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This paper provides a survey and a synthesis of a number of

applications of maximum flows and minimum cuts in networks, emphasizing 

applications to integer (linear and nonlinear) programming, sequencing and

In particular, a binary quadraticI scheduling theory and location theory.

programming formulation of the minimum cut problem has allowed the solution

of a number of problems in investment selection, mining engineering, graph 

theory and location theory as minimum cut problems or as sequences of mini-

The paper concludes with a discussion of more difficultmum cut problems.

minimum cut problems, resulting from negative capacities or additional cons

traints, and of potential applications of such models.

NOTE: This is a working paper, being submitted for publication in a 

Journal. The authors welcome any comments and criticisms.
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The maximum flow problem, studied by L.R. Ford and D.R. Fulkerson 

around 1955, payed a central role in the development of the network flow

This is well illustrated by the contents of their classical book 

titled Flows in Networks (1962):

theory.

The first half of this book is devoted to

the maximum flow problem, feasibility theorems and combinatorial applications.

Moreover the second half is devoted to minimum cost flow problems, for which

they describe an algorithm which can be viewed as a process of solving a
(33 p.94) , and to multi-terminal maximumsequence of maximum flow problems

flows, another generalization of the maximum flow theory.

The maximum flow theory has attracted a renewed interest in the

First, it was possible to devise maximum flow70's, mostly for two reasons.

algorithms,involving many new and fascinating ideas, and much more satisfying,

form the point of view of theoretical efficiency, than existing minimum cost

flow or more general network flow algorithms, 

interesting applications of maximum flows and, in particular, of minimum cuts 

have also been explored during that period.

Second, a number of new and

The purpose of this paper is to provide a survey and a synthesis

of a number of applications of maximum flows and minimum cuts, emphasizing 

applications to integer (linear and nonlinear) programming, to sequencing 

and scheduling theory and to location theory. Of course, this selection

reflects the interests of the authors, and this paper also outlines other

applications to investment selection, mining engineering, graph theory and 

other areas of combinatorial optimization.
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The paper is organized as follows. The first section contains

a brief review of basic results and classical extensions of maximum flow

theory. The next three sectionsdeal mostly with maximum flows. Section 2 

discusses very shortly on finding maximum flows. Section 3 is a review of 

direct applications of maximum flow theory, including one application to 

pre-emptive scheduling. Section 4 indicates in which directions the maxi

mum flow theory has been extended. In these first four sections we have 

gone into some detail only for topics which we felt were not covered in the 

first two chapters of Ford and Fulkerson's book {33)

The remainder of this paper deals with minimum cuts and applica

tions, in somewhat greater detail. Section 5 reviews methods for finding 

minimum cuts. The direct applications of minimum cuts, described in Section

6, are those which arise most naturally from the concept of a cut in a net-

Section 7 introduces a binary quadratic programming formulation ofwork.
{47) {95)minimum cuts, due to Hammer (Ivanescu) and Picard and Ratliff

This formulation leads to a number of interesting applications of minimum 

For all these applications it is possible to directly justify thecuts.

minimum cut model, but the approach by the binary quadratic programming

it is more direct, since it avoids corn-formulation presents two advantages:

plicated or boresome demonstrations, and more fruitful, since it constructs 

the minimum cut network directly from the problem at hand. Section 8 des

cribes a number of problems which can be solved as a sequence of minimum cut

problems, extending the results of Section 7. Finally Section 9 explores

some limits of this approach by describing two classes of more difficult minimum 

cut problems: those involving negative capacities and thoseinvolving addi

tional constraints.
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We provide a number of references at the end of the paper. In 

order to keep this list to a manageable size we usually indicate, for 

every topic, only a few essential references and some most recent papers, 

from which a more complete set of references can usually be retraced. A 

number of excellent surveys, including surveys on integer (linear and non

linear) programming, sequencing and scheduling theory, location theory and 

other areas of discrete optimization are found in the two volumes of

, a number of textbooks have been 

partly or totally devoted to network flows, including Berge and Ghouila-

(48)

(33)Since the book by Fork and Fulkerson

bJT(12) (55)(6) o" mcwcN 6LQ1Lo" mcw9N 674DupLQ D"F HDDyG in 1964; IriHouri
(34)(54)(27) in 1971 ; Christo-in 1970; Frank and FrischElmaghraby and Hu

(4)(72)(15) o" mcwN 6DWDQDD D"F (DQUo4 in 1977 andfi des in 1975; Lawler
(81) iL D-43 kL"yo3" yjL u3--Luyo3" 3W <D<LQ4 LFoyLF ^Gao"oLpD o" mc’l
(8)63L4uj

. .
( .
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1. BASIC RESULTS

Consider a finite directed network N = (V,A,c), where V is the

set of vertices, A is the set of arcs, and c is a positive real-valued 

function defined on A. For every arc a, we define its head (or destina

tion) h(a) 6 V, its tai 1 (or origin) t(a)6 V and its capacity c(a). Given 

two vertices s and t called the source and the sink, we call an (s,t) -

flow (or more simply a flow) any real-valued function f defined on A 

satisfying the (Kirchhoff) conservation law (or balance equations)

EE f(a)f(a) = (1-1)
a:h(a) = i a:t(a) = i

for all vertices i^V distinct from s and t. By summing all these equa

tions , we have

E f<a> = E f<a> - E
a:h(a)= t

E f<a>
a:t(a) = s

(1-2)f(a) = v(f)
a:t(a) = ta:h(a) =s

I
and we call this quantity v(f) the value of the flow f. If in addition

(1-3)0 < f(a) < c(a)

for all arcs a, we call fa feasible flow. The maximum flow problem is

the problem of finding a feasible flow of maximum value. This problem 

may be stated as a linear programming problem, with |V|-2 constraints (1-1) 

and |A| nonnegative variables f(a) with upper bounds.
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Given two subsets S,T of V, and any real function g defined 

on A, we denote by ( S,T ) the set of all arcs with tail in S and head

in T:

(S,T) = {a f A:t(a) 6S and h(a)6T}, (1-4)

y and by g(S,T) the sum of the values g(a) for all a£(S,T):

g(s,i) = 9(a)
a 6(S,T)

(1-5)

A set (S,T) is a cut (separating s and t) if T = S (i.e. V-S, the comple- 

of S in V) s£S and tfT, and we call the quantity c(S,T) (as 

defined by (1-5)) the capacity of the cut (S,T). The minimum cut problem 

is the problem of finding a cut (separating s and t) with minimum capa

city.

ment

1 (20) yjDy yjL F7D- 3W yjL -o"LDQ <Q31QDkko"1 W3Qk7SIt turns out

lation of the maximum flow problem can be interpreted as a formulation of
( 3l).Thus the fundamental Max-flow min-cut theoremthe minimum cut problem.

For any netuork the maximum flow value from s to t is 

equal to the minimal out capacity of all cuts separa

ting s and t.

djL k34y L-L1D"y <Q33W F7L y3 O3QF D"F O7-pLQ43" o4 u3"4yQ7uyoUL D"F kDpL4
(33) ), which are a translation of the comuse of the labelling rules (see

plementary slackness conditions:



l

+SwTWKbDT ★ + bjbDTL4K » ybDTL4KT

WKbDT 0 ubDT #zbybDTwHK#»jbDT6HKT 80)S

W3Q D"G kD9ok7k W-38 WK D"F D"G ko"ok7k u7y bHKAHKTl djL eD^L- mo"1

aLyj3F 74L4 yjL4L Q7-L4 y3 FLQoUL D ko"ok7k u7yA oW <344o^-LA WQ3k D 1oUL"

W-38A 3Q y3 ok<Q3UL yjo4 W-38l ijo-L 43kL oQQDyo3"D- uD<DuoyoL4 kDG uD74L 

yjL -D^L--o"1 kLyj3F y3 kDpL D" o"Wo"oyL "7k^LQ 3W oyLQDyo3"4 bD"F <344oé

^-G y3 u3"ULQ1L y38DQF D W-38 8jouj o4 "3y kD9ok7kTA yjL <Q3uL44 yLQko"DyL4 

o" Dy k34y UbWKT oyLQDyo3"4 8jL" yjL uD<DuoyoL4 bD"F D-43 yjL o"oyoD- W-38S 

747D--G yjL WLQ3 W-38T DQL o"yL1LQl 0 u3"4L57L"uL o4 yjL ok<3QyD"y R"yLS 

1QoyG djL3QLk.

)

If the capacity function c is integer, there exists

a maximum flow f* that is also integer.

Classical extension of these results are also found in the same

reference. Vertex capacities are treated by splitting every capacitated 

vertex and introducing a capacitated arc connecting its two parts. Multi- 

pie sources and multiple sinks are dealt with by extending the network by 

addition of a supersource and a supersink, respectively. Lower bounds 

(in other words "lower capacities") on arc flows, i.e. restrictions

l{a) < f(a) < u(a) (1-8)

instead of (1-3) are handled in two steps, 

can be found by solving a maximum flow problem in a related network, an

First, a feasible flow, if any,



8.

equivalent to the classical variable change used to accomodate lower 

bounds in lenear programming; this point will be considered in Section 

3. When a feasible flow is given, the labelling rules can be applied 

with the following modification to (1-6)

f*(a) > l{a) =Mh(a) 6 S* t(a) 6 S*)

(and u(a) instead of c(a) in (1-7) ).
(1-9)

J
The max.-flow min.-cut theorem applies, by replacing the definition of 

the capacity c(S,S) of a cut by the following

c(S,S) = u(S,S) - £(S,S) (1-10)

The above results extend to undirected and mixed networks. The

concept of flow in an edge e = {x,y} is interpreted to mean that

Wb9AGT 0 ubLT 

WbGA9T 0 ubLT 

D"F Wb9AGTlWbGA9T # + bmSmmT
J

(33 < l9fT HA olLl LULQG LF1L kDG ^L QL<-DuLF 8oyj D <DoQ 3W 3<<34oyL-G( see

directed arcs, each having capacity equal to the capacity of the edge. 

Another (equivalent) device is to arbitrarily direct the edge, say from x 

to y, and to impose

-c(e) < f(x,y) c(e) (1-12)<

instead of (1-11); this transformation avoids doubling the number of arcs 

and taking care of cancelling oppositely directed flows. When lower bounds
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are introduced in an undirected network, and the flow in an edge is uni

directional but no direction is a priori specified. Ford and Fulkerson 

(3S,p.51) the problem of finding a feasible flow. They state 

that the problem is not equivalent to the directed problem. Indeed, we 

can prove that this feasibility problem in an undirected network is NP- 

complete, by reduction from the following NP-complete problem:

consider

a ), does there n
exist a subset I of the index set J = {1, 2, ..., n}

: given a positive vector (aPARTITION a 2 >i » • • • 5

Eai = Eai =1 Ea
i€ I i£l i£ J '

such that (1-13)?

construct a network with n + 3 vertices.The reduction goes as follows:

as sink; for every index i£ J define two 

}, both with upper and lower capacity equal 

add an edge (vn + i>vn + with upper and lower capacity equal

Verifying that the existence of a feasible flow is equivalent 

to the existence of a partition I satisfying (1-13) is left to the reader.

with v0 as source and v n + 2
edges {vq.v^} and (vi,vn + 1

to a. ;i
to zero.

★ ★ ★
★ ★
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(71)From the experience reported in 

rithms, it appears that the algorithm REVERSE proposed by Edmonds and 

is amenable to much more efficient implementation (using only 

three arc-length arrays) than their most celebrated algorithm SHORT (in

cidentally, this last algorithm is often referred to as "the" Edmonds- 

Karp algorithm, while these authors proposed in fact three different max. 

flow algorithm in their paper). It appears that specializations of the 

simplex algorithm would provide the most space-preserving implementations, 

using only two arc-length arrays. Solving maximum flow problems by the 

simplex algorithm has received some attention

(except for the last reference) little computational experience has yet 

been reported.

about augmenting path algo-

(25)Karp

(59),(20),(19),(41) but

★ ★ ★
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A number of combinational applications of maximum flows, and

of the dual relations with minimum cuts, is described in the second chapter
(33) by Ford and Fulkerson. We will briefly outline these, 

before describing an interesting application to pre-emptive scheduling.

of the book

Tools provided by the maximum flow theory help to establish feasi- 

bility theorems, including the supply-demand theorem of Gale (conditions 

under which given demands at some vertices may be satisfied from supplies 

at some other vertices, subject to capacity constraints on the arcs or 

edges), a symmetric supply-demand theorem of Fulkerson (when there are, in 

addition, both upper and lower limits on the net flow in every vertex) and 

the circulation theorem of Hoffman (conditions of existence of flows that

are source and sink free, that satisfy prescribed lower and upper bounds 

on arcs). In particular the problem of finding a feasible flow (subject to

both lower and upper arc capacities, and prescribed net flow in every ver

tex), which occurs as a "Phase I" in minimum cost flow problem can be

formulated as a maximum flow problem: by the variable change

f1(a) = f(a) - 1(a) (3-1)

for all arcs a, the bounds on arc flows

1(a) < f(a) < c(a) (3-2)

become

0 < f'(a) c'(a) = c(a) - 1(a) (3-3)<
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and the balance equations

E f(a) - E f(a) = bi 
t(a) = i

(3-4)

h( a) = i

for all vertices v- (where Zb. = 0), become
i

f ' (a) - JD f'^a^ = b'i = bi " E 1(a) + H) ](a)
t(a) = i

E
h ( a ) = it(a) = ih(a) = i

(3-5)

A (super-)source is added and connected to all vertices v^ with negative 

b'^ by an arc with capacity - b1 ^, and all vertices v^. with positive bf are 

connected to a (super-)sink by an arc with capacity b'^ 

flow is sought from source to sink, 

all the source-arcs (and by the way all the sink-arcs) if and only if the 

initial problem admits a feasible flow.

Then a maximumJ
There exists a flow which saturates

The minimum flow problem is the problem of finding a flow of

minimum value v(f) (defined by (1-2)) subject to balance equations (1-1)

and to lower bounds on arc flows:

1(a) < f(a) (3-6)

A feasible flow f° is found by a straightforward 0(|A|.|V|) procedure 

and the following variable change is performed

f'(a) = f°(a) - f(a), (3-7)
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This result in a maximum flow problem in a network N' = (V,A') deduced 

from N by reversing the arc directions, imposing the flow constraints

(3-8)c'(a) = f°(a) - 1(a)f1 (a) <

(note that lower capacities are-®) and maximizing the flow from t to s. 

The max.-flow min.-cut theorem applied to N1 translates into: the minimum 

value of a (s,t)-flow in N is equal to the maximum capacity of a cut (S,S) 

separating s from t and such that there is no arc in A with head in $ and

This result is sometimes called the "min.-flow max.-cut theorem".tail in S.

but we believe that this terminology may be misleading: finding a maximum 

cut (without the above restriction) is usually much harder than finding a 

minimum flow, see section 9 . Note that this restriction comes from the

lower capacities equal to - 00 : indeed, if no cut satisfying this restric

tion exist, then there is a directed path from t to s in N, and the min.

flow problem is unbounded.

Another classical area of application of the max.-flow min.-cut

theory is to bipartite matching. In a bipartite graph, a matching is a

The reader is referred toset of arcs which have no vertex in comnon.
{72) for an extensive treatment. Among many applications we

{102)
Chapter 5 of

mention the following : given a large sparse square matrix to be inver

ted, find a matching of rows to columns using only nonzero elements. If

yjL kDyQo9 o4 QL17-DQ 8L p"38 yjDy 47uj D kDyujo"1 L9o4y4l This is used

as a first step in inversion subroutines for mathematical programming systems.
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A matching containing a maximum number of arcs can be found, in bipartite

graphs, by the Ford-Fulkerson Labelling algorithm, which may be implemen

ted in 0(|V|.|A|) time, or by the 0(|V|

. The max. flow min. cut theorem translates into the celebrated

5/2 T D-13Qoyjk ^G r3<uQ3Wy D"F
(53)Karp

Ktinig-Egervary theorem, which related the maximum cardinality of a matching 

to the minimum number of vertices which "cover" the arcs of a bipartite 

graph (i.e. which include at least one end point of every arc), and also 

to the maximum number of vertices, no two of which are connected by an arc

in this bipartite graph (the latter vertex set being the complement of the

former). Also related to bipartite matching are the systems of distinct
(33 pp.67-75 )•representatives, see

Other classical applications include the study of the (s,t)- 

connectivity of directed graphs and a proof of Merger's theorem (see also 

and section 6); the chain decomposition of a partial order and a(lod,

proof of Dilworth theorem, with a nice application to finding the minimum
(33 pp.61-67,

);number of individuals to meet a fixed schedule of tasks

the degree-constrained partial graph problem, which is applied to find a 

Euler tour in directed, undirected or mixed graphs - a step in the solu-

(involved in garbage collection or 

snow removal) and in Christofides 1 heuristic for the Traveling Salesman

(24)tion of the Chinese Postman Problem

(16) - and to 0-1 matrices with prescribed row and column sumsProblem
(33 pp.79-91)(see )•
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Maximum flows may also be used to find a pre-emptive scheduling
{10),[52)3W H3^4 y3 <DQD--L- kDujo"L4A 47^HLuy y3 H3^ QL-LD4L D"F F7L FDyL4

l"T 8oyj QL-LD4L FDyL4 Ql D"F F7L FDyL4 FlA
J J

Given n jobs J .(j = 1, .
J

define a set of time intervals E^k = 1, ..., p wi th p < 2n - 1 ) by sorting

we

all these 2n dates into a sorted list (e!, e2, 6p) and setting

Ek = [ë|<,ek+^]. Then we construct a network with n job vertices, p inter

val vertices, a source s and a sink t. The arcs are as follows.

(s.Jj) with capacity equal to the processing time requirement 

P-, for all jobs J.:
V J

(Jj’Ek> with capacity equal to ek + ^-ek, for all jobs and

< d. ;intervals such that r^ < e^ and ek + ^ J’

with capacity equal to m(ek+^-ek) for all intervals E^, 

where m is the number of parallel machines.

(Ek,t)

A feasible schedule exists if and only if there is a flow of value E p.
j ^

in this network, and a schedule is easily deduced from the corresponding

flow. This construction may be used in an iterative approach to minimize

the maximum flow-time and the maximum lateness. For both problems a trial

value for the objective function is tested for feasibility and then adjus-

In the first approach the trial value F is inserted

in the list (ei, e2, ep) and all entries greater than F are discarded,

such that the list becomes (e!, e2, ..., e ) with e
q q

ted for a next step.

= F.
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= r. + L are intro-In the second problem, for a trial L the entries 1•
J J

duced in the list whenever 1. < d.. See^^ for a detailed description
J <3

of a polynomially bounded adjustment procedure, and^2^ and^5^ for an

extension to the case of two machines with different speeds.

★ ★ ★
★ *
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The classical maximum flow theory has been extended in several

directions which will be briefly reviewed below.

In multi terminal analysis, the problem is to find all the maxi

mum flows (and/or minimum cuts) between all couples of nodes in a network,

without solving all the 0(|V|2) such problems. The subject has been pion-
( 33, chap.4) ( 54 ,chap.9) ( 54,chap.5)(42),(43).neered by Gomory and Hu 4LL

iioê) ,{10?) W3Q W7QyjLQ QLWLQL"uL4lD"F D-43

In dynamic flows, consideration is given to transit times on arcs.

in an attempt to best modelling real-life flow behavior. The basic reduc-
(33)(32) (see also 

( 81 .section 4.5)
)•tion to static network flows was given by Ford and Fulkerson

A detailed review of dynamic flow algorithms is found in

. Kaufman

, see
(64)(9)[46 ) describes an application to railand the surveyalso

networks in France. Another very interesting application to the modelling

of building evacuation has been recently developed by R. Francis at the 

National Bureau of Standards (Washington, D.C.): 

routings of people from work places to exits so as to minimize building 

evacuation time, and can also identify evacuation bottlenecks.

such models can recommend

Other network problems can be seen as extensions of maximum flow

theory: these include minimum cost flow problems, multicommodity problems

and flow with gains (or generalized network flows). Since these problems

are dealt with elsewhere in this issue, we shall not develop any longer

about them here.
* * ★ 
★ *
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djL k34y FoQLuy kLyj3F W3Q Wo"Fo"1 D ko"ok7k u7y o4 yjL ^Q7yL

<344o^-L u7y4l M-LDQ-GA 8jL" yjL "Ly83Qp jD4enumeration of the 2

more than a very few vertices, approaches based on maximum flow are pre- 

When a maximum flow f is available, identifying one mi ni mum cutferable.

may be achieved in 0(|E|) time by applying the Labelling Procedure. This 

procedure, initiated from the source, identifies the minimum cut with the 

smallest possible source-set S. Conversely this Labelling Procedure may

be adapted to start from the sink, and thus identifies the minimum cut
( 33 ,pp.13-14)with largest source-set S' (see 

differ, there may exist several other minimum cuts.

). When these two sets

The problem of finding all minimum cuts may be difficult: consi

der for example a network N = (V,A) with A = {(s,i) : v^ 6 V - (s,t} }

U{(i,t) : v, Ç V - {s,t} }, and all capacities are unity, in this network

possible cuts are minimum cuts. The complementary slack

ness conditions using the maximum flow f at hand, may be interpreted as

i
all of the 2

follows:

or f.. > 0 then there is no cut (S,S) with i€S and j 6 Sif f .. < c. . 
ij U ji

These conditions may be used to define a binary relation R on the vertex 

set V such that (5,5") is a minimum cut if and only if S is a closure wi th

respect to R, i.e.

(v.fS and v-jRv-j) ^V.fR,
’ 0 vJ
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This relation R may be used tocontaining the source and not the sink, 

enumerate all closures, and also to streamline sensitivity and parametric
(94)

analysis for maximum flow and minimum cut, see

There are other approaches for finding minimum cuts without 

necessarily identifying a maximum flow. In the Cut Search Algorithm of

, the Decomposition Algorithm of Jarvis and 

, as well as in an algorithm suggested by Topkis 

of minimum cut problems are solved for networks smaller than the initial 

network, usually by adjusting maximum flows from a previous iteration. 

While none of these methods presents a worst-case behaviour better than 

the Labelling Method, say in its 0(|V|3|E|) version, the computational

(for networks with both lower and upper capaci

ties) suggests than such algorithms may offer computational efficiency.

(87)njo--o<4 D"F tL4437pG
(111)(58)d7WLpuo A 4L57L"uL4

(87)L9<LQoL"uL QL<3QyLF o"

djLQL o4 D" o"yQo17o"1 D4GkkLyQG o" yjL F7D-oyG QL-Dyo3"4jo< ^LyS

koUL" D kD9ok7k W-38A D ko"ok7k u7y 

67y 1oUo"1 D ko"ok7k u7y b3Q LUL"

8LL" kD9ok7k W-384 D"F ko"ok7k u7y4l

kDG ^L -3uDyLF ^G D +b|8|T <Q3uLF7QLA 

D-- yjL ko"ok7k u7y4T F3L4 "3y jL-< k7uj W3Q <Q3F7uo"1 D kD9ok7k W-38l It

might be that the minimum cut problem is in fact easier than the maximum 

flow problem. For instance, Karp

(in a precise probabilistic sense) the minimum cut is defined by the 

source- or the sink-arcs. Such observations indicate that it could be

(63) has shown that in almost all networks

fruitful to look at approaches, such as those mentionned in the previous 

paragraph, which identify a minimum cut in a network without producing a 

maximum flow.



9m l

tR,8Md 0nneRM0dRC)H CO aR)Raha MhdH6.

The most straightforward applications of minimum cuts arise

within the context of disconnection of networks: a minimum cut can be

seen as a set of arcs which intersects any path from the source s to the

This can be interpreted as the interruption ofsink t, at minimum cost.

communication between s and t, or as the interdiction of the physical

transportation of supplies, troops, ... in the context of defense or 

attack of network. Indeed, it is a concrete project to evaluate the capa

city of the Eastern European rail network to support a large scale conven

tional war, and the effort required for interdiction, formulated by 

General F.S. Ross and T.E. Harris, which motivated the interest of L.R.

Ford and D.R. Fulkerson in network flows and led to their discovery of the 

max.-flow min.-cut theorem (see ). More general problems concerning

the vulnerability of networks involve the attack of both arcs and vertices.

The maximum flow approach can be extended to such problems by introducing 

vertex capacities, as it was seen before. In fact the Labelling Algorithm 

can be efficiently specialized to such problems, see
(35)

A detailed expo

sition of connectivity and vulnerability of both deterministic and proba-
(34).^o-o4you 1QD<j4 o4 W37"F o" yjL u-D44ouD- ^33p 3W OQD"p D"F OQo4uj

(110),{US)4LL D-43

0 QL-DyLF <Q3^-Lk o4 yjDy 3W <DQyoyo3""o"1 D 1QD<jl 0 ko"ok7k

u7y <Q3UoFL4 D 8DG y3 <DQyoyo3" D 1QD<j o" y83 Fo4u3""LuyLF <DQy4A 8oyj 

yjL ko"ok7k "7k^LQ b3Q y3yD- 8Lo1jyT 3W LF1L4 ^Ly8LL" yjLk (104) l 0 133F
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discussion of this as well as other approaches for graph partitionning
{66) . Another related problem is the determination of the

is the following:

is found in
( 22)QL moD^omoyG 3W D u3kk7"ouDyo3" "Ly83Qpl 0 4ok<-L k3FL-

every arc has a probability p of failure, and all the failures are indepen- 

The probability that s and t are disconnected isdent events.

!A|
£ Akpk(l-p)lA|-k,

k = 1

where A is the arc set and A^ is the number of subsets of k arcs in A 

which disconnect s fromt.
k*small, a good approximation for this probability is Ak*p (1-p) 

where k* is the minimum number of arcs in a cut separating s from t; if 

a numerical value for P(s,t) is sought, Ak* may be computed by enumerating 

all these minimum cuts. For "less reliable" networks, this approximation

For very reliable networks, where p is very
|A|-k*

o4 "3 -3"1LQ UD-oFA D"F yjL u3k<7yDyo3" 3W yjL L9Duy <Q3^D^o-oyG o4 57oyL
< 3 > and6321difficult, see

Other applications of minimum cuts arise in the study of project 

Given a project network (of the PERT or CPM type, see 

assume that some activities may be compressed from their "normal duration",

( 28) ),networks.

but cannot require less than some "crash durations", and the cost for such 

compressions is assumed to be linear in this duration interval . It is

desired to produce a project cost curve giving, for every possible budget.

the optimum project duration and a corresponding set of activities to be
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compressed. This parametric problem was solved independently by

in 1961, through parametric solution of a 

minimum cost flow problem obtained as a dual of a linear programming formu-

[65)[36) and KelleyFul kerson

{86) have shown that thelation of the problem. Phillips and Dessouky 

problem may be solved as a sequence of minimum cut problems: it is clear 

that, for a small enough budget, the only activities which need to be com

pressed are the critical ones (i .e. those which any delay causes a delay to the 

overall project); these critical activities form a "critical network" (a

union of paths from the source, representing the project start, and the 

sink, representing the project completion) and a minimum cost cut in this 

critical network defines an optimum set of activities to be compressed, 

subsequent stages, other activities become critical, 

necessary to allow a previously compressed activity to be lengthened in a 

This leads to consider cuts with both upper and lower capa-

In

In addition, it is

later stage.

cities, the latter representing the savings made in lengthening previously

It is to be noted that this approach, intuitivelycompressed activities, 

more appealing, is in fact equivalent to the Fulkerson-Kelley approach, 

since same sequences of minimum cuts may be produced by both approaches. 

The problem has been generalized to include a linear penalty for tardiness
{29) . Other related parametric problems, of 

increasing the length of shortest paths are considered in

of a set of key events, see

'37> and'")
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{47){95)0 6R)0,2 sh0t,0dRM n,Ck,0aaR)k OC,ahe0dRC) CO aR)Raha MhdH7.

For simplyfying the following developments, let us assume that

let n = |V|-2,the vertices of the network are numbered as follows:

v0 be the source, vn + -j be the sink, and vl5 v2, ..., vn be the other 

With every cut (S,Sl we associate its characteristic vector 

x = (xi, x2, ..., xn) where:

verti ces.

i if v.es
(7-1)xi = 0 otherwise.

There is a one-to-one correspondence between cuts in N and binary n-vectors.

from x since we mayNote that we omitted the two components x0 and xn + 1
The capacity of the cut associa-= 0 for every cut.set x0 = 1 and xn + 1

ted with x is :

(7-2)

(where c^j is the capacity of the arc (v^ ,Vj)6A, and zero if (v^ ,Vj)^A). 

After substituting for x0 and x 

binary x., we obtain

, and noting that x? = x. for everyn + 1

i

(7-3)c(x) = a +

n+1
a = Ecoj- (7-4)the capacity of the cut defined by S = {v0}where

j=l
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n+1
bi = E cii - cio (7-5)for all i = 1, 2, ..., n.and

j=l

Thus the minimum cut problem may be stated as the following quadratic binary

programming problem:

minimize (bx - x^Cx : x is binary} (7-6)

maximize (x^Cx - bx : x is binary}. (7-7)or

Conversely any problem of type (7-6) or (7-7) can be interpreted as a mini-

Note that we must have C > 0 formum cut problem in a directed network.

The linear part b is unrestrictedapplying the max.-flow min.-cut theory.

in sign.

[96){97)Minimum cuts in undirected and mixed networks

Consider the problem of finding a minimum cut, in an undirected or 

it follows from the formulation (7-1), (7-2) that an equi

valent problem is obtained by arbitrarily directing the undirected arcs 

(edges) and appropriately redefining the source- and sink-arcs in accordance 

Conversely, any minimum cut problem, stated in the format (7-6)

mixed network:

with (7-5).

may be set into the symmetric form, i.e. a form in which the matrix C is

\ (c(i,j) - c(j,i)) for all i,j with i^j.symmetric, by redefining c.• asi j
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Lower capacities

As in Section 3 , assume we have a network with two numbers asso

ciated with every arc (i,j):

Defining the capacity of a cut (S,S) as

upper capacity u. . and lower capacity l o H ‘oH

ubHAHT # 7bHAHT S l[S,S)

8L kDG 4yDyL yjL u3QQL4<3"Fo"1 ko"ok7k u7y <Q3^-Lk D4.

minimize {c(x) : x0 = 1, = 0 and x binary}X -L 1n + 1

c(x) (uwhere i
i=0 j=0

that is exactly in the format (7-6) with 0^ = 0^.

Source- or sink-arcs with negative capacities are sim-

- I Note that we may
ji*

have some c._. < 0.
i j

ply redefined as sink- and source-arcs, respectively, with the opposite 

capacity; this implies a translation of the objective function c(x). When 

an arc (i,j) with intermediate endpoints has a negative c_. it must be
i j

true that

Cji - " Cij

.. < u .. ). 
Ji - Ji

b4o"uL < 7» D"F l 

^G yjL 4DkL Dk37"yA Ll1l ^G ul l by3 47<<QL44 yjL DQu boAHTT 3Q ^G

dj74 8L kDG QLF7uL u D"F o"uQLD4L u
ji ij

i j
1 (Cj.j + cij) (to make the network symmetric), and again appropriately rede

fine the source- and sink arcs incident to v. and v..
J
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(88)Maximum-weighted_c]osure_of_a_graph

Given a directed graph G = (V,A) with vertex weights wi (of

arbitrary sign), we define as a closure any subset U < V such that v^f U 

and (v.,v.)€A imply v.£U (this is also named a hereditary subset

or a selection

( 44)

Ç03),(2)(74) ). The maximum-weighted 

closure problem is the problem of finding a closure l) with maximum weight 

By using the characteristic vector y of U, this problem

an initial subset

w(U)= ^
wi •

iCu
W3Qk7-DyLF D4.uD" ^L

bS’TkD9o koWL 8 8oGo
o

GSHCSG»3 W3Q D-- bUlAUlT6 0 bScT47^HLuy y3

bSm+TG o4 ^o"DQGD"F

Since y.(l-y.) is always nonnegative for any binary y, we may introduce 

(7-9) in the objective function with a suitably large Lagrange multiplier X:

}E v-v
<vVeA

(7-11)maxi mize : y is binaryyi i

(taking X = 1 + £lw.| will suffice). This problem is of type (7-7), and
i 1

thus is equivalent to a minimum cut problem in a network constructed as 

follows: assign to the arcs of G a capacity A; add a "dummy" source s

connected to the vertices v_. such that w. > 0 by an arc with capacity w.;i i
add a dummy sink t connected to the vertices v^ such that w^ < 0 by an arc

A minimum cut (S,S) in this network defines a maximum-with capacity -wr
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weighted closure U = S -{s}. (For subsequent sensitivity and parametric 

analysis, it might be useful to connect every node to both the source and 

the sink, one of every such pair of arcs having null capacity).

A typical problem that can be formulated as a maximum-weighted

closure problem is the selection of contingent investments we are

given a set of "projects" and "contingency" relations between them; 

project i is contingent to project j means that if we decide to select pro

ject i that we must also select project j (for instance the acquisition of 

a memory extension is contingent to the acquisition of a computer, while 

the converse is not necessarily true); with every project is associated 

a net profit (which may be negative for a project presumably useful to the 

selection of other more profitable projects) and we seek a selection with

maximum net profit.

One instance of considerable importance is the determination of 

the optimal contour of an open-pit mine 

there are slope constraints which prevent the walls of the mine to be too

given drill hole data for esti-

(61).: in this planning problem

steep, for otherwise they might cave in; 

mating the distribution of ore grade within the deposit, and relevant 

economic data, the problem is to determine the most profitable ultimate

It is useful to approach this problem by dividing the depositpi t limits.

(i.e. all of the volume which may potentially be included in the ultimate 

limit) into blocks of appropriate sizes, such that the removal of a given
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block implies the removal of the blocks located above it in the next 

upper layer. Then, for every block, is computed an economic measure such 

as the net profit - value of the ore contained in the block minus the 

exploitation and processing costs. This result in a maximum-weighted 

closure problem in a highly-structured graph with thousands or tens of 

thousands of vertices (i.e. blocks).

(703) involve the selection of profit-Other notable applications 

able activities (e.g. production lines, trade financing, transportation of 

goods) requiring the shared use of expensive faci1ities (e.g. machines, 

trade offices, terminals).

minimum cut equivalence was noted first by Rhys

In this case the graph is bipartite, and the
(703) (2)and Bali ns<i . It

is possible to reduce a closure problem with an arbitrary graph to the 

bipartite case

thing to do. For the open-pit mine application, T.B. Johnson 

that this (bipartite) "network flow technique" involves solution times close

. On the other hand, 

recent experiments byPlasseand Elbrond (Département de Génie Minéral,

Ecole Polytechnique de Montréal), using the original nonbiparti te sparse 

graph (and a crude maximum flow algorithm) indicated a marked superiority 

over a state-of-the-art implementation of the Lerchs-Grossman method, for 

a "small" example with 400 blocks; and Chvatal (Department of Computing 

Science, McGill University, Montreal) have undertaken to develop an appro

priate implementation of this nonbipartite minimum cut method for problems 

of realist!c size.

^0Z),{60),{74),{90) 62. .(80 )SM0 eS. 0MMh .S 6M .(M 6M0.
{61) reported

{76)to that of the classical Lerchs-Grossman method

I
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In (78) McGinnis and Nuttle have shown how this activity selec-
r

tion can be combined with CPM (or PERT) analysis for solving the following

select a subject of activities to beproject coordinator's problem:

scheduled and determine their start time so that given prerequisite and 

corequisite restrictions are satisfied and no activity is in progress 

beyond a fixed planning horizon, in order to maximize the total net profit.

(33)
Binary posynomial maximization

\ tea S, 68eRCt nRC8R6dM0r Rs8nMe R nMk.SC t H Et8r tmr o 

"S0teSh8Rd OEta 80 Ret "SdteSh8Rd

• • 3

P(y) = £ "T TT y, (7-12)
TsN iei

where qT > 0 for all TçN={l, 2, ..., n}. Maximizing P(y) has the 

trivial solution y = 1_. Define as a binary posynomial maximization problem 

a problem of the following type:

maximize { P(y) - by : y is binary } (7-13)

where P(y) is a posynomial and b is an arbitrary real n-vector. For ins

tance , problem (7-7) is of this type. The problem (7-13) can be reduced 

to a maximum-weighted closure problem in a graph defined as follows: its 

node set includes all the subsets T s. N such that Pj > 0 with weight equal 

to qp, and all singletons {i} with weight q ^ - b^; there is an arc 

(T,T') in this graph whenever T ^ T' (in fact, if T 2 T' =; T", the arc 

(T,T") is superfluous).

★
★ ★
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The binary quadratic programming formulation of the minimum 

cut problem allows to solve several problems as a sequence of minimum cut 

problems in related networks. In the following applications, tie number 

of nodes is the successive networks is nonincreasing (and generally strict

ly decreasing). Except for one case, the number of iterations is bounded 

by the number of nodes in the initial network.

{92),[9Z)Maximum-ratio closure problem

Consider a directed graph with two weights wn. > 0 and p^. > 0 

attached with every vertex v 

empty closure U which maximizes the ratio w(U)/p(U). In the context of 

investment selection, the weights p^. are interpreted as the cost of selec

ting project i, and thus it is wished to maximize the profit over cost ratio.

The problem considered is to find a non-r

/

Consider also the problem of sequencing jobs on a single machine to mini

mize the total weighted completion times subject to precedence constraints;

has proposed the following decomposition procedure: find a 

closure Uj (relative to the precedence graph) of the job set N with maximum

(ZC5)Sidney

total weight over total processing time ratio; 

maximum ratio closure U2 in N-U

then continue finding a

and so on until the job set N is exhausted 

(in addition it is required that those optimal closures be minimal for the 

inclusion, a condition which derives from a property of the Labelling 

Procedure).

i »
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A useful scheme for dealing with a fractionnai objective w(U)/p(U) 

is due to Isbell and Marlow^5^: pick a trial value r (possibly the ratio 

corresponding to a current feasible solution) and find a feasible solution 

which maximize

I

\

(8-1)z(U) = w(U) - rp(U)
!

If z(U) >0, U is a feasible solution with ratio larger than r, while if 

z(U) = 0 then U is an optimum solution to the maximum ratio problem. Finally 

if z(U) < 0 then there is no feasible solution with ratio greater than or

equal to r.

In a primal method, we start with a feasible solution and success

ively improve it by solving (8-1) with r set at the value of the ratio of

For the maximum-ratio closure problem, starting
i

the current solution.

Ukwith the trivial full closure U = V generates a sequence U1, II2,

k {92)
• • • 9

k + 1 9. ,SddS40 .(R. .(MCM 48dd 6M R.S, kdS02CM0 02k( .(R. N e U

most |V[ minimum cut problems to solve.

+In a primal-dual method, we maintain a couple (r”,r ) of values

such that segment [r”r+[ contains the optimum ratio.

to carry out a binary search in which the trial value r is -^ (r~ + r+).

He shows that, when all weights are integer, a maximum ratio closure is

obtained after at most (21og2|V| + log2(max w.) + 21og2(max p.) + 1) itera-
i 1 i 1

1SC DeS. .SS dRCuMD 8e.MuMC 4M8u(.0r .(80 6S2e) 8h"CSnM0 Se .(M

{74) proposedLawler

tions.
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bound for the primal method, while the latter seems, in general, more 

attractive since it does not depend at all on the weights.

{93)Hyperbolic bivalent posynomial maximization

The previous approaches extend immediately to the following

problem:

/
(8-2)maximize {(P(y) - by)/(dy - Q(y)) : y ^ 0, bivalent}

where P(y), Q(y) are posynomials,

P(y) - by > 0 and dy - Q(y) > 0 for all bivalent y ^ 0.

1 In this case, the primal method (starting with y° = 1) generates a sequence 

y^ of solutions with y^ + 1 

minimum cut problems to solve.

ky°, y1, < y . Thus there are at most n• • • 9

(92),[93)
AppllÇÊîi2!]^_£o_9!^E!2_ tilery

Consider an undirected graph G = (V(G), E(G)). We will denote 

by H < G the fact that H is a subgraph of G, i.e. V(H) cV(G) and 

E(H) £ E(G).

1
A forest is a subgraph with no cycle and a pseudoforest is a

subgraph which contains at most one cycle in each of its connected compo

nents. Two invariant numbers of a graph are defined: the arboricity a(G) 

(resp. pseudoarboricity pa(G)) of a graph G is the minimum number of forests 

(resp. pseudoforests) which cover all the edges of G.
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(83) )Theorem (Nash-Williams

{ 1 E(H) 1 : H < G, |V(H) | > 2a(G) = max ! V(H)I -1 •

(92)Theorem

max E(H) : H < G, |V(H) | > 1a(G) = van
( Fxl denotes the smallest integer greater than or equal to x).

The pseudoarboricity pa(G) may be computed by solving the

following hyperbolic bivalent quadratic problem

x.. x- 
i J

(y^VjK E(G)max
x,=0,l ri x.
x # 0 v,e v(g)

This problem can be solved in 0(log2|V|) iterations (for simplifying the 

notations, we set V=V(G)) by using binary search, each of these itera

tions involving the solution of a minimum cut problem in a network with 

a most |V| +2 nodes. Thus the overall complexity of this approach is 

0( |V| 3log|V|). In addition, the maximum flow produced in the last itera

tion may be used to construct a decomposition of G into pseudoforests 

(see (93) ).

Computing the arboricity is a little bit more complicated due

ln<93>to the presence of the constant -1 in the denominator, 

requiring the computation of 0(|V|) pseudoarboricity of subgraphs of G is

an approach
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described; its complexity is thus 0( ] V 14log |V | ). This approach does not 

seem to yield a decomposition of G into forests. Such a decomposition can 

be obtained by the Matroid Partitionning Algorithm of Edmonds

6

(23)

(99)b kdR00 S, p2R)CR.8k 8e.MuMC "CSuCRhh8euF"CS6dMh0

QSe08)MC R 6S2e)M) 8e.MuMC "CSuCRh S, .(M ,SChy

(f(y) : £ < Y < u, y integer}minimize

f(y) = yTQy + by (8-3)where

< 0 for j # kQ is a symmetric matrix with q.Jk

nBq> 0 for all jand

l and u are nonnegative integer vectors.

As an application, consider the problem of locating, in the p-

dimensional Euclidian space, n new facilities among the points with integer 

coordinates, with respect to m existing facilities, in order to minimize

a weighted combination of all the squared-Euclidian distances

Pv m* c&[£'■« ais>2)<V\s>2g(x) = (8-4)(x, -w..
JS

i=l
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where v..^ (resp. w^) is a measure of the traffic between facilities

j and k (resp. j and i),
jkj

\
a. are the (integer) coordinates of the existing

facilities, and

Go RCM .(M E8e.MuMCa kSSC)8eR.M0 S, .(M eM4 ,Rk8W• • • 5 JP
lities to be located.

This integer squared-Euclidian distance location problem decomposes into 

p disjoint one-dimensional location problems, all of which are easily 

put into the form (8-4).

If u is tentatively set to u = £ + J_, problem (8-3) reduces to

If x* denotes an optimum solution to this restricted pro- 

that there exists an optimum solution

Hence, for each j

with xf = £. + 1, we can increase the lower bound on x . by one.U U U
"CSkM00 80 CM"MR.M) 2e.8d Re S".8h2h 0Sd2.8Se G- 80 S6.R8eM)r 8e 4(8k( Ret

G- 80 Mp2Rd .S 8.0 k2CCMe. dS4MC 6S2e)o
J

is optimum to the original problem (8-3), which is thus solved by a sequence

the form (7-6). 

blem, Picard and Ratliff show 

x° to the original problem (8-3) such thanx0 > x*.

(99)

This

It is shown that such a solution

nE (u. - l ■) minimum cut problems. 
3 J

of at most

J=1

(98)The recti linear_di_stance_facili ty_location_problem

This problem is similar to the previous location problem, but with 

rectilinear distances, instead of the squared-Euclidian distances. In other
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Uf W Gk0am ECk0"W EGj0

9e R))8.8Se 4M eS dSeuMC 8e080. Se

- a^)2) is replacedwords, in (8-4) every term (x.

(resp. |Xjs - ais|).by x.js " Xks

having integer coordinates for either the new or existing facilities. 

ln<77> , Love and Yerex present an application of this model to the loca

tion of production facility in the prestressed concrete industry. As it 

was the case for the squared-Euclidian distance problem, this rectilinear

distance location problem decomposes into p disjoint one-dimensional pro-
(114) (RnM 0(S4e .(R. 8. CM)2kM0 .S R d8eMRC6dMh0o WM0SdS40k8 Re) lSnM

(13) showed that it isprogramming problem, while Cabot, Francis and Starry 

in fact the dual of a minimum-cost flow problem. A consequence of these

there is an optimum solution in which everyreductions is the following: 

coordinate of every new facility is the correspond!'ng coordinate of an

existing facility.

In<S9> , Picard and Ratliff showed that, in the one-dimensional

problem, the optimum location of the new facilities is dependent on the 

relative positions of the old facilities, but not on the distances between 

Let the old facilities be numbered (for a particular dimension con

sidered) in nondecreasing order of their coordinates, i.e. such that

them.

R8 < Rm < ooo <R^ E(MCMr Sd) ,Rk8d8.8M0 48.( .(M 0RhM kSSC)8eR.M RCM R002hM) 

.S 6M kSe,S2e)M)ao 7(Me kSe08)MC .(M CM0.C8k.M) "CS6dMh S, dSkR.8eu .(M 

eM4 ,Rk8d8.8M0 Sedt RhSeu .(M kSSC)8eR.M0 R^ SC R 

RCM eS. CMdMnRe. ESC j20. 6t ,Rk.SC8eu ER

Since the distanceq + T
- a ) ) we may set

H

aq + 1 = aq + 1 ar|d thus the restricted problem reduces to
q + 1
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n r m
C Evjk(yj(1-yk> 
j=i Lk=i

(8-5)+ b.y.minimize - boJ J

if the new facility is located in awhere y^ = 1 q + 1
or 0 if it is located in ap ’
p h

E6 o Wj8j8U
8Hp+d

e h
2. ( E ERe) 4ooo 

U8
jHd 8Wp+v

This problem can be set into the format (7-6). 

tion to this problem, 

to the original problem in which a new facility j is located among the

Let y* be an optimum solu-

It is shown that there exists an optimum solution

coordinates ai, ..., a if y*= 0, and among the coordinates a .Q J Q '
The problem thus reduces to two disjoint smaller problems which

a• • 5 m

if y* =J
are decomposed in the same fashion. This solution procedure involves at 

most (m-1) minimum cut problems to be solved for every dimension. Subse-

, Drezner and Wesolowsky 

how this procedure relates to the minimum-cost flow formulation of Cabot

1.

(M ) (22) (67)quently, Cheung Re) KSSdMe (RnM 0(Se4

(13)M. Rdo

- - -
★ ★
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9. MORE DIFFICULT MINIMUM CUT PROBLEMS

Other problems may be formulated as minimum cut problems involving 

either negative capacities or additional constraints. This usually results 

is NP-complete problems. However this minimum cut formulation may be use

ful for providing relaxations and insights into the structure of the pro-

blem at hand.

It is possible to extend the definition of the capacity of a

If for some pair (v. v.) of vertices we have
6 » U

< 0r .(M .(M R""CSRk(M0 6R0M) Se ,dS40 RCM eS dSeuMC R""d8kR6dMo

k2. .S eMuR.8nM kR"Rk8.8M0o

. + cCij ji
?

V
The maximum cut problem can be formulated this way, by simply

[62) , ittaking the negative of all capacities. Since it is NP-complete 

follows that the minimum cut problem with negative capacities is NP-complete.

[49)For dealing with negative capacities, Hansen suggested to

replace some variables x^ by their complement x^ = 1 - .

set of variables, if any, the substitution of which by their complement

Finding a sub

disposes of all negative capacities, is equivalent to "balancing" a "signed 

graph" (see

it may be useful to find a subset of variables which minimizes the total

[50) ), and can be performed very efficiently. If this fails.

absolute value of all negative capacities remaining after this complemen

tation. While this task is in general as difficult as solving the original
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problem, heuristics may be useful to reduce this "gap" for the subse

quent application of another algorithm (e.g. a branch-and-bound algo- 

ri thm).

A general formulation for the integer linear programming pro

blem with bounded variables is the following (see (39) )•

(9-1)minimize (cy : Ay = b, y is binary}

The equations Ay = b are equivalent to the single equation (Ay-b)T(Ay-b)=0 

which can be introduced into the objective function with a suitably large
(95) is in the formatLagrange multiplier X. The resulting problem

T (9-2)(dy - y Qy : y is binary}minimize

T Twhere Q = -XA A and d = c - 2Xb A. Unfortunately there may be negative 

nondiagonal entries in the matrix

However, we may use this approach to gain some insight in the 

for instance, assume that we have found (may

be within a branch-and-bound algorithm) a feasible solution y.By defining

structure of the problem:

'Xj % (9-3)if y-JCj = cj and, for all i, a.^a.. = 0,yryr
y — l-y-. c. = -c. and, for all i,

J vJ Ü J

% (9-4)if y. = 1,aij = -aij

we observe that problem (9-1) is equivalent to

{cy : fty = 0, y is binary} (9-5)minimi ze
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r'VXj r\/r?A' % . , . i{cy - y ffy : y is binary} (9-6)or minimize

where ^ = -xK^'K. 

to problem (9-5) the following constraints:

Now we use a strategy of restriction , that is we add

r
Tj H tk ,SC Rdd jrk 02k( .(R. j # k Re) (9-7)< 0

%The problem remains feasible since y = 0 works, and these constraints are 

enforced by simple substitution, reducing the number of variables in the 

resulting problem. Let the resulting problem, after these reductions, be

(9-8)(cy : Ay = 0, y is binary}minimize

(cy - yTQy : y is binary} (9-9)or minimize

Since fi = -XATA contains no negative nondiagonal entry, problem (9-9) is

Indeed by taking very large X, the 

problem is seen to reduce to a minimum-weighted closure problem in a graph

If a solution y with negative

solvable as a minimum cut problem.

defined by all the nonzero entries of A^A.

weight cy is found, then it induces an improved feasible solution to pro

blem (9-1). Let us consider the following relation: y is derivable from 

y if y, as defined by (9-3) satisfies all the constraints (9-7). It can 

be shown that this is in fact an equivalence relation, which partitions

the set of feasible solutions into equivalence classes. Thus, whenever

we obtain a feasible solution in a class, we deduce a best solution within

this class by solving a minimum-weighted closure problem. Then we may dis

card this entire class of solutions by adding a disjunctive constraint:
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- for at least one pair j,k such that j ^ k and

Q.. < 0 *]k

% = 1

(9-10)

Empirical evaluations are necessary to check whether, in practical in

teger programming problems, the classes of derivable solutions usually 

contain more than a single solution each.

Of course, there are solvable instances of minimum cut problems

with negative capacities, for instance the maximum cut problem in a 

planar graph, see 

problem considered in

numbering of its vertex set such that the source is v0, the sink v 

as before, and now for every vertex v. (i = 0, 1,

are equal, for all j such that i < j<n + 1 (the sink-arc capa

cities may be arbitrary); the maximum cut problem can be solved, in such 

a network, by dynamic programming; as an application, consider the problem 

of nonpre-emptively sequencing jobs on two non-identical parallel machines

<45> and*3» Re) ReS.(MC 8e0.RekM S, .(M hRG8h2h k2.
(70).: consider a complete undirected graph with a

n + r 

n) all the capaci-• • • 9

ties cij

(80).S h8e8h8zM .(M hMRe ,dS4 .8hM 026jMk. .S R u8nMe .S.Rd SC)MC E0MM Rd0S

,SC R )80k2008Se S, 02k( R hS)Md 4(8k( hRt Skk2C 8e hS)Mdd8eu R (S0"8.Rd 

MhMCuMekt kd8e8kay

hRk(8eM0r 08ekM .(M SC)MC8eu S, jS60 Se MnMCt hRk(8eM 80 .(20 8h"S0M)o

.(M "CS6dMh CM)2kM0 .S .(M RddSkR.8Se S, jS60 .S

Re) .(80 RddSkR.8Se "CS6dMh kRe 6M ,SCh2dR.M) R0 R hRG8h2h k2. "CS6dMh 

.(CS2u( .(M p2R)CR.8k "CSuCRhh8eu ,SCh2dR.8Se E3W6ao
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Additional constraints

It is remarkable that very simple additional constraints may

Consider for instance themake the minimum cut problem NP-complete. 

following cardinality-constrained minimum cut problem:

{bx - xTCx : E x. = k, x is binary} (9-11)mi nimize ii

9. 80 CMR)8dt 0MMe .(R. 4M kRe 0SdnM .(M hRG8h2h k2. "CS6dMh 6t CM"dRk8eu

r Re).(M hR.C8G Q 6t cWQ 4(MCM c 80 R hR.C8G 48.( Me.C8M0 kWjj

n. Thus the

cardinality-constrained minimum cut problem is NP-complete. Similarly,

solving problem (9-11) for every value of k = 0, 1, . • • 5

deciding whether an arbitrary graph contains a cut with exactly k arcs 

(instead of k vertices as in (9-11)) is also an NP-complete problem; for

this would provide an effective means of solving the maximum cut problem.

As an example of a problem that can be formulated as a cons

trained minimum cut problem, consider the following quadratic assignment 
probl em^ ^ : given n locations with distance matrix D (d 

between location p and q), and n facilities with a traffic matrix T (t^. 

is the traffic between facilities i and j), find a one-to-one assignment 

of facilities to locations which minimizes the total traval distance, i.e.

80 .(M )80.RekMep

r r r r 8 0)0)L-j L-j l—> t—i SM eh Se Mh E9Wvm ah8e8h8zM
8 " 2 p
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then G' contains a closure(for all hfV) of its endpoints i and j;

with exactly nq +^-q(q-l) vertices if and only if G contains a clique 

wi th q vertices.

An example of a problem amenable to a constrained maximum- 

weighted closure problem is the simple plant location problem: given m 

possible locations for new facilities, with a fixed cost f^ for construc

ting a facility in location i, given n customers, each of which to be 

assigned to exactly one facility, and a cost matrix C (c 

assigning customer j to a facility constructed in location i), find in

is the cost of
ij

which locations to construct facilities and how to assign the customers 

to them in order to minimize the resulting total cost. A standard integer 

programming formulation {26) is the following:

EEcijx-j+Cyminimi ze (9-16)i
i

Exijsubject to (9-17)= 1 all j
i

*

(9-18)all i,jXij ? yi

x,y binary (9-19)

/ '
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corresponding to negative capacities in the minimum cut problem). We 

seek a way to enforce the following constraints

(9-22){ileu for all i6 I => TU

We may use the substitution of some variables by their complement, as it 

was suggested by Hansen for the quadratic case, but we observe that tur

ning a coefficient positive may create several negative coefficients 

with T1 < T. It might be useful to characterize polynomials which 

are amenable to posynomial maximization, maybe by studying the "balancing" 

of "signed hypergraphs".

Another example of such a minimum cut approach, consider the 

in an undirected graph 6 = (V,E) with vertexvertex packing problem:

weights vi., find a subset P çV with maximum total weight, such that to

describes an interesting appli-iss)two vertices of P are adjacent in G.

cation to the reconstruction of level schemes, in nuclear physics: given

the set of y-ray transitions observed during the decay of a certain nucleus, 

their intensities and their coincidence, find a set of energy levels and

the pattern constituted of energy levels and of transitions that agrees

to the best with the data. This project resulted in the elaboration of an

interactive software system named SIRENE which is being used by physicists

at l'Institut des Sciences Nucléaires de Grenoble. A possible formula

tion of the vertex-packing problem is the following:
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L (9-23)maxi mize w .x.
i i

i

(9-24)all {i,j}6 Ex.x. = 0
i J

subject to

(9-25)x is binary

= 1 if i 6P, andwhere x i
0 otherwise.

If G is bipartite, say V = S + I and E E S x I, we may replace every 

variable x^ for if! by its complement x^ = 1 - x^, yielding constraints 

of type (7- 9). Thus the vertex-packing problem in a bipartite graph 

can be solved as a maximum-weighted closure problem, i.e. as a minimum 

cut problem, a well-known fact (e.g.

partite, we can replace every constraint (9-24) by the two constraints

(33) ). When the graph is not bi-

xi(1 - Xj) = 0

x,(l - x, ) = 0

(9-24a)all {i,j}€ E

(9-24b)all {i, j} 6 E
J

t provided that we append the [v| additional constraints

(9-26)all i 6V= 1xi - xi



49.

When we relax those last constraints (9-26) we obtain a maximum-weighted

closure problem in a bipartite graph twice the size of G. This relaxed 

formulation is attributed to Edmonds and Pulleyblank; see Nemhauser

[84) for a proof of the equivalence with a linear programmingand Trotter
[89)relaxation of another formulation of the vertex packing problem, and
{100)(91) for further properties of the resulting solution. Pulleyblank 

shown that "almost all" graphs (in a precise probabilistic sense) yield 

to a solution which violates all the constraints (9-26). The design of 

more efficient ways to enforce these constraints might deserve further 

investigation.

hasand

By considering the complementary graph G = (V,E) of a graph

is the complete graph on vertex 

set V (clique), the vertex-packing problem reduces to the maximum-weighted 

clique problem, i.e.: find a maximum-weighted subset Q c V such that all 

vertices in Q are adjacent in E. The maximum clique problem occurs when 

all weights are unity. The pseudoarboricity pa(G) provides an upper bound 

to the maximum cardinality y(G) (number of vertices) of a clique contained 

in G, by the following relation:

G = (V,E), where E = K E and K

y(G) < 2pa(G) -fl (9-27)

The authors have embodied this bound in a branch-and-bound algorithm for 

the maximum clique problem; they report in 

with a similar branch-and-bound algorithm using the bound derived from the

(92) experimental comparisons
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the formulation (9-23), (9-24a) ,(9-24b), (9-25); it appears that the 

former works best for "dense" graphs G (i.e. for finding a maximum cli

que in a "sparse" graph G) while the latter is better for sparse graphs 

G. The idea used in the bound (9-27) can be refined as follows: assume 

that we enumerate the set Sp(G) of all p-cliques (i.e. cliques with p 

vertices) contained in G, where p is a (small) fixed integer, and consi

der the following problem:

E 7T xi
KfSp(G) vi f K (9-28): x is binary, x ^ 0maximize <

E*i
i

Let i"p(G) denote the maximum value of this ratio for a given graph G. 

y(G)-clique Q of G contains B(y(G),P) = (^ 

the ratio for the solution defined by x^ = 1 if v^. 6^, is B(y(G) ,p)/y(G). 

Thus we have

Any

y(g) ) p-cliques and the value of

(2-29)B(y(G),p)/y(G) < rp(G).

This equation can be used to derive an upper bound on y(G) for any p > 2 

(note that by setting p = 2 we obtain precisely the bound (9-27).
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