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1. THE MATHEMATICAL MOTIVATION

In the present work we explore a technique of integration useful in calculating Riemann
integrals. To better illustrate this technical idea, whose origin can be traced back to Joseph
Liouville (1809 – 1882), we start our discussion with the following.

Example 1.1. For a function f positive and continuous on [0, 1], compute:

I =

∫ 1

0

f(x)

f(x) + f(1− x)
dx.

Solution. We use a substitution that reflects the interval [0, 1] into itself, namely u =
1− x which yields,

I = −
∫ 0

1

f(1− x)

f(x) + f(1− x)
dx =

∫ 1

0

f(1− x)

f(x) + f(1− x)
dx.

The key concept is that I transformed into a dual integral, and this is actually the idea
originally discussed by Liouville in 1853 in Journal des Mathématiques Pures et Appliquées
(not on this general example, but on a more particular case, which we show below in
Figure 1). To complete the solution of our first example, note that by adding two I’s
together, 2I =

∫ 1

0
1 dx = 1, and I = 1

2 . Note that the mapping f : [0, 1] → [0, 1] given by
f(x) = 1−x is a bijection which “flips over” the interval [0, 1], and this enables the whole
process.

Example 1.1 illustrates the type of u−substitution we plan to explore. In this funda-
mental example, the u-substitution might be rather easy to see; however, there are some
cases where the approach is not evident at all.

In the comprehensive problem solving monograph [3], Section 3.2.8 is dedicated to
such integration techniques. We are thinking of the present material as a complement
of the existent literature on this idea, as a useful survey of relevant examples, which could
serve as guide in undergraduate research seminars focused on building experience on
integration techniques, or as self-study guide. The examples we collect include several
recent problems not available anywhere else to English readers, while two of them do
not appear, as far as we are aware, anywhere else in the present literature. We actually
describe below how we construct them and why.

We rely in our selection on the tradition of the monthly Gazeta matematică, a journal
with continuous publication since it was established in 1895; its first decades were much
rooted in the work and the seminal influence of Gheorghe Ţiţeica (1873–1939), a former
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doctoral student of Gaston Darboux (1842 – 1917) [1]. This tradition still exists today in
the problems Gazeta matematică publishes every month.

The takeaway from our work is that the technique illustrated by Example 1.1 can be
replicated in other applications and has a natural extension towards the limiting pro-
cesses, as we will showcase below in Section 8.

2. THE HISTORICAL MOTIVATION

Joseph Liouville remarked in 1853 there exist classes of integrals that could be trans-
formed or reduced to other integrals. He wrote in 1853 two brief notes [5, 6] under the
pseudonym M. Bésge for the Journal des Mathématiques Pures et Appliquées, a journal he
edited for nearly 40 years. At the end of his first note he commented specifically that
“toutes ces transformations d‘intégrales définies n‘offrent aujourd‘hui que peu d‘intérêt [...]” (i.e.:
“all these transformations of definite integrals don’t raise today but very little interest”).

FIGURE 1. Fragment from one of the notes written by Joseph Liouville
in 1853 under the pseudonym M. Bésge. It was the same year when P.
L. Chebyshev submitted to Liouville’s journal his important contribution
[7]. Some of the classifications we encounter in our standard references
today, e.g. [9], date back to that historical period.

At the time when he wrote the two notes [5, 6], Liouville had a long experience with
the exploration of techniques of integration, see e.g. [16]. Although Joseph Liouville
discovered the procedure, it was not at all clear from the beginning what could be the
range of applications that the apparent “trick” might have. A variety of examples coming
from different sources is perhaps the best way to build a case in favor of such a distinct
technique. It was a matter of blending the fundamental algebra with the appropriate
classes of substitutions that could extend the range of definite integrals we can effectively
calculate. Some are approachable and definitely a textbook case. Some others require
more care, as we will illustrate below.

P. L. Chebyshev published in the same year as Liouville the work [7], in which he dis-
cussed systematically the idea of classifying procedures of integration of certain classes of
functions. Since then, building on the shoulder of the 19th century giants, many other ref-
erences focus on techniques of integration, e.g. [8, 13, 11, 17, 19]. Our present note pursues
this tradition and investigates in a self-contained unit a useful integration technique.

3. THE IDEA AS ENCOUNTERED IN CALCULUS TEXTBOOKS

At the most fundamental level, every calculus textbook discusses at some point inte-
grals of the type

∫
ex sinxdx or

∫
ex cosxdx (see e.g. [9], p.117, or [14] p. 303, or [20], p.
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512). The elementary solution involves two steps of integration by parts. The idea behind
the solution is the following: we aim to obtain a linear equation where the unknown is
the original integral.

The idea of solving for an indefinite integral can be seen in the following fundamental
example, where the main technical argument is integration by parts.

Example 3.2. Compute
∫
ex cosxdx.

Solution. We denote the given integral by I, then integrate by parts:

I =

∫
ex cosxdx = ex cosx+

∫
ex sinxdx

= ex cosx+ ex sinx−
∫

ex cosxdx.

Thus,
I = ex sinx+ ex cosx− I,

and solving for I we immediately get

I =
1

2
(ex sinx+ ex cosx) + C.

Another fundamental example is problem 1235 from the classical reference [9].

Example 3.3. Compute
∫
sin(lnx)dx.

Solution.

I =

∫
sin(lnx) dx = x sin(lnx)−

∫
x cos(lnx)

1

x
dx =

x sin(lnx)−
∫

cos(lnx)dx =

x sin(lnx)− [x cos(lnx)−
∫

x sin(lnx)
1

x
dx =

x sin(lnx)− x cos(lnx)− I.

Thus,
2I = x sin(lnx)− x cos(lnx),

and
I =

1

2
[x sin(lnx)− x cos(lnx)] + C.

4. IN ABSTRACT SETTING

We started our discussion with Example 1.1, which illustrated a symmetrization of
the interval of integration in abstract setting. Besides “flipping over” the interval [a, b]
onto itself, we can imagine the same idea working on the reflection generated by the
multiplication. This example is key for our description, and it comes from [15] 1.4.13.
p.23. The integrand includes, instead of a specific transcendental function, an abstract f
observing the analytic requirements for the existence of the desired definite integral.

Example 4.4. Let a ̸= 0 and let f be a positive and continuous function on [0, 1]. Evaluate
the integral:

I =

∫ 1/a

a

1

x
· f(x)

f(x) + f( 1x )
dx.
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Solution: The substitution u = 1
x yields

I = −
∫ a

1/a

1

x
·

f( 1x )

f(x) + f( 1x )
dx =

∫ 1/a

a

1

x
·

f( 1x )

f(x) + f( 1x )
dx.

We obtained two copies of the same integral. Hence, by adding the two I’s together we
obtain that

2I =

∫ 1/a

a

1

x
dx = − ln a2.

Thus I = − ln |a|.

5. THE TECHNIQUE OF TRANSFORMING INTEGRALS BY SYMMETRIZATION OF THE
INTERVAL AS SEEN IN THE W. L. PUTNAM COMPETITION

It is quite interesting that certain technical ideas developed at the middle of the 19th
century are incorporated today among the problems assigned in various mathematical
competitions. Around the world there are mathematical cultures where integral calculus
is part of the high-school olympiad curriculum (e.g. Romania, Russia et al.), while in the
United States several problems where the transformation of an integral by symmetriza-
tion of the interval have been assigned in the W.L. Putnam Competition. We start our
discussion with the following example.

Example 5.5. Compute
∫ π/2

0
sin3 x

sin3 x+cos3 x
dx.

In 1983, this problem was proposed in a national olympiad examination in Romania.
Solution. Using the substitution x = π

2−t, since sin(π2−t) = cos t, and cos(π2−t) = sin t,
we get:

I =

∫ π/2

0

sin3 x

sin3 x+ cos3 x
dx =

∫ 0

π/2

cos3 t

sin3 t+ cos3 t
(−dt) =

∫ π/2

0

cos3 t

sin3 t+ cos3 t
dt.

If we add two copies of I, we get:

I + I =

∫ π/2

0

sin3 x

sin3 x+ cos3 x
dx+

∫ π/2

0

cos3 x

sin3 x+ cos3 x
dx =

∫ π/2

0

dx =
π

2
.

Thus, I = π
4 .

A similar problem appears in [21], as well as in [15] (see 1.4.1. (g), p. 21), in general
form. More precisely, by using the same idea we can compute∫ π/2

0

sinn x

sinn x+ cosn x
dx.

In the previous example, the fact that n = 3 was irrelevant. Of course, the answer is the
same, π

4 .

For the particular case when n = 2, it’s easy to see that we get
∫ π/2

0
sin2 xdx = π

4 .

Example 5.6. Compute
∫ π/2

0
dx

1+(tan x)
√

2
.

The principle is the same as in Example 5.5 , for n =
√
2. The answer is also the same,

namely π
4 . Actually, the solution presented in [2] is in the general form, denoting

√
2

by r and doing the same substitution. Example 5.6 is problem A3 in the W. L. Putnam
Competition from 1980.

We may say that the idea of these type of substitutions appeared earlier, although with
higher complexity, in the W. L. Putnam competition, problem A4 from 1953.
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Example 5.7. From the identity∫ π/2

0

log sin 2x dx =

∫ π/2

0

log sinx dx+

∫ π/2

0

log cosx dx+

∫ π/2

0

log 2 dx,

deduce the value of ∫ π/2

0

log sinx dx.

A solution is presented in [12]. The substitutions used are x = π
2 − t and x = π−v, then

v = 2w, and the goal of these substitutions is to set up an elementary algebraic equation.
We want to solve this equation for the unknown, which is the given integral.

Section 3.2.8 in [3] includes a few integrals that can be approached by such substitu-
tions. Perhaps the most famous example discussed in this reference is a definite integral
assigned in the 66th W.L. Putnam Competition, in 2005, namely the computation of the
definite integral. ∫ 1

0

ln(1 + x)

1 + x2
dx.

Before approaching this question, we focus our attention on the following.

Example 5.8. [3], Problem 458. Calculate the integral

I =

∫ π
4

0

ln(1 + tanx) dx.

We get back to this integral in Section 8. The argument in the solution is the following
[3], p.536. By using the substitution t = π

4 − x, we have dt = −dx, then

I =

∫ 0

π
4

ln
(
1 + tan

(π
4
− t

))
(−1) dt =

∫ π
4

0

ln

(
1 +

1− tan t

1 + tan t

)
dt =

=

∫ π
4

0

ln
2

1 + tan t
dt =

π

4
ln 2− I.

This yields the algebraic step that turns this transformation into an example relevant for
our discussion. Hence, I = π

8 ln 2. We use this numerical result further on in the next
example, as well as in Section 8.

Example 5.9. [3], Problem 459. Calculate∫ 1

0

ln(1 + x)

1 + x2
dx.

This is a problem written by Titu Andreescu (see [3], p.537) for the 2005 edition of
the W. L. Putnam competition. This example is giving us actually a glimpse on how to
generate further examples in the same class. The solution presented in [3] explains that
the substitution t = arctanx, quite natural, in fact, if we take into account the term 1

1+x2 ,
turns this integral into Example 5.8, namely into∫ π

4

0

ln(1 + tanx) dx.

For the Putnam Competition contestant, this step should have been followed by a sym-
metrizing substitution, as shown above in Example 5.8. The answer is, of course, π

8 ln 2.
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6. A NEW EXAMPLE

A particular challenge is when either the trigonometry or the algebra make the pattern
difficult to see. In fact, the “flipping over” the interval technique we hereby illustrate
works only in some cases, when the algebra intertwines well with the properties of the
transcendental functions matches the mirror expressions obtained by the substitutions.
The next example was written specifically for the present paper, in order to construct a
corresponding integral where we use the transcendental function arcsin.

Example 6.10. Evaluate the integral:

I =

∫ 1

0

arcsinx

arcsin[x
3
2 (2− x)

1
2 + (1− x)

3
2 (1 + x)

1
2 ]
dx.

Solution: Remark first that

x
3
2 (2− x)

1
2 + (1− x)

3
2 (1 + x)

1
2 = x

√
2x− x2 + (1− x)

√
1− x2.

This right-hand side term can be rewritten as:

x
√
1− 1 + 2x− x2 +

√
1− x2(1− x) = x

√
1− (1− x)2 +

√
1− x2(1− x).

On the other hand, by using that sin(a+ b) = sin a cos b+ cos a sin b:

sin(arcsinx+ arcsin(1− x)) = x
√
1− (1− x)2 +

√
1− x2(1− x).

In consequence, the integral we have to compute becomes:

I =

∫ 1

0

arcsinx

arcsinx+ arcsin(1− x)
dx. (6.1)

Let t = 1− x, dt = −dx. Then

I =

∫ 0

1

arcsin(1− t)

arcsin t+ arcsin(1− t)
(−dt) =

∫ 1

0

arcsin(1− x)

arcsinx+ arcsin(1− x)
dx.

Therefore, 2I =
∫ 1

0
dx, which yields I = 1

2 .
In writing this example, we proceeded by reconstructing the integrand starting from

the fundamental sin(a + b) formula. The complex nature of the integrand shows us that
it’s not that easy to control such transcendental expressions. The key point is the relation
(6.1), inspired from turning Example 1.1 into a specific exercise. One can generate such
example building back from such fundamental structures.

7. FURTHER EXAMPLES: THE MORE CHALLENGING SIDE

Example 7.11. [10] Compute the integral,∫ π2

4

0

1

1 + sin
√
x+ cos

√
x
dx.

Solution: We rewrite our integral I as:

I =

∫ π2

4

0

2
√
x

1 + sin
√
x+ cos

√
x
· (
√
x)′dx.
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With a simple substitution we let t =
√
x, so x = t2 and dx = 2t dt. In consequence, the

bounds change from 0 to π
2 . We get∫ π

2

0

2t

1 + sin t+ cos t
dt.

We make another substitution and let y = π
2 − t and solve for t = π

2 − y and so dt = −dy,
henceforth

I = 2

∫ π
2

0

π
2 − y

1 + sin y + cos y
dy = π

∫ π
2

0

1

1 + sin y + cos y
dy −

∫ π
2

0

y

1 + sin y + cos y
dy.

Notice that the second integral is our original integral, so

I = π

∫ π
2

0

1

1 + sin y + cos y
dy − I.

Once again gather our I’s to get

2I = π

∫ π
2

0

1

1 + sin y + cos y
dy

I =
π

2

∫ π
2

0

1

1 + sin y + cos y
dy.

Let u = tan y
2 , and solve for y = 2arctanu.

I =
π

2

∫ 1

0

1

1 + 2u
1+u2 + 1−u2

1+u2

· 2du

1 + u2
= π

∫ 1

0

du

1 + u2 + 2u+ 1− u2

=π

∫ 1

0

1

2(1 + u)
du =

π

2
ln 2.

We conclude our exploration with the following example, where the “solving for I”
technique needs to be combined with the symmetrization of the interval of integration.

Example 7.12. [18] Compute the integral∫ π

0

(x+ 1) · sinx

2− sin2 x
dx.

Solution: Let I denote the following:

I =

∫ π

0

(x+ 1) · sinx

2− sin2 x
dx =

∫ π

0

x sinx+ sinx

2− sin2 x
dx.

Suppose that

I = I1 + I2 =

=

∫ π

0

x sinx

2− sin2 x
dx+

∫ π

0

sinx

2− sin2 x
dx.

We start with I2 and rewrite as,

I2 =

∫ π

0

sinx

2− sin2 x
dx =

∫ π

0

−(cosx)′

1 + cos2 x
dx = arctan (cosx)π0

= −arctan(−1) + arctan(1) =
π

2
.

Similarly we rewrite I1 as,
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I1 =

∫ π

0

x sinx

2− sin2 x
dx = −

∫ π

0

[π − (x+ π)] sin (π − x)

2− sin2 (π − x)
dx

= π

∫ π

0

sin (π − x)

2− sin2 (π − x)
dx−

∫ π

0

(π − x) sin (π − x)

2− sin2 (π − x)
dx.

Let t = π − x and dt = −dx, so we have

= π

∫ π

0

sinx

2− sin2 x
dx−

∫ π

0

t sin t

2− sin2 t
dt.

Initially we solved for

I2 =

∫ π

0

sinx

2− sin2 x
dx =

π

2

and we initialized I1 =
∫ π

0
t sin t

2−sin2 t
dt, and thus we have

I1 = πI2 − I1

2I1 = πI2

I1 =
π

2
I2.

Note we established the sum of our original integral to be

I = I1 + I2

=
π

2
I2 + I2

= I2

(π
2
+ 1

)
.

As calculated previously, I2 = π
2 , and so

I =
π

2

(π
2
+ 1

)
.

Example 7.13. [4] Calculate the definite integral

I =

∫ π
2

0

sinx

1 +
√
sin 2x

dx.

It was actually the editorial presentation in the January 2020 issue of the Monthly that
lead us to the study of [6], since this particular integral is definitely of the class of functions
that retained Liouville’s attention in 1853.

Solution. By using the substitution u = π
2 − x, we have du = −dx, which in turn

transforms I into

I = −
∫ 0

π
2

cosu

1 +
√
sin(π − 2u)

du =

∫ π
2

0

cosx

1 +
√
sin 2x

dx.

We reached again an interesting situation in which an integral I is transformed into its
dual. By adding I and its dual, we obtain

I + I =

∫ π
2

0

sinx+ cosx

1 +
√
sin 2x

dx.
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Now a second substitution is needed, of a different nature: v = cosx − sinx, and by
elementary trigonometry we derive v2 = 1 − 2 sinx cosx = 1 − sin 2x, and for the differ-
ential forms we have the relationship dv = (− sinx− cosx) dx. Note that this substitution
v = v(x) is bijective and decreasing, and thus

2I =

∫ 1

−1

dv

1 +
√
1− v2

= 2

∫ 1

0

dv

1 +
√
1− v2

.

For the last step, we proceed as in any standard textbook, v = sin t, dv = cos t dt, with

I =

∫ 1

0

dv

1 +
√
1− v2

=

∫ π/2

0

cos t dt

1 + cos t
=

=

∫ π/2

0

1 + cos t− 1

1 + cos t
dt =

π

2
−
∫ π/2

0

1

2 cos2 t
2

dt =
π

2
− 1.

We conclude this section with another example of symmetrization. We will leave a part
of the work to the reader.

Example 7.14. [22]
(a) Show that

∫ 1

−1
ln(x2 + x+ 1) dx =

∫ 1

−1
ln(x2 − x+ 1) dx.

(b) Calculate
∫ 1

−1
ln(x4 + x2 + 1) dx.

Solution. Part (a) follows immediately by transforming x = −t. Part (b) is possible due
to the factoring

x4 + x2 + 1 = (x2 + x+ 1)(x2 − x+ 1).

In conclusion, the integral we calculate can be written∫ 1

−1

ln(x4 + x2 + 1) dx = 2

∫ 1

−1

ln(x2 + x+ 1) dx.

This last integral can be computed directly, by parts.The numerical final answer is 3 ln 3−
8 + π

√
3. The interesting part is that the first step of the approach must be consistent to

the factoring of the four degree trinomial.

8. THIS IDEA CAN BE APPLIED TO LIMITING PROCESSES

Some limiting processes are directly related to the calculation of definite Riemann inte-
grals, see e.g. Exercise 1.1.14 in [15]. We present here a new example, based on one of the
integrals we presented above, see Example 5.8 just to illustrate how this process works.

Example 8.15. Show that

lim
n→∞

n

√(
1 + tan

π

4n

)(
1 + tan

2π

4n

)(
1 + tan

2π

4n

)
. . .

(
1 + tan

nπ

4n

)
=

√
2.

Solution: We can rewrite the limit we investigate in the form

∆x [f(x1) + f(x2) + ...+ f(xn)] ,

so that we actually have

lim
n→∞

π

4n

[
ln
(
1 + tan

π

4n

)
+ ln

(
1 + tan

2π

4n

)
+ . . .+ ln

(
1 + tan

nπ

4n

)]
=

=
π

4
lim

n→∞

1

n
ln

[(
1 + tan

π

4n

)(
1 + tan

2π

4n

)
. . .

(
1 + tan

nπ

4n

)]
=
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=
π

4
lim
n→∞

ln n

√(
1 + tan

π

4n

)(
1 + tan

2π

4n

)
. . .

(
1 + tan

nπ

4n

)
=

=

∫ π/4

0

ln(1 + tanx) dx =
π

8
ln 2,

where the last equality comes from Example 5.8. After a simplification by π
4 and a step in

which we exponentiate, this last calculation completes the argument.
This example is particularly relevant since it shows how wide the range of applications

of the aforementioned procedure is. For each of the definite integrals discussed in this
note, there is a limiting process similar to the one illustrated above.

9. CONCLUSIONS

After presenting all these examples, our exploration leads us to the following conclu-
sion. There exists a class of definite Riemann integrals for which the bijective mapping
symmetrizing the interval of definition is useful. In order for this process to work, we
need to retrieve the original integral at some point, and this allows us to complete the
computation. All our previous examples illustrate this idea. The very fact that we have
been able to find so many examples in the recent literature proves there exists a genuine
interest for this techniques and its applications, and teaching this process as a separate
integration technique seems to us as a natural idea.

The authors hope to provide the reader with a casebook of useful gems both informa-
tive and enjoyable. Additionally, the authors would like to extend their thanks to the two
referees for their very thoughtful suggestions on our present work.
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