18-24 DIA. SURFACE SEAL BGS (In.) 1.4 DEPTH TO BOTTOM OF SURFACE SEAL (Ft.) 8 I.D. OF PROTECTIVE CASING (In.) SAND DRAIN LAYER Steel TYPE OF PROTECTIVE CASING 1.6 - DEPTH BOTTOM OF PROTECTIVE CASING (Ft.) Z DEPTH BOTTOM OF DRAIN LAYER (Ft.) 2:3 - RISER PIPE (In.) I.D.: 2.03 0.D.: PVC TYPE OF RISER PIPE Min-21/1/ / grow - TYPE OF BACKFILL AROUND RISER PIPE 105 DEPTH TOP OF SEAL (Ft.) Bentonite Chipe NOT TYPE OF SEAL +25/23.5 DEPTH BOTTOM OF SEAL (Ft.) - Z Centranzers 128 - Boring Advanced DEPTH TOP OF PERMOUS SECTION (Ft.) DIAMETER OF BOREHOLE (in.) Secondary Filter Pack PVĆ TYPE OF PERVIOUS SECTION 10 Spr TYPE OF OPENINGS · # ØØØ PERMOUS SECTION (In.) 1.D.: 203 23 0.D.: · 123.5 - 125 Fbys TYPE OF FILTER PACK AROUND PERVIOUS SECTION # OØ SAND 143 DEPTH BOTTOM OF PERMOUS SECTION (Ft.) 144 DEPTH BOTTOM OF FILTER PACK (Ft.) None TYPE OF BACKFILL (GROUT) BELOW FILTER PACK 144 END OF BORING ENERAL NOTE Entry of 0.00 for Ground Elevation, Elev. Top of Riser Pipe & Elev. Top of Protective Casing indicates that Surveyed Ground Elevation Nat Available.

BEDROCK MONITORING WELL CONSTRUCTION	LOG BR	OWN & ROOT ENVIRONMENTAL
OJECT NAME: Raymark OUZ		PROJECT NO:760_7
PROJECT LOCATION: Strattard CT		WELL NO: MW-ZIB
CLIENT: EPA- New England		BORING NO: M 211(B,5)
CONTRACTOR: A 11; ance DRILLER	Ron Ball	BORING LOCATION:
	10-13-97	On DOT Property north
CHECKED BY: DATE:		of R+2 95
		PAGE: 1 OF 1
ELEVATION TOP OF PROTECTIVE CASING		
ELEVATION TOP OF RISER PIPE		CASING
GROUND	LENGTH OF RISER PIPE BEI SURFACE (Ft.)	.OW GROUND
	TYPE OF SURFACE SEAL	Qui Krete Cument
	- DIA. SURFACE SEAL BGS (1	
┃	DEPTH TO BOTTOM OF SURFAC	
SAND DRAIN LAYER	I.D. OF PROTECTIVE CASING	
	TYPE OF PROTECTIVE CASIN	
if contralizers used	DEPTH BOTTOM OF PROTECTIV	
- 5 foot above the screen -	DEPTH BOTTOM OF DRAIN	_
and every 30 after with		
28 fbgs.	- TYPE OF RISER PIPE	Bennow te Chips, Centert
		RISER PIPE but a rout MW-2115
DEPTH TO BEDROCK (Ft.) 150	DEPTH TOP OF SEAL (Ft.)	136.5
	TYPE OF SEAL	Bentaute Chips
DEPTH TO RING (FL)	DEPTH BOTTOM OF SEAL (F	. ,
Secondary Filter Pack	DEPTH TOP OF PERVIOUS S	SECTION (Ft.)
	DIAMETER OF BOREHOLE (In	DI//
- 152-153 Fbg5		
- ØØN sund	TYPE OF OPENINGS	205 10 510t
	PERVIOUS SECTION (In.) I.D.:	
	TYPE OF FILTER PACK ARO PERVIOUS SECTION	
	DEPTH BOTTOM OF PERVIOUS S	
END OF BORING		PACK (Ft.) 170.5
<u>171 FL</u>		
•		
		,
GENERAL NOTE:		
1. Entry of 0.00 for Ground Elevation, Elev. Top of Riser Pipe &	Elev. Top of Protective Casing	-

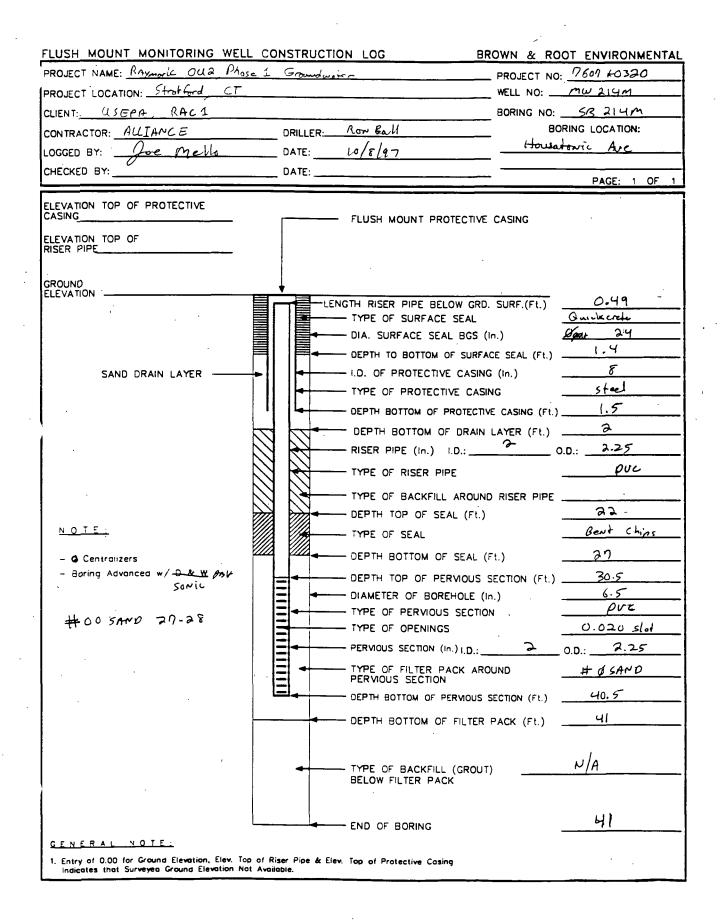

Indicates that Surveyed Ground Elevation Nat Available.

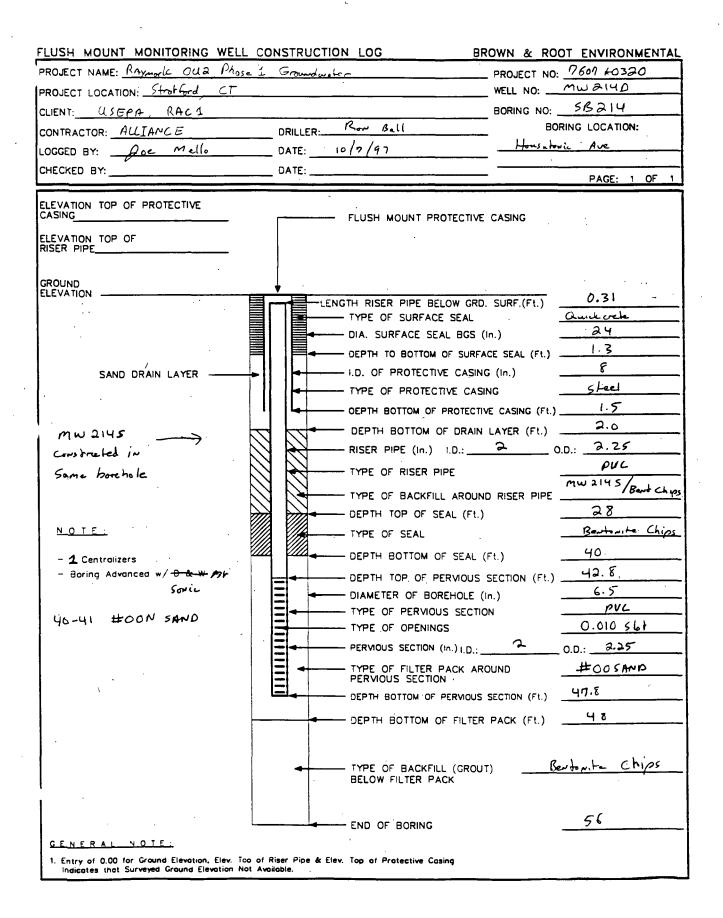


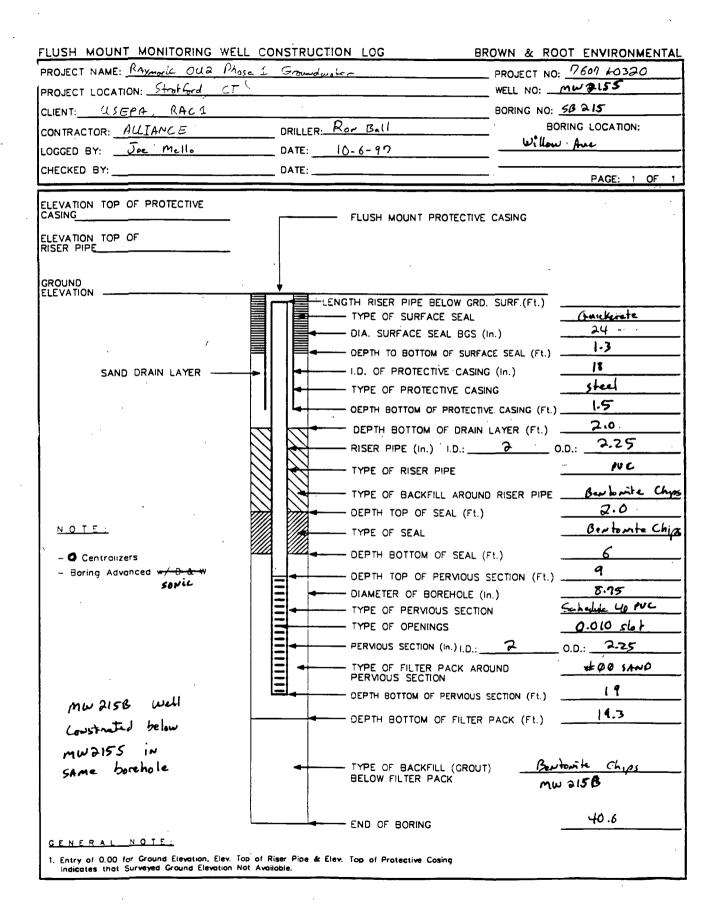

		BROWN & ROOT ENVIRONMENT
ROJECT NAME: RAYMORIC OUS Phose 1 G		
ROJECT LOCATION: Stratford CT		WELL NO:M
LIENT: USEPA, RACI		BORING NO: 212 (M.D)
ONTRACTOR: ALLIANCE DE	RILLER: Busi Grim	BORING LOCATION:
DEGED BY: Joe Mullo DA	ATE: 9-28-97	S of 95 Eof Schuck's Auto
	ATE:	
		PAGE: 1 OF
LEVATION TOP OF PROTECTIVE		
ASING	FLUSH MOUNT PROTECTI	VE CASING
LEVATION TOP OF		
· · · · · · · · · · · · · · · · · · ·		
ROUND		•
	LENGTH RISER PIPE BELOW G	RD. SURF.(Ft.) 0.30
	TYPE OF SURFACE SEAL	
	DIA. SURFACE SEAL BGS	
	DEPTH TO BOTTOM OF SUR	
SAND DRAIN LAYER	I.D. OF PROTECTIVE CAS	· · · · · · · · · · · · · · · · · · ·
	TYPE OF PROTECTIVE CA	· · · ·
	DEPTH BOTTOM OF PROTEC	CTIVE CASING (Ft.)
	DEPTH BOTTOM OF DRA	IN LAYER (Ft.)
	RISER PIPE (In.) I.D.:	<u>2.25</u>
	TYPE OF RISER PIPE	PVC
		UND RISER PIPE 1:12 Benton to Corourt
	DEPTH TOP OF SEAL (F	
NOTE	TYPE OF SEAL	Bentonite Med Chips
		25 16
- 2 Centralizers	DEPTH BOTTOM OF SEAL	
- Boring Advancea w/-D-&-W		
Sonic E	DIAMETER OF BOREHOLE	4D1/
		TION
	TYPE OF OPENINGS	
	PERMOUS SECTION (In.) I.D.	
	TYPE OF FILTER PACK A PERVIOUS SECTION	
		US SECTION (Ft.)
		PRACK (Et) 44.05
	TYPE OF BACKFILL (GRO	MW-2120/44-55.8 Flys
	BELOW FILTER PACK	
	END OF BORING	55.8 <b>E</b> I
GENERAL NOTE:		
to a contract Structure Flow Ten of Dise	Pipe & Elev. Top of Protective Cosing	

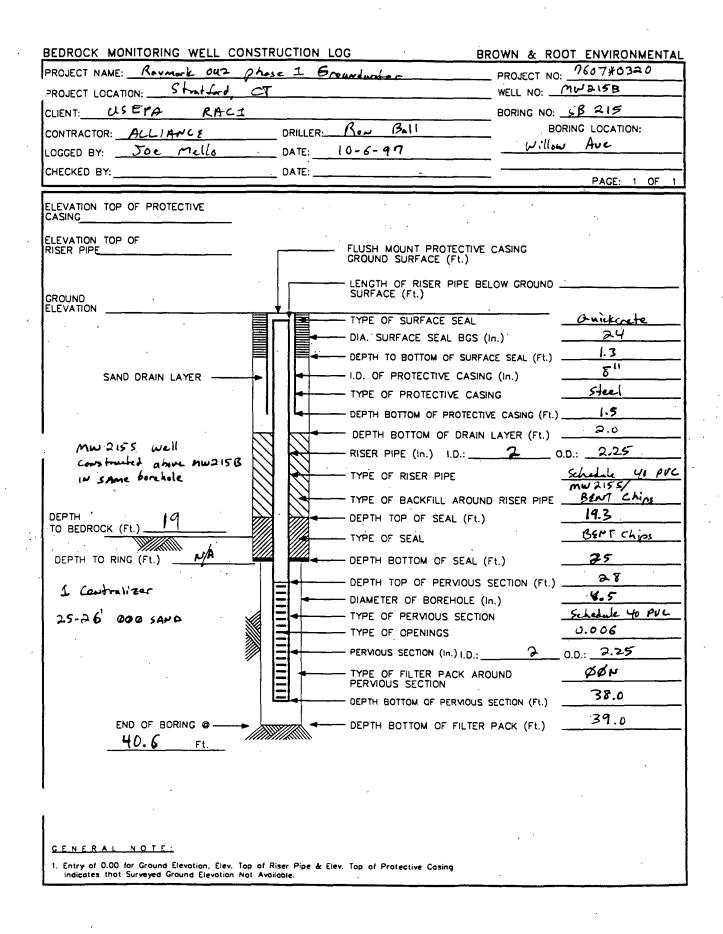
.

		•
FLUSH MOUNT MONITORING WELL	CONSTRUCTION LOG	BROWN & ROOT ENVIRONMENTAL
PROJECT NAME: RAYMORIC OUS Phose		PROJECT NO: 7607 40320
PROJECT LOCATION: Stratford CT		WELL NO: 212D
CLIENT: USEPA, RACI		BORING NO: 58-212 M, D)
CONTRACTOR: ALLIANCE	DRILLER: Ren	BORING LOCATION:
LOGGED BY: Jou Mulli	DATE: 1-27-97	S of 95 E. of Schock's Auto
CHECKED BY:	DATE:	
		PAGE: 1 OF 1
ELEVATION TOP OF PROTECTIVE		
CASING	FLUSH MOUNT PROTECT	IVE CASING
ELEVATION TOP OF RISER PIPE		
	•	
	LENGTH RISER PIPE BELOW C	
	TYPE OF SURFACE SEA	
	DIA. SURFACE SEAL BG	S (in.)
SAND DRAIN LAYER		
	RISER PIPE (In.) I.D.;	
	NKN	PVI
	TYPE OF RISER PIPE	1:12 Rente vite / Comment Grove +
		DUND RISER PIPE $\left[\frac{Mw-2i2M}{2}\right]$
	DEPTH TOP OF SEAL (F	Enter to - Made Chips
<u>NOTE</u>	TYPE OF SEAL	47 16
- 2 Centralizers	DEPTH BOTTOM OF SEA	
- Boring Advanced w/ <del>D &amp; W</del>		JS SECTION (Ft.)
Seme Dill		
	TYPE OF PERVIOUS SEC	O OOS SIOT
		$\mu = D T^{4}$
		11 - 11
	TYPE OF FILTER PACK	
	DEPTH BOTTOM OF PERVIC	
	DEPTH BOTTOM OF FIL	TER PACK (Ft.)
· · · · ·		OUT) None Used
	TYPE OF BACKFILL (GR BELOW FILTER PACK	
		55.8
	END OF BORING	





FLUSH MOUNT MONITORING WELL CONSTRUCTION LOG BROWN & ROOT ENVIRONMENTAL PROJECT NO: 7601 +0320 PROJECT NAME: RAYmork OU2 Phase I Groundwate WELL NO: 2135 PROJECT LOCATION: Stratford CT BORING NO: 213 CLIENT: USEPA, RACI Ron Ball BORING LOCATION: CONTRACTOR: ALLIANCE DRILLER: Mino- Ave in front Joe Mello LOGGED BY: DATE: 0+ CHECKED BY: DATE: PAGE: 1 OF ELEVATION TOP OF PROTECTIVE CASING FLUSH MOUNT PROTECTIVE CASING ELEVATION TOP OF GROUND ELEVATION LENGTH RISER PIPE BELOW GRD. SURF.(Ft.) Quikrete Cement TYPE OF SURFACE SEAL 18-24 DIA. SURFACE SEAL BGS (In.) <u>i.</u> 4 DEPTH TO BOTTOM OF SURFACE SEAL (Ft.)  $\overline{s}$ I.D. OF PROTECTIVE CASING (In.) SAND DRAIN LAYER Ster TYPE OF PROTECTIVE CASING .6 DEPTH BOTTOM OF PROTECTIVE CASING (Ft.) DEPTH BOTTOM OF DRAIN LAYER (Ft.) 2.3 RISER PIPE (In.) I.D.: 203 0.D.: PVC EYPE OF RISER PIPE Nonl TYPE OF BACKFILL AROUND RISER PIPE DEPTH TOP OF SEAL (Ft.) Med. Berton te Chips NOTE TYPE OF SEAL 0 10 DEPTH BOTTOM OF SEAL (Ft.) ~ 🗶 Centrolizers 13 - Baring Advanced w/ D DEPTH TOP OF PERMOUS SECTION (Ft.) 29 DIAMETER OF BOREHOLE (In.) TYPE OF PERVIOUS SECTION Scandory Filter Yack 10 Slot TYPE OF OPENINGS PERMOUS SECTION (In.) I.D.: 203 10-11 Fbas 2 OD · TYPE OF FILTER PACK AROUND PERVIOUS SECTION #ØØ Sang # OQ & Sand 28 DEPTH BOTTOM OF PERMOUS SECTION (Ft.) Z8. S DEPTH BOTTOM OF FILTER PACK (Ft.) MU-ZIZB/Rententechip TYPE OF BACKFILL (GROUT) BELOW FILTER PACK 53.0 END OF BORING NERA NOTE Entry of 0.00 for Ground Elevation, Elev. Top of Riser Pipe & Elev. Top of Protective Casing Indicates that Surveyed Ground Elevation Not Available.





FLUSH MOUNT_MONITORING WELL	CONSTRUCTION LOG	BROWN & ROOT ENVIRONMENTA
PROJECT NAME: RAYMORIC OUS Phos.		PROJECT NO: 7607 +0320
PROJECT LOCATION: Stratford CT		WELL NO: MW2145
CLIENT: USEPA, RACI		BORING NO: 5B214
CONTRACTOR: ALLIANCE	DRILLER: Row Ball	BORING LOCATION:
LOGGED BY: for Mello	DATE:10/7/47	Housatorie Ave
CHECKED BY:	DATE:	
		PAGE: 1 OF
ELEVATION TOP OF PROTECTIVE		
CASING	FLUSH MOUNT PROTECT	IVE CASING
ELEVATION TOP OF RISER PIPE		· · ·
		· · · · · · · · · · · · · · · · · · ·
GROUND	Ţ	
ELEVATION	LENGTH RISER PIPE BELOW (	SRD. SURF. (Ft.) 0.30
۲ ۱	TYPE OF SURFACE SEA	L Quule crete
	DIA. SURFACE SEAL BG	
SAND DRAIN LAYER	I.D. OF PROTECTIVE CA	
		-
	DEPTH BOTTOM OF DR.	AIN LAYER (Ft.)
	RISER PIPE (In.) I.D.:	
· · ·		puc
	TYPE OF BACKFILL ARC	DUND RISER PIPE Beat Chips
· .	DEPTH TOP OF SEAL (	<b>A</b> ¹
NOTE:	TYPE OF SEAL	Bent Chips
	DEPTH BOTTOM OF SEA	N (Ft) 8
– 2 Centralizers – Boring Advanceà w/ D & W		
The second s		
	TYPE OF OPENINGS	0.010 skt
		0 2 0.D.: 2.25
		AROUND #00 SAND
	PERVIOUS SECTION	202
	DEPTH BOTTOM OF FILT	TER PACK (Ft.)
	TYPE OF BACKFILL (GR	OUT) Bentomite Chips
	BELOW FILTER PACK	MW 214D
		•
	END OF BORING	56
GENERAL NOTE:		
1 Entry of 0.00 for Ground Elevation Elev. To	o of Riser Pipe & Elev. Top of Protective Casing	

-

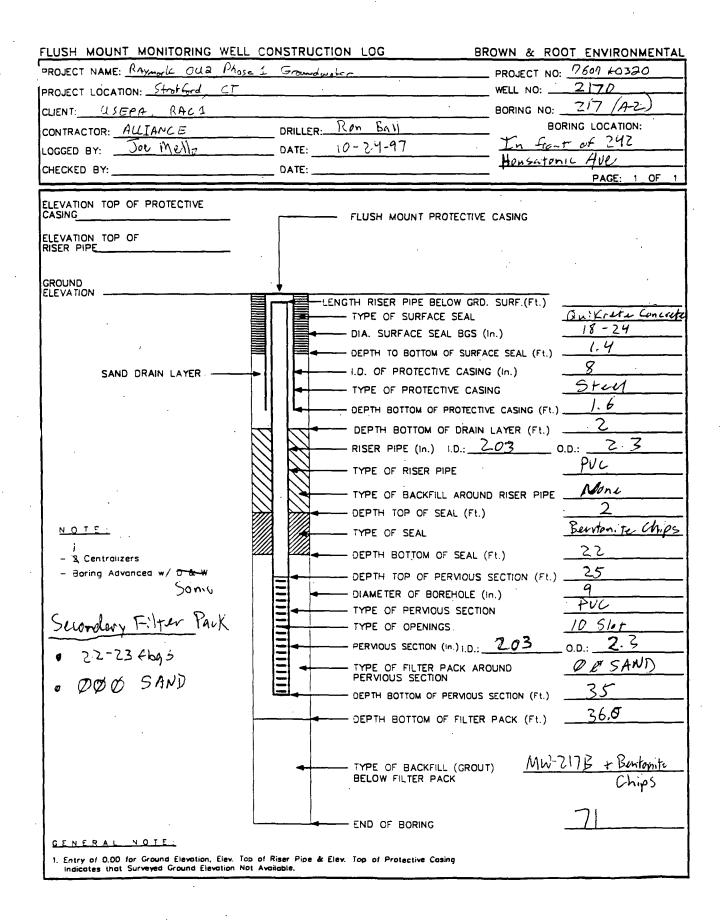








PROJECT LOCATION:	CT	WE	L NO:	7607 ± 0320 216 B.
CLIENT: EPA			RING NO: _	
		Ben		RING LOCATION:
LOGGED BY: Joe- Mello			Upgrad	dient-on
			DPW	l-mdl.
CHECKED BY:	UATE:			PAGE: 1 OF 1
ELEVATION TOP OF PROTECTIVE CASING				
ELEVATION TOP OF RISER PIPE		- FLUSH MOUNT PROTECTIVE CAS	NC	
		GROUND SURFACE (Ft.)	NG	
		- LENGTH OF RISER PIPE BELOW	GROUND _	0.36
GROUND		SURFACE (Ft.)		· _
ELEVATION		- TYPE OF SURFACE SEAL		Quickcrehe
	<b>]  [-</b>	- DIA. SURFACE SEAL BGS (In.)		18" VIC"
	<b>╕</b>     <b>╕</b>	- DEPTH TO BOTTOM OF SURFACE S	EAL (Ft.) _	1,4
SAND DRAIN LAYER	►     +	- I.D. OF PROTECTIVE CASING (In.		8
	•+	- TYPE OF PROTECTIVE CASING	-	steel
	╵╿╎┞┓┼──	DEPTH BOTTOM OF PROTECTIVE CA	SING (Ft.)_	1.5'
		DEPTH BOTTOM OF DRAIN LAYE		
			<u>~</u> 0.	D.: 2.38
·	$\otimes$ $\boxtimes$	- TYPE OF RISER PIPE		Schedule 40 AVC
l f			-	
		- TYPE OF BACKFILL AROUND RIS	ER PIPE _	BENT - coment GAUT
DEPTH ТО BEDROCK (Ft.)		- DEPTH TOP OF SEAL (Ft.)	-	
		- TYPE OF SEAL	-	Bentonite chips
DEPTH TO RING (Ft.)		- DEPTH BOTTOM OF SEAL (Ft.)	-	
		- DEPTH TOP OF PERVIOUS SECTI	ON (Ft.) _	40.7
		- DIAMETER OF BOREHOLE (In.)	-	<b></b>
*		- TYPE OF PERMOUS SECTION	-	PVC
		- TYPE OF OPENINGS		0.010 56+
	┦   <u>=</u>  +	- PERVIOUS SECTION (in.) I.D.: 2		0.D.:
		- TYPE OF FILTER PACK AROUND PERMOUS SECTION	-	# 00
		DEPTH BOTTOM OF PERMOUS SECTION	ON (Ft.)	65.7
END OF BORING @		- DEPTH BOTTOM OF FILTER PACE	(Et.)	66.0
66.0 Ft.			···· -	,,,,,,,,,
<u>GENERAL NOTE:</u>				
1. Entry of 0.00 for Ground Elevation, Elev. Top	of Riser Pipe & El Available,	ev. Top of Protective Cosing		


-. .

.

· .

, ,

· · ·

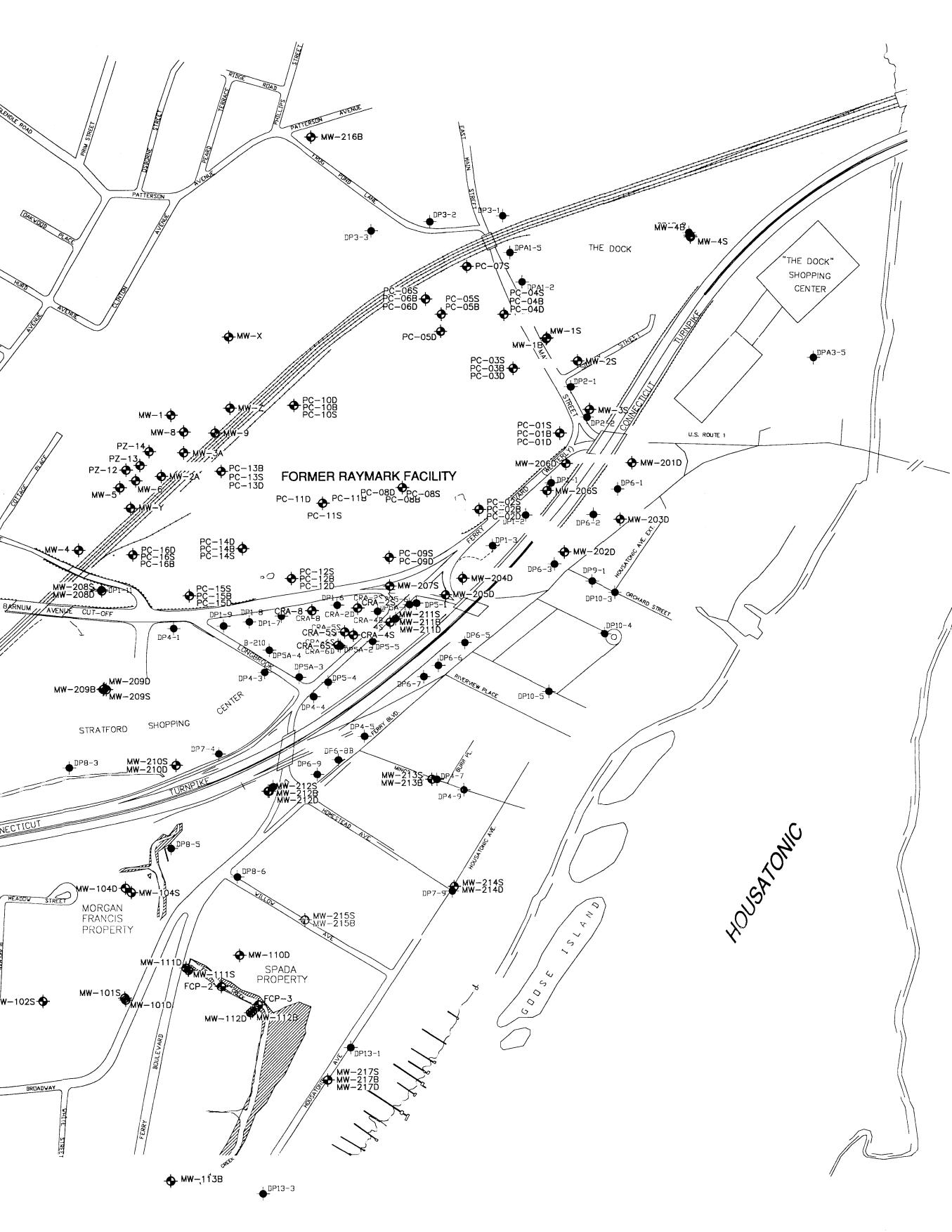


BEDROCK MONITORING WELL CONSTR	UCTION LOG	BRO	OWN & RO	OT ENVIRONMENTAL	
PROJECT NAME: Saymark OUZ Phase I Groundwater			PROJECT NO: 7607 + 0320		
DJECT LOCATION: STratford C			WELL NO:	Z17B	
WENT: USEPA RACI		·	BORING NO:	217 (A-2)	
CONTRACTOR: Alliance		on Ball		DRING LOCATION:	
LOGGED BY: Joe Mello		-24-97	Honsotor	nic Are in	
CHECKED BY:			Front or	F 242 Horsetini Are	
	_ DATE:	······································		PAGE: 1 OF 1	
ELEVATION TOP OF PROTECTIVE				٠	
ELEVATION TOP OF RISER PIPE		LUSH MOUNT PROTECTIVE ( ROUND SURFACE (Ft.)	CASING		
		ENGTH OF RISER PIPE BEL SURFACE (Ft.)	OW GROUND		
		TYPE OF SURFACE SEAL DIA. SURFACE SEAL BGS (In DEPTH TO BOTTOM OF SURFAC	-	Quikrete Sement 18-24 1.4 9	
SAND DRAIN LAYER	· .	.D. OF PROTECTIVE CASING TYPE OF PROTECTIVE CASIN	G	Steel	
		DEPTH BOTTOM OF PROTECTIVE		~	
		RISER PIPE (In.) I.D.:	03 (	D.D.: <u>2.3</u> PVC	
		TYPE OF RISER PIPE			
DEPTH 36		TYPE OF BACKFILL AROUND DEPTH TOP OF SEAL (Ft.)		43 36	
TO BEDROCK (Ft.)		TYPE OF SEAL	Nord.	Bentonite Chips	
DEPTH TO RING (Ft.)	(	DEPTH BOTTOM OF SEAL (F	t.)		
1 centralizer @ 40fbgs	<b>_ </b> ∢  (	DEPTH TOP OF PERMOUS S	ECTION (Ft.)	. 45	
	∃   + □	DIAMETER OF BOREHOLE (In	.)		
No Secondary Filter Pack		TYPE OF PERVIOUS SECTION	l	PVC	
		TYPE OF OPENINGS		10 Sbt	
	<b> ∃ </b> ◆	PERVIOUS SECTION (In.) I.D.:	2.05	0.0.: 2.3	
		TYPE OF FILTER PACK AROU PERVIOUS SECTION	DND	00 Same	
.   ·	╘═┚╼┼─────╷	DEPTH BOTTOM OF PERVIOUS S	ECTION (Ft.)		
END OF BORING CO		DEPTH BOTTOM OF FILTER F	PACK (Ft.)		
				•	
				1	
GENERAL NOTE:					

ŝ,

15

 Entry of 0.00 for Ground Elevation, Elev. Top of Riser Pipe & Elev. Top of Protective Casing Indicates that Surveyed Ground Elevation Not Available.


•

· .

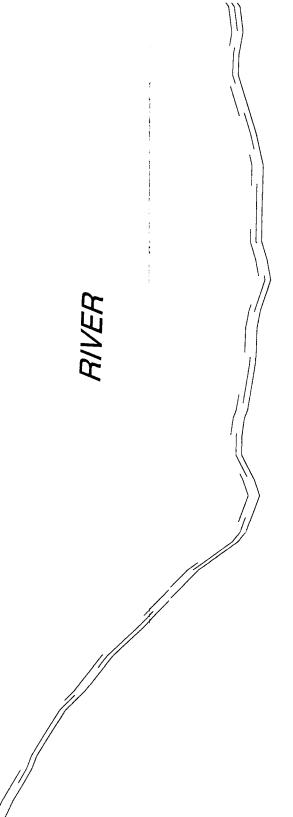
APPENDIX B MAPS

1. ALL LOCATIONS TO BE CONSIDERED APPROXIMATE.

2. PLAN <u>NOT</u> TO BE USED FOR DESIGN.



# STRATFORD, CT


V—102S 🔂

BRUADWAY

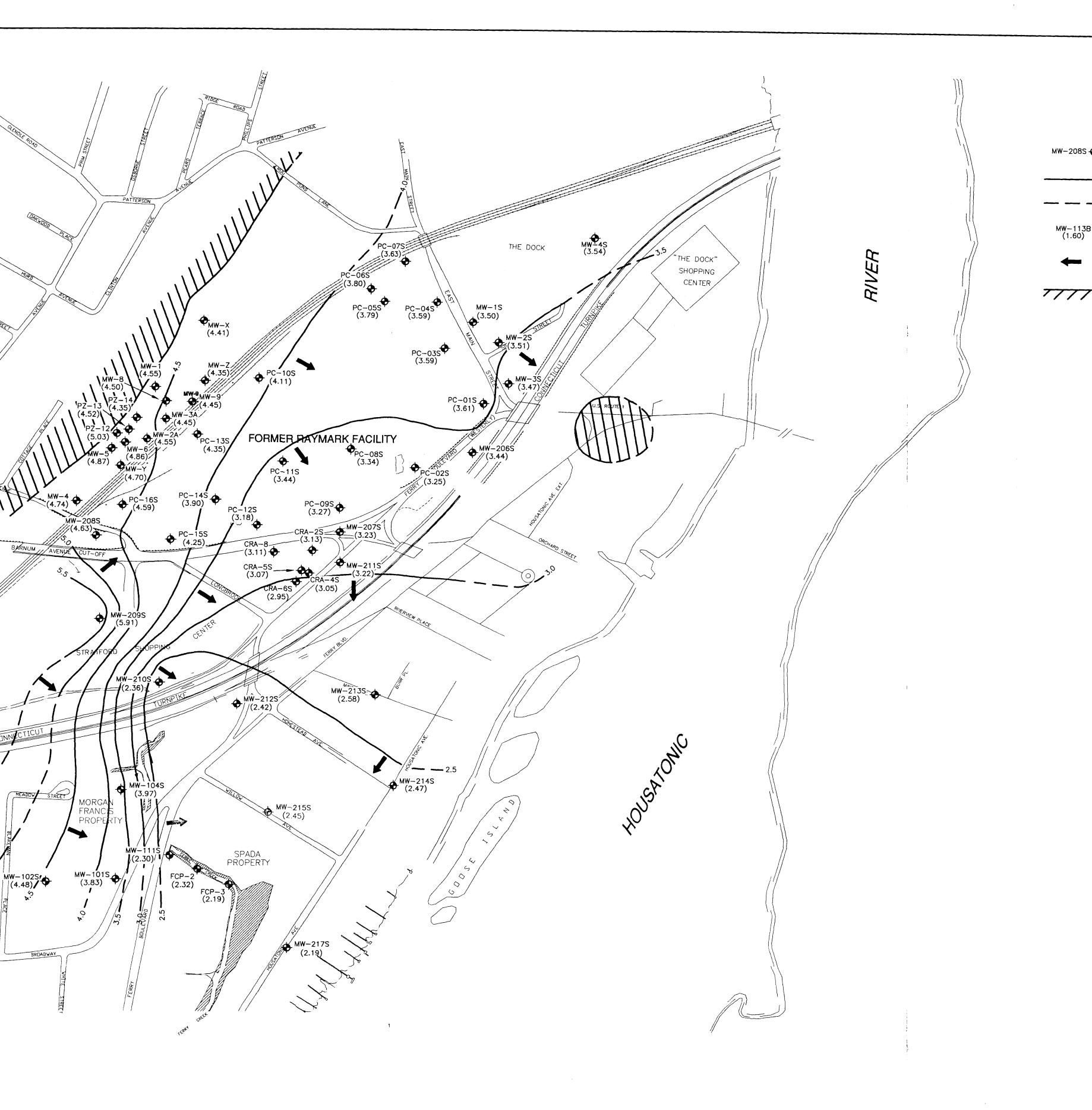
1

÷

				DRAWN BY: J. RUDDERS
		0 00110		CHECKED BY: M. HEALEY
	GRAPHIC	C SCALE		
300'	0'	300'	600'	
	1 INCH =	300 FEET		
				PROJECT MANAGER: H.M. FORD
				PROGRAM MANAGER: G. GARDNER



•


# LEGEND

MW-208S 🕀 DP-1-1 🔶

EXISTING GROUNDWATER MONITORING WELL AND IDENTIFIER DIRECT PUSH LOCATION AND IDENTIFIER

			<u>,</u>		······································
	TITLE:				
	MONITORING WEL	LS AND DIRECT F	PUSH LOCATION	NS	
	DRAFT T	FECHNICAL MEMOR	RANDUM		
	RAYMARK – OPER	ABLE UNIT NO. 2	- STRATFORD,	, CT	Brown & Root Environmenta
	SOURCE: BASE PLAN B	BY EPA, AVAILABLE GIS I	NFORMATION,		
	AND INFORM	ATION FROM AERIAL PH			
	SCALE: 1" = 300'	DATE: MAY 20, 1998	CONTRACT NO.: 68-W6-004	+5	55 JONSPIN ROAD WILMINGTON, MASSACHUSETTS 01887
	DRAWING NO:	ACFILE NAM		REV:	(978)658–7899
R	FIGU	RF 5-1 \DWG\RAYMARK\	OU2\POT-BASE.DWG	0	

- 1. ALL LOCATIONS TO BE CONSIDERED APPROXIMATE.
- 2. PLAN <u>NOT</u> TO BE USED FOR DESIGN.
- 3. ELEVATION DATA REFERENCED TO USGS NGVD 1929.
- 4. WATER TABLE SURFACE ELEVATION CONTOUR INTERVAL IS EQUAL TO 0.5 FEET.
- 5. ALL WATER TABLE ELEVATION MEASUREMENTS WERE TAKEN ON 12/01/97 FROM SHALLOW OVEURDEN MONITORING WELLS SCREENED ACROSS THE WATER TABLE.
- 6. WATER TABLE ELEVATION MEASURED IN MW-110S WAS NOT USED DUE TO INFLUENCE OF LOC/SEPTIC SYSTEM.



# STRATFORD, CT

				DRAWN BY: J. RUDDERS
	GRAPHI	C SCALE		CHECKED BY: M. HEALEY
300'	0'	300'	600'	
	1 INCH =	300 FEET		
			·	PROJECT MANAGER: H.M. FORD
				PROGRAM MANAGER: G. GARDNE

## LEGEND

MW-208S - EXISTING GROUNDWATER MONITORING WELL AND IDENTIFIER

INTERPRETED WATER TABLE ELEVATION CONTOUR

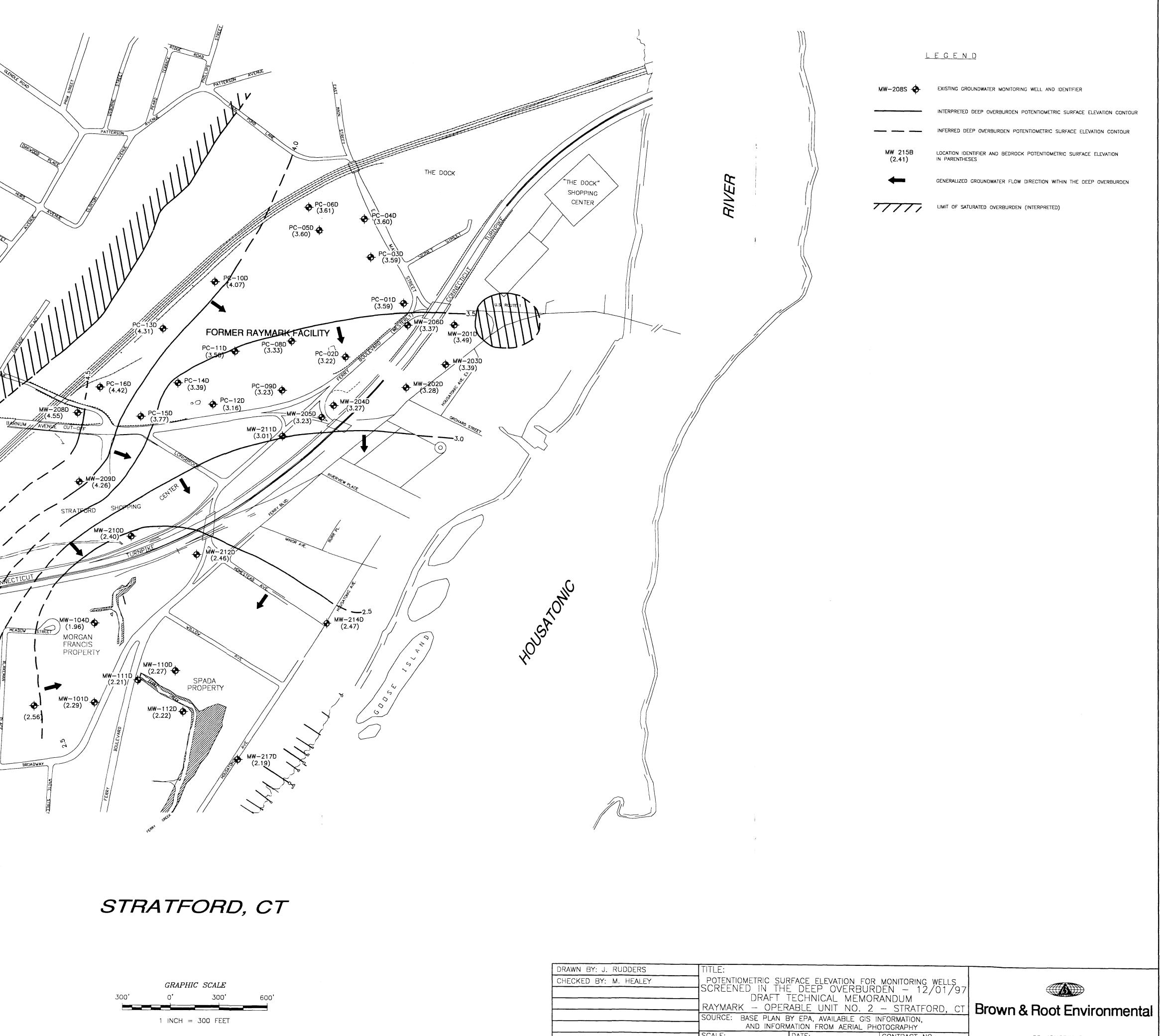
INFERRED WATER TABLE ELEVATION CONTOUR

LOCATION IDENTIFIER AND WATER TABLE ELEVATION IN PARENTHESES

GENERALIZED GROUNDWATER FLOW DIRECTION WITHIN THE OVERBURDEN AQUIFER

LIMIT OF SATURATED OVERBURDEN (INTERPRETED)

	<b>r</b>					
	IN THE OVERE DRAFT	BURDEN A	L MEMOR	– 12/01/97 ANDUM		
. <u></u>	RAYMARK – OPER Source: base plan e				), CT	Brown & Root Environmental
		ATION FROM	AERIAL PHO	OTOGRAPHY		
	SCALE: 1" = 300'	DATE: MAY 20	, 1998	CONTRACT NO.: 68-W6-004	45	55 JONSPIN ROAD WILMINGTON, MASSACHUSETTS 01887
RD NER	DRAWING NO: FIGU		ACFILE NAM		REV: 0	(978)658-7899


2

1

P

r

- 1. ALL LOCATIONS TO BE CONSIDERED APPROXIMATE.
- 2. PLAN <u>NOT</u> TO BE USED FOR DESIGN.
- 3. ELEVATION DATA REFERENCED TO USGS NGVD 1929.
- 4. POTENTIOMETRIC SURFACE ELEVATION CONTOUR INTERVAL IS EQUAL TO 0.5 FEET.
- 5. ALL POTENTIOMETRIC SURFACE ELEVATION MEASUREMENTS WERE TAKEN ON 12/01/97 WITHIN WELLS SCREENED WITHIN THE DEEP OVERBURDEN.
- 6. POTENTIOMETRIC SURFACE ELEVATION MEASURED IN MW-103D (0.29 FEET) WAS WAS NOT USED DUE TO SUSPECTED MEASUREMENT ERROR.



(2.56)

BRUADWAY

	GRAPHI	C SCALE		
300'	0'	300'	600'	
	1 INCH =	300 FEET		

DRAWN BY: J. RUDDERS
CHECKED BY: M. HEALEY
PROJECT MANAGER: H.M. FORD
PROGRAM MANAGER: G. GARDNER

SCALE: 1" = 30C'

DRAWING NO:

55	JONSPIN ROAD	
WILMINGTON,	MASSACHUSETTS	01887
(9	78)658–7899	

CONTRACT NO.: 68-W6-0045


REV:

MAY 20, 1998

FIGURE 3-3 \DWG\RAYMARK\OU2\POT-MW.DWG

ACFILE NAME:

- 1. ALL LOCATIONS TO BE CONSIDERED APPROXIMATE.
- 2. PLAN NOT TO BE USED FOR DESIGN.
- 3. ELEVATION DATA REFERENCED TO USGS NGVD 1929.
- 4. BEDROCK POTENTIOMETRIC SURFACE ELEVATION CONTOUR EQUAL TO 0.5 FEET.
- 5. ALL POTENTIOMETRIC SURFACE ELEVATION MEASUREMENTS WERE TAKEN ON 12/01/97 WITHIN MONITORING WELLS SCREENED WITHIN THE BEDROCK AQUIFER.
- 5. POTENTIOMETRIC SURFACE ELEVATION IN PC-08B WAS MEASURED ON 12/05/97 AND CORRECTED TO 12/01/97 LEVELS USING WATER LEVEL MONITORING DATA FROM PC-05B.



	GRAPH	IC SCALE	
300'	0'	300'	600'
	1 INCH =	= 300 FEET	

RUADWAY

.

÷

DRAWN B	Y: J.	RU	DDI	ERS	5
CHECKED	BY:	Μ.	ΗE	AL	Ξ
PROJECT	MAN	AGE	R:	Н.	M
PROGRAM	MAN	IAGE	R:	G.	

<u>สมมัตร์ที่สีสัญญ</u>า และเหลือ<mark>ต่อสามให้เพื่อส</mark>มาร์สร้างให้เขาสมาวิทางเขาสีของกระหน่างสำนัก และความสมาวาร เรื่องกระห เสมมัตร์ที่สีมัตร์ที่ 

#### APPENDIX C CHEMICAL DATA



## **Brown & Root Environmental**

#### INTERNAL CORRESPONDENCE

То:	Heather Ford	
From:	Lucy Guzman Africzucce	
Subject:	Correlation between VOC Screening and CLP Data. 013-RICO-01H3	Raymark OU2 W.A.
		1

Date: May 14, 1998

The 204 groundwater profiling samples collected at Raymark OU2 were screened for selected volatile organic compounds (VOCs) by gas chromatography using Method 8021A according to the Brown & Root Environmental (B&RE) technical specification No. S97-RAC1-007. Twenty-three of these VOC samples were confirmed by the Contract Laboratory Program (CLP) mass spectrometry Method OLM03.2.

The enclosed Summary Table 1 depicts the screening and the CLP results for the samples and the target compounds analyzed by both methods. The VOC screening results for trans-1,2-dichloroethene and cis-1,2-dichloroethene were combined as one value labeled 1,2-dichloroethene (total); the m&p-xylene results were combined with the o-xylene results into one value presented in Summary Table 1 as xylene (total) in order to compare the VOC screening with the CLP results. Several samples required a large dilution to bring one or more target compounds within the calibration range of the instrument. The large dilution factors resulted in elevated quantitation limits for the non-detected compounds. The dilution factor of the screened samples was almost twice that of the CLP samples due to the lower instrument calibration range of the screening method.

The VOC screening results are comparable to the CLP results. All the positive screening results were confirmed by the CLP analysis. Non-detected results from the screening were reported either as non-detected values by the CLP or as positive values but below the sample quantitation of the screening analysis. The relative percent differences (RPDs) between the screening and CLP results calculated for the compounds with result values above the quantitation limits of both methods are presented in Table 2. The RPDs are all below 50 percent. Most of the RPDs are below the 30 percent value considered acceptable by the EPA Region I data validation guidelines for field duplicate samples. RPD values above 30 percent may be due to the different analytical instrumentation used by the screening and CLP methods.

Correlation coefficients were also calculated to further evaluate the degree of linear relationship between the screening and CLP results. The correlation coefficients for the following compounds with the larger number of positive results were calculated: 1,2-dichloroethene (total); 1,1,1-trichloroethane; trichloroethene; and 1,1-dichloroethane. Only the positive results above the quantitation limits for both screening and CLP methods were used to calculate the correlation coefficients.

The correlation of the screening and CLP data for the four compounds shown below fit closely to a straight line and the correlation coefficients were all above 0.98. The correlation coefficients were calculated using only the positive results above the quantitation limit of both methods, however, most of the non-detected results also correlate very well. The enclosed Figures 1 through 4 represent the linear correlation between the screening and CLP results for 1,2-dichlorethene (total); 1,1,1-trichloroethane; trichloroethene; and 1,1-dichlroethane, respectively.

Compound	Linear Equation	Number of Samples	Correlation Coefficient
1,2-dichloroethene (total)	y=1.1458X - 37.098	14	r = 0.9811
1,1,1-trichloroethane	y=1.2915X - 25.374	10	r=0.9944
trichlorethene	$\gamma = 1.1225X + 0.1552$	* 9	r=0.9896
1,1-dichloroethane	y=0.8955X + 6.774	9	r=0.9860

#### **Recommendation**

Based on the good correlation between the results from the screening and the CLP VOC analyses of the groundwater samples collected during the Raymark OU2 1997 field work, the screening results may be used to determine the geometry of the contamination plume. However, due to the large dilutions required, elevated sample quantitation limits for specific contaminants were reported for some locations indicating artificially high non-detected results. Therefore, specific contaminants will not be represented on plume maps, but the data will be shown as total VOCs.

**Enclosures:** 

C.'

Table 1 Summary VOC Screening and CLP Data Table 2 Relative Percent Differences Figures 1-4 Linear Correlation

File 7607-1.0 w/ enc.

Sample Number	OU2-	DP	1-2-0810		OŲ2-	DP	1-8-2328		OU2-D	P1	-9A-5358		٦
EPA Sample Number	ANA74		DAH421		ANA75		DAH435		ANA79		DAH456	Γ	
Date Sampled	7/28/97		7/28/97		7/29/97		7/29/97		7/30/97		7/30/97	1	
Date Analyzed	8/7/97		7/29/97		8/7/97		7/30/97		8/8/97		7/31/97	1	1
Dilution Factor	1		10		5		50		. 1		10	ιT	1
Analysis Type	CLP		SCREENING		CLP		SCREENING		CLP		SCREENING		
Vinyl Chloride	14		15		130		120		69		77	ſ	1
1,1-Dichloroethene	140		150		14	J	- 50	υ	2	J	10	1U	J.
1,1-Dichloroethane	65		75		· 93		94		81		89	ī	
1,2-Dichloroethene (Totals)	91		.110		480		480		170		160	1	
1,1,1-Trichloroethane	180		200		5	J.	50	U	10	U	10	ιU	Л
1,2-Dichloroethane	· 10	υ	10	υ	50	υ	50	υ	10	U	10	ηĽ	Л
Trichloroethene	8	J	10		52	J	. 57	·	5	J	10	īυ	٦
Tetrachloroethene	10	υ	10	υ	50	υ	50	U	10	υ	10	1U	亓
Benzene	1	J	10	υ	50	υ	50	U	. 5	J	· 10	U	ŗ
Toluene	10	U.	10	υ	50	U	50	U	5	J	· 10	i U	٦
Chlorobenzene	11		16		32	J	50	U	120		120	1	
Ethylbenzene	. 10	U	10	U	50	υ		U	10	U	10	īυ	ī
Xylene (Total)	10	U	10	U	50	U	50	U	2	J	11.8	1	1

#### n:\dept\staff\raymark\ou2\lucytbl\table1.xls

U - Not detected; J - Quantitation approximate;

١.

Sample Number		OU2-	DP	2-1-5459		· OU2	-D	P2-2-5762		OU2-	DP	4-3A-1217
EPA Sample Number	ANA77			DAH452		ANA80		DAH473	·	ANA81		DAH485
Date Sampled		• 7/30/97		7/30/97		· 7/31/97	'	7/31/97	1	8/1/97		8/1/97
Date Analyzed		8/7/97		7/31/97		8/8/97	'	8/2/97	ĺ	8/9/97		8/4/97
Dilution Factor	_	1		1		1		- 1		2		100
Analysis Type	CLP			SCREENING		CLP		SCREENING		CLP		SCREENING
Vinyl Chloride	1	10	U	1.2		10	U	1	U	19	J	100 U
1,1-Dichloroethene		10	Ű	· 1	U	10	U	. 1	U	7	J	. 100 U
1,1-Dichloroethane		10	U	1	υ	10	U	. 1	Ų	85		110
1,2-Dichloroethene (Totals)		3	J	3.2		10	U	1	U	300	•	350
1,1,1-Trichloroethane		10	υ	1	υ	10	U	1	U	20	υ	100 U
1,2-Dichloroethane		່ 2	J	1.8	,	10	U	. 1	U	20	υ	100 U
Trichloroethene		· 7	J	8.8		10	U	1	U	· 13	J	100 U
Tetrachloroethene		3	J	4.9	•	10	U	. 1	U	20	U	100 U
Benzene		2	J	2.2		10	U	1	υ	20	U	100 U
Toluene		2	J	2.2		10	U	1	U	20	U	100 U
Chlorobenzene		8	J	. 9.4		1	J	1.1		20	U	100 U
Ethylbenzene		.10	U	.1.3		.∵ 1C	U	. 1	,U	20	U	100 U
Xylene (Total)		2	J	4.1		10	U	1	U	. 20	υ	100 U

n:\dept\staff\raymark\ou2\lucytbl\table1.xls

U - Not detected; J - Quantitation approximate;

PAGE 2 of 8

Sample Number	OU2-DF	P7-4-0712		OU2-[	DP'	1-12-1419		OU2-D	)P1	3-1-2530	
EPA Sample Number	ANA85	DAH505		ANB05		DAH635		ANB07		DAH638	$\square$
Date Sampled	8/4/97	8/4/97	_	8/14/97		8/14/97		8/15/97		8/15/97	$\square$
Date Analyzed	8/15/97	8/6/97		8/19/97		8/16/97		8/20/97		8/18/97	$\square$
Dilution Factor	1	5		1		. 1		10		500	
Analysis Type	CLP	SCREENING		CLP		SCREENING		CLP		SCREENING	
Vinyl Chloride	28	32		10	υ	1	υ	100	U	500	U
1,1-Dichloroethene	10 U	5	U	10	U	· 1	U	230		500	U
1,1-Dichloroethane	29	29		10	υ	1	U	380		300	J
1,2-Dichloroethene (Totals)	38	35		2	J	1.6		610		490	J
1,1,1-Trichloroethane	· 10 U	5	U	10	υ	1	υ	350		270	J
1,2-Dichloroethane	· 10 U	5	υ	10	U	1	U	100	U	500	υ
Trichloroethene	10 U	5	υ	10	υ	1	υ	1200	_	1200	
Tetrachloroethene	10 U	5	U	10	υ	1	U	100	U	500	U
Benzene	10 U	5	U	10	U	1	U	100	U	500	υ
Toluene	10 U	5	U	10	U	1	U	100	υ	500	U
Chlorobenzene	25	31		8	J	8.3		100	υ	500	υ
Ethylbenzene	10 U	5	U	10	U	1	U	100	υ	500	U
Xylene (Total)	10 U	5	U	10	υ	. 1	U	100	U	500	U

U - Not detected; J - Quantitation approximate;

r aire

PAGE 3 of 8

Sample Number	OU2-D	DP8-	-5-5055		. 0U2	-DF	P5-2-9499		OU2-0	DP'	10-5-1419	٦
EPA Sample Number	ANB00	C	DAH599		ANA97		DAH582		ANB04		DAH623	
Date Sampled	8/11/97		8/11/97		8/11/97		8/11/97		8/13/97		8/13/97	
Date Analyzed	8/18/97		8/14/97		8/19/97		8/12/97		8/20/97		8/16/97	
Dilution Factor	16		1000		16		500		1		1	
Analysis Type	CLP	S	SCREENING		CLP		SCREENING		CLP		SCREENING	
Vinyl Chloride	49	J	1000	υ	160	υ	500	υ	10	υ	1	υŢ
1,1-Dichloroethene	600		1000	U	170		500	υ	10	υ	· 1 l	υÌ
1,1-Dichloroethane	280		1000	υ	210		- 500	U	- 10	U	1	U
1,2-Dichloroethene (Totals)	610		. 1000	υ	540		520		10	U	1	υ
1,1,1-Trichloroethane	1700		2200		. 2000		3100		10	U	1	IJ
1,2-Dichloroethane	160	υ	1000	U	160	U	500	υ	10	U	· 1 l	υ
Trichloroethene	1100		1400		130		500	υ	10	U	1	υ
Tetrachloroethene	160	U.	1000	U	160	U	500	U	10	U	1	υ
Benzene	160	U	1000	U	160	U	500	υ	10	U	1 ไ	υ
Toluene	160	U	1000	υ	160	U	500	U	10	U	· 1	U
Chlorobenzene	33 .	J	1000	U	160	υ	500	U	10	υ	1 լ	υ
Ethylbenzene	160	U	1000	U	160	υ	500	U.	10	υ	1 เ	J
Xylene (Total)	160	U	1000	U	160	U	500	U	10	U	1 0	U

n:\dept\staff\raymark\ou2\lucytbl\table1.xls

U - Not detected; J - Quantitation approximate;

PAGE 4 of 8

Sample Number	OU2-D	P7-9A-2227		OU2-[	OPS	5A-2-1520		OU2-DP	6-5A-3944	
EPA Sample Number	ANB02	DAH620		ANA83		DAH495		ANA87	DAH520	
Date Sampled	8/13/97	8/13/97		8/4/97		8/4/97		8/5/97	8/5/97	
Date Analyzed	8/22/97	8/15/97		8/15/97		8/5/97		8/15/97	8/7/97	
Dilution Factor	1	5		20		1000		2	20	
Analysis Type	CLP	SCREENING		CLP		SCREENING		CLP	SCREENING	
Vinyl Chloride	10 U	5	υ	200	U	1000	υ	: 5 J	20	U
1,1-Dichloroethene	14	13		200	U	1000	U	180	190	
1,1-Dichloroethane	4 J	5	υ	200	U	1000	U	170	180	
1,2-Dichloroethene (Totals)	7 J	5		200	U	1000	U	140	140	
1,1,1-Trichloroethane	. 42	40		200	U	1000	U	230	230	i .
1,2-Dichloroethane	10 L	5	υ	200	U	1000	U	20 U	20	υ
Trichloroethene	8 J	10		200	U	1000	υ	53	64	
Tetrachloroethene	10 L	ז 5	υ	200	U	. 1000	υ	20 U	20	υ
Benzene	10 L	5	υ	2500	J	3400		20 U	20	υ
Toluene	10 L	5	υ	110	J	1000	U	20 U	20	υ
Chlorobenzene	10 L	5	υ	200	υ	1000	υ	20 U	20	υ
Ethylbenzene	10 L	5	υ	200	U	1000	U	20 U	20	υ
Xylene (Total)	10 L	5	U	200	U	. 1000	U	20 U	20	υ

.

PAGE 5 of 8

Sample Number	OU2-[	)P4	-5C-1419		OU2-D	Ρ7	-5A-3843		OU2-	DF	4-7-1823	
EPA Sample Number	ANH89		DAH531		ANA91		DAH548		ANA94		DAH537	
Date Sampled	8/6/97		8/6/97		8/7/97		8/7/97		8/6/97		8/6/97	
Date Analyzed	8/16/97		8/7/97		8/16/97		8/8/97		8/16/97		8/8/97	
Dilution Factor	4		. 100		50		1000		10		50	_
Analysis Type	CLP		SCREENING		CLP		SCREENING		CLP		SCREENING	
Vinyl Chloride	40	υ	100	υ	500	υ	1000	υ	100	U	50 U	Л
1,1-Dichloroethene	140		130		4000		4600		480		390	
1,1-Dichloroethane	58		100	U	· 320	J	1000	U	160		100	
1,2-Dichloroethene (Totals)	84		100	U	1200		1500		240		170	
1,1,1-Trichloroethane	620		670		7700		9800		1400		1200	
1,2-Dichloroethane	40	υ	100	υ	500	U	1000	υ	100	U	50 U	J
Trichloroethene	110		. 120		480	J	1000	U	240		250	
Tetrachloroethene	40	U	100	U	. 500	υ	1000	U	100	U	50 U	J
Benzene	40	U	. 100	U	500	υ	1000	U	100	U	50 0	ັ
Toluene	40	U	100	υ	. 500	υ	1000	υ	100	U	50 U	J
Chlorobenzene	40	υ	100	υ	500	U	. 1000	U	100	U	50 U	J
Ethylbenzene	40	U	. 100	υ	500	U	1000	U	100	U	. 50 U	J
Xylene (Total)	40	υ	· 100	υ	500	U	1000	U	100	U	50 U	J

PAGE 6 of 8

Sample Number	002-	DP	4-4-0510		AA-DPA	3-2	2-1015		AA-DP	A1	-2-1015
EPA Sample Number	ANA95		DAH564		ANB10		DAH709		ANB14		DAH714
Date Sampled	8/8/97		8/8/97		9/8/97		9/8/97		9/9/97		9/9/97
Date Analyzed	8/19/97		8/11/97		9/11/97		9/10/97		9/12/97		9/10/97
Dilution Factor	16		500		1		.1		500		5000
Analysis Type	CLP		SCREENING		CLP		SCREENING		CLP		SCREENING
Vinyl Chloride	92		500	υ	10	υ	1	J	5000	υ	5000 U
1,1-Dichloroethene	390		. 500	υ	· · · 10	υ	1	J	5000	U	5000 U
1,1-Dichloroethane	630		600		10	U	1	J	5000	U	5000 U
1,2-Dichloroethene (Totals)	660		650		10	υ	<u>^ 1</u> U	J	5000	U	5000 U
1,1,1-Trichloroethane	1700		2600		10	υ	1	J	5000	υ	5000 U
1,2-Dichloroethane	160	U	500	U	10	υ	1 1	J	5000	U	5000 U
Trichloroethene	67	J	500	U	10	υ	1	J	5000	U	5000 U
Tetrachloroethene	160	U	500	U	. 10	υ	1	J	5000	υ	5000 U
Benzene	82	J	500	Ų	10	U	1	J	5000	U	5000 U
Toluene	160	U .	. 500	U	1	J	1	J	62000	J	94000
Chlorobenzene	160	υ	500	U	. 10	υ	1 נ	J	5000	U	5000 U
Ethylbenzene	160	U	500	U	10	U	1 U	J	1200	J	5000 U
Xylene (Total)	160	υ	500	U	. 2	J	1.1	i	8000		12000

U - Not detected; J - Quantitation approximate;

PAGE 7 of 8

				1
Sample Number	AA-DF	PA1	-5-0914	
EPA Sample Number	ANB15		DAH716	
Date Sampled	9/9/97	'	9/9/97	
Date Analyzed	9/12/97	'	9/10/97	
Dilution Factor	250		5000	
Analysis Type	CLP		SCREENING	
Vinyl Chloride	2500	υ	5000	U
1,1-Dichloroethene	. 2500	U	5000	υ
1,1-Dichloroethane	2500	U	5000	U
1,2-Dichloroethene (Totals)	2500	υ	5000	U
1,1,1-Trichloroethane	2500	U	5000	υ
1,2-Dichloroethane	2500	U	5000	U
Trichloroethene	2500	U	5000	U
Tetrachloroethene	2500	U	5000	υ
Benzene	2500	U	5000	U
Toluene	48000		54000	
Chlorobenzene	· 2500	υ	5000	U
Ethylbenzene :	. 1200	J	5000	υ
Xylene (Total)	. 8000		5000	υ

U - Not detected; J - Quantitation approximate;

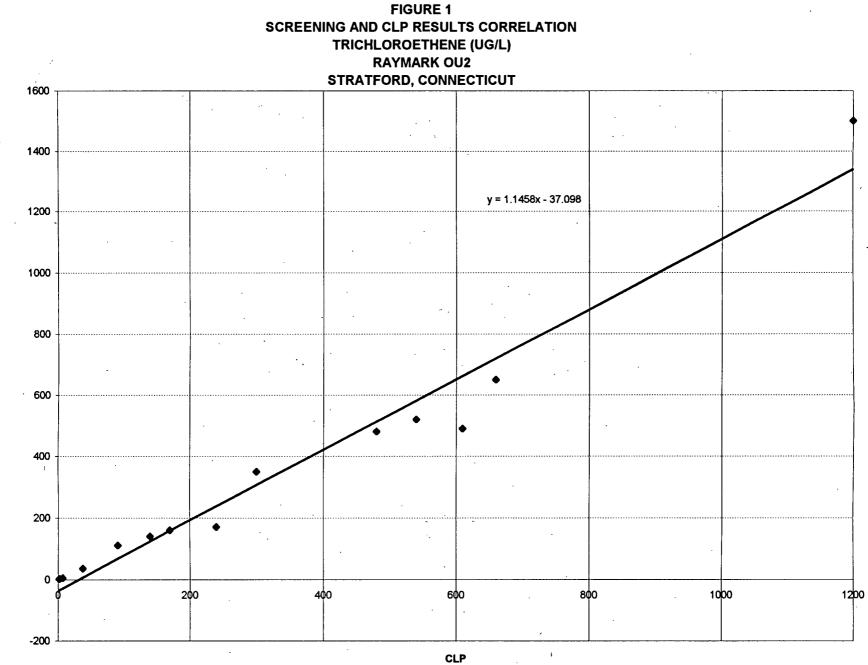
PAGE 8 of 8

#### TABLE 2 RELATIVE PERCENT DIFFERNCE (RPDs) BETWEEN SCREENING AND CLP POSITIVE RESULTS RAYMARK OU2 STRATFORD, CONNECTICUT

Sample Number	OU2-DP1-2-0810	OU2-DP1-8-2328	OU2-DP1-9A-5358	OU2-DP4-3A-1217	OU2-DP7-4-0712	OU2-DP13-1-2530	OU2-DP8-5-5055	OU2-DP5-2-9499
Vinyl Chloride	7	8	11		13			
1,1-Dichloroethene	7			•				
1,1-Dichloroethane	14	1	. 9	26	0			
1,2-Dichloroethene (Totals)	19	0	6	15	8			4
1,1,1-Trichloroethane	10	,					26	43
1,2-Dichloroethane								
Trichloroethene		13				0	24	
Tetrachloroethene								
Benzene								
Toluene								
Chlorobenzene	37		0		21			
Ethylbenzene								
Xylene (Total)								,

PAGE 1 OF 3

#### TABLE 2 RELATIVE PERCENT DIFFERNCE (RPDs) BETWEEN SCREENING AND CLP POSITIVE RESULTS RAYMARK OU2 STRATFORD, CONNECTICUT

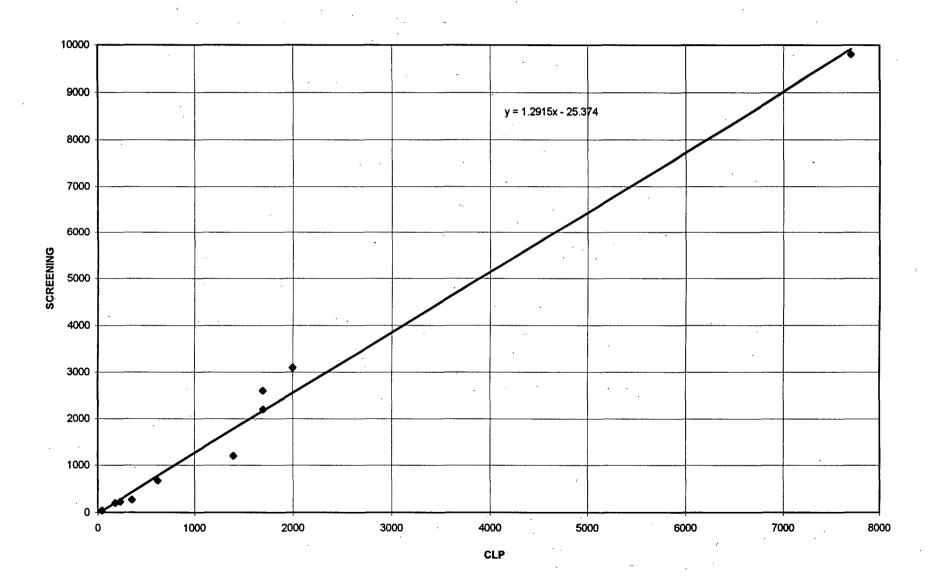

Sample Number	OU2-DP7-9A-2227	OU2-DP5A-2-1520	OU2-DP6-5A-3944	OU2-DP4-5C-1419	OU2-DP7-5A-3843	OU2-DP4-7-1823	OU2-DP4-4-0510
Vinyl Chloride							
1,1-Dichloroethene	7		5	7 .	14	21	
1,1-Dichloroethane			6	k		46	5
1,2-Dichloroethene (Totals)			Ο.		· 22	34	2
1,1,1-Trichloroethane	5		0	8	24	15	42
1,2-Dichloroethane	· ·		•		· · · · · · · · · · · · · · · · · · ·		
Trichloroethene		•	19	9		4	
Tetrachloroethene							
Benzene		30					
Toluene		· · ·	-				,
Chlorobenzene	•	· · · ·		;	· · · · · · · · · · · · · · · · · · ·		
Ethylbenzene							
Xylene (Total)							

PAGE 2 OF 3

# TABLE 2RELATIVE PERCENT DIFFERNCE (RPDs)BETWEEN SCREENING AND CLP POSITIVE RESULTSRAYMARK OU2STRATFORD, CONNECTICUT

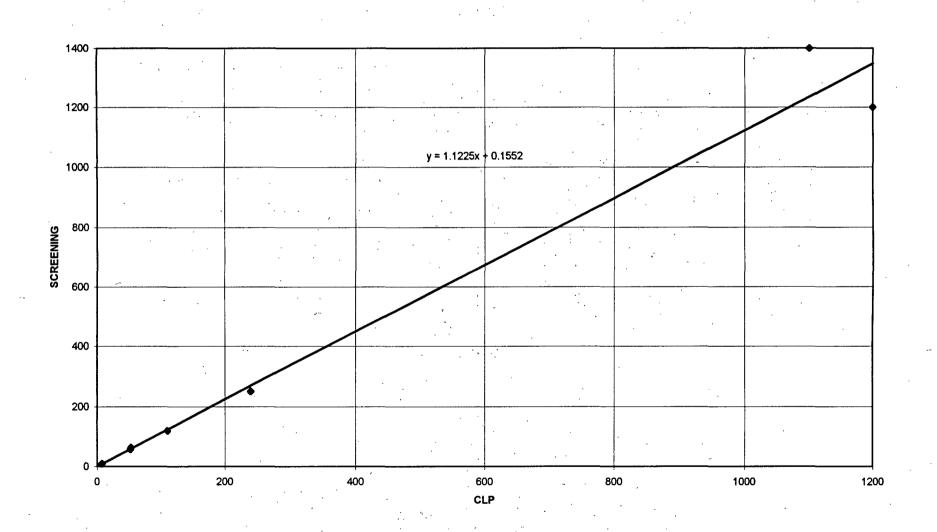
Sample Number	AA-DPA1-2-1015	AA-DPA1-5-0914
Vinyl Chloride		
1,1-Dichloroethene		
1,1-Dichloroethane		
1,2-Dichloroethene (Totals)		
1,1,1-Trichloroethane		
1,2-Dichloroethane		
Trichloroethene		
Tetrachloroethene		
Benzene		
Toluene	41	12 .
Chlorobenzene		
Ethylbenzene		
Xylene (Total)	40	

. ;




Screening

Page 1


FIGURE 2 SCREENING AND CLP RESULTS CORRELATION 1,1,1-TRICHLOROETHANE (UG/L) RAYMARK OU2 STRATFORD, CONNECTICUT

î



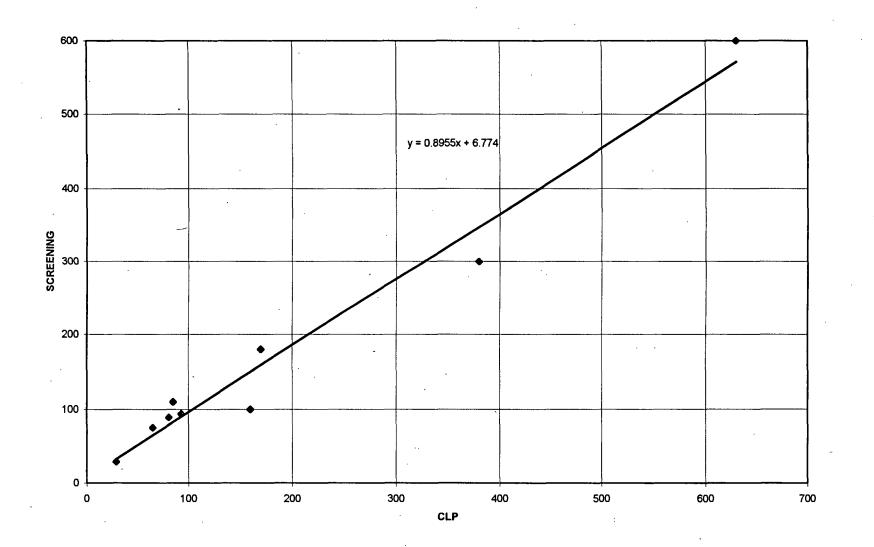

Page 2

FIGURE 3 SCREENING AND CLP RESULTS CORRELATION TRICHLOROETHENE (UG/L) RAYMARK OU2 STRATFORD, CONNECTICUT



Páge 3

FIGURE 4 SCREENING AND CLP RESULTS CORRELATION 1,1-DICHLOROETHANE (UG/L) RAYMARK OU2 STRATFORD, CONNECTICUT



Page 4

1.4

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT

Sample Number	AA-DPA1-2-1015		AA-DPA1-5-0914		AA-DPA1-5-1924		AA-DPA3-2-1015-AVG		CP-MW-2A-01	0	CP-MW-4-01
Sample Location	AA-DPA1-2		AA-DPA1-5		AA-DPA1-5		AA-DPA3-2		MW-2A		MW-4
Date Sampled	9/9/97		9/9/97		9/9/97		9/8/97		11/18/97		11/18/97
QC Type	None .		None		None		Field Dup. (D1c)		None		None
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	/	AQUEOUS
Filtering											
Volatile Organic Compounds (UG/L)											
1,1,1-Trichloroethane	5000	U	2500	U	400	υ	10	U	3 J		13
1,1,2-Trichloroethane	5000	U	2500	U	400	υ	10	U	10 U	ĵ	10 U
1,1-Dichloroethane	5000	U	2500	U	400	υ	10	U	10 U	,	10 U
1,1-Dichloroethene	5000	J	2500	Ū	400	U	10	υ	10 U	J	10 U
1,2-Dichloroethane	5000	U	2500	U	400	υ	10	U	10 U	1	10 U
1,2-Dichloroethene	5000	υ	2500	U	400	U	10	U	10 U	J	10 U
2-Butanone	5000	Ų	2500	U	400	U	10	U	10 U	J	10 U
2-Hexanone	5000	υ	2500	U	400	U	10	U	10 U	,	10 U
4-Methyl-2-Pentanone	5000	υ	` 2500	U	400	U	10	U	10 U	1	10 U
Acetone	5800	JTB	1400	JTB	250	JTB	10	U	10 L	IJ	10 UJ
Benzene	5000	Ű	2500	U	400	U	10	Ũ	10 L	Ĵ	10 U
Bromochloromethane		NA		ŇA		NA		NA	Ň	١A	NA
Bromodichloromethane	5000	U	2500	U	400	U	10	U	10 U	J	10 U
Bromomethane	5000	Ú	2500	U	400	U	10	U	10 L	1	10 U
Carbon Disulfide	5000	ŪJ	2500	UJ	400	ΟJ	10	U	10 L	J	10 U
Carbon Tetrachloride	5000	_	2500		400	U	10	υ	10 L	L	10 U
Chlorobenzene	5000	U	2500	υ	400	Ņ	10	U	10 L	J	10 U
Chloroethane	5000	UJ	2500	ΠJ	400	UJ	10	U	10 L	1	10 U
Chloroform	5000	U	2500		400	υ	10		10 L		10 U
Chloromethane	- 5000	U	2500	U	400	U	10	U	10 U	J	10 U
cis-1,2-Dichloroethene		NA		NA		NA		NA	N	JA	NA
Ethylbenzene	1200	J	1200	J	1200		10	U	10 U		10 U
Methylene Chloride	5000	U	2500	U	44	J	10	U	10 L	J	10 U
Tetrachloroethene	5000	U	2500	U	400	υ	10	υ	10 U		. 10 U
Toluene	62000	J	48000		2700	•	1		10 L		9 J
Total Xylenes	8000		. 8000		4600		2		10 L	٦_ I	10 U
Trichloroethene	5000	U	2500	U	400	U	10	U	17		3 J
Vinyl Chloride	5000	U	2500	U	400	U	10	U	10 L	1	10 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

۰,

. م

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 2 OF 63

Sample Number	AA-DPA1-2-1015		AA-DPA1-5-0914		AA-DPA1-5-1924		AA-DPA3-2-1015-AVG		CP-MW-2A-01		CP-MW-4-01
Sample Location	AA-DPA1-2		AA-DPA1-5		AA-DPA1-5		AA-DPA3-2		MW-2A		MW-4
Date Sampled	9/9/97		9/9/97		9/9/97		9/8/97		. 11/18/97		11/18/97
QC Туре	None		None		None		Field Dup. (D1c)		None		None
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS
Filtering											
Semivolatile Organic Compounds (UG/L)		1									
1,2-Dichlorobenzene		NA		NA	-	NA		NA	10	U	10
2,4-Dimethylphenol		NA		NA		NA		NA	10	U	10
2,4-Dinitrophenol		NA		NA		NA		NA	. 25	ΟJ	25
2-Chlorophenol		NA		NA	•	NA		NA	10	U	10
2-Methylnaphthalene		NA		NA		NA		NA	10	U	10
2-Methylphenol		NA		NA		NA		NA	10	U	10
2-Nitrophenol		NA		NA	,	NA		NA	10	U	10
4,6-Dinitro-2-methylphenol		NA		NA		NA		NA	· 25	U	25
4-Chloro-3-methylphenol		NA		NA		NA		NA	10	U	10
4-Methylphenol		NA	-	NA		NA		NA	10	U	10
4-Nitrophenol		NA		NA		NA		NA	25	U	25
Acenaphthene		NA		NA	• .	NA		NA	10	υ	10
Acenaphthylene		NA		NA		NA		NA	10	U	10
Anthracene		NA		NA		NA		NA	10	U	10
bis(2-Ethylhexyl)phthalate		NA		NA		NA		NA	10	U	10
Carbazole		NA		NA		NA		NA	10		10
Di-n-Butylphthalate		NA		NA		NA		NA	10		10
Dibenzofuran		NA		NA		NA		NA	10		10
Diethylphthalate		NA		NA		NA		NA	10		10
Fluoranthene		NA		NA		NA		NA	10	U	10
Fluorene		NA	· · · ·	NA		NA		NA	10	U	10
Hexachloroethane		NA		NA		NA		NA	10	U	10
N-Nitroso-diphenylamine		NA		NA		NA	•	NA	10	U	10
Naphthalene		NA		NA		NA		NA	10	U	10
Nitrobenzene	``	NA		NA		NA		NA	10	U	10
Phenanthrene		NA	· ·	NA		NA		NA	10	U	10
Phenol		NA		NA		NA		NA	10	U	10
Pyrene		NA		NA		NA		NA	10	U	10

c

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### **GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM** RAYMARK - OU2, STRATFORD, CT PAGE 3 OF 63

ι

Sample Number	AA-DPA1-2-1015		AA-DPA1-5-0914	AA-DPA1-5-1924		AA-DPA3-2-1015-AVG		CP-MW-2A-01	CP-MW-4-01
Sample Location	AA-DPA1-2		AA-DPA1-5	AA-DPA1-5		AA-DPA3-2		MW-2A	MW-4
Date Sampled	9/9/97		9/9/97	9/9/97		9/8/97		11/18/97	11/18/97
QC Туре	None		None	None		Field Dup. (D1c)		None	None
Matrix	AQUEOUS		AQUEOUS	AQUEOUS		AQUEOUS		AQUEOUS	AQUEOUS
Filtering							-		
Metals (UG/L)									
Aluminum	78.9	U	35.6 U	35.6 เ	U	14650		54.3 UJ	e
Antimony	25.2	U	· 25.2 U	25.2	U	25.2	U	4 U	4.3
Arsenic	328		6.1	28		1.2	U	6 U	7.7
Barium	254		. 282	177		86.9		18.9	8.3
Beryllium	2.3	U	2.3 U	2.3 เ	U	5.8		1 U	1
Cadmium	4.3	UJ	4.3 U	4.3 L	U	4.3	υ	39.4	7.9
Calcium	72000		23400	12100		73800		8700	5250
Chromium	6.3	U	6.3 U	6.3 L	U	6.3	U	187	477
Cobalt	16.6		5.5 U	5.5 (	U	36.55		2 U	7.2
Copper	5.2	υ	5.2 U	5.2 1	υ	47.25		43.9 U	57.1
iron	107000	J	50100 J	77500	J	8190		82.2 U	169
Lead	0.9	UJ		1 (	UJ	31.15		3 UJ	3
Magnesium	17900		7540	5490		15300	-	1760	1350
Manganese	18400		11300	11300		2705		46.3	50.4
Mercury	0.2	U	0.2 U	0.2 ไ	U	0.2	U	0.2 UJ	0.2
Nickel	13.8	υ	13.8 U	13.8 เ	υ	78.2		1260 J	138
Potassium	7330		5070	, 3350		3540		3760	2750
Selenium	1.4	υ	1.4 U	1.4 ไ	U	2.55	U	3 U	3
Silver	3.7	U	3.7 U	3.7 เ	υ	3.7	υ	1 U	1
Sodium	32300		91100	24500 L	U	102500	<u>.</u>	6730	83100
Thallium	0.8	UJ	. 0.8 UJ	· 0.8 l	UJ.	0.8	U	6 U	e
Vanadium	. 3	-	3 U	31	U	3	υ	30.5	1.5
Zinc	. 39.2	UJ	33.5 U	31.9 เ	U	279.5		461 J	264
Water Quality Analysis (mg/L)								1	
Alkalinity		NA	NA	1	NA		NA	14.5	126
Chloride	-	NA	NA	1	NA		NA	3.1	46.2
Nitrate-Nitrite (as N)		NA	NA	1	NA		NA	2.51	4.57
Sulfate		NA	NA	· · · · · · · · · · · · · · · · · · ·	NA		NA	12.1	38.2

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 4 OF 63

Sample Number		CP-MW-6-01	CP-MW-8-01		CP-MW-BR1-01		CP-MW-BR2-01		CP-MW-Z-01		DK-MW-1B-01
Sample Location		MW-6	MW-8		MW-BR1	· ·	MW-BR2		MW-Z	<u> </u>	MW-1B
Date Sampled		· 11/18/97	11/18/97		11/18/97		11/18/97		11/18/97		12/3/97
QC Type	-	None	None		None		None		None		None
Matrix		AQUEOUS	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS
Filtering											
Volatile Organic Compounds (UG/L)										Γ	
1,1,1-Trichloroethane		10 U	. 10	U	250	U.	100	U	10	U	10 UJ
1,1,2-Trichloroethane	U	10 U	10	U	250	U	100	U	10	U	10 UJ
1,1-Dichloroethane	Ų	10 U	10	U	[.] 250	U	100	U	2	J.	2 J
1,1-Dichloroethene	U	. 10 U	10	U	250	U	100	υ	10		1 J
1,2-Dichloroethane	U	10 U	. 10	U	250	U	100	U	10	υ	10 U
1,2-Dichloroethene	U	10 U	4	J	. 250	U	410		38		4 J
2-Butanone	U	10 U	10		250	U	100	U	10	U	10 UJ
2-Hexanone	U	10 U	10	U	250	U	100	U	10	U	10 UJ
4-Methyl-2-Pentanone	U	10 U	10	U	250	U	100	U	10	U	10 UJ
Acetone	UJ	· 10 U.	J 10	UJ	250	UJ	100		10	UJ	10 UJ
Benzene	Ų	10 U	10	U	250	U	100	U	10	U	3 J
Bromochloromethane	NA	• N.	4	NA		NA		NA		NA	NA
Bromodichloromethane	. U	10 U	10		. 250		100		10		2 J
Bromomethane	U	10 U	10		250	U.	100	U	10		· 10 U
Carbon Disulfide	U	10 U	. 10		250	U	100	U	. 10	U	10 U
Carbon Tetrachloride	U	10 U	10		250		100		10	_	10 UJ
Chlorobenzene	U	10 U	10	-	250		100	U	10	U	6 J
Chloroethane	U	10 U	10	U	250	U	100	U	10	U	10 U
Chloroform	U	10 U	10	U	250	U	100	U	10	U	10 U
Chloromethane	· U	10 U	10	U	250	U	100	U	10	U	10 U
cis-1,2-Dichloroethene	NA	N	A	NA		NA		NA		NA	· NA
Ethylbenzene	U	10 U	· 10	U	250	U	100	υ	10	U	10 U
Methylene Chloride	U	. 10 U	· 10	U	250	U	100	U	10	U	¨ 10 U
Tetrachloroethene	U	10 U	10	U	250	U	100	U	10	U	10 U
Toluene	J	7 J	10		250	U	100	U	6	J	3 J
Total Xylenes	U	10 U	10	U	250	U.	100	U	10	U	1 J
Trichloroethene	J	10 U	48		2800		1000		42	1	7 J
Vinyl Chloride	U	10 U	10	U	250	υ	. 100	U	10	U	10 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 5 OF 63

Sample Number	-	CP-MW-6-01	CP-MW-8-01		CP-MW-BR1-01		CP-MW-BR2-01	CP-MW-Z-01		DK-MW-1B-01
Sample Location	_	MW-6	MW-8		MW-BR1		MW-BR2	MW-Z		MW-1B
Date Sampled	<u> </u>	11/18/97	11/18/97		11/18/97		11/18/97	11/18/97		12/3/97
QC Туре		None	None		None		None	None		None
Matrix		AQUEOUS	AQUEOUS		AQUEOUS		AQUEOUS	AQUEOUS		AQUEOUS
Filtering										
Semivolatile Organic Compounds (UG/L)										
1,2-Dichlorobenzene	U	10 U	10	U	· 8 J	I	6 J	10	U	10 U
2,4-Dimethylphenol	υ	10 U	. 10	υ	10 L	J	10 U	10	U	10 U
2,4-Dinitrophenol	U	-25 UJ	25	U	25 L	IJ	25 UJ	25	UJ	25 U
2-Chlorophenol	U	10 U	10	U	10 L	J	10 U	10	U	10 U
2-Methylnaphthalene	U	10 U	10	U	10 L	Ĵ	10 U	· 10		10 U
2-Methylphenol	U	10 U	10	U	10 L	J	10 U	10	U	10 U
2-Nitrophenol	U	10 U	10	U	10 ს	J	10 U	10	U	10 U
4,6-Dinitro-2-methylphenol	U	25 U	25	U	25 L	ר כ	25 U	25	U	25 U
4-Chloro-3-methylphenol	U	10 U	10	U	. 10 L	J	10 U	10	U	10 U
4-Methylphenol	U	10 U	10	U	10 L	J	10 U	10	U	10 U
4-Nitrophenol	U	25 U	25	U	25 L	J	25 U	25	υ	25 U
Acenaphthene	U	10 U	10	U	10 L	J	10 U	10	U	10 U
Acenaphthylene	U	10 U	10	U	10 L	J	10 U	10	U	10 U
Anthracene	U	10 U	10	U	10 L	J	10 U	10	U	10 U
bis(2-Ethylhexyl)phthalate	U	10 U	10	U	10 L	J	10 U	10	U	10 U
Carbazole	U	10 U	10	U	10 L	J	10 U	10	U	10 U
Di-n-Butylphthalate	U	10 U	10	U	10 L	-	10 U	10	U	10 U
Dibenzofuran	Ų	10 U	10	U	10 L	J	10 U	10	U	10 U
Diethylphthalate	U	10 U	10	U	10 L	J	10 U	10	U	10 U
Fluoranthene	υ	10 U	10	υ	10 L	נ	10 U	10	υ	10 U
Fluorene	U	10 U	10	υ	10 L	J	10 U	10	U	10 U
Hexachloroethane	U	10 U	10	U	10 L	J	10 U	10	U	10 U
N-Nitroso-diphenylamine	U	10 U	10	U	10 L	J	10 U	10	U	10 U
Naphthalene	U	10 U	10	U	10 L	J	10 U	10	U	10 U
Nitrobenzene	U	10 U	10	U	10 L	J	10 U	10	U	10 U
Phenanthrene	U	10 U	10	U	10 L	J	10 U	10	U	10 U
Phenol	U	10 U	10	U	10 L	J :	f 10 U	10		10 U
Pyrene	U	10 U	10	U	10 L	J	10 U	10	υ	10 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 6 OF 63

Sample Number		CP-MW-6-01		CP-MW-8-01		CP-MW-BR1-01		CP-MW-BR2-01		CP-MW-Z-01		DK-MW-1B-01	
Sample Location		MW-6	·	MW-8		MW-BR1		MW-BR2		MW-Z		MW-1B	
Date Sampled		· 11/18/97	1	11/18/97		11/18/97		11/18/97		11/18/97		12/3/97	
QC Type		None		None		None		None		None		None	
Matrix		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering				,									
Metals (UG/L)		,								-			
Aluminum	U	230	ΠJ	6860	J	. 30	UJ	51.7	UJ	43.2	UJ	9270	J
Antimony	J	4	U	4	U	4	U	4	υ	4	U	4	U
Arsenic	J	6.5		6	U	6	U	6	U	6	U	18.6	J
Barium	U	27.8		20		22.7		59.4		16.2		41.8	J
Beryllium	U	1	U	1	υ	1	U	. 1	U	1	U	6.6	
Cadmium	J	66.2		45.4	,	1	U	5		245		5	J
Calcium	U	39400	•	14700		211000		204000		22100		487000	
Chromium	J	14		9.2		· 2.9		4.6		3.1		1	ΟJ
Cobalt		4.8	-	14.6		24.2		19.8		11.7		529	
Copper	U	128	U	248		37.3	U	50.3	υ	64.3	U	60.1	UJ
Iron	U	28700		197	U	119	U	3880		88.8	U	1040	J
Lead	U	3	UJ	4.4	J	3	UJ	3	UJ	3	ŊĴ	3	υ
Magnesium	U.	3970		6840		62000		33000		10900		186000	
Manganese	J	607		499		1030		2710		531		49200	
Mercury	U	0.2		0.2	UJ	0.2		0.2	-	0.2		0.2	
Nickel		2780	J	423	J	9.3	UJ	997	J	3340	J	370	
Potassium		19500		3370		7590		16800		2530		21900	
Selenium	U	3	U	3	U	3	U	3	U	3	U	9.1	J
Silver	U	1	Ū	1	U	1	U	- 1	U	1	U	1	υ
Sodium		29900		12300		78100		126000		21200		28600	
Thallium	U	6	U	6	U	6	U	6	υ	6	U	6	U
Vanadium	J	2.7		1.6			U	1	U	2.5			U
Zinc	•	1760	J	746	J	122	J	486	J	1430	J	573	J
Water Quality Analysis (mg/L)									1				
Alkalinity		161		2	U	71		102	1	83.1		17	
Chloride		10.4		9.3		222	1	226		4.4		30.8	
Nitrate-Nitrite (as N)		0.1	U	2.51		11.9		2.21		2.73		0.1	U
Sulfate		5	υ	99.4		445		. 458		45.9		2050	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 7 OF 63

Sample Number	DK-MW-1M-01-AVG		DK-MW-1S-01		DK-MW-2S-01		DK-MW-3S-01		DK-MW-4B-01	1	DK-MW-4M-01	
Sample Location	MW-1M		MW-1S		MW-2S		MW-3S		MW-4B	I	MW-4D	
Date Sampled	12/3/97		12/3/97		12/3/97		12/3/97		12/3/97		12/3/97	
QC Type	Field Duplicate 10		None		None	•	None .	1	None	1	Vone	$\square$
Matrix	AQUEOUS		AQUEOUS		AQUEOUS	· ·	AQUEOUS	1	AQUEOUS	/	AQUEOUS	
Filtering												
Volatile Organic Compounds (UG/L)				Î				T				
1,1,1-Trichloroethane	15	U	170	U	· 1	UJ	10	U	10 0	JJ	1	U
1,1,2-Trichloroethane	15	U	170	U	1	U	10	U	10 (	JJ	1	U
1,1-Dichloroethane	16.5		170	υ	1	U	3	J	10 (	J	1	UJ
1,1-Dichloroethene	4		· 170	UJ	1	Ū	10	UJ	10 (	IJ	1	U
1,2-Dichloroethane	15	U	170	U	1	U	10	U	· 10 l	J	1	U
1,2-Dichloroethene	21		170	U		NA	10	U	10 1	L		NA
2-Butanone	· 15		170	U		R	10	U	. 10 1	11		R
2-Hexanone	· 15	U	170	U	5	U	10	U	10	IJ	5	i U
4-Methyl-2-Pentanone	15		170	U	. 5	U	10	U	10 1	าา	5	i U
Acetone	15	U	63	i		R	10	UJ	10 1	IJ		R
Benzene	52.5		140	1		υ	6	J	10 1	IJ	1	U
Bromochloromethane		NA		NA	, 1	U		NA		NA	1	U
Bromodichloromethane	15	U,	170	U	2		10	U	10 0	J	1	U
Bromomethane	15		170	U	1	UJ	10	U	10	J	1	UJ
Carbon Disulfide	15	U	170	U	1	U	10	υ	10	J	1	U
Carbon Tetrachloride	15	U	. 170	υ	1	U	10	U	10 (	11	1	U
Chlorobenzene	165		170	U	1	U	[,] 11		10 เ	J]	1	U
Chloroethane	16		26	J	1	U	41		10 1	J	1	UJ
Chloroform	15	U	170	υ	6	U	10	U	10 0	J	1	U
Chloromethane	15	U	170	U	1	U	10	U	· 10 l	J	1	UJ
cis-1,2-Dichloroethene		NA		NA	· 1	U		NA	- 1	NA	1	U
Ethylbenzene	2		880		. 1	U	10		10 1	J	· 1	U
Methylene Chloride	. 15	U	170	U	· 2	U	• 10	U	10 เ	J	· 2	UJ
Tetrachloroethene	15	U	170	U	1	U	10	U	10 เ	J	1	U
Toluene	3		380		1	U	10	U	6		2	
Total Xylenes	52.5		2900		1	U	10	U	10 เ	J	1	U
Trichloroethene	5.5	3	170	U		U :	10	U	10 (	J	. 1	U
Vinyl Chloride	8		170	U	1	U	10	U	10 1	J	1	UJ

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

.ł:

1

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 8 OF 63

Sample Number	DK-MW-1M-01-AVG	DK-MW-1S-0	1	DK-MW-2S-01		DK-MW-3S-01		DK-MW-4B-01	DK-MW-4M-01
Sample Location	MW-1M	MW-1S		MW-2S	1	MW-3S		MW-4B	MW-4D
Date Sampled	12/3/97	12/3/	97	12/3/97	1	12/3/97		12/3/97	12/3/97
QC Туре	Field Duplicate 10	None		None		None		None	None
Matrix	AQUEOUS	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	AQUEOUS
Filtering .									
Semivolatile Organic Compounds (UG/L)				le l		-			
1,2-Dichlorobenzene	10 U		10 U	10	U	10	U	10 U	10 U
2,4-Dimethylphenol	10 U		4	10	U	10	U	10 U	10 U
2,4-Dinitrophenol	25 U		25 U	• 25	UJ	25	U	25 UJ	25 U
2-Chlorophenol	10 U		10 U	10	U	10	U	10 U	10 U
2-Methylnaphthalene	1		14	10	U	10		10 U	10 U
2-Methylphenol	10 U		10 U	10	U	10	U	10 U	_10 U
2-Nitrophenol	10 U		10 U	10	U	. 10		10 U	10 U
4,6-Dinitro-2-methylphenol	25 U		25 U	25	U	25	U	25 U	25 U
4-Chloro-3-methylphenol	10 U		10 U	10	U	10	U	10 U	10 U
4-Methylphenol	10 U		10 U	10	U	10		10 U	10 U
4-Nitrophenol	25 U		25 U	25	U	25	U	25 U	25 U -
Acenaphthene	10 U		10 U	10	U	10	υ	· 10 U	10 U
Acenaphthylene	10 U		0 U		U	10	U	10 U	10 U
Anthracene	· 10 U		00		U	10	U	10 U	10 U
bis(2-Ethylhexyl)phthalate	. 10 U		00		U	10		1 J	10 U
Carbazole	10 U		0 U	10	U	10	U	10 U	10 U
Di-n-Butylphthalate	10 U	•.	υo	· 10	U	[.] 10	U	10 U	10 U 1
Dibenzofuran	10 U		0 Ü	10	U	10	U	10 U	10 U
Diethylphthalate	10 U	· · · ·	0 U	10	U	10	U	. 10 U	10 U
Fluoranthene	- 10 U		0 0	10	U.	10	U	10 U	10 U
Fluorene	10 U		0 U	. 10	U	10	U	- 10 U	10 U
Hexachloroethane	- 10 U		0 U	10	U	10	U	10 U	10 U
N-Nitroso-diphenylamine	10 U	•	0 U	10	U	10	U	10 U	10 U
Naphthalene	6	. 33	10 *	10	U	10	U	10 U	10 U
Nitrobenzene	10 U		0 0	10	U	10	U	10 U	10 U
Phenanthrene	10 U	ŕ	οU	10	U	10	U	10 U	10 U
Phenol	10 U		0 0	10		10	U	10 U	10 U
Pyrene	10 U		οU	10	U	10	U	10 U	10 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 9 OF 63

Sample Number	DK-MW-1M-01-AVG		DK-MW-1S-01		DK-MW-2S-01		DK-MW-3S-01		DK-MW-4B-01		DK-MW-4M-01	
Sample Location	MW-1M		MW-1S		MW-2S	1	MW-3S		MW-4B		MW-4D	
Date Sampled	12/3/97		12/3/97		12/3/97	1	12/3/97		12/3/97		12/3/97	
QC Туре	Field Duplicate 10		None		None		None	<u> </u>	None		None	
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering												
Metals (UG/L)						1			[			
Aluminum	203	U	123	UJ	764	J	207	UJ	33200	J	20800	J
Antimony	• 4	Ū	10.9		4	U	4	U		R	4	U
Arsenic	90.5		. 34.6		6	U	6	U	17.6	J	6.3	J
Barium	95.1		90.3	1	45.2	1	65.6		21.2	J	14.9	
Beryllium	. 1	U	1	U	· 1	U	1	U	15.7		3.4	U
Cadmium	1	U	1	U	3.2	2	1	U	3.1	J	2.3	
Calcium	33600		39200	1	21000	1	34100		445000		159000	
Chromium	4.6	U	1	UJ	2.4	UJ	31.2	J	1	υJ	1	UJ
Cobalt	3.5		12.9		2	U	4.2		517		113	
Copper	31.3	U	96	U	39.7	U U	33.8		210	J	68.6	U
Iron	52000		45900	J	1050	J	370	UJ	344000	J	28400	J
Lead	3	U	4.7		3	U	3	U	7.3	J	3	U.
Magnesium	8950		9800		8780		7300		339000		64000	
Manganese	9540		10300		102		2180		43700		11000	
Mercury	0.2	<u> </u>	0.2		0.2		0.2	U	0.2	U	0.2	U
Nickel	6.8		4	υ	9.4		. 21.1		594	J	222	
Potassium	9270		8900		3310		5110		7990		4660	
Selenium	3	U	3.3	J	3	U	3	U	10.5	J	12.1	J
Silver	1.4	υ	2.9	υ	3.5	U	4.1	υ	1	υ	1	υ
Sodium	108000		67500		12600		49200		40700		153000	
Thallium	7.7		6	U	6	U	6	U	6	U	6.2	J
Vanadium	1	U~	1	υ	. 1	υ	1	υ		R	. 1	υ
Zinc	37.3	U	20.2	UJ	310	J	. 30.8	UJ	1420	J	516	J
Water Quality Analysis (mg/L)						T						
Alkalinity	225		220		9		90		4.7		2	U
Chloride	74.4		71.3		23.8		38.7		157		191	
Nitrate-Nitrite (as N)	0.1	U	0.1	U	5.83		2.07		0.1	U	2	
Sulfate	58.3		i 19.4		14.7	** 1	9.4		2600		695	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

,

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 10 OF 63

..

Sample Number	DK-MW-4S-01-AVG	OU1-PC-01B-01-AVG		OU1-PC-01D-01	OU1-PC-01M-01-AVG		OU1-PC-01S-01-AVG	
Sample Location	MW-4S	PC-01B		PC-01D	PC-01M		PC-01S	
Date Sampled	12/2/97	12/2/97		12/2/97	12/2/9	7	12/2/9	17
QC Type	Field Duplicate 9	Field Dup. 2		None .	Field Dup. 8		Field Dup. 9	
Matrix	AQUEOUS	AQUEOUS		AQUEOUS	AQUEOUS		AQUEOUS	
Filtering								
Volatile Organic Compounds (UG/L)								
1,1,1-Trichloroethane	· 1 U	10	U	10 U	16	5	1	0 U
1,1,2-Trichloroethane	1 U	10	υ	10 U	1	0 U	1	0 U
1,1-Dichloroethane	· 1 U	10	U	10 U	8	5	1	0 U
1,1-Dichloroethene	1 U	10		10 U	67.	5	1	0 U
1,2-Dichloroethane	1 U	10	U	10 U	1	0 U		0 U
1,2-Dichloroethene	N	A 10	U	2 J	- 59.	5	3.	5
2-Butanone	R	10	U	10 U	. 1	0 U	1	0 0
2-Hexanone	5 U	10	U	10 U	1	0 0	1	0 0
4-Methyl-2-Pentanone	5 U	10	U	10 U	1	0 U	1	οU
Acetone	R	10	U	- 10 U	1	0 0	1	6 U
Benzene	1 U	10	U	4 J	1	3	1	0 U
Bromochloromethane	· 1 U		NA	N/	4	NA		NA
Bromodichloromethane	1 U	. 10	U	10 U	1	0 U	1	0 U
Bromomethane	1 U	10	U	10 U	1	οU	1	0 0
Carbon Disulfide	1 U	. 10	U	10 U	1	0 U	1	0 U
Carbon Tetrachloride	1 U	. 10	U	10 U	· 1	0 U	1	0 U
Chlorobenzene	-1 U	· · 10	υ	. 10 U	3	0	1	0 U
Chloroethane	1 U	10	U	10 U.	J 12.	5	1	0 U
Chloroform	1 U	10	υ	10 U	1	0 U	1	0 0
Chloromethane	1 U	10	U	10 U	1	0 U	1	0 U
cis-1,2-Dichloroethene	1 U		NA	N/	A	NA		NA
Ethylbenzene	1 U	10	υ	10 U	. 1	0 U	1	0 U
Methylene Chloride	2 U	10	U	10 U	· 1	0 0	1	οU
Tetrachloroethene	- 1 U	10	υ	5 J	2.	5	1	οU
Toluene	. 1 U	10	U	10 U	1	0 0	1	οU
Total Xylenes	1 U	10	U	10 U.	1	0 0	. 1	0 U
Trichloroethene	1 U	2.5		7 J		5	1	0 0
Vinyl Chloride	1 U	10	U	10 U	1	0	1	οU

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 11 OF 63

Sample Number	DK-MW-4S-01-AVG		OU1-PC-01B-01-AVG		OU1-PC-01D-01		OU1-PC-01M-01-AVG		OU1-PC-01S-01-AVG	T
Sample Location	MW-4S		PC-01B		PC-01D		PC-01M		PC-01S	1
Date Sampled	12/2/97		12/2/97		12/2/97		12/2/97		12/2/97	·T
QC Туре	Field Duplicate 9		Field Dup. 2		None		Field Dup. 8		Field Dup. 9	
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering										
Semivolatile Organic Compounds (UG/L)										1
1,2-Dichlorobenzene	10	U	30		10	U	10	U		5 U
2,4-Dimethylphenol	10		30		10	U	10	U	15	5 U
2,4-Dinitrophenol	25	U	72.5	U	25	UJ	25	U	37.5	i U
2-Chlorophenol	10		30		10		10			5 U
2-Methylnaphthalene	10	-	30	-	10	U	10	U		5 U
2-Methylphenol	10		30	-	10		10			5 U
2-Nitrophenol	10		30		10		10			5 U
4,6-Dinitro-2-methylphenol	25		72.5		25		25		37.5	
4-Chloro-3-methylphenol	10		30		10		10		_1	5 U
4-Methylphenol	10		30		10		10			5 U
4-Nitrophenol	25		72.5		25		25	1	37.5	
Acenaphthene	10		30		10		10			5 U
Acenaphthylene	10	_	30		10	-	10			5 U
Anthracene	10		. 30	U	10	-	10	U		5 U
bis(2-Ethylhexyl)phthalate	10		57.5		10	U	10			5 U
Carbazole	10	U	30	U	10	U	· 10	U	15	5 U
Di-n-Butylphthalate	10	U	30	U	10	U	10	U		5 U
Dibenzofuran	10	U	30	U	10	U	10	υ		5 U
Diethylphthalate	10		30	U	10	U	10		15	5 U
Fluoranthene	10		30		10		10			sU
Fluorene	10	_	30		10		10			5 U
Hexachloroethane	10		30		10	-	. 10			5 U
N-Nitroso-diphenylamine	10		30		10	-	10			5 U
Naphthalene	10		30	-	10	_	10	υ		υ
Nitrobenzene	10		30		10	-	10	1		5 U
Phenanthrene	10		30	U	10	U	10		15	5 U
Phenol	10		. 30		10		10			5 U
Pyrene	10	U	30	U	10	U	10	U	15	5 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

1

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 12 OF 63

Sample Number	DK-MW-4S-01-AVG	OU1-PC-01B-01-AVG		OU1-PC-01D-01		OU1-PC-01M-01-AVG		OU1-PC-01S-01-AVG	
Sample Location	MW-4S	PC-01B		PC-01D		PC-01M		PC-01S	
Date Sampled	12/2/97	12/2/97		12/2/97		12/2/97		12/2/97	
QC Туре	Field Duplicate 9	Field Dup. 2		None		Field Dup. 8		Field Dup. 9	
Matrix	AQUEOUS	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering	-						<u> </u>		
Metals (UG/L)									
Aluminum	13050	109000		139000		2485		79.55	υ
Antimony	4 U	100	U	50 L	J	50	U	50	U
Arsenic	6 U	10	U	5 L	J	1.75	U	7.1	
Barium	16.4	19.1		10		26.35		1095	
Beryllium	3.1 U	42.55		45.2		2.35		. 1	U,
Cadmium	1.4	16.9		26.8		3		2	υ
Calcium	80500	441000		444000		83050		127500	
Chromium	1 U	27.85		6.3 J	J	5	U	6.75	
Cobalt	38.15	2765		2590		108		29.3	
Copper	78.25 U		R	309 J	J	4.65	<u> </u>	5.2	
Iron	1454.75	847500		229000		283		28950	
Lead	5.75	3	U	5 L	٦.	1	U	12.7	
Magnesium	18500	450500		280000		17750		64300	
Manganese	3340	224000		141000		11100		2575	
Mercury	0.2 U	0.1	Ų	0.1 L	J	0.1	U	0.1	Ų
Nickel	83.05	2605		1870		117.5		19.55	
Potassium	4625	22600		25600		8720		14400	
Selenium	2.85	10	U	10 L	າງ	1	U	1	U
Silver	2.2 U	6	U.	3 L	J	· 3	U	3	U
Sodium	118500	65700	,	86700		80700		90750	
Thallium	6 U	5	U	5 L	J	· 1	U	1	U
Vanadium	1 U	64.6		23 J			U	3	U
Zinc	295.5	3675		3370 J	J	159.5		• 14.3	
Water Quality Analysis (mg/L)							1		
Alkalinity	2 U	2	U	2 L	J	20.1	1	600	
Chloride	193.5	100		128 J	J	155.5		83.25	
Nitrate-Nitrite (as N)	2.8	0.1	U	0.1 L	J	0.37	1	0.1	υ
Sulfate	298.5	6180		4290		188.5	-	487.8	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 13 OF 63

Sample Number	OU1-PC-02B-01-AVG		OU1-PC-02D-01		OU1-PC-02M-01		OU1-PC-02S-01		OU1-PC-03B-01		OU1-PC-03D-01
Sample Location	PC-02B		PC-02D		PC-02M		PC-02S		PC-03B		PC-03D
Date Sampled	12/2/97		12/2/97		12/2/97		12/3/97		12/3/97		12/3/97
QC Type	Field Dup. 3		None								
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS
Filtering											
Volatile Organic Compounds (UG/L)											
1,1,1-Trichloroethane	185000		80000		1700		17		4	J	750
1,1,2-Trichloroethane	15000	U	10000	U	100	U	10	U	10	U	50 U
1,1-Dichloroethane	15000	U	10000	υ	240		10	U	4	J	270
1,1-Dichloroethene	42000		6500	J	720		. 2	J	9	J	310
1,2-Dichloroethane	15000	U	10000	U	100	U	10	U	10	U	50 U
1,2-Dichloroethene	15000	U	10000	U	130		10	U	5	J	350
2-Butanone	15000	υ	10000	U	100	U	10	U	10	U	50 U
2-Hexanone	15000	U	10000	U	100	U	10	UJ	10	U	50 U
4-Methyl-2-Pentanone	15000	U	10000	U	100	U	10		10	U	50 U
Acetone	15000	U	10000	U	100	U	10	U	11		50 U
Benzene	15000	U	10000		100		10		10	U	85
Bromochloromethane		NA		NA		NA		NA		NA	NA
Bromodichloromethane	15000		10000	U	100	υ	10		10		50 U
Bromomethane	15000	U	10000	UJ	100	U	10	UJ	10		50 U
Carbon Disulfide	15000	υ	10000	U	100	U	10		10		50 U
Carbon Tetrachloride	15000		10000		100		10	U	10	U.	50 U
Chlorobenzene	15000	U	10000	U	100	υ	10	U	32		50 U
Chloroethane	15000	U	10000	U	100	U	6	J	10	U	50 U
Chloroform	15000	U	10000	U	100	U	10	U	10	U	50 U
Chloromethane	15000	U	10000	υ	100	U	10	U	10	U	50 U
cis-1,2-Dichloroethene		NA	-	NA		NA		NA		NA	NA
Ethylbenzene	15000	U	10000	U	100	U	2	J	10	U	50 U
Methylene Chloride	15000	U	10000	U	100	U	10	U	· 10	U	50 U
Tetrachloroethene	15000	U	10000	U	100	U	10	ŬJ	10	U	50 U
Toluene	15000	U	10000	U	100	U	10	U	10	U	50 U
Total Xylenes	15000	U	10000	U	100	U	3	J	10	U	50 U
Trichloroethene	15000	U	; 10000	U	83	J	10	U	14		21 J
Vinyl Chloride	15000	U	10000	U	100	U	2	J	1	J	33 J

'ŧ

٦

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 14 OF 63

Sample Number	OU1-PC-02B-01-AVG	· · ·	OU1-PC-02D-01	OU1-PC-02M-01	OU1-PC-02S-01	OU1-PC-03B-01	OU1-PC-03D-01
Sample Location	PC-02B		PC-02D	PC-02M	PC-02S	PC-03B	PC-03D
Date Sampled	12/2/97		12/2/97	12/2/97	12/3/97	12/3/97	12/3/97
QC Type	Field Dup. 3		None	None	None	None	None
Matrix	AQUEOUS		AQUEOUS	AQUEOUS	AQUEOUS	AQUEOUS	AQUEOUS
Filtering							
Semivolatile Organic Compounds (UG/L)							
1,2-Dichlorobenzene	10	U	10 U	10 U	10 U	10 U	10 U
2,4-Dimethylphenol	10	U	10 U	10 U	10 U	10 U	230 *
2,4-Dinitrophenol		R	R	R	R	R	R
2-Chlorophenol	10	U	10 U	10 U	10 U	10 U	10 U
2-Methylnaphthalene	10	U	10 U	10 U	11	10 U	3 J
2-Methylphenol	10	υ	10 U	10 U	10 U	10 U	1 J.
2-Nitrophenol	10	U	10 U	10 U	10 U	10 U	10 U
4,6-Dinitro-2-methylphenol	25	U	25 U	25 U	25 UJ	25 U	25 U
4-Chloro-3-methylphenol	10	U	10 U	10 U	10 U	10 U	10 U
4-Methylphenol	10	U	10 U	10 U	10 U	10 U	10 U
4-Nitrophenol	25	U	25 U	25 U	25 UJ	25 U	25 U
Acenaphthene	10	υ	10 U	10 U	, 16	10 U	10 U
Acenaphthylene	· 10	υ	. 10 U	10 U	4 J	10 U	. 10 U
Anthracene	10	U	10 U	10 U	6 J	10 U	10 U
bis(2-Ethylhexyl)phthalate	10	U	10 U	10 U	10 U	21 U	11 U
Carbazole	10	U	10 U	10 U	6 J	10 U	10 U
Di-n-Butylphthalate	10	U	10 U	10 U	10 U	10 U	10 U
Dibenzofuran	10	U	. 10 U	10 U	10	10 U	1 J
Diethylphthalate	10	U	10 U	· 10 U	10 U	10 U	10 U
Fluoranthene	10	U	10 U	10 U	3 J	10 U	10 U
Fluorene	10	U	10 U	· 10 U	18	10 U	10 U
Hexachloroethane	10	U	10 U	10 U	10 U	10 U	10 U
N-Nitroso-diphenylamine	10	U	10 U	10 U	10 U	10 U	10 U
Naphthalene	10	U	10 U	10 U	38	. 10 U	15
Nitrobenzene	10	U	. 10 U	10 U	10 U	10 U	10 U
Phenanthrene	10	υ	2 J	10 U	21	10 U	10 U
Phenol	10	U	10 U	10 U	10 U	10 U	10 U
Pyrene	10	U	10 U	10 U	2 J	· 10 U	10 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 15 OF 63

Sample Number	OU1-PC-02B-01-AVG		OU1-PC-02D-01	OU1-PC-02M-01		OU1-PC-02S-01		OU1-PC-03B-01	OU1-PC-03D-01	
Sample Location	PC-02B		PC-02D	PC-02M		PC-02S		PC-03B	PC-03D	
Date Sampled	12/2/97		12/2/97	12/2/97		12/3/97		12/3/97	12/3/97	
QC Туре	Field Dup. 3	Γ	None	None		None		None	None	
Matrix	AQUEOUS		AQUEOUS	AQUEOUS		AQUEOUS		AQUEOUS	AQUEOUS	
Filtering		l .								
Metals (UG/L)					1					
Aluminum	471000		559000	59800		209	υ	233 U	20	υ
Antimony	250	U	250 U	50	U	50	U	50 U	50	U
Arsenic	10	U	10 U	1	U	15		1 U	32.8	
Barium	15.3		10 U	8.5	U	280		42.5	88.8	
Beryllium	103		107	29.8		1	U	1 U	1	U
Cadmium	51.55		52	13.5		2	U	2 U	2	U
Calcium	383000		440000	387000		103000		131000	49400	
Chromium	25	U	75.1 J	5	U	8	J	5 U	5	U·
Cobalt	· 3175	-	3220 J	1030		22.8		. 3 U	16.2	
Copper	456		R	34.4	J	11.9		5.1	2	U
Iron	2275000		2030000	171000		19500		539	20500	١.
Lead	5	U	61.7	1	U	10.1		1 U	1	U
Magnesium	351500		334000 ·	87600		16800		24500	14600	
Manganese	109500		103000	46200		2570		236	19100	
Mercury	0.1	U	0.1 U	0.1	U	0.1	U	0.1 U	0.1	U
Nickel	4145		4040	832		11.4	ปุ	13.3 J	10	U
Potassium	9330		8370	14000		9240		8120	6370	
Selenium	· 10	Ŭ	10 U.	10	UJ	1	UJ	1 U.	J 1	UJ
Silver	. 15	U	⁻ 15 U	3	U	3	U	3 U	3	U
Sodium	69250	[	70800 J	53900	1	131000		30900	68700	
Thallium	5	U.	5 U	. 5	U	1	U	1 U	1	UJ
Vanadium	199		256 J	22.4	J	3	U	3 U	3	U
Zinc	9700		9590 J	1870	J	11.2		4.3 U.	J 12.1	U
Water Quality Analysis (mg/L)										1
Alkalinity	2	U	2 U	2	U	392		84.3	191	
Chloride	296.5		159 J	94	J	129	J	19.9	45.5	
Nitrate-Nitrite (as N)	0.1	U	0.1 U	0.1	U	0.1	U	0.2	0.1	U
Sulfate	9625	1	10000	2600		25.6		417	94.3	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

± ...

4

. . . . . . .

# GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 16 OF 63

\$

Sample Number	OU1-PC-03S-01	
Sample Location	PC-03S	
Date Sampled	12/3/97	
QC Туре	· None	
Matrix	AQUEOUS	
Filtering		
Volatile Organic Compounds (UG/L)		
1,1,1-Trichloroethane	. 500	υ
1,1,2-Trichloroethane	500	υ
1,1-Dichloroethane	500	U
1,1-Dichloroethene	500	U
1,2-Dichloroethane	500	U
1,2-Dichloroethene	500	U
2-Butanone	500	U
2-Hexanone	500	υ
4-Methyl-2-Pentanone	500	U
Acetone	500	υ
Benzene	500	υ
Bromochloromethane		NA
Bromodichloromethane	500	U
Bromomethane	500	UJ
Carbon Disulfide	500	U
Carbon Tetrachloride	500	Ũ
Chlorobenzene	500	U
Chloroethane	500	U
Chloroform	500	U
Chloromethane	500	U
cis-1,2-Dichloroethene		NA
Ethylbenzene	330	J
Methylene Chloride	500	U
Tetrachloroethene	500	U
Toluene	6100	
Total Xylenes	1700	
Trichloroethene	500	U.
Vinyl Chloride	500	U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 17 OF 63

Sample Number	OU1-PC-03S-01	
Sample Location	PC-03S	
Date Sampled	12/3/97	
QC Type	None	
Matrix	AQUEOUS	
Filtering		
Semivolatile Organic Compounds (UG/L)		
1,2-Dichlorobenzene	10	U
2,4-Dimethylphenol	. 10	
2,4-Dinitrophenol		R
2-Chlorophenol	10	U
2-Methylnaphthalene	10	U
2-Methylphenol	20	
2-Nitrophenol	10	U
4,6-Dinitro-2-methylphenol	25	U
4-Chloro-3-methylphenol	10	U
4-Methylphenol	24	
4-Nitrophenol	25	U
Acenaphthene	10	U
Acenaphthylene	10	U
Anthracene	10	U
bis(2-Ethylhexyl)phthalate	13	U
Carbazole	10	U
Di-n-Butylphthalate	. 10	U
Dibenzofuran	10	U
Diethylphthalate	10	U
Fluoranthene	10	U
Fluorene	10	U
Hexachloroethane	10	U
N-Nitroso-diphenylamine	10	υ
Naphthalene	3	J
Nitrobenzene	10	U
Phenanthrene	· 10	U
Phenol	10	U
Pyrene	10	U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 18 OF 63

Sample Number	OU1-PC-03S-01	
Sample Location	PC-03S	
Date Sampled	12/3/97	
QC Type	None	
Matrix	AQUEOUS	
Filtering	· .	
Metals (UG/L)		
Aluminum	20	U
Antimony	50	U
Arsenic	43	
Barium	64.9	
Beryllium		U
Cadmium	2	U
Calcium	57400	
Chromium	5	U
Cobalt	-	U
Copper	. 2	U
Iron	25400	
Lead	1	U
Magnesium .	10600	
Manganese	4400	
Mercury	· 0.1	U
Nickel	10	U
Potassium	11500	
Selenium		UJ
Silver	3	U
Sodium	96200	
Thallium		UJ.
Vanadium		U
Zinc	4	U
Water Quality Analysis (mg/L)		
Alkalinity	275	
Chloride	87.1	
Nitrate-Nitrite (as N)	0.1	
Sulfate	. 5	U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 19 OF 63

Sample Number	OU1-PC-04B-01		OU1-PC-04D-01		OU1-PC-04S-01		OU1-PC-05B-01		OU1-PC-05D-01-AVG		OU1-PC-05M-01
Sample Location	PC-04B		PC-04D	_	PC-04S		PC-05B		PC-05D		PC-05M
Date Sampled	12/3/97	1	12/3/97		12/3/97		12/5/97		12/5/97		12/4/97
QC Type	None		None	_	None		None		Field Dup. 5		None
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS
Filtering											
Volatile Organic Compounds (UG/L)											
1,1,1-Trichloroethane	50	U	500	U	3900		460		14.5		5 J
1,1,2-Trichloroethane	50	U	500	U	1000	U	50	U	10	U	10 U
1,1-Dichloroethane	50	U	500	U	1000	Ū	35	J	10	U	· 10 U
1,1-Dichloroethene	50	U	500	U	370	J	120		4.5		10 U
1,2-Dichloroethane	50	U	500	U	1000	U	50	U	10	U	10 U
1,2-Dichloroethene	50	υ	500	U	180	J	46	J	32.5		10 U
2-Butanone	50	U	500	U	1000	U	50	U	10	U	10 U
2-Hexanone	50	U	500	U	1000	U	50	υ	10	U	10 U
4-Methyl-2-Pentanone	50	U	500	Ū	1000	U	• 50	U	10		10 U
Acetone	50	υ	500	υ	1000	υ	98	υ	25.5	υ	9 )
Benzene	50	U	500	U	1000	U	50	U	10	U٠	10 U
Bromochloromethane		NA		NA		NA		NA		NA	NA
Bromodichloromethane	50	U	500	U	1000	U	. 50	U	10	υ	10 U
Bromomethane	. 50	UJ	500	ŪJ	1000	U	50	UJ	10	U	10 UJ
Carbon Disulfide	. 50	U.	500	V	1000	Ũ	50	U	10	U	10 U
Carbon Tetrachloride	50	U	500	U	1000	U	50	UJ	10	U	10 U
Chlorobenzene	640		23000 1	*	1000	U	50	U	10	U	10 U
Chloroethane	50	U	500	U	1000	Ū	50	U	10	U	10 U
Chloroform	50	U	. 500	U	1000	U	50	U	. 10	U	10 U
Chloromethane	50	U	500	U	1000	U	- 50	U	10	U	10 U
cis-1,2-Dichloroethene		NA		NA		NA		NA		NA	•• NA
Ethylbenzene	50	U	. 500	U	1000		50	U	10	U	10 U
Methylene Chloride	50	U	500	U	1000	UJ	50	U	10	U	10 U
Tetrachloroethene	50	U	500	U	1000	Ū	50	U	10	U	10 U
Toluene	50	U	500	U	170000	*	50	U	10	U	12 U
Total Xylenes	50	U	120 .	J	6800		50	U	10	U	-10 U
Trichloroethene	50	U	500	U	1000	υ	770		125		10 U
Vinyl Chloride	50	U	500	Ū	1000	Ū	50	U	6.5		11

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

# GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 20 OF 63

Sample Number	OU1-PC-04B-01		OU1-PC-04D-01	OU1-PC-04S-01		OU1-PC-05B-01		OU1-PC-05D-01-AVG		OU1-PC-05M-01	1
Sample Location	PC-04B		PC-04D	PC-04S		PC-05B		PC-05D	.	PC-05M	
Date Sampled	12/3/97		12/3/97	12/3/97		12/5/97		12/5/97		12/4/97	
QC Туре	None		None	None		None		Field Dup. 5		None	
Matrix ·	AQUEOUS		AQUEOUS	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	1
Filtering			•								
Semivolatile Organic Compounds (UG/L)											T
1,2-Dichlorobenzene	10	υ	10 U	10	υ	10 ไ	J	10 L	J	50	U
2,4-Dimethylphenol	10	U	- 10 U	4	J	10 ເ	J	10 L	J	50	U
2,4-Dinitrophenol		R	R		R	F	र	F	२		R
2-Chlorophenol	. 4	J	60		R	10 ሀ	J	10 L	J	50	U
2-Methylnaphthalene	10	U	10 U	10	U	10 ไ	j	10 L	J	50	U
2-Methylphenol	10	U	3 J	61	J	10 l	J .	.10 L	J	50	U
2-Nitrophenol	10	U	. 10 U		R	10 l	_	10 L		50	) U
4,6-Dinitro-2-methylphenol	25	U.	25 U		R	25 เ	J	25 U		120	U
4-Chloro-3-methylphenol	10	U	10 U	· · ·	R	10 U	J	. · 10 L	J	50	) U
4-Methylphenol	. 10	υ·	10 U	· 75		10 L		10 U	_	50	U
4-Nitrophenol	25	U	25 UJ		R	15 J		25 เ		120	U
Acenaphthene	- 10	U	. 10 U	. 10	U	10 l	ן נ	10 L	J	50	U
Acenaphthylene	10	U	10 U	10	U	10 L		<u>່</u> 10 ເ	- 1	50	U
Anthracene	10	U	10 U	10	U	· 10 l	J	10 U		50	U
bis(2-Ethylhexyl)phthalate	10	υ	34 U	10	U	10 ไ	J	10 L	J	50	U
Carbazole	10	υ	10 U	10	U	10 L	J	10 L	J	50	U
Di-n-Butylphthalate	. 10	U	10 U	· · · 10		10 ไ		10 เ	- 1	50	
Dibenzofuran	. 10	U	10 U	10	U	, 10 เ	J	10 เ	J	50	U
Diethylphthalate	10	U	10 U	10		· 10 l		10 L		50	U
Fluoranthene	10	U	10 U	. 10	-	· 10 l	_	10 L		50	
Fluorene	10	U	10 U	10		10 ไ		. 10 L		50	1
Hexachloroethane	10		10 U	10		10 ไ	_	10 L		50	
N-Nitroso-diphenylamine	10		10 U	· 10		10 ไ		10 L		50	
Naphthalene	10		2 J	2		10 L	_	10 L		50	
Nitrobenzene	10		10 U	10		10 L				50	
Phenanthrene	. 10		10 U	10		10 ไ		10 L		50	
Phenol	10		10 U		R	10 ไ	_	10 L		50	
Pyrene	10	U	10 UJ	10	U	10 1	ן ד	10 U	ιİ	50	U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## **GROUNDWATER ANALYTICAL RESULTS** TECHNICAL MEMORANDUM **RAYMARK - OU2, STRATFORD, CT** PAGE 21 OF 63

							· ·				
Sample Number	OU1-PC-04B-01		OU1-PC-04D-01		OU1-PC-04S-01		OU1-PC-05B-01		OU1-PC-05D-01-AVG		OU1-PC-05M-01
Sample Location	PC-04B		PC-04D		PC-04S		PC-05B		PC-05D		PC-05M
Date Sampled	12/3/97		12/3/97		12/3/97		12/5/97		12/5/97		12/4/97
QC Type	None		None		None		None		Field Dup. 5		None
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS
Filtering											
Metals (UG/L)						_		-			
Aluminum	29.1	UJ	29.1	UJ	91.6	Ū	. 20	U	177.5	U	26.8 UJ
Antimony	50	U	50	U	50	U	50	U	50	U	50 U
Arsenic	1.1	UJ	34.6		3.9	U	1	U	2.2		39.8
Barium	30		45.9		109		58.1	J	36.2		48.3
Beryllium	1	υ	1	U	. 1	U	1	U	1	U	1 U
Cadmium	2	U	2	U	2	U	2	U	2	U	2 U
Calcium	185000		31000		82300		245000		16700		14300
Chromium	5	U	5	U	5.4	J	7.2	J	5	U	5 U
Cobalt	4	J	3	U	6		5	J	3.25		3 U
Copper	2	υ	2	U	2	U	16.9		6.1		2 U
Iron	1070		22100		24600		74.4	ŪJ	1775		24300
Lead	3	U	1	U	1	U	1.3	UJ	1	U	1.1 UJ
Magnesium	33800		15500		17100		55300		7980		6550
Manganese	829		5280		5670		3010	J	3115		1500
Mercury	0.1	U	0.1	U	0.1	U	· 0.1	U	0.1	U	0.1 U
Nickel	10	U	10	U	10	U	32		. 18.5		10 U
Potassium	5370		4590		7180		8240	J	3295		4200
Selenium	1	UJ	. 1	UJ	1	ŪĴ	1	UJ	1	U	1 UJ
Silver	3	U	3	U	3	U	3	UJ	3	U	3 U
Sodium	49600		157000		67000		113000	J	132000		^
Thallium	1	Ù	1	U	1	UJ ·	1	ŨJ	. 1	U	1 UJ
Vanadium	3	U	3	U	3	U	3	U	3	U	3 U
Zinc	4	U	4	U	7.6	UJ	5.7	UJ	4	U	4 U
Water Quality Analysis (mg/L)	· · · · · · · · · · · · · · · · · · ·										
Alkalinity	90	1	372	1	200		156		230		210
Chloride	70.7	J	71.8	J	24.6	J	539		62.6		26.9
Nitrate-Nitrite (as N)	0.1	U	0.1	U	0.1	U	· 2.9		[~] 0.515		0.1 U
Sulfate	462		13.9		208		194		66.55	1	44.2

2

1. 1

_ `

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

.

۰.

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 22 OF 63

Sample Number	OU1-PC-05S-01		OU1-PC-06B-01-AVG		OU1-PC-06D-01		OU1-PC-06M-01		OU1-PC-06S-01	1	OU1-PC-07S-01	
Sample Location	PC-05S		PC-06B		PC-06D		PC-06M		PC-06S		PC-07S	
Date Sampled	12/4/97		12/8/97	<u> </u>	12/1/97		12/1/97		12/1/97		12/1/97	'İ
QC Type	None		Field Dup. 6		None '	••	None		None	t	None	Ì
Matrix	AQUEOUS		AQUEOUS -		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	1
Filtering												1
Volatile Organic Compounds (UG/L)												
1,1,1-Trichloroethane	10 1	U	14.5		10 เ	J	10 ไ	J	500	U	400	U
1,1,2-Trichloroethane	10	U	30	U	10 เ	J	· 10 l	J	500	U	400	U
1,1-Dichloroethane	10 1	U	41		10 เ	Ĵ	. 12		500		400	U
1,1-Dichloroethene	10 1	U	32		10 ไ	JJ	10 ไ	J	500	U	400	U
1,2-Dichloroethane	10 1	U	30	U	8 .	J	. 10 l	ſ	500		400	U
1,2-Dichloroethene	10 1	U	15		2 .	J	- 4		500	-	400	U
2-Butanone	10 1		30	U	10 เ	U	. 10 l	J	500		400	U
2-Hexanone	10	UJ	30		10 L	J	10 l	J	500	υ	400	U
4-Methyl-2-Pentanone	10	U	30	U	10 เ	J	10 เ	J	500	U	400	U
Acetone	10	U	31	U	10 U	IJ	10 เ	J	500	U	400	U
Benzene	10	U	30	U	10 ไ	U	10 เ	11	500	U	400	UJ
Bromochloromethane		NA		NA	۱ ۱	NA	1	١A		NA		NA
Bromodichloromethane	10	U	30	U	- 10 l	J	10 ไ	J	500	U	400	U
Bromomethane	10 1	UJ	. 30	U	10 ไ	J	10 ไ	J	500	U	400	U
Carbon Disulfide	10	U		U	. 10 l	J	10 ไ	J	⁻ 500	U	400	U
Carbon Tetrachloride	- 10 l	U	30	U	10 L	Ĵ	10 เ	J	500	U	400	U
Chlorobenzene	10 1	U	33		28		10 ไ	J	. 500	U	12000	* .
Chloroethane	10 1	U	30	U	10 U	J	· 10 l	JJ	500	U	400	UJ
Chloroform	10 0	J	. 30	U	10 L	J	· 10 l	J	500	υ	400	U
Chloromethane	10 נ	U	30	U	10 L	J	10 ไ	J	500	U	400	U
cis-1,2-Dichloroethene		NA		NA	1	NA	1	١À		NA		NA
Ethylbenzene	10 ไ	J	30	U	10 l	J	10 ไ	J	120	J	400	U
Methylene Chloride	10 נ	J	30	U	10 l	JT.	10 U	1	. 500	UJ.	400	U
Tetrachloroethene	10	IJ	-30	U	10 L	J	10 l		500	U	400	U
Toluene	10 เ	J	30	U	10 L	J	10 L	J	500	υ	400	U
Total Xylenes	10 נ	J	30	U	10 L	J	10 L		3300		400	
Trichloroethene	10 נ	J	535		1 J	J·	2 J		500	U	400	U
Vinyl Chloride	10 (	J	30	U	1 J	J	· , 2J		500	U	400	U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 23 OF 63

Sample Number	OU1-PC-05S-01	OU1-PC-06B-01-AVG	OU1-PC-06D-01	<u> </u>	OU1-PC-06M-01	-	OU1-PC-06S-01	OU1-PC-07S-01	
Sample Location	PC-05S	PC-06B	PC-06D		PC-06M		PC-06S	PC-07S	
Date Sampled	12/4/97	12/8/97	12/1/97		12/1/97		12/1/97	12/1/9	7
QC Туре	None	Field Dup. 6	None		None		None	None	
Matrix	AQUEOUS	AQUEOUS	AQUEOUS		AQUEOUS		AQUEOUS	AQUEOUS	
Filtering									
Semivolatile Organic Compounds (UG/L)									
1,2-Dichlorobenzene	10 L	10	U · 10	U	10	U	10 U	1	0 U
2,4-Dimethylphenol	10 L	IJ 10	U 10	U	10	U	42	1	0 U
2,4-Dinitrophenol	F	2	R 25	U	25	UJ	25 U	J 2	5 UJ
2-Chlorophenol	10 L	10	U 10	U	10	U	10 U	1	8
2-Methylnaphthalene	10 L	10	U 10	U	10	U	10 U	1	0 U
2-Methylphenol	10 L	IJ 10	U 10	U	10	U	10 U	1	0 0
2-Nitrophenol	10 L	10	U . 10	U	10	U	10 U	1	0 U
4,6-Dinitro-2-methylphenol	25 L	25	U 25	U	25	U	25 U	2	5 U
4-Chloro-3-methylphenol	10 L	10	U · 10	U	10	U	. 10 U	1	0 U
4-Methylphenol	10 L				10	_	10 U		0 U
4-Nitrophenol	25 L				25		25 U		5 UJ
Acenaphthene	10 L				10		10 U		0 0
Acenaphthylene	10				10		10 U		0 0
Anthracene	10 L				10		10 U		0 U
bis(2-Ethylhexyl)phthalate	10 L				10		10 U		0 0
Carbazole	10 L				10		10 U		0 U
Di-n-Butylphthalate	10 L	10	U 10	U	10 1	U	10 U	1	0 U
Dibenzofuran	10 L	10	U 10	U	10	U	10 U		0 U
Diethylphthalate	10 เ	. 10	U 10	U	. 10	U	10 U	1	0 U
Fluoranthene	10 L	10	U 10	U	10	U	10 U	1	0 U
Fluorene	10 เ	10	U 10	U	10 1	υ	10 U	1	0 U
Hexachloroethane	10 ไ			U	10	U	10 U		0 U
N-Nitroso-diphenylamine	10 L	•		U	10		· 10 U		0 0
Naphthalene	10 L				. 10		. 5 J		0 0
Nitrobenzene	10 L				10		10 U		0 U
Phenanthrene	10 L				10		10 U		0 0
Phenol	10 L		10		. 10		10 U		0 U
Pyrene	10 U	10	U 10	U	10	υ	10 U	1	0 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

. •

1 . . .

· •

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 24 OF 63

Sample Number	OU1-PC-05S-01		OU1-PC-06B-01-AVG		OU1-PC-06D-01		OU1-PC-06M-01		OU1-PC-06S-01		OU1-PC-07S-01	
Sample Location	PC-05S		PC-06B		PC-06D		PC-06M		PC-06S		PC-07S	
Date Sampled	12/4/97		12/8/97		12/1/97		12/1/97		12/1/97		12/1/97	
QC Type	None		Field Dup. 6		None		None		None		None	
Matrix .	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering												
Metals (UG/L)												
Aluminum	20	U	12115		32		65.7	U	507		59.6	U
Antimony	- 50	U	50	U	50	U	50	U	50	U	50	U
Arsenic	1	UJ	9.45		1.2	UJ	4.9	U	4.5	U	63.5	
Barium	552		39.6		33.1		25.4		1920		28	
Beryllium	1	U	1	U	1	U		U	1	U	1	U
Cadmium	2	U	2	U	2 1	U		U		U	2	U
Calcium	58200		22450	÷.,	44700		17500		116000		21900	
Chromium	5	U	47.7		. 5 1	U	5	υ	197		. 5	U
Cobalt	3	U	11.35		18.8		3	U	186		5.6	J
Соррег	2	U	20.75		2	U	2	U	15		2.4	J
Iron	26300		18750		926		2510		69300	,	49400	
Lead	1.1	UJ	6.05	U	1 1	U	1	U	19.3		1	U
Magnesium	13400		8615		71200		12400		21900		6160	
Manganese	1340		387.5		8650		3120		3530		2730	
Mercury	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Nickel	10	U	37.4		18.2	J	10	U	138		10	U
Potassium	4670		24450		3250		3390		21800	,	3770	
Selenium	1	UJ	3	υ	· 1 U	UJ ·	· 1	UJ	· 1	UJ	1	UJ
Silver	3	U	3	U	3 (	U	3	U	3	U	· 3	U
Sodium	18700		199500		98600		147000		35000		14200	
Thallium	1	UJ	· 1	U	1	U	1	Ų	1	U	1	U
Vanadium	3	U	71.8		3 (	U	3	U	7.7			U
Zinc	283		58.1	U	9.6		133		15.2		27.4	
Water Quality Analysis (mg/L)			· · · · · · · · · · · · · · · · · · ·									1
Alkalinity	215		280.5		384		256		450	·	120	1
Chloride	39.8		·114		77.6	J	67.6	J	43.5	J	14.7	J
Nitrate-Nitrite (as N)	0.1	U	0.175		0.1	J	0.1	U	0.1	U	0.1	U
Sulfate	5	U	46.2		137		60		6.4		38.1	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 25 OF 63

Sample Number	OU1-PC-08B-01		OU1-PC-08D-01		OU1-PC-08S-01		OU1-PC-09D-01		OU1-PC-09S-01		OU1-PC-10B-01	
Sample Location	PC-08B		PC-08D		PC-08S		PC-09D		PC-09S		PC-10B	
Date Sampled	12/5/97		12/5/97		12/5/97		11/21/97		12/1/97		11/19/97	
QC Type	None											
Matrix	AQUEOUS											
Filtering					·							
Volatile Organic Compounds (UG/L)								ľ				
1,1,1-Trichloroethane	200	+	380	*	710		3000		1600		50 U	
1,1,2-Trichloroethane	10	U	10	U	50	U	200	U	100	U	50 U	
1,1-Dichloroethane	13		37		87		57	J	140		50 U	
1,1-Dichloroethene	95		20		18 .	J	300		93	J	50 U	,
1,2-Dichloroethane	10	U	10	U	50	U	200	U	100	U	50 U	J
1,2-Dichloroethene	21		170		250		360	1	660		55	
2-Butanone	10	U	10	U	50	U	200	U	100	U	50 U	J
2-Hexanone	10	U	10	U	50	U	200	U	100	U	50 Ú	J
4-Methyl-2-Pentanone	10	U	10	U	50	U		R	100	υ	R	2
Acetone	10	U	· 10	U	200	U	200	U	100	U	50 U	J
Benzene	10	U	10	υ	50	U	200	U	100	UJ	50 U	1
Bromochloromethane		NA		NA	1	NA		NA		NA	N	IA
Bromodichloromethane	10	U	10	U	50 1	U	200	U	100	U	50 U	1
Bromomethane	. 10	U	10	U	50	UJ	200	U	100	U	50 U	
Carbon Disulfide	10	U	10	U	50 1		200	UJ	100	U	50 U	1
Carbon Tetrachloride	10	υ	10	υ	50 1	UJ	200	υ	100	υ	50 U	1
Chlorobenzene	10	U	10	U	50 1	U	200	U	100	U	50 U	
Chloroethane	10	U	10	U	50 1	U	200	U	100	UJ	50 U	$\square$
Chloroform	10	U	10	U	50 1		. 200	U	100	U	50 U	
Chloromethane	10	υ	10	υ	50 1	U	200	UJ	100	υ	50 U	13
cis-1,2-Dichloroethene		NA		NA		NA		NA		NA	N	A
Ethylbenzene	10	U.	10	U	50 1	U	200	U	100	U	50 U	
Methylene Chloride	10	U	10	U	50 1	U	200	U	100	U	50 U	
Tetrachloroethene	2	J	10	บ	50 1	υ	200	υ	100	U	50 U	
Toluene	10	U	17		50 (	U	200	U	100	U	50 U	-
Total Xylenes	10	U		U	50 1	U	200	U	100	UJ	50 U	
Trichloroethene	290	*	68	·	50 (		' 1300	i	37		790	
Vinyl Chloride	10	U	4	J	15	J	200	U	49	J	50 U	, – I

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 26 OF 63

Sample Number	OU1-PC-08B-01		OU1-PC-08D-01		OU1-PC-08S-01		OU1-PC-09D-01	<u> </u>	OU1-PC-09S-01		OU1-PC-10B-01	,
Sample Location	PC-08B		PC-08D		PC-08S		PC-09D	<u> </u>	PC-09S		PC-10B	
Date Sampled	12/5/97		12/5/97		12/5/97		11/21/97	┣──	12/1/97		11/19/97	
QC Type	None		None		None		None		None		None	$\neg$
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering												
Semivolatile Organic Compounds (UG/L)						``						
1,2-Dichlorobenzene	10	U	10	U	10	U	10	U	10	U	10 (	υ
2,4-Dimethylphenol	. 10	U	10	U	10	U	10	U	10	U	10 1	Ū
2,4-Dinitrophenol		R		R		R	25	U	25	U	25 1	U
2-Chlorophenol	10	U	10	υ	10	U	10	U	. 10	U	10 1	U
2-Methylnaphthalene	10	U	10	U	10	U	10	U	10	U	10	U
2-Methylphenol	10	U	.10	U	10	U	10	U	10	U	10	U
2-Nitrophenol	. 10	U	10	U	10	U	10	U	10	U	10	υ
4,6-Dinitro-2-methylphenol	25	U	25	U	25	U	25	υ	25	υ	25	U
4-Chloro-3-methylphenol	10	U	10	U	.10	U	10	U	10	U	10 1	U
4-Methylphenol	10	U	10	U	10	U	10	U	10	U	10 1	υ
4-Nitrophenol	2	J	25	U	25	υ	44		25	U	25	υ
Acenaphthene	10	U	10	U	10	υ	10	U	10	U	10 (	U
Acenaphthylene	10	U	· 10	υ	10	U	10	U	10	U	10 1	υ
Anthracene	10	U	10	U	10	U	10	Ũ	1	J	. 10 l	U
bis(2-Ethylhexyl)phthalate	10	U	10	U	10	U	10	U	10	UJ	10 เ	U
Carbazole	10	U	10	U	10	U	10	U	10	U	10 (	UJ
Di-n-Butylphthalate	10	U	10	U	10	U	10	U	10	U	10 (	UJ
Dibenzofuran	10	U	10	U.	10	U	10	U	10	U	10 1	U
Diethylphthalate	10	U	10	U	· 10	υ	10	U	10	U	10 1	U
Fluoranthene	10	U	10	U	10	U	· 10	U	10	U	10 1	υ
Fluorene	10	U	10	U	. 10	U	10	U	10	U	10 (	U
Hexachloroethane	10	U	· 1	J	10	υ	10	Ŭ	10	U	10 1	υ
N-Nitroso-diphenylamine	10	U	10	U	10	U	10	U	10		10 1	U
Naphthalene	10	U	10	U	1	_	10	-	2		10 1	_
Nitrobenzene	10	U	10	U	10	U	10	_	10	υ	10	υ
Phenanthrene	10	U	10	U	10	U	10	U	10	U	10 1	υ
Phenol	10	U	10	U	10		10		10	U	10	
Pyrene	. 10	U	10	U	10	U	10	U	10	U	10 1	υ

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

2

## **GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM** RAYMARK - OU2, STRATFORD, CT PAGE 27 OF 63

Sample Number	OU1-PC-08B-01		OU1-PC-08D-01		QU1-PC-08S-01		OU1-PC-09D-01		OU1-PC-09S-01		OU1-PC-10B-01	
Sample Location	PC-08B		PC-08D		PC-08S		PC-09D		PC-09S		PC-10B	
Date Sampled	12/5/97		12/5/97		12/5/97		11/21/97		· 12/1/97		11/19/97	
QC Туре	None		None		None		None		None		None	
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering												
Metals (UG/L)						T						
Aluminum	348	J	92.3	U	909	J	20	U	39.9	UJ	48.3 L	U
Antimony	50	υ	50	U	50	U	50	U	50	U	50 เ	U
Arsenic	1	U	31.2	1	16.8		4.9		33.5		. 1	
Barium	25.4	J	48.3		76.6	J	79.2		103	-	15.4 ป	U
Beryllium	1	υ	1	U	1	U	1	U	1	υ	1 เ	-
Cadmium	2	υ	2	U	2	U	. 2	U	2	U	2 ไ	U
Calcium	24900		12100		23500		31100		17500		35900	
Chromium	26.2	J		U	16.1	J	5	U	5	U	5 เ	Ų
Cobalt	. 17.2		5		3	J	5.1	J	3	U	3 ไ	U
Copper	. 14.8			U	31.5		2	υ	2	U	2 נ	υ
Iron	419		8660		10100	J	2640		11900		118 l	
Lead	4.6	UJ	1.1	UJ	45.4	J	2.8	υJ	1	U	1 L	IJ
Magnesium	3860		11700		13300		20500		16800		7920	
Manganese	61.1	J	2150		. 1730		4200		2130		75.5	
Mercury	0.1	υ	0.1	U	0.1	U	0.1		0.1	U	0.1 ไ	
Nickel	21.8		13.5	J	17.1	J	23.8	U	10	U	10 ሀ	U
Potassium	2550	J	3700		4510		6430		4380		3600	
Selenium	. 1.1	ÛΊ	1	UJ	1.1	UJ	1	ÛΊ	1	υJ	11	IJ
Silver	3	UJ	3	U	· . 3	UJ	3	U ·	3	U	3 ไ	U
Sodium	19500	J	110000		. 95000	J	125000		96500		11800	
Thallium		ŲJ	1	U	. 1	UJ	- 1	U	1	U	· 1 L	U
Vanadium	" 3.9	J.	3	U	4.2	J	3	U	3	U	31	U
Zinc	, 6.2	UJ	4	U	9.5	UJ	63.8		4	U	177	
Water Quality Analysis (mg/L)												
Alkalinity	69.6		135		142		110	J	110		53.3 J	j
Chloride	31.8		237	[	63.5		103		71	J	28.1	
Nitrate-Nitrite (as N)	1.13		0.1	υ	0.1	U	13.4		0.1	U	0.1 ไ	U
Sulfate	38.7		58.6		118		143	1	113	1	63.6 J	1

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 28 OF 63

Sample Number	OU1-PC-10D-01-AVG		OU1-PC-10M-01	OU1-PC-10S-01	OU1-PC-11B-01	OU1-PC-11D-01	OL	J1-PC-11M-01	
Sample Location	PC-10D		PC-10M	PC-10S	PC-11B	PC-11D	PC	2-11M	
Date Sampled	11/19/97		11/19/97	11/19/97	12/4/97	12/4/97		12/4/97	
QC Туре	Field Dup. 1		None	None	None	None	No	пе	
Matrix	AQUEOUS		AQUEOUS	AQUEOUS	AQUEOUS	AQUEOUS	AC	QUEOUS	
Filtering									
Volatile Organic Compounds (UG/L)									
1,1,1-Trichloroethane	15		26	. 10 U	9 J	93 .	J	26	
1,1,2-Trichloroethane	50	υ	25 U	10 U	10 U	100	υ	10	U
1,1-Dichloroethane	50	υ	5 J	. 10 U	. 16	100	U	11	
1,1-Dichloroethene	6		10 J	10 U	24	35	J	9	J
1,2-Dichloroethane	50	U	25 U	10 U	10 U	100		10	U
1,2-Dichloroethene	. 7		30	10 U	42	39 .		24	
2-Butanone	50	U	25 U	10 U	10 U	100	υ	10	U
2-Hexanone	50	U	25 U	10 U	10 U	100	U	, 10	U
4-Methyl-2-Pentanone		R	R	R	. 10 U	100	U	10	U
Acetone	50	U	25 U	10 U	. 10 U	100	U	10	U
Benzene	50	U	25 U	10 U	10 U	100	U	10	U
Bromochloromethane		NA	NA	NA	. NA	N	NA		NA
Bromodichloromethane	. 50	U	25 U	10 U	10 U	100 1	U	. 10	U
Bromomethane	50	U	25 U	10 U	10 U	100	UJ	10	U
Carbon Disulfide	50	U	25 U	10 U	10 U	100	U [,]	10	U
Carbon Tetrachloride	50	U	25 U	10 U	10 U	100	UJ	10	U
Chlorobenzene	50	U	25 U	10 U	15	100	U	10	Ų
Chloroethane	50	U	25 U	10 U	. 10 U	100	U	. 10	U
Chloroform	50	U	25 U	10 U	10 U	100	U	10	U
Chloromethane	50	U	25 U	, 10 U	10 U	. 100	U	10	U
cis-1,2-Dichloroethene		NA	NA	. NA [*]	· · NA		NA		NA
Ethylbenzene	50	U	25 Ù	10 U	10 U	100 1	J	. 10	U
Methylene Chloride	50	U	25 U	10 U	15 U	110 1	J	10	υ
Tetrachloroethene	50	U	25 U	10 U	2 J	100 1	J	3	J
Toluene	50	U	25 U	. 10 U	10 U	100 1	J	10	U
Total Xylenes	50	U	25 U	10 U	10 U	100 1	J	10	υ
Trichloroethene	555		340	7 J	1500 *	1400		390	*
Vinyl Chloride	50	U	25 U	10 U	3 J	100 1	U i	9	J

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 29 OF 63

Sample Number	OU1-PC-10D-01-AVG		OU1-PC-10M-01	OU1-PC-10S-01	OU1-PC-11B-01	OU1-PC-11D-01	OU1-PC-11M-01
Sample Location	PC-10D		PC-10M	PC-10S	PC-11B	PC-11D	PC-11M
Date Sampled	11/19/97		11/19/97	11/19/97	12/4/97	12/4/97	12/4/97
QC Туре	Field Dup. 1		None	None	None	None	None
Matrix	AQUEOUS		AQUEOUS	AQUEOUS	AQUEOUS	AQUEOUS	AQUEOUS
Filtering							
Semivolatile Organic Compounds (UG/L)							
1,2-Dichlorobenzene	10	U	10 U	10 UJ	10 U	10 U	10 U
2,4-Dimethylphenol	10	U	10 U	10 UJ	10 U	10 U	10 U
2,4-Dinitrophenol	25	υ	25 U	25 UJ	R	R	R
2-Chlorophenol	10	U	10 U	10 UJ	10 U	10 U	10 U
2-Methylnaphthalene	10	U	10 U	10 UJ	10 U	10 U	10 U
2-Methylphenol	10	U	10 U	10 UJ	10 U	10 U	10 U
2-Nitrophenol	10	U	10 U	10 UJ	10 U	10 U	6 J
4,6-Dinitro-2-methylphenol	25	U	25 U	25 UJ	25 U	25 U	25 U
4-Chloro-3-methylphenol	10		10 U	10 UJ	10 U	10 U	10 U
4-Methylphenol	10		10 U	10 UJ	10 U	10 U	10 U
4-Nitrophenol	25	U	25 U	25 UJ	1 J	25 U	55
Acenaphthene	10	U	10 U	10 UJ	10 U	10 U	10 U
Acenaphthylene	10	U	10 U	10 UJ	10 U	10 U	10 U
Anthracene	10	_	10 U	10 UJ	10 U	10 U	10 U
bis(2-Ethylhexyl)phthalate	10	U	10 U	10 UJ	10 U	10 U	10 U
Carbazole	10	U	10 UJ	10 UJ	10 U	10 U	10 U
Di-n-Butylphthalate	10	U	10 UJ	. 10 UJ	10 U	10 U	10 U
Dibenzofuran	10	U	10 U	: 10 UJ	10 U	10 U	10 U
Diethylphthalate	10	U	10 U	10 UJ	10 U	10 U	10 U
Fluoranthene	· 10	U	10 U	10 UJ	10 U	10 U	10 U
Fluorene	10	U	· 10 U	10 UJ	10 U	10 U	10 U
Hexachloroethane	10	U	10 U	10 UJ	· 10 U	10 U	10 U
N-Nitroso-diphenylamine	10	U	10 U	10 UJ	10 UJ	10 U	10 U
Naphthalene	10	U	10 U	10 UJ	10 U	10 U	10 U
Nitrobenzene	10	U	10 U	10 UJ	10 U	10 U	10 U
Phenanthrene	10	U,	10 U	10 UJ	10 U	10 U	10 U
Phenol	10	U	10 U	10 ÚJ	10 U	10 U	10 U
Pyrene	10	U	10 U	10 UJ	10 U	10 U	10 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

S have be

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 30 OF 63

Sample Number	OU1-PC-10D-01-AVG		OU1-PC-10M-01		OU1-PC-10S-01		OU1-PC-11B-01		OU1-PC-11D-01		OU1-PC-11M-01	
Sample Location	PC-10D		PC-10M		PC-10S		PC-11B		PC-11D		PC-11M	
Date Sampled	. 11/19/97		11/19/97		11/19/97		12/4/97		12/4/97	ŀ	12/4/97	
QC Туре	Field Dup. 1		None		None	1	None		None		None	
Matrix	AQUEOUS		AQUEOUS	1	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering												
Metals (UG/L)				Ì								
Aluminum	62.75	U	. 20	υ	20	U	83.3	U	255	U	20	U
Antimony	50	U	. 50	U	50	U	50	U	50	U	50	U
Arsenic	2.75		1	U	3.1		1.4	UJ	1.2	UJ	1.2	UJ
Barium	56		36.2		91.9		28.2		37.9		41.1	
Beryllium	1	U.		υ		U	1		. 1	U		U
Cadmium	- 2	U	2	U	19.7	U	2	U	26.3		25.4	
Calcium	109500		25400		49700		15500		64100		52400	
Chromium	. 5	U	5.3	J	5	υ	35.4		5	U	5	U
Cobait	3	U	3.7	J	10.4		3	U	120		89.6	
Copper	2	_	6.1	U	15.7	U.	578		6.3		2.8	J
Iron	68.75	U	138	U	13000		475		416		140	U
Lead	1.25	U	1	UJ	3.3	Π	1.2	ÚJ	1	U	1	U
Magnesium	17150		11000		6480		7650		38700		52600	
Manganese	653		1760		657		27	U	16700		13500	
Mercury	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Nickel	. 18.25	U	38.4	U	246		65.5		. 228		159	
Potassium	10850		4220		11600		34900		7980		4700	
Selenium	1	U	1	UJ	1.3	J	1.3	UJ	1	UJ	1	UJ
Silver	3	U	3	U	3	Ų	3	U	3	U	3	U
Sodium	246000		140000		40700		183000		198000		137000	1
Thallium	1	U	. 1	U	1	U	1	U	1	UJ	1	U
Vanadium	4.45	U	3	U	3.3	UJ	3	U	3	U	3	U
Zinc	295.5		337		1210		4	U	680		219	
Water Quality Analysis (mg/L)												
Alkalinity	120		81.2	J	47	J	83		53		170	
Chloride	213	-	94.5		15.4		130		256		203	
Nitrate-Nitrite (as N)	7.53		6.66		0.92		6.7	•	19.5		3.28	<u> </u>
Sulfate	409		189	J	174	J	208		229		173	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 31 OF 63

Sample Number	OU1-PC-11S-01	
Sample Location	PC-11S	
Date Sampled	12/4/97	
QC Туре	None	
Matrix	AQUEOUS	
Filtering		
Volatile Organic Compounds (UG/L)		
1,1,1-Trichloroethane	10	U
1,1,2-Trichloroethane	10	υ
1,1-Dichloroethane	20	
1,1-Dichloroethene	. 9	J
1,2-Dichloroethane	. 10	U
1,2-Dichloroethene	96	
2-Butanone	10	U
2-Hexanone	10	U
4-Methyl-2-Pentanone	10	U
Acetone	19	U
Benzene	2	J
Bromochloromethane		NĂ
Bromodichloromethane	10	U
Bromomethane	10	U
Carbon Disulfide	10	U
Carbon Tetrachloride	10	U
Chlorobenzene	21	
Chloroethane	10	U
Chloroform	. 10	U
Chloromethane	10	U
cis-1,2-Dichloroethene		NA
Ethylbenzene	2	J
Methylene Chloride	10	U
Tetrachloroethene	10	U
Toluene	4	J
Total Xylenes	2	J
Trichloroethene	93	
Vinyl Chloride	57	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

1

1

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 32 OF 63

Sample Number	OU1-PC-11S-01	
Sample Location	PC-11S	
Date Sampled	12/4/97	
QC Type	None	
Matrix	AQUEOUS	
Filtering		
Semivolatile Organic Compounds (UG/L)		
1,2-Dichlorobenzene	· 10	U
2,4-Dimethylphenol	5	J
2,4-Dinitrophenol		R
2-Chlorophenol	10	υ
2-Methylnaphthalene	10	U
2-Methylphenol	1	J
2-Nitrophenol	10	U
4,6-Dinitro-2-methylphenol	25	U
4-Chloro-3-methylphenol	10	U
4-Methylphenol	1	J
4-Nitrophenol	25	U
Acenaphthene	10	U
Acenaphthylene	10	υ
Anthracene	10	υ
bis(2-Ethylhexyl)phthalate	10	U
Carbazole	10	υ
Di-n-Butylphthalate	10	U
Dibenzofuran	10	U
Diethylphthalate	10	υ
Fluoranthene	10	U
Fluorene	10	U
Hexachloroethane	10	U
N-Nitroso-diphenylamine	10	U
Naphthalene	10	U
Nitrobenzene	10	U
Phenanthrene	10	U
Phenol	10	U
Pyrene	10	U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

.

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 33 OF 63

з

Sample Number	OU1-PC-11S-01	
Sample Location	PC-11S	
Date Sampled	12/4/97	
QC Type	None	
Matrix	AQUEOUS	
Filtering		
Metals (UG/L)	,	
Aluminum	22.8	UJ
Antimony	50	U
Arsenic	32.2	
Barium	282	
Beryllium	1	U
Cadmium	2	υ
Calcium	41300	
Chromium	5	U
Cobalt	3	U
Copper	. 23.6	
Iron	10600	
Lead	11.7	
Magnesium	94100	
Manganese	3300	
Mercury	0.1	U
Nickel	12.1	J
Potassium	11700	
Selenium	1	UJ
Silver	3	U
Sodium	85400	
Thallium	1	ΠÌ
Vanadium	. 3	U
Zinc	15.8	U
Water Quality Analysis (mg/L)	· · ·	
Alkalinity	370	
Chloride	64.7	
Nitrate-Nitrite (as N)	0.1	U
Sulfate	186	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 34 OF 63

Sample Number	OU1-PC-12B-01		OU1-PC-12D-01-AVG		OU1-PC-12S-01		OU1-PC-13B-01		OU1-PC-13D-01		OU1-PC-13M-01-AVG
Sample Location	PC-12B		PC-12D		PC-12S		PC-13B		PC-13D		PC-13M
Date Sampled	12/3/97	ĺ	12/3/97	1	12/3/97		11/19/97		11/20/97		11/19/97
QC Туре	None		Field Dup. 4		None		None		None		Field Dup. 7
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS
Filtering				<u> </u>							
Volatile Organic Compounds (UG/L)											
1,1,1-Trichloroethane	71	J	100		1 J	J	28	J	38	J	39
1,1,2-Trichloroethane	250	U	375	U	10 U	U	250	1	83	U	10
1,1-Dichloroethane	250	U	375	U	8 J	J	250		83	Ü	15.5
1,1-Dichloroethene	250	U	375	U	ຸ 10 ເ	U	. 250	υJ	17	J	9.5
1,2-Dichloroethane	. 250	U	. 375	U	10 ไ	U	250	υJ	83	U	10
1,2-Dichloroethene	490		645		13		250	UJ	12	J	4
2-Butanone	. 250	U	375	U	10 L	U	250	UJ	83	U	10
2-Hexanone	250	U	375	υ	2 J	J	250	UJ	83	U	10
4-Methyl-2-Pentanone	250	U	375	U	10 ไ	U		R		R	
Acetone	250	U	375	U	6 J	J	250	UJ	83	U	10
Benzene	250	U	375	U	· 10		250	UJ	· 83	U	10
Bromochloromethane		NA		NA	N	NA	· ·	NA		NA	
Bromodichloromethane	250	U	375	U	10 L		. 250	UJ	83	U	10
Bromomethane	250	UJ	375	U	10 L	J	250	UJ	83	U	10
Carbon Disulfide	250	U	375	U	10 L	J	250	UJ	83	U	10
Carbon Tetrachloride	250	U	375	U	10 L	J	250	UJ	83	U	10
Chlorobenzene	250	U	375	U	170		250	UJ	83	U	10
Chloroethane	250	υ	375	U	10 L	٦.	250	UJ	83	U	10
Chloroform	250	U	375	U	- · 10 L	J	250	UJ	9	J	11.5
Chloromethane	250	υ	375	U	10 L	J	250	UJ	83	U	10
cis-1,2-Dichloroethene	· ·	NA		NA	l I	NA		NA		NA	
Ethylbenzene	, 250	U	· 375	U	· 10 L	Ĵ	250	UJ	83	U	10
Methylene Chloride	250	U	375	U	10 ไ	J	250	UJ	83	U	10
Tetrachloroethene	250	U	375	U	10 ไ	J	250	UJ	9	J	4.5
Toluene	250	U	375	U	· 3J	J	250	UJ	83	U	10
Total Xylenes	250	U	375	U	10 L	J	250	UJ	83	U	10
Trichloroethene	3200		4150		10 ไ	J	2000	J	840		25
Vinyl Chloride	97	J	330		60		250	UJ	83	υ	10

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 35 OF 63

2

Sample Number	OU1-PC-12B-01	(	OU1-PC-12D-01-AVG		OU1-PC-12S-01		OU1-PC-13B-01		OU1-PC-13D-01		OU1-PC-13M-01-AVG
Sample Location	PC-12B	1	PC-12D		PC-12S		PC-13B		PC-13D		PC-13M
Date Sampled	12/3/97		12/3/97		12/3/97		11/19/97		11/20/97		11/19/97
QC Type	None	1	Field Dup. 4		None		None	1	None		Field Dup. 7
Matrix	AQUEOUS	/	AQUEOUS		AQUEOUS		AQUEOUS	1	AQUEOUS		AQUEOUS
Filtering								1			
Semivolatile Organic Compounds (UG/L)					•						
1,2-Dichlorobenzene	10 L	J	30	U	10	U	3	J	10	Ų	10
2,4-Dimethylphenol	10 L	J	30	U	10	U	10	U	10	U	. 10
2,4-Dinitrophenol	6 J	1	580			R	25	U	25	U	. 25
2-Chlorophenol	10 L	J	30	U	2	J	10	U	10	U	10
2-Methylnaphthalene	· 10 L	J	30	U	10	U	10	U	10	U	10
2-Methylphenol	10 L	J	30	U	10	Ü	10	U	10	U	10
2-Nitrophenol	9 J	1	22		10	U	10	U	10	U	10
4,6-Dinitro-2-methylphenol	25 L	J	6		25	U	25	U	25	U	. 25
4-Chloro-3-methylphenol	1 J	1	30	U	10	U	10	U	10	U	10
4-Methylphenol	10 L	J	13.5		10	U	10	U	. 10	U	10
4-Nitrophenol	210 *		420		25		27	J	5	-	. 25
Acenaphthene	10 U	J	30	U	10	U	10	U	10	υ	10
Acenaphthylene	10 L	-	30	-	10	U	10	U	10	U	10
Anthracene	10 L		30	U	10	U	10	U	10	U	10
bis(2-Ethylhexyl)phthalate	23 L	J	40.5	U	38	U	10	Ū	10	U	10
Carbazole	10 L	j	30	U	10	U	10	U	10	U	10
Di-n-Butylphthalate	10 L	J	30	U	2	J	10	U	10	U	10
Dibenzofuran	10 L	J	30	U	10	U	10	U	10	U	. 10
Diethylphthalate	10 L	J	30	υ	10	U	10	U	10	U	10
Fluoranthene	10 L	J	30	U	10	U	10	U	10	U	10
Fluorene	10 L	J	30	U	10	U	10	U	10	U	10
Hexachloroethane	10 L	1	30	U	10	U	10	U	10	U	10
N-Nitroso-diphenylamine	10 L		30	U	10	U	10	UJ	10	UJ	10
Naphthalene	10 L	J	13		10	U	10	U	10	υ	10
Nitrobenzene	10 L	J	30	U	10	U	10	U	10	-	10
Phenanthrene	10 L	J	30	U	10	U	10	U	10	U	10
Phenol	. 10 L	J	30	U	10	U	۲ <b>۰</b> 10	U	10	U	10
Pyrene	10 L	J	30	U	10	U	10	U	10	U	10

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 36 OF 63

			,							_	· · · · · · · · · · · · · · · · · · ·
Sample Number	OU1-PC-12B-01	_	OU1-PC-12D-01-AVG		OU1-PC-12S-01		OU1-PC-13B-01		OU1-PC-13D-01		OU1-PC-13M-01-AVG
Sample Location	PC-12B		PC-12D		PC-12S		PC-13B		PC-13D		PC-13M
Date Sampled	12/3/97		12/3/97		12/3/97		11/19/97	'	11/20/97	'	11/19/97
QC Туре	None		Field Dup. 4		None		None		None		Field Dup. 7
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS
Filtering											
Metals (UG/L)											
Aluminum	131	U	1885		29.4	UJ	20	U		U	506
Antimony	50	U	50	U	50	U	50	U	. 50	U	. 50
Arsenic	1	υ	1	U	5.4		· 1	U	1	U	1
Barium	· 154		143		~ 1450	•	. 48		31.5	U	19.45
Beryllium	1	U	1	U	1	U	1	U	1	U	1
Cadmium	- 3.2	J	10.95		2	U	16.6	U	208		2
Calcium	189000		147000	1	66000		201000		110000		[^] 46350
Chromium	15.8		5	U	5	U	5	U	5	U	5
Cobalt	165		421		3	U	. 25.6		34.8	-	13.4
Copper	9.2		2	U.	2	υ	2	U	4	U	51.1
Iron	1450		9215		28900		124	U	219	U	667
Lead	· 1	U	1.15	U	1.6	UJ	1	UJ	. 1	UJ	1.25
Magnesium	95100		135000		143000		58200		47700		20600
Manganese	. 32200		37700		2460		2990		9870		. 3070
Mercury	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1
Nickel	267		463		10	υ	91		595		28.35
Potassium	17900		17800		• 14700		10600		9720		4090
Selenium	1	UJ	1	U	1	UJ	1	J	1	UJ	5
Silver	3	U	3	U.	3	U	3	U	3	U	3
Sodium	192000		207000		54800		204000	1	265000		342000
Thallium	. 1	UJ	5	U	1	UJ	1	U	1	U	_ 1
Vanadium	3	U	3	U	3	U	. 3	U	3	U	3
Zinc	498		2540	· .	4	U	366		989		329
Water Quality Analysis (mg/L)											
Alkalinity	182		. 129	1	691		37.3	J	57.1	J	63.3
Chloride	324		424.5	1	110	J	· 388		389	-	273
Nitrate-Nitrite (as N)	140		138.5		0.1		39.6		9.1	1	0.1
Sulfate	219		248		53.4		452	J	456	J	575.5

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

. . . . . . . . . . . .

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 37 OF 63

· ~~

Sample Number		OU1-PC-13S-01		OU1-PC-14B-01		OU1-PC-14D-01		OU1-PC-14S-01		OU1-PC-15B-01		OU1-PC-15D-01
Sample Location		PC-13S		PC-14B		PC-14D		PC-14S		PC-15B		PC-15D
Date Sampled		11/20/97		12/9/97		12/9/97		12/9/97		12/8/97		12/8/97
QC Туре		None		None		None		None		None		None
Matrix		AQUEOUS	-	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS
Filtering												
Volatile Organic Compounds (UG/L)												
1,1,1-Trichloroethane		12		1 J		150		3.	J	7	J	10 U
1,1,2-Trichloroethane	U	10	U	10 U	1	5	J	10	U	10	UJ	10 U
1,1-Dichloroethane		6	J	10 U	1	36		32		56	J	120
1,1-Dichloroethene		4	J	5 J		64		7.	J	14	J	10 U
1,2-Dichloroethane	U	10	U	10 U	1	5	J	3.	J	10	UJ	10 U
1,2-Dichloroethene		10	J	20		160		1700 '	•	98	J	200
2-Butanone	U	10	U	10 U	IJ	10	UJ	10	UJ	10		10 U ^
2-Hexanone	U	10	U	10 U	IJ	10	UJ	10	UJ	10	UJ	10 UJ
4-Methyl-2-Pentanone	R		R	10 U		10	UJ	10	UJ	10	U	10 U
Acetone	U	10	U	57 U	IJ	12	UJ	10	ŬĴ	10	UJ	10 U
Benzene	U	10	U	6 J		15		45		10	J	3 J
Bromochloromethane	NA		NA	. N	IA		NA	1	NA		NA	NA
Bromodichloromethane	U	10	U	10 U		10		10	U	10	UJ	10 U
Bromomethane	U	10	U	10 U		3	J	10	U	10	UJ	10 UJ
Carbon Disulfide	U	10	U	. 10 U		10	U	10	J	10	nı	10 U
Carbon Tetrachloride	U	10	U	10 U		10	U	10	U	10	UJ	10 U
Chlorobenzene	U	10	U	49		160		700 '	•	220	*	190 *
Chloroethane	U	10	U	10 U		3	J	3.	J	10		520 *
Chloroform	U	10		· 10 U		34	U	180	J	10	ÛJ	.10 U
Chloromethane	U	10	U	10 U		4	J	10	U	10	UJ	10 U
cis-1,2-Dichloroethene	NA		NA	N	IA		NA		NA		NA	NA
Ethylbenzene	U	10	U	10 U	1	11		47		10	U	·4 J
Methylene Chloride	U	10	U	20 U	1	330	*	13	J	12	UJ	10 U
Tetrachloroethene	-	10	U	1 J	•	26		10	J	10	U	10 U
Toluene	. U	10	U	3 J		350	*	32		10	U	· 9 J
Total Xylenes	U	10	U	2 J		120		47		2	J	7 J
Trichloroethene		. 70		940 *		7700	ŧ	120	J	1200	*	4 J
Vinyl Chloride	U	6	J	6 J		27		680 '		19	J	95

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 38 OF 63

Sample Number		OU1-PC-13S-01		OU1-PC-14B-01		OU1-PC-14D-01	<b>-</b>	OU1-PC-14S-01		OU1-PC-15B-01		OU1-PC-15D-01
Sample Location		PC-13S		PC-14B		PC-14D		PC-14S		PC-15B		PC-15D
Date Sampled		11/20/97		12/9/97		12/9/97		12/9/97		12/8/97		12/8/97
QC Туре		None		None		None		None .		None		None
Matrix		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS
Filtering												
Semivolatile Organic Compounds (UG/L)												
1,2-Dichlorobenzene	U	10	U	10	U	100	U	20	U	10	U	10 U
2,4-Dimethylphenol	U	10	U		R		R	20	U	10	U	10 U
2,4-Dinitrophenol	U	- 25	U		R	2600	J	50	U	,	R	R
2-Chlorophenol	U	10	U		R		R	20	Ų	10	U	10 U
2-Methylnaphthalene	U	10	U	10	U	100	U	20	U	10	U	10 U
2-Methylphenol	U	10	υ		R		R	24	J	10	υ	10 U
2-Nitrophenol	υ	10	U		Ŗ	69	J	20	U	10	U	10 U
4,6-Dinitro-2-methylphenol	U	25	U		R	160	J	50	U	25	υ	. 25 U
4-Chloro-3-methylphenol	U	10	U		R		R	20	U	10	U	10 U
4-Methylphenol	U	10	U		R		R	92		10	U	10 U
4-Nitrophenol	U	25	UJ		R	1300	J	50	U	25	UJ	25 U
Acenaphthene	U	10	U	10		100	U	20	U	10	U	10 U
Acenaphthylene	U	10	U	10	U	100	U	20	U	10		10 U
Anthracene	U	10	U	10	U	100	U	20	U	10	U	10 U
bis(2-Ethylhexyl)phthalate	U	- 10		10	U	100	U	20	U	10		10 U
Carbazole	U	10	U	10	U	100		20		10		10 U
Di-n-Butylphthalate	U	10	U	10		100	U	20		10		10 U
Dibenzofuran	U	10	Ü	10	U	100	U	20	U	10	υ	10 U
Diethylphthalate	υ	10	U	10	U	100	U	20	U	10	U	10 U
Fluoranthene	U	. 10	U	10	U	100	U	20	Ū	10	U	10 U
Fluorene	U	10	U	10	U	100	U	20	U	10	U	10 U
Hexachloroethane	U	10	U	10	U	100	U	20	U	10	U	10 U
N-Nitroso-diphenylamine	U	10	UJ	. 10	U	100	U	20	U	10	U	10 U
Naphthalene	U	10	U	10	U	100	U	3	J	10	U	10 U
Nitrobenzene	U	10	U	10	U	100	U	20	U	10		10 U
Phenanthrene	U	10	U	10	U	100	U	20	U	10	υ	10 U
Phenol	U	10			R		R	20		10		10 U
Pyrene	U	10	U	10	U	100	Ū	20	U	10	U	10 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

1

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 39 OF 63

Sample Number		OU1-PC-13S-01		OU1-PC-14B-01		OU1-PC-14D-01		OU1-PC-14S-01		OU1-PC-15B-01		OU1-PC-15D-01	Γ
Sample Location		PC-13S		PC-14B		PC-14D	1 .	PC-14S		PC-15B		PC-15D	
Date Sampled		11/20/97		12/9/97		12/9/97		12/9/97		12/8/97		12/8/97	
QC Type		None		None		None	1	None .		None		None	
Matrix		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering							1			· ·			<u> </u>
Metals (UG/L)													
Aluminum		. 259	U	71.5	IJJ	116000	J	47.6	UJ	. 52.1	UJ	20	U
Antimony	U	50	U	. 50	U	50	U	50	U	50	U	50	U
Arsenic	U	1.8		1.7	J	1	UJ	39.8		1	υ	25.1	
Barium	U	58.9		91.2	J	102	J	333	J	33.1	J	354	J
Beryllium	U	1	U	1	υ	15.3		1	U	1	υ	1	U
Cadmium	U	44.7		2	U	8.8		2	U	2	υ	2	U
Calcium		40100		278000		278000		40500		141000		39500	1
Chromium	U	21.7		18.6	J	50.8	J	5	UJ	5	ΠJ	5	UJ
Cobalt		32.1			U	307	J		R	14		10.9	
Copper .		17.6	U	29.5	J	3410			R	3.9	J	2	U
Iron		4560	_	325	UJ	4290	J	127000	J	229		13500	J
Lead	U	5.6	UJ	1.8	UJ	672	J	- 1	IJ	1.1	UJ	1.4	ŪJ
Magnesium		17200	,	38700		150000		117000		61000		70500	
Manganese		7690		277	J	23800	J	1220	J	4010	J	1290	J
Mercury	U	0.1	U	0.1	U	0.13	J	0.1	U	0.1	U	0.1	U
Nickel	U	795		16.5	J	562		15.3	J	10	U	10	U
Potassium		6230		16100	J	14800	J	21000	J	8900	J	7120	J
Selenium	U	1	UJ.		ΩJ	• 5	UJ		UJ	1	ΛJ		UJ
Silver	U	. 3	U	3	UJ	3	UJ	3	UJ	3	UJ	3	UJ
Sodium		108000		39100	J	256000	J	128000	J	38700	J	69500	J
Thallium	υ	1	υ	1	UJ	1	UJ	. 1	UJ	1	UJ	1	UJ
Vanadium	U	3	U	· 3	U		R		R	3	U	. 3	U
Zinc		1410			R	2290	J	482	J	4	UJ	149	UJ
Water Quality Analysis (mg/L)													1
Alkalinity		19.8	J	15.5	J	. 2	U	400	J	275	J	345	J
Chloride		67.6		128		656		168		146		78.5	1
Nitrate-Nitrite (as N)	U	0.1	U	148	J.	421	J	: 0.36	J	11.2	J		R
Sulfate		330	J	260		219		311		24.6		96.4	1

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 40 OF 63

Sample Number	OU1-PC-15S-01	
Sample Number	PC-15S	
Sample Location		
Date Sampled	12/8/97 None	
QC Туре		
Matrix	AQUEOUS	
Filtering	······································	
Volatile Organic Compounds (UG/L)		
1,1,1-Trichloroethane	10	
1,1,2-Trichloroethane	10	U
1,1-Dichloroethane	150	
1,1-Dichloroethene	2	-
1,2-Dichloroethane	10	-
1,2-Dichloroethene	300	<u> </u>
2-Butanone	10	-
2-Hexanone		บม
4-Methyl-2-Pentanone	, 10	
Acetone	10	U
Benzene	16	
Bromochloromethane		NA
Bromodichloromethane	10	Ų
Bromomethane	. 10	UJ
Carbon Disulfide	10	Ų
Carbon Tetrachloride	10	U
Chlorobenzene	280	*
Chloroethane	1500	*
Chloroform	10	U
Chloromethane	10	U
cis-1,2-Dichloroethene		NA
Ethylbenzene	10	U
Methylene Chloride	10	U
Tetrachloroethene		U
Toluene	10	
Total Xylenes	15	
Trichloroethene	10	U
Vinyl Chloride	190	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

.

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 41 OF 63

Sample Number	OU1-PC-15S-01	
Sample Location	PC-15S	
Date Sampled	12/8/97	
QC Type	None	
Matrix	AQUEOUS	
Filtering		
Semivolatile Organic Compounds (UG/L)		
1,2-Dichlorobenzene	10	υ
2,4-Dimethylphenol	10	U
2,4-Dinitrophenol		R
2-Chlorophenol	10	U
2-Methylnaphthalene	10	U
2-Methylphenol	10	U
2-Nitrophenol	10	U
4,6-Dinitro-2-methylphenol	25	U
4-Chloro-3-methylphenol	10	υ
4-Methylphenol	10	υ
4-Nitrophenol	25	UJ
Acenaphthene	. 10	U
Acenaphthylene	10	U
Anthracene	10	U
bis(2-Ethylhexyl)phthalate	10	υ
Carbazole	10	U
Di-n-Butylphthalate	10	U
Dibenzofuran	10	U
Diethylphthalate	10	U
Fluoranthene	10	υ
Fluorene	10	U
Hexachloroethane	10	U
N-Nitroso-diphenylamine	10	U
Naphthalene	10	U
Nitrobenzene	10	U
Phenanthrene	10	U
Phenol	10	U
Pyrene	10	U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 42 OF 63

Comula Number	OU1-PC-15S-01	-
Sample Number		
	PC-15S	
Date Sampled	12/8/97	
QC Туре	None	
Matrix	AQUEOUS	
Filtering		
Metals (UG/L)		
Aluminum		UJ
Antimony	50	υ
Arsenic	14	
Barium	2760	J
Beryllium	1	U
Cadmium	2	U
Calcium	43700	
Chromium	5	ŨJ
Cobalt	3	υ
Copper	12.5	
iron	13500	J
Lead	18.4	UJ
Magnesium	63100	~
Manganese	2140	J
Mercury	0.1	U
Nickel	10	U
Potassium	5960	J
Selenium	1	UJ
Silver	3	UJ
Sodium	82900	J
Thallium	1	UJ
Vanadium	· 3	U
Zinc	. 80.2	UJ
Water Quality Analysis (mg/L)		
Alkalinity	. 440	J
Chloride	92.3	
Nitrate-Nitrite (as N)	· · ·	R
Sulfate	10.9	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 43 OF 63

Sample Number	OU1-PC-16B-01	OU1-PC-16D-01	Ì	OU1-PC-16M-01		OU1-PC-16S-01		OU2-DP1-12-1419		OU2-DP1-2-0810	
Sample Location	PC-16B	PC-16D		PC-16M		PC-16S		DP1-12		DP1-2	
Date Sampled	11/20/97	11/21/97		11/20/97		11/20/97		8/14/97		7/28/97	·
QC Туре	None	None	1	None		None		None	•	None	
Matrix	AQUEOUS	AQUEOUS	/	AQUEOUS	_	AQUEOUS		AQUEOUS		AQUEOUS	
Filtering											
Volatile Organic Compounds (UG/L)											
1,1,1-Trichloroethane	12000	410		. 200 *		. 4	J	10	U	180	
1,1,2-Trichloroethane	710 U	170	U	10 U	J	10	U	10	U	10	U
1,1-Dichloroethane	610 J	170 1	U	22		3	J	10	U	65	i
1,1-Dichloroethene	3300	94 .	J	71 J		. 10	UJ	10	U	140	
1,2-Dichloroethane	710 U	170	U	10 U	J	10	U	10		10	U
1,2-Dichloroethene	710 U	100 .	J	2 J	1	10	U	2	J	91	
2-Butanone	710 U	170	Ű	10 U	IJ	10	UJ	10	U	10	U
2-Hexanone	710 U	170	U	10 U	J]	10	UJ	10	UJ	10	1
4-Methyl-2-Pentanone	R		R	R	r		R	10	UJ	10	
Acetone	710 U	170 1	υ	10 U	J	10	U	10	U	10	U U J
Benzene	710 U	46	J	10 L	J .	10	U	10	U	1	J
Bromochloromethane	NA		NA	N	NA		NA		NA		NA
Bromodichloromethane	710 U	170	U	3 J	1	10	U	10	U	10	U
Bromomethane	710 U	170	U	10 U	J	10	U	10	υ	10	U
Carbon Disulfide	710 U	170	UJ	10 U	IJ	10	UJ	10	U	10	U
Carbon Tetrachloride	710 U	170 1	U	10 U	J	10	U	10	U	10	UJ
Chlorobenzene	710 U	64 .	J	3 J		46		8	J	11	
Chloroethane	710 U	170 1	υ	10 U	J	• 42		10	UJ	10	U
Chloroform	710 U	170	U	18 U	J	10	U	10	U		R
Chloromethane	710 U	170 1	ΠÌ	10 U	J]	10	UJ	10	U	10	U
cis-1,2-Dichloroethene	NA	\	NA	· N	<b>NA</b>		NA		NA		NA
Ethylbenzene	710 U	170	U	10 U	j	10	U	10	U	10	U
Methylene Chloride	710 U	370	U	. 590 *		10	U	10	U	10	U
Tetrachloroethene	88 J	170	U	2 J	1	10	U	10	υ	10	U
Toluene	710 U	77 .	J	3 J		10	UJ	10	U	10	U
Total Xylenes	710 U	150	<u> </u>	10 U	<u>,</u>	10		10	U	10	U
Trichloroethene	560 J	2400		59		6	J	10	U		J .
Vinyl Chloride	710 U	170 1	u	10 U	J	10		10	1	14	

ŝ

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## **GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT** PAGE 44 OF 63

Sample Number	OU1-PC-16B-01	OU1-PC-16D-01		OU1-PC-16M-01		OU1-PC-16S-01	_	OU2-DP1-12-1419		OU2-DP1-2-0810	
Sample Location	PC-16B	PC-16D		PC-16M		PC-16S		DP1-12		DP1-2	
Date Sampled	11/20/97	11/21/97		11/20/97		· 11/20/97		8/14/97		7/28/97	$\square$
QC Туре	None	None		None		None [,]		None		None	
Matrix	AQUEOUS	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering											
Semivolatile Organic Compounds (UG/L)	:									-	
1,2-Dichlorobenzene	10 U	10	U	10	U	10 เ	J		NA		NA
2,4-Dimethylphenol	10 U	10	U )	10	U	10 ไ	J	· ·	NA		NA
2,4-Dinitrophenol	25 U	95	J	25	U	25 0	J.		NA		NA
2-Chlorophenol	10 U	10	U	10	υ.	10 ไ	J		NA		NA
2-Methylnaphthalene	· 10 U	10	U.	10	U	10 เ	J		NA		NA
2-Methylphenol	10 🖯	10	U	10	U	10 ไ	J		NA	-	NA
2-Nitrophenol	10 U	120	*	2	J	10 เ	J		NA		NA
4,6-Dinitro-2-methylphenol	25 U	25	U	1	J	25 0	J		NA		NA
4-Chloro-3-methylphenol	10 U	10	U	10	U	10 0	J		NA		NA
4-Methylphenol	10 U	10	U	. 10	U	10 0	J		NA		NA
4-Nitrophenol	5 J	3300	*	19	J	25 เ	IJ		NA		NA
Acenaphthene	10 U	10	U	10	U	10 0	IJ		NA		NA
Acenaphthylene	10 U	10	U	· 10	U	10 l	J		NA		NA
Anthracene	10 U	10	U	10	U	10 ไ	<u>ر</u>		NA		NA
bis(2-Ethylhexyl)phthalate	· 10 U	10		10		10 ሀ	J	-	NA		NA
Carbazole	10 U	10	UJ	10	UJ	10 ሀ			NA		NA
Di-n-Butylphthalate	10 U	10	U	10	U	10 ไ	J	÷	NA		NA
Dibenzofuran	10 U	10	U	10	U	10 ไ			ŅA		NA
Diethylphthalate	0.7 J	10	U	10	U	10 ไ			NA		NA
Fluoranthene	· 10 U	10	U	10	U	10 l	J		NA		NA
Fluorene	10 U	. 10	U	10	U	10 l	J		NA		NA
Hexachloroethane	10 U	10	U	10	U	10 L	J		NA		NA
N-Nitroso-diphenylamine	10 UJ	. 10	U	10	U	10 l	J		NA		NA
Naphthalene	10 U	. 2	J	10	U	10 l	J		NA		NA
Nitrobenzene	10 U	1.	J	10	U	10 l	J		NA		NA
Phenanthrene	10 U	10	U	10	U	10 ไ	J		NA		NA
Phenol	10 U	10	U	10	U	10 L	J		NA		NA
Pyrene	10 U	10	U	10	U	10 נ	)		NA		NA

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 45 OF 63

Sample Number	OU1-PC-16B-01		OU1-PC-16D-01		OU1-PC-16M-01		OU1-PC-16S-01		OU2-DP1-12-1419		OU2-DP1-2-0810	
Sample Location	PC-16B		PC-16D		PC-16M		PC-16S		DP1-12		DP1-2	
Date Sampled	11/20/97		11/21/97		11/20/97		11/20/97		8/14/97		7/28/97	1
QC Type	None		None	ļ	None	1	None		None	1	None	
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering										1		
Metals (UG/L)							•					
Aluminum	1570		286	U	470		1020		84.5	U	83.3	U
Antimony	50	U	50	U	50	U	50	U	4.7	U	27.3	U
Arsenic	1.2		1	U	1	U	1	U	2.4	UJ	1.8	U
Barium	56.4		127		21.2	U	80.1		. 198	U.	276	
Beryllium	1	U	1	U	1	U	1	U	. 0.1	U	0.35	
Cadmium	2	υ	2.8	UJ	2140	· ·	43.7		0.41	J	2.6	U
Calcium	151000		209000		60600		4000		24800		62600	
Chromium	142		35.8		; 5	U	5	U	0.6	υ	2.9	υ
Cobalt	6.2		33.3		605		28.3		1.4	U	84	
Copper	13.6	υ	5.8	υ	107		43.5		11	U	2.5	U
Iron	3460		1420		968		986		19800		7480	
Lead	2.9	UJ	3.3	UJ	1	UJ	3.7	UJ	19.3	UJ		R
Magnesium	35400		98300		20900		1070		10300		17200	
Manganese	420		2710		17400		547		. 1420		7700	
Mercury	0.1	υ	0.1	U	0.1	UJ	0.1	U	0.1	UJ	0.1	U
Nickel	106		60.3	U ·	71500		2580		3.6	U	46.5	
Potassium	8660		11700		25800		27500		5680		8870	
Selenium	1	UJ	1	UJ	. 1	UJ	1	UJ		R		R
Silver	3	υ	3	υ	3	υ	3	υ	0.8	υ	3	UJ
Sodium	100000		209000		355000		26900		35700	U	133000	
Thallium	1	U	1	U	5	U	1	U	3.4	U		R
Vanadium	4.4	UJ	3	U	. 3	U		U	1.5	U	5.1	
Zinc	1020		672		44800		2880		57.8	U	134	J
Water Quality Analysis (mg/L)						T						
Alkalinity	152	J	186	J	19.5	J	20.7	J		NA		NA
Chloride	254		244		424	-	10.6			NA		NA
Nitrate-Nitrite (as N)	0.37		225	+	5.13	-	1.83			NA		NA
Sulfate	. 250	J	254		695	<u> </u>	76.8	J		NA		NA

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

* 15 f ( )

. .

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 46 OF 63

Sample Number	OU2-DP1-8-1217-AVG		OU2-DP1-9A-5358		OU2-DP13-1-2530		OU2-DP2-1-5459		OU2-DP2-2-5762
Sample Location	DP1-8		DP1-9A		DP13-1		DP2-1 .		DP3-2
Date Sampled	7/29/97		7/30/97		8/15/97		7/30/97		7/31/97
QC Туре	Field Dup. (D1)		None		None		None		None
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS
Filtering									
Volatile Organic Compounds (UG/L)									
1,1,1-Trichloroethane	6		10	U	350		10	U	10 U
1,1,2-Trichloroethane	50	U	10	U	100	U	. 10	U	10 U
1,1-Dichloroethane	87.5		81		380		10	U	10 U
1,1-Dichloroethene	16		2	J	230		10	U	10 U
1,2-Dichloroethane	50	U	10	U	100	U	2	J	10 U
1,2-Dichloroethene	460		170		610		3	J	10 U
2-Butanone	· 50	U	10	U	. 100	UJ	10	υ	10 U
2-Hexanone	50	U	10	U	100	UJ	10	U	10 U
4-Methyl-2-Pentanone	50	U	. 10	U	100	UJ.	10	υ	10 U
Acetone	50	U.	10	ÛĴ	100	U	10	UJ	10 UJ
Benzene	· 50	U	5	J	100	U.	2	J	10 U
Bromochloromethane		NA		NA		NA		NA	NA
Bromodichloromethane	50	U	10	υ	100	U	10	U	10 U
Bromomethane	50	U	10	U	100	U	10	U	10 U
Carbon Disulfide	50	Ü	. 10	U		υ	10	U	10 U
Carbon Tetrachloride	15.5		10	UJ	· 100	U	10	UJ	10 UJ
Chlorobenzene	32.5		120		100	υ	8	J	· 1 J
Chloroethane	30		10	U	100	UJ	10	U,	. 10 U
Chloroform		R		R	100	U	1	J	R
Chloromethane	50	U	. 10	U	100	U	10	U	10 U
cis-1,2-Dichloroethene		NA		NA		NA		NA	NA
Ethylbenzene	50	U	10	U	100	U	10	U	. 10 U
Methylene Chloride	30	U	10	Ũ	100	U	10	U	10 U
Tetrachloroethene	25.5		10	U	100	U	3	-	10 U
Toluene	50	U	5	J	100	U	2		10 U
Total Xylenes	50	U	2	J	100	U	2	J	10 U
Trichloroethene	72.5		5	J	1200		7	J	10 U
Vinyl Chloride	125		. 69		100	U	10	U	10 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 47 OF 63

Sample Number	OU2-DP1-8-1217-AVG	ŀ	OU2-DP1-9A-5358		OU2-DP13-1-2530		OU2-DP2-1-5459		OU2-DP2-2-5762	
Sample Location	DP1-8	1	DP1-9A	÷	DP13-1		DP2-1		DP3-2	+1
Date Sampled	7/29/97		7/30/97		8/15/97		7/30/97		7/31/97	1
QC Type	Field Dup. (D1)		None		None		None		None	$\left  \right $
Matrix	AQUEOUS		AQUEOUS	<u> </u>	AQUEOUS	<u> </u>	AQUEOUS		AQUEOUS	
Filtering					· · · · · · · · · · · · · · · · · · ·					
Semivolatile Organic Compounds (UG/L)						Ì				$\square$
1,2-Dichlorobenzene		NA		NA		NA		NA		NA
2,4-Dimethylphenol		NA		NA		NA		NA		NA
2,4-Dinitrophenol		NA		NA		NA		NA		NA
2-Chlorophenol		NA		NA		NA		NA		NA
2-Methylnaphthalene		NA		NA		NA		NA		NA
2-Methylphenol		NA		NA		NA		NA		NA
2-Nitrophenol		NA		NA		NA		NA		NA
4,6-Dinitro-2-methylphenol		NA		NA		NA		NA		NA
4-Chloro-3-methylphenol		NA		NA	Autores	NA		NA		NA
4-Methylphenol		NA		NA		NA		NA		NA
4-Nitrophenol		NA		NA		NA		NA		NA
Acenaphthene		NA		NA		NA		NA		NA
Acenaphthylene		NA		NA		NA		NA		NA
Anthracene		NA		NA		NA		NA		NA
bis(2-Ethylhexyl)phthalate		NA	,	NA		NA		NA		NA
Carbazole		NA		NA		NA		NA		NA
Di-n-Butylphthalate		NA		NÁ		NA		NA		NA
Dibenzofuran	-	NA		NA		NA		NA		NA
Diethylphthalate		NA		NA		NA		NA		NA
Fluoranthene		NA		NA		NA		NA		NA
Fluorene		NA		NA		NA		NA		NA
Hexachloroethane		NA		NA		NA		NA		NA
N-Nitroso-diphenylamine		NA		NA		NA		NA		NA
Naphthalene		NA		NA		NA		NA		NA
Nitrobenzene		NA		NA		NA		NA		NA
Phenanthrene		NA		NA		NA		NA		NA
Phenol		NĄ		NA		NA		NA		NA
Pyrene		NA		NA		NA		NA		NA

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

.

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 48 OF 63

Sample Number	OU2-DP1-8-1217-AVG		OU2-DP1-9A-5358	•	OU2-DP13-1-2530		OU2-DP2-1-5459		OU2-DP2-2-5762
Sample Location	DP1-8		DP1-9A		DP13-1		DP2-1		DP3-2
Date Sampled	7/29/97		7/30/97		8/15/97		7/30/97		7/31/97
QC Туре	Field Dup. (D1)		None		None		None		None
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS
Filtering									· ·
Metals (UG/L)									
Aluminum	53.75	U	22.7	υ	24.8	U	35300		. 35.4 UJ
Antimony	27.3	U	27.3	U	4.7		27.3	υ	27.3 U
Arsenic	28.3		90		2	U	6		1.8 U
Barium	191.5		274		195	U	193	J	116
Beryllium	0.1	U	0.1	ΠJ	0.1	U	18.8		0.21 U
Cadmium	2.6	U	2.6	U	0.3	Ų	8.2	J	2.6 U
Calcium	38550		41700		22900		281000		49900
Chromium	2.9	U	2.9	UÍ	0.6	U	2.9	U	2.9 U
Cobalt	4.525		4.9	U	3.9		624	J	4.9 U
Copper	2.5	U	2.5	U	9.7	U	24.9	J	2.5 U
Iron	7255		32400		807		49400		86.2
Lead	1.5			R	9	UJ		R	1.6 J
Magnesium	32250		53900		14100		37800		32700
Manganese	1300		3320		339		18300		2180
Mercury	0.1	U	0.1	U	0.1		0.1	U	0.1 U
Nickel	15.2	U	15.2	Ų	5.3	J	402		15.2 U
Potassium	5135		7250		4690		11000		6620
Selenium		R		R		R		R	R
Silver	<u>َ</u> 3	U	3	UJ	0.8	Ü	3	UJ	3 UJ
Sodium	64050		64200		50000		50900		305000
Thallium		R		R	3.4	U		R	R
Vanadium	4.6	U	· 9.1		1.5	U		R	4.6 U
Zinc	52.55	U	76.8	UJ	92.3	υ	1350	J	63.2 UJ
Water Quality Analysis (mg/L)									
Alkalinity		NA		NA		NA		NA	NA
Chloride		NA		NA		NA		NA	NA
Nitrate-Nitrite (as N)		NA		NA		NA		NA	NA
Sulfate		NA		NA		NA		NA	NA

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 49 OF 63

Sample Number	OU2-DP4-3A-1217		OU2-DP4-4-0510		OU2-DP4-5C-1419		OU2-DP4-7-1823		OU2-DP5-2-9499		OU2-DP5A-2-1520
Sample Location	DP4-3A	1	DP4-4		DP4-5C	<u> </u>	DP4-7		DP5-2		DP5A-2
Date Sampled	8/1/97		8/8/97		8/6/97		8/6/97		8/11/97		8/4/97
QC Туре	None		None		None		None		None		None
Matrix	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	[	AQUEOUS		AQUEOUS
Filtering											
Volatile Organic Compounds (UG/L)											
1,1,1-Trichloroethane	20	U	1700		620		1400		2000		200
1,1,2-Trichloroethane	. 20	U	160	U	40	U	100	U	160	U	200
1,1-Dichloroethane	85		630		58		160		210		200
1,1-Dichloroethene	7	J	390		140		480		170		200
1,2-Dichloroethane	20	U	160	U	40	U	100	U	160	U	200
1,2-Dichloroethene	300		660		84		240		540		200
2-Butanone	20		160		40	U	100	U	160	_	200
2-Hexanone	20	1	160	ΠŊ	40		100	U	160	UJ	200
4-Methyl-2-Pentanone		U	160	UJ	40	U	100	UJ	160		200
Acetone	20	UJ	160	U	40	U	100	U	160	U	200
Benzene	20	U	82	J	40	U	100	U	160	U	2500
Bromochloromethane		NA		NA		NA		NA	·.	NA	
Bromodichloromethane	20	U	160	U	40	U	100	U	160	U	200
Bromomethane	20	U	160	υ	40	υ	100	U	160	U	200
Carbon Disulfide	20	U	160	U	40	U	100	U	160	U	200
Carbon Tetrachloride	20	U	160	U	40	U	100	U	160	U	200
Chlorobenzene	20	U	160	U	40	U	100	U	. 160	U	200
Chloroethane	20	U	40	J		UJ	100	UJ	160	UJ	200
Chloroform		R	160	U	. 4	JEB	100	U	160	U	200
Chloromethane	20	U	160	υ	40	UJ	100	UJ	160	UĴ	200
cis-1,2-Dichloroethene	,	NA		NA		NA		NA		NA	
Ethylbenzene	20	U	160	U	40	U	100	U	160	U	200
Methylene Chloride	20	U	160	υ	40	U	100	U	160	U	200
Tetrachloroethene	20	U	160	U	40	U	100	U	160	U	200
Toluene	20	U	160	U	40	U	100	U	· 160	U	110
Total Xylenes	20	U	160	U	40	U	100	U	160	U	200
Trichloroethene	13		67		110	-	240		130	J	200
Vinyl Chloride	19		92		40		100	1	160	1	200

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

.

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 50 OF 63

Sample Number	OU2-DP4-3A-1217		OU2-DP4-4-0510		OU2-DP4-5C-1419		OU2-DP4-7-1823	<u> </u>	OU2-DP5-2-9499		OU2-DP5A-2-1520
Sample Location	DP4-3A		DP4-4		DP4-5C	· ·	DP4-7		DP5-2		DP5A-2
Date Sampled	8/1/97	<b></b>	8/8/97	1	8/6/97		8/6/97		8/11/97		8/4/97
QC Туре	None	<u> </u>	None		None		None		None		None
Matrix	AQUEOUS	1	AQUEOUS	1	AQUEOUS	1	AQUEOUS	1	AQUEOUS		AQUEOUS
Filtering			•								
Semivolatile Organic Compounds (UG/L)				1							
1,2-Dichlorobenzene	••• <u>-</u>	NA		NA		NA		NA	-	NA	
2,4-Dimethylphenol		NA		NA		NA		NA		NA	
2,4-Dinitrophenol		NA		NA		NA		NA		NA	
2-Chlorophenol		NA		NA		NA		NA		NA	
2-Methylnaphthalene		NA		NA		NA		NA		NA	
2-Methylphenol		NA		NA		NA		NA		NA	
2-Nitrophenol		NA		NA		NA		NA		NA	
4,6-Dinitro-2-methylphenol		NA		NA		NA		NA		NA	
4-Chloro-3-methylphenol		NA		NA	•	NA	· · ·	NA		NA	
4-Methylphenol		NA	1	NA		NA		NA		NA	
4-Nitrophenol		NA		NA		NA		NA		NA	
Acenaphthene		NA		NA		NA		NA		NA	
Acenaphthylene		NA	· ·	NA		NA		NA		NA	
Anthracene	· .	NA		NA		NA		NA		NA	
bis(2-Ethylhexyl)phthalate		NA		NA		NA		NA		NA	
Carbazole		NA		NA	×	NA		NA		NA	
Di-n-Butylphthalate		NA		NA		NA		NA		NA	
Dibenzofuran		NA		NA		NA		NA		NA	
Diethylphthalate		NA		NA		NA		NA		NA	
Fluoranthene		NA		NA		NA		NA		NA	
Fluorene		NA		NA		NA		NA		NA	
Hexachloroethane		NA		NA		NA		NA		NA	
N-Nitroso-diphenylamine		NA		NA		NA		NA		NA	
Naphthalene		NA		NA		NA		NA		NA	
Nitrobenzene		NA		NA		NA		NA		NA	
Phenanthrene		NA		NA		NA		NA		NA	,
Phenol		NA		NA		NA		NA		NA	
Pyrene		NA		NA		NA		NA		NA	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 51 OF 63

Sample Number	OU2-DP4-3A-1217		OU2-DP4-4-0510		OU2-DP4-5C-1419		OU2-DP4-7-1823		OU2-DP5-2-9499		OU2-DP5A-2-1520
Sample Location	DP4-3A		DP4-4		DP4-5C		DP4-7		DP5-2		DP5A-2
Date Sampled	.8/1/97		. 8/8/97		.8/6/97		8/6/97		8/11/97		8/4/97
QC Type	None	1	None		None		None		None		None
Matrix	AQUEOUS		AQUEOUS		AQUEOUS	•	AQUEOUS		AQUEOUS		AQUEOUS
Filtering		,	¥								
Metais (UG/L)	· · · ·							1			
Aluminum -	22.7	U	52.8	U	103	U	52	U	44.4	U	80.4
Antimony	27.3	U		R		R	4.7	U	4.7	U	
Arsenic	. 78.3			R	•	R	. 2	U	2	U	38.9
Barium	234		325	U	84.3	U	72.8	U	97	U	142
Beryllium	0.35	υ	0.1	ΰ	0.1	υ	0.1	υ	0.1	υ	0.1
Cadmium	2.6	U	0.42	UJ	0.41	UJ	. 0.3	U	0.78		0.3
Calcium	21100		96400		51600		31700		31300		16700
Chromium	2.9	U	0.6	υ	0.6	U	0.6	U	0.6	υ	0.6
Cobalt	4.9	U	. 2.8		2	J	2.1	J	13.4		1.4
Copper	2.5	U	33.8	U	67	U	20.8	U	9.2	U	20
Iron	7600		10100		. 1720	·	868		1970		5430
Lead		R	18.9	UJ	. 29.7			UJ	13.6	UJ	· 20.8
Magnesium	30200		17500		7330		. 14800		20900		6730
Manganese	1140		1360		180		194		5660		114
Mercury	0.1	-	· 0.1	UJ	0.1	UJ	0.1	UJ	0.1	UJ	0.1
Nickel	15.2	υ	4.1	J	. 3.6	υ	5.4	J	13.9		3.6
Potassium	5490		9690		8710		5250		5030		13000
Selenium		R		R		R		R		R	, , ,
Silver	3	Πl	· 0.8	U.	0.8	U	0.8	U	0.8	U	0.8
Sodium	50600		,72700		. 161000		94000		100000		569000
Thallium	· .	R	3.4	U	3.4	U	3.4	U	3.4	U	3.4
Vanadium	4.6	U	1.5	!	1.5	υ	· · · 1.5	υ	1.5	υ	
Zinc	. 76.5	UJ	151	U	64.5	U	37.8	U	50.5	U	49.8
Water Quality Analysis (mg/L)				•							
Alkalinity		NA		NA		NA		NA		NA	
Chloride		NA	· ·	NA		NA		NA		NA	
Nitrate-Nitrite (as N)		NA		NA		NA.	· · ·	NA		NA	
Sulfate		NA		NA		NA		NA		NA	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

a!

. 21. r ...

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 52 OF 63

· · · · · · · · · · · · · · · · · · ·										
Sample Number	-,	OU2-DP6-5A-3944	∦	OU2-DP7-4-0712		OU2-DP7-5A-3843-AVG		OU2-DP7-9A-2227		OU2-DP8-3A-0914
Sample Location		DP6-5A		DP7-4		DP7-5A		DP7-9A	ļ	DP8-3A
Date Sampled		8/5/97	1	8/4/97		. 8/7/97		8/13/97	· · ·	8/13/97
QC Туре		None	<u> </u>	None		Field Dup. (D2)		None	[	None
Matrix		AQUEOUS		AQUEOUS		AQUEOUS	•	AQUEOUS .		AQUEOUS
Filtering				~				· · · · · · · · · · · · · · · · · · ·		
Volatile Organic Compounds (UG/L)		·							-	
1,1,1-Trichloroethane	U	230		10	U	8200		42		10 U
1,1,2-Trichloroethane	U	20	Ű	10	U	· 500	U	10	U	10 U
1,1-Dichloroethane	U	• 170		29		330		- 4	J	10 U
1,1-Dichloroethene	υ.	· 180		10	U	4400		. 14		10 U
1,2-Dichloroethane	U	. 20	U	10	U.	500	U	10	U	10 U
1,2-Dichloroethene	U	140		38		1250		. 7	J	10 U
2-Butanone	Ŭ	20	U	10	U	500	U	-10	ΠŊ	10 UJ
2-Hexanone	U	20	U	10	U	500	U		UJ	· 10 UJ
4-Methyl-2-Pentanone	U	20	U	10	U	500	υ.	10	UJ	10 UJ
Acetone	U	20	ίυ	. 10	U	500	U	10	U	10 U
Benzene	J -	20	υ	1	J	500	υ	. 10	U	10 U
Bromochloromethane	NA		NA		NA	· · · · · · · · · · · · · · · · · · ·	NA		NA	- NA
Bromodichloromethane	U	20	JU-	10	U	500	U	10	U	10 U
Bromomethane	U	20	υ	. 10	U	500	U	. 10	υ	10 U
Carbon Disulfide	U	· . 20	υ	. 10	U	. 500	U	10	U	10 U
Carbon Tetrachloride	U ·	. 20	δlu	10	U	500	U	10	υ	10 U
Chlorobenzene	· UJ	, 20	οlu -	25		500	υ	. 10	U	10 U
Chloroethane	UJ	ç	J	. 10	UJ	500	U	10	UJ	10 UJ
Chloroform	U	20	υ	.10	U	500	υ	· 10	υ	10 U
Chloromethane	U	20	υJ	. 10	U	500	U	10	U	10 U [*]
cis-1,2-Dichloroethene	NA		NA		NA		NA		NA	NA
Ethylbenzene	UJ	- 20	U	10	υ	500	U	10		10 U
Methylene Chloride	U		U		JEB.	500		10		10 U
Tetrachloroethene	U		U	10	U	500	U	. 10	U	10 U
Toluene	J		U	10		500		10		10 U
Total Xylenes			U	10		500		10		10 U
Trichloroethene	U	53		10		515	-	8		10 U
Vinyl Chloride	U		J	28		500	u	10		10 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

.

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 54 OF 63

Sample Number		OU2-DP6-5A-3944		OU2-DP7-4-0712	-	OU2-DP7-5A-3843-AVG		OU2-DP7-9A-2227		OU2-DP8-3A-0914	
Sample Location		DP6-5A		DP7-4	1	DP7-5A		DP7-9A		DP8-3A	
Date Sampled		8/5/97		8/4/97		8/7/97		8/13/97		8/13/97	
QC Туре		None		None		Field Dup. (D2)		None		None	
Matrix		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering									[		
Metals (UG/L)											
Aluminum	UJ	124	U	2720	J	119.5	U	41.7	U	145	U
Antimony	R		R		R	4.7	U	4.7	U	4.7	U
Arsenic	·J		R		R	24.95		2	U	2.8	UJ
Barium	UJ	173	U	352	UJ	. 83.2	U	137	U	162	U
Beryllium	UJ	. 0.1	υ	0.11	1	• 0.1	U	0.1	U	0.1	U
Cadmium	UJ	. 0.3	υ	1.4	UJ	19.4		0.3	U	0.58	J
Calcium	J	94200		93100	J	284500		8090		148000	1
Chromium	UJ	0.6	U	2	J	0.6	U	0.82	UJ	5.9	U
Cobalt	UJ	1.6	J	4.7	J	1975		1.9	J	1.4	J
Copper	UJ	. 43.6	υ	103	UJ	10.3	U	24.1	U	35.4	U
Iron	J	2870		12600	J	416500		2150		5610	1
Lead	UJ	24.5	UJ	71.5	UJ	29.6	υ	14.5	UJ	17.6	UJ
Magnesium	J	. 19400		37200	J	165500		1680		18500	
Manganese	J	2400		8080	J	0.4	U	2650		231	
Mercury	UJ	0.1	υJ	0.1	UJ	· 0.1	U	0.1	UJ	0.1	UJ
Nickel	UJ	6.1	J	6.2	J	1015		6.4	J	4.5	J
Potassium	J	10300		11000	J	20100	-	2340		25500	
Selenium	R	. •	R		R	20.05			R		R
Silver	UJ	0.8	U	1.2		15		. 0.8	U	0.8	U
Sodium	J	169000		87800	J	88500		42400		378000	
Thallium	UJ	3.4	υ	3.4	1	129	•	3.4		3.4	U
Vanadium	UJ	1.5	U	5.8	J .	1.5	U.	<u>`</u> 1.5	U	9.1	
Zinc	UJ	46.7	U	120	IJ	660.5		60	U	35.4	U
Water Quality Analysis (mg/L)						,					<u> </u>
Alkalinity	NA		NA		NA	· · ·	NA		NA		NA
Chloride	NA		NA		NA		NA	· · · · · · · · · · · · · · · · · · ·	NA		NA
Nitrate-Nitrite (as N)	NA		NA	1 .	NA		NA		NA		NA
Sulfate	NA		NA	,	NA		NA		NA		NA

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 55 OF 63

Sample Number	OU2-DP8-5-5055		OU2-MW-101D-05	
Sample Location	DP8-5		MW-101D	
Date Sampled	8/11/97		11/10/97	7
QC Type	None		None	
Matrix	AQUEOUS		AQUEOUS	
Filtering	·			
Volatile Organic Compounds (UG/L)		Ţ		
1,1,1-Trichloroethane	1700		. 1	ijι
1,1,2-Trichloroethane	160	υ	· 1	ιL
1,1-Dichloroethane	280		. 1	ιL
1,1-Dichloroethene	. 600		1	IL
1,2-Dichloroethane	160	U	1	ιL
1,2-Dichloroethene	. 610			N
2-Butanone	160	U	5	5 (
2-Hexanone	160	UJ	5	5 L
4-Methyl-2-Pentanone	160	UJ	. 5	51
Acetone	160	U		5 L
Benzene	160	U,	. 1	ιL
Bromochloromethane	· · · ·	NA	· 1	IL
Bromodichloromethane	160	U	· 1	IL
Bromomethane	160	U	1	ΙĽ
Carbon Disulfide	160	U	1	ΙL
Carbon Tetrachloride	160	U	. 1	IL
Chlorobenzene	33	J .	1	IL
Chloroethane	160	UJ	1	ιL
Chloroform ,	160	U	0.7	7 J
Chloromethane	160	U	1	IL
cis-1,2-Dichloroethene		NA	1	ίL
Ethylbenzene	160	U	· · 1	ιL
Methylene Chloride	160	U	. 2	2 1
Tetrachloroethene	160	U	- 1	L
Toluene	160	U	1	L
Total Xylenes	160	U	1	ίl
Trichloroethene	1100		1	īι
Vinyl Chloride	49	J	1	īί

• • • • •

 $\boldsymbol{U}$  - Not detected;  $\boldsymbol{U}\boldsymbol{J}$  - Detection limit approximate;  $\boldsymbol{J}$  - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 56 OF 63

Sample Number	OU2-DP8-5-5055		OU2-MW-101D-05	
Sample Location	DP8-5		MW-101D	
Date Sampled	8/11/97		11/10/97	
QC Туре	None		None	
Matrix	AQUEOUS		AQUEOUS	
Filtering				
Semivolatile Organic Compounds (UG/L)				
1,2-Dichlorobenzene		NA	10	U
2,4-Dimethylphenol		NA	10	U
2,4-Dinitrophenol		NA	25	UJ
2-Chlorophenol		NA	· 10	U
2-Methylnaphthalene		NA	10	U
2-Methylphenol		NA	10	U
2-Nitrophenol		NA	10	U
4,6-Dinitro-2-methylphenol		NA	25	UJ
4-Chloro-3-methylphenol		NA	10	U
4-Methylphenol		NA	10	U
4-Nitrophenol		NA	25	U
Acenaphthene		NA	10	U
Acenaphthylene		NA	10	υ
Anthracene		NA	10	U
bis(2-Ethylhexyl)phthalate		NA	10	U
Carbazole		NA	10	U
Di-n-Butylphthalate		NA	. 10	U
Dibenzofuran		NA	10	U
Diethylphthalate		NA	10	Ų
Fluoranthene		NA	10	U
Fluorene		NA	10	U
Hexachloroethane		NA	10	U
N-Nitroso-diphenylamine		NA	10	U
Naphthalene		NA	10	U
Nitrobenzene		NA	10	U
Phenanthrene		NA	10	U
Phenol	- ist	NA	1 10	U
Pyrene		NA	· 10	UJ

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

¢

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

1.1.1

1

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 57 OF 63

Sample Number	OU2-DP8-5-5055		OU2-MW-101D-05	•
Sample Location	DP8-5		MW-101D	
Date Sampled	8/11/97		11/10/97	
QC Type	None		None	
Matrix	AQUEOUS		AQUEOUS	
Filtering				
Metals (UG/L)	-			
Aluminum	55,7	υ	75.7	
Antimony	4.7	U	3	U.
Arsenic	2	U	3	U
Barium	175	υ	34.4	
Beryllium	0.1	υ	1	U
Cadmium	. 0.3	υ	1	U
Calcium	· 98100		15800	
Chromium	0.6	Ų	1.7	J
Cobalt	3.5		41.3	
Copper .	. 12.2	υ	2	U
Iron	2480		21.4	UJ
Lead	14.7	UJ	1	υ
Magnesium	36100		4460	
Manganese	13500		6550	
Mercury	0.1	IJJ	0.1	U
Nickel	7.1	J	47.8	
Potassium	9580		- 7410	
Selenium		R	5.4	J
Silver	0.8	υ	1	U
Sodium	136000		37600	
Thallium	3.4	U	3	U
Vanadium	1.5	-	. 1	U
Zinc	79.2	U	65.5	J
Water Quality Analysis (mg/L)				
Alkalinity		NA	15.1	
Chloride		NA	57.6	1
Nitrate-Nitrite (as N)		NA	2.61	1
Sulfate		NA	81.5	1

4

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 53 OF 63

Sample Number	•	OU2-DP6-5A-3944		OU2-DP7-4-0712	-	OU2-DP7-5A-3843-AVG		OU2-DP7-9A-2227		OU2-DP8-3A-0914	
Sample Location		DP6-5A		DP7-4		DP7-5A		DP7-9A		DP8-3A	
Date Sampled		8/5/97		8/4/97		8/7/97		8/13/97		8/13/97	'
QC Туре		None		None		Field Dup. (D2)		None		None	
Matrix	_	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering									-		
Semivolatile Organic Compounds (UG/L)											$\square$
1,2-Dichlorobenzene	NA		NA		NA		NA		NA		NA
2,4-Dimethylphenol	NA		NA		NA		NA		NA		NA
2,4-Dinitrophenol	NA		NA		NA		NA		NA		NA
2-Chlorophenol	NA		NA		NA		NA		NA		NA
2-Methyinaphthalene	NA		NA		NA		NA		NA		NA
2-Methylphenol	NA		NA		NA		NA		NA		NA
2-Nitrophenol	NA		NA		NA		NA		NA		NA
4,6-Dinitro-2-methylphenol	NA		NĂ		NA		NA		NA		NA
4-Chioro-3-methylphenol	NA		NA		NA		NA		NA		NA
4-Methylphenol	NA		NA		NA		NA		NA		NA
4-Nitrophenol	NA		NA		NA		NA		NA		NA
Acenaphthene	NA		NA		NA		NA		NA		NA
Acenaphthylene	NA		NA		NA		NA		NA		NA
Anthracene	NA		NA		NA		NA		NA		NA
bis(2-Ethylhexyl)phthalate	NA		NA		NA		NA		NA		NA
Carbazole	NA		NA		NA		NA		NA		NA
Di-n-Butylphthalate	NA		NA		NA		NA		NA		NA
Dibenzofuran	NA		NA		NA		NA		NA		NA
Diethylphthalate	NA		NA		NA		NA	,	NA		NA
Fluoranthene	NA		NA.		NA		NA		NA		NA
Fluorene	NA		NA		NA		NA		NA		NA
Hexachloroethane	NA		NA		NA	,	NA		NA		NA
N-Nitroso-diphenylamine	NA		NA		NA	· · · · · · · · · · · · · · · · · · ·	NA		NA		NA
Naphthalene	NA		NA		NA	h-a.	NA		NA		NA
Nitrobenzene	NA		NA		NA	·····	NA		NA	· .	NA
Phenanthrene	NA	······································	NA		NA		NA		NA		NA
Phenol	NA		NA		NA	. 1	NA		NA		NA
Pyrene	NA	· · · · · · · · · · · · · · · · · · ·	NA		NA		NA		NA		NA

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

•

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 58 OF 63

Sample Number	OU2-MW-101M-05	OU2-MW-101S-05		OU2-MW-102D-05-AVG		OU2-MW-102M-05	-	OU2-MW-102S-05	1
Sample Location	MW-101M	MW-101S		MW-102D		MW-102M		MW-102S	1
Date Sampled	11/10/97	11/7/97		11/6/97		11/6/97		11/6/97	1
QC Туре	None	None		Field Duplicate 1		None		None	
Matrix	AQUEOUS	AQUEOUS		AQUEOUS		AQUEOUS		AQUEOUS	
Filtering									
Volatile Organic Compounds (UG/L)									1
1,1,1-Trichloroethane	10 U	1	U	1	U	0.7	J	1	UJ
1,1,2-Trichloroethane	10 U	1	U	· 1	Ų	· 1	U	1	U
1,1-Dichloroethane	10 U	1	U	· 1	Ų	. 1	U	1	J
1,1-Dichloroethene	10 U-	1	υ.	1	U	1	U	1	U
1,2-Dichloroethane	10 U	1	UJ	1	U	1	UJ	1	UJ
1,2-Dichloroethene	10 U		NA		NA		NA		NA
2-Butanone	10 U	-	U	5	U	5	U	6	
2-Hexanone	10 UJ	5	U	5	U	5	U	5	U
4-Methyl-2-Pentanone	10 UJ	5	U	5	U	5	U	. 5	U
Acetone	10 U		R		R		R		R
Benzene	10 U		R	1	U	1	U	1	U
Bromochloromethane	NA	1	UJ	1	U	. 1	UJ	1	U
Bromodichloromethane	· 10 U	1	U	1	U	1	U	· 1	U
Bromomethane	10 U	1	U	1	U	1	Ű	1	U
Carbon Disulfide	10 U	1	U	1	U	. 1	υ	1	U
Carbon Tetrachloride	. 10 U	1	U	1	U	1	U	1	U
Chlorobenzene	10 U		R	. 1	U	1	U	1	U
Chloroethane	10 UJ	1	U	1	U	1	U	· 1	Ŭ
Chloroform	10 U	1	υ	1	U	1	U	1	U
Chloromethane	10 U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	NA	1	υ	1	U	1	U	1	U
Ethylbenzene	10 U		R	1	U	1	U	1	U
Methylene Chloride	10 U	2	UJ	2	U	2	UJ	• 2	UJ
Tetrachloroethene	10 U		U	1	U	1	U		U
Toluene	10 U	1	U	1	U	1	U		U
Total Xylenes	10 U		R		U		υ		U
Trichloroethene	10 U		υ	1	U	1	U	1	U
Vinyl Chloride	10 U	1	υ	1	U	1	U	. 1	U.

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 59 OF 63

Sample Number	OU2-MW-101M-05	_	OU2-MW-101S-05	_	OU2-MW-102D-05-AVG		OU2-MW-102M-05		OU2-MW-102S-05
Sample Location	MW-101M		MW-101S		MW-102D		MW-102M		MW-102S
Date Sampled	11/10/97		11/7/97		11/6/97		11/6/97		11/6/97
QC Type	None		None		Field Duplicate 1		None		None
Matrix	AQUEOUS		AQUEOUS				AQUEOUS		AQUEOUS
Filtering	AQUEUUS		AQULOUS		AQUEUUS		AQUEUUS		AQUEUUS
Semivolatile Organic Compounds (UG/L)			· · · · · · · · · · · · · · · · · · ·			_			
1.2-Dichlorobenzene	10	11	10	11	10		10		10 U
2,4-Dimethylphenol	· 10		10		. 10		10	_	10 U
2,4-Dinitrophenol	25		25		. 10		25		25 U
2-Chlorophenol	10		10		10	and the second second	10		10 U
2-Methylnaphthalene	10		10		10		- 10		10 U
2-Methylphenol	10		10		10		10		10 U
2-Nitrophenol	10		10		10		10		10 U
4,6-Dinitro-2-methylphenol	25		25		25		25		25 U
		•	10			Ś	10		25 U 10 U
4-Chloro-3-methylphenol	10		10		10	-	10		
4-Methylphenol	25		25		10		. 25		10 U 25 U
4-Nitrophenol	10						10		25 U 10 U
Acenaphthene	10		10		10		10	-	10 U
Acenaphthylene				-				_	
	10		10		10	_	10		10 U 10 U
bis(2-Ethylhexyl)phthalate	10		10	_	10				
Carbazole	10		10		10	<u>.</u>	10		10 U
Di-n-Butylphthalate	10		10		10		· 10	-	10 U
Dibenzofuran	10		10		10	-	10		10 U
Diethylphthalate	10		10		10		10	_	10 U
Fluoranthene	10		· 10		10		10		<u>10 U</u>
Fluorene	10		. 10		10		10		10 U
Hexachloroethane	10		. 10		. 10		10		· 10 U
N-Nitroso-diphenylamine	. 10		10	_	. 10		10	-	10 U
Naphthalene	10		10		10		10		10 U
Nitrobenzene	. 10		10		10		10	-	10 U
Phenanthrene	10	-	10		10		10		10 U
Phenol	10		. 10		10		10		10 U
Pyrene	10	U	10	U	10	U	10	U	10 U

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

# **GROUNDWATER ANALYTICAL RESULTS**

# TECHNICAL MEMORANDUM

**RAYMARK - OU2, STRATFORD, CT** 

PAGE 60 OF 63

Sample Number	OU2-MW-101M-05		OU2-MW-101S-05		OU2-MW-102D-05-AVG		OU2-MW-102M-05		OU2-MW-102S-05	
Sample Location	MW-101M		MW-101S		MW-102D	1	MW-102M	1-	MW-102S	
Date Sampled	11/10/97		11/7/97		11/6/97	•	11/6/97	-	11/6/97	
QC Туре	None		None		Field Duplicate 1	1	None		None	
Matrix	AQUEOUS		AQUEOUS		AQUEOUS .		AQUEOUS		AQUEOUS	
Filtering						1				
Metals (UG/L)			۰.					1		
Aluminum	17.	υ	· 17	U	17	U	17	U	815	
Antimony	3	U	3	U	3	U	. 3	U	3	U
Arsenic	. 4.4	J	14 7			U	. 3	υ	131	
Barium	65.6		28.7		35.4		30.6		19.3	
Beryllium	1	υ·	1	Ù	1	U	1	U	·1	U
Cadmium	1	U	13.6		· 1	U	1	υ	7.6	
Calcium	136000		294000		24850		24200		105000	
Chromium	1.4	J	5.3		1	U	1	U	1	U
Cobalt	1	υ	1	U	2.65	U	· 1	U	7.5	U
Copper	. 2	U	2	U	2	U	2	U	1360	
Iron	62	U	224000	J	642	· ·	. 11	UJ	135000	J
Lead	1	U	1	U	1	U	1	U		R
Magnesium	376000		736000		. 9435		3180	1	11600	1
Manganese	338		2470	J	696.5		2.6	UJ	672	J
Mercury	0.1	U	0.1	υ	0.1	U	0.1	U	0.1	U
Nickel	1	U	.13.7	U	9.45	U	2.5	U	61.6	
Potassium	108000		216000		6770		3460		17800	J
Selenium	; 3	U	. 3	Ü	3	U	3	U	4	J
Silver	. 1	U	1	Ü	1	Ū.	1	U	1	U
Sodium	2730000		23400		15500		16100		25100	
Thallium -	3.	UJ		UJ	3	U	. 3	U	3.4	J
Vanadium	. 2.5	J	1	U	1	U	1	U	· 1	U.
Zinc	111	J	. 2	U	51.7		27.2		. 216	
Water Quality Analysis (mg/L)					-					
Alkalinity	670		144		47.5		38.9	<b></b>	54.5	
Chloride	5640		3850		32.65		19 4	1	. 14.1	
Nitrate-Nitrite (as N)	0.1	U	0.1	U	0.255		0.1	U	0.1	U
Sulfate	528	· · ·	783		48.4		24.1		296	

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

#### GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 61 OF 63

Sample Number	OU2-MW-103D-05		OU2-MW-103M-05	T	
Sample Location	MW-103D		MW-103M	$^{+}$	
Date Sampled	11/6/97		11/6/97	7	
QC Туре	None		None		
Matrix	AQUEOUS		AQUEOUS		
Filtering	· · · · · · · · · · · · · · · · · · ·			1	
Volatile Organic Compounds (UG/L)				Ť	
1,1,1-Trichloroethane	1	U		11	J
1,1,2-Trichloroethane	1	U		1 1	J
1,1-Dichloroethane	1	υ		1 1	J
1,1-Dichloroethene	1	U		1 1	U
1,2-Dichloroethane	1	υJ		11	IJ
1,2-Dichloroethene		NA		1	NA
2-Butanone	5	U	5	5 ι	U
2-Hexanone	5	U	Ę	5 L	U
4-Methyl-2-Pentanone	5	υ		5 1	U,
Acetone		R	30	ס נ	U
Benzene	1	U		1 1	U
Bromochloromethane	. 1	UJ	·	1   l	IJĴ
Bromodichloromethane	1	υ		1 1	U
Bromomethane	1	U	1	1   l	J
Carbon Disulfide	1	U	1	1	J
Carbon Tetrachloride	1	U	1	ιlι	J
Chlorobenzene	1	U		1 1	J
Chloroethane	1	U	1	1	J
Chloroform	1	υ.	1	ιl	J
Chloromethane	1	υ	1	1 1	J
cis-1,2-Dichloroethene	1	U	1	1 1	J
Ethylbenzene	1	U	1	11	J
Methylene Chloride	2	UJ	2	2 L	JJ
Tetrachloroethene	1	U		1 1	J
Toluene	1	U	1	1 1	J
Total Xylenes	1	U	1	1 L	J
Trichloroethene ¹	· 1	U	1	11	J
Vinyl Chloride	1	U		1 1	J

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

.

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 62 OF 63

Sample Number	OU2-MW-103D-05		OU2-MW-103M-05	
Sample Location	MW-103D		MW-103M	
Date Sampled	11/6/97		11/6/97	Ī
QC Type	None		None	
Matrix	AQUEOUS		AQUEOUS	
Filtering				
Semivolatile Organic Compounds (UG/L)				
1,2-Dichlorobenzene	10	U	10	U
2,4-Dimethylphenol	10	U	10	U
2,4-Dinitrophenol	. 25	U	25	U
2-Chlorophenol	10	U	10	U
2-Methylnaphthalene	10	U	10	U
2-Methylphenol	10	U	10	υ
2-Nitrophenol	10	U	10	U
4,6-Dinitro-2-methylphenol	25	U	25	U
4-Chloro-3-methylphenol	10	υ	· 10	υ
4-Methylphenol	10	υ	10	U
4-Nitrophenol	25	U	25	U
Acenaphthene	10	U	10	U
Acenaphthylene	. 10	U	10	υ
Anthracene	10	U	10	υ
bis(2-Ethylhexyl)phthalate	10	U	· 10	υ
Carbazole	10	U	10	U
Di-n-Butylphthalate	10	U	10	U
Dibenzofuran	10	Ü	10	U
Diethylphthalate	10	U	10	U
Fluoranthene	10	υ	10	U
Fluorene .	10	U	. 10	U
Hexachloroethane	10	υ	10	U
N-Nitroso-diphenylamine	10	Ū	10	U
Naphthalene	10	U	. 10	U
Nitrobenzene	10	U	10	U
Phenanthrene	10	U	10	υ
Phenol	10	U	10	U
Pyrene	10	U	10	υ

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;

* - From dilution analysis; R - Rejected; EB/TB - Equipment/Trip Blank contamination; NA - Not Analyzed

 $\geq$ 

ï

## GROUNDWATER ANALYTICAL RESULTS TECHNICAL MEMORANDUM RAYMARK - OU2, STRATFORD, CT PAGE 63 OF 63

Sample Number	OU2-MW-103D-05		OU2-MW-103M-05	
Sample Location	MW-103D		MW-103M	
Date Sampled	11/6/97		11/6/97	1
QC Type	None		None	
Matrix	AQUEOUS		AQUEOUS	-
Filtering	· · · ·			
Metals (UG/L)				
Aluminum	156	U	17	U
Antimony .	3	U	3	U
Arsenic	3	U	3	U
Barium	24.4		58.9	
Beryllium	1	U	1	U
Cadmium	1	υ	1	υ
Calcium	33200		34600	
Chromium	2.3		1.5	J
Cobalt	35.6		3.9	U
Copper	2	U	37.9	1
Iron	7150	J	163	J
Lead	1	Ų	1.7	U.
Magnesium	14800		16400	
Manganese	7000	J	3400	J
Mercury	0.1	U	0.1	U
Nickel	28.6	U	5.1	U
Potassium	7650		13700	
Selenium	3.9	J	3	U
Silver	1	U	1	U
Sodium	65700		. 104000	
Thallium	3	U	. 3	U
Vanadium	1	U	1	U
Zinc	42.6		33.6	
Water Quality Analysis (mg/L)				
Alkalinity	21.7	• •	55	1
Chloride	86.4	•	161	1
Nitrate-Nitrite (as N)	1.85	• • •	0.54	$\vdash$
Sulfate	136	ŧ.	79.9	1

.::.: •

^ي د

U - Not detected; UJ - Detection limit approximate; J - Quantitation approximate;