WO2017017304A1 - Procedimiento de obtención de aluminatos de calcio a partir de escorias de aluminio no salinas - Google Patents

Procedimiento de obtención de aluminatos de calcio a partir de escorias de aluminio no salinas Download PDF

Info

Publication number
WO2017017304A1
WO2017017304A1 PCT/ES2016/070566 ES2016070566W WO2017017304A1 WO 2017017304 A1 WO2017017304 A1 WO 2017017304A1 ES 2016070566 W ES2016070566 W ES 2016070566W WO 2017017304 A1 WO2017017304 A1 WO 2017017304A1
Authority
WO
WIPO (PCT)
Prior art keywords
cao
slag
sintered
aluminum
slags
Prior art date
Application number
PCT/ES2016/070566
Other languages
English (en)
French (fr)
Inventor
Félix Antonio LÓPEZ GÓMEZ
Francisco José ALGUACIL PRIEGO
Mario Sergio RAMÍREZ ZABLAH
José Ramón GONZÁLEZ GRACIA
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Varmoxz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Varmoxz filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to EP16829904.8A priority Critical patent/EP3330226B1/en
Priority to CA2993909A priority patent/CA2993909A1/en
Priority to MX2018001177A priority patent/MX2018001177A/es
Priority to US15/748,323 priority patent/US10858261B2/en
Publication of WO2017017304A1 publication Critical patent/WO2017017304A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/164Calcium aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0038Obtaining aluminium by other processes
    • C22B21/0069Obtaining aluminium by other processes from scrap, skimmings or any secondary source aluminium, e.g. recovery of alloy constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/04Obtaining aluminium with alkali metals earth alkali metals included
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a process for obtaining calcium aluminates for metallurgical use from non-salt aluminum slags by reactive grinding and heat treatment. STATE OF THE TECHNIQUE
  • Calcium aluminates are described in the binary phase diagram CaO-AI 2 0 3 [RW Nurse, JH Welch and AJ Majumdar, The CaO-AI 2 0 3 System in a Moisture-free Atmosphere, Trans. Br. Ceram. Soc, 64, 409-418 (1965)].
  • five binary compounds can be distinguished generically called calcium aluminates: CaAI 2 0 4 (CA), CaAI 4 0 7 (CA 2 ), Ca 12 AI
  • the CaO-AI 2 0 3 system has been studied by numerous researchers.
  • One of the first jobs was that of De Keyser [WL De Keizer, Contribution à l'wave des foundeds to l'mony solide between La Chaux et lálumine, Bull. Soc. Chim. Belg., 60, 516-541 (1951).]
  • the direction and sequence of the reactions do not depend on the concentrations of the constituents of the mixture.
  • Macias and Welizek J. Macias and Z.
  • Calcium aluminates have applications as refractory cement due to their high temperature stability among other characteristics and are also used within the metallurgical process of steelmaking, where the contribution of a synthetic slag based on calcium aluminate favors the process of desulfurization of steel and Obtaining clean steels from inclusions, especially Al 2 0 3 .
  • the presence of a molten calcium aluminate slag on steel facilitates work in secondary metallurgy, due to its adequate fluidity, and protects the steel against re-oxidation processes and temperature losses [Harold E. McGannon, The Making, Shaping and Treating of Steel (Steel Making and Refining), 11 th Edition, American Society for Metals, United States Steel Corporation, Pittsburgh, Pennsylvania (1998)].
  • the obtaining of calcium aluminate base materials is carried out by cold sintering or by hot sintering.
  • cold sintering it is based on bauxite, aluminum slags, mainly salt slags, or the products resulting from the recovery of salts by hydrolysis and crystallization from salt slags.
  • bauxite aluminum slags
  • salt slags or the products resulting from the recovery of salts by hydrolysis and crystallization from salt slags.
  • Normally, commercial, ground CaO is used, which is mixed with the slag in varying proportions, ranging from 0.2-1.8 CaO: AI 2 0 3 .
  • the mixtures are ground and the milled product is added
  • Classic binders to carry out a pelletizing process (pellets with a diameter between 1 and 50 mm) or briquettes (with sizes between 4 and 100 mm).
  • Pellets or briquettes are screened, dried and packaged. In hot sintering processes, the pellets or briquettes are sintered in rotary furnaces, reverberating furnaces or mobile grill ovens, at a temperature of about 1 100 ° C to obtain a product concentrated in Ci 2 A 7 aluminate (Ca 12 AI 14 033). The final product is classified and packaged. DESCRIPTION OF THE INVENTION
  • the present invention relates to a method of exploiting non-salt aluminum slags from obtaining aluminum from scrap or second fusion products.
  • non-salt aluminum slags are transformed into calcium aluminates CaO-AI 2 0 3 , which are synthetic slags for metallurgical use, in particular for the manufacture of steels.
  • the use of calcium aluminates in the manufacture of steels has the following advantages: a) Rapid slag formation: The low melting point of calcium aluminates, between ⁇ 1325 ° to 1375 ° C , causes them to melt in contact with the steel, dissolving other components, such as lime, obtaining a fluid and homogeneous slag.
  • the present invention relates to a process for obtaining calcium aluminates (hereinafter “process of the invention”) comprising the following steps:
  • step b) thermally treat the product obtained in step a) at a temperature between 700 ° C and 750 ° C;
  • step b) thermally treat the product obtained in step b) at a temperature between 1300 ° C and 1400 ° C.
  • calcium aluminates are those CaO-Al 2 0 3 systems described in RW Nurse, JH Welch and AJ Majumdar, The CaO-AI 2 0 3 System in a Moisture-free Atmosphere, Trans. Br. Ceram. Soc, 64, 409-418 (1965), within the binary phase diagram.
  • the term refers to the following five binary compounds: CaAI 2 0 4 (CA), CaAI 4 0 7 (CA 2 ), Ca 12 AI
  • non-saline aluminum slag is understood in the present invention as those slags generated in processes for obtaining aluminum from scrap (for example aluminum profiles, beverage cans or other aluminum materials that reach the end of their cycle of life).
  • the non-salt aluminum slag from step a) has a percentage of hydrated aluminum oxides of between 5% and 65%.
  • the aluminate content increases in sintering in inverse relation to the aluminum hydrate content in the slag. It is likely that part of the mechanical energy supplied to the mixture during reactive grinding is used, in the form of heat, to dehydrate aluminum oxides, but it is likely that the aluminum oxide resulting from this process is less reactive than a- Initial AI 2 0 3 , existing in slags.
  • non-saline aluminum slag is milled in the presence of calcium carbonate CaC0 3 with the molar ratio AI 2 0 3 : CaO between 1: 1 and 1: 3; preferably 1: 3.
  • step a) Grinding is done using ball mills or concentric rings as grinding bodies.
  • the milling of step a) is carried out by ball mill.
  • the mill rotates at high speed (> 500 rpm).
  • the energy produced in the friction or energy of Coriolis produces an increase in the temperature of the mixture of slag and carbonate, enough to initiate the dehydration reactions of aluminum hydrates, even, in initiating the carbonate decomposition reaction.
  • the product obtained in step a) has an average particle size of less than 40 ⁇ .
  • Step b) of the process of the invention consists in thermally treating the product obtained in stage a) at a temperature between 700 ° C and 750 ° C to complete the decomposition of calcium carbonate.
  • Step c) of the process of the invention consists in thermally treating the product obtained in step b) at a temperature between 1300 ° C and 1400 ° C.
  • the product obtained in step c) is packaged.
  • Figure 1 represents the scheme of the process of the invention.
  • FIG. 1 Basic scheme for obtaining calcium aluminate.
  • FIG. 2 X-ray diffraction diagrams of slags; (a) AI-1, (b) AI-2, (c) AI-3 and (d) EM.
  • FIG. 3 Rietveld method curves for slags; (a) AI-1, (b) AI-2, (c) AI-3 and (d) EM
  • FIG. 4. (a, b) Image of secondary electrons from slag AI-1.
  • FIG. 5. (a, b) Image of secondary electrons from slag AI-2.
  • FIG. 6. (a, b) Image of secondary electrons from slag AI-3.
  • FIG. 8 Variation of the contents in crystalline phases depending on the reactive grinding time, after sintering at 1300 ° C, for the slags used, a) AI-1 S; b) AI-2S and c) AI-3S.
  • FIG. 9. SEM images (secondary electrons) of the sintered ones obtained at 1300 ° C for a molar ratio AI 2 0 3 : CaO 1: 1.
  • FIG. 10 SEM (backscattered electrons) image of the sintered ones obtained at 1300 ° C and 1: 1 molar ratio.
  • AI-1 S silica magnesium aluminate
  • CA calcium aluminate
  • Ge gehlenite
  • FIG. 12. Phase diagrams of the AI 2 0 3 -Si0 2 -CaO system showing the initial slags and sintered products obtained with molar ratios AI 2 0 3 : CaO of 1: 1; 1: 2 and 1: 3. Symbols
  • FIG. 13 SEM (backscattered electrons) image of the sintered ones obtained at 1300 ° C and 1: 3 molar ratio.
  • AI-1 3S AI-1 3S
  • AI-2 3S 3S-3 AI
  • C 3 A trialuminato calcium
  • M mayenite or Ci 2 to 7
  • Mg MgO
  • P Ali, 95Fe 0, 49mg 2 65Oi2Si2,9i
  • Gr Ca 3 AI 2 (Si0 4 ) 3
  • K Ca 6 (SiO 4 ) (Si 3 O 10 )
  • He FeAI 2 0 4 .
  • FIG. 14 Images obtained in a heating microscope in which a sintered sample obtained from the middle slag (MS), at 1300 ° C and with an AI 2 0 3 ratio: CaO is heated at 10 ° C / min from room temperature up to 1350 ° C
  • AI-1 samples are slags produced in the fusion plant that differ from each other in the time they have been stored outdoors.
  • the EM sample is a mixture of the three slags described above. The mixture consisted of 30% by weight of slag AI-1; 20% of the AI-2 slag and 50% of the AI-3 slag. The percentages by weight of each of the slags were chosen with effectiveness criteria.
  • Sample AI-1 aluminum slag with an age of 3 to 7 years.
  • Sample AI-2 aluminum slag with an age of 7 to 10 years, stored outdoors.
  • Sample AI-3 recent aluminum slag, generated between 2013-2014.
  • the aluminum slags received were cracked and dried in an oven (80 ° C / 24 h), determining the humidity of each sample. Subsequently, the samples are they milled in a TEMA mill for 15 minutes until materials with a particle size of less than 40 ⁇ were obtained.
  • the samples were attacked with lithium metaborate at 1050 ° C and acidified with concentrated nitric (HN0 3 ) to determine their chemical composition by Inductive Coupling Plasma Spectroscopy, using an ICP-OES optical emission spectrophotometer, model 725-ES of Varian.
  • Table 1 shows the chemical composition of the slags.
  • Slags AI-1 and AI-3 have similar chemical compositions, while slag AI-2 has a lower Al content and a higher percentage of Zn. Losses from calcination, which include moisture, interstitially absorbed water, water of crystallization of mineralogical phases and decomposition of mineralogical phases, present very different values from each other. Analysis of the mineralogical composition of aluminum slag samples.
  • the mineralogical composition of the samples of aluminum dross was obtained Diffraction X-ray using an Siemens diffractometer model D5000 fitted with a Cu anode (radiation Cu K a) and monochromator LiF to eliminate radiation K p Samples containing iron.
  • the generator voltage and current were 40 kV and 30 mA respectively.
  • the measurement has been carried out continuously with a step of 0.03 ° and a time of 3 s for each step.
  • the diffractograms were interpreted using the reference database Powder Diffraction File (PDF-2) of the ICDD (International Center for Difraction Data) and the DIFFRACplus EVA software package from Bruker AXS.
  • Figure 2 shows the diffraction diagram of the EM sample where it is observed that said sample has a certain amorphous halo, which indicates that it is not a sample of high crystallinity. It is observed that samples AI-1 and AI-3 have a similar mineralogical composition.
  • AI-2 slag boehmite and gibbsite appear, which do not appear in the other two slags and at the same time, phases such as norstrandite, enstatite and magnesite and Mg spinel are not present in this slag.
  • the AI-2 sample is more hydrated than the other two, possibly due to having been stored outdoors for years.
  • the AI-2 slag presents greater differences in its mineralogical composition, observing that it has a lower content of metallic aluminum (Al) and aluminum nitride (AIN) and instead, has a high content of oxides of hydrated aluminum, gibbsite (-AI (OH) 3 ) and boehmite (AIO (OH)), which represents 50.41% of the total.
  • the hydrated phases of aluminum may have formed as a result of the hydration of metallic aluminum and aluminum nitride, according to reactions (3) to (5):
  • microstructural analysis was performed by Scanning Electron Microscopy (FESEM) in a HITACHI model S-4800, using a voltage of 15 kV.
  • the microscopy samples were embedded in a polymeric resin and polished with sandpaper 600, 1200 and 2000 (adding carnauba to these to protect the sample). They were subsequently polished with 3 and 1 m diamond paste and metallized with carbon in a JEOL JEE 4B model.
  • the morphological study is summarized in Figures 4 to 6.
  • Figure 4 (a, b) corresponding to slag AI-1 shows a heterogeneous morphology in size and appearance. The presence of released grains is observed in which aluminum is combined with oxygen (alumina) and with Mg-Fe (spinels). Particles also appear in which the major element is aluminum, without association with oxygen (metallic aluminum).
  • Figure 5 shows the morphology of the AI-2 slag that has a heterogeneous surface in grain size and appearance.
  • Aluminum is associated with iron and magnesium (spinel), calcium (in alumina-calcite and / or portlandite mixed grains) and silicon (in alumina-silica mixed grains) (a, c). The presence of metallic aluminum is not observed.
  • Figure 6 (a, b) corresponding to slag AI-3. It has a heterogeneous appearance surface in grain size and aspect. Morphologically, the slag is similar to the AI-1 slag.
  • Reactive grinding was carried out during different times (4, 8, 12, 16 and 24 h), in a Pulverisette 6 mill in Fritsch, at 450 rpm, with 5 stainless steel balls, the weight ratio being balls / mix of 6.5 .
  • cylindrical mini briquettes (13.5 mm (diameter) x 5.5 mm (height)) were prepared, without the addition of binders, by forming with a Specac Atlas 15 T hydraulic manual press.
  • the pressure applied was 10543 kg / cm 2 with a pressure of 1034 MPa.
  • the quantification of the mixture components is shown in Table 3.
  • the mini-briquettes were sintered in a Termiber de Ingenier ⁇ a Térmica, SA oven, at 1300 ° C for 1 h, with an isothermal pre-step at 750 ° C for 1 h. to achieve complete decomposition of calcium carbonate.
  • Sintered products (AI-1 S; AI-2S and AI-3S) were characterized by RX diffraction, Rietveld quantification, chemical analysis and morphological study by SEM, using the techniques and procedures described in a previous section.
  • Figure 7 shows the diffraction diagrams of RX of the sintered products at 1300 ° C obtained for the different slags studied.
  • Table 5 shows the chemical composition of the sintered ones obtained for a reactive grinding time of 1 h.
  • Table 5 Chemical composition (% weight) of the sintered ones obtained for a grinding time of 1 h and a molar ratio AI 2 0 3 : CaO equal to 1: 1
  • Figure 9 shows different aspects of sintering obtained from each of the slags studied for a reactive grinding time of 1 h.
  • the ternary phase diagrams of the Al 2 0 3 - Si0 2 -CaO and AI 2 0 3 -MgO-CaO systems are shown in Figure 10, placing the three initial slags and the sinters obtained with each of them (relation molar Al 2 0 3 : CaO equal to 1: 1).
  • the sintered ones fall within the zone of chemical compositions of synthetic slags indicated by Richarson (1974) [Richarson, FD Physical chemistry of metal are metallurgy. Vol. 2. Academic Press, 1974. Synthetic slags for steelmaking. AMG Vanadium, Inc. 2010.] (see Figure 10) as suitable for use in the manufacture of steels, especially for their desulfurizing effect.
  • the sintered MgO contents have around 2%, which represents an added value, since this compound has a favorable effect on the protection of refractories.
  • Slag mixtures were prepared with the amounts of CaC0 3 shown in Table 6 for molar ratios AI 2 0 3 : CaO of 1: 2 and 1: 3 to subsequently prepare, by mechanical compaction, mini-briquettes for treatment. thermal.
  • To prepare the briquettes of molar ratio AI 2 0 3 : CaO 1: 2
  • Reactive milling was carried out for a period of 5 h, in a Pulverisette 6 mill in Fritsch, at 450 rpm, with 5 stainless steel balls, the weight ratio being balls / mixture of 6.54.
  • cylindrical mini-briquettes (13.5 mm (diameter) x 5.5 mm (height)) were prepared, without the addition of binders, by forming a Specac Atlas 15 T hydraulic manual press, with a pressure 1034 MPa Subsequently, the mini-briquettes were subjected to heat treatment (sintering) in an oven Termiber de Ingenier ⁇ a Térmica, SA, at 1300 ° C for 1 h, with one step thermal isothermal at 750 ° C for 1 h to achieve complete decomposition of calcium carbonate.
  • the appearance of the briquettes before and after heat treatment is analyzed. It is observed that the briquettes after heat treatment show a color change and good conformation. Sintering products show a different color for each of the two molar ratios tested.
  • Table 9 compares the contents of aluminates and silicates in the sintered products obtained for different molar and slag ratios.
  • AI-1 (1: 1 ratio) 49, 1 45.0
  • AI-1 (1: 1 ratio) 1 1, 0 82.3
  • AI-1 (1: 1 ratio) 68.7 28.7
  • AI-2 (ratio 1 :) 81, 9 16.0
  • Figure 12 places, on the CaO-AI 2 0 3 -S0 2 diagram, the sintered ones obtained for different molar ratios.
  • the sintered materials EM: CaC0 3 1: 2 and 1: 3 fall within the area of chemical compositions of synthetic slags pointed out by Richarson in Richarson, FD Physical chemistry of metal are metallurgy. Vol. 2. Academic Press, 1974 and noted in Synthetic slags for steelmaking. AMG Vanadium, Inc. 2010 as suitable for use in the manufacture of steels, especially for their desulfurizing effect. At the same time, the sintered ones obtained, with MgO content of around 2% have an added value, since this compound has a favorable effect on the protection of refractories.
  • FIG. 14 shows the study by heating microscopy of a sintered sample obtained from the middle slag (MS) with an addition of CaO necessary to achieve an AI 2 0 3 : CaO ratio equal to 1: 3 .
  • the sintered sample was heated at 10 ° C / min to reach a final temperature of 1350 ° C. It is observed that at 1280 ° C there is a decrease in the area of the sample, indicative of the onset of deformation.
  • the sample does not reach the temperature of the sphere or the hemisphere, thereby fulfilling one of the fundamental properties of aluminates for use in the metallurgical industry: thermal stability at temperatures of the order of 1300 ° C.

Abstract

La presente invención se refiere aun procedimiento de obtención de aluminatos de calcio de uso metalúrgico a partir de escorias de aluminio no salinas mediante molienda reactiva y tratamiento térmico.

Description

PROCEDIMIENTO DE OBTENCIÓN DE ALUMINATOS DE CALCIO A PARTIR DE ESCORIAS DE ALUMINIO NO SALINAS
DESCRIPCIÓN
La presente invención se refiere a un procedimiento de obtención de aluminatos de calcio de uso metalúrgico a partir de escorias de aluminio no salinas mediante molienda reactiva y tratamiento térmico. ESTADO DE LA TÉCNICA
Los aluminatos de calcio se encuentran descritos dentro del diagrama de fases binario CaO-AI203 [R.W. Nurse, J.H. Welch and A.J. Majumdar, The CaO-AI203 System in a Moisture-free Atmosphere, Trans. Br. Ceram. Soc, 64, 409-418 (1965)]. En este sistema se pueden distinguir cinco compuestos binarios denominados genéricamente aluminatos de calcio: CaAI204 (CA), CaAI407 (CA2), Ca12AI|4033 (C12A7), Ca3AI06 (C3A) y CaAI12019 (CA6) donde C = CaO y A = Al203.
El sistema CaO-AI203 ha sido estudiado por numerosos investigadores. Unos de los primeros trabajos fue el de De Keyser [W.L. De Keiser, Contribution á l'étude des réactions á l'état solide entre la chaux et lálumine, Bull. Soc. Chim. Belg., 60, 516-541 (1951).], en el que estableció el principio de que en el sistema CaO-Si02-AI203, el sentido y la sucesión de las reacciones no dependen de las concentraciones de los constituyentes de la mezcla. Macias y Welizek [J. Macias and Z. Weliszek, Cement- Wapno-Gibs, 19, 170-177 (1964)] calcularon que, cualquiera que sea la relación molar inicial en una reacción entre CaO y Al203, el primer producto obtenido es CA. Audouze [B. Audouze, Solid-State Réactions Between CaO and Al203, Silicates Industries, 26, 179-190 (1961).], Babushkin y Mchedlow-Petrosyan [V. Babushkin and O. Mchedlov- Petrosyan, Silicattenchn, 9, 109-120 (1958).] establecieron diferentes secuencias de reacciones. Wllianson y Glasser [J. Wlliamson, F.J. Glasser, Réactions in Heated Lime-Alumina Mixtures, J. Appl. Chem. 12 535-538 (1962).] estudiaron diferentes relaciones molares CaO:AI203, no encontrando que se formara ninguna fase preferente como primer producto de reacción. Estos estudios realizados, algunas veces con resultados contradictorios entre sí, ha llevado a considerar la siguiente secuencia de reacciones como la más probable: i A + C→AC + C→ C12A7 + C→ C3A (1)
A + C→AC + A→ CA2 + A→ CA6 (2) Estas reacciones, se producen principalmente por la difusión del Ca dentro del Al203, resultando, en la sinterización de mezclas CaO y Al203 a temperaturas del orden de 1300°C, una secuencia de contenidos de fase que responde a la relación:
CA6 > CA2 ~ CA.
Los aluminatos cálcicos tienen aplicaciones como cemento refractario por su estabilidad a alta temperatura entre otras características y también se utilizan dentro del proceso metalúrgico de fabricación de acero, donde el aporte de una escoria sintética en base aluminato cálcico favorece el proceso de desulfuración del acero y la obtención de aceros limpios de inclusiones, especialmente de Al203. Además la presencia de una escoria de aluminato de calcio fundido sobre el acero, facilita el trabajo en la metalurgia secundaria, debido a su adecuada fluidez, y protege el acero frente a procesos de re-oxidación y pérdidas de temperatura [Harold E. McGannon, The Making, Shaping and Treating of Steel (Steel Making and Refining), 11th Edition, American Society for Metals, United States Steel Corporation, Pittsburgh, Pensylvania (1998)].
La mayor parte del aluminato de calcio consumido por el sector del acero es sinterizado a partir de mezclas de bauxita y cal. El aprovechamiento de escorias procedentes de la fusión del aluminio, y por tanto, con un alto contenido en Al203, se muestra como alternativa al empleo de bauxitas para la producción de aluminatos cálcicos.
Industrialmente, la obtención de materiales base aluminato de calcio se realiza mediante sinterización en frío o mediante sinterización en caliente. En los procesos de sinterización en frío se parte de bauxita, escorias de aluminio, principalmente, escorias salinas, o los productos resultantes de la recuperación de sales mediante hidrólisis y cristalización a partir de escorias salinas. Normalmente se utiliza CaO comercial, molido, que se mezcla con la escoria en proporciones variables, comprendidas entre 0,2-1 ,8 de CaO:AI203. Las mezclas se muelen y al producto molido se le añaden ligantes clásicos para llevar a cabo un proceso de peletización (pellets de diámetro comprendido entre 1 y 50 mm) o briquetas (de tamaños comprendidos entre 4 y 100 mm). Los pellets o briquetas se criban, se secan y se envasan. En los procesos de sinterización en caliente, los pellets o briquetas se sinterizan en hornos rotativos, de reverbero u hornos de parrilla móvil, a una temperatura de unos 1 100 °C para obtener un producto concentrado en el aluminato Ci2A7 (Ca12AI14033). El producto final se clasifica y se envasa. DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un procedimiento de aprovechamiento de escorias de aluminio no salinas procedentes de la obtención de aluminio a partir de chatarras o productos de segunda fusión. Mediante el procedimiento de la invención las escorias de aluminio no salinas se transforman en aluminatos de calcio CaO-AI203, que son escorias sintéticas de uso metalúrgico, en particular para la fabricación de aceros.
Desde un punto de vista metalúrgico, el empleo de aluminatos de calcio en la fabricación de aceros presenta las siguientes ventajas: a) Rápida formación de escoria: El bajo punto de fusión de los aluminatos de calcio, de entre <1325 ° a 1375 ° C, hace que se fundan en contacto con el acero, disolviendo otros componentes, tales como la cal, obteniéndose una escoria fluida y homogénea.
b) La adición de aluminatos de calcio mejora la cinética de desulfuración debido a la rápida formación de escoria, lo que permite el inicio de las reacciones de desulfuración tan pronto como se llena la cuchara de colada. El aumento de velocidad de desulfuración puede lograr un menor contenido de azufre y por lo tanto una mayor calidad de acero; aumentar la productividad gracias a un menor tiempo de tratamiento; reducir los costos, debido a la posibilidad de utilizar materias primas más baratas con mayor contenido de azufre.
c) Limpieza del acero: el uso de aluminatos de calcio, con una composición cercana a la de la composición de la escoria final, produce la captura de inclusiones no metálicas tan pronto como se llena la cuchara de colada. Por tanto, es posible eliminar estas impurezas cuando se forman y reducir la necesidad de tratamiento posterior.
d) Aumento de la productividad: El uso de aluminato de calcio aumenta la previsibilidad y la reproducibilidad de coladas, acelera la formación de escorias fluidas y homogéneas, disminuyendo el tiempo de refino y reduciendo el tiempo total de colada.
e) Reducción de costes debido a la disminución de la corrosión de los revestimientos refractarios de los hornos, aumentando por tanto la durabilidad de los materiales refractarios.
En un primer aspecto, la presente invención se refiere a procedimiento de obtención de aluminatos de calcio (a partir de aquí "procedimiento de la invención") que comprende las siguientes etapas:
a) llevar a cabo una molienda reactiva de la escoria de aluminio no salina en presencia de carbonato cálcico CaC03;
b) tratar térmicamente el producto obtenido en la etapa a) a una temperatura de entre 700 °C y 750 °C; y
c) tratar térmicamente el producto obtenido en la etapa b) a una temperatura de entre 1300 °C y 1400 °C.
En la presente invención se entiende por aluminatos de calcio aquellos sistemas CaO- Al203 descritos en R.W. Nurse, J.H. Welch and A.J. Majumdar, The CaO-AI203 System in a Moisture-free Atmosphere, Trans. Br. Ceram. Soc, 64, 409-418 (1965), dentro del diagrama de fases binario. El término se refiere a los siguientes cinco compuestos binarios: CaAI204 (CA), CaAI407 (CA2), Ca12AI|4033 (C12A7), Ca3AI06 (C3A) y CaAI12019 (CA6) donde C = CaO y A = Al203.
Por el término "escoria de aluminio no salina" se entiende en la presente invención como aquellas escorias generadas en procesos obtención de aluminio a partir chatarras (por ejemplo perfiles de aluminio, botes de bebidas u otros materiales de aluminio que llegan al final de su ciclo de vida).
En una realización preferida, la escoria de aluminio no salina de la etapa a) tiene un porcentaje de óxidos de aluminio hidratados de entre 5 % y 65 %. El contenido en aluminatos aumenta en el sinterizado en relación inversa al contenido en hidratos de aluminio en la escoria. Es probable que una parte de la energía mecánica suministrada a la mezcla durante la molienda reactiva se utilice, en forma de calor, en deshidratar los óxidos de aluminio, pero es probable que el óxido de aluminio resultante de este proceso sea menos reactivo que a-AI203 inicial, existente en las escorias.
En la etapa a) del procedimiento se muele escoria de aluminio no salina en presencia de carbonato cálcico CaC03 estando la relación molar AI203:CaO comprendida entre 1 :1 y 1 :3; preferiblemente 1 :3.
El incremento en el contenido en C3A aumenta al crecer relación AI203/CaO de 1 :1 a 1 :3 y este crecimiento va acompañado de un descenso en los contenidos del CA y
C12A7.
Se trata de una molienda reactiva donde no se utilizan ligantes.
La molienda se realiza utilizando molinos de bolas o de anillos concéntricos como cuerpos moledores. Preferiblemente, la molienda de la etapa a) se lleva a cabo mediante molino de bolas.
El molino gira a alta velocidad (> 500 rpm). La energía producida en la fricción o energía de Coriolis, produce un aumento en la temperatura de la mezcla de escoria y carbonato, suficiente como para iniciar las reacciones de deshidratación de los hidratos de aluminio, incluso, en iniciar la reacción de descomposición del carbonato. Preferiblemente, el producto obtenido en la etapa a) tiene un tamaño de partícula medio menor de 40 μηι.
La etapa b) del procedimiento de la invención consiste en tratar térmicamente el producto obtenido en la etapa a) a una temperatura de entre 700 °C y 750 °C para completar la descomposición del carbonato cálcico.
La etapa c) del procedimiento de la invención consiste en tratar térmicamente el producto obtenido en la etapa b) a una temperatura de entre 1300 °C y 1400 °C. El producto obtenido en la etapa c) se envasa. La Figura 1 representa el esquema del procedimiento de la invención.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
FIG. 1 Esquema básico de obtención de aluminato de calcio.
FIG. 2. Diagramas de difracción de rayos-x de las escorias; (a) AI-1 , (b) AI-2, (c) AI-3 y (d) EM.
FIG. 3. Curvas del método de Rietveld para las escorias; (a) AI-1 , (b) AI-2, (c) AI-3 y (d) EM
FIG. 4. (a, b) Imagen de electrones secundarios de la escoria AI-1.
FIG. 5. (a, b) Imagen de electrones secundarios de la escoria AI-2. FIG. 6. (a, b) Imagen de electrones secundarios de la escoria AI-3.
FIG. 7. Diagramas de difracción de RX de los productos sinterizados a 1300°C obtenidos a partir de las distintas escorias estudiadas (a) AI-1 S; (b) AI-2S y (c) AI-3S (Molienda reactiva: 1 h. Relación molar AI203 :CaO: = 1 : 1).
FIG. 8. Variación de los contenidos en fases cristalinas en función del tiempo de molienda reactiva, después de la sinterización a 1300°C, para las escorias utilizadas, a) AI-1 S; b) AI-2S y c) AI-3S. FIG. 9. Imágenes SEM (electrones secundarios) de los sinterizados obtenidos a 1300 °C para una relación molar AI203:CaO 1 : 1.
Símbolos
Figure imgf000008_0001
FIG. 10. Imagen SEM (electrones retrodispersados) de los sinterizados obtenido a 1300 °C y relación molar 1 :1. a) AI-1 S; b) AI-2S y c) AI-3S (S = silico aluminato de magnesio, CA = aluminato de calcio, M = mayenita o Ci2A7 y E = espinela; Ge = gehlenita).
FIG. 1 1. Diagramas de difracción de Rayos X de los productos sinterizados a 1300 °C obtenidos para EM:CaC03 = 1 :2 y 1 :3, siendo EM una muestra formada por escoria de aluminio, mezcla de las escorias AI-1 ; AI-2 y AI-3 (30-20-50). FIG. 12. Diagramas de fases del sistema AI203-Si02-CaO donde se muestran las escorias iniciales y productos sinterizados obtenidos con relaciones molares AI203:CaO de 1 :1 ; 1 :2 y 1 :3. Símbolos
Indicación en el diagrama
Escoria Al 1 1
Escoria Al 2 2
Escoria Al 3 3
Sinterizado obtenido a partir de la escoria Al 1 para una 1S relación molar AI2O3 1 : 1
Sinterizado obtenido a partir de la escoria Al 2 para una 2S relación molar AI203:CaO 1 : 1
Sinterizado obtenido a partir de la escoria Al 3 para una 3S relación molar AI203:CaO 1 : 1
Sinterizado obtenido a partir de la escoria Al 1 para una 1S2 relación molar AI203:CaO 1 :2
2S2
Sinterizado obtenido a partir de la escoria Al 2 para una
relación molar AI203:CaO 1 :2
Sinterizado obtenido a partir de la escoria Al 3 para una 3S2 relación molar AI203:CaO 1 :2
Sinterizado obtenido a partir de la escoria Al 1 para una 1S3 relación molar AI203:CaO 1 :3
2S3
Sinterizado obtenido a partir de la escoria Al 2 para una
relación molar AI203:CaO 1 :3
Sinterizado obtenido a partir de la escoria Al 3 para una 3S3 relación molar AI203:CaO 1 :3
Escoria Media EM
Sinterizado obtenido a partir de la escoria media para una
relación molar AI203:CaO 1 :2 S2
Sinterizado obtenido a partir de la escoria media para una
S3 relación molar AI203:CaO 1 :3
FIG. 13. Imagen SEM (electrones retrodispersados) de los sinterizados obtenido a 1300 °C y relación molar 1 :3. (a) AI-1 3S; (b) AI-2 3S y (c) AI-3 3S (C3A = trialuminato de calcio, M = mayenita o Ci2A7, Mg = MgO, P = Ali,95Fe0,49Mg2,65Oi2Si2,9i , Gr = Ca3AI2(Si04)3, K = Ca6(SiO4)(Si3O10), y He = FeAI204.
FIG.14. Imágenes obtenidas en un microscopio de calefacción en el que una muestra de sinterizado obtenido a partir de la escoria media (EM), a 1300 °C y con una relación AI203:CaO se calienta a 10 °C/min desde temperatura ambiente hasta 1350 °C
EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad del producto de la invención.
Se ha trabajado sobre cuatro muestras de escorias de aluminio no salinas, identificadas como AI-1 ; AI-2; AI-3 y EM. Las muestras AI-1 ; AL-2 y AI-3 son escorias producidas en la planta de fusión que se diferencian entre sí en el tiempo que han permanecido almacenadas a la interperie. La muestra EM es una mezcla de las tres escorias descritas anteriormente. La mezcla estaba constituida por un 30 % en peso de la escoria AI-1 ; un 20% de la escoria AI-2 y un 50% de la escoria AI-3. Los porcentajes en peso de cada de las escorias se eligieron con criterios de efectividad.
Muestra AI-1 : escoria de aluminio con una antigüedad de 3 a 7 años.
Muestra AI-2: escoria de aluminio con una antigüedad de 7 a 10 años, almacenada a la intemperie.
Muestra AI-3: escoria de aluminio reciente, generada entre 2013-2014.
Muestra EM: escoria de aluminio, mezcla de las escorias AI-1 ; AI-2 y AI-3 (30-20-50) Análisis de la composición química de las muestras de escoria de aluminio
Las escorias de aluminio recibidas se cuartearon y se secaron en estufa (80°C/24 h), determinándose la humedad de cada muestra. Posteriormente, las muestras se molieron en un molino TEMA durante 15 minutos hasta obtener materiales con un tamaño de partícula inferior a 40 μηι.
Las muestras se atacaron con metaborato de litio a 1050°C y acidificadas con nítrico concentrado (HN03) para determinar su composición química mediante Espectroscopia de Plasma de Acoplamiento Inductivo, utilizando para ello un espectrofotómetro de emisión óptico ICP-OES, modelo 725-ES de Varían.
Así mismo, se determinaron las pérdidas por calcinación según norma ISO 1171 :2010. (815°C/1 h).
En la Tabla 1 se muestra la composición química de las escorias.
Tabla 1. Composición química de las escorias (% en peso expresados como óxidos). (*PxC = Pérdidas por calcinación)
Figure imgf000011_0001
Las escorias AI-1 y AI-3 presentan composiciones químicas similares, mientras que la escoria AI-2 presenta un menor contenido en Al y un porcentaje mayor de Zn. Las pérdidas por calcinación, que incluyen humedad, agua absorbida intersticialmente, agua de cristalización de fases mineralógicas y descomposición de fases mineralógicas, presentan valores muy diferentes entre sí. Análisis de la composición mineralógica de las muestras de escoria de aluminio.
La composición mineralógica de las muestras de escorias de aluminio se obtuvo mediante Difracción de Rayos-X utilizando para ello un difractómetro Siemens modelo D5000, equipado con un ánodo de Cu (radiación Cu Ka) y monocromador de LiF para eliminar la radiación Kp de las muestras que contienen hierro. La tensión y corriente del generador fueron 40 kV y 30 mA respectivamente. La medida se ha realizado en continuo con paso de 0,03° y tiempo de 3 s para cada paso. La interpretación de los difractogramas se llevó a cabo con ayuda de la base de datos de referencia Powder Diffraction File (PDF-2) del ICDD (International Centre for Difraction Data) y el paquete informático DIFFRACplus EVA de Bruker AXS.
En la Figura 2 se recogen los diagramas de difracción de las escorias estudiadas. Se observa, que las escorias más antiguas (AI-1 y AI-2) (Figuras 2a y 2b) presentan un mayor carácter amorfo que la escoria más reciente (AI-3) (Figura 2c), que claramente presenta un mayor grado de cristalinidad. En la figura 2(d) se muestra el diagrama de difracción de la muestra EM donde se observa que dicha muestra presenta un cierto halo amorfo, lo que indica que no es una muestra de alta cristalinidad. Se observa que las muestras AI-1 y AI-3 tienen una composición mineralógica similar. En la escoria AI-2, aparecen boehmita y gibbsita, que no aparecen en las otras dos escorias y a la vez, fases como, norstrandita, enstatita y magnesita y la espinela de Mg no están presentes en esta escoria. La muestra AI-2 está más hidratada que las otras dos, posiblemente debido a haber estado almacenada a la intemperie durante años.
El estudio cuantitativo de las fases cristalinas presentes en las muestras-escorias se realizó mediante el método Rietveld, a partir de los diagramas de difracción de rayos-X (DRX) (Figura 3). La cuantificación de las fases se realizó utilizando el programa de análisis Rietveld Topas (Bruker AXS) para el refinamiento de datos DRX. Una vez realizado el ajuste, su calidad y fiabilidad, se calculó el % de cada fase a partir de los valores residuales, R (Figures of Merit, FOM), considerando que unos valores residuales inferiores al 10% garantizan la bondad del ajuste y la fiabilidad de la determinación. La Tabla 2 incluye la composición mineralógica cuantitativa de las escorias estudiadas. La escoria AI-2, la de mayor antigüedad, presenta mayores diferencias en cuanto a su composición mineralógica, observándose que presenta un menor contenido de aluminio metálico (Al) y nitruro de aluminio (AIN) y en cambio, presenta un contenido elevado en óxidos de aluminio hidratados, gibbsita ( -AI(OH)3) y boehmita (AIO(OH)), que representa el 50,41 % del total.
Las fases hidratadas del aluminio se pueden haberse formado como consecuencia de la hidratación del aluminio metálico y del nitruro de aluminio, conforme a las reacciones (3) a (5):
2 Al + 6 H20 2 AI(OH)3 + 3H2 (3)
2 Al + 4 H20 2 AIO(OH) + 3H2 (4)
AIN + 3 H20 NH3 + AI(OH)3 (5)
Tabla 2. Composición mineralógica cuantitativa de las escorias estudiadas, expresada en %.
Figure imgf000013_0001
El contenido total en hidratos de Al y Ca varían en el orden: AI-2 (62 %) > AI-1 (9, 13 %) > AI-3 (5,95 %) > EM (1 ,72 %) que es el mismo orden en el que varían las pérdidas por calcinación.
Análisis microestructural de las muestras de escoria de aluminio.
El análisis microestructural se realizó por Microscopía Electrónica de Barrido (FESEM) en un equipo HITACHI modelo S-4800, usando un voltaje de 15 kV. Las muestras para microscopía se embutieron en una resina polimérica y se pulieron con las lijas 600, 1200 y 2000 (añadiendo a éstas carnauba para proteger la muestra). Posteriormente se pulieron con pasta de diamante de 3 y 1 m y se metalizaron con carbono en un equipo JEOL modelo JEE 4B. El estudio morfológico se resume en las Figuras 4 a 6. La Figura 4 (a, b) correspondiente a la escoria AI-1 , muestra una morfología heterogénea en tamaño y aspecto. Se observa la presencia de granos liberados en los que el aluminio se combina con el oxígeno (alúmina) y con Mg-Fe (espinelas). Aparecen también partículas en las que el elemento mayoritario es el aluminio, sin asociación al oxígeno (aluminio metálico).
En la Figura 5 (a, b) se muestra la morfología de la escoria AI-2 que presenta una superficie de aspecto heterogéneo en tamaño de grano y aspecto. El aluminio aparece asociado a hierro y magnesio (espinela), calcio (en granos mixtos alúmina-calcita y/o portlandita) y silicio (en granos mixtos alúmina-sílice) (a,c). No se observa la presencia de aluminio metálico.
La Figura 6 (a, b) correspondiente a la escoria AI-3. Presenta una superficie de aspecto heterogéneo en tamaño de grano y aspecto. Morfológicamente, la escoria es similar a la escoria AI-1.
A continuación se realizó el procedimiento esquematizado en la Figura 1.
Influencia del tiempo de molienda reactiva Primeramente, se estudió la influencia del tiempo de molienda reactiva en la formación de aluminatos. Para ello, las escorias AI-1 ; AI-2 y AI-3 se mezclaron con CaC03 en una proporción molar AI203:CaO igual a 1 : 1 , para posteriormente preparar, mediante compactación mecánica, mini-briquetas para someterlas a diferentes tratamientos térmicos. Se utilizó un CaC03 de calidad PA "reactivo para análisis", de PANREAC.
Se realizaron moliendas reactivas durante diferentes tiempos (4, 8, 12, 16 y 24 h), en un molino Pulverisette 6 de Fritsch, a 450 rpm, con 5 bolas de acero inoxidable siendo la relación en peso bolas/mezcla de 6,5.
Finalizado el tiempo de molienda se prepararon mini-briquetas cilindricas (13,5 mm (diámetro) x 5,5 mm (altura)), sin adición de ligantes, mediante conformación con una prensa manual hidráulica Atlas de 15 T de Specac. La presión aplicada fue de 10543 kg/cm2 con una presión de 1034 MPa. La cuantificación de los componentes la mezcla se recoge en la Tabla 3.
Tabla 3. Cantidades de carbonato cálcico (C100) añadidas a 100 g. de escoria para una relación molar 1 : 1 AI203:CaO
Figure imgf000015_0001
Posteriormente, las mini-briquetas se sinterizaron en un horno Termiber de Ingeniería Térmica, S.A., a 1300 °C durante 1 h, con un paso previo isotérmico a 750 °C durante 1 h. para lograr la descomposición completa de carbonato cálcico. Los productos sinterizados (AI-1 S; AI-2S y AI-3S) se caracterizaron mediante Difracción de RX, cuantificación Rietveld, análisis químico y estudio morfológico mediante SEM, utilizando las técnicas y procedimientos descritos en un apartado anterior. La Figura 7 muestra los diagramas de difracción de RX de los productos sinterizados a 1300 °C obtenidos para las distintas escorias estudiadas. Del estudio de la composición mineralógica de los sinterizados, se deduce que no existe una variación significativa de la composición de los sinterizados en función del tiempo de molienda (Figura 8). En consecuencia, para el estudio del resto de los parámetros del proceso, se utilizará un tiempo de molienda reactiva de 1 hora.
Es de destacar la influencia que en la formación de aluminatos tiene la antigüedad de la escoria. Así, en el sinterizado AI-3S se observa un mayor contenido en aluminatos (CA y C12A7) que en el resto. En el sinterizado AI-3S el contenido total en aluminatos está comprendido entre 69% y 74%, frente a un 49% - 56% en el sinterizado AI-1 S y 1 1 % - 15% en el sinterizado AI-2S (Tabla 4).
De los resultados obtenidos, se deduce la existencia de una relación inversa entre el contenido en hidratos de Ca y Al en la escoria inicial y el contenido en aluminatos en el producto sinterizado.
Figure imgf000016_0001
Tabla 4.- Composición mineralógica de los materiales sinterizados con cada una de las escorias (Relación molar CaO:AI203 1 : 1. Tiempos de reacción comprendidos entre 1 h y 48 h)
Figure imgf000016_0002
Finalmente, en la Tabla 5 se recoge la composición química de los sinterizados obtenidos para un tiempo de molienda reactiva de 1 h. Tabla 5. Composición química (% peso) de los sinterizados obtenidos para un tiempo de molienda de 1 h y una relación molar AI203:CaO igual a 1 : 1
Figure imgf000017_0001
Morfológicamente, la Figura 9 muestran distintos aspectos de los sinterizados obtenidos a partir de cada una de las escorias estudiadas para un tiempo de molienda reactiva de 1 h.
En la Figura 9, se pueden identificar, mediante electrones retrodispersados distintas fases mineralógicas existentes en los sinterizados.
En la Figura 10 se muestran los diagramas ternarios de fases de los sistemas Al203- Si02-CaO y AI203-MgO-CaO situándose en ellos las tres escorias iniciales y los sinterizados obtenidos con cada una de ellas (relación molar Al203 : CaO igual a 1 : 1). Los sinterizados entran dentro de la zona de composiciones químicas de escorias sintéticas señalada por Richarson (1974) [Richarson, F.D. Physical chemistry of metal son metallurgy. Vol. 2. Academic Press, 1974. Synthetic slags for steelmaking. AMG Vanadium, Inc. 2010.] (ver Figura 10) como adecuadas para su uso en la fabricación de aceros, especialmente por su efecto desulfurante. Al mismo tiempo, los sinterizados presentan contenidos en MgO alrededor del 2 % , lo que representa un valor añadido, ya que este compuesto tiene un efecto favorable en la protección de los refractarios.
Influencia de la relación molar CaO:AI?Q en la formación de aluminatos de calcio
Se prepararon mezclas de escoria con las cantidades de CaC03 que se recogen en la Tabla 6 para relaciones molares AI203:CaO de 1 :2 y 1 :3 para posteriormente preparar, mediante compactación mecánica, mini-briquetas para someterlas a tratamiento térmico. Para preparar las briquetas de relación molar AI203:CaO = 1 :2 se utiliza CaC03 de calidad RA "reactivo para análisis" de PANREAC y para preparar las de relación molar AI203:CaO = 1 :3 se usó una caliza comercial de la empresa ARZYZ.
Tabla 6. Cantidades de carbonato cálcico (C100) añadidas a 100 g. de escoria para distintas relaciones molares AI203/CaO
Figure imgf000018_0001
Se realizaron moliendas reactivas durante un tiempo de 5 h, en un molino Pulverisette 6 de Fritsch, a 450 rpm, con 5 bolas de acero inoxidable siendo la relación en peso bolas/mezcla de 6,54.
Finalizado el tiempo de molienda se prepararon mini-briquetas cilindricas (13,5 mm (diámetro) x 5,5 mm (altura)), sin adición de ligantes, mediante conformación en prensa manual hidráulica Atlas de 15 T de Specac, con una presión de 1034 MPa. Posteriormente, las mini-briquetas se sometieron a tratamiento térmico (sinterización) en un horno Termiber de Ingeniería Térmica, S.A., a 1300 °C durante 1 h, con un paso térmico isotérmico a 750 °C durante 1 h para lograr la descomposición completa de carbonato cálcico.
Se analiza el aspecto de las briquetas antes y después del tratamiento térmico. Se observa que las briquetas después del tratamiento térmico muestran un cambio de color y buena conformación. Los productos de la sinterización muestran un color distinto para cada una de las dos relaciones molares ensayadas.
En la Figura 1 1 se muestran los diagramas de difracción de Rayos X de los productos sinterizados a 1300 °C obtenidos para EM:CaC03 = 1 :2 y 1 :3.
La composición química de los sinterizados obtenidos para las distintas relaciones molares y escorias utilizadas se muestra en la Tabla 7. Tabla 7. Composición química media de los materiales sinterizados obtenidos en función de la relación molar AI203:CaO.
Figure imgf000020_0002
Figure imgf000020_0001
La composición mineralógica, después de la cuantificación de fases realizada mediante el método Rielved, aparece en la Tabla 8.
Tabla 8. Composición (%) en fase cristalina de los sinterizados obtenidos para la relación molar AI203:CaO igual a 1 :3 a partir de las escorias iniciales.
Figure imgf000022_0001
En la Tabla 8 se observa que los sinterizados obtenidos para relaciones molares AI203:CaO superiores a 1 :1 están constituidos fundamentalmente por aluminatos. En cambio, para una relación molar 1 :1 el contenido en silicatos y otras fases mineralógicas es superior al contenido en aluminatos, excepto para el caso de la escoria AI3 en la que sucede lo contrario. Si se comparan las composiciones EM:CaC03 = 1 :2 y EM:CaC03 =1 :3 se observa un aumento en el contenido total de aluminatos para la escoria EM:CaC03 = 1 :3.
La Tabla 9, compara los contenidos en aluminatos y silicatos en los productos sinterizados obtenidos para distintas relaciones molares y escorias.
Tabla 9. Composición (%) en fases cristalinas de los sinterizados obtenidos para la relaciones molares AI203:CaO igual a 1 : 1 , 1 :2 y 1 :3.
Muestra (relación molar Aluminatos Silicatos y otras fases
AI203:CaO) (%) (%)
AI-1 (ratio 1 :1) 49, 1 45,0
AI-1 (ratio 1 :1) 1 1 ,0 82,3
AI-1 (ratio 1 :1) 68,7 28,7
EM (ratio 1 :1) - -
AI-2 (ratio 1 :) 81 ,9 16,0
AI-2 (ratio 1 :2) 80,5 19,9
AI-2 (ratio 1 :2) 80,7 17,6
EM (ratio 1 :2) 81 ,2 17, 1
AI-3 (ratio 1 :3) 90,2 4,4
AI-3 (ratio 1 :3) 75,4 21 ,6
AI-3 (ratio 1 :3) 92,2 3, 1
EM (ratio 1 :3) 88,6 2,9
En general, un incremento de la relación molar AI203:CaO produce una disminución significativa del contenido en silicatos, que pasan de un 17 % en la muestra sinterizada EM:CaC03 = 1 :2 a un escaso 3% en la muestra EM:CaC03 = 1 :3. Es decir, un aumento en el contenido de calcio en el sistema favorece la reacción de este elemento con el aluminio, en detrimento de la reacción del calcio con el silicio. Con una relación molar 1 :3, se produce cambio significativo en la naturaleza de los aluminatos de calcio existentes en los sinterizados respecto de la composición de los sinterizados obtenidos a relaciones molares AI203:CaO de 1 : 1 y 1 :2. Se observa, para todas las escorias, consideradas, la disminución del porcentaje de la mayenita (Ci2A7) que pasa de un 31 % en la muestra sinterizada EM:CaC03 = 1 :2 a un escaso 6 % en la fase mayoritaria en la muestra EM:CaC03 = 1 :3, la desaparición del aluminato monocálcico CA y la formación mayoritaria de aluminato tricálcico (C3A), al aumentar el contenido de CaO en los sinterizados. Ello es debido a la mayor difusión del Ca2+ dentro del Al203 conforme a la reacción (6) que resume el mecanismo del proceso de formación:
A + C → AC + C → C12A7 + C→ C3A (6)
Puede comprobarse cómo el aumento de CaO (C) en el sistema transforma el Al203 (A) en aluminato monocálcico que se transforma posteriormente en Ci2A7 y quizás otros aluminatos intermedios, y finalmente en aluminato tricálcico.
En estos resultados hay que tener en cuenta que la muestra EM:CaC03 = 1 :3 contiene caliza comercial de la empresa ARZYZ y que, a la vista de los datos obtenidos, se podría considerar que su uso no empeora el resultado en cuanto a la formación de aluminatos.
La Figura 12, sitúa, en el diagrama CaO-AI203-Si02 los sinterizados obtenidos para distintas relaciones molares.
Los materiales sinterizados EM:CaC03 = 1 :2 y 1 :3 entran dentro de la zona de composiciones químicas de escorias sintéticas señalada por Richarson en Richarson, F.D. Physical chemistry of metal son metallurgy. Vol. 2. Academic Press, 1974 y señalada en Synthetic slags for steelmaking. AMG Vanadium, Inc. 2010 como adecuadas para su uso en la fabricación de aceros, especialmente por su efecto desulfurante. Al mismo tiempo, los sinterizados obtenidos, con contenido en MgO de alrededor de 2 % presentan un valor añadido, ya que este compuesto tiene un efecto favorable en la protección de refractarios. En la Figura 13, se pueden identificar, mediante electrones retrodispersados las fases mineralógicas existentes en los sinterizados obtenidos a partir de cada una de las escorias estudiadas para un tiempo de molienda reactiva de 1 h y una relación molar AI203:CaO igual a 1 :3.
En los sinterizados Al 1 2S, AI2 2S y AI3 2S, las fases mayoritarias son los aluminatos de calcio (trialuminato de calcio - C3A y mayenita - Ci2A7), siendo mayoritaria, en general, la fase C3A. Finalmente, en la Figura 14 se recoge el estudio mediante microscopía de calefacción de una muestra de sinterizado obtenido a partir de la escoria media (EM) con una adición de CaO necesaria para lograr una relación AI203:CaO igual a 1 :3. La muestra de sinterizado se calentó a 10 °C/min hasta alcanzar una temperatura final de 1350 °C. Se observa, que a 1280 °C se produce una disminución en el área de la muestra, indicativo del inicio de la deformación. Sin embargo, a la temperatura final del ensayo, la muestra no alcanza la temperatura de la esfera ni de la semiesfera, con lo cual, cumple una de las propiedades fundamentales de los aluminatos para uso en la industria metalúrgica: estabilidad térmica a temperaturas del orden de 1300 °C.

Claims

REIVINDICACIONES
Procedimiento de obtención de los aluminatos de calcio CaAI204 (CA), CaAI407 (CA2), Ca12AI|4033 (Ci2A7), Ca3AI06 (C3A) y CaAI120i9 (CA6), donde C = CaO y A = Al203, que comprende las siguientes etapas:
a) llevar a cabo una molienda reactiva de la escoria de aluminio no salina procedente de la recuperación mediante fusión de chatarras de aluminio o de productos de segunda fusión de este metal en presencia de carbonato cálcico CaC03;
b) tratar térmicamente el producto obtenido en la etapa a) a una temperatura de entre 700 °C y 750 °C;
c) tratar térmicamente el producto obtenido en la etapa b) a una temperatura de entre 1300 °C y 1400 °C.
Procedimiento de obtención según la reivindicación anterior, donde la escoria de aluminio no salina de la etapa a) tiene un porcentaje de óxidos de aluminio hidratados de entre 5 % y 65 %.
Procedimiento según cualquiera de las reivindicaciones 1 o 2, donde la relación molar AI203:CaO de la escoria de aluminio no salina de la etapa a) es 1 :3.
Procedimiento según cualquiera de las reivindicaciones 1 a 3, donde la molienda de la etapa a) se lleva a cabo mediante molino de bolas.
Procedimiento según cualquiera de las reivindicaciones 1 a 4, donde el producto obtenido en la etapa a) tiene un tamaño de partícula medio menor de 40 μηι.
Procedimiento según cualquiera de la reivindicación 3, donde el contenido en aluminatos de calcio CaAI204 (CA), CaAI407 (CA2), Ca12AI|4033 (C12A7), Ca3AI06 (C3A) y CaAI12Oig (CA6), donde C = CaO y A = Al203, de la etapa c) está comprendido entre el 70 % y el 92 %.
Procedimiento según cualquiera de las reivindicaciones 3 ó 6, donde el contenido en aluminatos tricálcico Ca3AI06 (C3A) está comprendido entre el 71 % y el 85 %.
PCT/ES2016/070566 2015-07-28 2016-07-26 Procedimiento de obtención de aluminatos de calcio a partir de escorias de aluminio no salinas WO2017017304A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16829904.8A EP3330226B1 (en) 2015-07-28 2016-07-26 Method for obtaining calcium aluminates from non-saline aluminium slags
CA2993909A CA2993909A1 (en) 2015-07-28 2016-07-26 Method for obtaining calcium aluminates from non-saline aluminum slags
MX2018001177A MX2018001177A (es) 2015-07-28 2016-07-26 Procedimiento de obtencion de aluminatos de calcio a partir de escorias de aluminio no salinas.
US15/748,323 US10858261B2 (en) 2015-07-28 2016-07-26 Method for obtaining calcium aluminates from non-saline aluminum slags

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201531116A ES2603605B1 (es) 2015-07-28 2015-07-28 Procedimiento de obtención de aluminatos de calcio a partir de escorias de aluminio no salinas
ESP201531116 2015-07-28

Publications (1)

Publication Number Publication Date
WO2017017304A1 true WO2017017304A1 (es) 2017-02-02

Family

ID=57884117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070566 WO2017017304A1 (es) 2015-07-28 2016-07-26 Procedimiento de obtención de aluminatos de calcio a partir de escorias de aluminio no salinas

Country Status (6)

Country Link
US (1) US10858261B2 (es)
EP (1) EP3330226B1 (es)
CA (1) CA2993909A1 (es)
ES (1) ES2603605B1 (es)
MX (1) MX2018001177A (es)
WO (1) WO2017017304A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680564B (zh) * 2020-12-18 2021-12-28 中南大学 一种高镁铝灰渣熔制铝酸钙炼钢脱硫剂的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294685A (ja) * 1992-04-14 1993-11-09 Mitsubishi Materials Corp アルミドロスの再利用方法
EP0733591A1 (en) * 1995-03-24 1996-09-25 Hoogovens Staal B.V. Methods of processing aluminium dross and aluminium dross residue into calcium aluminate
CN101492262A (zh) * 2009-03-04 2009-07-29 广东工业大学 利用铝废渣生产的低钙硅酸盐水泥及其制备方法
CN101913634B (zh) * 2010-08-28 2012-07-11 河南科泰净水材料有限公司 废铝灰资源化利用的处理方法
CN104961444A (zh) * 2015-06-30 2015-10-07 苏州卡迪亚铝业有限公司 一种利用废铝灰制备高强耐用清水砖的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407459A (en) * 1993-09-23 1995-04-18 Alcan International Limited Process for the preparation of calcium aluminates from aluminum dross residues
EP2351708A4 (en) * 2008-10-06 2013-07-17 Asahi Glass Co Ltd PROCESS FOR THE PRODUCTION OF AN OXIDE
CN102923976B (zh) * 2012-11-23 2014-10-08 攀枝花钢城集团有限公司 铝酸盐水泥的制备方法
US9382595B2 (en) * 2013-02-12 2016-07-05 9253-8444 Quebec Inc. Method for the production and the purification of molten calcium aluminate using contaminated aluminum dross residue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294685A (ja) * 1992-04-14 1993-11-09 Mitsubishi Materials Corp アルミドロスの再利用方法
EP0733591A1 (en) * 1995-03-24 1996-09-25 Hoogovens Staal B.V. Methods of processing aluminium dross and aluminium dross residue into calcium aluminate
CN101492262A (zh) * 2009-03-04 2009-07-29 广东工业大学 利用铝废渣生产的低钙硅酸盐水泥及其制备方法
CN101913634B (zh) * 2010-08-28 2012-07-11 河南科泰净水材料有限公司 废铝灰资源化利用的处理方法
CN104961444A (zh) * 2015-06-30 2015-10-07 苏州卡迪亚铝业有限公司 一种利用废铝灰制备高强耐用清水砖的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GHOROI ET AL.: "Solid-solid reaction kinetics: Formation of tricalcium aluminate.", AICHE JOURNAL, vol. 53, no. 2, 2007, pages 502 a 513, XP055349392 *
See also references of EP3330226A4 *

Also Published As

Publication number Publication date
EP3330226B1 (en) 2022-08-31
CA2993909A1 (en) 2017-02-02
ES2603605B1 (es) 2017-12-13
US10858261B2 (en) 2020-12-08
EP3330226A4 (en) 2019-04-03
US20180222764A1 (en) 2018-08-09
ES2603605A1 (es) 2017-02-28
MX2018001177A (es) 2018-11-12
EP3330226A1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
Sadik et al. Review on the elaboration and characterization of ceramics refractories based on magnesite and dolomite
CA2454952C (en) High-alumina raw material and process of producing
CN102923976B (zh) 铝酸盐水泥的制备方法
HRP20201888T1 (hr) Postupak za proizvodnju kalcijevog aluminata
NO314034B1 (no) Fremgangsmåte for fremstilling av en sintret blanding av materiale som hovedsakelig består av kalsiumaluminater
CA2972936C (en) Process for dephosphorization of molten metal during a refining process
Azof et al. The leachability of calcium aluminate phases in slags for the extraction of alumina
WO2018099558A1 (en) Metallic ore pellets
RU2428490C2 (ru) Способ переработки красных шламов
Yin et al. Carbothermic reduction of bauxite residue for iron recovery and subsequent aluminium recovery from slag leaching
WO2017017304A1 (es) Procedimiento de obtención de aluminatos de calcio a partir de escorias de aluminio no salinas
CN101671046A (zh) 一种高纯镁铝尖晶石的生产方法
US20110293494A1 (en) Procedure for obtaining calcium aluminate from waste obtained following treatment of saline dross from the production of secondary aluminium
WO2020201036A1 (en) Wollastonite substitute
CA3024486A1 (en) Spinel refractory granulates which are suitable for elasticizing heavy-clay refractory products, method for their production and use thereof
JP3659076B2 (ja) カルシウムアルミネートの製造方法
JP2018002547A (ja) カルシウムアルミネートの製造方法
CA2993909C (en) Method for obtaining calcium aluminates from non-saline aluminum slags
JPH09194248A (ja) アルミナセメント組成物及びそれを用いた不定形耐火物
CN104844230A (zh) 一种回收废旧含碳耐火制品制备抗水化含钙砂的方法
KR101179189B1 (ko) 로터리 킬른을 이용한 c12a7계 광물의 제조방법
KR101277910B1 (ko) 마그네슘 열환원 슬래그를 이용한 결합제
Mergen Production of sintered high alumina refractories from Turkish bauxite ore
CN104591566B (zh) 原位生成纳米镁铝尖晶石的铝酸盐水泥及其制备方法
CN109369221A (zh) 一种利用旋转窑煅烧蛇纹石生产中量元素肥料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2993909

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/001177

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15748323

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE