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GPU evolution

VGA in early 90’s
A memory controller and display generator connected to some (video)
RAM
= By 1997, VGA controllers were incorporating some 3D
acceleration functions

= In 2000, a single chip graphics processor incorporated almost
every detail of the traditional high-end workstation graphics
pipeline (15t generation GPUs)

= More recently, processor instructions and memory hardware
were added to support general-purpose programming
languages
» Hardware has evolved to include double-precision floating-point
operations and massive parallel programmable processors
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Some terms

= GPU = graphics processing unit
+ Integrates 2D/3D graphics, images, and video that enable window-
based OSes, GUIs, video games, visual imaging applications, and video

= Visual computing

» A mix of graphics processing and computing that lets you visually
interact with computed objects via graphics, images, and video

= Heterogeneous system

» A system combining different processor types; a PC is a heterogeneous
CPU-GPU system
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Historical PC architecture
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Contemporary PC architecture
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More terms

= OpenGL

- A standard specification defining a cross-language, cross-platform API
for writing applications that produce 2D and 3D computer graphics

= DirectX

» (Microsoft) A collection of APIs for handling tasks related to multimedia,
especially game programming and video

= CUDA (compute unified device architecture)

« (nVIDIA) A scalable parallel programming model and language based
on C/C++; it is a parallel programming platform for GPUs and multicore
CPUs
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Contemporary PC architecture
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Graphics “logical” pipeline

Input Vertex Geometry Setup & Pixel Raster Operations/
Assembler Shader Shader Rasterizer Shader Output Merger

= Input assembler collects vertices and primitives

= Vertex shader executes per-vertex processing, e.g.,
transforming the vertex 3D position into a screen position,
lighting the vertex to determine its color

= Geometry shader executes per-primitive processing

= Setup/rasterizer generates pixel fragments that are covered
by a geometric primitive

= Pixel shader performs per-fragment processing, e.g.,
interpolating per-fragment parameters, texturing, and coloring;
it makes extensive use of sampled and filtered lookups into
large 1D, 2D, or 3D arrays called textures

= Raster operations processing stage performs Z-buffer depth
testing and stencil testing
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Graphics “logical” pipeline Basic unified GPU architecture
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Pixel shader example CUDA

, = Developed by nVIDIA in 2007
// called for each pixel thread

void reflection(
float2 texCoord » TEXCOORDO, » An data-parallel extension to the C/C++ languages for

float3 reflection dir : TEXCOORDI1, .
out floatd color . COLOR, scalgble parallel programming of manycore GPUs and
uniform float shiny, multicore CPUs

uniform sampler2D surfaceMap,
uniform samplerCUBE envMap) . . .

( = CUDA provides three key abstractions—a hierarchy of thread
// fetch the surface color from a texture groups, shared memories, and barrier synchronization
floatd4 surfaceColor = tex2D(surfaceMap, texCoord);

// fetch reflected color by sampling a cube map

float4 reflectedColor = texCUBE (envMap, reflection dir); = The programmer or compiler decomposes large computing
// output is weighted average of the two colors problems into many small problems that can be solved in
color = lerp(surfaceColor, reflectedColor, shiny); para”e|
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Decomposition of result data Nested levels and memory
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Core count independence Restrictions

Sequence kernelF 2D Grid is 3 X 2 thread blocks; each block is 5 X 3 threads

Block 0,0 | Block1,0 | Block 2,0

= Threads and thread blocks may only be created by invoking a

(ermelFcc(3, 22, (5, 33> (params); parallel kernel, not from within a parallel kernel
| = Thread blocks must be independent (no scheduling/ordering
i requirement)
Tread0,0 | Thead 1.0 | Thead2,0 B‘z:oﬂdo « The above two restrictions allow an efficient hardware management and
S S S S scheduling of threads and thread blocks

| = Recursive function calls are not allowed
SN RS » CUDA programs must copy data and results between host
memory and device memory
« DMA block transfer minimizes the overhead of CPU-GPU data transfer
«  Compute intensive problems amortize the data transfer overheads

hronization Barrier

kernelG 1D Grid is 4 thread blocks, each block is 6 threads

Block0 | Block 1 Block 2 Block 3

kernelG<<<4, 6>>>(params);

Block 2

Thread 0 | Thread 1 | Thread2 | Thread3 | Threadd | Thread 5
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