

INTRODUCTION TO TEE ANALYTICAL WORKTVG DOCWHETT

 SERIESEvery analytical effort involving varinus investigators in different institutions and lacations faces the difficult problem of interchange or inalysis between collaboratora. The Analytical Workine Lecument Series was originated to help in reaucing that communicetion gap. Rather than wit until the analysis has matured, ve are circulating the "rough draft" stege. This aporonch has the advantage of allowing carly revicu and reairection as well as cross-iertilization effects, c.l other research efforts. The obvicus disadrantege of the Analytical \%os'ting Document Series is that uncorrected and untesicil materials are circulated. Readers of these draft collections of Freliminary fnaliftical resuits should keep $i n$ mind treir provisional character and use them in the spirit that, they were issued. We look forward to the helpiul comments which the circulation wasintended to elieit.

These data and analyses do not bear the approval (nor imply such) on the part of U. S. ill or any of its offices, and should not be quoted without the written permission of the originating office.

PN-AAN- $500 / 62$
ISN- 31625 AGRICULTURE - COLOMBIA.
ANALYTICAL WORKING DUCUMENT \# 14
Linear Programming analysis uf agricultural

PROCESSING ACTIVITIES

Programmer:
Table Preparation: Typists:

March 1974
W. Michael Carroll Jean Barrick Veronica Rawls Linda Rivers Joanne Knutson Joanne Knutso
Ri:ia McKenna

IMTRODUCCION A LA SERIE DE DOCURGHTOS ANALITICOS DE TRABAJO

A cada esfuerzo análitico que involucre a

 varios investigadores en diferentes instituciones y distintas oficinas se le presentan problemac difíciles relacionados con el intercambio de ideas que surgen del análisis y de la copilación de detos. Se ha iniciado esta Serie de Documentos de Frabajo con el fin de intercambiar inforwación upartianamente con colaboradores. En :ez de esperer hasta que los analisis hayan llegado a la etape de corvertirse en estudios "prelimineres", para circulación, heros decidido distribuir, lo más pronto posible, da un número muy restricto de colaboradores, eston jotos como posible elementos de futurca marcos anfliticos y como resultados may preliminares. Esta sistema tiene la ventaja de permitir una revisión oportuna de los datos y un cambio de dirección, sifuera necesario, asi como tambien un intercembio da ideas. La obvia desventaja en esta Serie de Docurentos es que se circula material que no ha sido corragido ni aprobado. Por lo tanto, los lectores de eftos Docurentos deben tener en cuenta su carácter completsmente provisional. Esperemos con interés los comentarios y las sugerencias que pudieran surgir de la circulacion y lectura de estos docurentosEstos datos y estos análisis no ben sido aprobados por la A.I.D. ni por cualquiera de sus oficines, y no deden citarse sin periniso, wor escrito, de los autores.
Introduction Page
The Linear Programing Model ctiritiesVariants on the L.P. Model2
3
Constraints.7.
Region.
Regor constraint
Pocessing Capacity Constrainte
hav Material Constraint:
保8
31

Ton-Industrial Production Constrainte.
Fon-Industrial Production Constrainte. 17

Horking Capie Restrictions

- 21
Objective Function and Sector Aggregates
Haricet Constraints
- 22
Marcet Constraints
Procedures, Kethodologies in Data Dérivation
Pegtriction nical Coefficients
Processine Capacities Eati
Hon-Industrial Production Estimation
Market Estimations
Analytical Results

(coLpr1) 5
Ey-Products
Ey-Products Utiliszation and Sector Efficiency
for 1975.
optimum Solution rith oniy Colobian 6
Optimum Solution vith Alternative Foreim (1975). 65
COLPR2, (1975). Vith Alternative Foreign Teehnologies,
Optimum Solutions vith Alternative Foreign Technoiogies and Comparison of Optimum Solutions for 1968 and 1975 sub-videl . 74

Strategy Strateg Beraters 3. 80 Comparison of Gain and Losses and Trade-off betvees Objectives for Alternative Progranss and Stratcgies. 88
 Conclusions 95
97
Page
Appendix A 100
Picture of Mitrix 125
Appendix B Part I. Key to the Homencisture of the Bymbolic Fames ofActivities and Reatrictions. . .
Part II. Computer Printout of the L. P. Matrix 130
Appendix C Table 1 Activity Level for coipri (ig68) with RestrictedTable Rav Material . . . ${ }^{\circ}(179$Table 2 Shadov Prices for colpRi (1968) with RestrictedRas Material 187Teble 3 Activity Level for CoLppi (i968) vith UnrestrietedRaw MaterialShadov Prices for COLPRI (1968) ith UnrestrictedTable 5 Retivity Level for coLpil (i975) with UnrestrictedRav Material Retivity $_{\text {Leve }}$. 203Raw Yaterial - Shadow Prices for conpil ($19 ; 5)^{\circ}$ with UnreatrictedRav Katerial and Working Capital Alternatives . .Activity Level for COLFR2 (1975) with CarestrictedRav Material and Nars (1975) Alternatives. .. 215 hadou Priced for cold fur Yivity Ievel for COIPR3 (1975) ith Unrestricted Bay Material and Horbing Cepital Alternatives
Table 10 Rhadow Prices for ColpR3 (1975) vith Unrestrictod223
Rav Yeterial and Working Capital Altcrantives 235
Table A-1 Colombia Population, Aree by Bection. A-2 son-Agricultural Labor Perce, by Regione. .9
12
$12-14$

- $\begin{gathered}\text { A-3 } \\ 4\end{gathered}$ Agricultural Raw Material Availebility by Constraints, 1968 . 16
Fon-Industrial Production Conetrainte, 1968-1975. ... 19
A-6 Foreizo Trade Restrictions, 1968-1975. 19
B-1 Projected 1975 Exports of Agricultural Processing Products. . 29
 - B-2 Estimation of Total Processing Caracity in Colombia......34 35
a B-3 Production, Inaports, Exports and Consurption of Processed
Production, Ir
" B-4 Comombia: Estimsted Domemic Market Consumption, 1968.... 39
B-5 Colombia: Estimated Domertic Market Consumption, 1975.... 44
. B-6 Market Constraints for Wocd Procesing Industries 47
 - B-7 Coloubla: Prices of Besic Ray Meterials, Intermediate and

 FinaliProcessed) Agricultural Comodities.

 58. C-2 COLPRI (1968) Optimum Solutions, Uarestricted Rav Material.

- C-3 COLPRI (1975) Optimu Solutiona, Restricted Working Capital. 66
- $\mathrm{C}-4$ COLFR1 (1975) Optimum Solutions, Altmastivo Working
Capital. 68- c-5 CoLpR2 (1975) Optimu Soiutions, Rustricted Mozking
71- c-6CoLpr2 (1975) Optimum Solutions, Aiternative Vorking
73
- C-7. Conprs (1975) Optime Solutions, Restricted Korking T5
- $\mathrm{C}-8$ Capital Capital.π
- \quad C-981
- c-10 CoIPRI - c-10 Comparisons of Major Folicy Objectiven betreen 1968-1975, 82

Table C-11 Comparisons of Major Folicy Cbjective betveen

- C-13 Trede off between Objectives under 8tretegi 1 ... 8
. 1975 90
n C-14 Trade off betveen Objactiven under 8trategr 2, . . 92
" C-15 trade off between objective uncer stratex 3-": 92
1975 . 93

Figure

Migure 1 Movement of coffee in colonbia. 35

INTRODUCTION

In the carly atages of development most LDC's with limited finarial resources mist decide if emphasis shoule be placed an agriculture and related industries or upan basic industry viich requires little agricultural product as rew material. Undouitediy, the phyaical natural resources endonnents of each indyidual country are of prime importance in determining what path of developnent to choose. Where a region possesses high quality ores, mineral reaourcea and eatrepreneural akills, the development of heavy industry may be juatified. Oc the other hand where a region lacks everything except agricultural rasourcea, the path to higher fuprovement may be achieved through agriculture and agricultural processing indugtries.

In earliest vorining documerts of the analgais of the Colombian Agricultural Sector Analysia, the agri-culture-industrial complex was identified as being composed of four major aectors or components, namely: (a) agricultural primary production (including liveatock, fishery and forestry); (b) agricultural processing industries; (c) agriculturel inputs industries (those manufacturing fertilizer, pesticides and other inputs used ty the primary activities; and (d) agricultural marketing and service entities (engage in the retail, wholesale, transportation, and atorage of ram and processed agricultural producta)

In this document a first attempt model of the Colombian Agricultural Procensing Sector is presented. The analysis is confined to the agricultural processing activities and does not include interrelationahips between the agro-industries and other major aectors of the economy.

The ma ior cbjective of this analysis is to determine userul information on sectoral investment decisions for $\dot{\text { alternative polioy objectives. This includes among others expansion of processing capacities }}$
of specific agro-industries, selection of the moat ecanomically efficient $\sqrt{3}$ production technolagy, or ahort term credit requirements needed by the processor of agrioultural rem materiais.

Hoperully a refined veraion of this model may be incorporsted as a somponent of a large moiel of the entire Colambian ecancmy in which the interrelationships betreen the dirferent eactors (compenenta) of the model can be fully analyzed.

This document comprises 4 major seoticns as follows:
A. The Indear Programing Model, ita Structure and Variants
B. Methodatogy and Procedures in Basic Data Derivation and Estimation.
C. Model Solutioar, - Coments and Recamendations
D. Appenitices.

Section A.
The Innear Programming Yodel

Ceneral Descriptian

The model is constituted by linaar programing activities, each representing an average for all colombian plants in a regional or national basis as well as alternative technologies for each particular industry of the Colambia Agricultural Processing Sector. 2/ The producticn of these activities is constrained by aeveral oets of restricticus (representing lifited rescurces) namely; labor (trained labor in processing industries) and total urban econcmically active population (urbe= labor force), processing capacities, availability of

17 In the sense of maximising the "Objective Function" with the leest use of available resourcea.
2/ For sector definitica see Ceneral Woridie Document member 38, Vol. I; pp. 5-7; ficardo, Toee M.
rev materials (for 1968 only), working capital (for 1975 omly) and markets. Foreign trade is restricted anly to the export and import of agricultural processed products and to a fev basic agricultural raw materials sush as wheat ard escao beans which are easential to the operation of sane agro-injuتtries. Linear program ming techniques (MPSX) are used to select the level of prodiction for each activity which maximizes (subject to the above restrictions) some of the following objectives: employment (man-years) of trained labor, employment (man-years) of total economically astive urban population, monetary paymenta to labor, return to capital and maragement, and value edded.

Variantg of. the L.P. Model

The analysis is basically composed of three oturmodole or varlants, brief descriptions of which are as_ follows:
CaIPRI - This sulmodel is composed only of processing activities represented in the existing 1968 Colambian technology. The 1968 and 1975 versicos of this sulmodel were, hovever, silightly differently formulated. COIPRI (1968) was designed to reproduce as closely as poasible the economic conditions; i.e. production levels, agriculture rav material availability and trade patterna; of the Colambian Processing Sector exiating in 1968; that is, it was tailored in arder to minsmize the degree of abstraction. colpri (1975) in addition, of course, to using the 1975 restricticas (Ris), allows for complete import substitution and unifitited availability of agricultural raw material.

COTPR 2 - In addition to Colcmbian technology, additional activities representing alternative technologies from other countries at different stages of development are introduced.

COIPR 3 - Includes the Colabian technology, the foreign alternative tochnologies, and a nev set of investment activities representing expansion of existing processing capacities.

Both COLPR 2 and COTPR 3 axe only run vith the 1975 restricticas (HBS).

Model Stricture

Activities $1 /$

Five types of activities comprised the variables of the model:
(1) Production Activities:
(a) comercial processing plants describing the everage technalogy of demastic production in 1968.
(b) non-industrial or non-comercial activities deacribing production of prucessed products at the farm level, or at the household level, being produced by membars of the family or by independent workers (nan-registered establishments).
(c) alternative foreign activities.
(2) Investment activities, for expanding present procesaing capacity.
(3) External trade activities.

Production Activitiee

The output from the activitiss is masured in millicas of dollars. 3 All processing activities have a ane-year time frame. It is assumed that agricultural ram materials (fmpcried or locally produced) and live

[^0]andrals (cattle and hogs) could be processed in any establishment in the combry. It is asoumed that the artput of most processing activities were composite camodities, i.e. produced and consumed in fixed proportion. Seasomal variations of any kind are not considered in the model. Production of seascmal industries; for example, tha canning of fiuits and vegetables, making of cheese and butter, and other processed producta; is "anmualized" by using average input-coefficient for the whole year (8 -bour abift, 260 working days per year) rather than only for the seascial manths.

Processing activities are speciried either at the national level or they may be regicn-apeciric, but in all cases with the same input-output coifficients (except for scme of the labor coefficients), fmplying average national extraction ratea, and average coot structure for all regians.

Alternative techniques of produstion from foreign countries are specified for cimoat all processing industries, representing differen'; factor combinations or different levels of technology. Separate activities have been specified for the c.usbiing of the major oilseeds in Colcmbia, namely scybeans, cottonseed, sesame seed and African palm. Hovever, because of lack of disaggregation of the basic data (Dane: Industrial Census) ell input-output coefficienta are structurally the same except for the rey material and the extraction rates coefficients (different for each oiloeed).

Activities representing the non-comercial protuction in Colcmbia of processed agricultural products were specified for seven industries (products). The production of these activities filled the gap between the total primary production of the agricultural raw material, and its utilizaticn as major inputa by registered establishments of processing industries. This nan-comercial or non-industrial production takes place at the farm and household level. A detailed description of procedures and methodalogy used in calculating
the production of these activities is shown in Section B. While in reality part or the slaughter of livestak ard processing of cheese and butter and other products take place at the farm level, no activities were specified for their respective non-industrial production. We hope that enough data in processed produsta which are marnfactured at the farm level were collected in a recent agricultural cost of production survey carried mat in Colombla durirg 1973. Hoperully, these activities will be included in our 1970 model.

Investment Activities

These activitiea simply state how much capital, $1 /$ based ai: the existing Colorbian techralogy in 1959, is riziled to expand by one million of 1968 dollars worth of output the processing capacity of ach individual industry. We assumed that all capital goods such as industrial machinery, electic notors, etc., which are not presently produced damestically have to be imported. Consequently the same anount of foreign exchange equal to the value of these ficed capital goods is required for the expansion of these activities.

Foreign Trade Activitieg

Export and inport activitieb were represented in the 1968 model (COIPR 1) for only those traditionaliy trade agricultural processed commodities and for a feu agricultural basic rew materials $3 /$ which are easential to the processing sector. Both Import and exprot activities were forced, at their actual 1968 level, 3/ 17 How much medium and long-term credit is needed.
2 These include imports of wheat and flour, cacao beans and some feedstuff material such as fiah meal and exports of cigar-type tobacco.
3 DANE ANUARIO de Comercio kxterior (1968 Forelgn Trade Yearbook)
into the 1968 optimm solutions. For the 1975 submodels only exports were forced into the optimm solutions, thus allowing for inport substitution for all traditionally imported agricultural processed producta and basic ray agricultural matcrials.

All activities are defined in monetary unita, $1 . e .1$ millicn U.S. 1968 dallars. (Colombian pesos were converted at the rate of $17 \mathrm{Col} . \$=1 \mathrm{U} . \mathrm{S} . \$$).

Constraints

Flve basic sets or restrictions delimit the framevorly of the model. of these restrictions, two of themnamely, the raw material availability and import requirements- were used aniy with the 1968 model, while they were relaxed for all model variants in 1975.

Regions

The fact that colcmbla has a wide variety of cilmates is reflected in the diversity that characterizes its. agriculture and indirectis the agricultural processing industries (sector). $1 /$ cconsequently any model of the Coilombian agriculture or of the agricultural processing sector wifich is intended to simulate these sectors as close to reality as possibie should to same extent be regionalized. ${ }^{[/ 4}$ In this model a "partial" regionalization of the processing sector is initiated at this earilest attempt of the analysis. It is caly partial in the sense that only one basic input- namely 1 :bor- wes regionalized, leaving other resources

1/ For further reference in the location of agro-industries see, General Horidng Document Number 3D, Part II, Pp, 2-5; Ricardo, Jose M.
2/ Data gap inaccuracies and difficienciea and increaaing computing coata are the major factora in limiting regionalization.
constrained at the national level. As mentioned before, activities representing the ige8 Coloribia technology of each individual agro-industry have the came technical coefficients nationtide (for all regiona). This simplification helps to keep the matrix dom and reflecks the fact that regimalization although part of the model is not by far its main focus (objective), at least in this stage of the analysis. Right regions were delineated for this model. The regional groupings were based on previous regionalization schemes by "Planeacion," the Colombian Plarming Agency, and on the criteria of selecting specific contiguous Departamentor (Statea), based on the political adminisiraifive division of Colombia in 1964. All territorles (Intendencias y Comisarias) were lumped iogether in one region. Table Al shows Colombian populaticm, area, and density by states and territoriea in 1964. Admitedly, this regicmalization of colonia is still ver;' crude and must be restructured for further analytical models. 1 / The departamentor (states) camposition of the eight regions is as follows: Atlantico (A): Atlantico, Bolivar, Cordoba, and Magdalena. Anticquia (B): Antioquia and Choco. Valle (C) Valle del Cauca. Gundinamarca (D : : Gudinamarca including Bogota. NorthEast: Boyaca, Norte de Sartander and Santander. Central (F): Caldes and Tolima. Sarth (G): Cauca, Huila, and Nurino. Territories (H): All Intendencias y Comisaraas (see table Al). Table A2 shows total population and the non-agricultural economically active population by regions in 1968 and 1975.

Iabor Constraints

Labor was the colly basic loput which was regionalized in the model. The total nom-agrioultural economically active pupulation and the irained labor force, defined as those directily employed in agro-industries

1 For additional information an Colambian agricultural regions, see Working Document Nimber 3D, Part II.

SECTIMSS	$\begin{aligned} & \text { SDOTIN } \\ & i \pi T H E R \end{aligned}$	FOPULATIM	AREA IN xm^{2}		Sbctions	$\begin{aligned} & \text { SECTIOA } \\ & \text { EIMBRR } \end{aligned}$	POPULATIDI	UREA $\mathrm{If} \mathrm{Km}^{2}$	$\frac{\text { Tifabmrairs Prn }}{\mathrm{K}^{2} \text { (DERSII) }}$
DEPARTAMPITSS (STATES):	Tot 1	17,096,390	590,515	28.95	PEPARSMMPMOS (GY MRS)				
ATITOSULA	1	2,477,299	62,870	39.40	gounta	16	841,424	23,325	- 36.07
ATLASTITCO	2	777,406	3,270	2.7.39	vaile del catica	17	1,733,053	21,245	81.57
bolivar	3	1,106,347	36,915	27.36	TESRTMORTES 1/2	Total	388,178	548,369	0.71
botaca	4	1,058,152	67,750	15.62		Total	291,737	138,899	2.78
Caldes	5	1,455,872	13,070	17.39	ARADCA	20	24,148	23,400	1.03
catcea	6	507,197	30,495	19.97	caguera	18	103,718	90,185	1.15
corcors	7	585,714	25,175	23.27	CHAJIRA	21	147,140	20,180	7.29
crndilararca	8	2,819,524	23,960	117.68	SAT AmPISS				
CHOCO	9	181,863	47,205	3.85	y brorlielicil	19	16,731	44	380.25
Hivils	10	- 426,289	19,990	20.82	COHTSARTS:	Total	96,387	414,470	0.23
ilaconaria	H1	789,410	46,695	16.90	ararozes	22	12,962	221,240	0.17
IEMA	12	165,530	85,770	1.93	cuimin	23	3,602	78,065	0.05
118080	13	705,61\%	37,045	22.73	PuTurivo	24	56,284	25,506	2.20
Ho:ces do Sartarosk	14	534,486	20,825	25.68	7aupes	25	13,403	90,625	0.15
Silsamin	15	1,001,213	30,950	32.35	VIGHADA	28	10,130	98,970	0.10
		1,01,23			comormia	Sotai	17,484,508	1,133,914	15.35

SOURLE: JANE, CEISO HACIOLAL do POBLACION, 1964

1/ This firme renresants the carbined totals
for Interdencins and Conioarias.

[^1]| | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Region | Symbol | Non-Agricultural Fgonconioally Aotive Poruiation | | Symbol | Mon-AGricultural Econ. Aotivo Pop. of Tratned Iabor in Apro-Industaries 3 | | Total Population | |
| | | 1968 | 1975 | | 1968 | 1975 | 1968 | 1975 |
| $\text { (atil } \frac{A}{i t i c o)}$ | LA | 604500 | 827000 | LTA | 22187 | 30764 | 3592000 | 4497200 |
| (Antioquia) | LB | 525100 | 729600 | Lilb | 19534 | 2717 | 3720000 | 3967400° |
| $\stackrel{c}{\mathrm{C}} \underset{\left.(\mathrm{all})_{\theta}\right)}{ }$ | LC | 337500 | 4,61600 | LTC | 12555 | 17172 | 2005200 | 2510300 |
| $\begin{gathered} \text { D } \\ \text { (Cumarinntarea) } \end{gathered}$ | ID | 568300 | 814000 | ITD | 2717 | 30888 | 3376700 | 4426300 |
| $\text { (Horth East) }{ }^{E}$ | IE | 493800 | 660300 | ITSE | 18369 | 24563 | 2934200 | 3590500 |
| $\frac{F}{(\text { Central })}$ | T. LF | 432200 | 572100 | LTF | 16073 | 21282 | 2568200 | 3171300 |
| $\underset{\text { (South) }}{G}$ | LG | 326200 | 435400 | LTG | 12135 | 16197 | 1938400 | 2367500 |
| $\text { (Llanos } \underset{\mathrm{H}}{\stackrel{H}{\mathrm{E}} \text { Territons }}$ | $\mathrm{LH}^{\text {H }}$ | 108300 | 148300 | LTH | - 4029 | 5517 | 643200 | 806500 |
| (Mational) | IN | 3395900 | 4648300 | LTH | 126328 | 172917 | 20177900 | 25277000 |

Bource: DARR, "Censo Macional de Foblacion, 1968
CEDE- Perex Sarria, "Parametros Democrailicos, 1970"
Suttor, Analytical Working Document $\ddagger 4$
1/ Interpolated or extrapolated from data for 1965 and 1970 in Perez Sarris Paranetros Denograficos.
2/ Projections based on ratios shown in Table 2 of Analyifical Working Iscument \#\#, p. 8.
3/ Direct workars employed by all food industries, beverages, tobacco, textile and leather (except ahoes), census 1964, 9 . 23h.

In 1964,1/ were calculated by regiona for 1968 and 1975. Therefore, there are two labor constrainta for each region, in addition to the national labor force constraint. These reatrictions admply state that the total non-agricultural labor and the total trained labor used by the regional processing activities camot exceed available total labor and total treined labor forces in that region. Table A2 shore the total urben labor force and the trained labor forces by regions in 1968 and 1975. Undoubtedily the non-agricultural economically active population is a redumdant resource in the sense tisat it does not bind any solution; hovever, this resource constraint was not left out of the model aince ane of the major objectives of the analysis is to determine the total exployment generationscapability of the processing sector. The labor utilised by the non-industrial processing autivities was considered to be from other population outaide the restrictions, aince these aotivities operate at the farm level using agricultural labor force ami at househola level using morkers assumed to be outaide the urban econcmicaily active pogulation. However, the total labor empoyed by these activities is not excluded from our maro accounting variables of total employment and labor payments.

Processing Capacity Constreints

Pre-specified processing capacity linite for each agro-industry constraints the soiution level of the processing uctivities. Table A3 ahows estimated caperities for the Colcmbian agro-industriea in both physical units and in monetary terms (1968 J.S. \$). The methciology used in deriving the processing capacities eatimates is shown in Section B. The question as to what degree the shortage (excess) in processing capacity in the model ia actuplly an undereatimation (overeatimation) of existing sector capacity in 1968 has to be

[^2]

	. SDIBOL		PRYSTCAL THILS IH LEDOUSAMS	Wrics
LTVESTOCK SLADCETIER	PG103V	5846/813/		$\hat{¢} \mathrm{U}_{0} \mathrm{~S}$.
LIVESTOCK SLADCHIER	PG103P		2676960 3/	Hoad
1EAT PRE. 2 PROD.	PCIOS	9905		§ Us.
HEAT PHE. ${ }^{\text {E. PROD. }}$	PCiOPP		8340	M.T.
PFG. PAST. 1 THK PROD.	PCIOSV	62195		$\overbrace{50.3}$
IFG. PAST. IIIK PRW.	PGIO5P		428086	Liters
IFPG. BUHTER \& CREAN	PGIOSV	11947		\$ U.S.
1FGG. BUTTER \& CRENT	PG106P	11	13253	H.T.
1FG. CHEESE	PGIOT	6712	13253	$\} \mathrm{U}_{0} \mathrm{~S}$ 。
IFG. CHESSE	PCIOPP		4277	M.T.
1FG. CASEMI C. OTHER IMIK PROD.	PCiOBy	200		\$ U.S.
1FG. CASEII C: OTHER IIILX PROD.	PCIOsP		1952	Litera
	PCIOgN	2650		\$ U.S.
1FC. ICE CRESII \& IIILK SAERBET	PGI09P		9447	1.2.
1FG. \& PKG. COID. EVAP. DRI IIIM	PG1108	17491		SU.S.
FPG. E. PKG. COID. EVAP. DEY IIIK	PGIIOP		14085	IL.T.
	PCIITV	1367		\$ $\mathrm{U}_{5} \mathrm{~S}$ 。
PKG. PRESEEN. FRUJIT E VEG. CAMIIIE	PCITIP		2368	K.T.
	PC112\%	2791		${ }_{0}$ U.S.
PREP. CNMTHIG FRUTIS \& VEGe JJIGES	PC112P		4168	1H.T.
PREP. \& PEG. JNST, HARESLADES	PC1138	933		\$ U.S.
PREP. \& PGG. JAIS, ILAPLGLIDES	PGI13P		2792	M.T.
PREP. ©. PKG CAUCESS.ESCABSCHS	PCIT	506		¢ U.S.
PREP. C: PIG, AUCES, ESGABECHE	PC114P	2	4806	1. $\mathrm{T}_{\text {d }}$
DAHPD. C. FRideric Frwils ec VEG.	P6115V	506		\$ U.S.
DTHPD. 2 FIEPEZIHG FRUIES 2 VEA.	PC115P		1945	K,
FPREP. Ci CAITIDIG PISH, SAPDINES	PCIIN	2017		\% U.S.
ETEPP. \& CNIRIDIG FISH, SARDITES	PGI17P	- 239	4553	\%.T.
	PC118\%	2239	1739	

TIDUSIRT DESCRTPTIOR	SYPBOL	VALUB III THDUSANDS U．S． 1968 DOTLARS $2 /$	PAISSICAL UNTITS IN THDUSAKDS	UnITS
RICE HULLIIG	PC122V	77884		¢ $\mathrm{U}_{0} \mathrm{~S}$
RTCE HULITISG COFFGE IIUITIIG	PCI2IP		409219	1：\％．
COFFEBE HULLTITG	PC122 PCI22P	272647	356000	\％U．S．
	PC123V	1130	356000	S．
	PG123P		8353	II． $\mathrm{T}^{\text {．}}$
IHE：NIIIL（EIOUR）	PC12P	57589	347218	${ }_{3} \mathrm{U}_{0} \mathrm{~S}$ ．
CORIT IIILI，OTHER GRATIS	PG125V	24.633	347218	$\mathrm{S}^{1} \mathrm{U}$ ．S．
	PC125P	49873	331555	11.7.
BSiLitg Milit bread	PCI29P	48073	136131	\％U．S．
Bjilutg comiziend，ImidIoch，OTHER	PC130才	1671	236431	$\mathrm{S}_{0} \mathrm{U}_{0}$ S．
BAITIG COOKIES，PIES，SPPIIGE CAKR	PG130P	22838	8138	H200．
BAKIIGG COOKIES，PIES，SPONGE CAKE	PC131P		46621	
PRIED POTITOES，COMLILAKES，FLAKES	PC1320	2523	46621	$\begin{aligned} & H_{0} T_{0} \mathrm{U}_{0} \end{aligned}$
FIIED POTATOES，CORIMLAKES，FLAKES SLGAR，TEFIED NID OTHER	PG132P	87347	3676	11．T．
SUGAR，REFIIED AID OTHER	PC133P	87347	1716444	S U．S．
1TGG．CHOCOLATE CAMDY	PC135V	50912	173644	${ }_{3}{ }^{\text {USS．}}$
IFG．CIOCOLATE CAHDY	PC135P		97063	12．T．
	PC136V PC136P	50135	67906	$\hat{S}^{\text {U．S }}$ 。
1FG．TIDLE OII，SAUCES，COIDIREMTS	PCI37	51702	67906	
ITFG．TIDLE OII，SAUCES，COIDITEMTR	PC137P		28065	11．T．
IFG．CORISTARCH－IEIST－SPAG．PASTE	PC1305	30504		$\widehat{3} \mathrm{U}_{0} \mathrm{~S}$ ．
ING．COMISTASCI－YELST－SPAG。 PASTE GNOUTD AID roismitg OF COFTBE	PC13SP		74748	H．T．
CROUID AID TOASTIIG OF COFFTE	PCI39P	49344		
IFE，OTHET？FCOD PROD．，NTILSL FOOLS	PCIMV	40024	79814	$\mathrm{H}_{0} \mathrm{~T}_{0} \mathrm{U}_{0} \mathrm{~S}_{0}$
IFG．OIFER FCOD EROD．，MNDINS FOODS	PCLITP		241747	M，${ }_{\text {\％}}$

subject to further study. The capacity utilization at the industry level (3 or 4 -digit) was also not know, and same estimates at the industry group level (2-digits) were applied across the board for similar industries. 3

Shartages of capacity are of much serious concem for those processing activities in which production can take place only in industrial piants per se. This is the case for sugar mills, cacao and oflsecds extraction facilitiea, etc. On the other hand, the slaughter of domestic animals and the making of butter and cheese can be carried out at the farm level with practically no investment and how-hor.

Agricultural Ray Material Constraints

Because of the atroug functional interaction (backrard linikage) between processing industries and the primary agricultural protuction aector, agricultural rav material availability $3 /$ was specified for the 1968 model. This restriction was specified only for those farm products which mant" be cansumed or utilized in a processed form rather than as freah or raw products. This includes all oilseeds and acac beans which have to be crushed into ofl; grain and cereals which have to be shelled, hulled and milled; sugar can wirich has to be ground; seed cotton which has to be ginned; tobacco which has to be cured, dried and later manufactured into cigarettes and cigars; feedsturfe wich have to be mised into balanced feeds; hides which have to be cured and processed into leather; and so forth. A complete list of the rav materials restrioticas used for the 1968 COLPRI submodel is ahom in table A4. For the 1975 submodels this cenatraint was left unrestricted for tie following reasons:
If Based m the International Industrial Clasalification.
2/ See Table IV, Working Document 3F.
3/ Simply calculated as Production + Imports - Erports.

(a) to avoid overestimation (underestimation) of the supplies of these agricultural rew producte vhich may result in mifaleading activity level of the model solutícas.
(b) to use the model itscif as a mechanism f or determining the 1975 agricultural raw material requirements of the procesaing sector, which in the sase of these agricultural-comodities represent the actual country needs to meet donestic and export raquirements.

Table 44 shows the estimated 1968 supply of specified agricultural rav raterials used by the colambian processing sector.

Mon-Industrial Production Constraints

These constraints sinply state that some production of arricultural processed products invariably tabes place at the facm or household level. Consequentiy, this output is produced outside of regiatered induatrial establishments and its production is not recorded in the industriai censuses, $y_{\text {/ }}$ of ather large or all incustrial establishoent. 3

Seven conatraints are represented in the model by equality equations (rows), which ainply fouced optina solutions to meet the specified level of thece sonstraints. Therefore, it is important to bear in mind that the comercial production dats of some processing industries sometimes includes conly part of the total raticanal production of certain proceased iteris and, in sase instances, as in the case of Mapela" in coicmbia, are completely excluded from the industrial ntatistica. Table A5 shows the 1968 and 1975 non-comaercial

[^3]production level (constraints) fcr eeven major agricultural comodities which were frposed to the ayaten. The 1968 level was simply determinod by tracing back the raw material gupplies in 1968 and subtracting the anounts utilized by the industrial plants. The 1975 constraints almply assume cinstant 1968 per capita production applied to projacted 1975 population figure. Detailed information ori procedurea and calculationa for each individusl comodity are shom in Section B. For some additional information on data recollection of processing industriea, the reader can refer to General Woriding Document No. 3 .

Poreign Trado Restrictions

In the 1968 models (COLPRI), exporta and imports of agricultural processed producta and of a few agri-
 export value and imports their c.i.f. values fram Anuario de Comercia Exterior (Colonbia Trade Yearbook). Feedstuff by-producta are exported (oilseed cakes) as well as imporited (fiabmeal) as was kistorically the case. For the 1975 variants of the model, only exports were forced fato the aolytian at predeternined (projected) levels. The corgtraint of the exports at sore "reascinable" levela was intended to prevent undue apecialization in a few exportable producta which occurs, for emmple, as a reall of maximizing "foreign exchange" with umrestricted extemal marisets. As menticned before, imports are not forced finto the 1975 optimum solutions, thus alloring for import aubatitution for all traditinsally imported agrioultural processed products and imported basic agricultural rav materialis. $\sqrt[3]{ }$.
If Principally wheat, cacao beans, and some andmal feedeturfa.
If Principelly wheat, cacao beans, and flipmeal.

It is important to call the rcader's attention to the fact that the model explicitly allora for the importation of ray material and supplies utilized in the production process of eech procesaing activity. This is to aay, the production activities are structurally provided with in input-cutput coeffiofent wifch specifies the proparticn of rev material and supplites imported for each dollar of output produced by each procesing industry. For emamie, the wheat flaur processing activity has an input-autput coerficient of 0.6243 in the row corresponding to "imported raw materiais and auppifean and a coerficient of 0.60 in the row entitled "raw materials of agricultural origin." This indicates, as is the case in colombia, that oll or almost all of the egricultural rex material, nemely wheat, utilized by this indugtry (activity) is fmporicd. Thus, cautian mast be taken in analyzing the resulte of the 1968 eolution in order to net out the duplicate coumting of the imports and their direct foreign exchange repercussicos in the colcmbian trede balance. Table A6 ahowe Foreign Trade constraints for 1968 (exporta and trparta) and for 1975 (exporte). The 1968 constraints, as previously menticned, represent actual trade data expressed in manetary terms (U.S. 1968 dollars), wereas the 1975 reatrictions are merely tie writer's exporta projection adjusted to represent 1968 dollar pri $\geqslant \mathrm{B}$. Sae Section B for procedures and calculatione of 1975 restrictions. Foraign Exchange Balance Equation
in the early formilation of this analysia a forsign exciange balance equation was apecified in the model. This implied that the amount of foreign exchange used to pay for inported processed producta and agricultural rea material utilized by processing activities must not exceed the amount of foraign exchange generated by the exports of the whole procesaing aector. Since at thisrearlieat atage of the 1968 model, neither the
export nor import ectivities vere forced $1 /$ into the solution, the results were that,mainly due to the foreign exchange balance equation reatriction, exports of important exportable comodities were at negligible levels or. vere ncon-eristent. ${ }^{\prime \prime}$ This was the case of green coffee and int cottcn exports. In addition all import activities were ai zero level. In other words, the export activities generate foreign exchange only enough to pay for the imported agnicultural raw material and aupplies. This inconsistency of the model was later modified, first by forcing both imports and exports into the 1968 solution and later by relaring the foreign exchange reatriction to became a free or wreatricted row. In this way, it will serve as an accaunting device in determining the net ioreign exchange produced by optimum solutiuns of the processing sector. Working Capital Constraint

The woriding or operating capital coefficients of all processing activities were simply set equal to three months working capital requirements, or equivalent to 0.25 of ane yeaf coat requirements of all purchased inpats, including utilities and contrected work plus labor paypents (including social security and other fringe benefits). Admitedly this across the board rule of thumb represents a cruce estimate of the operating capital actually required by each individual industry. Some processing industries in general req̃aire relatively amall invegtment in fixed asgets, but their working capital requirementa are aubatantially higher than other procesaing industries, because of the high raw material cost which usually must be paid for in cash upon receipt. For additional information on the general description and characteristica of the

17 and
anly upper limits were placed in botil exports and imports.
If Since the trade activities do not have ciny technical coefficient in the raws corresponding to any of the oojective functions they, of course, wound not be in the basic of any optimum solution unless they are forced into it, either through a commodity balance equation or by requiring them to meet some marimum market constraints.
indiridual industry groups or segments, the reader is referred to General Working Document No. 3B, Vol. I. Total sector vorking capital requirements in 1968 vere estimated from a vaive added maximization solution with unimited vorking capital. The amount obtained was rounded to $\$ 365$ miliions (U.s.) and this figure was used as the base to derive the 1975 working capital constraints. Three short-term credit or vorking capital constraints were used for 1975 as follows: (1) assuming that only the estimated total amount of $\$ 365$ millions used by the sector in 1968 would be available for 1975; (2) assuming the same per capita available capital estimated for 1968 , and applying it to the projected 1975 popiletion, resulting in an estimated $\$ 457$ mililions ($\$ 365 \times$ grorth factor of 1.2514), and (3) assuming a per capita income increase of 2 percent annually, and a sector average income elasticity of 0.5 resulting in an estinated capital restriction of $\$ 489$ millions ($\$ 365 \times$ grouth factor of 1.3389). 1 This assumption implies that the size of the processing sector, as a whole is incressing proportionately greater than population growth because of more acceptance in the services provided in processed food.

Objective Functions and Sector Accounting Aggregates

Five objective functions vere used with the different variants of the model. The marimization of value added, however, was only used as the pivotal objective function when alternative vorking capital vere obtained. Other objective functions used vere: employment of direct vorkers in production, measured in man-years (260 working-days); total employment of direct and indirect vorkers, including administrative and other auxiliary activities, measured in man-years; payments to labor factor, including ail fringe benefits expressed in monetary terms; and returns to capital and management in monetary terms. The latter which is calculated as a residual component of the cost structure of each individual processing activity does also

[^4]include indireot taxes. For certain procenains induntrien, meinly manufeoturing oí cobecco and 21quor produets, caution should be taken in interpreting the, technical coefficients corresponding this objective.function in these activities since they all represent a high cost percentage largely due to beavy excise (revenue) taxes, which may lead to misleading conclusions.

There are several non-restricted rows in the model which served as a mechanism for measuring other macro variables or sector aggregates which may be very userul or racilitate auxiliary analyses. Among these, the model measures, at the sector level, installed capacity (H.P.) of electric motors, the total cost of aupplies and packaging material, fixed capital requirements (at the base year technology), net foreign exchange generated by the sector, utilization of specific by-products endogenously produced by the sector and for "COLPR3" aub-model the additionel long-term capital requirements needed for expanding processing capacities.

Since in any particular run of the model only one row is used as the objective function, the other four nen-used objective functions represented by non-restricted rows remain in the model, serving as an accounting device in masuring the aggregate level of these variablea.

Market Censtraints

There is one market constraint for the output of each processing industry which put an upper limit on production. Market information for this model was estimated as close as possible for 1968, by using actual registered industrial production in 1968, adjusted to include output from amall establishments (less than 5 workera).

Domeatic consumption for 1968 vas estimated simply by adding the adjusted commercial production figure
to the net trade as show in teble 33 of section b. Ther tio dorestis corsumption figure for beven processed commodities, wes again aljusted to incluce the consumption of commodities processed at the farm and household level. See table $B 4$ in section B.

Adnittediy there are many difficulties and data dicirepancies in estimacing consumption data, since exports, imports and production are expressed at different price levels; that is, f.0.b., c.i.f., and at the producer level respectively. Besides, the level of aggregation of the commodity composition, of the output of each processing actifity varies aignificantly from induatry to industry, from a single processed commodity, e.g. hulled coffee or wheat flour, to a composite commodity formed by several related products such as chocolate and candy products or canned fruita and vegetables. This makes it prantically fuposaible to make an accurate estimate of some processed comodities.

Domestic consumption in 1975 vas projected based on the same assumptions and formula used in the analysis of the Colombia agricultural sector ${ }^{1}$, which were the following:
(a) population grorth rate of about 3.26 per annum
(b) a $2 \$$ annual rate of grouth of real per capita income.
(c) income elacticity for agricultural processed products varying form 0 to 100. However, for the purpose of this analysia four sets of income elasticities (E), applied to group products, were used as follows:
(a) E=O, for coffee and for all starchy food such as processed grains, brec. . . itc.
(b) $\mathrm{E}=0.5$, for all canned and processed fruits and vegetables, oils, chocolate products and miscellaneous (n.e.s.) food products,

178uttor, Analytical Working Docusent (4, pp. 10-16.

(c) E=1.0, for all processed animal products, meats, dairy and ifs products,
(d) $1=0.5$, for $a 11$ non-food products (fiber, tobacco, etc.) and beverages and spirits.

Three growth factors to be used in the 1975 projection were obtained from the following formula:
where

$$
\begin{aligned}
c_{75} & =C_{68}[1+.0326+E(.02)]^{7} \\
c_{75^{\prime}} & =\text { projected } 1975^{\circ} \text { consumption } \\
c_{68} & =.1968 \text { consumption } \\
E & =\text { income elasticity }
\end{aligned}
$$

and . $73 \% 6$ and .02 cor. $=$ apmin to the assumed annual rate of population growth, and real per capita income growth respectively. By substituting the three different income elasticities (E) in the above formula re obtained the following growth factors:

```
where \(E=0 ;\) g.f. \(=[1+.0326+0(.02)=1.2514\)
where \(\mathrm{E}=0.5\); g.f. \(=[1+.0326+.5(.02)=1.3389\)
where \(E=1.0 ;\) g.I. \(=[1+.0326+1.0(.02)=1.4313\)
```

See table T, section B for the estimated projected consumption for 1975.
Export market projection for 1975, as previously mentioneã was estimated by simply projecting historical trends to the 1972 trade statistics (See tablep1). Total market restrictions for 1975 were then obtained by simply adding domestic consumption and exports. This, of course, implies that the domestically processed product is a true substitute for the imported commodity. Admittediy, this is unrealistic, especially in the case of wheat products (hard or soft wheat flour) or tobacco types (imported mild cigarette type versus cigar-type tobacco grown in Colombia) and many other comodities. Market projections for 1975 assume complete import substitution as well as growth in domestic and external markets as shown In table B5.

In the carly stage of the model formulation c comodity balance equation vas specified for each procissed commodity or agricultural rav material traded in the economy. These equations (rovs) simply states that production plus imports equals the sum of the dorestic and external markets. Since the model was estructuraily constructed-in-monatary teryis rather tana-in physical units, it woulshene been an insuperable statistical tesk, in a country like Colowbis, with multiple exchange rates, differential exporta taxes, a special tax in kind charged to coffee exports, etc. to accurately adjust all level of prices to a common denominater.

All of the original comodity balance equations were dropped from the firat runs of the model, except for one row, accounting for the feedstuff by-products. This was done primarily becsuse feeds' by-products were endogeneousis produced as intermediate commodities (inputs) by the procesiang sector, of course, subject to predetermined extraction rate coefficients and to the level of production of related processing activities. However, in varioug runs of the 1968 subbodel it was found that this restriction vas binding the solution and that several activities vere at much lover production level than their actual lis68 outpurt. This reatriction was then relaxed and converted to an unrestricted row serving as an accounting device, readuring the utilikation of feed by-producis. The use of comodity balance of equations vill be more meaningful inita more comprehensive model which corporates the interrelation of the wiole economy ryaten and that expressed the commity output of its activities in physical wits rether thin in monetary terns.

Procedurea, Methodologies used in Data Darivation for the L. P. Matrix.

A considerable emomt of a "speoific" data is required in the ocostruotion of a linear programing matrix for the analyais of a sector. Hence, it vas considered frysectical to discuss in detail in the previous seotion all laboricus aspects involved in the estimation of the aotivities coefficients and derivation of eatimates for acme of the reatriations. Therefore, this section is presented in this paper excluaively for those readers concerned vith the procedures vilich are followed in deriving estimates of resarce availability, market projecticas and other types of specific information required for L. P. modela.

Activities Technio 1 (Input/Output) Coeffioients
The technical coefficienta for the procesaing activities (Colcmbia technology) vere originated from rev data of DANE 1968 updated sample of the 1964 Industrial Census in Colambla. This data vas properiy organized in ceneral Woriding Dociment β and BA, shoring itemized expenditures (cost) for each individual industry from wich the inputoutput coefficient representing their respective proportion for esch dallar of the industry artput were ultimetely derived. Since most of the industries are couprised of miltiproduct eatablishments, they represent in general the actual cost structure of several producta. For the cattle slaughter activity for which no Colcmbian date was available, the coes icients vere simply derived by averaging out the sofficienta of the technologlea representing the U. S. Census end A. I. D. slaughter plants. The coefficients for the alternative foreign technologieg are the asme developed in General Woriding Document BE, Vol. I. $1 /$ Since the U. S. Census ahows no data con fized capital and horse paver (H.P.) cepacity of electric motors, the empty coefficients were filled with the correspading coefficient

[^5]of the same industry from a comparable foreign technology.
For detailed explanatory notes on the coupiled data an the alternative foreign technologies, the reader ia referred to the above-menticned General Vorifing Document IBR, VOI. I. The techuical coeffiaient matrix for all the activitiea of the model, ahoring thair structural ocmpoaition, ia how in Appendix B, PartII. He should at this point call the attention of the reader to the fact that the high "profit" coefficient in the epirit and wines activities is due to the fact that it included oxcise tares as well as high inventory coat in the aging process of vines and hard liquors.

Restrictions Eatimates

In the early veraicus of the 1968 model five sets of restrictions were comatraining the model, namely: rew material availability, total markets processing capacities and labor (both, total urban labor force, and trained labor in procassing industries) and foreign trade (both imports and exports). In the 1975 rum, the rav material restrictione were left unconstrained as free fors and a worling capital comstraint derived from a 1968 rum was included. or these aix different types of restrictions the eatimation procedures of the woridig capital and of the labor constrainta for 1975 srequired no further explanation, as thay were fully explained in eection 1.

Foreign trade ocnstraints for the 1968 models, were actual exports, and importa as reported in the official Colombian trade statistios. The 1975 models allored for complete fmport aubstitution, and the export rarket reatrioticns were deFived from projections shom in table Bl.

These projections vere oinely caloulated as follorss preliminary Calombian official exports statistics (in doilare value) for 1972 vere used as the base year for our projection. Then the amorl rate of increase betreen 1968 and 1972 . Sor the ten major Colombian exports of agricultural processed prosucts vere ainmiy applied to the 1972 exports figures to obtain the projected exporta for 1975 (in doilars). The projected 1975 exporta (in 1975 dallara) vere then adjurted to 1968 prices by asauing an ammal rate of inflation (for the 0.S. doliar) of 4 parcent, or 1.31593 for the 7 yeara

TABLI BI. PROTECTED 1975 EXPORTS or AGRICULTURAL FRGCESSED PRODUCTS

Product or Commodity Group Description	Matrix Syanbol	$\begin{gathered} 19681 \\ \$ 1600^{7} \\ \$ 0286 \\ \text { U. } \end{gathered}$	$1972^{2}-$ 1000 U.8.	Exporta Increased From 1968 to 1972		$\begin{gathered} \text { Projected } 1975^{3} \\ \$ 1000 \mathrm{U} . \mathrm{S.} \end{gathered}$	Exports-1975 Projection Adjusted to 1968 U. $(1000)^{4}$
				Total Increase	Annual Rate Ifcrease		
green coffee	EX 122 \%	351474	42871	. 21.97	5.09	497563	378107
sugar (refined and ray)	EX 133 V	14906	30895	106.97	139.90	53717	40410
rav (lint) cotton	EX 146 V	28051	48897	74.31	14.91	74192	56380.
live cattle beef	EX 103 V	$\begin{aligned} & 1489 \text { (beef) } \\ & 1596 \text { (live) } \end{aligned}$	$\begin{aligned} & 29271 \\ & 10795 \end{aligned}$	1198.73	5.88	$\begin{aligned} & 45000 \\ & 15000 \end{aligned}$	$\begin{aligned} & 34196 \\ & \mathbf{1 1 3 9 4} \end{aligned}$
reedsturf - oil cakes	EX 141 T	3854	9800	154.28	26.28	19735	14997
. avn t?	BX 149 V	3718	4445	19.55	4.57	5083	3863
cured hides t processed skins	EX 162 V	6289	7809	24.16	5.56	9185	6980
starches	EX 139 V	576	$\begin{aligned} & 800 \mathrm{ert} \\ & \text { 1ess1000 } \end{aligned}$	38.88	8.56	1024	778
frozen and/or prepared seashell	EX 218	2994	9827	228.22	34.60	23964	18211
unmanu. cigartype tobacco	EX 145 V	5054	9900	95.88	18.30	16390	12455

$i_{\text {From DASE, }}{ }^{\circ}$ Comercio Exterior 1968
2stimated, from Colombie Todey; Vol. 8, 1973,
${ }_{4}{ }^{\text {Projected }}$ at the annual rate prereilidg during the 1968-1972 period
A.djusted to 1968 dollars using an estimated 4% aqnual zate or inflation
period (1968-1975). For example, green coffee exporte increased from 371,474 thousamd 0.S. doilara to 428,711 (900 0.s. \$) in 1972 or a 27.97% increase in 4 years equal to a 5.09 anmual rate of increase. The 1975 ooffee export projectical is equal to $428,711(000 \$)$ in $1972 \times(1+.0509)^{3}=428,711 \times 1.1606=497,563$ (000 \$). Then Bdjuating this figure to 1968 U.S. $\$$ we have $\frac{497,563}{1.3593}=378,107$ ($000 \$$) wich is our external market constraint for 1.975 .

Processing Capacities Restriotions Estimation

- The methodology and procodures used in estimating industriel capacities of major proceseing indubtries in colcmbis
 the above-menticned publication. Hovever, these estimates do not include the capacity-actput of amall planta (with lesa than 5 workers) which were not covered by the DaNs Industrial cenaus. To adjust arr previous figure to incivie the small piant capacities we explioy tha following procedure:

From Table 3 of Ceneral Horling Document 13D, Part $\Psi^{2 /}$, using the number of employees per plant as our yardstick, we first estimate what proportions of the total industry output capacity is from emall plants (those with less than 5 vorkers). Then we proportionally increase ons previous capacity figure for large plante to obtain the total estirated capacity for all plants (kmall and large) of each individual industry. This procedure can be better illustrated by ahoring all of the atapa followd in calculating the total capacity of the "meat processing and pacidng" industry (I/0 a04).

1/ Ricardo, Jose M.; O. W. D. GF. "Gapecity output of Agricultural Processing Industries in Colombia, 1968. Methodoiogy for Eatimating Gapacities."
 Aqropeouarioe por kicala, en Colambía in 2968, p.

According to the Colombian Industrial Directory (Guia Induatrial) the meat processing industry in 1968 was couprised of 45 plants of the following sives: 15 plante with fever than 5 workers; 14 plents employing 5-9 workers; 1 plent eunioying 10-14; 5 plants employing 15-19; 4 plants employing 20-24; 5 plants with 25-49, and 1 plant with 100-199. Using the maber of woricers as our yardstick for measuring aise and assuming instant mome to scale in the sense that the capacity of a plant employing 10 employees has dcuble capacity of com employing only 5 or half capaoity of one employing 20 workers and assuming that the midpoint of the range of the maber of workers for each plant aize category is the average used for each category size, we may nor proceed to the folloring calculations:

$\begin{aligned} & \text { (1) } \\ & \text { Plants in each } \\ & \text { gize category } \end{aligned}$	(2) Range of of Workers	$\begin{aligned} & (3) \\ & \text { Midpoint } \\ & \text { (Average) } \end{aligned}$	(4) Eotimated Total/ Woricors Employed (1) $\times(3)$
15	5	3	45
14	5-9	7	98
1	10-14	12	12
5	15-19	17	85
4	20-24	22	88
5	25-49	37	175
1	100-199	150	150
45			663

The proportion of capacity cutput estimated for small plants is equal to $\frac{45 \text { (workers employed by small plants) }}{663 \text { (} \text { total enmloyed by industry) }} 7$, and for the other plants, medium and large, $100 \%-7 \%=93 \%$.
in Table IV. of G. W. D.\#3F, ve estimated the capacity output (in metric tons) of the meat processing industry to be 7757 MT in 1968 for large and meduin aized plants (those with more than 5 workers). Then, if 7757 vI vas only $93 p$ of the processing capacity, the total industry capacity or 100% is equal to $\frac{77 \pi 7}{.93}=8340$ MI which is our estimated physical

oapacity for this indurtry, as alacwn in Table B2.

The constraints capacity for the model are expressed in monetary terms and are sfuply salculated by maltiplying the estimated phyaical capacity (ahom in colum 2 of Table B2) by an eatimatod avarage price for the induatry output. Thus the final capacity constraint estimate is equal to 8340 (000 mgs) $\times \frac{20.15 \text { (Colombian Pesoa) }}{17 \text { (} 17 \text { Col } \$ 1 \text { O.S. }}$

J.S. \$. This is ahown in colven 3 of Teble B2.

Nom-Industrial Production Estimates

Tha non-industrial or non-comercial protuction of agrioultural processed produota, ia for the purpose of this paper dasived as the outpnt produced outside of registered establishments either at the farm or household level, but without any re?ation to size of the establisbmant or producing unit par ee. For the purpose of this analyais, the nom-combercial production of only seven processed commodities was included in the model. The general procedure in est imating their output in 1968 as previcualy explained in section A was by aimply tracing back the rew material E plies and subtracting the amounts utilized as input by all the industrial eatablishments. The apecific production figure derivation for each acmodity is ahom below.
(1) green coffee - Figure 1, shows a diagram of the 1968 coffee crop in Colorabia. This type of producticn supply and diatribution chart is very useful in tracing back to the primary production data of raw material the different industrial and comercial chamels of the agricultural processed camodities. The amount of coffee hulled in the industrial plants was increaed to 356,984 MT to inaiude the processing done in awall plants (with 5 workers), consequently the farm coffce mulling was acecordingly reduced to $96,404 \mathrm{MI}$ in 1968.
(2) "Panela" (brom sugar) - the value of the form production of "panela" a type of "brown augar' which is proceased at the farm level was simply calculatod by multiplying the official production figure in ir by

Best Avcilable Document

FigureBl: Diagrem of the Hovement of the 1968 Coffee production in Colomble (In Equivalent Metric Tons of Green Coffee)

Best Avcilable Document

(3) Rice- The non-comercial production of milled rice, was aimply derived by aubstracting fror ine primary production dsta the amount of rice milled in registered industrigi plants, including small plants (less than 5 workers).

Rough Rice production: 780,000 NT $\times .60$ (conversion factor from rough to milled rice)
$=468000$ MT of milled Fice-297515 HI nilled rise processed in registered plants
$=170485$ mer produced at the farm level (in non-registered piants) which converted into monetary terns is an follova:
170,485 yer milled rice $x 3.234$ Colombla $\$ / \mathrm{hg}=551.485$ millions Colombia $\$$ or 32.440 million U.s. $\$$.
(4) Cotton- The same preceding procedure was used in estinating innt cottor fari production as followa: seed cotton production = 339000 KI $x .36$ (conversion factor from seed cotton to lint cotton)
$=122040 \mathrm{MI}$ of iint cotton-53959 MI processed in commercial registered plants $=68081 \mathrm{MI}$ of lint cotton ginned at the farm level (in non-registered industrial plants).converted to monetary terms at an average unit price of $\$ 16.704 \mathrm{Col}$. $\$ / \mathrm{kg}$ is equal to 1137.237 million Col. $\$$ or 66.896 millions U.S. $\$$.
(5) Tobacco- In eatimating the amount of rav (unmanufactured tobacco) conaummed outside commercial eatablishments on being exported, the following ateps were taken.
43000 MT $=1968$ farm production
$\frac{-8700 ~ K T}{35300 ~ E x p o r t s ~}$
35300 NIT $=$ Available for Domestic Used.
$\frac{-22300 \mathrm{KI}}{13000 \mathrm{KT}}=\mathrm{Used}$ by Comercial (Registered) plants for cigarrette and cigar manufacture. $\frac{13000 \mathrm{NT}}{1} \mathrm{Difference}$ for non-comercial uses of tobecco.
It was assumed that 13000 wa rere utilised for cigar making by indepandent workera and tobacco grovare uning obout 9 te of rev

918

This figure vas rounded to 1500 millions cigars, which at an estimated unit price of 11 col. $\ddagger / c i g a r=$
165 million of Col. \$ or 9.706 millions of U.S. \$.
(6) and (7) Wheat Bread (Industry I/O 129) and cakes, crackers, cookies and other whest products (Industry I/O 131).-The production of wheat bread, cakes, cookies, crackers make directly by housewives for home use and by independent workers in nonregistered bakeries, etc. vere estimated as follows:
First the total flour and semolina vhich is utilized as input (raw materials) by each of the different food industries were added and converted to wheat equivalent basis. Then this amount was substracted from the total arount of wheat supplies (production + imports) available in Colombia in 1968. The difference in vineat equivalent vas estimated to be totel amount consumed at the household level in 1968. Then it was assumed that of this amount, converted again to flour basis, 90% were utilized for bread making, and the remainder 10% vas used in the making of cakes, cookies, crackers, etc. Finally the apportioned amount of flour to each activity vere converted to their final wheat products and thése figures in physical units vere then finally converted to Colombia peson and U.G. dollars. All the conversion factors used were from the USDA/ERS, Statistical Bulletin Ho. 362 entitled "Conversion Factors and Weights and Measures".

Total Industry Utilization of wheat floure 151554 MP , wheat equivalent basis
Total theat Flour Supplies (Production + Imputs=356117 MT, wheat equivalent bass s
Hfference=Utilized Directly by Households, etc=204563 MT, wheat equivalent basis
Assuming 90\% is used for bread making and 10\$ for cakes and other products
For bread making (I/OR129) (non-industiral production) $=204567 \times .90=184107$ MT, W.B.B.; 184107 MT of wheat $x .73$
$=134398$ MT of flour; 134398 MT $\times 1.58=212349$ MT of wheat bread

For cakes, crack2rs, etc (I/O 1131) (Hon-Industrial Production) $=204567 \times .10=20456 \mathrm{Mr}$, U.E.B. $20476 \times .73=14933 \mathrm{MT}$ of flour 14933 HT $\times 2.0=29866$ NI of cakes, crakers, atc.

Then converting both phorical quantities to monetary texms by milipiring then by the average unit price of thoir reapective industry outputa ve heve cur final non-industrial production constraints in monetary termes as follars:

mon-Industrial production of enked, crackers, etc $=29866 \mathrm{kr} \times 8.33 \mathrm{Col} .1 / \mathrm{kg}=246.713 \mathrm{millions}$ of Col. $\$=14.630$ "fllion of U.B.

Market Eatisations

For most processed compodities with little or no participation in international trade the 1968 market constraints were derived from the estinsted dosestic consumption figares shown in tables 83 and Bh . The 1975 Earket constraints were simply derived as shorn in table B5, i.e. by multiplying the 1968 donestic congumption estimates by a grouth factors which derivation was previously explained in bection A. For those processed comodities which are internationsily traded, total merket restrictions were simply obtained by adding domestic consinmpions and projected 1975 exports.

For the livestock slaughter industry, for vich no data vas available from the 1968 DAsE sample of the 1964 Industrial Census, the 1968 market estimates vere simply derived from the value of production data presented in Statistical Working Document ill for cattle and hog producticn.

Value of Production of Cattle Production=5,755.277 millions Col.

$6300.417 \% 17=370.612$ yduliont U.B.
For the urod procensing industries estrizetes of processing capecity wore used as c procy in deterniningithe the market constraints, see table B .

Table 83 Production, Imports, Exports and Consumption of Proc sseed Comodities, Columbia, 1968

Industry rale	1/0	PROL	10 I 1000 MT			EXPO	MS 3 100015	ESTIMATED CONSUMP 1000 Pesos	
LIVESTOCK SLAUGHTER	103	HA	FA	-					
CARIE-ETVAS	104	122390	6063	2218	105	23947	2485	NA 124608	WRA 6158
LECHE PASTIE	105	768665	371 ¢20	191	31	-	-	768856	311251
Mantycrey ia	106	19650	9653	5990	201	-	-	25640	9836
quesos	107	'15543	3015	215	13	697	76	7-061	2952
LISCHE OTROS	108	3406	1419	-	13	6	76	3406	1419
LECHEHELADO	109	33112	6868	-	-	-		33112	6868
IECECOHDPOL	110	216167	10240	13850	1254	4820	157	230017	11337
CONVFRUTLEG	111	16899	1649	321	35	128.	15	230017 17092	11337 1668
JUGOFRUILEG	112	27073	3248	2201	24	109	28	29169	3244
MRRELADAS	113	11525	2030	7	1	687	133	11532	1898
SALSAS ENCU	114	63355	4394	220	5	76	15	63499	. 3484
EONGFRUTLEC	215	6257	1414	7197	899	366	12	13088	- 2301
EHVASPESCAD	217	24854	3324	5007	606	366	12	29861	3920
CRUSTYOLUSC	118	27670	1264.	201	9			27871	1273
PILD-ARROZ	121	962386	297503	16	12	-	-	962402	297515
TRTLT-CAFE	122	3369580	359596	-	-	-	-	3369580	359596
FAB CUCHUCO	123	5471	5869	-	-	-	-	5471	5869
MOL-TRIGO	124	711783	252450	4461	2183	-	-	716199	254633
MOL-OTROS	125	304357	241042	287	170		-	304644	124212
PAFTRICO	129	616293	99186	207	170	-	-	161073	124212 99080
PANYUCAMAIZ	130	19894	5917	-	-	-	-	161083 1989	99080
GALL-PASTEL	131	282239	33894	149	10	131	10	2882957	5917 33894
CEREAL-OTRO	132	31182	2672	2	Less	-	-	31184	2672
AZUCAR	133	1079519	811655			235313	285010	844206	526645
PAB-CHOCILA	135	629219	70521	351	13	5703	774	623867	69760
MAATVEGA IM	136	619617	49368	602	72	-	-	620219	49440
ACEITEE MESA	137	638997	19963	10181	1417	149	15	649029	21365
ALP-LEV-PAS	138	377022	59703	3457	2	8907	39815	374581	19890
CAFEEOSTMKOL	139	609846	58025	-	-	-	-	609846	58025
OTR-EM ESPIRIT	141	494658	175752	31353	6791	59635	50375	466376	132168
BEB ESPIRIT	142 143	952199 45711	34720 4502	32661	1204	-		984860	35924
CERVERA	144.	2086413	558112	12270 13965	993 291	229	-24	57752 2100378	$\begin{array}{r} 5471 \\ 558403 \end{array}$

.Table B3 Production, Imports, Bxports and Consumption of Processed Commodities, Colvmbie, 2968

ITDUSTHIT TANS	E/O.	ERODUCTIOI/		IPPORI8 3 /		EXPORIS $3 /$		$\begin{aligned} & \text { - ESTIMATED DONSSIIC } \\ & \text { COISTMPTIOIN } \\ & 1000 \text { FeBOS } 1000 \mathrm{NT} \end{aligned}$	
İD-TABMCO	145	1074493	21500	51637					
THAX-RITHET	146	. 901164	53947	51637 177	- 12	269	7	1126130 90.341	21497 53959
COFDAJE	147	191124	4739	19179	260	194	-	202758	4999
MAD-ASLEPRADS	149	61039	-	$1{ }^{\text {- }}$	Leas	57532	-	3508	99
MD-ACSPITL	150	64770	-	-		6733	-	58031	-
MAD-FRHAS SAD	151	17440	1820	-		426	-	17054	1828
MD-PARCUIT	152	127473	9722	123	10	-	-	127596	9832
mar-coneriv	153	34225	38	1		50		3175	38
FUPAS	156	343483	42677	145322	¢63661 ${ }^{3}$	3761	-	31136	3
PAPEG	157	4444650	--	209464	663661 59475	- .	18118	238805 635996	106338 59475
CARTOI	158	384510	-	45565	13044	954	1010	429121	5943 13044
PAFEL-BOLBA	159	251168	-	4181	-1230	128157	-	127192	1230
CARTOM-TERA	161	242665	673782	5145	1348	1281	-	247810 -	1348
CWERO-CuFI	162	461897	673782	1625	159	97317	793	331242	572822
ACEITESTOALI	163	67059	95	1623		17094		366145	673148
FABPOSTOROS	165	53560	5	16226	67872	272	27	-299013	74803
TRIPIIAMAIZ	166	1238544	769282	-	-	-	-	53560 1238544	$\stackrel{-}{769282}$
FAB-BESIDAS	167	643868	686109	60	Less	-	-	643868	686109

ThsIot available

I/ DANE, 1968 Uplated semple of 1964 Industrial Census
2/ DANE, 1968 Poreiga Trade Yearbook

IEDUSTEX DESCRITTITIN	SDPOT	प8148		paysichi mixis II THDTSANDS	（FARES，ETC．）CONSTLPTION ASD PRODUCTID 1 Is 1968	
					O00＇s COL．PESOS	0001s UnITTS
LITESTIOCX SLADGGTER	12037	\＄	6300427		$\mathrm{H}_{0} \mathrm{~A}_{\text {P }}$	$\mathrm{H}_{0} \mathrm{~A}_{\text {。 }}$
LIVESTOCK SLADGHTER	1103 P		$12160{ }^{-1}$		N．A ${ }^{\circ}$	N．A．
1 IEAT PKG．\＆PROD．	2n0 1204 P	\＄	124608	6168	$\mathrm{H}_{1} \mathrm{~A}_{0}$	$\mathrm{No}_{0} \mathrm{~A}_{\circ}$
IIFG．PLST．IIIK PROD．	12050		768856	6168	$\mathrm{H}_{\mathrm{H}, \mathrm{A}_{0}}$	$\mathrm{H}_{\mathrm{H} \cdot} \mathrm{A}_{\mathrm{o}}$
IFG．PAST． 1 IILK PROD．	11005	Litera		30127	$\mathrm{H}_{1} \mathrm{~A}_{0}$	$\mathrm{H}_{0} \mathrm{~A}_{0}$
IFGC．BUTTER $*$ CREAF	12069		25640		HoA．	$\mathrm{H}_{0} \mathrm{~A}_{0}$
ITFG．BUTTER \＆GREAM	12068	M，T。		9836	H． $\mathrm{A}_{\text {。 }}$	$\mathrm{H}_{0} \mathrm{~A}_{0}$
${ }_{\text {IFGe }}$ IFG．CHESSSS	InO\％r	${ }_{\text {\％}}^{\text {H．T．}}$	75758		H．A_{0}	H． $\mathrm{A}_{\text {。 }}$
ITFG．CASEII \＆OTHER ITIX PROD．	ILOOV		3406	2952	$\mathrm{HF}_{\mathrm{H}, \mathrm{A}_{0}}$	${ }_{10}^{10} A_{0}$
RTG．CASEIS 2 O OTHER ITIK PROD．	1103 P	Litars			$\mathrm{H}_{6} \Lambda_{0}$	${ }_{\text {Hose }}$
ITG．ICE CREAII \＆ILIR SHEIBET	12097	$\hat{*}$	33112	149	$\mathrm{H}_{\mathrm{H}, \Lambda_{0}}$	$\mathrm{H}_{1}{\mathrm{H}, \Lambda_{0}}^{\Lambda_{0}}$
17G．ICE CREAHIL IILK STIERBET	$1 \mathrm{nO9P}$	1.70		6818	$\mathrm{II}_{0} \mathrm{~A}_{\circ}$ O	$\mathrm{H}_{1} \mathrm{~A}_{0}{ }_{\text {－}}$
ITG．$\%$ PKG．COMD．EVAP．DIE 1 IIIK	milov		230007		N．A．	$\mathrm{H}_{0} \mathrm{~A}_{0}{ }_{\text {c }}$
IFG．$\frac{1}{}$ PREG．COMD．EVAP．DRY IIIIK	MIIOP	M．T．		12494	H． \％$^{\text {a }}$	$\mathrm{H}_{0} \mathrm{~A}_{0}$
	1017\％	H．T．	17092		H．A．	11.4 ．
PREP．CAIEILIG FRUITS 2 V VEg．JUICES	10120	\＄	29169	1668	$\mathrm{H}_{1} \mathrm{H}_{0} \mathrm{~A}_{0}$	$\mathrm{Na}_{1} \mathrm{~A}_{0}$
prepr．Caililig miutis a vicg．JUICES	1712 P	H．T．	216	324	$\mathrm{H}_{1} \mathrm{H}_{0} \Lambda_{0}$	
PREPP． 2 PILG．JASE，IMREILSADES	19173		11532	324	${ }_{\mathrm{H} \cdot \Lambda_{*}}^{\mathrm{H}_{\circ}}$	${ }_{10}{ }_{0}$
	$1713{ }^{10170}$	H．T．		2031	HoA．	M．${ }_{\text {A }}$
PREPP． 2 PEG．SUACES ESCABSGHE		H．T．	63499		$\mathrm{H}_{1} \mathrm{~A}_{0}$	11． $\mathrm{A}_{\text {a }}$
DFFIM	12715		13038	3484	${ }_{1 H_{c}}^{1+A_{0}}$	
	1715	M．T．		2301		
PREP．¢：CMAIPIIG FISH，SARDIIES	1817	\＄	29861		$\mathrm{H}_{0} \mathrm{~A}_{0}$	$\mathrm{H}_{1} \mathrm{~A}_{0}$
PREp．Co Chining fish，SIRDIIS	10178	M，To		3920	${ }_{10}$	$\mathrm{H}_{1} \Lambda_{0}$
PREP，© PLG．SHELFIFISI	101888 1178 P	H．T．	2787	1273	$\mathrm{H}_{1} \mathrm{H}_{0}$	II． A_{0}
	1718	H．T．	－	1273	H．A．	H．.$_{\text {．}}$

cimosure mescriprimi	BIIMOL	Wisis			（Fdras，EIC．）OLINPTIOH KiD PROUGCIDE IT 195	
					0001： 00 L．PESOS	000＇s mixis
RTGE HULITIG	11217	\＄	962402			
RICE HUULIIG	12018	H。T。	962402	297515	1573307	
COFFEE HULIIIG	$1 \mathrm{LD2V}$	\＄	3369580	2915－	＋272005	
Corrae hillitg	in227	14．7．	－	359596	＋27\％A．	456030
Handracturnig or cuchucos	10231	\％	547	586	$1 \mathrm{H} . \mathrm{S}$ ．	11．A．
HERATIIIL（FLOUR）	112 T	6	716199	5869	It．${ }_{\text {de }}$	H． $\mathrm{H}_{\text {－}}$
VIPATITLL（FLOUR）	120p	${ }_{\text {H．}}^{\text {de }}$	716199	251633	IT． 1.	119
COFI IIILI，OTHER GRADIS	1225	${ }^{0}$	30161／4	254633	Hode	11.2
COEA 1－ITL，OTHEL CRADIS	in25P	${ }_{8}{ }_{0}$ T．	${ }^{3046}{ }^{2}$	241272		
BAITIG IREAT RREAD	10295	$\stackrel{0}{*}$	676073	241212	1936：45	
BhKDIG ！REit bieid	10298	H．T．			193．4．	311\％
Bahtig cormbread，linfoioca，other	11830	${ }_{5}$	19894	99030	$\mathrm{In}_{0} \mathrm{R}_{\text {e }}$	311129
BALTIG COETIBREAD，INMDIDCA，OTHER	1.1308	K．T．		5917	H． $\mathrm{h}_{\text {c }}$	$\mathrm{H}_{0} \mathrm{~A}_{6}$
BAFTHG COOTIES，YIES，SPOHIGE CAST	1.13317	\％	282257	587	530970	\％oit
BAFITC COOSIES，PIES，SPOIGE CAKS	11318	11．T．	－	33894	53080	63760
FRID POTHTOES，CORITLAKES，FLAKES	11332 T		31784	33854	H．A．	H．A．
FRIED POTATOES，COTHTLARES，FLAKES	1732 P	M．T．	－	2672	II． $\mathrm{H}_{\text {．}}$	17．4．
SUGLA，REEDITD AHD OTHER	18338	§	1079519	272	2201519	
	110338	$\mathrm{H}_{6} \mathrm{~T}$		817655	H．${ }_{1}$ ．	2186645
MFG．CRDCOIATE CAIDI	$1.1035{ }^{\text {d }}$	$\$$	62386．	6970	$11_{0} \Lambda_{\text {。 }}$	11．A．
IFG．VEG．E MIE：NL LIND	11359	${ }_{4}$	620	69760	H	IT．${ }^{\text {a }}$
IFG．VEG． 2 MIITAL LAND	12368	${ }_{H}{ }_{\text {c }}$ ．			N．${ }_{\text {c }}$	$1{ }^{1}$.
IFG．TAELE OII，SAUCES COIDIEEATS	1.1037	\＄	649029	49440	$\mathrm{H}_{\circ} \mathrm{A}_{\text {¢ }}$	N．${ }_{\text {No }}$
FFGG．TAELS OII，SAUCES COIDIEATS	1.1837	${ }_{4}$ \％	4，	21365	$\mathrm{H}_{\text {O }} \mathrm{A}_{\text {c }}$	
1FG．COEIISTAROH－TEAST－SPAC．PASTR	12305	3	383488	21.35		$\Pi_{0} A_{*}$
IFGG．COERISTARCH－ERAST－SPAG．PASIE CHOUID AID TOASTITG OF COFITES	10388	M ${ }^{\text {T }}$ ．		19890	$\mathrm{H}_{*} \mathrm{~A}_{*}$	$\mathrm{H}_{0} \mathrm{~A}_{\text {－}}$
	1.11398 10398	${ }_{\text {H }}{ }_{\text {\％}}$	609846	59005	H．A．	H．A．
	11898	H．T．	！－	58025	H．A．	Hete

Best Available Document

44
Yat hacijabla Doceman

TABLS B5 ((ocnt.)
COLOMBIAS ESTDATED DOMESTIC KARKET COUSTMPTION, 1975

INDOSTFI DESGRIPTIOS	SI2IBOL	,0815	ESTDUTED 1968 DOHESTIC CONSUTPRIOH		ESTEUTED 1975 DOIESTIC COHSUSPTTOH					
			$\begin{aligned} & 000!\text { s } \\ & \text { col. } \$ \end{aligned}$	000 : Toits	EOP G. F, $1 /=1.2514$		F=0.5: G.F.1/EI. 3389			
					$\begin{aligned} & \text { coola } \\ & \text { col. } \$ \end{aligned}$	00013 Uaits	$\begin{aligned} & \infty, 1 \mathrm{~s} \\ & \operatorname{col}: \mathrm{s} \end{aligned}$	$\begin{aligned} & 0001 \text { B } \\ & \text { Units } \end{aligned}$	$\begin{aligned} & 001 \mathrm{I} \\ & \text { Col. } \hat{y} \end{aligned}$	$\begin{aligned} & 001 \mathrm{~s} \\ & \text { Unita } \end{aligned}$
PREP. E PEG. SHELIFISH	10787	\$	27871	1273-	-	-	-		39892	180
PFITP. \& PRE SHETNFISH	M18P	$\mathrm{H}_{4} \mathrm{~T}^{\text {a }}$		1273		-	-	-	398.	1822
RICE BU3IIIA	1027	\$	$962 / 02$		1894478	585052/	-	-	-	-
RICE HOLITG	10278	$\mathrm{Ma}_{6} \mathrm{~T}_{0}$	3369580	297515	5347088 2 /	5856552/	-	-	-	
COFTE MUSII!G	17228 $1022 P$		3369580	35959	5347088	570638릐	-	-	-	
liartercturing of cuciucos	111238	\$	547	-	-	-	7325	-		
larmancturnic of cuchucos	1123 P	M.T.		5369	-	-	7858	-		
WHEATIIIL (EIOUR)	1124	3	76199		896251		-	-	-	
MHEATICLL (FLOMR)	11219	15.7		254633		318648	-	-	-	
COFII IITL, OTHER GRATIS	1125V	$\$$	304644		381232	-	-	-	-	
COFLI :IIL, OTHEN GRMDIS	11259	${ }_{\text {H.T. }}$		241202		301853	-	-	-	
BAITIG ! TMAT BREid	10290	S	616073	-	2423267 ${ }^{\text {/ }}$	- ${ }^{1}$	-	-	-	
BHOTIG :TEAT BREAD	12298	11.T.		99080		38\%7222/	-	-	-	
	10300	\$	19894	-	24895	-	-	-	-	-
BAATIG COIGIBREAD, YAIDIOCA, OTHER	12308	$\mathrm{K}_{0} \mathrm{~T}_{\text {c }}$		5917	-	7405		- -	-	-
	12317	\%	282257	3380	-	-	$710916^{2 /}$	85368	-	-
BAILIG CCOITES, PIES, SFONGE CAKE FRIED POTAIOES, COTINLKE, FLAKES	18318	M.T.		33894	-	-	$475{ }^{-}$	85368		
FRIED POTAIOES, COMIFLAKES, FLAKES FRTED POTAIOES, COITILAKES, FLAKES	1032T		31184		-		41752	$357 \overline{8}$	-	-
SUGAR, REFIIED AHD OTHER M,	10338	${ }_{3}$	1079519	2672	-	-	2,605102/	3578	-	-
SUGAR, REFIIED ALD OTHE?	$1 \square 338$	M.T.		813655	-	-	-	14849672/	-	-
1FG. CHDCOLATE CALDY	1.835	\$	623867		-	-	927282	-	-	-
IFG. HOCOLATE CNIDY	11235	M.T.	-	69760	-	-	-	93402	-	-
	1.1236	\%	620219	-	-	-	830471	66105	-	-
	12368	M.T.		49440	-	-	-	66395	-	-
2FG. TAELE OII, SADCES COMDIETIS	1 B 37	3	649029		-	-	868985		-	-
IFG. TAHES OIL, SICCES COMDIEISS	1.1279	M.T.		21365	-	-	-	28606	-	-
NEG. CORISPAECH-YASESP1G. PRSTE	10387	\$	383488	-	479897		\square	-	-	-
URG. COPRSTARCH-YEAST-SPAG. PGS3	1033P	M.T.	-	19890	-	24890	-	-	-	-

Best Avcilable Document

	Svim		ESTITUTED 1968 DOUESTTC COISURPTIMI		ESTIUTED 1975 DOTHSTIC COISTETITM					
			$000!$ Col． 8	$000{ }^{\prime} x^{*}$Onits					1020；Gre $1=1$	
					$\begin{aligned} & \operatorname{cost}_{8} \\ & \cot .8 \end{aligned}$	B000 Thilts	$\begin{aligned} & 0001 \text { s } \\ & \text { Col. } 8 \end{aligned}$		$\begin{aligned} & \infty 0_{1}{ }^{2} \\ & \cos . \hat{y} \end{aligned}$	$\begin{aligned} & 00015 \\ & \text { vinits } \end{aligned}$
	12398	3	609315		763162	－	－			
Craid hid rosinimo or curris	18398	$\mathbf{H}_{6} \mathrm{~T}_{\text {。 }}$		58025	－	72612	－			
	20aty		525017				704276	0		
	11718	${ }_{5}^{6} \mathrm{~T}$ ．	94.860	23215	$\underline{-}$	－	1378629	176960	－	
	12129	Inter	20860	35924	－	－	23	48099	－	
Wiss minusirilis	1203	\％	57752				77324			
ymis inustames	1043P	Litar		547	－			7325		
	MLat		2100378	－	－		2812196			
Yg．50082	RO4P	Ifter		538403	－	－		7476		
	N045		\＄126130				1814064			
Fig．cicass amd citapasties	H24SP	H，${ }^{\text {r }}$		21497	－	－		28782		
1F0．COITC	10.567		901341	5	－		27294523	163399		
\％re．corios 2 cinimio	1046P	${ }_{8}^{46}$		53959	－	－	281315	163399		
	nomit	${ }_{\text {PLFO}}$		H．4．	－	－	231315	－	－	
LTEDER 1ms	H049		788				－		30230	
Lrimea liml	H249	K．t．		H．1．	－		－	－	－	Hod
FLALIEIGG LOOD，LETEE PRMES	10507	3	7620		－	－	－	－	10907	－
PruisImi lood，yiutr fruigs	10508	H，${ }^{\text {\％}}$		$\mathrm{H}_{6} \mathbf{L}_{0}$	－	－	－			E．${ }_{\text {c }}$
Higc．imomed boves poid plactio	1857	\％	202		－	－	－		2937	
	10578	K\％\％		\＃．L_{6}	－	－	－			［．${ }_{\text {c }}$
	11531	6	14998	－			－		21467	
19G．CiPPBATD \＆PRESSD 1000	12508	H．5．		Fols	－		－			日．${ }^{\text {c }}$
HFG．OF PARYUETS	40538	3	360	H	－	－			544	1
YRGG．OP PARTJETS	10538	$1{ }^{1} 9$.		－Mols	－					10，
	19558		446						634	
	11155	$\mathrm{H}_{0} \mathrm{~F}_{0}$		E． \mathbf{L}_{0}						8.8
1FG．PUTP：DOD，RACS 2 OTIER PTBRES	H1507	$\stackrel{\uparrow}{4}$	10998	－					15741	1074
	12568	\boldsymbol{H}		Eoh			－			15741
C0FR	210667	8	1238544		1549973					
CORS HULIIIG	10668	$\mathrm{H}_{6} \mathrm{~T}_{\text {．}}$		769732	86679	－				
HPG．SOFT DRDIES，BOTMED WATFR	$2 \mathrm{n671}$		643868		＝		862075	9067］		
	2067P	Liter	46346	686109	－			918671	－	
	12629	H，${ }_{\text {c }}$		67318			480332	900278		
1FG．OF IIIPIPRB FATS E OITS	1064	6	229013				30663		－	
	11848	1 LT ．	－	74803	－	－	－－	74803	－－	

[^6]tabIS B6 Marker conteraiste for woid processing thdustries, 1968 and 1975

Industry Description	$\begin{aligned} & \text { I/O } \\ & \text { Code } \end{aligned}$	1968 Processing Capacity $\$ 1000$ U.8. \$	1968 Adjusted Production (incl. exp)	$\begin{aligned} & 1968 \\ & \text { Exports } \\ & 1000 \text { U.B. } \end{aligned}$	$\begin{aligned} & \text { Eatimated I } \\ & 1968 \\ & \text { Market } \end{aligned}$	$\begin{gathered} 1974 \\ \text { Market } \\ \text { Estimates } 3 \end{gathered}$	Projected 1975 Exports 1000 U.8.
Lumber Mill	149	6748	3591	3384	3183	10288	3863
Flaning vood, vhite trames	150	8354	3800	396	7620	10907	-
Mfg. Tooden boxes for packing	151	1883	1026	25	2052	2937	-
Mfg. chipboard $\&$ pressed board	152	13811	7499	-	24998	21467	-
Mrg. of parquets	153	347	190	-	380	544	-
Nfeg., construct., 8 install. build. prod.	155	4446	2052 -	221	44462	6364	-
Mrg. pulpwood, bags \& other fibe=s	156	6469	5499	-	10998	15741	-

Isimply estimated at twice the registered industriall production reported on the DABS 1968 updated sample of the 1964 Inustriai Cenwu.

Processing capacity was used as a proxy for the market constraint.
3Estimated by applying a growth factot, (1.4313, (i.e. considering income elastiasty (\mathcal{E}) of vood producta $: 1.0$: population crowth of 3.26 annul and real per capita income incresse at 23 rate annuily) to the $19 \in 3$ domestis market.:

Colambia 1968 Pesos \$
Colambia 1968 Pesos

			Columbia 1968 Pesos \$	Colambia 1968 Posos
I/0\%	- Industry Name	Agricultural Ray Materials	Price of Major Agricultural Ray Products Paid by Incustries	Prices of Major Processed Products and Ey-Producta at F.O.B. Plant
213	Prep. \& Pkg. Jame \& Marmalados	Fruits \& Vegetahles guapas	Fresh Tomatoen 0.96kg Guave, fresh 0.80̌g	Talas y merneladas 13.33-11.84ig
114	Prop. \& Pkg. Sauces, Escabeche \& Plcicies	Fruits \& Vegetabios onions, tomataes	Fresh tomatoes 0.87 kg onions 2.70 kg	Salsa do Tomates16.55-11.88kg
115	Debydration \& Preesing Fruits \& vegetablea	Fruits \& Vegetables cocor, mani	$\begin{aligned} & \text { Coco } 1.28 \mathrm{~B} \\ & \text { Mani (ahelled) } 6.76 \mathrm{~kg} \end{aligned}$	Pastape Tomate -13.02-12.45kg
157	Prep. \& canning Fishls Sardines	Sardines	Figh-2. 35	Sardines-11.0-8.81; 171 canned fish-6. 20
118	Seashall Prep.	Hollur	Shrimp \rightarrow. 41 kg Shrimp \& others 17.80 kg	Comed shrimp $=25.85 \mathrm{~kg}$ Frozen Lobster \& other $=15.87 \mathrm{~kg}$
121	Pice filling (Milling)	HRICe	Rice (rough) 1.70-1.75kg	Arroz Trillado 3.37kg - 3.17kg Granza -1.19kg; Eran=0.82; Gritsw1.50kg Ave. of $\mathrm{By}+0.88 \mathrm{~kg}$
124	Wheat Flour	Whiwheat	Wheat imported $\rightarrow 2.12 \mathrm{~kg}$ Wheat total-2.06	$\begin{aligned} & \text { Flours } 2.96 \\ & \text { iran } 0.78 \mathrm{~kg} \end{aligned} \text { Avo.) (1-iLi-2.45kg }$
125	Corn Meal, Other Mill Products	Cprn \& Graine ${ }^{\text {官 }}$	Maizen?1.40kg Rice 1.80 kg Graing) 1.64 kg Cebada P. 1.58 kg	Corn Meal -2.51 kg ; Grits -1.90 kg Bran $\rightarrow 1.20 \mathrm{~kg}$ Avo. (All) $\rightarrow 1.93 \mathrm{~kg}$
132	Fried potatoes, corn flakes, etc.	Potctoes, cereala	Papa 1.10kg	
141 $=$	MFG Other Food Products \& Feed	pu Fish meal, cakes By-products	$\text { corn }-1.39 \mathrm{~kg} \text { Millo } 1.13 \mathrm{~kg}$ Soya cakeril. 57 kg ; Afon cake 1.46 kg Cottop-2l. 26 kg 49	Feed-poultrytal. 521 kg Ave. 1.481 kg

Table B7 Colombia: Prices of 1) Basic Raw Materials, Intermediatie Commodities and Firial (Proceased) and By-Products Agricultural Commodities

			Colambia 1968 Pesos \$	Colambla 1068 Pesos
1/0	Industry Name	Agricultural Ray Materials	Price of Major Agricultural Ray Products Paid by Industries	Prices of Kajor Procesead Products and By-Products at F.O.B. Plant
166	Cotn 7riming \& Etuling	1 Corn	Corn $=2.23 \mathrm{cg}$	Mais Pilado-1.55kg 1.54 kg Bran $=0.99 \mathrm{~kg}$ Ave. of Byrl.01kg
129	Baking Wheat Bread	FIour	Flour imported-2.88icg 1st. Total $\rightarrow 2.70 \mathrm{~kg}$; 2nd 2.00 kg	Wheat bread-5.034g-4.699kg
130	Bread from corry yucia Similar	Grain flour	Flour 1st. $\left.\begin{array}{l}\text { Imported }-3.08 \mathrm{~kg} \\ \text { Total } \times 2.14 \mathrm{~kg}\end{array}\right\} \begin{aligned} & \text { and } 2.13 \mathrm{~kg}\end{aligned}$	Yucea bread 9.6 lkg : 8.06 kg Corn bread 9.95 kg -7.42; 9.21
137	Cookies, crackers, cakes, etc.	y Flour	Flour 1st. imported-23.08kg 2nd 2.13kg Total $\times 2.14 \mathrm{~kg}$	Crackers 10.94 lgg cakeor-10.8 Aver-99.74
133	MIPG of Sugar Producta	11 Sugarcane	Cane 70.04 mt	Sugar $1.64-1.80 \mathrm{~kg}:$ MialO. 50 kg (78) (92\%)1 Bagasae 35 MT , Panala 1.69 kg
139	Grainding \& Toasting of Coffee	Green Coffee	Cafe Trillado6.93kg Cafe Trillado Cons: $6.98-6.80$	Cafe mal iddo: 9.94 kg Cafe Tastado 9.60 kg
122	Coffee Hulling	Onhulled corfeo	$\begin{aligned} & \text { Cafe } \\ & \text { Pergamino } \end{aligned} \begin{aligned} & 6.71-6.68 \mathrm{~kg} \\ & 7.36 \text { (consumo) kg } \end{aligned}$	Cafe Trilladoc9.31 kg 9.56kg (excelso)
142	Distilling \& Alcoholic Beverages	Holasses	$\begin{aligned} & \text { Molassesg } \\ & \text { Final } 0.66 \mathrm{~kg} \end{aligned}$	
143	Wine Industries	」 Grapes \& othera	Preah Grapes 4.40kg	
144	MFG of Beer \& Melts	nlilarley	Cebada (mported) 2.38 kg malta (both) Peladal Total 1.98 kg 3.50	Beer 11ght 3.12L
167	HFG of Soft Drinkg, Bottled water	Fruits	51	Soft Drinke 1.13 L \& Mineral waters 1.21

			Columbia 1968 Pemos f	Colmble 1968 Papos 8
yo	Industry Mase	$\begin{aligned} & \text { Agricultural } \\ & \text { Baw Matorinl: } \end{aligned}$	Pricen of Major Agricultural Rav Producta Pald by Industrios	Prices or Major Processed Products and By-Products at F.O.B. Plent
136	VIFG Vegotable \& 4 diminl Lard	soll seede	Soya +2.13 kg 2.10kg	Vegotable lard 47.84 kg margarina 8.57 kg Ajonjoli oil lat25.96ikg; Aro. Cakes 1.43kg
137	hict of Tablc 01la, sumoes Vinegars \& Condiments	18011 esede	Cottion sood고. 24 kg 1.37 kg Palline afrac 81 kg 0.56 kg Copra 4.0 ing (1 mported) 3.97 kg	Vegetable lard 7.90 kg cook oil .nEs 30.30 kg Cakes (aro) 1.28 kg Soja ofll Ro-28.41kg Paina $0.56 / 0.48=1.117$
164	KPG OH1s, Vegetable-\& Animal oils	\% Tallow \& Fish oll	Scbo Sin Dor. 2.44 kgj 2.05 Sebo Derretido 4.80kg; 4.38(inported)	Sebe Refinadoe 4.80 tg
123	RTG Of "Cuctucos"	* Corn \& Mheat	$\left.\begin{array}{l} \text { Cebaday } \\ \text { Raspa } \end{array}\right\} \text {.67kg }$	Cuobucos Cebadas $2.30-2: 06 \mathrm{~kg}$ Trigon. 55 ; Maiz 1.80-0.85hg
135	MEG Chocolates and Cands	98fCocos beans	Cacke orf ifportod 11.63ks Grano \int Total 10.56 kg	Yanteca do Cacao 35.3rg Chocolato Paste 16.59 kg
138	YPG Of Corrstarch - Pastas	\$ Imported thent	Imported thoat 2.114g	Pastas 11 imanticiag- 5.46 kg Avo. ind. starch-5.02kg

1/0	Incustry hame	Agricultural Ban Material	Raw Agricultural Products Ratio of Producer Prices by Pricea Paid by Incuastries 4/	Canvarsion Pactors (Phyaical Output)
164	MPC OHls, Vegotable \& Animal Oils	Tallow efish ofl		Soy beans oil $=.17$; caka $=.78$ Total $=.95$ Phy. $=1.035$
123	MrG of "Cuctuoos"	Core \& ubeat	10.56/9.504 = 1.11	
135	YWC Chocolstes and ceandy	cocoa beare		
138	MPG of Cornotarab-Pastes	Inported Ubeat		

 2 DAB, 1968 Updated 8 cmple. . 1964 Industrial Census

2f Importe Agricultural Raw Mosix
3/ Phyilical Relation of Prieary Dutpute prinary producte and 1 for the by-prod

- Proceseed a8. of Imported origin
- \& Important Ey-Products - are coarerted to Monetary Iern by assusming a wighted factor of 1.5 for the

4 If priceis paid by processers (nueprator) Ia leas than farm prices (demoninator) the ratio is made to be equal to 1 , i.e., we ascurned that prices paid by induatries (which included come rbet lag earvicas) are at lagat squal tor farm prices, but bever lover.

Section C

Analytical Results

The results and interpretation of pptimum solutions for the different variants of the model and five alternative objective functions are separately presented in this sestion.

Optinua Sclution: for 1969 (COLPR 1)

Subnedel or varlant COLFA 1 (1968) is considered as tho base solution, because it was designed to refroduce as closely as pessible the economic conditions, i.e., production levels, trade patterns, etc., Existing in Colombia in 1968. Thus, we expeft this mcdel solution to be closer to what was actually occured in 1968. Eoveter, because the linear programing model is largely normative and there are rany data gejs and diseontinuities in the syster, exact correspondence between codel reaults and the real world can nediy be expected. A large number of changes vere rede brith in the cagnitude of the input-output coeffi-

 iift cbjcitive : vggetajle oils. Tiere were cnly sidght aifieraces in tije regional activity mix (aee Appendir C, Table 1), c. again in the activities repreenticg oil extracting indugtries.

For the ccrioilty that could be preduced by different regional activitiest, the program invariably ceiect oniy one of these actifities ie froduce the extire farket assigned to this perticuler processed

Oojective Pumotion		$\begin{aligned} & \text { MaX } \\ & \text { TVA } \end{aligned}$	$\underset{\text { MAX }}{\operatorname{MPD}^{\prime}}$	$\begin{aligned} & \text { MAX } \\ & \text { 'EMPTO' } \end{aligned}$	$\begin{aligned} & \operatorname{MAX} \\ & \text { 'LABCR' } \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & 1 P_{1} \end{aligned}$
Description	Symbal					
Value Added (tillions US $\$$)	VA	561.26741	561.00583	597.81594	558.07752	561.26741
Friployment of Direct Workers (F	ETPIM	125006	125006	124928	124928	125006
Total Eppioyment (Man Irs)	EMPTO	149287	149287	149462	149462	149287
Earking Capital (Nillions US $\$$)	HK	348.72661	349.03839	349.56013	348.01775	349.03839
Payments to Inbor (H1llians US \dagger)	IABCR	122.40172	122.29964	122.90063	123.00271	122.40172
Returns to Capisin \& Managenent (sillians US\$)	P	391.44323	391.44323	388.13446	388.13446	391.44323
Supplies (fillions us\$)	S	209.34535	209.34535	208.50000	208.50000	209.34533
Fixed Capital (fillicas US	FC	705.73309*	705.73309	706.21454	706.21454	705.73309
Installed Capacity of Electric Motors (RP)	HP	452093	452093	450237	450237	452093
Net Forcign Exchange ${ }^{2}$ (Hillions US ${ }^{\text {¢ }}$)	FX	-288.17411	-288.17411	-285.29297	-285.29297	-288.17411
Surplus Feedsturf by-producto (Hillicns US \downarrow) 3	A.142v	-58.52134	-56.04515	-54.52807	- 52.97201	-58.52134
Surplits Incdible Tallou byproducts (Millians US\$) 4	A0164V	4	W	4	4	6
$\begin{aligned} & \text { Surplus Hide } \\ & \text { (fillian US } \$ \text {) } \end{aligned}$	AG16T	6	4	4	$2 /$	4
Capital for Expanding Processing Capacity (Nilians US $\$$)	FIXCAP	5	5/	5/	$5 /$	5

1たcmprised only processing activities representing the existing 1968 colambian technology.
2/The nekative sign indicates 'earned' foreign exchange, i.e. It is added to the $\overline{Y X}$ nor.
.3Nmised (rurplus) by-products equivalent to total (potential) sector production of the specific by-product minus the quantity of the by-product utilized by other sector industries (inter-industry consumption), or may be intar preted as mrasten cr failure of the sector to produce these amonta of by-producta (a deficit gap or measure of inefficiency of the corresponding industries).
4hestricted as agricultural raw suiterial in this eariy model.
$5 /$ Belevart ouly to aubmodel "colpr 3^{r}

coumodity.

Table c2, Ehove the maitude of sector aggregste levels for the colutions of another version of the submodol (COLPR 1), with urestricted egricultural rav materials. Again, the solution for the five objective functions apecify spproximately the saso level of cocmodity production for all of then, sitio alight difforences in the ectivity mix, (sea Appendix C, Table 3). The relaration of the rem material restrictione allows the program to increase the production of those activities in which raw materials were binding. This includes oilseeds $3 /$, corn, cottor 0 Nour.

As we have noticed by comparing the recults of the two versions of the 1968 model shown in tables Cl and C2, the level of the different sector asgregates ere not far apart. When the model is not restricted Ey the availability of agricultural rav materisif: value asied and returns to capital and management increased by 4 percent; employment cf direct vorkera acd total employment increased by $11-12$ percent.

On the other hand, the net foreign exchange earned by the sector declined about 3 percent, due to the fact that more earned dollars have to be allocated to the fimportation of rav materials and supplies, espen cially to wheat axd/or flour.

The production of feed by-products was higher; of course, in the run with unrestricted rav materiels, since production of corn and wheat milling activities from which some of the feed by-products originated vere at a higher level in the solution. Some refinements auch as, including coefficients representing crude

same for the different resionl activities except for the lator coefficient in man-years wich is specific

 for each indivadisi regior.E' :ottcr seed: scites

Objective Function Macro Variable		$\begin{aligned} & \text { YAX } \\ & \text { 'VA: } \end{aligned}$	$\begin{gathered} \text { MAX } \\ \text { 'EMPDW ' } \end{gathered}$	$\begin{gathered} \text { MAX } \\ \text { 'ENPTO' } \end{gathered}$	$\begin{gathered} \operatorname{mAX} \\ { }^{\text {LABOR }} \end{gathered}$	$\begin{aligned} & \operatorname{yux} \\ & 1 P: \end{aligned}$
Descriptian	Symbal					
Value Added (Milicons US\$)	VA	585.55220	583.92164	583.92164	583.92164	585.55220
Employment of Direct Workers (F fan/ Yrs)	EMPD	139770	139791	139791	139791	139770
Fo. Employment (\%an/ira)	ETPTO	168551	168777	168777	168777	168551
Faricing Capital (Millians US\$)	WK	365.20654	367.87598	366.33360	367.87598	367.06070
Pajutints to Labor (Millions US $\$$)	Iabar	129.78117	130.42677	130.42677	130.42677	129.78117
Returrs to Capital \& Management (fillions US\$)	P	406.85359	404.95127	404.95127	404.95127	406.85359
Supplies (Hillions US\$)	S	228.48691	228.21515	228.20515	228.21515	228.48691
Fixsi Capital (killians US\$)	FC	753.30712	753.49597	753.49597	753.49597	752.19153.
Installed Capacity of Electric Hotors (IP)	HP	475904	475360	475360	475360	475904
liet Forcign Exchange ${ }^{\text {(HiTlians US } \$ \text {) }}$	FX	-282.77519	-280.62829	-280.62829	-280.62829	-232.77519
$\begin{aligned} & \text { Su-plus Feedsturf by-products } \\ & \text { (Iiilicns US } \% \text {) } \end{aligned}$	AC141V	-64.36092	-58.69344	-64.08916	- 64.08916	-63.84390
Surplus Inpdible Talles byproducts ${ }^{3}$ (aillione uS $\$$)	AC164	-25.61378	-25.61378	- 25,61378	- 25.61378	- 25.61378
Suplus .Hides by-products (lifiliona US $\$$)	AG162V	-22.54868	- 22.54868	-22.54868	- 22.54868	- 22.54868
Capital for Expanding Processing Capacity (Nililions US\$)	FIXCAP	4	4/	- $4 /$	4/	$4 /$

1 Ccuprised only proceasing activities representing the exdating 1968 Colambian technology.
2. The negative sign indicates 'eamed' foreign exchange, i.e. it is added to the FL row.

3 Unused (surpius) by-products equivalent to total (potential) sector protuction of the specific by-product minus the quantity of the by-product utilized by other sector industries (inter-industry conaumption), or may be inter preted as "waste" or failure of the aector to produce these amounts of by-products (a deficit gap or measure of 4 inefficiency of the corresponding industiries).
4 . Pelevant only to anbmodel "correr 3".
inedible tallow and uncured hide by-products in the livestock slaughter activity, vere developed to be specified only in the latent 1968 submodel (unrestricted rav material). (Bea footmotes in tables Cl and C2). As it was previously mentioned, the total amount of working espital shown in the value added maximizing solution for 1968, amounting to $\$ 365$ million, was assumed to be the total processing sector requirements of vorking capital for 1968, and based on this figure, the capital restrictions for 1975 were derived (see working capital constreinte, p.2c)

Shador Prices, General Discussion and for 1968 Solutions

An important aspect of the progranming solution is the level of recources used and their shedor prices. Appendix C, Table 2 and Appendix C, Table 4 show for all 1968 solutions the shador or accounting prices for those resources which are exhausted. The value of the shador prices for the abundant or unused resources, of course, is simply equal to zero and is not shovn in these tables. The resources showing non-zoro shedow prices are of course those binding the solution and consequently constituting the bottleneck or the system. Eliadow prices must be interpreted with caution, since they measure quantitatively, in the units in which the oojective furction is expressed, the impact of one ad山itional unit of 'scarce' resource on the objective. Consequently, they vary considerably in quantity and in units of measurements among solutions for different objective functions. Since each shadow price inciudes both direct and indirect impects effects, they ere very sensitive to chenges in the structure of the model ${ }^{1 /}$, especially when there exists atrong interrelationship among the activities of the model. On the other hand, when there is little or no interrelations between activities and especially in the specific cane of specialized scarce resource, it is relatively simple by $1 /$ For example, shanges in restrictions of other resources rhich may change the besis of the solution.
by examining their shador prices to deteraine the nev level of the activity directly affected by one unit change of this scarce resource. For example, in the value added maximizing solution of colpr 1 (vith restricted ray material) the processing capacity for slaughter caitle and hogs (PClOjV) is binding the solution. The shadow price of this resource is $-.2 h$. Then if we just examine the coefficient matrix ve-may observe that the element of the livestock activity intersecting the processing capacity constraint (rav) for this activity, aumely $=\mathbf{c}, 03 \mathrm{~V}$, is also . 24 . Consequently if we increase slaughter processing capacity by one unit (1 U.5.f) then the objective function (value edded) would be incressed by . 24 dollars ($\$$). It is interesting to notice that the highest shadow price is for scarce agricultural rav material (barley and malt) utilized by breveries. Again if ve examined the coefficient nature the value of the elenents under the colum corresponding to the activity producing beer-(BENR 1) and the rown corresponding to the objective furction (VA), and raw material (AGI44V) are . 66 and .22 respectively. Thus, dividing .66 by . 22 ve get 3.0 or the value of the shador price, indicating that by increasing the availability of barley products to the breveries by $\$ 1$, the value added of the sector is increased by $3 \$$.

Another peculiar set of shadow prices, which are worth being examined, are those corresponding to the non-industrial activities. These activities are forced into the solution in the form of equality equations (restrictions). However, only two of then showed positive non-zero shadory prices, while the rest have shadow prices equal to zero. The latter is explained by the fact that agricultural processed products from both non-industrial production and the comercial production are binding by the same market restriction, 1.e., an increase of the non-industrial equality constraint by one unit will not increase the objective func. Ion at all, since it is (simulaneonsly) restricted by the correaponding market constraint. In the case of
the two equality reatrictions with poaitive sbrdov prices (see restrictions sill 46 and $\operatorname{III} 133$ in Appendix C, table 2), undoubtediy some interrelation betreen activities and resource utilization takes place. For example, the shadou price of +.15761 corresponding to the restriction arl 33 which, of course, indicates that - by Increasing (forcing into the solution) by one unit this restriction (equality) the objective function diminished by 15761 is derived as follows: the shadow price for the market restriction (man3v) of the ance processed product (refined and brown mugara) is -.47761 (see Appendix C, table 2) and the ectivity coefficient (for both comercial and non-induntrial ectivities) corresponding to the objective function roy (value added) is .32. Consequently, if we force into the solotion one additional uait of the nop-industrial production of "Panele" (brown augar) ve increased the objective function by .32 , but at the sare tive nince ve have armaket constraint for all kinds of sugar (m33v) which put an upper linit in the production of these products, the value of the objective function is difinished by . 47767 equal to the shador price of this conconstraint. Thus, $447761-.32=.15761$ which is actually the shadow price of the resource equality $\operatorname{In} 33$ (see Appendix C, table 2).

Table 2, Appendix \mathbf{C} abows the non-zero absiov prices for five runs of COLPR 1 vith unrestricted ray zaterial, and different objective tunctions. An the reader can notice the shadow price of the equanity rem striction $\operatorname{lil} 33$ is positive for all the solutions, but varying its vilue, and of course, the unit of measurenent for each of the five objective functions.

By-Products Utilization and Sector Efficiency

Bome of the processing ectivities in the model produce importent internediate comodities during their prcivetica processes. The feesback of egro-industrial by-products into other processing activitiea or into
ilvestock activities is of great importance in "modeling" modern production technologies and in depicting the interrelaticnship between the processing and primary agricultural sectors.

Oniy some feedstuff by-products, tallou and hides were considered at this earliest atage of the model.
On table C2, and in other similar tables, it is shown the amount in millions of U.S. dollara of the "surplus" or unused intermediste or by-products produced by the entire proceasing sector during one-year. This Cigure simply represents total oufpat.emerging at the processing level minus by-products utilized as ray material (input) by other processing activities of the processing sector.

In regard to the sector efficiency, it vas thought that this"alleged" unused amount of by-products can be looked out as an under-utilization of available resources (rav material for processing industriea). Obsolence and lack of modern facilities, is a common characteristic of masy processing plants in the ldC. This is especially true in the case of the alaughter of cattle and other livestock, since a large number of them are killed at the farm level or in obsolete and unsanitary muricipal slaughter moses. In any case, there are not facilities to recover all, or almost all of the by-products which are vasted or not properly utilized. Consequentiy this "waste" mas be considered a "deficit gap" or measure of inefficiency of the corresponding industries. Admittediy, that in the case of feed-stuff by-products it may be a valid argument to state that this "alleged" surplus could be already being used by livestocik activities (beef, milk, etc.) of the primary agricultural sector, not incinded in the model, thus, invalidating the argument of inefficiency (unused surpius). In z more comprehersive model in which all economic activitiea are represented, the interactions betreen sectors is observable and any doubtrul conciusion or misconception can be diasipated.

Our efficiency criteria for cach industry is airply represented by the following ratiol:
Surplus or erount unised by-products
The vaiue of this ratio range from 0 to 1 and of, course, 0 means no vaste at a-1 or 100 percent efficiency and 1, a complete vaste or zero efficiency at all. The total sector production of each apecific byproduct is aimply calculated by the sum of the level of each activity producing this by-product multiplied by the technical coefficient corresponding to the specific br-product., For example, in the case of the production of the tallow which is produced by one fionstry, e.g., cattle alaughter, the calculations are as followns level of this activity was 343.911 and the tallov coefficient 18.08 , therefore crude tallor production is $343.911 \times .08$ million $\$=27.51288$ million $\$$. Hence, the efficiency ratio will be ourplus $1 /=25.61378-193$ or in other vords if you vant to express it as efficiency percentage, then just subtract your ratio from and multiply the results by 100 as follows: $(1-.93) \times 100=7 \%$ efficiency.

Optimm Solutions for 1975

As mentioned before, three subzodels or variants were run with the 1975 restrictions and five different objective furcticns. The interpretation and coments of the crimum oflutions of each submodel are separetely shown beiow:

Optimum Solutions with only Colanbian Technologies-COLPR 1 (1975)

Table c3, shows the level of the macro varisbles for optimum solutions with restrictec capital at $\$ 457$ million, for the five objective functions. The level of these macro variables vary very little among solu-
\triangle This ratio combined with other production indicators, ofecific of eaca individual industry may be developed in a useful yerdsticis for the neasurement of the Regree of moderain tion of processing industries and others in the process of eqonomic development.

I/ Fica table C2.

Objective Fumetion Hecro Variable		${ }_{\text {HAX }}^{\text {iNA }}$	$=\operatorname{MAX}$	$\underset{\operatorname{LEMPTO}^{\text {HEP }}}{ }$	$\begin{aligned} & \text { MAX } \\ & \text { 'LABOE' } \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & \text { 'PI } \end{aligned}$
Description	Symbal					
Value Added (IGİions US\$)	JA	7 55.80807	755.89826	755:89826	756.46089	753.56564
Enplayment of Direct Workers (10n/Yrs)	EMPD	170820.	172960.	172960.	172823.	170780.
Total Erinoyment (kar Yra)	EPPTO	205893	208457.	203457.	208332.	2055こ.
Horking Capita) (Nillioms US\$)	WK	457. 57	457.0 5/	457.0 5/	457.0 5/	457.051
Pajments to Iabor (ifllicas US\$)	IABCR	170.89975	170.63022	170.77646	171.19843	168.54211
Feturns to Capital \& fanagement (fillicms US $\$$)	P	523.78224	523.44200	523.44200	523.30 ml	5\%.14851
Supplies (uillians uS\$)	S	287.99173	236.95416	286.95416	287.93877	286.03426
Fixed Capital (nillions US ${ }^{\text {a }}$	FC	933.97008	931.81675	931.81675	934.99551	915.87194
Installed Capacity of Eleotric Notore (HP)	HP	565101	570345.	570345.	569362.	557622.
Net Foreign Exchange ${ }^{2}$ (Millions US\$)	FX	-461.80441	-461.65645	-461.65645	-461.65645	-464.40628
$\begin{aligned} & \text { Surplua Feedstuff by-products } \\ & \text { (Millions US } 8 \text {) } \\ & \hline \end{aligned}$	AC141V	-65.95730	-65.93857	- 65.44028	-65.44028	-65.44028
Surplus Inedible Tallor byproducts (ifillions US\$) 3	AC164V	- 32.49194	-32.49194	-32.49194	-32.49194	- 32.49194
$\begin{aligned} & \text { Surplus Hides: by-products } \\ & \text { (xillicns US\$) } \end{aligned}$	AM62V	- 24.00537	-24.00537	- 24.00537	-24.00537	- 24.00537
Capital for Expanding Procesaing Capacity (Millions US\$)	FIXCAP	4/	4	4	$4 /$	4/

1/ Comprised only processing activitics representing the exioting 1968 Colombian technology.
 / The aegative sign indicates 'earnec' roreign exchanga, i.e. it is added to the FX row.

Urused (surplus) by-products equivalent to total (potential) sector production of the spacific by-produot minus the qumatity of the by-product utilized by other sector industries (inter-industry consimption), or may be inter preted as mwaste" or failure of the sector to produce these amomes of by-products (a deficit gap or measure of inerficiency of the corresponiting industries).
$4 /$ Relevant only to aubsodel "Corpz 3".
5/ Binding restriction
iloms for different objective functions. The results for all five objective functions specify about the same level of processed camodity production, with oniy silight differences in the ragional activity mix (see ApFerdix C, table 5).

An exmaination of the shadov prices 2 (see Appendix C, table 6) indicates the importance that vorking capital and processing cajacities now binilig the solution are exerting upon the expassion of tine processing sector in 1975. A more meaninghul comparison is betveen colutions maximizing value addel with alternative vorking capital constraints. Table C_{4}, showa the magnituce of the sector aggregates levels for the solutions at the three different level of working capital. For an explanation hor these three levels vere developed, refer back to the section dealing with the vorking capital constraints.

Capital vas binding for the two solutions with, ware restricted capital at $\$ 365$ and $\$ 457$ million, respectively. By relaxing this restriction, that is, by increasing it approximntely by 7% to $\$ 489$ million, the magnitude of the sector's macro variables actually changes rery little betreen the tro solutions as can be observed from the recults presented in table C4. Hovever, changes in the macro variables level, with the exception of foreign exchange, were more prenounced, ranged fron 7 to 12 percent when the vorining capital available was increased from $\$ 365$ to $\$ 457$ million.

The apparant foreign exchange "paradox" in which the processing sector, in a solution/showing a lover level of output, as measured by the value added magnitude ($\$ 708$ million) is earaing more net foreign exchange ($\$ 4,08 \mathrm{mililion}$) than in a solution $\boldsymbol{Z}_{\text {at }}$ a higher level of aggresite output (value sdded=\$751 mililion) 2 Oniy those resources (constraints) showing non-rero biadow prices are binding the solution. \mathcal{V} With vorising capital equal to $\$ 365$ million. 2f Hith vorkirs capital equal to $\$ 4.57$ million.
coupr 1^{1} (1975) Optinum Solutions, Maxdmizing Vaiue Acded,
with Unlimited Agriculturai Rew Material with alterontiue korking Capital (WK)

Objective Puction Haro Variable		$\begin{aligned} & W X={ }^{\circ} 365 \\ & \text { Hillions } \end{aligned}$	$\begin{aligned} & \text { WK }=497 \\ & \text { Millions } \$ \end{aligned}$	$\begin{aligned} & \mathrm{HK}=489 \\ & \text { Millions } \$ \end{aligned}$		
Description	Symbal					
Vaine Added (killions tist)	VA	708.0.125	756.80807	758.26116		
$\begin{aligned} & \text { Dipl ungent of Direct Workers } \\ & \text { (Harvirs) } \end{aligned}$	EnPD	152511	170820	173022		
Toral Enployment (kan/Xrs)	PY20	183901	205893	208535		
Hordur Capital (Hillions US\$)	FX	365. ${ }^{\text {/ }}$ -	457. 57	462,43183		
Peyments to Labor (Nillicns uS ${ }^{\text {\% }}$)	LABCR	160.60641	170.89975	171.29605		
Heturrs to Capitin is Ifmagement (Mulicns US\$)	P	486.49772	523.78224	524.83903		
Supplies (fillions us\$)	S	271.26872	287.99173	288.52013		
Fixed Capital (Hillions US\$)	FC	889.14651 •	933.97008	936.61206		
In:stalled Capacity or Mectrio - Hotors (isp)	HP	496204	565101	570385		
ict Foreign Exchange (Hillicms usp)	FX	-457.75722	-461.80441	-461.80441		
Surplus Feasturf by-products (14clion ű\$)	AC141V	- 55.87923	-65.95730	-65.95730		
Surplus Incdiole Tallow byprociucts (Millions USq) 3	AC164V	- 32.49194	- 32.49194	- 32.49194	-	-
$\begin{aligned} & \text { Surfiun Hides by-products } \\ & \text { (iHilians uS } \$ \text {) } \end{aligned}$	AC162V	- 24.00537	- 24.00537	-24.00537		
Capital for Expanding Procesaing Capacity (Millions US\$)	PIXCAP	H/	$4 /$	$4 /$		

1/ Comprised anly processing ectivities representing the existing 1968 Calambian technology.
$2 /$ The negative aign indlicates 'earned' roraign exchange, i.e. it is added to the FX row.
3/ Unused (surplus) by-products equivalent to total (potential) sector production oc the specific by-product minals the quantity of the by-product utilized by other sector industries (inter-intustry comsumption) or may be interpreted as mwaste" or failure of the sector to produce these anomts of by-products (a deficit gap or measure inefficiency of the correspanding industries).

4/ Relevant ons to rubmodel "corri 3^{n}.

earalng only $\$ 462$ millions of dollars (net foreign exchange), is simply explained as follows: exports activities (the earners of foreign exchange) are forced into all solutions, at predetermined levels, so the voluae of the foreign exchange coming into the country is the same for all solutions, hovever, the amoumt of foreign exchange spent in imported rav materials and supplies is usuaily areater vien the acareaste level of output increases, since the processing activities will be required to purchase more imputs from both domestic and inported sources. $3 /$

The results of the solutions with medium (\$457 million) and higt working capital (\$489 milition) eonstraints, specify approximately the same level of commodity production, again with alight differences in the regional activity mix and in those representing oil plants: (see Appendix $こ$, table 5).

Hovever, the resul.ts fram the solution with low.capital ($\$ 365$ million) specify sero or a very low level for the production of some processing activities which add very little value to the raw material (and purchased inputs) in their production processes. This is the case of industries such as milling or bulling grains and cereals and also in the hulling of coffee. This is probably the major weakness of the model in which the external sector (exports activities) are independenily (exogenously) conceived vithin the conceptual framework of the model to "only" consider the "foreign exchange issue", and are cot interrelated to the corresponding production activities.l/ Hence, the level of comodity production and the activity mix, vary substartially between the solution with low capital level and the other two solutions (with higher level. of capital). See Appendix C, table 5.

3 or course, this is not necessarily true. For example, in the case that the aggregate revel or proanction increasea oriy frcm processing activities which do not utilize imported inputs in their production processes.

1 A core elaborated and concise conent and explanation on this issue will be treated in the section on conclusions and recomendations.

Shadow prices st non-zero levels (for binding resources) are shown in Appendix C, table 6. Their interpretation does not need any further elaboration and the reader is referred to the above mentioned table. However, it appears to be quite intereating to briefiy diacuss the obadow prices for vorking capital shown for the three value added maxiaizing solutions. The referred shadow prices are as follows: (a) for the solution with working capital = \$365 million, is -.72727 ; (b) for the solution with working capital $=\$ 45$ Million, is -.47826 and (c) for the solution with working capital = $\$ 489$ million, is rero. These results indicate that as a resource becones more scarce, its shadou price increases, in this case from zero (abundant rescurce) to -.47823 (relatively scarce resource), and to -.72727 (highly scarce regource).

Optimin Solutions vith Aiternative Foreign Technologies-CoLPR 2 (1975)

Results from pptimm solurions, with restricted capital at $\$ 4$. dollars for all five objective functions are presented in table C5. The programs seen to fall into three groups. The first one includes the value added and the profit (returns to capital and management) maximizing programs. The results of which, of course, gields the larger sector output, measure as value added and the higher profitability respectively, than the other solutions. The second group are the solutions marimizing employment (in man-years) of direct vorkers in production, and total (direct and indirect) workers. Pinaliy the program maximizing payments to labor, in monetary terms (including all fringe benefits) stands by itself, aurprisingiy ahowing contrasting results in comperison to the solutions of the other four objective functions. Surprisingly, the total enployment situation (in man-years) is aggravated; even to the extent to be 12 percent lover than the profit maximizing solution or exploying 35 percent lass vorkers (man-year) then in the progran marimizing total eaployment. In addition, the aggregste output of the sector, expressed as value added, is gubstantially

Oojective Fimetion Kacro Variable		$\begin{aligned} & \text { RAX } \\ & \text { TA: } \end{aligned}$	$\underset{\text { MAX }}{\text { MAPD }}$	$\underset{\text { MAPX }}{\text { MAPTO }}$	$\begin{aligned} & \text { MAX } \\ & \text { 'LABCR' } \end{aligned}$	$\underset{i P i}{\operatorname{HAX}}$
Description	Symbal					
Value Adder (Millionc US\$)	VA	866.33769	806.466	804.51632	668.09082	850.34192
$\begin{aligned} & \text { Employment of Direct Worisers } \\ & .(\text { tha } / \text { Yrs }) \end{aligned}$	BPIN	138126.	189023.	189709.	115653.	140172.
Total Employment (Man/Yrg)	BPT0	175994.	233540.	236338.	153628.	174411.
Working Capital (Killions US\$)	KK	443.31298	451.63618	456.58482	457.05	439.35062
Feyments to Labor (Seilians US	LABCR	198.67715	178.09718	196.72434	254.02378	177.36479
Returns to Capital \& kavagesert (MELIIans LS\$)	P	611.27436	574.47931	557.64280	351.72475	624.42953
Supplies (tillions US\$)	S	236.68922	257.30356	239.60662	353.5;585	242.44640
Fixed Capital (Millians US $\$$)	FG	713.05721	865.37592	879.56917	847.65166	685.01517
Irstalled Capacity of Electric Hintore (iP)	HP	497231.	569068.	598729.	478059.	439917.
Net Fcreign Exthange (${ }^{\text {dillioms US } \$ \text {) }}$	FX	-461.55299	-461.65645	-461.65645	-462.58033	-461.80441
$\begin{aligned} & \text { Suplue Fiudstuff by-producto }{ }^{3} \\ & \text { (Iillions US } \hat{\$} \text {) } \end{aligned}$	AG14IV	-32.38664	- 69.92489	- 64.72177	-59.35159	-32.90366
Surplus Inedible Tallor byprociucts (itillions us $\$$)	AG164V	- 31.40674	- 32.49194	- 32.49194	- 31.18970	- 37.40674
Surolus "tities by-producta (ijileimn US\$)	AG162V	-24.00537	-24.00537	-18.99099	- 25.43805	-24.00537
Capitol for Expanding Procesesing Capacity (Millions US\$)	FIXCAP	4/	4/	4/	4/	4/

I/ Corprised poscessing activities representing hoin whe exigting 1968 Colcmbian technology and alternative creign technclogies from various countri is at different stages of develoment
F/ The negative sign indicates 'earned' frreign exchange, i.e. it is added to the FX raw
Unused (surpius) by-products equivaient to total (potential) sector production of the specific by-product nincs the quantity of the by-product utilized by other sector industries (inter-induatry consumption) or :ny be interpreted ss merten or failure of the sector to produce these amomnta of by-producta (a deficit 4) Selernease of inerficiency \sim the corresponding industries).
4) Relevant only to subzodel "COLFR 3 ". 5/ Bineing Restriction

71
'lower' than those produced by both the solution medisisigs eaployment (21) apd, of course, the value added gadirizing molution (23\%).

This paradocical polution, in which for the mort part, the progran selecta the most capitil-intensive technique is explained as follows (a) thone alternative technologiea used by the progran correapone largely to the $1968 \mathrm{U} . \mathrm{B}$. average factors comination. It is true that these U.B. technologies vere highly ipitalintennive in the rense that they emoyed less nuber of worier per unit of output, bat as the wave tise, due to the great dieparity in the wese differential paid by the $U .8$.and colombia and other countries, the actual monetary payments to the lebor factor vere proportionally mgher in the U.B., vith its advance and capitalintensive technology than in the less sophiaticated techniques emplojed by colombia or in the alternative technologien from other countries. X (b) The relatively excessive paycients to the labor factor exhausted the vorting eapital remources. Hesce, the capital is binding for the 'labor' maximicing solution, but is not binding in axy other of the foum progrems. Consequently as a nesult of a shortage of capital, production of some ectivities vere at eero or very low levels of protuctiona, and the value added of the whole sector vas much less than for the solutions for the other oojectives. Table 7, of Appendix C, shove the camodity level and ectivity nix for the solutions for the fire objective functions and thble 8 , of Appeodix C, above the non-zero shadow prices of their binding reatrictions. Tuble 36 shows the magitude of macro varieble levels for the COLPZ 2 rubnodel vith altermative capital rettrictions, vinci vine added as the objective fupction. Capital vas not binding for the two higher cepital alternatives, and therefore the solutione vere exuctily the the sane, 1.e., they specify the sere Ievol of comodity production as vell as the aese activity max. For see ?ootiote on nert pere.

Objective Pumation Macro Variable		WK- 365 pullions \$	$\begin{aligned} & \text { WK }=497 \\ & \text { H11100s } \$ \$ \end{aligned}$	$\begin{aligned} & \text { WI }=489 \\ & \text { YUIIicns } \end{aligned}$		
Deccriptian	Syubal					
Volue Added (Aillians US?)	VA	825.10644	866.33769	866.33769		
$\begin{aligned} & \text { Employpent of Direct Workers } \\ & \text { (fan/Yrs) } \end{aligned}$	EPPR	120674.	138226.	138126.		
Total Employment (Man/Yra)	EXPTO	155292.	175994.	175994.		
Forking Capital (Hillicns us $\$$)	H/	365.05	443.37298	443.31298		
Raycents to Lacor (Sillions US $\$$)	IABOR	189.46264	198.67715	198.67715		
Pr (ums to Capital \& Maringement (HUllians US $\$$)	P	579.52254	611.27436	611.27436		
Supplies (Millians US\$)	S	219.82562	236.68922	236.68922		
Fixed Capital (H11scons US\$)	FC	684.26391	713.05721	713.0571		
Inctalles Capacity of Electric isotors (IP)	HP	44607.	497237.	497237.		
Het Foreign Exctange (Hulicas US\$)	FX	-461.55299	-461.55299.	-461.55299		
Surplus Feecsturf by-producta (iillions us\$)	ACRLIV	- 32.38664	-32.38664	± 32.38664		
$\begin{aligned} & \text { Surplus Inedible Tajlád by- } \\ & \text { products (pllilions uS } \$ \text {) } \end{aligned}$	A0164V	-31.40674	-31.40674.	-29.98716		-
Surplus . Hides by-products (H 1 llicns US \ddagger)	ACl162V	-24.00537	-24.00537	-24.00537		
Capital for Exparuling Proccsesing Capacity (Milliona US\$)	FTXCAP	4/	4/	$4 /$		

1. Camprised processing_activities representing both the eriating 1968 Colambian technology and alterpative foreign technologies from various countries at dirferent atages of development
2/ The negative aign indicates 'earned' foreign exchange, i.e. it is added to the FX row.
3 Unused (surplug) by-products equivalent to total (potential) secror prodiction of the specific by-product minus the quantity of the by-product utilized by other sector industries (inter-industry consumpticn), or may be interpreted as mraste" or failure of the sector to produce these amomes of by-products (a deficitgep or measure of inerriciency of the corresponding industiries).
the progran with low capital constraint, this resource (capital) is binding the solution and therefore the level of commodity production of some activities with lov value added coefficient was zero or at a very low level. In addition, there vis some differences in the activity mix. (See Appeadir C. table 7). The shadow prices for all the solutions are shown in Appendix C, table 8. Of course, the only solution showing a nonzero shadov price for vorking capital is the one which restricted capitals ere the asme 1968 level, $1 . e$. at $\$ 365$ misilion, thus binding the solution.
```
Optimam Solution for 1975 with Alternative Foreign Tecinologies and Empanding Processing Capacities.
```

By adding inveatment activities to the model mich allomior expansion of processing capacities, with no rixed capital (long-tenw-credit) 11mitation, most of the major constraints of the 1975 submodels are relared. Markets and vorking capital are nor binding the solntions for all the objective functions, except for the progran marimizing erployment of iirect vorkers in production (ENPD). In this program, surprisingly, the vorking capital restricted at 457 million 0.8 . $\$$, is almost but not completels exhausted. This is apparently due to the fact that the national technical labor force 'resource' (direct workera trained in agricultural processing) which is the objective of this pragram, is actually exhausted with still a little vorking capitel available, and consequentiy the level of comodity production was protably a littlr less than the level that would be obtained if ail the working capital vere completely used.
rable C7 shows the level of the different sector accounting aggregatea for optimum solutions for all rive objectives. It is worth it to notice that the level of these macro-variables changed more drasticalis from one progran (objective function) to another than it vas the case of the solutions for the subnodela \bar{y} For a detailed information on bourly wages paid to vorkere and total labor paymenta in procesaing industries in various countries, see tables 15.1 and 15.2 in Ricardo, Working Document f3E Vol. I.

Objective Punction Macro Varfable		$\begin{aligned} & \text { MAX } \\ & \text { rVA: } \end{aligned}$	$\begin{gathered} \text { MAX } \\ \text { 'EMPDF } \end{gathered}$	$\begin{gathered} \text { MAX } \\ \text { 'EMPTO' } \end{gathered}$	$\begin{gathered} \text { MAX } \\ \text { 'LABOR' } \end{gathered}$	$\underset{i}{\operatorname{MAX}}$
Description	Symbol					
Velue issded (Hilican uss)	VA	1014.39023	756.83053	841.32979	703.93515	1000.57848
Eroployment of Drect Forkers (Nan Yra)	ETPD	12305.	224678.	224660.	105861.	144662.
Total Enployment (han/Yra)	EMPT0	156941.	266393.	274288.	145498.	173701.
Ficring Capital (Miliions us\$)	Wí	457.04	456.26306	457.0 4/	457.04	457.0 4
Faymento to Iabo: (Hillions US\$)	IABCR	250.02643	180.41687	210.46604.	299.46376	205.76434
Returris to Caplail \& limagement (xillicta US\$)	P	695.05146	519.25262	556.45307	339.93062	738.05404
Supplies (Militicns U3\$)	3	2477.55525	329.30477	330.37843	379.39196	274.18761
Elred Cayitel (Hillicna usk)	FC	828.90866.	1148.27811	1234.70092	927.70323	905.80021
In:tailed Capacity or zlectric Noters (in')	FP	595081.	680340.	747917.	515346.	557245.
llet Foreign Exchange ${ }^{\text {(}}$ (Hillions us.)	FR	-149.63033	-46.18745	- 30.32504	-254.78714	-16.99204
```Su:plit: Fedatuff zi-produeta \({ }^{3}\) itilitons uns)```	AG14IV	-6E.83162	16.09986 5	-50.44555	10.443325	- 59.99491
$\begin{aligned} & \text { Surlus Inedible Tallos }{ }^{3 j-} \\ & \text { Froluets (Ifillion:s US } \$ \text { ) } \end{aligned}$	AG164V	-46.10345	$6.31295^{5}$	-17.02784	- 36.70130	-46.10345
$\begin{aligned} & \text { Supplus ifides by-products } \\ & \text { (Milicns US\$) } \end{aligned}$	AGI6 ${ }^{\text {V }}$	-49.694\%i	16.833995	$\therefore 5.86810$	- 40.81866	-49.69427
Cipital Ior Expanaing Processing Capacity (fillicns US\$)	FIXCAP	300.02350	386.74716	394.81090	237.69814	456.84470

I/ Canprised processing getivitiea representing: (1) the exating 1968 Colombian technology, (2) alternative rcreign techologies from various countries at oifferent etagea of cevelopment, and (3) investment activitiea for expand-
ing procesaing capacities of all 48 agromindustries in the model. -2/ The negative sign indicates 'earned ' Eoreign exchange, in it is added to the FX row.
3 Unused (surplus) by-products equivalent to total (potential) iector production of the opecifin by-product mimus the



Conan - ad hafa c. These more accentusted differences, are principally due to the fact that processing cupecities in mamodel COLPR 3 are not any more limiting the model solution. The program is now less restricted and consequently it is allowed to vary more drastically in findin; their optiman solution for different objectives. Again it is striking to observe that the 'Labor' maxinizing solution, only genersted leas tban haif emplogment opportunities (man-year jobs) for direct vorkera tban 'employment' (both totel and direct vorkers) madnizing prograns. As previously explained, the vide vage differential paid between the U.B..and Colombia eccounted for the explanation of this paradox. A noticeable drastic change in the solution for COIPB 3 is that experienced in the eccumintion of net foreign exchange. In previous modela, little or no differences at all were encountered in the sector net earning of foreign exchange from one solution to the other. However, as it can be seen in table C7, tha sector generstion of net foreign exchange varies from a low of 17 million U.S. \$ for the "profit" marimizing solution to a high of 255 million U. 6 . \$ for the "Labor" madinizing progran. This apparant inconsistency of the model is simpiy explained by the fact that in COIPR 3 irrestrent activitiea rere included in the model and since it was assumed that all fixed capital (mam chinery, motors, etc.) is imported, thas, the larger the leval of these activities, the lesser will be the net foreign exchange generated, since all exports are forced at the same predeterined level for all aubmodels and solutions. Also, if ve observed the macro variable magoitudes corresponding to the amount apent in capital for expanding processing capecity, it can be noticed that it is negatively correlated vith the net foreign exchange macro veriable, as one increases the other variable decreeses.

Table $C 8$ presents a comparison of three solutions for COLPR 3 with alternative vorking capital constraints. As it can be noticed, vorking capital is binding the three solutions. Again it is worth to focus orr atter- Material end Alternative Working Capital (ix)


1/ Camprised processing activities representing: (1) the existing 1968 Colombian technology, (2) alternative foreign ochnologies $x a n$ varifis countries at different stages of development, and (3) investment activities for expand fet prosessing capacities of all 48 egro-industries in the mode.
2/ The negative simn incicates 'eared' foreign exchange, i.e. it is added to the FX rar. .
nused (surplise ry-producta equalent to tetal (potential) sector production of the speciric by-product mimus the


tion to the net forelgn exchange variable. The vaide of this variable is bigher, when the working capital, which is a resource binding the solution, is at its iower restricted level or 365 miliion U.s. \$. Then if ve relar this restriction i.e. ve allocate more vorking capital to the syatem, the net foreign exchange genersted by the sector becomes less and less. This, of course, is due to the fact that as wore rorking capital is available in the systen the level of commodity production increases and when processing capacities are limited, it becones necessary to invest in expanding capacities with the corresponding imports of capital goods and a drainage in the net foreign exchange accounting variable. some changes in the level of comodity production and $1 a$ the activity mix can be observed from the resulth obtained from the differant optimm solutions madiniziug different objectives, especially the results from the "EPPDN" employment fatrect workers) maximizing progran.

Table 9, Appendix $C$ prefents the level of activities for the different soluticns of colpr 3. In table 10, Appendix $C$ it is presented all shedoy prices for exhausted resources for the different yrogram solutions. It is interesting to notice that for a few solutions, for example, those marimizing employment (EapDr) and profits ( $P$ ) the available trained labor force (LTD) for region ' $D$ ' is exhausted, hovever, the value of its shadsw price remains equal to eero. This is explained by the structure of the model in which the regional activities are structuraily constructed the ame, i.e., all input-coefficients are edetiy the same, except for the labor coefficients which altbough of the same magnitude are qualitatively different since each regional activity empldy "trained labor" froa a specific regional trained labor force, (constraint). For example, in this case the 'LID' constraint above mentioned, specify only labor avaliable in region 'D'. The program after finding all trained labor in region ' $D$ ' completely exhausted, thus change the level of com-
modity production to another regional activity without altering the solution. This is to say that there "alternative" mix of regional activities visici gives the same program solution. On the other hand, the total trained labor (national basis) constraint is exhausted in the total employment ( $\mathrm{EF}^{-7} 0$ ) maximizing solution. However, the program shows a shadow for this resource equal to - . 58608, indicating that there is no alternative factor substitution (since all trained lebor is exheusted at the national level) and by increasing the resource base by one additional trained labor the objective function increases by .58608 ; which is a littie more than half a man-year employment.

## Comparison or Optimun Solution for 1968 and 1975 Submedels

For planning putposes a meaningtul comparison is between programs in different years with the same ob-- - cife, as well as the trade-off between policy objectives amoung individual planning atrategies. In table C9, ClC and Cll it is presented in a comparison of the results of five maximizing solutions with different policy objectives for the base rodel in 1968 and in three differently structured submadels in 1975. These three sutmodels or variants can be also vieved it as three alternative planning strategics as follows: (1) submodel COLFF 1 (1975) represents an extension of the saie proce sing sector structure prevailing in 1gic, of course, with expanded resources; markets and labo: force, out with the sere 1968 processing capscities; (2) submodel coLpr 2 (1975) open the door to foreign technologles not curvently existing in Columbia to ke includeá as a possible alternetive for planning purposes, and (3) coipa 3 strategy goes $p$ step further nic in accistion, allows for the allocation of unlimited foreign excharge to inport fixed capital goods (indistrial Eachinerf, ete.) for exparding processing capacities to nect the needs of 1975 Colomblan markets.

## 8tratex 1 (Inciudes only oristipr Colombien Techmolory)

As we cap obderve from the data preaented in table c9, the level of the minor policy vatiable remains about the aeme for all solutione fith different macinizing objectives. The Ievel of production of proceseed comoditien atan only very ninor changet, Hinly becange of the large muber of binding processing conefraint: in the rodel. The proportional increases fran 1968 to 1975 alishtiy varien from one solution to the other, and their annal rate of growth, berely mupeseea the anmil popalation growth of 3.26. only the net foreign axchange earned by tre sector abovis aome substantial gaing, and of course this is ane to the fact thail exporta are forced into the syatem at predeternind lovels, simply indicating either good export possibilitise or over eatimition of our foreasts. Bince exports of green coffee are by large the mar forelgn exchange carding conmoitity of Colombis and exports of other procesced commoditiea, like refined suf. and int coticn are also important foreien exchange generators. The procesing sectry by itgelf is more than self-sufficient in its foraign exchange requiresents.

## Fisctegy 2 (Includipg Foreip Alternative Fechnolories)

The data presented in table C1O nbows technology fupacts of the various runs with different objective rupetions. The level of the mero variables (major policy objectives) vary conaiderably smomg solutiona with diffcrent objectives and betrieer prograns in aifferent yeare with the same objective function. Probuction of processed comodities, expressed in terns of 'value added', ivcreares by 54y between 1968 and 1975 in the 'vaiue aded' * and by 593 in the 'retwris to capital and mangenent' maxizizing molutions, row upectively. Fotal ceplognent between the two years increases up to 58 percent in the progran madiaing 'totill eployed' and the emiojment of trained labor in processing indurtries is increaged by 51 percent in
 and 1975 (COLPR 1 Variant) /2/ Solutions

Objective Function   Major Policy   Objective	Max-Value Added			Max. Employment of Trained Labor			Max. Total Exployient			Max. Fayments to Labor			Max. Return to Cat tal \& ent:agement		
	1968	1975	4	1968	1975	\%	1968	1975	¢	1968	1975	4	1968	19:5	5
			inc.			inc.			Inc.			inc:			Lic
Velue Auded (Aillions U.S. \$)	561.27	75681	35	561.01	755.90	35	557.82	755.90	36	558.08	756.46	36	561.27	753.57	34
Enployment Trained Labor (Man/Yrs.)	125006	170280	36.	125006	172960	35	124928	172960	38	124928	172823	32	125006	170750	37
Total Employment ( $\mathrm{Pan/Yrs}$ )	149287	205893	38	149287	208457	40	149462	20845	39	145462	209332	39	149287	205528	33
Payments to Labor (Millicmen U.S.\$)	122.40	170.90	40	122.30.	170.63	40.	122.90	170.78	39	123.00	171.20	39	122.40	168.54	33
Returne to Capital \& Management ( H 111 ans U.S. $\$$ ).	391.44	523.78	34	391.46	523.4	34.	388.13	523.44	35	388.13	523.30	35	391.2	524.15	34
Net Foreign Exchange (Millions U.S. \$)	288.17	41.80	60	288.17	461. $\epsilon \in$	60	285.29	461.66	62	285.29	461.66	62	288.17	454.41	61

1/ 1968 base wodel with restricted egricultural rav material with umilusted working capital and with processing activitiea at about actual 1968 colcmbian production levela.
3 Caprised colly procesbing activitieg representing the existing 1968 colombian technology, with Unlimited Agricuitural paw vaterial but Restricted vorking Capital (WK) et $\$ 457$ Millians.

Table cin. Compariacn $\propto$ © Major Policy Cojeotives in Optivam Solutions with Different ©ojectivea between Bage Year 1958 I/
and 1975 (COLPR 2 Varient) ${ }^{2 /}$ Solutions

Cojective Funotion   Major Policy   Objective	Max. Valve Added			Max. Exployment of Trained Iabor			Max. Total Emoloynent			Max Paywents to Labor			Max. Returs to Capital \& lix:ageaen:		
	1968	1975	4	1968	1975	8	1968	1975	$\$$	1968	1975	$\%$	1958	:19:5	\%
			ino.			1nc:			Inc.			inc.			inc.
Velue Aaded (Hillans U.S. \$	56:.2	866.34	54	561.01	806.47	4	557.82	804.52	44	558.08	668.09	20	561.37	650.34	52
Employment Trained Labor (Man/rwe)	125006	138126	10	125006	159023	51	24928	185709	49	124928	115653	-7	125006	140772	12
Total Employment (Man/Trs.)	149287	175994	18	149287	233540	56	149462	236338	58	149462	153626	3	149287	174411	17
Payments to Labor (Hillicns U.S.\$)	122.40	198.68	62	122.30	178.09	$46^{\circ}$	122.90	196.72	60	123.00	254.02	107	122.40	177.36	45
Returns to Copital \& Managenent (Milions J.S.\$)	391.44	611.27	56	391.44	574.48	47	$388.13$	557.64	4	388.13	351.72	-9	391.44	624.43	EO
Net Fcivign Exchange (Nillions U.S. \$)	288.17	462.55	60	288.17	461.66	60	285.29	461.66	62	285.29	. 462.58	62	288.17	461.80	60

1/. 1968 Base model with reotrioted agricultural raw material with uninited vorifig capital and with processinc activitiea at abcit actiol - 1968 colcioion production levels.

If Comprised processing activities representing both the exiating 1968 Colombian technology and alterpative foreign technalogies fran verious countries at different stages of development, with Reatricted Worling Capdtal (NK) atr $\$ 457$ Milions and Unilmited Agrioultural Rev Material.
the prigrem meximizing 'direct vorker empanent'. Returas to capital and management increase up to a high 60 percant, of course, in the solution maximizing this objective, and inally the net foreign exchange increases to $60-62$ percent for all the different solutions, 0 about the same than in the submodel colpR 1 , 1.e. before introducing the alternetive foreign technologies. The solution maximizing 'payments to labor' of course sbows the greateat increase in this mariable, up to 107 percent between 1968 and 1975 , as vell as boce extrene peradoxicaliy changes (decreases) in the employment and other major objectives. As previously mentioned, this is due to the fact to the wide vage differential between Colombia and the United States Which is explicitly syecified in the technical coefficient representing the monetary payments to labor of each processing activity of the model. Bence, the results of the solutions maximizing this objective function will be not, hereafter, be used in order to avoid misleading analytical comparison and conclusions. In Eeneral it can be said that the solutions maximizing employment (both total and direct vorkers in production) appears to be the ones who offer more stability tu the system from the standpoint of view in compromizing all the different policy objectives. This is to say that thrise solutions show a consistent substantial growth in all macro variables, without any substantial sacrifice in the growth of any of the major policy objectives.
Strategy 3 (Includes Alternative Foreign Technologies and Expanding Processing Capacities)
It is interesting to notice that by relaxirg the restriction imposed by limited processing capacities, in addstion of javing the alternative to select different technologies, allows the processing sector to expand considerably froc 1968 to 1975. The data presented in table cll shows that by maximizing different objectives, of course, in different programe, ve can achieve the foliowing goals: Production (value added)

Taíle chl. Comparisan of Major Policy Oojectives in Optimum Solutions with Dirferent Oojectives between Base Year is68 $1 /$
and 1975 (COLPR 3 Variant) ${ }^{2 /}$ Solutiona

	Max. Value Added			Max. Baployment of Trained Iabor			Max. Total Employment			Max. Payments to Labor			Mar. Retionn to Capitel \& isimagement		
	1968	1975	5	1968	1975	1	1968	1975	4	1968	1975	4	1968.	1975	$\stackrel{4}{4}$
			inc.			Inc.			Inc.			Inc.			inc.
Value Added (Millians U.S.	561.27	1014.39	81	561.01	756.83	35	557.82	841.33	51	558.08	703.94	26	561.27	100058	78
Eaployment Trained Labor (Man/Yrs.)	125006	121305	-3	125006	224678	80	124928	224660	80	124928	105861	-15	125006	144662	16.
Totel Exployment (Hat/Yrs.)	149287	156941	5	149287	266393	78	149462	274288	84	149462	145498	- 3	149287.	173701	16
Payments to Inbor (Malicas 0.s.¢)	122.40	250.03	104	122.30	180.42	48	122.90	210.47	71	123.00	299.46	143	122.40	205.76	62
Returna to Capital \& Management (Milions U.S.\&)	391.44	695.05	78	391.44	519.25	33	388.13	566.45	46	388.13	339.93	-12	391.46	738.05	E9
Nat Foretgn Exchange (16illions U.S. \$)	288.17	149.63	-48	288.17	46.19	-84	285.29	30.32	-89	285.29	254.79	-11	288.17	16.99	-94

Y, 1968 Babe model with restrioted agricultual raw material with unimited worling capital and with procesaing activities at abcut actual 1968 Colabian produotion levalo.
3 Carprised procesaing activities representing: (1) the existing 1968 calombian teahnology, (2) altemative fcreigi teahnologies from variass countriea at different stages of developaent, and (3) investasent activities for expanding processing capacitias of ali 48 agro-

betveen 1968 and 1975 may be increceed by 81 percent; total employment may be increased by 84 percent; employment of direct vorkers in production (trained labor in processing) can be increased by 80 percent, and the returas to private capital and managenent can be increased by 89 percent. It is also interesting to notice that the levels of the six macro variables or policy objectives shom for any one solution, vary considerably much more between years for this straţegy than in the previous strategies solutions. For example, in the value added maximizing solution, the changes of the magnitude of the policy variables ranges from -48 percent for the "net foreign exchange" variable to a high of 104 percent for "the paymenta to labor" variable. In COLPR 1 submodel the percentage changes in the grovth of the macro variablea from 1968 to 1975 ranges from a lov of 34 percent (returns to capital and management) to a high or 60 percent for the forcign exchance variable and for the value added raximizing solutions of COLPR 2 the changes in the megnitude ranges frcm 10 percent for employment of direct workers (trained labor) to a high of 62 percent for the payments to the labor factor. It is noticeabie the drainage of foreign exchange betreen 1958 and 1975 which characterized all the solutions of this submodel. For example, the level of net foreign exchange earned by the processing secter in the "private profits" $1 /$ program declined 94 percent from 288 million U.S. \$ in 1968 to a low of only 17 millirs in 1975. Although the absolute gains of foreign exchange 1: grater in 1975, due to increased level of exports, the net belarce is tremendously reduced as a result of the large importation of fixed capital goods (machinery, etc.) necessary to expand processing capacities. of course, this heavy drawing on the foreign exchange reverses will take place only during this first year of expansion of the sector.

[^7]
## Comparison of the Impacts (Results) of the Three Strategies (Submodels) for 1975

In the previous chapter, a brief intra-strategy comparison amoung five different major objectives vere presented. Table Cl2, sbows a comparison of the results obtained from optiman solutions maximizing three diffcrent objectives for each one of the three distinct aubmedels or atrategies. For the sake of orevity and clarity the muber of objectives to be compared from now on have been reduced from five to three obgectives as follows: Two objectives representing "public goais" (representing also major goals of the Colombia lational Plan) namely increasc of employment and production (using the "total employment" and che "val:s added" maximizing solutions, respectively) and a private goal, t.e. increase of private profits (using the "returns to capital and management maximizing solution). ${ }^{1 / 2}$

It is quite apparent by what the data in table cle revenls that' if the planner's philospphy is singleobjective ninded, whichever this objective is, they just have to closely follow the comodity level and the activity mix by optimum solutions from strategy 3 and the specific objective they choose. Siace the simplicity of the above mentioned approach, which diaregards en other political and economical consideration to the achievement of just one-specific soal, appear unrealistic or pot likely to be pursued except under highly regimented sociaty. Undoubtedly not only the gains but ${ }^{n}$ the opportunity coat" represented by what is loss in the potertial gains or benefits of other objectives if we had pursued cnother strategy or devè lopment policy. The selection of the mare adequate strategy-objective will be latter treeted in this paper. We can also conclude based on the date presented in table Cll, that ir we follow a one-objective policy,

VThese were the same objectives used in the decision-making analysis of the Agricultural Sector. For a detailed description of analytical techniques in selecting planning strategies for development, the reader is referred to the following working documents. Daines, Samuel, et. al., Analytical Working Document 6. "Partial Implications of the Anslysis for Decision-arking in the Agricultural Sector.
f For $p$ mple, to concentrate only in the expansion of industrial outpat during a certain five-year plan.

Comparison of the Impact of Three Alternative Strategies on Three Different Objectives of the Processing Sector (1968-1975)

Strategy   Objective	Strategy 1   (1968 Colambian Technology)	Stretegy 2   (Intraduction of Foreign Technologies)	Strategy 3   (Introducticn of Foreign Tech nologies plus Allocation of Capital for Expanding Processing Capacities)
(a) Total Exployment			
Eotal Exployment Max. Sol. (1968)	149462 (Map/ Yeara)	149462 (1an/Years)	149462 (Man/Years)
Fotal Frplosment Max. Sol. (1975)	208457		
Abcolute Difference	58995	86876	124826 -
Percentage Change ( $+\boldsymbol{o r}=$ )	+ 39\% (increase)	+60\% (increase)	+84\% (increase)
(b) Producticn (Yalue Added)			
Value Added 1 I, Max. Sol. (1968)	561.27 (MA'21.0018 US\$)	561.27 (H11110018 US\$)	561.27 (M11100ns US\$)
Value fdied 1 max. Sol. (1975)	$\frac{756.81}{195.51}{ }^{\text {n }}$	$\frac{866.34}{305.07}$	$\underline{1014.39}{ }^{\text {43, }}$
Absolute Dffference   Percentage Change (+ or - )	$\begin{array}{lc} 195.54 & \text { " } \\ +35 \% & \text { (inoreese) } \end{array}$	$\begin{aligned} & 305 . \% \\ & +54 \% \end{aligned} \quad \text { (increase) }$	$\begin{array}{lc} \hline 453.12 & " \\ +81 \% & \text { (increase) } \end{array}$
(c) Private Frofits $3 /$			
Private Profit Mar. Sol. (1968)   Erivete Proift :9y. EcI. (1975)	391.44 (Millicove US\$)	391.44 (M1110ns US\%)	391.44 (Hillions US\$)
Exivete Prastut kax. EcI. (1975) Absclute Difference	$\frac{524.15}{132.71}$	$\frac{624.43}{232.99}$	$\frac{738.05}{36.61}$
Absciute Difference ${ }^{\text {Percentage Change ( }+ \text { or -) }}$	$\begin{array}{lc} 132.71 & \text { " } \\ +3 \angle \% & \text { (increace) } \end{array}$	$\begin{array}{cc} 232.99 & \text { " } \\ +60 \% & \text { (inorease) } \end{array}$	$\begin{array}{cc} 3+6.61 \\ +80 \% & n \\ \text { (increase) } \end{array}$

7 Production oojective
2 Returns to Capital and Management Objective
strategy Ilo. 2, is far aiperior than stratzgy'I in reeahing bigher ievel in ioe majnitude or eny single objective. It in importart at this point, to recall the attention of the reader to the lact that a very inportant policy gos (objective) namely the "conserration of foreign exchange" is ezcluded fran the data in table Cla, and is precisely one of the major veaknesses of the strategy Ho. 3, namely the drainage of forcign exchange allocated to the inportation of foreign machinery and other fixed capital goods. Comparison of Gains and Losses and Trade-off Betveen Specific Objectives for Alternative Programb and
Strategies

In the previous sections it vas briefly discussed the highlights of comparing alterastive cptimum solutions for each individual strategy or subsodel (see tables C9 through Cli), as well as between strategies (see table Cl2), vhen only a single object e at the same tine vas acalyred. Considering the fact that most development plans bave multiple goals, ve have developed three additional tables, quantifying the gain and losses and trade-off (exchange rates) between our major objectives for different maximizing programs and alternative strategies.

By comparing in pairs the relative impacts that different maximizing programs had on specific objectives another analrtical dimension or measuring stick is added to the process of evaluating the desirability of each program and strategy. For the purpose of this paper the process of evaluation (criteria) to be folloved will take place in two separate steps. First we have to determine or at least to postulate for each strategy vhich is the chosen marimizing solution (production, employnent or private profits). Then from the three chosen solutions (one for each strategy), we have to select the one (program-strategy) vhich presum-
ably meets more adequately our over-all multi-objectives development pian. For a detailed explanation of an
analytical technique on the selection of developent strategies, the reeder is referred to Analytical Moring Document number six. ${ }^{\boldsymbol{J}}$ In tabie C13, it is suruarized the relative gains and losses, as vell as the tradeoff between objectives remulted from coaparison of solutions of three maximizing programs under strategy No. 1. It can be objerved in this table that oniy tor programs are compared at one time. For example, when the prograns maxinizing employment and production are compared (first inne) ve can notice that the enployment generated by the former is 2564 man-years greater than in the latter program, but that the value of the level of production and of the private profits are reduced by 0.91 and 0.34 million U.S. $\$$, respectively. It is interesting to notice that if ve seiect the program maximizing production over the one maximizing empicyment, for each milicn dollar increase in the value of production we have to give up employment arcunted to 2818 man-years and for each million dollars increase in the private profitr (return to capital and managenent) ve must sacrifice employment for 7541 man-years. These figures represtat the trade-off or' exchange rates betreen objectives that contitute losses (sacrifices) or gains (benerits) that the planeer Eust take into conidderation in selecting any specific progrem or scrategy $2 /$ The second comparison, between programs maximizing production va maximizing private profits indicates that using the former ve obtain alightly higher enploynent and value of production with a minor sacrifice in the earning of private profits. The last comparison between the maximization of private profits ve employment shovs a reduction of employment and production with a alight gains in the private profit returns. Apparently both the production
y Daines, Samuel, et al. Analytical W.D. 76 "Partial Implications of the Anelybis Por Decision-Kaking in the Agricultural Sector.

If The gains (benefits) or losses (sacrifices) are expressed in the context of relativity fmplied by the compariscn between two program solutions and are always expressed in terms of the units in vhich the objectives are quantified in the programs.


OEJECTIVE COMPARISON Fivirizing procias carparisals	- ERPLCNETS (Nan/Years)	FPOUCETI:   (M11icis [.S. \$)	FRJMTE IROEIT: (Winicas U.S. *)
1. lax. Total Emolcyment ve. Max. Production (Value Added)	20E457 ve. 205593	755.90 vs. 75..81	523.44 vs. 523.7 E
Cains or Josses ( + or -).	+254	-0.91	0.34
	II.A.	$+2564 \div-0.31=-2616$	+2, $4-3.3 \pm=1,541$
Frije cri or dojoctive Excharre Pntes ( $\div$ or -)	H.h.	-2018 man-y: per 1 mill.	F:a nan-3r per Imili
		Sof Productio:	c xTirete Profits
2. I'ax. Producticn (Value Added) vs. lay. Frivete Profite	205893 v5. 205528	[56.1 vs. $753.5 \%$	ว2.1才 vs. 524.15
Cuins or Losses ( + Or - )	$\underline{+35}$	+3.2i	-0.3:
Fitio of Value Added to Private Fatits or Etrloverit	+5.24 $2+35.5 \geqslant .0089$	H.A.	43.24
	$6900 \text { ai ars: and } 1 \text { man-vx. }$	I!.f.	
	or 1 mill		per 1 mill. ${ }^{\text {P }}$ of profits:
3. lax. Yrivate Profits vs. Kax. Emolomient	20352. v5. $20345 \%$	753.57 vs. 755.90	524.1* v5. 523.4
Cairw or Losses ( + or -)	- 2989	-2.33	+0.71
Pstic of Erivate Frofits to Eplovent or Erounction 4	$1+0.71 \div-2959=-.00024$	$+0.71-2.33=-.30472$	i. A.
Trace of or Ocjective Exchange Räte $(+$ or $-13 /$	-240 dollarst par man-yr.	-. 30472 mill ${ }^{\text {a }}$ Per 1 mill. d	H. A,
	O2 1 mill ${ }^{\text {a }}$ per 4168 man-	of Production (VA)	
	Vr.		

## M.今 $=$ Not AppIicable

1/ Conprised only processing activities representing tie exdsting 1968 Colambian technology, with Unlimited Agricultural Baw Katerial but Restricted Worling Capital (WK) et $\$ 457$ Hillians.

2 Referred to ratios of gains and losses shom in previous ifne.
3/ May be interpreted in either way as the sacrifice made or the benefit obtained in trading unit.a of measurement or value of the specific objective being canaidered.
and eaployment maximizing profit maximizing progran. Betreen the other two programs, the selection of either one has to be influenced to a great extent by the degree of importance given by the planners' preference for any specific goal. Hovever, if appears to us that the gains in employment is of ereater magnitude that the combined losses in production and private profits. $1 /$ The comparison of the three maximizing solutions of strategy 2 presented in table Cl4, sbove by far more contrasting results than under strategy 1 . The eraploymert paxiaizing folution offer substantial total employment opportunfties than the other two. altiough its level of production and profits is wuch lover then in any of the other two maximizing programs. The production maxirizing programs offer more employment and, of course, higher level of value added that the private profits solution, but of course, less returns to capital and ranagement. Now e, ain, the questions we ghoild asic ourselves is if the magnitude of the gains in ewioloment merits the sacrifices that ve bave to cake in obtainirg less production of egricultural products and difinishing the incentives (less profits) to the private entrepreneurs.

For purpose of this paper, let's arbitrarily select the froduction maximizing profer:, for Strategy 2.
The comparison of the results of the maxinizing progrems under strategr $\mathfrak{z}$ ars even furthes more striEing than those under stratsgy 2. (see table Cl5). Under the employnent maximizing program, employment in men-years, in substantially higher than if ve choose any of the other two objective functicns. Hovever, the losses in both or-put (value added) and the private incentive of accumalation of profits is much more lower than in the former two strategies. The production maximizing program only offers gains in value added, while the private profit maximizing programs shows geins in two of the three objectives vien compared If This of course, is a very subjective apprach to the selection criteria.

Table C 14. TRADE CFF BEIMIBN OBJECTIVSS RRSUITING FROI AITERNATIVE VAXINIZING PROCRANS UNDER STPATEGY $2 \frac{1}{3} 1975$

WKIIIZIIG PROCRNUS CCAPARISONS   CBJECTIVE CQUPARISAN	(Man/Years)	$\begin{gathered} \text { PRODUCTION } \\ \text { (1\&11ions U.S. \$) } \end{gathered}$	PRIVATE P. OFITS (:स1lions ण.:. \$)
2. Sax. Total Emplourent vs. Inx. Production (Value Added)	236338 vs. 175994	804.52 vs. 866.34	557.64 vE: 611.27
- Gains or Losse3 ( + or - ).	$\underline{+60342}$	-61.82	-53.63
Patio of Employment to Prodzetion or Private Profits ${ }^{\text {S }}$	N.A.	$60344 \div-61.82=976$	60344:-53.63 $=1125$
Trade cif or objective Exchange Fates (tur -) 3 i	N.A.	-976 man-yrs per 1 mill ${ }^{\text {c }}$	-1125 man-yrs per 1 min
		of Value Added	\$ of Private Profits
	175994 v5. 174411	866.34 vs .850 .34	611.27 va .624 .43
Cains or Losses ( + or -)	+1583	+16.0	$\frac{12.27 .16 .}{-13.16}$
Fintio or Value Aoded to Private Prnfits or Erploypent $\underline{y}^{\text {a }}$	$16.0 \div 1583 \div .01010$	+ N.A.	$16.0 \div-13.16=1.21 .52$
Trade off or Cojective Excharge Rates ( + or -) 31	10107 \$ and lran-year	N.A.	-1.2158 mill. ${ }^{\text {a }}$
			added per 1 mill \$ prorit
3. Fax. Private Prorits vs. Nax. Drplovaent	174411 v8. 236338	850.34 vs. 604.52	624.43 va .557 .64
Gairs or Losses ( + or -)	-31921	+45.82	$\frac{624.43 .789}{+66.79}$
Psitio of Private Profits to Emplovment or Production 4	$136.79+61921-200108$	$66.79 \div 45.82=+1.4577$	
Trace cif or Objective Exchange Rates ( + or -) 37	-1080's per 1 man-year	and $1 \frac{1}{2} \frac{1}{2} 71$ \& of procits 1.4577 mini. ${ }^{\text {mi VA. }}$	N.A.

N.A. $=$ Nius Applicable

If Comprised processing activities representing both the existing 1968 Colombian technology and alternative foreign technologies from various countries at different stages of developaent, with Restricted Worling Capital (WK) at \$45\% Millions and Unlimited Agricultural Raw Material.
2f Referred to ratf 38 of gains and losses ahom in previous line
3) May be interpreted in eithor way as the bacrifice made or the benefit obtained in trading units of measurement or value of the specific objective being considered.


SAXIMIZIHG PROCPANS COKPARISQIS CBJECTIVE COMPARISON	$\begin{aligned} & \text { DMPIOMANT } \\ & (\operatorname{kan} / \text { /eears }) \end{aligned}$	$\begin{aligned} & \text { PROCUCTION } \\ & \text { (Millions U.S. \$) } \end{aligned}$	
2. May. Potel Emolovrent vs. Max. Procuction (Value Added)	274288 vs. 156941	841.33 vs .1014 .39	566.45 ve. 695.05
Cobis or josces ( + or -)	+117347	-173.05	-123, $0^{0}$
Batio of Expionacht to Pracuction or Privete Profits $3 /$	N.A.		117347-2-123.60 $=-912$
inace of: or coj,jective Exchanfe pates ( + or - ) 3 /	N.A.	-678 min-vrs. Der 1mill ${ }^{\text {a }}$	-912 man-yrs. per 1 min
		of production	F of Profits
2. Max. Paduction (Value Added) vs. Pax. Private Prorsts	1.56941 va. 173701	$1014.39 \% 18.1000 .58$	695.05 v8. 738.05
	- 10780	+13.81	-3.0
	$13.81 \div-16760=-.000824$	$\mathrm{N}_{2} \mathrm{~A}_{2}$	13.81:-43.0 $=3321$
Truce ofr or molective Exchange Rantes ( + or - ) $2 /$	-624 \$ per 1 man-xr.	V.A.	- 321 mil11, \$ of producti
			Per 1 mill. ${ }^{\text {of }}$ Prorits
I2x. Frivate fracito vo. 1/x. Eploment	173701 v8. 274286		
chins or iocsea (\% or -)	-10055\%		$\frac{732.05 \mathrm{vs} .}{+171.6} 56.45$
	$171.6 \div-100587=.001706$	$177.6+159.25=-1.075$	+ +171.6
		1.076 mill. \$ of profits and	II. A .
		1 mill. ${ }^{\text {a }}$ of Value Added	

:.$\dot{\text { A. }}$. $=$ Not Applicable
Cariprised processing activities representir; (1) the exdsting 1968 Coicmbian techiology, (2) alternative fareign technologies fran varicus ccuntries at different stoges of devilopment, and, (3) investment activities ior expandinf smosessing capacities of all 48 agroIndustries in the model, with Unlirited Agricultural Faw Materials and Bestricted Woriding capital (iK) at \$457 Millians U.S. \$.
2) Referred to ratios of gains and losses shcm in previous line.

3/ :ay be interpreted in either way as the sacrifice made or the benefit obtained in trading units of measurement or value or the apeciffc ojjective being considered.
wo efther one, the employment or the production maximising prograns. Hence for strategy 3 ve chooge gein with a degree of arbitrarinest the privite profit maxinizing program, bsanse (i) prodiction reaches a high figure of 1 blllion dollars and (2i of course, tin incentive offer to privete apital is creater than in the other two prograys. The losses in employsent, when compared to the "employment" progran are odaittel"

Pinaliy, after selecting a program shict maxinises a spocific objective for eanh of our three strategiea, the tiresone process of elimination-evaluation reaches an end and we mact now onlect the stragegr to be followed by prontial plenners. In previous cbapters, when the data presented in Table Cl2 wes analysed, it was mentioned that all progrme under strategy 3, considering only one objective at the time, were cvarwelaingly more favorable, but with the disedvantage that they exhausted almost all the foreign exchange reserves. Consequently progras under atrategy 3 dearegard the necessity to invest in the infrastructure, beary industry and other sactora of the econong, since the conservation of foreign exchange for the inportation of fixed capital for other sectors is act of prime ifportance. Based on the above-sentioned ract it appears that the pruduction (value-added) maxisizing progran under strategy 2 (alioving for the introduction of forpiger technologies) presuebly vould fulfill more adequately our overall multi-objective, hopow thatical developins plan. Adedttedry our selection offers men less exployment posaibilities than any maxialzing progran solution under an otber strateg, but this costly acrifice is in turn offact to a serteis extent by bettar belance arons all three alterastive objuctives well as beter conservetion of the ant forelon exchange senerated ty the processing sector.

## Criticige

Manittedly the model has a nubber of shortconings and imperfections in it yet. Bone of these are of ninor laportance and casily correctable, wilie otbers are conceptunily more important and abould be corrected in furtber modifications of the analyais. Probebly the mort important sborticoning of the model is thet the external components of the model i.e., export and import activities, are structurally independent from the other components of the model. This is to sey that the production and trade activities are nos ioterrelated through commodity balance equations. Since all exports are forced inte the soiution by means of equalities, i.e. the level of all export activities are equal to their respective exterpal constraints, hovever, it may happer that the domestic production level of the specific commodity being exported, is at a very lov level or even at zero level. This vas the case of "green coffee," uhich exports vere at the world market level while domestic production sas neglifible or at zero level in the tun for 1975 (COLPR 1). This could not happen if the syctem of constreints and activities ware expressed in phyical units related to each other by comodity balanca equations. As previously explained, the difficulties in adjusing inport, export, and domestic prices to one common price (denominator) was our prime reason for conititing the coumodity balance equations. Export resticictions (exhausted) do not shoy a abador price, either because of the absence of the corresponding comodity balance equation or masbe because they are reatriction-equalities. The regional labor constrainta are redundant in the sense that they are not actually binding the solutions, wille the "national trained lakor force" does bind wow of the solutions. This is expleined by . the fact that some of the "national activities," only utilized labor from the national labor force constraint and not proportionaliy from each region. (see recomendstions belov). Processing cejecity constraints vere
not regionalized, thus weakening the real effectiveness of the model in general and of some of the resource constraints in particular. There are also innumerable changas and minor adjustamentant conceivably could be made in particular with respect to the determination and/or caleniation of the technical coefficients of all the Colombian processing activitios, in the sliternative processing techncices and in the metbodoiogy wed in calculating and estisating processigg capacities, markets, trade, labor, otc. Some of these changen undoubtedly would affect the solutions of the different mubmodels of this acalyais, othera would affect the colution of the different submodels of thes analysis, others hovever, would have little or no affoct al all.

## Conclusions

The analytical results presented in previous chapters are illustrative of the easential features of the model, bovever, they can serre no more than as a point of departure for further improvement of this analrais. Probably the most important contribution of the model is tc constitute an fmportant analytical tool to as sist planmers in the elaboration and evaluation of overall sgro-industrial developnent strategies. In afdition, the model facilitates analysis of some policy questions and objectives, in particular the folloring:
2) The effects of alternative investment policies related to agro-industries.
b) The impact (effects) of alternstive techologiea oa major policy objectiven (proauction, cmployment, etc.)
c) Foreign exchange gezeration/conservation.
d) Efficiency in by-product utilization.
e) Short-term (working capital) and long-term (ficed capital) requirements of the processing sector.
f) Employment possibilities, total employment and for trained woriers in processing industries.
g) Sector contribution to G.D.P.
h) Detection of bottlenecka in the agro-industrial developoent (agricultural and processing sectors together).

We way conclude that in general the performance of the model may be considered fair to good and that with relatively minor modifications the results can be substantially impser-i. In addition the model can be used as a component of larger models in which the interrelationship of all sectors of the econogy can be fully analyzed.

## Becamendations

The specifications of the model could be fmproved by including regional ifmits or processing capacity, predetermined by the existing installed capecity in each region. These restrictions can be rcughly eatisated from the data compiled in Tables 3 and 4 of General Morking Documents $3 P$ and $3 D$, Part I, respectively. Clerical shortage and computer cost (by considerably increaing the muber of rows) were the mator initing factors for excluding these restrictions froa the 1968 model. Frocessing actipities should speify technical coefficients measured in phaical units in addition to the ones in monetary ternis, in order that the input-output relationship between the agricultural rav materiale and the production of final processed products and by-products can be properly quantified in physical units which are not subject to the probleas of price adjustiag and inflation. Then, comsodity balance equations (in phaical teras) can be specified for ${ }^{2} 1$ combodities traded in the sector (for both processed products and essential egricultural rav materials). In this way the export and inport activities are.interrelated vith the corresponding production activities in the modsi.

Processing activities wich are specified at the national level (because they are located all over the country, like bakeries, breveries, etc.) should not only utilize labor from the national labor force, but, also proportionaliy from each individual regional labor force: In this way the refinlaney of the recional labor constraints can at least be atenuated if not completeif elininated. It is aisply sugseated to restructure the national processing activities so they will have a labcr coefficient for each region, the oum of which vill add to the total mational jabor employed by that processing induatiry. These coefficients are eireply equal to the total labor employed by the industry multipiy by the ratio of the regioanl labor

## farce/pational labor force.

It is believed that the resionalization of processing capacities earlier mucreated, vill alao help in solving this problem.

The above recommendations actunily represent relatively alnor changes in the atructure of the model but do more reasonably reflect the structure of the Colcabian prosessing sector. On the other band, the addition of many rows (restrictions) vill considerably add to the computer cost of each run as vell an the clerical requirements in making the suggested changes.

## Appendix 1

This appendix contains two products of the L.P. (HPSX) computar printout, neamely the ploture and the sumpary. The ploture is obtained by including the PICIUFE statement in the control program. The pieture is partioularis halpfoll in tracing dome errors auch as incorrect alchs and mifaing coafficiants. The coafficients in the pioture are represented in alphanizario charactars. The range of valuas of these alyhamenoric oharactars are inolvied in the summary of the montrix. The sumpary, is ace a soparate page folloring the picture in this appendix. (izs)



pelzjv
PC12yV
PC1s0V
$p E 131 V$
PE1s
pcisiv
pisisy
pelisy
pulsyy pelisv
pelisv
pElity PE137V
PE11日V PELBEV
PELBY
 PL141V
OS
PC163V


```
L
Clllllllll
```

N113V
11145
4115
M1ty
41136
tiliv
Y122y
1123V
41＜iv
1129V．
प133V
Y1318
11328
41331
1335
113sv
पlsiv
nlsay
1133
M161V
H14．2\％
1143V
1145V．
41465
ب132V
115iov
lics
H13TV
412 ¢
1164V
11．7V
－14JV
TliJV
115iv
YtizV
－1153V
1155 V
11531
tE3Patv
Ex1？2V
Ex133V
＝x1iov
Ex123V
Exltiv
Exlが侶

1．1．1


#  


$i$
-T-TOT-TーT-T-T-T


```
M,
OM
```




$z z<z x+z z z$






```
lllllllllll
```

 PC 127 V
$\mathrm{PC130V}$
$\mathrm{PC131Y}$ PC130Y
PC131V
PC132 PC131V
PG132V
P=133 P=1334PE136V
PEI37V PC137V
PC13dy
 PC1:1V
PCEI2V $\mathrm{PC} 1: 2 \mathrm{~V}$
$\mathrm{PC1}+3 \mathrm{~V}$ PC143V
PE144V PE144V
PC $145 V$
PE1
PC145V
PEI i
PEV
PE146V
pE147V
PE149V
PE149V
PCisjV
Pisisiv
PC152V
PC15y
pisisi
PEISjo
PE150
PELO24
 pelbsy VII21
12122 12122
7129 71129
$* 1131$
11166 VIIss
vilios
$111 \% 2$
$1123 y$
M1 $3+4$
$1135 V$
11336
प1 JTV
$\$ 133 V$
$1163 y$
 M1112
H112V

1
2.

11

110 :


```
M113V
A117V
NM12V
M122V
M125V
M1<4V
$4129V
l
M132V
*133v
M 4135v
M135v
#13yv
M137N
M12+1V
$142V
M143V
N140V
4162V
$150%
1165%
$125%
4125v
4147V
lijgV
Mjilv
& Yj\geqv
4lj3v
yyjju
MyjivV
ly=PATK
l
Ex:7uv
=x1J3v
\ix449v
2
T
l
 1.
 11112
```



```
 T
111212.11,
lill
```














```
M113VV
M11JVV
M11JVV
M11JVV
M
M
l
l
l
l
l
l
l
l
l
l
l
l
M113V
M113V
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
```


,
 $\hat{E}$
$\mathbf{E}$
N








## Appendix $B$

This appendix is cocupriced of two partas a) a desoription of the noconolature used in asafoning oymbolic namos (aynbols) to the activitien and restrictionc, and b) a computor printout of tho innear progroming matrix.

## APFEIDIX B (PART I)

Key to the Xomenclature of the Symbolic Rames of the Activities and Restrictions
Since the MPS progran restricted the names of the colmans and rows of the L.P. matrix to only eight charasters, the following nomenclature was derived:

Production Activities
The first seven characters ( or six for some activities) were used to abbreviate as closely as possible the industry description corresponding to the processing activity. The last character was reserved to identify the country from which the technology originated.
Last Dlgit
2
3 For AID (U.S.) representative establishment (AID Industrial
4 For France (U.H. Industrial Profiles)
5. For Japan n n n
6 Iugoslavia n n n
7 Israei n n n
8 Latin America " " "
9 Afrida $\quad$ n $\quad n \quad n$

The digit "I" was reserved for Colombia, but since the these activiteses were regionalized, letters were used for the last character instesi of numbers.

I Stands for national activity-for those processed products which are actually produced all orer Colombia without any particular regional speciaifention, such as bakeries, breweries, etc.

A-R Stands for the regional activity of the specific region A through H.

For example, MEATFR2 stands for meat processing plants with the U.8. average
(census data) technology and MEATFRC, stands for the meat processtag plants (activity) located only in region 'C'. The non-industrial activities, those whose production takes place at the farm or in non-registered
establishments are simply named by an abbreviation of the processed product (four to Pive letters) followed by the letter 'rII' for non-industrisi production. For exsmple aAFEnIstands for coffec huiling (processing) at the farm levez (or in non-registored establishments).

The export and import activities are named as follows:
The letter ' E ; for exports or 'I' for imporis is first, followdd by the I/O coda of the industry followed by the letter ' $R$ ' for agricultural raw material (such as wheat) or followed by the letter 'P' for processed product and the number ' 1 ' or '12' indicating processed products originating at the first or at the first and second stage of industrialization, For example lint cotton, 'I' stage; cotton yarn, '2' stage; but'Int cotton and cotton yarn '12' are at both stages of industriaileation.

Finaliy, the investment actirities ambols are just the letters 'Inv'
for investment followed by the $I / O$ code of the corresponding industry.
Restrictions
The nomenclature of the agricultural raw material availability, processing capacity, markets, non-infustrial production and trade restrictions are very simply as follows:

The last four characters stand for the I/O code of the industry followed by the letter 'V' for value. The first letter or the first two letters identify the type of restridion.

PC for processing caparity, like PClOsV, etc:
M " market
III ${ }^{\prime \prime}$ non-industrial production (equality)
BX " exports ( at predetermined levez)
IM " imports (only for 2968)
AG" agricultural raw material availability
For the external activities trading ram agricultural produnts, the letter ' $R$ ' for raw precedes the ' $V$ '/

Other restrictions are as follows:
FX for foreign exchange
H " working capital
The economicaliy active labor constraint symbol is, formed by the letter 'I' for labor and the regional letter 'A-L' or 'H' for matinnal. For the trained labor force the Ietter 'r' follows the 'L'.

## Appendix B (Part II)

inthenatical Progracming (IPSX) was used for solving all progroms. One useful feature of the system is the printout of the matrix colvim by collum as shown in the following pagos of thito appendix. An alphanumeric code of up to eight character is used to identify rown and columas. (Tho codes are darined in Part I) This matrix is producod by the computer when the Trurcol, otatemont is includad in the control progran. The TRAICOL is a duplication of the matrix compilud by the cocuputer from the input data. This is also very helpflul in tracing dow exrors.





QPix－Prfi3	EXĖ」TJR．	mpSx RELE	1 mod lev				PAGE	$10-74 / 028$	
	Pf：Klea	PICKLEC	fydrya	fydryb	FISHCAA	FISHCAG	SEAPRC		5．0．0．1
j4	－3LJJO	． 310 \％ $0^{\circ}$	． 21200	． 21000					
三！\％		45.06000	121.69000	121.69000	251．36000	251.320000		EMPD	
ミ4アT	0 04．3－3	64.33030	158.73000	158.73600	300.55030	300.55000	108．60000	ERPTO	
WK	－Lejso	－ 19000	－ 22000	－ 22000	． 23000	． 23000	－ 18000		
L23コス	－心3uso	． 08000	－ 11000	－ 11000	． 13000	． 13000	－11000	Labor	
	－ 21 JJJ	． 21000	－ 08000	－ 08000	． 07000	－ 07000	． .27005	p	
${ }_{\text {F }}$		． 510000	－ 51000 -20800	． 51000	． 39050	． 39000	－ .17000	5	
－1p	150．0ردر0	150． 30600	120．00000	120．00000	980．00000	980．00000	.71900 420.00000	FC	
Fx	20450	．26400	． 04830	－．04830	960.00000	930.00500	420.00000	${ }_{\text {HP }}^{\text {FX }}$	
LA	－	－	158.73000	－	300． 55000	－	－	Lî	
LT4		－	121.69000		251．36000	－．	－	LTA	
L3	J4．3830	－	－	158．73000	．	－	$\bullet$	LB	
LC	43．03Ju	34．38000	$\bullet$	121.69000	－	－		178	
LTE	－	45.06000	－	－	－	－	108.60000	$1{ }^{1}$	
Lf	64．3830	64.38000	158．73000	158.73000	300．55000	300.55000	85.97000 108.60000	$1{ }^{1 / 4}$	
LTN	－5．30uso	45.06000	121．69000	121.69000	251.36000	251.36000	108.60000 89.97000	LN	
L5	－	－	．	．	25.3600	300.55000		Lic	
LT5			－	－	－	251.36000	－	LTG	
3－114V	1．UJJJo	1.00000	－	－	－	．	：	PCil4y	
P＝115V	－	－．	1.00000	1，00000			：	PC115V	
PEA18V	－		－	－	1.00000	1.00000		PC117V	
4114 V	1.03230	1．00000			－	－	1.00000	PCilav	
1125\％	－	．	2．00000	1．00000		－	－	M114V	
111／V	－	－	，		1.00000	1.00000		M117V	
1113V	－	－	－	－	．	．	1.00000	MLIEV	

MPSX-PTFL3 EXĠ̇UTJR. HPSX RELEASE 1 MOO LEVEL 3

-	SEAPís	RICEMIN	floura	flourc	flourd	floure	grainme	
va	. 41300			- 12000	-12000	-12000	. 20030	
EMind	. 85.9810	$26.74000$	$23.52000$	23.52000	23.52000	23:52000	20.08000	EKPD
Expto		37.43000	35.83000	35.83000	35.83000	35.82000	24.10000	емpto
dK	-1هJJo	- 22000	. 23000	. 23000	-2300c	. 23000	. 222000	
LA3JR	-113JJ	. 03000	. 04000	- C4000	. 04000	. 04000	.07000	Labor
P	- 27 UJJ	-13000	. 06000	. 08000	-06000	-06000	. 11000	
5	-1730	- 04000	- 64000	- C4C00	. 04000	. 04000	-10006	5
FC	- 1170	. 25800	. 28700	. 28700	. 28700	. 28700	. 74200	FC
HP	420.033JU	400.30000	320.00400	320.00000	320.00000	320.00000	.. 220.c0000	HP
FR	-	-	. 62430	.62430	. 62430	. 62430	. ${ }^{220.10850}$	FX
L4	-	-	35.83000	-	-	-	-	LA
LTA	-	-	23.52000		-			LTA
LTC	-	-	-	35.83000	-	$\bullet$	24.10000	LC
Lic	-	$\bullet$	-	23.52000	35.83000	-	20.08000	LTE
LTo	-	-	$\bullet$	-	35.83000 23.52000	-		10
L. 4	108.603J0	37.43000	35.83000	35.83000	35.83000	35.83000	24.10000	LN
Lr:	49.9733	26.74000	23.52000	23. 52000	23.52000	23.52000	20.08000	Lin
LE	- -	-	-	-		35.83000	-	LE
15		-	-	-	-	:- 23.32000	-	LIE
${ }_{\text {LT }}$	108.603JJ	-	-	-	-		-	LG
peilay	15.47330	- .	-	-	$\bullet$	-	-	
PELziv	1.0x3so	1.00000	-			-	-	PC118Y
Pet24V	-	-	1.00000.	1.00000	1.00000	1.00000		PC124V
PCi25V		-		!	!		.00000	PC125V
mlldy	1.00330		-	-	-	-	,	M118Y
1121V	-	. 67000					-	W122V
712+V	-	-	. 82500	. 22500	.62500	. 82500		M124y
M125y	- .		-	-	-	-	- 86000	H125V
AJielv	- ${ }^{-}$	- 78000						agl2iV
	-			$83000$	- 33000	. 83000		AG324V
C614V	-	-13000*	$.17500$	.17500-:	-17500-	.17500-	-18000-	AGL42V




## IRSA-PTF13

## GKEGUTJR.






VPSX－PTF13	ExĔusJR．	mPSX RELE	1 MOD LE				page	$16-74 / 028$	
－	Splidit	WIVEC	Mined	EERRN	SOFTDRN	tobmfga	TOBMFGB		11．0．01
v4	－d3JJ	－ 5.51002	． 51000	． 66000	． 5151000	．75000	． 75000		
ミップN	41．073s	192.98000	192．98000	53．90000	184．03000	54.50000	54．50000	EAPD	
ёнрто	42．01JJO	192．98030	192．98000	62.55000	184.03000	59.95000	59．95000	EMP TO	
$\wedge$	－Jiujo	－ 15000	－ 15000	－ 11000	． 16000	－08000	－ 08000	UK	
L233．	－303so	－11050	． 11000	． 09000	－ 16000	． 05000	． 05000	LABOR	
P		－39030	． 39600	． 53000	－20030	．69003	． 69000		
5	－	． 36000	－36000	－ 11000	－ 10000	． 09000	－ 09000	5	
FC	－1ujso	－ 38800	－ 49800	． 98300	． 62400	． 10200	－ 10200	FC	
－1p	40.0	90． 20000	90． 20640	40.00000	400．00000	80.00000	80．00000	${ }_{\text {HP }}$	
FX	．03520	． 04370	． 04370	． .05700	． 06000	． 02070	． 02070	FX	
16	－	－	－	－	－	59.95000	．	LA	
LTs	－	－	－	－	－	54．50000，		LTA	
13	－	－	－	－	：	．	59.95000	18	
LI3	－		－	－	－	－	54.50000	LTE	
した	：	192.98000 192.93000	－	－	－	－	－	1 c	
LT：	$\bullet$	192.93000	$19{ }^{\circ}$	－	－	－	－	${ }^{1 T C}$	
（T）	$\square$	－	192.90000 192.98000	－	－．		－．	10	
L：	41.37030	192.98000	192.98000	62.55000	184.03000	59.95000	59．95000	Lif．	
LTV	41.01350	192.98003	192．98600	53．90000	184.03000	56.50000	54．50000	LTM	
Pこ142V	1．UJJJO			．		．	56．0000	${ }^{P} \mathrm{Cl} 42 \mathrm{~V}$	
PE143V	，	1．cs000	1.00000	$\therefore 0000$	－	－	－	PC143V	
$\begin{aligned} & P=14+v \\ & p=1430 \end{aligned}$	－	$\bullet$		1.00000		1．00000	． 1.00000	PC14，4 PC145 P	
$\begin{aligned} & P=145 V \\ & 0=157 v \end{aligned}$	－	－	－	：	1．00000	1.00000	－1．00000	PC145V PC167V	
$4142 v$ ．	סנدנט．			－		－	－	H142V	
11ijv	－	1.00000	1.00000		－			H143V	
1145y	－	－		－		1.00000	1.00000	M145V	
Y1s／v	－	－	－		1.00000	－		H167V	
4144 V	－	－	＊	1.00000	－	－	－	$\mathrm{Ml44Y}$	
25144V	－	－	－	． 22000	－			AG144V	
4j145V		－	－	－	－	． 16000	． 16000	A6165V	
dこic2V	－ 37 HuO	－	－	－	－	－	－	AGL4V	


－P5x－PTF13	EXごムJTJR．	MPIX RELE	SE 1 MOD LEV	3			Page	17－74／028	
＇	T0」：4だう	TJ3mF 50	tobmfeg	coyarna	covarnb	COYARHD	ROPEIAFA		12．．．．．1
$v 4$.	．7juso	． 75000	． 75000	． 26000	． 26000	． 26000	． 49000		
E4PDd	54．5JJud	54．50300	54.50000	96.39000	96.39000	96.39000	169．35000	EMPOW	
Expto	39．9juso	59.95600	59.95000	96．39000	96．39000	96.39000	185．48000	EMPTO	
dK	－3aju	－ 33000	－ 08000	－ 21000	－ 21000	． 21000	． 16000	HK	
L233R	－	－ 25000	．05cco	－ 04000	－ 08000	－ 38000	－1403J	LABOR	
？	－0̇JJU	－69030	． 69000	－ 16000	． 16000	． 16000	． 32030		
5	－G\％Jjo	． 09000	． 09000	－ 24000	－ 24000	． 24000	． 03000	5	
FC	－13250	． 10200	． $10200{ }^{\circ}$	． 80600	． 80600	． 80600	． 39600	FC	
AP	00．03Jso	80．00000	30． 00000	340.00000	340．00000	340.00000	560．00000	HP	
＝x	－ 02370	． 02070	． 02070	． 09320	． 09320	． 09320		FX	
LA	－	－	－	96．39000	－	－．	185．48000	LA	
	－		－	96.39000		－	169．35000	lta	
L3	－	－	－	－	96.39000	－	．	Le	
LTa		－	－	．－	96.39000	－	－．	LTB	
LC	59．9juJ0	－	－	－	－	－	－	LC	
LTO	54.50030	50.95000	－	－	－	－ 39000	－	LTC	
L0	－	59.95000	－	－	－	96.39000	－．	10	
Lis	59.95010	54.50000	59.95000		95.39000	96.39000	195＊＊＊000	LT0	
Lis	59.95030	$59.95000$	59.95000	96.39000	96.39000	96.39000	185.48000	LN	
LTV	54.53030	54.50000	－54，50000	96． 39000	96.39000	96.39000	169．35000	LiN	
LE	－	－	59.95000 54.50000	－	！	－	！	LE	
PC145V	1.62030	1.00000	1．00000	－	－	－	$\bullet$	PC145V	
Pcitov	－	．	．	1.00000	1.00000	1.00000		PC146y	
PCitiv				－		－	1.00000	PC14TV	
y145\％	1.00030	1．00000	1．00000	．－ 36000			－	H 145 V	
41650	－	－	－	． 36000	． 36000	． 36000		M1460	
Y147V				－	－	－	1．00000	M147V	
AE145V	－16330	． 16000	－16000	49000	49000	－49000	－	AG145V	
16175V	－	$\bullet$	－	－49000	－49000	－49000	－ 46000	AG146V	
－utiv	－．	－	＇	－．	－	－	－46000	AG147V	







1PSX-PTF13 EXE:UTJR. hPSX RELEASE 1 mOD LEVEL 3


	page	23-74/028	
OILCOTM	OLLSB4		10
. 272000	. 27000	va	
32.63000	32.63000	EAPDM	
4.3 .51000	43.51000	EMPTO	
- 19000	- 19.900	WK	
-05000	. 05000	LABOP.	
- 19000	-19030	P	
-14600	-140co	5	
. 41100	.41100	FC	
330.00000	330.00000	HP	
. 04390	-04390	FX	
-	-	LA	
-	-	LTA	
$\bullet$	-	18	
$\bullet$	-	1 TB	
…*	- .	26	
... . -	--	$2 T C$	
-	-	LO	
43.51000	43.51000	$1{ }^{\text {L }}$	
43.51000.	43.51000	LN	
32.63000	32.63000	LTN	
-	-	LE	
		LTE	
1.00000	1. 00000	PC13	
. 34000	-25000	PC13! H137,	
		M130	
1.00000	1.00000	HEDF,	
. 588000	. 58000	AG136\%	
.66000 .58000	.75000	AG141V AG136CO	
-	-58000	AGI36SB	


VPSK-PTF 13	Execurja.	mpSX RELE	2 moo lev				Page	$24-74 / 028$	
	3itsisid	OILPALV	lardcon	LAROS Bn	Lafùsen	LARDPAN	RICENI		19.0.. 1
va	22.27JJO	-27000	. 21000	. 21000					
	32.033 J	32:63000	33.41000	33.41000	$33.41000$	$\begin{array}{r} .22000 \\ 33.41000 \end{array}$	$\begin{array}{r} .17000 \\ 26.74000 \end{array}$	EAPDM	
- ik	¢S.ituso	63.51000 .19000	51.84000 .22000	51.84000 .22000	51.84000	51.84000	37.43000	Empto	
L43J2		- - -	-227000	- 22000	-22000	- 22000	- 22000		
-	0 O-i\%	-19003	. 12000	. 12000	-12000	-127000	-03000	LABDR	
5	-1ヶJJJ	. 14030	. 13000	- 13000	- 13000	-13000	- 134000		
= 6	-r1bJ	-41130	-45900.	. 45900	. 45900	. 35900	. 25600	FC	
AP	350.03030	330.00000	310.00000	310.00000	310.00000	310.00000	400.00000	HP	
Ex	- J+jys	. 06390	- 12290	- 12290	. 12290	. 12290	400.	FX	
Ln T		43.51000 32.83000	51.84000 33.41000	51.44000	51.84000	51.84000	-	LN	
Peli36V		32.63000	33.41000 1.00000	33.41000 1.60000	33.41000	33.41000	-	LTN	
PE137v	םدנد.	1.00000	1.0000	1.60000	2.00000	1.00000	-	PC136V	
11121	-	,	-	-	-	-		PC137V	
H12iv	-	-	$\vdots$	-	-	-	1.00000	N1121	
M13s\%	-		. 34000	. 34000	. 34000	. 34000	- 87000	M121V	
ytsiv	. 55303	. 33000			. 34000	. 34000	-	M136V	
पijeitu	1 1.Jנטנ	1.00000	1.00000	1. 00000	1.00000	1.00000	-	M137V MEDFATV	
-ulay					-		. 78000	AG!21V	
\%jisod	--5ijuor	-586.000	. 63000	. 63000	. 63000	. 63000		AGl36V	
2613509		- -	. 638000	. 66000 -	.66000-	.60000-	-13000-	AGI4IV	
t6i3053		-		. 63000	-	-	-	AG136CD	
tul36SE	-5d020		$\bullet$		. 63000	$\bullet$	-	AG13658	
-••...	Sdoso	. 58000	$\bullet$	:	. 63000	. 63000		$\begin{aligned} & \text { AG136SE } \\ & \text { AG136PA } \end{aligned}$	



E133P12	E146P1	E1038P	E141R
$\begin{aligned} & \text { 1.0330:70 } \\ & 1.00330 \end{aligned}$	1.00000	1.00000	1.00000
.	1.00000		
-	-	8,00000	
-	-	-	
-	$\square$	-	
-	$\bullet$	$\bullet$	1000000


E14991	E162P 12 .	E13cp 1	
1.00000	1.00000	1.00000-	
-	-	-	
$\bullet$	-	-	Exio3v
20.00000	-	-	Exi41V
2.00000	1.00000	$\bullet$	Ex149V
-	.	-	A6103V
-	-	-	A6S4IV




TPSX-PTA 13	EXeSuTOR. HOLAP	$\begin{aligned} & \text { MPSX RELEA } \\ & \text { 112SR } \end{aligned}$	LVSLGT2	LVSLGT3	PASTER2	BUTTER2	Pace but	29-7	74/028
818	:	-	-14000	. 33000	-30000	-12000	. 07000		
EAPTO		:	8.49000 10.92000	11.121600 16.67000	8.01000	16.72000	8.71000	EAPDM	
	:	:	-24000	$\begin{array}{r}1806000 \\ \hline 180\end{array}$	20.46000	25.77000 .23000	17.18000 .25000	EMPTO	
LAdJR	:	:	-CCBCOO	-05000	-14000.	- 255000	-04000	LABOR	
?	:	:	. 040000 .	-27000	-13000	-05000	-00500		
${ }_{\text {F\% }}$	:	:	- 35400	.07700	- 26800	-21400	-21400	${ }_{\text {FC }}$	
${ }_{\text {FP }}$	1.03000	1.00000	120.00000	120.00000	160.00000	170.00000	170.00000	${ }_{\text {HP }}^{\text {HP }}$	
4			10.91000	16.67000	200.46000	25.77000	17.18000	${ }_{\text {Lx }}$	
PTV	:	:	8.49000	11.11000	8.01000	16.75000	8.71000	LTM	0
	:				1.00000	-	:	PC103V PC105V	
Pciove vijuv	:	:	80000			1.00000	1.00000	PCiosv	
	:	:	O8000	-80000	$\therefore 00000$	-		Ml 103 V	
NiJSy		:	:		1.00000	$\therefore 00000$		M105V	
Ivijorv	1.00330	-	:	:	:	1.00000	1.00000	N106V	
txit25av	-	1.00000			:	:	:	:M125RY	
Pisijuy	-		-69000	-60000	-	-	:		
		:	-02500-	-62300	$\because$	-	:	A61410	
${ }_{16164 V}$	:	:	-09500	-695000-	$\bigcirc$	-	:	$\underset{\substack{\text { AG162V }}}{\text { AGL }}$	







425x－ptfl3	Exäcutjo．	mpsx rele	1 mod le	3			Page	33 －	74／028	
	SPIKITL	WIME2	BEER2	SOFTDR2	SOFTDR3	SOFTDR8	tobaf Cz			30．0．0． 1
$\forall 1$ ミ甲0円	12：53JJJo	11.8	12.583000	15．53000	20．64000	302．55000	－54000			
jip 0	13．53Jנט	11.05003	12.63000 18.95000	15.00000 37.51000	20．00000	302.10000	9．95000	EMPD		
dK	－AbJJ0	－17000	． 16000	37．518000	＋6．67000	351.14000 .15000	$\begin{array}{r}11.16000 \\ .13000 \\ \hline 10000\end{array}$	EMP		
LL302	－1 1 טJJ	－11003	－18000	－ 23000	－190．j0	－14000	－ 07000	CABOR		
	－נגد3	－27033	－ 30000	． 28000	－ 39000	． 39000	． 41000			
5	－3／ココ）	． 33000	． 36000	． 23000	－11000	－10000	． 11000	5		
FC HP Pr	－1 40	－ 08800	－98300	． 37300	.37300	－25900	－10200	FC		
HP	40．0330	90．00000	40．00000	70.00000	70．00000	120．00000	10．00000	HP		
＝x	－0U20	． 04370	． 05700	． 06000	． 08000	． 06000	． 02070	FX		
$\underline{L}$	23．sijuo	18.00030	18．95000	37．51000	46.65 .900	351．14000	11.16000	LN		
－iTV	21．353 200	11.00000	12.63000	15．00000	20.00000	302．10000	9.95000	LTN		
PE1tiv	2.03530	1.02005	1．00000	－	－	－	－	${ }^{\text {PC142V }}$		
PC145V	－	－	．$\cdot$			$\bullet$	1.00000	${ }^{\text {PC144V }}$		
PCiojv		－	－	1：00000	1000000．	1.00000	2.00000	PC167V		
H142V	1.00030	－	－	－	－		－	M142V		
V143V	－	1.00000	－	－	－	－		M143V		
4145V	－	－	－			－	1.00000	H145v		
1144V	$\bullet$	－	100000	1．00000	1.00000	1.00000	－	H167V		
20itut	－	－	－08000		－	－	－	M144V		
20゙14iv								AG144V		
461429	．05000	－	－	$\stackrel{\square}{6}$	－	－	．35000	AG142V		



NPSx-pta 13	Execurat.	mpsx mele	1 mod le	3			page	37 -	74/028	
	NOJUPL3	HOJDPL6	EOXES2	80xES3	PLYMOD2	PLYuODS	PLYWOD9			32.0.-1
UA $\equiv 1>0 \sim$	350*)	-39090	50.44000	90.59000	-40003	.44000	.49000			
EMPD EMP	35. 35	$\begin{aligned} & 151.68000 \\ & 131.65000 \end{aligned}$	50.00000 60.87000	90.05000 108.10000	39.:4000	$468.68000$	86.74000	EKPDY		
$4 \times$	01才」	-19000	60.87000	108. 2000	41,3.000	503.03020	116.155000	EHPTO		
L430R	-13uso	- 16000	-26000	-39000	- 2510000	-22000	-20000	WK		
	-32UJJ	-22000	- 15000	-18000	-11000	. 14000	. 16000			
5	-013	-03050	. 20000	. olvuo	-11000	- 46000	. 04000	5		
${ }^{-6}$	- $1<5 \mathrm{Sa}$	-3)309	. 26100	. 26100	. 59700	. 53500	. 59700	F		
HP	240.03sus	240.00030	530.00000	530.00000	440.00000	1200.0000	640.00000	${ }_{\text {HP }}$		
L	40.0 UJus	181.65000	60.87000	108.70000	41.52000	503.03000	116.85000	LN		
${ }_{\text {LTV }}$	35.0323	151.68000	50.00000	90.08000	39.54000	468.68000	186.74000	LTN		
PCL69V PCR3uy	1.0)	1.00000	-	-	-	-	(	PCl49\%		
PGI5iv	-	2.00000	1.00000	1.00000	-	$\bullet$	-	PCLSOV		
PE152V			1.00000	1.00000	1.00000	1.00000		PC151V		
H15JV	1.00300	1.00000	-	-	1.00000	1.00000	2.00000	PCL52V M150V		
N151V	-	-	1. 00000	1.00000				M150V H151V		
H152V	- -	-	-	-	2.00000	1.0000	1.00000	mis2v		



1P5x-98F13	¢xEEUPJR.	MPSE RELE	1 MOU LEV	3			page	$39-741020$	
	Larove	LAROS	IMDOIL2	1MOOIL3	CHOCOP 2	Starchz.	STARCH9		34.0.0. 1
$v a$	-2 21000	. 09000	. 37000	. 41000	. 46000	. 44000	. 56.000	va	
zı3כ	0.tissue	22.41000	19.00000	12.17000	20.46000	20.03000	146.34000	EMPD ${ }^{\text {V }}$	
ех9\%0	c.7susu	26.16000	27.46000	15.65000	33.52000	33.13000	333.33000	EMPTO	
dx	-2IJJO	. 23030	. 20000	-170c0	-18000	-160CO	- 21000	WK	
LA33a	-upsso	. 03000	. 16000	. 07000	-18000	. 16000	-40000	:.ABOR	
p	. 13 J03	. 05000	- '4.000	- 30000	- 24000	. 20000	- 07000	P	
5	-1533	-10.500	- - , 00	.02600	-26000	. 22000	-04000	5	
FC	- 1 -3)	. 13500	. 48000	-48000	1.13100	. 66700	. 66700	FC	
. 19	230.03503	230.0r.000	350.00000	350.00000	180.0c000	260.00000	260.00000	HP	
ix	-126J0	- 12290	- 18070	-18070	. 20300	. 04740	. 04740	FX	
LY	0.73JJ0	26.10000	27.46000	. 15.65000	33.52000	33.13000	333.33000	LN	
41.1	0.413J	22.41000	19.00000	12.17000	28.46000	20.03000	146.34000	LTH	
PC135V	$\bullet$		.	-	1.00000	.	-	PC135V	
PCISOV	1.30300	1.00000	-	-	,	,		PC136V	
Pisdsy	-	.			-	1.00000	1.00000	PCisev	
pClsiv	-	-	1.00000	1.00000	$\bigcirc 00000$	-	-	PC164V	
113sy	-		-	-	1.00000	-	-	M135Y	
41300	1.00330	1.00000	-	-	-			H136V	
$413 d y$	,	.	,	-00000	-	1.00000	1.00000	M13.8V	
H166y			1.00000	1.00000	-	-	-	M164V	
TE JFATV	1.ET030	1.00000	-			-	-	MEDFATV	
4 2135V			-	-	. 24000	-	-	AE135V	
AELSCy	-50000	- 73000			-	-	-	AG136Y	
AELesV	-	-	-59000	-55000	$\bullet$	-	-	AG164V	



thskepta	ExELutja	mosx relea	N00 LEv				page	1	
	Invilo	IN31:	INvil2	inylis	twvila	invils	Itivily		36:0..1
${ }_{F i x: A P}$	$\begin{aligned} & \text { - Alifyo } \\ & -1720 \end{aligned}$	- 58.3000	$\begin{array}{r} -56200 \\ -56000 \\ -56 \end{array}$	.40000	$\begin{aligned} -29900 \\ \hline 29900 \end{aligned}$	$\text { - } 20800$	- 21200 .21200	$\operatorname{Fix}_{\text {fixcap }}$	
cilly	$1.03350-$	-00008-	-	-	-			Pcilot	
Paliv	:	1.000000	1,00000-		:	-	-	PCLILV	
PCilisy	:			1:00000	-		:	Pcilev	
${ }^{56114 \%}$	-	-	-		1.000000		:	Pcilis	
PCily	:	:	:	:	:	1.00000	1.00000	PCilsy	






435x－PTF13	EXECJTJR．	mpS X RELE	MOD Ley				Page	$46-74 / 028$	
	tnvisi	linvis	INV162	INV164	INW 160	1HV167	RHS 68		41．0．0． 1
$\begin{aligned} & \overline{=1} \\ & =1 \wedge=A P \end{aligned}$	$\begin{aligned} & -17 \pm 30 \\ & -17800 \end{aligned}$	$\begin{array}{r} .46100 \\ .46100 \end{array}$	$\begin{array}{r} +41700 \\ -41700 \end{array}$	$\begin{aligned} & \text { - 89900 } \\ & .89900 \end{aligned}$	$\begin{aligned} & \text { - } 200000 \\ & .20000 \end{aligned}$	$\begin{aligned} & .62450 \\ & .62400 \end{aligned}$	－	FX FIXCAP	
La．	－	－65100	－ 470	－ 8 －	． 2000		604500.00		
LTS	－	－	－	－	－	－	22487．000	Lra	
48	－	－	－	－	－	－	525100.00	L8	
153	－	－	－	－	－	－	19354.000	15	
16	－	$\bullet$	－	－	－	$\bullet$	337500.00	LC	
LT\％	－			－	－	$\square$	12555.000	$4 \pi$	
60	－	－	－	－	$\bullet$	$\bullet$	568300.00	10	
LTJ	－	－	－	－	－	－	21141.030 319590400	LTO	
LTY	：	$\bullet$	－	$\bullet$	$\bullet$	－	$339550 G .0$ 226328.00	Lif	
LE	－	－	－	－	：	－	493800.00	LE	
LTE	－	－	－	－	－		18369．000	Lte	
LF	－	－	－	－	－	－	432200.00	LF	
L！	－	－	－	－	－	－	16073．030	LTF	
－	－	－	－	－	－	－	326200.00	LG	
LTj	$\bullet$	－	－	－	－	－	12135.000	Lit	
Pcio3v	－	－	－	－	－	$\bullet$	363．91130	PCiO3V	
pilsiv	－	－	－	－	$\bullet$	＋	9.90500	PCIO4V	
	－	－	－	－	－	－	62.19500	PC105V	
jeljor	－	$\stackrel{\square}{*}$	$\bullet$	－	：	$?$	11.54100 6.11200	PC106Y PC107\％	
pEijur	－	$\stackrel{\square}{*}$	$\bullet$	－	$:$	－	6． 202000	PCIO日V	
－$=13 \mathrm{y}$	：	－	$\because$	－	－	！	2.68600	PCi09V	
P＝1108	－	－	－	－	－	$\stackrel{\square}{-}$	17.49100	pcilov	
J－11\％	－	－	－	－	－	－	1.36700	pciliv	
$2=1168$	－	－	－	－	－	－	2.19100	PC112V	
$3=120$	－	－	－	－	－	－	． 93300	PCili3V	
$2 \mathrm{Cl148}$	－	－	－	－	－	－	5.12600	PC114V	
PCilsv PELITV	－	－	－	$\bullet$	－	－	.50600 2.01100	PCIISV	
PEILIV	－	$\bullet$	－	$\stackrel{\square}{\bullet}$	$\bullet$	＊	2.23950	PCilav	
？$=1210$	－	－	$\bullet$		$\bullet$	－	77．88400	PCi2iv	
$p=122 v$	－	－	－	－	－	－	272.64100	PC122V	
3：1231	－	－	－	－	$\bullet$	－	1.13000	PC123V	
ご24V	－	－	－	－		－	57.58900	PC124V	
OL123v PGI2+V	：	－	－	－	：	：	24.63300 49.87300	PC125V	
P6iljuv	－	－	－	－	－	$:$	49.87300 1.61100	PC129V PC130V	
P－131v	$\bullet$	－	－	－	－	－	22．a3800	－PCi31V	
$3: 132$	－	－	－		－	－	2.32300	PC132V	
Sissv	－	－	－	－	－		87.34700	PC133V	
$2=133 v$ 2ctiov	：	－	－	：			50.91200 50.13500	PC135V PC136V	
$\begin{aligned} & 2 C 136 y \\ & p=1: 7 y \end{aligned}$	－	－	－	：	$:$	\％	50.13500 $\$ 1.70260$	$\begin{aligned} & \text { PC136V } \\ & \text { PC137V } \end{aligned}$	
misisav	－	－	－	－	－	$!$	，30．50400	PC138V	
Petsov	－	－	－	－	$\bullet$	－	$49.34400$	PC139V	
ctiolv P＝1－2v		$\bullet$	$\bullet$	－		：	$40.02400$ $77.04500$	PC141V PC142V	
pこtist	：	$\bullet$	－	－	－	$\bullet$	77.04500 3.69900	PC142V	
Ptipet	－	－	－	－	－	－	168．81700	PC144y	


INV164	INV 166	INV167. - RH568	
$\bullet$	-	110.88600	PC145V PC140V
-	$\square$	55.86900 11.86800	PC146V PC147V
-	$\bigcirc$	6.74800	PC149V
-	-	8.35400	PC150V
-	-	1.38350	PC151V
-	- 2	13.81100	PC152V
-	3	-34700	PC153V
-	- 5	4.44600	PC155V
$\bullet$	-	6.46900	PC156V
1.000	-	80.82200 5.42600	PC162V PC164V
1.000	1.00000	119.84900	PC166V
-		1.00000- 52.10000	PC167V
$\bullet$		32.44030	N1121
	$\bullet$	53.13690 77.56900	N1122 N1129
$\bullet$	$\bullet$	14.63000	N1131
-	-	66.89600	N1146
$\bullet$	-	66.0G000	NI133
$\bullet$	$\square$	9.70600	N1145 M103V
		+7.33000	M104V
-	-	. 45.22700	M10sv
-	-	1.50800	M106V
-		4.45600	M107V
$\bullet$	$\bullet$		M108V
$\bullet$		13.53000	M110V
-	-	1.00500	H111V
-	-	1.71600	M112V
		-67300	N113V
-		3.73200	N114V
-	$\bullet$	-77000	M115v
		- 1.75700	M1175
-		1.63900	M118V
-	-	89.05200	M121V
$\bullet$	$\bullet$	251.34600 .32200	N122V
-	$\bullet$	42.12900	N124V
-		113.90900	H129V
-	$\bullet$	1.17030	M130V
		31.23400	H131V
-	-	1.83400	H132V
:	-	129.50100	H133V
-	-	40.73900	H135V
!	$\bullet$	36.48300	M136V
-		38.17800	H137V
		22.55800	M138V
-		35.87300	H239V
		30.94200	H141V
-		57.93300	H142V



4PSX-PTF13	ExECuTJR.		nob				Page.	49-74/028	
	[HULSS	INY156	invi62	IHV164	INV166	INY167	RH568		4100.0.4
$45146 V$	-	-	-	-	$\bullet$	-	48.02300	AG146V	
16102V	$:$	$\bullet$	-	-	-	-	6.55100	AC147v	
dËLjov	-	-	$:$	$\bullet$	-	-	26.70200	AG162V	
Astosor	:	:	-	-	$\bullet$	-	13.02800	AG164V	
tiljoca	-	$\bullet$	$\bullet$	$\bullet$	-	-	68.09600	AG166V	
4513658	-	-	-	$\bullet$	$\bullet$	-	15.67400	AG136CO	
4511655	-	,	$\bullet$	$\bullet$	$\bullet$	-	$\begin{array}{r} 12.87500 \\ 3.81800 \end{array}$		
$2: 13691$	-	-	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\begin{aligned} & 3.81800 \\ & 5.07300 \end{aligned}$	AGL365E	



PC140V	55.86305	PC146V
PEL¢TV	11.06sjo	PC147V
3 Cl 43 V	6. 7 -	PCL47V
PELjov	0.3i.s.	PCISOV
PElsiv	l.dessJ	PCijiv
Peticy	1J.diluJ	PCLizV
25153	-3n/su	PCLS3Y
pclisiv	4.6640	PCLSSV
PEijov	0.6ats	PCissv
PElsiv	du.ticuo	PCL62Y
P61jiv	5.4230J	PCi64V
गE¢5V	119.3it3	PC160V
peltiv		PC16TY
d121	-J.stus	NH22
41122	¢0.4\%	H1122
viley	97.1]دJJ	N1129
dil31	id.sJus	H1131
1:1*3	ds.lsitu	N1146
v1133	d2.37260	111133
111\%	12.14000	H1465
yljuv	900.23suU	H103Y
$\times 134$	10.44150	M104V
-41Jjv	-4.13su	Musv
-11)	2.15 UJ30	miJov
*LETV	0.J7sJ	mlutv
4tJsy	-2d7J	masiv
प10 गV	2.7udu	His9V
diluv	17.30030	milov
ylis	1.5-0.0	millv
ylizv	2.2313u	HLI2V
milso	- Hisu	Mlsisy
v1liv	S.CJtus	Hitiv
414iv	1.313J	Mlijv
C.017v	2.5lioud	Mlliv
YliJV	2. 341.0	mliav
vlelv	111.4 Jod	Ml2iv
1.22v	445.03 UJJ	M122V
Y12JV	-4s130	-12JV
-120V	\$2.721JJ	H1<4Y
yiziv	142.50.3	H1298
alsjv	1,404JU	mljuv
1131V	41.6. ${ }^{\text {a }}$	Hi3iv
1632v.	2.430uJ	Mlizv
113sV	13.9.691J	Musb
113jv	34.34us	nl3sd
113JV	¢3.243J0	HLStis
v13TV	21.117us	Ml3iv
41JJV	20.cliJu	M138V
313JV	64.dyくJ	H13FY
4 tiolv	51.123ud	Mltiv
-1142V	i1.560JJ	M162V
414 JV	.4.56030	M!43V


Mlsiv	106．tioso	N165y
y1\％as	152．83d30	H146V
41525	35．al7J	H162V
410 －${ }^{\text {d }}$	10．0370	H166V
1200 V	y1．17200	M166V
4ijiv	Su．71uJo	MLSTV
v123V	22.62300	H125V
11665	103.425150	Mioby
1167V	16．34JJ	H167V
MLT3V	10．26Jsu	H143V
41538	10．tulus	M1508
sijiv	2.95730	HLSLV
4isicv	21．40700	H152V
115sv	－54－J	H153y
Yt5sv	6．30\％J0	H15sV
415）V	12．10130	Mlsov
14）$=:$ TV	49.9070	MEJFITV
Ext2くV	378．1utus	Ex122V
Exi3sv	－ 4.41 us	こai3sv
Extioy	So．sujus	EximbV
三人luav	3－．1\％sus	Exiosv
Extobv	14．99150	Ex141V
Ex1－9y	3．dusso	Exl49V
Exiocv	－．tsjus	Exib2V
Exilisy	18.21130	Exllav
ExLこうズv	12．45Suc	Ex145RV

APPENDIX C

This appendix is comprised of ten tables showing the Activity Levels and Bhadow Prices corresponding to Optimum Solutions of Different Variants and Programs of the Colombian Procesaing Bector Model

Appendiz $C$
Table 1 Activity Ievels for CCtFK 1 If 1968 vith Ficstricted Rev Material


$$
17
$$

Comprised oniy processing activities representingothe existing 1968 Colcmbian technology
2f KA Not applicntle
Best Available Document

Teble 11 Activity Levels for COHPRI 1968 with Restricted Ras Katerials

Induatry Cescz iption		ictivity Le Restricted HK＝ 365	vals（in 4 Horking Cap WK $=457$	$\begin{aligned} & \text { ilan US\$) } \\ & \text { ital (WK) } 2 \\ & \text { UK }=489 \end{aligned}$		ty Levels（in Imited Working Hhx＂EPPTO＂		＇rax MLatar＂	12x Mpr：
	RIC EHIT				69.918	69.918	69.918	69.918	65.918
	FLORRA								\＄1．005
		！					51.065		
人EXI	$\begin{aligned} & \text { FLOIKC } \\ & \text { FLCIRL } \end{aligned}$				51.055	51.055		31.065	
－	$\begin{aligned} & \text { F:U JRE } \\ & \text { fratidH: } \end{aligned}$								
－－－－－，－									
	－33AIHHU								
	$\begin{aligned} & \text { GKA IIAAE } \\ & \text { CER EALU } \end{aligned}$				20.837	20.837	20.837	20.837	20.837
c－ate								1.834	
	CEREMLに，				1．834				
	CEREALO					1.834	1.834		1.834
	FEE JTA								
					27.434		27.434		
1二3，1FEF：	FLENUT					27.434			
	FEEVJTU								
二－	COR ATVA		$\cdots$	，	0	80.113	0	80.113	0
E－ 7 \％	$\begin{aligned} & \text { EREJJAd } \\ & \text { BREJDOS } \end{aligned}$	－			8.042	8.042	8.042	8.042	8.042
59，					1.170	1.170			1.170
	JREAJOL 8REAJJJ		．						
	qRELJUF						1.170	1.170	
			．			16.604	16．604		
	－RAこAKC				16：604				
	CRAこAKE			－					
1－3－a－3inins：creniss	$\begin{aligned} & \text { CRACAKF } \\ & \text { SUSARC } \end{aligned}$							16.604	16．604
	SUUGIRG．				74.118	74，218	74,718	74.118	74.118
－	CJFERN COF H U	$\square$	－		35．873	35.873	35，873	35.873	35.873
，					198．210				198.210
こ．	CJFEHU：								
－\％\％－\％	CJFEMJJ								
，	C JF ElUJF								
10．．．．．	$\begin{aligned} & \text { CDE EHJJ } \\ & \text { SPI 2IT, } \\ & \text { GINEL. } \end{aligned}$					198.210	198.210	198.210	
Ho，$\because \sim \ldots$					57.933	51.933	51.9333	\＄7．933	
1：\％こ，				．	3.397	3.397			3.397

If Comprised only processing activities representing the existing 1968 Colombian technology．
2／ra Hot applicable


Industry Description	Act1vty Syrabol	Activity le Restricted WK＝ 365	veis（2n ki）   Working Cap $\mathrm{VK}=457$	$\begin{aligned} & \hline \text { Ions US\$) } \\ & \operatorname{tal}(\mathrm{HK})^{2} \\ & \mathrm{WK}=489 \end{aligned}$		y Ievels（in mited Horkin lax＂EPPTO＂		thax nratern	Pex mon
	HINEJ						3.397	3.308	
	BEERA SOF TUR：				121．232	122．232	121232	2n－232	202232
		：			37.675	37.875	－37－875	37875	32－875
：こ\％．CECMES COMEEMTS	TOB AF $\operatorname{id}$					66.2143			
							6h． 21.3		
	$\begin{aligned} & \text { TOS 作 UB } \\ & \text { TOB FA } \end{aligned}$								
					66.243			66.243	66.243
	COY $3 \mathrm{KN}:$ Coraxiiz				16，093	16．093	16，093	16，093	16.093
	ROF EAFA								
	R．JPミMro ROPEHFJ			：		11.888	11.868		
\％Ce，								11.863	21.863
	ROP $\operatorname{BHFE}$   ROPEMFF								
＋…7，\＃！！	LUM3ER． 1ODJPLA				6.748	6.748	6.748	6.748	6.748
					8.354				6.355
	（J0）「20								
	W00 HPL		．			8.354	8.354	8.354	
	NOOJPL6．   HROXESS				1.883	． 1.888			
（ニn，							1.883	1.883	1.883
1，\％．	$\begin{aligned} & \text { N } 30 \times E 56 \\ & W 30<E S J . \end{aligned}$								
	－W30＜ESJ				13.811	13.811		13.811	13.811
	PLY．JJJC PLYdUD．						13.812		
					． 347.	． 347	.347	.347	.347
	$\begin{aligned} & \text { iOO JuGA } \\ & \text { nuO JOUS } \end{aligned}$				4.446				4.446
\％						4.446	4.446	4.446	
10，	－PU0 JU3				6.469	6.469	6.469	6.469	6.469
1－……	TANHG3								
			O	，					21.538
	TANJU			．	21.538	21.538	21.538 ：	21.538	

If Comprised only processing activities representing the existing 1968 Colombian technology．
2／ra Not appliceble

Appendix ${ }_{\text {Table }} 1$ Activity Lavels for COTPR 1 ／／ 1968 vith Restricted Rav Materials

Industry Description	Activity Symbol	Activity le ristricted	evels（1n H Horking Ca	$\begin{aligned} & \text { I1ons US } \$ \text { ) } \\ & \text { Ital (uKf } \end{aligned}$	$\overline{\text { Acti }}$	ity Levels（In limited Vorikir． 3	$\begin{aligned} & \text { Willions } \\ & \text { Capital } \end{aligned}$		
：GG．T：EOETE EATS ：OIIS（All \＆VEC）	IND JLB								
	［H6TILこ								
	IHE） 1 Lu	：							
－3．	1 H ）1 L				5.426	5.426	5.426	5.426	5.426
	Cuc 1Ju．				322	322	． 322	322	． 322
	CHO：OP年								
	CHO：UPL								
	CH0：UPJ				36.698				
$\because \because$ ¢ Comide mavirs	（－11） Ul $^{\text {a }}$								
	－110：JPF					36.698	36.698	36.698	36.698
	STA2－14							22.034	
	STA SCH3								22.032
	STAREHC								
	STARLHJ				22.034				
	STA そこけこ					22.034	22.034		
	alcusid				27.024	27.024	27.024	27.024	27.024
：33，CE SGIEAM：OIT	OILSBIN，				22.198	－1．348	9.349	0	22.198
	CILSESN	－7xymiter	－		0		6.583 ．	0	$\stackrel{1}{ }$
	DILPAL！	－zensand	E	－	2． 2.472	－8．746	8.746	3.512	2.470
	LIR Jiod	－	Er		0	24.879	0	24.879	0
12，\％y	LAR ）$u$ did				0	19.194	0	20.437	0
	LAP）SEA				6，060	6.060	11.829	0	6.060
： 3.10 C\％	LAR JPAN				5.769	0	0	4.819	5.769
	3！CミN1				32.440	32.440	32.440	32.440 ：	32.440
	CAFEVI				53.136	53.136	53.136	53.136	53.135
1\％，－－－	3RETUNII				77.669	77.669	77.669	77.669	77.609
	CRAEKNI				14.630	14.630	14.630	14.630	14.630
	COTTENI				66.896	66.896	66.896	66.896	66.596
－－－－－－－	TCBdidI								
	PADELH1				66.000	66.000	66.000	66.000	66.000
	E122P1				351.474	351．474	351，474	351．474	352．474
	E 133212	aramera			14.906	14.906	14.906	12.006	24.906
	三143P1		O		28.051	28.051	28.051	28.051	20.051
$1=\frac{103}{\text {－}}$	E103RP						3，085	3，055	3.065
	$=141 \%$				3.854	3.854	3.854	3.954	3.854

1／Comprised only processing ectivities representing the existing 1968 Colombian technology．
2／wh Hot applicable
Best ATailable Document

Appendix C
EEble 1

Intustry Lescription	Activity Symbol	$\begin{aligned} & \text { Activity Ie } \\ & \text { Restricted } \\ & \text { HK }=365 \\ & \hline \end{aligned}$	eveig（1n Kil   Woriding Cap $W K=457$	$\begin{aligned} & \hline 1 \mathrm{cose} \text { USS) } \\ & 1 \mathrm{tal}(\mathrm{WK}) 2 \end{aligned}$		$\begin{aligned} & \text { ity Levels (in } \\ & \text { limited Horsirg } \end{aligned}$	$\begin{aligned} & \text { Killios USS } \\ & \text { Capitel } \end{aligned}$		
－	E15？PI2								
	E133Pi	－			6.380	6.289	6.289	6.289	6．289
	三145R				2091	2.004	2.994	2.904	2.904
	1145PI				5.054	5.054	5.054	5：054	$\frac{2.904}{5.054}$
	I13js								
	（112 \％ 114				．				
	1.11391								
	$1137{ }^{\text {P }} 12$								
	114162 $11426 P$								
	$11426 P$ $i 143 \mathrm{P}^{-}$								
	1147412								
－＝ac CS CCDROE  	114PP\％								
5 ＝17P（ 0 023）	i15 5\％								
	112う家								
$2$	LVSL－ 12								
¢ F F \％－－	$\begin{aligned} & \text { LVSLSTI } 1 \\ & \text { PaSTEK2 } \end{aligned}$				$\square$				
	3uttent								
	3UTイミK\％								
1－a									
	ICESRく								
	＝yciv2								
	EvCivs								
7－1．UTER	EVCva7								
			8						
	EvDIY2								
	こvうくห3．	－							

I／Ccmprisec oniy processing activities representing the existing 1968 Colombian technology． if 5A Not epplicible

Enustry Cescripticn	$\left\|\begin{array}{c} \text { Actsनty } \\ 5 \mathrm{sibol} \end{array}\right\|$	$\begin{gathered} \text { hotivesy } \\ \text { Festreted } \\ \text { in }=365 \\ \hline \end{gathered}$	velaान M I   Norki：～ C （   $W K=457$			li：ited Norbir？   12x＂EPI゚＂	$\begin{aligned} & 11 \\ & \because=1 \\ & \because 2:=2 \end{aligned}$		$\because \mathrm{Za}$
	$=15 \mathrm{~A} A 2$								
	FIStis								
	FISt45								
	jra JR2								
	j＝930 ${ }^{\text {c }}$								
$\therefore-\cdots \cdots$									
－－＝	21CEA3								
－＝－	ELTJR2								
－－－IfoG（EICN）	FLOJRS								
$\cdots \cdots:=\cdots(300)$	드）Jx								
$\cdots$	G3alv								
10，-100	CミRミムL？								
$\cdots \cdots 2$	＝eEJJT2								
$:=5.05$	FEFJJT3								
二心，C－	FEEJut								
	SREAuti2								
	HRESJI3								
	こマコこ入大で								
	－2ajax								
	SUSti2								
F－iE rex En（ERCTI SUAS）	SUG inc								
	S1G12？								
$\cdots-2 \times 3$	：CFER2		－						
	SO13152								
$\cdots$	WINSく				－				
	3ミミマ2．．．								
－－－－－－－	SJFTJR2								
1：－－ery	SJF TURS								
1－\％－	SJF 「」ヘ̃̇								
$1 \because 2003$	TOU 1Fíl			．					
相	COYARN2								
二－	COY ARIS								
	coybicdl								
$10 \cdots-3 \mathrm{~B}$	กn？		5						
	ROP ： $1 \mathrm{r}^{\text {P }}$								

1／Comprised only Nessing activities representing the existing 1968 Colombian technology
2／EA Hot applicable


In.jutry Lescmption	Activity Symbel	fetivity Levels(in Hinilcus LSG) Pestricted Horiding Capital (wK)? $H K=365 \mid \quad W K=4571 \quad H K=489$			Activity Levels (in :i111ers US\$) Unlimited Voricirg Cepitel pax "ryan \| 1ax "E.PTO" Hax "E.PDIT"			tax "Iekor"	Pex MPN
\#.n-2									
		.							
	PLYisjus								
	PLY1JU)								
	Parjeis								
	PUL 2.152								
$\because \square$	PULPAFS								
	TAIVIG2   TAN Ji பi								
-1......	TANIIGG								
$\cdots$	LAFJV2								
	IRDTiL2								
	THDIIL3								
	CHO:UP2								
	STAJCHy								
…- - -	İViv3								
$\xrightarrow{-10}$	İiviu4								
$\cdots$	INVIVO								
$\cdots$	INVIU7								
$\cdots$	I:JVIU8								
$\stackrel{1}{*}$									
" $\quad 11 \%$	1ivV:11-								
1-	Itiv112								
-	1:9113-								
-			c						
$\cdots$	1: \%V11]								

I/ Co $_{\text {r }}$ rised only frocessing ectivities representing the existing 1968 Colombian technology.
2/ lif liot ap:2isebic

$1 /$ Conprised only processing activities representing the existing 1988 Colcabian technology.
3/xa Hot applicable


1/ Comprised only processing activities representing the extsting 1968 Colombian technology.
2/ $\pi$. A:

ATPPidix C, Teble 2. Shadon Prices, COLPRI $1 / 1968$, RESTRICEDD PAM MATERIAL


[^8]
## Best Availablo Decumen



1/ Comprised oniy processing activities representing the existing 1968 Colombian technology.
2/


## Appendex C

Table 3 Activity Levels for COLPRI $1 / 1568$ with Unrestricted gav Material


Best Available Document


Besi Availabla Document

Agjendix $C$
2able 3 Activity Levels for cots $\quad 1 / 19 f \dot{s}$ ifth Unrestriated faw Haterial


Best Available Document

Apper:dix $C$


Besi I. -is.: Dockment

Appendix C $\quad$ IEble 3 Activity Levels for COIPRI $1 / 1068$ with Unrestificted Rav Vaterial

Intustry Lescription	Activity Symbol					$\begin{aligned} & \text { ty Levela (in } \\ & \text { Imited Horking } \end{aligned}$ Pax mP.PTO"	$\begin{aligned} & \text { Kllifions US } \\ & \text { Capital } \end{aligned}$ Eax mpipdin	Fax MLatos＂	Pey mpr
ETceT Mo unter	E14．3P1	亚	，		3.778	3.788	3.778	3.728	3.788
	E16 P 12				－6．239	6.249	6.259	6.239	6.239
	E133P1				－ 575	． 576	． 576	． 576	576
\＃\＃c：i co Sinlinish	11131				2.294	2．9\％\％	$2.90 \%$	$2.99 \%$	2.992
	1－95R				5．05／	5．05\％	5．05／2	5．05／	5．05h
－－－	1143PI	－			3.192	3．192	－ 3.192	3.192	3.192
	113 j				5.515	5.515	5.515	5.555	5.515
	112 inp				16.102	16.402	16.402	16．102	16.1 .02
	114 in				． $31 / 5$	． 15	． 415	． 21.5	． 25
	！113P1				.85	． 452	． 352	． 532	0.352
OR，\％0－IS FonTS	$1137{ }^{12}$				.673	． 673	． 673	． 673	． 073
	［141kP				－ $1.94 \%$	1．9／7	1．974	1.947	1．9\％7
\％\％\％Sripits	$11411 . P$		－	20xam	3020049	－	2004	20wh	2.049
二：act of HIIES	114351	－	．		$\bigcirc .761$	.161	． 761	$\bigcirc$	$\bigcirc$
：	1149 P 12				1815	． $6 / 4$	－6，5	． 0645	.345
：iECSI Co CGTHige	11410				1.192	7.102	1.702	1.702	19302
－acor 0 EmP（ifsil）	115 \％ 1				2.032	9.032	9.032	9.032	0.032
－－－TeT：	$116 \%$				10．091	10．09	10.097	10.097	10.097
	11250				． 5938	－ 59	． 598	． 598	508
	LVSLuT2			no					
	LVSLiT3								
\％\％．5．9．	PAST－K2								
\％＝－\％Com	QUTTEN2								
	3UTTEス								
1－3．C：H23	－H：								
$\cdots 3$ Na，	H1LくJ＊								
－－Tra	ICEOR2							atcmer	
	155：N 7				．				
	HIL 322							，	
	EvC i，v2								
	EvCTVo								
	EVCIN7								
	Jり1：c3								
	PICRLEL		$\stackrel{5}{ }$					4	
	EVJマイム．								
	EVD．3Y3								

195

## Best Aivailablo Documert

## Appendix C



Best Availablo Document



Best Arailable Document
．Iable 3 Activity Levels for Cotpa 1 ／ 1968 with Unreatricted Raw Material

Industry Lescription	Activity   Symbol					ity Levels（in limited Horking 1．hx＂EPTO＂		：イ9x＂Iak＝ッ＂	$\because \because \square$ ner
Ei：SEI．III ITD． $1 / 0115$	I＇JVItu								
10.12	Huvicl								
＂ 122	lisvice								
＂ 123	If ${ }^{\text {dules }}$	！							
＂． 124	IHVIく4								
＂ 125	I＇IV1く3．								
＂	Iliv 123								
＂ 133	Illvisu								
＂ 131	IIIVIsl								
＂-132	invise						．		
1 O	thvis3							，	
＂	IIIV1」5								
n －13\％	linviso								
n 137	Itivis 7								
n － 132	IVVI38．								
n	INVI39								
＂ 110	IVVI＋1								
＂12？	INVL4								
＂ $1: 3$	1：JV14S								
＂ 124	INV144								
11	INVI＋5								
＂ 12.	INV140								
－147	INVI +1								
O	INV14\％								
$\cdots \cdots$	INVİU－			－					
$\cdots \square 151$	［NV151］								
$\square \ldots 152$	Invibs								
＂-153	［ifviss								
$\because$－ 15	INVİ5								
＂ 16	invloi．								
$\cdots \quad 10$	Inviol								
＂－ 162	INVL64								
$\cdots$	I＇VV100］								
$\because \quad 1 e^{\prime} 7$	Inviol		$\square$						
$\cdots$									

1／Comprised only processing activities representing the existing 1968 colombian technology．
198



ESEIRI-	RESTRICIIOM EANE	MAX. VALDP ADDED VA) WITH ALTERRIATIVE 3$\qquad$ ORKING CM PILAL (WK)			RESTRICTED WORKERG CAPITAL (FT) AT 457 MTWMOIS U.S. $\%$				
$\begin{aligned} & \text { CTIOX } \\ & \text { CTVTOL } \end{aligned}$		WE=365 MIIL.US	WK=457 MaLL.US\$		MAX "VA"	MUX "EMPDEM"	MAX "EMPIO"	MAX "LABOR"	MAX "P'
M114V	Fotal Market				. 31000	45.06000	64.38000-	.08000-	. 21000
M11.jV	$\xrightarrow{\circ}$							. 03000	. 21000
1917V	$\square$				.22000-	$251.36000-$	300.55000-	. 13000	. 07000
$\frac{1: 1107}{12019}$					. 41000	85.97000	103.60000-	. 11.1000	. 2.27000
M12?V	$\cdots$				. 19540	30.73560	43.022990	.03448-	. 14943
E122V	\%				. $12000-$	14.19000-	15.52000-	. 02000	.10000-
E123V					. 13000 -	179.48000-	192.31000-	. 07000	. 060000
	,				. 145450	28.50909 -	43.43030-	. 048460	. $07273-$
M I L VV	$\xrightarrow{\text { H }}$				+33000-	333.30000-	$\frac{428.60000}{\text { 400.0000- }}$	. 11000	. 212000
- 1.15	-				. $34 / 000-$	162.26000-	217.59000	. 21000	. 05000
111:2V	"				. 40000	90.00000-	115.00000	. 050000	. 26000
$\frac{\text { miav }}{\text { mis }}$	$\because$				4:761=	109.22388 $=$	140.05970-	.10448-	. 298512
	-				26000	86:09000-	86,09000-	. 050007	.14000-
ming	-	6mer	$\square$	-	相				
11.	"		-	-	.40000-	69.89000-	102.15000-	. 11000	.26000-
i- $1-\mathrm{v}$					.27000-	48.19000-	68.27000-	. 066000	.20000-
II.	4				. $24000-$	- $29.82000-$	48.17000	. 070000	. 16000
	\%				. 83000 -	41.07000-	41.07000	. 04000	.74000-
	"				. 51000 -	192.98000-	292.98000	. 11000	. $39000-$
: 21.7	-		108	-	. 775000	54.50000-	59.95000-	. 05000	. 69000
\% -			-	$\cdots$	$\square$	,		1-2	
- \% 1	"				. 32000	1118.81000-	118.51000-	.09000	. 20000
Fiv	1.				11000-				
TIT:V	"				. .51000	166.67000-	200.00000	. 03000	. 085000
F.. V	II				.23256-	23.34884-	$\frac{184.03000-}{28.02326-}$	. $168000=$	. 20000
	\%				. 66000	53.90000-	62.55000-	-0.09000-	.12791-
ENTV	-								
\% \%									
	\%								
	$\because$								
	$\square$								
$\frac{R: 2 V}{1 \cdot 1 \cdot V}$	- 11				mation	,	-	(1)	
Fi.j-v	- ${ }^{\text {" }}$								
\%! $+\frac{1}{1}$	T								
\%ivay	Harket for Edible 0 ils				.21000-	32.63000	43.51000-	.05000-	.12000-
	External Marizets								
	"								
							Doctum		

A Appenlix C, rabio h. Shadov picees, colif 2/, 1968, with Uarestricted Rav Material.


[^9]Table 5. Activity Levels for COLPR $1-195$ with Ourestricted Paw Material and Working Capital Alternatives

Industry Description	Activity Symbol	Activity Levels(in Millians US\$) Restricted Working Capital (WK) $W K=365$; $\mathrm{WK}=457$ HK $=489$			Activity Levels (in Iifilions US\$) Restricted Vorking Capital at 45				
ITEETOCR STAIMCHTER		429.888	420888		$x$ "VA"	Max "PDPTO"	Hax ME.PLi"	Fax "Iater"	:ay rop
	MEATPRAYEATPKB	$\begin{array}{r}429.888 \\ \hline 9.905 \\ \hline\end{array}$	$\frac{429.888}{9.905}$		429.888	429.888	429.888	429.888	429.888
PFAT PKG. \& PROD.		$\square$		:-	- 9.905		4	a1.	
FGAT PK. R. PROD.	YEATPKB MEATPKG	-			-mb		misenem		等
$\frac{\text { IFSE PKG. \& PROD. }}{\text { ET. FAST. }}$	MEATPKC MEATPRO PASTERA	-				9.90		9.905	
FWC. FAST. IILK FROD.							9.905		9.905
WFG. PAST. ILLK PROD.	PASTERA PASTER3								
LEG. PAST, :ILLK PROD.	PASTER3 PASTER= PASTERO								
WFC. EIGTES \& CREAH CTME	$\begin{aligned} & \text { RUTTERA } \\ & \text { BUTTER } \end{aligned}$	-2.159	2.159					-	\%
LEC, FIETAR \& CREAII		$2.152$	2.152	2.152	2.159	-2.159		2.159*	2.159
	HUTTER   3UTTERO								
179, EINARR \& CREAR	3UTTE゙R 3UTTËKĞ		.						
		$\square$			-	S	2.159	mime	
- EFI. Citifse	$\begin{aligned} & \text { CHE } \\ & \text { CHES } \end{aligned}$		6.112	6.112	6.112	36.112	6.112	6.112	
URG, ditare				\%	a		$\square$	at	
MEG. CASEIII \& OTHER ITIJK PROD.	CHE OSEG MILKJD	$.2000$	200	200					6.112
1-GT TCE CPEALL E TTIK SHERPET	ICEERIN	$2.680$	2.680	2.680	2.680	2.680	. 2.680	. 200	. 200
		$17.491$	17.491	17.491	17.491	17.491	2.600	2.680	2.680
	MILKPRA   MIL LPRG						17.491	1	17.491
		$1.346$	1.346.	1.346	1.346	1.346		1.346	1.346
	$\begin{aligned} & \text { FVC VIIO } \\ & \text { JUI OL:A } \end{aligned}$	$2.191$	2.191	2.191			1.346		
	$\begin{aligned} & f \text { JUI SL:A } \\ & \text { - j } 1: 15 \mathrm{~S} \end{aligned}$						2.191	2.191	2.191
	NEJ JHSM: Jins						. 914	. 914	.914
		. 914	. 914	-. 9214	914	. 914			
	$\begin{aligned} & \text { 1: Ji.lS } \\ & \text { PICKLEU } \end{aligned}$	5.001	5.001	- 5.001	5.001	5.001	5.001	5.001	5.001
	PICKLEC ${ }_{\text {FVDIYA }}$	$506$	. 506	. 50	. 5				
	$\begin{aligned} & \text { FVDRYA } \\ & \text { FVDZYB } \end{aligned}$						506		
	$\begin{aligned} & =I S H A A \\ & I=I S H C A G \end{aligned}$		2.017	2.011	2.017		2.011	5	. 506
		$\frac{2011}{2.239}$	2.239			2.011		2.011.	2.01
PRLTP, \& PKG, SHETIEISH		2.23	2.239	- 2.239	2.239				
							2.239		2.2391

Spperdix Ceble 5．Activity Levels for COLPR 1 I／ 1975 with Unrestricted Raw Material and Working Capital Alterratives

InAustr Description	Activity Symbol	Aetivity Le Restricted	vels（in Hi ） Horking Cap	$\begin{aligned} & \text { ions US\$) } \\ & \text { ital (WK) } \end{aligned}$	$\begin{aligned} & \text { Activ } \\ & \text { Restr } \end{aligned}$	ty Levels（In cted Working	IIIIICO．s US\＄） Capital at 457	Millions	
		WK $=365$	WK $=457$	WK $=489$	Max＂VA＂	Fax＂EPPTO＂	Max＂Erfiti	＂ax＂Latorn＂	Nox ner
	RICEM1］	77.884	77.884	77.884	． 77.884	77.884	77.884	77.884	77.884
－	flojak	0		$\square$					
12：	FLO JkC	：							
	FLCJiL		． 57.509	57.589	57.589				57.509
［6：3．1						57.589	57.589	57.589	
	GRAINHご	24.633	24.633	24.633	24.633	24.633	24.633		
\％i，\％	SRAIJHO								
	GRAINTE：							24.633	24.633
	CEREALU								
	CERミAL	2.456	2.456		2.456	2.456	2.456	．2．456	2.456
	CEREALD			2.456				．2．456	2.456
－\％，，Cize	FEEJJTA								
1－\％	Frミう」T3					40.024			40.024
1－5． $0=5$	FIEJJṪ	40.024	40.024	40.024	40.024				
¢ \％R ExE	FEEJJTU．						40.024	40.024	
¢reverititich	CUR LUA！	0	77.961	91.171	77.961	0	91.171	91.171	0
	BRĖJ H	． $45: 350$	45.350	45.350	45.350	45.350	45.350	45.350	45.350
	3REJUOU								
1－＊，	3RE」J0゙								1.464
	BRETJJJ	1.464	1.464	1．464	1.464			1.464	
	BRETUUF				－	1.464	1.464	1.464	，$\sim$ ．
	CRAこ大K3	22.838	22.838	22.838	22.838				9.027
	CRAEAKC								
－－n，-6 ¢	CRA こAKD								
	SRA：+ K			．				22.838	
1－2 $\rightarrow$ arici＝s：rratis	CRAJAKF					22.838	22.838		
S\％	SUGGTRC．	87.347	87.347	87.347	87.347	87.347	87.347		
	SUGIRG．							87.347	87.347
	CIJFERN：	44.892	44.892	44.892	44.892	44.892	44.892	44.092	44.892
$\frac{1}{1}$	CUF：HUS								
－	C．JF EnU	0							
－\％in－ion	COFEHUF						272.641		
16：	COFEHUS							258.575	
E．EMGALUGUL	SPIRITIJ	77.045	272	272.641	272.641	272.641			272.641
1：．．．	H1NEC	17．04	17．045	77.045	$77.045^{\circ}$	77.045	77.045	77.045	77.045

Aprencix C
Fable 5．Activity Levels for COLPR i I／ 1975 with Unrestricted Raw Material and Worling Capital Alternatives

2－\％stry Description	Activity Symbol	Activitu Le Restricic ed $\mathrm{VK}=365$	vels（in Mi Worling Cap $\mathrm{HK}=457$	$\begin{aligned} & \text { ilions US\$) } \\ & \text { pital (WK) } \\ & \text { WK }=489 \\ & \hline \end{aligned}$	Activ   Resit   $\mathrm{Max} \mathrm{"VA"}$	ty Levels（in cted Horit： 12x＂E．PTO＂	Illicns USS） Capital at 457 ！コx＂Erp！＂	Millions liny＂takcr＂	ジer nE＂
\％G．CR 5－2？\％\％iTi		3.699	3.699	3.699	3.699	3.699	3.699	3.699	3.699
：ニ\％．CE SCE．ERTM		$\frac{165.423}{50.710}$	165.423	165.423	165.423	165.423	165．＋23	165.423	165.423
		50.710	50.710	．50．710	50.710	50.710	50.710	50.710	50.710
								9.476	
－－¢，crictis．，cinisames						94，564	75，088		
		94.564		94.564			9.471		
			55.869	55．869	$\frac{94.564}{55.869}$	55.869			9.476
－	CJY   Corskidu					55.869	55.869	55.869	55.869
边	ROF ミAIA	55，869							
	$R \cdot P \cdot \equiv \cdot 4=3$$R O P \equiv H F D$								
（1）						11.868		12.868	
\％．ceren coman	ROP						11.868		11.868
		11.868	12.868	11.868	11.868				
		6.748	6． $7^{4.8}$	6.748	6.748	6.748	6.748	6．128	6.748
…	100）${ }^{\text {a }}$	8.354							C． 351
…	H：3OMPLJ						8.354		
	NOEJPLS． HaORESS．		8.354	8.354	8.354	8.354		8.355	
	T 130 c 2 S	1.883				1.883	1.803	T	
	WBOKLJ 2LYiJuA		1．2．	2．88？	1.883			1.883	． 683
－\％－\％						23.811			1.883
－	olr ijoc plrajus	12.311	13.811	13.811	13.611		13．811	13.011	13.811
	¢AR．İ 1	． 347	． 3.7	． 347	． 347	.347	． 3.37		
\％ 1		4.440	4.440	4.446	4.446		4.448	4．446	． 3
上，60．	$\left\|\begin{array}{l} \text { nito } 38 \\ \text { PUL } 3.15=5 \end{array}\right\|$					4.46			
1.0 － 0 －		6.469	6.469	6.469	6.469	$\frac{4.446}{6.469}$	6.469		4.446
－，i，ithen foco SSIM	T：is 1100		$\checkmark$				35.817	6.469	6.409
－1，									
	$\text { 1:i: } 1.00^{\circ}$	35.017	35.027	35.817	35.017	35.317		35.817	35.017
				5					

Arpendix c 5 . Activity Levels for COIPR 1 I/ 1975 uith Unrestricted inu Material and Woriding Capital Alterrati-res


## Best Avcilabla Docwment



ITAustrj Fescription	$\left\lvert\, \begin{gathered} \text { Activity } \\ \text { Symbol } \end{gathered}\right.$	$\begin{aligned} & \hline \text { Activity Ie } \\ & \text { Restricted } \\ & \text { HK }=365 \end{aligned}$	velo(in Mil Horking Cap HK = 457	$\begin{aligned} & \text { IIons USS } \\ & \text { 1tal (HK) } \\ & H K=489 \end{aligned}$		ty Levola (in leted Horkirg俍x "EIPTO"	Fillione Capital at 457 tax Meypln		kax mp
- - M T-35	114721								
-	E16 312	6 680	6, 080	6090	-6.080	6.980	6.980	6.680	6.980
- - cos-	E13 Jpi								
-	F113P1	18.211	18,211	18.211	18.211	18.211	18.212	18.212	18.211
	1432d	12.455	12.455	22.455	12.455	12.455	12.455	12.455	12.455
- $=$ cer cociviss.	143p1								
$\cdots$ \% C cento =1:	1133 N								
	112 mp								
$=0$ -	114 in								
Frat ris Im mix	111.3P1								
	1137812								
	1141 LP .								
$\because$ \% CF SF-T3.	1142FP.								
- 10 ch 0\% Wiz3	1143. ${ }^{1-7}$								
	$114{ }^{\text {gip }} 12$								
\%os	114791								
$\cdots-\cdots=1001$	1153p1								
	$116 \%{ }^{\text {c }}$								
	11230								
	LVSLji?								
	LUSLiT3								
	pastikz								
1. -1.	9uTT:inz								
\%.	3UTTEN								
\% . 0 /	CH: $53-2$								
Fon, or,	T1L								
	TCENS								
	15 SSN								
1- \% \%	FILT22								
?	EVC 1.12								
- 2 -	FVC 1.17								
120.103	Julce ${ }^{-1}$					.			
	PICKLE2 $=V$ VJY2		c						
1, \%- 7 -	- vory3.								

Aprencix C
Iables Activity Levels for COLPRil $1 / 1975$ with Umrestricted Raw Vaterial and Woring Capital Alternatives


Best Availubla Document

Appendix C
Table 5 Activity Levels for COLPRI $1 / 1975$ with Unrestricted Paw Material and Horing Capital Alterratives


Desi su visaule Docunsex


Industry Lescription	Activity Symbol	Activity Levels（in Millions US\＄） Restricted Working Capital（ HK ）$V K=3651 \quad W K=4571 \quad W K=489$			Activity Levels（in lillinans US\＄）   Restricted Horrirg Caritel at 4574				
					13x＇rya＇	1．nx＂ErPIO＂		V3x＂TEここと＂	$\because$ ct ren
－	1，1VL21								
＂ 122	I！Ivize								
123	INV1＜3								
n 12.12	IHVLく4								
1 l	l－1viくら								
＂ 129	IfiV！27								
＂－ 135	Invisu								
＂ 131.	INV131								
＂$\quad .132$	INVL32								
$\because \quad 133$	Invis3								
＂$\quad 135$	－INVL35								
＂ 12	INV1so								
＂ 170	IHVIS 7								
n ，132	IVV138								
＂－ 132	INV139								
	INVI＇t								
＂ $1<2$	INVL4 2								
$: 2142$	INV143								
＂ 14	I NVL 44								
＂ 145	INVI4\％								
$\because$ 116	INV140								
． 127	INVI +1			．					
＊123	I NV149								
＂ 150	INVIjo								
＂	INVL5								
\％ 152	1NV．152－								
$\cdots$	［INVISis								
\％	INVIjs								
＂15，	INV150								
＂ 1 －	Inviol								
O	INV164								
\＃	INV 100								
$\cdots \quad 1 \div 7$	INJ167		$\checkmark$						
				－		－			
						$\cdot$			

1／Couprised only procesaing activities representing the existiag 1968 colombian technology．

Ampendix C, Table 6. Shadow Prices, CCLPR1j, 1975, with Unrestricted Raw Naterial and Worikink Capital Alternatives


## Best Avcilable Document




Sest Avaidabla Docwnent


Table 7: Activity Levels for Copraí 1/ 1975 with Unrestricted Paw Material ana nos oing Capital Altermatives


Best Aucilabla Documsan

Appendix C
Febie 7 ．Activity Levels for Coipre $1 / 1975$ with Unrestricted Paw Material and Working Capital Alternatives

Industry Description	Acさivity Symbol	Activity Io Restricted WK $=365$	vels（in III Horking Cap	$\begin{aligned} & \text { ligns US } \$ \text { ) } \\ & \text { pleal (WK) } \\ & \text { tuk }-489 \end{aligned}$		ty Levels（in icted Horking	［inlors USSं） Capital at 457	Millions	
ETVE．$=1$ TETG	RICEA1					$\times$＂Pr	lax Merri	vaz Latz	
\％KI 以ILIIM	FLOJRA	77.884	77．884	77.884	． 77.884	$\square$		8	
	FLOJRC	－	－	－uchiod					xSma
\％－M1 ：MLETLG	FLOJ，	1023：		－6met	B．．an				
	FLUJNE					57．589			
	GRalidit		24.633	24.633	24.633			24.633	
caili．	GRALIJMD		－					24.633	
C：\％：：7TIE：G	GRAIIS．4E	24.633.				（10tor			24.633
	CEREALB	$\cdots$		8，	5－6atisa	－	＋		－
CEEEKi PEEFPELCIOX	CEREAL	－min	：	$\because \times$	30．cxit	．	2．456		15
	CEREALD	caimen	$\cdots$	－	－2， 5 \％	2．2．456	Hiçin	$\square$	
－Fr，Ca rex	FEEJJTA	coina					$\cdots$		
－	FFEJT．	．							
	FLEJUT－								
1af．CFEST	FEEVJTU						－		－
	CIREUU．	0	91.171	91.171	91.771	91.171	91.171	91.171	91.171
	BREAJW	－ 15350	515.350.	45.350	45.350	45.350	45.350.	5．326	45.350
	$\frac{\text { JREADOS }}{\text { HREAJOC }}$					－		1.464	
	BREAJUJ	14.6							
	9RETJUF	2．4n4	$1{ }^{1}$	1.464	1.464	1．464	1.464		1.464
	－4：CAKB								
	SREこAKら					9.027		9.027	
	CRAこAKU	3			－		9.027		
Pa？，of CSACSEES P COOKTES．	CRAこAKE	＋	$\cdots$						
	CRAEAKF								
	SUSATS	．	－			87.347	87.347		
	SUGVE．								
$\cdots 3$	CJIFERi＊					． 44.892	44.892		
COEE＝Lita 3	COFEHUठ	14.076	272.641	272．641：	272.641	$\bigcirc$	Sacmer		212.641
	COFESUC			：	．				
	CJFEMJJ					272.641		117.570	
	CUFEHJF								
1－2EEE－	CTFERJJ		\％				272.641		
－	SPIK1］T0	77.045	77.045	77．045	37.045	77.045	77.045		77.045
10－E	H1N： 6	$\square$	－	，		\％	\％		3.699

Besza Arailablo Documenk

Appendix C $\quad$ Table 7 ．Activity Levels for CoiPR2． $1 / 1975$ with Unreatricted Rav Material and Forking Capital Alternatives

Industry Description	$\left\lvert\, \begin{gathered} \text { Activity } \\ \text { Symbol } \end{gathered}\right.$	Activity Lovers（In Milificno US\＄）Restristed Worlding Capital（wK）			Aotivity Levels（in Hilliocs USS） Restricted Horking Capital at 457 Millions				
Kise－inkenies	－［1\％J	HK $\quad$ \％ 365 （	$\frac{\text { HK }=497}{3.609}$	HK $=489$	Max＂VA＂	Itax MEMPTO＂	kax meppyin	Lax nJekar＂	\％ax mom
	3こER．，		165．423	165．423	3.699	33.699	3.699 ．	－33．699	
：ES．CE SCFT LAIMS	SOFṪ̈n	6，	165．423	165.423	165.423	165：423	165：423		165.423
：$=$ G．CF CIGAPS Es CIGARETTES	TOB IFGA	19.476	19：476	19.476	12.476				
EG．CF CICAFS \％CICAFETTES	TOB AFGB								
	TOB 1 だも								
	T7 В 在 30								
	TOB AFらE					19.476	19．476		19.476
amesti cimitio s．Yabli	cortria	B						\％	
	cor akita	$\cdots$		\％					
	cartrid	，					55.869		55.869
O3．Ci，CEE CrESGE	RJP Enira								
	2．JPミ㳸它								
	ROP	11.868							
3．Ci，	ROP ${ }^{\text {RIAEE }}$								11.868
－35．OF RGFE	ROPEMFF．	Cumb							－
O－2	ADOTJPLa	6.748	6.748	－6．748	． 6.748	－6．748	6.748	6.748	0
	W130）PL								
	нวOJPLJ					8.354	0		
－	W00JPL6								
	H3OXES3								
\％	Ms8xesio						1.883	1.883	
	H3OXESO								
\＃3．CF SIEEQTOD P FLYCOD	PLYiJuas	13.811							
\％3．CECHFECSD P FLYHOOD	PLYdODE	13611	13.811	13.81	13.811	． 347	.347		23.811
	PAR $]=T J$					．	． 3		
Oz．	20030Ga								
	H003JGu								
	auossio．	6	0	0	0	4.446	4.446		
－	PULPMFE－	6.469	6.469	6.469	6.469	6.469	6.469	64.460	6.4691
	TAmitio		0				35－817		35.817
	Tanvico								
	TAN 1 iju－								

## Seat Araichla Docwram

Appendix C 7 Activity Levels for COLPR2 $1 / 1975$ with Unreatricted Raw Material and Woring Capital Alterratives

I－ciustry Description	Activity Syrybol	$\begin{gathered} \text { Activity Le } \\ \text { Restricted } \\ \text { UK }=365 \\ \hline \end{gathered}$	vels（in Nij Horking Cap $W K=4571$	$\begin{gathered} \text { Ilions US\$) } \\ \text { pital (HK) } \\ \mathrm{HK}=489 \\ \hline \end{gathered}$	$\begin{array}{\|r} \text { Acti } \\ \text { Re } \\ \text { Max }{ }^{\text {B3:A" }} \\ \hline \end{array}$	tricted Horiciry   ／Lax＂P．PTO＂	$\begin{aligned} & \text { Tiliges US } \$ \text { ) } \\ & \text { Cejptel at } 457 \end{aligned}$ 1ex "Exply	$\begin{aligned} & \text { Millions } \\ & \text { :ax nTetsr" } \end{aligned}$	\％cx MPM
SZG．II：DEDIE FATS \％OITS（All \＆VPG）	INDJILA	$\cdots$	$\square$			5．426	5．426		
	INDJILB	20．							
	INDJILE								
	INDJILO	！							
：ZG．	I PIO II LE								
：UU．CE＇TuFticosi	cuctuo．	0	431	－． 431	432	431	431	． 431	431
：S3．CE C：CCG：ATE 2 CATDIES	CHOGUPB	creater							
	CHOCJPL	Suxicmatio		T：					
	CHOこUP：								
	CHDEUPE								
\％6．CE SHOCLASE CA：STES	CH\％$\quad$ PPF					－50，912	50.912		
	STA3vat	\％mexitit							
1：G．CC，G2AEBH，GEtST，SPAG．PASTE：	STARCHB	－ratasta．		－	－				28.229
	STAZこHi	－	3	－	Hinkimer	－	－		
UEG．CGE1STIECE：YEAST，SFAG．PASEE	STASEHS	－			－	－	ans		
	STA ЗCHE	tueeram		L．					
	OILSUTN	51.702	51.702	51.702	51.702	0	0	0	0
1－9．Ce ScimFtul CII	OILSBS	0	0	0	0	49.829	49.889	0	0
13：Cos Sas：	UILSESN	0	0		0	0	0	0	0
F\％ 0 \％	JILPAL！	0	0	0	0	0	0	49，829	51.702
$=1=9,90,78, t s=0(0,0 T \alpha:)$	LTR JOON								
	LAR S Suid	0	0	0	－ 0	0	0	0	0
VJC．Or VEG．LARD（SESAVE）	LAP）SES	0	0	0	0	0	50.135	0	0
IEG．OE VDG．IAFD（AFRICAII PALJ）	LA？JP AN	0	0	0	0	50.135	0	1.950	0
	RICENI	40.595	40.595	40.595	40.595	40.595	40：595	40.595	40.595
	CAF F － 1	66.494	66.494	66．494	66.494	66.494	66.494	66.494	66.494
．．．．－．．．	3REJUNI	97.195	97.195	97.195	97.195	97.195	97.195	97.195	97.195
	CRAEKNI	18．308	18，308	18．308	18，308	18，308	18．308	18．308	18，308
	COTTUNI	$83.71 \%$	$83.77 h$	－83 714	83．714	83.774	83.714	83.714	83.714
	TOBACNI								
	PANELNI	82.592	82.592	82.592	82.592	82.592	82.592	82.592	82.592
	E123P1	378.707	378.107	378.107	378，107	378，107	378．107	378.107	378.107
	E133P12	40.410	40.410	40.410	40.410.	L，0，410	40.410	40.410	40.410
－r＝czes－ItII costa！	三14JP1	56.380	56.380	$56.380$	56.380	56.380	56.380	56.380	56.380
Hincis－EEs	E103RP	34.196	34.196	$34.196$	$34.196$	$34.196$	34.196	34.196	34.196
EFCRS－EERSNUFE	三141K．	14．997	14．997	14：997	14．997	14.997	14.997	14.997	14.997

219：

## Best Availablo Document

EEble，7 Activity Levels for COLPR2 $1 / 1975$ with Unrestricted Paw Material and Horking Capital Alterratives

Insustry Description	Activity Symbol	Activity Ie Restricted $\mathrm{HK}=365$	vels（in Mi Working Ca WK 457	$\begin{aligned} & \text { Ions USST } \\ & \text { tal (WK) } \\ & \text { WK - } 489 \end{aligned}$	Acti	ty Levels（in tricted Workin	$\begin{aligned} & \text { Rillions uS\$) } \\ & \text { Capital at } 457 \$ 1 \end{aligned}$	Nillions	
Fincon or urgar						RMX WIPIO	1．2．	lex Lato	Pex mpn
	E163P12	6.980	6.980	580	－ 6080				
－$-x$ crorns，ED．	E133P1				6，		6.980	6.930	6
	$\bigcirc 1131$	18.211	18.211	18．211	18，211	18．211	18.211		
	E1438	12.455	12.455	12.455	12．455	12.155	12.455	12.455	
	1143P1								
	113 jr								
	112 kmp   114 in								
	111091								
$\because \because=2$ CF OTL	1131.12								
： 2.20 Q	1141RP－								
	11426 P	Fozal							
	1143 PI	$\cdots$					［		
\％	$\frac{1144712}{11412}$								
츺ar	I 153 PL								
	1169\％P								
\％\％\％	I123R								
	LVSLiT2	429.888							
13\％．Fis\％．	PASTER2	429．888	$\frac{429.888}{62.195}$	429.888	429.888	429.888	120.888	429.888	129－886
1－2．	Butrikz			62.195	62.195	62.195	62.195	62.195	52.195
	11しくJ＊								
	ICESR2								
	ICEFRT					2.680		2.680	2.680
二．	MILPR2				．				
\％．．．		1.346	1.346	1.346	1.346				1.31
ミ．．	EvCin7							1． 346	
	Ju1．ec 3								
＝Es，2．P：\％，Stuges ？PTCKTAS Ym．	RICKLE2	5.001	0 5，007	5.001	5101			5.001	
	EVD．3Yく	． 506	506	：506	506			506	506

220

## Best Avaidable Documeni

${ }_{\text {Apendix }}$ C 7 Activity Levels for COLPR 2 I／ 1975 with Unrestricted Raw Materisl and Working Capital Alternatives

Inaustry Desoriptian	Activity Sy：nbol	Activity Levels（In Millions US\＄） Restricted Horking Capital（uK）			Activity Levels（In LIIIIO：S 3 USS，Restricted Horkir．Capital at 457 Millions				
			WK $=497$	UK $=$ L $: 89$	Nax＂VA＂		הax＂E－rvi＂	：	$\because \mathrm{Or}$ re＂
\％	F15 taz	2.011	2.011	2011	2.011			2.011	
F\％．7．．C．．．1G FESE E SADUEMES	FIStuAS								
	SCAOR2							2.239	
	3：4 ${ }^{\text {a }}$								
	2IC， $\mathrm{MZ}^{\text {a }}$								
Peg Litila	$216: 13$	7 CaL	77．884	77：884	77.884				
－－－－	＝L 01.12	57.589	57． 8 89	57.509	57.589			5.309	57.589
－	＝lcurs						57．569		
3	三しったく9					$2^{4.633}$	24.035		
－	CEREAL2	2.456	2.156	2.450	2.456			2.450	2.256
－－－	－E5）JT2				40，				
－1．	FEE）Jis	Lo	10．024	40．024	40．624	140.024			40.024
40（uma）	FEE）J，							0	
1－1－1－5bun（mene）	32EIJJ3								
W8．a	cancakz								
	： $24.4 \times 3$	22.838	22.036	22.830	22.836				0.027
S．	Sug 2	87．347	67．347	－1．341	87.347			87.357	
2 \％＂	SUらいぐ								
	Stugirs								E7．347
1－	CCF ERE	44，89？	44，802	44.892	44.892			44.892	44.892
	Splatz							76.196	
	WIME2								
$\square \mathrm{C}$	SO－2，							165.423	
－S 3 \％ 9	Sof TuRS	50.710	50.710	50.710	50.710			50.710	50.710
	jof 「Jxす					50.710	50.110		
$\cdots$	TOÜ 1Fジく							19.476	
$\cdots$	－0yaniv2	55869	55，860	55.869	55.869				
Su．	Cortarit								
\％．O．Fi Moccenge	20D		31.868	11.868	11.868	55.869		55.869	
	ROPこMFu								
	ROP：AF？				11.868	12.868	21.868		

Best Aradala Document

Apperdix C. Activity Levels for COLPR 2 I/ 1975 with Unrestricted Paw Material and Voring Capital Alternatives

Industry Description	Activity S;:-bol	$\begin{gathered} \hline \text { Activity Le } \\ \text { Restricted } \\ \mathrm{HK}=365 \\ \hline \end{gathered}$	vela(in Horking Cap $W K=457$	$\begin{aligned} & \text { ifans USSI } \\ & \text { ital (WK) } \\ & \mathrm{HK}=489 \end{aligned}$	Acti Res Rax "VA"	i*y Levels (in ricted Norkir 1/ax "EPTO"	H1120.s tis Cepitel at 45 iax. "LPDIN"	$\begin{gathered} \text { M1111ots } \\ \text { Vay "Ietor" } \end{gathered}$	Vay rp"
Licese:ILis	$\begin{aligned} & L U M B E R 2 \\ & \text { NOOJPL } 3 \end{aligned}$							-2x.	say
									6.748
	NOOTPLO $\text { -3n } x=52$	-8.354	8.354	8.354	8,354		0	8.354	$\frac{6.748}{8.354}$
	B0x:S3PLYYJU2PLYM	1.883	2.823	1.853	1.88				
								1.863	1.803
	PLYMJJdPLYtJUPak					13 ถ11	12.811		
							12.81	13.811	
	PARJETS	.347	.347	.347	.347			347	347
- 050	WกJJuG2   PUL?1F2   PULPAFS							4.446	
-	PULD,AFS	351817	35.817	35.817	35.817				
	TANJIG9	48.2				35.817			
	LARJV2   (LRR) $y$		$48.26 ?$	48.262	48.262	0	0	48.185	48.185
$\frac{\text { \%. }}{}$	INDJL2							5.426	
		5.426	5.426	5.426	5.426			5.4	
O-C,	CHE:UP2	$50.91 ?$	50.912	50.912	50.912			50.912	50.425
$\cdots \mathrm{O}$	STA 2CHyIVVIU3	28.229	28.229	28.229	28.229	28.229			
\%-							28.229	28.229	
.	INVIU3								
$\cdots$	INVIU5								
$\cdots$	I INvivo INVIU?								
$\cdots$	INVIU7   i! jviva								
"   1	INV109								
"	inviluINVILI								
$\cdots$									
$\cdots$	INVII3								
\% 11\%	$\begin{aligned} & \text { INVI17 } \\ & \text { INVILS } \\ & \text { INVII } \end{aligned}$		\%						
" 7115									
112									

Rest Availcble Document


İ．Acstry Lescription	$\begin{gathered} \text { Activity } \\ \text { Sjubcl } \end{gathered}$	$\begin{gathered} \text { Activity Le } \\ \text { Restricted } \\ \text { WK }=365 \\ \hline \end{gathered}$	vela（in Mil Horking Cap $W K=457$		Activ Rest Hax ${ }^{\text {RA＂}}$	ty Levels（in leted Horling Imx＂EDPTO＂	Hil1cr．s USS Capltel at 457 ： $\mathrm{E} x$＂Erp：！＂	Millions i：s．＂Iat＝ロ＂	$\because$ Or ram
İ．こSI．Ii！İD． $1 / 0115$	19V110								
121	lavild								
T－ 122	livvicz								
＂ 123	INVI＜3								
＂ 126	1 NVI ${ }^{\text {a }}$								
＂ 12	INV1く」								
$\pi$－ 120	Iiv127								
＊13－	！！visu								
$\because \quad 131$	［iv131					．			
$\cdots \square 132$	INVI32－								
＂ 133	INVI3 ${ }^{\text {I }}$								
＂	IHVISS								
＂	linviso								
$\cdots \quad 137$	［lavis7								
	IVVI3o								
$\because-132$	IfV139								
$\because \ldots-1 \leq 2$	INVI 4								
$\cdots \square 142$	IINV142－								
＂	I：NV143								
$\because \quad 12$	INVI4＊								
1.	INV14\％								
＂1＜6	I：SV140								
n － 147	INV141－								
$\cdots-149$	INV14y								
$r-159$	1＋Vレッ								
$\cdots \longrightarrow-151$	INvisi．								
$\cdots 152$	－1903，								
n－ 153	［iNVLas								
＂	LNVIjs								
$\because \sim \ldots$	tinvijo．								
412	Invloz								
＂	［1HV164								
＂	1＇sV100－								
＂	［NV101		$\sigma$						
－									

1 Comprised pricessing notivities representing both the existing 1968 Colombian technology and arternative foreign technologies from rarioue countries at different stages of development．


[^10] from rious countries at different stages of development.

Sest Availabla Dockment

Apsenilx C. Table 8. Shadru Prices, COLPR2 ${ }^{1 /} 1975$, with Unrestricted Raw Material and Horking Capital Alternatives


[^11]|  | RESTRICIIOBIANE |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | WK＝365 MTLL．US | VK＝457 MILL．US\＄ | HK－li8g MITL．US | MAX＂VA＂ | HAX＂Empder | max＂Empio＂ | MAX＂LABJB＂ | MAX＂P＂ |
| \％121V | Total Mariset | 25636－ | 36000－ | $36000=$ | 3 Rn0n－ | le n60nor |  |  |  |
| 111\％ | － | 2936． | － | $36000=$ | 3Enon－ | 45 n60nor | S4．38000－ | $10273=$ | 21 nco－ |
| ITSV | ＂ |  |  |  |  |  |  |  |  |
| IT： 1 | ＂ |  |  |  |  |  |  |  |  |
| $\square \mathrm{V}$ | T110 |  |  |  |  |  |  |  |  |
| 1：$!14$ | 1 |  | 13000＝ | ．13000－ | 13000＝ |  |  |  |  |
| ITV | ＂ |  | ． | 1 | $12000=$ | 179.48000 | 102，31002－ | 04818－ | C50Mn－ |
| － 5 | $\pi$ | 22636 $=$ | 33000－ | $32000-$ | 32500－ | 333．30000 | 423， $60000=$ | n3273－ | 21000 |
| $\frac{18}{19}$ | ＂ | $21000-$ | 133000－ | 23000 $=$ | 132000－ | 266．67000 | $40 \mathrm{mannog}=$ | ． 050000 | ．23000 |
| $\bigcirc \%$ | T |  |  |  |  |  |  |  |  |
| － 18 | 1 | 51909－ | ．59000－ | 29000－ | E9000－ | 90．00000 | 115．00000－ | ． $10818=$ | ． 3906 |
| 17 | ＂ |  |  |  |  |  |  |  |  |
| $\cdots$ | ＂ |  |  |  |  |  |  |  |  |
| \V | ＂ |  |  |  |  |  |  | 00138 |  |
| 1－7 | ＂ | ． $44545=$ | ． $26000=$ | ． $56000-$ | ． $66000=$ | 146.34000 | 333．33000－ | ． 38091 － | ．2Euco |
| ： 7 | $\cdots$ | ． 25162 － | ． $35000=$ | ． 35000 － | ． $35000=$ | ${ }^{4} 6.10000^{-}$ | $68.27000=$ | ． $04354=$ | ． 2.5000 |
| $\therefore \square$ | 7 |  |  |  |  |  |  |  |  |
| $\cdots$ | 71 |  |  |  |  |  |  |  |  |
| $E: V$ | $\pi$ | ．70636 | ．75000－ | ． $75000=$ | ．70636－ | 54.500005 | 59．95000 $=$ |  |  |
| $\frac{1}{1}$ | ＂ |  |  | ． 15000 | ． 10636 | 24． 30000 | 59.95000 | ．04127 | ． 69 ccos |
| $\cdots$ | ${ }^{\prime \prime}$ | －25545 | 37000－ | 37000－ | $37000-$ | 118．81000 | 125，00000－ | ． | 200209 |
| \％ | $\pi$ |  | ， |  |  |  |  | 21818－ |  |
| $\underline{1} \mathrm{E}$ | ＂ | 56364 － | $64000-$ | 64000－ | $11000-$ | 166．670co－ | 200，00000－ |  | C8000 |
| VV | 1 | 56364 | 64000－ | 64000－ | $64000-$ | 3.02 .20000 | 351， 4000 － | ．00909 $=$ | ． 39003 |
| ？ | ＂ | ，60000－ | ．66000－ | ．66000－ | ．6f000－ | $53.90000^{-}$ |  | ． 21364 － |  |
| 曹 | \％ |  |  |  |  | 23.90000 | 62．55000－ | ．16545－ | ．53000－ |
| \％ | ＂ |  |  | ． 33000 － |  | 32.63000 |  |  |  |
| 1－ 5 | $\pi$ |  |  |  |  |  |  |  |  |
| $\because$ | 1 |  |  |  |  |  |  |  |  |
| 号济 | $\pi$ |  |  |  |  |  |  |  |  |
| 1 | ＂ |  |  |  |  |  |  |  |  |
| $\because$ | T |  |  |  |  |  |  |  |  |
| $\therefore \because$ | Market for Eimbla 0118 | ． 11245 | ． 23000 |  | ． 23000 |  | 43.51000 | ． 03273 |  |
| 5，－ 2 l | External Mariets |  |  |  | ． 2300 |  | 43．51000 | ． 03213 |  |
| ET130 | ＂ |  |  |  |  |  |  |  |  |
| $\cdots$ |  |  |  |  |  |  |  |  |  |

I／Comprised processing activities representing both the 1968 colombian technology and alternative foreign technologies
from various countries at different stages of development．

## Bait Avalable Document



1/ Comprised proceraing activities representing both the 1968 Colombian technology and alternative foreign technologies frca various courries at different stages of development.

Apperaix $C$
Table 9 Activity Levels for COLPR3 I/ 1975 with Unrestricted Paw Jaterial and Working Capital Alterratives


Best Atailable Document

Apperdx C TEble 9．Activity Levels for COFPR I／ 1975 with Unrestricted Row Material and Horking Capital Altermatives

Inututry Lescription	Acさivity Symbol	Netivity Le Restricted WK＝ 365	vals（in H Horking Ca HK -497	$\begin{aligned} & \text { lians US\$) } \\ & \text { pital (WK) } \end{aligned}$		ty Levels（In   ricted Working	$\begin{aligned} & \text { Hillices USS) } \\ & \text { Capital } \end{aligned}$		
ESTCE．PITEitG		WK $=365$	HK $=497$	WK $=489$		1ax mPrpton	Max ME．PD：	Fax MIatmr	Fax mpr
	FLOJRA			：		8 87.497	3 za		－
	FLOJRC	－	－						
－+ Kin	FLCJRİ		．$\cdot$ ．	$\cdots$		－63．904			
（tan	FLOJNE								
	GRAI．JH：		26.076		26.076				
边	GRAIUMU	5		26：076					
	CER ${ }^{\text {a }}$ AL ${ }^{\text {a }}$	5xico 0	－	\％		tan		melbatictis	Tom
边	CEREAL	2.456		$\bigcirc$		\％ 2.456	2.456	2.456	（3）
	CERシALD	－							
	FEEJJTA			－					
\％	FFETJTO		－						
\％ion	FEE JJTO	\％		，	－．	！	31.728		
	COR HUN	0x－may	9		，	9.171		1	
	BREDUNV	－		45.350		45.350		$\frac{9.191}{45.350}$	
	BRE ${ }^{\text {BREJUOC }}$			1.464				45.350	
$\frac{\square}{\square}$	BREAJJ		1.464						
	3RETUJİ				1.464	1.464	1.464		1.464
	CRAこ入K	．		$\cdots$	GTome	－			
	LRAUAKC	－	－	－	－				
	SRAこAKE			$\cdots$					
	CRACAKF					－ 23.511	23.511	23.511	
	Silgarc					159.551			
  －－\％＝－	－SUGTスG   COFERN	－				159.55	159.551		
	COFEHUB	．				－44．892	44.892		
	CJFEnU	$\cdots$							
	C．JF						378.559		
	$\left[\begin{array}{c} C O F \\ \text { EHUF } \end{array}\right.$ CDF								
\％S\％\％	$\text { SPI } 21 \text { TiN }$	77.566						＋	
I：7．	H．1NEC．	－4．548	－ 77.568	$\begin{array}{r}77.566 \\ \hline 4.548\end{array}$	77.566	$\frac{77.566}{4.548}$	$\frac{77.566}{4.548}$		7.566
									4.548



Appecidix C
Table 9 Activity Levels for COTPB3 $1 / 1975$ with Unrestricted Raw Material and Horking Capital Alternatives

Industry Description	Activity Symbol	$\begin{array}{\|l\|} \hline \text { Activity Le } \\ \text { Restricted } \\ \text { WK }=365 \mid \end{array}$	vels(in Mil Morking Cap $\mathrm{HK}=457$	$\begin{gathered} \text { IITons US\$) } \\ \text { Pital ( } \mathrm{WK}) \\ \mathrm{HK}=489 \end{gathered}$	$\begin{gathered} \text { Acti } \\ \text { Res } \\ \text { Max } \end{gathered}$	ty Levels (in ricted Horicing bax "EPPTO"	$\begin{aligned} & \text { H1110ns USS) } \\ & \text { Capital } \\ & \text { Fax wrppin } \end{aligned}$	1ax MIetcr"	tiax mpn
VIIE IIDUSTRIPS	WIN $=0$							4.54 .8	
	BEEs, ${ }^{\text {Sot }}$	165.423	165.423	165.423	165.423	165.423	165.423		65.423
\%3. Cosen mex	SOF FUR:								
		95.564	94.564	94.564	94.564				
	TOB 1 污								
Lac. CE CTEAES 2. CTGLDETTES							94.534		94.564
-c, Coftcies, nteseritis	TAB 1FGE					94.364			
$\cdots$	(i) 1 ias					309.888			
-	corthio								
	Corknias	59	28.867	266.962	28.867		221.905		12.4
	ROP = = FA	- mancanday			3.	T-		5	
	RJPPEACO	80, evame	16.548		16.548				
				16.548					
$\cdots$ Of me meghe	RDP Sife	16.548							16.548
	2JPEMFF.								
	100)PLa	10.280	10.280	10.280	10.280	10.280	10.280	10.280	10.280
	W:30)PL:								
-r-ticun	Hiouplo						10.907		
	HRORES3								
5.						2.937	2.93		
	plrajua	21.467							
\% C=CuFECPS FEM:COD	prrijuc		21.467	21.467	21.467				$\frac{21.467}{21.467}$
33. FSEUES3. FLiloce	Prytudi								
	parje					. 544	. 544		
S\%. FCS CC: En=UCT, MTERIAL									
\%\%	i00Jiju.					6.364	6.364		
	PUNVMF-	15.742	15.741	15.741	15.741	15.741		15.741	15.741
	Tansicio		$\sigma$						
	tanvigo-						35.8		35.017
	Tandioci								

## Best Avcilublo Document

AFonilix C
－IEkle 9 Activity Levels for COTPR 3 1／ 1975 with Unrestricted Pau Haterial and Working Capital Altematives

Inciustry Lescription	Activity Symbol	Activity L Restricted $\mathrm{WK}=365$	vels（in Mi Working Ca   $\mathrm{HK}=457$	lions US\＄） ital（VK） WK -489		ty Levels（in icted Vorkir．	$\begin{aligned} & \text { Siligas USS } \\ & \text { Cental } \end{aligned}$		
	INJ）ILA	$\mathrm{VK}=365$	$\mathrm{HK}=457$	WK $=489$	Mlax＇VA＂	1．ax＂EPTO＂	lax＂EPD：＂	：＇ex＂Iatcr＂	$\because$ \＃cr pry
O．TOETE FlTS \＆CiIS（All \＆VPI）	INDIILE								
O．	－NOJLL								
3．InGen	1Najlu	！							
乐	I MIIl Lé								
$\frac{\because 6}{}$	cuctio					18.037	18.037		
	CHOCUPd					431	431		
－1．	CHOU．JPi						54.546		
	CHD：UPJ								
	－¢ ¢ こuper								
	CHID：${ }^{\text {a }}$					54.546			
	jTJiunt	28.229.		．．		－			28.229
	STAVEHE								
：3．CO MSTACH，IEIST，SEAG．PASTE	STA？${ }^{\text {STHO }}$								
	STAたH三								
	OILこひTA				－				
	O1LSSH								96
	JILPALM		99.964	99.96					9．96
	LaRうご告				99．94				
	LAR．）Suil								
O－Co	L．IF 3s ${ }^{\text {a }} 1$					99.964			
	Liz）Aiv					99.964			
\％	？ICEN！	40.595	40.595	40.595	40.595	40.595	40.595	40.595	40.59
－	CAF HI	66.494	66.494	66.494	66.494	66.494	66.44	66.494	66.494
边	SREAONI	97．195	97.195	97.195	97.195	97． 195	97.195	97.195	$97.19^{5}$
O－T，	cuttuni	83．715	83．715	18.308	18.328	18.308	18.308	18.308	18．338
－	TUBdiNf				83.715	83.715	83.715	83.715	प3．715
	PAidSLid	82.592	82.592	82.592	82.59	82.592	82.592		
－	E122P1	378.107	\＄78．107	378.107	378.107	378.107	378.107	378	178． 107
Exione	¢133P12	40.410	40.410	40.410	40.410	40.410	40.410	40.410	40.410
	E14SP1	56.380	56.380	56.380	56.380	56.380	56.380	56.380	56.380
	1 103 RP $=14 \mathrm{LK}$	34．190	34196	34.196.	34.198	34.18	34.196	34.19	34， 19
		14.987	14，997	14.997	14.997	14.997	14.997	24.997	14.997



Intustry Description	Activity Symbol	Notivity Restricted HK $=365$	orking Cap WK $=257$	$\begin{aligned} & \text { 41cons US\$) } \\ & \text { Pital (WK) } \\ & \text { EK }=489 \end{aligned}$	Activ Rest Mar nVa＂	ty Levels（in ricted Horking lax＂mipion	$\begin{aligned} & \text { Milifons us\$) } \\ & \text { Capital } \\ & \text { vay "Expdsn } \end{aligned}$	Max＂Laioz＂	Lex mpm
Exicot ce in	E149P1	4－5x							
	E162P12	56．380	56.380	56，380	76．380	56．380	56，380	56.380	56．780
	El3ipl	$\cdots$							
	Sil3P1	18.211	18.211	18．211	18.211	18.211	18.211	18.211	18.211
	－143R	12.455	12.455	12.455	12．455	12.455	12.455	12.455	12.455
－\％Cocmexins	1143P1								
	111358	T				\％			
	I129KP	7－13		－	$\cdots$	－		2t	
	114：82．	Wate edx		4	crata				
	111091：			\％rext	$\square$	－			
	1137812			29，	B	5		－	
	1141 RP	$\square$							
：3calc SFITIIS	1142iP	3							
HFFs centis	1143P1				．				
	1149812	－	x	cos．	－			－	
	114781	T	anca	Tax	3ataras．		－	Eallaxay	cisaces
	1．155p 1	Cxater		－		$\underline{3}$	maxamater	maisumax	moxam
	11649	mand		$\ldots$	$\cdots$	－			
	112うR								
L－3TOK Stanctim	LVsLड̧T2					291.752		591.789	
	LVSLSisis	700．298	700.298	700.298	700．298		291.752		200.298
	pasterz		64.733	64.733	64.733	64.733		64.733	5.536
	3UTTEK2								
	3utreay				T，				
lifu．Cizeze	CHE：S．2	保							
－－2，mazeite pombus	41LくJ4								
	ICE：Nく								2.788
	IEE：R7					2.788		2.788	
	MILPR2								
	EVCAN2	1.346	1.346	1.346	1.346				1.346
	$\frac{\text { FVCIV6 }}{\text { FVCINT }}$							1.346	
	FVCINT								
	Jutc ${ }^{-1}$								
	PICKLE2	5.001	－5，001	5.001	5.001				
	EyD2Y2 FVD2Y3	1.032	1.031	1.032	1.031			1.032	1.031

Best Availablo Document

Appendix C Fable9 Activity Levels for COLPR 3 I／ 1975 with Unrestricted Raw Material and Working Capital Altermatives

Industry Lescription	Activity Symbol	Activity Levels（in Millions usp） Restricted Working Capital（wK）			Activity Levels（in lillions US\＄） Restricted Vorking Capital				
	$\begin{aligned} & \text { EISHAR } \\ & \text { FIS } A, A \\ & \text { FISHAS } \\ & \text { SEAPRZ } \end{aligned}$	$V K=365$	WK $=4.57$	$u K=489$				$\frac{\text {＂ごごこの＂}}{2.514}$	
		2.514	2.514	2.514	2.514				2.514
							2.347	2.347	
－3t．f．PMG：	$55: 3 \times 3$								
SL0ミ：									
－\％，110	816：43	87.497	E7．497	87.197	87．497		E7．497		67．497
－10	二Ln 122		63．904	－ 63.904	63.904				
	$\begin{aligned} & \text { FLQUK } \\ & \text { FLD: } \end{aligned}$						63.904		
	GR2：13					26.076	26.076		
－ 0 ，	CEREML		2.456	2.456	2.456				2.456
36．co	二EEうJis							51.728	
\％a．Of EET？	FEEJis FEEJUT?	12.9	51.728	52.728	51.728	51.728			51．728
		45.350	45.350	45.350	45.350			45.350	
－ 2 －									45.350
	＜2：$: 7 \times 1$								
	SUG：ist			159.				159.551	
Sutie－＂FMEI：＂（ERCM SUCAR）	SUG 12\％	159.551							159.551
－0．		44.892	44.892	44.892	44.892			44.892	44.892
								4.548	
123．CF SCF DETMS	SOF TJR2							$\frac{165.423}{50.710}$	
	SOFIURS	50.710	50.710	50.710	50.710				50.710
	juFTJT． 3 i0u 1F02					50.710	50.710		
								94.564	
	COYtridi					0.131	118.931		128.351
	$\begin{aligned} & R \cap P \equiv A F 2 \\ & R O P \equiv M=0 \end{aligned}$		3					122.700	
	ROP EMí $\boldsymbol{y}$					16.548	16.548	16.548	

Best Arailabla Decument
hppendix C
Table 9 Activity Levels for COLPR 3 I/ 1975 with Unrestricted Paw Material and Working Capital Alterratives

Industry Description	Activity Symbol	Activity L Restricted HK = 365	vels(in II Horking Ca	Inions USS)		ity Levels (in trictad Horking	$\begin{aligned} & \text { Kilifas US\$) } \\ & \text { Capital } \end{aligned}$		
11.EミR! ILTS		HK = 365	WK = 497	HK $=469$	Max "VA"	1/ax mr.PTO"	Hax "E-PDS'	Fax "Labor"	"ex "pn
	$\begin{aligned} & \text { LUM3ers } \\ & \text { nOOPD } \end{aligned}$								
	$\begin{aligned} & \text { NOOTPL } 3 \\ & \text { AOOJPLO } \end{aligned}$	10.907	10.907	10.907	10.907				10.907
3\%. C: $: \times 3$ SE: PRES FOR PACKIIC		.						10.907	
	B0X	2.937	2.937	2.937	2.937				
	PLYiJUZ			2.937	2.937			2.937	2.937
	$\begin{aligned} & \text { PLY HUUd } \\ & \text { PLY YJO } \\ & \text { PAR JETS } \end{aligned}$					21.467	21.467		
							21.4	21.467	
		. 544	. 544	. 544	. 544			21.567	. 544
	$\begin{aligned} & \text { WCOJUG2 } \\ & \text { PULDAF } \end{aligned}$								
- \% \% \% =		6,364			mit			.	
	PULPAFS	35,817	35,817	35,817	35.817			\%	
-	TAN Ii ${ }^{\text {T }}$							35.817	
	TANJI G9 LAF JV2					35.817			
	(AP) $\rightarrow$							48.848	
, \%ras							31.302		
	IWoJile	18.037	18.037	18.037	18,037			18.037	
	CHESUP2	54,546	54.546	54.546	54.546			54.546	18.037 54.546
	$\left[\begin{array}{l} \text { STA } 2 C H 2 \\ \text { STA } 2(119 \end{array}\right]$		28.229	28.229					
$\frac{10.10}{10}$	STA 2149   INVIU3	270.410	270.410	$\frac{270.410}{}$	270.410	28.229	28.229	28.229	
$\cdots$	IisVlu4		. 586	. 506	. 586	. 586		161.901	270.410
$\cdots$	INV1U5		2.538	2.538	2.538	2.538		2.538	
"	INV107		. 266	. 266					
"	i:NVIU8		. 087	. 087	. .887	. 2687	. 266	. 266	
$\stackrel{1}{*}+12$	I:1V1ı0	. 586	.108	. 108	. 108	. 108	. 087	. 087	
$\cdots$		2.875	1.875	1.875	1.875	1.875	1.875	. 108	. 108
$\cdots$	INV1 $11-1$	. 106						1.875	1.875
" 113	Itivil ${ }_{\text {INVII }}$	. 106	. 106	.106	. 106	.106	.106	. 106	. 106
"1	INVII行		0						
$\stackrel{115}{\square}$	$\begin{aligned} & 1 \text { NV115 } \\ & 1: 1 V 1!7 \end{aligned}$	. 525	525	525	525				
117		. 503	503	. 503	. 503	. 503	. 503	. 525	

Sest Avallabla Decmant

Appeailx $c$
IEile 9 Activity Levels for COLPRi3 I／ 1975 with Unrestricted Paw Naterial and Vorking Capital Alternatives

Indust＝y Description	Activity Sj프이	Activity Le Restricted $\mathrm{NK}=365$	vels（in Mi Norkeng Ca $\mathrm{HK}=457$	$\begin{aligned} & \text { 1icas USST } \\ & \text { ital (WK) } \\ & \text { WK }=489 \end{aligned}$		Levels（in cted vor：in ：ax＂ETSO＂		Max＂Istos＂	：ロ\％＂ご
C．．．ESE．\＃： $1: 0.1 / 0118$	1：V118	188	108	103	－ 109	$\underline{.108}$	－ 108	$\frac{108}{}$	． 108
＂ 122	itivici		2.613	9.613	0.613	0.613	0.613		0.108
＂${ }^{123}$	mivize						105.918		
$\cdots$	1：V1＜4								
$\stackrel{1}{n}$	1：V123		$\frac{6.315}{144}$	6， 315	6.315	6.315	6.315		
$\stackrel{129}{\square}$	Itiv127			1.44	1.443	1.443	1.443		
$\stackrel{131}{131}$	imviso								
$\underline{132}$	invisi	673	.673	． 673	． 673	． 673	.573	.573	．07
$\cdots$	itiviss	72.204	72.204	72.204	72.20				
$\stackrel{131}{n}$	inviss．	3.634	3.634	3.634	$\frac{3.634}{}$	$\frac{72.204}{3.654}$	$\frac{72.204}{3.634}$	72.204	72.204
$\cdots \quad 13$	inviso		48.26			49.829	－ 9.9 .829	3．634	3.654
137	ivviss		48.262	48.262	48.262				45.252
$\cdots$	tuvisi								
$\cdots \quad-122$	inviot	$\frac{10.294}{.591}$	57．054	57.054	57.054	11.704	11.704	57.054	27.854
$\stackrel{1123}{1 \%}$	IWVios	． 8449	． 849	． 5141	． .8210	． 821	． 521	． 521	
12	INVI．0								
$\stackrel{170}{4}$	Invi：1	$\frac{1}{4.650}$	$\frac{85.307}{4.600}$	237．688	$\frac{85.307}{4.650}$	$\frac{265.245}{4.650}$	284． 5667	66.831	284． 5 \％7
$\cdots$	ivV1；y	14.438	14.439	14.439	14.459	3.532	3．680	4.680	4．088
$\cdots$	－NVは，	1.054	1.654			2.553	2.553	2.553	14.439
＂	1\％リン2－	7.656		1.054	1.054	1.054	1．054，	1.054	1.054
$\underline{-1}$	I：NV13，						． 6.6	． 656	． 2.656
$\cdots$	1NV130	$\frac{1.918}{9.272}$	$\frac{1.918}{9.272}$	$\frac{1.518}{9.272}$	1.918	1.918	1.1218	． 1.918	． 107
$\stackrel{\prime \prime}{\square} \cdot \frac{16}{12}$	1：iviue				9.272	9.272		0.272	$\underline{2.018}$
$\frac{2}{10}$	livion	12.611	12.611	12.611	12.011	12.611	12.611		
19	invio）		$\checkmark$						12.614
	－								

1／Coxp：ised processing activitius representing：（1）ithe existing 1968 colocbian technology，（2）alternative foreign technologies from various the model．

Appendix C, Table 16 Shrdov Pricen, CoLph31/, 2975, wi:h Unrestricteigas Malerini and Vorking Capital Alternatives


Best Avablabla Duzwnent

Arpendix C, Table 10 shodov Prices, Corpr 2/, 1975, with Unrestricted Rav Matertal and Vorking Copital Alternatives


IRI-	RESTRICTIOM KRME	MAX．VALDE ADDEL（VA）VITH ALTERMATIVE ORKIEG CAPIIAL（VK）			RESTPICTED WOFKING CAPITAL（H）AT 457 MILIIONS U．S．\＄				
$\therefore \div-2 L$		WE $=365$ NILL．US	HK＝ 457 11ILL．US $\$$	WK＝489．MITL．US\＄	MaX＂VA＂	NAX＂EイPDE＂	MAX＂EMPIO＂	VAX＂TAEJB＂	MAX＂P＇
$211 . \mathrm{V}$	Sotal Market	103000	19092－	． 19092	19092－		27．2483？－	．03667－	．09238
T1！$\%$		06000	$22092-$	．22092－	．22092－		$74.99414-$	． $07667-$	． 092238
1：1\％		05737－	．20982－	．20982－	．20982－		$140.25319-$	． 06333 －	． $27857-$
\％T V	4	． 097372	－24982－	．24882－	，24982－		45.71198	． 07000	． $15857-$
AV			．05980－	． 05980	． 05980	． $10345=$	10．73808－		． 07608
\％									
$1 \pm \%$	\％						$73.57602-$		
！	，		cos12－	． $00512-$	． 00512		10．98779－		
i！$\%$		21000	，37092－	． $37692-$	． $37092-$		$222.53754-$	.21667	． 194763
$11 \quad 1$	＂		． $13423=$	． $13423-$	．13423－		$231.29473-$		． $09381-$
17．17		39684－	． $51542-$	． 51542 －	． $51542-$		$110.17701-$	． $13667-$	． $33333-$
$\therefore \bar{V}$	1	L0000－	－ $47432=$	． $47432-$	． $474.32-$		$62.25309-$	． 28000	．30952－．
	7	． 025928	． 25675	． 25675	． 25675		$60.04155-$	． 09453 －	$.22175$
112\％	7	． $14737-$	，29982－	． $29982-$	．29982－		24．34722－	． 12000	$.12857$
\％2：	$\square$								
H， 11	$\xrightarrow{\square}$								
11．${ }^{1}$	＋	－22632－	． 37312	． 37312	． $37312-$		$235.71172-$	.33000	．19810－
12	＂	－ 03737	． 189 －	． $18982-$	．18982－		$28.73953-$		．13857－
II 溟	$\square$			16092	15002		$27.86770-$	． 05667 －	．10238＝
！$\square^{7}$	7	． 72579	． 717662	77661－	． $77661-$		13．61360－	． 05333 －	70286\％
1\％		2 k 2h7．	． $37652-$	． 27650	－ 37652		$71.41333-$	． $06000-$	20714
in i	\％	61105．	． 67881 －	$67881=$	67861－		23．40384－	． 02667 －	64048－
51.7	．	$.02526=$	20312 $=$	20312 a	20212－		$77.90627-$	． $23333-$	．08333－．
$\cdots$		$00526=$	． $28312=$	． 183122	． 18312		58．86229－	． 16000	．08238－
$\cdots$		－ $\mathrm{il}^{4} 7^{4}=$	． $25872=$	． 25872	－ $25872=$		$\frac{28.57481-}{28}$	． $093333-$	－10476
t\％							$89.33804-$		
－10		－39684－	． $51542=$	． $51542=$	－ 51542 C		165．62063－	．17000	． $30333=$
5 $\quad 3$			． $00491=$	． $00491-$	． $004101-$		$51.30583-$		
37		－－4683E－	． $56211=$	－ 56211 －	． 56211 －		$24.75231-$	． $12667=$	． 46190
$1 \%$		－12121r	－34762	－ 34762	－． $34762-$		148．43807－	－ $30000-$	． 22095
$\mathrm{vi}$		$17263=$	． $34202=$	$.34202=$	－ $34202-$		$186.14817-$	－ $18833-$	．05619－
		$16020=$	． $32092=$	． 32092	－． $32002-$		93．83270－	． 096673	． 20238
19		24－362	． $41202=$	． $41202-$	－ $41202-$		$182.23559-$	． $32333-$	． 05619 －
1i： 17		． 230477	． $45652=$	． $45652-$	－ $45652-$		217.06010	． 22333 －	． 29714.
12.1		－ $32311-$	． $46762=$	． $46762-$	． $46762-$		193.07200	． $20667-$	．23095－
$\cdots$		－ 35211 －	． $48762=$	． $48762-$	． $48762-$		162．87093－	． $21667-$	．22095－
$\because 1$	－ir mon	－ $288422=$	． $39432-$	－ $32432-$	． $39432-$		$8.40928$	． 00667 －	． $27952-$
1．	Daries for Etiole 0115		． $10092=$	． $10092-$	． $10092-$		19.84300		． 07238
连：$\frac{2 v}{}$	$\frac{\text { Eternsi pargets }}{}$								
$\begin{array}{r} 73 \% \\ E .1+\sigma V \end{array}$	＂								



1/ Comprised processing activitiss rapresenting: (1) the existing 2968 Colcmbian tachnology, (2) aiterzetive foreign techajlogies from various countrias at different stages $0:$ develogreit, and (3) inreement activities for expandinz processing capacities of all La egro-industries in the model. 233


[^0]:    1/ In order to avoid repetition we are not listing in this section the activity definitions. An incustry description and the aymbolic name (aymbol) of each of the processing activities (Colombia and Foceign Technologies), trade activities and investment activitios appear in tables cl through cio of Appendix $C$, as well as in the complete printout of the matrix, colum by colum shown in Appendix B.
    $2^{\prime}$ Converted ai the rate of $17 \mathrm{Col} . \$=1 \mathrm{U} . \mathrm{S}$. \$

[^1]:    2/ Rosort islands in a amall archipelago on CoJombin's Caribbean coast, about 500 minles northrest of Cartapona.

[^2]:    I Based an the 1964 Population Censug.

[^3]:    1 The orficial Calonbian Industrial Census carried out by DANE (The ocficial Statistisal Agency of Calambia).
    2/ Mhe carried out two Censusea, one for large eatablishments, those which employed 5. or mane workers, and one census for small plants with less than 5 workers.

[^4]:    1/ Derived from Guttor, Analytical Working Document 24 ; pp. 10-16, and our market constraints estimates.

[^5]:    1/ Ricardo, J. M., General Horking Document • 38, V.0. . I, "Internaticnal Ccmpariacns of Techmoiogy and Production Coot of Agricultural Processing Industries."

[^6]:    1／0．F．stand for growth factor，aee pages $24-25$ for the ascraptions mate and the actual calculations of the three hypothealend growth factors．
    2）Includes estimited non－induatrial coasuption and production for 2975.

[^7]:    3' Fom hercinafter, we are soing to start using interchangeable (a) "private profits" for returns to cspital and managenent; (b) "production" for value added and "employment" for total employment".

[^8]:    1/ Comprised only processing activities representing the existing $¥ 965$ Colambian technology.
    2/ N. A.
    138

[^9]:    $\sqrt[1]{1958 \text { calambtan Technology anly }}$
    2/ Hot Applicable

[^10]:    1/ Confrised processing activities representing both the 1968 Coiombian technology and alternative foreign technologies

[^11]:    1/ Comprised processing activities representing both the 1968 colombian technology and alternstive foreign technologies from various ccuntries at different stages of development.

