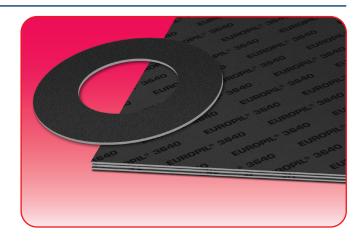
EUROPIL® 3640


EUROPIL® 3640 – universal gasket sheets with best temperature and pressure resistance.

The raw material base of EUROPIL® 3640 consists of inorganic fibers in combination with mineral fillers and aramid fibers bonded with high quality NBRS.

This unique combination results in the following application profile: high temperature resistance, high mechanical stability, great gas tightness at high temperatures, good chemical resistance and high strength.

The gasket material is suitable for hydrocarbons like oils or solvents, alcohols, glycols, aqueous solutions, water and steam as well as weak alkalines and organic acids. The material is partly suitable for ketone and ester, chlorinated solvents as well as strong alkalines and inorganic acids.

Basis composition	Aramid fibers bonded with NBR.				
Color	Black / Black				
Certificates	on request				

Manufactured by KLINGER

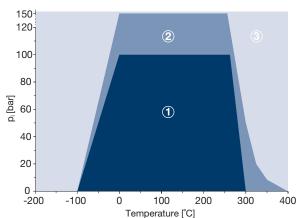
Sheet size	1000 x 1500 mm, 2000 x 1500 mm
Thickness	0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm Other thicknesses on request

Tolerances

Thickness according to DIN 28091-1

Length: \pm 50 mm Width: \pm 50 mm

Industry

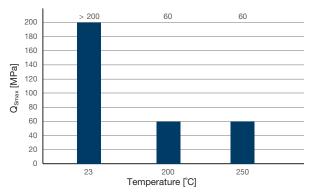

General Industry / Chemical / Oil & Gas / Energy / Infrastructure / Pulp and Paper

TECHNICAL DATA - Typical values for a thickness of 2.0 mm

Density		g/cm³	1.7
Compressibility	ASTM F 36 J	%	12
Recovery	ASTM F 36 J	%	50
Stress relaxation DIN 52913	50 MPa, 16 h/175°C	MPa	35
	50 MPa, 16 h/300°C	MPa	25
KLINGER cold/hot compression	thickness decrease at 23°C	%	15
50 MPa	thickness decrease at 300°C	%	22
Tightness	DIN 28090-2	mg/(s x m)	0.1
Thickness increase after fluid	oil IRM 903: 5 h/150°C	%	8
immersion ASTM F 146	fuel B: 5 h/23°C	%	12
Cold compression	DIN 28090-2	%	10
Cold recovery	DIN 28090-2	%	5
Hot compression	DIN 28090-2	%	17
Hot recovery	DIN 28090-2	%	2
Max. surface pressure EN 13555	23°C	N/mm²	> 200
	200°C	N/mm²	60
	250°C	N/mm²	60

EUROPIL® 3640

P-T diagram



The area of the P-T diagram

- 1 In area one, the gasket material is normally suitable subject to chemical compatibility.
- 2 In area two, the gasket material may be suitable but a technical evaluation is recommended.
- (3) In area three, do not install the gasket without a technical evaluation.

Always refer to the chemical resistance of the gasket to the media.

Maximum surface pressure

Maximum permissible surface pressure in operating conditions Q_{Smax} acc. to EN 13555

The maximum surface pressure in operating condition is the maximum permissible surface pressure the gasket can be loaded at the specified temperatures, without crucial plastic deformation and/or destruction of the gasket.

Tightness performance

The many and varied demands on gaskets

The functionality and tightness of flange connections depends on a large number of parameters. Maximum temperature and pressure values alone can not define a material's suitability for an application. These limits are dependent upon a multiplicity of factors as shown in the picture on the left. A statement about the expected tightness of the flange connection is only possible if a qualified and defined installation of the gasket has been executed.

Chemical resistance chart

Simplified overview of the chemical resistance depending on the most important groups of raw materials:

EUROPIL® 3640					A: small or no attack		B: weak till moderate attack		C: strong attack		
Paraffinic hydrocarbon	Motor fuel	Aromates	Chlorinated hydrocarbon fluids	Motor oil	Mineral lubricants	Alcohol	Ketone	Ester	Water	Acid (diluted)	Base (diluted)
Α	В	С	С	Α	В	Α	С	С	Α	Α	Α

All information is based on years of experience in production and operation of sealing elements. However, in view of the wide variety of possible installation and operating conditions one cannot draw final conclusions in all application cases regarding the behaviour in gasket joint. The data may not, therefore, be used to support any warranty claims. This edition cancels all previous issues. Subject to change without notice.

