
Version 5.4
zPSG WMB UG V54 2013d03.doc

April 25, 2013

Processor Selection Guide
for

IBM System z

zPSG
User’s Guide

for
WebSphere Message Broker

© IBM Corporation – 2009, 2013

zPSG User’s Guide for WebSphere Message Broker

Page ii

The following are trademarks of the International Business Machines
Corporation in the United States and/or other countries.

Multiprise*
CICS*
DB2*
e-business logo*
Enterprise Storage Server
IBM*
IBM ^
IBM logo*
IBM System z9
IMS
LSPR
IBM System z10
IBM zEnterprise 196 (z196)
IBM zEnterprise EC12 (zEC12)

Parallel Sysplex*
RMF
S/390*
WebSphere*
VSE/ESA
VM/ESA*
z/VSE
z/OS*
z/VM*
zSeries
IBM System z*
IBM zEnterprise System
IBM zEnterprise 114 (z114)

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.
Linux is a registered trademark of Linus Torvalds.
Java and all Java-related trademarks and logos are trademarks of Sun
Microsystems, Inc., in the United States and other countries
Microsoft, Windows and Windows NT are registered trademarks of Microsoft
Corporation.
InstallShield Professional is a trademark of InstallShield Software Corporation
All other products may be trademarks or registered trademarks of their
respective companies.

zPSG User’s Guide

Page 2

WebSphere Message Broker
z/OS and Linux

This tool provides estimates of System z processor capacity for applications using
WebSphere Message Broker (WMB) V8.0 on z/OS or Linux for System z.
See the WMB Glossary of Terms for a definition of terms used in describing WMB
applications.
WebSphere Message Broker belongs to a family of business integration products that is
available from IBM.
Business integration is the coordination and cooperation of all your business processes
and applications. It involves bringing together the data and process intelligence in your
enterprise, and harnessing these so that your applications and your users can achieve
their business goals.
Business integration means that:

• You can connect customers, suppliers, partners, and service providers, with
continuing security and control, to enable newly built and re-engineered
applications for more effective business processes (for example, Supply Chain
Management).

• You can make mergers and acquisitions a success by integrating dissimilar IT
infrastructures from more than one company so that they can work together as a
single entity.

• You can react more quickly to market trends and opportunities because your IT
systems are flexible and dependable, and no longer constraining.

• You can overcome the barriers of diverse computer systems, geographic
boundaries, time differences, language and format differences, and different
methods of working.

WebSphere MQ messaging provides a secure and far-reaching communications
infrastructure that you can expand with WebSphere Message Broker to apply
intelligence to your business data as it travels through your network.

Transports
The main components of WebSphere Message Broker (the broker, the Configuration
Manager, the User Name Server, and the Message Broker Toolkit) communicate using
WebSphere MQ's communications protocol, WebSphere MQ Enterprise Transport.
Your business applications, which can be on any of more than thirty industry platforms
including those from IBM, Microsoft, and Sun Microsystems, Inc., can connect to the
broker using WebSphere MQ protocols, or using other supported protocols which
include WebSphere MQ Mobile Transport,, WebSphere MQ Real-time Transport,
WebSphere MQ Multicast Transport, WebSphere MQ Web Services Transport,
WebSphere Broker JMS Transport, SOAP/HTTP and TCP/IP.

zPSG User’s Guide

Page 3

The benefit of using WebSphere MQ protocols (WebSphere MQ Enterprise Transport or
WebSphere MQ Mobile Transport) is that they provide assured, once-only delivery of
messages between the components.
WebSphere MQ protocols provide rich support for applications:

• The Message Queue Interface (MQI) and Application Messaging Interface (AMI)
are supported in several programming languages.

• The point-to-point (including request/reply and client/server) and
publish/subscribe application communication models are supported.

• The complexities of communications programming are handled by the messaging
services and are therefore removed from the application logic.

• The applications can access other systems and interfaces through adapters and
gateways to products such as Lotus® Domino, Microsoft Exchange/Outlook,
SAP/R3, and CICS and IMS/ESA products.

WebSphere Message Broker
WebSphere Message Broker provides a powerful message broker solution driven by
business rules. Messages are formed, routed, and transformed according to the rules
defined by an easy-to-use graphical user interface (GUI).
Diverse applications can exchange information in dissimilar forms, with brokers handling
the processing required for the information to arrive in the right place in the correct
format, according to the rules that you have defined. The applications do not need to
know anything except their own conventions and requirements.
Applications also have much greater flexibility in selecting which messages they want to
receive, because they can specify a topic filter, or a content-based filter, or both, to
control the messages that are made available to them.
WebSphere Message Broker provides a framework that supports supplied, basic,
functions along with user-defined enhancements, to enable rapid construction and
modification of business processing rules that are applied to messages in the system.

Using WebSphere Message Broker in your business
WebSphere Message Broker addresses the needs of business and application
integration by managing the flow of information. It provides services, based on message
brokers, to allow you to:

• Route a message to several destinations, using rules that act on the contents of
one or more of the fields in the message or message header.

• Transform a message, so that applications using different formats can exchange
messages in their own formats.

• Store a message, or part of a message, in a database.

• Retrieve a message, or part of a message, from a database.

• Modify the contents of a message; for example, by adding data extracted from a
database.

zPSG User’s Guide

Page 4

• Publish a message to make it available to other applications. Other applications
can choose to receive publications that relate to specific topics, or that have
specific content, or both.

• Create structured topic names, topic-based access control functions, content-
based subscriptions, and subscription points.

• Exploit a public interface to develop message processing node types that can be
incorporated into the broker framework to complement or replace the supplied
nodes, or to incorporate node types developed by Independent Software
Vendors (ISVs).

• Enable instrumentation by products such as those developed by Tivoli®, using
system management hooks.

The benefits of WebSphere Message Broker can be realized both within and outside
your enterprise:

• Your processes and applications can be integrated by providing message and
data transformations in a single place, the broker. This integration helps to
reduce the cost of application upgrades and modifications.

• You can extend your systems to reach your suppliers and customers, by meeting
their interface requirements within your brokers. This ability can help you to
improve the quality of your interactions, and allow you to respond more quickly to
changing or additional requirements.

zPSG User’s Guide

Page 5

How To Do a WMB Sizing

When you select WMB sizing support from the Product Selection window to begin a
new sizing, the WMB Application Definition input window is presented.
The general approach to sizing WMB applications on System z is to determine which of
the pre-defined scenario profiles best represent the customer’s application and provide
an average scenario execution rate per second during a peak interval for each of these.
Refer to the WMB Application Definition window to see the list of scenario profiles that
can be included in a sizing. The Profile button for each scenario can be used to display
a detailed description of the processing included in that scenario. In addition to the
scenario execution rate, also provide the message persistence and message size.
Default values are provided for each of these input fields.
The usual span of time for a peak interval is 15 minutes, and you want to specify the
average transactions per second for that interval. Note that if you have statistics for the
average transaction rate for prime shift or for a day or week, you might want to apply a
peak-to-average multiplier factor to averages for long periods of time to arrive at an
average rate for a 15 minute interval.
To see results, click on the Summary Report, CPU Utilization or Transaction Rate
buttons in the Reports and Capacity Projections section of the window.
The application window images shown in this user guide have been provided as a
representation of the windows the user will see when using zPSG but there may be
minor differences from the current version of zPSG, such as version numbers and
dates.

zPSG User’s Guide

Page 6

WMB Scenario Profiles

Below are the detailed descriptions of the pre-defined scenario profiles supported in this
tool. A scenario is included in a sizing by providing a scenario execution rate per
second greater than zero. The message size and message persistence should also be
specified if applicable.

Message Routing
The message routing use case shows how a database table can be used to store
routing information which a message flow can then use to route messages to
WebSphere MQSeries queues.

The message routing use case shows how to implement a routing table, using shared
variables, to route messages in a message flow. Two versions of the message flow
were used in these evaluations. One using a database was run as the WebSphere
Business Integration Message Broker V5 test case and the second using the routing
table implemented using shared variables was run as the WebSphere Message Broker
V6 test case.

The processing in the message flows is described below:

Routing_using_database_table Message Flow
The message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under
transactional control.

2. Creates a destination list based on data in a database table and then routes the
message to the entries in the destination list. Note this involves a read to the
database for every message processed.

3. Produces a WebSphere MQ output message. The destination of the message is
specified in the destination list.

This version of the message flow was used for the WebSphere Business Integration
Message Broker V5 measurements.

Routing_using_memory_cache Message Flow
The message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under
transactional control.

2. Creates a destination list based on data which is held in shared variables.
3. Produces a WebSphere MQ output message. The destination of the message is

specified in the destination list.

zPSG User’s Guide

Page 7

Further information about the Message Routing use case can be found in the Message
Brokers section of the Technology samples category which is in the samples gallery of
the WebSphere Message Broker development toolkit.

zPSG User’s Guide

Page 8

Transformation using ESQL
The transformation using ESQL use case is based on processing of sales data. At the
time of sale the customer name, the code for the product, a description of the product,
its category, the unit price and quantity purchased are recorded. Each customer may
purchase several items.

Subsequently a statement is produced for each customer and it is the production of the
statement that is performed in this use case. The processing results in a restructuring
of the original message.

The messages used (input and output) are self-defining XML messages. Each
message with sales data consists of three parts:

• A header containing a count of the number of repetitions of the repeating SaleList
structure that follows.

• The body that contains the repetitions of the repeating SaleList structure.
• The trailer that contains the time the message was processed.

The production of the statement for each customer within a SaleList is achieved with a
single message flow, the Transformation with ESQL Message Flow.

Transformation with ESQL Message Flow
The message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under
transactional control.

2. The input message is parsed and an invoice produced for each customer. This
is achieved with a single Compute node containing ESQL.

3. Produces a WebSphere MQ output message containing an XML payload under
transactional control.

Further information about the Transformation with ESQL use case can be found in the
Message Brokers performance reports
(http://www.ibm.com/support/docview.wss?rs=171&uid=swg27007150&loc=en_US&cs=
utf-8&lang=en)

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27007150&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=171&uid=swg27007150&loc=en_US&cs=utf-8&lang=en

zPSG User’s Guide

Page 9

Coordinated Request/Reply
The coordinated request reply use case is based on the scenario of a contemporary and
established application communicating through the use of WebSphere MQ messages in
a request/reply processing pattern. The contemporary application uses self-defining
XML messages and issues a request message. The established application uses
Custom Wire Format (CWF) messages. It receives a request message, processes it
and delivers a reply message. For the applications to successfully communicate, the
message formats must be transformed for both the request and reply messages.

The processing in the use case consists of three message flows and one message set.
The message flows are:

Request Message Flow
The request message flow performs the following processing:

• Reads a WebSphere MQ message containing an XML payload.
• Converts the message into the equivalent CWF format.
• Creates a WebSphere MQ message containing the transformed message.
• Saves the original ReplyToQ and ReplyToQMgr details in a separate WebSphere

MQ message for subsequent retrieval by the Reply message flow.
• Sets the ReplyToQ and ReplyToQMgr details to be the input of the Reply

message flow.
• Sends the message on to the Backend Reply message flow.

The Request message flow consists of the following nodes:

Backend Reply Message Flow
The backend reply message flows performs the following processing:

• Reads a WebSphere MQ message.
• Adds the time the message was modified to the payload of the message.
• Writes a WebSphere MQ message.

The Backend Reply message flow consists of the following nodes:

Reply Message Flow
The reply message flow performs the following processing:

1. Reads a WebSphere MQ message containing a message in CWF format.
2. Converts the message into the equivalent XML format.

zPSG User’s Guide

Page 10

3. Obtains the ReplyToQ and ReplyToQ Mgr of the original request message by
reading the WebSphere MQ message which was used to store this information in
the Request message flow. This is done by using the MQGET node.

4. Creates a WebSphere MQ message containing the transformed message and
the retrieved ReplyToQ and ReplyToQMgr values.

The Reply message flow consists of the following nodes:

Further information about the Coordinated Request Reply use case can be found in the
Message Brokers section of the Technology samples category which is in the samples
gallery of the WebSphere Message Broker development toolkit.

zPSG User’s Guide

Page 11

Aggregation
The Aggregation use case demonstrates a simple four-way aggregation operation,
using the Aggregate Control, Request, and Reply nodes. It contains three message
flows to implement a four-way aggregation: FanOut, RequestReplyApp, and FanIn. This
is the type of processing that might be used to invoke four different applications to
process a travel booking, one to organise each of the flight, hotel, car and money.

FanOut Message Flow
This is the flow that takes the incoming request message, generates four different
request messages, sends them out on request/reply, and starts the tracking of the
aggregation operation:

RequestReplyApp Message Flow
This message flow simulates the back-end service applications that would normally
process the request messages from the aggregation operation. In a real system, these
could be other message flows or existing applications. This message flow reads from
the same queue that the MQOutput nodes in the FanOut flow write to, and it outputs to
the queue that the input node which the FanIn flow reads from - it provides a messaging
bridge between the two flows. The messages are put to their reply-to queue (as set by
the MQOutput nodes in the FanOut flow).

zPSG User’s Guide

Page 12

FanIn Message Flow
This flow receives all the replies from the RequestReplyApp flow, and aggregates them
into a single output message. The output message from the Aggregate Reply node
cannot be output directly by an MQOutput node without some processing so a Compute
node is added to process the data into a format where it can be written out to a queue.

Further information about the Aggregation use case can be found in the Message
Brokers section of the Technology samples category which is in the samples gallery of
the WebSphere Message Broker development toolkit.

zPSG User’s Guide

Page 13

Web Services – SOAP Nodes
The SOAP Nodes use case shows how the SOAP Input, Reply and Request nodes can
be used to both provide and consume a Web Service.

The starting point for the use case is a WSDL file that defines a simplified ordering
service. The web service always returns a response indicating the part order is
available; an option for extending the web service might be to use a Database node to
query a stock database.

The Message Flows
This use case uses two message flows. One provides a Web Service and the other
consumes a Web Service. These are described below.

Web service provider message flow
The following figure shows the Web Service provider message flow:

The SOAP Input node recieves incoming SOAP messages and, if they are valid, passes
them down the message flow to the Provider Extract subflow subflow which appears
with the name PerfSOAPSampleProviderSF.

The Provider Extract subflow was created from the "Start from WSDL and/or XSD files"
wizard in the Message Broker Toolkit and looks like this:

The SOAP Extract node takes a SOAP message and removes the SOAP envelope. In
this use case, this leaves an XML message which can now be used in the XMLNSC
domain in nodes such as the Mapping node or the Compute node.

The SOAP Extract node then routes the message to a label based on the Web Service
operation that is being invoked. In this use case, only one operation is used.

zPSG User’s Guide

Page 14

Upon exiting the subflow and returning to the main provider message flow, the XMLNSC
message enters a Compute node in which an output message is created using minimal
processing.

Processing then passes to the SOAP Reply node which constructs a suitable SOAP
message to return to the Web Service consumer that initiated the Web Service call.

Web service consumer message flow

The following figure shows the Web Service consumer message flow:

This Web Service consumer flow is initiated by an MQ message arriving on the queue
monitored by the MQ Input node. In this use case, this is an XML message in the
XMLNSC domain. This message then enters a Compute node where the incoming data
is used to create the XML data that is to be passed to Web Service.

Processing then enters the Comsumer subflow, shown as
PerfSOAPSampleConsumerSF in the figure above.

The Consumer subflow was created by the "Start from WSDL and/or XSD files" wizard
in the Message Broker Toolkit and looks like this:

The SOAP Request node takes the incoming XML data and uses it to build a valid
SOAP message that which is then sent to the Web Service.

Assuming a valid response is recieved, it is passed to a SOAP Extract node which
removes the SOAP envelope from the reponse, returning the message to one in the

zPSG User’s Guide

Page 15

XMLNSC domain. At this point the message is routed to the SaleResponse label and
the subflow exits at which point control is returned to the main message flow.

At this point the message is sent to an MQ Output node which writes the XML data to
the specified MQ queue.

zPSG User’s Guide

Page 16

Large Messaging
The Large Messaging use case is based on the end-of-day processing of sales data.
Messages recording the details of sales through the day are batched together in the
store for transmission to the IT centre. On receipt at the IT centre the batched
messages are split back out into their constituent parts for subsequent processing.

This splitting is achieved using a WebSphere Message Broker message flow. Each of
the individual messages representing a sale has the same structure.

The input and output messages in this use case are implemented as self-defining XML
messages for simplicity. Other message formats could easily be used.

Each input message consists of three parts:

• A header containing a count of the number of repetitions of the repeating SaleList
structure that follows.

• The body that contains the repetitions of the repeating SaleList structure.
• The trailer that contains the time the message was processed.

The aim of the processing in this use case is to write each of the instances of the
SaleList structure as a separate WebSphere MQ message while minimizing overall
memory requirements.

The message flow implements a memory saving technique through the use of a
mutable message tree.

The processing in the use case consists of one message flow. The processing it
performs is described below.

Large Messaging Message Flow
The large messaging message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under
transactional control.

2. Formats a WebSphere MQ message for each instance of the SaleList structure.
3. Writes the WebSphere MQ messages to the output queue.
4. Produces a WebSphere MQ message to signal completion of the processing

when the final element has been processed.

The Large Messaging message flow consists of the following nodes:

zPSG User’s Guide

Page 17

Further information about the Large Messaging use case can be found in the Message
Brokers section of the Technology samples category which is in the samples gallery of
the WebSphere Message Broker development toolkit.

zPSG User’s Guide

Page 18

Data Warehouse
The Data Warehouse use case demonstrates a scenario in which a message flow is
used to perform the archiving of data, such as sales data, into a database. The data is
stored for later analysis by another message flow or application.

Because the sales data is analyzed at a later date, the storage of the messages has
been organized in a way that makes it easy to select records for specified times. The
date and time at which the WebSphere MQ message containing the sales record was
written are stored as separate column values when the message is inserted into the
database. The database table contains four columns:

• The message data - the payload of the WebSphere MQ message stored as a
BLOB.

• The date on which the WebSphere MQ message was created.
• The time when the WebSphere MQ message was created.
• A time stamp created by the database to record the time when the record was

inserted.

By storing the data in this way it is possible to retrieve records between specific periods
of time, say between the hours of 9:00 a.m. to 12:00 p.m. or 12:01 p.m. and 5:00 p.m.
which would allow a comparison of morning and afternoon sales to be made.

The data archiving is performed by the WarehouseData message flow. This is
described below.

WarehouseData Message Flow
The WarehouseData message flow performs the following processing.

1. Reads a WebSphere MQ message containing an XML payload. The payload
contains the data to be archived.

2. Converts a portion of the message tree to a BLOB ready for insertion into the
database.

3. Inserts the message BLOB along with the date and time at which the WebSphere
MQ message was written into a database.

4. Sends a WebSphere MQ confirmation message to signal successful insertion of
the message into the database.

The WarehouseData message flow consists of the following nodes:

zPSG User’s Guide

Page 19

Further information about the Data Warehouse use case can be found in the Message
Brokers section of the Technology samples category which is in the samples gallery of
the WebSphere Message Broker development toolkit.

zPSG User’s Guide

Page 20

File Nodes
This use cases illustrates use of the file processing nodes that became available in
Message Broker V6.1.

In order to be able to determine the processing rate it was necessary to insert an MQ
Output node after the FileOutput Node so that the processing rate could be measured
by the automation which invokes and measures the use cases. Otherwise it would have
been necessary to have run an additional program on the server to monitor and count
the files. This would have been a larger overhead than the alternatives and would have
distorted the results.

This use case consists of a FileInput Node, Compute Node, FileOutput Node and an
MQ Output Node. The nodes are shown in the figure below.

Each of the large files (each was ~100MB) read by the FileInput node consists of
multiple records. The size of record varies for different executions of the use case
although the file size stays constant. The size of the record determines the number of
records in the file as the file was of a fixed size. For example with 4K records the
100MB file contains 256000 records. Each record is a valid XML document.

The output file is closed when it reaches 1GB of data regardless of record size. This is
achieved by using the first compute node to count the number of records read and to
check the record size. When 1GB of data was written it sent a message to the Finish
File terminal of the FileOutput node.

All records are processed using a message Domain of XMLNSC.

The FileInput node is configured to set the Record Detection property to Parsed Record
Sequence using the XMLNSC parser. Input files are deleted once processed.

The File Output Node is configured to set the Record Definition to unmodified.

For every record written to the file an empty MQ message is propagated to the MQ
Output node. The queue is drained by a client application and the message rate is

zPSG User’s Guide

Page 21

reported. This rate represents the number of records being written to the output file per
second.

zPSG User’s Guide

Page 22

Linux under z/VM

This window is displayed when the Linux deployed as a guest under z/VM button is
clicked on the primary definition window for the application being sized.

When Linux is deployed as guest under z/VM the CPU capacity requirement for the
workload increases based on a number of factors including the workload characteristics,
number of Linux guests being sized, and the average number of virtual CPs assigned to
each guest.

The user can define the z/VM environment and let the tool estimate the z/VM cost factor
or they can specify the user defined z/VM cost factor. When both are entered, the user
defined z/VM cost factor will be used to calculate the capacity requirement with z/VM.

zPSG User’s Guide

Page 23

z/VM Environment
Number of Linux guests being sized
This field is automatically assigned based on the number of guests being sized.
When sizing a single application the value will always be 1. This number varies
in an aggregation sizing based on the number of applications assigned to the
concurrency set being sized. This field is display only and can’t be changed by
the user.
Average number of virtual CPs per guest
Average number of virtual CPs assigned to guest(s) being sized. Default value is
1.0

User Defined z/VM Cost Factor

 Cost Factor
 User defined z/VM cost factor specified as a percentage. Default value is 0.0%

Note: When Linux is deployed as a single guest under z/VM and the number of
virtual CPs is equal to the number of real CPs, you should increase the CPU
capacity requirement by 9% for WMB.

Push Buttons
Click the Return button to return to the calling window.
Click the Default All button to set all the values on this window to the default
setting.
Click the Cancel button to return to the calling window without saving any
changes.

When Linux is deployed under z/VM with multiple guests involved, a detailed z/VM
sizing should be done using the zVM-Planner tool, described on the next page. The
capacity requirement for each Linux guest, determined from zPSG, will be needed as an
input metric. For sizing Linux guests with workload environments that are not yet
supported in zPSG, contact Techline for sizing assistance.
zPSG application sizings are generally done for peak period activity. When many Linux
guests are active under a single z/VM image, it is likely that the individual guest peaks
do not occur at the same time. Therefore an opportunity exists for complementary
peaks, thus lessening the overall z/VM capacity requirement. The zVM-Planner tool
can help with this assessment.

You can also request sizing assistance for z/VM from Techline, using the appropriate
URL:
For IBMers: http://w3-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS2881
For BPs: http://www.ibm.com/partnerworld/techline

http://w3-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS2881
http://www.ibm.com/partnerworld/techline

zPSG User’s Guide

Page 24

z/VM Planner for Linux Guests on IBM System z Processors

zVM-Planner is a PC-based productivity tool under Windows XP or Vista, designed to
provide capacity planning insight for IBM System z processors running various Linux
applications as guests under z/VM. Capacity results are based on analysis of a variety
of benchmarks, both Linux native and Linux under z/VM. The tool is generic concerning
software release levels, generally applying to z/VM v5.1 and later.
zVM-Planner input consists primarily of VM guest definitions and capacity requirements
for each intended Linux application (a variety of Linux applications are supported). The
expected capacity requirement for each Linux guest (a required input) can usually be
obtained using the companion zPSG sizing tool or Techline assistance. The combined
guest capacity requirement is then determined for optimally complementary peaks and
for totally concurrent peaks. The degree of peak concurrency is user-selectable
between these values. The resulting capacity requirement is combined with that of VM
to support the entire complement of guests. Another companion tool, zPCR, can then
be used to identify a processor and partition that can accommodate the VM image. All
capacity values must be relative to a Reference-CPU setting that is common for all tools
involved.
For scenarios where new Linux guests are to be added to an existing VM image, a
zVM-Planner model of the existing VM guest configuration should first be built. The
new Linux guests can then be added to determine to overall VM capacity requirement.
For scenarios where a VM image is to be added to an existing host processor, a zPCR
model of the existing LPAR configuration should first be built. A partition that can
deliver the capacity required by the VM image can then be added. zPCR can help
assess any processor upgrade that may be necessary to accommodate the VM image.
Several guest metrics are available to help balance how the overall capacity will be
distributed, including the number of VCPs (virtual CPs), and Share and Capping
assignments.
Results are presented in tables and graphs that can be captured for documentation
purposes. zVM-Planner studies can be saved for future reference. Both a User’s
Guide and integrated context sensitive help are included.

IBM employees can obtain zVM-Planner and other CPS tools via the Intranet
w3.ibm.com/support/americas/wsc/cpsproducts.html

IBM Business-Partners can obtain zVM-Planner and other CPS tools via the Internet
https://www-304.ibm.com/partnerworld/wps/servlet/mem/ContentHandler/tech_PRS1762

For questions concerning CPS tools, contact Capacity Planning Support:
• Lotus Notes: CPS PC Tools/Gaithersburg/IBM@IBMUS
• E-mail: cpstools@us.ibm.com

http://w3.ibm.com/support/americas/wsc/cpsproducts.html
http://w3.ibm.com/support/americas/wsc/cpsproducts.html
https://www-304.ibm.com/partnerworld/wps/servlet/mem/ContentHandler/tech_PRS1762
mailto:CPS%20PC%20Tools/Gaithersburg.IBM@IBMUS?subject=zPCR
mailto:cpstools@us.ibm.com?subject=zPCR

zPSG User’s Guide

Page 25

WMB Application Definition

This window is displayed when the PSG button is clicked on the Product Selection
window when WebSphere Message Broker has been selected for z/OS or Linux (the
example used here is for z/OS).
Note: A transaction rate greater than zero must be specified for at least one
scenario profile to get a sizing estimate.
Please note that the WMB version supported for z/OS and Linux is 8.0.

zPSG User’s Guide

Page 26

Description of Input Fields
Menu bar
 File

 New Start a new study. Sets all fields to initialization values.
Load Load a previously saved study
Save Save the current study
Save as Save the current study as a new file
Exit Exit window and return to the Product Selection window
(Ctrl-E)
Exit zPSG Terminate zPSG execution (Ctrl-Q). Exit zPSG can also be

invoked from the Exit zPSG button on the tool bar.
 Help
 Context Help (F1) Help for this window
 About zPSG Product information

Toolbar
 ? button Click this button to go to Help for this window.
 Exit zPSG button Click this button to terminate zPSG execution.

Customer =
Input field, for documentation purposes, not required. If you want to save a copy of the
sizing estimate, you can use this field to document which sizing it is.

Application name =
Input field, for documentation purposes, not required.
If you want to save a copy of the sizing estimate, you can use this field to document
which sizing it is.

zPSG User’s Guide

Page 27

Input Fields and Buttons

Scenario Rate/sec
Specify an execution rate per second value for each of the scenarios that should be
included in the sizing. Specify a value of zero if the scenario should not be included in
the sizing. The default value for each of the scenarios is zero.

Message Persistence
Select from Non-Persistent or Persistent for the scenarios that should be included in the
sizing that support message persistence. The default value for each of the scenarios
that support persistence is Non-Persistent.

Message Size (K)
Specify the average message size in KB for each of the scenarios that should be
included in the sizing. For the File Node scenario, this value represents the file record
size in KB. The default value for each of the scenarios is 4K except for the Large
Messaging scenario which is 16K.

Profile button
Click this button to view a detailed description of the processing for the scenario
associated with this button. Each scenario has a Profile button.
Note: The short description for each scenario is displayed in a tool tip when the mouse
pointer is over the name of the scenario.

zPSG User’s Guide

Page 28

Reports and Capacity Projections
This section provides buttons to view output windows with summary reports and
capacity projections.

Linux deployed as guest under z/VM (checkbox) For Linux only
When checked, the sizing will include capacity for z/VM. The Linux under z/VM button
will be enabled and the Linux under z/VM definition window will be displayed.

Summary Report button
Click this button to view a summary of the input assumptions for the sizing and a
breakdown of the CPU/transaction among the transaction profiles included in the sizing.

CPU Utilization button
Click this button to see an output window with estimates of processor utilization for all
System z processors supported in zPSG.

Transaction Rate button
Click this button to see an output window with estimates of transaction rates that can be
supported on all System z processors supported in zPSG. You can also see the
transaction rates that can be supported within a Saturation Design Point (SDP)
specified for the processors.

SDP %

Description
 Input field, numeric, valid range is 1 to 100.

SDP stands for Saturation Design Point. This is a classic capacity
planning concept which allows you to examine the amount of workload
than can be supported in less than the full capacity of the processor
model. It applies to the Transaction Rate output window and enables you
to determine how much work can fit into a processor that is already being
used for other applications.

Default
 The default is 90%.

Return button
Click this button to return to the Product Selection window.

Reference-CPU button
Click this button to go to a window to change the System z processor used as a basis
for capacity ratings. See the Reference-CPU section in the zPSG User’s Guide for
information about this setting.

zPSG User’s Guide

Page 29

Linux under z/VM button For Linux only
Click this button for important sizing considerations when Linux is deployed as a guest
under z/VM. See Linux under z/VM for details about these sizing considerations.

zPSG User’s Guide

Page 30

WMB Application Activity Summary

This window is displayed when the Summary Report button is clicked on the primary
WMB Application Definition window. It shows a breakdown of the CPU per
transaction for the various pre-defined transactions included in the sizing.

Menu bar
 File

Output Write contents to a flat (PRN) file.
Copy Write contents to Window’s clipboard

Graph Generates a pie chart showing the distribution of application
activity

 Help
 Context Help (F1) Help for this window
 About zPSG Product information

zPSG User’s Guide

Page 31

Toolbar
1st button
Click this button to send sizing information to a PRN file for processing outside of
zPSG.
2nd button
Click this button to send sizing information to the clipboard, so that you can copy
it into a note or other document.
? button
Click this button to go to Help for this window.

Scenario column
Lists the pre-defined scenarios available on the primary WMB Application Definition
window.

Single Scenario Capacity column
Reflects the amount of CPU (as represented by the Capacity Rating) for each scenario,
and at the bottom for all transactions.

Scenario Rate / sec column
Reflects the number of scenarios completed per second for each of the pre-defined
scenarios as specified on the WMB Application Definition window.

Total Tran Capacity column
Reflects the amount of CPU (as represented by the Capacity Rating) for each scenario
multiplied by the transaction rate specified in the Scenario Rate / sec column, and at
the bottom for all transactions.

CPU Distribution column
Shows the percentage of the CPU/transaction used by each scenario.

Percent of workload estimated to be eligible for zAAP Processing = (z/OS only)
Shows the estimated percentage of Java content for the pre-defined scenarios included
in the sizing. Percentages of Java content were computed in all the performance lab
measurements done to support the pre-defined scenarios supported in this tool.
Depending on what pre-defined scenarios you included, the percentage per transaction
will vary. These percentages reflect the amount of CPU that we estimate you can
offload to zAAP, assuming sufficient zAAP capacity to handle the load. You can
generate an estimate of zAAP capacity requirements using the zAAP Capacity
Estimator available from the CP Calculator menu on the Product Selection window.

zPSG User’s Guide

Page 32

Push Buttons

Click the Return button to return to the primary WMB Application Definition
input window.

Click the Utilization Report button to go to the WMB Processor Capacity
Projections - Processor Utilization output window.

Click the Transaction Rate Report button to go to the WMB Processor
Capacity Projections - Transaction Rate Supported output window.

Click the Show Assumptions button to see a list of the assumptions for the
sizing in the WMB Application Transaction Assumptions window.

zPSG User’s Guide

Page 33

WMB Transaction Assumptions

This window is displayed when the Show Assumptions button is clicked on the WMB
Application Activity Summary window.
All assumptions as listed will be included when generating output for the Summary
window.

zPSG User’s Guide

Page 34

WMB Processor Utilization
WMB Processor Capacity Projections

This window is displayed when the CPU Utilization button is clicked on the WMB
Application Definition window or the Utilization Report button is clicked on the WMB
Application Activity Summary window.

zPSG User’s Guide

Page 35

Menu bar
 File

Output Write report contents to a flat (PRN) file.
Copy Write report contents to Window’s clipboard

 Graph (for processors currently selected in table)
Capacity Generate bar graph depicting capacity values
Utilization Generate bar graph showing utilization on selected

processors
 Help
 Context Help (F1) Help for this window
 About zPSG Product information

Toolbar
1st button
Click this button to send sizing information to a PRN file, for processing outside
of zPSG.
2nd button
Click this button to send sizing information to the clipboard, so that you can copy
it into a note or other document.
? button
Click this button to go to Help for this window.

Table
Processor column
A list of all processor models supported in zPSG
Feature column For z/OS & Linux
Using the General Purpose CPs option under Table View, a designation of how many
general purpose processing engines (CPs) for this entry. For example, 4W (“W” is short
for “way”) indicates 4 CPs or engines. Also see Flag column below.
Feature column For Linux only
Using the IFL CPs option under Table View, a designation of how many IFL engines for
this entry. For example, 4W IFL (“W” is short for “way”) indicates 4 IFL engines. Also
see Flag column below.
Flag column
If you place your cursor on a row in this column, an explanatory message about the
System z model designation and the number of CP or IFL engines for the entry.
MSU column
Only for the General Purpose CPs Table View (does not apply to IFLs). Shows the
MSU rating assigned to the number of CP engines for this entry.

zPSG User’s Guide

Page 36

Capacity Rating column
The capacity ratings reflect the relative capacity of each processor table entry to the
reference-CPU and its capacity rating assigned on the Reference-CPU window. When
zPSG is started the reference-CPU will be set to a 2094-701 (a z9 EC/700 processor
with 1 general purpose CP) with a capacity rating of 593 MIPS.
Projected Utilization column
Shows the estimated CPU% for each processor entry in the table, based on the
transaction rate(s) and input parameters specified for the pre-defined transactions. This
is the primary output for a sizing.
Servers Required column
If the estimated CPU% is greater than 100% (and therefore cannot fit on the processor),
this column reflects the number of these models that would be needed to accommodate
the load.

Table View Options Box
Click a radio button in each section to customize the processor entries shown in the
table:

 General Purpose CPs shows entries with some number of general CP
engines

 IFL CPs shows entries with some number of IFL engines (for Linux only)
 Family shows all processor models for the family selected (Default)
 All shows all processor models supported in zPSG
 Within SDP shows all models that can accommodate the load within the

Saturation Design Point
 Selected shows only selected models. Models are selected by clicking on

the entry while holding down the Ctrl key on your keyboard.

Return button
Click this button to return to the primary WMB Application Definition window.

zPSG User’s Guide

Page 37

WMB Transaction Rate Supported
WMB Processor Capacity Projections

This window is displayed when the Transaction Rate button is clicked on the WMB
Application Definition window or the Transaction Rate Report button is clicked on
the WMB Application Activity Summary window.

zPSG User’s Guide

Page 38

Menu bar
 File

Output Write report contents to a flat (PRN) file.
Copy Write report contents to Window’s clipboard

 Graph (for processors currently selected in table)
Capacity Generate a bar graph depicting capacity values
ETR Generate bar graph showing transaction rate supported at

SDP
ITR Generate bar graph showing maximum transaction rate

supported
 Help
 Context Help (F1) Help for this window
 About zPSG Product information

Toolbar
1st button
Click this button to send sizing information to a PRN file, for processing outside
of zPSG.
2nd button
Click this button to send sizing information to the clipboard, so that you can copy
it into a note or other document.
? button
Click this button to go to Help for this window.

Table
Processor column
A list of all processor models supported in zPSG
Feature column For z/OS & Linux
Using the General Purpose CPs option under Table View, a designation of how many
general purpose processing engines (CPs) for this entry. For example, 4W (“W” is short
for “way”) indicates 4 CPs or engines. Also see Flag column below.
Feature column For Linux only
Using the IFL CPs option under Table View, a designation of how many IFL engines for
this entry. For example, 4W IFL (“W” is short for “way”) indicates 4 IFL engines. Also
see Flag column below.
Flag column
If you place your cursor on a row in this column, an explanatory message about the
System z model designation and the number of CP or IFL engines for the entry.

zPSG User’s Guide

Page 39

MSU column
Only for the General Purpose CPs Table View (does not apply to IFLs). Shows the
MSU rating assigned to the number of CP engines for this entry.
Capacity Rating column
The capacity ratings reflect the relative capacity of each processor table entry to the
reference-CPU and its capacity rating assigned on the Reference-CPU window. When
zPSG is started the reference-CPU will be set to a 2094-701 (a z9 EC/700 processor
with 1 general purpose CP) with a capacity rating of 593 MIPS.
SDP= xx % -- ETR column
Shows the transaction rate for the application that can be supported within the
Saturation Design Point specified on the WMB Application Definition window (the
default SPD is 90%). ETR stands for External Throughput Rate, which is a standard
System z term for transaction rate.
SDP=100% -- ITR column
Shows the transaction rate for the application that can be supported at 100% CPU. ITR
stands for Internal Throughput Rate, which is a standard System z term indicating the
throughput that can be achieved at 100% CPU. ITR is computed by dividing the ETR
by the CPU% (expressed as a decimal). This is the way to correctly rate the processor
capacity of each entry in the processor table for this workload (as opposed to MIPS
ratings, which are generally erroneous).

Table View Options Box
Click a radio button in each section to customize the processor entries shown in the
table:

 General Purpose CPs shows entries with some number of general CP
engines

 IFL CP’s shows entries with some number of IFL engines (for Linux only)
 Family shows all processor models for the family selected (Default)
 All shows all processor models supported in zPSG
 Within SDP shows all models that can accommodate the load within the

Saturation Design Point
 Selected shows only selected models. Models are selected by clicking on

the entry while holding down the Ctrl key on your keyboard.

Return button
Click this button to return to the primary WMB Application Definition window.

zPSG User’s Guide

Page 40

WMB Sizing Assistance

Here are instructions for accessing the System z questionnaire and submitting WMB
sizing requests to Techline. Note that on the Techline websites there are sizing
questionnaires for distributed platforms in addition to System z questionnaires. Be sure
to use System z questionnaires for System z sizing requests. The questions and sizing
methodologies are different from distributed platforms.
For IBMers:
1. Obtain the latest copy of the WMB sizing questionnaire for System z from the

following website:
• http://w3-03.ibm.com/support/techline/sizing/swsz.html

2. Submit a sizing request to Techline using the instructions found in the sizing
questionnaire.

For Business Partners:
1. Obtain the latest copy of the WMB sizing questionnaire for System z via:

• Phone: Call PartnerLine at 1-800-426-9990 (US and Canada)
• Email: pwcs@us.ibm.com
• Online: http://www.ibm.com/partnerworld/techline

2. Submit a sizing request to Techline using the instructions found in the sizing
questionnaire.

http://w3-03.ibm.com/support/techline/sizing/swsz.html
mailto:pwcs@us.ibm.com
http://www.ibm.com/partnerworld/techline

zPSG User’s Guide

Page 41

WMB Glossary of Terms

Bindings Mode Connection
When a JMS connection is made in bindings mode, MQ JMS uses the Java Native
Interface (JNI) to call the MQ Queue Manager directly rather than communicating over
TCP/IP. This connection mode is much more efficient when the sender and receiver
reside in the same image of z/OS. Connections that require TCP/IP are called TCP
mode connections.

BMP
A type of entity bean with Bean Managed Persistence. This means that the
programmer must add code to persist the contents of the entity bean to the data base.

Cached Handshake
See SSL Handshake.

CCF
Crypto Co-Processor Facility. On S/390 and z900 processor models, 1 or 2 CCFs are
included on every processor. They can be used to off-load some SSL processing from
the general CPs. Processing can be off-loaded for full SSL handshakes, which reduces
that CPU cost by 90% or more, and for TDES encryption & decryption, which reduces
that cost by about 50%. CCFs are supported by SSL under z/OS but not under Linux.
See Crypto Hardware.

Cipher
See SSL.

Client Authentication
See SSL Client Authentication.

CMP
A type of entity bean with Container Managed Persistence. Using this type of entity
bean, the EJB container is responsible for persisting bean contents to the data base.

Crypto Hardware
Either co-processors (CCFs or CFAs) or cards (PCICA, PCICC, PCIXCC) installed in
zSeries processors that off-load some SSL processing from the general CP engines.

CTG
CICS Transaction Gateway, the IBM product providing JCA (J2EE) data connector
support from WAS to CICS

Cursor
See DB2 Cursor
Data connector
Software that provides support for communication between WAS and back-end
applications. Data connectors are used to send transactions or requests, with the

zPSG User’s Guide

Page 42

accompanying input data and parameters, to a back-end application like CICS or IMS,
and to return the transaction response or request results to WAS.

DB2 Connect
The IBM middleware product that provides access from WAS to DB2 data bases
running in separate system images from WAS when ASCII to EBCDIC translation is
needed. DB2 Connect is used in our performance measurements to access DB2 on
z/OS from WAS on Linux.

DB2 Cursor
An API used when multiple rows (records) may be returned by DB2 for a SQL select
(read) statement. The API consists of a Declare Cursor, an Open Cursor which initiates
the building of the result set of rows by DB2, and a processing loop of Fetch to return
each row to the application. Cursors may be open for read only or for update.

DOM
Document Object Model. When you parse an XML document using DOM, you create a
tree structure (a program object) in memory, representing the contents of the XML
document. The programmer can navigate the tree structure and add, modify, or delete
its elements. DOM parsing uses more CPU and more memory than SAX parsing.

DTD
Document Type Definition. Used in XML validation processing. A DTD describes the
grammar that constrains an XML document. If, for example, an XML-format personnel
file contains entries for many employees, each of which must have 1 social security
number, the DTD would contain a rule enforcing the occurrence of 1, and only 1, SSN
per employee. The rules that may be described using a DTD are fairly limited in scope.
For more extensive control over the contents of an XML document, use an XML
Schema instead of a DTD.

EJB
Enterprise Java Bean. This is a specialized Java bean which is architected to provide
enterprise-class behavior (transactional support, security, etc.). EJB support is one of
the technologies in the J2EE specification.

EJB Container
The EJB Container in WAS provides the runtime environment for enterprise beans.

Entity Bean
A type of EJB which represents permanent data. An entity bean persists its contents to
the data base.

zPSG User’s Guide

Page 43

Express Message
Also called non-persistent message. Guaranteed to be delivered by MQ at most once,
unless there is a system failure. Not hardened to DASD. Deleted when receipt is
acknowledged.

Full Handshake (aka non-cached handshake)
See SSL Handshake.

Handshake
See SSL Handshake.

Hashing Algorithm
See SSL.

HTTP, HTTPS
HyperText Transfer Protocol, HyperText Transfer Protocol Secure. HTTP is the
protocol used for non-SSL communications on the web. HTTPS is for SSL
communications.

IMS Connect
An IBM product which provides TCP/IP access to IMS. Recent versions of IMS
Connect also provide local mode access to IMS applications on the same system as
WAS.

IMS Connector for Java
Data connector runtime support for accessing IMS transactions from WAS applications
using J2C (JCA) connector technology.

Java Class
A definition for a certain type of Java object.

Java Method
One instance of a Java class or object.

Java Object
One instance of a Java class. For example, if I have a class called “Animal”, I might
create an instance of “Animal” called “Rover”, to represent my dog.

JCA Connector
A means for a WAS application to interact with other system components (CICS, IMS,
MQ). A JCA connector conforms to the Java Connector Architecture.

JDBC
Java Data Base Connectivity. JDBC is commonly used to access data in DB2, or other
relational data bases, from Java applications.

zPSG User’s Guide

Page 44

JMS
Java Message Service. A peer to peer communication facility that can be used by
software components or applications, usually in conjunction with MQ Series.

JSP
Java Server Page. JSPs are similar to static HTML pages, but they provide a
programming interface which can be used to add dynamic content to the page.

J2EE
Java 2 Platform, Enterprise Edition. The server side platform which provides standard
support for EJBs and other enterprise-class technologies in Java.

Local Mode
In the context of JCA Connectors, local mode refers to a means of accessing CICS or
IMS without using TCP/IP sockets. Local mode is generally more efficient since it is
optimized to exploit the fact that the caller and callee are on the same system.

MQ Message
A string of bytes that is meaningful to the applications that use it

MQ Queue
A named data structure for holding messages until they are retrieved by an application.
Multiple senders and receivers can be associated with a single queue.

MQ Queue Manager
A named group of address spaces that run as a z/OS subsystem and manage the
resources associated with WebSphere MQ. Applications connect to a Queue Manager
using its name.

Parse, parser, parsing
A parser is a program that facilitates the interpretation of XML documents, and the
extraction of XML data.

PCICA Card
Peripheral Component Interconnect (PCI) Cryptographic Accelerator card. Offloads
some SSL handshake processing from general CP engines on zSeries.

PCICC Card
Peripheral Component Interconnect (PCI) Cryptographic Coprocessor card. Offloads
some SSL processing from general CP engines on zSeries.

PCIXCC Card
Peripheral Component Interconnect Extended (PCIX) Cryptographic Coprocessor card.
Offloads some SSL processing from general CP engines on zSeries.

Persistent Message
A persistent message is guaranteed to be delivered by MQ once and only once. It must
be written to a file or a database to guarantee delivery.

zPSG User’s Guide

Page 45

Point-To-Point Messaging
This messaging model enables the delivery of an MQ message to only one recipient,
also called a consumer.

Publish/Subscribe Messaging
This messaging model supports the delivery of an MQ message to multiple recipients
called topic subscribers.

Queue Manager
See MQ Queue Manager.

RC4/MD5
The most commonly used SSL cipher and hashing algorithm. With RC4/MD5, System
z9 and zSeries crypto hardware can be used for full (non-cached) handshakes, but not
for the encryption & decryption of data.

RMI/IIOP
Remote Method Invocation using CORBA’s communication protocol, IIOP. IIOP stands
for Internet InterORB Protocol. Requests to WAS coming from Java clients and other
WASs can use RMI/IIOP, which uses less CPU than HTTP requests.

SAX
Simple API for XML. A type of XML parsing. SAX parsing makes the contents of the
XML document available to the application through a series of callbacks which occur as
the parser scans and interprets the document. For example, the parser gives the
application control when it encounters a “start element tag”, so that subsequent
processing decisions can be based on the tag elements. Callback processing is defined
by user supplied handlers which are registered with the parser. During SAX parsing,
the XML document is processed sequentially. Unlike DOM, SAX does not allow the
program to revisit already parsed message segments unless they have been explicitly
saved by application code. It is not possible to modify the original XML document. SAX
parsing uses less CPU and less memory than DOM parsing.

Schema
Used in XML validation processing. A schema is used to describe the grammar that
constrains an XML document. If, for example, an XML-format personnel file contains
entries for many employees, each of which must have 1 social security number
specified as ### - ## - ####, the Schema would contain a rule enforcing the occurrence
of 1, and only 1, SSN per employee in the prescribed format. XML Schemas provide
the ability to exercise a high degree of control over the contents of an XML document.
Validation using a Schema does, however, generally require more CPU than validation
using a DTD.

Servlet
Java code which can be run in WAS (on the server) in response to an HTTP request.

zPSG User’s Guide

Page 46

Session Bean
A type of EJB which represents work to be done on behalf of a particular caller.
Session beans can be stateful (saving information from call to call) or stateless (saving
no status from call to call).

SOAP
Simple Object Access Protocol.
1. SOAP is a W3C specification which provides a standard for using XML to exchange
structured and typed information between peers in a decentralized, distributed
environment.
2. SOAP is also the name of the WebSphere Web Services implementation supported
in WAS 4.0 and WAS 5.0. The new Web Services support provided by WAS 5.0.2
performs significantly better (uses less CPU) than the original SOAP support. (and it
also conforms to SOAP specifications).

SQLJ
Standard Query Language for Java. Another means (in addition to JDBC) to access
data in DB2, or other relational data bases, from Java applications. In general, SQLJ
access uses less CPU than JDBC, but cannot be dynamically created.

State, Stateful, Stateless
Many client interactions cannot be completed with a single request, requiring several
requests to complete. For these multi-request interactions, it’s often necessary to retain
client and status information from request to request. This retained information is often
referred to as “state”. Session beans which retain state from request to request are
called stateful session beans. Session beans which do not retain state are called
stateless session beans, and they tend to consume less CPU than statefull session
beans.

TCP Mode (or Client Mode) Connection
When a JMS connection is made in TCP mode, JMS uses TCP/IP to call the MQ Queue
Manager rather than communicating over the Java Native Interface as it does in
bindings mode. With TCP Mode Connections, the MQ Queue Manager does not have
to be on the same server, or indeed the same platform.

Transacted Session
This option is used to group a series of messages into an atomic unit of work. All
messages in the work unit either succeed or fail. The application server commits the
session. If the application server detects an error, it may roll back the transaction. The
message is not actually sent until the transaction is committed. The next transaction
begins after a call to either commit or rollback.

TripleDES/SHA
The SSL cipher and hashing algorithm that provides the highest level of security,
generally used by financial institutions and government agencies with high security
requirements. TDES was developed by IBM and both the full handshake and
encryption/decryption processing are supported by crypto hardware. Although some

zPSG User’s Guide

Page 47

processing is offloaded from the general CP engines, TDES/SHA still uses significantly
more CPU than RC4/MD5.

Validation
See XML Validation

W3C
World Wide Web Consortium (w3c.org). The W3C is responsible for the creation and
advancement of standard web-based technologies.

Web Container
The web container in WAS handles requests for servlets, JSPs, and other files that
include server-side code.

Web Services
Web Services is the name given to communication that employs the SOAP standard for
messaging. SOAP messages are XML documents containing certain required
elements. They enable potential users of applications to find and invoke applications
without the need to understand their implementation and underlying structure. Web
services uses SAX parsing.

Web Transaction
This is a term we use to refer to any sequence of WAS activity that is repeatable and
you want to use as the unit of work for projecting capacity requirements. In most cases,
it is based on a business transaction. A web transaction can involve multiple
interactions with WAS, any number of Java servlets/EJBs, multiple access to DB2, and
multiple data connectors to back-end applications like CICS or IMS. Nothing inherent in
WAS dictates what the scope of a transaction is. The important thing is to match your
transaction rate with the scope of a web transaction that you choose., i.e. if your web
transaction is long and involves a number of activities, the transaction rate would be
lower than if you break up this sequence of activity into shorter web transactions.

XML
Extended Markup Language.

XML Attribute
A subcomponent of an XML element. Attributes are specified within element start tags
or empty element tags. In the following example, productId
 is an attribute:
 <productName productId=”123abc”>Whistler Tea Kettle</productName>

XML Element
A subcomponent of an XML document. The example below represents an element
called productName:
 <productName productId=”123abc”>Whistler Tea Kettle</productName>

zPSG User’s Guide

Page 48

XML Validation
Validation is the process used by an XML parser to insure that the contents of an XML
document conform to the rules in an associated DTD or Schema.

XSL Transformation

A type of XML processing used to create an XML document.

	Processor Selection Guide
	WebSphere Message Broker
	How To Do a WMB Sizing
	WMB Scenario Profiles
	Message Routing
	Transformation using ESQL
	Coordinated Request/Reply
	Aggregation
	Web Services – SOAP Nodes
	Large Messaging
	Data Warehouse
	File Nodes

	Linux under z/VM
	WMB Application Definition
	Input Fields and Buttons
	Reports and Capacity Projections

	WMB Application Activity Summary
	WMB Transaction Assumptions
	WMB Processor Utilization
	WMB Transaction Rate Supported
	WMB Sizing Assistance
	WMB Glossary of Terms

