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Abstract: Early Barrett’s neoplasia are often missed due to subtle visual features and inexperience
of the non-expert endoscopist with such lesions. While promising results have been reported
on the automated detection of this type of early cancer in still endoscopic images, video-based
detection using the temporal domain is still open. The temporally stable nature of video data in
endoscopic examinations enables to develop a framework that can diagnose the imaged tissue class
over time, thereby yielding a more robust and improved model for spatial predictions. We show
that the introduction of Recurrent Neural Network nodes offers a more stable and accurate model
for tissue classification, compared to classification on individual images. We have developed a
customized Resnet18 feature extractor with four types of classifiers: Fully Connected (FC), Fully
Connected with an averaging filter (FC Avg(n = 5)), Long Short Term Memory (LSTM) and a Gated
Recurrent Unit (GRU). Experimental results are based on 82 pullback videos of the esophagus with
46 high-grade dysplasia patients. Our results demonstrate that the LSTM classifier outperforms the
FC, FC Avg(n = 5) and GRU classifier with an average accuracy of 85.9% compared to 82.2%, 83.0%
and 85.6%, respectively. The benefit of our novel implementation for endoscopic tissue classification
is the inclusion of spatio-temporal information for improved and robust decision making, and it is
the first step towards full temporal learning of esophageal cancer detection in endoscopic video.

Keywords: Barrett neoplasia; tissue detection; recurrent neural networks; upper GI tract

1. Introduction

Artificial intelligence (AI) systems exceeding expert performance have shortcomings when they
are applied on data outside their training domains. At present, such AI systems lack a form of context
awareness, which allows the model to reject data outside its learned feature space. Since medical
examinations often include an extensive range of anatomical checks, there is a risk that AI-based
automated lesion detectors will be applied outside the target domain. Potentially, when inexperienced
clinicians are relying on the algorithm, this might lead to higher false positives and false negatives
and thereby to malignancies in the diagnosis, which is to the detriment of patients. Assistive tools for
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automatic lesion detection should therefore be designed for robustness and accuracy with the standard
clinical practice in mind.

In the field on gastroenterology, a Computer-Aided Detection (CAD) system has been developed
for Barrett’s neoplasia detection in white light endoscopic still images [1], achieving expert performance.
Yet, this algorithm is restricted and validated on the visual features of a Barrett’s esophagus (BE).
In clinical practice, it is common to fully assess the esophagus from stomach to the healthy squamous
region. Therefore, the current model should only be restricted to the analysis of the Barrett’s region of
the esophagus.

In order to facilitate the continuous analysis of the video signal during the full clinical protocol,
a vast pool of new relevant and irrelevant features needs to be taken into account. For example, optical
tissue deformation, which can be estimated through consecutive frames, is an inherent cell marker for
testing malignant morphological changes, according to Guck et al. [2]. In contrast, when ambiguous
frames are introduced, the model could become unstable according to Van der Putten et al. [3].
In order to deal with such ambiguity, the model should consider the context of prior frames for
robust and reliable decision making. The consecutive frames in an endoscopy procedure do not differ
substantially, and therefore information prior to an ambiguous frame can be exploited to make an
accurate prediction. Such sequential models could be used to improve position tracking in during
an endoscopy procedure. Accordingly, since Esophagus Adenocarcinoma (EAC) only occurs in a
particular segment of the esophagus (i.e., in BE), frames that are captured outside this segment could
be disregarded by an EAC detection algorithm, leading to a reduction in false alarms and an increased
user confidence in the CAD system.

Practically, different approaches and algorithms have been applied on time-series data, including
independent frame analysis, averaging over the temporal domain and hidden Markov models [4–8].
However, the absence of long-term memory in these models hampers the exploitation of long-distance
interactions and correlations, which make the corresponding algorithms not suitable for learning
long-distance dependencies typically found in clinical data. Since the employed, existing image-based
classification networks are trained on still images in overview, the response on unseen non-informative
frames is unknown. This implies that algorithms trained only on still images do not perform well on
video signals without algorithm modifications. [9]

Recurrent Neural Networks (RNNs) can be used to provide a temporal flow of information.
These networks have been widely used to learn the processing of sequential video data and are
capable of dealing with long-term dependencies. In this type of artificial neural network, connections
are formed between units and a directed cycle. This cycle creates an internal state of the network
which allows it to exhibit and model dynamic temporal behavior without computation-intensive
3D convolutional layers. Recently, Yao et al. [10] demonstrated a state-of-the-art method for action
recognition, which imposes Gated Recurrent Units (GRUs) on the deep spatiotemporal information
extracted by a convolutional network. Furthermore, Yue et al. [11] and Donahue et al. [12] have
successfully demonstrated the ability of RNNs to recognize activity, based on a stack of input frames.
A similar approach could be followed for the classification of tissue in videos, thereby potentially
leading to a more temporally stable algorithm, since it is able to exploit information existing in the
temporal domain.

The literature describes a variety of methods to analyze video for classification tasks in endoscopy.
The most basic form for video analysis describes a single frame based analysis for classification [13–15].
Other recent work on video analysis in endoscopy focuses on a frame-based analysis approach with
additional post processing to yield some form of temporal cohesion. Byrne et al. [16] describe a
frame-based feature extractor, which interpolates a confidence score between consecutive frames,
in order to make a more confident prediction for colorectal polyp detection. De Groof et al. [9]
implement a voting system for multiple frames on multiple levels. Yu et al. [17] describe a 3D
convolutional model, in order to capture inter-frame correlations. Yet, 3D convolutions fail to capture
long-term information. Harada et al. [18] propose an unsupervised learning method, which clusters
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frame-based predictions, in order to improve temporal stability in tissue classification. Yet, a clustering
approach is not able to capture the consecutive or inter-frame correlation between frames. Frameworks
that do actively learn spatiotemporal information with the implementation of RNNs are described by,
Owais et al. [19] and Ghatwary et al. [20]. They demonstrate that the implementation of RNNs yield
superior classification accuracies in endoscopic videos, but no quantitative results are reported on the
stability of the employed models.

In this paper, we address the ambiguity in the classification of tissue in the upper gastrointestinal
tract by introducing RNNs, as a first exploratory study to obtain a more robust system for endoscopic
lesion detection. Our system is generally applicable for CAD systems in the gastrointestinal tract
and can potentially serve as a pre-processing step that reduces the amount of false alarms for a wide
range of endoscopic CAD systems. We hypothesize that by extending Resnet18 with RNNs, or more
specifically, by employing Long Short Term Memory (LSTM) or Gated Recurrent Unit (GRU) as
concepts, the model is able to actively learn and memorize information seen in earlier frames to make
a more accurate prediction about the tissue class compared to networks without temporal processing.

Our contributions are therefore as follows. First, our work demonstrates that including temporal
information in endoscopic video analysis leads to an improved classification performance. Second,
We show that exploiting the concepts of LSTM and GRU outperform the conventional Fully Connected
(FC) networks. Third, the proposed approach offers a higher stability and robustness in classification
performance, so that it paves the way for applying automated detection during the complete clinical
endoscopic procedure.

2. Materials and Methods

2.1. Ethics and Information Governance

This work and the involved local collection of data on implied consent, received national Research
Ethics (IRB) Committee approval from the Amsterdam UMC (No. NTR7072). De-identifcation was
performed in line with the General Data Protection Regulation (EU) 2016/679.

2.2. Datasets and Clinical Taxonomy

To train and evaluate the classification performance of our networks, we collected a dataset
consisting of 82 endoscopic pullback videos from 75 patients, which were recorded prospectively in the
Amsterdam UMC. Written informed consent was obtained from all participants. In total, 46 out of the
82 videos were derived from patients who were diagnosed with high-grade dysplasia. These videos
were captured using White Light Endoscopy in full high-definition format (1280 × 1024 pixels) with
the ELUXEO 7000 endosco py system (FUJIFILM, Tokyo, Japan). During the recording of a pullback
video, the endoscope is slowly pulled from the stomach up to the healthy squamous esophagus tissue
in one smooth sequential movement.

In our processing, we have sampled with 5 frames per second at a resolution of 320 × 256 pixels.
Each resulting frame is manually labeled by one out of three experienced clinicians with respect to
tissue class and informativeness. The five tissue classes are ‘stomach’, ‘transition-zone Z-line’, ‘Barrett’,
‘transition-zone squamous’ and ‘squamous’, see Figure 1. Frames are labeled as non-informative if
they have: out-of-focus degradation, visible esophagus contractions, video motion blur, broad visibility
of bubbles, or excessive contrast from lighting. For the training, we have only selected sequences
in which the last frame is labeled informative. From the total dataset consisting of 20,663 frames,
19,931 are labeled as informative by a team of three clinical research fellows.
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(a) (b) (c) (d) (e)
Figure 1. Visual examples for each tissue label to be classified by the model sourced from pullback
videos. These pullback videos start recording from the (a) Stomach and stops, while pulling the
endoscope with a constant speed, at the (e) Squamous area. (a) Stomach; (b) Transition-zone Z-line;
(c) Barrett; (d) Transition-zone Squamous; (e) Squamous.

2.3. Network Architectures and Training Protocol

Our network architecture is split in two principal stages: a feature extractor followed by a
classification network. The feature extraction is based on a modified ResNet18 network, containing
four fully convolutional blocks. This model is applied in many fields for image classification, and
should therefore allow for an easier comparison to other literature. Different classifiers are evaluated in
our experiments. Since we only want to measure the effect of applying RNNs on the model robustness,
we keep the classifiers as simplistic as possible. The following classifier configurations are tested:
(1) two Fully Connected layers (FC) with a Rectified Linear Unit function in between, (2) a two-layer
LSTM directly followed by a fully connected layer, and (3) a two-layer GRU directly followed by a
fully connected layer. Both LSTM and GRU classifiers are assembled with two recurrent layers, since
according to Graves et al. [21] depth is needed to increase the receptive field of an RNN. Both LSTM
and GRU are trained with a hidden state size of 128 parameters. Since relevant literature also describes
methods to exploit temporal information based on single image features, we also apply a simplistic
averaging filter over 5 frames to the FC classifier in order to smooth the output over the temporal
domain. This classifier is denoted as FC Avg(n = 5).

We introduce random under-sampling for training set stratification, by taking into account the
asymmetry of the dataset. Doing so, each video frame is assigned a weight, so that the probability of
sampling each class and case, is equal. Per iteration, we randomly sample 512 sequences consisting
out of only one or 10 consecutive frames, to facilitate individual or temporal classification, respectively.
The flow of data through our proposed model for temporal classification is illustrated in Figure 2.

Data input Feature extractor Sequence learning Prediction

CNN

CNN

CNN

RNN

RNN

RNN
CNN

RNN

RNN

RNN
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P1

P2
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Pt
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Figure 2. Data flow through the proposed model during training. Recurrent Neural Network (RNN)
represents either Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) nodes.



Sensors 2020, 20, 4133 5 of 11

The network is trained using Adam optimization with an initial learning rate of 10−4. A cyclic
cosine learning-rate scheduler is used to further control the learning rate. A cross-entropy loss is
implemented to converge the neural network. For data augmentation, random-affine transformations
are applied during training with rotations up to 5 degrees, translation and cropping of 2.5% of the
image length and shearing up to 5 degrees. These parameters are kept constant per sequence.

3. Experiments

This section first describes the metrics for measuring the performance of our method, and then
follows with the statistical analyses of the various classes and configurations to obtain a broad set of
experimental results.

3.1. Metrics

The reported performance of the model is measured with two different metrics, i.e., stability and
accuracy. The stability of the network is determined by the average amount of times the network
switches from predicted label per video. Thus, if at time tn, the model predicts label a, and at tn+1

the model predicts label b, the predicted labels switch from a to b. This change is counted as one
domain switch. Since our dataset contains 5 labels, and each label should be passed only once, a perfect
score would be 4 label switches. The accuracy is measured as the accuracy score averaged per patient,
as shown in Equation (1). The label accuracy is averaged per patient, in order to normalize for a
variable video length, and specified by

Mean label Accuracy =
1

Np

Np

∑
i=1

Acc(Li), (1)

where, Li denotes the label of event i and Acc(.) is the accuracy function. In Equations (1) and (2), TP is
true positive, Nv is the number of frames, and Np is the number of patient cases. True positives are
defined as in Table 1 and specified by

Label Acc(L) =
1

Nv

Nv

∑
j=1

TP j. (2)

The explanation of Table 1 is as follows. For all rows where double or triple labels are indicated,
we mean that if the predicted label has a ground truth in one of the two/three labels, then the prediction
label is considered correct. For example, if Barrett’s tissue is predicted and deemed correct, this means
that the ground-truth labels from the clinician annotation may be ‘Transition Z-line’, ‘Barrett’ or
‘Transition Squamous’.

This mapping of the annotations labels from the ground truth is chosen to compensate for the
ambiguity of the transition zones, since the transition zones adjacent to a distinct class are now mapped
onto that class. Consequently, this metric will better separate non-metaplastic and metaplastic tissue.
This is important because a metaplastic area is the region of interest to examine for Barrett’s neoplasia.

Table 1. Correspondence between predicted labels and ground-truth annotations of the clinicians.

Predicted Label True Positive If Label Is:

Stomach (St) St
Transition Z-line (Tz) Tz, B
Barrett (B) Tz, B, Ts
Transition squamous (Ts) B, Ts
Squamous (Sq) Sq
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3.2. Statistical Analysis

The network performance is evaluated using a fivefold cross-validation. The dataset is divided
into five equally-sized folds, such that in each fold each individual patient is represented once.
The performance reported in this paper is the average accuracy over all folds and patients.
To substantiate the statistical significance, we will also perform a Wilcoxon signed-rank test [22]. This is
a nonparametric test applied to matched-pair data, which tries to find a distribution centered around
zero based on differences.

4. Results

The output stability is measured for four models, FC, FC Avg(n = 5), LSTM and GRU. We have
found on average that the following networks switches from label: FC 43.27 (±23.83), FC Avg(n = 5)
18.48 (±9.76), LSTM 10.81 (±5.68) and GRU 11.91 (±6.33). These results demonstrate that the models
implemented without RNNs, switch 2-4 more times from label within a single video. This is especially
apparent in the video’s in which the model has a bad performance, see Figure 3.

Table 2 displays the mean accuracy of the four different models for the five different tissue classes.
The results show that by averaging over five consecutive frames, a performance improvement of 0.8%
is obtained. The introduction of RNNs into the classification model results yield an increase of 3.7%
in overall accuracy, as seen with the accuracies of 85.9% and 85.6% for LSTM and GRU, respectively,
compared to 82.2% for FC. Detailed performances per model for each class are provided in confusion
matrices in Figure 4. The Wilcoxon signed-rank test has found a p < 0.001 in all comparisons on
accuracy of FC, LSTM and GRU classifiers, which confirms the statistical significance of the results.

Table 2. Mean accuracy per tissue class, and for various architecture configurations. Scores are averaged
over all patient cases. The mean label accuracy is in correspondence with the label classification from
Table 1. The classifiers reported are Fully Connected classifier, Fully Connected Averaged(n = 5),
Long Short-Term Memory classifier, and Gated Recurrent Unit classifier.

Label N
Mean Accuracy (%)

FC FC Avg(n = 5) LSTM GRU

Stomach (St) 2593 59.6 62.2 60.7 61.3
Tran. Z-line (Tz) 2921 74.1 72.9 79.3 79.7
Barrett (B) 9444 95.7 96.1 98.0 98.3
Tran. squamous (Ts) 4215 79.5 81.3 87.0 83.9
Squamous (Sq) 755 58.3 59.9 63.8 67.4

Overall 19,931 82.2 83.0 85.9 85.6

An important observation is the accuracy of 98.3% on the Barrett’s segment in the esophagus.
A good performance on this label is crucial, since this model will be used in an a priori tissue
classification to extend the robustness for lesion detection. High sensitivities are generally preferred in
this field, since a false positive will only lead to an extra biopsy, while a false negative gives a severe
detriment to the patient. The demonstrated accuracy score implies that roughly 1.7% of the images are
rejected due to lesion detection caused by a false negative. We consider that this is acceptable because
during inference, we are able to process up to 180 frames per second for real-time video analysis.
This would mean that even if some frames are rejected, the time-gap between the analyzed frames
would be small, so that the Barrett area will still be fully analyzed effectively.
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Figure 3. Each bar illustrates the predicted organ labels per frame over a time axis. The figure illustrates
the instability of the compared networks architectures at three different performance levels, which
are best, median and worst performance for each model respectively. The average domain switch for
Fully Connected classifier, is 43.27, Fully Connected Averaged(n=5) 18.49, Long Short-Term Memory
classifier 10.81 and Gated Recurrent Unit classifier 11.91
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Figure 4. Confusion matrices display the average percentage that a True Label is predicted as a
specific class. These values are normalized for the patient cases. (a) Fully Connected classifier,
(b) Fully connected Averaged(n = 5), (c) Long Short-Term Memory classifier, and (d) Gated Recurrent
Unit classifier.
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5. Discussion and Conclusions

In this work, we have explored the use of Recurrent Neural Networks (RNNs) for true temporal
analysis of endoscopic video. In particular, we have evaluated two popular RNN architectures
(i.e., Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)) for tissue classification
in endoscopic videos. This is a particularly interesting application, since current CAD systems
show a relatively high number of false classifications for video frames captured outside the organ of
interest. Reliably detecting the organ that is currently in view can therefore lead to an increased CAD
performance. We demonstrate that by exploiting temporal information in latent space, much more
stable classification behavior is observed than when simple frame averaging is used. Hence, the results
confirm our hypothesis that by leveraging RNNs, we can stabilize the classification output from the
model. Moreover, by learning the temporal flow we have also discovered an increase in the accuracy
of all tissue classes. For the application of Barrett’s cancer detection, the proposed system reliably
detected the tissue of interest, i.e., the Barrett label, with an accuracy of 98.3%. These results are a proof
of concept, and therefore the presented models do not yield the optimal results. In future work we will
address this limitation by conducting an ablation study to find the optimal parameters.

The classification performance on the stomach and squamous tissue remains relatively poor.
This discrepancy can be observed in Table 2 and is mostly caused by the definition of the label
correspondence mapping in Table 1. Although the algorithm is able to approximate the tissue type,
it often also guesses the neighboring tissue type. This error can be readily understood, as there is no
hard defined transition on the visible border between tissue types, i.e., each view gradually transitions
over time into the next one, resulting in the property that adjacent tissue areas (and labels) visually
exhibit similar features (see Appendix A).

To address this transition ambiguity, a score based on the agreement between observers could be
introduced. However, in our current training protocol, we only have one annotated label available
per frame, originating from one of the three observers. By introducing multiple observers per frame,
a score of agreement can be calculated (like simple majority voting), which can be used to train the
future algorithm. Such an approach would take into account the ambiguity, and can then potentially
also result into an additional score for ambiguity.

An other limitation is that the employed data is imbalanced at present. As can be seen in Table 2,
the labels Stomach and Squamous are under-represented in the dataset. This imbalance is partly
a reason for the poor performance on these classes. To overcome the limitation of available data,
future efforts will focus on the collection of data, originating from other sources than videos alone.

In conclusion, our work has demonstrated that incorporating temporal information in endoscopic
video analysis can lead to an improved classification performance. Exploiting the sequential bias
present in endoscopic video (e.g., the order of the tissue types that are captured, in addition to a
higher accuracy), also presents a more stable classification behavior over time. Although being directly
applicable to EAC detection in BE patients, to likely enhance the CAD performance by reliably detecting
the Barrett’s tissue, our approach can be generalized and easily translated to similar endoscopic video
analysis tasks. Future experiments should explore such novel applications and should focus on
combining the proposed pre-processing system with several succeeding, and already established
classification tasks.
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funding acquisition, P.d.W. and J.B. All authors have read and agreed to the published version of the manuscript.
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Appendix A. Ambiguous Organ Classes

This section illustrates examples of ambiguous frames due to lacking a clearly defined transition
between tissue classes.

(a) (b)

(c) (d)

(e) (f)
Figure A1. Examples of images with similar imaging features, which are lacking a hard definable border
for a classification label. (a–c) contain images that represent the transition area from stomach to the
Barrett’s esophagus, which all contain features, like gastric folds, and (a,b) also include a view into the
stomach. (d–f) contain representations seen around the transition from Barrett’s esophagus to healthy
squamous tissue, which all contain visual features from the Barrett’s esophagus and squamous tissue.
(a) Cardia of the stomach labeled as ‘Stomach’. (b) Image captured after the esophageal sphincter
labeled as ‘transition Z-line’. (c) Contracted Barrett’s esophagus labeled as ‘Barrett’. (d) Barrett’s
esophagus with healthy squamous tissue falling into the field of view labeled as ‘Barrett’. (e) Transition
zone between Barrett’s esophagus and healthy squamous tissue, labeled as ‘transition squamous.
(f) Mostly squamous tissue, with Barrett’s esophagus in the background, labeled as ‘squamous’.
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