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Abstract. Any net of an isotetrahedron I (a tetrahedron with all congruent
four faces) and a rectangle dihedra RD satisfies the Conway criterion. Does
the converse proposition hold? If so, are there practical algorithms for it? The
difficult part of the proof of it comes down to the following problem [5], [6]:
Find the practical algorithm for folding a parallelogramic strip into I or RD.
The process of how to cover a thin rectangular board by a long tape without
making gaps or overlaps has been known as a folklore among natives in various
places globally [1]. By generalizing the known folklore foldings, this paper gives
the practical algorithms to obtain all isotetrahedra and rectangle dihedra into
which a strip can be folded. As a result of it, it is also proved that there is no
other way to fold a given strip into rectangle dihedra other than the known two
types of folklore foldings.
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§1. Introduction

A polyhedron or a dihedron (or a doubly covered polygon) is called a tile maker
if every unfolding of P tiles the plane. [2] proved that tile makers belong to the
following five families: (a) isotetrahedra (b) rectangle dihedra (c) equilateral
triangle dihedra (d) isosceles right triangle dihedra (e) half equilateral triangle
dihedra. Especially for isotetrahedra and rectangle dihedra, the following
theorem was obtained in [3]:

Theorem 1 ([3]). Every unfolding of an isotetrahedron or a rectangle dihedron
satisfies the Conway criterion.

The Conway criterion which is used throughout the paper is the following.
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Definition 1 (Conway criterion [12]). A given region (figure) can tile the plane
using only translations and 180◦ rotations if its perimeter can be divided into
six parts by six consecutive points A, B, C, D, E and F, all located on its
perimeter, such that:

(a) The perimeter part AB is congruent to the perimeter part ED by trans-
lation τ in which

τ (A) = E, τ (B) = D.

(b) Each of the perimeter parts BC, CD, EF and FA is centrosymmetric,
i.e., each part coincides with itself when the region (figure) is rotated by
180◦ around its midpoint.

(c) Some of the six points may coincide but at least three of them must be
distinct.

A region satisfying the Conway criterion is called a Conway tile (see Fig.1 for
an example). It is natural to consider the converse of Theorem 1, which is

Fig. 1: A Conway tile. X stands for a midpoint.

the following problem:

Problem 1. Can every Conway tile be folded into either an isotetrahedron or
a rectangle dihedron?

This problem belongs to the theory of foldings. Since the theory of foldings
has a wide range of applications in other fields, this field is actively studied [8].
In mathematics, engineering, the arts and everyday life, a variety of folding
problems has appeared, e.g. mathematics of origami, computational origami,
the fold and one cut problem, the Miura Map Fold, folding a given polygon into
polyhedra, flattening polyhedra, designing pleated origami, et. al. The theory
of folding has been receiving a great deal of interest, since it was introduced
in the books “Geometric Folding Algorithms” by E. D. Demaine and J.
O’Rourke [10], and“How to fold it” by J. O’Rourke [11]. The topic Folding
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Polygons to Polyhedra is taken up in a few sections of both [10] and [11]. They
mention that

1. A polygon can be folded into a convex polyhedron if it has an Alexandrov
gluing.

2. While Alexandrov’s theorem guarantees unique existence of a polyhedron
into which a polygon with Alexandrov gluing can be folded, there is
no known practical algorithm for reconstructing the 3D shape of the
polyhedron. In general, it is not easy to characterize the 3D shape of
the polyhedron into which a polygon can be folded.

A Conway tile is a considerably extensive set of plane regions which in-
cludes arbitrary triangles, arbitrary quadrangles, pentagons with at least a
pair of parallel parts, hexagons with at least a pair of parallel sides, some non-
convex polygons and some plane regions with curved lines. Therefore, finding
a practical algorithm for folding Conway tiles into a polyhedron or a dihedron
makes sense.

For a Conway tile N , a 4-base of N is defined as a set of four midpoints
of centrosymmetric parts of N under the assumption that the midpoint of a
centrosymmetric part XY is X (= Y ) if X coincides with Y . Thus, there
exists a 4-base for any Conway tile N . Notice that a Conway tile may have
many different 4-bases. Fig.2 shows three different 4-bases of a Latin cross
which is a Conway tile.

Fig. 2: Three different 4-bases { v1, v2, v3, v4} of a Latin cross.

Theorem 2 ([4]). Let N be a Conway tile with its 4-base v1, v2, v3 and v4.
Then, these four points form a parallelogram.

The four points in the 4-base of a Conway tile N play an important role
when N is folded into an isotetrahedron or a rectangle dihedron.
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By Alexandrov’s theorem and the characteristic of Conway tiles, every Con-
way tile is guaranteed to be folded into an isotetrahedron or a rectangle dihe-
dron as shown in the following theorem.

Theorem 3 ([6]). Every Conway tile is foldable into either an isotetrahedron
or a rectangle dihedron whose vertices are four points of its 4-base.

Proof. Let N be an arbitrary Conway tile. Let A,B,C,D,E and F be the
six consecutive points on the perimeter of N , which satisfy the conditions
of the Conway criterion. A perimeter of N consists of at most four cen-
trosymmetric pairs BC, CD, EF and FA of the perimeter parts with their
midpoints v1, v2, v3 and v4, respectively, and at most one pair of parallel-
congruent perimeter parts AB and ED. Glue together parts of the perimeter
of a Conway tile N such that the two halves of each centrosymmetric edge are
glued to each other, and the two congruent edges related by a translation are
glued to each other. The gluing result is a topological sphere. Furthermore,
the gluing result has just four points, v1, v2, v3 and v4, where the sum of the
face angles is 180◦. The sum of the face angles of the other remaining points
is 360◦. By Alexandrov’s theorem (see details at [10] or [11]), N is folded into
either a polyhedron or a dihedron whose vertices are v1, v2, v3 and v4. That is,
N is folded into either an isotetrahedron or a rectangle dihedron whose four
vertices are four points of the 4-base of a Conway tile N .

Let the gluing of the perimeter of a Conway tile N be called Conway gluing
when parts of perimeter of N are glued such that the two halves of each
centrosymmetric edge are glued to each other, and the two congruent edges
related by a translation are glued to each other. Conway gluing is a special
case of Alexandrov gluing.
In [9], [10], and [11], all convex polyhedra and dihedra are determined into
which a square is folded. Fig.3 illustrates four cases of them where a square
is folded into an isotetrahedron or a rectangle dihedron with vertices v1, v2, v3
and v4. In all these cases, the perimeter of a square is glued by Conway gluing,
where six points A,B,C,D,E and F on the perimeter of a square satisfies the
Conway criterion. It is easy to fold a Conway tile into an isotetrahedron I
or a rectangle dihedron RD if its 4-base parallelogram can be divided into
two identical acute or right triangles by its diagonal as shown in the following
Lemma 1 [4], [5], [6].

Lemma 1. Suppose that a 4-base parallelogram of a Conway tile N is divided
into two acute triangles TAs or two right triangles TRs by its diagonal. Then,
N can be folded into an istotetrahedron whose faces are congruent to TA

(Fig.4 (a)) or a rectangle dihedron whose faces are TR ∪ TR (Fig.4 (b)).
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Fig. 3: Four different Conway gluing results of a square.

However, it becomes difficult to fold a Conway tile N into I or RD whose
4-base parallelogram is thin and long, and can not be divided by its diagonal
into two identical acute or right triangles. Folding such a Conway tile N comes
down to thinking about how to fold a parallelogram strip S, which is reversible
to N around the 4-base of N [4], [5], [6], [7]. A strip S is a Conway tile with
many different 4-bases. Therefore the following problem arises: Find practical
algorithms for folding a strip into an isotetrahedron or a rectangle dihedron
whose vertices are arbitrary 4-base of the strip.

§2. Known folding a long strip into a rectangle dihedron.

Folk arts in various countries have presented rectangle dihedra (we denote a
rectangle dihedron by RD throughout the paper) by folding a parallelogramic
strip. Two ways of such foldings are known; Fig.5 and Fig.6 illustrate the
procedure of how a long strip is folded into a rectangle dihedron [1]. These
methods of folding are called a folklore folding 1(FF1), a folklore folding 2
(FF2), respectively [5], [6], [7]. One of differences between them is the positions
of the left and right sides (i.e., AB and CD) of the strip in rectangle dihedra.
In FF1, CD (blue) is attached to AB (red), but not in FF2 as shown in Fig.5
and Fig.6.

In [5], decomposing a parallelogramic strip S into right triangles brings the
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Fig. 4: Conway tiles whose 4-base parallelogram is divided into two non-obtuse
triangles.

Fig. 5: Example of the procedure of the folklore folding 1 (FF1).

mechanism of FF1 and FF2 into sharp relief.

Lemma 2 ([5]). A parallelogramic strip S can be folded into RD by FF1 if
S can be decomposed into 4n (n+ 1) identical right triangle Ts, as shown in
Fig.7. Four corners v1, v2, v3 and v4 of RD are vertices with the 90◦ angle in
the triangle labeled 1, 2 (n+ 1) , 2n (n+ 1) + 1 and 2(n+ 1)2, where all right
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Fig. 6: Example of the procedure of the folklore folding 2 (FF2).

triangles in S are labeled with 1 to 4n (n+ 1) from right to left.

Proof. Following the procedure illustrated in Fig.8, S can be folded into RD
with corners v1, v2, v3 and v4. Fig.8 shows the case when n = 3, but the same
procedure works for every integer n. Note that in the case of n = 3, v1, v2, v3, v4
are the vertices with the 90◦ angle in the triangles labeled 1, 2× (3 + 1) = 8,
2× 3× (3 + 1) + 1 = 25, 2(3 + 1)2 = 32, respectively.

Fold lines of S to make RD by FF1 are determined as shown below. Fig.9
shows the case for n = 3. First, let us direct our attention to the right
triangle T with label 2 (n+ 1) with the right angle v2. Let sa, sb be the
sides of T incident to v2 with the length a, b, respectively. Let la, lb be
the lines containing sa, sb, respectively. On the side of S containing v2, take
points ak, bm whose distances from v2 are k · (n + 1)d (k = 1, 2, · · · ), m · nd
(m = 1, 2, · · · ), respectively, where d = l/2n(n+1) (in Fig.9, d = l/24). Draw
lines through ak, bm parallel to la, lb, respectively. These lines are fold lines
(drawn in blue lines in Fig.9).

Remark 1. The folding in Fig.5 is the case of FF1 for n = 2 as shown in Fig.10.
In FF1, we observe that the first triangle with label 1 is attached to the last
triangle with label 4n(n+1) (= 24 in Fig.10 (a), (b), (c)); therefore, it makes
a ring. Consequently, any parallelogram shape with the same length is folded
into the identical RD by FF1 procedure. Thus, in the case of FF1, it is suffi-
cient to consider only a rectangle strip ABCD instead of other parallelogramic
strips.
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Fig. 7: The strip S, which consists of 4n(n+ 1) right triangles, is folded into
RD with the size na× (n+ 1)b.

Fig. 8: How to fold S into RD by FF1 (n = 3)

Fig. 9: Fold lines of FF1 for n = 3

Lemma 3 ([5]). A parallelogramic strip S can be folded into RD by FF2 if S
can be decomposed into 4(2n−1) (2n+1) identical right triangles (n= 2, 3, . . .),
as shown in Fig.11. Four corners of RD are two midpoints of sides of S (v1
and v3) and the intersection points of pairs of triangles labeled “4n (2n−1)+1
and 4n (2n− 1)− 3” and “4n(2n+ 1) and 4n (2n+ 1)− 4”.
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(a)

(b) The Front face of RD (c) The Back face of RD

Fig. 10: The strip S, which consists of 24 right triangles, is folded into RD
with the size 2a× 3b by FF1.

Proof. Following the procedure illustrated in Fig.12, S can be folded into an
RD with corners v1, v2, v3 and v4. Fig.12 shows the case when n = 3, but the
same procedure works for any integer n ≥ 2. Note that 4n (2n− 1)+1 or−3 =
57, 61 and 4n (2n+ 1) + 0 or− 4 = 80, 84, when n = 3.

Fold lines to make S into RD by FF2 are determined as follows (see Fig.13
which shows the case for n= 3): Draw lines v1Q1 and v4P(2n−1)(2n+1)−1. Draw
lines v2Pn(2n−1)−2 (say ℓa) and v2Pn(2n−1) (say ℓb) where Qn(2n−1) = v2. Take
points Ai, Bj with the distance i·(2n+ 1) d, j ·(2n− 1) d (i, j = 1, 2, 3, · · · )
from v2

(
= Qn(2n−1)

)
on ML, respectively. Draw lines ai and a

′
i, bj and b

′
j

through Ai, Bj parallel to ℓa, ℓb, respectively. These lines are fold lines (drawn
in orange lines).

Fig. 11: S is decomposed into 4(2n− 1)(2n+ 1) right triangles

Remark 2. The strip S in Fig.6 is the case of FF2 for n = 2 as shown in
Fig.14.
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Fig. 12: How to fold S into RD. One side of S is shaded.

§3. Folding a rectangle strip into isotetrahedra or RD.

In section 3, we determine all isotetrahedra and RD obtained from one rect-
angle strip. Although we deal with only rectangle strips in the following the-
orems, similar results hold for any other parallelogramic strips.

Lemma 4. For a given rectangle strip S with the size l × w, there are six
essentially different locations of consecutive six points A,B,C,D,E and F on
the perimeter of S satisfying the Conway criterion.

Proof. Depending on whether a parallel-congruent pair exists or not and where
such a pair locates, S can be divided into the following six cases:
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Fig. 13: Fold lines of FF2 for n = 3.

Fig. 14: The strip S, which consists of 60 right triangles, is folded into RD
with size 3a× 5b by FF2.

Case I. S has no pair of parallel-congruent parts (i.e., the case where A = B
and D = E in Conway criterion) as shown in Fig.15 (a).

Case II. Vertical sides of S are a pair of parallel-congruent parts and each
of horizontal sides is a centrosymmetric part (i.e. B = C and E = F in the
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Conway criterion) as shown in Fig.15 (b).

Case III. Vertical sides of S are a pair of parallel-congruent parts and at least
one of horizontal sides has two centrosymmetric parts as shown in Fig.15 (c)
and (d). By gluing a pair of parallel-congruent parts (i.e., AB and ED), S
becomes a ring. Therefore, the case of Fig.15 (d) comes down to the case in
Fig.15 (c) when we consider the Conway gluing for S.

Case IV. Parts AB and ED of vertical sides of S are a parallel-congruent
pair as shown in Fig.15 (e).

Case V. Horizontal sides AB and ED of S are a parallel-congruent pair as
shown in Fig.15 (f) .

Case VI. Parts AB and ED of horizontal sides of S are a parallel-congruent
pair as shown in Fig.15 (g).

Fig. 15: Six essentially different locations of consecutive six points
A,B,C,D,E and F .

Next we determine the accurate shapes of resultant isotetrahedra I or rect-
angle dihedra RD which is foldable from a given rectangle strip S. From
Theorem 3, four vertices of I or RD must be four points of a 4-base of S.
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That is, all we need to do is to find I or RD for all cases (Case I∼Case VI
in Lemma 4) concerning the location of 4-base on the perimeter of S. Resul-
tant I and RD can be divided into two types; one of which is easy to fold by
Lemma 1 (let them be called single type), and the other is hard to fold. First,
we determine all single type I or RD in Theorem 4. The rest of them (i.e.,
difficult cases) is solved in Theorem 5, 6, 7 and 8.

Theorem 4. Let S be a rectangle strip with size l×w. There are four different
single types isotetrahedra and four single types of rectangle dihedra into which
S is fodable into.

Proof. In the following six cases of Lemma 4 (Fig.16∼19), all single types of
isotetrahedra and rectangle dihedra are obtained from a rectangle strip.

Fig. 16: Case II

CaseV-1 in Lemma 4 (Case V when at least one of vivj is parallel to AB)

Fig. 17: Case V-1
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Fig. 18: Case I and Case IV

CaseV-2 (Case V when none of vivj is parallel to AB)

Fig. 19: Case V-2

Case III in Lemma 4 We divide this case into two subcases when ℓ < 4w
or not.

Case III-1 (l < 4w) For any location of F on AE, the 4-base-parallelogram
v2v1v3v4 can be divided into two identical congruent acute triangles by its
diagonal v2v3(Fig.20 (a)). Then, a strip S can be folded into various non-
similar single type isotetrahedra each of whose faces is congruent to Ti, where
Ti(i = 1, 2, 3 and 4) changes its shape depending on the location of F on AE
(Fig.20 (b)).

Case III-2 (ℓ ≥ 4w) Draw the semicircle C with diameter v1v3 (Fig.21 (a)).
We denote the intersection of AE and C by G and H, respectively as shown
in Fig.21(a). If G = v2, a single type rectangle dihedron is obtained (Fig.21
(c)). If Av2 < AG or AH < Av2 < ℓ/2, then a strip S is folded into a single
type isotetrahedron (Fig.21 (b)).

Case VI in Lemma 4 We divide this case into two subcases when ℓ < 4w
or not.

Case VI-1 (ℓ ≤ 4w) For any location of E on FD (and B on AC), a 4-base
parallelogram v1v2v4v3 is divided into two acute triangles by its diagonal (v2v3
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Fig. 20: Case III-1

Fig. 21: Case III-2

or v1v4, Fig.22 (a)). Then, S is folded into a single type isotetrahedron (Fig.22
(b)).
Case VI-2 (ℓ > 4w) Let M be the center of S (Fig.23 (a)). If v2 is the
intersection G or H of AE and the semicircle C with the diameter v1M , then
S is folded into a single type RD (Fig.23 (c)). If v2 is the intersection I or J
of FD and the circle C′ with the diameter Mv4, S is also folded into a single
type RD.
If E is chosen on FD such that Fv2 < FG or FH < Fv2 < ℓ/2, a 4-base
parallelogram is divided into two identical acute triangles by its diagonal.
Thus, S is folded into a single type isotetrahedron (Fig.23 (b)).

We have already dealt with rectangle strips in Case I, II, IV, V, III-1, III-2
and VI-1, VI-2 in Theorem 4. Henceforth, we consider two cases which are
not dealt with:
1. Let III-3 be a subcase of the Case III with the additional condition
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Fig. 22: Case VI-1

Fig. 23: Case VI-2

AG < Av2 < AH, where G and H are the intersections of AE and C as shown
in Fig.21(a).

2. Let VI-3 be a subcase of Case VI with the additional conditions 4w ≦ ℓ
and FG < Fv2 < FH or FI < Fv2 < FJ , where G and H (I and J) are the
intersections of AE and C (C′) as shown in Fig.23.

In Case III-3, it is sufficient to consider the case AG < Av2 < ℓ/4 because
of the symmetry of v2 and v4 (Fig.24). Let a rectangle strip S with points
A,B,C, · · · , F, v1, v2, v3 and v4 as shown in Fig.24 be a III-3 strip S.

Observation 1. On applying Conway gluing to a III-3 strip, it automati-
cally coils proper n times to make a topological sphere TS with four vertices
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Fig. 24: A III-3 strip S (AG < v2 < ℓ/4).

v1, v2, v3 and v4 on the condition that the length of S is fixed and the location
of v2 and the width of S vary as shown in the last but one of Fig.25 (a), (b)
and (c), respectively. Recrease TS into the other one (the last one of Fig.25
(a), (b),(c)). S coils S coils like FF1 for 3, 2, 5 as shown in the last one of
Fig. 25 (a), (b), (c), respectively. These topological sphere TS with proper
n+ (n+ 1)-coils compose of two parallelograms each of which can be divided
into two acute or right triangles. Proper n (∈ N) is uniquely determined for
each of III-3 strips.

Fig. 25: On applying Conway-gluing to III-3 strips

Proper n for a given III-3 strip S can be calculated, taking into account
the length of v1v2 and the length v2v4. Therefore, the following Theorem 5
holds.

Theorem 5. A III-3 strip S coils n =
⌈
aℓ/2

(
a2 + w2

)⌉
times to make a

topological sphere on applying Conway-gluing to it, where a, ℓ and w are the
length of Av2 , the length of S and the width of S, respectively.

By using the value of proper n for a given III-3 strip, we determine the
practical algorithm for folding a III-3 strip S with arbitrarily chosen 4-base
into an isotetrahedron or a rectangle dihedron in the following Theorems 6.
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Theorem 6. A III-3 strip S is foldable into isotetrahedra I or rectangle dihe-
dra RD accoding to the practical algorithm which is generated by generalizing
the procedure of FF1.

Proof. First, determine the value of proper n for a given III-3 strip S using
Theorem 5.

Second, decompose a III-3 strip S into 4n(n + 1) triangles according to the
following procedure:

1. Decompose the side BD into 2n(n+ 1) segments P0P1, · · · , P2n(n+1)−1

P2n(n+1) with the same length d=ℓ/2n (n+ 1), where v1 = B = C = P0,
D = P2n(n+1) and v3 = Pn(n+1).

2. Decompose the side v2E ∪Av2 into 2n(n+ 1) segments, consecutive
Qn+1Qn+2, Qn+2Qn+3, · · · , Q2n(n+1)Q1, Q1Q2, · · · , QnQn+1 where v2
= Qn+1 and Q2n(n+1)Q1 is the union of Q2n(n+1)E and AQ1 (Fig.26).
Notice that v4 is automatically assigned to Q(n+1)2 . Draw Pi−1Qi and
PiQi (i = 1, · · · , 2n(n+1)), and then the strip is decomposed into 4n(n+1)
identical triangles.

3. By 2i and 2i+1, denote the triangles Pi−1QiPi, and QiPiQi+1 (i = 1, 2, · · · ,
2n(n+ 1)) where P2n(n+1) = P0, Q2n(n+1)+1 = Q1, and Q2n(n+1)P2n(n+1)

Q2n(n+1)+1 is the triangles with label 1, respectively, as shown in Fig.26
which is the case of n = 2.

Let a decomposed III-3 strip S above be called an n-FF1 decomposed S.

Fig. 26: An n-FF1 decomposed S (In this figure the case of n = 2).

Third, fold an n-FF1 decomposed S along the same fold lines of S to make
RD by FF1 which is shown in the proof of Lemma 2 and then TS like a doubly
covered parallelogram (denotet it by DCP ) is obtained (Fig.27). Notice that
this way of decomposing and folding a III-3 strip is nothing else but applying
Conway gluing to a III-3 strip (independent of values of n).

Recrease a parallelograms of the front (and back) of the DCP and each of
them can be divided into two acute or right triangles by its diagonal (red lines
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in Fig.27 (a)). Thus, it is folded into an isotetrahedron or a rectangle dihedron
(Fig.27 (b). In this case, an isotetrahedron is obtained).

Infinitely many non-similar isotetrahedra I and rectangle dihedra RD are ob-
tained out of a given rectangle strip, since shapes of a cell (triangle) and front
and back of DCP vary as the location of v2 moves on AE under the condition
AG < Av2 ≤ ℓ/4.

Therefore, the strip S in this Case III-3 is foldable into infinitely many isote-
trahedra or rectangle dihedra by the above generalized FF1 procedure.

Fig. 27: A III-3 strip S in Fig.24 is folded into an isotetrahedron.

Last we consider the case VI-3. Let a rectangle strip S with points
A,B,C, · · · , F, v1, v2, v3 and v4 as shown in Fig.28 be a VI-3 strip S. That
is, on the perimeter of a VI-3 strip S, consecutive six points A,B,C,D,E, F,
v1, v2, v3 and v4 locate such that AB = ED,Fv1 = Av1 = Dv4 = Cv4, Bv3 =
Cv3, Fv2 = Ev2 and the angle v1v2v3 > 90◦.

Fig. 28: A VI-3 Strip S

Fig. 29: On applying Conway gluing to a VI-3 Strip (n = 3 in this case)

Observation 2.
On applying the Conway gluing to a VI-3 strip, it automatically coils proper
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n times to make a topological sphere with four vertices v1, v2, v3 and v4 as
shown in Fig.29. In the same manner as a III-3 strip, a proper n (∈N) is
uniquely determined for each of VI-3 strips.

Proper n for a given VI-3 strip S can be calculated, taking into account the
length and the width of S in the following Theorem 7.

Theorem 7. A VI-3 strip S coils n=
⌊(
xℓ+ x2 + w2

)
/2

(
x2 + w2

)⌋
times to

make a topological sphere on applying Conway gluing to it, where x, ℓ and w
are the length of AB, the length and the width of S, respectively.

By using the value of the proper n for a given VI-3 strip, we determine the
practical algorithm for folding a VI-3 strip S with arbitrarily chosen 4-base
into an isotetrahedron in the following Theorem 8.

Theorem 8. A VI-3 strip S is foldable into isotetrahedra I according to the
practical algorithm which is generated by generalizing the procedure of FF2.

Proof. First, we determine the value of the proper n for a given VI-3 strip S
using Theorem 7. Second, we define an n-FF2 decomposed S as a VI-3 strip
S decomposed into 4 (2n− 1)(2n+ 1) triangles as follows:

We modify the process in which the perimeter S is divided by the FF2 proce-
dure in order to glue the perimeter parts AB and ED regardless of the location
of B on AC (and E on DF ). Divide AB, ED into 2n− 1 segments with the
same length d1, respectively. Next, divide BC,EF into 2n(2n − 1) segments
with the same length d2, respectively. (Note that v2 is an arbitrary point such
that FG < Fv2 < FH, while Fv2 : ED = n : 1 in the FF2 procedure as shown
in Fig.11 and Fig.14. Thus, in the FF2 procedure, d1 = d2. But d1 may not
be equal to d2in this case).

Lastly, draw v1Q1, Pi−1Qi, PiQi, Pi−1Qi+1, P(2n−1)(2n+1)−1Q(2n−1)(2n+1)and

P(2n−1)(2n+1)−1v4 (i = 1, 2, · · · , (2n−1)(2n+1)−1). Fig.30 illustrates a 3-FF2
decomposed S for a VI-3 strip S of Fig.28.

Fold an n-FF2 decomposed strip S along the same fold lines of S to make
RD by FF2 which is shown in the proof of Lemma 3 (i.e., Fig.13) and then
TS like a doubly covered parallel-octagons (parallelograms on rare occasions)
are obtained (denote it by DCP ). Note that this way of decomposing and
folding a VI-3 strip is nothing but applying Conway gluing to a VI-3 strip.
Shapes of front and back of DCP are not always parallelograms, but four
points v1, v2, v3 and v4 on them form parallelograms (Fig.31). By recreasing
the front and back of DCP along the lines vivj , the recreased DCP are found
to be composed of two identical parallelograms v1v2v4v3 (Fig.32).

The parallelograms of front and back of the recreased DCP can be divided
into two identical acute triangles by its diagonal (Fig.32). Thus, a VI-3 strip S
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is folded into an isotetrahedron I with vertices v1, v2, v3 and v4 each of whose
faces is congruent to a half of the parallelogram of the recreased DCP (Fig.32,
33). Infinitely many non-similar I are obtained out of a given rectangle strip
since shapes of both 4(2n − 1)(2n + 1) triangles and front and back of DCP
vary as the location of B(E) moves on AC(FD).

Therefore, the strip S in this Case VI-3 is foldable into infinitely many isote-
trahedra by the above generalized FF2 procedure.

Fig. 30: 3− FF2 decomposed S of Fig.2828. Fold lines are green.

Front: v2Bv4P6v3Av1Q1 Back: v2Bv4P6v3Av1Q1

Fig. 31: DCP composed of these two parallel-octagons (n = 3).

§4. No other than known two ways of folding a strip into RD

The following Theorem 9 are obtained as a by-product of Theorem 6 and
Theorem 8.

Theorem 9. In folding a parallelogram strip into a rectangle dihedron, there
is no other way of folding it into coiled RD other than well-known methods
FF1 and FF2.

Proof. Any net of a rectangle dihedron is a Conway tile. Then, the strip must
be Conway glued when the strip is folded into a rectangle dihedron. The coiled
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Front: v1v2v4v3 Back: v1v2v4v3

Fig. 32: Recreased DCP (n = 3). The shape of front and back of it is parallelogram.

Fig. 33: An isotetrahedron is obtained from a rectangle strip S of Fig.28, seen
from two different viewpoints

Conway gluing result of a strip appears if and only if consecutive six points
are chosen on the perimeter of the strip in the manner of Case III-3 and Case
VI-3. In particular, a rectangle dihedron is obtained in Case III-3 in Theorem
6 only when the strip can be divided into 4n(n + 1) identical right triangles.
This case is nothing but FF1 as shown in Fig.7.

And a rectangle dihedron is obtained in Case VI-3 only when the shape of
strip is a special parallelogram which can be divided into 4(2n − 1)(2n + 1)
identical right triangles (i.e., S is the union of (2n− 1) (2n+ 1) − 1 rhombi
and two halves of this rhombus). This case is nothing but FF2 as shown in
Fig.11.



FOLDING A STRIP INTO ISOTETRAHEDRA 131

§5. Acknowledgement

The author would like to thank Jin Akiyama, David Eppstein, Stefan Langer-
man and Joseph O’Rourke for their invaluable comments.

References

[1] Zachary Abel et al., Common Developments of Several Different Orthogonal
Boxes, Proceeding 23rd Canadian Conference Computational Geometry (2011),
77-82.

[2] Jin Akiyama, Tile-Makers and Semi-Tile-Makers, American Math. Monthly 114
(2007), 602-609.

[3] Jin Akiyama and Kiyoko Matsunaga, Treks into Intuitive Geometry, Springer
(2015).

[4] Jin Akiyama and Kiyoko Matsunaga, Reversibility and foldability of Conway
tiles, Computational Geometry 64 (2017), 30-45.

[5] Jin Akiyama and Kiyoko Matsunaga, Unfoldings of an envelope, European Jour-
nal of Combinatorics 80 (2019), 3-16.

[6] Jin Akiyama and Kiyoko Matsunaga, An Algorithm for Folding a Conway Tile
into an Isotetrahedron or a Rectangle Dihedron, Journal of Information Process-
ing 28 (2020), 750-758.

[7] Jin Akiyama and Kiyoko Matsunaga, A Prettier Shell on the Seashore: The
Conway Criterion, Math Intelligencer 43(2) (2021), 99-107.

[8] Jin Akiyama et al., Twenty years of Progress in the JCDCG3, Graphs and Com-
binatorics 36 No.2 (2020), 181-203.

[9] R. Alexander, H. Dyson and Joseph O’Rourke, The Foldings of a Square to
Convex polyhedra, Japan Conference on Discrete and Computational Geometry,
Tokyo, Lecture Notes in Computer Science 2866 (2003), 38-50.

[10] Erik D. Demaine and Joseph O’Rourke, Geometric Folding Algorithms, Cam-
bridge University Press (2007).

[11] Joseph O’Rourke, How to fold it, Cambridge University Press (2011).

[12] Doris Schattschneider, Will It Tile? Try the Conway Criterion, Mathematics
Magazine 53 No. 4 (1980), 224-233.

Kiyoko Matsunaga
Tokyo University of Science
Research Center for Math & Sci Education
1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, JAPAN
E-mail : matsunaga@mathlab-jp.com


