◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Why certain integrals are "impossible".

Pete Goetz

Department of Mathematics Sonoma State University

March 11, 2009

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction.

2 Elementary fields and functions.

S Liouville's Theorem.

Probability

• Central Limit Theorem

•
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

- For probability applications, we need $\Phi(\infty) = 1$.
- This is not proved by finding a formula for $\Phi(x)$ (by finding an explicit antiderivative of $e^{-u^2/2}$) and taking the limit as $x \to \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Number Theory

• Prime Number Theorem

•
$$\pi(x) = \#\{n \le x \mid n \text{ is prime }\}$$

•
$$Li(x) = \int_2^x \frac{1}{\ln(t)} dt$$

•
$$\pi(x) \sim Li(x)$$
 as $x \to \infty$

• This is not proved by finding an explicit antiderivative of $\frac{1}{\ln(t)}$.

• If
$$u = \ln(t)$$
, then $\int \frac{1}{\ln(t)} dt = \int \frac{e^u}{u} du$.

Elementary formulas

- The indefinite integrals $\int e^{-u^2} du$ and $\int \frac{e^u}{u} du$ do not have elementary formulas.
- How does one prove such claims?
- First have to give a precise definition of "elementary formula".

• After all
$$\int e^{-u^2} du = \int_a^u e^{-x^2} dx + C$$
 for any constants *a* and *C* by FTC.

• Newton was perfectly happy to solve an integral by a power series.

• Leibniz preferred integration in "finite terms" and allowed transcendental functions like logarithms.

Elementary function

• An elementary function (roughly) should be a function of one variable built out of polynomials, exponentials, logarithms, trigonometric functions, and inverse trigonometric functions, by using the operations of addition, multiplication, division, root extraction, and composition.

• Example:
$$\frac{\sin^{-1}(x^3 - 1)}{\sqrt{\ln x + \cos(x/x^2 + 1)}}$$

A simplification

- We will use C-valued functions of the **real** variable *x*, i.e., our constants will be complex numbers.
- All trigonometric functions and inverse-trigonometric functions can be written in terms of complex exponentials and logarithms.

•
$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$
, $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$

•
$$\tan^{-1}(x) = \frac{1}{2i}(\ln(\frac{x-i}{x+i}) - i\pi)$$

•
$$\sin^{-1}(x) = \tan^{-1}(\frac{x}{\sqrt{1-x^2}}), \cos^{-1}(x) = \tan^{-1}(\frac{\sqrt{1-x^2}}{x})$$

Meromorphic functions

- A meromorphic function is a function defined on an open interval *I* of the real numbers whose values are complex numbers or ∞ with the property that sufficiently close to any x₀ in *I* the function is given by a convergent Laurent series in x x₀.
- Rational functions are meromorphic on **R**.
- Given a meromorphic function *f*, both *e*^{*f*} and ln *f* are meromorphic (one may have to restrict the domain of *f*).

Fields of meromorphic functions

• Let $\mathbb{C}(x)$ denote the field of rational functions. Notice that this field is closed under differentiation.

 Any elementary function (under our rough definition) should be in some "extension" of ℂ(x).

A D M A

Fields of meromorphic functions

If f₁,..., f_n are meromorphic functions, let C(f₁,..., f_n) denote the set of all meromorphic functions h of the form

$$h=\frac{p(f_1,\ldots,f_n)}{q(f_1,\ldots,f_n)}$$

for some *n*-variable polynomials $p, q \neq 0$ and $q(f_1, \ldots, f_n)$ is not identically zero.

- This definition captures the operations of addition, multiplication, and division.
- It is not hard to show that the set $\mathbb{C}(f_1, \ldots, f_n)$ is a field and that this field is closed under differentiation.
- **Example:** $K = \mathbb{C}(x, \sin x, \cos x) = \mathbb{C}(x, e^{ix}).$

Elementary fields

- A field K is an elementary field if $K = \mathbb{C}(x, f_1, \dots, f_n)$ and each f_j is
 - an exponential or logarithm of an element of $\mathcal{K}_{j-1} = \mathbb{C}(x, f_1, \dots, f_{j-1})$
 - or f_j is algebraic over K_{j-1} , that is f_j is a solution to an equation $g_l t^l + \cdots + g_1 t + g_0 = 0$ where $g_0, g_1, \ldots, g_l \in K_{j-1}$
- An elementary field is built from the the field of rational functions in finitely many steps by adjoining an exponential, a logarithm, or a solution to a polynomial.
- Composition is captured by adjoining exponentials or logarithms. Root extraction is captured by the adjunction of algebraic solutions.
- Elementary fields are closed under differentiation.

Elementary functions

• A meromorphic function *f* is an **elementary function** if it lies in some elementary field.

• Example: $f(x) = \sqrt[3]{\ln x + \cos(\frac{x}{x^2+i})}$ is an elementary function

$$\mathbb{C}(x) \subset \mathbb{C}(x, \ln x) \subset \mathbb{C}(x, \ln x, e^{i\left(\frac{x}{x^2+i}\right)}) \subset \mathbb{C}(x, \ln x, e^{i\left(\frac{x}{x^2+i}\right)}, f)$$

Elementary integration

• A meromorphic function *f* can be **integrated in elementary terms** if *f* = *g*^{*t*} for some elementary function *g*.

• Recall an elementary field is closed under differentiation so if *f* can be integrated in elementary terms, then necessarily *f* is also elementary.

Differential Galois theory

- We can rephrase our problem: Given an elementary function f, when does the differential equation $\frac{dy}{dx} f = 0$ have an elementary solution?
- The answer is in the affirmative precisely when we can find a tower of fields with special properties.
- Consider the analogy with ordinary Galois theory.

Liouville's Thereom

Theorem (Liouville, 1835): Let f be an elementary function and let K be any elementary field containing f. If f can be integrated in elementary terms then there exist nonzero c₁,..., c_n ∈ C, nonzero g₁,..., g_n ∈ K, and an element h ∈ K such that

$$f=\sum c_j\frac{g_j'}{g_j}+h'.$$

- If $f = \sum c_j \frac{g'_j}{g_j} + h'$, then $g = \sum c_j \ln(g_j) + h$ is an elementary antiderivative of f.
- The theorem is proved by induction on the length of a tower of fields constructing K(g) where g is an antiderivative of f.

A D M A

An important corollary

- Corollary: Let f and g be in C(x) with f ≠ 0 and g nonconstant. If f(x)e^{g(x)} can be integrated in elementary terms then there is a function R(x) in C(x) such that R'(x) + g'(x)R(x) = f(x).
- If $R(x) \in \mathbb{C}(x)$ satisfies R'(x) + g'(x)R(x) = f(x), then $R(x)e^{g}(x)$ is an antiderivative of $f(x)e^{g(x)}$.
- We can apply this corollary to show that e^{-x^2} and e^x/x have no elementary antiderivatives.

Proof for $e^{-x^{2}}$

• Taking f = 1 and $g = -x^2$ in the Corollary, we must show the differential equation

$$R'(x) - 2xR(x) = 1$$
 (*)

has no solution for $R(x) \in \mathbb{C}(x)$.

• ODE's shows the general solution of (*) is $R(x) = e^{x^2} (\int e^{-x^2} dx + c)$ for any $c \in \mathbb{C}$... but this doesn't help!

A D M A

Proof for $e^{-x^{2}}$

- Suppose that $R(x) \in \mathbb{C}(x)$ is a solution to (*).
- *R* cannot be a constant or a polynomial in *x* (by degree considerations).
- Write $R(x) = \frac{p(x)}{q(x)}$ for some nonzero relatively prime polynomials p(x), q(x) with q(x) nonconstant.
- Let $z_0 \in \mathbb{C}$ be a root of q(x) of multiplicity $\mu \ge 1$. Then $p(z_0) \ne 0$ and $p(x)/q(x) = h(x)/(x z_0)^{\mu}$ with $h(x) \in \mathbb{C}(x)$ having numerator and denominator that are non-vanishing at z_0 .

Proof for $e^{-x^{2}}$

• The quotient rule yields

$$(rac{p(x)}{q(x)})' = rac{-h(x)}{\mu(x-z_0)^{\mu+1}} + rac{h'(x)}{(x-z_0)^{\mu}}$$

- As $z \to z_0$ in \mathbb{C} the absolute value of $(p(x))/q(x))'|_{x=z}$ blows up like $A/|z-z_0|^{\mu+1}$ with $A = |h(z_0)/\mu| \neq 0$.
- $|-2z \cdot (p(z)/q(z))|$ has growth bounded by a constant multiple of $1/|z z_0|^{\mu}$ as $z \to z_0$.
- Therefore

$$|((\frac{p(x)}{q(x)})' - 2x \cdot (\frac{p(x)}{q(x)}))|_{x=z}| \sim \frac{A}{|z - z_0|^{\mu+1}}$$

as $z \rightarrow z_0$.

• This contradicts the identity R'(x) - 2xR(x) = 1.

References

- B. Conrad, Impossibility theorems for elementary integration, http://math.stanford.edu/ conrad/papers/finalint.pdf.
- T. Kasper, Integration in Finite Terms: The Liouville Theory, Mathematics Magazine, Vol. 53, No. 4 (Sep., 1980), pp. 195-201.
- E. A. Marchisotto and G. Zakeri, An Invitation to Integration in Finite Terms, *The College Mathematics Journal*, Vol. 25, No. 4 (Sep., 1994), pp. 295-308.
- M. Rosenlicht, Integration in Finite Terms, *The American Mathematical Monthly*, Vol. 79, No. 9 (Nov., 1972), pp. 963-972.