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The Basel Problem is that of evaluating the series

∞∑
n=1

1

n2
= 1 +

1

22
+

1

32
+ · · · ,

which was first raised in 1650 by Pietro Mengoli. It was first solved by Euler in 1734
and is named for his city of origin, although by then he was already in St Petersburg.

There are now many proofs that

∞∑
n=1

1

n2
=

π2

6
(1)

and all require some non-trivial limiting operation. The most generic are connected
with the theory of Fourier series or some other aspect of harmonic analysis, or with
the properties of periodic functions such as sinx. My favourite proof is the following,
which although motivated by the theory of Fourier series avoids any sophisticated
limiting theorems such as the Riemann-Lebesgue Lemma and should be compre-
hendible to anyone who has taken a basic course of calculus and has met complex
numbers.

We use the notation

e(α) = e2πiα.

Then we have ∫ 1

0

e(hα)dα =

{
1 (h = 0),

0 (h ∈ Z \ {0}).
(2)

For a positive integer H we introduce the Fejér Kernel

KH(α) = H−1

∣∣∣∣∣
H∑

n=1

e(nα)

∣∣∣∣∣
2

=
H∑

h=−H

(
1− |h|

H

)
e(hα). (3)

To see that the second formula follows from the first write the first as

H−1

H∑
m=1

e(mα)
H∑

n=1

e(−nα)

1
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and collect together those terms for which m−n = h. There can only be a non-zero
contribution when −H ≤ h ≤ H. Moreover when 0 ≤ m − n = h ≤ H we have
m = n+ h and there are only such pairs m,n when h+ 1 ≤ n+ h ≤ H and then m
is uniquely determined by n. Thus the number of such pairs is H − h = H − |h|. By
symmetry we have the same conclusion when −H ≤ h < 0.

Now consider for an arbitrary integer h

I(h) =

∫ 1

0

(
1
2
α2 − 1

2
α + 1

12

)
e(hα)dα.

At once

I(0) = 0.

When h ̸= 0, by integration by parts twice we have,

I(h) =

[(
1
2
α2 − 1

2
α + 1

12

)e(hα)
2πih

]1
0

−
∫ 1

0

(
α− 1

2

)e(hα)
2πih

dα

= 0−
[(
α− 1

2

) e(hα)

(2πih)2

]1
0

+

∫ 1

0

e(hα)

(2πih)2
dα

= − 1

(2πih)2

=
1

4π2h2
.

Now we combine this with the formula for the Fejér kernel (3),

H∑
h=1

1

2π2h2

(
1− h

H

)
=

H∑
h=−H
h̸=0

1

4π2h2

(
1− |h|

H

)

=

∫ 1

0

(
1
2
α2 − 1

2
α + 1

12

)
KH(α)dα.

By (2) we also have∫ 1

0

1
12
KH(α)dα =

H∑
h=−H

(
1− |h|

H

)
1

12

∫ 1

0

e(hα)dα =
1

12
.

Thus
H∑

h=1

1

2π2h2

(
1− h

H

)
=

1

12
+

∫ 1

0

(
1
2
α2 − 1

2
α
)
KH(α)dα. (4)
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The sum
H∑

h=1

e(hα)

is the sum of the terms of a geometric progression with common ratio e(α) and so
when α /∈ Z we have

H∑
h=1

e(hα) =
e
(
(H + 1)α

)
− e(α)

e(α)− 1
= e

(
(H + 1)α/2

)sin(πHα)

sin πα
.

Hence, by (3),

KH(α) = H−1

(
sin(πHα)

sin πα

)2

(5)

and we see that this also holds when α = k ∈ Z provided we interpret the right hand
side as H, which would follow from l’Hôpital’s rule on taking the limit as α → k.
We also have (

1
2
(1− α)2 − 1

2
(1− α)

)
KH(1− α) =

(
1
2
α2 − 1

2
α
)
KH(α).

Thus in the integral in (4), when we replace the variable α by 1− α on the interval
[1/2, 1] we obtain

H∑
h=1

1

2π2h2

(
1− h

H

)
=

1

12
+

∫ 1/2

0

(α2 − α)KH(α)dα.

By (3), 0 ≤ KH(α) ≤ H and by (5) and the well known inequality | sin πβ| ≥ 2|β|
for |β| ≤ 1/2 we have

KH(α) ≤ H−1α−2

when 0 < α ≤ 1
2
.

Let δ be a real number with 0 < δ < 1
2
. Then∣∣∣∣∣

∫ 1/2

0

(α2 − α)KH(α)dα

∣∣∣∣∣ ≤
∫ δ

0

αHdα+

∫ 1/2

δ

H−1α−1dα

< δ2H +H−1 log
1

2δ
.

If we take δ = H−1 then the above → 0 as H → ∞. We also have

H∑
h=1

1

2π2h2

(
1− h

H

)
=

H∑
h=1

1

2π2h2
−

H∑
h=1

1

2π2hH
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and the second sum here is as most

1

2π2H

(
1 +

∫ H

1

dx

x

)
=

1 + logH

2π2H

and this also → 0 as H → ∞. Hence
∞∑
h=1

1

2π2h2
=

1

12
.

By the way, the polynomial

1

2
α2 − 1

2
α +

1

12
at the core of the proof is the second, b2(α), of a family of polynomials named for
Jacob Bernoulli, who also came from Basel. The first is

b1(α) = α− 1

2
and one can define them iteratively by

bk+1(α) =

∫ α

0

bk(β)dβ −
∫ 1

0

bk(β)(1− β)dβ. (6)

Some authors define them so that the leading coefficient is 1 by replacing the right
hand side of (6) by

bk+1(α)/(k + 1).

They have many interesting properties and applications.


