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ON LIOUVILLE'S THEORY OF ELEMENTARY
FUNCTIONS

MAXWELL ROSENLICHT

Some recent results of Ax have made possible greatly
simplified demonstrations of Liouville's basic results on the
elementary integration of functions and the elementary solu-
tion of transcendental equations, together with their generali-
zations in various directions. An essentially self-contained
exposition of this material is given here.

l For the convenience of the reader, we provide in this section
a succinct and somewhat simplified treatment of the necessary parts
of Ax's paper [1],

Let k~-+K be a fixed homomorphism of commutative rings.
(Thus K is a λ -algebra. In all our applications K will be a field and
k a subfield, but we may as well begin with the extra generality.)
If M is a iΓ-module, by a k-derivation of K into M is meant a k-
linear map D: K—+M such that D(xy) = x(Dy) + y(Dx) for all x, y eK.
In such a situation we have Dxn = nxn~ιDx for all x e K and all
positive integers n; taking x = 1, n = 2, we get Dl = 0, and hence
D vanishes on the image of k in K. The ^-derivations of K into M
form a if-submodule Derfe (K, M) of Homfc (K, M). A derivation on
(or of) the ring K is simply a Z-derivation of K into K (that is,
we take k = Z, K = M). A derivation on an integral domain extends
to a unique derivation on its field of quotients, by means of the
equation D(x/y) = (yDx — xDy)/y2.

PROPOSITION 1. Let k —+ K be a homomorphism of commutative
rings. Then there exists a K-module Ωκ/k and a k-derivation d of
K into Ωκ/k such that for any k-derivation D of K into a K-module
M there exists a unique K-homomorphism Ωκ/k —•> M which composed
with d gives D.

This well-known result is most simply proved by trying for Ωκ/k

the i£-module Φ/Ψ, where Φ is the free i£-module generated by the
symbols {δx}xeκ and Ψ the Z-submodule of Φ generated by all
3(x + y) — δx — δy and all δ(xy) — xδy — yδx for x, y eK, and all δx
for x in the image of k in K, with d the obvious composition with
δ, and noting that this works.

The pair (Ωκ/kf d), clearly unique to within isomorphism, is called
the module of k-differentials of K. Each element of Ωκ/k can be
written as a finite sum Σ< Xidyif with xi9 yt e K. For any i£-module

485



486 MAXWELL ROSENLICHT

M, there is a natural i£-module isomorphism between Derfc (K, M)
and Horn* (Ωκ/k, M).

PROPOSITION 2. Let c: Jc —> K be a homomorphism of commutative
rings, D a derivation on K such that there exists a map Dk: k—+k
such that cDk = Dc. Then there exists a unique map D1: Ωκ/k —• Ωκ/k

such that for all ύ),ηsΩκ/k and all f eK we have D\ω + η) —
Dιω + D'η, Dι{fω) - {Df)ω + f(Dιω), and Dι{df) = d(Df).

Since each element of Ωκ/k is of the form Σ^dVi, with xit yt e K,
the uniqueness of D1 is clear. To prove the existence of Dι we first
define an additive map Όf on the free i£-module Φ of the proof of
Proposition 1 by setting D'iΣiXβy^ = ΣMDxJδyt + x, ^{Dy,)) and then
note that D'Ψ aΨ, so that Df defines an induced map D1 on Φ/Ψ,
which is isomorphic to Ωκ/k. The verification that D1 has the desired
properties is straightforward.

From now on K will be a field, usually of characteristic zero,
k a subfield of K.

LEMMA, Let k be a field, K a separable algebraic extension field
of k. Then any derivation of k has a unique extension to a deriva-
tion of K.

This is another standard result. A proof may be found in [2,
§3], for example.

PROPOSITION 3. Let kaK be fields, {xjα e i elements of K that
are algebraically independent over k and such that K is separably
algebraic over k({xa}aeA). Then {dxa}aBA is a K-basis for Ωκ/k.

Each element of K satisfies a separable polynomial equation with
coefficients in the ring Mί^JαeJ, and by applying d to these equations
we see that dKaΣaeAKdxa. In other words, {dxa}aeA spans Ωκ/k. To
show that {dxa}aeA are linearly independent over K, we use the
existence, for each βeA, of a derivation d/dxβ of K which annuls
k and each xa, a Φ β, and takes on the value 1 at ^ the derivation
d/dXβ is first constructed for the ring k[{xa}aQA], then extended to its
field of quotients k({xa}aeA), and then to K, using the lemma.

COROLLARY. If kczKaL are fields of characteristic zero, then
the natural homomorphism ΩKJk—*ΩLlk is infective.

The "natural homomorphism" is of course that of Proposition 1.
Injectivity results from Proposition 3, noting that any transcendence
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base for K/k is part of a transcendence base for L/k.

PROPOSITION 4. Let kaK be fields of characteristic zero, let
Uι, , un, v be elements of K, with u19' ,un nonzero, and let clf , cn

be elements of k that are linearly independent over the natural
numbers Q. Then the element

of Ωκ/k is zero if and only if each uί9 , unj v is algebraic over k.

The element dv of ΩkMlh is zero if and only if v is algebraic
over k, by Proposition 3. The Corollary implies that the element
dv of Ωκ/k is zero if and only if v is algebraic over k. It remains
only to prove that if uλ is not algebraic over k then c^du^u^ + +
cnduju% + dv is nonzero. For this we may replace K, if necessary,
by k(uγ, •• ,un,v), to reduce ourselves to the case where if is a
finite extension of k. Let xlf , xm be a transcendence base for
K/k, with xt = ux. Considering the natural homomorphism Ωκ/k —>
ΩK/ku2,~.,xm) and replacing k by k(x2, , xm) if necessary, we see that
we may suppose K algebraic over k{u^). Enlarge K, as we may if
necessary, so that K is normal over k(u^). If c^uj^ + +
•cndujun + dv = 0 then for any σ e Aut {Kjk{u$) we have c1cίσ̂ 61/σ̂ 61 +
• + cndσujσun + dσv = 0, and adding up over all σ e Aut (K/kiu^)
produces an equation similar to our original one, but with cλ replaced
by [K: k(u$\cl9 with the same c2, , cn, ulf and with u2, , un9 v
replaced by elements of k(Uj). We therefore have to show that
cιduιju1 + + c%dujun + dv is nonzero in the special case where
2̂> — -, un, v eK = kiuj, with uλ transcendental over k. This fact

follows immediately upon expressing each ut as a power product of
monic irreducible elements of fc[^J and an element of k and v in
its partial fraction form relative to &[^J, for we then get a non-
cancelling partial fraction term dujux.

PROPOSITION 5. Let kczK be fields of characteristic zero, D a
derivation of K such that Dkak, C the field {xek:Dx = 0}, and
u and t elements of K that are algebraically dependent over C.
Then in Ωκ/k we have Dι{udt) = d{uDt).

For D\udt) = (Du)dt + udDt, while d(uDt) = (Dt)du + udDt, so
that we have to show that (Du)dt = (Dt)du. Corresponding to parts
of the inclusions C c ί ck(u, t)dK we have the homomorphisms
Ωκ/C —> Ωκ/k and Ωk{U)t)/k~> Ωκ/k, so that we can reduce ourselves first
to the case k = C and next to the case K = k(u, t) = C(u, t). In this
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case D is a multiple of the derivation d/dt of C(u, t) and our proof
reduces to the known equality du — (du/dt)dt.

PROPOSITION 6. Let kc:K be fields, Δ a set of derivations of K
such that Dkak for each DeJ, and let C be the field f)DeJker D.
Suppose ωίf ••-, ωneΩκ/k are annulled by each D\ for DeA. Then
if Mu * 7 (*>n are linearly dependent over K they are linearly
dependent over C.

For suppose that there are a19 , an e K, not all zero, such that
aiω1 + + ancon — 0. Choose aιy , an so that the number of non-
zero a/s is minimal, and that one of them, say a19 is 1. For each
ΰ e / l w e get 0 = D\a^, + + anωn) = (DαM + + (Dan)ωn =
(Da2)(O2 + + (Dan)a)n. Since the number of nonzero α/s was
minimal and ax — 1, we get Da2 — = Όan = 0. Hence each at 6 C.

2. We come now to the applications of the previous material
to differential algebra. The reader interested in the earlier litera-
ture should consult the bibliographies of the references listed at the
end.

In what follows, by a differential field will be meant a field k>
together with an indexed family {D^ieI of derivations of k. For
simplicity, one speaks of "the differential field k", instead of "the
differential field {&, {(i, A)};ez}". The constants of the differential
field k are C[i£Iker Dif a subfield of k. A differential extension field
of k is an extension field K of k together with a family of deriva-
tions {D'i}ieI of K indexed by the same set such that the restriction
of each Ό[ to k is Dim

THEOREM 1. Let k be a differential field of characteristic zero,
K a differential extension field of k with the same constants C.
For each i = 1, , n and j = 1, , v let ci3 e C and let vt be an
element of K, u5 a nonzero element of K. Suppose that for each
i = 1, , n and each given derivation D of K we have

Then either deg. t r . k(uλ, , uVJ vu , vn)jk Ξ> n or the n elements

of Ωκ/k given by ^Σd=ίci3 du3 /u3' + dvif i = 1, •••%, are linearly de-

pendent over C.

Working in Ωκ/k and using Propositions 2 an 5, for each given
derivation D of K and each i = 1, , n we obtain
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D<± ctfi*L + dvt) = d(± cti^L + Dv) = 0 .

If the differentials ^^c^du^Uj + dvt, i — 1, •••,%, of 42#/fc are
linearly independent over C, then by Proposition 6 they are also
linearly independent over K. Hence the n differentials ^=1cίjduj/uj +
d v t o f Ωk{Uv...,Uv,Vv...,Vn)/k a r e l i n e a r l y i n d e p e n d e n t o v e r k ( u x , - - , u v ,
v19 , v n ) . S i n c e Ω h { u v . . . t U ^ V v . . . t V n ) k i s a v e c t o r s p a c e o v e r k(uίf --, u,,
î> " •> ^n) of dimension deg. t r . k(ulf ••', uu, vlf , v»)/&, this lat ter

number must be a t least n.

COROLLARY. Let k be a differential field of characteristic zero,
K a differential extension field of k with the same constants.
Suppose that u19 , un, v19 , vn e K, with u19 , un nonzero, and
that for each i = 1, , n and each given derivation D of K we have
Dujut + DVi 6 k. Then either deg. tr. k(ulf , un1 v19 , vn)/k ̂ > n
or some linear combination of v19 , vn with constant coefficients
that are not all zero and some power product of ul9 , un with
exponents not all zero are algebraic over k.

This is a slight generalization of the main result Theorem 4 of [1],
To prove it, note that if the transcendence degree in question is not
at least n then there exist Ύ19 •• ,7 w eC, not all zero, such that

^ i ^ ΎidVl + + Ύndvn = 0 ,
un

choose a basis c19 , cr for the vector space QΊ1 + + QΎn so that
each Ύi can be written as Ίt = Σ j = 1 vτjCj with each z;ti e Z, hence
(using "logarithmic derivatives") rewrite the displayed equation as

Σ'

and quote Proposition 4.
The next theorem generalizes the main result of [3], to which

paper we refer for its applications to the question of elementary
solutions of transcendental equations. The lemma is an immediate
consequence of Theorem 1.

LEMMA. Let k be a differential field of characteristic zero, K a
differential extension field of k having the same constants and such
that deg. tr. K/k = 1. Then any two k-differentials of K which can
be written in the form cίdujuι + + cndujun + dv, where
c19 , cn, u19 , un9 v e k, c19 , cn being constants, in such a way
that for each given derivation D of K we have cλDuι\u1 + +
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cnDuJun + Dv 6 k, are linearly dependent over the subfield of
constants.

THEOREM 2. Let k be a differential field of characteristic zero,
K a differential extension field of k with the same constants, with
K algebraic over k(t) for some given t e K. Suppose that c19 , cn

are constants of k that are linearly independent over Q, that
Mu * ',un,v are elements of K, with u19 ' *,un nonzero, and that
for each given derivation D of K we have Σ?=i c^DuJUi + Dv e k.
If for each given derivation D of K we have Dtek, then uί9 •••, un

are algebraic over k and there exists a constant c of k such that
v — ct is algebraic over k. If for each given derivation D of K we
have Dt/t e k, then v is algebraic over k and there are integers
y<» vι> •"> v*f with v0 Φ 0, such that each uv

τ°/tH is algebraic over k.

We may suppose t transcendental over k, so that dt Φ 0. In
either of the two cases, each Dtek or each Dt/tek, the Lemma is
applicable, and we have cιduι\uι + -. + cndujun + dv equal to either
cdt or cdt/t, for some constant c of k. In the former case we have
Cjdujuj. + + cndujun + d(v — ct) = 0, and Proposition 4 tells us
that u19 , un, v — ct are all algebraic over k. In the latter case
Proposition 4 first implies the linear dependence of c19 c2, , cn over
Q, so that we can write c = (Σ?=i v%Gi)\v^ for suitable integers
ô> *>!> , vn, with vQ Φ 0, and so obtain

ψ± φψ^ d{ v) = 0
up/pi- K"/tv»

A final application of Proposition 4 to this last equation completes
the proof.

If k is a differential field and x, y ek, with y Φ 0, and the rela-
tion Dx = Dy/y holds for each given derivation D of k, we call x a
logarithm of y or y an exponential of x. A differential extension
field of k is called an elementary extension of k if it is of the form
k(ti, " #>^)> where for each i = 1, - - -9 N, tt is either a logarithm
of an element of k(t19 •••, ̂ _i), or an exponential of an element of
k{tl9 •• ,ί ί _ 1 ), or is algebraic over k(t19

 # ,^- i ) . In this case note
that each field k(tlf •••, t^) is a differential extension field of k.

The following result generalizes Liouville's theorem on the
elementary integrability of functions.

THEOREM 3. Let k be a differential field of characteristic zero
and for each given derivation D of k let aD e k. Then there exists
an elementary differential extension field of k having the same
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constants and containing an element y such that Dy = aD for each
given derivation D if and only if there are constants c19 , cnek
and elements ul9 , un, v e k, such that for each given derivation
D we have

± j ^ + Dv .

First suppose that there is a differential extension field k(t19 , tN)
of k having the same constants, with each £< a logarithm or an
exponential of an element of k(t19 •• ,£ i_1), or algebraic over the
latter field, that contains an element y such that Dy = <xD for each
given derivation D. We shall prove by induction on N that elements
c19 , cn9 u19 , unj v of k exist as indicated. Since the case JV = 0
is trivial, we assume that N > 0 and that the result holds for N — 1.
If we apply the N — 1 case to the differential fields kit,) c k(t19 •••,**)
we deduce immediately that there are constants c19 , cn of k and
elements u19 , un9 v of k{t^) such that for each given derivation D
we have aD — 2?=i CiDuJUi + Dv. Thus we are reduced to proving
only the rather general statement that if there is an element t
in a differential extension field of k having the same constants as k
such that έ is a logarithm or an exponential of an element of k or
algebraic over k and if there exist an integer n9 constants c19 , cn

of k9 and elements u19 , un9 v of k(t) such that aD = Σ ? = 1 CtDuJUi + Dv
for each given derivation D, then such n and c19 , cn9 u19 , un, v
can be found with the latter all in k. If t is algebraic over k9 we
can assume k(t) to be a normal extension of k. Then for each
σ e Aut (fc(t)/fc) we have aD = Σ?=i CiDσuJσUi + Dσ'y and summing
over all σ we get [&(£): fc]^ = ^=1ctDΠσσuJΠσσUi + DΣσσv, with each
element Π^Ut and Σσσv in fc. Thus we may assume t transcendental
over k. We claim that we may suppose c19 , cn to be linearly
independent over Q. For if, say, cn depends linearly on c19 •• ,c%_1

we write cn — (m^ + + m ^ . ^ . J / m , with m19 , mn_19 meZ,
m Φ 0 and we obtain for each given derivation D the equation
0ίD — Σ t ί (ci/m)D(uTKi)/uTKi + Dv, similar to what we had before
but with smaller n. Therefore we may assume that c19 , cn are
linearly independent over Q. If £ is a logarithm of an element of
k, say Dt = Da/a for some a e k and each given derivation D, then
it is an immediate consequence of Theorem 2 that u19 , un e k9

while v = ct + w9 for some constant c and some w ek, so that for
each D we have aD = cjΰuju^ + + cnDuJun + cDa/a + i)w, a
relation of the type desired, since all the terms here are in k. If t
is an exponential of an element of k9 say Dt/t = Db for some 6 e k
and each given derivation Z>, Theorem 2 tells us that v ek and there
are integers v09 v19 , i>Λ, with y0 Φ 0, such that each u^\tH ek.
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Thus for each D we have

Dujut = (l/vo)Du*t°luϊ° = (l/vo)D(u:°/Vήl(u:°/Vή + (vJvo)Dt/t .

Noting that v and each uϊ0/?* are in k and that Dt/t = Dδ, with
& e Λ, we get an expression for each aD of the type desired, with all
terms in k. It therefore remains only to prove the converse of
what we have shown so far, namely that if there exist constants
c19 , cn in k and elements u19 , un, v of k such that for each D
we have aΌ — Σ?=i CiDuJUi + Dv, then there is an element y in some
elementary extension field of k having the same constants such that
for each D we have Dy = ctD. It suffices to prove that for each
i, {Dujut} can be integrated in turn, without introducing new
constants. In other words, it remains to show that if a e k, a Φ 0,
then there exists a differential extension field k(t) of k having the
same constants and such that Dt = Da/a for each given derivation
D. To do this, take t transcendental over k and make k(t) a
differential extension field of k by defining, for each given derivation
D of k, Dt — Da/a. We are all done, unless it happens that k(t)
has a constant not in k. So suppose that f/g is a constant in Jc(t),
with /, g relatively prime elements of k[t], not both in k, and g
monic. For each given derivation D of k we have D{f/g) = 0, so
that gDf = fDg. Now Df, Dg ek[t], with degrees respectively <£
(degree of / ) , < (degree of g). Relative primeness implies g \ Dg, so
that Dg — 0, hence also Df = 0. Therefore there is a constant in
k[t] that is not in k. Say that bQ, b19 , bn ek, n > 0, 60 Φ 0, with
jD(δoί* + δ ^ " 1 + + δn) = 0 for all D. Then

(DbQ)tn + (nbQDa/a + Dbjt"-1 + = 0

for all D. Therefore δ0 is a constant in k and Dα/α = Di — bjnbo).
In this case α has a logarithm in fc itself and we are done.

Added in proof. Another proof of the main part of this theorem
is given in B. F. Caviness and M. Rothstein, "A Liouville theorem
on integration in finite terms for line integrals/7 Communications in
Algebra, 3 (1975), 781-795.
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