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ABSTRACT

Nonlinear propagation in optical fibers: from soliton radiations to multimode
instabilities

Abstract: The main goal of this thesis is the investigation of nonlinear light propaga-
tion in optical fibers. We have focused on two kinds of problems: solitons in single-mode
fibers and multimode light propagation in graded index (GRIN) fibers. Solitons are short
and intense light pulses which remain localized during propagation. They appear as
maxima of intensity (called bright soliton) in the anomalous dispersion regime or intensity
dips on a continuous wave (CW) background in normal dispersion (dark solitons). When
their carrier frequency is close to the zero dispersion wavelength (ZDW) or when fiber’s
birefringence is taken into account, solitons can interact with weak waves and generate
new frequencies. We have studied theoretically the efficiency of these processes in the case
of dark solitons propagating close to ZDW and bright solitons in a highly birefringent fiber.
The outcomes of these analysis have been validated experimentally.

In the second part of this thesis, we increase the degrees of freedom by using multimode
fibers. Light propagation in multimode fibers entails a spatiotemporal dynamics which is
still far to be fully understood. An effect arising in GRIN fibers is self-imaging, a process in
which the spatial beam injected at the input replicates itself periodically along the fiber,
creating a grating by virtue of the silica’s Kerr effect. Due to this periodic behavior, when
a CW propagates in a multimode fiber, some frequencies become unstable and they are
amplified (a process called geometric parametric instability). We have characterized the
pattern of unstable frequencies when a periodic variation of the fiber diameter is made. We
also present a reduced one dimensional model which is able to mimic the spatiotemporal
dynamics of light in a multimode GRIN fiber.

Keywords: Temporal optical solitons; Nonlinear optics; Optical fiber; Modulation in-
stability; Multimode fiber; Dispersive waves.
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ABSTRACT

Propagation non-linéaire dans les fibres optiques: solitons, ondes dispersives
et instabilités multimodes

Resumé: Ces travaux de thèse portent sur l’étude de la propagation non-linéaire de la
lumière dans les fibres optiques. Nous nous sommes concentrés sur deux types de prob-
lèmes: les solitons dans les fibres monomodes et la propagation de la lumière multimode
dans les fibres à gradient d’indice. Les solitons sont des impulsions lumineuses courtes et
intenses qui restent localisées lors de la propagation. Ils apparaissent sous la forme d’un
maximum d’intensité (appelé soliton brillant) dans le régime de dispersion anormale, ou
d’un trou d’intensité sur un fond continu en dispersion normale (soliton sombre). Lorsque
leur fréquence de porteuse est proche de la longueur d’onde de dispersion nulle ou que la
biréfringence de la fibre est prise en compte, les solitons peuvent interagir avec des ondes
de faible amplitude et générer de nouvelles fréquences. Nous avons étudié théoriquement
l’efficacité de ces processus dans le cas de solitons sombres qui se propagent près de
la longueur d’onde de dispersion nulle et de solitons brillants dans une fibre fortement
biréfringente. Les résultats de ces analyses ont été validés par des expériences.

Dans la deuxième partie de cette thèse, nous augmentons le nombre de degrés de
liberté en utilisant des fibres multimode. La propagation de la lumière dans les fibres
multimodes s’acompage d’une dynamique spatio-temporelle encore loin d’être complète-
ment comprise. Un effet qui se produit dans les fibres GRIN est le l’auto-imagerie, un
processus dans lequel le faisceau spatial injecté à l’entrée se réplique périodiquement le
long de la fibre, créant un réseau d’indice grâce à l’effet Kerr de la silice. En raison de ce
comportement périodique, quand une onde continue se propage dans une fibre multimode,
certaines fréquences deviennent instables et sont amplifiées (processus appelé instabilité
paramétrique géométrique). Nous avons caractérisé le motif des fréquences instables
lorsqu’une variation périodique du diamètre de la fibre est réalisée. Nous présentons
également un modèle unidimensionnel capable d’imiter la dynamique spatio-temporelle
de la lumière dans une fibre multimode.

Mots clés: Optique non-linéaire; Fibres optiques; Solitons; Ondes dispersives; Fibres
multimode; Instabilité modulationelle; Instabilité paramétrique.
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INTRODUCTION

The effects explained by nonlinear optics are not commonly encountered in our daily life.
In our usual experience, light does not change the properties of a medium when it goes
through it. However, when the intensity of light is increased, the optical characteristics
of a material may be modified due to light propagation. This property of light-matter
interaction was almost hidden before the construction of the first working laser by Maiman
in 1960 [1]. The laser paved the way to the observation of second harmonic generation
using a quartz crystal by Franken [2], and to a posterior full explanation by Armstrong [3].
Both works gave birth to the field of nonlinear optics. Right after, numerous experimental
realizations of nonlinear phenomena were carried out: the dependence on the intensity of
light of the refractive index [4], Brillouin scattering [5] or degenerated four wave mixing
[6] to cite some of them.

Some years later, optical fibers with low losses were available [7]. Indeed, not a longer
time after, the potential of optical fibers to become a workhorse of nonlinear optics was
being exploited. In just a few years, Raman scattering [8], [9], stimulated Brillouin scattering
[10] and Self-Phase modulation [11] were observed using as a nonlinear material a silica
made fiber (see references [12], [13] for a more detailed historical approach). Among the
plethora of nonlinear effects taking place in fibers, two of them attracted our attention:
solitons and modulation instability.

Solitons

Solitons are solutions of nonlinear equations representating a wave which keeps its form
and remains localized. Notably they are not altered by collisions, unless a phase shift [14].
The name soliton was first coined by Zabusky and Kruskal [15] due to its close similarity to
a particle. This kind of waves is ubiquitous in many physical fields such as Bose-Einstein
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INTRODUCTION

Condensates [16]–[18], hydrodynamics [19] and biological systems [20].

Solitons also appear in many optical systems, both in the spatial and in the temporal
domain. Some remarkable exemples in the spatial domain are found in photorefractive
crystals [21], nonlocal media [22], in the transverse plane of a photonic crystal fiber (PCF)
[23] or discrete waveguides [24]. Whereas, the most notable case in time domain are
single-mode optical fibers.

Initially proposed by Hasegawa [25], optical temporal solitons are localized structures
in time domain. They are characterized by the perfect balance between nonlinearity and
linear distortion produced by dispersion. Temporal solitons in optical fibers were initially
observed by Mollenauer [26] and attracted much attention because of their potential
application in long-haul optical telecomunications [27]. Although timing jitters produced
by small carrier frequency fluctuations due to amplification (Gordon-Hauss effect [28]) or
produced by Raman effect [29] significantly reduced the capacity and reachable distance of
communication systems based on solitons [30], [31], they are attracting a renewed interest
to conform future telecommunication systems [32], [33].

Besides their potential use in telecommunications, solitons play a crucial role in broad-
band sources. After the discovery of supercontinuum in PCF by Ranka [34], it was found
that the interaction of solitons with other waves was at the origin of the broad spectrum
[35] and they played a crucial role to explain this phenomena. These kind of interactions
have attracted much attention since almost a decade ago and it is still an active field of
research.

Modulation Instability

A continuous wave (CW) is the simplest non-trivial solution of wave equation describing
light propagation in an optical fiber. However, it may be unstable due to modulation
instability (MI) [36]. MI appears as a temporal modulation of the constant background
whose amplitude increases following an exponential fashion. MI is present in many
branches of physics, such as plasma physics [37], hydrodynamics [38] and Bose-Einstein
Condensates [39] to cite some of them. In fiber optics, among all conditions where MI
is triggered, the most common is anomalous dispersion regime [40]. It is also observed
in normal dispersion in presence of higher order dispersion [41], fiber birefringence [42],
multiple spatial modes [43] or if an external variation of parameters is applied [44]. The
latter case is also called parametric instability or parametric resonance.

Parametric resonance (PR) is a well-known phenomenon taking place in systems where
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parameters are varied in a periodic manner. A classical case is a pendulum whose string’s
length is changed periodically. Depending on the oscillator parameters, the system may be
unstable and oscillations become unbounded.

Historically, one of the pioneering studies of PR was carried out by M. Faraday, who
studied the formation of standing waves on the surface of a liquid in a closed vibrating
receptacle, a phenomenon known as Faraday instability [45]. Faraday instabilities also
manifest in a huge variety of physical settings [46], such as Bose-Einstein condensates
[47]–[51], granular systems [52], [53], colloidal suspensions [54], mechanical systems [55]
and chemical process [56] to cite some of them.

In optics, a CW may be also unstable due to PR when an external parameter is varied
periodically. This external forcing can result from periodic amplification [57], dispersion
[44], [58]–[62] or nonlinearity [63], [64]. The periodic evolution of nonlinearity can be
self-induced in highly multimode graded-index (GRIN) fibers. Indeed, such fibers exhibit
a periodic self-imaging of the injected field pattern due to the interference between the
different propagating modes [65]. This is due to the fact that the propagation constants of
the modes are equally spaced [66]. This creates a periodic evolution of the spatial size of
the light pattern and therefore induces a periodic evolution of the effective nonlinearity in
the propagation direction [67], [68]. Recent experiments showed that PRs produced by GPI
can reach detunings from the pump in the order of hundreds of Terahertzs [69].

Objectives and organization of this manuscript

The present manuscript is divided in three parts, and each part in different chapter.

The first part is conceived to introduce the basic physical concepts. In the first chapter,
physical mechanisms involved in light propagation in optical fibers are depicted. We
shall explain the structure of the electric field, the origin of dispersion and nonlinearity.
In the second chapter, single-mode solitons and their perturbations are explained from a
physical point of view. Finally, in the third chapter, modulation instability produced in
homogeneous and periodically varying fibers is explained.

The second part is devoted to optical solitons in single-mode fibers in presence of
perturbations. The cases we shall analyze are the interactions of bright solitons in a
birefringent PCF with a CW, and a dark soliton propagating near to zero dispersion
wavelength (ZDW). In this later case, Cherenkov emission and the interaction with a
linear wave are explained. In this part, all presented theoretical results are supported by
numerical and experimental results.
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In the last part, nonlinear multimode wave propagation in optical fibers is faced. We
shall overview the recently published literature and present a detailed analysis of the
model that we shall use. We will explain geometric parametric instability both in a constant
core and a periodically modulated fiber. Finally, we will describe a (1+1)D model capable
to mimic the dynamics of light propagating in a GRIN fiber.
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Fundamentals of light propagation in
optical fibers
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CHAPTER

ONE

PHYSICAL MECHANISMS INVOLVED IN LIGHT
PROPAGATION

Contents

1.1 General structure of fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 General structure of the Electric Field . . . . . . . . . . . . . . . . . . . . 8

1.3 Linear effects: Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Nonlinear effects: third order susceptibility . . . . . . . . . . . . . . . . . 12

1.4.1 Instantaneous Response . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Raman effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Other kinds of fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Micro-structured fiber . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.2 GRIN fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

The aim of chapter 1 is to give an overview of the general background needed to fully
understand this manuscript. In section 1.1, the structure of a fiber and the light’s confining
mechanism are depicted. In section 1.2, the general form of the electric field is discussed
and the most relevant approximations are explained. In section 1.3, the effects related to
linear propagation are shown. In section 1.4, the most remarkable nonlinear effects and
their origin are presented. In the last section 1.5, some important kinds of fiber and their
most crucial characteristics are defined.
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CHAPTER 1. PHYSICAL MECHANISMS INVOLVED IN LIGHT PROPAGATION

Figure 1.1: Schema of the fiber’s general structure.

1.1 General structure of fibers

Optical fibers are dielectric waveguides which deliver electromagnetic radiation within a
spectral range lying from visible to near infrared. They are mainly made of silica, although
they also can be produced using lead silicates, chalcogenides, and bismuth oxide glasses, to
name a few [40]. The physical mechanism underlying light confinement inside the guide is
total internal reflection [70]. The most paradigmatic example of fiber is step-index, whose
structure is composed of three well-differentiated concentric cylindrical regions (see Fig.
1.1) with different optical properties. The first region is the core, which is situated at the
center of the fiber. The most part of the traveling energy is confined inside this region. The
second part is called the cladding, which surrounds the core. This second stratum must
have a refractive index strictly lower than the core in order to fulfill the conditions of total
internal reflection and allow light guiding. In order to achieve this property, the core is
doped with germanium, whose effect is to slightly increase its refractive index. Finally,
there is the jacket wrapping the core and cladding. This last layer is conceived to protect
the fiber from mechanical stress and it is optically isolated. Its presence is omitted along
the whole manuscript since its purpose is only to protect the fiber and it does not affect the
physical phenomena under investigation.

1.2 General structure of the Electric Field

Light propagation in an optical fiber is described by Maxwell’s equations, which govern
the electric (E) and magnetic (B) fields. In absence of free currents and charges, the full
description can be reduced to only one of the two fields, that we choose without loss of

8



CHAPTER 1. PHYSICAL MECHANISMS INVOLVED IN LIGHT PROPAGATION

generality to be E.

The electric field is considered as a confined wave propagating forward along the
z-axis. Note that under this assumption backward propagating fields produced by linear
scattering, nonlinear coupling or non-guided radiation are neglected.

In addition, the considered guides will be assumed to have a small difference of
refractive index between core and cladding. This hypotesis is known as weakly-guiding
approximation [70]. Within this assumption, the different components of E will not be
linearly coupled, although they could interact via nonlinear terms as we shall see in the
second part of this manuscript.

The polarization components of the electric field can be split in two different parts, one
perpendicular and the other paralel to the direction of propagation (z) [70] :

E(x, y, z, t) = E⊥ + Ez. (1.1)

It can be shown that |E⊥| � |Ez|, hence E is considered to lie in the transverse plane of
propagation. The spatial distributions of the electric field in this plane are called spatial
modes F(x, y). These distributions are solution of Maxwell equations and have to verify the
boundary conditions imposed by the waveguide geometry. For example, in the step-index
fiber, light have to be confined in the core and the electric field must go to zero in the
cladding. The modes form a base and they can be used to expand and to fully describe the
guided electric field E [71]. Using the translational invariance of fibers, a monochromatic
electric field E can be written as:

E(x, y, z, t) = ∑
n

An(z)Fn(x, y)ei(βnz−ω0t)u⊥ + c.c, (1.2)

where ω0 is called the carrier frequency of the field, c.c denotes complex conjugate, An(z) is
the amplitude of the n-th mode and βn is the propagation constant, which is the conserved
quantity associated to continuous translation symmetry of the fiber [70]. This last quantity
plays a main role in the description of light propagation since it relates frequency with
wave-number. The knowledge of this relation tells us crucial information such as phase
velocity, group velocity, group velocity dispersion, ... as we will see in section 1.3. The
propagation constant depends on the material, the guide and nonlinearity. If the field is
monochromatic, and there is not coupling between modes (neither linear nor nonlinear),
evolution in z is found by multiplying An(z), which is constant due to the z-invariance
of the modes, by the phase factor exp(iβnz). Nevertheless, in real fibers, the modes are
coupled and they may exchange energy. Modes interact via two different mechanisms:

9
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by linear coupling, whose origin is small bending or imperfections of the waveguide or
nonlinear interactions, due to the nonlinear nature of refractive index. In this manuscript,
we will consider fibers which do not couple modes linearly and only nonlinear interactions
between modes will be taken into account.

In waveguide theory is common to write βm as a function of an effective refractive
index (ne f f ,m(ω)):

βm(ω) =
ωne f f ,m(ω)

c
. (1.3)

A certain mode is guided by total internal reflection if it verifies the condition nclad <

ne f f ,m < ncore. Depending on the number of guided modes, fibers are classified in two
main groups: single-mode, when there is only one guided mode and multimode, when
there are more than one guided modes.

Equation (1.2) describes a strictly monochromatic electric field. If the electric field E
has a finite spectral band, this expression should be modified in the following way:

E(x, y, z, t) = ∑
n

An(z, t)Fn(x, y)ei(βnz−ω0t)u⊥ + c.c. (1.4)

The construction is quite similar, but note that now A(z, t) depends also on t. This function
is called envelope and it is a complex function whose bandwidth is much smaller than
the carrier frequency (|∆ω| � ω0). Then, the time dependence of Eq. (1.4) is described by
the product of two functions, one varying at the carrier frequency (e−iω0t) and another one
which varies in a slower fashion and is called envelope. The approximation of considering
two well-differentiated time scales is named slowly varying envelope approximation
(SVEA) [72] , which can be mathematically written as |∂t A| � ω0|A|.

1.3 Linear effects: Dispersion

Interaction between light and matter is described by the macroscopic polarizability (P). If
we assume a local response, this quantity can be expressed as a power series of the electric
field [73]:

P(r, ω) = ε0(χ
(1)(ω) · E + χ(2)(ω) · EE + χ(3)(ω) · EEE + ...), (1.5)

where χ(n)(ω) is a (n + 1)-dimensional tensor describing the material properties named
susceptibility. When E is weak enough, it is safe to keep only up to first order in the
expansion. This first order approximation is the supporting basis of all the physics that can

10
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be found in linear optics. The susceptibility χ(1) is a function of frequency and it is related
to the refractive index by the expression:

n2(ω) = 1 + Re(χ(ω)). (1.6)

One important feature of linear light propagation is that the spectral content of the field will
not be altered. The dependence on frequency of the refractive index far from resonances
can be obtained by the Sellmeier formula [40]:

n2(ω) = 1 + ∑
j

Bjω
2
j

ω2
j −ω2

, (1.7)

where Bj and ωj are coefficients depending on the material. In the case of germanium
doped silica, which is the material consitituting most optical fibers, these coefficients
are reported in Ref. [74]. The dependence on frequency of the refractive index makes
the propagation constant frequency-dependent. The analytic form of this dependence
is seldom known, since it is a function of guide geometry and its material composition.
Nevertheless it can be developed as a Taylor series around the carrier frequency ω0:

β(ω) = β0 + β1(ω−ω0) +
β2

2
(ω−ω0)

2 +
β3

3!
(ω−ω0)

3 + ... , βm =
dmβ(ω)

dωm

∣∣∣
ω=ω0

.

(1.8)
The coefficients of the polynomial expansion are related to physical quantities. β0 is
related to the phase-velocity of the carrier frequency and β1 and β2 are related with the
group-velocity and group velocity dispersion (GVD) respectively:

dβ(ω)

dω
=

1
vg

, β2(ω) =
d2β(ω)

dω2 . (1.9)

As it will be shown in coming chapters, GVD plays a fundamental role in light dynamics
in optical fibers. Dispersion orders higher than 2 are called higher order dispersion (HOD).
When HOD coefficients are present, the coefficient β2 is a function of ω. Three different
regimes are defined as a function of the sign of β2:

• β2 = 0: group velocity is an extrema, these points are called zero dispersion wave-
length (ZDW). In conventional step-index fibers it is situated near 1300 nm but it
may be found near 800 nm in special cases like photonic crystal fibers or around 1550
nm in dispersion shifted fibers (DSF).

11
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• β2 < 0: The group velocity increases with ω, this regime is called anomalous disper-
sion. In this regime bright solitons are found. They are going to be carefully studied
in Chap. 4.

• β2 > 0: The group velocity decreases with ω, this dispersion regime is known as
normal dispersion. In this dispersion regime we will find dark solitons, which will
play a main role in Chap. 5.

The physical effect of a group velocity dependence on ω is that the spectral components
of a pulse travel with different velocities, producing a temporal distortion of the pulse.

1.4 Nonlinear effects: third order susceptibility

When the electric field is intense enough, the first order approximation of material response
made in the last section is no longer valid, hence higher order terms must be included to
properly describe light-matter interaction. When higher order terms of the polarizability are
taken into account, processes involving several photons are allowed and as a consequence,
the spectral content of the field may change.

The first contribution to nonlinear macroscopic polarizability in Eq. (1.5) is the second
order susceptibility χ(2). This contribution is responsible for a wide variety of relevant
physical effects, such as second harmonic [2] and sum frequency generation. However,
fused silica is a centro-symmetric material, thus the second-order nonlinearity strictly
vanishes [75]. Silica centrosymmetry can be broken in optical fibers by special techniques
such as thermal [76] or optical [77] poling, but these kind of effects are not considered in
this manuscript.

The next contribution to nonlinear polarizability is χ(3). The most prominent effects
originated by this term are third harmonic generation (THG), four-wave mixing (FWM),
self-phase modulation (SPM) and Raman effect [73]. Depending on the time scale of the
reponse, nonlinear processes are classified in two groups: instantaneous and delayed
response effects.

1.4.1 Instantaneous Response

This contribution is associated to the electronic response of the material. Its effect is seen if
the electric field is expressed as E = 1

2 (Ae−iω0t + A∗eiω0t), where A is a complex number.

12
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Consequently nonlinear polarizability writes as:

P(3) = ε0χ(3)(A3e−i3ω0t + 3|A|2Ae−iω0t + c.c) (1.10)

The first term is related to THG, but in fiber optics is not observed unless special conditions
are considered [78], [79] hence its contribution will be neglected. If Eqs. (1.10) and (1.6) are
merged, the resultant physical effect is a refractive index depending on the intensity:

n(ω) = nl(ω) + n̄2‖A‖2, (1.11)

where nl(ω) is the linear contribution to the refractive index and n̄2 = 3/8Re(χ(3))n−1
l .

Materials are classified as focusing (n2 > 0) or defocusing (n2 < 0) relying upon the sign of
n2. In the wavelength range we consider, silica is a focusing material [80].

When variations of refractive index due to intensity seen by a field are produced by
the field itself, the process is called SPM, while when there is a different field at the origin
of the induced changes, the effect is named cross-phase modulation (XPM). Both XPM
and SPM are particular cases of a more general process called four-wave mixing (FWM),
which consists on the annihilation of two photons with frequencies ω1 and ω2 to generate
two new photons with frequencies ω3 and ω4. The interaction is elastic, thus energy
and momentum are conserved. This means there are a frequency (ω1 + ω2 = ω3 + ω4)
and wavenumber (β(1) + β(2) = β(3) + β(4)) conservation laws. In nonlinear optics the
conservation of wavenumber is known as phase-matching.

1.4.2 Raman effect

Photons can also interact with a χ(3) material via nonlinear inelastic scattering, which
means that involved photons lose some energy which is transfered to the medium. In
optical fibers, the most imporant effects are Raman and Brillouin scattering. In our case,
we will only consider Raman effect. This phenomena, first discovered by C.V. Raman
[81] in 1928, was observed for the first time in optical fibers by Stolen et al. [8] in 1972. It
consists on the interaction of photons with molecular vibrations of silica. From a quantum
mechanical point of view, an incident photon with frequency ωi excites a virtual level of
energy, after decays to a lower energy photon ωe, and thus excites a mode of vibration
of the crystalline structure with frequency ΩR, a phonon. In Fig. 1.2 an schema of the
spontaneous Raman scattering is displayed. In nonlinear media such as gasses, this effect
produces discrete lines, but due to the amorphous nature of silica, the generation of new
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frequencies is a continuum extending over more than 40 THz. The Raman reponse can be
approximated to the analytic expression in frequency domain as:

hR(∆ω) =
τ2

1 + τ2
2

τ2
1 τ2

2

1
(τ−1

2 − i∆ω)2 − τ−2
1

, (1.12)

or in temporal domain:

hR(t) = (τ−2
1 + τ−2

2 )τ1e−t/τ2 sin(t/τ1)Θ(t) (1.13)

where τ1 = 1/ΩR = 12.2 fs, being ΩR the vibrational frequency of molecules and
τ2 = 32 fs the damping time of vibrations. Θ(t) is the Heaviside function, which ensures
the causality of the response function. In Fig. 1.2(b) the imaginary part of Eq. (1.12) is
represented. From this representation we can see that the imaginary part of the Raman
reponse extendeds continuously and has a maximum (minimum) near 13 (-13) THz. In
Fig. 1.2(c), Raman reponse in time domain written in a explicit manner in Eq. (1.13) is
plotted. The Raman effect becomes important in two principal cases. On the one hand,
when a certain power threshold is reached, this process becomes very efficient and can
transfer energy to another frequency, which may become as energetic as the initial pump,
giving birth to a cascade process. On the other hand, when characteristic time scale of
involved phenomena is comparable to nonlinear Raman reponse (pulses of less than 1 ps),
the energy transfer takes place inside the bandwidth of the pulse. A good example is the
soliton self frequency shift [82], where a soliton reduces continuously its frequency.

1.5 Other kinds of fiber

In addition to step-index, there is a huge variety of fibers. Among all the types, in this
manuscript we will make use of micro-structured fibers and graded-index (GRIN) fibers.

1.5.1 Micro-structured fiber

Step-index fibers discussed in section 1.1 do not give much freedom to taylor light prop-
agation parameters, because the ZDW is close to the one of silica. This problem can be
overcome by using microstructured fibers or photonic crystal fibers (PCF). These fibers
are characterized by having a periodic structure on the transverse plane which enables
light confinement. They were theoretically proposed in the 70s [83], however PCF were
not experimentally available until 1996 [84].
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Figure 1.2: Raman Effect: (a) Sketch of the quantum mechanical picture of the Spontaneous
Raman scattering. (b,c) Response function of Raman scattering in temporal and spectral
domains.

There are two physical mechanisms lying beneath light propagation in PCF [85]:

1. Total internal reflection: The most emblematic example is the holey-fiber. The
structure of fibers using this guiding mechanism consists on a periodic array of air
holes on the transverse plane with a defect at the center, where light is confined. The
physical mechanism behind light propagation is total internal reflection because the
holey structure has an equivalent refractive index lower than the center silica defect.
This structure increases the number of degrees of freedom and allows to precisely
control birefringence [86], dispersion [87], [88] and mode area [89].

Holey fibers have played a leading role in the design of broad spectrum sources [34],
which are based on supercontinuum generation [90]. In the Ranka’s experiment,
a PCF with hexagonal lattice of circular holes was employed, a structure formerly
studied by Ferrando et al. [91].

2. Photonic band-gap guiding: This was the initial mechanism proposed to confine
light in the fiber, but waveguides relying on this physical process were fabricated
some years after the holey fibers [92]. It is based on the fact that a periodic transverse
structure produces forbidden bands [93]. This kind of fiber can be very interesting
because they allow light guiding in air, reducing considerably nonlinear effects and
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losses.

1.5.2 GRIN fibers

A very important kind of waveguide studied in this manuscript is GRaded-INdex (GRIN)
fibers. Their most important difference with respect to step-index fibers is that instead
of having a constant core index, their refractive index is maximum at the center and it
decreases when approaching to the cladding. A sketch of the refractive index profile is
shown in Fig. 1.3 (a). The refractive index n(r, ω) has a parabolic shape for r < R and
constant inside the cladding (r > R). The relative index difference (∆) is defined as:

∆ =
n2

core − n2
clad

2n2
core

, (1.14)

where ncore (nclad) is the refractive index at the core center (cladding).

A widely used approximation allowing to simplify the theoretical understanding is to
consider the core to have an infinite radius. In Fig. 1.3 (a) the index profile corresponding to
the infinite readius approximation is shown with a black dashed line. We will see after that
this approximation is equivalent to consider a 2-D harmonic quantum potential. Within
this limit, the fiber modes can be written in polar coordinates as [66]:

Fm,p(ρ, φ) =

√
p!

π(|m|+ p)!
ρ|m|

ρ
|m|+1
0

exp
(
− ρ2

2ρ2
0

)
L|m|p

(
ρ2

ρ2
0

)
eimφ, (1.15)

where ρ0 = Rλ0/(2π
√

2∆ncore), m and p are two integers and L|m|p are generalized Laguerre
polynomials. The dispersion relation of the different modes can be obtained analytically,
and it is approximated by the following expression:

βg(ω) ≈ 2πncore(ω)

λ
−
√

2∆
R

g , g = 2p + |m|+ 1. (1.16)

This dispersion relation is composed by two terms, the first one is associated to the
contribution of material dispersion and the second one is exclusively due to the guide
contribution.

One important idiosyncrasy of GRIN fibers is self-imaging. This effect consists in the
replication of the input image with a period ξ. We can clearly see the self-imaging effect if
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Figure 1.3: (a) Refractive index profile of a graded index fiber. Dashed line represents
infinite core approximation and solid red line shows the real case. Parameters are R =
25 µm and ∆ = 10−2. (b) Self-imaging in a graded-index fiber, ξ is the self-imaging period.

the intensity of the field is calculated. Then, by using Eq. (1.2) and Eq. (1.16):

I(x, y, z) = ∑
n,k>n

|Fn|2 + 2FnFm cos

(
2
√

2∆
R

(k− n)z

)
, (1.17)

where only modes with the same m have been considered. The equation clearly shows
that the intensity of the propagating field is an interference pattern between different
modes with period ξ = πR/

√
2∆ [65]. Self-imaging is an exclusive characteristic of GRIN

fibers and it is due to the fact that the difference βg+1 − βg does not depend on the mode
number g. Figure 1.3(b) shows a ray path representation of a beam propagating in a GRIN
fiber. It is shown how the beam experiences a periodic behavior with period ξ because the
interference of modes.

Summary

• Step index are the most paradigmatic example of optical fibers. They are composed
by three different regions: Core, cladding and jacket. All them have different optical
properties.

• We have discussed the general structure of the electric field, and the most commonly
employed approximations to describe it. The difference between multimode and
single-mode fibers has been outlined.
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• The dependence on the frequency of material refractive index is called dispersion.
This effect is at the origin of many physical phenomena relevant for this manuscript,
such as group velocity and group velocity dispersion amid others.

• We have exposed the nonlinear involved phenomena : Kerr and Raman effect.

• Other fibers than step-index have been described, being the most relevant photonic
crystal and graded index fibers.
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The aim of this chapter is to present temporal optical solitons in single-mode fibers
[27] from a physical point of view. The chapter is organized as follows: in the first section,
the generalized nonlinear Schrödinger equation is described, which is a general model
describing light propagation in single-mode fibers. We will tell under which conditions
solitons are found. In the second section, we describe the different kinds of solitons and
under which conditions appear. Finally, in the third section, the physical effects arising
from the perturbation of solitons are described.

2.1 Nonlinear Schrödinger equation

An electric field linearly polarized propagating in a single-mode waveguide can be ex-
pressed using the general form presented in Eq. (1.2):

E = F(x, y)A(z, t)ei(β(ω0)z−ω0t) + c.c. (2.1)
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where F(x, y) is the field distribution of the fundamental mode in the transverse plane. The
envelope A(z, T) is described by the equation so called generalised nonlinear Schrödinger
equation (GNLSE) [40]:

i∂z A + D(i∂T)A + γA
∫ ∞

0
R(t′)|A(t− t′)|2dt′ = 0, (2.2)

where the first term D(i∂T) = ∑∞
n=2 βn(i∂T)

n/n! is the dispersion operator, which is the
inverse Fourier transform of D(ω) = β(ω)− β1(ω0)(ω−ω0)− β0(ω0), where β(ω) was
defined in the previous chapter and it takes into account of the whole dispersion rela-
tion. Time (T) is defined in a reference frame traveling at the group velocity of the carrier
frequency and it relates to time in the laboratory reference frame (t) through the trans-
formation T = t− β1(ω0)z = t− z/vg. The coefficient γ, named nonlinear coefficient, is
given by the following expression [40]:

γ =
ω0n2

c

∫
S |F(x, y)|4dS(∫

S |F|2dS
)2 , (2.3)

being n2 the nonlinear refractive index of the material which is equal to 3.2·10−20 m2/W in
the case of silica. The parameter γ is proportional to the field confinement inside the fiber:
the bigger is γ, the less power is needed to observe nonlinear effects. Its value ranges from
1-10 W −1·km−1 in standard fibers to 100 W −1·km−1 in PCF. The nonlinear response R(t)
can be expressed as the sum of the instantaneous (Kerr) and delayed (Raman) contributions:

R(t) = (1− fr)δ(t) + frhR(t). (2.4)

The constant fr is the fraction of Raman contribution which in fibers is equal to 0.18, hR(t)
is the Raman response function given in the previous chapter and δ(t) is the Dirac delta
distribution. This equation has successfully been used for modeling pulse propagation in
fibers and it reproduces accurately the whole dynamics observed in phenomena such as
supercontinuum generation [94].

When ω0 is far from ZDW and the pulse is spectrally narrow, it can be considered
that the GVD does not depend on the frequency ω (otherwise said, dispersion relation is
truncated to second order in ω). Moreover, Raman effect can be neglected if the pulse is
not too short nor too intense. Accounting for these approximations in Eq. (2.2), bring us to:

i∂z A− β2

2
∂2

T A + γ|A|2A = 0. (2.5)
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Equation (2.5) is the well-known nonlinear Schrödinger equation (NLSE) and it is
integrable by means of the inverse scattering transform (IST) [95]. One of the most striking
properties of integrable systems solvable with IST is the existence of solitons, which in the
simplest case are localized waveforms which propagate without deformation. Depending
on the sign of the dispersion, the solitons are bright (anomalous dispersion) or dark (normal
dispersion). The differences between the two kinds of solitons will be studied in sections
2.2 and 2.3, respectively. The properties of a soliton are related to the parameter N, which
we call order of the soliton:

N2 = t2
0

γP0

|β2|
, (2.6)

where t0 is the characteristic duration of the pulse and P0 is the peak power. This parameter
takes into account the ratio between the nonlinear coefficient γ, the peak power of the
pulse P0 and dispersion (β2 and t0).

2.2 Bright solitons

Bright solitons are found in the anomalous dispersion regime (β2 < 0). They appear as
an intense and short pulse whose intensity vanishes when T → ±∞. They are classified
depending on their value of N. Solitons verifying N=1 evolve without changing their tem-
poral and spectral shape and are called fundamental. The analytical expression describing
their evolution in z is:

A(z, T) =
√

P0sech

(
T

√
|β2|
γP0

)
ei γP0z

2 . (2.7)

If N> 1, then the soliton is a periodic solution with period Lsol =
πN2

γP0
and are called

higher order solitons. They can be seen as the superposition of several solitons with
different powers and different durations. In Fig. 2.1, the evolution of a bright soliton of
order N=2 is shown: we see how its behavior repeats periodically with z.

2.3 Dark solitons

Dark solitons exist in the normal dispersion regime (β2 > 0). The intensity profile of a
dark soliton is a dip over a continuous wave (CW) background. Its depth is a function
of the grayness (φ), a parameter defined from −π/2 to π/2. In Fig. 2.2, the intensity of a
dark soliton is shown for two different grayness values. Solid red curve represents φ = 0
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Figure 2.1: (a) Evolution of a higher order bright soliton in time domain. (b) Evolution of a
dark soliton with grayness φ = π/8 in time domain.

and the blue dashed curve the case where φ = −π/5. In the particular case where the
minimum intensity reaches zero (φ = 0), the soliton is called black soliton. The analytic
solution of a dark soliton is:

A(z, T) =
√

P0

[
cos(φ) tanh

(
(T − β1solz)

√
|β2|
γP0

cos(φ)

)
− i sin(φ)

]
eiγP0z. (2.8)

Dark solitons have a phase jump in the neighborhood of T=0. In figure 2.2 (b), this
effect is shown for the values φ = 0 and φ = −π/5. In the case of a black soliton, the jump
is abrupt while when φ 6= 0 becomes smooth. Due to this temporal dependence of the
phase, dark solitons are chirped.

The group velocity of a dark soliton depends on its grayness. As a consequence of the
velocity mismatch between the soliton and reference frame, the soliton acquires a time
delay respect to the background. This additional group velocity is given by the soliton
parameters β1sol =

√
β2γP0 sin(φ). In Fig. 2.1 (b) the evolution of a gray soliton with

φ = π/8 is shown. The solid black arrow represents the velocity of the background and
the dashed one the velocity of the soliton. We see that the soliton is delayed from its initial
position by an amount of time Tg.
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Figure 2.2: (a) Intensity of a black soliton (solid red line) and a gray soliton with φ = −π/5
(dashed blue line). (b) Phase of a black soliton (solid red line) and a gray soliton with
φ = −π/5 (dashed blue line).

When the value N exceeds 1, then the initial pulse breaks into several solitons of
different grayness [40]. Thus, the dark soliton breaks apart and do not form a periodic
solution, as was the case for a bright soliton.

2.4 Perturbation of solitons

Equation (2.5) is valid when light propagates far from the ZDW. In this limit, solitons collide
elastically with other solitons or linear waves. If we get closer to the ZDW, the truncation
of dispersion up to second order is not longer valid and HOD must be included. When
HOD is taken into account, solitons are not anymore solutions of the propagation equation,
which physically translates in the possible interplay between a soliton and dispersive
waves. Two different kinds of interaction appear when HOD is included: the emission of
radiation by solitons and their interaction via FWM with linear waves.

2.4.1 Emission of radiation

Under the effect of perturbations, solitons can transfer energy to linear waves [96]. This
process, known as emission of Cherenkov radiation [97], has been studied in the case of
bright fundamental solitons [98]–[101] , dark solitons [102]–[106], higher order solitons
[107] and bright solitons in multimode fibers [108].
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The soliton can efficiently transfer its energy to a linear wave if they both share the same
propagation constant, verifying momentum conservation (equivalently phase-matching).
A good example to illustrate the process is to consider a bright soliton (β2 < 0) propagating
near the ZDW. The wavenumber of the soliton, given by Eq. (2.7) is γP0/2 and dispersion
relation of linear waves is D(Ω) = β2

2 Ω2 + β3
3! Ω3, where Ω = ω−ω0, being ω0 the carrier

frequency of the soliton. For the sake of simplicity, dispersion is kept over to third-order,
because the only condition to emit Cherenkov radiation is the existence of a ZDW. The
phase matching condition is thus:

β2

2
Ω2 +

β3

3!
Ω3 =

γP0

2
. (2.9)

The frequency Ωrad, which is a solution of Eq. (2.9) is the frequency of the radiated wave.
From Eq. (2.9) we see that the role of β3 is crucial, since without it, this equation has not
real solutions.

A numerical solution of Eq. (2.2) without including Raman effect is shown in Fig. 2.3.
The soliton has a duration of t0= 45 fs and fiber parameters are β2 = −11.83 · 10−3 ps2/m,
β3 = 8.10·10−5 ps3/m, λZDW = 784 nm and γ=0.11 ·10−3 W−1m−1. In Fig. 2.3 (a) the
spectral output (input) is shown with solid (dashed) curve. Dashed vertical line represents
phase-matching condition, which perfectly predicts the emitted wavelength. In Fig 2.3
(b) the evolution in time domain is represented. The vertical dashed arrow represents the
trajectory followed by the soliton, the arrow with slope β1(Ωrad) represents the delay of a
linear wave with frequency Ωrad with respect to the carrier frequency frame.

2.4.2 Interaction between solitons and linear waves

In the presence of HOD [109] or birefringence [110], solitons can interact via FWM with
linear waves and produce new frequencies. This interplay commonly takes place in super-
continuum generation [35], hence its understandig is crucial to conceive new broadband
sources. This mechanism has been suggested as a way to achive all optical-switching [111],
as a close physical analogy of event horizon in black holes [112], [113] and to perform a
"cage" to trap dispersive waves [114]–[116]. In the simplest case, this process involves
bright fundamental solitons, even thought it has been recently explored the possibility of
using other kinds of solitons such as dark solitons [117] and higher order bright solitons
[118]. The main difference between classical FWM and interaction of solitons and linear
waves is that one of the involved fiels is a non-dispersing pulse instead of a CW. Unlike
the CW, solitons have a dispersion relation which does not depend on ω. If we consider
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Figure 2.3: (a) Input (dashed line) and output spectrum (solid line) after propagation. (b)
Emission of radiation by a bright soliton in time domain. Parameters: t0 = 45 fs, P0 = 22.5
W and λsoliton = 805 nm. Fiber parameters at λ0: β2 = −5.01 · 10−3 ps2/m, β3=8.10·10−5

ps3/m , λZDW = 784 nm and γ = 0.11 · 10−3 W−1m−1.

only a process involving two photons from the soliton, one from a field with frequency ωin

and another one with frequency ωg, then the two following phase-matching conditions
[35] are found:

β(ωi) = β(ωg) (2.10)

2γP0 = β(ωi) + β(ωg). (2.11)

From the above relations we distinguish two kinds of interaction: on one hand, when
the phase matching does not depend on the soliton parameters in Eq. (2.10). We will deeply
study this process in the case of a interaction between dark solitons and a linear waves in
Sec. 5.3. On the other hand when the phase matching condition is a function of the soliton
phase in Eq. (2.11), it will be profoundly analyzed in chapter 4 in the special case where a
bright soliton is orthogonally polarized to a CW.

An example of these interactions is shown in figure 2.4. The input is the superposition
of a soliton at λsol =900 nm and a Gaussian pulse much weaker and longer in normal
dispersion regime with λin = 707 nm. The spectrum of the input is shown in Fig. 2.4 (a)
with a dashed black line. When both pulse propagate, they collide and a new frequency
is produced. This process can be clearly seen in the temporal evolution plotted in Fig 2.4
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Figure 2.4: (a) Input spectrum (dashed) and output spectrum (solid) of the propagation of
a soliton and a weak pulse. (b) Evolution of the interaction in the time domain. Dashed
lines represent the trajectory of a linear wave with frequency ωi and ωg respectively.
Parameters: λsoliton = 900 nm, λin = 707 nm, t0 =45 fs, and P0 =112 W. Dispersion at
λsoliton : β2 = −25× 10−3 ps2/m, β3= 8.10·10−5 ps3/m.

(b). We see that, when the two pulses temporally coincide, a third wave with a different
velocity appears. The output spectrum of this process is shown in Fig 2.4 (a) with solid line.
The vertical dashed blue line is the phase matching condition shown in Eq. (2.10), we see
there is a perfect agreement between the theoretical prediction and numerical simulations.

Summary

• An equation for the temporal envelope of the electric field propagating in a single
mode fiber has been presented. In the most general case takes into account Raman
and Kerr effect and we will refer to it as GNLSE. When the model only takes into
account Kerr nonlinearity and group velocity dispersion, the governing equation is
called NLSE.

• NLSE has one class of solutions, which are called solitons. We have presented bright
solitons, appearing in anomalous dispersion regime and dark solitons, which exist in
normal dispersion regime.

• When perturbed, solitons can interact with dispersive waves via four wave mixing
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or emit radiation via a mechanism known as Cherenkov radiation.
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A CW may be unstable when propagating in an optical fiber, which means that the
initial wave may decay via FWM and generate new frequencies. The mechanisms triggering
MI considered in the present chapter are twofold: the interplay of constant dispersion and
nonlinearity, and parametric instability. The organization of the chapter is as follows: in
the first section, a general framework to study the CW instabilities in the context of NLSE
is derived. In the second section, MI generated in the scalar case of an homogeneous fiber
is depicted. Finally, in the third section, the case of a medium with harmonically varying
nonlinearity is described as an example of parametric instability.

3.1 Linear stability analysis

In this section, we perform a stability analysis that will set the basis to understand all
the MI phenomena discussed along this thesis. The physical mechanism behind MI in
optical fibers is the interplay between dispersion and Kerr nonlinearity, then even the most
basic NLSE already describes MI for certain range of parameters, as it is shown in classical
approaches [40]. However, the simplest equation does not exhibit all kind of instabilities
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and effects described in the present manuscript, hence the employed model to illustrate
the possible phenomena must be more general. We need to contemplate two crucial
peculiarities: the first aspect is that studied phenomena involve large spectral regions,
thus we need to consider a dispersion operator which takes into account all dispersive
orders. The second particularity is that nonlinear wave propagation in multimode fibers
can be reduced to propagation of light in medium with periodic nonlinearity [68], then
a nonlinear coefficient γ which depends on z and has a period Λ should be considered.
Therefore the most suitable starting point is the following generalized NLSE equation:

i∂z A + D(i∂T)A + γ(z)|A|2A = 0, (3.1)

where D(i∂T) is the dispersion operator and γ(z) is a periodic function of z. The following
form of A(z, T) is supposed:

A(z, T) =
√

P0(1 + ε(z, T))eiφ , φ = P0

∫
γ(z)dz. (3.2)

A(z, T) describes a CW with a small perturbation ε which verifies the condition |ε| � 1.
The supposed ansatz entails a subtle difference with MI in a homogeneous media: if we
pay attention to φ, now it is a general function of z, instead of γP0z as it is found in classical
linear stability analysis. After substituting the expression (3.2) in Eq. (3.1) and carrying out
a linearization in ε, the following equation ruling the perturbation is found:

i∂zε + D(i∂T)ε + γ(z)P0(ε + ε∗) = 0. (3.3)

Equation (3.3) can be solved if ε(z, T) is written in the following way:

ε(z, T) = a(z)e−iΩt + b∗(z)e+iΩt, (3.4)

where Ω = ω − ω0 is the frequency detuning from the initial CW with frequency ω0.
Coefficients a(z) and b∗(z) are two complex functions of z, whose evolution can be found
by introducing Eq. (3.4) in Eq. (3.3). Then, grouping terms oscillating at the same frequency,
a coupled system of equations is found:

i
d
dz

[
a
b

]
+

[
D(Ω) + γ(z)P0 γ(z)P0

−γ(z)P0 − (D(−Ω) + γ(z)P0)

] [
a
b

]
=

[
0
0

]
(3.5)
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We can simplify a little the obtained system by defining the following functions:

Deven(Ω) = ∑
n=1

β2n

(2n)!
Ω2n , Dodd(Ω) = ∑

n=1

β2n+1

(2n + 1)!
Ω2n+1, (3.6)

which are the even and odd symmetric parts of D(Ω). The dispersion operator in the
Fourier domain can be written such as D(Ω) = Deven(Ω) + Dodd(Ω) and D(−Ω) =

Deven(Ω)− Dodd(Ω). If a rotation of phase (a, b) = (a, b)eiDodd(Ω)z is performed, the follow-
ing system of equations is found:

i
d
dz

[
a
b

]
+

[
Deven(Ω) + γ(z)P0 γ(z)P0

−γ(z)P0 − (Deven(Ω) + γ(z)P0)

] [
a
b

]
=

[
0
0

]
. (3.7)

Note that, only even terms of dispersion relation play a significant role in the perturba-
tion equation. There are two different mechanisms which can give rise to an unbounded
behavior of (a, b). On one hand, effects of dispersion and a constant nonlinearity (i.e.
γ(z) =const). In this frame are included classical MI produced in anomalous dispersion
regime and HOD terms. This regime is analyzed in section 3.2. On the other hand, when
γ is a periodic function of z with period Λ. In this case, a new kind of instability arises,
which we call parametric instability and will be deeply studied in section 3.3.

3.2 Modulation instability

When γ(z) is a constant γ0, Eq. (3.7) is a system of ordinary differential equations (ODEs)
with constant coefficients. Within this limit, Eq. (3.7) is easily solved if functions a(z) and
b(z) are expressed as (a, b) = (C1, C2)eikz, where C1 and C2 are two arbitrary constants. By
introducing this ansatz in Eq. (3.7), the following algebraic system is obtained:[

Deven(Ω) + γ0P0 − k γ0P0

−γ0P0 − (Deven(Ω) + γ0P0 + k)

] [
C1

C2

]
=

[
0
0

]
. (3.8)

In order to avoid trivial solutions for C1,2, the system matrix must have a vanishing
determinant, which lead us to the following condition over k:

k(Ω) = ±
√

Deven(Ω) (Deven(Ω) + 2γ0P0). (3.9)

Physically, k(Ω) is the propagation constant of the small monochromatic perturbation at
frequency Ω. Depending on the value of k, the CW may be stable or unstable. If k has a non-
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vanishing imaginary part for a certain range of Ω, perturbations will grow exponentially
and then we will say the CW is unstable. We will refer to these regions of frequency as
instability bands. On the contrary, if k is purely real for a certain frequency, perturbations
will remain bounded and we will say that this frequency is stable. A well-known example
is the case where only up to second order dispersion is taken into account, where:

k = ±

√
β2Ω2

2

(
β2Ω2

2
+ 2γ0P0

)
. (3.10)

If β2 > 0, k remains purely real for every value of Ω, which means that light propagating
in normal dispersion regime without HOD and constant nonlinear coefficient is always
stable. However, if β2 < 0, k is purely imaginary if Ω2 < 4γP0

−β2
and Ω 6= 0. In figure 3.1

(a), the imaginary part of k with parameters β2 = −2.11× 10−26 s2/m, γ = 5 W−1·km−1

and P0 =20 kW is reported. We see that unstable regions form two lobes surrounding the
pump. This kind of instability was observed using an optical fiber for the first time in Ref.
[119].
Neglecting HOD is an accurate model when we are far from ZDW or the involved phe-
nomena are not very broadband. However, when these conditions are not met, HOD must
be included. The next term of dispersion which contributes to k is β4. If this dispersion
order is included, then the expression of k is:

k = ±

√(
β2Ω2

2
+

β4Ω4

4!

)(
β2Ω2

2
+

β4Ω4

4!
+ 2γ0P0

)
. (3.11)

If both β2 and β4 are positive, k is real for any value of Ω, so a CW is always stable in this
limit. Nevertheless, if β4 < 0 there are some frequencies which may become unstable even
if the pump is in normal dispersion regime. In Fig. 3.1(b) the imaginary part of k with
the presence of β4 is displayed. The employed parameters are β2 = 9.28× 10−27 s2/m,
β4 = −1.83 · 10−55 s4/m and the same P0 and γ0 used in the previous example. In this
case, MI bands are much narrower and they are far detuned from the pump (126 THz). MI
by fourth order dispersion has also been observed in optical fibers [41], [120], [121] ,and
recently reported in optical fiber cavities [122].

An overview of both regimes can be extracted from Fig. 3.1 (c). In this figure, we plot
the imaginary part of k as a function of the pump wavelength. Dispersion parameters
correspond to those of pure SiO2 and are reported on figure’s caption. We see that in
anomalous dispersion regime, MI is characterized by the formation of two large spectral
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Figure 3.1: (a) Imaginary part of k for a carrier wavelength of 1500 nm. (b) Imaginary
part of k for a carrier wavelength of 1150 nm. (c) Imaginary part of k as a function of the
frequency detuning Ω/(2π) and pump wavelength. Dispersion parameters at 1300 nm
are β2 = −2.37 · 10−27 s2/m, β3 = 7.91 · 10−41 s3/m and β4 = −1.83 · 10−55 s4/m. γ0 = 5
W−1·km−1.

regions surrounding the pump, whereas when the pump is situated in normal dispersion
regime, MI manifests as two narrow spectral bands which get further from the pump when
we go deeper in normal dispersion regime.

3.3 Parametric instability

To illustrate how to analyze PR, we consider light propagation in a medium with harmoni-
cally varying nonlinearity with period Λ. This case will be relevant for the description of
multimode nonlinear wave propagation [68], as shown in the third part of this manuscript.
In the following we will describe the phase-matching arguments and the Floquet the-
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ory which permits to calculate the central frequencies and gain profile of the generated
frequency bands.

3.3.1 Phase-matching

In order to find parameter regions where perturbations a and b are unstable, we need
to follow a different approach from the one employed in Sec. 3.2, since when γP0 is a
periodic function, the system coefficients (3.7) are a function of z. The first step is to reduce
Eqs. (3.7) to a second order ODE, which is readily found by adding both equations and
differentiating the resulting relation. By defining the function η = a + b, we obtain:

η̈ + Deven(Ω) (Deven(Ω) + 2γ(z)P0) η = 0. (3.12)

γ(z)P0 being a periodic function, the evolution of the perturbation η is ruled by the
well-konwn Hill equation [123], which has been largely studied in the context of PR.
In order to determine the instability regions, a simple multi-scale development can be
employed [124]. As γ(z)P0 is periodic, this function can be expressed as a Fourier series.
Without loss of generality, only the m-th harmonic term is included in our calculation, then
γ(z) = γ̄P0 + γmP0 cos(2πmz/Λ), where γ̄P0 is the average value over one period and
γmP0 is the m-th coefficient of the Fourier series. The results can be trivially expanded for
any of the remaining harmonics. Thus Eq. (3.12) is written as:

η̈ +

(
k2 + 2ε cos

(
2πm

Λ
z
))

η = 0, (3.13)

where we have defined k2 = Deven(Ω)(Deven(Ω) + 2γ̄P0) and ε = 2γmP0Deven(Ω). Expres-
sion (3.13) is another well-known equation in the context of PR and is called Mathieu
equation. Now if we suppose a low power regime, i.e. ε� k2, a multi-scale technique can
be employed. By writing η = ∑n=0 ηnεn and separating in different expressions each order
of ε, an infinite hierarchy of equations is obtained:

ε0 : η̈0 + k2η0 = 0, (3.14)

ε1 : η̈1 + k2η1 = −2 cos
(

2πm
Λ

z
)

η0, (3.15)

ε2 : η̈2 + k2η2 = −2 cos
(

2πm
Λ

z
)

η1, (3.16)

...
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When ε is small enough, it is safe to keep only up to first order in ε1. At order 0, η0 is
ruled by an homogeneous equation, then if k is real, η0 is periodic and has as a general
solution η0 = Aeikz + Be−ikz. On the contrary, η1 is ruled by a non-homogeneous equation,
thus even if k is real, there are parameter regions where η1 can be unstable due to the
forcing term written on the right hand side of Eq. (3.15). Conditions under which η1 is
amplified are found by introducing the general solution of η0 in Eq. (3.15):

η̈1 + k2η1 = −
(

Aei(k+ 2πm
Λ )z + Bei(−k+ 2πm

Λ )z
)
+ c.c. (3.17)

Function η1 is an unbounded solution if the natural frequency of the equation (k) is equal to
the forcing frequency (−k + 2πm/Λ), which lead us to the parametric instability condition:

k2 = Deven(Ω) (Deven(Ω) + 2γ̄P0) =
(mπ

Λ

)2
. (3.18)

It is necessary to emphasize that the obtained resonance condition takes only into account
the first order in ε. The following orders of resonance can be obtained by solving the
equation proceeding in an iterative way, i.e. we solve for the order η1 and we introduce
the solutions in the equation (3.16) and after we proceed in the same way for η2 and so on
and so forth. Physically, this result means that PR happens if the natural frequency of the
system is a multiple of half the frequency of the parameter variation. The same result is
found if a periodic dispersion is considered instead of a harmonic non-linearity as was
shown in Ref. [58]. Some physical insight can be discovered if the limit Deven(Ω)� γP0 is
explored. By using a Taylor development at first order, Eq. (3.18) is approximated as:

2Deven(Ω) + 2γ̄P0 =
2mπ

Λ
. (3.19)

If we take into account only up to second order dispersion, resonant frequencies are given
by:

Ω2
m =

2
β2

(mπ

Λ
− γP0

)
. (3.20)

If the limit of a uniform fiber is considered (i.e. Λ → ∞), we recover that MI can only
happen in anomalous dispersion regime. In addition, within this limit, Ω2

m is the frequency
with a maximum gain in the case when the dispersion regime is anomalous [40]. However,
if Λ is a finite quantity, Ω2

m can also be positive in normal dispersion regime and thus, MI
is possible. In Fig. 3.2 (a), Ωm is plotted for different values of m and β2. The employed
parameters are Λ = 0.6 mm, γ̄= 5 W−1·km−1, P0 = 20 kW and a dispersion corresponding
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to pure silica neglecting terms over third order dispersion (at 1064 nm, β2 =1.645 ·10−26

s2/m and β3 =4.428 ·10−41 s3/m). We see how, when the pump wavelength gets closer
to ZDW, generated bands get further from the pump, reaching the infinity when β2 = 0.
Each order m has an associated resonance frequency and it is symmetric with respect to the
pump. For any pump wavelength, only a single pair of symmetric frequencies is generated.
We can get a more general result if β4 is included in Eq. (3.19), which bring us to the
following expression for the resonant frequencies:

Ωm = ±

√√√√−6β2

β4
± 2

√
9

β2
2

β2
4
+

3
β4

(
2πm

Λ
− 2γ̄P0

)
. (3.21)

Including β4 changes drastically band position in the neighborhood of ZDW, as it was
shown with a dispersion oscillating fiber [125]. In figure 3.2 (b), Ωm including β4 =

−6.056 · 10−56s4/m is reported. The rest of employed parameters are the same as for Fig.
3.2 (a). We can see that now, frequency detuning of instability bands does not go to infinity
as the previous case. In addition to that, bands corresponding to values from m =1 to 3
produce two pairs of bands instead of one and are in normal dispersion regime. The limit
of m = 0 is associated to the uniform case. In this case, we can see the close similarity
between this band and the gain plotted in Fig. 3.1. For values of m ≤ 0 there is only one
pair of bands for each value of m and these bands are not restricted to only one dispersion
region.

Equation (3.18) give us the position of the central frequency of instability bands, never-
theless it does not provide any information about the relative intensity and width of each
band. To overcome this problem, we employ numerical Floquet analysis.

3.3.2 Floquet Analysis

The system Eq. (3.7) has periodic coefficients and to go deeper in the analisys of the
solutions behavior, we use Floquet analysis [124], [126]. With this method, we can take
advantage of the discrete symmetry of the problem, which has been exploited for the
understanding of many periodic physical systems, being some relevant cases quantum
mechanics [127] or photonic crystals [85]. Solutions of Eq. (3.7) can be constructed in the
form: [

a(z + Λ)

b(z + Λ)

]
= Φ

[
a(z)
b(z)

]
, (3.22)
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Figure 3.2: Ωm as a function of pump wavelength neglecting β4 (Fig. (a)) and including
β4(Fig. (b)). Dispersion at 1064 nm: β2 =1.645 ·10−26 s2/m, β3 =4.428 ·10−41 s3/m and
β4 = −6.056 · 10−56s4/m. γ̄ = 5 W−1·km−1, P0 = 20 kW and Λ = 0.6 mm.

being Φ a matrix which describes discrete translations in z. The solution over n periods can
be written using this matrix recursively such as (a(nΛ), b(nΛ)) = Φn(a(0), b(0)). Note
that the whole solution of system (3.7) can be constructed by only solving the equations
over one period. If the linear operator is written in such a basis (v1, v2) where its matrix
representation is diagonal, the evolution over n periods is expressed as:[

v1(nΛ)

v2(nΛ)

]
=

[
λn

1 0
0 λn

2

] [
v1(0)
v2(0)

]
. (3.23)

Then in the diagonal basis, functions (v1, v2)(z) after n periods are proportional to the
initial condition. Therefore, stability of the system can be deduced from the proportionality
constant, which are the eigenvalues (λ1,2) of matrix Φ. Depending on the modulus of λ1,2

three different cases are well identified for the asymptotic value of v1,2 :

v1,2(nΛ) =


∞ if |λ1,2| > 1

0 if |λ1,2| < 1

periodic if |λ1,2| = 1

(3.24)

If |λ1,2| > 1, then |v1,2| will increases after each period, attaining infinity asymptotically,
and we shall say the system is unstable. On the contrary if |λ1,2| < 1, the modulus |v1,2|
will decreases after each period, leading to 0 when n→ ∞. Then the system will be said
to be stable. When |λ1,2| = 1, then perturbations behave in a periodic manner. It is not
always possible to find solutions a(z), b(z) in a closed form, thus it is useful to find the
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values of λ1,2 numerically. Matrix Φ is found using the classical procedures to construct
linear operators. This consists in solving the system over one period (z=Λ in this case)
using as initial conditions two linearly independent vectors (e.g. (1,0) and (0,1)), then the
two resulting solution vectors are the two columns of matrix Φ. Then the eigenvalues λ1,2

can be found by calculating numerically the eigenvalues of Φ by standard procedures.
It is useful to define the gain (g), related to λ as g = 1

Λ ln(max(|λ1,2|)), thus stable
solutions will have a negative gain, whilst unstable solutions will have a positive gain,
which means they are amplified.

With the objective of illustrating Floquet analysis, a numerical simulation of Eq. (3.1)
is carried out. A small coherent seed is included under the form of a hyperbolic secant
of 1 fs duration and one tenth of the amplitude of the initial CW. We limit our study to
the case were only β2 is included in the dispersion operator and a varying nonlinearity of
the form γ(z) = γ̄(1 + 0.25 cos

( 2πz
Λ

)
+ 0.15 cos

( 4πz
Λ

)
) is considered. In figure 3.3 (a), the

profile of the nonlinear coefficient is displayed. In figure 3.3 (b) the output spectrum of a
NLSE simulation is reported. All parameters employed in the numerical simulation are
displayed in Fig. 3.3 caption. Vertical dashed lines correspond to phase-matching obtained
via Eq. (3.19). The numerical simulation proves the appearance of new frequencies with a
frequency detuning of ≈ 59 THz and ≈85 THz, whose origin is the harmonically varying
non-linearity. We can see that the agreement between numerical simulations and phase-
matching is perfect. In Fig. 3.3 (c) the corresponding numerical Floquet analysis calculated
using the previously explained techniques is shown. Two bands with a gain bigger than
zero arise also at ≈ 59 THz and ≈ 85 THz. Bandwidth and relative amplitude of bands
corresponds well to numerical simulations reported in Fig. 3.3.
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Figure 3.3: Figure (a) Evolution of the nonlinear parameter over five periods. (b) Output
spectrum of a numerical simulation of NLSE using a harmonically varying γ. (c) Floquet
stability analysis corresponding to propagation shown in (b). In both figures, dashed verti-
cal lines represent frequencies predicted by phase-matching Eq. (3.19). . Parameters:γ̄ = 5
W−1 km−1, β2 = 4× 10−25 s−2 m−1, P0=20 kW, L=0.7 m and Λ = 1.1 mm.
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Summary

• We have presented a suitable model for describing all the MI effects presented in
this manuscript, which are: classical MI produced only by the interplay between
dispersion and nonlinearity and parametric instability, whose origin is the periodic
variation of an external parameter.

• Classical MI in optics has been explained from a fundamental point of view. We have
identified the conditions under which this phenomenon is triggered: anomalous
dispersion regime and the presence of a negative fourth order dispersion.

• We have outlined how to calculate the parameters of the instability bands associated
to parametric instability, both when only up to second order dispersion is taken into
account and when all dispersion orders are considered.

40



Part II

Interaction of solitons and dispersive
waves

41





CHAPTER

FOUR

INTERACTION OF ORTHOGONALLY POLARIZED BRIGHT
SOLITONS AND DISPERSIVE WAVES

Contents
4.1 Propagation equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Phase-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Amplitude of generated wave . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Soliton stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

In this chapter we study the interaction between a bright fundamental soliton and a
CW orthogonally polarized. As a result of this interaction, a new wave with a different
frequency is generated in the same axis as the initial CW. The problem of a bright funda-
mental soliton interacting with dispersive waves polarized on the same axis has been a
deeply studied subject. On the contrary, the configuration where the two waves do not
share the same polarization has attracted considerably less attention. In the literature,
only purely experimental observations [110] and some numerical results [128] have been
reported. Despite these preliminary studies, a complete analysis which addresses this
problem in a systematic way from a numerical, theoretical and experimental points of view
was still missing. The aim of this study is to characterize the frequency of the new wave
and the conditions under which this process is the most efficient. The chapter is organized
as follows: in the first section 4.1, equations describing the envelopes of two orthogonally
polarized fields in a birefringent media are presented. In the second section 4.2, we find the
generated wave frequency using phase-matching arguments. In section 4.3, the conditions
under which the new wave generation is the most efficient are found. In section 4.4, we
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show the experimental results which confirm the validity of our model. Finally, in section
4.5 the stability of the soliton under fast-axis instability is analyzed.

4.1 Propagation equation

The evolution of two orthogonal nonlinear waves linearly polarized in a birefringent fiber
is described by two coherently coupled nonlinear Schrödinger equations [40]:

i∂z Ax + Dx(i∂t)Ax + γ[|Ax|2 +
2
3
|Ay|2]Ax +

γ

3
A∗x A2

y = 0,

i∂z Ay + Dy(i∂t)Ay + γ[|Ay|2 +
2
3
|Ax|2]Ay +

γ

3
A∗y A2

x = 0. (4.1)

The dispersion operators are defined as:

Dx(i∂t) = ∑
n≥2

βnx

n!
(i∂t)

n, (4.2)

Dy(i∂t) = ∆β0 + ∆β1i∂t + ∑
n≥2

βny

n!
(i∂t)

n, (4.3)

where βn = ∂n
ωβ(ω)|ω=ω0 , ∆β0 = β0y − β0x takes into account the difference of effective

refractive index, ∆β1 = β1y − β1x represents the mismatch of group velocities between
axes and γ is the nonlinear coefficient. The axis with a bigger (smaller) β0 is known as slow
(fast) axis1. Without loss of generality, the x (y) axis is considered as the fast axis (slow
axis), therefore ∆β0 > 0.

The involved nonlinear terms are SPM (first nonlinear term), XPM between axes (second
term) and finally FWM. This last one is known as the coherent coupling term and allows
the energy exchange between axes. The coefficients 2/3 and 1/3 appearing in Eq. (4.1)
which couple the two components are given by the nature of the polarizability of silica and
the polarization of the field.

This equation has been traditionally studied under two limiting cases, which are
classified as a function of the relation between beat length, defined as LB = 2π/|∆β0|, and
fiber length (L f iber):

• High-birefringence (HiBi): in this case, the beat length is much shorter than the

1This notation is coherent with the literature describing birefringent media, where the axis with a lower
(higher) refractive index is called fast (slow) axis.
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fiber length (L f iber � LB). The coherent coupling term can be neglected because its
contribution can be averaged to zero and, as a consequence, there is not an efficient
exchange of energy between axes.

• Low-birefringence (LoBi): beat and fiber length are of the same order of magnitude
(L f iber ≈ LB), thus the coherent coupling term cannot be neglected, hence the energy
exchange between axes is allowed. In this case, a wave propagating over the fast
-axis can be unstable [129] due to that energy exchange. In the literature is common
to neglect in this case the group velocity mismatch (∆β1 = 0).

In the situation considered here, the birefringence is considered high enough to avoid fast
axis instability as it will be shown at the end of the chapter. However we cannot neglect
the coherent term because it is at the origin of the interaction under investigation, as it will
be shown in the next sections.

4.2 Phase-matching

In this section we find the frequency of the generated wave by using phase-matching
arguments. The procedure is standard and we followed a similar approach as reference
[130], but adapting it for the special case of a soliton and a CW orthogonally polarized.
We consider a soliton with frequency ω0 polarized along the x-axis whose expression is
Ax =

√
P0sech(T/t0)eiqz = F(t)eiqz , where q = γP0/2 and a CW polarized along the

y-axis with frequency ωp (Ay = g(z, T)). The frequencies of the waves are far enough
from ZDW therefore dispersion orders higher than two are neglected, and the influence of
Raman effect is considered to be negligible. If g(z, T) is weak (|g(z, T)| � |F(t)|), we can
linearize Eq. (4.1) as follows:

i∂z Ax −
β2x

2
∂2

T Ax + γ|Ax|2Ax = 0, (4.4)

i∂zg−
β2y

2
∂2

Tg +
γ

3

(
2|F|2g + F2g∗ei2qz

)
= 0. (4.5)

Equation (4.4) is the NLSE introduced in chapter 2. The evolution of Ax is thus not
influenced by g(z, T) at first order, and it can be assumed to behave as an unperturbed
fundamental soliton. Equation (4.5) gives the evolution of a linear wave (g) under the
influence of the soliton. The field g can be written as the sum of a CW pump (second term)
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and a generated wave (first term):

g(z, t) = ψg(z, T)ei(kpz−Ωpt) + ψp(z, T)ei(kgz−Ωgt), (4.6)

where Ωp,g = ωp,g −ω0, being ω0 the frequency of the soliton and ωp,g the frequency of
pump (p) and generated wave (g). Here, we consider that the pump propagates linearly
and without losing energy (its amplitude is constant), so its dispersion relation reads as
kp = Dy(Ωp). By introducing Eq. (4.6) in Eq. (4.5) we obtain:

i∂zψg + (Dy(i∂t)− kg)ψg +
γ

3

(
2|F|2ψg + F2ψ∗gei2qz

)
=

− γ

3

(
2|F|2ψpei((kp−kg)z−(Ωp−Ωg)t) + F2ψ∗pei((2q−(kp+kg))z+(Ωp+Ωg)t)

)
.

(4.7)

The right hand side terms of Eq. (4.7) acts as sources which can efficiently transfer energy
to ψg(z, T) if the z-dependence of the exponents vanishes, translating in the following
phase-matching expressions [130] :

Dy(Ωg) = Dy(Ωp), (4.8)

Dy(Ωg) = 2q− Dy(Ωp). (4.9)

These conditions are the same that were introduced in Sec 2.4.2. The first resonance does
not depend of the soliton parameters and it is known as phase-insensitive, while in the
second one the soliton wave-number is explicitly present and it is called phase-sensitive.
Note that the phase sensitive resonance appears because the coherent term of Eq. (4.1) was
kept. If the coherent term were disregarded following the traditional limit employed for
HiBi fibers, phase-sensitive resonances would not be accounted for in the model.

To illustrate the validity of this analysis, a numerical example is performed. We consider
a soliton of peak power 188 W, time duration t0 = 210 fs and central wavelength λ0 = 1430
nm propagating in a 2 meters long PCF, whose parameters at 1430 nm are ∆β0 = 295 m−1,
∆β1 = −0.4 ps · m−1, β2x ≈ β2y = β2 = −4.5 · 10−26 s2m−1 and γ = 5 W−1km−1. The
CW has an average power of 0.1 W and a carrier wavelength of λp =1570 nm. In Fig. 4.1
(a), Eq. (4.9) is graphically solved. The red (blue) line represents the dispersion of linear
waves on the y-axis (x-axis). Black line represents the right hand side of Eq. (4.9) for λp.
The generated wave is found to be at λg = 1318 nm (at the intersection of the red line and
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Figure 4.1: Interaction between a soliton and a CW. (a) Graphical solution of Eq. (4.9).
(b) Input (top) output (bottom) spectrum after propagation.(c) Time domain evolution in
the x-axis (fast axis). (d) Time domain evolution in the y-axis (slow axis), the represented
quantity is |Ay|2/Pp − 1.
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the black one). In order to confirm these predictions, we report in Fig. 4.1 (b), the results
of numerical solution of Eqs. (4.1), where the input (top) and output (bottom) spectrum
are shown. It is remarkable that the soliton is not altered, as it is confirmed by looking
at the temporal domain evolution shown in Fig. 4.1 (c), where the temporal evolution on
the x-axis is reported. Figure 4.1(d) shows the temporal evolution along the y-axis. Over
the CW background, it can be clearly seen the generated wave propagating faster than
the carrier frequency. In addition, we can identify a localized wave emitted which travels
slower than the carrier frequency reference frame and hence travels towards positive time
delays. This wave rapidly detaches from the soliton and does not play any significant role.

4.3 Amplitude of generated wave

Phase-matching arguments just predict the generated frequency, but does not guarantee
the efficient generation of the new wave. We thus have developed a deeper analysis of
perturbation equations in order to fully understand the process [131]. The final result of
this section is an analytical expression of the conversion efficiency. To obtain the expression
of the efficiency, we followed the same method described in [130], but adapting the theory
to a CW and a soliton orthogonally polarized. The starting point is Eq. (4.5), where
we introduce the ansatz described in Eq. (4.6) and we suppose that phase-matching is
verified. The fields ψp and ψg are considered to be spectrally narrow, thus temporal partial
derivatives with higher order than two are neglected [130]:

i∂zψg,p + iD′g∂tψg,p +
γ

3

(
2|F|2ψg,p + F2ψ∗p,gei∆ωt

)
= 0, (4.10)

where ∆ω = Ωp + Ωg. Equations (4.10) seem quite intricate, but they can be solved by an
iterative process. The general solution of these equations is:

ψg,p =

[
C(T − D′g,pz) +

iγ
3

∫ z

0
F2(T)ψ∗p,g(T, z)ei(∆ωT−Sp,g(T))

]
eiSg,p(T), (4.11)

Sx =
2γP0t0

3D′x
tanh

(
T
t0

)
, (4.12)

where C is a constant fixed by the boundary conditions. To solve this equation we consider
that the pump is not depleted and thus it can be written as a constant such as ψp =

√
Pp.

To obtain the solution for ψg, we introduce the solution of ψp in Eqs. (4.10) and we consider
that the velocity mismatch between soliton, pump and generated wave is large enough
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in order to consider Sg,p(T) ≈ 0. This means that we neglect the phase induced by XPM
between the soliton over the pump and generated wave. This approximation could not be
done when pump or generated wave and the soliton have the same group velocity, as it
was shown in [130]. By taking into account the initial conditions ψg(z = 0, T) = 0, we get:

ψg(τ) =
iγ
√

Pp

3|D′g|

∫ (T+D′gz)/t0

T/t0

dxF2(x)ei∆ωt0x ≈
iγ
√

PpP0

3|D′g|

∫ ∞

−∞
dx sech2(x)ei∆t0ωx, (4.13)

where we have performed an asymptotic approximation, i.e. we look far enough from the
soliton. The last integral can be solved in closed form:

|ψg| =
πγ∆ωPsol

√
Ppt2

0

3|D′g|
sinh−1

(
∆ωt0π

2

)
. (4.14)

The obtained amplitude of the generated wave diverges for |D′g| →0, but as we have
previously assumed, this situation is not considered in our model. It is worth to note that
the amplitude presented in Eq. (4.14) does not depend on T. To verify this result, the
temporal domain of the simulation performed on last section is revisited. In figure 4.2 (a)
the simulated temporal profile of |ψg|2 is shown in solid blue line. To obtain this result,
we take advantage of the fact that ψg and ψp are well resolved spectrally, then ψp can be
filtered out from the output spectrum of the y-axis. The wave is almost squared-shaped,
corroborating the obtained result by means of our analytic approach.

Taking advantage of the temporal shape of the generated wave, the energy can be
approximated as Eg = |ψg|2Tg, where the time duration is given by Tg = L f iberD′g. In Fig.
4.2 (a) we can see the approximated temporal shape, which is represented by a red dashed
line. Then, the energy of the generated wave is given by the following equation:

Eg = Pp

(
|β2|∆ωπ

3

)2

sinh−2
(

∆ωt0π

2

)
L f iber

D′g
, (4.15)

where we have exploited the relation between power and duration of a fundamental
soliton P0 = |β2|γ−1t−2

0 . The energy of the generated wave is maximal when ∆ω = 0 ,
which corresponds to the conservation of energy for a degenerated FWM between soliton,
generated wave and pump. This fact is complemented by phase matching, so that the
maximal of energy is attained when both energy and phase-matching are preserved.

This result can be verified by numerically integrating Eqs. (4.1). In Fig. 4.2 (b), a
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Figure 4.2: (a) Temporal profile of the generated wave at 1318 nm. (b) Energy of the
generated wave, solid line stands for the analytic results while dots are obtained by
numerical integration of Eq. (4.1).

comparison between the expression (4.15) and simulations is displayed. In the horizontal
axis, we represent the corresponding pump wavelength and in the vertical axis, the gener-
ated wave energy. Blue line shows the predicted energy and red dots the corresponding
result from numerical simulations. Both approaches have a good agreement, validating
the employed theoretical derivation.

If phase-matching and the condition ∆ω are merged, the frequency at which the
generation is maximal is obtained:

ω2
g =

2(q− ∆β0)

β2
. (4.16)

In the case of highly birefringent fibers, ∆β0 � q, and as the anomalous dispersion
regime is considered (β2 < 0), only solitons polarized along the fast axis can fulfill both
energy and momentum conservation.

4.4 Experimental results

To confirm the validity of the model obtained in the previous sections, a series of experi-
ments were carried out in the IRCICA by Florent Bessin, following the parameters from
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CW

Laser
Ampli.

Figure 4.3: (a) Experimental setup used in experiments. OPO, optical parametric oscillator;
BS, beam splitter; P, polarizer; λ/2, half-wave plate; Ampli, amplifier; OSA, optical spec-
trum analyzer. (b) Comparison between theoretical and experimentally measured (black
dots) conversion efficiency. Soliton duration t0= 133 fs.

my initial numerical and theoretical studies.

Figure 4.3 (a) shows a scheme of the experimental setup. Solitons were excited using
Gaussian pulses of 250 fs at full width half maximum at the wavelength of 1430 nm,
delivered by an optical parametric oscillator pumped with a Ti:Sa laser. In order to control
the power to excite a fundamental soliton, a variable attenuation composed by a half-wave
plate and a polarizator is placed just after the OPO. To control the polarization of the
attenuator output, an additional half-wave plate is placed just after. This polarization is
important because the transmission coefficient of the beam spliter (BS) depends on it. The
CW is generated by a laser diode tunable in the range 1540-1600 nm and amplified using
an erbium doped fiber amplifier. A λ/2 plate is placed just after to control the polarization
of the radiation and put it orthogonally polarized to the soliton. After, the two beams
are combined with a BS. Before injecting in the fiber, a λ/2 is placed, in this way, the
polarization of the beams can be oriented along the correct neutral axis of the fiber.

The employed fiber is a 3 m long PCF fabricated at the IRCICA with parameters
γ =5 W−1 km−1 and β2 = −4.5× 10−26 s2/m at 1430 nm. This PCF was designed to
be polarization mantaining, then the difference of effective index between axes is large
∆β0 = 294 m−1. This special design can be noted on the fiber transverse plane (see the
small inset showing the fiber in Fig. 4.3). The peculiarity lies in two bigger PCF holes,
which increase the difference between effective refractive index of the two axes.

Generated wave energy can be directly measured experimentally by integrating the
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corresponding portion of the spectrum. However, only a small fraction of the pump
effectively interacts with the soliton over a finite fiber length. The portion of energy which
efficiently interacts with the soliton is given by E(int)

p = PpTp, where Tp is the time duration
of the pump wave portion which interacts with the soliton. Tp can be expressed as a
function of known paramaters as Tp = |D′g|L f iber. To take this into account, we introduce a
conversion efficiency η as follows [132]:

η =
Eg

E(int)
p

=
|ψg|2Tg

PpTp
=

[
β2∆ωπ

3D′g

]2

sinh−2
(

∆ωπt0

2

) D′g
D′p

, (4.17)

Figure 4.3 .(b) shows the comparative between the efficiency obtained by using the
model (blue solid line) assuming a soliton of t0 = 133 fs and the result obtained experimen-
tally (black dots). Results are normalized to its maximum because we could not measure
experimentally the absolute value of the energy. We can see that there is a good agreement
between the model that we have developed and the experimental results. This outcome
gives for the first time a global understanding between theory and experiments of the
interaction between a CW and a soliton orthogonally polarized.

4.5 Soliton stability

In a linear birefringent medium, light propagating along one of the neutral axes keeps
its polarization state. However, when the intensity is increased, the refractive index is
susceptible to change as a result of the Kerr effect. In the case of a silica fiber, when light is
polarized along the fast axis, the nonlinearity decreases the birefringence until the point
where the fiber may become isotropic. If the intensity is still augmented, birefringence
of the fiber is inverted and this fact leads to an unstable behaviour of light [133]. This
phenomenon has been experimentally observed and numerically studied with solitons
propagating in a birefringent PCF [134].

As it was previously shown, in order to observe the FWM process between soliton and
CW, the soliton must be polarized along the fast axis, which may undergo to polarization
instability if the power is big enough. To verify that we are far from the instability threshold,
we carry out a stability analysis of the soliton using the classical procedures depicted in
[129], [135]–[137] .
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As a first step, Eq. (4.1) is written in normalized soliton units [40]:

[i∂z − q̂− sign(β2)

2
∂2

T]ux + [|ux|2 +
2
3
|uy|2]ux +

1
3

u2
yu∗x = 0,

[i∂z + ((α0 − q̂) + iα1∂T −
sign(β2)

2
∂2

T)]uy + [|uy|2 +
2
3
|ux|2]uy +

1
3

u2
xu∗y = 0 (4.18)

Where the new normalized variables are defined as:

z =
z|β2|

τ2 , α0 =
∆β0τ2

|β2|
, α1 =

∆β1τ

|β2|
, q̂ =

γP0

2
τ2

|β2|
, Ak =

√
γLDukeiq̂z , T =

t
τ

, (4.19)

where τ is an arbitrary time and LD = τ2/|β2|. We write the envelopes as a stationary
solution u0k (where k stands for the polarization axis) perturbed by the functions δ(z, T)
and ε(z, T) which verify |ε, δ| � |u0k|:

ux = u0x + ε , uy = u0y + δ. (4.20)

By introducing these equations in Eq. (4.18), the following equation for the x-axis is
found:

[i∂z − q̂− sign(β2)

2
∂2

T](u0x + ε) + [(|u0x|2u0x + 2|u0x|2ε + u2
0xε∗)+ (4.21)

+
2
3
(|uy0|2ux0 + ux0uy0δ∗ + ux0u∗y0δ + |uy0|2ε)]+

+
1
3
[u2

0yu∗0x + u2
0yε∗ + 2δu0yu∗0x] = 0.

The corresponding equation for the y-axis can be readily obtained by just switching ε→ δ

, x→y. Now, let us assume a soliton propagating with x-polarization to be a stationary
solution of Eq. (4.18). Then the functions u0k can be written such as:

u0x =
√

2q̂sech(
√

2q̂t) , u0y = 0. (4.22)

These assumptions bring us to obtain the following equations for the perturbation:

[i∂z − q̂− sign(β2)

2
∂2

T]ε + 2|u0x|2ε + u2
0xε∗ = 0

[i∂z + ((α0 − q̂) + iα1∂T −
sign(β2)

2
∂2

T)]δ +
2
3
|u0x|2δ +

1
3

u2
0xδ∗ = 0. (4.23)
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Perturbations on the x-axis are ruled by the same equations as perturbations of a soliton in
scalar NLSE, whose behavior is stable when HOD is absent. However, the possibility of an
unstable evolution on the y-axis cannot be ruled out a priori . To analyze the exponential
growth of δ, it is advantageous to write this function as:

δ = a(T)eκz + b(T)∗eκ∗z (4.24)

By substituting in Eq. (4.23) we get the following eigenvalue problem:[
D̃(i∂T)− q̂ + 2

3 |u0x|2 1
3 u2

0x

− 1
3 u2

0x −(D̃(−i∂T) +
2
3 |u0x|2 − q̂)

] [
a
b

]
= κ

[
a
b

]
, (4.25)

where D̃(i∂T) = α0 + iα1∂T − sign(β2)/∂2
T is the normalized dispersion operator. This sys-

tem will be unstable if some eigenvalues verify Re(κ) > 0, which means that perturbations
will be amplified. The problem presented in Eq. (4.25) cannot be solved analytically, thus
we implemented a numerical method to find eigenvalues approximately. To transform this
differential operator into an algebraic one, a finite difference scheme is used [72], and the
eigenvalues κ are calculated following a standard procedure. In figure 4.4, the real part
of the eigenvalues with bigger modulus is shown. Under a certain critical power, they
remain complex, but once a threshold is crossed, the eigenvalues become purely real which
means the soliton is unstable. Physically this means the perturbations in the slow axis have
an exponential growth because the soliton transfer energy to this axis. The choice of τ is
arbitrary, so without any lose of generality, we chose it to make α0 = 1.

From Figure 4.4, we see that this critical power can be found near 1500 kW, and the
performed experiments employ a soliton of a peak power of 180 W, thus we are well below
the power regime where the soliton is not stable.
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Figure 4.4: Stability analysis of the soliton using the same fiber parameters as the experi-
ments depicted in Sec. 4.4. Parameters : α0 = 1, α1 = −0.116 and τ = 12.3 fs.

Summary

We have analyzed the interaction of soliton and CW orthogonally polarized in a birefringent
fiber. The presented results can be summarized as:

• We presented the equations that describe light propagation in a birefringent fiber, the
coherently coupled nonlinear Schrödinger equation.

• The phase-matching conditions which allowed us to calculate the frequency of the
generated wave have been described.

• An analytic model has been derived to predict under which conditions the interaction
between solitons and CW is the most efficient. Predictions of this model have been
verified by experimental results.

• We have numerically checked that, under our experimental conditions, the soliton is
stable.
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Like bright solitons, dark solitons can also emit Cherenkov radiation and interact with
dispersive waves in the neighborhood of ZDW. Surprisingly, a global understanding of
these problems with dark solitons was still missing in the vast literature of solitons in
optical fibers. In the case of Cherenkov radiation, some studies were carried out in the
90s [102], [103] and 2000s [104]. However, these studies were restricted only to theoretical
results and there were not any experimental evidence of this process. In this manuscript,
with the objective to understand the experimental results obtained in our laboratory, all
the calculations are shown in a systematic fashion and looked through a different prism.
In this chapter we will show how to predict the frequency of emission and its efficiency,
which will be calculated by adapting the theory for bright soliton [101] to the particularities
of dark solitons.

The case of the interaction of dark solitons with weak waves was also still missing of
a global understanding. This problem was partially adressed in [117] but only the phase
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matching relation using a black soliton was found. In this chapter, we will calculate a
general phase-matching relation which takes into account for an arbitrary grayness. In
addition to predict the frequency of the new wave, we will calculate the efficiency of the
process.

In both cases, Cherenkov emission and interaction between dark solitons with weak
waves, the analytic calculations are compared by numerical solution of NLSE and experi-
mental results.

The chapter is organized as follows: In the first section 5.1, the experimental setup
is briefly described, with a particular emphasis on how dark solitons are generated. In
the second section, the process of Cherenkov emission is analyzed, by predicting the
frequency in Sec. 5.2.1 and the efficiency in Sec. 5.2.2 of the generated wave. After, in
Sec. 5.2.2, the calculation of the process efficiency is reported. In the third section 5.3, the
interactions between dark soliton-dispersive waves are tackled. Following the same logic,
we will derive in 5.3.1 the phase-matching condition, which allows to predict the new
wave frequency and finally, the process efficiency will be analyzed in section 5.3.2.

5.1 Experimental Setup

The experiments reported here were carried out at our laboratory by Tomy Marest, who
designed a setup with the objective to generate single dark solitons in the femtosecond
regime with a controllable grayness. The generation of single dark solitons presents some
big challenges, but the most cumbersome is to give the pulse the correct odd-symmetric
phase. If the phase does not verify this condition, then the dark pulse will split in two
different gray solitons propagating with different group velocities [138]. There have
been reported several methods to generate dark solitons in the litterature. Some relevant
examples are experimental setups where a phase-mask is employed to taylor the pulse
spectrum and generate dark pulses [139], [140], the interference between two chirped pulses
[141] or the use of an intensity modulator [142]. In our case, we employed programmable
spectral filters (named waveshapers) capable of controlling amplitude and phase. These
filters are programmed to transform a pulse delivered by a laser to a supergaussian pulse
with an intensity dip at the center and the correct phase. This dark pulse can approximate a
dark soliton if the background is wide enough [143]. The employed method for generating
dark solitons allows to control the grayness, then its effect over the generated frequency
can be studied, in contrast to preceeding works where a train of solitons with uncontrolled
grayness [105] was employed to study Cherenkov radiation.
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Figure 5.1: Experimental Setup. DSF parameters: ZDW 1549.5 nm, β3 = 1.15 · 10−40 s3/m
at ZDW, γ = 0.002, W−1m−1

The experimental setup is displayed in Figure 5.1. Gaussian shaped pulses are delivered
by an optical parametric oscillator (OPO) pumped by a Ti:Sa laser. They have a duration of
220 fs at FWHM and are almost Fourier transform limited. Their power and polarization
are controlled by a variable attenuator and a half-wave plate. After, pulses go through a
combination of waveshapers and amplifiers. The first waveshaper sets the correct intensity
profile, then pulses are amplified and finally they get to a last waveshaper, which corrects
the defects produced by the amplification and draws the odd-symmetric phase. Finally
the dark pulse is injected in a dispersion shifted fiber (DSF), where the process under
investigation will take place.

To confirm the temporal shape of the generated dark solitons, a cross-correlation
measurement was developed. In the inset (a) of Fig. 5.1, the obtained temporal input
is shown, whose shape corresponds well to the one expected from the configuration
of waveshapers. In the inset (b) of Fig. 5.1, the spectrum of a dark pulse is shown.
The observed oscillations correspond to the Fourier transform of the product of a finite
background and a phase jump.
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5.2 Emission of Cherenkov radiation by a dark soliton

5.2.1 Phase-matching

In order to find the phase-matching relation of Cherenkov radiation emitted by dark
solitons, we adopted a method similar to the one followed with bright solitons [101].
However, in this case the procedure is more delicate due to two main reasons. On the one
hand, the generated wave will propagate over a CW background, hence the dispersion
relation is modified. To find this dispersion relation it is necessary to perform an asymptotic
analysis, i.e to look at |T| � 0, where the soliton can be approximated as a CW background.
On the other hand, the soliton does not necessarily travel at the same group velocity as the
CW background, which requires also special attention.

Our starting point is Eq. (2.2) with HOD up to third order. We did not take into account
Raman effect because it does not play a significant role, thus it can be safely neglected. The
envelope is supposed to be a superposition of a dark soliton given by Eq. (2.8) and a small
perturbation g:

A = (F + g)eiγP0 . (5.1)

This way of writing the field is coherent with the results obtained from direct numerical
simulations of NLSE. For example figure 5.2 (a) reports the evolution of a dark soliton with
grayness (φ = 0, i. e. black soliton) in the presence of HOD. From this simulation, we
see the dark pulse propagating almost without deformation and some emitted radiation
traveling to positive delay, whose origin is the Cherenkov emission. There is also the
emission of a small gray soliton traveling toward negative delays. This small soliton
quickly separates from the main dark soliton and we can consider that it does not play any
significant role [103]. When ansatz written in Eq. (5.1) is substituted in NLSE, the following
equation ruling the perturbation is found:

i∂zg + D(i∂T)g + γ(2|F|2g + F2g∗)− γP0g = −
(

D(i∂T) +
β2

2
∂2

T

)
F. (5.2)

This equation is quite similar to the one obtained in [101], but now the soliton has
a group velocity β1sol fixed by its grayness. This problem is overcome by changing the
reference frame τ = T − β1solz. With this simple change, one of the main problems
proposed at the beginning of this section has been solved. Now we write the perturbation
as:

g(z, τ) = C1(z)ei(kz−Ωτ) + C2(z)e−i(kz−Ωτ), (5.3)
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where Ω is the frequency detuning of the generated wave from the soliton. It is easy to
find the equation ruling C1 and C2:

i

[
Ċ1

Ċ2

]
+ M

[
C1

C2

]
=

[
S
−S∗

]
, (5.4)

where M is the following matrix:

M =

[
D(Ω)− β1solΩ− γP0 − k + 2γ|F|2 γF2

−γF2∗ D(−Ω) + β1solΩ + γP0 − k− 2γ|F|2

]
, (5.5)

and S = −
(

D(i∂T) +
β2
2 ∂2

T

)
F.

If we look far from the soliton, where it tends to a CW background, then the system
(5.4) reduces to:[

D(Ω)− β1solΩ + γP0 − k γP0

−γP0 D(−Ω) + β1solΩ− γP0 − k

] [
C1

C2

]
=

[
0
0

]
. (5.6)

Equation (5.6) has non trivial solutions only if the determinant of its matrix is vanishing,
which leads to the following expression for k [104]:

k± =
(D(Ω)− D(−Ω)− 2β1solΩ)±

√
(D(Ω) + D(−Ω))(D(Ω) + D(−Ω) + 4γP0)

2
,

(5.7)
where k+ (k−) corresponds to the expression with the + (−). The frequency of the radiation
can be found by solving k(Ω) = 0.

It is interesting to analyze the limit where the power is low (γP0 � D(Ω)). By using
a Taylor expansion, it can be readily found that phase-matching condition reduces to a
simpler expression [105]:

D(Ω) + γP0 − β1,solΩ ≈ 0. (5.8)

This expression can be interpreted by means of quasi-phase matching arguments. The
wavenumber of the linear wave (klw) in a reference frame such as the soliton is at rest is
given by klw = D(Ω)− β1solΩ + 2γP0, where we have taken into account the nonlinear
contribution due to XPM to the wavenumber, which is 2γP0. The wavenumber associated
to the dark soliton is kDS = γP0. If the condition of quasi-phase matching kDS = klw is
verified, then Eq. (5.8) is recovered. It is interesting to notice that this is the same equation
obtained for the phase-matching of radiation emitted by dispersive shock waves, as shown
in Ref. [144].
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Figure 5.2: Cherenkov emission by a black soliton (φ = 0). (a) Temporal evolution of the
dark soliton. (b) Spectral output, black-solid line represents the ZDW and red-dashed line
is the predicted by phase-matching wavelength of emission. Soliton parameters: t0 = 400
fs, φ = 0, P0 = 1.84 W and λ0 = 1543 nm. Dispersion parameters: λZDW = 1549.5 nm, β3
at ZDW: β3 = 1.15 · 10−40 s3/m.

To illustrate the accuracy of the predicted wavelength, the output spectrum of the
previous simulation is shown in Fig. 5.2 (b). Black vertical line represents the ZDW and
the two dashed red lines represent the resonance frequencies predicted by phase-matching.
One of them (k+) is efficiently amplified, while the other one (k−) the transference of energy
from the soliton is less important. Nevertheless both of them exhibit a good agreement with
numerical simulation. The relative amplitude of both resonances given by Eq. (5.7) can be
estimated by calculating the ratio between the amplitudes C1 and C2. We can determine
C1/C2 obtaining the eigenvectors of matrix M in the resonance condition, i.e. k± = 0:∣∣∣∣C1

C2

∣∣∣∣ = ∣∣∣∣ γP0

D(Ωr) + γP0 − β1,solΩr

∣∣∣∣ , (5.9)

being Ωr the frequency obtained from phase-matching. Denominator of Eq. (5.9) is
expression (5.8), which is approximately zero when phase-matching is verified. Thus
|C1| � |C2|, which means the frequency associated a k+ is more efficient. The predicted
difference of intensities between resonances using Eq. (5.9) is approximately of 37 dB. In
figure 5.2 (b), the relation between C1 and C2 has been reported with dashed magenta lines.
We can see that there is a good agreement between numerical simulations and theoretical
predictions.
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5.2.2 Amplitude of radiation

In the last section, it was shown that the frequency of Cherenkov emission is a function of
the soliton grayness. However phase-matching does not give any information about the
efficiency of the process, since it only reveals at what frequency momentum is conserved.
Figure 5.3 (a) shows a false color plot of the output spectra from numerical simulations
with different soliton grayness as initial condition. The horizontal axis represents the
wavelength and the vertical axis the corresponding soliton grayness. Dashed line represents
the wavelength at which phase-matching is verified. From these results, we see that the
amplitude and wavelength depends on the grayness of the soliton. Radiation amplitude
may be obtained by direct integration of the perturbation Eq. (5.2) as it has been already
explored in [101] to obtain the amplitude of Cherenkov radiation from a bright soliton.

As we showed in the last section, |C1| � |C2|, thus the contribution of the second
term of Eq. (5.3) is negligible, then the perturbation g can be considered of the form
g = G(z)e−iΩrt . By inserting this ansatz in Eq. (5.2), and neglecting the term F2g∗ei2Ωrt

because of its fast temporal oscillations, the following equation is obtained:

i∂zG + iD̄′(Ωr)∂τG + 2(γ|F|2 − q)G = SeiΩrτ, (5.10)

where we have considered that k can be approximated by k+ ≈ D(Ω) + γP0 − β1,solΩ.
The field g is considered to be spectrally very narrow, thus time partial derivatives with
an order higher than two can be neglected (∂n

TG = 0 , n > 2) and D̄′(Ωr) = −β1solΩr +

β2Ωr + β3/2Ω2
r . Equation (5.10) admits the general solution:

G =

(
C0 +

β3

6

∫ z′

0
dz[S]ei(Ωr(T+D̄′(Ωr)z)−B(T+D̄′(Ωr)z)

)
eiB(T+D̄′(Ωr)z), (5.11)

where:

B(T + D̄′(Ωr)z) = −
2γP0t0 cos(φ)

D̄′(Ωr)
tanh

(
(T + D̄′(Ωr)z)cos φ

t0

)
. (5.12)

By means of the change of variables x ≡ (T + D̄′(Ωr)z))/t0 and considering G(z = 0) = 0,
the amplitude can be written as:

C ≈
∣∣∣∣∣
√

P0β3 cos3(φ)

6t2
0D̄′(Ωr)

∫ ∞

−∞
dx(4sech2(x)− 6sech4(x))ei∆ω̃x

∣∣∣∣∣, (5.13)

where:
∆ω̃ =

(
Ωrt0

cos(φ)
+

2γP0t0 cos(φ)
D̄′(Ωr)

)
. (5.14)
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As the main contribution of this integral is in the neighborhood of x = 0, we can assume
tanh(x)≈ x. This lead to the following expression for the amplitude:

|G| ∝
cos3(φ)

D̄′(Ωr)
∆ω̃3 sinh−1

(
π∆ω̃

2

)
. (5.15)

In order to compare this result with numerical simulations and experiments, we calculate
the energy of the radiated wave, which can be approximated by supposing that it has a
squared temporal shape, extending from the dark soliton center to the time delay of a linear
wave with frequency Ωr. Then, the generated wave energy is Eg = Tg|G|2, where Tg is the
time duration of the emitted wave which can be approximated by Tg ≈ D′(Ωr)L f iber. This
argument to calculate the generated wave energy is the same as we employed in chapter 4
to calculate the energy of the generated wave. Both experimentally and numerically, the
energy of radiated wave is obtained by directly integrating the spectrum.

Figure 5.3 (b) presents a comparative between numerical simulations (red line), the-
oretical prediction (blue line) and experiments (green dashed line). Results have been
normalized to their maximum because the absolute value of energy is a quantity which can
not be measured experimentally. Even though the agreement between the three curves is
not perfect, it sheds some light on the physical understanding of the problem . We observe
that there is a maximum of emission near φ = −π/4. This fact can be explained as follows.
The lower the grayness is, the closer to ZDW the resonance wavelength is situated, and
then, the larger is the overlap of the soliton spectrum with anomalous dispersion regime.
Like the bright soliton case [101] this fact increases the efficiency of Cherenkov emission.
Nevertheless, for increasing values of |φ|, the soliton spectrum becomes narrower, which
traduces to a reduction of the overlapping between dark soliton and anomalous dispersion
regime, being |φ| = π/2 the limit where a dark soliton degenerate to a pure CW.

5.3 Interaction of a dark soliton with a dispersive wave

In this section, we analyze the interaction of a weak wave and a dark soliton. We consider
that the weak wave is a finite temporal long pulse with a frequency different from that
of the soliton. We assume that there is no temporal overlapping between the soliton and
the input wave at the beginning of the process. As a consequence of the different group
velocities, both pulses will concur at the same time position after some propagation, giving
rise to the interaction. As the soliton produces a local variation of the refractive index, then
like it happens in the interface between two media with different refractive index, one part
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Figure 5.3: (a) False color plot of the power of the Cherenkov radiation as a function of
wavelength (x-axis) and grayness (y-axis). Dashed-line represents the phase-matching
condition as a function of grayness. Parameters: Fiber length 5 km, t0 = 400 fs, λsol = 1544
nm, P0 =1.54 W, β2 = 5 · 10−28 s2/m at 1544 nm, β3 = 1.15 · 10−40s−3/m. (b) Comparative
of the energy predicted by theory (blue solid line), the one obtained by numerically solving
NLSE (red line) and experimental results (dots and green dashed line).

of the energy of the weak wave will be reflected and the remaining will be transmitted.
In our case dynamics is temporal, so concepts such as reflection and transmission may
be misleading. Then reflection must be understood as a group velocity change, which
necessarily translates in the generation of a new frequency. Transmitted wave is the portion
of energy which does not interact with the soliton and goes through it without a change of
frequency.

Figure 5.4 (a) shows the temporal evolution of a typical collision. This result has been
obtained by direct integration of NLSE with HOD. Raman effect does not play any role in
the collision process, thus it is neglected. At the beginning, a soliton with φ = π/8 is placed
at T = 0 and a weak Gaussian pulse with 5 % of amplitude of the soliton background is
delayed by 5 ps. The soliton has a lower group velocity due its grayness, leading to the
collision of the soliton and dispersive wave which takes place near 0.5 km. After, a part
of the initial dispersive wave energy changes its group velocity and propagates toward
positive time delays. This part is called reflected wave, while the remaining energy goes
through the soliton without changing its velocity and is called transmitted wave.
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5.3.1 Phase-matching

In this section, we detail the procedure to calculate the frequency of the reflected wave. Our
starting point is Eq. (5.2), which describes the perturbation of a soliton. The perturbation
equation is written as a superposition of a weak CW pump (ψp) and a generated wave (ψg):

g = ψp + ψg, (5.16)

which inserted in Eq. (5.2) gives the following equation describing the dynamics of the
generated wave:

i∂zψg + (D(i∂t)− kg − iβ1sol∂t)ψg +
γ

3

(
2|F|2ψg + F2ψ∗gei2γP0z

)
=

− γ

3

(
2|F|2ψpei((kp−kg)z−(Ωp−Ωg)t) + F2ψ∗pei((2γP0−(kp+kg))z+(Ωp+Ωg)t)

)
. (5.17)

We have not considered here the source term associated to Cherenkov radiation because we
supposed it to not be phase-matched and thus its role can be neglected. In the limit where
the linear wave is spectrally narrow, ψg can be efficiently amplified if the dependence on z
of the exponents in the right hand side of Eq. (5.17) vanishes, leading us to the expressions
of phase-matching obtained in chapter 4:

kp(Ωp) = kg(Ωg), (5.18)

kp(Ωp) = 2γP0 − kg(Ωg). (5.19)

It is worth to note a crucial difference from the bright soliton case. Now the linear wave
propagates over a background, which makes the dispersion relation to be different, as we
discussed in section 5.2.1. Among these possible processes, the most efficient resonance is
the one given by the first equation Eq. (5.18), as it has already been demonstrated for bright
solitons [130] . Within the low power limit, phase-matching condition can be written as:

D(Ωp)− D(Ωg) = 2β1sol(Ωp −Ωg). (5.20)

When the soliton is black (φ = 0), the expression obtained with a bright soliton is recovered,
despite the fact that the linear waves propagate over a background. However, when the
grayness does not vanish, solitons have an additional contribution to phase-number due
to their intrinsic additional group velocity, which is present in a non-vanishing right hand
side of Eq. (5.20). The presence of this term changes the generated wave frequency.

In figure 5.4, the output spectrum from the numerical simulation discussed previously
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Figure 5.4: (a) Temporal evolution over 1 km propagation of the collision between a weak
pulse with λpump = 1575 nm and a soliton with t0 = 300 fs, λ0 = 1520 nm and φ = π/8.
The represented quantity is ||A(T, z)|2 − P0| (b) Output spectrum of propagation shown in
(a), dashed line represents input spectrum and the output spectrum is represented by the
blue solid line. The black vertical line represents the ZDW. (c) and (d) Comparative among
numerical simulation (red solid line), theory (blue line) and experiments (green line with
experimental points in black). Parameters are reported in the text.
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is shown. Dashed orange line represents the input spectrum and solid blue one is the
output spectrum. Dashed blue vertical line is the corresponding frequency of resonance
predicted by phase-matching. This result confirms that the obtained relation to find the
generated frequency coincide with the results found by direct numerical integration of
NLSE.

5.3.2 Amplitude of generated wave

The efficiency of the process can be calculated by taking advantage of the scattering picture
introduced before. Here, the soliton is considered as the scattering potential and g plays the
role of the scattered wave, where the reflected (transmitted) part is the generated (pump)
wave. This way of thinking directly gives the process efficiency if wavepackets are of
a finite time duration, however some modifications should be adressed if a pure CW is
considered. Starting from the perturbation equation Eq. (5.1), a serie of transformations and
approximations are needed to go towards finding a z independent Schrödinger equation,
which will be found to rule the process. The employed procedure has been inspired from
the one depicted in [145], but adapting the calculation to dark soliton peculiarities.

The first step is to write the perturbation in the form g = Ψ(τ)eikz, where k is given
by the expression (5.7) calculated either at Ωp or Ωg with the + sign. This form of the
perturbation can be supposed since both generated and pump have the same wavenumber,
as given by Eq. (5.18). This change transforms the initial partial derivative equation in
to an ordinary differential equation. The field Ψ(τ) accounts for both frequencies, pump
and generated. When this form of g(z, T) is substituted in Eq. (5.17) , non-phase matched
terms are dropped and the low power approximation is done, to find:[(

D
(

i
d

dT

)
− iβ1sol

d
dT

)
− (2γP0 cos2(φ)sech2

(
T cos(φ)

t0

)
+ D(Ωp)− β1solΩp)

]
Ψ = 0.

(5.21)
This equation can be simplified by performing a phase-rotation Ψ̃ = ΨeiΩGVMτ, where we
choose ΩGVM such as D′(ΩGVM) = β1sol . In this way, the first derivative appearing on the
second term can be simplified. If only up to β3 is considered, this frequency is given by the
expression:

ΩGVM =
−β2 −

√
β2

2 + 2 sin(φ)β3
√

γβ2P0

β3
. (5.22)

In the neighborhood of ΩGVM, dispersion relation can be approximated by a parabola,
hence HOD terms involving derivatives with order higher than 2 are safely neglected, then
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the following equation is obtained:

(
sign(β2(ΩGVM))

|β2(ΩGVM)|
2

d2

dT2 + (2γP0 cos2(φ)sech2(T cos(φ)/t0)− ∆D)

)
Ψ = 0,

(5.23)
where β2(ΩGVM) = β2 + β3ΩGVM and ∆D = D(Ωp)− D(ΩGVM). This expression is a
z independent Schrödinger equation, with β2(ΩGVM) playing the role of mass and the
dark soliton being the scattering potential. Depending on the sign of β2(ΩGVM), Eq. (5.23)
exhibits different kinds of solution. If sign(β2(ΩGVM)) is positive, solutions of Eq. (5.23)
can be bound states, while if sign(β2(ΩGVM)) is negative, we have a scattering problem. In
our case, we are restricted to anomalous dispersion regime thus we will be interested in
the scattering solution of Eq. (5.23). This kind of equations have been deeply studied in
the context of quantum mechanics and it is usual to describe their solution by a reflexion
(R) and transmission coefficient (T) verifying the condition R + T = 1. In the case of
a hyperbolic secant shaped potential as the one given by Eq. (5.23), R is given by the
expression [146]:

R =

cosh2
(

π
2

√
16 |β2(ΩGVM)|

β2
− 1
)

cosh2
(

π
2

√
16 |β2(ΩGVM)|

β2
− 1
)
+ sinh2

(
πt0∆Ω
cos(φ)

) . (5.24)

If φ = 0, then the expression obtained when a bright soliton was studied is recovered [145],
and R does not depend explicitly on β2. The value R = 1 means a perfect reflection, which
translates in a complete conversion to the generated wave. However the condition R = 1
is only found when ΩGVM = Ωp, i.e when pump and soliton have the same group velocity.
This result means that the pump will need an infinite length to interact with the soliton in
order to be completely converted, and we can conclude that it is physically impossible to
have a total conversion from pump to generated frequency. Bright solitons are subjected at
the same restriction [132], [145].

The simultaneous generation of a single soliton and a weak pulse with different fre-
quency represents a real experimental challenge. The main obstacle to overcome is the
synchronization of the two pulses delivered by two different lasers. The solution that we
implemented was to only use one laser with a broad spectrum. In addition, waveshapers
were modified in order to add a small pulse at the frequency of the initial dispersive wave.
Nevertheless, the obtained pulse is long enough to be considered as a CW. Then, the theory
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must be adapted to take into account the fact that we use in experiments quasi-CW instead
of short pulses. To do so, we consider that only a energy portion E0 of the initial dispersive
wave interacts with the soliton, which can be approximated by E0 ≈ PCW(|D̄′|L f iber), where
D̄′ is the group velocity difference between the soliton and CW and L f iber is the fiber length.
The energy of the generated wave can be obtained by using the definition of the reflection
coefficient R = Egenerated/E0 [132]:

Egenerated ∝ |D̄′(Ω)|R =

∣∣∣∣∣
(
−
√

β2γP0 sin(φ) + β2Ωp +
β3

2
Ω2

p

) ∣∣∣∣∣R. (5.25)

From Eq. (5.25) we can see that when a soliton interacts with a CW with the same
group velocity, the generated wave energy goes to zero. In order to test the validity of
these results, a series of experiments and numerical simulations are performed. These
measurements consist in quantifying the generated wave energy by directly integrating the
spectrum, as described in Sec. 5.2.2, and compare them with the expected result obtained
by theoretical arguments. As already discussed, the absolute value of the energy cannot be
obtained experimentally, then data are normalized to their maximum to be able to compare
all three quantities. In a first case, the frequency of the initial CW pump was fixed to 1559
nm and the grayness of soliton with wavelength 1542 nm and t0 = 600 fs is changed. The
obtained results are displayed in Figure 5.4 (c), where the x-axis reports φ and the y-axis
the corresponding normalized measured/calculated energy. One can notice a maximum
near −π/6, then the efficiency of the process decreases rapidly to zero when going to
negative grayness and it decreases in a smoother way for positive φ. All three results have
a good agreement. In a second series of experiments, the grayness of the soliton was fixed
to 0 and the CW pump wavelength is changed. In Figure 5.4 (d), the normalized energy as
a function of wavelength is plotted. The energy goes to zero when the pump wavelength
is near 1570 nm, because at this wavelength, CW pump and soliton have the same group
velocity as predicted by Eq. (5.25). Conversion of energy has two maxima near 1553 and
1562 nm. In this case, there is also a good agreement between the three curves.

Summary

In this chapter, the interactions between dark solitons and dispersive waves have been
analyzed. The results are summarized hereinafter:

• The radiation emission by a dark soliton has been studied. We presented a theo-
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retical background in order to understand the experimental results obtained at our
laboratory.

• A general understanding of the interactions between dark solitons and weak waves
has been developed. We have found a general form of the phase-matching relation
and amplitude for an arbitrary grayness of the solitons. These results show a good
agreement with numerical simulations and experiments.
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CHAPTER

SIX

STATE OF THE ART

Multimode optical fibers (MMF) are at the beginning of a new eve. These fibers are
attracting much interest because of their capability to transport much more information
than single-mode fibers thanks to spatial multiplexing. For imaging, it will traduce to an
improvement of image quality [147]. For telecommunications, using the spatial degree of
freedom may avoid the capacity crunch that optical systems are about to suffer [148].

MMF are known since the very beginning of optical fiber technologies and were already
proposed as a way of multiplexing signals in the 80s [149]. Nevertheless, these guides
were considered of low quality as a consequence of the intrinsic randomization of light
when propagating along a MMF. At the origin of this randomization, there are the possible
fiber imperfections and microbendings, whose effect is to arbitrarily couple modes and to
convert the highest quality input beam into a low quality and speckled output. However,
this speckle remains deterministic, that is the reason why this problem is overcome in
linear optics by obtaining the transfer matrix and its principal modes [150].

Nonlinear optics in MMF also predates its counterpart in single-mode fibers. Its
complexity made the subject almost unapproachable, although some remarkable findings
such as the first observation of FWM in optical fibers were done using multimode fibers
[151]. Single-mode fibers, especially PCF, have lead to spectacular results for the production
of highly broadband light sources [94]. However, due to the small size of the core of single-
mode fibers, it is easy to reach the power density threshold for silica damaging. By
increasing the core size, intensity is reduced but guides may become multimode, and
thus, the involved phenomena become much more complex [152]. The necessity to deeply
understand the nonlinear effects which may be present and the opportunity of finding
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new light sources rised an incredible research interest in this topic [153]. Among all the
fiber kinds, there is one attracting the most attention because of its good qualities for
observing multimode effects: highly multimode parabolic GRIN fibers. In these guides,
the group velocity of waves is predominantly given by the material and thus all modes
travel with similar velocity [66], increasing the temporal overlap between pulses carried
by different modes and thus, the efficiency of nonlinear effects. In addition, GRIN fibers
show self-imaging. By producing a periodic pattern of intensity in z, a variation of index
is induced, giving birth to a vast amount of interesting physics. Research in multimode
fibers has given three important breakthroughs: beam self-cleaning, multimode solitons
and spatio-temporal modulation instability (Geometrical Parametric Instability).

Beam Self-cleaning: As previously mentioned, light propagating along a MMF in linear
regime spreads its energy over all guided modes due to fiber imperfections. When the
input power is increased, this phenomenon is reversed and the beam energy flows to
the lowest order modes, mainly to the fundamental one [154], [155]. This effect has been
observed either for CW [154] and for femtosecond pulses [156]. Self-cleaning may be
related to light-condensation [157], [158], which is a phenomenon analog to Bose-Einstein
condensates. Nevertheless, there is still some controversy about its theoretical explanation
[159].

One of the most direct technological application is in high energy fiber lasers [160],
where an active GRIN fiber could be employed to generate high-energy Gaussian beams.

Multimode solitons: Spatiotemporal solitons, also called optical bullets, have always
attracted the attention of researchers [161]. These objects are waves confined both on
transverse propagation plane and temporal domain due to diffraction and dispersion
compensation by nonlinearity. These objects are not stable in Kerr bulk media [162],
nevertheless multimode solitons (MMS) can exist in waveguides with Kerr nonlinearity as
theoretically predicted in the 80s [163], [164]. MMS in MMF are characterized for having
their energy distributed among several guided modes, and nonlinear effects compensate
the eventual dispersion of modes.

The experimental demonstration of MMS was performed in 2013 [148] in optical fibers,
where solitons were observed in a multimode GRIN fiber. In this experiment, a pulse which
kept its temporal shape but spatially breathed was observed. The fiber was chosen in order
to reduce the group velocity difference between modes and to avoid pulse splitting [165].
The observation of spatiotemporal solitons naturally brought to femtosecond supercontin-
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uum generation. In references [166]–[168] a multimode supercontinuum was observed by
injecting femtosecond pulses in a GRIN fiber. Specially remarkable was the ultra broad
band emission associated to MMS. This new mechanism of frequencies broadening is
added to the already existing ones as Cherenkov emission and FWM and it opens a new
way to taylor emission of broad band light sources.

Geometrical Parametric Instability (GPI): A CW is unstable when propagated along a
multimode GRIN fiber in normal dispersion regime, as theoretically predicted by S. Longhi
[169]. The physical mechanism beneath this penomenon is the refractive index grating
produced by the periodic intensity associated to self-imaging. This effect is very similar to
the energy transfer from radial oscillations to longitudinal sound waves in a BEC trapped
in a cigar potential [170].

GPI was first experimentally observed by K. Krupa et al [69]. In this experiment a
quasi-CW pump at 1064 nm produced bands in the visible light spectral range. After this
first observation, many studies have been carried out to obtain supercontinuum sources
[171], [172], to relate GPI with second harmonic generation in a fiber [173], and even to
observe a cascaded GPI [174], where GPI-produced bands themselves gove birth to new
bands. GPI has been related to beam self-cleaning [155], but this connection remains
unclear.

6.1 Mathematical and numerical modeling

To describe all the aforementioned effects in MMF, two different approaches have been
employed: coupled mode nonlinear Schrödinger equation (CMNLS) and generalized
nonlinear Schrödinger equation (GNLSE):

Coupled mode nonlinear Schrödinger equation: Initially proposed by Poletti and Ho-
rak [175] and simplified afterwards [176], this equation is written as:

∂z Ap = i∆β
(p)
0 Ap − ∆β1∂T Ap + ∑

m=2

im+1

m!
βm∂m

T Ap +
in2ω0

c

N

∑
l,m,n

SK
plmn Al Am A∗n, (6.1)

where Ap is the time envelope corresponding to the p-mode of the fiber, ∆β0 is the dif-
ference of phase velocity between modes at the carrier frequency (β(p)

0 − β
(1)
0 ), ∆β1 is the

group velocity difference between modes and βm are the rest of coefficients describing the
modal dispersion. The last term takes into account the nonlinear coupling between modes
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due to the Kerr effect, being SK
plmn a 4-dimensional tensor describing the weight of each

interacting term and which directly depends on the superposition integral of the spatial
modes:

Sk
plmn =

∫
dxdy[FpFl FmFn][∫

dxdyF2
p
∫

dxdyF2
l

∫
dxdyF2

m
∫

dxdyF2
n

]1/2 . (6.2)

From a numerical point of view, this equation is advantageous when the number of
considered modes is not very high, since the number of coupling terms increases as N4

(being N the number of modes) and then the efficiency of evaluation also decreases. To
overcome this problem, one proposed solution has been implementing highly parallel
algorithms using GPU [177], following the already employed algorithms in long-distance
single-mode simulation [178]. Another solution to solve this equation has recently been
proposed [179], which is based on the real-space Gaussian quadrature integration of the
nonlinear term instead of calculating the sum of overlapping modes.

From a physical point of view, Eq. (6.1) permits to resolve the modal content of the
field, which can be an advantage for the interpretation of process involving a few different
modes, such as intermodal FWM, XPM [43]... but can hide under its complexity collective
effects such as GPI [180] or MMS.

Generalized nonlinear Schrödinger equation: This equation read as:

i∂zE +
1

2β0
∇2
⊥E + ∑

m=2

βm

m!
(i∂T)

mE− β0∆
r2

c
r2E +

ω0n2

c
|E|2E = 0, (6.3)

where r2 = x2 + y2, ∇2
⊥ = ∂2

x + ∂2
y is the transverse Laplacian, E is the electric field

envelope expressed in
√

W/m, β0 = ω0n0/c, n0 is the refractive index at the center of the
core and βm are the coefficients describing light dispersion. In the literature, the confining
potential describing the guide (4th term in the equation) is commonly approximated
as a parabola, which corresponds to a pure harmonic potential. Equation (6.3) bears
a resemblance to Gross-Pitaevskii equation [181], used for describing Bose - Einstein
Condensate, but in this case the Laplacian describes diffraction of light, z and t have
exchanged their roles, the linear potential describes the waveguide geometry and last term
describes Kerr effect. This equation, unlike CMNLS, describes the whole electric field
evolution in 3+1 dimensions. From a numerical point of view, GNLSE is less efficient than
coupled mode nonlinear Schrödinger equation when the number of involved modes is low,
but it becomes competitive to describe highly multimode fibers. Equation (6.3) has been
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successfully employed for describing GPI [69], [169] and MMS. It is worth to point out that
this equation does not take into account the dependence on frequency of the guide. This
is a very crude approximation, which can affect the shape and propagation constant of
modes, and thus the nonlinear interaction among them.
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In this chapter, geometric parametric instability is explained from a fundamental point
of view. We describe a series of mathematical tools needed for the theoretical and numerical
analysis of the phenomenon. We first derive an equation describing light propagation
in a GRIN fiber. In the followed approach, our starting point is the unidirectional pulse
propagation equation (UPPE). From this equation, GNLSE is found in section 7.1.1. In
section 7.2, the numerical methods that we employed for numerically solving GNLSE are
described. Finally, with all these tools, GPI in a constant core fiber will be studied in section
7.3.

7.1 Derivation of propagation equations

In the present section, we detail how to derive the GNLSE, which is the model we use for
describing light propagation in multimode fibers. At the end of this section, the relation
between GNLSE and a CMNLSE is outlined. The objective of this model is to describe
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nonlinear phenomena happening in a relatively short fiber (length of the order of the
centimeter), then all the assumed approximations that we will consider have sense in this
context.

7.1.1 Generalized nonlinear Schrödinger equation

The starting point of our discussion is the so-called UPPE in the scalar limit, which is a
reduction of Maxwell’s equations where only the forward propagating field is taken into
account:

∂zẼ(k⊥, ω, z) = ikzẼ(k⊥, ω, z) +
iω2

2ε0c2kz
P̃(k⊥, ω, z), (7.1)

being kz =
√

β2 − k2
⊥, where kz, β and k⊥ are respectively the z-component, modulus

and transverse components of the wave vector. The function P̃(k⊥, ω, z) represents the
nonlinear polarizability of the material in the most commonly used version of the UPPE,
but we will specify it better hereinafter. To refer to the electric field, we will use the
following notation: Ẽ(k⊥, ω, z) when the field is both spatially and temporally in Fourier
domain, Ē(r, ω, z) when it is only the temporal coordinate which is in Fourier domain and
finally E(r, T, z) when the electric field coordinates are time and space. UPPE was initially
proposed to describe ultra-short and very intense pulse propagation in bulk media and
gases [182], [183], and after it was adapted to model waveguides with strong refractive
index contrast [184]. A one-dimensional version of this equation has been succesfully
employed to describe interaction between fields and their own conjugates in bulk media
and PCF [185], [186]. It is important to remark that in presence of Kerr effect, there is a
coupling between forward and backward propagated fields [187], but in our case this effect
is negligible and it is not taken into account. Indeed, forward-backward coupling becomes
effective for values of intensity well above the range we are going to consider.

UPPE has at least two remarkable differences with the previous equations described
until now:

• The whole field is written in frequency domain, both temporally and spatially unlike
NLSE, GNLSE and CMNLSE, where the field is described in the time domain. By
writing the equation in this way, diffraction can be exactly solved and the operator
describing the propagation is constant (kz). The other side of the coin is that in this
representation Kerr-nonlinearity and the waveguide are included in the model in a
less straightforward manner.

• In Eq. (7.1), the SVEA (slowly varying envelope approximation) has not been taken
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into account, which means that E(r, t, z) is a real quantity describing the fast oscil-
lations of the carrier frequency. This kind of equations are called carrier resolved
equations [72] while NLSE, GNLSE and coupled mode nonlinear Schrödinger equa-
tion are referred as envelope equations.

When P in expression (7.1) only considers the nonlinear contribution to polarizability, this
equation describes light propagation in a nonlinear homogeneous media. In our case, light
propagates in a waveguide, thus the expression must be modified to take this effect into
account. To this aim, we assume the variations of refractive index to be weak, which is
usually the case for an optical fiber. The linear contribution to polarizability in a waveguide
with infinite parabolic refractive index is written as:

P̄L(r, ω) = ε0

[
χ1(r = 0, ω)− 2∆(ω)n2

core(ω)

(
r

rcore

)2
]

Ē(r, ω), (7.2)

where we have employed the relation n2(ω) = 1 + Re(χ(ω)). The first term corresponds
to the linear polarizability at the core center and the second one is a much smaller term
(∆� 1) which takes into account the radial distribution of the refractive index. Then, the
second term can be considered as a perturbation and be included as another contribution
to P, while the first term fixes β(ω) [188]. Therefore, light propagates as if it were in a
homogeneous medium with the same characteristics as the center of the core, but perturbed
by a weak variation of the refractive index, the effect of which is to confine light. By
assuming that the linear polarizability has the form of Eq. (7.2) , we are assuming that:
i) The presence of the cladding is negligible, whose consequence will concern the shape
of propagated modes and its dispersion relation. ii) The waveguide is perfect and its
parameters do not change along the propagation. This hypothesis prevents the linear
coupling between the different modes.

We can perform some simplifications in order to make the model easier to solve
and to work with. The most evident is to use paraxial approximation, which consists
in considering β2 � k2

⊥. From this assumption kz can be expanded in a Taylor series,
obtaining as a result kz ≈ β(ω) − k2

⊥/(2β(ω)). After doing this approximation, the
equation is called forward Maxwell equation (FME) and it was one of the first employed
equations to explain supercontiuum generation in PCF [189]. By transforming back to
spatial direct domain, the following equation is obtained:

83



CHAPTER 7. GEOMETRIC PARAMETRIC INSTABILITY IN UNIFORM GRIN FIBERS

∂zĒ(r, ω, z) = i

(
β(ω) +

∇2
⊥

2β(ω)

)
Ē(r, ω, z)− iωncore(ω)∆(ω)

c
r2

r2
core

Ē(r, ω, z)+

+
iω

2ε0cncore
P̄NL(r, ω, z), (7.3)

The nonlinear contribution can not be easily obtained in time Fourier Domain, however
it can be easily found in direct time domain. In order to write PNL, we use the same
approach employed in reference [40]. The first step is to express the electric field in
the form: E = 1

2E(r, z, t) exp(iβ0z− iω0t) + c.c, where β0 = ω0ncore(ω0)/c, being ω0 an
arbitrary frequency and ncore(ω0) the refractive index at the core center at frequency ω0.
The most convenient choice for ω0 is the carrier frequency of the pulse. Then, by only
keeping terms oscillating at frequency ω0 and neglecting the THG term and the interaction
of E and its own conjugate, we obtain that the nonlinear polarizability verifies:

PNL =
3ε0

4
χ
(3)
xxxxE(r, t, z)

∫ +∞

0
R(t)|E(r, t− t′, z)|2dt′, (7.4)

where R(t) is the Raman response function and it is given in section 1.4.2. The next step is
to change the reference frame from the laboratory to a one traveling at the group velocity
of ω0. Then by performing the change of variables ∂z = ∂z + i(ω−ω0)β1, we obtain :

∂zĒ(r, ω, z) = i
(

D(ω)− d(ω)∇2
⊥
)
Ē(r, ω, z)− iG(ω)

r2

r2
core
Ē(r, ω, z) + χF ( fNL), (7.5)

where D(ω) = ∑n=2(dnβ(ω0)/dωn)(ω−ω0)n; d(ω) and G(ω) are respectively the Taylor
development of 1/(2β(ω)) and ωncore(ω)∆(ω)/c around ω0, F is the Fourier transform,
χ = ω0n2/c and fNL is:

fNL =

(
1 +

i
ω0

∂t

)
E
∫ +∞

0
R(t)|E(r, t− t′)|2dt′. (7.6)

From Eq. (7.5), we can identify the four different physical effects taking part in light
propagation: material dispersion, diffraction, guide effect and nonlinearity. At lowest order
of the Taylor developments of d(ω) and G(ω), and also neglecting the self-steepening
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effect, Eq. (6.3) described in chapter 6 is recovered:

i∂zE +
1

2β0
∇2
⊥E + ∑

m=2

βm

m!
(i∂T)

mE − β0∆
r2

c
r2E + ω0n2

c
|E |2E = 0, (7.7)

The most remarkable physical feature which comes thereof this approximation is that,
neglecting dispersion of d(ω) and G(ω) implies that the spatial behavior of light does not
depend on its frequency. This means that the guided modes shape is the same in the whole
spectrum. We will restrict to problems where neglecting higher orders of d(ω) and G(ω)

is a safe approximation. Disregarding these contributions has lead to a good agreement
between numerical simulations and experimental results [69].

Coupled mode nonlinear Schrödinger equation

Writing Eq. (7.5) as coupled mode equation allows us to find some physical insights. There-
fore if the electric field is written as E = ∑p Fp(r)Ap(t, z) where Fp is the corresponding
mode spatial profile as given by Eq. (1.15), and Ap is the envelope associated to the m-th
spatial profiles, a system of coupled equation describing the envelopes can be obtained
[175]

∂z Ap = iDp(i∂t)Ap+

+
in2ω0

c

(
1 +

i
ω0

∂t

)
∑

l,m,n
SK

plmn Al

∫ ∞

0
R(t)A∗m(t− t′, z)An(t− t′, z)dt′, (7.8)

being Splmn the superposition integral defined in Eq. (6.2) and the corresponding dispersion
relation which is expressed such as:

βp(ω) = D(ω)−
√

2∆
rcore

(2p + 1), (7.9)

where we have only considered modes with m = 0. Dispersion operator is composed by
two terms in contrast to Eq. (7.7). The first one describes material dispersion and it is the
same as Eq. (7.7). The second term is due to the waveguide and corresponds to ∆β0 in Eq.
(6.1). Note that the waveguide only contributes to dispersion via a constant term, which
means that all modes travel exactly at the same group velocity and share all dispersion
orders higher than 1. The underlying reason for this result is because guide dispersion has
been neglected. Nevertheless, the real dispersion of the mode can be calculated taking into
account the dependence on ω of the relative difference of refractive index ∆.
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Then, if the number of considered modes is high enough, both equations (7.7) and (7.8)
are completely equivalents and both describe the same physics. In this manuscript, we will
use as a model GNLSE (Eq. (7.7)) instead of CMNLS (Eq. (7.8)).

7.2 Numerical methods for solving GNLSE: The Hankel trans-
form

The geometry of circular optical fibers is radially symmetric. In most cases, the beam
exciting the fiber also presents circular symmetry and it is injected at the center of the fiber.
This fact will reduce the number of considered dimensions, since the beam will keep its
circular symmetry during the whole propagation. By writing the Laplacian in cylindrical
coordinates and assuming circular symmetry, we obtain the following equation:

i∂zE +
1

2β0
[r−1∂r(r∂r)]E − D(i∂T)E +

β0∆
r2

core
r2E + χ fNL = 0. (7.10)

Equation (7.10) can be solved using the split-step method, which consist in breaking Eq.
(7.10) in two different steps [40]. The first one accounts for the linear effects which in this
case consists in diffraction, guide and dispersion, and the other one accounts for nonlinear
contributions.

Linear part The linear part of Eq. (7.10) is composed of the first four terms in the right
hand side. To solve this part, we employed a pseudo-spectral method, which consists in
transforming the differential operator to a domain where it is a constant. In Cartesian
coordinates, such a transformation is a Fourier transform and in that case, the fast Fourier
transform (FFT) can be employed. However, the spatial Fourier transform of a function
in cylindrical coordinates and circular symmetry is the Hankel transform (HT) of order 0,
which transforms r−1∂r(r∂r) to −s2, where s is the corresponding associated frequency to
this integral transformation. The forward and backward HT of p-order are defined as:

f2(s) = 2π
∫ ∞

0
f1(r)Jp(2πrs)rdr , f1(r) = 2π

∫ ∞

0
f2(s)Jp(2πrs)sds, (7.11)

Jp being the Bessel function of order p. As in the case of Fourier transform, there are
algorithms to calculate this transform efficiently. These methods are depicted in reference
[190] for the zero-order HT and generalized to order p in [191] and are called discrete
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Hankel transform (DHT). In this operation, sampling points are not equally spaced as
in the FFT. In the DHT points are given by scaling zeros of the corresponding Bessel
function (ri = (ui/uN) R), where ri is the ith-point of the grid, ui verifies the condition
Jp(ui) = 0 and R is the maximum radius. In a similar fashion, s points are scaled in the
way (si = (ui/uN)/R). Even if DHT provides a good efficiency, it is still far from the
performance obtained by the FFT algorithm. Nevertheless the reduction of one spatial
coordinate makes the solution of Eq. (7.10) much more efficient than solving Eq. (7.7) by
means of FFT.

Nonlinear part The nonlinear part is composed by the last term in Eq. (7.10). This part of
the equation is solved in two different ways, depending whether Raman effect is included
or not. If Raman scattering is not taken into account, we use the approximation:

E(r, T, z + ∆z)) ≈ E(r, T, z) exp(iχ|E |2∆z), (7.12)

where ∆z is the length of the step. However, when Raman scattering is included, we
solve the nonlinear part by means of a Runge-Kutta method of fourth order (RK4) [192].
This way of solving the equation is equivalent to the algorithm employed to integrate
numerically the nonlinear part of the (1+1)D GNLSE, reiterated for each spatial point used
to sample the field E .

7.3 Geometric parametric instability in a uniform fiber

Geometric parametric instability is a kind of modulation instability whose origin resides in
the spatio-temporal behavior of light in multimode fibers. In this section, we will analyze
GPI within the limit of an axially uniform fiber. To describe the mechanism which triggers
GPI, we start studying the spatial dynamics of a CW beam in a parabolic GRIN fiber.
After, the temporal coordinate shall be included. Then we will study the dynamics of
perturbations over the CW and under which conditions MI can be produced.

7.3.1 Spatial evolution

In section 1.5.2, we discussed the periodic behavior of intensity in a GRIN fiber, referred as
self-imaging, and we found the intensity evolution as a periodic pattern of interference of
several modes in the linear regime. In this section, we analyze the evolution of a CW by
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means of GNLSE in the monochromatic limit ( i.e. ∂T = 0):

i∂zE(r, z) =
1

2β0
∇2
⊥E(r, z)− β0g0

2
r2E(r, z) + χ|E(r, z)|2E(r, z), (7.13)

where we have defined the quantity g0 = 2∆/r2
core. The inclusion of Kerr nonlinearity

does not destroy the self-imaging process and the beam keeps its periodic behavior [193].
Moreover, it has been shown that Eq. (7.13) admits self-similar solutions with the form
of Gaussian beams which are linearly stable, and these solutions breath with the same
periodicity as a beam in the linear limit [194]. The evolution of E can be approximated by
means of a variational approach if the field is supposed to have a Gaussian shape [193].
Here, we only report field’s intensity obtained through variational techniques, since the
phase will not play any relevant role in our analysis:

|E(x, y, z)|2 = A2
0

(
a0

a(z)

)2

exp
(
− r2

a(z)2

)
, (7.14)

where A2
0 stands for the initial intensity in W/m2, a0 is the initial radius of the beam and

a(z) is the evolution of the beam radius, which is the solution of the following equation
(overdots stand for the z derivative):

ä + g0a +
C
a3 = 0 , C ≡

(
n2a2

0A2
0

2n0
− 1

β2
0

)
. (7.15)

From Eq. (7.14), we can see that a(z) is enough to describe the whole beam intensity
dynamics. Equation (7.15) has analytic solution, and for the initial conditions a(0) = a0

and ȧ(0) = 0 it is written as:

a2(z) = a2
0(cos2(

√
g0z) + C sin2(

√
g0z)), (7.16)

where C = (1−P)/(β2
0a4

0g0) = −C/(g0a4
0) and P = n2β2

0A2
0a2

0/(2n0) is a dimensionless
parameter related to beam collapse [193], [195]. For high enough values of power (P > 1),
C becomes negative and thus a(z) is complex, which translates to the collapse of the beam.
Therefore, including nonlinearity introduces an upper limit of the initial injected power.
Nevertheless, we will consider intensities which are far below this limit. The period of
a(z) is the same as the self-imaging pattern that was obtained in section 1.5.2, which is
ξ = π/

√
g0, and it does not depend on the intensity.

Note also that, when C = 1, the beam does not experience self-imaging because
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Figure 7.1: (a) Evolution of the intensity at the core center obtained in the stationary limit of
Eq. (7.10). (b) Output spectrum obtained by numerically solving Eq. (7.10). Black dashed
lines correspond to the central frequencies predicted by Eq. (7.23). (c) Floquet spectrum
obtained from Eq. (7.20). The parameters are:n0 = 1.47, n2 = 3.2 · 10−20 m2/W, rcore = 26
µm, ∆ = 8.8 · 10−3, λ0 =1064 nm, A2

0 = 20 GW/cm2, a0 = 20 µm, and fiber length 2.2 cm.

a2(z) = a2
0. In the linear propagation regime (i.e. A0 → 0), it corresponds to the limit where

a0 = (rcore)/(2β2
0R2∆)1/4 , which is the radius of the fundamental mode reported in [66]

and in subsection 1.5.2.

In Fig. 7.1 (a), an example of numerical solution of Eq. (7.13) is shown. The represented
quantity corresponds to the intensity at the center of the fiber (I(z) = |E(z, x = 0, y = 0)|2),
normalized to the initial intensity. Fiber length has been normalized to the self-imaging
period, which corresponds to ξ ≈ 600 µm. Employed parameters are displayed in Figure’s
caption.

7.3.2 Spectrum of GPI of a constant core fiber

Having described the spatial behavior of light, we now include the time coordinate in
order to find out which frequencies are unstable. In this section, as commonly done in
the literature, we assume that the waveguide refractive index does not depend on the
frequency. We follow a slightly different approach from the original one developed by S.
Longhi [169].
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We assume a spatiotemporal field of the form:

E = (1 + δE(t, z))Es(x, y, z), (7.17)

where Es(x, y, z) is the approximated spatial field from Eq. (7.14) and δE(z, t) is a small
perturbation homogeneous in the transverse plane. By substituting this ansatz in the
GNLSE, it can be readily found that:

iEs∂zδE = EsD(i∂T)δE + χ|Es|2Es(δE + δE∗). (7.18)

Equation (7.18) depends on the transverse coordinates (x, y), but the number of dimensions
can be reduced by projecting over the field Es. Then by multiplying Eq. (7.18) by E∗S and
after integrating over (x, y), we get:

i∂zδE = D(i∂T)δE +
χA2

0a2
0

2a2(z)
(δE + δE∗). (7.19)

An important remark is that this equation is very similar to the one obtained for the one
dimensional case with a harmonically varying nonlinearity in section 3.3. Indeed, Eq. (7.19)
allows us to physically understand GPI. The periodic intensity of the beam produces a
z-dependent effective nonlinearity, which triggers MI as we have shown in chapter 3. As
we did in there, the field δE is expressed as δE = a(z)eiΩt + b∗(z)e−iΩt and following the
same steps depicted in Chapter 3, we obtain:

η̈ + Deven(Ω) (Deven(Ω) + 2F(z)) η = 0, (7.20)

where F(z) = χA2
0a2

0/2/a2(z) and η = a + b. The function F(z) has a period ξ. Thus,
expression (7.20) is a Hill’s equation whose resonances verify:

Deven(Ω) (Deven(Ω) + 2Fav)) =

(
mπ

ξ

)2

, (7.21)

m being an integer number and Fav the average value of F(z) over one period and which is
calculated as:

Fav =
1
ξ

∫ ξ

0
F(z)dz =

χA2
0

2
√
C

. (7.22)

If we consider dispersion up to second order, the central frequencies of GPI bands are
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located at the following frequencies:

Ω2
m =

2
β2

(
−Fav +

√
F2

av + g0m2

)
. (7.23)

where m is an integer number. Note that, at the low intensity limit (i.e. Fav → 0),
Ω2 ≈ 2m/(β2ξ), which is the relation used in reference [69] to predict the GPI gener-
ated frequencies. As we discussed in Chapter 3 when dispersion over second order is
disregarded, there is an infinite set of Ωm which can verify Eq. (7.23).

Figure 7.1 shows a comparative between numerical simulations (b) and Floquet analysis
(c). Numerical simulations have been obtained by directly solving Eq. (7.7) using a CW
perturbed by a weak random noise. The propagation length corresponds to a 2.2 cm long
fiber. Gain presented in Fig. 7.1 (c) has been obtained by means of Floquet theory, depicted
in section 3.3.2. Vertical dashed lines correspond to the central frequencies predicted by Eq.
(7.23). Predictions of bandwidth and position of the bands found by Floquet theory are in
very good agreement with numerical simulations from GNLSE.

Summary

• We have described the model that we use to describe light propagation in multimode
fibers. We have explained which are the necessary approximations and we have
discussed their limits. The model is a GNLSE where the waveguide dispersion has
been neglected.

• To solve GNLSE, we take advantage of the cylindrical symmetry of the fiber. Besides,
we consider that light excitation is centered. These hypothesis allow us to suppose
the propagation to have a circular symmetry. Then, to numerically integrate GNLSE
we use a split-step method with a Hankel transform of order zero implemented.

• We described GPI in a constant core fiber. We analyzed at first the spatial behavior
of light (stationary limit) and after we included the time coordinate. We employed
quasi-phase-matching arguments and Floquet analysis to predict the bandwidth
and frequency of instability regions. This analysis showed a good agreement with
numerical simulations.
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Up to now, we have considered fibers with a constant core diameter. Within this
situation, light propagating in a GRIN fiber exhibited a periodic behavior (self-imaging),
inducing then a periodic evolution of the effective refractive index and, as a consequence,
the production of new spectral bands via GPI [196]. In this chapter, we will consider
fibers with varying core. A sketch of the fibers under consideration is shown in Fig.
8.1 (a). The effect of periodically varying the core will be to change the overall spatial
pattern and as a result, new characteristic spectral bands will arise. Then the precise
knowledge of the spatial evolution of light becomes a central point to determine the
output spectrum, as it was the case when a fiber with constant core was studied. We have
found an analytic approximation of the spatial profile of the beam under two different
limits depending on the relation between the modulation period and the self-imaging
distance. These approximations are described in Sec. 8.1. The first one, happens when
the modulation period is close to the self-imaging distance ξ. In this case, we observe a
"Moiré-like" effect, where a longer period modulates the self-imaging pattern. The second
one, consists in a modulation period much longer than the self-imaging distance, which
results into an adiabatic modulation pattern. After the spatial behavior is characterized, the
temporal coordinate is included and the effects of the modulation over the GPI spectrum
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Figure 8.1: Fig. (a) Sketch of a harmonically modulated fiber with period Lmod. Fig(b)
Floquet map displaying the different different behaviors of Eq. (8.3) as a function of Lmod/ξ
and δ.

are characterized in section 8.2.

8.1 Spatial dynamics of light in a modulated GRIN fiber

In section 7.3.1, the spatial dynamics of light in a constant core fiber was studied. We found
that the evolution of the beam was periodic and it could be obtained in a closed form. In
the present section, we analyze the spatial evolution of light in a varying core fiber. The
evolution of a Gaussian beam (see Eq. (7.14)) can be obtained by means of the moments
method [197]. The whole dynamics of the beam intensity is described by its radius a(z),
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whose evolution is given by the following equation:

ä + g(z)a +
C
a3 = 0, (8.1)

where g(z) = 2∆/r2
core(z), being r2

core(z) the radius of the core. Expression (8.1) is a singular
Ermakov equation, whose solutions can be generally found within the form [198], [199]:

a(z) =

√
u2(z)− Cv2(z)

W2 (8.2)

where u(z) and v(z) are two linearly-independent solutions of the equation:

ẍ + g(z)x = 0, (8.3)

and W stands for the Wroskian W = uv̇− u̇v 6=const. The initial conditions for u(z) and
v(z) are u(0) = a0, u̇(0) = ȧ(0) and v(0) = 0, v̇(0) 6= 0 respectively. We shall restrict
to a periodic evolution of the radius core rcore, which we express in the following form:
rcore = r0(1 + δ cos(kmodz)), where kmod = 2π/Lmod, being Lmod the modulation period and
δ its depth. Given the fact that g(z) is periodic, this function can be expressed as a Fourier
series, then Eq. (8.3) read as:

ẍ +

(
g0 +

∞

∑
m=1

αm cos (mkmodz) + βm sin (mkmodz)

)
x = 0, (8.4)

where g0 = 2∆/r2
0, r0 being the average value of the radius. Coefficients αm and βm are the

respective coefficients of the Fourier development. From g0 we can define a self-imaging
distance ξ, which would correspond to the self-imaging period of a non-modulated fiber.
Expression (8.4) is a Hill’s equation and, as we have already discussed in section 3.3,
this equation has parameter regions where its solutions are unstable, i.e. they increase
exponentially with z. These regions are called Arnold Tongues and their tips verify that
the natural frequency of the equation (

√
g0) is a multiple of half the frequency of variation

√
g0 = mkmod/2, which translates to the following condition over the self imaging-distance:

Lmod = mξ. In Fig. 8.1 (b.1), the evolution of a(z) calculated using Eq. (8.1) with Lmod = ξ

is shown. Outside these regions, solutions of Eq. (8.2) behave in periodic (or quasiperiodic)
manner. Moreover, even if the condition Lmod = mξ is satisfied, there is a threshold on the
modulation depth δ for the emergence of parametric instability, which in general increases
for higher-order resonances. Parameter regions exhibiting a spatially unstable behavior
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will be avoided, since our final objective is to study how the GPI spectrum is modified by
the core modulation, and if the spatial evolution is not periodic or quasi-periodic, there
will not be GPI.

Within the stable regions, we distinguish three different regimes as a function of the
ratio Lmod/ξ: Lmod � ξ, Lmod ≈ ξ and Lmod � ξ. The first case is the least interesting,
since core variations are averaged and the uniform fiber is recovered. The case where
the self-imaging distance is close to the modulation period (Lmod ≈ ξ) will be refered
as Moiré-like pattern. In Fig. 8.1 (b.2) the evolution of the radius of a Gaussian beam
with Lmod = (8/7)ξ calculated using Eq. (8.1) is displayed. Finally, the regime where the
modulation period contains several self-imaging distances will be called adiabatic. Figure
8.1 (b.3) displays the evolution of the beam radius in a modulated fiber with Lmod = 5ξ

calculated using Eq. (8.1).

In figure 8.1(b) a sketch of the different regimes of a(z) is displayed. This graphic is
a Floquet analysis of equation (8.3) as a function of Lmod and δ, and it has been obtained
following the numerical recipe for finding Floquet exponents described in section 3.3.2.
In this sketch, Arnold tongues are the black-shadowed regions and arise from Lmod = ξ

and Lmod = 2ξ. The tongue corresponding to Lmod = 3ξ does not appear because the
modulation depth is not big enough and the instability threshold is not overcome. The
case where Lmod ≈ ξ is in the vicinity of the first Arnold Tongue is green colored, while the
adiabatic regime (Lmod � ξ) is painted in blue.

8.1.1 Period of modulation close to self-imaging period

When modulation period has a length close to ξ, self-imaging is modulated by a long
range envelope, reminiscent of a Moiré effect produced by the beating of two spatial
frequencies. We associate them to the intrinsic oscillations of light in a GRIN fiber and
the modulation period. Considering the depth of modulation to be small enough to
avoid spatial instabilities, an accurate approximation of the evolution of a(z) can be found
analytically. Expanding up to second order the term 1/rcore(z), equation (8.3) read as:

ẍ +
2∆
r2

0
(1− 2δ cos(kmodz) + 3δ2 cos2(kmodz))x = 0. (8.5)

Two independent solutions are needed for completely solving Eq. (8.5). The solutions can
be obtained by multi-scale techniques [124]. By defining the dimensionless coefficients:
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w =
√

2∆/rcore/kmod, ε = w2δ and z̄ = kmodz, the following equation is found:

ẍ +

(
w2 − 2ε cos(z̄) +

3ε2

w2 cos2(z̄)
)

x = 0. (8.6)

Since we are assuming Lmod ≈ ξ, the parameter w ≈ 1, so that a multi-scale analysis up to
first order can be safely performed. Then, by following the standard procedure of defining
z̄n = εn z̄ and x = ∑n=0 εnxn and splitting in different equations powers of ε, an infinite set
of equations is obtained. In this infinite system, the function x1 can be found by keeping
terms up to order ε2:

ε0 : (D2
0 + w2)x0 = 0, (8.7)

ε1 : (D2
0 + w2)x1 = −2(D1D0 − cos(z̄0))x0, (8.8)

ε2 : (D2
0 + w2)x2 = −2(D1D0 − cos(z̄0))x1 −

(
2D2D0 + D2

1 +
3

2w3 cos(z̄0)

)
x0, (8.9)

where Dn = ∂z̄n . The solution corresponding to order zero in ε is:

x0 = A(z̄1, z̄2)eiwz + A∗(z̄1, z̄2)e−iwz, (8.10)

where A(z̄1, z̄2) is a complex function. This solution has to be substituted in Eq. (8.8) and
the term D1D0x0 must be imposed to vanish. The reason why this condition is needed
is because D1D0x0 oscillates at the natural frequency of the system (w), then in order to
construct bounded solutions, this term must vanish. In the literature, terms which lead to
resonances are referred as secular. Taking into account this assumption and solving Eq.
(8.8), the following expression is obtained:

x1 = A(z̄2)

(
−ei(w+1)z̄0

2w + 1
+

ei(w−1)z̄0

2w− 1

)
+ c.c, (8.11)

where c.c. denotes complex conjugate. Finally, x1 is introduced in equation (8.9) and by
imposing again secular terms to vanish we get:

A =
C
2

ei(φz̄2+β) , φ =
8w2 − 3

4w3(4w2 − 1)
, (8.12)
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being C and β two real constants depending on the boundary conditions. By merging the
results of x0 and x1 the following equation is found:

x = C
[

cos(w̃z + β) + ε

(
cos((w̃− 1)z + β)

2w− 1
− cos((w̃ + 1)z + β)

2w + 1

)]
+ O(ε2), (8.13)

w̃ = w
(

1 +
δ2(8ω2 − 3)
4(4ω2 − 1)

)
.

Functions u(z) and v(z) are obtained by imposing their corresponding boundary condi-
tions:

u(z) =
(4g0 − k2)a0

(4 + 2δ)g0 − k2

(
cos(
√

g0σz) +
δg0

k

(
cos((

√
g0σ− k)z)

2
√

g0 − k
−

cos((
√

g0σ + k)z)
2
√

g0 + k

))
,

(8.14)

v(z) = −B
(

sin(
√

g0σz) +
δg0

k

(
sin((

√
g0σ− k)z)

2
√

g0 − k
−

sin((
√

g0σ + k)z)
2
√

g0 + k

))
, (8.15)

where,

W = −B
(4g0 − k2)a0

(4 + 2δ)g0 − k2
√

g0σ, (8.16)

σ = 1 +
δ2(8g0 − 3k2)

4(4g0 − k2)
. (8.17)

Equations u(z) and v(z) give the evolution of the beam radius through the expression (8.2).
In figure 8.2.(a), a comparative between the numerical solution of Eq. (8.1) and the analytic
solutions obtained Eqs. (8.14)-(8.17). The represented quantity is the intensity of the beam
at the core center normalized to its initial value.

The functions u(z) and v(z) are combinations of trigonometric functions whose periods
are not necessarily commensurate, therefore a(z) has a quasi-periodic evolution. However,
for δ small enough, the assumption of σ ≈ 1 can be safely adopted. Within this limit, a(z)
is described as a combination of functions with period Lmod or ξ. If Lmod and ξ are chosen
in such a way that they are commensurate, then the beam will evolve periodically but
with a longer period L = pξ = qLmod, being p and q two integer numbers. This result
evokes a Moiré pattern, because a superposition of two periodic functions with two similar
frequencies gives birth to a new function but with a longer period. When ξ and Lmod are
not commensurate, we will always be able to find a p and q which approximate with a
good degree of precision the actual quasi-periodic behavior of a(z). The fact that periods
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Figure 8.2: Evolution of the intensity at core center calculated from numerical solution of
Eq. (7.15) (blue dashed line) and obtained analytic solutions (red solid line). Fig. (a) Moiré
with Lmod = (8/7)ξ, Fig. (b) adiabatic with Lmod = 5ξ.

are not commensurate will not affect qualitatively the output spectrum, as will be shown
later.

8.1.2 Adiabatic modulation of the core

When Lmod is much longer than ξ, then the aforementioned parameter ε will become bigger
and multi-scale development will not converge to the actual evolution of a(z). To overcome
this problem, the Wentzel-Kramers-Brillouin (WKB) approximation is employed [124]. Our
starting point is Eq. (8.3) after performing the change of variables z̄ = kz:

k2 ẍ + g(z̄)x = 0. (8.18)

By using the WKB approximation, x can be estimated as:

x = 4
√

g(z̄)
(

C1 exp
(

i
k

∫ z̄

0
dz̄′
√

g(z̄′)
)
+ C2 exp

(
− i

k

∫ z̄

0
dz̄′
√

g(z̄′)
))

, (8.19)

where C1 and C2 are two constants depending of the boundary conditions. Then, if the
appropriate conditions are imposed, a(z) is found as:

a(z) =

√√√√a2
0

√
g(0)
g(z)

cos2(φ(z))− C
a2

0

√
g(0)g(z)

sin2(φ(z)), (8.20)
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where the phase φ(z) =
∫ z

0 dz′
√

g(z′) can be analytically obtained and reads as:

φ(z) =
2
√

g0

k
√

1− δ2

(
tan−1

[√
1− δ

1 + δ
tan

(
kz
2

)]
+ πm

)
, m =

⌊ z
Lmod

+
1
2

⌋
, (8.21)

In Fig. 8.2 (b), a comparison between the numerical solution of a(z) obtained from Eq. (7.15)
and the obtained result with Lmod = 5ξ is displayed. We see that there is a remarkable
agreement between the two results. If the limit δ → 0 is considered, a(z) can also be
expressed as a combination of trigonometric functions with period Lmod and ξ. Hence if
both periods are commensurate, a(z) will have a period L = pLmod = qξ, like in the case
where Lmod ≈ ξ. Strictly speaking, δ 6= 0 thus a(z) will evolve in a quasi - periodic fashion,
nevertheless this behavior can always be approximated to be periodic, as discussed in the
case where Lmod ≈ ξ.

8.2 Effects of modulation on the spectrum

As we have previously shown, a periodic modulation of the core produces a more complex
spatial evolution of the beam. In this section we will show that, the bigger richness of the
spatial behavior traduces in the appearance of new spectral lines, the central frequency and
gain of which are found by following the same arguments formerly employed to describe
GPI in a constant core fiber.

For the shake of simplicity, we will consider periods Lmod and ξ to be commensurate,
i.e. qLmod = pξ. Then, perturbations are ruled by a modified equation (7.20), where now
F(z) has a period L instead of ξ. Thus the central frequency of GPI bands is given by the
expression:

β2Ω2

2

(
β2Ω2

2
+ 2Fav

)
=
(

m
π

L

)2
, (8.22)

where we have considered that Fav can be approximated by the Fav of a constant fiber. Note
that the only difference between the PR condition found in the modulated case Eq. (8.22)
and the constant core case Eq. (7.21) is the period appearing on the right hand side of the
equation. Hence, the position of instability bands will be given by the following expression:

Ω2
m =

2
β2

[
−Fav +

√
F2

av +
π2m2

L2

]
. (8.23)

The resulting spatial dynamics can be considered to have a period L = qLmod = pξ, thus
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band position can be related to ξ as follows:

Ω2
m =

2
β2

[
−Fav +

√
F2

av +
g0m2

p2

]
. (8.24)

Notice that, when m is an integer multiple of p, we recover the resonances of the constant
core fiber. Therefore it is advantageous to write m = m1 p+m2, which leads to the following
expression of the central frequencies:

Ω2
m1,m2

=
2
β2

−Fav +

√
F2

av + g0

(
m1 +

m2

p

)2
 . (8.25)

The number m1 (m1 6= 0, m2 = 0) accounts for the principal bands of PR, which corresponds
to the same resonances given by a constant core fiber. The number m2 (m1 6= 0, m2 6= 0)
corresponds to the secondary resonances. These instability bands are a direct consequence
of the modulation of the fiber. We consider that each secondary band is associated to a
principal band, therefore to avoid any ambiguity in band position, the values of m2 must
be restricted to the following intervals, for p even:

p = 2n⇒
{
−n + 1 ≤ m2 ≤ n, m1 6= 0,

1 ≤ m2 ≤ n, m1 = 0,
(8.26)

and for p odd as:

p = 2n + 1⇒
{
−n ≤ m2 ≤ n, m1 6= 0,

1 ≤ m2 ≤ n, m1 = 0.
(8.27)

Physically, the splitting of bands is associated to a doubly periodic behavior, i.e. the
intrinsic periodicity of light in GRIN fibers and the additional modulation of the core. The
splitting of bands due to a doubly periodic behavior of light has been also studied in the
case of a dispersion modulated PCF [200].

In Fig. 8.3(a) the output spectrum of a numerical simulation of a periodically modulated
fiber is reported. Dashed lines correspond to the frequencies predicted by Eq. (8.25). The
amplitude of modulation is shallow and is δ = 0.12. Modulation period belongs to the
Moiré-like regime and is Lmod = 8/7ξ. The fiber length is 3 cm and parameters are
displayed in figure’s caption. The spatial evolution of the beam was plotted in Fig. 8.2(a).
This example shows clearly the splitting of bands associated to a modulated fiber. The
output spectrum is composed by three principal bands and, in their vicinity, there are some
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Figure 8.3: (a) Output spectrum obtained by solving numerically GNLSE (7.10). Black
dashed lines corresponds to unstable frequencies obtained from Eq. (8.25). (b) Floquet
spectrum obtained from Eq. (7.20). Parameters: δ = 0.12, Lmod = (8/7)ξ, A2

0 = 20 GW/cm2

and fiber length 3 cm.

secondary bands. The agreement between central frequencies predicted by the theory and
their actual position in numerical simulations is excellent.

The width and position of bands can also be predicted by Floquet analysis, as we
described in chapter 7. In Fig. 8.3(b), the corresponding Floquet map is shown. We recall
that this analysis can be performed using Eq. (7.20). However, now a(z) has been obtained
using expressions Eqs. (8.14-8.15). The agreement between numerical simulations and
Floquet analysis is remarkable.

It is interesting to study how the position and width of generated bands change as a
function of Lmod/ξ. In Fig. 8.4 (a) we extend the Floquet analysis presented in Fig (8.3)
(b) to more values of Lmod/ξ within the regime Lmod ≈ ξ. Modulation periods Lmod have
been chosen to be commensurate and verify Lmod = (n + 16)ξ/(n + 12), being n an integer
number running from 0 to 20. Therefore, the period L will verify L = (n + 16)ξ. Dashed
lines represent the frequencies predicted by Eq. (8.25). We see that the position of principal
bands do not change and they split in secondary bands, whose frequency gets further
from principal bands when the ratio Lmod/ξ is increased. Secondary bands are found at
m2 = ±4 because from the definition of the modulation period, each value of n generates
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an overall period L composed of four slow oscillations. Both Floquet map and predicted
frequencies show a good agreement.

The second case corresponds to modulation periods which are longer than self-imaging
distances, and the spatial behavior corresponds to the adiabatic limit studied in section
8.1. In order to obtain commensurate periods, Lmod is chosen to verify Lmod = (12 + n)ξ/4,
where n is an integer ranging from 0 to 64. The corresponding overall period is Lmod =

(n + 12)ξ. In Fig. 8.4 (b) the Floquet map is shown. Here we see two principal bands which
split in some secondary bands. For the smallest modulation period, only two secondary
bands appear for each band with m2 = ±4. When Lmod is increased, then secondary bands
get closer to the principal bands and in addition, new bands with different values of m2

appear. Finally, at the highest considered values of Lmod/ξ, bands cluster around the
principal ones.

In order to give support to Floquet maps, some numerical simulations have been carried
out. Results are plotted in Fig. 8.4 (c) and (d). To get rid of any randomness which would
hinder the comparison, the initial noise has been implemented as a coherent seed (in form
of a 1 fs sech with an intensity 10−5 weaker than the initial CW pump) to the initial CW. We
can see that there is a good agreement between the results obtained by direct integration of
the equation and Floquet analysis. The choice of Lmod is equispaced, regardless whether
periods are commensurate or not. This implies there are not quantitative changes in the
output spectrum between a periodic or quasi-periodic behavior.

We have shown that the periodic modulation of GRIN fibers modifies the GPI spectrum
adding new spectral bands. We have developed a theory able to predict frequency and
bandwidth of the instability bands. In our simulations, we have used realistic parameters,
which provides a solid evidence that the described effects can be observed experimentally.
From the application point of view, the generation of multiple GPI sidebands in periodically
modulated GRIN fibers can be exploited to optimize the spectral extent and/or the spectral
power density of high power supercontinuum sources based on highly multimode fibers.
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Summary

• We have analyzed the spatial evolution of light in a periodically modulated fiber.
The parameter regions (Lmod, δ) where the beam does not experience a stable behav-
ior have been identified. In addition, we have defined three different regimes of
bounded evolution of light, being the most remarkable when Lmod ≈ ξ and Lmod � ξ.
Moreover, we have found an analytic approximation to describe beam evolution in
both limits.

• The effects over the GPI spectrum of the fiber modulation have been investigated. We
have shown that the double periodicity present in the system results in the splitting
of GPI bands. Bandwidth and central frequency of unstable regions can be predicted
by means of Floquet analysis and phase-matching arguments respectively. Our
theoretical approach presented a good agreement with numerical simulations.
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CHAPTER

NINE

FAST AND ACCURATE MODELING OF MULTIMODE
DYNAMICS
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In chapter 7, we found that light propagation in a GRIN fiber can be seen as light
traveling in a medium with varying nonlinearity. Using this result, we obtained the gain
of GPI bands. In the present chapter, we generalize this result and find an equivalent
(1+1)D GNLSE that mimics the whole spatio-temporal dynamics present in (3+1)D GNLSE
equation [68]. This result allows to reduce a 3+1 dimensional model to an equivalent one
with 1+1 dimensions. Within this simplification, the obtained advantages are twofold.
Theoretical analysis of the different possible phenomena will become much simpler, and
the needed computational time for solving the equation will be drastically shortened. The
chapter is organized as follows: in section 9.1, the modified (1+1)D GNLSE is derived from
the (3+1)D GNLSE. In section 9.2, propagation of CW is analyzed and finally, in section 9.3,
femtosecond pulse propagation in a GRIN fiber is studied.
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9.1 Derivation of an equivalent (1+1)D NLSE equation

The starting point of our derivation is (3+1) D GNLSE:

i∂zE +
1

2β0
∇2
⊥E + β(i∂T)E −

β0g(z)
2

r2E + χ fNL(E) = 0, (9.1)

where g(z) = 2∆/r2
core(z) and fNL the nonlinear response given in Eq. (7.6). We consider a

perfect waveguide, the beam injection is assumed to be centered and with spatial Gaussian
shape. The beam experiences a perfect self-imaging pattern with period ξ and we consider
intensities which are far below the beam-collapse. The field E is supposed to verify the
following ansatz:

E(x, y, z, t) = Fs(x, y, z)A(z, t), (9.2)

where Fs(x, y, z) is the field distribution in the transverse to propagation plane and A(z, t)
is a temporal envelope homogeneous in the plane (x, y) depending on z and t. By inserting
the ansatz in equation (9.1), the following expression is obtained:

A
[

i∂zFs +
1

2β0
∇2
⊥Fs −

β0g(z)
2

r2Fs

]
+ Fs

[
i∂z A + D(i∂t)A + χ|Fs|2 fNL(A)

]
= 0. (9.3)

Function Fs is chosen in such a way that the first term of Eq. (9.3) vanishes. We assume
then Fs to verify |Fs| = 1√

πa(z) exp
(
− r2

2a(z)2

)
, where a(z) evolution is given by Eq. (7.15)

if the core is constant, while if g(z) 6= const. is described by Eq. (8.1). Note that, when
g(z) is constant, F(z) will be an exact solution, whereas if the core size changes with z the
supposed spatial behavior is an approximation. By multiplying by F∗s and integrating over
(x, y) Eq. (9.3), we obtain the following equation for A(z, t):

i∂z A + D(i∂T)A + γ(z) fNL(A) = 0 , γ(z) =
n2ω0

cAe f f (z)
=

n2ω0

2cπa2(z)
, (9.4)

where Ae f f (z) = 2πa2(z) is an effective area which is calculated using the standard
definition Ae f f = (

∫∫
|Fs|2dxdy)2/

∫∫
|Fs|4dxdy. Equation (9.4) is a (1+1)D NLSE where

the spatial effects are summarized by the periodic nonlinear coefficient. Physically, the
self-imaging pattern generates a z-varying effective area Ae f f , due to the periodic beam
focusing, which thus couples the spatial evolution to the temporal envelope A(z, t) [68]. In
Eq. (9.3) we notice that the first term, which gives the evolution of Fs in z, the Kerr effect
does not appear. This means that the supposed Fs evolves in a linear fashion. To verify the
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Figure 9.1: Comparative spatial evolution: (a) Intensity at the beam center normalized to
its initial value. (b) Evolution of the beam size a(z). Parameters: ∆ = 0.011, rcore = 26 µm,
ncore = 1.461, λ0 = 1550 nm, ξ = 0.546 mm, P0 =75 kW and a0 = 20 µm.

validity of this assumption, we have solved Eq. (9.3) in the stationary limit (∂t = 0) with
parameters ∆ = 0.011, rcore = 26 µm, ncore = 1.461, λ0 = 1550 nm, P0 = 75 kW and a0 =

20 µm. The results are compared with the assumed shape of Fs in Figure (9.1). In Figure
9.1 (a) we report the intensity at the beam center normalized to its initial value, and in Fig.
9.1 (b) the evolution of the beam radius is plotted . Results obtained by solving Eq. (9.1)
are represented by solid curves whereas the results found by solving the equation of a(z)
are displayed with dashed lines. We see there is a good agreement between both results,
which validates the assumption that Fs can be approximated by the spatial linear evolution
of the beam. To point out the accuracy of (1+1)D NLSE equation to predict the temporal
and spectral dynamics of (3+1)D GNLSE, a series of simulations are carried through. Two
different regimes are considered: the propagation of a CW in normal dispersion regime
and the evolution of femtosecond pulses in both anomalous and normal dispersion regime.

9.2 CW propagation in a GRIN fiber

To show the good accuracy of Eq. (9.4) to mimic the dynamics of Eq. (9.1), the first physical
effect that we study is GPI. We will analyze two different kinds of fiber: a constant core
and a periodically modulated fiber. We recall that the central frequencies of GPI bands
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verify the equation:

Deven(Ω)(Deven(Ω) + 2Fav) =
(mπ

Λ

)2
, (9.5)

being Λ the spatial period of light. GPI is a process arising from random noise. To facilitate
a quantitative comparision between both models and to get rid of any randomness, we seed
the CW with a broadband coherent noise (a 1 fs sech with one tenth of the CW amplitude).
The first analyzed case involves a constant core fiber. In this limit, the spatial period is
equal to the self-imaging distance (Λ = ξ). We suppose a 6 cm long fiber with rcore = 26
µm and dispersion calculated using Sellmeier formula for germanium doped SiO2 [74]
with a doping mole fraction of X = 0.11. The carrier wavelength is 1064 nm and peak
power P0 is 75 kW. The initial size of the beam is a0 =20 µm. Raman and self-steepening
effects are neglected. At this frequency, the relative refractive index difference is ∆ = 0.011,
the refractive index at the center of the core is ncore =1.466 and the self-imaging period is
ξ = 0.549 mm. The output spectra are displayed in Fig. 9.2 (a). Dashed blue curve stands
for the (1+1)D NLSE (Eq. (9.4)), while solid red line represents the result of (3+1)D GNLSE
(Eq. (9.4)). The first feature we notice is that both models reproduce the generation of GPI
bands whose position is well foreshadowed by the theory. These predictions are obtained
through expression (9.5) and are represented by the dashed vertical lines. In the small inset,
the first GPI band is zoomed and we can observe that the agreement between both models
is almost perfect. The first two bands (±133 and ±180 THz) correspond to m = 1 in Eq.
(9.5). The fact that one harmonic can generate two pairs of GPI bands is due to HOD, as
we discussed in section 3.3. The third band (±180 THz) corresponds to m = 0 and it is
associated to the presence of a negative β4.

The second studied case is GPI in a modulated fiber. Chosen fiber parameters are the
same as in chapter 8. The modulation period is chosen to be commensurate with ξ and
verifies Lmod = 10/9ξ. The spatial period can be approximated as Λ = 10ξ = 6.2 mm and
the total fiber length is 6 cm. Input is a CW Gaussian beam with initial radius a0 = 20 µm
and a peak power of 126 kW, which corresponds to an initial intensity of 10 GW/cm2.
Evolution of the beam radius a(z) has been calculated using expressions Eq. (8.14) and Eq.
(8.15). In this case, both Raman and self-steepening effects have been included, although
they do not play any significant role. In figure 9.2 (b), the output spectrum of simulations
using (3+1)D GNLSE (solid blue) and (1+1)D GNLSE (red-dashed) are plotted. The unstable
frequencies predicted by the theory are plotted as dashed black lines. The two models
reproduce the typical band splitting due to the double periodicity, as we explained in
previous chapters. These bands are well-predicted by the theory developed in section 8.2.
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Figure 9.2: Comparative between (1+1)D GNLSE (solid red curve) and (3+1)D GNLSE
(blue dashed curve) using CW as an input. (a) Constant core fiber, (b) modulated core fiber.

We see that the agreement between the results is remarkable for the first group of bands,
where both simulation results are superposed. The second and third group of bands also
show a good agreement, but there are some minor differences between both models. We
can see that there are some bands appearing on (3+1)D GNLSE simulations which are
not reproduced by (1+1)D GNLSE , as it is shown in the included inset. Simulation time
needed to solve Eq. (9.4) was 1 minute, while it takes roughly 250 minutes to solve (3+1) D
equation, which is 250 times faster.

9.3 Pulse propagation in a GRIN fiber

In this section we will study short pulse propagation in a GRIN fiber. The first case we
consider is another paradigmatic example of spatio-temporal effect in GRIN fibers, which
is the radiation emission by multimode solitons. A soliton propagating in a medium
with varying nonlinearity emits radiation at frequencies according to the following phase-
matching condition [201], [202]:

D(Ω)− δβ1Ω =
2π

ξ
m + γav

Ps

2
, m = 0,±1,±2..., (9.6)

where δβ1 takes into account the additional group velocity of the soliton acquired due
to nonlinear effects such as Raman scattering [203], D(Ω) = β2Ω2/2 + β3Ω3/6 is the
dispersion operator in the frequency domain, and γav = n2ω0β0

√
g/(2πc) is the averaged
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Figure 9.3: Propagation of a multimode soliton in a GRIN fiber. (a)-(b) Report the temporal
evolution obtained using Eq. (9.4) for (a) and Eq. (9.1) for (b). (c) Calculated output
spectrum, using Eq. (9.4) the red-dashed curve and using Eq. (9.1) for the blue-solid
curve. Vertical dashed lines correspond to phase-matching conditions calculated with Eq.
(9.6). Orange dashed lines correspond to values m 6=0, green dashed line corresponds to
Cherenkov Emission. The estimated additional inverse group velocity of the soliton is
δβ1 = 0.3 ·10−12 s/m. Simulation parameters: a0 = 30 µm, t0= 15 fs, P0= 430 kW, ncore=
1.4605, β2= -22·10−27 s2/m, β3= 1.32·10−40 s3/m.

value of the nonlinear coefficient. Note that the expression predicting the frequency of
Cherenkov emission Eq. (2.9) is recovered if in Eq. (9.6) the values of δβ1 and m are set to
zero. In figure 9.3 the results of a numerically calculated propagation of a soliton using Eq.
(9.4) and (9.1) are reported. In this simulation, the self-steepening effect has been neglected.
In Figures 9.3 (a) and (b) we report the temporal evolution of both models, where we
can clearly see how the soliton suffers a time shift due to the presence of Raman effect.
Figure 9.3 (c) shows the superposition of the output spectrum, where we can see that the
agreement between the two models is perfect. Both simulations are also coherent with the
frequency of emitted radiation predicted by Eq. (9.6). The chosen parameters are reported
in figure’s caption.
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As a second example, femtosecond pulse propagation in normal dispersion is studied.
It has been observed that intense femtosecond pulses propagated in normal dispersion
regime emit radiation [204], but the physical mechanism behind is still unknown. The
chosen fiber parameters are a dispersion calculated using the Sellmeier formula with a
doping mole fraction of X = 0.11 and rcore = 26 µm. We consider a Gaussian pulse with
250 fs at FWHM of duration at a carrier wavelength of 800 nm, where fiber dispersion
is normal. Self-steepening and Raman effect have been included. Peak power has been
chosen to be 500 kW and beam radius is a0 =15 µm, which corresponds to an intensity of
70 GW/cm2.

In figure 9.4 (a) and (b) temporal evolution of the pulse is displayed, calculated using
(1+1)D GNLSE and (3+1) D GNLSE equations respectively. At 4 cm we see how the pulse
sheds some radiation. The agreement between both simulations is remarkable. In figure
(c), both output spectrum are compared. We see both spectra have a good agreement and
specially striking is the accordance of spectral broadening of the pulse due to SPM. The
bigger bands of emitted radiation have a frequency detuning of 132 THz and 173 THz,
which appear in both models with a close amplitude. There is also a spectral band with a
frequency detuning of 116 THz which appears in (1+1) D model but it is absent in the case
of (3+1) D model. In Fig. 9.4 we show the spectral evolution of both models. We can see
that the pulse spectrum broadens at the beginning of the propagation due to SPM. Near
2.5 cm, we can see that the pulse emits some radiation. This emission has been associated
to GPI [204], but the relation is still unclear. Indeed, we believe this problem could entail
a richer dynamics, since from our point of view, a shock wave perturbed by the varying
nonlinearity could also emit resonant radiation, in analogous manner to a shock wave
perturbed by HOD [205]. The reasons to support the hypothesis are: i) the frequencies
of emission are not symmetric respect to the pump, ii) the distance at which the bands
appear coincides with shock formation. More precisely, this phenomenon could be similar
to the radiation emission by a shock wave in presence of negative β4, where resonant
radiation emission and MI coexist. We have performed intensive numerical simulations
and we have observed that the produced radiation can be affected by noise, but we have
not found a suitable way to predict the wavelength of emission. In parallel to numerical
and theoretical analysis, we have been carrying out experiments using femtosecond lasers,
but the obtained results are not yet conclusive. Therefore, a theoretical and experimental
understanding of this problem is still in progress.
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Summary

• We have derived a (1+1)D GNLSE that reproduces the spatiotemporal dynamics
when a stable self-imaging is considered. This equation was characterized for having
a periodic nonlinear coefficient, which summarizes the spatial evolution of light.

• The obtained model has been compared with (3+1)D GNLSE in two different limits:
In the CW and femtosecond regimes. In both cases, the agreement between models
was remarkable. We think that this result can be of great help in the analysis of
complex phenomena hidden by the complex burden of (3+1)D GNLSE. Nevertheless,
this model is only valid when a stable self-imaging is considered, and cannot describe
phenomena such as azimutal instabilities, turbulence or spatial self-cleaning.
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In this thesis we have studied two fundamental nonlinear phenomena taking place in opti-
cal fibers: interaction between solitons and dispersive waves and nonlinear propagation in
multimode fibers. This manuscript has been focused on the theoretical aspects, putting
special emphasis on finding analytic and numerical approaches which can shed some light
into the physics of the involved phenomena. The most relevant results are summarized
hereinafter.

• The first studied problem was the interaction between a soliton and a CW orthogo-
nally polarized, whose result was the generation of a new frequency co-polarized
with the initial CW. We described how to predict the generated wave frequency
through phase-matching conditions and we found a closed expression to estimate
efficiency of the process. The obtained results were confirmed by experimental
measurements carried out in our laboratory using a highly-birefringent PCF. The
objective of this study was to develop a complete understanding of the problem,
concerning numerical simulations, analytic theory and experiments. We believe
that the achievement of this objective can improve the knowledge of bright soliton
dynamics and their interactions with dispersive waves in optical fibers.

• A considerable part of this manuscript was devoted to dark solitons and their inter-
actions with dispersive waves in the neighborhood of ZDW. We have studied two
important effects: on the one hand, the emission of radiation by a dark soliton, as in
the case of Cherenkov radiation. Here, we reviewed how to predict the generated
wave frequency. The amplitude of this newly generated wave was found by adapting
the theory developed for bright solitons. On the other hand, interactions between
dark solitons and CW have been considered. In this case, a generalized expression to
predict the generated wave frequency was derived. In addition, an analytic expres-
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sion to foresee the efficiency of the process was obtained. The theoretical results have
shown a good agreement with experimental measurements obtained in the context
of T. Marest’s PhD.

• Concerning multimode nonlinear phenomena, the fist step was to derive a model
to describe light propagation in GRIN fibers. The objective of this derivation was to
discern which were the assumed approximations and the limits of the model. Once
the propagation equation was defined, we explained GPI in a constant core. We
shown that band position and width can be predicted using Floquet analysis. We
also reported a phase-matching relation to find the central frequency of instability
bands.

• GPI in a periodically modulated GRIN fiber was studied. To understand the effects
of this perturbation, it was necessary to describe light spatial behavior at first. Two
regimes were identified (Moiré-like and adiabatic) and an analytic approximation
to describe beam propagation was found, whose overall result shown remarkable
agreement with direct numerical simulations. The main effect of the periodic mod-
ulation is a splitting of GPI bands. The analytic description of the spatial behavior
allowed us to predict band position and gain in the output spectrum of numerical
simulations. These results explored for the first time the effects of changing periodi-
cally the diameter of a multimode fiber and we believe they will help to understand
the rich nonlinear dynamics of GRIN fibers.

• The last presented result was a reduction of a (3+1)D GNLSE equation, to an equiva-
lent (1+1)D GNLSE with varying nonlinearity. We showed that this reduction was
able to reproduce with good accuracy the complex multimode dynamics both in the
femtosecond and CW regime. Within the presented approach, computation time is
dramatically reduced and moreover, theoretical analysis is greatly simplified. We
believe this reduction can become a useful tool to find the insights of multimode
solitons or GPI in modulated fibers.

Presented research naturally brings to the following opened lines and questions:

• In section 9.1, we derived a GNLSE that described light propagation in GRIN fibers.
We assumed several major approximations that could drastically affect the spatiotem-
poral dynamics of the fiber. One of them was neglecting guide dispersion, this
approximation may affect the spatial shape of the generated bands. We believe that a
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systematic study involving numerical simulations, analytic approaches and experi-
ments should be carried out in order to understand this highly complex problem.

• In our model, we neglected the waveguide disorder and we considered a spatially
coherent input beam. Within this conditions, there is no beam self-cleaning. We think
that a next step could be to introduce disorder in the waveguide model and study
how affects to the GPI process.

• An experimental confirmation of band splitting in a periodic multimode fiber is still
missing. Reaching a precise periodic modulation of a GRIN fiber at millimeter scale
is a challenging technical problem. At this moment, our laboratory is developing
new methods to achieve this delicate process.

• Radiation emission by a femtosecond pulse in normal dispersion regime of a GRIN
fiber may be produced by a shock-wave perturbed by the periodic nonlinearity. To
better understand whether the emission is a consequence of GPI or a shock, we
propose to study dynamics of a step using the (1+1)D NLSE found in the last chapter.
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Thienpont, “Large-mode-area photonic crystal fiber with double lattice constant
structure and low bending loss,” Optics Express, vol. 19 (23), pp. 22 628–22 636, Nov.
2011 (cit. on p. 15).

[90] J. M. Dudley and J. R. Taylor, Eds., Supercontinuum generation in optical fibers. Cam-
bridge University Press, 2010 (cit. on p. 15).

128



BIBLIOGRAPHY

[91] A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Full-vector
analysis of a realistic photonic crystal fiber,” Opt. Lett., vol. 24 (5), pp. 276–278, Mar.
1999 (cit. on p. 15).

[92] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and
D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science,
vol. 285 (5433), pp. 1537–1539, Sep. 1999 (cit. on p. 15).

[93] P. S. Russell, “Photonic-Crystal Fibers,” Journal of Lightwave Technology, vol. 24 (12),
pp. 4729–4749, Dec. 2006 (cit. on p. 15).

[94] J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic
crystal fiber,” Reviews of Modern Physics, vol. 78 (4), pp. 1135–1184, Oct. 2006 (cit. on
pp. 20, 75).

[95] V. E. Zakharov and A. Shabat, “Exact theory of two-dimensional self-focusing and
one-dimensional self-modulation of waves in nonlinear media,” Soviet Physics JETP,
vol. 34 (1), p. 62, 1972 (cit. on p. 21).

[96] P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propaga-
tion in the neighborhood of the zero-dispersion wavelength of monomode optical
fibers,” Optics Letters, vol. 11 (7), pp. 464–466, Jul. 1986 (cit. on p. 23).

[97] N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical
fibers,” Physical Review A, vol. 51 (3), pp. 2602–2607, Mar. 1995 (cit. on p. 23).

[98] P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-
dispersion wavelength of a single-model fiber,” Optics Letters, vol. 12 (8), pp. 628–
630, Aug. 1987 (cit. on p. 23).

[99] V. I. Karpman, “Radiation by solitons due to higher-order dispersion,” Physical
Review E, vol. 47 (3), pp. 2073–2082, Mar. 1993 (cit. on p. 23).

[100] D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton Self-Frequency
Shift Cancellation in Photonic Crystal Fibers,” Science, vol. 301 (5640), p. 1705, Sep.
2003 (cit. on p. 23).

[101] F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency
shift compensation by the resonant radiation in photonic crystal fibers,” Physical
Review E, vol. 70 (1), p. 16 615, Jul. 2004 (cit. on pp. 23, 57, 60, 63, 64).

[102] V. Karpman, “Stationary and radiating dark solitons of the third order nonlinear
Schrödinger equation,” Physics Letters A, vol. 181 (3), pp. 211–215, Oct. 1993 (cit. on
pp. 23, 57).

129



BIBLIOGRAPHY

[103] V. V. Afanasjev, C. R. Menyuk, and Y. S. Kivshar, “Effect of third-order dispersion
on dark solitons,” Optics Letters, vol. 21 (24), pp. 1975–1977, Dec. 1996 (cit. on pp. 23,
57, 60).

[104] C. Milián, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark soli-
tons,” Optics Letters, vol. 34 (14), p. 2096, Jul. 2009 (cit. on pp. 23, 57, 61).

[105] T. Marest, C. Mas Arabí, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and
A. Kudlinski, “Emission of dispersive waves from a train of dark solitons in optical
fibers,” Optics Letters, vol. 41 (11), p. 2454, Jun. 2016 (cit. on pp. 23, 58, 61).

[106] T. Marest, C. M. Arabí, M. Conforti, A. Mussot, C. Milián, D. V. Skryabin, and A.
Kudlinski, “Grayness-dependent emission of dispersive waves from dark solitons
in optical fibers,” Optics Letters, vol. 43 (7), p. 1511, Apr. 2018 (cit. on p. 23).

[107] R. Driben, A. V. Yulin, and A. Efimov, “Resonant radiation from oscillating higher
order solitons,” Optics Express, vol. 23 (15), p. 19 112, Jul. 2015 (cit. on p. 23).

[108] J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and
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Propagation non-linéaire dans les fibres optiques: solitons, ondes dispersives
et instabilités multimodes

Resumé: Ces travaux de thèse portent sur l’étude de la propagation non-linéaire de la
lumière dans les fibres optiques. Nous nous sommes concentrés sur deux types de prob-
lèmes: les solitons dans les fibres monomodes et la propagation de la lumière multimode
dans les fibres à gradient d’indice. Les solitons sont des impulsions lumineuses courtes et
intenses qui restent localisées lors de la propagation. Ils apparaissent sous la forme d’un
maximum d’intensité (appelé soliton brillant) dans le régime de dispersion anormale, ou
d’un trou d’intensité sur un fond continu en dispersion normale (soliton sombre). Lorsque
leur fréquence de porteuse est proche de la longueur d’onde de dispersion nulle ou que la
biréfringence de la fibre est prise en compte, les solitons peuvent interagir avec des ondes
de faible amplitude et générer de nouvelles fréquences. Nous avons étudié théoriquement
l’efficacité de ces processus dans le cas de solitons sombres qui se propagent près de
la longueur d’onde de dispersion nulle et de solitons brillants dans une fibre fortement
biréfringente. Les résultats de ces analyses ont été validés par des expériences.

Dans la deuxième partie de cette thèse, nous augmentons le nombre de degrés de
liberté en utilisant des fibres multimode. La propagation de la lumière dans les fibres
multimodes s’acompage d’une dynamique spatio-temporelle encore loin d’être complète-
ment comprise. Un effet qui se produit dans les fibres GRIN est le l’auto-imagerie, un
processus dans lequel le faisceau spatial injecté à l’entrée se réplique périodiquement le
long de la fibre, créant un réseau d’indice grâce à l’effet Kerr de la silice. En raison de ce
comportement périodique, quand une onde continue se propage dans une fibre multimode,
certaines fréquences deviennent instables et sont amplifiées (processus appelé instabilité
paramétrique géométrique). Nous avons caractérisé le motif des fréquences instables
lorsqu’une variation périodique du diamètre de la fibre est réalisée. Nous présentons
également un modèle unidimensionnel capable d’imiter la dynamique spatio-temporelle
de la lumière dans une fibre multimode.

Mots clés: Optique non-linéaire; Fibres optiques; Solitons; Ondes dispersives; Fibres
multimode; Instabilité modulationelle; Instabilité paramétrique.



Nonlinear propagation in optical fibers: from soliton radiations to multimode
instabilities

Abstract: The main goal of this thesis is the investigation of nonlinear light propaga-
tion in optical fibers. We have focused on two kinds of problems: solitons in single-mode
fibers and multimode light propagation in graded index (GRIN) fibers. Solitons are short
and intense light pulses which remain localized during propagation. They appear as
maxima of intensity (called bright soliton) in the anomalous dispersion regime or intensity
dips on a continuous wave (CW) background in normal dispersion (dark solitons). When
their carrier frequency is close to the zero dispersion wavelength (ZDW) or when fiber’s
birefringence is taken into account, solitons can interact with weak waves and generate
new frequencies. We have studied theoretically the efficiency of these processes in the case
of dark solitons propagating close to ZDW and bright solitons in a highly birefringent fiber.
The outcomes of these analysis have been validated experimentally.

In the second part of this thesis, we increase the degrees of freedom by using multimode
fibers. Light propagation in multimode fibers entails a spatiotemporal dynamics which is
still far to be fully understood. An effect arising in GRIN fibers is self-imaging, a process in
which the spatial beam injected at the input replicates itself periodically along the fiber,
creating a grating by virtue of the silica’s Kerr effect. Due to this periodic behavior, when
a CW propagates in a multimode fiber, some frequencies become unstable and they are
amplified (a process called geometric parametric instability). We have characterized the
pattern of unstable frequencies when a periodic variation of the fiber diameter is made. We
also present a reduced one dimensional model which is able to mimic the spatiotemporal
dynamics of light in a multimode GRIN fiber.

Keywords: Temporal optical solitons; Nonlinear optics; Optical fiber; Modulation in-
stability; Multimode fiber; Dispersive waves.
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