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Abstract: Platelets play important roles in thrombosis-dependent obstructive cardiovascular dis-
eases. In addition, it has now become evident that platelets also participate in the earliest stages of
atherosclerosis, including the genesis of the atherosclerotic lesion. Moreover, while the link between
platelet activity and hemostasis has been well established, the role of platelets as modulators of
inflammation has only recently been recognized. Thus, through their secretory activities, platelets
can chemically attract a diverse repertoire of cells to inflammatory foci. Although monocytes and
lymphocytes act as key cells in the progression of an inflammatory event and play a central role in
plaque formation and progression, there is also evidence that platelets can traverse the endothelium,
and therefore be a direct mediator in the progression of atherosclerotic plaque. This review provides
an overview of platelet interactions and regulation in atherosclerosis.

Keywords: atherosclerosis; platelets; inflammation

1. The Canonical Roles of Platelets

Platelets are structurally, metabolically and functionally complex enucleated cells that
result from the fragmentation of megakaryocytes in the bone marrow [1]. While the role of
platelets in primary hemostasis, the first line of healing action against vascular injuries, has
been well defined, the roles of platelets in immunological processes, cardiovascular disease
(CVD) and cancer, among other pathological processes, have only recently emerged [2–4].

Platelets, in conjunction with components of the coagulation system, are responsible
for the prevention of blood loss from damaged vessels [5]. In the presence of an intact
and healthy endothelium, or in the context of a laminar blood flow, circulating platelets
remain in a quiescent discoid state near the apical surface of endothelial cells, without
forming stable adhesion contacts, a healthy equilibrium in part due to the anti-adhesive
properties of quiescent endothelial cells [6]. These antiadhesive properties of endothelial
cells, in turn, depend on multiple factors, such as the presence of negatively charged
heparin-like glycosaminoglycans and neutral phospholipids, as well as the synthesis and
secretion of platelet inhibitors, coagulation inhibitors, and fibrinolysis activators. After injury,
platelets are exposed to highly thrombogenic molecules present in the subendothelial tissue,
including collagen, von Willebrand factor (VWF), laminin, and thrombospondin, leading
to their activation and adhesion to the injured endothelium [7]. At the subcellular level,
platelet activation is the result of an increase in the concentration of intracellular calcium,
which leads to a reorganization of the actin cytoskeleton and the centralization of platelet
granules, with the platelet surface becoming irregular due to the formation of pseudopods.
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The adhesion process is followed by the release of the content of platelet granules. Through
a mechanism of highly regulated exocytosis, the stored bioactive molecules released by
platelets can promote the activation and recruitment of other cells [8–10]. Two types of
granules can be identified: α granules that contain P-selectin, fibronectin, fibrinogen, factor V,
factor VIII, platelet factor 4 (PF4 or CXCL4), platelet-derived growth factor (PDGF) and tumor
growth factor-α (TNF-α), and δ granules containing adenosine triphosphate (ATP), adenosine
diphosphate (ADP), calcium, serotonin, histamine and epinephrine [9–11]. The release of
calcium and phospholipids from these granules provides a surface for the assembly of
various coagulation factors, while the remaining molecules promote a secondary wave
of platelet activation [9–12]. Subsequently, activated platelets synthesize thromboxane
A2 (TxA2), which stimulates platelet aggregation and amplifies the activation signals,
establishing a positive feedback. The combined actions of TxA2 and ADP enhance platelet
aggregation, leading to the formation of the initial platelet plug that temporarily closes
the injury. Additionally, in response to ADP, a conformational change in integrin αIIbβ3
(or glycoprotein IIb/IIIa) is induced in the platelet by “inside-out” signaling, shifting
this integrin from a closed or low-affinity conformation to an open or high-affinity one.
This enables the integrin αIIbβ3 to expose the binding sites to integrin ligands, such as
fibrinogen and VWF [13,14], favoring platelet activation and adhesion [15]. These changes
are followed by an “outside-in” signaling that is capable of regulating the reassembly of
the cytoskeleton, which, in turn, allows the formation of a stable aggregate of platelets
and clot retraction [16]. In addition to hemostasis, platelets can also participate in tissue
regeneration, being particularly relevant during the first stages of tissue repair [17].

2. The Role of Platelets in Inflammation

More than two decades have passed since platelets ceased to be considered a sort
of “cellular debris” that prevented blood loss, to become a central cell type involved in
inflammatory processes and innate immune responses against microorganisms [18–21].
From the first publication in 1946 by Houlihan and Copley, demonstrating the adhesion
of bacteria to platelets [22], to the article published by Gaertner, F. et al. in 2017 that
demonstrated the migratory capacity of platelets and their ability to interact with bacteria
and promote an immune response, a multifaceted view of platelets slowly emerged [23].
Recently, it was reported that platelets are capable of phagocytosing microorganisms, thus
contributing to the destruction of infectious agents in a manner similar to macrophages [24].
Moreover, we now recognize the key role of platelets in inflammatory processes [24], acting
as key orchestrators of inflammatory responses that underly the atherosclerotic process [25].
In the next section, we focus on the involvement of platelets in this pathology.

3. The Role of Platelets in Atherosclerosis

The participation of platelets in atherosclerosis was initially described in the context
of thrombosis, an event that follows the rupture of an atherosclerotic plaque [25]. In this
process, plaque rupture or erosion triggers the release of a wide variety of prothrombotic
mediators (e.g., tissue factor, cytokines and matrix proteins), leading to a rapid activation
of those platelets that are circulating in close proximity to the atherosclerotic plaque at the
time of rupture, and generating a thrombus that, depending on the artery it obstructs, may
have fatal consequences (reviewed in [26]). While a thorough description of the factors
and mechanisms involved in thrombus formation is beyond the scope of this review, it
has been clear that plaque stability is chiefly dependent on histological features [27]. An
unstable plaque is formed by a thin fibrous layer (less than 65 µm thick) that encloses
an inflammatory infiltrate in which lymphocytes and macrophages predominate, a large
lipid nucleus, and relatively few vascular smooth muscle cells (VSMC) [28,29]. In the next
section, we will provide evidence pointing to the ability of platelets to influence the stability
of the atherosclerotic plaque by modifying the microenvironment and by modulating the
function of other cells, including lymphocytes and macrophages. Thus, in addition to
platelets’ involvement in the formation of a thrombus after the rupture or erosion of an
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atherosclerotic plaque, platelets can also influence the stability of the plaque by modulating
the microenvironment at the core of the plaque.

By the end of the first decade of the new millennium, it became clear that platelets,
in addition to thrombus formation, were also involved in the first stages of atherosclero-
sis through their ability to bind dysfunctional endothelium and act as a bridge between
leukocytes and endothelial cells [20,30–32]. This role depends on the complementary inter-
action between cell adhesion molecules present on the membranes of activated endothelial
cells and platelets. When endothelial cells become activated—due to the disruption of
blood flow, biochemical imbalances, or metabolic disturbances (e.g., increased levels of
modified lipids or hyperglycemia) —, a rapid conformational change of P-selectin occurs
on the surface of these cells that increases its affinity for glycoprotein Ib-α (GPIb-α) on
the membrane of activated platelets [20,31,33]. As this interaction is reversible, a rein-
forcement is provided by endothelial P-selectin glycoprotein ligand-1 (PSGL-1). PSGL-1
binds to P-selectin on platelets, allowing the activation of these cells as they roll along
the damaged endothelium [14,34]. Additional interactions are implemented to achieve a
stable adhesion between platelets and the endothelium, including the binding of integrin
αIIbβ3 to fibronectin and fibrinogen/fibrin, the binding of integrin α5β1 to collagen or
fibronectin, and the binding of integrin α2β1 to collagen [15], thus interacting with αvβ3
expressed in the activated endothelial lumen [14]. These combined interactions activate a
cascade that ends up with the release of several platelet mediators capable of modulating
cellular activities in a paracrine fashion, thus accelerating the inflammatory process during
atherogenesis [35]. As a consequence, platelets enter a state of hyperactivation in response
to inflammation [21]. It is important to note that this hyperreactivity, reflected by a strong
platelet response to ADP, can also be caused by the development of resistance to drugs used
in antiplatelet treatments such as clopidogrel [36]. This hyperreactivity allows platelets to
recruit leukocytes to the subendothelial compartment of vessels [37].

The recruitment of leukocytes is achieved through the interaction of P-selectin ex-
pressed on the surface of platelets with its receptor analogue on leukocytes, PSGL-1. PSGL-1,
in turn, promotes the activation of integrins β2 (Mac-1 and LFA-1) in leukocytes, which
is necessary for the stable and firmer adhesion that favors the secretion of chemokines,
such as RANTES (CCL5) [38,39] and PF4 [38] by these cells. These chemokines induce
changes in the expression of adhesion molecules in monocytes, allowing them to adhere
to activated endothelial cells and favoring their accumulation and the development of
atherosclerosis [31,40,41].

It has been observed that the initial interactions between platelets and P-selectin/PSGL-
1 on monocytes change position at the time of monocyte transmigration, moving towards
the rear of polarized monocytes, and allowing these cells to free themselves from attached
platelets [42]. Nonetheless, histological analyses of atheroma plaques obtained from both
Apo-E knockout mice and humans have revealed the presence of platelets in the suben-
dothelial compartment of the plaque, raising the possibility that platelets further contribute
to atherosclerosis, perhaps by interacting with macrophages present at the lipid core, thus
favoring the development of the plaque in a hypercholesterolemic environment [43]. While
the ability of platelets to transmigrate into the subendothelial compartment has not yet been
fully clarified, Gaertner, F. et al. (2017) documented that platelets have the cell-autonomous
capacity of migrate to sites of vascular injury [23].

In summary, the role of platelets in the interaction between endothelial cells and
leukocytes is important for the initiation and progression of the atherosclerotic disease.
This knowledge underlies the use of blockers of platelet activity as a therapeutic approach
to atherosclerosis. Thus, the blockade of cell surface receptors that mediate the early
interactions between platelets and endothelial cells (e.g., glycoprotein Ib-α) changes the
progression, and impairs the development, of atheromatous plaques in atherosclerotic
lesions, and also reduces the inflammatory component at the plaque [32]. There are also
strategies to block integrin αIIbβ3 in platelets, inhibiting their recognition by the damaged
or activated endothelium [44–46]. Furthermore, current developments have led to the
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design of novel non-RGD peptides that can interfere with the active conformation of αIIbβ3
without exacerbating bleeding or inducing thrombocytopenia [47], which are common
consequences of the use of antiplatelet agents. Other approaches include the blockade of
this integrin-dependent signaling [48,49] using small molecules that interfere with SH3
sites of Src kinase, which are crucial for binding to β3 chains of integrins. These latter
approaches, therefore, interfere with platelets’ outside-in signaling without compromising
platelet function in primary hemostasis [50].

3.1. Emerging Roles of Platelets in Atherosclerosis

In the past, platelets were generally characterized as cellular elements that, once
activated and bound to the endothelium, had no further roles. Far from this traditional
view, however, platelets have now been described as immune cells capable of modulating
immune responses [51], a fact that has been supported by studies showing that platelets
interact and impinge on virtually every cell type found in local inflammatory responses [52].

Recently, new roles in lipid metabolism have been linked to platelets. For instance,
the presence of the scavenger receptor CD36 on the surface of platelets has been shown
to contribute to their hyperactivity when entering in contact with oxidized low-density
lipoprotein (oxLDL) [53]. In addition, platelets can both modulate monocyte differenti-
ation into macrophages and influence the ability of macrophages to accumulate lipids
and become foam cells [54]. Moreover, platelets can release a wide variety of molecules
that generate an appropriate environment for monocytes to acquire characteristics of my-
ofibroblasts [55], which, in turn, contribute to the development of a type I collagen-rich
fibrous cap at the luminal zone of atherosclerotic plaques [56]. As already mentioned,
rupture of the cap underlies most thrombotic events [57]. These results show a dual role of
monocytes in the development of the atherosclerotic plaque. First, monocytes contribute to
the lipid core through the formation of foam cells [54], and second, stimulated by platelets,
monocytes acquire new functions and contribute to the cap formation and plaque stability
(platelets and smooth muscle cells therefore affect the differentiation of monocytes) [58]. In
addition, it has been shown that monocyte-platelet complexes release extracellular vesicles
(EV), which have an active proinflammatory role, stimulating the secretion of cytokines
in the atherosclerotic plaque [59]. This regulatory role that platelets exert on monocytes
and macrophages is not only restricted to cells of myeloid origin; there is evidence that
platelets regulate and promote the adhesion of lymphocytes to dysfunctional endothelia
and to the extracellular matrix. Adhesion of lymphocytes, especially T lymphocytes and
Natural Killer cells, is dependent on platelets and requires the expression of PSGL-1, Mac-1,
and CD40L by lymphocytes [60]. As expected, the disruption of platelet–lymphocyte
interaction through blockade of the platelet adhesion molecules P-selectin, integrin αIIbβ3,
and CD40L, attenuated platelet-dependent lymphocyte deposition [61]. Still, other observa-
tions point to new regulatory roles of platelets on other cells of the vascular environment,
under both physiological and pathological conditions. Recently, the consequences of the
platelet-endothelial cell interaction on the phenotypic transformation of vascular smooth
muscle cells from a contractile to a proliferative phenotype was described in a model of
diabetes mellitus [62]. It has also been shown that EVs released by platelets are able to
induce phenotypic changes, migration, and proliferation in vascular smooth muscle cells,
and, additionally, these EVs facilitate the adhesion between smooth muscle cells and mono-
cytes, stimulating the release of inflammatory cytokines, such as IL-6, and thus favoring a
proinflammatory environment [63].

These emerging functions of platelets likely involve the release of the contents of
their intracellular granules [64]. One of the most studied mediators is platelet factor 4
(PF4), a molecule with the ability to attractant monocytes, neutrophils and fibroblasts [30].
PF4 also favors platelet activation and migration, and enhances the uptake of oxidized
LDL by macrophages, promoting the formation of foam cells and contributing to the
development of the lipid core of atherosclerotic plaques [65,66]. In the case of vascular
smooth muscle cells, PF4 induces an inflammatory secretory phenotype partly by activation
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of the transcription factor KLF4 [67] and also stimulates the proliferation and calcifying
potential of VMSCs [68]. Another factor that has recently been found in the secretory
granules of platelets is migration inhibitory factor (MIF), a chemokine also produced by
macrophages and endothelial cells. This molecule has been linked to adhesion and transmi-
gration of monocytes into the atherosclerotic lesion [68]. CD40 is also an important factor
released by platelets that has been shown to be important in inflammatory and thrombotic
processes [69]. Once bound to the membrane of activated platelets, this protein can be
cleaved, and produce transactivation of both platelets and endothelium and leukocytes by
CD40L [70] generating vascular immune responses [71].

On the other hand, there are numerous lipid mediators present in platelets that actively
participate in signaling and intercellular communication [72]. An example of these media-
tors is platelet-activating factor (PAF or 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine),
this phospholipid is produced in different types of cells after stimulation, among the cells
that produce this mediator are: platelets, endothelial cells, monocytes, among others. After
its production and release, it binds to its PAF receptor (PAFR) and triggers a signaling
cascade that, in the case of platelets, produces a strong activation [73]. The release of PAF
is associated with the process of platelet secretion after activation and aggregation. It has
been shown that thrombin and other agonists can stimulate the release of PAF through
platelet-derived microparticles (PMPs) [74]. This important fact helps us to understand
how platelets through of the release of PMPs actively participate in inflammatory processes.
PAF and other oxidized phospholipids can bind to this receptor and trigger a powerful
inflammatory response, which must be regulated to maintain homeostasis. An important
role in the regulation of the biological activity of PAF and other oxidized phospholipids
is played by PAF-acetylhydrolase (PAF-AH or lipoprotein associated phospholipase A2),
a calcium-independent phospholipase that degrades PAF and other mediators into inac-
tive metabolites [75]. In humans, PAF-AH circulates through the bloodstream associated
with lipoparticles, particularly low-density lipoparticles (LDL) and, to a lesser extent, in
high-density lipoparticles (HDL) [76]. In 2006, Mitsios et al. demonstrated that this enzyme
is secreted by platelets through PMPs [77]; this enzyme is the focus of intense research
given its importance in the regulation of inflammation in sepsis. In addition to the above, it
has been shown that PAF, anchored to the plasma membrane of activated endothelial cells
and adherent platelets, participates in the adhesion, rolling and subsequent extravasation
of polymorphonuclear cells (PMN) [78,79]. Undoubtedly, PAF is a link between platelets,
endothelial cells, and leukocytes in the context of inflammation and atherosclerosis [80].

3.2. Platelet Recruitment into the Atherosclerotic Lesion and Transendothelial Migration

It has been suggested that platelets have the necessary machinery to execute cell-
autonomous transendothelial migration. First, there is evidence that platelets can migrate
attracted by cytokines [81] and chemokines [82]. There is also indirect evidence that
supports transendothelial migration by platelets. These studies, which were carried out in
both human tissues and tissues derived from ApoE-KO mice, demonstrated the presence
of platelets within atherosclerotic plaques, that is, platelets readily detectable in the intima
of the affected blood vessels and in close proximity to tissue macrophages [43]. In another
study, in which a stroke was induced in mice by a transient middle cerebral artery occlusion,
the presence of platelets outside the vasculature was observed in ischemic mouse brains [83].
Local cerebral ischemia activates platelets by promoting FasL expression on the platelet
surface, thus promoting apoptosis in brain tissue directly [83].

So far, however, the mechanism involved in the translocation of platelets to the suben-
dothelial space, and the contribution of these platelets to the development of the atheroma-
tous plaque, have not been fully clarified. In 2012, Van Lammeren’s group demonstrated,
through histological analyses of 188 atheroma plaques isolated from carotid arteries, that
platelets can be found within the plaque in association with signs of vessel rupture or small
hemorrhages [84]. These findings raised the possibility that platelets were mere markers of
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small ruptures of the internal vessels that supply the atherosclerotic plaque, which, in turn,
would have an important prognostic value in patients with atherosclerosis [84].

Nonetheless, it has now become accepted that platelets are capable of not only gain-
ing access to the plaque through micro-ruptures of vessels [84], but of actively and cell-
autonomously migrate through the endothelium towards the plaque core [85]. Based on
these migratory properties, a recent study has proposed the use of platelets as markers of
atherosclerotic plaque formation [86]. In particular, the authors of this work proposed the
use of nanoparticles fused to antiplatelet antibodies for an NMR-based detection method
of atherosclerotic plaques in vivo, offering new approaches for the study of atherosclero-
sis [86].

Platelets may also acquire the ability to migrate through the epithelial barrier of the
intestine, either bound or in close proximity to neutrophils. Migrating platelets in this case
may contribute to the development of intestinal inflammatory processes by regulating the
activity of lymphocytes [87]. It has been suggested that the presence of platelets at the
intestinal lumen can be the result of a carry-over mechanism conveyed by neutrophils,
although there may be a coordination between both types of cells for the mobilization of
platelets through cell monolayers. Although these results could be interpreted as distinctly
different from the results obtained in models of atherosclerosis, they do highlight the ability
of platelets to migrate through cellular barriers. In support of this, Massberg’s group
evaluated the ability of platelets to adhere to sites of vascular injury and inflammation,
showing that platelets not only are the first cells to reach the sites of injury, but also have the
ability to migrate in search of bacteria that are subsequently targeted for phagocytosis [23].
This constitutes irrefutable evidence of the migratory capacity of platelets.

Other studies, carried out in models of cardiovascular diseases, unveiled yet an-
other mechanism that allows platelets to migrate into atherosclerotic lesions. In this case,
platelets, previously stimulated with oxLDL, are first phagocytosed by monocytes and
carried passively to the atheroma core [66]. This is consistent with the finding reported
by Gonzalez et al. (2014), in which platelets could be detected in the intima of arteries,
both as elements phagocytosed by macrophages and as free platelets in an atherosclerotic
plaque [43]. Taking advantage of an in vitro model that recapitulates the conditions that
lead to the development of atherosclerosis, we demonstrated that platelets are capable of
migrating through an intact endothelium. Interestingly, for this event to occur, platelets
require signals provided by circulating monocytes [88]. In this model, monocytes and
platelets were first stimulated by inflammatory (TNF-α) and metabolic (LDLox) mediators
before testing transendothelial migration. Our results demonstrated that platelets can
migrate through a monolayer of activated endothelial cells. Interestingly, when pretreated
with conditioned medium derived from cultures of monocytes, platelets migrated at a
rate similar to that observed when platelets were co-cultured with monocytes. This ob-
servation suggests the existence of factors secreted by monocytes that stimulate platelet
migration [85,88].

4. Concluding Remarks

Platelets have proved important in the development of atherosclerosis, in part due to
their ability to initiate monocyte migration at sites of vascular inflammation. In addition,
new capabilities, such as their cell-autonomous ability to migrate through the endothelium
and their ability to regulate inflammatory activities, are now becoming critical aspects in
the progression of atherosclerotic lesions. Therefore, finding ways to modulate platelets’
functions through manipulation of their signaling machinery is presently a focus of great
biomedical interest, opening the possibility to develop therapies using, for instance, natu-
rally occurring molecules.

At sites of inflammation, platelets act as a bridge between the endothelium and mono-
cytes. This event facilitates the adhesion and migration of leukocytes to the atheromatous
plaque. It is also known that platelets can induce the transformation of monocytes to
macrophages, and thus influence the formation of foam cells (Figure 1). In addition,
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platelets can release mediators that promotes a proinflammatory response with more
invasion and proliferation of cells in the vascular intima. Platelets also could promote
LDL oxidation. Therefore, far beyond their role in hemostasis, platelets are recognized as
immune components.
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Figure 1. Transendothelial migration of monocytes and platelets. (A) Turbulent blood flows or pro-
atherogenic metabolic conditions, among other factors, trigger the expression of adhesion molecules
by activated endothelial cells, ultimately leading to platelet adhesion and activation. First, there is
a binding between endothelial P-selectin and platelet GPIb-α, which is reinforced by the binding
of P-selectin and P-selectin glycoprotein ligand (PSLG-1), expressed on activated platelets and
endothelial cells, respectively. A more stable binding, mediated by fibronectin (gray chained circles),
is established between integrin αvβ3 of endothelial cells and αIIbβ3 of platelets. Once platelets
have attached to the activated endothelium, they can function as a bridge between monocytes and
endothelial cells thanks to the interactions between PSLG-1 and P-selectin, and between Mac-1 and
GPIb-α, promoting the migration of monocytes into the intima (B). (C) Platelets can also modulate
the composition of the intimal layer of blood vessels by releasing CD40 (green chained circles), which
favors increased migration of monocytes and their transformation into foam cells by the inclusion of
oxidated LDL (yellow circles). As shown, platelets can release Platelet Factor 4 (PF4, orange stars),
which, among other effects, allows the recruitment of vascular smooth muscle cells (VSMC), favoring
their proliferation and change to a proinflammatory phenotype.
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