MATH 467-900 October 6, 2010

Team Lambda

Proposition 3.8: If D is in the interior of <CAB, then

- (a) so is every other point on ray \overrightarrow{AD} except A;
- (b) no point on the opposite ray to \overrightarrow{AD} is in the interior of <CAB; and
- (c) if C*A*E, then B is in the interior of <DAE.
- <u>Proof of (a)</u>: Let there be a point $P \in \overrightarrow{AD}$. Then A * P * D or A * D * P (Exercise 9). In both cases, P is on the same side of \overrightarrow{AC} as D and also the same side of \overrightarrow{AB} as D. Then by definition of interior, P is in the interior of CAB.
- Proof of (b): Let \overrightarrow{AF} be a ray opposite to ray \overrightarrow{AD} ; that is, D*A*F, where F lies on \overrightarrow{AD} and $\overrightarrow{AD} \cup \overrightarrow{AF} = \overrightarrow{AD}$ and $\overrightarrow{AD} \cap \overrightarrow{AF} = \{A\}$ by Exercise 9. Let there be a point $P \in \overrightarrow{AF}$, so P*A*D.

 Assume P is in the interior of <CAB (RAA). Then P is on the same side of \overrightarrow{AC} as B and also on the same side of \overrightarrow{AB} as C. Then by definition of *interior*, P would be on the interior of <CAB. However, a contradiction occurs because P and D are on opposite sides of \overrightarrow{AC} , so P and B are on opposite sides of \overrightarrow{AC} . Therefore, P is not in the interior of <CAB.
- <u>Proof of (c)</u>: We are given $\overrightarrow{AD}U\overrightarrow{AF} = \overrightarrow{AD}$, $\overrightarrow{AD} \cap \overrightarrow{AF} = \{A\}$, F*A*D, $B \not\in \overrightarrow{AC}$ (because Greenberg's definition of angle does not include 180° angles, or straight angles. <CAB is understood to be <180°).

By part (a), every other point in \overrightarrow{AD} except A lies on the interior of <CAB. Therefore, C and B are on opposite sides of \overrightarrow{AD} . Since C*A*E, E lies on \overrightarrow{AC} (and $\overrightarrow{AC} = \overrightarrow{AE}$) and E and B lie on the same side of \overrightarrow{AD} . Therefore, because <CAB is <180° and E lies on \overrightarrow{AC} , E cannot lie on the interior of <CAB. Therefore, B and D must lies on the same side of \overrightarrow{AC} . Therefore, because B lies on the same side of \overrightarrow{AC} as D and B lies on the same side of \overrightarrow{AD} as E, B must be in the interior of <DAE.