PRÁCTICA 5

VALORACIÓN ÁCIDO BASE

OBJETIVO

Determinar concentraciones desconocidas de ácidos y bases.

I. FUNDAMENTO TEÓRICO

Las cantidades de reaccionantes y productos de una reacción, son investigados en los laboratorios gravimétricamente por pesadas y volumétricamente por titulación.

La Volumetría, también llamada valoración química, es un método químico para medir cuánta cantidad de una disolución se necesita para reaccionar exactamente con otra disolución de concentración y volumen conocidos. Para ello se va añadiendo gota a gota la disolución desconocida o 'problema' a la otra disolución (disolución valorada) desde un recipiente cilíndrico denominado bureta, hasta que la reacción finaliza (ver figura N° 23.7). Según el tipo de reacción que se produzca, la volumetría será, por ejemplo, volumetría ácido-base, de oxidación-reducción o de precipitación. Se pueden presentar varios casos de valoración acido-base:

- 1. Valoración de un acido fuerte con una base fuerte: En el punto de equivalencia el pH es 7, se forma una sal que no sufre hidrólisis por lo que la solución es neutra, se puede utilizar cualquier indicador que vire en el intervalo 4-10: Fenolftaleína, tornasol, rojo de metilo.
- 2. Valoración de un acido débil con una base fuerte: En el punto de equivalencia se forma una sal con lo que la hidrólisis es básica. Se deberá utilizar un indicador que vire en la zona básica de pH > 7. La fenolftaleína seria un indicador adecuado, pero no el anaranjado de metilo o el rojo de metilo.
- 3. Valoración de un acido fuerte con una base débil: Opuesto al anterior, será necesario un indicador que vire en zona acida, se forma una sal donde la hidrólisis tiene carácter acido. El rojo de metilo o el anaranjado de metilo, serán indicadores adecuados, pero no la fenolftaleína).

Si se prepara una cantidad de ácido o base con una concentración conocida, se puede medir cuánta cantidad de la otra disolución se necesita para completar la reacción de neutralización, y a partir de ello determinar la concentración de dicha disolución.

Figura Nº 23.7. Método de titulación acido base

Esta operación se reduce a averiguar qué cantidad de acido de concentración conocida es necesario para neutralizar una cantidad fija de base de concentración desconocida. En este caso el proceso se llama **alcalimetría**. En el caso inverso, o sea, hallar la concentración del acido, se denomina **acidimetría**¹.

1. Ácidos

Un acido puede definirse como una sustancia que, en disoluciones acuosas, produce iones hidrogeno (H^+) .⁵

Los ácidos son sustancias que poseen un sabor agrio, que al ponerlos en contacto con algunos metales (como el hierro o el cinc) los corroen, desprendiéndose gas hidrógeno, y que al reaccionar con una base cualquiera originan una sustancia de naturaleza diferente a ambas, llamada sal.

Los más importantes, desde el punto de vista químico, por la gran cantidad de compuestos en los que están presentes son: el ácido sulfúrico, el clorhídrico y el nítrico. Los tres son corrosivos e irritantes; son por tanto peligrosos, por lo que se deben manejar con las debidas precauciones.

Dos ácidos fundamentales para la vida son el ARN y el ADN. El ácido ribonucleico (ARN) está presente en todas las células de cualquier organismo vivo. El ácido desoxirribonucleico (ADN) es el principal componente de los cromosomas y es el material con el que están formados nuestros genes; es el responsable, por tanto, de la herencia biológica.

El ácido fórmico aparece en el veneno que transportan en el aguijón las hormigas y algunos otros insectos.

El ácido oleico se encuentra en el aceite de oliva. El ácido úrico está presente en pequeñas cantidades en la orina humana, y en cantidades mayores en la orina de los pájaros y reptiles.

2. Álcali o Bases

Es la sustancia que en soluciones acuosas produce iones hidróxido (OH). El término procede del árabe *al-qili*, 'cenizas de la planta de almajo', que hacía referencia a los hidróxidos y carbonatos de potasio y sodio, lixiviados de las cenizas de aquella planta. En la actualidad, este término también se aplica a los hidróxidos de amonio (NH₄⁺) y otros metales alcalinos, y a los hidróxidos de calcio, estroncio y bario. Los carbonatos y el hidróxido de amonio sólo proporcionan concentraciones moderadas de iones hidróxido y se llaman álcalis débiles. En cambio, los hidróxidos de sodio y potasio producen iones hidróxido en concentración suficientemente alta para destruir la carne; por esta razón se llaman álcalis *cáusticos*. Las disoluciones de álcalis colorean de azul el tornasol rojo, neutralizan los ácidos, tienen un tacto jabonoso y son conductores eléctricos.

Por conveniencia clasificamos los ácidos y las bases en fuertes y débiles. Los ácidos fuertes en solución acuosa se ionizan (se separan en iones hidrogeno y aniones estables), los débiles se ionizan solo ligeramente. Las bases fuertes son solubles en agua y están completamente disociadas en solución acuosa. Las débiles son solubles en agua pero solo se ionizan ligeramente en solución (ver tabla N° 19.7).⁵

Tabla Nº 19.7. Algunos ácidos y bases comunes.

NOMBRE	FORMULA	PRESENTE EN
ÁCIDOS		
Ácido acético	HC ₂ H ₃ O ₂	Vinagre
Ácido Salicílico	HC ₉ H ₇ O ₄	Corteza de los sauces. Aspirina
Ácido ascórbico	$H_2C_6H_6O_6$	Vitamina C
Ácido cítrico	$H_3C_6H_5O_7$	Jugo de limón y de otros cítricos
Ácido clorhídrico	HCI	Jugos gástricos (líquidos digestivos del estómago)
Ácido sulfúrico	H ₂ SO ₄	Pilas y baterías de automóviles
Acido nítrico	HNO ₃	Fertilizantes, plásticos, lacas y colorantes. Disuelto en agua o "agua fuerte" se utiliza para limpiar.
BASES		
Amoníaco	NH ₃	Limpiadores domésticos (solución acuosa)
Hidróxido de calcio	Ca(OH) ₂	Cal apagada (utilizada en construcción)
Hidróxido de magnesio	Mg(OH) ₂	Lechada de magnesio (antiácido y laxante)
Hidróxido de potasio (también llamado potasa cáustica)	КОН	Jabón suave
Hidróxido de sodio (sosa cáustica)	NaOH	Limpiadores de tuberías y hornos. Rayón y celofán

El final de la reacción suele determinarse a partir del cambio de color de un indicador, como papel de tornasol o una mezcla especial de indicadores denominada indicador universal.

Para poder reconocer el punto de equivalencia de estas valoraciones, con frecuencia se utilizan pequeñas cantidades de sustancias llamadas **indicadores**. Estos por lo general son ácidos orgánicos o bases débiles que cambian de color al pasar de un medio acido a uno básico. Sin embargo no todos los indicadores cambian de color al mismo pH. La selección del indicador para una determinada titulación depende del pH en el que se presente el punto de equivalencia (ver tabla N° 20.7).

Tabla Nº 20.7.- Zona de viraje de los indicadores

ZONA DE VIRAJE DE LOS INDICADORES					
Indicadores	Intervalo De pH	Acido	Neutro	Alcalino	
Violeta de Metilo	0 – 2	Amarillo	Verde azulado	Violeta	
Azul de Timol	1,2 - 2,8	Rojo	Anaranjado	Amarillo	
Anaranjado de Metilo	3,1 - 4,4	Rojo	Anaranjado	Amarillo	
Rojo de Metilo	4,2-6,3	Rojo	Anaranjado	Amarillo	
Púrpura de Bromocresol	5,2-6,8	Amarillo	Anaranjado	Púrpura	
Tornasol	4,5 – 8,3	Rojo	Púrpura	Azul	
Azul de Bromotimol	6,0-7,6	Amarillo	Verde	Azul	
Rojo Cresol	7,2 – 8,8	Amarillo	Anaranjado	Rojo	
Azul de Timol	8,0 – 9,6	Amarillo	Verde	Azul	
Fenolftaleína	8,3 – 10	Incoloro	Rosado	Rojo	
Amarillo de Alizarina	10,1 – 12	Amarillo	Anaranjado	Lila	
Nitramina	11 – 12,9	Incoloro	Pardo claro	Parado Anaranjado	

Fuente: Carlos J. Mosquera S 1998)

II. FUNDAMENTO QUÍMICO

1. ACIDIMETRÍA Y ALCALIMETRÍA

La valoración acido-base tiene su fundamento en el cambio brusco de concentración de los iones hidronios H_3O^+ , y por lo tanto del pH que se produce en el punto final de la reacción de neutralización. El punto final se reconoce por el cambio de color que experimenta el indicador añadido a la solución.

Reacción de un acido fuerte con base fuerte:

$$HCl + Ind + NaOH \longrightarrow NaCl + H_2O$$

Reacción de un acido débil con base fuerte:

$$CH_3COOH + Ind. + NaOH \longrightarrow NaCO_3 + H_2O$$

Reacción de un acido fuerte con base débil:

$$HCl + Ind + NH_4OH \longrightarrow NH_4Cl + H_2O$$

III. MATERIALES, REACTIVOS Y EQUIPOS

MATERIALES	REACTIVOS	EQUIPOS
Bureta graduada de 25 ml	Acido Clorhídrico	Balanza analítica
Fiola o Matraz de 250 ml	Acido Acético	
Pipetas graduada de 5 ml	Hidróxido de Sodio	
Cilindro graduado de 50 ml	Hidróxido de Amonio	
Soporte universal	Anaranjado de Metilo	
Pinza para bureta	Fenolftaleina	

IV. PARTE EXPERIMENTAL

PRUEBA	PROCEDIMIENTO	VOLUMEN
	Vierta Acido Clorhídrico 0,1 N a un matraz o fiola	10 ml
	Añade Anaranjado de Metilo al 1 % y mezcle	2 gotas
Valoración de Ácido	Vierta en una Bureta Hidróxido de Sodio 0,1	
Fuerte con base fuerte	N y titule gota a gota agitando en forma	
	circular hasta que el indicador vire de rojo a amarillo	
	Anote el volumen gastado	
	Trasvase Acido Acético 0,1 N a un matraz o fiola	10 ml
	Añada Anaranjado de Metilo al1 % y mezcle	2 gotas
Valoración de Acido	Vierta en una Bureta Hidróxido de Sodio	
débil con base fuerte	0,1N y titule gota a gota agitando en forma	
	circular hasta que el indicador vire de rojo a amarillo	
	Anote el volumen gastado	
Valoración de acido fuerte con base débil	Vierta Acido Clorhídrico 0,1 N a un matraz o fiola	10 ml
	Añade Anaranjado de Metilo al 1 % y mezcle	2 gotas
	Vierta en una Bureta Hidróxido de Amonio 0,1N y titule gota a gota agitando en forma circular hasta que el indicador vire de rojo a amarillo	
	Anote el volumen gastado Realizar cálculos (ver tabla N° 21.7)	

 ${\bf Tabla\ N^o\ 21.7}. {\bf C\'alculos\ para\ determinar\ la\ concentración\ de\ una\ solución.}$

ECUACIÓN	LEYENDA	
Equiv-g	N = Equivalente gramo del soluto por	
N =	volumen de solución	
V Solucion	V = Volumen solución (L)	
	Equiv-g = Equivalente gramo del soluto	
M Soluto	PM = Peso molecular	
Equiv-gr =	M soluto = Masa de soluto	
PE	PE = Peso equivalente	
M soluto	PM = Peso molecular	
PM =	M soluto = Masa de soluto	
PE	PE = Peso equivalente	
	$\mathbf{V_C} = \mathbf{Volumen}$ del concentrado	
$V_{C} \times N_{C} = V_{d} \times N_{d}$	$\mathbf{Nc} = \mathbf{Normalidad}$ del concentrado	
	$\mathbf{V}\mathbf{d}=\mathrm{Volumen}$ del diluido	
	$\mathbf{Nd} = \text{Normalidad del diluido}$	