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Abstract: The operation of buildings is linked to approximately 36% of the global energy consumption,
40% of greenhouse gas emissions, and climate change. Assessing the energy consumption and
efficiency of buildings is a complex task addressed by a variety of methods. Building energy modeling
is among the dominant methodologies in evaluating the energy efficiency of buildings commonly
applied for evaluating design and renovation energy efficiency measures. Although building energy
modeling is a valuable tool, it is rarely the case that simulation results are assessed against the
building’s actual energy performance. In this context, the simulation results of the HVAC energy
consumption in the case of a smart industrial near-zero energy building are used to explore areas of
uncertainty and deviation of the building energy model against measured data. Initial model results
are improved based on a trial and error approach to minimize deviation based on key identified
parameters. In addition, a novel approach based on functional shape modeling and Kalman filtering
is developed and applied to further minimize systematic discrepancies. Results indicate a significant
initial performance gap between the initial model and the actual energy consumption. The efficiency
and the effectiveness of the developed integrated model is highlighted.

Keywords: deformable models; electric energy demand; functional statistics; Kalman filtering;
shape-invariant model

1. Introduction

Energy consumption in the building sector (combined with buildings construction) is associated
with 36% of global final energy consumption and approximately 40% of total direct and indirect CO2

emissions. Associated figures rise every year mainly due to (a) improved energy access levels in
developing countries, (b) increased ownership levels of energy consuming devices, and (c) the growth
of global buildings floor area [1]. Measures to reduce energy consumption at building level include
passive and active energy efficiency measures, storage, energy management, and building integrated
renewable energy systems (e.g., solar, geothermal, and wind). Design and modeling of integrated
energy systems in net zero energy buildings is discussed by Athienitis and O’Brien [2].

Assessing energy efficiency in buildings is a complex task which varies according to the aim of
the analysis and the specificity of each case. In any case, expert knowledge and a set of technical
and non-technical information is required. Technical information usually concerns the geometry and
thermal characteristics of the building envelope, the design and operation of HVAC system, as well
as data from measurements regarding indoor/outdoor climate conditions and energy end usage.
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Non-technical data in some cases are associated with occupancy levels, clothing levels, users behavior,
perceptions, personal economics, and preferences.

Several decades now, significant research efforts have been directed towards evaluating energy
efficiency in buildings. Research results have been applied in advancing state-of-the-art, knowledge
and understanding, fostering new policies, better regulation, and innovations. In this context, several
methods have been developed and evolved along with the creation of custom software applications
built to match the needs of certain research and development fields. Various new techniques have
been developed and applied to include the physical or “white box” approach, the statistical or
machine learning “black box” and the hybrid “gray box” approach. A comparison of the models
and applications for predicting building energy consumption in terms of complexity, easiness to use,
running speed, input requirements, and accuracy is conducted by Zhao and Magoulès [3].

Physical models are developed to evaluate energy consumption in buildings by using equations
of heat and mass transfer between the building and the surrounding environment as well as energy
conservation among the building spaces and system components. Such physical models are classified
based on the deployed approach and whether it is defined as single (well-mixed) zone [4], multi-zone,
or zonal as provided in the state-of-the-art building modeling and energy prediction review by
Foucquier et al. [5]. The zonal method is a simplification of CFD in the sense that the thermal zone
is divided into several cells and in some cases representation in 2D is feasible. The advantage of the
zonal approach is linked to the capability of dealing with large volumes in moderate computation time.
SPARK [6] is such an example of a zonal approach software application. According to the multi-zone
approach, each one zone or building element (e.g., wall and window) or system (e.g., HVAC system)
or specific load (e.g., due to occupancy) is considered as one node for which the heat transfer equations
are calculated. Each thermal zone is considered as homogeneous and represented by uniform state
variables such as temperature, pressure, relative humidity, etc. The multi-zone or nodal approach is
particularly effective when evaluating the energy performance of a building with many thermal zones
since computational time for a year round simulation is relatively small. Therefore, the multi-zone
approach is suitable for testing the impact of alternative energy efficiency measures provided that a
reliable validated model has been created. The main disadvantage of this approach is related to the
difficulty in creating a valid building model especially in the absence of holistic information of the
building as built, systems installed, operational aspects, and data from measurements. EnergyPlus,
ESP-r, and TrnSys are among the most robust and frequently used multi-zone software programs.
Benchmarking between building energy simulation software programs reported in the literature is
available by Harish et al. [7].

Data-driven methods on the other hand require no physical information, i.e., thermal or
geometrical parameters, as they do not deploy heat transfer equations. Regression, Artificial Neural
Network (ANN), Genetic Algorithm (GA), and Support Vector Machine (SVM) are some of the
techniques used in building energy forecasting based solely on measurements of parameters such as
temperature, relative humidity, solar radiation, wind velocity, and energy consumption/production.
Machine learning techniques for estimating building energy consumption are exploited by Naji et al. [8]
and by Robinson et al. [9]. The main drawback of data-driven methods concerns the interpretation
of results in physical terms. Data-driven methods for building energy prediction and classification
studies are reviewed by Amasyali and El-Gohary [10] and by Wei et al [11]. Hybrid or “gray box”
methods combine physical modeling with data-driven techniques to counterbalance the weaknesses
of the “white” and “black” box approaches. Machine learning techniques can be used for parameter
estimation, e.g., by coupling a multi-zone model with GA. Another hybrid approach is to use statistical
models to improve the performance of physical models with respect to end-uses, which are often
unknown and hard to be modeled in a deterministic way.

In contrast with data-driven methods, detailed simulation models do not require conditions
monitoring to predict the building performance. However, various sources of uncertainty can lead
to significant discrepancies between model predictions and metered energy use. Such sources of
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uncertainty can be distinguished to specification-related, modeling-related, and scenario-related as
discussed by De Wit and Augenbroe [12]. Furthermore, embedding realistic occupant behavior on
building modeling and its impact on energy predictions is investigated and addressed as a significant
and complex problem by Ryan and Sanquist [13]. Overall, performance gaps can be attributed to a
variety of discrepancies in building modeling. A methodology to identify building energy performance
problems related to operational, measurements, or simulation aspects is proposed by Maile et al. [14].

Essentially, validation is a critical step to assess the simulation model’s plausibility and
reliability. This is especially important for the investigation of energy efficiency measures and the
assessment of the actual (not the relative) potential impact in terms of energy and cost savings,
environmental performance, thermal comfort, etc. Methods for model validation (otherwise referred to
as calibration) are reviewed by Coakley et al. [15], and indicators used in relevant standards (ASHRAE
Guideline 14, IPMVP, FEMP) to address acceptance thresholds are discussed [16] by Royapoor and
Roskilly [17]. Calibration of a building energy model based on actual measurements is extensively
investigated by O’Neil et al. [18]. The building under study hosts offices and conferences rooms,
and the authors perform an extensive sensitivity analysis including more than 2000 parameters
automatically refined using analytic meta-model-based optimization. A similar approach is followed by
O’Neil et al. [19] incorporating EnergyPlus and TRNSYS in their investigation and over 1000 parameters
for model calibration.

This paper investigates (i) the validation of a Near-Zero Energy Building (NZEB) simulation
model through trial and error approach of important model parameters and (ii) a novel postprocessing
approach is proposed which improves the simulation model’s accuracy, combining techniques of
functional statistics through appropriate energy shape modeling (employing the concept of deformable
models) and Kalman filtering to reduce the remaining biases. Initially, a physical model of the Leaf
Lab industrial NZEB in Italy is used to conduct a simulation of the building’s energy consumption for
two consecutive years using weather data recorded from onsite meteorological stations. HVAC electric
consumption obtained from the simulation is compared to actual measured values to establish the
initial (baseline) performance gap. Subsequently, through a trial and error approach, important model
parameters are identified and fine-tuned until an improved acceptable correlation between simulated
and recorded HVAC electric energy consumption is reached. At a second stage, inconsistencies
in the shape of the optimized energy prediction are corrected through an appropriate functional
shape/reshape modeling task by comparing recent measured energy demand outputs to predictions
and appropriately estimating expected deviations which are used to improve the shape model’s
output. At the last step, Kalman filtering is incorporated to remove remaining systematic biases
where is needed. Therefore, the original physical model’s results are passed through this integrated
model where meaningful interventions are performed to better predict the true situation without
neglecting the physical interpretation of the model output. The benefits from the proposed approach
are illustrated in the later section (Section 3) with substantial reduction in the error magnitude.

2. Methodology and Modeling Approaches

In this section, we describe the modeling approaches that are used throughout the paper for the
prediction of the energy demand. In particular we present (a) the initial energy simulation model and
its optimized version by appropriate parameter tuning, (b) the shape model approach in which the
optimized output of the energy simulation model is reshaped to further reduce systematic inefficiencies
related to discrepancies from the actual shape of the energy demand, and (c) postprocessing using
Kalman filtering which reduces remaining systematic errors not captured by the shape model approach.
A flowchart of the methodology is presented in Figure 1.
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Figure 1. Flowchart of the high level methodology followed.

2.1. The Energy Simulation Model: General Presentation of the Model, Areas of Application, Advantages,
and Shortcomings

EnergyPlus is the simulation engine software used to conduct an integrated simulation of the
building, system, and plant whereby supply and demand are matched based on successive iteration
substitution following Gauss–Seidel updating [20]. Open Studio is used as the API software for
developing and parameterizing the model following the principles outlined by Brackney et al. [21].
Ambient temperature, relative humidity, solar radiation, and wind speed data for 2017 and 2018 was
obtained from local meteorological equipment and converted to two yearly weather files. Data of
total HVAC energy consumption, for the years 2017 and 2018, are exploited for providing the baseline
against which model based results are evaluated.

The simulation model contains, on the one hand, the geometry, construction components and
materials of the building under study. For opaque material thickness (m), thermal conductivity
(W/mK), density (kg/m3), and thermal absorptance (dimensionless) properties are edited.
For transparent materials, such as glass in windows and sky windows thickness (m), thermal
conductivity (W/mK) and optical properties, such as solar, visible, and infrared transmittance,
are inserted. On the other hand, a model of the HVAC system is designed based on the installed
technologies and adjusted accordingly to the actual key performance heat pump technical parameters
such as Coefficients of Performance (COP), fan maximum flow power (m3/s), pressure rise, and
efficiency. Other parameters such as rated total heating/cooling capacity, and rated and maximum air
flow rated are automatically sized based on the software’s calculations. Furthermore, with respect to
the operation of the major installed systems, the simulation model takes into account the temperature
set points of the HVAC system, ventilation, and infiltration rates (ACH−1) and a number of schedules
to determine artificial lighting, electric equipment, and occupancy. Moreover, humidity control is
exercised using appropriate schedules controlling the operation of the HVAC to ensure that the
relative humidity during working hours in the various thermal zones varies between 40% and 60%.
Subsequently, an intensive search of the parameters that affected the daily, monthly, and annual
power distribution profiles is followed to improve the initial results of the model based by minimizing
deviation from HVAC power consumption data. Through the trial and error various combinations
and fine-tuning of the all of the above parameters is carried out to reach the optimum results when
assessing intra-day, monthly, and annual deviation levels.

EnergyPlus simulation is based on heat balance calculations solved simultaneously with the aid of
on an integration solution manager, which includes surface heat balance, air heat balance, and building
systems simulation blocks. The heat balance of outside surfaces is calculated based on the equation

q′′αsol + q′′LWR + q′′conv − q′′ko = 0 (1)

where
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q′′αsol is the absorbed direct and diffuse solar (short wavelength) radiation and heat flux
q′′LWR is the net long wavelength (thermal) radiation flux exchange with the air and surroundings
q′′conv is the convective flux exchange with the outside air
q′′ko is the conduction heat flux (q/A) into the wall

Clearly, q′′αsol is influenced by parameters such as location, surface angle and tilt, surface material,
and weather conditions. q′′LWR is determined by radiation exchange between the surface and the ground,
sky and air. It is dependent on the absorptivity and emissivity of the surface; the temperature of the
surface, sky, ground, and air; and corresponding view factors. Assumptions such that each surface is at
uniform temperature and energy flux leaving a surface is evenly distributed are considered reasonable
for building energy simulation. Using the Stefan–Boltzmann Law in the above equation yields

q′′LWR = εσFgnd(T4
gnd − T4

sur f ) + εσFsky(T4
sky − T4

sur f ) + εσFair(T4
air − T4

sur f ) (2)

where

ε is the long-wave emittance of the surface
σ is the Stefan–Boltzmann constant
Fgnd is the view factor of wall surface to ground surface temperature
Fsky is the view factor of wall surface to sky temperature
Fair is the view factor of wall surface to air temperature
Tsur f is the outside surface temperature
Tgnd is the ground surface temperature
Tsky is the sky temperature
Tair is the air temperature

The above equation is converted by introducing linear radiative heat transfer coefficients such that

q′′LWR = hr,gnd(Tgnd − Tsur f ) + hr,sky(Tsky − Tsur f ) + hr,air(Tair − Tsur f ) (3)

where

hr,gnd = εσFgnd(T4
sur f − T4

gnd)/(Tsur f − Tgnd) (4)

hr,gnd = εσFgnd(T4
sur f − T4

sky)/(Tsur f − Tsky) (5)

hr,gnd = εσFgnd(T4
sur f − T4

air)/(Tsur f − Tair) (6)

Exterior convection is modeled using equation

q′′conv = hc,ext A(Tsur f − Tair) (7)

where

q′′conv is the rate of exterior convective heat transfer
hc,ext is the exterior convection coefficient
A is the surface area
Tsur f is the surface temperature
Tair is the outdoor air temperature

Conduction heat fluxes are modeled based on equation

q
′′
ko(t) =

∞

∑
j=0

XjTo,t−jδ −
∞

∑
j=0

YjTi,t−jδ (8)

where

q
′′
ko(t) is the conductive heat flux for the current time step
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T is temperature
i indicates the internal element of the building
o indicates the external element of the building
X,Y are the response factors

In more detail, Conduction Transfer Functions (CTFs) as shown in (9) and (10) below are used to
estimate the heat fluxes on either side of the building elements based on previous temperature values
of interior and exterior surfaces as well as previous interior flux values.

q
′′
ki(t) = −ZoTi,t −

nz

∑
j=1

ZjTi,t−jδ + YoTo,t +
nz

∑
j=1

YjTo,t−jδ +
nq

∑
j=1

Φjq
′′
ko,t−jδ (9)

q
′′
ko(t) = −YoTi,t −

nz

∑
j=1

YjTi,t−jδ + XoTo,t +
nz

∑
j=1

XjTo,t−jδ +
nq

∑
j=1

Φjq
′′
ko,t−jδ (10)

where

Xj is the outside CTF coefficient, j = 0,1,...nz
Yj is the cross CTF coefficient, j = 0,1,...nz
Zj is the inside CTF coefficient, j = 0,1,...nz
φj is the flux CTF coefficient, j = 0,1,...nq
Ti is the inside surface temperature
To is the outside surface temperature
q
′′
ko is the conduction heat flux on the outside face

q
′′
ki is the conduction heat flux on the inside face

In addition, for each thermal zone EnergyPlus simulation is based on an integration of energy
and moisture balance as shown in the Equation (11) below.

Cz
dTz

dt
=

Nsl

∑
i=1

Q̇i +

Nsur f aces

∑
i=1

hi Ai(Tsi − Tz) +

Nsur f aces

∑
i=1

ṁiCp(Tzi − Tz) + ṁin f Cp(Tzi − Tz) + Q̇sys (11)

where

∑Nsl
i=1 Q̇i is the sum of convective heat transfer from the zone surfaces

∑
Nsur f aces
i=1 hi Ai(Tsi − Tz) is the convective heat transfer from the zone surfaces

ṁin f Cp(Tzi − Tz) is the heat transfer due to infiltration of outside air

∑
Nsur f aces
i=1 ṁiCp(Tzi − Tz) is the heat transfer due to interzone air mixing

Q̇sys is the air systems output
Cz

dTz
dt is the energy stored in zone air, and

Cz = ρairCpCT

Infiltration is outdoor air unintentionally entering the building due to the opening of doors as
well as air leakage through windows and other openings. Infiltrated air is mixed with air in the various
thermal zones of the building. Determining infiltration (or air tightness) values contains significant
uncertainty, as it requires a complex and elaborate procedure often referred to as blower door test.
Infiltrated air is commonly modeled as the number of air changes per hour (ACH) and taken into
account in the air heat balance at temperature equal to that of ambient air. In EnergyPlus, infiltration is
modeled based on Equation (12).

In f iltration = (Idesign)(Fschedule)[A + B|(Tzone − Todb)|+ C(Windspeed) + D(Windspeed)2] (12)

where
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Idesign is the user defined infiltration value (ACH−1)
Tzone is the zone air temperature at current conditions (deg C)
Todb is the outdoor air dry-bulb temperature (deg C)
Fschedule is a user defined schedule value between 0 and 1
A is the constant term coefficient
B is the temperature term coefficient
C is the velocity term coefficient
D is the velocity squared coefficient

Similarly, ventilation can be modeled using a schedule, maximum and minimum values, as well
as delta temperature values, and is determined by the equation

Ventilation = (Vdesign)(Fschedule)[A + B|(Tzone − Todb)|+ C(Windspeed) + D(Windspeed)2] (13)

where

Vdesign is the user defined ventilation value (ACH−1)
Tzone is the zone air temperature at current conditions (deg C)
Todb is the outdoor air dry-bulb temperature (deg C)
Fschedule is a user defined schedule value between 0 and 1
A is the constant term coefficient
B is the temperature term coefficient
C is the velocity term coefficient
D is the velocity squared coefficient

Furthermore, the energy provided to each thermal zone by the HVAC system, Q̇sys, is given by
Equation (14).

Q̇sys = ṁsysCp(Tsys − Tz) (14)

Equations (11) and (14) can be transformed to yield zone air temperature as shown in
Equation (15) below.

Tt
z =

∑Nsl
i=1 Qi

t + ṁsysCpTt
supply + (Cz

Tz
t + ∑

Nsur f aces
i=1 hi AiTsi + ∑Nzones

i=1 ṁiCpTzi + ṁin f CpT∞)t−δt

Cz
δt + (∑

Nsur f aces
i=1 hi Ai + ∑Nzones

i=1 ṁiCp + ṁin f Cp + ṁsysCp)
(15)

2.2. Shape Modeling and Systematic Inefficiencies Correction of the Prediction Model: Presentation of the
Properties and Capabilities of the Shape Invariant Model and Implementation in the Current Study

At the first stage, the energy simulation model was carefully tuned to reduce prediction errors.
However, there are some sources of error that cannot be effectively treated only through parameter
tuning. Therefore, advanced statistical modeling approaches are considered to further reduce the
prediction model’s deviance from the true situation. At this postprocess stage, the actual phenomena
of energy and mass transfer between the environment and the building as well as within the building
itself are not explicitly modeled. Instead, this is a functional modeling approach, wherein the shape of
the prediction for the energy demand is appropriately modeled and rearranged to better approximate
the actual (measured) energy shape. As a result, the proposed shape modeling approach obsoletes
deficiencies caused on the difference of the shape between prediction–reality while the remaining
biases are further treated through appropriate Kalman filtering procedures discussed in Section 2.3.

2.2.1. The Shape Model Approach

Let us denote by (t, Xj(t)) the observations representing the energy demand at a specified day j
where t ∈ [0, 24) represents the hour of the day and Xj(t) the observed energy demand at time instant
t. In general, these measurements are available only on certain time segments (e.g., per hour); therefore,
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the accurate daily shape is not known. That means that although the true shape of the energy demand
is a continuous function with respect to time parameter t, in practice only some points of this shape
are known at specified time segments ti; therefore, the available data are of the form {ti, Xj(ti)}n

i=1,
which can be considered as landmarks. As we are interested in working with the shapes of the daily
energy demands, we need to consider the shape of the day j as a function with respect to time, i.e.,
f j : [0, 24) → R. Then, using the available data {ti, Xj(ti)}n

i=1 from day j we are able to estimate a
smoothed version of the energy shape employing any typical interpolation method or nonparametric
filters (e.g., spline smoothers, kernel-based smoothing methods, etc. [22–24]) by choosing appropriately
the mollification parameters in order not to lose important aspects of the information. In this manner,
the shape function of the intra-day power demand is sufficiently recovered with the advantage that
we can get estimates for the demand even in time instants that no data are available and allowing to
treat data with functional statistics techniques.

The daily shape of the energy demand is not expected to change dramatically between two
days given that we consider typical working days (i.e., not weekends or public holidays). As a
result, a standard energy-demand picture is expected to be observed with small fluctuations from
one day to another, where these fluctuations can be efficiently calibrated by appropriate shape model
considerations. Consider, for example, that for an arbitrary day j, f j(t) denotes the observed energy
demand and f̃ j(t) denotes the prediction obtained by the simulation model discussed in Section 2.1.
Clearly, as the simulation model prediction is not expected to coincide with the true state of the
energy demand, if systematic inefficiencies are presented between the prediction and reality, then a
shape correction procedure could remarkably reduce errors caused to daily energy shape deviances.
We discuss an approach under which we expect to provide corrections to the simulation model
prediction by properly “reshaping” the simulation output in order to better match the observed energy
shapes based on previous data. Such an approach is possible under the framework of deformation
models (see, e.g., [25–28]) where the observed function f j (i.e., observed energy shape) is considered as
a deformation of the prediction model f̃ j (predicted energy shape), and this relation is mathematically
expressed through the model

f j(t) = Rj( f̃ j(t)) + εj(t) (16)

where Rj : R → R is called a deformation function and εj(t) is considered as a white noise
process. Although several models can be proposed to parameterize the deformation function
(e.g., shape-invariant model [25–27]), for the particular nature of the data we consider in this paper, we
may propose a simpler model which consists of modeling the reshape function αj defined by

αj(t) := [ f̃ j(t)]−1 f j(t). (17)

If the modeler had knowledge of the reshape function, then he/she could perfectly adjust the initial
prediction f̃ j(t), provided by the simulation model discussed in Section 2.1, to obtain exactly the true
energy demand f j(t). In particular, knowledge of the exact functional form for α(·) would allow
predictions even at intermediate time instants for which observations are not available. In this section,
we propose a functional statistical model to estimate the reshape function from past data of initial
simulation model discrepancies from the actual measured energy shapes, so that it can be used for
future predictions.

As the exact knowledge of the reshape function is not an option, we can estimate it using data
from the previous days (we should choose a small time window ~5–10 days) to model the “typical”
reshape function that is observed in the near past. Clearly, using the information provided from the last
N days, let us define the set of reshape functionsA := {α1, α2, ..., αN}. For the case under consideration,
it is expected that there are certain aspects of the daily energy shape which the prediction model cannot
efficiently calibrate and systematically does not capture, and as a result, the reshape functions must be
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very similar objects as shown for example for a typical set of observations in Figure 2. In such a case,
the approach we propose here is valid.

Figure 2. Example of the observed and simulated daily energy demand (per hour) and the
corresponding reshape functions for the time period 22/01/2018 to 26/01/2018.

Under this consideration, for an appropriately chosen period of time each function, αj should
not present significant fluctuations from the reshape function that is considered as the “typical” one.
Therefore, an appropriate notion of mean regarding the set of reshape functions A is needed to
properly define/represent the mean element in the set. The latter task requires the calculation of
the mean element among a number of functions living in a space which does not necessarily has
linear structure, therefore the notion of Fréchet mean needs to be exploited [29,30] for this purpose.
In the context we discuss here, each reshape function αj(·) is considered as a deformation to the
mean element (i.e., Fréchet mean) ᾱ(·) with respect to which an appropriate notion of deviance is
defined and its minimization will provide the mean element (please see [31] for technical details on
this subject). A general model like the shape-invariant model [26] can be used for the parameterization of
the functional characteristics of the reshape functions in order to define a consistent parametric form
for the Fréchet mean. According to the shape-invariant model, shape deformations like vertical (scale)
and horizontal (time) shifts can be efficiently captured. The standard shape-invariant model applied to
the energy reshape functions can be written as

αj(t) = β j + κjᾱ(t− ζ j) + εj(t), εj(t) ∼WN(0, σ2) (18)

where ᾱ(t) denotes the mean pattern of the energy reshape function, β j and κj introduce vertical shifts
parameterization, while ζ j introduces time-shift parameterization. Recall that any αj is considered as a
deformation of the observed mean pattern (Fréchet mean) of the set A. As a result, the incurred mean
energy reshape function estimated by the data from the previous N days can be calculated through
the equation

ᾱ(t; θ∗) =
1
N

N

∑
j=1

(
1
κj

αj(t + ζ j)− β j

)
(19)

where vector θ∗ = (κ, ζ, β)′ = (κ1, ..., κN , ζ1, ..., ζN , β1, ..., βN)
′ contains all the deformation parameters.

Clearly, as these parameters uniquely define the mean reshape function must be selected to minimize
the mean model variance from the set A, i.e., the vector θ∗ is chosen as

θ∗ := arg min
θ∈Θ

Λ(θ) = arg min
θ∈Θ

N

∑
j=1

∫
T

(
αj(t)− ᾱ(t; θ)

)2 dt (20)
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where T represents the time period within a day and Θ represents the space of the deformation
parameters which are subjected to some normalization constraints, i.e.,

Θ :=

{
θ :

N

∑
j=1

β j = 0,
N

∑
j=1

ζ j = 0,
N

∏
j=1

κj = 1, κj ≥ 0, for all j = 1, 2, ..., N

}
. (21)

Clearly, the estimation of the reshape function for the day j = N + 1 will be used to improve
the initial prediction, provided by the simulation model, for the energy demand of this day through
the model

f j(t) = f̂ j(t) + ηj(t) := ᾱ(t; θ) f̃ j(t) + ηj(t) (22)

where the error term ηj(t) is considered as a white noise process. After the initial mean reshape
function estimation from the first batch of data corresponding to the initial N days has been obtained,
an exponentially weighted scheme can be used to update appropriately the reshape functions taking
into account both the effect of the initial reshape function and more recent observations on the reshape
function. In particular, the proposed scheme can be described through the following steps.

Initial Step Set k = 0 and provide a choice for λ ∈ (0, 1). Given the simulation model predictions { f̃ j}
and the corresponding measurements { f j} for j = 1, 2, ..., N estimate the reshape functions {αj} from
(17). Then, set as α̂(k)(t) the Fréchet mean of {αj} (calculated by (19)–(20)) and provide the prediction
f̂ j(t) = α̂(k)(t) f̃ j(t) for j = N + 1. For every new prediction task, repeat steps 1–3.
Step 1 Given the new measurement f j(t) set k = k + 1, α0(t) := α̂(k−1)(t) and α1(t) := f̃−1

j (t) f j(t).

Step 2 Set as α̂(k)(t) the Fréchet mean of α0(t) and α1(t) with weights 1− λ and λ, respectively.
Step 3 Given the simulation model prediction f̃ j+1(t) provide the improved (reshaped) prediction
f̂ j+1(t) = α̂(k)(t) f̃ j+1(t).

The exponential weighting is used to reduce the effect of older observations to the new predictions,
i.e., for the prediction on the day N + 2 using the weight parameter λ ∈ (0, 1) we could weight the
most recent information (last observed reshape function αN+1(·)) by λ and the older observations by
(1− λ). In this manner, choosing λ close to 1 we allocate more weight to the most recent realizations
and reduce the effect of the older observations. Otherwise, choosing λ close to zero, we forget the older
observations with a very slow rate allowing the past information to contribute more to the prediction.
Clearly, the choice of this parameter is critical to the quality of the prediction, and the final choice of
this parameter depends strongly to the nature of the application that the prediction model is employed
to. Note also that at each step the Fréchet mean of previous reshape functions is taken into account
as an observation through the term α0(t) although it is not. However, this modification allows to
simultaneously condense and appropriately weight (according to our preferences provided by the
choice of λ) the past information into a single term.

2.2.2. The Weighted Shape Model Approach

In practice, it has been proved that there are periods of time that the prediction models do not
provide reliable predictions and they may significantly deviate from the true situation. An example of
such a situation is the energy demand prediction of the building during the period of summer holidays
discussed in Section 3. In such cases, it is very important to quickly perceive when this happens and
rapidly adjust the prediction to an acceptable level of deviance from the reality. For such purposes,
we present here a small variation of the scheme presented in Section 2.2.1 where a weighted version of
the reshape model is used.

The main idea is to divide the prediction into two parts: (a) the prediction provided by the
reshape model and weight it by a proportion w ∈ (0, 1) and (b) the prediction provided by previous
observed energy shapes (measurements only) weighted by the proportion 1− w. For the second part,
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the same procedure that used for the estimation of the mean reshape function is used, i.e., given the
past measurements of the daily energy shapes { f1, f2, ..., fN} their Fréchet mean f̄ (t) is estimated
by (19)–(20) substituting αj with f j. The Fréchet mean in this case is interpreted as the most typical
energy shape observed in the previous days without taking into account any information provided
by the energy simulation model (predictive model). Then, one could shape the prediction either by
constantly setting the weighting parameter w to a specific value or by changing this value each time
new data become available to adjust the weighted shape model as close as it is possible to the true
situation as observed until that time instant. Such a weight allocation criterion could be constructed
as follows. Define by gj+1(t; w) := w f̂ j(t) + (1− w) f̄ j(t) the weighted prediction, where f̄ j denotes
the mean energy shape as estimated until day j and f̂ j denotes the shape model’s prediction for the
day j + 1 derived from the approach discussed in Section 2.2.1. Then, given the measurement of the
day j + 1, f j+1(t), the weight w for the next prediction (i.e., the day j + 2) is chosen as the minimizer to
the criterion

min
w∈(0,1)

∫ (
gj+1(t; w)− f j+1(t)

)2 dt. (23)

Clearly, if the prediction provided by the simulation model is completely misplaced, then this
criterion will act rapidly as a safety filter and will provide a prediction that is based more on the
empirical data (previously observed energy shapes); otherwise, the prediction will be based on
the simulation model. Therefore, criterion (23) will act as a detection mechanism of significant
inconsistencies of the estimates provided by the simulation model and if such a significant shift occurs,
will immediately properly adjust the prediction and improve its accuracy. Moreover, monitoring the
value of w for a reasonable period of time, provides a measure of efficiency for the prediction model
that is used. Ideally, we expect the value of w to remain in high levels (near to 1) except of some periods
that major changes happen where the simulation model has not yet re-adjusted.

2.3. Postprocessing Using Kalman Filtering: The General Algorithm, Capabilities and Areas of Application,
and the Filter Proposed for the Present Work

Numerical simulation models in several applications, including energy prediction systems,
are exposed to systematic or non-systematic biases, an issue in which a wide number of internal
or external parameters are involved: inability of simulating sub-scale phenomena, limitations in
the parameterization of all the engaged parameters, and numerical schemes problems can be listed
among them.

Towards the limitation of the problems above and in the framework of integrated forecasting
systems, statistical postprocesses and bias removal techniques have a critical role. In particular,
Kalman filters [32–34] provide a very popular approach for systematic bias removal, combining
recursively available records with direct modeled outputs, by using weights that minimize the
corresponding biases, requiring limited CPU resources and data backlog. Kalman filters have been
successfully applied to a wide number of numerical models including atmospheric parameters
(see, for example, [35–39]), sea state (see, e.g., [40–42]), extreme events (see, e.g., [43,44]), as well
as renewable power resources (see, e.g., [45–47]). A general description of the basic Kalman filter
algorithm is summarized below.

The main target is the simulation of two parameters that evolve in time in parallel. The state
vector x and the observation corresponding y. The change of the two processes in time are described
by the system and the observation equations, respectively:

xt = Ftxt−1 + wt (24)

yt = Htxt + vt. (25)



Energies 2020, 13, 1170 12 of 23

The coefficient matrices, Ft and Ht, are defined as the system and the observation matrix, respectively.
The corresponding covariance matrices Wt, Vt of the random vectors wt and vt, respectively, should be
determined before the application of the filter while wt and vt need to be independently distributed
according to Gaussian probability laws. The Kalman filter theory provides a method for the recursive
estimation of the unknown state xt utilizing all the observation values y up to time t. The following
equations describe a full integration step of the Kalman algorithm.

xt = Ftxt−1 + Kt(yt − Htxt|t−1), (26)

where

Kt = Pt|t−1HT
t (HtPt|t−1HT

t + Vt)
−1 (27)

and the covariance matrix of the unknown state x is given by

Pt|t−1 = FtPt−1FT
t + Wt (28)

where

Pt = (I − Kt Ht)Pt|t−1. (29)

In the present work, a linear filter has been adopted for the reduction of possible systematic biases
in previous simulations steps. In particular, the estimation of the bias yt in time is estimated by means
of the direct model output mt (where mt ):

yt = x0,t + x1,tmt + vt

The above provides the observation equation of the filter with observation matrix Ht = [1 mt]

and state vector xt = [x0,t x1,t]. The covariance matrices Vt and Wt of the state and observation errors
are estimated by utilizing a training window for the observed and modeled data (see [38,41,42]).
The estimated by the filter bias values are utilized for the improvement of model outputs in the next
time steps. It is worth noticing that the optimum training windows as well as initial values are case
sensitive and should be estimated separately for every application under study.

3. Test Cases and Results

In this section, the proposed integrated model presented in Section 2 is implemented to the
prediction of the daily and hourly energy demand of Leaf Lab for the time period 2017–2018.

The Leaf Lab is an industrial Near-Zero Energy Building (NZEB) of 6000 m2 total floor
area, integrating energy efficiency measures, advanced automations, renewable energy generation,
and storage. The building envelope is highly insulated and consists of walls and double glazed
windows with U values of 0.226 W/m2K and 1.793–3.194W/m2K, respectively. The HVAC system of
the Leaf Lab is composed of ground water source heat pumps with a nominal heating COP of 4.8 and a
cooling EER of 6.2–7. The HVAC is coupled to a thermal storage water tank which is heated or cooled
using excess PV power. The roof of the Leaf Lab is covered by a PV system of 236.5 kWp. Energy
systems are integrated by MyLeaf platform, which allows monitoring of measurements and advanced
control functions [48]. Leaf lab is part of the Leaf Community, a microgrid integrating industrial and
office buildings with various renewable energy systems (biPVs, tracker PVs, and micro-hydro power
system), storage (electrochemical and thermal), and electric vehicles [49]. A complete description of the
Leaf Lab and systems installed along with details of the building modeling and validation procedure
are available in [50]. The 3D representation of the Leaf Lab simulation model is presented in Figure 3.



Energies 2020, 13, 1170 13 of 23

Figure 3. The Leaf Lab 3D simulation model.

First, an indicative analysis is performed to the initial simulation model outputs comparing to the
energy demand measurements to reveal and discuss the weak points of the non-optimized simulation
model (SM) and what improvements are obtained from its optimized version (OSM) discussed in
Section 2.1. Next, we present the improvements in energy prediction that are obtained by adopting the
shape modeling approach (Section 2.2) and Kalman filtering (Section 2.3) in the postprocessing stage.
For the model performance assessment, standard statistical indices are incorporated that are widely
used for measuring the performance of prediction models. Let us denote by {X̂t}T

t=1 the under study
model predictions for the energy demand at certain time instants t = 1, 2, ..., T and as {Xt}T

t=1 the true
(measured/observed) energy demand stature at the same time instants. In particular, the following
statistical indices are used.

• Prediction Bias, Bias = 1
T ∑T

t=1(Xt − X̂t), indicating any systematic underestimation or
overestimation of the quantity of interest.

• Mean Absolute Error, MAE = 1
T ∑T

t=1 |Xt − X̂t|, indicating the mean absolute deviance of the
model predictions from the true value.

• Root Mean Squared Error, RMSE =
√

1
T ∑T

t=1(Xt − X̂t)2, indicating the mean squared deviance of
the model predictions from the true value.

• Nash–Sutcliffe model efficiency coefficient, which is used to assess the predictive power of the model:

NSE = 1− ∑T
t=1(Xt − X̂t)2

∑T
t=1(Xt − X̃t)2

,

taking values on (−∞, 1] where an index equal to zero corresponds to a perfect prediction whereas
values below zero corresponds to the case where the prediction model was outperformed by a
reference model X̃.

3.1. Indicative Analysis of the Initial Simulation Results: Revealing the Weak Points

A snapshot of the simulated versus measured HVAC electric power for working days of the week
from 7/8/17 to 11/8/17 is presented in Figure 4. Simulated versus actual measured total HVAC electric
energy consumption for the year 2017 is presented in Figure 5a. It is noted that there are significant
deviations on a monthly basis which become more evident for months of unstable environmental
conditions such as March, May, and September, as well as in February. The total annual HVAC electrical
energy consumption in 2017 for Leaf Lab was 285,719 kWh (47.61 kWh/m2), whereas the respective
simulated value is 197,305 kWh (32.88 kWh/m2). The corresponding values excluding weekends is
232,669 kWh and 180,522 kWh, which correspond to an unacceptably high level of monthly CVRMSE
equal to 40.7%.
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Figure 4. Simulated vs. measured HVAC electric power for the week from 7/8/17 to 11/8/17.

Following parameterization of the model monthly deviation in HVAC, electric energy
consumption are minimized to a percentage difference ranging from 1.78% in February to 30.28% in
September and an acceptable CVRMSE of 13.89% (Figure 5b). Total simulated HVAC electric energy in
this optimized case is 252,689 kWh or 221,946 kWh excluding weekends associated to a percentage
difference of 11.5% and 4.6%, respectively.

Figure 5. Measured total HVAC electrical energy consumption for the year 2017 versus: (a) initial
model (baseline) (left plot) and (b) parameterized model (optimized) (right plot).

Table 1 contains monthly measured HVAC electrical energy consumption values and the
corresponding simulated ones obtained from the baseline and optimized models for 2017.

Table 1. Monthly measured HVAC electrical energy consumption values and the corresponding
simulated ones obtained from the baseline and optimized models for 2017.

2017 Simulated - Baseline Model (MWh) Simulated - Optimized Model (MWh) Measured (MWh)
Jan 31.55 27.79 25.72
Feb 10.26 19.27 19.61
Mar 11.09 15.76 17.55
Apr 6.79 8.92 9.64
May 2.90 15.40 16.02
Jun 21.97 27.10 26.34
Jul 20.02 23.69 25.55

Aug 27.19 30.31 27.27
Sep 6.39 13.15 18.87
Oct 7.62 10.56 14.00
Nov 17.05 14.38 15.86
Dec 17.70 15.62 16.24
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Similarly, results from the initial simulation in 2018 are presented in Figure 6a. Notably, there
are significant levels of underprediction especially in April, May, and September. The total annual
HVAC electrical energy consumption in 2018 for Leaf Lab was 290,760 kWh (48.46 kWh/m2), whereas
the respective simulated value is 221,136 kWh (36.85 kWh/m2), which equals a percentage difference
of 23.9%. The corresponding values excluding weekends is 250,042 kWh and 200,461 kWh, which
correspond to an unacceptably high level of monthly CVRMSE equal to 31.42%.

Figure 6. Measured total HVAC electrical energy consumption for the year 2018 versus: (a) initial
model (baseline) (left plot) and (b) parameterized model (optimized) (right plot).

Table 2 contains monthly measured HVAC electrical energy consumption values and the
corresponding simulated ones obtained from the baseline and optimized models for 2018.

Table 2. Monthly measured HVAC electrical energy consumption values and the corresponding
simulated ones obtained from the baseline and optimized models for 2018.

2018 Simulated - Baseline Model (MWh) Simulated - Optimized Model (MWh) Measured (MWh)
Jan 22.60 27.29 23.02
Feb 21.42 22.52 22.49
Mar 20.29 21.07 20.40
Apr 5.92 8.76 13.85
May 3.27 11.76 17.01
Jun 17.65 22.30 24.09
Jul 29.32 29.45 30.90

Aug 30.94 34.56 34.16
Sep 9.92 18.99 20.13
Oct 6.88 10.06 10.11
Nov 14.29 18.80 15.75
Dec 17.96 18.46 18.14

An intensive search of the parameters that affect the daily, monthly, and annual power distribution
profiles is presented in the following to improve the initial results of the model based by minimizing
deviation from HVAC power consumption data. Through trial and error various combinations and
fine-tuning of the all of key parameters are carried out to reach the optimum results both when
assessing deviation at intra-day, monthly, and annual timescale. During this approach, the two key
parameters identified as critical to decreasing the model’s deviation from actual metered energy
consumption are the COP and infiltration rates. COP nominal values are initially used but as they
are representative of standard conditions, validation is required to better estimate their performance
in dynamic conditions. Furthermore, the energy model uses performance curves to simulate the
dynamic behavior of heat pump systems which is hard to define in the absence of very elaborate
measuring equipment especially for systems customized to provide heating and cooling for large
facilities. Besides, fine-tuning model parameters to match the actual performance in such systems is
further justified by the fact that user behavior is not recorded and even if it was, modeling of such
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a complex activity is not feasible provided the current features of energy building software tools.
Indicatively, the opening of external windows, the entry (or exit) of people or industrial equipment
and the manual control of the temperature set point in the various thermal zones are some factors of
uncertainty as to the actual thermal energy exchanges of a building such as the Leaf Lab.

Following careful fine-tuning of the model, simulation results are improved as shown in Figure 6b.
Specifically, parameters related to the infiltration, ventilation, internal loads (electric equipment and
lighting), and occupancy of the various zones were varied until the best possible correlation was
established. Although some noticeable at monthly level differences remain especially in April and
May, overall, the simulated results approach actual measured values as revealed by CVRMSE of
14.33%. In Figure 7, simulated versus measured HVAC electric power for a week in November 2018
is presented. In this case, the simulated pattern follows the actual measured values; however, there
clear deviations especially with respect to the peaks early in the morning and late in the afternoon
are observed.

Figure 7. Simulated versus measured HVAC electric power for the week from 12/11/18 to 17/11/18.

In Figures 8 and 9, the evolution of statistical indices (Bias, MAE, and RMSE) regarding the
deviance of the initial simulation model is illustrated, and its optimized parameterized version
comparing to the measured energy demand for the years 2017–2018. With regards to Bias, the optimized
model significantly outperforms the initial energy model of the building which underestimates energy
consumption for most months in 2017. Concerning MAE and RMSE, it is demonstrated that the
optimized model generally performs better except for months March, April, October, and November
for which the initial model performs slightly better. Similarly, in 2018, the results of the optimized
model are associated with a Bias error of lower magnitude for months from April to October. MAE
and RMSE, in this case, are lower in the case of the optimized model compared to the baseline model
for months from February to November. In contrast, the initial model performs marginally better for
estimating energy consumption in January, October, and November.
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Figure 8. Statistical error indices for the energy prediction through the simulation model (SM) and the
optimized simulation model (OSM) for the year 2017 (per month).

Figure 9. Statistical error indices for the energy prediction through the simulation model (SM) and the
optimized simulation model (OSM) for the year 2018 (per month).

3.2. Diagnostic Results for the Complete Model Outputs

In this section, we discuss the improvements obtained to the energy consumption prediction
for the Leaf Lab building for the time period 2017–2018 by implementing the postprocess part of
the integrated model, i.e., the shape modeling approach and Kalman filtering. For convenience,
let us introduce the abbreviations (SM) for the initial (benchmark) simulation model, (OSM) for the
optimized/parameterized simulation model, (RS) for the reshaped simulation model, (w-RS) for the
weighted reshaped model, and (KF-RS) for the integrated model by implementing Kalman filtering at
the later stage of the reshape model output. For illustration purposes, we divide our analysis into two
parts: (a) regarding the intra-day (hourly) energy demand prediction and (b) regarding the prediction
of daily summary of the energy demand (total energy demand on the whole day).
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3.2.1. Evaluating Intra-Day Energy Demand Predictions

In Table 3, the yearly diagnostic results of the intra-day energy demand predictions (hourly),
provided by all incorporated prediction models for the years 2017 and 2018, are presented. Note that
the NSE coefficient is calculated using as reference model the initial simulation model (SM). Based
on the various indices, it is clearly demonstrated that the reshape modeling provides much higher
levels of accuracy compared to the model’s simulated outputs. Specifically, it is observed that RMSE in
both years is reduced ~50%. The Kalman filtering procedure does not further improve the intra-day
prediction performance of the reshaped model, indicating that the utilized shape model filters out
efficiently most systematic sources of error affecting the intra-day (hourly) energy demand prediction.

Table 3. Model diagnostic results for intra-day energy demand predictions (hourly) for the years 2017
and 2018.

Model Bias MAE RMSE NSE Bias MAE RMSE NSE
2017 2018

SM −8.67 21.32 31.66 0.00 −7.67 22.66 35.56 0.00
OSM −1.79 19.39 28.80 0.17 −0.63 21.77 32.58 0.16
RS −0.14 12.92 20.46 0.58 −0.25 12.91 22.01 0.62
w−RS −0.51 9.91 17.03 0.71 −0.18 9.58 17.65 0.75
KF−RS 0.20 11.33 17.60 0.70 −0.36 12.67 18.73 0.73

Figures 10 and 11 illustrate the monthly Bias, MAE, and RMSE values for both reshaped models
RS and w-RS computed for the intra-day performance of the models compared to the results obtained
by the optimized simulation model (OSM). Both reshaped models perform better as all statistical
indices in the majority of cases are significantly improved indicating the superior predictability of the
reshaped approach.

Figure 10. Statistical error indices for the Reshaped Simulation Model (RS) and the Weighted Reshaped
Simulation Model (w-RS) for the year 2017 (per month).
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Figure 11. Statistical error indices for the Reshaped Simulation Model (RS) and the Weighted Reshaped
Simulation Model (w-RS) for the year 2018 (per month).

3.2.2. Evaluating Daily Summaries Energy Demand Predictions

At a second stage, we are interested in the performance of the incorporated models in predicting
the total energy demand per day. The same model approaches are tested, and their results are
illustrated in Table 4. In this case, the Kalman filtering step further improves the prediction since the
model biases are reduced significantly and the best NSE values are obtained through the KF-RS model.
This happens because although the RS and w-RS models efficiently capture intra-day effects in the
shape of the energy demand, when we are interested in the daily summary, these effects are mutually
canceled and become obsolete. However, the KF-RS model, in general, improves the average biases, as
it detects these inefficiencies as systematic ones from the perspective of daily summaries, and therefore
it further improves the model outputs.

Table 4. Model diagnostic results for the predictions on the daily energy demand (summaries) for the
years 2017 and 2018.

Model Bias MAE RMSE NSE Bias MAE RMSE NSE
2017 2018

SM −195.00 344.65 423.71 0.00 −182.59 306.54 413.80 0.00
OSM −37.54 237.38 304.32 0.30 −12.80 232.49 328.62 0.30
RS −1.90 192.54 272.03 0.44 −6.09 194.10 295.32 0.32
w−RS −11.18 144.97 226.93 0.61 −4.39 139.18 238.78 0.50
KF−RS −0.73 143.46 207.51 0.66 −1.70 155.74 247.69 0.51

In Figures 12 and 13, the performance of the KF-RS model in predicting the daily energy demand
(summaries) is illustrated, comparing again to the OSM model. It is evident that the later model is
significantly improved by correcting major inconsistencies in certain time periods throughout the year
and more accurately approximating the true levels of energy needed. In particular, for special cases
where systematic biases are present (see, e.g., highlighted periods in Figures 12 and 13), the KF-RS
model proves able to eliminate systematic over- or underestimations.
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Figure 12. Prediction of the daily energy demand (summary) obtained by optimized simulation model
(OSM) and Kalman filter-enhanced reshaped simulation model (KF-RS) for the year 2017.

Figure 13. Prediction of the daily energy demand (summary) obtained by optimized simulation model
(OSM) and Kalman filter-enhanced reshaped simulation model (KF-RS) for the year 2018.

4. Conclusions

In this paper, validation of the building energy model of an industrial near-zero energy building is
investigated over a two-year period. It is demonstrated that manual extensive fine-tuning of key model
parameters is valuable to improve initial overall error levels using trial and error of key parameters.
However, this process requires a high level of expertise, deep knowledge of the facility under study,
and it is very time-consuming. Furthermore, it is demonstrated that systematic deficiencies continue
to occur even after careful fine-tuning of key model parameters. On the one hand, this is due to
the complicated issue of modeling the behavior of users as well as of equipment use in a large
industrial facility. On the other hand, the dynamic performance of custom-built HVAC systems
requires specific measurements if it is not to be solely defined at a high level and modeled based on
nominal performance coefficients. To address this problem two modeling approaches are integrated:
(a) the shape and weighted shape model and (b) Kalman filtering postprocessing. The above methods
are applied in a postprocessing stage, which is tested and evaluated. Initial, optimized simulation
results and results from postprocessing are analyzed compared with the aid of bias error, mean
absolute error, root mean squared error, and the Nash–Sutcliffe model efficiency coefficient. Results are
explored to demonstrate the effectiveness of the method in capturing and reducing intra-day systematic
deviations as well as the overall performance gap. Overall, the proposed integrated approach proves
to be very effective in eliminating systematic over or under estimations and critically reduces the
magnitude of deviations and as a result significantly reduces the performance gap compared to the
optimized simulation model. In particular, the integrated prediction model succeeded in reducing
the RMSE (in mean values) approximately 39% and 43% for the hourly predictions in years 2017 and
2018, respectively, and approximately 32% and 25% for the daily energy demand for the same years
which are rather impressive improvements. Note also that in all cases, the integrated prediction model
substantially increased model efficiency coefficient (NS) at least 70% comparing to the efficiency of the
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optimized simulation model (OSM). The proposed approach is applicable in several types of buildings
(i.e., residential, commercial, public, etc.) provided that reliable data of energy consumption and
of human activity are available over a significant period of time (ideally more than one year). As a
future step, the presented approach could be deployed and tested across several types of buildings
that fall into different energy efficiency categories to assess its performance over a wide spectrum
of applications.
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