

Syntacore 64bit RISC-V core IP product line

Alexander Redkin Executive director

RISC-V Workshop Zurich
June 11 - 13 2019

Syntacore introduction

IP company, founding member of RISC-V foundation

Develops and licenses state-of-the-art RISC-V cores

- Initial line is available and shipping to customers
- 4 years of focused RISC-V development
- Core team comes from 10+ years of highly-relevant background
- SDKs, samples in silicon, full collateral

Full service to specialize CPU IP for customer needs

- One-stop workload-specific customization for 10x improvements
 - with tools/compiler support
- IP hardening at the required library node
- SoC integration and SW migration support

Company background

Est 2015, 30+ EEs

HQ at Cyprus (EU)

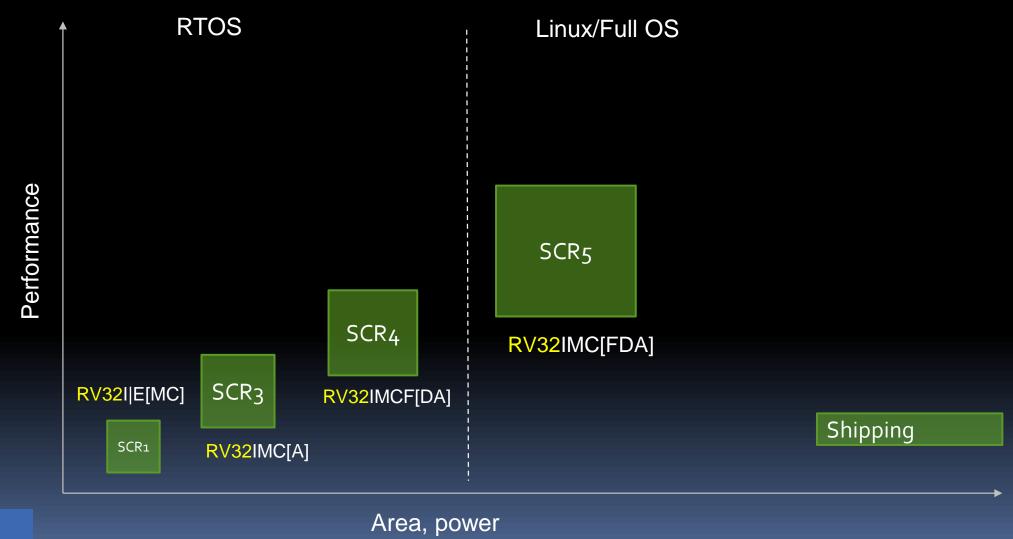
- R&D offices in St.Petersburg and Moscow
- Representatives in China/APAC, EMEA

Team background:

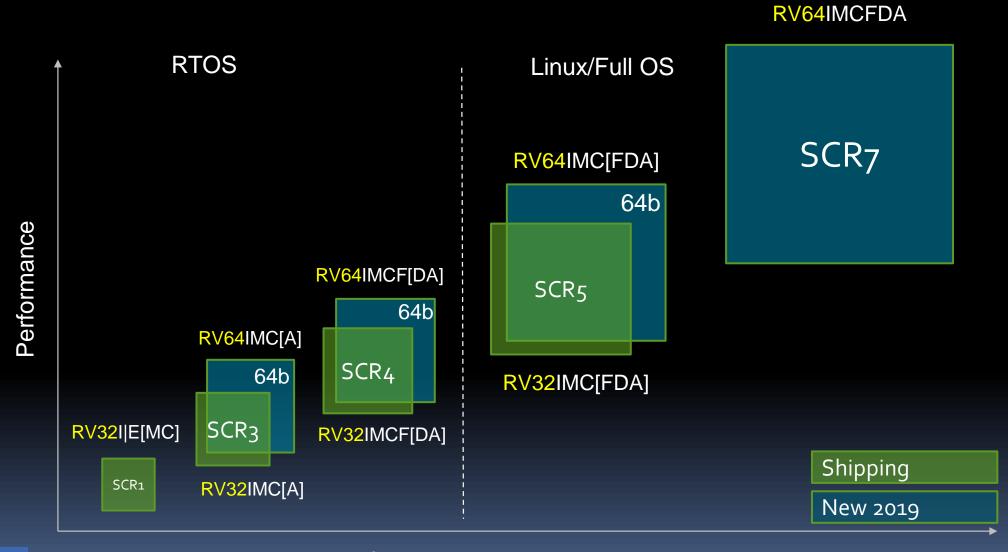
- 10+ years in the corporate R&D (major semi MNC)
- Developed cores and SoC are in the mass productions
- 15+ tapeouts, 180..14nm

Expertise:

- Low-power and high-performance embedded cores and IP
- ASIP technologies and reconfigurable architectures
- Architectural exploration & workload characterization
- Compiler technologies



SCRx baseline cores 2019



SCRx baseline cores 2019

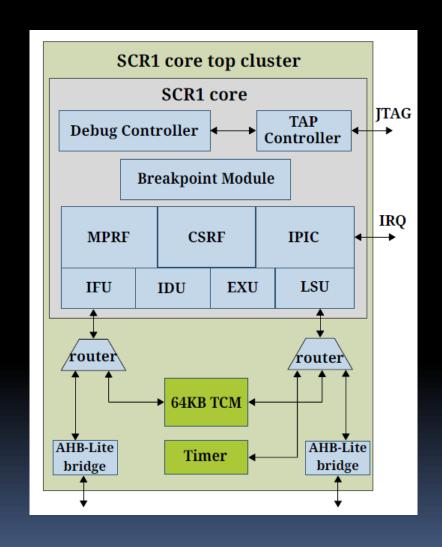
Area, power

SCRx IP features at glance

Syntacore

Features		Ms	RTOS/ Bare Metal	Linux/ "Full" OS			
		SCR1* SFREE!	SCR3	SCR4	SCR5	SCR7	
N. C. 141		32bit	•	•	•	•	
Width		64bit		•	•	•	•
ISA		RV32I E[MC]	RV[32 <mark>64]IMC[A]</mark>	RV[32 64] MCF[AD]	RV[32 <mark>64]IMC[AFD]</mark>	RV64IMCAFD	
Pipeline type			In-order	In-order	In-order	In-order	Superscalar
Pipeline, stages			2-4	3-5	3-5	7-9	10-12
Branch prediction	on			Static BP, RAS	Static BP, RAS	Static BP, BTB, BHT, RAS	Dynamic BP, BTB, BHT, RAS
Execution prior	ity levels		Machine	User, Machine	User, Machine	User, Supervisor, Machine	User, Supervisor, Machine
Extensibility/cu	stomization	1	•	•	•	•	•
Execution units	MUL/DIV	area-opt	•	0	0		
		hi-perf	0	•	•	•	•
	FPU				•	•	•
	TCM		0	0	0	0	0
Memory	L1\$ w/ECC			0	0	•	•
subsystem	L2\$ w/ECC					0	0
3003/310111	MPU			•	•	•	•
	MMU, virtual memory					•	•
	Integrated JTAG debug		•	•	•	•	•
Debug	HW BP		1-2	1-8 adv ctrl	1-8 adv ctrl	1-8 adv ctrl	1-8 adv ctrl
	Performance counters		0	0	0	0	0
Interrupt	IF	RQs	8-32	8-1024	8-1024	8-1024	8-1024
Controller	Fea	atures	basic	advanced	advanced	advanced+	advanced+
SMP support			up to	o 4 cores with cohen	ency	up to 8-16 cores	
	A	\HB	•	0	0	0	0
I/F options	A	XI4	0	•	•	•	•
	A	ACE .					0

Baseline cores: Configurable and extensible



SCR1 overview

Compact MCU core for deeply embedded applications and accelerator control

- RV32I | E[MC] ISA
- 2 to 4 stages pipeline
- M-mode only
- Optional configurable IPIC
 - 8..32 IRQs
- Optional integrated Debug Controller
 - OpenOCD compatible
- Choices of the optional MUL/DIV unit
 - Area- or performance- optimized
- Open sourced under SHL-license (Apache 2.0 derivative)
 - Unrestricted commercial use allowed
- High quality, silicon-proven <u>free</u> MCU IP
- In the top System Verilog Github repos in the world
- Best-effort support provided, commercial offered

SCR1 overview cont

Performance*, per MHz	DMIPS	-02	1.28	
	DIVIIFS	-best**	1.89	
per ivil 12	Coremark	-best**	2.95	

^{*} Dhrystone 2.1, Coremark 1.0, GCC 7.1 BM from TCM

Synthesis data:

Minimal RV32EC config: 11 kGates

Default RV32IMC config: 32 kGates

Range 10..40+ kGates

250+ MHz @ tsmc90lp {typical, 1.0V, +25C}

What's new:

- Extensive user guide and quick start collateral
 - works out-of-the-box in all major sims
- Verilator support
- More tests/sample: RISC-V compliance, others
- Taped-out @several companies
- Regular talk at ORCONF
- Updated and maintained

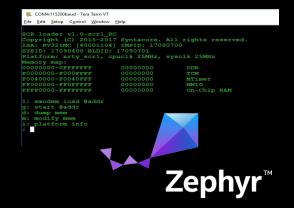
^{** -}O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

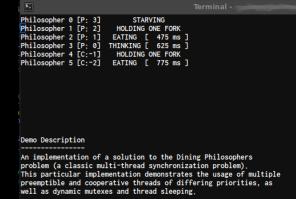
SCR₁ SDK

https://github.com/syntacore/scr1-sdk

Repository content:

- docs SDK documentation
- fpga SCR1 SDK FPGA projects
- images precompiled binary files
- scr1 SCR1 core source files
- sw sample SW projects


Supported platforms:

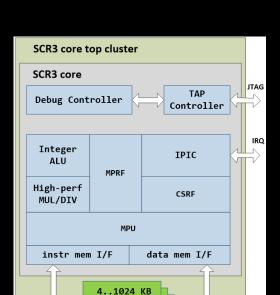

- Digilent Arty and Nexys 4 (Xilinx)
- Terasic DE10-Lite and Arria V GX starter (Intel)

Software:

- Bootloader
- Zephyr OS
- Tests/sample apps
- Pre-built GCC-based toolchain (Win/Linux)

Fully open designs and pre-build images

One of the easiest paths to start with RISC-V



SCR3: 32 or 64 bit

High-performance multicore capable MCU-class core

- RV32I[MCA] or RV64I[MCA] ISA
- Machine and User privilege modes
- Optional MPU (Memory Protection Unit)
- Optional Tightly Coupled Memory (TCM), L1 caches ECC/parity
- 32|64bit AHB or AXI4 external interface
- Optional high-performance or area-optimized MUL/DIV unit
- Integrated IRQ controller and PLIC
- Advanced debug with JTAG i/f
- Multicore configs up to 4 SCRx cores
 - SMP and heterogeneous
 - with memory coherency

			RV32	RV64
Porformanco*	DMIPS	-02	1.86	1.97
Performance*, per MHz	DIVIIF 3	-best**	2.937	3.27
per wir iz	Coremark	-best**	3.30	3.40

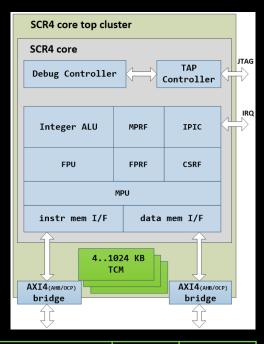
AXI4(AHB/OCP)

bridge

AXI4(AHB/OCP)

^{*} Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM from TCM

^{** -}O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto


SCR4: 32 or 64 bit

High-performance multicore capable MCU core with FPU

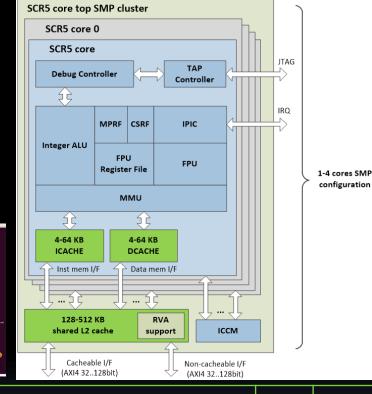
- RV32IMCF[DA] or RV64IMCF[DA] ISA
- U- and M-mode
- Configurable advanced BP, fast MUL/DIV
- Integrated IRQ controller and PLIC
- 32|64bit bit AHB or AXI4 external interface
- Optional MPU, TCM, L1 caches w/ECC
- Advanced debug controller with JTAG
- Configurable SP or DP FPU
 - IEEE 754-2008 compliant
- Multicore configs up to 4 SCRx cores
 - SMP and heterogeneous
 - with memory coherency

			RV32	RV64
	DMIPS	-02	1.86	1.97
Performance*,	DIVIIF3	-best**	2.96	3.27
per MHz	Coremark	-best**	3.30	3.40
	DP Whetstone	-best**	1.22	1.22

Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM from TCM

^{** -}O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

SCR5: 32 or 64 bit



Efficient entry-level APU/embedded core

- RV32IMC[AFD] or RV64IMC[AFD] ISA
- Multicore configs up to 4 SCRx cores
 - SMP and heterogeneous
- Advanced BP (BTB/BHT/RAS)
- IRQ controller (integrated and PLIC)
- M-, S- and U-modes
- Virtual memory support, full MMU
- L1, L2 caches with coherency, atomics, ECC
- High performance double-precision FPU
- Linux and FreeBSD support
- 1GHz+@28nm
- Advanced debug with JTAG i/f

			RV32	RV64
Darformanco*	DIVIDO	-O2	1,60	
Performance*, per MHz	DIVIIFS	-best**	2,48	2.62
	Coremark	-best**	2,83	3.02

^{*} Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM from TCM

^{**} O3-funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

RV64 SCR7

Efficient mid-range application core

- RV64GC ISA
- Multicore configs up to 8, later 16 cores
- Flexible uarch template, 10-12 stage pipeline
- Initial SCR7 configuration (Q1'19):
 - Decode and dispatch of up to two instructions per cycle
 - Out-of-order issue of up to four micro-ops.
 - Out-of-order completion, in-order retirement
- M-, S- and U-modes
- Virtual memory support, full MMU
- 16-64KB L1, up to 2MB L2 cache with ECC
- 1.2GHz+ @28nm
- Advanced debug with JTAG i/f

2-way SCR7 implementation

4-way SCR7 implementation

App-specific mix of Integer, FPU and LSU pipelines

Performance*,	
per MHz	

DMIPS	-02	2.75			
DIVIIFS	-best**	3.01			
Coremark	-best**	5.00*			

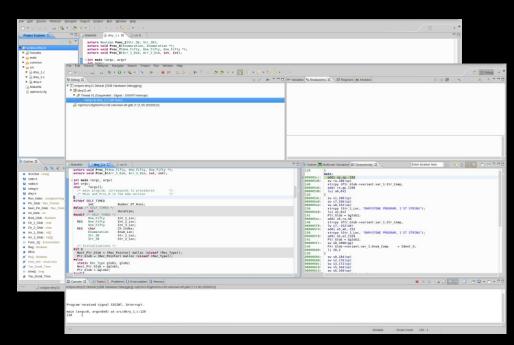
- * Preliminary data, 2-way implementation, Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM
- ** O3-funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

Fully featured SW development suite

Stable IDE in production:

- GCC 8.1
- GNU Binutils 2.31.0
- Newlib 3.0
- GNU GDB 8.0.50
- Open On-Chip Debugger 0.10.0
- Eclipse 4.9.0

Hosts: Linux, Windows


Targets: BM, Linux (beta)

Also available:

- LLVM 5.0
- CompCert 3.1
- 3rd party vendors in 2019

Simulators:

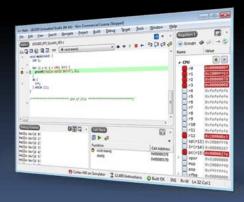
- Qemu
- Spike
- 3rd party vendors

JTAG-based debug solutions:

Supports: Segger J-link, Olimex ARM-USB-OCD family, Digilink JTAG-HS2, Lauterbach trace32, more vendors

Number of 3rd party tools support SCRx cores

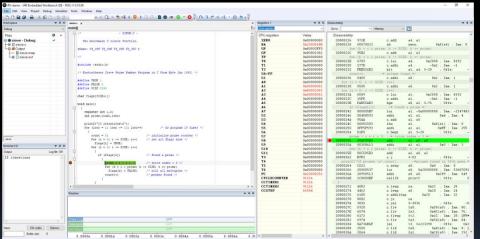
Lauterbach Trace32


TRACE32°

https://www.lauterbach.com/frames.html?pro/pro__syntacore.html

Segger Embedded Studio

https://wiki.segger.com/Syntacore_SCR1_SDK_Arty



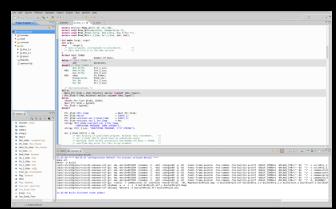
IAR Embedded Workbench

https://www.iar.com/iar-embedded-workbench/#!?architecture=RISC-V

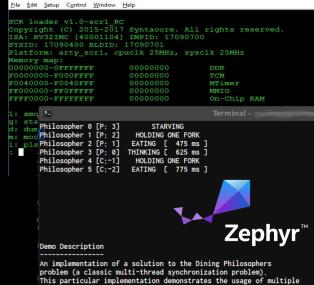
...more in 2019

SCR_x SDK

Stable Eclipse/gcc based toolchain with IDE:


- GCC 8.1
- GNU Binutils 2.31.0
- Newlib 3.0
- GNU GDB 8.0.50
- Open On-Chip Debugger 0.10.0
- Eclipse 4.9.0

HW platform based on standard FPGA dev.kits


- Multiple boards supported (Altera, Xilinx)
- Low-cost 3rd party JTAG tools
- Open design for easy start

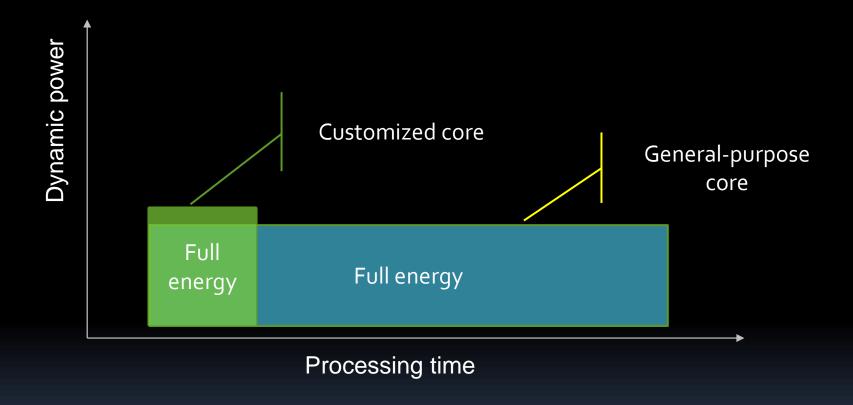
SW:

- Bootloader
- OS: Zephyr/FreeRTOS/Linux
- Application samples, tests, benchmarks

preemptible and cooperative threads of differing priorities, as

well as dynamic mutexes and thread sleeping.

COM4:115200baud - Tera Term VT



https://www.altera.com/products/boar ds_and_kits/dev-kits/altera/kit-arriav-starter.html

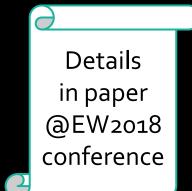
Extensibility/customization: how it works

Extensibility features:

- Computational capabilities
 New functions using existing HW
 New Functional Units
- Extended storage
 Mems/RF, addressable or state
 Custom AGU
- I/O ports
- Specialized system behavior
 Standard events processing
 Custom events

Domain examples:

- Computationally intensive algorithms acceleration
- Specialized processors (including DSP)
- High-throughput applications
 - Wire Speed Processing/DPI/Realtime/Comms



Custom ISA extension for AES & other crypto kernels acceleration for SCR5

- Data
 - RV32G FPGA-based devkit, g++ 5.2.0, Linux 4.6, optimized C++ implementation
 - Rv32G + custom same + intrinsics
 - Core i7 6800K @ 3.4GHz, g++ 5.4.0, Linux 64, optimized C++ implementation
- 60..575x speedup @ modest area increase: 11.7% core, 3.7% at the CPU cluster level

		Encoding throughput, MB/s			Normalized per MHz, MB/s			RV32G + custom		
Platform	Fmax, MHz	Crypto-1	Crypto-2	AES-128	Crypto-1	Crypto-2	AES-128			eed-up
RV ₃₂ G	20	0.025	0.129	0.238	0.00125	0.00645	0.0119	575.00	117.74	60.93
RV32G + custom	20	14.375	15.188	14.502	0.71875	0.7594	0.7251			
Core i7	3400	79.115	235.343	335.212	0.02327	0.06922	0.09859	30.89	10.97	7-35
Core i7 + NI	3400			3874.552			1.13957			0.64

Disclaimer: Authors are aware AES allows for more efficient dedicated accelerators designs, used as example algorithm

Summary

- Syntacore offers high-quality RISC-V compatible CPU IP
 - Founding member, fully focused on RISC-V since 2015
 - Silicon-proven and shipping in mass-production
 - Turnkey IP customization services
 - with full tools/compiler support

Visit our booth at Demo zone for SCRx demos, including RISC-V silicon

Thank you!