(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

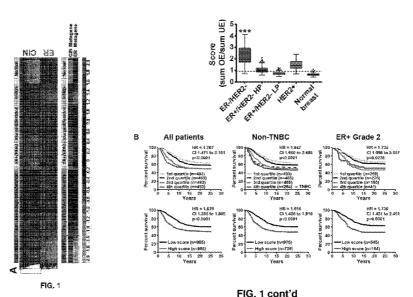
Organization

International Bureau

tion Date

(43) International Publication Date 17 September 2015 (17.09.2015)

- (51) International Patent Classification: *C12Q 1/68* (2006.01)
- (21) International Application Number:
 - PCT/AU20 15/050096
- (22) International Filing Date: 11 March 2015 (11.03.2015)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 2014900813 11 March 2014 (11.03.2014) AU 2014901212 3 April 2014 (03.04.2014) AU 2014904716 21 November 2014 (21.11.2014) AU
- (71) Applicant: THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RESEARCH [AU/AU]; The Bancroft Centre, 300 Herston Road, Herston, Queensland 4029 (AU).
- (72) Inventor: AL-EJEH, Fares; c/o- THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RE-SEARCH, The Bancroft Centre, 300 Herston Road, Herston, Queensland 4029 (AU).
- (74) Agent: FISHER ADAMS KELLY PTY LTD; Level 29, 12 Creek Street, Brisbane, Queensland 4000 (AU).


(10) International Publication Number WO 2015/135035 A2

- (81) Designated States (unless otherwise indicated, for every kind *f* national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind *f* regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report (Rule 48.2(g))

(54) Title: DETERMINING CANCER AGRESSIVENESS, PROGNOSIS AND RESPONSIVENESS TO TREATMENT

(57) Abstract: The invention provides methods of determining the aggressiveness, prognosis and response to therapy for particular cancers, which include comparing the expression levels of one or a plurality of differentially expressed genes from one or more 5 functional metagenes, including a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune system metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein 10 Synthesis/Modification metagene and a Multiple Networks metagene. The method disclosed herein may be particularly suitable as a companion diagnostic for cancer therapies.

TITLE

DETERMINING CANCER AGGRESSIVENESS, PROGNOSIS AND RESPONSIVENESS TO TREATMENT

FIELD

5 THIS INVENTION relates to cancer. More particularly, this invention relates to methods of determining the aggressiveness of cancers, prognosis of cancers and/or predicting responsiveness to anti-cancer therapy.

BACKGROUND

Hormone receptors (ER and PR) and HER2 are standard biomarkers used in
clinical practice to aid the histopathological classification of breast cancer and management decisions. Hormone receptor (HR)- and HER2- positive tumors benefit from tamoxifen and anti-HER2 therapies, respectively. On the other hand, there are currently no targeted drug therapies for management of triple negative breast cancer (TNBC), which lacks expression of HR/HER2. TNBCs are more sensitive to
chemotherapy than HR-positive tumors because they are generally more proliferative, and pathological complete responses (pCR) after chemotherapy are more likely in TNBC than in non-TNBC ^{1/2}. Paradoxically, TNBC is associated with poorer survival than non-TNBC, due to more frequent relapse in TNBC patients with residual disease ^{1/2}. Only 31% of TNBC patients experience pCR after chemotherapy³, emphasizing the need for targeted therapies.

Transcriptome profiling has been used to dissect the heterogeneity of breast cancer into five intrinsic 'PAM50' subtypes; Luminal A, Luminal B, Basal-like, HER-2 and normal-like subtypes that relate to clinical outcomes⁴⁻⁷⁸. Several gene signatures have been developed to predict outcome or response to treatment including: MammaPrint⁹, OncotypeDx¹⁰¹¹, Theros¹²⁻¹⁵. These commercial signatures rely on models that select genes based on clinical phenotypes such as tumor response or survival time. Notwithstanding their clinical utilities, these models fail to identify core biological mechanisms for the phenotypes of interest. Recently, an approach based on biological function-driven gene coexpression signatures, "attractor metagenes", has been applied to the prediction of survival in certain cancers. However such approaches are at an early stage and much work needs to be done to develop this attractor metagene analysis in relation to cancers in general and also for specific cancers.

SUMMARY

The present invention relates to the comparison of expression levels of a plurality of differentially expressed genes from one or a plurality of functional metagenes, including a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a 5 Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune system metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene; wherein the comparison of expression level of a plurality of genes in these metagenes is used to 10 facilitate determining the aggressiveness of certain cancers. This comparison may also, or alternatively, assist in providing a cancer prognosis for a patient. The invention also relates to predicting the responsiveness of a cancer to an anti-cancer treatment by determining an expression level of one or a plurality of genes associated with one or a plurality of the aforementioned twelve functional metagenes. 15

The invention further relates to the comparison of expression levels of a specific signature of differentially expressed proteins to facilitate or assist in determining the aggressiveness of a particular cancer, a prognosis for a cancer patient and/or predicting responsiveness to an anti-cancer treatment. One or both of these comparisons may also be integrated with the aforementioned comparison of the expression levels of the plurality genes from one or a plurality of the aforementioned functional metagenes in determining cancer aggressiveness, prognosis and/or treatment.

In a first aspect, the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the

30 group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein

Synthesis/Modification metagene and a Multiple Networks metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes compared to the one or plurality of underexpressed genes compared to the one or plurality of underexpressed genes compared to the one or plurality of underexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with lower aggressiveness of the cancer

- compared to a mammal having a higher expression level. In a second aspect, the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression
- 10 level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular
- 15 Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein: a higher relative expression
- 20 level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis.
- In one embodiment of the above aspects, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one of the aforesaid metagenes. In an alternative embodiment, the one or plurality of overexpressed genes and/or one or the plurality of underexpressed genes are selected from a plurality of the aforesaid metagenes.

30

Suitably, for the method of the above aspects the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-

3

Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene comprise one or a plurality of genes listed in Table 21.

In a third aspect, the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative

expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level

In a fourth aspect, the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of

overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis.

In one embodiment of the third and fourth aspects, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected

from one of the aforesaid metagenes. In an alternative embodiment, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from a plurality of the aforesaid metagenes.

Suitably, the Metabolism metagene, the Signalling metagene, the 5 Development and Growth metagene, the Chromosome Segregation/Replication the Immune Response metagene and/or metagene, the Protein Synthesis/Modification metagene comprise one or a plurality of genes listed in Table 22.

In particular embodiments of the method of the third and fourth aspects, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are from one or a plurality of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein

Synthesis/Modification metagene and a Multiple Networks metagene.

In a fifth aspect, the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes 20 associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with higher 25 aggressiveness of the cancer; and/or a lower relative expression level expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level. 30

In a sixth aspect, the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes

6

associated with estrogen receptor signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a more favourable cancer prognosis.

- In certain embodiments, the genes associated with chromosomal instability are of a CIN metagene. Non-limiting examples include genes selected from the group consisting of *ATP6V1C1*, *RAP2A*, *CALM1*, *COG8*, *HELLS*, *KDM5A*, *PGK1*, *PLCH1*, *CEP55*, *RFC4*, *TAF2*, *SF3B3*, *GPI*, *PIR*, *MCM10*, *MELK*, *FOXM1*, *KIF2C*, *NUP155*, *TPX2*, *TTK*, *CENPA*, *CENPN*, *EXOl*, *MAPREl*, *ACOT7*, *NAEl*, *SHMT2*,
 TCP1, *TXNRD1*, *ADM*, *CHAF1A and SYNCRIP*. Preferably, the genes are selected
- from the group consisting of: *MELK*, *MCM10*, *CENPA*, *EXOl*, *TTK* and *KIF2C*.

In certain embodiments, the genes associated with estrogen receptor signalling are of an ER metagene. Non-limiting examples include genes selected from the group consisting of: *BTG2*, *PIK3IP1*, *SEC14L2*, *FLNB*, *ACSF2*, *APOM*,

- 20 BIN3, GLTSCR2, ZMYND10, ABAT, BCAT2, SCUBE2, RUNX1, LRRC48, MYBPC1, BCL2, CHPT1, ITM2A, LRIG1, MAPT, PRKCB, RERE, ABHD14A, FLT3, TNN, STC2, BATF, CD1E, CFB, EVL, FBXW4, ABCB1, ACAA1, CHAD, PDCD4, RPL10, RPS28, RPS4X, RPS6, SORBS1, RPL22 and RPS4XP3. Preferably, the genes are selected from the group consisting of: MAPT and MYB.
- In certain embodiments, the method of the fifth and sixth aspects further including the step of comparing an expression level of one or a plurality of other overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4,
- 30 TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and/or an expression level of one or a plurality of other underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH,

20

7

KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSI and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the other overexpressed genes compared to the other underexpressed genes indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower relative expression level of the other overexpressed genes compared to the other underexpressed genes indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.

In one embodiment, the one or plurality of other overexpressed genes are selected from the group consisting of *ABHD5*, *ADORA2B*, *BCAP31*, *CA9*, *CAMSAP1*, *CARHSP1*, *CD55*, *CETN3*, *EIF3K*, *EXOSC7*, *GNB2L1*, *GRHPR*, *GSK3B*, *HCFC1R1*, *KCNG1*, *MAP2K5*, *NDUFC1*, *PML*, *STAU1*, *TXN and ZNF593*.

In one embodiment, the one or plurality of other underexpressed genes are selected from the group consisting of *BTN2A2*, *ERC2*, *IGH*, *ME1*, *MTMR7*, *SMPDL3B* and *ZNRD1-AS1*.

Suitably, the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling is integrated with the comparison of the expression level of the one or plurality of other overexpressed genes and/or the expression level of the one or plurality of other underexpressed genes to derive a first integrated score.

In a seventh aspect, the invention provides a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected 25 from the group consisting of *CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of <i>BRD8,*

30 BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBS1 and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed

8

genes compared to the one or plurality of underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In an eighth aspect, the invention provides a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting

- 10 of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFCl and STAUl, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of BRD8, BTN2A2.
- 15 KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBS1 and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to
- 20 the one or plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.
- In one embodiment of the seventh and eighth aspects, the one or plurality of overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP31, CA9, CAMSAP1, CARHSP1, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFC1R1, KCNG1, MAP2K5, NDUFCl, PML, STAUl, TXN and ZNF593.

30

In one embodiment of the seventh and eighth aspects, the one or plurality of underexpressed genes are selected from the group consisting of *BTN2A2*, *ERC2*, *IGH*, *ME1*, *MTMR7*, *SMPDL3B* and *ZNRD1-AS1*.

In particular embodiments, the method of the first, second, third, fourth, fifth, sixth, seventh and eighth aspects further includes the step of comparing an

25

30

9

expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE,

- RAD50, PGR, COL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the overexpressed proteins compared to the underexpressed proteins indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer
 prognosis; and/or a lower relative expression level of the overexpressed proteins
- compared to the underexpressed proteins indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.

Suitably, the comparison of the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins is to thereby derive an integrated score. In one particular embodiment, the comparison of the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins is integrated with:

- 20 (i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling to derive a second integrated score; or
 - (ii) the first integrated score to derive a third integrated score; or
 - (iii) the comparison of the expression level of the overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1 and/or the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH,

10

15

20

30

10

KIR2DL3, SMPDL3B, MYB, RLN1, MTMR7, SORBS1 and SRPK3 to derive a fourth integrated score; or

- (iv) the comparison of the expression level of the overexpressed genes and/or an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the DNA Chromosome Segregation metagene, the Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene, to derive a fifth integrated score; or
 - (v) the comparison of the expression level of the overexpressed genes and/or the expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score.

wherein the second, third, fourth, fifth and/or sixth integrated score is indicative of, or correlates with, the aggressiveness and/or prognosis of the cancer in the mammal.

In particular embodiments, the second, third, fourth, fifth and/or sixth integrated score are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation.

In a preferred embodiment, the first, second and/or third integrated scores are derived, at least in part, by exponentiation wherein the comparison of the expression level of the other overexpressed genes and the expression level of the other underexpressed genes is raised to the power of

 the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling; and/or WO 2015/135035

11

(ii) the comparison of the expression level of the overexpressed proteins and/or the expression level of the underexpressed proteins.

In a ninth aspect, the invention provides a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1,

10 YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of overexpressed proteins compared to the one or plurality of indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In a tenth aspect, the invention provides a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression 20 level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or 25 organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins 30 indicates or correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.

In an eleventh aspect, the invention provides method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method

including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from

- 5 one or a plurality of metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a
- 10 Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein an altered or modulated relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.
- Suitably, for the present aspect the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene comprise one or a plurality of genes listed in Table 21.

In a twelfth aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein an altered or modulated relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

10

13

In one embodiment of the eleventh and twelfth aspects, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one of the metagenes. In an alternative embodiment, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from a plurality of the metagenes.

Suitably, the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene comprise one or a plurality of genes listed in Table 22.

In particular embodiments, the one or plurality of overexpressed genes and the one or plurality of underexpressed genes are from one or a plurality of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation 15 metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene.

- According to the method of the eleventh and twelfth aspects, the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes includes comparing an average expression level of the one or plurality of overexpressed genes and/or an average expression level of the one or plurality of underexpressed genes. This may include calculating a ratio of the average expression level of the one or plurality of voerexpressed genes and the average expression level of the one or plurality of underexpressed genes. Suitably, the ratio provides an aggressiveness score which is indicative of, or correlates with, cancer aggressiveness and a less favourable prognosis. Alternatively, the step of comparing an expression level of one or a plurality of
- 30 underexpressed genes includes comparing the sum of expression levels of the one or plurality of overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes. This may include calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes.

In a thirteenth aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of determining an expression level of one or a plurality of genes associated with chromosomal instability in one or a plurality of non-mitotic cancer cells of the mammal, wherein a higher expression level indicates or correlates with relatively increased responsiveness of the cancer to the anti-cancer treatment

Suitably, the one or plurality of genes associated with chromosomal instability are selected from the group consisting of: *TTK*, *CEP55*, *FOXM1* and *SKIP2* and/or any CIN genes listed in Table 4.

10

5

In a fourteenth aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor

15 signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with relatively increased or decreased responsiveness of the 20 cancer to the anti-cancer treatment.

In certain embodiments, the genes associated with chromosomal instability are of a CIN metagene. Non-limiting examples include genes selected from the group consisting of: *ATP6V1C1*, *RAP2A*, *CALM1*, *COG8*, *HELLS*, *KDM5A*, *PGK1*, *PLCH1*, *CEP55*, *RFC4*, *TAF2*, *SF3B3*, *GPI*, *PIR*, *MCM10*, *MELK*, *FOXM1*, *KIF2C*, *NUP155*, *TPX2*, *TTK*, *CENPA*, *CENPN*, *EXOl*, *MAPRE1*, *ACOT7*, *NAE1*, *SHMT2*, *TCP1*, *TXNRD1*, *ADM*, *CHAF1A* and *SYNCRIP*. Preferably, the genes are selected from the group consisting of: *MELK*, *MCM10*, *CENPA*, *EXOl*, *TTK* and *KIF2C*.

In certain embodiments, the genes associated with estrogen receptor signalling are of an ER metagene. Non-limiting examples include genes selected from the group consisting of: *BTG2*, *PIK3IP1*, *SEC14L2*, *FLNB*, *ACSF2*, *APOM*, *BIN3*, *GLTSCR2*, *ZMYND10*, *ABAT*, *BCAT2*, *SCUBE2*, *RUNX1*, *LRRC48*, *MYBPC1*, *BCL2*, *CHPT1*, *ITM2A*, *LRIG1*, *MAPT*, *PRKCB*, *RERE*, *ABHD14A*, *FLT3*, *TNN*, *STC2*, *BATF*, *CD1E*, *CFB*, *EVL*, *FBXW4*, *ABCB1*, *ACAA1*, *CHAD*, *PDCD4*, *RPL10*,

15

RPS28, RPS4X, RPS6, SORBS1, RPL22 and RPS4XP3. Preferably, the genes are selected from the group consisting of: *MAPT* and *MYB.*

Suitably, the method of this aspect further includes the step of comparing an expression level of one or a plurality of other overexpressed genes selected from the group consisting of *CAMSAP1*, *CETN3*, *GRHPR*, *ZNF593*, *CA9*, *CFDP1*, *VPS28*, *ADORA2B*, *GSK3B*, *LAMA4*, *MAP2K5*, *HCFC1R1*, *KCNG1*, *BCAP31*, *ULBP2*, *CARHSP1*, *PML*, *CD36*, *CD55*, *GEMIN4*, *TXN*, *ABHD5*, *EIF3K*, *EIF4B*, *EXOSC7*,

GNB2L1, LAMA3, NDUFC1 and *STAU1,* and/or an expression level of one or a plurality of other underexpressed genes selected from the group consisting of *BRD8,*

10 BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBS1 and SRPK3 in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of other

15 overexpressed genes compared to the one or plurality of other underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In one embodiment, the one or plurality of other overexpressed genes are selected from the group consisting of *ABHD5*, *ADORA2B*, *BCAP31*, *CA9*, 20 *CAMSAP1*, *CARHSP1*, *CD55*, *CETN3*, *EIF3K*, *EXOSC7*, *GNB2L1*, *GRHPR*, *GSK3B*, *HCFC1R1*, *KCNG1*, *MAP2K5*, *NDUFC1*, *PML*, *STAU1*, *TXN* and *ZNF593*.

In one embodiment, the one or plurality of other underexpressed genes are selected from the group consisting of *BTN2A2*, *ERC2*, *IGH*, *ME1*, *MTMR7*, *SMPDL3B* and *ZNRD1-AS1*.

In certain embodiments, the comparison of the expression level of the one or plurality of other overexpressed genes and/or the expression level of the one or plurality of other underexpressed genes is integrated with the comparison of the expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or the expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling to derive a first integrated score, which is indicative of, or correlates with, responsiveness of the cancer to the anti-cancer treatment. By way of example, the first integrated score may be derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation. Preferably, the integrated score is derived by exponentiation,

16

wherein the comparison of the expression level of the one or plurality of other overexpressed genes and the expression level of the one or plurality of other underexpressed genes is raised to the power of the comparison of the expression level of the one or plurality of overexpressed genes associated with chromosomal instability and the expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling.

In a fifteenth aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of

- 10 overexpressed genes selected from the group consisting of *CAMSAP1*, *CETN3*, *GRHPR*, *ZNF593*, *CA9*, *CFDP1*, *VPS28*, *ADORA2B*, *GSK3B*, *LAMA4*, *MAP2K5*, *HCFC1R1*, *KCNG1*, *BCAP31*, *ULBP2*, *CARHSP1*, *PML*, *CD36*, *CD55*, *GEMIN4*, *TXN*, *ABHD5*, *EIF3K*, *EIF4B*, *EXOSC7*, *GNB2L1*, *LAMA3*, *NDUFC1* and *STAU1*, and/or an expression level of one or a plurality of underexpressed genes selected
- 15 from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBS1 and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated
- 20 relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In one embodiment, the one or plurality of overexpressed genes are selected from the group consisting of *ABHD5*, *ADORA2B*, *BCAP31*, *CA9*, *CAMSAP1*, 25 *CARHSP1*, *CD55*, *CETN3*, *EIF3K*, *EXOSC7*, *GNB2L1*, *GRHPR*, *GSK3B*, *HCFC1R1*, *KCNG1*, *MAP2K5*, *NDUFC1*, *PML*, *STAU1*, *TXN* and *ZNF593*.

In one embodiment, the one or plurality of underexpressed genes are selected from the group consisting of *BTN2A2*, *ERC2*, *IGH*, *ME1*, *MTMR7*, *SMPDL3B* and *ZNRD1-AS1*.

30

Suitably, the method of the eleventh, twelfth, thirteenth, fourteenth and fifteenth aspects further includes the step of comparing an expression level of a one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and/or an expression level of

17

one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

Suitably, the comparison of the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins is to thereby derive an integrated score. In one particular embodiment, the comparison of the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins is integrated with:

- the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling to derive a second integrated score; or
- (ii) the first integrated score to derive a third integrated score; or
- (iii) the comparison of the expression level of the overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1 and/or the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLN1, MTMR7, SORBS1 and SRPK3 to derive a fourth integrated score; or
- (iv) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development

20

15

25

30

10

18

metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene, to derive a fifth integrated score; or

- (v) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score.
- 15 wherein the second, third, fourth, fifth and/or sixth integrated score is indicative of, or correlates with, responsiveness of the cancer to the anti-cancer treatment.

In particular embodiments the first, second, third, fourth, fifth and/or sixth integrated score are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation.

In a preferred embodiment, the first, second and/or third integrated scores are derived, at least in part, by exponentiation wherein the comparison of the expression level of the other overexpressed genes and/or the expression level of the other underexpressed genes is raised to the power of

- the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling; and/or
- (ii) the comparison of the expression level of the overexpressed proteins and/or the expression level of the underexpressed proteins.

30

25

In a sixteenth aspect, the invention provides method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMADI, GATA3, ITGA2,

19

AKT1, NFKB1, HER2, ASNS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD 50, PGR, COL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins

- indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.
- Suitably, the anticancer treatment of the eleventh, twelfth, thirteenth, 10 fourteenth, fifteenth and sixteenth aspects is selected from the group consisting of endocrine therapy, chemotherapy, immunotherapy and a molecularly targeted therapy. In certain embodiments, the anticancer treatment comprises an anaplastic lymphoma kinase (ALK) inhibitor, a BCR-ABL inhibitor, a heat shock protein 90 (HSP90) inhibitor, an epidermal growth factor receptor (EGFR) inhibitor, a poly 15 (ADP-ribose) polymerase (PARP) inhibitor, retinoic acid, a B-cell lymphoma 2
- (Bcl2) inhibitor, a gluconeogenesis inhibitor, a p38 mitogen-activated protein kinase (MAPK) inhibitor, a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor, a mammalian target of rapamycin (mTOR) inhibitor, a phosphatidylinositol-4,5bisphosphate 3-kinase (PI3K) inhibitor, an insulin-like growth factor 1 receptor
- 20 (IGF1R) inhibitor, a phospholipase C-γ (PLCγ) inhibitor, a c-Jun N-terminal kinase (JNK) inhibitor, a p21-activated kinase-1 (PAK1) inhibitor, a spleen tyrosine kinase (SYK) inhibitor, a histone deacetylase (FDDAC) inhibitor, a fibroblast growth factor receptor (FGFR) inhibitor, an X-linked inhibitor of apoptosis (XIAP) inhibitor, a polo-like kinase 1 (PLK1) inhibitor, an extracellular-signal-regulated kinase 5
 25 (ERK5) inhibitor and combinations thereof.

Suitably, the method of the eleventh, twelfth, thirteenth, fourteenth, fifteenth and sixteenth aspects further includes the step of administering to the mammal a therapeutically effective amount of the anticancer treatment. Preferably, the anticancer treatment is administered when the altered or modulated relative 30 expression level indicates or correlates with relatively increased responsiveness of the cancer to the anti-cancer treatment.

In a seventeenth aspect, the invention provides a method of predicting the responsiveness of a cancer to an immunotherapeutic agent in a mammal, said method including the step of comparing an expression level of one or a plurality of

overexpressed genes selected from the group consisting of ADORA2B, CD36, CETN3, CFDP1, KCNG1, LAMA3, NAE1, MAP2K5, PGK1, SF3B3, STAU1 and TXN and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting *oiAPOBEC3A*, BTN2A2, BCL2, CAMK4,

5 *FBXW4, CAMSAP1, CARHSP1, GSK3B, HCFC1R1, PSEN2, MYB and ZNF593,*, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the 10 immunotherapeutic agent.

Suitably, the immunotherapeutic agent is an immune checkpoint inhibitor. Preferably, the immune checkpoint inhibitor is or comprises an anti-PDl antibody or an anti-PDLl antibody.

- In an eighteenth aspect is provided a method of predicting the responsiveness of a cancer to an epidermal; growth factor receptor (EGFR) inhibitor in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of *NAE1*, *GSK3B*, *TAF2*, *MAPRE1*, *BRD4*, *STAU1*, *TAF2*, *PDCD4*, *KCNG1*, *ZNRD1-AS1*, *EIF4B*, *HELLS*, *RPL22*, *ABAT*, *BTN2A2*, *CD1B*, *ITM2A*, *BCL2*, *CXCR4*, and *ARNT2* and/or an
- 20 expression level of one or a plurality of underexpressed genes selected from the group consisting *oiCDIC*, *CD1E*, *CD1B*, *KDM5A*, *BATF*, *EVL*, *PRKCB*, *HCFC1R1*, *CARHSP1*, *CHAD*, *KIR2DL4*, *ABHD5*, *ABHD14A*, *ACAA1*, *SRPK3*, *CFB*, *ARNT2*, *NDUFC1*, *BCL2*, *EVL*, *ULBP2*, *BIN3*, *SF3B3*, *CETN3*, *SYNCRIP*, *TAF2*, *CENPN*, *ATP6V1C1*, *CD55* and *ADORA2B* in one or a plurality of cancer cells, tissues or
- 25 organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the EGFR inhibitor.
- In a nineteenth aspect is provided a method of predicting the responsiveness of a cancer to a multikinase inhibitor in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of *SCUBE*, *CHPT1*, *CDC1*, *BTG2*, *ADORA2B* and *BCL2*, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of *NOP2*, *CALR*, *MAPRE1*, *KCNG1*, *PGK1*, *SRPK3*,

21

RERE, ADM, LAMA3, KIR2DL4, ULBP2, LAMA4, CA9, and *BCAP31,* in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the multikinase inhibitor.

Suitably, for the method of the seventeenth, eighteenth and nineteenth aspects, a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a relatively increased responsiveness of the cancer to the immunotherapeutic agent, EGFR inhibitor or multikinase inhibitor; and/or a lower relative expression level of the one or aplurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a relatively decreased responsiveness of the cancer to the immunotherapeutic agent, EGFR 15 inhibitor and/or multikinase inhibitor.

In some embodiments, the method of the seventeenth, eighteenth and nineteenth aspects further includes the step of administering to the mammal a therapeutically effective amount of the immunotherapeutic agent, the EGFR inhibitor or the multikinase inhibitor respectively. Preferably, the immunotherapeutic agent, 20 the EGFR inhibitor or the multikinase inhibitor is administered when the altered or modulated relative expression level indicates or correlates with relatively increased responsiveness of the cancer to the immunotherapeutic agent, the EGFR inhibitor or the multikinase inhibitor respectively.

Suitably, for the methods of the aforementioned aspects, the step of comparing an expression level of one or a plurality of overexpressed genes or proteins and an expression level of one or a plurality of underexpressed genes or proteins, includes comparing an average expression level of the one or plurality of overexpressed genes or proteins and an average expression level of the one or plurality of underexpressed genes or proteins. This may include calculating a ratio of

30 the average expression level of the one or plurality of overexpressed genes or proteins and the average expression level of the one or plurality of underexpressed genes or proteins. Suitably, the ratio provides an aggressiveness score which is indicative of, or correlates with, cancer aggressiveness and a less favourable prognosis. Alternatively, the step of comparing an expression level of one or a

plurality of overexpressed genes and an expression level of one or a plurality of underexpressed genes or proteins, includes comparing the sum of expression levels of the one or plurality of overexpressed genes or proteins and the sum of expression levels of the one or plurality of underexpressed genes or proteins. This may include calculating a ratio of the sum of expression levels of the one or plurality of

overexpressed genes or protein and the sum of expression levels of the one or plurality of underexpressed genes or proteins.

In certain embodiments of the aforementioned methods, the mammal is subsequently treated for cancer.

10

5

In a twentieth aspect, the invention provides a method for identifying an agent for use in the treatment of cancer including the steps of:

(i) contacting a protein product of *GRHPR*, *NDUFCl*, *CAMSAP1*, *CETN3*, *EIF3K*, *STAU1*, *EXOSC7*, *COGS*, *CFDP1* and/or *KCNG1* with a test agent; and

(ii) determining whether the test agent, at least partly, reduces, eliminates,suppresses or inhibits the expression and/or an activity of the protein product.

Suitably, the agent possesses or displays little or no significant off-target and/or nonspecific effects.

Preferably, the agent is an antibody or a small organic molecule.

In a twenty first aspect, the invention provides an agent for use in the treatment of cancer identified by the method of the eighteenth aspect.

In a twenty second aspect, the invention provides a method of treating a cancer in a mammal, including the step of administering to the mammal a therapeutically effective amount of an agent identified by the method of the eighteenth aspect.

25 Preferably, for the invention of the twentieth, twenty first and twenty second aspects, the cancer has an overexpressed gene selected from the group consisting of *GRHPR, NDUFCl, CAMSAP1, CETN3, EIF3K, STAU1, EXOSC7, COGS, CFDPl, KCNGl* and any combination thereof.

Suitably, the method of the aformentioned aspects further includes the step of determining, assessing or measuring the expression level of one or plurality of the overexpressed genes, the underexpressed genes, the overexpressed proteins and/or the underexpressed proteins described herein.

Suitably, the mammal referred to in the aforementioned aspects and embodiments is a human.

In certain embodiments of the invention of the aforementioned aspects, the cancer includes breast cancer, lung cancer inclusive of lung adenocarcinoma and lung squamous cell carcinoma, cancers of the reproductive system inclusive of ovarian cancer, cervical cancer, uterine cancer and prostate cancer, cancers of the 5 brain and nervous system, head and neck cancers, gastrointestinal cancers inclusive of colon cancer, colorectal cancer and gastric cancer, liver cancer inclusive of hepatocellular carcinoma, kidney cancer inclusive of renal clear cell carcinoma and renal papillary cell carcinoma, skin cancers such as melanoma and skin carcinomas, blood cell cancers inclusive of lymphoid cancers and myelomonocytic cancers, cancers of the endocrine system such as pancreatic cancer and pituitary cancers, 10 musculoskeletal cancers inclusive of bone and soft tissue cancers, although without limitation thereto. By way of example, breast cancer includes aggressive breast cancers and cancer subtypes such as triple negative breast cancer, grade 2 breast cancer, grade 3 breast cancer, lymph node positive (LN⁺) breast cancer, HER2 positive (HER2⁺) breast cancer and ER positive (ER⁺) breast cancer, although 15 without limitation thereto.

Unless the context requires otherwise, the terms "comprise", "comprises" and "comprising", or similar terms are intended to mean a non-exclusive inclusion, such that a recited list of elements or features does not include those stated or listed elements solely, but may include other elements or features that are not listed or stated.

The indefinite articles 'a' and 'an' are used here to refer to or encompass singular or plural elements or features and should not be taken as meaning or defining "one" or a "single" element or feature.

25

20

BRIEF DESCRIPTION OF THE FIGURES

Figure 1: Correlation of breast cancer subtypes and the aggressiveness gene list. The METABRIC dataset was visualized according to the expression of the 206 genes (Table 4) in the aggressiveness gene list. The aggressiveness score for each tumor
was calculated as the ratio of the CIN metagene (average value for CIN genes expression) to the ER metagene (average value for ER genes expression). (A) The expression of the aggressiveness gene list according to the GENIUS histological classification. Box plot shows the aggressiveness score of the histological subtypes. (B) The overall survival of patients in the METABRIC dataset was analyzed

24

patients (n) in each group is shown in brackets.

according to the aggressiveness score (upper row: by quartiles; lower row: by median) in all patients, non-TNBC patients and in patients with ER+ Grade 2 tumors. The hazard ratio (HR) and confidence interval (CI) and p-value for comparisons of upper quartile vs. lower quartiles (upper row) and at the dichotomy across the median (high vs. low) are shown (Log-rank Test, GraphPad[®] Prism). The number of

Figure 2: Network analysis of the aggressiveness gene list. (A) Ingenuity pathway analysis was performed using direct interactions on the 206 genes in the aggressiveness gene list (red is overexpressed and green is underexpressed). One

- network of high direct interactions was identified. (B) The genes in the network in A were investigated for their correlation with the aggressiveness score and overall survival (Table 5) and eight genes (MAPT, MYB, MELK, MCM10, CENPA, EXOl, TTK and KIF2C) with the highest correlation were still connected in a direct interaction network. (C) The overall survival of patients in the METABRIC dataset
- 15 was analyzed according to score from the 8 genes in C (upper row: by quartiles; lower row: by median) in all patients, non-TNBC patients and in patients with ER+ Grade 2 tumors.

Figure 3: Survival of patients stratified by the 8-genes score in the METABRIC dataset. The overall survival of patients in the METABRIC dataset was analyzed

- 20 according to the 8-genes score in selected settings in all patients (A) or in ERpositive patients only (B). (A) TP53 mutation was compared in high vs. low 8-genes score (split by the median). The expression of the proliferation marker Ki67 was divided by dichotomy across the median and patients in each of these groups were then stratified according to their 8-genes score (split by quartiles). Disease stages
- 25 (Stage I Stage III) were stratified by the median 8-genes score. (**B**) ER⁺ Grade 3, ER+ lymph node negative (LN-) and ER+ LN+ tumors were stratified by the quartiles.

Figure 4: The 8-genes score associates with survival of breast cancer patients.
Four published datasets were used to validate the 8-genes score as a predictor of
survival. The 8-genes score was calculated for tumors in each of the datasets and the
survival of patients was stratified according to the median 8-genes score; (A)
GSE2990¹⁵, (B) GSE3494⁶⁵, (C) GSE2034⁶⁶ and (D) GSE25066⁵³. The hazard ratio
(HR) and confidence interval (CI) and p-value for comparisons high vs. low 8-genes
score are shown in the Kaplan-Meier survival curves (Log-rank Test, GraphPad[®])

Prism). The number of patients (n) is shown in brackets. The table in each panel show multivariate survival analysis in the using Cox-proportional hazard model including all available conventional indicators.

Figure 5: Therapeutic targets in the aggressiveness gene list. (A) The TNBC cell
lines, MDA-MB-231, SUM159PT and Hs578T were treated with control siRNA (Scrambled, Sc CTRL) or siRNA targeting the specified genes and the survival of these cells was compared on day 6. Data shown is the average from the three cell lines where each cell line was treated in triplicate. * p< 0.05, ** p<0.01 and ***
<0.001 from One-Way ANOVA analysis performed using GraphPad[®] Prism. Data

- 10 for individual cell lines is shown in Table 5. (B) A panel of breast cancer cell lines was used to prepare lysates for immunoblotting of TTK. Tubulin was used as the loading control. (C) Dose response curves for the treatment of breast cancer cell lines in the absence or presence of escalating doses of the TTK inhibitor (TTKi) AZ3146. The survival of cells was measured using the CellTitre[®] MTS/MTA assay carried out
- 15 6 days after treatment. Percentage survival (n = 3 per dose) was calculated as the percentage of the signal from treated cells to that from control cells. (D) The concentration of TTK required to affect the survival of 50% of the cells (IC50) was measured by GraphPad® Prism from the dose response curves in C for each cell line.
- Figure 6: TTK protein expression associates with breast cancer survival. The
 overall survival of patients in a large cohort of breast cancer patients (n=409) was stratified according to TTK staining by IHC (scores 0-3). Kaplan-Meier survival curves are shown for all patients (A) with four TTK staining (categories 0-3) and (B) two categories (0-2 vs. 3). Log-rank Test and p-value were used for survival curves. (C) The distribution of high TTK staining (category 3) across histological subgroups
- and mitotic indices. Data shown is the mitotic index (median + range) measured as the number of mitotic cells in 10 high power fields (hpf). The number of tumors with high TTK staining to the total number of tumors in the cohort is shown on the right. High TTK expression distributed across subtypes and did not associate with mitotic index.
- 30 Figure 7: TTK associates with aggressive subtypes and is a therapeutic target. (A) Kaplan-Meier survival curves are shown for Grade 3 tumors, lymph node positive patients (LN⁺) and LN⁺ patients with grade 3 tumors. Log-rank Test and p-value were used for these survival curves. For patients with TNBC, and HER2, survival was statistically significant using the Gehan-Breslow-Wilcoxon test (p-

values marked by asterisks) which gives more weight to deaths at early time points. The poorer survival of patients with high Ki67 tumors and high TTK staining was a trend but did not reach significance. Survival curves and statistical analyses were performed using GraphPad[®] Prism. (**B**) TNBC and non-TNBC cell lines were treated

- 5 for 6 days with the specified concentrations of docetaxel (doc) alone, TTK inhibitor (TTKi) alone of the combinations. The survival of cells was measured using the MTS/MTA assay as described in Methods. *** p < 0.001 comparing the combination to single agents and to non-TNBC cell lines from Two-Way Anova in GraphPad[®] Prism. (C) MDA-MB-231 cells were treated with docetaxel or TTKi alone or in
- 10 combination and collected at 96 hours to perform apoptosis assays by flow cytometry. Early apoptotic cells were defined as annexin V+/7-AAD-.

Figure 8: Global gene expression meta-analysis of genes deregulated in TNBC, metastatic events and death at 5 years in $Oncomine^{TM}$. (A) TNBC in 8 datasets were compared to non-TNBC, (B) tumors with metastatic events at 5 years were

- 15 compared to those with no metastatic events at 5 years in 7 datasets and (C) tumors leading to death at 5 years were compared to those that did not lead to death at 5 years were compared in 7 datasets. The datasets used in the comparisons are stated in the legends and the key for the heatmap coloring is also included. The heatmap key denotes the top or bottom x % placement of a gene according to gene rank which is
- 20 based on the p-value.

Figure 9: The derivation of the 206 aggressiveness gene list. (A and **B**) are Venn diagrams for the top overexpressed genes and bottom underexpressed genes shared between TNBC and/or metastasis and death at 5 years analyses in OncomineTM. (**C** and D) The Venn diagrams from A and B were crossed with genes which were deregulated in TNBC in comparison to adjacent normal breast tissue from the

25 deregulated in TNBC in comparison to adjacent normal breast tissue from the METABRIC dataset. The genes marked in bold in panels C and D are the 206 genes which constitute the unfiltered aggressiveness gene list.

Figure 10: Common genes between the 206 aggressiveness gene list and metagene attractors. Venn diagrams show common genes (in bold) between the

206 aggressiveness gene list and the chromosomal instability (CIN), lymphocytespecific and ER attractors (Cheng et al 2013a, Cheng et al 2013b). The table below lists the shared genes. The 6 overexpressed genes (marked in red) and 2 underexpressed genes (marked in green) which constitute the 8-genes signature in this study are shown. Gene set enrichment analysis of the remaining 140 genes which

were only present in the 206 gene signature reveal that these genes function in cell cycle.

Figure 11: Correlation of breast cancer subtypes and the aggressiveness gene list. The METABRIC dataset was visualized according to the expression of the 206

- 5 genes in the aggressiveness gene list. The aggressiveness score for each tumor was calculated as the sum of normalized z-score expression values of overexpressed genes divided by that of underexpressed genes. (A and B) The expression of the aggressiveness gene list was visualized according to PAM50 intrinsic subtypes and the integrative clusters classification. Box plots show the aggressiveness score of
- 10 these subtypes. The shaded lines in box plots mark the median value for the aggressiveness score. *** p < 0.001 One-Way ANOVA using GraphPad® Prism. Kaplan-Meier curves are of overall survival of patients in the METABRIC dataset stratified according to the quartiles (left plot) or the median (middle plot) of the aggressiveness score in ER+ patients with Grade 3 tumors. Tumors of the five
- 15 PAM50 intrinsic subtypes which show high aggressiveness score (higher than the median) did not show statistical difference in overall survival (right plot). The hazard ratio (HR) and the 95% confidence interval (CI) and the p-value are reported using the Log-rank Test.

Figure 12: Survival of the PAM50 breast cancer subtypes in the METABRIC

- 20 **dataset according to the aggressiveness score.** The survival of patients in the METABRIC dataset annotated based on the PAM50 subtypes was analyzed by dichotomy across the median aggressiveness score from the 206 gene list (**A**) and the reduced 8 gene list (**B**). The p-value are reported using the Log-rank Test in GraphPad[®] Prism and show that all tumors with the different PAM50 subtypes but
- 25 high aggressiveness score did not show a difference in patient survival (left graphs), whereas the PAM50 subtypes showed significantly different survival only in low aggressiveness score setting.

Figure 13: TTK staining association with patient survival. The overall survival of patients in a large cohort of breast cancer patients (n=409) was stratified according to

TTK staining by IHC (scores 0-3). Kaplan-Meier survival curves are shown for all patients (with four TTK staining categories 0-3 and two categories (0-2 vs. 3) with 10 and 20 years follow up. Log-rank Test and p-value were used for survival curves of all patients. There were no statistical differences in the survival of patients with

aggressiveness score.

28

Grade 1, Grade 2 or hormone positive tumors when stratified by TTK expression. Survival curves and statistical analyses were performed using GraphPad[®] Prism.

Figure 14: Criteria used for assigning 'prognostic subgroups' in this study.

Figure 15: Panel 1: Overall survival curves of lung cancer patients split by ten
(10) CIN and two (2) ER genes as a signature; patients are low or high according to the median of the signature; Panel 2: Survival curves for lung adenocarconima split by ten (10) CIN genes and two (2) ER genes as a signature; patients are low or high according to the median of the signature; Panel 3: Survival curves for lung adenocarconima (10 years) split by ten (10) CIN genes and two (2) ER genes as a signature; Panel 3: Survival curves for lung adenocarconima (10 years) split by ten (10) CIN genes and two (2) ER genes as a signature; Panel 3: Survival curves for lung adenocarconima (10 years) split by ten (10) CIN genes and two (2) ER genes as a

- signature; patients are low or high according to the median of the signature; Panel 4: Survival curves for lung adenocarconima split by six (6) CIN genes and two (2) ER genes as a signature; patients are low or high according to the median of the signature; and Panel 5: Survival curves for lung adenocarconima (10 years) split by six (6) CIN genes and two (2) ER genes as a signature; patients are low or high according to the median of the signature.
 - **Figure 16:** (A) RNA-Seq data from the breast cancer cohort of The Cancer Genome Atlas (TCGA) data. (B) Recurrence-free survival of breast cancer patients in the TCGA stratified by the Aggressiveness score compared to the OncotypeDx recurrence score. (C) Comparison of copy number variations (CNVs) of breast
- 20 tumours with high aggressiveness score to those with low aggressiveness score.
 Figure 17: (A) RNA-Seq data from all cancers of The Cancer Genome Atlas (TCGA) data. (B) Recurrence-free survival of all cancer patients in the TCGA stratified by the Aggressiveness score compared to the OncotypeDx recurrence score.
 Figure 18: Recurrence-free survival or overall survival of cancer patients with different cancer types in the TCGA data patients stratified by the 8-genes

Figure 19: Outline of Example 2. Meta-analysis was performed in OncomineTM using breast cancer datasets irrespective of subtypes or gene expression array platforms used. The global gene expression profiles of breast tumors that led to

30 metastatic or death event within 5 years were compared to those that did not and the top overexpressed (OE) and underexpressed genes (UE) in these comparisons were selected. The commonly deregulated genes in the primary tumors that led to metastatic and death events (depending on the annotation of each dataset) were then interrogated using the online tool KM-PlotterTM (n>4000 patients with some overlap)

29

with the datasets in OncomineTM). Only genes which associated with relapse-free survival (RFS), distant metastasis-free survival (DMFS) or overall survival (OS) of basal-like breast cancer (BLBC) or ER-negative (ER) breast cancer were selected. The 96 genes from this training were then shortlisted to 28 genes by selecting the most significant and persistent across the different outcomes (RFS, DMFS and OS). The 28-gene signature was then validated in large cohorts of breast cancer gene

- expression studies including The Cancer Genome Atlas (TCGA) dataset the Research Online Cancer Knowledgebase (ROCK) dataset and the homogenous TNBC dataset for prognostication of ER-, TNBC and BLBC subtypes. Finally, the
- 10 TN signature was then investigated for association with pathological complete response (pCR) after neoadjuvant chemotherapy in studies which performed gene expression profiling prior to therapy.

Figure 20: The 28-gene TN signature associates with RFS, DMFS and OS of BLBC and ER- breast cancer. The 21 overexpressed and 7 underexpressed genes

- 15 were used as a signature in the online tool KM-Plotter. The signature (the average expression of the 21 overexpressed genes and the inverted expression of the 7 underexpressed genes) stratified the RFS, DMFS and OS; low: under the median of the expression of the signature and high: over the median of the expression of the signature. The hazard ratio (HR) and log-rank p-value (p) for the univariate survival analyses were generated by KM-Plotter. n = number of patients.
- Figure 21: The prognostication by the TN score outperforms standard clinicothapological indicators in TNCBC, BLBC and ER- breast cancer subtypes. Two datasets, (A) the TNBC dataset and (B&C) the ROCK dataset, were analyzed for the TN signature and the TN score was calculated as the ratio of the
- 25 average expression of the 21 overexpressed genes to that of the 7 underexpressed genes. This score was calculated for each tumor and the median TN score over the entire dataset was used to classify tumors as high (above the median) or low (below the median) for the TN score. (A) RFR of TNBC patients in the TNBC cohort stratified by dichotomy across the median TN score in the cohort. Table under the
- 30 survival curve shows univariate and multivariate survival analysis for the TN score and other available clinical indicators recorded in the dataset. The TN score outperformed all the clinical indicators in the multivariate analysis. (**B**) RFS and DMFS of BLBC in the ROCK dataset stratified by dichotomy across the median TN score in the dataset. The table under the survival curves shows multivariate survival

cancer cases.

5

30

analysis for the TN score against other available clinical indicators recorded in the dataset. The TN score outperformed all the clinical indicators in the multivariate analysis of BLBC cases. (C) The RFS and DMFS of ER- negative breast cancer were stratified by the TN score (data not shown) and the table shows the multivariate survival analysis that the TN score outperforms clinical indicators in ER⁻ breast

- Figure 22: The TN score stratifies the overall survival of ER- breast cancer patients in the TCGA dataset. The gene expression data using the Illumina HiSeq RNA-seq arrays from the TCGA breast cancer data (n = 1106) were used to calculate
- the TN score for all tumors. Tumors were classified as high or low for the TN score by dichotomy across the median TN score. The overall survival (OS) of ER- breast cancer cases with high TN score were compared to those with low TN score. The table below the survival curve shows that the TN score is more significant than other clinical indicators in univariate survival analysis and it is the only significant prognostic indicator in multivariate survival analysis.
- **Figure 23: The TN score associates with pCR after chemotherapy in ER⁻HER2⁻ breast cancer.** Gene expression datasets which profiled tumors prior to neoadjuvant chemotherapy and recorded pathological complete responses (pCR) vs. no pCR or residual disease (RD) were analyzed for the TN signature and the TN score was
- 20 calculated for each tumor. Tumors were classified as high or low TN score by dichotomy across the median TN score in each dataset. Only ER-HER2- cases were used in the data shown in the Figure. (A) Graphs showing the percentage of cases achieving (red bars) or not achieving (black bars) pCR in low and high TN score subgroups. Fisher's exact test was used to analyze the 2x2 contingency tables and the
- 25 p-value from this test was reported when statistical significance was observed. The dotted line marks the 31% pCR rate reported in literature for TNBC. Each dataset is labeled with the accession number and the chemotherapy regimen used, namely: GSE18728, GSE50948, GSE20271, GSE20194, GSE22226, GSE42822 and GSE23988. Chemotherapy abbreviation: 5-FU, Adriamycin, Cyclophosphamide,
- ³⁰ Taxane, X : Xeloda, Methotrexate, Epirubicin. (B) The dataset GSE22226 from the ISPY-1 trial was used to compare the TN score and pCR in the prediction of ER⁻ patient survival after neoadjuvant chemotherapy as this dataset also recorded RFS. pCR strongly associated with RFS (first panel) as previously reported. the TN score (next three panel) was not only predictive of survival in the these patients but could

also stratified the survival of patients achieving or not achieving pCR, indicated the TN score as an independent prognostic factor for pCR after neoadjuvant chemotherapy.

Figure 24: Drug sensitivity of cancer cell lines according to the TN score. The large published study by Garnett et al. was investigated where the TN score was calculated for each cell line in the study as described in Methods. The cell lines were classified as high or low TN score according to the median TN score to compare the sensitivity of low TN score cell lines (white boxes) and high TN score cell lines (red boxes). Graphs were prepared using GraphPad[®] Prism showing sensitivity as -

10 logl0[IC50] in boxes (with median marked by a line) and whiskers (marking the 1st and 3rd quartiles and outliers as dots according to Tukey method for plotting the whiskers and outliers). Unpaired two-tailed t test was used for statistical analysis.

Figure 25: The iBCR score stratifies the survival of all breast cancer patients irrespective of ER status in the ROCK dataset. The TN and Agro scores were

- 15 calculated for each tumor in the ROCK dataset (n=1570, Affymetrix) and then the iBCR score was calculated as the TN score to the power of the Agro score. The RFS of all patients and the RFS of ER- or ER+ patients only was compared between high score and low score by dichotomy across the median score for each of the scores. The iBCR score was prognostic in all patients as well as ER- and ER+ subsets with
- 20 better separation between low score and high score tumors (increased hazard ratio [HR] and limits of the 95% confidence intervals and decreased log rank p-value). Graphs and the univariate survival analysis using the log rank test were performed using GraphPad[®] Prism.

Figure 26: The iBCR score stratifies the survival of all breast cancer patients

- 25 irrespective of ER status in the TCGA dataset. The TN. Agro and the iBCR scores were calculated for each tumor in the TCGA dataset (n=1 106, Illumina RNA-Seq). The RFS of all patients and the RFS of ER- or ER+ patients only was compared between high score and low score. As in the results in the ROCK dataset in Figure 7, The iBCR score was prognostic in all patients as well as ER- and ER+ subsets with
- 30 better separation between low score and high score tumors.

Figure 27: The iBCR score associates with RFS and pCR after chemotherapy in the ISPY-1 trial. The dataset GSE22226 from the ISPY-1 trial was used to compare the Agro, TN and the integrated iBCR score in the prognosis and association with pCR after chemotherapy (Adriamycin, Cyclophosphamide and Taxane) in ERTTER2⁻

and ER⁺ breast cancer subtypes. Tumors were classified as high or low score by dichotomy across the median of each score in the entire dataset. High iBCR score ERTTER2⁻ tumors were less likely to achieve pCR and these patients had poor survival. High iBCR ER⁺ patients were more likely to achieve pCR but since a small

- 5 number of ER⁺ patients achieved (10/62 [16%]), the survival of high iBCR ER+ patients remained poor. Note that the Agro score identifies all but two ER-HER2tumors as high score, thus the data from this group should not be interpreted. Also note that the Agro score is highly prognostic of survival and association with pCR in ER⁺ whereas the TN score is not in these patients. The integration of these two
- 10 scores in the iBCR score has overcame the limitation of each of these subtypespecific scores.

Figure 28: The iBCR score associates with pCR after chemotherapy in breast cancer. Gene expression datasets with pCR annotation after chemotherapy were used as described in Figure 5 to calculate the Agro and TN scores and the integrated iBCR

- 15 score. Tumors were classified as high or low score by dichotomy across the median of each score in each dataset. (A) ERTTER2⁻ cases with graphs showing the percentage of cases achieving (red bars) or not achieving (black bars) pCR in low and high score subgroups. (B) ER⁺ cases were analyzed as in A. Fisher's exact test was used to analyze the 2x2 contingency tables and the p-value from this test was
- 20 reported when statistical significance was observed. Each dataset is labeled with the accession number and the chemotherapy regimen used, namely: GSE18728, GSE50948, GSE20271, GSE20194, GSE22226, GSE42822 and GSE23988. Chemotherapy abbreviation: 5-FU, Adriamycin, Cyclophosphamide, Taxane, X : Xeloda, Methotrexate, Epirubicin.
- Figure 29: The iBCR score stratifies the survival of tamoxifen-treated ER+ patients. The Agro and TN scores and the iBCR score were calculated in two datasets of gene expression profiling prior to tamoxifen therapy: A&B. GSE6532 with 327 patients. 137 untreated and 190 tamoxifen-treated; C: GSE17705 with 298 patients treated with tamoxifen for 5 years. (A) ER+ NO patients with high iBCR
- 30 score have poor RFS compared low iBCR score counterparts. (B) RFS of all ER+ patients and NO and N1 subsets stratified by the Agro and iBCR scores. (C) DMFS survival of all ER+ and NO and N1 subsets stratified by the Agro and iBCR scores. The hazard ratios and log-rank p-values are more significant for the iBCR score than the Agro score although the Agro score was significantly prognostic.

Figure 30: Drug sensitivity of cancer cell lines according to the iBCR score. The large published study by Garnett et al. was investigated where the iBCR score was calculated for each cell line from the Agro and TN scores. The cell lines were classified as high or low iBCR score according to the median iBCR score to compare

- 5 the sensitivity of low iBCR score cell lines (white boxes) and high TN score cell lines (red boxes). Results according to low and high Agro score were also included. Graphs were prepared using GraphPad[®] Prism and unpaired two-tailed t test was used for statistical analysis (n.s. not significant).
- Figure 31: Global gene expression meta-analysis of genes deregulated in primary breast tumors with metastatic events or death at 5 years in OncomineTM. (A) tumors with metastatic events at 5 years were compared to those with no metastatic events at 5 years in 7 datasets and (B) tumors leading to death at 5 years were compared to those that did not lead to death at 5 years were compared in 7 datasets. The datasets used in the comparisons are stated in the legends and the key
- 15 for the heatmap coloring is also included. The heatmap key denotes the top or bottomx % placement of a gene according to gene rank which is based on the p-value.

Figure 32: The TN signature outperforms all published signatures for TNBC/BLBC. Relapse-free survival of basal-like breast cancer patients (BLBC) was investigated in the online database KM-Plotter (Affymetrix platform) according to

- the TN signature in comparison to published TNBC signatures. Hazard ratios (HR) and logrank p-values were generated by KM-Plotter. (A) the TN score vs. signatures (B) from Karn et al. (PLoS One, 201 1); from Rody et al. (Breast Cancer Res, 201 1) (C) IL8, (D) VEGF, and (E) B-cell metagenes; (F) from Yau et al. (Breast Cancer Res, 2010); (G) from Yu et al. (Clin Cancer Res, 2013); (H) from Lee et al. (PLoS
- 25 One, 2013 and (I) from Hallet et al. (Sci Rep, 2012).
 Figure 33: The TN score stratified the survival of ER⁻ patients in the Agilent TCGA data. The original TCGA dataset using the Agilent microarrays (n=597) were analyzed for the TN score where patients were assigned as low, intermediate or high for the TN score according to tertiles. The RFS of ER- patients only were then
- 30 compared according to these tertiles. The stratification was significant according to a log-rank survival test (P<0.0001). High TN score group vs. low TN score group had a hazard ratio (95% confidence interval) of 3.484 (1.035 to 11.23) with a log rank p-value of 0.0179.

Figure 34: The prognostication by the TN score in ER- and BLBC is not affected by systemic treatment. The online KM-Plotter tool was used to investigate the stratification of RFS, DMFS and OS of ER- breast cancer (top two rows) and BLBC (bottom two rows) in systemically untreated patients (untreated) or in patients

5 who were treated systemically (treated). The HR, the 95% confidence intervals and the log-rank p values were provided by KM-Plotter as well as the number of patients at risk.

Figure 35: Sensitivity of cancer cell lines to anticancer drugs according to the TN score in the Cancer Cell Line Encyclopedia (CCLE) study. The gene

- 10 expression data of the cancer cell lines in the study were analyzed to calculate the TN score for each cell line and were assigned to low or high TN score by dichotomy across the median. The IC_{50} for each of the 24 drugs used in the CCLE study was compared between high and low TN score cell lines and the data shown are those with statistical differences based on unpaired two-tailed *i*-test performed using
- 15 GraphPad[®]Prism.

Figure 36: Integration of the TN and Agro scores by addition or subtraction. The ROCK dataset was used to study the integration of the TN and Agro score with the aim to develop a test that is breast cancer subtype independent. (A) The raw Agro and TN scores for ER+ (black dots) and ER- (red dots) in the ROCK dataset (each

- 20 dot represent one patient, n = 1570 in total). The two scores are scattered and a method of integration that can retain the information from each score in the relevant breast cancer subtype is necessary. Such methods are tested in this Figure and Figure 38. (B) Addition method. First column shows the TN score in ER+ tumors with low (white boxes) and high (red boxes) Agro score subgroups (top panel). In the bottom
- 25 panel, the Agro score in ER- tumors with low (white boxes) and high (red boxes) TN score subgroups. This data shows that the TN score is similar for ER+ tumors with low and high Agro scores and that the Agro score is similar for ER- tumors with low and high TN scores. The lack of statistical differences (independence) suggested that integration is possible. The second column shows the linear correlation between the
- 30 TN score and Agro score when they were added in each patient for ER+ (top panel) and ER- (bottom panel) patients. In the third column, the TN and Agro scores were plotted against the produced summed score showing that the information from each score is retained in the final summed score for both ER+ (top panel) and ER- (bottom panel) patients.. The last column shows the overlap of data from ER+ and ER-

patients shown separately in the second and third columns. (C) Identical analysis as that done in B but the integration was tested by subtraction of the TN and Agro score. The linearity of the relationship between the summed score and each of the single scores (TN and Agro score) indicated that information from each score is represented in the first score of the scor

5 in the final score. The performance of these two methods (addition or subtraction) was tested for association with survival as shown in Figure 37.

Figure 37: Comparison of different integration methods of the TN and Agro scores for prognostication in ER- and ER+ **RFS in the** ROCK **dataset.** The methods of integration by addition or subtraction (from Figure 36) or multiplication

- 10 or division (Figure 38) were tested for the association of the produced integrated score in the ROCK dataset in ER- or ER+ breast cancer. As shown in the figure, only the addition or multiplication methods were prognostic in ER- breast cancer and the multiplication was more significant in ER+ breast cancer compared to the addition. These two methods are reasonable as subtraction or division methods would reduce
- 15 the value of one of the scores. Two additional methods were tested, raising one score to the power of the second score since the relationships observed when multiplication and division methods showed exponential or power curves. As shown in the last column (shaded and marked in red box), raising the TN score to the power of the Agro score should superior prognostication in both ER- and ER+ breast cancer
- 20 subtypes. In fact, the prognostication of this integrated score was better than each of the score in their respective subtypes. The method was therefore used to calculate the integrated <u>Breast Cancer Recurrence</u> (iBCR) score.

Figure 38: Integration of the TN and Agro scores by division or multiplication. The ROCK dataset was used to study the integration of the TN and Agro as these

- 25 scores were scattered when plotted against each other (panel A in Figure 36). (A) The box plots in the first column are identical to those in Figure 36. The shaded boxes in panel A describe integration by division (top row) or multiplication (bottom row) of the TN and Agro scores. The division produced a power curve and the multiplication produced an exponential curve for the relationship between the TN
- 30 and Agro scores after dividing them or multiplying them by each other in both ER+ (black dots) and ER- (red dots). The overlay in the last column shows that the differences between ER+ and ER- patients for the scores is retained. These two methods were tested for survival association in Figure 37 and the multiplication method was suitable. (B) As power and exponential curves were observed in the

division and multiplication methods in A, it was reasonable to test integration by raising one score to the power of the second score. As shown in the top row in the overlay or individual plots, the integration by raising the TN score to the power of the Agro score produced a linear relationship in both ER- (red dots) and ER+ (black dots) patients. This method of integration outperformed all other methods when

5 dots) patients. This method of integration outperformed all other methods when tested for survival association as shown in Figure 37.

Figure 39: The iBCR score is prognostic in TNBC patients. In addition to the validation of the iBCR score in the ROCK dataset (Affymetrix) and the TCGA dataset (Illumina dataset) of mixed subtypes of breast cancer, the iBCR score was

10 investigated in the homogenous TNBC dataset. As shown in the right panel, the iBCR was as prognostic (with slight improvement) compared to the TN score. This further validates the development of the integrated score to be a prognostic test in breast cancer irrespective of ER status, unlike previous limited signatures.

Figure 40: Survival of tamoxifen-treated ER+ patients according to the Agro

- 15 score vs. Oncotype Dx. (A) RFS and DMFS of node negative (top) and node positive (bottom) ER+ patients treated with tamoxifen in the published study (Loi *et al, Clin Oncol,* 2007) stratified by the Agro Score (high vs. intermediate vs. low by tertiles). (B) DMFS of node negative or positive ER+ patients treated with tamoxifen for 5 years from the published study (Symmans *et al, J Clin Oncol,* 2010)
- 20 was stratified by the tertiles of the Agro Score. (C) RFS and DMFS of node negative (top) and node positive (bottom) ER+ patients treated with tamoxifen in the published study (Loi *et al, Clin Oncol,* 2007) stratified by the risk groups of the OncotypeDx Recurrence Score. (D) DMFS of node negative or positive ER+ patients treated with tamoxifen for 5 years from the published study (Symmans *et al, J Clin*
- 25 Oncol, 2010) was stratified by the risk groups of the OncotypeDx Recurrence Score. Figure 41: Comparison of the Agro Score and MammaPrint in the KM-Plotter tool. Distant metastasis-free survival according to the Agro Score (high vs. low) or according to MammaPrint (high vs. low) in all breast cancer patients, ER+, ER+ lymph node negative (LN-) or ER+ lymph node positive (LN+) patients. The KM-
- 30 Plotter online tool (n = 4142 patients). The Agro score outperformed the MammaPrint signature in all patient subsets particularly for ER+ node positive patients.

Figure 42: Sensitivity of cancer cell lines to anticancer drugs according to the iBCR score in the Cancer Cell Line Encyclopedia (CCLE) study. The gene

expression data of the cancer cell lines in the study were analyzed to calculate the TN score for each cell line and were assigned to low or high iBCR score by dichotomy across the median. The IC_{50} for each of the 24 drugs used in the CCLE study was compared between high and low iBCR score cell lines and the data shown are those

5 with statistical differences based on unpaired two-tailed i-test performed using GraphPad[®] Prism. As this analysis was also done for the TN score (Figure 35), results from analysis of the Agro score are also shown in the top row.

Figure 43: High copy number variations (CNVs) in high Agro score tumors compared to low Agro score tumors. The breast cancer tumors in the TCGA

- 10 dataset were classified as high or low for the Agro score based on the gene expression data (Illumina HiSeq RNA-seq). (A) The TCGA copy number variations (segmented and after deletion of germline CNV) were visualized using the UCSC Genome Browser to compare patients who were classified from gene expression data as high Agro score patients (top panel) to those classified as low Agro score patients
- 15 (bottom panel). (B) Presentation of the distribution of clinical indicators such as ER, PR and HER2 status and others. (C) The difference in the CNVs profile of high Agro score patients to the low Agro score patients showing gains (red) and losses (green) of whole chromosome arms in the high Agro score patients, suggesting aneuploidy.
- Figure 44: High Agro and iBCR score cell lines are more sensitive to Aurora
 kinase inhibitors. Two studies which treated breast cancer cell lines with Aurora kinase inhibitors were analyzed based on the Agro, TN and the iBCR score for these cell lines. As shown in Figure, high Agro score and particularly high iBCR score cell lines were more sensitive to Aurora kinase inhibitors (ENMD-2076: IC50 1.4 μM vs. 5.9 μM for high vs. low iBCR Score cell lines, p=0.0125 f-test; AMG 900: IC50 0.3
 nM vs. 0.7 nM for high vs. low iBCR score cell lines, p=0.0308 *t*-test).
- nM vs. 0.7 nM for high vs. low iBCR score cell lines, p=0.0308 *t*-test).
 Figure 45: The iBCR is prognostic in the pan-cancer TCGA data for overall and relapse-free survival. The pan-cancer TCGA data were analyzed for the iBCR gene signature using the UCSC Genome Browser and the data for this signature, survival data and cancer types were downloaded from the browser. Tumors, irrespective of
- 30 cancer types, were classified into quartiles based on the iBCR signature expression and the overall and relapse free survival were compared across these quartiles. As shown in the top row, overall and relapse-free survival was stratified by the iBCR signature in this pan-cancer dataset. In the far right panel in the top row, the distribution of tumors in each cancer type across the iBCR signature quartile is

37

shown. Cervical cancer for example displays high iBCR signature in the majority of cases whereas on the opposite side, thyroid cancer displays low iBCR signature in all the cases. The lower panels show the stratification of overall survival according to the iBCR score from the pan-cancer dataset where the stratification was statistically

- 5 significant in log-rank univariate survival analysis. In addition to the breast cancer data shown in paper, the iBCR signature was prognostic in adrenocortical cancer, endometrioid cancer, kidney clear cell cancer, bladder cancer, lower grade glioma and melanoma. The iBCR was also prognostic in lung adenocarcinoma as shown in Figure 46.
- Figure 46: The iBCR signature is prognostic in lung adenocarcinoma (LUAD). The iBCR signature was tested for prognostication in lung cancer in two large datasets. (A&B) KM-Plotter (Affymetrix data) was used to investigate overall survival of lung adenocarcinoma (A) and squamous cell carcinoma (B). The iBCR signature shows a strong prognostic value in lung adenocarcinoma (LUAD). (C)
- 15 Multivariate survival analysis was performed in KM-Plotter for the iBCR signature in lung cancer in comparison to available clinical indicators; histological type (lung adenocarcinoma vs. small cell lung cancer) and stage of disease. The iBCR signature outperformed these standard clinical indicators. (D&E) The TCGA data for LUAD (Illumina HiSeq RNA-seq data) were stratified by quartiles or tertiles for the iBCR
- 20 signature expression to test the association of the iBCR signature with overall survival (D) and relapse-free survival (E), respectively. LUAD patients with high iBCR signature had poorest survival and suffered earlier recurrence and death compared to patients with lower iBCR signature expression. It should be noted that the TCGA data for squamous cell lung carcinoma were also investigated and there
 25 was no statistical significance for the association of the iBCR signature and survival,
- in agreement with the very weak association seen from the KM-Plotter data. **Figure 47: The sensitivity of breast cancer cell lines treated with 24 drugs according to the iBCR score.** Breast cancer cell lines (10 cell lines) were cultured in the absence or presence of escalating doses of 24 small molecular anti-cancer drugs.
- This published study was re-analyzed to compare the sensitivity (calculated as the logIC50) between high iBCR score cell lines (5 cell lines: BT-549, MDA-MB-231, MDA-MB-436, MDA-MB-468 and BT-20) to low iBCR score cell lines (5 cell lines: Hs.578T, BT-474, MCF-7, T-47D, and ZR-75-1). The iBCR scores were calculated from the Agro and TN scores using the published gene expression dataset for 51

breast cancer cell lines (Neve *et al, Cancer Cell,* 2006). High iBCR score cell lines (red bars) were more sensitive than low iBCR score cell lines (white bars) to 13 drugs (shaded in grey) targeting 9 different kinases. Statistical comparison was performed in GraphPad[®] Prism using two tailed unpaired i-test.

- 5 Figure 48: Proteins and phosphoproteins associated with the iBCR mRNA gene signature. The iBCR score based on the mRNA expression of the 43 genes was used to stratify the patients in the TCGA breast cancer dataset as low, intermediate or high iBCR score. The reverse phase protein arrays (RPPA) from the TCGA breast cancer dataset (n=747 patients) were then compared between the three groups of patients
- 10 according to the iBCR mRNA signature. (A) Overall survival of ER+ patients according to the iBCR mRNA signature. (B) Significantly up- or down-regulated proteins and phosphoproteins in ER+ patients in the low, intermediate and high iBCR score groups. (C) Overall survival of ER- according to the iBCR mRNA signature. (D) Significantly up- or down-regulated proteins and phosphoproteins in 15 ER- patients in the low, intermediate and high iBCR score groups.
- **Figure 49: Prognostication of breast cancer patient survival by integrated mRNA and protein iBCR signature.** The deregulated proteins and phosphoproteins in the three iBCR mRNA score groups were investigated for association with survival. Eight downregulated proteins and nine upregulated proteins were highly
- 20 prognostic as a protein signature (iBCR protein signature). (A) Stratification of overall survival based on the iBCR protein signature (top row) and the integrated iBCR mRNA and protein signature (bottom row) in all breast cancer patients, ER+ and ER- cases. (B) Univariate and multivariate survival analysis using the Coxproportional hazard model showing that the combined iBCR mRNA/Protein signature outperforms all clinicopathological indicators.
- **Figure 50:** Proteins and phosphoproteins associated with the iBCR mRNA gene signature. (A) Stratification of lung adenocarcinoma overall survival based on the iBCR mRNA gene signature in the TCGA dataset (n=472 patients). (B) Comparison of proteins phosphoprotein levels between the tumors in the four quartiles of the
- iBCR mRNA gene signature. (C) Stratification of overall survival of lung adenocarcinoma patients based on six proteins deduced from panel (n=212 patients).
 (D) The combined iBCR mRNA/Protein signature stratifies the overall survival of lung adenocarcinoma patients (n=212 patients). (E) Multivariate Cox-proportional

hazard model for survival analysis showing that the combined iBCR mRNA/Protein score outperforms all clinicopathological indicators in lung adenocarcinoma.

Figure 51: The iBCR test is prognostic in Kidney renal clear cell carcinoma (KIRC) (left vertical panel), Skin cutaneous melanoma (SKCM) (middle vertical

- 5 panel) and Uterine corpus endometrioid carcinoma (UCEC) (right vertical panel). (A) Stratification of overall survival based on the iBCR mRNA gene signature. (B) Stratification of overall survival based on iBCR protein signature. (C) Stratification of overall survival based on the combined iBCR mRNA/protein signature.
- 10 Figure 52: The iBCR test is prognostic in Ovarian adenocarcinoma (OVAC) (left vertical panel), Head & Neck squamous cell carcinoma (HNSC) (middle vertical panel) and Colon/Rectal Adenocarcinoma (COREAD) (right vertical panel). (A) Stratification of overall survival based on the iBCR mRNA gene signature. (B) Stratification of overall survival based on iBCR protein signature. (C)
- 15 Stratification of overall survival based on the combined iBCR mRNA/protein signature.

Figure 53: The iBCR test is prognostic in Lower Grade Glioma (LGG) (left vertical panel), Bladder urothelial carcinoma (BLCA) (middle vertical panel) and Lung squamous cell carcinoma (LUSC) (right vertical panel). (A)

- 20 Stratification of overall survival based on the iBCR mRNA gene signature. (B) Stratification of overall survival based on iBCR protein signature. (C) Stratification of overall survival based on the combined iBCR mRNA/protein signature.
 Figure 54: The iBCR test is prognostic in (A) Kidney renal papillary cell carcinoma
- (KIRP). (B) Cervical squamous cell carcinoma and endocervical adenocarcinoma
 (CESC), (C) Liver hepatocellular carcinoma (LIHC), (D) Pancreatic ductal adenocarcinoma (PDAC). For these cancer types, the TCGA datasets did not include RPPA arrays; only the iBCR mRNA gene expression test was used.

Figure 55: Protein-protein interaction of the iBCR mRNA/protein signature. The components of the iBCR test were analysed using the STRING database. The

³⁰ iBCR test (65 components) was significantly enriched (P=5.6E-14) for proteinprotein interactions (129 interactions). The confidence of interactions is denoted by increasing thickness of the connecting blue lines. It is noteworthy that the components on the top right which do not show interactions contain several novel

genes that are not well characterised. The iBCR test is enriched for several biological functions related to the hallmarks of cancer (refer to Table 20).

Figure 56: The iBCR test as a companion diagnostic for immunotherapy. (A) Twelve genes from the iBCR test, particularly from the TN component, associated

- 5 significantly with progression free survival of follicular lymphoma patients treated with pidilizumab + rituximab immunotherapy. The expression profile of the 12 genes in the tumours prior to treatment is shown (red indicates overexpression and green indicates underexpression). White and black boxes denote progression free survival or not, respectively. (**B**) A score was calculated based on the iBCR signature as the
- 10 ratio of expression of the overexpressed genes to that of underexpressed genes. The survival of patients based on dichotomy across the median score was compared. The hazard ratio (HR) and the log-rank p-value for the survival comparison between low and high score tumors is shown in panel. (C) Eight patients were profiled pre- and post-treatment and the expression profiles of the 12 genes from the iBCR test were
- 15 visualised in these patients. A trend for inversion of expression was observed and this was most evident for patient no. 9 who remained free of disease progression. (D) One gene was statistically significant in all patients post-treatment compared to that before treatment. This gene showed a marked different post-treatment vs. pretreatment for patient no. 9. (E) Survival curve for the same patient group calculated
- 20 from the gene signature labelled "Follicular Lymphoma" in Table 23. All conventions as per (B) above. Relapse-free survival of patients based on dichotomy across the median score is shown.

Figure 57: Network analysis of the genes from the meta-analysis of gene expression datasets.

- 25 Figure 58: Functional metagenes associate with breast cancer patient survival. Figure 59: The iBCR test as a companion diagnostic for EGFR inhibition and multikinase inhibition. (A) Seventeen genes (see Table 23) from the iBCR test associated significantly with survival of colorectal cancer patients treated with the EGFR inhibitor cetuximab. (B) Sixteen genes (see Table 23) from the iBCR test
- 30 associated significantly with overall survival of triple negative breast cancer patients treated with the EGFR inhibitor cetuximab combined with cisplatin. (C) Nineteen genes (see Table 23) from the iBCR test associated significantly with progressionfree survival of lung cancer patients treated with the EGFR inhibitor erlotinib. (D) Twenty genes (see Table 23) from the iBCR test associated significantly with

progression-free survival of lung cancer patients treated with the multikinase inhibitor sorafenib.

DETAILED DESCRIPTION

- 5 The present invention is at least partly predicated on the discovery that there are genes that are associated with tumor aggressiveness and poor clinical outcome based on meta-analysis of published gene expression profiling. More particularly, the overexpression and/or underexpression of these genes (see Table 21) was found to be associated with poor survival in breast cancer. Network analysis using the Ingenuity 10 Pathway Analysis (IPA®) software identified a number of networks or metagenes
- within these survival-associated genes that possess distinct biological functions as outlined in Table 21. A smaller subset of genes from each network or metagene which consistently associated with patient survival were then selected. The list of these genes and their corresponding functions are shown in Table 22. These genes were divided into six functional metagenes or networks.

The present invention is also at least partly predicated on the discovery that there are genes that are commonly de-regulated in particular subgroups that exemplify aggressive clinical behavior in triple-negative breast cancer (TNBC). More particularly, this is evident in TNBC compared to non-TNBC and normal breast, tumors associated with distant metastasis and/or death compared to their respective counterparts. Initially, a list of 206 recurrently deregulated genes was found to be particularly enriched for chromosomal instability (CIN) and estrogen receptor signaling (ER) metagenes. An aggressiveness score based on the ratio of the

25 identify aggressive tumors regardless of molecular subtype and clinico-pathologic indicators. Furthermore, depletion of proteins involved in kinetochore binding or chromosome segregation could be therapeutic and significantly reduced the survival of TNBC cell lines *in vitro*, particularly with regard to TTK. TTK inhibition with small molecule inhibitor affected the survival of TNBC cell lines. Also, *TTK* mRNA

expression level of a CIN metagene relative to an ER metagene has been shown to

30 and protein levels were associated with aggressive tumor phenotypes. Mitosisindependent expression of TTK protein was prognostic in TNBC and other aggressive breast cancer subgroups, suggesting that protection of CIN/aneuploidy drives aggressiveness and treatment-resistance. The combination of TTK inhibition

with chemotherapy was effective *in vitro* in the treatment of cells that overexpress TTK, thus providing a therapeutic treatment for the protected CIN phenotype.

Additionally, the present invention is at least partly predicated on the discovery of a second signature of altered gene expression, including 21 overexpressed genes and 7 underexpressed genes, that is highly prognostic in patients with ER breast cancer, TNBC and basal-like breast cancer (BLBC). Indeed, integration of this 28 gene signature with the aforementioned aggressiveness score or gene signature produces an integrated score which is prognostic in breast cancer independent of ER status. Furthermore, the integrated score was prognostic in cancer broadly irrespective of the cancer type, as well as in specific types of cancer in addition to breast cancer, such as lung adenocarcinoma. Moreover, the 28 gene signature and the integrated score were both shown to be predictive of response to chemotherapy in breast cancer patients, as well as identify those ER⁺ lymph node positive breast cancer patients who would benefit from endocrine therapy. Altered

15 expression of the signatures described herein was also predictive of sensitivity in cancer cell lines and clinically to a range of anticancer therapeutics, and in particular, molecularly targeted inhibitors.

The inventors of the present invention have also identified a protein signature that is highly prognostic in a range of cancers, including breast cancer and lung adenocarcinoma. Furthermore, this protein signature may be integrated with the aforementioned 28 gene signature and aggressive gene signature to provide a robust prognostic indicator in cancer that was shown to outperform known clinicopathological indicators.

In one aspect, the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein

44

Synthesis/Modification metagene and a Multiple Networks metagene, wherein: a higher relative expression level of the plurality of the overexpressed genes compared to the plurality of the underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the plurality of the overexpressed genes compared to the plurality of the underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In a futher aspect, the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular

- 15 Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein: a higher relative expression level of the plurality of
- 20 overexpressed genes compared to the plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the plurality of overexpressed genes compared to the plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis.

In one embodiment of the above aspects, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from one of the metagenes. In an alternative embodiment, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from a plurality of the metagenes.

Suitably, for the method of the above aspects the Carbohydrate/Lipid 30 Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene

and/or the Multiple Networks metagene comprise one or more genes listed in Table 21.

In another aspect, the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein: a higher relative expression level of the plurality of the overexpressed genes compared to the plurality of the underexpressed genes indicates or correlates with higher

15 of the overexpressed genes compared to the plurality of the underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level

aggressiveness of the cancer; and/or a lower relative expression level of the plurality

In yet another aspect, the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a 25 Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein: a higher relative expression level of the plurality of overexpressed genes compared to the plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the plurality of overexpressed genes

30 compared to the plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis.

Suitably, the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication

46

metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene comprise one or more genes listed in Table 21.

In particular embodiments of the method of the two aforementioned aspects, the plurality of overexpressed genes and the plurality of underexpressed genes are from one or more of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene. According to the method of the above aspects, the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes includes comparing an average expression level of the plurality of overexpressed genes and an average expression level of the plurality of

- 15 underexpressed genes. This may include calculating a ratio of the average expression level of the plurality of overexpressed genes and the average expression level of the plurality of underexpressed genes. Suitably, the ratio provides an aggressiveness score which is indicative of, or correlates with, cancer aggressiveness and a less favourable prognosis. Alternatively, the step of comparing an expression level of a
- 20 plurality of overexpressed genes and an expression level of a plurality of underexpressed genes includes comparing the sum of expression levels of the plurality of overexpressed genes and the sum of expression levels of the plurality of underexpressed genes. This may include calculating a ratio of the sum of expression levels of the plurality of overexpressed genes and the sum of expression levels of the plurality of underexpressed genes.

For the purposes of this invention, by *"isolated"* is meant material that has been removed from its natural state or otherwise been subjected to human manipulation. Isolated material may be substantially or essentially free from components that normally accompany it in its natural state, or may be manipulated so as to be in an artificial state together with components that normally accompany it in its natural state. Isolated material may be in native, chemical synthetic or recombinant form.

As used herein a "gene" is a nucleic acid which is a structural, genetic unit of a genome that may include one or more amino acid-encoding nucleotide sequences

47

and one or more non-coding nucleotide sequences inclusive of promoters and other 5' untranslated sequences, introns, polyadenylation sequences and other 3' untranslated sequences, although without limitation thereto. In most cellular organisms a gene is a nucleic acid that comprises double-stranded DNA.

Non-limiting examples of genes are set forth herein, particularly in Tables 4, 21 and 22, which include Accession Numbers referencing the nucloetide sequence of the gene, or its encoded protein, as are well understood in the art.

The term "*nucleic acid*" as used herein designates single- or double-stranded DNA and RNA. DNA includes genomic DNA and cDNA. RNA includes mRNA, RNA, RNAi, siRNA, cRNA and autocatalytic RNA. Nucleic acids may also be DNA-RNA hybrids. A nucleic acid comprises a nucleotide sequence which typically includes nucleotides that comprise an A, G, C, T or U base. However, nucleotide sequences may include other bases such as inosine, methylycytosine, methylinosine, methyladenosine and/or thiouridine, although without limitation thereto.

15 Also included are, "*variant*" nucleic acids that include nucleic acids that comprise nucleotide sequences of naturally occurring (e.g., allelic) variants and orthologs (*e.g.*, from a different species). Preferably, nucleic acid variants share at least 70% or 75%, preferably at least 80% or 85% or more preferably at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity with a 20 nucleotide sequence disclosed herein.

Also included are nucleic acid fragments. A "fragment" is a segment, domain, portion or region of a nucleic acid, which respectively constitutes less than 100%) of the nucleotide sequence. A non-limilting example is an amplification product or a primer or probe. In particular embodiments, a nucleic acid fragment may comprise, for example, at least 10, 15, 20, 25, 30 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475 and 500 contiguous nucleotides of said nucleic acid.

As used herein, a "polynucleotide" is a nucleic acid having eighty (80) or more contiguous nucleotides, while an "oligonucleotide" has less than eighty (80) 30 contiguous nucleotides. A "probe" may be a single or double-stranded oligonucleotide or polynucleotide, suitably labeled for the purpose of detecting complementary sequences in Northern or Southern blotting, for example. A "primer" is usually a single-stranded oligonucleotide, preferably having 15-50 contiguous nucleotides, which is capable of annealing to a complementary nucleic acid

"template" and being extended in a template-dependent fashion by the action of a DNA polymerase such as *Taq* polymerase, RNA-dependent DNA polymerase or SequenaseTM. A *"template"* nucleic acid is a nucleic acid subjected to nucleic acid amplification.

- 5 It will be appreciated that the *"overexpressed"* genes or proteins referred to herein are genes or proteins that are expressed at a higher level in a cancer cell or tissue compared to a corresponding normal or otherwise non-cancerous cell or tissue or reference/control level or sample.
- It will be appreciated that the *"underexpressed"* genes or proteins referred to herein are genes or proteins that are expressed at a lower level in a cancer cell or tissue compared to a corresponding normal or otherwise non-cancerous cell or tissue or reference/control level or sample.

In certain embodiments, the "overexpressed' and "underexpressed' genes referred to herein may form, or be components of, a metagene.

- 15 As used herein, a "*metagene*" is a grouping, cohort or network of a plurality of different genes that display a common, shared or aggregate expression profile, expression level or other expression characteristics that associate with, or are indicative of, a particular function or phenotype. Non-limiting examples include a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular
- Development metagene, a Cellular Growth metagene, a Chromosome Segregation 20 metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene. Table 21 provides non-limiting examples of genes that are components of the aforementioned twelve metagenes. 25 Further non-limiting examples include a Metabolism metagene, a Signalling metagene, а Development and Growth metagene, Chromosome a Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene. Table 22 provides non-limiting examples of genes that are components of the aforementioned six metagenes. 30

In particular embodiments, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from one of the metagenes. In this regard, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from the same metagene. By way of example, the plurality of

10

15

49

overexpressed genes or the plurality of underexpressed genes may be only from one of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism Post-Translational Modification metagene, the metagene, the Protein Synthesis/Modification metagene and the Multiple Networks metagene. In a further example, both the plurality of overexpressed genes and the plurality of underexpressed genes may be only from one of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and the Multiple Networks metagene.

Alternatively, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from a plurality of the metagenes described herein.

By "aggressiveness" and "aggressive" is meant a property or propensity for a cancer to have a relatively poor prognosis due to one or more of a combination of features or factors including: at least partial resistance to therapies available for cancer treatment; invasiveness; metastatic potential; recurrence after treatment; and a low probability of patient survival, although without limitation thereto.

Cancers may include any aggressive or potentially aggressive cancers, tumours or other malignancies such as listed in the NCI Cancer Index at http://www.cancer.gov/cancertopics/alphalist, including all major cancer forms such as sarcomas, carcinomas, lymphomas, leukaemias and blastomas, although without limitation thereto. These may include breast cancer, lung cancer inclusive of lung adenocarcinoma, cancers of the reproductive system inclusive of ovarian cancer,

30 cervical cancer, uterine cancer and prostate cancer, cancers of the brain and nervous system, head and neck cancers, gastrointestinal cancers inclusive of colon cancer, colorectal cancer and gastric cancer, liver cancer, kidney cancer, skin cancers such as melanoma and skin carcinomas, blood cell cancers inclusive of lymphoid cancers and myelomonocytic cancers, cancers of the endocrine system such as pancreatic

10

20

50

cancer and pituitary cancers, musculoskeletal cancers inclusive of bone and soft tissue cancers, although without limitation thereto.

In certain embodiments, cancers include breast cancer, bladder cancer, colorectral cancer, glioblastoma, lower grade glioma, head & neck cancer, kidney cancer, liver cancer, lung adenocarcinoma, acute myeloid leukaemia, pancreatic cancer, adrenocortical cancer, melanoma and lung squamous cell carcinoma.

Breast cancers include all aggressive breast cancers and cancer subtypes such as triple negative breast cancer, grade 2 breast cancer, grade 3 breast cancer, lymph node positive (LN⁺) breast cancer, HER2 positive (HER2⁺) breast cancer and ER positive (ER⁺) breast cancer, although without limitation thereto.

As used herein, *"triple negative breast cancer"* (TNBC) is an often aggressive breast cancer subtype lacking or having significantly reduced expression of estrogen receptor (ER) protein, progesterone receptor (PR) protein and HER2 protein. TNBC and other aggressive breast cancers are typically insensitive to some 15 of the most effective therapies available for breast cancer treatment including HER2directed therapy such as trastuzumab and endocrine therapies such as tamoxifen and aromatase inhibitors.

As used herein, a gene expression level may be an absolute or relative amount of an expressed gene or gene product inclusive of nucleic acids such as RNA, mRNA and cDNA and protein.

As would be appreciated by the skilled artisan, the present invention need not be limited to comparing the expression level of the overexpressed genes and/or proteins with the expression level of the underexpressed genes and/or proteins provided herein. Accordingly, in particular embodiments, the expression level of the overexpressed and/or underexpressed genes and/or proteins is compared to a control level of expression, such as the level of gene and/or protein expression of a "housekeeping" gene in one or more cancer cells, tissues or organs of the mammal.

In further embodiments, the expression level of the overexpressed and/or underexpressed genes and/or proteins is compared to a threshold level of expression, such as a level of gene and/or protein expression in non-aggressive cancerous tissue. A threshold level of expression is generally a quantified level of expression of a particular gene or set of genes, including gene products thereof. Typically, an expression level of a gene or set of genes in a sample that exceeds or falls below the threshold level of expression is predictive of a particular disease state or outcome.

10

15

30

51

The nature and numerical value (if any) of the threshold level of expression will vary based on the method chosen to determine the expression the one or more genes or proteins used in determining, for example, a prognosis, the aggressiveness and/or response to anticancer therapy, in the mammal. In light of this disclosure, any person of skill in the art would be capable of determining the threshold level of gene/protein expression in a mammal sample that may be used in determining, for example, a prognosis, the aggressiveness and/or response to anticancer therapy, using any method of measuring gene or protein expression known in the art, such as those described herein. In one embodiment, the threshold level is a mean and/or median expression level (median or absolute) of the overexpressed and/or underexpressed genes and/or proteins in a reference population, that, for example, have the same cancer type, subgroup, stage and/or grade as said mammal for which the expression level is determined. Additionally, the concept of a threshold level of expression should not be limited to a single value or result. In this regard, a threshold level of expression may encompass multiple threshold expression levels that could signify, for example, a high, medium, or low probability of, for example, progression free

survival.

By *"protein"* is meant an amino acid polymer. The amino acids may be natural or non-natural amino acids, D- or L- amino acids as are well understood in the art. As would be appreciated by the skilled person, the term "protein" also includes within its scope phosphorylated forms of a protein *(i.e., phosphoproteins)*.

Also provided are protein "variants" such as natrually occurring (eg allelic variants) and orthologs. Preferably, protein variants share at least 70% or 75%, preferably at least 80% or 85% or more preferably at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence disclosed herein.

Also provided are protein fragments, inclusive of peptide fragments thqat comprise less than 100% of an entire amino acid sequence. In particular embodiments, a protein fragment may comprise, for example, at least 10, 15, 20, 25, 30 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375 and 400 contiguous amino acids of said protein.

A "peptide" is a protein having no more than fifty (50) amino acids.

A "polypeptide" is a protein having more than fifty (50) amino acids.

30

52

It would be appreciated that in addition to comparing the expression levels of one or more genes or proteins, the methods of the present invention may further include the step of determining, assessing, evaluating, assaying or measuring the expression level of one or more of the overexpressed genes, the underexpressed genes, the overexpressed proteins and/or the underexpressed proteins described herein. The terms "determining", "measuring", "evaluating", "assessing" and "assaying" are used interchangeably herein and may include any form of measurement known in the art, such as those described hereinafter.

Determining, assessing, evaluating, assaying or measuring nucleic acids such as RNA, mRNA and cDNA may be performed by any technique known in the art. These may be techniques that include nucleic acid sequence amplification, nucleic acid hybridization, nucleotide sequencing, mass spectroscopy and combinations of any these.

Nucleic acid amplification techniques typically include repeated cycles of annealing one or more primers to a "template" nucleotide sequence under appropriate conditions and using a polymerase to synthesize a nucleotide sequence complementary to the target, thereby "amplifying" the target nucleotide sequence. Nucleic acid amplification techniques are well known to the skilled addressee, and include but are not limited to polymerase chain reaction (PCR); strand displacement amplification (SDA); rolling circle replication (RCR); nucleic acid sequence-based

amplification (NASBA), Q-β replicase amplification; helicase-dependent amplification (HAD); loop-mediated isothermal amplification (LAMP); nicking enzyme amplification reaction (NEAR) and recombinase polymerase amplification (RPA), although without limitation thereto. As generally used herein, an
 "amplification product" refers to a nucleic acid product generated by a nucleic acid amplification technique.

PCR includes quantitative and semi-quantitative PCR, real-time PCR, allelespecific PCR, methylation-specific PCR, asymmetric PCR, nested PCR, multiplex PCR, touch-down PCR and other variations and modifications to "basic" PCR amplification.

Nucleic acid amplification techniques may be performed using DNA or RNA extracted, isolated or otherwise obtained from a cell or tissue source. In other embodiments, nucleic acid amplification may be performed directly on appropriately treated cell or tissue samples.

15

53

Nucleic acid hybridization typically includes hybridizing a nucleotide sequence (typically in the form of a probe) to a target nucleotide sequence under appropriate conditions, whereby the hybridized probe-target nucleotide sequence is subsequently detected. Non-limiting examples include Northern blotting, slot-blotting, *in situ* hybridization and fluorescence resonance energy transfer (FRET) detection, although without limitation thereto. Nucleic acid hybridization may be performed using DNA or RNA extracted, isolated, amplified or otherwise obtained from a cell or tissue source or directly on appropriately treated cell or tissue samples.

It will also be appreciated that a combination of nucleic acid amplification and nucleic acid hybridization may be utilized.

Determining, assessing, evaluating, assaying or measuring protein levels may be performed by any technique known in the art that is capable of detecting cell- or tissue-expressed proteins whether on the cell surface or intracellularly expressed, or proteins that are isolated, extracted or otherwise obtained from the cell of tissue source. These techniques include antibody-based detection that uses one or more antibodies which bind the protein, electrophoresis, isoelectric focussing, protein sequencing, chromatographic techniques and mass spectroscopy and combinations of

these, although without limitation thereto. Antibody-based detection may include

flow cytometry using fluorescently-labelled antibodies that bind the protein, ELISA, immunoblotting, immunoprecipitation, *in situ* hybridization, immunohistochemistry and immuncytochemistry, although without limitation thereto. Suitable techniques may be adapted for high throughput and/or rapid analysis such as using protein arrays such as a TissueMicroArrayTM (TMA), MSD MultiArraysTM and multiwell ELISA, although without limitation thereto.

In certain embodiments, a gene expression level may be assessed indirectly by the measurement of a non-coding RNA, such as miRNA, that regulate gene expression. MicroRNAs (miRNAs or miRs) are post-transcriptional regulators that bind to complementary sequences in the 3' untranslated regions (3' UTRs) of target mRNA transcripts, usually resulting in gene silencing. miRNAs are short RNA molecules, on average only 22 nucleotides long. The human genome may encode over 1000 miRNAs, which may target about 60% of mammalian genes and are abundant in many human cell types. Each miRNA may alter the expression of hundreds of individual mRNAs. In particular, miRNAs may have multiple roles in negative regulation (*e.g.*, transcript degradation and sequestering, translational

54

suppression) and/or positive regulation (*e.g.*, transcriptional and translational activation). Additionally, aberrant miRNA expression has been implicated in various types of cancer.

In this regard, an average expression level, or alternatively a sum of the expression levels, may be calculated for the plurality of overexpressed genes and for the plurality of underexpressed genes, to thereby produce or calculate a ratio.

Accordingly, determining cancer aggressiveness and/or a prognosis for a cancer patient in certain embodiments of the present invention further includes determining the ratio of the expression level (*e.g.* an average or sum of the expression level) of the plurality of overexpressed genes to the expression level (*e.g.* an average or sum of the expression level) of the plurality of the plurality of underexpressed genes.

In another aspect of the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes associated with chromosomal instability and an expression level of a plurality of underexpressed 15 genes associated with estrogen receptor signalling in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the plurality of overexpressed genes associated with chromosomal instability compared to the plurality of underexpressed genes associated with estrogen receptor signalling 20 indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level expression level of the plurality of overexpressed genes associated with chromosomal instability compared to the plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression 25 level.

In yet another aspect of the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes associated with chromosomal instability and an expression level of a plurality of underexpressed genes associated with estrogen receptor signalling in the mammal, wherein: a higher relative expression level of the plurality of overexpressed genes associated with chromosomal instability compared to the plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the plurality

of overexpressed genes associated with chromosomal instability compared to the plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a more favourable cancer prognosis.

- Non-limiting examples of genes in a chromosomal instability (CIN) metagene
 include ATP6V1C1, RAP2A, CALM1, COG8, HELLS, KDM5A, PGK1, PLCH1, CEP55, RFC4, TAF2, SF3B3, GPI, PIR, MCM10, MELK, FOXM1, KIF2C, NUP155, TPX2, TTK, CENPA, CENPN, EXOl, MAPREl, ACOT7, NAEl, SHMT2, TCP1, TXNRD1, ADM, CHAF1A and SYNCRIP genes, although without limitation thereto; and an estrogen receptor signalling (ER) metagene may comprise BTG2,
- 10 PIK3IP1, SEC14L2, FLNB, ACSF2, APOM, BIN3, GLTSCR2, ZMYNDIO, ABAT, BCAT2, SCUBE2, RUNX1, LRRC48, MYBPC1, BCL2, CHPT1, ITM2A, LRIG1, MAPT, PRKCB, RERE, ABHD14A, FLT3, TNN, STC2, BATF, CDIE, CFB, EVL, FBXW4, ABCB1, ACAA1, CHAD, PDCD4, RPL10, RPS28, RPS4X, RPS6, SORBS1, RPL22 and RPS4XP3 genes, although without limitation thereto. Table 4 provides
- 15 further examples of genes that are components of a CIN metagene or that are components of an ER metagene.

An average expression level may be calculated for the CIN metagene and for the ER metagene, to thereby produce or calculate a ratio.

Alternatively, a sum of expression levels may be calculated for the CIN 20 metagene and for the ER metagene, to thereby produce or calculate a ratio.

In certain embodiments, a higher or increased ratio of the average or sum of expression levels of a CIN metagene relative to an ER metagene is associated with, correlates with or is indicative of, higher or increased cancer aggressiveness.

Thus, some embodiments of the invention provide an "aggressiveness score" 25 which is the ratio of CIN metagene expression level (*e.g.* average or sum of expression of CIN genes) to an ER metagene expression level (*e.g* average or sum of expression of ER genes).

Accordingly, embodiments of the aforementioned aspects of the invention include determining, assessing or measuring an expression level of a plurality of overexpressed genes associated with chromosomal instability and determining, assessing or measuring an expression level of a plurality of underexpressed genes associated with estrogen receptor signalling. In this regard, reference is made to Table 4 which provides a listing of 206 genes that include genes associated with chromosomal instability and genes associated with estrogen receptor signalling.

Preferably, the chromosomal instability genes are of a CIN metagene, comprising genes such as ATP6V1C1, RAP2A, CALM1, COG8, HELLS, KDM5A, PGK1, PLCH1, CEP55, RFC4, TAF2, SF3B3, GPI, PIR, MCM10, MELK, FOXM1, KIF2C, NUP155, TPX2, TTK, CENPA, CENPN, EXOl, MAPRE1, ACOT7, NAE1, SHMT2,

- 5 *TCP1, TXNRDl, ADM, CHAF1A and* SYNCRIP, although without limitation thereto. In one preferred embodiment, the chromosomal instability genes are selected from the group consisting of MELK, *MCM10, CENPA, EXOl, TTK* and *KIF2C*. Preferably, the estrogen receptor signalling genes are of an ER metagene comprising genes such as *BTG2, PIK3IP1, SEC14L2, FLNB, ACSF2, APOM, BIN3, GLTSCR2,*
- 2MYND10, ABAT BCAT2, SCUBE2, RUNX1, LRRC48, MYBPC1, BCL2, CHPT1, ITM2A, LRIG1, MAPT, PRKCB, RERE, ABHD14A, FLT3, TNN, STC2, BATF, CD1E, CFB, EVL, FBXW4, ABCB1, ACAA1, CHAD, PDCD4, RPL10, RPS28, RPS4X, RPS6, SORBS1, RPL22 and RPS4XP3, although without limitation thereto. In one preferred embodiment, the estrogen receptor signalling genes are selected
 from the group consisting of MAPT and MYB.

In certain embodiments, the method of the aforementioned two aspects further includes the step of comparing an expression level of one or more other overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5,

- 20 HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and an expression level of one or more other underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4,
- 25 APOBEC3A, CDIA, CDIB, CDIC, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBS1 and SRPK3, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more other overexpressed genes compared to the one or more other underexpressed genes indicates or correlates with higher aggressiveness of the cancer and/or a less
- 30 favourable cancer prognosis; and/or a lower relative expression level of the one or more other overexpressed genes compared to the one or more other underexpressed genes indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.

10

57

In one embodiment, the one or more other overexpressed genes are selected from the group consisting of *ABHD5*, *ADORA2B*, *BCAP31*, *CA9*, *CAMSAP1*, *CARHSP1*, *CD55*, *CETN3*, *EIF3K*, *EXOSC7*, *GNB2L1*, *GRHPR*, *GSK3B*, *HCFC1R1*, *KCNG1*, *MAP2K5*, *NDUFC1*, *PML*, *STAU1*, *TXN* and *ZNF593*.

In one embodiment, the one or more other underexpressed genes are selected from the group consisting of *BTN2A2*, *ERC2*, *IGH*, *ME1*, *MTMR7*, *SMPDL3B* and *ZNRD1-AS1*.

In this regard, an average expression level, or alternatively a sum of the expression levels, may be calculated for the one or more other overexpressed genes and for the one or more other underexpressed genes, to thereby produce or calculate a ratio.

Accordingly, determining cancer aggressiveness and/or a prognosis for a cancer patient in certain embodiments of the present invention further includes determining the ratio of the expression level *{e.g.* an average or sum of the expression level) of the one or more other overexpressed genes to the expression level *{e.g.* an average or sum of the expression level *of* the one or more other other overexpressed genes to the expression level *{e.g.* an average or sum of the expression level *of* the one or more other other

Detection and/or measurement of expression of the one or more other overexpressed genes and the one or more other underexpressed genes may be performed by any of those methods or combinations thereof described herein *{e.g.* measuring mRNA levels or an amplified cDNA copy thereof and/or by measuring a protein product thereof), albeit without limitation thereto.

Suitably, the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling is integrated with the comparison of the expression level of the one or more other overexpressed genes and the expression level of the one or more other underexpressed genes to derive a first integrated score. In particular embodiments, this may include deriving the first integrated score, at least in part, by addition, subtraction, multiplication, division and/or exponentiation.

By way of example, the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling may be added to, subtracted from, multiplied by, divided by and/or raised

15

20

58

to the power of the comparison of the expression level of the one or more other overexpressed genes and the expression level of the one or more other underexpressed genes to derive the first integrated score. Alternatively, the comparison of the expression level of the one or more other overexpressed genes and the expression level of the one or more other underexpressed genes may be added to, subtracted from, multiplied by, divided by and/or raised to the power of the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of

underexpressed genes associated with estrogen receptor signalling to derive the first

10 integrated score.

In a particular preferred embodiment, the first integrated score is derived by exponentiation, wherein the comparison of the expression level of the one or more other overexpressed genes and the expression level of the one or more other underexpressed genes is raised to the power of the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling.

As would be appreciated by the skilled person, the other overexpressed and underexpressed genes described herein may not necessarily be associated with chromosomal instability and estrogen receptor signalling respectively.

In a further aspect, the invention provides a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or more overexpressed genes, wherein the one or more overexpressed genes are selected from the group consisting of *CAMSAP1*,

25 CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and an expression level of one or more underexpressed genes, wherein the one or more underexpressed genes are selected from the group consisting of BRD8,

30 BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBS1 and SRPK3, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed genes compared to

10

59

the one or more underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In one embodiment, the one or more overexpressed genes are selected from the group consisting of *ABHD5*, *ADORA2B*, *BCAP31*, *CA9*, *CAMSAPI*, *CARHSPI*, *CD55*, *CETN3*, *EIF3K*, *EXOSC7*, *GNB2L1*, *GRHPR*, *GSK3B*, *HCFC1R1*, *KCNG1*, *MAP2K5*, *NDUFC1*, *PML*, *STAU1*, *TXN* and *ZNF593*.

In one embodiment, the one or more underexpressed genes are selected from the group consisting of *BTN2A2*, *ERC2*, *IGH*, *ME1*, *MTMR7*, *SMPDL3B* and *ZNRD1-AS1*.

In yet another aspect, the invention provides a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or more overexpressed genes, wherein the one or more overexpressed genes are selected from the group consisting of *CAMSAPl, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSPl, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1,*

20 and an expression level of one or more underexpressed genes, wherein the one or more underexpressed genes are selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNI, MTMR7, SORBS1 and

25 *SRPK3*, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or

30 correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.

In one embodiment, the one or more overexpressed genes are selected from the group consisting of *ABHD5*, *ADORA2B*, *BCAP31*, *CA9*, *CAMSAPI*, *CARHSPI*,

60

CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFC1R1, KCNG1, MAP2K5, NDUFC1, PML, STAU1, TXN and ZNF593.

In one embodiment, the one or more underexpressed genes are selected from the group consisting of *BTN2A2*, *ERC2*, *IGH*, *ME1*, *MTMR7*, *SMPDL3B* and *ZNRD1-AS1*.

In particular embodiments, the method of the aforementioned aspects further includes the step of comparing an expression level of one or more overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB 1, HER2,

- 10 ASNS and COL6A1, and an expression level of one or more underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed
- 15 proteins indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression 20 level.

As would be appreciated by the skilled artisan, the expression level of one or more of the overexpressed proteins and/or one or more of the underexpressed proteins described herein may include one or more phosphorylated forms of said proteins *{i.e.,* a phosphoprotein). In one embodiment, EIF4EBP1 is or comprises one or more phosphoproteins selected from the group consisting of pEIF4EBP1 ^{S65}, pEIF4EBP1 ^{T37}, pEIF4EBP1 ^{T46} and pEIF4EBP1 ^{T70}. In one embodiment, EGFR is or comprises one or more phosphoproteins selected from the group consisting of pEGFR^{Y1068} and pEGFR^{Y1173}. In one embodiment, HER3 is or comprises pHER3^{Y1289}. In one embodiment, AKT1 is or comprises one or more phosphoproteins selected from the group consisting of pAKT1 ^{S473} and pAKT1 ^{X308}. In one embodiment, NFKB1 is or comprises pNFKB1 ^{S536}. In one embodiment, HER2 is or comprises pHER2^{Y1248}. In one embodiment, ESR1 is or comprises pESR1 ^{S118}. In one embodiment, PEA15 is or comprises pPEA15^{S116}. In one embodiment, RPS6 is

20

25

30

61

or comprises one or more phosphoproteins selected from the group consisting of pRPS6^{S235}, pRPS6^{S236}, pRPS6^{S240} and pRPS6^{S244}.

An average or sum of the expression levels may be calculated for the overexpressed genes, the underexpressed genes, the overexpressed proteins and/or the underexpressed proteins, to thereby produce or calculate a ratio.

Thus, in certain embodiments of the present invention determining cancer aggressiveness and/or a prognosis for a cancer patient includes determining (i) the ratio of the expression level (e.g. an average or sum of the expression level) of the one or more overexpressed genes to the expression level (e.g. an average or sum of 10 the expression level) of the one or more underexpressed genes; and/or (ii) the ratio of the expression level (e.g. an average or sum of the expression level) of the one or more overexpressed proteins to the expression level (e.g. an average or sum of the expression level) of the one or more underexpressed proteins.

Detection and/or measurement of expression of the overexpressed proteins and the underexpressed proteins may be performed by any of those methods or 15 combinations thereof hereinbefore described, albeit without limitation thereto.

Suitably, the comparison of the expression level of the one or more overexpressed proteins and the expression level of the one or more underexpressed proteins is to thereby derive an integrated score. In one particular embodiment, the comparison of the expression level of the one or more overexpressed proteins and the expression level of the one or more underexpressed proteins is integrated with:

- (i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and the expression level of the underexpressed genes associated with estrogen receptor signalling to derive a second integrated score; or
- (ii) the first integrated score to derive a third integrated score; or
- the comparison of the expression level of the overexpressed genes (iii) selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1 and the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C,

62

NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLN1, MTMR7, SORBS1 and SRPK3 to derive a fourth integrated score; or

- 5 (iv) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or more of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development Growth metagene, the Chromosome metagene, the Cellular 10 Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification the Protein metagene, Synthesis/Modification metagene and/or the Multiple Networks metagene, to derive a fifth integrated score; or 15
 - (v) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or more of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score.

In particular embodiments, the second, third, fourth, fifth and/or sixth integrated scores are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation. By way of example, the comparison of the expression level of the one or more overexpressed proteins and the expression level of the one or more underexpressed proteins may be added to, subtracted from, multiplied by, divided by and/or raised to the power of (i) the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the score signalling; or (ii) the first integrated score. Alternatively, the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling or the first integrated score may be

added to, subtracted from, multiplied by, divided by and/or raised to the power of the comparison of the expression level of the one or more overexpressed proteins and the expression level of the one or more underexpressed proteins.

- In a further aspect, the invention provides a method of determining the 3 aggressiveness of a cancer in a mammal, said method including the step of 3 comparing an expression level of one or more overexpressed proteins selected from 3 the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, 3 HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and 3 an expression level of one or more underexpressed proteins selected from the group
- 10 consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or more overexpressed proteins compared to the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or more overexpressed proteins compared to the
- one or more underexpressed proteins indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.
- In a related aspect, the invention provides a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or more overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and an expression level of one or more underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one
- 30 or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.

In particular embodiments of the two aforementioned aspects, one or more of the overexpressed proteins and/or one or more of the underexpressed proteins are or comprise a phosphoprotein hereinbefore described.

An average or sum of the expression levels may be calculated for the one or 5 more overexpressed proteins and the one or more underexpressed proteins, to thereby produce or calculate a ratio as hereinbefore described.

This information with respect to the aggressiveness and/or prognosis of a patient's cancer may prove useful to a physician and/or clinician in determining the most effective course of treatment. A determination of the likelihood for a cancer relapse or of the likelihood of metastasis can assist the physician and/or clinician in determining whether a more conservative or a more radical approach to therapy should be taken. As such, a prognosis may provide for the selection and classification of patients who are predicted to benefit from a given therapeutic regimen.

Accordingly, another aspect of the invention provides a method of predicting 15 the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group

20 consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein an altered or modulated relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

As would be understood by the skilled person, the relative expression level of a gene or protein may be deemed to be *"altered"* or *"modulated"* when the expression level is higher/increased or lower/deer eased when compared to a control or reference sample or expression level, such as a threshold level. In one embodiment, a relative expression level may be classified as high if it is greater than a mean and/or median relative expression level of a reference population and a relative expression

level may be classified as low if it is less than the mean and/or median relative expression level of the reference population. In this regard, a reference population may be a group of subjects who have the same cancer type, subgroup, stage and/or grade as said mammal for which the relative expression level is determined.

5 Suitably, for the present aspect the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational 10 Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene comprise one or more genes listed in Table 21.

In a related aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed

- 15 genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune
- 20 Response metagene and a Protein Synthesis/Modification metagene, wherein an altered or modulated relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.
- In one embodiment of the two aforementioned aspects, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from one of the metagenes. In an alternative embodiment, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from a plurality of the metagenes.
- Suitably, the Metabolism metagene, the Signalling metagene, the 30 Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene comprise one or more genes listed in Table 22.

In particular embodiments, the plurality of overexpressed genes and the plurality of underexpressed genes are from one or more of a Carbohydrate/Lipid

10

66

Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene.

In a related aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of determining an expression level of one or more genes associated with chromosomal instability (CIN) in one or more cancer cells of the mammal, wherein a higher expression level indicates or correlates with relatively increased responsiveness of the cancer to the anti-cancer treatment.

As will be described in more detail, overexpression of some CIN genes may be predictive of the responsiveness of a cancer to an anti-cancer treatment, particularly although not exclusively when overexpressed by non-mitotic cancer 15 cells. In this context, by "non-mitotic" means that the cancer cell is not in the mitotic or "M phase" of the cell cycle. Preferably, the non-mitotic cancer cells are in interphase. Broadly, any overexpressed CIN gene set forth Table 4 may be predictive of the responsiveness of a cancer to an anti-cancer treatment. In particular embodiments, the CIN gene is selected from the group consisting of: TTK, CEP55, 20 In a particularly preferred embodiment, the CIN gene is FOXM1 and SKIP2. selected from the group consisting of: TTK, CEP55, FOXM1 and SKIP2 and the cancer is breast cancer. In this regard, the inventors have shown that "bulk" measurements of extracted CIN gene mRNA or encoded protein do not provide a useful indication of whether overexpression of the CIN gene may be predictive of the 25 responsiveness of a cancer to an anti-cancer treatment. More particularly, detection of CIN gene expression by individual cancer cells, particularly non-mitotic or interphase cancer cells, provides a more powerful indication of the responsiveness of a cancer to an anti-cancer treatment.

30

As previously described, detection and/or measurement of expression of the CIN gene may be performed by measuring RNA (*e.g* mRNA or an amplified cDNA copy thereof) or by measuring a protein product of a CIN gene. In a particularly preferred embodiment, a protein product of a CIN gene is detected or measured by immunohistochemistry. Typically, although not exclusively, a preferred

10

67

immunohistochemistry method includes binding an antibody to the protein product of a CIN gene expressed by a cell or tissue and subsequent detection of the bound antibody. By way of example only, the antibody may be unlabelled, directly labelled with an enzyme such as horseradish peroxidase, alkaline phosphatase or glucose oxidase or directly labelled with biotin or digoxigenin. In embodiments where the antibody is unlabelled, a secondary antibody (labelled such as described above) may be used to detect the bound antibody. Biotinylated antibodies may be detected using avidin complexed with an enzyme such as horseradish peroxidase, alkaline glucose oxidase. Suitable phosphatase or enzyme substrates include diaminobanzidine (DAB), permanent red, 3-ethylbenzthiazoline sulfonic acid (ABTS), 5-bromo-4-chloro-3-indolyl phosphate (BCIP), nitro blue tetrazolium (NBT), 3,3',5,5'-tetramethyl benzidine (TNB) and 4-chloro-l-naphthol (4-CN), although without limitation thereto.

In a further aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes associated with chromosomal instability and an expression level of a plurality of underexpressed genes associated with estrogen receptor signalling in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the overexpressed genes associated with chromosomal instability compared to the underexpressed genes associated with estrogen receptor signalling indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In certain embodiments, the genes associated with chromosomal instability are of a CIN metagene. Non-limiting examples include genes selected from the group consisting of: *ATP6V1C1*, *RAP2A*, *CALM1*, *COG8*, *HELLS*, *KDM5A*, *PGK1*, *PLCH1*, *CEP55*, *RFC4*, *TAF2*, *SF3B3*, *GPI*, *PIR*, *MCM10*, *MELK*, *FOXM1*, *KIF2C*, *NUP155*, *TPX2*, *TTK*, *CENPA*, *CENPN*, *EXOl*, *MAPRE1*, *ACOT7*, *NAE1*, *SHMT2*, *TCP1*, *TXNRD1*, *ADM*, *CHAF1A* and *SYNCRIP*. In one preferred embodiment, the chromosomal instability genes are selected from the group consisting of *MELK*, *MCM10*, *CENPA*, *EXOl*, *TTK* and *KIF2C*.

In certain embodiments, the genes associated with estrogen receptor signalling are of an ER metagene. Non-limiting examples include genes selected from the group consisting of: *BTG2*, *PIK3IP1*, *SEC14L2*, *FLNB*, *ACSF2*, *APOM*,

68

BIN3, GLTSCR2, ZMYND10, ABAT, BCAT2, SCUBE2, RUNX1, LRRC48, MYBPC1, BCL2, CHPT1, ITM2A, LRIG1, MAPT, PRKCB, RERE, ABHD14A, FLT3, TNN, STC2, BATF, CD1E, CFB, EVL, FBXW4, ABCB1, ACAA1, CHAD, PDCD4, RPL10, RPS28, RPS4X, RPS6, SORBS1, RPL22 and RPS4XP3. In one preferred embodiment, the estrogen receptor signalling genes are selected from the group consisting of MAPT and MYB.

Suitably, the method of this aspect further includes the step of comparing an expression level of one or more other overexpressed genes selected from the group consisting of *CAMSAP1*, *CETN3*, *GRHPR*, *ZNF593*, *CA9*, *CFDP1*, *VPS28*,

- 10 ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and an expression level of one or more other underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-
- AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBS1 and SRPK3 in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or more other overexpressed genes compared to the one or more other underexpressed genes indicates or correlates with
 relatively increased or decreased responsiveness of the cancer to the anti-cancer

treatment.

25

In one embodiment, the one or more other overexpressed genes are selected from the group consisting of *ABHD5*, *ADORA2B*, *BCAP31*, *CA9*, *CAMSAP1*, *CARHSP1*, *CD55*, *CETN3*, *EIF3K*, *EXOSC7*, *GNB2L1*, *GRHPR*, *GSK3B*, *HCFC1R1*, *KCNG1*, *MAP2K5*, *ND UFC1*, *PML*, *STA Ul*, *TXN* and *ZNF593*.

In one embodiment, the one or more other underexpressed genes are selected from the group consisting of *BTN2A2*, *ERC2*, *IGH*, *ME1*, *MTMR7*, *SMPDL3B* and *ZNRD1-AS1*.

In certain embodiments, the comparison of the expression level of the one or 30 more other overexpressed genes and the expression level of the one or more other underexpressed genes is integrated with the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling to derive a first integrated score as described herein, which is

indicative of, or correlates with, responsiveness of the cancer to the anti-cancer treatment.

In another related aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or more overexpressed genes selected from the group consisting of *CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and an expression level*

- 10 of one or more underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBS1 and SRPK3, in one or more cancer cells, tissues or organs of the mammal, wherein an
- 15 altered or modulated relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.
- In one embodiment, the one or more overexpressed genes are selected from 20 the group consisting of *ABHD5*, *ADORA2B*, *BCAP31*, *CA9*, *CAMSAP1*, *CARHSP1*, *CD55*, *CETN3*, *EIF3K*, *EXOSC7*, *GNB2L1*, *GRHPR*, *GSK3B*, *HCFC1R1*, *KCNG1*, *MAP2K5*, *NDUFC1*, *PML*, *STAU1*, *TXN* and *ZNF593*.

In one embodiment, the one or more underexpressed genes are selected from the group consisting of *BTN2A2*, *ERC2*, *IGH*, *ME1*, *MTMR7*, *SMPDL3B* and 25 *ZNRD1-AS1*.

In particular embodiments, the method of the five aforementioned aspects further includes the step of comparing an expression level of one or more overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, 30 AKT1, NFKB 1, HER2, ASNS and COL6A1, and an expression level of one or more underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed proteins compared to the one or

20

25

30

70

more underexpressed proteins indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having

a higher expression level.

In particular embodiments, one or more of the overexpressed proteins and/or one or more of the underexpressed proteins are or comprise a phosphoprotein hereinbefore described.

10 An average or sum of the expression levels may be calculated for the overexpressed genes, the underexpressed genes, the overexpressed proteins and/or the underexpressed proteins, to thereby produce or calculate a ratio, as hereinbefore described.

Detection and/or measurement of expression of the overexpressed proteins and the underexpressed proteins may be performed by any of those methods or combinations thereof hereinbefore described, albeit without limitation thereto.

Suitably, the comparison of the expression level of the one or more overexpressed proteins and the expression level of the one or more underexpressed proteins is to thereby derive an integrated score. In one particular embodiment, the comparison of the expression level of the one or more overexpressed proteins and the

- expression level of the one or more underexpressed proteins is integrated with:
 - (i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and the expression level of the underexpressed genes associated with estrogen receptor signalling to derive a second integrated score; or

(ii) the first integrated score to derive a third integrated score; or

(iii) the comparison of the expression level of the overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1 and the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C,

25

71

NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLN1, MTMR7, SORBS1 and SRPK3 to derive a fourth integrated score; or

- 5 (iv) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or more of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development Growth metagene, the Chromosome metagene, the Cellular 10 Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification the Protein metagene, Synthesis/Modification metagene and/or the Multiple Networks metagene, to derive a fifth integrated score; or 15
 - (v) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or more of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score,

wherein the second, third, fourth, fifth and/or sixth integrated score is indicative of, or correlates with, responsiveness of the cancer to the anti-cancer treatment.

In particular embodiments, the second, third, fourth, fifth and/or sixth integrated scores are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation, as hereinbefore described.

In a further related aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or more overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMADl, GATA3, ITGA2, AKTl, NFKB1, HER2, ASNS and COL6A1, and an expression level of one or more underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1,

25

72

YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In particular embodiments, one or more of the overexpressed proteins and/or one or more of the underexpressed proteins are or comprise a phosphoprotein hereinbefore described.

- It will be appreciated from the foregoing that the invention provides methods that determine the aggressiveness of a cancer, facilitate providing a cancer prognosis for a patient and/or predict the responsiveness of a cancer to an anti-cancer treatment. Particular, broad embodiments of the invention include the step of treating the patient following determining the aggressiveness of the cancer, providing a cancer prognosis and/or predicting the responsiveness of the cancer to anti-cancer treatment. Accordingly, these embodiments relate to using information obtained about the
- aggressiveness of the cancer, the cancer prognosis and/or the predicted responsiveness of the cancer to anti-cancer treatment to thereby construct and implement an anti-cancer treatment regime for the patient. In a preferred embodiment, this is personalized to a particular patient so that the treatment regime is optimized for that particular patient.

Cancer treatments may include drug therapy, chemotherapy, antibody, nucleic acid and other biomolecular therapies, radiation therapy, surgery, nutritional therapy, relaxation or meditational therapy and other natural or holistic therapies, although without limitation thereto. In particular embodiments, the cancer therapy may target aneuploidy or aneuploid tumours and/or chromosomal instability.

Generally, drugs, biomolecules (*e.g* antibodies, inhibitory nucleic acids such as siRNA) or chemotherapeutic agents are referred to herein as "anti-cancer therapeutic agents". In some embodiments relating to breast cancer, the anti-cancer treatment may include HER2-directed therapy such as trastuzumab and endocrine therapies such as tamoxifen and aromatase inhibitors. In other or alternative embodiments, the therapy may include administration of inhibitors of CIN genes or CIN gene products, such as one or more of those listed in Table 4. It will be appreciated that inhibition of the CIN gene product TTK using the specific inhibitor AZ3146 was effective against TNBC cell lines. Furthermore, siRNA-mediated

knockdown of the CIN genes TTK, TPX2, NDC80 and PBK was effective against TNBC cell lines.

In certain embodiments, the cancer treatment may be directed at genes or gene products other than those listed in Tables 4, 10, 21 and/or 22. By way of example, the cancer treatment may target genes or gene products such as PLK1⁷¹⁷² or others⁷³⁻⁷⁶ to thereby target aneuploid tumours or tumour cells.

Suitably, when considering (i) the relative expression of one or more of the overexpressed genes of the 29 gene signature (*i.e.*, CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1,

- 10 KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFCl and STAUl) when compared to one or more of the underexpressed genes of the 30 gene signature (i.e., BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C,
- 15 *CXCR4*, *HLA-B*, *IGH*, *KIR2DL3*, *SMPDL3B*, *MYB*, *RLNl*, *MTMR7*, *SORBS1* and *SRPK3*); (ii) the relative expression of one or more of the overexpressed proteins (i.e., DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1) when compared to one or more of the underexpressed proteins (i.e., VEGFR2, FIER3, ASNS, MAPK9,
- 20 ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6); and/or (iii) the first, second, third and/or fourth integrated score, the anticancer therapeutic agent is selected from the group consisting of a chemotherapy, an endocrine therapy, immunotherapy and a molecularly targeted therapy. In certain embodiments, the anticancer treatment comprises an ALK inhibitor (*e.g.*, TAE684), an Aurora kinase
- 25 inhibitor (e.g., Alisertib, AMG-900, BI-847325, GSK-1070916A, ilorasertib, MK-8745, danusertib), a BCR-ABL inhibitor (*e.g.*, Nilotinib, Dasatinib, Ponatinib), a HSP90 inhibitor (*e.g.*, Tanespimycin (17-AAG), PF04291 13, AUY922, Luminespib, ganetespib, Debio-0932), an EGFR inhibitor (*e.g.*, Afatinib, Erlotinib, Lapatinib, cetuximab), a PARP inhibitor (*e.g.*, ABT-888, AZD-2281), retinoic acid (*e.g.*, all-
- trans retinoic acid or ATRA), a Bcl2 inhibitor (*e.g.*, ABT-263), a gluconeogenesis inhibitor (*e.g.*, metformin), a p38 MAPK inhibitor (*e.g.*, BIRB0796, LY2228820), a MEKI/2 inhibitor (*e.g.*, trametinib, cobimetinib, binimetinib, selumetinib, pimasertib, refametinib, TAK-733), a mTOR inhibitor (*e.g.*, BEZ235, JW-7-25-1), a PI3K inhibitor (*e.g.*, Idelalisib, buparlisib/apelisib, copanlisib, GSK-2636771,

74

pictilisib, AMG-319, AZD-8186), an IGF1R inhibitor (*e.g.*, BMS-754807, dalotuzumab, ganitumab, linsitinib), a PLC γ inhibitor (*e.g.*, U73122), a JNK inhibitor (*e.g.*, SP600125), aPAK1 inhibitor (*e.g.*, IPA3), a SYK inhibitor (*e.g.*, BAY613606), a HDAC inhibitor (*e.g.*, Vorinostat), an FGFR inhibitor (*e.g.*, Dovitinib), a XIAP inhibitor (*e.g.*, Embelin), a PLK1 inhibitor (*e.g.*, Volasertib, P-937), an ERK5 inhibitor (*e.g.*, XMD8-92), a MPS1/TTK inhibitor (*e.g.*, BAY-1161909) and any combination thereof.

By way of example, patients with a high relative expression level of one or more overexpressed genes, such as those of the 21 gene signature, when compared to one or more underexpressed genes, such as those of the 7 gene signature, a high 10 relative expression level of one or more overexpressed proteins when compared to one or more underexpressed proteins and/or a high integrated score described herein are more likely to respond favourably, such as a pathological complete response, when treated with chemotherapy. In this regard, non-limiting examples of chemotherapy include a pyrimidine analogue (e.g., 5-fluorouracil, capecitabine), a 15 taxane (e.g., paclitaxel), an anthracycline (e.g., doxorubicin, epirubicin), an antifolate drug (e.g., the dihydrofolate reductase inhibitor methotrexate), an alkylating agent (e.g., cyclophosphamide) or any combination thereof. It would be appreciated that the chemotherapy may be administered as adjuvant, neoadjuvant and/or as standard therapy, alone or in combination with other anticancer therapeutics. 20

Additionally, in certain embodiments, patients with a high relative expression level of one or more overexpressed genes, such as those of the 29 gene signature, when compared to one or more underexpressed genes, such as those of the 30 gene signature, a high relative expression level of one or more overexpressed proteins
when compared to one or more underexpressed proteins and/or a high integrated score described herein may be more likely to respond favourably to (*i.e.*, be more sensitive to) inhibition of HSP90, EGFR, IGF1R, mTOR, PI3K, p38 MAPK, PLCy, JNK, PAK1, ERK5, XIAP, PLK1 and/or MEK1/2 and may be less likely to respond favourably to (*i.e.*, be less sensitive to) anticancer treatment with an ALK inhibitor, a BCR-ABL inhibitor, a PARP inhibitor, retinoic acid, a Bcl2 inhibitor, a SYK inhibitor, a HDAC inhibitor and/or an IGF1R inhibitor.

It will also be understood that the gene and protein signatures described herein may be used to identify those poorer prognosis patients, such as those with

larger and/or higher grade tumours, who may benefit from one or more additional anticancer therapeutic agents to the typical or standard anti-cancer treatment regime for that particular patient group. By way of example, ER⁺ breast cancer patients with or without lymph node involvement with a high integrated score, and hence a relatively poor prognosis, are more likely to respond favourably to or benefit from chemotherapy and/or endocrine therapy. This may include an improved survival

In certain embodiments, for patients with a high relative expression level of the overexpressed genes of the 21 gene signature when compared to the underexpressed genes of the 7 gene signature and/or a high integrated score, the cancer treatment may be directed at those genes or gene products listed in Tables 13, 15, 16 and 17.

and/or reduced likelihood of tumour recurrence and/or metastasis for these patients.

Additionally, for patients with a high relative expression level of the overexpressed proteins when compared to the underexpressed proteins and/or a high integrated score the cancer treatment may be directed at one or more of those proteins listed in Table 19.

It would be appreciated that those methods described herein for predicting the responsiveness of a cancer to an anti-cancer treatment, such as an immunotherapeutic agent, may further include the step of administering to the mammal a therapeutically effective amount of the anticancer treatment. In a preferred embodiment, the anticancer treatment is administered when the altered or modulated relative expression level indicates or correlates with relatively increased responsiveness of the cancer to the anti-cancer treatment.

Methods of treating cancer may be prophylactic, preventative or therapeutic 25 and suitable for treatment of cancer in mammals, particularly humans. As used herein, *"treating", "treat"* or *"treatment"* refers to a therapeutic intervention, course of action or protocol that at least ameliorates a symptom of cancer after the cancer and/or its symptoms have at least started to develop. As used herein, *"preventing", "prevent"* or *"prevention"* refers to therapeutic intervention, course of action or

30 protocol initiated prior to the onset of cancer and/or a symptom of cancer so as to prevent, inhibit or delay or development or progression of the cancer or the symptom.

The term *"therapeutically effective amount"* describes a quantity of a specified agent sufficient to achieve a desired effect in a subject being treated with that agent. For example, this can be the amount of a composition comprising one or

more agents that binds one or more of the overexpressed and/or underexpressed genes or gene products thereof described herein, necessary to reduce, alleviate and/or prevent a cancer or cancer associated disease, disorder or condition. In some embodiments, a *"therapeutically effective amount"* is sufficient to reduce or eliminate a symptom of a cancer. In other embodiments, a *"therapeutically effective amount"* is an amount sufficient to achieve a desired biological effect, for example

Ideally, a therapeutically effective amount of an agent is an amount sufficient to induce the desired result without causing a substantial cytotoxic effect in the subject. The effective amount of an agent useful for reducing, alleviating and/or preventing a cancer will be dependent on the subject being treated, the type and severity of any associated disease, disorder and/or condition (*e.g.*, the number and location of any associated metastases), and the manner of administration of the therapeutic composition.

an amount that is effective to decrease or prevent cancer growth and/or metastasis.

15

5

Suitably, the anti-cancer therapeutic agent is administered to a mammal as a pharmaceutical composition comprising a pharmaceutically-acceptable carrier, diluent or excipient.

By "pharmaceutically-acceptable carrier, diluent or excipient" is meant a solid or liquid filler, diluent or encapsulating substance that may be safely used in systemic administration. Depending upon the particular route of administration, a variety of carriers, well known in the art may be used. These carriers may be selected from a group including sugars, starches, cellulose and its derivatives, malt, gelatine, talc, calcium sulfate, liposomes and other lipid-based carriers, vegetable oils, synthetic oils, polyols, alginic acid, phosphate buffered solutions, emulsifiers, isotonic saline and salts such as mineral acid salts including hydrochlorides, bromides and sulfates, organic acids such as acetates, propionates and malonates and pyrogen-free water.

A useful reference describing pharmaceutically acceptable carriers, diluents and excipients is Remington's Pharmaceutical Sciences (Mack Publishing Co. N.J. 30 USA, 1991), which is incorporated herein by reference.

Any safe route of administration may be employed for providing a patient with the composition of the invention. For example, oral, rectal, parenteral, sublingual, buccal, intravenous, intra-articular, intra-muscular, intra-dermal, subcutaneous, inhalational, intraocular, intraperitoneal, intracerebroventricular,

transdermal and the like may be employed. Intra-muscular and subcutaneous injection is appropriate, for example, for administration of immunotherapeutic compositions, proteinaceous vaccines and nucleic acid vaccines.

Dosage forms include tablets, dispersions, suspensions, injections, solutions, 5 syrups, troches, capsules, suppositories, aerosols, transdermal patches and the like. These dosage forms may also include injecting or implanting controlled releasing devices designed specifically for this purpose or other forms of implants modified to act additionally in this fashion. Controlled release of the therapeutic agent may be effected by coating the same, for example, with hydrophobic polymers including 10 acrylic resins, waxes, higher aliphatic alcohols, polylactic and polyglycolic acids and certain cellulose derivatives such as hydroxypropylmethyl cellulose. In addition, the controlled release may be effected by using other polymer matrices, liposomes and/or microspheres.

Compositions of the present invention suitable for oral or parenteral administration may be presented as discrete units such as capsules, sachets or tablets each containing a pre-determined amount of one or more therapeutic agents of the invention, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion or a water-in-oil liquid emulsion. Such compositions may be prepared by any of the methods of pharmacy but all methods include the step of bringing into association one or more agents as described above with the carrier which constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the agents of the invention with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation.

The above compositions may be administered in a manner compatible with the dosage formulation, and in such amount as is pharmaceutically-effective. The dose administered to a patient, in the context of the present invention, should be sufficient to effect a beneficial response in a patient over an appropriate period of time. The quantity of agent(s) to be administered may depend on the subject to be treated inclusive of the age, sex, weight and general health condition thereof, factors that will depend on the judgement of the practitioner.

In particular embodiments of the hereinbefore described methods, the cancer is breast cancer and the one or more overexpressed proteins are selected from the group consisting of DVL3, VEGFR2, INPP4B, EIF4EBP1, EGFR, HER3, SMAD1,

20

78

NFKB1 and HER2 and the one or more underexpressed proteins are selected from the group consisting of ASNS, MAPK9, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6.

In particular embodiments of the hereinbefore described methods, the cancer 5 is lung cancer, such as lung adenocarcinoma, wherein:

(i) the one or more overexpressed genes are selected from the group consisting of *GNB2L1*, *TXN*, *KCNG1*, *BCAP31*, *GSK3B*, *FOXM1*, *ZNF593*, *EXOl*, *KIF2C*, *TTK*, *MELK*, *CENPA*, *TPX2*, *CA9*, *GRHPR*, *HCFC1R1*, *CEP55*, *MCMIO*, *CENPN* and *CARHSP1*, and the one or more underexpressed genes are selected from the group consisting of *BTN2A2*, *MTMR7*, *ZNRD1-AS1*, *MAPT* and *BTG2*; and/or

(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, PAI-1, Ku80, GATA3, ITGA2 and AKTl, and the one or more underexpressed proteins are selected from the group consisting of ESR1.

In particular embodiments of the hereinbefore described methods, the cancer is kidney cancer, such as renal clear cell carcinoma, wherein:

(i) the one or more overexpressed genes are selected from the group consisting of *EIF3K*, *ADORA2B*, *KCNG1*, *BCAP31*, *EXOSC7*, *FOXM1*, *CD55*, *ZNF593*, *KIF2C*, *TTK*, *MELK*, *CENPA*, *TPX2*, *CEP55*, *PML*, *CENPN* and *CARHSP1*, and the one or more underexpressed genes are selected from the group consisting of *BCL2* and *MAPT*; and/or

(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, PAI-1 and EIF4EBP1, and the one or more underexpressed proteins are selected from the group consisting of HER3, MAPK9, ESR1 and RAD50.

In particular embodiments of the hereinbefore described methods, the cancer is melanoma, such as skin cutaneous melanoma, and wherein:

(i) the one or more overexpressed genes are selected from the group consisting of *EIF3K*, *ADORA2B*, *GSK3B*, *EXOSC7*, *FOXM1*, *EXOl*, *KIF2C*, *CENPA*, *TPX2*, *CAMSAP1*, *MCMIO* and *ABHD5* and the one or more underexpressed genes are selected from the group consisting of *BCAP31*, *BTN2A2*, *SMPDL3B*, *MTMR7*, *ME1* and *BTG2*; and/or

(ii) the one or more overexpressed proteins are selected from the group consisting of PAI-1, EIF4EBP1, EGFR, HER3 and Ku80 and the one or more

underexpressed proteins are selected from the group consisting of ASNS, MAPK9 and ESR1.

In particular embodiments of the hereinbefore described methods, the cancer is endometrial cancer, such as uterine corpus endometrioid carcinoma, and wherein:

(i) the one or more overexpressed genes are selected from the group consisting of *GNB2L1*, *EIF3K*, *KCNG1*, *BCAP31*, *GSK3B*, *EXOSC7*, *FOXM1*, *ZNF593*, *EXOl*, *KIF2C*, *MAP2K5*, *TTK*, *MELK*, *GRHPR*, and *PML*, and the one or more underexpressed genes is *MYB*; and/or

(ii) the one or more overexpressed proteins are selected from the group
 consisting of DVL3, INPP4B, EIF4EBP1 and ASNS and the one or more underexpressed proteins are selected from the group consisting of MAPK9, ESR1 and YWHAE.

In particular embodiments of the hereinbefore described methods, the cancer is ovarian adenocarcinoma and wherein:

- 15 (i) the one or more overexpressed genes are selected from the group consisting of *GNB2L1*, *EIF3K*, *TXN*, *ADORA2B*, *KCNG1*, *GSK3B*, *STAU1*, *MAP2K5*, and *HCFC1R1*, and the one or more underexpressed genes are selected from the group consisting of *BTN2A2*, and *ZNRD1-AS1*, and/or
- (ii) the one or more overexpressed proteins are selected from the group
 20 consisting of PAI-1 and VEGFR2 and the one or more underexpressed proteins are selected from the group consisting of ASNS, MAPK9, ESR1, YWHAE and PGR.

In particular embodiments of the hereinbefore described methods, the cancer is head and neck cancer, such as head and neck squamous cell carcinoma, and wherein:

25 (i) the one or more overexpressed genes are selected from the group consisting of *GNB2L1*, *TXN*, *ADORA2B*, *KCNG1*, *CD55*, *ZNF593*, *NDUFC1*, and *HCFC1R1*, and the one or more underexpressed genes are selected from the group consisting of *BTN2A2*, and *MTMR7*; and/or

(ii) the one or more overexpressed proteins are selected from the group
 consisting of PAI-1, INPP4B, EGFR, HER3, SMADl, GATA3, ITGA2 and
 COL6A1 and the one or more underexpressed proteins are selected from the group
 consisting of VEGFR2 and ASNS.

In particular embodiments of the hereinbefore described methods, the cancer is colorectal cancer, such as colorectal adenocarcinoma, and wherein:

(i) the one or more overexpressed genes are selected from the group consisting of *EIF3K*, *TXN*, *CD55*, *NDUFCl*, *HCFC1R1*, and *PML*, and the one or more underexpressed genes are selected from the group consisting of *BTN2A2*, *SMPDL3B*, and *MET*, and/or

5

(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, PAI-1, INPP4B, EIF4EBP1, EGFR and HER3 and the one or more underexpressed proteins are selected from the group consisting of ASNS, MAPK9, YWHAE, RAD50 and PEA15.

In particular embodiments of the hereinbefore described methods, the cancer is glioma, such as lower grade glioma, and wherein:

(i) the one or more overexpressed genes are selected from the group consisting of TXN, *BCAP31*, *STAU1*, *PML*, *CARHSP1*, and *BTN2A2*; and/or

(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, PAI-1, VEGFR2, Ku80, SMAD1 and NFKB1 and the one or
 15 more underexpressed proteins are selected from the group consisting of ESR1, YWHAE and PGR.

In particular embodiments of the hereinbefore described methods, the cancer is bladder cancer, such as urothelial carcinoma, and wherein:

(i) the one or more overexpressed genes are selected from the group
 20 consisting of ADORA2B, KCNG1, STAU1, MAP2K5, and CAMSAP1, and the one or
 more underexpressed genes are selected from the group consisting of GNB2L1,
 EIF3K, TXN, BCAP31, EXOSC7, CD55, NDUFCl, GRHPR, CETN3, BTN2A2,
 SMPDL3B, and ERC2,, and/or

(ii) the one or more overexpressed proteins are selected from the groupconsisting of DVL3, VEGFR2, Ku80, SMAD1 and AKT1 and the one or more underexpressed proteins is ASNS.

In particular embodiments of the hereinbefore described methods, the cancer is lung cancer, such as lung squamous cell carcinoma, and wherein:

(i) the one or more overexpressed genes are selected from the group
 30 consisting of *GNB2L1*, *ZNF593*, and *SMPDL3B*, and the one or more underexpressed genes are selected from the group consisting of *GSK3B*, *MAP2K5*, *NDUFCl*, *CAMSAPI*, *ABHD5*, and *MET*, and/or

(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EGFR and GATA3 and the one or more underexpressed proteins is ASNS.

In particular embodiments of the hereinbefore described methods, the cancer 5 is adrenocortical carcinoma, and wherein:

the one or more overexpressed genes are selected from the group consisting of *GNB2L1*, *EIF3K*, *TXN*, *ADORA2B*, *KCNG1*, *BCAP31*, *FOXM1*, *ZNF593*, *EXOl*, *KIF2C*, *MAP2K5*, *TTK*, *MELK*, *CENPA*, *TPX2*, *GRHPR*, *CEP55*, *MCMIO*, and *CENPN*, and the one or more underexpressed genes are selected from the group consisting of *MTMR7*, *BCL2*, *MAPT*, *MYB*, and *STC2*.

In particular embodiments of the hereinbefore described methods, the cancer is kidney renal papillary cell carcinoma and wherein:

the one or more overexpressed genes are selected from the group consisting of GNB2L1, ADORA2B, KCNG1, GSK3B, FOXM1, CD55, EXOl, KIF2C, STAU1,

15 *TTK, MELK, CENPA, TPX2, CA9, CEP55,* and *MCMIO,* and the one or more underexpressed genes are selected from the group consisting of *SMPDL3B,* and *BCL2.*

In particular embodiments of the hereinbefore described methods, the cancer is pancreatic ductal adenocarcinoma and wherein:

20

10

the one or more overexpressed genes are selected from the group consisting of *EIF3K*, *ADORA2B*, *GSK3B*, *EXOSC7*, *FOXM1*, *CD55*, *EXOl*, *STAU1*, *CAMSAP1*, and *CETN3* and the one or more underexpressed genes are selected from the group consisting of *BTN2A2*, *SMPDL3B*, *MTMR7*, *ME1*, *BCL2*, and *ERC2*.

In particular embodiments of the hereinbefore described methods, the cancer is liver hepatocellular carcinoma and wherein:

the one or more overexpressed genes are selected from the group consisting of *GNB2L1*, *TXN*, *EXOSC7*, and *CA9*, and the one or more underexpressed genes is *MTMR7*.

In particular embodiments of the hereinbefore described methods, the cancer 30 is cervical squamous cell carcinoma and/or endocervical adenocarcinoma and wherein:

the one or more overexpressed genes are selected from the group consisting of *STAU1*, *CA9*, and *ME1* and the one or more underexpressed genes are selected from the group consisting *oiEIF3K*, *TXN*, *BCAP31*, *EXOSC7*, and *ZNRD1-AS1*.

82

Furthermore, in certain embodiments, patients with a high relative expression level of one or more overexpressed genes, such as those of the 29 gene signature, when compared to one or more underexpressed genes, such as those of the 30 gene signature, a high relative expression level of one or more overexpressed proteins when compared to one or more underexpressed proteins and/or a high integrated score as described herein may be more likely to respond favourably to immunotherapy.

Accordingly, one aspect provides a method of predicting the responsiveness of a cancer to an immunotherapeutic agent in a mammal, said method including the step of comparing an expression level of one or more overexpressed genes selected from the group consisting of *ADORA2B*, *CD36*, *CETN3*, *KCNGl*, *LAMA3*, *MAP2K5*, *NAEl*, *PGKl*, *STAU1*, *CFDP1*, *SF3B3* and *TXN*, and an expression level of one or more underexpressed genes selected from the group consisting of *APOBEC3A*, *BCL2*, *BTN2A2*, *CAMSAP1*, *CAMK4*, *CARHSP1*, *FBXW4*, *GSK3B*, *HCFC1R1*, *MYB*,

- 15 *PSEN2* and *ZNF593*, in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the immunotherapeutic agent.
- In one embodiment the one or more overexpressed genes are selected from the group consisting of *ADORA2B*, *CETN3*, *KCNGl*, *MAP2K5*, *STAU1* and *TXN*, and/or an expression level of one or more underexpressed genes are selected from the group consisting of *BTN2A2*, *CAMSAP1*, *CARHSP1*, *GSK3B*, *HCFC1R1*, and *ZNF593*.
- In one embodiment, the one or more overexpressed genes are selected from the group consisting of ADORA2B, CD36, KCNGl, LAMA3, MAP2K5, NAEl, PGKl, STAU1, CFDP1, and SF3B3 and/or an expression level of one or more underexpressed genes are selected from the group consisting of APOBEC3A, BCL2, BTN2A2, CAMK4, FBXW4, PSEN2 and, MYB.

30

It would be understood for particular embodiments of the present aspect that one or more other overexpressed genes and/or one or more other underexpressed genes from one or more of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene,

83

an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene. such as those listed in Table 21, may be included in the step of comparing an expression level of one or more overexpressed genes and an expression level of one or more underexpressed genes.

Insofar as they relate to cancer, immunotherapy or immunotherapeutic agents use or modify the immune mechanisms of a subject so as to promote or facilitate treatment of a cancer. In this regard, immunotherapy or immunotherapeutic agents used to treat cancer include cell-based therapies, antibody therapies (*e.g.*, anti-PDl or anti-PDL1 antibodies) and cytokine therapies. These therapies all exploit the phenomenon that cancer cells often have subtly different molecules termed cancer antigens on their surface that can be detected by the immune system of the cancer subject. Accordingly, immunotherapy is used to provoke the immune system of a cancer patient into attacking the cancer's cells by using these cancer antigens as targets.

Non-limiting examples of immunotherapy or immunotherapeutic agents include adalimumab, alemtuzumab, basiliximab, belimumab, bevacizumab, BMS-936559, brentuximab, certolizumab, cituximab, daclizumab, eculizumab,

ibritumomab, infliximab, ipilimumab, lambrolkizumab, mepolizumab, MPDL3280A muromonab, natalizumab, nivolumab, ofatumumab, omalizumab, pembrohzumab, pexelizumab, pidilizumab, rituximab, tocilizumab, tositumomab, trastuzumab, ustekinumab, abatacept, alefacept and denileukin diftitox. In particular preferred embodiments, the immunotherapeutic agent is an immune checkpoint inhibitor, such as an anti-PD1 antibody (*e.g.*, pidilizumab, nivolumab, lambrolkizumab, pembrohzumab), an anti-PDL1 antibody (*e.g.*, BMS-936559, MPDL3280A) and/or an anti-CTLA4 antibody (*e.g.*, ipilimumab).

As would be appreciated by the skilled artisan, immune checkpoints refer to a variety of inhibitory pathways of the immune system that are crucial for maintaining self-tolerance and for modulating the duration and/or amplitude of an immune response in a subject. Cancers can use particular immune checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Accordingly, immune checkpoint inhibitors include any agent that blocks or inhibits the inhibitory pathways of the immune system. Such inhibitors

may include small molecule inhibitors or may include antibodies, or antigen binding fragments thereof, that bind to and block or inhibit immune checkpoint receptors or antibodies that bind to and block or inhibit immune checkpoint receptor ligands. By way of example, immune checkpoint receptors or receptor ligands that may be

- 5 targeted for blocking or inhibition include, but are not limited to, CTLA-4, 4-IBB (CD137), 4-1BBL (CD137L), PDL1, PDL2, PD1, B7-H3, B7-H4, BTLA, HVEM, TIM3, GAL9, LAG3, TIM3, B7H3, B7H4, VISTA, KIR, 2B4, CD 160 and CGEN-15049. Illustrative immune checkpoint inhibitors include tremelimumab (CTLA-4 blocking antibody), anti-OX40, PD-L1 monoclonal Antibody (Anti-B7-HI;
- MEDI4736), MK-3475 (PD-1 blocker), nivolumab (anti-PD1 antibody), pidilizamab (CT-011; anti-PD1 antibody), BY55 monoclonal antibody, AMP224 (anti-PDL1 antibody), BMS-936559 (anti-PDL1 antibody), MPLDL3280A (anti-PDL1 antibody), MSB0010718C (anti-PDL1 antibody) and yervoy/ipilimumab (anti-CTLA-4 checkpoint inhibitor), albeit without limitation thereto.

15

In one embodiment, the method of predicting the responsiveness of a cancer to an immunotherapeutic agent, may further include the step of administering to the mammal a therapeutically effective amount of the immunotherapeutic agent.

In a related aspect is provided a method of predicting the responsiveness of a cancer to an EGFR inhibitor in a mammal, said method including the step of comparing an expression level of one or more overexpressed genes selected from the group consisting of NAEI, *GSK3B*, *TAF2*, *MAPRE1*, *BRD4*, *STAU1*, *TAF2*, *PDCD4*, *KCNG1*, *ZNRD1-AS1*, *EIF4B*, *HELLS*, *RPL22*, *ABAT*, *BTN2A2*, *CD1B*, *ITM2A*, *BCL2*, *CXCR4*, and *ARNT2and* an expression level of one or more underexpressed genes selected from the group consisting of *CDIC*, *CD1E*, *CD1B*, *KDM5A*, *BATF*, *EVL*, *PRKCB*, *HCFC1R1*, *CARHSP1*, *CHAD*, *KIR2DL4*, *ABHD5*, *ABHD14A*,

ACAA1, SRPK3, CFB, ARNT2, NDUFC1, BCL2, EVL, ULBP2, BIN3, SF3B3, CETN3, SYNCRIP, TAF2, CENPN, ATP6V1C1, CD55 and ADORA2B in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or more overexpressed genes compared to the one

30 or more underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the EGFR inhibitor.

It would be appreciated that the EGFR inhibitor may be any known in the art, including monoclonal antibody and small molecule inhibitors thereof, such as those

85

hereinbefore described. In particular embodiments, the EGFR inhibitor is or comprises erlotinib and/or cetuximab.

In certain embodiments, the cancer is or comprises lung cancer, colorectal cancer or breast cancer.

In one embodiment, the one or more overexpressed genes are selected from the group consisting of *NAE1*, *GSK3B*, and *TAF2* and/or the one or more underexpressed genes are selected from the group consisting of *CD1C*, *CD1E*, *CD1B*, *KDM5A*, *BATF*, *EVL*, *PRKCB*, *HCFC1R1*, *CARHSP1*, *CHAD*, *KIR2DL4*, *ABHD5*, *ABHD14A*, *ACAA1*, *SRPK3*, and *CFB*.

In one embodiment, the one or more overexpressed genes are selected from the group consisting of MAPRE1, BRD4, STAU1, TAF2, GSK3B, PDCD4, KCNG1, ZNRD1-AS1, EIF4B and HELLS and/or the one or more underexpressed genes are selected from the group consisting of ARNT2, NDUFC1, BCL2, ABHD14A, EVL, ULBP2, and BIN3.

15 In one embodiment, the one or more overexpressed genes are selected from the group consisting *oiRPL22*, *ABAT*, *BTN2A2*, *CDIB*, *ITM2A*, *BCL2*, *CXCR4*, and *ARNT2* and/or the one or more underexpressed genes are selected from the group consisting of *SF3B3*, *CETN3*, *SYNCRIP*, *TAF2*, *CENPN*, *ATP6V1C1*, *CD55* and *ADORA2B*.

In a related aspect is provided a method of predicting the responsiveness of a cancer to a multikinase inhibitor in a mammal, said method including the step of comparing an expression level of one or more overexpressed genes selected from the group consisting of *SCUBE, CHPT1, CDC1, BTG2, ADORA2B* and *BCL2,* and an expression level of one or more underexpressed genes selected from the group consisting of *NOP2, CALR, MAPRE1, KCNG1, PGK1, SRPK3, RERE, ADM, LAMA3, KIR2DL4, ULBP2, LAMA4, CA9,* and *BCAP31,* in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the EGFR inhibitor.

Multikinase inhibitors typically work by inhibiting multiple intracellular and/or cell surface kinases, some of which may be implicated in tumor growth and metastatic progression of a cancer, thus decreasing tumor growth and replication. It would be appreciated that the multikinase inhibitor may be any known in the art,

including small molecule inhibitors, such as those hereinbefore described. Nonlimiting examples of multikinase inhibitors include sorafenib, trametinib, dabrafenib, vemurafenib, crizotinib, sunitinib, axitinib, ponatinib, ruxolitinib, vandetanib, cabozantinib, afatinib, ibrutinib and regorafenib. In a particular embodiment, the multikinase inhibitor is or comprises sorafenib.

In one embodiment, the cancer is or comprises lung cancer.

Suitably, with regard to predicting the responsiveness of a cancer to an immunotherapeutic agent, an EGFR inhibitor or a multikinase inhibitor, a higher relative expression level of the one or more overexpressed genes compared to the one

10 or more underexpressed genes indicates or correlates with a relatively increased responsiveness of the cancer to the agent or inhibitor; and/or a lower relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with a relatively decreased responsiveness of the cancer to the agent or inhibitor.

15

5

In a further aspect, the invention provides a method for identifying an agent for use in the treatment of cancer including the steps of:

(i) contacting a protein product of *GRHPR*, *NDUFC1*, *CAMSAP1*, *CETN3*, *EIF3K*, *STAU1*, *EXOSC7*, *COGS*, *CFDP1* and/or *KCNG1* with a test agent; and

(ii) determining whether the test agent, at least partly, reduces, eliminates,suppresses or inhibits the expression and/or an activity of the protein product.

Suitably, the cancer is of a type hereinbefore described, albeit without limitation thereto. Preferably, the cancer has an overexpressed gene selected from the group consisting of *GRHPR*, *NDUFC1*, *CAMSAP1*, *CETN3*, *EIF3K*, *STAU1*, *EXOSC7*, *COGS*, *CFDP1* and *KCNG1* and any combination thereof,

25

Suitably, the agent possesses or displays little or no significant off-target and/or nonspecific effects.

Preferably, the agent is an antibody or a small organic molecule.

In embodiments relating to antibody inhibitors, the antibody may be polyclonal or monoclonal, native or recombinant. Well-known protocols applicable to antibody production, purification and use may be found, for example, in Chapter 2 of Coligan *et al*, CURRENT PROTOCOLS IN IMMUNOLOGY (John Wiley & Sons NY, 1991-1994) and Harlow, E. & Lane, D. *Antibodies: A Laboratory Manual*, Cold Spring Harbor, Cold Spring Harbor Laboratory, 1988, which are both herein incorporated by reference.

10

87

Generally, antibodies of the invention bind to or conjugate with an isolated protein, fragment, variant, or derivative of the protein product of one or more of *GRHPR, NDUFC1, CAMSAP1, CETN3, EIF3K, STAU1, EXOSC7, COG8, CFDP1* and *KCNG1*. For example, the antibodies may be polyclonal antibodies. Such antibodies may be prepared for example by injecting an isolated protein, fragment, variant or derivative of the protein product into a production species, which may include mice or rabbits, to obtain polyclonal antisera. Methods of producing polyclonal antibodies are well known to those skilled in the art. Exemplary protocols which may be used are described for example in Coligan *et al,* CURRENT PROTOCOLS IN IMMUNOLOGY, *supra,* and in Harlow & Lane, 1988, *supra.*

Monoclonal antibodies may be produced using the standard method as for example, described in an article by Kohler & Milstein, 1975, Nature **256**, 495, which is herein incorporated by reference, or by more recent modifications thereof as for example, described in Coligan *et al.*, CURRENT PROTOCOLS IN 15 IMMUNOLOGY, *supra* by immortalizing spleen or other antibody producing cells derived from a production species which has been inoculated with one or more of the isolated protein products and/or fragments, variants and/or derivatives thereof.

Typically, the inhibitory activity of candidate inhibitor antibodies may be assessed by *in vitro* and/or *in vivo* assays that detect or measure the expression levels and/or activity of the protein products of one or more of *GRHPR*, *NDUFC1*, *CAMSAP1*, *CETN3*, *EIF3K*, *STAU1*, *EXOSC7*, *COG8*, *CFDP1* and *KCNG1* in the presence of the antibody.

In embodiments relating to small organic molecule inhibitors, this may involve screening of large compound libraries, numbering hundreds of thousands to 25 millions of candidate inhibitors (chemical compounds including synthetic, small organic molecules or natural products, for example) which may be screened or tested for biological activity at any one of hundreds of molecular targets in order to find potential new drugs, or lead compounds. Screening methods may include, but are not limited to, computer-based ("in silico") screening and high throughput screening 30 based on in vitro assays.

Typically, the active compounds, or "hits", from this initial screening process are then tested sequentially through a series of other in vitro and/or in vivo tests to further characterize the active compounds. A progressively smaller number of the "successful" compounds at each stage are selected for subsequent testing, eventually

leading to one or more drug candidates being selected to proceed to being tested in human clinical trials.

At the clinical level, screening a test agent may include obtaining samples from test subjects before and after the subjects have been exposed to a test compound. 5 The levels in the samples of the protein product of the overexpressed genes may then be measured and analysed to determine whether the levels and/or activity of the protein products change after exposure to a test agent. By way of example, protein product levels in the samples may be determined by mass spectrometry, western blot, ELISA and/or by any other appropriate means known to one of skill in the art.

- 10 Additionally, the activity of the protein products, such as their enzymatic activity, may be determined by any method known in the art. This may include, for example, enzymatic assays, such as spectrophotometric, fluorometric, calorimetric, chemiluminescent, light scattering, microscale thermophoresis, radiometric and chromatographic assays.
- 15 It would be appreciated that subjects who have been treated with test agents may be routinely examined for any physiological effects which may result from the treatment. In particular, the test agents will be evaluated for their ability to decrease cancer likelihood or occurrence in a subject. Alternatively, if the test agents are administered to subjects who have previously been diagnosed with cancer, they will 20 be screened for their ability to slow or stop the progression of the cancer as well as

induce disease remission.

In a particular embodiment, the invention may provide a *"companion diagnostic"* whereby the one or more genes that are detected as having elevated expression are the same genes that are targeted by the anti-cancer treatment.

25

30

In a related aspect, the invention provides an agent for use in the treatment of cancer identified by the method hereinbefore described.

Suitably, the cancer is of a type hereinbefore described, albeit without limitation thereto. Preferably, the cancer has an overexpressed gene selected from the group consisting of *GRHPR*, *NDUFC1*, *CAMSAP1*, *CETN3*, *EIF3K*, *STAU1*, *EXOSC7*, *COG8*, *CFDP1*, *KCNG1* and any combination thereof.

In another related aspect, the invention provides a method of treating a cancer in a mammal, including the step of administering to the mammal a therapeutically effective amount of an agent hereinbefore described.

10

89

In this regard, test agents that are identified of being capable of reducing, eliminating, suppressing or inhibiting the expression level and/or activity of a protein product of *GRHPR*, *NDUFCl*, *CAMSAPl*, *CETN3*, *EIF3K*, *STAUl*, *EXOSC7*, *COGS*, *CFDPl* and/or *KCNGl* may then be administered to patients who are suffering from or are at risk of developing cancer,. For example, the administration of a test agent which inhibits or decreases the activity and/or expression of the protein product of

one or more of the aforementioned genes may treat the cancer and/or decrease the risk cancer, if the increased activity of the biomarker is responsible, at least in part, for the progression and/or onset of the cancer.

Suitably, the cancer is of a type hereinbefore described, albeit without limitation thereto. Preferably, the cancer has an overexpressed gene selected from the group consisting of *GRHPR*, *NDUFCl*, *CAMSAPl*, *CETN3*, *EIF3K*, *STAUl*, *EXOSC7*, *COGS*, *CFDPl*, *KCNGl* and any combination thereof.

All computer programs, algorithms, patent and scientific literature referred to herein is incorporated herein by reference.

For the present invention, the database accession number or unique identifier provided herein for a gene or a protein, such as those presented in Tables 4, 5, 10, 15, 16, 17 and 18, as well as the gene and/or protein sequence or sequences associated therewith, are incorporated by reference herein.

20

So that preferred embodiments of the invention may be fully understood and put into practical effect, reference is made to the following non-limiting examples.

EXAMPLE 1

25

30

Materials and Methods

Meta-analysis of global gene expression in TNBC

We performed a meta-analysis of global gene expression data in the Oncomine[™] database¹⁹ (Compendia Bioscience, MI) using a primary filter for breast cancer (130 datasets), sample filter to use clinical specimens and dataset filters to use mRNA datasets with more than 151 patients (22 datasets). Patients of all ages, gender, disease stages or treatments were included. Three additional filters were applied to perform three independent differential analyses: (1) triple negative (TNBC cases vs. non-TNBC cases, 8 datasets^{49⁻⁵⁶}; (2) metastatic event analysis at 5 years

(metastatic events vs. no metastatic events, 7 datasets^{53'54'57'61}) and (3) survival at 5 years (patients who died vs. patients who survived, 7 datasets^{49'54'56'58'61'63}). Deregulated genes were selected based on the median p-value of the median gene rank in overexpression or underexpression patterns across the datasets (Figure 8).

- ⁵ The union of these three deregulated gene lists resulted in a gene list of deregulated genes in aggressive breast cancers (Figure 9). The METBRIC dataset²¹ was used as the validation set for further analysis. The normalized z-score expression data of the METABRIC dataset was extracted from OncomineTM and imported into BRB-ArrayTools⁶⁴ (V4.2, Biometric Research Branch, NCI, Maryland, USA) with built in
- 10 R Bioconductor packages. Survival curves for the METABRIC dataset were constructed using GraphPad[®] Prism v6.0 (GraphPad Software, CA, USA) and the Log-rank (Mantel-Cox) Test was used for statistical comparisons of survival curves. *Ingenuity Pathway Analysis and derivation of the eight gene list*

Pathway analysis was performed using the Ingenuity Pathway Analysis[®] 15 (Ingenuity Systems[®], CA). For pathway analysis in IPA[®], we used only direct relationships. After pathway analysis, we set to identify the minimum gene list that recapitulates the aggressiveness 206 gene list. We used the METABRIC dataset to perform statistical filtering in the BRB-ArrayTools software to derive the minimum gene list as follows: (1) the correlation of each gene in the CIN metagene and the ER

- 20 metagene to the metagene itself was determined by quantitative trait analysis using the Pearson's correlation coefficient (univariate p-value threshold of 0.001); (2) the association of each gene with overall survival using univariate Cox proportional hazards model (univariate test p-value < 0.001); and (3) the fold-change of gene expression between high aggressiveness score tumors and low aggressiveness score
- 25 tumors was calculated for each gene. We selected genes with Pearson's correlation coefficient > 0.7 to the metagenes, strongest survival association and more than 2fold deregulation between high and low agressiveness score tumors. The METABRIC dataset and four publically available datasets were used to validate the 8-genes score. The four datasets (GSE25066⁵³, GSE3494⁶⁵, GSE2990¹⁵, GSE2034⁶⁶)
- 30 were analyzed as described previously⁶⁷.

Cell culture and drug treatments

Breast cancer cell lines were obtained from ATCCTM (VA, USA) and cultured as per ATCCTM instructions. All cell lines were regularly tested for mycoplasma and authenticated using STR profiling. For the siRNA screen, siRNA

91

solutions (Shanghai Gene Pharma, China) were used to transfect cells (MDA-MB-231, SUM159PT and Hs578T) with 10 nM of respective siRNA using Lipofectamine [®] RNAiMAX (Life Technologies, CA, USA). For drug treatments, docetaxel and the TTK inhibitor AZ3146 were purchased from Selleck Chemicals LLC (TX, USA) and diluted in DMSO. Six days after siRNA knockdown or after drug treatments the survival of cells in comparison to control was determined using the CellTiter 96[®] Assay as per manufacturer instructions (Promega Corporation, WI,

USA). For immunoblotting, standard protocols were used and membranes were

probed with antibodies against TTK (anti-MPS1 mouse monoclonal antibody [NI]

abl 1108 (Abeam, Cambridge), and γ-tubulin (Sigma-Aldrich[®]) then developed using chemiluminescence reagent plus (Milipore, MA, USA). Flow cytometry to quantify apoptosis was performed using Annexin V-Alexa₄⁸⁸ and 7-AAD (Life Technologies) as per manufacturer instruction using BD FACSCanto IITM flow cytometer (BD Biosciences, CA, USA).

15 Breast cancer tissue microarrays, immunohistochemical and survival analysis

The Brisbane Breast Bank collected fresh breast tumor samples from consenting patients; the study was approved by the local ethics committees. Tissue microarrays (TMAs) were constructed from duplicate cores of formalin-fixed, paraffin-embedded (FFPE) breast tumor samples from patients undergoing resection at the Royal Brisbane and Women's Hospital between 1987 and 1994. For biomarker

- at the Royal Brisbane and Women's Hospital between 1987 and 1994. For biomarker analysis, whole tumor sections or TMAs (depending on the marker) were stained with antibodies against ER, PR, Ki67, HER2, CK5/6, CK14, EGFR and TTK (Table 8), and scored by trained Pathologists. The Vectastain[®] Universal ABC kit (Vector laboratories, CA) was used for signal detection according to the manufacturer's instructions. Stained sections were scanned at high resolution (ScanScope Aperio,
- Leica Microsystems, Wetzlar, Germany), and then images were segmented into individual cores for analysis using Spectrum software (Aperio). Survival and other clinical data were collected from the Queensland Cancer Registry and original diagnostic Pathology reports, and in addition we performed an internal
- 30 histopathological review (SRL) of representative tumor sections from each case, stained with H&E. For analysis of HER2-amplification TMAs were analyzed using HER2 CISH. Criteria for assigning prognostic subgroups in this study are summarized in Figure 14.

Other statistical analysis

Statistical analyses were prepared using GraphPad® Prism v6.0. The types of tests used are stated in Figure Legends. Univariate and multivariate Cox proportional hazards regression analyses were performed using MedCalc for Windows, version 12.7 (MedCalc Software, Ostend, Belgium).

5

Results

We performed a meta-analysis of published gene expression data, irrespective

Meta-analysis of gene expression profiles in TNBC

of platform, using the OncomineTM database¹⁹ (version 4.5). We compared the expression profiles of 492 TNBC cases vs. 1382 non-TNBC cases in 8 datasets and 10 found 1600 overexpressed and 1580 underexpressed genes in the TNBC cases (cutoff median p-value across the 8 datasets $< 1x1 0^{-5}$ from a Student's i-test, Figure 8). We also compared the expression profiles of primary breast cancers from 512 patients who developed metastases vs. 732 patients who did not develop metastases at 5 years (7 datasets in total) to identify 500 overexpressed and 480 underexpressed genes in

- 15 the metastasis cases (cutoff median p-value across the 7 datasets < 0.05 from a Student's i-test, Figure 8). Finally, we compared the expression profiles of 232 primary breast tumors from patients who died within 5 years vs. 879 patients who survived in 7 datasets and found 500 overexpressed and 500 underexpressed genes in
- the poor survivors (cutoff median p-value across the 7 datasets < 0.05 from a 20 Student's i-test, Figure 8). The union of these analyses - genes deregulated in TNBC and in tumors that metastasized or resulted in death within 5 years - generated a gene list of 305 overexpressed and 341 underexpressed genes (Figure 9A&B). The deregulated genes from our analyses did not consider deregulation in comparison to
- normal breast tissue. To identify cancer-related genes, we used the METABRIC 25 (Molecular Taxonomy of Breast Cancer International Consortium) dataset²¹ as a validation dataset. Of the 305 overexpressed and 341 underexpressed genes identified in the meta-analysis, 117 overexpressed and 89 underexpressed genes (206 genes) were deregulated in TNBC (250 cases) vs. 144 adjacent normal tissue (1.5
- fold-change cutoff; Figure 9C&D). 30

Clinicopathological features of the aggressiveness gene list

We compared the 206 genes from the above analysis, we called the "aggressiveness gene list" (Table 4), to the recently described metagene attractors ¹⁶¹⁷ and found that 45 of the overexpressed genes were in the CIN metagene, whereas 19

93

of the underexpressed genes were in the ER metagene (Figure 10). The expression of the aggressiveness gene list was visualized in the METABRIC dataset, stratified according to the histological subtypes by the GENUIS classification²². As shown in Figure 1A, ER7HER2⁻ (TNBC), in comparison to adjacent normal breast tissue, showed the highest upregulation of CIN genes (red in the heat map) and downregulation of ER signaling genes (green in the heat map). Tumors of other subtypes showed a range of deregulation of these genes. To quantify these trends, we

- calculated the "aggressiveness score" as the ratio of the CIN metagene (average of expression of CIN genes) to the ER metagene (average of expression of ER genes).
- The aggressiveness score was highest for ER7HER2⁻ (TNBC), followed by HER2⁺ then ER⁺ tumors (box plot in Figure 1). We also analyzed the aggressiveness score in the five intrinsic breast cancer subtypes predefined by the PAM50 classification⁸ and the ten integrative clustering (intClust) subtypes defined by combined clustering of gene expression and copy number data subtypes²¹ (Figure 11). The aggressiveness score was highest in the basal-like and the intClust 10 subtypes which are enriched
 - for TNBC and have poor prognosis.

Interestingly, tumors of various subtypes scored higher than the median aggressiveness score (line in box plots in Figure 1 and Figure 11). To this end, we examined the overall survival of patients in the METABRIC dataset stratified by quartiles and also dichotomized by the median of the aggressiveness score. Tumors with high aggressiveness score had worse survival than those with low aggressiveness score. The survival of patients with non-TNBC tumors with high aggressiveness score had poor survival that was similar to TNBC patients (Figure IB). Among ER⁺ tumors we found that high aggressiveness score predicted poor

25 survival in both Grade 2 (Figure IB) and Grade 3 (Figure 11) tumors. Tumors with high aggressiveness score showed poor survival regardless of the PAM50 intrinsic breast cancer subtypes (Figure 11). The PAM50 classifier was prognostic only in low aggressiveness score tumors (Figure 12).

One network of direct interactions in the aggressiveness gene list associates with 30 patient survival

We performed network analysis on the aggressiveness gene list using the Ingenuity Pathway Analysis (IPA[®]) and found a network with direct interactions between 97 of the 206 deregulated genes (Figure 2A). To find the minimal genes that represent the aggressiveness genes and this network, the 97 genes in this network

were analyzed for their correlation with the CIN or ER metagenes and overall survival in the METABRIC dataset (Table 5). We selected genes according to the following criteria: (1) highest correlation with the metagenes (Pearson's correlation coefficient > 0.7); (2) association with overall survival (Cox proportional hazards model, p < 0.001), and (3) more than 2-fold deregulation with least standard deviation

- 5 model, p <0.001), and (3) more than 2-fold deregulation with least standard deviation of expression between high and low aggressiveness score tumors. These analyses identified two genes from the ER metagene (*MAPT* and *MYB*) and six genes from the CIN metagene (*MELK*, *MCM10*, *CENPA*, *EXOl*, *TTK* and *KIF2C*). These 8 genes were maintained in a directly connected network (Figure 2B). The classification of
- tumors (high vs. low across the median) from these eight genes, again representing the ratio of CIN and ER metagenes, predicted the classification from the 206 genes with 95% sensitivity and 97% specificity by prediction of microarray (PAM) analysis (data not shown). Importantly, a high score from these eight genes identified poor survival in all patients, non-TNBC patients and ER⁺ Grade 2 (Figure 2C).
- 15 Next, we explored the 8-genes score for prognosis in several molecular and histological settings in the METABRIC dataset. The survival of patients with tumors with wild-type TP53 were stratified by the 8-genes score (Figure 3A). Patients with mutant TP53, which were mainly of high score, showed worse survival than those with wild-type TP53, suggesting that TP53 mutation is an independent prognostic
- 20 factor. Patients with tumors with low or high expression of the proliferation marker Ki67 were stratified by the 8-genes score suggesting that the 8-genes score is independent of proliferation (Figure 3A). We also found that the 8-genes score stratified the survival of patients from all stages of disease (Stage I - Stage III, Figure 3A). We focused on ER⁺ and found that, as in the case of ER⁺ Grade 2 tumors
- 25 (Figure 2C); the 8-genes score stratified the survival of patients with ER⁺ Grade 3 tumors (Figure 3B). Importantly, the 8-genes score identified ER⁺LN⁻ and ER⁺LN⁺ patients who had poor survival similar to ER⁻LN⁻ and ER⁻LN⁺ patients, respectively (Figure 3B). High 8-genes score identified poor survival of patients with tumors of all PAM50 subtypes and the prognostication by PAM50 classification was only
- 30 evident in low 8-genes score tumors (Figure 12).

The 8-genes aggressiveness score in multivariate survival analysis

To exclude the possibility that the aggressiveness score - calculated using the 206 genes or the 8 genes - was redundant; we performed multivariate Coxproportional hazards model analysis in the METABRIC dataset (with Illumina

95

platform) in comparison to conventional clinical variables and current gene signatures. As detailed in Table 1, the aggressiveness scores significantly associated with patient survival when compared with conventional variables and outperformed MammaPrint⁹, OncotypeDx¹⁰¹¹, proliferation/cell cycle^{16'20} and CIN²⁰ signatures. Moreover, our aggressiveness scores outperformed the CIN4 classier²³ which was recently developed from the CIN signature.

We validated the six CIN and two ER genes in univariate survival association using the online tool Kaplan-Meier (KM)-plotter²⁴ (Tables 6 & 7) which has the gene expression and survival data of more than 2000 patients (but are not part of the

METABRIC dataset). We found that the collective expression of the six overexpressed genes (*MELK*, *MCM10*, *CENPA*, *EXOl*, *TTK* and *KIF2C*) significantly associated with relapse free survival (RFS) and distant metastasis free survival (DMFS) in all patients, ER⁺ patients, lymph node negative (LN⁻) or positive (LN⁺) patients (Table 6). The two underexpressed genes (*MAPT* and *MYB*) also significantly associated with RFS and DMFS in these patient groups (Table 7).

More importantly, we performed multivariate survival analysis of the 8-genes score in four datasets (with Affymetrix platform from the Gene Expression Omnibus [GEO]; GSE2990, GSE3494, GSE2034 and GSE25066). Again, the score was significantly associated with survival in a multivariate Cox-proportional hazards

20 model in every dataset tested (Figure 4). Altogether, we found that in multiple datasets that used different platforms, the 8-genes score identified patients with poor survival independently of other clinico-pathologic indicators and outperforming current signatures.

Therapeutic targets in the aggressiveness gene list

The overexpressed genes in the CIN metagene are involved in or regulate mitosis, spindle assembly and checkpoint, kinetochore attachment, chromosome segregation and mitotic exit. Thus it is not surprising that several of the overexpressed genes are targets for molecular inhibitors, such as CDK1^{25'26} and AURKA/AURKB²⁷ and have been trialed pre-clinically and clinically²⁸. To this end, we performed siRNA depletion against 25 genes of the CIN metagene in three TNBC cell lines, MDA-MB-231, SUM159PT and Hs578T. We found that knockdown of four genes (*TTK*, *TPX2*, *NDC80* and *PBK*) consistently affected the survival of these cells (Figure 5A and Table 5). The knockdown of *TTK* showed the worst survival

and since it was in the 8-genes score we selected TTK for further studies. We found

that TTK protein was higher in TNBC cell lines compared to the near-normal MCF10A cell line, and luminal/HER2 cell lines (Figure 5B). Next, we used the specific TTK inhibitor (TTKi), AZ3146, against a panel of breast cancer cell lines and found that TNBC cell lines were more sensitive to the TTKi (Figure 5C).

5 TTK expression in aggressive tumors and potential for combination therapy

To further study the potential of TTK as therapeutic target, we investigated TTK expression at the mRNA and protein levels in breast cancer patients. We analyzed the correlation of *TTK* mRNA expression, dichotomized at the median, with clinicopathological indicators in the METABRIC dataset of 2000 patients (Table 2).

- 10 High *TTK* mRNA expression associated with younger age of tumor diagnosis, larger tumor size, higher tumor grade, higher Ki67 expression, TP53 mutations, an ER/PR negative tumor phenotype, HER2 positivity and TNBC. Based on PAM50 subtyping, high *TTK* mRNA was associated with luminal B, HER2-enriched and basal-like tumors.
- 15 We also analyzed TTK expression in a cohort of breast cancer patients (406 patients) by IHC. TTK and its activity is detected at all stages of the cell cycle, however, it is upregulated during mitosis²⁹. Thus, we observed TTK staining in non-mitotic cells to define high TTK levels (score of 3) in order to exclude the bias of elevated TTK level during mitosis. Similar to *TTK* mRNA, high TTK protein level
- 20 (Table 3) associated with high tumor grade, high Ki67 expression and TNBC status (particularly basal TNBC). Moreover, in agreement with the *TTK* mRNA associations with the PAM50 intrinsic subtypes, high TTK protein was observed in HER2-positive and proliferative ER⁺/HER2⁻ tumors (most related to luminal B) but low TTK protein in non-proliferative ER⁺/HER2⁻ tumors (most related to luminal A).
- In addition to these associations with aggressive phenotypes, we also found that high TTK protein significantly associated with aggressive histological features including ductal histology, pushing tumor border, lymph node involvement, nuclear pleomorphism, lymphocytic infiltration and higher mitotic scores (Table 3). Altogether, like the high aggressiveness score from the 206 or 8 genes, high level of
- 30 TTK mRNA and protein span across breast cancer subtypes marking aggressive behavior.

We examined the association of TTK protein level with patient survival and found that breast tumors with high TTK staining (category 3) had worse survival than other staining groups at 5 years (Figure 6A&B) and 10 and 20 years (Figure 13).

97

Importantly, high TTK staining (category 3) was not restricted to a particular histological subgroup or to tumors with high mitotic index (Figure 6C). Next, we focused on prognostication of aggressive subgroups (Grade 3, lymph node positive, TNBC, HER2 or high Ki67) and found that high TTK protein level identified exceptionally aggressive tumors that lead to poor survival of less than 2 years (Figure 7A). Finally, to exploit our finding that TTK, as a part of the aggressiveness score, was associated with aggressive breast tumors and that TTK inhibition was effective in TNBC cell lines that overexpress this protein (Figure 5), we investigated the therapeutic potential of combining TTK inhibition with chemotherapy. We found that TTKi synergized with docetaxel at very low (sub-lethal doses) in the treatment

10 that TTKi synergized with docetaxel at very low (sub-lethal doses) in the treatment of TNBC cell lines which overexpress TTK in comparison to cell lines which do not (Figure 7B) and that this combination induced apoptotic cell death (Figure 7C).

CIN metagene and ER metagenes in lung adenocarcinoma

There is also reason to believe that the metagene signature may work for other cancers, such as lung cancer. FIG. 15 provides overall survival curves of lung cancer patients split by ten (10) CIN genes that include the aforementioned six (6) (genes as well as *CENPN*, *CEP55*, *FOXM1* and *TPX2*; and the two (2) ER genes *MAPT and MYB* as a signature; patients are low or high according to the median of the signature. The signature outperformed tumour grade and disease stage and remained significant when adjusted for AJCC T (size) and N (lymph node) stages (tumour size (T stage) and lymph node status (N stage) in multivariate Cox regression analysis in lung cancer patients (Table 9). In particular, the signature was prognostic in lung adenocarcinoma. The prognostication of lung adenocarcinoma was significant even when including a minimal gene set of 6 CIN genes and 2 ER genes.

In Figure 16A we show the global gene expression (by RNAseq) of the breast cancer patients in the TCGA dataset. From these data the 8-genes score (Aggressiveness score) and the OncotypeDx (Recurrence score) were investigated for association with survival. The 8-genes score stratified breast cancer survival better than the OncotypeDx (Figure 16B). Further, the 8-genes score (Aggressiveness score) identified tumours with high genomic copy number variations involving whole chromosome arms deletions and duplications reflecting aneuploidy (Figure 16C).

10

98

We also find that the 8-genes score (Aggressiveness score) stratifies the survival of all cancers collectively in the TCGA data better than the OncotypeDx (Figure 17) and that the 8-genes score (Aggressiveness score)was prognostic in each of the tested cancers (Figure 18). Similarly, as in breast cancer (Figure 16C), the 8-genes score (Aggressiveness score) identified tumors of all cancer types with high genomic copy number variations involving whole chromosome arms deletions and duplications reflecting aneuploidy (data not shown). These cancer types include breast cancer, bladder cancer, colorectral cancer, glioblastoma, lower grade glioma, head & neck cancer, kidney cancer, liver cancer, lung adenocarcinoma, abute myeloid leukaemia, pancreatic cancer and lung squamous cell carcinoma.

Discussion

This meta-analysis of gene expression in the Oncomine[™] database identified a list of 206 was enriched with two core biological functions/metagenes; chromosomal instability (CIN) and ER signaling. We calculated the aggressiveness 15 score, the ratio of CIN to ER metagenes, which associated with overall survival of breast cancer. A core of eight genes (six CIN genes and two ER signaling genes) was representative and recapitulated the correlations with outcome from the 206 genes. The score from the six CIN genes to the 2 ER signaling genes, 8-genes score, 20 associated with survival in several breast cancer datasets. Our aggressiveness scores outperformed conventional variable and published signatures in multivariate survival analysis. Particularly in ER⁺ tumors, some cases have survival as poor as that of the aggressive HER2+ and TNBC subtypes. Our data suggest that the interplay of cancerrelated biological functions, namely CIN and ER signaling, are better predictors of phenotypes than single genes or single functions. This notion is in line with recent 25 studies showing that the interaction of biologically-driven predictors provide better

studies showing that the interaction of biologically-driven predictors provide better prognosis ^{16,17'30}. Recently, all ER⁻ tumors were described to have a high level of CIN metagene, however, it was not clear that ER⁺ tumors could be described as low CIN tumors ¹⁶. In our study, we clarify that ER⁺ disease contains a considerable fraction of tumors that have high level of CIN genes and that the relationship between CIN and ER genes is a powerful predictor of survival in these patients.

The fidelity of chromosome segregation is ensured by the proper attachment of the microtubules from the mitotic spindle to the kinetochores of chromosomes in a tightly regulated process and CIN refers to the missegregation of whole

10

15

99

chromosomes thus producing aneuploidy³. Using aneuploidy as a surrogate marker for CIN, Carter et al developed a gene signature and found that this "CIN signature" predicts clinical outcome in multiple cancers²⁰. More recently, a minimal gene set that captures the CIN signature, CIN4 (AURKA, FOXM1, TOP2A and TPX2) was described as the first clinically applicable qPCR derived measure of tumor aneuploidy from FFPE tissue. Since Grade 2 tumors heterogeneous characteristics in terms of clinical outcome, the significance of the CIN4 classier is the stratification of Grade 2 tumors into good and poor prognosis groups²³. Our aggressiveness scores were prognostic in all tumor grades and disease stages (stages I-III and lymph node negative and positive) and outperformed the CIN signature and the CIN4 classier in multivariate survival analysis in the METABRIC dataset. Strikingly, but in agreement with previous studies^{32'33}, the prognostication using the CIN metagene and our aggressiveness scores from gene expression levels were restricted to ER⁺ disease but not in the TNBC or HER2 subtypes. This may be explained that ER⁻ tumors have a high level of CIN metagene as per our results and published previously ¹⁶. However, our results with TTK protein level clearly demonstrate that TNBC, HER2, high grade, lymph node positive and proliferative tumors contain subgroups with high TTK levels exclusive of mitotic cells and have poorer survival than those with low TTK expression or TTK expression in mitotic cells. We propose that there are two types of

- high expression of CIN genes that may not be clearly differentiated by mRNA expression studies. One form of elevated CIN genes relates to high level of mitosis and proliferation whereas the second form that we measured by IHC exclusive of mitotic cells is driven by another aggressive phenotype; protection of aneuploidy and genomic instability. The recent study of the CIN4 classifier lends support to our proposition. In this study, using flow cytometry to measure aneuploidy by DNA content, the authors found that a substantial proportion of tumors with high CIN4 scores have a normal DNA ploidy and that a significant proportion of aneuploid cases had low CIN4 score²³.
- Chromosome missegregation and aneuploidy enhance genetic recombination and defective DNA damage repair³⁴ to drive a "mutator phenotype" required for oncogenesis³⁵. Genomic instability caused by deregulated mitotic spindle assembly checkpoint (SAC) and aneuploidy has been termed "non-oncogene addiction" ^{36'37}. It is tempting to suggest that CIN and aneuploidy are exploited by breast cancer stem cells which are high in TNBC³⁸ due to the link between cancer stem cells, aneuploidy

10

15

100

and therapy resistance ³⁹⁴⁰. This is supported by studies that implicate several genes involved in the SAC and chromosome segregation in tumor initiation, progression and cancer stem cells, e.g. AURKA in ovarian cancer⁴¹, MELK/FOXM1 in glioblastoma⁴²⁴³, MELK⁴⁴ and MAD2⁴⁵ in breast cancer and SKP2 in several cancers⁴⁶. The role of CIN genes to protecting aneuploidy could provide an insight to the paradox that TNBC show a better response to chemotherapy due to higher level of proliferation, yet these tumors have poorer outcome. We propose that resistance in TNBC could be attributed to the ability of aneuploid cells to adapt and drive recurrence. At least in vivo, chemotherapy has been shown to induce the proliferation quiescent aneuploid cells as a mechanism for therapy resistance³⁹. We envisage that the high level of the CIN metagene in TNBC, particularly genes involved in chromosome segregation, is protective of this state. Indeed, one study found that a high level of TTK is protective of aneuploidy in breast cancer cells and its silencing reduces the tumorigenicity of breast cancer cell lines in $vivo^{4^7}$. Our results from the patient cohort demonstrate that high TTK protein expression exclusive of mitosis was indeed prognostic aggressive tumors and support the concept that protection from aneuploidy and genomic instability is an aggressive phenotype that drives poor outcome.

- Our results with the TTK molecular inhibitor, in agreement with published studies using siRNA depletion⁴⁷⁴⁸, supports the idea of targeting chromosomal segregation in tumors with a high CIN phenotype as a therapeutic strategy. We also suggest that while TTK is high in TNBC as previously described⁴⁷⁴⁸, a considerable proportion of non-TNBC tumors that display aggressive features also show an elevated level of CIN genes, and would benefit from such targeted therapies. To our knowledge the combination of sub-lethal doses of taxanes with TTK inhibition has not been investigated so far in breast cancer, but in other cancers^{33,50-53}. Our results reveal that TTK inhibition indeed sensitizes breast cancer cells with high TTK to docetaxel.
- Referring particularly in FIGS 16-18, as well as the 8-genes score 30 (Aggressiveness score) being prognostic for the survival of cancer patients after treatment, the aggressiveness score also identifies tumors with high copy number variations involving whole chromosome arms reflecting aneuploid status. Thus, the aggressiveness score may also serve as a companion diagnostic for drugs that target aneuploidy by means of targeting genes listed in Table 4, inclusive of the 8 genes

used to produce the aggressiveness score (such as $\chi \chi K^{6^{7-70}}$) or by other drugs that target the aneuploidy state (such as PLK1⁷¹⁷² or others⁷³⁻⁷⁶).

In conclusion, our study emphasizes that classification of breast cancer based on biological phenotypes facilitates understanding the drivers of oncogenic phenotypes and therapeutic potentials. Importantly, our studies demonstrate that IHC assessment of CIN genes, exemplified by TTK here; provide better characterization and understanding for the contribution of CIN to tumor aggressiveness and prognosis.

Throughout this specification, the aim has been to describe the preferred embodiments of the invention without limiting the invention to any one embodiment or specific collection of features. Various changes and modifications may be made to the embodiments described and illustrated herein without departing from the broad spirit and scope of the invention.

All computer programs, algorithms, patent and scientific literature referred to herein is incorporated herein by reference in their entirety.

REFERENCES

- Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA *et al.* Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 2008; 26: 1275-1281.
- 5 2. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F *et al.* The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13: 2329-2334.
 - 3. von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA *et al.* Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012; 30: 1796-1804.
 - 4. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H *et al.* Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America 2001; 98: 10869-10874.
 - Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA *et al.* Molecular portraits of human breast tumours. Nature 2000; 406: 747-752.
 - 6. Weigelt B, Hu Z, He X, Livasy C, Carey LA, Ewend MG *et al.* Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer research 2005; 65: 9155-9158.
 - 7. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF *et al.* The molecular portraits of breast tumors are conserved across microarray platforms. BMC genomics 2006; 7: 96-107.
- Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T *et al.* Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009; 27: 1160-1167.
 - van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M *et al.* Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530-536.
- 30 10. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M *et al.* A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. The New England journal of medicine 2004; 351: 2817-2826.

15

20

30

- Buyse M, Loi S, van't Veer L, Viale G, Delorenzi M, Glas AM *et al.* Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. Journal of the National Cancer Institute 2006; 98: 1183-1 192.
- 5 12. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C et al. Definition of clinically distinct molecular subtypes in estrogen receptorpositive breast carcinomas through genomic grade. J Clin Oncol 2007; 25: 1239-1246.
- Ma XJ, Salunga R, Dahiya S, Wang W, Carney E, Durbecq V *et al.* A five gene molecular grade index and HOXB13:IL17BR are complementary
 prognostic factors in early stage breast cancer. Clin Cancer Res 2008; 14: 2601-2608.
 - 14. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A *et al.* A twogene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer cell 2004; 5: 607-616.
 - 15. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. Journal of the National Cancer Institute 2006; 98: 262-272.
- 20 16. Cheng WY, Ou Yang TH, Anastassiou D. Biomolecular events in cancer revealed by attractor metagenes. PLoS Comput Biol 2013; 9: el002920.
 - Cheng WY, Ou Yang TH, Anastassiou D. Development of a prognostic model for breast cancer survival in an open challenge environment. Sci Transl Med 2013; 5: 181ral50.
- 25 18. Dai H, van't Veer L, Lamb J, He YD, Mao M, Fine BM *et al.* A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer patients. Cancer research 2005; 65: 4059-4066.
 - 19. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D *et al.* ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia (New York, NY 2004; 6: 1-6.
 - Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nature genetics 2006; 38: 1043-1048.

- 21. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ *et al.* The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486: 346-352.
- 22. Haibe-Kains B, Desmedt C, Rothe F, Piccart M, Sotiriou C, Bontempi G. A fuzzy gene expression-based computational approach improves breast cancer prognostication. Genome Biol 2010; 11: R18.
 - 23. Szasz AM, Li Q, Eklund AC, Sztupinszki Z, Rowan A, Tokes AM *et al.* The CIN4 chromosomal instability qPCR classifier defines tumor aneuploidy and stratifies outcome in grade 2 breast cancer. PLoS ONE 2013; 8: e56707.
- 10 24. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast cancer research and treatment 2010; 123: 725-731.
 - Rizzolio F, Tuccinardi T, Caligiuri I, Lucchetti C, Giordano A. CDK inhibitors: from the bench to clinical trials. Curr Drug Targets 2010; 11: 279-290.
 - 26. Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM *et al.* MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. The Journal of experimental medicine 2012; 209: 679-696.
 - Manchado E, Guillamot M, Malumbres M. Killing cells by targeting mitosis. Cell death and differentiation 2012.
 - Janssen A, Medema RH. Mitosis as an anti-cancer target. Oncogene 2011;
 30: 2799-2809.
- 25 29. Stucke VM, Sillje HH, Arnaud L, Nigg EA. Human Mpsl kinase is required for the spindle assembly checkpoint but not for centrosome duplication. The EMBO journal 2002; 21: 1723-1732.
 - 30. Nagalla S, Chou JW, Willingham MC, Ruiz J, Vaughn JP, Dubey P *et al.* Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol 2013; 14: R34.
 - Bakhoum SF, Compton DA. Chromosomal instability and cancer: a complex relationship with therapeutic potential. The Journal of clinical investigation 2012; 122: 1138-1 143.

15

20

30

25

30

- 32. Roylance R, Endesfelder D, Gorman P, Burrell RA, Sander J, Tomlinson I *et al.* Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol Biomarkers Prev 201 1; 20: 2183-2194.
- 5 33. Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D, Tan P *et al.* Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer research 201 1; 71: 3447-3452.
 - 34. Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science (New York, NY 201 1; 333: 1895-1898.
 - 35. Kolodner RD, Cleveland DW, Putnam CD. Cancer. Aneuploidy drives a mutator phenotype in cancer. Science (New York, NY 201 1; 333: 942-943.
 - Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136: 823-837.
- 15 37. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 201 1; 144: 646-674.
 - 38. Al-Ejeh F, Smart CE, Morrison BJ, Chenevix-Trench G, Lopez JA, Lakhani SR *et al.* Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis 201 1; 32: 650-658.
- 20 39. Kusumbe AP, Bapat SA. Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer research 2009; 69: 9245-9253.
 - 40. Liang Y, Zhong Z, Huang Y, Deng W, Cao J, Tsao G *et al.* Stem-like cancer cells are inducible by increasing genomic instability in cancer cells. The Journal of biological chemistry 2010; 285: 4931-4940.
 - Do TV, Xiao F, Bickel LE, Klein-Szanto AJ, Pathak HB, Hua X *et al.* Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion. Oncogene 2014; 33: 539-549.
 - Joshi K, Banasavadi-Siddegowda Y, Mo X, Kim SH, Mao P, Kig C et al. MELK-dependent FOXMI phosphorylation is essential for proliferation of glioma stem cells. Stem cells (Dayton, Ohio) 2013; 31: 1051-1063.
 - 43. Gu C, Banasavadi-Siddegowda YK, Joshi K, Nakamura Y, Kurt H, Gupta S *et al.* Tumor-specific activation of the C-JUN/MELK pathway regulates

15

106

glioma stem cell growth in a p53-dependent manner. Stem cells (Dayton, Ohio) 2013; 31: 870-881.

- 44. Hebbard LW, Maurer J, Miller A, Lesperance J, Hassell J, Oshima RG *et al.* Maternal embryonic leucine zipper kinase is upregulated and required in mammary tumor-initiating cells in vivo. Cancer research 2010; 70: 8863-8873.
 - 45. Schvartzman JM, Duijf PH, Sotillo R, Coker C, Benezra R. Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer cell 201 1; 19: 701-714.
- 10 46. Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A *et al.* Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 2013; 154: 556-568.
 - 47. Daniel J, Coulter J, Woo JH, Wilsbach K, Gabrielson E. High levels of the Mpsl checkpoint protein are protective of aneuploidy in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 201 1; 108: 5384-5389.
 - 48. Maire V, Baldeyron C, Richardson M, Tesson B, Vincent-Salomon A, Gravier E *et al.* TTK/hMPS1 is an attractive therapeutic target for triple-negative breast cancer. PLoS ONE 2013; 8: e63712.
- 20 49. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D *et al.* Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006; 439: 353-357.
 - Bittner M. Expression Project for Oncology Breast Samples. International Genomics Consortium, Phoeniz, AZ 85004 Oncomine. Not Published 2005/01/15
 - 51. Bonnefoi H, Potti A, Delorenzi M, Mauriac L, Campone M, Tubiana-Hulin M *et al.* Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. The lancet oncology 2007; 8: 1071-1078.
- 30 52. Gluck S, Ross JS, Royce M, McKenna EF, Jr., Perou CM, Avisar E et al. TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine +/trastuzumab. Breast cancer research and treatment 2012; 132: 781-791.

- 53. Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A *et al.* A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 2011; 305: 1873-1881.
- 54. Kao KJ, Chang KM, Hsu HC, Huang AT. Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization. BMC cancer 201 1; 11: 143.
 - 55. Tabchy A, Valero V, Vidaurre T, Lluch A, Gomez H, Martin M *et al.* Evaluation of a 30-gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemotherapy response predictor in a multicenter randomized trial in breast cancer. Clin Cancer Res 2010; 16: 5351-5361.
 - 56. TCGA. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61-70.
 - 57. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX *et al.* Genes that mediate breast cancer metastasis to the brain. Nature 2009; 459: 1005-1009.
 - 58. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B *et al.* Strong time dependence of the 76-gene prognostic signature for nodenegative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 2007; 13: 3207-3214.
- 20 59. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H *et al.* The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer research 2008; 68: 5405-5413.
 - 60. Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F, Regitnig P *et al.* Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol 2010; 28: 4111-41 19.
 - 61. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW *et al.*A gene-expression signature as a predictor of survival in breast cancer. The New England journal of medicine 2002; 347: 1999-2009.
- 62. Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S, Hall P *et al.* Gene
 30 expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 2005; 7: R953-964.
 - 63. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A *et al.* Repeated observation of breast tumor subtypes in independent gene

10

5

15

expression data sets. Proceedings of the National Academy of Sciences of the United States of America 2003; 100: 8418-8423.

- 64. Zhao Y, Simon R. BRB-ArrayTools Data Archive for human cancer gene expression: a unique and efficient data sharing resource. Cancer Inform 2008; 6:9-15.
- Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. An 65. expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proceedings of the National Academy of Sciences of the United States of America 2005; 102: 13550-13555.
- Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. Gene-66. expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365: 671-679.
- Al-Ejeh F, Shi W, Miranda M, Simpson PT, Vargas AC, Song S et al. 67. Treatment of triple-negative breast cancer using anti-EGFR-directed radioimmunotherapy combined with radiosensitizing chemotherapy and PARP inhibitor. J Nucl Med 2013; 54: 913-921.
 - 67. Colombo R, Caldarelli M, Mennecozzi M, Giorgini ML, Sola F, Cappella P et al. Targeting the mitotic checkpoint for cancer therapy with NMS-P715, an inhibitor of MPS1 kinase. Cancer research 2010; 70: 10255-10264.
 - Janssen A, Kops GJ, Medema RH. Elevating the frequency of chromosome 68. mis-segregation as a strategy to kill tumor cells. Proceedings of the National Academy of Sciences of the United States of America 2009; 106: 19108-191 13.
- 69. Janssen A, Medema RH. Mitosis as an anti-cancer target. Oncogene 2011; 25 30: 2799-2809.
 - 70. Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science (New York, NY 201 1; 333: 1895-1898.
- Degenhardt Y, Lampkin T. Targeting Polo-like kinase in cancer therapy. Clin 30 71. Cancer Res 2010; 16: 384-389.
 - 72. Strebhardt K, Ullrich A. Targeting polo-like kinase 1 for cancer therapy. Nature reviews 2006; 6: 321-330.

5

15

20

10

- 73. Malumbres M, Barbacid M. Cell cycle kinases in cancer. Curr Opin Genet Dev 2007; 17: 60-65.
- 74. Manchado E, Guillamot M, Malumbres M. Killing cells by targeting mitosis. Cell death and differentiation 2012.
- 5 75. Manchado E, Malumbres M. Targeting aneuploidy for cancer therapy. Cell 201 1; 144: 465-466.
 - 76. Colombo R, Moll J. Destabilizing aneuploidy by targeting cell cycle and mitotic checkpoint proteins in cancer cells. Curr Drug Targets 2010; 11: 1325-1335.

	Univariate Cox-proportio model	onal hazards	Multivariate Cox-proporti model (stepwise	
	<u>HR (95 % CI)</u>	p-value_	<u>HR (95 % CI)</u>	p-value
206 genes score (high, low)	1.6173 (1.4174 - 1.8454)	O.0001	1.5 188 (1.3227 - 1.7440)	0.0001
8 genes sco _j e (high, low)	1 5853 (12883 - 18103)	<0.0001	1.4⊷≤0 (1,2.1)8 • 1 .(5344)	<).0001
Lymph node (+, -)	1 .8594 (1 .6289 - 2.1224)	0.0001	1.6807 (1.4610 - 1.9334)	0.0001
Tumor sizc (T1, 12, T31	1.4.54 (1.2i131-1] 080)	<ii0i1< td=""><td>1.1666 (1.1642 - 1.(.04-1.)</td><td>0.900.1</td></ii0i1<>	1.1666 (1.1642 - 1.(.04-1.)	0.900.1
HER2 status (+, -)	1.4565 (1.2537 - 1.6920)	0.0001	1.1983 (1.0183 - 1.4101)	0.0302
Tumor grade	1.3500 (1.2095 - 1.5067)	0.000 1	ns	ns
Ki67 (+, -)	1.4184 (1.2399 - 1.6226)	0.0001	ns	ns
ManiinaPrini (higli, 10n')	1.3320 (1.1669 - 1.5204)	0.000 1	ns	ns
CIN4 (high, low)	1.53 10 (1.3413 - 1.7476)	0.0001	ns	ns
C IS 75 {hi‼h, low)	1.5004 (1.3 132 - 1 ^ 143)	0.000 1	ns	ns
Cell Cycle (high, low)	1.5018 (1.3 145 - 1.7158)	0.0001	ns	ns
ER s ^{tatu} s (+, -)	1 30 16 (1 1 167 - 1 5 170)	0,0008	ns	ns
Onc ₀ typeD _x (L, I, H)	1.2672 (1.0909 - 1.4720)	0.0021	ns	ns
Treatment (yes, no)	1.1646 (0.9753 - 1.2639)	0.0939		
Age (<40, >40)	1.1235 (0.8480 - 1.4886)	0.4196		

Table 1: Univariate and multivariate survival analysis of the aggressiveness score in the METABRIC dataset

HR: Hazard Ratio. CI: confidence interval. ns: not significant. OncoTypeDx scores are low (L, < 18), intermediate (I, 18-3 1), high (H > 31). All variables were included in the multivariate Cox-proportional hazards model analysis and by stepwise model, only significant co-variants were included in the final analysis shown in Table.

Comparison	TTK Low	TTK high	X^2
Tümnr size			
<2cm	346 (18%)	280 (14%)	р < 1 .0Е-б
>2cm <5cm	509 (26%)	685 (35%)	p=3.2E-5
>5cm	60 (3%)	92 (5%)	p=1.25E-2
Tumor Grade			
Grade 1	137 (7%)	33 (2%)	p<1.0E-6
Grade 2	479 (25%)	296 (16%)	p<1.0E-6
Grade 3	251 (13%)	706 (37%)	p<1.0E-6
1/167 ¢\ tresslot			
Low	826 (39%)	242 (11%)	
High	237 (11%)	831 (39%)	p<1.0E-6
Immunohistochemical subtypes			
ER negative	71(4%)	369 (19%)	p<1.0E-6
ER positive	827 (42%)	681 (35%)	
PR negative	306 (15%)	637 (32%)	p<1.0E-6
PR positive	617 (31%)	432 (22%)	
HER2 negative	802 (40%)	744 (37%)	
HER2 positive	118 (6%)	323 (16%)	p<1.0E-6
non-TNBC	885 (45%)	840 (43%)	
Triple negative (TNBC)	29 (1%)	221 (11%)	p<1.0E-6
intrinsic siini_pes			
Luminal A	552 (28%)	169 (9%)	p <1 .0E-6
Luminal B	142 (7%)	350 (18%)	p<1.0E-6
HER2-enriched	40 (2%)	200 (10%)	p<1.0E-6
Normal-like	161 (8%)	41(2%)	p<1.0E-6
Basal-like	26 (1%)	305 (15%)	p<1.0E-6
Age (years)			
<50	Ĕ.Ÿ (S",,)	259 (13%)	p=8.68E-4
50-74	485 (24%)	549 (27%)	ns
75-100	282 (14%)	253 (13%)	ns
TP53 miniation			
Wildtype	390 (4x"/o>	331 (40%)	
Mutant	14 (2%)	85 (10%)	p<1.0E-6

 Table 2: Correlation of TTK mRNA level and clinico-pathological indicators in the METABRIC dataset

X2: Chi square test performed using GraphPad® Prism. ns not significant

Parameter	TTK (0-1)	TTK (2)	TTK (3)	P value [#]
Histological type				
Ductal NOS	147(60.7 %)	67(27.7%)	28 (11.6%)	
_obular	43(76.8 %)	10 (17.9 %)	3 (5.4 %)	
Mixed ducto-lobular	31(88.6 %)	4 (11.4 %)	0 (0.0%)	0.0265
Metaplastic	9(56.3 %)	7 (43.8%)	0 (0.0 %)	0.0200
Fubular/cribiform	8(80.0 %)	2 (20.0 %)	0 (0.0%)	
Other special types (incl mixed)	37(66.1%)	14 (25.0%)	5 (8.9%)	
Overall grade				
	43(76.8 %)	13(23.2 %)	0 (0.0 %)	
	162(77.5 %)	41 (19.6 %)	6 (2.9 %)	<0.0001
	73(47.7 %)	50 (32.7 %)	30 (19.6 %)	
Aitotic score	102(70.0.0/)	44(10.0.0/)	5 (0.1.0/)	
	193(79.8 %)	44(18.2%)	5 (2.1%)	<0.0001
	33(61.1 %)	18 (33.3 %)	3 (5.6 %)	< 0.0001
	52(43.0 %)	42 (34.7 %)	27 (22.3 %)	
uclear pleomorphism score -2	164(75.2 %)	49(22.5%)	5 (2.3 %)	
-2	164(75.2%) 115(57.2%)	49(22.5 %) 55 (27.4 %)	5 (2.3 %) 31 (15.4 %)	< 0.0001
	113(37.270)	JJ (27.4 70)	31 (13.470)	
ubule score	10(76.9 %)	3(23.1 %)	0 (0.0 %)	1
	52(69.3 %)	20 (26.7 %)	3 (4.0 %)	ns
	216(65.5%)	81 (24.5 %)	33 (10.0%)	115
ymph node status	210(05.5 /0)	01 (24.5 70)	33 (10.0 /0)	
ositive	77(62.1 %)	41(33.1%)	6 (4.8%)	
legative	81(73.0 %)	18 (16.2 %)	12 (10.8%)	0.0056
fumor size	01(73.070)	10 (10.2 /0)	12 (10.3 /0)	
2 cm	112(68.3 %)	40(24.4 %)	12 (7.3 %)	
-5 cm	104(66.2 %)	38 (24.2 %)	15 (9.6%)	ns
-5 cm	19(61.3 %)	6 (19.4 %)	6 (19.4 %)	115
Jumphovascular invasion	17(01.5 /0)	0 (17,4 70)	0 (17.470)	
Absent	214(67.3 %)	77(24.2 %)	27 (8.5%)	
resent	63(63.6 %)	27 (27.3 %)	9 (9.1%)	ns
ymphocytic infiltrate	03(03.070)	27 (27.5 70)	y (9,170)	
Absent	119(78.3 %)	28(18.4 %)	5 (3.3 %)	
Aild	115(63.9 %)	47 (26.1 %)	18 (10.0 %)	
Aoderate	36(53.7 %)	23 (34.3 %)	8 (11.9%)	0.0007
severe	7(41.2 %)	6 (35.3 %)	4 (23.5%)	
entral scarring/fibrosis	× - : - : - : /	×	× · · · · · · · · · · · · · · · · · · ·	
Absent	254(67.7 %)	90(24.0 %)	31 (8.3 %)	T
resent	25(56.8 %)	14 (31.8 %)	5 (11.4 %)	ns
'umor border	```	· · · · · · · · · · · · · · · · · · ·	· · · · /	
nfiltrative	250(69.1%)	88(24.3 %)	24 (6.6 %)	
Pushing (<50%)	11(36.7 %)	11 (36.7 %)	8 (26.7%)	0.0003
Pushing (>50%)	16(64.0 %)	5 (20.0 %)	4 (16.0 %)	
(i67 expression (20% threshold)				
.ow	240(71.6 %)	77(23.0 %)	18 (5.4 %)	<0.0001
ligh	14(25.9 %)	23 (42.6 %)	17 (31.5%)	~0,0001
rognostic subgroups				
IER2+	21(51.2%)	14(34.1 %)	6 (14.6 %)	
IR+/HER2-neg (Ki67-high)	6(24.0 %)	13 (52.0 %)	6 (24.0 %)	
IR+/HER2-neg (Ki67-low)	196(76.0 %)	53 (20.5 %)	9 (3.5 %)	< 0.0001
TN (basal-like)	23(41.8 %)	20 (36.4 %)	12 (21.8%)	
(non-basal)	10(71.4 %)	1 (7.1%)	3 (21.4 %)	

Table 3: Associations between TTK protein expression and clinico-pathological indicators

TMAs were scored by two independent assessors according to the following categories: 0, negative; 1, weak and focal staining (pooled with negative cases for this analysis); 2, moderate-strong focal staining (collectively <50% of tumour cells); 3 = moderate-strong diffuse staining (>50% of tumour cells). Regarding % cells stained, we disregarded mitotic cells to assess mitosis-independent TTK expression. [#]Chi square test (GraphPad® Pr sm. ns: not significant)

	e aggressiveness genelist (206 gen		L a a z 4 ² - z
Input	Approved Name	HGNC ID	Location
ADIRF	adipogenesis regulatory factor	HGNC:24043	10q23.31
AFF3	AF4/FMR2 family, member 3	HGNC:6473	2q11.2-q12
AGO2	argonaule RISC catalytic component ?	HGNC 3263	8q24.3
AGR3	anterior gradient 3 homolog (Xenopus laevis)	HGNC24167	7p21.1
AHNA K ALD113A2	AHNAK ntieleoprotein aldehyde dehydrogenase 3 family, member A2	Hc:_C:34 # 11G\(_ ':403	11q12-q13 17pl 1.2
АМ.N Apobec3b	anillin. actin bjittluig protein apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B	Hf iNC 14082 HGNC: 17352	7 p15-p14 22ql3. 1-ql3.2
AQP9	aquaporin \$>	FIGNC:(.4 i	ı.S q
AVΓ1'ftN ⁷ 1C2	ATPase, H+ transporting, lysosomal 42kDa, VI subunit C2	HGNC: 18264	2p25. i
A UNID ALRIVA	nutotn kinase A and titue in titletacting protein aurora kinase A	HGNC 28363 HGNC: 11393	1p36(1) 20q13
A UKK B	atin ua kinase B	H(i\ii 1390	17p13.i
AZGP1	alpha-2 -glycoprotein 1, zinc -binding	11G\(:910	7q22. 1
BliS]	Bardel-Bieen syndiome t	HGNC 966	11q13
BCL2	B-cell CLL/lymphoma 2	HGNC: 990	18q21.3
BIRC5	baculoviral IAP repeat containing 5	HGNC:593	17 q25 .3
BLM	Bloom syndrome, RecQ helicase-like	HGNC:1058	15q26.1
BTG2 BIJB1	BIGH syncholic, receive nerverse inter BIG family member 2 BUB1 mitotic checkpoint serine/threonine kinase	HGNC:1131 HGNC: 1148	1q32 2q13
BYSL	by stin-like	HGNC:1157	6p21.1
C10orf32	chromosome 10 open reading frame 32	HGNC235 16	10q24.33
Cl8orf56>	chromosome 18 open cending frame 56	HGNC 29553	18p11.32
ClorflUo	chromosome 1 open reading frame 106	HGNC:25599	lq32. 1
(2.lor f21	chromosome 1 open reading frame 21	Ħ(i\i): 15494	lq25
C7orf63	chromosome 7 open reading frame 63	HGNC26107	7q21.13
CA9	carbo aic a nhvurase IX	ற்ஸ்(அ. 4. 3	9p13.3
CARD10	caspase recruitment domain family, member	HGNC: 16422	22q13. 1
CASCI	10 Cancer susceptibility candidate = 1	HGNC 295W	12 p12.1
ССDС17О	coiled-coil domain containing 170	HGNC:21 177	6q25. 1
С(10 с 17А	coiled-eoff domain containing 126	H(i\i):19855	14q24:3
ССNA 2	cyclin A2	11G\(_::157S	4q27
i ("NI\$2	cyclin B2	i']fi\(?1575	15q21.3
CCNE1	cyclin E1	HGNC: 1589	19q12
CCNC;2	cyclin G2	EIG \{ 3.1593	4 q 2 1 :22
CD103	CD 163 molecule	HGNC: 163 1	12pl3
CDC20	tell division cycle 2-J	HGNC: 1723	lp 3 4, 1
LDL25A	cell division cycle 25A	HGNC: 1725	3p21
(1)C25B	cell division cycle 2513>	H(i\ C -2<>	2 (pl3
CDC45	cell division cycle 45	HGNC: 1739	22ql 1.21

Table 4: The aggressiveness genelist (206 genes)

CDCA3	cell dn imon excle associated 3	HGNC J4624	12pi331
LDLA5	cell division cycle associated 5	HGNC: 14626	l lql3. 1
CDCA7	cell division cycle associated 7	HGNC 14628	2q31.1
CDCA8	cell division cycle associated 8	HGNC:14629	1p34.3
1'I) K1	cyclin-depettdent kinase l	H(i\ C +22	1(q21.2
CDKN2A	cyclin-dependent kinase inhibitor 2A	HGNC: 1787	9p21
CEM'A	centromere protein A	H(J\ C 1851	2p23.3
L'ENPE	centromere protein E, 312kDa	HGNC: 1856	4q24-q25
t ENTN CENPW	centrophere prokin \ centromere protein W	HGNC:21488	16q23.2 6q22.32
(*EP 55	cenirosoniji protein ?5kL≫a	HGNC 1161	li. q 24. l
CHEKI	checkpoint kinase 1	HGNC: 1925	11q24.2
CIRBP LkAP2L	cold inducible RV \ binding protein cytoskeleton associated protein 2-like	HGNC:1982 HGNC:26877	19p13 3 2q13
CKSIB	(1)C28 protein kinase legatlatory subuttle 115	HG\ C 19083	1q21.2
LKS2	CDC28 protein kinase regulatory subunit 2	HGNC:2000	9q22
(*1.1(*6	chloride intracellular cliannel o	LIG\{ \ <x«5< td=""><td>2iq21.12</td></x«5<>	2iq21.12
LML2	COX assembly mitochondrial protein 2 homolog (S. cerevisiae)	HGNC:24447	16q23.2
CMYA5	cardiomyopathy associated 5	HGNC:14305	5q14.1
CPEB2	cytoplasmic polyadenylation element binding protein 2	HGNC:21745	4p15.33
(IST3	IIII'4 tatin C	H(i)().2475	20p11.2
LSTB	cystatin B (stefin B)	HGNC:2482	21q22.3
LTSV	cathepsin V	HONC 25^S	9q22.33
(CYB5I)1	cytochrome b5 domain containing 1	HGNC:265 16	17p13.1
(*\ BRI)1	Ç ₂ %o ¢№o tve b©rediielase = 1	H(J\ C:20797	2q31
DACHI	dachshund homolog 1 (Drosophila)	HGNC:2663	13q22
DAPK1	ileatli-assiviated professional	11fi\(224	9q34,1
DLPDLI I)K(]]	DEP domain containing 1 dyskeratosis congenita 1. dyskerin	HGNC:22949 HG\ C 289(>	Ip3 1.2 Xq28
DLGAP5	discs, large (Drosophila) homolog-associated	HGNC:16864	14q22.3
DNAJC12	protein 5 DnaJ (Hsp40) homolog, subfamily C, member 12	HGNC:28908	10q21.3
DNALI1	dynein, axonemal, light intermediate chain 1	HGNC:14353	1p35.1
E(1 2	entyl-('o)/ delta isomerase 2	HCi\C. I 4≹0	⊲p243
ELOVL5	ELOVL fatty acid elongase 5	HGNC:21308	6p21.1-p12.1
ESIi l Exo i	estrogen receptor 1 exonuclease 1	HGV 344* HGNC:35 11	£q24-q27 Iq42-q43
FAM198B	Inttify with sequence similarity 198 member	H(i\ C:25312	4q ³ /2. 1
	B		_
FAM214A	family with sequence similarity 214, member	HGNC:25609	15q21.2-q21.3
F'AM64A	family with sequence similarity 64, membring	HGNC:25483	17p13.2
FAM83D	A family with sequence similarity 83, member	HGNC: 16122	20
	D		
FO\ AI	forkhead Loy MI	HGNC:5021	14q12-q13
FOXMI	forkhead box M1	HGNC:3818	12pl3

FPR3 GAPDH	loinny: peptific tex plot 3 glyceraldehyde-3 -phosphate dehydrogenase	FIG\{ 3828 HGNC:4141	1 9 q1 3_3- q1.14 12p13.3 1
GFRA1	GDNF raturs for epilit : the 1	HCi\(3.424 3	10q25-q2f)
ĞĞH	gamma-glutamyl hydrolase (conjugase,	HGNC4248	8q12.3
€;i.i3 GL\ 'A'1L2	folylpolygammaglutamyl hydrolase) (JL Hamily zmc finger 3 glycine-N-acyltransferase -like 2	f1G\C /43 I9 HGNC:24178	7p i 3
GL\ A 1L2	glycytol.3.,pho _{sphal} e dehydrogenase 1+like	HGNC:24178	11q _{12.1} 3p22.3
GPSM2	G-protein signaling modulator 2	HGNC:29501	lpl3.3
€s 'r\H GSTM3	guitarinone S-transferase Min 1 glutathione S-transferase mu 3 (brain)	HCi\(2.4(.32) HGNC:4635	1p13.3 1p13.3
i ;TPBi*4	G Tr binding protent 4	HGNC 21.^5	1 <i>np\\$</i> - <i>p</i> 14
GTSE1	G-2 and S-phase expressed 1	HGNC: 13698	22ql3.2-ql3.3
HJURP HRASLS	riolaci.) jimetion revognation protein HRAS-like suppressor	HG\i 25444 HGNC: 14922	2 q i 7 1 3q29
HSD17B4	hydroxysteroid (17-beta) dehydrogenase 4	HGNC 5213	5q2
IISD17B8	hydroxysteroid (17-beta) dehydrogenase 8	HGNC:3554	6p2L3
II FRI2	insulin-like growth factor building protein 2, 36kDa	HGNC 5471	2q33-q34
IGFBP4	insulin-like growth factor binding protein 4	HGNC: 5473	17ql2-q2U
JL6ST IL8	ufferfetikiri (. sigr _i a _l transducer i gp130) ojivostatiti (. feceptor _i interleukin 8	EIG\{ 3:.02 } HGNC:6025	Sq11:2 4q13-q21
IMPA2		HGNC.6025	4q13-q21 18p11.2
INIT A2 IRAKI	ifiosit _{ni} (myo). ((or 4).mono _p p _{ix.pli} tese ? interleukin- 1 receptor-associated kinase 1	HGNC:61 12	Xq28
k CNG1	potassium voitage-gnt.x1 chamiel, subfamily G. menik 4:1	HGNC (.24S	2 0q 13
k CNMA1	potassium large conductance calcium- activated channel, subfamily M, alpha member 1	HGNC:6284	10q22
KCTD3 K1F13B	potassium channel tetramerization domain containing 3 kinesin family member 13B	HGNC 21305 HGNC: 14405	1q41 8p21
KIF 14	kinesin family inember 14	HGNC 19181	\ β 2Λ
KIF20A	kinesin family member 20A	HGNC: 9787	5q3 1
KIF23	kmesin family member 23	HGNC:6392	15q23
KIF2C	kinesin family member 2C	HGNC:6393	1p34.1
KIF5C kR16A	kinesin family member 5C keratin 6A	HGNC:6325 HGNC:6443	2q23 12q13. 13
LADI	ladinin I	HG \{ [™] (4 ⊭ ₂	1q2i 1-q32,3
LAPTM4B	lysosomal protein transmembrane 4 beta	HGNC: 13646	8q22. 1
LENG	LF\ G O-fucusy (pep) ide ?.be(a.N. acet>ld ucos(miny)) jaiis lerase	HGNC:6560	7p22.3
LMNB2	lamin B2	HGNC:6638	19p13.3
LAC (100256905) LRIG1	- leucine-rich repeats and immunoglobulin-	- HGNC: 17360	- 3pl4
LRP8 LYPD6	like domains 1 low density lipoprotein receptor-related protein 8, apolipoprotein e receptor LY6/PLAUR domain containing 6	HGNC:6700 HGNC:28751	1p32.3 2q23.2

	4.17.08		1.07
MAD2LI MADE	\'tAD2 mitotic an esi deficient-like Aca\$I>	HGNC:6763	4 q 27
MAPT Mi Ml«	microtubule-associated protein tau	HGNC:6893 HGNC:18043	17q21 10p 13
MI SIVE I	mmtchromosome triamlettatice complex congponent 10	HUNC 1804.)	top 13
MCM2	minichromosome maintenance complex	HGNC:6944	3q21
MCM4	component 2 minichromosome maintenance complex	HGNC:6947	8q12-q13
N13.3714	component 4	IIGINC 034	8 412-4 10
MCM6	minichromosome maintenance complex	HGNC:6949	2q14-q21
MCM7	component 6 minichromosome maintenance complex	HGNC 6950	7q21.3-q22.1
arean)	component 7	11011010000	/4+1.0 4 24-1
MEIS3P1	Meis homeobox 3 pseudogene 1	HGNC:7002	17p12
MELK	fint® Binle mbiyonic leucine /ipp@tkinase	HG\C H(S ?0	9p13.1
MLPH	melanophilin	HGNC:29643	2q37.2
MSTI	niacrophage sttEHEilaiJiij: t ihe palce yte	HGNC:7380	3p21
MTHFD1L	growth factor.like) methylenetetrahydrofolate dehydrogenase	HGNC:21055	6q25.1
	(NADP+ dependent) 1-like		-
MX2	niyxovirus (influenza virus) resistance 2 (niouse)	HGNC:7533	21q22.3
МҮВ	v-myb avian myeloblastosis viral oncogene	HGNC:7545	6q22-q23
	homolog		
NCAPG	non-SMC condensin I complex, subunit G	HGNC:24304	4p15.32
NDC80	NDC80 kinetochore complex component	HGNC:16909	18p11.31
NFIA	Jur least factor #	Elfi\(27784	1p31.3-p31.2
NME5	$N \setminus 1E_{1} \setminus 123$ family member 5	HGNC:7853	5q3 1.2 12 p1 3
NOSTRIN	NOP2 nucleoli) i protein nitric oxide synthase trafficker	HGNC:20203	2q3 1.1
v>[]] i	neum-oncological venta lantisien	HC;\i: +880	14q12
NRIPI	nuclear receptor interacting protein 1	HGNC:8001	2 lq lĭ .2
NUP2«5	hncleoporin 26%Da	HG\C IX458	7q3 \ 32
MJP93	nucleoporin 93kDa	HGNC:28958	16ql3
NUSAP1	ALCEODAF and spindle a SSOc jated pioleui	HGNC 18538	1 5q1 4
OGN	osteoglycin	HGNC:8126	9q22
PDCI)4	programmed cell death 4 (neoplastic	HGNC 8763	10q24
DEVD	HMiislorm.il iton inition(of)	UCNIC:0079	10n152n152
PFKP	phosphofructokinase, platelet	HGNC:8878 HGNC:23396	10p15.3-p15.2 9q34.13
PHYIIDI	phytanovI-CoA dioxygenase domain containing 1	110/NC.23390	7427 4 ,12
PIP	prolactin-induced protein	HGNC:8993	7q32-qter
i*i "A ľ	plasminogen 3Ctivatot. Eissue	H(i\ C 9051	8p11.21
PLCHI	phospholipase C, eta 1	HGNC29185	3q25
PM'	ptnime nucleoside pnosphoralase	H(i\i):7892	14q11.2
PNPI.A7	patatin-like phospholipase domain containing 7	HGNC:24768	9q34.3
PRCI	′ pt0leintregutat0f0fv≤t0kinesis [HGNC 9341	15q26.1
PSM^ 2	proteasome (prosome, macropain) subunit,	HGNC9539	и Ір34.2
	beta type, 2		-
PTC:I-R3	priisiaglandin E receptor 3 (subtype EP3)	HGNC 9595	1p3 L2
PTPRT	protein tyrosine phosphatase, receptor type, T	HGNC:9682	20q12-q13
	-		

PIT (11) QDPR	pinutaty turnop trains demark 1 quinoid dihydropteridine reductase	HG\{ 3:9690 HGNC:9752	5q 35 1 4p15.3 1
KAB27B RABEP1	RAB27B, member RAS oncogene family rabaptin, RAB GTPase binding effector protein 1	HGNC:9797 HGNC: 17677	18q21.2 17p13.2
R/WD51AP1 RBM3s	RADSI associateri protein 1 RNA binding motif protein 38	HC\ € 16956 HGNC: 15818	i2p13.2-p13.1 20q13.3 1
RERG RFC4	RAS-like, estrogen-regulated, growth inhibitor replication factor C (activator 1) 4, 37kDa	HGNC 15980 HGNC:9972	12p13.1 3q27
KIPK2 R\ ASI4	iecepior.mtetacini, settine-tineotiine kinase 2 ribonuclease, RNase A family, 4	HGNC: 10047	8q21 14qi1
KPP40 RPS23	ribonuclease P/MRP 40kI)a sub tail ribosomal protein S23	FJCi∖ C:2tW2 HGNC: 10410	6p25.1 5q14.2
s m A8 SCUBE2	signal peptide, CUB domain, EGF-like 2	H(i) C 0498 HGNC:30425	lq12-q22 1 lp15.3
SH3BGRL SKP1	SH3 domain binding jihttainic acid-riJ) prote _{id} like S-phase kinase-associated protein 1	HC;\(%10823 HGNC: 10899	Xq13.3 5q3.1
SKP2 SLC16A10	S-phase kutase-associated protein 2. E3 ub iq talin prote in tigase solute carrier family 16 (aromatic amino acid	itinictwJ HGNC:17027	5p13 6q21-q22
SLC2AI	transporter), member 10 solute carrier family 2 (facilitated glucose	HGNC 11005	1p34.2
SLC39A6	transporter), member 1 solute carrier family 39 (zinc transporter), member 6	HGNC: 18607	18q12.2
SLC40A1 SLC7A5	solitic carrier lagitity 40 (iron-iv pulated transporter), member 1 solute carrier family 7 (amino acid	HC,\C 10909 HGNC:11063	2q32 16q24.3
SOD2 SOX11	transporter light chain, L system), member 5 superoxide dismutase 2, mitochondrial SRY (sex determining region Y)-box 11	HGNC 11180 HGNC: 11191	6q25 2p25
SRD5A1	steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-	HGNC:11284	5p15.31
SRPK1 SVV2	dehydrogenase alpha 1) SRSF protein kinase 1 stanniocajem 2	HGNC:11305 HGNi 2:11374	6p21.31 5q35.2
STIL STK32B	SCL/TAL1 interrupting locus serine/iniv onine kinase 32B	HGNC: 10879 HC\ C 14217	1p32 4p16
Š∖″1L4 [*] t [*] AT	synaptotagmin-like 4 tytosine a minutransie tase	HGNC: 15588 fIG\{ 2.11573	Xq21.33 16q22,3
'TBC11)9 TEAD4	TBC1 domain family, member 9 (with GRAM domain) TEA domain family member 4	HGNC:21710 HGNC:11717	4q31.1 12p133-p132
TFF1 TFF3	trefoil factor 1 ife to it factor 3 (intestinue)	HGNC:11755 HGNC 11757	21q22.3 21q22.3
TMEM 26 TH-X2	transmembrane protein 26 11'\2, uitCfnitiotile-associated immedeg	HGNC:28550 EIG\{	10q21.3 20q1.1,2
TRIP13 TROAP	(Xeitiquis lacvis) thyroid hormone receptor interactor 13 trophinin associated protein	HGNC:12307 HGNC:12327	5p15 12q13 12

ττκ	TTK protein kinase	HGNC: 12401	6q13-q21
TUBA4/V	tubultin, alpha 4a	H () C ; t240-	2q36. <i>i</i>
UBE2C	ubiquitin-conjugating enzyme E2C	HGNC: 15937	20q13.12
USBI	U3 shR\ A biogeneu's 1	HGNC:25-9-	16q13
\'GLL1	vestigial like Ï (Drosophila)	HGNC:20985	Xq26.3
XBP1	X-box binding protein 1	HGNC 12801	22q12.1
YEATS2	YEATS domain containing 2	HGNC:25489	3q27.3

aggressiveness score Beaucon completion of ficient with non-optime High							
			Pearson co	orrelation coef nietag		1 respective	vs. Low score
	Symbol	UniqueID	Correlation coefficient	Parametric p-value	FDR	Permutation p-value	Fold- change
	MAPT	ILMN_2310814	0.755	< 1e+07	< 1e-07	< 1e-07	-4.55
	MYB	11.MN_1711894	0.718	< 1e-07	< 1e-07	< Ie+07	-3.33
	BCL2	ILMN_2246956	0.682	< 1e-07	< 1e-07	< 1e-07	-2.86
	STC2	ILMN_1691884	0.65	<1e-07	< 1e-07	< 1e-07	-4.55
	BTG2	ILMN_1770085	0.544	< 1e-07	< 1e-07	< 1e-07	-2.38
	CLIC6	ILMN_1699665	0.403	< 1e-07	< 1e-07	< 1e-07	3.45
	ESRI	ILMN_1678535	0.842	< 1e-07	< 1e-07	< 1e-07	-12.99
	FOXAI	ILMN_1766650	0.78	< 1e-07	< 1e-07	< 1e-07	-5.56
	XBPI	ILMN_1809433	0.741	< 1e-07	< 1e-07	< 1e-07	-2.56
	TFF3	ILMN_1811387	0.73	< 1e-()7	< 1e-07	< 1e-07	-10.75
ж	DACHI	ILMN_1755741	0.684	< 1e-07	< 1e-07	< 1e-07	-3.85
aget	TPF1	ILMN_1722489	0.645	< 1e-07	< 1e-07	< 1e-07	-10.00
Met	PTPRT	ILMN_1698885	0.637	< 1e-07	< 1e-07	< 1e-07	-2.63
FR Metagene	PLAT	ILMN_1738742	0.557	< 1e-07	< 1e-07	< 1e-07	-2,38
	GSTM3	ILMN_1736184	0.5	< 1e-07	< 1e-07	< 1e-07	-2.00
	RPS23	ILMN_1772459	0.467	< 1e-07	< 1e-07	< 1e-07	-2.00
	GSTM1	ILMN_2391861	0.384	< 1e-07	< 1e-07	< 1e-07	-2.00
	ITPRI	ILMN_1789505	0.546	< 1e-07	< 1e-07	< 1e-07	-1.85
	SKPI	ILMN_1711766	0.689	< 1e-07	< 1e-07	< 1e-07	-1.75
	IGFBP2	ILMN_1725193	0.38	< 1e-07	< 1e-07	< 1e-07	-1.72
	GLIS	ILMN_1771962	0.486	< 1e-07	< 1e-07	< 1e-07	-1.61
	AHNAK	ILMN_1714567	0.551	< 1e-07	< 1e-07	< 1e-07	-1.59
	NRIPI	ILMN_1718629	0.548	< 1e-07	< 1e-07	< 1e-07	-1.59
	TAT	ILMN_1791678	0.304	< 1e-07	< 1e-07	< 1e-07	-1.56
	PDCD4	ILMN_1768004	0.44	< 1e-07	< 1e-07	< 1e-07	-1.54
	MELK	11.MN_1731184	0.9	< 1e-07	< Ie-07	< Ie-07	2.29
	мсмію	ILMN_2413898	0.868	<1e-07	< 1e-07	< 1e-07	2.22
	CENPA	ILMN_1801257	0.909	< 1e-07	< 1e-07	< 1e-07	2.2
2	EXOI	ILMN_1673721	0.885	< 1e-07	< 1e-07	< 1e-07	2.15
iger	TTK	ILMN_1788166	0.837	< 1e-07	< 1e-07	< 1e+07	2.15
Met:	KIF2C	11.MN_1685916	0.888	< 1e-07	< 1e-07	< 1e-07	2.13
CIN Metagene	CENPN	ILMN_1720526	0.814	< 1e-07	< 1e-07	< 1e-07	2.04
10	CEP55	ILMN_1747016	0.891	< 1e-07	< 1e-07	< 1e-07	2.03
	FOXMI	ILMN_2344971	0.869	< 1e-07	< 1e-07	< 1e-07	2.01
	TPX2	ILMN_1796949	0.88	< 1e-07	< 1e-07	< 1e-07	2.01
	AURKB	ILMN_1684217	0.884	< 1e-07	< 1e-07	< 1e-07	2.25
	AURKA	ILMN_1680955	0.854	< 1e-07	< 1e-07	< 1e-07	2.09

Table 5: Degregulated genes from Ingenuity Pathway Analysis and correlation with aggressiveness score

CONEL	ILMN_2374425	0.813	< 1e-07	<1e-07	< 1e-07	2.64
CDC45	ILMN_1670238	0.861	< 1e-07	< 1e-07	< 1e-07	2.22
PTTGI	ILMN_2042771	0.846	< 1e-07	< 1e-07	< 1e-07	2.15
BIRC5	ILMN_2349459	0.822	< 1e-07	< 1e-07	< 1e-07	2.28
CCNB2	ILMN_1801939	0.89	< 1e-07	< 1e-07	< 1e-07	2.39
CDCA5	ILMN_1683450	0.89	< 1e-07	< 1e-07	< 1e-07	2.49
CDC20	ILMN_1663390	0.873	< 1e-07	< 1e-07	< 1e-07	3.22
UBE2C	ILMN_2301083	0.861	< 1e-07	< 1e-07	< 1e-07	2.75
SLC7A5	ILMN_1720373	0.749	< 1e-07	< 1e-07	< 1e-07	3.75
BUBI	ILMN_2202948	0.896	< 1e-07	< 1e-07	< 1e-07	1.97
CDCA8	ILMN_1709294	0.87	< 1e-07	< 1e-07	< 1e-07	1.96
PRCI	ILMN_1728934	0.817	< 1e-07	< 1e-07	< 1e-07	1.96
CCNA2	ILMN_1786125	0.888	< 1e-07	< 1e-07	< 1e-07	1.95
CDCA3	ILMN_1737728	0.859	< 1e-07	< 1e-07	< 1e-07	1.95
HUURP	ILMN_1703906	0.861	< 1e-07	< 1e-07	< 1e-07	1.9
KIF20A	ILMN_1695658	0,844	< 1e-07	< 1e-07	< 1e-07	1.9
NCAPG	ILMN_1751444	0.848	< 1e-07	< 1e-07	< 1e-07	1.89
сшжі	ILMN_1664630	0.853	< 1e-07	< 1e-07	< 1e-07	1.85
SKP2	ILMN_1665538	0.709	< 1e-07	< 1e-07	< 1e-07	1.83
MCM4	ILMN_1737205	0.75	< 1e-07	< 1e-07	< 1e-07	1.79
CDKI	ILMN_1747911	0,776	< 1e-07	< 1e-07	< 1e-07	1.75
LMNB2	ILMN_1708101	0.799	< 1e-07	<1e-07	< 1e-07	1.74
RAD51API	ILMN_1670353	0.818	< 1e-07	< 1e-07	< 1e-07	1.74
TROAP	ILMN_1700337	0,784	< 1e-07	< 1e-07	< 1e-07	1.73
DLGAP5	ILMN_1749829	0.86	< 1e-07	< 1e-07	< 1e-07	1.7
MAD2LI	ILMN_1777564	0.709	< 1e-07	< 1e-07	< 1e-07	1.7
GTSEI	ILMN_1771039	0.858	< 1e-07	< 1e-07	< 1e-07	1.69
CENPE	ILMN_1716279	0.858	< 1e-07	< 1e-07	< 1e-07	1.67
MCM2	ILMN_1681503	0.764	< 1e-07	< 1e-07	< 1e-07	1.66
MCM6	ILMN_1798654	0,792	< 1e-07	< 1e-07	< 1e-07	1.6
BLM	ILMN_1709484	0.792	< 1e-07	< 1e-07	< 1e-07	1.57
KIF14	ILMN_1808071	0.808	< 1e-07	< 1e-07	< 1e-07	1.55
KIF23	ILMN_1811472	0.824	< 1e-07	< 1e-07	< 1e-07	1.55
BYSL	ILMN_1682792	0.741	< 1e-07	< 1e-07	< 1e-07	1.52
CDC25A	ILMN_1711005	0.773	< 1e-07	< 1e-07	< 1e-07	1.52
GTPBP4	ILMN_1742577	0.755	< 1e-07	< 1e-07	< 1e-07	1.67
SRPKI	ILMN_1798804	0.763	< 1e-07	< 1e-07	< 1e-07	1.62
CKS2	ILMN_1756326	0.717	< 1e-07	< 1e-07	< 1e-07	1.6
NDC80	ILMN_1664511	0.765	< 1e-07	< 1e-07	< 1e-07	1.46
RFC4	ILMN_1724489	0.759	< 1e-07	< 1e-07	< 1e-07	1.45
MCM7	ILMN_1663195	0.704	< 1e-07	< 1e-07	< 1e-07	1.64
S100A8 KRT6A	ILMN_1729801	0.517	< 1e-07	< 1e-07	< 1e-07	8.16
KRT6A	ILMN_2219002	0.474	< 1e-07	< 1e-07	< 1e-07	3.27

PFKP	ILMN_1805737	0.595	< 1e-07	< 1e-07	< 1e-07	2.87
SOD2	ILMN_2336781	0.565	< 1e-07	< 1e-07	< 1e-07	2.69
IL8	ILMN_2184373	0.357	< 1e-07	< 1e-07	< 1e-07	2.27
CDC25B	ILMN_2338323	0.594	< 1e-07	< 1e-07	< 1e-07	2.01
CKSIB	ILMN_2041046	0.691	< 1e-07	< 1e-07	< 1e-07	1.75
GAPDH	ILMN_1802252	0.685	< 1e-07	< 1e-07	< 1e-07	1.61
SLC16A10	ILMN_1782938	0.45	< 1e-07	< 1e-07	< 1e-07	1.45
VGLLI	ILMN_1719753	0.524	< 1e-07	< 1e-07	< 1e-07	3.16
CDKN2A	ILMN_1717714	0.591	< 1e-07	< 1e-07	< 1e-07	1.91
RIPK2	ILMN_1758939	0.674	< 1e-07	< 1e-07	< 1e-07	1.7
TUBA4A	ILMN_1784300	0.399	< 1e-07	< 1e-07	< 1e-07	1.66
PSMB2	ILMN_1764794	0.633	< 1e-07	< 1e-07	< 1e-07	1.52
NOP2	ILMN_1723158	0.617	< 1e-07	< 1e-07	< 1e-07	1,52
IRAKI	ILMN_2379130	0.625	< 1e-07	< 1e-07	< 1e-07	1.51
DKCI	ILMN_1671257	0.692	< 1e-07	< 1e-07	< 1e-07	1.5
DAPK1	ILMN_1708340	0.432	< 1e-07	< 1e-07	< 1e-07	1.43
TEAD4	ILMN_1705301	0.554	< 1e-07	< 1e-07	< 1e-07	1.42

Cox proportional hazards model, Wald Statistic p-value cutoff univariate test: 0.001 10000 random permutations,

Cell survival after siRNA depletion in vitro

Paramet ric p- value	FDR	Permutati on p-value	Hazard Ratio	SD of log intensiti es
5.00E-07	1.47E- 06	< te-07	1.1123470 52	1.567
0.000881 6	1.28E- 03	8.00E-04	1.0917030 57	1.258
< 1e-07	< 1e-07	< 1e-07	1.2091898 43	1.043
2.86E-05	5.55E- 05	< 1e-07	1.0741138 56	1.938
2.45E-05	4.95E- 05	< 1e-07	1.1547344 11	1.03
 < 1e-07	< 1e-07	< 1e-07	1.11111111 11	2.214

Sum159P T	Hs578T

				-					
	< 1e-07	< 1e-07	< 1e-07	1,2077294 69	1.076				
	6.00E-07	1.62E- 06	< 1e-07	1.1337868 48	1.358				
		4.95E-		1.2048192					
	2.43E-05	05	< 1e-07	77	0.736				
	5.66E-05	9.98E- 05	< 1e-07	1.0964912 28	1.625				
	5.50E-06	1,21E- 05	< 1e-07	1.2422360 25	0.723				
	<1e-07		< 1e-07	1.274	0,799		91 ± 3% (n=3)	46 ± 4 (n=5)	92 ± 3 (n=3)
	7.00E-07	1.84E- 06	< 1e-07	1.221	0.791		98 ± 6% (n=3)	68 ± 8 (n=6)	83 ± 2 (n=3)
	1.00E-07	3.46E- 07	< 1e-07	1.253	0,762		$155 \pm 17\%$ (n=3)	100 ± 1 (n=3)	52 ± 2 (n=3)
	1.0012407 < 1e-07	4) < 1e-07	<1e-07	1.233	0.782 0.767		(u=3)	(11=5)	(u=3)
		1.25E-					51±1%	34±6	19±1
	4.00E-07 <1e-07	06 < 1e-07	<1e+07 <1e+07	1.222 1.271	0.799 0.756		(n=3)	(0=6)	(n=.3)
		1,13E-							
	5.00E-06	05 3.46E-	< 1e-07	1.204	0.779		87±4%	17.25 F	57±1
	1.00E-07	07	< 1e-07	1.26	0.75		(n=3)	(n=6)	(n=3)
	1.00E-07	3.46E- 07	< 1e-07	1.247	0.744		66 ± 16 (n=3)	72±2 (n=5)	62 ± 2 (9=3)
	< 1e-07	< 1e-07	< 1e-07	1.326	0.782		57 ± 7% (n=3)	64 ± 1 (n=3)	24±3 (0=3)
_	< 1e-07	< 1e-07	< 1e-07	1.256	0.836	\square			
	< 1e-07	< 1e-07	< 1e-07	1.273	0.873				
	3.30E-06	7.81E- 06	< 1e-07	1.182	0.878				
	< 1e-07	< 1e-07	< le-07	1.246	0.882				
	< 1e-07	< 1e-07	< 1e-07	1.259	0.958				
	5.00E-07	1.47E- 06	< 1e-07	1.184	0.965		$100 \pm 26\%$ (n=3)	79 ± 3 (n=6)	100 ± 1 (n=3)
	<1e-07	< 1e-07	< 1e-07	1.232	0.966		1977 - 1989 1977 - 1978 1977 - 1978	Sec. and	N
	< 1e-07	< 1e-07	< 1e-07	1.271	0.998				
	< 1e-07	× 15 M7	- 16.87	1 103	1.194		$98 \pm 5\%$	101 ± 1	110 ± 1 (n=3)
	< 1e-07 < 1e-07	< 1e-07 < 1e-07	< 1e-07 < 1e-07	1.184 1.208	1.194		(n=3)	(n=6)	(m=2)
		6.06E-							
	3.29E-05	05	< 1e-07	1.109	1.299				
	< 1e-07	< 1e-07	< 1e-07	1.279	0.726		$91 \pm 4\%$	76 ± 2	83 ± 3

				125			
ĺ					(n=3)	(n=6)	(n=3)
	6.69E-						
2.00E-07	07	< 1e-07	1.267	0.692			
< 1e-07	< 1e-07	< 1e-07	1.269	0.893			
< 1e-07	< 1e-07 1.25E-	< 1e-07	1.3	0.709			
4.00E-07	.06	< 1e-07	1.232	0.765			
< 1e-07	< 1e-07	< 1e-07	1.301	0.693			
< 1e-07	< 1e-07	< 1e-07	1.322	0.806			
<1e-07 0.000121	< 1e-07 1.96E-	< 1e-07	1.271	0,784			
3 0.000816	04 1.20E-	2.00E-04	1.23	0.603	76±3%	45±6	63±3
 4	03 1.62E-	6.00E-04	1.191	0.612	(0=3)	(0=0)	(8=3)
6.00E-07	06 2.18E-	< 1e-07	1.24	0.764			
9.00E-07	06 2.28E-	< 1e-07	1.214	0.84			
1.08E-05	05 1.06E-	< 1e-07	1.284	0.583	$83 \pm 4\%$	65 ± 4	91 ± 2
6.12E-05	04	< 1e-07	1,194	0.728	(n=3)	(n=6) 55 ± 7	(n=3) 68 ± 10
< 1e-07	< 1e-07 2.04E-	< 1e-07	1.378	0.717	(10=1) 106 ± 3%	(n=6) 62 ± 5	(m=3) 54 ± 1
8.00E-07	06 1.11E-	< 1e-07	1.311	0.595	(n=3)	(n=6)	(n=3)
4.80E-06	05	< 1e-07	1.188	0.884			
< 1e-07	< 1e-07	< 1e-07	1.464	0.52			
< 1e-07	< 1e-07 2.18E-	< 1e-07	1.374	0.601			
9.00E-07 0.000706	06 1.07E-	< 1e-07	1.264	0.704			
6	03 1.57E-	3.00E-04	1.205	0.587			
9.41E-05	04 1,62E-	1.00E-04	1.282	0.491			
6.00E-07	06	< 1e-07	1.36	0.51			
< 1e-07	< 1e-07 1.83E-	<1e-07	1.381	0.577			
8.50E-06	05 1.28E-	<1e-07	1.363	0.466			
7.55E-05	04	1.00E-04	1.297	0.472			
					56±4%	65±1	28+2
					m=30 119 ± 6%	(n=3) 90 ± 1	(n=3) 39 ± 5
					(n=3)	90 ± 1 (n=3)	(n=3)
	5.13E-						
2.59E-05	05 9.47E-	< 1e-07	1.063	2.187			
5.27E-05	9.47E- 05	< 1e-07	1.098	1.328			
0.000120	1.96E-	< 1e-07	1.133	1.029			

5	04							
0.000299	4.76E- 04	1.00E-04	1.123	0,999				
0.000392	6.05E- 04	2.00E-04	1.101	1.239				
7	6.06E-							
3.25E-05 0.000762	05 1.14E-	< 1e-07	1.174	0.818	l l)5 ± 7%	94 ± 1	84 ± 4
6 0.000314	03 4.91E-	5.00E-04	1.153	0.768	(1	=3)	(n=3)	(n=3)
1	04	1.00E-04	1.196	0.66				
3.31E-05	6.06E- 05	< 1e-07	1.278	0.548				
L					88	$8 \pm 4\%$	86 ± 3	70 ± 3
				CENPF	2 1	(=3) 1 ± 50	(n=6)	(n=3) 47±4
				MYBL1		(≠3) 7 ± 4%	(n=3) 80 ± 4	(n=3) 60 ± 6
				GPSM2	(1)	i=3)	(n=5)	(n=3)
				ANP32 E	(n	5 ± 2% (=3)	79 ± 8 (n=6)	94 ± 4 (n=3)
				TOP2A		22 ± 8% ⊫3)	73 ± 1 (n=3)	69 ± 5 (n=3)
				TYMS		(=3)	71±2 (n=5)	08 ± 4 (n=3)
)±2%	55±7	46 ± 1
				PBK		1=3) 4 ± 6%	(##6) 37 ± 1	(B=3) 65±2
				ASPM		(# <u>3</u>)	(n=6)	(8=3)

4.508-11

3.002-03

6.008-03

1.408-03

3.76 (2.46 - 5.74)

2.16(1.28-3.62)

2.87 (1.31 - 6.28)

2.88 (1.47 - 5.68)

4.46 (2.61 - 7.60) 1.808-09

Table 6: Association of the 6 overexpressed genes in the I	3-genes
score with RFS and OMFS at 5 and 10 years	

		RFS						
Patient subgroup and cut-off		õ yearu		10 years				
		HR (95 % CI)	b-1:mme	HR (95 % CI)	p-raine			
	Meetinn	2.52 (2.17 - 2.93)	(1.00 8 -16	2.16(1.00+2.47)	-1.00 E -16			
AB	Quartile	3.63 (2.43 - 3.78)	<1.00E-16	2.46 (2.09 - 2.89)	<1.00 8- 16			
	Tertile	2.83 (2.35 - 3.41)	ा.000E-16	2.70 (2.24 - 3.27)	-1.00 E -1/			
	Mediza	2.67(2.25-3.17)	<1.00 E-16	2.23 (1.96 - 1.65)	(1-300E-1)			
ER+	Quantile	2.90 (2.29 - 3.67)	<u> (1.002-16</u>	2.64 (2.16 - 3.23)	-3.00 E -14			
	Tertike	2.87 (2.34 - 3.53)	<1.00 E-16	2.51 (2.11 - 2.99)	<1.00E-34			
	Median	2.76 (2.19 - 3.48)	<1.00 E -16	2.25 (3.84 - 2.74)	1.208-16			
LN-	Quartile	2.76 (2.00 - 3.80)	1.108-10	2.51 (1.91 - 3.29)	5.308-12			
	Tertile	292(221-387)	4.308-15	2.53 (2.00 - 3.39)	1.008-15			
~~~~~	Median	2.20 (1.57 - 3.08)	2.408-06	1.88 (1.40 - 2.52)	20-308.1			
1.80	Quartile	3.19 (1.87 - 5.44)	8.6WE-06	2.56 (1.67 - 3.94)	8.105-06			
	Tertik	2.45 (1.61 - 3.37)	1.708-05	2.05 (1.45 - 2.91)	4.008-05			
Patient :	abgroup and cut-off	S years		ti year	2			
		<b>HR</b> (95 % CI)	p-ruime	<b>HR</b> (95 % CI)	p-raioe			
	Median	2.87 (2.17 - 3.79)	\$.908-15	2.37 (1.\$7 - 3.01)	1.908-13			
All	Quartile	3.64 (2.41 - 5.52)	5.808-11	3.43 (2.41 - 4.88)	3,208-12			
	Tertile	3.53 (2.48 - 5.04)	S 70E-14	2.90 (2.18 - 3.90)	3.708-14			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Median	3.43 (2.49 - 4.74)	1.308-15	2.63 (2.00 - 3.45)	£1.30E-13			
		3 41 (2 21 - 5 27)	S. SOE-OF	3.27 (2.38 - 4.71)	2.208-11			
+ 3.3	Quartile	a was been a work to	a in the case					
EX+	Quartile Tertile	3.87 (2.62 - 3.74)	8.108-13	3.07 (2.24 - 4.20)	2.305-13			

4.86(2.82-9.37) 2.708-10

4.30E-32

9.408-03

1.5085-02

2.008-03

3.98 (2.61 - 6.07)

2.12(1.19-3.80)

2.97(1.18-7.44)

3.51 (1.50 - 8.21)

p-values are from Log rank sexprem LM-planter

Quen tile Tertile

Median

Quantile Tertile

1.1.

1.84

Table 7: Association of the 2 overexpressed genes in the 6-genes score with RFS and DMMS at 5 and 10 years

			ĸi	2		
Pathent subgroup and cut-off		ş hemez		10 years		
	· · · · · · · · · · · · · · · · · · ·	HR (95 % CI)	p-rmine	HR (95 % CI)	p-raine	
	Median	0.53 (0.46 - 0.61)	<1.008-16	8.59 (0.52 - 0.67)	5. 605- 36	
AN	Quartike	0.53 (0.35 - 0. 61)	<1.00E-16	0.59 (0.52 ~ 0.68)	8.XE-14	
	Tertile	0.49 (0.43 - 0.57)	<1.00E-16	0.57 (0.50 ~ 0.65)	<1.00E-16	
************	Medizz	0.60 (0.51 - 0.71)	2.108-09	0.65 (0.56 ~ 0.78)	10-208.5	
ER+	Quartile	0.62 (0.48 - 0.79)	1.302-04	0.69 (0.54 - 0.86)	1.208-03	
	Tertile	0.54 (0.45 ~ 0.66)	6.0XE-10	0.63 (0.52 ~ 0.78)	5.608-07	
~~~~~	Median	0.61 (0.40 - 0.76)	8.002-06	0.71 (0.58 - 0.86)	43205-64	
1.35	Quartile	0.56 (0.44 - 0.72)	3.500-06	0.63 (0.50 - 0.73)	6.00E-05	
	Tertile	0.53 (0.42 - 0.66)	2.205-05	0.62 (0.50 - 0.76)	4.602-06	
	Median	0.5\$ (0.42 ~ 0.\$0)	9.702-04	0.70 (0.52 - 0.63)	1.308-02	
1.84	Quartile	0.59 (0.42 - 0.84)	3.005-03	0.70 (0.50 - 0.98)	3.508-02	
	Tertile	0.57 (0.41 - 0.78)	4.002-04	0.68 (0.50 - 0.91)	9.70 <b>E-</b> 03	

			<i>8</i> 0	<b>67</b> 3		
Fatheast :	abgroup and cut-off	5 years		<b>10 year</b> s		
		HIR (95 % CI)	b-sayan	<b>HR</b> (95 % CI)	p-raim	
	Median	0.59 (0.47 - 0.74)	2.508-06	0.99 (0.47 0.74)	2.508-06	
AB	Quartile	0.58 (0.46 - 0.74)	4.408-06	0.58 (0.46 - 0.74)	4.402-06	
	Tertik	0.57 (0.46 - 0.71)	4.908-07	0.57 (0.46 ~ 0.71)	4.902-07	
	Median	0.62 (0.48 ~ 0.81)	3.002-04	0.62 (0.45 ~ 0.81)	3.005-04	
ER+	Quantile	0.56 (0.39 - 0.82)	2.408-03	0.56 (0.39 ~ 0.82)	2.408-03	
	Tertile	037/042~0780	3 <i>m -</i> 84	30,27 (0.42 ~ 0.78)	3.008-04	
	Median	×4 -1.00	4.602-02	74 54-1.00	4.502.62	
1.34-	Quartile	0.64 (0.46 - 0.89)	7.008-03	0.64 (0.46 0.89)	7.008-03	
	Tertik	0.60 (0.44 - 0.81)	1.0025-03	0.60 (0.44 0.51)	1.002-03	
······	Mediza	0.58 (0.35 - 0.96)	3.208-02	0.58 (0.35 ~ 0.66)	3.208-02	
I.N+	Quartile	0.49 (0.29 - 0.83)	6.90E-03	0.49 (0.29 - 0.23)	6.90E-03	
	Tertiir	0.56 (0.34 - 0.92)	2.108-02	0.56 (0.34 0.92)	2.10 <b>E-</b> 02	

p-values are from Log rank test from LM-plotter

Table 8: details of antibodies and iininunohistochemistry	conditions used for
breast cancer TMA analysis in this study	

Antib ody	Clone	Speci es	Source	Diluti on	Antigen Retriev al*	Cellular Localizati on	Cut-off used for classification as 'positive'
ER	6F11	Mous e	Novoca stra	1:100	Citrate	Nucleus	> 1%
PR	1A6	Mous e	Novoca stra	1:200	Citrate	Nucleus	> 1%
HER2	CB11	Rabbit	Dako	1:200	Citrate	Cell Membran e	3+ (>30%)
CK5/6	D5/16 B4	Mous e	Chemic on	1:400	Citrate	Membran e + Cytoplas m	Any positivity
CK14	LL002	Mous e	Novoca stra	1:40	Citrate	Membran e + Cytoplas m	Any positivity
EGFR	31G7	Mous e	Invitrog en	1:100	EDTA	Cell Membran e	Any positivity
Ki-67	MIB-1	Mous e	Dako	1:200	Citrate	Nucleus	Any positivity (20% cells stained classed as 'Ki67-high')
ТТК	N1	Mous e	Abcam	1:100	EDTA	Cytoplas m	0 Negative 1 weak and focal staining 2 moderate-strong focal staining (collectively <50% tumor cells) 3 moderate-strong diffuse staining (>50% tumor cells) Regarding estimating % of cells stained, we disregarded mitotic cells to assess mitosis-independent expression of TTK

*Antigen retrieval in O.OIM citric acid buffer (pH 6.0) at 125 °C for 5 min in a pressure cooker, or in 0,001 M Tris/EDTA; pH 8.8, at 105 °C for 15 min in a pressure cooker.

Covariants	P value	Hazard Ratio	Covariants	P value	Hazard Ratio	Covariants	P value	Hazard Ratio
Grade	0.7045	1.04 (0.86 - 1.25)	Stage	0	1.46 (1.26 - 1.68)	AJCC stage T	0.0002	1.35 (1.16 - 1.58)
10CIN 2ER signature	0.0002	1.59 (1.25 - 2.04)	10CIN 2ER signature	0	2.2 (1.73 - 2.79)	AJCC stage N	0	1.73 (1.5 - 1.99)
						10CIN 2ER signature	0.0075	1.35 (1.08 - 1.69)

### Table 9: Multivariate analyses

#### EXAMPLE 2

#### Materials and Methods

#### Meta-analysis of global gene expression in TNBC

- 5 We performed a meta-analysis of global gene expression data in the Oncomine[™] database [37] (Compendia Bioscience, Ann Arbor, MI) using a primary filter for breast cancer (130 datasets), sample filter to use clinical specimens and dataset filters to use mRNA datasets with more 151 patients (22 datasets). Two additional filters were applied to perform two independent differential analyses. The first differential
- 10 was metastatic event analysis at 5 years (metastatic events vs. no metastatic events, 7 datasets [51, 56-61]) and the second differential analysis was survival at 5 years (patients who died vs. patients who survived, 7 datasets [39, 57, 59, 61-64]). Deregulated genes were selected based on the median **p-value** of the median gene rank in overexpression or underexpression patterns across **the** datasets for each of the
- 15 two differential analyses.

#### Deriving the 28-signattire (the TN signature)

The online tool KM-Plotter [38] which collates gene expression data from Affymterix platform for more than 4000 breast cancer patients were used for developing the 28-gene signature. From the deregulated genes in **primary** tumors which led to metastatic or death events within 5 years discovered in the metaanalysis in OncomineTM, 166 genes were common in both survival events. These genes were then interrogated one by one in KM-Plotter restricting the univariate **survival** analysis to ER⁻ or **BLBC** subtypes. Genes which significantly associated with relapse-free survival (RFS), distant metastasis-free **survival** (DMFS) or overall

- 25 survival (OS) in either ER⁻ or BLBC subtypes were short selected. The 96 genes that were significant in this filtering where then sorted for their level of significance as well as the prevalence of significance across the different survival outcomes (RES, DMFS and OS) and across ER⁻ and BLBC subtypes. Based on this sorting, six groups of gene lists were obtained with different levels of survival association (Table
- 30 14). Each of these groups were then used as a metagene and the average expression of genes in each group was investigated for association with survival in KM-Plotter in ER⁻ and BLBC subtypes. Based on these analysis, four groups were selected and two were excluded. Furthermore, for two groups, the top 4 and 3 genes were found to be more prognostic than the rest of the group and these were selected. In total, the 7

130

genes (which their downregulation associates with poor survival) from these two groups and 21 genes (which their upregulation associates with poor survival) in the other two **groups** were selected to test for association with survival in KM÷Plotter. These 28 genes showed the highest association with survival as a gene signature compared **to** any single gene in the original list or any groups from this list. These 28

genes were selected as the triple negative (TN) signature and was subjected to validation as described below.

#### Validation of the TN signature in breast cancer cohorts

- Three large breast caneer gene expression datasets were used for validation. The Research Online Cancer Knowledgebase (ROCK) dataset [40] (GSE47561; n~1570 patients) and the homogenous TNBC dataset [32] (GSE31519; n=579 TNBC patients) were obtained from Gene Expression Omnibus (GEO) and the data was imported into BRB~ArrayToo]s [65] (V4.2, **Biometrics** Research Branch, NCI, **Maryland**, USA) with built in R Bioconductor packages. The Cancer Genome Atlas
- 15 (TCGA) dataset [39]; using the Illumina HiSeq RNA-Seq arrays (n=1.106 patients) or the Agilent custom arrays (Agilent G4502A-07-3) on 597 patients of the 1106 total patients, were obtained from the UCSC Genome Browser [66, 67]. The TN signature was investigated in each of these datasets where a score was devised to quantify the signature; the TN score = average expression of the 21 genes whose overexpression
- 20 associated with poor survival ÷ average expression of the 7 genes whose underexpression associated with poor survival. The TN score for each tumor in each dataset was calculated and tumors were assigned as high or low TN score tumors by dichotomy across the median TN score in each dataset. In some cases, tertiles of the TN score in each dataset, were used to classify tumors as high, intermediate or low
- 25 TN score tumors and in other cases the quartiles of the TN score were used to classify tumors in the 1st, 2nd, 3rd or 4th quartiles, The survival of patients in high (over the median, last tertile of the 4th quartile) vs. low TN score groups was compared. Survival analyses were constructed using GraphPad* Prism v6.0 (GraphPad Software, CA, USA) and the Log-rank (Mantel-Cox) Test was used for
- 30 statistical comparisons of survival curves.

## Association of the TN score and signatures with pathological complete responses (pCK) after neoadjuvant chemotherapy and response to endocrine therapy

Datasets which performed gene expression profiling prior to neoadjuvant chemotherapy or endocrine therapy alone were obtained from GEO. The datasets

10

131

used in this study for neoadjuvant **chemotherapy** and recorded pathological complete response (**pCR**) include: GSE18728 [42], GSE50948 [43], GSE20271 [44], GSE20194 [45], GSB22226 [41, 46], GSE42822 [47] and GSE23988 [48]. For datasets which **performed** gene expression profiling prior to endocrine therapy (**tamoxifen**) and recorded patient survival include: GSE6532 [25] and GSE17705 [51]. These datasets using the Affymeuix gene expression array platforms were imported into BRB-ArrayTools and normalized as described previously [68]. Each tumor in the datasets were assigned as high or low score for our signatures as described **in** the previous sections. The rate of pCR after chemotherapy or the survival of patients after endocrine therapy were compared between high score

tumors and low score tumors using GraphPad [®] Prism.

#### Global gene expression profiles comparison by class comparison

Global gene expression comparison was carried out to compare tumors with high TN or **iBCR** scores to those with low TN or **iBCR** scores to characterize additional

- 15 differences between these tumors and identify deregulated genes which could be suitable as for drug targeting. These comparisons were carried out in the large cohort of 1570 patients in the ROCK **data-set** and **BRB-ArrayTools** was used to perform the Class Comparison test. The two classes were high vs. low score tumors and the parameters selected in this plugin in ArrayTools were as follows: Type of univariate
- 20 test used = Two-sample T-test; Class variable = TN score (high or low) or iBCR score (high or low); fold-change cutoff = 1.5 fold; Permutation p-values 6 r significant genes were computed based on 10000 random permutations and Nominal significance level of each univariate test: 0.05. The results from these analyses are shown in Tables 13 and 15-17.
- 25 Integration of the Agro and TN signatures in the integrated <u>Breast</u> <u>Cancer</u> <u>Recurrence</u> (iBCR) score

We previously published the Aggressiveness (Agro) signature and score also from meta-analysis and extensive validation and show that this signature is prognostic in ER+ breast cancer [36]. To test whether the Agro signatures could be integrated with

30 the TN signature (prognostic in ER⁻ breast cancer) to produce an integrated test that is independent of ER status, several integration methods were investigated. The hypothesis behind the integration methods was to identify a direct relationship that can describe the relationship between the TN and Agro scores in both ER⁻ and ER⁺ breast cancer subtypes that is also in direct relationship with the integrated score. In

132

other words, the integrated score would retain the information from each the **Agro** and TN scores relevant to their prognostic value in ER⁺ and ER⁻ breast cancers, respectively, The ROCK dataset was used to test the different methods of integration and the performance of these methods in the stratification of survival of ER* and ER⁻ breast cancer. The addition or subtraction of the scores produced a direct relationship

- between the **T**N and Agro score and the produced integrated score (Figure 36). These two methods were then analyzed for prognostication of ER* and **ER**⁻ subtypes in the ROCK dataset and only the addition method retained prognostication in **ER**⁻ breast cancer (Figure 37). **Similarly**, multiplying and dividing the **TN** and Agro scores were
- 10 tested and an exponential and power curve relationships described the relation between the two scores and with the integrated score (Figure 38). Again, these two methods were tested from prognostication in the ROCK dataset and only the multiplication method retained prognostication in ER⁻ breast cancer (Figure 37). Because the multiplication and division methods produced exponential and power
- 15 curves for the relationship between the scores, integration by raising one score to the power of the other score appeared reasonable. Exponential and power curves are the result of power equations. Indeed, integration by raising the TN score to the power of the Agro score was highly prognostic in both ER* and ER⁻ breast cancers (Figures 37 and 38). This integrated score, the integrated Breast Cancer Recurrence (iBCR) score
- 20 was in fact more prognostic in ER* and ER⁻ patients in the ROCK dataset than the single Agro and TN scores, respectively. The iBCR score was validated in the ROCK and homogenous TNBC datasets (Affymetrix platform), the TOGA dataset (Illumina RNA-Seq platform) and the ISPY-I trial dataset (GSE22226 [41, 46], Agilent platform), illustrating the platform-independence of the iBCR score which is driven by the platform independence of tire Agro and TN signatures as they were discovered
- from meta-analysis irrespective of array platforms used from independent studies,

#### Mining drug screen studies

Two large studies which treated large panels of cancer cell lines with large panels of anticancer drugs were investigated **to** determine whether cell lines with high Agro,

30 TN or iBCR scores show different sensitivity to particular anticancer drugs in comparison to cancer cell lines with low Agro, TN or iBCR scores. Briefly, the datasets of gene expression profiling from Genentech (niRNA Cancer Cell Line Profiles **GSE10843**), Pfizer (Pfizer Molecular Profile Data for Cell Line GSE34211) and Broad Institute/Novartis (Cancer Cell Line Encyclopedia [COLE] GSE3613)

were obtained from GEO and imported into ArrayTools as described earlier. The Agro, TN and iBCR scores for all the cell lines profiled were calculated and cell lines were assigned as high or low for each of the scores based on dichotomy across the median in each dataset. For cell lines which were profiled **in** more than one

- 5 dataset, the average scores were used. Using this data, the sensitivity of cancer cell lines with high and low Agro, TN or iBCR scores was compared to those with low scores to anticancer drugs was investigated in two studies [49, 50]. Drugs which had significantly different IC50 in high score cell lines compared to low score cell lines are described herein. Statistical significance was detennined from unpaired two-
- 10 tailed t-test using GraphPad^{$\approx$} Prism.

#### Other statistical analysis

Univariate and multivariate Cox proportional hazards regression analyses were performed using MedCalc for Windows, version 12.7 (MedCalc Software, Qstend, Belgium),

15

#### Results

#### Meta-analysis of gene expression profile in $Oneomim^{TM}$

We **performed** a meta-analysis of published gene expression data, irrespective of **platform** or breast cancer subtype, using the OncomineTM database [37] (version 4,5).

- We were able to compared the expression profiles of primary breast tumors from 512 patients who developed metastases vs. 732 patients who did not develop metastases at 5 years (7 datasets in total) to identify 500 overexpressed genes and 500 underexpressed genes in the metastasis cases (cutoff median p-value across the datasets < 0.05 from a Student's /-test. Figure 31). We also compared the expression
- 25 profiles of 232 primary breast tumors from patients who died within 5 years vs. 879 patients who survived in 7 datasets and found 500 overexpressed genes and 500 underexpressed genes in the poor survivors (cutoff median p-value across the datasets < 0.05 from a Student's /-test, Figure 31). Since several datasets were annotated for one of these outcomes but not both, we rationalized that the union of</p>
- 30 these analyses is more appropriate particularly that death is the most likely outcome in metastatic disease. The union of the over- and expressed genes in tumors that associated with metastasis and those that associated with death within 5 years revealed common 101 overexpressed and 65 underexpressed genes (Figure 19). These 166 deregulated genes were then subjected to training using the online tool

KM-plotter [38] to derive a 28 gene signature as described in methods below followed by validation of this signature, the TN signature, in several large cohorts of breast cancer gene expression datasets (Figure 19).

The TN signature is prognostic in TNBC, BLBC and ESC breast cancer subtypes

- ⁵ The 166 deregulated genes in primary breast tumors that associated with poor outcome discovered from the Oncomine TM meta-analysis were interrogated using KM-Plotter. The overexpression of 31 genes and the underexpression of 65 genes associated with RFS, DMFS or OS of BLBC or **ER-** breast cancer (Table 14). Based on the level of significance in univariate survival analysis and the prevalence of this
- 10 significance across the different disease outcomes (RES, DMFS and OS), a list of 21 overexpressed and 7 underexpressed genes (Table 1) were shortlisted as a signature with the strongest association with survival in both BLBC and ER breast cancer subtypes (Figure 20).

The 28-gene signature, the TN signature, was then validated in multivariate survival

- 15 analysis in two breast cancer cohorts, the homogenous TNBC dataset [32] and the Research Online Cancer Knowledgebase (ROCK) dataset [40]. We devised a score to quantify trends in the TN signature, the TN score, which is calculated as the ratio of the average expression of the 21 overexpressed genes to that of the 7 underexpressed genes. Dichotomy across the median TN score stratified the survival
- of TNBC (Figure 21A), BLBC (Figure 21B) and ER- (Figure 21C) patients and outperformed all standard clinicopafJioiogical indicators * These analyses indicated that the TN score is an independent prognostic factor that identified TNBC, BLBC or ER* patients with poor survival irrespective to tumor size and grade, patient age, lymph node status or treatment. The TN signature also **outperformed** all previously
   published signatures that are prognostic in ER*, TNBC or BLBC subtypes [30-35]

(Figure 32), While the discovery of the signature in  $Oncomine^{TM}$  included datasets using the Affymterix, Alumina and Agilent platforms, the training and validation above was

limited to the Affymterix platform. Thus, we validated the TN score in The Cancer

30 Genome Atlas (TCGA) dataset [39] which used the Alumina HiSeq RNA-seq platform. As shown in Figure 22, the RFS of ER patients in the TCGA dataset was stratified by TN score and this stratification **outperformed** that by standard clinicopathological indicators. The original TCGA publication used Agilent custom arrays (Agilent G4502A-07-3) on 597 patients and we analyzed the prognosis of the

135

**TN** score in this data. The **TN** score stratified the survival of **ER** patients in the Agilent TCGA data (Figure 33). Altogether, the prognostic value of the TN signature/score was validated in large, independent cohorts of breast cancer in TNBC, BLBC and **ER** breast cancer subtypes irrespective of the gene expression array platforms used.

#### The TN score and the likelihood of pCR after chemotherapy

Chemotherapy is a standard therapy for EE⁻ breast cancer and the only mode of therapy for ER⁻HER2⁻ (TNBC) breast cancer. Although, pathological complete response (pCR) differs by receptor status, it remains highly predictive of survival within the different breast cancer subtypes [41], Given the association of the TN score with outcome in TNBC, BLBC and ER⁻ breast cancer, we questioned whether this score is also associated with pCR after chemotherapy. To this end, we analyzed publically available datasets of neoadjuvant chemotherapy trials which recorded pCR and performed pre-treatment gene expression profiling. As shown in Figure 23A,

- pCR after chemotherapy in ER⁻/HER² patients was less likely after TX (GSEI 8728), AT/CMF (GSE50948) or FAC (GSE20271) chemotherapy regimens when these patients had a high TN score. TFAC chemotherapy regimen was less likely to produce pCR in high TN score tumors in one study (GSE20194) but without a significant association in a second study (GSE20271). ER⁻HER² tumors with high
- 20 TN score had a trend to lower response to AC/T chemotherapy (GSE22226 AC/T). In contrast, pCR was achieved in 57% and 60% of ER HER2⁻ tumors with high TN score after treatment with the FEC/TX (GSE42822) and FAC/TX (GSE23988) regimens, respectively. Altogether, the rate of pCR stratified by the TN score was significantly different in either the low or high TN score tumor from the reported
- 25 general 3 1% pCR rate in TNBC [9] (dotted line in Figure 23A). In one dataset, the ISPY-1 trial (GSE22226), the relapse-free survival (RFS) was also recorded. As shown in Figure 23B, pCR was a strong predictor of RFS in ER HER2 breast cancer as previously published [41]. The TN score was not only a strong predictor of RFS after chemotherapy, but also could stratify the survival of patients who achieved pCR
- ³⁰ further in addition to the stratification of patients who did not achieve pCR to good and poor prognosis groups (Figure 23B). This data indicates that the TN score is independent and has additional value to monitoring pCR after neoadjuvant chemotherapy in ER HER2⁻ (TNBC) breast cancer patients. To further illustrate the utility of the TN score, we analyzed ER⁻ and BLBC patient outcome in KM-plotter

for systemically untreated and treated patients separately. As summarized in Table 11 (Figure 34 for survival curves), the **TN** signature was prognostic in either systemically untreated or treated ER- and BLBC subtypes.

Therapeutic targets based on the TN signature

- 5 The overexpressed genes in the TN signature contains novel genes which have limited literature describing their function, particularly in cancer. These genes includes *GRHPR*, *NDUFC1*, *CAMSAPl*, *CETN3*, *EIF3K*, *STAU!*, *EXOSC7* and *KCNGl*, These genes are novel candidates for future studies to investigate the effect of their knockdown on the survival of ER⁻ or TNBC breast cancer cell lines. In
- addition, we took two approaches to identify possible therapeutic strategies envisioned by the TN signature to benefit the poor survival of patients identified by this signature. First, we compared the global gene expression profile of TNBC/BLBC tumors with high TN score to those with low TN score. Secondly, we analyzed published pre-clinical studies which **treated** cancer cell lines with panels of
- 15 moleeularly targeted drugs to determine whether cell lines with high TN score display sensitive to particular drugs. In the first approach, a class comparison between the global gene expression profiles of BLBC or ER- tumors with high TN score to those with low TN score was carried out in the ROCK dataset. In comparison to low TN score BLBC tumors, high TN score BLBC tumors
- 20 overexpressed 171 probes and underexpressed 251 probes (Table 15). In a similar analysis, high TN score ER⁻ tumors overexpressed 307 probes and underexpressed 332 probes (Table 16). Of the overexpressed probes, 87 probes (82 genes) were commonly overexpressed in high TN score BLBC and ER⁻ breast cancer compared to low TN score counterparts. Of the 87 probes, 39 probes were prognostic in BLBC
- and ER- breast cancer (marked in bold in Table 15). More importantly, the 87 probes include genes which encode several kinases, enzymes and ion channels which could be targets or current for future drug development for the treatment of the high TN score tumors that have poor outcome.

In the second approach, published studies which surveyed panels of molecular drugs

30 against cancer cell lines were analyzed. The Cancer Cell Line Encyclopedia (CCLE) study [50] investigated the pharmacological profiles for 24 anticancer drugs across 479 cancer cell lines which were also profiled with gene expression arrays. We calculated the TN score for each cell line in this study and compared the sensitivity of these cell lines to the anticancer drugs according to the TN score. Cancer cell lines

with high TN score were less **sensitive** to inhibition of ALK (**TAE684**) and **B**CR-ABL (Nilotinib) but more sensitive to the **inhibition** of HSP90 (Tanespimycm [17-AAGj) and EGFR (Erlotinih or Lapatinib) (Figure 35). In a similar method, we also analyzed a second large study. Garnet! et al. [49], which tested 130 drugs against

- 5 more than 600 cancer cell lines. As shown in Figure 24, ceil lines with high TN score were less sensitive to inhibition of PARP (ABT-888), retinoic acid (ATRA), Bcl2 (ABT-263), DHFR (methotrexate), glucose (metformin) and p38MAPK (BIRB 0796). Two IGF1R inhibitors showed different results; high TN score cell lines were less sensitive to the OSI-906 inhibitor but more sensitive to the BMS-536924
- inhibitor. As shown in Figure 24, cell lines with high TN score were also sensitive to HSP90 inhibition (17-AAG and Elesclomol) in agreement with the findings from the CCLE study (Figure 35), High TN score cell lines were also more sensitive to mTOR/PI3K (BEZ235) and MEK (RDEA-1 19) inhibition.

#### Integration of the TN score and the aggressiveness score

- We have recently published the aggressiveness gene signature/score (Agio score) [36] from a meta-analysis in Oncomine[™] and validated that this score is prognostic in ER⁺ breast cancer at the gene level. ER⁻ breast cancer, BLBC and TNBC almost consistently express high level of the Agro score thus this signature was not prognostic in these subtypes. We further showed that one of these genes, TTK/MPSI,
- is upregulated in TNBC cell lines and some ER- negative cell lines, and that TTK is a therapeutic target in these cell lines. Moreover, we showed that the TTK protein level by immunohistoehemistTy (IHC) is prognostic in very aggressive subgroups of breast cancer including high grade, proliferative tumors, lymph node positive, TNBC and HER2⁺ subtypes [36]. The integration of the TN gene signature (prognostic in
- 25 ER/BLBC/TNBC) and the Agro gene signature (prognostic in ER⁺) would allow one integrated signature and score which will be prognostic in breast cancer irrespective of subtypes. As detailed in the methods section, the addition, subtraction, multiplication or division of the TN and Agro scores were investigated in the ROCK dataset to identify a direct **relationship** that would retain the information provided
- 30 from each of the scores, A linear relationship was observed by the addition or subtraction of the TN and Agro scores (Figure 36), but only the integration by addition was prognostic in ER- patients (Figure 37). On the other hand, the multiplication and division of the TN and Agro score produced exponential and power curves relationships, respectively (Figure 38). Only the multiplication of the

scores was prognostic in ER- breast cancer (Figure 37). Since multiplication and division produced exponential and power curves  $\mathbf{6}$  r the relationship between the **TN** and **Agro** score, we also tested integration by one score raised to the power of the second score. Indeed, the TN score raised to the power of Agro score was highly

- 5 prognostic in ER- and ER+ patients in the ROCK dataset (Figure 37). This method to integrate the **TN** and Agro scores, the integrated breast cancer recurrence (iBCR) score, was prognostic in all patients, ER- and ER+ patients in the ROCK dataset (Figure 25) and the TCGA dataset (Figure 26). Moreover, the iBCR score was as prognostic as the TN score in the homogenous TNBC dataset [32] (Figure 39),
- 10 supporting the iBCR score as prognostic test in breast cancer.

#### The iBCR score and the *i*kelihood of pCR after chemotherapy

The association of the iBCR score with patient sun'ival and the likelihood of pCR after chemotherapy was investigated in the ISPY-1 trial (GSE22226). The RFS of **ER**/H**ER2** patients was stratified by iBCR score better than the TN score alone

- 15 (Figure 27). High iBCR score ER7HER2⁻ patients were less likely to achieve pCR (Figure 27), which could explain the poorer sun'ival of these patients. In ER* breast cancer, the iBCR score stratified the RFS patients similarly to the Agro score. Although higher likelihood pCR was observed in high iBCR score ER* tumors (Figure 27), this subgroup had poor RFS. This can be explained by the small number
- 20 of ER* patients who achieved pCR (10/62 [16%] vs. 10/34 [29%] in ERHER2 ⁻). These results provide further validation and evidence for the value of the iBCR score as a single test which incorporates the Agro score (prognostic in ER*) and the TN score (prognostic in ER⁻). The results in Figure 25 from the ROCK dataset (Affymetrix platform), Figure 26 from the TCGA dataset (Illumina platform) and
- Figure 27 from the ISPY-1 trial (Agilent platform) also provide evidence for the robustness of the Agro and TN scores and the derived iBCR score across independent studies across the three major gene expression array platforms. Next, the association of the iBCR score with pCR was investigated in other neoadjuvant chemotherapy datasets in both ER-HER2⁻ and ER* patients. pCR was
- 30 less likely in high iBCR ER/HER patients after TX (GSE18728) chemotherapy regimen and not different to low iBCR ER-/HER2- patients when treated with AT/CMF (GSE50948). In the other datasets, pCR was more likely in high iBCR score ER-/HER2- patients after treatment with FAC (GSE20271), TFAC (GSE20271)

and GSE20194), EEC/TX (GSE42822) and EAC/TX (GSE23988) neoadjuvant chemotherapy regimens (Figure 28A),

As shown in the summary from these four studies in Table 12, of the total 183 ER⁻ HER2⁻ patients, 120 patients (65.6%) had high iBCR score and of these 54 patients

- 5 (29.5%) achieved pCR while 66 patients (36.1%) did not achieve pCR. The larger number of patients with high iBCR score that did not achieving pCR (66/120, 55%) and that recurrence may be observed on high iBCR score patients after pCR (55/120, 45%) could explain the poorer survival of high iBCR score ER⁻HER2⁻ patients (40-50% survival at 10 years in Figure 25 and Figure 26), Based on these studies and that
- 10 chemotherapy is the mainstay in the treatment of ER7HER2 breast cancer, low iBCR score patients may be spared from additional treatments particularly if they achieve pCR after chemotherapy. On tire other hand, high iBCR ER-HER2- patients and particularly those who do not achieve pCR should be offered additional therapy which could be based on the unregulated genes in the Agro or TN signatures or based
- on other overexpressed genes in these tumors (Tables 15 and 16) or from the preclinical analysis we performed from drug sensitivity studies (Figures 24 and 3.5).
   High iBCR score in ER⁺ was associated with higher likelihood of pCR after AT/CMF (GSE50948), TX (GSE18728), TFAC (GSE20271 and GSE20194) and FAC/TX (GSE23988) neoadjuvant chemotherapy regimens (Figure 38B), Despite
- 20 this higher pCR likelihood, high iBCR ER+ patients have poorer survival (Figures 25 and 26) which could be explained by the small number of ER+ patients who achieve pCR (of the 207 ER+ patients in the above five studies, 5 [2.5%] with low iBCR and 20 [9.7%] with high iBCR score achieved pCR). Thus, for ER+ breast cancer where a decision about including chemotherapy with the standard endocrine therapy in the treatment planning may be informed by the iBCR score. The value of the iBCR score
- in the treatment planning of ER+ patients is tire described next section.

#### The iBCR score and the treatment of $'ER^+$ breast cancer

ER⁺ breast cancer patients are treated with endocrine therapy, particularly tamoxifen. When these patients are lymph node positive (N1), adjuvant chemotherapy is also

30 included. For lymph node negative (NO) ER⁺ patients, decision to include chemotherapy is less certain as good prognosis patients (small and lower grade tumors) would be over-treated if chemotherapy is included whereas poorer prognosis patients (larger and higher grade tumors) would be under-treated if chemotherapy is not included. This clinical decision has been the motivation for the development of

10

15

140

Oncotype Dx[®] recurrence score, the Ma*imaPrint[®] and more recently the PAM5D risk of recurrence score. We have previously published that the Agro score outperformed the Oncotype Dx and the MammaPrint tests in multivariate survival analysis in the METABRIC dataset of 2000 patients [36]. This finding is further supported by direct comparison of the Agro score to Oncotype Dx (Figure 40) and MammaPrint (Figure 41) in all ER⁺ patients and in the NO and Nt subsets. For the iBCR score, as shown in Figure 29A, this score was prognostic in ER⁺ NO patients who were not treated with tamoxifen indicating that high iBCR ER⁺ NO patients should be treated with tamoxifen. When ER+ NO or N1 patients are treated with tamoxifen, the iBCR score can still identify patients who have poor RFS (Figure 29B) and DMFS (Figure 29C), Thus, ER+ NO or N1 patients with high iBCR score may benefit from the inclusion of adjuvant chemotherapy in their treatment as these patients may experience better pCR (Figure 28B). Nonetheless, as pCR rate in ER⁺ is not high, high iBCR score ER+ patients, particularly N1, should be offered additional targeted therapies. The type of targeted therapies for these patients is suggested in the next section.

*The iBCR* score predicts therapies for ER/HER2⁻ and ER⁺ and breast cancer subtypes

The overexpressed genes in the Agro and TN signature contain targetable genes which could be useful for therapeutic intervention against the high iBCR tumors which have poor survival alter the **standard** treatments. Similar to the analysis performed for the TN signature above, we took two approached to identify additional possible targets in the high iBCR score breast tumors. In the first approach, a class comparison between the global gene expression profiles of ER⁺ or ER["] tumors with

- high iBCR score to those with low iBCR score was carried out in the ROCK dataset. The produced gene-list (1178 probes, data not shown) was then filtered by comparison to normal breast tissue which was also profiled in this dataset. In comparison to low iBCR score tumors and normal breast tissue, high iBCR score tumors overexpressed 204 probes (181 genes) and underexpressed 124 probes (116
- 30 genes) (Table 17). Of the 181 overexpressed genes, 134 genes were specifically upreguiated in high iBCR score ER⁺ vs. normal breast and low iBCR ER⁺ and 95 genes were specifically upreguiated in high iBCR score ER⁻ vs. normal breast and low iBCR ER⁻. As shown in Table 13, 49 genes were uniquely upreguiated in high iBCR score ER- tumors compared to low score **iBCR** score ER⁻ tumors and normal

10

141

breast tissue. Similar compaiison revealed that high iBCR score ER⁺ tumors have unique upregulation of 86 genes. High iBCR score ER⁻ and ER⁺ tumors commonly overexpressed 46 genes in compaiison to low score **iBCR** counterparts and normal breast tissue. These genes encode several kinases, enzymes and ion channels which could be targets for current or future drug development for the treatment of the high iBCR score tumors with poor outcome. Of the downregulated probes, a particularly **interesting** hit was the miero-RNA (miRNA) hsa-mir-568 (9.3- and **2.2-fold** downregulated in high iBCR score ER⁻ vs. normal breast and low iBCR score ER⁻, respectively; 5,6- and 2,9-fold downregulated in high iBCR score **BR**⁺ vs. **normal** breast and low iBCR score ER⁺, respectively). This downregulated miRNA in the high iBCR score tumors targets several of the upregulated genes in these tumors,

- particularly those which are upregulated compared to **normal** breast tissue (Table 18). This miRNA could be a genomic-based treatment against high iBCR **score** breast cancers.
- 15 In the second approach, again similar to the above analysis for the TN score, published studies of drug screens were analyzed for the association of the iBCR score with sensitivity of cancer cell lines to anti-cancer drugs. In the CCLE study (Figure 42), cancer cell lines with high iBCR score were less sensitive **b** inhibition of ALK (TAE684) and BCR-ABL (Nilotinib) similar to results from the TN score. In
- addition, high iBCR cell lines were less sensitive to inhibition of FGFR (TKI258) and IGF1R (AEW541), High iBCR score cell lines were more sensitive to the inhibition of HSP90 (Tanespimycin [17-AAG]) (Figure 42). In the second large study by Garnett et al. [49], high iBCR score cell lines were more sensitive to low iBCR score cell lines to 8 anticancer drugs (Figure 30). These include inhibitors of
- HSP90 (17AAG), mTOR/PI3K (BEZ235) and IGFIR (BMS-536924) as also observed in the TN score results. Additionally, high iBCR score cell lines were more sensitive to inhibition of PI3K (GDC0941), mTQR (jW-7-25-1), XIAP (Embelin) and PLK1 (B1-2536) which also matched results from Agro score results (Figure 30). The Agro score also identified sensitivity to inhibition of RSK (CMI), MEK
- 30 (PD0325901) and DNA damage (Bleomycin). Similar to results from high TN score, high iBCR score cell lines were also less sensitive to the inhibition of PARP (ABT-888 and AZD-2281), retinoic acid (ATRA), Bcl2 (ABT-263), DHFR (methotrexate) and glucose (metformin). Additionally, high iBCR score cell lines were less sensitive b inhibition of SYK (BAY 613606), HDAC (Vorinostat) and BCR-ABL (Nilotinib)

and p38MAPK (BIRB 0796). High Agro score cell lines were less sensitive to an **additional** drug against GSK3A/B (SB216763). Altogether, the TN score (Figures 24 and 35) and the Agro score and the combined iBCR score (Figures 30 and 42) associate with sensitivity to several anticancer drugs and future experimental validation would establish these scores as companion diagnostic for these drugs and

5 validation would establish these scores as companion diagnostic for these drugs and benefit breast cancer patients by directing these drugs to the high score patients with poor survival.

# Sensitivity of breast cancer cell lines to targeted inhibitors according to the iBCR score

- Breast cancer cell lines (10 cell lines); BT-549, MDA-MB-231, MDA-MB-436, MDA-MB-468, BT-20, Hs.578T, BT-474, MCF-7, T-47D, and ZR-75-1, were cultured in the absence or presence of escalating doses of 24 anti-cancer drugs. The survival of cells was determined six days in compari son to untreated cells using the MTS/MTA assay. The response of the cell lines to the drugs was analyzed in
- 15 GraphPad[®] Prism using a dose response curve to calculate the log₁₀ of IC50 (1C50 is the dose required to kill **50%** of the cells). Sensitivity was presented as the l©gio[IC5QL This drug screen which we published previously (Al-Ejeh *et al*, *Oncotarget*, 2014) was re-analyzed according to the iBCR score. The gene expression datasets of 51 breast cancer cell lines by Neve et al. (*Cancer Cell*, 2006),
- 20 was analyzed to calculate the Agro and TN scores for each cell line to calculate the iBCR score. Each cell line was assigned as low of high iBCR score by dichotomy across the median of all the cell lines in the Neve et al. dataset. Based on the low or high iBCR score classification, the sensitivity of the 10 cell lines used in our screen was compared between high iBCR score cell lines (5 cell lines) to low iBCR score
- cell lines (5 cell lines). As shown in Figure 47, high iBCR score cell lines were significantly more sensitive to the inhibition of p38MAPK (LY222882Q), PLCu (IJ73122), JNK (SP600125), PAK1 (IPA3), MEK (AS703026 and AZD6244), ERK5 (XMD 8-92 and BIXG2188), HSP90 (17-AAG, PF0429113 and AUY922), IGF1R (GSK1904529A) and EGFR (Afatinib). The results from our screen are in agreement with the higher sensitivity of high iBCR score cancer cell lines to HSP90, IGF1R and MEW is lift.
- MEK inhibitors we identified from the two previously published large cell line studies.

#### Discussion

Our meta-analysis of gene expression datasets in the OncomineTM database has previously identified a signature, the Aggressiveness signature (Agra signature), which was prognostic in ER⁺ breast cancer. We validated one of the genes in this signature, TTK/MPS1, by IHC and found that TTK positivity in interphase cells (exclusive of mitotic ceils) was prognostic in highly aggressive breast cancers such 5 as high grade, high grade and lymph node positive and highly proliferative (Ki67 positive) cases [36]. In this study, we used our meta-analysis approach to identify a second signature, the triple negative signature (TN signature), which was highly prognostic in ER\. TNBC and BLBC subtypes. The TN signature outperformed all standard clincopatholical indicators in multivariate survival analysis and also 10 outperformed published signatures in ER- breast cancer. We were also able to integrate the Agro signature (prognostic in ER⁺ breast cancer) to produce the integrated Breast Cancer Recurrence (iBCR) test. The two signatures and the iBCR were validated in large independent cohorts of breast cancer studies irrespective of the gene expression arrays used indicating the experimenter/technology 15 independence of our signatures. Importantly, both the Agro and TN signatures and the iBCR test associated with response and outcome after endocrine therapy for ER⁺

and neoadjuvant chemotherapy for  $\mathbf{ER}^-$  and  $\mathbf{ER}^+$  breast cancers. Moreover, by comparison of the global gene expression profiles of high iBCR score tumors to low

- 20 iBCR score tumors, we were able to identify several overexpressed targets which can be used for the targeted therapy of these poor prognosis patients who are not really benefiting from the current treatment standards. In addition, mining of large preclinical studies of drug screens against cancer cell lines showed that the signatures and iBCR score predict higher sensitivity of cell lines to particular drugs. Thus, the
- 25 signatures and the iBCR test could be used as a companion diagnostic to direct targeted therapies to those patients who would benefit from these treatments to increase their low survival rates. Altogether, our studies have not only extensively illustrated the potential of our signatures in personalized medicine, but may also shed light for future studies to understand the underlying mechanisms for the
- 30 aggressiveness of tumors that the iBCR test identified that lead to poor survival To date, there is an unmet medical need for the prognostication of ER- breast cancer and the development of effective therapies against these tumors particularly when lacking HER2 expression. Chemotherapy remains to be the only standard therapy in these patients and the response rate after chemotherapy in the neoadjuvant setting is

10

144

reported as 31% in ER HER2 (TNBC) patients [9]. Identifying patients who would truly benefit from chemotherapy would aid clinicians to determine patients who may require longer or additional treatment regimens including investigational clinical trial enrolment. Our signatures and the iBCR score predict higher pCR after chemotherapy in patients who have high scores compared to those with low score. The low score patients have better survival and may not require additional therapy. On the other hand, despite the higher pCR in high score patients, this patient subgroup still has poor survival and recurrences were present even after achieving pCR in high score patients when we analyzed the data from the ISPY-1 trial. Our results from comparative analysis and mining pre-clinical drug screens identified several targets and sensitivity to drugs in development. Thus, ER- and particularly TNBC patients with high scores for our signatures/iBCR test may benefit from the

inclusion of therapies envisioned by these signatures to increase their survival rates.
Such clinical development will depend on future prospective validation of our
signatures and the iBCR test in clinical trials and **pie-clinical** studies.

In ER⁺ breast cancer, three commercial tests exist for clinical decisions to spare or include adjuvant chemotherapy with the standard endocrine therapy; Oncotype Dx[®], MammaPrint[^] and Prosigna^{*}. These have been validated for ER⁺ lymph node negative (NO) breast cancer patients treated with endocrine therapy whether patients

- 20 with high risk according to these tests are recommended for adjuvant chemotherapy. Our signatures and tire iBCR test outperformed these tests in a direct **comparison** in ER⁺ NO patient-survival after tamoxifen therapy. Moreover, our tests also predicted the response of ER⁺ patients to chemotherapy and importantly could predict sensitivity to targeted therapies. The current commercial tests do not have this 25 capability. Importantly, our signatures and the iBCR test was also prognostic in the
- subgroup with unmet need, ER⁺ lymph node positive breast cancer (ER⁺ Nl), The survival of these patients was stratified to poor and good prognosis groups by our signatures and iBCR test which also informed whether these patients are benefiting from endocrine therapy. Clinical validation of our signatures and the iBCR test along
- 30 with validation of drug sensitivity predictions would aid the development of new treatment regimens for ER⁺ patients who are at high risk of relapse or metastatic spread after the current treatment standards.

The comparison of aggressive ER⁻ tumors identified by our signatures to their counterparts and to normal breast tissue identified several kinases, enzymes (redox

particularly) and potassium channels which could inform new directions in

developing targeted treatments against ER breast cancer. On the other hand, for aggressive ER+ tumors identified by our signatures, although targets were not restricted to cell cycle and proliferation, these functions were notably enriched. This high proliferation profile could explain the higher pCR in, these tumors after 5 proliferative tumors would chemotherapy as be more responsive to chemotherapeutics. Nonetheless, we have previously clarified that the overexpressed genes in the Agro signature, thus the iBCR test, are genes that are involved in kinetochore binding and chromosome segregations and that the signature is prognostic even in proliferative tumors (high Ki67 expression) [36]. Deregulation of 10 genes involved in chromosome segregation would produce aneuploidy and chromosomal instability (CIN) [52], At least in viva, chemotherapy has been shown to induce the proliferation **quiescent** aneuploid cells as a mechanism for therapy resistance [53]. In support of the notion that high Agro score is related to aneuploidy, analysis of the copy number variations (CNVs) TCGA data showed that high Agro 15 score tumours, compared to low Agro score tumors, have high level of CNVs, particularly those involving whole chromosomes or chromosome arms (Figure 43), Thus, although proliferation may be a characteristic of high Agro/iBCR score ER+ tumors, these tumors appear to be an euploid. In line with this notion, the sensitivity of high Agro/iBCR score cell lines to VLK1 and HSP90 inhibition (Figure 3(5) and 20aurora kinase inhibitors (Figure 44) support that high Agro/iBCR scores predict sensitivity to anti-aneuploid therapy. PLK1 and Aurora kinases are classical targets in aneuploidy and HSP90 inhibition has been reported to selectively kill aneuploid cancer cells [54]. HSP90 sensitivity was also found for high TN score tumors and

- 25 interestingly, we have previously identified HSP90 as a target in TNBC by kinome profiling of breast cancer. We showed that HSP90 inhibition in combination therapy is effective *in vitro* and *in vivo [55]*. We propose that anti-aneuploid drugs should be effective against ER⁺ tumors with high Agro/iBCR scores including PLK1, Aurora kinase and HSP90 inhibitors and that HSP90 inhibition should be effective in high
- 30 TN/ifiCR score ER tumors. While **other** therapies envisioned by our signatures and the iBCR test should also be investigated, the above targets represent first line targets for initial validation and development.

In conclusion, our meta-analysis in OneomineTM and extensive subsequent validation and analysis have developed novel signatures and an integrated genomic test for the

prognosis of breast cancer and prediction of response to standard treatments irrespective of ER status. The novel signatures and their integration also have the potential as companion diagnostic tests for several classes of targeted therapies- in breast cancer patients who suffer poor survival. Future validation and clinical development of our signatures and the iBCR test holds a great potential and impact on personalized and precision medicine for breast cancer. Finally, it should be noted that the iBCR test has value in the prognosis of several other cancers (Figure 45) and

particularly in lung adenocarcinoma (Figure 46), thus our approach and novel

signatures may extend benefit to other cancer types.

10

#### REFERENCES

1. Kang, S.P., M, Martel, and L.N. Harris, *Triple negative breast cancer: current inderstanding of biology and treatment op tions*. Curr Opin Obstet Gynecol, 2008, **20**(1); p. 40-6.

5 2. Schneider, B.P., et al.. *Triple-negative breast cancer: risk factors to potential targets*, Clin Cancer Res, 2008. **14**(24); p. 8010-8.

3. Rakha, E.A., J.S. Reis-Filhio, and I.O. Ellis, *Basal-like breast cancer: a critical review*. J Clin Oncol, 2008. 26(15): p. 2568-81,

4. Fulford, L.G., et al, Basal-like grade IT! invasive ductal carcinoma of the
breast: patterns of metastasis and long-term survival. Breast Cancer Res, 2007. 9(1):
p. R4.

5. Goldstein, L,J., et al, Concurrent doxorubicin plus docetaxel is not more effective titan concurrent doxorubicin plus cyclophosphamide in operable breast cancer with 0 to 3 positive axillary nodes: North American Breast Cancer Intergroup

15 *Trial E* 2/97. J Clin Oncol, 2008. 26(25): p. 4092-9,

6. Keam, B., et al.. Prognostic impact of clinicopatkologic parameters in stage WIII breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: paradoxical features of the triple negative breast cancer. BMC Cancer, 2007. 7: p. 203.

20 7. Liedtke, C, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 2008. 26(8): p. 1275-81.

8. Carey, L.A., et al, *The triple negative paradox: primary tumor chemosensitivity of breast -cancer subtypes.* Clin Cancer Res, 2007. **13**(8): p. 2329-34.

9. von Minckwitz, G., et al, Definition and impact of pathologic complete

25 response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol, 2012. **30**(15): p. 1796-804.

10. Sorlie, T., et al., *Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications*.. Proc Natl Acad Sci U S A, 2001. 98(19):
p. 10869-74.

30 11. Perou, CM., et al, Molecular portraits of human breast tumours. Nature, 2000. 406 (6797): p. 747-52,

12. Hu, Z,, et al, *The molecular portraits of breast tumors are conserved across microarray platforms*. BMC Genomics, 2006. 7: p. 96-107.

148

13. Parker, J.S., et al, Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J Clin Oncol, 2009,

14. Weigelt, **B.**, et **al**, Breast cancer molecular profiling with single sample predictors: a retrospective analysis-. Lancet Oncol 11(4): p. 339-49.

5 15. Weigelt, B., et al, Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res, 2005, 65(20): p. 9155-8.

16, Parker, J.S., et al, Supervised risk predictor of breast cancer based on intrinsic subtypes, 3 Clin Oncol, 2009. 27(8): p. 1160-7.

10 17. Lehmann, B.D., et al, Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest, 2011. 121(7): p. 2750-67.

18, Shah, S.P., et al, *The clonal and mutational evolution spectrum of primary triple-negative breast cancers.* Nature, 2012, **486**(7403): p. 395-9.

 Irshad, S., P. Ellis, and .4. Tutt, Molecular heterogeneity of triple-negative breast cancer and its clinical implications. Curr Opin Oncol, 201 1. 23(6): p. 566-77.
 Criscitiello, C., et al, Understanding the biology of triple-negative breast cancer. Ann Oncol, 2012. 23 Suppl 6: p. vi 13-8.

21. Masuda, H. et: al, Differential response to neoadjuvant chemotherapy among

7 triple-negative breast cancer molecular subtypes. Clin Cancer Res, 2013. 19(19): p. 5533-40,

22. van 't Veer, L J., et al, Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002. 415(6871): p. 530-6.

23. Paik, S., et al, A mulfigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med, 2004. **351**(27): p. 28 17-26.

24. Buyse, M,, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst, **2006. 98**(17): p. 1183-92.

25. Loi, S,, et al. Definition of clinically distinct molecular subtypes in estrogen
30 receptor-positive breast carcinomas through genomic grade. J Clin Oncol, 2007.
25(10): p. 1239-46.

26. Ma, X.J., et al, *A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer.* Clin Cancer Res, 2008. **14**(9): p. 2601-8.

149

27. Ma, X.J., et al., A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell, 2004. 5(6): p. 607-16,

28. Sotiriou, C., et al.. Gene expression profiting in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. Journal of the National Cancer Institute, 2006. **98**(4): p. **262-72.** 

29. Dowsett, M., et al., Comparison of PAM5Q risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol, 2013, 31(22): p. 2783-90.

30. Yau, C, et al., A multigene predictor of metastatic outcome in early stage
10 hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res,
2010, 12(5): p. R85,

31. Rody, A., et al., A *clinically relevant gene signature in triple negative and basal-like breast cancer*. Breast Cancer Res, 2011. **13**(5): p. R97.

32. Karn, T., et al., Homogeneous datasets of triple negative breast cancers
15 enable the identification of novel prognostic and predictive signatures. PLoS One,
2011. 6(12): p. e28403.

33. Yu» K.D., et al., *Identification of prognosis-relevant subgroups in patients* with chemoresistant triple-negative breast cancer. Clin Cancer Res, 2013. **19**(10): p. 2723-33.

20 34. Lee, U., et al., A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients. **PLoS** One, 2013, **8(12):** p. e82J25.

35. Hallett, R.M., et al., A gene signature for predicting outcome in patients with basal-like breast cancer. Sci Rep, 2012. **2**:p. 227.

36. Al-Ejeh, F, et al., Meta-analysis of the global gene expression profile of

triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer. Oncogenesis, 2014. **3**: p, e100.

37. Rhodes, D.R., et al., ONCOMINE: a cancer microarray database and integrated daturnining platform. Neoplasia, 2004. **6**(1): p. **1-6**.

38. Gyorffy, B., et al., An online survival analysis tool to rapidly assess the effect

30 *of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients.* Breast Cancer Res Treat, 2010, **123(3)**: p. 725-31.

39. TCGA, Comprehensive molecular portraits of human breast tumours. Nature,
2012. 490(7418): p. 61-70.

150

40. Ur-Rehman, S., et al., *ROCK: a resource for integrative breast cancer data analysis.* Breast Cancer Res Treat, 2013. **139**(3); p, 907-21.

**41**. Esserman, L.J., et al, *Pathologic complete response predicts recurrence-free* survival more effectively by cancer subset: results from the I-SPY 1 TRIAL—CALGB 150007/150012, ACRIN 6657, J Clin Oncol, 2012. **30**(26): p. 3242-9.

42. Korté, L.A., et al., Gene expression pathway analysis to predict response to neoadjuvant docetaxel and capecitabine for breast cancer. Breast Cancer Res Treat, 2010. 119(3): p. 685-99,

43. Prat, A., et al., Research-based PAM50 subtype predictor identifies higher

10 responses and improved survival outcomes in HER2-positive breast cancer in the NOAH study. Clin Cancer Res, 2014, 20(2):.p. 511-21,

44. **Tabcfay, A., et.** al., Evaluation of a 30-gene paclitaxel, fluorouracU, doxorubicin, and cyclophosphamide chemotherapy response predictor in a multicenter randomized trial in breast cancer. Clin Cancer Res, 2010. **16**(21): p.

15 5351-61.

45. Popovici, V,, et al.. *Effect of training-sample size and classification difficulty* on the accuracy of genomic predictors. Breast Cancer Res, **2010**, **12**(1): p. R5.

46. Esserman, L.J., et al, Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY

20 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Caneer Res Treat, 2012.
132 (3): p, 1049-62.

47. Shen, K., et al., Cell line derived multi-gene predictor of pathologic response to neoadjuvant chemotherapy in breast cancer: a validation study on US Oncology 02-103 clinical trial, BMC Med Genomics, 2012. 5:p. 51.

48. Iwamoto, T., et al., Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. J Natl Caneer Inst, 2011. 103 (3): p. 264-72.

49. Garnett, M.J., et al., Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 2012. **483** (7391): p. 570-5.

30 50, Barretina, J., et al., *The Cancer Ceil Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.* Nature, 2012. **483** (7391): p. 603-7.

51. Symmans, W.F., etal., *Genomic index of sensitivity to endocrine therapy for breast cancer.* J Clin Oncol, 2010. **28**(27): p. 4111-9.

52. Bakhoum, S.F. and D.A. Compton, *Chromosomal instability and cancer: a complex relationship with therapeutic potential* J Clin Invest, 2012. **122**(4): p, 1138-43.

53. Kusumbe, A.P. and S.A. Bapat, Cancer stem ceils and aneuploid populations

5 within developing tumors are the major determinants of tumor dormancy. Cancer Res, 2009. **69**(24): p. 9245-53.

54. Tang, Y.C., et al., *Identification of aneuphidy-s*^{lective} antiproliferation compounds. Cell, 2011. **144(4)**: p. 499-512.

- 55. Al-Ejeh, F., et al., Kinome profiling reveals breast cancer heterogeneity and
- 10 *identifies targeted therapeutic opportunities for triple negative breast cancer.* Qncotarget, 2014.

56. Bos, P.D., et al, Genes that mediate breast cancer metastasis to the brain. Nature, 2009, **459** (7249): p. 1005-9,

57. Desniedt, C., et al, Strong time dependence of the 76-gene prognostic

15 signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res, 2007, **13**(11): p. 3207-14.

58. Hatzis, C., et. al., A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA, 2011. **305**(18): p. **1873-81.** 

20 59. Kao, K.J., et al., Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization. BMC Cancer, 2011, 11: p. 143.

60. Schmidt, M,, et al., *The humoral immune system has a key prognostic impact in node-negative breast cancer*. Cancer Res, 2008. **68**(13): p. 5405-13.

van de Vijver, MX, et al., A gene-expression signature as a predictor of survival in breast cancer. N Engl. J Med, 2002. 347 (25): p, 1999-2009,

62. Bild, A.H., et al., Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature, 2006. **439** (7074): p. 353-7.

63. Pawitan, Y., et al., Gene expression profiling spares early breast cancer
30 patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res, 2005, 7(6): p. R953-64.

64. Sorlie, T., et al., Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8418-23.

152

65. Zhao, Y. and R. Simon, BRB-ArrayTools Data Archive for human cancer gene expression: a unique and efficient data sharing resource. Cancer Inform, 2008, 6: p. 9-15.

66. Cline, M.S., et al.. Exploring TCGA Pan-Cancer data at the UCSC Cancer Genomics Browser. Sei Rep, 2013. 3: p. 2652.

67. Goldman, M., et al., *The UCSC Cancer Genomics Browser: update 2013*, Nucleic Acids Res, 2013. **41**(Database issue): p. D949-54.

68. Al-Ejeh, F., et al., Treatment of triple-negative breast cancer using ami-EGFR-directed radioimmuno therapy combined with radiosensitizing chemotherapy

10 and PARP inhibitor. **J Mu**cl Med, 2013. **54**(6): p. 913-21.

69. Diamond, J.R., et al., Predictive biomarkers of sensitivity to the aurora and angiogenic kinase inhibitor ENMD-2076 in preclinical breast cancer models. Clin Cancer Res, 2013, 19(1); p. 291-303.

70. Kalous, O., et al., AMG 900, pan-Aurora kinase inhibitor, preferentially

inhibits the proliferation of breast cancer cell lines with dysfunctional p53. Breast
 Cancer Res Treat, 2013. 141(3): p. 397-408.

Table: 10	The 28-gene signature discovered from a meta-analysis of ge	ene
expression	ata in breast cancer in Oneomine ^{1M}	
~		

Gene Symbol	Affymetrix probe	Entrez	Gene name
↑ABHO5	213935at	51099	abhydrolase domain contaîning 5; 1- acylglycerol-3-phoSphate O-acyltransferase
<b>↑ADORA</b> 2B	205891at	136	adenosine A2b receptor
↑BCAPS1 ↑CA9	200837. at 205199. at	10134 768	B-cell receptor-associated protein 31 carbonic anhydrase IX
↑CAMSA PI	21271 1. at	157922	calmodulin regulated spectrin-assQciated protein 1
↑CARHSP 1	218384_at	23589	calcium regulated heat stable protein 1, 24kDa
^CD55	201926_j:_at	1604	CD55 molecule, decay accelerating factor for complement (Cromer blood group)
<b>↑</b> CETN3	209662_at	1070	centrin, EF-hand protein, 3
<b>↑</b> EIF3K	221494_x_at	27335	eukaryotic translation initiation factor 3, subunit K
<b>↑</b> EXOSC7	212627 _s_at	23016	exosome component 7
^GNB2L1	200651 at	10399	guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1
↑GRHPR	214864_s_at	9380	glyoxylate reductase/hydroxypyruvate reductase
<b>↑</b> GSK3B	209945_si_at	2932	glycogen synthase kinase 3 beta
↑HCFC IR 1	218537. at	54985	host cell factor CI regulator 1 (XPOI dependent)
↑KCNG1	214595at	3755	potassium voltage-gated channel, subfamily G, member 1
↑MAP2K5	21137Q_s;_at	5607	mitogen-activated protein kinase kinase 5
<b>↑</b> NDUFC1	203478. at	4717	NADH dehydrogenase (ubiquinone) 1, subcoinplex unknown, 1, 6kDa
$\uparrow$ PML	2Q6503_x_at	5371	promyelocytic leukemia
↑STAUI	208948_s_at	6780	staufen, RNA binding protein, homolog 1 (Drosophila)
↑TXN	216609_at	7295	thioredoxin
个ZNF593	204175_at	51042	zinc finger protein 593
$\Psi$ BTN2A2	205298_s_at	10385	butyrophilin, subfamily 2, member A2 ELKS/RAB6-interacting/CAST family
$\Psi$ ERC2	213938_at	26059	member 2
<b>↓</b> IGH	211649_x_at	3492	immunoglobulin heavy locus
<b>↓</b> ME1	211204_at	4199	malic enzyme 1, NADP(+)-dependent, cytosolic
↓MTMR7	217292_at	9108	myotubularin related protein 7
↓SMPDL3 B	205309_at	27293	sphingomyelin phosphodiesterase, acid-like 3B
↓ZNRD1- ↓AS1	215985_at	80862	ZNRD1 antisense RNA 1

		Untreated				Treated				
	;	HR	CI 95%	p-vahie	HR	CI 95%	p-value			
	RFS	2,02	1.25 - 3.26	3.20E-03	2.59	1.84 - 3.60	I.70E-08			
ER-	DMFS	4.10	1.44 - 11.7	4,20E-03	1,89	1.04 - 3.43	3.40E-02			
	OS	1.77	0.65 - 4.83	0.26	3.82	1,43 - 10.18	3.90E-03			
• ş	RFS	2.48	1.46 - 4.21	5.10E-04	2.88	<u>!!li 4 _! .28 !l</u>	<b>!</b> 450E-08			
	DMFS	5.54	1.66 - 18.48	Ĭ.70E-03	3.14	1.38 - 7.19	4.20E-03			
S3	OS	2.42		<b>1</b> 0.11	4.89	1.65 - 14.46	150E-03			

## Table 11: The TN signature is prognostic in ER- and BLBC irrespective of systemic therapy.

The 28-gene signature was used as described in Figure 2 in the online tool KM-plotter but restricting the analysis oil **FR**, or **f LBC** natients who were untreated systemically or systemically treated. The survival

5

analysis oil ER- or f LBC patients who were untreated systemically or systemically treated. The survival curves for RFS. DMFS and OS are shown in Figure 34; only the hazard ratio (HR); the 95% confidence interval (CI 95%) and the log-rank p-value from these curves are reported in the Table:.

# Table 12: The likelihood of pCR in ER-HER2- patients according to the iBCR score

	pCR	n o pCR	Sum
Low Score	12 (6.6%)	51 (27.9%)	63 (34.4%)
High Score	54 (29.5%)	66 (36.1%)	120 (65.6%)
Total	66 (36,1%)	117 (63.1%)	183 (100%)

ER-/HER2- patients stratified by low and high iBCR scores from four studies were compared for achieving or not achieving pCR after four chemotherapy regimens: FAC (GSE20271), TFAC (GSE20271 and GSE20194), FEC/TX (GSE42822) and FAC/TX (GSE23988)

High iBCR score ER- vs. low iBCR score ER- and normal breast				igh iBCR s 8 score ER	Common in high iBCR score ER-/+ vs. low iBCR score and normal			
ACE2	HMGB		ACPI	ENOI	MCM4		ASPM	HNI
ADM	IL8		APOBEC 3B	EPRS	MCM6	RANBP 1	AURKA	KCNK 1
AR	IMPA2		ATAD2	EXOSC 4	MCM7	RECQL 4	BIRC5	KIF4A
BNIP3	KYNU		AURKB	FADS1	MRPL1 3	RFC2	BUB1	MKI67
Clorf1 06	LBP		BOPI	FANCI	MRPLI 5	RMDNI	BUBIB	MLFII P
CALM L5	LRP8		CACYBP	GINS2	MSH6	RSAD2	CCNB1	MMP1
CBS	MAGE A3	TDO2	CALU	GTSEI	MYBL2	SHMT2	CCNB2	MTFR
CCL18	MAGE A6	TMEM4 5A	CCNA2	H2AFZ	NCAPG	SMC4	CCNE2	NDC8 YKT 0 6
CD24	MEI	TMSB15 A	сст2	HELLS	NDUFS 8	SPAG5	CDC20	NEK2 ZWI NI
CLIC3	MMP1 2	VEGFA	CDCA3	HMMR	NUDT2 1	SQLE	CDC6	NUSA Pl
CORO IC	PFKP	VGLLI	CEBPG	HSPHI	NUTF2	STIP1	CDKI	PDXK
СР	PHLD A2		CKSIB	KIAA01 01	OIP5	TACC3	CDKN3	РНВ
CRISP 3	PTPN1 2		CXCLIO	KIPU	РВК	TBCE	CENPE	PRCI
DDC	QPRT		CXCL11	KIF14	PCNA	TIMM1 7A	CKS2	PTTG 1
ECT2	\$10047		DERLI	KIF20A	PGKI	TMPO	CNIH4 CNTNAP	RRM2 S100A
EZH2	S100A9		DHFR	KPNA2	PLOD2	TSN	2	8
FABP7 FAR2	SCD SLC7A 5		DNPHI DONSO N	KPNA4 LAPTM 4B	PRAME PSMA7	TYMS UBE2S	DDA1 DLGAP5	S100P SPP1
GABB R2	SOD2		DSCCI	I.MNB1	PSMC3	UCK2	DTL	TKI
GALN T3	SOX11		EIF4EBP 1	LSM4	RACGA P1	WHSC1	ESRP1	TOP2 A
GMPS	SRD5A		EIISA	1.3.613	RAD21	ZWILC H	GINSI	TRIPI
GPSM 2	ST14		EMC8	MAD2L 1	RAD54 B		HIST1H2 BG	UBE2 C

Table 13: Upregulated genes in high iBCR score tumors compared to low iBCR tumors and normal breast tissue

Table 14. Univariate survival analysis of genes from the Oncomine Inetanalysis in the KM-Plotter online tool in BLBC and ER- breast cancer. Deriving the 28-gene signature.

		Basal-like breast cancer							
			RFS		DMFS		OS		
Gene Name	Affy Probe ID	HR	P	HR	P	HR	Р		
BTN2A2	205298_s_at	0.41	6.00E-12	0.34	7.20E-05	0.4	1.10E-03		
IGHAI	211649_x_at	0.55	6.80E-06	0.39	1.50E-04	0.48	8,40E-03		
MTMR7	217292_at	0.73	1.70E-02	0.50	1.10E-03	0.44	7.20E-03		
MEI	211204_at	0.65	2.30E-03	0.38	2.10E-03	0.66	2.00E-01		
BRI3	221004_s_at	0.59	9.00E-04	0.44	3.30E-03	0.34	1.60E-04		
RBM38	212430_at	0.55	3.20E-04	0.48	4.20E-03	0.47	6.00E-03		
GGA2	210658_s_at	0.65	1.10E-03	0.48	4.40E-03	0.6	7.90E-02		
DDXII	208149_x_at	0.66	1.7012-03	0.46	7.50E-03	0.5	2.40E-02		
ESPLI	38158_at	0.55	7.30E-06	0.50	8.60E-03	0.4	1.00E-03		
CALR	214315_x_at	0.55	5.80E-06	0.50	9.20E-03	0.62	9.80E-02		
CCL13	206407_s_at	0.58	4.70E-05	0.52	1.10E-02	0.87	6.50E-01		
FANCA	203805_s_at	0.60	2.20E-04	0.54	1.70E-02	0.45	3.70E-03		
NUP205	222382_x_at	0.52	3.00E-03	0.54	1.70E-02	0.56	3.90E-02		
PDK3	221957_at	0.64	6.50E-04	0.55	2.10E-02	0.54	2.60E-02		
MX2	204994_at	0.52	6.70E-07	0.56	2.80E-02	0.62	9.10E-02		
SIRPA	202895_s_at	0.63	3.70E-04	0.58	4.10E-02	0.77	3.70E-01		
FBXO41	221945_at	0.59	1.10E-04	0.53	4.20E-02	0.6	1.80E-01		
COX5A	217451_at	0.75	3.60E-02	0.58	4.60E-02	0.73	2.70E-01		
NOP2	214427_at	0.65	1.80E-03	0.61	5.90E-02	0.57	4,30E-02		
CIQB	202953_at	0.60	1.30E-04	0.64	9.60E-02	0.66	1.50E-01		
NCRNA00171	215985_at	0.59	2.40E-04	0.44	1.50E-03	0.75	3.50E-01		
SMPDL3B	205309_at	1.04	7.80E-01	0.48	4.90E-03	0.61	8.80E-02		
ERC2	213938_at	0.67	2.60E-03	0.50	6.80E-03	0.53	2.40E-02		
DCLREIC	219678_x_at	0.57	1.70E-05	0.52	1.10E-02	0.8	4.40E-01		
FOXK2	203064_s_at	0.72	1.80E-02	0.69	1.50E-02	0.59	5.80E-02		
PTCD3	217895_at	0.70	7.80E-03	0.53	1,70E-02	0.83	5.10E-01		
GART	210005_at	0.56	2.10E-05	0.55	2.30E-02	0.64	1.30E-01		
NFI	204325_s_at	0.70	1.20E-02	0.55	3.70E-02	0.9	7.30E-01		
ASFIB	218115_at	0.70	8.00E-03	0.58	4.00E-02	0.66	1.40E-01		
MLLTIO	205408_at	0.63	5.70E-04	0.59	4.20E-02	0.92	7.60E-01		
C11orf41	214772_at	0.70	7.90E-03	0.60	4.90E-02	0.82	4.80E-01		
KIF18B	222039_at	0.58	6.10E-04	0.63	1.30E-01	0.5	3,70E-02		
RECQL5	221686_s_at	0.59	3.30E-04	0.64	1.50E-01	0.54	5.40E-02		
PKMYTI	204267_x_at	0.69	5.60E-03	0.66	1.10E-01	0.59	6.20E-02		
TRAPPCIO	208184_s_at	0.64	5.80E-04	0.64	9.00E-02	0.63	1.10E-01		
ATAD5	220223_at	0.66	1.70E-03	0.68	1.40E-01	0.65	1.30E-01		
RHBDD3	217622_at	0.60	1.20E-04	0.63	9.90E-02	0.68	1.80E-01		
SLCOIA2	211481_at	0.62	4.60E-04	0.62	9.10E-02	0.69	2.10E-01		
MARS	213672_at	0.73	2.00E-02	0.47	7.60E-03	0.75	3.20E-01		

		0 57	2 100 0c I	1.000	6 767 69 J	10.76	3 30E 01
CD163	216233_at	0.57		0.63	8.30E-02	0.76	
LOC100131613		0.61	4.10E-04	0.80	4.30E-01	0.63	
PPIL2 FAM49B	206064_s_at	0.67		0.69	1,90E-01	0.76	
	217535_at	0.59		0.68	1.60E-01	0.8	
MRPS12	213840_s_at	0.66		1.23	4.30E-01	1.4	
GCHI	204224_s_at	0.66		0.66	1.20E-01 4.90E-01	1.14	
LADI	203287_at	0.66		0.82		0.78	
DHTKDI GTPBP2	209916_at	0.62		0.87	5.90E-01 3.90E-01	0.74	2.80E-01 6.30E-01
TSKS	221050_s_at 220544_at	0.64		0.80	3.90E-01 8.10E-01	0.87	
AIMIL	220344_at 220290_at	0.64		0.76	3.00E-01	0.08	
NUP62	207740_s_at	0.59		0.70	3.20E-01	0.95	
C21orf45	219004_s_at	0.63		1.30	4.10E-01	0.93	
TYRO3	211431_s_at	0.69		0.84	5.20E-01	0.92	
SSX3	215881_x_at	0.63		0.94	8.20E-01	0.8	
MTDH	212251_at	0.70		1.14	6.40E-01	0.9	
P2RY6	208373_s_at	0.67		0.91	7.30E-01	0.89	
Clorf38	207571_x_at	0.70		0.95	8.60E-01	0.82	
CRI	217552_x_at	0.65		0.98	9.40E-01	1.22	5.00E-01
ZNF710	39891_at	0.66	1.90E-03	0.90	6.90E-01	0.92	7.60E-01
LRP8	208433_s_at	0.60	8.50E-04	0.98	9.60E-01	0.78	5.70E-01
SLC35A2	207440_at	0.58	5.00E-05	0.97	9.20E-01	1.11	7.10E-01
SRPK3	206216_at	0.70	8.10E-03	1.02	9.50E-01	0.89	6.80E-01
PPP3R1	204506_at	0.72	1.50E-02	0.90	7.00E-01	1	9.90E-01
FCGR3B	204007_at	0.69	4.60E-03	0.97	9.20E-01	1.07	8.00E-01
CD68	_203507_at	0.62	3.10E-04	1.01	9.80E-01	0.99	9.70E-01
STAUI	208948_s_at	1.46		1.95	9.40E-03	1.76	
EXOSC7	212627_s_at	1.68		1.83	2.20E-02	1.71	5.50E-02
BCAP31	200837_at	1.59		1.81	3.40E-02	1.49	
GNB2L1	200651_at	1.75		2.15	3.20E-03	2.07	
ADORA2B	205891_at	1.58		2.17	2.90E-02	2.87	
ABHD5	213935_at	1.28		1.92	1.20E-02	1.92	
MAP2K5	211370 <u>s</u> at	1.37		1.84	3.40E-02	1.88	
KCNG1 CAMEADI	214595_at	1.88		2.78	2.30E-02 1.80E-02	1.87	
CAMSAPI EIF3K	212711_at 221494_x_at	1.32 1.45		1.84	9.30E-02	1.11	7.20E-01 3.20E-02
	221494_x_at 201926_s_at	1.45		1.99	9.30E-02	1.80	
CD55 CARHSPI	201920_s_at 218384_at	1.63		1.99	5.80E-01	1.93	9.80E-01
GSK3B	218384_at 209945_s_at	2.02		1.10	1.30E-01	1.01	
CA9 DMU	205199_at	1.40		2.29	5.30E-03	1.99	
PMI. TXN	206503_x_at 216609_at	1.48 1.54		2.16	3.70E-02 3.80E-03	2.11	6.20E-02 3.30E-01
HCFCIRI	218609_at 218537_at	1.54		1.19	5.70E-01	1.52	
NDUFCI	218557_at 203478_at	1.51		1.19	2.70E-01	1.19	
CETN3	209662_at	1.42		1.12	6.60E-01	1.19	
GRHPR	209002_at 214864_s_at	1.31		1.62	6.20E-02	1.59	
E. Verseever qu		ال معيد ا		1 1.02	0.000-020	1 1.00	1.0012-01

ZNF593	204175_at	1.30 <b>4</b> .90E-02	0.92	7,40E-01	1.19	5.50E-01
DYNCILI2	203590_at	1.84 2.60E-04	1.68	6.70E-02	1.62	1.60E-01
CALMI	200655_s_at	1.85 5.80E-06	1.49	1.30E-01	1.47	1.80E-01
C7orf10	219655_at	1.66 2.60E-04	1.40	2.00E-01	1.32	3.20E-01
C16orf80	217957_at	1.82 9.00E-04	2.38	5.60E-02	1.07	8.50E-01
HNRNPAB	201277_s_at	1.63 4.80E-04	1.67	6.00E-02	1.02	9,50E-01
PRRGI	205618_at	1.59 6.80E-03	1.44	2.40E-01	1.79	1.10E-01
EIF3B	211501_s_at	1.57 4.00E-03	1.33	3.30E-01	1.48	2.20E-01
PGKI	217356_s_at	1.55 8.60E-03	1.63	1.70E-01	1.32	3.90E-01
HIFIA	200989_at	1.56 7.60E-03	0.87	6.60E-01	2.15	1.30E-01
ETFA	201931_at	1.65 2.10E-04	1.30	3.50E-01	1.21	5.20E-01

ER- breast cancer							Sor	¢ing
	RFS	L	OMFS			OS		Count
HR	Р	HR	Р		HR	Р	 Avg P	of Sig. p val
0.45	6.50E-13	0.44	1.19E-04		0.55	1.1OE-01	1.85E-02	5
0.59	2.40Eif.	0.5 1	8.50군-04		0.59	2.00E-02	4.90E-03	6
0.8	5.00E-02	0.75	I.70E-01		0.67	9.60E-02	5.69E-02	4
0.73	5.90E-03	0.65	4.10È-S2		0.8.8	6.Q0E-01	1.42E-01	4
0.58	4.2012-05	0.45	2.20E-04		0.36	8-4(4E-06	7.72E-04	6
0.58	3.5i:E-06	0.65	3.50E-02		0.68	9.60E-02	2.36E-02	5
0,65	1.si0£-04	0.59	1.20E-02		0.73	2.10E-01	5.11E-02	4
0.67	4.40E-04	0.67	7.10E-02		0.82	4.20E-01	8.74E-02	4
0.58	1.7( <b>n</b> E-(15,	0.58	8.70E-C3		0.6 i	2.30E-02	6.88E-03	6
01.57	-1,70E-67	0,66	4.?₀!∃-≩:		0.74	2.00E-0 1	5.82E-02	4
0.53	i.50E-68	0.42	1.00E-024		0.58	1.40 <del>a3-</del> 00	1.13E-01	5
0.62:	3.20E-05	0,69	6.S0E-02		0.68	8.40E-02	2.S8E-02	4
0,67	3.(Mrž-04	0.74	1.40E-01		0.79	3.00E-01	8.32E-02	4
0.65	1.0CE-04	0.6	i.40E-≪2		0.64	ar.90E-02	1.85E-02	6
0.55	S.J(0-,-08	0.67	5.10E-02		0.64	5.10E-02	3.68E-02	5
0.6	6.60E-06	0,64	3.20E-≩.:		0.82	4.20 E-O	1.44E-0 1	4
0.62	5, <b>"</b> {i]}.ii5	0.64	5.20E-02		0.69	1.50E-01	7.14E-02	4
0.73	7.30E-C3	0.58	1.10E-02		0.79	3.2QE-01	U5E-01	4
0.67	3,2013-03	0.69	7.70E-02		0.69	1.IOE-01	4.90E-02	4
0.64	9.50E-05	0.58	6 40E-03		0.54	6-5(13-93	4.32E-02	4
0.63	1.80E-04	0,67	1.00E-01		0.93	7.80E-01	2.05E-0 1	3
1.01	9.50E-01	0.56	4i \$0jiBa[33		0.63	4.4(ii)-r,2	3.12E-0 !	3
0.82	1.00E-01	0.79	2,50E-01		0.86	5.20E-01	1.51E-01	3
0.64	5.10E-05	0.8 1	3.00E-01		1.05	8.50E-0 1	2.67E-0 1	3
0,75	1.40E-0:	0.8 !	3.00E-O1		0.74	1.90E-01	9.92E-02	3
0.76	1.40E-02	0.76	1.90E-0I		1.08	7.40E-0 1	2.46E-0 !	3
0.6	3.90E-06	0.69	6.80E-02		0.86	5.30E-01	1.25E-01	3
0.69	1.80E-i03	0.7	9.40E-02		0.87	5.50E-0 1	2.37E-0 1	3
0.71	2.205-03	0.77	2.00E-()1		0.88	5.80E-01	1,62E-01	3
0.65	1.60E-04	0.74	1.40E-0 !		1.02	9.40E-0 1	3.14E-01	3

			10,5				
0.76	1.40E-02	0.83	3.70E-01	0.94	\$ 7.90E-01	2.85E-0	01 3
0.61	7.70E-05	0.84	4.60E-01	1.0	8.20E-01	2.41E-0	)1 3
0.69	1.90E-03	1	1.00E+00	0.83	5.70E-01	2.96E-(	01 3
0.74	8.80E-03	0.9	6.20E-01	0.89	6.00E-01	2.34E-0	)1 2
0.65	9.50E-05	0.8	2.70E-01	0.83	4.30E-01	1.50E-0	01 2
0.73	5.90E-03	0.92	6.70E-01	1.05	5 8.30E-01	2.96E-0	01 2
0.66	2.10E-04	0.88	5.30E-01	0.85	5.00E-01	2.18E-0	01 2
0.63	8.40E-05	0.72	1.40E-01	0.83	2 4.00E-01	1.40E-0	01 2
0.83	1.00E-01	0.87	4.90E-01	1.18	4.60E-01	2,33E-0	01 2
0.58	1.20E-06	0.8	2.70E-01	1.06	5 8.10E-01	2.47E-0	01 2
0.63	1.30E-04	0.75	2.10E-01	0.74	2.30E-01	1.67E-0	01 2
0.72	5.90E-03	0.97	8.70E-01	1.2	2 4.40E-01	3.18E-0	01 2
0.7	1.70E-03	0.78	2.50E-01	0.9	6.50E-01	2.52E-0	)1 2
0.62	5.20E-05	0.88	5.40E-01	1.25	5 3.30E-01	2.55E-0	01 2
0.72	4.10E-03	0.71	1.20E-01	1.12	2. 6.70E-01	2.66E-0	1
0.71	4.60E-03	1.03	8.80E-01	0.83	7 5.60E-01	3.85E-0	
0.64	7.00E-05	0.91	6.40E-01	0.99		4.12E-0	
0.67	2.90E-04	1.14	5.30E-01	1.18	4.60E-01	3.35E-0	
0.63	9.30E-05	0.92	7.20E-01	0.73		3.40E-0	1 1
0.55	2.30E-07	0.69	7.10E-02	0.83		2.72E-0	1 1
0.6	5.10E-06	0.88	5.50E-01	1.05		4.27E-0	1 3
0.65	1.20E-04	1.16	5.40E-01	0.96		4.47E-0	
0.77	1.90E-02	1.24	3.10E-01	1.20		3.22E-0	
0.65	2.20E-04	1.02	9.40E-01	0.91		4.92E-0	
0.7	1.80E-03	1.08	7.20E-01	1.04		4.96E-0	1 1
0.63	4.10E-05	0.73	1.20E-01	0.8		3.14E-0	
0.59	9.40E-06	0.73	1.50E-01	0.75		3.00E-0	
0.65	1.30E-04	0.85	4.20E-01	1.03		4.60E-0	1 1
0.69	8.60E-04	0.99	9.70E-01	1.18		4.85E-(	
0.58	2.20E-05	1.05	8.70E-01	0.83		4.95E-0	1 1
0.67	3.20E-04	1.08	7.20E-01	1.11		5.05E-0	1 1
0.76	1.30E-02	1.16	4.70E-01	1.14		4.49E-0 5.06E-0	
0.69 0.61	1.20E-03 8.30E-06	0.83	3.70E-01 7.80E-02	1.01		3.84E-0	
0.68	7.00E-04		6.30E-02			5.27E-0	1 1
1.46	1.20E-03	1.1	5.20E403	1.14		1.20E-0	
1.40	8.50E-05	1.4	5.20E-02	1.64		2.64E-0	1 1
1.50	9.90E-05	1.83	6.20E-03	1.60		3.87E-0	
1.68	3.30E-06	1.42	8.70E-02	1.33		5.15E-0	1 1
1.14	3.00E-01	1.43	1.20E-01	1.90		7.93E-0	
1.15	2.10E-01	1.2	3.80E-01	1.50		1.20E-0	1 1
1.25	5.70E-02	1.47	9.10E-02	1.25		1.09E-0	
1.56	2.20E-03	1.83	2.60E-02	1.58		5.21E-0	1 3
1.33	1.20E-02	1.88	1.90E-03	1.28		1.78E-0	
1.35	1.00E-02	1.22	3,40E-01	1.2		1.76E-0	
1.35	1.20E-01	1.6	3.60E-02	1.30		8.95E-0	1 1
1.4	1.200-01	1. 2.44 💥		1	. 2.0005-04	1 1 0 3 3 13 4	e≈j -≷‡

1.7	9.30E-06	1.59	3.30E-02	1.78	5.50E-03	2.67E-01	3
				}	5.30E-01	1.38E-01	3
1.87 🛛	2.50E-07	1.55	3.90E-02	1.16			
1.11	3.90E-01	1.44	8.90E-02	1.44	1.20E-01	1.09E-01	3
1.23	9.70E-02	1.17	5.10E-01	1.04	8.70E-01	2.65E-01	2
1.38	4.70E-03	1.43	8.80E-02	1.43	8.30E-02	8.52E-02	2
1.47	6.60E-04	1.29	2.60E-01	1.35	1.00E-02	1.67E-01	2
1.32	1.30E-02	0.94	7.80E-01	1	9.90E-01	4.36E-01	2
1.51	3.20E-04	1.06	7.70E-01	1.39	1.50E-01	3.41E-01	2
1.18	1.50E-01	1.14	5.40E-01	1.42	1.50E-01	1.68E-01	1
1.2	1.00E-01	0.81	3.10E-01	1.1	6.70E-01	4.03E-01	1
1.77	4.40E-06	1.66	3.10E-02	1.52	1.40E-01	6.64E-02	3
1.92	3.80E-08	1.49	6.00E-02	1.61	5.80E-02	7.13E-02	3
1.72	4.90E-06	1.63	1.90E-02	1.34	2.00E-01	1.23E-01	3
1.5	3.10E 03	1.35	2.50E-01	0.92	7.50E-01	3.18E-01	3
1.68	2.20E-05	1.89	5.00E-03	1.24	3.50E-01	2.28E-01	3
1.33	3.00E-02	1.3	2.60E-01	1.53	1.10E-01	1.26E-01	2
1.4	9.30E-03	1.32	2.30E-01	1.36	2.20E-01	1.69E-01	2
1.36	2.80E-02	1.4	2.10E-01	1.24	4.20E-01	2.04E-01	2
1.39	2.30E-02	0.73	2.30E-01	2.03	1.20E-01	1.95E-01	2
1.59	1.50E-04	1.18	4.80E-01	1.04	8.70E-01	3.70E-01	2

Top 4 ge	nes in the n	nodule				
	BLBC					
RFS	-2.33	4.30E-11				
DMFS	-3.57	6.30E-07				
OS	-3.57	5.70E-06				
	ER negati	ve	<b>K</b>			3
RFS	-2.22	6.50E-13	<b>N</b>	a genes from		
DMFS	-2.70	7.80E-07	second nao	l top 3 gene dule	s iroin ing	
OS.	-2.78	5.10E-06				
Rest of th	he genes in	module				BTN2A2
	BLBC					IGHAI
RFS	-2.78	1.90E-14		BLBC		MTMR7
					1.10E-	
DMFS	-2.63	1.30E-04	RFS	-2.86	16	MEI
					7.80E-	
OS	-2.63 🔛	4.60E-04	DMFS	-5.00	10	NCRNA00171
	<b>T</b> T <b>T</b> (4)		OF.	1.777	1.50E-	
	ER negati		OS	-4.76		
RFS	-2.38	3.30E-15	E	R negativ		ERC2
			*****	3 50	1.00E-	
DMFS	-2.08	2.40E-04	RFS	-2.50	16 2.40E	
OS	-2.13	7.10E-04	DMFS	-3.13	2.40E- 08	

	3 genes as a 1		161		1.20E
	value <b>both</b> D h BLBC and .		OS	-3.45	0
	BLBC				
RFS	-2.13	1.60E-08			
DMFS OS	-1.89	1.90E-02 9.60E-04			
170	ER negative				
RFS		1.20E-07			
DMFS		4.50E-02			
OS	-1.75	2 00E-02			
·					
	BLBC				
RFS	-2.04				
DMFS	1.06	0.86			
OS	0.71 ER negative	0.25			
RFS	0000000	3.40E-09			
DMFS	0.95	0.82			
OS	0.89	0.66			
		1			

,		,				
						STAUI
						EXOSC7
						BCAP31
	BLBC					GNB2L1
RFS	2.38	9.70E-10				ADORA2B
DMFS	3.23	5.00E-05				ABHD5
OS	2.98	2.00E-04				MAP2K5
	ER negati	ve		BLBC		KCNGI
					2.00E-	
RFS	2.1	2.80E-10	RFS	2.79	14	CAMSAPI
					6.00E-	
DMFS	1.94	1.50E-03	DMFS	4.1	07	EIF3K
					5.00E-	
OS	1.86	6.70E-03	OS	3.81	06	CD55
			E	R negativ		CARHSPI
					2.00E-	
			RFS	2.41	14	GSK3B
					2.00E-	
			DMFS	2.41	05	CA9
	the set of the		00		1.50E-	
	BLBC		OS	2.37	04	PMI.
RFS	1,51	2.10E-03				TXN
DMFS		1.40E-02				HCFCIRI
OS	1.58	0.1				NDUFCI
	ER negati					CETN3
RFS		3.30E-03				GRHPR
DMFS	1.18	0.41				ZNF593
OS	1.27	0.3				
	BLBC					
RFS	2	3.10E-04				
DMFS	1.64	0.19				
os	1.18	0.66				
	ER negati	ve				
}						

2.06 1.60E-05

0.07

0.38

1.93

1.38

RFS DMFS

OS

163

Table 15. Class comparison of the global gene expression profiles of high 1 N score BLBC tumors to low TN score BLBC tumors in the ROCK dataset (highlighted probe set indicates common in high TN score BLBC and ER-breast tumours and bold probe set indicates common and prognostic in BLBC and ER-breast cancer).

Param etric p- value	FDR	Perm utati on p- value	Fold- chan ge for high TN score vs. Low TN score	Probe Set	Symbo I	Name	EntrezI D
4.22E- 05	0.017	< 1e- 07	2.9	203108	GPRC5 A	G protein-coupled receptor, family C, group 5, member A	9052
4.60E-	0.043	0.000	<u> </u>	213693	- 23	mucin 1, cell surface	7052
4.00E- 04	0.045	5	2.5	5 at	MUCI	associated	4582
			<u></u>			UDP-N-acetyl-alpha-D- galactosamine:polypeptide N-	1002
1.03E- 04	0.024	< 1e- 07	2.4	219956_	GALN T6	acetylgalactosaminyltransfer	11226
1.88E-	9	0.017	2.4	ai 204268	10 S100A	ase 6 (GalNAc-T6) S100 calcium binding	11220
02	0.221	2	2,3	204208_ 31	2	proteín A2	6273
2.35E-	0.221	0.023	<u></u>	204351		S100 calcium binding	0413
02	0.244	9	2.3	at	S100P	protein P	6286
7.09E-		0.005	1770 P.	203021	- 77 0 10 M (P)	secretory leukocyte	
03	0.137	4	2.1	at	SLPI	peptidase inhibitor	6590
5.95E-		0.004		207847_		mucin 1, cell surface	
03	0.126	6	2.1	s_at	MUC1	associated	4582
1.83E-	0.074			202489_	FXYD	FXYD domain containing	
03	6	0.002	2.1	s_at	3	ion transport regulator 3	5349
6.71E-	0.021	< 1e-		201468_		NAD(P)H dehydrogenase,	S.4
05	4	07	2.0	s_at	NQO1	quinone 1	1728
2.47E-	0.016	< 1e-		204818_	HSD17	hydroxysteroid (17-beta)	
05	7	07	2.0	38	B2	dehydrogenase 2	3294
1.76E-	0.073	0.001	<u>7</u> .0	212444_	GPRC5	G protein-coupled receptor, family C, group 5, member	0020
03	7	9	2.0	at	A	A	9052
2.56E-		0.002		218309	CAMK	calcium/calmodulin-	
2.56E- 03	0.085	0.002	1.9	218309_ at	2N1	dependent protein kinase II inhibitor 1	55450
7.04E-	0.033	0.000	3.7	209803_	PHLD	pleckstrin homology-like	53750
04	9	4	1.9	s_at	A2	domain, family A, member 2	7262
5.08E-	0.019	<1e-	,= 35 <u>5</u> ,	201286			
05	5	07	1.9	at	SDC1	syndecan 1	6382
1.65E-	0.071	0.001		210519_		NAD(P)H dehydrogenase,	
03	6	3	1.9	<b>\$_</b> at	NQO1	quinone 1	1728
1.23E-				209160_	AKRI	aldo-keto reductase family 1,	
02	0.18	0.012	1.9	at	<u>C3</u>	member C3	8644

				104		÷ .	
4.27E- 02	0.321	0.040	1.8	209800_	KRT16	keratin 16	3868
1.13E-	0.060	0.000	1.0	201951_	ALCA	activated leukocyte cell	3000
03	2	8	1.8	at 201901	M	adhesion molecule	214
5.40E-	0.047	0.000	3.0	210239	1*1	addesion monectae	<u> </u>
04	5	3	1.8	at	IRX5	iroquois homeobox 5	10265
<u></u>				-50		solute carrier family 2	10200
2.92E-				221024	SLC2A	(facilitated glucose	
03	0.09	0.003	1.8	\$ 28	10	transporter), member 10	81031
1.92E-	0.075	0.001		203060	PAPSS	3'-phosphoadenosine 5'-	
03	5	8	1.8	s at	2	phosphosulfate synthase 2	9060
2.71E-		0.028		218211			
02	0.261	2	1.8	s_at	MLPH	melanophilin	79083
						ATPase, Na+/K+	
4.52E-		0.004		201242	ATPIB	transporting, beta 1	
03	0.111	4	1.8	s at	1	polypeptide	481
1.19E-	0.061	0.000		220230_	CYB5		
03	4	9	1.8	s_at	R2	cytochrome b5 reductase 2	51700
2.38E-	0.082	0.002		218959_	HOXC		
03	3	8	1.8	માં	10	homeobox C10	3226
5.29E-		0.003		219959_	MOCO	molybdenum cofactor	
03	0.12	9	1.8	at	S	sulfurase	55034
2.58E-	0.085	0.002		219580		transmembrane channel-like	
03	1	2	1.8	s_at	TMC5	5	79838
1,98E-		0.001		204595_			
03	0.076	2	1.8	s_at	STC1	stanniocalcin 1	6781
3.06E-	0.091	0.002		200862	DHCR	24-dehydrocholesterol	
03	4	2	1.8	at	24	reductase	1718
						carcinoembryonic antigen-	
						related cell adhesion	
3.44E-		0.033		211657_	CEAC	molecule 6 (non-specific	
02	0.291	9	1.7	ગ્રા	AM6	cross reacting antigen)	4680
8.94E-		0.007		210652_	TTC39	tetratricopeptide repeat	
03	0.154	8	1.7	s_at	A	domain 39A	22996
2.16E-	0.078	0.002		201467_		NAD(P)H dehydrogenase,	
03	7	1	1.7	s_at	NQO1	quinone 1	1728
2.45E-		0.021		209699_	AKR1	aldo-keto reductase family 1,	
02	0.248	8	1.7	x_at	C2	member C2	1646
1.02E~		0.011		203215_			
02	0.165	1	1.7	s_at	MYO6	myosin VI	4646
8.95E-	0.054	0.000		204284_	PPPIR	protein phosphatase 1,	
04	7	8	1.7	at	3C	regulatory subunit 3C	5507
						sodium channel, non-	
4.66E-		0.045		203453_	SCNN1	voltage-gated 1 alpha	
02	0.332	7	1.7	at	A	subunit	6337
4.38E-	0.043	0.000		206326_			
04	5	5	1.7	at	GRP	gastrin-releasing peptide	2922
2.35E-	0.082	0.002		219127_	PRR15		
03	1	5	1.7	ai	L	proline rich 15-like	79170
3.86E-		0.034		214580_			
02	0.306	6	1.7	<u>x_at</u>	KRT6C		
1.94E-	0.075	0.001		203058_	PAPSS	3'-phosphoadenosine 5'-	to a second
03	6	8	1.7	s_at	2	phosphosulfate synthase 2	9060
8.03E-		0.006		209373_		mal, T-cell differentiation	
03	0.146	7	1.7	at	MALL	protein-like	7851
5.88E-	0.048	0.000		213285_	TMEM		
04	8	6	1.7	at	30B	transmembrane protein 30B	161291
8.97E-		0.009		205110_			
03	0.154	8	1.7	s_at	FGF13	fibroblast growth factor 13	2258

#### PCT/AU2015/050096

4.44E-	0.043	0.000	í	221042	i i	Lastrain (astronia tito	
5	1		4.77	\$0000000000000000000000000000000000000	CENNE	calmin (calponin-like,	70700
04	5	5	1.7	s_at	CLMN	transmembrane)	79789
1.44E-		0.015		214079_		dehydrogenase/reductase	
02	0.193	1	1.7	ગ્ર	DHRS2	(SDR family) member 2	10202
3.70E-		0.037		204913_		SRY (sex determining	
02	0.302	7	1.7	s_ai	SOX11	region Y)-box 11	6664
9.09E-	0.054	0.001		209260			
04	7	4	1.6	at	SFN	stratifin	2810
5.49E-		0.005		203946			
03	0.121	7	1.6	s_at	ARG2	arginase, type II	384
1.01E-			1.0	221589	ALDH		
14 C	0.057	0.001		£	3	aldehyde dehydrogenase 6	1000
03	1	2	1.6	s_at	6A1	family, member A1	4329
8.30E-	0.053	0.000		222258	SH3BP	SH3-domain binding protein	
04	7	5	1.6	s_at	4	4	23677
						potassium voltage-gated	
8.16E-		0.008		205968_		channel, delayed-rectifier,	
03	0.147	3	1.6	at	KCNS3	subfamily S, member 3	3790
8,44E-		0.009	1,10	203180	ALDH	aldehyde dehydrogenase 1	
	0.15	4	36	\$0000000000000000000000000000000000000	3		220
03	0.15	4	1.6	at	1A3	family, member A3	220
2.13E-	0.078			201596_			
03	6	0.003	1.6	x_at	KRT18	keratin 18	3875
1.60E-	0.070	0.002		219232_		egl nine homolog 3 (C.	
03	7	2	1.6	s_at	EGLN3	elegans)	112399
4.28E-	0.043	0.000		208710		adaptor-related protein	
04	5	3	1.6	s_at	AP3D1	complex 3, delta 1 subunit	8943
		······				pyruvate dehyrogenase	
9.84E-	0.056	0.000		218273		phosphatase catalytic	
	9		16	[	DDD1		53704
04	£	9	1.6	s_at	PDP1	subunit 1	54704
1.83E-	0.030	0.000		209945_		glycogen synthase kinase 3	
04	6	3	1.6	s_at	GSK3B	beta	2932
3.77E-		0.004		2034(7_			
03	0.101	6	1.6	at	PPL	periplakin	5493
3.03E-		0.026		207802_	CRISP	cysteine-rich secretory	
02	0.275	3	1.6	at	3	protein 3	10321
1.65E-		0.017		205594	ZNF65		
02	0.205	9	1.6	at	2	zinc finger protein 652	22834
	0.203	0.016	1.0	210372_	TPD52	sine miger protein 052	220.74
1.72E-	0.01		× 10	E	3	a construction of the above the above the	77 3 <i>6</i> 8
02	0.21	5	1.6	s_at	Ll	tumor protein D52-like 1	7164
2.32E-		0.022		203803_	PCYO		
02	0.242	2	1.6	at	X1	prenylcysteine oxidase 1	51449
2.10E-		0.023		209875			
02	0.233	9	1.6	s_at	SPP1	secreted phosphoprotein 1	6696
6.66E-		0.007		213577_		••••••••••••••••••••••••••••••••••••••	
03	0.133	7	1.6	at	SQLE	squalene epoxidase	6713
			1.0			CD55 molecule, decay	
0 C 470	0.010					accelerating factor for	
2.54E-	0.016	< 1e-		201926_		complement (Cromer blood	
05	7	07	1.6	s_at	CD55	group)	1604
7.46E-		0.006		213397_	RNAS		
03	0.141	5	1.6	x_at	E4		
2.15E-	0.078	0.002		219468	CUED		
03	6	5	1.6	s_at	C1	CUE domain containing 1	404093
NY.	t		A 4.5%		<u>~~</u> ~	v-maf musculoaponeurotic	
2 200		0.000					
3.26E-	in an a	0.003	4 ×			fibrosarcoma oncogene	a A Harver
03	0.094	4	1.6	<u>36711_a:</u>	MAFF	homolog F (avian)	23764
						CDP-diacylglycerol	
3.75E-		0.003		2057(19_		synthase (phosphatidate	
03	0.101	9	1.6	s_at	CDS1	cytidylyltransferase) 1	1040
1.72E-	0.21	0.016		1		1 1	54566
. I. A.A.M	トー モンストー	E 65.61.0	1.6	220161_	EPB41	erythrocyte membrane	34300

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$8.53E-$ 04 $0.000$ 0.054 $202314$ atCYP51 A1CYP51 A1 $1.47E-$ 03 $0.067$ 6 $4$ $2.3$ at $at$ PEG10 paternally expressed 10 $23089$ $2.70E-$ 03 $6$ $4$ $2.3$ at $at$ PEG10 pdernally expressed 10 $23089$ $2.70E-$ 03 $4$ $8$ $2.2$ at $at$ PGBD5 element derived 5 $79605$ $3.43E-$ 02 $0.033$ 0.29 $213680_{-}$ 2.0 $at$ KRT6B keratin 6B $3854$ $5.29E-$ 03 $0.004$ 0.12 $202286_{-}$ 2.0TACST D2tumor-associated calcium signal transducer 2 $4070$ $1.41E-$ 0.066 $0.001$ 0.012 $202669_{-}$ 2.044750_ $at$ EFNB2 2.044750_ $at$ $03$ $0.159$ $1$ $1.9$ s_at $s_at$ DSC2 DSC2desmocollin 2 $1824$ $2.18E-$ 0.020 0 $0.020$ 2.21690_ 03 $221690_{-}$ 2.21690_ 2.051NLR family, pyrin domain 2.0236 $7$ $1.9$ s_atNLR family, pyrin domain 2.3306 $0.4$ $2$ $8$ $1.9$ $s_at$ HSPA2 heat shock 70kDa protein 2 $3306$ $4.95E-$ 04 $0.000$ 2 $206125_{-}$ $04$ $at$ $KLK8$ kallikrein-related peptidase 8 $11202$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
9.41E-         0.009         204750_         desmocollin 2         1824           0.3         0.159         1         1.9         s_at         DSC2         desmocollin 2         1824           2.18E-         0.020         221690_         NLR family, pyrin domain         55655           0.159         7         1.9         s_at         NLRP2         containing 2         55655           7.15E-         0.051         0.000         211538_           3306           0.4         2         8         1.9         s_at         HSPA2         heat shock 70kDa protein 2         3306           4.95E-         0.000         206125_           11202           04         0.046         2         1.8         s_at         KLK8         kallikrein-related peptidase 8         11202
03         0.159         1         1.9         s_at         DSC2         desmocollin 2         1824           2.18E-         0.020         221690_         NLR family, pyrin domain         1000000000000000000000000000000000000
2.18E- 02         0.020 0.236         221690_ 7         NLR family, pyrin domain containing 2         55655           7.15E- 04         0.051         0.000         211538_ s_at         heat shock 70kDa protein 2         3306           4.95E- 04         0.046         2         1.8         s_at         KLK8         kallikrein-related peptidase 8         11202
02         0.236         7         1.9         s_at         NLRP2         containing 2         55655           7.15E-         0.051         0.000         211538_
7.15E- 04         0.051 2         0.000 8         211538_ s_at         HSPA2         heat shock 70kDa protein 2         3306           4.95E- 04         0.000         206125_ 1.8         s_at         HSPA2         heat shock 70kDa protein 2         3306
04         2         8         1.9         s_at         HSPA2         heat shock 70kDa protein 2         3306           4.95E-         0.000         206125_            11202           04         0.046         2         1.8         s_at         KLK8         kallikrein-related peptidase 8         11202
4.95E-         0.000         206125_           04         0.046         2         1.8         s_at         KLK8         kallikrein-related peptidase 8         11202
04 0.046 2 1.8 s_at KLK8 kallikrein-related peptidase 8 11202
9.06E- 205428_
03 0.155 0.009 1.8 s_at CALB2 calbindin 2 794
serpin peptidase inhibitor,
clade A (alpha-1
3.04E- 202376_ SERPI antiproteinase, antitrypsin),

	¢	<b>,</b>	(		4	i .	,
2.65E-		0.026		205595_	N.0.00		1000
02	0.26	2	1.8	at	DSG3	desmoglein 3	1830
1 2013	0.070	0.001		201411	ernnr	serpin peptidase inhibitor,	
1.58E-	0.070	0.001	10	204614_	SERPI	clade B (ovalbumin),	SUSS
03	4	4	1.8	at	NB2	member 2	5055
2.67E-	0.035	0.000	10	201324_	123.4121	epithelial membrane protein	2012
04	3	3	1.8	at	EMP1	1 Seculting Stiller annuals Barray 1	2012
3.19E-	0.281	0.037	17	203628_	ICEID	insulin-like growth factor 1	2100
02	0.281	8	1.7	at	IGFIR	receptor	3480
9 6117	0.000	0.003		014505	KCNG	potassium voltage-gated	
3.61E- 03	0.099		1.7	214595_	1	channel, subfamily G, member 1	3755
1.91E-	3	6 0.020	<u> </u>	at 209602_	GATA		
02	0.223	5	1.7	1	3	GATA binding protein 3	2625
1.98E-	0.220	0.002	2.5.4	s_at 204059_	<u>, , , , , , , , , , , , , , , , , , , </u>	malic enzyme 1, NADP(+)-	
03	0.076	5	1.7	1	ME1	dependent, cytosolic	4199
1.94E-	0.070	0.000	1.1	s_at 205809_	EVILS 1	Wiskott-Aldrich syndrome-	4172
04	7	2	1.7	s_at	WASL	like	8976
1.15E-	0.012	<1e-	131	204032_	BCAR	breast cancer anti-estrogen	0770
05	8	07	1.7	at	3	resistance 3	8412
3.60E-	0.099	0.002	1.1	219995_	ZNF75	resistance 5	0412
03	3	9	1.7	s_at	0	zinc finger protein 750	79755
1.35E-	0.065	0.001		212451_	SECIS	SECIS binding protein 2-	(7155
03	5	6	1.7	at	BP2L	like	9728
	<u>_</u>		***	<u>a</u> .	191 212	amylo-alpha-1, 6-	2120
1.20E-	0.027	<1e-		203566_		glucosidase, 4-alpha-	
04	5	$\left \begin{array}{c} \sim 10^{-1}\\ 07 \end{array}\right $	1.7	s_at	AGL	glucanotransferase	178
1.30E-	0.064	0.001	1.7	204058_	Ince	malic enzyme 1, NADP(+)-	170
03	4	9	1.7	at	ME1	dependent, cytosolic	4199
1.49E~		0.015		218678_	274644	dependent, cytosone	<u>× × 1 / 1</u>
02	0.196	5	1.6	at	NES	nestin	10763
4.14E-	0.190	0.045	1, <u>0</u> ,	208900_	1.11.30	10500	1.57 05
02	0.315	6	1.6	s_at	TOPI	topoisomerase (DNA) I	7150
1,18E-	0.061	0.001		208610_	SRRM	serine/arginine repetitive	1 4 2 0
03	4	3	1.6	s_at	2	matrix 2	23524
1.00E-	0.002	<1e-		213526_	-		
07	23	07	1.6	s_at	LIN37	lin-37 homolog (C. elegans)	55957
3.34E-				209581_	PLA2G	phospholipase A2, group	
02	0.287	0.034	1.6	at	16	XVI	11145
1.21E-	0.201	0.011	110.	218858_	DEPT	DEP domain containing	11110
02	0.179	3	1.6	at	OR	MTOR-interacting protein	64798
2.63E-		0.025		204288_	SORBS	sorbin and SH3 domain	
02	0.259	8	1.6	s_at	2	containing 2	8470
3.97E-		0.003		204688_	<u>                                      </u>	<b>G</b>	<u> </u>
03	0.104	8	1.6	at	SGCE	sarcoglycan, epsilon	8910
1.86E-		0.019		217996_	PHLD	pleckstrin homology-like	
02	0.22	4	1.6	at	Al	domain, family A, member 1	22822
2.13E-	0.032	0.000		209254_	KLHD		,
04	8	3	1.6	at	C10	kelch domain containing 10	23008
7.78E-	<u> </u>	0.008		219263_	RNF12	ring finger protein 128, E3	
03	0.144	8	1.6	at	8	ubiquitin protein ligase	79589
1.05E-		0.008		219476_	Clorf1	chromosome I open reading	1.57 <b>P. M.</b> (
02	0.167	3	1.6	at	16	frame 116	79098
3.45E-		0.035		202600_	1. <del>1.</del> M	nuclear receptor interacting	1.2.0.752
02	0.291	4	1.6	s_at	NRIP1	protein 1	8204
2.73E-	0.4/2	0.024	1+0	209126_	anakaa ja	Protein i	0407
02	0.263	9	1.6	x_at	KRT6B	keratin 6B	3854
3.04E-	0.203	0.003	9.1	$206421_{-}$	SERPI	serpin peptidase inhibitor.	<u></u>
03	4	1	1.6	<u>s_at</u>	NB7	clade B (ovalbumin),	8710
00	1 7		1.0	10_46	T TND 7	[ cracie is (ovarounian),	0/10

#### PCT/AU2015/050096

						member 7	
3.35E-		0.034		209604_	GATA		
02	0.288	1	1.6	s_at	3	GATA binding protein 3	2625
1.59E-	0.070	0.001		212775_			
03	4	6	1.6	at	OBSLI	obscurin-like 1	23363
2.80E-				205440_			
02	0.266	0.026	1.6	s_at	NPYIR	neuropeptide Y receptor Y1	4886
3.12E-				204508_	Ĩ		
02	0.278	0.033	1.6	s_at	CA12	earbonic anhydrase XII	771
3.17E-		0.029		209301_			
02	0.28	8	1.6	at	CA2	carbonic anhydrase II	760
3.31E-		0.032		201860_			
02	0.286	2	1.6	s_at	PLAT	plasminogen activator, tissue	5327
						guanine nucleotide binding	
8.35E-	0.053	0.001	14 - A4	212294_		protein (G protein), gamma	
04	7	1	1.6	at	GNG12	12	55970
5.35E-	0.047	0.000		201325_	substitution in and	epithelial membrane protein	القارب بدائك
04	5	3	1.6	s_at	EMP1	1	2012
3.90E-		0.038		212992_	AHNA		
02	0.307	7	1.6	at	K2	AHNAK nucleoprotein 2	113146
a second a		and the second second				spen homolog,	
5.98E-		0.005	5 . S. S.	201996_		transcriptional regulator	
03	0.126	5	1.6	s_at	SPEN	(Drosophila)	23013
4.43E-				207480_			
03	0.109	0.004	1.6	s_at	MEIS2	Meis homeobox 2	4212
		5				v-erb-b2 erythroblastic	
6.59E-		0.006		202454_		leukemia viral oncogene	
03	0.133	8	1.6	s_at	ERBB3	homolog 3 (avian)	2065
4.22E-		0.004		212492_	KDM4	lysine (K)-specific	
03	0.107	8	1.6	s_at	B	demethylase 4B	23030
						prostaglandin-endoperoxide	
						synthase 2 (prostaglandin	
2.87E-		0.029		204748_		G/H synthase and	
02	0.268	6	1.6	at	PTGS2	cyclooxygenase)	5743
1.29E-		0.012		206307_	FOXD		
02	0.183	1	1.6	s_at	1	forkhead box D1	2297
2,41E-		0.024		213110_	COL4		
02	0.247	8	1.6	s_at	A5	collagen, type IV, alpha 5	1287
8.36E-	0.053		- 14 ⁻	212634_			
04	7	0.001	1.6	at	UFL1	UFM1-specific ligase 1	23376
9.30E-		0.010		219681_	RAB11	RAB11 family interacting	
03	0.157	1	1.6	s_at	FIP1	protein 1 (class I)	80223
8.13E-		0.010		203319_	ZNF14		
03	0.147	3	1.6	s_at	8	zinc finger protein 148	7707
متباعدتها الرا		القاطرين ويو		A8.0000	1 2011-0	ArfGAP with GTPase	
6.73E-	0.050	0.000	× ×	204066_	AGAP	domain, ankyrin repeat and	u rocuia.
04	8	7	1.6	s_at	1	PH domain 1	116987
3.68E-	0.099	1 (1) 1 (1)	<b>1</b> M ²	219298_	ECHD	enoyl CoA hydratase	
03	9	0.004	1.6	at	<u>C3</u>	domain containing 3	79746
		0.55				serpin peptidase inhibitor,	
5.77E-		0.004		209720_	SERPI	clade B (ovalbumin),	<b></b>
03	0.124	3	1.6	s_at	NB3	member 3	6317
3.05E-		0.029		210467_	MAGE	melanoma antigen family A,	
02	0.275	4	1.6	x_at	A12	12	4111
1.88E-	0.075	0.001		204029_	CELSR	cadherin, EGF LAG seven-	
03	5	7	1.5	at	2	pass G-type receptor 2	1952
1.09E-		0.011		204779_	HOXB		
02	0.17	4	1.5	s_at	7	homeobox B7	3217
2.63E-	0.259	0.028	1.5	204686_	IRS1	insulin receptor substrate 1	3667

		<i>.</i>	(	,	4	i	
02		.8		at			
6.28E-	0.049			209123_		quinoid dihydropteridine	
04	3	0.001	1.5	at	QDPR	reductase	5860
1.04E-		0.000		212417_	SCAM	secretory carrier membrane	
03	0.058	9	1.5	at	P1	protein 1	9522
						serpin peptidase inhibitor,	
2.68E-	0.087			209719_	SERPI	clade B (ovalbumin),	
03	3	0.002	1.5	x_at	NB3	member 3	6317
						serpin peptidase inhibitor,	
9.14E-	0.054	0.000		211906_	SERPI	clade B (ovalbumin),	
04	7	2	1.5	s_at	NB4	member 4	6318
7.11E-	0.051	0.000		219073_	OSBPL	oxysterol binding protein-	
04	1	7	1.5	s_at	10	like 10	114884
2.98E-		0.031		209488	RBPM	RNA binding protein with	
02	0.273	3	1.5	s_at	S	multiple splicing	11030
6.36E-		0.007		203542_	1		
03	0.13	3	1.5	s_at	KLF9	Kruppel-like factor 9	687
3.76E-		·····		203780_			
03	0.101	0.004	1.5	at	MPZL2	myelin protein zero-like 2	10205
	0,107	0.001				serpin peptidase inhibitor,	10200
						clade A (alpha-1	
2.87E-		0.031		209443_	SERPI	antiproteinase, antitrypsin),	
02	0.268	8	1.5	at	NA5	member 5	5104
2.95E-	0.200	0.004	1+57	210612_	2.3.4.3.4	memory of	5104
03	0.09	6	1.5	s_at	SYNJ2	synaptojanin 2	8871
9.59E-	0.02	0.010	1	213030_	PLXN	synaptojann 2	00/1
03	0.16	3	1.5	s_at	A2	plexin A2	5362
1.19E-	0.10	0.012	1	218435_	DNAJ	DnaJ (Hsp40) homolog.	5,502
02	0.178	4	1.5	}	C15	subfamily C, member 15	29103
1.24E-	0,170	0.013	1.3	at		subrannity C, member 15	29105
02	0.101	6	1.5	§	LOVES	Trund and fame film 2	1017
	0.181		1.3	s_at 218253_	LOXL2	lysyl oxidase-like 2	4017
2.27E- 04	0.033	0.000	15	1	EIF2D	eukaryotic translation initiation factor 2D	1939
	6		1.5	s_at 203439_	EIF2D	Initiation factor 2D	1939
6.56E-	0 122	$\left \begin{array}{c} 0.006\\2\end{array}\right $	1 8 8	· · · · · · · · · · · · · · · · · · ·	erco	and a set that as and a strain the	OCTA
03	0.133	<u>ے</u>	1.5	<u>s_at</u>	STC2	stanniocalcin 2	8614
3.01E-	0 374	0.001	15	203929_	3.8.8.2010	microtubule-associated	4107
02	0.274	0.031	1.5	s_at	MAPT	protein tau	4137
4.26E-	0.100	0.003		204256_	ELOV	ELOVL fatty acid elongase	
03	0.108	8	1.5	at	L6	6	79071
1.60E~	0.029	0.000		218407_	A 1175 1177	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	00007
04	9	3	1.5	x_at	NENF	neudesin neurotrophic factor	29937
1.46E-	0.067	0.001		221588_	ALDH	aldehyde dehydrogenase 6	
03	6	9	1.5	x_at	6A1	family, member A1	4329
1.23E-		<1e-		211634_			
05	0.013	07	0.3	x_at			
3.61E-	0.017	0.000		211635_			
05	3	1	0.3	x_at	ļ		
5.90E-	0.048			216491_		ìmmunoglobulin heavy	
04	8	0.001	0.3	x_at	IGHM	constant mu	3507
4.51E-	0.043	0.000		205242_	CXCL1	chemokine (C-X-C motif)	
04	5	7	0.4	at	3	ligand 13	10563
1.65E-	0.071	0.001		214768_		immunoglobulin kappa	
03	6	9	0.4	x_at	IGKC	constant	3514
5.56E-	0.047	0.000		203915_		chemokine (C-X-C motif)	
04	9	5	0.4	at	CXCL9	ligand 9	4283
2.06E-	0.032	0.000		211637_			
04	7	6	0.4	x_at			
1.66E-	0.071	0.002		214777_	1		
03	7	1	0.4	at			
	<u>د</u>		·····	s	÷	٠	

				170			
1.57E-	0.070	0.001		217148_	Ì		
03	1	9	0.4	x_at	ļ		
2.77E-	0.035	0.000		214916_			
04	8	6	0.4	x_at	Ļ		
						immunoglobulin heavy	
3.35E-	0.017	< 1e-		211633_		constant gamma 1 (G1m	
05	3	07	0.4	x_at	IGHG1	marker)	3500
2.82E-	0.035	0.000		205267_	POU2	POU class 2 associating	
04	8	3	0.4	at	AFI	factor 1	5450
1.31E-	0.064	0.001		216576_			
03	5	8	0.4	x_at			
1.22E-	0.027	0.000		214973_		immunoglobulin heavy	
04	7	1	0.4	x_at	IGHD	constant delta	3495
1.79E-	0.030	< 1e-		217179_			
04	3	07	0.4	x_at			
2.22E-	0.033	0.000		217281_			
04	2	3	0.4	x_at			
1.64E-	0.071	0.001		216510_			
03	6	1	0.4	x_at			
						protein tyrosine	
2.50E-	0.005	< 1e-		207238_		phosphatase, receptor type,	
06	87	07	0.4	s_at	PTPRC	С	5788
7.63E-				205890_			
03	0.142	0.008	0.4	s_at			
9.88E-	0.024	<1e-		217235_	a faint an an	immunoglobulin lambda-	العالية والمتدر
05	5	07	0.4	x_at	IGLL5	like polypeptide 5	1E+08
7.52E-		0.007		211644_			
03	0.141	9	0.4	<u>x_at</u>			
1.73E-	0.015	< 1e-		207339_		lymphotoxin beta (TNF	d an fair an
05	9	07	0.4	s_at	LTB	superfamily, member 3)	4050
5.60E-	0.047	0.000	<u> </u>	216557_			
04	9	7	0,4	x_at	<u> </u>		
6.665	0.017	6.666		610500		protein tyrosine	
3.98E-	0.017	0.000	<u>6.</u> 4	212588_	DEDDO	phosphatase, receptor type,	6700
05	3	2	0.4	at	PTPRC	С	5788
1.05E-	0.024	0.000	<u> </u>	211796_			
04	9	1	0.4	s_at			
5.16E-	0.046	0.000	0:1	211650_			
04	4	8	0.4	x_at			
7.81E-		0.000	n e	204563_	OTT I	wateratin T	6400
05	3	2	0.5	at	SELL	selectin L	6402
1.04E- 03	0.058	0.001	0.5	211643_			
6.02E-	0.030	3	0.5	x_at 211645_	+		
0.02E- 03	0.127	0.007	0.5	4			
1.50E-	0.127	7 < 1e-	0,0	x_at 215949_			
1.50E- 05	2	< 1e- 07	0.5	§			
8.04E-	5 0.022	0.000	<u>U.J</u>	x_at 211640	+		
05	0.022	0.000	0.5				
1.07E-	0.058	0.001	0.2	x_at 205861_	<b></b>	Spi-B transcription factor	
03	0.058	10.001	0.5	at	SPIB	(Spi-1/PU.1 related)	6689
8.17E-	0.053	1 0.000	9.2	210915_	0110	T cell receptor beta constant	0009
04	7	0.000 6	0.5	1	TRBC1	1 con receptor beta constant	28639
1.10E-	1	0.010	<b>U</b> ,0	x_at 211122_	CXCL1	chemokine (C-X-C motif)	20039
1.10E- 02	0.171	0.010 9	0.5	\$	1	ligand 11	6373
1.51E-	0.171	0.001	<u>U+J</u>	s_at 216207_	L.	ngami.i.i.	0373
		0.001		· · · · · · · · · · · · · · · · · · ·			
1 112		ñ	0.2	1 w. 554	1	1	
03	8	9 0.000	0.5	x_at			
03 4.11E- 04		9 0.000 2	0.5 0.5	x_at 219014_ at	PLAC8	placenta-specific 8	51316

l c cor	1	0.007	ſ	anezen	÷	( same to the terminate of the	į
6.57E-	6 1 2 2	0.007	6 E	216560_	TOTOL	immunoglobulin lambda	2527
03 2.74E-	0.133	7	0.5	x_at	IGLC1	constant 1 (Mcg marker)	3537
03	0.088	0.002	0.5	204439_	IFI44L	interferon-induced protein 44-like	10964
3.00E-	0.008		0.5	at 211649_	10144L	44-11KC	10904
3.00E- 07	23	< 1e- 07	0.5	2			
<u></u>		<u></u>	0.3	x_at AFFX-		<u>.</u>	
				1			
				HUMIS		Same francisco de com anos	
3300	6 656	0.000		GF3A/M		signal transducer and	
3.16E-	0.038	0.000	0.2	97935_	GTD 5 TD 1	activator of transcription 1,	(770
04	4	2	0.5	MA_at	STAT1	91kDa	6772
3.65E-	0.041	0.000	<u> </u>	216541_			
04	4	5	0.5	x_at			
1.85E-		0.002	M. 30.	217227_	IGLV1	immunoglobulin lambda	
03	0.075	2	0.5	x_at	-44	variable 1-44	28823
4.80E-		0.006		216984_			
03	0.115	7	0.5	x_at		L	
1.41E-		0.014		210029_		indoleamine 2,3-	
02	0.191	7	0.5	at	ID01	dioxygenase 1	3620
4.18E-	0.043	0.000		211881_		immunoglobulin lambda	
04	5	3	0.5	x_at	IGLJ3	joining 3	28831
4.54E-	0.043	0.000		205831_			
04	6	8	0.5	at	CD2	CD2 molecule	914
2.84E-	0.035	0.000		206666_	1	granzyme K (granzyme 3;	
04	8	3	0.5	at	GZMK	tryptase II)	3003
2.66E-	0.035	0.000		211908_	\$		
04	3	3	0.5	x_at	IGK@	immunoglobulin kappa locus	50802
1.30E-		0.014	0.0	215176_		immunoglobulin kappa	
02	0.184	8	0.5	x_at	IGKC	constant	3514
6.25E~	37.104		0.0	206134_	ADAM	constant	
0.23E~	0.129	0.005	0.5	1	DECI	ADAM Blog dameira I	27299
1.28E-	0.142		0.2	at	DECI	ADAM-like, decysin 1	
	0.012	< 1e-	$\alpha \in$	1 · · · · · · · · · · · · · · · · · · ·	TDAC	T cell receptor alpha	20755
05	0.013	07	0.5	at	TRAC	constant	28755
8.47E-	15 1.7	0.009	~ ~	217378_			
03	0.15	8	0.5	x_at		Į	
1.68E-	0.029	0.000		211868_			
04	9	4	0.5	x_at			
1.31E~		0.014		210163_	CXCL1	chemokine (C-X-C motif)	
02	0.184	2	0.5	at	1	ligand 11	6373
1.88E-	0.075	0.002		211798_		immunoglobulin lambda	
03	5	5	0.5	x_at	IGLJ3	joining 3	28831
2.66E-	0.035	0.000		211641_			
04	3	2	0.5	x_at			
4.18E-		0.003		204533_	CXCL1	chemokine (C-X-C motif)	
03	0.107	4	0.5	at	0	ligand 10	3627
1.76E-	0.073	0.001		214657_			
03	7	7	0.5	s_at			
3.66E-	0.099	0.002		205569_	LAMP	lysosomal-associated	
03	9	9	0.5	at	3	membrane protein 3	27074
1.56E-		0.017		216401_	<u>+</u>		
02	0.2	1	0.5	x_at			
1.93E-	0.015	< 1e-	 	204912_	IL10R	interleukin 10 receptor,	
05	9	07	0.5	at	A	alpha	3587
1.10E-	0.025	<1e-	0.0	210538_	<u></u>	baculoviral IAP repeat	J.301
04	1		65		DIDC?		220
	8	07	0.5	s_at	BIRC3	containing 3	330
6.40E-	0.008	0.000	ф. <del>т</del>	203471_	INT FORT	- Induction	- A 1 4
06	39	1	0.5	s_at	PLEK	pleckstrin	5341
2.71E-	0.087	0.003	A P	217480_			
03	6	3	0.5	x	Ļ	1	

#### PCT/AU2015/050096

6.37E-	0.049	0.000		214453_	1	interferon-induced protein	
04	3	6	0.5	s_at	IFI44	44	10561
				AFFX-	1	<u> </u>	
				HUMIS			
				GF3A/M		signal transducer and	
8.90E-	0.054	0.000		97935_		activator of transcription 1,	
04	7	7	0.5	MB_at	STATI	91kDa	6772
2.46E-	0.083	0.002		212671_	1		
03	4	8	0.5	s_at			
7.63E-	0.022	0.000		211639_			
05	3	2	0.5	x_at			
2.12E-	0.032	< 1e-		205671_	HLA-	major histocompatibility	
04	8	07	0.5	s_at	DOB	complex, class II, DO beta	3112
3.29E-	0.017	< 1e-		212314_	SELIL	sel-1 suppressor of lin-12-	
05	3	07	0.5	at	3	like 3 (C. elegans)	23231
1.38E-		0.001		204891_		Iymphocyte-specific protein	
03	0.066	1	0.5	s_at	LCK	tyrosine kinase	3932
5.95E-	0.020	0.000		204118_			
05	1	1	0.5	at	CD48	CD48 molecule	962
3.18E-	0.038	0.000		203868_	VCAM	vascular cell adhesion	
04	5	4	0.5	s_at	1	molecule 1	7412
6.25E-	0.049	0.000	<b>A -</b>	217258_	IGLV1	immunoglobulin lambda	
04	3	9	0.5	x_at	-44	variable 1-44	28823
1.22E-	0.062	0.001	A	213888_	TRAF3		000.00
03	2	4	0.5	<u>s_at</u>	IP3	TRAF3 interacting protein 3	80342
						proteasome (prosome,	
	0.000					macropain) subunit, beta	
1.91E-	0.075	0.000	~ ~	204279_		type, 9 (large	8000
03	5	0.002	0.5	at	PSMB9	multifunctional peptidase 2)	5698
1.0.477		0.000		005150	COPERD	colony stimulating factor 2	
4.04E-	0.107	0.003	0.7	205159_	CSF2R	receptor, beta, low-affinity	r ian
03	0.105	7	0.5	at	B	(granulocyte-macrophage)	1439
2.62E-	0.035	0.000	0.5	213193_	TEDAN	T cell receptor beta constant	aaran
04 8.93E-	3.	1	0.5	x_at	TRBC1		28639
03	0151	0.008 7	0.5	204006_			
3.28E-	0.154		0.5	s_at 209374_		immunoglobulin heavy	
	0.284	0.035	0.5	1 - 1 - 1	IGHM		3507
02			0.5	s_at		constant mu	3307
8.66E- 04	0.054	0.000	0.5	210972_			
8.23E-	0.053	0.000	0.3	x_at 213539_		CD3d molecule, delta (CD3-	
04	0.055	6	0.5	1	CD3D	TCR complex)	915
9.90E-	0.024	0 <1e-	0.0	at 209671		TCK complex)	CIK
05	0.024	07	0.5	209071_   x_at			
3.98E-	0.043	0.000		$217157_{-}$	+		
04	3	0.000 6	0.6	x_at			
2.57E-	0.085	0.002	9.9	212311_	SELIL	sel-1 suppressor of lin-12-	
03	1	5	0.6	at	3 3 SELLE	like 3 (C, elegans)	23231
4.26E-	I	0.039	0.0	209116_	<u></u>	nac o (e, elegano)	الىغايىتو 
4.2013-	0.321	6	0.6	x_at	HBB	hemoglobin, beta	3043
1.15E-	0.021	0.000	0.0	206715_	1100	nanogiotini, otta	5045
03	8	8	0.6	at	TFEC	transcription factor EC	22797
8.48E-		0.009	<u></u> v	203639_	11110	fibroblast growth factor	1 1 1 <u>1</u>
03	0.15	9	0.6	s_at	FGFR2	receptor 2	2263
2.87E-	0.089	0.002	0.9	204834_	1.01.182		2200
03	5	7	0.6	at	FGL2	fibrinogen-like 2	10875
2.99E-		0.028	4.9	210072_		chemokine (C-C motif)	10075
02	0.273	3	0.6	at	CCL19	ligand 19	6363
				+	1	1	
1.81E-	0.074	0.001	0.6	215049_	CD163	CD163 molecule	9332

				1/3			
03		8	1	x_at	Î		
·				1		granzyme A (granzyme 1,	
4.40E-		0.003		205488_		cytotoxic T-lymphocyte-	
03	0.109	9	0.6	at	GZMA	associated serine esterase 3)	3001
5.45E-	0.047	0.000		209606_	1	cytohesin 1 interacting	
04	8	6	0.6	at	CYTIP	protein	9595
				1		O-linked N-	
8.00E-	0.009	< 1e-		212307_		acetylglucosamine	
06	9	07	0.6	s_at	OGT	(GlcNAc) transferase	8473
1.46E-	0.067	0.001		209823_	HLA-	major histocompatibility	
03	6	2	0.6	x_at	DQB1	complex, class II, DQ beta 1	3119
2,10E-	0.032	<1e-		204890_		lymphocyte-specific protein	
04	8	07	0.6	s_at	LCK	tyrosine kinase	3932
9.72E-	0.056			203922_		cytochrome b-245, beta	
04	7	0.001	0.6	s_at	CYBB	polypeptide	1536
2.89E-	0.036	0.000		216250_	* *****		6154
04	1	5	0.6	s_at	LPXN	leupaxin	9404
2.32E-	0.081	0.001	0.0	209846_	BTN3	butyrophilin, subfamily 3,	18116
03	6	8	0.6	s_at	A2	member A2	11118
8.91E-	0.000	0.000		202524	SPOC	sparc/osteonectin, cwcv and kazal-like domains	
05	0.023	0.000	0.6	202524_	K2	proteoglycan (testican) 2	9806
3.98E-	0.043	0.000	0.0	s_at 213915_	RZ.	natural killer cell group 7	9800
04	3	4	0.6	at	NKG7	sequence	4818
3.46E-	0.097	0.002	0.0	205541_		sequence	4010
03	0.037	8	0.6	s_at	GSPT2	G1 to S phase transition 2	23708
2.70E-	0.016	<1e-	- 0.0	221978_	0.01.1.2	major histocompatibility	43700
05	7	07	0.6	at	HLA-F	complex, class I, F	3134
9.54E-		0.000	0.0	204116_	III.III	interleukin 2 receptor,	
04	0.056	3	0.6	at	IL2RG	gamma	3561
3.31E-	0.017	<1e-		221087_		Santan	
05	3	07	0.6	s_at	APOL3	apolipoprotein L, 3	80833
4.17E-	0.043	0.000		202510_	TNFAI	tumor necrosis factor, alpha-	
04	5	2	0.6	s_at	P2	induced protein 2	7127
· · ·						membrane-spanning 4-	
6.02E-		0.000		210356_		domains, subfamily A,	
04	0.049	4	0.6	x_at	MS4A1	member 1	931
1.44E-	0.029	0.000		218805_			
04	9	2	0.6	at		<u> </u>	
7.51E~	0.052	0.000		221973_			
04	3	5	0.6	at	Ļ		
		- مربع الم				signal transducer and	
5.02E-	in ene	0.003	~~	209969_	ionin a rimit	activator of transcription 1,	2000
03	0.116	5	0.6	<u>s_at</u>	STATI	91kDa	6772
0.700		anoa		20060 2		chemokine (C-C motif)	
2.73E-	0.969	0.028	ar	209924_	CETID	ligand 18 (pulmonary and	6300
02 3.89E-	0.263	2	0.6	at 208798_	CCL18 GOLG	activation-regulated)	6362
03	0.103	3	0.6	4	A8A	golgin A8 family, member A	23015
2.79E-	0.105	0.026	0.0	x_at 205681_	BCL2A	goigin Ao lannty, member A	23013
02.79E~	0.266	4	0.6	at	BULZA	BCL2-related protein A1	597
1.65E-	0.200	0.001	0.0	203645_	d.:	iscize-related protein rst	524
03	6	6	0.6	203043_   s_at	CD163	CD163 molecule	9332
3.67E-	0.099	0.003	0.9	205692_	X421.03		9100 
03	9	7	0.6	s_at	CD38	CD38 molecule	952
6.18E-		0.004	0.0	1 12_4K	<u></u>	SACTO MORECUN	
03	0.129	9	0.6	34210_at	CD52	CD52 molecule	1043
2.67E-	0.016	<1e-		203416_			
05	7	07	0.6	at	CD53	CD53 molecule	963
L	Ł	L	L	1	1	1	×3,7,7

1.97E-	ŧ	0.001	í	204057_	1	Í I	1
03	0.076	9	0.6	at	IRF8	interferon regulatory iactor 8	3394
4.55E-	0.043	0,000	0.0	2221S0	11,1 0	pigeon homo log	
04	6	3	0.6	s_at	PION	(Drosophila)	54103
5,98E-		0,000		2 10982_	HLA-	major histocompatibility	
04	0.049	6	0.6	s_at	DRA	complex. Class II, DR alpha	3122
2.20E-	0.079	0.002		200796_		myeloid cell leukemia	
03	4	3	0.6	s_at	MCLI	sequence 1 (BCL2-related)	4170
3.21E-	.0.038	0,000		20253 1_			
04	6	5	0,6	at	lRFi	interferon regulatory factor 1	3659
2.07E- 04	0.032 7	0.000	0.6	20140	ARHG AP25	Rho GTPase activating:	0029
2.33E-	······	2 <; 1e -	0.6	38149_at 204821_	BTN3	protein 25 feutyrophilin* subfamily 3	9938
04	0.034	<; ie- 07	0,6	at	A3	member A3	10384
8.49E-	0.022	0.000	0,0	2129S0_	A.J.	uhiquitinspecific peptidase	10504
05	3	1	0.6	at	USP34	34	9736
1.05E-				2Q2902			
02,	0.167	0.01	0,6	s_at	CTSS	eathepsin S	1520
			·····	1		CD79a molecule.	
7.52E-	0.052	0.000		205049_		imrnunoglobulin-associated	
04	3	4	0,6	s_at	CD79A	alpha	973
						Q-linked N-	
2.90E-	0.005	< 1c -	± •.	207564_		acetylglueosamine	
06	87	07	0.6	x_at	OGT	(GlcNAc) transferase	8473
4.23!:-	0.043	0.001	0.6	212384_			
04 1.35E-	5 0.029	0.001	0.6	at 213160_	DOCK	ļ	
1.35E- 04	0.029	0.000	0.6	at	2.	dedicator of cytokinesis 2:	1794
1.14E-	0.060	0,001	0.0	221286_	2.	marginal zone B and B1	1.194
03	3	3	0.6	s_at	MZ B1	cell-specific protein	51237
1.64E-	0.029	0.000	0.0	205997_	ADAM	ADAM metallopeptidase	
04	9	1	0.6	at	28	domain 28	10863
5,11E-	0.046	0.000		204192_	<u>}</u>		
04	3	2	0.6	at	CD37	CD37 molecule	951
1.46E-	0.067	0.001		212827_		immunoglobulin heavy	
03	6	2	0.6	at	IGHM	constant mu	3507
						Q-linked N-	
8.33E-	0.022	< 1e-		207563_	0.07	acetylglucosamine	o (= t
05	3	07	0.6	s_al	OGT	(GlcNAc) transferase	.8473
1.04E-	0.024	0.000	ñζ	2 14093_	FUDDI	far upstream element	0000
04	9	2	0.6	s_at 208228_	FUBPI	(FUSE) binding protein 1 fibroblast growth Iactor	8880
1>59E- 02	0,201	0.016 8	0.6	s_at	FGFR2	receptor 2	2263
1.62E-	0.029	- 1e-	0.0	20529 1_	1 01 1/2		2203
04	9	07	0.6	at	IL2RB	interleukin 2 receptor, beta	3560
4.74E-		0.006		214753_	N4BP2	NEDD4 binding protein 2-	
03	0.114	2	0.6	at	1.2	like 2	10443
3.50E-	0.040	0.000	·	206337_		chemokine (C-C motif)	
04	7	3	0,6	at	CCR7	receptor 7	1236
						major hi sincompatibility	
5,11E-	0.046	0.000		211991_	HLA-	complex, class II. DP alpha	
04	3	3	0.6	s_at	DPA1	1	3 11 3
2.76E-	0.088	0.001	Å -	20466 1_	ODCO	abso i i	30 in
03	1	4	0.6	at	CD52	CD52 molecule	1043
6.S4E-	0.050	0.000 7	0.0	203760_	ST A	Sre like adoptor	(502
04	9		0.6	s_at	SLA	Src-like-adaptor regulator of G-protein	6503
2.95E- 03	0.09:	0.002 9	0,6	202988_ s_at	RGSI	signaling 1	5996
	·····			1	t	t	
2.751	0.088	0.002	0,6	20338 1	APOE	apolipoprotein E	348

				175			
03	1	5		s_at	Ì	ĺ	
3.65E-		0.035	·······	214023_	TUBB2	· · · · · · · · · · · · · · · · · · ·	
02	0.3	1	0.6	x_at	B	tubulin, beta 2B class IIb	347733
						structural maintenance of	
1.92E-	0.015	0.000		212577_	SMCH	chromosomes flexible hinge	
05	9	1	0.6	at	D1	domain containing 1	23347
4.68E-		0.042	1. N.	217414_			
02	0.333	5	0.6	x_at			
3.00E-	0.002	< 1e-	~~~	205298_	BTN2	butyrophilin, subfamily 2,	16000
07	23	07	0.6	s_at	A2	member A2	10385
2.51E-	0.004	0.000	Ω ¢	202953_	CIOD	complement component 1, q	713
03 4.09E-	0.084	0.002	0.6	at	CIQB	subcomponent, B chain	713
4.09£- 02	0.313	0.040 4	0.6	at			
7.67E-	0.052	0.000	9.9	210425_	<u>.</u>		
04	5	4	0.6	x_at			
1.76E-	0.030	0.000		209685_	PRKC		
04	3	1	0.6	s_at	В	protein kinase C, beta	5579
6.04E-		0.000		202643_	TNFAI	tumor necrosis factor, alpha-	
04	0.049	6	0.6	s_at	P3	induced protein 3	7128
4.20E-	0.006	< 1e-		212232_			
06	24	07	0.6	at	FNBP4	formin binding protein 4	23360
4.86E-	an ana ao	0.044		209458_			
02	0.337	2	0.6	x_at	ļ		
2.47E-	0.035	0.000	ňr	209312_			
04 4.92E-	2	2	0.6	x_at			
4.92E- 03	0.116	0.004 7	0.6	201858_ s_at	SRGN	serglycin	5552
3.21E-	0.110	0.029	0.0	<u>\$_at</u> 216853_	JAUA	sergrychi	3334
02	0.281	2	0.6	x_at			
2.09E-	0.078	0.002		208894_	HLA-	major histocompatibility	
03	2	1	0.6	at	DRA	complex, class II, DR alpha	3122
1.44E-	0.067	0.001		211902_	YME1		
03	6	2	0.6	x_at	LI	YME1-like 1 (S. cerevisiae)	10730
				AFFX-			
				HUMIS			
				GF3A/M		signal transducer and	
3.15E-	0.092	0.003	- 11 ¹	97935_5		activator of transcription 1,	
03	7	3	0.6	_at	STAT1	91kDa	6772
4.50E-	-75- <b>1</b> -1	0.005	0.0	218232_	2004	complement component 1, q	<b>715</b>
03 9.04E-	0.11	$\frac{2}{0.000}$	0.6	at 213502_	CLICA	subcomponent, A chain	712
9.04E- 04	0.054 7	0.000	0.6	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	GUSB P11	glucuronidase, beta pseudogene 11	91316
04 2.47E-	<u> </u>	0.028	0.0	x_at 221728_	1.17	X inactive specific transcript	21,310
02	0.249	3	0.6	x_at	XIST	(non-protein coding)	7503
7.01E-	0.050	0.000		221989_			
04	9	6	0.6	at			
7.23E-	0.051	0.000		211656_	HLA-	major histocompatibility	
04	5	7	0.6	x_at	DQB1	complex, class II, DQ beta 1	3119
5.81E-	0.048	0.000		215193_			
04	7	5	0.6	x_at			
5.71E-	0.048	0.000	ن بي	203470_			
04	5	9	0.6	s_at	PLEK	pleckstrin	5341
5.58E-	0.047	0.000	0.5	216542_			
04	9	4	0.6	x_at			
2.43E-	0.000	0.001	0.1	214617_	DEFE	perforin 1 (pore forming	و سر سر س
03	0.083	8	0.6	at	PRFI	protein)	5551
3.23E-	0.093	0.002	0 F	21714 <u>3</u>	YME1	VMET Elec 1 /8 according	10390
03	3	8	0.6	s_at	L1	YME1-like 1 (S. cerevisiae)	10730

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1536 150759
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
03         5         6         0,6         at         0342         coding RNA 342           2.9m -         0,002         209083_         CORO         eoronin, actin binding           03         0,09         1         0.6         at         1A	150759
2.9m -         0,002         209083_         CORO         eoronin, actin binding           03         0,09         1         0.6         at         1A         protein, 1A	150759
03 0,09 1 0.6 at 1A protein, 1A	
	11 151
5.67E- 0.000 203932_ HLA- major histommpati bility	
05 0.02 2 0.6 at DMB complex, class II, DM beta	3109
5.46E-         0.004         201.7.18_         EPB41         erythrocyte         membrane	
03 0.121 7 0.6 s_at L2 protein hand 4.1-like 2	2037
granzyme B (granzyme 2,	
3.f1E- 0.033 2 10.164 cytotoxic T-lymphocyte-	
02 0.277 2 0.6 at GZMB associated serine esterase 1)	3002
1.78E- 0.030 0,000 204670_	
04 3 4 0,6 x_at	
5.68E- 2H742 _ ecotropic viral integration	
03 0.123 0.006 0.6 s_at EVI2B site 2B	2124
1.62E- 0.002 221768_	
03 0.071 2 0.6 at	
3.55E- 0.000 201720_ LAPT lysosomal protein	
04 0.041 1 0,6 s_at M5 transmembrane 5	7805
1.80E-0.005< 1e-2!2036_pinin, desmosome associated	
06 73 07 0.6 & at PNN protein	5411
8.48E- 0.022 < 1e- 204674_ lymphoid-restrieted	(*******
05 3 07 0.6 at LRMP membrane protein	4033
1.16E- 0.060 0.001 2 13 142_ pigeon homolog	
03 8 1 0.6 x_at PION (Drosophila)	54103
lymphocyte cylosolic protein	
5.741; <   <   le-   205270_   2 (SH2 domain containing	
05 0.02 07 0.6 s_at LCP2 leukocyte protein of 76kDa)	3937
5.88E- 211654_ HLA- major histocompatibility	<b>C</b> 1.0
03 0.126 0.005 0.6 x_at DQB1 complex, class II, DQ beta 1	3119
iiiimuiiogiobulin lambda-	
3,00E- 0.090 0.003 215946_ IC.LE3 like polypeptide 3,	01050
03 9 3 0.6 x_at P pseudogene	91353
serpin peptidase inhibitor,	
1.00E - 0.057 0.000 209723 SERPI clade B (ovalbumin),	5070
03 1 8 0.6 at N.B9 member 9	5272
8.78E- 0.054 0,000 205842_	0515
04 5 7 0.6 s_at JAK2 Janus kinase 2	3717
4.43E- 0.043 0.000 203236_ LGAL lectin, galaetoside-binding,	20165
04 5 4 0.6 s_at S9 soluble, 9	3965
2.42E membrane-spanning 4-	
2.42E- $03$ $0.083$ $0.002$ $0.6$ $2.17418$ x atdomains, subfamily A, member 1	931
	931
myxovirus (influenza virus)	
1.14E-0.010202086_resistance 1, interferon- inducible protein p78	
	4599
02         0.174         5         0.6         at         MX1         (mouse)           9.48E-         0.008         213875_         C6orf6         chromosome 6 open reading	4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	81688
phosphatidylinositol-4,5-	01000
5.771 0.004 203879_ PIK3C bisphosphate 3-kinase,	
	5293
	5295
	9938
	7730
	81669
1.60E-         0.202         0.013         0.6         210663_         KYNU         kynureninase	8942

	۰.		r	3	*	i I	
02		7		s_at			
9.08E-	0.054	0.000		210116_	SH2D1		
04	7	4	0.6	at	A	SH2 domain containing IA	4068
4.28E-		0.004		216614_			
03	0.108	1	0.6	at			
						vesicle-associated	
1.30E-	0.064	0.001		213326_	VAMP	membrane protein 1	
03	4	5	0.6	at	1	(synaptobrevin 1)	6843
1.78E-		0.001		221602_		Fas apoptotic inhibitory	
03	0.074	6	0.6	s_at	FAIM3	molecule 3	9214
3.19E-	0.093	0.002			BTN3	butyrophilin, subfamily 3,	
03	1	9	0.6	38241_at	A3	member A3	10384
2.58E-	0.085	0.002		205758_			
03	1	1	0.6	at	CD8A	CD8a molecule	925
			-			heterogeneous nuclear ribonucleoprotein D (AU-	
4.94E-		0.004		213359_	HNRN	rich element RNA binding	
03	0.116	8	0.6	at	PD	protein 1, 37kDa)	3184
1.04E-		0.009		204959	1.2.2	myeloid cell nuclear	
02	0.166	3	0.6	at	MNDA	differentiation antigen	4332
3.44E-	0.096	0.003		206133_		Ginterentinan anagen	1.5. C. H
03	9	4	0.6	at	XAFI	XIAP associated factor 1	54739
4.31E-		·		217388_			
02	0.322	0.043	0.6	s_at	KYNU	kynureninase	8942
1.20E-	0.061	0.001	0.0	213293_	TRIM2	Ryndreiningse	.0.2.12
03	6	1	0.6	s_at	2	tripartite motif containing 22	10346
6.36E-	<u> </u>	0.006		208018_		inpartite motif containing 22	10510
03	0.13	7	0.6	s_at	HCK	hemopoietic cell kinase	3055
0.0	1.1.1.2	*	0.0	<u></u>		ATP synthase, H+	55555
						transporting, mitochondrial	
7.89E-	0.052	0.001		214132_	ATP5C	F1 complex, gamma	
04	8	8	0.6	at	1	polypeptide 1	509
1.49E-	<u> </u>	0.014	010	212998	HLA-	major histocompatibility	0.0.0
02	0.196	7	0.6	x_at	DQB1	complex, class II, DQ beta 1	3119
		·	010		- D X D I	membrane-spanning 4-	
1.13E-		0.011		219666_	MS4A6	domains, subfamily A,	
02	0.174	1	0.6	at	A	member 6A	64231
2.30E-	0.005	<1e-		202380_	+ **	natural killer-tumor	~ ~ ~ ~ ~ ~
06	87	07	0.6	s_at	NKTR	recognition sequence	4820
1.05E-	[	0.010		219209_		interferon induced with	
02	0.167	2	0.6	at	IFIH1	helicase C domain 1	64135
						tumor necrosis factor	
1.76E~		0.015		206641_	TNFRS	receptor superfamily,	
02	0.212	8	0.6	at	F17	member 17	608
3,90E-		0.003		206978_		chemokine (C-C motif)	
03	0.103	6	0.7	at	CCR2	receptor 2	729230
4.75E-	0.018	0.000		204923_	· · · · · · · · · · · · · · · · · · ·	SAM and SH3 domain	
05	6	1	0.7	at	SASH3	containing 3	54440
	*					poly (ADP-ribose)	
1.94E-	0.075	0.001		218543_	PARP1	polymerase family, member	
03	5	3	0.7	s_at	2	12	64761
6.79E~	0.021	0.000		213269_	ZNF24	1	
05	4	2	0.7	at	8	zinc finger protein 248	57209
8.26E-	0.022	0.000	~~~	204234_	ZNF19	. of stript- proverse " "	
0.262	3	1	0.7	s_at	5	zinc finger protein 195	7748
6.48E-	0.049	0.000	······	203761_	†		
04	8	5	0.7	at	SLA	Src-like-adaptor	6503
6.59E-	······································	0.004		201104_	1		
0.522	0.133	7	0.7	x_at		1	
~~~~	L	L	Q. /	1	.t	۱	

	1 1 0 0 0 0	1	i	ſ		1 mm mm a	(mana t	
328E- 0.094 0.092 0 2 1.36 0.7 1.36 0.7 1.36 0.7 1.36 0.7 1.36 0.7 1.36 0.7 1.36 0.7 1.36 0.7 1.36 0.7 3.36 0.7 3.4 0.7 2.37 0.4 2.37 0.7 3.4 0.7 3.4 0.7 2.37 0.4 3.47 0.019 3.47 0.01 3.47 0.019 3.47 0.01 3.47 0.019 3.47 0.01 3.47 0.210.77 3.47 0.7 <	1.92E-	0.000	0.010	0.7	211090_	PRPF4	PRP4 pre-mRNA processing	0000
3.28E 0.094 0.002 213603_ 2 town substrate 2 (rbo family, mall GTP binding protein Rac2) 5880 2.15E 0.078 0.002 203382_ 216920_ apolipoprotein E 348 1.23E- 0.012 216920_ 211996_ apolipoprotein E 348 1.23E- 0.012 216920_ 211996_ apolipoprotein E 348 1.74E- 0.019 211996_ 211996_ apolipoprotein E 348 4.63E- 0.004 202803_ 20129_ apolipoprotein Apole 2000 apolipoprotein Component 3 receptor 3 and component 3 receptor 3 and apolipoprotein Component 3 receptor 3 and apolipoprotein Component 3 receptor 4 0.30 0.010 2121611_ 2017_ BTX3 butyrophilin, subfamily 3, member A2 member A2 11118 1.30E 0.001 20197 2017_ G Grotein-coupled receptor apoliposi regulator 8837 0.20 0.014 211317 21137_ CPLA CASP8 and FADD-like apoptosis regulator 8837 0.20 0.016 214059	02	0.223	0.018	0.7	s_at	<u> B</u>		8899
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 200	0.004	8 003		212602			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ł.		87	• · · ·	DACO		5800
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0.7		KACZ	Kacz)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		£		5.7		CROP		5.40
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0		0.7		APOE	apohpoprotem E	348
				8. – .	1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.18		0.7		ļ		
	1				1 · · · ·			
	02	0.212	6	0.7	s_at			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
					202803_			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.112	9	0.7		ITGB2		3689
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.73E-	0.030	0.000		212613_	BTN3	butyrophilin, subfamily 3,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	04	1	1	0.7	at	A2	member A2	11118
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.81E-		0.001		210279_		G protein-coupled receptor	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	03	0.074	6	0.7	at	GPR18		2841
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		·····	0.000		221971			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		\$.		0.7	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						CFLA	CASP8 and FADD-like	
2.51E- 0.001 203185_ RASSF Ras association (RalGDS/AF-6) domain 03 0.084 6 0.7 at 2 family member 2 9770 158E- 0.016 214059_ interferon-induced protein 10561 02 0.201 9 0.7 at IF144 44 10561 6.57E- 0.006 208747_ complement component 1, s subcomponent 1, s 716 7/43E 0.052 0.000 208885_ lymphocyte cytosolic protein 716 7/43E 0.052 0.000 216829_ 1 10mphocyte cytosolic protein 9336 1.12E- 0.001 0.7 at CD247 CD247 molecule 919 1.57E- 0.017 219505_ cat eye syndrome chromosome region, 51816 2.67E- 0.086 0.002 202836_ Lyn substrate 1 3059 1.67E- 0.29 0.000 22836_ matopoietic cell-specific 3059 1.67E- 0.029<		0 191		6.7	\$	4		8837
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.177						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.51E.		0.001		203185	PASSE		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.084		67	1	1		0770
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.004		<u> </u>		+ 4		2110
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.201		0.7		TETTAA	1	10561
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.201		0.7		16144	f	10501
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		n ion		0.7	4	030		710
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		÷		0.7		018		/10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		0.7		1.001		2026
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3		0.7	2	LCPI	1 (L-plastin)	3936
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 1 1 I			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			9	0.7				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.070			210031_			
$1.87E-$ 02 0.017 219505_{-} atchromosome region, candidate 1 51816 $2.67E-$ 03 9 7 0.7 at $CECR1$ candidate 1 51816 $2.67E-$ 03 9 7 0.7 at $HCLS1$ Lyn substrate 1 3059 $1.67E-$ 0.44 9 1 0.7 x_at $ 2.56E-$ 0.035 0.000 221850_{-} x_at $ 2.56E-$ 0.035 0.000 221850_{-} x_at $ 5.66E-$ 0.035 0.005 212187_{-} x_at prostaglandin D2 synthase $ 5.66E-$ 0.039 0.000 220046_{-} 222046_{-} $ 0.123$ 4 0.7 s_at x_at PTGDS $21kDa$ (brain) 5730 $3.30E-$ 0.33 0.000 222046_{-} s_at $ 7.28E-$ 0.007 0.007 222018_{-} s_at $ 7.28E-$ 02 0.013 214567_{-} 3 $ 0.139$ 3 0.7 s_at 214567_{-} s_at $ 0.265$ 3 0.7 s_at $ 0.265$ 1 0.7 at $ 0.28$ 1 0.7 at $ 0.139$ 3 0.7 at $asin$ $ -$ <tr< td=""><td>03</td><td>1</td><td>0.001</td><td>0.7</td><td>at</td><td>CD247</td><td>CD247 molecule</td><td>919</td></tr<>	03	1	0.001	0.7	at	CD247	CD247 molecule	919
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							cat eye syndrome	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.87E-		0.017		219505_		chromosome region,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02	0.22	7	0.7	at	CECR1	candidate I	51816
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.67E-	0.086	0.002		202957_		hematopoietic cell-specific	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03	9	7	0.7	at	HCLSI		3059
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.67E-	0.029	0.000		208306_		· · · · · · · · · · · · · · · · · · ·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.7	· · · · · · · · · · · · · · · · · · ·			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	**********************	*******	0.000			1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		£		0.7	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		t		·····		1	prostaglandin D2 synthase	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.123		0.7	1	PTGDS		5730
04 4 5 0.7 s_at CCNL1 cyclin L1 57018 7.28E- 0.007 222018_ nascent polypeptide- associated complex alpha nascent polypeptide- associated complex alpha 03 0.139 3 0.7 at NACA subunit 4666 1.32E- 0.013 214567_ 4666 0.2 0.185 3 0.7 s_at 4666 1.32E- 0.013 214567_ 4666 0.2 0.185 3 0.7 s_at 4666 0.2 0.258 1 0.7 at DPA1 1 3113 2.18E- 0.032 0.000 207734_ Iymphocyte transmembrane		funition		~		+		
7.28E- 0.007 222018_ nascent polypeptide-associated complex alpha 03 0.139 3 0.7 at NACA subunit 4666 1.32E- 0.013 214567_ 214567_ 4000000000000000000000000000000000000	1	1		87	1	CONTI	evelin L1	57018
7.28E- 03 0.007 0.139 222018_ 3 associated complex alpha subunit 4666 1.32E- 02 0.013 214567_ 3 - - 4666 0.32 0.185 3 0.7 s_at - - 02 0.185 3 0.7 s_at - - 02 0.185 3 0.7 s_at - - 2.61E- 02 0.026 213537_ 1 HLA- 07 major histocompatibility complex, class II, DP alpha 1 3113 2.18E- 0.032 0.000 207734_ Iymphocyte transmembrane	<u>, Q</u> , T		<u> </u>		<u>a_ut</u>	- ACARTAR		51010
03 0.139 3 0.7 at NACA subunit 4666 1.32E- 02 0.013 214567_ 3 214567_ 0.7 major histocompatibility 4666 2.61E- 02 0.026 213537_ 213537_ HLA- DPA1 major histocompatibility 3113 2.18E- 0.032 0.000 207734_ Iymphocyte transmembrane 3113	7 200		0.007		222010			
1.32E- 02 0.013 0.185 214567_ 3 major histocompatibility complex, class II, DP alpha 02 major histocompatibility complex, class II, DP alpha 1 2.61E- 02 0.026 0.258 213537_ 1 HLA- 0.7 major histocompatibility complex, class II, DP alpha 1 3113 2.18E- 0.032 0.000 207734_ Iymphocyte transmembrane		0 120		6.7	1	NACA		ALLL
02 0.185 3 0.7 s_at major histocompatibility 2.61E- 0.026 213537_ HLA- complex, class II, DP alpha 02 0.258 1 0.7 at DPA1 2.18E- 0.032 0.000 207734_ Iymphocyte transmembrane		<u>11.137</u>		0.1	4	ACA	supunt	4000
2.61E- 0.026 213537_ HLA- major histocompatibility complex, class II, DP alpha 02 0.258 1 0.7 at DPA1 1 3113 2.18E- 0.032 0.000 207734_ Iymphocyte transmembrane 1	and the second	0.100		ñ	1			
2.61E- 0.026 213537_ HLA- complex, class II, DP alpha 02 0.258 1 0.7 at DPA1 1 3113 2.18E- 0.032 0.000 207734_ Iymphocyte transmembrane 3113	02	0.185	3	0,7	<u> s_at</u>			
02 0.258 1 0.7 at DPA1 1 3113 2.18E- 0.032 0.000 207734_ lymphocyte transmembrane 3113	A 24-		0.000		01000-	111 × 1		
2.18E- 0.032 0.000 207734_ lymphocyte transmembrane		6 a		à	1		complex, class II, DP alpha	
		*******		0.7		DPAI		3113
04 8 3 0.7 at LAX1 adaptor 1 54900	1	1						
	04	8	3	0.7	at	LAX1	adaptor 1	54900

1.65E- 04	0.029	0.000	0.7	217610_ at	SPDYE	speedy homolog E2 (Xenopus laevis)	441273
4.96E- 04	0.046	0.000	0.7	206150_ at	CD27	CD27 molecule	939

Table 16. Class comparison of the global gene expression profiles of high $\top N$ score ER- tumors to low TN score ER- tumors in the ROCK dataset (highlighted probe set indicates common in high $\top N$ score BLBC and ER-breast tumours).

Param etric p- value	FDR	Perm utati on p- value	Fold- chan ge for high TN score vs. Low TN score	ProbeSet	Symbol	Name	EntrezI D
< 1e- 07	< 1e- 07	< 1e- 07	3.0	209803_s	PHLDA2	pleckstrin homology-like domain, family A, member 2	7262
2.72E- 05	0.000 683	0.000	2.9	211657_ at	CEACA M6	carcinoembryonic antigen- related cell adhesion molecule 6 (non-specific cross reacting antigen)	4680
5.00E- 07	0.000 0338	< 1e- 07	2.8	203108_ at	GPRC5A	G protein-coupled receptor, family C, group 5, member A	9052
1.28E- 04	0.002 09	0.000	2.7	204351_ at	S100P	S100 calcium binding protein P	6286
2.00E- 07	0.000 0168	< 1e- 07	2.4	202489_s	FXYD3	FXYD domain containing ion transport regulator 3	5349
<1e- 07	< 1e- 07	< 1e- 07	2.3	201467_s _ai	NQO1	NAD(P)H dehydrogenase, quinone 1	1728
5.00E- 07	0.000 0338	< 1e- 07	2.2	210519_s	NQO1	NAD(P)H dehydrogenase, quinone 1	1728
4.88E- 04	0.005	0.000	2.1	203021 at	SLPI	secretory leukocyte peptidase inhibitor	6590
< 1e- 07	< 1e- 07	< 1e- 07	2.1	219232_5 _at	EGLN3	egl nine homolog 3 (C. elegans)	112399
1.96E- 05	0.000 531	< 1e- 07	2.1	218309	CAMK2 N1	calcium/calmodulin- dependent protein kinase II inhibitor 1	55450
5.00E- 07	0.000 0338	< 1e- 07	2.1	2()4))44_ at	QPRT	quinolinate phosphoribosyltransferase	23475
2.00E- 07	0.000 0168	< 1e- 07	2.1	201468_5 _at	NQO1	NAD(P)H dehydrogenase, quinone 1	1728
3.00E- 07	0.000 0224	< 1e- 07	2.0	205968 at	KCNS3	potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3	3790
<1e- 07	< 1e- 07	< 1e- 07	2.0	201286 at	SDC1	syndecan 1	6382
3.60E- 06	0.000	< 1e- 07	2.0	203803_ at	PCYOX 1	prenylcysteine oxidase 1	51449
1.00E- 05	0.000 317	< 1e- 07	2.0	200862 at	DHCR24	24-dehydrocholesterol reductase	1718
8.43E-	0.048	0.009	2.0	204268	\$100A2	S100 calcium binding	6273

03	1	9	ĺ	at		protein A2	
< 1e-	< 1e-	< 1e-		209146		methylsterol	
07	07	07	2.0	at	MSM01	monooxygenase 1	6307
1,30E-	0.000	< 1e-		203058 5		3'-phosphoadenosine 5'-	** 30.30 A
06	0677	07	1.9	_at	PAPSS2	phosphosulfate synthase 2	9060
3.20E-	•••••••••••••••••••••••••••••••••••••	0.000	1.2	_ai 203060_s	1711002		2000
	0.000	2	3.0		DAD000	3'-phosphoadenosine 5'-	0020
05	761	1	1.9	31	PAPSS2	phosphosulfate synthase 2	9060
3.84E-	0.000	< 1e-		210652_5		tetratricopeptide repeat	
05	87	07	1.9	at	TTC39A	domain 39A	22996
6.51E-	0.007	0.000		213693_s		mucin 1, cell surface	
04	27	6	1.9	_at	MUCI	associated	4582
· · · · ·						G protein-coupled receptor,	·····
1.56E-	0.002	0.000		212444		family C, group 5, member	
04	43	2	1.9	a	GPRC5A	A	9052
0.1	<u></u> ,		1	- 411		CDP-diacylglycerol	2052
2 2012	6 660						
2.00E-	0.000	< le-		205709_5	000.01	synthase (phosphatidate	* * * *
07	0168	07	1.9		CDS1	cytidylyltransferase) 1	1040
< 1e-	< 1e-	< 1e-		202068_5		low density lipoprotein	
07	07	07	1.9	_at	LDLR	receptor	3949
< 1e-	<1e-	<1e-		201849_		BCL2/adenovirus E1B	
07	07	07	1.8	at	BNIP3	19kDa interacting protein 3	664
		······				pyruvate dehyrogenase	
1.10E-	0.000	< 1e-		218273_5		phosphatase catalytic	
		(· · · ·	τø	F:::::::::::::::::::::::::::::::::::::	PDP1	subunit 1	5 Å 7 G A
06	0599	07	1.8	31	PDP1	Subunit 1	54704
9.00E-	0.000	< 1e-		213577_			tartum a tá
07	0513	.07	1.8	at	SQLE	squalene epoxidase	6713
						v-maf musculoaponeurotic	
2.60E-	0.000	< 1e-				fibrosarcoma oncogene	
06	114	07	1.8	36711 at	MAFF	homolog F (avian)	23764
3.60E-	0.025	0.002		207847_\$		mucin 1, cell surface	
03	7	5	1.8	at	MUCI	associated	4582
6.90E-	0.000	<1e-	- 10	201596			1000
0.201	234	07	1.8	x_at	KRT18	keratin 18	3875
	******		1.0	201951_	KKIIO	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3073
3.11E-	0.004	0.000	1.0	B	17.0117	activated leukocyte cell	0.1 A
04	16	5	1.8	at	ALCAM	adhesion molecule	214
8.00E-	0.000	< 1e-		222258_5		SH3-domain binding	
07	0477	07	1.8	31	SH3BP4	protein 4	23677
						sodium channel, non-	
1.36E-	0.067	0.012		203453_	SCNN1	voltage-gated 1 alpha	
02	6	7	1.8	ar	A	subunit	6337
3.00E-	0.000	<1e-		219496	SOWAH	sosondowah ankyrin repeat	<u></u>
07	0224	$\sim 10^{-1}$	1.8	31.)4742	C	domain family member C	65124
		0.000	1.0	ai 218959		aomani tanniy mamori C	00.124
8.54E-	0.001	(ALCHR]	1			\$ I	
00	1		3.6	k	HOROTO	6	0000
05	57	1	1.8	a	HOXC10	homeobox C10	3226
1.01E-	57 0.000	1 < 1e-		k			
1.01E- 05	57	1	1.8 1.8	at 203407_ at	HOXC10 PPL	homeobox C10 periplakin	3226 5493
1.01E-	57 0.000	1 < 1e-		at 203407			
1.01E- 05 5.20E-	57 0.000 319	1 < 1e- 07	1.8	at 203407_ at 219127_	PPL	periplakin	5493
1.01E- 05 5.20E- 05	57 0.000 319 0.001 1	1 < 1e- 07 0.000 1		at 203407_ at 219127_ at		periplakin proline rich 15-like	
1.01E- 05 5.20E- 05 2.00E-	57 0.000 319 0.001 1 0.000	1 <1e- 07 0.000 1 <1e-	1.8 1.8	at 203407 at 219127_ at 221042_5	PPL PRR15L	periplakin proline rich 15-like calmin (calponin-like,	5493 79170
1.01E- 05 5.20E- 05 2.00E- 07	57 0.000 319 0.001 1	1 <1e- 07 0.000 1 <1e- 07	1.8	at 203407 at 219127_ at 221042_s _at	PPL	periplakin proline rich 15-like calmin (calponin-like, transmembrane)	5493
1.01E- 05 5.20E- 05 2.00E- 07 1.84E-	57 0.000 319 0.001 1 0.000 0168	1 < 1e- 07 0.000 1 < 1e- 07 0.018	1.8 1.8 1.8	at 203407_ at 219127_ at 221042_s _at 214079_	PPL PRR15L CLMN	periplakin proline rich 15-like calmin (calponin-like, transmembrane) dehydrogenase/reductase	5493 79170 79789
1.01E- 05 5.20E- 05 2.00E- 07 1.84E- 02	57 0.000 319 0.001 1 0.000 0168 0.083	1 <1e- 07 0.000 1 <1e- 07 0.018 1	1.8 1.8	at 203407_ at 219127_ at 221042_s _at 214079_ at	PPL PRR15L	periplakin proline rich 15-like calmin (calponin-like, transmembrane)	5493 79170
1.01E- 05 5.20E- 05 2.00E- 07 1.84E- 02 1.00E-	57 0.000 319 0.001 1 0.000 0168 0.083 0.000	1 <1e- 07 0.000 1 <1e- 07 0.018 1 <1e-	1.8 1.8 1.8 1.8	at 203407_ at 219127_ at 221042_s at 214079_ at 209260_	PPL PRR15L CLMN DHR52	periplakin proline rich 15-like calmin (calponin-like, transmembrane) dehydrogenase/reductase (SDR family) member 2	5493 79170 79789 10202
1.01E- 05 5.20E- 05 2.00E- 07 1.84E- 02 1.00E- 06	57 0.000 319 0.001 1 0.000 0168 0.083 0.000 0561	1 <1e- 07 0.000 1 <1e- 07 0.018 1 <1e- 07	1.8 1.8 1.8	at 203407_ at 219127_ at 221042_s at 214079_ at 209260_ at	PPL PRR15L CLMN	periplakin proline rich 15-like calmin (calponin-like, transmembrane) dehydrogenase/reductase	5493 79170 79789
1.01E- 05 5.20E- 05 2.00E- 07 1.84E- 02 1.00E-	57 0.000 319 0.001 1 0.000 0168 0.083 0.000	1 <1e- 07 0.000 1 <1e- 07 0.018 1 <1e-	1.8 1.8 1.8 1.8	at 203407_ at 219127_ at 221042_s at 214079_ at 209260_	PPL PRR15L CLMN DHR52	periplakin proline rich 15-like calmin (calponin-like, transmembrane) dehydrogenase/reductase (SDR family) member 2	5493 79170 79789 10202
1.01E- 05 5.20E- 05 2.00E- 07 1.84E- 02 1.00E- 06	57 0.000 319 0.001 1 0.000 0168 0.083 0.000 0561 0.081	1 <1e- 07 0.000 1 <1e- 07 0.018 1 <1e- 07	1.8 1.8 1.8 1.8	at 203407_ at 219127_ at 221042_s at 214079_ at 209260_ at	PPL PRR15L CLMN DHRS2 SFN	periplakin proline rich 15-like calmin (calponin-like, transmembrane) dehydrogenase/reductase (SDR family) member 2 stratifin	5493 79170 79789 10202 2810
1.01E- 05 5.20E- 05 2.00E- 07 1.84E- 02 1.00E- 06 1.80E-	57 0.000 319 0.001 1 0.000 0168 0.083 0.000 0561	1 <1e- 07 0.000 1 <1e- 07 0.018 1 <1e- 07 0.018	1.8 1.8 1.8 1.8 1.8	at 203407_ at 219127_ at 221042_s at 214079_ at 209260_ at 218211_s	PPL PRR15L CLMN DHR52	periplakin proline rich 15-like calmin (calponin-like, transmembrane) dehydrogenase/reductase (SDR family) member 2 stratifin melanophilin	5493 79170 79789 10202
1.01E- 05 5.20E- 05 2.00E- 07 1.84E- 02 1.00E- 06 1.80E-	57 0.000 319 0.001 1 0.000 0168 0.083 0.000 0561 0.081	1 <1e- 07 0.000 1 <1e- 07 0.018 1 <1e- 07 0.018	1.8 1.8 1.8 1.8 1.8	at 203407_ at 219127_ at 221042_s at 214079_ at 209260_ at 218211_s	PPL PRR15L CLMN DHRS2 SFN	periplakin proline rich 15-like calmin (calponin-like, transmembrane) dehydrogenase/reductase (SDR family) member 2 stratifin	5493 79170 79789 10202 2810

1	1		í	102	4		
2,40E- 03	0.019	0.002 9	1.8	219530_s _nt	TMC5	transmembrane channel- like 5	79838
1.90E-	0.016	0.002	1.0	214580_	100.5	IIKC J	1.70.30
03	2	4	1.8	x_at	KRT6C		
6.25E-	0.001	0.000	2.407	219959		molybdenum cofactor	
05	25	1	1.7	a	MOCOS	sulfurase	55034
<1e-	<1e-	< 1e-		202314	CYP51A		
07	07	07	1.7	38	1		
		·····		-		UDP-N-acetyl-alpha-D-	
						galactosamine:polypeptide	
						N-	
6.32E-	0.039	0.007		219956_	GALNT	acetylgalactosaminyltransfe	
03	2	4	1.7	at	6	rase 6 (GalNAc-T6)	11226
1.60E-	0.000	< 1e-		213285	TMEM3		
06	0801	07	1.7	at	0B	transmembrane protein 30B	161291
1.45E-	0.013	0.001		209875_5			
03	3	3	1.7	at	SPP1	secreted phosphoprotein 1	6696
5.93E-	0.001	0.000		210372_\$	TPD52L		
05	21	2	1.7	_at	1	tumor protein D52-like 1	7164
8.05E-	0.001	< 1e-		209373_		mal, T-cell differentiation	
05	51	07	1.7	111	MALL	protein-like	7851
1.70E-	0.000	< le-		219458_s	CUEDC		
06	0836	07	1.7	_34	1	CUE domain containing 1	404093
2.27E-	0.095	0.021		207802_		cysteine-rich secretory	
02	6	7	1.7	at	CRISP3	protein 3	10321
4.60E-	0.000	0.000		202984_5		BCL2-associated	
06	174	1	1.7	at	BAG5	athanogene 5	9529
1.00E-	9.52E	< 1e-		202733		prolyl 4-hydroxylase, alpha	
07	-06	07	1.7	at	P4HA2	polypeptide II	8974
< 1e-	< 1e-	< 1e-		209945_5		glycogen synthase kinase 3	
07	07	07	1.7	34	GSK3B	beta	2932
< 1e-	< 1e-	< 1e-		202929_5			
07	07	07	1.7		DDT	D-dopachrome tautomerase	1652
9.92E-	0.001	< 1e-		210239_			
05	75	07	1.7	at	IRX5	iroquois homeobox 5	10265
						CD55 molecule, decay	
						accelerating factor for	
< 1e-	< 1e-	< 1e-		201926_5		complement (Cromer blood	× 4.
07	07	07	1.7	at	CD55	group)	1604
< 1e-	< 1e-	< 1e-		202552_5		chromosome 14 open	
07	07	07	1.7		C14orf1	reading frame 1	11161
3.30E-	0.000	< le-		203946_5			~D.4
06	135	07	1.6		ARG2	arginase, type II	384
1.03E-	0.055	0.008	3.0	204913_5	007711	SRY (sex determining	بالاس مواجعة بمر
02	4	9	1.6		SOX11	region Y)-box 11	6664
8.35E-	0.008	0.000		213397_	DATAOTA	1	
04	7	8	1.6	<u>x_ai</u>	RNASE4	<u> </u>	
4.72E-	0.005	0.000	1.0	205110_5	DODIA	AT 11	0070
04	71	7	1.6	ai	FGF13	fibroblast growth factor 13	2258
1.70E-	0.078	0.016	3.0	209699_	ARTIN	aldo-keto reductase family	1830
02	6	6	1.6	<u>x_ai</u>	AKR1C2	1, member C2	1646
5.32E-	0.001	< 1e-	* *	221577	CODE	growth differentiation	بالارائية مبير الإلي
05	12	07	1.6	<u>x_31</u>	GDF15	factor 15	9518
2.77E-	0.000	0.025		2098(0)	Temmi &	turner to	4 M X X
02	0.109	3	1.6	31	KRT16	keratin 16	3868
8.59E-	0.008	0.000		204595_3	cupert		د به سرمز
04	87	9	1.6	ai	STC1	stanniocalcin 1	6781
6.45E-	0.007	0.000		204284_	PPP1R3	protein phosphatase 1,	استابات منزبين
04	22	.5	1.6	at	C	regulatory subunit 3C	5507

1)		f	í		i	i	ł
< 1e-	< 1e-	< le-	1.6	203042_	LANDA	lysmomai-associated	2020
07	07	07	1.6	at	LAMP2	membrane protein 2	3920
9.00E-	0.0Q0	< le-		219377_		GRB2 associated, regulator	
07	0513	07	1.6	at	GAREM	of MAPK1	64762
9.13E-	0,009	0.000		204818_	HSD17B	hydroxy steroid (17-betaj	
04	26	9	1.6	at	2	dehydrogenase 2	3294
< 1e-	< ie-	< 1e-	·····	204175	· · · · · · · · · · · · · · · · · · ·		
07	07	07	1.6	MIIIII	ZNF593	zinc finger protein 593	51042
			1.0			aldehyde dehydrogenase 1	51042
1.79E-	0,015	0.002		203180_	ALDH1		
03	5	7	1.6	at	A3	family, member A3	220
1.27E-	0,002	0.000		: 13506		coagulation factor II	
04	09	2	1.6	ai	F2RL1	(thrombin) receptor-like 1	2150
§.05E-	0,000	< le-		222158_5		desumoylating isopeptidase	
05	737	07	1.6	at	DESI2	2	5 1029
1.09E-	0.001	< 1e-		221589 s	ALDH6	aldehyde dehydrogenase 6	
04	88	07	1.6	R	Al	family, member A1	4329
			1.0			Tanniy, member Aj	+327
4.56E-	0,005	0.000		220236_5			-1-00
04	55	8	1.5	81	CYB5R2-	cytochrome <i>b</i> 5 reductase 2	51700
2.20E-	0,000	< 1e-		2213/26		par-3 partitioning defective	
06	102	07	1.5	x_at	PARD3	3 homolog (C. elegans)	56288
3.98E-	0.005	0.000		206326_			
04	02	6	1.5	at	GRP	gastrin-releasing peptide	2922
1.17E-	0.001	0.000		208/10_5		adaptor-related protein	
04	99	1	1,5	R	AP3D1	complex 3, delta 1 subunit	8943
h			1,5	_ <u>4</u> -			0743
7.70E-	0.008	0.000		220161_5	EPB41L	erythrocyte membrane	
04	19	5	1.5	at	4B	protein band 4.1 like 4B	54566
3.03 E ~~		0.032		209160_		aldo-keto reductase family	
02	0.1 16	8	1.5	at	AKR1C3	1. member C3	8644
						ATPase, Na+/K+	
8.78E-	0,049	0.008		201242_5		transporting, beta 1	
03	5	9	1.5	30	ATP1B 1	polypentide	481
1.23E-	0.062	0,012		203215_5		<u> </u>	
1			.1 ¢	k	NOVOC	·····	1010
02	.8	4	1,5	at	MY06	myosin VI	4646
7.09E-	0.042	0.005		205594_			
03	5	5	1.5	38	ZNF652	zinc finger protein 652	22834
3.42E-	0.000	< 1e-		205916_		S100 calcium binding	
05	804	07	4.5	at	S100A7	protein A7	6278
				÷		carcinoembryonic antigen-	
						related cell adhesion	
3.40E-	0,000	0.000		203757 s	CEACA	molecule 6 (non-specific	
05	802	and the second second second	3.0				4680
05	802	2	5.0	_at	M6	cross reacting antigen)	4080
				AFFX-			
				HUMRG			
1.56E-	0.014	0.001		E/M 1009	LINC002	long intergenie non-protein	
03	1	3	2.8	8_5_at	73	coding RNA 273	649159
				AFFX-			
				r2-			
1.96E-	0.0 16	0.001		Hs]8SrR			
03	0.0 K) 6	0.001	2,7	NA-5 at			
********			<u> </u>		ļ	<u>S1001-: 1: 1:</u>	
1.1 IE-	0.001	< le-		203535_	0100.1.0	S100 calcium binding	
04	91	07	2.7	at	\$ 100 A 9	protein A9	6280
5.14E-	0,033	0.004		206378 _	SCGB2A	secretoglobin, family 2A,	
03	7	8	2.6	at	2	member 2	4250
1.75E.	0.002	0.000		217528_		chloride channel accessory	
04	65	3	2,6	at	CLCA2	2	9635
	0.001	< le-		206166_s		chloride channel accessory	
5 5 2 F		- AL 161-	1	1 200100_S		accessory	
5.53E-			24	67	CLCA2	1 1	0625
05	15	07	2.4	_at	CLCA2	2	9635
4 2			2.4	_at 202917_s _at	CLCA2 \$ 100A8	2 S100 calcium binding protein A8	9635 6279

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.17E-	0.004	0.000	í	206165_s	1	chloride channel accessory	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	1	.2.2		CLCA2	· · · · ·	9635
		J		<i>2.2</i>	+		{	7055
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	2.2		CLCA2		9635
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L						anterior gradient 2 homolog	
	the second second		\$ · · · · ·	2.2		AGE2		10551
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						······		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1		2.1		LBP		3929
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>~</u>		<u></u>				····	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.99E-	0.016	0.001		220 192		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	}	2.1		SPDEF	-	25803
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			×		<u>, ^</u>		1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 50E-	0.000	- le-		20656 1 s	AKR 1B1	· · ·	
		1	2	2 1				57016
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		·	·					57010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	2.0				222
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		·		2.0		D2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2	ş	2.0		TOV2		27324
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			£	2.0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10A5	box raining member 3	27324
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 ´	ş	20	T			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				2.0				:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, · ·	200		TDIDO		577 (1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			finner	2.0		TRIB3	(Drosophila)	57761
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	a film and a second					GEDIN A		0.50 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		}	}	2.0		SERHL2	serme hydrolase-like 2	253 190
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				2.0		SERHL2		253190
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			§					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	2.0		TOX3	box family member 3	27324
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		214073_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		L	Linnin	2.0		CTTN	1	2017
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.058	A set of		209309_			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6	1	2.0	at	AZGP1	<u> </u>	563
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.36E-	0.012	0.001		205979_	SCGB2A		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03	6	-4	1.9	at	1	member 1	4246
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-				transcription factor AP-2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.08E-	0.089			214451		beta (activating enhancer	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	02	8	0.02	1.9	at	TFAP2B	binding protein 2 beta)	7021
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.79E-	0,081	0.018		206799_	SCGB1D	secreioglobin, family 1D,	2
06 138 07 1.9 at CDC6 cell division cycle 6 990 $2.84E$ - 0.003 0.000 201650_ 201650_ 3880 3880 3880 3880 3880 3880 3880 3880 <td></td> <td>(</td> <td>2</td> <td>1.9</td> <td></td> <td>2</td> <td>member 2</td> <td>10647</td>		(2	1.9		2	member 2	10647
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.40E-	0.000	< 1e-		203967	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06	138		1.9		CDC6	cell division cycle 6	990
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.84E-		0.000		201650_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	1	1.9	1	KRT 19	keratin 19	3880
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				· · · · · · · · · · · · · · · · · · ·				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		· .	,	1.8	1	TST		7263:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				·····		<u> </u>	·····	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1	1.8	1 7.0	KRT7	keratin 7	3855
04521.8_atP2protein-like 2260470321.8_atP2protein-like 2260473.36E-0.0240.0032 16836_sleukemia viral oncogene homolog 2, neuro/glioblasioma derived oncogene homolog (avian)206403421.8_atERBB2NA DH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-						1	1	
3.36E- 0.024 0.003 2 16836_s v-erb-b2 erythroblastic 03 4 2 1.8 _at ERBB2 oncogene homolog (avian) 2064 <1e-		1	(1.8				26047
3.36E- 0.024 0.003 2 16836_s leukemia viral oncogene 0.3 4 2 1.8 _at ERBB2 neuro/glioblasioma derived oncogene homolog 2, neuro/glioblasioma derived 000000000000000000000000000000000000		ļ	·	1.0	<u> </u>	· -		;200T/
3.36E- 0.024 0.003 2 16836_s homolog 2, neuro/glioblasioma derived oncogene homolog (avian) 2064 03 4 2 1.8 _at ERBB2 NADH dehydrogenase (ubiquinone) Fe-S protein 2064 < 1e-								
3.36E- 03 0.024 0.003 2 16836_s _at neuro/glioblasioma derived oncogene homolog (avian) 2064 03 4 2 1.8 _at ERBB2 NADH dehydrogenase (ubiquinone) 2064 < 1e-								
03 4 2 1.8 _at ERBB2 oncogene homolog (avian) 2064 <1e-	3 36F	0.024	0.002		2 16836			
< 1e-				10		ERBR2	· · · · · · · · · · · · · · · · · · ·	2064
< 1e-	03	4	- <u><u> </u></u>	1.8	_ai			2004
<1e- <1e- <1e- 211752_s 7, 20kDa (NADH-								
	. 4.				0.11000			
0/ 0/ 0/ 1.8 _at NDUFS/ coenzyme Q reductase) 374291		,		10		NUDITIO		07 (001
			·	1.8				5/4291
3.49E- 0.025 0.002 1.8 2.10397 DEFB 1 defensin, beta 1 1672	3.49E-	0.025	0.002	1.8	2 10397_	DEFB 1	defensin, beta 1	1672

				105			
03	1	ſ	ĺ	at			
4.06E-	0.000	< 1e-		209398_	HIST1H	<u></u>	
05	909	07	1.8	at	1C:	histone cluster 1, H1c	3006
7.29E-	0.043	0.006		2 14243_s			
03	3	9	1,8	_at			
5.00E-	0.000	< 1e-		205774		coagulation factor XII	
07	0338	07	1.8	at	FI2	(Hageman factor)	2 161
5,83E-	0,006:	0.000		208978_			·····
04	71	7	1.8	at	GRIP2	cysteine-rich protein 2	1397
5.68E-	0.006	0.000		2 18677_		S 100 calcium binding	······
04	59	6	1.8	at	S1Q0A14	protein A14	57402
7.30E-	0.000	< l.e-		2 i4469_			
06	244	07	1.8	at			
1.()OE-	9.52E	< 1e-		2 13508_		serine paknitoyltfanslerase,	
07	-06	07	1.8	at	SPTSSA	small subunit A	171546
3.08E-	0,004	0.000		201291_8		topoisomerase (DNA) II	·····
04	14	1	1.8	_at	TOP2A	alpha 170kDa	7153
< 1e-	< 1e-	< 1e-		202993_		ilvB (bacterial aeetolactate	
07	07	07	1.8	at	ILVBL	syntbase)-like	10994
		ļ		<u>,</u>		angiotensin I converting	
7.30E-	0.001	< 1e-		2 19962		enzyme (peptidyl-	
05	4	07	1.8	at	ACE2	dipeptidase A)2	59272
3.70E-	0.000	< 1e-		203968_s		- 1 D.	
06	146	07	1.8	_ai	CDC6	cell division cycle 6	990
·····						angiotensin I converting	
4.51E-	0.000	< le-		222257_s		enzyme (peptidyl-	
05	986	07	1.8	_at	ACE2	dipeptidase A) 2	59272
6.22E-	0.001	0.000		205364_		acyl-CoA oxidase 2,	······
05	25	1	1.8	at	ACOX2	branched chain	8309
5.08E-	0.006	0.000		219010_		chromosome 1 open	<u>;</u>
04	06	5	1.8	at	C1ori'106	reading frame 106	55765
4.00E-	0.000	< 1e-		209164_s			
07	0288	07	1.8	_at	CYB561	cytochrome b-561	1534
3.00E-	0.000	< le-		218507_		hypoxia inducible lipid	
07	0224	07	1.8	at	HILPDA	droplet-associated	29923
6.59E-	0.001	< 1e-		201340_s		ectoderma!-neur&t cortex 1	······
05	3	cs:'	1.7	_a.t	ENC1	(with BTB domain)	8507
2.301.	0.000	< 1e-		209714_s		cyclin-dependent kinase	
06	104	07	1.7	_at	GDKN3	inhibitor 3	1033
2.55E-	0.020	0.003		210387_			
03	1	1	1.7	at			
7.46E-		0,000		2 194 10_	TMEM4		
04	0.008	8	1,7	at	5A	transmembrane protein 45A	55076
1.21 E-	0.011			2 19630_	PDZK11	PDZK1 interacting protein	
03	5	0.001	1.7	at	PI	1	10 158
< 1e-	< 1e-	< le-		204824_		1	
07	07	07	1.7	at	ENDOG	endonuelease G	2021
< 1e-	< le-	< 1e-		218001_		mitochondrial ribosomal	
07	07	07	1.7	at	MRPS2	protein S2	51 116
6.00E-	0.000	< le-	·	204975_		epithelial membrane	
07	0386	07	1,7	at	EMP2	protein 2	201 3
1.33E-	0.012	0.001		205258		· · · · · · · · · · · · · · · · · · ·	
03	4	1	1.7	at	INHBB	inhibit!, beta B	3625
5.60E-	0.000	< le-	·····	205253_		pre-B-celi leukemia	;
06	202	07	1.7	at	PBX1	homeobox 1	5087
5.66E-	0.036	0.005		202859_	A	· · · · · · · · · · · · · · · · · · ·	
03	1	2	1.7	x_at	IL8	interleukin 8	3576
2.35E-	0.003	0,000		209621_s		<u> </u>	
04	35	3	1,7	at	PDL1M3	PDZ and LIM doniain 3	27295
	L	l	1,/	<u> </u>			

< 1e-	< 1e-	< 1e-		215093_		NAD(P) dependent steroid	
07	07	.07	1.7	at	NSDHL	dehydrogenase-like	50814
4.72E-	0.001	0.000		206110_	HIST1H		
05	02	1	1.7	at	3H	histone cluster 1, H3h	8357
3.61E-	0.025	0.003		211652_s		lipopolysaccharide binding	
03	7	6	1.7	_at	LBP	protein	3929
6.62E-	0.040			206714_	ALOX15	arachidonate 15-	
03	4	0.007	1.7	at	В	lipoxygenase, type B	247
7.28E-	0.043	0.006		215108_		TOX high mobility group	
03	3	8	1.7	x_at	TOX3	box family member 3	27324
8.53E-	0.008	0.001		205442_		microfibrillar-associated	
04	82	2	1.7	at	MFAP3L	protein 3-like	9848
1.00E-	9.52E	< 1e-		201848_s		BCL2/adenovirus E1B	
07	-06	07	1.7	_at	BNIP3	19kDa interacting protein 3	664
< 1e-	< 1e-	< 1e-		208817_		catechol-O-	
07	07	07	1.7	at	COMT	methyltransferase	1312
3.45E-		0.033		220414_	CALML	· · · · · · · · · · · · · · · · · · ·	
02	0.128	5	1.7	at	5	calmodulin-like 5	51806
4.75E-	0.001	0.000	,	209114_			
05	03	1	1.7	at	TSPAN1	tetraspanîn 1	10103
1.60E-	0.000	<1e-		219038	1.51.1.1.	MORC family CW-type	10102
06	0801	07	1.7	at	MORC4	zinc finger 4	79710
2.99E-	0.000	< 1e-	1.11	203207_s	maner	mitochondrial fission	1.2.1.1.9
05	729	$\sim 10^{-10}$	1.7		MTFRI	regulator 1	9650
2.84E-	0.000	<1e-		212325_	MILINI	LIM and calponin	
05	708	07	1.7	at	LIMCH1	homology domains 1	22998
1.07E-	0.000	< 1e-		221563_	Luncin	dual specificity	42770
05	333	07	1.7	at	DUSP10	phosphatase 10	11221
<1e-	< 1e-	< le-	1.7	214264_s	EFCAB1	EF-hand calcium binding	1 1 4 1
07	$\left \begin{array}{c} 10^{-1}\\ 07\end{array}\right $	07	1.7	at		domaín 11	90141
<u></u>	<u> </u>		1.7	a	1	solute carrier family 6	201741
						(neurotransmitter	
1.80E-	0.000	< 1e-		202219_		transporter, creatine),	
1.80E- 06	0.000	<1e- 07	1.7	at	SLC6A8	member 8	6535
5.37E-	0.006	0.000	4.5.6	209773_s	SLEUNO	ribonucleotide reductase	0333
04	32	3	1.7		RRM2	M2	6241
9.38E-		0.000	1.1	at 219288	KKMZ	1 ·······	0241
	0.001	1 1	17		C2~~614	chromosome 3 open	577415
05	68	2	1.7	at	C3orf14	reading frame 14	57415
8.20E-	0.047	0.008		214598_	CT DAIG	alas dan O	00773
03	1	6	1.7	at	CLDN8	claudin 8	9073
3.28E-	0.004	0.000	. ~	208284_			
04	33	4	1.7	x_at			
3.63E-	0.004	0.000		211417_			
04	68	3	1.7	x_at		<u> </u>	
1.02E-	0.010	0.000		208180_s			
03	1	9	1.6	at		ļ	
7.10E-	0.000	< le-		201287_s			a sa ing ang
06	239	07	1.6	at	SDC1	syndecan 1	6382
				AFFX-			
				HUMRG			
3.82E-		0.035	5	E/M1009			
02	0.137	2	1.6	8_M_at			
8.00E-	0.000	< 1e-		218261_		adaptor-related protein	
07	0477	07	1.6	at	AP1M2	complex 1, mu 2 subunit	10053
1.38E-	0.002	< 1e-		204678_s		potassium channel,	
04	22	07	1.6	_at	KCNK1	subfamily K, member 1	3775
1.51E-	0.000	< le-		204179_	1		
05	431	07	1.6	at	MB	myoglobin	4151
	,	· · · · · ·		564_at	T	1	

07	07	.07		[protein (G protein), alpha 11 (Gq class)	
1.39E-	0.068	0.013		219612_s		TT (Oq class)	·····÷
02	6	7	1.6	at	FGG	fibrinogen gamma chain	2266
1.25E-	0.002	0.000	1.0	201846_s	100		2200
	2 · · · · · ·		16		DVDD	RING1 and YY1 binding	92.490
04	07	1	1.6	at	RYBP	protein	23429
				AFFX-			
				r2-			
		10 - 10 - 1		Hs18SrR			
3.79E-		0.034		NA-			
02	0.136	9	1.6	M_x_at			
3.60E-	0.000	< 1e-		202275_		glucose-6-phosphate	
06	144	.07	1.6	at	G6PD	dehydrogenase	2539
2.80E-	0.000	< le-		213246_	TMEM2		
06	12	07	1.6	at	51	transmembrane protein 251	26175
1.50E-	0.000	< 1e-	1.0	212460_		serine palmitoyltransferase,	
06	0.000	07	is		SPTSSA	small subunit A	171546
			1.6	at	oriooa	Shan Subunit A	1/1340
1.00E-	9.52E	< 1e-		203189_s			
07	-06	07	1.6	at	ļ	<u> </u>	
1.69E-	0.002	0.000		208546_	HIST1H		
04	58	2	1.6	x_at	2BH	histone cluster 1, H2bh	8345
1.99E-	0.000	< 1e-		216607_s			
05	537	.07	1.6	_at			
2.00E-	0.000	< 1e-		202528_		UDP-galactose-4-	
07	0168	07	1.6	at	GALE	epimerase	2582
< 1e-	< 1e-	<1e-		202587_s	COT MORES	cprincipal -	
07	07	07	1.6		AK1	adenylate kinase 1	203
2.81E-		0.000	1.0	at 212328			
	0.003	,	10		LDIGID	LIM and calponin	22000
04	84	3.	1.6	at	LIMCH1	homology domains 1	22998
2.36E-	0.003	0.000		204679_		potassium channel.	
04	35	2	1.6	at	KCNK1	subfamily K, member 1	3775
1.39E-	0.000	< 1e-		208677_s			
05	407	07	1.6	_at	BSG	basigin (Ok blood group)	682
9.60E-	0.000	< 1e-		209008_			
06	306	07	1.6	x_at	KRT8	keratin 8	3856
						procollagen-lysine, 2-	
1.76E-	0.015	0.001		202619_s		oxoglutarate 5-dioxygenase	
03	1	7	1.6		PLOD2	2	5352
<u></u>	3	<u>, k</u>	1.0	at	FLODZ	<u>}</u>	3332
10 mm	a ant					KDEL (Lys-Asp-Glu-Leu)	
6.73E-	0.001	< 1e-		204017_		endoplasmic reticulum	
05	32	07	1.6	at	KDELR3	protein retention receptor 3	11015
1.90E-	0.000	< le-		202790_			
06	0909	07	1.6	at	CLDN7	claudin 7	1366
2.08E-	0.089	0.016		204914_s		SRY (sex determining	
02	8	8	1.6	_at	SOX11	region Y)-box 11	6664
5.70E-	0.006	0.000		202912_			
04	6	7	1.6	at	ADM	adrenomedullin	133
	×	·		+		carcinoembryonic antigen-	******
4.28E-	0.029	0.003		201884_	CEACA	related cell adhesion	
	1	j	16				1040
03	4	9	1.6	at	M5	molecule 5	1048
a ====		0.000				UDP	
3.57E-		0.034		211682_	UGT2B2	glucuronosyltransferase 2	
02	0.13	7	1.6	x_at	8	family, polypeptide B28	54490
4.00E-	0.000	< 1e-		204867_		GTP cyclohydrolase 1	
07	0288	07	1.6	at	GCHFR	feedback regulator	2644
< 1e-	< 1e-	< 1e-		214463_			
07	07	07	1.6	x_at			
1.98E-	0.087	0.022		209125_		<u> </u>	
02	3	6	1.6	at	KRT6A	keratin 6A	3853
04		L V	9.1	1	INNTOA	horacin ora	3033

				100				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ŀ			208579_		0.000	0.001	8.76E-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					1.6	1	6	05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				212531_		0.020	0.099	2.39E-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3934	lipocalin 2	LCN2		1.6		2	02
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				215779_8			0.010	1.07E-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1.6			03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				214710_s				1.92E-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	891	cyclin B1	CCNB1		1.6			04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-			202870_s			()	3.95E-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	991		CDC20		1.6	in the second second		03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1		205158_			(9.86E-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6038	family, 4	RNASE4		1.6		£	04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								3.82E-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					1.6			05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				211110_s			1	5.04E-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	367		AR		1.6			03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				204952_		0.001	{ }	1.11E-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27076		LYPD3	at	1.6	6	8	03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				205311_		0.000	(· ·)	2.92E-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1644	decarboxylase)	DDC		1.6		·	04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,	1.07E-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				x_at	1.6	5	5	03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				211423_8	1. 15		,	3.10E-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6309		SC5DL	_at	1.6	4	15	04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				209482_				< 1e-
	10248	subunit (S. cerevisiae)	POP7	1.	1.6	07	07	07
E- 0.005 0.000 205066_{-s} ectonucleotide pyropbosphatase/pbosphodi esterase 1 5167 E- 0.000 < 1e-				204623_				4.53E-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7033		TFF3	at	1.6	0.045	0.152	02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				de la face de la		5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			time respectively and		4 55		(4.92E-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5167		ENPP1		1.6			04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			and the second		. 15			1.56E-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	147179		WIPF2		1.6		1	05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				· · · · · · · · · · · · · · · · · · ·			2	6.79E-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	79016	associated 1	DDA1		1.6		{·	05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							2 S	3.70E-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9761		MLEC		1.6			06
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, <u>.</u>	2.47E-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	214	adhesion molecule	ALCAM		1.6			03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a tarke mai				5.5			1.00E-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10975		FERMT2		1.6			07
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								1.20E-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6319		SCD	_at	1,6	07	03	04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
519 1 1.6 _at FUT3 blood group) 2525 E- 0.010 0.001 212327_ LIM and calponin 22998 6 2 1.6 at LIMCH1 homology domains 1 22998 E- 0.005 0.000 203764_ discs, large (Drosophila) 6 1 1 1.6 at DLGAP5 5 9787 E- 0.000 <1e-								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			TTE 1000				2	1.90E-
6 2 1.6 at LIMCH1 homology domains 1 22998 E- 0.005 0.000 203764_ discs, large (Drosophila) homolog-associated protein 1 1 1.6 at DLGAP5 5 9787 E- 0.000 < 1e-	1 2525		FUT3		1.6		()	05
E-0.0050.000203764_ 203764_discs, large (Drosophila) homolog-associated protein 9787L-11.6atDLGAP55E-0.000< 1e- 0224219819_s 1.6mitochondrial ribosomal protein S2828957	-		yingig beam-we		· ·		s	1.09E-
E- 0.005 0.000 203764_ at homolog-associated protein 1 1 1.6 at DLGAP5 5 9787 E- 0.000 <1e-	22998		LIMCH1	at	1.6	2.	6	03
1 1 1.6 at DLGAP5 5 9787 E- 0.000 <1e-				a 20 a 20 1		in		
E- 0.000 <1e- 219819_s mitochondrial ribosomal 28957			العادية والمحر الورومور		الد الا		1	4.06E-
0224 07 1.6 _at MRPS28 protein S28 28957	9787	1. 1 . 1 . 1	DLGAP5		1.6			04
							,	3.00E-
E- 0.000 < 1e- 1.6 202201 BLVRB biliverdin reductase B 645	28957	protein S28	MRPS28		1.6	07	0224	07
	645	biliverdin reductase B	BLVRB	202201_	1.6	< 1e-	0.000	3.00E-

				10)			
06	126	.07	ĺ	at		(flavin reductase	
		[(NADPH))	
1.50E-	0.000	< le-		218451_		CUB domain containing	
06	076	07	1.6	at	CDCP1	protein 1	64866
1.09E-	0.001	0.000		201037_		phosphofructokinase,	
04	89	2	1.6	at	PFKP	platelet	5214
< 1e-	< 1e-	< 1e-		218189_s		N-acetylneuraminic acid	
07	07	07	1.6	_at	NANS	synthase	54187
1,42E-	0.069	0.014		205239_			
02	7	1	1.6	at			
1.88E-	0.016	0.001		218888_s		neuropilin (NRP) and	
03	1	7	1.6	_at	NETO2	tolloid (TLL)-like 2	81831
1.69E-	0.002	0.000		215145_8	CNTNA	contactin associated	
04	58	1	1.6	_at	P2	protein-like 2	26047
< 1e-	< 1e-	< 1e-	<u></u>	220688_s		mRNA turnover 4 homolog	
07	07	07	1.6	_at	MRTO4	(S. cerevisiae)	51154
			1.0		inner or	NADH dehydrogenase	
< 1e-	< 1e-	< 1e-		202839_s	NDUFB	(ubiquinone) 1 beta	
07	07	07	1.6	at	7	subcomplex, 7, 18kDa	4713
1.00E-	9.52E	<1e-	9.1	ai	F		+113
	(·	1	16	21074	GAS2L1	growth arrest-specific 2 like	10624
07	-06	07	1.6	31874_at	UA52L1		10634
1.03E-	0.055	0.008	1.4	210761_8	CDD7	growth factor receptor-	0000
02	2	2	1.6	_at	GRB7	bound protein 7	2886
5.55E-	0.006	0.000	2.32	217771_			and to solve
04	47	6	1.6	at	GOLM1	golgi membrane protein 1	51280
						small nuclear	
9.00E-	0.000	< 1e-		218493_	SNRNP2	ribonucleoprotein 25kDa	
07	0513	07	1.6	at	5	(U11/U12)	79622
< 1e-	< 1e-	< 1e-		218206_	SCAND		
07	07	07	1.6	x_at	1	SCAN domain containing 1	51282
1.77E-	0.002	0.000		203786_s	TPD52L		
04	66	2	1.5	_at	1	tumor protein D52-like 1	7164
9.00E-	0.001	0.000		204348_s			
05	63	2	1.5	_at			
< 1e-	< 1e-	< 1e-		212540_			
07	07	07	1.5	at	CDC34	cell division cycle 34	997
6.20E-	0.001	< 1e-		201702_s		protein phosphatase 1,	
05	25	07	1.5	_at	PPP1R10	regulatory subunit 10	5514
3.53E-	0.004	0.000		200632_s		N-myc downstream	
04	58	6	1.5	_at	NDRG1	regulated 1	10397
< 1e-	< 1e-	< 1e-		208336_s	110000	trans-2,3-enoyl-CoA	
07	07	07	1.5		TECR	reductase	9524
< 1e-	<1e-	<1e-	4.685	205141_	TEXEN	angiogenin, ribonuclease,	20,20
07	07	07	1.5	at	ANG	RNase A family, 5	283
9.00E-	0.000	< 1e-	.1.5	212807_s		Kivase A tanny, 5	
9.00E- 07	0.000	07	1.5		SORT1	sortilin 1	6272
			1.5	at	SORTI	Southan 1	0272
2.39E-	0.099	0.021	3.6	213711_	TZ INTER A	Louis 01	2007
02	4	.5	1.5	at	KRT81	keratin 81	3887
2.91E-	0.000	< 1e-		219929_s	ZFYVE2	zinc finger, FYVE domain	
05	717	07	1.5	_at	1	containing 21	79038
1.58E-	0.000	< 1e-	20.00	214004_s	- تا میونو		2
05	447	07	1.5	_at	VGLL4	vestigial like 4 (Drosophila)	9686
1.32E-	0.002	0.000		217188_s		chromosome 14 open	
04	14	2	1.5	at	C14orf1	reading frame 1	11161
1.66E-	0.000	< 1e-		211612_s		interleukin 13 receptor.	
05	464	07	1.5	_at	IL13RA1	alpha 1	3597
9.06E-	0.009			209522_s		carnitine O-	
04	2	0.001	1.5	_at	CRAT	acetyltransferase	1384
< 1e-	< 1e-	< 1e-	1.5	218188_s	TIMM13	translocase of inner	26517
~ 10-	1 ~ 10-	<u>5 16-</u>	1.0	1 210100_5		uansiocase of filler	20317

07	07	07	ĺ	at		mitochondrial membrane	
						13 homolog (yeasty	
			· ·			minichiOmosome	
1.57E-	0.002	0.000		21214 1_		maintenance complex	
04	44	2	1.5	at	MCM4	component 4	4173
						steroid-5-alpha-reductase,	
						alpha polypeptide 1 (3-6x0-	
8.24E-	0.008	0.000		210919_s		5 alpha-steroid delta 4-	
04	62,	4	1.5	_at	SRLX VI	deliydrogenase alpha 1)	6715
2.12E-	0.003	0.000		202890_		mierotiibde-assoeiated	
04	0S	3	1.5	at	MAP?	protein 7	9053
5.30E-	0,000:	< le-	·	2 18049_s		mitoehondri al ribosomal	······
06	196	07	1.5	at	MRPL13	protein L13	28998
1.88E-	0.016	0.001		217562_		family with sequence	· · · · · · · · · · · · · · · · · · ·
03	1	3	1.5	at	EAM5C	similarity 5, member C	339479
1,15E-	0.000	< le-		219390_		FK506 binding protein 14,	
05	349	07	1.5	at	FKBP14	22 kDa	55033
6.30E-	0.000	< 1e-	1.5	202671_s	1 KDI II	pyridoxal (pyridexine,	55055
0.301-	22	07	1.5		PDXK	vitamin B6) kinase	8566
00	<u> </u>	07	1.5	at	FDAN	wingless-type MMTV	8500
2.24E		0.002		205000			
2.34E-	0.010	0.002	1.5	205990_s		integration site family,	7474
03	0.019	9	1.5.	at	WNT5A	member 5A	7474
1.15E-	0.05	0.011	1 -	219529_	GT 1 GA	chloride intracellular	0000
02	0.06	4	1.5	at	CL1C3	channel 3	9022
						NADH dehydrogenase	
< 1e-	< le-	< le-		218460	NDUFA	(ubiquinone) 1 alpha	
07	tr7	07	1.5	at	8	subcomplex, 8, 19kDa	4702
1.91E-	0.016	0.001		202095_s		baculoviral IAP repeat	
03	3	2	1,5	at	BIRC5	containing 5	332
						UDP-N-acetyl-alpha-D-	
						galactosaimne:polypept:ide	
						N-	
8.76E-	0.008	0.000		203397s	GALNT	aeetylgalactosaminyltransfe	
04	98	8	1.5	_at	3	rase 3 (GalNAc-T3)	2591
1.71E-	0.000	< le-		221734			
05	475	07	1.5	at	PRRC1	proline-rich coiled-coil 1	133619
1.53E-	0.013	0.001		218186_		RAB25, member RAS	
03	g	1	1.5	at	RAB25	oncogene family	57111
1.00E-	9.52E	< le-		203190_			
07	-06	07	1.5	at			
1.19E-	0.011	0.000	1.2	20494 1_s	ALDH3	aldehyde dehydrogenase 3	
		\$ ·	1.5		B2	family, member B2	222
03 < 1e-	4	9 < le-	1.5	_at 209194_	<u>2</u>	rammy, memoer D2	<i>LLL</i>
	< 1e-	(1 E		CETNO	contrin EE hand materia	1069
07	er 7	0.026	1.5	at 206462 a	CETN2	centrin, EE-hand protein, 2.	1009
2.691·;⊷	0.107	0.026	1 E	206463_s	DUDGO	dehydrogenase/reductase	10000
02	0.107		1.5	_at	DHRS2	(SDR family) member 2	10202
4.3 1E-	0.005	0.000	1 -	21061.3_S	SYNGR	armonto armiii 1	Sector a sec
04	32	3	1.5	at	1	synaptogyriii 1	9145
				AFFX-			
				r2-			
2.69E-				Hs28SrR			
02	0.107	0.026	1.5	NA-3_at			
2.25E-	0.0 18	0.001		208079_s			
03	4	4	1.5	_a.t	AURKA	aurora kinase A	6790
2.73E-		0.029		211653_		aldo-keto reductase family	
02	0.108	4	1.5	x_at	AKR1C2	L member C2	1.646
1.30E-	0.000	< 1e-		20374Q_	MPHOS		,
05	387	07	1.5	at	PH6	M-phase phosphoproiein 6	10200
8.66E-	0.001	0.000	1.5	213843_	SLC6A8	solute carrier family 6	65:35
0.000	0.001	0.000	1.2	1_213043_	JUCUAO	solute carrier family 0	05.55

				171			
05	59	1		x_at		(neurotransmitter	
						transporter, creatine),	
						member 8	
1.77E-	0.015	0.001		219978_s		nucleolar and spindle	······
03	4	3	1.5	at	NII SAP1	associated protein 1	51203
5.(X)E-	0,000	< le-				glucan (1,4-alpha-),	
07	0338	07	1.5	at	GBE1	branching enzyme 1	2632
2.39E-	0.0 19	0.002	1.5	207469_s		pirin (iron-binding nuclear	2052
03	2	4	1.5		PIR	protein)	8544
	<u></u>		1.5	at	ΓIK		0.044
4.08E-	0.142	0.044	.1 e	201983_s	ECED	epidermal growth factor	10.50
02	0,142	7	1.5	at	EGFR	receptor	1956
4.10E-	0.000	< le-		21Q058_	MAPK1	mitogen-activated protein	
06	158	07	1.5	at	3	kinase 13	5603
1.46E-		0.013		217014_s			
02	0.071	3	1.5	a!			
7.60E-	0.000	< 1e-		208928		P450 (cytochrome)	
06	251	07	1.5	at	FOR	oxidoredijctase	5447
						fcynurenine 3-	
1.91E-	0,085	0.020		205306_		moiraoxygenase	
02	1	. 4	1.5	x_at	KMO	(kynurenine 3-hydroxylase)	8564
2.26E-	0.000	< le-		209806	HIST1H		
05	592	07	1.5	at	2BK	histone cluster 1, H2bk	85236
4.98E-		0.005	·	212458_		sprouty-related, EVH1	
03	0.033	1	1.5	at	SPRED2	domain containing 2	200734
3.04E-	0.004	0.000		2182S0_	~1	<u> </u>	
04	09	6	1,5	x_at			
			1,5	ai		guanine nucleotide binding	
1 10	< 1e-	216				protein (G protein), al pha	
< 1e- 07	07	< 1e- 07	15	10562 at	GNA11		2767
1	{	·····	1.5	40562at	3	11 (Gq class)	2707
5,23E-	0.006	0.000	1.7	209911_	HIST 1H	history shots a UOL I	2017
04	19	2	1.5	x_at	2BD	histone cluster 1, H2bd	3017
1.29E-	0.002	< 1e-	_	214472_			
04	1	07	1.5	at			
6,52E-	0.007			2 15780_s			
04	27	0,001	1,5	_at			
3.09E-		0.003		202975_s	RHGBT	Rho-related BTB: domain	
03	0.023	8	1.5	_at	B3	containing 3	22836
5.10E-	0.000	< 1e-		219061_s			
06	19	07	1.5	_at	LAGE3	L antigen family, member 3	8270
1.24E-	0.01 1			210904_s		interleukin 13 receptor,	
03		0.001	1.5	_at	IL13RA1	alpha 1	3597
1.70E-	0.002	0,000	15	201791_s		7-dehydrocholesterol	
04	59	1	1,5	at	DHCR7	reductase	1717
1.00E-	0.000	<1e-	1,5	at 218498_s			,1/1/
06	0.000	07	1.5	at	ERGIL	ERO1-like (S. cerevisiae)	30001
	0501		1.5	au	LINUIL		30001
						GD55 molecule, decay-	
1 2017	0.000			201025		accelerating factor for	
1.38E-	0.000	< 1e-		201925_s	00.55	complement (Cromer blood	1.00.1
05	406	cs?	1.5	_at	CD55	group)	1604
3.43E-		0.034		20357 1_s		adipogenesis regulatory	
02	0.127	.4	1.5	at	ADIRF	factor	10974
2.80E-	0.003	0.000		205379_			
04	84	5	1.5	at	CBR3	carbonyl reductase 3	874
1.02E-	0.001	0.000		216804_s			
04	79	1	1.5	_at	PDL1M5	PDZ and L1M domain 5	10611
8.32E-	0.008	0.001					
04	68	2	1.5	_at			
2.62E-	0.020:		· · · · ·	202620_s		procollagen-lysine, 2-	
03	-5	0.003	1.5	at	PLOD2	oxoglutarate 5-dioxvgenase	5352
		0.005	1.5			L'ONOGIUIAIAU J-MONYBEHASE	5552

			ĺ	ſ		2	
2.00E-	0.000	< 1e-	·····	214768_		immunoglobulin kappa	
07	0168	07	0.3	x_at	IGKC	constant	3514
1,00E-	9.52E	< 1e-		211644_			
07	-06	07	0.3	x_at			
<1e-	< 1e-	< le-		217148_	<u> </u>	ł	
07	07	07	0.3	x_at			
2.00E-	0.000	< 1e-		216491_		immunoglobulin heavy	
07	0168	07	0.3	x_at	IGHM	constant mu	3507
<1e-	< 1e-	< 1e-	·····	205267_	POU2AF	POU class 2 associating	5507
07	07	$\sim 10^{-1}$	0.3	at	1002A	factor 1	5450
<1e-	<1e-	<1e-	0.5	211637_	1		3450
07	07	07	0.3				
			0.3	x_at 214777_			
2.20E-	0.000	< le-	N 2				
06	102	07	0.3	at			
1.10E-	0.000	< 1e-	202	211634_			
06	0599	07	0.3	x_at			
2.00E-	0.000	< 1e-		209374_s		immunoglobulin heavy	
07	0168	07	0.3	at	IGHM	constant mu	3507
< 1e-	< le-	< 1e-		217179_			
07	07	07	0.3	x_at		<u>.</u>	
< 1e-	< 1e-	< le-		216984_			
07	07		0.4	x_at]	
3.00E-	0.000	< 1e-		216576_			
07	0224	07	0.4	x_at			
9.00E-	0.000	< 1e-		217022_s			
07	0513	07	0.4	at			
< 1e-	< 1e-	< 1e-		217235_		immunoglobulin lambda-	
07	07	07	0.4	x_at	IGLL5	like polypeptide 5	1E+08
1.70E-	0.000	< 1e-		211635_		<u>}</u>	
06	0836	07	0.4	x_at			
1.10E-	0.000	< 1e-		216401_		1	
06	0599	07	0.4	x_at			
1.00E-	9.52E	< 1e-		217281_			
07	-06	07	0.4	x_at			
2.70E-	0.000	< 1e-	0.1	216510_			
06	116	07	0.4	x_at			
1.00E-	9.52E	< 1e-		211643_{-}			
1.00E- 07	-06	07	0.4	_			
1.20E-	0.000		0.4	x_at 215176_		immunoglobulin kappa	
06	0.000	< 1e- 07	0.4		IGKC		3514
			0.4	x_at 216557_	IGKC	constant	5514
1.00E-	9.52E	< 1e-	<i>6 x</i>	1			
07	-06	07	0.4	x_at		The second se	
						immunoglobulin J	
ానదా	5 565	5. 1		010000		polypeptide, linker protein	
5.00E-	0.000	< 1e-	is i	212592_	a state to .	for immunoglobulin alpha	0.010
07	0338	07	0.4	at	IGJ	and mu polypeptides	3512
9.00E-	0.000	< 1e-	~ (214916_			
07	0513	07	0.4	x_at	 		,
1.74E-	0.015	0.001	الا المعلي	205044_		gamma-aminobutyric acid	<u>.</u>
03	2	3	0.4	at	GABRP	(GABA) A receptor, pi	2568
7.20E-	0.000	< 1e-		211645_			
06	241	07	0.4	x_at		<u> </u>	
						protein tyrosine	
< 1e-	< 1e-	< 1e-		212588_		phosphatase, receptor type,	
07	07	07	0.4	at	PTPRC	C	5788
< 1e-	< 1e-	< 1e-		210915_		T cell receptor beta	
07	07	07	0.4	x_at	TRBC1	constant 1	28639

7.62E-	0.001	0.000		203915_		chemokine (C-X-C motif)	
05	45	5	0.4	at	CXCL9	ligand 9	4283
2.00E-	0.000	< le-	~ •	211650_			
07	0168	07	0.4	x_at			
1.40E-	0.000	< 1e-		214973_		immunoglobulin heavy	0.00.0
06	0717	07	0.4	x_at	IGHD	constant delta	3495
						protein tyrosine	
< 1e-	< 1e-	< 1e-		207238_s		phosphatase, receptor type,	
07	07	07	0.4	_at	PTPRC	C	5788
6.00E-	0.000	< 1e-		217227_	IGLV1-	immunoglobulin lambda	
07	0386	-07	0.4	x_at	44	variable 1-44	28823
1.00E-	9.52E	< 1e-		211796_s			
07	-06	07	0.4	_at			
< 1e-	< 1e-	< 1e-		206666_		granzyme K (granzyme 3;	
07	07	07	0.4	at	GZMK	tryptase II)	3003
5.05E-	0.001	0.000		216560_		immunoglobulin lambda	
05	0.001	1	0.4		IGLCI	constant 1 (Mcg marker)	3537
			0.9	X_at	IOLA.I	constant 1 (Meg marker)	3337
7.00E-	0.000	< 1e-	n á	216207_			
07	0425	07	0.4	x_at			
2.01E-	0.002	< 1e-		205890_s			
04	95	07	0.4	at			
2.92E-	0.000	< 1e-		210072_		chemokine (C-C motif)	
05	717	07	0.4	at	CCL19	ligand 19	6363
9.00E-	0.000	0.000		217378_			
06	289	1	0.4	x_at			
1.90E-	0.000	0.000		209138_			
06	0909	1	0.4	x_at			
< 1e-	< 1e-	< 1e-		208798_	GOLGA	golgin A8 family, member	
07	07	07	0.5	x_at	8A	A goigin ris failing, includer	23015
3.10E-	0.000	0.000	0.5	214677_	0/1		25015
	Sector sector		nε				
06	129	1	0.5	x_at			
< 1e-	< 1e-	< 1e-	~ ~	211868_			
07	07	07	0.5	x_at			
						colony stimulating factor 2	
4.00E-	0.000	< 1e-		205159_		receptor, beta, low-affinity	
07	0288	07	0.5	at	CSF2RB	(granulocyte-macrophage)	1439
3.80E-	0.000	< 1e-		211798_		immunoglobulin lambda	
06	149	.07	0.5	x_at	IGLJ3	joining 3	28831
1.03E-	0.001	0.000		211430_s	1		
04	81	1	0.5	_at			
2.70E-	0.000	< 1e-		204891_s		Iymphocyte-specific protein	
06	116	07	0.5	_at	LCK	tyrosine kinase	3932
3.60E-	0.000	< 1e-	0.0	217480_	LACIN	tyrosnie knase	41.1.1.144
06	144	$\sim 10^{-1}$	0.5				
********	******	*******	0.5	x_at			
1.88E-	0.016	0.001	ne	205242_	CVCL 12	chemokine (C-X-C motif)	racio
03	1	3	0.5	at	CXCL13	ligand 13	10563
3.00E-	0.000	< 1e-		205831_			
07	0224	07	0.5	at	CD2	CD2 molecule	914
< 1e-	< 1e-	< 1e-		204116_		interleukin 2 receptor,	
07	07	07	0.5	at	IL2RG	gamma	3561
8.00E-	0.000	< 1e-		207339_8		lymphotoxin beta (TNF	
07	0477	07	0.5	_at	LTB	superfamily, member 3)	4050
6.00E-	0.000	< 1e-		212827_		immunoglobulin heavy	
07	0386	07	0.5	at	IGHM	constant mu	3507
8.31E-	0.001	0.000		215214_			ne ne tra t
05	55	2	0.5	at			
1.00E-	9.52E	<1e-		215949_			
	• • • • • • • • • •		n e				
07	-06	07	0.5	x_at			
7.93E-	0.001	0.000	0.5	204563_	SELL	selectin L	6402

05	49	1		at	ĺ	ł	
2.50E-	0.000	0.000	,	214669_		immunoglobulin kappa	
2.50E-	111	1	0.5	x_at	IGKC	constant	3514
1.07E-	0.001	- 1e-	0.3	206134_	ADAMD	constant	
04	86	07	0.5	at	EC1	ADAM-like, decysin 1	27299
7.00E-	0.000	<1e-	0.757	217258_	IGLV1-	immunoglobulin lambda	in 1 in 7 i
07	0425	07	0.5	x_at	44	variable 1-44	28823
	0120	94	0.0	<u>a_u</u>		immunoglobulin heavy	
3.94E-	0.000	<1e-		211633_		constant gamma 1 (G1m	
05	888	07	0.5	x_at	IGHG1	marker)	3500
< 1e-	<1e-	< le-		210425_	1022021		
07	07	07	0.5	x_at			
3.00E-	0.000	< le-		211639_			
07	0224	07	0.5	x_at			
<u>, , , , , , , , , , , , , , , , , , , </u>		· · · · · · · · · · · · · · · · · · ·				ectonucleotide	
5.16E-	0.001	< 1e-		209392		pyrophosphatase/phosphodi	
05	09	07	0.5	at	ENPP2	esterase 2	5168
3.00E-	0.000	< 1e-		213193_		T cell receptor beta	
07	0224	07	0.5	x_at	TRBC1	constant 1	28639
1.00E-	9.52E	<1e-		212314_		sel-1 suppressor of lin-12-	40002
07	-06	07	0.5	at	SEL1L3	like 3 (C. elegans)	23231
4,40E-	0.000	0.000		215379_	000000	Ante (C. Oreguns)	and an and a state
06	168	1	0.5	x_at			
						major histocompatibility	
7.35E-	0.043	0.005		203290_	HLA-	complex, class II, DQ alpha	
03	6	9	0.5	at	DQA1		3117
2.70E-	0.000	0.000	0.2	215121_	DQIM	2	4. X X 1
06	116	1	0.5	x_at			
<1e-	< le-	<1e-		213142		pigeon homolog	
07	07	07	0.5	x_at	PION	(Drosophila)	54103
1.00E-	9.52E	< le-	0.0	217157_	11011	(Prosoprink)	
07	-06	07	0.5	x_at			
1.20E-	0.000	0.000		211881_		immunoglobulin lambda	
05	362	1	0.5	x_at	IGLJ3	joining 3	28831
6.74E-	0.040	0.005	N.N.	213831_	101202	Jonning 5	20001
03	9	7	0.5	at			
< le-	< le-	<1e-		209670		T cell receptor alpha	
07	07	07	0.5	at	TRAC	constant	28755
5.37E-	0.001	0.000		217767_			
05	12	1	0.5	at	C3	complement component 3	718
< 1e-	< 1e-	< 1e-		213502_	GUSBP1	glucuronidase, beta	
07	07	07	0.5	x_at	1	pseudogene 11	91316
< 1e-	< 1e-	<1e-		204912_		interleukin 10 receptor,	a nanaja
07	07	07	0.5	at	ILIORA	alpha	3587
<1e-	<1e-	< 1e-	······	209685_s		L	~~~~
07	07	07	0.5	at	PRKCB	protein kinase C, beta	5579
< 1e-	< 1e-	< 1e-		222150_s	<u></u>	pigeon homolog	<u></u>
07	07	07	0.5	_at	PION	(Drosophila)	54103
			0.0			immunoglobulin lambda-	
< 1e-	< 1e-	< 1e-		215946_		like polypeptide 3,	
07	07	07	0.5	x_at	IGLL3P	pseudogene	91353
5.00E-	0.000	<1e-	<u></u>	206337_		chemokine (C-C motif)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
07	0338	07	0.5	at	CCR7	receptor 7	1236
7.40E-	0.000	<1e-		213888_s	TRAF3I	TRAF3 interacting protein	ليا المراسد ال
06	246	$\sim 10^{-1}$	0.5	at	P3	3	80342
1.00E-	0.000	0.000		at 214836_	<u></u>		0,020146
06	0.000	1	0.5	x_at			
2.00E-	0.000	-1 < 1e-	0.0	204674_		lymphoid-restricted	
07	0168	07	0.5	at	LRMP	membrane protein	4033
	0100	L		1	L'ANSKIT.	i memorane protein	TV.J.J.

6.80E-	0.000	0.000		211908_		immunoglobulin kappa	
06	232	1	0.5	x_at	IGK@	locus	50802
< 1e-	< 1e-	< 1e-		211649_	<u></u>		
07	07	07	0.5	x_at			
						X inactive specific	
8.14E-	0.001	0.000		221728_		transcript (non-protein	
05	52	3	0.5	x_at	XIST	coding)	7503
						phosphatidylinositol-4,5-	
1.00E-	9.52E	< 1e-		203879_		bisphosphate 3-kinase,	
07	-06	07	0.5	at	PIK3CD	catalytic subunit delta	5293
< 1e-	< 1e-	< 1e-			ARHGA	Rho GTPase activating	
07	07	07	0.5	38149_at	P25	protein 25	9938
6.00E-	0.000	< le-		205668_			
0.0015	0386	07	0.5	at	LY75	lymphocyte antigen 75	4065
2.00E-	0.000	< 1e-		204057_		interferon regulatory factor	1000
07	0168	07	0.5	at	IRF8	8	3394
1.28E-	0.064	0.013		220625_s	1140	E74-like factor 5 (ets	5074
02	6	4	0.5	at	ELF5	domain transcription factor)	2001
6.20E-	0.000	0.000	0.5	221671_	Later	uomani transcription factor)	2001
0.20E- 06	217	0.000	0.5				
1.37E-		0.000	0.5	x_at 214657_s			
	0.002		0.5				
04	2		0.5	at			
5.00E-	0.000	< 1e-	05	204118_	CD 40	CD48 molecule	0/3
07	0338	07	0.5	at	CD48	CD48 molecule	962
4.70E-	0.000	0.000	0 m	221651_			
06	178	1	0.5	x_at			
ar in ar war						CD79a molecule,	
6.00E-	0.000	0.000		205049_s		immunoglobulin-associated	
07	0386	1	0.5	at	CD79A	alpha	973
1.90E-	0.000	< 1e-		211742_s	1	ecotropic viral integration	
06	0909	07	0.5	at	EVI2B	site 2B	2124
3.74E-	0.000	< 1e-		202746_		integral membrane protein	
05	856	07	0.5	at	ITM2A	2A	9452
4.44E-	0.000	< 1e-		203868_s		vascular cell adhesion	
05	98	07	0.5	_at	VCAM1	molecule 1	7412
3.66E-	0.004	0.000		216853_			
04	71	5	0.5	x_at			
4.80E-	0.005	0.000		205569_		lysosomal-associated	
04	79	7	0.5	at	LAMP3	membrane protein 3	27074
					1	membrane-spanning 4-	
3.51E-	0.000	< 1e-		210356_		domains, subfamily A,	
05	82	07	0.5	x_at	MS4A1	member 1	931
9.10E-	0.000	<1e-		211641_		1	
06	292	07	0.5	x_at			
5.23E-	0.001	< 1e-		212311_		sel-1 suppressor of lin-12-	
05	1	07	0.6	at	SEL1L3	like 3 (C. elegans)	23231
< le-		< 1e-		221978		major histocompatibility	
07	07	07	0.6	at	HLA-F	complex, class I, F	3134
3.19E-	0.000	0.000	0.0	208335_s		Duffy blood group,	5151
05	759	1	0.6	at	DARC	chemokine receptor	2532
<1e-	< 1e-	< 1e-		213160_	Drift	chemokine receptor	
< 1e- 07	07	07	0.6	at	DOCK2	dedicator of cytokinesis 2	1794
			0.0	202510_s		tumor necrosis factor,	1/74
< 1e-	< le-	< 1e-	ÄĔ	1	TNFAIP		7177
07	07	07	0.6		2	alpha-induced protein 2	7127
2.59E-	0.000	< 1e-		205861_	CIENTIN	Spi-B transcription factor	S. C. C. C.
05	657	07	0.6	at	SPIB	(Spi-1/PU.1 related)	6689
< 1e-	< 1e-	< le-	<u> </u>	213375_s	N4BP2L	NEDD4 binding protein 2-	wara .
07	07	07	0.6	at	1	like 1	90634
4.81E-	0.001	0.000	0.6	212671_s			

				190			
05	04	1	ĺ	at		1	
< 1e-	< 1e-	< 1e-		211339_s		<u>}</u>	
07	07	07	0.6	_at	ITK	IL2-inducible T-cell kinase	3702
1.00E-	9.52E	< 1e-		203471_s			
07	-06	07	0.6	_at	PLEK	pleckstrin	5341
< 1e-	< 1e-	< 1e-		212232_			
07	07	07	0.6	at	FNBP4	formin binding protein 4	23360
0.415	0.061			205100		granzyme A (granzyme 1,	
9.41E- 05	0.001 69	<1e- 07	0.6	205488_ at	GZMA	cytotoxic T-lymphocyte- associated serine esterase 3)	3001
0.0000	0.000	< le-	0.0	213539_	OZMA	CD3d molecule, delta	3001
3	731	07	0.6	at	CD3D	(CD3-TCR complex)	915
0.0000	0.000	< le-	0.0	211748_	00.00	prostaglandin D2 synthase	~ * * *
013	0677	07	0.6	x_at	PTGDS	21kDa (brain)	5730
0.0000	0.000	< 1e-		204198_s		runt-related transcription	
164	461	07	0.6	_at	RUNX3	factor 3	864
< 1e-	< 1e-	<1e-		214093_s		far upstream element	
07	07	07	0.6	_at	FUBP1	(FUSE) binding protein 1	8880
0.0000	0.000	< 1e-		209606_	CONTRACTO	cytohesin 1 interacting	0.50.5
045	171	07	0.6	at	CYTIP	protein	9595
< 1e- 07	< 1e- 07	< 1e- 07	0.6	212980_	USP34	ubiquitin specific peptidase 34	9736
0.0005	0.006		<u></u>	at 219014_	03134	- 34	9130
974	83	0.001	0.6	at	PLAC8	placenta-specific 8	51316
0.0000	0.000	<1e-	0.0	210972_	115,100	priorital specific g	01010
165	462	07	0.6	x_at			
	······					ectonucleotide	
0.0000	0.001	< 1e-		210839_s		pyrophosphatase/phosphodi	
847	57	07	0.6	at	ENPP2	esterase 2	5168
0.0000	0.001	0.000		211640_			
634	27	1	0.6	x_at			
0.0172	0.070	OOLE		200490	111 4	major histocompatibility	
0.0173 219	0.079 5	0.016 6	0.6	209480_ at	HLA- DQB1	complex, class II, DQ beta	3119
217	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	0.0	at	DQD1	cat eye syndrome	5115
0.0000	0.000	<1e-		219505_		chromosome region,	
024	107	07	0.6	at	CECR1	candidate 1	51816
0.0000	0.000	< 1e-		221601_s		Fas apoptotic inhibitory	
308	742	07	0.6	_at	FAIM3	molecule 3	9214
						poliovirus receptor related	
0.0000	0.000	< 1e-	~ ~	219812_		immunoglobulin domain	
007	0425	07	0.6	at	PVRIG	containing	79037
0.0003 28	0.004 33	0.000	0.6	214453_s	IFI44	interferon-induced protein 44	10561
 < 1e-	>> < 1e-	2 < 1e-	0.0	_at 203332_s	1.1.1.444	inositol polyphosphate-5-	10201
07	07	07	0.6		INPP5D	phosphatase, 145kDa	3635
0.0000	0.000	< 1e-	~~~~	204661_		400 10000 gr 00002 50 107 2 10 100 0000 AN	
143	415	07	0.6	at	CD52	CD52 molecule	1043
						X inactive specific	
0.0000	0.001	0.000		214218_s		transcript (non-protein	
513	08	4	0.6	at	XIST	coding)	7503
0.0001	0.001	0.000	80	2 1210	en sé	CD52 malanda	1010
076	86	2	0.6	34210_at	CD52	CD52 molecule	1043
< 1e- 07	< 1e- 07	< 1e- 07	0.6	217317_s			
0.0000	0.000	<1e-	0.0	_at 210538_s		baculoviral IAP repeat	
0.0000	0168	< 1e- 07	0.6	_210558_8	BIRC3	containing 3	330
0.0000	0.000	<1e-		221602_s		Fas apoptotic inhibitory	
068	232	07	0.6	at	FAIM3	molecule 3	9214
	······	ç	ļ	4		1	

				197			
0.0000	0.000	< 1e-		204S82_	ARHGA	Rho GTPase activating	
044	168	.0?	0.6	at	P25	protein 25	9938
0.0000	0.000	< 1e-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	204192_			
062	217	07	0.6	at	CD37	CD37 molecule	951
<; 1e-	< 1e-	< 10-		205997_	ADAM2	ADAM metallopeptidase	
07	07	07	0.6	at	8	domain 28	10863
0.0000	0.000	< 1e-		209829,	·····	family with sequence	
037	146	07	0.6	at	FAM65B	similarity 65, member f	9750
0.0000	0,000:	< le-		219359_		ATH1, acid trehaiase-like 1	
158	447	07	0.6	at	ATHLI	(yeast)	80162
0.0000	0.000	0.000		212187_		prostaglandin D2 synthase	00102
136	401	1	0.6	x_at	PTGDS	21kDa (brain)	5730
0.0000	0.000	< le-		204890_s	11025	lynrphocyte-speeilic protein	
1 14	347	07	0.6	_a!	LCK	tyrosine kinase	3932
0.0000	0.000	< 1e-	0.0	216542_			5752
01	0.000	07	0.6				
	9.52E	< le-	0.0	x_at			
0.0000	1		0.0	219279_	DOCKIO		EEC 10
001	-06	07	0.6	at	DOCK10	dedicator of cytoldnesis 10	556 19
0.0000	0.000	< le-	0.6	2 1 !:996_ s			
242	623	07	0.6	at :		}	
0.0000	0.000	< le-	<u> </u>	209671_			
059	21]	07	0.6	x_at		}	
0.0000	0.000	< 1e-		2\8805_			
003	0224	07	0.6	at			
< 1e-	< ie-	< le-		2 18614_	KIAA 15		
07	07	07	0.6	at	51	K1AA 1551	55196
0.0000	0.000	< le-		201236_s			
287	7 13	07	0.6	at	BTG2	BTG family, member 2	7832
						heterogeneous nuclear	
						ribonucleoprotein D (AU-	
0.0000	0.000	< 1e-		2 13359_	HNRNP	rich element RNA binding	
033	135	07	0.6	at	D	protein 1, 37kDa)	3184
0.0000	0.000	< le-		202957_		hematopoietic cell-specific	
002	0168	07	0,6	at	HGLS 1	Lyri substrate 1	3059
						ras-related C3 botulinum	
						toxin substrate 2 (rho	
0.0000	0.000	< 1e-		2 13603_s		family, small GTP binding	
01	056 1	07	0.6	_at	RAC2	protein Rac2)	5880
0.0297		0.027		202037_s		secreted frizzled-related	·····
372	0.115	6	0.6	_at	SFRPI	protein 1	6422
().0000	0.00 1	0.000		205692_s		I	
737	41	2	0.6	_at	CD38	CD38 molecule	952
						pleckstrin homology	
0.0011	0.010	0.000		209504_s	PLFKH	domain containing, family	
094	8	8	0.6	at	Bl	B (evectins) member 1	58473
< le-	< le-	< 1e-	0.0	2 18456	CAPRIN		50475
< 1e- 07	07	07	0.6	at	2	caprin family member 2	65981
0.0000	0.000		0.0	205291_	<u> </u>	capilli failily member 2	03901
0.0000	0.000	< 1e-	0.6		IL2RB	interleukin 2 recentor beta	3560
		cs?	0.0	at	IL2KD	interleukin 2 receptor, beta	3300
0.0000	0.000	< 1e-	0.0	205821_			
037	146	07	0.6	at		·····	
						sema domain,	
						immunoglobulin domain	
						(Ig), transmembrane	
		_			0.000	domain (TM) and short.	
< 1e-	< 1e-	< 1e-		203528_	SEMA4	cytoplasmic domain.	
07	07	07	0.6	at	D	(semaphorin) 41)	10507
0.0000	0.000	< 1e-		209723_	SERPIN	serpin peptidase inhibitor,	
0.0000 019	0909	07	0.6		B9	clade B (ovalbumin).	5272

				170			
		°		Ê		member 9	
						membrane-spanning 4-	
0.0001	0.002	< 1e-		217418_		domains, subfamily A,	
686	58	.07	0.6	x_at	MS4A1	member 1	931
0.0000	0.000	0.000	·····	220954_s		paired immunoglobin-like	
253	646	2	0.6	at	PILRB	type 2 receptor beta	29990
0.0000	0.000	< 1e-		205758_			
013	0677	07	0.6	at	CD8A	CD8a molecule	925
0.0001	0.001	0.000		204834_			
079	87	2	0.6	at	FGL2	fibrinogen-like 2	10875
<u></u>	<u> </u>			1		CD74 molecule, major	1.000.1.0
< 1e-	< 1e-	< 1e-		209619_		histocompatibility complex,	
07	07	07	0.6	at	CD74	class II invariant chain	972
0.0000	0.000	0.000	0.0	213915_		natural killer cell group 7	
232	603	0.000	0.6	at	NKG7	sequence	4818
0.0000	0.000		0,0	210116_	ININCI/	sequence	+010
023	104	< 1e- 07	0.6		SH2D1A	CTFD domain anatolaing 1 A	1060
	funnininin		0.0	at	SHZDIA	SH2 domain containing 1A	4068
< 1e- 07	< 1e-	< 1e-	8 E	215193_			
	07	07	0.6	x_at	CODOL	La construction de la constructi	
0.0001	0.001	< 1e-	0.0	209083_	CORO1	coronin, actin binding	44403
04	82	07	0.6	at	<u>A</u>	protein, 1A	11151
0.0224	0.094	0.020	8 A	209842_	doma	SRY (sex determining	62.00
506	6	1	0.6	at	SOX10	region Y)-box 10	6663
0.0004	0.005	0.000		205798_			
459	46	6	0.6	at	IL7R	interleukin 7 receptor	3575
0.0039	0.027	0.003		208791_			
118	4	2	0.6	at	CLU	clusterin	1191
0.0013	0.012	0.001		213674_			
661	6	3	0.6	x_at			
						integrin, beta 2	
0.0000	0.000	< 1e-		202803_s		(complement component 3	
003	0224	07	0.6	at	ITGB2	receptor 3 and 4 subunit)	3689
0.0000	0.000	< 1e-				lymphoid-restricted	
048	18	07	0.6	35974_at	LRMP	membrane protein	4033
< 1e-	< 1e-	< 1e-		203416_			
07	07	07	0.6	at	CD53	CD53 molecule	963
0.0000	0.000	< 1e-		203382_s			
038	149	.07	0.6	at	APOE	apolipoprotein E	348
				1	1	major histocompatibility	
0.0000	0.000	< 1e-		211991_s	HLA-	complex, class II, DP alpha	
005	0338	.07	0.6	_at	DPA1	1	3113
0.0000	0.000	< le-		221768_	[
101	319	07	0.6	at			
<1e-	< 1e-	< 1e-		220046_s			
07	07	07	0.6	_at	CCNLI	cyclin L1	57018
0.0000	0.000	< 1e-		208894_	HLA-	major histocompatibility	
005	0338	07	0.6	at	DRA	complex, class II, DR alpha	3122
				1		SAM domain, SH3 domain	
0.0000	0.001	< 1e-		220330_s	SAMSN	and nuclear localization	
622	25	07	0.6	at	1	signals 1	64092
<1e-	< 1e-	< le-	~.~	204670_	-		19 - 9 - 99 - 99 - 944 - 194 -
07	07	07	0.6	x_at			
< 1e-	< 1e-	< 1e-	<u>ww</u>	209312_		1	
$\sim 10^{-1}$	07	07	0.6	x_at			
<1e-	<1e-	<1e-	0.0	204923_		SAM and SH3 domain	
< 16- 07	07	~ 1e- 07	0.6		SASH3	containing 3	54440
<u></u>	<u> </u>		0.0	at		O-linked N-	J444U
-0-800a	8-2012	11-		212207 -			
0.0000 001	9.52E -06	< 1e-	nr	212307_s	OCT	acetylglucosamine	0377
		07	0.6	_at	OGT	(GlcNAc) transferase	8473

().0000	0.000	< 1e-		202663_		WASAVASL interacting	
007	0425	0?	0.6	at	WIPF1	protein family, member 1	745
< 1e-	< 1e-	< le-		221087_s			
07	07	07	0.6	at	APOL3	apolipoprotein L, 3	8083
						vesicle-associated	
0.0000	0,000	< le-		213326_		nietiibrafie protein 1	
056	202	07	0.6	at	VAMP1	(synaptobreYin 1)	684
						phospholipase C, gamma 2	
< 1e-	< 1e-	< 1e-		20461 3_		(phosphatidylinositdl-	
07	07	07	0.6	at	PLCG2	specifie)	533
0.0000	0,000:	< 1e-		210982_s	Fii.A-	major histocompatibility	
003	0224	:07	0.6	_at	DRA	complex, class II, DR alpha	312
0.0001	0.00!	0.000	·	204994_		myxovirus (influenza virus)	
138	94	4	0.6	at	MX2	resistance 2 (mouse)	460
0.0059	0,037	0.005		203638_s		fibroblast growth factor	
061	4	8	0.6	a!	FGFR2	receptor 2	226
< 1e-		< 1e-	0.0	209734_	NCKAP	NGK-assoeiated protein 1-	220
07	07	07	0.6	at	1L	1	307
0.0000	9.52E	<1e-	0.0	207777_s	, 1L-	like	507
	1 ·		06		SD:140	SP140 puploor by the sector	1104
001	-06	07	0.6	_a.t	SP 140	SP140 nuclear body protei n	1120
á 0000	0.000					R as association	
0.0000	0.000	< 1e-	0.6	203185_	DAGGEO	(RalGDS/AF-6) domain	077
025	111	07	0.6	at	RASSF2	family member 2	977
0.0000	0,000	< 1e-		204446_s		arachidonate 5-	
149	43	07	0.6	at	AL0X5	lipoxygenase	24
(),0000	0.000	0,000		216250_s			
204	548	1	0,6	at	LPXN	leupaxin	
0.0000	0.001	< le-		202747_s		integral membrane protein	
47	02	07	0.6	at	ITM2A	2A	945
0.0000	0.00i	< le-		2 19 9 <u>s</u>		chemoldne (C-X-C motif)	
678	33	07	0.6	at	CXCR4	receptor 4	785
						major histocompatibility	
().0000	0.001	< 1e-		21 1654	HLA-	complex, class Π , DQ beta	
778	47	07	0.6	_at	DQB1	1	31
0.0001	0.002	0,000		205541_s			
269	09	2.	0,6	at	GSPT2	G1 to S phase transition 2	2370
0.0166	0.077	0.015		204259_		matrix metallopeptidase 7	
882	7	9	0.6	at	MMP7	(matrilysin, uterine)	43
().0003	0.004	0.000		209846_s		butyrophilin, subfamily 3,	
392	45	4	0.6	at	BTN3A2	member A2	111
$\frac{392}{0.0000}$	0,000	4 < le-	0.0	219191_{s}			11.1;
007	0,000	< 1e- 07	0.6		B1N2	bridging integrator	5141
	J		0.0	at	DINZ	bridging integrator 2	
< le-	$< 1e^{-1}$	< le-	0.0	212176 _	DATOD	PNN-interacting	0.505
07	07	07	0.6	at	PNISR	serine/arginine-rich protein	2595
0.0000	0.000	< 1e-	Ċ.c.	204352_		TNF receptor-associated	± . 3
15	43	07	0,6	at	TRAF5	factor 5	718
0.0000	0.000	< le-	-	217143_S		YMEl-like 1 (S.	
142	4 13	07	0.6	_a.t	YME-1L1	cerevisiae)	107.
().0148		0.017		206157_		l l	
915	0.072	7	0.6	at	PTX3	pentraxin 3. long	580
0.0008	0.008	0.000		216541_			
368	72	9	0.6	x_at			
< 1e-	< 1e-	< 1e-		20S298_s		butyrophilin, subfamily 2,	
07	07	07	0.6	at	BTN2A2	member A2	1038
0.0000	0.000	< le-		2 11005_		linker for activation of T	
003	0224	07	0.6	at	LAT	cells	2704
0.0000	0.001		0.0	206133	1	<u></u>	2704
522	1	< 1e- 07	0.6	at	XAFL	XIAP associated factor I	5473
	}			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
().0000	0.001	0.000	0.6	20338 1_s	APOE	apolipoprotein E	34

í		(_ I		200	i	i I	1
795	5	2		at			
0.0095	0.052	0.009		204439_		interferon-induced protein	
93	7	6	0.6	at	IFI44L	44-like	10964
< 1e-	< le-	< 1e-	0 K	201137_s	HLA-	major histocompatibility	39.1 <i>2</i>
07	07	.07	0.6	at	DPB1	complex, class II, DP beta 1	3115
0.0000 012	0.000 0634	<1e- 07	0.6	212179_ at	PNISR	PNN-interacting serine/arginine-rich protein	25957
0.0000	0.000	<1e-	0.0	at 213293 s	FINISK	tripartite motif containing	43751
006	0386	$\frac{10^{-1}}{07}$	0.6	at	TRIM22	22	10346
0.0005	0.006	0.000	0.0	204655_	11(10122	chemokine (C-C motif)	10010
693	6	2	0.6	at	CCL5	ligand 5	6352
<1e-	< 1e-	< 1e-		203547_			
07	07	07	0.6	at	CD4	CD4 molecule	920
0.0120		0.012		210029_		indoleamine 2,3-	
383	0.062	6	0.6	at	IDO1	dioxygenase 1	3620
0.0000	0.000	< 1e-		210346_s			
011	0599	07	0.6	at	CLK4	CDC-like kinase 4	57396
0.0000	0.000	< 1e-		206978_		chemokine (C-C motif)	
422	939	07	0.6	at	CCR2	receptor 2	729230
0.0000	0.001	< le-		221969_			
505	07	07	0.6	at	PAX5	paired box 5	5079
						lymphocyte cytosolic	
0.0000	6 606			00000		protein 2 (SH2 domain	
0.0000	0.000	< 1e-	6 A	205269_	T ODO	containing leukocyte	2027
239	617	07	0.6	at	LCP2	protein of 76kDa)	3937
						integrin, alpha L (antigen	
-10		<1e-		213475_8		CD11A (p180), lymphocyte	
<1e- 07	< 1e- 07	$\frac{16}{07}$	0.6		ITGAL	function-associated antigen 1; alpha polypeptide)	3683
0.0008	0.008	0.000	0.0	_at 208747_s	TIOAL	complement component 1,	3003
431	0.008 76	0.000	0.6	at	CIS	s subcomponent	716
- 		<i></i>	0.0	ai		major histocompatibility	110
0.0006	0.007	0.000		213537_	HLA-	complex, class II. DP alpha	
505	27	4	0.6	at	DPA1		3113
0.0000	0.000	< 1e-		207957_s		1	
027	116	07	0.6	_at	PRKCB	protein kinase C, beta	5579
0.0000	0.000	< 1e-		214016_s		splicing factor	
007	0425	07	0.6	_at	SFPQ	proline/glutamine-rich	6421
						O-linked N-	
0.0000	0.000	< 1e-		207563_s		acetylglucosamine	
024	107	07	0.6	at	OGT	(GlcNAc) transferase	8473
						RAS guanyl releasing	
0.0024	0.019	0.002	a	205590_	RASGR	protein 1 (calcium and	
33	5	8	0.6	at	P1	DAG-regulated)	10125
0.0000	0.000	< le-	in th	202531_	la manana an	interferon regulatory factor	a ka a ni
204	548	07	0.6	at	IRF1	1	3659
0.0008	0.008	0.000	68	203413_	ATTEXA	NUMBER AND AN AND ADDRESS	1960
485	79	5	0.6	at	NELL2	NEL-like 2 (chicken)	4753
<1e-	< 1e-	< 1e-	n c	221850_			
07	07	07	0.6	x_at		nestain transform	
0.0105	0.056	0.009		212587_s		protein tyrosine phosphatase, receptor type,	
274	3	0.009 4	0.6	at	PTPRC	C	5788
0.0000	0.000	-4 < 1e-	0.0	at 204294_	1 4 1 1 1 C	· ~	2700
003	0.000	$\frac{10^{-1}}{07}$	0.6	at	AMT	aminomethyltransferase	275
0.0000	0.000	< 1e-		221427_s			
167	465	07	0.6	_at	CCNL2	cyclin L2	81669
				1 :::::	1		
0.0000	0.000	< 1e-		205270_s		lymphocyte cytosolic	

						containing leukocyte protein of 76kDa)	
	<u> </u>	·	······	+			
0.0000	0.000			0000004		spare/osteonectin, ewev and	
0.0000	0.000	< le-		202524_s	anoarra	kazal-like domains	000
059	211	07	0.6	at	SPOCK2	proteoglycan (testican) 2	980
0.0000	0.000	< 1e-		202643_8	TNFAIP	tumor necrosis factor.	
159	448	07	0.6	at	3	alpha-induced protein 3	712
0.0016	0.014			202902_s			
349	5	0.002	0.6	_at	CTSS	cathepsin S	152
0.0002	0,003	0.000		209403_			
622	64	2	0.6	at			
0.0000	0.000	< 1e-	·····	203761_	÷	ł	
009	0513	07	0.6	at	SLA	Src-like-adaptor	650
0.0000	0.001	0.000		216614_	ULT X	Git inte nauptor	
729	4	1	0.6	1 · · · · · · · · · · · · · · · · · · ·			
			0.0	at	775	1	
0.0003	0.005	0.000	1. I.	205671_s	HLA-	major histocompatibility	<i></i>
988	02	6	0.6	at	DOB	complex, class II, DO beta	311
						ArfGAP with coiled-coil,	
0.0000	0.000	< 1e-		205213_		ankyrin repeat and PH	
012	0634	-07	0.6	at	ACAP1	domains 1	974
0.0000	9.52E	< 1e-		221501_			
001	-06	.07	0.6	x_at			
0.0000	0.000	< 1e-		212706_			
038	149	07	0.6	at			
0.0024	0.019	0.002	<u></u>	1405_i_a		chemokine (C-C motif)	
604	6	1	0.6	t 1500_1_0	CCL5	ligand 5	635
$\frac{004}{0.0000}$	0.000	<1e-	0.0	202664_		WAS/WASL interacting	
	}		n c		ANTER:		745
022	102	07	0.6	at	WIPF1	protein family, member 1	745
0.0001	0.002	0.000		221286_s		marginal zone B and B1	
581	45	5	0.6	at	MZB1	cell-specific protein	5123
0.0012	0.011	0.000		209763_	CHRDL		
371	7	9	0.6	at	1	chordin-like 1	9185
0.0001	0.002	< 1e-		221973_			
288	1	07	0.6	at			
						major histocompatibility	
0.0006	0.007			209823_	HLA-	complex, class II, DQ beta	
328	12	0.001	0.6	x_at	DQB1	1	311
0.0000	0.000	< 1e-		206118_		signal transducer and	
026	114	07	0.6	at	STAT4	activator of transcription 4	677
020	114	<u></u>	0.0	a	31A14	· · · · · · · · · · · · · · · · · · ·	013
0.0012	ani	0.00+		010000		major histocompatibility	
0.0016	0.014	0.001	× Z	212998_	HLA-	complex, class II, DQ beta	م الي يعد
and the second	 2.32 	7	0.6	x_at	DQB1	1	311
038	3			1 21.4637			
038 0.0000	0.001	0.000	sic -	214617_	الم المتحريقي عليه	perforin 1 (pore forming	
038 0.0000 888	f		0.6	at	PRF1	protein)	555
038 0.0000 888 0.0250	0.001 62	0.000		at 209687_		protein) chemokine (C-X-C motif)	
038 0.0000 888 0.0250 316	0.001 62 0.102	0.000 3 0.024	0.6	at 209687_ at	CXCL12	protein) chemokine (C-X-C motif) ligand 12	
038 0.0000 888 0.0250	0.001 62	0.000		at 209687_		protein) chemokine (C-X-C motif)	
038 0.0000 888 0.0250 316	0.001 62 0.102	0.000 3 0.024		at 209687_ at	CXCL12	protein) chemokine (C-X-C motif) ligand 12	638
038 0.0000 888 0.0250 316 0.0000	0.001 62 0.102 0.000	0.000 3 0.024 < 1e-	0.6	at 209687_ at 221899_	CXCL12 N4BP2L	protein) chemokine (C-X-C motif) ligand 12 NEDD4 binding protein 2-	638
038 0.0000 888 0.0250 316 0.0000 106 0.0000	0.001 62 0.102 0.000 331 0.000	0.000 3 0.024 < 1e- 07 < 1e-	0.6 0.6	at 209687_ at 221899_ at 202644_s	CXCL12 N4BP2L 2	protein) chemokine (C-X-C motif) ligand 12 NEDD4 binding protein 2- like 2 tumor necrosis factor,	638 1044
038 0.0000 888 0.0250 316 0.0000 106 0.0000 053	0.001 62 0.102 0.000 331 0.000 196	0.000 3 0.024 < 1e- 07 < 1e- 07	0.6	at 209687_ at 221899_ at 202644_s _at	CXCL12 N4BP2L 2 TNFAIP	protein) chemokine (C-X-C motif) ligand 12 NEDD4 binding protein 2- like 2 tumor necrosis factor, alpha-induced protein 3	638 1044
038 0.0000 888 0.0250 316 0.0000 106 0.0000 053 0.0000	0.001 62 0.102 0.000 331 0.000 196 0.000	0.000 3 0.024 < 1e- 07 < 1e- 07 < 1e-	0.6 0.6 0.6	at 209687_ at 221899_ at 202644_s _at 204821_	CXCL12 N4BP2L 2 TNFAIP 3	protein) chemokine (C-X-C motif) ligand 12 NEDD4 binding protein 2- like 2 tumor necrosis factor, alpha-induced protein 3 butyrophilin, subfamily 3,	638 1044 712
038 0.0000 888 0.0250 316 0.0000 106 0.0000 053 0.0000 15	0.001 62 0.102 0.000 331 0.000 196 0.000 43	0.000 3 0.024 < 1e- 07 < 1e- 07 < 1e- 07	0.6 0.6	at 209687_ at 221899_ at 202644_s _at 204821_ at	CXCL12 N4BP2L 2 TNFAIP	protein) chemokine (C-X-C motif) ligand 12 NEDD4 binding protein 2- like 2 tumor necrosis factor, alpha-induced protein 3 butyrophilin, subfamily 3, member A3	638 1044 712
$\begin{array}{r} 038\\ 0.0000\\ 888\\ 0.0250\\ 316\\ 0.0000\\ 106\\ 0.0000\\ 053\\ 0.0000\\ 15\\ < 1e- \end{array}$	0.001 62 0.102 0.000 331 0.000 196 0.000 43 < 1e-	0.000 3 0.024 < 1e- 07 < 1e- 07 < 1e- 07 < 1e- 07 < 1e- 07	0.6 0.6 0.6 0.6	at 209687_ at 221899_ at 202644_s _at 204821_ at 202380_s	CXCL12 N4BP2L 2 TNFAIP 3 BTN3A3	protein) chemokine (C-X-C motif) ligand 12 NEDD4 binding protein 2- like 2 tumor necrosis factor, alpha-induced protein 3 butyrophilin, subfamily 3, member A3 natural killer-tumor	638 1044 712 1038
$\begin{array}{r} 038\\ 0.0000\\ 888\\ 0.0250\\ 316\\ 0.0000\\ 106\\ 0.0000\\ 053\\ 0.0000\\ 15\\ < 1e-\\ 07\\ \end{array}$	0.001 62 0.102 0.000 331 0.000 196 0.000 43 < 1e- 07	0.000 3 0.024 < 1e- 07 < 1e- 07 < 1e- 07 < 1e- 07 < 1e- 07	0.6 0.6 0.6	at 209687_ at 221899_ at 202644_s _at 204821_ at 202380_s _at	CXCL12 N4BP2L 2 TNFAIP 3	protein) chemokine (C-X-C motif) ligand 12 NEDD4 binding protein 2- like 2 tumor necrosis factor, alpha-induced protein 3 butyrophilin, subfamily 3, member A3 natural killer-tumor recognition sequence	638 1044 712 1038
$\begin{array}{r} 038\\ \hline 0.0000\\ \hline 888\\ \hline 0.0250\\ \hline 316\\ \hline 0.0000\\ \hline 106\\ \hline 0.0000\\ \hline 053\\ \hline 0.0000\\ \hline 15\\ \hline < 1e-\\ \hline 07\\ \hline 0.0002\\ \end{array}$	$\begin{array}{c} 0.001 \\ 62 \\ \hline 0.102 \\ 0.000 \\ 331 \\ 0.000 \\ 196 \\ 0.000 \\ 43 \\ < 1e \\ 07 \\ 0.003 \end{array}$	0.000 3 0.024 < 1e- 07 < 1e- 07 < 1e- 07 < 1e- 07 0.000	0.6 0.6 0.6 0.6 0.6	at 209687_ at 221899_ at 202644_s _at 204821_ at 202380_s _at 203922_s	CXCL12 N4BP2L 2 TNFAIP 3 BTN3A3 NKTR	protein) chemokine (C-X-C motif) ligand 12 NEDD4 binding protein 2- like 2 tumor necrosis factor, alpha-induced protein 3 butyrophilin, subfamily 3, member A3 natural killer-tumor recognition sequence cytochrome b-245, beta	638 1044 712 1038 482
$\begin{array}{r} 038\\ 0.0000\\ 888\\ 0.0250\\ 316\\ 0.0000\\ 106\\ 0.0000\\ 053\\ 0.0000\\ 15\\ < 1e\\ 07\\ 0.0002\\ 911\\ \end{array}$	$\begin{array}{c} 0.001 \\ 62 \\ \hline 0.102 \\ 0.000 \\ 331 \\ 0.000 \\ 196 \\ 0.000 \\ 43 \\ < 1e \\ 07 \\ 0.003 \\ 94 \end{array}$	0.000 3 0.024 < 1e- 07 < 1e- 07 < 1e- 07 < 1e- 07 0.000 2	0.6 0.6 0.6 0.6	at 209687_ at 221899_ at 202644_s _at 204821_ at 202380_s _at 203922_s _at	CXCL12 N4BP2L 2 TNFAIP 3 BTN3A3	protein) chemokine (C-X-C motif) ligand 12 NEDD4 binding protein 2- like 2 tumor necrosis factor, alpha-induced protein 3 butyrophilin, subfamily 3, member A3 natural killer-tumor recognition sequence cytochrome b-245, beta polypeptide	638 1044 712 1038 482
$\begin{array}{r} 038\\ 0.0000\\ 888\\ 0.0250\\ 316\\ 0.0000\\ 106\\ 0.0000\\ 053\\ 0.0000\\ 15\\ < 1e\\ 07\\ 0.0002\\ 911\\ 0.0000\\ \end{array}$	$\begin{array}{c} 0.001 \\ 62 \\ \hline 0.102 \\ 0.000 \\ 331 \\ 0.000 \\ 196 \\ 0.000 \\ 43 \\ < 1e \\ 0.7 \\ 0.003 \\ 94 \\ 0.000 \end{array}$	0.000 3 0.024 < 1e- 07 < 1e- 07 < 1e- 07 < 1e- 07 0.000	0.6 0.6 0.6 0.6 0.6 0.6	at 209687_ at 221899_ at 202644_s _at 204821_ at 202380_s _at 203922_s	CXCL12 N4BP2L 2 TNFAIP 3 BTN3A3 NKTR CYBB	protein) chemokine (C-X-C motif) ligand 12 NEDD4 binding protein 2- like 2 tumor necrosis factor, alpha-induced protein 3 butyrophilin, subfamily 3, member A3 natural killer-tumor recognition sequence cytochrome b-245, beta polypeptide far upstream element	5555 638 1044 712 1038 482 153
$\begin{array}{r} 038\\ 0.0000\\ 888\\ 0.0250\\ 316\\ 0.0000\\ 106\\ 0.0000\\ 053\\ 0.0000\\ 15\\ < 1e\\ 07\\ 0.0002\\ 911\\ \end{array}$	$\begin{array}{c} 0.001 \\ 62 \\ \hline 0.102 \\ 0.000 \\ 331 \\ 0.000 \\ 196 \\ 0.000 \\ 43 \\ < 1e \\ 07 \\ 0.003 \\ 94 \end{array}$	0.000 3 0.024 < 1e- 07 < 1e- 07 < 1e- 07 < 1e- 07 0.000 2	0.6 0.6 0.6 0.6 0.6	at 209687_ at 221899_ at 202644_s _at 204821_ at 202380_s _at 203922_s _at	CXCL12 N4BP2L 2 TNFAIP 3 BTN3A3 NKTR	protein) chemokine (C-X-C motif) ligand 12 NEDD4 binding protein 2- like 2 tumor necrosis factor, alpha-induced protein 3 butyrophilin, subfamily 3, member A3 natural killer-tumor recognition sequence cytochrome b-245, beta polypeptide	638 1044 712 1038 482

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	53335 2841 1277 9284 3936 23547 29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2841 1277 9284 3936 23547 29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2841 1277 9284 3936 23547 29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2841 1277 9284 3936 23547 29909 7852
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1277 9284 3936 23547 29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1277 9284 3936 23547 29909 7852
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9284 3936 23547 29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9284 3936 23547 29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3936 23547 29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3936 23547 29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	23547 29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	23547 29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	29909 7852
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	29909 7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7852
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ا د میشور
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ا تر احجا شرا ش
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6894
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	939
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
737 0.115 9 0.6 at SYNM filament protein 737 0.115 9 0.6 at SYNM filament protein 737 0.115 9 0.6 at SYNM filament protein 737 0.015 9 0.6 at SYNM filament protein 737 0.000 <1e-	
0.0000 0.000 < 1e- 213106_ ATPase, aminophospholipid transporter (APLT), class I, 021 0985 07 0.7 at ATP8A1 type 8A, member 1 0.0005 0.006 0.000 214059_ interferon-induced protein 067 04 4 0.7 at IF144 44	
0.0000 0.000 < 1e- 213106_ aminophospholipid 021 0985 07 0.7 at ATP8A1 transporter (APLT), class I, 0.0005 0.006 0.000 214059_ interferon-induced protein 067 04 4 0.7 at IF144 44	23336
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
021 0985 07 0.7 at ATP8A1 type 8A, member 1 0.0005 0.006 0.000 214059_ interferon-induced protein 067 04 4 0.7 at IF144 44	
0.0005 0.006 0.000 214059_ interferon-induced protein 067 04 4 0.7 at IFI44 44	
067 04 4 0.7 at IF144 44	10396
	A.L. 1. 1. 1
$ 0.0000 0.000 < 1e_{-} 219243 GTPase IMAP family -$	10561
057 206 07 0.7 at GIMAP4 member 4	55303
structural maintenance of	
0.0000 0.000 < 1e- 212577_ SMCHD chromosomes flexible	
056 202 07 0.7 at 1 hinge domain containing 1	23347
0.0000 0.000 < 1e- 219471_ KIAA02	
049 184 07 0.7 at 26L KIAA0226-like	80183
0.0126 0.064 201348_ glutathione peroxidase 3	
445 1 0.012 0.7 at GPX3 (plasma)	2878
0.0000 0.000 < 1e- 204236_ Friend leukemia virus	12 12 14 14 14 14 14 14 14 14 14 14 14 14 14
023 104 07 0.7 at FLI1 integration 1	2313
0.0284 0.030 210163_ chemokine (C-X-C motif)	
638 0.111 7 0.7 at CXCL11 ligand 11	6373
0.0001 0.002 < 1e- 204774_ ecotropic viral integration	
443 28 07 0.7 at EVI2A site 2A	
0.0065 0.006 221185_5	2123
216 0.04 3 0.7 _at IQCG IQ motif containing G	
matrix metallopeptidase 2	2123 84223
(gelatinase A, 72kDa	
0.0141 0.069 0.015 201069 gelatinase, 72kDa type IV	
111 4 9 0.7 at MMP2 collagenase)	

	1	é 1	í	f	i	1	
< 1e-	< 1e-	< 1e-		212454_	HNRPD	heterogeneous nuclear	
07	07	0?	0.7	x_at	L	ribonucleoprotein D-like	9987
						ehemokine (C-C motif)	
0.0194	0.086	0.019				ligand 18 (pulmonary and	
654	2	[1	0.7	3212S_at	CCL18	activation-regulated)	6362
						ADAM metallopeptidase	
().(5029	0.022:			2221 62_s	ADAMI	with wrombospondin type	
865	5	0.003	0.7	at	S 1	1 motif. 1	9510
0.047.8		0.048		211122_s		ehemokine (C-X-C motif)	
513	0.158	1	0.7	at	CXCL 11	lis and 1i	6373
0.0006	0,007	0.000				muscleblind-like splicing	
993	65	0.000 7	0.7	at	MBNL1	regulator 1	4154
	}		0.7	209827_s			т <u>1</u> ,5-т
< le- 07	< le- 07	< le- 07	0.7		П 16	interlocting 16	2602
07	07	07	0.7	at	IL16	interleukin 16	3603
a. a a		0.001			ADODE	apolipoprotein B mR NA	
0.0017	0.015	0.001		204205_	APOBE	editing enzyme, catalytic	
313	2	4	0.7	at	C3G	polypeptide-like 3G	60489
0.0008	0.008	0.000		2029;88_s		regulator of G-protein	
25	63	8	0.7	at	RGS1	signaling 1	5996
0.0000	0.001	0.000		2 1003 1_			
464	01	1	0.7	at	CD247	CD247 molecule	919
					1	ATP synthase, H+	
						transporting, mitochondrial	
0.0000	0.000	< 1e-		2I4132_		Fi complex, gamma	
146	422	07	0.7	at	ATP5C1	polypeptide 1	509
<1e-	< 1e-	< 1e-	0.7	202665_s		WAS/WASL interacting	
07	07	07	0.7	at	WIPFI	protein family, member 1	7456
	07		0.7	ai			7450
# 0000	0.000	Ť		207564		O-linked N-	
0.0000	0.000	< le-		207564_	OOT	aeetylglueosamine	0472
006	0386	07	0.7	x_at	OGT	(GlcNAc) transferase	8473
0.0004	0.005	0.000		209795	000 50		0.00
522	52	1	0.7	at	CD69	CD69 molecule	969
0.0000	0.000	< 1e-		203845_		K(lysine) aeetyltransferase	
422	939	07	0.7	at	KAT2B	2B	8850
				AFFX-			
				HUMIS			
				GF3A/M		signal transducer and	
						signal transducer and	
().0043	0.029	0.004		97935 M			
0.0043 937	0.029	0.004 9	0.7	97935_M B_at	STAT1	activator of transcription 1, 9lkDa	6772
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.7		STAT1	activator of transcription 1, 9lkDa	6772
937	9	9	0.7	B_at		activator of transcription 1, 9lkDa major histocompatibiliiy	6772
937 0.0002	9 0.003	9 0.000		B_at 217478:_s	HLA-	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM	
937 0.0002 641	9 0.003 66	9 0.000 1	0.7	B_at 217478:_s _at		activator of transcription 1, 9lkDa major histocompatibiliiy	6772 3108
937 0.0002 641 0.0000	9 0.003 66 0.000	9 0.000 1 < 1e-	0.7	B_at 217478:_s _at 209879_	HLA- DMA	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha	3108
937 0.0002 641	9 0.003 66	9 0.000 1		B_at 217478:_s _at	HLA-	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand	
937 0.0002 641 0.0000 105	9 0.003 66 0.000 328	9 0.000 1 < 1e- 07	0.7	B_at 217478:_s _at 209879_ at	HLA- DMA SELPLG	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor	3108
937 0.0002 641 0.0000 105 0.0000	9 0.003 66 0.000 328 0.001	9 0.000 1 < 1e- 07 < 1e-	0.7	B_at 217478:_s _at 209879_ at 20350S_	HLA- DMA SELPLG TNERSF	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily,	3108 6404
937 0.0002 641 0.0000 105 0.0000 917	9 0.003 66 0.000 328	9 0.000 1 < 1e- 07 < 1e- 07	0.7	B_at 217478:_s _at 209879_ at 20350S_ at	HLA- DMA SELPLG	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor	3108
937 0.0002 641 0.0000 105 0.0000 917 0.0000	9 0.003 66 0.000 328 0.001 66	9 0.000 1 < 1e- 07 < 1e- 07 < 1e-	0.7 0.7 0.7	B_at 217478:_s _at 209879_ at 20350S_ at 200953_s	HLA- DMA SELPLG TNERSF 1B	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily, member 1B	3108 6404 7133
937 0.0002 641 0.0000 105 0.0000 917 0.0000 461	9 0.003 66 0.000 328 0.001 66 0.001	9 0.000 1 < 1e- 07 < 1e- 07 < 1e- 07	0.7	B_at 217478:_s _at 209879_ at 20350S_ at 200953_s _at	HLA- DMA SELPLG TNERSF	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily, member 1B cyclin D2	3108 6404
937 0.0002 641 0.0000 105 0.0000 917 0.0000 461 0.0001	9 0.003 66 0.000 328 0.001 66 0.001 0.002	9 0.000 1 < 1e- 07 < 1e- 07 < 1e- 07 0.000	0.7 0.7 0.7 0.7	B_at 217478:_s _at 209879_ at 20350S_ at 200953_s _at 207677_s	HLA- DMA SELPLG TNERSF 1B CCND2	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily, member 1B cyclin D2 neutrophil cytosolic factor	3108 6404 7133 894
937 0.0002 641 0.0000 105 0.0000 917 0.0000 461 0.0001 309	9 0.003 66 0.000 328 0.001 66 0.001 0.002 13	9 0.000 1 < 1e- 07 < 1e- 07 < 1e- 07 0.000 2	0.7 0.7 0.7	B_at 217478:_s _at 209879_ at 20350S_ at 200953_s _at 207677_s _at	HLA- DMA SELPLG TNERSF 1B	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily, member 1B cyclin D2	3108 6404 7133
937 0.0002 641 0.0000 105 0.0000 917 0.0000 461 0.0001	9 0.003 66 0.000 328 0.001 66 0.001 0.002	9 0.000 1 < 1e- 07 < 1e- 07 < 1e- 07 0.000 2 0.000	0.7 0.7 0.7 0.7 0.7	B_at 217478:_s _at 209879_ at 20350S_ at 200953_s _at 207677_s	HLA- DMA SELPLG TNERSF 1B CCND2	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily, member 1B cyclin D2 neutrophil cytosolic factor	3108 6404 7133 894
937 0.0002 641 0.0000 105 0.0000 917 0.0000 461 0.0001 309	9 0.003 66 0.000 328 0.001 66 0.001 0.002 13	9 0.000 1 < 1e- 07 < 1e- 07 < 1e- 07 0.000 2	0.7 0.7 0.7 0.7	B_at 217478:_s _at 209879_ at 20350S_ at 200953_s _at 207677_s _at	HLA- DMA SELPLG TNERSF 1B CCND2	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily, member 1B cyclin D2 neutrophil cytosolic factor	3108 6404 7133 894
937 0.0002 641 0.0000 105 0.0000 917 0.0000 461 0.0001 309 0.0009	9 0.003 66 0.000 328 0.001 66 0.001 0.002 13 0.009	9 0.000 1 < 1e- 07 < 1e- 07 < 1e- 07 0.000 2 0.000	0.7 0.7 0.7 0.7 0.7	B_at 217478:_s _at 209879_at 20350S_at 200953_s _at 207677_s _at 2067.15_	HLA- DMA SELPLG TNERSF 1B CCND2 NCF4	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily, member 1B cyclin D2 neutrophil cytosolic factor 4, 40kDa	3108 6404 7133 894 4689
937 0.0002 641 0.0000 105 0.0000 917 0.0000 461 0.0001 309 0.0009 618	9 0.003 66 0.000 328 0.001 66 0.001 0.002 13 0.009 65 0.002	9 0.000 1 < 1e- 07 < 1e- 07 < 1e- 07 0.000 2 0.000 9 0.000	0.7 0.7 0.7 0.7 0.7	B_at 217478:_s _at 209879_at 20350S_at 200953_s _at 207677_s _at 2067 15_at	HLA- DMA SELPLG TNERSF 1B CCND2 NCF4 TFEC	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily, member 1B cyclin D2 neutrophil cytosolic factor 4, 40kDa transcription factor EC	3108 6404 7133 894 4689 22797
937 0.0002 641 0.0000 105 0.0000 917 0.0000 461 0.0001 309 0.0009 618 0.000 i 349	9 0.003 66 0.000 328 0.001 66 0.001 0.002 13 0.009 65 0.002 18	9 0.000 1 < 1e- 07 < 1e- 07 < 1e- 07 0.000 2 0.000 9 0.000 2	0.7 0.7 0.7 0.7 0.7 0.7 0.7	B_at 217478:_s _at 209879_ at 20350S_ at 200953_s _at 207677_s _at 2067 15_ at 2 12873_ at	HLA- DMA SELPLG TNERSF 1B CCND2 NCF4 TFEC HMHA1	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily, member 1B cyclin D2 neutrophil cytosolic factor 4, 40kDa transcription factor EC histocompatibility (minor). HA-1	3108 6404 7133 894 4689
937 0.0002 641 0.0000 105 0.0000 917 0.0000 461 0.0001 309 0.0009 618 0.000 i 349 0.0000	9 0.003 66 0.000 328 0.001 66 0.001 0.002 13 0.009 65 0.002 18 0.000	9 0.000 1 < 1e- 07 < 1e- 07 0.000 2 0.000 9 0.000 2 < 1e- 07 0.000 2 < 1e- 07 0.000 2 < 1e- 07	0.7 0.7 0.7 0.7 0.7 0.7 0.7	B_at 217478:_s _at 209879_ at 20350S_ at 200953_s _at 207677_s _at 206715_ at 212873_ at 203932_	HLA- DMA SELPLG TNERSF 1B CCND2 NCF4 TFEC HMHA1 HLA-	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily, member 1B cyclin D2 neutrophil cytosolic factor 4, 40kDa transcription factor EC histocompatibility (minor). HA-1 major histocompatibility	3108 6404 7133 894 4689 22797 23526
937 0.0002 641 0.0000 105 0.0000 917 0.0000 461 0.0001 309 0.0009 618 0.000 i 349	9 0.003 66 0.000 328 0.001 66 0.001 0.002 13 0.009 65 0.002 18	9 0.000 1 < 1e- 07 < 1e- 07 < 1e- 07 0.000 2 0.000 9 0.000 2	0.7 0.7 0.7 0.7 0.7 0.7 0.7	B_at 217478:_s _at 209879_ at 20350S_ at 200953_s _at 207677_s _at 2067 15_ at 2 12873_ at	HLA- DMA SELPLG TNERSF 1B CCND2 NCF4 TFEC HMHA1	activator of transcription 1, 9lkDa major histocompatibiliiy complex., class II, DM alpha selectin P ligand tumor necrosis factor receptor superfamily, member 1B cyclin D2 neutrophil cytosolic factor 4, 40kDa transcription factor EC histocompatibility (minor). HA-1	3108 6404 7133 894 4689 22797

0.0001	0.002	0.000	Í	216834_		regulator of G-protein	
573	44	3	0.7	at	RGS1	signaling 1	5996
						mitogen-activated protein	
0.0000	0.000	< 1e-		206296_	MAP4K	kinase kinase kinase	
022	102	07	0.7	x_at	1	1	11184
0.0000	0.000	< 1e-					
011	0599	07	0.7	64064_at			
0.0000	0.000	< 1e-		207734_		lymphocyte transmembrane	
005	0338	07	0.7	at	LAXI	adaptor 1	54900
0.0028	0.021	0.002		222043_			
821	9	7	0.7	at	CLU	clusterin	1191
< 1e-	<1e-	< le-		208306_			
07	07	07	0.7	x_at			
0.0000	0.001	0.000		201720_s	LAPTM	lysosomal protein	
927	67	2	0.7	_at	5	transmembrane 5	7805
0.0000	0.000	< 1e-		204440_			
022	102	07	0.7	at	CD83	CD83 molecule	9308
0.0000	0.000	< 1e-		204562_		interferon regulatory factor	
006	0386	07	0.7	at	IRF4	4	3662
0.0000	0.000	<1e-		221249_s	FAM117	family with sequence	
175	484	07	0.7	_at	A	similarity 117, member A	81558
		-				sema domain,	
						immunoglobulin domain	
0.0006		0.000		219689_	SEMA3	(Ig), short basic domain,	
184	0.007	5	0.7	at	G	secreted, (semaphorin) 3G	56920
0.0060	0.037	0.005		220232_			
147	9	9	0.7	at	SCD5	stearoyl-CoA desaturase 5	79966
0.0000	0.000	< 1e-		211038_s	CROCC	ciliary rootlet coiled-coil,	
054	198	07	0.7	at	P2	rootletin pseudogene 2	84809
0.0197	0.087	0.020		204533_		chemokine (C-X-C motif)	
569	1	7	0.7	at	CXCL10	ligand 10	3627
0.0004	0.005	0.000		204150_			
576	57	7	0.7	at	STAB1	stabilin 1	23166
0.0005	0.006	0.000		208018_s			
043	03	5	0.7	_at	HCK.	hemopoietic cell kinase	3055

Table 17. Class comparison of the global gene expression profiles of high iBCR score ER- and ER+ tumors to low iBCR score tumors post comparison to normal breast in the ROCK dataset

ProbeSe		Accessio	UGClust	Symb		- vs. rmal		+ vs. mal	2	ster vs. ster l
t	Name	n.	er	ol	Cl ust 1 ER	Cl ust 2 ER	Clu st 1 ER +	Clu st 2 ER +	E R-	E R+
	matríx									
204475_	metallopeptidase 1 (interstitial	NM_002		MM	3.0	14.	0.7	2.6	4.6	3.7
at	collagenase)	421	Hs.83169	PI	6	30	1	2	7	0
	S100 calcium									
202917_	binding protein	NM_002	Hs.41607	\$100	10.	31.	1.0	2,3	3.0	2.2
s_at 204351_	A8 S100 calcium	964 NM_005	3	A8 8100	45 3.8	38 11.	2 2.5	2 6.3	0 2,8	8 2.4
at	binding protein P	980	Hs.2962	P	9	22	2.5 9	0	2.0	
217388_	ounding protoni t	200	Hs.47012	KYN	0.6	1.8	0.2	0,5	2.6	2.0
s_at	kynureninase	D55639	6	U	9	1	7	4	4	1
204846_	ceruloplasmin	NM_000	Hs.55831		1.6	4.3	0.6	0.9	2.5	1.5
at	(ferroxidase)	096	4	CP	9	4	1	5	6	7
202870_	cell division cycle 20	NM_001 255	Hs.52494 7	CDC 20	5.8 2	14. 57	$\frac{0.8}{9}$	4.7 1	$2.5 \\ 0$	5.3
s_at	pleckstrin	200	1	**	4	~	2		0	, v
	homology-like									
209803_	domain, family A,	AF00129	Hs.15403	PHL	0.6	1.6	0.5	1.1	2.5	2.0
s_at	member 2	4	6	DA2	6	5	7	7	0	6
209773_	ribonucleotide	BC00188	Hs.22639	RRM	4.4 7	11.	0.7 9	5.6	2.4 9	7.0
s_at	reductase M2 chromosome 1	6	0	2	l.	10	9	1	7	7
219010_	open reading	NM_018	Hs.51899	Clor	1.6	3.8	0.4	0.9	2,4	2.0
at	frame 106	265	7	f106	1	8	5	2	1	4
	quinolinate									
204044_	phosphoribosyltra	NM_014	Hs.51348	QPR	1.0	2,4	0.7	1,3	2.3	1.8
at 208079_	nsferase	298 NM 002	4 Hs.25082	T AUR	4 1.4	5 3.4	3 0.3	1 2.0	4 2.3	0 5.3
s_at	aurora kinase A	NM_003 158	ns.20062 2	KA	9	3.4 4	9	2.0 7		1
209942_	melanoma antigen	BC00034	- Hs.41781	MAG	1.5	3.5	0.8	1.3	2.2	1.5
x_at	family A, 3	0	6	EA3	3	2	7	3	9	4
209714_	cyclin-dependent	AF21303		CDK	3.4	7.8	1.1	4.7	2.2	4.1
s_at	kinase inhibitor 3	3	Hs.84113	N3	7	4	5	5	6	2_
220414_ at	calmodulin-like 5	NM_017 422	Hs.18014 2	CAI. ML5	2.6 4	5.9 4	0.8 5	1.4 6	2.2 5	1.7 3
220615_	fatty acyl CoA	422 NM_018	Hs.72895	FAR	1.1	2.6	0.8	1.3	2.2	1.7
s_at	reductase 2	099	5	2	9	5	1	8	4	0
214612_	melanoma antigen		Hs.44111	MAG	1.4	3.3	0.8	1.3	2.2	1.5
x_at	family A, 6	U10691	3	EA6	9	2	7	4	3	4
218009_	protein regulator	NM_003	Hs.36640	PRC	1.7	3.6	0.4	2.4	2.0	5.1
s_at 214710_	of cytokinesis 1	981 BE40751	1	I CCN	8 2.6	9 5.4	7 0.8	0 4.0	7 2.0	2 4.6
s_at	cyclin B1	6	Hs.23960	BI	3	2	0.8 7	7.0	6	7
205347_	· · · · · · · · · · · · · · · · · · ·	NM_021		TMS	1.9	3.8	0.3	0.7	1,9	1.8
1		***** *_ \$2 6 ***		000000000000000000000000000000000000000		an tha	- All and		10052500	

		-								
s_at		992		BISA	5	5	9	1	7	3
201890_	ribonucleotide	BE96623	Hs.22639	RRM	2.1	4,1	0.6	2.7	1.9	4.6
at	reductase M2	6	0	2	0	3	0	7	7	6
	potassium									
	channel,									
204678_	subfamily K,		Hs.20854	KCN	2.1	4.2	1.8	2.8	1,9	1.5
s_at	member 1	U90065	4	KI	5	3	5	7	6	5
	baculoviral IAP									
202095_	repeat containing	NM_001	Hs.51452	BIR	3.2	6.2	0.8	4.1	1,9	4,9
s_at	5	168	7	C5	2	7	2	0	5	9
310101	epithelial splicing	NR.5 015								
219121_	regulatory protein	NM_017	Hs.48747	ESR	4.4	8.6	2,4	6.7	1.9	2.7
s_at 203744_	l kinh makilite	697 NM 005	1	P1 HM	7	9	7	0	4	
at	high mobility group box 3	NM_005 342	Hs.19114	GB3	8	2.0 7	0.5 4	$\frac{1.1}{2}$	1.7	$\begin{bmatrix} 2.0 \\ 6 \end{bmatrix}$
a	hematological and	_144	113.1711+	(10)3	0		H	<u>ب</u> الالتقاد	1	
217755_	neurological	NM_016	Hs.53280		5.3	10.	2,9	7.2	1.8	2,4
at	expressed 1	185	3	IINI	6	05	8	5	1.0	3
ac	ubiquitin-	105	(*****			0	*		
202954_	conjugating	NM_007		UBE	3.8	7.0	1.2	4.4	1.8	3,4
at	enzyme E2C	019	Hs.93002	2C	1	7	9	4	5	3
	topoisomerase				_		-			
201291_	(DNA) II alpha	AU1599	Hs.15634	TOP	3.3	6.1	1.2	5.2	1.8	4.2
s_at	170kDa	42	6	2A	1	3	4	6	5	4
209875_	secreted				5.0	9.3	3.3	5.6	1.8	1.7
s_at	phosphoprotein 1	M83248	Hs.313	SPP1	4	0	1	1	4	
	malic enzyme 1.									
	NADP(+)-									
204059_	dependent,	NM_002			1.9	3.5	0.7	1.3	1.8	1.8
s_at	cytosolic	395	Hs.21160	MEI	4	6	7	9	4	2
				HIST						
210387_		BC00113		IH2B	1,9	3,4	1.8	2.8	1.8	1.5
at	· • •	1		G	2	7	2	5	Ø	6
	pyridoxal									
303673	(pyridoxine,	NTN # 2003	17 00240		2.0		10			
202671_	vitamin B6)	NM_003	Hs.28449	PDX	3.0	5.5	1.6	3.1	1.8	1.8
s_at	kinase nucleolar and	681	1	К	6	2	7	5	Ø	9
219978_	spindle associated	NM_018	Hs.61509	NUN	4.0	7.2	15	1 4	1.7	3.0
s_at	protein 1	454	2	NUS AP1	4.0 6	7.4 7	$\frac{1.5}{0}$	4.5 1	1. <i>1</i> 9	
203207_	mitochondrial	454 BF21432	- Hs.58478	MTF	3.5	6.3	1.6	4.0	1.7	2.5
s_at	fission regulator 1	9	8	R1	7	8	1.0	- 3	ч.,, 9	1
205943_	tryptophan 2,3-	NM_005	Hs.18367	TDO	1.6	2.8	0.6	1.0	1.7	1.5
at	dioxygenase	651	1	2	2	8	5	0	9	4
218355_	kinesin family	NM_012	Hs.64832	KIF4	2.1	3.8	0.7	2.3	1,7	3.2
at	member 4A	310	6	A	5	4	2	2	8	
	nucleolar and									
218039_	spindle associated	NM_016	Hs.61509	NUS	2.0	3.5	0.8	2.6	1.7	3.1
at	protein 1	359	2	API	2	<u></u>	6	7	7	0
202705_		NM_004	Hs.19469	CCN	2.9	5.1	0.8	3.0	1,7	3.7
at	cyclin B2	701	8	B 2	3	6	ł	2	6	3
204641_	NIMA-related	NM_002	Hs.15370	NEK	2.9	5.2	1.2	4.3	1.7	3.6
at	kinase 2	497	4	2	9	6	0	8	6	6
	BUB1 mitotic									
	checkpoint		termine and the Mark							
203755_	serine/threonine	NM_001	Hs.51364	BUB	1.4	2.6	0.4	1.6	1.7	4.0
at	kinase B	211	5	1B	8	0	1	7	5	4
202338_	thymidine kinase	NM_003	Hs.51512		1.9	3.3	1.0	2.2	1.7	2,1
at	1, soluble	258	2	ТКІ	2	5	4	4	5	5
203764_	discs, large	NM_014	Hs.77695	DLG	2.6	4.6	0.8	2.2	1.7	2.8
										-

		4	207					
at	(Drosophila) homolog- associated protein	750		APS	7	3	ľ	7 3 1
203554_ x_at	5 pituitary tumor- transforming 1 enhancer of zeste	NM_004 219	Hs.35096 6	PTT G1	3.6 5	6.3 0	1.0 3	4.1 1.7 3.9 2 3 9
203358_ s_at	homolog 2 (Drosophila) thyroid hormone	NM_004 456	Hs.44408 2	EZH 2	1.0 5	1.7 9	0.3 4	$\begin{array}{c cccc} 0.8 & 1.7 & 2.6 \\ 8 & 1 & 2 \end{array}$
204033_ at	receptor interactor 13	NM_004 237	Hs.43618 7	TRIP 13	3.3 6	5.7 4	0.7 4	2.9 1.7 4.0 5 1 1
207828_ s_at	centromere protein F, 350/400kDa antigen identified	NM_005 196	Hs.49774 1	CEN PF	2.9 2	4.9 5	0.8 9	3.0 1.7 3.3 1 0 9
212022_ s_at	by monoclonal antibody Ki-67	BF00180 6	Hs.68982 3	MKI 67 HIST	2.5 0	4.2 3	1.0 2	$\begin{array}{c ccccc} 2.0 & 1.6 & 2.0 \\ 8 & 9 & 3 \end{array}$
215779_ s_at	b.Æ-174: Žutomočino	BE27147 0	N. 27203	1H2B G	2.7	4.6 6	2.4 8	$\begin{array}{c cccc} 4.0 & 1.6 & 1.6 \\ 1 & 9 & 2 \\ 2 & 0 & 0 \\ $
218883_ s_at	MLF1 interacting protein CDC28 protein	NM_024 629	Hs.57503 2	MLI IIP	2.4 4	4.1 2	1.3 4	3.8 1.6 2.8 3 9 5
204170_ s_at 201037_	kinase regulatory subunit 2 phosphofructokin	NM_001 827 NM_002	Hs.83758	CKS 2 PFK	2.4 8 1.5	4.1 8 2.6	1.0 7 0.5	$\begin{array}{c cccc} 3.1 & 1.6 & 2.9 \\ \hline 2 & 9 & 3 \\ \hline 0.8 & 1.6 & 1.5 \\ \end{array}$
at	ase, platelet solute carrier family 7 (amino acid transporter light chain, L	627	Hs.26010	P	6	3	7	8 9 4
201195_ s_at	system), member 5	AB01800 9	Hs.51379 7	SI.C7 A5	$\frac{2.1}{2}$	3.5 I	0.3 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
205034_		NM_004	Hs.52169	CCN	1.6	2.7	0.7	2.2 1.6 3.0
at 210559_	cyclin E2 cyclin-dependent	702	3 Hs.73243	E2 CDK	7 6.8	5 11.	3 2.0	2 5 3 8.6 1.6 4.2
s_at	kinase 1 YKT6 v-SNARE	D88357	5	1	8	35	5	3 5 1
217785_ s_at	homolog (S. cerevisiae)	NM_006 555	Hs.52079 4	YKT 6	$\frac{2.3}{7}$	3.9 0	1.7 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
200658_		AL56001	Hs.51430		1.5	2.5	1.0	2.2 1.6 2.0
s_at	prohibitin inositol(myo)- 1(or 4)-	7	3	PHB	9	7	9	6 2 7
203126_ at	monophosphatase 2 GINS complex	NM_014 214	Hs.74331 1	IMP A2	1.8 4	2.9 8	0.5 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
206102_ at	subunit 1 (Psf1 homolog) G-protein	NM_021 067	Hs.65846 4	GINS 1	2.1 2	3.4 4	0.7 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
221922_ at	signaling modulator 2 coronin, actin	AW1955 81	Hs.58490 l	GPS M2	1.0 4	1.6 7	0. <u>5</u> 3	$\begin{array}{c cccc} 0.9 & 1.6 & 1.7 \\ 2 & 0 & 6 \end{array}$
221676_ s_at	binding protein, IC asp (abnormal	BC00234 2	Hs.33038 4	COR OIC	1.5 7	2.5 1	0.7 9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
219918_ s_at	spindle) homolog, microcephaly associated	NM_018 123	Hs.12102 8	ASP M	5.7 6	9.1 6	1.3 3	5.5 1.5 4.1 6 9 8

		-						
	(Drosophila)							
	epithelial cell							
	transforming							
219787_	sequence 2	NM_018	Hs.51829	ECT	1.0	1.6	-0.5	1.2 1.5 2.2
s_at 218260_	oncogene DET1 and DDB1	098 NM_024	9 Hs.46615	2 DDA	$\frac{1}{5.7}$	0 9.2	4 4.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
at	associated 1	050	4	1	9. 9.	9.2 ()	4.0	6 9 9
	matrix	000			× .		-7	
	metallopeptidase							
204580_	12 (macrophage	NM_002		MM	3.1	4.9	0.5	0.8 1.5 1.5
at	elastase)	426	Hs.1695	PI2	4	6	9	9 8 1
203967_ at	cell division cycle	U77949	Hs.40595 8	CDC	$\frac{1.6}{4}$	2.5 9	0.9 9	1.7 1.5 1.8
ai.	contactin	017949	8	6 CNF	-	, ,	X	8 8 0
215145_	associated	AC00537	Hs.65568	NAP	1.1	1.8	1.4	2.3 1.5 1.6
s_at	protein-like 2	8	4	2	7	5	ĩ	3 8 6
	ZW10 interactor,							
204026_	kinetochore	NM_007	Hs.59136	ZM1	1.2	1.8	0.6	1.6 1.5 2.7
s_at	protein cornichon	057	3	NT	0	6	1	8 5 8
218728_	homolog 4	NM_014	Hs.44589	CNI	1.3	2.0	0.8	1.6 1.5 1.9
s_at	(Drosophila)	184	0	H4	0	3	7	7 5 3
203968_	cell division cycle	NM_001	Hs.40595	CDC	1.6	2.4	0.9	1.6 1.5 1.8
s_at	6	254	8	6	0	7	1	8 5 4
	BUB1 mitotic							
209642_	eheckpoint serine/threonine	AF04329	Hs.46964	BUB	2.8	4.3	0.0	
at	kinase	4 4	118.40904 9	BUB 1	2.8 5	4,3 9	0.8 4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
204092_	Annoc	NM_003	Hs.25082	AUR	1.4	2.2	0.6	1.5 1.5 2.2
s_at	aurora kinase A	600	2	KA	3	0	8	6 3 9
215223_				SOD	1.7	2.6	0.4	0.7 1.5 1.6
s_at		W46388		2	6	9	2	0 3 6
201292_	topoisomerase (DNA) II alpha	AL56183	Hs.15634	TOP	5.1	7.8	2.0	7.4 1.5 3.6
at	170kDa	4	6	101 2A	2	7.0 3	4	7.4 1.5 3.6
	guanine		0		÷.		- The	
214431_	monphosphate	NM_003	Hs.59131	GMP	0.9	1.5	0.5	0.9 1.5 1.7
at	synthetase	875	4	8	9	1	3	1 2 2
203214_	cyclin-dependent	NM_001	Hs.73243	CDK	5.9	9.0	2.0	6.9 1.5 3.4
x_at	kinase 1 denticleless E3	786	5	1	4	0	3	2 2 1
	ubiquitin protein							
218585_	ligase homolog	NM_016	Hs.65647		2.6	3.9	1.3	3.8 1.5 2.9
s_at	(Drosophila)	448	3	DTL	2	5	2	2 1 0
	low density							
	lipoprotein							
	receptor-related							
208433_	protein 8, apolipoprotein e	NM_017	Hs.28038	LRP	1.7	2.6	0.7	1.1 1.5 1.5
s_at	receptor	522	7	8	8	8	6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	NDC80				~			
	kinetochore							
204162_	complex	NM_006	Hs.41440	NDC	2.4	3.6	0.8	1.9 1.5 2.3
at	component	101	7	80	3	6	1	2 0 8
205916_	S100 calcium binding protein	NM_002	Hs.11240	S100	0.0	12	1 Z	2.2 5.6 1.3
205910_ at	A7	NM_002 963	8 8	5100 A7	2.3 4	13. 17	1.6 7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	S100 calcium	- C	N.		т	\$.7	Ţ.	
203535_	hinding protein	NM_002	Hs.11240	S100	6.1	19,	1.5	2.2 3.1 1.4
at	A9	965	5	A9	6	24	2	5 2 8

		4	.09						
205029_	fatty acid binding	NM_001		FAB	2.7	7.9	0.6	0.6 2.8	0.9
s_at	protein 7, brain	446	Hs.26770	117	3	ł	7	5 9	7
205030_	fatty acid binding	NM_001		FAB	0.7	1.9	0.1	0.1 2.5	0.9
at	protein 7, brain SRY (sex	446	Hs.26770	P7	7	4	3	2 1	4
204913_	determining	AI36087	Hs.43263	SOX	1.2	2.9	0.5	0.7 2.4	1.3
s_at	region Y)-box 11	5	8	11	2	5	3	1 3	4
219410_	transmembrane	NM_018	Hs.65895	TME M45	0.8	2.1	0.6	0.6 2.4	1.1
at	protein 45A	004	6	A	7	0	0	6 2	0
	SRY (sex						v		
204914_	determining	AW1572	Hs.43263	SOX	2.1	5.0	0.6	0.9 2.3	1.4
s_at	region Y)-box 11	02	8	11	9	8	4	5 2	7
210663_	kynureninase	BC00087 9	Hs.47012 6	KYN U	$\frac{1.2}{8}$	2.8 0	0.6 5	0.9 2.1 5 8	1.4 5
s_at	SRY (sex	3	0	U.	0	u	2	.) р	Э
204915_	determining	AB02864	Hs.43263	SOX	1.4	3.0	0.7	0.9 2.1	1.2
s_at	region Y)-box 11	1	8	11	1	1	5	1 3	2
	chloride								
219529_	intracellular	NM_004	XX. 63746	CLI	1.8	3.9		1.5 2.1	1.3
at 214461_	channel 3 lipopolysaccharid	669 NM_004	Hs.64746 Hs.15407	C3	7 1.2	1 2.6	3 0.8	1 0 0.9 2.0	4
at	e binding protein	139	8	LBP	1.2 6	2.0 2	0.8	$\begin{array}{c c} 0.9 \\ 0 \\ 7 \end{array}$	$\frac{1.1}{3}$
202912_	e mang protein	NM 001	Hs.44104	*****	0.8	1.7	0.4	0.4 2.0	1.2
at	adrenomedullín	124	7	ADM	4	Ö	0	8 2	0
	S100 calcium								
214370_	binding protein	AW2386	Hs.41607	\$100	2.6	5.2	1.4	1.5 1.9	1.0
at	A8	54	3	A8	6	4	2	0 7	5
211527_	vascular endothelial			X77247	2.0	3.9	1.2	1.5 1.9	1.2
x_at	growth factor A	M27281	Hs.73793	VEG FA	2.0	3.9	4	$\begin{array}{c c c} 1.5 & 1.9 \\ 0 & 4 \end{array}$	1.2
a_a	potassium	الالت استدالا	115.73775		I		Ч <u>т</u>		1
	channel,								
204679_	subfamily K,	NM_002	Hs.20854	KCN	1.3	2.4	0.8	1.2 1.8	1.4
at	member 1	245	4	KI	2	4	8	9 5	7
	BCL2/adenovirus								
201848_	E1B 19kDa		11. 144300	nyan	5.4	20	* E		7.8
s_at	interacting protein 3	U15174	Hs.14487 3	BNIP 3	2.1 4	3.8 8	1.5 7	$\begin{array}{c c c} 2.3 & 1.8 \\ 4 & 1 \end{array}$	1.4 9
202859_	5	NM_000	w ¹		1.7	3.1	0.6	0.8 1.8	1.2
x_at	interleukin 8	584	Hs.624	IL8	5	$\frac{1}{7}$	8	6 1	5
211110_		AF16270			0,9	1.6	5.3	3.8 1.8	0.7
s_at	androgen receptor	4	Hs.76704	AR	2	5	3	7 0	3
208650_		BG32786	Hs.64410		2.3	4.1	1.2	1.5 1.7	1.2
s_at	CD24 molecule	3	5	CD24	8	8	9	9 5	4
	UDP-N-acetyl- alpha-D-								
	galactosamine:pol								
	ypeptide N-								
	acetylgalactosami								
203397_	nyltransferase 3	BF06327	Hs.17098	GAL	0.9	1.6	0.5	0.6 1.7	1.2
s_at	(GalNAc-T3)	1	6	NT3	5	5	2	3 4	0
	chemokine (C-C								
	motif) ligand 18								
209924_	(pulmonary and activation-	AB00022	Hs.14396	ca.	2.2	3.9	ñz	0.9 1.7	1.1
209924_ at	regulated)	AB00022	HS.14390	18	2.2 8	3.9 6	0.6 9	8 4	1.4
<i>u</i> .	cysteine-rich	.*.	z .,	*12	Ч.		2		A
207802_	secretory protein	NM_006	Hs.40446	CRIS	1.0	1.8	1.0	1.3 1.7	1.3
at	3	061	6	P3	8	6	1	5 2	3

		-								
	chemokine (C-C									
	motif) ligand 18 (pulmonary and									
32128_a			Hs.14396	CCL	2.2	3.7	0.6	0.9	1.6	1.4
t	regulated)	Y13710	Ť.	18	2	2	9	6	7	0
	dopa									
	decarboxylase									
205311_	(aromatic L- amino acid	NM_000	Hs.35969		1.0	1.6	0.9	0.9	1.6	0.9
at	decarboxylase)	790	8	DDC	2	9	8	6	7	8
	angiotensin I									
	converting									
219962_		NM_021	Hs.17809	ACE	1.0	1.7	0.8	0.9	1.6	1.0
at	dipeptidase A) 2. stearoyl-CoA	804	8	2	3	2	7	1	7	4
211708_		BC00580	Hs.55839		1.6	2.7	1.3	2.0	1.6	1.4
s_at	9-desaturase)	7	6	SCD	9	6	7	2	3	7
	steroid-5-alpha-									
	reductase, alpha									
	polypeptide 1 (3- oxo-5 alpha-									
	steroid delta 4-									
211056_	dehydrogenase	BC00637		SRD	1.3	2.1	0.7	0.8	1.6	1,1
s_at	alpha 1)	3	Hs.552	5A1	0	ł	3	4	2	5
211162	stearoyl-CoA	A 171 1 6 6 1	11. cc010		13		1.0			1
x at	desaturase (delta- 9-desaturase)	AF11661 6	Hs.55839 6	SCD	1.3 4	2.1 5	1.2 2	1.5 9	1.6	1.3
209772_	> desaturdise y	0	Hs.64410	9.19	4.3	6.8	2.0	3.0	1.5	1.4
s_at	CD24 molecule	X69397	5	CD24	6	6	9	5	7	6
215729_	vestigial like 1	BE54232	Hs.49684	VGL	2.3	3.6	0.3	0.4	1.5	1,1
s_at	(Drosophila) gamma-	3	3	LI	3	3	6	3	6	8
	aminobutyric acid									
2099990_	(GABA) B	AF05608	Hs.19861	GAB	1.6	2.5	0.8	0.8	1.5	1.0
s_at	receptor, 2	5	2	BR2	4	0	4	9	3	7
212816_	cystathionine-	BE61317	Hs.53301		2.1	3.2	0.8	1.2	1.5	1.4
<u>s_</u> at	beta-synthase protein tyrosine	8	3	CBS	1	1	9	5	2	1
216915_	phosphatase, non-			ргр	3,3	5.0	2.8	3,4	1.5	1.2
s_at	receptor type 12	S69182	Hs.61812	N12	3	6	8	9	2	1
	suppression of		an a				5.0 × ×			
216905_	tumorigenicity 14 (colon carcinoma)	U20428	Hs.50431	610P.1.4	1.3	2,0	0.9	1.1	1.5	1.2
s_at 219148_	PDZ binding		5 Hs.10474	<u>8714</u>	5 2.8	2	<u>5</u> 0.9	6	0	2 3.8
at	kinase	492	1	РВК	6	Ő	1	9.4 9	2	2
	MAD2 mitotic									
203362_	arrest deficient-	NM_002	Hs.59169	MAD	1.9	2.8	0.6	2.0	1.4	3.3
s_at	like 1 (yeast) GINS complex	358	7	21.1	4	0	2	4	4	0
221521_	subunit 2 (Psf2	BC00318	Hs.43318	GINS	1.0	1.3	0.5	1.8	1.3	3.2
s_at	homolog)	6	0	2	0	7	7	6	7	8
				KIA						
202503_	KIX YORDI	NM_014	H& 01004	A010	2.7	4.0	1.3	4.3	1.4	3.1
s_at 203213_	KIAA0101 cyclin-dependent	736 AL52403	Hs.81892 Hs.73243	I CDK	$\frac{1}{2.5}$	5 3.7		4 3.2	9 1.4	3 3.0
at	kinase 1	5	5	I	4	3	- 6	3	7	3
	ubiquitin-				-		-			
202779_	conjugating	NM_014	Hs.39639	UBE	9.4	13.	3.8	11.	1.4	2.9
s_at	enzyme E2S	501	3	25	2	46	3	41	3	8
202589_	thymidylate	NM_001	Hs.36976	ТУМ	2.6	3.4	0.8	2.3	1.3	2.8

		•								
at	synthetase	071	2	S	0	0	1	2	1	7
204444_ at	kinesin family member 11	NM_004 523	Hs.8878	KIF1 I	1.6 8	2.3 0	0.6 8	1.9 5	1.3 7	2.8 6
210702	ATPase family,	NTN # 1533	11 07003	A 47. A						
218782_ s_at	AAA domain containing 2	NM_014 109	Hs.37083 4	ATA D2	4.2 1	4.6 9	$1.4 \\ 0$	3.9	1.1 1	2.7
218755_	kinesin family	NM_005	Hs.71862	KIF2	2.8	4.0	0.9	2.4	1.4	2.6
at	member 20A Rac GTPase	733	6	0A RAC	3	9	2	3	5	6
222077_	activating protein	AU1538	Hs.50546	GAP	1.7	2.4	0.8	2.2	1.3	2.5
s_at	1 lysosomal protein	48	9	I LAP	8	4	5	0	7	8
208767_	transmembrane 4	AW1496	Hs.49231	TNI4	5.0	7.3	2.0	5.3	1.4	2.5
s_at	beta	81	4	B	9	0	9	8	3	7
204533_ at	chemokine (C-X- C motif) ligand 10	NM_001 565	Hs.63258 6	CXC L10	7.3 4	10. 17	1.8 4	4.6 2	1.3	2.5
ui.	radical S-adenosyl methionine	505	0	L10	-1	13	-4	~	2	
213797_	domain	AI33706		RSA	2.9	3.2	1.2	3.0	1.1	2.5
at	containing 2	9	Hs.17518	D2	4	6	0	1	Ĩ	
212009_	stress-induced- phosphoprotein 1	AL55332 0	Hs.33729 5	STIP	5.0 5	7.0 7	2.3	5,9	1.4	2.4
s_at 206364_	kinesin family	0 NM_014	5	I KIF1	2.7	3,5	8 0.8	4 2.1	$\begin{array}{c} 0\\ 1.2 \end{array}$	9 2,4
at	member 14	875	Hs.3104	4	8	1	6	3	6	8
	karyopherin alpha	an analan an an	un inclusion							
211762_ s_at	2 (RAG cohort 1, importin alpha 1)	BC00597 8	Hs.59423 8	KPN A2	2.8 1	4.0	1.2 6	3.1 3	1,4	2.4
s_ai	apolipoprotein B	0	0	A4	1	8	0	2	6	8
	mRNA editing									
a Kerna a	enzyme, catalytic		an a	APO						
206632_	polypeptide-like 3B	NM_004	Hs.22630	BEC	2.4	3.5	0.6	1.6	1.4	2.4
s_at	byaluronan-	900	7	3B	2	5	5	4	7	8
	mediated motility									
207165_	receptor	NM_012	Hs.74046	НМ	1.8	2.2	0.7	1.8	1.2	2.3
at	(RHAMM)	485	7	MIR	1	4	9	6	4	6
211122_ s_at	chemokine (C-X- C motif) ligand 11	AF00298 5	Hs.63259 2	CXC L11	4.1 7	4.9 5	0.9 8	2.2 8	1.1 9	2.3
<u>s_ar</u>	structural	4	<u>~</u>	1.11	ł.		0	0	7	
201663_	maintenance of	NM_005		SMC	6.4	7.0	2.0	4.8	1.0	2.2
s_at	chromosomes 4	496	Hs.58992	4	4	2	9	0	9	9
	non-SMC condensin I									
218662_	complex, subunit	NM_022	Hs.44620	NCA	2.4	3.0	1.0	2.2	1.2	2.2
s_at	G	346	1	PG	9	9	0	8	4	9
213226_		AI34635	11. 20074	CCN	1.7	2.4	0.6	1.5	1.3	2.2
at	cyclin A2 minichromosome	0	Hs.58974	A2	8	6	9	5	8	6
	maintenance									
212141_	complex	AA6046	Hs.46018	MC	3.1	4.3	1.2	2.8	1.3	2.2
at	component 4	21	4	M4	8	4	9	9	7	4
210163_ at	chemokine (C-X- C motif) ligand 11	AF03051 4	Hs.63259 2	CXC LII	3.0 5	4.1 5	0.7 7	1.7 3	1.3 6	2.2
100 F	Fanconi anemia.		-	****	2	89 (i)	1		Ϋ́	
213007_	complementation		Hs.51312	FAN	1.4	1.8	0.7	1.6	1.2	2.2
at	group I	W74442	6	CI	5	4	2	0	7	3
	serine hydroxymethyltra									
214437_	nsferase 2	NM_005	Hs.74117	SHM	3.4	4.6	1.4	3.2	1.3	2.2
s_at	(mitochondrial)	412	9	T2	4	2	9	0	4	0

		4	-12							
218049_ s_at	mitochondrial ribosomal protein L13 non-SMC condensin I	NM_014 078	Hs.33382 3	MRP L13	3.5 5	4.6 8	2.4 0	5.2 8	1.3 2	2.2
218663_ at 201629_ s_at 213562_ s_at 203418_ at	complex, subunit G acid phosphatase 1, soluble squalene epoxidase cyclin A2 transforming,	NM_022 346 BE87297 4 BF97949 7 NM_001 237	Hs.44620 1 Hs.55829 6 Hs.71465 Hs.58974	NCA PG ACP I SQL E CCN A2	2.6 1 4.4 1 2.4 7 2.9 8	3 2 1 6 2 8 3 3 6 4 2 5	$ \begin{array}{r} 1.0 \\ 4 \\ 2.3 \\ 2 \\ 1.4 \\ 1 \\ 0.9 \\ 5 \\ 5 \end{array} $	2.2 7 5.0 6 3.0 2 2.0 3	1.2 3 1.4 2 1.3 6 1.4 2	2.1 9 2.1 8 2.1 4 2.1 4 2.1 4
218308_ at 200607_ s_at 219494_ at	acidic coiled-coil containing protein 3 RAD21 homolog (S. pombe) chaperonin	NM_006 342 BG28996 7 NM_012 415	Hs.10401 9 Hs.81848	TAC C3 RAD 21 RAD 54B	2.4 6 3.8 1 2.1 9	2.8 4 3.8 7 2.5 2	1.1 5 1.9 8 1.0 6	2.4 5 4.1 6 2.2 1	1.1 5 1.0 1 1.1 5	2.1 3 2.1 0 2.0 9
201946_ s_at	containing TCP1, subunit 2 (beta) defective in sister chromatid cohesion 1	AL54598 2	Hs.18977 2	сст 2	5.5 4	5.7	3.2 6	6.7 8	1.0 3	2.0
219000_ s_at	homolog (S. cerevisiae) Fanconi anemia,	NM_024 094	Hs.31516 7	DSC C1	2.0 1	2.3	0.8	1.7 7	1.1	2.0
213008_ at 201897_ s_at	complementation group I CDC28 protein kinase regulatory subunit 1B eukaryotic	BG40361 5 NM_001 826	Hs.51312 6 Hs.37437 8	FAN CI CKS IB	1.9 7 2.1 4	2.4 4 2.8 6	1.0 3 1.0 0	2.1 3 2.0 4	1.2 4 1.3 3	2.0 6 2.0 4
201123_ s_at 209825_ s_at	translation initiation factor 5A minichromosome	NM_001 970 BC00290 6	Hs.53431 4	EII 5 A UCK 2	8.0 4 2.1 2	10. 77 2.7 9	3.8 1 0.9 6	7.5 4 1.8 9	1.3 4 1.3 2	1.9 8 1.9 7
210983_ s_at	maintenance complex component 7 protcasome (prosome, macropain)	AF27990 0	Hs.43872 0	MC M7	5.4 4	6.1 9	1.9 0	3.6 9	1.1 4	1.9
216088_ s_at 203432_	subunit, alpha type, 7	AL07863 3 AW2726	Hs.23395 2	PSM A7 TMP	3.8 5 1.7	5.5 5 2.0	$2.6 \\ 7 \\ 1.0$	5.1 8 1.9	1.4 4 1.2	1.9 4 1.9
at 218349_ s_at	thymopoietin zwilch kinetochore protein	11 NM_017 975	Hs.11355 Hs.21331	O ZWI LCH	0 2.8 8	9 3.5 6	3 1.6 7	8 3.2 2	3 1.2 4	3 1.9 3
s_at 219402_ s_at	derlin 1 LSM4 homolog,	973 NM_024 295	Hs.24157 6	DER LI	o 1.3 1	1.9 3	0.8 0	1.5 3	4 1.4 7	1.9 2
202736_ s_at	U6 small nuclear RNA associated	AA1125 07	Hs.51525 5	LSM 4	14. 79	17. 02	9.3 1	17. 67	$\frac{1.1}{5}$	1.9 0

		-	10							
	(S. cerevisiae)								ľ	
	regulator of									
218549_	microtubule	NM_016	Hs.14538	RMD	1.7	2.2	1.2	2.3	1.2	1.9
s_at	dynamics 1	033	6	NI	5	0	4	5	5	0
213599_	Opa interacting	BE04599	Hs.66164		1.7	2.2	0.8	1.6	1.3	1.9
at	protein 5	3	5	OIP5	4	8	6	3	1	0
209464_	n an in the second	AB01144	Hs.44265	AUR	3,1	3.7	1.0	2.0	1.1	1.8
at	aurora kinase B mitochondrial	6	8	КВ	1	2	7	1	9	8
218027_	ribosomal protein	NM_014		MRP	1.9	2.3	1.0	2.0	1.2	1.8
at	L15	175	Hs.18349	1.15	6	8	7	4.17	2	8
213330_	stress-induced-	BE88658	Hs.33729	STIP	9.6	12.	5.7	10.	1.2	1.8
s_at	phosphoprotein 1	0	5	1	0	32	0	67	8	7
218695_	exosome	NM_019	Hs.63204	EXO	1.5	1.8	0.9	1.7	1.2	1.8
at	component 4	037	1	SC4	1	1	4	5	0	6
220085_	helicase,	NM_018	Hs.65583	HFL	1.5	1.8	0.9	1.6	1.1	1.8
at	lymphoid-specific	063	0	1.5	5	2	0	5	7	4
203145_	sperm associated	NM_006	Hs.51403	SPA	1.3	1.9	0.8	1,6	1.4	1.8
at	antigen 5 eukaryotic	461	3	G5	5	6	9	3	5	4
	translation									
	initiation factor									
221539_	4E binding	AB04454	Hs.41164	EJF4	3.5	4,5	1.8	3.3	1.2	1.8
åt	protein 1	8	1	I.BP1	7	7	2	2	8	3
	preferentially									
204086_	expressed antigen	NM_006		PRA	2.7	2.6	0.9	1.8	0.9	1.8
at	in melanoma	115	Hs.30743	ME	3	9	8	0	8	2
5400.77	ER membrane	1			است ا		8.6		ar ar	
218057_	protein complex	NM_006	Hs.17316	EMC	1.7	2.0	0.9	1.7	1.1	1.7
x_at 221677_	subunit 8 downstream	067 AF23267	2 Hs.43634	8 DON	9 1.9	5 2.8	9 0.9	7 1.6	5 1.4	9 1.7
s_at	neighbor of SON	4 4	1	SON	8	2	4	1.0 8	1.4	9
200841_	glutamyl-prolyl-	AI14267	Hs.49778	EPR	2.6	3.3	1.6	2.9	1.2	17
s_at	tRNA synthetase	7	8	S	4	2	5	5	6	9
221436_	cell division cycle	NM_031	Hs.52421	CDC	2.1	2.7	0.9	1.6	1.2	1.7
s_at	associated 3	299	6	A3	5	0	4	8	5	9
210691_	calcyclin binding	AF27580	Hs.50852	CAC	2.7	3,5	1.7	3.1	1.2	1.7
s_at	protein	3	4	ХВР	1	1	9	9	9	9
	v-myb									
	myeloblastosis									
201710_	viral oncogene homolog (avian)-	NM_002	Hs.17971	MYB	2.5	3,4	1.1	2.0	1.3	1.7
at	like 2	466	8	L2	2.5 5	6	7	2.0 9	1.3 6	9
u.	lymphocyte	100	<i>w.</i>	***	<i></i>		,		U.	
202145_	antigen 6	NM_002	Hs.52190	LY6	3.2	2.7	1.4	2.5	0.8	1.7
at	complex, locus E	346	3	E	4	7	5	7	5	7
211450_	mutS homolog 6		Hs.44505	MSH	6.0	5.9	3.0	5.3	0.9	1.7
s_at	(E. coli)	D89646	2	6	1	1	4	8	8	7
212563_	block of	BG49184	Hs.64527	BOP	2.5	2.8	1.0	1.9	1.1	1.7
at	proliferation 1	2	9	1	1	0	8	1	1	7
	procollagen-									
202619_	lysine, 2- oxoglutarate 5-	AI75440	Hs.47786	PLO	1.5	2.2	0.8	1.5	1.4	1.7
s_at	dioxygenase 2	A175440 4	HS.47780	PLO D2	1.5	2.2 7	0.8	6	1.4: - 3	7
.»_aı	nudix (nucleoside	- 1	y.	172	Q.		0	U	.)	
	diphosphate									
202697_	linked moiety X)-	NM_007	Hs.52883	NUD	1.6	2,4	1.0	1.8	1.4	1.7
at	type motif 21	006	4	T21	9	5	5	4	5	5
217294_			Hs.51714	ENO	39.	45.	13.	23.	1.1	1.7
s_at	enolase 1, (alpha)	U88968	5	1	74	()4	17	05	3	5

	Wolf-Hirschhorn									
209053_	syndrome	BE79378	Hs.11387	WHS	1.3	1.5	0.8	1.5	1.1	1.7
s_at 213520_	candidate 1 RecQ protein-like	9 NM_004	6	C1 REC	6 1.4	0	7 0.9	2 1.6	$\frac{0}{1.1}$	4
at	4	260	Hs.31442	QL4	4	3	3	1	3	4
217356_	phosphoglycerate	801016	33. თ ბოთა	PGK	12.	17.	6.9	12.	1.4	1.7
s_at	kinase 1 minichromosome	S81916	Hs.78771	1	50	81	6	00	3	2
	maintenance									
201930_	complex	NM_005	H8.44411	MC	2.0	2.5	1.0	1.7	1.2	1.7
at	component 6 minichromosome	915	8	M6	5	6	5	8	5	0
	maintenance									
222037_	complex	A185986	Hs.46018	MC ,	1.8	2.2	0.9	1.6	1.1	1.7
at 200853_	component 4 H2A histone	5 NM_002	4 Hs.11919	M4 H2A	6 2.0	2 2.7	7 1.4	4 2.4	9 1.3	$\begin{bmatrix} 0\\ 1.7 \end{bmatrix}$
200853_ at	family, member Z	106	2	FZ	2.0 4	2	1.4	4.4 ()	3	
	2'-		_		[°]					
004000	deoxynucleoside	NTK & OOZ	TE 10076	DNP	0.7	* *		2.6	3.6	
204238_ s_at	5'-phosphate N- hydrolase 1	NM_006 443	Hs.10975 2	HI HI	2.7 4	2.7 9	1.5 7	2.n 6	1.0	1.7
<u>-</u>	translocase of				, î					
	inner									
	mitochondrial membrane 17			TIM						
201821_	homolog A	BC00443		M17	2.1	2.5	1.5	2.6	1.1	1.6
s_at	(yeast) DANI bin finn	9 NIN # 002	Hs.20716	A .	0 6.5	0	5 3.4	3 5.7	9 1.2	9
202483_ s_at	RAN binding protein 1	NM_002 882	Hs.24763	RAN BPI	8	8.1 4	5.4 4	2.7 8	4	1.6
201202_	proliferating cell	NM_002	Hs.14743	PCN	1.9	2.2	1.2	2.1	1.1	1.6
at	nuclear antigen	592 NIM 005	3	A .	6 2.6	6 3.6	9 1.5	6 2.4	5 1.3	8
202397_ at		NM_005 796		NUT F2	2.0 3	5.0 6	1.5 0	2.4 9	1.3 9	6
203189_		NM_002		NDU	6.1	8.0	6.2	10.	1.3	1.6
s_at	heat shock	496		FS8	7	7	1	27	1	5
208744_	105kDa/110kDa	BG40366	Hs.74326	HSP	2.4	2.9	1.6	2.7	1.1	1.6
x_at	protein 1	0	7	ш	7	3	4	1	8	5
204203_	CCAAT/enhancer binding protein	NM_001	Hs.42966	CEB	2.9	4,1	1.4	2.3	1.3	1.6
at	(C/EBP), gamma	806	6	PG	6	2	3	'	9	4
203276_		NM_005	unita i nativa anta anti-	LMN	1.7	2.1	1,1	1.8	1.2	1.6
at 208963_	lamin B1	573 BG16583	Hs.89497	B1 FAD	5 1.6	4 2.3	2 1.1	4 1.8	2 1.4	4
x_at		3		S1	8	5	2	3	0	3
215942_	G-2 and S-phase	BF97317	Hs.38618	GTS	2.3	3,4	1.0	1.7	1,4	1.6
s_at	expressed 1 proteasome	8	9	El	6	3	7	4	5	2
	(prosome,									
المناف المراجع	macropain) 26S	a un un situation	anar i sanananan an				<i></i>			
201267_ s_at	subunit, ATPase, 3	AL54552 3	Hs.25075 8	PSM C3	4.1 6	4.9 8	2.7 6	4.3 7	$\frac{1.2}{0}$	1.5
203715_	tubulin folding	NM_003	Hs.49814	TBC	1.7	2.1	1.5	2.4	1.2	15
at	cofactor E	193	3	E	8	8	4	3	2	8
214845_ s_at	calumenin	AF25765 9	Hs.74326 2	CAL U	8.3 5	11. 82	3.9 8	6.2 8	$\frac{1.4}{2}$	1.5
202533_	dihydrofolate	ВС00358	Hs.59236	DHF	1.5	1.7	1.0	1.6	1.1	1.5
s_at	reductase	4	4	R	8	7	9	8	2	4
201504_ s_at	translin	AI43530 2	Hs.75066	TSN	2.2 7	2.8 8	1.6 8	2.5 7	$\frac{1.2}{6}$	1.5
l 2_m	**************************************				6	2000) M (2000)	U.		Q.	N 00000003

	replication factor C (activator 1) 2,		Hs.64706	RFC	2.1	2.6	1.4	2.2	1.2	1.5
1053_at	40kDa karyopherin alpha	M87338	2	2 2	0	4	1.4 6	3	-1.2 -6	3
209653_ at	4 (importin alpha 3)	U93240	Hs.46786 6	KPN A4	2.5 7	3.4 8	1.2 .5	1.8 9	1.3 5	1.5
212914_	chromobox	AV6483	Hs.35641	CBX	0.3	0.2	0.6	0.3	0.6	0.5
at 203485_	homolog 7	64 NM_021	6 Hs.36862	7 RTN	$\begin{array}{c} 9\\ 0.1 \end{array}$	6 0.1	5 0.4	8 0.2	7	8 0.5
at	reticulon 1 transcobalamin I (citantia B12	136	6	1	5	0	2	3	6	5
205513_	(vitamin B12 binding protein, R	NM_001		TCN	0.3	0.2	0.9	0.4	0.6	0.4
at	binder family)	062	Hs.2012	1	7	4	3	3	6	6
213451_ x_at		BE04461 4		TNX B1	0.8	0.5	$\frac{1.1}{0}$	0.5 9	0.6	0.5
205933_	SET binding		Hs.43545	SETB	0.4	0.2	1.0	0.4	0.6	0.4
at	protein 1	559	8	P1	4	9	2	5	6	4
	FBJ murine osteosarcoma									
202768_	viral oncogene	NM_006	Hs.59095	FOS	0.1	0.0	0.2	0.0	0.6	0.3
at	homolog B sortilin-related receptor, L(DLR	732	8	В	Ø	7	4	8	5	4
212560_	class) A repeats	AV7282	Hs.36859	SOR	0.3	0.2	0.9	0.4	0.6	0.5
at 209869_	containing adrenoceptor	68 AF28409	2 Hs.24915	L1 ADR	7 0.4	4 0.2	1 1.3	9 0.5	5	3 0.4
at	alpha 2A	Ar20409 5	9 9	ADK A2A	3	0.2 8	1,3 - 3	0.3 4	0.6 5	U.4 1
2070/1	myosin, heavy	NH 6 - 2000					~ -			
207961_ x_at	chain 11, smooth muscle	NM_022 870	Hs.46010 9	MYH 11	0.2	0.1 8	0.5 2	0.2 2	0.6	0.4
220177_	transmembrane	NM_024	Hs.20860	TMP	0.8	0.5	1.4	0.6	0.6	0.4
s_at	protease, serine 3	022	0	RSS3	4	4	6	4	5	4
209460_ at	4-aminobutyrate aminotransferase	AF23781 3	Hs.33676 8	ABA T	0.2	0.1 4	1.6 4	$\frac{1.0}{4}$	0.6	0.6
208004_	proline rich.	NM_021	Hs.66142	PRO	0.3	0.2	0.4	0.2	0.6	0.5
at 201693_	lacrimal 1 early growth	225 AV7339	5 Hs.32603	L1 EGR	$\begin{vmatrix} 3\\0.2 \end{vmatrix}$	1 0.1	1	3 0.2	4 ().e	6 (),3
<u>s_at</u>	response 1	50	на.52005 5	LUK l	6	0.1 7	0.6 3	0.2 1	0.6 3	$\begin{vmatrix} u, 3 \\ 3 \end{vmatrix}$
	interleukin 6									
	signal transducer (gp130,									
204863_	oncostatin M	BE85654	Hs.53208	IL6S	0.1	0.1	0.8	0.5	0.6	0.6
s_at	receptor)	6	2	Т	8	1	6	2	3	0
213933_	prostaglandin E receptor 3	AW2423	Hs.44500	PTG	0.2	0.1	1.2	0.5	0.6	0.4
at	(subtype EP3)	15	0	ER3	6	6	0	2	2	4
	malic enzyme 3, NADP(+)-									
204663_ at	dependent, mitochondrial	NM_006 680	Hs.19974 3	ME3	0.3 4	0.2	0.6	0.3	0.6	0.5
209687_	chemokine (C-X-	5000 B	у Ня.52289	CXC	0.6	0,4	1.5	0.7	0.6	0.5
at 205257	C motif) ligand 12	U19495	1	L12	6	1	3	7	2	
205357_ s_at	angiotensin II receptor, type 1 myosin, heavy	NM_000 685	Hs.47788 7	AGT R1	0.3 6	0.2 2	1.6 9	0.7 9	0.6 2	0.4 6
201497_	chain 11, smooth	NM_022	Hs.46010	MYH	0.2	0.1	0.6	0.2	0.6	0.3
x_at	muscle	844	9	11	6	6	Q	1	1	5
212774_ at	zinc finger and BTB domain	AJ22332	Hs.69997	ZBT B18	0.7 9	0.4 8	1.5 2	0.6	0.6	0.4
	- mor waterments	-	a ang ang ang ang ang ang ang ang ang an	10 10			<u>~</u>			

	containing 18									
212713_	microfibrillar- associated protein		Hs.29604	MFA	1.0	0.6	2.2	0.8	0.6	0.3
at 206115_	4 early growth	R72286 NM_004	9 Hs.53431	P4 EGR	6 0.1	4 0.1	$\frac{1}{0.4}$	l 0.2	1 0.6	7
at	response 3	430	3	3	8	1	7	4	0	1
203697_ at	frizzled-related protein	U91903	Hs.12845	FRZ B	0.5	0.3 0	$\frac{1.0}{2}$	0.4 7	0.6	0.4
	WAP four-		.,							v
203892_ at	disulfide core domain 2 integral	NM_006 103	Hs.2719	WFD C2	0.8	0.4 8	2.1 1	0.9 7	0.6	0.4 6
202746_	membrane protein	AL02178		ITM2	0.7	0.4	0.9	0.4	0.6	0.4
at	2A	6	Hs.17109	A	0	2	Ĩ.	4	0	8
219359_	ATH1, acid trehalase-like 1	NM_025	Hs.35318	ATH	0.5	0.3	0.9	0.5	0.5	0.6
at	(yeast)	092	1	L1	7	3	7	9	8	
212865_ s_at	collagen, type XIV, alpha 1	BF44906 3	Hs.40966 2	COL 14A1	$\begin{vmatrix} 0.7\\2 \end{vmatrix}$	0.4	3.1	0.7 5	0.5	0.2
	insulin-like									
209541_ at	growth factor 1 (somatomedin C)	AI97249 6	Hs.16056	IGF	0.6	0.3	1.9 3	0.6 1	0.5	0.3
205913_	N	NM_002	Hs.10325	PLIN	1.0	0.6	2,1	0.9	0.5	0.4
at	perilipin 1 inter-alpha-	666	3	1.	9	2	1	6	6	5
	trypsin inhibitor									
219064_	heavy chain	NM_030	Hs.49858	ITIH	0.4	0.2	0.4	0.2	0.5	0.5
at	family, member 5 Duffy blood	569	6	5	0	3	7	6	6	6
208335_	group, chemokine	NM_002	Hs.15338	DAR	0.5	0,3	1.1	0,4	0,5	0.3
s_at	receptor chemokine (C-	036	1	С	7	2	9	1	6	5
205898_	X3-C motif)	an tao taona si ana si		CX3	0.4	0.2	1.4	0.3	0.5	0.2
at 209763_	receptor 1	U20350 AL04917	Hs.78913 Hs.49658	CR1 CHR	$\begin{vmatrix} 2\\ 0.7 \end{vmatrix}$	4 0.4	$\begin{array}{c} 0\\ 1.1 \end{array}$	9 0.4	6 0.5	$\left \begin{array}{c}8\\0.4\end{array}\right $
at	chordin-like 1	6	7	DL1	6	2	0	9	6	5
	sema domain, immunoglobulin									
	domain (Ig), short									
310200	basic domain,	XXX 020		C1773. #	0.2		0 D			
219689_ at	secreted, (semaphorin) 3G	NM_020 163	Hs.59729	SEM A3G	0.3	0.2 2	0.8 9	0.4 1	0.5 6	0.4
	insulin-like			1.000			~			
209540_ at	growth factor 1 (somatomedin C)	AU1449 12	Hs.16056 2	IGF1	0.6	0.3	1.4 7	0.4 7	0.5	0.3
43427_a	acetyl-CoA	AI97089	Hs.23489	ACA	0.1	0.0	0.3	0.1	0.5	0.5
t	carboxylase beta ATP-binding	8	8	CB	2	6	0	5	4	0
	cassette, sub-									
204719_ at	family A (ABC1), member 8	NM_007 168	Hs.58351	ABC A8	0.4	0.2	1.0	0.3	0.5 4	0.3
207414_	includer o	NM_002	п8.26321	PCS	0.6	3 0.3	3 2.1	9 1.2	4 0.5	8
s_at		570	11. 10cor	K6	2	3	3	1	3	7
217838_ s_at	Enah/Vasp-like	NM_016 337	Hs.12586 7	EVL	0.8 9	0.4 7	3.6 1	$\begin{array}{c} 2.0\\ 0\end{array}$	0.5	0.5
	secretoglobin.									
205979_ at	family 2A, member 1	NM_002 407	Hs.97644	SCG B2A1	0.5	0.3	1.7 6	$\frac{1.0}{7}$	0.5 3	0.6
203980_	fatty acid binding	NM_001	Hs.39156	FAB	1.0	0.5	2.9	1.2	0.5	0,4
at	protein 4,	442	1	P4	8	6	3	7	2	3

PCT/AU2015/050096

•										
	adipocyte							000000 0000000000000000000000000000000		
49452_a	acetyl-CoA	AI05763	Hs.23489	ACA	0.1	0.0	0.2	0.1	0.5	0.4
l t	carboxylase beta	7	8	CB	0	5	6	2	2	8
	secretoglobin,									
206378_	family 2A,	NM_002		SCG	0.1	0.0	2.3	0.7	0.5	0.3
at	member 2	411	Hs.46452	B2A2	5	7	7	3	1	
, ut	cysteine sulfinie	т. <u>т</u> . Т.	113.707.74	1.7.61.3.6			1			1
221139_	acid	NM_015	Hs.27981	CSA	0.4	0.2	0.9	0.5	0.5	0.5
1					2		3	4		
s_at	decarboxylase	989	5	D	2	1	э	*	1	8
010107	signal peptide,	******	TT. 200 10	CONT	0.0	N X	70		~ ~	~~
219197_	CUB domain,	AI42424	Hs.52346	SCU	0.2	0.1	7.9	2.4	0.5	0.3
s_at	EGF-like 2	3	8	BE2	7	3	6	4	0	
204041_	monoamine	NM_000	Hs.65447	MAO	0.3	0.1	0.5	0.3	0.4	0.6
at	oxidase B	898	3	В	3	6	5	4	8	3
	v-erb-a									
	erythroblastic									
	leukemia viral									
214053_	oncogene	AW7721	Hs.39072	ERB	0.1	0.0	0.9	0.3	0,4	0.3
at	homolog 4 (avian)	92	9	B4	0	5	5	7	8	9
205440_	neuropeptide Y	NM_000	Hs.51905	NPY	0.5	0.2	2.1	1.2	0.4	0.5
s_at	receptor Y1	909	7	1R	3	4	0	3	6	8
218002_	chemokine (C-X-	NM_004	Hs.48344	CXC	0.5	0.2	2.8	1.1	0.4	0.4
s_at	C motif) ligand 14	887	4	L14	2	3	4	7	5	Ϋ́́ι Ι
213156_	the second second second second	BG25152		MIR	0.2	0.1	0.5	0.1	0.4	0.3
at		1		N568	4	1	1	8	4	5
4 K	transforming	.4		14500	T		1.	~	7	-
204731_	growth factor,	NM_003	Hs.48239	TGF	0.2	0.0	0.3	0,1	0,4	0.4
	•		ns.40299 0		2	0.0 9	0.5 7	·····		
at	beta receptor III	243	0	BR3	4		1	5	0	0
300000	secretoglobin,	111 A 002	** ****	000						
206799_	family ID,	NM_006	Hs.20409	SCG	0.1	0.0	1.6	0.5	0.3	0.3
at	member 2	551	6	B1D2	6	6	2	1	7	
	neurotrophic	********								
221796_	tyrosine kinase,	AA7071	Hs.49431	NTR	0.2	0.1	0.5	0.1	0.3	0.2
at	receptor, type 2	99	2	K2	8	0	3	5	6	8
	ubiquitin-like									
	modifier									
203281_	activating enzyme	NM_003		UBA	0.5	0.3	0.7	0.5	0.6	0.7
s_at	7	335	Hs.16695	7	6	7	8	7	7	4
	cadherin, EGF									
204029_	LAG seven-pass	NM_001		CELS	0.6	0.4	1.5	1.2	0.6	0.7
at	G-type receptor 2	408	Hs.57652	R2	2	1	7	4	6	9
205009_	o groveopor a	NM_003	Hs.16280	- 1 1 in	0.2	0.1	10.	73	0.6	0.6
at	trefoil factor 1	225	7	TFF1	8	8	76		5	8
204508_	carbonic	BC00101	/ Hs.21099	TEACT	0.3	0.2	4.4		0.6	0.8
1		2		CA13	0.5					
s_at	anhydrase XII	4	5	CA12		0	6	5	5	2
onsoro	growth regulation	X7X # 644 4	TT. XANNA	ÓDE	- A-		y ~		<u> </u>	0.01
205862_	by estrogen in	NM_014	Hs.46773	GRE	0.4	0.3	1.9	1.6	0.6	0.8
at	breast cancer 1	668	3	B 1	7	1	9	6	5	3
	inhibitor of kappa									
	light polypeptide									
	gene enhancer in									
209341_	B-cells, kinase	AU1533	Hs.59766	IKBK	0.3	0.2	0.7	0.5	0.6	0.7
s_at	beta	66	4	В	0	0	1	0	5	1
205696_	GDNF family	NM_005	Hs.38834	GFR	0.7	0.5	3.5	4.5	0.6	1.2
s_at	receptor alpha 1	264	7	Al	9	I.	2	1	4	8
203726_	a contrar a	NM_000	Hs.43636	LAM	0.2	0.1	0.3		0.6	0.7
s_at	laminin, alpha 3	227	7	A3	3	4	8	8	2	2
206754_	within a	NM_000	·	CYP2	0.3	0.2	3.9		0.6	0.8
s_at		767		B6	5	0.2	9	9	1	0.0
ł	and the second second		محتد الإلائمان واو						1	
218976_	DnaJ (Hsp40)	NM_021	Hs.26072	DNA	0.2	0.1	2.4	1.7	0,6	0.7

		4	210							
at	homolog, subfamily C, member 12 interleukin 6	800	0	JC12	1	3	8	3	1	0
212195_ at 205509_ at	signal transducer (gp130, oncostatin M receptor) carboxypeptidase B1 (tissue)	AL04926 5 NM_001 871	Hs.53208 2 Hs.47789 1	IL6S T CPB1	0.5 0 0.6 8	0.3 0 0.4 0	1.6 1 3.6 0	1.1 1 3.1 5	0.6 0 0.5 9	0.6 9 0.8 7
	interleukin 6 signal transducer (gp130,		-							
212196_ at	oncostatin M receptor) E74-like factor 5 (ets domain	AW2429 16	Hs.53208 2	IL6S T	1.0	0.5 9	3.1 6	2.3 5	0.5 9	0.7 4
220625_ s_at	transcription factor) serpin peptidase inhibitor, clade A	AF11540 3	Hs.11713	ELF5	0.5 9	0.3 4	0.0 8	0.0 8	0.5 8	0.9 4
202376_ at	(alpha-1 antiproteinase, antitrypsin), member 3	NM_001 085	Hs.53429 3	SERP	0.9	0.5	2.9	2.0	0.5	0.7
	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase,	085	3	INA3	1	3	1	8	8	2
209443_	antitrypsin),		Hs.15962	SERP	0.4	0.2	1.6	2,1	0.5	1.3
at	member 5	J02639	8	INA5	8	6	2	2	6	$\left \begin{array}{c} 1 \\ 1 \end{array} \right $
205225_ at	estrogen receptor 1	NM_000 125	Hs.20812 4	ESRI	0.0	0.0 2	3.6 6	2.5 9	0.3	0.7
202018_	<u> </u>			LORI	0.5	0.5	1.0	0.2	0.8	$\frac{1}{0.2}$
s_at	lactotransferrin	343	7	LTF	9	1	1	0	6	0
206509_ at	prolactin-induced protein FBJ murine	NM_002 652	Hs.99949	PIP	0.0 9	0.1 1	2.0 7	0.4 4	1,1 9	0.2
209189_	osteosarcoma viral oncogene	BC00449	Hs.73131		0.4	0.3	1.9	0.5	0.7	0.2
at	homolog	0	7	FOS	9	7	4	7	6	9
204014_ at	dual specificity phosphatase 4 sorbin and SH3	NM_001 394	Hs.41796 2	DUS P4	0.0 9	0.0 9	0.7 6	0.2 6	0.9 7	0.3
218087_ s_at	domain containing 1	NM_015 385	Hs.38621	SOR BS1	0.3	0.2 2	0.8 5	0.2 9	0.6 8	0.3
219580_	transmembrane	NM_024	Hs.11583	TMC	0.2	0.2	1.2	0.4	0 1.1	0.3
s_at	channel-like 5	780	8	5	3	7	7	8	7	8
219304_ s_at	platelet derived growth factor D	NM_025 208	Hs.35229 8	PDG FD	0.2 2	0.1	$\frac{0.7}{2}$	0.2	0.7	0.3
219440_	retinoic acid	208 NM_021	o Hs.44668	rυ	0.3	6 0.2	1.5	0.6	0.6	9 0.4
at	induced 2 pleckstrin and	785	0	RAI2	6	5	0	0	8	0
203355_	Sec7 domain	NM_015	Hs.43425		0.1	0.1	0.7	0.3	0.9	0.4
s_at	containing 3 family with sequence	310	5	PSD3	7	6	4	0	4	1
217967_	similarity 129.	AF28839	Hs.51866	FAM	0.7	0.5	1.4	0.6	0.8	0.4
s_at	member A	1	2	129A	4	ÿ	ł	1	0	3
214218_	X inactive	AV6993	Hs.52990	XIST	0.3	0.2	0.6	0.3	0.6	0.4

		4								
s_at	specific transcript (non-protein	47	I		1	1	9	0	8:	4
262672	coding)									
202962_	kinesin family	NM_015	Hs.44476	KIFI	0.2	0.1	0.7	0.3	0.8	0.4
at	member 13B	254	7	3B	1	7	8	4	2	4
	3-hydroxy-3-									
00.4607	methylglutaryl-	ND 6 006		10.00						
204607_	CoA synthase 2	NM_005		HMG	0.3	0.4	1.2	0.5	1.1	0.4
at	(mitochondrial)	518	Hs.59889	CS2	6		9	8	1	5
	X inactive									
001000	specific transcript	× 1 686.0								
221728_	(non-protein	AA6284	Hs.52990		0.3	0.2	0.6	0.2	0.6	0.4
x_at	coding)	40	1	XIST	0	0	6	9	7	5
010000	regulator of G-	ND 6 007			6.0				<u> </u>	
218353_	protein signaling	NM_025	11 0 to 20	noor	0.3	0.2	1.3	0.6	0.7	0.4
at	5	226	Hs.24950	RGS5	6	6	4	0	2	5
213110_	collagen, type IV,	AW0521	Hs.36908	COL	0.2	0.1	0.8	0,4	0.8	0.4
s_at	alpha 5	79 NB 6 001	9	4A5	0	6	7	0	1	5
201694_	early growth	NM_001	Hs.32603	EGR	0.1	0.1	0.3	0.1	0.7	0.4
s_at	response 1	964	5	1	8	4	4	6	4	7
202240	Fc fragment of	NIN (000	TT. 11179	ECO	0.2		0.7	0.0	0.0	
203240_	IgG binding	NM_003	Hs.11173	FCG	0.3	0.3	0.6	0.2	0.8	0.4
at	protein	890 NINA 004	2. 11: 10:555	BP	9	2	3	9	3	7
203130_	kinesin family	NM_004	Hs.43555	KIF5	0.3	0.2	1.3	0.6	0.7	0.4
s_at	member 5C	522	7	C	4	7	9	6	9	8
209706_	ML howashes 1	AF24770 4	11. 52000	NKX	0.5	0.4	1.2	0.6	0.6	0,4
at	NK3 homeobox 1	4	Hs.55999	3-1	9	1	5	Û	9	8
212419_	zinc finger, CCHC domain	AA1313	11. 23300	ZCC	0.2		1.0	0.5	0.7	
af	containing 24	24	Hs.52308	HC24	0.3	0.2	1.0	0.5	0.7	0,4
200795_	SPARC-like 1	24 NM_004	0	SPA	0.4	7 0.3	3 1.2	0 0.6	7	9
at	(hevin)	684	Hs.62886	RCL1	0.4	0.5 3	- li,≊ Ĵ		0.8	0.4
ai	zinc finger and	004	118.02080	KCL1	<u>,</u> ‡.	2	ł	0	0	9
205883_	BTB domain	NM_006	Hs.59194	ZBT	0.4	0.4	0.7	0.3	0.9	0.4
at	containing 16	006	5	Bl6	3	2	5	0.5 7	8	9
221748_	containing 10	AL04697	J Hs.47138	DIN	0.2	0.1	0.4	0.2	0.7	0.5
s_at	tensin 1	9	1	TNS1	2	7	6	3	9	0
201041_	dual specificity	NM_004	Hs.17169	DUS	0.3	0.3	0.7	0.3	0.9	0.5
s_at	phosphatase 1	417	5	P1	3	0	5	8	3	
205776_	flavin containing	NM_001	Hs.64270	FMO	0.2	0.2	0.7	0.3	1,2	0.5
at	monooxygenase 5	461	6	5	2	9	-0.7	6	9	2
204072_	furry homolog	NM_023	Hs.50766	2	0.1	0.1	0.5	0.2	0.8	0.5
s_at	(Drosophila)	037	9	FRY	5	3	6	9	9	2
1598_g_	growth arrest-		Hs.64634	GAS	0.7	0.5	1.2	0.6	0.7	0.5
at	specific 6	L13720	6	6	5	5	5	5	3	3
214657_	ALL CONTRACTOR	AU1349		NEA	0.2	0.1	0.3	0.2	0.7	0.5
s_at		77		TI	1	6	9	0	4	3
	glutathione S-									
204418_	transferase mu 2	NM_000	Hs.27983	GST	0.4	0.3	0.9	0.5	0.9	0.5
x_at	(muscle)	848	7	M2	1	9	5	3	5	6
210365_				RUN	0.1	0.1	0.3	0.1	0.8	0.5
at		D43967		X1	8	6	1	8	9	6
	enoyl CoA									
218552_	hydratase domain	NM_018	Hs.47631	ECH	0.4	0.3	0.8	0.4	0.8	0.5
at	containing 2	281	9	DC2	6	9	4	7	5	7
202992_	complement	NM_000			0.7	0.5	1.1	0.6	0.7	0.5
at	component 7	587	Hs.78065	C7	7	9	5	5	7	7
205794_	neuro-oncological	NM_002		NOV	0.2	0.1	0.6	0.3	0.6	0.5
s_at	ventral antigen 1	515	Hs.31588	A1	4	6	8	9	8	7
204622_	nuclear receptor	NM_006	Hs.56334	NR4	0.1	0.1	0.4	0.2	0.9	0.5
	F rance							ana		

PCT/AU2015/050096

x_at	subfamily 4, group A, member 2	186	4	A2	6	4	3	5	0	7
	nuclear receptor subfamily 4,									
216248_	group A, member		Hs.56334	NR4	0.1	0.1	0.5	0.3	1.0	0.5
s_at	2	S77154	4	A2	8	9	6	3	2	8
205380_	PDZ domain containing 1	NM_002 614	Hs.44475 1	PDZ K1	0.1	0.1 5	$\frac{0.8}{2}$	0.4	0.7 8	0.5
at 212741_	monoamine	AA9233	Hs.18310	MAO	0.4	0.3	1.0	0.6	0.7	0.5
at	oxidase A	54	9	A	4	4	2	0	6	9
201983_	epidermal growth	AW1570	Hs.48829	EGF	0.7	0.9	0.3	0.1	1.2	0.6
s_at	factor receptor	70	3	R	2	2	1	9	7	0
205157_		NM_000		KRT	$1.2 \\ 9$	0.9 9	0.4	0.2	0.7 7	0.6
s_at	microtubule	422		17	9	9	6	1	1	0
212095_	associated tumor	BE55242		MTU	0.2	0.3	0.7	0.4	1.0	0.6
s_at	suppressor 1	1	Hs.7946	S 1	9	1	1	3	7	0
204294_	aminomethyltrans	NM_000			0.1	0.1	0.2	0.1	0.6	0.6
at	ferase	481	Hs.102	AMT	6	1	0	2	8	0
216333_		M25813		TNX A	$\begin{vmatrix} 0.8\\2 \end{vmatrix}$	0.5 9	1.0 -5	0.6	0.7 2	0.6
x_at 211986_	AHNAK	M23813 BG28786	Hs.50275	A AHN	0.4	0.3	- 5 1.0	0.6	0.8	0.6
at	nucleoprotein	2	6	AK	2	5	0	2	4	2
	solute carrier									
206143_	family 26,	NM_000		SLC2	0.4	0.4	0.5	0.3	1.0	0.6
at	member 3	111	Hs.1650	6A3	2	5	2	2	8	2
206093_ x_at		NM_007 116		TNX B2	0.8	0.5 9	1.0	0.6	0.7 2	0.6
A_at	inositol 1,4,5-	110		DZ	<u>ب</u>		1	~	4	-
203710_	trisphosphate	NM_002	Hs.56729	ITPR	0.2	0.2	0.9	0.5	0.7	0.6
at	receptor, type 1	222	5	1	8	0	0	6	2	2
	leucine-rich									
211596_	repeats and	AB05046	Hs.51805	LRIG	0.2	0.2	0.9	0.6	0.8	1
s_at	immunoglobulin- like domains 1	ADU3040 8	HS.31803	LRIO 1	8	0.2 4	0.9 7	0.0	0.8	0.6
<u>a_u</u>	neural precursor	Ω.	•2).	.	O.	T	4		Ŷ	
	cell expressed.									
	developmentally									
545426	down-regulated 4-	<u>* 15 08700</u>	11-10000	ATET	80	0.1	0.5	0.3	0.2	
212448_ at	like, E3 ubiquitin protein ligase	AB00789 9	Hs.18567 7	NED D4L	0.2	0.1 9	0.5 9	0.3	0.7 1	$\left \begin{array}{c} 0.6\\ 3\end{array}\right $
216264_	laminin, beta 2		, Hs.43972	LAM	0.2	0.2	0.7	0,4	0.8	0.6
s_at	(laminin S)	X79683	6	B2	4	ĩ	2	6	8	4
202723_		AW1174	Hs.37066	FOX	0.5	0,4	0.6	0.4	0.8	0.6
s_at	forkhead box O1	98	6	01	5	5	3	0	2	4
204823_	neuron navigator	NM_014	Hs.65530	NAV	0.3	0.3	0.6	0,4	0.7	0.6
at	3 met proto-	903	1.	3	7	0	7	2	6	4
	oncogene									
	(hepatocyte									
203510_	growth factor	BG17054	Hs.13296		0.4	0.5	0.2	0.1	1,1	0.6
at	receptor)	1	6	MET	7	5	6	7	6	6
	nuclear factor I/C (CCAAT-binding									
213298_	transcription		Hs.17013		0.5	0.4	0.8	0.5	0.8	0.6
at	factor)	X12492	1	NFIC	4	7	8	8	6	6
	a a de la companya d				••-					

220

Table 18. Upregulated targets of the downregulated hsa-mir-568 in high iBCR
score ER-/ER+ tumors.

Fold-			***************************************			
chang		Symbo		EntrezI		
e↑	ProbeSet	1	Name	D	Accession	UGCluster
		HELL	helicase, lymphoid-		NM_0180	
3,0	220085at	S	speeifie	3070	63	Hs.655830
	20 1 <u>2</u> 91s_	TOP2	topoison terase (DNA) Π			
2.5	at	Α	alpha 170kDa	7153	AU159942	Hs. 156346
2.4	203213at	CDK1	cyelin-dependent kinase 1	983	AL524035	Ms,732435
	212009 <u>s</u> _		slress-induced-			
2.3	at	STIP1	phosphoprotein 1	10963	AL553320	Hs,337295
		BUB1	BUBI mitotic checkpoint		NMJ 3012	
1.7	203755at	B	serine/threonine kinase B	701	11	Hs.513645
			low density lipoprotein			
			receptor-related protein 8,		NMJ 3046	
1.6	205282at	LRPS	apolipoprotein e receptor	7804	31	Ms.280387
			nudix (nucleoside			
		NUDT	diphosphate linked moiety		NM_0070	
1.6	202697. at	21	XVtype motif 21	1 105 1	06	Hs,528834
1.5	209053 _s	WHSC	Wolf-Hirsehhorn	7460	DESCOS	H 1 10076
1.5	at	1	syndrome: candidate 1	7468	BE793789	Hs.1 13876
1.6	202134 _s_	WWT	WW domain containing	05007	NM_0154	11 504010
1.9	at	R1	transcription regulator 1	25937	72	Hs.594912
		MYBL	v-myb myeloblastosis viral oncogene homolog		AW50226	
Τò	2:1:2006 at		(avian)-Hke 1	4603	AW59226	Hs.445898
1.9	2 13906, at 206348 _s_	, 1	pyruvate dehydrogenase	4005	6 NM_0053	П8.44.3696
1.8	200348 <u>s</u>	PDK3	kinase, isozyme 3	5 165	91	Hs.29603 1
1.0	al	TDKS	FCFl small subunit (SSU)	5 105	91	115.29003 1
			processome component		NML0159	
1.8	219927 at	FCFI	homolog (S. eerevisiae)	5 1077	62	Hs.579828
112			v-myc myelocytomatoas			10.079020
			viral related oncogene.			
	209757s_		neuroblastoma derived			
1.8	at	MYCN	(avian)	4613	BC0027 12	Hs,25960
		FAM5	family with sequence			
1.8	217562 at	C	similarity 5, member C	339479	BF589529	Hs.65765
	219875 _s_		desumoylating		NM_()160	
1.7	at	DESI2	isopeptidase 2	5 1029	76	Hs.4983 17
			platelet-derived growth			
		PDGF	factor receptor, alpha			
1.7	215305 at	RA.	polypeptide	5 156	1179306	Hs.74615
		TDEM	triggering receptor		387.0102	
.~	a 16424	TREM	expressed on myeloid cells	54210	NM_0186	Ц. 202022
1.7	2 19434 .at	1	1 gynoptotogmin hinding	54210	43	Hs.283022
	2 17834 _s_	SYNC	synaptotagmin binding. cytoplasmic RNA		NM 0062	
1.7		RIP	interacting protein	10492	NM_0063 72	Hs.571177
1.1	at 205646s_	1/11	moracung protom	10772	¹² NM_0002	113.3/14//
1.6	203040s_ at	PAX6	paired box 6	5080	80	Hs.270303
1.0	ut	TCP 11	1-complex 11, testis-		NM_0183	10.270505
1.6	205796at	LI	speciiic-like 1	55346	93	н:s :.655341
	ut	APOO	-receive and a			1.0.000011
1.6	222269, .at	L	apolipoprotein O-like	139322	W87634	Hs.512181
			centrosomal protein		NMJ)248	
1.6	219311 at	CEP76	76kDa	79959	99	Hs.2.36940
1.6	214708 at	SNTB1	syntrophin, beta 1	664 1	BG484314	Hs.46701
1 1.0	u	1 2.1.1.0.1	1 - J		201010114	110.107.01

1	i	1	(dysto phin-associated	1		
			protein A 1, 59kDa, basic			
			component 1)			
			ST8 atpha-N-acetyl-			
		ST8S1	neuraminide alpha-2,8-			
1.6	210073at	A1	sialyitransferase 1	6489	L32867	Ms,408614
	205490x_		gap junction protein, beta			,
1.6	at	GJB3	3, 31kDa	2707	BF060667	Ms,522561
			CAP-GLY domain			
			containing linker protein		NML0246	
1.6	219944at	CL1P4	family, member 4	79745	92	Ms, 122927
			optic atropiiy 3 (atitosomal			
			recessive, with chorea-and		NMJ)251	
1.6	206357at	OPA3	spastic paraplegia)	80207	36	Ms,466945
			Suppressor of variegation			
		SLJV39	3-9 homolog 2		NM_0246	
1.6	219262at	H2	(Drosophila)	79723	70	Hs.554883
	201602_s_	PPPIR	protein phosphatase- 1,			
1.5	at	12A	regulatory suhunit 12A	4659	BE 737620	Hs.49582
	21.6008, <u>s</u>		ariadne homolog 2			
1.5	at	AR1H2	(Drosophila)	10425	AV694434	Hs.633601
	200671s	SPTBN	spectrin, beta, non-			
1.5	at	I	erytltroeytic 1	67 11	N92501	Hs.503178
	210041s_					
1.5	at	PGM3	phosphogiucomutase 3	5238	BC001258	Hs.661665
			solute carrier. family 6			
		SLC6A	(neutral amino acid		NM_0 180	
1,5	206376_at	15	transporter), member 15	551 17	37	Hs.44424

Bolded genes upresulated in high iBCR score ER-/ER+vs. normal breast

5

222

EXAMPLE 3

The iBCR test described herein was developed from a meta-analysis of gene expression profiles of breast cancer. This test is based on the expression of 43 genes which are prognostic as a signature in breast cancer irrespective of subtype. This test was also found to be prognostic in lung adenocarcinoma. Patients with high iBCR score have much poorer overall survival than patients with low iBCR score.

In the **-current** study, The Cancer Genome Atlas (TCGA) datasets for several cancer types were investigated for three **purposes.** First, to determine the differences at the protein level between high iBCR score breast cancer cases to low iBCR score breast cancer cases. This comparison was also carried out for lung adenocarcinoma. Secondly, to determine whether deregulated proteins/phosphoproteins between high and low iBCR score tumours are prognostic. Finally, the prognostic value of the iBCR mRNA signature and associated protein signature are prognostic in other cancer types profiled by the TCGA.

As shown in Figure 48A&B, comparison of the reverse phase protein array (RPPA) data between ER+ breast cancer cases with high iBCR score and low iBCR score identified several deregulated proteins and phosphoproteins between these two patient subgroups. Similar analysis in ER- breast cancer cases with high iBCR score compared to those with low iBCR score also identified deregulated proteins and phosphoproteins between these two patient subgroups (Fig.48C&D). These significantly deregulated proteins and **phosphoproteins** were then tested for association with overall survival. The upregulation of 9 and down regulation of 8 proteins/phosphoproteins were highly prognostic in breast cancer (Fig.49A). Importantly, the integration of the iBCR mRNA and protein signatures is the most significant indicator of overall survival of breast cancer patients irrespective of subtypes and in comparison to all known ciinicopathological indicators (Fig.49B).

Similar analysis in the lung adenocarcinoma TCGA dataset identified proteins/phosphoproteins based on the iBCR mRNA signature which are prognostic 30 as a protein signature (Fig.50A-C), The integration of the iBCR mRNA/protein signatures were highly prognostic and outperformed the standard ciinicopathological indicators in lung adenocarcinoma (Fig.50D&E).

Table 19 summarises the 43 genes at the mRNA level and 23 proteins/phosphoproteins in the iBCR test. The components which were prognostic

in breast cancer (Fig.48 & Fig.49) and lung adenocarcinoma (Fig.50) are labelled in Table 19. Next, the association of the mRNA and protein/phosphoprotein levels of the genes in Table J9 with overall survival was tested in other cancer types. The deregulation of mRNA and protein levels of the iBCR test components that associate

- 5 with overall survival is summarised in Table 19. For each cancer type, the marked components were used as a signature and the stratification of overall survival of kidney renal clear cell carcinoma (KIRC), skin cutaneous melanoma (SKCM), uterine corpus endometrioid carcinoma (UCEC), ovarian adenocarcinoma (OVAC), head and neck squamous cell carcinoma (HNSC), colon/rectal adenocarcinoma
- 10 (COREAD), lower grade glioma (LGG), baldder urothelial carcinoma (BLCA). lung squamous cell carcinoma (LUSC[^] kidney renal papillary cell carcinoma (KIRP), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), liver hepatocellular carcinoma (LIHC) and pancreatic ductal adenocarcinoma (PDAC).is shown Figures 51 to 54.
- In conclusion, the iBCR test including the mRNA and protein components (Table 1.9) is a highly prognostic test in all cancers tests. **This** test identifies aggressive human cancers and is enriched for protein-protein interactions (Figure 55) as well as biological functions related to the hallmarks of cancer (Table 20).

~~=	
· 7 · 7 🏎	

Table 19: 1	[hei	BCF	R tes	t cor	mpoi	nents	s in	diffe	renl	t car	icers fr	om	T	CGA	A dat	taset	S
iBCR test	BRCA	LUAD	KIRC	SKCM	UCEC	OVCA	HNSC	COREAD	ree	BLCA	rnsc		AAC	KIRP	PDAC	пнс	CESC
component	ß	5	ľ	S	 	0	Ŧ	8		α		ľ	4	×	۵.	-	<u>ں</u>
mRNA															,		
GNB2L1	+	+			+	+	+			4	+		*	+		+	
EIF3K	+		+	+	+	+		+		4		5	+		4		-
TXN	+	+				+	+	+	+	-			+			+	-
ADORA2	+		+	+		+	4			4			+	+	 +		
В																	
KCNG1	+	+	+		+	+	+			+			+	+			
BCAP31	+	+	+	1	+				+	1			+				ı
GSK3B	+	+		+	+	+					-	ſ		+	+		
EXOSC7	+		+	+	+					1					+	+	•
FOXM1	+	+	+	+	+							- Andrewski - A	+	+	+		
CD55	+		+				+	+		-		ľ		+	+		
ZNF593	+	+	+		+		+				+		+				
EXO1	+	+		+	+								+	+	+		
KIF2C	+	+	+	+	+								+	+			
STAU1	+					+			+	+				+	+		+
MAP2K5	+				+	+				+			+				
ттк	+	+	+		+								+	+			
MELK	+	+	+		+								+	+			
CENPA							 					and the second se					
	+	*	+	+		 				 			+	+			
TPX2	+	+	+	+		 							+	+			
NDUFC1	+		ļ				+	+		\$	-						
CA9	+	+												+		+	+
CAMSA	+			+						+	-	ľ			+		

PCT/AU2015/050096

			·					·				,				
P1																
GRHPR	+	+			+					-		+				
HCFC1R	+	+				+	+	+								
1	Ŧ	Ŧ				Ŧ	т	T								
CEP55	+	+	+									+	+			
MCM10	+	+		+								+	+			
PML	+		4		4			+	+							
CENPN	+	+	+									+				
CARHSP																
1	+	+	+						+							
OFTNIO																
CETN3	+									-				+		
ABHD5	+			+							-					
BTN2A2	[-	-		-		-	-	-	+	-				-		
SMPDL3																
B	-			-				-		-	+		4	-		
MTMR7	-	-		-			-					•		÷	+	
ME1	_			-				-						+		+
BCL2	-		•									•	+	-		
ZNRD1-	.															
AS1		-				~										•
MAPT	-	-	_									_				
ERC2	-									-				5		
BTG2	-	-		-												
							 			ļ						
MYB	•				~							-				
STC2	-											-				
		ļ	ļ	ļ				ļ		ļ						ļ
IGH@	+															
l	l	l	ļ	l	L	L	L	ļ	L	L	L			l	l	I

226

Protein											
DVL3	+	+	+		+			+	+	+	+
PAI-1		+	+	+		+	+	+	+		+
VEGFR2	+					+	-		+	+	+
INPP4B	+				+		+	+			+
EIF4EBP 1	+		+	+	+			+			
EGFR	+			ł			+	+			+
Ku80		+		4					+	+	
HER3	+		-				+	+			
SMAD1	+						+		+	+	
GATA3		+					+				+
ITGA2		+					+				
AKT1		+								+	
NFKB1	+								+		
HER2	+										
ASNS	-			-	+	-	-	-		-	-
MAPK9	-		-	-	-	-		-			
ESR1		-	-	-	-	-			-		
YWHAE	-				-	-		-	-		
RAD50	-		-					-			
PGR	-					-			+		
COL6A1	4						+				
PEA15	1							4			
RPS6	4										

+ denotes the association of overexpression with poorer survival (also shaded as red).

- denotes the association of underexpression with poorer survival (also shaded in green)

Table 20: Enrichment of biological	functions	related	to the	hallmarks o	f cancer
in the iBCR test					

60 ID	TERM	# GENES	P- VALUE	P- VALUE FDR	P-VALUE BONFERR ONI
GO:0009	response to endogenous stimulus	22	9.17E-	1.13E-	1.13E-06
719			11	06	
GO:1901	response to oxygen-containing	18	9.10E-	2.90E-	1.13E-03
700	compound		08	04	
GO:0032	regulation of cellular protein	20	1.58E-	2.90E-	1.96E-03
268	metabolic process	~~	07	04	0.055.00
GO:0035	intracellular signal transduction	20	1.66E-	2.90E-	2.05E-03
556		1 л	07	04	3 33E A3
GO:0010 243	response to organonitrogen	14	1.80E- 07	2.90E- 04	2.22E-03
245 GO:0010	compound	24	07 1.82E-	04 2.90E-	2.25E-03
033	response to organic substance	24	1.82E- 07	2.90E- 04	2.255-05
GO:0000	mitotic cell cycle	14	1.83E-	2.90E-	2.27E-03
278	into de con ejece	- 1	07	04	2.272.05
GO:0051	regulation of transport	18	1.87E-	2.90E-	2.32E-03
049	, contraction of the second		07	04	
GO:0031	positive regulation of protein	15	2.68E-	3.41E-	3.32E-03
401	modification process		07	04	
GO:0022	cell cycle process	16	2.86E-	3.41E-	3.54E-03
402			07	04	
GO:0044	positive regulation of molecular	18	3.47E-	3.41E-	4.30E-03
093	function		07	04	
GO:0051	negative regulation of transport	10	3.75E-	3.41E-	4.64E-03
051			07	04	
GO:0042	response to drug	11	3.76E-	3.41E-	4.66E-03
493			07	04	
GO:0007	cell cycle	18	3.85E-	3.41E-	4.77E-03
049			07	04	*****
GO:0009	response to mechanical stimulus	8	4.36E-	3.60E-	5.40E-03
612			07	04	7 4 35 00
GO:0001	positive regulation of protein	13	5.76E-	4.13E-	7.13E-03
934	phosphorylation	* ~	07	04 4.13E-	7 FFF 02
GO:0008 283	cell proliferation	13	6.10E- 07	4.13E- 04	7.55E-03
GO:0009	positive regulation of signal	16	6.12E-	04 4.13E-	7.57E-03
967	transduction	TO	0.12L-	4.136-	7.372-03
GO:0051	positive regulation of cellular	13	6,34E-	4.13E-	7.85E-03
130	component organization	10	0.340	04	7.032.05
GO:0022	regulation of anatomical structure	13	8.87E-	5.49E-	1.10E-02
603	morphogenesis	10	07	04	11202 02
GO:0072	divalent inorganic cation	9	9,96E-	5.70E-	1.23E-02
507	homeostasis	-	07	04	
GO:0023	positive regulation of signaling	16	1.12E-	5.70E-	1.38E-02
056	,		06	04	
GO:0032	positive regulation of cellular	15	1,13E-	5.70E-	1.40E-02
270	protein metabolic process				

GO:0048 732	gland development	9	1.13E- 06	5.70E- 04	1.40E-02
GO:0010 647	positive regulation of cell communication	16	1.18E- 06	5.70E- 04	1.46E-02
GO:0051 246	regulation of protein metabolic process	20	1.20E- 06	5.70E- 04	1.48E-02
GO:0051 128	regulation of cellular component organization	19	1.51E- 06	6.91E- 04	1.87E-02
GO:0071 310	cellular response to organic substance	19	1.89E- 06	8.34E- 04	2.34E-02
GO:0042 327	positive regulation of phosphorylation	13	2.51E- 06	1.07E- 03	3.10E-02
GO:1901 698	response to nitrogen compound	13	2.90E- 06	1.18E- 03	3.59E-02
GO:0009 725	response to hormone	13	2.95E- 06	1.18E- 03	3.65E-02
GO:0048 584	positive regulation of response to stimulus	18	3.30E- 06	1.24E- 03	4.08E-02
GO:0042 127	regulation of cell proliferation	17	3.36E- 06	1.24E- 03	4.16E-02
GO:0070 887	cellular response to chemical stimulus	21	3.40E- 06	1.24E- 03	4.21E-02
GO:0010 608	posttranscriptional regulation of gene expression	10	3.65E- 06	1.29E- 03	4.52E-02
GO:0043 085	positive regulation of catalytic activity	15	3.78E- 06	1.30E- 03	4.68E-02

EXAMPLE 4

The study by Westin ei al. (Lancet Oncol, 2014, vol 15(1)) perfomied gene expression profiling on 18 folLicular lymphoma patients before receiving pidilizumab in combination with rituximab. The expression of the genes in the iBCR signature 5 was investigated for association with progression free survival (PES) in these patients. Twelve genes showed a strong association with PFS (Figure 56A) (all the genes that associated with survival belonged to the TN component of the iBCR test). As shown in Figure 56B, a score calculated based on the iBCR signature was highly predictive of patient survival after pidilizumab + rituximab immunotherapy. The study also 10 profiled eight of the patients 15 days post treatment. The expression of the genes in the signature was compared in these patients before and after treatment. Apart from a tend towards an inversion of the expression profile in general which was most obvious for the one patient who survived (Figure 56C —patient number 9), one gene (ADORA2B) was significantly different in tumours after treatment compared to that 15 before treatment (Figure 56D). This gene could be used to confirm response after

The data presented here indicate the iBCR test can be a companion diagnostic for certain immunotherapy which is not surprising since the **TN** component includes

20 several immune related genes in addition to genes involved in redox reactions and kinases.

selection of patients based on the iBCR test.

EXAMPLE 5

A meta-analysis was performed in **Oncomine**TM using breast cancer datasets irrespective of subtypes or gene expression array platforms used. **The** global gene expression profiles of breast tumors that led to metastatic or death event within 5 years were compared to those that did not and the top overexpressed (OE) and underexpressed genes (UE) in these comparisons were selected. The commonly deregulated genes **in the** primary tumors that led to metastatic and death events (depending on the annotation of each dataset) were then interrogated using the online tool KM-PlotterTM (n>4000 patients with some overlap with the datasets in OncomineTM). Genes which associated with relapse-free survival of breast cancer patients were selected.

231

The 860 genes identified from this analysis were then subjected to network analysis using the Ingenuity Pathway Analysis (IPA[®]) software to identify functional networks within this gene list (see Table 2 1), Figure 57 shows the eleven functional networks that contain the 860 genes identified from the meta-analysis where the function of each network is specified and the interactions amongst these networks are depicted with the connecting lines. Genes whose overexpression is associated with poorer survival are marked in red and those whose underexpression is associated with poorer survival are marked in green, Larger circles mark genes with highest association with patient survival in any given network.

10 These 860 genes identified from the meta-analysis were then filtered for genes with the highest association with patient survival in each of the eleven functional networks, From this, the selected 133 genes (listed in Table 22) from the eleven functional networks are shown in Figure 58 (panel A) where the function of each network is displayed. Based on these networks, the 133 genes were classified **to**

- 15 six functional metagenes (listed in Table 22) which include: Metabolism, Signalling, Development and Growth, Chromosome segregation/Replication, Immune response and Protein synthesis/Modification metagenes. The association of each of these metagenes with relapse-free survival of breast cancer patients in the KM Plotter dataset is shown in panel B of Figure 58, Each of these metagenes were scored by
- 20 calculating the ratio of the expression level (sum or average) of the overexpressed genes in the metagene to the expression level (sum or average) of the underexpressed genes in the metagene. The green lines (with better survival) denote lower score (ratio of the overexpressed to the underexpressed genes) of the metagene whereas the red line (with worse survival) denote high score (ratio of the overexpressed genes to

the underexpressed genes).

patients _*					
	drate/Lipid bolism	Cell Signaling	Cellular Develop		pment
ARHGEF3	ATP6V0A1	AGBL2	ABCA8	KIF5C	<u>ZNF211</u>
ASAH1	ATP6V1C1	ARFRP1	<u>APBB2</u>	LRIG1	AP3B1
ASB1	COX4I1	ARNT2	<u>ART4</u>	MADD	DYNC1LI2
<u>ATP2A2</u>	DHRS7	CCR1	ATHL1	<u>MAPT</u>	ESRP1
BRD8	EPCAM	<u>DST</u>	BCL2	MIER2	GMPS
BTG2	HN1	EEF1A1	BEND5	MIS18A	GPI
<u>BTN2A2</u>	IDH3A	LUZP1	<u>CABYR</u>	<u>MR1</u>	HCCS
<u>C1QB</u>	IDH3G	MYBPC1	<u>CASP10</u>	<u>N4BP1</u>	HCFC1R1
CERS6	LAMTOR2	PIP	<u>CHPT1</u>	NEDD4L	KCNG1
<u>CYP2C9</u>	LAMTOR3	<u>S1PR1</u>	CYBRD1	<u>OGN</u>	NAPG
ELOVL2	MATR3	SNED1	ERC2	PRKCB	NDRG1
ELOVL5	NPR3	<u>TAZ</u>	<u>FHL5</u>	PROL1	NDUFB6
ERBB4	NRIP1	<u>TP63</u>	<u>GAB1</u>	<u>RERE</u>	NDUFS6
<u>FLNB</u>	PFKP	ADORA2B	<u>GDNF</u>	SETBP1	NME1
<u>HIF3A</u>	RAP2A	CMC4	<u>GLRB</u>	<u>SGCD</u>	OIP5
<u>KIR2DL4</u>	SLC16A3	DDX39A	<u>GOLGB1</u>	SGSM2	PGAM1
<u>LRP2</u>	TK1	GAPDH	GOSR1	<u>SLC45A2</u>	PIR
LRP8	VDAC1	GSK3B	<u>GPR12</u>	SOD2	PRRG1
<u>ME1</u>	RAPGEF6	HIF1A	HLA-B	SPAG8	RTCA
NCOA1	<u>RBM38</u>	HSPA14	ITM2A	<u>SPG20</u>	S100A11
<u>NR1H3</u>	<u>SEC14L2</u>	LAMA4	<u>KIAA0247</u>	<u>SSPN</u>	SMS
PBXIP1	SRSF5	MAP2K5	KIAA0430	<u>SSX2</u>	TARS
PIK3IP1	STARD13		<u>STX18</u>	<u>XBP1</u>	TRAK2
<u>PSEN2</u>			<u>TRAK1</u>	<u>ZC3H14</u>	
			TRAPPC10	ZMYM5	

Table 21. 860 genes associated with relapse-free survival of breast cancer patients_{*}

Cel	llular Grow	/th	Chromo	
ASF1B	SLC11A1	BCAP31		AURKB
BBS1	SMARCA2	BYSL	ATP1A2	BUB1
CCL13	SNX1	CCNA2	CDC14A	BUB1B
CCND2	SORL1	CCNE2	CDC27	BUB3
CDKN2A	SPDEF	CDC25A	CSPG4	C20orf24
DI8AS3	STAT5B	CDC45	FOXK2	CCNB1
DIXDCI	TAOK3	CDC6	MAG 1	CCNB2
DOCK1	TGQLN2	CDCA3	MLLT10	CDC20
DOK1	<u>THPO</u>	CDGA8	MTUSI	CDK1
EPOR	TIMELESS	CHEK 1	NUP62	CENPE
<u>FLT3</u>	<u>TNN</u>	DERL1	NXF1	CENPF
FOSB	TNXB	DHFR	PKM YT1	CKS1B
GGA2	<u>TYR03</u>	E2F8	RAPGEF2	CKS2
HAVCR1	ULK2	ECT2	SLC25A12	FOXM1
IL1RAPL1	VPS39	GINS3	SLC8A1	KIF2C
IL6ST	<u>PIM 1</u>	RAD51	KIF4A	NUP93
JAK2	PGLD1	RRM2	MAD2L1	NUSAP1
LEPR	PLK4	SKP2	MXI1	NUTF2
LIG1	PSMD10	UBE2C	NCAPG	PL K 1
LZTFL1	MCM6	ULBP2	NDC80	PRC1
MTF1	MELK	WDHD1	NUP155	PTTG1
PCM1	MMP1	IL1RAP	TPX2	SPC25
PIK3R4	MYBL2	MCM10	ттк	TACC3
POU6F1	ORC6	MCM2	ZWINT	
<u>NF1</u>	PDAP1	MCM4		

PCT/AU2015/050096

	eplication/ nbination		imi	mune sys	tem	
ALDH3A2	A DRM1	ABCAI	DTX3	SARM 1	PBK	ACOT7
ATAD5	BIRC5	AHSG	DYNC2H1	SIRT3	PFDN5	ANP32E
ATF5	CARHSP1	ANK3	EFCAB6	SMPDL3B	PSMA2	APOBEC3
<u>BLM</u>	CENPA	APOBEC3A	EFNB3	<u>SUN</u>	RNASE4	CAST
BRD4	CENPI	BATF	ERAP1	<u>TTC28</u>	RNF141	CCT5
BRF2	CENPN	BECN1	EVL	WFDC2	S100A*)	CCT6A
BTN3A2	CENPU	BUD31	FBX041	ZMYM6	SHMT2	CCT7
CLASP2	DL6AP5	<u>C2</u>	FBXW4	ZNF516	SLC7A5	CD36
FANCA	ERCC6L	<u>C3</u>	FCGBP	IG HG3	SO X11	CD55
FBLNI	EXOI	CAGNA1D	FCGR1A	<u>IG HM</u>	TBPL1	CDK8
KIF18B	FANCI	CAROIO	FCGRIB	IGK	TCP1	C H Di
NPR2	H2AFX	<u>CD163</u>	FOS	<u>iGKC</u>	TOPORS	CXCL8
PLXNA3	H2AFZ	CD1A	FRZB	IGSF9B	TREM1	DHCR7
PSMD2	IMPDH2	CD1B	GAS7	<u>ill6</u>	TXN	DSCC1
STC2	MAPRE1	CD1C	GCH1	KCNMAL	TXNRD1	ELF3
TCF3	W1SH6	CD22	<u>GLi3</u>	<u>K!F13B</u>	WNT5A	GEMIN4
TCF7L1	PML	<u>CD68</u>	GPRASPI	<u>KL</u>	GM2A	
TCF7L2	POMP	<u>CD80</u>	GREB1	LAD1	GPSM2	
TXNIP	P5MB4	CDK5R1	1GH	LAT	GSPTI	
RYBP	PSMB5	CFB	IGHG1	LFNG	HMGB3	
TOP2A	PSMB7	CHL1	NBPF10	MED12	HMMR	
UBE2A	PSMD14	<u>C1ITA</u>	NUMAI	MSG	HNRNPA B	
UBE2B	PSMD3	CR1	PDE6B	MX2	HPSE	
PSMD7		CRP	PGR	MCCC2	HRASLS	
		CST3	PHLDA2	MRPL12	IDH2	
		CXCL14	PPY	NAE1	K!AAOIOI	
		CXCR4	RLN2	NXN	LGALS1	

	<u> </u>	letabolic [Disease		
					NMEI-
AASS	ENOSF1	MMRN2	SESN 1	CALM1	NME2
ABCC8	<u>FAM 105A</u>	MPP2	SFI1	CAMSAP1	PARPBP
ACAP2	<u>FAM 117A</u>	<u>MY019</u>	SLC35A2	CETN3	PGK1
ACSF2	<u>FAM12QA</u>	N4BP2L1	SLC6A5	CFAP20	PLCH1
AHCYL1	FAM 129A	NBEA	SLC01A2	CMG2	RAB22A
ALDH1A2	FAM49B	NCAPD3	SPATA6	CNOT8	SFXN1
ANKHD1-					
EIF4EBP3	FAM86B1	NDUFAF5	TBRG4	COGS	SHMTI
ANKRD11	FCER1A	NFATC1	TCTN 1	COQ9	SMC4
APOM	GCC2	NOP 2	TLDC1	COR01C	SNRPAI
ARL3	GLTSCR2	NSUN5	<u>TLE4</u>	DKC1	STIL
BIN 3	GTPBP2	OSBPL1A	TMC6	DONSON	SUGCT
BSDC1	HAUS5	PADI1	TSKS	EMC8	T M EM 20 8
BTD	HDC	PDK3	TSR1	ENY2	TPD52L2
BTN2A1	<u>HOOK2</u>	PHFg	TTC12	FKBP3	TRIP13
BTN3A3	HOXA4	PIEZO1	VAMP1	GGH	WOR41
<u>C12orf49</u>	<u>HPN</u>	PPIL2	VAMP2	GLT8D1	YIPF3
CALR	HS3ST1	PPP3R1	<u>WDR19</u>	GRHPR	2NF593
CAMK2B	<u>HTNI</u>	PSD4	ZCCHC24	GTSE1	
CAMK4	<u>HYI</u>	PUM1	ZFP36L2	HELLS	
CASC1	INADL	RAB30	ZMYND10	HJURP	
CCDC176	ITM2C	RAB6B	ZNF22	KCMF1	
CCDC25	ITPR1	RAI2	ZN F506	KDM5A	
<u>CDI E</u>	IVD	RAL6APA1	<u>ZNF778</u>	KIF14	
CNTRL	KIAA0930	RAPGEF3	ZSCAN32	MRPL18	
CPSF7	XIAA1549L	RCAN1	ZZEFI	MRPL9	
CROCC	LAP3	RPS6KA6	ACOT13	MRPS17	
CTDSPL	<u>ME3</u>	SERHL2	B9D2	NFATC3	

Post-Translation Nucleic Acid Metabolism Modification				
ABAT	RECQL5	HEATR3	ABCB1	RTN1
AHNAK	RUNX1	K1F18A	ACAN	TENCI
ALPK1	SCUBE2	K IF2 3	AMN	TGFB3
BCAT2	SF3B1	KPNA2	CQL4A6	TGFBR3
BMP8A	SF3B2	PA P OL A	CSF1	ADAMS
BTRC	SLC27A2	RAD51AP1	DDX11	ADM
CACNA1G	SLC6A2	RFC4	FGFRI	CALB2
CALCQCQI	SMARCC2	RPN1	FGFR2	CTSV
CBX7	SNRNP70	SEC61G	GSTMI	DBNDD1
COL14A1	SRSF7	5F3B3	GUSB	FAM96B
DCLRE1C	SSX3	SMA D5	IGF1	IGF1R
<u>ESRI</u>	SYMPK	SMYD2	LRRN3	KIF11
FBX04	SYNC	SPAG5	MA P3K12	KIF20A
FMQ5	TMC5	SRPK1	MSTI	LAPTM4B
GART	USP19	SUB1	MYB	MMP15
H6PD	USP4	TAF 11	NTRK2	RAB2A
JADE2	WSB1	TAF2	RBM5	SERPIMHI
KLRG1	ACTR3	TCEBI	RLN1	TCEB2
KMT2A	A Q P 9	USP10		
MA FG	ARPC4	VPS28		
MAPRE2	ATAD2	WWTR1		
iVIYOF	AURKA	XPOT		
NOVA 1	CA9			
NSMCE4A	CDK7			
POLE2	CEP55			
PTGDS	CFDP1			
PTGER3	DSN1			

Pr	Protein Synthesis/Modification Multiple network					
ACAAI_	MTMR3	RPS28	EIF6	SLC25A5	ABHD14A	RP54XP2
ACKR1	MTMR7	RPS4X	EPRS	SLC52A2	Clorf21	RPS4XP3
AGSL6	MXD4	RPS6	ETFA	SPiNI	C3orfl8	SLC35D2
ADRA2A	MYQZ3	SAMD4A	EXOSC4	SQLE	<u>C4A</u>	SLG38A7
AGTR2	<u>MVT 1</u>	<u>sIRpa</u>	EXOSG7	STAU1	CCDC30	SPATA6L
AUISIIP	NMES	SLC16A5	GNB2L1	SYNCR!P	CFAP69	<u>SSX7</u>
C2CD2	NMT1	SLC4A7	GPR56	ткт	CLUL1	<u>TNXA</u>
CCDC170	NPY1R	SLC7A6	6TPBP4	TMEM194A	FCGR3B	TPSAB1
CELSR2	NPY5R	SORBS1	ILF2	TUBAIB	GUSBPII	TPSB2
CHAD	QSGEPLI	SQSTM1	KARS	UBE2V1	IGHD	<u>UGT1A8</u>
CREBL2	P2RY4	<u>SRPK3</u>	LAMA3	YWHAZ	IGHJ3	WDR78
C5DE1	P2RY6	<u>THEMiS2</u>	LRPPRC		<u>IGHV3-20</u>	<u>ZNF710</u> ZNRD1-
CX3CR1	PAPPA	<u>TTLU</u>	NDUFC1		IGHV3-23	<u>ASI</u>
CYR61	PDCD2	ZNF395	NELFE		IGLJ3	BOLA2
DDX3X	PDCD4	ABHD5	NOP56		KIAAG040	MRPL23
DHTKDI	PER3	ADRBK2	QARS		KIR2DL1	
EGOT	PNPLA4	AIMP1	RACGAP1		KIR2DL3	
<u>E1F1</u>	PTCD3	ALG3	RAD21		LINC0 1260	
EIV1L2	PTPN.1	BRIX1	RAD23B		LOC389906	
EPHX2	<u>PTPRO</u>	CDKN3	RC3H2		LRRC48	
FAM 134A	PTPRT	CHAF1A	RPL14		N BPF8	
FRS3	PURA	EIF3A	RPL15		<u>NSUN7</u>	
ICA 1	RAMP2	EIF3B	RPL29		PGAP2	
LAMA2	RGS5	EIF3K	RPS9		PGPEP1	
LPAR2	RHBDD3	EIF4B	RPSA		RBMY1J	
LZTS1	RPLiO	EIF4E	SFPQ		RBMY2MP	
MAOA	RPL22	EIF4G1	SHCBP1		RGPD6	

Genes whose overexpression is associated with poorer survival are in bold and those whose underexpression is associated with poorer survival are underlined

Table 22, 133 genes associated with relapse-free survival of breast cancer patients.

ID	SEQ ID NO:	Network	Metageine
BRD8	1	Carbohydrate/Lipid Metabolism	
BTG2	2	Carbohydrate/Lipid Metabolism	
BTN2A2	3	Carbohydrate/Lipid Metabo1sm	
KIR2DL4	4	Carbohydrate/Lipid Metabolism	
<u>ME1</u>	5	Carbohydrate/Lipid Metabolism	
<u>PIK3IP1</u>	6	Carbohydrate/Lipid Metabo1sm	
SEC14L2	7	Carbohydrate/Lipid Metabolism	
PSEN2	8	Carbohydrate/Lipid Metabolism	
FLNB	9	Carbohydrate/Lipid Metabo1sm	
AGSF2	10	Metabolic Disease	
APOM	11	Metabolic Disease	
<u>B1N3</u>	12	Metabolic Disease	
CALR	13	Metabolic Disease	
CAMK4	14	Metabolic Disease	
GLTSCR2	15	Metabolic Disease	
ITM2C	18	Metabolic Disease	
NOP2	17	Metabolic Disease	
NSUN5	18	Metabolic Disease	E
ZMYND10	19	Metabolic Disease	olis
ABAT	20	Nucleic Acid Metabolism	Metabolism
BCAT2	21	Nucleic Acid Metabolism	Met
SCUBE2	22	Nucleic Acid Metabolism	~
<u>SF3B1</u>	23	Nucleic Acid Metabolism	
<u>RUNX1</u>	24	Nucleic Acid Metabolism	
ZNRD1-	25		
<u>AS1</u>	<u>ac</u>	Nucleic Acid Metabolism	
ATP6V1C1	26	Carbohydrate/Lipid Metabolism	
RAP2A	27	Carbohydrate/Lipid Metabolism	
CALM1	28 29	Metabolic Disease	
CAMSAP1		Metabolic Disease	
GETN3	30	Metabolic Disease	
COG8	31 23	Metabolic Disease	
GRHPR	32	Metabolic Disease	
HELLS	33	Metabolic Disease	
KDM5A	34	Metabolic Disease	
PGK1	35	Metabolic Disease	
PL.GHi	36	Metabolic Disease	
ZNF593	37	Metabolic Disease	
CA9	38	Nucleic Acid Metabolism	

		239	
CEP55	39	Nucleic Acid Metabolism	
CFDP1	40	Nucleic Acid Metabolism	
RFC4	41	Nucleic Acid Metabolism	
TAF2	42	Nucleic Acid Metabolism	
VPS28	43	Nucleic Acid Metabolism	
SF3B3	44	Nucleic Acid Metabolism	
LRRC48	45	Cell Signaling	
ARNT2	46	Cell Signaling	
MYBPC1	47	Cell Signaling	line.
ADORA2B	48	Cell Signaling	nali
GSK3B	49	Cell Signaling	310
LAMA4	50	Cell Signaling	
MAP2K5	51	Cell Signaling	
BCL2	52	Cellular Development	
CHPT1	53	Cellular Development	
ERC2	54	Cellular Development	
<u>ITM2A</u>	55	Cellular Development	
LRIG1	56	Cellular Development	
MAPT	57	Cellular Development	
PRKCB	58	Cellular Development	ų
RERE	59	Cellular Development	MO
ABHD14A	60	Cellular Development	CG*
FLT3	61	Cellular Growth	nt 8
SLC11A1	62	Cellular Growth	Development&Grow
<u>TNN</u>	63	Cellular Growth	doj
GPI	64	Cellular Development	eve
HCFC1R1	65	Cellular Development	Q
KCNG1	66	Cellular Development	
PIR	67	Cellular Development	
BCAP31	68	Cellular Growth	
MCM10	69	Cellular Growth	
MELK	70	Cellular Growth	
ULBP2	71	Cellular Growth	
	72	DNA	
BRD4	73	Replication/Recombination DNA	uoj
STC2	75	Replication/Recombination	6
FOXM1	74	Chromosome segregation	u de la ce
KIF2C	75	Chromosome segregation	E B
NUP155	76	Chromosome segregation	10L
TPX2	77	Chromosome segregation	55
ттк	78	Chromosome segregation	
	79	DNA	8
CARHSP1		Replication/Recombination	

015/135035		240 PC 1/AC	J2015/050096
ł	90	DNA	
CENPA	80	Repiication/Recomb ination	
0-111	81	DNA	
CENPN		Repiication/Recomb ination	
	82	DNA	
EX01		Repiication/Recomb ination	
	83	DNA	
MAPRE1	84	Repiication/Recomb ination	
PML	04	Replication/Recomb ination	
APOBEC3A	85	Immune system	
BATF	86	Immune system	
CD1A	87	Immune system	
CD1B	88	Immune system	
CD1G	89	Immune system	
CD1G CD1E	90	Immune system	
CFB	91	Immune system	
	92	· · · · ·	
CXGR4 EVL	93	Immune system	
· · · ·	94	Immune system	Jse
FBXW4	95	Immune system	l
HLA-B	96	Immune system	SS SS
	90 97	Immune system	Je
KIR2DL3	98	Immune system	nun
<u>SMPDL3B</u>		Immune system	Immune response
ACOT7	99	Immune system	
CD36	100	Immune system	
CD55	101	Immune system	
GEMIN4	102	Immune system	
NAE1	103	Immune system	
SHMT2	104	Immune system	
TCP1	105	Immune system	
TXN	106	Immune system	
TXNRD1	107	Immune system	
ABCB1	108	Post-Tran slational Modification	
<u>MVS</u>	109	Post-Tran slational Modification	ou
RLN1	110	Post-Tran slational Modification	Sati
ACAA1	111	Protein Synthes s/Modification	lific
CHAD	112	Protein Synthes s/Modification	loc
MTMR7	113	Protein Synthes is/Modification	N/S
PDCD4	114	Protein Synthes is/Modification	esi
<u>RPL10</u>	115	Protein Synthes is/Modification	nth
<u>RPS28</u>	116	Protein Synthesis/Modification	sy
<u>RPS4X</u>	117	Protein Synthes is/Modification	Gia
RPS6	118	Protein Synthes is/Modification	Protein synthesis/Modification
SORBS1	119	Protein Synthes is/Modification	٩
SRPK3	120	Protein Synthes is/Modification	

	241
121	Protein Synthesis/Modification
122	Protein Synthesis/Modification
123	Post-Translational Modification
124	Protein Synthesis/Modification
125	Protein Synthesis/Modification
126	Protein Synthesis/Modification
127	Protein Synthesis/Modification
128	Protein Synthesis/Modification
129	Protein Synthesis/Modification
130	Protein Synthesis/Modification
131	Protein Synthesis/Modification
132	Protein Synthesis/Modification
133	Protein Synthesis/Modification
	122 123 124 125 126 127 128 129 130 131 132

Genes whose overexpression is associated with poorer survival are in bold and those

whose underexpression is associated with poorer survival are underlined

EXAMPLE 6

The preceding example identified 133 genes, associated with 12 oncogenic functions, the expression of which is strongly associated with cancer aggressiveness and clinical outcome (Table 22). The expression of genes from this list was investigated for association with **survival in:** (i) follicular lymphoma patients before receiving pidilizumab in combination with rituximab (Westin et al. *Lancet Oncol*, 2014, vol 15(1)) (ii) colorectal cancer patients treated with cetuximab (GSE5851); (iii) triple negative breast cancer patients treated with **cetuximab** and cisplatin (GSE23428); (iv) lung cancer patients treated with erlotinib (GSE33072); and (v) lung cancer patients treated with sorafenib (GSE33072). This analysis identified new sets of genes, with partial overlap to the iJBCR signature, the expression of which was highly associated with survival in the different treatment groups (Table 23). Scores for each patient group, which were calculated based on these gene signatures were shown to be highly predictive of survival in these patient groups (pidilizumab + rituximab:

15 Figure 56E; all other treatments Figure 59).

	negative cancer imab)
APOBEC3A CD1C NOP2 ARNT2 SF3B	3
BCL2 CD1E CALR NDUFC1 CETM	13
BTN2A2 CD1B MAPRE1 BCL2 SYNC	CRIP
CAMK4 KDM5A KCNG1 ABHD14A TAF2	Ú A
FBXW4 BATF PGK1 EVL CENI	PN
PSEN2 EVL SRPK3 ULBP2 ATP6	VICI
MYB PRKCB RERE BIN3 CD55	
ADORA2B HCFC1R1 ADM MAPRE1 ADOI	RA2B
CD36 CARHSP1 LAMA3 BRD4 RPL2	2
KCNG1 CHAD KIR2DL4 STAU1 ABAT	<u> </u>
LAMA3 KIR2DL4 ULBP2 TAF2 BTN2	<u>A2</u>
MAP2K5 ABHD5 LAMA4 GSK3B CD1B	
NAE1 ABHD14A CA9 PDCD4 ITM2	<u>A</u>
PGK1 ACAA1 BCAP31 KCNG1 BCL2	
STAU1 SRPK3 SCUBE2 ZNRD1-ASI CXCF	<u>14</u>
CFDP1 CFB CHPT1 EIF4B ARNT	<u>r2</u>
<u>SF3B3</u> <u>NAE1</u> <u>CD1C</u> <u>HELLS</u>	
GSK3B BTG2	
TAF2 ADORA2B	
BCL2	

Table 23. iBCR gene signatures associated with survival in patients receiving anticancer therapy.

Genes whose undererexpression is associated with a response to treatment are in bold and those whose overexpression is associated with a response to treatment **are underlined.**

SEQUENCE LISTING

The sequences set forth in SEQ ID NOs: 1-133 below correspond sequentially to the 133 genes provided in Table 22.

244

- 5 >SEQ IO NO:1
 - MATGIGKHRLLSIGPTEPWSIRERLGLASSVMRSGDQNWVSVSRAIKPFAEPGRPPDWFSQKHCASQY SELLETTETPKRKRGEKGEVVE TVEDVIVRKLTAERVEELKKVIKETQERYRRLKRDAELIQAGHMDS RLDELCNDIATRRRLEBEEAJSVKRKATDAAYQARQ AVKTPPRRLPTVMVRSPIDSASPGGDYPLGDLT PTTMEEATSGVNESEMAVASGHLNSTGVLLEVGGVLPMIHGGEIQQTPNTVAASPAASGAPTLSRLLE
- 10 AGPTQFTTPLASFTTVASEPPVKLVPPPVESVSQATIVMMPALPAPSSAPAVSTTESVAPVSQPDNCY PMEAVGDPHTVTVSMDSSEISMI INSIKEECFRS GVAE APVGSKAPSIDGKEELDLAEKMDIAVSYTG EELDFETVGDIIAIIEDKVDDHPEVLDVAAVEAALSFCEENDDPQSLPGPWEHPIQQERDKPVPLPAP EMTVKQERLDFEETENKGIHELVDIREPSAEIKVEPAEPEPVISGAEIVAGVVPATSMEPPELRSQDL DEELGSTAAGEIVEADVAIGKGDETPLTNVKTEASPESMLSPSHGSNPIEDPLEAETQHKFEMSDSLK
- 15 EESGTIFGSQIKDAPGEDEEECGVSEAASLEEPREEDQGEGYLSEMDNEPPVSESDDGFBIHNATLQS HT LAD ST PSSPASSQFSVC SEDQE A 1QA QKIWRRAIML VWRAAAN HR YANVFL QPVTDDI AFGYHSIV QRPMDLSTIKKNIENGLIRSTAEFQRDIMLMFQNAVMYNSSDHDVYHMAVEMQRDVLEQIQQFLATQL $IMQTSESGISARSLRGRDSTRKQDASER: DS \? PMGSPAFLLSLFMGHEWVWLDSEQDHPNDSELSNDCR$ SLFSSWDSSLDLDVGNWRETEDPEAEELEE SSPEREPSELLVGDGGSEESQEAARKASHQK 1LLHFLSE
- 20 VAYLMEPLCISSMESSEGeCPPSGTRQEGREIKASEGERELCRETEELSARGDPFVAEKPLGENGKPE $VAS AP \\ \texttt{SV} 1 \\ \texttt{Ctvqgl.lteseegeaqe} \quad \texttt{skgedqgevyvsemedqpp} \quad \texttt{Sgecddafniketplvdtlfshamedqpp} \quad \texttt{Sgecddafniketplvdtlfshamedqp} \quad \texttt{Sgecddafniketplvdtlfsham$ TSSKLTDLSQDDPVQDHLLFK&TLLPVWKMIASHRFSSPFLKPVSERQAPGYKDVVKRPMDLTSLKRN LSKGR IRTMAOFLR DLMLMFONA VMYND SDHHVYHMA V MRQEVLEQIQVLNIWLDRRRGSSSLEGEP AMPVpDGRPVF
- 25

>SEQ ID NO: 2

M SHGKGIDMLPE IAA AVGFLSSLLRTRGCNSEORLKVFSGALO: EALTEHYKHHWFPEKPSRGSGYRCI RINHRMDPIISRVASOIGLSOPOLHOLLPSELTLWVDPYEVSYRIGEDGSICVLYEEAPLAASCGLLI' CKNOVLLGRSSPSKNYVMAVSS

30

>SEQ ID NO:3 MEPAAALHFSLPASLLLLLLLLLSLCALVSAQFTVVGPANPILAMVGENTTLRCHLSPEKNAEDMEV RWFRSQFSPAVFVYKGGRERTEEQMEEYRGRITFVSKDINRGSVALVIHNVTAQENGIYRCYFQEGRS YDEAILRLVVAGLGSKPLIEIKAQEDGSIWLECISGGWYPEPLTVWRDPYGEVVPALKEVSIADADGL

35 FMVTTAVIIRDKYVR&VSCS¥NNTLLGQEKETVIFIPESFMPSASPWMVALAVILTASPWMVSMTVIL AVFIIFMAVSICCIRKLQREKKILSGEKKVEQEEKFIAQQLQEELRWRRTFLHAADVVLDPDTAHPEL FLSEDRSVRRGPYRQRVPDNPERFDSQPCVLGWESFASGKHYWEVEVENVMVWIVGVCRHSVERKGE VLLrPQNGFWTLEMFGNQYRALSSPERILPLKESLCRVGVFLDYEAGDVSFYHMRDRSHIYICPRSAF TVPVRPFFRLGSDDSPIFICPALIGASGVMVPEEGLRLHRVGTHQSL

40

>SEQ ID NO: 4

- MSMSPTVIILACLGFFLDQSVWAHVGGQDKPFCSAWPSAVVPQGGHVTLRCHYRRGFNIFTLYKKDGV PVPELYNRIFWNSFLISPVraAimGTYRCi (GFHPHSFTEWSAPSi^1VIMVTGLYEKPSLTARPGPTV RAGENVTLSCSSQSSFDIYHLSREGEAHELRLPAVPSINGTFQAD FPLGPATHGETYRCFGSFHGSPY
- 45 EWSDPSDPLPVSVTGNPSSSWF8PTEPSFKTGIAR.HLHAVIRYSVAIIL FTILPFFLLHRWCSKKKDA .WMNOEPAGHRTVNREDSDEODPOEVTYA QLDHCIFTQRKITGPSQRSKRPSTDTSVCIELPNAEPRA L SPAHE HH SQALMG SSRETIALSQ TQLA 5SNVPAAGI

- >SEQ ID NO: 5
- 50 MEPEAFRRHXHORGYLLTRNPHLNKDLAF TLEEROOLNIHGLLPPSFNSOEIQVLRVVKNFEHLNSD FDRYLLLMDLODRNEKLFYRVLTSDIEKFMPIVYTPTVGLACOOYSLVFRKPRGLFITIHDRGHIASV LI1AWEEDVIRAIVVTDGERILGLGDLGCNGMGIPVGRLAtryTACGGMNPQECLPVILDVG TENEELLK DPLYIGLRORRVRGSFYDDFLDEFMEAySSKYGMNCLIOFEDFAN* AFRILINKYRNOYCTFNDDIOG TASVAVAGLLAALRITRMKLSDQTILFQGAGEAALGIAHLIVI^LEKEGLPKEKAIRRIWLVDSRGLI
- 55 VKGRAS LTOEKEKFAHEHEEMKNLEAIVQEIRPTALIGVAAIGGAF SEQILKDMAAFNERPIIFALSN PTSKAECS.AEQCYRI TEGRAIFASGSPFDPVTLPNGOTLYPGOGNNSYVFPG VALGVVACGLROITDN IFLTTAEVIAQQVSDKHLEEGRLYPPLNTIRDVSLKIAEKIVKDAYQEKTATVYPEPQNKEAFVRSQM YSTDYDOILPDCYSWPEEVORI OTKVDO

- 60 NGAKGKIDAKVHSPSGAVEECHVSELEPDKYAVRFIPHENGVHTII/VKFNGSHVVGSPFKVRVGEPGQ AGNPALWSAYGTGLEGGTTGIQSEFFINTTRAGPGTLSVTIEGPSKVKMDCQETPEGY KVMYTPMAPG
- 55 EHLV SIKKNGNHVAN 3PVSIf VVQSEIG-DARRAKVYGRGLSEGRTFEMSDFIVDTRDAGYGGIS:LAVE
 55 GPSKVDIQTEDLEDGTCKVSYFPTVPGVYIVSTKFADEHVPGSPFTVKISGEGRVKESITRTSRAPSV
 A TVGSICDLNLKIPEINSSDMSAHVTS PSGRVTEAEIVPMGRNSHCVRF VPQEMG VHTVSVKYRGQH V
 TGSPFQFTVGPLGEGGAHKVRAGGPGLERGEAGVPAEFSIWTREAGAGGLSIAVEGPSKAEITFDDHK
 NG SCGV SYIAQEPGNYEVSIKFNDEHIPESPYLVPVIAPSDDARRLTVMSLQESGLKVNQPASFAIRL
- 50 EVGFVVDAKIAGKGKVTCTVLTPDGTEAEADVIENEDGTYDIFYTAAKPGTYVIYVRFGGVDIPNSPF TVMATDGEVTAVEEAPVMACPPGFRPWVTEEAYVPVSDMNGLGFKPFDLVIFFAVRKGETTGEVHMPS GKIATPEIVDUKDGTVIVRYAPTEVGLHEMHIKYMGSHIPESPLQFYVNYPNSGSVSAYGPGLVYGVA NKIATFTIVTEDAGEGGLDLAIEGPS.KAEIS.CIDNKDGT CTVTYLPTLPGDY SI.LVKYNDKHIPGSPF TAKITDDSRRC SQVKLGSAADFLLDISETDLSSLTASIKAPSGRDEPCLLKRLPNNHIGISFIPREVG
- 45 EYTPFEKGLHWEVIYDDVPIPNSPFKVZWTEGCQPSRvQAQGPGLKEATTNKPNVFTV VTRGAGIGG LGITVEGPSESKINCRDNKDGSCSAEYIPFAPGDYDVNITYGGAHIPGSPFRVPVKDVVDPSKVKIAG PGLGSGVRARVL<2SFTVDSSKAGLAPLEVR\?LGPRGLVEPVNWDNGDGTHTVIYTPSQEGPYMVSVK YADEETPRSPFKVKVLPTYDASKVIASGPGLSSYGVPASLPVDFAIDARDAGEGLLAVQITDQEGKPK RAIVH DNKDGTYAVTYIPDKTGRYMIGVTYGGDDIPLSPYRIRATQ.TGDASKCLAT.GPGIASTVKTGE
- 40 ENRVEVGKDQEFTVDTRGAGGQGKLDVTILSPSRKVVPCLVTPVTGRENSTAKFIPREEGLYAVDVIY DGHPVPGSPYTVEASLPPDPSKVKAHGPGLEGGLvGKPAEFTIDTKGAGTGGLGLTVEGPCEAKIECS DNGDGTCSVSYLPTKPGEYFVNILFEEVHTPGSPFKA DIEMPFDPSKVVASGPGLEHGKVGEAGLLSV DCSEAGPGALGLEAVSDSGTKAEVSIQNNKDGTYAVTYVPLTAGMYTLTMKYGGELVPHFPARVKVEP AVDT SR IKVFGPGIEGKDVFREATTDFTVDSRPLTQVGGDHIM HIANPSGA STECFVTDNADGTYQV
- 35 PGE YAVH IMCDDE DIKD SPYMAF IHPATGG YNPDLVRAYGPGL EKSGC IVNNLAEFTVDPKDAGKAPL RIFAQDGEGQRIDIQMRNRMDGTYACSYTPVKAIKH* IAVVWGGVNIPHSPYRVNIGQGSHPQKVKVF GPGVERSGLKAJSEPIHFTVDCTEAGEGDVS?GIRCDAR:VLSEDEED VDFDIIHNANDTFTVKYVPFAA GRYTIKVLFASQETPASPFRVKVDPSHDASKVKAEGPGLSKAGVENGKPrHFTVYKKGAGKAPLNVQF NSPLPGDAVKDLDIIDNYDYSHTVKYTPTQQGNMQVLVTYGGDPIPKSPFTVGVAAPLDLSKIKLNGL
- 30
 QPAKFTVBTISAGQGDWVFVEDPEGNKEE
 AQVTPDSDKNKTYSVEYLPKVTGLHKVTVLFAGQHISK

 SPFEVSVDKAQGDASKyTARGPGLEAVGNI*
 NKPTYFDIYTAGAGVGDIGVEVEDPQGKNTVELLVED

 KGNQVYRCVYKPMGPGPHVVKIFFAGDTIFKSPFVVQVGEACNPNACRASGRGLQPKGVRIRETTDFK
 VDTKAAGSGELGyrMKGPKGLEELVKQKDFLDGvYAFEYYPSTPGRYSIAITWGGHHIPKSPFEVQVG

 PEAGMQWRAWGPGLHGGIVGRSADFVVESIGSEVGSLGFA
 IEGPSQAKIEYNDQNDGSCDVKYWPKE

 35
 PGE YAVH, IMCDDE DIKD SPYMAF, IHPATGGYNPDLVRAYGPGL, FK SCC IVNNLAFETVDPK DAGKAPL
- 25 >SEQ ID NO: 9 MPV TEK DL/f DAPWKKIQQNTFTRWCNEHLKCVNKR IGNLQTDLSDGLRLFALLEVLSQKRMYRKYHQ RPTFRJ3MQLENVSVALEFLDRESIKLVSIDSKAIVDGNLKLILGLVWTLILHYSISMFVWEDEGDDDA KKQTPKQRLLGWIQNKIPYLPITNFNQNWQDGKALGALVDSCAPGLCPDWESWDPQKPVDNAREAMQQ ADDWLGVPQVITPEEIIHPD%DEHsVMTYLSQFPKAKLKPGAPLKPKLNPKKARAYGRGIEPTGNMVK 30 OPAKFTVBTISAGOGDWVFVEDPEGNKEE AOVTPDSDKNKTYSVEYLPKVTGLHKVTVLFAGOHLSK
- FKKALPALPISITFGLIFYFSTDNLVRPFMDTLASHQLYI
- PGRPPGLEEELTLKYGAKHVIMLFVPVTLCMIVWATIKSVRFYTEKNGQLIYIPFTEDTPSVGQRLL

 NSVLNTLIMISVIVVMIIFLVVLYKYRCYKFTHGWLIMSSLMLLFLFT
 IYLGEVLKTYNVAMDYPTL

 20
 LLTV WNFGAV GMVCIH%
 GPLVL(2QAYLIMISALMALVFIKYLFEWSAWVILGAISVYDLVAVLCPKG

 PLRMLVE T%QERNE PIFPALIYSSAMVWTV GMAK LDPSsQGALQLPYDPEMEED.S;YDSFGEPS;YPEVF
 EPPLTGYPGE
 ELEEE EEERGVKL GLGDFIFYSVLVGKAAATGSGDWNITLACFVAILIGLCLTLLLLAV
- >SEQ ID NO:8 ML**TFMAS**DSEE EV CDERI SLM SAESP TPR SCQEGRQGPE DGENTAQWR SQENEE DGEEDP DR YVC 3**GV** PGRPPGLEEELTLKYGAKHVIMLFVPVTLCMIVWATIKSVRFYTEKNGQLIYIPFTEDTPSVGQRLL
- HQTTKLGRKVETITIIYDCEGLGLKHLWKPAVEAYGEFLCMFEENYPETLKRLFVVKAPKLFPVAYNL TKPFL SEDTRKKIMVLGANWKEVLLKRISPDQVPVEYGGTMTDPDGNPKCKSKINYGGDIPRKYYVRD QVKQQYEHaVQISRGSSHQVEYEILFPGGVLRWQFMSDGADVGFGIFLKIKMGERQRAGEMIEVLPNQ: RYNSHLVPEDGTLTCSDPGIYVLRFDNTYSFIHAKKVNFTVEVLLPDKABEEKMKQLGAGTPK 15
- >SEQ ID NO: 7 MSGRVGDLSPRQKEALAKFRENVQDVLPALP NPDDYFLLRWLRARSFDLQKSEAMLRKHVEFRKQKDI 10 DNIISWQPPEXIQQYLSGGMCGYDLDGCPVWYDIIGPLDAKGLLFSASKQDLLRTKMRECELLLQECA HQTTKLGRKVETITIIYDCEGLGLKHLWKPAVEAYGEFLCMFEENYPETLKRLFVVKAPKLFPVAYNL TXDEL SEDTRKKIMULCANWKEULLKEISDDOVDVEXCCTMTDDDCNDXCKSKINXCCDIDEKYVVDD
- > SEQ ID NO; 6
 MLLAWVQAFLV(3NMLLAEAYGSGGCFWDNGHLYREDQTSPAPGLRCLNWLDAQSGLASAPVSGAGNHS YGB%PDEDPRGPWCYVSGEAGVPEKBPCEDLRCPETTSQALPaFTIEI.QEA SEGPGADEVQVFAPANA
 IPAR SEAAAVQPVIGISQRVRMNSKEKKDLGTLGYVLGITMMVIIIAIGAGIILGYSYKRGKDLKEQH DQKVCEEEMORITLPLSAETNPTCEIVDEKTVVVHTSQTPVDPQEGTTPLMGQAGTPSA

SUBSTITUTE SHEET (RULE 26)

QL 55 >SEQ ID NO:16 MVRISFOPAVAGIKGDKADKASASAPAPASATEILLTPAREEOPPOHRSRRGGSVGGVCYLSMGMWL LMGLVFASVYI YRYFFLAQLARDNFFRCGVLYEDSLSSQVRIQMELEEDVKI YLDENYERINVPVPQF GGGDPADIIHDFQRGLTAYHDISLDKCYVIEI^TTIVLPPRNFWEL LMNVKRGTYLPQTYIIQEEMVV 60 TEHVSDKEALGSFIYHLCNGKDTYRLRRRATRRRINKRGAK^ CNAIRHFENTFVVETLICGVV

- t1AAGGSGVGGKRSSKSDADSGFLGLRPTSVDPALRRRRRGPRNKKRGWRRLA.OEPLGLEVDOFLEDVR LQERTSGGLLSEAPNEKLFFVDTGSKEKGLTKKRTKVQKKSLLLKKPLRVDLILENTSKVPAPKDVLA HQVPNAKKLRRKEQLWEKLAKQGELPREVRRAQARLLNPSATRAKPGPQDTVELPFYDLW%SDNPLDR: 50 PLyGQ:DEFFLEQTRKKGvKRPARM TKPSQAPAVEVAPAGASYNPSFEDHQTLLSAAHEVELQRQKEA eKlerQLaLpateQaaTqeStfqelgegLleesdgegepgqGegpeagdaevcpTparlatteKkteq. QRRREKAVHRLRVQQAALRAARLRHQELFRLRGIKAQVALRLAELARRQRRRQARREAEADKPRRLGR lKYQaPdjDvQlsSeLiDsLrTLKpegnilrdrfKsfQrrNMiepreraKfkrkyKvKLveKrafrei
- 40 SERDAADAYKQILEAVAYLHENGIVHRDLKPENLLYATPAPDAPLKIADFGLSKIVEHQVLMKTVCGT PGYCAPET LRGCAYGPE VDMWSVGIITYI LLCGFEPFYDERGDQFMFRRI LNCEYYF ISPWWDEVSLN AKDLVRKLIVLDFKKRLTTFQALQHPWVTGKAANFVHMDTAQKKLQEFNARRKLKAAVKAVVASSRLG SASSSHGSIQESHKASRDPSPIQDGNEDMK&IPEGEKIQGDGAQAAVKGAQAELMKVQALEKVKGADI LAEEKLKTVEEAAAPREGOGSSAVGFEVPOODVILPEY NAEEAPKMVPKA\¾DGIKVADLELEEG 45
- >SEQ ID NO: 14 MLKVTVPSCSASSCSSVTASAAPGTASLVPDYWIDGSNRDALSDFFEVESELGRGATSIVYRCKOKGT OKPYALKVLKKTVDKKIVRTEIGVLLRLSHPNIIKLKEIFETPTEISLVLELVTGGELFDRIVEKGYY
- 35 VPGOAKDEL

>SEO ID NO:15

CGPGTKKVHVIFNYKGKNVLINKDIRCKDDEFTHLYTLIVRPDNTYEVKIDNSQVESGSLEDDWDFLP PKKIKDPDASKPEDWDERAKIDDPTDSKPEDWDKPEHIPDPDAKKPEDWDEE^GEWEPPVIQNPEYK GEWKPROITOPDYKGTOIJBPEIDNPEYSPPPSIYAYDNFGVLGJ-DLWOVKSGTIFDNFLITNDEAYAE EFGNETWGVTKAAEKQMKDKQDEEQRLKEEEEDKKRKEEEEAEDKEDDEDKDEDEEDEEDKEEDEEED

- >SEQ ID NO:13 MLLSVPLLLGLLGI-AVAEPAVYFKEQFLDGDGWTS RWIESKHKSDFGKFVLSSGKFYGDEEKDKGLQT SQDARFYALSASFEPFSNKGQTLVVQFTVKHEQNIDCGGGYVKLFPNSLDQTDMHGDSEYNIMFGPDI 30
- >SEQ ID NO:12 MSWIPFKIGQPKKQIVPKTVERDFEREYGKLQQLEEQTRRLQKDMKKSTD%DLAMSKSAVKISLDLLS NPLCEQDQDLLNMVTALDTAMKRMDAFNOEKVNOIQKTVIEPLKKFGSVFPSLNMAVKRREQALQDYR 25 RLQAKVEKYEEKEKTGPVLAKLHQAREELRPVREDFEAKNRQLLEEMPRFYGSRLDYFQPSFESLIRA QVVY Y SEMHKIFGDL3HQLDOPGHSDEQRE RENEAK1. SERRAL SIVADD
- >SEQ ID NOill MFHOIWAALLYFYGIILNSIYOCPEHSOLTTLGVDGKEFPEVHLGESWYFIAGAAPTKEEEATFDPVDN IVFNMAAGSAFMQLHLRATIRMKDGLCVPRKWIYHLTEGSTDLRTEGRPDMRTELFSSSCPGGIMLNE 20 TGQGYQRFLLYNRSPHPPEKCVEEFKSLTSCLDSKAFLLTPRNQEACELSNN
- 15 LNL
- 10 ATLSHYNIVNNBNILGERLKLHEKTPE QLRMILPNPLYHCLGSVAGTMMCLMYGATLILASPIFNGKK ALEAISRERGTFLYGTPTMFVDILNQPDFSSYDISTMCGGVIAGSPAPPELIRATINKINMKDLVVAY GTTENSPVTFAHFPEDTvEQKAESVGRIRPHTEARTJ4MMEAG TLAKLNTPGELCIRGYCVMLGYWGEP QKTEEAVDQDKWYWTGDVSTMNEQGFGKIVSRSKDMIIRQGENIYPAELEDFFHTHPKVQEVOVVGVK DDRMGEE 1 CACTRLKDGEE TTVEE IKAFCKGKI SHFK IPKY IVFV IN YPLT I SGK IQK FKLREQMERH
- MAVYVGMLRL GRLCAGS SGVLGARAAL SR SWQE.ARLQGVRF LSS REVDRMVS TPIGGL SYVQGC TKKH LNSKTVGQCLETTAQRVPEREALVVLHEDVRLTFAQLKEEVDKAASGLLSIGLCKGDRLGMWGPNSYA WVLMQLATAQAGIILVSVNPAYQAMELEYVLKKVGCKALVFPKQFKTQQYYNVLKQICFEVENAQPGA $\label{eq:lksqrlp} \texttt{LkSqrlp} ~ \texttt{DLtTVIsVDAPLpGTLLLDEWAAGS} ~ \texttt{trQhldqlqynqQFlschdpini} ~ \texttt{QFTSGTTGSPKG}$
- 5 >SEQ ID NO:1Q

NyI_{/I}SVKYGGPNHIVGSPFKAKVTGQRLVSPGSANETSSILVESVTRSSTETCYSAIPKASSDASKVT SKGAGLSKAFVGQESSFLVDOSKAGSNMLLIGVHGPTTPCEEVSMKHVGNQQYNVTYVVKERGDYVLA VKWGEEHIPGSPFHVTVP

- GGCQHTCVNVMGSYECcckEGFFLSDNQHTCIHRSEEGLSCMNKDHGCSHICKEAPRGSVACECRPGF ELAKNORDCILTCNHGNGGCQHSCDDIADGPECSCFIPQYKMHTDGRSCLEREDTVLEVTESNT TSVVD GDKR¥KRRLLMETCAVNNGGCDRTCKDISTGYHCSCPVGFTLQLDGKTCKDIDECQTRM GGCDHFCKN ${\tt IVGSFDCGCKKGFKLLTDEKSCQDVDECSLDRTCDHSCINHPGTFACACNRGYILYGFTHCGDINECS}$ INNGGCOOVCVNTVGSYECOCHPGYKLHWNKKDEVEVKGLLPTSVSPRVSLHCGKSGGGDGCFLRCHS GIHLSSDVTTIRTSVTFKLNEGKCSLKNAELFPEGLRPALPEKHSSVKESFRYVNLTCSSGKQVPGAP 60 GRPSTPKEKFITVEFELETNQKM?TASCDLS:CIVKRTEKRLRKAIRTLRKA\N IREQFHLQLSGMNLDV AKKPPRTGERQAE SCGVGQGHAENQGVSCRAGTYYDGARBRCILCP-NGTFQNEEGQMTCEPCPRPGNS
- 50 >SEQ ID NO: 22 MGVAGRNRPGAAWAVLLLLLLPPLLLLAGAVPPGRGRAAGPQEDVDECAQGLDDCHADALCQNTPIS YKCSGKPGYQGEGRQCEDIDECGNE.L.NGGCVHDCL.NIPGNYRCTCFDGFMLAHDG.HNCLPVDECLENN 55
- MA AAALGOIWARKLISVp»LLCGPFR YASSSFKAA DIOLEMIOKPHKKPGPGEPLVFGKTFTDHMLMV EWNDKGWGQPRIQPFQNLTLHPASSSLHYSLQLFEGMKAFKGKDQOVRLFRPWLNMDRMLRSAMRLCL PSFDKLBLLECIRRLIEVDKDWVPBAAGTSLYVRPVLIGNBPSLGVSQPTRALLFVILCPVGAYFPGG SVTPVSLLADPAFIRAWGGVGNYKLGGNYGPTVLVQQEALKRGCEOVLWLYGPDHQLTEVGTMNIFV YWTHEDGVLEWTPPLNGVILPGVVROS LLDMAQTWGEFRVVERTITMKQLLRALEEGRVREVFGSGT ACQVCPVHRILYKDRNLHIPTMENGPELILRFQKELKEIQYGIRAHEWMFPV
- TLVFRDHHAHLFLNIF S DILADFK >SEQ ID NO; 21 45

- ENFVEKLRQSLLSVAPKGMSQLITMACGSCSNENALKTIFMWYRSPCERGQRGFSQEELETCMINQAPG CPDYSILSFMGAFHGRTMGCLATIHSKAIHKIDIPSFDWPIAPFPRLKYPLEEFVKENQQEEARCLEE VEDL1VKYRKKKKTVAGIIVEPIOSEGGDNHASDDFFRI%RDIARKHGCAFLVDEVQIGGGCTGKFWA HE HWGLDDPADVMTFSKKMMT6GFFHKEEFRPNAPYRIFNTWLGDPSKNLLLAEVINIIKREDLLNNA 40 AaAGKALLTGLLDLOARYPOFISKVRGRGXFCSFOTPDDSIRNKLILIAS^KGVVLGGCGDKSIRFRP
- >SEQ ID NO;20 MASMLLAQRLACSFQHSYRLtVPGSRHIS%AAAKVDVEFO DGPLMKTEVPGPR%)EIW QLNIIQNA 35 EAVHFFCNYEESRGNYLVDVDGNRMLDLYSQISSVPIGYSHPALLKLIQQPQNASMFVNRPALGILPP

ONEWYeCRECOVKHWEKHGKTCVLAAQGDRAK

25MGDLELLLPGEAEVLVRGLRSFPLREMGSEGWNQQHENLEKLNMQAILDATV SQGEPIQELLVTHGKV PILVEEL: AVEMWKOKVFPVECRVEDFKPONTFPIYMVVHHEASIIKLLETVFFHKE VCESAEDTVLD $LVDYCHRK_TLLVAOSGCGGPPEGEGSQDSNPMOELOKQAELMEFEIALKALSVLRYITDCVDSLSLS$ TLSRMLSTHNLPCLLVELLEHSPWSRREGGKLQQFEGSRWHIVAPSEQQKLSKLDGQVWIALYNLLLS PEAQARYCLTSFAKGRLLKLRAFLTDTLLDQLPNLAHLQSFLAHLTLTETQPPKKDLVLEQIPEIWER 30 LERENRGKWQA IAKHQLQHVF SPSEQDLR IQARRWAETYRLDVLEAVAPERPRCAYCSAEASKRCSRC

PETTL SSGFFVAVI ERVEVPR

>SEO ID NO:19

- HLAKVLVYELLLGKGFRGGGGRWKALLGRHOARLKAELARLKVHRGVSRNEDLLEVGSRPGPASOLPR FVRVNItKTCSDDVVDYFKRQGFSYQGRASSLDDLRALKGKHFLLDPLMPELLVFPAQTDLHEHPDYR ${\tt AGHL} \ {\tt ILQDRAS} \ {\tt CLP} \ {\tt AML} \ {\tt DPPP} \ {\tt GSHVI} \ {\tt DACAAPGNKT} \ {\tt SHLAAL} \ {\tt KNQGKIFAFDLDAKRLASMATLLA}$ RAGVSCCELAEEDFLAVSPSDPRYHEVHYILLDPSCSGSGMPSRQLEEPGAGTPSPVRLHALAGFQQR 20 ALCHALTFPSLQRLVYSTCSLCQEENEDWVRDALQQNPGAFRLAPALPAWPHRGLSTFPGAEHGLRAS
- 15 >SEQ ID NO:1B MGLYAAAAGyLAGVESROGSIKGDVYSSNFONVKQLYALYCETQRYSAVLDAVIASAGLLRAEKKLRP
- 10 DFGQEGFTRFRERRFHPSLRSTRRFYP HTHNMDGFFIAKFKKFSNSIPQSQTGNSETATPTNVDLPQV IPKSENSSQPAKKAKGAAKTKQQLQKQQHPKKASFQKLNGISKGADSELSTVPSVTKTQASSSFQDSS QPAGKAEGIREFI^VTGKLKQRSPKU^ SSKKVAFLRQNAPPKGTDTQTPAVLSPSKTQATLKPKDHHQP LGRAKGVEKQQLPEQPFEKAAFQKQHDTPKGPQPPTVSPIRSS RPFFAKRKKSQSRGNSQLLLS
- EADGGLQINVDEEEFVLPPAGEMEQDAQAPDLQRVHKRIQDIVGHLRDFGAQREEGRSRSEYLNRLKK 5 DLAIYYS-YGDFLLGKLMDLFPLSELVEFLE¾NEVPRPVTLRTNTLKTRRRD,LAQ,¾LINRGVNLDPLGK WSKTGLVVYDSSVPIGATPEYLAGHYMLOGASSMLPVMALAPOERERI LDMCCAPGGKTSYMAOLMKN TGVILANDANAERLKSVVGNLHRLGVTNTIISHYDGRQFPKVVGGFDRVLLDAPCSGTGVISKDPAVK TNKDEKDILRCAHLQKELLLSAIDSVNATSKTGGYLVYCTCSITVEENEWVVDYALKKRNVRLVPTGL
- >SEQ ID NO:17 MGRELDP TKEKR GPGRKARKOKGAETELVRFLPAVSDENSKRLSSRARKRAAKRRLGSVEAPKTNKSP EAKPLPGKLPKGI SAGAVQTAGKKGPQSLFNAPRGKKRPAPGSDEEEEEDSEEDGMVNHGDLWGSED DADTVJDDyGADSNSEDEEEGEALLPIERAARKQKAREAAAGIQWSEEETEDEEEEKEVTPE SGPPKVE

>SEQ ID NO: 29

60

>SEQ ID NO: 28 RADQLIEEQIAEEKEAFSLFDKDGDGXIXXKELGXVMRSLGQNPXEAELQDMINEVDADGNGXIDFPE ${\tt FLTMMARKMKDXDSEEIREAFRVFDkDgngyisaaelrhvmxnlgeklideevdemireadidgdgQ}$ VNYEEFV QMM TAK.

55

>SEQ ID NO:27 MREYKWVLGSGGVGKSALXVQFVIGXFIERyDPIIEDFyRKEIEVDSSPSVLEILDIAGXEQFASMR DLYIKNGQGFILVYSLVNQQSFQDIKPMRDQIIRVKRYEKVPVILVGNKVDLESEREVSSSEGRALAE BWOCPFMETSAKSKTMVDEIF&EIVRQMNY&AQPDKDPPCCSACNIQ

50

HLDS SAAAI IDAPMD IPGLNLSQQEYYPYVYYKIDCNLLEFK

>SEO ID NO;26 MTEFWLISAPGEKTCQQTWEKLHAATSKNNNLAVTSKFNIPDLKVGTLDVLVGLSDELAKLDAFVEGV 45 VKKVAQYMADVLEDSKDKVQENLLANGVDLVTYITRFQWDMAKYPIKQSLKNISEIIAKGVTQIDNDL KSRASAYNNLKGNLQNLERKNAGSLLXRSLAEIVKKDDFVLDSEYLVTLLVVVPKLNHNDWIKQYETL AEMVVPRSSNVLSedQdSylCnvilfrkavddfrhkarenkfivrdfqyneeemkadreemnrlsidkKKQFGPLVRWLKVNF SEAF IAW IHVR ALRVFVE SVLRYGLPVNFQAMLLQPNKKXLKKLREVLHELYK

FQPCSRSRIKVSILMDKSQNGEKWIIVKPYQRKFLAMPPFLRSQIGKIRD

>SEQ ID NO: 25 MEEKTTQSVEGLKQYCLVfEREMKHIERHIHQTGKAGEFKNKPFRQVLQPPNETKLPK1MPEGHGIQN 40 AQRRKQVNEREQMQTKDHQERMIRGRELAEQRIKERILRRSQSQLLTYEKHERVKEIKEFERVIAYLL

STGSALLNP SLPNOSDVVEAEG SHSN SPTNMAP SARLE EAVWRP Y

NFLCSVLPTHWRCNKXLPIAFKVVALGDVPDGTLVTVMAGNDENYSAELRNATAAMKNQVARFNDLRF VGRSGRGKSFILIITVFINPPQVAIYHRAIKXTVDGPREPRRHRQKLDDQIKPGS.LSFSERLSELEQL RR TAMRV SPHHPAFTPNPRA SLNH STAFNFOPQ SOMODTRO IQP SPPW SYDQ SYQ 7LG SIA SP SVHPA TPISPGRASGMTTLSAELSSRLST.APDLTAFSDPRQFPA LPSISDPRMHYPGAFTYSPTPVTSGIGIG 35 MSRMGSATRYHTYLPPPYPGSSQAQGGPFQASSPSYHLYYGASAGSYQFSMVGGERSPPRILPPCTNA

>SEQ ID NO:24 30 MRIPVDASTSRRFTPRSIALSPGKMSEALPLGAPDAGAALAGKLRSGDRSM^EVLADHP GELVRTDSP

NIYIRYELDYIL

- GPHDVL ATLLN.NL.KVQERQNRVCXXVAIAIVAEICSPFTVLPALMNE YRYPELNVQNGVLKSLSFLFE YIGEMGKDYIYAVTPLIEDALMDRDLVHRQTASAVVQHMSLGVYGFGGEDSLNHLLNYVWPNVFETSP 25 HVIQAVMGALEGLEVAIGPCRMLQYCLQGIFHPARKVRDVYWKIYNSIYIGSODALIAHYPRIYNDDK
- AIGYLIPLMDAEYANYYTREVMLILIREFSSPDEEMKKIVLKWKQCCGID GVEANYIKTEILPPFFK 20 HFWQHRMALDRRNYRQLVDTTVELANKVGAAEIISRIVDDLKDEAEQYRKMVMETIEKIMGNLGAADI DHKLEEQ:LIDGILYAF QEQTTEDSWLNGFGTWNALGKRVKPYLPT^ICGTV LWRLNNKSAKVRQQAA ${\tt OLISRTAVVMRTCQEEKLMGHLGVVLYEYLGEEYPEVLGSILGALRAIVNVIGMHKMTPPIRDLLPRL}$ TPILKNRHEKVQENCIBLVGRIADRGAEYVSAREWMRICFELLELLKAHKKAIRRATVNTFGYIAKAI
- 15 KLLVDVDEST.LSPEEQKERKI>IKLLLKI,KNGTPPMRKAALRQITDKAREFGAGPLFNQ:ILPLLMSPTL EDQERHLLVKVIDRILYKLDDLVRPYVHKIL¥VIEPLLIDEDYYARVEGREIISSLAKAAGLATMIST MRPDIDNM DEYVRNTTARAFAVVASALGIPSLLPFLKAVCKSKKSWQARHTGIKIVQQIAILMGCAIL PHLRSLVEIIEHGLVDEQQRVRTISALAIAALAEAATPYGIESFDSVLKPLWKGIRQHRGKGLAAFLK:
- 10 ADGGKXFUFKMNARIYM% MREQHLTKEEREIRQQLAEKAKAGELKVVNGAAASQPPSKRKRRWDQTA DOTPGATPRKLSS%DOAF, RPGHTPSLRWDETPGRAKGSETPGATPGSKIWDFTPSHTPAGAATPGRGD XPGHAIPGHGGAXSSARKNRWDEIPKIERDTPGHGSGWAETPRTDRGGDSIGETPTPGASKRKSRWDE TPA SQMGG STP VL TP GKTP IG TPAMNMA TP TPGH IM SMTP EQLQAWRWERE I DERNRPL SDEELDAMF PEGYKVLPPPAGYVFIRTPARKLTATPTPLGGMTGFHMQTEBRXMKSVNBQPSGNLPFLK PDDIOYFD
- >SEQ ID NO: 23 MAKIAKTHED IRAQI REICGKKAALDEAQG VGLDSTGYYDQEIYGG SDSRFAG YVX SIAAXE LEDDDD DYSSSTSLLGOKKPGYHARVALLNDIPOSTEOYDPFAEHRPPKIADREDEYKKHRRTMIISPERLDPF
- IylKALFDVLABPQNYFKYTAQESREMFPRSFIRLLRSRVSRFLRPYK 5
- GALKTPEAWNMSECGGLCQPGEYSADGFAPCHLCALGTFQPEAGRTSCFPCGGGLATKHQGATSFQDC EIRvQCSPGHFYNXIIHRCIRCPVGiYQPEFGK* CVSCPGNTTTDFDGSTNITQCKNRRCGGELGDF TGYIE SPNYPGNYPSNTECTWTINPPPKRRILIVVPEIFLPIEDDCGDYLVMRKTSSSNSVTTYETCQ TYERPIAFTSRSKKLWIQFKSNEGNSARGFQVPYVTYDEDYQELIEDIVRDGRLYASENHQEILKDKK

SUBSTITUTE SHEET (RULE 26)

- KSFESWFDITSLSEXAEDIIAKERE QNVLHMLHQILXPFLLRRL KSDVALEVPPEREVVVYAPLSKKQ
 EXFYXAXVNRIIANMFGSSEKEIIELSPIGRPKRRXRKSINYSKIDDFPNELEKLISQIQPEVDRERA
 WEVNIPVESEVNLKLQNIMMLLRKeeNHPYLIEYPIDPVXQEFKIDEELVXNSGKFLILDRMLPELK
 KRGHKVLLFSQMTSMLDILMDYCHLRDFNFSRLDGSMSYSEREKNMHSFNTDPEVFIFLVSTRAGGLG
 INLTAADTVIIYDSDWNPQSDLQAQDRCHRIGQTKFVVVYRLVTANTIDQKIVERAAAKRKLEKLIIH
- 50 MPAERPAGSGGSEAPAMVEQLDTAYITFAMLEEEEQLEAAGLERERKMLEKARMSWDRESTEIRYRRL QHLLEK SNIYSKFLLTKMEQQQLEEQKKKEKLERKKESLKVKKGKNSIDASEEKPVMRKKRGREDESY NISEVHSKEEILSVAKKNKRENEPENSSSINLCV DLQKNKDSNSIIKDRLSETVRQNTKFFFDPVRK CNGSPVPFQQPKHFTGGVMRWYQVEGMEWDRMLWENGINGILADEMGLGKXVQCIATIALMIQRGVPG PFL¥CGPLSTLPN¾MAEEKRFTPHIPTMLYHGXQEERQKLVRNIYKRKGTLQIHPVVITSFEIAMRDR NALQHCYWKYLIVDEGHRIKNMKCRLIRELKRFNADNKLLLTGTPLQNNLSELWSLLNFLLPDVFDDL
- MRPVRLMRVFVARRIPAEGRVALARGADCEVEQWDSDEPIPARELERGVAGARGLECLEPHVPRRTH.
 DAAGANLKVISXMSVGIPHLALDEXKKRGIRVGYTPDVLTDTTAELAVSLLLTTCRRLPEAIEEVKNG
 GWISWKPLWLCGYGLXQSXVGIIGLGRIGQAI.%RRLKPFGVQRFirYXGRQPRPEEAAFFQAEFVSXPE
 LAAQSDFIVVACSLXPAIEGLCNKDFFQKMKETAVFINISRGDVVNQDDLYQALASGKIAAAGLDVTS
 PEPLPINHFLLXLKMCVILPHIGSAIHRIRMXMSLLAANNLLAGLRGEPMPSELKL
- 40 IGAIQEPLAFILPKREX LFXL.DDQALGPE LTAPAPEPPAEEPRLEPAGPACPEGGRAE TQAEPP SVGP
 >seq id no: 32
 MRPVRLMKVFVXRRIPAEGRV%LARAADCEVEQWDSDEPIPAKELERGVAGAHGLLCLLSPHVPKRIL.
- MGLMLSQLIQQLRINI-QLPACLRVIGYLRRMDVFTEAELRVKFLQARDAWLRS ILTAIPNDDPYFHIT KTIEASRVHLFDIITQYR&IFSDEDPLLPPAMGEHTWNESAIFHGWVLQKVSQF½ VLETDLYRGIGG HLDSLLGQCMYFGLSFSRVGADFRGQPAPVFQRVAISIFQKAIQEIVEKFQEEMNSYMLISAPAILGX SNMPAAVPAIQPGTLQPPMVLLDFPPLACFLNNILVAFNDLRLCCPVALAQDVTGALEDALAKVTKII LAFH RAKE AAFSSGEQELFVQF CXVFLEDLVPYLNRCLQVLFPPAQXAQTLGIPPTQLSKYGNLGHVN IGATOEPLAFILPKREX LFXL.DDOALGPE LTAPAPEPPAEEPRLEPAGPACPEGGRAE TOAEPP SVGP
- >SEQ ID NO: 31
 MATAAIIPSV&XATAAALGEVEDEGLLASLFRDRFPEAQWRERPDVGRYLRELSGSGLERLRREPERL AEERAQLLQeTRDLAFANYKTFIRGAECTERIHRLFGDVEASLGRLLDRLPSFQQaCRNFVKEAEEIS SNRRMNSLTLNRHTEILEILEIPQLMPXCVRNSYYEEALELAAYVRRLERKYSSIPVIQGIVNEVRQS
 MQLMLSQLIQQLRTNI-QLPACLRVIGYLRRMDVFTEAELRVKFLQARDAWLRS ILTAIPNDDPYFHIT KTIEASBVHLEDIITOYE&IESDEDPLLPPAMGEHTWIESAIFHGWVLOKVSOF% VLETDLYBGIGG

30

EELRAMIEEF DKDGDGEINQEEFIAIMTGDI

>SEO ID NO:33

>SEQ ID NO: 30 MSLALR SELVVPKIKRKKRELSEEGKQEIKDAFELFDTDKDEAIDYHELKVAMRALGFDVKKADVLK Ilkdydreaigkxxfepfnevvtpwilerppheeilkafklfppddsgki SLRNLRRVARELGENMSD:

- 20 KQQRKAEEARVRKQQLEAEVELKRPEARRKAEEDRVRK[^] EEKARRELIKQEYLRRKQQQILEEQGLGK pkskpkkprpksvhreesgsdsgtkcsstpdnlsrtqsgsslslasaat-tepesvhsggtpsqrvesh ealpilsrnpsRstdrdwetasaasslaswaeytgpklFkepssksnKpiihnaishcClagKvheph KNSILEELeKcdanhyIILfrdagcQfr&LYCYypdteEiykLTgtgpkNITKKmIdKLyKyssdrKq fnlipakIMS vsvdaltihnhlwqfkrpavpkkaqIRk 25
- 15 KTEDFLVKEEQREELLHEPQPVDKES-LAFAQQHKAKDPVALHELERNKVISAALLEDTVGEWDVNEC. DLSIEKLNETISTLQQAILKISQQQEQLLMKSPTVPVPGSKNNSQDHKVKAPVHFVEPLSPTGVAGHR KAPRLGQGRNSRSGRPAELKVPKDRPQGSSRSKTPTPSVETLPHLRPFPASSHPRTPTDPGLDSALEP SGDPHSKCLFDS YRLHDESNQRTLTLSSSKDANILSEQMSLKEVLDASVKEVGSSSSDVSGKESVPVE EFLRSRASLIEVDLSDLKAPPEPGELVSLDGSADLVSEGQKPGVGFFFKDEQKAEDE LAKKRAAFLL
- 10 DER GEGR PR SIVSRR PSEGP QP LVRRKMTGSRDLNRTFTPIPCSEFPMGIDPTETGPLSVETAGEVCG GPLALGGFDPFPQGPSTDGFFLHA' 'GRADEPTEGRL^ YVSCSKSPNSHDSEPWTLLRQDSDSDVVDIEEA EHDPMGEA HP VVF SRY IGEEE SA K LQEDMKVKEHEDKDDASGRS SPCLSTASQMSSVSMASGSVKMTS FAERKI:QRLNSC:ETKS:ST.SSSQKTTPDASESCPAPLTTWRQKREQSPSQEGKB'F %SLLASELVQLHMQ: LEEKRR A I EA QKKKMEA LSAR QRLKLGKAA FLHVVKKGKAEA APP LR PEHFAKEYSQHNGEDCGDAVS
- 5 LKEVT SMADSLYNIRLLREF SNEYLNKCFYLTLEDMLYAPLVLKPNW VFIAELFWWFENVKPDFVQP RDVQELKDAKTVLHQKSSRPPVPrSNATKE-S-FLGSPAAGTLAELQPPVQLEAEGCHRHYLHPEEPEYL GKGTAAFSPSHPLLP LRQKQQKSIQGED IPDQRHRSNSLTRVDGQPRGAA IAWPEKKTRPA SQPTPFA LHHAAS CEVDPSSGDSISLARS.I:SKDSLASNI:VNLTPQNQPHPTAIKSHGKSLLSNVSIEDEEEELVA IVRADVVPQQADP EFPRASPRALGLTANARSPQGQLDTSESKFDSFFLEPLMPAVLKPAKEKQVITKE
- MVDA SGRAAAEGWRKMEAPPDGAAPLyPLDRYDAARAKIAANLQWICAKAYGRDNIPEDLRDPFYVDQ YEQF%IKPPVIRLLL.S:SELYCRVCSLILK^DQVAALQGHQSVIQALSRKGIYVMESDDTPVTESDLSR APIKMSAHMAMVDALMMAYTVEMISIEKVVASVKRFSTFSASKELPYDLEDAMVFWINKVNLKMREIT EKEVKLKQQLLESPAHQKVRYRRERLSARQSPYFPLLEDLMRDGSDGAALLAVIHYYCPEQMKLDDIC LKEVT SMADSLYNIRLLREFSNEYLNKCFYLTLEDMLYAPLVLKPN%VFTAELFWWFENVKPDFVOP

KNHFKGGOS GLNL SKNFLDFKE LMELLK 3RDYEREIKGSREKVI SDKDLE LLLDR SDLIDOMNAS GPI KEKMGIFKI .. ENSEDSSPECLF

>SEQ ID NQ;34

- 5 MAGVGPGGYAAEFVPPPECPVFEPSWEEFTDPLSFIGRIRPIAEKTGICKIRPPKDwQPPFACEVKSF rftprvorLNeLeaMtrvrldflDQLaKfWelogsTlkipvverKiLdlyaLsKIVASKGGFEMVTKE KXWSKVGSRLGYLPGEGTGSLLKSHYERILYPYELFQSGVSLMGVQMPNLDLKEKVEPEVLSTDTQTS PEPGTRMNILPKRTRRVKXeSESGD^SRNTELKKborFGAGPKVVGLAMGTKDKEDEVXRREKVTNRS DAFNMQMRQRKGTLSVNFVDLYVCMFCGRGNNEDKLLLCDGCDDSYHTFCLIPPLPDVFKGDWRCPKC
- 10 VAE ECSKPRE AFGFEQAVRE YTLQSFGEMADNFKSDYFNMP VHMVPTELVEKEFWRLVS SIEEDVIVE YGADIS:SKDFGSGFPVKDGRRKILPEEEEYALSGWM LNNMPVLEQSVLAHINVDISGMKVPWLYVGMC FSSPCWHTEDHWSYSINYLHWGEPKiWYGVPSHAAEQLEEVMRELAPELFESQPDLLHQLVTIMNPNV LMEHGXPVYRTNQCAGEFVVTFPRAYHSGFNQGYNFAEAVNFCTADWLPIGRQCVNHYRRLRRHCVFS HEELIFKMAADPECLDVGLAAMVCKELXLMIEEEIRLRESVVOMGVLMSEEEVFELVPDDERQCSACR
- 15 TXCFL SALTCSCNPERLVCLYHPXDLCPCPMQKKCLRYRYPLEDLPSLLYGVKVRAQSYDTWVSRVTE ALSANFNHKKDLIELRVMLEDAEDRIYPENDLFRKLRDAVKEAETCASVAQLLLSKKQKHRQSPDSGRXRIKLIVEELKAFyOOLFSLPCv I SCA RQVKNLLDDVEEFHERAQEAMMDETPDSSKLQMLIDMGSSL XX LPELPRLKQEL QQARWLDEVRLXLSDPQQVILDVMKKLIDSGVGLAPHHAVEKAMAELQELLXVS ERWEEKAKVCLQARPRH SVASLES IVNEAKN IPAFLPNVLSLKEAL QKAREWXAKVE AIQSG SNYAYL
- 20 EQLESI JSAKGRPIPVRLEALPQ VESQVAAARAWRERTGRTFLKKNSSHTLLQVLSPRTDIGVYGSGKN RRKKVKELIEKEKE KDLDLEPLSDLEEGLEEXRDXAMVVAVFKEREQKEIEAMHSLRAANLAKMTMVD RIEEVOTCICRKXASGFMLQCELCKDWFHNSCVPLPKSaSQKKGSSWQAKEVKFLCPLCMRSRRPRLE $\tt XILSLLVSLQKLPVRLPEGEALQCLXERAMSWQDRARQALAXDELSSALAlilsvLSQRMVEQAAREKX$ EKIISAELQKAAANPr)LQGHLPSFQQSAFNPa VSSVS5nSPRQXMDYDDEEXDSDEDI RETYGYDMKDT
- 25 ASVKSSSSLEPNLFCDEEXPIKSEEWXHi^fXA^SFCAEHAYSSAS KSCSQGSSTPRKQPRKSPLVPR SLEPFVLEL SPGAKAQLEELMMVGBLLEVSLDEXQ.HIWRILQAIHPPSEDRFLHI MBDD SMEEKPLKV KGKDSSEKKRKRKLEKVEQLFGEGKQKSKELKKMDKPRKKKLKLGADKSKELNKLAKKLAKEEERKKK KEKAAAAKVELVKESXEKKREKKVLDIPSKYDWSGAEESDDENAVCAAQNCQRPCKDKyDWyQCDGGC DEWFHQVCVGV SPEMAENEDYICIN CAKKQGPVSPGPAPPPSFIMSYKLFME DLKEXS

30

>SEO ID NO: 35 MSLSNKLTLDKLDVKGKRVVMRVDFNVPMKNNQIINNQRIKAAVPSIKFCLDNGAKSWLMSHLGRPD GVPMPDKYSLEPVAVELKSLLGKDVLFLKDC^VGPEVEKACAiipAAGSVILLENLRFHVEEEGKGKDAS GNKVKAEPAKIEAFRA-SLSKLGDVYVNDAFGXAHRAHSSM VGVNLPQKAGGFLMKKELNYFAKALESP

- 35 ERPFLAILGGAKVA.DKIQLINNMLDKVNEMI IGGGMAFXFLKVLNNME IGISLFDEEGAK IVKDLMSK AEKNGVKIILPVDFVTADKFDENAKTGQATYASGTPAGWGLDCGPESSKKYAEAVTRAKQIVWNGPV GVFEWEAFARGXKALMDEWKAXSRGCIIIIGGGDXAICCARWXEDKVSHVSIGGGASLELLEGRVL PGVDALSNI
- 40 >SEQ ID NO: 36
- MADLEVYKNLSPEKVERGMSVMQSGXQMIKLKRGXKGLVRLFYLDEHRXRLRWRP SRKSEKAKTLIDS 1YKVXEGROSEIFHROAEGNFDPSCCFXIYHGNHMESLDLIISNPEEARIWIXGLKYLMAGISDEDS.L SKRQRTHDQWVKQTFEEADKNGDGLLNIEEIHQLMHKLNVNLPRRKVRQMFQEADTDENQGTLTFEEF CVFYKMMSLRRDLYLLLLSYSDKKDHLTVEELAQFLKVEQKMNNVTTDYCLDIIKKFEVSEENKVKNV
- 45 LGIEGFTMFMRSPACDIFNPLHHEVYQDMDQFLCNYYIASSHNTYLTGDQLLSQS KVDMYARVLOEGC. RCVEVDCWDGPDGEPVVHHGYTLTSKILFRDVVETINKHAFVKNEFPVILSIENHCSIQQQRKIAQYL KGIFGDKLDLSS VDIGECKQLPS.PQSLKGKILVKGKKLPYHLGDDAEEGEVSDEDSADE 1EDECEFKL HYSNGTTEHQVE SFIRKKLESLLKE SQIRDKEDPDSFTVRALLKAXHEGLNAHLKQSPDVKE SGKKSH GRSLMTNFGKHKK.TTKSRSKSYSTDDEEDTQQSTGKEGGQLYRLGR%RKTMKLCRELSDLV VYTNSVA
- 50 AQD IVDDGTTGNVLSF SETRAHQXVQQK SEQFMIYNQKQLTRIYPSAYRIDSSNFNPLPYWNAGCQLV7 ALNYQ SEGRUMQLNRAKFKANGNCGYVLKPQQMCKGTFNPFSGDPLPANPKKQLILKVISGQQLPKPP DSMFGDRGEIIDPFVEVEIIGLPVDGGKDQTRVVDDNGFNPVWEETLTFTVHMPEJALVRFLVWDHDP IGR DFV GQR TVTFSsLvpgyr Hv yleg LTeasIFVHITINEIygKw splilnp sy Tilhflga TKNrQ LQGLKGLFNKNPRHSSSENNSHYVRKRSIGDRILRRXASAPAKGRKKSKMGFOEMVEIKDSVSEATRD
- 55 $\texttt{QDGVLRRXXRS} \ \texttt{L}\texttt{Q}\texttt{ARPV} \texttt{S}\texttt{MPV} \texttt{DRNL} \texttt{L}\texttt{G}\texttt{A}\texttt{L} \ \texttt{S}\texttt{L}\texttt{P}\texttt{V} \ \texttt{S}\texttt{E} \ \texttt{T}\texttt{A}\texttt{K} \ \texttt{D}\texttt{I} \ \texttt{E}\texttt{G}\texttt{K} \ \texttt{E} \ \texttt{N} \ \texttt{S}\texttt{L} \ \texttt{A}\texttt{E} \ \texttt{D}\texttt{K} \ \texttt{D} \ \texttt{G} \ \texttt{K} \ \texttt{G} \ \texttt{K} \ \texttt{S} \ \texttt{S} \ \texttt{I} \ \texttt{K} \ \texttt{D} \ \texttt{D} \ \texttt{P} \ \texttt{H} \ \texttt{I} \ \texttt{L} \ \texttt{D} \ \texttt{D} \ \texttt{S} \ \texttt{L} \ \texttt{A} \ \texttt{D} \ \texttt{C} \ \texttt{C} \ \texttt{S} \ \texttt{L} \ \texttt{A} \ \texttt{D} \ \texttt{C} \ \texttt{C} \ \texttt{D} \ \texttt{C} \$ FNKKLSSSSALLHKDTSQGDTIVSTAHMSVTGEQLGMSS.PRGGRTTSNATSNCQENPCPSKS LSPKQ HLAPDPVVNFTQDLHGVKIKEKGNPEDFVEGKSILSGSVLSHSNLEIKNLEGNRGKGRAATSFSLSDVSMLCSDTPDLHSXAILQESV ISHLIDNVXLXNENEPGSSISALIGQFDEINNQALXVVSHLHNXSVMS GHCPLPSLGLKMPIKHGFCKGKSKSSFLCSSPELIALSSSETTKHAXNXVYETXCTPlskXKPDDDLS
- 60 SKAKTAALE SNLPGSPNTSRGWLPKSPTKGEDWETLKSCSPASSPDLTLEDVIADPTLCENSGESSLV

SUBSTITUTE SHEET (RULE 26)

EIDGE SENLSLTTCEYRREGTSQLASPLKLKYNQGVVEHFORGLRNGYCKETLRPSVPEIFNNIODVK

KKKKHKHKHKHKHKHD SKEKDKEPFTFSSPASGRS IRSPS 1.SD

- RXLDN LNPDVRLILEEITRFLNMEKLLPSYRITIXVSCLRAIRVLQKNGHVPSDPALFKSYAEYGHFV DIRIAALEAWDYIKVDRSYEELQWLLNMIQNDPVPYVRHKILNMLXKNPPFXKNMESPLCNEALVDQ: LWKLMNSGXSHDWRLRCGAVDLYFXLFGLSRPSCLPLPELGLVLNLKEKKAVLNPXIIPESVAGNQEA ANNP SSHPQLVGF QNPFS SSQDEEE IDMDXVHD SQ.AFISHK LNMLERP SIPGLSKYRPASSRSAL IPQ 60 HSAGCDSXPIXKPQWSLELAMIGXGKEQAPLEMSMHPAASAPLSVFXKESXASKHSDHHH HHHHEHKK
- LSLAS TA SSOKFOSHMWSQMLVSISGFLK.S1SNVS GKD IQPLIKOWVDQSGVVKF YGSF AFNRKRNVL ELEIKQDYTSPGTQKYVGPLIWTVQELDGSFNHTLQIEENSLKHDIPGHSKSRRNKKKKIPLMNGEEV DMDL SAMDAD SPLLWIR IDPDMSV LRKVEFEQADFMWQYQLRYERDVVAQQESILALEKFPTPASRLA LTDILE QEQCFYRVRMSACFCLAKIAN SMV SX WXGPPAMKSLFTRMFCCKSCPNIVKXNNFM SFQSYF 55 LQKXMPV AMALLR DV HN LCPKEV LTFILDLIKYNDNRKNKFSDNYYRAEMIDALANSVXPAVSWTOE
- EFT Y DAAMVAVS NGDL VEIVYTHDMRKKX FHYML TIPTAASN ISLAIGPFEILVDPYMHEVIHFCLPQ: LLPLLKHXISYLHEVFEFYEEILXCRYPYSCFKXVFIDEAYVEVAAYASMSIFSXNLLHSAMIIDEXP LIRRCLAQSLAQQF FGCF ISRMSWSDEWVLKGISGYIYGLWMKKTFGVNEYRHWIKEELDKIVAYELK 50 IGGVLLHPIFGGGKEKDN PASHXHFSIKHPHTLSWEYYSMFQCKAHLVMRLIENRISMEFMLQVFNKL
- >SEQ ID NO; 42 MPLTGVEPARMNRKKGDKGFESPRPYKLTHQVVCINNINFQRKSVVGFVELTIFPTVANLNRIKLNSK 45 ${\tt QCR IYRVRIND} {\tt IEAFIXNDPTLEVCHSE} {\tt KQRNLNYFSNAYAAAVSAVDPDAGNGELCIKVPSELWK}$ hvdelkvlrihinfsldqpkgglhfwpsvf^ MAERGAHVFSCGYQNSTRFWFPCVDSYSELCTWKL

GADEHLQLI SLCA IVM QQL SQNC

 ${\tt MQAFLKGXSISXKPPLTKDRGVAASAGSSGENKIKAKPVPWVEKYRPKCVDEVAFQEEVVAVLKKSLEG}$ ADLPNLLFYGPPGIGKXSTILAAARELFGPELFRLRVLELNASDERGIQVVREKVKNFAQLIVSGSRS DGKPCPPFKIVILDEADSMXSAAQAALRRXMEKESKXXRFCLieNYvSRIIEPLXSReSKERFKPLSD: KIQQQRLLDIAKKENVK1Spe5TAYLVK¥S:EGDLRKAIXELQSAXRLXGGKEIXEKV1XD1AGV1PAE 40 KIDGVFAACQSGSFDKLEAVVKDLIDEGHAAXQLVNQLHDWVENNLSDKO KSIITEKLAEVDKCLAD

35 >SEQ ID NO:41

ERKAF LDRVDHRQF EIERDLRL 8KMKP

- MEEFDSEDFSX SEE DEDYVP SGGEYSEDDVNELVKEDEVDGEEOTCI(TQGKKRKAQ SIPARKRRQGG L 30 SLEEEEEEDANSESEGSSSEEEDDAAEQEKGIGSEDARKKKEDELWASFLNDVGPKSKVPPSXQVKKG EETEEXSSSKLLVKA EELEKPKETEKVK IXKVFDFAGEEVRVTKEVDATSKEAKSFFKQNEKEKPQAN VPSALPSLPAGSGLKRSSGHSSLLGKIGAKKQKM.SXLEKSKLDWESFKEEEGIGEELAIHNRGKEGYI
- 25KQQEEQXRVALLEQQMQACILDFENEKLDRQHVQHQLHVILKELRKARNQITQLESLKQLHEFAXXEP LVXFQGEXENREKVAASPKSPXAALNESLVEGPKCNIQYPAXEHRDLLVHVEYCSK
- 20 MSSRSTKDLIKSKWGSKPSNSKSETTLEKLKGEIAHLKTSVDEITSGKGKLTDKERHRLLEKIRVLEA EKEKNAYQLTEKDI% IQRLRDQLKARYSTTTLLEQLEETTREGERREQVLKALSEEKDVLKQLAAAT SP₃J AELESKTNTLR I-SQTVAPNCFNSSINNIHEMEIQLKDALEKNQQWLVYDQQRE\YVKGLLAKIFE XEKKTETAAHSLPQQTkKpesegylQeekQkCYNdLLasaKKdLeverqTITQlsFelsefrrKyeeT QKEVHNLNQLLY SQRRADVQHLEDDRHKTEK IQKLREEN DXARGKLEEEKKR SEELLSQVQFLYX SXL
- >SEQ ID MO:39

>SEO ID NO:40

CLAAGDILAIV'FGLLFAVTSFAFI,V'QMRROHRRGIKGGVSYRPAEVAETGA

- TLPPGLEMALGPGREYRALQLHLHMGAAGRPGSEHTVEGHRFPAEIHVVHLSTAFARVDEALGRPGGL 15 AVLAA FLEEGPEENSAYEOLLSRLEE JAEEGSETQVPGLDISALLPSDFSRYFQ¥EGSLTTPPCAOOV XWTVFNQTVMLSAKQLHTLSDTLWGPGDSRLQLNFRATOPLNGRVIEASFPAGVDSSPRAAEPVOLNS
- MAPLCPSPWLPLLIPAPAPGLTVQLLLSLLLVPVHPQRLPRMQEDSPLGGGSSGEDDPLGEEDLPSE edspreedppgeedlpgeedlpgeedlpevkpicseeegslkl EDLPTVEAPGDPQEPQNNAHRDKEGD D;Q;SHWRYGGDPPWPRVSPACAGRF;QSPVDIRPQLAAFGPALRPLELLGFQLPPLPELRLRNNGHS VOL.
- 10

YFIDSINLKTHFRSKDHKKRLKQLSYEPYSQEEAERAAGMGSYVPPRRLAVPIEVSTEVPEMDIST >SEO ID NO:38

>SEQ ID NG:37 MGR SRRTGAHRAHSLARQMKAKRRRPD1.DE IHRELRPQGSARPQPDPNAEFDPDLPGGGLiiR CLA CAR

TQSISYLAYQGAGFVHNHFSDSDAKMFQTCVPQQSSAQDMHVPVPKQLAHLPLPALKLPSPCKSKSLG DLTSEDIACNFESKYQCISKSFVTTGIRDKKGVTVKTKSLEPIDALTEQLRKLVSFDQEDNCQVLYSK QDANQLPRALVRKLSSRSQSRVRNIASRAKE KQEANKQKVPNP SNGAGVVLRNKP SAPTPAVNRHSTG SYIAGYLKNXKGGGLEGRGIPEGACTALHYO^{*} VDQFCSDNSVLQTEFSSDDKPEIYFLLRL

5

SUBSTITUTE SHEET (RULE 26)

- AGNYRCEVTYKDKFDSCSFDLEVHESTGTTPNIDIRSAFKRSGEGQEDAGELDFSGLLKRREVKQQEE
 55 EPQVDVWELLKNAKPSEYEKIAFQYGITDLRGMLKRLKRMRREEKKSAAFAKILDPAYQVDKGGRVRF VVELADPKLEVKWYKNGQEIRPSTKYIFEHKGCQRILFINNCQMTDDSEYYVTAGDEKCSTELFVREP PIMVTKQLEDTTAYCGERVELECEVSEDDANVKWFKNGEEIIPGPKSRYRIRVEGKKHILIIEGATKA DAAEYSVMTTGGQSSAKLSVDLKPLKILTPLTDQTVNLGKEICLKCEISENIPGKWTKNGLPVQESDR LKVVHKGRIHKLVIANALTEDEGDYVFAPDAYNVTLPAKVHVIDPPKIILDGLDADNTVTVIAGNKLR
 60 LEIPISGEPPPKAM'JSRGDKAIMEGSGRIRT^ SYPDSSTLVIDIAERDDSGVYHINLKNEAGEAHASI KVKVVDFPDPPVAPT VI:EVGDD WCIMNWEPPAYDGGSPILGYFIERKKKQSSRWMRLNFDLCKETTFE
- 50

 >SEQ ID NO: 47

 MPEPTKKEENEYPAPAPPPEEPSKEKEAGTTPAEIDWTLVETPPGEE
 QAKQNANSQLSILFIEKPQGGT

 VKVGEDITFIAKVKAEDLLRKPIIKWFKGKWMDLASKAGKHLQLKETFERHSRVYTFEMQIIKAKDNF

 AGNYRCEVTYKDKFDSCSFDLEVHESTGTTPNIDIRSAFKRSGEGQEDAGELDFSGLLKRREVKQQEE

 55
 EPOVDVWELLKNAKPSEYEKIAFOYGTTDLRGMLKRLKRMBREEKKSAAFAKILDPAYOVDKGGRVRF
- ysplsspatsspsgnaysslanripgfaesgqssgqfqgrpsevwsqwqsq ${\tt TEVFQ}$ DMLPMP gdp tqg tgny.niedfadl gmfppf ${\tt SE}$
- HNSDGIIXFVDPRCJSVIGYQPQDLLGKDXLEFCHPEPQSHLRESFQQVVKLKGQVLSVMYRFRTKNR 45 EWMLIRT3SFTF0NPYSDEIEYIICrNTNVKQLQQQQAELEVHQRDGLSSYDLSQVPVPNLPAGVHEA GKSVBKADAIFS^{*}.ERDPRFAEMFAGISASEKKt^{*}MSSASAAG⁻TQQIYSQGSPFPSGHSGKAFSS SVVHV PGVNDIQSSSSTGQNMSQISRQLNQSQVA^{*}4 TG SRP PFPGQQ IP SQSSKIQSSPFGIGTSHTYPADPSS YSPLSSPATSSPSGNAYSSLANRIPGFAESGQSSGQFQGRPSEVWSQWQSQHHGQQSGEQHSHQQPGQ
- 40 SEIERRRRNKMTQYITELSDMVPTCSALARKPDKLTILRMAVSHMKSMRGTGNKSTDGAYKPSFLTEQ ELKHLILEAADGFLFVVAAETGRVIYVSDSVTPVLNQPQSEWFGSTLYEQVHPDDVEKLREQLCTSEN SMTGRILDLKTGTVKKEGQQSSMRMCMGSRRSFICRMRCGNAPLDHLPLNRITTMRKRFRNGLGPVKE GEAQYAVVHCTGYIKAWPPAGMTIPEEDADVGQGSKYCLVAIGRLQVTSSPVCMDMNGMSVPTEFLSR HNSDGIIXFVDPRCJSVIGYOPODLLGKDXLEFCHPEPOSHLRESFOOVVKLKGOVLSVMYRFRTKNR
- >SEQ ID NO:46 MATPAAVNPPEMASDIPGSVTLPVAPMAATGQVRMAGAMPARGGKRRSGMDFDDEDGEGPSKFSRENH

N SWCTRLIDR IHKDE iMRNRKRVKE INQY IDHMQ SELDNLECGDILD

- SLGNNRIDNt-IMNIIYLRRFKCLRTLSLSRNPISEAEDYI^1FICAYLPDLMYLDYRrrddhtkklaeak

 HQYSIDELKHQENLMQAQLEDEQAQREELEKHKIAFVEHLNGSFLFDSMYAEDSEGNNLSYLPGVGEL

 LetyKdkfvIjgvnifeyglkqqekr
 KTELDTFSECVREAIQENQEQGKRKIAKFEEKHLSSLSAIRE

 ELELPNIEKMTI.ECSADISELFDAM
 TLEMQLVEQLEETINMFERNIVDMVGLFIENVQSLMAQCRDL

 35
 ENHHHEKLLEISISTLEKIVEGDLDEDLPNDLRALFVDKDTIVNAVG%SHDIHLLKIDNREDELVTRI
- LIIFADDTYPRWVTTASLLDYDTVAGADKFGNICVVRLPPNTNDEVDEDPTGNKALWDRGLLNGASQK 25 aevimnyhvgetvlslgkttlipggseslvyttlsggigilvpftshedhdffQhvemhlrsehpplc grdhlsfrsyyfpvknvidgdlcegfnsmepnkQknvseeldrtppevskkledirtryaf
- 20 QCPEGIVAISTNTLRILALEKLGAVFNQVAFPLQYTPRKFVIHPESNNLIIIETDHNAYTEATKAQRK QQMAEEMVEAAGEDERELAAEMAAAFLNENLPESIFGAPKAGNGQWASVIRVMNPIQGNTLDLVQLEQ NEAAFSVAVCRFSNTGEDWYVLVGVAKDLILNPRSVAGGFVYTYKLVNNGEKLEFLHKTPVEEVPAAI APFQGRVLIGVGKLLRVYDLGKKKLLRKCENKHIANYISGIQTIGHRVIVSDVQESFIWVRYKRNENQ LIIFADDTYPRWVTTASLLDYDTVAGADKFGNICVVRLPPNTNDEVDEDPTGNKALWDRGLLNGASQK
- SFVNATLVLSIGETVEEVTDSGFLGTTPTLSCSLLGDDALVQVYPDGIRHIRADKRVNEWKTPGKKTI VKCAVNQRQVVIALTGGE M/YFEMDPSGQLNEYTERKEMSADVVCMSLANVPPGEQRSRFLAVGLVDN TVRIISLOPSDCLQPLSMQALPAQPESLCIVEMGGTEKQDELGERGSIGFLYDNIGLQNGVLLRTVL PVTGDLSDTRTRYLGSRPVKLFRVRMQGQEAVLAMSSRSWLSYSYQSRFHLTPLSYETLEFASGFASE
- 10 RLTGGTKDYIVVGSDSGRIVILEYQPSKNMFEKIHQETFGKSGCRRIVPGQFLAVDPKGR¾VÜISAIE
 KQKLVYILNRDAAARLTISSPLEAHKANTLVYHVVGVDVGFENPMFACLEMDYEEADNDPTGEAAANT
 QQILTFYELDLGLNHVWKYSEPLEEHGNFLITVPGGSDGPSGVLICSENYITY^ FGDQPDIRCPIP
 RRRNDLDDPERGMIFVCSATHKTKSMFFELAQTEQGDIFKITLETDEDMVTEIRLKYFDTVPVAAAMC
 VLKTGFLF¼SEFGNHYLYQIAHLGDDDEEPEFSSAMPLEEGDTFFFQPRPLKNLVLVDELDSLSPIL
 15 FCQIADLANEDTPQ LYVACGRGFRSSLRVLRHGLEVSEMAVSELPGNPNAVWTVRRHIEDEFD¾YIIV
- >SEQ ID NO: 44
 MELYNLTLQRATGISFAIHGNFSGXKQQEIVVSRGKILELLRFDPNTGKVHTLLTVEVFGVIRSLMAF
 10 RLTGGTKDYIVVGSDSGRIVILEYQPSKNMFEKIHQETFGKSGCRRIVPGQFLAVDPKGR%VHISAIE
 KQKLVYILNRDAAARLTISSPLEAHKANTLVYHVVGVDVGFENPMFACLEMDYEEADNDFTGEAAANT
- J IIVMDKLKLEIKAMDEIQPD LFDLESAYNAFNRFLHA
- >SEQ ID NO: 4.3 MFHGIPATPGIG%PG% PELYEEVKLYKNAREREKYDNMAELFAVVKTMQALEKAYIKDCVSPSEYTA AGSKLLVQYKAAFRQVQGSEISSIDEFCRKFRLDCPLAMERIKEDRP ITIKDDKGNLNPCIADVVSLF 5 ITVMDKLRLEIRAMDEIQPD^ ELMETMHRMSHLPPDFEGRQTVSQWLQTLSGMSASDELDDSQVRQM

APEELMGHPFIVQFNDGNAAVySMWVGRALEERRSQQGPP

- LQKQIMoELEILYKCDSSYIIGFYGAFFyENRISICTEFMDGGSLDvYRKMPEHyLGRIAyAyyKGLT YLWSLKILHRDVKPSNMLVNTRGQVKLCDFGVSTQLVNSIAKTYVGTNAYMAPERISGEQYGIHSDVW 60 SLGISFMELALGRFPYPQIQKNQGSLMPLQLLQCIVDEDSPVLPVGEFSEPEVHFITQCMRKQPKERP
- :>SEQ ID NO: 51 55 MLW LalgpfpamenQylytrikipn SgaydWtyhsgpqilfrdvldvigQvlpeatttafeyededgdRITVRSDEEMKAMLSY YY STVMEQQVNGQLIEPLQIFPRACKPPGERNIHGLKVNTRAGPSQHSSFAV SDSLPSNSLKKSSAELKKr^ NGQMNEQDIRYRDTLGHGNGGTVYKAYHVPSGKILAVKVILLDITLE
- GR LY IDGLRY LEESLPP TEA TWK IKGPIYLGGV APGKAVKNVQINSIYSFSGCLSNLQLNGASITSAS 50 OTFSVTPCFEGPMETGTYFSTEGGYVVLDESFNIGLKFEIAFEV^^ RSSSGTLVHGHSVNGEYLNVHM K NGQVIY KVNNG IRDFS TSVTP KQSLGDGR WHRITVIRDSN VVQLDVDSE VNHVVGPLNPKPT DHREP VFVGGVPESLLTPRLAP SKPFTGCIRHFVI DGHPV SFSKAAL VSGAVSINSGPAA
- SAQYANFTGCISNAYFXRVDRDVEVEDFQRYTEKVHTSLYECPIESSPLFLLHKKGKNLSKPKASQiiK KGGKSKDAFSWDPVALKLPERNTPRNSHCHLSNSPRAIEHAYQYGGTANSRQEF EHLKGDFGAKSQFS IRLRTRSSHGMIFYVSDQEENDFMTLFLAHGRLWMFNyGHKKLKIRSQEKYNDGLWHDyiFTRERSS
- PKHIYNMDPSTSVPCARDKLAFTQSRAASYFFDG3GYAVVRDITRRGKFG0\TTRFDIEyRTPADNGLI LLM¥NGSMFFRLEMRNGYLHVFYDFGFSGGPVHLEDTLKKAQINDAKYHEISIIYHNDKKMILVVDRR HVKSMDNEKMKIPFTDIYIGGAPPEILQSRALRAHLPLDINFRGCMKGFQFSKKDFNLLEQTETLGVG YGCPEDSLISRRAYFNGQSFIASIQKISFFDGFEGGFNFRTLQPNGLLFYYASGSDVFSISLDNGTVI MDVKGIKVQSVDKQYNDGLSHFVISSVSPTRYELIVDKSRVGSKNPTKGKIEQTQASEKKFYFGGSPI
- 45
- RIRELIAQTRSVASKIQVSMMFDGQSAVEYHSRISMDDLKAFTSLSLYMKPPYKRPELTETADQFILY LGSKNiikkeymglaikndnlvyvynlgtkdveipldskpvsswpayfsivkiervgkhgkvfltvpsl 40 SSIAEEKFIKKGEFSGDDSLLDLDPEDTVFYVGS VPSNFKLPTSLNLPGFVGCLELATLNNDVISLYN
- HELSPI<EISEKLVLAQKMLEEIRSRvQPFFTQREL\^EEADEAYELLi]QAESWQRLHNEIRTLFPVVLE QLDDYNAKLSDLQEALDQALNyy RDAEDMMRATAARORDHEKO QERVREQMEVVNMSLSTSADSLTTP RLTLSELDDIIKNASGIYAEIDGAKSEtQVKLSNLSHDIVQEAIDHAQDLQQEANELSRKLHSSD 35 BNGLVQKSLDASNVYEN IVNYV SEANE TAE FALN TTÐR IXDAV SGIDTQI FYHKDE SENLIN QARELQ AKAE SSSDEAVADT SRRVGGALARKSALKTRLSDAVKQLQAAERGDAQQRLGQSRLITEEANRTTMEV QQA TA PMANN LTNWSQN LQHF DS SA YN TAVNSA RDAVRNL TEVVPQLLDQLRTVEQKRPASNVSASIQ
- VTGQCRNCLRWTTGFKCERCAPGYYGDARIAKNCAVCNCGGGP-CDSVTGECLEEGFEPPTGMDCPTIS30 CDKGVW)LTDALRU^SIEEGKSG^LSVSSGAAA^RHVNEINATIYi.LKTKLSEREN©YALRKIOIN NAENTMKSLLSDVEELVEKENQASRKGQLVQKESMDTINHASQLVEQAHDMRDKIQEINNKMLYYGEE
- 25 >SEQ ID NO: 50 MALSSAWRSVLPIWLLWSAACSRAASGDDN2FPFDIEGSSAVGRODPPETSEPRVALGRLPPAAEKCN AGFFHTLSGECVP€DCNGNSNECLDGSGYC\?HCQRNTIGEHCEKCLDGYIGDSIRGAPQFCQPCPCPL PHLANFAE SCYRKNGAVRCICNENYAGPNCERCAPGYYGNPLLIGSTCKKCDCSGNSDPNLIFEDCDE

NNAASASASNSX

- ETVYRVARHYSRAKQTLPVIYyKLYMYQLFRSLAYIHSFGICHRDIKPQNLLLDPDTAVLK LCDFGSA. KQLVRGEPNVSYIC SRYYRAPELIF GATDYTS SIDVWSAGCVLAELLLGQPIFPGDSGVDQLVEIIKV LGTPTREQIREMNPNYTEFKFPQIKAHPW^ KVFRPRTPPEAIALCSRLLEYTPTARLTPLEACAHSFF ${\tt DELRDPIWKLPNGRDIPALENFTTQELSSNPPLAIILIPPHARIQAAASTPTNATAASDANTGDRGQ}$ Ť
- >SEQ ID NO:49 MSGRPRITSFAESCKP%QQPSAFGSMKVSRDKDGSKVTTVVAIPGQGPDRPQEVSYTDTKVIGNGSFG VyYQAKLCDSGELVAIKKVLQDmFKNRELQIMRKLDHCNIVRERYFFYSSGEKKDEVYDNLVLDYVP 20

15

- >SEQ ID MO: 48 10 MLLETODALYVA LELVIAALSVAGNVLVCAAVGTANTLQTPTNYFLVSLAAADVAVGLFAIPFAITIS LGFGTDFYGGLF1ACFVLyLTCIS.S1FSLLAVAVD RYLAICVPLRYKSLVTGTRARGVIAVLWVLAFGI GI^PFLGWNSKDSATNNCTEP WDGTTNESCCLVKCLFENVVPMSYMVYFNFFGCVLPPLLIMLVIYIK IFLVACRGLQRTELMDH SRTTLQREIHAAKSLAMIVGIFALCWLPVHAVNCVTLFQPAQGKNKPKWAM NMAILLSHANSVVNPIVYAYRNRDFRYXFHKIISRYLLCQAD% SGNGQAGVQPALGVGL
- GASEPKYYSQPILYKEIIEPPKIRIPRHLKQTYIRRVGEAVNLVIFFQGKPRPELTWKKDGAEIDKNQ IN IRNSETDTIIF IRKAERS HSGKYDLQVKVDKFVE TA SIDIQIIER PGPPQIVKIEDVWGEKVALT W 5 TPPKDDGNAAIT.GS?TIQKADKKSMESETVIEHYHRTSATITELVIGNEYYFRVFSENMCGISEDATMT KEŚAVIARDGKIYKNPVYEDFDFSEAi?MFTOPLVNTYAIAGYNATLNCSVRGNPKPKITWMKNKVAIV DDPRYRMFSNQGVCTLEIRKPSPYDGGTYCCKAWDLGTVEIECKLEVKVIAQ.

PKKMIEGVAYEVRIFAVNAIGISKPSMPSRPFVPLAVTSPPTLLTVDSVTDTTVTMRWRPPDHIGAAG

LDGYVLEYCFEGSTSAXQSDENGEAAYDLPAEDWI^

JANKDLIDKTKFTITGLPTDAKIFVRVKAVNAA

- >SEQ ID NO: 57 MAEPRQEFEyMEDBAG1YGLGDRKDQGGY1MHQD QEGDTDAGLKESPLQTPTEDGSEEPGSETSDAKS 60 IPXAEDyXAPLyDEGAPGKQAAAQPHXEIPEGXIAEEAGIGDXPSLEDEAAGHyXQEPESGKVyQEGF LREPGPPGLSHOLMSGMPGAPLLPEGPREAXRQPSGXGPEDXEGGRHAPi,LLKHQLLGDLHQEGPPLK
- LAPKS
- 50 ISANAILXVLEXPSLWPLEDR\A.%vGEXVALQCKAXGNPPiRIXWFKGDRPLSLXERIIIILXPDNQLL VVQNVVAEDAGRYICEMSNXLGXERAHSGLSyLPAAGCRKDGXXVGIFXIAVV8SIVLTSLVWVCIIY QXRKKSEEYSVXNXDEIVvPPDypSYLSSQGILSDRQEXWRXEGGPQANGHIESNGyGPRDASHFPE PDTHSVACRQPKLCAGSAYHKEPWKA&EKAEGTPGPHKMEHGGRVVCSDCNTEVDCYSRGQAFHPQPV SRDSAQPS.APNGPEPGGSDQEHSPHHQCSRXAAGSCPECQGSL YPSNHDRMLTAVKKKPMASLDGKGD 55 SSWILARLYHPDSXELQPASSLXSGSPERAEAQYLLVSNGHLPKACDASPESXPLXGQLPGKQRVPLL
- 45 NSISHIAEGAFKGLRSLRVLDLDHNEISGTIEDISGAFSGLDSLSKLTLFGNKIKSVAKRAFSGLEGL EHLNLGGNA IR SVQFDAF VKMKNLKELHISSDSFLCDCQLKWLPPWLIGRMLQAFVTATCAHPESLKG QSIFSypPESFVCDDFLKPQIIIQPEIIMAMVGKDIRFICSAASSS.SSP% FAWKKDNEVLTNADMEN $\label{eq:stable} FVHVHAQDGEVMEYXXILHLRQVXFGHEGRYQCVIXNHFGSXYSHKARLIVNVLPSFIKXPHDIXIRX$ IXMSRLEC AATGBPNPQ IAWQKDGG XDFPAARERRMB VMPDODVFF ITDVKIDDAGVY SCXAQN SAGS
- 40 MARPVRGGL GAPRRS PCLLLLWLLLRLEPVTAAAGPRAPCAAACXCAGDSLDCGGRGLAALP GDLPS WTRSLNLSYNKLSEIDPAGFEDLPNLQEVYLNNNELTAVPSLGAASSHVVSLFLQHNKIRSVEGSQLK AYLSLE^LDLSLNNIXEVRNXCFPHGPPIKELNLAGNRIGXLELGAFDGLSRSLLILRLSKNRIXQLP VRAFKLPRLXQLDLNRNRIRLIEGLTFQGLNSLEvLKLQRNNISKLXDGAi'WGLSKMHvLHLEYNSLV EVNSGSLYGLTALHOLHLSNNSIARTHRKGWSFCQKLHELVLSFNNLTRLDEESLAELSSLSVLRLSH
- >SEQ ID NO: 56
- MYKIAFNXPXAVQKEEARQDVEALLSRXVRTQILXGKELRVATQEKEGSSGRCMLTLLGLSFILAGLT 35 VGGACIYKYFMPKSXIYRGEMCFFDSEDPANSLRGGEPNFLPVXEBADIREDDNIAIIDVPVPSFSDS DPAAIIBDFEKGMISYLDLLLGNCYLMPLNXSIVMPPKNLVELFGKLASGRYLPOTYVVREDLVAVEE IRDVSNLGIFIYQLCNNRKS FRLr<RRDLLLGFNKRAIDKCWKIRHFPNEFIVEIKICQE
- EGIWA

>SEQ ID NO; 55

- EEIESFRKENKDLKEKVNALQAELTEKESSLIDLKEHASSLASAGLKRDSKLKSLEIAIEQKKEECSK LEAQLKKAHNIEDDSRMNPEFADQIKQLDKEASYYRDECGKAQAEVDRLLEILKEVENEKNDKDKKIA ELESLTLRHMKDQNKKVANLKHNQQLEKKKNAQLLEEVRRREDSMADNSQHLQIEELMNALEKTRQEL DATKARLASTQQSLAEKEAHLANLRIERRKQLEEILEMKQEALLAAISEKDANIALLELSASKKKKTQ 30 EEVMALKREKDRLVHQLKQQTQNRMKLMADNYDDDHHHYHHHHHHHHRSPGRSQHSNHRPSPDQDDE
- QAKELFLLRKTLEEMELRIETQKQTLNARDESIKKLLEMLQSKGLPSKSLEDDNERTRRMAEAESQVS HLEVILDQKEKENIHLREELHRRS:QLQPEPAKXKALQXVIEMKDXKIASLERNIRDLEDEIQMLKANG. VLNXEDREEEIKQIEVYKSHSKFMKXKIDQLKQELSKKESELLALQIKLEXLSNQNSDCKQHXEVLKE SLIAKEQRAJVILQXEVDALRLRLEEKE^* LNKKTKQLQDLTEEKGTLAGEIRDMKDMLEVKERKINVL 25QKKIENLQEQLRDKDKQLTNLKDRVKSLQTDSSNTDTALATLEE&LSEKERIIERLKEQRERDDRERL
- >SEQ ID NG;54 MYG SAR TIXNLEG SPSR SPR LPRSFRLGHRR TS SG GGGGTGK XLSMEN IQ SLNAAYAT SGPMYLSDHE G¥ASXIYPK GXMXL GRAX NRA VYG GRV IAMGSSPHIASAGLSHXDVLSYXDQHGGLXGSSHHHHHQVPSMLRQVRDSXMLDL QAQLKELQREN DLLRKELDIKDSKLGSSMNSIKXFWSPELKKERVL RKEEAARM 20 SVLKEOMRVSHEENOHLOLXIQALODELRTORDLNHLLOOESGNRGAEHFTIELTEENFRRLOAEHDR
- 15
- LGLA^NVVTTWLISYCPTATEEAPYWTYLLCALGLFIYQSLDAIDGKQ ARRTNSCSPLGELFDHGCD SLSTVFMAVGASIAARLGTY PDWFFFCSFIGMFVFYCAHWQTYVSGMLRFGKVDVTEIQIALVIVFVL SAFGGATMWDYTIPITEIKLKILPVLGFLGGVIFSCSNo HVILHGGVCKNGSTIFGTSVLSPGLHIG LIIILAIMIYKKSAIDVFEEBPCLYILMFGCY FAKVSQKLVVAHMTKSELYLQDTVFLGPGLLFLDQY FNNFIDEYvvlWmafVisSFDMVIYFSALCLQISRHLHLNIFKTACHQAPEQVQVLSSKSHQNNMD
- >SEQ ID NO: 53 MAAGAGAGSAPRWLBALSEPLSAAQLRRLEEHRYSAAGVSLLEPPLQLYWTWLLQW IPLWMAPNSITL 10
- >SEQ ID NO: 52 MAHAGRI GYDNREIVMK.YIHYKLSORGYEWDAGDVGAAP PGAAPAPGIFSS OPGHIPHPAASRDP VAR TSPLGTPAAPGAAAGPALSPWPWHLILRQAGDDFSRRYRRD FAEMSSQLHLTPFTARGRFATVVEE 5 LFRDGVNWGRIVAFFEFGGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGP SMRPLF DFS-WL SLKTLL SLALVGACI ILGAYLGHK

SUBSTITUTE SHEET (RULE 26)

- MPALARDGGQLPLLVVF SAMIFGXITNQDLPVIKCVLINHKNNDS SVGKSSSYPMVSESPEDLGCALR PQSSGIVYEAAAVEVDVSASIXLQVLVDAPGNISCLWYFKHSSLNCQPHFDLQQRGVVSMVILKMXEX QAGEYLLFIQSEAXNYXILFXVSIRNTLLYXLRRPYERKMENQDALvCISESVPEPIVEWVLCDSQGE SCKEESPAVVKKEEKVLHELFGTDIRCCARNELGRECTRLFTIDLNQTPQTTLPQLFLKVGEPLWIRC KAVHVNHGFGLTWELENKALEEGNYFEMSTYSTNRTMIRILFAEVSSVARNDTGYYTCSSSKHPSQSA LVTIVEKGFINATNSSEDYETDQYEEFCFSVRFKAYPQIRCTWTFSRKSFPGEQKGLDNGYSISKFCN
- >SEQ ID NO: 60
 50 MVGALCGCWPRLGGARP L/PLGPXVVQX SMSRS.QVALLGLS.LLMLLLYVGLPGPPEQTSOLWGDPNV
 TVLAGLTPGNSP IF YREVLPLNQAHRVEVVLLHGKAFNSHTWEQLGTLQLLSQRGYRAVALELPGFGN
 SAPSKEA SX EAGRAALLERA LR DLEVQNAVLV SP SL SGHYALPF LMRGHHQLHGFVP IAPX SXQNY IQ
 EQFWAVKIPTLILYGELDH ILARESLRQLRHLPNHSYWLRNAGHACYLHKPQDFHLVLLAFLDHLP

QL

>SEQ ID NO:61

55

- 45 HSHIHSHLHLHQQPPLHQGSAGPVHPLVDPLTAGPFILARFPYPPGTLPNPLLGQPPHEHEMLRFLPVFG
 TPYPR DLPGA IPPPMSAA HQLQAMHAQSAE LQR LAMEQQWLHGHP HMHGGHLP SQEDYY SRLKKEGDK
- 40 PTVQIKEEA IDDAE EPESPPPPPR SPSPEPTVV DTPSHA SQSARFYKH IDRGYN SCARTDLYFMPLAG 6KLAKK REEA IEKA KREAEQKAREEREREKEKEKER EREREREREREREA KA 8SSAHEGRL SDPQLSG PGHMRPSFE PPPTT 1AAVPPY IGPDX PALR TL SEYA RPHVM SPTNRNHPFYMPLNPX DPLLAYHMPGL YNVDPTIRERF.LREREIREREIREREIREREIREREIREREKEKERERE IN A ER MASLT SDPLARL MY TPHHHQ
- 35
 P.APSSAPPGXPQLPXPGPXPSAXAVPPQGSPXASQAPNQPQAPXAPVPHXHIQQAPAIHPQRPPSPHP

 PPHPSPHPPLQPLTGSAGQPSAPSHAQPPLH
 GQGPPGP-HS.LQAGPLLQHPGPPQPFGLPPQAS
 QGQAP

 LGTSPftftAYPHXSLQLPASQ;SALQSQ:QPPREQPLPPAPLAMFHIKPPPXIPIPQLPAPQAHKHPPHLS
 GPSPFSMNANLPPPPALKPLSSiLSXHHPPSAHPPPLQLMPQSQPLPSSPAQPPGLXQSQNLPPPPASK

 PPTGLHQVAPQPPFAQHPFVPGEPPPITPPCPSTSTPPAGPGTSAQPPCSGAAASGGSI&GGSSCPL
- A QIGKNFFKIKKELLENKEKGELITFTITWKKIPEAASSKAHKKHKKQAVFKKIKTKISTFVNIPSK
 PPSSEFLDLSSASEDDFDSED SEQE IKGYA CRHCFTTTSKDWHHGGRENILLCTDCRIHFKKYGELPP
 IEKPVDPPFMFI\PYKEEDDGLSGKHSMRXRRSRGSMSXLRSGRKJ<QPASPDGRXSPINEDIRSSGRN.
 SP SA ASTS SND SKAETVKKSAKKVKE EA SSPLK SNKRQREKVASDTE EADRTSSKKTKTQE ISR PNSP
 SEGEGESSD%RSVI^DEG.SSDP-KDIDQDNRST:SP SIPSPQDNE SDSD SAQQQMLQAQPPALQAPTGVT
 D ADSSADDGXDOLDXDGDXDSDXAVDDOGSDXASOADNODOADXADVDHYHTOOADATHDORDDSDHD
- 25 EESTKKNKKKPPKKKSRYERTDTGEITSYITEDDVVYRPGDCVYIESRRPNTPYFICSIQDFKLVHNS QA€CRSPTPALCDPPACSLPVASQPPQHL£3EAGRGPVG6KRDHLLMTiVKWYYRQSEVPDSV"YQHLVQP RHNEWDSGRFiLVIXDPVIKNRELFISDYVDTYHAAALRGKCNISHFSDIFAAREFKARVDSFFYILGY NPETRRLNSXQGEIRVGPSHQAKLPDLQPFPSPDGDXVXQHEELVWMPGVNDCDLLMYLRAARSMAAF AGMCDGGSXEDGGVAASRDDXXLNALNXLHESGYDAGKALQRLVKKPVP KLIEKCWTEDEVKRFVKGL 30 RQYGKNFFRIRKELLPNKEXGELITFYYYWKKTPEAASSRAHRRHRRQAVFRRIKTRTASTPVNTPSR
- > SEQ ID NO: 59
 MIADKDf^KDKEKDRDRDRDREREKRDKARESENSRPRRSCTLEGGAKNYAESDHS EDEDNDNNSATA
 25 EESTKKNKKKPPKKKSRYERTDTGEITSYITEDDVVYRPGDCVYIESRRPNTPYFICSIQDFKLVHNS
 QA€CRSPTPALCDPPACSLPVASQPPQHL£3EAGRGPVG6KRDHLLMTiVKWYYRQSEVPDSV"YQHLVQP
- 20 CFQXMDRLYFVMEYVNGGDLMYHIQQVGRFKEPHAVFYAAEIAIGLFFLQSKGITYRDLKLDNVMLDS EGHIKIADFGMCKENIWDGVTTKXFCGTPDYIAPEIIAYQPYGKSVDWWAFGVLLYEMLAGQAPFEGE DEDELFQSIMEHNVAYPKSMSKEįVAXCKGLMXKHPGKRLGCGPEGERDIKEHAFFRYIDWEKLERKE IQPPYKPKARDKRDTSNFDKEFTRQPVELTPTDKLFIMNLDQNEFAGFSYTNPEFVINV
- VCGFVVHKRCHEFVXFS,GPGADKGPASDDPRSKHKFKIHTY3SPTFCDHCGS LLYGLIHQGMKCDTCM MNVHKRCVMNVPSLCGIDHTERRGRIYIQAHIDRDVLIVLVRDAKNLVPMDPNGLSDPYVKLKLIPDP 15 KSESKQKTKTIKCSLNPEWNETFRFQLKESDKDRRLSVEIWDWDLTSRNDFMG&LSFGISELQKASVD GWFKLLSQEEGEYFNVPVPPEGSEAMEELRQKFERAKISQGTC PEEKTTNTVSKFDNNGNRDRMKLT DFNFIMVLGKGSFGKVMLSERKGTDELYAVKILKKDVVIQDDDVECTMVEKRVX ALPGKPPFLTQLHS CFQXMDRLYFVMEYVNGGDLMYHIQQVGRFKEPHAVFYAAEIAIGLFFLQSKGIIYRDLKLDNVMLDS
- >SEQ ID NO: 58 fcladpaagpppsegee.stvrfarkgalp,QKnvHevknhkftarffkQptfc%HCtdflwGfGKQGFQCQ VCGFVVHKRCHEFVXFS,GPGADKGPASDDPRSKHKFKIHTY3SPTFCDHCGS LLYGLIHQGMKCDTCM MNVHKRCVMNVPSLCGIDHTERRGRIYIQAHIDRDVLIVLVRDAKNLVPMDPNGLSDPYVKLKLIPDP

10

VSASLAKQGL

- CLSPKHPTPGSSDPLIQPBSPA^CPEPPSSPKYVSSVISRTGSSGAKEMKLKGADGKTKIAIPRGAAP 5 PGQKGQANATRIPAKTPPAK?KTPPSSGEPPKSGDRSGYSSPGSPGTPGSRSRTPSLPTPTREPKKVA VVRTPPKSPSSAKSRLQTAPVI?MPDLKNVKSKIGSTENLKHQPGGGKVQIINKKLDLSNVQSKCGSKD NIKHVPGGGSVQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVEVKSEKLDFKDRVQSKIGSLDNITHV PGGGHKKIETHKLTFRENAKAKTDHGAEIVYKSPVYSGDXSPRHLSNVSSTGGLDMX/DSPQLATLADE
- GAGGKER PGSKEEV DEDRDVDESSPQDSPPSKASPAQDGRPPQTAAREATSI PGFPAEGA I PLPVDFL SKVSTEIPASEPDGPSWRAKGQDAPLEFTFHVEITPNVQKEQAHSEEHLGRAAFPGAPGEGPEARGP SLGEDTKEADLPEPSEKQPA AA PRGKPVSRVPQLKARMVSKSKDGTGSDDKKAKTSTRSSAKTLKNRP CLSPKHPTPGSSDPLIOPBSPA^CPEPPSSPKYVSSVISRTGSSGAKEMKLKGADGKTKI AI PRGAAP

EL

>SEQ ID NO: 65

55

RYSLWSAIGLSIALHVGFDNFEQLLSGAWMDQHFRXTPLEKNAPVLLALLGIWYINC.FGCEXHAMLP50 YDOY LHRFAAYFQQGDMESNGKYITKSGXRVDHQTGPIVWGEPGTNGQHAFYQLIHQGTKMIPCDFLI $\texttt{PVQTQHP} \texttt{i^kglhhkillanflaqtealmrgksxeear^elqaagkbpedlerllphkvfegnrptns}$ iyFXKLXPFMLGALyAMYEHKIFVQGXIWDINSFDQWGyELGKQLAimiEPELDGSAQVXSHDASING. LXNFIKQOREARVQ

SQLSLHNDHPYC-SPPMIFSPALPPLRSPCSELLLWRYPGSLIPEALRLLRLGDIPSPPYPAIPAGDIM

LFIIASKTFTTQEXITNAEXAKEWFLQAAKDPSAVAKHFV ALSTNTXKVKEFG IDPQNMF EFWDWVGG

MILQQPLQRGPQGGA QRLPRAALG VTWGLDAS; SPLRGAVPM STKRRLEEE QEPLRKQF LSEENMATHF

>SEQ ID NO: 64 45 MAALIRDPOFOKLOOWYREHRSELNLRRLFDANKDRFNHFSLI^ NTNHGHILVDYSKNLVTEDVMRML VDLAKSRGVEAARERMFNGEKINYIEGRAYLHVALRNRSNXPIIA'DGK^^ VMPEVNKVLDKMKSFCQRV

RSGDWKGYIGKXIIDyiNIGIGGSDLGPLMyiEALKPYSSGGPRyWYVSNIDGIHIAKXLAQLNPESS

- yWAQKGAQESKKADTKAQTEXDPPRNLRPSAyTQSGGILXWIPPSAQIHGYILIYQFPDGTyKEMQLG REDQRFALQGLEQGAXYPySLyAFKGGRRSRNVSTTLSXyGARFPHPSDCSaVQQNSNAASGLYXXYL HGDASRPLQVYCDMETDGGG%IVFQRRNTGQLDFFKRWRSYV%GFGDPMKEFWLGLDKLHNLTTGTPARYEVRVDLQXANE SAYAIYDFFQVASSKERYKX TVGKYRGTAGDALTYHNGWKFTTFDRDNDIALSNC 40 ALTHHGGW YKNCHXANPNGRYGEXKHSEGVNWEPWKGHEFSIPYyELKIRPHGYSREPVLGRKKRTL RGRXRXF
- 30 YTSADGDTKEMAVHKDESSTVLTGLKPGEAYKVYVWAERGNQGSKKADTN ALTEIDSPANLVTDRVTE NTATISWDPV^ATIDKYVVRYTSADDQETREVL^^ KEQSSTVLTGLRPGVEYTVHVWAQKGDRESKKA DTNAPXDIOSPKNLVXDRVXENMATVSWDPVQAAIDKYWRYISAGGETREyPVGK EOSSTVLTGLRP GMEYMVHVWAQKGDQESKKADXKAQIDID PQNLVTDRVTENMATVSWDPVRATIDRYVVRYTSAKDG EXREypyGKEQSSTyLXGLRPGyEYXyHWAQKGAQESK KADTKAQTDIDSPONLVTDWVTENTATVS 35 WDp VQA TI DR YVVHYT SANGE TREVPVGKEQSSTVLTGLRPGMEYTVHVWAQKGNQESKKADTKAQTE IDGPKNLVIDWVIENMAIVSWDpyQAIIDKYMVRYISADGEIREV* VGKEHSSTVLTGLRPGMEYMVH
- 25DLSRHC.SGHGXFSLFixCSCKCEEGREGPACERLACPGACSGHGRCVDGRCLCHEPYVGADCGYPACPENCSGHGECVRG\'X%CHEDFM8EDCSEKRCPGDC:SGHGFC^ TGECYCEEGFTGLDCAQVVTPQGLQLLK NIEDSLLVSWEPSSQVDHYLLSYYFLGKELSGKQIQVPKEQHSYEILGLLPGTKYIVXLRNVKNEVSS SPQHLLAXXDLAVLGXAWyTDEXENSLDVEwENPSTEyDYYKLRYGPMXGQEVAEVXVPKSSDPKSRY DITGLHPGTEYKIXVVPHRGEDEGKPILLNGRTEIDSPXNWTDRV TEDTATVSWDPVOAVIDKYVVR

GASLLALGEAREEQNI XFRHNIRDQXPQKDCELAGSVQDLLARVKKLEEEMVEMKEQCSAQRCCQGVT

- CAINLYFVVSyLPSLPHPAYFGLAALLAAAYLGLSTYLVWTCCLAHGATFLAHSSHHHFLYGLLEEDQ KGEXSG >SEQ ID NO:63 MSLQEMFR FPMGLLiGSVLL% SAPAXLEPPGCSNKEQQVTVSHTYKIDVF%SALVQVDADPQPLSDD
- 20
- 15 II^LTFGYEYVVARPEQGALLRGLFLPSCPGCGHPELLQAVGTVGAIIMPHNIYLHSALVKSREIDRA RRADIREANMYFLIEATIALSVSFIINLFVMAVFGQAFYOKTNQAAFNICANSSLHDYAKIFPMNNAT VavDiyQggviLgcLfgpaalyiWaigLLaagQssTMtgTyagqfvMegflrlrWsRfarVLLTrsca ILPXyLyAVFRDLRDLSGLNDLLN % QSLLLPFAVLPILTFTSMPTLMQEFANGLLNKVVTSSIMVLV
- LWLIIELAIYGSDMQEYIGXAIAFNLLSAGRIPLWGGVLIIIVDXFFFLFLDNYGLRKLEAFFGLLII

AMYONVDGRV SECPHTYQNRRP FSREMDL GLLSPQAQVEDS 10 >SEQ ID NO: 62 APPRETYLSEKIPIPDTKPGTFSLRKLWAFTGPGFLM MTGDRGPQRLSGSSYGSISSPTSPTSPGPQQ SIAFLDPGNIESDLQAGAVAGFKLLW LLWATVLGLLCQRLAARLGVVTGKDLGEVCHLYYPKVPRTV

G'VTSPYPGIPyDANFyKLIQNGFKMDQPFYA TEEIYIIMQSCWAFDSRKRPSFPNLTSFLGCQLADAEE

EITEGVWNRKANRKVFGQWVSSSTLNM.SEAIKGF LVKC CAYN SLGTSGETIX,LN SPGP FPFIQDNISF YAXIGVCLLFIYVLXLLICHKYKKQFRYE.SQL^^^ IVQVTGSSDNEYFYVDFREYEYDLKWEFFRENLEF GKVLGSGAFGKVMNAIAYGI SKTGVSIQVA^KMLKEKADSSEREALMSELKMMIQX,GSHENIVNLLGA 5 CT.LSGPI YLIFEYCCYGDLLNYLRSKREKFHRTWT EIFKEHNFSFYPTFQSHPNSSMPGSREVQIHPD ${\tt SDQISGLHGNSFHSEDEIEYENQKRLEEEEDLNVLTFEDLLCFAYQVAKGMEFLEFKSCVHRDLAARN}$

256 HKHQPGEY1FH%ENDD%QFTKMFTLN1RRKPQVLAEASASQASCFSDGYPLPSWTWKKCSDKSPNCTE

VLVT.HGKVVKIC:DFGLA¾:DIMSDSNYVVRGNARLEVKMAPESLFEGIYTI:KSDWSYGILLWEXFSL

SUBSTITUTE SHEET (RULE 26)

MSAESGPGIRLRNLPVMGDGLETSQMSTIQAQAQPQPANAASTNPPPPETSNPNKPKRQTNQLQYLLR WLKTLWKHQFAWPFQQPVDAVKLNLPDYYKIIKTPMDMGTIKKRLENNYY¾NAQECIQDFNIMFINC YIYNKPGDDIVLtfeEALEKLFLQKINBLPTEETEIMIVQAKGRGRGRKETGTAKPGYS TVPNTTQAST PPQTQTPi2PNPPPVQATPHPFPAVTPDLIVQTpyMIVVPPQPLQTPPPVPPQPQPPPAPAPQ 60 PVQSHP PIIAATPQPVKTKKGVKRK ADTTTPTTIDP1.HEPPSLPPEPKTTKLGQRRES SRPVKPPKKDVPDSQQ

55

>SEQ ID NO: 72

LEPSAGAPLAMSSGTTQLRATATTLILCCLLIILPeFILPGI

50 >SEQ ID NO: 71 MAAAAATKILLCLPLLLLLSGWSRAGRADPHSLCYDITVIPKFRPGPRW CAVQGQVDEKTFLHYDCGN KTVTPVSPLGKKLSVTTAWKAQNPVLREVVDILTEQLRDIQLENYTPKEPLTLQARMSCEQKAEGHSS GSWQFSFDGQIFLLFDSEKRMWTTVHPGARKMKEKWENDKVVAMSFHYFSMGDCIGWLEDFLMGMD\$T

LEVCQLQKPDVVG IRRQRL KGD AWVYKRL VEDILSS.CKV

- QASATPFTDIKSNNWSLEDVTASDKNYVAGLIDYDWCEDDLSTGAATPRTSOFTKYWTESNGVESKSL 45 TPALCRTPMIKLKNKENVYTPKSAVKNEEYFMFPEPKTPyNKNQHKREIL TTPNRYTTPSKARNQCLK ETPIKIPVNSTGTDHLMrGVISPERRCRSvELDLNQA HMEETPKRKGAKVFGSLERGLDKVITVLTRS KRKGSARDGPRRLKLHYNVTTrRLWFDQLLbJEIMSILPKKHVDFVQKGYTLKCQTQSDFGKVTMQFE
- ICQLYHVLEIANKIF>WLEYepGGELFDYIISQDRLSEEETRvVFRQIVSAVAYVHS QGYAHRDLKPE 40 NLLFDEYHKLKLIDFGLCAKPKGNKDYHLQTCCGSLAYAAPELIQGKSYLGSEADVWSMGILLYVLMC GFLPFDDDNVMALYKKIMRGKYDVPKWLSPaSILLLQQMLQVDPKKRISMKNLLNHPWIMQDYNYpyE $\verb|WQSKNPFJHLDDDCVTELSVHHRNNRQTMEDLISLWQYDfLTATYLLLLAKKARGKPVRLRLSSFSCG||$
- >SEQ ID NO: 70 MKDYDELLKYYELHETIGTGGFAKVA LACHILTGEMVAIK1MDKNTLGSDLPRIKTEIEALKNLRHQH

PCGNRS ISLDRLPNRHCSNCGLYKWERDGMLKEKTGPKIGGE TLLPRGEE HAKF LNSLK

- VAPKKKIQTTLSNIV% GTNLIIQETRQKLGIPQKSL8CSEEFKELMDLPTCGARNLKQHLAKATASG IMGSPKPAIKSISASALLKQQKQRMLEMRRRKSEEIQKRFLQSSSEVESPAVPSS:SRQPPAQPPRIGS EFPRLEGAPATMTPKLGRGyLEGDDVLFYDESPPPRPKLSALAEAKKLAAITKLRAKGQVLTKTNPNS IKKKQKDPQDILEVKERVEKNTMFSSQAEDELEPARKKRREQLAYLESEEFQKILKAKSKHTGILKEA 35 EANMQERYFEPLVKKEQMEEKMRNIREVKCRVVTCKTCAYTHFKLLETCVSEQHEYHWHDGVKRFFKC.
- SRMI SAP SQPLQTIS RNKP SGITRGQ.IVGIPGSSGETIQPI CVEAF SGLRL RRP RVS STEMNKKMT GR KLIRLSQIKEKMAREKLEEIDSVIFGVILKKVTPQSVNSGKTFSIWKLNDLRDLIQCVSLFLFGEVHK ALWKTEQGTVVGILNANPMKPKDGSEEVCLSIDHPQKVLIMGEALDLGTCKAKKKNGEPCTQTVNLRD 30 CEYCQYH¥QAQYKKLSAKRADLQSTFSGGRIPKKFARRGTS:LKERLCQDGFYYGGV SSASYAASIAAA
- >SEQ ID NO:69 MDEEEDNLSLLTALLEENESALDCN GEENNFLTRENGEPDAF PELF DADGDGE SYTEEADDGE TGE TR 25DEKENLATLFGDMEDLIDEEEVPASQSXBNPA /LPAPAPRREK EELQEELRNLQEQMKALQEQLKVT TIKQTA£3PAT!.LQKSPVEKSPRPPLKERRVQRIQESTCFSAELDVPALPRTKRVARTPI5ASPPDPKSSS

AENQVLAMRKQSEGLTKEYDRLLEEHAKLQAAVDGPMDKKEE

- >SEQ ID NO:68 MSLQWIAVATFLYAEWVVLLLGIPFIS:PKRWQKIFKSRLV ELLVSYGNTFFVVLIVILVLLVIDAVR EIRKYDDYTEKVNLQNNFGAMEEFHMKLFRAQRNLYIAGFSLLLSFLLRRLVTLISQQATLLASNEAF 20 KKQAESASEAAKKYMEENDQLKKGAAVDGGKLDVGNAEVKLEEENRSLKADL QKLKDELASTKQKLEK
- 15 NAKNGFE RAKT WK SK IGN
- MS 8SKKVTLSVLSEE QSEGVGARVRRSIGEP ELKN LDPF LLFDEFKGGRP GGFP DHPHRGFE TVSYLL EGGSMAHEDFCGHTGKMIPGDLQWMIAGRGIIHAEMPCSEEPAHGLQLWVNLRSSEKMVEPQYQELKS EEIPKPSKDGyTVAVISGEALGIKSKWIRTPTLYLDFKLDPGAKHSQPIPKGWTSFIYTISGDVYIG PDLmQQKIEPHHTAyLGEGDSVQVENKDPKRSHFVLIAGEPLREPVIQHGPFVMNTNEEISQA TLDFR.
- 10 >SFQ ID NO: 67
- RLGRCMRR LRDMVERFHSGLPGKVFACLSVLFVTyTAVNLSVSTLPSLREEEEQGHCSQMCHNVFIVE 5 VLRVLRALRILYVI%R-LARHSL.GLQTL%LTARRCTREFG.LLLLFLCVA.IALFAPLLYVIE-NEMA.DSPEF TSIPACYWWAVITMTTVGYGDMVPRSTPGOVVALSSILSGILLMAFPVTSIFHTFSRSYLELKOEOER VMFRRAQFLT KTKSQLSy80DSDILFGS.ASSDTRDNN
- MTLLPGDNSDYDY SALSCTSDASFHPAFLPORQAIKGAFYRRAQRLRPQDEPRQGCOPEDRRRRIIIN VGGIKYSLPWTTLDEFPLTRLGQLKACTNFDDILNVCDDYDVTCNEFFFDRNPGAFGTILTFLRAGKL RLLREMCAISFQEELLYWGIAEDHLDGCCKRRYLQKIEEFAEMy^ REEEDDALDSEGRDSEGPAEGEG SVCVGWFSLEFLLRLIQ&PSKFfFLRSPLTLIDLVAILPYYITLLVDGAAAGRRKPGAGNSYLDKVGL

- $\label{eq:second} \texttt{FSEDDPILQIAIDNSRNrLYTRSEKGVTQVYDLGQDGQGMSRVASVSQNAIVSAAGNIARTIDRSVFK}$ $\verb"PIVQIAVIENSESLDCQLLavThagVRLyFSTCPFRQPXarPmtLtLvhvrlppgfsasstvekpskv"$ IDELKVDKIITPL HRALYSKG1LLMAASENEDNDILWCVNHDTFPFOKPMHETQMrAGVDGHSWALSA 60 NKDH IP ITD SPVVVQQHMLPPKKFVLL SAQG SLMFHKLRPVDQX.RHLIVSNVGGDGEEIERFFKLHQE DOACATCLILACSTAACDREVSAWATRAFFRYGGEAQimFPTTLPPPSNVGPILGSPVYSSSPVPSGS
- >SEQ ID NO: 76 MPSSLLGSAMPASXSAAALQEALENAGRLXDRQLQEDRMYPDLSELLMVSAPNISPTVSGMSDMDYPLQ GPGLLSVPNLPEISSIRR VPIPPELVEQFGHMQCNCMMGVFPPISRAWLTIDSDIFMWNYEDGGDLAY 55 F DG ISE I I IA VGLVKP KAG IF QPHVR HILV LA TPVD IV ILGL SYAN LQ TG SGVLNDSLSGGMOLLPDP LYSLPIDNXYLLIIXSXDNGRIFLAGKO CLYEVAYQAEAGWFSQRCRKINHSKSSLSFLVPSLLQFX
- 50 NKAESALAOOAKHFSALRDVIKALRLAMOLEEOASROISSKKRPO
- ${\tt ILRAKGRMHGKFSL} \verb: \cite{thm:slambdadd} {\tt ILRAKGRMHGKFSL} \end{tabular} \\ {\tt Magnergadds} {\tt Sadrqtrmegaeinksllalkeciralgqnkahtpfreskling} \\ {\tt Magnergadds} {\tt Magnergadds} {\tt Magnergadds} \\ {\tt Magnergadds} {\tt Magnergadds} \\ {\tt Magnergadds} {\tt Magnergadds} \\ {\tt Magnergadds} \\$ TQVLrdsfigen srtcmi ati spgisscey tLNTLryadrvke l3PHsgpsgeq LiQMeteeme acsn GALIPGNLSKEEEELSSQMSSFNEAMTQIRELEEKAMEELKEIIQQGPDWLELSEMTEQPDYDLETFV
- LQLLPLHPKDNLPLQENVTIQKQKRRSVNSKIPAPKESLRSRSTRMSTVSELRITAQENDMEVELPAA AN SRKQF SVPPAPTRPS CPAVAE IPLRMV SEEMEEQVH.SIRGSS SANPVNS VRRKSC LVKEVEKMKNK REEKKAQN SEMRMKRAQEYD SSF PNWEFARM IKEFRA TLECHPLTMTDP IEEHR ICVCVRKRPLIKQE LARKEIDVI S1PSKCLLLVHEPKLKVDLTK%LENQAFGFDFAFDETASNEVVYRFTARPLVQTIFEGG 45 **KA**TCFAYGQTGSGKTHTMGGDLSGKAQNASKGIYAMASRDVFLLKNQPCYRKLGLEVYVTFFEIYNGK LFDI,LNKKAKLRVLEDGKQQVQVVGLQEHLVNSADDVIKMIDMGSACRTS GQTFANSNS**SR**SHACFQI
- >SEQ ID NO: 75 40 MAMDSSLQARLFPGLAIKIQRSNGLIH3ANVRTVNLEKSCVSVEWAEGGATKGKEIDFDDVAAINPEL

GPDNINWSOFIPE LO

- 35 ${\tt SKSV'LPRTPESWRLTPPAKVGGLDFSPVOTSQGASDPLPDPLGLMDLS.TTPLQSAPPLESPQRLLSSE}$ PLDI, ISVPFGNSSPSDIDVPKP G3PEP QVSGLAANRS LTEGLVLDTMNDSLSKILLDISFPGLDEDP L
- 30 FKHIAKPGWKNSIRHNLSLHDMFVRETSANGKVSFWTIHPSANRYLTLDQVFKPLDPGSPQLPEHLES QQKRPNPEX.RRNMTIKTELPLGARRKMKPLLPRVSSYLVPIQFFVNQSLVLQPSVKVPLPLAASLMSS ELARH SKRVR IAPKVLLAEEG IAPLSSAGPGKEEKLLFGEGFSPLLPVQTIKEEE IQPGEEMPHLARP IKVE SPPLEEWPSPAPSFKEESSHSWEDSSQSPXPRPKKSYSGLRSPXRCVSEMXVIQHRERRERSRS RRKQHLLPPGVDEPELLFSEGPST8RWAAELPFPADSSDPASQLSYSQEVGGPFKTPIKETLPISSTP
- 25>SEQ ID NO: 74 MKTSPRRPLILKRFy3LPLPVON%PSETSEEEPKRSPAQQESNQAEASKEVAESNSCKFPAGIKIINHP TMPNTQVVA IPNNANIHSIITALTAK GKESGSSGPNKFILISCGGAPTOPPGLRPQTQTSYDAKRTEV TLETLGPKPAARDVNLPRPPGALCEQKRETCADGEAAGCTINWSLSNIQWLRKMSSDGLGSRSIKQEM EEKFNCHLEQRQVKVEEPSRPSASWQNSVSERPPYSYMAMIQFAINSTERKRMTLKDIYTWIEDHFPY

RGRVGGLGAOGPSGSSEWEDEOSEYSDIRR

>SEQ ID NO: 73

ica e regofmtlalvlat fdpargtdatnffegp QdrssQQkgrlslQntaeiQhclvnagdvgcgvf 20 ECFENNSCEIRGLHGICHTFLHNAGKFDAQGKSFIKDALKCKAHALRHRFGCISRKCPAIREMVSQLQ RECYLKHDLCAAAQENIRV IVEMIHFKDLLLHEPYVDLVNLLLTCGEEVKEAITHSVQVQCEQNW(3SL CSILSFCTSAIQKPPTAPPERQPQVDRTKLSRAHHGEAGHHLPEPSSRETGRGAKGERGSKSHPNAHA

 \mathbf{LF}

- HPPPGQOPPPPQPAKPQ QVIQHHHSPRHHKSDPYSTGHLREAPSPLMIHSPQMSQFQSLTHQSPPQQN VQPKKQELRAASVVQPQPLVVVKEEKIHSPIIRSEPFSPSLRPEPPKHPESIKAPVHLPQRPEMKPVD VGRPVIRPPEGNAPPPGAPDRDKQKG* PKTPVAPKKDLKIKNMGSWASLVQKHPTTPSSTAKSSSDSF EQFRRAAREKEEREKALKAQAEHAEKEKERLRGEPimSREDE DALEOARRAHEEARRROEQOOOOROE 15 $\verb|QQQQQQQAAAVAAAATPQAQSS%PQSMLDQQRELARKREQERRREAMAATIDMNFQSDLLSIFEEN||$
- 5 EEKRQLSLDINKLPGEKLGRVVHIIQSREPSLKNSNPDEIEIDFETLKPSTLRELERYVTSCLRKKRK AFAPVPQQFPPPPQQCFPPPPPPQQCCQOPPPPPPPPSMPQQAAFAMKSSPPPFIATQVPVLEPQLFGSV FDP1GHFTQPx1aHLPQPELPPHLPQPPEaSTPPHLNQHAVVSPPALHNALPQQPSRPSHRAAALPPKP ARPPAVSPALTQTPLLP&PPMAQPPQVLLEDEEPPAPPLTSMQMQLYLQQLQKVQPPTPLLPSVKVQS 10 QPPPPLFPPPHPSVQQQIM QPPPPPPQPQPPPQQQHQPPPRPVHLQPMQESTHIQQPPPPQGQQPP
- HPAPEKS SKVSEQLKCGSGILKEMFAKKHAAYAWPFYKPVDVEALGLHDYCDIIKHPMDMSTIKSKLE AREYRDAQEFGADVRLMFSNC% YNPPDHEVVAMARKLQDVFEMRFAKMPDEPEEPVVAVSSPAVPPP EKKKEKHKRKEEVEENKKSKAKEPPPKKTKKNNSSNSNVSKKEPAPMKSKPPPTYESEEEDKCKPMSY

- SEQ IP NO: 82
 MGIQGLLQFIKEASFPIHVRKYKGQVVAVPXYCWLHKGAIACAEKLAKGEPTPRYVGFCMKFVNMLLS HGIKFILVFPGC xLPSKKEVERSRE RRQANLLKGKQLL.REGKVSEAREC FTR SIN 1THAMAHKVI KA
- MDETVAEFIKRTILKIPMNELTTILKAWDFLSENQLQTVNFRQRKESVVQHLIHLCEEKRASISDAAL LDIIYMQFHQHQKVWEVFQMSKGPGEDVDLFDMKQFKNSFKKILQRALKNVTVSFRETEENAVWIRIA 55 WGTQYTKPNQYKPTYVVYYSQTPYAFTSSSMLRRNTPLLGQALTIASKHHQIVKMDLRSRYLDSLKAI VFKQYNQTFETHNSTTPLQERSLGLDI1^SRriHENIVEKERVQRIT-QETFGDYPQPQJ-EFAQYKLE TKFKSGLNGS ILAEREEP LRCLIEFSSPHLLEALKSLAPAGIAPAP LSPLLXCIPNERMN YFKIRPK
- >SEQ ip NO: 80
 MGPRRRSRKPEAPRRRSPSPXPXPGPSRRGPSLGASSHOHSRRRQGWLKEIRKLOKSIHLLIRKLPFS
 RLAREICVKFTRGVPFNWQAQALLALQEAAEAFLVHLFEPAYLLXLH AGRVTLFPKDVQLARRIRGLE
 50 EGLG
- 45 HEIW8GHVISS >SEQ ip no: 80
- >SEQ IP NO:79 HSSEPPPPPQPPTaQftSVGLLOXPRSRERSPSPLRGNWPSPLPTRRTRIFSATVRASQGPVYKGVCK CFCRSKGHGFITF&DGGPDIFLHISDVEGEYvIVEGDEVTYKMCSIPPKNEKLQfVBW ITHL%PGXK HEIW8GHVISS
- 40 VGLN SPSSILKAAKTLYE HYSGGESHN 33SS.KTFERKRGKK

>SEQ IP NO:81

- 35 PACQLSTPYGQPACFQQQQHQILATPLQNLQVLASSSANECISVKGRIYSILKQIGSGGSSKVFQVLN EKKQIYSIKYVNLEEADNQTLDSYRNEIAYLNKLQQHSDKIIRLYDYEITDQYIYMVMECGNIDLNSE LKKKKSIDPWERKSYWKNMLEAVHTIHQHGIVHSDLKPANFLIVDGMLKLIDFGIANQMQPDTISV PSQVGIVNYMPPEA.IK.PMS SSRENGKS KSKISPKSPVW.SLGCILYYMTYGKTPFQQI INQISKLHAII DPNHEIEFPDIPEKDLQDVLKCCLKRDPKQRISIPELLAHPYVQIQTHPVNQMAKGTTEEMKYVLGQL
- 30 ANGKKFAFVHISFAQFELSQGN\KKSKQLLQKAYERGAVPLEMLEIALRNLNLQKKQLLSEEEKKNLS ASTVLTAQESFSGSLGHLQNR%NSCPSRGQTTKARFLYGENMPPQDAEIGYRNSLRQTNKTKQSCPFG RVPVNLLBSPDCPVKTPDSvvpCFMkRQTSRSECRpLWPGSKPSGNDSCEL.RMLKSVQNSHFKEPLV SDEKSSELIITDSIXLKNKTESSLLAKLEETKEYQEPEVPESNQKQWQSKRKSECINQNPAASSNHWQ IPELARKVNIEQKHTTFEQPVFsvs.kQSPPIsx3KWFppksICKTpSSNTLPDyMsGFRTPVVKNPFp 9ACQLSTPYGQPACFQQQQHQILATPLQNLQVLASSSANECISVKGRIYSELKQIGSGGSSKVFQVLN
- >SEQ_IP_NO:78
 MESEPLSGRELXIPSIMNKVRPIKNKFKNEPLTPELSLNKISAPTTPNSGTVNQIMMMANNPEPWLSL
 LLKLEKNSVPLSDALLNKLIGRYSQAIEALPPDKYGQNESFARIQ-VRFAELKAIQEPDDARDYFQMAR:
 30 ANGKKFAFVHISFAQFELSOGN\KKSKQLLQKAYERGAVPLEMLEIALRNLNLOKKOLLSEEEKKNLS
- 20 RYHLRSKKDDINLLPSKSSVTKICRDPQTPVLQTKHRARAVTCKSTAELEAEELEKLQQYKFKARELD PRILEGGPI LPKKPPVKPPTEPIGFPLEIEKRIQERESKKKTEPEHFEFHSRPCPTKILEDyVGVPEK KVLPIIVPKSPAFALKHRIR>IPTKEPEEEPEPVVI^ AQPVPHYGVFFKPQIPEARTVEICPFSFDSRD KERQLQKEKKIKELQKGEVPKFKALPLPHFDTINLPEK XVKNVTQIEPFCLETDRRGALKAQIWKHQL EEELRQQKEAACFKARPNTVI SQEPFVPKKEKKSVAFGLSGSLVQEPFQLATEKRAKERQELEKRMAE
 25 VEAQKAQQLEEARLQEEEQKKEELARL RRE LVHKANPIRKYGGLEIK3SDQ.PLXVPVSPKFSIRFHC
- 15 MSQyKSSYSYDAPSDFINFSSLDDEGDTQNIDSWFEEK¾NLENKLLGKNGTGGLFQGKTPLRKANLQQ AIVTPLKPVDNTYYKEAEKENLVEQSIPSNACSSŁEVEAAISRKTPAQPQRRSLRLSAQKDLEQKEKH HVKMKAKRCATPVIIDEI.LPSKKMKVSNNKKKPEEEGSAHQDTAEKNA3SPEKAKGRHTVPCMPPAKQ KFLKSTEEQELEKSMKMQQEVVEMRKKNEEFKKLALAGIGQPVKKSVSQVTKSVPFHFRTPERIKQHP KNQEEYKEVNFXSELRKHP38PARVIKGCIIVKP FNLSQGKKRTFDETVSTYVPLAQQVEDFHKRTPN
- LVELQSMSS WAVQAITGNFKSLQAKLERLH.
- GEPEEDIVGLQAFQERLNSYKCITDTLQELVNQSKAAPQSPSVPKKPGPPVLSSDPNMLSNEEAGHHF EQMLKLSQRSKDELFSIALYNWLIQVDLADKLLQVASPFLEPHLVRMAKVDQNRVRYMDLLWRYYEKN RSFSNAARVLSRLADMHSIEISL3QRLEYIARA ILSAKSSXAISSIAADGEFLHELEEKMEVARIQLQ IQEILQRQYSHHSSYQPAVSQLPSELMPIIK^ YGEFADPFKLAECKLAIIHCAGYSDPILVQTLWQDI IEKELSPSVTLSSSPRMHALSLKIVLLGKTYAGTPRFFPLDFIVQFLEQQVCTLNWDVGEVIQTMNEI GWLPRLLEVYPQLFKSRPPFWNRMK^ .HLLDCIHVLLIRYVENPSQVLNCERRFTNLCLDAVCGY
- PYPNP SFLGTP SHGIQPPAM STPVCALGNPATQAINMSCVXGPEI
 VYSGKHNGlCIYFSRAMGNIWPA
 SLVVERIFKSIGNREIIAIESSVPCQLLESVLQEL^{*}
 LQEFLDRNSQFAGGPLGNPNTTAKVQQRLIGF
 MRPENGNPQQMQQELQRKFHEAQLSEKISLQAIQQLVRKSYQALALWKLLCEHQFTIIVAELQKELQE
 QLKITTFKDLVIRDKELTGALIASLINCYIRDNAAVDGISLHLQDICPLLYSTDDAICSKANELLQRS
 RQVQNKTEKERMLRESLKEYQKISNQVDLSNVCAQYRQVRFYEGVVELSLTAAEKKDPQGLGLHFYKH

SUBSTITUTE SHEET (RULE 26)

- >SEQ ID NO: 89 MLFLQFLLLALLLPGGDNADASQEHVSFHVIQIFSFVNQSWARGQGSGWLDELQIHGWDSESGrilFL Hlwsk.gnfsneelsdlellfr^ylfgltrejQdha&Qdysky'pfeyQvkagce lhsgkspegffQ\%F 60 NGLDLLSFQNTTWVPSPGCGSLAQSVGHLLNHQYEGVTETVYNLIRSTCPRFLLGLLDAGKMYVHRQV
- 50 >SEQ ID NO: 88 MLLLPFGJLLAVLFPGGNSEHAFQGPISFHVIQTSSFTNS[^] QTQGSGWLDDLQIHGWDSDSGTAIFL KPWSKGNFSDKEVAELEEIFRVYIFGFAREVQDFAGDFQMKYPFEIQGIAGGELHSGGAIVSFLRGAL GGLDF LSVKNAS CVPSPEGGSRAQKF GAL IIQYQGIMETVRILLYETCPRYLLGVLNAGKADL QR.QVK PEAWLSSGPSPGPGRLQLVCHVSGFYPKPVWVMWMRGEQEQQGTQLGDILPNANWTWYLRATLDVADG 55 EAAGL SCRVKH SSLEGQD I1LYWRNPTSIGSIVLAIIVPSLLLLLCLALWYMRRRS YQN IP
- MLFLLLPLLAVLPGDGNApGLKEPLSFHVTWIASFYNHSWKQNLVSGWLSDLQTHTWDSNSSTIVFLC 45 **PWSR^FSNEEWKELEXLFRIRTIRSFE^IRRYJffielQFEYPFEIQVTGGCELIISGKVSGSFLQLAYQ** GSDFVSFQNNSWLPYPVAGNMAKHFCKVL^ IQHENDITHNLLSDTCPRFILGLLDAGKAHLQRQVKP EAWLSHGPSPGPGHLQLVCHVSGFYPKPVW^MWMRGEQEQQQGIQRGDILPSADGTWYLRATLEVAAGE AADLSCRVKHSSLEGQDIVLYWEHHSSVGFIILAVIVPLLLLIGLALWFRKRCFC
- >SEQ ID NO: 86
 40 MPHSSDSSDSSFSRS PPPGKQDSSDDVRRVQRREKNRIAAQKS RQRQTQKADTL HLESEDLEEQNAAL RKEIKQLTEELKYFTSVLNSHEPLCSVLAA.STPSPPEVVYSAHAFHQPHVSSPRFQP
- >SEQ ID NO: 85
 35 MEA SPASG PRHLMDPHIFTSNFNNG IGRHKTYLCYEVERLDNGTSVKMDQHRGFLHNQAKNLLCGFYG RHAELRFLDLVPSLQLDPAQIYRVTWFISWSPCFS%GCAGEVRAFLQENTHVRLRIFAARIYDYDPLY KEALQMLRDAGAQYSIMTYDEFKHCWDTFVDHQGCPFQPWDGLDEHSQALSGRLRAILQNQGN
- 30 GPGLPNFFRALEDTNRLWEFQEAISGFLAALPLIRERVPGASSFKLKSXAQ TYLARNMSERSAMAAVL AMRrilCRLLEA'SPGPi2LAQHVYPFSSLQCFASLQPLVQAA''%PRAEARLLALHNV\SFMELLSAHRRDR QGGLKKYSRyLSLGTTTLPPAQPAFNLQALGTYFEGLLEGP ALARAEGVSTPLAGRGLAERASQQS
- 25 SDQEVLDMHGFLRQALCRLRQEEPQSLQAAVRTDGFDEFKVRL/QDLSSCITQGKDAAVSKKA SPEARS TPRDPIDVDLPEEAERVKAQVQALGLAEAQPMAVVQSVPGAHPVPVYAFSIKGPSYGEDVSNTTXAQK RKC SQTQCPRKV IKME SE EGKEARL AR SSPEQPRP ST SKAV SPPHL DGPP SPRSPV IG SEVFLPN SNH VAS GAGEAEE RVVVISSSEDS DAENSS SREL DDSSSESS DLQ.LEGPSTLRVLDE NLAD PQAE DRPLVF FDLK1DNETQ;E1SQLAAWRESKER¾V1QPEAFFSiY SKAVSLEVGLQHFLSFLSSMRRPILACYKLW
- >SEQ ID MQ:84
 20 MEPAPARS PRP QQD PARP QEPTMPPP EXP SEGROP SP SP SP TE RAP A SEEE FQF LRC QQCQAEAKGPK LLPCLHTLCSGCLF^SGMQCPICQAPWPLGADTPALDNWFESL QRRLSVYRQIVDAQAVCTRCKESA DFWCF E CE QLLCA KC FE A HQWF LK HEA RPLAELPNQSVREFLDGTRKTNNIFCSNPNHRTPTLTSIYC R GC SKP LCC SC%LLD SSHSELK CDI SAE IQQRQEELDAM TQA LQE QD SAFGA V HA QMHAAW QLGRAR AETEELI RERVRQWAHVRAQERELLE, AVDARYQRDYEEMASRLGRLDAV LQRIRTGSALVQRMKCYA
- MAVNVY STSVTSDNLSRHDHLAWINESLQLNLIKIEQLCSGAAYCQFMDMLFPG SIALKKVKFQAKLE. 15 HEYIQNFKILQAGFKRMGVDKIIPVDKLVKGKFQDNFEFVQWFKKFFDANYDGKDYDPVAARQGQETA VAPSLVAPALNKPKKPLTSSSAAPQRPISTQRTAAAPKAGPGVVRKNPGVGNGDDEAAELMQQVNVLK LTVEDLEKERDFYFGKLRNI.ELICQENEGEWDPVL/QRIVDILYATDEGFVIPDEGGP.Q EEQEEY
- >SEQ IO NO:83 Mavnvy SISVISDNLSRHDHLAWINESLQLNLIKIEQLCSGAAYCQFMDMLFPG SIALKKVKFQAKLE
- PRTRNKFATFLQRKNEESGAVVVT GTRSRFFCSSDSTDC¥SNKVSIQPLDETAVTDKENNLHESEYGD QEGKRLVDTDVARNSSDDIPWNHIPGDHIPDKATVFTDEESYSFESSKFTRTISPFTLGTLRSCFSWS GGLGDFSRTPSPSPBTALQQFRRKSDSPTSLPENNMSDVSQLKSEESSDDESHPLREEACSSQSQESG EFSLQSSNASKLSQCSSKDSDSEEgDCNIKLLDSQSDQTSKLRLSHFSKKDTPLRNKVPGLYKSSSAD SLSITKTKPLGPARASGLSKKPASIQKRKHHNAENKPGLQIKLNELWKNFGFKKDSEKLPPCKKPLSP VRDNIQL.TPEAEED IFNKPECGRVQRAIF©
- ARSQGVDCLVAPYEADAQLAYLNKAGIVQAIITEDSDLLAFGCKKVILKMDQFGNGLEIDQARLGMCR QLGDVFTEEKFRYMCXL% CDYLSSLRGIGLAKACKVLRLANNPDIVKVIKKIGHYLKMNITVPEDYI NGFIRANNTFLYQLVFDPIKRKLIPLNAYEDDVDPETLSYAGQYVDDSIALQIALGNKDINTFEQIDD YNPDTAMPAHSRSHSWDDKTGQKSANVSSIWHRNYSPRPESGTVSDAPQLKENPSTVGVERVISTKGL 5 NLPRKSSI VKRPRSAELSEDDLLSQYSLSFTKKTKKNSSEGNKSLSFSEVFVPDLVNGPTNKKSVSTP

>SE() ID NO; 87

60 >SEQ ID NO: 96

GGS Y SQAAC SD SAQGSDVSLTA

- MLVMAPRTVLLLLSAALALTETWAGSHSMRyFYTSVSRPGRGEPRFISVGYVDDT^ FVRFDSDAASPR EEPRAPWIEO .EGPEYWDRNTQI.YKAQAQTDRESLRNLRGYYNQSEAGS;HTLQSNIYGCDVGPDGRLLRG 55 HDQYAYDGKDY IALNEDLR SWTAADTAAQI TQRKWEAAREAEQRRAYLEGECVF;WLRRYLENGKDKLE RADPPKTHVTHHPTSDHEA-TLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRTFQKWAAVV WSGEEQRYTCHVQHEGLPKPLTLRWEPSSQSTVPIVGIVAGLAVLAVVVIGAVVAAVMCRRKSSGGK
- 50 FQNP
- .SAARPAAGPALWRLPEELLLLICSYLDMRA.LGRLAOVCRWLRRFTSCDLLW WAAAAGEEEEEEEAARE 45 RRIARASLNSGFTRLGTDLMTSVPVKERVKvSONWRLGRCREGILLKWRCSOMPWMOLEDDSLYTSOA NFTLAYQFRPDGASLNRRPLGVFAGHDEDVCHFVLANSHIVSAGGDGKIGIHKIHSTFTVKYSAHEOE VNCVDCKGGIIVSGSRDRIAKVWPLASGRLGQCLHTIQTEDRVWSIAISFLLSSFVTGTACCGHFSPL RIWDLNSGQLMTHLGSDFPPGAGVLDVMYE SPFTLLSCGYDTYVRYWDLRTSVRKCVMEWEEPHDSTL YCLQTDGNHLLATGS SYYGVVRLWDRRQRACLHAFPLTSTPLSSPVYCLRLTTKHLYAALSYNLHVLD

ELSGISTT

- LKYNQATPTFHQWRDAi^QVYGLNFASKEEATTFSNAMLFALNIMNSQEGGPSSQRQVQNGPSPDEMDI QRRQVMEQHQQQRQESLERRTSATGPILPPGHPSSAASAPVSCSGPPPPPPPPPPPPTGATPPPPPP LPAGGAOGSSHDESSMSGLAAAIAGAKLRRVORPEDASGGSSPSGTSKSDANRASSGGGGGGLMEEMN $\tt k lLAkrrkaas os dkp$ Aekkede som ed PSTsP spgtsaas oppnsse agrkpwers nsvek pvssil 40 SRTP3VAKSPEAK.SPLQSQPHSRMKPAGSW DMALDAFDLDRMKOEILEEVVRELHKVKEEIIDAIRO
- >SEO ID NO: 93 35 MSEQSICQA1^SVlrn'YDDTSKKWVPIKPGQQGFSRINIYHNTASNTFRVVGVKLQDQQVVINYSTVKG

STESESSSFHSS

>SEQ ID NO: 94

>SEQ ID NO: 95

>SEQ ID NO: 92

MEGI SIYTSDNYTEEMGSGDYDSMKEPCFREENANFNK IFLPTIYSIIFLTGIVGNGLVILVMGYQKK LRSMTDKYRLHL SVADLLEVITLPFWAVDAVANWYFGNFLCKAVHVIYTVNLYSVLILAF ISLDRYL A: VHAT.N SQRPRKLLAEKVVVVGVWI PALLIT IP DF IFANVSE ADDRY ICDRF YPNDLWVVVFQFQH1 30 MVGL ILPGIVIL 3CYC1II3K: SHSKGHQKRKAL KTTVILILAFFACWLP YYIGT : IOSFILL: 11KQ GCEFENTVHKWISTTEALAFFHCCLNPILYAFLGAKFKTSAQHALTS:VSRGSSLKILSKGKRGGHS.SV

25

- LPWLKEKLQDEDLGFL
- 20 LCGMVWE.HRKGTDYHKOPWOA.KIS VIRPSKGHESCMGAVVSEYEVLTAAHCETVDDKEHSIKVSVGGE KRDLETEWLFHPNYNIMGKKEAGIPEFYDYDVALIKLKKiKLKYGQTIRPICI .PCTEGTTRALRLPPT TTCQQQI<EELLPAQDIKALFVSEEEKKLTRKEVYIKNGDKKG.SG.ERDA/jYAPGYDKVK.DISEWTPRF LCTGGVSPYADPNICRGDSGGPLIVHKRSRFIQVGVISWGVVDVCKNQERQKQVPAHAilDFHTNLFQV
- 15 LRGSANRTCOVNGRWSGOTAICDNGAOYCSWPGTPIGTRKVGSOYRLEDSVTYBC&RGLTLRGSORRT CQEGGSWSGTEPSC.ODSFMYD IPQEVAEAF LSSLTETIEGVDAEDG.HGPGE QQKRKIVLDPSGSMNIY LVLDG SD ST GA SNF TGAKKCLVN LIEKVA SYGVKPRYGLVTYATYPKIWVKVSEADSSNADWVTKQLN $\verb"EINYEDHKLKSGTNTKKALQAVYSmSWPDDVPPEGWNRTRHyillmTDGLHNMGGDPITVIDEIRDL"$ LYIGKDRKNFREDYLDVYVFGVGPL VNQVNINALASKKDNEQHVFKYKDMENLEDVF YQMIDESQSLS
- >SEQ ID NO: 91 ${\tt MGSNLSPelclmpfilgllsggvtitpwslappgscslegveikggsfrllqegqaleyvgpsgfyp}$ YPVOTRTCRSTGSWSTLKTQDOKTVRKAECRAIHCPRPHDFENGEYWPRSPYYNVSDEISFHCYDGYT
- >SEQ ID NO: 90 5 MLLLFLLFEGLCCPGENTAAPQftLQSYHLAAEEQLSFRMLQTSSFANHSWAHSEGS.GWLGDLQTHGWDTVLGT IRFLKPWSHGNFSKQELKNLOSLFQLYFHSFIQIVQA SAGQFQLEYPFEIQILAGCRMNAPQI FLNMAYOGSDF.LSF QGI SWEP SP GAGIRAON ICKVLNRYLD IKEILQSLLGHTCPRFLAGLMEAGESE $\label{eq:linear} L \underline{\texttt{K}} \underline{\texttt{R}} \underline{\texttt{K}} \underline{\texttt{K}} \underline{\texttt{P}} \underline{\texttt{E}} \underline{\texttt{A}} \underline{\texttt{W}} \underline{\texttt{L}} \underline{\texttt{S}} \underline{\texttt{C}} \underline{\texttt{G}} \underline{\texttt{P}} \underline{\texttt{S}} \underline{\texttt{P}} \underline{\texttt{G}} \underline{\texttt{P}} \underline{\texttt{C}} \underline{\texttt{P}} \underline{\texttt{P}} \underline{\texttt{P}} \underline{\texttt{V}} \underline{\texttt{P}} \underline{\texttt{C}} \underline{\texttt{P}} \underline{\texttt{P}}$ LDVAAGEAAGLSCRVKKSSLGGHDLIIHWGGYSIFLILICLTVIVTLVILVVVDSRLKKQSSNKNILS 10 PHTPSPVTLMGANTQDTKNSRHQFCLAQ VSWIKNRVLKKWKTRLNQLW

RPEAWLSSRPSLGSGQLLLVCHASGFYPKPVWVTWMRNEQEQLGTKHGDILPNADGTWYLQVILEVAS EEPAGLSCRVM SSLGGQDIILYWGHHFSMNWIALVVIVPLVILIVLWFKKHCSYQDIL

- ISVWNSDTQNPYHQQALAEKVKEAERDVSLTS.LAKLPSETIFVGCEFLHHLLREWGEELQAVLRSSQG ISYDSYRLCDSLXSFSQNAXLYLNRXSLSKEDRQWSELAECVRDFLRKXSXVLKNRALEDIXASIAM AyiQQKMDRHMEVCYIFASEKKWAFSDEWvACLGSNRALFRQPDLVLRLLEXVIDySXADRAIPESQI RQVIHLILECYAD LSLPGKNKVLAGILRSWGRKGLSEKLLAYVEGFQEDLNTTFNQLTQSASEQGLAK AVASVARLVIVHFEVTVKKMCSLAVVNLGTHKFLAQILTAFPALRFVEEQGPNSSATFMVSCLKETVW MKFBTPKEEKQFLELLNCLHSPVKPQGIPVAALLEPDEVLKEFVLPFLRLDVEEVDLSLRIFIQ TLEA
- >SEQ ID NO: 102 MDLGPLISUCEEMIILBGGFXLAEQLFHPKALAELXKSDWERVGRPIVEALREISSAAAHSQPFAWKKK ALIIIW%KVLQPHPVTPSDTETKWQEDLFFSVGNMIPTINHTILFELLKSLEASG5FIQLLMALPTTI CHAELERFLEH¥TVDTSAEDVAFFLDVWWE%KKKGHPQDPLLSQFSAMAHKYLPALDEFPHPPKRLR 55 SDPDACPTi^LLAMLLRGLT0I-QSRILGPGRKCCALANLADMLTVT-ALTEDDPQEVSATVYLDKLATV
- WXVARPSVPAALPLLGELPRLLLLYLLCLPAWGpCGLPPDVPNAQPALEGRTSFPEDTVIXYKCEES 45 FVKIPGEKDSV'ICLKGSQWSDIEEFCNRSCEVPTRLNSASLKQPYITQNYFPVGTVVEYECRPGYRRE PSLSPKLTCLQNLKWSTAVEFCJ^KSCPNPGEIKNGQIOVPGGILFGATISFSCNTGYKLFGSTSSFC. LXSGSSyQWSDPLPECREIYCPAPFQXDNGIIQGERDHYGYRQSVIYACNKGFIMIGEHSIYCiyNND EGEWSGPPPEeRGKoLXSKypPXyQKPXXyNyPIXEySPXSQKXXIKXXIPNAQAXRSXPVSRXXKHF HEXXFNKGSGXXSGXXRLLSGHXCFXLXGLLGXLVXMGLLX 50
- RSI YAVFESDVNLKG1 PYYRFVLPSKAFASPVENP DNYCFCTEKIISKNCTSYGVLDISKCKEGRPVY 40 ISLPHFLYA SPDY SEPIDGLNPNEEEHRIYLD IEPIXGFTLQFAKRLQVNLLVKPSEKIQVLKNLKRN YIVPILWLNETGXIGDE KANMFRS QVTGKINLLGLIEMILLSV GVVMFVAFMISYCACRSKXXK
- >3EQ ID NO: 100.
 35 MGGDRNCGLXA GAVXGAVIA VFGGXLMPVSDLLIQKTIKKQVVLEEGTIAFKNWVKTGTEVYRQFWTF DYQNPOEYMMNSSNXQVKQRGPYXYRYRFLAKENVXQDAEDNXVSFLQPNGAIFEPSLSVGTEADNFT YLNLAYAAASHIYQWQFVQMILNSLXNKSKSSMFQVRILRELLWGYRDPFLSLVPYPVXXXyGLFYPY NNXADGYYKyFNGKDNISKVAIIDXYKGKRNLSYWESRCDMINGXDAASFPPFVEKSQYLQFFSSDIC
- E W VNYM SENILXGA KKLTNKA XLWYVFL SLKNVDKVLEVPPVVYSRQEQEEEGRKRYEAQKLERMET
 KWRNGDxyQPVLNPEPNXVSYSQSSLIHLyGPSDCXLHGFXmGGVXMKLMDFA'AG IVAARHCKTNIVT
 ASVDAINFHDKIRKGCVITISGRMTFTS-« SMEIEVLVDADPVVDSSQKRYRAASAFFTYVSLSQEGR
 SXPvPQLypeXEDERKRFEEGKGRYLQMKAKRQGHAEPQP
- 25 >SEQ ID NO: 99 MKXLARALRLCEFGRQASSRRLYAGQGCYGPRRGCCApyQyyGPRADLPPCGACIXGRIMRPDDANVA GNYHGGXIXKMIEEAGAIISXRHCNSQHGERCYAALARVERIDFLSPMCXGEVAHYSAEIXYXSKRSV E W VNYM SENILXGA KKLTNKA XLWYVFL SLKNVDKVLEVPPVVYSRQEQEEEGRKRYEAQKLERMET
- CSMQHVCAMRQYDXDAY XXCLYA SGXTPVPQLFLLLMALLGL CXLVL
- MR LLAWLIFLAKWGGARA EPGKFWH IADLHLDPDYKV9KDPFQVCP SAG SQPVPDAGPWGDYLGD SPW

 ALINSSXYAMKEIEPEPDFILWXGDDTPHyFDEKLGEAAVLEIVERLXKLIREvFPDXKY
 YAALGNHD

 20
 FHPKNQFPAGSNNIYNQIAELWKPWLSNESIALFKKGAFYCEKLPGPSGAGRIVVLNTNLYYTSNALT

 ADMADPGQQFQWLEDVLTDASKAGDMyYIVGHVPPGFFEKIQNKAWFREGFNEKYL
 KVVRKHHRVIAG

 QFFGHHH IDSFRMLyDDAGyxPISAMFIXPGVIPWKTTLPGVVNGANNPAIRVFEYDRATLSLKDMVTY
 FHMLSQANAQGXPR^ELEYQLXEAYGypDASAHSMHTVLDRIAGDQSXLQRYYVW
 SVSYSAGVCDEA
- 15 Р

>SEO ID NO: 98

>SE0 ID NO; 101

- >SEQ ID MO: 97
 10 MSLMVVSMVCVGFFLLQGAWPHEGVHRKPSLLAHPGPLVKSEETVILQCWSDVRFQHFLLHREGKFKD
 TLHLIGEHHDGVSKANFSIGPMMQDLAGTYRCYGSVTHSPYQLSAPSDPLDIVITGLYEKPSLSAQPG
 PIVLAGESVILSCSSR SSYDMY&LSREGEAHERRFSAGPKVNGTFQADFPLGPATHGGTYRCFGSFRD
 aPYEWSNSSDPLXVS¥X.GNPSNaWPSPXEPSSEXGNPRHLHVLIGISVVIILFILLLFFLLHRWCGNK
 KNAyyMDQEPAGNRXWREDBDEQDPQEVIYAQ LNHCVFTQRKITRPSQRPKTPPTDIIVYTELPNAE
- RIYISGSXNYNPSLKSRVIMSVDXSK^{*} QFSLKLSSVTAADTAVYYCARGRFTYFDYWGQGTLVTVSSA s.tkgpsVFPLAPSSKSXS**GGTAA**LGCLyrdyfpepyx vSWNSGALTSQVHXFPAVLQ SSGLYSLSSVV XVFSSSDGXQIYICNVNHKPSNIKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS 5 RTPEVTCVVVDVSHEDPEVKFNWYVnGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTXSKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKSFYPSDIAVEWESNCQPENN YKXTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYX**f**KSLSLSPGK

MKHLWFFLLL³/4 APRWVLSQVQLQESGPGLVKPSETLSLTCTVSGGSISGYYWSWIRQPAGKGLEWIG

SUBSTITUTE SHEET (RULE 26)

- 1VGFTRGIWKLTLV1LAI:SPVLGLS:AAVWAKTL3SFTDKEL LAYAKAGAVAEEVLAAIRTVIAFGGQKK ELERYNKNLEEAKRIGIKKAI XANISIGAA FLLIYASYALAFWYGXXLVLSGEYSIGQVLXVFFSVLI 60 GAFSVGQAS PSIEAFANARGAAYE IFKIIDNKPSIDSYSKSGHRPDNIKGNLEFRNVHFSYFSRKEVR
- 55 >SEQ ID NO: 108

MDLEGDRNGGAKKKNFFKLNNKSEKDKKEKKPTVSVFSMFRYSNWLDKLYMVVGTLAATIHGAGLPLM MLVFGEMTDIFANAGNLEDLMSO TNRSDINDTGFFMNLEEDMTRYAYYYSGIGAGVLVAAYIQVSFW CLAAGRQiaKIRKQFFHAIMRQEIGWFDVHDVGELNTRLTDDVSRINEGIGDRIGMFFQSMATFFTGF

KQLDSTiGIHPVeAEVFTTLSVTRRSGASILQAGCUG

- GKTLVVGA SYVALE CAGF LAGIGLDV TVMVRS 1LLRGF DQDMANKIGEHMEEHGIKF IRQF VPIKVEQ 50 IEAGXPGRLRVVAQ STNSEEXIEGEYNXVMLAIGRDACXRKIGLEXVGVKINEKXGKIPVXDEE OINV PYIYA 1GDILEDKVELTPVA IQAGRLLAQRLYAGSTVKCDYENVPTTVFTPLEYGACGLSEEKAVEKE $\texttt{GEENIEVYHSYFWPLEWTIPSRDNNKGYAKIICNTKDmR\^/GFHVLGPNAGEVTQGFAAALKCGLTK}$
- 45 VIFSRSTCTRCTEVRRLFKSLCVPYFVLELDOTEDGRALEGTLSELAAETDLPWFVKORKIGGHGPT L14 YQEGRLQKX.LKMNGPEDLPK3YDYBLIIIGGGSGGLAAAKEAAQYGKKVMVLDFVTPTPLGTRWG LGGTC VNVGCIPRKLMHQAA LLGQALQDSRNYGWIWEE TVKHDWDRMIEAVQ.NHIGSLNWGYRVALRE KKVVYENAYGQFIGPHRIRATNSKGKERIYSAERFLIATGERPRYLGIPGDKEYCISSDDLFSLPYCP
- MGGAEGKAVAAAAPTELQTKGKKGDGRRRS AKDHHPGKTLPEMPAGFT STATADSRALLQAYIDGH3V

>SE() ID NO; 107

40 NVKQ IE SKTAFQEA LDAAGDKLVVV DF SATWCGPCRMTKPFFHSL SEKYSNV IF LE VDVDDCODVASE. CEVRCMPTFQFFKKGQKVGEFSGANKEKLEATINELV

>SEQ ID ND:106

- YEDAVHSGALND
- ERIQKIL&TGANVILTXGGJDDMCLKYFVEAGAtiAVRRVLKRDLKRIAKASGATILST!LANLEGEETF EAAMLGQAEE VVQERIGDDEL ILIKNTKARTSASIILRGANDFMCDEMERS LHDA.LCVVKRVLESKSV 35 VPGGGAVEAAL SIYLENYAT 5MG3RE QLA 1AEFARS LLVIPNTLAVNAAQDSTDLVAKLRAFHNEAQV NPERKWLKWIGLDLSNGKPRDNRQAGVFEPTIVICvKSLKFATEAA ,ITILR1DDLrKLHPESKD DKHGS
- >SEQ ID NO:105 MEGPLSVFGDRSTGETIRSQNVXAAASIANIVKSSLGPVGLDKMLVDDIGDVTITNDGATILKLLEVE 30 HPAAKVLCELADLQDKEVGDGTTSWI IAAELLKNADELVKQKIHPTSVISGYRLACKEAVRYINENL IVNTDELGRDGLINAAKTSMSSKIIGINGDFFANW VDAVLAIKYTDIRGQPRYPVNSVNILKAHGRS QMESMLISGYALNCVVGSQGMPKRIVNAKIACLDFSLQKTKMKLGVQVVITDPEKLDQIRQRESDITK
- ETSQRLANLRQRVE QFARAFPHP GFDE H
- W QPYSGSPANL/WYTALIQPHDRIMGLDLPDGGHLTHG% SDVKRX SATSIFFESMPYKLNPKTGLI DYNQLAL TARLFRPRL1IAGTSAYARLI DYARMRE VCDEVKAHLLADMAHISGLVAAKVIPSPFKHAD IVTTTTHKTLRGARSGLIFYRKGVKAyDPKTGREIPYT FEDRINFAVFPSLQGGFHNHAIAAVAVALK QAGTPMFREYSLQVLKNARAMADA-LLE, RGY 'S7uvs GGTDKHLVLVDLRPKGLDGARAERVLELVSITAN 25KNXCPG DR SAIIPGGLRLGAPALXSRQFREDDFRRVVDFIDEGVNIGLEVKSKIAKLQDFKSFLLKDS
- >SEO ID NO: 104 MLYFSLFWAARPLQRCGQLVRM%IRAQHSNAAQTQTGEANRGWTGQESLSDSDPEMWELLQREKDRQC 20 RGLELIA SENF CSRAALE ALG SCINNKY SEGYPGKR YYGGAE VVDEIELLGQRRALEAFDLDPAQWGV
- DYVHEFCRYG^EPHTIA^FLGGAAAOEVIKIITKOFVIFNNTYI-Y-SGM-SOTSATFOL
- $\label{eq:linear} \texttt{LRL} \ \texttt{ADV} \ \texttt{LWN} \ \texttt{sg:iPLL} \ \texttt{Igrt} \ \texttt{Yglvgyhr} \quad \texttt{Itike} \ \texttt{HPV} \ \texttt{IeSHPD} \ \texttt{Naledlrldkffpe} \ \texttt{.lreheqsydldhm}$ EKKDH SHTPWIVIIAKYLAQWYSETNGRIPKTYKEKEDFRDLIRQGTLKNENGAPEDEENFEEAIKNV NT%LMC TQIPSSIEDIFNDDRCXNITKQTPSFWILARALHEFYAKEGQSN .LPVRGTIPDMIADSGKXI KLQNVYRERAKKDAAAVGNHVAKLLQS IGQAPE SISEKE LRLLCSNSAFLRVVRCRSLAEEYGLDTIN 15 KBEIISSMa PDNEIVLYLMLRAVI5KPHKQO^RYPGVSNYQVEEDIQKLKSCLTGFLi^YGLS^?KD
- >SEQ ID NO: 103 MAQLGKLLKEQKYDRQLRLWGDHGQEALESABVC LINA TATGTEILKNLVLPGIGSFTIIDGNQVSGE 10 DAGNNFF LOR SSIGKNRAEAAMEFLQELN SDVSGSEVEE SPENLLDNDPSFFCRFTVVVATQLPESTS
- NACREEYWLQTC: PFPL LPS LCQLLDRF SKYWQLFKEKRC LSLDRKDLAIHILEL.LCE IV SANAE TFS PDVWIKSLSWLHRKLEQLDWTVGLRLKSFFEGHFKCEVPATLFEICKLSEDEWTSQAHPGYGAGTGLL AWMECCCVSSGISERMLSLLVVDVGNPEEVRLFSKGFLVALVQVMFWCSPQEWQRLHQLTRRLLEKQL LHVPYSLEYIQFVPLLNLKPFAQELQLSVLFLRTFQFLCSHSCRDWLPLEGWNHVVKLLCGSLTRLLD SVRAIQAAGPWVQGPEQDLTQEALFVYTQVFCHALHIMAMLHPEVCEPLYVLALETLTCYETLSKTNP 5 SVSSLLQRAHE QRFLK & IAEG IGPEE RRQTL LQKMS SF

>SEQ ID NO: 114

- IENIHW RNSLQKHLEYCELKSPSMSDFLWGLENSGWLRHIKAIMDAGIFIAKAVSEEGASVLVHCSD GO RTAQVGSVASLLLDPHYRTLKGFMVLIEKDWISFGHKFNHRYGNLDGDPKEISPVIDQFIECVWQ LMEQFPCAFEFNERFLIHIQHHIYSCQFGNFLCNSQKERRELKIQERTYSLWAHLWKNRADYLNPLFR ADHSQIQGTLHLPXXPCNFMYKFWSGMYMO FEKGMQPRQSVTDYLMAVKEETQQLEEELEALEERLEK IQKYQLNCTKVKSKQSEPSKHSGFSTSDNSIANIPQDYSGNMKSFPSRSPSaGDEDSALILTQDNLKS SDPDLS ANSDQESGVEDLSCRSPSGGEHAP SEDSGKDRDSDEAVFLTA 60
- >SEQ ID NO: 113
 50 ME #IRTPKVENVRLVDRVSPKKAALGTLYIXATHVTFVENSPDPRKETWILHSQISTIEKQATTATGC
 PLLIRCKNFQI IQIX IPQERDCHDVYISLIRLARPVKYEEIAY'CFSFNPMLDKEEREQGW\/LIDLSEEY
 TRMGLPNHY.WQLSDVNRDYRVCDS:YPIELYVPKSATAHII\%SSKFRSRRFPVLSYYYKDMHASIGR
 SQPLSGFSARCLEDEQMLQAIRKANPGSDFVYyVDTRPKLNAMANRAAGKGYENED#YSNIKFQFIG
 TENLW% RNSLOKHLEYCELK SP SMSDFIWCLENSCWIPHIKATMDAGLETAKAVSEECASVIWC SD

DAFRSCKFPTKRSKKAGRH

- MVRPMLLLSLGLLAGLLPALAACPQNGHCHSDLQHVICDKVGLQKIPKVSEKIKLLNLQRNNFPVLAANsfraMFnLvsLHLQhcQirevaagafrgLkQLIYLYLSHNDIRVLRAGAFDDLTELTYLYLDHNKVTelprglLsplvnLfILQlnnnKirelragaeQgaKDLrWLYLSENALSSLQPGALDDVENLAKFHVDR45NQLSSYPSAALSKLRVVEELKLSHNPLKSIPDNAFQSFGRYLETLWLDNTNLEKFSDGAFLGVTXLKHVHLENNRLNQLPSNFPFDSLETLALTNNPWKCTCQLRGLRRWLEAKASRPDATCASPAKFKGQHIRDT
- 40

IGTGMGAAAVFEYPGN

>SEQ ID NO: 112

- 35 IRNGSYDXGMACGVESMSLADRGNPGNITSRLMEKEKARDCLIPMGITSENVAERFGISREKQDTFAL A SQQKAARAQSKGCFQAEIVI?VTTTVHDDKGTKRSITVTQDEGIRPSTTMEGLAKLKPAFKKDGSTTA GNSSQVSDGAAAILXARRSKAEELGLPILGVLRSYAVVGVPPDIMGIGPAYAIPVALQKAGLTVSDVD IFEINEAFASQAAYCVEKLRLPPEKyNPLGGAVALGHPIGCIGARQVITLLNELKRRGKRAYGVVSMC
- >SEQ ID NO: 111
 MQRLQVVLGHLRGPADSGWMPQASPGLSGAPQASAADV"v"/VHGRRTAICRAGRGGFKDTTPPELLS.AV
 MTAVXKDVNLRPEQLGDICVGNVLQPGAGAIMARIAQFLSDIPETVPLSTVNRQC&SGLQAVASIAGG.
 IRNGSYDXGMACGVESMSLADRGNPGNITSRLMEKEKARDCLIPMGITSENVAERFGISREKQDTFAL
- >SEQ ID NO: 110
 MPRLFLFHLLEFCLLLNQFSRAVAAKWKDDVIKLCGRELVRAQIAICGMSTSiSKRSLSQEDAPQTPRP
 VAE IVPSFINKDTE TIIIMLEFTANLPPELKAAL SERQPSLPEiQQYVPALKDSNLSFEEFKKLIRNR:
 30 QSEAADSNPSELKYLGLDTH3QKKRRPYVAL.FEKCCLIGCTKRSLAKYC
- 25 CGKMEEQMTSSSQARKYVNAFSARILVM
- 20 pqpaaaaiqrhyhdedpekekrikele LLLMSTENELKGQQVLPTQNHTCSYPGWHSTTIADHTRPHG DSAW SCLGEHHSTPSLPADPGSLPEESASPARCMIVHQGTILDNVKNLLEFAETLQFIDSFLNTSSN HENSDLEMPSLTSTPLIGHKLTVTTPFBRDQT% IQKENTVFRTPAIKRSILESSPRTPTPFKHALAA QEIKYGPWiLPQIPSKLVEDLQDVIKQESDESGIVAEFQENGPPLLKKIKQEVESPIDKSGNFFCSH HWEGDSLNTQLFTQTSPVADAPNILTSSVLJ%APASEDEDNVLKAFTVPK NRSLASPLQPCSSTWEPAS
- 15 >SEQ ID NOILQ9 MARRPRHSIYSSDE DDEDFEHG DHDYDGLLPKSGKRHLGKTRWTREE DEKLKKLVEQNGTDDWKVIAN YLPNRTD%4 CQHRWQKVLNPELIKGPWTKEEDQRVIELVQKYGPKRWSVIAKHLKGRIGKQCRERWHN HLNPEVKKTSWIEEEDRIIYQAHKRLGNRWAEIAKLLPGRTDNAIKNHWNSTMRRKVEQEGYLQESSK ASQPAVATSFQKNSHLMGFAQAPPTAQLPATGQPTVNNDYSYY%4 ISEAQNVSSHVPYPVALHVNIVNV
- FLAGKYLLDGKEIKRLNVQWLRAHLGIVSQEPILFDCSIAENIAYGDNSRVVSQEEIVRAAKEANIHA FIFSLPNKySTKyGDKGrQLSGGQKQRIAIA RALVRQPHILLLDEATSALDTESEKVVQEALDKAREG RICIVIAHRLSTIQNADLIVyFQNGRYKEHGTHQQLLAQKGIYFSMVSVQAGTKRQ
- 5 KLSTKEALDBSIPPVSFWRIMKLNLTEWPYFVVGVFC%1INGGLQPAFAIIFSKIIGVFTRIDDPETK RQNsnLfSLIFLALGIISFITFFLQGFTFGKAGEILTKRLRYMVFRSMLRQDVSWFDDPKNTTGALTT RLANDAAQVKGAIG&RLAVITQNXANLGTGIISFTYGWQLTLLLLAIVPIIAIAGVVEMKMLSGQAL KDKKELEGSGKIATEAIENFRTVVSLTQEQKFEHMYAQSLQVPYRNSLRKAHrFGITFSFTQAMMYFS YAGC FRF GAY LVAHKLM SFEDFL LVF SAVVFGAMAVGQvs>SFAPDYAKAKISAAHI IMIIEKTPLIDS
 10 YSTEGLMPNTLEGNVTFGEVVFNYPTRPDTPVLQGLSLEVKKGQTLALVGSSGCGKSTVVQLLERFYD
- ILKGLNLKVQSGQTVALVGNSGCGKSTTVQLMQRLYDPTEGMVSVDGQDIRTINVRFLREIIGVVSQE pvLEAT_{TIAE}NIRYGRENVTMDE IEKAVKEANAYDFIMKLPHKFDTLVGERGAQLSGGQKQRIAIARA. LvRNPKILLLBEAT SALDTESEAWQmL0KARKGRTTIVrAHRLSTVRNADVIAGFDDGVIVEKGIJH DELMKEKG IYFKLVTMQTAGNEVELENAADESKSEIDALEMSSNDSRSSLIRKRSTRRSVRGSQAQDR

MMEY IPEKRASAADCLOHPWLNP

- KCKIIHTDIKPENILLCVGP7YlRRLAAEATEWQQAGAPPPSRSIVSTAFQEVLQTGKLSKNKRKI¾lR RKRKQOKRLLESRLRPLQRLEAMEAATQAEDSGLRLPGGSGSTSSSGCHPGGARAGPSPASS.SPAPGG GRSLSAGSQTSGF SGSLFSPASCSILSGSSNQRETGGLLSPSTPFGASNLLVNPLEPQNADKIKIKIA DLGNACW\HKHFTED1QTRQYRAVEVLIGAEYGPPAD1WSTAeMAFELATGDYLFEPH6GEDYSRDED 60 HIAH IVELLGD IPPAFALSGRYSREFFNRRGELRHIHNLKHWGLYEVLMEKYEWP&EQATQFSAFLLP
- >SEQ ID NO ;120: MSASTGGGGDSGGSGGSSSSSQASCGPESSGSELALATPVPQMLQGLLGSDDEEQEDPKDYCKGGYHP YR 10 DVFNGRYHVVRRLGWGHFSTVWLCWDIQRKRFVALKVVKSAGHYTETAVDEIKLLKCVRDSDPS 55 DPKRETXVQLIDDFRISG¥NeVHVCIWLEVLGHQLLKWIIKSNYQ©LPVPCVKSIVRQVLH©LDYLHT
- QDSFLQLPLGSSDSVISQLSDAFSSQSKRQPWREESGQYERKAERGAGERGPGGPKISKKSCLKPSDV VRCL STEQRLSDLNTPEESRPGKPLGSAFPGSEAEQTERHRGGE QAGRKAARRGGS QQPQAQQRRVTP 50 DR SQT SQDLF SYGA LY SY I FGNDD ELELR DG D IV DV MEKCDDGWFVGT SRRTKQFGT FPGNYVKPLYL
- GDIVY IYKQIDQNWYEGEHHGRVGIFPRTY IELLPPAEKAQPKKLTPVQVLEYGEAIAKFNFNGDTQV 45 EMSFRKGERITLLRQVDENWYEGRIPGTSRQGIFPITYVDVIKRPLVKNPVDYMDLPFSSSPSRSATA SPQFSSHSKLITPAPSSLPHSR ALSPEMHAVTSEWXSLTVGVPGRRSL<PPLPPLPEASIYNTDH LALSPRASPSL SLSLPHLSWSDRFIPRSVASP LALP SPHKTYSLAPTSQASLHMNGDGGVH TPSSGIH
- 40 VLINERMSRDISPEEIDLKNEPWYKFFSELEFGKPPPRRIWPYT[^] DCSILPREDRKTNLDKDLSLCO TELEADLEKMETLNKAPSANVPQSSAISPTPEISSETPGYiysSNFHAVKRESDGAPGDLTSLENERQ $\verb|YKSyleggdipl_Qglsglkrpssastkdsesprhfipadylesieefirrhddkeklladqrrlk||$ REQEEADJAARRHTGVIPTHHQFITNERFGDLLNIDDTAKRKSGSEMRPARAKFDFKAQILKELPLQK
- SPLLNEVSSSLIGTD3CAFPSVSKPSSAYPSTTIVNPTIVLLQHNRECORRLSSLSDPVSERRVGEQD SAPIQEKPTSPGKAIERRAJCDD^ RVVKSTQDLSDVSMDEVGIPLRNTERSKDWYKTMFKQIHKLNRD IPEENPYFPTYKFPELPEIQQTSEEDNPYTPTYQFPASTPSPKSEDDDSDLYSPRYSFSEDTKSPLSV PR:SKSEMSYIDGEKWKRSATLPLPARSSSI^<SSSERNDWEPPDK KVDTRKYRAEPKSIYEYQPGKSS
- MSSECDGOSKAVMNQLAPGSNGQDKATADPLRARSISAVKI IPVKXVKN%SGLVLFTDMDLTKICTGJ GAVTLRAS SSYRE IPS SSPASPQE TRQHE SKPGLEPEP SSADE WRLSSSADANGNAQPSSLAAKG YRS VHPNLPSDKSQDATSSSAAQPEVIVVPLYLWTDRGQ EGTARPPTPLGPLGCVPTIPATASAASPLTF 35 PILDDFIPPHLQRWPHHSQPARASGSFAPISQTPPSFSPPPPLVPPAPEDLRRVSEPDLTGAVSSTDS
- 30 >:SEO ID NO: 119
- 25 >SEQ ID MO:118 MKLNI SFPATGCQKLIEVDDERKLRTFYEKRMATEV*H*ADALGEEWKGYVVRI SGGNDKQGFPMKQ6VL T%GR\^i.LLSKGHSCYRPRRIGEr<KRKSVRGCIVDAxNLSVLNLVIVKKGEKDIPGLIDTTVPRRLGPK

RASRIRKLFMLgKEDDVRQYVVRKPLNKEGKKPRTKAPKIQRLVTPRVLQHKRRRIALKKQRIKKMKE

EAAE YARL LAKRMRE AREKRQE QIAKRRRL SSLRAS T SRSESS OR

- >SEQ ID NO :XX7 20 MARSPRRHLKRYAAPRHWMLPRLTGVFAPRPSTGPHKLRECLPLIIFLRNRLKYALTGDEVKKICMQR PIKID GKVRTDITYP%GFMDVISIDKTGENFa IYDTKSRFAVHRITPEEAKYKLCKVRKIFVGTKGI PHLVTHDARIIRYPDPLIK^mDTIQIDLETGKIIDFII<FDTGNLCMVTGGANLGRIGVITNRERHPGS FDVVHVK DANGNSFATRLSNIFVIGKGNRPWISLPRGKG IRLTIAEERDKRLAAKQSSG
- RICANKYMW SCGKDGFHIRVRLHPFHVIR INKMLSCAGADRLQTGMRGAFGKPQGTVARVHIGQVIM SIRviRLONKEHVIEALRRARFKFPGRQRIH* SKKWGFTKFNADEFEDMVAEKRLIPDGCGVKYIPNRG PLPRWRALHS 15 >SEQ ID NO;116

MDTSRVQPIKLARVTEVLGRTGSQGQCTQVRVEFMDDTSRSI IRNVKGPVREGDVLTLLESEREARRI.

- >SEQ ID MO: 115 10 MGRRPARCYRYCKNKPYPKSRECRGVP DARIRIFDLGRKKAKVDEFP LCGHMVSDEYEQLSSEALEAA
- ILCNTYIDSYKGTVDCYQARAALDKATV LSMSKGGKRKDSVWGSGGGQQSVNHLVKEIDMLLKEYLL SGDISEAEHCLKELEVPHFHHELVYEAIIMVLESTGESTFKMILDLLKSLWKSSTITVDOMKRGYERI YNE IPDINLDVPHSYSVLERFVEECFQAGIISKCLRDLCPSRGRKRFVSEGDGGRLKPESY
- WO 2015/135035

5

R

MDVENEQILNVNPADPDNLSDSLFSGDEENAGTEEIKNEINGNWISASSINEARINAKAKRRLRKNSS RDSGRGDSVSDSGSDALRSGLTVPTSFKGRLLDRRSRSGKGRGLPKKGGAGGKGVWGTPGQVYDVEEV DVKPPNY PPPOENGVYETVVLPLPERAFEKTLTPI IQEYFEHGDTNEVAEMLRDLNLGEMKSGVPVLA VSLALEGKA SHREMT SKLLSDLCGTVM STTDVEKSFDKLLKDLPELALDTPRAPQLVGQFIARAVGDG

>SEQ ID NO: 128

- 55 RIGSGRRAFGSGYRRDDDYRiaGGDRYEDRYD.RRDDRSWS SRDPYSRDDYRRDDRGPPQRPKLNLKPRS TPKEDDSSASTSQSTRAAS IFGGARP VDTAARERE VEERLQKEQEKLQRGLDEPKLERRPRERHPSSR SE ET QERER SRTG SE SSQTGT STT SSRNARR RE SEK SLENE TLNKE ED CH SPT SK PPR PDQ PLKV MPA pppkenawvkrssnp* 'ARSQSSDTEQQSPT3GGGKVAPAQPSEEGPGRKDENKVDGMNAPKGQTGNSS RGPGDGGNRDHWKESDRKDGKHDQDSRSAPEPKKPEENPASKFSSASKYAALSVDGEDENJEGEDYAE 60
- 50 >SEQ ID NO: 127 MAA SARKKNKKGKTISLTDFLAEDGG TGGGS TYVSRPVS.WADETDDL.EGDVSTTWHSNDDDVYRAPPI $\label{eq:drsilp} DRSILP \quad TAPRAAREPNIDRSRLPKSPPYIAFLGNLPYDVTEESIREFFRGLNISAVRLPREPSNPERL$ ${\tt KGFGiAEFEDI-DSLLSALSLNEESLGNRRIRVDVADQAQDKDRDDRSFGRDRNRDaDKTDTD-WRARPA}$ TDgFDDYPPRRSDDSFGPKYRDRYDSDRYRDGYRpGYRDGPRRDidDRYGGRDRYDDRGS.RDYDRGY.DS

IDFDSVoSIMASSO

>SEQ ID NO: 126 45 MEMFEW RANGKLLKGIDRYNPENLATLERYVETQAKENAYDLEANLAVLKLYQFNPAFFQTTVTAQ ILLKALTNLPHTDFTLCKCMIDQAHQEERPIRQILYLGDLLETCHFQAFWQALDENMDLLEGITGFED SVRKFICHWGIIYQHIDRWLLAEMLGDLSDSC!LKA¾MSKYGWSADESGQ:IFICSQEESIKPKNIVF:K

- GSKVXIREFQEHGRRGLLSNHTGSPRSPSTTYLHTPTPSEDAAIPSKSRLKRLISENSVYEKRPDFRM 40 CWYVHPQVLQSF%QEHLPVPCGWSYVTSVPSAPKEDSGSVPSTGPSQGTPISLKRKSAGSMCITQFMK KRRHDGQIGAEDMDGFQADTEEEEEEGDCMIVDVPDAAEVQAPCGAASGAGGGVGVDTGKATLTSSP LGA.S
- 35 MV LAPRRAT AEHPD LC SQLDQLLQQQ SGE F SFLKD LKGRQP LRSGPTHV STRNADI FN SDVVIVERGK GDGVPERRRFGRMKLLQFCENHRPAYWGTWNKKTALIRARDFWAQDTKLLDYEVDSDEEWEEEEPGES LSHSEGDDDDDMGEDEDEDDGFF V^RGYLSEDEGVTEECADPENHKVRQRLKAKEWDEFLA KGKRFRV LQPVKIGCVWAADRDCAGDDLKVLQQFAACFLEILPAQEEQIPKASKRERRDEQILAQLLPLLHGNVN
- RSCPELTSGPRMCPRKEQDSWSEAGGILFRGKVPMVVTXIDILA\%PPQIKSLPATPQGK NMTPESEVL ESFPEEDSVLSHSSLSSPSSISSPEGPPAPPKQHSSTSPFPISTPLRRIIKKFVKGSIEKNRLRLQRD KERQEALEAKLEEKRKKEEEKRLREEEKRIKAEKAEITRFFQKPKTPQAPKTLAGSCGKFAPFEIKEH
- >SEQ ID NO: 12.5 MLEELECGAPGARGAATAMDCKDRPAFPVKELIQARLPFKRLNLVPKGKADDM3DDQGTS:VQSKSPDL EASLBTLENNCHVGSDIDFRPKLVA GKGPLDNFLRNRIETSIGQSTVIIDLTEDSNEQRDSLVDHNKL 30 NseASPSREAINGQREDTGD%QGLLKAIQNDKLAFPGETLSDIPCKTEEEGVGC% #GRRGDSQECSP

25VREICDTVD

- SHNISNRTPLVLLHGFGGGLGLWALNFGDLCTNRPVYAFDLLGFGRSSRPRFDSDAEEVENQFVESIE EWRGALGLDKMILLGHNLGGFLAAAYSLKYPSRVNHLILVEPWGFPERPDLADQDRPIPVWIRALGAA LTPFNPLAGLR IAGPFGLSLVQRLEPDFKRKYSSEFEDDTVTEYIXHCNVQXPSGFTAFKNMTIPYGW AKR PMLQR IG KM HP D I PV SV IF GAR SC I DGN SG TS I Q SLRPHSYVKTIAILGAGHYVYADQPEEFNQK
- >SEO ID MQ:124 20 MAAEEEEVDSADTGERSGWLTGWLPIWCPTS T SHLKEAEEKMLRCVPCTYKKEPVRI SNGNRTWTLKF

PRSKISPOGYGRRRRRSLPEAGPGRTLVSSKPOAHGAPAPPSGSAPHFL

>8EQ ID NO: 123 15 MKLY SVALMYLGSLAFLGADTARLDVASEFRKKWNKWALSRGKRELRMSSSYPTGLADVKAGPAQTLI RPC)DMKG:ASRSPEDSSPDAARIRVKRYRQSMNNFQ GLRSFGCRFGTCTVQKLAHQIYQFTDKDKDNVA

AAGACAGAGGTCCTCTTTCCTTGCCTAATGC AGCCATGGCTCGTGGTCCCCAAGAAGCATCTGAAGCAG ${\tt GTAGCAGCTCCAAAGCAITGGATGCIGAATAAATTGAeiGGTGTGTITGCTCCICATCCACCAG}$ TCCCCACAA TTTGAGA GAGTGTCTCCCCCCTCATCA TTTTCCTAAGGAAC AGACTTAAGTATGTCCTCA 10 TCCGTACTGAT CTGGAAATGAAGTAAAGAAGAT.TTGCATGCAGCGGTTCATTAAGATCAATGGCAAGG ATAACCTACTCTGCTGGATTCATGGATGTCAACAGCATTGAGAAGTCGGGAGAGAATTTC CGTCTGAT CTATGACACGAAGGGTCGCTTTGCTGT, ACATCGTATTACACCTGAGGAGGCCAA

>SEQ ID NO: 121 M%PVKKLVVkGGKKKKQVLKFTLDCTHPVEDGIMDAANFEQFLQERIKVNGKAGNLGGGVVTIERSKS RITVTSEVPFSKRYLRYLTKRYLKKNNLRDWLRVVANSKESYELRYFQINQDEEEEEDED

>SEQ ID NG:122

5

LQEKAQVN SRKAQTXNNNVNRAXQ SAKEXDVK IKNV IRNVHILXKQ ISGXDGEGNNVPSGDF SREWAE AQRMMRELRNRNFGKHXREAEADKRESQLLLNRIRXWQKIHQGENNGLANSIRDSXNEYEAKLSDLRA 45 RXQEAAAQAHQANGXNQENERAXGAIQRQVKEINSXQSDFXKYLXXADSSLLQXNIAXQXMEKSQKEY EKXAASXNEARQELSDKVRELSR3AGKXSXVEEAEKHARSXQEXAKQXEEIKRNASGDE LVRCAVDAA 1AYENILNAIKAAEDAANRAASASESALQI^IKEDLPRKAKILSSHSDKLLNEAKMXQKKLKQEVSPA LNNLQQTLNIVTVQKEVIDTNXTTLRDGLHGIQRGDIDAMISSAKSMVRKANDITDEVLDGLNPIQTDVERIKDTYGRTQNEDFKKAXTDADNSVNKLTNKLPDLWRKXESINQQLLPLGNISDNMDRIRELIQQA 50 RDAASKVÅW MRFNGKSGVEVRXPNDLEDXKGYISLSXFLQRPNSRENGGTED MFVMYLGNKDASRDY IGMAVVDGQITCVYNXGDREAEXQVDQIXTKSETKEAVMDRVKFQRXYQFARXNYTKGATSSKPETPG VYD DGRNSNTXXNXDPENVVFYVGGYPFDFKXPSRXSFPPYKGCIEXDDXNENVXSLYNFKKTFNLN. TTEVEPCRRR^EESDKISYFEG.IGYAR¥PTQP HAPIPTFGQXIQITVDRGXLFFAENGDRFISXNIEX)G KLMVRYKXNSX:LPKERGVGDAI™ GRDHSIQIKIGKLQKRMWINVDVQNTIIDGEVFDFSTYYLGGIP 55 IAIRERFNI STPAFRGCMKNLKKX SGVVR XNDXVGVXKKC SEDWKXVRSA SF SRGGQX SFXDLGXPPX DHXQASFGFQXFQPSGILXDHQXWXRNXQYXXEDGYIEXSTSDSGSPIFKSPQXYMDGLLHYVSVISDNSGLRLXIDDQLXRNSKRLKHISSSRQSLRLGGSNFEGCISNVFVQRLSLSPEVLDLXSNSLKRDVSX GGC SLNKPPF LML LKG SXRFNKXKX X RINQLLQD X PVA S 14 SVKVWQDAC SPLPKTQANHGALQFGDI PXSHXXFKLPQELLKPRSQFAVDMQXXSSRGXVFHXGXKNSFMAXYLSKGRXVFAXGXDGKKLRIKSK 60 ${\tt EKGNDGKWHXVVFGBDGEKGRL \ ATDGXRAREGSLPGMSXISI_{RAPVYIGSPPSGKPKSLPXNSFVGGL} \\$

KNFQXDSKPLYXPSSSFGV33CLGGPLEKG1YFSEEGGHVVLAH SVLXGPEFRLVFSIRPRSLXGILI

- CAPGYFGNPQ.KFGGS^QPGSCNSKGQLGSCHPLIGDCINQEPKD3SPAEEGDDCDS CVMTX L35DXAIM GEQLRLVKS.QXQGLSA.SAGLLEQMRHMEIQAKDLRNQLLNYRSAISNHGSKIEGLERELXDLNQEFEX
- 35 RGIIEAAMPECDRDSGQCRCKPRIXGRQCDRCASGFYRFPECVP-CNGNRDGXEPGVCDPGXGACXCKE NVEGTEGMVCREGSFHXDPANXKGCISCFCFGVNNQCHSS.HKRRXKFVDMXGWHXEXADRVDIPVSFN PGSNSMVADLQELPAIIHSASWVAPXSYLGDKVSSYGGYXXYQAKSFGLFGDMVLLEKKPDVQLXGQH MSIIYEE XNXPRPDRLHHGRVHVVEGNFRHASSRAPVSREELMXVLSRLADVRIQGLYFXEXQRLILS E^GXEEASDXGSGR1ALAVEICACPPAYAGD^CQGGSPGYYRDHKGLYXGRCVPCNGNGHSiSIQCQDGS 40GIGVNCQHNIAGEHGERCQEGYYGNAVHGSCRACPCPHTNSFATGCVVNGGDVRCSCKAGYTGTQCER
- VGHYVVVVEYSTEAAQLFVVDVNVKSSGSVLAGQVNIYSCNYSVLCRSAVIDHMSRIAMYELLADADI 30 QLKGHMARFLLHQVCIIPIEEFSAEYVRPQVHCIASYGRFVNQSATCVSLAHETPPTALILDVLSGRF FPHLFQQSSPSVDVLPGVTLKAPQNQVTLRGRVPHLGRYVFVIHFYQAAHPTFPAQVSVDGGWPRAGS FHASFCPHVLGCRDQVIAEGQIEFDISEFEVAATVKVFEGKSLVLVRVLVVPAENYDYQILHKKSMDK SXEFXINCGKNSFYLDPQIASRFGKNSARSLVAFYHKGALPCECHPTGAXGPHCSPEGGQCPCQPNVIGRQCTRCAXGHYGFPRCKPCSCGRRLCEEMTGQGRCPPRXVRPQCEVCEXHSFSFHPtiAQCEGCNCSR
- CKLLYWNLDKENPSGCSECKCHKAGTVSGTGECRQGDGDCHCKSHVGGDSCDTCEDGYFALEKSNYFG 25 CQGCQCDIGGALSSMCSGPSGVCQCREHVVGKVCQRPENNYYFPDLHHMKYEIEDGSTPNGRDLRFGF DPLAFPEFSWRGYAQMTSVQNDVRITLNVGKSSGSLFRVILRYVNPGTEAVSGHITIYPSWGAAQSKE IIFLPSKEPAFVTVPGNGFADPFSITPGIWVACIKAEGVLLDYLVLLPRDYYEASVLQLPVTEPCAYA GPPQENCLLYQHLPVTRFPCTLACEARHFLLDGEPRPVAVRQPTPAHPVMVDLSGREVELHLRLRIPQ
- 20 RWR PAAWEQSHECEA CNCHGHA SNGYYDPDVERQQASLNTQGIYAGGGVCINCQHNTAGVNCEQCAKG YYRPYGVPVDAPDGCIPCSCDPEHADGCEQGSGRCHCIPNFHGDNCEKCAIGYYNFPFCLRIPIFPVS XPSSEDPV? GDIKGCDCNLEGVLPEIGDAHGRCLCRPGVEGPRCDICRSGFYSFPICQACWCSALGSY QT^CSSVXGQCEERPGVXGQRCDRCL.SGAYDFPHCQGSS.SACDPAGTI NSNLGYCOCKLHVEGPTCSR
- 15 MAA AARPRGRA LGPVLPTTLIX LVXRVXFACGAXARDPGAAAGXSXHPXYFNXAEAARIWAXAXCGE RGPQEGRPQPELYCKLVGQPXAPGSGHTIQGQFCDYCNSEDPRRAHPVXNAIDGSERWWQSPPLSSGX OYNRVNLXLDLGQLFHVAY ILIKFAN SPRPDLWVLERSVDFG STY SPWOYFAHSKVDCLKEFGREANM AVXRDDDVLE¥XEYSRIVPLENGE¥WS,LTMGRPGARNFXFSHXLREFXKAXNIRLRFLRXNXLLGILL ISKAQRDPXVXRRYYYSIKDISIGGQCVCNGHAEVCNIMSPEKLFRCECQHHXCGEXCDRCCXGYNQR
- >SEQ ID NO:130
- >SEQ ID NG:129 MIEQMILRGILKGHNGWVTQIAXXPCFPDMILSASRDKTIIMWKLTRDETNYGIPQRALRGHSHFVSD V¥IS3DGQFALSGS^DGILRLWDLIIGXIIRRFVGOTKDVLSVAFSSDNRQIVSGSRDKTIKLWNTLG 10 VCK%TVQDESHSE«VSCWFSPNSSNPII/SCGWDKLVKVWNLANCKLKTNHIGHTGYLNTVTVSPDG SLCASGGKDGQAMLWDLNEGKHLYTLDGGDIINALCFSPNRYWLCAATGPSIKIWDLEGKIIVDELKQ EVISTSS KAEPPQCTSLAWSAD.GQTLEAGY TDNLVRVWQVTIGTR
- 5 WHKEESXGPKRQKVGFLG

MASVXLSXAEKVYIVHGVQEDLRVDGRGCEDYRCVEVEI DVVSNTSGSARVKLGHTDILVGVKAEMGT PKLEKPNEGYLEFFW CSASATPEFEGRGGDDLGTEIANTLYRIFNNKSSVDLKTLCISPREHCWVLY VDVXXLECGGNLFDAISIAVKAALFNTRIPRVRVLEDEEGSKDIELSDDPYDCIRLSVENVPCIVTLC KIGYRHVVDAXLQEEAC SLASLLVSVTSKGVVXCERKVGKGSLDPESIFEmmETGKRVGKVLHASLQS HIGSQPGKHL,CVYLEAGRVTASMDS^{*} AGGTSTSVTFKQSLCDGQWHSVAVTIKQHILHLELDTDSSYT AGQIPFPPASTQEPLHLGGAPANLT^{*} RIPVWKSFFGCLRNIHVNHIPVPVTEALEVQGPVSLNGCPD Q

5 >SEQ ID NO:131 MAPSALLRPLSRLLAPARLPSGPSVRSKFYVREPPNAKPDWLKVGFTLGTTVFLWIYLIKQHNEDILE YKRNGLE

>SEQ ID MO:132

- 10 M SQV QVQVQNP SAM, SG SQI LNKNQSLL SOP LM SIPSTTSSLP SENAGRP I QNSALPSASITST SAAA ESITPTVELNALCMKLGKKPMYKPVDPYSRMQSTYNYNMRGGAYPPRYFYPFPVPPLLYQVELSVGGQ QFNGKGKTRQAAKHDAAAKALRILQNEPLPERLEVNGRESEEENLNKSEISQVFEIALKRNLPVNFEV ARESGPPHMKNFVTKVSVGEFVGEGEGKSKKISKKNAAIAVLEELKKLPPLPAVERVKPRIKKKTKPI VKPQXSPEYGQGINPI SRLAQIQQAKKEKEFE YTLLTERGLPRREFVMQyKVGNHTAEGTGrNKKVA
- 15 KRNA AENMLE ILGFKV PQ%QPTKPALKSEEKTPIKKPGDGRKVTFFEPGSGDENGTSNKEDEFRMPYL SHQpLPAGILPMVPEVAQAVGVSQGftHTKDFTP-^PNPAKATVTAMIARELLYG.GTSPTAETILKNMI SSGriVPHGPLTRPSEQLDYLSR1%GFQVEYKDFPM\WKNEFVSLIN CSSQPPLISHGIGKDVESCHDM AALNILKLLSE LDQQSTEHPRT GNGPHSVCGEC
- 20 >SF,Q ID NO:133

 MW
 EHVNGNGIEEPMDTTSAVIHSENFQTLLDAGLPQKVAEKLDEIYVAGLVAHSDLDERAIEALKEF

 NEDGALAVLQQFKDSMSHVQNKSAFLCGVM<TY^</td>
 QREKQGTKVADSSKGPDEAKIKALLERTGYTLD

 VTTGQRKYGGPPDDSVYSGQQPSVGTEIFVGKJPRDLFEDELVPLFEKAGPIWDLRLM%DPLRGLNRG
 YAFVTFCTKEAAQEAVKLYNNHEIRSGKHIGVCISVANNRLFVGSIPKSKTKEQIL.EE

- 25 VILYHQPDDKKKNRGFCFLEYEDHKTAAQARRRLMSGKVKVWGNVGTVEWADPIEDPDPEVMAKVKVL FVRNLANTVTEEI.LEKAFSQFGKLERVKKLKDYAFIHFDERDGAVKAMEEMNGKDLEGENIEIVFAKP PDQI<RKERKAQRQAAKNQMYDDY'YYYGPPHMPPPTRGRGRGGRGGYGYPPDYYGYEDYYDYYGYDYHN YRGGYEDPYYGYEDFQVGARGRGGRGARGAAPSRGRGAAPPRGRAGYSQRGGPGSARGVRGARGGAQQ QRGRGVRGARGGRGGNVGGKRKADGYNQPDSKRRQTNNQNWGSQPIAQQPLQGGDESGNYGYKSENQ:E
- 30 FYQDTFGQQWK

30

269

CLAIMS

- 1. A. method of detenming the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a 5 plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth 10 metagene, a Chromosome Segregation metagene, DNA a Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein: a higher relative 15 expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes Indicates or correlates with lower 20aggressiveness of the cancer compared to a mammal having a higher expression level.
 - 2. A method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the **mammal**, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Carbohydrate/Lipid **Metabolism** metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, **a** Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple

Networks metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or eorrelates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis,

3. The method of Claim 1 or Claim 2, wherein the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one of the metagenes or are selected from a plurality of the metagenes.

- 4. The method of any one of the preceding claims, wherein the Carbohydrate/Li pid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene comprise one or a plurality of genes listed in Table 21.
- 5. A method of determining the aggressiveness of a Cancer in a mammal, said method including the step of comparing an expression level of one or a 20plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a 25 Development and Growth metagene, a Chromosome Segregation/Replication metagene, Immune Response metagene and a Protein an Synthesis/Modification metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with higher 30 aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

SUBSTITUTE SHEET (RULE 26)

10

15

WO 2015/135035

5

10

15

271

- A method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of rnetagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or correlates with a more favourable cancer prognosis.
 - 7. The method of Claim 5 or Claim 6, wherein the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one of the rnetagenes or are selected from a plurality of the rnetagenes.
- 8. The method of any one of Claims 5 to 7, wherein the Metabolism metagene. the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene comprise one or more genes listed in Table 22.
- 9. The method of any one of Claims 5 to 8, wherein the one or plurality of 25 overexpressed genes and the one or plurality of underexpressed genes are from one or a plurality of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, Chromosome Segregation DNA a metagene, a Replication/Recombination metagene, an Immune System metagene, a 30 Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene.

10

15

272

10. The method of any one of the preceding claims, wherein the step of eomparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes includes comparing an average expression level of the one or plurality of overexpressed genes and/or an average expression level of the one or plurality of underexpressed genes.

11. The method of Claim 10, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed genes and the average expression level of the plurality of underexpressed genes.

- 12. The method of any one of Claims 1-9, wherein the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes includes comparing the sum of expression levels of the one or plurality of overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes.
 - 13, The method of Claim 12, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes and the sum of expression levels of the one or plurality of underexpressed genes.
- 14. A method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a 20plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed genes associated with 25 chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes 30 associated with estrogen receptor signalling indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

WO 2015/135035

5

10

15

20

25

273

- 15. A method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a more favourable cancer prognosis.
- 16. The method of Claim 15, wherein the cancer prognosis includes determining responsiveness to anti-cancer therapies targeting aneuploid tumours.
 - 17. The method of Claim 15, wherein the cancer prognosis includes determining responsiveness to anti-cancer therapies targeting chromosomal instability.
 - 18. The method of any one of Claims 15 to 17, wherein the Cancer prognosis includes determining responsiveness to one or more anti-cancer therapies that comprise targeting TTK, PLK1 and/or one or more Aurora Kinases.
- 19. The method of any one of Claims 14 to 18, wherein the step of comparing an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling includes comparing an average expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or an average expression level of underexpressed genes associated with chromosomal instability and/or an average expression level of the one or plurality and/or an average expression level of the one or plurality and/or an average expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling.
- 30 20, The method of Claim 19, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed genes associated with chromosomal instability and the average expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling.

- 21. The method of any one of Claims 14-18, wherein the step of comparing an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling includes comparing the sum of expression levels of the one or plurality of overexpressed genes associated with chromosomal instability and/or the sum of expression levels of underexpressed genes associated with chromosomal instability and/or the sum of expression levels of the one or plurality and/or the sum of expression levels of underexpressed genes associated with chromosomal instability and/or the sum of expression levels of the one or plurality of underexpressed genes associated with estrogen receptor signalling,
- 10

15

30

5

expression levels of the one or plurality of overexpressed genes associated with chromosomal instability and the sum of expression levels of the one or plurality of underexpressed genes associated with estrogen receptor signalling.

22. The method of Claim 21, which includes calculating a ratio of the sum of

- 23. The method of Claim 20 or Claim 22, wherein the ratio provides an aggressiveness score which is indicative of, or correlates with, cancer aggressiveness and a less favourable prognosis.
- 24. The method of any preceding claim, wherein the gene₈ associated with chromosomal instability are of a CIN metagene.
- 25. The method of Claim 24, wherein the CIN metagene comprises a plurality of genes listed in Table 4.
- 20 26. The method of Claim 25, wherein the genes are selected from the group consisting of: *ATP6V1CI*, *RAP2A*, *CALMI*, *COGS*, *HELLS*, *KDM5A*, *PGKI*, *PLCHI*, *CEP55*, *RFC4*, *TAF2*, *SF3B3*, *GPI*, *FIR*, *MCMI0*, *MELK*, *FOXMI*, *KIF2C*, *NUP155*, *TPX2*, *TTK*, *CENPA*, *CENPN*, *EXOL MAPREI*, *ACOT7*, *NAE1*, *SHMT2*, *TCP1*, *TXNRDI*, *AIM*, *CHAFIA and SYNCRIP*.
- 25 27. The method of Claim 26, wherein the genes are selected from the group consisting of: *MELK*, *MCM10*, *CENPA*, *EXOL TTK* and *KIF2C*.
 - 28. The method of any one of Claims 14 to 27, wherein the genes associated with estrogen receptor signalling are of an ER metagene.
 - 29. The method of Claim 28, wherein the genes are selected from the group consisting of: *BTG2*, *PIK3IPL SEC14L2*, *FLNB*, *ACSF2*, *APOM*, *BINS*, *GLTSCR2*, *ZMYNDH*), *ABAT*, *BCAT2*. *SCUBE2*, *RUNXI*, *LRRC48*, *MYBPCI*, *BCL2*, *CHPTI*, *IIM2A*, *LRIGI*, *MAPZ PRKCB*, *RERE*, *ABHD14A*, *FLT3*, *TNN*, *STC2*, *BATE*, *CD1E*, *CFB*, *EVL*, *FBXW4*, *ABCBI*,

ACAAl, CHAD, PDCD4, RPLIO, RPS2S, RPS4X, RPS6, SORBSL RPL22 and RPS4XP3.

- 30. The **method** of Claim 29, wherein the genes are selected from the group consisting of: *MAPT* and *MYB*.
- 31. The method of any one of Claims 14 to 30, further including the step of 5 comparing an expression level of one or a plurality of other overexpressed genes selected from the group consisting of CAMSAPI, CETN3, GRHPR, ZNF593, CA9, CFDPI, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFCIRI, KCNGI, BCAP31, ULBP2, CARHSPL PML, CD36, (7)55, GEMIN4, TXN, ABHD5, E1F3K, EIF4B, EXOSC7, GNB2LL LAMA3, 10 NDUFCl and STAUl, and/or an expression level of one or a plurality of other underexpressed genes selected from the group consisting of BRDS, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, YTM2C, NOP2, NSUN5, SF3B1, ZNRDI-ASI, ARNT2, ERC2, SLCIIAI, BRD4, APOBEC3A, CDIA, CD IB, CDIC, CXCR4, HLA-B, IGff, KIR2DL3, SMPDL3B, MYB, RLNI, 15 MTMR7, SQRBS1 and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein; a higher relative expression level of the one or plurality of other overexpressed genes compared to the one or plurality of other underexpressed genes indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower 20relative expression level of the one or plurality of other overexpressed genes
 - compared to the one or plurality of other underexpressed genes indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.
- 32. The method of Claim 31, wherein the one or plurality of other overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP3L, CA9, CAMSAPI, CARHSPL CD55, CETN3, E1F3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFCIRL KCNGL MAP2K5, NDUFCl, PML, STA U1, TXN and ZNF593 and/or the one or plurality of other underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDIJB and ZNRDI-ASI.
 - 33. The method of Claim 31 or Claim 32, wherein the step of comparing the expression level of the one or plurality of other overexpressed genes and/or the expression level of the one or plurality of other underexpressed genes

includes comparing an average expression level of the one or plurality of other overexpressed genes and/or an average expression level of the one or plurality of other underexpressed genes,

- 34. The method of Claim 33, which includes calculating a ratio of the average expression level of the other overexpressed genes and the average expression level of the other underexpressed genes,
- 35. The method of Claim 31 or Claim 32, wherein the step of comparing an expression level of the one or plurality of other overexpressed genes and/or an expression level of the one or plurality of other underexpressed genes includes comparing the sum of expression levels of the one or plurality of other overexpressed genes and/or the sum of expression levels of the one or plurality of plurality of other underexpressed genes,
- 36. The method of Claim 35, which includes calculating a ratio of the sum of expression levels **of** the one or plurality of other overexpressed genes and the sum of expression levels of the one or plurality of other underexpressed genes.
- 37. The method of any one of Claims 31 to 36, wherein the comparison of the expression level of the overexpressed genes associated with **chromosomal** instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling is integrated with the comparison of the expression level of the other overexpressed genes and/or the expression level of the other overexpressed genes and/or the expression level of the other underexpressed genes to derive a first integrated score.
- 38. A method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFCIRL KCNG1, BCAP31 ULBP2, CARHSP1, PML, CD36, CDS5, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAUL and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. MEL PSEN2, CALR, CAMK4, [TM2C, NOP2, NSUN5, SF3B1, ZNRDI-ASL ARNT2, ERC2, SECUAl, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNI, MTMR7, SORBS! and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative

10

5

15

20

25

30

10

15

20

25

30

277

expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

39. A method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of CAMSAPl, CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFCIRI, KCNGL BCAP3L ULBP2, CARHSPI, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, FJF4B, EXOSC7, GNB2LI, 1AMA3, NDUFCl and STAUI, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of BRD8, BTN2A2, KJR2DL4 ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3BL ZNRDI-ASI, ARNT2, ERC2, SLCI IAI BRD4, APOBEC3A, CDIA, CDIB, CDIC, CXCR4, HIA -B, IGH, KIR2DL3, SMPDL3B, MYB, RLNI, MTMR7, SORBS! and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.

40. The method of Claim 38 or Claim 39, wherein the one or plurality of overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP31, CA9, CAMSAPl, CARHSP1, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GKHPR, GSK3B, HCFCIRL KCNGJ, MAP2K5, NDUFCL PML, STAUI, TXN and ZNF593 and/or the one or plurality of underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDL3B and ZNRD1-AS1.

10

15

20

278

- 41. The method of any one of Claims 38 to 40, wherein the step of comparing the expression level of the one or plurality of overexpressed genes and/or the expression level of the one or plurality of underexpressed genes includes comparing an average expression level of the one or plurality of overexpressed genes and/or an average expression level of the one or plurality of underexpressed genes,
- 42. The method of Claim 41, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed genes and the average expression level of the one or plurality of underexpressed genes.
- 43. The method of any one of Claims 38 to Claim 40, wherein the step of comparing an expression level of the one or plurality of overexpressed genes and/or an expression level of the one or plurality of underexpressed genes includes comparing the sum of expression levels of the one or plurality of overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes.
 - 44. The method of Claim 43, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes and the sum of expression levels of the one or plurality of underexpressed genes.
- 45. The method of any one of Claims 1 to 44, further including the step of comparing an expression level of a one or a plurality of overexpressed proteins, and/or an expression level of one or a plurality of underexpressed proteins, in one or a plurality of cancer cells, tissues or organs of the mammal to thereby derive an integrated score.
- 46. The method of Claim 38, wherein the one or plurality of overexpressed
 proteins are selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMADI, GATA3, ITGA2, AKT1, NFKB1, HER2, ASMS and COL6A1, and/or the one or plurality of underexpressed proteins are selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESRL YWHAE, RAD50, PGR, COL6A1, PEA 15
 and RPS6, wherein: a higher relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality expression level of the one or plurality expression level of the one or plurality of underexpression level of the one or plurality expression level of the one or plurality of overexpressed proteins compared to the one or plurality expression level of the one or plurality expression level of the one or plurality expression level of the one or plurality of overexpressed proteins compared to the one or plurality expression level of the one or plurality of overexpressed proteins compared to the one or plurality expression level of the one or plurality expression level of the one or plurality of overexpressed proteins compared to the one or plurality expression level of the one or plurality of overexpressed proteins compared to the one or plurality expression level of the one or plurality expression level of the one or plurality expression plucelevel of the one or plurality expression plucelevel of the one or plurality expres

plurality of underexpressed proteins indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.

- 47. The method of Claim 45 or Claim 46, wherein the step of comparing the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins includes comparing an average expression level of the one or plurality of overexpressed proteins and/or an average expression level of the one or plurality of plurality of underexpressed proteins.
- 10

5

48. The method of Claim 47, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed proteins and the average expression level of the one or plurality of underexpressed proteins.

- 49. The method of Claim 45 or Claim 46, wherein the step of comparing an expression level of the one or plurality of overexpressed proteins and/or an expression level of the one or plurality of underexpressed proteins includes comparing the sum of expression levels of the one or plurality of overexpressed proteins and/or the sum of expression levels of the one or plurality of plurality of underexpressed proteins.
- 50. The method of Claim 49, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed proteins and the sum of expression levels of the one or plurality of underexpressed proteins,
- 51. The method of any one of Claims 45 to 50, wherein the comparison of the expression level of the one or plurality of overexpressed proteins and the expression level of the one or plurality of underexpressed proteins is integrated with;
 - (i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling to derive a second integrated score; or
- (ii) the first integrated score to derive a third integrated score; or
 - (iii) the comparison of the expression level of the overexpressed genes selected from the group consisting of CAMSAPL CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNGl, BCAP3I, ULBP2, CARHSPI, PML,

15

20

25

30

CD36, CD55, GEMJN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMAS, NDUFC1 and STAU1 and/of the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2Q NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARN12, ERC2, SLC11A1, BRD4_f APOBEC3A, GDIA, CD1B, CD1C, CXCR4, HLA^B, IGH, KIR2DL3, SMPDL3B, MYB, RUN1, MTMR7, SORBS! and SRPK3 to derive a fourth integrated score; or

- (iv) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development Growth metagene, the Cellular metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene[^], the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene, to derive a fifth integrated score; or
- (v) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregatioii/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score.
 - 52, The method of Claim **51**, wherein the first, second, third, fourth, fifth and/or sixth integrated scores are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation.
- 30 53, A method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3. PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, 1TGA2, AKT1, NFKB1, HER2, ASNS and COL6AL

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

10

15

20

25

30

281

and/or an expression level of one or a plurality of underexpressed proteins **selected** from the group consisting of VEOFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, CGL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed proteins indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of overexpressed proteins compared to the one or plurality of overexpressed proteins compared to the one or plurality of overexpressed proteins compared to the one or plurality of overexpressed proteins compared to the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level,

54. A method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, 1NPP4B, EIF4EBPJ, EGFR, Ku80, HER3, SMADI, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESRI, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal wherein: a higher relative expression level of the one or plurality of overexpressed proteins indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins compared to the one or plurality of underexpressed proteins compared to the one or plurality of underexpressed proteins compared to the one or plurality of underexpressed proteins compared to the one or plurality of underexpressed proteins compared to the one or plurality of underexpressed proteins compared to the one or plurality of underexpressed proteins compared to the one or plurality of underexpressed proteins compared to the one or plurality of underexpressed proteins compared to the one or plurality of underexpressed proteins compared to the one or plurality of underexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.

55. The method of Claim 53 or Claim 54, wherein the step of comparing the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins includes comparing an average expression level of the one or plurality of overexpressed proteins and/or an average expression level of the one or plurality of underexpressed proteins.

- 56. The method of Claim 55, which includes **calculating** a ratio of the average expression level of the one or plurality of overexpressed proteins and the average expression level of the one or plurality of underexpressed proteins,
- 57. The method of Claim 53 or Claim 54, wherein the step of comparing an expression level of the one or plurality of overexpressed proteins and/or an expression level of the one or plurality of underexpressed proteins includes comparing the sum of expression levels of the one or plurality of overexpressed proteins and/or the sum of expression levels of the one or plurality of plurality of underexpressed proteins.

10

15

20

5

- 58. The method of Claim 57, which includes calculating a ratio of the sum of expression levels of the overexpressed proteins and the sum of expression levels of the underexpressed proteins.
- 59. A method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of determining an expression level of one or plurality of genes associated with chromosomal instability in one or a plurality of non-mitotic cells of the mammal, wherein a higher expression level indicates or **correlates** with relatively increased responsiveness of the cancer to the anti-cancer treatment.

60. The method of Claim 59, wherein the one or plurality of genes associated with chromosomal instability are targeted by the anti-cancer treatment.

- 6 1. The method of Claim 59 or Claim 60, wherein the one or plurality of genes associated with chromosomal instability are listed in Table 4 and/or include one or more genes associated with aneuploidy.
- 62. The method of Claim 61, wherein the one or plurality of genes associated with chromosomal instability and/or aneuploidy are selected from the group consisting of: *TTK*, *CEP55*, *FOXMl*, *SKIP2*, *PLKl* and/or Aurora kinases.
- 63. The method of any one of Claims 59 to **62**, wherein the anti-cancer treatment is a treatment targeted to aneuploid tumours.
- 64. The method of any one of Claims 59 to 63, wherein the anti-cancer treatment is a treatment targeted to chromosomal instability.
- 65. A method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a

SUBSTITUTE SHEET (RULE 26)

25

30

10

15

20

283

plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism Modification metagene, a Post-Translational metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein an altered or modulated relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

- 66. The method of Claim 65, wherein the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one metagene or are selected from a plurality of metagenes.
- 67. The metliod of Claim 65 or Claim 66, wherein the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene comprise one or more genes listed in Table 21.
- 68. A metliod of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modificatioii metagene, wherein an altered or modulated

relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment,

- 69. The method of Claim 68, wherein the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one metagene or are selected from a plurality of metagenes,
- 70. The method of Claim 68 or Claim 69, wherein the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene comprise one or more genes listed in Table 22.
- 71. The method of any one of Claims 68 to 70, wherein the one or plurality of overexpressed genes and the one or plurality of underexpressed genes are from one or a plurality of of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene.
 - 72. The method of any one of Claims 65 to 71, wherein the step of comparing an expression level of the one or plurality of overexpressed genes and/or an expression level of the one or plurality of underexpressed genes includes comparing an average expression level of the plurality **of** overexpressed genes and/or an average expression level of the plurality **of** underexpressed genes.
 - 73. The method of Claim 72, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed genes and the average expression level of the one or plurality of underexpressed genes.
- 30 74. The method of any one of Claims 65 to 71, wherein the step of comparing an expression level of the one or plurality of overexpressed genes and/or an expression level of the one or plurality of underexpressed genes includes comparing the sum of expression levels of the one or plurality of

5

15

10

20

25

10

15

20

285

overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes.

- 75. The method of Claim 74, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes and the sum of expression levels of the one or plurality of underexpressed genes.
- 76. A method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of a one or plurality of overexpreSSed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the overexpressed genes associated with chromosomal instability compared to the underexpressed genes associated with estrogen receptor signalling indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti¬ cancer treatment,
 - 77. The metliod of Claim 76, wherein the genes associated with chromosomal instability are of a CIN metagene.
 - 78. The method of Claim 77, wherein the CIN metagene comprises a plurality of genes listed in Table 4.
 - 79. The metliod of Claim 78, wherein the genes are selected from the group consisting of: *ATP6VIC1, RAP2A, CALMI, COG8, HELLS, KDM5A, PGKl, PLCH1, CEP55, RFC4, TAF2, SF3B3, GPL PIR, MCMIO, MELK, FOXMI, KIF2C, NUP155, TPX2, TTK, CENPA, CENPN, EXOl, MAPREl, ACOT7, NAEl, SHMT2, TCP1, TXNRDl, ADM, CHAF!A and SYNCRIP.*
 - 80. The method of Claim 79, wherein the genes are selected from the group consisting of: *MELK*, *MCM10*, *CENPA*, *EXOL TTK* and *K1F2C*.
 - 81. The method of any one or Claims 76 to 80, wherein the genes associated with estrogen receptor signalling are of an ER metagene.
- 30 82. The metliod of Claim 81, wherein the genes are selected from the group consisting of: BTG2, P1K3IPI, SEC14L2, FLNB, ACSF2, APOM, BIN3, GLTSCR2, ZMYNDIO, ABAT, BCAT2, SCUBE2, RUNXI, LRRC48, MYBPCL BCL2, CHPTL TTM2A, LRIG1, MAPT, PRKCB, RERE ABHD14A, FLT3, TNN, STC2, BATE, CDTE, CFB, EVL, FBXW4, ABCBI,

ACAAl CHAD, PDCD4, RPLIO, RPS2S, RPS4X, RPS6, SORBS1, RPL22 and RPS4XP3.

- 83. The method of Claim 82, wherein the genes are selected from the group consisting of: *MAPT* and *MYB*.
- 5 84. The method of any one of Claims 76 to 83, wherein the step of comparing an expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or an expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling includes comparing an average expression level of the one or plurality of 10 overexpressed genes associated with chromosomal instability and/or an average expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling.
 - 85. The method of Claim 84, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed genes associated with chromosomal instability and the average expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling,
 - 86. The method of any one of Claims 76 to 83, wherein the step of comparing an expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or an expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling includes comparing the sum of expression levels of the one or plurality and/or the sum of expressed genes associated with chromosomal instability and/or the sum of expression levels of the one or plurality of underexpressed genes associated with chromosomal instability and/or the sum of expression levels of the one or plurality of underexpressed genes associated with chromosomal instability and/or the sum of expression levels of the one or plurality of underexpressed genes associated with estrogen receptor signalling.
 - 87. The metliod of Claim 86, which includes calculating a ratio of **the** sum of expression levels of the one or plurality of overexpressed genes associated with chromosomal instability and the sum of expression levels of the one or plurality of underexpressed genes associated with estrogen receptor signalling.
- 30 88. The method of any one or Claims 76 to 87, further including the step of comparing an expression level of one or a plurality of other overexpressed genes selected from the group consisting of CAMSAPI, CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2KS, HCFC1R1, KCNGl, BCAP31, IJLBP2, CARHSPi, PML, CD36, CD55,

15

20

25

10

15

287

GEMIN4, TIN, ABHD5, EJF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and *STAU1,* and/or an expression **level** of one or a plurality of **.other** underexpressed genes selected from the group consisting of *BRD8, BTN2A2. K1R2DL4. ME1, PSEN2, CALR, CAMK4, TTM2C,* NOP2, *NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLN1, MTMR7, SORBS! and SRPK3* in one or a plurality of cancer ceils, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of other overexpressed genes compared to the one or plurality of other underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti cancer treatment.

- 89- The method of Claim 88, wherein the one or plurality of other overexpressed genes are selected from the group consisting of *ABHD5*, *ADORA2B*, *BCAP31*, CAP, *CAMSAPL_CARHSPl*, (7)5.5, *CETN3*, *E1F3K*, *EXOSC7*, *GNB2L1*, *GRHPR*, *GSK3B*, *HCFCIRI*, *KCNG1*, *MAP2K5*, *NDUFCl*, *PML*, *STAUl*, *TXN* and *ZNF593* and/or the one or plurality of other underexpressed genes are selected from the group consisting of *BTN2A2*, *ERC2*, *IGH*, *MEL MTMR7*, *SMPDL3B* and *ZNRD1-AS1*.
- 90. The method of Claim 88 or Claim 89, wherein the comparison of the expression level of the one or plurality of other overexpressed genes and/or the expression level of the one or plurality of other underexpressed genes is integrated with the comparison of the expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or the expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling to derive a first integrated score, which is indicative of, or correlates with, responsiveness of the cancer to the anti-Cancer treatment.
 - 91. The method of Claim 90, wherein the first integrated score is derived, at least

30

- in part, by addition, subtraction, multiplication, division and/or exponentiation,
- 92, The method of Claim 91, wherein the first integrated score is derived by exponentiation, wherein the comparison of the expression level of one or a plurality of other overexpressed genes and/or the expression level of one or a

10

15

20

288

plurality of other underexpressed genes is raised to the power of the comparison of the expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or the expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling.

93. The method of any one of Claims 88 to 92, wherein the step of comparing an expression level of the one or plurality of other overexpressed genes and/or an expression level of the one or plurality of other underexpressed genes includes comparing an average expression level of the one or plurality of other overexpressed genes and/or an average expression level of the one or plurality of other overexpressed genes and/or an average expression level of the one or plurality of underexpressed genes,

94. The method of Claim 93, which includes calculating a ratio of the average expression level of the one or plurality of other overexpressed genes and the average expression level of the one or plurality of other underexpressed genes.

95. The method of any one of Claims 88 to 92, wherein the step of comparing an expression level of the one or plurality of other overexpressed genes and/or an expression level of the one or plurality of other underexpressed genes includes comparing the sum of expression levels of the one or plurality of other overexpressed genes and/or the sum of expression levels of the one or plurality of other underexpressed genes,

96. The method of Claim 95, which includes calculating a ratio of the sum of expression levels of the one or plurality of other overexpressed genes and the sum of expression levels of the one or plurality of other underexpressed genes.

97. A metliod of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of *CAMSAPl, CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFCIR!, KCNG1, BCAP31, ULBP2, CARHSPl, PML, CD36, CD55, GEM1N4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2LI, IAMA3, NDUFC1 and STAU1, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of <i>BRD8, BTN2A2, KIR2DL4. MEL, PSEN2, CALR, CAMK4, JTM2C, NOP2, NSUN5, SF3B1, ZNRD!-ASI, ARNT2, ERC2*,

SLCliAl, BRD4, APOBEC3A, CDLA, CDIB, CDIC, CXCR4, HLA-B, IGB, KIR2B I.3, SMPDL3B, MYB, RLN1, MTMR7, SQRBS1 and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

98. The method of Claim 97, wherein the one or plurality of overexpressed genes are selected from the group consisting oi ABHD5, ADORA2B, BCAP3L CA9,

10

20

25

30

5

- CAMSAPI, CARHSP!, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFCIRI, KCNGl, MAP2K5, NDUFC1, PML, STAUl, TXN and ZNF593 and/or the one or plurality of underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, MEL MTMR7, SMPDL3B and ZNRD1-ASJ.
- 99. The method of Claim 97 or Claim 98, wherein the step of comparing the 15
 - expression level of the one or plurality of overexpressed genes and/or the expression level of the one or plurality of underexpressed genes includes comparing an average expression level of the one or plurality of overexpressed genes and/Or an average expression level of the one or plurality of underexpressed genes.
 - The method of Claim 99, which includes calculating a ratio of the 100. average expression level of the one or plurality of overexpressed genes and the average expression level of the one or plurality of underexpressed genes.
 - 101. The method of Claim 97 or Claim 98, wherein the step of comparing an expression level of the one or plurality of overexpressed genes and/or an expression level of the one or a plurality of underexpressed genes includes comparing the sum of expression levels of the one or plurality of overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes.
 - 102. The method of Claim 101, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes and the sum of expression levels of the one or plurality of underexpressed genes.
 - 103. The method of any one of Claims 65 to 103, further including the step of comparing an expression level of a one or plurality of overexpressed

proteins, and/or an expression level of one or a plurality of underexpressed proteins, in one or a plurality of cancer cells, tissues or organs of the mammal to thereby derive an integrated score.

- 104. The method of Claim 103, wherein the one or plurality of overexpressed proteins are selected from the group consisting of DVL3, PAI-5 1. VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMADI, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and CGL6AI, and/or the one or plurality of underexpressed proteins are selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD5Q, PGR, COL6A1, PEALS and RPS6, wherein: a higher relative expression level of 10 the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with higher aggressiveness of the cancer arid/or a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates 15 or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.
- 105. The method of Claim 103 or Claim 104, wherein the step of 20 comparing the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins includes comparing an average expression level of the one or plurality of overexpressed proteins and/or an average expression level of the one or plurality of underexpressed proteins.
- 25 106. The method of Claim 105, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed proteins and the average expression level of the one or plurality of underexpressed proteins.
- 107. The method of Claim 103 or Claim 104, wherein the step of 30 comparing an expression level of the one or plurality of overexpressed proteins and/or an expression level of the one or plurality of underexpressed proteins includes comparing the sum of expression levels of the one or plurality of overexpressed proteins and/or the sum of expression levels of the one or a plurality of underexpressed proteins.

15

20

25

30

291

- 108. The method of Claim 107, which includes calculating a ratio of the sum of expression levels of the one or plurality of averexpressed proteins and the sum of expression levels of the one or plurality of underexpxessed proteins,
- 5 109. The method of any one of Claims 103 to 108, wherein the comparison of the expression level of the one or plurality of overexpressed proteins and the expression level of the one or plurality of underexpressed proteins is integrated with:
 - (i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling to der ve a second integrated score; or
 - (ii) the first **integrated** score to derive a third integrated score; or
 - (i) the comparison of the expression level of the overexpressed genes selected from the group consisting of CAMSAP!, CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28_> ADORA2B, GSK3B, LAMA4, MAP2K5, HCFCIR1, KCNG1, BCAP31 ULBP2, CARHSPL PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMAS; NDUFC1 and STAU1 and/or the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2, KJR2DL4. MET, PSEN2, CALM, CAMK4, LTM2C, NOP2, NSUN5, SF3BI, ZNRDI-ASF ARNT2, ERC2, SLCIIAI, BRD4, APOBEC3A, CD!A, CD IB, CD1C, CXCR4, HIA-B, IGH, KIR2DL3, SMPDLSB, MYB, RLNI, MTMR7, SORBS! and SRPK3 σ derive a fourth integrated score; or
 - the comparison of the expression level of the overexpressed genes (ii) and/or an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation the DNA metagene, Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein

Synthesis/Modification metagene and/or the Multiple Networks metagene., to derive a fifth integrated score; or

- (iii) the comparison of the expression level of the overexpressed genes and/or an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score.
- 10

30

5

110. The method of Claim 109, wherein the first, second, third, fourth, f fth and/or sixth integrated scores are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation,

- A method of predicting the responsiveness of a cancer to an anti-111, cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed proteins selected 15 from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASMS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD5Q, PGR, COL6A1, PEA15 20and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment. 25
 - 112. The method of Claim 111, wherein the step of comparing the expression level of the one or **plurality** of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins includes comparing an average expression level of the one or plurality of overexpressed proteins and/or an average expression level of **the** one or plurality of underexpressed proteins.

113. The method of Claim 112, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed proteins and

the average expression level of the one or plurality of underexpressed proteins.

114. The method of Claim 111, wherein the step of comparing an expression level of the one or plurality of overexpressed proteins and/or an expression level of the one or plurality of underexpressed proteins includes comparing the sum of expression levels of the one or plurality of overexpressed proteins and/or the sum of expression levels of the one or plurality of underexpressed proteins,

10

15

20

30

5

115. The method of Claim 114, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed proteins and the sum of expression levels of the one or plurality of underexpressed proteins,

116. The method of any one of Claims 59 to 115, wherein the anti-cancer treatment is selected from the group consisting of a endocrine therapy, chemotherapy, immunotherapy and a moleculaily targeted therapy.

- 117. The method of Claim 116, wherein the treatment comprises administration of an agent selected from the group consisting of an ALK inhibitor, a BCR-ABL inhibitor, a HSP90 inhibitor, an EGFR inhibitor, a PARP inhibitor, retinoic acid, a Bcl2 inhibitor, a gluconeogenesis inhibitor, a p38 MAPK inhibitor, a MEK1/2 inhibitor, a gluconeogenesis inhibitor, a P13K inhibitor, an IGF1R inhibitor, a PLCy inhibitor, a JNK inhibitor, a PAK1 inhibitor, a SYK inhibitor, a HDAC inhibitor, an FGFR inhibitor, a XIAP inhibitor, a PLK1 inhibitor, an ERK5 inhibitor, a TTK inhibitor, an Aurora Kinase Inhibitor and/or any combination thereof.
- 1 18. The method of Claim 116, wherein immunotherapy is or comprises an immune checkpoint inhibitor,
 - 119. The method of Claim 118, wherein the immune checkpoint inhibitor is or comprises an anti-PD1 antibody or an anti-PDL1 antibody.
 - 120. A method of predicting the responsiveness of a cancer to an immunotherapeutic agent in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting *of ADORA2B*, *CD36*, *CETN3*, *KCNG1*, *LAMAS*, *MAP2K5*, *MAE1*, *PGK1*, *STAU1*, *CFDP1*, *SF3B3* and *TXN*, and/or an expression level of one or a plurality of underexpressed genes selected

from the group consisting of *APOBEC3A*, *BCL2*, *BTN2A2*, *CAMSAPI*, *CAMK4*, *CARHSPI*, *FBXW4*, *GSK3B*, *HCFCIRL MYB*, *PSEN2* and *ZNF593*, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the inmiunotherapeutic agent.

- 121. The method of Claim 120, wherein a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a relatively increased responsiveness of the cancer b the immunotherapeutie agent; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or **correlates** with a relatively decreased responsiveness of the cancer to the immunotherapeutie agent.
 - 122. The method of Claim 120 or Claim J21, wherein the immunotherapeutie agent is an immune checkpoint inhibitor.
 - 123. The method of Claim 122, wherein the immune checkpoint inhibitor is or comprises an anti-PD1 antibody or an anti-PDL1 antibody.
- 124. A method of predicting the responsiveness of a cancer to an epidermal 20growth factor receptor (EGFR) inhibitor in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of NAE1, GSK3B, TAF2, MAPREL BRIM, STAUL TAF2, PDCD4, KCNGL ZNRDI-AS1, EIF4B, HELLS, RPL22, ABAT, BTN2A2, CD1B, ITM2A, BCL2, CXCR4, and 25 ARNT2 and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of CDIC, CDIE, CDIB, KDM5A, BATF, EVE PRKCB, HCFCIRL CARHSPL CHAD, KIR2DL4. ABHD5, ABHD14A, ACAAL SRPK3, CFB, ARNT2, NDUFCL BCL2, EVE ULBP2, BIN3, SF3B3, CETN3, SYN CRIP, TAF2, CENPN, ATP6VICI, CD55 and 30 ADORA2B, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of

SUBSTITUTE SHEET (RULE 26)

5

10

15

underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the irnraunotherapeutic agent.

- 125. A method of predicting the responsiveness of a cancer to a multikinase inhibitor in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of *SCUBE*, *CHPTL CDCl*, *BTG2*, *ADORA2B* and *BCL2*, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of *NOP2*, *CALR*, *MAPRE1*, *KCNGI*, *PGKI*, *SRPK3*, *RERE*, *ADM*, *LAMAS*. *KIR2DIA*, *ULBP2*,
- 10

5

15

plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the multikinase inhibitor.

LAMA4, CA9, and BCAP31, in one or a plurality of cancer cells, tissues or

organs of the mammal, wherein an altered or modulated relative expression

level of the one or plurality of overexpressed genes compared to tire one or

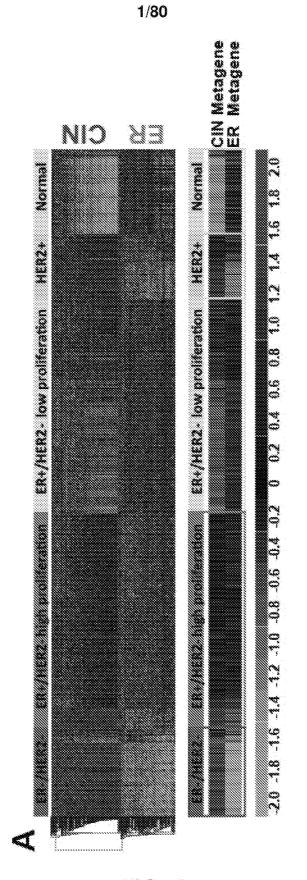
- 126. The method of any preceding claim, which includes the further step of treating cancer in the mammal.
- 127. A method for identifying an agent for use in the treatment of cancer including the steps of:
- 20

30

(i) contacting a protein product of *GRHPR*, *NDUFCl*, *CAMSAPI*, *CETN3*, *EIF3K*, *STAU1*, *EXOSC7*, *COG8*, *CFDP1* and/or *KCNGJ* with a test agent; and

(ii) determining whether the test agent, at least partly, reduces, eliminates, suppresses or inhibits the expression and/or an activity of the protein product.

- 128. The method of Claim 127, wherein the agent possesses or displays little or no significant off-target and/or nonspecific effects.
 - 129. The method of Claim 127 or Claim 128, wherein the agent is an antibody or a small organic molecule.
 - 130. A method of treating a cancer in a mammal, including the step of administering to tire mammal a therapeutically effective amount of the agent identified by the method of any one of Claims 127 to 129.
 - 131. The method of any preceding claim wherein the mammal is a human.
 - 132. The method of any preceding claim wherein the cancer includes breast cancer, lung cancer, ovarian cancer, cervical cancer, uterine cancer,


prostate caneer, cancer of the brain and nervous system, head and neck cancer, colon cancer, colorectal cancer, gastric cancer, liver cancer, kidney cancer, bladder cancer, melanoma, lymphoid cancers, myelomonocytic cancers, pancreatic cancer, pituitary cancer, adrenal cancer or musculoskeletal cancer.

5

133, The method of Claim 132, wherein breast cancer includes aggressive breast cancers and cancer subtypes such as triple negative breast cancer, grade 2 breast cancer, grade 3 breast cancer, lymph node positive (LNT) breast cancer. HER2 positive (HER2⁺) breast cancer and ER positive (ER⁺) breast cancer.

10

134. An agent identified by the method of any one of Claims 127 to 129 for use in the treatment of cancer.

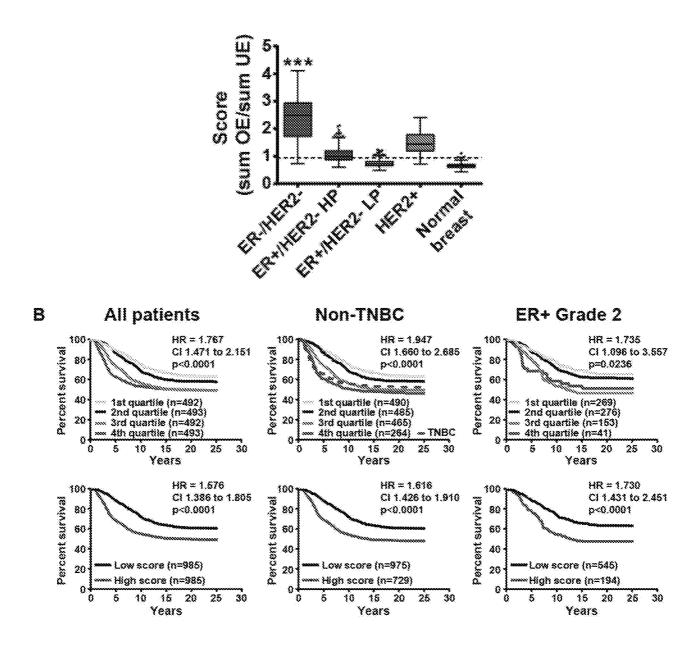
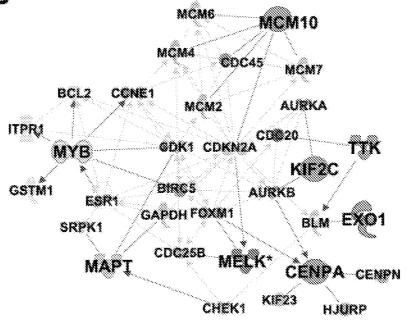
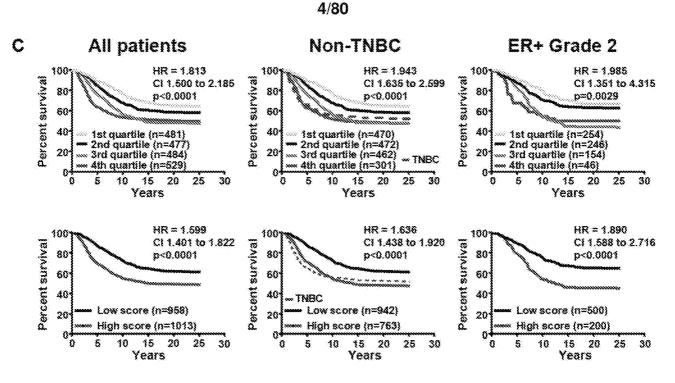
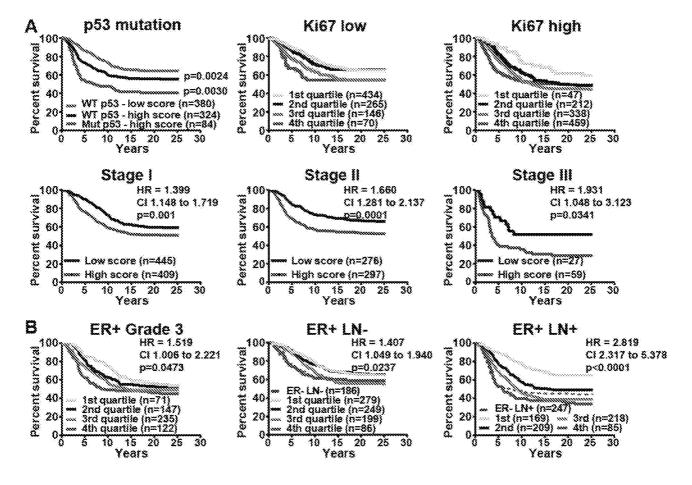
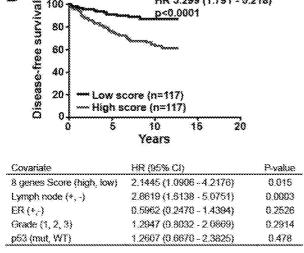
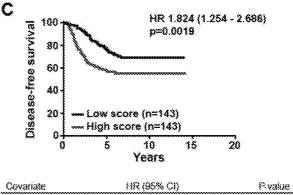
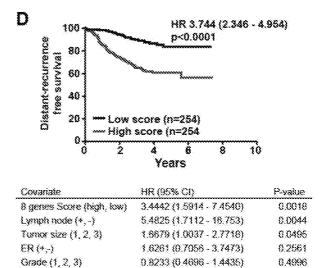



FIG. 1 cont'd

Α LMNB2 MCM7 MCM4 CERSS VOLL1 DAPK1 MCM6 COC45 GLI3 MCM2 TPR1 NCAPG CKS2 TEAD4 MCMIO DLGAPS Cydlin 8 MYB BCL2 CONB2 GSTM1 Cyclin A GSTM3 TAT TEF3 BLM DACHI CONE1 COKI XBP1 PTTG1 TUBA4A CLIC6 FOXA1 CDG258 CDC25A TTX UBE2C TEF1 Cyellin E CKS1B S108A8 KRTEA AGO2 COKNZA SLC16A10 PFKP CCNA2 SKP2 COD20 BUB1 AHNAK ESR1 11.8 MELK NRIP1 CCNG2 FOXM1 CHEK1 KIF20A MAD2L1 PSM82 BIRGS SLOVAS STC2 RFC4 PRCI RADSIAPI MAPT DE BTG2 SKPI CDCA3 GTPBP4 TRX2 RPS23 NOP2 AURKA NOC80 KIF23 CDMAS POCD4 GAPDH GTSE1 CENPN SRPK1 KIF2C OKC1 AUNKE CENRA PLAT SOD2 KIETA COCAS CENPE HJURP IRAK1 RIPK2


FIG. 2 cont'd


FIG. 3

A HR 2.535 (1.523 - 3.978) 100 Disease-free survival p=0.0002 80 60 40 20 Low score (n=94) High score (n=94) Ø ś 10 15 20 0 Years Covariate HR (95% CI) P-value 8 genes Score (high, low) 2.6267 (1.3695 - 5.0378) 0.0038 Lymph node (+, -) 0.9409 (0.4327 - 2.0459) 0.8785 Grade (1, 2, 3) 1.0276 (0.7178 - 1.4713) 0.8826 ER (+,-) 0.9833 (0.5223 - 1.6512) 0.9587 8 HR 3.299 (1.791 - 5.218) 100

8 genes Score (high, low)	2 2123 (1.4438 - 3.3910)	0.0003
ER (+ ₇)	1.5588 (0.9634 - 2.5214)	0.072

1.2716 (0.5866 - 2.7561)

0.5448

FIG. 4

PR (+,-)

6/80

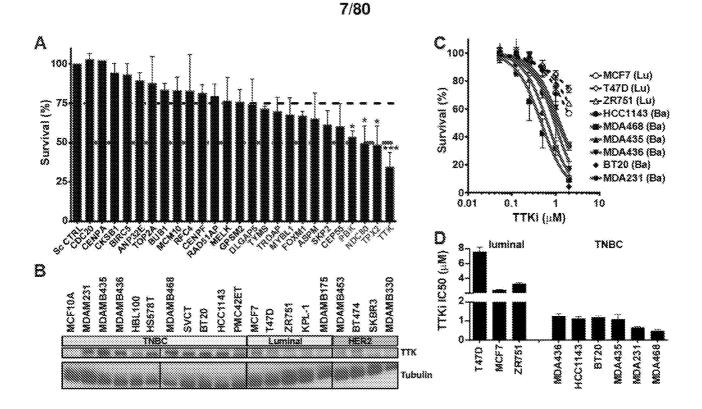
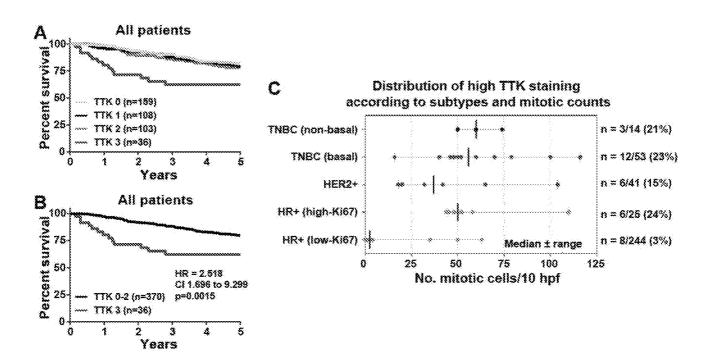
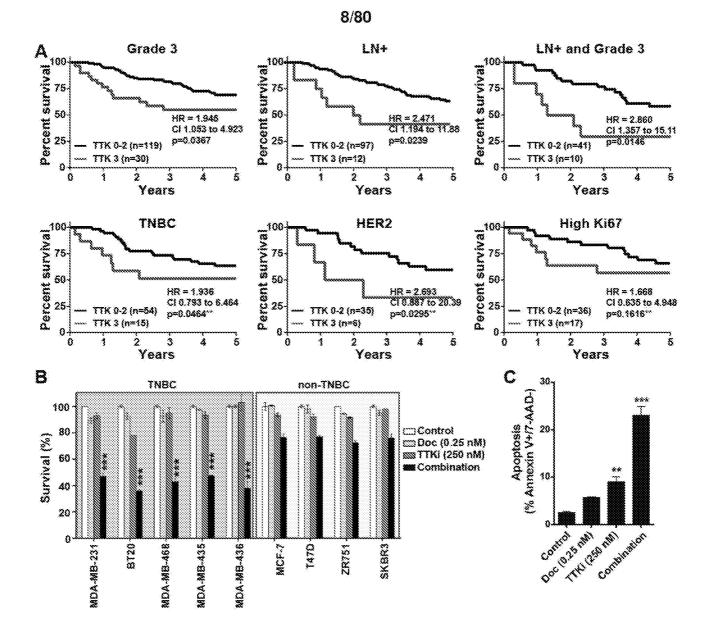




FIG. 5

FIG. 7

A

Comparison of All Genes Across 8 Analyses

Overexpression

Mecka	n Rank	p-Value	Gene									
	6.0	3.11E-12	GETPI									
	11.0	1.74E-10	801.11A									-
	15.0	1.08E-10	Foxot									
	15.5	1.35E-8	GABRP									
	20.0	1.458-28	CDCA7									
	21.3	7.62E-10	B3GNT5									
	23.0	1.98E-27	PM2002									
	26.0	1.74E-9	ROPN18									
	29.0	2.40E-7	PSATT									
	34.5	2.46E-8	RFL32P16									
	37.5	2.81E-9	FAMITIAL									
	41.5	4.58E-9	0802									
	45.0	6.40E-7	ROPN1									
	47.5	2.39E-9	PREX									
	54.0	4.25E-9	PRKD3									
	57.0	3.67E-9	Y8X1									
	59.0	4.08E-9	LBR									
	59.0	6.61E-9	MSL3L2									
	64.5	1.71E-8	UGTS						<u> III</u>			
	65.0	4.91E-8	MTHFOIL									
edend				1	2	3	3	s	6	7	8	
C+12:111				~~~~	~~~~			~~~~	~~~~	~~~~	~~~~~	

Leder	١đ

1. Breast Carcinoma - ERB82/ER/PR Negative Bild Breast, Nature, 2006

2. Ductal Breast Carcinoma - ERI Bitiner Breast, Not Published, 2005 ERBE2/ER/PR Negative

3. Ductal Breast Carcinoma - ERBB2/ER/PR Negative Bonnefoi Breast, Lancet Oncol, 2007

4. Invasive Breast Carcinoma - ERBB2/ER/PR Negative Gluck Breast, Breast Cancer Res Treat, 2011

Mechan Rank	p-Value	Gene		
3.5	2.39E-20	8881		
4.5	4.58E-17	NAT1		
11 5	1,458-14	FOXA1		
12.5	5.148-15	780109		
13.0	5.29E-16	CAPNS		
14.0	1.45E-44	AGR3		
14.0	5.01E-14	MEPH		
19.0	1,998-15	FLJ45983		
20.5	2.048-13	GATA3		
24.3	5.93E-42	Cöorf211		
24.0	1.718-14	FSIP1		
24.5	1.708-11	AGP2		
28.0	1.90E-17	-CA32		
28.5	2.54E-12	ANXA9		
28.5	2.70E-5	CVP288		
29.0	2.14E-10	ABAT		
29.0	5.77E-10	SLC39A8		
40.0	1.85E-9	PGAPS.		
43.0	2.50E-9	PBRIS		
45.0	9,59E-13	MAGED2		
			1 2 3 4 5	6 7 8

Underexpression

5. Invasive Breast Carcinoma - ERBB2/ER/PR Negative Hatzis Breast, JAMA, 2011

6. Breast Carcinoma - ERBB2/ER/PR Negative Kac Breast, BMC Cancer, 2011

7. Invasive Ductal Breast Carcinoma ERB82/ER/PR Negative Tabchy Breast, Clin Cancer Res, 2010

8. Invasive Ductal Breast Carcinoma -TCGA Breast, No Associated Paper, 2011 ERB82/ER/PR Negative

1 5 10 25 25 10 5 1

The rank for a gene is the median rank for that gene across each of the analyses. The p-Value for a gene is its p-Value for the median-ranked analysis

Copyright© 2006-11 Compendia Bioscience, Inc. Images from Oncomine™ may be used in publications with proper citation. The citation for Oncomine is as follows: Oncomine™ (Compendia Bioscience, Ann Arbor, MI) was used for analysis and visualization. For further information, refer to the terms described in the license agreement.

10/80

B

Comparison of All Genes Across 7 Analyses

Overexpression

				Gene	(p-Value	Meckan Rønk
	.	*	. 5000	NGSAF'3	8.23E-5	38.0
				CENPA	5.13E-4	324,0
				8081	0.002	124.0
	8 · · · ·			PROI	0.003	147.0
	8		1	FOXM	0.003	159.0
	8			NEK2	6.57E-4	161.0
				K)F23	7.34E-5	174.0
				OHTES:	7.63E-5	177.0
	.			RADS1	0 001	215.0
	8			COKI	1.418-4	223.0
				CONS2	0.005	254.0
				DRAJET	2.26E-4	260.0
			(OLGAPS	2.60E-4	273.0
				UNCISC	0.006	276.5
				PRELIDI	0.005	279.0
				GLP18	0.006	287.0
				MA021.1	0.006	293.0
			1	LBP	0.002	304.0
				MCMP0	0.005	304.0
				80848	0.007	304.0
3 4 5 6 7	2 3	2	T			

ŝ	•	ł	Ę	ļ	ŝ	j	ł	2	1	ŗ	5	ş	Ģ	ĺ,	
		4			12					4					

1. Breast Carcinoma - Metastatic Event at 5 Years Bos Breast, Nature, 2009

2. Invasive Ductal Breast Carcinoma - Metastatic Event at 5 Years Desmedt Breast, Clin Cancer Res, 2007

3. Invasive Breast Carcinoma - Metastatic Event at 5 Years Hatzis Breast, JAMA, 2011

4. Breast Carcinoma - Metastatic Event at 5 Years Kao Breast, BMC Cancer, 2011

5 30 25 28 18 5

The rank for a gene is the median rank for that gene across each of the analyses. The p-Value for a gene is its p-Value for the median-ranked analysis.

Copyright@ 2008-11 Compendia Bioscience, Inc. Images from Oncomine ** may be used in publications with proper citation. The citation for Oncomine is as follows: Oncomine ¹³⁴ (Compendia Bioscience, Ann Arbor, MI) was used for analysis and visualization. For further information, refer to the terms described in the license agreement.

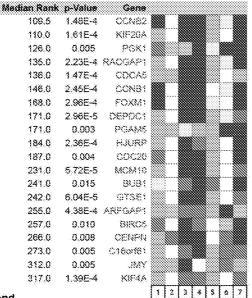
FIG. 8 cont'd

Hin	dere	wn.	racc	inn
~xx	CAC LE		633	5

5. Invasive Breast Carcinoma - Metastatic Event at 5 Years Schmidt Breast, Cancer Res, 2008

Invasive Breast Carcinoma - Metastatic Event at 5 Years Symmans Breast, J Clin Oncol, 2010
 Breast Carcinoma - Metastatic Event at 5 Years vandeVijver Breast, N Engl J Med, 2002

Median Rank	p-Value	Gene							
79.0	8.003	GLTSCR2				iii			
102.0	0.001	MEMRSE.							
139.0	0.002	CCDC30							
147,5	0.002	C14orf167							
155.0	0.002	ASCAS							
189.0	3.35E-6	CIRSP							
210.0	2.95E-4	8773							
225.0	3.50E-4	STON2							
227.0	3.55E-4	NPYIR							
228,0	3.59E-4	1.00283788							
256.0	0.005	CIQTNF9							
260.0	6.005	CDRT4							
264.0	4.76E-4	80004							
265.0	4.78E-4	RPL13A							
266.0	6.005	ABAT							
272.0	6.005	Z87838							
316.0	6.014	CREBL2							
330.0	8.45E-4	TRIM35							
331.0	8.45E-4	HNENFALL2							
344.0	9.03E-4	EV/L		iii					
			1	2	3	4	5	6	7


Underexpression

11/80

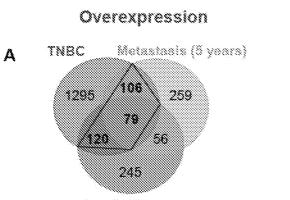
С

Comparison of All Genes Across 7 Analyses

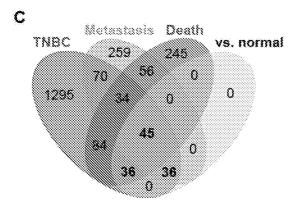
Overexpression

Legend

 Breast Carcinoma - Dead at 5 Years Bild Breast, Nature, 2006
 Invasive Ductal Breast Carcinoma - Dead at 5 Years Desmedt Breast, Clin Cancer Res, 2007
 Breast Carcinoma - Dead at 5 Years Kao Breast, BMC Cancer, 2011
 Breast Carcinoma - Dead at 5 Years Pawitan Breast, Breast Cancer Res, 2005


							Gene	p-Value	Median Rank
							08642	0.003	100.0
							OCDOS	2.00E-4	121.5
							FGDS	2788-5	181.5
.							TMEM26	0.002	195.0
							ZNF3858	6.88E-4	214.0
							82628	0.003	230.0
							RERO	0.019	248.0
	Ŵ						0000748	0.002	249.0
							C50r943	8.65E-4	255.0
							SEC1412	3 76E-4	256.0
							PAM105A	0.009	261.5
							BENOS	0.002	270.0
							NAT 1	0.011	271.0
							PTOERS	9.921	271.0
							ER884	0.001	276.0
				() ()			K3AA2028	0.002	277.5
							MEIS3P1	0.009	280.0
							PAPEN	0.002	290.0
							SUSD3	0.004	307.5
							ADREET	0.001	311.0
7	6	5	4	3	Z	3			

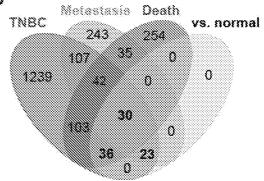
 Ductal Breast Carcinoma - Dead at 5 Years Sorlie Breast 2, Proc Natl Acad Sci U S A, 2003
 Invasive Ductal Breast Carcinoma - Dead at 5 Years TCGA Breast, No Associated Paper, 2011
 Breast Carcinoma - Dead at 5 Years vandeVijver Breast, N Engl J Med, 2002

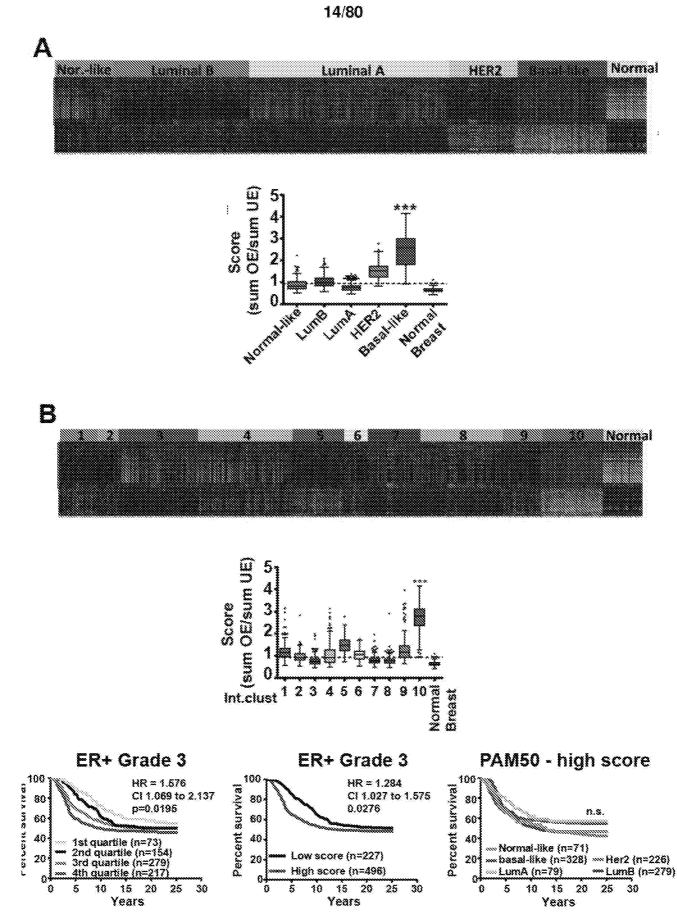

The rank for a gene is the median rank for that gene across each of the analyses. The p-Value for a gene is its p-Value for the median-ranked analysis.

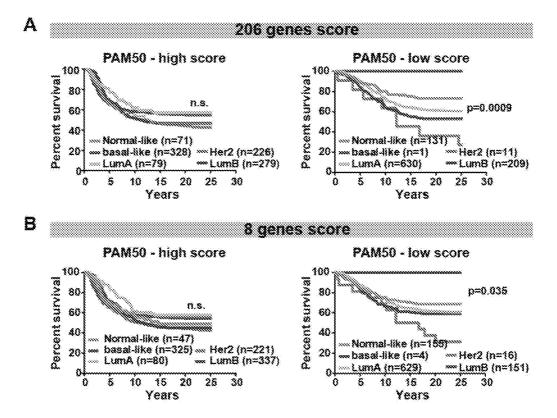
Copyright® 2008-11 Compendia Bioscience, Inc. Images from Oncomine¹⁴⁴ may be used in publications with proper citation. The citation for Oncomine is as follows: Oncomine¹³⁴ (Compendia Bioscience, Ann Arbor, MI) was used for analysis and visualization. For further information, refer to the terms described in the license agreement.


FIG. 8 cont'd

Death (5 years)


Underexpression


Death (5 years)


D

12/80

CIN attractor lymphocyte attractor 45 98 ER attractor 140 0 0 31 19 0 0 31 19	Gene	AURKB FAMB3D TPX2 CENPE EXOT CDCA3 ANLN K/F2C BIRC5 K/F20A W/CM10 STIL UBE2C FOXMT CCNB2 PROT CDM1 CENPA CHEKT WELK CENPW CEP55 CDC30 CENPN NDC80 CCNA2 TTK GTSET CDC45 BUB1 NCAPG TRIP13 PTTG1 CDCA5 AURKA FAM64A NUSAPT K/F14 MAD2L1 DLGAP5 K/F23 DEPDCT HJURP RAD51APT CDCA8	CD163 FPR3	CCDC170 FAM214A AGR3 SCUBE2 DACH1 GFRA1 FOXA1 ESR1 DNAJC12 MLPH TBC1D9 TFF1 (L6ST TFF3 ///AP1 XBP1 DNAL11 ///// SLC39A6	PTGER3 KIF13B KCNMA1 SH3BGRL C1or1106 BTG2 CKS1B STK32B BYSL PFKP CKAP2L KCNG1 IRAV1 GGH SYTL4 TUBAAA ATP6V1C2 RAB27B GPSM2 CMYA5 SOD2 ADP9 NOSTRIN BLM AGO2 SRPK1 PSMB2 OGN NFIA PLCH1 IL3 ELOVL5 PIP CDC25B GSTM1 CYB5D1 MCM6 FAM198B CASC1 CRBP C31B LMNB2 CFEB2 RPS23 NOVA1 CA9 RP40 PNPLA7 NUP93 PDCD4 SLC7A5 HSD17B8 PLAT ALDH3A2 RERG TAT SOX11 SKP1 CARD10 MUP206 GTPBP4 CMC2 MEIS3P1 CCNE1 IGFBP2 STC2 IMPA2 MCM7 QDPR SPD5A1 CCDC176 CDCA7 YEATS2 LRP8 BGL2 SKP2 IGFBP4 CMC2 MEIS3P1 CCNE1 IGFBP2 STC2 IMPA2 MCM7 QDPR SPD5A1 CCDC176 CDCA7 YEATS2 LRP8 BGL2 SKP2 IGFBP4 CMC2 RFIG1 PTFR1 AZOP1 KCTD3 GAPDH HSD17BA AUNIP DKC1 LAD1 NOP2 CDKA2A GL13 LOC100288905 C76R01 CTSV MS11 RFC4 PHYHD1 S10048 NRP1 CCNG2 RB91 MTH7D1L LFNG CST3 KFTR6 GPD11 USB1 TMEM26 DAPK1 KFF5C RABEP1 MCM2 LAPTIM4B HRASLS MCM4 RNASE4 C105 APOBEC3B C180/656 TROAP NME5 ECI2 GSTM3 C100/672 SLC2A1 RIPK2 ADIRF C10/01 SLC16A10 AHNAK CKS2 VGLL1 MX2 TEAD4 PNP RBM36 GLYATL2 C70/63 LYPD6 AFF3 CDC25A
S	total	45	8	1 9	6
	Gene lists	206 genelist AND CIN attractor	206 genelist AND lymphocyte specific attractor	206 geneiist AND estrogen receptor attractor	206 genelist Unique (cell cycle enriched based on gene set enrichment analysis, GSEA)

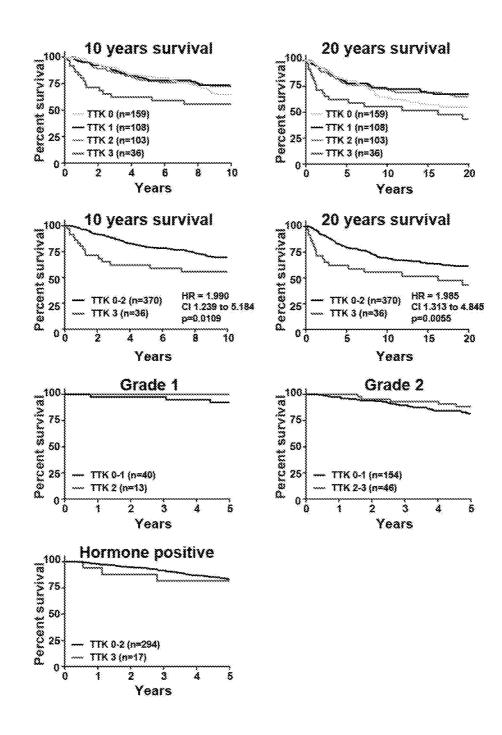
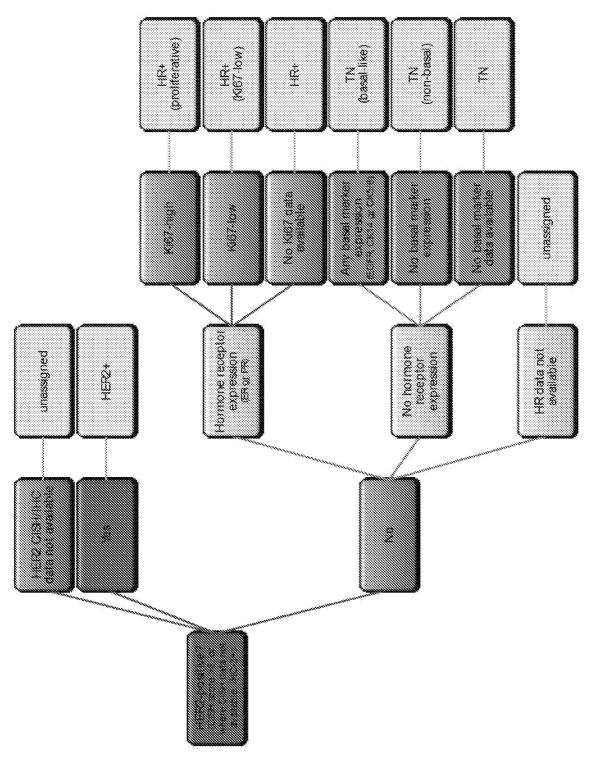



FIG. 13

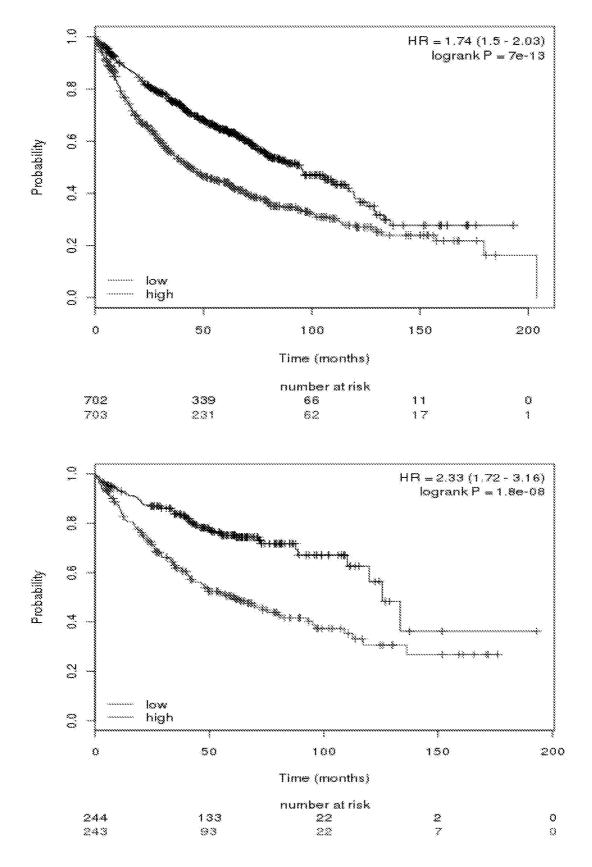


FIG. 15

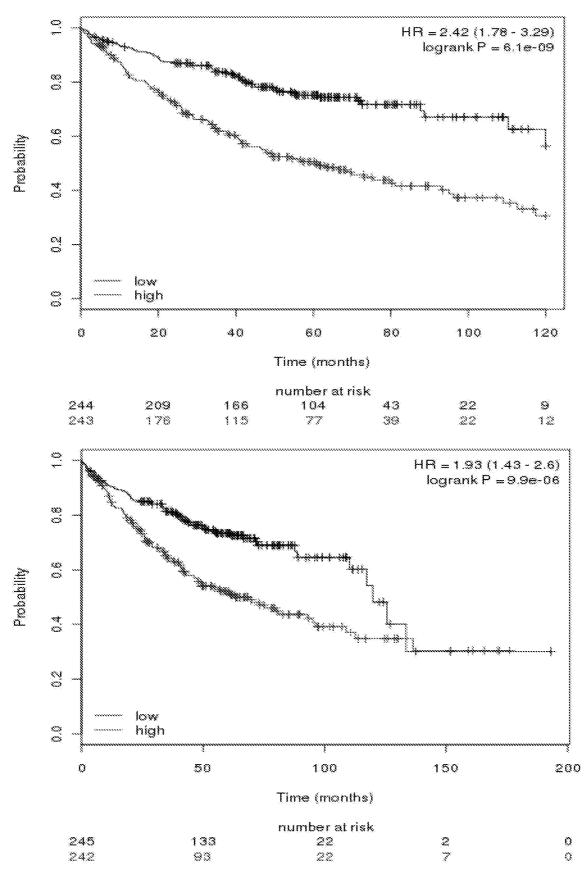


FIG. 15 cont'd

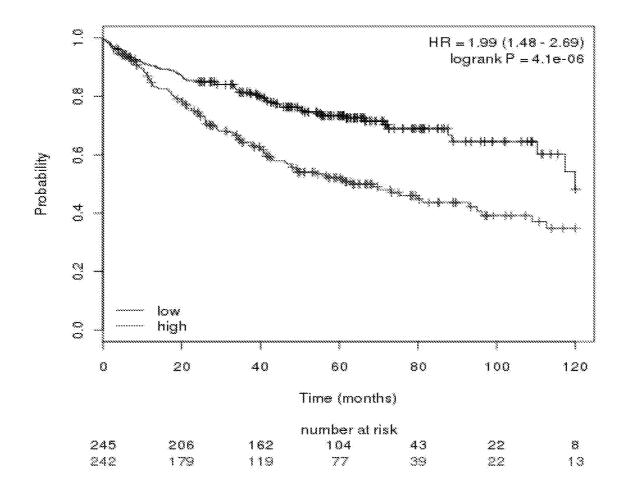


FIG. 15 cont'd

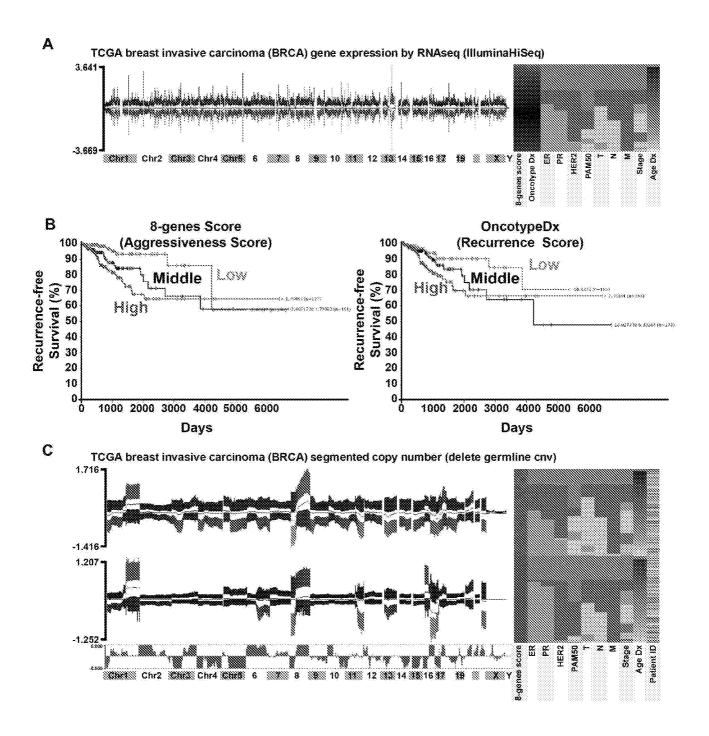
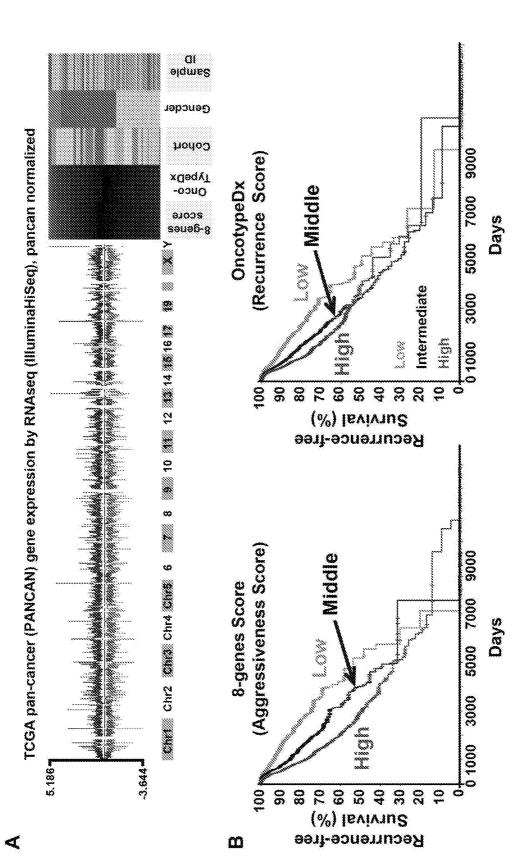
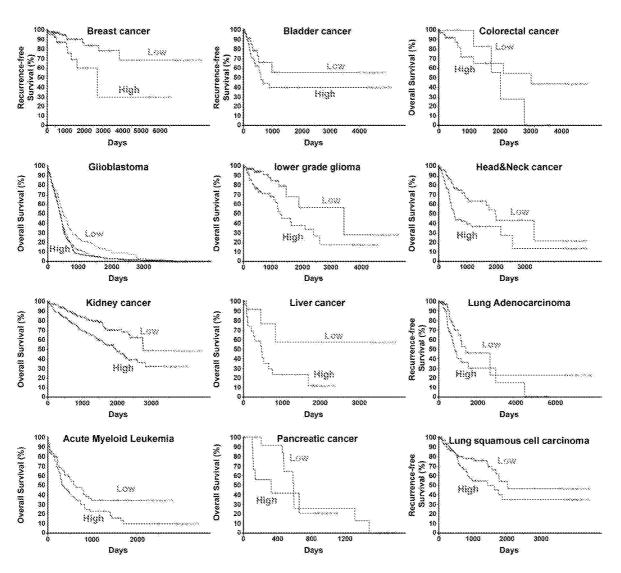
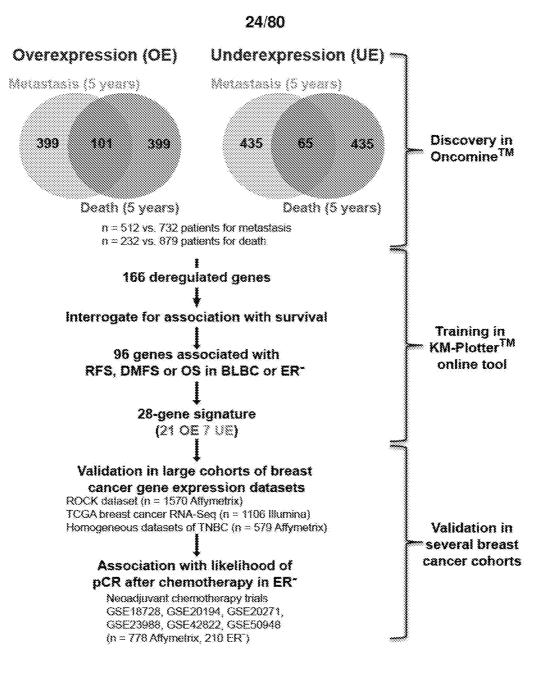




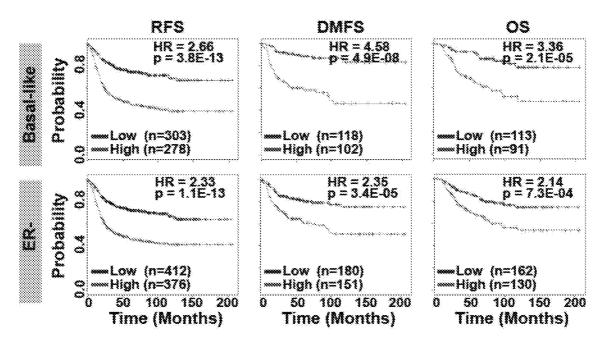
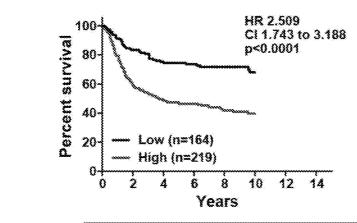
FIG. 16

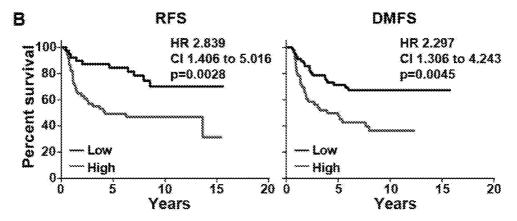


22/80

FIG. 18

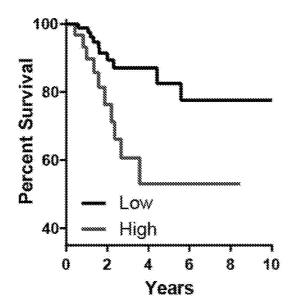
23/80


FIG. 20

A

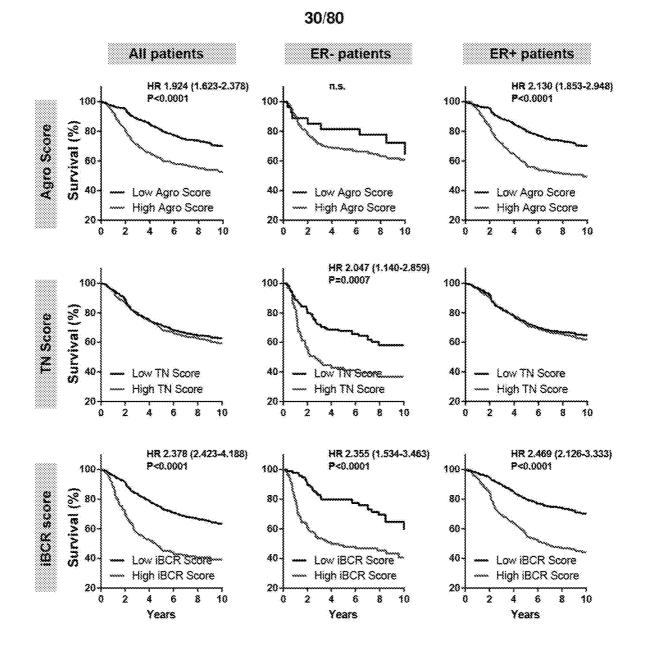
26/80


	Unis	ariate Cox-pro hazards mo		Multivariate Cox-proportional hazards model				
	HR	95 % CI	p-value	HR	95 % Cl	p-value		
TN score (high vs. low)	2.5172	1.7919-3.5361	<0.0001	2.2892	1 5217-3 4438	0.0001		
Tumor size (T1, T2, T3)		0.4893-1.0292		0.8148	0.5522-1.2023			
Grade (G1, G2, G3)	1.3036	0.9102-1.8670	0.1501	1.1784	0.8023-17308	0.4052		
Age (<50, >50)	0.9009	0.8572-1.2349	0.5186	0.9908	0.6965-1.4095	0.9592		
Nodal status (N0, N1)	1.0922	0.6949-1.7165	0.7037	1.4758	0.6935-3.1408	0.3150		
Adj. chemo (Yes, No)	1.0564	0 7320-1 5247	0.7705	1.1582	0.7464-1.7974	0.5145		

		RFS			DMFS	······		
	Must	variate Cox-pri hazards mo		Multivariate Cox-proportional hazards model				
	HR	95 % Cl	p-value	HR	95 % CI	p-value		
TN score (high vs. low)	3.0343	1.3703-8.7194	0.0065	2.7139	1 1723 6 2829	0.0204		
Tumor size (T1, T2, T3)	3.3223	0.4135-26.694	0.2612	2.8371	0.4681-31.452	0.2126		
Grade (G1, G2, G3)	1.2288	0.3377-4.4713	0.7557	1.8560	0.5153-6.6855			
Age (<50, >50)	1.0481	0.4964-2.2129		0.9172	0.4225-1.9911			
Nodal status (N0, N1)	2.5022	0 4817 12 997	0.2777	0.9240	0.1052-8.1176	0.9435		
ER status (ER+, ER-)	0.5828	0.1753-1.9374	0.3808	0.6780	0.1986-2.3141	0.5370		

C	RFS Multivariate Cox-proportional hazards model			DMFS Multivanate Cox-proportional hazards model		
	HR	95 % CI	p-value	HR	95 % CI	p-value
TN score (high vs. low)	2.0323	1.2211-3.3822	0.0066	2.2830	1 1859-4 3953	0.0140
Tumor size (T1, T2, T3)	1.1703	0.2562-5.3469	0.8400	0.7795	0.0908-6.6911	0.8213
Grade (G1, G2, G3)	0.7299	0.0983-5.4204	0.7596	1.3221	0.1718-10.177	0.7896
Age (<50, >50)	1.0969	0.6835-1.7604	6.7030	0.9745	0.5558-1.7087	0.9286
Nõdal status (N0, N1)	1.5486	0 5542 4 3274	0.4086	1.6229	0 5052-5 2136	0.4185





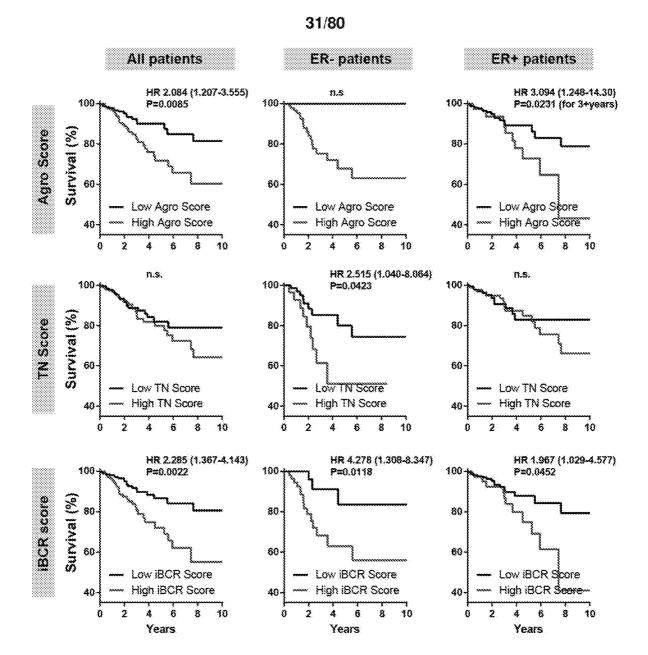
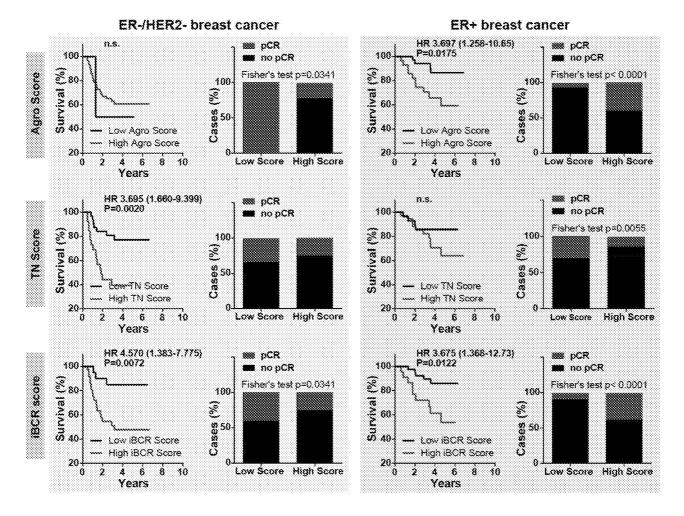
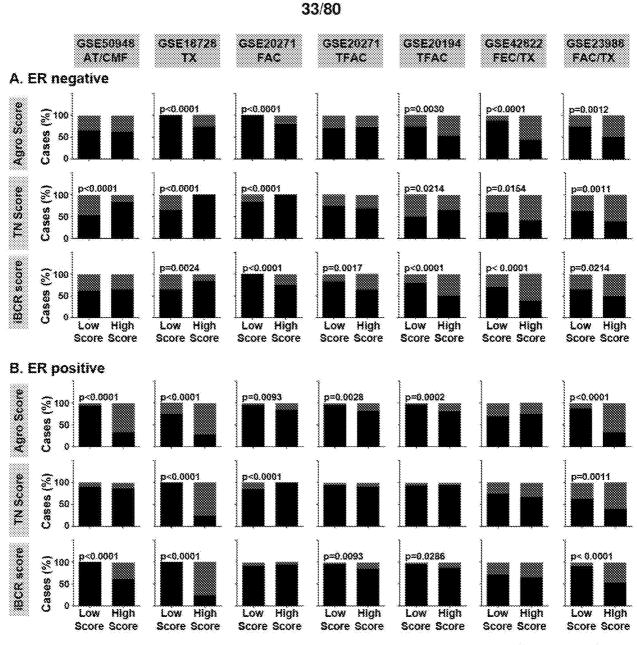
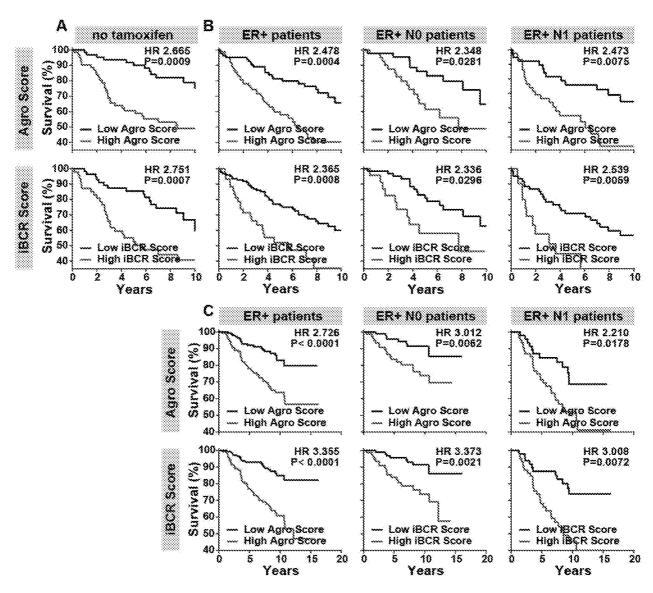
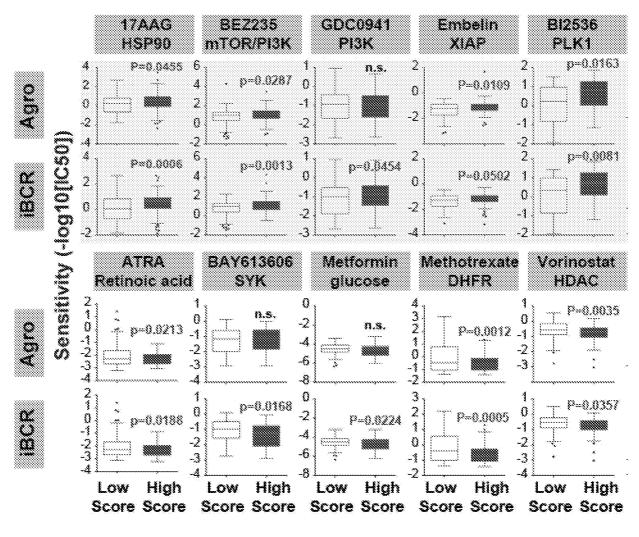

	Univ	Univariate Cox-proportional hazards model			Multivariate Cox-proportional hazards model		
	HR	95 % CI	p-value	HR	95 % CI	p-value	
TN score (high vs. lov	v) 2.9993	1.2533-7.1778	0.0141	3.3316	1.2323-9.0069	0.0183	
Stage (I, II, III)	3.4112	1.2738-9.1355	0.0151	3.2814	0.8902-12.095	5 0.0757	
Nodal status (N0, N1)	3.4618	1.2525-9.5680	0.0172	0.9415	0.2092-4.2375	i 0.9377	
HER2 (Neg, Pos)	0.3487	0.0456-2.6680	0.3127				
Age (<50, >50)	1.2375	0.4502-3.4018	0.6812				
Tumor size (T2/3 vs T	1) 1.0393	0.2916-3.7046	0.9528				

FIG. 22

GSE20194 TFAC Fisher's terriped 0214	GSE23988 FACITX	
GSE20271FAC GSE20271FAC	GSE42822 FECTX	The scale in pCR HR 6.2 HR 6
GSE50948 ATICNIF PCR no pCR Fisher's text p-0.0001	CSE22226 ACT CSE22226 ACT B PCR I no PCR	
CSE18728 TX GSE18728 TX Fisher and point Fisher and Fisher and Fi		PCR PCR PCR PCR PCR PCR PCR PCR
<	, seses jo %	Percent Survival 00


FIG. 27


PCT/AU2015/050096

Fisher's exat test for p values



FIG. 30 cont'd

Analyses
<u>></u>
ienes Across
of All Genes
1000000
4
Of A
Comparison

L

Underexpression

Median Rank 36.0 124.0	ank p.Value D 8.23E-5 D 5.13E-4	CENPA		Median Rank p Velue 79.0 0.003 102.0 0.001	0.003 0.003	Gene GLTSCR2 MTMPal	
124.0	0 0.002	30.84 PRO1		139.0 147.5	0.002 0.002	CODC30 C14er/187	
159.0 161.0	-02	FOXMA		155.0 189.0	0.002 3.35E-6	ABCA3 Olfer	
174.0	.0 7.34E-5 .0 7.63E-5	KIF23 CHTF8		210.0	2.95E-4 3.50E-4	BTF3 STOW2	
215.0		RAD51		227.0		NPY1R	
223.0 254.0	.0 1.41E-4	CONBC CONBC		228.0 256.0	3.59E.4 0.005	LOC283788 CIQTNF9	
260.0		2.26E-4 CMA.811		260.0	0.005	CDRT4	
273.0	.0 2.60E-4	DLGAPS		264.0	4.76E-4	PDCD4	
278.5	5 0.00	UNCISD		265.0	4.78E-4	RPL13A	
279.0	0.005	PRELIDA		266.0	0.005	ABAT	
287.0	0.006	GLP1R		272.0	0.005	287838	
293.0	0.006	MADIZL 1		316.0	0.014	CREBL2	
304.0	0 0.002	RPS		330.0	8.45E-4	TRIMOS	
304.0	.0 0.00E	MCMID		331.0	8.45E-4 H	8.45E-4 HNRNPAIL2	
304.0	0.007	80808		344.0	9.03E-4	EM	
Legend			1 2 3 4 5 6 7				2 3 4 5 6 7
1. Breast Carcinoma - Bos Breast, Nature, 200	- Metasta 2009	tic Event	 Breast Carcinoma - Metastatic Event at 5 Years Invasive Breast Carcinoma - Metastatic Event at 5 Years Bos Breast, Nature, 2009 Schmidt Breast, Cancer Res, 2008 	5. Invasive Breast Schmidt Breast, C	Carcinom ancer Res	a - Metastati s, 2008	 Invasive Breast Carcinoma - Metastatic Event at 5 Years Schmidt Breast, Cancer Res, 2008
2. Invasive Ductal Br Desmedt Breast, Clir	east Carcin 1 Cancer Re	oma - Me is, 2007	Invasive Ductal Breast Carcinoma - Metastatic Event at 5 Years Desmedt Breast, Clin Cancer Res, 2007	8. Invasive Breast Symmans Breast,	Carcinom J Clin On	a - Metastati col, 2010	8. Invasive Breast Carcinoma - Metastatic Event at 5 Years Symmans Breast, J Clin Oncol, 2010
 Invasive Breast Carcinoma - Metastatic Event at 5 Years Hatzis Breast, JAMA, 2011 	arcinoma - , 2011	Vietastatic	Event at 5 Years	7. Breast Carcinoma - Metastatic Event at 5 Years vandeVijver Breast, N Engl J Med, 2002	na - Me t, N Engl -	tastatic Even J Med, 2002	t at 5 Years
4. Breast Carcinoma - Metastatic Event at 5 Years Kao Breast, BMC Cancer, 2011	- Metasta incer, 2011	tic Event.	at 5 Years				

FIG. 31

SUBSTITUTE SHEET (RULE 26)

Copyright© 2009-11 Compendia Bioscience, Inc. Images from Oncomine™ may be used in publications with proper citation. The citation for Oncomine is as follows: Oncomine™ (Compendia Bioscience, Ann Arbor, Mi) was used for analysis and visualization. For further information, refer to the terms described in the license agreement.

The rank for a gene is the median rank for that gene across each of the analyses. The p-Value for a gene is its p-Value for the median-ranked analysis.

🔘 Not measured

7 Anal
200
cross
Gel
Z
õ
Comparison

Ô

vses

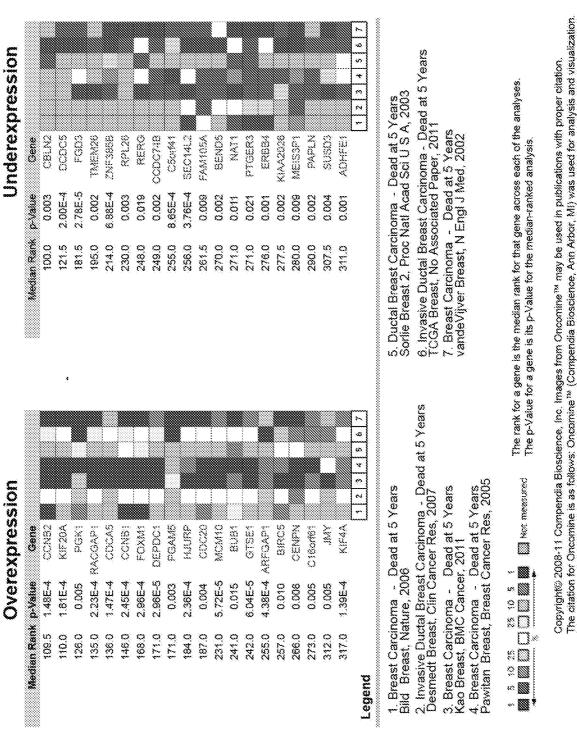
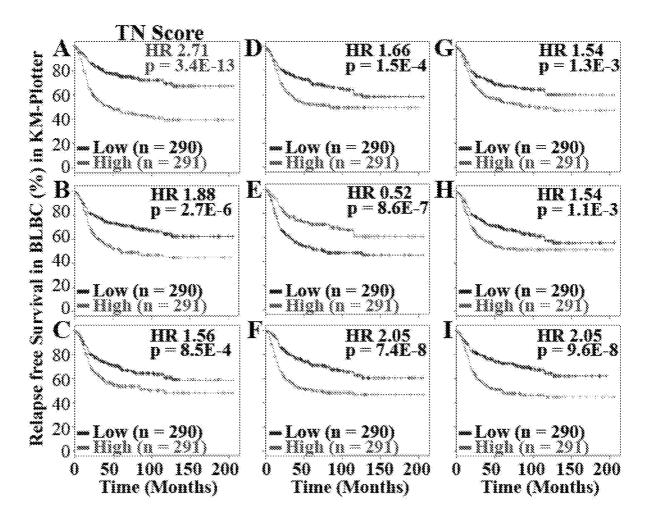



FIG. 31 cont'd

For further information, refer to the terms described in the license agreement.

38/80

FIG. 32

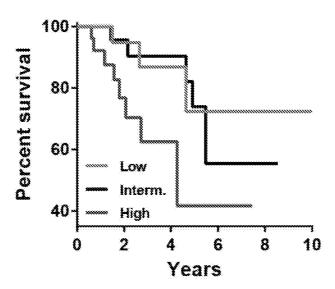


FIG. 33

0

23

0.0

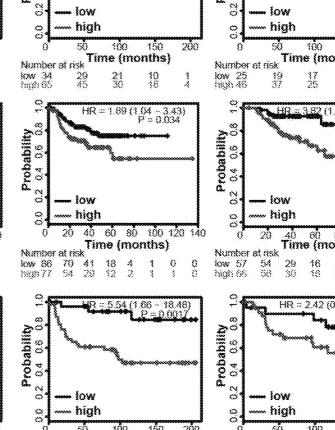
Ø

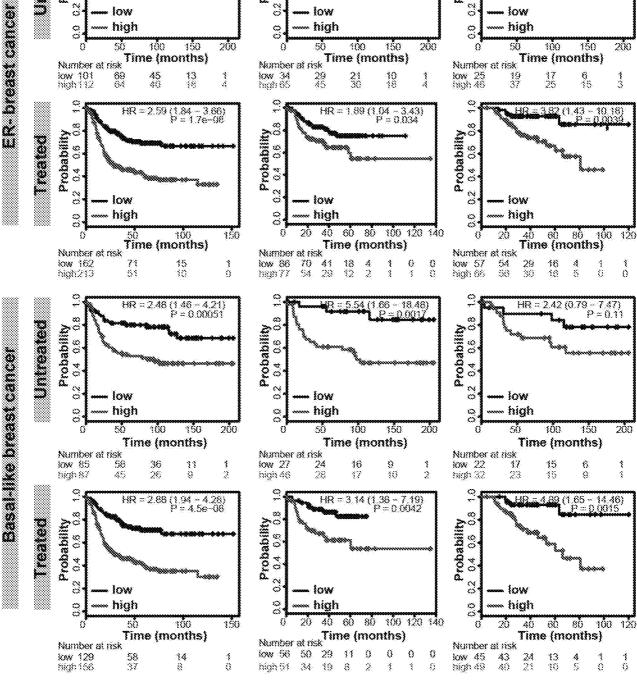
Untreated

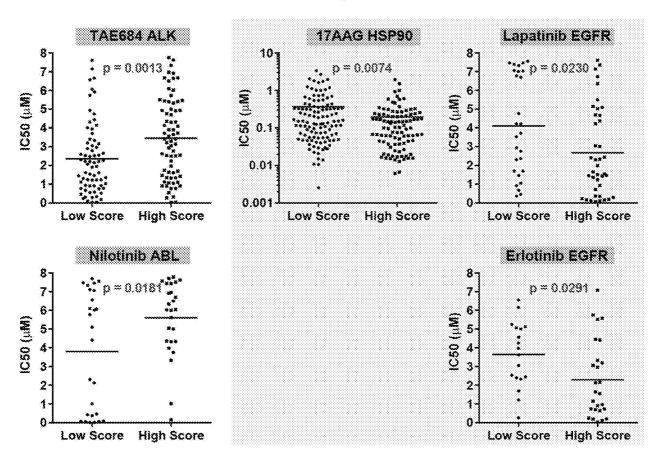
2

ŝ

OS

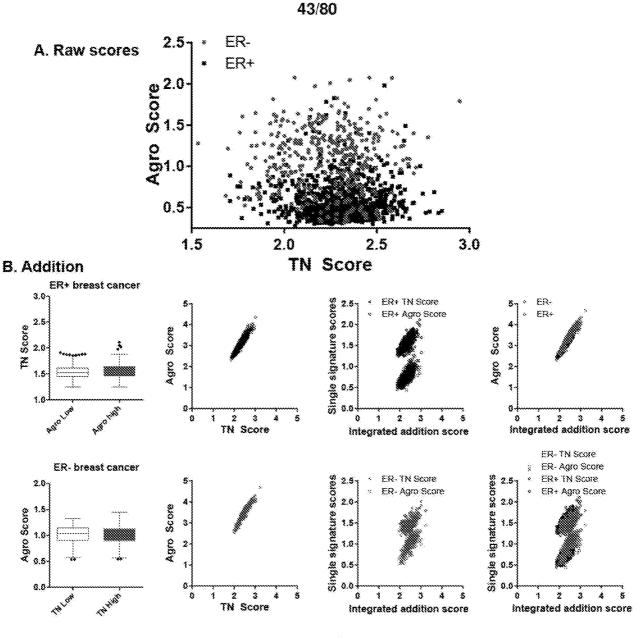

HR = 1.77 (0.65 - 4.83) P = 0.26


150


200

RFS DMFS 0 7 7 HR = 4.1 (1.44 - 11.7)R = 0.0042HR = 2.02 (1.25 - 3.26) P = 0.0032 Probability 2 04 05 08 Probability 2 0.4 0.6 0.8 80 low low high high 00 30 168 150 200 ö 50 100 150 200 Time (months) Time (months) Number at risk 45 40 low 34 high 65 29 45 10 13 Sec. ale 21 in si 0 HR = 1.89 (1.04 - 3.43) P = 0.034 HR = 2.59 (1.84 - 3.66) P = 1.7e-08

41/80



42/80

FIG. 35

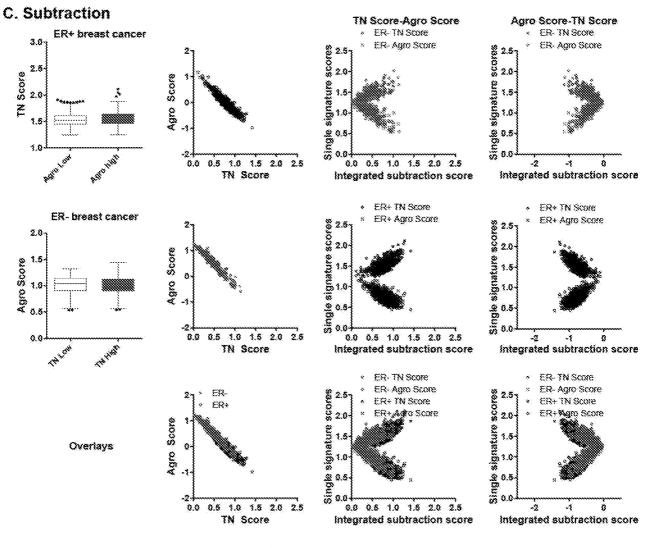
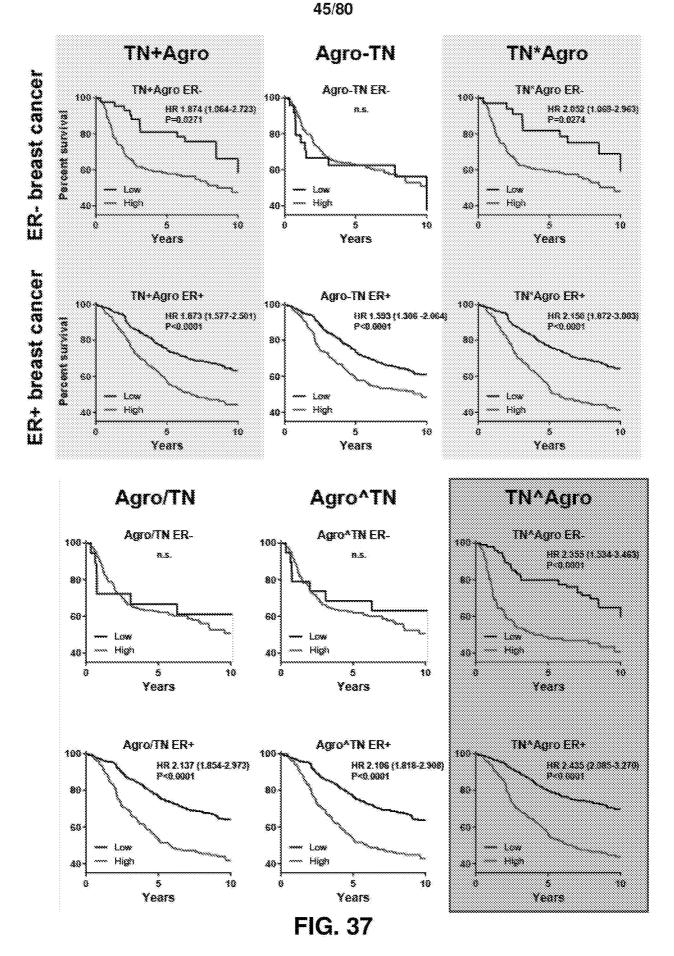



FIG. 36 cont'd

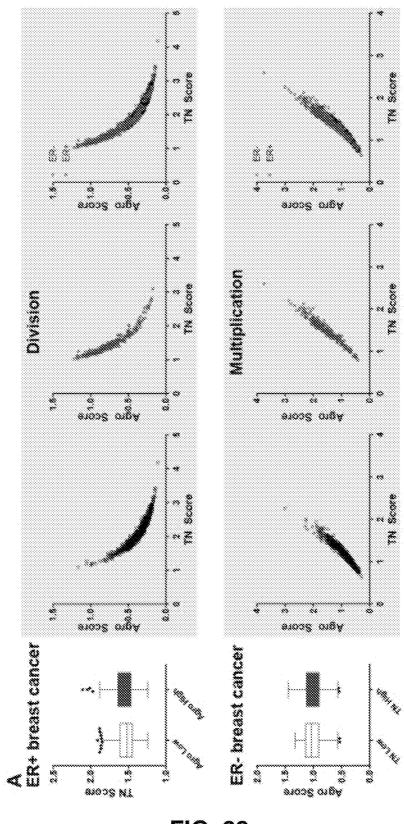


FIG. 38

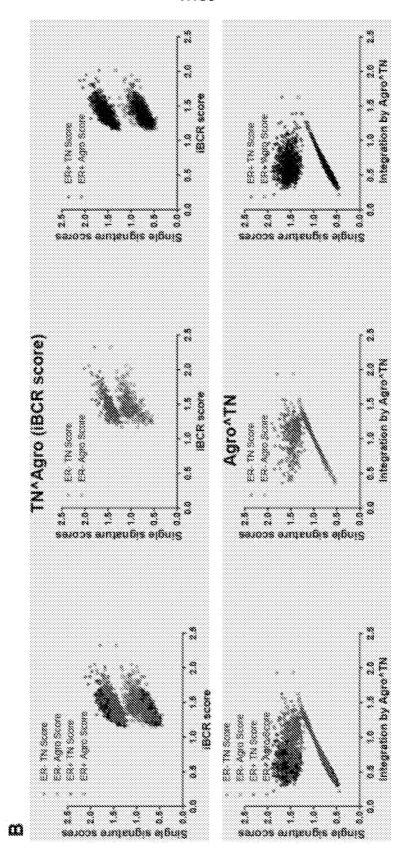
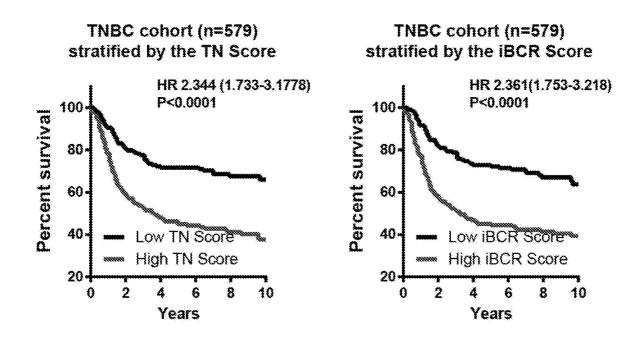
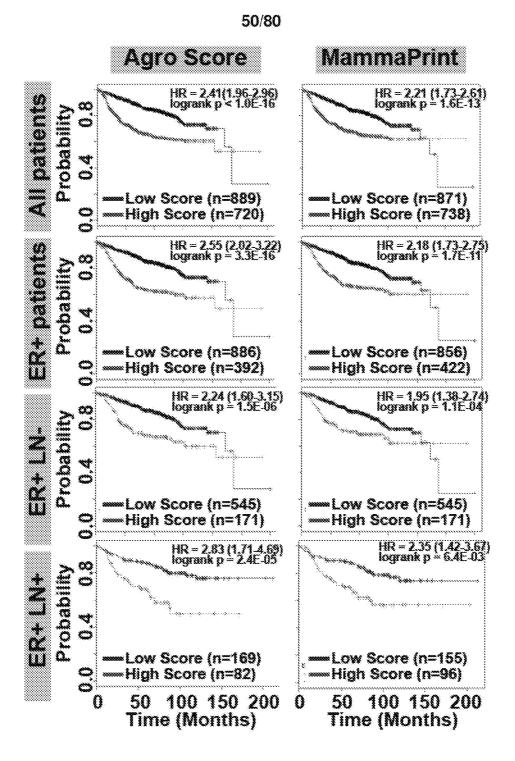




FIG. 38 cont'd

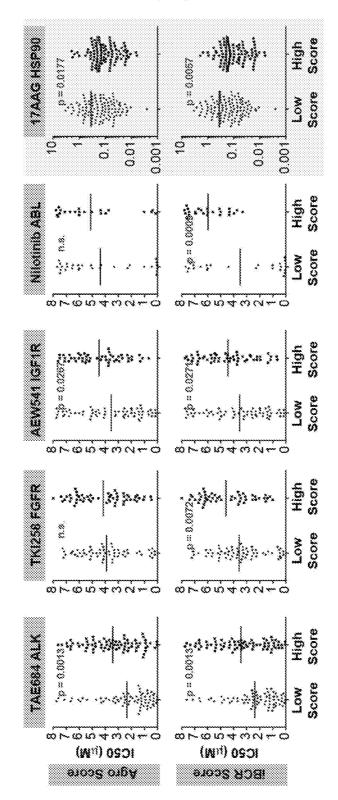
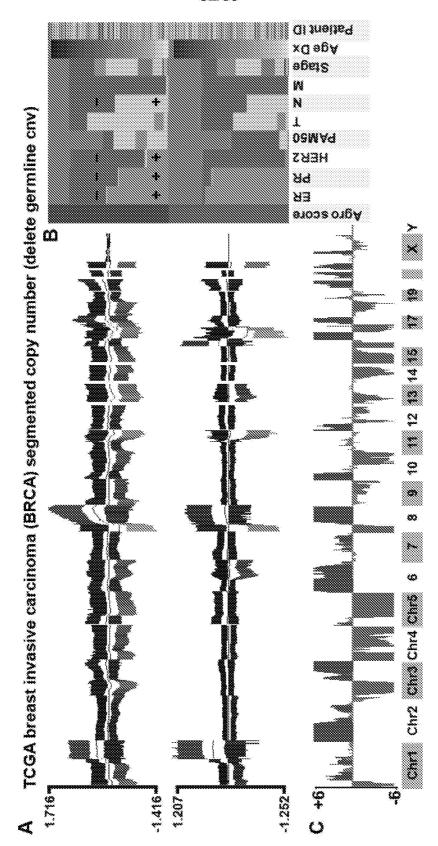
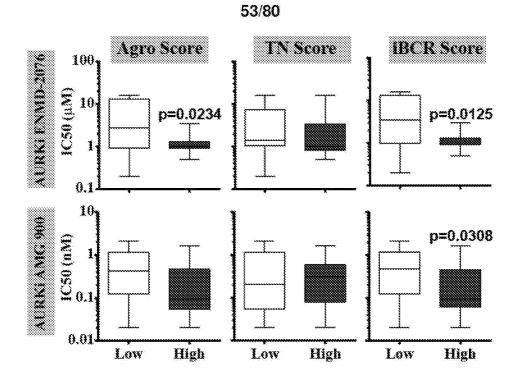
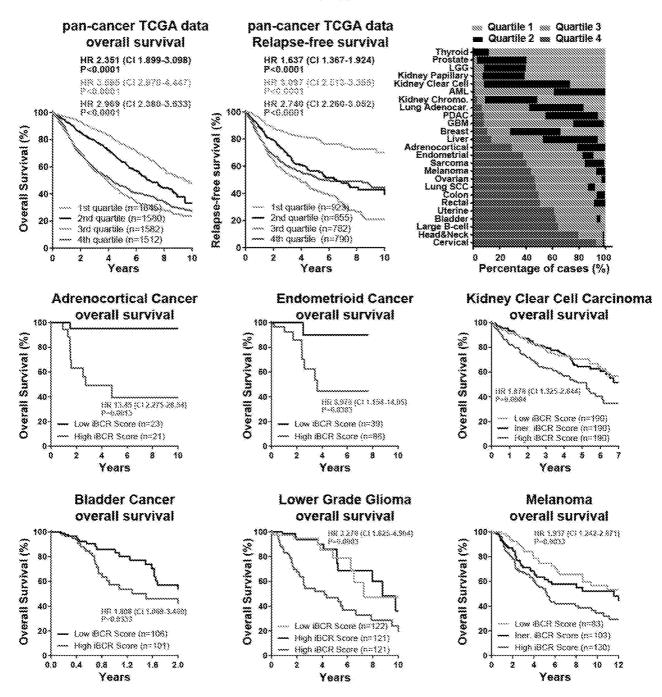
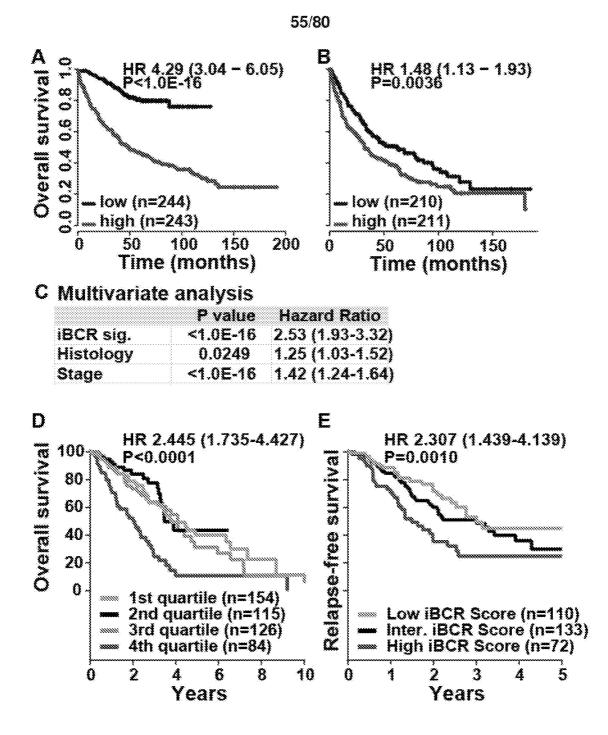
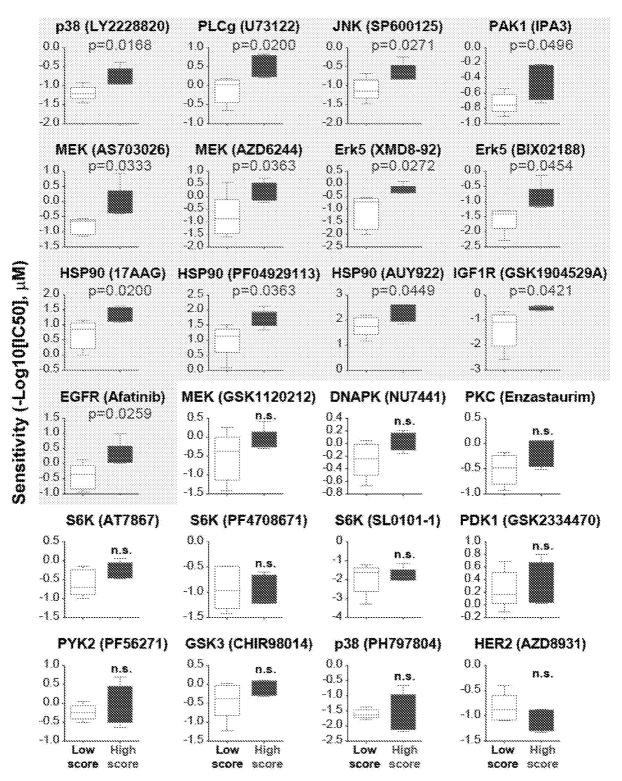
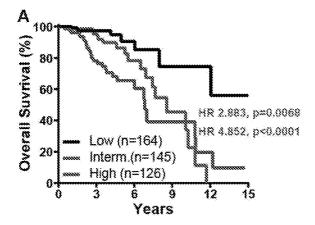


FIG. 42


FIG. 43

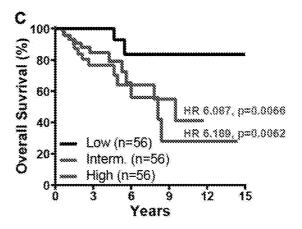


FIG. 48

В		Ê					
	Low	Interm.	Е Н			Interm.	High
r				RADSO	14.	**	****
				P38-T180/Y182	All A	fi.s.	**
				PEA15 JNK-T183/Y185	The second	n.s. n.s.	***
				YAP	the second	ñ.s.	**** ***
				LKBI	NIN.	n.s.	***
				14-3-30	and a	11.8.	**
				BCL2	Arrive .	**	****
				INPP4B COLLAGENVI	ALL ALL	n.s. a.s.	**** ****
				CAVEOLINI		n.s.	****
				N.O	N. M.	**	****
				MAPK-T202/Y204	all a	*	****
				PR AR	Summe -	*** 11.5.	**** ***
				GATAS	and a	8,8	**
				cKIT	N.M.	n.s.	***
,				VEGFR2		ñ.s.	***
				YAPPS127 STAT3-Y705	theme	*** 11.55.	****
					and the	n.s.	****
				STAT5a	200	n.s.	**
				AMPK-T172	and and	**	***
				P27 ΑΜΡΚα	A The second sec	*	****
				ERa	. Jun	*** 11.5.	****
				ERα-S118	and ,	n.s.	**
				EGFR-Y1068	*	n.s.	**
				NFK8-9536	mally.	n.s.	**
				4EBP1-T37/T46 S6	- Contraction	n.s.	**
				ASNS	STATE STREET	* ****	**** ****
				CYCLINB1	Summer and	****	****
				CRAF	Surface Service Service	n.s.	**
				cMET-Y1235 CHK1-S345	A MARKAN MARKAN	8.8. 8.5.	*
				Y81	and a state of the	n.ə. 11.8.	*** **
				GSK3a/B	and the second	8.8.	**
				SMADI	STATE AND A	8.8.	***
				DVLS RAD51	Statements.	n.s.	**
				SRC-Y416	In such as the second	81. 3 5. 11.35.	***
				CHK2	all and the state	8.8.	**
				CDK1		B.S.	***
				468P1-865	and the second	n.s.	****
				SRC CHK2-T68	and a start of the	** 11.5.	****
				PCNA	ALL AND A	***	****
				ACC1	Server Server	8.8.	*
				SYK OVOLINE1	and a second	**	**
				CYCLINE1 EEF2	and the second s	п.s. п.s.	****
				P53	and a state of the	n.s.	****
				S6-S235/S236		11.8.	****
				4EBP1	and the second second	n.s.	****
				HER2-Y1248 CASP7-cD198		R.S.	****
				p70S6K	and the second second	** ****	**** ****
1				S6-S240/S244	Survey weard	R.S.	****
				-			

-3.0 -1.0 1.0 3.0

FIG. 48 cont'd

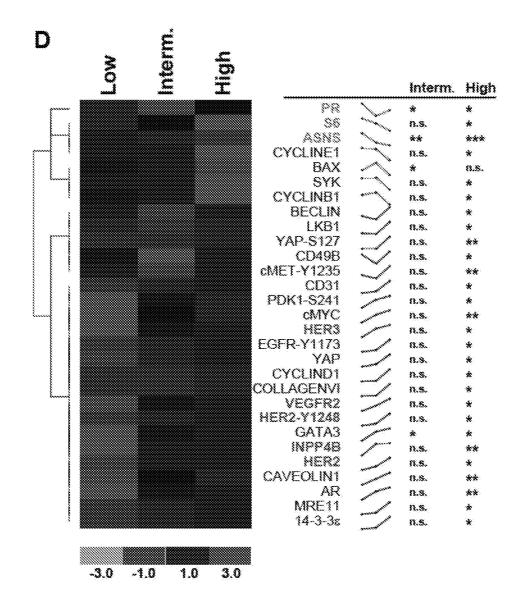
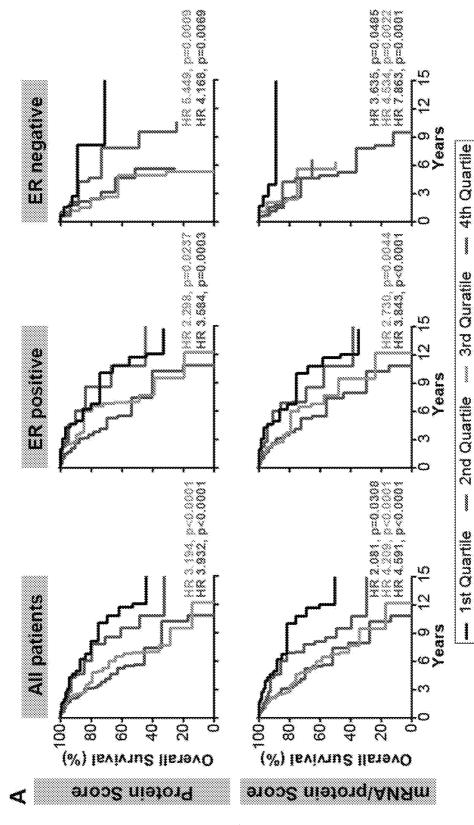
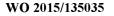
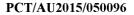
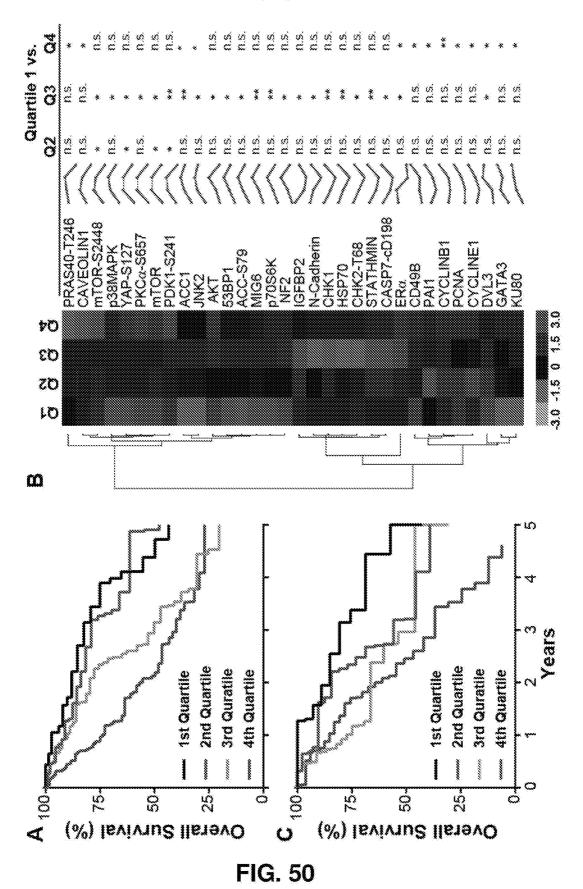



FIG. 48 cont'd




'n	Univar	Univariant Cox-proportional hazard model	rtional	MUIIN	Multivariant Cox-proportional hazard model	ortional
Parameter	HR	95% CI	٩.	HR	95% CI	Q,
Combined IBCR mRNA/Protein Score (01, 02, 03, 04)	1.75	1.45 - 2.12	<0.000	3.46	1.51 - 7.92	0.0035
Stage (I, IIA, IIB, IIIA, IIB, IIIC)	1.49	1.15 - 1.92	0.0023	3.81	1.30 - 11.17	0.0153
Tumor size (T1, T2, T3)	1.12	0.81 - 1.55	0.5094	3.88	0.72 - 20.53	0.1157
HER2 (pos vs. neg)	1.82	1.01 - 3.28	0.0466	6.24	0.43 - 9.34	0.1816
Radiotherapy (yes vs. no)	0.38	0.19-0.76	0.0063	0.27	0.04 - 1.98	0.1991
PAM50 subtypes	1.08	0.87 - 1.34	0.5048	0.69	0.36 - 1.34	0.2804
Lymph node (pos vs. neg)	2.14	1.35 - 3.39	0.0012	3.32	0.33 - 3.38	0.3127
ER (pos vs. neg)	0.76	0.48 - 1.21	0.2493	0.40	0.22 - 7.49	0.5439
Age at Dx (<50 vs. >50)	0.60	0.37 - 0.95	0.0295	0.28	0.04 - 2.32	0.5775
Surgery (lump, mastec, mod. rad. mastec., Other)	1 28	1.04 - 1.58	1610.0	0.75	0.27 - 2.12	0.5901
Molecular therapy (no vs. yes)	6.17	2.63 - 14.43	<0.0001	1.62	0.17 - 15.91	0.6805
Histology (ILC vs. IDC)	0.53	0.23 - 1.22	0.1399	0.54	0.27 - 10.69	0.6847
PR (pos vs. neg)	0.76	0.49 - 1.16	0.2035	0.72	0.414 - 1.25	0.8219
Menopause (bost vs. bre)	2.04	1.03 - 4.05	0.0419	1.15	0.15 - 8.65	0.9483


WO 2015/135035

61/80

FIG. 49 cont'd

Covariate	НР	95% CI	0.
Combined (BCR mRNA/Protein (Q1-Q4)	2.08	1.24 - 3.50	0.0056
Age (<60, 60-70, >70)	225	1, 14 - 4, 43	0.0198
Nodel status (N1 vs. N0)	1.73	1.40-2.10	0.0254
Tumor size (T1, T2, T3, T4)	1.63 1.63	0,83 - 3,19	0.1553
Residual turnor (yes vs. no)	370	0.46 - 30.06	0.2220
EGFR (mut vs. WT)	2.43	0.46 - 12.87	0.2995
Stage (Stage I, II, III)	0.58	0.11-3.03	0.5197
Targeted therapy (yes vs. no)	98) 96	0.25-14.29	0.5218
Gender (F or M)	1.32	0.35-4.96	0.6797
KRAS (mut vs. WT)	1.33	0.25 - 7.01	0.7403
PIKACA (mint vs. W7)	0.79	0.09 - 7.07	0.8321
ERBB4 (mut vs. WT)	0.84	0.11-6.72	0.8714
mRNA Subtype (Bronchiold, Magnold, Squamold)	0.08	0.54 - 1.78	0.9520

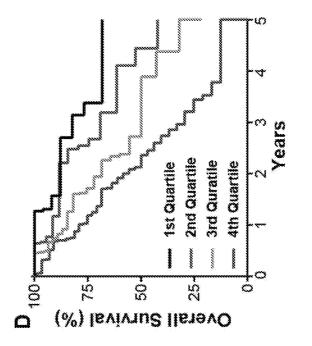
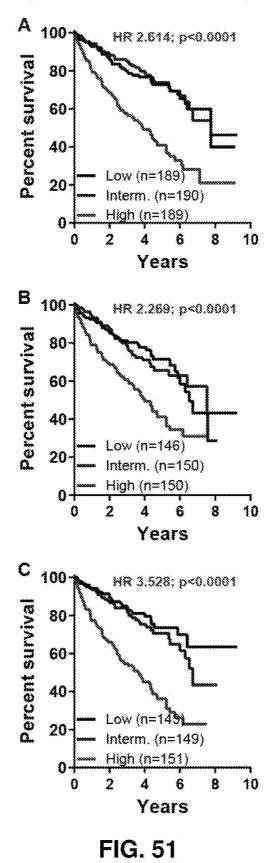



FIG. 50 cont'd

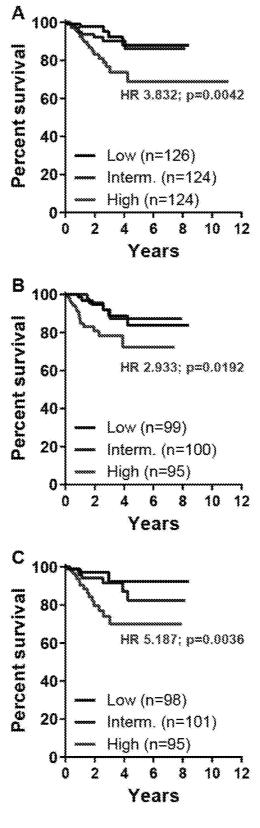
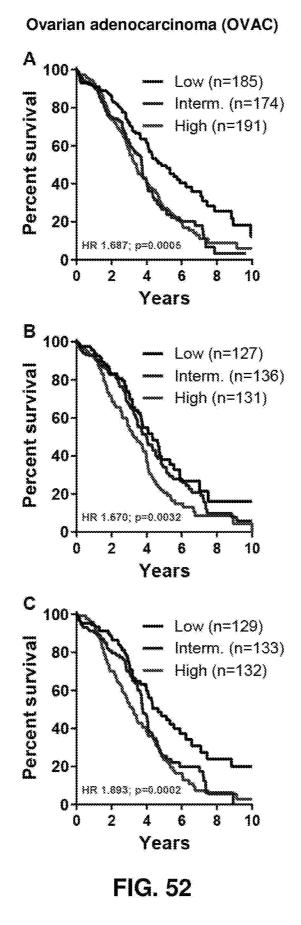
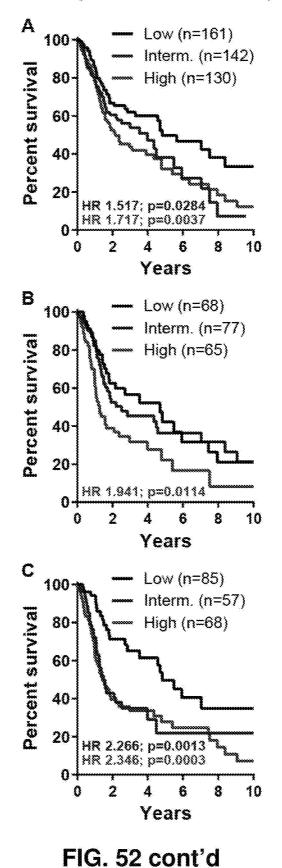
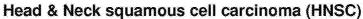
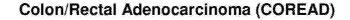
63/80

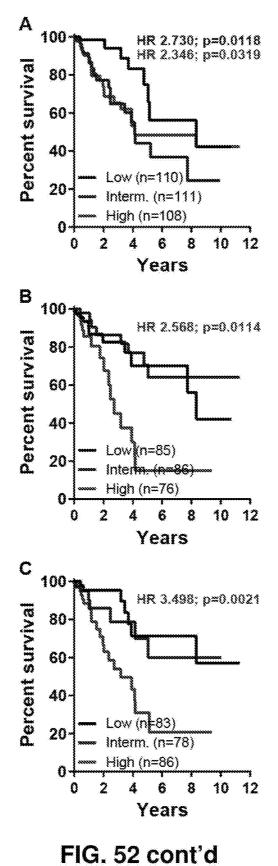
Kidney renal clear cell carcinoma (KIRC)

Skin cutaneous melanoma (SKCM)

FIG. 51 cont'd

Uterine corpus endometrioid carcinoma (UCEC)


FIG. 51 cont'd

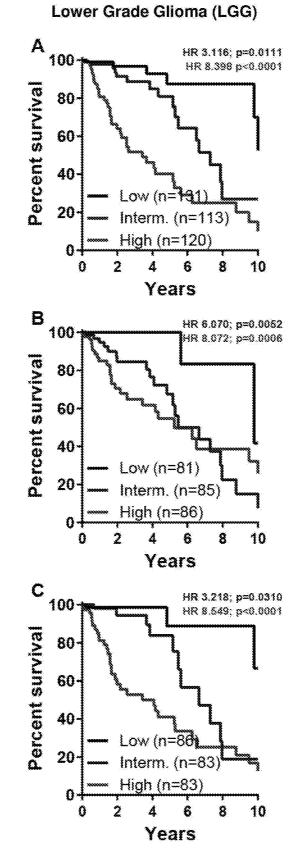
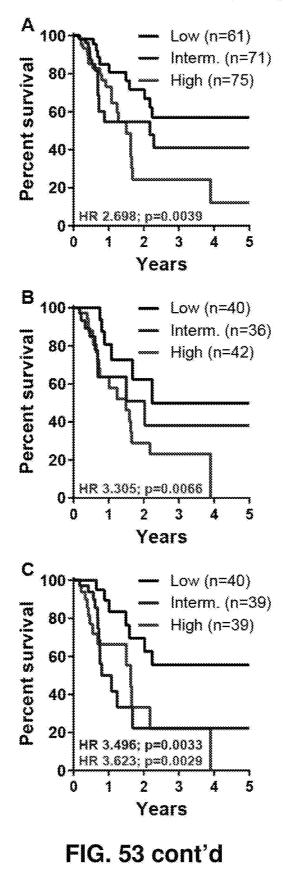
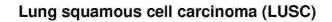




FIG. 53

Bladder urothelial carcinoma (BLCA)

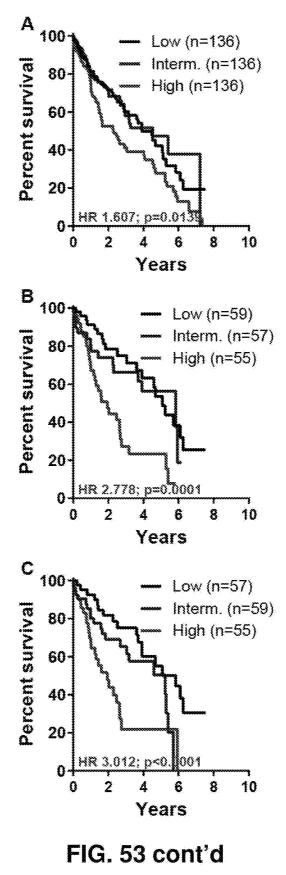


FIG. 54

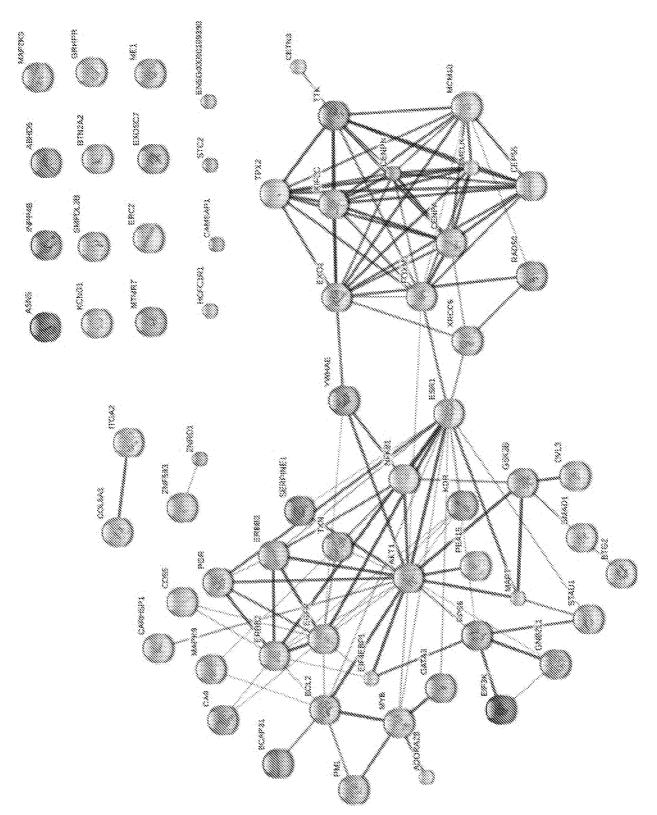


FIG. 55

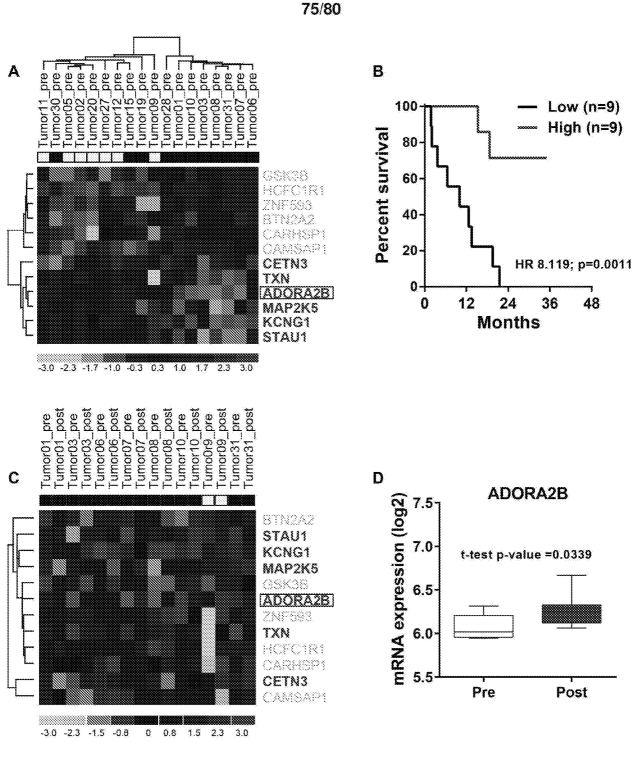


FIG. 56

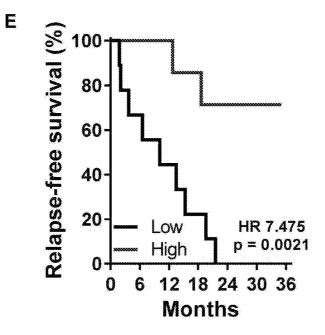
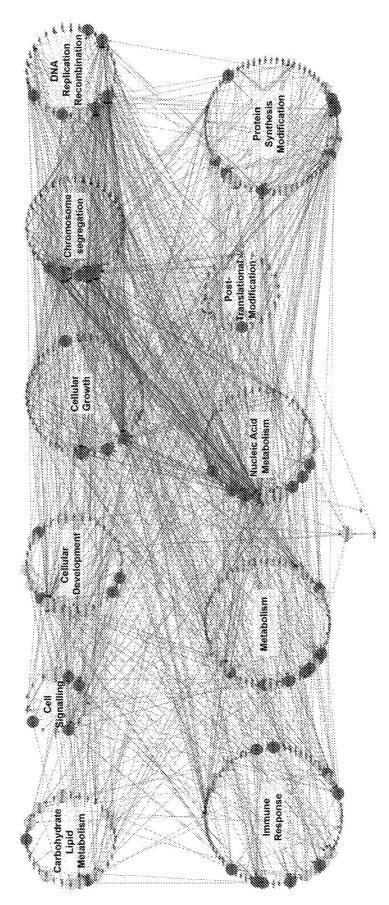
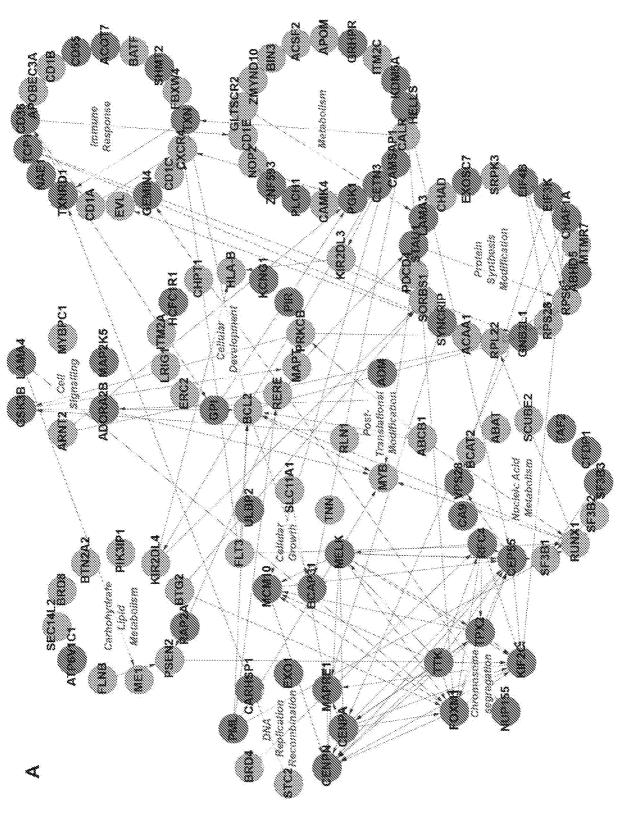




FIG. 56 cont'd

FIG. 57

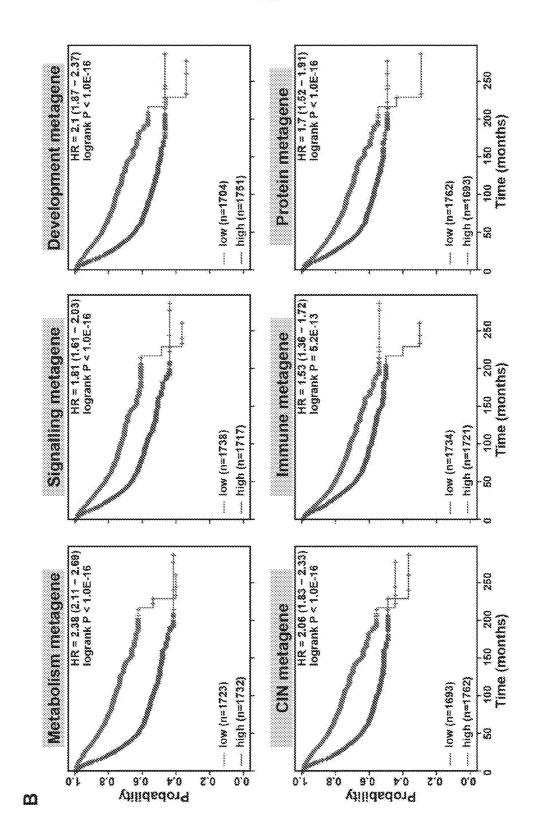


FIG. 58 cont'd

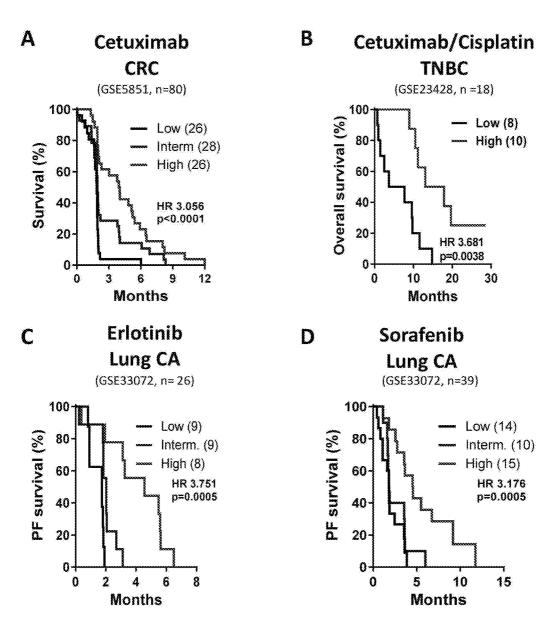


FIG. 59