Why certain integrals are "impossible".

Pete Goetz
Department of Mathematics
Sonoma State University

March 11, 2009

Outline

(1) Introduction.
(2) Elementary fields and functions.
(3) Liouville's Theorem.
(9) An example.

Probability

- Central Limit Theorem
- $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u$
- For probability applications, we need $\Phi(\infty)=1$.
- This is not proved by finding a formula for $\Phi(x)$ (by finding an explicit antiderivative of $e^{-u^{2} / 2}$) and taking the limit as $x \rightarrow \infty$.

Number Theory

- Prime Number Theorem
- $\pi(x)=\#\{n \leq x \mid n$ is prime $\}$
- $\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\ln (t)} d t$
- $\pi(x) \sim \operatorname{Li}(x)$ as $x \rightarrow \infty$
- This is not proved by finding an explicit antiderivative of $\frac{1}{\ln (t)}$.
- If $u=\ln (t)$, then $\int \frac{1}{\ln (t)} d t=\int \frac{e^{u}}{u} d u$.

Elementary formulas

- The indefinite integrals $\int e^{-u^{2}} d u$ and $\int \frac{e^{u}}{u} d u$ do not have elementary formulas.
- How does one prove such claims?
- First have to give a precise definition of "elementary formula".
- After all $\int e^{-u^{2}} d u=\int_{a}^{u} e^{-x^{2}} d x+C$ for any constants a and C by FTC.

History

- Newton was perfectly happy to solve an integral by a power series.
- Leibniz preferred integration in "finite terms" and allowed transcendental functions like logarithms.

Elementary function

- An elementary function (roughly) should be a function of one variable built out of polynomials, exponentials, logarithms, trigonometric functions, and inverse trigonometric functions, by using the operations of addition, multiplication, division, root extraction, and composition.
- Example: $\frac{\sin ^{-1}\left(x^{3}-1\right)}{\sqrt{\ln x+\cos \left(x / x^{2}+1\right)}}$

A simplification

- We will use \mathbb{C}-valued functions of the real variable x, i.e., our constants will be complex numbers.
- All trigonometric functions and inverse-trigonometric functions can be written in terms of complex exponentials and logarithms.
- $\sin (x)=\frac{e^{i x}-e^{-i x}}{2 i}, \cos (x)=\frac{e^{i x}+e^{-i x}}{2}$
- $\tan ^{-1}(x)=\frac{1}{2 i}\left(\ln \left(\frac{x-i}{x+i}\right)-i \pi\right)$
- $\sin ^{-1}(x)=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right), \cos ^{-1}(x)=\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)$

Meromorphic functions

- A meromorphic function is a function defined on an open interval I of the real numbers whose values are complex numbers or ∞ with the property that sufficiently close to any x_{0} in I the function is given by a convergent Laurent series in $x-x_{0}$.
- Rational functions are meromorphic on \mathbf{R}.
- Given a meromorphic function f, both e^{f} and $\ln f$ are meromorphic (one may have to restrict the domain of f).

Fields of meromorphic functions

- Let $\mathbb{C}(x)$ denote the field of rational functions. Notice that this field is closed under differentiation.
- Any elementary function (under our rough definition) should be in some "extension" of $\mathbb{C}(x)$.

Fields of meromorphic functions

- If f_{1}, \ldots, f_{n} are meromorphic functions, let $\mathbb{C}\left(f_{1}, \ldots, f_{n}\right)$ denote the set of all meromorphic functions h of the form

$$
h=\frac{p\left(f_{1}, \ldots, f_{n}\right)}{q\left(f_{1}, \ldots, f_{n}\right)}
$$

for some n-variable polynomials $p, q \neq 0$ and $q\left(f_{1}, \ldots, f_{n}\right)$ is not identically zero.

- This definition captures the operations of addition, multiplication, and division.
- It is not hard to show that the set $\mathbb{C}\left(f_{1}, \ldots, f_{n}\right)$ is a field and that this field is closed under differentiation.
- Example: $K=\mathbb{C}(x, \sin x, \cos x)=\mathbb{C}\left(x, e^{i x}\right)$.

Elementary fields

- A field K is an elementary field if $K=\mathbb{C}\left(x, f_{1}, \ldots, f_{n}\right)$ and each f_{j} is
- an exponential or logarithm of an element of

$$
K_{j-1}=\mathbb{C}\left(x, f_{1}, \ldots, f_{j-1}\right)
$$

- or f_{j} is algebraic over K_{j-1}, that is f_{j} is a solution to an equation $g_{l} t^{\prime}+\cdots+g_{1} t+g_{0}=0$ where $g_{0}, g_{1}, \ldots, g_{l} \in K_{j-1}$
- An elementary field is built from the the field of rational functions in finitely many steps by adjoining an exponential, a logarithm, or a solution to a polynomial.
- Composition is captured by adjoining exponentials or logarithms. Root extraction is captured by the adjunction of algebraic solutions.
- Elementary fields are closed under differentiation.

Elementary functions

- A meromorphic function f is an elementary function if it lies in some elementary field.
- Example: $f(x)=\sqrt[3]{\ln x+\cos \left(\frac{x}{x^{2}+i}\right)}$ is an elementary function

$$
\mathbb{C}(x) \subset \mathbb{C}(x, \ln x) \subset \mathbb{C}\left(x, \ln x, e^{i\left(\frac{x}{x^{2}+i}\right)}\right) \subset \mathbb{C}\left(x, \ln x, e^{i\left(\frac{x}{x^{2}+i}\right)}, f\right)
$$

Elementary integration

- A meromorphic function f can be integrated in elementary terms if $f=g^{\prime}$ for some elementary function g.
- Recall an elementary field is closed under differentiation so if f can be integrated in elementary terms, then necessarily f is also elementary.

Differential Galois theory

- We can rephrase our problem: Given an elementary function f, when does the differential equation $\frac{d y}{d x}-f=0$ have an elementary solution?
- The answer is in the affirmative precisely when we can find a tower of fields with special properties.
- Consider the analogy with ordinary Galois theory.

Liouville's Thereom

- Theorem (Liouville, 1835): Let f be an elementary function and let K be any elementary field containing f. If f can be integrated in elementary terms then there exist nonzero $c_{1}, \ldots, c_{n} \in \mathbb{C}$, nonzero $g_{1}, \ldots, g_{n} \in K$, and an element $h \in K$ such that

$$
f=\sum c_{j} \frac{g_{j}^{\prime}}{g_{j}}+h^{\prime}
$$

- If $f=\sum c_{j} \frac{g_{j}^{\prime}}{g_{j}}+h^{\prime}$, then $g=\sum c_{j} \ln \left(g_{j}\right)+h$ is an elementary antiderivative of f.
- The theorem is proved by induction on the length of a tower of fields constructing $K(g)$ where g is an antiderivative of f.

An important corollary

- Corollary: Let f and g be in $\mathbb{C}(x)$ with $f \neq 0$ and g nonconstant. If $f(x) e^{g(x)}$ can be integrated in elementary terms then there is a function $R(x)$ in $\mathbb{C}(x)$ such that $R^{\prime}(x)+g^{\prime}(x) R(x)=f(x)$.
- If $R(x) \in \mathbb{C}(x)$ satisfies $R^{\prime}(x)+g^{\prime}(x) R(x)=f(x)$, then $R(x) e^{g}(x)$ is an antiderivative of $f(x) e^{g(x)}$.
- We can apply this corollary to show that $e^{-x^{2}}$ and e^{x} / x have no elementary antiderivatives.

Proof for $e^{-x^{2}}$

- Taking $f=1$ and $g=-x^{2}$ in the Corollary, we must show the differential equation

$$
R^{\prime}(x)-2 x R(x)=1 \quad(*)
$$

has no solution for $R(x) \in \mathbb{C}(x)$.

- ODE's shows the general solution of $(*)$ is $R(x)=e^{x^{2}}\left(\int e^{-x^{2}} d x+c\right)$ for any $c \in \mathbb{C} \ldots$ but this doesn't help!

Proof for $e^{-x^{2}}$

- Suppose that $R(x) \in \mathbb{C}(x)$ is a solution to (*).
- R cannot be a constant or a polynomial in x (by degree considerations).
- Write $R(x)=\frac{p(x)}{q(x)}$ for some nonzero relatively prime polynomials $p(x), q(x)$ with $q(x)$ nonconstant.
- Let $z_{0} \in \mathbb{C}$ be a root of $q(x)$ of multiplicity $\mu \geq 1$. Then $p\left(z_{0}\right) \neq 0$ and $p(x) / q(x)=h(x) /\left(x-z_{0}\right)^{\mu}$ with $h(x) \in \mathbb{C}(x)$ having numerator and denominator that are non-vanishing at z_{0}.

Proof for $e^{-x^{2}}$

- The quotient rule yields

$$
\left(\frac{p(x)}{q(x)}\right)^{\prime}=\frac{-h(x)}{\mu\left(x-z_{0}\right)^{\mu+1}}+\frac{h^{\prime}(x)}{\left(x-z_{0}\right)^{\mu}}
$$

- As $z \rightarrow z_{0}$ in \mathbb{C} the absolute value of $\left.(p(x)) / q(x)\right)\left.^{\prime}\right|_{x=z}$ blows up like $A /\left|z-z_{0}\right|^{\mu+1}$ with $A=\left|h\left(z_{0}\right) / \mu\right| \neq 0$.
- $|-2 z \cdot(p(z) / q(z))|$ has growth bounded by a constant multiple of $1 /\left|z-z_{0}\right|^{\mu}$ as $z \rightarrow z_{0}$.
- Therefore

$$
\left.\left|\left(\left(\frac{p(x)}{q(x)}\right)^{\prime}-2 x \cdot\left(\frac{p(x)}{q(x)}\right)\right)\right|_{x=z} \right\rvert\, \sim \frac{A}{\left|z-z_{0}\right|^{\mu+1}}
$$

as $z \rightarrow z_{0}$.

- This contradicts the identity $R^{\prime}(x)-2 x R(x)=1$.

References

(1) B. Conrad, Impossibility theorems for elementary integration, http://math.stanford.edu/ conrad/papers/finalint.pdf.
(2) T. Kasper, Integration in Finite Terms: The Liouville Theory, Mathematics Magazine, Vol. 53, No. 4 (Sep., 1980), pp. 195-201.
(3) E. A. Marchisotto and G. Zakeri, An Invitation to Integration in Finite Terms, The College Mathematics Journal, Vol. 25, No. 4 (Sep., 1994), pp. 295-308.
(9) M. Rosenlicht, Integration in Finite Terms, The American Mathematical Monthly, Vol. 79, No. 9 (Nov., 1972), pp. 963-972.

