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Abstract: Studies in both humans and animal models demonstrated that chronic alcohol/e-cigarette
(e-Cig) exposure affects mitochondrial function and impairs barrier function in brain microvascular
endothelial cells (BMVECs). Identification of the signaling pathways by which chronic alcohol/e-Cig
exposure induces mitochondrial damage in BMVEC is vital for protection of the blood–brain barrier
(BBB). To address the issue, we treated human BMVEC [hBMVECs (D3 cell-line)] with ethanol (ETH)
[100 mM], acetaldehyde (ALD) [100 µM], or e-cigarette (e-Cig) [35 ng/mL of 1.8% or 0% nicotine]
conditioned medium and showed reduced mitochondrial oxidative phosphorylation (OXPHOS)
measured by a Seahorse analyzer. Seahorse data were further complemented with the expression of
mitochondrial OXPHOS proteins detected by Western blots. We also observed cytosolic escape of
ATP and its extracellular release due to the disruption of mitochondrial membrane potential caused
by ETH, ALD, or 1.8% e-Cig exposure. Moreover ETH, ALD, or 1.8% e-Cig treatment resulted in
elevated purinergic P2X7r and TRPV1 channel gene expression, measured using qPCR. We also
demonstrated the protective role of P2X7r antagonist A804598 (10 µM) in restoring mitochondrial
oxidative phosphorylation levels and preventing extracellular ATP release. In a BBB functional assay
using trans-endothelial electrical resistance, we showed that blocking the P2X7r channel enhanced
barrier function. In summary, we identified the potential common pathways of mitochondrial injury
caused by ETH, ALD, and 1.8% e-Cig which allow new protective interventions. We are further
investigating the potential link between P2X7 regulatory pathways and mitochondrial health.

Keywords: P2X7r; mitochondrial stress; ethanol; electronic cigarette; extracellular ATP; Ca2+ signaling
in ER; brain endothelial cells; P2X7r antagonist; A804598; TRPV1channel

1. Introduction

Polydrug abuse (including smoking, alcohol use disorder) presents a significant health
problem [1,2]. During the last few years, electronic cigarettes (e-Cig) have become very
popular especially among adolescent users [3]. Use of alcohol and tobacco smoke increases
the risk of vascular cognitive impairment (VCI) since they affect endothelial cell functions
in brain and other organs [4,5]. Onset of VCI can be attributed to blood–brain barrier (BBB)
injury secondary to alterations in cytoskeleton and tight junctions (TJs), and proinflam-
matory damage [6,7]. BBB is an active vascular interface between the blood and central
nervous system made of brain microvascular endothelial cells (BMVECs) connected by
TJs in an impermeable monolayer [8,9]. Chronic drug abuse is known to stimulate the
oxidative stress in BMVECs by overproduction reactive oxygen species (ROS) that disrupt
the integrity of TJ and damage BBB [10,11]. Previous studies from our laboratory high-
lighted how oxidative stress created by methamphetamine, ETH, cigarettes, and e-Cig
compromised the BBB [12–14]. Mitochondrial dysfunction has been suggested as a cause of
enhanced ROS generation in the context of tobacco smoke and e-Cig exposure [4]. In case
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of alcohol abuse, elevated blood ETH levels are rapidly metabolized into toxic ALD and
this toxic ALD accumulation is known to be very quick in endothelial cells, disrupting cell
functions [15], and also causing mitochondrial dysfunction, ROS accumulation in case of
Alzheimer’s [16].

Mitochondria are double membrane cell organelles which are very sensitive to en-
dogenous ROS levels and increase in non-mitochondrial ROS due to pathophysiological
conditions can augment mitochondrial ROS (mROS) [17]. This comprehensive mROS
buildup minimizes mitochondrial oxidative phosphorylation (OXPHOS) levels [18], dam-
ages the mitochondrial DNA replication and destabilizes the mitochondrial membrane
potential (MMP) [19,20]. Loss of MMP is a signal of bioenergetic stress and results in
cytoplasmic release of apoptotic factors leading to cell death [21].

OXPHOS is a redox mechanism, where mitochondria convert high energy electron
carriers (NADH and FADH2) into adenosine 5′-triphosphate (ATP), the usable form of
chemical energy in the body. Although most ATP stays intracellular, under certain patho-
logical conditions ATP is released into the extracellular space as a signaling molecule [22].
More importantly, the role of extracellular ATP in inflammation has been established re-
cently [23] and ATP released from apoptotic cells functions as a ‘find me’ messenger for
phagocytes to migrate to the damaged site [22]. Additionally, ATP also provides informa-
tion about injury/inflammation in the surrounding cells/tissues via purinergic receptors,
P2X and P2Y autocrine/paracrine purinergic signaling [24].

Among P2X receptors, P2X7 receptor (P2X7r) is of particular interest due to its as-
sociation with neuroinflammation, BBB disruption, and most importantly its connection
with mitochondrial function [25–27]. Harmful secondary metabolites of alcohol like ac-
etaldehyde (ALD) and nicotine are also known to escalate oxidative stress in endothelial
cells [14] and trigger mitochondrial dysfunction through activated TRPV1 ion-channels and
P2X7r [28]. To explore the molecular mechanisms between drugs of abuse and P2X7r acti-
vation, we hypothesize that blocking P2X7r and TRPV1 ion-channels by a P2X7r antagonist
could protect mitochondrial health.

In this report we treated hBMVECs with A804598 (10 µM), a novel and competitive
antagonist of P2X7r that is known to have high affinity for blocking P2X7 receptors [29,30].
Our aim was to identify unifying mechanisms of brain endothelial injury caused by ETH,
ALD, and e-Cig vape. We demonstrated that mitochondrial dysfunction was triggered
by ETH, ALD, and 1.8% e-Cig and tested the therapeutic effects of P2X7r inhibition in
preventing hBMVECs injury.

2. Materials and Methods
2.1. Reagents/Kits

ETH 200 Proof (Cat. No. 2716) was procured from Decon laboratories Inc. (King of
Prussia, PA, USA), 99.5% pure ALD (Cat. No. 402788) was procured from ACROS organics,
Geel, Belgium, and e-Cig (1.8% and 0% nicotine) from Pure E-Liquids (Peterborough, PE1
1SB, UK). P2X7r antagonist A804598 (Cat. No. 4473) was purchased from Tocris Bioscience
(Bristol, UK) and dissolved in DMSO (Cat. No. D5879) from Sigma-Aldrich (St. Louis, MI,
USA). Mitochondria/cytosol fraction kit was purchased from Abcam (Cat. No. ab65320,
Cambridge, UK).

2.2. Cell Culture and Treatments

Human brain microvascular endothelial cells [hBMVECs (D3 cell-line)] provided by Dr
Pierre-Olivier Couraud, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris
Descartes (Paris, France) [31] were cultured using EBM-2 Basal Medium (Cat. No. CC-3156)
supplemented with EGM-2 SingleQuots (Cat. No. CC-4176) from Lonza Biosciences
(St. Bend, OR, USA). Depending upon the study, hBMVECs were grown in either 96-well
culture plate, or 6-well plate, or 100-mm tissue culture plates coated with type-I collagen
(Cat. No. 354236) from Corning. Confluent cells were later exposed to ETH (100 mM), ALD
(100 µM), and e-Cig (35 ng/mL of 1.8% and 0% nicotine) [6] conditioned media with and
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without P2X7r antagonist A804598 (10 µM) pre-treatment (1 h). Cells treated with A804598
alone served as P2X7r antagonist control. Concentrations of the insults and A804598 used
in this study were determined based on prior studies [14,32] and our preliminary dose
response studies (data provided in Supplementary Files). Unless mentioned specifically, all
experiments were carried out after overnight incubation after respective treatments.

2.3. Western Blot Analyses

Denatured proteins from hBMVECs were separated by SDS- polyacrylamide gels
(4–12% tricine gels) and electroblotted onto nitrocellulose membranes. The membranes
were blocked with Intercept blocking buffer (LI-COR, Lincoln, NE, USA) and incubated
overnight with primary antibodies (dilution 1:1000), later probed with near-infrared sec-
ondary antibodies (LI-COR) (dilution 1:5000) and visualized with an Odyssey imaging
system (LI-COR). The band intensities were quantified, and protein expression levels were
calculated relative to either beta-actin or totals of target protein from the same membrane.
The following primary anti-rabbit antibodies for p-IRE1α (3294T), p-ASK1 (3765S), p-P38
(4511T), p-GSK3β S9 (5558T), p-ERK1/2 (4370T), VDAC (4661T), BAX (2774S), HSP60
(12165T), and AIF-1 (4642S) were procured from Cell Signaling (Danvers, MA, USA). Pri-
mary anti-mouse OXPHOS antibody cocktail of complex I-V(ab110411), Bax inhibitor-1
[BI-1] (ab18852), t- GSK3β (ab93926), and anti-goat β-actin (Ab8229) were procured from
Abcam (Cambridge, UK).

2.4. Mito-Stress Test in Cultured D3 Cells

hBMVECs (30,000cells/well) were plated in seahorse XF96 microplate (Agilent Tech-
nologies, Inc., Santa Clara, CA, USA, further Agilent) and allowed to attach overnight.
Four corner wells were left only with growth medium for background correction. Next
day, cells were pretreated with A804598 (10 µM) for 1 h, before replacing with growth
media conditioned with ETH, ALD, e-Cig (1.8% or 0% nicotine), with and without A804598
and incubated overnight. Next morning, mitochondrial stress spawned against our treat-
ments was measured using Agilent “Seahorse cell mito-stress test kit” (cat#103015-100). In
brief, growth media was carefully aspirated, and cells washed thrice in bicarbonate-free
and phenol red-free DMEM (cat# 103680-100) supplemented with 10 mM glucose, 1 mM
pyruvate, and 2 mM glutamine. Cell plate was incubated in a non-CO2 incubator at 37 ◦C
until we calibrated the Seahorse cartridge. Upon calibration, XF96 cell culture plate was
placed in the Seahorse analyzer and basal oxygen consumption rates (OCR) were measured.
Later cells were sequentially challenged with 2.5 µM oligomycin (ATP synthase inhibitor),
0.5 µM FCCP (mitochondrial uncoupler), and 0.5 µM rotenone/antimycin A (complex
I/III inhibitor, respectively) (all from Agilent Technologies (Santa Clara, CA, USA)) while
mitochondrial respiration levels were continuously recorded. After the assay, the spare
respiratory capacity was measured by subtracting the basal OCR from the maximal OCR.

2.5. Quantitative RT-PCR

Total RNA was isolated using the TRIzolTM method (Cat. No. 15596026) from Invitro-
gen (Thermo Fisher Scientific, Carlsbad, MA, USA). Total RNA (500 ng) was converted to
complementary DNA (cDNA) using RT2 PreAMP cDNA Synthesis Kit (Cat. No. 330451,
Qiagen, Germantown, MD, USA). TaqMan probes for human P2X7r (Cat# hs00175721),
TRPV1 (Cat. No. hs00218912) and GAPDH (Cat. No. hs02786624) were procured from
Thermo Fisher. cDNA was further probed by real-time qPCR using TaqMan Fast Advanced
Master Mix (Cat. No. 4444557, Applied Biosystems, Thermo Fisher (Waltham, MA, USA)).
All reactions were performed in triplicate, and relative expression levels of each gene were
normalized with GAPDH. The relative foldchange of P2X7r and TRPV1 genes against
the treatments was investigated using the delta-delta-Ct (ddCt) method and values were
normalized to ddCt values of GAPDH.
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2.6. ATP Detection Assay

Luminescent ATP Detection Assay Kit from Abcam (Cat. No. ab113849, Cambridge,
UK) was used to measure the extra cellular ATP (eATP) levels in hBMVECs. This experiment
was carried out in a 96-well culture plate, where 30,000 cells/well were seeded and allowed
to attach overnight. Cells were pretreated with A804598 (10 µM) for 1 h before exposing to
ETH, ALD, and e-Cig conditioned media. After overnight incubation, 50 µL of the spent
media was collected into a new 96-well plate and ATP levels were measured following
manufacturer’s instructions.

2.7. Intracellular Calcium (Ca2+) Assay

hBMVECs pre-treated with or without A804598 were stimulated with ETH, ALD, and
e-Cig conditioned media for 2 h, and cell pellet (2 × 106) was snap frozen in liquid nitrogen.
Intracellular calcium (Ca2+) levels were then determined using calcium assay kit from
Abcam, (Cat. No. ab102505, Cambridge, UK) following the manufacturer’s instructions.

2.8. Barrier Function Measurement by Trans-Endothelial Electrical Resistance (TEER)

Measurement of TEER on hBMVEC monolayers was used to determine the effects of
P2X7r inhibitor A804598 on barrier integrity. The TEER assay was performed using the
1600R electric cell-substrate impedances system (ECIS) (Applied Biophysics, Troy, NY, USA)
as previously described [33,34]. The ECIS system provides real-time monitoring of changes
in TEER. In brief, hBMVECs at 30,000 cells/well were plated on collagen type I coated
96W20idf electrode arrays (Applied Biophysics). Cells were allowed to form monolayers
until stable TEER values were reached. After 6 days (with media change every three days),
the monolayers were exposed to ETH, ALD, or 1.8% e-Cig after pretreating with A804598
(10 µM) for 2 h. Readings were acquired continuously at 4000 Hz at for 24 h. Data is
presented as percent change from baseline TEER. Three independent experiments were
performed with 3–5 replicates for each condition.

2.9. Statistical Analysis

Statistical data analysis was carried out using GraphPad Prism 9 software (GraphPad
Software, Inc., San Diego, CA, USA). Statistical significance between experimental groups
was performed using one-way ANOVA or two-way ANOVA (TEER data) and significance
levels were set at p < 0.05.

3. Results
3.1. P2X7r Inhibition Ameliorated Mitochondrial Dysfunction in hBMVECs Exposed with ETH,
ALD and 1.8% e-Cig

It is known that exposure to alcohol and cigarettes (tobacco smoke) results in tissue
injury associated with oxidative stress [35]. It has been suggested that e-Cig could also
produce similar effects [4]. Yet, the mechanisms of oxidative stress linked to mitochondrial
dysfunction/stress have not been fully elucidated. In light of this we measured mito-
chondrial respiratory parameters include the spare respiratory capacity (SRC) or reserve
respiratory capacity (RRC). In our study mitochondrial SRC/RRC represents the additional
ATP that can be produced during OXPHOS in case of sudden energy demand [36].

In the current study, we measured mitochondrial SRC of hBMVECs after overnight
exposure to ETH, ALD, and 1.8% e-Cig conditioned media. Figure 1A depicts the mito-
stress graphs for our studies. Whereas ETH stimulation resulted in 50% decline in spare
respiration, ALD led to 75% decline, and e-Cig caused a 60% drop (Figure 1B). E-Cig extract
with 0% nicotine had no impact on SRC levels in comparison to other insults. hBMVECs
treated with P2X7r antagonist, A804598, preserved the mitochondrial function impaired by
ETH, ALD, and e-Cig and largely maintained the SRC levels against the insults.
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Figure 1. Mitochondrial OXPHOS levels diminished by ETH, ALD or 1.8% e-Cig exposure were
restored by P2X7r antagonist. Mitochondrial SRC levels were measured after overnight exposure
to ETH, ALD, and 1.8% e-Cig conditioned media. (A) shows the mito-stress graphs against ETH,
ALD, and e-Cig (1.8%, 0% nicotine) stimulation. We quantified mitochondrial spare respiration (SRC)
by subtracting basal respiration from the maximal respiration. (B) After overnight incubation, we
recorded a 50% reduction in spare respiration against ETH exposure, 75% reduction against ALD, and
60% decrease after treatment with1.8% e-Cig containing media. Although SRC levels in cells treated
with 0% e-Cig stimulus show a similar pattern, changes in SRC levels were not significant. Cells
treated with P2X7r antagonist A804598 restored the SRC levels against ETH, ALD, and 1.8% e-Cig
stimuli (n = 6). We normalized the Seahorse data to untreated control cells and One-Way ANOVA
was used for statistical analysis, marked as *** p ≤ 0.001, **** p ≤ 0.0001 and ns (not significant).

3.2. Reduced Expression of Mitochondrial OXPHOS Markers (Complexes II and IV) after ETH,
ALD and 1.8% e-Cig Exposure Were Normalized by P2X7r Inhibition

Oxidative stress induced by ETH, ALD, and 1.8% e-Cig exposure significantly reduced
the expression of mitochondrial OXPHOS markers in hBMVECs. Mitochondrial succinate
dehydrogenase (SDH -complex II) is a vital enzyme that participates in both the Krebs
cycle and the electron transport chain that catalyzes the oxygen consumption during
aerobic respiration. Cytochrome C oxidase (COX- complex IV) is the terminal electron
acceptor of the OXPHOS cycle that converts molecular oxygen into water molecules and
translocate protons from mitochondrial matrix to the inter-membrane space, necessary
for ATP generation. We analyzed expression of these two proteins using Western blot
and found a 45% drop in Complex- II expression and a 30% reduction in Complex-IV
expression in comparison with the non-treated control group (Figure 2). hBMVECs exposed
with 0% nicotine e-Cig extract did not show any effect on OXPHOS expression. P2X7r
inhibition with A804598 (A80) preserved the expression of mitochondrial markers as well
as mitochondrial OXPHOS levels after exposure to ETH, ALD, or 1.8% e-Cig.

3.3. P2X7r Antagonist Prevented the Intracellular Ca2+ Accumulation Induced by ETH, ALD, and
1.8% e-Cig Exposure

ROS and proinflammatory signals triggered by ETH and cigarettes smoke are known
to control the movement of Ca2+ through calcium-permeable ion channels including TRPV1
and P2X7 receptors [14,32]. To understand this mechanism further, we exposed hBMVECs
to ETH, ALD, and 1.8% e-Cig conditioned media and measured Ca2+ levels. We demon-
strated significant increases in the intracellular Ca2+ levels against all our insults except
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0% e-Cig. ETH and 1.8% e-Cig exposure led to a thousand-fold increase in intracellular Ca2+

levels (Figure 3A,C), whereas ALD led to fifteen hundred-fold the Ca2+ levels (Figure 3B).
Cells treated with A804598 (via blocking both P2X7r and TRPV1 ion channels) brought
down the intracellular Ca2+ levels to less than five hundred-fold, thus limiting the sustained
Ca2+ flow into ER and mitochondrial matrix.
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Figure 2. P2X7r inhibitor A804598 protected the expression of mitochondrial OXPHOS proteins
against ETH, ALD, or 1.8% e-Cig exposure. When compared with control group hBMVECs incu-
bated with ETH, ALD, and 1.8% e-Cig conditioned media reduced the expression of mitochondrial
complex-II and complex-IV by 45% and 30%, respectively. Cells treated with A804598 (A80) pre-
served the expression of mitochondrial complexes (n = 3). Western blot data were normalized with
β-actin and one-way ANOVA was used for the statistical analyses, marked as * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001 and ns (not significant).

3.4. P2X7r Inhibition Diminished Endoplasmic Reticulum (ER) Stress Caused by ETH, ALD and
1.8% e-Cig in hBMVECs

Under physiologic conditions, Ca2+ levels in ER are tightly regulated for proper protein
folding, whereas excess of Ca2+ results in unfolded protein response (UPR). Sustained UPR
leads to chronic or irreversible ER stress triggering apoptosis via non-canonical pathway
initiated by the phosphorylation of IRE1α It is the most conserved ER membrane protein
that regulates cell survival/death. We showed that BMVECs exposed to ETH, ALD, or
1.8% e-Cig significantly augmented the phosphorylation of IRE1α, and apoptosis signal-
regulating kinase 1 (ASK1)-MAP3K, a pro-apoptotic downstream regulator of pIRE1α
(Figure 4A). In parallel, we also found reduced anti-apoptotic BAX inhibitor-1 (BI-1) protein
levels conserved in the ER. ER stress induced MAP3K activation further reduced the
phosphorylation of anti-apoptotic proteins including GSK3β S9 and ERK1/2 and increased
the phosphorylation of pro-apoptotic P38 levels (Figure 4B). By reducing the Ca2+ generated
ER stress, 10 µM A804598 (A80) moderates the activation of MAP kinases and protects
the cells.
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enhanced by ETH, ALD, or 1.8% e-Cig. hBMVECs exposed to (A) ETH, (B) ALD, and (C) 1.8% e-Cig
showed one thousand-to-fifteen-hundred-fold increase in intracellular Ca2+ levels and cells treated
with A804598 significantly diminished the intracellular Ca2+ levels. (D) e-Cig with 0% nicotine
showed no impact on intracellular Ca2+ levels (n = 3). One-way ANOVA was used for the statistical
analyses as * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 and ns (not significant).

3.5. P2X7r Inhibition Protected the Mitochondrial Function and Prevented Upregulation of
Pro-Apoptotic Factors in Response to ETH, ALD, and 1.8% e-Cig Exposure

In response to various stimuli, surplus of Ca2+ in ER lumen opens additional ‘open
Ca2+ channels’ between ER and the mitochondrial outer membrane increasing Ca2+ release
into the mitochondrial matrix [37]. In such a scenario, expression of voltage-dependent
anion channel (VDAC) is known to increase, as VDAC is a major component of the ‘open
Ca2+ channels’ [38]. Proteins isolated from hBMVECs exposed to ETH, ALD, and 1.8% e-Cig
showed increased VDAC expression (Figure 5A). Modest increase of Ca2+ in mitochondrial
matrix is known to stimulate oxidative phosphorylation, but beyond a critical threshold
the mitochondrial matrix calcium (Ca2+

m) transmits and amplifies apoptotic signals [39].
Western blots of mitochondrial fractions revealed mitochondrial translocation of BAX
protein leading to the loss of mitochondrial outer membrane, and damage to mitochondrial
membrane potential (MMP) (Figure 5B). Compromised mitochondrial membranes result
in the cytosolic release of pro-apoptotic transcription factor, namely apoptosis inducing
factor-1 (AIF1), and cytochrome C (Figure 5C). hBMVECs treated with A804598 (A80)
presented a reduced BAX activation, retained the MMP and foiled the cytosolic release of
apoptotic inducing factor-1 (AIF1), and cytochrome C.
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Figure 4. P2X7r antagonist (A804598) reduced the non-canonical ER stress induced by ETH, ALD,
and e-Cig stimulation in hBMVECs. (A) ER Ca2+ buildup induced by ETH, ALD, and 1.8% e-Cig
stimulus increased the expression pro-apoptotic p-IRE1α by three-fold and p-ASK1 by two-fold,
respectively, and reduced the anti-apoptotic BAX inhibitor-1 (BI-1) protein expression by fifty percent
(50%). (B) ER stress due to Ca2+ accumulation also significantly reduced the expression of p- GSK3β
S9 and p-ERK1/2 and instigated p-P38 MAPK levels. hBMVECs treated with A804598 (A80) could
prevent the ER stress induced apoptotic signals. Western blot data were normalized to β-actin/total
GSK3β (n = 3). One-way ANOVA was used for the statistical analyses, marked as * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 and ns (not significant).

3.6. Elevated P2X7r and TRPV1 Gene Expression by ETH, ALD, and 1.8% e-Cig Exposure Was
Lowered by P2X7r Antagonist

Drugs of abuse including alcohol and nicotine are known to cause neuroinflammation
via coactivation of P2X7r and its associate TRPV1 ion channels while upregulation of these
receptor channels is known to cause mitochondrial dysfunction by disrupting mitochon-
drial membrane potential [40–42]. Using qPCR, we observed a four-fold increase in P2X7r
expression after ETH, ALD, and 1.8% e-Cig (Figure 6A). Expression of TRPV1 channel
paralleled P2X7r showed a four-fold increase after ETH and ALD, and six-fold increase
after1.8% e-Cig exposure (Figure 6B). BMVECs pre-treated with P2X7r antagonist A804598
significantly reduced the expression of both the P2X7r and TRPV1 channels. Expression of
the P2X7r and TRPV1 channels remained unchanged with 0% e-Cig exposure.

3.7. A804598 Blocks the Extracellular ATP (eATP) Release

To understand the role of addictive drugs in ATP release, we quantified extracellular
ATP (eATP) levels in hBMVECs stimulated with ETH, ALD, and 1.8% e-Cig conditioned
media. After overnight exposure to ETH, loss in mitochondrial membrane potential resulted
in a four-fold increase in eATP release, while both ALD and 1.8% e-Cig exposure showed
an eight-fold increase in eATP concentration (Figure 7). hBMVECs pre-treated with P2X7r
antagonist, A804598 presented very little to no change in eATP levels after ETH, ALD,
or 1.8 % e-Cig media, and confirm the trail for eATP escape through purinergic receptor
(P2X7r) and associated TRPV1 ion channels.
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Figure 5. P2X7r antagonist (A804598) protected the mitochondrial function against ETH, ALD,
and 1.8% e-Cig stimuli. (A) ETH stimulation increased the VDAC levels by fifty percent (50%),
whereas ALD and 1.8% e-Cig stimulus doubled the VDAC expression. (B) Mitochondrial fractions
from hBMVECs exposed to ETH, ALD, and 1.8% e-Cig showed a three-fold increase in BAX protein
levels. Simultaneously, levels of AIF-1 proteins deteriorated by 50% with ETH, 55% after ALD, and
up to 60% after 1.8% e-Cig exposure. (C) In parallel, cytosolic fractions presented greater AIF-1,
and cytochrome C levels in response to the insults. hBMVECs treated with A804598 (A80) critically
protected the mitochondrial health and minimized the cytosolic escape of AIF-1 and Cytochrome C.
Western blots from whole cell lysates, cytosolic fractions were normalized to β-actin and HSP60 for
mitochondrial fractions (n = 3). One-way ANOVA was used for the statistical analyses, marked as
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 and ns (not significant).

3.8. Inhibition of P2X7r Protects the Barrier Tightness against ETH, ALD, and 1.8% e-Cig
Exposure in hBMVECs

To further validate the functional significance of P2X7r signaling on brain endothelial
cells, which is barrier function, we used the TEER assay to assess if the endothelial resistance
to the ETH, ALD, and 1.8% e-Cig insults can be rescued by blocking the P2X7r. Although
effects of P2X7r inhibition on BBB has been indirectly demonstrated [43], direct effects
on barrier function have never been shown. Further, no direct determination has been
reported on the BBB enhancing effect using compound A804598. hBMVEC monolayers
(plated on ECIS microelectrode arrays) were treated with P2X7r antagonist A804598, and
TEER was monitored over the course of 24 h (Figure 8A,C,E). Resistance values in untreated
cells (normalized to 100%) represent the steady state baseline TEER after confluent BMVEC
monolayers were established and TJ was formed [44]. The time at addition of the stimulants
was set at 0 h. Effects of the compounds to alter the resistance was observed starting at 12 h
time point. Resistance values were significantly reduced by ETH, ALD, and 1.8% e-Cig
(approximately 25% reduction) treatments. Addition of A804598 (10 µM) significantly
increased the average TEER at 12 h for all treatments (Figure 8B,D,F). While the increased
TEER pattern was obvious over the 24 h time-period (Figure 8A,C,E), the most significant
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changes were seen only at 12 h. The results overall suggest that blocking of P2X7r in brain
endothelial cells may directly benefit barrier integrity.
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channels in hBMVECs. (A) hBMVECs treated with ETH, ALD, and 1.8% e-Cig exposure increased
the P2X7r gene expression by four-fold while A804598 prevented such increases. (B) Simultaneously,
expression of TRPV1 ion channel was also enhanced six-fold after exposure to ETH, ALD, or 1.8% e-
Cig and A804598 treatment ameliorated the increases. q-PCR data were normalized with GAPDH
(n = 3). One-way ANOVA was used for statistical analyses, marked as * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.0001 and ns (not significant).
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Figure 7. extracellular ATP release stimulated by ETH, ALD, and 1.8 % e-Cig exposure in hB-
MVECs and A804598 blocked the eATP release. hBMVECs exposed to (A) ETH presented a four-
fold increase in eATP levels. Both (B) ALD and (C) 1.8% e-Cig demonstrated eight-fold increases in
eATP, whereas (D) e-Cig with 0% nicotine showed no impact on eATP levels. Blockage of purinergic
receptor (P2X7r) and TRPV1 ion channels by A804598 reduced the eATP levels (n = 3). One-way
ANOVA was used for statistical data, where *** p ≤ 0.001, **** p ≤ 0.0001 and ns (non-significance).
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Figure 8. P2X7r inhibition protected barrier function. Trans-Endothelial Electrical Resistance
(TEER) was measured continuously in hBMVECs with or without P2X7r inhibitor A804598 (at
time 0 marked as black arrow) and exposed to ETH (A,B), ALD (C,D), or 1.8% e-Cig (E,F) (at 2 h
marked as red arrow). After baseline TEER was achieved (between 6–7 days), the inhibitor and
stimulators were added, and resistance was measured at 4000 Hz for the duration of the time shown.
(A,C,E) are representative images from hBMVEC exposed to ETH, ALD, and 1.8% e-Cig respectively.
(B,D,F) are average normalized percent change in TEER with positive SD (n = 3–5). Significance
values from a two-way ANOVA analysis is shown in the graphs.

4. Discussion

In this report, we demonstrated that alcohol and e-Cig induce mitochondrial dysfunc-
tion by similar mechanisms in human brain endothelial cells (D3 cells). Earlier studies have
shown various pathways by which drugs of abuse impair the mitochondrial function due
to mitochondrial DNA damage [45], electrons escaping through a broken electron transport
system [46], through expression of pro-inflammatory cytokines like TNF-α or IL-1β [47],
and phosphorylation of stress-activated MAPKs stimulating canonical mitophagy [48,49].
In our study, we showed a non-canonical pathway of mitochondrial regulation by the
purinergic receptor, especially via P2X7r, using specific blocker A804598 (Please check
the graphical abstract for experimental design). To our knowledge, this is the first report
dissecting a mechanism of mitochondrial regulation by P2X7r and the associated TRPV1
channel in hBMVECs.

Alcohol and e-Cig cause damage in the internal organs (liver, lungs, etc.) as well as the
BBB and CNS [7,49,50]. ROS generated by tobacco smoke and e-Cig vape damage the brain
endothelium causing cerebral ischemia and secondary brain damage [50]. Acute exposure
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to tobacco smoke and e-Cig also disables the expression of antioxidative Nrf2 proteins in
the mouse brain endothelium resulting in BBB compromise [51]. Tobacco smoke is also
known to promote mitochondrial depolarization in primary brain vascular endothelial
cells [52]. In our prior studies, primary hBMVECs exposed to ETH or ALD demonstrated
an increase in ROS and nitric oxide, resulting in TJ compromise and BBB injury [12,53]. Our
recent in vivo experiments tested with e-Cig vape (0% or 1.8% nicotine) showed reduced
expression of critical genes in the mouse brain, diminished the expression of occludin and
glucose transporter 1 (Glut1) proteins, and increased BBB permeability, neuroinflammation,
and cognitive impairment [6].

In recent years, the potential role of P2X7r in alcohol and nicotine-induced BBB damage
has gained attention [54,55]. In our experiments, hBMVECs exposed to ETH, ALD, and
1.8% e-Cig reported a four-fold increase in P2X7r expression, and up to six-fold increase
in TRPV1 levels, respectively. Up-regulation of P2X7r expression is an indication of the
inflammasome pathway, promoting autocrine/paracrine signaling via ATP release [55].
Alongside P2X7r, TRPV1 channels also play a critical role in triggering inflammasome
cascades, releasing proinflammatory cytokines damaging mitochondrial function and BBB
integrity [27,46,56]. A804598 efficiently blocked the over expression of both P2X7r and
TRPV1 channels pointing to the role of purinergic signaling in the autocrine regulation of
receptor expression.

Prolonged activation of P2X7r and TRPV1 channels is known to create large non-
selective membrane pores, allowing Ca2+ influx into the cytosol [57]. We showed previously
that ETH and ALD stimulate Ca2+ release from ER [53]. Being a secondary messenger,
excess cytosolic Ca2+ is toxic to the cell, inflicts cytoskeletal damage, and alters gene
transcription in the cells [56,58]. To avoid this adverse situation, cells have developed a
defensive mechanism where cytosolic Ca2+ is compelled into the ER through the SERCA
pump, a Ca2+ ATPase that transfers Ca2+ from the cytosol to the ER lumen via ATP
hydrolysis [59].

Although Ca2+ storage is one of the functions commonly attributed to the ER, a
rapid and unrelenting flow of Ca2+ into ER lumen interrupts the protein folding in ER and
powers the autophosphorylation of serine/threonine MAPKs (IRE1α, ERK1/2) and MAP3K
(ASK-1), resulting in ER stress [60]. Once active, pASK-1 facilitates the cross talk between
GSK-3β and p38 kinases and enhances the pro-apoptotic signals [61]. Simultaneously,
excess Ca2+ levels in ER promote Ca2+ exchange/influx into the mitochondria, tethered
to the ER. This Ca2+ exchange between mitochondria and ER is tightly regulated by the
microdomains made of VDAC proteins [38,62]. In our experiments, hBMVECs exposed to
ETH, ALD, and e-Cig presented over thousand-fold increase in intracellular Ca2+ levels
and promoted the phosphorylation of ER stress-abetted proteins namely IRE1α, ASK-1,
P38, and curtailed the phosphorylation of anti-apoptotic ERK1/2 and Bax Inhibitor-1 (BI-1)
proteins. Inhibition of P2X7r in hBMVECs by A804598 reduced the intracellular Ca2+ levels
by lowering the ER stress and prevented the activation pro-apoptotic MAPKs protecting
the hBMVECs against ETH, ALD, and 1.8% e-Cig. Enhanced VDAC expression during ER
stress also confirmed the crosstalk between mitochondria and ER.

Bax is a proapoptotic member of the Bcl-2 family, usually present in the cytosol in
its inactive form. Upon activation, Bax penetrates the mitochondrial outer membrane
(MOM) and disturbs the mitochondrial membrane potential (MMP) by creating pores
in the MOM [63]. Once MMP is irreversibly damaged, it allows escape of apoptosis
inducing factor-1 (AIF-1) and cytochrome C from the mitochondrial matrix into the cytosol
and promotes cellular apoptosis [64–66]. Our western blot data from mitochondrial and
cytosolic fractions confirmed the mitochondrial translocation of activated Bax after ETH,
ALD, and e-Cig exposures. Simultaneously, we observed an increased amount of AIF-1
and cytochrome C escaped into cytosolic fractions. These observations confirm the similar
mechanism destabilizing the MMP and backing mitochondrial dysfunction in hBMVECs
due to ETH and 1.8% e-Cig.
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Optimal Ca2+ levels in mitochondrial matrix are known to manage the citric acid cycle
by activation of pyruvate, isocitrate enzymes of the Krebs cycle [67]. Mitochondrial Ca2+ is
also known to regulate ATP production through activation of mitochondrial complex-V
(ATP synthase) [68]. That said, higher VDAC expression after ETH, ALD, and e-Cig ex-
posure leads to a rapid influx of Ca2+ into the mitochondrial matrix, destabilizing Ca2+

homeostasis. Indeed, our Western blot data revealed a significant reduction in mitochon-
drial complex-II and complex-IV expression against the insults. This detrimental loss of
mitochondrial complexes might be attributed to a combination of MMP loss and asymmet-
ric Ca2+ levels accumulated in the mitochondrial matrix. P2X7r inhibition in hBMVECs
restored the expression of mitochondrial complex- II and IV after exposure to ETH, ALD,
or 1.8% e-Cig.

In mitochondrial OXPHOS proteins, complex-II is a multimeric protein exclusively
coded by the genomic DNA and later assembled into the inner mitochondrial membrane.
Complex-II is known to accept electrons from FADH2 and transfer to complex III via
CoQ10 [69]. Electrons are then carried by complex-III to complex-IV, and finally to molec-
ular oxygen. This uninterrupted transport of electrons through the OXPHOS complexes
creates a transmembrane proton gradient in the inner mitochondrial membrane, which is
utilized by complex V, to convert ADP to ATP [70]. A defect in any of the above-mentioned
complexes leads to electron seepage through the complexes and reduces mitochondrial
function. In this context, our seahorse data corroborated with western blot results, where
a significant depletion of mitochondrial complex-II and IV characterized a sharp decline
in spare respiration after ETH, ALD, and 1.8% e-Cig treatments, and P2X7r antagonist
restored the spare respiration levels in hBMVECs.

Electron seepage through damaged mitochondrial complexes alters the mitochondrial
redox state and promotes mitochondrial ROS (mROS) generation, and elevated mROS is
central to the progression of multiple inflammatory responses [18,71]. Cells and tissues
experiencing chronic toxic or inflammatory response send distress signals via release of
eATP that bind to P2X7r and trigger a series of autocrine and paracrine signals [72]. In our
studies, hBMVECs exposed to ETH showed a five-fold increase in eATP levels, whereas
ALD and 1.8% e-Cig exposures yielded eight-fold increase in eATP levels. hBMVECs treated
with P2X7r antagonist A804598 blocked the P2X7r and TRPV1 channels and diminished
the eATP levels to control levels. These results strongly support the idea that P2X7r plays
an important role in ETH, ALD, and 1.8% e-Cig induced oxidative stress.

TEER data of altered electrical resistance caused by ETH, ALD, and 1.8% e-Cig clearly
demonstrate disruption of barrier function caused by these insults. A drop in TEER rep-
resents a decrease in barrier tightness that results from either change in expression or
localization of TJ proteins (e.g., occludin, cl-5, or ZO-1) or in cytoskeletal reorganization
due to activation of small GTPases [33,34,36]. Since TEER response peaked at 12 h and
rebounded after 16 h to the baseline levels, this may be due to an acute reaction of BMVECs
to the insult mostly through the effect on the cytoskeleton machinery and GTPase signaling.
All these mechanisms will be explored in our future studies. Blocking the P2X7r by specific
antagonist rescued this effect in vitro, suggesting an important role of P2X7 channel in
BBB homeostasis. Further, functional barrier data support the idea that mitochondrial
dysfunction, Ca2+ intracellular and ATP extracellular release underlie BBB injury by ETH or
1.8% e-Cig, and prevention of these negative effects by P2X7r inhibition preserves integrity.
A recent study demonstrated that urothelial barrier function was normalized by P2X7r se-
lective antagonist, A804598, in acrolein-induced bladder urothelial cell damage in a porcine
model [30]. The multifaced role of P2X7r in BBB regulation during neuroinflammatory
diseases has been recognized [73].

5. Conclusions

In summary, P2X7r and TRPV1 activation by ETH, ALD, and 1.8% e-Cig conditioned
media greatly reduced the expression of mitochondrial OXPHOS proteins, and equally
diminished the oxidative phosphorylation capacity in hBMVECs. By blocking P2X7r and



Antioxidants 2022, 11, 1328 14 of 17

TRPV1 channels, A804598 protected mitochondrial functions, prevented intracellular Ca2+

accumulation and extracellular ATP releases against ETH, ALD, or 1.8% e-Cig exposure.
Further, our data indicate that alcohol, its metabolite ALD, and 1.8% e-Cig cause endothelial
injury through the same pathway linked to caspase-independent pro-apoptotic pathways.
Our findings point to P2X7r as a potential therapeutic target to prevent BBB damage
triggered by alcohol or e-Cig vape.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox11071328/s1, Figure S1: Dose response study for compound
A804598 (A80) by mito-stress test.
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