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Probability

Central Limit Theorem

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du

For probability applications, we need Φ(∞) = 1.

This is not proved by finding a formula for Φ(x) (by finding
an explicit antiderivative of e−u2/2) and taking the limit as
x →∞.
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Number Theory

Prime Number Theorem

π(x) = #{n ≤ x | n is prime }

Li(x) =

∫ x

2

1

ln(t)
dt

π(x) ∼ Li(x) as x →∞

This is not proved by finding an explicit antiderivative of 1
ln(t) .

If u = ln(t), then
∫

1
ln(t) dt =

∫
eu

u du.
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Elementary formulas

The indefinite integrals
∫

e−u2
du and

∫
eu

u du do not have
elementary formulas.

How does one prove such claims?

First have to give a precise definition of “elementary formula”.

After all
∫

e−u2
du =

∫ u
a e−x2

dx + C for any constants a and
C by FTC.
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History

Newton was perfectly happy to solve an integral by a power
series.

Leibniz preferred integration in ”finite terms” and allowed
transcendental functions like logarithms.
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Elementary function

An elementary function (roughly) should be a function of
one variable built out of polynomials, exponentials,
logarithms, trigonometric functions, and inverse trigonometric
functions, by using the operations of addition, multiplication,
division, root extraction, and composition.

Example:
sin−1(x3 − 1)√

ln x + cos(x/x2 + 1)
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A simplification

We will use C-valued functions of the real variable x , i.e., our
constants will be complex numbers.

All trigonometric functions and inverse-trigonometric
functions can be written in terms of complex exponentials and
logarithms.

sin(x) =
e ix − e−ix

2i
, cos(x) =

e ix + e−ix

2

tan−1(x) =
1

2i
(ln(

x − i

x + i
)− iπ)

sin−1(x) = tan−1(
x√

1− x2
), cos−1(x) = tan−1(

√
1− x2

x
)
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Meromorphic functions

A meromorphic function is a function defined on an open
interval I of the real numbers whose values are complex
numbers or ∞ with the property that sufficiently close to any
x0 in I the function is given by a convergent Laurent series in
x − x0.

Rational functions are meromorphic on R.

Given a meromorphic function f , both ef and ln f are
meromorphic (one may have to restrict the domain of f ).
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Fields of meromorphic functions

Let C(x) denote the field of rational functions. Notice that
this field is closed under differentiation.

Any elementary function (under our rough definition) should
be in some “extension” of C(x).
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Fields of meromorphic functions

If f1, . . . , fn are meromorphic functions, let C(f1, . . . , fn)
denote the set of all meromorphic functions h of the form

h =
p(f1, . . . , fn)

q(f1, . . . , fn)

for some n-variable polynomials p, q '= 0 and q(f1, . . . , fn) is
not identically zero.

This definition captures the operations of addition,
multiplication, and division.

It is not hard to show that the set C(f1, . . . , fn) is a field and
that this field is closed under differentiation.

Example: K = C(x , sin x , cos x) = C(x , e ix).
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Elementary fields

A field K is an elementary field if K = C(x , f1, . . . , fn) and
each fj is

an exponential or logarithm of an element of
Kj−1 = C(x , f1, . . . , fj−1)

or fj is algebraic over Kj−1, that is fj is a solution to an
equation gl t l + · · · + g1t + g0 = 0 where g0, g1, . . . , gl ∈ Kj−1

An elementary field is built from the the field of rational
functions in finitely many steps by adjoining an exponential, a
logarithm, or a solution to a polynomial.

Composition is captured by adjoining exponentials or
logarithms. Root extraction is captured by the adjunction of
algebraic solutions.

Elementary fields are closed under differentiation.
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Elementary functions

A meromorphic function f is an elementary function if it lies
in some elementary field.

Example: f (x) = 3

√
ln x + cos( x

x2+i ) is an elementary

function

C(x) ⊂ C(x , ln x) ⊂ C(x , ln x , e
i( x

x2+i
)
) ⊂ C(x , ln x , e

i( x
x2+i

)
, f )
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Elementary integration

A meromorphic function f can be integrated in elementary
terms if f = g ′ for some elementary function g .

Recall an elementary field is closed under differentiation so if
f can be integrated in elementary terms, then necessarily f is
also elementary.
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Differential Galois theory

We can rephrase our problem: Given an elementary function
f , when does the differential equation dy

dx − f = 0 have an
elementary solution?

The answer is in the affirmative precisely when we can find a
tower of fields with special properties.

Consider the analogy with ordinary Galois theory.
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Liouville’s Thereom

Theorem (Liouville, 1835): Let f be an elementary function
and let K be any elementary field containing f . If f can be
integrated in elementary terms then there exist nonzero
c1, . . . , cn ∈ C, nonzero g1, . . . , gn ∈ K , and an element
h ∈ K such that

f =
∑

cj

g ′j
gj

+ h′.

If f =
∑

cj
g ′

j

gj
+ h′, then g =

∑
cj ln(gj) + h is an elementary

antiderivative of f .

The theorem is proved by induction on the length of a tower
of fields constructing K (g) where g is an antiderivative of f .
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An important corollary

Corollary: Let f and g be in C(x) with f '= 0 and g
nonconstant. If f (x)eg(x) can be integrated in elementary
terms then there is a function R(x) in C(x) such that
R ′(x) + g ′(x)R(x) = f (x).

If R(x) ∈ C(x) satisfies R ′(x) + g ′(x)R(x) = f (x), then
R(x)eg (x) is an antiderivative of f (x)eg(x).

We can apply this corollary to show that e−x2
and ex/x have

no elementary antiderivatives.
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Proof for e−x2

Taking f = 1 and g = −x2 in the Corollary, we must show the
differential equation

R ′(x)− 2xR(x) = 1 (∗)

has no solution for R(x) ∈ C(x).

ODE’s shows the general solution of (∗) is
R(x) = ex2

(
∫

e−x2
dx + c) for any c ∈ C ... but this doesn’t

help!
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Proof for e−x2

Suppose that R(x) ∈ C(x) is a solution to (∗).

R cannot be a constant or a polynomial in x (by degree
considerations).

Write R(x) = p(x)
q(x) for some nonzero relatively prime

polynomials p(x), q(x) with q(x) nonconstant.

Let z0 ∈ C be a root of q(x) of multiplicity µ ≥ 1. Then
p(z0) '= 0 and p(x)/q(x) = h(x)/(x − z0)µ with h(x) ∈ C(x)
having numerator and denominator that are non-vanishing at
z0.
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Proof for e−x2

The quotient rule yields

(
p(x)

q(x)
)′ =

−h(x)

µ(x − z0)µ+1
+

h′(x)

(x − z0)µ

As z → z0 in C the absolute value of (p(x))/q(x))′|x=z blows
up like A/|z − z0|µ+1 with A = |h(z0)/µ| '= 0.

|− 2z · (p(z)/q(z))| has growth bounded by a constant
multiple of 1/|z − z0|µ as z → z0.

Therefore

|((p(x)

q(x)
)′ − 2x · (p(x)

q(x)
))|x=z | ∼

A

|z − z0|µ+1

as z → z0.

This contradicts the identity R ′(x)− 2xR(x) = 1.
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