
CS/CoE 1541 Introduction to Computer Architecture

Graphics and Computing GPUs

Sangyeun ChoSangyeun Cho

Dept. of Computer Science
University of Pittsburgh

Some terms
GPU = graphics processing unit
• Integrates 2D/3D graphics, images, and video that enable window-Integrates 2D/3D graphics, images, and video that enable window

based OSes, GUIs, video games, visual imaging applications, and video

Visual computingVisual computing
• A mix of graphics processing and computing that lets you visually 

interact with computed objects via graphics, images, and video

Heterogeneous system
• A system combining different processor types; a PC is a heterogeneous 

CPU GPUCPU-GPU system

University of Pittsburgh

GPU evolution
VGA in early 90’s
• A memory controller and display generator connected to some (video)A memory controller and display generator connected to some (video) 

RAM

By 1997, VGA controllers were incorporating some 3D 
acceleration functionsacceleration functions
In 2000, a single chip graphics processor incorporated almost 
every detail of the traditional high-end workstation graphics 
pipeline (1st generation GPUs)pipeline (1st generation GPUs)

More recently, processor instructions and memory hardware y p y
were added to support general-purpose programming 
languages
• Hardware has evolved to include double-precision floating-point 

University of Pittsburgh

p g p
operations and massive parallel programmable processors

Historical PC architecture

University of Pittsburgh



Contemporary PC architecture

University of Pittsburgh

Contemporary PC architecture

University of Pittsburgh

More terms
OpenGL
• A standard specification defining a cross-language, cross-platform APIA standard specification defining a cross language, cross platform API 

for writing applications that produce 2D and 3D computer graphics

DirectXDirectX
• (Microsoft) A collection of APIs for handling tasks related to multimedia, 

especially game programming and video

CUDA (compute unified device architecture)
• (nVIDIA) A scalable parallel programming model and language based 

C/C i i ll l i l f f GPU d l ion C/C++; it is a parallel programming platform for GPUs and multicore 
CPUs

University of Pittsburgh

Graphics “logical” pipeline

Input assembler collects vertices and primitives
Vertex shader executes per-vertex processing, e.g., 
transforming the vertex 3D position into a screen position, 
lighting the vertex to determine its color
Geometry shader executes per-primitive processing
Setup/rasterizer generates pixel fragments that are covered p g p g
by a geometric primitive
Pixel shader performs per-fragment processing, e.g., 
interpolating per-fragment parameters, texturing, and coloring; p g p g p , g, g;
it makes extensive use of sampled and filtered lookups into 
large 1D, 2D, or 3D arrays called textures
Raster operations processing stage performs Z-buffer depth 

University of Pittsburgh

p p g g p p
testing and stencil testing



Graphics “logical” pipeline

“fixed” hardware functions “programmable” functions

Various objects and buffers are allocated in the GPU memory hierarchy

University of Pittsburgh

Basic unified GPU architecture

University of Pittsburgh

Pixel shader example

// called for each pixel thread
id fl ti (void reflection(
float2 texCoord : TEXCOORD0,
float3 reflection_dir : TEXCOORD1,
out float4 color : COLOR,
uniform float shiny,
uniform sampler2D surfaceMap,
uniform samplerCUBE envMap)

{{
// fetch the surface color from a texture
float4 surfaceColor = tex2D(surfaceMap, texCoord);
// fetch reflected color by sampling a cube map
float4 reflectedColor = texCUBE(envMap, reflection_dir);
// output is weighted average of the two colors
color = lerp(surfaceColor, reflectedColor, shiny);

}

University of Pittsburgh

}

CUDA
Developed by nVIDIA in 2007

An data-parallel extension to the C/C++ languages for 
scalable parallel programming of manycore GPUs and 

lti CPUmulticore CPUs

CUDA provides three key abstractions–a hierarchy of thread p y y
groups, shared memories, and barrier synchronization

Th il d l tiThe programmer or compiler decomposes large computing 
problems into many small problems that can be solved in 
parallel

University of Pittsburgh



Decomposition of result data

University of Pittsburgh

Nested levels and memory

University of Pittsburgh

Core count independence

University of Pittsburgh

Restrictions
Threads and thread blocks may only be created by invoking a 
parallel kernel, not from within a parallel kernelparallel kernel, not from within a parallel kernel
Thread blocks must be independent (no scheduling/ordering 
requirement)
• The above two restrictions allow an efficient hardware management and• The above two restrictions allow an efficient hardware management and 

scheduling of threads and thread blocks

Recursive function calls are not allowed
CUDA t d t d lt b t h tCUDA programs must copy data and results between host 
memory and device memory
• DMA block transfer minimizes the overhead of CPU-GPU data transfer
• Compute intensive problems amortize the data transfer overheads

University of Pittsburgh


