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Abstract: The manuscript describes a simplified methodology with which to assess the economic
level of apparent losses (ELAL) in a water utility. This economic point corresponds to the break-even
point for which the marginal benefit of increasing the frequency of the apparent losses’ reduction
activities equalizes the marginal cost of their implementation. For this calculation, each apparent
loss component, as defined by the International Water Association, has been subdivided into two
additional categories. These categories have been established depending on how periodic activities
conducted by the water utility to reduce apparent losses—namely water meter replacement and
customers’ connection inspections—may affect their magnitude. It has been found that the ELAL
is influenced by intervention costs, the degradation rate of the accuracy of water meters and water
tariffs. In addition, this work defines a set of performance indicators to benchmark the apparent
loss’s performance relative to the minimum achievable and optimum levels of the losses. Finally, two
case studies on how the proposed calculation should be applied have been added to the appendices.
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1. Introduction

The design of effective water loss control and reduction policies has become a crucial aspect of
the technical management of any modern water utility [1,2]. Water losses multiply the operational
costs of water distribution companies, constrain the revenue and reduce the expansion potential of the
water utility to increase the number of clients in the future.

According to their nature, water losses can be classified into two main components: real (physical)
losses and apparent (commercial) losses [3]. Real losses comprise of physical leakages in pipes, service
connections or reservoirs, as well as other losses occurring during short-duration large pipe bursts.
Apparent losses are caused by customer metering inaccuracies [4–6], illegal consumption, and data
handling errors [7–9]. Figure 1 summarizes the different components of real and apparent losses as
defined by the International Water Association (IWA) water balance.

While real losses are typically more important in terms of volume, apparent losses become similar
in magnitude in terms of cost for the water utility [3,10,11]. This can be explained considering that the
cost to a utility of a cubic meter lost in a pipe is equal to the sum of the production and distribution
costs. On the contrary, a cubic meter consumed by a user but not measured reduces the revenue in a
quantity equal to the selling price of the last cubic meter of water consumed by that customer.

Among the numerous publications related to real losses, those produced by the Water Loss
Specialist Group of the IWA deserve special attention [12]. These works have (i) identified the most
significant driving factors of real losses, (ii) modelled the relationship between them and the magnitude
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of water losses and (iii) optimized real loss management strategies. All these publications approach
the problem from a practitioner’s point of view and are aimed not only at companies owning detailed
information about their water network and operation procedures, but also at those systems with
limited and poor data quality [13–16].Water 2018, 9, x FOR PEER REVIEW  2 of 32 
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Figure 1. The real and apparent loss components [3].

In the case of apparent losses, there are several publications related to their quantification and
technical management. These publications approach the topic either providing a brief overview of
it [7,8,17] or, alternatively, by dealing with specific issues: measuring errors in intermittent water
supply systems [18], numerical models to estimate apparent losses [19], measuring errors caused by
the presence of roof tanks [20], analysis of water meters accuracy [21], etc. None of these works have
managed to standardize the terminology, the performance indicators to be used, the methodology
to quantify the various components or to establish the optimum level of apparent losses as a whole.
Taking into account that apparent losses can reach up to 30% of total losses [3,22] in terms of volume
and 50% in terms of cost, it is unfortunate that up to date there has not been a widely accepted
methodology that approaches the issue of finding the economic level of apparent losses from an
equivalent perspective to the one used for real losses. Such an approach would be highly valuable as a
preliminary strategy for water utilities with limited or no experience on the subject and could serve as
daily work guidelines for utilities with some background. This is the aim of this paper, to present a
standardized, simplified and well-structured methodology, similar to the one used for real losses to
estimate the optimum level of apparent losses.

For this exercise, a detailed component analysis of apparent losses (Figure 1), as described by
Lambert et al. [6], is conducted in Section 2. The first component, and probably the most important
one for most utilities, is associated with water meter inaccuracies. The reason is that even in a best-case
scenario when meters have been recently installed, there is an unavoidable measuring error intrinsic
to the meter technology used. Furthermore, as meters age and their mechanical parts wear out, their
metrological characteristics degrade and measuring inaccuracies increase [23]. The resulting apparent
losses (meters under-registration) will depend on the working conditions of the meter and also on the
customers’ consumption profile [24]. The second component of apparent losses is related to illegal
consumption caused by meter tampering or the presence of illegal connections. As further explained
in this manuscript, a portion of illegal consumption will always be present no matter the strength
of the utility policies to avoid illegal uses, whereas there will be another portion that will constantly
increase over time if the water utility does not implement effective corrective measures. Finally, the
third component of apparent losses is caused by the data-handling procedures used by the water
company to calculate water consumption volumes from the customers. In general, this component is
small in modern water utilities but may have a significant magnitude in those systems without proper
quality control procedures.

In order to implement the proposed methodology, these components of apparent losses are
further split into two categories: (i) the first one is independent of the reduction and control activities
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conducted by the water utility (intervention independent) and (ii) the second one is dependent on the
frequency of the activities carried out to reduce apparent losses (intervention dependent).

Similar to real losses, a key feature of apparent losses is that they tend to increase over time if the
water utility does not take appropriate measures. Therefore, management policies for apparent losses
can also be classified as active or passive, depending on whether or not they include regular corrective
measures aimed to reduce their magnitude. Passive policies will only resolve large and reported meter
failures or illegal uses, paying no attention to those little-hidden flaws that build up significantly in
the long term. On the contrary, active policies plan and schedule regular interventions, namely water
meter replacements and customers’ connections inspections to keep apparent losses under control.
Section 3 defines the main parameters related to an active policy, paying particular attention to the
various costs associated with its implementation.

Many of the works by IWA and AWWA [10,25–28] highlight the existence of (i) an unavoidable
level of losses below which it is extremely difficult to achieve further reductions; (ii) an economic
level of losses for which the costs of reducing water losses are balanced with the benefit of recovering
additional volumes (Figure 2). However, none of these documents defines a methodology to estimate
the actual value of such an economic level of apparent losses given the specific conditions of the water
utility [29,30]. The calculation of the Economic Level of Apparent Losses (ELAL), as well as other related
variables, is developed in Section 4 by balancing the resources dedicated to regular interventions (costs)
and the benefits they generate (savings). Additionally, a proposal of three performance indicators for
apparent losses is presented in Section 5. Finally, and in order to better illustrate the methodology,
Appendices A and B develop two case studies. The first one corresponds to an extremely simple case,
representative of utilities with very limited data, while the second conducts a more detailed calculation
differentiating by the meter and customer types.
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Figure 2. The levels of water losses [6].

2. Components of Apparent Losses

Apparent losses have been classified depending on the influence that a potential intervention
from the water company may have on their magnitude. Such interventions may also be of two kinds:
meter replacement to reduce meter accuracy issues or field inspection to mitigate illegal consumption
volumes. Following this criteria, two main categories are defined:

• Intervention independent apparent losses. This category is related to the unavoidable level of losses
in a system, no matter the number and frequency of the interventions regularly carried out.
These losses could only be reduced if there is a substantial change in an essential element of the
system (water metering technology, installation conditions of the meters, a variation of water
meter suppliers quality, etc.), but they would not be affected if, for example, customers’ meters are
replaced more frequently. When expressed in annual terms, this category is called the Intervention
Independent Annual Apparent Losses (IIAAL, in m3/year).
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• Intervention dependent apparent losses. This category is related to the amount of losses that depends
on the intervention policies carried out by the water company and grows when interventions are
delayed over time. On the contrary, more frequent interventions requiring greater investments
by the utility lead to smaller volumes of apparent losses. When expressed in annual terms, this
category is called the Intervention Dependent Annual Apparent Losses (IDAAL, in m3/year).

As summarized in Figure 3, each category can be subdivided further into different apparent loss
components, all of them expressed in annual terms (m3/year).
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2.1. IIAAL—Intervention Independent Annual Apparent Losses

The I IAAL includes the following components:

• Unavoidable measuring errors (I IAALMES), which are associated with the minimum (initial)
measuring the error of brand new water meters. The magnitude of this term depends not
only on the metering technology but also on the consumption characteristics of the users, as
defined by their water consumption flow rate probability distribution function [24].

This component also includes a contribution from the number of meters damaged or not working
because of a manufacturing defect or an incorrect installation. These additional losses occur regardless
of the manufacturer or meter technology employed as there is always a percentage of procured water
meters failing after installation. The number of defective meters depends, among other factors, on
their working principle, manufacturing quality, installation procedures or working conditions in the
field. The amount of water loss in a meter failure event is a function of (i) the average time between
failure and repair/replacement of the meter and (ii) the rate of consumption of the customer.

• Unavoidable illegal uses of water (I IAALILL). Even if great effort and resources are put in place to
avoid the illegal uses of water, there will always be a minimum volume of water taken from the
system without the company’s knowledge or authorization. This minimum volume is mainly
related to local socio-cultural and economic conditions.

• Systematic data handling errors (I IAALDH). This component is typically caused by data
manipulations performed by the water utility when actual meter readings are not available
or are noticeably wrong. Frequently, it is associated with incorrect water consumption calculation
procedures and incorrect estimations of meter readings. Consequently, unless these procedures
are changed, the magnitude of this term will remain approximately constant over time and be
independent of the frequency of the intervention activities. However, only when consumption
calculation procedures are extremely imprecise does the magnitude of this component compared
to the previous ones prove significant.
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2.1.1. IIAALMES—Intervention Independent Annual Apparent Losses Due to Unavoidable
Measuring Errors

There is always a technically minimal volume of unmeasured water, defined as the Unavoidable
Annual Unmeasured Volume (UAUV), that cannot be completely removed, even in well-maintained
and properly managed systems. The reason is simple: water meters have an intrinsic error even at
the time of installation (Table 1) [23]. This initial and minimum achievable error mainly depends on
the working principle of the meter. Therefore, the UAUV of a water utility can be calculated as a
weighted average of the initial errors of the customers’ meters installed in the field (Equation (1)).
For this weighing procedure, the most accurate parameter that can be used is the customers’ annual
water consumption.

UAUV = (−1)× ∑
i
(εi(0)× ACVi) (1)

where sub-index i refers to each specific meter type in the utility, εi(0) is the average initial weighted
error [24] of a meter type i, and ACVi (m3/year) is the Annual Consumption Volume of all the
customers using this meter type. As a convention, the weighted error of a meter type i, εi(t), t years
after installation, has a negative value when the meter is under-registering water consumption from a
user, and a positive value if it is over-registering [31]. Consequently, the negative symbol in front of
the equation compensates the negative sign of the error to obtain positive figures of apparent losses
when meters are under-registering water consumption.

Table 1. The typical ranges for the initial weighted error of different water meter types [32].

Worst Case (%) Best Case (%)

Single jet −5 −2
Oscillating piston −1 +0
AWWA Single-jet −7 −3
AWWA Multi-jet −7 −3

Fluidic −7 −5
Multi-jet −6 −2

AWWA Nutating disc −3 −1

The actual ACVi of a meter type is, in some cases, difficult to obtain as its calculation requires
knowledge of the error of the water meters installed in the system. For this reason, and considering
that the ACVi is, at this stage, employed as a weighting parameter, the use of Annual Registered
Volume (ARVi, in m3/year) may be considered instead. The relationship between ACVi and ARVi is
defined in Equation (2).

ACVi =
ARVi

1 − εi(t)
(2)

Additionally, it should be highlighted that the lowest possible values of measuring errors
associated with water meters do not only depend on the technical characteristics of the meters.
There are external influences that also affect those minimum achievable measuring errors. Examples
of these factors include the presence of private storage tanks at customers’ households, poor water
quality, service interruptions, average service pressure, and piping or water appliances technical
characteristics. To consider that, an Infrastructure Condition Factor (ICF) can be defined in a similar
way to real losses [32]. Generally, this factor adopts a value greater than one and corrects the theoretical
minimum value of UAUV. A more accurate approximation of ICF can be derived for a particular
system conducting a detailed research of the initial measurement errors of the meters as described in
Reference [25].

One additional consideration needs to be made when calculating the unavoidable measuring
errors. Water meters are complex measuring instruments that incorporate high precision mechanical
and/or electronic components. Although water meter manufacturers put a great effort in designing
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reliable and durable devices, they are not completely free of manufacturing defects. Moreover, during
the transportation and installation activities, there is a possibility that uncontrolled factors affect the
metrology of the meters. This could be the case if a meter is dropped on the ground or solid particles
enter the measuring chamber and block the rotating piston or the impeller.

Moreover, and due to their technical complexity, there is a small probability that a critical
component of an in-service meter fails without any apparent cause [33]. Obviously, the causes
of failures in water meters are diverse and vary depending on several factors like age, totalized
volume, working principle and design of the meter, the occurrence of pressure transients, maximum
consumption flow rates, water quality, etc. The determination of the parameters that define failure
probabilities is a complex field in itself and requires specific studies to establish statistically valid
figures for each meter type. To calculate this, a usual assumption is to consider that the volume used
by a customer with a non-working meter is not registered at all. Consequently, an estimation of the
volume lost associated with meter failures, the Annual Detected Meter Failures Apparent Losses
(ADMFAL, in m3/year), can be obtained based on the average consumption of customers belonging
to group i, the failure rate probabilities of the installed meters, and the average time between failure
and repair/replacement of the meter, as defined by Equation (3):

ADMFAL = ∑
i
(AMFFi/100 × ACVi × ARTi) (3)

where AMFFi (%/year) is the Annual Meter Failure Frequency of meter type i and ARTi (years) is the
Average Repair Time between the occurrence and the resolution of the meter failure.

Consequently, the overall I IAALMES can be estimated through

I IAALMES = ICF × UAUV + ADMFAL (4)

2.1.2. IIAALILL—Intervention Independent Annual Apparent Losses Due to Illegal Uses of Water

Unmetered illegal uses of water are a common problem for many water utilities. The importance
of this component is related to factors like the water tariff, quality of service, private plumbing
system and housing design, per capita income, availability of water, pluviometry, water distribution
infrastructure conditions, etc. [34]. In any case, independently of the human and technical resources
used by the water utility to confront illegal uses, there will always be an achievable minimum volume
below which stolen water cannot be further reduced.

Therefore, illegal uses can be split in two categories: (i) one corresponding to the minimum
achievable level of unauthorized uses of water, which is not a function of the number of inspections
conducted by the water utility and, (ii) another that can be minimized by increasing the frequency
of inspections of customer connections. The first component is, in fact, the Intervention Independent
Annual Apparent Losses due to illegal consumption (I IAALILL, in m3/year), whereas the second one
will be considered below as an intervention dependent component.

It is expected that I IAALILL figures are low in developed countries and can reach a significant level
in developing or underdeveloped countries. In any case, the I IAALILL can be calculated as follows:

I IAALILL = ∑
j
(AIFj/100 × ACVj) (5)

where sub-index j is related to each customer type in the utility, AIFj (%/year) is the Average Illegal
use Frequency of customers belonging to type j and ACVj (m3/year) is the Annual Consumption
Volume of all the customers belonging to group j.
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2.1.3. IIAALDH—Intervention Independent Annual Apparent Losses Due to Systematic Data
Handling Errors

The third component of I IAAL is related to the manipulation of the water meter readings [34–37].
Currently, there are very few water utilities in the world that have a full implementation of an Advanced
Meter Infrastructure (AMI). In most cases, the installation of smart meters and communication
infrastructure is only limited to trials with a reduced number of meters. Therefore, the most frequent
situation is that water meters are still read manually by field staff and abnormal readings are corrected
by automatic algorithms or specialized technicians at the commercial department. The magnitude of
data handling errors depends on the particular reading procedures, working practices, and algorithms
used by each water company. In the methodology presented, this component is defined as Intervention
Independent Annual Apparent Losses due to data handling (I IAALDH , in m3/year). Quite frequently,
the magnitude of I IAALDH is similar every year and independent of the type or age of the meters
installed [10]. I IAALDH will only change if the current calculations and working procedures used
by the utility are changed. As a general rule, the more advanced and automated the water meter
reading practices, the lower the importance of this component. Unfortunately, the actual magnitude of
this term can only be obtained if a comprehensive audit of the commercial system is conducted. The
I IAALDH is calculated as shown by Equation (6):

I IAALDH = DHE × ∑
i

NMi (6)

where DHE is the Data Handling Error parameter (m3/(meter × year) and it’s assumed to be the same
for the whole utility) and NMi is the total number of meters belonging to type i (thus, ∑

i
NMi is the

actual number of meters in the utility).

2.2. IDAAL—Intervention Dependent Annual Apparent Losses

The second category of apparent losses, the one that is actually affected by the control and
reduction policies implemented by the water utility, is called Intervention Dependent Annual Apparent
Losses (IDAAL, in m3/year). Similar to the concepts applied to find the economic level of real losses,
more frequent interventions by the utility reduce the magnitude of this component while delayed
interventions will lead to higher losses. In the case of apparent losses, the reason for this can be easily
found in the growing nature of the losses; water meters as mechanical devices subject to wear tend to
underperform with time. Consequently, according to this principle, the under-registration of water
consumption by the water meter increases with time or with totalized volume. A similar concept can
also be applied to solid state (non-mechanical) water meters with electronic components. However,
in this case, the reason for an increased under-registration of water consumption is related to the
increasing frequency of failure of electronic components and battery power with age.

The IDAAL can also be split into two components:

• Intervention Dependent Apparent Losses associated with measuring errors (IDAALMES).
This component accounts for the amount of water not registered by a functional water
meter. The rate of increase of the volumes not registered by the meters every year depends on the
manufacturing and design quality of the meters and the working conditions in the field.

• Intervention Dependent Apparent Losses associated with illegal consumption (IDAALILL).
Unauthorized uses of water in the system caused by meter tampering and illegal connections are
included within this category. The magnitude of the volume stolen every year from the water
company is directly related to the inspection frequency of the connections [38].
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2.2.1. IDAALMES—Intervention Dependent Annual Apparent Losses Associated with
Measuring Errors

Water meter ageing caused by the wear of mechanical parts frequently leads to more negative
measuring errors and higher starting flow rates [23,39], which makes it difficult to register leaks
occurring inside the households. After t years from the time of installation, a degraded error curve
combined with the consumption pattern of the user yields a weighted error larger than the initial
weighted error of the meter. In this respect, most works conducted to date in relation to water meter
degradation assume that the weighted error evolves linearly with time (Figure 4) or with the totalized
volume [9,24,40]. Thus, the weighted error evolution can be expressed as follows:

εi(t) = εi(0)− ADRi × t (7)

where εi(0) is the initial weighted error of type i meters, εi(t) is the average weighted error of type i
meters t years after installation and, finally, ADRi (%/year) represents the Annual Degradation Rate
of the weighted error of meters of type i.
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Thus, as a water meter degrades with time, the volume of unregistered water will increase.
The rate at which apparent losses grow for each meter type is called the Natural Rate of Rise of
Apparent Losses due to meter inaccuracies (NRRALMESi , in m3/year2). This parameter can be
obtained by multiplying the degradation rate of the weighted error of each meter type, ADRi (%/year),
by the total annual consumption volume of the meters belonging to this group, ACVi (m3/year).

NRRALMESi = ADRi/100 × ACVi (8)

Consequently, the magnitude of the Intervention Dependent Annual Apparent Losses due to
meter inaccuracies for meter type i in year t, IDAALMESi (t) (in m3/year), will be directly related to
the average age of the meters of this type (t) and the annual rate of growth of the unmeasured volumes,
as defined in Equation (9).

IDAALMESi (t) = ADRi/100 × ACVi × t = NRRALMESi × t (9)

The total IDAALMES(t) for the whole system would then be obtained by simply adding all the
values calculated for each meter type i.

Those utilities without the required data by meter type can conduct an initial rough estimation of
the IDAALMES(t) by making the following assumptions:

- Employ a single value of the NRRAL∗
MES for all meters in the system regardless of their type.

- Use an average meter age for all meters in the system, t∗.

IDAAL∗
MES(t

∗) = NRRAL∗
MES × t∗ (10)
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2.2.2. IDAALILL—Intervention Dependent Annual Apparent Losses Associated with
Illegal Connections

Every water utility has a minimum achievable level of illegal consumption (I IAALILL) below of
which it is not feasible to obtain further reductions, even if strict control measures and meticulous
field inspections are undertaken. This unavoidable level of illegal use strongly depends on the local
socio-economic and cultural characteristics.

On top of that minimum level, illegal uses of water may also increase with time if control measures
are not implemented [37]. In this case, the approach followed is similar to the one previously described
for the measuring errors. For each type of customer j there will be an Annual Illegal Consumption
Increasing Rate (AICRj, in %/year). This rate represents the percentage of users per year that may
become illegal given the control measures currently adopted by the utility. To consider an average
single index for the appearance of illegal uses across the system, a weighted average of AICR can be
calculated. The overall rate at which the illegal uses increase within the water system is defined by the
Natural Rate of Rise of Apparent Losses due to illegal connections (NRRALILL, in m3/year2):

NRRALILLj = AICRj/100 × ACVj (11)

Subsequently, the magnitude of the Intervention Dependent Annual Apparent Losses due to
illegal consumption for customer type j, after t years from the last inspection, IDAALILLj(t) (in
m3/year), will be obtained as

NRRALILLj(t) = AICRj/100 × ACVj × t = NRRALILLj × t (12)

The total IDAALILLj(t) for the whole system would then be obtained by simply adding all the
values calculated for each customer type j. Additionally, for systems with no data available, it is
possible to make a rough estimation of this parameter IDAAL∗

ILL (t) by simply using a single figure
for all the customers in the system.

3. Policies to Reduce Apparent Losses and Related Costs

Apparent losses reduction policies refer, in the present work, to the activities conducted
periodically that help to reduce the total amount of water served to the customers and not accounted
for by the utility (either because it is stolen or not measured by the installed meters). The various
intervention activities implemented by the utility will only affect the intervention dependent
components of the losses, i.e., the IDAAL. In other words, the intensity of the activities and actions
aimed at reducing water losses will not affect the volumes associated with I IAAL as these volumes are
related to the structural parameters of the water system and can only be improved if these structural
characteristics are modified. For example, the IDAALMES could be minimised if the water utility
replaces velocity domestic meters with solid-state meters [24].

The two most obvious intervention activities carried out by water utilities are meter replacements
to improve measuring errors and field inspections of customers’ connections to reduce the number of
illegal users and meter tampering. The intensity at which each one of these activities is implemented is
defined by the time elapsed between two interventions. In the case of IDAALMES, the intervention
period refers to the time frame that it takes a water company to replace a meter (TMES) since it was
installed, while in the case of IDAALILL, the intervention period is related to the time required to
inspect all water connections (TILL). These intervention periods, which take into account the complete
system, are named TMES and TILL, respectively, and expressed in years. A sub-index i or j is added
when these parameters refer to a specific meter or customer types respectively. The longer the periods,
the less intensive the water loss reduction activities and the lower the annual cost of such activities,
as fewer resources are needed to carry them out. The magnitude of TMES and TILL, as defined by
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the water utility, characterise the average annual value (Equations (13) and (14)) associated with that
intervention policy and the variation range of each one of the components of the IDAAL (Figure 5).

IDAALMESi =
1
2

NRAALMESi × TMESi (13)

IDAALILLj =
1
2

NRAALILLj × TILLj (14)
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Apparent loss control policies are not solely defined by the magnitude of the losses. A detailed
analysis of the costs required to implement these periodic activities also needs to be conducted.
Similarly to the approach followed for real losses [41], the parameters TICMESi and TICILLj (both in €)
define the total intervention costs, i.e., the cost of renewing the meters’ stock belonging to type i and
the cost of inspecting all customers’ connections of type j. If these costs are expressed on an annual
basis, they can be calculated as

AIBMESi =
TICMESi

TMESi

=
TICMESi × NRRALMESi

2

(
1

IDAALMESi

)
(15)

AIBILLj =
TICILLj

TILLj

=
TICILLj × NRRALILLj

2

(
1

IDAALILLj

)
(16)

where AIBMESi (€/year) represents the average Annual Intervention Budget of replacing the type i
meters, and AIBILLj (€/year) represents the Annual Inspection Budget of customers’ connections of
type j.

This way, each policy is now fully characterized by means of two parameters: annual water losses
(IDAALMESi and IDAALILLj , respectively) and annual costs (AIBMESi and AIBILLj , respectively).
A third parameter, the period between interventions (TMES and TILL, respectively) relates losses
(Equations (13) and (14)) and costs (Equations (15) and (16)). In other words, depending on the duration
of these periods, the parameters that characterise each specific policy are automatically determined.

The relationship between these three parameters can be illustrated by representing water losses
(IDAAL, horizontal axis) against the intervention costs (AIB, vertical axis), as depicted in Figure 6.
In this figure, two particular water reduction policies, 1 and 2, define two different intervention
intensities. Scenario 1 would correspond a situation in which the annual budget for reducing water
losses is low and, consequently, the annual volume of apparent losses are considerable. On the other
hand, in scenario 2, the water utility has increased the intervention frequency, increasing the budget,
and has managed to reduce the apparent loss volumes.
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amount of losses ( 𝐼𝐷𝐴𝐴𝐿ொௌഢതതതതതതതതതതതതതത  or 𝐼𝐷𝐴𝐴𝐿ூ௅௅ണതതതതതതതതതതതതത ) can then be calculated as the sum of the annual 
intervention budgets (AIBMES or AIBILL) and the annual cost of water (𝐴𝐶𝑊ொௌ೔ or 𝐴𝐶𝑊ூ௅௅ೕ): 
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𝑇𝐴𝐶ூ௅௅ೕ = 𝐴𝐼𝐵ூ௅௅ೕ + 𝐴𝐶𝑊ூ௅௅ೕ =  𝑇𝐼𝐶ூ௅௅ೕ × 𝑁𝑅𝑅𝐴𝐿ூ௅௅ೕ2 ቆ 1𝐼𝐷𝐴𝐴𝐿ூ௅௅ണതതതതതതതതതതതതതቇ + 𝑃𝑊 × 𝐼𝐷𝐴𝐴𝐿ூ௅௅ണതതതതതതതതതതതതത (10) 

While the term associated with intervention budgets (𝐴𝐼𝐵) is higher with lower values of losses 
(𝐼𝐷𝐴𝐴𝐿തതതതതതതതത), the term corresponding to the cost of water (𝐴𝐶𝑊) shows the opposite behaviour. The 
graphical representation of these relations (Figure 7) demonstrates that the Total cost function (𝑇𝐴𝐶) 
reaches a minimum value for which the total costs are minimised. 

A
IB

2
> 

A
IB

1

2

Cost

T2 < T1

1

IDAAL2 < IDAAL1 IDAAL 

Figure 6. The general main cost curve for one intervention policy.

4. Calculation of Economic Level of Apparent Losses

The Economic Level of Apparent Losses (ELAL, in m3/year) is defined as the magnitude of
apparent losses for which the total costs, calculated as the sum of the control and reduction policies
and the utility’s cost of the water losses, reach a minimum.

The ELAL calculation can be conducted using a basic econometric analysis. Both control policies,
the one that manages the ageing of the meters and the one supervising illegal uses, are independent in
terms of costs, volumes, and influencing parameters. Therefore, the analysis should be carried out
separately for each one of them using the same methodology, which is equivalent to the one currently
used and widely accepted for real losses [32,40–42].

However, one more element is needed to perform that analysis—the cost of the water loss volumes.
Conversely, to what is considered in real losses, the utility cost of one cubic meter of apparent losses
is not the cost of producing it, but the amount a customer would have paid for it if it had been
measured by the water meter [24,33]. This applies to both apparent losses caused by meter inaccuracies
and illegal uses. Considering this, the cost associated with the current apparent water losses can be
calculated as

ACWMESi = PW × IDAALMESi (17)

ACWILLj = PW × IDAALILLj (18)

where ACWMESi (€/years) is the Annual Cost of Water lost due to measuring errors, ACWILLj (€/years)
is the Annual Cost of Water lost due to illegal uses and PW (€/m3) is the selling Price of Water. At this
point, it should be noted that the exact calculation of this price may become very complex when block
tariffs are applied. For a precise calculation, the ACWMESi and ACWILLj should always consider the
selling price of the last cubic meter sold to each customer.

The Total Annual Costs of each control policy (TACMESi or TACILLj , both in €/year) for a
given amount of losses (IDAALMESi or IDAALILLj ) can then be calculated as the sum of the annual
intervention budgets (AIBMES or AIBILL) and the annual cost of water (ACWMESi or ACWILLj ):

TACMESi = AIBMESi + ACWMESi =
TICMESi × NRRALMESi

2

(
1

IDAALMESi

)
+ PW × IDAALMESi (19)

TACILLj = AIBILLj + ACWILLj =
TICILLj × NRRALILLj

2

(
1

IDAALILLj

)
+ PW × IDAALILLj (20)

While the term associated with intervention budgets (AIB) is higher with lower values of
losses (IDAAL), the term corresponding to the cost of water (ACW) shows the opposite behaviour.
The graphical representation of these relations (Figure 7) demonstrates that the Total cost function
(TAC) reaches a minimum value for which the total costs are minimised.
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Mathematically, the minimum of the cost function can be found by equalizing its derivatives
to zero ( d(TACMES)

d(IDAALMES)
= 0 and d(TACILL)

d(IDAALILL)
= 0). By doing so, it is possible to obtain an analytical

expression providing the optimal value for measuring errors and illegal uses of water.

IDAALOPT
MESi

=

√
TICMESi × NRRALMESi

2 × PW
(21)

IDAALOPT
ILLj

=

√
TICILLj × NRRALILLj

2 × PW
(22)

where IDAALOPT
MESi

and IDAALOPT
ILLj

(m3/year) are, respectively, the optimum levels of each
intervention dependent component of apparent losses.

After finding the level of losses that leads to the minimum of the cost function of each policy, the
overall amount of apparent losses will be the sum of the current intervention independent losses and
the economic level of the intervention dependent components, as shown in Equation (23).

ELAL = I IAAL + IDAALOPT

= (I IAALMES + I IAALILL + I IAALDH) +

(
∑
i

IDAALOPT
MESi

+∑
j

IDAALOPT
ILLj

) (23)

From the above, the remaining parameters related to an optimized policy can be calculated
as follows:

• Intervention costs (from Equation (15) for AIBOPT
MESi

and Equation (16) for AIBOPT
ILLj

):

AIBOPT
MESi

=
1
2

TICMESi × NRRALMESi

IDAALOPT
MESi

(24)

AIBOPT
ILLj

=
1
2

TICILLj × NRRALILLj

IDAALOPT
ILLj

(25)

AIBOPT = ∑
i

AIBOPT
MESi

+ ∑
j

AIBOPT
ILLj

(26)

• Optimum intervention periods (from Equations (15), (21), and (24) for TOPT
MESi

, and Equations (16),
(22), and (25) for TOPT

ILLj
):
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TOPT
MESi

=
TICMESi

AIBOPT
MESi

=

√
2 × TICMESi

NRRALMESi × PW
(27)

TOPT
ILLj

=

√
2 × TICILLj

NRRALILLj × PW
(28)

• Percentage of water meters or customers’ connections annually replaced or inspected, respectively,
by each policy:

PAIMOPT
MESi

=
1

TOPT
MESi

× 100 (29)

PAIMOPT
ILLj

=
1

TOPT
ILLj

× 100 (30)

The minimum of the cost function related to apparent losses is achieved by applying the
optimal intervention period for the meter replacement and inspection of customers’ connections.
These intervention periods should be calculated independently to each other. As presented in the
second case study (Appendix B), the costs can be significantly reduced if meters are optimally replaced
and the inspections are conducted with an adequate periodicity. More precisely, for the case study
presented, the total costs of apparent loss management can be reduced by 11% by modifying the
intervention periods. The proposed meter replacement periods are 30% shorter for three meter types
and 20% larger for the remaining meter type. The optimal inspection interval of the customers’
connections is 100% longer.

5. Apparent Loss Indicators

In order to benchmark the apparent loss management performance of a water utility the following
indicators are proposed based on the classification used in this work:

• Apparent Losses Index (ALI). This indicator is a measure of how the current apparent losses
compare to the minimum achievable value. This indicator should always be greater than one.

ALI =
CAAL
IIAAL

(31)

• Apparent Losses Economic Index (ALEI). This indicator measures how close the utility losses are
with respect to the economic level of losses. The target for a properly managed water utility is to
attain a value for the ALEI as close to one as possible.

ALEI =
CAAL
ELAL

(32)

• Apparent Losses Economic Potential Index (ALEPI). The ALEPI is not directly related to the
water loss management policies of the utility. It measures how far the economic level is from the
unavoidable level of losses.

ALEPI =
ELAL
IIAAL

(33)

Finally, all three indicators defined above can be related as

ALI = ALEI × ALEPI (34)
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6. Conclusions

In addition to the IWA apparent losses components defined in the traditional water balance, this
manuscript proposes two categories taking into account their dependency with the regular intervention
policies implemented by the water utility to mitigate water losses. The resulting constituents have
been comprehensively described and explained in the text and brief indications for their quantification
have been provided.

The calculation of the economic level of apparent losses has been proposed based on this new
categorization. It assumes that intervention dependent components constantly grow with time if the
water utility does not introduce adequate measures to control and reduce losses. On the contrary,
intervention independent terms are inherent of the water system and can only be improved if structural
measures are introduced. Intervention frequency does not modify the actual value of this type of loss.
Therefore, the economic optimization only applies to the intervention dependent terms as they are the
only ones that can be affected by the amount of resources a water utility puts on the field to reduce
water losses.

The main intervention activities that can be conducted by the water company to reduce apparent
losses are water meter replacement and customers’ connection inspections. Therefore, the work
presented allows for a quick calculation of the optimum replacement period of the meters and the
inspection of the customers’ connections. Once these figures have been obtained it is possible to
derive the economic level of apparent losses and the investment required to achieve the desired level.
The proposed procedure follows the same approach and concepts as the well-accepted procedure
commonly used to find the economic level of real losses. Additionally, the number of parameters
required has been reduced to a minimum and the calculations have been deliberately kept simple to
ensure the applicability of the methodology. Additionally, the manuscript presents a set of performance
indicators to benchmark the current level of apparent losses with respect to the minimum achievable
and the economic level of losses.

With this work, the authors expect to connect the techniques available to calculate the
economic level of apparent losses with the ones currently used for real losses. In both cases, the
assumptions, parameters, and simplifications made are comparable and the resulting equations have
an undeniable similarity.
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Abbreviations

ACV Annual Consumption Volume (m3/year);
ACWILL Annual Cost of Water lost due to illegal connections (€/year);
ACWMES Annual Cost of Water lost due to meter inaccuracies (€/year);
ADMFAL Annual Detected Meter Failures Apparent Losses (m3/year);
ADR Annual Degradation Rate of the weighted error (%/year);
AIB Annual Intervention Budget (€/year);
AIBILL Annual Inspection Budget of customers’ connections (€/year);
AIBMES Annual Intervention Budget due to meter replacement (€/year);
AICR Annual Illegal Consumption Increasing Rate (%/year);
AIF Average Illegal use Frequency (%/year);
ALEI Apparent Losses Economic Index (-);
ALEPI Apparent Losses Economic Potential Index (-);
ALI Apparent Losses Index (-);
AMFF Annual Meter Failure Frequency (%/year);
ART Average Repair Time between the occurrence and resolution of a meter failure (years);
ARV Annual Registered Volume (m3/year);
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CAAL Current Annual Apparent Losses (m3/year);
DHE Data Handling Error parameter (m3/(meter × year);
ELAL Economic Level of Apparent Losses (m3/year);
ε(t) Average Weighted Error depending on time (%);
ε(0) Average Initial Weighted Error (%);
i Meter type;
ICF Infrastructure Condition Factor (-);
IDAAL Intervention Dependent Annual Apparent Losses (m3/year);
IDAALILL Intervention Dependent Annual Apparent Losses due to illegal connections (m3/year);
IDAALMES Intervention Dependent Annual Apparent Losses due to meter inaccuracies (m3/year);
IIAAL Intervention Independent Annual Apparent Losses (m3/year);
IIAALDH Intervention Independent Annual Apparent Losses due to data handling errors (m3/year);
IIAALILL Intervention Independent Annual Apparent Losses due to illegal connections (m3/year);
IIAALMES Intervention Independent Annual Apparent Losses due to meter inaccuracies (m3/year);
j Customer group;
NM Number of Meters installed (meters);
NRRALILL Natural Rate of Rise of Apparent Losses due to illegal connections (m3/year2);
NRRALMES Natural Rate of Rise of Apparent Losses due to meter inaccuracies (m3/ year2);
PAIMILL Percentage of Annually Inspected Meters (%/year);
PAIMMES Percentage of Annually Replaced Meters (%/year);
PW Selling Price of water (€/m3);
t Time Period (years);
TILL Time required to inspect all water connections (years);
TMES Time required to replace all water meters (years);
TAC Total Annual Cost (€/year);
TACILL Total Annual Cost of the policy associated with the inspection of customers’ connections

(€/year);
TACMES Total Annual Cost of the policy associated with meter replacements (€/year)
TICILL Total Intervention Cost of inspections (€);
TICMES Total Intervention Cost of replacements (€);
UAUV Unavoidable Annual Unmeasured Volume (m3/year);

Appendix A. Case Study 1—Example for a Water Utility with Basic Data

Appendix A.1. General Data

To show the applicability of the economic model presented, a simple case study—only one type of
meter (velocity) and one type of customer (residential)—is analysed. The data of the fictitious system
is provided in Table A1.

Table A1. Case study 1—General data meter and consumer types.

USER TYPE RESIDENTIAL

METER TYPE VELOCITY

NM (meters) 30,000
ACV (m3/year) 4,500,000

ε(0) (%) −5
AMFF (%/year) 0.5

ART (years) 0.7
AIF (%/year) 0.3

ADR (%/year) 0.5
AICR (%/year) 0.15
TMES (years) 14
TILL (years) 3

UICMES (€/meter) 32
UICILL (€/meter) 5

ICF 1.21
DHE (m3/(meter × year)) 0.180

PW (€/m3) 0.9
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All the calculations are presented in the same order as the contents and equations that have
been developed in the main body of the paper: components of apparent losses, current total apparent
losses, costs of current control and reduction policies, calculation of the ELAL, and other apparent
losses benchmarks.

Appendix A.2. IIAAL—(Current) Intervention Independent Annual Apparent Losses

The I IAAL is constituted by three different components. The calculation of the first one, due to
meter measuring inaccuracies, relies on the value UAUV (Equation (1)):

UAUV = (−1)× ε(0)× ACV = 225,000
m3

year

and also on the value of ADMFAL (Equation (3)):

ADMFAL = AMFF × ACV × ART = 15,750
m3

year

Therefore, the first component of I IAAL results in (Equation (4))

I IAALMES = ICF × UAUV + ADMFAL = 288,000
m3

year

The second component, due to illegal consumption, is calculated through (Equation (5))

I IAALILL = AIF × ACV = 13,500
m3

year

In third place, the apparent losses caused by data handling errors are (Equation (6))

I IAALDH = DHE × NM = 5400
m3

year

Finally, the value of I IAAL can be calculated as the sum of the three previous components
(Figure 3):

I IAAL = I IAALMES + I IAALILL + I IAALDH = 306,900
m3

year

Appendix A.3. IDAAL—(Current) Intervention Dependent Annual Apparent Losses

The IDAAL has two components. The calculation of the first one, due to metering inaccuracies,
begins by solving the NRRALMES (Equation (8)):

NRRALMES = ADR/100 × ACV = 22,500
m3

year

and the average value, IDAALMES, is (Equation (13))

IDAALMES =
1
2

NRRALMES × TMES = 157,500
m3

year

Likewise, the second component, associated with illegal consumption, can be obtained through
NRRALILL (Equation (11)):

NRRALILL = AICR/100 × ACV = 6750
m3

year
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and the average value, IDAALILL, is (Equation (14))

IDAALILL =
1
2

NRRALILL × TILL = 10,125
m3

year

Consequently, the overall value of IDAAL can be calculated as the sum of the two components
(Figure 3):

IDAAL = IDAALMES + IDAALILL = 167,625
m3

year

Appendix A.4. CAAL—Current Annual Apparent Losses

The total current annual apparent losses, CAAL, is obtained by adding the two categories
calculated in the previous sections (Figure 3):

CAAL = I IAAL + IDAAL = 474,525
m3

year

Considering the varying nature of the different apparent losses components, it is possible to plot
their evolution with time (annual losses vs. time) as shown in Figure A1. The various magnitudes of
the parameters used in the calculations, such as the different slopes or intervention periods, can be
easily identified for this particular case study.
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Appendix A.5. TAC—Total Annual Costs of Current Control Policies

To calculate the total costs of each intervention policy (meter replacement and meter inspection),
the first step is to obtain the total intervention costs by taking into account the unitary cost per meter
and the total number of meters. For the case of the meter replacement policy, the total intervention
costs are

TICMES = UICMES × NM = 960,000 €

This way, the annual intervention budget is obtained (Equation (15)):

AIBMES =
TICMES

TMES
= 68,571

€
year

The annual cost of lost water caused by measuring error is (Equation (17))

ACWMES = PW × IDAALMES = 141,750
€

year

and the total annual costs are (Equation (19))

TACMES = AIBMES + ACWMES = 210,321
€

year

Similar calculations can then be performed for the customers’ connections inspection policy.
The total intervention costs are

TICILL = UICILL × NM = 150,000 €

and the annual intervention budget is obtained (Equation (16)):

AIBILL =
TICILL

TILL
= 50,000

€
year

The annual cost of lost water by illegal uses is (Equation (18))

ACWILL = PW × IDAALILL = 9113
€

year

and the total annual costs are (Equation (20))

TACILL = AIBILL + ACWILL = 59,113
€

year

Figure A2 shows both costs curves, AIBMES and AIBILL, for both policies. The particular points
that spot the current values for each one are also highlighted in the figure.

Finally, the total costs of both policies are

TAC = TACMES + TACILL = 269,434
€

year
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Appendix A.6. ELAL—Control Policies Frequency and the Economic Level of Apparent Losses

As explained above, the cost of each policy should be minimized independently from each other.
The economic level of losses volume associated with the meter replacement policy can be calculated
through (Equation (21))

IDAALOPT
MES =

√
TICMES × NRRALMES

2 × PW
= 109,545

m3

year

The resulting economic replacement period is (Equation (27))

TOPT
MES =

√
2 × TICMES

NRRALMES × PW
= 9.74 years

The percentage of the total stock of meters that is replaced every year is (Equation (29))

PAIMOPT
MES =

1
TOPT

MES
× 100 = 10.3%

The cost of the economic annual intervention budget equals the value of the lost water
(Equations (15) and (17)):

AIBOPT
MES =

TICMES

TOPT
MES

= ACWOPT
MES = PW × IDAALOPT

MES = 98,590
€

year

and the resulting minimized total annual costs are (Equation (19))

TACOPT
MES = AIBOPT

MES + ACWOPT
MES = 197,180

€
year

The parallel calculations for the meter inspection policy, focused on illegal consumptions, are
(Equations (16), (18), (22), (28), and (30)):

IDAALOPT
ILL =

√
TICILL × NRRALILL

2 × PW
= 23,717

m3

year
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TOPT
ILL =

√
2 × TICILL

NRRALILL × PW
= 7.03 years

PAIMOPT
ILL =

1
TOPT

ILL
× 100 = 14.2%

AIBOPT
ILL =

TICILL

TOPT
ILL

= ACWOPT
ILL = PW × IDAALOPT

ILL = 21,345
€

year

and the total minimized annual costs are (Equation (20))

TACOPT
ILL = AIBOPT

ILL + ACWOPT
ILL = 42,691

€
year

Figures A3 and A4 show, respectively, the three costs curves for the meter replacement policy and
the result of the minimization of the costs function.
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Up to this point, the results for each policy have been obtained independently from each other.
Then, the addition of the total values yields the optimized total volume (for the whole utility) of the
annual apparent losses (Figure 3):

IDAALOPT = IDAALOPT
MES + IDAALOPT

ILL = 133,262
m3

year

The value of the ELAL for the whole utility turns out to be (Equation (23))

ELAL = I IAAL + IDAALOPT = 440,162
m3

year

and the resulting minimized total costs are

TACOPT = TACOPT
ILL + TACOPT

ILL = 239,871
€

year

Figure A5 shows the magnitude of the main components of total apparent losses after
minimization: I IAAL that, being independent of the intervention frequencies, it is not affected
by the minimization of the cost function. On the contrary, this figure also shows how both IDAALOPT

MES

and IDAALOPT
ILL have been minimized. The same figure shows the total costs curve associated with

each of those two policies to demonstrate that the minimum point corresponds, in each case, to the
minimized value.Water 2018, 9, x FOR PEER REVIEW  21 of 32 
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Figure A5. Case study 1—Final representation of the ELAL value.

As a summary, Table A2 (for volumes) and Table A3 (for costs) show all the numerical results in
which key values, current and minimized, have been highlighted in red. Additionally, Table A4 shows
the results for the three apparent losses indicators defined in this paper.
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Table A2. Case study 1—Summary of results of apparent losses volumes.

IIAALMES
288,000 m3/year

IIAAL IIAALILL
306,900 m3/year 13,500 m3/year

CAAL IIAALDH
474,525 m3/year 5400 m3/year

IDAALMES
IDAAL 157,500 m3/year

167,625 m3/year IDAALILL
10,125 m3/year

IIAALMES
288,000 m3/year

IIAAL IIAALILL
306,900 m3/year 13,500 m3/year

ELAL IIAALDH
440,162 m3/year 5400 m3/year

IDAALOPT
MES

IDAALOPT 109,545 m3/year

133,262 m3/year IDAALOPT
ILL

23,717 m3/year

Table A3. Case study 1—Summary of results of costs.

AIBMES
(€/year)

AIBILL
(€/year)

ACWMES
(€/year)

ACWILL
(€/year)

TACMES
(€/year)

TACILL
(€/year)

TAC
(€/year)

Current 68,571 50,000 141,750 9113 210,321 59,113 269,434
Minimized 98,590 21,345 98,590 21,345 197,180 42,691 239,871

Table A4. Case study 1—Apparent loss indicators.

Equation Variable Calculation Result

(31) ALI CAAL
IIAAL 1.55

(32) ALEI CAAL
ELAL 1.08

(33) ALEPI ELAL
IIAAL 1.43

Appendix A.7. Case Study 1—Conclusions

The value of ALI shows that the current apparent losses (CAAL) are 55% greater than the technical
minimum achievable value (IIAAL). This indicator is equivalent to the ILI used for real losses. On the
other hand, the economic level of apparent losses (ELAL) obtained after the minimization process
is still 43% greater than the technical minimum level, as shown by the ALEPI. So, the improvement
expected from the economic minimization is, according to the ALEI, about 8%. This means that the
current losses are only 8% apart from the economic level that and the water utility is close to the
expected targets.

The results of the minimization also show the way current apparent loss management policies
should be modified. In the first place, the intervention periods should change significantly in
comparison to the current ones—a 30% reduction of the meters replacement period (from 14 to
9.7 years) and 130% extension of the meters inspection period (from 3 to 7 years). This fact highlights
how misleading traditional approaches for these policies can be compared to real accurate approaches.
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As shown by the ALEI, apparent losses could be reduced 8% after minimization, but that figure
refers to the total system apparent losses. If closely considered, the component of apparent losses, once
optimized (IDAAL), would yield savings up to 20%.

Finally, the reduction obtained in the total costs is about 9%, which comes unequally from the
savings produced by optimizing each policy—a 7% reduction in costs associated with the optimization
of the replacement of meters and a 28% reduction in costs due to the optimization of the inspection
of meters.

Appendix B. Case Study 2—Example for a Water Utility with Complete Data

Appendix B.1. General Data

To show the applicability of the economic model herein presented, a complete case study is
analysed with two types of meters (velocity and volumetric) and three types of customers (residential,
small ICI and medium-large ICI). The data used in this case study has been partially taken from a
medium-sized water utility in Spain (Table A5). The total number of users served is over 50,000 and
the population of the city is approximately 175,000. The degradation rates used for velocity (single jet)
and volumetric meters were derived from the study conducted by Gavara-Tortes [43].

Table A5. Case study 2—General data.

USER TYPE RESIDENTIAL SMALL ICI MEDIUM-LARGE ICI

METER TYPE VELOCITY VOLUMETRIC VELOCITY VELOCITY

NMi (meters) 30,000 17,250 2500 250
ACVi (m3/year) 4,500,000 2,587,500 1,250,000 750,000

εi(0) (%) −5 −1 −3 0
AMFFi (%/year) 0.5 0.5 0.5 0.2

ARTi (year) 0.7 0.7 0.7 0.2
AIFj (%/year) 0.3 0.3 0.4 0

ADRi (%/year) 0.5 0.5 0.3 0.1
AICRj (%/year) 0.15 0.15 0.05 0

TMESi (years) 14 14 14 14
TILLj (years) 3 3 3 3

UICMESi (€/meter) 32 37 62 400
UICILLj (€/meter) 5 5 5 50

ICF 1.21
DHE (m3/(meter × year)) 0.18

PW (€/m3) 0.9

Appendix B.2. IIAAL—(Current) Intervention Independent Annual Apparent Losses

The I IAAL has three different components. The calculation of the first one, due to meter
measuring inaccuracies, relies on the value UAUV (Equation (1)):

UAUV = (−1)× ∑
i
(εi(0)× ACVi) = 288,375

m3

year

and also on the value of ADMFAL (Equation (3)):

ADMFAL = ∑
i
(AMFFi × ACVi × ARTi) = 29,481

m3

year

Therefore, the first component of I IAAL results in (Equation (4))

I IAALMES = ICF × UAUV + ADMFAL = 378,415
m3

year
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The second component, due to illegal consumption, is calculated through (Equation (5))

I IAALILL = ∑
j

(
AIFj × ACVj

)
= 26,263

m3

year

In third place, the apparent losses caused by data handling are (Equation (6))

I IAALDH = DHE × ∑
i
(NMi) = 9000

m3

year

Finally, the value of I IAAL can be calculated as the sum of the three components already obtained
(Figure 3):

I IAAL = I IAALMES + I IAALILL + I IAALDH = 413,478
m3

year

Appendix B.3. IDAAL—(Current) Intervention Dependent Annual Apparent Losses

The IDAAL has two components. The calculation of the first one, due to meter measuring
inaccuracies, begins by solving the NRRALMESi and IDAALMESi for each type meter i. Results are
shown in Table A6.

Table A6. Case study 2—Current values of IDAALMESi .

Equation Variable Calculation

Type of Customer/Type of Meter

Residential Small ICI Med-Large ICI

Velocity Volumetric Velocity Velocity

(8) NRRALMESi ADRi/100 × ACVi 22,500 12,938 3750 750
(13) IDAALMESi

1
2 NRAALMESi × TMESi

157,500 90,563 26,250 5250

So, the total value of current IDAALMES, for all the meter types is

IDAALMES = ∑
i

IDAALMESi = 279,563
m3

year

In a parallel way, the second component, associated with illegal consumption, can be obtained
through NRRALILLj and IDAALILLj , as shown in Table A7.

Table A7. Case study 2—Current values of IDAALILLj .

Equation Variable Calculation
Type of Customer

Residential Small ICI Med-Large ICI

(11) NRRALILLj AICRj/100 × ACVj 10,631 625 -
(14) IDALILLj

1
2 NRRALILLj × TILLj 15,947 938 -

So, the total value of current IDAALILL, for all the meter types is

IDAALILL = ∑
j

IDAALILLj = 16,884
m3

year

Finally, the total value of IDAAL can be calculated as the sum of the two components already
obtained (Figure 3):

IDAAL = IDAALMES + IDAALILL = 296,447
m3

year
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Appendix B.4. CAAL—Current Annual Apparent Losses

The total current annual apparent losses, CAAL, are obtained by adding the two categories
calculated in the previous sections (Figure 3):

CAAL = I IAAL + IDAAL = 710,124
m3

year

Appendix B.5. TAC—Total Annual Costs of Current Control Policies

To calculate the total costs of each policy (meters replacement and meters inspection), successive
variables TIC, AIB, ACW, and TAC must be obtained (depending on each type of meter or customer,
respectively). Table A8 shows the results for the policy for replacing meters, focused on managing the
ageing of meters:

Table A8. Case study 2—Current values of costs for the first policy.

Equation Variable Calculation

Type of Customer/Type of Meter

Residential Small ICI Med-Large ICI

Velocity Volumetric Velocity Velocity

- TICMESi UICMES_i × NMi 960,000 638,250 155,000 100,000

(15) AIBMESi

TICMESi
TMESi

68,571 45,589 11,071 7143

(17) ACWMESi PW × IDAALMESi
141,750 81,506 23,625 4725

(19) TACMESi AIBMESi + ACWMESi 210,321 127,096 34,696 11,868

The total added costs are

TACMES = ∑
i

TACMESi = 383,981
€

year

Different costs associated with the meters inspection policy, focused on managing illegal water
uses, are shown in Table A9:

Table A9. Case study 2—Current values of costs for the second policy.

Equation Variable Calculation
Type of Customer

Residential Small ICI Med-Large ICI

- TICILLj UICILLj × NMj 236,250 12,500 12,500

(16) AIBILLj

TICILLj
TILLj

78,750 4167 4167

(18) ACWILLj PW × IDAALILLj 14,352 844 0
(20) TACILLj AIBILLj + ACWILLj 93,102 5010 4167

The total added costs are

TACILL = ∑
j

TACILLj = 102,279
€

year

Finally, the total added costs of both current policies are

TAC = TACMES + TACILL = 486,261
€

year

Appendix B.6. ELAL—Control Policies Frequency and the Economic Level of Apparent

As explained above, both policies and each component within each policy should be optimized
independently of each other. The economic level of losses, intervention period, and the annual
percentage of meters replaced every year, are shown in Table A10:



Water 2018, 10, 1809 26 of 32

Table A10. Case study 2—The first policy parameters after minimization.

Equation Variable Calculation

Type of Customer/Type of Meter

Residential Small ICI Med-Large ICI

Velocity Volumetric Velocity Velocity

(21) IDAALOPT
MESi

√
TICMESi×NRRALMESi

2×PW
109,545 67,731 17,970 6455

(27) TOPT
MESi

√
2×TICMESi

NRRALMESi×PW 9.74 10.47 9.58 17.21

(29) PAIMOPT
MESi

1
TOPT

MESi

× 100 10.3% 9.6% 10.4% 5.8%

The resulting costs are shown in Table A11.

Table A11. Case study 2—The first policy costs after minimization.

Equation Variable Calculation

Type of Customer/Type of Meter

Residential Small ICI Med-Large ICI

Velocity Volumetric Velocity Velocity

(15) AIBOPT
MESi

TICMESi
TOPT

MESi
98,590 60,957 16,173 5809

(17) ACWOPT
MESi

PW × IDAALOPT
MESi

98,590 60,957 16,173 5809
(19) TACOPT

MESi
AIBOPT

MESi
+ ACWOPT

MESi
197,180 121,915 32,346 11,619

and the total optimized costs are

TACOPT
MES = ∑

i
TACOPT

MESi
= 363,060

€
year

In parallel, the optimized (minimum) losses volume, intervention period, and the annual
percentage of inspected meters for the meters inspection policy are shown in Table A12.

Table A12. Case study 2—The second policy parameters after minimization.

Equation Variable Calculation
Type of Customer

Residential Small ICI Med-Large ICI

(22) IDAALOPT
ILLj

√
TICILLj×NRRALILLj

2×PW
37,354 2083 -

(28) TOPT
ILLj

√
2×TICILLj

NRRALILLj×PW 7.03 6.67 -

(30) PAIMOPT
ILLj

1
TOPT

ILLj

× 100 14.2% 15.0% -

The resulting different costs are shown in Table A13.

Table A13. Case study 2—The second policy costs after minimization.

Equation Variable Calculation
Type of Customer

Residential Small ICI Med-Larg ICI

(16) AIBOPT
ILLj

TICILLj

TOPT
ILLj

33,619 1875 -

(18) ACWOPT
ILLj

PW × IDAALOPT
ILLj

33,619 1875 -

(20) TACOPT
ILLj

AIBOPT
ILLj

+ ACWOPT
ILLj

67,238 3750 -
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And the total minimized costs are

TACOPT
ILL = ∑

j
TACOPT

ILLj
= 70,988

€
year

Up to this point, the results for each policy have been obtained in an independent way from each
other. Now, the addition of those total values results in the optimized total volume (for the whole
utility) of annual apparent losses is (Figure 3)

IDAALOPT = IDAALOPT
MES + IDAALOPT

ILL = 241,138
m3

year

Finally, the value of the ELAL for the whole utility turns out to be (Equation (23))

ELAL = I IAAL + IDAALOPT = 654,815
m3

year

and the resulting minimized total costs are

TACOPT = TACOPT
ILL + TACOPT

ILL = 434,048
€

year

As a summary, Table A14 (for volumes) and Table A15 (for costs) show all the numerical results
in which key values, current and optimized, have been highlighted in red. Additionally, Table A16
shows the results for the three apparent losses indicators defined in this paper.

Table A14. Case study 2—Summary of the results of the apparent loss volumes.

IIAALMES
378,415 m3/year

IIAAL IIAALILL
413,678 m3/year 26,263 m3/year

CAAL IIAALDH
710,124 m3/year 9000 m3/year

IDAALMES
IDAAL 279,563 m3/year

296,447 m3/year IDAALILL
16,884 m3/year

IIAALMES
378,415 m3/year

IIAAL IIAALILL
413,678 m3/year 26,263 m3/year

ELAL IIAALDH
654,815 m3/year 9000 m3/year

IDAALOPT
MES

IDAALOPT 201,700 m3/year

241,138 m3/year IDAALOPT
ILL

39,438 m3/year

Table A15. Case study 2—Summary of the results of the costs.

AIBMES
(€/year)

AIBILL
(€/year)

ACWMES
(€/year)

ACWILL
(€/year)

TACMES
(€/year)

TACILL
(€/year)

TAC
(€/year)

Current 132,375 87,083 251,606 15,196 383,981 102,279 486,261
Minimized 181,560 35,494 181,530 35,494 363,060 70,988 434,048
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Table A16. Case study 2—Apparent loss indicators.

Equation Variable Calculation Result

(31) ALI CAAL
IIAAL 1.72

(32) ALEI CAAL
ELAL 1.09

(33) ALEPI ELAL
IIAAL 1.58

Appendix B.7. ELAL—Sensitivity Analysis

Most of the data used in the calculations to obtain the ELAL are easily available: the price
of water, meter replacement and customers’ connection inspection costs, number of meters and
connections, etc. However, the same may not be true for the Annual Degradation Rate, ADRi, of
each meter type i. Unless water meter samples are regularly tested by the utility and a well-defined
procedure is established to assess meter ageing, the actual magnitude of ADRi can be uncertain.
Similarly, the Annual Illegal Consumption Increasing Rate, AICRj, for each customer type j, is also an
uncertain parameter.

In order to assess the impact related to the estimation uncertainties of parameters used in the ELAL
calculation, a sensitivity analysis has been conducted for this particular case study. The sensitivity
analysis considers the uncertainties in the estimation of the ADRi of the 4 m types identified and
also for the overall NRRALMESi (Equation (8)). These parameters affect the IDAALOPT

MESi
(Equation

(21)). A similar procedure has been followed to assess the impact of the AICRj, NRRALILLj , and

IDAALOPT
ILLj

(Equations (11), (22), and (23)).
Figure A6 shows the graphical results of the sensitivity analysis. The resulting ELAL does not

vary more than 10% even for changes in the input variables of up to 50%. In the worst-case scenario,
with the 50% error in any of the seven variables considered, the variation of the ELAL roughly reaches
10%. With the 50% error in all four ADRi, the resulting ELAL variation is less than 10%. The highest
impact of one individual ADRi, the one corresponding to velocity meters of residential customers, is
less than 5%.
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Appendix B.8. Case Study 2—Conclusions

The value of the ALI shows that current apparent losses (CAAL) are 72% greater than the technical
minimum value (IIAAL). Furthermore, the economic level (ELAL) obtained after the minimization
process is still 58% greater than the technical minimum level, as shown by the ALEPI. The improvement
range that can be achieved by the economic minimization is, according to the ALEI, about 9%.

The results of the minimization also show in which way current apparent losses management
policies should be modified. In the first place, the optimized intervention periods have significantly
changed in comparison to the initial values. In general, optimized meter replacement periods are
shorter and optimized meter inspection periods become longer. However, after the calculation of the
economic level of losses, some differences need to be highlighted. While the inspection period for
customer connections more than doubles for both user types, replacement periods are shorter by about
30% in three of the four cases; the optimized replacement time for the fourth one (medium-large ICI)
turns out to be longer than the initial value by 25%.

As shown by the ALEI, apparent losses could be reduced by 9% after the optimization, but that
figure refers to the total system apparent losses. If carefully analysed, the component of apparent
losses that has been optimized (IDAAL) would show a greater decrease, up to 20%.

Finally, a reduction of more than 10% of the total costs can be achieved. This reduction
comes unequally from the savings produced by optimizing the intervention period of each
policy: 6% reduction costs in meter replacement optimization and 31% reduction costs in meter
inspection optimization.
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Appendix C. The comparison Between the Variables Used for Calculating the Economic Level of Real Losses vs. Apparent Losses

Variable
Calculation of the Economic Level

of REAL Losses (ELL)

Calculation of the Economic Level of APPARENT Losses (ELAL)

Apparent Losses Due to Meter Ageing Apparent Losses Due to Illegal Consumption

Growing trend of losses with time
Natural Rate of Rise of Leakage

(NRRL)
Natural Rise of Apparent Losses due to

meter ageing (NRRALMESi )
Natural Rise of Apparent Losses due to illegal

consumption (NRRALILLj )

Intervention to reduce current losses to
their initial value

Pipe inspection Meter replacement Meter/Connection inspection

Unit intervention cost Pipe inspection cost (CI) Meter replacement cost (UICMESi ) Meter/Connection inspection cost (UICILLj )

Annual intervention cost
Annual budget for intervention

(ABI)
Annual intervention (replacement)

budget (AIBMESi )
Annual intervention (inspection) budget

(AIBILLj )

Unit water value Marginal cost of supply (MCS) Price of water (PW) Price of water (PW)

Total annual costs Total annual costs (CT)
Total annual intervention (replacement)

costs (TACMESi )
Total annual intervention (inspection) costs

(TACILLj )

Total annual intervention cost (TAC)

Optimized intervention time period Economic inspection frequency (EIF)
Optimum intervention (replacement)

period (TOPT
MESi

)
Optimum intervention (inspection) period

(TOPT
ILLj

)

Economic level of losses Economic level of real losses (ELL) Economic level of apparent losses (ELAL)

Main indicator on losses level Infrastructure leakage level (ILI) Apparent losses indicator (ALI)
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