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 In this note, by rational function we mean the quotient of two polynomials

 with coefficients in any field of characteristic zero, for example, the complex
 numbers. The term elementary function is more difficult to define (indeed, Ritt

 takes 12 pages to do so). However, the student is willing to accept as meaningful
 such statements as "the general algebraic equation of degree 5 cannot be solved
 in terms of radicals," although we know that "in terms of radicals" requires

 some preliminary discussion. Therefore, he finds no difficulty with the following
 definition: An elementary function is one which can be constructed by means of
 any finite combination of the operations addition, subtraction, multiplication,

 division, raising to powers, taking roots, forming trigonometric functions and

 their inverses, taking exponentials and logarithms. In short, no matter how
 complicated the function, if we can write down all of its terms, the function is

 elementary. (Actually, the construction of elementary functions includes the
 forming of algebraic functions, but it seems advisable to omit this generality
 for the beginning calculus student.)

 We return to the test. If we wish to determine whether feg can be integrated
 (i.e. has an integral which is an elementary function, or, as we shall also say,

 ffegdx is elementary), we know, by Liouville's Theorem the form of the integral.
 Differentiating equation (1) and cancelling the nonzero eg we find f = R' +Rg'
 or, letting R = P/Q, where P and Q are relatively prime polynomials in x,

 (2) fQ2 = P'Q - PQ' + PQg'.

 Thus ffegdx is elementary if and only if there exist polynomials P and Q satisfy-
 ing the differential equation (2).

 Besides Liouville's theorem, the test requires only one further fact; namely,

 the following

 LEMMA. If the polynomial f(x) has an r-fold zero at x = a and r>O, then f'(x)
 has an (r- 1)-fold zero at x= a; in other words, if f(x) = (x_ a)rh(x) where r>O,
 h(x) is a polynomial and h(a) O, then f'(x) = (x-ax)r-lk(x) where k(ax) 50.

 The proof of the lemma is a simple differentiation exercise which the student
 can supply.

 It will make things easier if we define the term multiplicity. The number a
 is called a zero of the polynomial f(x) of multiplicity r (or a root of f(x) = 0 of
 multiplicity r) if f(x) = (x-oa)rh(x), where the polynomial h(ax) O. In terms of
 multiplicity the lemma reads: If a is a zero of the polynomial f(x) of multiplicity
 r>O, then a is a zero of f'(x) of multiplicity r-1.

 By examining some of the examples most frequently quoted in texts, we
 shall show how easily the analysis of equation (2) can be carried out, even by the
 student who has not previously encountered differential equations.

 Example 1: e-$2. If fe-x2dx is elementary, then fe-z2dx = Re-x2 or 1 = R'- 2xR.
 Letting R = P/Q, where P and Q are relatively prime polynomials and Q #0, we
 find:
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 (1.2) Q2 = QP' - PQ' - 2xPQ

 which is equation (2). Rearranging, we obtain

 (1.3) Q(Q - P' + 2xP) = - PQ'.

 Let us assume that the degree of Q is positive. Then Q = 0 has a root; let a be
 such a root and call its multiplicity r(r>0). Since P and Q are relatively prime,
 P(a) #0. Now, a is a zero of the left side of (1.3) of multiplicity ?r but a is a
 zero of the right side of multiplicity r- 1. This is a contradiction, hence our as-
 sumption that the degree of Q is positive must be false. Q is a constant (#0)
 which we can assume is unity.

 From (1.3) we obtain

 (1.4) P' - 2xP = 1.

 Since P is a polynomial in x, it is clear that the degree of - 2xP >degree of
 P', and the degree of - 2xP >0. The degree of the left side of (1.4) is always
 greater than the degree of the right side, which is a contradiction. We have
 proved that there is no polynomial P satisfying (1.4), hence no rational function

 satisfying (1.2). Consequently fe-x2dx is not elementary.

 Example 2: ebl/x, with b a nonzero constant. If f(ebx/x)dx is elementary,
 then f(ebx/x)dx = Rebx or (1/x) = R' +bR. Letting R = P/Q, where P and Q are
 relatively prime polynomials, Q#O, we find:

 (2.2) Q2 = xQP' - xPQ' + xbPQ

 (2.3) Q(Q - xP' - bxP) = - xPQ'.

 If we assume that Q has positive degree, then Q = 0 has a root. Let a be such
 a root and call its multiplicity r. If a5z0, we encounter the same contradiction
 met in the first example, that oa is a zero of the left side of (2.3) of multiplicity
 > r, while oa is a zero of the right side of multiplicity r- 1. Thus a must be zero,
 and Q=cxr, for some c 0. Putting this expression for Q in (2.2) we have
 CXr+l(CXr-l - P' - bP) = - crxrP. Again there is a contradiction, for the number
 0 is a zero of the left side of multiplicity ?>rr+1, while it is a zero of the right
 side of multiplicity r. Our assumption that Q has positive degree is no longer
 tenable; hence Q is a constant, which we can assume is unity.

 From (2.3) we obtain

 (2.4) xP' + bxP = 1.

 As before, since P is a polynomial in x, the degree of the left side = degree of
 (bxP) > 0 = degree of the right side. We have proved that there is no polynomial
 P satisfying (2.4), hence no rational function satisfying (2.2). Consequently
 f(ebx/x)dx with b S0 is not elementary.

 Example 3: (sin x)/x. It is clear that if f(x) = u(x) +iv(x), where u(x) and
 v(x) are real valued functions, then
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 61 f(x)dx = f CMf(x)dx = f u(x)dx,

 f(x)dx = f gf(x)dx = f v(x)dx,

 and if ff(x)dx is elementary, both fu(x)dx and fv(x)dx are elementary. (a and g
 stand for "the real and imaginary parts of," respectively.)

 Although (sin x)/x is not in the form of Liouville's Theorem, by Euler's
 relation (eix=cos x+i sin x), we have (sin x)/x=A(eix/x). Since eix/x does not
 possess an elementary integral, by example 2, neither does g(eix/x) = (sin x)/x.

 Example 4: 1/log x. Again Liouville's theorem is not immediately applicable.
 If y=log x, then f(1/log x)dx=f(e1/y)dy. By Example 2, the latter integral is
 not elementary, hence the same is true of the former.

 Example 5: (x2+ax+b)ex/(x-1)2, with a and b constants. Not only do the
 usual integration techniques require a considerable amount of skill, but there
 is no a priori assurance that we could find the integral, if it exists. Let us apply
 the test.

 Assume f[(x2 +ax +b)e/(x -1) 2 ]dx = Rex = Pex/Q. Then

 (5.2) (x2 + ax + b)Q2 = (P'Q - Q'P + PQ)(x - 1)2

 (5.3) Q(Q(x2 + ax + b) - (x - 1)2P' - (x - 1)2P) = - Q'P(x - 1)2.

 Assume Q has positive degree, and let a be a zero of Q of multiplicity r. If
 a #1, a is a zero of the left side of multiplicity > r, but a zero of the right side
 of multiplicity r- 1. This is a contradiction, hence a= 1 and Q= (x- 1)r. Substi-
 tuting this into (5.3) we find

 (x - 1)r[(x - 1)r(x2 + ax + b) - (x - 1)21P' - (x - 1)2P] = -r(x - 1)r+1P.
 Using the fact that the multiplicities of 1 as a zero of the left and right sides
 must be the same, we see that r = 1; i.e. Q = (x - 1). In the last equation we can
 cancel a common factor of (x -1)2 from both sides, giving

 (x2 + ax + b) - (x - 1)P' - (x - 1)P = P,

 (x - 1)P' + (x - 2)P = x2 + ax + b.

 P is clearly linear, P = cx+d, which means

 CX - C + CX2 + dx - 2cx - 2d = x2 + ax + b.

 Since these two polynomials are identical, the coefficients of like powers are the
 same, c=1, d-c=a, -c-2d=b, whence b= -2a-3.

 Consequently f[(x2+ax+b)ex/(x- 1)2]dx is elementary if and only if
 b= -2a-3, in which case the integral is el(x+a+1)/(x-1)+C.

 By using one unproved theorem, we have seen how it is possible for even the
 beginning calculus student to test the integrability of certain transcendental
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 functions, and the logical structure of the test, though not trivial, is sufficiently
 similar to others he has seen for it to be easily grasped (e.g., the test for the
 rationality of say \/2). Although it is obvious that a table of functions which
 cannot be integrated could be constructed by a careful analysis of examples, to
 do so for the student would be no better than is done at present. Rather we feel
 that the student, by applying the test to a few functions, will have a fruitful
 introduction to differential equations and will gain well-founded confidence in
 his ability to follow and reconstruct proofs requiring more than one or two steps.
 Also, the last example illustrates the usefulness of the test as an integration
 technique.
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 THE INTEREST RATE IN INSTALLMENT CONTRACTS

 HUGH E. STELSON, Michigan State University

 1. Introduction. In an installment contract* in which the time price differ-
 ential is an add-on, the yield return to the lender increases as the contract gets
 longer up to a point. Thereafter the yield declines as the length of the contract
 increases.

 Example. For a 6% add-on rate (i.e. 4% of the original loan is added to the
 loan cost for each month of the duration of the loan) in an installment contract
 the effective rate is 8.98% per year for a 3-month contract and 10.21% for a
 6-month contract. The yield builds up to a maximum of 11.13% around a 26-
 month contract. Thereafter it declines. The yield is 10.21% for a 120-month
 contract and it continues to decline to 6.2% in a 500-year contract.

 The formula for the present value of a loan on a monthly basis is

 (1) B = Ram at (i)

 where B = cash price or present value of loan, R = monthly payment, n = number
 of months, and i = interest rate per month. Let c = per cent of add-on per month
 (i.e. at a 6% yearly add-on, c=.005); then R=B(l+cn)/n and (1) becomes
 B=B(l+cn)[l-(l+j)-n]/ni, or it can be put in the form

 (2) (1 + cn-in)(I + i)n-(1 + cn) = O.

 2. Maximum value of i for a constant value of c. The value of i as given by
 (2) is expressed approximately [1 ] [2 ] by

 6cn

 3(n + 1) + cn(n-1)

 * This problem was presented to me by M. R. Neifeld, Beneficial Management Corporation?
 Morristown, New Jersey.
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