CS/CoE 1541 Introduction to Computer Architecture

Graphics and Computing GPUs

Sangyeun Cho

Dept. of Computer Science
University of Pittsburgh

GPU evolution

VGA in early 90’s
A memory controller and display generator connected to some (video)
RAM
= By 1997, VGA controllers were incorporating some 3D
acceleration functions

= In 2000, a single chip graphics processor incorporated almost
every detail of the traditional high-end workstation graphics
pipeline (15t generation GPUs)

= More recently, processor instructions and memory hardware
were added to support general-purpose programming
languages
» Hardware has evolved to include double-precision floating-point
operations and massive parallel programmable processors

University of Pittsburgh

.
Some terms

= GPU = graphics processing unit
+ Integrates 2D/3D graphics, images, and video that enable window-
based OSes, GUIs, video games, visual imaging applications, and video

= Visual computing

» A mix of graphics processing and computing that lets you visually
interact with computed objects via graphics, images, and video

= Heterogeneous system

» A system combining different processor types; a PC is a heterogeneous
CPU-GPU system

University of Pittsburgh

I
Historical PC architecture

CPU
i Front Side Bus
North
Bridge I~ Memery
1
y PCIBus
]
'
South VG/ Framebuffer
Bridge Controller Memory

VGA

LAN UART _C] Display

University of Pittsburgh

Contemporary PC architecture

Intel
CPU

Front Side B
®16 PCI-Express Link I JEL e S

North DODR2
- . -
digplay Bridge Mamary
t x4 PCI-Express Link 128-bit
darivative BET MT/s
GPU

Sauth
M . Bridge

University of Pittsburgh

More terms

= OpenGL

- A standard specification defining a cross-language, cross-platform API
for writing applications that produce 2D and 3D computer graphics

= DirectX

» (Microsoft) A collection of APIs for handling tasks related to multimedia,
especially game programming and video

= CUDA (compute unified device architecture)

« (nVIDIA) A scalable parallel programming model and language based
on C/C++; it is a parallel programming platform for GPUs and multicore
CPUs

University of Pittsburgh

Contemporary PC architecture

AMD
CPU
CPU
core
internal bus I séﬁaml'}ps
Morth = DDR2
Bridge Memory

x16 PCl-Exprass Link HyperTransport 1.03

- Chipset
display |

GPU
Memory

University of Pittsburgh

Graphics “logical” pipeline

Input Vertex Geometry Setup & Pixel Raster Operations/
Assembler Shader Shader Rasterizer Shader Output Merger

= Input assembler collects vertices and primitives

= Vertex shader executes per-vertex processing, e.g.,
transforming the vertex 3D position into a screen position,
lighting the vertex to determine its color

= Geometry shader executes per-primitive processing

= Setup/rasterizer generates pixel fragments that are covered
by a geometric primitive

= Pixel shader performs per-fragment processing, e.g.,
interpolating per-fragment parameters, texturing, and coloring;
it makes extensive use of sampled and filtered lookups into
large 1D, 2D, or 3D arrays called textures

= Raster operations processing stage performs Z-buffer depth
testing and stencil testing

University of Pittsburgh

I I
Graphics “logical” pipeline Basic unified GPU architecture

: Vertex || Geometry »| Setup& | Pixel Raster Operations/ | ! [ostoru B"“[’ge - SystemMemory |
. : N 1
I 18 functiongde" Ras"?j‘r?r‘%% rammEBie” funct t Merger X oPU
I A * A A A A A : Host Inerace | | b
SM
| |Sampler| | Sampler| Stream |:Sampler I ‘ Viewpor/Clip/ ‘ "
Out ! nput Assembler Ly Video P 7
:_ A A GPU A | | e | - — = g
S Y)) (N) Ep A | G || Bt || ey | 1| |
! Texture Texture SSL?;:‘T Texture zDgL?fthr Brz?:;r 1 | — — e | — — e NP . -
1 i 1
4
1 -
[Index Buffer| [Constant | [Constant | [Constant | [Stencil | !
! Memory 1
|M—w| [Texture Unit__| M.r = M
Tex L1 IT_Textt | Tex L1 Tex L1 Tex L1 TexL1 Tox L~ b o SFU||SFU
—T 1 T T T T T T T T T T % N
; ; : . (Interconnection Network \)\ Shared
Various objects and buffers are allocated in the GPU memory hierarchy ~ | e
.
| | | | | | | <y e
| DRAM || DRAM || DRAM || DRAM |: Display
s . 2

University of Pittsburgh University of Pittsburgh

Pixel shader example CUDA

, = Developed by nVIDIA in 2007
// called for each pixel thread

void reflection(
float2 texCoord » TEXCOORDO, » An data-parallel extension to the C/C++ languages for

float3 reflection dir : TEXCOORDI1, .
out floatd color . COLOR, scalgble parallel programming of manycore GPUs and
uniform float shiny, multicore CPUs

uniform sampler2D surfaceMap,
uniform samplerCUBE envMap) . . .

(= CUDA provides three key abstractions—a hierarchy of thread
// fetch the surface color from a texture groups, shared memories, and barrier synchronization
floatd4 surfaceColor = tex2D(surfaceMap, texCoord);

// fetch reflected color by sampling a cube map

float4 reflectedColor = texCUBE (envMap, reflection dir); = The programmer or compiler decomposes large computing
// output is weighted average of the two colors problems into many small problems that can be solved in
color = lerp(surfaceColor, reflectedColor, shiny); para”e|

University of Pittsburgh University of Pittsburgh

- -
Decomposition of result data Nested levels and memory

Sequence Thread
Step 1: Result Data Grid 1
Block Block Block per-Threa d Lo cal M emory
(0,0) || (1,0) |[(20)
Block .|| Block || Block
(01 1/)/ (1: 1) L (27 1) Thread Block

4 Il ‘\ \‘\
— - — == per-Block
// : ; | ~+—> Sh; d M
Step 2: Result Data Grid 2 3| Shared Memory

|

e — Grid 0 Seq uence
Block (1, 1)

| I—

Elem | Elem | Elem | Elem | Elem
(0,0)|(1,0)(2,0)|(3,0) (4, 0)
— — — Inter-Gri

Elem | Elem | Elem | Elem | Elem Grid 1
O, 1)1, 1)[@,1)[(8, 1) (4,1)

Elem | Elem | Elem | Elem | Elem
0,2)(1,2)1(2,2)|(3,2)| (4,2)

Globa | Me mory

University of Pittsburgh University of Pittsburgh

Core count independence Restrictions

Sequence kernelF 2D Grid is 3 X 2 thread blocks; each block is 5 X 3 threads

Block 0,0 | Block1,0 | Block 2,0

= Threads and thread blocks may only be created by invoking a

(ermelFcc(3, 22, (5, 33> (params); parallel kernel, not from within a parallel kernel
| = Thread blocks must be independent (no scheduling/ordering
i requirement)
Tread0,0 | Thead 1.0 | Thead2,0 B‘z:oﬂdo « The above two restrictions allow an efficient hardware management and
S S S S scheduling of threads and thread blocks

| = Recursive function calls are not allowed
SN RS » CUDA programs must copy data and results between host
memory and device memory
« DMA block transfer minimizes the overhead of CPU-GPU data transfer
« Compute intensive problems amortize the data transfer overheads

hronization Barrier

kernelG 1D Grid is 4 thread blocks, each block is 6 threads

Block0 | Block 1 Block 2 Block 3

kernelG<<<4, 6>>>(params);

Block 2

Thread 0 | Thread 1 | Thread2 | Thread3 | Threadd | Thread 5

University of Pittsburgh University of Pittsburgh

