(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization
International Bureau
(43) International Publication Date 17 September 2015 (17.09.2015)

||

(10) International Publication Number WO 2015/135035 A2

(51) International Patent Classification: C12Q 1/68 (2006.01)
(21) International Application Number:

PCT/AU20 15/050096
(22) International Filing Date:

11 March 2015 (11.03 .2015)
(25) Filing Language:

English
(26) Publication Language:
(30) Priority Data:

2014900813
11 March 2014 (11.03.2014)
20149012123 April 2014 (03.04.2014)
AU

201490471621 November 2014 (21.11.2014)

English
71) Applicant: THE COUNCIL OF THE QUEENSLAND

INSTITUTE OF MEDICAL RESEARCH [AU/AU]; The Bancroft Centre, 300 Herston Road, Herston, Queensland 4029 (AU).
(72) Inventor: AL-EJEH, Fares; c/o- THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RESEARCH, The Bancroft Centre, 300 Herston Road, Herston, Queensland 4029 (AU).
(74) Agent: FISHER ADAMS KELLY PTY LTD; Level 29, 12 Creek Street, Brisbane, Queensland 4000 (AU). land (AU).

Creek Street, Brisbane, Queensland 4000 (AU).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report (Rule 48.2(g))

 , ,

(57) Abstract: The invention provides methods of determining the aggressiveness, prognosis and response to therapy for particular cancers, which include comparing the expression levels of one or a plurality of differentially expressed genes from one or more 5 functional metagenes, including a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune system metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein 10 Synthesis/Modification metagene and a Multiple Networks metagene. The method disclosed herein may be particularly suitable as a companion diagnostic for cancer therapies.

TITLE

DETERMINING CANCER AGGRESSIVENESS, PROGNOSIS AND RESPONSIVENESS TO TREATMENT
 FIELD

THIS INVENTION relates to cancer. More particularly, this invention relates to methods of determining the aggressiveness of cancers, prognosis of cancers and/or predicting responsiveness to anti-cancer therapy.

BACKGROUND

Hormone receptors (ER and PR) and HER2 are standard biomarkers used in clinical practice to aid the histopathological classification of breast cancer and management decisions. Hormone receptor (HR)- and HER2- positive tumors benefit from tamoxifen and anti-HER2 therapies, respectively. On the other hand, there are currently no targeted drug therapies for management of triple negative breast cancer (TNBC), which lacks expression of HR/HER2. TNBCs are more sensitive to chemotherapy than HR-positive tumors because they are generally more proliferative, and pathological complete responses (pCR) after chemotherapy are more likely in TNBC than in non-TNBC ${ }^{12}$. Paradoxically, TNBC is associated with poorer survival than non-TNBC, due to more frequent relapse in TNBC patients with residual disease ${ }^{12}$. Only 31% of TNBC patients experience pCR after chemotherapy ${ }^{3}$, emphasizing the need for targeted therapies.

Transcriptome profiling has been used to dissect the heterogeneity of breast cancer into five intrinsic 'PAM50' subtypes; Luminal A, Luminal B, Basal-like, HER-2 and normal-like subtypes that relate to clinical outcomes ${ }^{4-8}$. Several gene signatures have been developed to predict outcome or response to treatment including: MammaPrint ${ }^{9}$, OncotypeDx ${ }^{10^{0} 11}$, Theros ${ }^{12-15}$. These commercial signatures rely on models that select genes based on clinical phenotypes such as tumor response or survival time. Notwithstanding their clinical utilities, these models fail to identify core biological mechanisms for the phenotypes of interest. Recently, an approach based on biological function-driven gene coexpression signatures, "attractor metagenes", has been applied to the prediction of survival in certain cancers. However such approaches are at an early stage and much work needs to be done to develop this attractor metagene analysis in relation to cancers in general and also for specific cancers.

SUMMARY

The present invention relates to the comparison of expression levels of a plurality of differentially expressed genes from one or a plurality of functional metagenes, including a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune system metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene; wherein the comparison of expression level of a plurality of genes in these metagenes is used to facilitate determining the aggressiveness of certain cancers. This comparison may also, or alternatively, assist in providing a cancer prognosis for a patient. The invention also relates to predicting the responsiveness of a cancer to an anti-cancer treatment by determining an expression level of one or a plurality of genes associated with one or a plurality of the aforementioned twelve functional metagenes.

The invention further relates to the comparison of expression levels of a specific signature of differentially expressed proteins to facilitate or assist in determining the aggressiveness of a particular cancer, a prognosis for a cancer patient and/or predicting responsiveness to an anti-cancer treatment. One or both of these comparisons may also be integrated with the aforementioned comparison of the expression levels of the plurality genes from one or a plurality of the aforementioned functional metagenes in determining cancer aggressiveness, prognosis and/or treatment.

In a first aspect, the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein

Synthesis/Modification metagene and a Multiple Networks metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In a second aspect, the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis.

In one embodiment of the above aspects, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one of the aforesaid metagenes. In an alternative embodiment, the one or plurality of overexpressed genes and/or one or the plurality of underexpressed genes are selected from a plurality of the aforesaid metagenes.

Suitably, for the method of the above aspects the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-

Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene comprise one or a plurality of genes listed in Table 21.

In a third aspect, the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level

In a fourth aspect, the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis.

In one embodiment of the third and fourth aspects, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected
from one of the aforesaid metagenes. In an alternative embodiment, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from a plurality of the aforesaid metagenes.

Suitably, the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene comprise one or a plurality of genes listed in Table 22.

In particular embodiments of the method of the third and fourth aspects, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are from one or a plurality of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene.

In a fifth aspect, the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In a sixth aspect, the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes
associated with estrogen receptor signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a more favourable cancer prognosis.

In certain embodiments, the genes associated with chromosomal instability are of a CIN metagene. Non-limiting examples include genes selected from the group consisting of ATP6V1C1, RAP2A, CALM1, COG8, HELLS, KDM5A, PGK1, PLCH1, CEP55, RFC4, TAF2, SF3B3, GPI, PIR, MCM10, MELK, FOXM1, KIF2C, NUP155, TPX2, TTK, CENPA, CENPN, EXOl, MAPREl, ACOT7, NAEl, SHMT2, TCP1, TXNRD1, ADM, CHAF1A and SYNCRIP. Preferably, the genes are selected from the group consisting of: MELK, MCM1O, CENPA, EXOl, TTK and KIF2C.

In certain embodiments, the genes associated with estrogen receptor signalling are of an ER metagene. Non-limiting examples include genes selected from the group consisting of: BTG2, PIK3IP1, SEC14L2, FLNB, ACSF2, APOM, BIN3, GLTSCR2, ZMYND10, ABAT, BCAT2, SCUBE2, RUNX1, LRRC48, MYBPC1, BCL2, CHPT1, ITM2A, LRIG1, MAPT, PRKCB, RERE, ABHD14A, FLT3, TNN, STC2, BATF, CDIE, CFB, EVL, FBXW4, ABCB1, ACAA1, CHAD, PDCD4, RPL10, RPS28, RPS4X, RPS6, SORBS1, RPL22 and RPS4XP3. Preferably, the genes are selected from the group consisting of: MAPT and MYB.

In certain embodiments, the method of the fifth and sixth aspects further including the step of comparing an expression level of one or a plurality of other overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and/or an expression level of one or a plurality of other underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH,

KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSl and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the other overexpressed genes compared to the other underexpressed genes indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower relative expression level of the other overexpressed genes compared to the other underexpressed genes indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.

In one embodiment, the one or plurality of other overexpressed genes are selected from the group consisting of $A B H D 5, A D O R A 2 B, \quad B C A P 31, C A 9$, CAMSAP 1, CARHSP1, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFC1R1, KCNG1, MAP2K5, NDUFC1, PML, STAU1, TXN and ZNF593.

In one embodiment, the one or plurality of other underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDL3B and ZNRD1-AS1.

Suitably, the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling is integrated with the comparison of the expression level of the one or plurality of other overexpressed genes and/or the expression level of the one or plurality of other underexpressed genes to derive a first integrated score.

In a seventh aspect, the invention provides a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of $B R D 8$, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSl and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed
genes compared to the one or plurality of underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In an eighth aspect, the invention provides a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFCl and STAUl, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1AS1, ARNT2, ERC2, SLCl1A1, BRD4, APOBEC3A, CDIA, CDIB, CDIC, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSl and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.

In one embodiment of the seventh and eighth aspects, the one or plurality of overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP31, CA9, CAMSAP1, CARHSP1, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFClR1, KCNG1, MAP2K5, NDUFCl, PML, STAUl, TXN and ZNF593.

In one embodiment of the seventh and eighth aspects, the one or plurality of underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDL3B and ZNRDI-ASI.

In particular embodiments, the method of the first, second, third, fourth, fifth, sixth, seventh and eighth aspects further includes the step of comparing an
expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the overexpressed proteins compared to the underexpressed proteins indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower relative expression level of the overexpressed proteins compared to the underexpressed proteins indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.

Suitably, the comparison of the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins is to thereby derive an integrated score. In one particular embodiment, the comparison of the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins is integrated with:
(i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling to derive a second integrated score; or
(ii) the first integrated score to derive a third integrated score; or
(iii) the comparison of the expression level of the overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1 and/or the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH,

KIR2DL3, SMPDL3B, MYB, RLN1, MTMR7, SORBS1 and SRPK3 to derive a fourth integrated score; or
(iv) the comparison of the expression level of the overexpressed genes and/or an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene, to derive a fifth integrated score; or
(v) the comparison of the expression level of the overexpressed genes and/or the expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score.
wherein the second, third, fourth, fifth and/or sixth integrated score is indicative of, or correlates with, the aggressiveness and/or prognosis of the cancer in the mammal.

In particular embodiments, the second, third, fourth, fifth and/or sixth integrated score are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation.

In a preferred embodiment, the first, second and/or third integrated scores are derived, at least in part, by exponentiation wherein the comparison of the expression level of the other overexpressed genes and the expression level of the other underexpressed genes is raised to the power of
(i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling; and/or
(ii) the comparison of the expression level of the overexpressed proteins and/or the expression level of the underexpressed proteins.

In a ninth aspect, the invention provides a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB 1, HER2, ASNS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In a tenth aspect, the invention provides a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.

In an eleventh aspect, the invention provides method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method
including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein an altered or modulated relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

Suitably, for the present aspect the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene comprise one or a plurality of genes listed in Table 21.

In a twelfth aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein an altered or modulated relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In one embodiment of the eleventh and twelfth aspects, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one of the metagenes. In an alternative embodiment, the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from a plurality of the metagenes.

Suitably, the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene comprise one or a plurality of genes listed in Table 22.

In particular embodiments, the one or plurality of overexpressed genes and the one or plurality of underexpressed genes are from one or a plurality of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene.

According to the method of the eleventh and twelfth aspects, the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes includes comparing an average expression level of the one or plurality of overexpressed genes and/or an average expression level of the one or plurality of underexpressed genes. This may include calculating a ratio of the average expression level of the one or plurality of overexpressed genes and the average expression level of the one or plurality of underexpressed genes. Suitably, the ratio provides an aggressiveness score which is indicative of, or correlates with, cancer aggressiveness and a less favourable prognosis. Alternatively, the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes includes comparing the sum of expression levels of the one or plurality of overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes. This may include calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes.

In a thirteenth aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of determining an expression level of one or a plurality of genes associated with chromosomal instability in one or a plurality of non-mitotic cancer cells of the mammal, wherein a higher expression level indicates or correlates with relatively increased responsiveness of the cancer to the anti-cancer treatment

Suitably, the one or plurality of genes associated with chromosomal instability are selected from the group consisting of: TTK, CEP55, FOXM1 and SKIP2 and/or any CIN genes listed in Table 4.

In a fourteenth aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In certain embodiments, the genes associated with chromosomal instability are of a CIN metagene. Non-limiting examples include genes selected from the group consisting of: ATP6V1C1, RAP2A, CALM1, COG8, HELLS, KDM5A, PGK1, PLCH1, CEP55, RFC4, TAF2, SF3B3, GPI, PIR, MCM10, MELK, FOXM1, KIF2C, NUP155, TPX2, TTK, CENPA, CENPN, EXOl, MAPRE1, ACOT7, NAE1, SHMT2, TCP1, TXNRD1, ADM, CHAF1A and SYNCRIP. Preferably, the genes are selected from the group consisting of: MELK, MCM10, CENPA, EXOl, TTK and KIF2C.

In certain embodiments, the genes associated with estrogen receptor signalling are of an ER metagene. Non-limiting examples include genes selected from the group consisting of: BTG2, PIK3IP1, SEC14L2, FLNB, ACSF2, APOM, BIN3, GLTSCR2, ZMYND10, ABAT, BCAT2, SCUBE2, RUNX1, LRRC48, MYBPC1, BCL2, CHPT1, ITM2A, LRIG1, MAPT, PRKCB, RERE, ABHD14A, FLT3, TNN, STC2, BATF, CD1E, CFB, EVL, FBXW4, ABCB1, ACAA1, CHAD, PDCD4, RPL10,

RPS28, RPS4X, RPS6, SORBSI, RPL22 and RPS4XP3. Preferably, the genes are selected from the group consisting of: MAPT and MYB.

Suitably, the method of this aspect further includes the step of comparing an expression level of one or a plurality of other overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFClR1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and/or an expression level of one or a plurality of other underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSl and SRPK3 in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of other overexpressed genes compared to the one or plurality of other underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In one embodiment, the one or plurality of other overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP31, CA9, CAMSAP1, CARHSP1, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFC1R1, KCNG1, MAP2K5, NDUFC1, PML, STAU1, TXN and ZNF593.

In one embodiment, the one or plurality of other underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDL3B and ZNRD1-AS1.

In certain embodiments, the comparison of the expression level of the one or plurality of other overexpressed genes and/or the expression level of the one or plurality of other underexpressed genes is integrated with the comparison of the expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or the expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling to derive a first integrated score, which is indicative of, or correlates with, responsiveness of the cancer to the anti-cancer treatment. By way of example, the first integrated score may be derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation. Preferably, the integrated score is derived by exponentiation,
wherein the comparison of the expression level of the one or plurality of other overexpressed genes and the expression level of the one or plurality of other underexpressed genes is raised to the power of the comparison of the expression level of the one or plurality of overexpressed genes associated with chromosomal instability and the expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling.

In a fifteenth aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFClR1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLCl1A1, BRD4, APOBEC3A, CDIA, CDIB, CDIC, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSl and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In one embodiment, the one or plurality of overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP31, CA9, CAMSAP1, CARHSP1, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFC1R1, KCNG1, MAP2K5, NDUFC1, PML, STAU1, TXN and ZNF593.

In one embodiment, the one or plurality of underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDL3B and ZNRDI-AS1.

Suitably, the method of the eleventh, twelfth, thirteenth, fourteenth and fifteenth aspects further includes the step of comparing an expression level of a one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and/or an expression level of
one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

Suitably, the comparison of the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins is to thereby derive an integrated score. In one particular embodiment, the comparison of the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins is integrated with:
(i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling to derive a second integrated score; or
(ii) the first integrated score to derive a third integrated score; or
(iii) the comparison of the expression level of the overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1 and/or the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CDIB, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLN1, MTMR7, SORBSI and SRPK3 to derive a fourth integrated score; or
(iv) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development
metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the PostTranslational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene, to derive a fifth integrated score; or
(v) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score.
wherein the second, third, fourth, fifth and/or sixth integrated score is indicative of, or correlates with, responsiveness of the cancer to the anti-cancer treatment.

In particular embodiments the first, second, third, fourth, fifth and/or sixth integrated score are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation.

In a preferred embodiment, the first, second and/or third integrated scores are derived, at least in part, by exponentiation wherein the comparison of the expression level of the other overexpressed genes and/or the expression level of the other underexpressed genes is raised to the power of
(i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling; and/or
(ii) the comparison of the expression level of the overexpressed proteins and/or the expression level of the underexpressed proteins.

In a sixteenth aspect, the invention provides method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2,

AKT1, NFKB 1, HER2, ASNS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD 50, PGR, COL6A1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

Suitably, the anticancer treatment of the eleventh, twelfth, thirteenth, fourteenth, fifteenth and sixteenth aspects is selected from the group consisting of endocrine therapy, chemotherapy, immunotherapy and a molecularly targeted therapy. In certain embodiments, the anticancer treatment comprises an anaplastic lymphoma kinase (ALK) inhibitor, a BCR-ABL inhibitor, a heat shock protein 90 (HSP90) inhibitor, an epidermal growth factor receptor (EGFR) inhibitor, a poly (ADP-ribose) polymerase (PARP) inhibitor, retinoic acid, a B-cell lymphoma 2 (Bcl2) inhibitor, a gluconeogenesis inhibitor, a p38 mitogen-activated protein kinase (MAPK) inhibitor, a mitogen-activated protein kinase kinase $1 / 2$ (MEK1/2) inhibitor, a mammalian target of rapamycin (mTOR) inhibitor, a phosphatidylinositol-4,5bisphosphate 3-kinase (PI3K) inhibitor, an insulin-like growth factor 1 receptor (IGF1R) inhibitor, a phospholipase $\mathrm{C}-\gamma$ (PLC γ) inhibitor, a c-Jun N -terminal kinase (JNK) inhibitor, a p21-activated kinase-1 (PAK1) inhibitor, a spleen tyrosine kinase (SYK) inhibitor, a histone deacetylase (FDDAC) inhibitor, a fibroblast growth factor receptor (FGFR) inhibitor, an X-linked inhibitor of apoptosis (XIAP) inhibitor, a polo-like kinase 1 (PLK1) inhibitor, an extracellular-signal-regulated kinase 5 (ERK5) inhibitor and combinations thereof.

Suitably, the method of the eleventh, twelfth, thirteenth, fourteenth, fifteenth and sixteenth aspects further includes the step of administering to the mammal a therapeutically effective amount of the anticancer treatment. Preferably, the anticancer treatment is administered when the altered or modulated relative expression level indicates or correlates with relatively increased responsiveness of the cancer to the anti-cancer treatment.

In a seventeenth aspect, the invention provides a method of predicting the responsiveness of a cancer to an immunotherapeutic agent in a mammal, said method including the step of comparing an expression level of one or a plurality of
overexpressed genes selected from the group consisting of ADORA2B, CD36, CETN3, CFDP1, KCNG1, LAMA3, NAE1, MAP2K5, PGK1, SF3B3, STAU1 and TXN and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting oiAPOBEC3A, BTN2A2, BCL2, CAMK4, FBXW4, CAMSAP1, CARHSP1, GSK3B, HCFC1R1, PSEN2, MYB and ZNF593, , in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the immunotherapeutic agent.

Suitably, the immunotherapeutic agent is an immune checkpoint inhibitor. Preferably, the immune checkpoint inhibitor is or comprises an anti-PDl antibody or an anti-PDLl antibody.

In an eighteenth aspect is provided a method of predicting the responsiveness of a cancer to an epidermal; growth factor receptor (EGFR) inhibitor in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of NAE1, GSK3B, TAF2, MAPRE1, BRD4, STAU1, TAF2, PDCD4, KCNG1, ZNRD1-AS1, EIF4B, HELLS, RPL22, ABAT, BTN2A2, CD1B, ITM2A, BCL2, CXCR4, and ARNT2 and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting oiCDIC, CD1E, CD1B, KDM5A, BATF, EVL, PRKCB, HCFCIR1, CARHSP1, CHAD, KIR2DL4, ABHD5, ABHD14A, ACAA1, SRPK3, CFB, ARNT2, NDUFC1, BCL2, EVL, ULBP2, BIN3, SF3B3, CETN3, SYNCRIP, TAF2, CENPN, ATP6V1C1, CD55 and ADORA2B in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the EGFR inhibitor.

In a nineteenth aspect is provided a method of predicting the responsiveness of a cancer to a multikinase inhibitor in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of SCUBE, CHPT1, CDC1, BTG2, ADORA2B and BCL2, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of NOP2, CALR, MAPRE1, KCNG1, PGK1, SRPK3,

RERE, ADM, LAMA3, KIR2DLA, ULBP2, LAMA4, CA9, and BCAP31, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the multikinase inhibitor.

Suitably, for the method of the seventeenth, eighteenth and nineteenth aspects, a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a relatively increased responsiveness of the cancer to the immunotherapeutic agent, EGFR inhibitor or multikinase inhibitor; and/or a lower relative expression level of the one or aplurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a relatively decreased responsiveness of the cancer to the immunotherapeutic agent, EGFR inhibitor and/or multikinase inhibitor.

In some embodiments, the method of the seventeenth, eighteenth and nineteenth aspects further includes the step of administering to the mammal a therapeutically effective amount of the immunotherapeutic agent, the EGFR inhibitor or the multikinase inhibitor respectively. Preferably, the immunotherapeutic agent, the EGFR inhibitor or the multikinase inhibitor is administered when the altered or modulated relative expression level indicates or correlates with relatively increased responsiveness of the cancer to the immunotherapeutic agent, the EGFR inhibitor or the multikinase inhibitor respectively.

Suitably, for the methods of the aforementioned aspects, the step of comparing an expression level of one or a plurality ofoverexpressed genes or proteins and an expression level of one or a plurality of underexpressed genes or proteins, includes comparing an average expression level of the one or plurality of overexpressed genes or proteins and an average expression level of the one or plurality of underexpressed genes or proteins. This may include calculating a ratio of the average expression level of the one or plurality of overexpressed genes or proteins and the average expression level of the one or plurality of underexpressed genes or proteins. Suitably, the ratio provides an aggressiveness score which is indicative of, or correlates with, cancer aggressiveness and a less favourable prognosis. Alternatively, the step of comparing an expression level of one or a
plurality of overexpressed genes and an expression level of one or a plurality of underexpressed genes or proteins, includes comparing the sum of expression levels of the one or plurality of overexpressed genes or proteins and the sum of expression levels of the one or plurality of underexpressed genes or proteins. This may include calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes or protein and the sum of expression levels of the one or plurality of underexpressed genes or proteins.

In certain embodiments of the aforementioned methods, the mammal is subsequently treated for cancer.

In a twentieth aspect, the invention provides a method for identifying an agent for use in the treatment of cancer including the steps of:
(i) contacting a protein product of GRHPR, NDUFCl, CAMSAP1, CETN3, EIF3K, STAU1, EXOSC7, COGS, CFDPl and/or KCNGl with a test agent; and
(ii) determining whether the test agent, at least partly, reduces, eliminates, suppresses or inhibits the expression and/or an activity of the protein product.

Suitably, the agent possesses or displays little or no significant off-target and/or nonspecific effects.

Preferably, the agent is an antibody or a small organic molecule.
In a twenty first aspect, the invention provides an agent for use in the treatment of cancer identified by the method of the eighteenth aspect.

In a twenty second aspect, the invention provides a method of treating a cancer in a mammal, including the step of administering to the mammal a therapeutically effective amount of an agent identified by the method of the eighteenth aspect.

Preferably, for the invention of the twentieth, twenty first and twenty second aspects, the cancer has an overexpressed gene selected from the group consisting of GRHPR, NDUFCl, CAMSAP1, CETN3, EIF3K, STAU1, EXOSC7, COGS, CFDPl, $\boldsymbol{K C N G l}$ and any combination thereof.

Suitably, the method of the aformentioned aspects further includes the step of determining, assessing or measuring the expression level of one or plurality of the overexpressed genes, the underexpressed genes, the overexpressed proteins and/or the underexpressed proteins described herein.

Suitably, the mammal referred to in the aforementioned aspects and embodiments is a human.

In certain embodiments of the invention of the aforementioned aspects, the cancer includes breast cancer, lung cancer inclusive of lung adenocarcinoma and lung squamous cell carcinoma, cancers of the reproductive system inclusive of ovarian cancer, cervical cancer, uterine cancer and prostate cancer, cancers of the brain and nervous system, head and neck cancers, gastrointestinal cancers inclusive of colon cancer, colorectal cancer and gastric cancer, liver cancer inclusive of hepatocellular carcinoma, kidney cancer inclusive of renal clear cell carcinoma and renal papillary cell carcinoma, skin cancers such as melanoma and skin carcinomas, blood cell cancers inclusive of lymphoid cancers and myelomonocytic cancers, cancers of the endocrine system such as pancreatic cancer and pituitary cancers, musculoskeletal cancers inclusive of bone and soft tissue cancers, although without limitation thereto. By way of example, breast cancer includes aggressive breast cancers and cancer subtypes such as triple negative breast cancer, grade 2 breast cancer, grade 3 breast cancer, lymph node positive (LN^{+}) breast cancer, HER2 positive (HER2+) breast cancer and ER positive (ER+) breast cancer, although without limitation thereto.

Unless the context requires otherwise, the terms "comprise", "comprises" and "comprising", or similar terms are intended to mean a non-exclusive inclusion, such that a recited list of elements or features does not include those stated or listed elements solely, but may include other elements or features that are not listed or stated.

The indefinite articles ' a ' and ' $a n$ ' are used here to refer to or encompass singular or plural elements or features and should not be taken as meaning or defining "one" or a "single" element or feature.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1: Correlation of breast cancer subtypes and the aggressiveness gene list. The METABRIC dataset was visualized according to the expression of the 206 genes (Table 4) in the aggressiveness gene list. The aggressiveness score for each tumor was calculated as the ratio of the CIN metagene (average value for CIN genes expression) to the ER metagene (average value for ER genes expression). (A) The expression of the aggressiveness gene list according to the GENIUS histological classification. Box plot shows the aggressiveness score of the histological subtypes. (B) The overall survival of patients in the METABRIC dataset was analyzed
according to the aggressiveness score (upper row: by quartiles; lower row: by median) in all patients, non-TNBC patients and in patients with ER+ Grade 2 tumors. The hazard ratio (HR) and confidence interval (CI) and p-value for comparisons of upper quartile vs. lower quartiles (upper row) and at the dichotomy across the median (high vs. low) are shown (Log-rank Test, GraphPad ${ }^{\circledR}$ Prism). The number of patients (n) in each group is shown in brackets.

Figure 2: Network analysis of the aggressiveness gene list. (A) Ingenuity pathway analysis was performed using direct interactions on the 206 genes in the aggressiveness gene list (red is overexpressed and green is underexpressed). One network of high direct interactions was identified. (B) The genes in the network in A were investigated for their correlation with the aggressiveness score and overall survival (Table 5) and eight genes (MAPT, MYB, MELK, MCM10, CENPA, EXOl, TTK and KIF2C) with the highest correlation were still connected in a direct interaction network. (C) The overall survival of patients in the METABRIC dataset was analyzed according to score from the 8 genes in C (upper row: by quartiles; lower row: by median) in all patients, non-TNBC patients and in patients with ER+ Grade 2 tumors.

Figure 3: Survival of patients stratified by the $\mathbf{8}$-genes score in the METABRIC dataset. The overall survival of patients in the METABRIC dataset was analyzed according to the 8 -genes score in selected settings in all patients (A) or in ERpositive patients only (B). (A) TP53 mutation was compared in high vs. low 8 -genes score (split by the median). The expression of the proliferation marker Ki67 was divided by dichotomy across the median and patients in each of these groups were then stratified according to their 8 -genes score (split by quartiles). Disease stages (Stage I - Stage III) were stratified by the median 8 -genes score. (B) ER + Grade 3, ER+ lymph node negative (LN-) and ER+ LN+ tumors were stratified by the quartiles.

Figure 4: The 8-genes score associates with survival of breast cancer patients. Four published datasets were used to validate the 8 -genes score as a predictor of survival. The 8 -genes score was calculated for tumors in each of the datasets and the survival of patients was stratified according to the median 8 -genes score; (A) GSE2990 ${ }^{15}$, (B) GSE349465, (C) GSE203466 and (D) GSE25066 ${ }^{53}$. The hazard ratio (HR) and confidence interval (CI) and p-value for comparisons high vs. low 8 -genes score are shown in the Kaplan-Meier survival curves (Log-rank Test, GraphPad ${ }^{\circledR}$

Prism). The number of patients (n) is shown in brackets. The table in each panel show multivariate survival analysis in the using Cox-proportional hazard model including all available conventional indicators.

Figure 5: Therapeutic targets in the aggressiveness gene list. (A) The TNBC cell lines, MDA-MB-231, SUM159PT and Hs578T were treated with control siRNA (Scrambled, Sc CTRL) or siRNA targeting the specified genes and the survival of these cells was compared on day 6 . Data shown is the average from the three cell lines where each cell line was treated in triplicate. * $\mathrm{p}<0.05$, ${ }^{* *} \mathrm{p}<0.01$ and ${ }^{* * *}$ <0.001 from One-Way ANOVA analysis performed using GraphPad ${ }^{\circledR}$ Prism. Data for individual cell lines is shown in Table 5. (B) A panel of breast cancer cell lines was used to prepare lysates for immunoblotting of TTK. Tubulin was used as the loading control. (C) Dose response curves for the treatment of breast cancer cell lines in the absence or presence of escalating doses of the TTK inhibitor (TTKi) AZ3146. The survival of cells was measured using the CellTitre ${ }^{\circledR}$ MTS/MTA assay carried out 6 days after treatment. Percentage survival ($\mathrm{n}=3$ per dose) was calculated as the percentage of the signal from treated cells to that from control cells. (D) The concentration of TTK required to affect the survival of 50% of the cells (IC50) was measured by GraphPad ${ }^{\circledR}$ Prism from the dose response curves in C for each cell line.
Figure 6: TTK protein expression associates with breast cancer survival. The overall survival of patients in a large cohort of breast cancer patients ($n=409$) was stratified according to TTK staining by IHC (scores 0-3). Kaplan-Meier survival curves are shown for all patients (A) with four TTK staining (categories 0-3) and (B) two categories ($0-2$ vs. 3). Log-rank Test and p -value were used for survival curves. (C) The distribution of high TTK staining (category 3) across histological subgroups and mitotic indices. Data shown is the mitotic index (median + range) measured as the number of mitotic cells in 10 high power fields (hpf). The number of tumors with high TTK staining to the total number of tumors in the cohort is shown on the right. High TTK expression distributed across subtypes and did not associate with mitotic index.

Figure 7: TTK associates with aggressive subtypes and is a therapeutic target. (A) Kaplan-Meier survival curves are shown for Grade 3 tumors, lymph node positive patients $\left(\mathrm{LN}^{+}\right)$and LN^{+}patients with grade 3 tumors. Log-rank Test and pvalue were used for these survival curves. For patients with TNBC, and HER2, survival was statistically significant using the Gehan-Breslow-Wilcoxon test (p-
values marked by asterisks) which gives more weight to deaths at early time points. The poorer survival of patients with high Ki67 tumors and high TTK staining was a trend but did not reach significance. Survival curves and statistical analyses were performed using GraphPad ${ }^{\circledR}$ Prism. (B) TNBC and non-TNBC cell lines were treated for 6 days with the specified concentrations of docetaxel (doc) alone, TTK inhibitor (TTKi) alone of the combinations. The survival of cells was measured using the MTS/MTA assay as described in Methods. ${ }^{* * *} \mathrm{p}<0.001$ comparing the combination to single agents and to non-TNBC cell lines from Two-Way Anova in GraphPad ${ }^{\circledR}$ Prism. (C) MDA-MB-23 1 cells were treated with docetaxel or TTKi alone or in combination and collected at 96 hours to perform apoptosis assays by flow cytometry. Early apoptotic cells were defined as annexin V+/7-AAD-.

Figure 8: Global gene expression meta-analysis of genes deregulated in TNBC, metastatic events and death at 5 years in Oncomine ${ }^{\mathrm{TM}}$. (A) TNBC in 8 datasets were compared to non-TNBC, (B) tumors with metastatic events at 5 years were compared to those with no metastatic events at 5 years in 7 datasets and (C) tumors leading to death at 5 years were compared to those that did not lead to death at 5 years were compared in 7 datasets. The datasets used in the comparisons are stated in the legends and the key for the heatmap coloring is also included. The heatmap key denotes the top or bottom $\mathrm{x} \%$ placement of a gene according to gene rank which is based on the p -value.

Figure 9: The derivation of the 206 aggressiveness gene list. (A and B) are Venn diagrams for the top overexpressed genes and bottom underexpressed genes shared between TNBC and/or metastasis and death at 5 years analyses in Oncomine ${ }^{\mathrm{TM}}$. (C and D) The Venn diagrams from A and B were crossed with genes which were deregulated in TNBC in comparison to adjacent normal breast tissue from the METABRIC dataset. The genes marked in bold in panels C and D are the 206 genes which constitute the unfiltered aggressiveness gene list.

Figure 10: Common genes between the 206 aggressiveness gene list and metagene attractors. Venn diagrams show common genes (in bold) between the 206 aggressiveness gene list and the chromosomal instability (CIN), lymphocytespecific and ER attractors (Cheng et al 2013a, Cheng et al 2013b). The table below lists the shared genes. The 6 overexpressed genes (marked in red) and 2 underexpressed genes (marked in green) which constitute the 8 -genes signature in this study are shown. Gene set enrichment analysis of the remaining 140 genes which
were only present in the 206 gene signature reveal that these genes function in cell cycle.
Figure 11: Correlation of breast cancer subtypes and the aggressiveness gene list. The METABRIC dataset was visualized according to the expression of the 206 genes in the aggressiveness gene list. The aggressiveness score for each tumor was calculated as the sum of normalized z -score expression values of overexpressed genes divided by that of underexpressed genes. (A and B) The expression of the aggressiveness gene list was visualized according to PAM50 intrinsic subtypes and the integrative clusters classification. Box plots show the aggressiveness score of these subtypes. The shaded lines in box plots mark the median value for the aggressiveness score. ${ }^{* * *} \mathrm{p}<0.001$ One-Way ANOVA using GraphPad ${ }^{\circledR}$ Prism. Kaplan-Meier curves are of overall survival of patients in the METABRIC dataset stratified according to the quartiles (left plot) or the median (middle plot) of the aggressiveness score in ER+ patients with Grade 3 tumors. Tumors of the five PAM50 intrinsic subtypes which show high aggressiveness score (higher than the median) did not show statistical difference in overall survival (right plot). The hazard ratio (HR) and the 95% confidence interval (CI) and the p-value are reported using the Log-rank Test.

Figure 12: Survival of the PAM50 breast cancer subtypes in the METABRIC dataset according to the aggressiveness score. The survival of patients in the METABRIC dataset annotated based on the PAM50 subtypes was analyzed by dichotomy across the median aggressiveness score from the 206 gene list (A) and the reduced 8 gene list (B). The p -value are reported using the Log-rank Test in GraphPad ${ }^{\circledR}$ Prism and show that all tumors with the different PAM50 subtypes but high aggressiveness score did not show a difference in patient survival (left graphs), whereas the PAM50 subtypes showed significantly different survival only in low aggressiveness score setting.

Figure 13: TTK staining association with patient survival. The overall survival of patients in a large cohort of breast cancer patients ($\mathrm{n}=409$) was stratified according to TTK staining by IHC (scores 0-3). Kaplan-Meier survival curves are shown for all patients (with four TTK staining categories $0-3$ and two categories ($0-2$ vs. 3) with 10 and 20 years follow up. Log-rank Test and p-value were used for survival curves of all patients. There were no statistical differences in the survival of patients with

Grade 1, Grade 2 or hormone positive tumors when stratified by TTK expression. Survival curves and statistical analyses were performed using GraphPad ${ }^{\circledR}$ Prism.

Figure 14: Criteria used for assigning 'prognostic subgroups' in this study.
Figure 15: Panel 1: Overall survival curves of lung cancer patients split by ten (10) CIN and two (2) ER genes as a signature; patients are low or high according to the median of the signature; Panel 2: Survival curves for lung adenocarconima split by ten (10) CIN genes and two (2) ER genes as a signature; patients are low or high according to the median of the signature; Panel 3: Survival curves for lung adenocarconima (10 years) split by ten (10) CIN genes and two (2) ER genes as a signature; patients are low or high according to the median of the signature; Panel 4: Survival curves for lung adenocarconima split by six (6) CIN genes and two (2) ER genes as a signature; patients are low or high according to the median of the signature; and Panel 5: Survival curves for lung adenocarconima (10 years) split by six (6) CIN genes and two (2) ER genes as a signature; patients are low or high according to the median of the signature.

Figure 16: (A) RNA-Seq data from the breast cancer cohort of The Cancer Genome Atlas (TCGA) data. (B) Recurrence-free survival of breast cancer patients in the TCGA stratified by the Aggressiveness score compared to the OncotypeDx recurrence score. (C) Comparison of copy number variations (CNVs) of breast tumours with high aggressiveness score to those with low aggressiveness score.

Figure 17: (A) RNA-Seq data from all cancers of The Cancer Genome Atlas (TCGA) data. (B) Recurrence-free survival of all cancer patients in the TCGA stratified by the Aggressiveness score compared to the OncotypeDx recurrence score.

Figure 18: Recurrence-free survival or overall survival of cancer patients with different cancer types in the TCGA data patients stratified by the 8 -genes aggressiveness score.

Figure 19: Outline of Example 2. Meta-analysis was performed in Oncomine ${ }^{\mathrm{TM}}$ using breast cancer datasets irrespective of subtypes or gene expression array platforms used. The global gene expression profiles of breast tumors that led to metastatic or death event within 5 years were compared to those that did not and the top overexpressed (OE) and underexpressed genes (UE) in these comparisons were selected. The commonly deregulated genes in the primary tumors that led to metastatic and death events (depending on the annotation of each dataset) were then interrogated using the online tool KM-Plotter ${ }^{\mathrm{TM}}$ ($\mathrm{n}>4000$ patients with some overlap
with the datasets in Oncomine ${ }^{\mathrm{TM}}$). Only genes which associated with relapse-free survival (RFS), distant metastasis-free survival (DMFS) or overall survival (OS) of basal-like breast cancer (BLBC) or ER-negative (ER) breast cancer were selected. The 96 genes from this training were then shortlisted to 28 genes by selecting the most significant and persistent across the different outcomes (RFS, DMFS and OS). The 28 -gene signature was then validated in large cohorts of breast cancer gene expression studies including The Cancer Genome Atlas (TCGA) dataset the Research Online Cancer Knowledgebase (ROCK) dataset and the homogenous TNBC dataset for prognostication of ER-, TNBC and BLBC subtypes. Finally, the TN signature was then investigated for association with pathological complete response (pCR) after neoadjuvant chemotherapy in studies which performed gene expression profiling prior to therapy.

Figure 20: The 28-gene TN signature associates with RFS, DMFS and OS of BLBC and ER- breast cancer. The 21 overexpressed and 7 underexpressed genes were used as a signature in the online tool KM-Plotter. The signature (the average expression of the 21 overexpressed genes and the inverted expression of the 7 underexpressed genes) stratified the RFS, DMFS and OS; low: under the median of the expression of the signature and high: over the median of the expression of the signature. The hazard ratio (HR) and log-rank p-value (p) for the univariate survival analyses were generated by KM-Plotter. $\mathrm{n}=$ number of patients.

Figure 21: The prognostication by the TN score outperforms standard clinicothapological indicators in TNCBC, BLBC and ER- breast cancer subtypes. Two datasets, (A) the TNBC dataset and (B\&C) the ROCK dataset, were analyzed for the TN signature and the TN score was calculated as the ratio of the average expression of the 21 overexpressed genes to that of the 7 underexpressed genes. This score was calculated for each tumor and the median TN score over the entire dataset was used to classify tumors as high (above the median) or low (below the median) for the TN score. (A) RFR of TNBC patients in the TNBC cohort stratified by dichotomy across the median TN score in the cohort. Table under the survival curve shows univariate and multivariate survival analysis for the TN score and other available clinical indicators recorded in the dataset. The TN score outperformed all the clinical indicators in the multivariate analysis. (B) RFS and DMFS of BLBC in the ROCK dataset stratified by dichotomy across the median TN score in the dataset. The table under the survival curves shows multivariate survival
analysis for the TN score against other available clinical indicators recorded in the dataset. The TN score outperformed all the clinical indicators in the multivariate analysis of BLBC cases. (C) The RFS and DMFS of ER- negative breast cancer were stratified by the TN score (data not shown) and the table shows the multivariate survival analysis that the TN score outperforms clinical indicators in ER breast cancer cases.

Figure 22: The TN score stratifies the overall survival of ER- breast cancer patients in the TCGA dataset. The gene expression data using the Illumina HiSeq RNA-seq arrays from the TCGA breast cancer data ($\mathrm{n}=1106$) were used to calculate the TN score for all tumors. Tumors were classified as high or low for the TN score by dichotomy across the median TN score. The overall survival (OS) of ER- breast cancer cases with high TN score were compared to those with low TN score. The table below the survival curve shows that the TN score is more significant than other clinical indicators in univariate survival analysis and it is the only significant prognostic indicator in multivariate survival analysis.

Figure 23: The TN score associates with pCR after chemotherapy in ER-HER2breast cancer. Gene expression datasets which profiled tumors prior to neoadjuvant chemotherapy and recorded pathological complete responses (pCR) vs. no pCR or residual disease (RD) were analyzed for the TN signature and the TN score was calculated for each tumor. Tumors were classified as high or low TN score by dichotomy across the median TN score in each dataset. Only ER-HER2- cases were used in the data shown in the Figure. (A) Graphs showing the percentage of cases achieving (red bars) or not achieving (black bars) pCR in low and high TN score subgroups. Fisher's exact test was used to analyze the 2×2 contingency tables and the p-value from this test was reported when statistical significance was observed. The dotted line marks the 31% pCR rate reported in literature for TNBC. Each dataset is labeled with the accession number and the chemotherapy regimen used, namely: GSE18728, GSE50948, GSE20271, GSE20194, GSE22226, GSE42822 and GSE23988. Chemotherapy abbreviation: 5-FU, Adriamycin, Cyclophosphamide, Taxane, x : Xeloda, Methotrexate, Epirubicin. (B) The dataset GSE22226 from the ISPY-1 trial was used to compare the TN score and pCR in the prediction of ER^{-} patient survival after neoadjuvant chemotherapy as this dataset also recorded RFS. pCR strongly associated with RFS (first panel) as previously reported. the TN score (next three panel) was not only predictive of survival in the these patients but could
also stratified the survival of patients achieving or not achieving pCR, indicated the TN score as an independent prognostic factor for pCR after neoadjuvant chemotherapy.
Figure 24: Drug sensitivity of cancer cell lines according to the TN score. The large published study by Garnett et al. was investigated where the TN score was calculated for each cell line in the study as described in Methods. The cell lines were classified as high or low TN score according to the median TN score to compare the sensitivity of low TN score cell lines (white boxes) and high TN score cell lines (red boxes). Graphs were prepared using GraphPad ${ }^{\circledR}$ Prism showing sensitivity as $\log 10[$ IC50] in boxes (with median marked by a line) and whiskers (marking the 1st and 3rd quartiles and outliers as dots according to Tukey method for plotting the whiskers and outliers). Unpaired two-tailed t test was used for statistical analysis.

Figure 25: The iBCR score stratifies the survival of all breast cancer patients irrespective of ER status in the ROCK dataset. The TN and Agro scores were calculated for each tumor in the ROCK dataset ($\mathrm{n}=1570$, Affymetrix) and then the iBCR score was calculated as the TN score to the power of the Agro score. The RFS of all patients and the RFS of ER- or ER+ patients only was compared between high score and low score by dichotomy across the median score for each of the scores. The iBCR score was prognostic in all patients as well as ER- and ER+ subsets with better separation between low score and high score tumors (increased hazard ratio [HR] and limits of the 95% confidence intervals and decreased log rank p-value). Graphs and the univariate survival analysis using the \log rank test were performed using GraphPad ${ }^{\circledR}$ Prism.

Figure 26: The iBCR score stratifies the survival of all breast cancer patients irrespective of ER status in the TCGA dataset. The TN. Agro and the iBCR scores were calculated for each tumor in the TCGA dataset ($\mathrm{n}=1106$, Illumina RNA-Seq). The RFS of all patients and the RFS of ER- or ER+ patients only was compared between high score and low score. As in the results in the ROCK dataset in Figure 7, The iBCR score was prognostic in all patients as well as ER- and ER+ subsets with better separation between low score and high score tumors.

Figure 27: The iBCR score associates with RFS and pCR after chemotherapy in the ISPY-1 trial. The dataset GSE22226 from the ISPY-1 trial was used to compare the Agro, TN and the integrated iBCR score in the prognosis and association with pCR after chemotherapy (Adriamycin, Cyclophosphamide and Taxane) in ERTTER2 ${ }^{-}$
and ER^{+}breast cancer subtypes. Tumors were classified as high or low score by dichotomy across the median of each score in the entire dataset. High iBCR score ERTTER2 ${ }^{-}$tumors were less likely to achieve pCR and these patients had poor survival. High $\mathrm{iBCR} E R^{+}$patients were more likely to achieve pCR but since a small number of ER^{+}patients achieved (10/62 [16\%]), the survival of high iBCR ER+ patients remained poor. Note that the Agro score identifies all but two ER-HER2tumors as high score, thus the data from this group should not be interpreted. Also note that the Agro score is highly prognostic of survival and association with pCR in $E R^{+}$whereas the TN score is not in these patients. The integration of these two scores in the iBCR score has overcame the limitation of each of these subtypespecific scores.

Figure 28: The iBCR score associates with pCR after chemotherapy in breast cancer. Gene expression datasets with pCR annotation after chemotherapy were used as described in Figure 5 to calculate the Agro and TN scores and the integrated iBCR score. Tumors were classified as high or low score by dichotomy across the median of each score in each dataset. (A) ERTTER2 cases with graphs showing the percentage of cases achieving (red bars) or not achieving (black bars) pCR in low and high score subgroups. (B) ER^{+}cases were analyzed as in A. Fisher's exact test was used to analyze the 2×2 contingency tables and the p -value from this test was reported when statistical significance was observed. Each dataset is labeled with the accession number and the chemotherapy regimen used, namely: GSE18728, GSE50948, GSE20271, GSE20194, GSE22226, GSE42822 and GSE23988. Chemotherapy abbreviation: 5-FU, Adriamycin, Cyclophosphamide, Taxane, X: Xeloda, Methotrexate, Epirubicin.

Figure 29: The iBCR score stratifies the survival of tamoxifen-treated ER+ patients. The Agro and TN scores and the iBCR score were calculated in two datasets of gene expression profiling prior to tamoxifen therapy: A\&B. GSE6532 with 327 patients. 137 untreated and 190 tamoxifen-treated; C:GSE17705 with 298 patients treated with tamoxifen for 5 years. (A) ER+ NO patients with high iBCR score have poor RFS compared low iBCR score counterparts. (B) RFS of all ER+ patients and NO and N1 subsets stratified by the Agro and iBCR scores. (C) DMFS survival of all ER+ and NO and N1 subsets stratified by the Agro and iBCR scores. The hazard ratios and log-rank p-values are more significant for the iBCR score than the Agro score although the Agro score was significantly prognostic.

Figure 30: Drug sensitivity of cancer cell lines according to the iBCR score. The large published study by Garnett et al. was investigated where the iBCR score was calculated for each cell line from the Agro and TN scores. The cell lines were classified as high or low iBCR score according to the median iBCR score to compare the sensitivity of low iBCR score cell lines (white boxes) and high TN score cell lines (red boxes). Results according to low and high Agro score were also included. Graphs were prepared using GraphPad ${ }^{\circledR}$ Prism and unpaired two-tailed t test was used for statistical analysis (n.s. not significant).

Figure 31: Global gene expression meta-analysis of genes deregulated in primary breast tumors with metastatic events or death at 5 years in Oncomine ${ }^{\mathrm{TM}}$. (A) tumors with metastatic events at 5 years were compared to those with no metastatic events at 5 years in 7 datasets and (B) tumors leading to death at 5 years were compared to those that did not lead to death at 5 years were compared in 7 datasets. The datasets used in the comparisons are stated in the legends and the key for the heatmap coloring is also included. The heatmap key denotes the top or bottom $\mathrm{x} \%$ placement of a gene according to gene rank which is based on the p -value.

Figure 32: The TN signature outperforms all published signatures for TNBC/BLBC. Relapse-free survival of basal-like breast cancer patients (BLBC) was investigated in the online database KM-Plotter (Affymetrix platform) according to the TN signature in comparison to published TNBC signatures. Hazard ratios (HR) and logrank p-values were generated by KM-Plotter. (A) the TN score vs. signatures (B) from Karn et al. (PLoS One, 201 1); from Rody et al. (Breast Cancer Res, 201 1) (C) IL8, (D) VEGF, and (E) B-cell metagenes; (F) from Yau et al. (Breast Cancer Res, 2010); (G) from Yu et al. (Clin Cancer Res, 2013); (H) from Lee et al. (PLoS One, 2013 and (I) from Hallet et al. (Sci Rep, 2012).

Figure 33: The TN score stratified the survival of ER ${ }^{-}$patients in the Agilent TCGA data. The original TCGA dataset using the Agilent microarrays ($\mathrm{n}=597$) were analyzed for the TN score where patients were assigned as low, intermediate or high for the TN score according to tertiles. The RFS of ER- patients only were then compared according to these tertiles. The stratification was significant according to a log-rank survival test ($\mathrm{P}<0.0001$). High TN score group vs. low TN score group had a hazard ratio (95% confidence interval) of 3.484 (1.035 to 11.23) with a log rank pvalue of 0.0179 .

Figure 34: The prognostication by the TN score in ER- and BLBC is not affected by systemic treatment. The online KM-Plotter tool was used to investigate the stratification of RFS, DMFS and OS of ER- breast cancer (top two rows) and BLBC (bottom two rows) in systemically untreated patients (untreated) or in patients who were treated systemically (treated). The HR, the 95% confidence intervals and the log-rank p values were provided by KM-Plotter as well as the number of patients at risk.

Figure 35: Sensitivity of cancer cell lines to anticancer drugs according to the TN score in the Cancer Cell Line Encyclopedia (CCLE) study. The gene expression data of the cancer cell lines in the study were analyzed to calculate the TN score for each cell line and were assigned to low or high TN score by dichotomy across the median. The IC_{50} for each of the 24 drugs used in the CCLE study was compared between high and low TN score cell lines and the data shown are those with statistical differences based on unpaired two-tailed i-test performed using GraphPad ${ }^{\circledR}$ Prism.

Figure 36: Integration of the TN and Agro scores by addition or subtraction. The ROCK dataset was used to study the integration of the TN and Agro score with the aim to develop a test that is breast cancer subtype independent. (A) The raw Agro and TN scores for ER+ (black dots) and ER- (red dots) in the ROCK dataset (each dot represent one patient, $\mathrm{n}=1570$ in total). The two scores are scattered and a method of integration that can retain the information from each score in the relevant breast cancer subtype is necessary. Such methods are tested in this Figure and Figure 38. (B) Addition method. First column shows the TN score in ER+ tumors with low (white boxes) and high (red boxes) Agro score subgroups (top panel). In the bottom panel, the Agro score in ER- tumors with low (white boxes) and high (red boxes) TN score subgroups. This data shows that the TN score is similar for ER+ tumors with low and high Agro scores and that the Agro score is similar for ER- tumors with low and high TN scores. The lack of statistical differences (independence) suggested that integration is possible. The second column shows the linear correlation between the TN score and Agro score when they were added in each patient for ER+ (top panel) and ER- (bottom panel) patients. In the third column, the TN and Agro scores were plotted against the produced summed score showing that the information from each score is retained in the final summed score for both ER+ (top panel) and ER- (bottom panel) patients.. The last column shows the overlap of data from ER+ and ER-
patients shown separately in the second and third columns. (C) Identical analysis as that done in B but the integration was tested by subtraction of the TN and Agro score. The linearity of the relationship between the summed score and each of the single scores (TN and Agro score) indicated that information from each score is represented in the final score. The performance of these two methods (addition or subtraction) was tested for association with survival as shown in Figure 37.

Figure 37: Comparison of different integration methods of the TN and Agro scores for prognostication in ER- and ER+ RFS in the ROCK dataset. The methods of integration by addition or subtraction (from Figure 36) or multiplication or division (Figure 38) were tested for the association of the produced integrated score in the ROCK dataset in ER- or ER+ breast cancer. As shown in the figure, only the addition or multiplication methods were prognostic in ER- breast cancer and the multiplication was more significant in ER+ breast cancer compared to the addition. These two methods are reasonable as subtraction or division methods would reduce the value of one of the scores. Two additional methods were tested, raising one score to the power of the second score since the relationships observed when multiplication and division methods showed exponential or power curves. As shown in the last column (shaded and marked in red box), raising the TN score to the power of the Agro score should superior prognostication in both ER- and ER+ breast cancer subtypes. In fact, the prognostication of this integrated score was better than each of the score in their respective subtypes. The method was therefore used to calculate the integrated Breast Cancer Recurrence (iBCR) score.

Figure 38: Integration of the TN and Agro scores by division or multiplication. The ROCK dataset was used to study the integration of the TN and Agro as these scores were scattered when plotted against each other (panel A in Figure 36). (A) The box plots in the first column are identical to those in Figure 36. The shaded boxes in panel A describe integration by division (top row) or multiplication (bottom row) of the TN and Agro scores. The division produced a power curve and the multiplication produced an exponential curve for the relationship between the TN and Agro scores after dividing them or multiplying them by each other in both ER+ (black dots) and ER- (red dots). The overlay in the last column shows that the differences between ER+ and ER- patients for the scores is retained. These two methods were tested for survival association in Figure 37 and the multiplication method was suitable. (B) As power and exponential curves were observed in the
division and multiplication methods in A , it was reasonable to test integration by raising one score to the power of the second score. As shown in the top row in the overlay or individual plots, the integration by raising the TN score to the power of the Agro score produced a linear relationship in both ER- (red dots) and ER+ (black dots) patients. This method of integration outperformed all other methods when tested for survival association as shown in Figure 37.

Figure 39: The iBCR score is prognostic in TNBC patients. In addition to the validation of the iBCR score in the ROCK dataset (Affymetrix) and the TCGA dataset (Illumina dataset) of mixed subtypes of breast cancer, the iBCR score was investigated in the homogenous TNBC dataset. As shown in the right panel, the iBCR was as prognostic (with slight improvement) compared to the TN score. This further validates the development of the integrated score to be a prognostic test in breast cancer irrespective of ER status, unlike previous limited signatures.

Figure 40: Survival of tamoxifen-treated ER+ patients according to the Agro score vs. Oncotype Dx. (A) RFS and DMFS of node negative (top) and node positive (bottom) ER+ patients treated with tamoxifen in the published study (Loi et al, Clin Oncol, 2007) stratified by the Agro Score (high vs. intermediate vs. low by tertiles). (B) DMFS of node negative or positive ER+ patients treated with tamoxifen for 5 years from the published study (Symmans et al, J Clin Oncol, 2010) was stratified by the tertiles of the Agro Score. (C) RFS and DMFS of node negative (top) and node positive (bottom) ER+ patients treated with tamoxifen in the published study (Loi et al, Clin Oncol, 2007) stratified by the risk groups of the OncotypeDx Recurrence Score. (D) DMFS of node negative or positive ER+ patients treated with tamoxifen for 5 years from the published study (Symmans et al, J Clin Oncol, 2010) was stratified by the risk groups of the OncotypeDx Recurrence Score.

Figure 41: Comparison of the Agro Score and MammaPrint in the KM-Plotter tool. Distant metastasis-free survival according to the Agro Score (high vs. low) or according to MammaPrint (high vs. low) in all breast cancer patients, ER+, ER+ lymph node negative (LN-) or ER+ lymph node positive (LN+) patients. The KMPlotter online tool ($\mathrm{n}=4142$ patients). The Agro score outperformed the MammaPrint signature in all patient subsets particularly for ER+ node positive patients.

Figure 42: Sensitivity of cancer cell lines to anticancer drugs according to the iBCR score in the Cancer Cell Line Encyclopedia (CCLE) study. The gene
expression data of the cancer cell lines in the study were analyzed to calculate the TN score for each cell line and were assigned to low or high iBCR score by dichotomy across the median. The IC_{50} for each of the 24 drugs used in the CCLE study was compared between high and low iBCR score cell lines and the data shown are those with statistical differences based on unpaired two-tailed i-test performed using GraphPad ${ }^{\circledR}$ Prism. As this analysis was also done for the TN score (Figure 35), results from analysis of the Agro score are also shown in the top row.

Figure 43: High copy number variations (CNVs) in high Agro score tumors compared to low Agro score tumors. The breast cancer tumors in the TCGA dataset were classified as high or low for the Agro score based on the gene expression data (Illumina HiSeq RNA-seq). (A) The TCGA copy number variations (segmented and after deletion of germline CNV) were visualized using the UCSC Genome Browser to compare patients who were classified from gene expression data as high Agro score patients (top panel) to those classified as low Agro score patients (bottom panel). (B) Presentation of the distribution of clinical indicators such as ER, PR and HER2 status and others. (C) The difference in the CNVs profile of high Agro score patients to the low Agro score patients showing gains (red) and losses (green) of whole chromosome arms in the high Agro score patients, suggesting aneuploidy.

Figure 44: High Agro and iBCR score cell lines are more sensitive to Aurora kinase inhibitors. Two studies which treated breast cancer cell lines with Aurora kinase inhibitors were analyzed based on the Agro, TN and the iBCR score for these cell lines. As shown in Figure, high Agro score and particularly high iBCR score cell lines were more sensitive to Aurora kinase inhibitors (ENMD-2076: IC50 $1.4 \mu \mathrm{M}$ vs. $5.9 \mu \mathrm{M}$ for high vs. low iBCR Score cell lines, $\mathrm{p}=0.0125$ f-test; AMG 900: IC50 0.3 nM vs. 0.7 nM for high vs. low iBCR score cell lines, $\mathrm{p}=0.0308 t$-test).

Figure 45: The iBCR is prognostic in the pan-cancer TCGA data for overall and relapse-free survival. The pan-cancer TCGA data were analyzed for the iBCR gene signature using the UCSC Genome Browser and the data for this signature, survival data and cancer types were downloaded from the browser. Tumors, irrespective of cancer types, were classified into quartiles based on the iBCR signature expression and the overall and relapse free survival were compared across these quartiles. As shown in the top row, overall and relapse-free survival was stratified by the iBCR signature in this pan-cancer dataset. In the far right panel in the top row, the distribution of tumors in each cancer type across the iBCR signature quartile is
shown. Cervical cancer for example displays high iBCR signature in the majority of cases whereas on the opposite side, thyroid cancer displays low iBCR signature in all the cases. The lower panels show the stratification of overall survival according to the iBCR score from the pan-cancer dataset where the stratification was statistically significant in log-rank univariate survival analysis. In addition to the breast cancer data shown in paper, the iBCR signature was prognostic in adrenocortical cancer, endometrioid cancer, kidney clear cell cancer, bladder cancer, lower grade glioma and melanoma. The iBCR was also prognostic in lung adenocarcinoma as shown in Figure 46.

Figure 46: The iBCR signature is prognostic in lung adenocarcinoma (LUAD). The iBCR signature was tested for prognostication in lung cancer in two large datasets. (A\&B) KM-Plotter (Affymetrix data) was used to investigate overall survival of lung adenocarcinoma (A) and squamous cell carcinoma (B). The iBCR signature shows a strong prognostic value in lung adenocarcinoma (LUAD). (C) Multivariate survival analysis was performed in KM-Plotter for the iBCR signature in lung cancer in comparison to available clinical indicators; histological type (lung adenocarcinoma vs. small cell lung cancer) and stage of disease. The iBCR signature outperformed these standard clinical indicators. (D\&E) The TCGA data for LUAD (Illumina HiSeq RNA-seq data) were stratified by quartiles or tertiles for the iBCR signature expression to test the association of the iBCR signature with overall survival (D) and relapse-free survival (E), respectively. LUAD patients with high iBCR signature had poorest survival and suffered earlier recurrence and death compared to patients with lower iBCR signature expression. It should be noted that the TCGA data for squamous cell lung carcinoma were also investigated and there was no statistical significance for the association of the iBCR signature and survival, in agreement with the very weak association seen from the KM-Plotter data.

Figure 47: The sensitivity of breast cancer cell lines treated with 24 drugs according to the iBCR score. Breast cancer cell lines (10 cell lines) were cultured in the absence or presence of escalating doses of 24 small molecular anti-cancer drugs. This published study was re-analyzed to compare the sensitivity (calculated as the $\operatorname{logIC} 50$) between high iBCR score cell lines (5 cell lines: BT-549, MDA-MB-231, MDA-MB-436, MDA-MB-468 and BT-20) to low iBCR score cell lines (5 cell lines: Hs.578T, BT-474, MCF-7, T-47D, and ZR-75-1). The iBCR scores were calculated from the Agro and TN scores using the published gene expression dataset for 51
breast cancer cell lines (Neve et al, Cancer Cell, 2006). High iBCR score cell lines (red bars) were more sensitive than low iBCR score cell lines (white bars) to 13 drugs (shaded in grey) targeting 9 different kinases. Statistical comparison was performed in GraphPad ${ }^{\circledR}$ Prism using two tailed unpaired i-test.

Figure 48: Proteins and phosphoproteins associated with the iBCR mRNA gene signature. The iBCR score based on the mRNA expression of the 43 genes was used to stratify the patients in the TCGA breast cancer dataset as low, intermediate or high iBCR score. The reverse phase protein arrays (RPPA) from the TCGA breast cancer dataset ($\mathrm{n}=747$ patients) were then compared between the three groups of patients according to the iBCR mRNA signature. (A) Overall survival of ER+ patients according to the iBCR mRNA signature. (B) Significantly up- or down-regulated proteins and phosphoproteins in ER+ patients in the low, intermediate and high iBCR score groups. (C) Overall survival of ER- according to the iBCR mRNA signature. (D) Significantly up- or down-regulated proteins and phosphoproteins in ER- patients in the low, intermediate and high iBCR score groups.

Figure 49: Prognostication of breast cancer patient survival by integrated mRNA and protein iBCR signature. The deregulated proteins and phosphoproteins in the three iBCR mRNA score groups were investigated for association with survival. Eight downregulated proteins and nine upregulated proteins were highly prognostic as a protein signature (iBCR protein signature). (A) Stratification of overall survival based on the iBCR protein signature (top row) and the integrated iBCR mRNA and protein signature (bottom row) in all breast cancer patients, ER+ and ER- cases. (B) Univariate and multivariate survival analysis using the Coxproportional hazard model showing that the combined iBCR mRNA/Protein signature outperforms all clinicopathological indicators.

Figure 50: Proteins and phosphoproteins associated with the iBCR mRNA gene signature. (A) Stratification of lung adenocarcinoma overall survival based on the iBCR mRNA gene signature in the TCGA dataset ($\mathrm{n}=472$ patients). (B) Comparison of proteins phosphoprotein levels between the tumors in the four quartiles of the iBCR mRNA gene signature. (C) Stratification of overall survival of lung adenocarcinoma patients based on six proteins deduced from panel ($\mathrm{n}=212$ patients). (D) The combined iBCR mRNA/Protein signature stratifies the overall survival of lung adenocarcinoma patients ($\mathrm{n}=212$ patients). (E) Multivariate Cox-proportional
hazard model for survival analysis showing that the combined iBCR mRNA/Protein score outperforms all clinicopathological indicators in lung adenocarcinoma.

Figure 51: The iBCR test is prognostic in Kidney renal clear cell carcinoma (KIRC) (left vertical panel), Skin cutaneous melanoma (SKCM) (middle vertical panel) and Uterine corpus endometrioid carcinoma (UCEC) (right vertical panel). (A) Stratification of overall survival based on the iBCR mRNA gene signature. (B) Stratification of overall survival based on iBCR protein signature. (C) Stratification of overall survival based on the combined iBCR mRNA/protein signature.
Figure 52: The iBCR test is prognostic in Ovarian adenocarcinoma (OVAC) (left vertical panel), Head \& Neck squamous cell carcinoma (HNSC) (middle vertical panel) and Colon/Rectal Adenocarcinoma (COREAD) (right vertical panel). (A) Stratification of overall survival based on the iBCR mRNA gene signature. (B) Stratification of overall survival based on iBCR protein signature. (C) Stratification of overall survival based on the combined iBCR mRNA/protein signature.

Figure 53: The iBCR test is prognostic in Lower Grade Glioma (LGG) (left vertical panel), Bladder urothelial carcinoma (BLCA) (middle vertical panel) and Lung squamous cell carcinoma (LUSC) (right vertical panel). (A) Stratification of overall survival based on the iBCR mRNA gene signature. (B) Stratification of overall survival based on iBCR protein signature. (C) Stratification of overall survival based on the combined $\mathrm{iBCR} \mathrm{mRNA} /$ protein signature.

Figure 54: The iBCR test is prognostic in (A) Kidney renal papillary cell carcinoma (KIRP). (B) Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), (C) Liver hepatocellular carcinoma (LIHC), (D) Pancreatic ductal adenocarcinoma (PDAC). For these cancer types, the TCGA datasets did not include RPPA arrays; only the iBCR mRNA gene expression test was used.

Figure 55: Protein-protein interaction of the iBCR mRNA/protein signature. The components of the iBCR test were analysed using the STRING database. The iBCR test (65 components) was significantly enriched ($\mathrm{P}=5.6 \mathrm{E}-14$) for proteinprotein interactions (129 interactions). The confidence of interactions is denoted by increasing thickness of the connecting blue lines. It is noteworthy that the components on the top right which do not show interactions contain several novel
genes that are not well characterised. The iBCR test is enriched for several biological functions related to the hallmarks of cancer (refer to Table 20).

Figure 56: The iBCR test as a companion diagnostic for immunotherapy. (A) Twelve genes from the iBCR test, particularly from the TN component, associated significantly with progression free survival of follicular lymphoma patients treated with pidilizumab + rituximab immunotherapy. The expression profile of the 12 genes in the tumours prior to treatment is shown (red indicates overexpression and green indicates underexpression). White and black boxes denote progression free survival or not, respectively. (B) A score was calculated based on the iBCR signature as the ratio of expression of the overexpressed genes to that of underexpressed genes. The survival of patients based on dichotomy across the median score was compared. The hazard ratio (HR) and the log-rank p-value for the survival comparison between low and high score tumors is shown in panel. (C) Eight patients were profiled pre- and post-treatment and the expression profiles of the 12 genes from the iBCR test were visualised in these patients. A trend for inversion of expression was observed and this was most evident for patient no. 9 who remained free of disease progression. (D) One gene was statistically significant in all patients post-treatment compared to that before treatment. This gene showed a marked different post-treatment vs. pretreatment for patient no. 9. (E) Survival curve for the same patient group calculated from the gene signature labelled "Follicular Lymphoma" in Table 23. All conventions as per (B) above. Relapse-free survival of patients based on dichotomy across the median score is shown.

Figure 57: Network analysis of the genes from the meta-analysis of gene expression datasets.
Figure 58: Functional metagenes associate with breast cancer patient survival.
Figure 59: The iBCR test as a companion diagnostic for EGFR inhibition and multikinase inhibition. (A) Seventeen genes (see Table 23) from the iBCR test associated significantly with survival of colorectal cancer patients treated with the EGFR inhibitor cetuximab. (B) Sixteen genes (see Table 23) from the iBCR test associated significantly with overall survival of triple negative breast cancer patients treated with the EGFR inhibitor cetuximab combined with cisplatin. (C) Nineteen genes (see Table 23) from the iBCR test associated significantly with progressionfree survival of lung cancer patients treated with the EGFR inhibitor erlotinib. (D) Twenty genes (see Table 23) from the iBCR test associated significantly with
progression-free survival of lung cancer patients treated with the multikinase inhibitor sorafenib.

DETAILED DESCRIPTION

The present invention is at least partly predicated on the discovery that there are genes that are associated with tumor aggressiveness and poor clinical outcome based on meta-analysis of published gene expression profiling. More particularly, the overexpression and/or underexpression of these genes (see Table 21) was found to be associated with poor survival in breast cancer. Network analysis using the Ingenuity Pathway Analysis (IPA®) software identified a number of networks or metagenes within these survival-associated genes that possess distinct biological functions as outlined in Table 21. A smaller subset of genes from each network or metagene which consistently associated with patient survival were then selected. The list of these genes and their corresponding functions are shown in Table 22. These genes were divided into six functional metagenes or networks.

The present invention is also at least partly predicated on the discovery that there are genes that are commonly de-regulated in particular subgroups that exemplify aggressive clinical behavior in triple-negative breast cancer (TNBC). More particularly, this is evident in TNBC compared to non-TNBC and normal breast, tumors associated with distant metastasis and/or death compared to their respective counterparts. Initially, a list of 206 recurrently deregulated genes was found to be particularly enriched for chromosomal instability (CIN) and estrogen receptor signaling (ER) metagenes. An aggressiveness score based on the ratio of the expression level of a CIN metagene relative to an ER metagene has been shown to identify aggressive tumors regardless of molecular subtype and clinico-pathologic indicators. Furthermore, depletion of proteins involved in kinetochore binding or chromosome segregation could be therapeutic and significantly reduced the survival of TNBC cell lines in vitro, particularly with regard to TTK. TTK inhibition with small molecule inhibitor affected the survival of TNBC cell lines. Also, TTK mRNA and protein levels were associated with aggressive tumor phenotypes. Mitosisindependent expression of TTK protein was prognostic in TNBC and other aggressive breast cancer subgroups, suggesting that protection of CIN/aneuploidy drives aggressiveness and treatment-resistance. The combination of TTK inhibition
with chemotherapy was effective in vitro in the treatment of cells that overexpress TTK, thus providing a therapeutic treatment for the protected CIN phenotype.

Additionally, the present invention is at least partly predicated on the discovery of a second signature of altered gene expression, including 21 overexpressed genes and 7 underexpressed genes, that is highly prognostic in patients with ER ${ }^{-}$breast cancer, TNBC and basal-like breast cancer (BLBC). Indeed, integration of this 28 gene signature with the aforementioned aggressiveness score or gene signature produces an integrated score which is prognostic in breast cancer independent of ER status. Furthermore, the integrated score was prognostic in cancer broadly irrespective of the cancer type, as well as in specific types of cancer in addition to breast cancer, such as lung adenocarcinoma. Moreover, the 28 gene signature and the integrated score were both shown to be predictive of response to chemotherapy in breast cancer patients, as well as identify those ER^{+}lymph node positive breast cancer patients who would benefit from endocrine therapy. Altered expression of the signatures described herein was also predictive of sensitivity in cancer cell lines and clinically to a range of anticancer therapeutics, and in particular, molecularly targeted inhibitors.

The inventors of the present invention have also identified a protein signature that is highly prognostic in a range of cancers, including breast cancer and lung adenocarcinoma. Furthermore, this protein signature may be integrated with the aforementioned 28 gene signature and aggressive gene signature to provide a robust prognostic indicator in cancer that was shown to outperform known clinicopathological indicators.

In one aspect, the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein

Synthesis/Modification metagene and a Multiple Networks metagene, wherein: a higher relative expression level of the plurality of the overexpressed genes compared to the plurality of the underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the plurality of the overexpressed genes compared to the plurality of the underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In a futher aspect, the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein: a higher relative expression level of the plurality of overexpressed genes compared to the plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the plurality of overexpressed genes compared to the plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis.

In one embodiment of the above aspects, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from one of the metagenes. In an alternative embodiment, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from a plurality of the metagenes.

Suitably, for the method of the above aspects the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the PostTranslational Modification metagene, the Protein Synthesis/Modification metagene
and/or the Multiple Networks metagene comprise one or more genes listed in Table 21.

In another aspect, the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein: a higher relative expression level of the plurality of the overexpressed genes compared to the plurality of the underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the plurality of the overexpressed genes compared to the plurality of the underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level

In yet another aspect, the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein: a higher relative expression level of the plurality of overexpressed genes compared to the plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the plurality of overexpressed genes compared to the plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis.

Suitably, the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication
metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene comprise one or more genes listed in Table 21.

In particular embodiments of the method of the two aforementioned aspects, the plurality of overexpressed genes and the plurality of underexpressed genes are from one or more of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene. According to the method of the above aspects, the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes includes comparing an average expression level of the plurality of overexpressed genes and an average expression level of the plurality of underexpressed genes. This may include calculating a ratio of the average expression level of the plurality of overexpressed genes and the average expression level of the plurality of underexpressed genes. Suitably, the ratio provides an aggressiveness score which is indicative of, or correlates with, cancer aggressiveness and a less favourable prognosis. Alternatively, the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes includes comparing the sum of expression levels of the plurality of overexpressed genes and the sum of expression levels of the plurality of underexpressed genes. This may include calculating a ratio of the sum of expression levels of the plurality of overexpressed genes and the sum of expression levels of the plurality of underexpressed genes.

For the purposes of this invention, by "isolated" is meant material that has been removed from its natural state or otherwise been subjected to human manipulation. Isolated material may be substantially or essentially free from components that normally accompany it in its natural state, or may be manipulated so as to be in an artificial state together with components that normally accompany it in its natural state. Isolated material may be in native, chemical synthetic or recombinant form.

As used herein a "gene" is a nucleic acid which is a structural, genetic unit of a genome that may include one or more amino acid-encoding nucleotide sequences
and one or more non-coding nucleotide sequences inclusive of promoters and other 5^{\prime} untranslated sequences, introns, polyadenylation sequences and other 3' untranslated sequences, although without limitation thereto. In most cellular organisms a gene is a nucleic acid that comprises double-stranded DNA.

Non-limiting examples of genes are set forth herein, particularly in Tables 4, 21 and 22, which include Accession Numbers referencing the nucloetide sequence of the gene, or its encoded protein, as are well understood in the art.

The term "nucleic acid" as used herein designates single- or double-stranded DNA and RNA. DNA includes genomic DNA and cDNA. RNA includes mRNA, RNA, RNAi, siRNA, cRNA and autocatalytic RNA. Nucleic acids may also be DNA-RNA hybrids. A nucleic acid comprises a nucleotide sequence which typically includes nucleotides that comprise an A, G, C, T or U base. However, nucleotide sequences may include other bases such as inosine, methylycytosine, methylinosine, methyladenosine and/or thiouridine, although without limitation thereto.

Also included are, "variant" nucleic acids that include nucleic acids that comprise nucleotide sequences of naturally occurring (e.g., allelic) variants and orthologs (e.g., from a different species). Preferably, nucleic acid variants share at least 70% or 75%, preferably at least 80% or 85% or more preferably at least 90%, $91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%$ or 99% sequence identity with a nucleotide sequence disclosed herein.

Also included are nucleic acid fragments. A "fragment" is a segment, domain, portion or region of a nucleic acid, which respectively constitutes less than 100%, of the nucleotide sequence. A non-limilting example is an amplification product or a primer or probe. In particular embodiments, a nucleic acid fragment may comprise, for example, at least $10,15,20,25,3035,40,45,50,55,60,65,70,75$, $80,85,90,95,100,125,150,175,200,225,250,275,300,325,350,375,400,425$, 450, 475 and 500 contiguous nucleotides of said nucleic acid.

As used herein, a "polynucleotide" is a nucleic acid having eighty (80) or more contiguous nucleotides, while an "oligonucleotide" has less than eighty (80) contiguous nucleotides. A "probe" may be a single or double-stranded oligonucleotide or polynucleotide, suitably labeled for the purpose of detecting complementary sequences in Northern or Southern blotting, for example. A "primer" is usually a single-stranded oligonucleotide, preferably having 15-50 contiguous nucleotides, which is capable of annealing to a complementary nucleic acid
"template" and being extended in a template-dependent fashion by the action of a DNA polymerase such as Taq polymerase, RNA-dependent DNA polymerase or Sequenase ${ }^{\mathrm{TM}}$. A "template" nucleic acid is a nucleic acid subjected to nucleic acid amplification.

It will be appreciated that the "overexpressed' genes or proteins referred to herein are genes or proteins that are expressed at a higher level in a cancer cell or tissue compared to a corresponding normal or otherwise non-cancerous cell or tissue or reference/control level or sample.

It will be appreciated that the "underexpressed' genes or proteins referred to herein are genes or proteins that are expressed at a lower level in a cancer cell or tissue compared to a corresponding normal or otherwise non-cancerous cell or tissue or reference/control level or sample.

In certain embodiments, the "overexpressed' and "underexpressed' genes referred to herein may form, or be components of, a metagene.

As used herein, a "metagene" is a grouping, cohort or network of a plurality of different genes that display a common, shared or aggregate expression profile, expression level or other expression characteristics that associate with, or are indicative of, a particular function or phenotype. Non-limiting examples include a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene. Table 21 provides non-limiting examples of genes that are components of the aforementioned twelve metagenes. Further non-limiting examples include a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene. Table 22 provides non-limiting examples of genes that are components of the aforementioned six metagenes.

In particular embodiments, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from one of the metagenes. In this regard, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from the same metagene. By way of example, the plurality of
overexpressed genes or the plurality of underexpressed genes may be only from one of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and the Multiple Networks metagene. In a further example, both the plurality of overexpressed genes and the plurality of underexpressed genes may be only from one of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and the Multiple Networks metagene.

Alternatively, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from a plurality of the metagenes described herein.

By "aggressiveness" and "aggressive" is meant a property or propensity for a cancer to have a relatively poor prognosis due to one or more of a combination of features or factors including: at least partial resistance to therapies available for cancer treatment; invasiveness; metastatic potential; recurrence after treatment; and a low probability of patient survival, although without limitation thereto.

Cancers may include any aggressive or potentially aggressive cancers, tumours or other malignancies such as listed in the NCI Cancer Index at http://www.cancer.gov/cancertopics/alphalist, including all major cancer forms such as sarcomas, carcinomas, lymphomas, leukaemias and blastomas, although without limitation thereto. These may include breast cancer, lung cancer inclusive of lung adenocarcinoma, cancers of the reproductive system inclusive of ovarian cancer, cervical cancer, uterine cancer and prostate cancer, cancers of the brain and nervous system, head and neck cancers, gastrointestinal cancers inclusive of colon cancer, colorectal cancer and gastric cancer, liver cancer, kidney cancer, skin cancers such as melanoma and skin carcinomas, blood cell cancers inclusive of lymphoid cancers and myelomonocytic cancers, cancers of the endocrine system such as pancreatic
cancer and pituitary cancers, musculoskeletal cancers inclusive of bone and soft tissue cancers, although without limitation thereto.

In certain embodiments, cancers include breast cancer, bladder cancer, colorectral cancer, glioblastoma, lower grade glioma, head \& neck cancer, kidney cancer, liver cancer, lung adenocarcinoma, acute myeloid leukaemia, pancreatic cancer, adrenocortical cancer, melanoma and lung squamous cell carcinoma.

Breast cancers include all aggressive breast cancers and cancer subtypes such as triple negative breast cancer, grade 2 breast cancer, grade 3 breast cancer, lymph node positive (LN^{+}) breast cancer, HER2 positive (HER2+) breast cancer and ER positive (ER^{+}) breast cancer, although without limitation thereto.

As used herein, "triple negative breast cancer" (TNBC) is an often aggressive breast cancer subtype lacking or having significantly reduced expression of estrogen receptor (ER) protein, progesterone receptor (PR) protein and HER2 protein. TNBC and other aggressive breast cancers are typically insensitive to some of the most effective therapies available for breast cancer treatment including HER2directed therapy such as trastuzumab and endocrine therapies such as tamoxifen and aromatase inhibitors.

As used herein, a gene expression level may be an absolute or relative amount of an expressed gene or gene product inclusive of nucleic acids such as RNA, mRNA and cDNA and protein.

As would be appreciated by the skilled artisan, the present invention need not be limited to comparing the expression level of the overexpressed genes and/or proteins with the expression level of the underexpressed genes and/or proteins provided herein. Accordingly, in particular embodiments, the expression level of the overexpressed and/or underexpressed genes and/or proteins is compared to a control level of expression, such as the level of gene and/or protein expression of a "housekeeping" gene in one or more cancer cells, tissues or organs of the mammal.

In further embodiments, the expression level of the overexpressed and/or underexpressed genes and/or proteins is compared to a threshold level of expression, such as a level of gene and/or protein expression in non-aggressive cancerous tissue. A threshold level of expression is generally a quantified level of expression of a particular gene or set of genes, including gene products thereof. Typically, an expression level of a gene or set of genes in a sample that exceeds or falls below the threshold level of expression is predictive of a particular disease state or outcome.

The nature and numerical value (if any) of the threshold level of expression will vary based on the method chosen to determine the expression the one or more genes or proteins used in determining, for example, a prognosis, the aggressiveness and/or response to anticancer therapy, in the mammal. In light of this disclosure, any person of skill in the art would be capable of determining the threshold level of gene/protein expression in a mammal sample that may be used in determining, for example, a prognosis, the aggressiveness and/or response to anticancer therapy, using any method of measuring gene or protein expression known in the art, such as those described herein. In one embodiment, the threshold level is a mean and/or median expression level (median or absolute) of the overexpressed and/or underexpressed genes and/or proteins in a reference population, that, for example, have the same cancer type, subgroup, stage and/or grade as said mammal for which the expression level is determined. Additionally, the concept of a threshold level of expression should not be limited to a single value or result. In this regard, a threshold level of expression may encompass multiple threshold expression levels that could signify, for example, a high, medium, or low probability of, for example, progression free survival.

By "protein" is meant an amino acid polymer. The amino acids may be natural or non-natural amino acids, D - or L - amino acids as are well understood in the art. As would be appreciated by the skilled person, the term "protein" also includes within its scope phosphorylated forms of a protein \{i.e., phosphoproteins).

Also provided are protein "variants" such as natrually occurring (eg allelic variants) and orthologs. Preferably, protein variants share at least 70% or 75%, preferably at least 80% or 85% or more preferably at least $90 \%, 91 \%, 92 \%, 93 \%$, $94 \%, 95 \%, 96 \%, 97 \%, 98 \%$ or 99% sequence identity with an amino acid sequence disclosed herein.

Also provided are protein fragments, inclusive of peptide fragments thqat comprise less than 100% of an entire amino acid sequence. In particular embodiments, a protein fragment may comprise, for example, at least $10,15,20,25$, $3035,40,45,50,55,60,65,70,75,80,85,90,95,100,125,150,175,200,225,250$, $275,300,325,350,375$ and 400 contiguous amino acids of said protein.

A "peptide" is a protein having no more than fifty (50) amino acids.
A "polypeptide" is a protein having more than fifty (50) amino acids.

It would be appreciated that in addition to comparing the expression levels of one or more genes or proteins, the methods of the present invention may further include the step of determining, assessing, evaluating, assaying or measuring the expression level of one or more of the overexpressed genes, the underexpressed genes, the overexpressed proteins and/or the underexpressed proteins described herein. The terms "determining", "measuring", "evaluating", "assessing" and "assaying" are used interchangeably herein and may include any form of measurement known in the art, such as those described hereinafter.

Determining, assessing, evaluating, assaying or measuring nucleic acids such as RNA, mRNA and cDNA may be performed by any technique known in the art. These may be techniques that include nucleic acid sequence amplification, nucleic acid hybridization, nucleotide sequencing, mass spectroscopy and combinations of any these.

Nucleic acid amplification techniques typically include repeated cycles of annealing one or more primers to a "template" nucleotide sequence under appropriate conditions and using a polymerase to synthesize a nucleotide sequence complementary to the target, thereby "amplifying" the target nucleotide sequence. Nucleic acid amplification techniques are well known to the skilled addressee, and include but are not limited to polymerase chain reaction (PCR); strand displacement amplification (SDA); rolling circle replication (RCR); nucleic acid sequence-based amplification (NASBA), Q- β replicase amplification; helicase-dependent amplification (HAD); loop-mediated isothermal amplification (LAMP); nicking enzyme amplification reaction (NEAR) and recombinase polymerase amplification (RPA), although without limitation thereto. As generally used herein, an "amplification product" refers to a nucleic acid product generated by a nucleic acid amplification technique.

PCR includes quantitative and semi-quantitative PCR, real-time PCR, allelespecific PCR, methylation-specific PCR, asymmetric PCR, nested PCR, multiplex PCR, touch-down PCR and other variations and modifications to "basic" PCR amplification.

Nucleic acid amplification techniques may be performed using DNA or RNA extracted, isolated or otherwise obtained from a cell or tissue source. In other embodiments, nucleic acid amplification may be performed directly on appropriately treated cell or tissue samples.

Nucleic acid hybridization typically includes hybridizing a nucleotide sequence (typically in the form of a probe) to a target nucleotide sequence under appropriate conditions, whereby the hybridized probe-target nucleotide sequence is subsequently detected. Non-limiting examples include Northern blotting, slot- blotting, in situ hybridization and fluorescence resonance energy transfer (FRET) detection, although without limitation thereto. Nucleic acid hybridization may be performed using DNA or RNA extracted, isolated, amplified or otherwise obtained from a cell or tissue source or directly on appropriately treated cell or tissue samples.

It will also be appreciated that a combination of nucleic acid amplification and nucleic acid hybridization may be utilized.

Determining, assessing, evaluating, assaying or measuring protein levels may be performed by any technique known in the art that is capable of detecting cell- or tissue-expressed proteins whether on the cell surface or intracellularly expressed, or proteins that are isolated, extracted or otherwise obtained from the cell of tissue source. These techniques include antibody-based detection that uses one or more antibodies which bind the protein, electrophoresis, isoelectric focussing, protein sequencing, chromatographic techniques and mass spectroscopy and combinations of these, although without limitation thereto. Antibody-based detection may include flow cytometry using fluorescently-labelled antibodies that bind the protein, ELISA, immunoblotting, immunoprecipitation, in situ hybridization, immunohistochemistry and immuncytochemistry, although without limitation thereto. Suitable techniques may be adapted for high throughput and/or rapid analysis such as using protein arrays such as a TissueMicroArray ${ }^{\mathrm{TM}}$ (TMA), MSD MultiArrays ${ }^{\mathrm{TM}}$ and multiwell ELISA, although without limitation thereto.

In certain embodiments, a gene expression level may be assessed indirectly by the measurement of a non-coding RNA, such as miRNA, that regulate gene expression. MicroRNAs (miRNAs or miRs) are post-transcriptional regulators that bind to complementary sequences in the 3^{\prime} untranslated regions (3^{\prime} UTRs) of target mRNA transcripts, usually resulting in gene silencing. miRNAs are short RNA molecules, on average only 22 nucleotides long. The human genome may encode over 1000 miRNAs, which may target about 60% of mammalian genes and are abundant in many human cell types. Each miRNA may alter the expression of hundreds of individual mRNAs. In particular, miRNAs may have multiple roles in negative regulation (e.g., transcript degradation and sequestering, translational
suppression) and/or positive regulation (e.g., transcriptional and translational activation). Additionally, aberrant miRNA expression has been implicated in various types of cancer.

In this regard, an average expression level, or alternatively a sum of the expression levels, may be calculated for the plurality of overexpressed genes and for the plurality of underexpressed genes, to thereby produce or calculate a ratio.

Accordingly, determining cancer aggressiveness and/or a prognosis for a cancer patient in certain embodiments of the present invention further includes determining the ratio of the expression level (e.g. an average or sum of the expression level) of the plurality of overexpressed genes to the expression level (e.g. an average or sum of the expression level) of the plurality of underexpressed genes.

In another aspect of the invention relates to a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes associated with chromosomal instability and an expression level of a plurality of underexpressed genes associated with estrogen receptor signalling in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the plurality of overexpressed genes associated with chromosomal instability compared to the plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level expression level of the plurality of overexpressed genes associated with chromosomal instability compared to the plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In yet another aspect of the invention relates to a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes associated with chromosomal instability and an expression level of a plurality of underexpressed genes associated with estrogen receptor signalling in the mammal, wherein: a higher relative expression level of the plurality of overexpressed genes associated with chromosomal instability compared to the plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the plurality
of overexpressed genes associated with chromosomal instability compared to the plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a more favourable cancer prognosis.

Non-limiting examples of genes in a chromosomal instability (CIN) metagene include ATP6V1C1, RAP2A, CALM1, COG8, HELLS, KDM5A, PGK1, PLCH1, CEP55, RFC4, TAF2, SF3B3, GPI, PIR, MCM10, MELK, FOXM1, KIF2C, NUP155, TPX2, TTK, CENPA, CENPN, EXOl, MAPREl, ACOT7, NAEl, SHMT2, TCP1, TXNRD1, ADM, CHAF1A and SYNCRIP genes, although without limitation thereto; and an estrogen receptor signalling (ER) metagene may comprise BTG2, PIK3IP1, SEC14L2, FLNB, ACSF2, APOM, BIN3, GLTSCR2, ZMYNDIO, ABAT, BCAT2, SCUBE2, RUNX1, LRRC48, MYBPC1, BCL2, CHPT1, ITM2A, LRIG1, MAPT, PRKCB, RERE, ABHD14A, FLT3, TNN, STC2, BATF, CDIE, CFB, EVL, FBXW4, ABCB1, ACAA1, CHAD, PDCD4, RPL10, RPS28, RPS4X, RPS6, SORBS1, RPL22 and RPS4XP3 genes, although without limitation thereto. Table 4 provides further examples of genes that are components of a CIN metagene or that are components of an ER metagene.

An average expression level may be calculated for the CIN metagene and for the ER metagene, to thereby produce or calculate a ratio.

Alternatively, a sum of expression levels may be calculated for the CIN metagene and for the ER metagene, to thereby produce or calculate a ratio.

In certain embodiments, a higher or increased ratio of the average or sum of expression levels of a CIN metagene relative to an ER metagene is associated with, correlates with or is indicative of, higher or increased cancer aggressiveness.

Thus, some embodiments of the invention provide an "aggressiveness score" which is the ratio of CIN metagene expression level (e.g. average or sum of expression of CIN genes) to an ER metagene expression level (e.g average or sum of expression of ER genes).

Accordingly, embodiments of the aforementioned aspects of the invention include determining, assessing or measuring an expression level of a plurality of overexpressed genes associated with chromosomal instability and determining, assessing or measuring an expression level of a plurality of underexpressed genes associated with estrogen receptor signalling. In this regard, reference is made to Table 4 which provides a listing of 206 genes that include genes associated with chromosomal instability and genes associated with estrogen receptor signalling.

Preferably, the chromosomal instability genes are of a CIN metagene, comprising genes such as ATP6V1C1, RAP2A, CALM1, COG8, HELLS, KDM5A, PGK1, PLCH1, CEP55, RFC4, TAF2, SF3B3, GPI, PIR, MCM10, MELK, FOXM1, KIF2C, NUP155, TPX2, TTK, CENPA, CENPN, EXOl, MAPRE1, ACOT7, NAE1, SHMT2, TCP1, TXNRDl, ADM, CHAF1A and SYNCRIP, although without limitation thereto. In one preferred embodiment, the chromosomal instability genes are selected from the group consisting of MELK, MCM10, CENPA, EXOl, TTK and KIF2C. Preferably, the estrogen receptor signalling genes are of an ER metagene comprising genes such as BTG2, PIK3IP1, SEC14L2, FLNB, ACSF2, APOM, BIN3, GLTSCR2, ZMYND10, ABAT BCAT2, SCUBE2, RUNX1, LRRC48, MYBPC1, BCL2, CHPT1, ITM2A, LRIG1, MAPT, PRKCB, RERE, ABHD14A, FLT3, TNN, STC2, BATF, CDIE, CFB, EVL, FBXW4, ABCB1, ACAA1, CHAD, PDCD4, RPL10, RPS28, RPS4X, RPS6, SORBSI, RPL22 and RPS4XP3, although without limitation thereto. In one preferred embodiment, the estrogen receptor signalling genes are selected from the group consisting of MAPT and MYB.

In certain embodiments, the method of the aforementioned two aspects further includes the step of comparing an expression level of one or more other overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and an expression level of one or more other underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CDIA, CDIB, CDIC, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSl and SRPK3, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more other overexpressed genes compared to the one or more other underexpressed genes indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower relative expression level of the one or more other overexpressed genes compared to the one or more other underexpressed genes indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.

In one embodiment, the one or more other overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP31, CA9, CAMSAP1, CARHSP1, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFC1R1, KCNG1, MAP2K5, NDUFC1, PML, STAU1, TXN and ZNF593.

In one embodiment, the one or more other underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDL3B and ZNRD1-AS1.

In this regard, an average expression level, or alternatively a sum of the expression levels, may be calculated for the one or more other overexpressed genes and for the one or more other underexpressed genes, to thereby produce or calculate a ratio.

Accordingly, determining cancer aggressiveness and/or a prognosis for a cancer patient in certain embodiments of the present invention further includes determining the ratio of the expression level \{e.g. an average or sum of the expression level) of the one or more other overexpressed genes to the expression level (e.g. an average or sum of the expression level) of the one or more other underexpressed genes.

Detection and/or measurement of expression of the one or more other overexpressed genes and the one or more other underexpressed genes may be performed by any of those methods or combinations thereof described herein \{e.g measuring mRNA levels or an amplified cDNA copy thereof and/or by measuring a protein product thereof), albeit without limitation thereto.

Suitably, the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling is integrated with the comparison of the expression level of the one or more other overexpressed genes and the expression level of the one or more other underexpressed genes to derive a first integrated score. In particular embodiments, this may include deriving the first integrated score, at least in part, by addition, subtraction, multiplication, division and/or exponentiation.

By way of example, the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling may be added to, subtracted from, multiplied by, divided by and/or raised
to the power of the comparison of the expression level of the one or more other overexpressed genes and the expression level of the one or more other underexpressed genes to derive the first integrated score. Alternatively, the comparison of the expression level of the one or more other overexpressed genes and the expression level of the one or more other underexpressed genes may be added to, subtracted from, multiplied by, divided by and/or raised to the power of the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling to derive the first integrated score.

In a particular preferred embodiment, the first integrated score is derived by exponentiation, wherein the comparison of the expression level of the one or more other overexpressed genes and the expression level of the one or more other underexpressed genes is raised to the power of the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling.

As would be appreciated by the skilled person, the other overexpressed and underexpressed genes described herein may not necessarily be associated with chromosomal instability and estrogen receptor signalling respectively.

In a further aspect, the invention provides a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or more overexpressed genes, wherein the one or more overexpressed genes are selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and an expression level of one or more underexpressed genes, wherein the one or more underexpressed genes are selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSl and SRPK3, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed genes compared to
the one or more underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In one embodiment, the one or more overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP31, CA9, CAMSAPl, CARHSPl, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFC1R1, KCNG1, MAP2K5, NDUFC1, PML, STAU1, TXN and ZNF593.

In one embodiment, the one or more underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDL3B and ZNRDI-ASI.

In yet another aspect, the invention provides a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or more overexpressed genes, wherein the one or more overexpressed genes are selected from the group consisting of CAMSAPl, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFClR1, KCNG1, BCAP31, ULBP2, CARHSPl, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and an expression level of one or more underexpressed genes, wherein the one or more underexpressed genes are selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLCl1A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSl and SRPK3, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.

In one embodiment, the one or more overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP31, CA9, CAMSAPl, CARHSPl,

CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFC1R1, KCNG1, MAP2K5, NDUFC1, PML, STAU1, TXN and ZNF593.

In one embodiment, the one or more underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDL3B and ZNRD1-AS1.

In particular embodiments, the method of the aforementioned aspects further includes the step of comparing an expression level of one or more overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB 1, HER2, ASNS and COL6A1, and an expression level of one or more underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.

As would be appreciated by the skilled artisan, the expression level of one or more of the overexpressed proteins and/or one or more of the underexpressed proteins described herein may include one or more phosphorylated forms of said proteins \{i.e., a phosphoprotein). In one embodiment, EIF4EBP1 is or comprises one or more phosphoproteins selected from the group consisting of pEIF4EBP1 ${ }^{\text {S65 }}$, pEIF4EBPI ${ }^{\text {T37 }}$, pEIF4EBPl ${ }^{\text {T46 }}$ and pEIF4EBPl ${ }^{\text {T70 }}$. In one embodiment, EGFR is or comprises one or more phosphoproteins selected from the group consisting of pEGFR ${ }^{\text {Y1068 }}$ and pEGFR $^{\text {Y1173 }}$. In one embodiment, HER3 is or comprises pHER3 ${ }^{\text {Y1289 }}$. In one embodiment, AKTl is or comprises one or more phosphoproteins selected from the group consisting of pAKTl ${ }^{\text {S473 }}$ and pAKTl ${ }^{\mathrm{X} 308}$. In one embodiment, NFKBl is or comprises pNFKB1 ${ }^{\text {S536 }}$. In one embodiment, HER2 is or comprises pHER2 ${ }^{\mathrm{Y} 1248}$. In one embodiment, ESR1 is or comprises pESR1 ${ }^{\text {S118 }}$. In one embodiment, PEA15 is or comprises pPEA15 ${ }^{\text {S } 116}$. In one embodiment, RPS6 is
or comprises one or more phosphoproteins selected from the group consisting of pRPS6 ${ }^{\text {S235 }}$, pRPS6 $^{\text {S236 }}$, ${ }^{\text {pRPS6 }}{ }^{\text {S240 }}$ and pRPS6 $6^{\text {S244 }}$.

An average or sum of the expression levels may be calculated for the overexpressed genes, the underexpressed genes, the overexpressed proteins and/or the underexpressed proteins, to thereby produce or calculate a ratio.

Thus, in certain embodiments of the present invention determining cancer aggressiveness and/or a prognosis for a cancer patient includes determining (i) the ratio of the expression level (e.g. an average or sum of the expression level) of the one or more overexpressed genes to the expression level (e.g. an average or sum of the expression level) of the one or more underexpressed genes; and/or (ii) the ratio of the expression level (e.g. an average or sum of the expression level) of the one or more overexpressed proteins to the expression level (e.g. an average or sum of the expression level) of the one or more underexpressed proteins.

Detection and/or measurement of expression of the overexpressed proteins and the underexpressed proteins may be performed by any of those methods or combinations thereof hereinbefore described, albeit without limitation thereto.

Suitably, the comparison of the expression level of the one or more overexpressed proteins and the expression level of the one or more underexpressed proteins is to thereby derive an integrated score. In one particular embodiment, the comparison of the expression level of the one or more overexpressed proteins and the expression level of the one or more underexpressed proteins is integrated with:
(i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and the expression level of the underexpressed genes associated with estrogen receptor signalling to derive a second integrated score; or
(ii) the first integrated score to derive a third integrated score; or
(iii) the comparison of the expression level of the overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1 and the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C,

NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CDIB, CDIC, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLN1, MTMR7, SORBSI and SRPK3 to derive a fourth integrated score; or
(iv) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or more of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the PostTranslational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene, to derive a fifth integrated score; or
(v) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or more of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score.

In particular embodiments, the second, third, fourth, fifth and/or sixth integrated scores are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation. By way of example, the comparison of the expression level of the one or more overexpressed proteins and the expression level of the one or more underexpressed proteins may be added to, subtracted from, multiplied by, divided by and/or raised to the power of (i) the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling; or (ii) the first integrated score. Alternatively, the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling or the first integrated score may be
added to, subtracted from, multiplied by, divided by and/or raised to the power of the comparison of the expression level of the one or more overexpressed proteins and the expression level of the one or more underexpressed proteins.

In a further aspect, the invention provides a method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or more overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB 1, HER2, ASNS and COL6A1, and an expression level of one or more underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.

In a related aspect, the invention provides a method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or more overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and an expression level of one or more underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.

In particular embodiments of the two aforementioned aspects, one or more of the overexpressed proteins and/or one or more of the underexpressed proteins are or comprise a phosphoprotein hereinbefore described.

An average or sum of the expression levels may be calculated for the one or more overexpressed proteins and the one or more underexpressed proteins, to thereby produce or calculate a ratio as hereinbefore described.

This information with respect to the aggressiveness and/or prognosis of a patient's cancer may prove useful to a physician and/or clinician in determining the most effective course of treatment. A determination of the likelihood for a cancer relapse or of the likelihood of metastasis can assist the physician and/or clinician in determining whether a more conservative or a more radical approach to therapy should be taken. As such, a prognosis may provide for the selection and classification of patients who are predicted to benefit from a given therapeutic regimen.

Accordingly, another aspect of the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein an altered or modulated relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

As would be understood by the skilled person, the relative expression level of a gene or protein may be deemed to be "altered" or "modulated" when the expression level is higher/increased or lower/deereased when compared to a control or reference sample or expression level, such as a threshold level. In one embodiment, a relative expression level may be classified as high if it is greater than a mean and/or median relative expression level of a reference population and a relative expression
level may be classified as low if it is less than the mean and/or median relative expression level of the reference population. In this regard, a reference population may be a group of subjects who have the same cancer type, subgroup, stage and/or grade as said mammal for which the relative expression level is determined.

Suitably, for the present aspect the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene comprise one or more genes listed in Table 21.

In a related aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes and an expression level of a plurality of underexpressed genes in one or more cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or more metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein an altered or modulated relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In one embodiment of the two aforementioned aspects, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from one of the metagenes. In an alternative embodiment, the plurality of overexpressed genes and/or the plurality of underexpressed genes are selected from a plurality of the metagenes.

Suitably, the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene comprise one or more genes listed in Table 22.

In particular embodiments, the plurality of overexpressed genes and the plurality of underexpressed genes are from one or more of a Carbohydrate/Lipid

Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post- Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene.

In a related aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of determining an expression level of one or more genes associated with chromosomal instability (CIN) in one or more cancer cells of the mammal, wherein a higher expression level indicates or correlates with relatively increased responsiveness of the cancer to the anti-cancer treatment.

As will be described in more detail, overexpression of some CIN genes may be predictive of the responsiveness of a cancer to an anti-cancer treatment, particularly although not exclusively when overexpressed by non-mitotic cancer cells. In this context, by "non-mitotic" means that the cancer cell is not in the mitotic or "M phase" of the cell cycle. Preferably, the non-mitotic cancer cells are in interphase. Broadly, any overexpressed CIN gene set forth Table 4 may be predictive of the responsiveness of a cancer to an anti-cancer treatment. In particular embodiments, the CIN gene is selected from the group consisting of: TTK, CEP55, FOXM1 and SKIP2. In a particularly preferred embodiment, the CIN gene is selected from the group consisting of: TTK, CEP55, FOXM1 and SKIP2 and the cancer is breast cancer. In this regard, the inventors have shown that "bulk" measurements of extracted CIN gene mRNA or encoded protein do not provide a useful indication of whether overexpression of the CIN gene may be predictive of the responsiveness of a cancer to an anti-cancer treatment. More particularly, detection of CIN gene expression by individual cancer cells, particularly non-mitotic or interphase cancer cells, provides a more powerful indication of the responsiveness of a cancer to an anti-cancer treatment.

As previously described, detection and/or measurement of expression of the CIN gene may be performed by measuring RNA (e.g mRNA or an amplified cDNA copy thereof) or by measuring a protein product of a CIN gene. In a particularly preferred embodiment, a protein product of a CIN gene is detected or measured by immunohistochemistry. Typically, although not exclusively, a preferred
immunohistochemistry method includes binding an antibody to the protein product of a CIN gene expressed by a cell or tissue and subsequent detection of the bound antibody. By way of example only, the antibody may be unlabelled, directly labelled with an enzyme such as horseradish peroxidase, alkaline phosphatase or glucose oxidase or directly labelled with biotin or digoxigenin. In embodiments where the antibody is unlabelled, a secondary antibody (labelled such as described above) may be used to detect the bound antibody. Biotinylated antibodies may be detected using avidin complexed with an enzyme such as horseradish peroxidase, alkaline phosphatase or glucose oxidase. Suitable enzyme substrates include diaminobanzidine (DAB), permanent red, 3-ethylbenzthiazoline sulfonic acid (ABTS), 5-bromo-4-chloro-3-indolyl phosphate (BCIP), nitro blue tetrazolium (NB T), 3,3',5,5'-tetramethyl benzidine (TNB) and 4-chloro-1-naphthol (4-CN), although without limitation thereto.

In a further aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of a plurality of overexpressed genes associated with chromosomal instability and an expression level of a plurality of underexpressed genes associated with estrogen receptor signalling in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the overexpressed genes associated with chromosomal instability compared to the underexpressed genes associated with estrogen receptor signalling indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In certain embodiments, the genes associated with chromosomal instability are of a CIN metagene. Non-limiting examples include genes selected from the group consisting of: ATP6V1C1, RAP2A, CALM1, COG8, HELLS, KDM5A, PGK1, PLCH1, CEP55, RFC4, TAF2, SF3B3, GPI, PIR, MCM10, MELK, FOXM1, KIF2C, NUP155, TPX2, TTK, CENPA, CENPN, EXOl, MAPRE1, ACOT7, NAE1, SHMT2, TCP1, TXNRD1, ADM, CHAF1A and SYNCRIP. In one preferred embodiment, the chromosomal instability genes are selected from the group consisting of MELK, MCM10, CENPA, EXOL, TTK and KIF2C.

In certain embodiments, the genes associated with estrogen receptor signalling are of an ER metagene. Non-limiting examples include genes selected from the group consisting of: BTG2, PIK3IP1, SEC14L2, FLNB, ACSF2, APOM,

BIN3, GLTSCR2, ZMYND10, ABAT, BCAT2, SCUBE2, RUNX1, LRRC48, MYBPC1, BCL2, CHPT1, ITM2A, LRIG1, MAPT, PRKCB, RERE, ABHD14A, FLT3, TNN, STC2, BATF, CDIE, CFB, EVL, FBXW4, ABCB1, ACAAI, CHAD, PDCD4, RPLIO, RPS28, RPS4X, RPS6, SORBSI, RPL22 and RPS4XP3. In one preferred embodiment, the estrogen receptor signalling genes are selected from the group consisting of MAPT and MYB.

Suitably, the method of this aspect further includes the step of comparing an expression level of one or more other overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and an expression level of one or more other underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1AS1, ARNT2, ERC2, SLCllA1, BRD4, APOBEC3A, CD1A, CD1B, CDIC, CXCR4, HLA-B, IGH KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSl and SRPK3 in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or more other overexpressed genes compared to the one or more other underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In one embodiment, the one or more other overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP31, CA9, CAMSAP1, CARHSP1, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFC1R1, KCNG1, MAP2K5, ND UFC1, PML, STA Ul, TXN and ZNF593.

In one embodiment, the one or more other underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDL3B and ZNRDI-AS1.

In certain embodiments, the comparison of the expression level of the one or more other overexpressed genes and the expression level of the one or more other underexpressed genes is integrated with the comparison of the expression level of the plurality of overexpressed genes associated with chromosomal instability and the expression level of the plurality of underexpressed genes associated with estrogen receptor signalling to derive a first integrated score as described herein, which is
indicative of, or correlates with, responsiveness of the cancer to the anti-cancer treatment.

In another related aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or more overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1, and an expression level of one or more underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSl and SRPK3, in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In one embodiment, the one or more overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP31, CA9, CAMSAP1, CARHSP1, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFC1R1, KCNG1, MAP2K5, NDUFC1, PML, STAU1, TXN and ZNF593.

In one embodiment, the one or more underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDL3B and ZNRDI-AS1.

In particular embodiments, the method of the five aforementioned aspects further includes the step of comparing an expression level of one or more overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB 1, HER2, ASNS and COL6A1, and an expression level of one or more underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or more cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or more overexpressed proteins compared to the one or
more underexpressed proteins indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.

In particular embodiments, one or more of the overexpressed proteins and/or one or more of the underexpressed proteins are or comprise a phosphoprotein hereinbefore described.

An average or sum of the expression levels may be calculated for the overexpressed genes, the underexpressed genes, the overexpressed proteins and/or the underexpressed proteins, to thereby produce or calculate a ratio, as hereinbefore described.

Detection and/or measurement of expression of the overexpressed proteins and the underexpressed proteins may be performed by any of those methods or combinations thereof hereinbefore described, albeit without limitation thereto.

Suitably, the comparison of the expression level of the one or more overexpressed proteins and the expression level of the one or more underexpressed proteins is to thereby derive an integrated score. In one particular embodiment, the comparison of the expression level of the one or more overexpressed proteins and the expression level of the one or more underexpressed proteins is integrated with:
(i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and the expression level of the underexpressed genes associated with estrogen receptor signalling to derive a second integrated score; or
(ii) the first integrated score to derive a third integrated score; or
(iii) the comparison of the expression level of the overexpressed genes selected from the group consisting of CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFClR1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFC1 and STAU1 and the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C,

NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLCl1A1, BRD4, APOBEC3A, CD1A, CDIB, CDIC, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLN1, MTMR7, SORBSI and SRPK3 to derive a fourth integrated score; or
(iv) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or more of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the PostTranslational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene, to derive a fifth integrated score; or
(v) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or more of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score,
wherein the second, third, fourth, fifth and/or sixth integrated score is indicative of, or correlates with, responsiveness of the cancer to the anti-cancer treatment.

In particular embodiments, the second, third, fourth, fifth and/or sixth integrated scores are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation, as hereinbefore described.

In a further related aspect, the invention provides a method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or more overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMADl, GATA3, ITGA2, AKTl, NFKB1, HER2, ASNS and COL6A1, and an expression level of one or more underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1,

YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6, in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or more overexpressed proteins compared to the one or more underexpressed proteins indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.

In particular embodiments, one or more of the overexpressed proteins and/or one or more of the underexpressed proteins are or comprise a phosphoprotein hereinbefore described.

It will be appreciated from the foregoing that the invention provides methods that determine the aggressiveness of a cancer, facilitate providing a cancer prognosis for a patient and/or predict the responsiveness of a cancer to an anti-cancer treatment. Particular, broad embodiments of the invention include the step of treating the patient following determining the aggressiveness of the cancer, providing a cancer prognosis and/or predicting the responsiveness of the cancer to anti-cancer treatment. Accordingly, these embodiments relate to using information obtained about the aggressiveness of the cancer, the cancer prognosis and/or the predicted responsiveness of the cancer to anti-cancer treatment to thereby construct and implement an anti-cancer treatment regime for the patient. In a preferred embodiment, this is personalized to a particular patient so that the treatment regime is optimized for that particular patient.

Cancer treatments may include drug therapy, chemotherapy, antibody, nucleic acid and other biomolecular therapies, radiation therapy, surgery, nutritional therapy, relaxation or meditational therapy and other natural or holistic therapies, although without limitation thereto. In particular embodiments, the cancer therapy may target aneuploidy or aneuploid tumours and/or chromosomal instability.

Generally, drugs, biomolecules (e.g antibodies, inhibitory nucleic acids such as siRNA) or chemotherapeutic agents are referred to herein as "anti-cancer therapeutic agents". In some embodiments relating to breast cancer, the anti-cancer treatment may include HER2-directed therapy such as trastuzumab and endocrine therapies such as tamoxifen and aromatase inhibitors. In other or alternative embodiments, the therapy may include administration of inhibitors of CIN genes or CIN gene products, such as one or more of those listed in Table 4. It will be appreciated that inhibition of the CIN gene product TTK using the specific inhibitor AZ3146 was effective against TNBC cell lines. Furthermore, siRNA-mediated
knockdown of the CIN genes TTK, TPX2, NDC80 and PBK was effective against TNBC cell lines.

In certain embodiments, the cancer treatment may be directed at genes or gene products other than those listed in Tables 4, 10, 21 and/or 22. By way of example, the cancer treatment may target genes or gene products such as PLK1 ${ }^{7}{ }^{1772}$ or others ${ }^{73-76}$ to thereby target aneuploid tumours or tumour cells.

Suitably, when considering (i) the relative expression of one or more of the overexpressed genes of the 29 gene signature (i.e., CAMSAP1, CETN3, GRHPR, ZNF593, CA9, CFDP1, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC1R1, KCNG1, BCAP31, ULBP2, CARHSP1, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFCl and STAUl) when compared to one or more of the underexpressed genes of the 30 gene signature (i.e., BRD8, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3B1, ZNRD1-AS1, ARNT2, ERC2, SLC11A1, BRD4, APOBEC3A, CD1A, CD1B, CD1C, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBSl and SRPK3); (ii) the relative expression of one or more of the overexpressed proteins (i.e., DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKTl, NFKB1, HER2, ASNS and COL6A1) when compared to one or more of the underexpressed proteins (i.e., VEGFR2, FIER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6); and/or (iii) the first, second, third and/or fourth integrated score, the anticancer therapeutic agent is selected from the group consisting of a chemotherapy, an endocrine therapy, immunotherapy and a molecularly targeted therapy. In certain embodiments, the anticancer treatment comprises an ALK inhibitor (e.g., TAE684), an Aurora kinase inhibitor (e.g., Alisertib, AMG-900, BI-847325, GSK-1070916A, ilorasertib, MK8745, danusertib), a BCR-ABL inhibitor (e.g., Nilotinib, Dasatinib, Ponatinib), a HSP90 inhibitor (e.g., Tanespimycin (17-AAG), PF04291 13, AUY922, Luminespib, ganetespib, Debio-0932), an EGFR inhibitor (e.g., Afatinib, Erlotinib, Lapatinib, cetuximab), a PARP inhibitor (e.g., ABT-888, AZD-2281), retinoic acid (e.g., alltrans retinoic acid or ATRA), a Bcl2 inhibitor (e.g., ABT-263), a gluconeogenesis inhibitor (e.g., metformin), a p38 MAPK inhibitor (e.g., BIRB0796, LY2228820), a MEK1/2 inhibitor (e.g., trametinib, cobimetinib, binimetinib, selumetinib, pimasertib, refametinib, TAK-733), a mTOR inhibitor (e.g., BEZ235, JW-7-25-1), a PI3K inhibitor (e.g., Idelalisib, buparlisib/apelisib, copanlisib, GSK-2636771,
pictilisib, AMG-319, AZD-8186), an IGF1R inhibitor (e.g., BMS-754807, dalotuzumab, ganitumab, linsitinib), a PLC γ inhibitor (e.g., U73122), a JNK inhibitor (e.g., SP600125), aPAK1 inhibitor (e.g., IPA3), a SYK inhibitor (e.g., BAY613606), a HDAC inhibitor (e.g., Vorinostat), an FGFR inhibitor (e.g., Dovitinib), a XIAP inhibitor (e.g., Embelin), a PLK1 inhibitor (e.g., Volasertib, P-937), an ERK5 inhibitor (e.g., XMD8-92), a MPS1/TTK inhibitor (e.g., BAY-1 161909) and any combination thereof.

By way of example, patients with a high relative expression level of one or more overexpressed genes, such as those of the 21 gene signature, when compared to one or more underexpressed genes, such as those of the 7 gene signature, a high relative expression level of one or more overexpressed proteins when compared to one or more underexpressed proteins and/or a high integrated score described herein are more likely to respond favourably, such as a pathological complete response, when treated with chemotherapy. In this regard, non-limiting examples of chemotherapy include a pyrimidine analogue (e.g., 5 -fluorouracil, capecitabine), a taxane (e.g., paclitaxel), an anthracycline (e.g., doxorubicin, epirubicin), an antifolate drug (e.g., the dihydrofolate reductase inhibitor methotrexate), an alkylating agent (e.g., cyclophosphamide) or any combination thereof. It would be appreciated that the chemotherapy may be administered as adjuvant, neoadjuvant and/or as standard therapy, alone or in combination with other anticancer therapeutics.

Additionally, in certain embodiments, patients with a high relative expression level of one or more overexpressed genes, such as those of the 29 gene signature, when compared to one or more underexpressed genes, such as those of the 30 gene signature, a high relative expression level of one or more overexpressed proteins when compared to one or more underexpressed proteins and/or a high integrated score described herein may be more likely to respond favourably to (i.e., be more sensitive to) inhibition of HSP90, EGFR, IGF1R, mTOR, PI3K, p38 MAPK, PLCy, JNK, PAK1, ERK5, XIAP, PLK1 and/or MEK1/2 and may be less likely to respond favourably to (i.e., be less sensitive to) anticancer treatment with an ALK inhibitor, a BCR-ABL inhibitor, a PARP inhibitor, retinoic acid, a Bcl2 inhibitor, a gluconeogenesis inhibitor, a p38 MAPK inhibitor, an FGFR inhibitor, a SYK inhibitor, a HDAC inhibitor and/or an IGF1R inhibitor.

It will also be understood that the gene and protein signatures described herein may be used to identify those poorer prognosis patients, such as those with
larger and/or higher grade tumours, who may benefit from one or more additional anticancer therapeutic agents to the typical or standard anti-cancer treatment regime for that particular patient group. By way of example, ER^{+}breast cancer patients with or without lymph node involvement with a high integrated score, and hence a relatively poor prognosis, are more likely to respond favourably to or benefit from chemotherapy and/or endocrine therapy. This may include an improved survival and/or reduced likelihood of tumour recurrence and/or metastasis for these patients.

In certain embodiments, for patients with a high relative expression level of the overexpressed genes of the 21 gene signature when compared to the underexpressed genes of the 7 gene signature and/or a high integrated score, the cancer treatment may be directed at those genes or gene products listed in Tables 13, 15,16 and 17.

Additionally, for patients with a high relative expression level of the overexpressed proteins when compared to the underexpressed proteins and/or a high integrated score the cancer treatment may be directed at one or more of those proteins listed in Table 19.

It would be appreciated that those methods described herein for predicting the responsiveness of a cancer to an anti-cancer treatment, such as an immunotherapeutic agent, may further include the step of administering to the mammal a therapeutically effective amount of the anticancer treatment. In a preferred embodiment, the anticancer treatment is administered when the altered or modulated relative expression level indicates or correlates with relatively increased responsiveness of the cancer to the anti-cancer treatment.

Methods of treating cancer may be prophylactic, preventative or therapeutic and suitable for treatment of cancer in mammals, particularly humans. As used herein, "treating", "treat" or "treatment" refers to a therapeutic intervention, course of action or protocol that at least ameliorates a symptom of cancer after the cancer and/or its symptoms have at least started to develop. As used herein, "preventing", "prevent" or "prevention" refers to therapeutic intervention, course of action or protocol initiated prior to the onset of cancer and/or a symptom of cancer so as to prevent, inhibit or delay or development or progression of the cancer or the symptom.

The term "therapeutically effective amount" describes a quantity of a specified agent sufficient to achieve a desired effect in a subject being treated with that agent. For example, this can be the amount of a composition comprising one or
more agents that binds one or more of the overexpressed and/or underexpressed genes or gene products thereof described herein, necessary to reduce, alleviate and/or prevent a cancer or cancer associated disease, disorder or condition. In some embodiments, a "therapeutically effective amount" is sufficient to reduce or eliminate a symptom of a cancer. In other embodiments, a "therapeutically effective amount ${ }^{\prime \prime}$ is an amount sufficient to achieve a desired biological effect, for example an amount that is effective to decrease or prevent cancer growth and/or metastasis.

Ideally, a therapeutically effective amount of an agent is an amount sufficient to induce the desired result without causing a substantial cytotoxic effect in the subject. The effective amount of an agent useful for reducing, alleviating and/or preventing a cancer will be dependent on the subject being treated, the type and severity of any associated disease, disorder and/or condition (e.g., the number and location of any associated metastases), and the manner of administration of the therapeutic composition.

Suitably, the anti-cancer therapeutic agent is administered to a mammal as a pharmaceutical composition comprising a pharmaceutically-acceptable carrier, diluent or excipient.

By "pharmaceutically-acceptable carrier, diluent or excipient" is meant a solid or liquid filler, diluent or encapsulating substance that may be safely used in systemic administration. Depending upon the particular route of administration, a variety of carriers, well known in the art may be used. These carriers may be selected from a group including sugars, starches, cellulose and its derivatives, malt, gelatine, talc, calcium sulfate, liposomes and other lipid-based carriers, vegetable oils, synthetic oils, polyols, alginic acid, phosphate buffered solutions, emulsifiers, isotonic saline and salts such as mineral acid salts including hydrochlorides, bromides and sulfates, organic acids such as acetates, propionates and malonates and pyrogen-free water.

A useful reference describing pharmaceutically acceptable carriers, diluents and excipients is Remington's Pharmaceutical Sciences (Mack Publishing Co. N.J. USA, 1991), which is incorporated herein by reference.

Any safe route of administration may be employed for providing a patient with the composition of the invention. For example, oral, rectal, parenteral, sublingual, buccal, intravenous, intra-articular, intra-muscular, intra-dermal, subcutaneous, inhalational, intraocular, intraperitoneal, intracerebroventricular,
transdermal and the like may be employed. Intra-muscular and subcutaneous injection is appropriate, for example, for administration of immunotherapeutic compositions, proteinaceous vaccines and nucleic acid vaccines.

Dosage forms include tablets, dispersions, suspensions, injections, solutions, syrups, troches, capsules, suppositories, aerosols, transdermal patches and the like. These dosage forms may also include injecting or implanting controlled releasing devices designed specifically for this purpose or other forms of implants modified to act additionally in this fashion. Controlled release of the therapeutic agent may be effected by coating the same, for example, with hydrophobic polymers including acrylic resins, waxes, higher aliphatic alcohols, polylactic and polyglycolic acids and certain cellulose derivatives such as hydroxypropylmethyl cellulose. In addition, the controlled release may be effected by using other polymer matrices, liposomes and/or microspheres.

Compositions of the present invention suitable for oral or parenteral administration may be presented as discrete units such as capsules, sachets or tablets each containing a pre-determined amount of one or more therapeutic agents of the invention, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion or a water-in-oil liquid emulsion. Such compositions may be prepared by any of the methods of pharmacy but all methods include the step of bringing into association one or more agents as described above with the carrier which constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the agents of the invention with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation.

The above compositions may be administered in a manner compatible with the dosage formulation, and in such amount as is pharmaceutically-effective. The dose administered to a patient, in the context of the present invention, should be sufficient to effect a beneficial response in a patient over an appropriate period of time. The quantity of agent(s) to be administered may depend on the subject to be treated inclusive of the age, sex, weight and general health condition thereof, factors that will depend on the judgement of the practitioner.

In particular embodiments of the hereinbefore described methods, the cancer is breast cancer and the one or more overexpressed proteins are selected from the group consisting of DVL3, VEGFR2, INPP4B, EIF4EBP1, EGFR, HER3, SMAD1,

NFKB1 and HER2 and the one or more underexpressed proteins are selected from the group consisting of ASNS, MAPK9, YWHAE, RAD50, PGR, COL6A1, PEA15 and RPS6.

In particular embodiments of the hereinbefore described methods, the cancer is lung cancer, such as lung adenocarcinoma, wherein:
(i) the one or more overexpressed genes are selected from the group consisting of GNB2L1, TXN, KCNG1, BCAP31, GSK3B, FOXM1, ZNF593, EXOl, KIF2C, TTK, MELK, CENPA, TPX2, CA9, GRHPR, HCFC1R1,CEP55, MCMIO, CENPN and CARHSP1, and the one or more underexpressed genes are selected from the group consisting of BTN2A2, MTMR7, ZNRD1-AS1, MAPT and BTG2; and/or
(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, PAI-1, Ku80, GATA3, ITGA2 and AKT1, and the one or more underexpressed proteins are selected from the group consisting of ESR1.

In particular embodiments of the hereinbefore described methods, the cancer is kidney cancer, such as renal clear cell carcinoma, wherein:
(i) the one or more overexpressed genes are selected from the group consisting of EIF3K, ADORA2B, KCNG1, BCAP31, EXOSC7, FOXM1, CD55, ZNF593, KIF2C, TTK, MELK, CENPA, TPX2, CEP55, PML, CENPN and CARHSP1, and the one or more underexpressed genes are selected from the group consisting of BCL2 and MAPT; and/or
(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, PAI-1 and EIF4EBP1, and the one or more underexpressed proteins are selected from the group consisting of HER3, MAPK9, ESR1 and RAD50.

In particular embodiments of the hereinbefore described methods, the cancer is melanoma, such as skin cutaneous melanoma, and wherein:
(i) the one or more overexpressed genes are selected from the group consisting of EIF3K, ADORA2B, GSK3B, EXOSC7, FOXM1, EXOl, KIF2C, CENPA, TPX2, CAMSAP1, MCMIO and ABHD5 and the one or more underexpressed genes are selected from the group consisting of BCAP31, BTN2A2, SMPDL3B, MTMR7, ME1 and BTG2; and/or
(ii) the one or more overexpressed proteins are selected from the group consisting of PAI-1, EIF4EBP1, EGFR, HER3 and Ku80 and the one or more
underexpressed proteins are selected from the group consisting of ASNS, MAPK9 and ESR1.

In particular embodiments of the hereinbefore described methods, the cancer is endometrial cancer, such as uterine corpus endometrioid carcinoma, and wherein:
(i) the one or more overexpressed genes are selected from the group consisting of GNB2L1, EIF3K, KCNG1, BCAP31, GSK3B, EXOSC7, FOXM1, ZNF593, EXOl, KIF2C, MAP2K5, TTK, MELK, GRHPR, and PML, and the one or more underexpressed genes is $M Y B$; and/or
(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, INPP4B, EIF4EBP1 and ASNS and the one or more underexpressed proteins are selected from the group consisting of MAPK9, ESR1 and YWHAE.

In particular embodiments of the hereinbefore described methods, the cancer is ovarian adenocarcinoma and wherein:
(i) the one or more overexpressed genes are selected from the group consisting of GNB2L1, EIF3K, TXN, ADORA2B, KCNG1, GSK3B, STAU1, MAP2K5, and HCFC1R1, and the one or more underexpressed genes are selected from the group consisting of BTN2A2, and ZNRD1-AS1, and/or
(ii) the one or more overexpressed proteins are selected from the group consisting of PAI-1 and VEGFR2 and the one or more underexpressed proteins are selected from the group consisting of ASNS, MAPK9, ESR1, YWHAE and PGR.

In particular embodiments of the hereinbefore described methods, the cancer is head and neck cancer, such as head and neck squamous cell carcinoma, and wherein:
(i) the one or more overexpressed genes are selected from the group consisting of GNB2L1, TXN, ADORA2B, KCNG1, CD55, ZNF593, NDUFC1, and HCFC1R1, and the one or more underexpressed genes are selected from the group consisting of BTN2A2, and MTMR7; and/or
(ii) the one or more overexpressed proteins are selected from the group consisting of PAI-1, INPP4B, EGFR, HER3, SMADl, GATA3, ITGA2 and COL6A1 and the one or more underexpressed proteins are selected from the group consisting of VEGFR2 and ASNS.

In particular embodiments of the hereinbefore described methods, the cancer is colorectal cancer, such as colorectal adenocarcinoma, and wherein:
(i) the one or more overexpressed genes are selected from the group consisting of EIF3K, TXN, CD55, NDUFCl, HCFC1R1, and PML, and the one or more underexpressed genes are selected from the group consisting of BTN2A2, SMPDL3B, and MET, and/or
(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, PAI-1, INPP4B, EIF4EBP1, EGFR and HER3 and the one or more underexpressed proteins are selected from the group consisting of ASNS, MAPK9, YWHAE, RAD50 and PEA15.

In particular embodiments of the hereinbefore described methods, the cancer is glioma, such as lower grade glioma, and wherein:
(i) the one or more overexpressed genes are selected from the group consisting oï TXN, BCAP31, STAU1, PML, CARHSP1, and BTN2A2; and/or
(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, PAI-1, VEGFR2, Ku80, SMAD1 and NFKB1 and the one or more underexpressed proteins are selected from the group consisting of ESR1, YWHAE and PGR.

In particular embodiments of the hereinbefore described methods, the cancer is bladder cancer, such as urothelial carcinoma, and wherein:
(i) the one or more overexpressed genes are selected from the group consisting of ADORA2B, KCNG1, STAU1, MAP2K5, and CAMSAP1, and the one or more underexpressed genes are selected from the group consisting of GNB2L1, EIF3K, TXN, BCAP31, EXOSC7, CD55, NDUFCl, GRHPR, CETN3, BTN2A2, SMPDL3B, and ERC2,, and/or
(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, VEGFR2, Ku80, SMAD1 and AKT1 and the one or more underexpressed proteins is ASNS.

In particular embodiments of the hereinbefore described methods, the cancer is lung cancer, such as lung squamous cell carcinoma, and wherein:
(i) the one or more overexpressed genes are selected from the group consisting of GNB2L1, ZNF593, and SMPDL3B, and the one or more underexpressed genes are selected from the group consisting of GSK3B, MAP2K5, NDUFCl, CAMSAPI, ABHD5, and MET, and/or
(ii) the one or more overexpressed proteins are selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EGFR and GATA3 and the one or more underexpressed proteins is ASNS.

In particular embodiments of the hereinbefore described methods, the cancer is adrenocortical carcinoma, and wherein:
the one or more overexpressed genes are selected from the group consisting of GNB2L1, EIF3K, TXN, ADORA2B, KCNG1, BCAP31, FOXM1, ZNF593, EXOl, KIF2C, MAP2K5, TTK, MELK, CENPA, TPX2, GRHPR, CEP55, MCMIO, and CENPN, and the one or more underexpressed genes are selected from the group consisting of MTMR7, BCL2, MAPT, MYB, and STC2.

In particular embodiments of the hereinbefore described methods, the cancer is kidney renal papillary cell carcinoma and wherein:
the one or more overexpressed genes are selected from the group consisting of GNB2L1, ADORA2B, KCNG1, GSK3B, FOXM1, CD55, EXOl, KIF2C, STAU1, TTK, MELK, CENPA, TPX2, CA9, CEP55, and MCMIO, and the one or more underexpressed genes are selected from the group consisting of SMPDL3B, and BCL2.

In particular embodiments of the hereinbefore described methods, the cancer is pancreatic ductal adenocarcinoma and wherein:
the one or more overexpressed genes are selected from the group consisting of EIF3K, ADORA2B, GSK3B, EXOSC7, FOXM1, CD55, EXOl, STAU1, CAMSAP1, and CETN3 and the one or more underexpressed genes are selected from the group consisting of BTN2A2, SMPDL3B, MTMR7, ME1, BCL2, and ERC2.

In particular embodiments of the hereinbefore described methods, the cancer is liver hepatocellular carcinoma and wherein:
the one or more overexpressed genes are selected from the group consisting of GNB2L1, TXN, EXOSC7, and CA9, and the one or more underexpressed genes is MTMR7.

In particular embodiments of the hereinbefore described methods, the cancer is cervical squamous cell carcinoma and/or endocervical adenocarcinoma and wherein:
the one or more overexpressed genes are selected from the group consisting of STAU1, CA9, and ME1 and the one or more underexpressed genes are selected from the group consisting oiEIF3K, TXN, BCAP31, EXOSC7, and ZNRD1-AS1.

Furthermore, in certain embodiments, patients with a high relative expression level of one or more overexpressed genes, such as those of the 29 gene signature, when compared to one or more underexpressed genes, such as those of the 30 gene signature, a high relative expression level of one or more overexpressed proteins when compared to one or more underexpressed proteins and/or a high integrated score as described herein may be more likely to respond favourably to immunotherapy.

Accordingly, one aspect provides a method of predicting the responsiveness of a cancer to an immunotherapeutic agent in a mammal, said method including the step of comparing an expression level of one or more overexpressed genes selected from the group consisting of $A D O R A 2 B$, CD36, CETN3, KCNGl, LAMA3, MAP2K5, NAEl, PGKl, STAU1, CFDP1, SF3B3 and TXN, and an expression level of one or more underexpressed genes selected from the group consisting of $A P O B E C 3 A, B C L 2$, BTN2A2, CAMSAP1, CAMK4, CARHSP1, FBXW4, GSK3B, HCFClR1, MYB, PSEN2 and ZNF593, in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the immunotherapeutic agent.

In one embodiment the one or more overexpressed genes are selected from the group consisting of ADORA2B, CETN3, KCNGl, MAP2K5, STAU1 and TXN, and/or an expression level of one or more underexpressed genes are selected from the group consisting of BTN2A2, CAMSAP1, CARHSP1, GSK3B, HCFC1R1, and ZNF593.

In one embodiment, the one or more overexpressed genes are selected from the group consisting of ADORA2B, CD36, KCNGl, LAMA3, MAP2K5, NAEl, PGKl, STAU1, CFDP1, and SF3B3 and/or an expression level of one or more underexpressed genes are selected from the group consisting of $A P O B E C 3 A, B C L 2$, BTN2A2, CAMK4, FBXW4, PSEN2 and, MYB.

It would be understood for particular embodiments of the present aspect that one or more other overexpressed genes and/or one or more other underexpressed genes from one or more of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene,
an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene. such as those listed in Table 21, may be included in the step of comparing an expression level of one or more overexpressed genes and an expression level of one or more underexpressed genes.

Insofar as they relate to cancer, immunotherapy or immunotherapeutic agents use or modify the immune mechanisms of a subject so as to promote or facilitate treatment of a cancer. In this regard, immunotherapy or immunotherapeutic agents used to treat cancer include cell-based therapies, antibody therapies (e.g., anti-PDl or anti-PDLl antibodies) and cytokine therapies. These therapies all exploit the phenomenon that cancer cells often have subtly different molecules termed cancer antigens on their surface that can be detected by the immune system of the cancer subject. Accordingly, immunotherapy is used to provoke the immune system of a cancer patient into attacking the cancer's cells by using these cancer antigens as targets.

Non-limiting examples of immunotherapy or immunotherapeutic agents include adalimumab, alemtuzumab, basiliximab, belimumab, bevacizumab, BMS936559, brentuximab, certolizumab, cituximab, daclizumab, eculizumab, ibritumomab, infliximab, ipilimumab, lambrolkizumab, mepolizumab, MPDL3280A muromonab, natalizumab, nivolumab, ofatumumab, omalizumab, pembrohzumab, pexelizumab, pidilizumab, rituximab, tocilizumab, tositumomab, trastuzumab, ustekinumab, abatacept, alefacept and denileukin diftitox. In particular preferred embodiments, the immunotherapeutic agent is an immune checkpoint inhibitor, such as an anti-PDl antibody (e.g., pidilizumab, nivolumab, lambrolkizumab, pembrohzumab), an anti-PDLl antibody (e.g., BMS-936559, MPDL3280A) and/or an anti-CTLA4 antibody (e.g., ipilimumab).

As would be appreciated by the skilled artisan, immune checkpoints refer to a variety of inhibitory pathways of the immune system that are crucial for maintaining self-tolerance and for modulating the duration and/or amplitude of an immune response in a subject. Cancers can use particular immune checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Accordingly, immune checkpoint inhibitors include any agent that blocks or inhibits the inhibitory pathways of the immune system. Such inhibitors
may include small molecule inhibitors or may include antibodies, or antigen binding fragments thereof, that bind to and block or inhibit immune checkpoint receptors or antibodies that bind to and block or inhibit immune checkpoint receptor ligands. By way of example, immune checkpoint receptors or receptor ligands that may be targeted for blocking or inhibition include, but are not limited to, CTLA-4, 4-IBB (CD137), 4-1BBL (CD137L), PDL1, PDL2, PD1, B7-H3, B7-H4, BTLA, HVEM, TIM3, GAL9, LAG3, TIM3, B7H3, B7H4, VISTA, KIR, 2B4, CD 160 and CGEN15049. Illustrative immune checkpoint inhibitors include tremelimumab (CTLA-4 blocking antibody), anti-OX40, PD-L1 monoclonal Antibody (Anti-B7-Hl; MEDI4736), MK-3475 (PD-1 blocker), nivolumab (anti-PDl antibody), pidilizamab (CT-01 1; anti-PDl antibody), BY55 monoclonal antibody, AMP224 (anti-PDLl antibody), BMS-936559 (anti-PDL1 antibody), MPLDL3280A (anti-PDLl antibody), MSB0010718C (anti-PDLl antibody) and yervoy/ipilimumab (anti-CTLA-4 checkpoint inhibitor), albeit without limitation thereto.

In one embodiment, the method of predicting the responsiveness of a cancer to an immunotherapeutic agent, may further include the step of administering to the mammal a therapeutically effective amount of the immunotherapeutic agent.

In a related aspect is provided a method of predicting the responsiveness of a cancer to an EGFR inhibitor in a mammal, said method including the step of comparing an expression level of one or more overexpressed genes selected from the group consisting oï NAEI, GSK3B, TAF2, MAPRE1, BRD4, STAU1, TAF2, PDCD4, KCNG1, ZNRD1-AS1, EIF4B, HELLS, RPL22, ABAT, BTN2A2, CD1B, ITM2A, $B C L 2, C X C R 4$, and $A R N T 2 a n d$ an expression level of one or more underexpressed genes selected from the group consisting of CDIC, CDIE, CD1B, KDM5A, BATF, EVL, PRKCB, HCFC1R1, CARHSP1, CHAD, KIR2DL4, ABHD5, ABHD14A, ACAA1, SRPK3, CFB, ARNT2, NDUFC1, BCL2, EVL, ULBP2, BIN3, SF3B3, CETN3, SYNCRIP, TAF2, CENPN, ATP6V1C1, CD55 and ADORA2B in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the EGFR inhibitor.

It would be appreciated that the EGFR inhibitor may be any known in the art, including monoclonal antibody and small molecule inhibitors thereof, such as those
hereinbefore described. In particular embodiments, the EGFR inhibitor is or comprises erlotinib and/or cetuximab.

In certain embodiments, the cancer is or comprises lung cancer, colorectal cancer or breast cancer.

In one embodiment, the one or more overexpressed genes are selected from the group consisting of NAE1, GSK3B, and TAF2 and/or the one or more underexpressed genes are selected from the group consisting of CDIC, CDIE, CDIB, KDM5A, BATF, EVL, PRKCB, HCFC1R1, CARHSP1, CHAD, KIR2DL4, ABHD5, ABHD14A, ACAA1, SRPK3, and CFB.

In one embodiment, the one or more overexpressed genes are selected from the group consisting of MAPRE1, BRD4, STAU1, TAF2, GSK3B, PDCD4, KCNG1, ZNRD1-AS1, EIF4B and HELLS and/or the one or more underexpressed genes are selected from the group consisting of ARNT2, NDUFC1, BCL2, ABHD14A, EVL, ULBP2, and BIN3.

In one embodiment, the one or more overexpressed genes are selected from the group consisting oiRPL22, ABAT, BTN2A2, CDIB, ITM2A, BCL2, CXCR4, and $A R N T 2$ and/or the one or more underexpressed genes are selected from the group consisting of SF3B3, CETN3, SYNCRIP, TAF2, CENPN, ATP6V1C1, CD55 and ADORA2B.

In a related aspect is provided a method of predicting the responsiveness of a cancer to a multikinase inhibitor in a mammal, said method including the step of comparing an expression level of one or more overexpressed genes selected from the group consisting of SCUBE, CHPT1, CDC1, BTG2, ADORA2B and BCL2, and an expression level of one or more underexpressed genes selected from the group consisting of NOP2, CALR, MAPRE1, KCNG1, PGK1, SRPK3, RERE, ADM, LAMA3, KIR2DL4, ULBP2, LAMA4, CA9, and BCAP31, in one or more cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the EGFR inhibitor.

Multikinase inhibitors typically work by inhibiting multiple intracellular and/or cell surface kinases, some of which may be implicated in tumor growth and metastatic progression of a cancer, thus decreasing tumor growth and replication. It would be appreciated that the multikinase inhibitor may be any known in the art,
including small molecule inhibitors, such as those hereinbefore described. Nonlimiting examples of multikinase inhibitors include sorafenib, trametinib, dabrafenib, vemurafenib, crizotinib, sunitinib, axitinib, ponatinib, ruxolitinib, vandetanib, cabozantinib, afatinib, ibrutinib and regorafenib. In a particular embodiment, the multikinase inhibitor is or comprises sorafenib.

In one embodiment, the cancer is or comprises lung cancer.
Suitably, with regard to predicting the responsiveness of a cancer to an immunotherapeutic agent, an EGFR inhibitor or a multikinase inhibitor, a higher relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with a relatively increased responsiveness of the cancer to the agent or inhibitor; and/or a lower relative expression level of the one or more overexpressed genes compared to the one or more underexpressed genes indicates or correlates with a relatively decreased responsiveness of the cancer to the agent or inhibitor.

In a further aspect, the invention provides a method for identifying an agent for use in the treatment of cancer including the steps of:
(i) contacting a protein product of GRHPR, NDUFC1, CAMSAP1, CETN3, EIF3K, STAU1, EXOSC7, COGS, CFDP1 and/or KCNG1 with a test agent; and
(ii) determining whether the test agent, at least partly, reduces, eliminates, suppresses or inhibits the expression and/or an activity of the protein product.

Suitably, the cancer is of a type hereinbefore described, albeit without limitation thereto. Preferably, the cancer has an overexpressed gene selected from the group consisting of GRHPR, NDUFC1, CAMSAP1, CETN3, EIF3K, STAU1, EXOSC7, COGS, CFDP1 and KCNG1 and any combination thereof,

Suitably, the agent possesses or displays little or no significant off-target and/or nonspecific effects.

Preferably, the agent is an antibody or a small organic molecule.
In embodiments relating to antibody inhibitors, the antibody may be polyclonal or monoclonal, native or recombinant. Well-known protocols applicable to antibody production, purification and use may be found, for example, in Chapter 2 of Coligan et al, CURRENT PROTOCOLS IN IMMUNOLOGY (John Wiley \& Sons NY, 1991-1994) and Harlow, E. \& Lane, D. Antibodies: A Laboratory Manual, Cold Spring Harbor, Cold Spring Harbor Laboratory, 1988, which are both herein incorporated by reference.

Generally, antibodies of the invention bind to or conjugate with an isolated protein, fragment, variant, or derivative of the protein product of one or more of GRHPR, NDUFC1, CAMSAP1, CETN3, EIF3K, STAU1, EXOSC7, COG8, CFDP1 and KCNG1. For example, the antibodies may be polyclonal antibodies. Such antibodies may be prepared for example by injecting an isolated protein, fragment, variant or derivative of the protein product into a production species, which may include mice or rabbits, to obtain polyclonal antisera. Methods of producing polyclonal antibodies are well known to those skilled in the art. Exemplary protocols which may be used are described for example in Coligan et al, CURRENT PROTOCOLS IN IMMUNOLOGY, supra, and in Harlow \& Lane, 1988, supra.

Monoclonal antibodies may be produced using the standard method as for example, described in an article by Kohler \& Milstein, 1975, Nature 256, 495, which is herein incorporated by reference, or by more recent modifications thereof as for example, described in Coligan et al., CURRENT PROTOCOLS IN IMMUNOLOGY, supra by immortalizing spleen or other antibody producing cells derived from a production species which has been inoculated with one or more of the isolated protein products and/or fragments, variants and/or derivatives thereof.

Typically, the inhibitory activity of candidate inhibitor antibodies may be assessed by in vitro and/or in vivo assays that detect or measure the expression levels and/or activity of the protein products of one or more of GRHPR, NDUFC1, CAMSAP1, CETN3, EIF3K, STAU1, EXOSC7, COG8, CFDP1 and KCNG1 in the presence of the antibody.

In embodiments relating to small organic molecule inhibitors, this may involve screening of large compound libraries, numbering hundreds of thousands to millions of candidate inhibitors (chemical compounds including synthetic, small organic molecules or natural products, for example) which may be screened or tested for biological activity at any one of hundreds of molecular targets in order to find potential new drugs, or lead compounds. Screening methods may include, but are not limited to, computer-based ("in silico") screening and high throughput screening based on in vitro assays.

Typically, the active compounds, or "hits", from this initial screening process are then tested sequentially through a series of other in vitro and/or in vivo tests to further characterize the active compounds. A progressively smaller number of the "successful" compounds at each stage are selected for subsequent testing, eventually
leading to one or more drug candidates being selected to proceed to being tested in human clinical trials.

At the clinical level, screening a test agent may include obtaining samples from test subjects before and after the subjects have been exposed to a test compound. The levels in the samples of the protein product of the overexpressed genes may then be measured and analysed to determine whether the levels and/or activity of the protein products change after exposure to a test agent. By way of example, protein product levels in the samples may be determined by mass spectrometry, western blot, ELISA and/or by any other appropriate means known to one of skill in the art. Additionally, the activity of the protein products, such as their enzymatic activity, may be determined by any method known in the art. This may include, for example, enzymatic assays, such as spectrophotometric, fluorometric, calorimetric, chemiluminescent, light scattering, microscale thermophoresis, radiometric and chromatographic assays.

It would be appreciated that subjects who have been treated with test agents may be routinely examined for any physiological effects which may result from the treatment. In particular, the test agents will be evaluated for their ability to decrease cancer likelihood or occurrence in a subject. Alternatively, if the test agents are administered to subjects who have previously been diagnosed with cancer, they will be screened for their ability to slow or stop the progression of the cancer as well as induce disease remission.

In a particular embodiment, the invention may provide a "companion diagnostic" whereby the one or more genes that are detected as having elevated expression are the same genes that are targeted by the anti-cancer treatment.

In a related aspect, the invention provides an agent for use in the treatment of cancer identified by the method hereinbefore described.

Suitably, the cancer is of a type hereinbefore described, albeit without limitation thereto. Preferably, the cancer has an overexpressed gene selected from the group consisting of GRHPR, NDUFC1, CAMSAP1, CETN3, EIF3K, STAU1, EXOSC7, COG8, CFDP1, KCNG1 and any combination thereof.

In another related aspect, the invention provides a method of treating a cancer in a mammal, including the step of administering to the mammal a therapeutically effective amount of an agent hereinbefore described.

In this regard, test agents that are identified of being capable of reducing, eliminating, suppressing or inhibiting the expression level and/or activity of a protein product of GRHPR, NDUFCl, CAMSAPl, CETN3, EIF3K, STAUl, EXOSC7, COGS, $C F D P l$ and/or $K C N G l$ may then be administered to patients who are suffering from or are at risk of developing cancer,. For example, the administration of a test agent which inhibits or decreases the activity and/or expression of the protein product of one or more of the aforementioned genes may treat the cancer and/or decrease the risk cancer, if the increased activity of the biomarker is responsible, at least in part, for the progression and/or onset of the cancer.

Suitably, the cancer is of a type hereinbefore described, albeit without limitation thereto. Preferably, the cancer has an overexpressed gene selected from the group consisting of GRHPR, NDUFCl, CAMSAPl, CETN3, EIF3K, STAUl, EXOSC7, COGS, CFDPl, $K C N G l$ and any combination thereof.

All computer programs, algorithms, patent and scientific literature referred to herein is incorporated herein by reference.

For the present invention, the database accession number or unique identifier provided herein for a gene or a protein, such as those presented in Tables 4, 5, 10, 15, 16, 17 and 18 , as well as the gene and/or protein sequence or sequences associated therewith, are incorporated by reference herein.

So that preferred embodiments of the invention may be fully understood and put into practical effect, reference is made to the following non-limiting examples.

EXAMPLE 1

Materials and Methods

Meta-analysis of global gene expression in TNBC

We performed a meta-analysis of global gene expression data in the Oncomine ${ }^{\mathrm{TM}}$ database ${ }^{19}$ (Compendia Bioscience, MI) using a primary filter for breast cancer (130 datasets), sample filter to use clinical specimens and dataset filters to use mRNA datasets with more than 151 patients (22 datasets). Patients of all ages, gender, disease stages or treatments were included. Three additional filters were applied to perform three independent differential analyses: (1) triple negative (TNBC cases vs. non-TNBC cases, 8 datasets ${ }^{49-56}$; (2) metastatic event analysis at 5 years
(metastatic events vs. no metastatic events, 7 datasets ${ }^{53^{\prime 2} 55^{2761}}$) and (3) survival at 5 years (patients who died vs. patients who survived, 7 datasets ${ }^{49}{ }^{\prime} 54 \cdot 566^{\prime} 58^{\prime} / 11^{1-63}$). Deregulated genes were selected based on the median p -value of the median gene rank in overexpression or underexpression patterns across the datasets (Figure 8). The union of these three deregulated gene lists resulted in a gene list of deregulated genes in aggressive breast cancers (Figure 9). The METBRIC dataset ${ }^{21}$ was used as the validation set for further analysis. The normalized z -score expression data of the METABRIC dataset was extracted from Oncomine ${ }^{\mathrm{TM}}$ and imported into BRBArrayTools ${ }^{64}$ (V4.2, Biometric Research Branch, NCI, Maryland, USA) with built in R Bioconductor packages. Survival curves for the METABRIC dataset were constructed using GraphPad ${ }^{\circledR}$ Prism v6.0 (GraphPad Software, CA, USA) and the Log-rank (Mantel-Cox) Test was used for statistical comparisons of survival curves.

Ingenuity Pathway Analysis and derivation of the eight gene list

Pathway analysis was performed using the Ingenuity Pathway Analysis ${ }^{\circledR}$ (Ingenuity Systems ${ }^{\circledR}$, CA). For pathway analysis in IPA^{\circledR}, we used only direct relationships. After pathway analysis, we set to identify the minimum gene list that recapitulates the aggressiveness 206 gene list. We used the METABRIC dataset to perform statistical filtering in the BRB-ArrayTools software to derive the minimum gene list as follows: (1) the correlation of each gene in the CIN metagene and the ER metagene to the metagene itself was determined by quantitative trait analysis using the Pearson's correlation coefficient (univariate p-value threshold of 0.001); (2) the association of each gene with overall survival using univariate Cox proportional hazards model (univariate test p -value < 0.001); and (3) the fold-change of gene expression between high aggressiveness score tumors and low aggressiveness score tumors was calculated for each gene. We selected genes with Pearson's correlation coefficient > 0.7 to the metagenes, strongest survival association and more than 2fold deregulation between high and low agressiveness score tumors. The METABRIC dataset and four publically available datasets were used to validate the 8 -genes score. The four datasets (GSE25066 ${ }^{53}$, GSE349465, GSE2990 ${ }^{15}$, GSE2034 ${ }^{66}$) were analyzed as described previously ${ }^{67}$.

Cell culture and drug treatments

Breast cancer cell lines were obtained from ATCC ${ }^{\text {тм }}$ (VA, USA) and cultured as per ATCC ${ }^{\text {TM }}$ instructions. All cell lines were regularly tested for mycoplasma and authenticated using STR profiling. For the siRNA screen, siRNA
solutions (Shanghai Gene Pharma, China) were used to transfect cells (MDA-MB231, SUM159PT and Hs578T) with 10 nM of respective siRNA using Lipofectamine ${ }^{\circledR}$ RNAiMAX (Life Technologies, CA, USA). For drug treatments, docetaxel and the TTK inhibitor AZ3146 were purchased from Selleck Chemicals LLC (TX, USA) and diluted in DMSO. Six days after siRNA knockdown or after drug treatments the survival of cells in comparison to control was determined using the CellTiter $96{ }^{\circledR}$ Assay as per manufacturer instructions (Promega Corporation, WI, USA). For immunoblotting, standard protocols were used and membranes were probed with antibodies against TTK (anti-MPS1 mouse monoclonal antibody [N1] abl 1108 (Abeam, Cambridge), and γ-tubulin (Sigma-Aldrich ${ }^{\circledR}$) then developed using chemiluminescence reagent plus (Milipore, MA, USA). Flow cytometry to quantify apoptosis was performed using Annexin V-Alexa 4^{88} and 7-AAD (Life Technologies) as per manufacturer instruction using BD FACSCanto $\mathrm{II}^{\mathrm{TM}}$ flow cytometer (BD Biosciences, CA, USA).

Breast cancer tissue microarrays, immunohistochemical and survival analysis

The Brisbane Breast Bank collected fresh breast tumor samples from consenting patients; the study was approved by the local ethics committees. Tissue microarrays (TMAs) were constructed from duplicate cores of formalin-fixed, paraffin-embedded (FFPE) breast tumor samples from patients undergoing resection at the Royal Brisbane and Women's Hospital between 1987 and 1994. For biomarker analysis, whole tumor sections or TMAs (depending on the marker) were stained with antibodies against ER, PR, Ki67, HER2, CK5/6, CK14, EGFR and TTK (Table 8), and scored by trained Pathologists. The Vectastain ${ }^{\circledR}$ Universal ABC kit (Vector laboratories, CA) was used for signal detection according to the manufacturer's instructions. Stained sections were scanned at high resolution (ScanScope Aperio, Leica Microsystems, Wetzlar, Germany), and then images were segmented into individual cores for analysis using Spectrum software (Aperio). Survival and other clinical data were collected from the Queensland Cancer Registry and original diagnostic Pathology reports, and in addition we performed an internal histopathological review (SRL) of representative tumor sections from each case, stained with H\&E. For analysis of HER2-amplification TMAs were analyzed using HER2 CISH. Criteria for assigning prognostic subgroups in this study are summarized in Figure 14.

Other statistical analysis

Statistical analyses were prepared using GraphPad ${ }^{\circledR}$ Prism v6.0. The types of tests used are stated in Figure Legends. Univariate and multivariate Cox proportional hazards regression analyses were performed using MedCalc for Windows, version 12.7 (MedCalc Software, Ostend, Belgium).

Results

Meta-analysis of gene expression profiles in TNBC

We performed a meta-analysis of published gene expression data, irrespective of platform, using the Oncomine ${ }^{\text {TM }}$ database ${ }^{19}$ (version 4.5). We compared the expression profiles of 492 TNBC cases vs. 1382 non-TNBC cases in 8 datasets and found 1600 overexpressed and 1580 underexpressed genes in the TNBC cases (cutoff median p-value across the 8 datasets < $1 x 10^{-5}$ from a Student's i-test, Figure 8). We also compared the expression profiles of primary breast cancers from 512 patients who developed metastases vs. 732 patients who did not develop metastases at 5 years (7 datasets in total) to identify 500 overexpressed and 480 underexpressed genes in the metastasis cases (cutoff median p-value across the 7 datasets < 0.05 from a Student's i-test, Figure 8). Finally, we compared the expression profiles of 232 primary breast tumors from patients who died within 5 years vs. 879 patients who survived in 7 datasets and found 500 overexpressed and 500 underexpressed genes in the poor survivors (cutoff median p-value across the 7 datasets < 0.05 from a Student's i-test, Figure 8). The union of these analyses - genes deregulated in TNBC and in tumors that metastasized or resulted in death within 5 years - generated a gene list of 305 overexpressed and 341 underexpressed genes (Figure 9A\&B). The deregulated genes from our analyses did not consider deregulation in comparison to normal breast tissue. To identify cancer-related genes, we used the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) dataset ${ }^{21}$ as a validation dataset. Of the 305 overexpressed and 341 underexpressed genes identified in the meta-analysis, 117 overexpressed and 89 underexpressed genes (206 genes) were deregulated in TNBC (250 cases) vs. 144 adjacent normal tissue (1.5 fold-change cutoff; Figure 9C\&D).

Clinicopathologicalfeatures of the aggressiveness gene list

We compared the 206 genes from the above analysis, we called the "aggressiveness gene list" (Table 4), to the recently described metagene attractors ${ }^{161^{1}}{ }^{7}$ and found that 45 of the overexpressed genes were in the CIN metagene, whereas 19
of the underexpressed genes were in the ER metagene (Figure 10). The expression of the aggressiveness gene list was visualized in the METABRIC dataset, stratified according to the histological subtypes by the GENUIS classification ${ }^{22}$. As shown in Figure 1A, ER7HER2 ${ }^{\circ}$ (TNBC), in comparison to adjacent normal breast tissue, showed the highest upregulation of CIN genes (red in the heat map) and downregulation of ER signaling genes (green in the heat map). Tumors of other subtypes showed a range of deregulation of these genes. To quantify these trends, we calculated the "aggressiveness score" as the ratio of the CIN metagene (average of expression of CIN genes) to the ER metagene (average of expression of ER genes). The aggressiveness score was highest for ER7HER2 ${ }^{-}$(TNBC), followed by HER2 ${ }^{+}$ then ER+ tumors (box plot in Figure 1). We also analyzed the aggressiveness score in the five intrinsic breast cancer subtypes predefined by the PAM50 classification ${ }^{8}$ and the ten integrative clustering (intClust) subtypes defined by combined clustering of gene expression and copy number data subtypes ${ }^{21}$ (Figure 11). The aggressiveness score was highest in the basal-like and the intClust 10 subtypes which are enriched for TNBC and have poor prognosis.

Interestingly, tumors of various subtypes scored higher than the median aggressiveness score (line in box plots in Figure 1 and Figure 11). To this end, we examined the overall survival of patients in the METABRIC dataset stratified by quartiles and also dichotomized by the median of the aggressiveness score. Tumors with high aggressiveness score had worse survival than those with low aggressiveness score. The survival of patients with non-TNBC tumors with high aggressiveness score had poor survival that was similar to TNBC patients (Figure IB). Among ER^{+}tumors we found that high aggressiveness score predicted poor survival in both Grade 2 (Figure IB) and Grade 3 (Figure 11) tumors. Tumors with high aggressiveness score showed poor survival regardless of the PAM50 intrinsic breast cancer subtypes (Figure 11). The PAM50 classifier was prognostic only in low aggressiveness score tumors (Figure 12).

One network of direct interactions in the aggressiveness gene list associates with patient survival

We performed network analysis on the aggressiveness gene list using the Ingenuity Pathway Analysis $\left(\mathrm{IPA}^{\circledR}\right)$ and found a network with direct interactions between 97 of the 206 deregulated genes (Figure 2A). To find the minimal genes that represent the aggressiveness genes and this network, the 97 genes in this network
were analyzed for their correlation with the CIN or ER metagenes and overall survival in the METABRIC dataset (Table 5). We selected genes according to the following criteria: (1) highest correlation with the metagenes (Pearson's correlation coefficient > 0.7); (2) association with overall survival (Cox proportional hazards model, p <0.001), and (3) more than 2 -fold deregulation with least standard deviation of expression between high and low aggressiveness score tumors. These analyses identified two genes from the ER metagene (MAPT and $M Y B$) and six genes from the CIN metagene (MELK, MCM10, CENPA, EXOl, TTK and KIF2C). These 8 genes were maintained in a directly connected network (Figure 2B). The classification of tumors (high vs. low across the median) from these eight genes, again representing the ratio of CIN and ER metagenes, predicted the classification from the 206 genes with 95% sensitivity and 97% specificity by prediction of microarray (PAM) analysis (data not shown). Importantly, a high score from these eight genes identified poor survival in all patients, non-TNBC patients and ER ${ }^{+}$Grade 2 (Figure 2C).

Next, we explored the 8 -genes score for prognosis in several molecular and histological settings in the METABRIC dataset. The survival of patients with tumors with wild-type TP53 were stratified by the 8 -genes score (Figure 3A). Patients with mutant TP53, which were mainly of high score, showed worse survival than those with wild-type TP53, suggesting that TP53 mutation is an independent prognostic factor. Patients with tumors with low or high expression of the proliferation marker Ki67 were stratified by the 8 -genes score suggesting that the 8 -genes score is independent of proliferation (Figure 3A). We also found that the 8 -genes score stratified the survival of patients from all stages of disease (Stage I - Stage III, Figure 3A). We focused on ER^{+}and found that, as in the case of ER^{+}Grade 2 tumors (Figure 2C); the 8 -genes score stratified the survival of patients with ER^{+}Grade 3 tumors (Figure 3B). Importantly, the 8 -genes score identified $\mathrm{ER}^{+} \mathrm{LN}^{-}$and $\mathrm{ER}^{+} \mathrm{LN}^{+}$ patients who had poor survival similar to ER LN^{-}and $\mathrm{ER}^{-} \mathrm{LN}{ }^{+}$patients, respectively (Figure 3B). High 8-genes score identified poor survival of patients with tumors of all PAM50 subtypes and the prognostication by PAM50 classification was only evident in low 8 -genes score tumors (Figure 12).

The 8-genes aggressiveness score in multivariate survival analysis

To exclude the possibility that the aggressiveness score - calculated using the 206 genes or the 8 genes - was redundant; we performed multivariate Coxproportional hazards model analysis in the METABRIC dataset (with Illumina
platform) in comparison to conventional clinical variables and current gene signatures. As detailed in Table 1, the aggressiveness scores significantly associated with patient survival when compared with conventional variables and outperformed MammaPrint ${ }^{9}$, OncotypeDx ${ }^{10^{O_{11}}}$, proliferation/cell cycle ${ }^{16^{\prime} 20}$ and $\mathrm{CIN}^{2}{ }^{0}$ signatures. Moreover, our aggressiveness scores outperformed the CIN4 classier ${ }^{23}$ which was recently developed from the CIN signature.

We validated the six CIN and two ER genes in univariate survival association using the online tool Kaplan-Meier (KM)-plotter ${ }^{24}$ (Tables 6 \& 7) which has the gene expression and survival data of more than 2000 patients (but are not part of the METABRIC dataset). We found that the collective expression of the six overexpressed genes (MELK, MCM10, CENPA, EXOl, TTK and KIF2C) significantly associated with relapse free survival (RFS) and distant metastasis free survival (DMFS) in all patients, ER^{+}patients, lymph node negative (LN^{-}) or positive $\left(\mathrm{LN}^{+}\right)$patients (Table 6). The two underexpressed genes (MAPT and MYB) also significantly associated with RFS and DMFS in these patient groups (Table 7).

More importantly, we performed multivariate survival analysis of the 8 -genes score in four datasets (with Affymetrix platform from the Gene Expression Omnibus [GEO]; GSE2990, GSE3494, GSE2034 and GSE25066). Again, the score was significantly associated with survival in a multivariate Cox-proportional hazards model in every dataset tested (Figure 4). Altogether, we found that in multiple datasets that used different platforms, the 8 -genes score identified patients with poor survival independently of other clinico-pathologic indicators and outperforming current signatures.

Therapeutic targets in the aggressiveness gene list

The overexpressed genes in the CIN metagene are involved in or regulate mitosis, spindle assembly and checkpoint, kinetochore attachment, chromosome segregation and mitotic exit. Thus it is not surprising that several of the overexpressed genes are targets for molecular inhibitors, such as CDK1 ${ }^{25126}$ and AURKA/AURKB ${ }^{27}$ and have been trialed pre-clinically and clinically ${ }^{28}$. To this end, we performed siRNA depletion against 25 genes of the CIN metagene in three TNBC cell lines, MDA-MB-231, SUM159PT and Hs578T. We found that knockdown of four genes (TTK, TPX2, NDC80 and PBK) consistently affected the survival of these cells (Figure 5A and Table 5). The knockdown of TTK showed the worst survival and since it was in the 8 -genes score we selected TTK for further studies. We found
that TTK protein was higher in TNBC cell lines compared to the near-normal MCF10A cell line, and luminal/HER2 cell lines (Figure 5B). Next, we used the specific TTK inhibitor (TTKi), AZ3146, against a panel of breast cancer cell lines and found that TNBC cell lines were more sensitive to the TTKi (Figure 5C).

TTK expression in aggressive tumors and potential for combination therapy

To further study the potential of TTK as therapeutic target, we investigated TTK expression at the mRNA and protein levels in breast cancer patients. We analyzed the correlation of TTK mRNA expression, dichotomized at the median, with clinicopathological indicators in the METABRIC dataset of 2000 patients (Table 2). High TTK mRNA expression associated with younger age of tumor diagnosis, larger tumor size, higher tumor grade, higher Ki67 expression, TP53 mutations, an ER/PR negative tumor phenotype, HER2 positivity and TNBC. Based on PAM50 subtyping, high TTK mRNA was associated with luminal B, HER2-enriched and basal-like tumors.

We also analyzed TTK expression in a cohort of breast cancer patients (406 patients) by IHC. TTK and its activity is detected at all stages of the cell cycle, however, it is upregulated during mitosis ${ }^{29}$. Thus, we observed TTK staining in nonmitotic cells to define high TTK levels (score of 3) in order to exclude the bias of elevated TTK level during mitosis. Similar to TTK mRNA, high TTK protein level (Table 3) associated with high tumor grade, high Ki67 expression and TNBC status (particularly basal TNBC). Moreover, in agreement with the TTK mRNA associations with the PAM50 intrinsic subtypes, high TTK protein was observed in HER2-positive and proliferative ER + /HER2 ${ }^{-}$tumors (most related to luminal B) but low TTK protein in non-proliferative $\mathrm{ER}^{+} / \mathrm{HER} 2^{*}$ tumors (most related to luminal A). In addition to these associations with aggressive phenotypes, we also found that high TTK protein significantly associated with aggressive histological features including ductal histology, pushing tumor border, lymph node involvement, nuclear pleomorphism, lymphocytic infiltration and higher mitotic scores (Table 3). Altogether, like the high aggressiveness score from the 206 or 8 genes, high level of TTK mRNA and protein span across breast cancer subtypes marking aggressive behavior.

We examined the association of TTK protein level with patient survival and found that breast tumors with high TTK staining (category 3) had worse survival than other staining groups at 5 years (Figure 6A\&B) and 10 and 20 years (Figure 13).

Importantly, high TTK staining (category 3) was not restricted to a particular histological subgroup or to tumors with high mitotic index (Figure 6C). Next, we focused on prognostication of aggressive subgroups (Grade 3, lymph node positive, TNBC, HER2 or high Ki67) and found that high TTK protein level identified exceptionally aggressive tumors that lead to poor survival of less than 2 years (Figure 7A). Finally, to exploit our finding that TTK, as a part of the aggressiveness score, was associated with aggressive breast tumors and that TTK inhibition was effective in TNBC cell lines that overexpress this protein (Figure 5), we investigated the therapeutic potential of combining TTK inhibition with chemotherapy. We found that TTKi synergized with docetaxel at very low (sub-lethal doses) in the treatment of TNBC cell lines which overexpress TTK in comparison to cell lines which do not (Figure 7B) and that this combination induced apoptotic cell death (Figure 7C).

CIN metagene and ER metagenes in lung adenocarcinoma

There is also reason to believe that the metagene signature may work for other cancers, such as lung cancer. FIG. 15 provides overall survival curves of lung cancer patients split by ten (10) CIN genes that include the aforementioned six (6) (genes as well as CENPN, CEP55, FOXM1 and TPX2; and the two (2) ER genes MAPT and MYB as a signature; patients are low or high according to the median of the signature. The signature outperformed tumour grade and disease stage and remained significant when adjusted for AJCC T (size) and N (lymph node) stages (tumour size (T stage) and lymph node status (N stage) in multivariate Cox regression analysis in lung cancer patients (Table 9). In particular, the signature was prognostic in lung adenocarcinoma. The prognostication of lung adenocarcinoma was significant even when including a minimal gene set of 6 CIN genes and 2 ER genes.

In Figure 16A we show the global gene expression (by RNAseq) of the breast cancer patients in the TCGA dataset. From these data the 8-genes score (Aggressiveness score) and the OncotypeDx (Recurrence score) were investigated for association with survival. The 8 -genes score stratified breast cancer survival better than the OncotypeDx (Figure 16B). Further, the 8 -genes score (Aggressiveness score) identified tumours with high genomic copy number variations involving whole chromosome arms deletions and duplications reflecting aneuploidy (Figure 16C).

We also find that the 8 -genes score (Aggressiveness score) stratifies the survival of all cancers collectively in the TCGA data better than the OncotypeDx (Figure 17) and that the 8 -genes score (Aggressiveness score)was prognostic in each of the tested cancers (Figure 18). Similarly, as in breast cancer (Figure 16C), the 8- genes score (Aggressiveness score) identified tumors of all cancer types with high genomic copy number variations involving whole chromosome arms deletions and duplications reflecting aneuploidy (data not shown). These cancer types include breast cancer, bladder cancer, colorectral cancer, glioblastoma, lower grade glioma, head \& neck cancer, kidney cancer, liver cancer, lung adenocarcinoma, abute myeloid leukaemia, pancreatic cancer and lung squamous cell carcinoma.

Discussion

This meta-analysis of gene expression in the Oncomine ${ }^{\mathrm{TM}}$ database identified a list of 206 was enriched with two core biological functions/metagenes; chromosomal instability (CIN) and ER signaling. We calculated the aggressiveness score, the ratio of CIN to ER metagenes, which associated with overall survival of breast cancer. A core of eight genes (six CIN genes and two ER signaling genes) was representative and recapitulated the correlations with outcome from the 206 genes. The score from the six CIN genes to the 2 ER signaling genes, 8 -genes score, associated with survival in several breast cancer datasets. Our aggressiveness scores outperformed conventional variable and published signatures in multivariate survival analysis. Particularly in ER ${ }^{+}$tumors, some cases have survival as poor as that of the aggressive HER2+ and TNBC subtypes. Our data suggest that the interplay of cancerrelated biological functions, namely CIN and ER signaling, are better predictors of phenotypes than single genes or single functions. This notion is in line with recent studies showing that the interaction of biologically-driven predictors provide better prognosis ${ }^{16,17^{\prime 3} 3}$. Recently, all ER ${ }^{-}$tumors were described to have a high level of CIN metagene, however, it was not clear that ER + tumors could be described as low CIN tumors ${ }^{16}$. In our study, we clarify that ER^{+}disease contains a considerable fraction of tumors that have high level of CIN genes and that the relationship between CIN and ER genes is a powerful predictor of survival in these patients.

The fidelity of chromosome segregation is ensured by the proper attachment of the microtubules from the mitotic spindle to the kinetochores of chromosomes in a tightly regulated process and CIN refers to the missegregation of whole
chromosomes thus producing aneuploidy ${ }^{3}$. Using aneuploidy as a surrogate marker for CIN, Carter et al developed a gene signature and found that this "CIN signature" predicts clinical outcome in multiple cancers ${ }^{20}$. More recently, a minimal gene set that captures the CIN signature, CIN4 (AURKA, FOXM1, TOP2A and TPX2) was described as the first clinically applicable qPCR derived measure of tumor aneuploidy from FFPE tissue. Since Grade 2 tumors heterogeneous characteristics in terms of clinical outcome, the significance of the CIN4 classier is the stratification of Grade 2 tumors into good and poor prognosis groups ${ }^{23}$. Our aggressiveness scores were prognostic in all tumor grades and disease stages (stages I-III and lymph node negative and positive) and outperformed the CIN signature and the CIN4 classier in multivariate survival analysis in the METABRIC dataset. Strikingly, but in agreement with previous studies ${ }^{32}{ }^{3 / 33}$, the prognostication using the CIN metagene and our aggressiveness scores from gene expression levels were restricted to ER^{+}disease but not in the TNBC or HER2 subtypes. This may be explained that ER ${ }^{-}$tumors have a high level of CIN metagene as per our results and published previously ${ }^{16}$. However, our results with TTK protein level clearly demonstrate that TNBC, HER2, high grade, lymph node positive and proliferative tumors contain subgroups with high TTK levels exclusive of mitotic cells and have poorer survival than those with low TTK expression or TTK expression in mitotic cells. We propose that there are two types of high expression of CIN genes that may not be clearly differentiated by mRNA expression studies. One form of elevated CIN genes relates to high level of mitosis and proliferation whereas the second form that we measured by IHC exclusive of mitotic cells is driven by another aggressive phenotype; protection of aneuploidy and genomic instability. The recent study of the CIN4 classifier lends support to our proposition. In this study, using flow cytometry to measure aneuploidy by DNA content, the authors found that a substantial proportion of tumors with high CIN4 scores have a normal DNA ploidy and that a significant proportion of aneuploid cases had low CIN4 score ${ }^{23}$.

Chromosome missegregation and aneuploidy enhance genetic recombination and defective DNA damage repair ${ }^{34}$ to drive a "mutator phenotype" required for oncogenesis ${ }^{35}$. Genomic instability caused by deregulated mitotic spindle assembly checkpoint (SAC) and aneuploidy has been termed "non-oncogene addiction" 36 37. It is tempting to suggest that CIN and aneuploidy are exploited by breast cancer stem cells which are high in TNBC ${ }^{38}$ due to the link between cancer stem cells, aneuploidy
and therapy resistance ${ }^{3940}$. This is supported by studies that implicate several genes involved in the SAC and chromosome segregation in tumor initiation, progression and cancer stem cells, e.g. AURKA in ovarian cancer ${ }^{41}$, MELK/FOXM1 in glioblastoma ${ }^{4243}$, MELK ${ }^{44}$ and MAD2 ${ }^{45}$ in breast cancer and SKP2 in several cancers ${ }^{46}$. The role of CIN genes to protecting aneuploidy could provide an insight to the paradox that TNBC show a better response to chemotherapy due to higher level of proliferation, yet these tumors have poorer outcome. We propose that resistance in TNBC could be attributed to the ability of aneuploid cells to adapt and drive recurrence. At least in vivo, chemotherapy has been shown to induce the proliferation quiescent aneuploid cells as a mechanism for therapy resistance ${ }^{39}$. We envisage that the high level of the CIN metagene in TNBC, particularly genes involved in chromosome segregation, is protective of this state. Indeed, one study found that a high level of TTK is protective of aneuploidy in breast cancer cells and its silencing reduces the tumorigenicity of breast cancer cell lines in vivo^{47}. Our results from the patient cohort demonstrate that high TTK protein expression exclusive of mitosis was indeed prognostic aggressive tumors and support the concept that protection from aneuploidy and genomic instability is an aggressive phenotype that drives poor outcome.

Our results with the TTK molecular inhibitor, in agreement with published studies using siRNA depletion ${ }^{4748}$, supports the idea of targeting chromosomal segregation in tumors with a high CIN phenotype as a therapeutic strategy. We also suggest that while TTK is high in TNBC as previously described ${ }^{4748}$, a considerable proportion of non-TNBC tumors that display aggressive features also show an elevated level of CIN genes, and would benefit from such targeted therapies. To our knowledge the combination of sub-lethal doses of taxanes with TTK inhibition has not been investigated so far in breast cancer, but in other cancers ${ }^{33,50-53}$. Our results reveal that TTK inhibition indeed sensitizes breast cancer cells with high TTK to docetaxel.

Referring particularly in FIGS $16-18$, as well as the 8 -genes score (Aggressiveness score) being prognostic for the survival of cancer patients after treatment, the aggressiveness score also identifies tumors with high copy number variations involving whole chromosome arms reflecting aneuploid status. Thus, the aggressiveness score may also serve as a companion diagnostic for drugs that target aneuploidy by means of targeting genes listed in Table 4, inclusive of the 8 genes
used to produce the aggressiveness score (such as $\chi \chi \mathrm{K}^{6}{ }^{7-70}$) or by other drugs that target the aneuploidy state (such as PLK1 ${ }^{7172}$ or others ${ }^{73-76}$).

In conclusion, our study emphasizes that classification of breast cancer based on biological phenotypes facilitates understanding the drivers of oncogenic phenotypes and therapeutic potentials. Importantly, our studies demonstrate that IHC assessment of CIN genes, exemplified by TTK here; provide better characterization and understanding for the contribution of CIN to tumor aggressiveness and prognosis.

Throughout this specification, the aim has been to describe the preferred embodiments of the invention without limiting the invention to any one embodiment or specific collection of features. Various changes and modifications may be made to the embodiments described and illustrated herein without departing from the broad spirit and scope of the invention.

All computer programs, algorithms, patent and scientific literature referred to herein is incorporated herein by reference in their entirety.

REFERENCES

1. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 2008; 26: 1275-1281.
2. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13: 2329-2334.
3. von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012; 30: 1796-1804.
4. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America 2001; 98: 10869-10874.
5. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747-752.
6. Weigelt B, Hu Z, He X, Livasy C, Carey LA, Ewend MG et al. Molecular portraits and 70 -gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer research 2005; 65: 9155-9158.
7. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC genomics 2006; 7: 96-107.
8. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009; 27: 1160-1167.
9. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530-536.
10. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. The New England journal of medicine 2004; 351: 2817-2826.
11. Buyse M, Loi S, van't Veer L, Viale G, Delorenzi M, Glas AM et al. Validation and clinical utility of a 70 -gene prognostic signature for women with node-negative breast cancer. Journal of the National Cancer Institute 2006; 98: 1183-1 192.
12. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C et al. Definition of clinically distinct molecular subtypes in estrogen receptorpositive breast carcinomas through genomic grade. J Clin Oncol 2007; 25: 1239-1246.
13. Ma XJ, Salunga R, Dahiya S, Wang W, Carney E, Durbecq V et al. A fivegene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 2008; 14: 2601-2608.
14. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A et al. A twogene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer cell 2004; 5: 607-616.
15. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. Journal of the National Cancer Institute 2006; 98: 262-272.
16. Cheng WY, Ou Yang TH, Anastassiou D. Biomolecular events in cancer revealed by attractor metagenes. PLoS Comput Biol 2013; 9: el002920.
17. Cheng WY, Ou Yang TH, Anastassiou D. Development of a prognostic model for breast cancer survival in an open challenge environment. Sci Transl Med 2013; 5: 181ral50.
18. Dai H, van't Veer L, Lamb J, He YD, Mao M, Fine BM et al. A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer patients. Cancer research 2005; 65: 4059-4066.
19. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia (New York, NY 2004; 6: 1-6.
20. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nature genetics 2006; 38: 10431048.
21. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486: 346-352.
22. Haibe-Kains B, Desmedt C, Rothe F, Piccart M, Sotiriou C, Bontempi G. A fuzzy gene expression-based computational approach improves breast cancer prognostication. Genome Biol 2010; 11: R18.
23. Szasz AM, Li Q, Eklund AC, Sztupinszki Z, Rowan A, Tokes AM et al. The CIN4 chromosomal instability qPCR classifier defines tumor aneuploidy and stratifies outcome in grade 2 breast cancer. PLoS ONE 2013; 8: e56707.
24. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast cancer research and treatment 2010; 123: 725-731.
25. Rizzolio F, Tuccinardi T, Caligiuri I, Lucchetti C, Giordano A. CDK inhibitors: from the bench to clinical trials. Curr Drug Targets 2010; 11: 279290.
26. Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, GonzalezAngulo AM et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. The Journal of experimental medicine 2012; 209: 679-696.
27. Manchado E, Guillamot M, Malumbres M. Killing cells by targeting mitosis. Cell death and differentiation 2012.
28. Janssen A, Medema RH. Mitosis as an anti-cancer target. Oncogene 201 1; 30: 2799-2809.
29. Stucke VM, Sillje HH, Arnaud L, Nigg EA. Human Mpsl kinase is required for the spindle assembly checkpoint but not for centrosome duplication. The EMBO journal 2002; 21: 1723-1732.
30. Nagalla S, Chou JW, Willingham MC, Ruiz J, Vaughn JP, Dubey P et al. Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol 2013; 14: R34.
31. Bakhoum SF, Compton DA. Chromosomal instability and cancer: a complex relationship with therapeutic potential. The Journal of clinical investigation 2012; 122: 1138-1 143.
32. Roylance R, Endesfelder D, Gorman P, Burrell RA, Sander J, Tomlinson I et al. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol Biomarkers Prev 201 1; 20: 2183-2194.
33. Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D, Tan P et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer research 201 1; 71: 3447-3452.
34. Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science (New York, NY 201 1; 333: 1895-1898.
35. Kolodner RD, Cleveland DW, Putnam CD. Cancer. Aneuploidy drives a mutator phenotype in cancer. Science (New York, NY 201 1; 333: 942-943.
36. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136: 823-837.
37. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 201 1; 144: 646-674.
38. Al-Ejeh F, Smart CE, Morrison BJ, Chenevix-Trench G, Lopez JA, Lakhani SR et al. Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis 201 1; 32: 650-658.
39. Kusumbe AP, Bapat SA. Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer research 2009; 69: 9245-9253.
40. Liang Y, Zhong Z, Huang Y, Deng W, Cao J, Tsao G et al. Stem-like cancer cells are inducible by increasing genomic instability in cancer cells. The Journal of biological chemistry 2010; 285: 4931-4940.
41. Do TV, Xiao F, Bickel LE, Klein-Szanto AJ, Pathak HB, Hua X et al. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion. Oncogene 2014; 33: 539-549.
42. Joshi K, Banasavadi-Siddegowda Y, Mo X, Kim SH, Mao P, Kig C et al. MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells. Stem cells (Dayton, Ohio) 2013; 31: 1051-1063.
43. Gu C, Banasavadi-Siddegowda YK, Joshi K, Nakamura Y, Kurt H, Gupta S et al. Tumor-specific activation of the C-JUN/MELK pathway regulates
glioma stem cell growth in a p53-dependent manner. Stem cells (Dayton, Ohio) 2013; 31: 870-881.
44. Hebbard LW, Maurer J, Miller A, Lesperance J, Hassell J, Oshima RG et al. Maternal embryonic leucine zipper kinase is upregulated and required in mammary tumor-initiating cells in vivo. Cancer research 2010; 70: 88638873.
45. Schvartzman JM, Duijf PH, Sotillo R, Coker C, Benezra R. Mad2 is a critical mediator of the chromosome instability observed upon Rb and p 53 pathway inhibition. Cancer cell 201 1; 19: 701-714.
46. Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 2013; 154: 556-568.
47. Daniel J, Coulter J, Woo JH, Wilsbach K, Gabrielson E. High levels of the Mpsl checkpoint protein are protective of aneuploidy in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 201 1; 108: 5384-5389.
48. Maire V, Baldeyron C, Richardson M, Tesson B, Vincent-Salomon A, Gravier E et al. TTK/hMPSI is an attractive therapeutic target for triplenegative breast cancer. PLoS ONE 2013; 8: e63712.
49. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006; 439: 353-357.
50. Bittner M. Expression Project for Oncology - Breast Samples. International Genomics Consortium, Phoeniz, AZ 85004 Oncomine. Not Published 2005/01/15
51. Bonnefoi H, Potti A, Delorenzi M, Mauriac L, Campone M, Tubiana-Hulin M et al. Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. The lancet oncology 2007; 8: 1071-1078.
52. Gluck S, Ross JS, Royce M, McKenna EF, Jr., Perou CM, Avisar E et al. TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine +/trastuzumab. Breast cancer research and treatment 2012; 132: 781-791.
53. Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 201 1; 305: 1873-1881.
54. Kao KJ, Chang KM, Hsu HC, Huang AT. Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization. BMC cancer 201 1; 11: 143.
55. Tabchy A, Valero V, Vidaurre T, Lluch A, Gomez H, Martin M et al. Evaluation of a 30-gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemotherapy response predictor in a multicenter randomized trial in breast cancer. Clin Cancer Res 2010; 16: 5351-5361.
56. TCGA. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61-70.
57. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009; 459: 10051009.
58. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B et al. Strong time dependence of the 76 -gene prognostic signature for nodenegative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 2007; 13: 3207-3214.
59. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer research 2008; 68: 5405-5413.
60. Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F, Regitnig P et al. Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol 2010; 28: 4111-41 19.
61. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW et al. A gene-expression signature as a predictor of survival in breast cancer. The New England journal of medicine 2002; 347: 1999-2009.
62. Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S, Hall P et al. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 2005; 7: R953-964.
63. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. Repeated observation of breast tumor subtypes in independent gene
expression data sets. Proceedings of the National Academy of Sciences of the United States of America 2003; 100: 8418-8423.
64. Zhao Y, Simon R. BRB-ArrayTools Data Archive for human cancer gene expression: a unique and efficient data sharing resource. Cancer Inform 2008; 6: 9-15.
65. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proceedings of the National Academy of Sciences of the United States of America 2005; 102: 13550-13555.
66. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. Geneexpression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365: 671-679.
67. Al-Ejeh F, Shi W, Miranda M, Simpson PT, Vargas AC, Song S et al. Treatment of triple-negative breast cancer using anti-EGFR-directed radioimmunotherapy combined with radiosensitizing chemotherapy and PARP inhibitor. J Nucl Med 2013; 54: 913-921.
68. Colombo R, Caldarelli M, Mennecozzi M, Giorgini ML, Sola F, Cappella P et al. Targeting the mitotic checkpoint for cancer therapy with NMS-P715, an inhibitor of MPS1 kinase. Cancer research 2010; 70: 10255-10264.
69. Janssen A, Kops GJ, Medema RH. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proceedings of the National Academy of Sciences of the United States of America 2009; 106: 1910819113.
70. Janssen A, Medema RH. Mitosis as an anti-cancer target. Oncogene 201 1; 30: 2799-2809.
71. Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science (New York, NY 201 1; 333: 1895-1898.
72. Degenhardt Y, Lampkin T. Targeting Polo-like kinase in cancer therapy. Clin Cancer Res 2010; 16: 384-389.
73. Strebhardt K, Ullrich A. Targeting polo-like kinase 1 for cancer therapy. Nature reviews 2006; 6:321-330.
74. Malumbres M, Barbacid M. Cell cycle kinases in cancer. Curr Opin Genet Dev 2007; 17: 60-65.
75. Manchado E, Guillamot M, Malumbres M. Killing cells by targeting mitosis. Cell death and differentiation 2012.
76. Manchado E, Malumbres M. Targeting aneuploidy for cancer therapy. Cell 201 1; 144: 465-466.
77. Colombo R, Moll J. Destabilizing aneuploidy by targeting cell cycle and mitotic checkpoint proteins in cancer cells. Curr Drug Targets 2010; 11: 1325-1335.

Table 1: Univariate and multivariate survival analysis of the aggressiveness score in the METABRIC dataset

	Univariate Cox-proportional hazards model		Multivariate Cox-proportional hazards model (stepwise)	
	HR (95 \% CI)	p-value	HR (95 \% CI)	p-value
206 genes score (high, low)	1.6173 (1.4174-1.8454)	O. 0001	1.5188 (1.3227-1.7440)	0.0001
Sones scoie (high low)	$1283,1280 \% \% 101 \%$	$\because 0001$	$1,4 \sim\langle 50 \vee, 218 \% \vee, 1,3442$	400001
$\underset{(+,-)}{\text { Lymph node }}$	1.8594 (1.6289-2.1224)	O.OOOl	1.6807 (1.4610-1.9334)	0.0001
Tumor sizc T11. 12.513	4	$\widehat{k} i 01$	$1,6664,1642 \geqslant 1, .041)$	$0 \mathrm{VOOL}$
HER2 status (,+-)	1.4565 (1.2537-1.6920)	0.0001	1.1983 (1.0183-1.4101)	0.0302
Tumor, grade	$13500(1.2095 \% .1 .5067)$	$0.000 .$	ns	ns
$\begin{aligned} & \mathrm{Ki} 67 \\ & (+,-) \end{aligned}$	1.4184 (1.2399-1.6226)	0.0001	ns	ns
Munimarum (higlumn)	$1.3320(1.1669 \approx 1.5204)$	$0.000 \text { K }$	ns	ns
CIN4 (high, low)	$1.5310(1.3413-1.7476)$	0.0001	ns	ns
$\mathrm{CHS} \%$ Shi!'h loves	$1.5004(1,132 \% .1 .143)$	$0.000 \text { 1 }$	ns	ns
Cell Cycle (high, low)	1.5018 (1.3 145-1.7158)	0.0001	ns	ns
	$\text { Y } 301 \%(116 \% 4,5170)$	00008	ns	ns
$\begin{gathered} \text { Onc }_{0} \text { typeD }_{x} \\ (\mathrm{~L}, \mathrm{I}, \mathrm{H}) \end{gathered}$	1.2672 (1.0909-1.4720)	0.0021	ns	ns
Treatment (yes, no)	1.1646 (0.9753-1.2639)	0.0939		
$\begin{gathered} \text { Age } \\ (<40,>40) \end{gathered}$	1.1235 (0.8480-1.4886)	0.4196		

HR: Hazard Ratio. CI: confidence interval. ns: not significant. OncoTypeDx scores are low (L, < 18), intermediate (I, 18-3 1), high ($\mathrm{H}>31$). All variables were included in the multivariate Cox-proportional hazards model analysis and by stepwise model, only significant co-variants were included in the final analysis shown in Table.

Table 2: Correlation of $T T K$ mRNA level and clinico-pathological indicators in the METABRIC dataset

Comparison	TTK Low	TTK high	X^{2}
Tiumer size			
$<2 \mathrm{~cm}$	346 (18\%)	280 (14\%)	$\mathrm{p}<1.0 \mathrm{E}-6$
$>2 \mathrm{~cm}<5 \mathrm{~cm}$	509 (26\%)	685 (35\%)	$\mathrm{p}=3.2 \mathrm{E}-5$
$>5 \mathrm{~cm}$	60 (3\%)	92 (5\%)	$\mathrm{p}=1.25 \mathrm{E}-2$
Iminor Grade			
Grade 1	137 (7\%)	33 (2\%)	p<1.0E-6
Grade 2	479 (25\%)	296 (16\%)	$\mathrm{p}<1.0 \mathrm{E}-6$
Grade 3	251 (13\%)	706 (37\%)	$\mathrm{p}<1.0 \mathrm{E}-6$
1167 -1 Iresslol			
Low	826 (39\%)	242 (11\%)	
High	237 (11\%)	831 (39\%)	p<1.0E-6
lmmunohistochemical suly ypes			
ER negative	71 (4\%)	369 (19\%)	p<1.0E-6
ER positive	827 (42\%)	681 (35\%)	
PR negative	306 (15\%)	637 (32\%)	$\mathrm{p}<1.0 \mathrm{E}-6$
PR positive	617 (31\%)	432 (22\%)	
HER2 negative	802 (40\%)	744 (37\%)	
HER2 positive	118 (6\%)	323 (16\%)	p<1.0E-6
non-TNBC	885 (45\%)	840 (43\%)	
Triple negative (TNBC)	29 (1\%)	221 (11\%)	$\mathrm{p}<1.0 \mathrm{E}-6$
Milmiessinil pes			
Luminal A	552 (28\%)	169 (9\%)	$\mathrm{p}<1.0 \mathrm{E}-6$
Luminal B	142 (7\%)	350 (18\%)	$\mathrm{p}<1.0 \mathrm{E}-6$
HER2-enriched	40 (2\%)	200 (10\%)	$\mathrm{p}<1.0 \mathrm{E}-6$
Normal-like	161 (8\%)	41 (2\%)	$\mathrm{p}<1.0 \mathrm{E}-6$
Basal-like	26 (1\%)	305 (15\%)	$\mathrm{p}<1.0 \mathrm{E}-6$
Ase (yars)			
<50	$\mid \mathrm{E}^{\prime \prime} /\left(\mathrm{S}^{\prime \prime}, \mathrm{O}\right)$	259 (13\%)	$\mathrm{p}=8.68 \mathrm{E}-4$
50-74	485 (24\%)	549 (27\%)	ns
75-100	282 (14\%)	253 (13\%)	ns
1753 Miniaion:			
Wildtype	390 ($4 \mathrm{X} \mathbf{\prime \prime} \mathbf{0}$)	331 (40\%)	
Mutant	14 (2\%)	85 (10\%)	$\mathrm{p}<1.0 \mathrm{E}-6$

[^0]Table 3: Associations between TTK protein expression and clinico-pathological indicators

Parameter	TTK (0-1)	TTK (2)	TTK (3)	P value ${ }^{\text {\# }}$
Histological lype				.
Ductal NOS	147(60.7\%)	67(27.7\%)	28 (11.6\%)	0.0265
Lobular	43(76.8 \%)	10 (17.9\%)	3 (5.4\%)	
Mixed ducto-lobular	31(88.6\%)	4 (11.4\%)	0 (0.0\%)	
Metaplastic	$9(56.3$ \%)	7 (43.8\%)	0 (0.0\%)	
Tubular/cribiform	$8(80.0$ \%)	$2(20.0 \%)$	0 (0.0\%)	
Other special types (incl mixed)	37(66.1\%)	14 (25.0\%)	5 (8.9\%)	
Overall grate				.
1	43(76.8 \%)	13(23.2 \%)	0 (0.0\%)	<0.0001
2	162(77.5 \%)	41 (19.6\%)	6 (2.9\%)	
3	$73(47.7 \%)$	50 (32.7\%)	30 (19.6\%)	
Mifilescore				
1 -	193(79.8 \%)	44(18.2 \%)	5 (2.1\%)	<0.0001
2	33(61.1 \%)	18 (33.3\%)	3 (5.6\%)	
3	52(43.0\%)	42 (34.7\%)	27 (22.3\%)	
Nuclear pleomotphism score				
1-2	164(75.2\%)	49(22.5\%)	5 (2.3%)	<0.0001
3	115(57.2 \%)	55 (27.4 \%)	31 (15.4%)	
Tumule score				
1	10(76.9 \%)	3(23.1 \%)	0 (0.0\%)	ns
2	52(69.3 \%)	20 (26.7\%)	3 (4.0\%)	
3	$216(65.5 \%)$	81 (24.5\%)	33 (10.0%)	
Lumplinde status				
Positive	77(62.1 \%)	41(33.1 \%)	6 (4.8\%)	0.0056
Negative	81(73.0\%)	18 (16.2\%)	12 (10.8\%)	
Tumorsize			\% \% \% \%	
$<2 \mathrm{~cm}$	$112(68.3$ \%)	40(24.4 \%)	12 (7.3\%)	ns
$2-5 \mathrm{~cm}$	104(66.2 \%)	38 (24.2\%)	15 (9.6 \%)	
$>5 \mathrm{~cm}$	19(61.3\%)	6 (19.4\%)	6 (19.4\%)	
Linphovascular invasion				
Absent	214(67.3 \%)	77(24.2\%)	27 (8.5\%)	ns
Present	63(63.6\%)	27 (27.3\%)	9 (9.1\%)	
Lemphocylic inflinate				
Absent	119(78.3 \%)	28(18.4 \%)	5 (3.3\%)	0.0007
Mild	115(63.9 \%)	47 (26.1 \%)	18 (10.0\%)	
Moderate	36(53.7\%)	23 (34.3\%)	8 (11.9\%)	
Severe	7(41.2 \%)	$6(35.3 \%)$	4 (23.5%)	
Central scaning/ibrosis				
Absent	254(67.7\%)	90(24.0 \%)	31 (8.3\%)	ns
Present	25(56.8\%)	14 (31.8\%)	5 (11.4\%)	
Tumor horder				
Infiltrative	$250(69.1$ \%)	88(24.3 \%)	24 (6.6\%)	0.0003
Pushing ($<50 \%$)	$11(36.7 \%)$	11 (36.7\%)	8 (26.7%)	
Pushing ($>50 \%$)	16(64.0\%)	5 (20.0\%)	4 (16.0\%)	
Ki67 expression (20\% thershold)				
Low	240(71.6 \%)	77(23.0 \%)	18 (5.4\%)	<0.0001
High	14(25.9\%)	$23(42.6 \%)$	17 (31.5\%)	
Progustic silgeous				\%.....
HER2+	21(51.2\%)	14(34.1 \%)	6 (14.6 \%)	<0.0001
HR+/HER2-neg (Ki67-high)	6(24.0\%)	13 (52.0\%)	6 (24.0 \%)	
HR+/HER2-neg (Ki67-low)	196(76.0 \%)	53 (20.5\%)	9 (3.5\%)	
TN (basal-like)	23(41.8 \%)	20 (36.4\%)	12 (21.8\%)	
TN (non-basal)	10(71.4\%)	1 (7.1\%)	3 (21.4\%)	

TMAs were scored by two independent assessors according to the following categories: 0 , negative; 1 , weak and focal staining (pooled with negative cases for this analysis); 2, moderate-strong focal staining (collectively $<50 \%$ of tumour cells); $3=$ moderate-strong diffuse staining ($>50 \%$ of tumour cells). Regarding $\%$ cells stained, we disregarded mitotic cells to assess mitosis-independent TTK expression. ${ }^{\#}$ Chi square test (GraphPad ${ }^{\circledR} \mathrm{Pr}$ sm. ns: not significant)

Table 4：The aggressiveness genelist（206 genes）

Input	Approved Name	HGNC ID	Location
A1M\％			
AFF3	AF4／FMR2 family，member 3	HGNC：6473	2q11．2－q12
\＃世旡\％			\＆\％\＃\＃\＃
AGR3	anterior gradient 3 homolog（Xenopus laevis）	HGNC24167	7 p 21.1
M＂N／\＃\＃			11\％HM
ALD113A2	aldehyde dehydrogenase 3 family，member A2	11G	
（＿：403	17 pl 1.2		
NM：			
APOBEC3B	apolipoprotein B mRNA editing enzyme， catalytic polypeptide－like 3B	HGNC： 17352	22q13．1－ql3．2
※ソ\％		1GUMCH／4．	S\％
	ATPase， 111 transporting，lysosomal 42 kDa ， VI subunit C2	HGNC： 18264	2p25．i
【MリI？		\＃11．	
ALRIvA	aurora kinase A	HGNC： 11393	20ql3
A M H／B		Hil	7\％\％
AZGP1	alpha－2－glycoprotein 1，zinc－binding	11G\} \mathbf { C } _ { \square } \div 9 1 0	7q22．1
\％			【．
BCL2	B－cell CLL／lymphoma 2	HGNC： 990	18 q 21.3
\％n！es			【だあ
BLM	Bloom syndrome，RecQ helicase－like	HGNC：1058	15 q 26.1
अIs+		Mルム\％\＃\＃	\＃\＃\％
B1JB1	BUB1 mitotic checkpoint serine／threonine kinase	HGNC： 1148	2q13
Wes）			Mサ／K．
C10orf32	chromosome 10 open reading frame 32	HGNC235 16	10 q 24.33
			\％थ／』32
ClorfiUo	chromosome 1 open reading frame 106	HGNC：25599	lq32．1
（发）		Hili ${ }^{15484}$	Iリ．
C7orf63	chromosome 7 open reading frame 63	HGNC26107	7 q 21.13
§た		1ri）\％\％\％	\＃゙ね\％\％
CARD10	caspase recruitment domain family，member 10	HGNC： 16422	22q13． 1
\＃			12\＃\＃\＃．
CCDC170	coiled－coil domain containing 170	HGNC：21 177	6q25．1
		Mili \＃\＃sean	
CCNA 2	cyclin A2	$11 \mathrm{G} \mathrm{C}_{-}: 157 \mathrm{~S}$	4 q 27
\＃13＊		Ifil \％／3／34\％	\＃にね\＃
CCNEI	cyclin E1	HGNC： 1589	$19 \mathrm{ql2}$
\％氏日产	－H！	リGl嵒采	4 4 ¢ 22
CD103	CD 163 molecule	HGNC： 1631	12 pl 3
	Hell Mon 4 ele 2 JJ		1p\＃4\％
LDL25A	cell division cycle 25A	HGNC： 1725	3 p 21
	cell dimsion yele 251 s	H1\％\％．－2く）	
CDC45	cell division cycle 45	HGNC： 1739	22ql 1.21

\％\％		4的【34\％4	
LDLA5	cell division cycle associated 5	HGNC： 14626	1 lq 13.1
凹\＃\＃\＃		\＃\＃4\＃\＃！	サ\＃\＃\＃
CDCA8	cell division cycle associated 8	HGNC： 14629	1 p 34.3
ग1） 1 I	eyslin－deperden khasel		\＃\＃1．』
CDKN2A	cyclin－dependent kinase inhibitor 2A	HGNC： 1787	9p21
\＃MA			แ乡\＃\＃
LENPE	centromere protein E， 312 kDa	HGNC： 1856	$4 \mathrm{q} 24-\mathrm{q} 25$
t 4 H14			
CENPW	centromere protein W	HGNC：21488	6q22．32
（3） 55			ツサ24\＃
CHEKI	checkpoint kinase 1	HGNC： 1925	11q24．2
§			
LkAP2L	cytoskeleton associated protein 2－like	HGNC：26877	$2 \mathrm{ql3}$
\％楽感			आ光示
LKS2	CDC28 protein kinase regulatory subunit 2	HGNC：2000	9q22
\％ $1.1 / 6$			\％！
LML2	COX assembly mitochondrial protein 2 homolog（S．cerevisiae）	HGNC：24447	16q23．2
			W゙1U\＃
CPEB2	cytoplasmic polyadenylation element binding protein 2	HGNC：21745	4 p 15.33
SS53.			ひ̈\＃\＃\＃
LSTB	cystatin B（stefin B）	HGNC：2482	21q22．3
\# ISS.		$\text { AGM@ } 25^{\wedge} \mathrm{S}$	\＃¢\％\＃\＃\＃
（CYB5I）1	cytochrome b5 domain containing 1	HGNC：265 16	17p13．1
（为BRI寿			\＃\＃\＃！
DACHI	dachshund homolog 1 （Drosophila）	HGNC：2663	13q22
IMP的	ileatli－assiviated \％rolemakininase\＃	1 ml	\％®年，
DLPDLI	DEP domain containing 1	HGNC：22949	Ip3 1.2
）K		HGI\＃\＃\＃3	Xq2
DLGAP5	discs，large（Drosophila）homolog－associated protein 5	HGNC： 16864	14q22．3
$\text { \#M } 1$	Memleyy		
DNALII	dynein，axonemal，light intermediate chain 1	HGNC： 14353	1p35．1
แ！		HCCIC．	凹12． 3
ELOVL5	ELOVL fatty acid elongase 5	HGNC：21308	$6 \mathrm{p} 21.1-\mathrm{p} 1$
\＃Slay	estrojel receptor \＃1	AlV\＃\＃\＃	Sq24－9\％27
Exo i	exonuclease 1	HGNC：35 11	Iq42－q43
\# IM14 Y	i．		$\underbrace{4 / 2 / 2 .}_{\text {49 }}$
FAM214A	family with sequence similarity 214 ，member A	HGNC：25609	$15 \mathrm{q} 21.2 \mathrm{-q}$
WM1!4	A．	414N\％483	17－3．3．2
FAM83I）	family with sequence similarity 83 ，member D	HGNC： 16122	20
	\％\％khead\＃\＃\＃\＃\＃		
FOXMI	forkhead box M1	HGNC：3818	12pl3

\％		\IG\！\％\＄	9901333．3．14
GAPDH	glyceraldehyde－3－phosphate dehydrogenase	HGNC：4141	12pl3．3
		\＃ICil\％${ }^{424}$	\＃\＃y $25-\mathrm{q} 2 \mathrm{f}$ ）
G GH	gamma－glutamyl hydrolase（conjugase， folylpolygammaglutamyl hydrolase）	HGNC4248	8 q 12.3
¢f．i3		IGIC 4 ${ }^{\text {M }}$	7 p \％
GL＇A＇1L2	glycine－N－acyltransferase－like 2	HGNC：24178	IIq． 12.1
			サ』\＃\＃
GPSM2	G－protein signaling modulator 2	HGNC：29501	lpl3．3
Ss srime		HCTIM， 4.3	1゙\＃\＃゙，
GSTM3	glutathione S－transferase mu 3 （brain）	HGNC：4635	1 p 13.3
G TSE1	G－2 and S－phase expressed 1	HGNC： 13698	22ql3．2－q13．3
			\＃！
HRASLS	HRAS－like suppressor	HGNC： 14922	3 q 29
HIM\＃\＃1			\＃\＃
IISD17B8	hydroxysteroid（17－beta）dehydrogenase 8	HGNC：3554	6p2L3
$1 / \mathrm{MI} 2$	 		
IGFBP4	insulin－like growth factor binding protein 4	HGNC： 5473	$17 \mathrm{ql2-q} 2 \mathrm{U}$
\#\#S\%	OMvosally llayellast	IGG\|	gly\＃\＃
IL8	interleukin 8	HGNC：6025	$4 \mathrm{ql3}-\mathrm{q} 21$
			サザ\＃\＃
IRAKI	interleukin－ 1 receptor－associated kinase 1	HGNC：61 12	Xq28
K WGI	potassium ॠ 		【．．．．．．
k CNMAI	potassium large conductance calcium－ activated channel，subfamily M，alpha member 1	HGNC：6284	10q22
$\mathbb{1}$			\％／\＃\＃
K1F 13B	kinesin family member 13B	HGNC： 14405	8p21
In＋14		\＃\＃\＃\＃\＃1	¢ $2: \$ \hline KIF20A & kinesin family member 20A & HGNC： 9787 & 5 q 31 \hline M1\％ & & M゙リム月\％\％ & Wザß \hline KIF2C & kinesin family member 2 C & HGNC：6393 & 1 p 34.1 \hline M1®\％ & & & ${ }_{12 \mathrm{~L}}^{2}$
kR16A	keratin 6A	HGNC：6443	12q13． 13
リオ \(
) M	\＃M川\＃\＃』		
1．APTMI4B	lysosomal protein transmembrane 4 beta	HGNC： 13646	8q22．1
\#HIS	aces Id usesminylanslease		
LMNB2	lamin B2	HGNC：6638	19pl3．3
\％S\％明年2S			
LRIG1	leucine－rich repeats and immunoglobulin－ like domains 1	HGNC： 17360	3pl4
\＃IM：	अюに		
LYPD6	LY6／PLAUR domain containing 6	HGNC：28751	2 q 23.2

MABM．．．	リVMmitotic an esi\＆deficient－like \＃Weasl\％		4927
MAPT	microtubule－associated protein tau	HGNC：6893	17 q 21
Mi Mal	mm Whmomsome tramletattce Comles 		
MCM2	minichromosome maintenance complex component 2	HGNC：6944	3 q 21
IMM药		\＃\＃U＠\＃\＃\＃\＃	
MCM6	minichromosome maintenance complex component 6	HGNC：6949	$2 \mathrm{q} 14-\mathrm{q} 21$
Mधルथ̈	 		
MLIS3P1	Meis homeobox 3 pseudogene 1	HGNC：7002	17p12
MgLT		－ 1 GIC \＃\＃	31\％\％
MLPH	melanophilin	HGNC：29643	2 q 37.2
MSSY	MHFFM\％ sroull laeloy， k \＆		\％\％．．．
MTHFD1L	methylenetetrahydrofolate dehydrogenase （NADP＋dependent）1－like	HGNC：21055	6 q 25.1
4×2			
MYB	v－myb avian myeloblastosis viral oncogene homolog	HGNC：7545	$6 \mathrm{q} 22-\mathrm{q} 23$
MM		IMM\％\％M\％	サリ』\％
NDC80	NDC80 kinetochore complex component	HGNC： 16909	18p11．31
\＃11A			
NME5	N		
İE			
\123 family member 5	HGNC：7853	5 q 31.2	
＜ l H\％2	【（\％）nucleoli）\＃prelem		
NOSTRIN	nitric oxide synthase trafficker	HGNC：20203	2 q 31.1
		C；1才\＃\＃\＃	4－9\＃\＃
NRIPI	nuclear receptor interacting protein 1	HGNC：8001	2 lq 11 ． 2
	\＃\＃cleempermes，		$7 q 3$ \％ 2
M 5 P93	nucleoporin 93 kDa	HGNC：28958	16ql3
			1314
OGN	osteoglycin	HGNC：8126	9q22
10U14	HMislorm．il ton lililulos		Mq2 ${ }^{\text {a }}$
PFKP	phosphofructokinase，platelet	HGNC：8878	10p15．3－p15．
IIMII	EOMIIMIIs\＆		
PIP	prolactin－induced protein	HGNC：8993	7q32－qter
\％	plasminogen \＃／a，atot．\＃lisue		8p／\＃\＃
PLCHI	phospholipase C，eta 1	HGNC29185	3 q 25
PM		Mril\＃\＃\％	－4．3
PNPI．A7	patatin－like phospholipase domain containing 7	HGNC：24768	9 q 34.3
－R\％1		WGリ\＃\＃\＃\＃	Wब\％゙あ
PSM＾ 2	proteasome（prosome，macropain）subunit， beta type， 2	HGNC9539	Ip34．2
\＃\％			P\％．ひ
PTPRT	protein tyrosine phosphatase，receptor type， T	HGNC：9682	20ql2－q13

サT（⿺𠃊		FIGY：\％\％\％	\＃ヶ\＃\＃\＃
QDPR	quinoid dihydropteridine reductase	HGNC：9752	$4 \mathrm{pl5.31}$
K！			
RABEP1	rabaptin，RAB GTPase binding effector protein 1	HGNC： 17677	17p13．2
\＃リDs			2川第的
RBM3S	RNA binding motif protein 38	HGNC： 15818	20q13．3 1
\#1H14.	M1し⿺辶	Ivelesy	
RFC4	replication factor C（activator 1）4，37kDa	HGNC：9972	3 q 27
KIPK2		Hfila	\％年盛
$\mathbf{R} \backslash \mathrm{ASI}-4$	ribonuclease，RNase A family， 4	HGNC： 10047	14qi1
$\mathrm{K}_{\text {K／um }}$		\＃1）	\＃p23\％
RPS23	ribosomal protein S23	HGNC： 10410	5q14．2
sm\％	Pe calcium bindwew protein ：ू！		\＃12\％q23
SCUBE2	signal peptide，CUB domain，EGF－like 2	HGNC：30425	$1 \mathrm{lp15} 3$
Sm3	plulyt，like	HC；	X M\％\％＂
SKP1	S－phase kinase－associated protein 1	HGNC： 10899	5q3 1
SKIथ	 	\ifilc	अ13
SLC16A10	solute carrier family 16 （aromatic amino acid transporter），member 10	HGNC：17027	$6 \mathrm{q} 21-\mathrm{q} 22$
Wu equs	 		
SLC39A6	solute carrier family 39 （zinc transporter）， member 6	HGNC： 18607	18q12．2
$\text { §离 } 4 \text { III }$	Manspoikmimember \＃	1C，IC \＃\＃U月\＃	2』ู\％
SLC7A5	solute carrier family 7 （amino acid transporter light chain，L system），member 5	HGNC：11063	16q24．3
S\％12			痀会
SOX11	SRY（sex determining region Y）－box 11	HGNC： 11191	2 p 25
SRPK1	SRSF protein kinase 1	HGNC：11305	6 p 21.31
SVV2			\＃サ\＃あ
STIL	SCL／TAL1 interrupting locus	HGNC： 10879	1 p 32
STK\＃\％	डल\＃	\％\％	4ay
$\mathrm{S} \backslash$＂ 1 L 4	synaptotagmin－like 4	HGNC： 15588	Xq21．33
Itat			\＃\％q2\％』
＇1BC11）9	TBC1 domain family，member 9 （with GRAM domain）	HGNC：21710	4 q 31.1
TFF1	trefoil factor 1	HGNC：11755	21q22．3
\＃14			\％川\％
TMEM 26	transmembrane protein 26	HGNC：28550	10q21．3
\#\#	\＃Witums\＆evs	$\text { MGY \# } 124^{\wedge}$	
TRIP13	thyroid hormone receptor interactor 13	HGNC：12307	5p15
\＃\＃\％\％！			

т $\tau \kappa$	TTK protein kinase	HGNC: 12401	6ql3-q21
\#BB\%	\#ubul\#inalpha ${ }^{\text {a }}$	\#14\%!240-	
UBE2C	ubiquitin-conjugating enzyme E2C	HGNC: 15937	20q13.12
\#SB\#		HGU\#\#\#..	\#\#1.1
${ }^{\prime}$ 'GLL 1	vestigial like I' (Drosophila)	HGNC:20985	Xq26.3
冈\%\%			
YEATS2	YEATS domain containing 2	HGNC:25489	3 q 27.3

Table 5: Degregulated genes from Ingenuity Pathway Analysis and correlation with aggressiveness score

		［LMN＿2374425	サ»』	$<1 \mathrm{e} 07$	<12007	$<10-07$	$\#$
		ILMN 1670238	\＃＜＜！	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	2
		ILMN 2042771	10s\％	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	$<10-07$	2．S
		ILMN＿2349459	リ»2	＜1e－07	$<12-07$	$<1 \mathrm{e}-07$	\＃． 8
		ILMN＿1801939	（\％）	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	\％
	\＃1川\＆上．	ILMN＿1683450	\％W3）	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	4 4
		LLMN＿1663390	0S73	$<1 \mathrm{e}-\mathrm{O} 7$	$<12-07$	$<1 \mathrm{e}-07$	»»
		［LMN＿2301083	\＃\＃\＃	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	\＃§
		ILMN＿1720373	川\＃』	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<18-67$	3
	\＃\＃\＃\＃3	ILMN＿2202948	\＃35	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	$<18-07$	1.97
	\＃乡乡\＃\＃\＃\＃	ILMN 1709294	0\％\％／	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.96
	\＃\＃1\％	ILMN＿1728934	10ड17	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.96
	\＃乡\＃\＃\＃	ILMN＿1786225	\％85	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.95
		ILMN＿1737728	1085\％	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-7$	$<1 \mathrm{e}-07$	1.95
	\＃リザ新	ILMN＿1703906	0801	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-17$	1.9
	\＃\＃\＃\＃\＃	ILAN＿1695658	O ड	<1207	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.9
	\＃乡ム凶\＃	ILAN＿1751444	\＃ 4 \％	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.89
	\＃圸乡寺	ILMN＿1664630	リハs	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-67$	1.85
		ILMN 1665538	\％ 0 \％	$<1 \mathrm{e} 07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.83
	\＃\＃\＃㘳	ILMN＿1737205	O\＃3．	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.79
	\＃乡\＃\＃\＃\＃	ILMN＿1747911	川ヱ\％	$<12-07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.75
	SHM』\＃	ILMN＿1708101	17293	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.74
		ILMN＿1670353	ON15	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.74
	\＃\＃』\＃\＃	ILMN＿1700337	OW\％	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.73
	そ乡乡\＃\＃	ILMN＿1749829		$<1 \mathrm{e}-07$	$<10-07$	$<1 \mathrm{e}-07$	1.7
	\＃	ILMN＿1777564．	1009	$<12-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.7
	\＃\＃乡そ\％	ILMN＿1771039	US\＄5	$<1 \mathrm{e} 07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.69
		ILMN＿1716279	U45\％	$<1 \mathrm{e} 07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.67
	\＃\＃【第	ILMN＿1681503	10704	$<18-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.66
		ILMN＿1798654	0サ\％	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.6
	\＃\＃4	ILMN＿1709484	0\％）2	$<10-07$	$<1 \mathrm{e}-07$	<10.07	1.57
	む【\＃』糸	ILMN＿1808071	10508	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.55
		ILMN＿1811472	U®24	$<12-07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.55
		ILMN＿1682792	\＃\＃1	$<10-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.52
	そひそそムそ．	ILMN＿1711005	0\＃\＃3	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.52
	乡山乡\＃\＃\＃	ILMN＿1742577	O\＃\＃	$<1 \mathrm{e} 07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.67
		ILMN＿1798804	\％783	$<10-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.62
	そ以楽	ILMN＿1756326	U\＃\＃\％	$<1 \mathrm{e}-07$	$<1 \mathrm{a}-07$	$<1 \mathrm{e} 07$	1.6
	\＃\＃\＃\＃ぞん	ILMN＿1664511	0．753	$<10-07$	$<1 \mathrm{e}-07$	＜le－07	1.46
	ぞそ\＃	ILMN＿1724489	O\＃\＃3	$<10-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.45
		ILMN＿1663195	0．70\％	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.64
	乡川M乡\＃\＃	ILMN＿1729801	0.517	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	\＄．
		ILMN＿2219002	0.474	$<10-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	3ヶ\％

	\％ダ积	ILMN＿1805737	0.595	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<10-07$	\＃．．\％
		ILMN＿2336781	0.565	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	\＃ッ
\％	\＃乡ヵू	ILMN＿2184373	0.357	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	\＃\＃
N	\＃乡\＃\＃\＃\＃\＃	ILMN＿2338323	0.594	$<10-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{C}-07$	य\％
为		ILMN 2041046	0.691	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	1.75
寿	そ乡ム凶\＃\＃	ILMN＿1802252	0.685	$<10-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.61
\％		LLMN＿1782938	0.45	＜1e－07	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.45
为	\＃\＃\＃\＃\＃	ILMN＿1719753	0.524	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	\％ 0
\＃		ILMN＿1717714	0.591	＜1e－07	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	1.91
生		ILMN＿1758939	0.674	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.7
\％		ILMN＿1784300	0.399	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.66
寿	\＃乡M\％KK．	ILMN＿1764794	0.633	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.52
		ILMN＿1723158	0.617	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.52
行		ILMN 2379130	0.625	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.51
亿．		ILMN＿1671257	0.692	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.5
	\＃\＃\＃\＃\＃\％	ILMN＿1708340	0.432	$<1 \mathrm{e}-07$	$<1 \mathrm{e} 07$	$<1 \mathrm{e}-07$	1.43
	あy＜y\％\％	ILMN 1705301	0.554	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	$<1 \mathrm{e}-07$	1.42

Cox proportional hazards model，Wald Statistic p－value cutoff univariate test： 0.001

10000 random permutations．

Cell survival after siRNA depletion in vitro

MDA－MB－	Sum159P	Hs578T
231	T	

\％		＊			
		3 xems		3\％	
			－		\％
＊	x	\％$\times 28$ \％－8m	同成：		\％\times a－
	（\％		＊smex		
	3＊xize				
䓵＊		2×2	，mask		－ 3 K
	\％		Smess	2＊＊＊s．	
	3＊x＊＊				
点納	x	3，	S		
	－		\％ $3 \times 2 \times$		人3＊＊＊
	3xame				
$x \times$	\％		3 \times W		3 304
	\％		\％\％\％\％		
	\％exsis		3mes		\＄mses

5xay		x			
		＊		3＊	
			yswa	琨 4×4	\％
＊	＊		skmss		Sks：3
	\％				$3 \times 2 \times 2$
	3＊xas		s＞amex		$3 \times 2 \mathrm{c}$
x	3 ${ }^{3}$		3，\％\％\％		4＊2．
	\％				cks
	Wexas		5xeses	3＊＊	人 3×2
8x：					4 2×30
	（	＊ $3 \times \cdots$	2 ${ }^{3} \times$	人必》＊＊＊＊＊＊	
	Texm			人	4×8
xas	38x＊＊		3＊＊		2ms
	Qume				
	Wex		3＊		B 3 \％\％

2＂

xam		x \times			
		3		3x ${ }^{3}$	
			y－x ${ }^{\text {a }}$	骨 $4 \times 5 \times 8$	\％
＊	3		x x m 3		＊ 8 k \％ 8
	（xax				S30ws
	x 3 x		s 5 ces	＊\％\％\％	ssax
x \times	3	\％＊＊＊z．mers	\cdots	＊＊＊＊＊$* *$	2 \％\％
	\％		330 ${ }^{3}$		x $\mathrm{skc} \times \mathrm{ck}$
	$x \times$		＊＊＊＊＊	\％sw	Sswxy
8．	3	\＄S 人	＊\＄＊－＊	\％	3＊＊\％
	（\％x）		3 max		
	x＊＊＊		$3 \mathrm{x} \times 2 \times$		58
x＊＊		人	6．		人
	\％	＊＊			\％samss
	Txmex				symes
X					
				3\％	
			－		\％
愲	＊＊＊＊		2		2 smax
	\＄		4．\times		4 \times chy
	ssmax		＊3＊＊＊		A3＊＊＊
5x	3	6			3×88
	（\％）	＊＊＊＊			2，max
		3 3＊＊～\％	$3 m^{4}$		3 sma
x	\％	\％／4 misk	3\％＊＊	3／4 यmixm	＊＊＊
	2＊＊				
	Yex x^{3}		x x x		
\＄＊	3		x x m－x	－ $2 \times 2 \times 2 \times$	2 2×2
	（				人
	xexxas		$3 \mathrm{x} \times \mathrm{C}$		3 smax

[^1]Table 8: details of antibodies and iininunohistochemistry conditions used for breast cancer TMA analysis in this study

Antib ody	Clone	Speci es	Source	Diluti on	Antigen Retriev al*	Cellular Localizati on	Cut-off used for classification as 'positive"
ER	6 FH 1	$\begin{array}{\|l\|} \hline \text { Mous } \\ \mathrm{e} \end{array}$	Novoca stra	1:100	Citrate	Nucleus	$>1 \%$
PR	1A6	Mous e	Novoca stra	1200	Citrate	Nucleus	$>1 \%$
HER2	CB11	Rabbit	Dako	1:200	Citrate	Cell Membran e	$3+(>30 \%)$
CK5/6	$\begin{aligned} & D 5 / 16 \\ & B 4 \end{aligned}$	Mous e	Chemic on	1:400	Citrate	Membran e+ Cytoplas m	Any positivity
CK14	LL002	Mous e	Navoca stra	1.40	Citrate	Membran e+ Cytoplas m	Any positivity
EGFR	$31 \mathrm{G7}$	Mous e	Invitrog en	1,100	EDTA	Cell Membran e	Any positivity
Ki-67	MIB-1	Mous e	Dako	1200	Citrate	Nucleus	Any positivity (20% cells stained classed as 'Ki67-high')
TTK	N1	Mous e	Abcam	1:100	EDTA	Cytoplas m	0 Negative 1 weak and focal staining 2 moderate-strong focal staining (collectively $<50 \%$ tumor cells) 3 moderate-strong diffuse staining (850% tumor cells) Regarding estimating \% of cells stained, we disregarded mitotic cells to assess mitosis-independent expression of TTK

*Antigen retrieval in OOIM citric acid buffer (pH 6.0) at $125{ }^{\circ} \mathrm{C}$ for 5 min in a pressure cooker, or in $0,001 \mathrm{M}$ Tris/EDTA; pH 8.8 , at $105^{\circ} \mathrm{C}$ for 15 min in a pressure cooker.

Table 9：Multivariate analyses

Covariants	$\begin{aligned} & \hline \mathbf{P} \\ & \text { value } \end{aligned}$	Hazard Ratio	Covariants	$\begin{aligned} & \mathbf{P} \\ & \text { value } \end{aligned}$	Hazard Ratio	Covariants	$\begin{aligned} & \hline \mathbf{P} \\ & \text { value } \end{aligned}$	Hazard Ratio
©mat	\＃\＃\＃4	\＃\＃ ऑふぁ	צ山乡s			चलer ммет	\＃\＃\＃\％	
10 CIN 2ER signature	00002	$\begin{aligned} & 1.59 \\ & (1.25- \\ & 2.04) \end{aligned}$	$\begin{aligned} & 10 \mathrm{CIN} \\ & 2 \mathrm{ER} \\ & \text { signature } \end{aligned}$	0	$\begin{aligned} & 2.2 \\ & 1.73- \\ & 2.79) \end{aligned}$	AJCC stage N	0	$\begin{gathered} 1.73 \\ (1.5 \\ 1.99) \end{gathered}$
						mलि新 आмм！u：	«мп\％！	$\stackrel{\text { Win }}{\text { Win }}$

EXAMPLE 2

Materials and Methods

Meta-analysis of global gene expression in TNBC

We performed a meta-analysis of global gene expression data in the Oncomine ${ }^{\mathrm{TM}}$ database [37] (Compendia Bioscience, Ann Arbor, MI) using a primary filter for breast cancer (130 datasets), sample filter to use clinical specimens and dataset filters to use mRNA datasets with more 151 patients (22 datasets). Two additional filters were applied to perform two independent differential analyses. The first differential was metastatic event analysis at 5 years (metastatic events vs. no metastatic events, 7 datasets [51, 56-61]) and the second differential analysis was survival at 5 years (patients who died vs. patients who survived, 7 datasets [39, 57, 59, 61-64]). Deregulated genes were selected based on the median p-value of the median gene rank in overexpression or underexpression patterns across the datasets for each of the two differential analyses.

Deriving the 28-signattire (the TN signature)

The online tool KM-Plotter [38] which collates gene expression data from Affymterix platform for more than 4000 breast cancer patients were used for developing the 28 -gene signature. From the deregulated genes in primary tumors which led to metastatic or death events within 5 years discovered in the metaanalysis in Oncomine ${ }^{\mathrm{TM}}, 166$ genes were common in both survival events. These genes were then interrogated one by one in KM-Plotter restricting the univariate survival analysis to ER^{-}or BLBC subtypes. Genes which significantly associated with relapse-free survival (RFS), distant metastasis-free survival (DMFS) or overall survival (OS) in either ER or BLBC subtypes were short selected. The 96 genes that were significant in this filtering where then sorted for their level of significance as well as the prevalence of significance across the different survival outcomes (RES, DMFS and OS) and across ER and BLBC subtypes. Based on this sorting, six groups of gene lists were obtained with different levels of survi val association (Table 14). Each of these groups were then used as a metagene and the average expression of genes in each group was investigated for association with survival in KM-Plotter in ER ${ }^{-}$and BLBC subtypes. Based on these analysis, four groups were selected and two were excluded. Furthermore, for two groups, the top 4 and 3 genes were found to be more prognostic than the rest of the group and these were selected. In total, the 7
genes (which their downregulation associates with poor survival) from these two groups and 21 genes (which their upregulation associates with poor survival) in the other two groups were selected to test for association with survival in $\mathrm{KM} \div$ Plotter. These 28 genes showed the highest association with survival as a gene signature compared to any single gene in the original list or any groups from this list. These 28 genes were selected as the triple negative (TN) signature and was subjected to validation as described below.

Validation of the TN signature in breast cancer cohorts

Three large breast caneer gene expression datasets were used for validation. The Research Online Cancer Knowledgebase (ROCK) dataset [40] (GSE47561; n~1570 patients) and the homogenous TNBC dataset [32] (GSE31519; $\mathrm{n}=579$ TNBC patients) were obtained from Gene Expression Omnibus (GEO) and the data was imported into BRB~ArrayToo]s [65] (V4.2, Biometrics Research Branch, NCI, Maryland, USA) with built in R Bioconductor packages. The Cancer Genome Atlas (TCGA) dataset [39]; using the Illumina HiSeq RNA-Seq arrays ($\mathbf{n}=\mathbf{1 . 1 0 6}$ patients) or the Agilent custom arrays (Agilent G4502A-07-3) on 597 patients of the 1106 total patients, were obtained from the UCSC Genome Browser [66, 67]. The TN signature was investigated in each of these datasets where a score was devised to quantify the signature; the TN score = average expression of the 21 genes whose overexpression associated with poor survival \div average expression of the 7 genes whose underexpression associated with poor survival. The TN score for each tumor in each dataset was calculated and tumors were assigned as high or low TN score tumors by dichotomy across the median TN score in each dataset. In some cases, tertiles of the TN score in each dataset. were used to classify tumors as high, intermediate or low TN score tumors and in other cases the quartiles of the TN score were used to classify tumors in the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ or $4^{\text {th }}$ quartiles, The survival of patients in high (over the median, last tertile of the 4th quartile) vs. low TN score groups was compared. Survival analyses were constructed using GraphPad* Prism v6.0 (GraphPad Software, CA, USA) and the Log-rank (Mantel-Cox) Test was used for statistical comparisons of survival curves.

Association of the TN score and signatures with pathological complete responses ($p \mathrm{CK}$) after neoadjuvant chemotherapy and response to endocrine therapy

Datasets which performed gene expression profiling prior to neoadjuvant chemotherapy or endocrine therapy alone were obtained from GEO. The datasets
used in this study for neoadjuvant chemotherapy and recorded pathological complete response (pCR) include: GSE18728 [42], GSE50948 [43], GSE20271 [44], GSE20194 [45], GSB22226 [41, 46], GSE42822 [47] and GSE23988 [48]. For datasets which performed gene expression profiling prior to endocrine therapy (tamoxifen) and recorded patient survival include: GSE6532 [25] and GSE 17705 [51]. These datasets using the Affymeuix gene expression array platforms were imported into BRB-ArrayTools and normalized as described previously [68]. Each tumor in the datasets were assigned as high or low score for our signatures as described in the previous sections. The rate of pCR after chemotherapy or the survival of patients after endocrine therapy were compared between high score tumors and low score tumors using GraphPad ${ }^{\text {® }}$ Prism.

Global gene expression profiles comparison by class comparison

Global gene expression comparison was carried out to compare tumors with high TN or iBCR scores to those with low TN or iBCR scores to characterize additional differences between these tumors and identify deregulated genes which could be suitable as for drug targeting. These comparisons were carried out in the large cohort of 1570 patients in the ROCK data-set and BRB-ArrayTools was used to perform the Class Comparison test. The two classes were high vs. low score tumors and the parameters selected in this plugin in ArrayTools were as follows: Type of univariate test used $=$ Two-sample T-test; Class variable $=$ TN score (high or low) or iBCR score (high or low); fold-change cutoff $=1.5$ fold; Permutation p-values 6 r significant genes were computed based on 10000 random permutations and Nominal significance level of each univariate test: 0.05 . The results from these analyses are shown in Tables 13 and 15-17.

Integration of the Agro and TN signatures in the integrated Breast Cancer Recurrence (iBCR) score

We previously published the Aggressiveness (Agro) signature and score also from meta-analysis and extensive validation and show that this signature is prognostic in ER+ breast cancer [36]. To test whether the Agro signatures could be integrated with the TN signature (prognostic in ER breast cancer) to produce an integrated test that is independent of ER status, several integration methods were investigated. The hypothesis behind the integration methods was to identify a direct relationship that can describe the relationship between the TN and Agro scores in both $\mathbf{E R}^{-}$and ER^{+} breast cancer subtypes that is also in direct relationship with the integrated score. In
other words, the integrated score would retain the information from each the Agro and TN scores relevant to their prognostic value in ER^{+}and ER^{-}breast cancers, respectively, The ROCK dataset was used to test the different methods of integration and the performance of these methods in the stratification of survival of ER* and ER breast cancer. The addition or subtraction of the scores produced a direct relationship between the TN and Agro score and the produced integrated score (Figure 36). These two methods were then analyzed for prognostication of ER* and ER" subtypes in the ROCK dataset and only the addition method retained prognostication in ER breast cancer (Figure 37). Similarly, multiplying and dividing the TN and Agro scores were tested and an exponential and power curve relationships described the relation between the two scores and with the integrated score (Figure 38). Again, these two methods were tested from prognostication in the ROCK dataset and only the multiplication method retained prognostication in ER breast cancer (Figure 37). Because the multiplication and division methods produced exponential and power curves for the relationship between the scores, integration by raising one score to the power of the other score appeared reasonable. Exponential and power curves are the result of power equations. Indeed, integration by raising the TN score to the power of the Agro score was highly prognostic in both ER* and ER' breast cancers (Figures 37 and 38). This integrated score, the integrated Breast Cancer Recurrence (iBCR) score was in fact more prognostic in ER* and ER patients in the ROCK dataset than the single Agro and TN scores, respectively. The iBCR score was validated in the ROCK and homogenous TNBC datasets (Affymetrix platform), the TOGA dataset (Illumina RNA-Seq platform) and the ISPY-I trial dataset (GSE22226 [41, 46], Agilent platform), illustrating the platform-independence of the iBCR score which is driven by the platform independence of tire Agro and TN signatures as they were discovered from meta-analysis irrespective of array platforms used from independent studies,

Mining drug screen studies

Two large studies which treated large panels of cancer cell lines with large panels of anticancer drugs were investigated to determine whether cell lines with high Agro, TN or iBCR scores show different sensitivity to particular anticancer drugs in comparison to cancer cell lines with low Agro, TN or iBCR scores. Briefly, the datasets of gene expression profiling from Genentech (niRNA Cancer Cell Line Profiles GSE10843), Pfizer (Pfizer Molecular Profile Data for Cell Line GSE34211) and Broad Institute/Novartis (Cancer Cell Line Encyclopedia [COLE] GSE3613)
were obtained from GEO and imported into ArrayTools as described earlier. The Agro, TN and iBCR scores for all the cell lines profiled were calculated and cell lines were assigned as high or low for each of the scores based on dichotomy across the median in each dataset. For cell lines which were profiled in more than one dataset, the average scores were used. Using this data, the sensitivity of cancer cell lines with high and low Agro, TN or iBCR scores was compared to those with low scores to anticancer drugs was investigated in two studies [49, 50]. Drugs which had significantly different IC50 in high score cell lines compared to low score cell lines are described herein. Statistical significance was detennined from unpaired twotailed t-test using GraphPad ${ }^{*}$ Prism.

Other statistical analysis

Univariate and multivariate Cox proportional hazards regression analyses were performed using MedCalc for Windows, version 12.7 (MedCalc Software, Qstend, Belgium),

Results

Meta-analysis of gene expression profile in Oneomim ${ }^{\mathrm{TM}}$

We performed a meta-analysis of published gene expression data, irrespective of platform or breast cancer subtype, using the Oncomine ${ }^{\text {TM }}$ database [37] (version 4,5). We were able to compared the expression profiles of primary breast tumors from 512 patients who developed metastases vs. 732 patients who did not develop metastases at 5 years (7 datasets in total) to identify 500 overexpressed genes and 500 underexpressed genes in the metastasis cases (cutoff median p-value across the datasets < $\mathbf{0 . 0 5}$ from a Student's /-test. Figure 31). We also compared the expression profiles of 232 primary breast tumors from patients who died within 5 years vs. 879 patients who survived in 7 datasets and found 500 overexpressed genes and 500 underexpressed genes in the poor survivors (cutoff median \mathbf{p}-value across the datasets < 0.05 from a Student's /-test, Figure 31). Since several datasets were annotated for one of these outcomes but not both, we rationalized that the union of these analyses is more appropriate particularly that death is the most likely outcome in metastatic disease. The union of the over- and expressed genes in tumors that associated with metastasis and those that associated with death within 5 years revealed common 101 overexpressed and 65 underexpressed genes (Figure 19). These 166 deregulated genes were then subjected to training using the online tool

KM-plotter [38] to derive a 28 gene signature as described in methods below followed by validation of this signature, the TN signature, in several large cohorts of breast cancer gene expression datasets (Figure 19).
The TN signature is prognostic in TNBC, BLBC and ESC breast cancer subtypes

The 166 deregulated genes in primary breast tumors that associated with poor outcome discovered from the Oncomine ${ }^{\mathrm{TM}}$ meta-analysis were interrogated using KM-Plotter. The overexpression of 31 genes and the underexpression of 65 genes associated with RFS, DMFS or OS of BLBC or ER- breast cancer (Table 14). Based on the level of significance in univariate survival analysis and the prevalence of this significance across the different disease outcomes (RES, DMFS and OS), a list of 21 overexpressed and 7 underexpressed genes (Table 1) were shortlisted as a signature with the strongest association with survival in both BLBC and ER breast cancer subtypes (Figure 20).

The 28 -gene signature, the TN signature, was then validated in multivariate survival analysis in two breast cancer cohorts, the homogenous TNBC dataset [32] and the Research Online Cancer Knowledgebase (ROCK) dataset [40]. We devised a score to quantify trends in the TN signature, the TN score, which is calculated as the ratio of the average expression of the 21 overexpressed genes to that of the 7 underexpressed genes. Dichotomy across the median TN score stratified the survival of TNBC (Figure 21A), BLBC (Figure 21B) and ER- (Figure 21C) patients and outperformed all standard clinicopafJioiogical indicators * These analyses indicated that the TN score is an independent prognostic factor that identified TNBC, BLBC or ER patients with poor survival irrespective to tumor size and grade, patient age, lymph node status or treatment. The TN signature also outperformed all previously published signatures that are prognostic in ER, TNBC or BLBC subtypes [30-35] (Figure 32),

While the discovery of the signature in Oncomine ${ }^{\mathrm{TM}}$ included datasets using the Affymterix, Alumina and Agilent platforms, the training and validation above was limited to the Affymterix platform. Thus, we validated the TN score in The Cancer Genome Atlas (TCGA) dataset [39] which used the Alumina HiSeq RNA-seq platform. As shown in Figure 22, the RFS of ER patients in the TCGA dataset was stratified by TN score and this stratification outperformed that by standard clinicopathological indicators. The original TCGA publication used Agilent custom arrays (Agilent G4502A-07-3) on 597 patients and we analyzed the prognosis of the

TN score in this data. The TN score stratified the survival of $\mathbf{E R}$ patients in the Agilent TCGA data (Figure 33). Altogether, the prognostic value of the TN signature/score was validated in large, independent cohorts of breast cancer in TNBC, BLBC and $\mathbf{E R}^{-}$breast cancer subtypes irrespective of the gene expression array platforms used.

The TN score and the likelihood of pCR after chemotherapy
Chemotherapy is a standard therapy for EE^{-}breast cancer and the only mode of therapy for ERHER2 (TNBC) breast cancer. Although, pathological complete response (pCR) differs by receptor status, it remains highly predictive of survival within the different breast cancer subtypes [41], Given the association of the TN score with outcome in TNBC, BLBC and ER' breast cancer, we questioned whether this score is also associated with pCR after chemotherapy. To this end, we analyzed publically available datasets of neoadjuvant chemotherapy trials which recorded pCR and performed pre-treatment gene expression profiling. As shown in Figure 23A, pCR after chemotherapy in ER $/$ HER2 patients was less likely after TX (GSEl 8728), AT/CMF (GSE50948) or FAC (GSE20271) chemotherapy regimens when these patients had a high TN score. TFAC chemotherapy regimen was less likely to produce pCR in high TN score tumors in one study (GSE20194) but without a significant association in a second study (GSE20271). ERHER2 tumors with high TN score had a trend to lower response to AC/T chemotherapy (GSE22226 AC/T). In contrast, pCR was achieved in 57% and 60% of $^{-1}{ }^{-} \mathrm{HER} 2^{-}$tumors with high TN score after treatment with the FEC/TX (GSE42822) and FAC/TX (GSE23988) regimens, respectively. Altogether, the rate of pCR stratified by the TN score was significantly different in either the low or high TN score tumor from the reported general 31% pCR rate in TNBC [9] (dotted line in Figure 23A). In one dataset, the ISPY-1 trial (GSE22226), the relapse-free survival (RFS) was also recorded. As shown in Figure 23B, pCR was a strong predictor of RFS in ERHER2 breast cancer as previously published [41]. The TN score was not only a strong predictor of RFS after chemotherapy, but also could stratify the survival of patients who achieved pCR further in addition to the stratification of patients who did not achieve pCR to good and poor prognosis groups (Figure 23B). This data indicates that the TN score is independent and has additional value to monitoring pCR after neoadjuvant chemotherapy in ER HER2* (TNBC) breast cancer patients. To further illustrate the utility of the TN score, we analyzed ER^{-}and BLBC patient outcome in KM-plotter
for systemieally untreated and treated patients separately. As summarized in Table 11 (Figure 34 for survival curves), the TN signature was prognostic in either systemieally untreated or treated ER- and BLBC subtypes.
Therapeutic targets based on the TN signature

The overexpressed genes in the TN signature contains novel genes which have limited literature describing their function, particularly in cancer. These genes includes GRHPR, NDUFCl, CAMSAPl, CETN3, EIF3K, STAU!, EXOSC7 and $K C N G l$, These genes are novel candidates for future studies to investigate the effect of their knockdown on the survival of ER^{-}or TNBC breast cancer cell lines. In addition, we took two approaches to identify possible therapeutic strategies envisioned by the TN signature to benefit the poor survival of patients identified by this signature. First, we compared the global gene expression profile of TNBC/BLBC tumors with high TN score to those with low TN score. Secondly, we analyzed published pre-clinical studies which treated cancer cell lines with panels of moleeularly targeted drugs to determine whether cell lines with high TN score display sensitive to particular drugs. In the first approach, a class comparison between the global gene expression profiles of BLBC or ER- tumors with high TN score to those with low TN score was carried out in the ROCK dataset. In comparison to low TN score BLBC tumors, high TN score BLBC tumors overexpressed 171 probes and underexpressed 251 probes (Table 15). In a similar analysis, high TN score ER $^{-}$tumors overexpressed 307 probes and underexpressed 332 probes (Table 16). Of the overexpressed probes, 87 probes (82 genes) were commonly overexpressed in high TN score BLBC and ER breast cancer compared to low TN score counterparts. Of the 87 probes, 39 probes were prognostic in BLBC and ER- breast cancer (marked in bold in Table 15). More importantly, the 87 probes include genes which encode several kinases, enzymes and ion channels which could be targets or current for future drug development for the treatment of the high TN score tumors that have poor outcome.

In the second approach, published studies which surveyed panels of molecular drugs against cancer cell lines were analyzed. The Cancer Cell Line Encyclopedia (CCLE) study [50] investigated the pharmacological profiles for 24 anticancer drugs across 479 cancer cell lines which were also profiled with gene expression arrays. We calculated the TN score for each cell line in this study and compared the sensitivity of these cell lines to the anticancer drugs according to the TN score. Cancer cell lines
with high TN score were less sensitive to inhibition of ALK (TAE684) and BCRABL (Nilotinib) but more sensitive to the inhibition of HSP90 (Tanespimycm [17AAGj) and EGFR (Erlotinih or Lapatinib) (Figure 35). In a similar method, we also analyzed a second large study. Garnet! et al. [49], which tested 130 drugs against more than $\mathbf{6 0 0}$ cancer cell lines. As shown in Figure 24, ceil lines with high TN score were less sensitive to inhibition of PARP (ABT-888), retinoic acid (ATRA), Bcl2 (ABT-263), DHFR (methotrexate), glucose (metformin) and p38MAPK (BIRB 0796). Two IGFIR inhibitors showed different results; high TN score cell lines were less sensitive to the OSI-906 inhibitor but more sensitive to the BMS-536924 inhibitor. As shown in Figure 24, cell lines with high TN score were also sensitive to HSP90 inhibition (17-AAG and Elesclomol) in agreement with the findings from the CCLE study (Figure 35), High TN score cell lines were also more sensitive to mTOR/PI3K (BEZ235) and MEK (RDEA-1 19) inhibition.

Integration the th score and the aggressiveness score

We have recently published the aggressiveness gene signature/score (Agio score) [36] from a meta-analysis in Oncomine ${ }^{\mathrm{TM}}$ and validated that this score is prognostic in ER^{+}breast cancer at the gene level. ER ${ }^{-}$breast cancer, BLBC and TNBC almost consistently express high level of the Agro score thus this signature was not prognostic in these subtypes. We further showed that one of these genes, TTK/MPSl, is upregulated in TNBC cell lines and some ER- negative cell lines, and that TTK is a therapeutic target in these cell lines. Moreover, we showed that the TTK protein level by immunohistoehemistTy (IHC) is prognostic in very aggressive subgroups of breast cancer including high grade, proliferative tumors, lymph node positive, TNBC and HER2 ${ }^{+}$subtypes [36]. The integration of the TN gene signature (prognostic in ER/BLBC/TNBC) and the Agro gene signature (prognostic in $\mathbf{E R}^{+}$) would allow one integrated signature and score which will be prognostic in breast cancer irrespective of subtypes. As detailed in the methods section, the addition, subtraction, multiplication or division of the TN and Agro scores were investigated in the ROCK dataset to identify a direct relationship that would retain the information provided from each of the scores, A linear relationship was observed by the addition or subtraction of the TN and Agro scores (Figure 36), but only the integration by addition was prognostic in ER- patients (Figure 37). On the other hand, the multiplication and division of the TN and Agro score produced exponential and power curves relationships, respectively (Figure 38). Only the multiplication of the
scores was prognostic in ER- breast cancer (Figure 37). Since multiplication and division produced exponential and power curves 6 r the relationship between the TN and Agro score, we also tested integration by one score raised to the power of the second score. Indeed, the TN score raised to the power of Agro score was highly prognostic in ER- and ER+ patients in the ROCK dataset (Figure 37). This method to integrate the TN and Agro scores, the integrated breast cancer recurrence (iBCR) score, was prognostic in all patients, ER- and ER+ patients in the ROCK dataset (Figure 25) and the TCGA dataset (Figure 26). Moreover, the iBCR score was as prognostic as the TN score in the homogenous TNBC dataset [32] (Figure 39), supporting the iBCR score as prognostic test in breast cancer.

The iBCR score and the Kelih ood of pCR after chemotherapy

The association of the iBCR score with patient sun'ival and the likelihood of pCR after chemotherapy was investigated in the ISPY-1 trial (GSE22226). The RFS of ER/HER2 patients was stratified by iBCR score better than the TN score alone (Figure 27). High iBCR score ER7HER2` patients were less likely to achieve pCR (Figure 27), which could explain the poorer sun'ival of these patients. In ER* breast cancer, the iBCR score stratified the RFS patients similarly to the Agro score. Although higher likelihood pCR was observed in high iBCR score ER* tumors (Figure 27), this subgroup had poor RFS. This can be explained by the small number of ER* patients who achieved pCR ($\mathbf{1 0 / 6 2}$ [16\%] vs. 10/34 [29\%] in ERHER2). These results provide further validation and evidence for the value of the iBCR score as a single test which incorporates the Agro score (prognostic in ER*) and the TN score (prognostic in ER). The results in Figure 25 from the ROCK dataset (Affymetrix platform), Figure 26 from the TCGA dataset (Illumina platform) and Figure 27 from the ISPY-1 trial (Agilent platform) also provide evidence for the robustness of the Agro and TN scores and the derived iBCR score across independent studies across the three major gene expression array platforms.

Next, the association of the iBCR score with pCR was investigated in other neoadjuvant chemotherapy datasets in both ER-HER2 and ER* patients. pCR was less likely in high iBCR ER /HER patients after TX (GSE18728) chemotherapy regimen and not different to low iBCR ER-/HER2- patients when treated with AT/CMF (GSE50948). In the other datasets, pCR was more likely in high iBCR score ER-/HER2- patients after treatment with FAC (GSE2027 1), TFAC (GSE20271
and GSE20194), EEC/TX (GSE42822) and EAC/TX (GSE23988) neoadjuvant chemotherapy regimens (Figure 28A),

As shown in the summary from these four studies in Table 12, of the total 183 ER $^{-}$ HER2 patients, 120 patients (65.6%) had high iBCR score and of these 54 patients (29.5\%) achieved pCR while 66 patients (36.1\%) did not achieve pCR. The larger number of patients with high iBCR score that did not achieving pCR (66/120, 55\%) and that recurrence may be observed on high iBCR score patients after pCR (55/120, 45%) could explain the poorer survival of high iBCR score ER HER2 patients (40$50 \%$ survival at 10 years in Figure 25 and Figure 26), Based on these studies and that chemotherapy is the mainstay in the treatment of ER7HER2 breast cancer, low iBCR score patients may be spared from additional treatments particularly if they achieve pCR after chemotherapy. On tire other hand, high iBCR ER-HER2- patients and particularly those who do not achieve pCR should be offered additional therapy which could be based on the unregulated genes in the Agro or TN signatures or based on other overexpressed genes in these tumors (Tables 15 and 16) or from the preᄀ clinical analysis we performed from drug sensitivity studies (Figures 24 and 3.5).

High iBCR score in ER^{+}was associated with higher likelihood of pCR after AT/CMF (GSE50948), TX (GSE18728), TFAC (GSE20271 and GSE20194) and FAC/TX (GSE23988) neoadjuvant chemotherapy regimens (Figure 38B), Despite this higher pCR likelihood, high iBCR ER+ patients have poorer survival (Figures 25 and 26) which could be explained by the small number of ER+ patients who achieve pCR (of the $207 \mathrm{ER}^{+}$patients in the above five studies, $5[2.5 \%]$ with low iBCR and 20 [9.7\%] with high iBCR score achieved pCR). Thus, for ER^{+}breast cancer where a decision about including chemotherapy with the standard endocrine therapy in the treatment planning may be informed by the iBCR score. The value of the iBCR score in the treatment planning of ER+ patients is tire described next section.

The iBCR score and the treatment of'ER ${ }^{+}$breast cancer

ER^{+}breast cancer patients are treated with endocrine therapy, particularly tamoxifen. When these patients are lymph node positive (N1), adjuvant chemotherapy is also included. For lymph node negative (NO) ER^{+}patients, decision to include chemotherapy is less certain as good prognosis patients (small and lower grade tumors) would be over-treated if chemotherapy is included whereas poorer prognosis patients (larger and higher grade tumors) would be under-treated if chemotherapy is not included. This clinical decision has been the motivation for the development of

Oncotype $\mathrm{DX}^{(1)}$ recurrence score, the Ma*imaPrint ${ }^{(6)}$ and more recently the PAM5D risk of recurrence score. We have previously published that the Agro score outperformed the Oncotype Dx and the MammaPrint tests in multivariate survival analysis in the METABRIC dataset of 2000 patients [36]. This finding is further supported by direct comparison of the Agro score to Oncotype Dx (Figure 40) and MammaPrint (Figure 41) in all ER^{+}patients and in the NO and Nt^{t} subsets. For the iBCR score, as shown in Figure 29A, this score was prognostic in ER ${ }^{+}$NO patients who were not treated with tamoxifen indicating that high $\mathrm{iBCR} \mathrm{ER}^{+} \mathbf{N O}$ patients should be treated with tamoxifen. When ER+ NO or N1 patients are treated with tamoxifen, the iBCR score can still identify patients who have poor RFS (Figure 29B) and DMFS (Figure 29C), Thus, ER+ NO or N1 patients with high iBCR score may benefit from the inclusion of adjuvant chemotherapy in their treatment as these patients may experience better pCR (Figure 28B). Nonetheless, as pCR rate in ER^{+}is not high, high iBCR score ER+ patients, particularly N1, should be offered additional targeted therapies. The type of targeted therapies for these patients is suggested in the next section ${ }_{*}$

The iBCR score predicts therapies for $E R / H E R 2$ * and $E R^{+}$and breast cancer subtypes

The overexpressed genes in the Agro and TN signature contain targetable genes which could be useful for therapeutic intervention against the high iBCR tumors which have poor survival alter the standard treatments. Similar to the analysis performed for the TN signature above, we took two approached to identify additional possible targets in the high iBCR score breast tumors. In the first approach, a class comparison between the global gene expression profiles of ER^{+}or $\mathbf{E R}$ " tumors with high iBCR score to those with low iBCR score was carried out in the ROCK dataset. The produced gene-list (1178 probes, data not shown) was then filtered by comparison to normal breast tissue which was also profiled in this dataset. In comparison to low iBCR score tumors and normal breast tissue, high iBCR score tumors overexpressed 204 probes (181 genes) and underexpressed 124 probes (116 genes) (Table 17). Of the 181 overexpressed genes, 134 genes were specifically upreguiated in high iBCR score ER^{+}vs. normal breast and low $\mathrm{iBCR} \mathrm{ER}^{+}$and 95 genes were specifically upreguiated in high iBCR score ER^{+}vs. normal breast and low $\mathrm{iBCR} \mathrm{ER}^{-}$. As shown in Table 13, 49 genes were uniquely upreguiated in high iBCR score ER- tumors compared to low score iBCR score ER tumors and normal
breast tissue. Similar compaiison revealed that high iBCR score ER^{+}tumors have unique upregulation of 86 genes. High iBCR score $\mathrm{ER}^{`}$ and ER^{+}tumors commonly overexpressed 46 genes in compaiison to low score iBCR counterparts and normal breast tissue. These genes encode several kinases, enzymes and ion channels which could be targets for current or future drug development for the treatment of the high iBCR score tumors with poor outcome. Of the downregulated probes, a particularly interesting hit was the miero-RNA (miRNA) hsa-mir-568 (9.3- and 2.2-fold downregulated in high iBCR score ER vs. normal breast and low iBCR score ER , respectively; 5,6- and 2,9-fold downregulated in high iBCR score $\mathbf{B R}^{+}$vs. normal breast and low iBCR score ER^{+}, respectively). This downregulated miRNA in the high iBCR score tumors targets several of the upregulated genes in these tumors, particularly those which are upregulated compared to normal breast tissue (Table 18). This miRNA could be a genomic-based treatment against high iBCR score breast cancers.

In the second approach, again similar to the above analysis for the TN score, published studies of drug screens were analyzed for the association of the iBCR score with sensitivity of cancer cell lines to anti-cancer drugs. In the CCLE study (Figure 42), cancer cell lines with high iBCR score were less sensitive o inhibition of ALK (TAE684) and BCR-ABL (Nilotinib) similar to results from the TN score. In addition, high iBCR cell lines were less sensitive to inhibition of FGFR (TKI258) and IGF1R (AEW541), High iBCR score cell lines were more sensitive to the inhibition of HSP90 (Tanespimycin [17-AAG]) (Figure 42). In the second large study by Garnett et al. [49], high iBCR score cell lines were more sensitive to low iBCR score cell lines to 8 anticancer drugs (Figure 30). These include inhibitors of HSP90 (17AAG), mTOR/PI3K (BEZ235) and IGFIR (BMS-536924) as also observed in the TN score results. Additionally, high iBCR score cell lines were more sensitive 0 inhibition of PI3K (GDC0941), mTQR (jW-7-25-1), XIAP (Embelin) and PLKl (B1-2536) which also matched results from Agro score results (Figure 30). The Agro score also identified sensitivity to inhibition of RSK (CMI), MEK (PD0325901) and DNA damage (Bleomycin). Similar to results from high TN score, high iBCR score cell lines were also less sensitive to the inhibition of PARP (ABT888 and AZD-2281), retinoic acid (ATRA), Bcl2 (ABT-263), DHFR (methotrexate) and glucose (metformin). Additionally, high iBCR score cell lines were less sensitive o inhibition of SYK (BAY 613606), HDAC (Vorinostat) and BCR-ABL (Nilotinib)
and p38MAPK (BIRB 0796). High Agro score cell lines were less sensitive to an additional drug against GSK3A/B (SB216763). Altogether, the TN score (Figures 24 and 35) and the Agro score and the combined iBCR score (Figures 30 and 42) associate with sensitivity to several anticancer drugs and future experimental validation would establish these scores as companion diagnostic for these drugs and benefit breast cancer patients by directing these drugs to the high score patients with poor survival.

Sensitivity of breast cancer cell lines to targeted inhibitors according to the iBCR score

Breast cancer cell lines (10 cell lines); BT-549, MDA-MB-231, MDA-MB-436, MDA-MB-468, BT-20, Hs.578T, BT-474, MCF-7, T47D, and ZR-75-1, were cultured in the absence or presence of escalating doses of 24 anti-cancer drugs. The survival of cells was determined six days in compari son to untreated cells using the MTS/MTA assay. The response of the cell lines to the drugs was analyzed in GraphPad ${ }^{\text {© }}$ Prism using a dose response curve to calculate the $\log _{10}$ of IC50 (1C50 is the dose required to kill $\mathbf{5 0 \%}$ of the cells). Sensitivity was presented as the $1 \bigcirc$ gio[IC5QL This drug screen which we published previously (Al-Ejeh et al, Oncotarget, 2014) was re-analyzed according to the iBCR score. The gene expression datasets of 51 breast cancer cell lines by Neve et al. (Cancer Cell, 2006), was analyzed to calculate the Agro and TN scores for each cell line to calculate the iBCR score. Each cell line was assigned as low of high iBCR score by dichotomy across the median of all the cell lines in the Neve et al. dataset. Based on the low or high iBCR score classification, the sensitivity of the 10 cell lines used in our screen was compared between high iBCR score cell lines (5 cell lines) to low iBCR score cell lines (5 cell lines). As shown in Figure 47, high iBCR score cell lines were significantly more sensitive to the- inhibition of p38MAPK (LY222882Q), PLCu (IJ73122), JNK (SP600125), PAK1 (IPA3), MEK (AS703026 and AZD6244), ERK5 (XMD 8-92 and BIXG2 188), HSP90 (17-AAG, PF04291 13 and AUY922), IGF1R (GSK1904529A) and EGFR (Afatinib). The results from our screen are in agreement with the higher sensitivity of high iBCR score cancer cell lines to HSP90, IGF1R and MEK inhibitors we identified from the two previously published large cell line studies.

Our meta-analysis of gene expression datasets in the Oncomine ${ }^{\text {TM }}$ database has previously identified a signature, the Aggressiveness signature (Agra signature), which was prognostic in ER^{+}breast cancer. We validated one of the genes in this signature, TTK/MPS 1, by IHC and found that TTK positivity in interphase cells (exclusive of mitotic ceils) was prognostic in highly aggressive breast cancers such as high grade, high grade and lymph node positive and highly proliferative (Ki67 positive) cases [36]. In this study, we used our meta-analysis approach to identify a second signature, the triple negative signature (TN signature), which was highly prognostic in ER\. TNBC and BLBC subtypes. The TN signature outperformed all standard clincopatholical indicators in multivariate survival analysis and also outperformed published signatures in ER- breast cancer. We were also able to integrate the Agro signature (prognostic in $\mathbf{E R}^{+}$breast cancer) to produce the integrated Breast Cancer Recurrence (iBCR) test. The two signatures and the iBCR were validated in large independent cohorts of breast cancer studies irrespective of the gene expression arrays used indicating the experimenter/technology independence of our signatures. Importantly, both the Agro and TN signatures and the iBCR test associated with response and outcome after endocrine therapy for ER^{+} and neoadjuvant chemotherapy for $\mathbf{E R}^{-}$and ER^{+}breast cancers. Moreover, by comparison of the global gene expression profiles of high iBCR score tumors to low iBCR score tumors, we were able to identify several overexpressed targets which can be used for the targeted therapy of these poor prognosis patients who are not really benefiting from the current treatment standards. In addition, mining of large preclinical studies of drug screens against cancer cell lines showed that the signatures and iBCR score predict higher sensitivity of cell lines to particular drugs. Thus, the signatures and the iBCR test could be used as a companion diagnostic to direct targeted therapies to those patients who would benefit from these treatments to increase their low survival rates. Altogether, our studies have not only extensively illustrated the potential of our signatures in personalized medicine, but may also shed light for future studies to understand the underlying mechanisms for the aggressiveness of tumors that the iBCR test identified that lead to poor survival To date, there is an unmet medical need for the prognostication of ER- breast cancer and the development of effective therapies against these tumors particularly when lacking HER2 expression. Chemotherapy remains to be the only standard therapy in these patients and the response rate after chemotherapy in the neoadjuvant setting is
reported as $\mathbf{3 1 \%}$ • in ERHER2 (TNBC) patients [9]. Identifying patients who would truly benefit from chemotherapy would aid clinicians to determine patients who may require longer or additional treatment regimens including investigational clinical trial enrolment. Our signatures and the iBCR score predict higher pCR after chemotherapy in patients who have high scores compared to those with low score. The low score patients have better survival and may not require additional therapy. On the other hand, despite the higher pCR in high score patients, this patient subgroup still has poor survival and recurrences were present even after achieving pCR in high score patients when we analyzed the data from the ISPY- 1 trial. Our results from comparative analysis and mining pre-clinical drug screens identified several targets and sensitivity to drugs in development. Thus, ER- and particularly TNBC patients with high scores for our signatures/iBCR test may benefit from the inclusion of therapies envisioned by these signatures to increase their survival rates. Such clinical development will depend on future prospective validation of our signatures and the iBCR test in clinical trials and pie-clinical studies.

In ER^{+}breast cancer, three commercial tests exist for clinical decisions to spare or include adjuvant chemotherapy with the standard endocrine therapy; Oncotype Dx ${ }^{\text {, }}$ MammaPrint^ and Prosigna*. These have been validated for ER ${ }^{+}$lymph node negative (NO) breast cancer patients treated with endocrine therapy whether patients with high risk according to these tests are recommended for adjuvant chemotherapy. Our signatures and tire iBCR test outperformed these tests in a direct comparison in $E R^{+}$NO patient-survival after tamoxifen therapy. Moreover, our tests also predicted the response of ER^{+}patients to chemotherapy and importantly could predict sensitivity to targeted therapies. The current commercial tests do not have this capability. Importantly, our signatures and the iBCR test was also prognostic in the subgroup with unmet need, ER^{+}lymph node positive breast cancer ($\mathrm{ER}^{+} \mathrm{Nl}$), The survival of these patients was stratified to poor and good prognosis groups by our signatures and iBCR test which also informed whether these patients are benefiting from endocrine therapy. Clinical validation of our signatures and the IBCR test along with validation of drug sensitivity predictions would aid the development of new treatment regimens for ER^{+}patients who are at high risk of relapse or metastatic spread after the current treatment standards.

The comparison of aggressive ER^{-}tumors identified by our signatures to their counterparts and to normal breast tissue identified several kinases, enzymes (redox
particularly) and potassium channels which could inform new directions in developing targeted treatments against $\mathbf{E R}^{-}$breast cancer. On the other hand, for aggressive ER^{+}tumors identified by our signatures, although targets were not restricted to cell cycle and proliferation, these functions were notably enriched. This high proliferation profile could explain the higher pCR in, these tumors after chemotherapy as proliferative tumors would be more responsive to chemotherapeutics. Nonetheless, we have previously clarified that the overexpressed genes in the Agro signature, thus the $\mathbf{i B C R}$ test, are genes that are involved in kinetochore binding and chromosome segregations and that the signature is prognostic even in proliferative tumors (high Ki67 expression) [36]. Deregulation of genes involved in chromosome segregation would produce aneuploidy and chromosomal instability (CIN) [52], At least in viva, chemotherapy has been shown to induce the proliferation quiescent aneuploid cells as a mechanism for therapy resistance [53]. In support of the notion that high Agro score is related to aneuploidy, analysis of the copy number variations (CNVs) TCGA data showed that high Agro score tumours, compared to low Agro score tumors, have high level of CNVs, particularly those involving whole chromosomes or chromosome arms (Figure 43), Thus, although proliferation may be a characteristic of high Agro/iBCR score ER^{+} tumors, these tumors appear to be aneuploid. In line with this notion, the sensitivity of high Agro/iBCR score cell lines to VLK1 and HSP90 inhibition (Figure 3(5) and aurora kinase inhibitors (Figure 44) support that high Agro/iBCR scores predict sensitivity to anti-aneuploid therapy. PLK1 and Aurora kinases are classical targets in aneuploidy and HSP90 inhibition has been reported to selectively kill aneuploid cancer cells [54]. HSP90 sensitivity was also found for high TN score tumors and interestingly, we have previously identified HSP90 as a target in TNBC by kinome profiling of breast cancer. We showed that HSP90 inhibition in combination therapy is effective in vitro and in vivo [55]. We propose that anti-aneuploid drugs should be effective against ER^{+}tumors with high Agro/iBCR scores including PLK1, Aurora kinase and HSP90 inhibitors and that HSP90 inhibition should be effective in high TN/ifiCR score ER tumors. While other therapies envisioned by our signatures and the iBCR test should also be investigated, the above targets represent first line targets for initial validation and development.
In conclusion, our meta-analysis in Oneomine ${ }^{\text {TM }}$ and extensive subsequent validation and analysis have developed novel signatures and an integrated genomic test for the
prognosis of breast cancer and prediction of response to standard treatments irrespective of ER status. The novel signatures and their integration also have the potential as companion diagnostic tests for several classes of targeted therapies- in breast cancer patients who suffer poor survival. Future validation and clinical development of our signatures and the iBCR test holds a great potential and impact on personalized and precision medicine for breast cancer. Finally, it should be noted that the iBCR test has value in the prognosis of several other cancers (Figure 45) and particularly in lung adenocarcinoma (Figure 46), thus our approach and novel signatures may extend benefit to other cancer types.

REFERENCES

1. Kang, S.P., M, Martel, and L.N. Harris, Triple negative breast cancer: current imderstanding of biology and treatment op tions, Curr Opin Obstet Gynecol, 2008, 20(1); p. 40-6.
2. Schneider, B.P., et al.. Triple-negative breast cancer: risk factors to potential targets, Clin Cancer Res, 2008. 14(24); p. 8010-8.
3. Rakha, E.A., J.S. Reis-Filhio, and I.O. Ellis, Basal-like breast cancer: a critical review. J Clin Oncol, 2008. 26(15): p. 2568-81,
4. Fulford, L.G., et al, Basal-like grade it! invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res, 2007. 9(1): p. R4.
5. Goldstein, L,J., et al,, Concurrent doxorubicin plus docetaxel is not more effective titan concurrent doxorubicin plus cyclophosphamide in operable breast cancer with 0 to 3 positive axillary nodes: North American Breast Cancer Intergroup Trial E 2/97. J Clin Oncol, 2008. 26(25): p. 4092-9,
6. Keam, B., et al.. Prognostic impact of clinicopatkologic parameters in stage WIII breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: paradoxical features of the triple negative breast cancer. BMC Cancer, 2007. 7: p. 203.
7. Liedtke, C , et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 2008. 26(8): p. 1275-81.
8. Carey, L.A., et al, The triple negative paradox: primary tumor chemosensitivity of breast-cancer subtypes. Clin Cancer Res, 2007. 13(8): p. 2329-34. 9. von Minckwitz, G., et al, Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol, 2012. 30(15): p. 1796-804.
9. Sorlie, T., et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.. Proc Natl Acad Sci U S A, 2001. 98(19): p. 10869-74.
10. Perou, CM., et al, Molecular portraits of human breast tumours. Nature, 2000. 406 (6797): p. 747-52,
11. Hu, Z, et al , The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics, 2006. 7 : p. 96-107.
12. Parker, J.S., et al, Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J Clin Oncol, 2009,
13. Weigelt, B., et al,. Breast cancer molecular profiling with single sample predictors: a retrospective analysis-. .Lancet Oncol 11(4): p. 339-49.
14. Weigelt, B., et al, Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res, 2005, 65(20): p. 9155-8.

16, Parker, J.S., et al, Supervised risk predictor of breast cancer based on intrinsic subtypes, 3 Clin Oncol, 2009. 27(8): p. 1160-7.
17. Lehmann, B.D., et al, Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest, 2011. 121(7): p. 2750-67.

18, Shah, S.P., et al, The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 2012, 486(7403): p. 395-9.
19. Irshad, S., P. Ellis, and .4. Tutt, Molecular heterogeneity of triple-negative breast cancer and its clinical implications. Curr Opin Oncol, 201. 1. 23(6): p. 566-77.
20. Criscitiello, C., et al, Understanding the biology of triple-negative breast cancer. Ann Oncol, 2012. 23 Suppl 6: p, vi 13-8.
21. Masuda, H.. et: al, Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res, 2013. 19(19): p. 5533-40,
22. van 't Veer, L.J., et al, Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002. 415 (6871): p. 530-6.
23. Paik, S., et al, A mulfigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med, 2004. 351 (27): p. 2817-26.
24. Buyse, M,, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst, 2006. 98(17): p. 1 183-92.
25. Loi, S,, et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol, 2007. 25(10): p. 1239-46.
26. Ma, X.J., et al, A five-gene molecular grade index and HOXB I 3:IL I7BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res, 2008. 14(9): p. 2601-8.
27. Ma, X.J., et al., A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell, 2004.5(6): p. 607-16,
28. Sotiriou, C., et al.. Gene expression profiting in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. Journal of the National Cancer Institute, 2006. 98(4): p. 262-72.
29. Dowsett, M., et al,, Comparison of PAM5Q risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol, 2013, 31(22): p. 2783-90.
30. Yau, C , et al., A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res, 2010, 12(5): p.R85,
31. Rody, A., et al., A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Res, 2011. 13(5): p. R97.
32. Karn, T., et al., Homogeneous datasets of triple negative breast cancers enable the identification of novel prognostic and predictive signatures. PLoS One, 2011.6(12): p.e28403.
33. Yu» K.D., et al., Identification of prognosis-relevant subgroups in patients with chemoresistant triple-negative breast cancer. Clin Cancer Res, 2013. 19(10): p. 2723-33.
34. Lee, U., et al., A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients. PLoS One, 2013, 8(12): p. e82J25.
35. Hallett, R.M., et al., A gene signature for predicting outcome in patients with basal-like breast cancer. Sci Rep, 2012. 2: p. 227.
36. Al-Ejeh, F,, et al., Meta-analysis of the global gene expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer. Oncogenesis, 2014. 3: p, eloo.
37. Rhodes, D.R., et al., ONCOMINE: a cancer microarray database and integrated daturmining platform. Neoplasia, 2004. 6(1): p. 1-6.
38. Gyorffy, B., et al., An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat, 2010, 123(3): p. 725-31.
39. TCGA, Comprehensive molecular portraits of human breast tumours. Nature, 2012. 490(7418): p. 61-70.
40. Ur-Rehman, S., et al., ROCK: a resource for integrative breast cancer data analysis. Breast Cancer Res Treat, 2013. 139(3): p, 907-21.
41. Esserman, L.J., et al, Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: resultsfrom the I-SPY 1 TRIAL—CALGB 150007/150012, ACRIN 6657. J Clin Oncol, $2012.30(26):$ p. 3242-9.
42. Kors , L.A., ef al., Gene expression pathway analysis to predict response to neoadjuvant docetaxel and capecitabinefor breast cancer. Breast Cancer Res Treat, 2010. 119(3): p. 685-99,
43. Prat, A., et al., Research-based PAM50 subtype predictor identifies higher responses and improved survival outcomes in HER2-positive breast cancer in the NOAH study. Clin Cancer Res, 2014, 20 (2):.p. 511-21,
44. Tabcfay, A., et. al., Evaluation of a 30-gene paclitaxel, fluorouracU, doxorubicin, and cyclophosphamide chemotherapy response predictor in a muiticenter randomized trial in breast cancer. Clin Cancer Res, 2010. 16(21): p. 5351-61.
45. Popovici, V,, et al.. Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Res, 2010, 12(1): p. R5.
46. Esserman, L.J., et al, Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: resultsfrom the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Caneer Res Treat, 2012. 132 (3): p, 1049-62.
47. Shen, K., et al., Cell line derived multi-gene predictor of pathologic response to neoadjuvant chemotherapy in breast cancer: a validation study on US Oncology 02-103 clinical trial, BMC Med Genomics, 2012. 5: p. 51.
48. Iwannoto, T., et al.. Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. J Natl Caneer Inst, 2011. 103(3): p. 264-72.
49. Garnett, M.J., et al., Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 2012. 483 (7391): p. 570-5.

50, Barretina, J., et al., The Cancer Ceil Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012. 483 (7391): p. 603-7.
51. Symmans, W.F., etal., Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol, 2010. 28(27): p. 4111-9.
52. Bakhoum, S.F. and D.A. Compton, Chromosomal instability and cancer: a comp lex relationship with therapeutic potential J Clin Invest, 2012. 122(4): $p, 1138$ 43.
53. Kusumbe, A.P. and S.A. Bapat, Cancer stem ceils and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res, 2009. 69(24): p. 9245-53.
54. Tang, Y.C., et al., Identification of aneuphidy- $s^{\wedge} l e c t i v e ~ a n t i p r o l i f e r a t i o n ~$ compounds. Cell, 201 1. 144(4): p. 499-512.
55. Al-Ejeh, F,, et al,. Kinome profiling reveals breast cancer heterogeneity and identifies targeted therapeutic opportunities for triple negative breast cancer. Qncotarget, 2014.
56. Bos, P.D., et al,. Genes that mediate breast cancer metastasis to the brain. Nature, 2009, 459 (7249): p. 1005-9,
57. Desniedt, C., et al, Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res, 2007, 13(11): p. 3207-14.
58. Hatzis, C,, et. al., A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA, 2011. 305 (18): p. 1873-81.
59. Kao, K.J., et al., Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization. BMC Cancer, 2011, 11: p. 143.
60. Schmidt, M,, et al., The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res, 2008. 68(13): p. 5405-13.
61. van de Vijver, MX, et al,, A gene-expression signature as a predictor of survival in breast cancer. N Engl. J Med, 2002. 347 (25): p, 1999-2009,
62. Bild, A.H., et al,, Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature, 2006. 439 (7074): p. 353-7.
63. Pawitan, Y., et al., Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res, 2005, 7(6): p. R953-64.
64. Sorlie, $\mathbf{T}_{\Delta,}$, et al., Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A, 2003. 100(14): p. 841 8-23.
65. Zhao, Y. and R. Simon, BRB-ArrayTools Data Archive for human cancer gene expression: a unique and efficient data sharing resource. Cancer Inform, 2008, 6. p. 9-15.
66. Cline, M.S., et al.. Exploring TCGA Pan-Cancer data at the UCSC Cancer Genomics Browser. Sei Rep, 2013. 3: p. 2652.
67. Goldman, M, et al., The UCSC Cancer Genomics Browser: update 2013, Nucleic Acids Res, 2013. 41(Database issue): p. D949-54.
68. Al-Ejeh, F., et al., Treatment of triple-negative breast cancer using ami-EGFR-directed radioimmuno therapy combined with radiosensitizing chemotherapy and PARP inhibitor. JMucl Med, 2013. 54(6): p. 913-21.
69. Diamond, J.R., et al., Predictive biomarkers of sensitivity to the aurora and angiogenic kinase inhibitor ENMD-2076 in preclinical breast cancer models. Clin Cancer Res, 2013, 19(1); p. 291-303.
70. Kalous, O., et al., AMG 900, pan-Aurora kinase inhibitor, preferentially inhibits the proliferation of breast cancer cell lines with dysfunctional p53. Breast Cancer Res Treat, 20 13. 141(3): p. 397-408.

Table 10：The 28－gene signature discovered from a meta－analysis of gene expression data in breast cancer in Oneomine ${ }^{1}{ }^{M}$

Gene Symbol	Affymetrix probe	Entrez	Gene name
TABHO5	213935．at	51099	abhydrolase domain contaîning 5；1－ acylglycerol－3－phoSphate O－acyltransferase
$\begin{aligned} & \text { 个ADORA } \\ & \text { 2B } \end{aligned}$	205891．at	136	adenosine A 2 b receptor
个BCAPS1	200837．at	10134	B－cell receptor－associated protein 31
\uparrow CA9	205199．at	768	carbonic anhydrase IX
\uparrow CAMSA PI	21271 1．at	157922	calmodulin regulated spectrin－assQciated protein 1
TCARHSP 1	218384＿at	23589	calcium regulated heat stable protein 1 ， 24 kDa
${ }^{\wedge} \mathrm{CD} 55$	201926＿j＿at	1604	CD55 molecule，decay accelerating factor for complement（Cromer blood group）
个CETN3	209662 ．at	1070	centrin，EF－hand protein， 3
个EIF3K	221494＿x＿at	27335	eukaryotic translation initiation factor 3， subunit K
个EXOSC7	212627 ＿s＿at	23016	exosome component 7
${ }^{\wedge} \mathrm{GNB} 2 \mathrm{Ll}$	200651．at	10399	guanine nucleotide binding protein（G protein），beta polypeptide 2 －like 1
个GRHPR	214864 s＿at	9380	glyoxylate reductase／hydroxypyruvate reductase
个GSK3B	209945＿S＿＿at	2932	glycogen synthase kinase 3 beta
$\begin{aligned} & \text { 个HCFCIR } \\ & 1 \end{aligned}$	218537．at	54985	host cell factor CI regulator 1 （XPOl dependent）
\uparrow ¢CNG 1	214595．．at	3755	potassium voltage－gated channel，subfamily G，member 1
个MAP2K5	21137Q＿si＿at	5607	mitogen－activated protein kinase kinase 5
\uparrow NDUFC1	203478．at	4717	NADH dehydrogenase（ubiquinone） 1 ， subcoinplex unknown， $1,6 \mathrm{kDa}$
个PML	2Q6503＿x＿at	5371	promyelocytic leukemia
个STAU1	208948＿s＿at	6780	staufen，RNA binding protein，homolog 1 （Drosophila）
个TXN	216609 at	7295	thioredoxin
TZNF593	204175 at	51042	zinc finger protein 593
\downarrow BTN2A2	205298＿s＿at	10385	butyrophilin，subfamily 2 ，member A2
\downarrow ERC2	213938 at	26059	ELKS／RAB6－interacting／CAST family member 2
$\downarrow \mathrm{IGH}$	211649 x at	3492	immunogtobulin heavy locus
\downarrow ME1	211204＿at	4199	malic enzyme 1，NADP（ + ）－dependent， cytosolic
\downarrow MTMR7	217292＿at	9108	myotubularin related protein 7
\downarrow SMPDL3 B	205309 at	27293	sphingomyelin phosphodiesterase，acid－like 3B
\downarrow ZNRD1－ \downarrow ASI	215985＿at	80862	ZNRD1 antisense RNA 1

Table 11：The TN signature is prognostic in ER－and BLBC irrespective of systemic therapy．

		Untreated			Treated		
		HR	CI 95\％	p－vahie	HR	CI 95%	p－value
$\underset{\sim}{x}$	RFS	2，02	1．25－3．26	$3.20 \mathrm{E}-03$	2.59	1．84－3．60	I． $70 \mathrm{E}-08$
	DMFS	4.10	1．44－11．7	4，20E－03	1，89	1．04－3．43	$3.40 \mathrm{E}-02$
	OS	1.77	0．65－4．83	0.26	3.82	1，43－10．18	$3.90 \mathrm{E}-03$
$\stackrel{\underset{N}{4}}{\stackrel{\rightharpoonup}{3}}$	RFS	2.48	1.46 － 4.21	5．10E． 04	2.88	$!!114-28$	$4 . .50 \mathrm{E}-08$
	DMFS	5.54	， 1.66 P18．48	$1.70 \mathrm{E}-03$	3.14	1．38－7．19	$4.20 \mathrm{E}-03$
	OS	2.42		0.71	4.89	1.65 － 14.46	$1 . .50 \mathrm{E}-03$

The 28 －gene signature was used as described in Figure 2 in the online tool KM－ploter but restricting the analysis oil ER－or \mathbf{f} LBC patients who were untreated systemically or systemically treated．The survival

Table 12：The likelihood of $p C R$ in ER－HER2－patients according to the iBCR score

	pCR	n o pCR	Sum
\％\％\％M乡\％\％	§\％\％\％\％\＄	\＃\＃\％\％\＃\＃\＃\＃	\％\％\％乡\＃\＃
High Seore	$54(29.5 \%)$	$66(36.1 \%)$	120 （65．6\％）
\＃um！	\＃\＃\＃\＃\％乡\＃	\＃\＃\＃\＃\＃\＃\＃	\＃\＃．\％\％\＆

ER－／HER2－patents stratified by low and high iBCR scores from four studies were ampared for acheving of not achiexing pCR wifer four chemotherapy regimens：FAC（GSE20271），TFAC（GSE20271 and GSE30194），FECTX（CSE4282）and FACIX（GSE23988）

Table 13：Upregulated genes in high iBCR score tumors compared to low iBCR tumors and normal breast tissue

High IBCR score ER－vs．bow iBCR score ER－and normal breast			High iBCR score ER＋vs． low BCCR score ER ＋and normal breast				Common in high ibCR score ER－$/+$ vs．low IBCR score and normad		
\＃び楽			\＃\＃\＃	MK』	M川川！		\＃\＃\＃゙䊽		
ADM	118		APOBEC $3 B$	EPRS	MCM6	$\begin{aligned} & \text { RANBP } \\ & 1 \end{aligned}$	AURKA	$\begin{aligned} & \text { KCNK } \\ & \hline \end{aligned}$	
\＃\＃	M納		§そそそそ				\＃Mネ』	\＃\＃	
BNIP3	KYNU		AURKB	FADS 1	$\begin{aligned} & \text { MRPLI } \\ & 3 \end{aligned}$	$\mathrm{RFC2}$	BUB1	MK16？	
	W\%\#\#			K．	\}		》\＃\＃川		\＃
$\begin{aligned} & \text { CALM } \\ & \text { IS } \end{aligned}$	LRP8		CACYBP	GINS2．	MSH6	RSAD2	CCNB	MMP1	
\％迢		Yyyy	\＃そそそそ	\＃\＃\＃\＃\＃		\＃\＃M\＃	\＃\M\％\＃		ऑॉ．．．．
CCL18	$\begin{aligned} & \text { MAGE } \\ & \text { A6 } \end{aligned}$	$\begin{aligned} & \text { TMEM4 } \\ & \text { SA } \end{aligned}$	CCNA2	H2AFZ	NCAPG	SMC4	CCNE	$\begin{aligned} & \mathrm{NDC8} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { YKT } \\ & 6 \end{aligned}$
§\％納	Ms		\# Hish		【近	\＃そそそそ	そそぞ边	【＂\％	
CLIC3	$\begin{aligned} & \text { MMP1 } \\ & 2 \end{aligned}$	VEGFA	CDCA 3	HMMR	NUDT2	SQLE	$\mathrm{CDC6}$	$\begin{aligned} & \text { NUSA } \\ & \text { Pi } \end{aligned}$	
$\begin{aligned} & \text { Mal } \\ & \text { MK! } \end{aligned}$	§ぞ\％	そ乡\＃\＃\＃	\＃\＃乡\＃\＃	M翟高	M\＃\＃\＃	अMझ1	\＃\＃乡N	\＃\＃	
CP	$\begin{aligned} & \text { PHLD } \\ & \text { A2 } \end{aligned}$		CKS ${ }^{\text {C }}$	KJAAOI	OTPS	TACC3	CDKN3	PHB	
\#\#゙リ.			\＃＊		M\＄	\＃\＃	\＃4＊	M\＆	
DDC	QPRT		CXCLII	KIF14	PCNA	$\begin{aligned} & \text { TMMM } \\ & 7 \mathrm{~A} \end{aligned}$	CKS2	${ }_{1}^{\text {PTTG }}$	
W以	W\％1\％		\＃\＃\＃，	\＃\＃．s．	\％\＃－1	\＃\＃1m	\％	M川\％	
EZH2	\＄10049		DHFR	KPNA2	PLOD2	TSN	$\begin{aligned} & \text { CNINAP } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { S100A } \\ & 8 \end{aligned}$	
－Wem	\＃\＃		\＃－MU	凹	\＃\＃sM	\％．	0）．	－ 1 \％	
［AR2	$\begin{aligned} & \text { SLC7A } \\ & 5 \end{aligned}$		$\begin{aligned} & \text { DONSO } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \mathrm{LAPTM} \\ & 4 \mathrm{~B} \end{aligned}$	PSMA7	UBE2S	DLGAPS	SPPI	
\#ime	ヶ\％\％		\％	ザ\％\％月	MK\＃边	サ\％	サ\＃	\％	
$\begin{aligned} & \text { GAIN } \\ & \hline \end{aligned}$	SOXH		EIF4EBP 1	LSM4	$\begin{aligned} & \mathrm{RACGA} \\ & \mathrm{PI} \end{aligned}$	WHSCl	ESRPI	$\begin{aligned} & \mathrm{TOP2} \\ & \mathrm{~A} \end{aligned}$	
\#\#1.			Yiseng	\#\#\#	Kishy			Kik	
$\begin{aligned} & \text { GPSM } \\ & 2 \end{aligned}$	ST14		EMC8	$\frac{\mathrm{MAD2L}}{1}$	$\begin{aligned} & \text { RAD54 } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { MISTIH2 } \\ & \mathrm{BG} \end{aligned}$	$\begin{aligned} & \text { UBE2 } \\ & \mathrm{C} \end{aligned}$	

Table 14．Univariate survival analysis of genes from the Oncomine Inetanalysis in the KM－Plotter online tool in BLBC and ER－breast cancer．Deriving the 28－ gene signature．

Gene Name	Affy Probe ID	Basal－like breast cancer					
		RES		DMES		OS	
		HR	P	HR	P	HR	P
\＃\＃\＃．s．	205298＿s＿at	0.41	\％ण1．	0.34	\＃M川ル！	0.4	\＃川\＃\＃．
\＃川川！	211649＿xat	0.55		0.39	\＃\＃川川\＃\＃	0.48	\＃\＃\＃\＃\＃\％
\＃乡：M\％	217292＿at	0.73	\＃11\％	0.50	\＃\＃\＃\＃，	0.44	\％ 01% \％．
\＃\＃\＃	211204＿at	0.65	\＃川H\％\＃	0.38	\＃10．\＃\＃	0.66	$200 \mathrm{E}-01$
\＃乡\＃	221004＿s＿at	0.59	川川川川\％	0.44	\＃サッ\％\＃	0.34	
％川\＃\＃							
\＃\＃\＃M，	212430＿at	0.55	\＃\＃\＃\＃\＃	0.48	\＃\＃\＃\＃\＃	0.47	Me\％＂\％\％
\＃\＃\＃．．	210658＿s＿at	065	川以\＃\＃	0.48	\＃川川川．	0.6	$790 \mathrm{E}-02$
\＃\＃\＃．．	208149＿x＿at	0.66	M以\％	0.46	\＃11\％	0.5	\％M\％\％
\＃\＃\＃\＃！	38158 at	0.55	ササ川\＃\＃\＃	0.50	サル\＃\＃\＃\＃	0.4	W\％ H ．
\＃\＃knk	214315 xat	0.55	サण川\＃\＃．	0.50	リサ川\＃\＃	0.62	$9.80 \mathrm{E}-02$
\＃\＃\＃\＃\＃	206407＿S＿at	0.58	\＃\＃\＃\＃\＃	0.52	\＃\＃\＃\＃．	0.87	$6.50 \mathrm{E}-01$
\＃\＃\＃u\＃k	203805＿s＿at	0.60	\＃\＃川\＃\＃	0.54	\＃\＃\＃\＃\＃，	0.45	\＃\％川\％．
	222382 x＿at	0.52		0.54	\＃\＃\＃』．	0.56	\＃\＃\＃\＃\＃\＃
乡月\＃k．	221957at	0.64	サMथ川\＃	0.55	\＃川川\％．	0.54	a0us\％．
\＃\＃k\％	204994＿at	0.52	川サ॥川\＃．	0.56	$\because \Perp$	0.62	$9.10 \mathrm{E}-02$
\＃\＃\＃\＃	202895＿s＿at	0.63	\％M川M\＃	0.58	4110	0.77	$3.70 \mathrm{E}-01$
\＄\＃\＃4．	221945＿at	0.59	川川川川．	0.53	\＃\＃\＃\＃．	0.6	1．80E－01
ॠ\#\#\#\#\#	217451＿at	075	W川\＃\＃	0.58	川ぃ\％川．	0.73	$2.70 \mathrm{E}-01$
Kiys.	214427＿at	0.65	SOM，${ }^{\text {a }}$	061	Fimels．	0.57	
乡\＃．4．	202953 at	0.60		0.64	$9.60 \mathrm{E}-02$	0.66	$1.50 \mathrm{E}-01$
M，m\＃\＃\＃\＃	215985＿at	0.59	HMem	0.4	\＃\＃1．M\＃	0.75	$3.50 \mathrm{E}-01$
\＃Mun！ı．	205309＿at	104	$780 \mathrm{E}-01$	0.48	\＃\＃\＃\＃\＃，	0.61	$8.80 \mathrm{E}-02$
乡川⿲月．	213938＿at	0.67	MM川\＃！	0.50	MサM川．	0.53	\％． $1 \mathrm{M} \%$ \％．
\＃\＃\＃\＃\＃』\％	219678＿x＿at	0.57	\＃\＃\＃\＃	0.52	\＃以\＃\＃，	0.8	$4.40 \mathrm{E}-01$
\＃\＃\＃y\％．	203064＿s＿at	0.72	\サ川川\％．	0.69	\＃\＃\＃\＃\＃．	0.59	Y\％\％／\％．
\＃\＃\＃\＃\＃	217895＿at	0.70	\＃\＃Men！	0.53	\＃\＃\＃\＃	0.83	$5.10 \mathrm{E}-01$
\＃\＃\＃\＃\＃	210005＿at	0.56	\＃ 1 M以	0.55	\＃\＃IM\％	0.64	$1.30 \mathrm{E}-01$
\％川\％	204325 s at	0.70	\}	0.55	川\＃\＃\＃	0.9	$7.30 \mathrm{E}-01$
\＃\＃\＃H．	218115at	0.70	\M\％．／n！	0.58	川以थ川．	0.66	1．40E－01
\＃川\＃\＃\＃\＃	205408＿at	0.63	M川．4．	0.59		0.92	$7.60 \mathrm{E}-01$
\＃\＃\＃\＃\＃\＃．	214772＿at	0.70	आ\＃\＃\＃\＃	0.60	I．$\%$ \％\％\％．	0.82	4．80E－01
\＃乡川』川\％	222039＿at	0.58	M1M，${ }^{\text {and }}$	0.63	$1.30 \mathrm{E}-01$	0.5	\％$\# 1$
\＃4．4\％\％	221686＿s＿at	0.59		0.64	$1.50 \mathrm{E}-01$	0.54	4，\％
\＃乡川\＃y！\＃	204267＿x＿at	0.69	ササ川\％	0.66	1.10 E 01	0.59	$6.20 \mathrm{E}-02$
	208184＿s＿at	0.64	サツ\％\＃\＃\＃	0.64	$9.00 \mathrm{E}-02$	0.63	1．10E－01
\＃\＃y\％．	220223＿at	0.66	川\％．\％．	0.68	$1.40 \mathrm{E}-01$	0.65	1．30E－01
\＃\＃\＃\＃\＃\＃	217622＿at	0.60					
＃1．	0.63	$9.90 \mathrm{E}-02$	0.68	1．80E－01			
\＃\＃\＃\＃\％\＆	211481 at	0.62	\＃＠川\＃\＃	0.62	$9.10 \mathrm{E}-02$	0.69	$2.10 \mathrm{E}-01$
	213672＿at	0.73	\％	0.47	H\％M：U\％	0.75	$3.20 \mathrm{E}-01$

M／4）	216233＿at	0.57	310\％	0.63	8．30E－02	0.76	$320 \mathrm{E}-01$
\o．M M M M．	210928＿at	0.61	41\％	0.80	4．30E－01	0.63	$130 \mathrm{E}-01$
M\％．	206064＿s＿at	0.67	sutas	0.69	190E－01	0.76	$400 \mathrm{E}-01$
）	217535at	0.59	\} 20\％	0.68	1．60E－01	0.8	$4.50 \mathrm{E}-01$
MWM．	213840＿s＿at	0.66	2 514 ¢	1.23	$4.30 \mathrm{E}-01$	1.4	2．30E－01
¢ल̈\＃	204224＿s＿at	0.66	IM\％速	0.66	1．20E－01	1.14	6．80E－01
M M ${ }^{\text {a }}$	203287 at	0.66	¢ぃ\％	0.82	4．908－01	0.78	$3.70 \mathrm{E}-01$
MMM．	209916＿at	0.62	\＃\＃\＃M，	0.87	$5.90 \mathrm{E}-01$	0.74	2．80E－01
¢\＃\＃\＃\＃	221050＿sat	0.64	\％\％\％！	0.80	3．90E－01	0.87	6．30E－01
T．1．	220544＿at	0.66	201\％	0.94	$8.10 \mathrm{E}-01$	0.68	$2.20 \mathrm{E}-01$
MM．	220290 at	0.64		0.76	3．00E－01	0.95	8．40E－01
Mel．	207740＿sat	0.59	サツ川\％	0.77	$3.20 \mathrm{E}-01$	0.95	$8.70 \mathrm{E}-01$
3．	219004＿s＿at	0.63	\＃1！	1.30	4．10E－01	0.94	$8.50 \mathrm{E}-01$
MMM．	211431＿s＿at	0.69	¢\％\％！	0.84	$520 \mathrm{E}-01$	0.92	$770 \mathrm{E}-01$
\＃\＃	215881＿x＿at	0.63	9201\％	0.94	$8.20 \mathrm{E}-01$	0.8	$4.80 \mathrm{E}-01$
\＃M．3：	212251＿at	0.70	＂9M！	1.14	$6.40 \mathrm{E}-01$	0.9	$7.30 \mathrm{E}-01$
s．ar．${ }^{\text {a }}$	208373＿s＿at	0.67	\M\％！	0.91	7．30E－01	0.89	$6.80 \mathrm{E}-01$
\＃\＃\＃\＃	207571 xat	0.70	\M！\％	0.95	8．60E－01	0.82	$5.40 \mathrm{e}-01$
\％${ }^{\text {a }}$	217552＿x＿at	0.65	\＄30：04	0.98	9，40E－01	1.22	5．00E－01
¢M．${ }^{\text {anm }}$	39891＿at	0.66	Imın！	0.90	$6.90 \mathrm{E}-01$	0.92	$7.60 \mathrm{E}-01$
MMP！	208433＿s c^{2}	0.60	\＄50！M	0.98	$9.60 \mathrm{E}-01$	0.78	$5.70 \mathrm{E}-01$
	20740＿at	0.58	ヱ01\％05	0.97	$9.20 \mathrm{E}-01$	1.11	7．10E－01
Mrı！	206216＿at	070	91ツ！	1.02	$9.50 \mathrm{E}-01$	0.89	$6.80 \mathrm{E}-01$
Pery	204506＿at	0.72					
＃\＃\＃？	0.90	$7.00 \mathrm{E}-01$	1	990E－01			
	2040073at	0.69	\＃bumat	0.97	$9.20 \mathrm{E}-01$	1.07	8．00E－01
Mor．	203507＿at	0.62	\％10．10	1.01	$980 \mathrm{E}-01$	0.99	$970 \mathrm{E}-01$
आM！	208948 sat	${ }^{1.46}$	【ツヤ！	195	आ\＃\＃！	1.76	
शmum	212627＿s＿at	1.68	IMEM	1.83	2आ！	1.71	5uew
MバM	200837＿at	1.59	\11\％	1.81	34！！＂	1.49	160E－01
¢M13\％	200651＿at	1.75	\smers	2.15	3『！！？	2.07	9．men
	205891＿at	1.58	\MME！	2.17	आभแ！！2	2.87	\％M！R！
M\＃\＃！	213935 at	1.28	\＃せ\％！	1.92	\％\％！	1.92	\＃\＃\％！
Mırıs．	211370＿s＿at	1.37		1.84	आ\＃1！＂	1.88	STMe
«लMm	214595＿at	1.88	\1010	2.78	？mi！ 0	1.87	$1.40 \mathrm{E}-01$
\＃M川M！	212711 at	1.32	らちM\％M．	1.84	【ツ1\％	1.11	720 E 01
Milu	221494＿x＿at	1.45		1.59	930E－02	186	\％uı！
cris	201926＿s＿at	1.35		1.99	1308－01	1.93	2 110
Fハmı！	218384＿at	1.63		1.16	5．80E－01	1.01	9．80E－01
esim！	209945＿s＿at	2.02	4 11.	1.49	1．30E－01	1.55	$1.30 \mathrm{E}-01$
«»	205199＿at	1.40	2．110	2.29	зщ\％）	1.99	\＄0010
Smin	206503＿xat	1．48	WMM゙！	2.16	3\％M\％	2.11	$6.20 \mathrm{E}-02$
\＃s：	216609＿at	1.54	W\％1！	2.16	willis	1.32	3．30E－01
\＃ハ！！	218537＿at	1.51	30\％\％	1.19	$5.70 \mathrm{E}-01$	155	1．60E－01
Mumel	203478＿at	1.42	\＃\＃\％！	1.35	$2.70 \mathrm{E}-01$	1.19	5．50E－01
Mrı3	209662＿at	1.43	700！	1.12	$6.60 \mathrm{E}-01$	1.23	$4.60 \mathrm{E}-01$
smum	214864＿s＿a	1.31	Moum	1.62	$6.20 \mathrm{E}-02$	1.59	$1.00 \mathrm{E}-01$

ER－breast cancer						Soriing	
RFS		DMES		OS			Count
HR	P	HR	P	HR	P	Avg P	of Sig． $1 P$ val
0.45	\％川川．1．	0.44	\＃1 MM．	0.55	$1.1 \mathrm{OE}-01$	$1.85 \mathrm{E}-02$	5
0.59	MUM． H \％．	0.51	SWM．M\％	0.59	\％．．M． 1 \％．	$4.90 \mathrm{E}-03$	6
0.8	SOMH\％	0.75	1．70E－01	0.67	$9.60 \mathrm{E}-02$	$5.69 \mathrm{E}-02$	4
0.73	サ以等	0.65	\＃1Me\％\％	0．8．8	6．Q0E－01	$1.42 \mathrm{E}-01$	4
0.58		0.45	\＃\＃\＃\＃\＃\＃	0.36	\％／$\bigcirc .4$ U．$\%$	$7.72 \mathrm{E}-04$	6
0.58							
＃\＃\＃\＃\＃	0.65	\＃\＃リリ\＃\＃	0.68	$9.60 \mathrm{E}-02$	$2.36 \mathrm{E}-02$	5	
0，65	\＃サウサ\＃	0.59		0.73	2．10E－01	$5.11 \mathrm{E}-02$	4
0.67	\％MMH2．	0.67	$7.10 \mathrm{E}-02$	0.82	$4.20 \mathrm{E}-01$	$8.74 \mathrm{E}-02$	4
0.58	\＃\＃n，	0.58	\％\％\％\％3\％	0.6		$6.88 \mathrm{E}-03$	6
01.57	\＃\＃\＃\＃\＃，	0，66	\＃\＃o：	0.74	$2.00 \mathrm{E}-0.1$	$5.82 \mathrm{E}-02$	4
0.53	\＃\＃\＃\＃	0.42	\＃ソ1．${ }^{\text {\％}}$ ，	0.58	\／AM，	1．13E－01	5
0．62：	\＃びル§	0，69	6．S0E－02	0.68	$8.40 \mathrm{E}-02$	2．S8E－02	4
0，67	\＃Н川\＃\＃．	0.74	$1.40 \mathrm{E}-01$	0.79	$3.00 \mathrm{E}-01$	8．32E－02	4
0.65	M\％\＃\＃	0.6	1\％MM\％	0.64	川\＃\＃\＃\％．	$1.85 \mathrm{E}-02$	6
0.55		0.67	\＃川川\％．	0.64	\．$\$ ， & $3.68 \mathrm{E}-02$	5	
0.6	そ川に\％\％	0，64		0.82	4.20 E－O ${ }^{1}$ ．	$1.44 \mathrm{E}-0.1$	4
0.62		0.64	\＃\＃\＃\＃\＃，	0.69	$1.50 \mathrm{E}-01$	$7.14 \mathrm{E}-02$	4
0.73	301\％\％	0.58	\％ $1 \mathrm{M} \%$	0.79	3．2QE－01	U5E－01	4
0.67		0.69	$7.70 \mathrm{E}-02$	0.69	1． $\mathrm{OOE}-01$	$4.90 \mathrm{E}-02$	4
0.64		0.58	\％ 1 M，O2．	0.54	¢，पН，\％3	$4.32 \mathrm{E}-02$	4
0.63		0，67	$1.00 \mathrm{OE}-\mathrm{O} 1$	0.93	$7.808-01$	$2.05 \mathrm{E}-01$	3
1.01	$9.50 \mathrm{E}-01$	0.56	\％ 4.4	0.63	$4 \mathrm{is}, \mathrm{r}, 2$	$3.12 \mathrm{E}-0$ ！	3
0.82	$1.00 \mathrm{E}-01$	0.79	2，50E－0）	0.86	$5.20 \mathrm{E}-01$	$1.51 \mathrm{E}-01$	3
0.64	5．サ॥\％	0.81	$3.00 \mathrm{E}-01$	1.05	$8.50 \mathrm{E}-01$	$2.67 \mathrm{E}-01$	3
0，75	\＃河川！	0.8 ！	$3.00 \mathrm{E}-\mathrm{O} 1$	0.74	$1.90 \mathrm{E}-01$	$9.92 \mathrm{E}-02$	3
0.76	\＃川\＃\＃\＃，	0.76	$1.90 \mathrm{E}-0 \mathrm{I}$	1.08	$7.40 \mathrm{E}-01$	$2.46 \mathrm{E}-0$ ！	3
0.6	川以川\％	0.69	$6.80 \mathrm{E}-02$	0.86	$5.30 \mathrm{E}-01$	$1.25 \mathrm{E}-01$	3
0.69	\＃\＃01．j！	0.7	$9.40 \mathrm{E}-02$	0.87	$5.50 \mathrm{E}-01$	$2.37 \mathrm{E}-01$	3
0.71	\＃\＃サ＂	0.77	$2.00 \mathrm{E}-101$	0.88	$5.80 \mathrm{E}-01$	1，62E－01	3
0.65	\％01\％OM，	0.74	$1.40 \mathrm{E}-0$ ！	1.02	$9.40 \mathrm{E}-01$	3．14E－0 1	3

$\begin{aligned} & 0.76 \\ & 0.61 \\ & 0.69 \end{aligned}$		0.83 0.84 1	$\begin{aligned} & 3.70 \mathrm{E}-01 \\ & 4.60 \mathrm{E}-01 \\ & 1.00 \mathrm{E}+00 \end{aligned}$	0.94 1.07 0.87	$\begin{aligned} & 7.90 \mathrm{E} 01 \\ & 8.20 \mathrm{E}-01 \\ & 5.70 \mathrm{E} 01 \end{aligned}$	$\begin{aligned} & 2.85 \mathrm{E}-01 \\ & 2.41 \mathrm{E}-01 \\ & 2.96 \mathrm{E}-01 \end{aligned}$	3 3 3
0.74	\＄M1．	0.9	$6.20 E-01$	0.89	$6.00 \mathrm{E}-01$	$2.34 \mathrm{E}-01$	2
0.65	\＃川．1\％	0.8	$2.70 \mathrm{E}-01$	0.83	$4.30 \mathrm{E}-01$	1．50E－01	2
0.73	サ凶川そ．	0.92	6.70 E 01	1.05	$8.30 \mathrm{E}-01$	$296 \mathrm{E}-01$	2
0.66	\＃川』』！	0.88	$5.30 \mathrm{E}-01$	0.85	$5.00 \mathrm{E}-01$	2．18E－01	2
0.63	¢ Me\％\％	0.72	1．40E－01	0.82	$4.00 \mathrm{E}-01$	1．40E－01	2
0.83	1．00E－01	0.87	$490 \mathrm{E}-01$	1.18	$4.60 \mathrm{E}-01$	$2.33 \mathrm{E}-01$	2
0.58	\＃\％．	0.8	$2.70 \mathrm{E}-01$	1.06	$8.10 \mathrm{E}-01$	$2.47 \mathrm{E}-01$	2
0.63	\＃\＃川\％\＃	0.75	$2.10 \mathrm{E}-01$	0.74	$2.30 \mathrm{E}-01$	1．67E－01	2
0.72	WHEM3．	0.97	$8.70 \mathrm{E}-01$	1.2	$4.40 \mathrm{E}-01$	3．18E－01	2
0.7	\＃\＃\＃\＃』	0.78	$2.50 \mathrm{E}-01$	0.9	$6.50 \mathrm{E}-01$	$2.52 \mathrm{E}-01$	2
0.62	サッ॥\％\％	0.88	$5.40 \mathrm{E}-01$	1.25	3．30E－01	$2.55 \mathrm{E}-01$	2
0.72	川以リサ！	0.71	120E－01	1.12	$6.70 \mathrm{E}-01$	$2.66 \mathrm{E}-01$	2
0.71	W0\％\＃\＃	1.03	$8.80 \mathrm{E}-01$	0.87	$5.60 \mathrm{E}-01$	$3.85 \mathrm{E}-01$	2
0.64	\＃W\＃\＃！	0.91	6.40 E 01	0.99	9.60 E 01	$4.12 \mathrm{E}-01$	2
0.67	\＃\＃リ\＃\＃\＃	1.14	5，30E－01	1.18	$4.60 \mathrm{E}-01$	3，35E－01	2
0.63		0.92	7．20E－01	0.75	$2.90 \mathrm{E}-01$	3．40E－01	2
0.55		0.69	$7.10 \mathrm{E}-02$	0.83	$4.20 \mathrm{E}-01$	$2.72 \mathrm{E}-01$	2
0.6	U10\％川！	0.88	5．50E－01	1.05	$8.20 \mathrm{E}-01$	$4.27 \mathrm{E}-01$	2
0.65	\＃1．	1.16	5.40 E 01	0.96	8．80E－01	$4.47 \mathrm{E}-01$	2
0.77	M川H？	1.24	$3.10 \mathrm{E}-01$	1.26	$3.10 \mathrm{E}-01$	$3.22 \mathrm{E}-01$	2
0.65	M\％\＃\＃	1.02	$9.40 \mathrm{E}-01$	0.91	$7.10 \mathrm{E}-01$	$4.92 \mathrm{E}-01$	2
0.7	\®01\％\％\％	1.08	$720 \mathrm{E}-01$	1.04	8．80E－01	496E－01	2
0.63	M Mewn	0.73	$120 \mathrm{E}-01$	0.8	$3.50 \mathrm{E}-01$	3．14E－01	2
0.59	M\＃H\％\％	0.73	$1.50 \mathrm{E}-01$	0.75	$2.30 \mathrm{E}-01$	$3.00 \mathrm{E}-01$	2
0.65	\＃\＃\＃\＃\＃	0.85	$4.20 \mathrm{E}-01$	1.03	$9.00 \mathrm{E}-01$	$4.60 \mathrm{E}-01$	2
0.69	\％COM\＃\＃	0.99	970 E .01	1.18	4.90 E 01	$4.85 \mathrm{E}-01$	2
0.58	\＃u\＃\％\％	1.05	$8.70 \mathrm{E}-01$	0.83	5．70E－01	$495 \mathrm{E}-01$	2
0.67	\． 1.04	1.08	7.20 EO	1.11	$6.80 \mathrm{E}-01$	$5.05 \mathrm{E}-01$	2
0.76	\＃\＃\＃\％\％	1.16	$4.70 \mathrm{E}-01$	1.14	$5.70 \mathrm{E}-01$	$4.49 \mathrm{E}-01$	2
0.69	\＃\＃\＃\＃\＃	0.83	$3.70 \mathrm{E}-01$	1.01	9.60 E 01	$5.06 \mathrm{E}-01$	2
0.61	\％\％\％\＃\＃	0.7	7.80 E .02	0.86	$5.00 \mathrm{E}-01$	3．84E－01	2
0.68	川1\％\％	1.1	$6330 \mathrm{E}-01$	1.14	5．80E－01	$5.27 \mathrm{E}-01$	2
1.46	थ1\％\％	1.78	§\＃\＃\＃	1.88	\＃\＃\＃\＃\＃	1．20E－02	6
1.56	M	1.4	\％\because M	1.64	\＃\＃01\％	$2.64 \mathrm{E}-02$	6
1.59	サ凶サ\％	183	\％ 1 M \％	1.66	3\％\％\％	3．87E－02	5
1.68	\％\％\％\％	1.42	8.70 E 02	1.33	$2.10 \mathrm{E}-01$	5．15E－02	4
1.14	$3.00 \mathrm{E}-01$	1.43	120E－01	1.96	\＃\＃\＃\＃	7．93E－02	4
1.15	$2.10 \mathrm{E}-01$	1.2	$380 \mathrm{e}-01$	1.56	\OU：\％e	$1.20 \mathrm{E}-01$	4
1.25	ササ\％\％．	1.47	$9.10 \mathrm{E}-02$	1.25	$4.10 \mathrm{E}-01$	109E－01	4
1.56	M\％\％	1.83	\＃\＃\＃\＃	1.58	$1.20 \mathrm{E}-01$	521E－02	4
1.33	\＃\＃\＃\＃）	1.88	W\％1．．4	1.28	2.80 E 01	1．78E－01	4
135	\％OLU3．	1.22	$3.40 \mathrm{E}-01$	1.29	$2.70 \mathrm{E}-01$	1．26E－01	3
12	1.20 E .01	1.6	\％\％\％\％	1.36	2．00E－01	8．95E－02	3

$\begin{array}{r} 1.7 \\ 1.87 \\ 1.11 \end{array}$		$\begin{aligned} & 1.59 \\ & 1.55 \\ & 1.44 \end{aligned}$		$\begin{aligned} & 1.78 \\ & 1.16 \\ & 1.44 \end{aligned}$	$\begin{aligned} & \text { Wुए } \\ & 5.30 \mathrm{E}-01 \\ & 1.20 \mathrm{E}-01 \end{aligned}$	$\begin{aligned} & 2.67 \mathrm{E}-01 \\ & 1.38 \mathrm{E}-01 \\ & 1.09 \mathrm{E}-01 \end{aligned}$	3 3 3
1.23	$9.70 \mathrm{E}-02$	1.17	510 E 01	1.04	8．70E－01	2.65 E 01	2
1.38	\＃\％M\％	1.43	$8.80 \mathrm{E}-02$	1.43	$8.30 \mathrm{E}-02$	8．52E－02	2
1.47	\＃SuM\＃	1.29	$2.60 \mathrm{E}-01$	1.35	\％1听	$1.67 \mathrm{E}-01$	2
1.32	\％\％y\％	0.94	$7.80 \mathrm{E}-01$	1	9．90E－01	$4.36 \mathrm{E}-01$	2
1.51	3011\％	1.06	770 E 01	1.39	1．50E－01	3．41E－01	2
1.18	1．50E－01	1.14	$5.40 \mathrm{E}-01$	1.42	1．50E－01	$1.68 \mathrm{E}-01$	1
1.2	1．00E－01	0.81	3．10E－01	1.1	$6.70 \mathrm{E}-01$	4．03E－01	1
1.77	\401\％\％	1.66	\％1M．	1.52	$1.40 \mathrm{E}-01$	6．64E－02	3
1.92	360\％\％s	1.49	$6.00 \mathrm{E}-02$	1.61	3．0\％ 1	$7.13 \mathrm{E}-02$	3
1.72	\＃WノM\％	1.63	\％ 4 M\％．	1.34	$2.00 \mathrm{E}-01$	1．23E－01	3
1.5	4101．	135	2.50 E .01	0.92	7.50 E 01	3.18 E 01	3
1.68	\＃\＃\＃，	1.89	W\％\％	1.24	$3.50 \mathrm{E}-01$	$2.28 \mathrm{E}-01$	3
1.33	W0\％ツ	1.3	$2.60 \mathrm{E}-01$	1.53	$1.10 \mathrm{E}-01$	$126 \mathrm{E}-01$	2
1.4	乡ङ1）\％	1.32	2.30 E 01	1.36	2.20 E 01	1．69E－01	2
1.36	2．801\％	1.4	$2.10 \mathrm{E}-01$	1.24	4.20 E 01	2．04E－01	2
1.39	\＃M\％\％	0.73	$2.30 \mathrm{E}-01$	2.03	1．20E－01	1．95E－01	2
1.59	\％on\％u	1.18	$4.80 \mathrm{E}-01$	1.04	$8.70 \mathrm{E}-01$	$3.70 \mathrm{E}-01$	2

BLBC		
RFS	2.38	M\%14.4
DMFS	3.23	\%01\% 5
OS	2.98	201.0\%
ER negative		
RES	2.1	
DMFS	1.94	
OS	1.86	
BLBC		
RES	1.51	\#10¢\%\%
DMES	1.48	リ-11\%
OS	1.58	0.1
ER negative		
RFS	1.4	WOM\%\%
DMFS	1.18	0.41
OS	1.27	0.3
BLBC		
RES	2	W10\%
DMES	1.64	0.19
OS	1.18	0.66
ER negative		
RFS	2.06	1.60\% 0
DMES	193	0.07
OS	1.38	0.38

Table 15．Class comparison of the global gene expression profiles of high i \mathbf{N} score BLBC tumors to low TN score BLBC tumors in the ROCK dataset （highlighted probe set indicates common in high TN score BLBC and ER－ breast tumours and bold probe set indicates common and prognostic in BLBC and ER－breast cancer）．

Param etric p－ value	FDR	Perm utati on p － value	Fold－ chan ge for high TN score vs． Low TN score	Probe Set	Symbo	Name	$\begin{aligned} & \text { EntrezI } \\ & \text { D } \end{aligned}$
$\begin{gathered} 4,22 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.017 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	2.9		GPRCS A	G protein－coupled receptor， family C．group 5 nember A	9052
$\begin{gathered} 4.60 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.043 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	25		MUCl	mucin I，cell sufface associated	4582
$\begin{gathered} 1.03 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.024 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	2.4	«»	GALN $\mathrm{T} 6$	UDP－N－acetyl－apha－D－ galactosamine：polypeptide N － acetylgalactosaminyltransfer ase 6 （GaINAc－T6）	11226
$\begin{gathered} 1.88 \mathrm{E}- \\ 02 \end{gathered}$	0.221	$\begin{gathered} 0.017 \\ 2 \\ \hline \end{gathered}$	2.3		$\begin{aligned} & 5100 \mathrm{~A} \\ & 2 \end{aligned}$	$\$ 100$ calcium binding protein A2	6273
$\begin{gathered} 2,35 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.244	$\begin{gathered} 0.023 \\ 9 \\ \hline \end{gathered}$	2.3		S100P	S100 calcium binding protein P	6286
$\begin{gathered} 7.09 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.137	$\begin{gathered} 0.005 \\ 4 \\ \hline \end{gathered}$	2.1		SLPI	sectetory leakocyte peptidase imbibitor	6590
$\begin{gathered} 595 \mathrm{E} \\ 03 \end{gathered}$	0.126	$\begin{gathered} 0.004 \\ 6 \\ \hline \end{gathered}$	2.1		MUCl	mucin I，cell suface associated	4582
$\begin{gathered} 183 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.074 \\ 6 \end{gathered}$	0.002	2.1	そivivirnal	$\begin{aligned} & \text { FXYD } \\ & 3 \end{aligned}$	FXYD domain containing ion transport regulator 3	5349
$\begin{gathered} 6.71 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.021 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	2.0		NQOL	$\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ dehydrogenase． quinone 1	1728
$\begin{gathered} 2.47 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.016 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	2.0		$\begin{aligned} & \text { HSD17 } \\ & \text { B2 } \end{aligned}$	hydroxysteroid（17－beta） dehydrogenase 2	3294
$\begin{gathered} 1.76 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.073 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 9 \\ \hline \end{gathered}$	2.0	\#乡川⿱䒑⿰幺幺) il	GPRC5	G proiem－coupled receptor， family C，group 5，member A	9052
$\begin{gathered} 2.56 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.085	$\begin{gathered} 0.002 \\ 8 \end{gathered}$	1.9		CAMK 2N1	calcium／ealmodulin－ dependent protein kinase II mhibitor 1	55450
$\begin{gathered} 7.04 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.050 \\ 9 \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	1.9		$\begin{aligned} & \mathrm{PHLD} \\ & \mathrm{~A} 2 \end{aligned}$	pleckstrin homology－like domain，family A ，nember 2	7262
$\begin{gathered} 5.08 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.019 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.9		SDCl	syndecan 1	6382
$\begin{gathered} 1.65 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.071 \\ 6 \end{gathered}$	$\begin{gathered} 0.001 \\ 3 \\ \hline \end{gathered}$	1.9		NQOI	NAD（P）H dehydrogenase， quinone 1	1728
$\begin{gathered} 1.23 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.18	0.012	1.9		$\begin{aligned} & \text { AKR1 } \\ & \mathrm{C} 3 \\ & \hline \end{aligned}$	aldo－keto reductase family 1 ， nember C3	8644

$\begin{gathered} 4.27 \mathrm{E} \\ 02 \end{gathered}$	0.321	0.040	1.8	W0.814.	KRT16	keratio 16	3868
$\begin{gathered} 1.3 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.060 \\ 2 \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \end{gathered}$	1.8	K!	$\begin{aligned} & \mathrm{ALCA} \\ & \mathrm{M} \end{aligned}$	activated leukocyte cell adhesion molecule	214
$\begin{gathered} 5.40 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.047 \\ 5 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \\ \hline \end{gathered}$	1.8	$\begin{array}{ll} \text { Heñ } \\ 4 \end{array}$	IRX5	rioguos homeobox 5	10265
$\begin{gathered} 292 \mathrm{E}- \\ 03 \end{gathered}$	0.09	0.003	1.8	YHKk	$\begin{aligned} & \text { SLC2A } \\ & 10 \end{aligned}$	solute carrier family 2 (fachitated glueose transporter, member 10	81031
$\begin{gathered} 192 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.075 \\ 5 \end{gathered}$	$\begin{gathered} 0.001 \\ 8 \end{gathered}$	1.8		$\begin{aligned} & \text { PAPSS } \\ & 2 \end{aligned}$	3-phosphoadenosine 5phosphosulfate synthase 2	9060
$\begin{gathered} 2.71 \mathrm{E}- \\ 02 \end{gathered}$	0.261	$\begin{gathered} 0.028 \\ 2 \\ \hline \end{gathered}$	1.8		MLPH	melanophilin	79083
$\begin{gathered} 4.52 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.111	$\begin{gathered} 0.004 \\ 4 \\ \hline \end{gathered}$	1.8	そinivivan	$\begin{aligned} & \text { ATP1B } \\ & 1 \end{aligned}$	ATPase, $\mathrm{Na}+\mathrm{K}+$ transporting, betal polypeptide	481
$\begin{gathered} 119 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.061 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	1.8		$\begin{aligned} & \text { CYB5 } \\ & \text { R2 } \\ & \hline \end{aligned}$	cytochrome b5 reductase 2	51700
$\begin{gathered} 2.38 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.082 \\ 3 \end{gathered}$	$\begin{gathered} 0.002 \\ 6 \end{gathered}$	1.8		$\begin{aligned} & \mathrm{HOXC} \\ & 10 \end{aligned}$	homeobox C10	3226
$\begin{gathered} 5.29 \mathrm{E}- \\ 03 \end{gathered}$	0.12	$\begin{gathered} 0.003 \\ 9 \end{gathered}$	1.8		$\begin{aligned} & \mathrm{MOCO} \\ & \mathrm{~S} \\ & \hline \end{aligned}$	molybdenum cofactor sulfurase	55034
$\begin{gathered} 2.58 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.085 \\ 1 \end{gathered}$	$\begin{gathered} 0.002 \\ 2 \end{gathered}$	1.8		TMCS	```tramsmembrane channel-like 5```	79838
$\begin{gathered} 1.98 \mathrm{E}- \\ 03 \end{gathered}$	0.076	$\begin{gathered} 0.001 \\ 2 \\ \hline \end{gathered}$	1.8		STC1	stamiocalcin 1	6781
$\begin{gathered} 3.06 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.091 \\ 4 \end{gathered}$	$\begin{gathered} 0.002 \\ 2 \end{gathered}$	1.8	そy \#:	$\begin{aligned} & \text { DHCR } \\ & 24 \end{aligned}$	24 dehydrocholesterol reductase	1718
$\begin{gathered} 3.44 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.291	$\begin{gathered} 0.033 \\ 9 \\ \hline \end{gathered}$	1.7	K! ».	$\begin{aligned} & \text { CEAC } \\ & \text { AM6 } \\ & \hline \end{aligned}$	carcinoembryonic antigenrelated cell adhesion molecule 6 (non-specific cross reacting antigen)	4680
$\begin{gathered} 8.94 \mathrm{E}- \\ 03 \end{gathered}$	0.154	$\begin{gathered} 0.007 \\ 8 \end{gathered}$	1.7		$\begin{aligned} & \text { TTC39 } \\ & \text { A } \end{aligned}$	tetratricopepide repeat domain 39A	22996
$\begin{gathered} 2.16 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.078 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 1 \\ \hline \end{gathered}$	1.7		NQOl	NAD(P)H dehydrogenase. guinone	1728
$\begin{gathered} 2.45 \mathrm{E} \\ 02 \end{gathered}$	0.248	$\begin{gathered} 0.021 \\ 8 \\ \hline \end{gathered}$	1.7		$\begin{aligned} & \text { AKR1 } \\ & \mathrm{C} 2 \end{aligned}$	aldo-keto reductase family 1 , nember C2	1646
$\begin{aligned} & 1.02 \mathrm{E}- \\ & 02 \end{aligned}$	0.165	$\begin{gathered} 0.011 \\ 1 \end{gathered}$	1.7		MYOG	myosin VI	4646
$\begin{gathered} 8.95 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.054 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \\ \hline \end{gathered}$	1.7		$\begin{aligned} & \text { PPPIR } \\ & 3 \mathrm{C} \end{aligned}$	protein phosphatase I. regulatory subunit 3 C	5507
$\begin{gathered} 4.66 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.332	$\begin{gathered} 0045 \\ 7 \\ \hline \end{gathered}$	1.7	Kikhe	$\begin{aligned} & \text { SCNN } \\ & \mathrm{A} \\ & \hline \end{aligned}$	sodium chamel, non-voltage-gated 1 alpha subunit	6337
$\begin{gathered} 438 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.043 \\ 5 \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	1.7		GRP	gastrin-releasing peptide	2922
$\begin{gathered} 2.35 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.082 \\ 1 \end{gathered}$	$\begin{gathered} 0002 \\ 5 \end{gathered}$	1.7		PRR15 L	proline rich 15-like	79170
$\begin{gathered} 3.86 \mathrm{E}- \\ 02 \end{gathered}$	0.306	$\begin{gathered} 0.034 \\ 6 \end{gathered}$	1.7		KRT6C		
$\begin{gathered} 194 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.075 \\ 6 \end{gathered}$	$\begin{gathered} 0.001 \\ 8 \end{gathered}$	1.7	Kine	$\begin{aligned} & \text { PAPSS } \\ & 2 \end{aligned}$	3-phosphoadenosine 5: phosphosulfate synthase 2	9060
$\begin{gathered} 8.03 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.146	$\begin{gathered} 0.006 \\ 7 \\ \hline \end{gathered}$	1.7		MALL	mal, T-cell differentiation protein-like	7851
$\begin{gathered} 5.88 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.048 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	1.7		$\begin{aligned} & \text { TMEM } \\ & 30 \mathrm{~B} \end{aligned}$	transmembrane protein 308	161291
$\begin{gathered} 8.97 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.154	$\begin{gathered} 0.009 \\ 8 \\ \hline \end{gathered}$	1.7	※ivinis	FGF13	fibroblast growth factor 13	2258

$\begin{gathered} 4.44 \mathrm{E} \\ 04 \end{gathered}$	$\frac{0.043}{5}$	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	1.7		CLMN	calmin (calpomin-like. transmembrane)	79789
$\begin{gathered} 144 \mathrm{E}- \\ 02 \end{gathered}$	0.193	$\begin{gathered} 0.015 \\ 1 \end{gathered}$	1.7		DHRS2	dehydrogenase/reductase (SDR family) member 2	10202
$\begin{gathered} 3.70 \mathrm{E}- \\ 02 \end{gathered}$	0302	$\begin{gathered} 0.037 \\ 7 \end{gathered}$	1.7		SOXII	SRY (sex determining region Y) box 11	6664
$\begin{gathered} 9.09 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.054 \\ 7 \end{gathered}$	$\begin{gathered} 0.001 \\ 4 \end{gathered}$	1.6		SFN	stratifin	2810
$\begin{gathered} 5.49 \mathrm{E} \\ 03 \end{gathered}$	0.121	$\begin{gathered} 0.005 \\ 7 \\ \hline \end{gathered}$	1.6		ARG 2	arginase, type II	384
$\begin{gathered} 101 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.057 \\ 1 \end{gathered}$	$\begin{gathered} 0.001 \\ 2 \end{gathered}$	1.6		ALDH 6 A 1	aldehyde dehydrogenase 6 family, member A1	4329
$\begin{gathered} 8.30 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.053 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	1.6		$\begin{aligned} & \text { SH3BP } \\ & 4 \end{aligned}$	SH3-domam binding protein 4	23677
$\begin{gathered} 8.16 \mathrm{E} \\ 03 \end{gathered}$	0.147	$\begin{gathered} 0.008 \\ 3 \\ \hline \end{gathered}$	1.6	そ K\%	KCNS3	potassium voltage gated chamel, delayed-rectifier, subfamily S, nember 3	3790
$\begin{gathered} 8.44 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.15	$\begin{gathered} 0.009 \\ 4 \\ \hline \end{gathered}$	1.6		$\begin{aligned} & \text { ALDH } \\ & 1 \mathrm{A3} \\ & \hline \end{aligned}$	aldehyde dehydrogenase 1 family, member A3	220
$\begin{gathered} 2.13 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.078 \\ 6 \\ \hline \end{gathered}$	0.003	1.6		KRT18:	keration 18	3875
$\begin{gathered} 1.60 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.070 \\ 7 \end{gathered}$	$\begin{gathered} 0.002 \\ 2 \end{gathered}$	1.6		EGLN3	egl nine homolog 3 (C. elegans)	112399
$\begin{gathered} 4.28 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.043 \\ 5 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	1.6		AP3DI	adaptor-related protein complex 3 , delta 1 subunit	8943
$\begin{gathered} 9.84 \mathrm{E} \\ -\quad 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.056 \\ -9 \\ \hline \end{gathered}$	$\begin{gathered} 0,000 \\ 9 \\ \hline \end{gathered}$	1.6	\#iveg «\#	PDP1	pyruvate dehyrogenase phosphatase catalytic subunit 1	54704
$\begin{gathered} 1.83 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.030 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	1.6		CSK3B	glycogen synthase kinase 3 bela	2932
$\begin{gathered} 377 \mathrm{E}- \\ 03 \end{gathered}$	0.101	$\begin{gathered} 0.004 \\ 6 \end{gathered}$	1.6	$\begin{aligned} & \text { ung } \\ & \text { Hen! } \end{aligned}$	PPL	periplakin	5493
$\begin{gathered} 303 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.275	$\begin{gathered} 0.026 \\ 3 \\ \hline \end{gathered}$	1.6	Min!	$\begin{aligned} & \text { CRISP } \\ & 3 \end{aligned}$	cysteine-rich secretory protein 3	10321
$\begin{gathered} 165 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.205	$\begin{gathered} 0.017 \\ 9 \\ \hline \end{gathered}$	1.6		$\begin{aligned} & \text { ZNF65 } \\ & 2 \\ & \hline \end{aligned}$	zinc finger protein 652	22834
$\begin{gathered} 1.72 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	021	$\begin{gathered} 0.016 \\ 5 \\ \hline \end{gathered}$	1.6		$\begin{aligned} & \text { TPDS2 } \\ & \mathrm{LI} \\ & \hline \end{aligned}$	tumor protein D52-like 1	7164
$\begin{gathered} 232 \mathrm{E} \\ 02 \end{gathered}$	0.242	$\begin{gathered} 0.022 \\ 2 \\ \hline \end{gathered}$	1.6		$\begin{aligned} & \mathrm{PCYO} \\ & \mathrm{XI} \\ & \hline \end{aligned}$	prenylcysteme oxidase I	51449
$\begin{gathered} 2.10 \mathrm{E}- \\ 02 \end{gathered}$	0.233	$\begin{gathered} 0.023 \\ 9 \end{gathered}$	1.6		SPP1	secreted phosphoprotein I	6696
$\begin{gathered} 6.66 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.133	$\begin{gathered} 0.007 \\ 7 \\ \hline \end{gathered}$	1.6		SOLE	squalene epoxidase	6713
$\begin{gathered} 2.54 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.016 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.6		C055	CD55 molecule decay accelerating factor for complement (Cromer blood group)	1604
$\begin{gathered} 7.46 \mathrm{E}- \\ 03 \end{gathered}$	0.141	$\begin{gathered} 0.006 \\ 5 \end{gathered}$	1.6		$\begin{aligned} & \text { RNAS } \\ & \text { E4 } \end{aligned}$		
$\begin{gathered} 2.15 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.078 \\ 6 \end{gathered}$	$\begin{gathered} 0.002 \\ 5 \\ \hline \end{gathered}$	1.6		$\begin{aligned} & \text { CUED } \\ & \mathrm{CI} \\ & \hline \end{aligned}$	CUE domain contaning 1	404093
$\begin{gathered} 326 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.094	$\begin{gathered} 0.003 \\ 4 \\ \hline \end{gathered}$	1.6	KHK\%	MAFF	v-maf musculoaponeurotie fibrosarcoma oncogene homolog F (avian)	23764
$\begin{gathered} 3.75 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.101	$\begin{gathered} 0.003 \\ 9 \\ \hline \end{gathered}$	1.6		CDS 1	CDP-dacylglycerol synthase (phosphatidate cybdylyltransferase) 1	1040
172E-	0.21	0.016	1.6	mems\%	EPB41	erythrocyte membrane	54566

02		4		§\#\#	LAB	protein band 4.1 like 4B	
$\begin{gathered} 233 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.081 \\ 6 \end{gathered}$	$\begin{gathered} 0.002 \\ 6 \end{gathered}$	1.5		LDLR	low density lipoprotein receptor	3949
$\begin{gathered} 1.80 \mathrm{E}- \\ 03 \end{gathered}$	0.074	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	1.5		BNIP3	BCL2/adenovirus E1B 19 kDa interacting protein 3	664
$\begin{gathered} 3.09 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.091 \\ 6 \end{gathered}$	$\begin{gathered} 0.003 \\ 3 \\ \hline \end{gathered}$	1.5		$\begin{aligned} & \text { SOWA } \\ & \text { HC } \end{aligned}$	sosondowah ankyrin repeat domain family member C	65124
$\begin{gathered} 6.63 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.021 \\ 4 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.5	§\%ivive \%	$\begin{aligned} & \text { LAMP } \\ & 2 \end{aligned}$	lysosomal-associaled membrane protein 2	3920
$\begin{gathered} 2.70 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.087 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 7 \\ \hline \end{gathered}$	1.5		DESI2	desumoylating isopepoidase 2	51029
$\begin{gathered} 9.04 \mathrm{E}- \\ 03 \end{gathered}$	0.155	$\begin{gathered} 0.009 \\ 1 \end{gathered}$	1.5		QPRT	quinolinate phosphoribosyltransferase	23475
$\begin{gathered} 3.81 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.017 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} <10- \\ 07 \end{gathered}$	1.5	M.	$\begin{aligned} & \text { 2NF59 } \\ & 3 \end{aligned}$	zine finger protein 593	51042
$\begin{gathered} 5.28 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.047 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 0000 \\ 6 \end{gathered}$	1.5		PARD3	par-3 partitioning defective 3 homolog (C. elegans)	56288
$\begin{gathered} 6.97 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.136	$\begin{gathered} 0.007 \\ 4 \end{gathered}$	1.5	$\begin{aligned} & 212 y<4 \% \end{aligned}$ ※\%	BAG5	BCL2-associated athanogene 5	9529
$\begin{gathered} 6.84 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.021 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	1.5		$\begin{aligned} & \text { GARE } \\ & \mathrm{M} \\ & \hline \end{aligned}$	GRB2 associated, regulator of MAPKI	64762
$\begin{gathered} 1.49 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.029 \\ 9 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	1.5		P4HA2	prolyl 4-hydroxylase, alpha polypeptide II	8974
$\begin{gathered} 5.37 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.12	0.005	1.5		GDFI5	growth differentiation factor 15	9518
$\begin{gathered} 5.73 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.048 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \end{gathered}$	1.5		$\begin{aligned} & \text { MSMO } \\ & 1 \end{aligned}$	methylsterol monooxygenase 1	6307
$\begin{gathered} 605 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.020 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	1.5		DDT	D-dopachrome tautomerase	1652
$\begin{gathered} 709 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.137	$\begin{gathered} 0.008 \\ 3 \\ \hline \end{gathered}$	1.5	\% \% kifk \%	F2RL1	eoagulation factor II (thrombin) receptor-like 1	2150
$\begin{gathered} 400 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 0002 \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.5	§ஊぁ\#	Cl4orf	chromosome 14 open reading frame 1	11161
$\begin{gathered} 8.53 \mathrm{E}- \\ 04 \end{gathered}$	0.054	$\begin{gathered} 0.000 \\ 8 \end{gathered}$	1.5	\#!	$\begin{aligned} & \text { CYP51 } \\ & \text { A1 } \end{aligned}$		
$\begin{gathered} 1.47 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.067 \\ 6 \end{gathered}$	$\begin{gathered} 0.001 \\ 4 \end{gathered}$	2.3	$\begin{aligned} & 212094 \\ & \text { at } \end{aligned}$	PEG10	patemally expressed 10	23089
$\begin{gathered} 2.70 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.087 \\ 4 \end{gathered}$	$\begin{gathered} 0.001 \\ 8 \\ \hline \end{gathered}$	2.2	$\begin{aligned} & 219225 \\ & a t \end{aligned}$	PGBDS	piggyBac transposable element derived 5	79605
$\begin{gathered} 3.43 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.29	$\begin{gathered} 0.033 \\ 9 \\ \hline \end{gathered}$	2.0	$\begin{aligned} & 213680 \\ & \mathrm{at} \end{aligned}$	KRT6B	keratim6B	3854
$\begin{gathered} 5.29 \mathrm{E}- \\ 03 \end{gathered}$	0.12	$\begin{gathered} 0.004 \\ 4 \end{gathered}$	1.9	$\begin{aligned} & 202286 \\ & \mathrm{~s} \text { at } \end{aligned}$	$\begin{aligned} & \text { TACST } \\ & \mathrm{D} 2 \end{aligned}$	tumor-associated calcium signal transducer 2	4070
$\begin{gathered} 1.41 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.066 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 5 \\ \hline \end{gathered}$	1.9	$\begin{aligned} & 202669 \\ & \text { sat } \end{aligned}$	EFNB2	ephrin-32	1948
$\begin{gathered} 941 \mathrm{E}- \\ 03 \end{gathered}$	0.159	$\begin{gathered} 0.009 \\ 1 \end{gathered}$	1.9	$\begin{aligned} & 204750 \\ & \text { sat } \end{aligned}$	DSc2	desmocollin 2	1824
$\begin{gathered} 2.18 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.236	$\begin{gathered} 0.020 \\ 7 \\ \hline \end{gathered}$	1.9	$\begin{aligned} & 221690- \\ & \text { s_at }^{2} \end{aligned}$	NLRP2	NLR family, pyrin doman containing 2	55655
$\begin{gathered} 7.15 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.051 \\ 2 \end{gathered}$	$\begin{gathered} 0,000 \\ 8 \\ \hline \end{gathered}$	1.9	$\begin{aligned} & 211588 \\ & \text { s_at } \end{aligned}$	HSPA2	heat shock 70kDa protein 2	3306
$\begin{gathered} 495 \mathrm{E} \\ 04 \end{gathered}$	0.046	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	1.8	$\begin{aligned} & 206125 \\ & \text { sat } \end{aligned}$	KLK8	kallikrein-related peptidase 8	11202
$\begin{gathered} 906 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.155	0.009	1.8	$\begin{aligned} & 205428 \\ & \text { s_at } \\ & \hline \end{aligned}$	CALB2	calbindin 2	794
$\begin{gathered} 3.04 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.275	0.034	1.8	$\begin{aligned} & 202376 \\ & a! \end{aligned}$	$\begin{aligned} & \text { SERPI } \\ & \text { NA3 } \end{aligned}$	serpin peptrdase inhibitor. clade A (alpha-1 antiprotemase, antrypsin), member 3	12

$\begin{gathered} 2.65 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.26	$\begin{gathered} 0.026 \\ 2 \end{gathered}$	1.8	$\begin{aligned} & 205595 \\ & a t \end{aligned}$	DSG3	desmoglein 3	1830
$\begin{gathered} 1.58 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.070 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ -\quad 4 \\ \hline \end{gathered}$	1.8	$\begin{aligned} & 204614 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { SERPI } \\ & \text { NB2 } \end{aligned}$	serpin peptidase inhibitor, clade B (ovalbumin), member?	5055
$\begin{gathered} 267 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.035 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \\ \hline \end{gathered}$	1.8	$\begin{aligned} & 201324_{-} \\ & \text {at } \end{aligned}$	EMP1	epithelial membrane proten 1	2012
$\begin{gathered} 3.19 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.281	$\begin{gathered} 0.037 \\ 8 \end{gathered}$	1.7	$\begin{aligned} & 203628 \\ & \text { at } \end{aligned}$	IGFIR	insulin-like growth factor: receptor	3480
$\begin{gathered} 3.61 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.099 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.003 \\ 6 \\ \hline \end{gathered}$	1.7	$\begin{aligned} & 214595 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { KCNG } \\ & 1 \end{aligned}$	potassium voltage-gated channel, subfamily G. nember 1	3755
$\begin{gathered} 1.91 \mathrm{E}- \\ 02 \end{gathered}$	0.223	$\begin{gathered} 0.020 \\ 5 \end{gathered}$	1.7	$\begin{aligned} & 209602_{-} \\ & 5 . \mathrm{at} \end{aligned}$	$\begin{aligned} & \text { GATA } \\ & 3 \\ & \hline \end{aligned}$	GATA binding protein 3	2625
$\begin{gathered} 198 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.076	$\begin{gathered} 0.002 \\ 5 \\ \hline \end{gathered}$	1.7	$\begin{aligned} & 204059 \\ & \text { sat } \end{aligned}$	ME1	malic enzyme 1, $\operatorname{NADP}(+)$ dependent, cytosolic	4199
$\begin{gathered} 194 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.031 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	1.7	$\begin{aligned} & 205809 \\ & \text { s_at } \\ & \hline \end{aligned}$	WASL	Wiskott-Aldrich syndromelike	8976
$\begin{gathered} 1.15 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.012 \\ 8 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 204032 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \mathrm{BCAR} \\ & 3 \end{aligned}$	breast cancer anti-estrogen resistance 3	8412
$\begin{gathered} 3.60 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.099 \\ 3 \end{gathered}$	$\begin{gathered} 0.002 \\ 9 \end{gathered}$	1.7	$\begin{aligned} & 219995 \\ & \mathrm{sat} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ZNF75 } \\ & 0 \end{aligned}$	Zinc finger protern 750	79755
$\begin{gathered} 135 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.065 \\ 5 \end{gathered}$	$\begin{gathered} 0.001 \\ 6 \end{gathered}$	1.7	212451	SECIS BP2L	SECIS binding protein 2like	9728
$\begin{gathered} 1,20 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.027 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	1.7	$\begin{aligned} & 203566 \\ & \mathrm{sat} \\ & \hline \end{aligned}$	ACL	anylo-alpha- 1.6glvcosidase. 4-alphaglucanotransferase	178
$\begin{gathered} 1.30 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.064 \\ 4 \end{gathered}$	$\begin{gathered} 0.001 \\ 9 \end{gathered}$	1.7	$\begin{aligned} & 204058 \\ & \text { at } \end{aligned}$	ME1	malic enzyme 1. NADP(+) dependent, cytosolic	4199
$\begin{gathered} 1.49 \mathrm{E}- \\ 02 \end{gathered}$	0.196	$\begin{gathered} 0.015 \\ 5 \end{gathered}$	1.6	$\begin{aligned} & 218678 \\ & \text { at } \end{aligned}$	NES	nestin	10763
$\begin{gathered} 4.14 \mathrm{E}- \\ 02 \end{gathered}$	0.315	$\begin{gathered} 0.045 \\ 6 \end{gathered}$	1.6	$\begin{aligned} & 208900 \\ & \mathrm{sat} \end{aligned}$	TOPI	topoisomerase (DNA) I	7150
$\begin{gathered} 1.18 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.061 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 3 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 208610 \\ & \mathrm{~s} \text { at } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SRRM } \\ & 2 \\ & \hline \end{aligned}$	serinelarginine repetitive marix 2	23524
$\begin{gathered} 1.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 213526 \\ & \mathrm{~s}=\mathrm{at} \\ & \hline \end{aligned}$	LIN37	Im-37 homolog (C. elegans)	55957
$\begin{gathered} 3.34 \mathrm{E}- \\ 02 \end{gathered}$	0.287	0.034	1.6	$\begin{aligned} & 209581_{-} \\ & \text {at } \end{aligned}$	$\begin{aligned} & \text { PLA2G } \\ & 16 \end{aligned}$	phospholipase A2, group XVI	11145
$\begin{gathered} 1.21 \mathrm{E}- \\ 02 \end{gathered}$	0.179	$\begin{gathered} 0.011 \\ 3 \end{gathered}$	1.6	$\begin{aligned} & 218858 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { DEPT } \\ & \text { OR } \end{aligned}$	DEP domain containing MTOR-interacting protein	64798
$\begin{gathered} 2.63 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.259	$\begin{gathered} 0.025 \\ 8 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 204288 \\ & \text { sat } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SORBS } \\ & 2 \end{aligned}$	sorbin and SH3 domain containing 2	8470
$\begin{gathered} 397 \mathrm{E} \\ 03 \end{gathered}$	0.104	$\begin{gathered} 0.003 \\ 8 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 204688 \\ & a \end{aligned}$	SGCE	sarcoglycan. epsilon	8910
$\begin{gathered} 1.86 \mathrm{E} \\ 02 \end{gathered}$	0.22	$\begin{gathered} 0.019 \\ 4 \end{gathered}$	1.6	$\begin{aligned} & 217996 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { PHLD } \\ & \mathrm{AI} \end{aligned}$	pleckstrin homology-like domain, family A. member 1	22822
$\begin{gathered} 2.13 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.032 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 209254 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { KLHD } \\ & \mathrm{ClO} \end{aligned}$	Kelch domain containing 10	23008
$\begin{gathered} 7.78 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.144	$\frac{0.008}{8}$	1.6	$\begin{aligned} & 219263 \\ & \mathrm{at} \end{aligned}$	$\begin{aligned} & \text { RNF12 } \\ & 8 \end{aligned}$	ring finger protein 128. E3 ubiquitin protein ligase	79589
$\begin{gathered} 105 \mathrm{E}- \\ 02 \end{gathered}$	0.167	$\begin{gathered} 0.008 \\ 3 \end{gathered}$	1.6	$\begin{aligned} & 219476 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { Clonf } \\ & 16 \end{aligned}$	chromosome I open reading frame 116	79098
$\begin{gathered} 3.45 \mathrm{E} \\ 02 \end{gathered}$	0.291	$\begin{gathered} 0.035 \\ 4 \end{gathered}$	1.6	$\begin{aligned} & 202600 \\ & \text { s_at } \end{aligned}$	NRIP1	nuclear receptor interacting protein 1	8204
$\begin{gathered} 2.73 \mathrm{E}- \\ 02 \end{gathered}$	0.263	$\begin{gathered} 0.024 \\ 9 \end{gathered}$	1.6	$\begin{aligned} & 209126 \\ & x_{a t} \\ & \hline \end{aligned}$	KRT6B	keratin 6B	3854
$\begin{gathered} 3.04 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.091 \\ 4 \end{gathered}$	$\begin{gathered} 0.003 \\ 1 \end{gathered}$	1.6	$\begin{aligned} & 206421 \\ & \text { 8.at } \end{aligned}$	$\begin{aligned} & \text { SERPI } \\ & \text { NB } 7 \end{aligned}$	serpin peptidase inhibitor, clade B (ovalbumin),	8710

						nember 7	
$\begin{gathered} 3.35 \mathrm{E} \\ 02 \end{gathered}$	0.288	$\begin{gathered} 0.034 \\ 1 \end{gathered}$	1.6	$\begin{aligned} & 209604 \\ & \text { s at } \end{aligned}$	$\begin{aligned} & \text { GATA } \\ & 3 \\ & \hline \end{aligned}$	GATA binding protein 3	2625
$\begin{gathered} 1.59 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.070 \\ 4 \end{gathered}$	$\begin{gathered} 0.001 \\ 6 \end{gathered}$	1.6	$\frac{212775}{a t}$	OBSL	obscum-like 1	23363
$\begin{gathered} 2.80 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.266	0.026	1.6	$\begin{aligned} & 205440 \\ & \text { s_at } \end{aligned}$	NPYIR	nemropeptide Y receptor Y1	4886
$\begin{gathered} 3.12 \mathrm{E} \\ 02 \end{gathered}$	0.278	0.033	1.6	$\begin{aligned} & 204508 \\ & \text { sat } \end{aligned}$	CAl2	carbonic anhydrase XII	771
$\begin{gathered} 3.17 \mathrm{E}- \\ 02 \end{gathered}$	0.28	$\begin{gathered} 0.029 \\ 8 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 209301 \\ & \text { at } \\ & \hline \end{aligned}$	CA2	carbonic anhydrase II	760
$\begin{gathered} 3.31 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0286	$\begin{gathered} 0.032 \\ 2 \end{gathered}$	1.6	$\begin{aligned} & 201860_{-} \\ & 8 \text { at } \end{aligned}$	PLAT	plasminogen activator, tissue	5327
$\begin{gathered} 8.35 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.053 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \end{gathered}$	1.6	$\begin{aligned} & 212294 \\ & 3 \end{aligned}$	GNG12	guanine nucleotide binding protein (G protein), gamma 12	55970
$\begin{gathered} 535 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.047 \\ 5 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	1.6	$\begin{aligned} & 201325 \\ & \text { sat } \end{aligned}$	EMP1	epithelial membrane protem 1	2012
$\begin{gathered} 390 \mathrm{E} \\ 02 \end{gathered}$	0.307	$\begin{gathered} 0.038 \\ 7 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 212992 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { AHNA } \\ & \mathrm{K} 2 \\ & \hline \end{aligned}$	AHNAK nucleoprotein 2	113146
$\begin{gathered} 598 \mathrm{E}- \\ 03 \end{gathered}$	0.126	$\begin{gathered} 0.005 \\ 5 \end{gathered}$	1.6	$\begin{aligned} & 201996 \\ & \text { sat } \end{aligned}$	SPEN	spen homolog. transcriptional regulator (Drosophila)	23013
$\begin{gathered} 4.43 \mathrm{E}- \\ 03 \end{gathered}$	0.109	0004	1.6	$\begin{aligned} & 207480 \\ & \text { sat } \end{aligned}$	MEIS 2	Meis homeobox 2	4212
$\begin{gathered} 6.59 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.133	$\begin{gathered} 0.006 \\ 8 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 202454 \\ & \mathrm{~s} \text { _al } \end{aligned}$	ERBB3	v-erb-b2 erythroblastic leukemia viral oneogene homolog 3 (avian)	2065
$\begin{gathered} 4.22 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.107	$\begin{gathered} 0.004 \\ 8 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 212492 \\ & s_{\text {_it }} \end{aligned}$	$\begin{aligned} & \text { KDM4 } \\ & \mathrm{B} \end{aligned}$	lysine (K)-specific demethylase 4B	23030
$\begin{gathered} 2.87 \mathrm{E} \\ 02 \end{gathered}$	0.268	$\begin{gathered} 0.029 \\ 6 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 204748 \\ & a t \\ & \hline \end{aligned}$	PTGS2	prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)	5743
$\begin{gathered} 1.29 \mathrm{E}- \\ 02 \end{gathered}$	0.183	$\begin{gathered} 0.012 \\ 1 \end{gathered}$	1.6	$\begin{aligned} & 206307 \\ & \text { s_at } \end{aligned}$	$\begin{aligned} & \text { FOXD } \\ & 1 \end{aligned}$	forkhead box DI	2297
$\begin{gathered} 241 \mathrm{E}- \\ 02 \end{gathered}$	0.247	$\begin{gathered} 0.024 \\ 8 \end{gathered}$	1.6	$\begin{aligned} & 213110 \\ & \text { sat } \end{aligned}$	$\begin{aligned} & \text { COL4 } \\ & \text { A5 } \end{aligned}$	collagen, ype IV, alphas	1287
$\begin{gathered} 8.36 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.053 \\ 7 \end{gathered}$	0.001	1.6	$\begin{aligned} & 212634 \\ & \text { at } \end{aligned}$	UFL1	UFM -specific ligase 1	23376
$\begin{gathered} 9.30 \mathrm{E} \\ 03 \end{gathered}$	0.157	$\begin{gathered} 0.010 \\ 1 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 219681- \\ & \mathrm{s}_{\mathrm{at}} \end{aligned}$	$\begin{aligned} & \mathrm{RAB} 11 \\ & \mathrm{FIP} 1 \end{aligned}$	RAB11 family interacting protein 1 (class I)	80223
$\begin{gathered} 8.13 \mathrm{E}- \\ 03 \end{gathered}$	0.147	$\begin{gathered} 0.010 \\ 3 \end{gathered}$	1.6	$\begin{aligned} & 203319 \\ & \text { Sat } \end{aligned}$	$\begin{aligned} & \text { ZNF } 14 \\ & 8 \end{aligned}$	cime finger protem 148	7707
$\begin{gathered} 6.73 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.050 \\ 8 \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \end{gathered}$	1.6	$\begin{aligned} & 204066 \\ & \text { Sat } \end{aligned}$	AGAP	ArfGAP with GTPase domain, ankyrin repeat and PH domain 1	116987
$\begin{gathered} 3.68 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.099 \\ 9 \\ \hline \end{gathered}$	0.004	1.6	$\begin{aligned} & 219298 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { ECHD } \\ & \mathrm{C} 3 \\ & \hline \end{aligned}$	enoyl CoA hydratase domain containing 3	79746
$\begin{gathered} 5.77 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.124	$\begin{gathered} 0.004 \\ 3 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 209720- \\ & \text { s_at } \end{aligned}$	$\begin{aligned} & \text { SERPI } \\ & \text { NB3 } \end{aligned}$	serpin peptidase inhibitor, clade B (ovalbumin), member 3	6317
$\begin{gathered} 3.05 \mathrm{E}- \\ 02 \end{gathered}$	0.275	$\begin{gathered} 0.029 \\ 4 \end{gathered}$	1.6	$\begin{aligned} & 210467 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MACE } \\ & \text { AI2 } \end{aligned}$	melanoma amtigen family A. 12	4111
$\begin{gathered} 1.88 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.075 \\ 5 \end{gathered}$	$\begin{gathered} 0.001 \\ 7 \end{gathered}$	1.5	$\begin{aligned} & 204029 \\ & a! \end{aligned}$	CELSR	cadherin, EGF LAG sevenpass C-type receptor 2	1952
$\begin{gathered} 109 \mathrm{E}- \\ 02 \end{gathered}$	0.17	$\begin{gathered} 0.011 \\ 4 \end{gathered}$	1.5	$\begin{aligned} & 204779 \\ & \text { sat } \end{aligned}$	$\frac{\mathrm{HOXB}}{7}$	homeobox B 7	3217
2.63 E -	0.259	0.028	1.5	204686	IRSI	insulin receptor substrate 1	3667

02		8		at			
$\begin{gathered} 6.28 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.049 \\ 3 \end{gathered}$	0.001	1.5	$\begin{aligned} & 209123 \\ & \text { at } \end{aligned}$	QDPR	quinoid dihydropteridine reductase	5860
$\begin{gathered} 1.04 \mathrm{E}- \\ 03 \end{gathered}$	0.058	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	1.5	$\begin{aligned} & 212417- \\ & \text { at } \end{aligned}$	$\begin{aligned} & \mathrm{SCAM} \\ & \mathrm{P} 1 \end{aligned}$	secretory carier membrane protein 1	9522
$\begin{gathered} 2.68 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.087 \\ 3 \\ \hline \end{gathered}$	0.002	1.5	$\begin{aligned} & 209719 \\ & \text { x_at } \end{aligned}$	$\begin{aligned} & \text { SERPI } \\ & \text { NB3 } \end{aligned}$	serpin peptidase inhibitor, clace B (ovalbamin), member 3	6317
$\begin{gathered} 9.14 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.054 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	1.5	$\begin{aligned} & 211906 \\ & \text { sat } \end{aligned}$	$\begin{aligned} & \text { SERPI } \\ & \text { NB4 } \end{aligned}$	serpin peptidase inhibitor, clade B (ovalbumin). member 4	6318
$\begin{gathered} 7.11 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.051 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 219073 \\ & \text { sat } \end{aligned}$	$\begin{aligned} & \text { OSBPL } \\ & 10 \end{aligned}$	oxysterol binding proteinlike 10	114884
$\begin{gathered} 2.98 \mathrm{E}- \\ 02 \end{gathered}$	0.273	$\begin{gathered} 0.031 \\ 3 \end{gathered}$	1.5	209488	$\begin{aligned} & \text { RBPM } \\ & S \end{aligned}$	RNA binding protein with multiple splicing	11030
$\begin{gathered} 6.36 \mathrm{E} \\ 63 \\ \hline \end{gathered}$	0.13	$\begin{gathered} 0.007 \\ 3 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 203542 \\ & \mathrm{sat} \end{aligned}$	KLF9	Kruppel-Hze factor9	687
$\begin{gathered} 3.76 \mathrm{E} \\ 03 \end{gathered}$	0.101	0.004	1.5	$\begin{aligned} & 203780 \\ & \text { at } \end{aligned}$	MPTL2	myelin protein zero-like 2	10205
$\begin{gathered} 2.87 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.268	$\begin{gathered} 0.031 \\ 8 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 209443 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { SERPI } \\ & \text { NA5 } \end{aligned}$	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin). member 5	5104
$\begin{gathered} 2.95 \mathrm{E}- \\ 03 \end{gathered}$	009	$\begin{gathered} 0.004 \\ 6 \end{gathered}$	1.5	$\begin{aligned} & 210612 \\ & \mathrm{sat} \\ & \hline \end{aligned}$	SYNJ2	synaptojanin 2	8871
$\begin{gathered} 9.59 \mathrm{E}- \\ 03 \end{gathered}$	0.16	$\begin{gathered} 0.010 \\ 3 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 213030 \\ & \text { s_at } \end{aligned}$	$\begin{aligned} & \text { PLXN } \\ & \text { A2 } \end{aligned}$	plexin A2	5362
$\begin{gathered} 1.19 \mathrm{E}- \\ 02 \end{gathered}$	0.178	$\begin{gathered} 0.012 \\ 4 \end{gathered}$	1.5	$\begin{aligned} & 218435 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { DNAI } \\ & \mathrm{Cl} 5 \end{aligned}$	Dnal (Hsp40) homolog. sublamily C , member 15	29103
$\begin{gathered} 1.24 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.181	$\begin{gathered} 0.013 \\ 6 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 202998 \\ & \text { sat } \end{aligned}$	LOXL2	Jysyl oxidase-like 2	4017
$\begin{gathered} 2.27 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.033 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 218253 \\ & \mathrm{~s} \text { at } \\ & \hline \end{aligned}$	EIF2D	eukaryotic tramslation initiation factor $2 D$	1939
$\begin{gathered} 6.56 \mathrm{E}- \\ 03 \end{gathered}$	0.133	$\begin{gathered} 0.006 \\ 2 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 203439 \\ & 8 \text { at } \end{aligned}$	STC2	stamiocalcin 2	8614
$\begin{gathered} 3.01 \mathrm{E} \\ 02 \end{gathered}$	0.274	0.031	1.5	$\begin{aligned} & 203929 \\ & 8 \mathrm{at} \end{aligned}$	MAPT	microtubule-associated protein tau	4137
$\begin{gathered} 4.26 \mathrm{E} \\ 03 \end{gathered}$	0.108	$\begin{gathered} 0.003 \\ 8 \end{gathered}$	1.5	$\begin{aligned} & 204256 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { ELOV } \\ & \mathrm{L} 6 \end{aligned}$	ELOVL faty acid clongase 6	79071
$\begin{gathered} 1.60 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.029 \\ 9 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	1.5	$\begin{aligned} & 218407- \\ & \mathrm{x} \text { at } \end{aligned}$	NENE	neudesin neurotrophic factor	29937
$\begin{gathered} 1.46 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.067 \\ 6 \end{gathered}$	$\begin{gathered} 0.001 \\ 9 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 221588 \\ & x_{-} a \end{aligned}$	$\begin{aligned} & \text { ALDH } \\ & 6 \mathrm{Al} \end{aligned}$	aldehyde dehydrogenase 6 family, member A1	4329
$\begin{gathered} 1.23 \mathrm{E} \\ 05 \end{gathered}$	0.013	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.3	$\begin{aligned} & 211634 \\ & \mathrm{x} \text { af } \end{aligned}$			
$\begin{gathered} 3.61 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.017 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.3	$\begin{aligned} & 211635- \\ & x_{a} a t \end{aligned}$			
$\begin{gathered} 5.90 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.048 \\ 8 \end{gathered}$	0.001	0.3	$\begin{aligned} & 216491 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$	IGHM	immunoglobulin heavy constant mu	3507
$\begin{gathered} 4.51 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.043 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 205242 \\ & \text { al } \end{aligned}$	$\begin{aligned} & \mathrm{CXCL} 1 \\ & 3 \end{aligned}$	chemokine (C-X C motif) higand 13	10563
$\begin{gathered} 1.65 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.071 \\ 6 \end{gathered}$	$\begin{gathered} 0.001 \\ 9 \end{gathered}$	0.4	$\begin{aligned} & 214768 \\ & \times _a 6 \\ & \hline \end{aligned}$	IGKC	immunoglobulin kappa constant	3514
$\begin{gathered} 5.56 \mathrm{E} \sim \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.047 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 203915- \\ & \text { at } \end{aligned}$	CXCL9	chemokine (C-X-C moti) ligand 9	4283
$\begin{gathered} 206 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.032 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	0.4	$\begin{aligned} & 211637 \\ & \text { x_at } \end{aligned}$			
$\begin{gathered} 1.66 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.071 \\ 7 \end{gathered}$	$\begin{gathered} 0.002 \\ 1 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 214772 \\ & \text { al } \\ & \hline \end{aligned}$			

$\begin{gathered} 1.57 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.070 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 9 \end{gathered}$	0.4	$\begin{aligned} & 217148 \\ & \times a t \\ & \hline \end{aligned}$			
$\begin{gathered} 2.77 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0035 \\ 8 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	0.4	$\begin{aligned} & 214916 \\ & \times \text { at } \end{aligned}$			
$\begin{gathered} 3.35 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.017 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 211633 \\ & \times \mathrm{af} \\ & \hline \end{aligned}$	IGHG1	immunoglobulin heavy constam gamma (G1m marker)	3500
$\begin{gathered} 2.82 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.035 \\ 8 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	04	$\begin{aligned} & 205267 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \mathrm{POUZ} \\ & \mathrm{AFI} \end{aligned}$	POU class 2 associating factor 1	5450
$\begin{gathered} 1.31 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.064 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 8 \end{gathered}$	0.4	$\begin{aligned} & 216576 \\ & x \text { at } \end{aligned}$			
$\begin{gathered} 1.22 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.027 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.4	$\begin{aligned} & 214973 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$	IGHD	immunoglobulin heavy constant delta	3495
$\begin{gathered} 179 \mathrm{E}- \\ 64 \\ \hline \end{gathered}$	$\begin{gathered} 0.030 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 217179 \\ & \times-91 \\ & \hline \end{aligned}$			
$\begin{gathered} 2.22 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.033 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 217281 \\ & \mathrm{x} \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} 1.64 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.071 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 216510_{-} \\ & x_{_} \text {at } \end{aligned}$			
$\begin{gathered} 2.50 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.005 \\ 87 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 207238 \\ & \text { s at } \end{aligned}$	PTPRC	protein tyrosine phosphatase, receptor type, C	5788
$\begin{gathered} 763 \mathrm{E} \\ 03 \end{gathered}$	0.142	0.008	0.4	$\begin{aligned} & 205890 \\ & \mathrm{~s} . \mathrm{at} \end{aligned}$			
$\begin{gathered} 9.88 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.024 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 217235 \\ & \times \text { at } \end{aligned}$	IGLL5	immunoglobulin lambdalike polypeptide 5	1E+08
$\begin{gathered} 7.52 \mathrm{E} \\ 03 \end{gathered}$	0.141	$\begin{gathered} 0.007 \\ 9 \end{gathered}$	0.4	$\begin{aligned} & 211644 \\ & x-a t \end{aligned}$			
$\begin{gathered} 173 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.015 \\ 9 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 207339- \\ & \mathrm{s} \text { at } \end{aligned}$	LTB	lymphooxin beta (TNE superfamily, member 3)	4050
$\begin{gathered} 5.60 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.047 \\ 9 \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \end{gathered}$	0.4	$\begin{aligned} & 216557 . \\ & \times \text { at } \end{aligned}$			
$\begin{gathered} 398 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.017 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	0.4	212588	PTPRC	protein tyrosine phosphatase, receptor type. C	5788
$\begin{gathered} 1.05 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.024 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 211796 \\ & \mathrm{sat} \\ & \hline \end{aligned}$			
$\begin{gathered} 5.16 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.046 \\ 4 \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \end{gathered}$	0.4	$\begin{aligned} & 211650- \\ & x_{-} \text {at } \end{aligned}$			
$\begin{gathered} 7.81 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.022 \\ 3 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.5	$\begin{aligned} & 204563 \\ & \text { at } \end{aligned}$	SELL	selection L	6402
$\begin{gathered} 1.04 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.058	$\begin{gathered} 0.001 \\ 3 \end{gathered}$	0.5	$\begin{aligned} & 211643 \\ & \times \quad \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} 6.02 \mathrm{E}- \\ 03 \end{gathered}$	0.127	$\begin{gathered} 0.007 \\ 7 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 211645 \\ & \mathrm{x} \text { at } \end{aligned}$			
$\begin{gathered} 1.50 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.014 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 215949 \\ & \times \text { at } \end{aligned}$			
$\begin{gathered} 8.04 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.022 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 211640 \\ & \mathrm{xat} \\ & \hline \end{aligned}$			
$\begin{gathered} 1.07 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.058 \\ 7 \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \end{gathered}$	0.5	$\begin{aligned} & 205861 \\ & \text { at } \end{aligned}$	SPIB	Spi-B transcription factor (Spi-1/PU. 1 related)	6689
$\begin{gathered} 8.17 \mathrm{E}- \\ 64 \end{gathered}$	$\begin{gathered} 0.053 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	0.5	$\begin{aligned} & 210915 \\ & \times \operatorname{an} \end{aligned}$	TRBCl	T cell receptor beta constant 1	28639
$\begin{gathered} 1.10 \mathrm{E} \\ 02 \end{gathered}$	0.171	$\begin{gathered} 0.010 \\ 9 \end{gathered}$	0.5	$\begin{aligned} & 211122 \\ & s_{\mathrm{a}} \mathrm{ai} \end{aligned}$	$\begin{aligned} & \mathrm{CXCLI} \\ & 1 \end{aligned}$	chemokine (C-X-C motif) higand 11	6373
$\begin{gathered} 1.51 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.068 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 9 \end{gathered}$	0.5	$\begin{aligned} & 216207 \\ & \text { xat } \\ & \hline \end{aligned}$			
$\begin{gathered} 4.11 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.043 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 219014_{-} \\ & \text {at } \end{aligned}$	PLAC8	placenta-specifie 8	51316

$\begin{gathered} 6.57 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.133	$\begin{gathered} 0.007 \\ 7 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 216560 \\ & \times \quad a t \\ & \hline \end{aligned}$	IGLCl	immunoglobulin lambda constant 1 (Mcg marker)	3537
$\begin{gathered} 2.74 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.088	$\begin{gathered} 0.002 \\ 5 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 204439 \\ & \text { at } \end{aligned}$	IFI44L	interferon-induced protein 44-like	10964
$\begin{gathered} 3.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{gathered} 0.002 \\ 23 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 21649 \\ & \times \mathrm{af} \end{aligned}$			
$\begin{gathered} 3.16 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.038 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	0.5	AFFX- HUMIS GE3AM 97935 MA at	STAT	signal transducer and activator of transcription 1 . 91kDa	6772
$\begin{gathered} 3.65 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.041 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	0.5	$\begin{aligned} & 216541 \\ & \times \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} 1.8 \mathrm{SE}- \\ 03 \end{gathered}$	0.075	$\begin{gathered} 0.002 \\ 2 \end{gathered}$	0.5	$\begin{aligned} & 217227 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IGLV1 } \\ & -44 \end{aligned}$	immunoglobulin lambda vanable 1-44	28823
$\begin{gathered} 4.80 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.115	$\begin{gathered} 0.006 \\ 7 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 216984 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$			
$\begin{gathered} 141 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.191	$\begin{gathered} 0.014 \\ 7 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 210029 \\ & \text { at } \end{aligned}$	IDOI	indoleamine 2,3 dioxygenase 1	3620
$\begin{gathered} 4.18 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.043 \\ 5 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	0.5	$\begin{aligned} & 211881 \\ & \mathrm{x} \text { at } \end{aligned}$	IGLJ	immunoglobulim lanbda joining 3	28831
$\begin{gathered} 4.54 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.043 \\ 6 \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \end{gathered}$	0.5	$\begin{aligned} & 205831 \\ & \text { at } \end{aligned}$	CD 2	CD2 molecule	914
$\begin{gathered} 2.84 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.035 \\ 8 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	0.5	$\begin{aligned} & 206666 \\ & \text { at } \end{aligned}$	GZMK	gramyme K (granzyme 3; tryptase II)	3003
$\begin{gathered} 2.66 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.035 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 211908 \\ & \times a t \end{aligned}$	1GK@	immunoglobuin kappa locus	50802
$\begin{gathered} 130 \mathrm{E} \\ 02 \end{gathered}$	0.184	$\begin{gathered} 0.014 \\ 8 \end{gathered}$	0.5	$\begin{aligned} & 215176 \\ & \times \mathrm{at} \end{aligned}$	IGKC	immunoglobulin kappa constant	3514
$\begin{gathered} 6.25 \mathrm{E} \\ 03 \end{gathered}$	0.129	0.005	0.5	$\begin{aligned} & 206134 \\ & \text { at } \end{aligned}$	ADAM DEC1	ADAM-like, decysin 1	27299
$\begin{gathered} 1.28 \mathrm{E}- \\ 05 \end{gathered}$	0.013	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 209670 \\ & \text { at } \end{aligned}$	TRAC	T cell receptor alpha constant	28755
$\begin{gathered} 8.47 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0,15	$\begin{gathered} 0.009 \\ 8 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 217378 \\ & x_{a} \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} 1.68 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.029 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 211868 \\ & \times a t \\ & \hline \end{aligned}$			
$\begin{gathered} 1.31 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.184	$\begin{gathered} 0.014 \\ 2 \end{gathered}$	0.5	$\begin{aligned} & 210163 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \mathrm{CXCL} \\ & 1 \end{aligned}$	chemokine (C-X-C motil) hgand 11	6373
$\begin{gathered} 1.88 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.075 \\ 5 \end{gathered}$	$\begin{gathered} 0.002 \\ 5 \end{gathered}$	0.5	$\begin{aligned} & 211798 \\ & \times \text { at } \end{aligned}$	IGLJ 3	immunog lobulin lambda joining 3	28831
$\begin{gathered} 2.66 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.035 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 211641_{-} \\ & \mathrm{x} \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} 4.18 \mathrm{E} \\ 03 \end{gathered}$	0.107	$\begin{gathered} 0.003 \\ 4 \end{gathered}$	0.5	$\begin{aligned} & 204533 \\ & \text { al } \end{aligned}$	$\begin{aligned} & \text { CXCL } \\ & 0 \end{aligned}$	chemokine (C-X-C motif) ligand 10	3627
$\begin{gathered} 176 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.073 \\ 7 \end{gathered}$	$\begin{gathered} 0.001 \\ 7 \end{gathered}$	0.5	$\begin{aligned} & 214657 \\ & \text { sat } \end{aligned}$			
$\begin{gathered} 3.66 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.099 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 9 \end{gathered}$	0.5	$\begin{aligned} & 205569 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { LAMP } \\ & 3 \end{aligned}$	lysosomal-associated membrane protein 3	27074
$\begin{gathered} 1.56 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.2	$\begin{gathered} 0.017 \\ 1 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 216401 \\ & \text { x_at } \end{aligned}$			
$\begin{gathered} 1.93 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.015 \\ 9 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 204912 \\ & \text { al } \end{aligned}$	$\begin{aligned} & \text { IL10R } \\ & \text { A } \end{aligned}$	interleukin 10 receptor, alpha	3587
$\begin{gathered} 1.10 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.025 \\ 8 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 210538 \\ & \text { sat } \end{aligned}$	BIRC3	baculoviral LAP repeat containing 3	330
$\begin{gathered} 6.40 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.008 \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 203471 \\ & \text { sat } \\ & \hline \end{aligned}$	PLEK	pleckstrin	5341
$\begin{gathered} 2.71 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.087 \\ 6 \end{gathered}$	$\begin{gathered} 0.003 \\ 3 \end{gathered}$	0.5	$\begin{aligned} & 217480 \\ & \text { x_at } \end{aligned}$			

$\begin{gathered} 6.37 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.049 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 214453- \\ & \mathrm{sat} \end{aligned}$	IF144	Interferon-induced protein 44	10561
$\begin{gathered} 8.90 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.054 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \\ \hline \end{gathered}$	0.5	AFFX- HUMIS GF3AM 97935_ MB at	STATI	signal transducer and activator of transcription 1 , 91 kDa	6772
$\begin{gathered} 246 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.083 \\ 4 \end{gathered}$	$\begin{gathered} 0.002 \\ 8 \end{gathered}$	0.5	$\begin{aligned} & 212671_{-} \\ & \text {sat } \end{aligned}$			
$\begin{gathered} 7.63 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.022 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.5	$\begin{aligned} & 211639 \\ & \text { xat } \end{aligned}$			
$\begin{gathered} 2.12 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.032 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 205671_{-} \\ & \text {s_at }^{2} \end{aligned}$	$\begin{aligned} & \mathrm{HLA} \\ & \mathrm{DOB} \end{aligned}$	major histocompatibility complex, class II. DO beta	3112
$\begin{gathered} 3.29 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.017 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 212314 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { SELIL } \\ & 3 \end{aligned}$	sel-1 suppressor of lin-12like 3(C. elegans)	23231
$\begin{gathered} 138 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.066	$\begin{gathered} 0.001 \\ 1 \end{gathered}$	0.5	$\begin{aligned} & 204891 \\ & \text { s_at } \end{aligned}$	LCK	lymphocyte-specife protein tyrosine kinase	3932
$\begin{gathered} 5.95 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.020 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.5	204118 at	CD48	CD48 molecule	962
$\begin{gathered} 3.18 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.038 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \end{gathered}$	0.5	$\begin{aligned} & 203868 \\ & \text { s_at }^{2} \end{aligned}$	$\overline{\mathrm{VCAM}}$ 1	vascular cell adhesion molecule 1	7412
$\begin{gathered} 6.25 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.049 \\ 3 \end{gathered}$	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	0.5	$\begin{aligned} & 217258 \\ & \text { x_at } \end{aligned}$	$\begin{aligned} & \mathrm{IGLV1} \\ & -44 \end{aligned}$	immunoglobulin lambda variable 1-44	28823
$\begin{gathered} 122 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.062 \\ 2 \end{gathered}$	$\begin{gathered} 0.001 \\ 4 \end{gathered}$	0.5	$\begin{aligned} & 213888- \\ & 5 \text { at } \end{aligned}$	TRAF3 $\mathrm{IP} 3$	TRAF3 meracting protein 3	80342
$\begin{gathered} 191 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.075 \\ 5 \\ \hline \end{gathered}$	0.002	0.5	$\begin{aligned} & 204279 \\ & \text { at } \end{aligned}$	PSMB9	proteasome crosome. macropain) subunit, beta type, 9 (large multituctional peptidase 2)	5698
$\begin{gathered} 4.04 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.105	$\begin{gathered} 0.003 \\ 7 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 205159 \\ & \text { at } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CSE2R } \\ & \mathrm{B} \\ & \hline \end{aligned}$	colony stimulating factor 2 receptor beta, low-affinty (granulocyte-macrophage)	1439
$\begin{gathered} 2.62 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.035 \\ 3 \\ \hline \end{gathered}$	0.000	0.5	$\begin{aligned} & 213193 \\ & x_{a t} \\ & \hline \end{aligned}$	TRBCl	T cell receptor beta constant 1	28639
$\begin{gathered} 893 \mathrm{E}- \\ 03 \end{gathered}$	0.154	$\begin{gathered} 0.008 \\ 7 \end{gathered}$	0.5	$\begin{aligned} & 204096 \\ & \text { sat } \end{aligned}$			
$\begin{gathered} 3.28 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.284	$\begin{gathered} 0.035 \\ 3 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 209374 \\ & \text { sat } \end{aligned}$	1GHM	immunoglobulin heavy constant mu	3507
$\begin{gathered} 8.66 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.054 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 210972 \\ & \mathrm{xaf} \end{aligned}$			
$\begin{gathered} 8.23 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.053 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	0.5	$\begin{aligned} & 213539 \\ & \text { at } \end{aligned}$	CD3D	CD3d molecule, delta (CD3TCR complex)	915
$\begin{gathered} 990 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.024 \\ 5 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 209671 \\ & \text { xat } \end{aligned}$			
$\begin{gathered} 3.98 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.043 \\ 3 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	0.6	$\begin{aligned} & 217157 \\ & x_{\text {_at }} \end{aligned}$			
$\begin{gathered} 2.57 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.085 \\ 1 \end{gathered}$	$\begin{gathered} 0.002 \\ 5 \end{gathered}$	0.6	212311 at	$\begin{aligned} & \text { SELIL } \\ & 3 \\ & \hline \end{aligned}$	sel-1 suppressor of lin-12like 3 (C. elegans)	23231
$\begin{gathered} 426 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.321	$\begin{gathered} 0.039 \\ 6 \end{gathered}$	0.6	$\begin{gathered} 209116 \\ x_{a} a t \\ \hline \end{gathered}$	HBB	hemoglobin, beta	3043
$\begin{gathered} 1.15 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.060 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 206715 \\ & \text { at: } \end{aligned}$	TFEC	transcription factor EC	22797
$\begin{gathered} 8.48 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.15	$\begin{gathered} 0.009 \\ 9 \end{gathered}$	0.6	$\begin{aligned} & 203639 \\ & \mathrm{~s} \text { at } \end{aligned}$	FGFR2	fibroblast growth factor receptor 2	2263
$\begin{gathered} 287 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.089 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 7 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 204834 \\ & 1 \mathrm{t} \end{aligned}$	FGL2	fibrinogen-like 2	10875
$\begin{gathered} 299 \mathrm{E}- \\ 02 \end{gathered}$	0.273	$\begin{gathered} 0.028 \\ 3 \end{gathered}$	0.6	$\begin{aligned} & 210072 \\ & \text { at } \end{aligned}$	CCL19	chemokine (C-C motif) higand 19	6363
1.81E-	0.074	0.001	0.6	215049	CD163	CDI63 molecule	9332

03		8		x_at			
$\begin{gathered} 4.40 \mathrm{E}- \\ 03 \end{gathered}$	0.109	$\begin{gathered} 0.003 \\ 9 \end{gathered}$	0.6	$\begin{aligned} & 205488- \\ & \text { at } \end{aligned}$	GZMA	granzyme A (granzyme 1, eytotoxic T-lymphocyteassociated serine esterase 3)	3001
$\begin{gathered} 5.45 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.047 \\ 8 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	0.6	$\begin{aligned} & 209606 \\ & \text { at } \end{aligned}$	CTTIP	cytohesin 1 mteracting protein	9595
$\begin{gathered} 8.00 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.009 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 212307 \\ & \text { s_at } \end{aligned}$	OGT	O-Inked N acetylglucosamine (ClCNAc) transterase	8473
$\begin{gathered} 1+6 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.067 \\ 6 \end{gathered}$	$\begin{gathered} 0,001 \\ 2 \end{gathered}$	0.6	$\begin{aligned} & 209823 \\ & \times _a t \end{aligned}$	$\begin{aligned} & \text { HLA- } \\ & \text { DQB1 } \end{aligned}$	mayor histocompatibility complex, class II, DQ bela 1	3119
$\begin{gathered} 2.10 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.032 \\ 8 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 204890 \\ & \text { s_at } \end{aligned}$	LCK	lymphocyte-specific protein tyrosine kinase	3932
$\begin{gathered} 972 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.056 \\ 7 \end{gathered}$	0.001	0.6	$\begin{aligned} & 203922 \\ & 8-a t \end{aligned}$	CYBB	cytochrome b- 245 , beta polypeptide	1536
$\begin{gathered} 2.89 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.036 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 216250 \\ & \text { sat } \end{aligned}$	LPEXN	Jeupaxin	9404
$\begin{gathered} 2.32 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.081 \\ 6 \end{gathered}$	$\begin{gathered} 0.001 \\ 8 \end{gathered}$	0.6	$\begin{aligned} & 209846 \\ & \text { sat } \end{aligned}$	$\begin{aligned} & \mathrm{BTN} 3 \\ & \mathrm{~A} 2 \end{aligned}$	butyrophilin, subfamily 3. member A2	1118
$\begin{gathered} 8.91 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.023 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 202524 \\ & \mathrm{~s} \text { at } \end{aligned}$	$\begin{aligned} & \text { SPOC } \\ & \mathrm{K} 2 \\ & \hline \end{aligned}$	sparc/osteonectin, cwey and kazal-like domains proteoglycan (testican) 2	9806
$\begin{gathered} 398 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.043 \\ 3 \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \end{gathered}$	0.6	$\begin{aligned} & 213915 \\ & \mathrm{at} \\ & \hline \end{aligned}$	NKG7	natural killer cell group 7 sequence	4818
$\begin{gathered} 3.46 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.097 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0,002 \\ 8 \end{gathered}$	0.6	$\begin{aligned} & 205541 \\ & \text { s_at } \end{aligned}$	GSPT2	Gl to $S^{\text {S }}$ phase transition 2	23708
$\begin{gathered} 2.70 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.016 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{c}- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 221978 \\ & 11 \end{aligned}$	HLA-F	major histocompatibility complex, cless I, F	3134
$\begin{gathered} 9.54 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	0.056	$\begin{gathered} 0.000 \\ 3 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 204116 \\ & \text { at } \end{aligned}$	IL2RG	interleukin 2 receptor, gamma	3561
$\begin{gathered} 3.31 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.017 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 221087 \\ & \text { s_at } \end{aligned}$	APOL3	apolipoprotein L, 3	80833
$\begin{gathered} 4.17 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.043 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.6	$\begin{aligned} & 202510 \\ & 8-8 t \end{aligned}$	$\begin{aligned} & \text { TNFAI } \\ & \mathrm{P} 2 \end{aligned}$	tumor nectosis factor, alphainduced protein 2	7127
$\begin{gathered} 6.02 \mathrm{E}- \\ 04 \end{gathered}$	0.049	$\begin{gathered} 0.000 \\ 4 \end{gathered}$	0.6	$\begin{aligned} & 210356 \\ & \times \text { _at } \end{aligned}$	MS4A1	membrane-spanming 4 domains, subfamily A. member 1	931
$\begin{gathered} 1.44 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.029 \\ 9 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.6	218805			
$\begin{gathered} 7.51 \mathrm{E}_{-} \\ 04 \end{gathered}$	$\begin{gathered} 0.052 \\ 3 \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	0.6	$\begin{aligned} & 221973- \\ & \text { at } \end{aligned}$			
$\begin{gathered} 502 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.116	$\begin{gathered} 0.003 \\ 5 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 209969 \\ & \mathrm{sat} \\ & \hline \end{aligned}$	STAT	signal transducer and activator of transcription 1 . 91 kDa	6772
$\begin{gathered} 2.73 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.263	$\begin{gathered} 0.028 \\ 2 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 209924- \\ & a t \end{aligned}$	CCL18	chemokine (C.C motif) higand 18 (pulmonary and activation-regulated)	6362
$\begin{gathered} 3.89 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.103	$\begin{gathered} 0.003 \\ 3 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 208798 \\ & \times \text { af } \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { GOLG } \\ \hline \end{array}$	golgin A8 tamily menber A	23015
$\begin{gathered} 2.79 \mathrm{E}- \\ 02 \end{gathered}$	0.266	$\begin{gathered} 0.026 \\ 4 \end{gathered}$	0.6	$\begin{aligned} & 205681_{-} \\ & a! \end{aligned}$	$\begin{aligned} & \mathrm{BCL} 2 \mathrm{~A} \\ & 1 \\ & \hline \end{aligned}$	BCL2-related protein A]	597
$\begin{gathered} 1.65 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.071 \\ 6 \end{gathered}$	$\begin{gathered} 0.001 \\ 6 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 203645 \\ & \text { sat } \end{aligned}$	CD163	CD163 molecule	9332
$\begin{gathered} 3.67 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.099 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.003 \\ 7 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 205692 \\ & \text { s_at } \\ & \hline \end{aligned}$	CD38	CD38 molecule	952
$\begin{gathered} 6.18 \mathrm{E}- \\ 03 \end{gathered}$	0129	$\begin{gathered} 0.004 \\ 9 \\ \hline \end{gathered}$	0.6	34210 at	CD5	CD5 2 molecule	1043
$\begin{gathered} 2.67 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	0.016	$\begin{gathered} <10- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 203416 \\ & \text { at } \end{aligned}$	CD53	CD53 molecule	963

$\begin{gathered} 1.97 \mathrm{E}- \\ 03 \end{gathered}$	0.076	$\begin{gathered} 0.001 \\ 9 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & \text { 204057_ } \\ & \text { at } \end{aligned}$	IRF8	interferon regulatory iactor 8	3394
$\begin{gathered} 4.55 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.043 \\ 6 \end{gathered}$	$\begin{gathered} 0,000 \\ 3 \end{gathered}$	0.6	$\begin{aligned} & 2221 \mathrm{SO} \\ & \mathrm{~s} \text { at } \end{aligned}$	PION	pigeon homo log (Drosophila)	54103
$\begin{gathered} 5.98 \mathrm{E}- \\ 04 \end{gathered}$	0.049	$\begin{gathered} 0,000 \\ 6 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 210982 \\ & \text { \& at } \end{aligned}$	HLADRA	major histocompatibility complex. Class $\Pi, D R$ alpha	3122
$\begin{gathered} 2.20 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.079 \\ 4 \end{gathered}$	$\begin{gathered} 0.002 \\ 3 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 200796 \\ & \text { s_at } \end{aligned}$	MCL	myeloid cell leukemia sequence 1 (BCL2-related)	4170
$\begin{gathered} 3.21 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} .0 .038 \\ 6 \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 202531- \\ & \text { at: } \end{aligned}$	1RFi	interferon regulatory factor 1	3659
$\begin{gathered} 2.07 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.032 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.6	38149 at	ARHG AP25	Rho GTPase activating: protein 25	9938
$\begin{gathered} 2.33 \mathrm{E}- \\ 04 \end{gathered}$	0.034	$\begin{gathered} <; \text { le } \\ 07 \end{gathered}$	0,6	204821 at	$\begin{aligned} & \text { BTN } \\ & \text { A } 3 \\ & \hline \end{aligned}$	feutyrophilin* subfamily 3 . member A3	10384
$\begin{gathered} 8.49 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.022 \\ 3 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 2129 \mathrm{~S} 0_{-} \\ & \text {at } \end{aligned}$	USP34	uhiquitin ..specific peptidase 34	9736
$\begin{gathered} 1.05 \mathrm{E}- \\ 02, \\ \hline \end{gathered}$	0.167	0.01	0,6	$\begin{aligned} & \text { 2Q2902_ } \\ & \text { s_at } \end{aligned}$	CTSS	eathepsin S	1520
$\begin{gathered} 7.52 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.052 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	0,6	$\begin{aligned} & 205049- \\ & \text { s_at } \\ & \hline \end{aligned}$	CD79A	CD79a molecule. imrnunoglobulin-associated alpha	973
$\begin{gathered} 2.90 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.005 \\ 87 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{c}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 207564 \\ & x_{-} \text {at } \end{aligned}$	OGT	Q-linked N acetylglueosamine (GleNAc) transferase	8473
$\begin{gathered} 4.23!:- \\ 04 \end{gathered}$	$\begin{gathered} 0.043 \\ 5 \end{gathered}$	0.001	0.6	$\begin{aligned} & 212384_{-} \\ & \text {at } \end{aligned}$			
$\begin{gathered} 135 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.029 \\ 1 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	0.6	$\begin{aligned} & 213160- \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { DOCK } \\ & 2 . \end{aligned}$	dedicator of cytokinesis 2:	1794
$\begin{gathered} 1.14 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.060 \\ 3 \end{gathered}$	$\begin{gathered} 0,001 \\ 3 \end{gathered}$	0.6	$\begin{aligned} & 221286- \\ & \text { s_at } \end{aligned}$	MZB1	marginal zone B and BI cell-specific protein	51237
$\begin{gathered} 1.64 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.029 \\ 9 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 205997- \\ & \text { ai } \end{aligned}$	$\begin{aligned} & \text { ADAM } \\ & 28 \end{aligned}$	ADAM metallopeptidase domain 28	10863
$\begin{gathered} 5,11 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.046 \\ 3 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 204192- \\ & \text { at } \end{aligned}$	CD37	CD37 molecule	951
$\begin{gathered} 1.46 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.067 \\ 6 \end{gathered}$	$\begin{gathered} 0.001 \\ 2 \end{gathered}$	0.6	$\begin{aligned} & 212827- \\ & \text { at } \end{aligned}$	IGHM	immunoglobulin heavy constant mu	3507
$\begin{gathered} 8.33 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.022 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { < le- } \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 207563- \\ & \text { s_al } \\ & \hline \end{aligned}$	OGT	Q-linked N^{-} acetylglucosamine (GlcNAc) transferase	8473
$\begin{gathered} 1.04 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.024 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 214093 \\ & \mathrm{~s}_{\mathrm{C}} \mathrm{at} \end{aligned}$	FUBPl	far upstream element (FUSE) binding protein 1	8880
$\begin{gathered} 1>59 \mathrm{E}- \\ 02 \end{gathered}$	0,201	$\begin{gathered} 0.016 \\ 8 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 208228- \\ & \text { s_at } \end{aligned}$	FGFR2	fibroblast growth Iactor receptor 2	2263
$\begin{gathered} 1.62 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.029 \\ 9 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 205291 \\ & \text { at } \end{aligned}$	IL2RB	interleukin 2 receptor, beta	3560
$\begin{gathered} 4.74 \mathrm{E}-\mathrm{-} \\ 03 \end{gathered}$	0.114	$\begin{gathered} 0.006 \\ 2 \end{gathered}$	0.6	$\begin{aligned} & 214753- \\ & \text { at } \end{aligned}$	$\mathrm{N} 4 \mathrm{BP} 2$	NEDD4 binding protein 2 like 2	10443
$\begin{gathered} 3.50 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.040 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	0,6	$\begin{aligned} & 206337 \\ & \text { at } \end{aligned}$	CCR7	chemokine (C-C motif) receptor 7	1236
$\begin{gathered} 5,11 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.046 \\ 3 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	0.6	$\begin{aligned} & 211991 \\ & \text { s_at } \end{aligned}$	$\begin{aligned} & \text { HLA- } \\ & \text { DPA1 } \end{aligned}$	maj or hi sincompatibility complex, class II. DP alpha 1	3113
$\begin{gathered} 2.76 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.088 \\ 1 \end{gathered}$	$\begin{gathered} 0.001 \\ 4 \end{gathered}$	0.6	$\begin{aligned} & 204661 \\ & \text { at } \end{aligned}$	CD52	CD52 molecule	1043
$\begin{gathered} 6 . \mathrm{S} 4 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.050 \\ 9 \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \end{gathered}$	0.6	$\begin{aligned} & 203760- \\ & \text { s_at } \end{aligned}$	SLA	Src-like-adaptor	6503
$\begin{gathered} 2.95 \mathrm{E}- \\ 03 \end{gathered}$	0.09:	$\begin{gathered} 0.002 \\ 9 \end{gathered}$	0,6	$\begin{aligned} & 202988- \\ & \text { s_at } \end{aligned}$	RGSI	regulator of G-protein signaling 1	5996
2.751.-	0.088	0.002	0,6	203381	APOE	apolipoprotein E	348

03	1	5		S_at			
$\begin{gathered} 3.65 \mathrm{E}- \\ 02 \end{gathered}$	0.3	$\begin{gathered} 0.035 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 214023 \\ & \text { x_at } \end{aligned}$	TUBB2 B	tubulin beta 2B class IIb	347733
$\begin{gathered} 192 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.015 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 212577- \\ & \mathrm{at} \end{aligned}$	$\begin{aligned} & \mathrm{SMCH} \\ & \mathrm{DI} \end{aligned}$	structural maintenance of chromosones flexible hinge domain containing 1	23347
$\begin{gathered} 4.68 \mathrm{E}- \\ 02 \end{gathered}$	0.333	$\begin{gathered} 0.042 \\ 5 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 217414 \\ & \text { x_at } \end{aligned}$			
$\begin{gathered} 3.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 23 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 205298 \\ & \text { s_at } \end{aligned}$	$\begin{aligned} & \text { BTN2 } \\ & \text { A2 } \end{aligned}$	butyrophilin: subfamily 2 , member A2	10385
$\begin{gathered} 2.51 \mathrm{E} \\ 03 \end{gathered}$	0.084	0.002	0.6	$\begin{aligned} & 202953 \\ & a! \end{aligned}$	C1QB	complement component 1,9 subcomponent. B chain	713
$\begin{gathered} 4.09 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.313	$\begin{gathered} 0.040 \\ 4 \end{gathered}$	0.6	$\begin{aligned} & 215214_{-} \\ & \text {at } \end{aligned}$			
$\begin{gathered} 7.67 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.052 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 210425 \\ & \times \text { at } \end{aligned}$			
$\begin{gathered} 176 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.030 \\ 3 \end{gathered}$	0.000	0.6	$\begin{aligned} & 209685 \\ & \text { sat } \end{aligned}$	$\begin{aligned} & \text { PRKC } \\ & \mathrm{B} \end{aligned}$	protein kinase C beta	5579
$\begin{gathered} 6.04 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	0.049	$\begin{gathered} 0.000 \\ 6 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 202643 \\ & \text { s_at } \end{aligned}$	$\begin{aligned} & \text { TNFAI } \\ & \text { P3 } \\ & \hline \end{aligned}$	tumor necrosis factor, alphainduced protem 3	7128
$\begin{gathered} 420 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.006 \\ 24 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 212232 \\ & \text { at } \\ & \hline \end{aligned}$	FNBP4	formin binding protein 4	23360
$\begin{gathered} 4.86 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.337	$\begin{gathered} 0.044 \\ 2 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 209458 \\ & x_{\text {_at }} \end{aligned}$			
$\begin{gathered} 2.47 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.035 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 209312 \\ & x \text { att } \end{aligned}$			
$\begin{gathered} 492 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.116	$\begin{gathered} 0.014 \\ 7 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 201858 \\ & \text { s_at } \end{aligned}$	SRGN	serglycin	5552
$\begin{gathered} 3.21 \mathrm{E}_{-} \\ 02 \\ \hline \end{gathered}$	0.281	$\begin{gathered} 0.029 \\ 2 \\ \hline \end{gathered}$	0.6	$\begin{gathered} 216853 \\ \text { x_at } \\ \hline \end{gathered}$			
$\begin{gathered} 2.09 \mathrm{E}- \\ 03 \end{gathered}$	0.078	$\begin{gathered} 0.002 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 208894 \\ & \mathrm{at} \end{aligned}$	$\begin{aligned} & \text { HLA }-1 \\ & \text { DRA } \end{aligned}$	major histocompatibility complex, class II, DR alpha	3122
$\begin{gathered} 1.44 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.067 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 2 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 211902 \\ & \times \text { att } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { YME1 } \\ & \mathrm{LI} \\ & \hline \end{aligned}$	YME1-like 1 S. cerevisite)	10730
$\begin{gathered} 3.15 \mathrm{E} \\ -03 \\ \hline \end{gathered}$	$\begin{gathered} 0.092 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.003 \\ 3 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & \text { AFFX- } \\ & \text { HUMIS } \\ & \text { GF3A/M } \\ & 97935.5 \\ & \text { at } \end{aligned}$	STATI	signal transducer and activator of transcription?, 91 kDa	6772
$\begin{gathered} 450 \mathrm{E} \\ 03 \end{gathered}$	0.11	$\begin{gathered} 0.005 \\ 2 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 218232- \\ & a t \end{aligned}$	ClQA	complement component $1, \mathrm{a}$ subcomponen, A chain	712
$\begin{gathered} 904 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.054 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	0.6	$\begin{aligned} & 213502 \\ & \mathrm{x} \text { at } \end{aligned}$	$\begin{aligned} & \text { GUSB } \\ & \mathrm{Pll} \end{aligned}$	glucuronidase, beta pseudogene 11	91316
$\begin{gathered} 2,47 \mathrm{E} \\ 02 \end{gathered}$	0.249	$\begin{gathered} 0.028 \\ 3 \end{gathered}$	0.6	$\begin{aligned} & 221728 \\ & \mathrm{xaf} \end{aligned}$	XIST	X inactive specific transcript (nom-proteín coding)	7503
$\begin{gathered} 7.01 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.050 \\ 9 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	0.6	$\begin{aligned} & 221989 \\ & \text { at } \end{aligned}$			
$\begin{gathered} 7.23 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.051 \\ 5 \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \end{gathered}$	0.6	$\begin{aligned} & 211656 \\ & \text { x_at } \end{aligned}$	$\begin{aligned} & \text { HLA- } \\ & \text { DQBI } \end{aligned}$	major histocompatibility complex, class II, DQ beta 1	3119
$\begin{gathered} 5.81 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.048 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	0.6	$\begin{aligned} & 215193 \\ & \text { x_at } \end{aligned}$			
$\begin{gathered} 5.71 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.048 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 9 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 203470 \\ & \text { sat } \end{aligned}$	PLEK	pleckstrim	5341
$\begin{gathered} 5.58 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.047 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 216542 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$			
$\begin{gathered} 2.43 \mathrm{E} \\ 03 \end{gathered}$	0.083	$\begin{gathered} 0.001 \\ 8 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 214617 \\ & \text { at } \end{aligned}$	PRFI	perforin 1 (pore forming protein)	5551
$\begin{gathered} 323 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.093 \\ 3 \end{gathered}$	$\begin{gathered} 0.002 \\ 8 \end{gathered}$	0.6	$\begin{aligned} & 217143 \\ & \text { sat } \end{aligned}$	$\begin{aligned} & \text { YMEI } \\ & \mathrm{LI} \end{aligned}$	YMEl-like 1 (S. cerevisiae)	10730

$\begin{gathered} 2.76 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.088 \\ 1 \end{gathered}$	$\begin{gathered} 0.003 \\ 3 \end{gathered}$	0.6	$\begin{aligned} & 20392^{3 / 4} \\ & \text { s_at } \end{aligned}$	CYBB	cytochrome b-245, beta polypeptide	1536
$1.91 \mathrm{E}-$	$\begin{gathered} 0.075 \\ 5 \end{gathered}$	$\begin{gathered} 0.001 \\ 6 \end{gathered}$	0,6	$\begin{aligned} & 2!3703- \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { IJMCO } \\ & 0342 \end{aligned}$	long intergenie non-protein coding RNA 342	150759
$\begin{gathered} 2.9 m \\ 03 \end{gathered}$	0,09	$\begin{gathered} 0,002 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 209083- \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { CORO } \\ & 1 \mathrm{~A} \\ & \hline \end{aligned}$	eoronin, actin binding protein, 1A	11151
$\begin{gathered} 5.67 \mathrm{E}- \\ 05 \end{gathered}$	0.02	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.6	$\begin{aligned} & 203932- \\ & \text { at } \end{aligned}$	H.A DMB	maj or histommpati bility complex, class II. DM beta	3109
$\begin{gathered} 5.46 \mathrm{E}- \\ 03 \end{gathered}$	0.121	$\begin{gathered} 0.004 \\ 7 \end{gathered}$	0.6	$\begin{aligned} & 201718_{-}^{-} \\ & \text {s_at } \end{aligned}$	$\begin{aligned} & \mathrm{EPB} 41 \\ & \mathrm{~L} 2 \end{aligned}$	erythrocyte membrane protein hand 4.1-like 2	2037
$\begin{aligned} & \text { 3.fIE- } \\ & 02 \end{aligned}$	0.277	$\begin{gathered} 0.033 \\ 2 \end{gathered}$	0.6	$\begin{aligned} & 2!0164 \\ & \text { at } \end{aligned}$	GZMB	granzyme B (granzyme 2, cytotoxic T-lymphocyteassociated serine esterase 1)	3002
$\begin{gathered} 1.78 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.030 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0,000 \\ 4 \\ \hline \end{gathered}$	0,6	$\begin{aligned} & 204670_{-} \\ & \times \quad \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} 5.68 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.123	0.006	0.6	$\begin{aligned} & \text { 2H742 -- } \\ & \text { s_at } \end{aligned}$	EVI2B	ecotropic viral integration site 2B	2124
$\begin{gathered} 1.62 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.071	$\begin{gathered} 0.002 \\ 2 \\ \hline \end{gathered}$	0,6	$\begin{aligned} & 221768 \\ & \text { at } \end{aligned}$			
$\begin{gathered} 3.55 \mathrm{E}- \\ 04 \end{gathered}$	0.041	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0,6	$\begin{aligned} & 201720_{-} \\ & \text {s_at } \end{aligned}$	$\begin{aligned} & \text { LAPT } \\ & \text { M5 } \end{aligned}$	lysosomal protein transmembrane 5	7805
$\begin{gathered} 1.80 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.005 \\ 73 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 2!2036- \\ & \& \mathrm{at} \end{aligned}$	PNN	pinin, desmosome associated protein	5411
$\begin{gathered} 8.48 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.022 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 204674 \\ & \text { at } \end{aligned}$	LRMP	lymphoid-restrieted membrane protein	4033
$\begin{gathered} 1.16 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.060 \\ 8 \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 213142- \\ & \mathrm{x} \text { at } \end{aligned}$	PION	pigeon homolog (Drosophila)	54103
$\begin{gathered} 5.741 ; \\ 05 \end{gathered}$	0.02	$\begin{gathered} <1 \mathrm{le}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 205270- \\ & \text { s_at } \end{aligned}$	LCP2	lymphocyte cylosolic protein 2 (SH2 domain containing leukocyte protein of 76 kDa)	3937
$\begin{gathered} 5.88 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.126	0.005	0.6	$\begin{aligned} & 211654- \\ & \mathrm{x}_{\mathrm{at}} \end{aligned}$	$\begin{aligned} & \text { HLA- } \\ & \text { DQBI } \end{aligned}$	major histocompatibility complex, class II, DQ beta 1	3119
$\begin{gathered} 3,00 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.090 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.003 \\ 3 \end{gathered}$	0.6	$\begin{aligned} & 215946 \\ & \text { x_at } \end{aligned}$	$\begin{aligned} & \text { IC.LE3 } \\ & \mathrm{P} \end{aligned}$	iiiimuiiogiobulin lambdalike polypeptide 3 , pseudogene	91353
$\begin{gathered} 1.00 E \\ 03 \end{gathered}$	$\begin{gathered} 0.057 \\ 1 \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \end{gathered}$	0.6	$\begin{aligned} & 209723 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { SERPI } \\ & \text { N.B9 } \end{aligned}$	serpin peptidase inhibitor, clade B (ovalbumin), member 9	5272
$\begin{gathered} 8.78 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.054 \\ 5 \end{gathered}$	$\begin{gathered} 0,000 \\ ? \end{gathered}$	0.6	$\begin{aligned} & 205842 \\ & \text { s_at } \end{aligned}$	JAK2	Janus kinase 2	3717
$\begin{gathered} 4.43 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.043 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 203236 \\ & \mathrm{~s} \text { at } \end{aligned}$	$\begin{aligned} & \text { LGAL } \\ & \mathrm{S} 9 \end{aligned}$	lectin, galaetoside-binding, soluble, 9	3965
$\begin{gathered} 2.42 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.083	0.002	0.6	$\begin{aligned} & 2!7418 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$	MS4A1	membrane-spanning 4domains, subfamily A, member 1	931
$\begin{aligned} & 1.14 \mathrm{E}- \\ & 02 \end{aligned}$	0.174	$\begin{gathered} 0.010 \\ 5 \end{gathered}$	0.6	$\begin{aligned} & 202086 \\ & \text { at } \end{aligned}$	MX1	```myxovirus (influenza virus) resistance 1, interferon- inducible protein p78 (mouse)```	4599
$\begin{gathered} 9.48 \mathrm{E}- \\ 03 \end{gathered}$	0.159	$\begin{gathered} 0.008 \\ 5 \end{gathered}$	0.6	$\begin{aligned} & 213875- \\ & \text { x_at } \end{aligned}$	$\begin{aligned} & \text { C6orf6 } \\ & 2 \end{aligned}$	```chromosome 6 open reading frame 62```	81688
$\begin{gathered} 5.771 \cdot .- \\ 03 \end{gathered}$	0.124	$\begin{gathered} 0.004 \\ 7 \end{gathered}$	0,6	$\begin{aligned} & 203879- \\ & \text { at: } \end{aligned}$	$\begin{aligned} & \text { PIK3C } \\ & \text { D } \end{aligned}$	phosphatidylinositol-4,5bisphosphate 3-kinase, catalytic subunit delta	5293
$\begin{gathered} 8.98 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.054 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	0.6	$\begin{aligned} & 204882 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { ARHG } \\ & \text { AP25 } \end{aligned}$	Rho GTPase activating protein 25	9938
$\begin{gathered} 6.21 \mathrm{~B}- \\ 04 \end{gathered}$	$\begin{gathered} 0.049 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	0.6	$\begin{aligned} & 221427 \\ & \text { s_at } \end{aligned}$	CCNL2	evelin L2	81669
$1.60 \mathrm{E}-$	0.202	0.013	0.6	210663	KYNU	kynureninase	8942

02		7		s_at			
$\begin{gathered} 908 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.054 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 210116 \\ & \mathrm{at} \end{aligned}$	$\begin{aligned} & \mathrm{SH} 2 \mathrm{D} 1 \\ & \mathrm{~A} \end{aligned}$	SH2 domsin contaiming IA	4068
$\begin{gathered} 4.28 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.108	$\begin{gathered} 0.004 \\ 1 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 216614_{-} \\ & \text {at } \end{aligned}$			
$\begin{gathered} 1.30 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.064 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 5 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 213326 \\ & a t \end{aligned}$	$\begin{aligned} & \text { VAMP } \\ & 1 \end{aligned}$	vesicle-associated membrane protein 1 (synaplobrevin 1)	6843
$\begin{gathered} 1.78 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.074	$\begin{gathered} 00001 \\ 6 \end{gathered}$	0.6	$\begin{aligned} & 221602 \\ & \text { sat } \end{aligned}$	FAIM3	Fas apoptotic inhibitory molecule 3	9214
$\begin{gathered} 3.19 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.093 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 9 \\ \hline \end{gathered}$	0.6	38241_at	$\begin{aligned} & \text { BTN3 } \\ & \text { A3 } \end{aligned}$	butyrophilin, subfamily 3, nember A3	10384
$\begin{gathered} 2.58 \mathrm{E}- \\ 03 \end{gathered}$	0.085	$\frac{0.002}{1}$	0.6	$\begin{aligned} & 205758 \text { _ } \\ & \text { at } \end{aligned}$	CD8A	CD8a molecule	925
$\begin{gathered} 4.94 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.116	$\begin{gathered} 0.004 \\ 8 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 213359 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { HNRN } \\ & \text { PO } \end{aligned}$	heterogeneous muclear ribonucleoprotein D (AUrich element RNA binding protein $1,37 \mathrm{kDa}$	3184
$\begin{gathered} 1.04 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.166	$\begin{gathered} 0.009 \\ 3 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 204959 \\ & \text { at } \end{aligned}$	MNDA	myeloid cell nuclear differentiation amtigen	4332
$\begin{gathered} 3.44 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.096 \\ 9 \end{gathered}$	$\begin{gathered} 0.003 \\ 4 \end{gathered}$	0.6	$\begin{aligned} & 206133 \\ & \text { at } \end{aligned}$	XAEI	XIAP associated factor 1	54739
$\begin{gathered} 431 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.322	0.043	0.6	$\begin{aligned} & 217388 \\ & \mathrm{sat} \\ & \hline \end{aligned}$	KYNU	kynureninase	8942
$\begin{gathered} 1.20 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.061 \\ 6 \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 213293 \\ & \text { s_at } \end{aligned}$	$\begin{aligned} & \text { TRIM2 } \\ & 2 \end{aligned}$	triparte motif containing 22	10346
$\begin{gathered} 6,36 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.13	$\begin{gathered} 0.006 \\ 7 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 208018 \\ & \mathrm{sal} \end{aligned}$	HCK	hemopoietic cell kinase	3055
$\begin{gathered} 7.89 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.052 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 8 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 214132 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \mathrm{ATP5C} \\ & 1 \end{aligned}$	ATP synthase $\mathrm{H}+$ transporting, mitochondrial Fl comples. gamma polypeptide 1	509
$\begin{gathered} 1.49 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.196	$\begin{gathered} 0.014 \\ 7 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 212998 \\ & \mathrm{xat} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HLA- } \\ & \text { DOBI } \end{aligned}$	major histocompatibility complex, class II, DQ beta 1	3119
$\begin{gathered} 1.13 \mathrm{E}- \\ 02 \end{gathered}$	0.174	$\begin{gathered} 0.011 \\ 1 \end{gathered}$	0.6	219666	$\begin{aligned} & \mathrm{MS} 4 \mathrm{~A} 6 \\ & \mathrm{~A} \end{aligned}$	membrane-spanning 4 . domains, subfamily A. member 6A	64231
$\begin{gathered} 2,30 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.005 \\ 87 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 202380 \\ & \text { S_at } \end{aligned}$	NKTR	natural killer-tumor recogntion sequence	4820
$\begin{gathered} 105 \mathrm{E}- \\ 02 \end{gathered}$	0.167	$\begin{gathered} 0.010 \\ 2 \end{gathered}$	0.6	$\begin{aligned} & 219209 \\ & a t \end{aligned}$	181 Hl	interferon induced with helicase C domain 1	64135
$\begin{gathered} 1.76 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.212	$\begin{gathered} 0.015 \\ 8 \\ \hline \end{gathered}$	0.6	206641	TNFRS F17	tumor necrosis factor receptor superfamily, nember 17	608
$\begin{gathered} 3.90 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.103	$\begin{gathered} 0.003 \\ 6 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 206978 \\ & \text { at } \end{aligned}$	CCR2	chemokine (C-C moti) receptor 2	729230
$\begin{gathered} 4.75 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.018 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 204923 \\ & \text { at } \\ & \hline \end{aligned}$	SASH3	SAM and SH3 domain contaning 3	54440
$\begin{gathered} 194 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.075 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 3 \\ \hline \end{gathered}$	0.7	$218543-$	$\begin{aligned} & \text { PARPI } \\ & 2 \end{aligned}$	poly (ADP-ribose) polymerase family member 12	64761
$\begin{gathered} 6.79 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.021 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 213269 \\ & a t \end{aligned}$	$\begin{aligned} & \text { ZNF24 } \\ & 8 \\ & \hline \end{aligned}$	zinc finger protein 248	57209
$\begin{gathered} 8.26 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.022 \\ 3 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.7	$\begin{aligned} & 204234 \\ & \mathrm{~s} \text { at } \end{aligned}$	$\begin{aligned} & \text { ZNF19 } \\ & 5 \end{aligned}$	Zinc finger protein 195	7748
$\begin{gathered} 6.48 \mathrm{E}- \\ 04 \end{gathered}$	$\frac{0.049}{8}$	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	0.7	$\begin{aligned} & 203761 \\ & a 1 \end{aligned}$	SLA	Src-like-adaptor	6503
$\begin{gathered} 659 \mathrm{E} \\ 03 \end{gathered}$	0.133	$\begin{gathered} 0.004 \\ 7 \end{gathered}$	0.7	$\begin{aligned} & 201104 \\ & \times a t \end{aligned}$			

$\begin{gathered} 1.92 \mathrm{E} \\ 02 \end{gathered}$	0.223	0.018	0.7	$\begin{aligned} & 211000 \\ & \text { sat } \end{aligned}$	PRPFA B	PRF4 pre-mRNA processing factor 4 homolog B (yeast)	8899
$\begin{gathered} 3.28 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.094 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 2 \end{gathered}$	0.7	$\begin{aligned} & 213603 \\ & \mathrm{sat} \end{aligned}$	RAC2	tas-related C3 botulinum toxin substrate 2 (hbo family, small GTP binding protein Rac2)	5880
$\begin{gathered} 2.15 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.078 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 3 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 203382_{-} \\ & \mathrm{s} a t \end{aligned}$	APOE	apohpoprotein E	348
$\begin{gathered} 1.23 \mathrm{E} \\ 02 \end{gathered}$	0.18	0.012	0.7	$\begin{aligned} & 216920 \\ & \text { sat } \end{aligned}$			
$\begin{gathered} 1.74 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.212	$\begin{gathered} 0.019 \\ 6 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 211996 \\ & \mathrm{~s}_{\mathrm{at}} \end{aligned}$			
$\begin{gathered} 4.63 \mathrm{E}- \\ 03 \end{gathered}$	0.112	$\begin{gathered} 0.004 \\ 9 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 202803 \\ & 5 \text { ait } \end{aligned}$	ITGB2	integrin, beta 2 (complement component 3 receptor 3 and 4 subunit)	3689
$\begin{gathered} 173 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.030 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 212613 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { BTN3 } \\ & \mathrm{A} 2 \\ & \hline \end{aligned}$	buyyrophilin, subfamily 3 . member A2	11118
$\begin{gathered} 1.81 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.074	$\begin{gathered} 0.001 \\ 6 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 210279 \\ & \mathrm{at} \\ & \hline \end{aligned}$	GPR18	G protein-coupled receptor 18	2841
$\begin{gathered} 3.02 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.037 \\ 4 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	0.7	$\begin{aligned} & 221971- \\ & x _a t \end{aligned}$			
$\begin{gathered} 1.40 \mathrm{E}- \\ 02 \end{gathered}$	0.191	$\begin{gathered} 0.014 \\ 8 \end{gathered}$	0.7	$\begin{aligned} & 211317 \\ & \mathrm{sat} \end{aligned}$	$\begin{aligned} & \text { CFLA } \\ & \mathrm{R} \end{aligned}$	CASP8 and FADD-like apoptosis regulator	8837
$\begin{gathered} 251 \mathrm{E}- \\ 03 \end{gathered}$	0.084	$\begin{gathered} 0.001 \\ 6 \end{gathered}$	0.7	$\begin{aligned} & 203185- \\ & a \end{aligned}$	$\begin{aligned} & \text { RASSF } \\ & 2 \end{aligned}$	Ras association (RalGDS/AF-6) domain family member 2	9770
$\begin{gathered} 158 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.201	$\begin{gathered} 0.016 \\ 9 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 214059 \\ & \text { at } \end{aligned}$	IFI4	interferon-induced protem 44	10561
$\begin{gathered} 6.57 \mathrm{E} \\ 03 \end{gathered}$	0.133	$\begin{gathered} 0.006 \\ 7 \end{gathered}$	0.7	$208747-$	CIS	complement component 1.s subcomponent	716
$\begin{gathered} 7.43 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.052 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 208885 \\ & \text { at } \end{aligned}$	LCPI	lymphocyte cytosolic protein 1 (L-plastin)	3936
$\begin{gathered} 1.12 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.173	$\begin{gathered} 0.009 \\ 9 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 216829 \\ & \text { at } \end{aligned}$			
$\begin{gathered} 1.57 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.070 \\ 1 \\ \hline \end{gathered}$	0.001	0.7	$\begin{aligned} & 210031_{-} \\ & \text {al } \end{aligned}$	CD 247	CD247 molecule	919
$\begin{gathered} 187 \mathrm{E}- \\ 02 \end{gathered}$	0.22	$\begin{gathered} 0.017 \\ 7 \end{gathered}$	0.7	219505	CECR1	cat eye syndrome chromosome region, candidate :	51816
$\begin{gathered} 2.67 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.086 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 7 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 202957- \\ & \text { at } \end{aligned}$	HCLS	hematopoietic cell-specific Lyn substrate 1	3059
$\begin{gathered} 1.67 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.029 \\ 9 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.7	$\begin{aligned} & 208306 \\ & \text { x_at } \end{aligned}$			
$\begin{gathered} 256 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.035 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 221850 \\ & x_{a} a t \end{aligned}$			
$\begin{gathered} 5.66 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.123	$\begin{gathered} 0.005 \\ 4 \end{gathered}$	0.7	$\begin{aligned} & 212187 \\ & \times \operatorname{ant} \\ & \hline \end{aligned}$	PTGDS	prostaglandin D2 synthase 21 kDa (brain)	5730
$\begin{gathered} 3.30 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.039 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 220046 \\ & \text { sal } \end{aligned}$	CCNL	eyclin L	57018
$\begin{gathered} 728 \mathrm{E}- \\ 03 \end{gathered}$	0.139	$\begin{gathered} 0.007 \\ 3 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 222018- \\ & \text { at: } \end{aligned}$	NACA	nascent polypeptideassociated complex alpha subunit	4666
$\begin{gathered} 1.32 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.185	$\begin{gathered} 0.013 \\ 3 \end{gathered}$	0.7	$\begin{aligned} & 214567- \\ & \mathrm{s}_{-} \mathrm{at} \end{aligned}$			
$\begin{gathered} 2.61 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.258	$\begin{gathered} 0.026 \\ 1 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 213537 \\ & \text { alt } \end{aligned}$	HLA- DPAI	major histocompatibility complex. class II, DP alpha 1	3113
$\begin{gathered} 2.18 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.032 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 207734 \\ & \text { at } \end{aligned}$	LAX1	lymphocyte transmembrane adapior 1	54900

$165 \mathrm{E}-$ 04	0.029 9	0.000 3	0.7	217610 at	SPDYE 2	speedy honolog E 2 (Xenopus hevis)	441273
$4.96 \mathrm{E}-$ 04	0.046	1	0.7	206150 $a t$	CD27	CD27 molecule	

Table 16．Class comparison of the global gene expression profiles of high in score ER－tumors to low TN score ER－tumors in the ROCK dataset （highlighted probe set indicates common in high $T \mathrm{~N}$ score BLBC and ER－ breast tumours）．

5

Param etric p－ value	FDR	Perm utati on p－ value	Fold－ chan ge for high TN score vs． Low TN score	ProbeSet	Symbol	Name	$\begin{aligned} & \text { Entreal } \\ & \mathrm{D} \end{aligned}$
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <10- \\ 07 \\ \hline \end{gathered}$	3.0		PHLDA2	pleckstrin homology－like domain，family A member 2	7262
$\begin{gathered} 2.72 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0000 \\ 683 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	2.9		$\begin{aligned} & \text { CEACA } \\ & \text { M6 } \\ & \hline \end{aligned}$	carcinoembryonic amigen－ related cell adheston． molecule 6 （non－specific cooss reacting antigen）	4680
$\begin{gathered} 5.00 \mathrm{E} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 0,000 \\ 0338 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	2.8	K月	GPRC5A	G protein－coupled receptor， family C，group 5 ，member A	9052
$\begin{gathered} 1.28 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 09 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	2.7		S100P	Sl00 calcimm binding protein P	6286
$\begin{gathered} 2.00 \mathrm{E} \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	2.4	Kuk M	FXYD3	FXYD domain containing ion traspont regulator 3	5349
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	2.3		NQOI	$\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ dehydrogenase， quinone 1	1728
$\begin{gathered} 5.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0338 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	2.2		NQO1	$\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ dehydrogenase． quinone 1	1728
$\begin{gathered} 4.88 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.005 \\ 88 \end{gathered}$	$\begin{gathered} 0000 \\ 5 \end{gathered}$	2.1		SLPI	secretory leakocyte peptidase inhibitor	6590
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <10 \\ 07 \end{gathered}$	2.1		EGLN3	egl nine homolog 3 （C． elegans）	112399
$\begin{gathered} 1.96 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 531 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	2.1	§Hy (\%)	CAMK2 N 1	calcium／camodulin－ dependent protein kinase II inhibitor 1	55450
$\begin{gathered} 5.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0338 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	2.1		QPRT	quinolinate phosphoribosyltransferase	23475
$\begin{gathered} 2.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{gathered} <10- \\ 07 \end{gathered}$	2.1		NQOI	NAD（P）H dehydrogenase， quinone 1	1728
$\begin{gathered} 3.00 \mathrm{E} \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0224 \end{aligned}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	2.0		KCNS3	potassium voltage－gated chamel delayed－rectifier． subfamily S．member 3	3790
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	2.0		SDCI	syndecan 1	6382
$\begin{gathered} 3.60 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 144 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	2.0	Kine	$\begin{aligned} & \text { PCYOX } \\ & 1 \end{aligned}$	prenylcysteine oxidase 1	51449
$\begin{gathered} 1.00 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 317 \end{gathered}$	$\begin{gathered} <1 \varepsilon- \\ 07 \end{gathered}$	2.0	ஊぞに先	DHCR24	24－dehydrocholesterol reductase	1718
8．43E－	0.048	0.009	2.0	§そ．．4\％\％．	S100A2	S 100 calcium binding	6273

03	1	9				protein A2	
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	2.0	そ⿻丷木) 资	MSMOI	methylsterol monooxygenase 1	6307
$\begin{gathered} 1.30 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0677 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.9		PAPSS2	3＇－phosphoadenosine 5：－ phosphosulfate synthase 2	9060
$\begin{gathered} 3.20 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 761 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	19		PAPSS2	3＇phosphoadenosine 5＇ phosphosulfate synhase 2	9060
$\begin{gathered} 3.84 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 87 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	1.9		TTC39A	tetratricopeptide repeat domain 39A	22996
$\begin{gathered} 6.51 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.007 \\ 27 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \\ \hline \end{gathered}$	1.9		MUC 1	mucin 1，cell surface associated	4582
$\begin{aligned} & 1.56 \mathrm{E}- \\ & 04 \end{aligned}$	$\begin{gathered} 0.002 \\ 43 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	1.9		GPRC5A	G protein－coupled receptor． family C ，group 5 ，member A	9052
$\begin{gathered} 200 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.9		CDSI	CDP－diacylglycerol synthase（phosphatidate cyddylyltransferase） 1	1040
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	1.9		LDLR	low density lipoprotein receptor	3949
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.8	3 «	BNIP3	BCL2／adenovirus E1B 19 kDa interacting protein 3	664
$\begin{gathered} 1.10 \mathrm{E} \\ 06 \\ \hline \end{gathered}$	$\begin{aligned} & 0000 \\ & 0599 \end{aligned}$	$\begin{gathered} <10 \\ 07 \\ \hline \end{gathered}$	1.8		PDP1	pyruvate dehyrogenase phosphatase catalytic subumid 1	54704
$\begin{gathered} 9.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0513 \\ & \hline \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	1.8		SQLE	squalene epoxidase	6713
$\begin{gathered} 2.60 \mathrm{E} \\ \hline 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 114 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.8		MAFF	v－maf musculoaponeurotic tibrosarcoma oncogene homolog F（avian）	23764
$\begin{gathered} 3.60 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.025 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 5 \\ \hline \end{gathered}$	1.8		MUCl	mucin 1．cell surface associated	4582
$\begin{gathered} 690 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 234 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.8		KRT18	keratim 18	3875
$\begin{gathered} 3.11 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.004 \\ 16 \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	1.8	ぞ	ALCAM	activated leukocyte cell athesion molealle	214
$\begin{gathered} 8.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0477 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.8		SH3BP4	SH3－domain binding protein 4	23677
$\begin{gathered} 1.36 \mathrm{E}- \\ 02 \end{gathered}$	$\begin{gathered} 0067 \\ 6 \end{gathered}$	$\begin{gathered} 0.012 \\ 7 \end{gathered}$	1.8	Kisky »	$\begin{aligned} & \text { SCNNI } \\ & \mathrm{A} \end{aligned}$	sodium chamel，nom－ voltage－gated 1 alpha subunit	6337
$\begin{gathered} 3.00 \mathrm{E} \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0224 \end{aligned}$	$\begin{gathered} <18 \\ 07 \\ \hline \end{gathered}$	1.8		$\begin{aligned} & \text { SOWAH } \\ & \text { C } \end{aligned}$	sosondowah ankyrín repeat domsin family nember C	65124
$\begin{gathered} 8.54 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 57 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	1.8		HOXC10	homeobox C10	3226
$\begin{gathered} 1.01 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0000 \\ 319 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.8		PPL	periplakin	5493
$\begin{gathered} 520 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	1.8		PRR15L	proline nich 15－like	79170
$\begin{gathered} 2.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0000 \\ & 0168 \\ & \hline \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	1.8		CLMN	calmin（calponin－like， transmembrane）	79789
$\begin{gathered} 1.84 \mathrm{E}- \\ 02 \end{gathered}$	0.083	$\begin{gathered} 0.018 \\ 1 \\ \hline \end{gathered}$	1.8		DHRS2	debydrogenase／reductase （SDR family）member 2	10202
$\begin{gathered} 1.00 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0561 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.8		SFN	stratifin	2810
$\begin{gathered} 1.80 \mathrm{E} \\ 02 \end{gathered}$	$\begin{gathered} 0.081 \\ 8 \end{gathered}$	$\begin{gathered} 0018 \\ 3 \end{gathered}$	1.8		MLPH	melanophilim	79083
$\begin{gathered} 157 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	0.014	$\begin{gathered} 0.002 \\ 1 \end{gathered}$	1.8		$\begin{aligned} & \text { SLC2AI } \\ & 0 \end{aligned}$	solue carner family 2 （frelitared glucose transporter），member 10	81031

$\begin{gathered} 2.40 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.019 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 9 \end{gathered}$	1.8		TMC5	transmembrane chamel－ like 5	79838
$\begin{gathered} 1.90 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.016 \\ 2 \end{gathered}$	$\begin{gathered} 0002 \\ 4 \end{gathered}$	1.8		KRT6C		
$\begin{gathered} 6.25 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 25 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	1.7	ぞイジ运	MOCOS	molybdenum cofactor sulfurase	55034
$\begin{gathered} <1 \mathrm{e}- \\ 67 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.7	そ\% \％	$\begin{aligned} & \text { CYPS1A } \\ & 1 \end{aligned}$		
$\begin{gathered} 6.32 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.039 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 0.007 \\ 4 \\ \hline \end{gathered}$	1.7		$\begin{aligned} & \text { GALNT } \\ & 6 \\ & \hline \end{aligned}$	UDP－N－acetyl－alpha－D－ galactosamine：polypeptide N － acatylgalactosaminyltransfe rase 6 （GaINAc－TG）	11226
$\begin{gathered} 1.60 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0801 \\ & \hline \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.7		$\begin{aligned} & \text { TMEM3 } \\ & \text { OB } \\ & \hline \end{aligned}$	tansmembrane protem 30 B	161291
$\begin{gathered} 1.45 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.013 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 3 \\ \hline \end{gathered}$	1.7		SPPI	secreted phosphoprotein I	6696
$\begin{gathered} 593 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 21 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	1.7		$\begin{aligned} & \text { TPD52L } \\ & 1 \\ & \hline \end{aligned}$	tumor protein D52－like 1	7164
$\begin{gathered} 8.05 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{array}{r} 0.001 \\ 51 \end{array}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.7		MALL	mal，T－cell differentiation protein－like	7851
$\begin{gathered} 170 \mathrm{E} \\ 06 \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0836 \end{aligned}$	$\begin{aligned} & <1 \mathrm{e}- \\ & 07 \end{aligned}$	1.7		CUEDC 1	CUE domain containing 1	404093
$\begin{gathered} 2.27 \mathrm{E} \\ 02 \end{gathered}$	$\begin{gathered} 0.095 \\ 6 \end{gathered}$	$\begin{gathered} 0.021 \\ 7 \end{gathered}$	1.7		CRISP3	eystene－rich secretory protein 3	10321
$\begin{gathered} 4.60 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 174 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	1.7		BAG5	BCL2－associated athanogene 5	9529
$\begin{gathered} 1.00 \mathrm{E} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.7		P4HA2	proly 4 －hydroxylase，alpha polypeptide II	8974
$\begin{gathered} <1 \mathrm{l}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.7		GSK3B	glycogen synthase kimase 3 beta	2932
$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.7		DDT	D－dopachrome tautomerase	1652
$\begin{gathered} 9.92 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 75 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.7		IRXS	iraguois homeobox 5	10265
$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <10- \\ 07 \\ \hline \end{gathered}$	1.7		CD55	CD55 molecule，decay accelerating factor for complement（Cromer blood group）	1604
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <12- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.7		Cl4orf	chromosome 14 open reading frame 1	11161
$\begin{gathered} 330 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 135 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6		ARG 2	arginase，type If	384
$\begin{gathered} 1.03 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	$\begin{gathered} 0.055 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.008 \\ 9 \\ \hline \end{gathered}$	1.6		SOXII	SRY（sex determining region Y）－box 11	6664
$\begin{gathered} 8.35 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.008 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \end{gathered}$	1.6		RNASE4		
$\begin{gathered} 472 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.005 \\ 71 \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \\ \hline \end{gathered}$	1.6		FGF13	fibroblast growth factor 13	2258
$\begin{gathered} 170 \mathrm{E} \\ 02 \end{gathered}$	$\begin{gathered} 0.078 \\ 6 \end{gathered}$	$\begin{gathered} 0016 \\ 6 \end{gathered}$	1.6		AKR1C2	aldo－keto reductase family 1．member C 2	1646
$\begin{gathered} 5.32 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 12 \end{gathered}$	$\begin{gathered} <10- \\ 07 \end{gathered}$	1.6		GDF15	growth differentiation factor 15	9518
$\begin{gathered} 2.77 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	0.109	$\begin{gathered} 0.025 \\ 3 \end{gathered}$	1.6	そ\%	KRT16	keratio 16	3868
$\begin{gathered} 8.59 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.008 \\ 87 \end{gathered}$	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	1.6		STC1	stamiocalcin 1	6781
$\begin{gathered} 6.45 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.007 \\ 22 \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	1.6		PPPIR3 C	protein phosphatase 1 ． regulatory subunit 3C	5507

$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$<1 \mathrm{e}-$	1.6		LAMP2	lysmomai－associated membrane protein 2	3920
$\begin{gathered} 9.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & \mathrm{O} 0 \mathrm{OO} \\ & 0513 \end{aligned}$	$<1 \mathrm{le}$	1.6		GAREM	GRB2 associated，regulator of M APK1	64762
$\begin{gathered} 9.13 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0,009 \\ 26 \end{gathered}$	$\begin{gathered} 0,000 \\ 9 \end{gathered}$	1.6	．	$\begin{aligned} & \mathrm{HSD} 17 \mathrm{~B} \\ & 2 \end{aligned}$	hydroxy steroid（17－betaj dehydrogenase 2	3294
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} \text { < ie- } \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{le} \\ 07 \\ \hline \end{gathered}$	1.6		ZNF593	zinc finger protein 593	51042
$\begin{gathered} 1.79 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0,015 \\ 5 \end{gathered}$	$\begin{gathered} 0.002 \\ 7 \end{gathered}$	1.6	そene	$\begin{aligned} & \text { ALDHI } \\ & \text { A3 } \end{aligned}$	aldehyde dehydrogenase 1 family，member A3	220
$\begin{gathered} 1.27 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0,002 \\ 09 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	1.6		F2RL1	coagulation factor II （thrombin）receptor－like 1	2150
$\begin{gathered} \S 05 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0,000 \\ 737 \end{gathered}$	$\begin{array}{r} <\text { le- } \\ 07 \\ \hline \end{array}$	1.6		DESI2	desumoylating isopeptidase 2	51029
$\begin{gathered} 1.09 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.001 \\ 88 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6		$\begin{aligned} & \text { ALDH6 } \\ & \text { A } 1 \\ & \hline \end{aligned}$	```aldehyde dehydrogenase 6 family, member AI```	4329
$\begin{gathered} 4.56 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0,005 \\ 55 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \\ \hline \end{gathered}$	1.5		CYB5R2－	cytochrome b5 reductase 2	51700
$\begin{gathered} 2.20 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0,000 \\ 102 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	1.5		PARD3	par－3 partitioning defective 3 homolog（C．elegans）	56288
$\begin{gathered} 3.98 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.005 \\ 02 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	1.5		GRP	gastrin－releasing peptide	2922
$\begin{gathered} 1.17 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.001 \\ 99 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	1.5		AP3D1	adaptor－related protein complex 3 ，delta 1 subunit	8943
$\begin{gathered} 7.70 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.008 \\ 19 \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	1.5	ऑ\#\#	$\begin{aligned} & \text { EPB41L } \\ & \text { 4B } \end{aligned}$	erythrocyte membrane protein band 4.1 like 4B	54566
$\begin{gathered} 303 \boldsymbol{E}- \\ 02 \\ \hline \end{gathered}$	0.116	$\begin{gathered} 0.032 \\ 8 \\ \hline \end{gathered}$	1.5		AKRIC3	aldo－keto reductase family 1．member C3	8644
$\begin{gathered} 8.78 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0,049 \\ 5 \end{gathered}$	$\begin{gathered} 0.008 \\ 9 \end{gathered}$	1.5		ATP1B 1	ATPase， $\mathrm{Na}+/ \mathrm{K}+$ transporting，beta 1 polypentide	481
$\begin{gathered} 1.23 \mathrm{E}- \\ 02 \end{gathered}$	$\begin{gathered} 0.062 \\ 8 \end{gathered}$	$\begin{gathered} 0,012 \\ 4 \\ \hline \end{gathered}$	1，5		MY06	myosin VI	4646
$\begin{gathered} 7.09 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.042 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.005 \\ 5 \end{gathered}$	1.5		ZNF652	zinc finger protein 652	22834
$\begin{gathered} 3.42 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 804 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	4.5	$\begin{aligned} & 205916_{-} \\ & \text {at } \end{aligned}$	S100A7	S 100 calcium binding protein A7	6278
$\begin{gathered} 3.40 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0,000 \\ 802 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	3.0	$\begin{aligned} & 203757 \text { s } \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { CEACA } \\ & \text { M6 } \end{aligned}$	carcinoembryonic antigen－ related cell adhesion molecule 6 （non－specific cross reacting antigen）	4680
$\begin{gathered} 1.56 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.014 \\ 1 \end{gathered}$	$\begin{gathered} 0.001 \\ 3 \\ \hline \end{gathered}$	2.8	AFFX－ HUMRG E／M 1009 8＿5＿at	$\begin{aligned} & \text { LINC002 } \\ & 73 \\ & \hline \end{aligned}$	long intergenie non－protein coding RNA 273	649159
$\begin{gathered} 1.96 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.016 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ \quad 7 \\ \hline \end{gathered}$	2.7	```AFFX- r2- Hs18SrR NA-5 at```			
$\begin{gathered} 1.1 \mathrm{IE}- \\ 04 \end{gathered}$	$\begin{gathered} 0.001 \\ 91 \end{gathered}$	$\begin{gathered} \text { < le- } \\ 07 \end{gathered}$	2.7	$\begin{aligned} & 203535- \\ & \text { at } \end{aligned}$	S 100 A9	S 100 calcium binding protein A9	6280
$\begin{aligned} & 5.14 \mathrm{E}- \\ & 03 \end{aligned}$	$\begin{gathered} 0,033 \\ 7 \end{gathered}$	$\begin{gathered} 0.004 \\ 8 \end{gathered}$	2.6	$\begin{aligned} & 206378 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { SCGB2A } \\ & 2 \end{aligned}$	secretoglobin，family 2 A ， member 2	4250
$\begin{gathered} 175 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{aligned} & 0.002 \\ & 65 \end{aligned}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	2，6	$\begin{aligned} & 217528- \\ & \text { at } \end{aligned}$	CLCA2	chloride channel accessory 2	9635
$\begin{gathered} 5.53 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	2.4	$\begin{aligned} & \text { 206166_s } \\ & \text { at } \end{aligned}$	CLCA2	chloride channel accessory 2	9635
$\begin{gathered} \hline 3.78 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.026 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.003 \\ 9 \end{gathered}$	2.2	$\begin{aligned} & \text { 202917_s } \\ & \text { _at } \end{aligned}$	S 100A8	S 100 calcium binding protein A8	6279

$\begin{gathered} 3.17 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.004 \\ 22 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	2.2		CLCA2	chloride channel accessory 2	9635
$\begin{gathered} 2.46 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.003 \\ 47 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	2.2	$\begin{aligned} & \text { 2Q6164_ } \\ & \text { at } \end{aligned}$	CLCA2	chloride channel accessory 2	9635
$\begin{gathered} 1,15 \mathrm{E}- \\ 02 \end{gathered}$	$\begin{gathered} 0.059 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 0.011 \\ 8 \end{gathered}$	2.2	$\begin{aligned} & 209173- \\ & \text { at } \end{aligned}$	AGE2	anterior gradient 2 homolog (Xenopus laevis)	10551
$\begin{gathered} 1.45 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.013 \\ 3 \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \end{gathered}$	2.1	$\begin{aligned} & 214461_{-} \\ & \text {at } \end{aligned}$	LBP	lipopolys,accharid e binding protein	3929
$\begin{aligned} & 1.99 \mathrm{E}- \\ & 03 \end{aligned}$	$\begin{gathered} 0.016 \\ 8 \end{gathered}$	$\begin{gathered} 0.001 \\ 9 \end{gathered}$	2.1	$\begin{aligned} & 220: 192 \\ & \text { x_at } \end{aligned}$	SPDEF	SAM pointed domain containing ets transcription factor	25803
$\begin{gathered} 4.50 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{array}{r} 0,000 \\ 171 \\ \hline \end{array}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	2.1	$\begin{aligned} & 20656 \text { 1_s } \\ & \text { _at } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AKR 1B } 1 \\ & 0 \end{aligned}$	aldo-keto reductase family 1, member B10 (aldose reductase)	57016
$\begin{gathered} 591 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.006 \\ 79 \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \end{gathered}$	2.0	$\begin{aligned} & 204942 _s \\ & \text { a! } \end{aligned}$	$\begin{aligned} & \text { ALDH3 } \\ & \text { B2 } \\ & \hline \end{aligned}$	aldehyde dehydrogenase 3 family, member B2	222
$\begin{gathered} 1.76 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.015 \\ 3 \end{gathered}$	$\begin{gathered} 0.001 \\ 4 \end{gathered}$	2.0	$\begin{aligned} & 214774_{-} \\ & \text {x_at } \end{aligned}$	T0X3	TQX high mobility group box family member 3	27324
$\begin{gathered} 2.33 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \mathrm{i}) 00 \\ 604 \end{gathered}$	$\begin{gathered} \hline<\text { le- } \\ 07 \end{gathered}$	2.0	$\begin{aligned} & 202712 _s \\ & \text { at } \end{aligned}$			
$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	$\begin{aligned} & <1 \mathrm{e}- \\ & 07 \end{aligned}$	2.0	$\begin{aligned} & 218145- \\ & \text { at } \end{aligned}$	TRIB3	tribbles homolog 3 (Dresophila)	57761
$\begin{gathered} 1.99 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.016 \\ 8 \end{gathered}$	$\begin{gathered} 0.001 \\ 8 \end{gathered}$	2.0	$\begin{aligned} & 217284- \\ & \times \text { at } \end{aligned}$	SERHL2	serine hydrolase-like 2	253190
$\begin{gathered} 1 . \mathrm{S} 8 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.014 \\ 2 \end{gathered}$	$\begin{gathered} 0.001 \\ 8 \end{gathered}$	2.0	$\begin{aligned} & 217276 \\ & \text { xat } \\ & \hline \end{aligned}$	SERHL2	serine hydrolase-like 2	253190
$\begin{gathered} 1.43 \mathrm{E}- \\ 03 \end{gathered}$	0.013	$\begin{gathered} 0.001 \\ 2 \end{gathered}$	2.0	$\begin{aligned} & 216623 \\ & \mathrm{x} _ \text {at } \end{aligned}$	TOX3	TOX high mobility group box familv member 3	27324
$\begin{gathered} <1 \mathrm{le} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	2.0	$\begin{aligned} & 214073- \\ & \text { at } \end{aligned}$	CTTN	cortactin	2017
$\begin{gathered} 1.11 \mathrm{E}- \\ 02 \end{gathered}$	0.058	$\begin{gathered} 0.009 \\ 1 \end{gathered}$	2.0	$\begin{aligned} & 209309 \\ & \text { at } \end{aligned}$	AZGP!	aJpha-2-giycopiOtei n 1, zinc-binding	563
$\begin{gathered} 1.36 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.012 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 4 \end{gathered}$	1.9	$\begin{aligned} & 205979- \\ & \text { at } \end{aligned}$	$\begin{aligned} & \mathrm{SCGB} 2 \mathrm{~A} \\ & 1 \end{aligned}$	SeeretOglobin, family 2 A , member 1	4246
$\begin{gathered} 2.08 E- \\ 02 \end{gathered}$	$\begin{gathered} 0.089 \\ 8 \end{gathered}$	0.02	1.9	$\begin{aligned} & 214451 \\ & \text { at } \end{aligned}$	TFAP2B	transcription factor $\Lambda \mathrm{P}=2$ beta (activating enhancer binding protein 2 beta)	7021
$\begin{gathered} 1.79 \mathrm{E}- \\ 02 \end{gathered}$	$\begin{gathered} 0.081 \\ 4 \end{gathered}$	$\begin{gathered} 0.018 \\ 2 \end{gathered}$	1.9	$\begin{aligned} & 206799_{-} \\ & \text {at } \end{aligned}$	$\begin{aligned} & \text { SCGB1D } \\ & 2 \end{aligned}$	secreioglobin, family 1 D , member 2	10647
$\begin{gathered} 3.40 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{array}{r} 0.000 \\ 138 \\ \hline \end{array}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.9	$\begin{aligned} & 203967-. \\ & \text { at } \\ & \hline \end{aligned}$	CDC6	cell division cycle 6	990
$\begin{gathered} 2.84 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.003 \\ 88 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	1.9	$\begin{aligned} & 201650- \\ & \text { at } \\ & \hline \end{aligned}$	KRT 19	keratin 19	3880
$\begin{gathered} 1.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	1.8	$\begin{aligned} & 209605- \\ & \text { at } \end{aligned}$	TST	thiosulfate .sulfurtransferase (rhodanese)	7263:
$\begin{gathered} 8.02 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 51 \\ \hline \end{gathered}$	$\begin{aligned} & \text { < le- } \\ & \text { cs? } \end{aligned}$	1.8	$\begin{aligned} & \text { 209016_s } \\ & \text { at } \end{aligned}$	KRT7	keratin 7	3855
$\begin{gathered} 2.491 ; \\ 04 \end{gathered}$	$\begin{gathered} 0.003 \\ 5 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	1.8	$\begin{aligned} & 219300 \leq \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { CNTNA } \\ & \text { P2 } \end{aligned}$	contactin associated protein-like 2	26047
$\begin{gathered} 3.36 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.024 \\ 4 \end{gathered}$	$\begin{gathered} 0.003 \\ 2 \\ \hline \end{gathered}$	1.8	$\begin{aligned} & 2.16836 _s \\ & \text { at } \end{aligned}$	ERBB2	v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 , neuro/glioblasioma derived oncogene homolog (avian)	2064
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \\ \hline \end{gathered}$	1.8	$\begin{aligned} & 211752 \ldots \mathrm{~s} \\ & \text { at } \\ & \hline \end{aligned}$	NDUFS7	NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADHcoenzyme Q reductase)	374291
$3.49 \mathrm{E}-$	0.025	0.002	1.8	210397	DEFB 1	defensin, beta 1	1672

03	1			at			
$\begin{gathered} 4.06 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 909 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.8	$\begin{aligned} & 209398- \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { HIST1H } \\ & \text { 1C } \end{aligned}$	histone cluster $1, \mathrm{H} 1 \mathrm{c}$	3006
$\begin{gathered} 7.29 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.043 \\ 3 \end{gathered}$	$\begin{gathered} 0.006 \\ 9 \end{gathered}$	1.8	214243_s _at			
$\begin{gathered} 5.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0338 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.8	$\begin{aligned} & 205774 \\ & \text { at } \end{aligned}$	FI2	coagulation factor XII (Hageman factor)	2161
$\begin{gathered} 5,83 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,006: \\ 71 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \\ \hline \end{gathered}$	1.8	$\begin{aligned} & 208978 \\ & \text { at } \end{aligned}$	GRIP2	cysteine-rich protein 2	1397
$\begin{gathered} 5.68 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.006 \\ 59 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \\ \hline \end{gathered}$	1.8	$\begin{aligned} & 218677- \\ & \text { at } \\ & \hline \end{aligned}$	S1Q0A14	S 100 calcium binding protein A14	57402
$\begin{gathered} 7.30 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 244 \end{gathered}$	$\begin{gathered} <1 . \mathrm{e}- \\ 07 \end{gathered}$	1.8	$\begin{aligned} & \text { 2i4469_ } \\ & \text { at } \end{aligned}$			
$\begin{gathered} 10 \mathrm{OE}- \\ 07 \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{aligned} & <\text { le- } \\ & 07 \end{aligned}$	1.8	$\begin{aligned} & 213508 \text { _ } \\ & \text { at } \end{aligned}$	SPTSSA	serine paknitoyltfanslerase, small subunit A	171546
$\begin{gathered} 3.08 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0,004 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	1.8	$\begin{aligned} & 2012918 \\ & \text { at } \end{aligned}$	TOP2A	topoisomerase (DNA) II alpha 170 kDa	7153
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.8	$\begin{aligned} & \text { 202993_ } \\ & \text { at } \end{aligned}$	ILVBL	ilvB (bacterial aeetolactate syntbase)-like	10994
$\begin{gathered} 7.30 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.8	$\begin{aligned} & 219962 \\ & \text { at } \end{aligned}$	ACE2	angiotensin I converting enzyme (peptidyldipeptidase A) 2	59272
$\begin{gathered} 3.70 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 146 \end{gathered}$	$\begin{gathered} <1 \mathrm{le} \\ 07 \end{gathered}$	1.8	$\begin{aligned} & \text { 203968_s } \\ & \text { ai } \end{aligned}$	CDC6	cell division cycle 6	990
$\begin{gathered} 4.51 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 986 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	1.8	$\begin{aligned} & 222257 _\mathrm{s} \\ & \text { at } \end{aligned}$	ACE2	angiotensin I converting enzyme (peptidyldipeptidase A) 2	59272
$\begin{gathered} 6.22 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 25 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	1.8	$\begin{aligned} & 205364- \\ & \text { at } \end{aligned}$	ACOX2	acyl-CoA oxidase 2 , branched chain	8309
$\begin{gathered} 5.08 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.006 \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	1.8	$\begin{aligned} & 219010_{-} \\ & \text {at } \end{aligned}$	Clori'106	chromosome 1 open reading frame 106	55765
$\begin{gathered} 4.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & \hline 0.000 \\ & 0288 \end{aligned}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	1.8	$\begin{aligned} & \text { 209164_s } \\ & \text { at } \end{aligned}$	CYB561	cytochrome b-561	1534
$\begin{gathered} 3.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0224 \end{aligned}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	1.8	$\begin{aligned} & 218507- \\ & \text { at } \end{aligned}$	HILPDA	hypoxia inducible lipid droplet-associated	29923
$\begin{gathered} 6.59 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 3 \end{gathered}$	$\begin{gathered} \text { < le- } \\ \mathrm{cs:}^{\prime} \end{gathered}$	1.7	$\begin{aligned} & 201340 _ \text {s } \\ & \text { a.t } \end{aligned}$	ENC1	ectoderma!-neur\&t cortex 1 (with BTB domain)	8507
$\begin{gathered} 2.301 \% \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 104 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 2097 \llbracket 4 _s \\ & \text { at } \end{aligned}$	GDKN3	cyclin-dependent kinase inhibitor 3	1033
$\begin{gathered} 2.55 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.020 \\ 1 \end{gathered}$	$\begin{gathered} 0.003 \\ 1 \end{gathered}$	1.7	$\begin{aligned} & 210387- \\ & \text { at } \end{aligned}$			
$\begin{gathered} 7.46 \mathrm{E}- \\ 04 \end{gathered}$	0.008	$\begin{gathered} 0,000 \\ 8 \end{gathered}$	1,7	$\begin{aligned} & 219410- \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { TMEM4 } \\ & 5 \mathrm{~A} \end{aligned}$	transmembrane protein 45A	55076
$\begin{gathered} 1.21 \mathrm{E}- \\ 03 \end{gathered}$	0.011	0.001	1.7	at	$\begin{aligned} & \text { PDZKII } \\ & \text { PI } \end{aligned}$	PDZKl interacting protein 1	10158
$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 204824- \\ & \text { at } \end{aligned}$	ENDOG	endonuelease G	2021
$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	$\begin{gathered} <1 e^{-} \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 218001_{-} \\ & \text {at } \end{aligned}$	MRPS2	mitochondrial ribosomal protein S2	51116
$\begin{gathered} 6.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0386 \end{aligned}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	1,7	$\begin{aligned} & 204975- \\ & \text { at } \end{aligned}$	EMP2	epithelial membrane protein 2	2013
$\begin{gathered} 1.33 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.012 \\ 4 \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \end{gathered}$	1.7	$\begin{aligned} & 205258- \\ & \text { at } \end{aligned}$	INHBB	inhibit!, beta B	3625
$\begin{gathered} 5.60 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 202 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 205253- \\ & \text { at } \end{aligned}$	PBX 1	pre-B-celi leukemia homeobox : 1	5087
$\begin{gathered} 5.66 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.036 \\ 1 \end{gathered}$	$\begin{gathered} 0.005 \\ 2 \end{gathered}$	1.7	$\begin{aligned} & 202859 \\ & \text { xat } \end{aligned}$	IL8	interleukin 8	3576
$\begin{gathered} 2.35 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.003 \\ 35 \end{gathered}$	$\begin{gathered} 0,000 \\ 3 \end{gathered}$	1,7	$\begin{aligned} & \text { 209621_s } \\ & \text { _at } \end{aligned}$	PDL1M3	PDZ and LIM doniain 3	27295

$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.7	$\begin{aligned} & 215093 \\ & \text { at } \\ & \hline \end{aligned}$	NSDHL	$\mathrm{NAD}(\mathrm{P})$ dependent steroid dehydrogenase-hike	50814
$\begin{gathered} 4.72 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 02 \end{gathered}$	0000	1.7	$\begin{aligned} & 206110_{-} \\ & \text {at } \end{aligned}$	$\begin{aligned} & \text { HISTIH } \\ & 3 H \end{aligned}$	histone cluster l, H3h	8357
$\begin{gathered} 3.61 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.025 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.003 \\ 6 \\ \hline \end{gathered}$	1.7	$\begin{aligned} & 211652 _ \\ & \text {al } \end{aligned}$	LBP	lipopolysachande binding protein	3929
$\begin{gathered} 6.62 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.040 \\ 4 \end{gathered}$	0.007	1.7	$\begin{aligned} & 206714 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \mathrm{ALOX} 15 \\ & \mathrm{~B} \end{aligned}$	arachidonate 15 Jpoxygenase, type B	247
$\begin{gathered} 7.28 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.043 \\ 3 \end{gathered}$	$\begin{gathered} 0.006 \\ 8 \end{gathered}$	1.7	$\begin{aligned} & 215108_{-} \\ & \mathrm{xat} \end{aligned}$	TOX3	TOX high mobility group box family member 3	27324
$\begin{gathered} 8.53 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0008 \\ 82 \end{gathered}$	$\begin{gathered} 0001 \\ 2 \end{gathered}$	1.7	$\begin{aligned} & 205442 \\ & \text { at } \end{aligned}$	MFAP3L	microfibrillar-associated protein 3-like	9848
$\begin{gathered} 100 \mathrm{E} \\ 07 \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 201848 _8 \\ & \text { al } \\ & \hline \end{aligned}$	BNIP3	BCL2/adenovirus E1B 19 kDa interacting protein 3	664
$\begin{gathered} <1 \mathrm{e}- \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 208817- \\ & \mathrm{at} \\ & \hline \end{aligned}$	COMT	catechol- O methyltansferase	1312
$\begin{gathered} 3.45 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.128	$\begin{gathered} 0.033 \\ 5 \\ \hline \end{gathered}$	1.7	$\begin{aligned} & 220414- \\ & \text { at } \end{aligned}$	CALML 5	calmodulin-like 5	51806
$\begin{gathered} 4.75 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0000 \\ 1 \\ \hline \end{gathered}$	1.7	$\begin{aligned} & \hline 209114_{-} \\ & \text {at } \\ & \hline \end{aligned}$	TSPANI	tetraspamin 1	10103
$\begin{gathered} 160 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0801 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 219038 \\ & \text { at } \end{aligned}$	MORC4	MORC family CW-type zine finger 4	79710
$\begin{gathered} 299 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 729 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 203207 \mathrm{~s} \\ & \mathrm{at} \\ & \hline \end{aligned}$	MTFR1	mitochondrial fission regulator 1	9650
$\begin{gathered} 284 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0,000 \\ 708 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 212325 \\ & \text { at } \end{aligned}$	LIMCHL	LIM and calponin homology domains 1	22998
$\begin{gathered} 107 E \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0000 \\ 333 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 221563- \\ & \text { al } \end{aligned}$	DUSP10	dual specificity phosphatase 10	11221
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.7	$\begin{aligned} & 214264 _s \\ & \text { at } \end{aligned}$	$\begin{aligned} & \mathrm{EFCABI} \\ & 1 \end{aligned}$	EF-hand calcium binding domain 1$]$	90141
$\begin{gathered} 1.80 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 088 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	1.7	$\begin{aligned} & 202219 \\ & a \\ & \hline \end{aligned}$	SLC6A8	solute carrer family 6 (neurotransmiter transporter, creatme), member 8	6535
$\begin{gathered} 5.37 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.006 \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} 0000 \\ 3 \\ \hline \end{gathered}$	1.7	$\begin{aligned} & 209773 \text { _s } \\ & \text { at } \\ & \hline \end{aligned}$	RRM2	fibonucleotide reductase M2	6241
$\begin{gathered} 938 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 68 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	1.7	$\begin{aligned} & 219288 \\ & \text { at } \end{aligned}$	C3orll 4	chromosome 3 open reading frame 14	57415
$\begin{gathered} 8.20 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.047 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.008 \\ 6 \end{gathered}$	1.7	$\begin{aligned} & 214598 \\ & \text { at } \\ & \hline \end{aligned}$	CLDN8	claudin 8	9073
$\begin{gathered} 3.28 \mathrm{E}- \\ 0.4 \end{gathered}$	$\begin{gathered} 0.004 \\ 33 \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \end{gathered}$	1.7	$\begin{aligned} & 208284 \\ & \text { x_at } \end{aligned}$			
$\begin{gathered} 3.63 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.004 \\ 68 \end{gathered}$	$\begin{gathered} 0000 \\ 3 \end{gathered}$	1.7	$\begin{aligned} & 211417_{-} \\ & \times \text {at } \end{aligned}$			
$\begin{gathered} 1.02 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.010 \\ 1 \end{gathered}$	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	1.6	$\begin{aligned} & 208180 \leq s \\ & \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} 7.10 \mathrm{E} \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0,000 \\ 239 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6	$201287 \ldots \mathrm{~s}$ at	$\mathrm{SDC1}$	syndecan 1	6382
$\begin{gathered} 3.82 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0137	$\begin{gathered} 0.035 \\ 2 \\ \hline \end{gathered}$	1.6	AFFX- HUMRG E/M1009 8_M_at			
$\begin{gathered} 800 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0477 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 218261 \\ & a 8 \end{aligned}$	AP1M2	adaptor-related protein complex 1. ma 2 subumit	10053
$\begin{gathered} 1.38 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 22 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & \text { 204678_8 } \\ & \text { at } \end{aligned}$	KCNK1	potassium chamel. subfamily K member 1	3775
$\begin{gathered} 1.51 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 431 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 204179 \\ & \text { at } \\ & \hline \end{aligned}$	MB	myoglobin	4151
$<1 \mathrm{e}-$	<1 e-	<10 -	1.6	564 _at	GNAII	guanine nueleotide binding	2767

07	07	07				protein (G protein), alpha 11 (Goclass)	
$\begin{gathered} 1.39 \mathrm{E}- \\ 02 \end{gathered}$	$\begin{gathered} 0.068 \\ 6 \end{gathered}$	$\frac{0013}{7}$	1.6	$\begin{aligned} & 219612 \mathrm{~s} \\ & \mathrm{at} \end{aligned}$	FGG	fibrinogen gamma chain	2266
$\begin{gathered} 1.25 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.002 \\ 07 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 201846 _8 \\ & \text { at } \end{aligned}$	RYBP	RINGI and YYl binding protein	23429
$\begin{gathered} 379 \mathrm{E}- \\ 02 \end{gathered}$	0.136	$\begin{gathered} 0003 \\ 9 \\ \hline \end{gathered}$	1.6	AFEX- r2- Hs 18 SrR NA- M x at			
$\begin{gathered} 3.60 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 144 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 202275- \\ & \text { at } \end{aligned}$	G6PD	glucose-6-phosphate dehydrogenase	2539
$\begin{gathered} 2.80 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 213246_{-} \\ & \text {at } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TMEM2 } \\ & 51 \end{aligned}$	trammembrane protein 251	26175
$\begin{gathered} 150 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 076 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 212460 \\ & a t \end{aligned}$	SPTSSA	serine palmitoyltansferase. small subunit A	171546
$\begin{gathered} 1.00 \mathrm{E} \\ 07 \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	1.6	$\begin{aligned} & \text { 203189_s } \\ & \text { at } \end{aligned}$			
$\begin{gathered} 1.69 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.002 \\ 58 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 208546_{-} \\ & x_{-} \text {at } \end{aligned}$	$\begin{aligned} & \text { HIST1H } \\ & \text { 2BH } \end{aligned}$	histone cluster 1, H2bh	8345
$\begin{gathered} 1.99 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0,000 \\ 537 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 216607 _s \\ & \text { at } \end{aligned}$			
$\begin{gathered} 2.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{gathered} 0,000 \\ 0168 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 202528 \\ & \text { at } \end{aligned}$	GALE	UDP-galactose-4 epimerase	2582
$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & \text { 202587_s } \\ & a \end{aligned}$	AK1	adenylate kinase 1	203
$\begin{gathered} 281 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.003 \\ 84 \\ \hline \end{gathered}$	$\begin{gathered} 0000 \\ 3 \end{gathered}$	1.6	$\begin{aligned} & 212328 \\ & 3 \end{aligned}$	LIMCH	LIM and calponin homology donains 1	22998
$\begin{gathered} 236 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0,003 \\ 35 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	1.6	$\begin{aligned} & 204679- \\ & \text { at } \end{aligned}$	KCNK	potasium chamel. subfamily K, member 1	3775
$\begin{gathered} 139 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0,000 \\ 407 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 208677 _s \\ & \text { at } \end{aligned}$	BSG	basigin (Ok blood group)	682
$\begin{gathered} 9.60 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 306 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 209008{ }_{-} \\ & \times \mathrm{at} \\ & \hline \end{aligned}$	KRT8	keratin 8	3856
$\begin{gathered} 1.76 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.015 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 7 \\ \hline \end{gathered}$	1.6	$\begin{gathered} 202619 _ \\ a t \\ \hline \end{gathered}$	PLOD2	procollagen-lysine, 2 oxogluarate 5 -dioxygenase 2	5352
$\begin{gathered} 6.73 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0001 \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 204017 \\ & \text { at } \end{aligned}$	KDELR 3	KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 3	11015
$\begin{gathered} 190 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0909 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 202790 \\ & \text { at } \end{aligned}$	CLDN7	claudin 7	1366
$\begin{gathered} 2.08 \mathrm{E} \\ 02 \\ \hline \end{gathered}$	$\begin{gathered} 0.089 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 0.016 \\ 8 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 204914 _5 \\ & \text { at } \\ & \hline \end{aligned}$	SOXII	SRY (sex determining region Y) box 11	6664
$\begin{gathered} 5.70 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.006 \\ 6 \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \end{gathered}$	1.6	$\begin{aligned} & 202912 \\ & 4 \end{aligned}$	ADM	adrenomedullin	133
$\begin{gathered} 428 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.029 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.003 \\ 9 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 201884 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { CEACA } \\ & \mathrm{M} 5 \end{aligned}$	carcinoembryonis anigenrelated cell adhesion molecule 5	1048
$\begin{gathered} 3.57 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	0.13	$\begin{gathered} 0034 \\ 7 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 211682 \\ & \times \text { at } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { UGT2B2 } \\ & 8 \end{aligned}$	UDP glucuronosyltransferase 2 family. polypeptide B28	54490
$\begin{gathered} 4.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0288 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.6	204867 at	CCHFR	GTP cyclohydrolase I feedback regulator	2644
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 214463 \\ & \text { x_at } \end{aligned}$			
$\begin{gathered} 198 \mathrm{E}- \\ 02 \end{gathered}$	$\begin{gathered} 0.087 \\ 3 \end{gathered}$	$\begin{gathered} 0.022 \\ 6 \end{gathered}$	1.6	$\begin{aligned} & 209125 \\ & \text { at } \end{aligned}$	KRT6A	keraṫn 6A	3853

$\begin{gathered} 8.76 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 6 \\ \hline \end{gathered}$	0.000	1.6	$\begin{aligned} & 208579 \\ & \times \mathrm{al} \end{aligned}$			
$\begin{gathered} 2.39 \mathrm{E}- \\ 02 \\ \hline \end{gathered}$	$\begin{gathered} 0.099 \\ 2 \end{gathered}$	$\begin{gathered} 0020 \\ 1 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 212531_{-} \\ & \text {at } \end{aligned}$	LCN2	lipocalin 2	3934
$\begin{gathered} 1.07 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.010 \\ 5 \end{gathered}$	$\begin{gathered} 0.001 \\ 8 \end{gathered}$	1.6	$\begin{aligned} & \text { 215779_8 } \\ & \text { at } \end{aligned}$			
$\begin{gathered} 192 \mathrm{E} \\ 94 \end{gathered}$	$\begin{gathered} 0.002 \\ 85 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	1.6	$\begin{aligned} & 2147108 \\ & \text { at } \end{aligned}$	CCNB1	cyclin Bl	891
$\begin{gathered} 395 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.027 \\ 5 \end{gathered}$	$\begin{gathered} 0.003 \\ 7 \end{gathered}$	1.6	$\begin{aligned} & 202870 _8 \\ & \text { at } \end{aligned}$	CDC20	cell division cycle 20	991
$\begin{gathered} 9.86 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.009 \\ 85 \end{gathered}$	$\begin{gathered} 0001 \\ 1 \end{gathered}$	1.6	$\begin{aligned} & 205158 \\ & \text { at } \end{aligned}$	RNASE4	ribonuclease, RNase A family, 4	6038
$\begin{gathered} 382 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 869 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 208963 \\ & \text { x_at } \end{aligned}$			
$\begin{gathered} 5.04 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.033 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 0.004 \\ 6 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 211110 \leq 8 \\ & \text { at } \end{aligned}$	AR	androgen receptor	367
$\begin{gathered} 1.11 \mathrm{E} \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.010 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 6 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 204952_{-} \\ & \text {at } \end{aligned}$	LYPD3	LYG/PLAUR domain containing 3	27076
$\begin{gathered} 2.92 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.003 \\ 95 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 205311_{-} \\ & \text {at } \end{aligned}$	DDC	dopa decarboxylase (aromatic L-amino acid decarboxylase)	1644
$\begin{gathered} 107 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0010 \\ 5 \end{gathered}$	$\begin{gathered} 0.001 \\ 5 \end{gathered}$	1.6	$\begin{aligned} & 209919 \\ & \times \mathrm{at} \end{aligned}$			
$\begin{gathered} 310 \mathrm{E} \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0004 \\ \quad 15 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	1.6	$\begin{gathered} 211423 _8 \\ \Omega \\ \hline \end{gathered}$	SCSDL	sterol-C5-desaturase (ERG3 delta-5 destarase homolog, S. cerevisiae)like	6309
$\begin{gathered} <1 e- \\ 07 \\ \hline-2 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <10 \\ \quad 07 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 209482 \\ & a \\ & \hline \end{aligned}$	POP7	processing of precursor 7 , nibonuclease P/MRP subunit (S. cerevisiae)	10248
$\begin{gathered} 4.53 \mathrm{E} \\ 02 \end{gathered}$	0.152	0.045	1.6	$\begin{aligned} & 204623- \\ & \text { at } \end{aligned}$	TFF3	trefoil factor 3 (nttestinal)	7033
$\begin{gathered} 492 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.005 \\ 9 \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 205066 \mathrm{~s} \\ & \text { at } \end{aligned}$	ENPP1	ectomelcotide pyrophosphatase/pbosphodi esterase I	5167
$\begin{gathered} 156 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 44 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 212051- \\ & a \end{aligned}$	WIPE2	WAS/WASL interacing protein family, member 2	147179
$\begin{gathered} 6.79 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 218260 \\ & \text { at } \\ & \hline \end{aligned}$	DDA1	DETI and DDBI associated 1	79016
$\begin{gathered} 3.70 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 146 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 200616 _s \\ & \text { at } \end{aligned}$	MLEC	malection	9761
$\begin{gathered} 2.47 \mathrm{E} \\ 03 \end{gathered}$	$\begin{gathered} 0.019 \\ 6 \end{gathered}$	$\begin{gathered} 0.003 \\ 1 \end{gathered}$	1.6	$\begin{aligned} & 201952- \\ & \text { at } \end{aligned}$	ALCAM	activated leukocyte cell adhesion molecule	214
$\begin{gathered} 1.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{gathered} 952 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 214212 \\ & \mathrm{Xat} \\ & \hline \end{aligned}$	FERMT2	femmint family member 2	10979
$\begin{gathered} 1.20 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.002 \\ 03 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 200832 \mathrm{~s} \\ & \mathrm{at} \\ & \hline \end{aligned}$	SCD	stearoyl-CoA desaturase (delta-9-desaturase)	6319
$\begin{gathered} 1.90 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 519 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 214088 _8 \\ & - \\ & \hline \end{aligned}$	FUT3	fucosyltransferase 3 (galactoside 3(4)fucosyltransferase, Lewis blood group)	2525
$\begin{gathered} 1.09 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.010 \\ 6 \end{gathered}$	$\begin{gathered} 0001 \\ 2 \end{gathered}$	1.6	$\begin{aligned} & 212327- \\ & \text { at } \end{aligned}$	LIMCHI	LIM and calponin homology domans 1	22998
$\begin{gathered} 4.06 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0005 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 203764 \\ & \text { at } \end{aligned}$	DLGAP5	dises, large (Drosophila) homolog-associated proten 5	9787
$\begin{gathered} 3.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0224 \end{aligned}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 219819 _8 \\ & _a \end{aligned}$	MRPS28	mitoehondrial ribosomal protein S28	28957
3.000-	0.000	<1e	1.6	202201	BLVRB	bitiverdin reductase B	645

06	126	67		at		(flavin reductase (NADPH)	
$\begin{gathered} 1.50 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 076 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	16	$\begin{aligned} & 218451- \\ & \text { at } \end{aligned}$	CDCP	CUB domain containing protein 1	64866
$\begin{gathered} 1.09 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.001 \\ 39 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	1.6	$\begin{aligned} & 201037_{-} \\ & \text {at } \end{aligned}$	PFKP	phosphofructokinase. platelet	5214
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <16- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 218189 _s \\ & \text { at } \end{aligned}$	NANS	N-acetylneutaminic acid synthase	54187
$\begin{gathered} 1.42 \mathrm{E} \\ 02 \end{gathered}$	$\begin{gathered} 0.069 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0.014 \\ 1 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 205239 \\ & \text { at } \end{aligned}$			
$\begin{gathered} 1.88 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0016 \\ 1 \end{gathered}$	$\begin{gathered} 0.001 \\ 7 \end{gathered}$	1.6	$\begin{aligned} & 218888 _s \\ & \text { at } \end{aligned}$	NETO2	neuropilin (NRP) and tolloid (TLL)-like 2	81831
$\begin{gathered} 1.69 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.002 \\ 58 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	1.6	$\begin{aligned} & 215145 _ \\ & \text {al } \\ & \hline \end{aligned}$	CNTNA $\mathrm{P} 2$	contaction assocated protenl-lke 2	26047
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 220688 _8 \\ & \hdashline a t \end{aligned}$	MRTO4	mRNA turnover 4 homolog (S. cerevisine)	51154
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 202839 _\mathrm{s} \\ & _ \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NDUFB } \\ & 7 \\ & \hline \end{aligned}$	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, $7,18 \mathrm{kDa}$	4713
$\begin{gathered} 1.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6	31874_at	GAS2L1	```growth arrest-specific 2 like 1```	10634
$\begin{gathered} 103 \mathrm{E}- \\ 02 \end{gathered}$	$\begin{gathered} 0055 \\ 2 \end{gathered}$	$\begin{gathered} 0.008 \\ 2 \end{gathered}$	1.6	$\begin{aligned} & 210761 \mathrm{~s} \\ & \text { at } \end{aligned}$	CRB7	growth factor receptorbound protein 7	2886
$\begin{gathered} 5.55 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.006 \\ 47 \\ \hline \end{gathered}$	$\begin{gathered} 0000 \\ 6 \\ \hline \end{gathered}$	1.6	$\begin{aligned} & 217771 \\ & \text { af } \\ & \hline \end{aligned}$	GOLM	golgi membrane protein 1	51280
$\begin{gathered} 9.00 \mathrm{E} \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0513 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 218493 \\ & \mathrm{at} \end{aligned}$	SNRNP2 5	small nuclear ribonucleoproteín 25 kDa (U1/U12)	79622
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.6	$\begin{aligned} & 218206- \\ & \times \mathrm{at} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SCAND } \\ & 1 \end{aligned}$	SCAN domain containing 1	51282
$\begin{gathered} 1.77 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0,002 \\ 66 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	15	$\begin{aligned} & 203786 _s \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { TPD52L } \\ & 1 \end{aligned}$	tumor protein D52-like 1	7164
$\begin{gathered} 9,00 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 63 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	15	$\begin{aligned} & \text { 204348_s } \\ & a l \end{aligned}$			
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 212540 \\ & \text { at } \end{aligned}$	CDC34	cell division cycle 34	997
$\begin{gathered} 6.20 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 25 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 201702 _s \\ & \text { at } \end{aligned}$	PPPIR10	prokin phosphatase 1 . regulatory subunte 10	5514
$\begin{gathered} 353 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0.004 \\ 58 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	1.5	$\begin{aligned} & 200632 _s \\ & \text { at } \end{aligned}$	NDRGI	N-myc downstream regulated 1	10397
$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & \text { 208336_s } \\ & \text { al } \\ & \hline \end{aligned}$	TECR	trans-2,3-enoyl-CoA reducase	9524
$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <10- \\ 07 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 205141 \\ & \text { at } \end{aligned}$	ANG	angiogenin, ribomulease, RNase A family. 5	283
$\begin{gathered} 9.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0513 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 212807 _\mathrm{s} \\ & \text { at } \\ & \hline \end{aligned}$	SORT1	sortilin 1	6272
$\begin{gathered} 2.39 \mathrm{E} \\ 02 \end{gathered}$	$\begin{gathered} 0.099 \\ 4 \end{gathered}$	$\begin{gathered} 0.021 \\ 5 \end{gathered}$	1.5	$\begin{aligned} & 213711- \\ & \text { at } \end{aligned}$	KRT81	keratio 81	3887
$\begin{gathered} 2.91 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0,000 \\ 717 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 219929 _8 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { ZFYYE } \\ & 1 \\ & \hline \end{aligned}$	zinc finger, FYVE domain containing 21	79038
$\begin{gathered} 1.58 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 447 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 214004 _8 \\ & \end{aligned}$	VGLL4	vestigial like 4 (Drosophila)	9686
$\begin{gathered} 132 \mathrm{E}- \\ 04 \end{gathered}$	0.002	$\begin{gathered} 0000 \\ 2 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 217188 _8 \\ & \text { at } \end{aligned}$	Cl4orf	chromosome 14 open reading frame 1	11161
$\begin{gathered} 1.66 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0,000 \\ 464 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 211612 \mathrm{~s} \\ & \text { at } \end{aligned}$	ILI3RAI	interleukin 13 receptor. alpha 1	3597
$\begin{gathered} 9.06 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.009 \\ 2 \end{gathered}$	0.001	1.5	$\begin{aligned} & 209522 \text { _ } 8 \\ & \text { al } \end{aligned}$	CRAT	camitine O acetylumaferase	1384
<10-	$<1 e^{-}$	$<1 \mathrm{e}$	1.5	218188_s	TMM13	translocase of inner	26517

07	07	07		_at		mitochondrial membrane 13 homolog (yeasty	
$\begin{gathered} 1.57 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ \quad 44 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	1.5	$\begin{aligned} & 212141 \\ & \text { at } \end{aligned}$	MCM4	minichiOmosome maintenance complex component 4	4173
$\begin{gathered} 8.24 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.008 \\ 62 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \end{gathered}$	1.5	$\begin{aligned} & 210919 _\mathrm{s} \\ & \text { at } \\ & \hline \end{aligned}$	SRIX, Vi	steroid-5-alpha-redietase alpha polypeptide 1 (3-6x05 alpha-steroid delta 4 deliydrogenase alpha 1)	6715
$\begin{gathered} 2.12 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.003 \\ 0 \mathrm{~S} \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 202890_{-} \\ & \text {at } \end{aligned}$	MAP?	mierotiibde-assoeiated protein 7	9053
$\begin{gathered} 5.30 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0,000 \\ 196 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 218049 _\mathrm{s} \\ & \text { at } \end{aligned}$	MRPL13	mitoehondri al ribosomal protein LI3	28998
$\begin{gathered} 1.88 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.016 \\ 1 \end{gathered}$	$\begin{gathered} 0.001 \\ 3 \end{gathered}$	1.5	$\begin{aligned} & 217562- \\ & \text { at } \end{aligned}$	EAM5C	family with sequence similarity 5 , member C	339479
$\begin{gathered} 1,15 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 349 \end{gathered}$	$\begin{gathered} \hline<\mathrm{le}- \\ 07 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & \text { 219390_ } \\ & \text { at } \end{aligned}$	FKBP 14	FK506 binding protein 14, $22 k D \mathrm{Da}$	55033
$\begin{gathered} 6.30 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 22 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 202671 _\mathrm{s} \\ & \text { at } \end{aligned}$	PDXK	pyridoxal (pyridexine, vitamin B6) kinase	8566
$\begin{gathered} 2.34 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	0.019	$\begin{gathered} 0.002 \\ 9 \\ -\quad 9 \\ \hline \end{gathered}$	1.5.	$\begin{aligned} & 205990 _\mathrm{s} \\ & \text { at } \end{aligned}$	WNT5A	wingless-type MMTV integration site family, member 5A	7474
$\begin{gathered} 1.15 \mathrm{E}- \\ 02 \end{gathered}$	0.06	$\begin{gathered} 0.011 \\ 4 \end{gathered}$	1.5	$\begin{aligned} & 219529- \\ & \text { at } \end{aligned}$	CL1C3	chloride intracellular channel 3	9022
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ \operatorname{tr} 7 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 218460 \\ & \text { at } \end{aligned}$	NDUFA 8	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, $8,19 \mathrm{kDa}$	4702
$\begin{gathered} 1.91 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.016 \\ 3 \end{gathered}$	$\begin{gathered} 0.001 \\ 2 \end{gathered}$	1,5	$\begin{aligned} & \text { 202095_s } \\ & \text { at } \end{aligned}$	BIRCS	baculoviral IAP repeat containing 5	332
$\begin{gathered} 8.76 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.008 \\ 98 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 203397 _\mathrm{s} \\ & -\mathrm{at} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GALNT } \\ & 3 \end{aligned}$	UDP-N-acetyl-alpha-Dgalactosaimne:polypept:ide N - aeetylgalactosaminyltransfe rase 3 (GalNAc-T3)	2591
$\begin{gathered} 1.71 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 475 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 221734_{-} \\ & \text {at } \end{aligned}$	PRRC1	proline-rich coiled-coil 1	133619
$\begin{gathered} 1.53 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.013 \\ \mathrm{~g} \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 218186 \\ & \text { at } \end{aligned}$	RAB25	RAB 25, member RAS oncogene family	57111
$\begin{gathered} 1.00 \mathrm{E} \\ 07 \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	1.5	203190			
$\begin{gathered} 1.19 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.011 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	1.5	$\begin{aligned} & 20494 \text { 1_s } \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { ALDH3 } \\ & \text { B2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { aldehyde dehydrogenase } 3 \\ & \text { family, member B2 } \end{aligned}$	222
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{aligned} & \text { < le- } \\ & \text { er? } \end{aligned}$	$\begin{gathered} \text { < le- } \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 209194- \\ & \text { at } \end{aligned}$	CETN2	centrin, EE-hand protein, 2.	1069
$\begin{gathered} 2.691 ; \\ 02 \end{gathered}$	0.107	$\begin{gathered} 0.026 \\ 2 \end{gathered}$	1.5	$\begin{aligned} & \text { 206463_s } \\ & _^{\text {at }} \end{aligned}$	DHRS2	dehydrogenase/reductase (SDR family) member 2	10202
$\begin{gathered} 431 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.005 \\ 32 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	1.5	$\begin{aligned} & 21061.3 _S \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { SYNGR } \\ & 1 \end{aligned}$	synaptogyriii 1	9145
$\begin{gathered} 2.69 \mathrm{E}- \\ 02 \end{gathered}$	0.107	0.026	1.5	$\begin{aligned} & \text { AFFX- } \\ & \text { r2- } \\ & \text { Hs28SrR } \\ & \text { NA-3_at } \end{aligned}$			
$\begin{gathered} 2.25 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.018 \\ 4 \end{gathered}$	$\begin{gathered} 0.001 \\ 4 \end{gathered}$	1.5	$\begin{aligned} & \text { 208079_s } \\ & \text { a.t } \end{aligned}$	AURKA	aurora kinase A	6790
$\begin{gathered} 2.73 \mathrm{E}- \\ 02 \end{gathered}$	0.108	$\begin{gathered} 0.029 \\ 4 \end{gathered}$	1.5	$\begin{aligned} & 211653 \\ & \text { x_at } \end{aligned}$	AKR1C2	aldo-keto reductase family L member C2	1.646
$\begin{gathered} 1.30 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} \hline 0.000 \\ 387 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 20374 Q_{-} \\ & \text {at } \end{aligned}$	$\begin{aligned} & \text { MPHOS } \\ & \text { PH6 } \end{aligned}$	M-phase phosphoproiein 6	10200
8.66E-	0.001	0.000	1.5	213843	SLC6A8	solute carrier family 6	65:35

05	59	1		x_at		(neurotransmitter transporter, creatine), member 8	
$\begin{gathered} 1.77 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.015 \\ 4 \end{gathered}$	$\begin{gathered} 0.001 \\ 3 \end{gathered}$	1.5	$\begin{aligned} & \text { 219978_s } \\ & \text { at } \end{aligned}$	NIISAP1	nucleolar and spindle associated protein 1	51203
$\begin{gathered} 5, \mathrm{XIE}- \\ 07 \end{gathered}$	$\begin{gathered} 0,000 \\ 0338 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 2032 \mathrm{~S} 2_{-} \\ & \text {at } \end{aligned}$	GBE1	glucan (1,4-alpha-). branching enzyme 1	2632
$\begin{gathered} 2.39 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.019 \\ 2 \end{gathered}$	$\begin{gathered} 0.002 \\ 4 \end{gathered}$	1.5	$\begin{aligned} & \text { 207469_s } \\ & \text { at } \end{aligned}$	PIR	pirin (iron-binding nuclear protein)	8544
$\begin{gathered} 4.08 \mathrm{E}- \\ 02 \end{gathered}$	0,142	$\begin{gathered} 0.044 \\ 7 \end{gathered}$	1.5	$\begin{aligned} & 201983 _\mathrm{s} \\ & \text { at } \end{aligned}$	EGFR	epidermal growth factor receptor	1956
$\begin{gathered} 4.10 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 158 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 21 \mathrm{Q} 058- \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { MAPK } 1 \\ & 3 \end{aligned}$	mitogen-activated protein kinase 13	5603
$\begin{gathered} 1.46 \mathrm{E}- \\ 02 \end{gathered}$	0.071	$\begin{gathered} 0.013 \\ 3 \end{gathered}$	1.5	$\begin{aligned} & 217014 _s \\ & \text { a! } \end{aligned}$			
$\begin{gathered} 7.60 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 251 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 208928 \\ & \text { at } \end{aligned}$	FOR	P450 (cytochrome) oxidoredijctase	5447
$\begin{aligned} & 1.91 \mathrm{E}- \\ & 02 \end{aligned}$	$\begin{gathered} 0,085 \\ 1 \end{gathered}$	$\begin{gathered} 0.020 \\ 4 \end{gathered}$	1.5	$\begin{aligned} & 205306 \\ & \text { x_at } \end{aligned}$	KMO	fcynurenine 3moiraoxygenase (kynurenine 3-hydroxylase)	8564
$\begin{gathered} 2.26 \mathrm{E}- \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 592 \\ \hline \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 209806 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { HIST1H } \\ & 2 \mathrm{BK} \\ & \hline \end{aligned}$	histone cluster 1, H2bk	85236
$\begin{gathered} 4.98 \mathrm{E}- \\ 03 \end{gathered}$	0.033	$\begin{gathered} 0.005 \\ 1 \end{gathered}$	1.5	$\begin{aligned} & 212458- \\ & \text { at } \end{aligned}$	SPRED2	sprouty-related, EVH] domain containing 2	200734
$\begin{gathered} 3.04 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.004 \\ 09 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \end{gathered}$	1,5	$\begin{aligned} & 2182 \mathrm{SO}_{-} \\ & \text {x_at } \end{aligned}$			
$\begin{gathered} <\mathrm{te}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{le}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.5	40562_at	GNA11	guanine nucleotide binding protein (G protein), al pha 11 (Gq class)	2767
$\begin{gathered} 5,23 \mathrm{E}_{\mathrm{a}} \\ 04 \end{gathered}$	$\begin{gathered} 0.006 \\ 19 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	1.5	$\begin{aligned} & 20991_{-} \\ & x^{2} \text { at } \end{aligned}$	$\begin{aligned} & \text { HIST } 1 \mathrm{H} \\ & \text { 2BD } \end{aligned}$	histone cluster 1, H2bd	3017
$1.29 \mathrm{E}-$	$\begin{gathered} 0.002 \\ 1 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 214472- \\ & \text { at } \end{aligned}$			
$\begin{gathered} 6,52 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.007 \\ 27 \end{gathered}$	0,001	1,5	$\begin{aligned} & 215780 _s \\ & \text { at } \end{aligned}$			
$\begin{gathered} 3.09 \mathrm{E}- \\ 03 \end{gathered}$	0.023	$\begin{gathered} 0.003 \\ 8 \end{gathered}$	1.5	$\begin{aligned} & \text { 202975_s } \\ & \text { at } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { RHGBT } \\ & \text { B3 } \end{aligned}$	Rho-related BTB: domain containing 3	22836
$\begin{gathered} 5.10 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 19 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & \text { 219061_s } \\ & \text { at } \end{aligned}$	LAGE3	L antigen family, member 3	8270
$\begin{gathered} 1.24 \mathrm{E}- \\ 03 \end{gathered}$	0.011	0.001	1.5	$\begin{aligned} & \text { 210904_s } \\ & \text { at } \end{aligned}$	IL13RA1	interleukin 13 receptor, alpha 1	3597
$\begin{gathered} 1.70 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.002 \\ 59 \end{gathered}$	$\begin{gathered} 0,000 \\ 1 \\ \hline \end{gathered}$	1,5	$\begin{aligned} & \text { 201791_s } \\ & \text { at } \end{aligned}$	DHCR7	7-dehydrocholesterol reductase	1717
$\begin{gathered} 1.00 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} \hline 0.000 \\ 0561 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	1.5	$\begin{aligned} & 218498 _s \\ & \text { at } \end{aligned}$	ERGIL	ERO1-like (S. cerevisiae)	30001
$\begin{gathered} 1.38 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 406 \end{gathered}$	$\begin{aligned} & \text { < le- } \\ & \text { cs? } \end{aligned}$	1.5	$\begin{aligned} & \text { 201925_s } \\ & \text { at } \end{aligned}$	CD55	GD55 molecule, decayaccelerating factor for complement (Cromer blood group)	1604
$\begin{gathered} 3.43 \mathrm{E}- \\ 02 \end{gathered}$	0.127	$\begin{gathered} 0.034 \\ 4 \end{gathered}$	1.5	$\begin{aligned} & 203571 _8 \\ & \text { at } \end{aligned}$	ADIRF	adipogenesis regulatory factor	10974
$\begin{gathered} 2.80 \mathrm{E}- \\ 04 \end{gathered}$	0.003	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	1.5	$\begin{aligned} & 205379- \\ & \text { at } \end{aligned}$	CBR3	carbonyl reductase 3	874
$\begin{gathered} 1.02 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.001 \\ 79 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	1.5	$\begin{aligned} & 216804 _\mathrm{s} \\ & \text { at } \end{aligned}$	PDL1M5	PDZ and L1M domain 5	10611
$\begin{gathered} 8.32 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.008 \\ 68 \end{gathered}$	$\begin{gathered} 0.001 \\ 2 \end{gathered}$	1.5	$\begin{aligned} & 214290 _ \text {s } \\ & \text { at } \end{aligned}$			
$\begin{gathered} 2.62 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.020: \\ 5 \\ \hline \end{gathered}$	0.003	1.5	$\begin{aligned} & 202620 \text { s } \\ & \text { at } \end{aligned}$	PLOD2	procollagen-lysine, 2oxoglutarate 5 -dioxygenase	5352

						2	
$\begin{gathered} 2.00 \mathrm{E} \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.3	$\begin{aligned} & 214768 \\ & \text { x_at } \end{aligned}$	IGKC	immunoglobulin kappa constant	3514
$\begin{gathered} 1.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.3	$\begin{aligned} & 211644 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$			
$\begin{gathered} <1 \mathrm{l}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.3	$\begin{aligned} & 217148_{-} \\ & \times \mathrm{at} \end{aligned}$			
$\begin{gathered} 2.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.3	$\begin{aligned} & 216491_{-} \\ & \times \text {at } \end{aligned}$	IGHM	immunoglobulin heavy constant mu	3507
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.3	$\begin{aligned} & 205267 \\ & a t \\ & \hline \end{aligned}$	$\begin{aligned} & \text { POU2AF } \\ & 1 \end{aligned}$	POU class 2 associating factor 1	5450
$\begin{gathered} <12- \\ 07 \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.3	$\begin{aligned} & 211637- \\ & \times \text { at } \end{aligned}$			
$\begin{gathered} 2.20 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 102 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.3	$\begin{aligned} & 214777- \\ & \text { at } \end{aligned}$			
$\begin{gathered} 1.10 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0599 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.3	$\begin{aligned} & 211634 \\ & \times \quad a t \end{aligned}$			
$\begin{gathered} 2.00 \mathrm{E} \\ \hline 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0168 \end{aligned}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	0.3	$\begin{aligned} & 209374 \leq 5 \\ & \text { at } \\ & \hline \end{aligned}$	IGHM	immunoglobulin heavy constant mu	3507
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.3	$\begin{aligned} & 217179 \\ & \times \text { at } \end{aligned}$			
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 216984 \\ & \text { xat } \end{aligned}$			
$\begin{gathered} 3.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0224 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 216576 \\ & \text { x-at } \end{aligned}$			
$\begin{gathered} 900 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0513 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 217022 \leq 5 \\ & a 1 \end{aligned}$			
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 217235 \\ & \times \mathrm{at} \end{aligned}$	IGLL5	inmunoglobulia lambdalike polypeptide 5	1E+08
$\begin{gathered} 1.70 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0836 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 211635- \\ & \mathrm{xal} \\ & \hline \end{aligned}$			
$\begin{gathered} 1.10 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0,000 \\ 0599 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 216401- \\ & \text { xat } \end{aligned}$			
$\begin{gathered} 1.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 9.52 \mathrm{~L} \\ -06 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 217281_{-} \\ & \times \mathrm{at} \\ & \hline \end{aligned}$			
$\begin{gathered} 2.70 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 116 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 216510_{-} \\ & x_{-} \text {at } \end{aligned}$			
$\begin{gathered} 1.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 211643 \\ & \text { X_at } \\ & \hline \end{aligned}$			
$\begin{gathered} 1.20 \mathrm{E} \\ 06 \\ \hline \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0634 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 215176 \\ & \text { xat } \\ & \hline \end{aligned}$	IGKC	immunoglobulin kappa constant	3514
$\begin{gathered} 1.00 \mathrm{E} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 216557 \\ & x_{a} a t \\ & \hline \end{aligned}$			
$\begin{gathered} 500 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 0338 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 212592 \\ & a \\ & \hline \end{aligned}$	IGJ	immunoglobulin I polypeptide, linker protein for mmunoglobulin alpha and mu polypeptides	3512
$\begin{gathered} 9.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{gathered} 0.000 \\ 0513 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 214916 \\ & \text { xat } \\ & \hline \end{aligned}$			
$\begin{gathered} 1.74 \mathrm{E}- \\ 03 \\ \hline \end{gathered}$	$\begin{gathered} 0.015 \\ 2 \end{gathered}$	$\begin{gathered} 0001 \\ 3 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 205044 \\ & \text { at } \\ & \hline \end{aligned}$	GABRP	gamma-aminobutyric acid (GABA) A receptor pi	2568
$\begin{gathered} 720 \mathrm{E} \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 241 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 211645 \\ & \text { x_at } \\ & \hline \end{aligned}$			
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <10- \\ 07 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 212588 \\ & a! \end{aligned}$	PTPRC	protein tymosine phosphatase, receptor type, C	5788
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 210915 \\ & x_{-} a t \end{aligned}$	TRBC1	T cell receptor beta constant 1	28639

$\begin{gathered} 7.62 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 45 \\ \hline \end{gathered}$	$\begin{gathered} 0000 \\ 5 \end{gathered}$	0.4	$\begin{aligned} & 203915- \\ & \text { at } \end{aligned}$	CXCL9	chemokine (C-X-C motii) higand 9	4283
$\begin{gathered} 2.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 211650 \\ & \times 4 t \end{aligned}$			
$\begin{gathered} 1.40 \mathrm{E} \\ 06 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0717 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 214973 \\ & \times \text { at } \end{aligned}$	1GHD	Immunoglobuln heavy constant delta	3495
$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.4	$\begin{gathered} 207238 s \\ \pi \end{gathered}$	PTPRC	protein tyrosine phosphatase receptor type. C	5788
$\begin{gathered} 6.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0386 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 217227- \\ & \mathrm{x}_{\mathrm{at}} \end{aligned}$	$\begin{aligned} & \text { IGLVI- } \\ & 44 \\ & \hline \end{aligned}$	immunoglobulim lambda variable 1-44	28823
$\begin{gathered} 1.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <10- \\ 07 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & \text { 211796_s } \\ & \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <\mathrm{Ie} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 206666 \\ & \text { at } \\ & \hline \end{aligned}$	GZMK	grazzyme K (granzyme 3; tryptase II)	3003
$\begin{gathered} 5.05 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 07 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.4	$\begin{aligned} & 216560 \\ & \times _a t \\ & \hline \end{aligned}$	IGLCI	immunoglobulin lambda constant 1 (Mcg marker)	3537
$\begin{gathered} 7.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0425 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 216207 \\ & \text { x_at } \\ & \hline \end{aligned}$			
$\begin{gathered} 2.01 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0,002 \\ 95 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & \text { 205890_s } \\ & \text { at } \end{aligned}$			
$\begin{gathered} 2.92 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0000 \\ 717 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.4	$\begin{aligned} & 210072 \\ & \text { at } \end{aligned}$	CCL19	ehenokine (C.C motio) ligand 19	6363
$\begin{gathered} 9.00 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 289 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.4	$\begin{aligned} & 217378 \\ & x a t \\ & \hline \end{aligned}$			
$\begin{gathered} 190 \mathrm{E} \\ 06 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0909 \end{aligned}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.4	$\begin{aligned} & 209138 \\ & \times \mathrm{at} \end{aligned}$			
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 208798_{-} \\ & x_{\text {_at }} \end{aligned}$	$\begin{aligned} & \text { GOLGA } \\ & 8 \mathrm{~A} \end{aligned}$	golgin As family, member A	23015
$\begin{gathered} 3.10 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0,000 \\ 129 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.5	$\begin{aligned} & 214677 \\ & \mathrm{xat} \end{aligned}$			
$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{aligned} & <1 e \\ & 07 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 211868 \\ & \times \text { at } \end{aligned}$			
$\begin{gathered} 4.00 \mathrm{E} \\ 07 \end{gathered}$	$\begin{aligned} & 0000 \\ & 0288 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 205159 \\ & a t \end{aligned}$	CSF2RB	Colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)	1439
$\begin{gathered} 3.80 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 149 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 211798- \\ & x a t \end{aligned}$	IGL3 3	immunoglobulim lambda joining 3	28831
$\begin{gathered} 1.03 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0,001 \\ 81 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 211430 \mathrm{~s} \\ & \text { at } \end{aligned}$			
$\begin{gathered} 2.70 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 116 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 204891 _8 \\ & \text { at } \\ & \hline \end{aligned}$	LCK	lymphocyte-specific protein tyrosine kinase	3932
$\begin{gathered} 3.60 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 144 \end{gathered}$	$\begin{gathered} <10- \\ 07 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 217480 \\ & \times \quad \mathrm{at} \\ & \hline \end{aligned}$			
$\begin{gathered} 1.88 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0016 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 3 \end{gathered}$	0.5	$\begin{aligned} & 205242 \\ & \text { at } \\ & \hline \end{aligned}$	CXCL13	chemokine (C-X.C motif) ligand 13	10563
$\begin{gathered} 3.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0224 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 205831 \\ & \text { at } \\ & \hline \end{aligned}$	CD 2	CD2 molecule	914
$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.5	204116 at	IL2RG	interleukin 2 receptor, gamma	3561
$\begin{gathered} 800 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0477 \end{aligned}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 207339 \mathrm{~s} \\ & \mathrm{at} \end{aligned}$	LTB	lymphotoxin beta (TNF superfamily, member 3)	4050
$\begin{gathered} 6.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0386 \end{aligned}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 212827- \\ & \text { at } \\ & \hline \end{aligned}$	IGHM	immunoglobulin heavy constant mu	3507
$\begin{gathered} 8.31 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 55 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.5	$\begin{aligned} & 215214- \\ & \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} 1.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 215949 \\ & x_{-} a t \end{aligned}$			
$7.93 \mathrm{E}-$	0.001	0.000	0.5	204563	SELL	selectin L	6402

05	49	1		at			
$\begin{gathered} 2.50 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 111 \end{gathered}$	$\begin{gathered} 0000 \\ 1 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 214669 \\ & \text { xat } \end{aligned}$	IGKC	immunoglobulin kappa constant	3514
$\begin{gathered} 1.07 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.001 \\ 86 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 206134 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { ADAMD } \\ & \mathrm{ECl} \end{aligned}$	ADAM-like, decysin 1	27299
$\begin{gathered} 7.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0425 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 217258 \\ & \text { x_at } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IGLV1- } \\ & 44 \\ & \hline \end{aligned}$	immunoglobulin lambda varisble 1-44	28823
$\begin{gathered} 394 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 888 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 211633 \\ & x_{\text {_at }} \end{aligned}$	1GFG1	immunoglobulin heavy constant gamma) (G1m marker)	3500
$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 210425 \\ & \times \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} 3.00 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0224 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 211639- \\ & \times \quad \text { at } \end{aligned}$			
$\begin{gathered} 5.16 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 09 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 209392 \\ & \text { a } \\ & \hline \end{aligned}$	ENPP2	ectonucleotide pyrophosphatase/phosphodi esterase 2	5168
$\begin{gathered} 300 \mathrm{E} \\ 07 \end{gathered}$	$\begin{gathered} 0.000 \\ 0224 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	05	$\begin{aligned} & 21393 \\ & \times a t \end{aligned}$	TRBC	T cell receptor beta constant 1	28639
$\begin{gathered} 1.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -86 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 212314 \\ & \text { at } \end{aligned}$	SELIL3	sel-1 suppressor of lin-12- like 3 (C. elegans)	23231
$\begin{gathered} 4.40 \mathrm{E} \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 168 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 215379 \\ & \times a t \end{aligned}$			
$\begin{gathered} 7.35 \mathrm{E}- \\ 03 \end{gathered}$	$\begin{gathered} 0.043 \\ 6 \end{gathered}$	$\begin{gathered} 0.005 \\ 9 \end{gathered}$	0.5	$\begin{aligned} & 203290 \\ & \text { at } \end{aligned}$	HLADQAI	major histocompatibiliy complex, class II, DQalpha 1	3117
$\begin{gathered} 2.70 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 116 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 215121 \\ & x_{\sim} \text { at } \end{aligned}$			
$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 213142 \\ & \times \text { at } \end{aligned}$	PION	pigeon homolog (Drosophila)	54103
$\begin{gathered} 1.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 217157 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$			
$\begin{gathered} 120 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 362 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.5	$\begin{aligned} & 211881_{-} \\ & x_{\text {_at }} \end{aligned}$	IGLJ 3	immunoglobuln lambda joming 3	28831
$\begin{gathered} 6.74 \mathrm{E} \\ 63 \\ \hline \end{gathered}$	$\begin{gathered} 0.040 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.005 \\ 7 \\ \hline \end{gathered}$	05	$\begin{aligned} & 213831 \\ & a t \\ & \hline \end{aligned}$			
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	05	$\begin{aligned} & 209670 \\ & \text { at } \end{aligned}$	TRAC	T cell receptor alpha constant	28755
$\begin{gathered} 5.37 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0001 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 217767_{-} \\ & \text {at } \end{aligned}$	C3	complement componem 3	718
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 213502 \\ & \mathrm{xat} \end{aligned}$	$\begin{aligned} & \text { GUSBPI } \\ & 1 \end{aligned}$	glacuronidase, beta pscudogene 11	91316
$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 67 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	05	$\begin{aligned} & 204912 \\ & \text { an } \\ & \hline \end{aligned}$	IL IORA	interleukin 10 receptor, alpha	3587
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 209685 \text { _s } \\ & \text { at } \\ & \hline \end{aligned}$	PRKCB	protein kinase C. beta	5579
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 222150 \leq \\ & \\ & \hline \end{aligned}$	PION	pigeon homolog (Drosophila)	54103
$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 215946 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$	IGLL3P	immunoglobulin lambdalike polypeptide 3 , pscudogene	91353
$\begin{gathered} 500 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0338 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 206337 \\ & \text { at } \\ & \hline \end{aligned}$	CCR7	chenokine (CC monf) receptor 7	1236
$\begin{gathered} 7.40 \mathrm{E} \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 246 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 213888 _s \\ & a t \\ & \hline \end{aligned}$	TRAF3I P3	TRAF3 interacting protein 3	80342
$\begin{gathered} 100 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0561 \end{aligned}$	$\begin{gathered} 0.000 \\ \quad 1 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 214836 \\ & \text { x_at } \end{aligned}$			
$\begin{gathered} 2.00 \mathrm{E} \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.5	204674 at	LRMP	lymphoid-restricted membrane protein	4033

$\begin{gathered} 6.80 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 232 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.5	$\begin{aligned} & 211908 \\ & \times \text { at } \end{aligned}$	IGK@	immunoglobulin kappa locus	50802
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <18- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 211649 \\ & x_{\text {at }} \end{aligned}$			
$\begin{gathered} 8.14 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 221728 \\ & x_{a} \mathrm{at} \end{aligned}$	XIST	X mactive specifis transcript (non-proten coding)	7503
$\begin{gathered} 100 \mathrm{E} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 203879 \\ & \text { at } \end{aligned}$	PIK 3CD	phosphatidylinositol-4,5bisphosphate 3-kinase catalytic subunit delta	5293
$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	38149_at	$\begin{aligned} & \text { ARHGA } \\ & \text { P25 } \end{aligned}$	Rho GTPase activating protein 25	9938
$\begin{gathered} 6.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0386 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 205668_{-} \\ & \text {at } \\ & \hline \end{aligned}$	LY75	lymphocyte antigen 75	4065
$\begin{gathered} 2.00 \mathrm{E}- \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 204057 \\ & \text { a } \\ & \hline \end{aligned}$	IRF8	interferon regulatory fator 8	3394
$\begin{gathered} 128 \mathrm{E} \\ 02 \end{gathered}$	$\begin{gathered} 0.064 \\ 6 \end{gathered}$	$\begin{gathered} 0.013 \\ 4 \end{gathered}$	0.5	$\begin{aligned} & 220625 _s \\ & \text { at } \end{aligned}$	ELFS	E74 like factor 5 (ets donain transcription factor)	2001
$\begin{gathered} 6.20 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 217 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.5	$\begin{aligned} & 221671- \\ & x_{-a t} \end{aligned}$			
$\begin{gathered} 1.37 \mathrm{E} \\ 04 \end{gathered}$	$\begin{gathered} 0002 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 214657 \text { s } \\ & \text { at } \end{aligned}$			
$\begin{gathered} 500 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{aligned} & 0000 \\ & 0338 \end{aligned}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	0.5	204118 at	CD48	CD48 molecule	962
$\begin{gathered} 4.70 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 178 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.5	$\begin{aligned} & 221651 \\ & \times \mathrm{at} \end{aligned}$			
$\begin{gathered} 6.00 \mathrm{E} \\ \hline \quad 07 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0386 \end{aligned}$	$\begin{gathered} 0,000 \\ -\quad 1 \\ \hline-\quad . \end{gathered}$	0.5	$\begin{gathered} 205049 _8 \\ \text { at } \end{gathered}$	CD79A	CD79a molecule, inmunoglobulin-associated alpha	973
$\begin{gathered} 1.90 \mathrm{E}- \\ 06 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0909 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 211742 _ \\ & \text {at } \end{aligned}$	EVI2B	ecotropic viral integration site 2B	2124
$\begin{gathered} 3.74 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0,000 \\ 856 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	202746 at	ITM2A	integral membrane protem 2A	9452
$\begin{gathered} 444 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 98 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & \text { 203868_s } \\ & a \end{aligned}$	VCAM	vascular cell adhesion molecule 1	7412
$\begin{gathered} 3.66 \mathrm{E}- \\ 04 \end{gathered}$	$\begin{gathered} 0.004 \\ 71 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 216853 \\ & \times \text { a } \\ & \hline \end{aligned}$			
$\begin{gathered} 4.80 \mathrm{E}- \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0005 \\ 79 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 205569 \\ & \text { at } \end{aligned}$	LAMP3	lysosomal-associated membrane protein 3	27074
$\begin{gathered} 3.51 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0,000 \\ 82 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.5	$\begin{aligned} & 210356 \\ & \mathrm{xat} \\ & \hline \end{aligned}$	MSAAI	membrane-spaning 4domains, subfamily A , member 1	931
$\begin{gathered} 9.10 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 0.000 \\ 292 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	0.5	$\begin{aligned} & 211641 \\ & \mathrm{xat} \\ & \hline \end{aligned}$			
$\begin{gathered} 5.23 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 212311 \\ & a \end{aligned}$	SELIL 3	sel-1 suppressor of lin-12like 3 (C. elegans)	23231
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 221978 \\ & \text { at } \\ & \hline \end{aligned}$	HLA-F	major histocompatibility complex, class I. F	3134
$\begin{gathered} 3.19 \mathrm{E} \\ 05 \end{gathered}$	$\begin{gathered} 0.000 \\ 759 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 208335 \mathrm{~s} \\ & \text { at } \end{aligned}$	DARC	Duffy blood group, chemokine receptor	2532
$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 213160 \\ & \text { at } \\ & \hline \end{aligned}$	DOCK2	dedicator of cytokinesis 2	1794
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <10- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 202510 \text { 8 } \\ & \text { al } \end{aligned}$	$\begin{aligned} & \text { TNFAIP } \\ & 2 \\ & \hline \end{aligned}$	tumor necrosis factor. alpha-induced protein 2	7127
$\begin{gathered} 2.59 \mathrm{E} \\ 05 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 657 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 205861 \\ & \text { at } \end{aligned}$	SPIB	Spi-B transcription factor (Spi-1/PU. 1 related)	6689
$\begin{aligned} & <1 e- \\ & 07 \\ & \hline \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 213375 \mathrm{~s} \\ & \text { at } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N4BP2L } \\ & 1 \\ & \hline \end{aligned}$	NEDD4 binding protein 2like 1	90634
481 E	0.001	0.000	0.6	212671 s			

05	04	1		_at			
$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 211339 \mathrm{~s} \\ & \text { at } \end{aligned}$	ITK	IL2-inducible T-cell kinase	3702
$\begin{gathered} 1.00 \mathrm{E} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 203471 _s \\ & \text { at } \end{aligned}$	PLEK	pleckstrin	5341
$\begin{gathered} <1 e- \\ 67 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 212232 \\ & a \end{aligned}$	FNBP4	formim binding protein 4	23360
$\begin{gathered} 94 \mathrm{E}- \\ 05 \end{gathered}$	$\begin{gathered} 0.001 \\ 69 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 205488 \\ & 21 \end{aligned}$	GZMA	granzyme A (granzyme 1, cytotoxic T-lymphocyteassociated serine esterase 3)	3001
$\begin{gathered} 0.0000 \\ \quad 3 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 731 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 213539_{-} \\ & \text {at } \end{aligned}$	CD3D	CD3d molecule, delta (CD3-TCR complex)	915
$\begin{gathered} 0.0000 \\ 013 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0677 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 211748 \\ & \mathrm{x} \text { at } \end{aligned}$	PTGDS	prostaglandin D2 synthase 21 kDe (brain)	5730
$\begin{gathered} 0.0000 \\ 164 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 461 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 204198 _8 \\ & \text { al } \end{aligned}$	RUNX 3	runt-related transcription factor 3	864
$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	0.6	$214093 \text { s }$	FUBPI	far upstream element (FUSE) binding protein 1	8880
$\begin{gathered} 00000 \\ 045 \\ \hline \end{gathered}$	$\begin{gathered} 0000 \\ 171 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 209606 \\ & \text { at } \\ & \hline \end{aligned}$	CYTIP	eytohesin 1 interacting protein	9595
$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 212980 \\ & \mathrm{at} \quad \end{aligned}$	USP34	ubiquitin specific peptidase 34	9736
$\begin{gathered} 0.0005 \\ 974 \\ \hline \end{gathered}$	$\begin{gathered} 0.006 \\ 83 \\ \hline \end{gathered}$	0.001	0.6	$\begin{aligned} & 219014_{-} \\ & \text {at } \end{aligned}$	PLAC8	placenta-specific 8	51316
$\begin{gathered} 0.0000 \\ 165 \end{gathered}$	$\begin{gathered} 0.000 \\ 462 \end{gathered}$	$\begin{gathered} <10- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 210972 \\ & x_{\text {_at }} \end{aligned}$			
$\begin{gathered} 0.0000 \\ 847 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 57 \\ \hline \end{gathered}$	$\begin{gathered} <l e- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 210839 _8 \\ & \text { _at } \end{aligned}$	ENPP2	ectomucleotide pyrophosphatase/phosphodi esterase 2	5168
$\begin{gathered} 0.0000 \\ 634 \end{gathered}$	$\begin{gathered} 0,001 \\ 27 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 211640 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$			
$\begin{gathered} 0.0173 \\ 219 \end{gathered}$	$\begin{gathered} 0.079 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.016 \\ 6 \end{gathered}$	0.6	$\begin{aligned} & 209480 \\ & \mathrm{at} \end{aligned}$	$\begin{aligned} & \text { HLA- } \\ & \text { DQB1 } \end{aligned}$	major histocompatibility complex, class II, DQ beta 1	3119
$\begin{gathered} 0.0000 \\ 024 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 107 \end{gathered}$	$\begin{gathered} <10- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 219505 \\ & \mathrm{a} \\ & \hline \end{aligned}$	CECRI	cat eye syndrome chromosome region, candidate 1	51816
$\begin{gathered} 0.0000 \\ 308 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 742 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 221601 _s \\ & a t \end{aligned}$	FAIM 3	Fas apoptotic inhibitory molecule 3	9214
$\begin{gathered} 0.0000 \\ 007 \\ \hline \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0425 \end{aligned}$	$\begin{gathered} <10- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 219812- \\ & \text { at } \\ & \hline \end{aligned}$	PVRIG	pollovinus receptor related immomoglobulin domain containing	79037
$\begin{gathered} 0.0003 \\ 28 \end{gathered}$	$\begin{gathered} 0.004 \\ 33 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	0.6	$\begin{aligned} & \text { 214453_s } \\ & \text { at } \end{aligned}$	IFI4	merferon-induced protein 44	10561
$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 203332 _5 \\ & a \\ & \hline \end{aligned}$	INPP50	inositol polyphosphate-5phosphatase, 145 kDa	3635
$\begin{gathered} 0.0000 \\ 143 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 415 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 204661 \\ & \text { at } \end{aligned}$	CDS2	CD52 molecule	1043
$\begin{gathered} 0.0000 \\ 513 \end{gathered}$	$\begin{gathered} 0.001 \\ 08 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \end{gathered}$	0.6	$\begin{aligned} & 214218 _s \\ & -4 \end{aligned}$	XIST	X inactive specific transcript (non-protein coding)	7503
$\begin{gathered} 0.0001 \\ 076 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 86 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	0.6	34210 at	CD52	CD52 molecule	1043
$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 217317 \leq 5 \\ & a l \end{aligned}$			
$\begin{gathered} 0.0000 \\ 002 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 210538 _s \\ & \text { at } \end{aligned}$	BIRC3	baculoviral LAP tepeat containing 3	330
$\begin{gathered} 0.0000 \\ 068 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 232 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 221602 _8 \\ & \text { at } \end{aligned}$	FAIM3	Fas apoptotic inhibitory molecule 3	9214

$\begin{gathered} 0.0000 \\ 044 \end{gathered}$	$\begin{gathered} 0.000 \\ 168 \end{gathered}$	$\begin{gathered} <1 e \\ 0 ? \end{gathered}$	0.6	$\begin{aligned} & 204 \mathrm{~S} 82_{-} \\ & \text {at } \end{aligned}$	ARHGA P25	Rho GTPase activating protein 25	9938
$\begin{gathered} 0.0000 \\ 062 \end{gathered}$	$\begin{gathered} 0.000 \\ 217 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 204192 \\ & \text { at } \end{aligned}$	CD37	CD37 molecule	951
$\begin{gathered} <1 \mathrm{le}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <10- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & \text { 205997- } \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { ADAM2 } \\ & 8 \end{aligned}$	ADAM metallopeptidase domain 28	10863
$\begin{gathered} 0.0000 \\ 037 \end{gathered}$	$\begin{gathered} 0.000 \\ 146 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 209829, \\ & \text { at } \end{aligned}$	FAM65B	family with sequence similarity 65 , member f	9750
$\begin{gathered} 0.0000 \\ 158 \\ \hline \end{gathered}$	$\begin{gathered} 0,000 \\ 447 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 219359- \\ & \text { at } \end{aligned}$	ATHL1	ATH1, acid trehaiase-like 1 (yeast)	80162
$\begin{gathered} 0.0000 \\ 136 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 401 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 212187- \\ & x_{\text {_at }} \end{aligned}$	PTGDS	prostaglandin D2 synthase 21 kDa (brain)	5730
$\begin{gathered} 0.0000 \\ 114 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 347 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & \text { 204890_s } \\ & \text { a! } \\ & \hline \end{aligned}$	LCK	lynrphocyte-speeilic protein tyrosine kinase	3932
$\begin{gathered} 0.0000 \\ 01 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0561 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 216542_{-} \\ & x_{-} \text {at } \end{aligned}$			
$\begin{gathered} 0.0000 \\ 001 \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \\ \hline \end{gathered}$	$\begin{gathered} \hline<\mathrm{le}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 219279- \\ & \text { at } \end{aligned}$	DOCK10	dedicator of cytoldnesis 10	55619
$\begin{gathered} 0.0000 \\ 242 \end{gathered}$	$\begin{gathered} 0.000 \\ 623 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 21!: 996 _s \\ & \text { at: } \end{aligned}$			
$\begin{gathered} 0.0000 \\ 059 \end{gathered}$	$\begin{gathered} 0.000 \\ 211 \end{gathered}$	$\begin{gathered} <1 \mathrm{le}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 209671 _ \\ & \text {x_at } \end{aligned}$			
$\begin{gathered} 0.0000 \\ 003 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0224 \\ & \hline \end{aligned}$	$<1 e$	0.6	$\begin{aligned} & 218805 \\ & \text { at } \quad \end{aligned}$			
$\begin{aligned} & <1 \mathrm{e}- \\ & 07 \end{aligned}$	$\begin{gathered} \text { <ie- } \\ 07 \end{gathered}$	$\begin{gathered} \text { < le- } \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 218614_{-} \\ & \text {at } \end{aligned}$	$\begin{aligned} & \text { KIAA } 15 \\ & 51 \end{aligned}$	K1AA1551	55196
$\begin{gathered} 0.0000 \\ 2 \$ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 713 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	0.6	$\begin{aligned} & \text { 201236_s } \\ & \text { at } \end{aligned}$	BTG2	BTG family, member 2	7832
$\begin{gathered} 0.0000 \\ 033 \end{gathered}$	$\begin{gathered} 0.000 \\ 135 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 2.13359-. \\ & \text { at } \end{aligned}$	HNRNP D	heterogeneous nuclear ribonucleoprotein D (AUrich element RNA binding protein $1,37 \mathrm{kDa}$)	3184
$\begin{gathered} 0.0000 \\ 002 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	0,6	$\begin{aligned} & \text { 202957- } \\ & \text { at } \end{aligned}$	HGLS 1	hematopoietic cell-specific Lyri substrate 1	3059
$\begin{gathered} 0.0000 \\ 01 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0561 \\ & \hline \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 213603 _s \\ & -a t \\ & \hline \end{aligned}$	RAC2	ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2)	5880
$\begin{gathered} 0.0297 \\ 372 \end{gathered}$	0.115	$\begin{gathered} 0.027 \\ 6 \end{gathered}$	0.6	$\begin{aligned} & \text { 202037_s } \\ & \text { at } \end{aligned}$	SFRPl	secreted frizzled-related protein 1	6422
$\begin{gathered} 0.0000 \\ 737 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 41 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 205692 _ \text {s } \\ & \text { at } \end{aligned}$	CD38	CD38 molecule	952
$\begin{gathered} 0.0011 \\ 094 \\ \hline \end{gathered}$	$\begin{gathered} 0.010 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & \text { 209504_s } \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { PLFKH } \\ & \text { B1 } \end{aligned}$	pleckstrin homology domain containing, family B (evectins) member 1	58473
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 218456 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { CAPRIN } \\ & 2 \end{aligned}$	caprin family member 2	65981
$\begin{gathered} 0.0000 \\ 002 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{aligned} & \text { < le } \\ & \text { cs? } \end{aligned}$	0.6	$\begin{aligned} & 205291^{2} \\ & \text { at } \end{aligned}$	IL2RB	interleukin 2 receptor, beta	3560
$\begin{gathered} 0.0000 \\ 037 \end{gathered}$	$\begin{gathered} 0.000 \\ 146 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 205821_{-} \\ & \text {at } \end{aligned}$			
$\begin{gathered} <1 e^{-} \\ 07 \end{gathered}$	$\begin{aligned} & <_{e}^{e} \\ & 07 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 203528 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { SEMA4 } \\ & \text { D } \end{aligned}$	sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short. cytoplasmic domain. (semaphorin) 41)	10507
$\begin{gathered} 0.0000 \\ 019 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0909 \end{aligned}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 209723 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { SERPIN } \\ & \text { B9 } \\ & \hline \end{aligned}$	serpin peptidase inhibitor, clade B (ovalbumin).	5272

						member 9	
$\begin{gathered} 0.0001 \\ 686 \end{gathered}$	$\begin{gathered} 0.002 \\ 58 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 217418 \\ & \text { xat } \end{aligned}$	MS4A1	membrane-spaming 4domains. subfamily A , member 1	931
$\begin{gathered} 0.0000 \\ 253 \end{gathered}$	$\begin{gathered} 0.000 \\ 646 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.6	$\begin{aligned} & 220954 _s \\ & \text { at } \end{aligned}$	PLLRB	paired immunoglobin-like type 2 receptor beta	29990
$\begin{gathered} 0.0000 \\ 013 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0677 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 205758 \\ & 3! \end{aligned}$	CD8A	CD8a molecule	925
$\begin{gathered} 0.0001 \\ 079 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 87 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 204834_{-} \\ & \text {at } \end{aligned}$	FGL2	fibrinogen-like 2	10875
$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 209619 \\ & \text { at } \\ & \hline \end{aligned}$	$\mathrm{CD74}$	CD74 nolecule, major histocompatibility complex, class II invariant chain	972
$\begin{gathered} 0.0000 \\ 232 \end{gathered}$	$\begin{gathered} 0.000 \\ 603 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 213915- \\ & \text { at } \end{aligned}$	NKG7	natural killer cell group 7 sequence	4818
$\begin{gathered} 0.0000 \\ 023 \end{gathered}$	$\begin{gathered} 0.000 \\ 104 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 210116_{-} \\ & a \end{aligned}$	SH2DIA	SH2 domain containing 1A	4068
$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 215193 \\ & \times \text { at } \end{aligned}$			
$\begin{gathered} 00001 \\ 04 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 82 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	0.6	209083 at	COROI	coronin, actin binding protein. IA	11151
$\begin{gathered} 0.0224 \\ 506 \end{gathered}$	$\begin{gathered} 0.094 \\ 6 \end{gathered}$	$\begin{gathered} 0.020 \\ 1 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 209842 \\ & \text { at } \quad \end{aligned}$	SOX10	SRY (sex determining region Y)-box 10	6663
$\begin{gathered} 0.0004 \\ 459 \end{gathered}$	$\begin{gathered} 0.005 \\ 46 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 205798_{-} \\ & \text {at } \end{aligned}$	IL7R	interleukin 7 receptor	3575
$\begin{gathered} 0.0039 \\ 118 \end{gathered}$	$\begin{gathered} 0.027 \\ 4 \end{gathered}$	$\begin{gathered} 0.003 \\ 2 \end{gathered}$	0.6	$\begin{aligned} & 208791 \\ & a t \end{aligned}$	CLU	chusterin	1191
$\begin{gathered} 0.0013 \\ 661 \end{gathered}$	$\begin{gathered} 0.012 \\ 6 \end{gathered}$	$\begin{gathered} 0.001 \\ 3 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 213674 \\ & x_{-} \text {at } \end{aligned}$			
$\begin{gathered} 00000 \\ 003 \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0224 \\ & \hline \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 202803 _s \\ & \text { at } \\ & \hline \end{aligned}$	ITGB2	integrin, beta 2 (complement component 3 receptor 3 and 4 subunit)	3689
$\begin{gathered} 0.0000 \\ 048 \end{gathered}$	$\begin{gathered} 0.000 \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	35974_at	LRMP	lymphoid-restricted membrane protein	4033
$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 203416 \\ & a t \quad \end{aligned}$	CD53	CD53 molecule	963
$\begin{gathered} 0.0000 \\ 038 \end{gathered}$	$\begin{gathered} 0.000 \\ 149 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 203382 _ \\ & a t \end{aligned}$	APOE	anolipoprotein E	348
$\begin{gathered} 0.0000 \\ 005 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0338 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{gathered} 211991 \mathrm{~s} \\ \mathrm{ar} \\ \hline \end{gathered}$	$\begin{aligned} & \text { HLA } \\ & \text { DPAI } \end{aligned}$	major histocompatibility complex, class II, DP alpha 1	3113
$\begin{gathered} 0.0000 \\ 101 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 319 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 221768 \\ & \text { at } \end{aligned}$			
$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 220046 _s \\ & \text { _al } \end{aligned}$	CCNL	cyclin L1	57018
$\begin{gathered} 0.0000 \\ 005 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0338 \end{aligned}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 208894_{-} \\ & \text {at } \end{aligned}$	HLADRA	major histocompatibility complex. class II, DR alpha	3122
$\begin{gathered} 0.0000 \\ 622 \\ \hline \end{gathered}$	$\begin{gathered} 0001 \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 220330 _s \\ & \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SAMSN } \\ & 1 \\ & \hline \end{aligned}$	SAM domain, SH3 domain and nuclear localization signals 1	64092
$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 204670 \\ & \mathrm{xat} \\ & \hline \end{aligned}$			
$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 209312 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$			
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 204923 \\ & a t \quad \end{aligned}$	SASH3	SAM and SH3 domain containing 3	54440
$\begin{gathered} 00000 \\ 001 \\ \hline \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.6	$212307 _8$	OGT	O-linked N acetylghicosamine (ClCNAC) transferase	8473

$\begin{gathered} 0.0000 \\ 007 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0425 \end{aligned}$	$\begin{gathered} <1 e_{-} \\ 0 ? \end{gathered}$	0.6	$\left.\right\|_{\text {at }} ^{202663-}$	WIPF1	WASAVASL interacting protein family, member 1	7456
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} \text { < } \mathrm{l}- \\ 07 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	0.6	$\underbrace{221087 _s}_{\text {at }}$	APOL3	apolipoprotein L, 3	80833
$\begin{gathered} 0.0000 \\ 056 \end{gathered}$	$\begin{gathered} 0,000 \\ 202 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	0.6	$\begin{aligned} & \text { 213326_ } \\ & \text { at } \end{aligned}$	VAMP1	vesicle-associated nietiibrafie protein 1 (synaptobreYin 1)	6843
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\underbrace{204613}_{\text {at }}$	PLCG2	phospholipase C, gamma 2 (phosphatidylinositdlspecifie)	5336
$\begin{gathered} 0.0000 \\ 003 \\ \hline \end{gathered}$	$\begin{aligned} & 0,000: \\ & 0224 \end{aligned}$	$\begin{gathered} <\mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 210982 \text { _s } \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { FI.A } \\ & \text { DRA } \end{aligned}$	major histocompatibility complex, class II, DR alpha	3122
$\begin{gathered} 0.0001 \\ 138 \\ \hline \end{gathered}$	$\begin{gathered} 0.00! \\ 94 \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \end{gathered}$	0.6	$\begin{aligned} & 204994_{-} \\ & \text {at } \end{aligned}$	MX2	myxovirus resistance (influenza 2 (mouse)	4600
$\begin{gathered} 0.0059 \\ 061 \\ \hline \end{gathered}$	$\begin{gathered} 0,037 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.005 \\ 8 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & \text { 203638_s } \\ & \text { a! } \\ & \hline \end{aligned}$	FGFR2	fibroblast growth factor receptor 2	2263
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 209734_{-} \\ & \text {at } \end{aligned}$	$\begin{aligned} & \text { NCKAP } \\ & 1 \mathrm{~L} \\ & \hline \end{aligned}$	NGK-assoeiated protein 1like	3071
$\begin{gathered} 0.0000 \\ 001 \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & \text { 207777_s } \\ & \text { a.t } \end{aligned}$	SP 140	SP140 nuclear body protei n	11262
$\begin{gathered} 0.0000 \\ 025 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 111 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 203185 \\ & \text { at } \end{aligned}$	RASSF2	R as association (RalGDS/AF-6) domain family member 2.	9770
$\begin{gathered} 0.0000 \\ 149 \end{gathered}$	$\begin{gathered} 0,000 \\ 43 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 204446 _\mathrm{s} \\ & \text { at } \end{aligned}$	AL0X5	arachidonate 5lipoxygenase	240
$\begin{gathered} 0,0000 \\ 204 \end{gathered}$	$\begin{gathered} \text { o.000 } \\ 548 \end{gathered}$	$\begin{gathered} 0,000 \\ 1 \end{gathered}$	0,6	$\begin{aligned} & 216250 _\mathrm{s} \\ & \text { at } \end{aligned}$	LPXN	leup axin	9404
$\begin{gathered} 0.0000 \\ 47 \end{gathered}$	$\begin{gathered} 0.001 \\ 02 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{le}- \\ 07 \end{gathered}$	0.6	$202747 \text { _s }$	ITM2A	integral membrane protein 2 A	9452
$\begin{gathered} 0.0000 \\ 678 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & \text { eil } 19199 \\ & \text { at } 9 \end{aligned}$	CXCR4	$\begin{aligned} & \text { chemoldne (C-X-C motif) } \\ & \text { receptor } 4 \end{aligned}$	7852
$\begin{gathered} 0.0000 \\ 778 \end{gathered}$	$\begin{gathered} 0,001 \\ 47 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 211654- \\ & 1 \mathrm{at} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HLA- } \\ & \text { DQBI } \end{aligned}$	major histocompatibility complex, class Π, DQ beta 1	3119
$\begin{gathered} 00001 \\ 269 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 09 \\ \hline \end{gathered}$	$\begin{gathered} 0,000 \\ 2 . \\ \hline \end{gathered}$	0,6	$\begin{aligned} & \begin{array}{l} 205541 _\mathrm{s} \\ \text { at } \end{array} \\ & \hline \end{aligned}$	GSPT2	G1 to S phase transition 2	23708
$\begin{gathered} 0.0166 \\ 882 \end{gathered}$	$\begin{gathered} 0.077 \\ 7 \end{gathered}$	$\begin{gathered} 0.015 \\ 9 \end{gathered}$	0.6	$\begin{aligned} & 204259- \\ & \text { at } \end{aligned}$	MMP7	matrix metallopeptidase 7 (matrilysin, uterine)	4316
$\begin{gathered} 0.0003 \\ 392 \end{gathered}$	$\begin{gathered} 0.004 \\ 45 \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \end{gathered}$	0.6	$\begin{aligned} & \text { 209846_s } \\ & \text { at } \\ & \hline \end{aligned}$	BTN3A2	$\begin{aligned} & \text { butyrophilin, subfamily } 3, \\ & \text { member A2 } \end{aligned}$	11118
$\begin{gathered} 0.0000 \\ 007 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,000 \\ 0425 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 219191 _s \\ & \text { at } \end{aligned}$	B1N2	bridging integrator 2	51411
$\begin{gathered} \text { < le- } \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 212176 \\ & \text { at } \end{aligned}$	PNISR	PNN-interacting serine/arginine-rich protein	25957
$\begin{gathered} 0.0000 \\ 15 \end{gathered}$	$\begin{gathered} 0.000 \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0,6	$\begin{aligned} & 204352- \\ & \text { at } \end{aligned}$	TRAF5	TNF receptor-associated factor 5	7188
$\begin{gathered} 0.0000 \\ 142 \end{gathered}$	$\begin{gathered} 0.000 \\ 4.13 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & \text { 217143_S } \\ & \text { a.t } \end{aligned}$	YME-1L1	YMEl-like 1 (S. cerevisiae)	10730
$\begin{gathered} 0.0148 \\ 915 \end{gathered}$	0.072	$\begin{gathered} 0.017 \\ 7 \end{gathered}$	0.6	$\begin{aligned} & 2^{206157}- \\ & \text { at } \end{aligned}$	PTX3	pentraxin 3. long	5806
$\begin{gathered} 0.0008 \\ 368 \end{gathered}$	$\begin{gathered} 0.008 \\ 72 \end{gathered}$	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	0.6	$\begin{aligned} & 216541 \\ & \text { x_at } \end{aligned}$			
$\begin{gathered} <1 \mathrm{l}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & \text { 20S298_s } \\ & \text { at } \end{aligned}$	BTN2A2	butyrophilin, subfamily 2 , member A2	10385
$\begin{gathered} 0.0000 \\ 003 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0224 \end{aligned}$	$\begin{gathered} \hline \text { le- } \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 211005= \\ & \text { at } \end{aligned}$	LAT	linker for activation of T cells	27040
$\begin{gathered} 0.0000 \\ 522 \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & <1 e- \\ & 07 \end{aligned}$	0.6	$\begin{aligned} & 206133 \\ & \text { at } \end{aligned}$	XAFI	XIAP associated factor I	54739
0.0000	0.001	0.000	0.6	20338 1_s	APOE	apolipoprotein E	348

795	5	2		_at			
$\begin{gathered} 0.0095 \\ 93 \\ \hline \end{gathered}$	$\begin{gathered} 0.052 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0009 \\ 6 \end{gathered}$	0.6	$\begin{aligned} & 204439 \\ & \text { at } \end{aligned}$	IFI44L	interferon-induced protein 44-like	10964
$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} \text { < le- } \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 201137 _s \\ & \text { al } \end{aligned}$	HLA- DPB1	major histocompatibility complex, class II, DP beta 1	3115
$\begin{gathered} 0.0000 \\ 012 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0634 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 212179 \\ & a 8 \end{aligned}$	PNISR	PNN-interacting serine/argimine-rich protein	25957
$\begin{gathered} 0.0000 \\ 006 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0386 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 213293_{-} 8 \\ & \text { at } \end{aligned}$	TRIM22	tripartite motif containing 22	10346
$\begin{gathered} 0.0005 \\ 693 \\ \hline \end{gathered}$	$\begin{gathered} 0.006 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0000 \\ 2 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 204655- \\ & \mathrm{at} \\ & \hline \end{aligned}$	CCL5	chemokine (C.C motii) ligand 5	6352
$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 203547_{-} \\ & \text {at } \end{aligned}$	CD4	CD4 molecule	920
$\begin{gathered} 0.0120 \\ 383 \\ \hline \end{gathered}$	0.062	$\begin{gathered} 0.012 \\ 6 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 210029 \\ & \text { at } \\ & \hline \end{aligned}$	IDO1	indoleamine 2,3dioxygenase 1	3620
$\begin{gathered} 0.0000 \\ 011 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0599 \end{aligned}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 210346 \mathrm{~s} \\ & \text { at } \end{aligned}$	CLK4	CDC-like kinase 4	57396
$\begin{gathered} 0.0000 \\ 422 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 939 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 206978 \\ & \text { at } \end{aligned}$	CCR2	chemokine (C-C moti) receptor 2	729230
$\begin{gathered} 0.0000 \\ 505 \end{gathered}$	$\begin{gathered} 0.001 \\ 07 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 221969 \\ & \text { at } \end{aligned}$	PAX5	paired box 5	5079
$\begin{gathered} 0.0000 \\ 239 \end{gathered}$	$\begin{gathered} 0.000 \\ 617 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 205269 \\ & \text { at } \end{aligned}$	LCP2	lymphocyte eytosolic protein 2 SH2 domain containing leukocyte protein of 76 kDa)	3937
$\begin{gathered} <10- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	$\begin{gathered} <10- \\ 07 \\ \hline \end{gathered}$	0.6	$213475 \leq s$	ITGAL	integrin alpha L (antigen CDIIA (p180), lymphocyte function-associated antigen 1, alpha polypepide)	3683
$\begin{gathered} 00008 \\ 431 \end{gathered}$	$\begin{gathered} 0.008 \\ 76 \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \end{gathered}$	0.6	$\begin{aligned} & 208747 \text { at } \\ & \text { at } \end{aligned}$	Cls	complement component 1 . s subcomponent	716
$\begin{gathered} 0.0006 \\ 505 \\ \hline \end{gathered}$	$\begin{gathered} 0,007 \\ 27 \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \end{gathered}$	0.6	$\begin{aligned} & 213537 \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { HLA- } \\ & \text { DPAI } \end{aligned}$	major histocompatibility complex, class II. DP alpha 1	3113
$\begin{gathered} 0.0000 \\ 027 \end{gathered}$	$\begin{gathered} 0.000 \\ 116 \end{gathered}$	$\begin{gathered} <10- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 207957 _8 \\ & \text { at } \end{aligned}$	PRKCB	protein kinase C, beta	5579
$\begin{gathered} 00000 \\ 007 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0425 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 214016 _s \\ & 21 \end{aligned}$	SFPQ	splieng factor proline/glutamine-rich	6421
$\begin{gathered} 0.0000 \\ 024 \end{gathered}$	$\begin{gathered} 0.000 \\ 107 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\underset{\text { at }}{207563}$	OGT	O-linked N acetylglucosamine (ClcNAc) transferase	8473
$\begin{gathered} 0.0024 \\ 33 \end{gathered}$	$\begin{gathered} 0019 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 8 \\ \hline \end{gathered}$	0.6	$\frac{205590}{a t}$	$\begin{array}{\|l} \text { RASGR } \\ \mathrm{P} 1 \\ \hline \end{array}$	RAS guanyl releasing protein 1 (calcium and DAG-regulated)	10125
$\begin{gathered} 00000 \\ 204 \\ \hline \end{gathered}$	$\begin{gathered} 0,000 \\ 548 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 202531- \\ & \text { at } \\ & \hline \end{aligned}$	IRF1	inteferon regulatory factor 1	3659
$\begin{gathered} 00008 \\ 485 \\ \hline \end{gathered}$	$\begin{gathered} 0.008 \\ 79 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 203413 \\ & \text { at } \\ & \hline \end{aligned}$	NELL2	NEL-Hike 2 (chicken)	4753
$\begin{gathered} <1 \mathrm{e} \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 221850 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$			
$\begin{gathered} 0.0105 \\ 274 \end{gathered}$	$\begin{gathered} 0.056 \\ 3 \end{gathered}$	$\begin{gathered} 0.009 \\ 4 \end{gathered}$	0.6	212587_s	PTPRC	protein tyrosine phosphatase, receptor type, C	5788
$\begin{gathered} 0.0000 \\ 003 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0224 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 204294 \\ & \text { at } \end{aligned}$	AMT	aminomethyltransferase	275
$\begin{gathered} 0.0000 \\ 167 \end{gathered}$	$\begin{gathered} 0.000 \\ 465 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 221427 \mathrm{~s} \\ & \text { at } \\ & \hline \end{aligned}$	CCNL 2	cyclin 12	81669
$\begin{gathered} 0.0000 \\ 011 \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0599 \end{aligned}$	$\begin{gathered} <10 \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 205270 \mathrm{~s} \\ & \text { at } \end{aligned}$	LCP2	lymphocyre cyrosolic protein 2 (SH2 domain	3937

						containing leakocyte protein of 76 kDa)	
$\begin{gathered} 00000 \\ 059 \end{gathered}$	$\begin{gathered} 0.000 \\ 211 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline-\quad . \end{gathered}$	0.6	$\begin{aligned} & 202524 _s \\ & \text { at } \end{aligned}$	SPOCK2	sparefosteonectin, ewev and kazal-he domains proteoglycan (iestican) 2	9806
$\begin{gathered} 00000 \\ 159 \end{gathered}$	$\begin{gathered} 0.000 \\ 448 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 202643 _ \\ & \text {at } \end{aligned}$	TNFAIT	tumor necrosis factor, alpha-indured protein 3	7128
$\begin{gathered} 0.0016 \\ 349 \end{gathered}$	$\begin{gathered} 0.014 \\ 5 \end{gathered}$	0.002	0.6	$\begin{aligned} & 202902 _8 \\ & \text { at } \end{aligned}$	CTSS	cathepsins	1520
$\begin{gathered} 000002 \\ 622 \end{gathered}$	$\begin{gathered} 0.003 \\ 64 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.6	$\begin{aligned} & 209403 \text { - } \\ & \text { at } \end{aligned}$			
$\begin{gathered} 00000 \\ 009 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0513 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 203761 _ \\ & \text {at } \end{aligned}$	SLA	Ste-like-adaptor	6503
$\begin{gathered} 00000 \\ 729 \end{gathered}$	$\begin{gathered} 0001 \\ 4 \\ \hline \end{gathered}$	0.000	0.6	$\begin{aligned} & 216614 \\ & \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} 00003 \\ 988 \end{gathered}$	$\begin{gathered} 0.005 \\ 02 \end{gathered}$	$\begin{gathered} 0.000 \\ 6 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 205671 _s \\ & \text { at } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HLA } \\ & \text { DOB } \end{aligned}$	major histocompatibility complex, class II, DO beta	3112
$\begin{gathered} 00000 \\ 012 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0634 \\ & \hline \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 205213 \\ & \text { at } \end{aligned}$	ACAPL	ArfoAP with colled-coil. ankyrin repeat and PH domains 1	9744
$\begin{gathered} 0.0000 \\ 001 \end{gathered}$	$\begin{gathered} 9.52 \mathrm{E} \\ -06 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 221501 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$			
$\begin{gathered} 0.0000 \\ 038 \end{gathered}$	$\begin{gathered} 0.000 \\ 149 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 212706 \\ & \text { at } \end{aligned}$			
$\begin{gathered} 00024 \\ 604 \end{gathered}$	$\begin{gathered} 0.019 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 1 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 1405 \quad \mathrm{a} \\ & \mathrm{t} \\ & \hline \end{aligned}$	CCl 5	chemokine (C C motif) ligand 5	6352
$\begin{gathered} 0.0000 \\ 022 \end{gathered}$	$\begin{gathered} 0.000 \\ 102 \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 202664 \\ & \text { ot } \end{aligned}$	WIPF1	WAS/WASL interacting protein family member 1	7456
$\begin{gathered} 0.0001 \\ 581 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 45 \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 221286 _8 \\ & \text { at } \\ & \hline \end{aligned}$	MZB 1	marginal zone B and B1 cell-specific protein	51237
$\begin{gathered} 0.0012 \\ 371 \end{gathered}$	$\begin{gathered} 0.011 \\ 7 \end{gathered}$	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	0.6	$\begin{aligned} & 209763 \\ & \text { at } \end{aligned}$	CHRDL 1	chordin-like 1	91851
$\begin{gathered} 00001 \\ 288 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 221973- \\ & \mathrm{at} \end{aligned}$			
$\begin{gathered} 0.0006 \\ 328 \\ \hline \end{gathered}$	$\begin{gathered} 0.007 \\ 12 \\ \hline \end{gathered}$	00001	0.6	$\begin{aligned} & 209823 \\ & \mathrm{x}_{\mathrm{at}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HLA- } \\ & \text { DQB } \end{aligned}$	major histocompatibility complex, clas II, DQ beda 1	3119
$\begin{gathered} 0.0000 \\ 026 \end{gathered}$	$\begin{gathered} 0.000 \\ 114 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 206118- \\ & \text { at } \end{aligned}$	STAT4	signal ransducer and activator of transcription 4	6775
$\begin{gathered} 0.0016 \\ 038 \end{gathered}$	$\begin{gathered} 0.014 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 0001 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 212998 \\ & \times \mathrm{at} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HLA } \\ & \text { DQBI } \end{aligned}$	najor histocompatibility complex, class II, DQ beta 1	3119
$\begin{gathered} 00000 \\ 888 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 62 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 214617 \\ & \text { at } \end{aligned}$	PRFI	perforin ! (pore forming protein)	5551
$\begin{gathered} 00250 \\ 316 \end{gathered}$	0.102	0.024	0.6	$\begin{aligned} & 209687 \\ & a \end{aligned}$	CXCL12	chemokine (C-X-C motif) ligand 12	6387
$\begin{gathered} 00000 \\ 106 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 331 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 221899 \\ & a t \end{aligned}$	$\begin{aligned} & \mathrm{N} 4 \mathrm{BP} 2 \mathrm{~L} \\ & 2 \end{aligned}$	NEDD 4 binding protein 2like 2	10443
$\begin{gathered} 00000 \\ 053 \end{gathered}$	$\begin{gathered} 0.000 \\ 196 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 202644 s \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { TNEAIP } \\ & 3 \end{aligned}$	fumor necrosis factor, alpha-induced protein 3	7128
$\begin{gathered} 0.0000 \\ 15 \end{gathered}$	$\begin{gathered} 0.000 \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.6	204821_{-} at	BTN3A3	butyrophilin, subtamily 3 . member A3	10384
$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 202380 _s \\ & -\mathrm{at} \end{aligned}$	NKTR	natural killer-tumor recognition sequence	4820
$\begin{gathered} 00002 \\ 911 \end{gathered}$	$\begin{gathered} 0.003 \\ 94 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.6	$\begin{aligned} & 203922 \mathrm{~s} \\ & \text { at } \end{aligned}$	CYBB	cytochrome b-245, beta polypeptide	1536
$\begin{gathered} 00000 \\ 396 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 891 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 212847 \\ & \text { at } \end{aligned}$	FUBP1	far upstream element (FUSE) binding protein 1	8880
000027	0.021	0.002	0.6	AFFX-	STAT	signal transducer and	6772

593	2	9		HUMIS GF3AM 97935_M A at		activator of transcription I. 91 kDa	
$\begin{gathered} 0.0090 \\ 965 \end{gathered}$	$\begin{gathered} 0.050 \\ 8 \end{gathered}$	$\begin{gathered} 0.010 \\ 3 \end{gathered}$	0.6	$\begin{aligned} & 219497 _s \\ & \text { at } \end{aligned}$	BCLILA	B-cell CLL/ymphoma 11 A (zinc finger protein)	53335
$\begin{gathered} 00003 \\ 227 \end{gathered}$	$\begin{gathered} 0.004 \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 210279 \\ & \text { at } \end{aligned}$	GPR18	G proteín-eoupled receptor 18	2841
$\begin{gathered} 0.0059 \\ 355 \end{gathered}$	$\begin{gathered} 0.037 \\ 5 \end{gathered}$	$\begin{gathered} 0.006 \\ 9 \end{gathered}$	0.6	$\begin{aligned} & 217430 \\ & \times \text { at } \end{aligned}$	COLIA	collagen, typel, alpha 1	1277
$\begin{gathered} 00000 \\ 003 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0224 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 204538_{-} \\ & \mathrm{x}_{\mathrm{at}} \\ & \hline \end{aligned}$	NPIP	nuclear pore complex interacting protein	9284
$\begin{gathered} 00000 \\ 035 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 141 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 208885- \\ & \text { at } \\ & \hline \end{aligned}$	LCP1	lymphocyte eytorolic protein 1 (L-plastin)	3936
$\begin{gathered} <10 \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.6	$\begin{aligned} & 210313- \\ & a \end{aligned}$	LILRA4	leukocyte immonoglobulinlike receptor, subfamily A (with TM domaim), member 4	23547
$\begin{gathered} 0.0000 \\ 151 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 431 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \\ \hline \end{gathered}$	0.6	207651_{-} at	GPR171	G protein-coupled receptor 171	29909
$\begin{gathered} 0.0000 \\ 002 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0168 \end{aligned}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 214870- \\ & \times \text { at } \end{aligned}$			
$\begin{gathered} 0.0001 \\ 932 \end{gathered}$	$\begin{gathered} 0.002 \\ 86 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.6	$\begin{aligned} & 209201_{-} \\ & \mathrm{xat} \end{aligned}$	CXCR4	chemokine (C-X-C motif) receptor 4	7852
$\begin{gathered} 0.0000 \\ 007 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0425 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	202813 at	TARBPI	TAR (HIV-1) RNA binding protein 1	6894
$\begin{gathered} 00000 \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 387 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.6	$\begin{aligned} & 206150 \\ & \text { al } \\ & \hline \end{aligned}$	CD 27	CD27 molecule	939
$\begin{gathered} 0.0026 \\ 19 \end{gathered}$	$\begin{gathered} 0.020 \\ 5 \end{gathered}$	$\begin{gathered} 0002 \\ 4 \end{gathered}$	0.6	$\begin{aligned} & 215806 \\ & \times \mathrm{at} \end{aligned}$			
$\begin{gathered} 0.0298 \\ 737 \\ \hline \end{gathered}$	0.115	$\begin{gathered} 0.028 \\ 9 \end{gathered}$	0.6	$\begin{aligned} & 212730_{-} \\ & \text {at } \\ & \hline \end{aligned}$	SYNM	synemin, intermediate tilament protén	23336
$\begin{gathered} 0.0000 \\ 021 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0985 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 213106 \\ & \text { at } \\ & \hline \end{aligned}$	ATP8AI	ATPase, amimphospholpid tramponter (APLT), clasel, type 8 A , member 1	10396
$\begin{gathered} 00005 \\ 067 \\ \hline \end{gathered}$	$\begin{gathered} 0.006 \\ 04 \end{gathered}$	$\begin{gathered} 0.000 \\ 4 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 214059 \\ & a t \\ & \hline \end{aligned}$	1 H 44	interferon-induced protein 44	10561
$\begin{gathered} 0.0000 \\ 057 \end{gathered}$	$\begin{gathered} 0.000 \\ 206 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 219243 \\ & \text { at } \end{aligned}$	GIMAP4	GTPase, IMAP fanily member 4	55303
$\begin{gathered} 00000 \\ 056 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 202 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 212577 \\ & \text { at } \end{aligned}$	SMCHD 1	stuctural maintenance of chromosomes flexible hinge domain containing	23347
$\begin{gathered} 0.0000 \\ 049 \end{gathered}$	$\begin{gathered} 0.000 \\ 184 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 219471- \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { KIAA02 } \\ & 26 \mathrm{~L} \end{aligned}$	KIAA0226-like	80183
$\begin{gathered} 0.0126 \\ 445 \end{gathered}$	$\begin{gathered} 0064 \\ 1 \end{gathered}$	0.012	0.7	$\begin{aligned} & 201348 \\ & \text { at } \\ & \hline \end{aligned}$	CPX3	glutathione peroxidase 3 (plasma)	2878
$\begin{gathered} 0.0000 \\ 023 \end{gathered}$	$\begin{gathered} 0.000 \\ 104 \end{gathered}$	$\begin{gathered} <10 \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 204236 \\ & a t \quad \end{aligned}$	FLI	Friend leukemia virus integration 1	2313
$\begin{gathered} 0.0284 \\ 638 \end{gathered}$	0.111	$\begin{gathered} 0.030 \\ 7 \end{gathered}$	0.7	$\begin{aligned} & 210163- \\ & \text { at } \end{aligned}$	CXCLII	chemokine (C-X C motif) ligand 11	6373
$\begin{gathered} 000001 \\ 443 \\ \hline \end{gathered}$	$\begin{gathered} 0.002 \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{le}- \\ 07 \\ \hline \end{gathered}$	0.7	204774 at	EVI2A	ecotropic viral integration site 2A	2123
$\begin{gathered} 0.0065 \\ 216 \\ \hline \end{gathered}$	0.04	$\begin{gathered} 0.006 \\ 3 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 221185 _8 \\ & \quad a l \\ & \hline \end{aligned}$	IOCC	IQ molif containing C	84223
$\begin{gathered} 0.0141 \\ 111 \end{gathered}$	$\begin{gathered} 0.069 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 0.015 \\ 9 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 201069 \\ & a \end{aligned}$	MMP2	matrix metallopeptidase 2 gelatinase A. 72 kDa gelatinase, 72 kDa type IV collagenase)	4313

$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 0 ? \end{gathered}$	0.7	$\begin{aligned} & 212454- \\ & \times \text { at } \end{aligned}$	HNRPD L	heterogeneous nuclear ribonucleoprotein D-like	9987
$\begin{gathered} 0.0194 \\ 654 \end{gathered}$	$\begin{gathered} 0.086 \\ 2 \end{gathered}$	$\begin{gathered} 0.019 \\ 1 \end{gathered}$	0.7	3212S_at	CCL18	ehemokine (C-C motif) ligand 18 (pulmonary and activation-regulated)	6362
$\begin{gathered} 0 .(5029 \\ 865 \end{gathered}$	$\begin{gathered} 0.022: \\ 5 \end{gathered}$	0.003	0.7	$\begin{aligned} & 222162 _\mathrm{s} \\ & \text { at } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD AMI } \\ & \mathrm{S} 1 \end{aligned}$	ADAM metallopeptidase with wrombospondin type 1 motif. 1	9510
$\begin{gathered} 0.047 .8 \\ 513 \\ \hline \end{gathered}$	0.158	$\begin{gathered} 0.048 \\ 1 \end{gathered}$	0.7	$\begin{aligned} & 211122 \text { s } \\ & \text { at } \end{aligned}$	CXCL11	$\begin{aligned} & \text { ehemokine (C-X-C motif) } \\ & \text { lis and 1i } \end{aligned}$	6373
$\begin{gathered} 0.0006 \\ 993 \end{gathered}$	$\begin{gathered} 0,007 \\ 65 \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \end{gathered}$	0.7	$\begin{aligned} & 201131 _s \\ & \text { at } \end{aligned}$	MBNL1	muscleblind-like splicing regulator 1	4154
$\begin{gathered} \hline \text { < le- } \\ 07 \end{gathered}$	$\begin{gathered} \hline \text { < le- } \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.7	$\begin{aligned} & \text { 209827_s } \\ & \text { _at } \end{aligned}$	IL16	interleukin 16	3603
$\begin{gathered} 0.0017 \\ 313 \\ \hline \end{gathered}$	$\begin{gathered} 0.015 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 0.001 \\ 4 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 204205 \text { _ } \\ & \text { at } \end{aligned}$	APOBE $\mathrm{C} 3 \mathrm{O}$	apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G	60489
$\begin{gathered} 0.0008 \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} 0.008 \\ 63 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 8 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & \text { 2029;88_s } \\ & \text { at } \\ & \hline \end{aligned}$	RGSI	regulator of G-protein signaling 1	5996
$\begin{gathered} 0.0000 \\ 464 \end{gathered}$	$\begin{gathered} 0.001 \\ 01 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.7	$\begin{aligned} & 210031 \\ & \text { at } \end{aligned}$	CD247	CD247 molecule	919
$\begin{gathered} 0.0000 \\ \quad 146 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 422 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 2 \mathrm{I} 4132 \\ & \text { at } \end{aligned}$	ATP5C1	ATP synthase, H+ transporting, mitochondrial Fi complex, gamma polypeptide 1	509
$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{gathered} \text { < } 1 \mathrm{e} \\ 07 \end{gathered}$	$\begin{array}{r} <1 e \\ 07 \end{array}$	0.7	$\begin{aligned} & \text { 202665_s } \\ & \text { at } \end{aligned}$	WIPFl	WAS/WASL interacting protein family, member 1	7456
$\begin{gathered} 0.0000 \\ 006 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0386 \end{aligned}$	$\begin{gathered} <~ l e-~ \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 207564- \\ & x_{-} \text {at } \\ & \hline \end{aligned}$	OGT	O-linked Naeetylglueosamine (GlcNAc) transferase	8473
$\begin{gathered} 0.0004 \\ 522 \end{gathered}$	$\begin{gathered} 0.005 \\ 52 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \end{gathered}$	0.7	$\begin{aligned} & \text { 209795_- } \\ & \text { at } \end{aligned}$	CD69	CD69 molecule	969
$\begin{gathered} 0.0000 \\ 422 \end{gathered}$	$\begin{gathered} 0.000 \\ 939 \end{gathered}$	$<1 \mathrm{e}-$	0.7	$\begin{aligned} & 203845_{-} \\ & \text {at } \end{aligned}$	KAT2B	K (lysine) aeetyltransferase 2B	8850
$\begin{gathered} 0.0043 \\ 937 \\ \hline \end{gathered}$	$\begin{gathered} 0.029 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.004 \\ 9 \\ \hline \end{gathered}$	0.7	AFFX- HUMIS GF3A/M 97935_M B_at	STAT1	signal transducer and activator of transcription 1 , 91 kDa	6772
$\begin{gathered} 0.0002 \\ 641 \\ \hline \end{gathered}$	$\begin{gathered} 0.003 \\ 66 \end{gathered}$	$\begin{gathered} 0.000 \\ 1 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 217478: \text { s } \\ & \text { at } \\ & \hline \end{aligned}$	HLADMA	major histocompatibiliiy complex., class II, DM alpha	3108
$\begin{gathered} 0.0000 \\ 105 \end{gathered}$	$\begin{gathered} 0.000 \\ 328 \end{gathered}$	$\begin{gathered} <10- \\ 07 \end{gathered}$	0.7	$\begin{aligned} & \text { 209879_ } \\ & \text { at } \end{aligned}$	SELPLG	selectin P ligand	6404
$\begin{gathered} 0.0000 \\ 917 \end{gathered}$	$\begin{gathered} 0.001 \\ 66 \end{gathered}$	$\begin{gathered} <\mathrm{le}- \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 20350 S_{-} \\ & \text {at } \end{aligned}$	$\begin{aligned} & \text { TNERSF } \\ & \text { IB } \end{aligned}$	tumor necrosis factor receptor superfamily, member 1B	7133
$\begin{gathered} 0.0000 \\ 461 \end{gathered}$	0.001	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 200953 \text { _s } \\ & \text { at } \end{aligned}$	CCND2	cyclin D2	894
$\begin{gathered} 0.0001 \\ 309 \end{gathered}$	$\begin{gathered} 0.002 \\ 13 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.7	$\begin{aligned} & \text { 207677_s } \\ & \text { _at } \end{aligned}$	NCF4	neutrophil cytosolic factor $4,40 \mathrm{kDa}$	4689
$\begin{gathered} 0.0009 \\ 618 \end{gathered}$	$\begin{gathered} 0.009 \\ 65 \end{gathered}$	$\begin{gathered} 0.000 \\ 9 \end{gathered}$	0.7	206715	TFEC	transcription factor EC	22797
$\begin{gathered} 0.000 \mathrm{i} \\ 349 \end{gathered}$	$\begin{gathered} 0.002 \\ 18 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.7	$\begin{aligned} & 212873- \\ & \text { at } \end{aligned}$	HMHA	histocompatibility (minor). HA-1	23526
$\begin{gathered} 0.0000 \\ 008 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0477 \end{aligned}$	$\begin{gathered} <\text { le- } \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 203932- \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { HLA- } \\ & \text { DMB } \end{aligned}$	major histocompatibility complex, class II, DM beta	3109
$\begin{gathered} 0.0006 \\ 183 \end{gathered}$	0.007	$\begin{gathered} 0.000 \\ 3 \end{gathered}$	0.7	$\begin{aligned} & 206082- \\ & \text { at } \end{aligned}$	HCP5	HLA complex P5 (nonprotein coding)	10866

$\begin{gathered} 0.0001 \\ 573 \end{gathered}$	$\begin{gathered} 0.002 \\ 44 \end{gathered}$	$\begin{gathered} 0.000 \\ 3 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 216834- \\ & \text { at } \end{aligned}$	RGS1	regulator of G-protein signaling 1	5996
$\begin{gathered} 00000 \\ 022 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 102 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 206296 \\ & \times \text { at } \end{aligned}$	MAP4K 1	mitogen-activated protein kinase kinase kinase kinase 1	11184
$\begin{gathered} 00000 \\ 011 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0599 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \\ \hline \end{gathered}$	0.7	64064 at			
$\begin{gathered} 0.0000 \\ 005 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0338 \end{aligned}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 207734 \\ & \text { at } \end{aligned}$	LAX	lymphocyte transmembrane adaptor:	54900
$\begin{gathered} 0.0028 \\ \quad 821 \\ \hline \end{gathered}$	$\begin{gathered} 0.021 \\ 9 \end{gathered}$	$\begin{gathered} 0.002 \\ 7 \end{gathered}$	0.7	$\begin{aligned} & 222043- \\ & \text { at } \end{aligned}$	CLU	clusterin	1191
$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cle- } \\ 07 \\ \hline \end{gathered}$	$\begin{gathered} <1 e \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 208306 \\ & \times \text { at } \\ & \hline \end{aligned}$			
$\begin{gathered} 00000 \\ 927 \end{gathered}$	$\begin{gathered} 0001 \\ 67 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	0.7	$\begin{aligned} & 201720 _8 \\ & \text { at } \end{aligned}$	LAPTM	Iysosomal protein tramsmembrane 5	7805
$\begin{gathered} 00000 \\ 022 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 102 \end{gathered}$	$\begin{gathered} <1 e- \\ 07 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 204440 \\ & \mathrm{at} \end{aligned}$	CD83	CO83 molecule	9308
$\begin{gathered} 00000 \\ 0066 \end{gathered}$	$\begin{aligned} & 0,000 \\ & 0386 \end{aligned}$	$\begin{gathered} <1 e- \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 204562_{-} \\ & \text {at } \end{aligned}$	IRF4	interferon regulatory factor 4	3662
$\begin{gathered} 0.0000 \\ 175 \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ 484 \end{gathered}$	$\begin{gathered} <1 \mathrm{e}- \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 221249 _s \\ & \text { _at } \end{aligned}$	$\begin{aligned} & \text { FAMII? } \\ & \text { A } \\ & \hline \end{aligned}$	family with sequence similarity 117 , member A	81558
$\begin{gathered} 0.0006 \\ 184 \\ \hline \end{gathered}$	0.007	$\begin{gathered} 0.000 \\ 5 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 219689 \\ & \text { at } \end{aligned}$	SEMA3	sema donain, immunoglobulin domain (Ig), short basic domam, secreted, (semaphorio) 3 G	56920
$\begin{gathered} 00060 \\ 147 \\ \hline \end{gathered}$	$\begin{gathered} 0.037 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 0.005 \\ 9 \end{gathered}$	0.7	$\begin{aligned} & 220232 \\ & \text { at } \end{aligned}$	SCD5	stearoy CoA desaturase 5	79966
$\begin{gathered} 0.0000 \\ 054 \end{gathered}$	$\begin{gathered} 0.000 \\ 198 \end{gathered}$	$\begin{gathered} <1 \mathrm{e} \\ 07 \end{gathered}$	0.7	$\begin{aligned} & 211038 _s \\ & \text { at } \end{aligned}$	$\begin{aligned} & \text { CROCC } \\ & \mathrm{P} 2 \end{aligned}$	ciliary rootle coiled-coil. roonletim pseudogene 2	84809
$\begin{gathered} 0.0197 \\ 569 \end{gathered}$	$\begin{gathered} 0087 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.020 \\ 7 \\ \hline \end{gathered}$	0.7	$\begin{aligned} & 204533- \\ & \text { at } \end{aligned}$	CXCLIO	chemokine ($\mathrm{C}-\mathrm{X}-\mathrm{C}$ motif) ligand 10	3627
$\begin{gathered} 0.0004 \\ 576 \\ \hline \end{gathered}$	$\begin{gathered} 0.005 \\ 57 \end{gathered}$	$\begin{gathered} 0.000 \\ 7 \end{gathered}$	0.7	$\begin{aligned} & 204150 \\ & \text { at } \end{aligned}$	STABI	stabilin 1	23166
$\begin{gathered} 00005 \\ 043 \end{gathered}$	$\begin{gathered} 0.006 \\ 03 \end{gathered}$	$\begin{gathered} 0.000 \\ 5 \end{gathered}$	0.7	$\begin{aligned} & \text { 208018_s } \\ & \text { _al } \end{aligned}$	HCK	hemopoletic cell kinase	3055

Table 17．Class comparison of the global gene expression profiles of high iBCR score ER－and ER＋tumors to low iBCR score tumors post comparison to normal breast in the ROCK dataset

Probese t	Name	Accessio n	UGClust er	$\begin{aligned} & \text { Symb } \\ & \text { ol } \end{aligned}$	ER－vs． Normal		$\mathrm{ER}+\mathrm{vs}$ ． Normal		Cluster 2 vs ． Cluster 1	
					Cl ust $\stackrel{1}{\mathrm{ER}}$	$\begin{gathered} \mathrm{Cl} \\ \text { ust } \\ 2 \\ \mathrm{ER} \end{gathered}$	$\begin{gathered} \text { Clu } \\ \text { st } 1 \\ \text { ER } \\ + \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Clu} \\ \mathrm{st} 2 \\ \mathrm{ER} \\ + \\ \hline \end{gathered}$	E	$\stackrel{\text { E }}{\text { R }}$
$\begin{aligned} & 204475 \\ & a \end{aligned}$	mattix metallopeptidase									
	1 （interstital	NM＿002		\％1\％	3.0	I！	0.7	\％®	4	\％\％
	collagenase）	421	Hs． 83169	\％	6	凶	1	\＃	\＃	»
	S100 calcium		$\begin{aligned} & \text { Hs. } 41607 \\ & 3 \end{aligned}$							
202917	binding protein	NM＿002		\＄\％！	10.	\＃1	10	\＃s	30	„»．
s＿at	A8	964		\％	45	\％	2	»．	0	\＆
204351 at	S 100 calcium	NM＿005		\＄1\％\％	3.8	\1	25	\％	\％	\＃\＃！
	binding protein P	980	$\begin{aligned} & \mathrm{Hs}, 2962 \\ & \mathrm{Hs}, 47012 \end{aligned}$	\％	9	\％	9	0．	\＆	»
217388				\＃，\％	06	18	02	0．	\％	\＃॥
s＿at	kynureminase ceruloplasmin （ferroxidase） cell division cycle	D55639		\％	9	\％	7	4	4	，
204846．		NM＿000	Hs． 55831		1.6	«．	0.6	0.9	3	\＃．
at		096	4	\％	9	«．	1	5	\％	？
202870		NM＿OO1	Hs． 52494	\＃\＃！	5.8	\＃，	0.8	4．	2，	§\％
S＿at	20 pleckstrin homology－hke	255	7	§\％	2	s\％	9	§	थ	»
209803	domain，family A，	AF00129	Hs． 15403	\％！1\％	0.6	10	0.5	1.1	2 \％	\％
s＿at	member 2	4	6	\％\＃\＃	6	\＃	7	7	》	»
209773	ribonucleotide	BC00188	Hs． 22639	«k川＂	4.4	\＃\＃	07	\％	24	\％
s＿at	reductase M2 chromosome I	6	0	§	7	\％	9	\％．	§	
$\begin{aligned} & 219010- \\ & \text { at } \end{aligned}$		NM＿018	Hs． 51899	乡\＃\％	1.6	\＃»	0.4	0.9	॥.	\＃\％
	frame 106 quinolinate	265	7	\＃\＃川萛	1	॥＾』』	5	2		
204044＿	phosphoribosylta	NM＿014	Hs． 51348	\％\％1／	1.0	2，	0.7	1.3	\％ 3	\＆
at	nsferase	298		\％	4	»	3	1	\＃	»．
208079		NM＿003	Hs， 25082	\＃\＃\＃，	1.4	3．4	0.3	30	43	\＄\％
s＿at	aurora kinase A	158	2	\％\＆	9	\＃	9	\＃	\％	\％
209942	melanoma antigen	BC00034	Hs． 41781	\＃4＊＊	1.5	3	0.8	1.3	3．3	\＆
x＿at	family A， 3	0	6	\％${ }^{\text {\％}}$	3	\＃	7	3	\％	．
209714＿	cyclu－dependent	AF21303		¢\＃1．	3.4	\％．	1.1	\％	»．	\＃1
s＿at	Kinase mhibitor 3	3	Hs．84113	\＃\＃	7	«．	s	\＄	\％	«．
220414		NM＿017	Hs． 18014	乡\＃\＃	2.6	\％）	0.8	1.4	\＃3	\％
at	calmodulim－like 5	422	2	\＃1ヶ	4	\％	5	6	§	3．
220615	fatty acy 1 CoA	NM＿018	H5． 72895	\＃My	1．1	3	0.8	1.3	3．s	\＃
S＿at	reductase 2	099	5		9	§	1	8	य	》
214612	melanoma antigen		Hs． 44111	川⿲乡丨	1.4	\％．	0.8	1.3	\＃\＃	$\$$
x ＿at	family A， 6	U10691	3	\＃＊＊	9	з	7	4	3	4
218009	protein regulator	NM＿003	Hs． 36640	\％	1.7	\＃	0.4	$\stackrel{1}{4}$	3	§1
S at	of cytokinesis 1	981	1		8	\geqslant	7	0	7	»
214710		BE40751		\＃盛	2.6	』．	0.8	\％	\％	\＃\＃
S＿at	cyclin B1	6	Hs． 23960	\％	3	\＆	7	\％．	§	\％
205347		NM＿021		历サ\％	1.9	\％	0.3	0.7	\％	\％

S＿at		992		\＃\＃\＃\＃	5	5	9	1	\geqslant	§
201890	ribonucleotide	BE96623	Hs． 22639	dmat	2.1	4．	0.6	\％．		
％	40									
at	reductase M2		0		0	3	0	\％	\＃	\％
	potassium channel．							\．		
204678	subfamily K，		Hs． 20854	u＊	2.1	4．	1.8	2．s．	1%	\％ 5
s＿at	member 1	090065	4	\＃！	5	\％	5	\％	0	«
	auloviral LAF									
202095	repeat containing	NM＿001	Hs． 51452	IIIt	3.2	\％\％	0.8	4！	\％	4
S＿at		168	7	乡上	2	4	2	O	\geqslant	$\stackrel{ }{ }$
	epithelial splicing									
219121	regulatory protein	NM＿O17	Hs． 48747	\＄4\％	4.4	80	2.4	\％）	\％	\＃\＃
S＿at	1	697	1	\％	7	9	7	©	\＃	\＃
209744	high mobility	NM＿005		M！	1.0	2.	0.5	1.1	\＃	\％
at	group box 3	342	Hs． 19 H	¢4s	8	\＃	4	2	\＃	¢\％
	hematological and									
217755	neurologica！	NM＿016	Hs． 53280		53	10	2.9	\％．	\％	\％
at	expressed 1	185	3	\＃\＃\＃	6	05	8	\＄	\％	3
	ubiquitin－									
2029	conjugating enzyme ETC	019	Hs 93002	\#\#	3.8	48	$\begin{gathered} 1.2 \\ 9 \end{gathered}$	$9 \$$	$\stackrel{\pi}{4}$	4．
	topoisomerase									
201291	（DNA）II alpha	AU1599	Hs． 15634	«\％\％	3.3	क！	12	↔	\％	4,
s＿at	170 kDa	42	6	\＃\＃．	1	\％	4	\％	§	4
209875	secreted				5.0	\＃\％	3.3	乡\％	Is\％	\＃
s＿at	phosphoprotein	M83248	Hs． 313	\＄3\％	4	ᅰ．	1	\＃	4．	\％
	malic enzyme 1 ．									
	$\mathrm{NADP}(+)$－									
204059	dependent，	NM＿002			19	35	0.7	1.3	\＃＂	1.5
s＿at	cytosolic	395	Hs． 21160	4is	4	\bigcirc	7	9	4	＊
				4\＃s\％						
210387		BCOOM 3		insis	1.9	34	1.8	\％	\％	1，
at		1			2	7	2	\％	\because	\％
	pyrido							\＃＂		
	（pyridoxine，									
202671－	vitamin B6）	NM＿003	Hs． 28449	\％\％	3.0	3s	1.6	， 1	乡	$\stackrel{1}{ }$
s＿at	kinase	681	1		6	\because	7	5	\because	\geqslant
	nucleolar and									
219978	spindle associated	NM＿018	Hs． 61509	\＃S	4.0	\％2	1.5	4，	\％	\＃
s＿at	protein 1	454	2	M\％1	6	\＃	0	．	9	»．
203207＿	mitochondrial	BF21432	Hs． 58478		3.5	5．3	1.6	4．	1 \％	25
s $\mathrm{at}^{\text {at }}$	fission regulator 1	9	8	M川	7	\＄	1	3	$»$	\％．
205943	typtophan 2，3－	NM 005	H． 18367	\％\％	1.6	28	0.6	1.0	1．	15
at	dioxygenase	651	I		2	§	5	0	3	4，
218355	kinesin family	NM 012	H． 64832	Itist	2.1	38	0.7	\％	\＃／	\％．
at	member 4A	310	6		5	¢	2	2．	«	\％
218039	spindle associated	M	Hs． 61509	M以	2.0	3.	0.8	＊	\＃	\％
	protein 1	359	2	W川	2	\geqslant	6	．	«	．
202705		NM＿OO4	Hs． 19469	\＃＊）	2.9	ง．	0.8	\＃	\＃？	\＃\＃
at	cyclin B2	701		\％2	3	6	1	2	\％	\％
204641	NIMA－related	NM＿002	Hs． 15370	यıs．	2.9	ヱ	1.2	3）	$1 \geqslant$	36
at	kinase 2	497	4	๕．	9	as	0	\％	\＆	，
	BUB1 mitotic checkpoint									
203755	serme／threomine	NM＿	Hs． 51364	wuf	1.4	\％	0.4	\＃\％	\＃\＃	\＃\＃
at．	kinase B	211	5	\＃\＃，	8	U	1	\％	\％	4．
202338	thymidine kinase	NM＿003	H． 51512		1.9	3\％	1.0	，	1．	«．
at．	1，soluble	258	2	\＃\＃\＃	2	\＃	4	\＃	\＃	$\stackrel{ }{ }$
203764＿	dises，large	NM＿014	Hs． 77695	11\％：	2.6	4%	0.8	2\％	\％．	\％\％

at	（Drosophila） homolog－ associated protein 5	750		\#1)	7	\#		${ }_{4}^{\pi}$		\％
203554＿	pituitary tumor－	NM＿004	Hs． 35096	\％\％	3.6	\％\％	1.0	4．	\％	3）
x＿at	tramsforming 1 enhancer of zeste	219	6	\％t	5	\}	3	\％	$\stackrel{ }{2}$	9
203358	homologes 2	NM＿O04	Hs．44408	M\＃s	1.0	\％	0.3	0.8	\＃	24
s＿at	（Drosophila） thyroid hormone	456	2		5	\％	4	8	»	$\stackrel{ }{ }$
204033	receptor interactor	NM＿004	H． 43618	M川	3.3	s\％	0.7	\％	\％	4
at	13 centromere	237	7	\＃3	6	4．	4	§．	！	＂
207828＿	protein F，	NM＿005	Hs． 49774	\％H	2.9	49	0.8	\＃1	\％	3%
s＿at	$350 / 400 \mathrm{kDa}$ antigen ident	196	1	乡\＃	2	\＄	9	\＃	0	ง
212022	by monoclonal	BF00180	H． 68982	\＃\＃，	2.5	\＃2	1.0	\％	\％ 6	\％\％
s＿at	antibody Ki－67	6	3	¢\％\＃	0	\％	2	\％	4	3
				4．131						
215779		BE27147		11\％	2.7	48	2.4	\＃\＃	1\％	\％
s＿at		0		\％	6	\％	8	„	9	\＃
218883	MLFI interacting	NM＿024	H． 57503	翟\％	2.4	4	1.3	\％	\＃	\％s
s＿at	protein	629	2	\＃1！	4	\％	4	\％	\＃	\geqslant
	CDC28 protein									
204170	kinase regulatory	NM O01		\％紬	2.4	4.	1.0	\％	1%	2%
s＿at	subumit 2	827	H5． 33758	\％	8	¢	7	s．	，	3
201037	phosphofuctokin	NM 002		\％i\％	1.5	$\stackrel{1}{*}$	0.5	0.8	\％	\＃\＃
at	axe platel	627	Hs． 26010		6	\＃\＃	7	8	»	4
	solute carrier									
	family 7 （amino									
	acid transporter									
	light ehain，L									
201105	system），member	AB01800	H5． 51379	\＃\＃	2.1	\％	0.3	1.1	\％	3.
s＿at	5	9	7	\％	2	，	4	5	s	3
205034		NM 004	Hs． 52109	\＃\＃	1.6	»\％	0.7	\＃\＃	\％	अ＂
at	cychn E2	702	3	42	7	\＄	3	$\stackrel{1}{2}$	3	3
210559＿	cyclin－dependent		Hs． 73243	\＃14．	6.8	\＃	2.0	\％\％	！	4
s＿at	kinase 1	D88357	5		8	，	5	\％	3	«．
	YKT6－SNARE									
217785	homolog（S．	NM＿OO	Hs． 52079	\＃4\％	2.3	3	1.7	》»	\％	»
s＿at	cerevisiae）	555	4	\％	7	\％	（	：	4	\％
200658		AL56001	Hs． 51430		1.5	\geqslant	1.0	』\％	1s．	30
s＿at	prohibit	7	3	\％11\％	9	\＃．	9	¢	\％	7
	inositol（myo）－ （COCH）									
203126	monophosplatase	NM＿014	Hs． 74331	引\＃\＃	1.8	\％	0.5	1.1	INS	\％．\％
at	2	214		\＃\＃	4	寿	1	2	，	$\stackrel{ }{*}$
	GINS complex									
206102	subunit 1 （Psfl	NM＿021	Hs． 65846		2.1	34	0.7	\＃	\％	》《
at	homolog）	067	4		2	\％	8	\％	\＃	\％
	G－protein									
221922	signaling	AW1955	Hs． 58490	\％\％	10	\％	0.5	0.9	\％	\＃\％
at	modulator 2 coronin，actin	81	1	M2	4	？	3	2	०．	介
221676	binding protein，	BC00234	Hs． 33038	\％\％	1.5	35	0.7	1.4	\＄	\％»
s at	1 C	2	4	\％\＃乡	7	॥	9	0	$\stackrel{1}{ }$	\％
	asp（abnorma spindle）hom									
219918	microcephaly	NM＿018	Hs． 12102	«！	5.7	ฯ．	1.3	\％	113	4．1．
s＿at	associated	123	8	\＃	6	\％．	3	\％）．	9	\％

205029－	fatty acid bindinge	NM＿OO1		\＃\＃	2.7	\＃	0.6	॥\％	\＃\＃	0.9
S＿at	protein 7，brain	446	Hs． 26770	\geqslant	3	\＃	7	S	\geqslant	7
205030	fatty acid binding	NM＿001		3＊	0.7	$\stackrel{1}{ }$	0.1	थ！	\％	0.9
at	protein 7，brain SRY（sex	446	Hs． 26770	\＃	7	4	3	$\stackrel{ }{ }$	\＃	4
204913	determining	A136087	Hs． 43263	乡\％\％	1.2	$\stackrel{9}{ }$	0.5	0.7	«»	1.3
s＿at	region Y）－box 11	5	8		2	$\%$	3	1	§	4
				あ						
219410	transmembrane	NM＿018	Hs． 65895	\＃4\＆	0.8	2！	0.6	M\％	3．4	1.1
at	protein 45A SRY（sex	004	6		7	11	0	6	$\stackrel{ }{2}$	0
204914	determining	AW1572	Hs． 43263	乡\＆\％	2.1	\＄0	0.6	0.9	\＃\＃	1.4
S＿at	region Y）－box 11	02	8	\％	9	\＃	4	5	$\stackrel{ }{2}$	7
210663		BC00087	Hs． 47012	I： s	1.2	\％	0.6	0.9	\％s	1.4
s＿at	kynureminase SRY（sex	9	6		8	\％	5	5	$\stackrel{ }{ }$	5
204915	determining	AB02864	Hs． 43263	乡\％s	1.4	\＄1	0.7	0.9	\％	1.2
s＿at	region Y）box 11 chloride	1	8		1	॥．	5	1	$\stackrel{1}{ }$	2
$\begin{aligned} & 219529 \\ & \text { a! } \end{aligned}$	intracellular	NM＿004		\＃\＃．	1.8	\％	1.1	\％	\％	1.3
	chammel 3	669	H． 64746	\％	7	§	3	＊	4	4
$\begin{aligned} & 214461 \\ & a! \end{aligned}$	lipopolysaceharid	NM＿004	Hs． 15407		1.2	\％	0.8	0.9	\％	1.1
	e binding protein	139	8	\＃\＃\＃	6	\＃	0	0	\＃	3
$\begin{aligned} & 202912 \\ & \mathrm{a}! \end{aligned}$		NM＿001	Hs． 44104		0.8	٪	0.4	U．	＊）	1.2
	adrenomedulin S100 calcium	124	7	M川\＃	4	॥	0	$\%$	2	0
$\begin{aligned} & 214370 \\ & \text { at } \end{aligned}$	binding proteim	AW2386	Hs． 41607	\＃1\％\％	2.6	\＄	1.4	1.5	\}	1.0
	A8	54	3	\％＊	6	\＃	2	0	„	5
	vascular									
211527＿	endothelial			\＃\＃s	2.0	3%	1.2	15	4	1.2
x＿at	growth factor A	M27281	Hs． 73793	\％界	1	»	4	U	4	1
	potassium chand									
$\begin{aligned} & 204679 \\ & a t \end{aligned}$	subfamily K，	NM＿002	H5． 20854	\＃\＃納	1.3	\％	0.8	1.2	1%	1.4
	mernber 1	245	4	\＃\＃	2	t．	8	9	\％	7
at	BCL2／adenovinus E1B 1910．									
201848	interacting protein		Hs． 14487	3M11\％	2.1	3．8	1.5	33	．s	1.4
S＿at	3	U15174	3	\％	4	§	7	碞	\％	9
202859		NM＿000			1.7	31	0.6	0.8	\％	1.2
x＿al	interleukin 8	584	H5． 624	\％紬	5	左	8	6	\％	5
211110		AF16270			0.9	$1 \geqslant 6$	5.3	$3 \stackrel{ }{8}$	IS	0.7
$\frac{s_{-} a t}{208650}$	androgen receptor	4	Hs． 76704	\＄ı	2	艮	3	A	0	3
		BG32786	Hs .64410		2.3	41	1.2	\S	1%	1.2
s＿at	CD 24 molecule	3	5	\＄13\％	8	\％	9	\＃	»	4
	UDP－N aceyl－									
	alpha－D－ walactosamine pol									
	galactosaminespol ypeptide N ．									
	ypeptide N － acetylgalactosami									
$\begin{aligned} & 203397_{-} \\ & \text {s_at } \end{aligned}$	nyltamsferase 3	BF06327	Hs． 17098	\＃乡乡\％	0.9	1%	0.5	06	॥．	1.2
	（GalNAc－T3）	1	6	\＃乡\＃	5	\＃	2	，	左	0
s＿at	chemokine（ $\mathrm{C}-\mathrm{C}$			\＃\＃\＃\＃\＃						
	motif）ligand 18			§ॉ．．．．						
	（pulnonary and									
$\begin{aligned} & 209924 \\ & \text { at } \end{aligned}$	activation－	AB00022	Hs． 14396	\＃ね\＃	2.2	3	0.6	0.9	1 \％	1.4
	regulated）		1	\％	8	\％	9	8	\＃	2
	cysteine－rich									
207802＿	secrebry protein	NM＿006	Hs． 40446	\＃\＃4\＃	1.0	\％	10	1.3	§\＃	13
at	3	061	6	※※．．．	8	\bigcirc	1	5	»．	3

at	synthetase	071	2		0		1	$\%$	1	\％
204444	kinesim family	NM＿004		MH．\＃	1.6	\geqslant	0.6	\＃	1.3	»\％
at	member 11	523	Hs． 8878		8	0	8	§	7	6
	ATPase family，									
218722	AAA domain	NM＿014	H． 37083	\＃\＃	4.2	4	1.4	»	1.1	»．
s＿at	containing 2	109	4	W	1	\＃	0	\＃	1	\％．
218755	kinesim family	NM＿005	Hs． 71862	\＃	2.8	\＃	0.9	s．	1.4	\％»
at	member 20A	733	6	4	3	乡»	2	\％	5	$\%$
	Rac GTPase			M＂\％						
222077＿	activating protein	AU1538	Hs． 50546	Mis	1.7	\％	0.8	2\％	1.3	2．
s＿at		48	$9)$		8	«．	5	\＃	7	«\％
	lysosomal protein			M．f						
208767	transmembrane 4	AW1496	Hs． 49231	\＃14	5.0	\＃	2.0	§\％	1.4	थ»
s＿at	beta	81	＋	\％	9	\％	9	\％	3	，
204533	chemokine（C－X－	NM 001	H5． 63258	\％	7.3	15	1.8	4	1.3	थ．
at	C motif）ligand 10	565	6	\％	4		4	\％	9	\geqslant
	radical S－adenosyl methionine									
213797	domain	A133706		\％	2.9	\％	1.2	\％	1.1	\％
at	contaning 2	9	Hs． 17518	\＃2	4	\＆	0	\％	1	\％
212009	stress－induced－	AL55332	Hs． 33729	\＄11	5.0	$\geqslant 0$	2.3	S	1.4	2.4
s＿at	phosphoprotein 1	0	5		5	\＃．	8	\＃	0	$\stackrel{ }{*}$
206364	kinesin family	NM＿014		3\＃\＃	2.7	3\％	0.8	2．	12	2\％
at	member 14	875	Hs， 3104		8		6	\％	6	\％
	karyopherin apha									
211762	2 （RAG cohon），	BC00597	Hs．59423	w\％	2.8	40	1.2	«»	1.4	4，\％
s＿at	importin alpha 1）		8	\Downarrow	1	\＆	6	\％	6	8
	apolipoprotein B							»		
	mRNA editing									
	emyme，catalytic			\％\％						
206632	polypeptide－like	NM＿004	Hs． 22630	1》2．	24	\＃\＃	06	\＃＊	14	3．
s＿at	3B	900	7	\＃	2	\％	5	»	7	\％
	hyaluronan－									
207165	receptor	NM＿OL2	H8．74046	H14\％	1.8	«\％	0.7	\％	． 2	
at	（RHAMM）	485	7	\＃1	1.8	\％	9	A	4	\＆
211122	chemokine（CX－	AF00298	H． 63259	\％	4.1	4．	0.9	，	． 1	\％
s＿at	C motil）ligand 11	5	2	\＃\＃，	7	\％	8	\％	9	
	structural									
201683	mainterance of	NM＿005		\＄us	6.4	$\%$	2.0	4 s	1.0	2．2
s＿at	chronosomes 4	496	Hs． 58992	\＃	4	布	9	0	9	9
	non－SMC									
	condensin I									
218662	complex，subunit	NM＿022	Hs .44620	M\％	2.4	\％	1.0	2.	1.2	2．
S＿at	G	346	I	1\％	9	\geqslant	0	\＄	4	\％
213226		A134635		\＃ka	1.7	«．	0.6	1\％	1.3	2．2
at	cyclin A2	0	Hs， 58974	\＃ै	8	«	，	§	8	\％
	minichromosome maintenance									
212141	complex	AA6046	Hs． 46018	\＃	3.1	4.3	1.2	2.8	1.3	2%
at	component 4	21	4	\＃4．	8	＋	9	\％	7	4
210163	chemokine（ $\mathrm{C}-\mathrm{X}$－	AF03051	Hs． 63259	乡乡\％	3.0	4	0.7	\＃»	1.3	\＃\＃
at	C motit）ligand 11	4	2	む川	5	§	7	3	6	3
	Fancomi anemia，									
213007＿	complementation		H．51312	乡乡！	1．4	\＃\＃	0.7	$\#$	12	»
at	group I	W74442	6	\％	5	\％	2	0	7	\％
	serine									
	hydroxymethyltra									
214437	nsferase 2	NM＿005	Hs． 74117	\％14\％	3.4	\％\％	1.4	»．	1.3	2．．
s＿at	（mitochondrial）	412	9	\％	4	«．	9	1	4	॥．

$\begin{aligned} & 218049 \\ & \text { s_at } \end{aligned}$	mitochondrial ribosomal protein L13 non－SMC	$\begin{aligned} & \text { NM_O14 } \\ & 078 \end{aligned}$	$\begin{aligned} & \text { Hs. } 33382 \\ & 3 \end{aligned}$		$\begin{gathered} 3.5 \\ 5 \end{gathered}$	$\stackrel{4}{4}$	$\begin{gathered} 2.4 \\ 0 \end{gathered}$	$\stackrel{3}{4}$	$\begin{gathered} 13 \\ 2 \end{gathered}$	2
218663	complex，subumit	NM＿022	Hs． 44620	Nea．	2.6	\％ 2	10	2\％	1.2	\＃1
at	G	346		サ\％	1	．	4	T	3	4
201629	acid phosphatase	BE87297	Hs． 55829	ॠツ＂	4.4	0.2	23	T17	1.4	．
s＿at	1，soluble	4	6		1	．	2	【	2	\％
213562＿	squalene	BF97949		S\％	2.4	3.	1.4	31	1.3	． 1
S＿at	epoxidase	7	Hs． 71465	）	7	b	1	2	6	4．
203418＿		NM＿001		ल\＃	2.9	4.	0.9	21	1.4	2.
at	cyclin A2 transforming， acidic coiled－coil	237	H． 58974	\＃2	8	¢̆\％	5	\％̆	2	＂
218308	containing protein	NM＿006	Hs． 10401	\＃\＃	2.4	3	1.1	2．	1.1	2.
at	3	342		w	6	4	5	5	5	3
200607	RAD21 homolog	BG28996		\＃M\％	3.8	3	1.9	\＃\＃	1.0	2.1
s＿at	（S．pombe）	7	Hs． 81848	3	1	．	8	¢	1	\％
219494＿		NM＿012		ヱM1	2.1	3	1.0	«．	1.1	4\％
a		415		\＃\＃\＃	9	$\stackrel{1}{ }$	6		5	9
	chaperonin									
$\left.\right\|_{201946} ^{2016}$	containing TCP1， subunit 2 （beta） delective in sister chromatid cohesion 1	$\begin{aligned} & \text { AL54598 } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Hs. } 18977 \\ & 2 \end{aligned}$		$\begin{gathered} 5.5 \\ 4 \end{gathered}$	\because	$\begin{gathered} 3.2 \\ 6 \end{gathered}$	$\stackrel{4}{4}$	$\begin{gathered} 10 \\ 3 \end{gathered}$	$\stackrel{\rightharpoonup}{2} \stackrel{1}{8}$
219000	homolog（S．	NM＿024	Hs． 31516	ヱֵト	2.0	2	0.8	\＃	1.1	3．1
s＿at	cerevisiae） Fanconi memia，	094		※	1	7	6	7	8	7
213008	complementation	BG40361	Hs． 51312	\＃！	1.9	2．	1.0	21．	1.2	3
at	group I CDC28 protein	5		\＃	7	4	3	3	4	§⿳亠丷厂犬
201897＿	kinase regulatory	NM＿001	Hs． 37437	\＃®，	2.1	3	1.0	3	13	3
s＿at	subunit 1B eukaryotic translation	826	8	\＃11	4	¢	0	4	3	4
201123	ititiation factor	NM＿001	Hs． 53431	w11\％	8.0	10	3.8	ॐ	1.3	19
s＿at	5A	970	4	\％	4	71	1	$\stackrel{ }{ }$	4	【．
209825		BCOO290		ॐеネ	2.1	27	0.9	18	1.3	19
s＿at		6			2	9	6	9	，	\％
	minichromosome maintenance									
210983	complex	AF27990	Hs． 43872	\＃》	5.4	0.1	1.9	3	1.1	！
s＿at	component 7	0	0	\＃\＃	4	\％	0	9	，	4
	proteasome									
	（prosome．									
	macropain）									
216088	subunit，alpha	AL07863	Hs． 23395	？	3.8	3	2.6	\＄．1．	1.4	19
s＿at	type， 7		2	3．	5	3	7	§	4	4．
203432		AW2726		§ツ巛	1.7	3	10	$\stackrel{1}{1}$	1.2	！
at	thymopoietin zwilch	11	Hs． 11355	\％	0	？	3	¢	，	\％
218349	kinctochore	NM＿017		\ılı	2.8	3	16	3	1.2	
s＿at	protein	975	Hs． 21331	\＃ツ！	8	¢	7	\％	4	§
219402＿		NM＿024	Hs． 24157	э\＃	1.3	19	0.8	\！	1.4	1%
s＿at	derin 1	295	6	\％	1	3	0	\％	7	\％
	LSM4 bomolog．									
202736	U6 small nuclear	AA1125	Hs． 51525	MM＂	14.	\＃1．	9.3	サ7	1.1	19
s＿at	RNA associated	07	5	s	79	02	1	6．	5	\％

$\begin{aligned} & 209053- \\ & \text { s_at } \end{aligned}$	Wolf－Hirschhom syndrome candidate I	BE79378 9	Hs． 11387 6		1.3 6	1.5 0	0.8 7	\&	1.1 0	॥\％
213520	RecQ proten－ike	NM＿004		\＃1\％	1.4	\＃	0.9	»»	1.1	\％
at	4.	260	H． 31442	\％ 4	4	』»	3	\＃\＃	3	$\#$
217356	phosphoglycerate			サッ	12.	【＂	69	\＃\％	1.4	»\％
\＄＿at	kinase 1 minichromosome maintenance	\＄81916	H\＄． 78771		50		6	\％»	3	»
201930	complex	NM＿005	Hs．44411	\＃	2.0	\％	10	\＃\＃	1.2	\＃\＃
at	component 6 minichromosome maintenance	915	8	\#ink	5	$\%$	5	\#	5	\％
222037	complex	A1S5986	Hs． 46018	\＃4	1.8	»．	0.9	\＃»	1.1	॥\％
at	component 4	5	4	川！	6	\％	7	\％	9	\＃»
200853	H2A histone	NM＿002	Hs． 11919	\＃＊	2.0	»\％	1.4	$\stackrel{4}{ }$	1.3	\％»
at	family，member Z 2．	106	2	\％\％	4	\％	1	\＃\＃	3	，
204238	5 －phosphate N －	NM＿006	H． 10975	\％4\％\％	2.7	\％ 7	15	24.	10	»\％
s＿at	hydrolase 1 translocase of inner mitochondrial membrane 17	443	2	$\because \pi$ \＃y＂	4	\%	7	\#.	2	»
201821	homolog A	BCOO443		\＃1	2.1	\geqslant	1.5	20	1.1	\％
s＿at	（yeast）	9	Hs． 20716		0	佼	5	\Downarrow	9	$»$
202483	RAN binding	NM 002		\＃kal	6.5	४»	3.4	§\％	1.2	\＃»
s＿at	protein 1	882	Hs． 24763	\＃\＃\＃	8	＊	4	\％	4	\％
201202	proliferating cell	NM 002	Hs． 14743	\％＊＊	1.9	2\％	1.2	$2 \ldots$	1.1	\＃\＃
at	nuclear antigen	592	3		6	\％	9	\％	5	\geqslant
202397		NM 005		\＃\＃	2.6	\％	1.5	2．1	1.3	\＃
at		796		\％	3	\％	0	\geqslant	9	$\%$
203189		NM 002		\＄31	6.1	\＄\％	6.2	10	1.3	\＃
s at		496		\＄s\％	7	\％	1	\＃1	1	\％
	heat shock									
208744	$105 \mathrm{LDa} / 110 \mathrm{kDa}$	BG40366	Hs． 74326	\％	2.4	4	1.6	2\％	1.1	\＃
x＿al	protem 1	0	7	\＃！	7	\％	4	\＃»	8	§．
204203＿	budiug protein	NM＿OOI	Hs． 42966	\％竝	2.9	4	14	थ』	13	\％
at	（C／EBP），gamma	806	6	＊《	6	＊＊	3	4	9	4
203276＿		NM＿005		\＃\＃．	1.7	»！	1.1	॥』	12	\％
at	$\operatorname{lamin} \mathrm{Bl}$	573	H． 59497	\％1	5	\＃．	2	＊	2	4
208963＿		BG16583		\＃乡	1.6	»3	1.1	»»	1.4	\％
x＿at		3		\＄1	8	»	2	\％	0	\＃
215942＿	G－2 and S－phase	BP97317	H． 38618	\％乡！	2.3	34	10	\＃\＃	1.4	\％
s＿at	expressed 1 proteasone （prosome， macropain） 26 S	8	9	§is.	6	\because	7	پ	5	\＃
201267＿	subunit，ATPase．	AL54552	Hs． 25075	SSuk	4.1	4．	27	\＃\＃	1.2	\＃
s＿at				๕ね	6	＊	6	\％	0	S
203715	tubulin folding	NM＿003	Hs． 49814	\＃\＃\＃	1.7	\％	1.5	．1	12	$\stackrel{\text { s }}{ }$
at	colactor E	193		\％	8	§	4	\＃	2	s
214845		AF25765	Hs． 74326	§䋁	8.3	»＂	39	\％\％	1.4	\＆s
s＿at	calumenm	9	2	\％	5	s2	8	\＃	2	»
202533	dhydrofolate	BC00358	Hs． 59236	311s	1.5	\％\％	1.0	\＃»	1.1	\＄S
S＿at	reductase	4	4	》	8	\％	9	\＄	2	\uparrow
201504＿		A143530			22	$\stackrel{1}{4}$	1.6	\＃』	12	\＃\＃
s＿at	translin	2	Hs． 75066	W\％	7	\％	8	\％	6	»．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& 1053 _a t \\
\& 209653 \\
\& \text { at }
\end{aligned}
\] \& \begin{tabular}{l}
replication factor C（activator 1）2， 40 kDa \\
karyopherin alpha 4 （imporin alpha． 3）
\end{tabular} \& 187338
093240 \& \[
\begin{aligned}
\& \mathrm{Hs} .64706 \\
\& 2 \\
\& \mathrm{Hs} .46786 \\
\& 6
\end{aligned}
\] \& \begin{tabular}{l}
14s\＆ \\
\＆ \\
納 \\
\＆
\end{tabular} \& \[
\begin{gathered}
2.1 \\
0 \\
2.5 \\
7
\end{gathered}
\] \& \begin{tabular}{l}
26 \\
4 \\
34 \\
\＄
\end{tabular} \& 1.4
6

1.2

5 \& | थ． |
| :--- |
| \＃ |
| 1% |
| \＆ | \& \[

$$
\begin{gathered}
1.2 \\
6 \\
1.3 \\
5 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 48 \\
& 4 \\
& 4
\end{aligned}
$$
\]

\hline 212914＿ \& chrornobox \& AV6483 \& Hs．35641 \& CBX \& 0.3 \& \& 0.6 \& 0，3 \& 0.6 \& \％V／

\hline at \& homolog？ \& 64 \& 6 \& ， \& 9 \& \& 5 \& \％ \& \％ \& \％

\hline 203485 \& \& NM＿O2I \& Hs． 36862 \& RTN \& 0.1 \& OV． \& 0.4 \& 0. \& 0.6 \& M． F

\hline at \& | retienton 1 |
| :--- |
| transcobalamin I |
| （vitamin B12 | \& 136 \& 6 \& 1 \& 5 \& \[

\geqslant
\] \& 2 \& § \& \％ \& \leqslant

\hline 205513 \& binding protem， R \& NM＿OOI \& \& TCN \& 0.3 \& \％ \& 0.9 \& 0.4 \& 0\％\％ \& $\stackrel{1}{1}$

\hline at \& binder famly） \& 062 \& Hs． 2012 \& 1 \& 7 \& $$
4
$$ \& 3 \& \[

\geqslant
\] \& \％ \& $\%$

\hline 213451 \& \& BE04461 \& \& TNX \& 0.8 \& $$
03
$$ \& 1.1 \& \[

05
\] \& 0.6 \& 0.5

\hline X＿at \& \& 4 \& \& Bl \& 0 \& $$
\forall
$$ \& （） \& 4 \& 6 \& 4

\hline 205933 \& SET bindin \& NM＿ \& H5．4354 \& SETB \& 0.4 \& $$
\geqslant
$$ \& 1.0 \& 6， \& \％\％ \& \％

\hline at \& protem \& 559 \& 8 \& P1 \& 4 \& \& 2 \& T \& 6 \& 4

\hline \& FBI murine \& \& \& \& \& \& \& \& \&

\hline 202768 \& viral oncogene \& NM＿ \& Hs． 59095 \& FOS \& 0.1 \& \％ \& 0.2 \& 0 \& 0．6 \& W2

\hline at \& homolog B sortilin－related receptor，LDLR \& 732 \& 8 \& B \& 0 \& $$
\%
$$ \& 4 \& \％ \& \[

\geqslant

\] \& \[

\pm
\]

\hline 212560 \& class）A repeats \& AV728 \& Hs． 3685 \& SOR \& 0.3 \& ण้ \& 0.9 \& \％ \& 6， \& VS

\hline at \& containas． \& 68 \& 2 \& L． 1 \& 7 \& \& 1 \& ¢ \& \％ \& 3

\hline 209869 \& adrenocepto \& AF28409 \& H5． 24915 \& ADR \& 0.4 \& 人） \& 1.3 \& O．S \& V\％ 6 \& O／

\hline 4t \& alpha 2A \& 5 \& 9 \& A2A \& 3 \& $$
\hat{j}
$$ \& 3 \& \＄ \& \[

\geqslant
\] \& \％

\hline \& myosin，heavy \& \& \& \& \& \& \& \& \&

\hline 207961 \& chain 11，smoon \& NM1022 \& Hs．46010 \& MYH \& 0.2 \& $$
\geqslant \stackrel{l}{1}
$$ \& 0.5 \& 02． \& 62\％ \& 1\％

\hline $$
x_{-} a t
$$ \& muscle \& 870 \& 9 \& 11 \& 9 \& \[

\%
\] \& 2 \& 2 \& \％ \& 33

\hline 220177＿ \& transmembrane \& NM 024 \& Hs． 2086 \& TMP \& 0.8 \& NF \& 1.4 \& \％．6． \& 1．6． \& $0 \cdot 4$

\hline $8 \times a t$ \& protease，serine 3 \& 022 \& 0 \& RSS3 \& 4 \& \＃${ }^{1}$ \& 6 \& ， \& ， \& 4

\hline 209460 \& 4－aminobutyrate \& AF237 \& Hs． 3367 \& ABA \& 0.2 \& $$
1,1 \%
$$ \& 1.6 \& 1.0 \& 1．6． \& 0，6

\hline 41 \& aminotransferase \& 3 \& 8 \& T \& 1 \& \＃ 4 \％ \& 4 \& 4 \& ，\％ \& $\%_{1}$

\hline 208004 \& proline rieh． \& NM＿021 \& Hs．66142 \& PRO \& 0.3 \& \& 0.4 \& $$
\% 2
$$ \& 14． \& Q ${ }^{3}$

\hline at \& lacrimal 1 \& 225 \& 5 \& LI \& 3 \& \# \& 1 \& ，\quad \％ \& $\stackrel{1}{*}$ \& \％

\hline 201693 \& early growth \& AV7339 \& Hs． 32603 \& EGR \& 0.2 \& $$
12
$$ \& 0.6 \& \& W\％ \& OS

\hline s＿at \& | response I |
| :--- |
| interleakin 6 |
| signal transducer |
| （gpl30）． | \& 50 \& 5 \& 1 \& 6 \& \# \& 3 \& 1 \& \[

\geqslant
\] \& \％

\hline 204863 \& oncostatio M \& BE8565 \& Hs． 3320 \& IL6S \& 0.1 \& Vֶ \& 0.8 \& \& $$
1 \%
$$ \& Q6

\hline S＿at \& | receptor） |
| :--- |
| prostaglandin E | \& 6 \& 2 \& T \& 8 \& ！ \& 6 \& \[

\approx

\] \& \[

\geqslant
\] \& \geqslant

\hline 213933 \& receptor 3 \& AW2423 \& $$
\mathrm{Hs} .44500
$$ \& PTG \& 0.2 \& \& 1.2 \& 10.5 \& 10.8 \& 0 \％

\hline at \& （subtype EP3） malic enzyme 3． $\operatorname{NADP}(+)-$ \& 15 \& 0 \& ER3 \& 6 \& \[
\%

\] \& 0 \& \[

2
\] \& \geqslant \& 4

\hline 204663 \& dependent， \& NM_006 \& Hs． 19974 \& \& 0.3 \& U\％ \& 0.6 \& Uק， \& \％ 0 \& 0V\％

\hline at \& nitochondrial \& 680 \& 3 \& ME3 \& 4 \& ，\％ \& 3 \& \％ 0 ， \& \％ \& 8

\hline 209687 \& chemokine（ C －X－ \& \& Hs． 52289 \& CXC \& 0.6 \& ， 14 \& 1.5 \& 0.7 \& Q1．6 \& O\％

\hline at \& C motif）ligand 12 \& 019495 \& 1 \& L12 \& 6 \& \％\geqslant \& 3 \& 7 \& $\%$ \& \otimes

\hline 205357 \& angiotensin II \& NM＿OO \& Hs． 47788 \& ACT \& 0.3 \& \％ \& 1.6 \& 0.7 \& Q6 \& V\％

\hline \＄＿at \& teceplor，type 1 myosin，heavy \& 685 \& 7 \& R I \& 6 \& $$
\geqslant
$$ \& 9 \& 9 \& \geqslant \& $\%$

\hline $201497-$ \& chain 11，smooth \& NM＿022 \& Hs． 46010 \& MYH \& 0.2 \& リ， \& 0.6 \& $4 \geqslant$ \& Q．6 \& 0，

\hline x at \& muscle \& 844 \& 9 \& 11 \& 6 \& ，$\quad 1 \times 2$ \& 0 \& \＄$\quad 1$ \& $\stackrel{1}{2}$ \& \geqslant

\hline 212774 \& zinc finger and \& A 22332 \& \& ZBT \& 0.7 \& \& 1.5 \& Unf \& Q．6． \& O＋

\hline at \& BTB domain \& 1 \& H． 69997 \& B18 \& 9 \& \& \& \& \& ， 2 ，

\hline
\end{tabular}

	containing $\{8$									
212713	associated protein		Hs． 29604	MFA	1.0	106	2.2	0.8	0，6	0．3．
at	4	R72286	9	$P 4$	6	4	1	I	，1	，\％
206115	early growh	NM＿004	Hs． 53431	EGR	0.1	01	0.4	02	O． 6.	Q \geqslant
at	response 3	430	3	3	8	§	7	》 \％	0	\％
203697	frizzled－related		H8．12845	FRZ	0.5	0.3	1.0	¢ 1	0.6	0．4．2
at	protein	U91903	3	B	1	0	2	\％\％	》	\％
	WAP four－									
203892	disulfide core	NM 006		WFD	0.8		2.1	0.9	V1\％	9．1 \geqslant
at	domain 2 integral	103	H． 2719	C2	0	$\%$	1	7	0	\％
202746	membrane protein	ALO2178		ITM2	0.7	0，\％$\%$	0.9		O，\％	1．4．
at	$2 \mathrm{~A}$	6	Hs． 17109	A	0	\％	1	4	0	\％
219350	halase－like	NM 025	Hs．3531	ATH	0.5	0.3	0.9	0.	0.3	1\％
at	（yeast）	092	1	L1	7	＊	7	\％ 4	\％	\downarrow
212865	collagen，type	BF44906	H． 40966	COL	0.7	0．+	31	0.7	O，	W\％
s＿at	XIV，alpha 1	3	2	14 Al	2		1	5	7	4
209541	growth factor：	A197249	Hs． 16056		0.6	$\nu^{3} \mathrm{H}$	19	\％ 0	O\},	$1 \% 3$
at	（somatomedin C）	6	2	［GF］	4	6．	3	》，	7	\geqslant
205913＿		NM＿（02	$\mathrm{Hs.10325}$	PLIN	1.0	0.6	21	0.9	0．3	0.2
at	perilipin 1 inter－alpha－ trypsin imbibitor	666	3	1	9	ϑ	1	6	6	4
219064	heavy chain	NM_030	$\mathrm{Hs} .49858$	TTH	0.4		04	§ $\chi^{2} \downarrow$	V3\％	VS
at	family，member 5 Duffy blood	569	6	5	0	π_{i}	7	6	\％	1
208335	group，chemokine	NM＿0	Hs． 15338	DAR	0.5	0，\％	1.1	\％${ }^{2}$ \％	03	Vֶ，
s＿at	receptor chemokine（ C －	036	1	C	7	2	9	4	0	$\stackrel{1}{ }$
205898	X 3 －Cmotif）			CX3	0.4	\％$\%$	14	\％＊\％	Oश	O\％
at	receptor 1	020350	Hs． 78913	CRI	2	\＃ 4.	0	\％$)^{2}$	$\%$	$\hat{\%}$
209763		AL04917	Hs． 49658	CHR	0.7	\％．1	1.1	\％，${ }^{\text {\％}}$	Oק，	O，
at	chordin－like 1 sema domain． immunoglobuln domain（ Ig ），shot basic domain．	6	7	DLI	6	2	0	\geqslant	\％	\geqslant
219689	secreted，	NM＿O20		SEM	0.3	\％	0.8	\％， 4	V＊	0ㅘ．
at	（semaphorin） 30 insulin－like	163	Hs． 59729	A3G	9	\forall	9	$\$ 1$	ϑ	6 \％
209540	growh factor	AU1449	Hs． 16050		0.6	勺1\％	1.4	0ेश	OV，	णֶ，
at	（somatomedin C）	12	2	IGF］	1	\％	7	\＄	ϑ	$\%$
43427＿a	acelyl－CoA	A197089	Hs．23489	ACA	0.1	10.0	0.3	0．1	0.3	Q，\leqslant
t	carboxylase beta ATP－binding casscte，sub－	8	8	CB	2	6	0	$\$$		1%
204719	family $\mathrm{A}(\mathrm{ABCl})$ ，	NM 007		$A B C$	0.4	$\bigcirc \geqslant$	10	\％ 0 ，	，\％，	O，${ }^{1}$
dt	member 8	168	Hs．58351	A8	3	\％$\chi^{\text {® }}$	3	$\geqslant \%$	，\＆	\％
207414		NM 002		PCS	0.6	0，	2.1	1.2	TV．	OV．
s＿at		570		K6	2	औง	3	1	3	，
217838		NM 016	Hs． 12586		0.8	0.4	3.6	20	O．5．	O．${ }^{\text {W }}$
s＿at	Enal／Vasp－like secretoglobin．	337	7	EVL	9	\#	1	®，	？	
205979	family 2 A ，	NM＿002		SCG	0.5	\％13，	1.7	1.0	\％S	U．\uparrow
at	nember 1	407	Hs．97644	B2Al	7	$\geqslant \geqslant \geqslant$	6	7	\％	\}
203980	fatly acid binding	NM＿01	Hs．39156	FAB	1.0	10，	2.9	1.2	¢ 5	V， 1
at	protein 4	442	I	P4	8	， 0 \＆	3	7	$\stackrel{1}{2}$	\％

at	homolog， subfamily C ， member 12 interleakin 6 signal transducer （gpl30．	800	0	JC12		\#		§\#	1	0
212195	oncostatio M	AL04926	Hs．53208	IL6S	0.5	\％	1.6	1.1	0.6	0.6
at	receptor）	5	2	T	0	0	1	1	0	9
205509	carboxypeptidase	NM＿001	Hs． 47789		0.6	\％．	3.6	\＃\＃	0.5	0.8
at	B1（tissue） interleakin 6 signal transducer （gp130．	871	1	CPBI	8	$\%$	0	§	9	7
212196	oncostatin M	AW2429	Hs． 53208	IL6S	1.0	\％ 5	3.1	$\#$	0.5	0.7
at	receptor） E74－like factor 5 ets domain	16	2	T	1	$\%$	6	\＃．	9	4
220625	tanscription	AF11540			0.5	\％1	00	11	0.5	0.9
s＿at	factor） serpin peptidase inhibitor，clade A Clpha－ 1	3	Hs． 11713	ELF5	9	$\stackrel{\pi}{\#}$	8	ψ	$\stackrel{ }{*}$	4
202376	antitypsin），	NM 001	Hs． 53429	SERP	0.9	0.	2.9	\％	0.5	0.7
at	member 3 serpin peptidase inhibitor，clade A （alpha－1 antiproteinase，	085	3	INA3	1	$\xlongequal{\#}$	，	\％	$\#$	2
209443	antitrypsim，		Hs． 15962	SERP	0.4	0\％	1.6	\＃．	4	1.3
al	member 5	102639		INA5	8	\％	2	\％	0	1
205225	estrogen receptor	NM 000	Hs． 20812		0.0	00	3.6	2\％	0	0.7
at	1	125	＋	ESR1	7	4	6	¢	0	1
202018		NM＿002	H8．52951		0.5	\％	1.0	\＃\＃，	0.8	0.2
s＿at	lactotransferrin	343	7	LTF	9	\％	1	0	6	11
206509	prolactio－induced	NM＿002			0.0	0»	2.0	14．4	1.1	0．2．
at	protein	652	Hs． 99949	PIP	9	»॥．	7	4	9	1
	FBJ murine osteosarcoma									
209189	viral oncogene	BC00449	Hs． 73131		0.4	4）	1.9	\＃）	0.7	0．2
at	homolog	0	7	FOS	9	\％	4	\％	6	9
204014	dual specificity	NM＿001	Hs． 41796	DUS	0.0	$\because \Perp$	0.7	॥＂	0.9	10．3
at	phosphatase 4 sorbin and SH3	394	2	P4	9	川	6	\％	7	3
218087	domain	NM＿015		SOR	0.3	0』	0.8	12．	0.6	0\％
s＿at	containing 1	385	Hs． 38621	BSI	2	3	5	9	8	3
219580	transmembrane	NM＿024	Hs． 11583	TMC	0.2	थ\％	1.2	11．	1.1	1） 3
s＿at	chanmel－like 5	780	8	5	3	\％	7	»	7	8
219304	platet derived	NM＿025	Hs． 35229	PDG	0.2	111	0.7	142	0.7	103．
S＿at	growth factor D	208	－	FD	2	ひ	2	$\stackrel{ }{ }$	1	\％
219440	retinoic acid	NM＿021	Hs． 44668		0.3	（12．	1.5	\＃\＃．	0.6	14．
at	induced 2 plecksirin and	785	0	RAI2	6	3	0	$\#$	8	0
203355	Sec 7 domain	NM 015	H5．43425		0.1	0»	0.7	\＃\＃	0.9	\＃12
s＿at	containing 3 family with sequence	310	5	PSO3	7	\％	4	\＃	4	«．
217967	similarity 129.	AF28839	Hs． 51866	FAM	0.7	0.5	1.4	＂19．	0.8	10\％
s＿at	member A	1	2	129A	4	y	1	\％	0	3
214218	X inactive	AV6993	H5． 52990	XIST	0.3	0．	0.6	0\％．	0.6	थ．

s_at	specific transcript (non-proteín coding)	47	1		1	$!$	9	0	8	4
202962	kinesin family	NM_015	Hs. 44.476	KIFI	0.2	91	0.7	113	0.8	0.4
at	member 13B 3-hydroxy-3- methylglutary-	254	7	3B	1	7	8	4	2	4
204607_	CoA synthase 2	NM_005		Mg	0.3	0.4	1.2	45	1.1	1.4
	(mitochondrial) X inactive specific transcript	518	Hs. 59889	CS2	6	I	9	s	1	5
221728	(non-protein	AA6284	H. 22990		0.3	92	0.6	4.	0.6	0.4
x_at	coding) regulator of G -	40	1	XIST	0	0	6	4	7	5
218353	protein signaling	NM_025			0.3	02	1.3		0.7	0.4
at	5	226	Hs. 24950	RGSS	6	\%	4	0	2	5
213110	collagen, type IV,	AW0521	Hs. 36908	COL	02	01	0.8	1.1.	0.8	0.4
s_at	alpha 5	79	9	4 A 5	0	6	7	4	1	5
201694-	early growh	NM_001	Hs. 32603	EGR	0.1	91	03	11	0.7	0.4
s_at	response 1 Fe fragment of	964	5	1	8	.	4	\%	4	7
203240	IgG binding	NM_003	H5.1173	FCG	0.3	0.	0.6	0.2	0.8	0.4
at	protein.	890	2	BP	9	3	3	9	3	7
203130	kinesin family	NM 004	Hs. 43555	KIF5	0.3	02	1.3	11.	0.7	1.4
s_at	member 50	522	7	C	4	7	9	4	9	8
209706		AF24770		NKX	0.5	0.4	1.2	00	0.6	11.
at	NK3 homsobox 1 zinc finger.	4	Hs. 55999	3-1	9	1	5	0	9	8
212419	CCHC domain	AA1313	Hs. 52308	ZCC	0.3	0.2	1.0	05	0.7	10.4
at	containus 24	24	0	HC24	5	7	3	0	7	9
200795	SPARC-like 1	NM_004		SPA	0.4	0.3	1.2	0.0	0.8	14.4
at	(heviin) zinc finger and	684	Hs. 62886	RCLI	1	3	1	0	0	9
205883	BTB domain	NM_006	Hs. 59194	ZBT	0.4	0.4	0.7	0.3	0.9	0.4
	containug 16	006	5	B16	3	2	5	1	8	9
221743		AL04697	Hs. 47138		0.2	01	0.4	02	0.7	135
s_at	tensin 1	9	1	TNS1	2	\$	6	3	9	11
201041	dual specificity	NM_004	H5. 17169	DUS	03	1.3	0.7	03.	0.9	0.5
s_at	phosphatase 1	417	5	P1	3	0	5	。	3	1
205776	flavin containing	NM_001	Hs. 64270	fmo	0.2	17	0.7	03	1.2	0.5
at	moncorygenase 5	461		5	2	9	0	4	9	2
204072	furry homolog	NM_023	H. 50766		0.1	11	0.5	02	0.8	0 0s
s_at	(Drosophita)	037	9	ERY	5	3	6	9	9	3
1598_2	growh arrest-		Hs. 64634	GAS	0.7	03	1.2	00	0.7	0.5
at	specific 6	113720	6	6	5	3	5	$\$$	3	\checkmark
214657		AU1349		NEA	0.2	01	0.3	0.	0.7	0.5
s_at		77		T1	1	\%	9	0	4	3
	glutathone S -									
204418	transferase mu 2	NM_000	Hs. 27983	GST	0.4	03	0.9	0.5	0.9	08
x_at	(muscle)	848	?	M2	1	9	5	3	5	\%
210365				RUN	0.	01	0.3	01	0.8	0.5
at		D43967		X1	8	¢	1	8	-	6
	enoyl CoA									
218552	hydratase domain	NM_018	Hs. 47631	ECH	0.4	0.4	0.8	9.4	0.8	0s
3 t	contaning 2	281	9	DC2	6	9	4	\%	5	T
202992	complement	NM_000			0.7	0.4	1.1	0%	0.7	0s
at	component 7	587	Hs. 78065	C7	7	9	5	3	7	7
205794	neuro-oncological	NM_002		NOV	0.2	0.1	0.6	03	0.6	0.5
s ${ }^{\text {at }}$	ventral antigen 1.	515	Hs. 31588	A1	4	\%	8	9	8	.
204622	nuclear receptor	NM_006	Hs. 56334	NR4	0.1	$\cdots 1$	0.4	02.	0.9	05

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline X＿at

216248 \& | subfamily 4. group A，member 2 |
| :--- |
| nuclear receptor subfamily 4 ， group A member | \& 186 \& 4

H． 56334 \& A2．

NR4 4 \& 0.1 \& $$
4
$$

M. \& 0.5 \& $\$$
I\# \& 0

1.0 \& ת 4.

\hline S＿at \& 2 \& 577154 \& 4 \& A2 \& 8 \& \％ \& 6 \& 3 \& 2 \& §．

\hline 205380 \& PDZ domain \& NM＿002 \& Hs． 44475 \& PDZ \& 0.1 \& थ1 \& 0.8 \& U4． \& 0.7 \& US．

\hline at \& containing 1 \& 614 \& 1 \& K1 \& 9 \& 今 \& 2 \& \＄ \& 8 \& 8

\hline 212741 \& monoamine \& AA9233 \& Hs．18310 \& MAO \& 0.4 \& »\％ \& 1.0 \& 100 \& 0.7 \& \＃\＃

\hline at \& oxidase A \& 54 \& 9 \& A \& 4 \& 4 \& 2 \& \％ \& 6 \& 4

\hline 201983 \& epidermal growth \& AW1570 \& Hs，48829 \& EGF \& 0.7 \& 0.9 \& 0.3 \& リ！ \& 1.2 \& UN．

\hline s＿at \& factor receptor \& 70 \& 3 \& R \& 2 \& 2 \& 1. \& 9 \& 7 \& \％

\hline 205157＿ \& \& NM＿000 \& \& KRT \& 1.2 \& 0.9 \& 0.4 \& リ．． \& 0.7 \& 0．4．

\hline s＿at \& \& 422 \& \& 17 \& 9 \& 9 \& 6 \& \％ \& 7 \& \％

\hline \& microtubule \& \& \& \& \& \& \& \& \&

\hline 212095 \& associated tomor \& BE55242 \& \& MTU \& 0.2 \& 0\％ \& 0.7 \& \＃\＃ \& 10 \& 0\％．

\hline s＿at \& suppressor 1 \& 1 \& Hs． 7946 \& S1 \& 9 \& § \& 1 \& 3 \& 7 \& O

\hline 204294＿ \& aminomethyltrans \& NM＿000 \& \& \& 0.1 \& \％1 \& 0.2 \& \＃\＃ \& 0.6 \& 06

\hline at \& ferase \& 481 \& Hs． 102 \& AMT \& 6 \& ！ \& 0 \& \geqslant \& 8 \& 》

\hline 216333 \& \& \& \& TNX \& 0.8 \& 1．5 \& 1.0 \& 11% \& 0.7 \& 14．

\hline X＿at \& \& M25813 \& \& A \& 2 \& 》 \& 5 \& 4 \& 2 \& ¢

\hline 211986 \& AHNAK \& BG28786 \& H5． 50275 \& AHN \& 0.4 \& 0．3 \& 1.0 \& 10．4 \& 0.8 \& 9\％

\hline at． \& nucleoproteín solute carier \& 2 \& 6 \& AK \& 2 \& 5 \& 0 \& $\stackrel{\text { \％}}{ }$ \& 4 \& 3.

\hline 206143 \& family 26. \& NM 000 \& \& SLC2 \& 0.4 \& 04 \& 0.5 \& O\＃， \& 10 \& M．

\hline at \& member 3 \& 111 \& Hs． 1650 \& 643 \& 2 \& 5 \& 2 \& $\stackrel{ }{2}$ \& 8 \& 3

\hline 206093 \& \& NM＿007 \& \& TNX \& 0.8 \& 0\％ \& 1.0 \& U． 0 \& 0.7 \& 1\％．

\hline x＿at \& \& 116 \& \& B2 \& 2 \& 9 \& 1 \& \％ \& 2 \& 3

\hline 203710 \& | inositol 1．4．5 |
| :--- |
| trisphosphate | \& NM 002 \& Hs． 56729 \& ITPR \& 0.2 \& 02 \& 0.9 \& O§ \& 0.7 \& 10．

\hline at \& receptor，type 1 leucine－rich repeats and \& 222 \& \& 1 \& 8 \& 1 \& 0 \& \％ \& 2 \& 3

\hline 211596 \& immenoglobulin－ \& AB05046 \& H． 51805 \& LRIG \& 02 \& 02 \& 0.9 \& 0% \& 0.8 \& リ॥

\hline s at \& like domains 1 neural precursor cell expressed． developmentally down－regulated 4 \& 8 \& \& 1. \& 8 \& $$
\#
$$ \& 7 \& § \& 6 \& 3

\hline 212448 \& like，E3 ubiquitio \& AB00789 \& H． 18567 \& NED \& 0.2 \& ＠！ \& 0.5 \& ＠\％． \& 0.7 \& 0%

\hline at \& protein ligase \& 9 \& 7 \& D4L \& 7 \& \％ \& 9 \& \％ \& 1 \& ＊

\hline 216264＿ \& laminim，beta 2 \& \& Hs． 43972 \& LAM \& 0.2 \& 02 \& 0.7 \& 0.4 \& 0.8 \& 010

\hline S＿at \& （laminin S） \& $\times 79683$ \& 6 \& B2 \& 4 \& \％ \& 2 \& \bigcirc \& 8 \& 4

\hline 202723＿ \& \& AW1174 \& Hs． 37066 \& EOX \& 0.5 \& 0．4 \& 0.6 \& 04.4 \& 0.8 \& 010

\hline s＿at \& forkhend box Ol \& 98 \& 6 \& OI \& 5 \& \％ \& 3 \& θ \& 2 \& 4

\hline 204823 \& neuron navigatos \& NM＿014 \& Hs． 65530 \& NAV \& 0.3 \& 03 \& 0.6 \& 0．4． \& 0.7 \& 0%

\hline at \& 3 \& 903 \& l． \& 3 \& 9 \& 0 \& 7 \& \％ \& 6 \& 4

\hline \& met proto－ oncogene \& \& \& \& \& \& \& \& \&

\hline \& （hepatocyte \& \& \& \& \& \& \& \& \&

\hline 203510 \& growth factor \& BG17054 \& Hs． 13296 \& \& 0.4 \& 0\％ \& 0.2 \& $9 \#$ \& 1.1 \& O\％

\hline at \& receptor） \& 1 \& 6 \& MET \& 7 \& 3 \& 6 \& 7 \& 6 \& ＊

\hline \& nuclear factor I／C \& \& \& \& \& \& \& \& \&

\hline 213298＿ \& ranscription \& \& Hs． 17013 \& \& 0.5 \& 04 \& 0.8 \& 03. \& 0.8 \& 0\％

\hline at \& factor） \& X12492 \& 1 \& NFIC \& 4 \& \＃． \& 8 \& 8 \& 6 \& t．

\hline
\end{tabular}

Table 18. Upregulated targets of the downregulated hsa-mir-568 in high iBCR score ER-/ER+ tumors.

Foldchang e \uparrow	ProbeSet	$\begin{aligned} & \text { Symbo } \\ & 1 \end{aligned}$	Name	$\begin{aligned} & \text { EntrezI } \\ & \text { D } \\ & \hline \end{aligned}$	Accession	UGCluster
3,0	$\begin{aligned} & 220085 . \text { at } \\ & 201291 \text { s_ } \end{aligned}$	HELL	helicase, lymphoidspeeifie	3070	NM_0180	Hs. 655830
					63	
		TOP2	topoisonzerase (DNA) Π			
2.5		A	alpha 170 kDa	7153	AU159942	Hs. 156346
2.4	203213. at	CDK1	cyelin-dependent kinase 1	983	AL524035	Ms, 732435
2.3		STIP1	phosphoprotein 1 BUBI mitotic checkpoint	10963	AL553320	Hs,337295
		BUB1			NMJ 3012	
1.7	203755. at	B	serine/threonine kinase B low density lipoprotein	701	11	Hs. 513645
			receptor-related protein \&, apolipoprotein e receptor $\mathrm{n}_{\text {udix }}$ (nucleoside		NMJ 3046	
1.6	205282. .at	LRPS		7804	31	Ms. 280387
		NUDT	diphosphate linked moiety		NM 0070	
1.6	$\begin{aligned} & \text { 202697. at } \\ & 209053 \text { _s. } \\ & \text { at } \end{aligned}$	$\begin{aligned} & 21 \\ & \text { WHSC } \end{aligned}$	XVtype motif 21 Wolf-Hirsehhorn	11051	06	Hs,528834
			Wolf-Hirsehhorn			
1.5		$!$	syndrome: candidate 1	7468	BE793789	Hs. 13876
19	$\begin{aligned} & 202134 \text { _s } \\ & \text { at } \end{aligned}$	WWT	W W domain containing transcription regulator 1 v-myb myeloblastosis	25937	NM_0154	Hs. 594912
		R1			72	
		MYBL	viral oncogene homolog (avian)-Hke 1 pyruvate dehydrogenase	4603	AW59226	
1.9	$\begin{aligned} & 2.13906, \text { at } \\ & 206348 \text { s. } \\ & \text { at } \end{aligned}$	1			6	Hs. 445898
					NM_0053	
18		PDK3	kinase, isozyme 3	5165	91	Hs. 296031
	219927 at	FCFl	processome component		NML0159	
1.8			homolog (S, eerevisiae)	51077	62	Hs. 579828
			v-myc myelocytomatoas			
			viral related oncogene. neuroblastoma derived			
1.8	$\begin{aligned} & \text { 209757._s_ } \\ & \text { at } \end{aligned}$	MYCN FAM5	(avian)	4613	BC0027 12	Hs, 25960
			family with sequence			
1.8	$\begin{aligned} & 217562 \text { at } \\ & 219875 \text { s. } \end{aligned}$	C	similarity 5 , member C	339479	BF589529	Hs. 65765
			desumoylating		NM 0160	
1.7	at	DESI2	isopeptidase 2 platelet-derived growth factor receptor, alpha	51029	76	Hs. 498317
		PDGF				
1.7	215305 at	RA	polypeptide triggering receptor expressed on myeloid cells	5156	1179306	Hs. 74615
		TREM			NM_01 86	
1.7	219434. at	1	1 synaptotagmin binding.	54210	43	Hs. 283022
	217834 ._s_	SYNC	cytoplasmic RNA		NM_0063	
1.7	at205646._s	RJP	interacting protein	10492	72	Hs. 571177
					NM_0002	
1.6	at	PAX6TCP 11	paired box 6	5080	$\begin{aligned} & \text { §O } \\ & \text { NM_01 } 83 \end{aligned}$	Hs. 270303
			1-complex 11, testis-			
1.6	205796. at	$\begin{aligned} & \text { LI } \\ & \text { APOO } \end{aligned}$	speciiic-like 1	55346	93	H:S:. 655341
1.6	222269, at	L	apolipoprotein O-like centrosomal protein	139322	W87634 NMJ) 248	$\mathrm{H}_{5} \mathrm{~S} 512181$
1.6				79959	NMJ) 248 99	
1.6	219311 at	CEP76				Hs.2.36940
1.6	214708 at	SNTB1	syntrophin, beta 1	6641	BG484314	Hs. 46701

Bolded genes upresulated in high iBCR score ER-/ER+vs. normal breast

EXAMPLE 3

The iBCR test described herein was developed from a meta-analysis of gene expression profiles of breast cancer. This test is based on the expression of 43 genes which are prognostic as a signature in breast cancer irrespective of subtype. This test was also found to be prognostic in lung adenocarcinoma. Patients with high iBCR score have much poorer overall survival than patients with low iBCR score.

In the -current study, The Cancer Genome Atlas (TCGA) datasets for several cancer types were investigated for three purposes. First, to determine the differences at the protein level between high iBCR score breast cancer cases to low iBCR score breast cancer cases. This comparison was also carried out for lung adenocarcinoma. Secondly, to determine whether deregulated proteins/phosphoproteins between high and low iBCR score tumours are prognostic. Finally, the prognostic value of the iBCR mRNA signature and associated protein signature are prognostic in other cancer types profiled by the TCGA.

As shown in Figure 48A\&B, comparison of the reverse phase protein array (RPPA) data between ER+ breast cancer cases with high iBCR score and low iBCR score identified several deregulated proteins and phosphoproteins between these two patient subgroups. Similar analysis in ER- breast cancer cases with high iBCR score compared to those with low iBCR score also identified deregulated proteins and phosphoproteins between these two patient subgroups (Fig.48C\&D). These significantly deregulated proteins and phosphoproteins were then tested for association with overall survival. The upregulation of 9 and down regulation of 8 proteins/phosphoproteins were highly prognostic in breast cancer (Fig.49A). Importantly, the integration of the iBCR mRNA and protein signatures is the most significant indicator of overall survival of breast cancer patients irrespective of subtypes and in comparison to all known ciinicopathological indicators (Fig.49B).

Similar analysis in the lung adenocarcinoma TCGA dataset identified proteins/phosphoproteins based on the iBCR mRNA signature which are prognostic as a protein signature (Fig. $50 \mathrm{~A}-\mathrm{C}$), The integration of the iBCR mRNA/protein signatures were highly prognostic and outperformed the standard ciinicopathological indicators in lung adenocarcinoma (Fig.50D\&E).

Table 19 summarises the 43 genes at the mRNA level and 23 proteins/phosphoproteins in the iBCR test. The components which were prognostic
in breast cancer (Fig. 48 \& Fig.49) and lung adenocarcinoma (Fig.50) are labelled in Table 19. Next, the association of the mRNA and protein/phosphoprotein levels of the genes in Table J9 with overall survival was tested in other cancer types. The deregulation of mRNA and protein levels of the iBCR test components that associate with overall survival is summarised in Table 19. For each cancer type, the marked components were used as a signature and the stratification of overall survival of kidney renal clear cell carcinoma (KIRC), skin cutaneous melanoma (SKCM), uterine corpus endometrioid carcinoma (UCEC), ovarian adenocarcinoma (OVAC), head and neck squamous cell carcinoma (HNSC), colon/rectal adenocarcinoma (COREAD), lower grade glioma (LGG), baldder urothelial carcinoma (BLCA). lung squamous cell carcinoma (LUSC $^{\wedge}$ kidney renal papillary cell carcinoma (KIRP), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), liver hepatocellular carcinoma (LIHC) and pancreatic ductal adenocarcinoma (PDAC).is shown Figures 51 to 54.

In conclusion, the iBCR test including the mRNA and protein components (Table 1.9) is a highly prognostic test in all cancers tests. This test identifies aggressive human cancers and is enriched for protein-protein interactions (Figure 55) as well as biological functions related to the hallmarks of cancer (Table 20).

Table 19：The iBCR test components in differenl t cancers from T iCGA dattasets

iBCR test component	傮	$\underset{\sim}{\mathbb{Q}}$	$\begin{aligned} & \frac{x}{x} \\ & \frac{x}{x} \end{aligned}$	$\frac{\Sigma}{2}$	$\underset{\sim}{\underset{\sim}{u}}$	$\frac{5}{8}$	$\frac{0}{2}$	$\left\lvert\, \begin{aligned} & 0 \\ & \hline \end{aligned}\right.$	$\begin{array}{\|l\|l\|} \hline 9 \\ 9 \end{array}$	$\frac{5}{3}$	$\underset{\sim}{n}$	14	$\left\lvert\, \begin{aligned} & \frac{a}{k} \\ & \frac{k}{x} \end{aligned}\right.$				趸

nRRNA

GNB2L1	＋	＋			＋	＋	\＄				＋
EIF3K	4		＋	¢	＋	4．		T		．	
TXN	＋	＋				＋	4	\}	年	＝	
ADORA2 B	$+$		＋	＋		4．	＋			4	
KCNG1	\＄	＋	\}		¢	\}	W			4	
BCAP31	＋	＋	＋	\％	＋				4	．	
GSK3B	＊	＋		＋	＋	＋					．
EXOSC7	＋		＋	¢	＋					．	
FOXM1	＋	＋	＋	＋	＋						
CD55	\＃		\＃				4．	¢		．	
ZNF593	4	＋	＋		＋		＋				＋
EXO1	＊	＋		＋	＋						
KIF2C	\％	＋	\＃	＋	4．						
STAU1	＋					＋			＋	＋	
MAP2K5	4				\＄．	¢				＋	．
TTK	＋	＋	\＃		サ						
MELK	＋	＋	\＃		＋						
CENPA	＋	＋	\％	4							
TPX2	＋	＋	¢	＋							
NDUFC1	＋						＋	\＃		．	＝
CA9	＋	٪									
CAMSA	＋			＋						＋	．

	$\underset{\sim}{2}$		\％	
$\psi+$		\tilde{Y}		
			$\psi \forall$	
$\stackrel{\psi}{2}$	\forall	$\stackrel{\psi}{2}$		
\geqslant	\geqslant			
$\stackrel{\rightharpoonup}{2}$				
	ψ	ψ		
		ψ	ψ	
	$\%$	ψ		
	\％	$\%$		
$\stackrel{1}{*}$				
$\stackrel{1}{2}$	$\underset{8}{+}, 4$	ψ		
$\frac{4}{4}$	$\hat{\psi}$			
	4	$\%$		ψ
	\nLeftarrow			
	\＆			
\forall	¢			
ψ	ψ			
			$\pi \%$	श，
		ψ		

P1											
GRHPR	".	\#			\#.					\%	
$\begin{gathered} \text { HCFC1R } \\ 1 \end{gathered}$	+	\#"				\#/	Yis.	$\prod_{\#}$			
CEP55	\#	\#	\#								
MCM10	"	\#.		\#							
PML	\%		\#		\#.			\%	*		
CENPN	*	\#	\#								
$\begin{gathered} \text { CARHSP } \\ 1 \end{gathered}$	\#	\#.	\#.						\#.		
CETN3	\#									»	
ABHD5	4.			\#.							".
BTN2A2	$\stackrel{ }{ }$	\#		»		$\stackrel{1}{ }$	»	\#	\#.	"	
SMPDL3 B	״.			„.				«		«.	\#.
MTMR7	\#	$\stackrel{1}{ }$		»			»				
ME1	$\stackrel{ }{ }$			»				»			$\stackrel{ }{ }$
BCL2	\#		»								
$\begin{gathered} \text { ZNRD1- } \\ \text { AS1 } \end{gathered}$	\%	\#.				«.					
MAPT	\%	»	\%								
ERC2	»									*	
BTG2	\%	»		».							
MYB	\#				«.						
STC2	\#										
IGH@	\%										

Protein

DVL3	4	$+$	+		T.			+	+	4	T
PAI-1		+	+	\%		+	\%	+	+		\#
VEGFR2	+					+	*		4	+	+
INPP4B	+				そ.		IT	そ.			!
$\begin{gathered} \text { EIF4EBP } \\ 1 \end{gathered}$	+		+	\%				\%			
EGFR	+.			\%			\%	\$			T
Ku80		+		T					T	+	
HER3	4.		.				\}	\%			
SMAD1	$\stackrel{4}{4}$						\}		+	Г	
GATA3		+					\%				\%
ITGA2		+					\%				
AKT1		\$								٪	
NFKB1	4.								+		
HER2	4										
ASNS	.			\#	¢"	.	\%	.		.	"
MAPK9	.		.	.	"	\%		\%			
ESR1		.	.	\#.	.	\%			"		
YWHAE	\#				*	\%		\#	*		
RAD50	*		.					.			
PGR						\%			\#		
COL6A1	\%						"				
PEA15	.							\%			
RPS6											

+ denotes the association of overexpression with poorer survival (also shaded as red).
- denotes the association of underexpression with poorer survival (also shaded in green)

Table 20: Enrichment of biological functions related to the hallmarks of cancer in the iBCR test

60 ID	TERM	\# GENES	P. VALUE		P-VALUE BONFERR ONI
$\begin{gathered} \text { GO:0009 } \\ 719 \end{gathered}$	response to endogenous stimulus	22	$\begin{gathered} 9.17 \mathrm{E} \\ 11 . \end{gathered}$	$\begin{aligned} & 1.13 \varepsilon \\ & 06 \end{aligned}$	1.13E.06
$\begin{gathered} \text { G0:1901 } \\ 700 \end{gathered}$	response to oxygen-containing compound	18	$\begin{gathered} 9.10 E- \\ 08 \end{gathered}$	$\begin{gathered} 2.90 E- \\ 04 \end{gathered}$	1.13E-03
$\begin{gathered} \mathbf{G O : 0 0 3 2} \\ 268 \end{gathered}$	regulation of cellular protein metabolic process	20	$\begin{aligned} & 1.58 \mathrm{E} \\ & 07 \end{aligned}$	$\begin{gathered} 2.90 E \\ 04 \end{gathered}$	$1.96 E-03$
$\begin{gathered} \text { GO:0035 } \\ 556 \end{gathered}$	intracellular signal transduction	20	$\begin{gathered} 1.65 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{gathered} 2.90 E \\ 04 \end{gathered}$	2,05E-03
$\begin{gathered} \text { GO:0010 } \\ 243 \end{gathered}$	response to organonitrogen compound	14	$\begin{aligned} & 1.80 \mathrm{E} \\ & 07 \end{aligned}$	$\begin{gathered} 2.90 e \\ 04 \end{gathered}$	2.228 .03
$\begin{gathered} \text { GO:0010 } \\ 033 \end{gathered}$	response to organic substance	24	$\begin{gathered} 1.82 \mathrm{E} \\ 07 \end{gathered}$	$\begin{gathered} 2.90 E \\ 04 \end{gathered}$	2.25E-03
$\begin{gathered} \text { GO:0000 } \\ 278 \end{gathered}$	mitotic cell cycle	14	$\begin{gathered} 1.83 \mathrm{E} \\ 07 \end{gathered}$	$\begin{gathered} 2.90 \mathrm{E} \\ 04 \end{gathered}$	2.27E.03
$\begin{gathered} \text { GO:0051 } \\ 049 \end{gathered}$	regulation of transport	18	$\begin{gathered} 1.87 E- \\ 07 \end{gathered}$	$\begin{gathered} 2.90 E \\ 04 \end{gathered}$	2.32E.03
$\begin{gathered} \text { G0:0031 } \\ 401 \end{gathered}$	positive regulation of protein modification process	15	$\begin{gathered} 2.68 \mathrm{E} \\ 07 \end{gathered}$	$\begin{gathered} 3.41 E \\ 04 \end{gathered}$	3.32 E .03
$\begin{gathered} 60,0022 \\ 402 \end{gathered}$	cell cycle process	16	$\begin{gathered} 2.86 E- \\ 07 \end{gathered}$	$\begin{gathered} 3.41 E \\ 04 \end{gathered}$	3.54E-03
$\begin{gathered} \text { GO:0044 } \\ 093 \end{gathered}$	positive regulation of molecular function	18	$\begin{aligned} & 3.47 E \\ & 07 . \end{aligned}$	$\begin{aligned} & 3.41 \mathrm{E} \\ & 04 \end{aligned}$	4.30E03
$\begin{gathered} \text { GO,0051 } \\ 051 \end{gathered}$	negative regulation of transport	10	$\begin{gathered} 3.75 \mathrm{E}- \\ 07 \end{gathered}$	$\begin{gathered} 3.41 \mathrm{E} \\ 04 \end{gathered}$	4.64E-03
$\begin{gathered} \text { GO:0042 } \\ 493 \end{gathered}$	response to drug	11	$\begin{gathered} 3.76 \mathrm{E} \\ 07 \end{gathered}$	$\begin{gathered} 3.41 \mathrm{E} \\ 04 \end{gathered}$	$4.66 E 03$
$\begin{gathered} \text { GO:0007 } \\ 049 \end{gathered}$	cell cycle	18	$\begin{gathered} 3.85 E- \\ 07 \end{gathered}$	$\begin{gathered} 3.41 \mathrm{E} \\ 04 \end{gathered}$	4.77E-03
$\begin{gathered} 60.0009 \\ 612 \end{gathered}$	response to mechanical stimulus	8	$\begin{gathered} 4.36 E- \\ 07 \end{gathered}$	$\begin{gathered} 3.60 \mathrm{E} \\ 04 \end{gathered}$	$5.40 E .03$
$\begin{gathered} \text { GO:0001 } \\ 934 \end{gathered}$	positive regulation of protein phosphorylation	13	$\begin{gathered} 5.76 E- \\ 07 \end{gathered}$	$\begin{gathered} 4.13 E \\ 04 \end{gathered}$	7.13E.03
$\begin{gathered} \text { GO:0008 } \\ 283 \end{gathered}$	cell proliferation	13	$\begin{gathered} 6.10 E- \\ 07 \end{gathered}$	$\begin{gathered} 4.13 E- \\ 04 \end{gathered}$	$7.55 \mathrm{E}-03$
$\begin{gathered} \text { GO:0009 } \\ 967 \end{gathered}$	positive regulation of signal transduction	16	$\begin{gathered} 6.12 E- \\ 07 \end{gathered}$	$\begin{gathered} 4.13 E- \\ 04 \end{gathered}$	7.57E-03
$\begin{gathered} \text { G0.0051 } \\ 130 \end{gathered}$	positive regulation of cellular component organization	13	$\begin{gathered} 6.34 E \\ 07 \end{gathered}$	$\begin{gathered} 4.13 \mathrm{E} \\ 04 \end{gathered}$	$7.85 E-03$
$\begin{gathered} \text { GO:0022 } \\ 603 \end{gathered}$	regulation of anatomical structure morphogenesis	13	$\begin{gathered} 8.87 E- \\ 07 \end{gathered}$	$\begin{gathered} 5.49 E- \\ 04 \end{gathered}$	1.10E-02
$\begin{gathered} 60: 0072 \\ 507 \end{gathered}$	divalent inorganic cation homeostasis	9	$\begin{aligned} & 996 E- \\ & 07 . \end{aligned}$	$\begin{gathered} 5.70 \mathrm{e}- \\ 04 \end{gathered}$	$1.23 \mathrm{E}-02$
$\begin{gathered} \text { GO:0023 } \\ 056 \end{gathered}$	positive regulation of signaling	16	$\begin{gathered} 1.12 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 5.70 \mathrm{E}- \\ 04 \end{gathered}$	1.38E-02
$\begin{gathered} 60: 0032 \\ 270 \end{gathered}$	positive regulation of cellular protein metabolic process	15	$\begin{gathered} 1.13 \mathrm{E}- \\ 06 \end{gathered}$	$\begin{gathered} 5.70 \mathrm{E} \\ 04 . \end{gathered}$	$1.40 \mathrm{E}-02$

$\begin{gathered} \text { GO:0048 } \\ 732 \end{gathered}$	gland development	9	$\begin{gathered} 1.13 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 5.70 \varepsilon- \\ 04 \end{gathered}$	1.40E-02
$\begin{gathered} \text { G0.0010 } \\ 647 \end{gathered}$	positive regulation of cell communication	16	$\begin{gathered} 1.18 E \\ 06 \end{gathered}$	$\begin{gathered} 5.70 \mathrm{E} \\ 04 \end{gathered}$	$1.46 \mathrm{E}-02$
$\begin{gathered} \text { GO:0051 } \\ 246 \end{gathered}$	regulation of protein metabolic process	20	$\begin{gathered} 1.20 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 5.70 \varepsilon- \\ 04 \end{gathered}$	1.48E-02
$\begin{gathered} \text { GO:0051 } \\ 128 \end{gathered}$	regulation of cellular component organization	19	$\begin{gathered} 1.51 E \\ 06 \end{gathered}$	$\begin{gathered} 6.91 E- \\ 04 \end{gathered}$	1.87E-02
$\begin{gathered} \text { GO:0071 } \\ 310 \end{gathered}$	cellular response to organic sukstance	19	$\begin{gathered} 1.89 E \\ 06 \end{gathered}$	$\begin{gathered} 8.34 E- \\ 04 \end{gathered}$	2.34E-02
$\begin{gathered} \text { GO:0042 } \\ 327 \end{gathered}$	positive regulation of phosphorylation	13	$\begin{gathered} 2.51 E \\ 06 \end{gathered}$	$\begin{gathered} 1.07 E- \\ 03 \end{gathered}$	3.10E-02
$\begin{gathered} \text { GO:1901 } \\ 698 \end{gathered}$	response to nitrogen compound	13	$\begin{gathered} 2.90 E \\ 06 \end{gathered}$	$\begin{gathered} 1.18 E- \\ 03 \end{gathered}$	3.59E-02
$\begin{gathered} \text { G0:0009 } \\ 725 \end{gathered}$	response to hormone	13	$\begin{gathered} 2.95 \mathrm{E} \\ 06 \end{gathered}$	$\begin{gathered} 1.18 \varepsilon \\ 03 \end{gathered}$	3.65 E 02
$\begin{gathered} \text { GO:0048 } \\ 584 \end{gathered}$	positive regulation of response to stimulus	18	$\begin{gathered} 3.30 E \\ 06 \end{gathered}$	$\begin{gathered} 1.24 E- \\ 03 \end{gathered}$	4.08E-02
$\begin{gathered} \mathrm{GO:0042} \\ 127 \end{gathered}$	regulation of cell proliferation	17	$\begin{gathered} 3.36 E \\ 06 \end{gathered}$	$\begin{gathered} 1.24 E- \\ 03 \end{gathered}$	4.16E-02
$\begin{gathered} \text { GO:0070 } \\ 887 \end{gathered}$	cellular response to chemical stimulus	21	$\begin{gathered} 3.40 E- \\ 06 \end{gathered}$	$\begin{gathered} 1.24 \mathrm{E}- \\ 03 \end{gathered}$	$4.21 \mathrm{E}-02$
$\begin{gathered} \text { G0:0010 } \\ 608 \end{gathered}$	posttranscriptional regulation of gene expression	10	$\begin{gathered} 3.65 E \\ 06 \end{gathered}$	$\begin{gathered} 1.29 E \\ 03 \end{gathered}$	4.52E-02
$\begin{gathered} \text { GO:0043 } \\ 085 \end{gathered}$	positive regulation of catalytic activity	15	$\begin{gathered} 3.78 E- \\ 06 \end{gathered}$	$\begin{gathered} 1.30 E- \\ 03 \end{gathered}$	4,68E-02

EXAMPLE 4

The study by Westin ei al. (Lancet Oncol, 2014, vol 15(1)) perfomied gene expression profiling on 18 folLicular lymphoma patients before receiving pidilizumab in combination with rituximab. The expression of the genes in the iBCR signature was investigated for association with progression free survival (PES) in these patients. Twelve genes showed a strong association with PFS (Figure 56A) (all the genes that associated with survival belonged to the TN component of the iBCR test). As shown in Figure 56 B , a score calculated based on the iBCR signature was highly predictive of patient survival after pidilizumab + rituximab immunotherapy. The study also profiled eight of the patients 15 days post treatment. The expression of the genes in the signature was compared in these patients before and after treatment. Apart from a tend towards an inversion of the expression profile in general which was most obvious for the one patient who survived (Figure 56C -patient number 9), one gene (ADORA2B) was significantly different in tumours after treatment compared to that before treatment (Figure 56D). This gene could be used to confirm response after selection of patients based on the iBCR test.

The data presented here indicate the iBCR test can be a companion diagnostic for certain immunotherapy which is not surprising since the $\mathbf{T N}$ component includes several immune related genes in addition to genes involved in redox reactions and kinases.

EXAMPLE 5

A meta-analysis was performed in Oncomine ${ }^{\text {TM }}$ using breast cancer datasets irrespective of subtypes or gene expression array platforms used. The global gene expression profiles of breast tumors that led to metastatic or death event within 5 years were compared to those that did not and the top overexpressed (OE) and underexpressed genes (UE) in these comparisons were selected. The commonly deregulated genes in the primary tumors that led to metastatic and death events (depending on the annotation of each dataset) were then interrogated using the online tool KM-Plotter ${ }^{\mathrm{TM}}$ ($\mathrm{n}>4000$ patients with some overlap with the datasets in Oncomine ${ }^{T M}$). Genes which associated with relapse-free survival of breast cancer patients were selected.

The 860 genes identified from this analysis were then subjected to network analysis using the Ingenuity Pathway Analysis (IPA ${ }^{(1)}$) software to identify functional networks within this gene list (see Table 21), Figure 57 shows the eleven functional networks that contain the 860 genes identified from the meta-analysis where the function of each network is specified and the interactions amongst these networks are depicted with the connecting lines. Genes whose overexpression is associated with poorer survival are marked in red and those whose underexpression is associated with poorer survival are marked in green, Larger circles mark genes with highest association with patient survival in any given network.

These 860 genes identified from the meta-analysis were then filtered for genes with the highest association with patient survival in each of the eleven functional networks, From this, the selected 133 genes (listed in Table 22) from the eleven functional networks are shown in Figure 58 (panel A) where the function of each network is displayed. Based on these networks, the 133 genes were classified to six functional metagenes (listed in Table 22) which include: Metabolism, Signalling, Development and Growth, Chromosome segregation/Replication, Immune response and Protein synthesis/Modification metagenes. The association of each of these metagenes with relapse-free survival of breast cancer patients in the KM Plotter dataset is shown in panel B of Figure 58, Each of these metagenes were scored by calculating the ratio of the expression level (sum or average) of the overexpressed genes in the metagene to the expression level (sum or average) of the underexpressed genes in the metagene. The green lines (with better survival) denote lower score (ratio of the overexpressed to the underexpressed genes) of the metagene whereas the red line (with worse survival) denote high score (ratio of the overexpressed genes to the underexpressed genes).

Table 21. 860 genes associated with relapse-free survival of breast cancer patients*

Carbohydrate/Lipid Metabolism		Cell Signaling	Cellular Development		
ARHGEF3	ATP6VOA1	AGBL2	ABCAB	KIFSC	ZNF211
ASAH1	ATP6V1C1	ARERP1	APBB2	LRIG1	AP381
ASB1	COX411	ARNT2	ART4	MADD	DYNC1L2
ATP2A2	DHRS7	CCR1	ATHL1	MAPT	ESRP1
BRO8	EPCAM	DST	BCL2	MIER2	GMPS
BTG2	HN1	EEF1A1	BENDS	MIS18A	GPI
BTN2A2	IDH3A	LUZP1	CABYR	MR1	HCCS
C10B	IDH3G	MYBPC1	CASP10	N4BP1	HCFC1R1
CERS6	LAMTOR2	Plp	CHPT1	NEDD4L	KCNG1
CYP2C9	LAMTOR3	S1PR1	CYBRD1	OGN	NAPG
ELOVL2	MATR3	SNEDI	ERC2	PRKCB	NDRG1
ELOVL	NPR3	TAZ	FHL5	ProLi	NDUFB6
ERBB4	NRIP1	TP63	GAB1	RERE	NDUFS6
FLNB	PFKP	ADORA2B	GDNF	SETBPI	NMEI
HiF3A	RAP2A	CMC4	GLRB	SGCD	OIPS
K1R2DL4	SLC16A3	DDX39A	GOLGB1	SGSM2	PGAM1
LRP2	TK1	GAPDH	GOSR1	SLC45A2	PIR
LRP8	vDAC1	GSK3в	GPR12	SOD2	PRRGI
ME1	RAPGEFS	HiF1A	HLA-B	SPAG8	RTCA
NCOA1	PGM38	HSPA14	ITM2A	SPG20	S100A11
NR1H3	SEC14L2	LAMA4	KIAAO247	SSPN	SMS
PBXIP1	SRSF5	MAP2K5	KIAA0430	S5X2	TARS
PIK3IP1	STARD13		STX18	XBP1	TRAK2
PSEN2			TRAK1	ZC3H14	
			TRAPPC10	ZMYM5	

Cellular Growth			Chromosome segregation	
ASF1B	SLC11A1	BCAP31	AFF1	AURKB
BBS1	SMARCA2	BYSL	ATP1A2	BUB1
CCL13	SNX1	CCNA2	CDC14A	BUB1B
CCND2	SORL1	CCNE2	CDC27	BUB3
CDKN2A	SPDEF	CDC25A	CSPG4	C20orf24
DI8AS3	STAT5B	CDC45	FOXK2	CCNB1
DIXDCI	TAOK3	CDC6	MAG 11	CCNB2
DOCK1	TGQLN2	CDCA3	MLLT10	CDC20
DOK1	THPO	CDGA8	MTUSI	CDK1
EPOR	TIMELESS	CHEK1	NUP62	CENPE
FLT3	TNN	DERL1	NXF1	CENPF
FOSB	TNXB	DHFR	PKM YT 1	CKS18
GGA2	TYR03	E2F8	RAPGEF2	CKS2
HAVCR1	ULK2	ECT2	SLC25A12	FOXM1
IL1RAPL1	VPS39	GINS3	SLC8A1	KIF2C
IL6ST	PIM 1	RAD51	KIF4A	NUP93
JAK2	PGLD1	RRM2	MAD2L1	NUSAP1
LEPR	PLK4	SKP2	MX11	NUTF2
LIG1	PSMD10	UBE2C	NCAPG	PLK1
LZTFL1	MCM6	ULBP2	NDC80	PRC1
M TF1	MELK	WDHD1	NUP155	PTTG1
PCM1	MMP1	IL1RAP	TPX2	SPC25
PIK3R4	MYBL2	MCM10	TTK	TACC3
POU6F1	ORC6	MCM ${ }^{2}$	ZWINT	
NF1	PDAP1	MCM4		

DNA Replication/ Recombination		immune system				
ALDH3A2	A DRM1	ABCAI	DTX3	SARM 1	PBK	ACOT7
ATAD5	BIRC5	AHSG	DYNC2H1	SIRT3	PFDN5	ANP32E
ATF5	CARHSP1	ANK3	EFCAB6	SMPDL3B	PSMA2	APOBEC3B
BLM	CENPA	APOBEC3A	EFNB3	SUN	RNASE4	CAST
BRD4	CENPI	BATF	ERAP1	TTC28	RNF14 1	CCT5
BRF2	CENPN	BECN1	EVL	WFDC2	S100A ${ }^{3}$	CCT6A
BTN3A2	CENPU	BUD31	FBX041	ZMYM6	SHMT2	CCT7
CLASP2	DL6AP5	C 2	FBXW4	ZNF516	SLC7A5	CD36
FANCA	ERCC6L	C 3	FCGBP	!GHG3	SOX11	CD55
FBLNI	EXOI	CAGNA 10	FCGR1A	GHM	TBPL1	CDK8
KIF18B	FANCI	CAROIO	FCGRIB	GGK	TCP1	CHDi
NPR2	H2AFX	CD163	FOS	IGKC	TOPORS	CXCL8
PLXNA3	H2AFZ	CD1A	FRZB	IGSF9B	TREM1	DHCR7
PSMD2	IMPDH2	CD1B	GAS7	ill6	TXN	DSCC1
STC2	MAPRE1	CD1C	GCH1	KCNMAI	TXNRD1	ELF3
TCF3	W1SH6	CD22	GLi3	K!F13B	WNT5A	GEMIN4
TCF7L1	PML	CD68	GPRASPI	KL	GM2A	
TCF7L2	POMP	CD80	GREB1	LAD1	GPSM2	
TXNIP	P5MB4	CDK5R1	1 GH	LAT	GSPTI	
RYBP	PSMB5	CFB	IGHG1	LFNG	HMGB3	
TOP2A	PSMB7	CHL1	NBPF10	MED12	HMMR	
UBE2A	PSMD14	C1ITA	NUMAI	MSG	HNRNPAB	
UBE2B	PSMD3	CR1	PDE6B	MX2	HPSE	
PSMD7		CRP	PGR	MCCC2	HRASLS	
		CST3	PHLDA2	MRPL12	IDH2	
		CXCL14	PPY	NAE1	K!AAOIOI	
		CXCR4	RLN2	NXN	LGALS1	

		Metabolic	Disease		
					NMEI-
AASS	ENOSF1	MMRN2	SESN 1	CALM1	NME2
ABCC8	FAM 105A	MPP2	SFI1	CAMSAP1	PARPBP
ACAP2	FAM 117A	MY019	SLC35A2	CETN3	PGK1
ACSF2	FAM12QA	N4BP2L1	SLC6A5	CFAP20	PLCH1
AHCYL1	FAM 129A	NBEA	SLC01A2	CMG2	RAB22A
ALDH1A2	FAM49B	NCAPD3	SPATA6	CNOT8	SFXN1
ANKHD1-					
EIF4EBP3	FAM86B1	NDUFAF5	TBRG4	COGS	SHMTI
ANKRD11	FCER1A	NFATC1	TCTN 1	COQ9	SMC4
APOM	GCC2	NOP 2	TLDC1	COR01C	SNRPAI
ARL3	GLTSCR2	NSUN5	TLE4	DKC1	STIL
BIN 3	GTPBP2	OSBPL1A	TMC6	DONSON	SUGCT
BSDC1	HAUS5	PADII	TSKS	EMC8	TMEM 208
BTD	HDC	PDK3	TSR1	ENY2	TPD52L2
BTN2A1	HOOK2	PHFg	TTC12	FKBP3	TRIP13
BTN3A3	HOXA4	PIEZO1	VAMP1	GGH	WOR41
C12orf49	HPN	PPIL2	VAMP2	GLT8D1	YIPF3
CALR	HS3ST1	PPP3R1	WDR19	GRHPR	2NF593
CAMK2B	HTNI	PSD4	ZCCHC24	GTSE1	
CAMK4	HYI	PUM1	ZFP36L2	HELLS	
CASC1	INADL	RAB30	ZMYND10	HJURP	
CCDC176	ITM2C	RAB6B	ZNF22	KCMF1	
CCDC25	ITPR1	RAI2	ZNF506	KDM5A	
CDIE	IVD	RAL6APA1	ZNF778	KIF14	
CNTRL	KIAA0930	RAPGEF3	ZSCAN32	MRPL18	
CPSF7	XIAA1549L	RCAN1	ZZEFI	MRPL9	
CROCC	LAP3	RPS6KA6	ACOT13	MRPS17	
CTDSPL	ME3	SERHL2	B9D2	NFATC3	

Nucleic Acid Metabolism			Post-Translational Modification	
ABAT	RECQL5	HEATR3	ABCB1	RTN1
AHNAK	RUNX1	K1F18A	ACAN	TENCI
ALPK1	SCUBE2	KIF23	AM N	TGFB3
BCAT2	SF3B1	KPNA2	CQL4A6	TGFBR3
BMP8A	SF3B2	PA POLA	CSF1.	ADAMS
BTRC	SLC27A2	RAD51AP1	DDX11	ADM
CACNA1G	SLC6A2	RFC4	FGFRI	CALB2
CALCQCQ	SMARCC2	RPN1	FGFR2	CTSV
CBX7	SNRNP70	SEC61G	GSTMI	DBNDD1
COL14A1	SRSF7	5F3B3	GUSB	FAM96B
DCLRE1C	SSX 3	SMA D5	IGF1	IGF1R
ESRI	SYMPK	SMYD2	LRRN3	KIF11
FBX04	SYNC	SPAG5	MAP3K12	KIF20A
FMQ5	TMC5	SRPK1	MSTI	LAPTM4B
GART	USP19	SUB1	MYB	MMP15
H6PD	USP4	TAF31	NTRK2	RAB2A
JADE2	WSB1	TAF2	RBM5	SERPIMHI
KLRG1	ACTR3	TCEBI	RLN 1	TCEB2
KMT2A	A $\mathrm{QPg}^{\text {P }}$	USP10		
MAFG	ARPC4	VPS28		
MAPRE2	ATAD2	WWTR1		
IVIYOF	AURKA	XPOT		
NOVA 1	CA9			
NSMCE4A	CDK7			
POLE2	CEP55			
PTGDS	CFDP1			
PTGER3	DSN1			

Protein Synthesis/Modification					Multiple networks	
ACAAI	MTMR3	RPS28	ElF6	SLC25A5	ABHD14A	RP54XP2
ACKR1	MTMR7	RPS4X	EPRS	SLC52A2	Clorf21	RPS4XP3
AGSL6	MXD4	RPS6	ETFA	SPiNI	C3orfl8	SLC35D2
ADRA2A	MYQZ3	SAMD4A	EXOSC4	SQLE	C4A	SLG38A7
AGTR2	MVT 1	SIRPA	EXOSG7	STAU1	CCDC30	SPATA6L
AUISIIP	NMES	SLC16A5	GNB2L1	SYNCR!P	CFAP69	SSX7
C2CD2	NMT1	SLC4A7	GPR56	TKT	CLUL1	TNXA
CCDC170	NPY1R	SLC7A6	6TPBP4	TMEM194A	FCGR3B	TPSAB1
CELSR2	NPY5R	SORBS1	ILF2	TUBAIB	GUSBPII	TPSB2
CHAD	QSGEPLI	SQSTM1	KARS	UBE2V1	IGHD	UGT1A8
CREBL2	P2RY4	SRPK 3	LAMA3	YWHAZ	IGHJ3	WDR78
C5DE1	P2RY6	THEMIS2	LRPPRC		IGHV3-20	ZNF710
						ZNRD1-
CX3CR1	PAPPA	TTLLI	NDUFC1		IGHV3-23	ASI
CYR61	PDCD2	ZNF395	NELFE		IGLJ3	BOLA2
DDX3X	PDCD4	ABHD5	NOP56		KIAAG040	MRPL23
DHTKDI	PER3	ADRBK2	QARS		KIR2DL1	
EGOT	PNPLA4	AIMP1	RACGAP1		KIR2DL3	
E1F1	PTCD3	ALG3	RAD21		LINCO 1260	
EIV1L2	PTPN. 1	BRIX1	RAD23B		LOC389906	
EPHX2	PTPRO	CDKN3	RC3H2		LRRC48	
FAM 134A	PTPRT	CHAF1A	RPL14		NBPF8	
FRS3	PURA	EIF3A	RPL15		NSUN7	
ICA 1	RAMP2	EIF3B	RPL29		PGAP2	
LAMA2	RGS5	EIF3K	RPS9		PGPEP1	
LPAR2	RHBDD3	EIF4B	RPSA		RBMY1J	
LZTS1	RPLIO	EIF4E	SFPQ		RBMY2MP	
MAOA	RPL22	EIF4G1	SHCBP1		RGPD6	

Genes whose overexpression is associated with poorer survival are in bold and those whose underexpression is associated with poorer survival are underlined

Table 22, 133 genes associated with relapse-free survival of breast cancer patients .

ID	SEQ ID NO:	Network	Metagsine
BRD8	1	Carbohydrate/Lipid Metabolism	
BTG2	2	Carbohydrate/Lipid Metabolism	
BTN2A2	3	Carbohydrate/Lipid Metabo 1sm	
KIR2DL4	4	Carbohydrate/Lipid Metabolism	
ME1	5	Carbohydrate/Lipid Metabolism	
PIK3IP1	6	Carbohydrate/Lipid Metabo 1sm	
SEC14L2	7	Carbohydrate/Lipid Metabolism	
PSEN2	8	Carbohydrate/Lipid Metabolism	
FLNB	9	Carbohydrate/Lipid Metabo 1sm	
AGSF2	10	Metabolic Disease	
APOM	11	Metabolic Disease	
B1N3	12	Metabolic Disease	
CALR	13	Metabolic Disease	
CAMK4	14	Metabolic Disease	
GLTSCR2	15	Metabolic Disease	
ITM2C	18	Metabolic Disease	
NOP2	17	Metabolic Disease	
NSUN5	18	Metabolic Disease	
ZMYND10	19	Metabolic Disease	$\frac{0}{\square}$
ABAT	20	Nucleic Acid Metabolism	है
BCAT2	21	Nucleic Acid Metabolism	S
SCUBE2	22	Nucleic Acid Metabolism	
SF3B1	23	Nucleic Acid Metabolism	
RUNX1	24	Nucleic Acid Metabolism	
ZNRD1-	25		
AS1		Nucleic Acid Metabolism	
ATP6V1C1	26	Carbohydrate/Lipid Metabolism	
RAP2A	27	Carbohydrate/Lipid Metabolism	
CALM1	28	Metabolic Disease	
CAMSAP1	29	Metabolic Disease	
GETN3	30	Metabolic Disease	
COG8	31	Metabolic Disease	
GRHPR	32	Metabolic Disease	
HELLS	33	Metabolic Disease	
KDM5A	34	Metabolic Disease	
PGK1	35	Metabolic Disease	
PL.GHi	36	Metabolic Disease	
ZNF593	37	Metabolic Disease	
CA9	38	Nucleic Acid Metabolism	

RPL22	121	Protein Synthesis/Modification		
RPS4XP3	122	Protein Synthesis/Modification		
ADM	123	Post-Translational Modification		
ABHD5	124	Protein Synthesis/Modification		
GHAF1A	125	Protein Synthesis/Modification		
EIF3K	126	Protein Synthesis/Modification		
E1F4B	127	Protein Synthesis/Modification		
EXOSC7	128	Protein Synthesis/Modification		
GNB2L1	129	Protein Synthesis/Modification		
LAMAS	130	Protein Synthesis/Modification		
NDUFC1	131	Protein Synthesis/Modification		
STAU1	132	Protein Synthesis/Modification		
SYNCRIP	133	Protein Synthesis/Modification		

Genes whose overexpression is associated with poorer survival are in bold and those whose underexpression is associated with poorer survival are underlined

The preceding example identified 133 genes, assoeiated with 12 oncogenic functions, the expression of which is strongly associated with cancer aggressiveness and clinical outcome (Table 22). The expression of genes from this list was investigated for association with survival in: (i) follicular lymphoma patients before receiving pidilizumab in combination with rituximab (Westin et al. Lancet Oncol, 2014, vol 15(1)) (ii) colorectal cancer patients treated with cetuximab (GSE5851); (iii) triple negative breast cancer patients treated with cetuximab and cisplatin (GSE23428); (iv) lung cancer patients treated with erlotinib (GSE33072); and (v) lung cancer patients treated with sorafenib (GSE33072). This analysis identified new sets of genes, with partial overlap to the iJBCR signature, the expression of which was highly associated with survival in the different treatment groups (Table 23). Scores for each patient group, which were calculated based on these gene signatures were shown to be highly predictive of survival in these patient groups (pidilizumab + rituximab: Figure 56E; all other treatments Figure 59).

Table 23. iBCR gene signatures associated with survival in patients receiving anticancer therapy.

Follicular Lymphoma (idilizumab rituximab)	Lung Cancer (erlotinib)	Lung Cancer (sorafenib)	Colorectal cancer (celuximab)	Triple negative breast cancer (cetuximab)
APOBEC3A	CDIC	NOP2	ARNT2	SF3B3
BCL2	CDIE	CALR	NDUFC1	CETN3
BTN2A2	CD1B	MAPRE1	BCL2	SYNCRIP
CAMK4	KDM5A	KCNG1	ABHD14A	TAF2
FBXW4	BATF	PGK1	EVL	CENPN
PSEN2	EVL	SKPK3	ULAP2	ATP6V1C1
MYB	PRKCB	RERE	BIN3	CD55
ADORA2B	HCFC1R1	ADM	MAPRE1	ADORA2B
CD36	CARHSP1	LAMA3	BRD4	RPL22
KCNG1	CHAD	KIR2DL4	STAU1	ABAT
LAMA3	KIR2DL4	ULBP2	TAF2	BTN2A2
MAP2K5	ABHD5	LAMA4	GSK3B	CD1B
NAE1	ABHD14A	CA9	PDCD4	ITM2A
PGK1	ACAA1	BCAP31	KCNG1	BCL2
STAU1	SRPK3	SCUBE2	ZNRD1-AS1	CXCR4
CFDP1	CFB	CHPT1	EIF4B	ARNT2
SF3B3	NAE1	CDIC	HELLS	
	GSK3B	BTG2		
	TAF2	ADORA2B		

Genes whose undererexpression is associated with a response to treatment are in bold and those whose overexpression is associated with a response to treatment are underlined.

SEQUENCE LISTING

The sequences set forth in SEQ ID NOs: 1-133 below correspond sequentially to the 133 genes provided in Table 22.
$>S E Q$ IO NO: 1
MATGTGKHRLLSTGPTEPWS IRERLGLA SSVMRSGDQNWVSVSRA IKPEAEPGRPPDWESQKHCASQY SELLETTETPKRKRGEKGEVVE TVEDVIVRFLTAERVEELKKV IKE TQERYRRLKRDAELIQAGHMDS RLDELCNDIATRRRLEBEEAJSVKRKATDAAYQARQ AVKTFPRRIPTVMYESPIDSASEGGDYPLGDLT PTTMEEATSGVVE SEMAVASGHLNSTGVLLEVGGVLPMTHGGEIQQTPNTVAASPAAGGAPTLSRLLE AGPTQFTTPLASFTTVASEPPVKLVPPPVESVSQATIVMMPALPAPSSAPAVSTTESVAPVSQPDNCY PMEAVGDPHTVTVSMDSSEISMI INSIKEECFRS GVAE AEVGSKAPSIDGKEELDLAEKMDIAV̆SYTG EELDPETVGDTIAITEDKVDDHPEVLDVAAVEAALSECEENDDEQSLPGPWEHPIQQERDKPVPIRAP EMTVKQERLDFEETENKGIHELVDIREPGAETKVEPAEPEPVISGREIVAGVYEATSNEPEELRSODL DEELGSTPAGEIVEADVAIGKGDETPLTNVKTEASPESMLSPSHGSNEIEDPLEAETQHKFEMSDSLK EESGTIFGSQIKDAPGEDEEECGVSEAASLEEPREEDQGEGYLSEMDNEPPVSESDDGFBIHNATLQS HTLADSTPSSPASSQFSVCSEDQEAIQAQKIWRRAIML VWRAAAN HRYANVFLQPVTDDI AFGYHSIV
 IMQTSESGISARSLRGRDSTRKQDASER:DS\?PMGSPAFLLSLFMGHEWVWLDSEQDHPNDSELSNDCR SLFSSWDSSLDLDVGNWRETEDPEAEELEE SSPEREPSELLVGDGGSEESQEAARKASHQK 1LLHFLSE VAYLMEPLCISSMESSEGeCPPSGTRQEGREIKASEGERELCRETEELSARGDPFVAEKPLGENGKPE VASAPs $\mathrm{Y} 1 \mathrm{CTVQGL.LTESEEGEAQEE}$ SKGEDQGEVYV SEMEDQPP SGECDDAFNTKETP LVDTTFSHA TSSELTDLSQDDPVQDHLLFEKTLLPVWKMIASHRESBPFLKPVSERQAPGYKDVVKRPMDLTSLKRN LSKGR IRTMAQF LR DLMLMFQNA XMYND SD HHVYHMA ${ }^{3 / 4} M R Q E V I E Q I Q V L N I W L D R R R G S S L E G E P$. AMPVpDGRPVF
\triangle SEQ ID NO: 2
MSHGKG IDMLPE IAAAVGFLSSLLRTRGCچSEQRLKVFSGALQ:EALTEHYKHHWFPEKPSRGSGYRCI RINHRMDPIISRVASQIGLSQPQLHQLLPSELTLWVDPYEVSYRIGEDGSICVLYEEAPLAASCGLLI' CKNQVLLGRSSPSKNYVMAVSS

YSEQ ID NO:3
MEFARALHFSLFASLLLLLLLLLSICALVSAQETVWGPANPILAMVGENTLRCHLSPEKNAEDNEV RWPRSOFSPAVEVYKGGRERTEEQMEEYRGRITEVSKDINRGSVALVIHNVTAQENGIYRCYFQEGRS YDEAILRLVVAGLGSRPITEIKAQEDGSIWLECISGGWYPEPLTVWRDPYGEVVEALKEYSIADADGL FMVTTAVIIRDKYVR\&ASCS\#NNTLLGQERETVIFTRESFMPSA SPWMVALAVTLTASFWMVSMTVIL AVEIIFMAVSICCIRKLQREKKILSGEKKVEQEEKFIAQQLQEELRWPRTFLHAADVVLDPDTAHPEL FISEDRRSVRRGPYRQRVPDNPERFDSOPCVIGWESFASGKHYWEVEVENVMVWTVGVCRHSVERKGE VLLrPQNGFWTLEMFGNQYRALSSPERILPLKESLCRVGVFLDYEAGDVSFYHMRDRSHIYICPRSAF TVPVRPFFRLGSDDSPIFICPALIGASGVMVPEEGLRLHRVGTHQSL
>SEQ: ID NO: 4
 PVEEL YNRI FWNSFLI SPVraAimGTYRCi \quad GEAPHSFTEWSi\&PSi^1VIMVTGLYEKPSLTARPGPTV RAGENVTLSCSSQSSFDIYHLSREGEAHELRLPAVPSINGTFQAD EELGPATHGETYRUEGSEHGSFY EMASP SDPLPVSVTGNPSSSWE8PTEPSFKTGIAR.HLHAVIRYSVAIIL ETILPEELLHEWCSEEKDA .WMNQEPAGHRTVNREDSDEQDPQEVTYA QLDHCIETQREITGPSQRSERFSTDTSVCIELENAEPRA LSPAHE HHSQALMG SBRETIALSQ TQLA 5SNVPAAGI
>SEQ ID NO: 5
50 MEPEAFRRRHXHQRGYLLTRNPHLNKDAF TLEERQQLNTHGLLPPSENSQELQVLRVVENEEHLNSD EDRYLILMDLQDRNEKLFYRVLTSDIEKFMPTVYTPTYGUACQQYSEVFREPRGLFITIHDRGHIASV LIlAWEEDVIRAIVVTDGERILGLGDLGCNGMGIPVGRLAtrYTACGGMNPQECLPVILDVG TENEELLK DPLYIGLRQRRVRGSFYDDFLDEFMEAYSSKYGMNCLIQFEDFAN^ A ARLINKYRWQYCTENDDIQG. TASVAVAGLLAALRITRMKLSDQTILFQGAGEAALGIAHLIVI^LEKEGLPKEKAIRRIWLVDSRGLI
VKGRAS LTQEKE KFAGEHEEMKNLEA IVQEIRPTALIGVAAIGGAF SEQ ILKDMAAFNERPIIFALSN PTSKAECS.AEQCYRI TEGRAIFASGSPFDPVTLPNGQTLYPGQGNNSYVFPG VALGVVACGLRQITDN IFITTAEVIAQQVSDKHLEEGRL YPP LNTIRDVSLKIAEKIVKDAYQEKTATVYPEPQNKEAFvRSQM YSTDYDQILPDCXSWPEEVQRI QTKVDQ
$>S E Q$ ID NO; 6
ML LAKV QAFLVKNMLLAEAYGSGGCFWDNGHLYREDQTSPZPGLRCLNWLDAOSGLASAPVSGZGNHS YGB 3 / 4PDEDPRGPWCYVSGEAGVPEKBPCEDLRCPETTSQALPAFTIEI.QEA SEGPGADEVQVEAPANA IFARSEAAAVQPVTGISQRVRMNSKEKKDIGTLGYVLGITMMVIIIAIGAGIILGYS YKRGKDLKEQH DQKVCEEEMQRTTLPLSAETNPTCEIVDEKTVVVHTSQTPVDPQEGTTPLMGQAGTPSA
>SEQ ID NO:7
MSGRVGD LSPRQKEALAKFRENV ODVLPALP NEDDXELLKWLRARSEDLQKSDAMLRKHVEERKQKDI . SWQPPEXTQQY LSGGMC GYD LDGCEVWYDIIGPLDAKGLMESASKODLLLTKMRECELLIQECA HOTTELGKKVETITITYDCEGLGLKHLWKPAVEAYGPETOMEEENYPETLKPLEVVKAPELEPVAYML TKPFL SED TREK IMV LGANWKEV LLER I SP DQVPVEYGGTMTDPDGNPKCKSKINYGGDIPRKYYVPD QVKQQYEHAVQISRGSSHQVEYEILFPGGVLRWQFMSDGADVGFG IF LKIKMGERQRAGEMIEVLPNQ: RYN SHLVPEDGTLTCSDPGTYVLRFDNTYSFTHAKKVNFTVEVLLP DKABE EKMKQLGAGTPK
>SEQ ID NO:8
ML TFMASD SEE EV CDERI SIM SAESP TPRSCQEGRQGPE DGENT AQWR SQENEEDGEEDP DRVVC 3GV PGRPPGLEEELTLKYGAKHVIMLFVPVTLCMIVWATIKSVRFYTEKNGQLIYIPFTEDTPSVGQRLL
NSVLNTLIMISVIVVMIIFLVVLYKYRCYKFTHGWLIMSSLMLLFLFT^ TYLGEVLKTYMVAMDYPTL LLTV WAFGAVGMVCIH ${ }^{3 / 4}$ GPLVL (2QAYLIMTSALMALVFTKYLPEWSAWVILGAISVYDLVAVLGPKG PLRMLVE T $3 / 4 Q E R N E P: I F P A L Y S S A I V W T V G M A K L D P S S Q G A L Q L P Y D P E M E E D . S$; YDSFGEPS; YPEVE EPPLTGYPGE ELEEEEERGVKLGLGDEIFYSVLVGKAAATGSGDWNITLACFVAILIGLCLTLILLAV FKKALPALPISITFGLIFYFSTDNLVRPFMDTLASHQLYI

25 >SEQ ID NO: 9
 RPTFRJ3MQLENVSVALEFLDRESIKLVSIDSKAIVDGNLKLILGLVWTLILHYSISMFVWEDEGDDDA KKQTPKQRLLGWIQNKIPYLPITNFNQNWQDGKALGALVDSCAPGLCPDWESWDPQKPVDNAREAMQQ
ADDWLGYPOVITEEEITHPD/4EHS VMTYLSQFPKAKLKPGAPLKEKLNEEKARAYGRGIEPTGNMVK QPAKFTVBTISAGQGDWVFVEDPEGNKEE AQVTPDSDKNKTYGVEYLPKVTGLHKVTVLFAGOHISK SPFEVSVDKAQGDASKyTARGPGLEAVGNI^ NKPTYEDTYTAGAGVGDIGVEVEDPQGKNTVELIVED KGNQVYRCVYKPMGPGPHVVKIFF AGDTIFKSPFVVQVGEZCNPNACRASGRGLQERGVRIRETTDEK VDTKAAGSGELGyrMKGPKGLEELVKQKDFLDGvYAFEYYPSTPGRYSIAITWGGHHIPKSPFEVQVG PEAGMQWRAWGPGLHGGIVGRSADFVVESIGSEVGSLGFA IEGPSQAKIEYNDQNDGOCDUKYWPKE. PGE YAVH IMCDDE DIKD SPYMAF IHPATGG YNPDLVRAYGPGL EKSGC IVNNLAEFTVDP KDAGKAPL, RIFAQDGEGQRIDIQMRNRMDGTYACSYTPVKAIKH^ IAVVWGGVNIPHSPYRVNIGQGEHPQKVKVE GPGVERSGLKAJSEPIHFTVDCTEAGEGDVS?GIRCDAR:VLSEDEED VDEDIIHNANDTETVKYVEFA GRYTIKVLFASQETPASPFRVKVDPSHDASKVKAEGPGLSKAGVENGKPrHFTVYTKGAGKAP LNVQF NSP LPGD AVKDLDITDNYDYSHTVKYTPTQQGNM QULVTYGGDPIPKBPETVGYAADLDLSKTKLRGL: ENRVEVGKDQEFTVDTRGAGGQGKLDVTILSP SRKVVPCLVTPVTGRENSTAKFIPREEGLYAVDVIY DGHPVPGSPYTVEASLPPDP SKVKAHGP GLEGGLVGKPAEFTIDTKGAGTGGLGLTVEGPCEAKIECS DNGDGTCSVSYLPTKPGEYFVNILFEEVHTPGSPFKA … DIEMPEDESKVVASGPGLEAGKVGEAGLLSV DCSEAGPGALGLEAVSDSGTKAEVSIQNNKDGTYAVTYVPLTAGMYTLTMKYGGELVP HFPARVKVEP AVDTSR IFVEGPGIEGKDVFREATTUFTVDSRP LTQVGGDHIF/4 HIANPSGASTECFVTDNADGTYQV EYTPFEKGLHWEVIYDDVP IPNSPFKVZWTEGCQPSRVQAQGPGLKEATTNKPNVFTV VTRGAGIGG LGTTVEGP SE SK IMCRDNKDGSCSAEYIPFAPGDYDVNITYGGAHIPGSEFRVPVKDVVDPSKVKIAG PGLGSGVRARVL<2SFTVDSSKAGLAPLEVR\?LGPRGLVEPVNWDNGDGTHTVIYTPSQEGPYMVSVK YADEETPRSPFKVKVLPTYDASKVIASGPGLSSYGVPASLPVDFAIDARDAGEGLLAVQITDQEGKPK RAIVH DNKDGTYAVTYIPDKTGRYMIGVTYGGDDIPLSPYRIRATQ.TGDASKCLAT.GPGIASTVKTGE
50 EvGFVVDAKIAGKGKVTCTVLTPDGTEAEADVIENEDGTYDIFYTAAKPGTYVIYVRFGGVDIPNSPF TVMATDGEVTAVEEAPVILACPPGFRPWVTEEAYVPVSDMNGLGFKPFDLVIFPAVRKGETTGEVHMPS GKIATPE IVDUTKDGTVIVRYAPTEVGLHEMHIKYMGSHIPESPLQFYVNYPNSGSV SAYGPG LVYGVA NKIATFTIVTEDAGEGGLDLAIEGPS.KAEIS.CIDNKDGT CTVTYLPTLPGDY SI.LVKYNDKHIPGSPF TAK ITDD SRRC SQYKLGSAADF LLDIEETDLSSLTASIKAPSGRDEPCLLKR LPNNHIGISF IPREVG EHLV SIKIKNGNHVAN 3PVSIfVVQSEIG-DARRAKVYGRGLSEGRTFEMSDFIVDTRDAGYGGIS: LAVE GPSKVDIQTEDLEDGTCKVSYFPTVPGVYIVSTKFADEHVPGSPFTVKISGEGRVKESITRTSRAPSV A TVGSICDLNLKIPEINSSDMSAHVTS PSGRVTEAEIVPMGRISHCVRF VEQEMG VGTVSVKYRGQHV TGSPFQFTVGPLGEGGAHKVRAGGPGLERGEAGVPAEFSIWTREAGAGGLSIAVEGPSKAEITFDDHK NG SCGV SYIAQEPGNYEVS IKFMDEHIPESPY LVEVIAPSDDARRLTVMSLQESGTKVIQPASFA IRL
60 NGAKGKIDAKVHSPSGAVEECHVSELEPDKYAVRFIPHENGVHTII/VKFNGSHVVGSPFKVRVGEPGQ AGNPA LVSAYGTGLEGGTTGIQSEFFINTTRAGPGTLSVTIEGPSKVKMDCQETPEGY " KZIMTPMAPG

NYI/I SVKYGGPNHIVGSPEKAKYTGQRLVSFGSANETSSITNESVTRSSTETCYSATPFASSDASKVT SKGAGLSKAFVGQE SSF LVDO SKAGSNMLLTGVHGPTTFGEEVSMKHVGNQQYNVTYYVKERGDYVLA VKWGEEHIPGSPFHVTVP
>SEQ ID NO: 16
MVRISFQPAVAGIKGDKADKASASAPAPASATEILLTPAREEQPPQHRSRRGGSVGGVCYLSMGMWL
LMGLVFASVYI YRYFFLAQLARDNFFRCGVLYEDSLSSQVRIQMELEEDVKI YLDENYERINVPVPQF GGGDPADIIHDFQRGLTAYHDISLDKCYVIEI^TTIVLPPRNFWEL ZMNVKRGTYIRQQTIIIOEEMVV
>SEQ ID NO:1Q
 LNSKTVGQCLETTAQRVPEREALVVLHEDVRLTEADLKEEVDKASGLLSIGLCKGDRTGMNGFNSYA WVLMQLATAQAGIILYGVNPAYQSMELEYYLKKVGCKALVFPKEKTQOYYNYKQICEEVENAQFGA LK SQRLP DLTTVISVDAPLPGTLLLDEWAAGS TRQHLDQLQYNQQF LSCHDPINI QFTSGTTGSPKG
>SEQ ID NO: 15
tiAAGGSGVGGKRSSKSDADSGFLGLRPTSVDPALRRRRRGPRNKKRGWRRLA. QEPLGLEVDQFLEDVR LQERTSGGLLSEAPNEKLFFVDTGSKEKGLTKKRTKVQKKSLLLKKPLRVDLILENTSKVPAPKDVLA
 PLYGQ:DEFFLEQTRKKGvKRPARM TKPGQAPAVEVAPAGASYNESEEDHOTLLSASHEVELQRQKEA
 QRRREKAVHRLRVQQAALRAARLRHQELFRLRGIKAQVALRLAELARRQRRRQARREAEADKPRRLGR LKYQAFDJDVQLSELIDSLRTLKPEGNTLRDRFKFQRRNMIEPRERAKFKRYKVKLVEKRAFREI QL
P SEQ ID NO:17
MGRELTP TKEFR GFGRKARKQKGEETELVRETPAWSDENSKRLSSFARKRAAKRRTGSVEAPKTNKSP EAKPLPGKLPKGI SAGFV QTAGKKGPQSLENAPRGKKREAPGSDEEEEEEDSEEDGMVNHGDLWGSED DADTVJDDYGADSNSEDEEEGEALLP IERAARKQKAREAAAGIQWSEEETEDEEEEKEVTPE SGEPKVE EADGGLQINVDEEEFVLPPAGEMEQDAQAP DLORVHKRIQDIVG $\ddagger L R D F G Q R E E G R S E S E Y L N L K K$. DLAIYYS-YGDFLLGKLMDLFPLSELVEFLE3/4NEVPRPVTLRTNTLKTRRRD, LAQ, 3/4LINRGVNLDPLGK WSKTGLVZYDSSVP IGA TP EYLAGHYMLQGESSMLP VMEIAPQERERI LDMCOAPGGKISYMAQUMKN TGVILANDANAERLKSVVGVLHRLGVTNTIISHYDGRQFPKVVGGFDRVLLDAPCSGTGVISKDPAVK TNKDEKDILRCAHLQEEL工LSAIDSVNAT SKTGGYL VYCECSITVEENEWVVDYA LKKREVRLVPTGL
10 DFGQEGFTRFRERRFHPSLRSTRRFYP HTHNMDGEETAKEKKESNSTPQSQTGNSETATPTNVDTPQV IP KBENSSOP AKKAKGAAKTKQQLQEQQHP KKASEQKLNGTSKGADSELSTVESVTKTQASSSEQDSS QPAGKAEGIREFI^VTGKLKQRSPKU^ SSKKVAFHPQNZPPKGTDTQTPAVLSPSKTQATLKPKDHHQP LGRAKGVEKQQLPEQPFEKAAFQKQHDTPKGPQPPTVSPIRSS RFFEAKRKKSQSRGNSQLLIS

15 >SEQ ID NO:1B
MGLYAAAAGyLAGVESRQGSIKGDVYSSNFQNVKQLYALYCETQRYSAVLDAVIASAGLLRAEKKLRP HLAKV LVYELLIGKGFRGGGGRWKA ILGRHQARLKAEIARLKVERGVSRNEDLIEVGSRPGPAGOLER FVRVNItKTCSDDVVDYFKRQGFSYQGRASSLDDLRALKGKHFLLDPLMPELLVFPAQTDLHEHPDYR AGHLILQDRAS CLP AMLI DPPP GSHVI DACAAPGNKT SHLAALLKNQGKIFAFDLDAKRLASMATLLA RAGVSCCEIAEEDF LAVSP SDPRYHEVHYTLTDPSCSGSGMPSPQLEEPGAGTPSPVRLHALAGFQQR: ALCHALTFPSLQRLVYSTCSLCQEENEDFYRALQQNPGAFRLAPALP BNPHRGLSTFPGAEHGIRAS PETTLSSGFFVAVI ERVE VPR
$>S E Q$ ID NO:19
25 MGDLELLLPGEAEVLVRGLRSFPLREMGSEGWNQQHENLEKLNMQA ILD RTVSQGEP IQEILVTHGKV PTLVEEI AVEMWKOKVFPVECRVEDEKPQNTFPIYMVVHAEASTIKLLETVFFHKE VCESAEDTVLD LVDYCHRKLTLLVAQSGCGGPPEGEGSQDSNPMGELQKQAELMEFEIALKALSYLRYITDCVDSLSLS TLSRMLSTHNLPCLLVELLEHSP WRREGGKLQQFEGSRWHIVAPSEQQKLSKLDGQVWIALYNLLLS PEAQARY区LTSFAKGRLIKLRA FLTDRLLDOLENLAHLQSFLAHLTLTETQPPEKDLVLEOTPETWER LERENRGKWQA IAKHQLQHVESP SEQDLR LQARRWAETYRLDVLEAVARERERCAYCSAEABKRCBRC QNEWYeCREC@VKHWEKHGKTCVLAAQGDRAR

>SEQ ID NO;20

MASMILAQRLACSFQHSYRLA $\forall P G S R E I S 3 / 4 A A K V D V E F D ~ D G P L M R T E V E G P R 3 / 4$ 2FIW QLNIIQNA EAVHFF CNYEESRGNYIVDVDGNRMLDJYSQIS SVPTGYSHPALLKLIQQPQNASNEVNRPALGILPP ENFVEKLROSLJGVAP KGMSQLITMAQGSCSNENA LKTIFMWYRSPCERGQRGFSQEELETCMINQAPG CPDYSILSFMGAFHGRTMGCLATIHSKAIHKIDIPSFDWPIAPFPRLKYPLEEFVKENQQEEARCLEE VEDL IVKYRKKKKTVAGI IVEP IQSEGGDNHA SDDFFRI/4RDIARKHGCAFLVDEVQIGGGCTGKFWA HE HWGEDDPADVMTFSKKMMT6GFFHEEEFRPNAP YR IFNTWLGDEGKNL IAAEVTNITKREULINMA
40 AaAGKALLTGLLDLQARYPQFISKVRGRGXFCSFOTPDDSIRNKLILIAS^KGVVLGGCGDKSIRFRP TIVFRDHHAHLFEN IF S DILADFK
>SEQ ID NO; 21
MA AAALGQIWARKLISVP»LLCGPER YAS SSF KAA D IQLEMIQKEHKEPGEGEELVEGKTRTDHMLMY ACQVCPVHR ILYKDRNLHIPTMENGEEL ITRFQKE LKEIQYGIRAGE WMFEV
>SEQ: ID NO: 22
MGVAGRNRPGAAWAVLLLLLLLPPLLLLAGAVPPGRGRAAGPQEDVDECAQGLDDCHADALCQNTP IS
YKCSGKPGYQGEGRQCEDIDECGNE.L.NGGCVHDCL.NIPGNYRCTCFDGFMLAHDG. HNCLPVDECLENN GGCQHTCVNVMGGYECCCKEGFFISDNQHTCIHRSEEGLSCMNKDHGCSHICKEAPRGSVACECREGE ELAKNORDCILTCNHGNGGCQHSCDDIADGPECSCFIPQYKMHTDGRSCLEREDTVLEVTESNT TSVVD GDKR¥KRRLLMETCAVNNGGCDRTCKDISTGYHCSCPVGFTLQLDGKTCKDIDECQTRM GGCDHECKN IVGSFDCGCKKGFKLLTDEKSCQDVDECSLDRTCDHSCINHPGTFACACNRGYILYGFTHCGDINECS INNGGCQQVCVNTVGSYECQCHPGYKLHWNKKDEVEVKGLLPTSVSPRVSLHCGKSGGGDGCFLRCHS GIFLSSDVTTIRTSVTFKLNEGKCSLYMAETFPEGLPOATDEKHSSVKESERYVNTTCSSGRQVPGAP GRPSTPKEKFITVEFELETNQKM?TASCDLS: CIVKRTEKRLRKAIRTLRKA N NREQEHLQLSGMNLDV AKKPPRTGERQAE SCGVGQGHAENQGVSCRAGTYYDGARBRCILCP-NGTFQNEEGQMTCEPCPRPGNS

GALETFEAWMMSECGGLGQPGEYSADGPAFCHTCALGTFQPEAGRTSCEPCGGGLATKHQGATSFQOC EIRvQCSPGHFYNXIIHRCIRCPVGiYQPEFGK³/^ CJSCPGNTTTDEDUSTNITOOKNRPCGGEIGDE TGYIESPNYPGNYP SNTECTWTINPPFKRRILIVYPEIELPIEDDCGDYLYMRKTSSSNSYTTYETCQ: TYEREIAETSRSKKLNIQEKSNEGNSARGE QVPYVTYDEDEQELIEDIVADGKLYASENHQEILEDKK

IylKALFDVLABPQNYFKYTAQESREMFPRSFIRLLRSRVSRFLRPYK
$>S E Q$ ID NO: 23
MAKIAKTHEDIRAQI REIQGKKAALDEAQG VGLDSTGYYDQEIYGG SDSRFAG YVX SIAAXE IEDDDD DYSSSTSLLGQKKPGYHARVALLNDIPQSTEQYDPFAEHRPPKIADREDEYKKHRRTMIISPERLDPF
10 ADGGKXFTFKMNAR IYM3/4 MREOHLTEEERETROQLAEKAKACELKVVNGAAASQPESKRERRWDQTA DQTPGATPR KLS S3MDQAFRPGHTPS LRWDETPGRAKGSETEGATPGBKTWDPTPSHTPAGAATPGRGD XPGHA IPGHGGAXSSARKNRWDEIP KIERDTPGHGSGWAETPRTURGGDSIGETETPGASKRKSRWDE TPA SQMG G STP VLTP GKTP IG TPAMNMA TP TPGH IMSMTP EQLQA WRWERE IDERNRPLSDEELDAME: PEGYKVLPPPAGYYFIRTPARKLTATPTPLGGMTGFHMQTEBRXMKSVNBQPSGNLPFLK PDDIQYED
KLLVDVDEST.LSPEEQKERKI>IKLLLKI, KNGTPPMRKAALRQITDKAREFGAGPLFNQ:ILPLLMSPTL EDQERHLLVKVIDRILYKLDDLVRPYVHKIL¥VIEPLLIDEDYYARVEGREIISSLAKAAGLATMIST MREDIDNMDEYVRMTTARAEAVVASALGIPGLTEFLKAVCKSKKSWQARHTGIKIVQQIAILNGCATL PHLRSLGEIIEHGLVDEQQRVRTISALAIAALAEAATPYGIESFDSVLKPLWEGIRQHRGKGLAAFLK: AIGYLIPLMDAEYANYYTREVMLILIREFSSPDEEMKKIVLKWKQCCGID

GUEANYIKTEILPEEFK
20 HFWQHRMAIDRRNYRQLVDTTVEIANEVGAETTSPIVDDTKDEAEQYRKMVMETTEKTMGNLGMADI DHKLEEQ:LIDGILYAF QEQTTEDSWLNGFGTWNALGKRVKPYLPT^ICGTV LWRLNUKSAKVRQQAA OLISRTAVVMRTCQEEKLMGHLGVVLYEYLGEEYPEVLGSILGALRAIVNVIGMHKMTPPIRDLLPRL TP I LKNR HE KV QENCIB LYGR IA DR GAEYV SARE WMR ICF ELLELLKAGKKA IRRATVNTF GYLAKAI GP HDVL ATLLN.NL.KVQERQNRVCXXVAIA IVAEICSPFTVLP ALMNE YRVPELNVQNGVLKSLSFLFE: HYYMRNEEISE HVIQAVMGA LEGI:RVAIGPGRMLQYCIQGIFHPARKVRDVYWKIYNGIYIGSQDALIRHYPRIYNDDK NIYIRYELDYIL
>SEQ ID NO:24

MEEKTTQSVEGLKQYCLVfEREMKHIERHTHQTGKAGEFKNKPERQVLQPENETKLPKIMPEGHG IQN AQRRKQVNEREQMQTKDHQERMTRGRELAEQRIKERI LRRSQSQLLTYEKHERVKEIKEFERVIAYLI, FQPCSRSRIKVSILMDKSQNGEKWIIVKPYQRKFLAMPPFLRSQIGKIRD
>SEQ ID NO; 26
MTEEWLISAPGEKTCQOTWEKLHAATSKNNNLAVTSKENTEDLKVQTLDULVGLSDELAKLDAEVEGV
VKKMAOYMADVIEDSKDKVOENLLANGVDLVTYITREOWDMAKYRIKQSIKNTSEITAKGVTQIONDL, KSRASAYNNLKGNLOMLERKNAGSILXRSLAEIVKKDDFVLDSEYLVTLLVVVPKLMHNDWIKQYETL AEMYVPRSSNVLSEDQDSYICNVIIFRKAVDDFRHKARENKF IVRDFQYNEE EMKADREEMNRLSIDK KKQFGPLVRWLKVNF SEAFIAWIHVRALRVEVESVLRYGLPVNFQAMLLQPNEKXLKKLREVLHELYK HLDS SAAAI IDAPMD IEGLNLSQQEYYPYVYYKIDCNLLEFK
>SEQ: ID NO: 27
MREYKWVLGSGGVGKSALXVQFVIGXFIERyDPIIEDFYRKEIEVDSSPSVLEILDIAGXEQFASMR
DGYIKNGQGF ILYYSLVNQQSFQD IKPMRDQI IRVKRYEKVPVILVGNEVDIESEREVSSGEGRALAE iЗW@OPFMETSARSKTMVTETF\&EIVRQMNY\&AQPDKDPPCCSACNIQ
>SEQ: ID NO: 28
RADQLIEEQIAEEKEAFSLFDKDGDGXIXXKELGXVMRSLGQNPXEAELQDMINEVDADGNGXIDFPE FLTMMARKMKDXDSEEEIREAFRVFDKDGNGYISAAELRHVMXNLGEKLIDEEVDEMIREADIDGDGQ
WNYEEFV OMMTAK.
60

MV DA SGRA AAEGWREMEAPPDGAAPIYP LDKYDAAPAKIANNLQWICAKAYGRDNTPEDLRDEEYVDQ YEQF³/4KPPVIRLLL.S:SELYCRVCSLILK^ DQVAALQGHOSVIQATSRKGIYVMESDDTPVTESDISR BPIKMSAHMAMVDATMMAYTVEMISIEKVVASVKRESTESZSKELFYDLEDAMVFWINEVNLKMREIT EKEVKLKQQLLESPAHQKVRYRRERLSARQSPYFPLLEDLMR DGSDGAALLAVIHXYCPEQMKLDDIC
 RDVQELKDAKTVLHQKSSRPPVPrSNATKE-S-FLGSPAAGTLAELQPPVQLEAEGCHRHYLHPEEPEYL GKGTAAFSPSHPLLP LRQKQQKSIQGEDIPDQRHRSNSITRVDGQPRGARIAWPEKKTRPA SQPTPFA LHHAAS CEVDPSSGDSISLARS.I:SKDSLASNI:VNLTPQNQPHPTAIKSHGKSLLSNVSIEDEEEELVA IVR ADVVFQQADP EFPRA SPRA LG LTANARSPQGQLDTSESKEDSEFLEPLMPATLKPAEERQVTTKE
>SEQ: ID NO: 30
MS LALRSELVVPK IKRKKRRELSEEGKQEIKDAFELEDTDKDEATDYHELKVAMRALGEDVKKADVLK ILKDYDREAIGKXXFEPFNEVVTPWILERPPHEEILKAFKLFPPDDSGKI SLRNLRRVARELGENMSD:
EELRAM IEEF DKDGDGEINQEEEIAIMTGDI
>SEQ: ID NO: 31
MATAAIIPSV\&XATAAALGEVEDEGLLASLFRDRFPEAQWRERPDVGRYLRELSGSGLERLRREPERL AEERAQLLQeTRDLAFANYKTFIRGAECTERIHRLFGDVEASLGRLLDRLPSFQQaCRNFVKEAEEIS SNRRMNSITLNRHTEILEIIEIPQLMP XCVRNGYYEEALELAAYVRRLERKYSSTPVIQGIVREVRQS
>SEQ ID NO: 32
MRPVRLMKVFVXRRIPAEGRV $3 / 4$ LARAADCEVEQWDSDEDIPAKELERGVAGAHGLLCLISPHVPKRI L. IfAAGANLKVISXMSVGIPHLALDEXKKRGIRVGYTPDVITDTTAEIAVSLTTTTCRELEEAIEEVKNG GWISWKPLWLCGYGLXQSXVGIIGLGRIGQAI.3/4RRLKPFGVQRFirYXGRQPRPEEAAFFQAEFVSXPE LAAQSDF IVVAGSIXPA IEGLCNKDFF QKMKETAVETNTSRGDVVNQDDIYQALASGKIAAAGLDVTS PEPLPINHFLLXLKMCVILPHIGSAIHRIRMXMSLLAANNLLAGLRGEPMP SELKL
>SEQ. ID NO:33 QHLLEK SNIYSKFLLTKUEQQOLEEQKEKEKIERKKESLKVKIGKNSIDASEEEPTMRKRRGREDESY NISEVHSKEEILSVAKKNKRENEPENSSSINLCV^ DLQKNKDSNSIIKDRLSETVRQNTKFFFDPVRK CNGSPVPFQQPKHFTGGVMRTYQVEGMEWDRMLWENG INGILADEMGLGKXVQCIATLALMIQRGVPG PEL¥CGPLSTLP N3/AMAEEKRFTP TITFTM1,YHGXQE ERQKLVRNTYKRKGTIQTHPVVITEFETAMEDR NALQHCYWKY LTVDE GHR IKNMKCRINRELKPENADNKLLLTGTPIQNNLSEIWSLLNFLLPDVEDDL, KSFESWFDITSISE XAEDIIAKERE QNVLHMLHQI LXPFLLRRL KSDVALEVPPEREVVVYAELSKKQ EXFYXAXVNRIIANMFGSSEKEIIELSP IGRPKRRXRKSINYSKIDDFPNELEKLISQIQPEVDRERA WEVNIPVESEVNLKLQNIMMLLRKeeNHPYLIEYPIDPVXQEFKIDEELVXNSGKFLILDRMLPELK KRGHKVTIFSQMT SM LDTLMDYCHIRDFNESRIDGSMSYSEREKNMHSFNTDPEVETELVSTKAGGLG

KNHFKGGQS GLNL SKNFLDFKE LMELLK 3RDYEREIKGSREKVI SDKDLE LLLDR SDLIDQMNAS GPI KEEMGTEKILENSEDSSPECLF

>SEQ ID NQ; 34

MAGVGPGGYAAEFVPPPECPVEEPSWEEETDPLSFTGRIRP IAEKTGICKIRPPKDWQPPFACEVKSE RFTPRVQPGNELEAMTRVRLDFLDQLAKFWELQGSTLKIPVVERKILDLYALSKIVASKGGEEMYTKE KKWSKWGSRLGYLP GEGTGSLLKSHYERIIYPYETFQ:GVSLMGVQMENLDIKEKVEPEVLSTDTQTS PEPGTRMNILPKRTRRVKXESESGD^SRNTELKKbQrFGAGPKVVGLAMGTKDKEDEVXRREKVTNRS DAFNMQMRQRKGTLSVNFVDLYVCMECGPGNNEDKLLLCDGCDDSYHPECLIPPLPDVEEGDWRCPKC VAE ECSKPRE AFGFEQAVRE YTLSFGEMADNFKSDYFNMP VHMVPTELVEKEFWRLVS SIEEDVIVE YGADIS:SKDFGSGFPVKDGRRKILPEEEEYALSGWM LNNMPVLEQSVLAHYNVUTSGMKVEWLYVGMC FSGPCWHTEDHWSYSINYLHWGEPK iWYGVPSHAAPQLEEVMRELRPELEESQPDLIHQLVTIMNPNV LMEFGTPVYRTNQCAGEFVVTFPRAYFSGENQGYNEAEAVNECTADNLPIGRQCVNHYRRLRRHCVES HEELIFKMAADPECLDVGLA AMVCKELXLMIEEEIR LRESVVQMGV LMSEEEVEELVPDDERQCSACR TXCFI.SALTCSCNPERLVCLYHP XD LCPCPMQKECLRYRYP LEDLP GLLYGVKVRAQSYDTWVSPVTE ALSANFNHKKDITELRVMLEDAEDRJYPENDLFRKIRDAVEEAETGASVAQLILSKKQKHRQSPDSGR XRIKLIVEELKAFYQQLFSLPCV ISSA RQVKNLLDDVEEFHERAQEANIMETPDSSKLQMLIDMCSSL $3 / 43 / 4$ LPELPRLKQEL QQARWLDEVRL XLSDPQQVILDVMKKLIDSGVGL APHHAVEKAMAELQELLXVS ERWEEKAKVCLQARPRH SV SLES IVNEAKN IPAFLPNVLSLKEAL QKAREWXAKVE A QSG SNYAYL
>SEQ: ID NO:35
MSLSNKL TLDKLDVKGKRVVMRVDFNVPMKNNQIINNQRI KAAVP SIKFC IDNGAKSWLMSHLGRPD GVPMPDKYSLEPVAVELKSLLGKDVLFLKDC^VGPEVEKACAiiPAAGSVILLENLRFHVEEEGKGKDAS GNKVKAEPAKIEAFRA-SLSKLGDVYVNDAFGXAHRAHSSM VGVNIEQEAGGELMEFELNYPAKALEBE

40 >SEQ ID NO:36
MADLEVYKNLSPEKVERGMSVMQSGXQMIKLKRGXKGLVRLFYLDEHRXRLRWRP SRKSEKAKILIDS IYKVXEGRQSEIFHRQAEGNFDP SCCFXIYHGNHMESLDLIISNPEEARIWIXGLKYLMAGISDEDS.L SKRQRTHDQWYKQRF EEADKNGDGLIN IEETHQLMHK LNV NLPRRKVRQMFQEADTDEMQGTLTFEEF CVFYKMMS LRRDLYLI,LISYSDKKDHITVE ELAQELKVEOKMMNVTTDYCLDTIKEFEVSEENKVKNV LQGLKGLFNKNPRHSSSENNSHYVBIRS IGDPILRRXA SAPAKGRKKSKMGEQEMVEIKDSVSEATRD QDGVLRRXXRS LQARPV SMP VRMILGAL SLEVSETAKDIEGKENSIAEDKDGRRKGKAS IKDPHFLN FNKKLSSSSSALLHEDTSQGDTIVSTA HM SV TGEQLGMGS.PRGGRTT SNATSNCQENPCPSKS LSPKO HLAPDPVVNETQD LHGVKIKE KGNPE DFVEGKS ILSGSVLSH SNLE IKNLEGNRGKGRAATSFSLSDV SMLCSDTPDLHSXAILQESV ISHLIDNVXLXNENEPGSSISALIGQFDE INNQALXVV SHLHNXSVMS GHCPLPSLGLKMFIKHGFCKGK SKSSFLCSSPEIIALSSSETTKHAXNXVYETXCTP 1SKXKPDDD LS ERPF LAILGGAKVA.DKIQLINNMLDKVNEMI IGGGMAF XFLKVLNNME IGISLFDEEGAK IVKDLMSK AEKNGVKIILPVDFVTADKFDENAKTGQATYASGTPAGWGLDCGPESSKKYAEAVTRAKQIVWNGPV GVFEWEAFARGXKALMDEWKAXSRGCIIIIGGGDXAICCARWXEDKVSHVSIGGGASLELLEGRVL PGVDALSNI LGIEGFTMFMRSPACDIFNPLHHEVYQDMDQFLCNYYIASSHNTYLTGDQLLSQS KVDMYARVLQEGC. RCVEVDCWDGP DGEPVVHHGYTUTSKTJFRDVVETINKHAFVKNEFPVIISTEDHCSIQQQRKIAOYL KGIFGDKLDLSS VDIGECKQLPS.PQSLKGKILVKGKKLPYHLGDDAEEGEVSDEDSADE IEDECEFKL HYSNGT TEHQVE SFIRKKLESLLKESQIFDKEDP DSFTVRALLKAX HEGLNAHLKQ SEDVKE SGKKSH GRSLMTNFGKHKK.TTKSRSKSYSTDDEEDTQQSTGKEGGQLYRLGR³/4KTMKLCRELSDLV VYTNSVA
50 AQDIVDDGTTGNVLSF:SETRA HQXVQQKSEQFMIYNQKQITR IYPSAYRIDSSNFNP LPYWNAGCQLX A LNY区SEGRUMQUNRAKFKANGNCGYVLKPQQMCKGTFNPFSGDP LPANPKKQLILKVISGQQLPKPP DSMFGDRGEIIDPFVEVEIIGLPVDGGKDQTRVVDDNGFNPVWEETLTFTVHMPEJALVRFLVWDHDP IGRDFVGQRTVTESSLVPGYRGVYLEGLTEASIFVHTTINEIYGKWSPLILNPSYTILHF LGATEMRQ SKAKTAALE SNLPGSPNTSRGWLPKSPTKGEDWETLKSCS PASSPDLTLEDFIADPTLCENSGESSLV ETDGESENLSLTTCEYRREGTSQLASPLKLKYNQGVVEHFQRGLRNGYCKETLRPSVPEIFNNIQDVK

TQSISYLAYQGAGFVHNHESDSDAKMPOTCVPQQSSAQDMHVPVEKOLAHLPLPALKLPSPCKSKSLG DLTSEN LACNFESKYQCISKBFVTTGTRDKKGVTVKTKSTEPTDALTEOLRELVSFDQEDNCQVIVSK QDANQLPRAL VRKLS SR:SQSRVRNIASRAKE KQE A NKQKVPNP SNGAGVVLRNKP SFPTPAVNRESTG SYIAGYLKNXKGGGLEGRGIPEGACTALHYO^ VDQECSDISVLOTEPSSDDKPEIYELLEL
>SEQ: ID. NG:37
MGRSRRTGAHRAHSLARQMKAKRRRPD1.DE IHRELRPQGSARPQPDPNAEFDPDLPGGGLIIR CLACAR YFIDSINLKTHFRSKDHKKRLKQLSYEPYSQEEAERAAGMGSYVPPRRLAVPIEVSTEVPEMDIST
$>S E Q$ ID NO: 38
MAP LCPSPWLPLLIPAPAPGLTVQLLLSLILLVPVHPQRLIPRMQEDSPLGCGSSGEDDPLGEEDTPSE EDSPREEDPPGEEDLPGEEDLPGEEDLPEVKPICSEEEGLKL …....... EDLETVEAPGDPQEPQNMAHRDKEGD D; Q ; SHWRYGGDPPWPRVSPACAGRF; QSPVDIRPQLAAFGPALRPLELLGFQLPPLPELRLRNNGHS

NQL. TLPPGLEMALGPGREYRALQLHLHMGAAGRPGSEHTVEGHRFPAEIHVVHLSTAFARVDEALGRPGGL
AVLAA FLEEGPEENSAYEQLLSRLEE IAEEGSETQVPGIDISALLPSDFSRYFQ¥EGSITTPPCAQGV XWTVFNQTVMLSAKQLHTLSDTLWGPGDSRLQLNFRATQPLNGRVIEASFPAGVDSSPRAEPVQLNS

>SEQ ID MO:39
MS SR TKDLIK SKWG SKP SUSK SETTLEKLKGEIAHLKTSVDEITSGKGKLTDKERHRILERIRVLEA EKEKNAYQITEKD® IQRLRDQEKARYSTTTLIEQEEETTREGERREQVLKALSEEKDVLKQQLAAAT
 XEKKTETAAHSLPQQTKKPESEGYLQEEKQKCYNDLASAEKDLEVERQTITQLSEELSEFRRKYEET QKEVHNLNQLLYSQRRADVQHLEDDRHKTEKIQKLREENDXARGKEEEKKRSELLSQVQFLYXSXL KQQEEQXRVALLEQQMQACILDFENEK IDRQHVQHQLHV ILSE LRKARNQITQIES LKQLHEFAXXEP LVXFQGEXENREKVAASPKSPXAALNESLVEGPKCNIQYPAXEHRDLLVHVEYCSK
$>S E Q$ ID NO:40
MEEFDSEDFS SEE DEDYYPSGGEYSEDDVNELVEEDEXDGEEQTQ XTQGKRKAQ SIPARKRRQGG L SLEEEEEEDANSESEGSSSEEEDDAAEQEKGIGSEDARKKKEDELWASFLNDVGPKSKVPPSXQVKKG EETEEXSSSKLLVKAEELEKPKETEKVK IXKVEDFAGEEVRVTFEVDATSKEAKSEEKQNEEEKPQAN VPSALPSLPAGSGLKRSSGHSSLLGKIGAKKQKM.SXLEKSKLDWESFKEEEGIGEELAIHNRGKEGYI ERKAF LDRVDHRQF EIERDLRL 8KMKP
>SEQ: ID NO: 41
MQAFLKGXSISXKPPLTKDRGVAASAGSSGENKIKAKPVPWVEKYRPKCVDEVAFQEEVVAVLKKSLEG ADLPNLLFYGPPGIGKXSTILAAARELFGPELFRLRVLELNASDERGIQVVREKVKNFAQLIVSGSRS DGKPCPPFKIVILDEADSMXSAAQAALRRXMEKESKXXRFCLIeNYvSRIIEPLXSReSKERFKPLSD: KIQQQRLLDIARKE AVK ISNE 5 IA YLVK³S: EGDLRKAIXELQSAXRLXGGKEIXEKVIXDIAGV1PAE

GADEHLQLI SLCA IVMQQLSQNC
>SEQ: ID NO; 42
MFLTGVEPARMNRKKGDKGFE SPRPYKITHQVVCINNINFQRKSVVGEVELTIFPTVANLNRIKLNSK
 HVDELKVLRIHINFSLDQPKGLLHFWPSVF^ MAERGAHVFSCGYNSTREWEPCVDSYSELCTWKL EfT YDAAMVAVS NGDL VEIVYIHDMRKKX FHYML TIPTAASN ISLAIGPFEILVDPYMHEVIHFCLPQ: LLPLLKHXISYLHEVFEFYEEILXCRYPYSCFKXVFIDEAYVEVAAYASMSIFSXNLLHSAMIIDEXP LIRRCLAQSLAQQF FGCFISRMSWSDEWVLKGISGYIYGLWMEKTEGVNEYRHWIKEELDKIVAYELK LSLAS TASSQKFQSEM洔SQMLVSISGFLK.SISNVS GKD IQPLIKQWVDQSGVVKF YGSF AFNRKRNVL ELEIKQDYTSPGTQKYVGPLIWTVQELDGSFNHTLQIEENSLKHDIPGHSKSRRNKKKKIPLMNGEEV DMDLSAMDADSPILWIRIDPDMSV LRKVEFEQADFMHQYQLRYERDVNAQQESILALEKEPTEASRLA LTD ILE QE QCFYR VRMSACFC LAKIA NSMV SX WXGPPAMESLFTRMF CCKSCPNIVKXNNFM SF OSYF. LQKXMPV AMALLRDV HNLCPREVLTFILDLIKYNDNRKNKFSDNYYRAEMIDALANSVXPAVSWTOE ... V RXLDN LIFPDVRJILEEITRF LXMERLLP SYRETIXV SC LRA IRV IQENGHVP SDPALFK SYAEYG\#FV DIRIAALEAWDYIKVDRSYEELQWLLNMIQNDPVPYVRHKILNMLXKNPPFXKNMESPLCNEALVDQ: LWKLMNSGXSHDWRLRCGAVDLYFXLFGLSRPSCLPLPELGLVLNLKEKKAVLNPXIIPESVAGNQEA ANNP SSHPQLVGF QNPFS S SQDEEE IDMDVHD SQ.AF ISHK LNMLERP SIPGLSKYRPASSRSAL IPQ HSAGCDSXPIXKPQWSLELAMIGXGKEQAPLEMSMHPAASAPLSVFXKESXASKHSDHHH HHHHEHKK
$>S E Q$ ID NO: 4.3
MFHGIEATPGIG $3 / 4 \mathrm{GG} / 4$ PELYEENKIYKNAREREKYDNMXELEAVVKTMQALEKAYIKDCVSESEYTA AGSKLLVQKKAAERQVQGSEISSIDEFCRKFRLDCPLAMERIKEDRP ITIKDDKGNLNPCIADVVSLFF ITVMDKLRLEIRAMDEIQPD ${ }^{\wedge}$ LFDLESAYNAFNRFLHA
$>S E Q$ ID NO:44
MELYNLTLQRATGISFAIHGNF SGXKQQEIVVSRGRILETLREDENTGKVHTLLTVEVEGVIRSLMAE R1GGIKD Y VGUSGRI -LETQPSKOMEEKIHQETFGKSGCREIVPGQELAVDEKGR3/4IISAIE KQELVYIINRDAAARLTISSPLEAHKANTLVYHVYGVDVGFENEMEAOLEND YEEADNDPTGEAAANT QQILTFYELDLGLNHVWKYSEPLEEHGNFLITVPGGSDGPSGVLICSENYITY^ EGDQPDTRCPIP RRRNDIDDPERGMIFVCSATHKTKSMFFEIAQTEQGDIFKITLETDEDMVTEIRLKYEDTVFVZAAMC VYKTGELFV/4 SEFGNHYLYQTAHLGDDDEEFEFSSAMETEEGDTEEFQPPFIKNLVLVDELDSISPTL: FCQIADLANEDTPQ LYVACGRGFRSSLRVLRHGLEVSEMAVSETPGNPNAVWTVRRHIEDEFD3YIIV SFVNATLVLS IGE TVEEVTDSGFLGTTPTLSCSLLGDDALVQVYPDG IRHIRADKRVNE WKTP GKKTI VKCAVNQRQWVIALTGGEATYFEMDPSGQLNEYTERKERISADVVCMSLANVPPGEQRSRELAVGLVDE TVRI I SLOESDCLQPL SMQALPAQPE SLCIVEMGGTE KQDELGERGSIGF LYDNIGLQNGVLLRTVLD. PVTGDLSDTRTRYLGSRP VKLFRVRMQGQEAVLAMSSRSWLSYSYQSEFHLTPLSYETLEFRSGFASE QCPEGIVATSTNTLRTLALELGAVFNOVAFPI.OETPRKEVIHPESNNLITIETURNAYTEATKAORK QQIAEEMVEAAGEDERELAABMAEAFLNENIPESIFGAPKAGNGQNASVIRTMNPTQGNTLDLVQLEQ NEAAESVAVCRESNTGEDWYVLVGVAKDLILNPRSVAGGFVZTYKLVNVGEKLEELEKTEVEEVPAAI ZPFOGRVLTGYGKLLEVYDLGEEKILRKCENKHLANYISGTQTIGHRVIVSDVQESEIWVEYKRNENQ UIIEADDTYFRWVTTASLWDYDTVAGADKFGNICVVRLPPNTNDEVDEDETGNKALWDRGLLNGASQK AEVTMNY HVGETVLS LGKTTHIPGG SESLVYTTLSGGIGILVPETSHEDHDEEQHVEMHTRSEHFPLC. GRDELSFRSYYFP WKNV IDGDLCEQFNSMEPNKOKNV SEELDRTPPEVSKKIEDIRTRYAE
$\triangle \mathrm{SEQ}$ ID NO: 45
MNQP CNSMEPRVMDDDMLKIAVGDQGPQEEAGQLAKQEGILEEDVTSLQLDEANTLRIDNLWQEENLR KLQLDNEITEKIEGLENLAHLYNLDLSFNNIETIEGLDTLW LEDLELFNNRISKTDSLDAXVKLQVL. SLGNNRIDNt-IMNIIYLRRFKCLRTLSLSRNPISEAEDYI^IFICAYLPDLMYLDYRR HQYSIDELKHQENLMQAQLEDEQAQREELEKHKIAFVEHLNGSFLFDSMYAEDSEGNNLSYLPGVGEL
LETYKDKFVI JGVNIFEYGLKQQEKR KTELDTF SECVREATQENQEQGKRKTAKFEEKHLSSLSA IRE ELELPNIEKMT I,ECSAD IEELF DAM TLEMQLVEQLEETINMFERWIVDMVGLETENVQSLMAQCEDL. N SWCTRIIDR IHKDE IMRNRKRVIE INQY IDHMO SE IDNLECGDILD
$>S E Q$ ID NO: 46
MATPAAVNPPEMASDTPGSVTLPVAPMAATGQURMAGAMPARGGKRESGMDEDDEDGEGPSRFSREMR SETERRRRNKMTQYTTELSDMYPTCSALARKPDKLTITRMRVSHMRSMRGTGNKSTDGAYESELTEQ ETKRLTLEAADGELFVVAAETGRVIYVSDSVTPVLNQEQSEWEGSTLYEQVHPDDVEKLREQLOTSEN SMTGRITDLKTGTVKKEGQQSSMRMCMGSRRSEIGRMRCGNAPLDHEELNRITTMRERERNGLGPVKE GEAQYAV VHCTGYIEAWPPAGMTIPEEDADVGQGSKYCLVAIGKLQVLSSEVCMDMEGMSVETEFLSK HNSDGIIXFVDPRCJSVIGYQPQDLLGKDXLEFCHPEPQSHLRESFQQVVKLKGQVLSVMYRFRTKNR
EWMLIRT3SFTFONPYSDEIEYIICrNTNVKQLQQQQAELEVHQRDGLSSYDLSQVPVPNLPAGVHEA GKSVBKADAIFS^.ERDPRFAEMFAGISASEKKt^MSSASAAG-TQQIYS QGSPFPSGHSGKAFSS SVV非 PGVQDIQSSSSTGQNMSQISRQLNQSQVA3/4TGSRP PFPGQQ IP SQSSKIQSSPFGIGTSHTYPADP SS YSPLSSPATSSPSGNAYSSLANRIPGFAESGQSSGQFQGRPSEVWSQWQSQHHGQQSGEQHSHQQPGQ TEVFQ DMLPMP GDP TQGTGNY.NIEDFADL GMFPPF SE
$>S E Q$ ID NO: 47
MPEPTKKEENEYPAPAPPPEEPSKEKEAGTTPAEIDWTLVETPPGEE QAKQNANSQLSILFIEKPQGGT VKVGEDITF IAKVKAED LLRKP I IKFF KKWMD LA S KA GKHLQLKETEGRHSEVYTFEMQI IKAKDNE AGNYRCEVTYKDKFDSCSEDLEVHESTGTTPNTDIRSAFKPSGEGQEDAGELTFSGLLKRRETKQQEE EPQVDVWELLKNFRPSEYEKLAPQYGTTDLRGMLKRLKRMRREEKKGAAFAKILDPAYQVDKGGRVRE VVELADEKLEVKWYKNGQETRPSTKYTEEHKGCQRILEINNCQMTDDSEYYVTAGDEKCSTELFVREP DIMVTKQLEDTTAYCGEEVELECEVSEDDANVKWEKNGEEIIEGPKGRYRIRVEGKKHILIIEGATKA DAAEYSUMTTGQQSGAKLSVDLKPLKILTPLTDQTVNLGKEICLKCEISENIPGKWTKNGLPYQESDR IFVVHKGRTHKLVTANAETEDEGDYVFAPDAYNVTLPAKVFVTDFPKTTIDGLDADNTVTVTAGNKLR LEIPISGEPPPKAM'JSRGDKAIMEGSGRIRT^ STPDSSTLUIDIAERDDSGTYHTNLKNEAGEAHASI KVKV $\because D F P D P P A P T$ VI: EVGDD WCIMNWEPRAYDGGSETLGTETERKKKQSSRWMRLNEDLCKETTEE

PKFMIEGVAYEXRIEAVNAIGISKESMPSREEVRLAVTSPPTLLTVDSVTDTTVTMRWRPPDHIGAAG LDGYVLEYCFEGSTSAXQSDENGEAAYDLPAEDWI^ ${ }^{*}$ ANKDLITDKTKFTTTGLPTDAKIFVRYKAVNAA GASEPKYYSQPILYKEIIEPPKIRIP RHLKOTYIRRVGEXVNLVIFEQGKPRPEITWKKDGAEIDKNQ: INIRNSE TDTIIEIRKAERS HSGKYDLQVKVDKFVETASIDIQIIERPGPPQIVKIEDVWGEKVALT W TPPKDDG DAA It.gs? TQKADK KSMEgiE TV IEHYHRTSATITELV IGNEYYFRVESENMCGI\&E DA TMT KESAVIARDGKIYKNPVYEDEDFSEAiMETQPLVNTYAIAGYNATLNCSVRGNPKPKITWMKNKVAIV DDPRYRMF SNQGVCTLEIRKPSPYDGGTYCCKAWDLGTVEIECKLEVKVIAQ.
>SEQ: ID MO: 48
10 MLLETQDALYVA LEDVIAELSVAGNVLVCAAVGTANTLQTPTNYELVSLAAADVAVGLFAIPFATTIS LGFGTDFYGGLFIACFVLyLTCiS.SlFSLLAVAVD RYLAICVPLRYESLVTGRRARGYIAVLVVLAEGI GI^PFLGWNSKDSATNNCTEP WDGTTNESOCLVKCLFENVVPNSYMVYEREEGCVLPRLLIMLVIYIK IFLVACRGLQRTE MMDHSRTTLQRETHAAKSLAMIVGIFALCNLFVHAVNCVTLFQRAQGKNKPMWAM NMA ILLSHANSVVNPIVYAYRNRDFRYXFHKIISRYLLCQAD3/4 SGNGQAGVQPALGVGI:
>SEQ:ID NO:49
MSGRPRTTSFAESCKP3日QPSAFGSMKVSRDKDGSKVTTVVAIPGQGPDRPQEVSYTDTKVIGNGSEG VYYQAKLCDSGELVAIKKVLQDmFKNRELQIMRKLDHCNIVRERYFFYSSGEKKDEVYDNLVLDYVP ETVYRVARHYSRAKQTLPVIYYKLYMYQLFRSLAYIHSFGICHRDIKPQNLLLDPDTAVLK LCDEGSA

MLWla LGPFPAMENQYLYIRTKIPNSGAyDWTYHSGPQILFRDVLDVIGQVLPEATTTAFEYEDEDGD RITVRSDEEMKAMLSY YYSTVMEQQVNGQLIEFLQIEPRACKPPGERNIHGTKVITTRAGPSQHSSPAV SDSLPふNSLKKSSAELKKr^ NGQMNEQDIRYRDTLGHGNGGTVYKAYHVESGRILAVKVILLDITLE LQKQIMOELEILYKCDSSYIIGFYGAFFyENRISICTEFMDGGSLDVYRKMPEHyLGRIAyAyyKGLT Y LWSLK ILHRDVKP SNMLVNTRGQVKLCDFGUSTQLVNSTAKTYVGTNAYMAPERT SGEQYGTHSDVE
60 SLGISFMELALGRFPYQIQKNGSIMPLQILQCIVDEDSPVLPVGEESEPEVHEITQCMRKOPKERF APEELMGHPFIVQFNDGNAAVYSMWVGRALEERRSQQGPP
$>S E Q$ ID NO: 52
MAHAGRI GYD NRE IVMK.YIHYKL SQRGYEWDAGDVGAAP PGAAPAPGIFSS QPGHIPHPAASRDP VAR TSPLGTPAAPGAAAGPALSPWPWHLILRQAGDDFSRRYRRD EAEMSSQLHLTPELAEGREATVVEE

IFEDGVNWGEIVAFF EFGGVMCVESVNREMSP LVDNIAIWMTEYLNRHLHTWIQDNGGWDAFVELYGP SMRPLF DFS-WLSLKTLI,SLALVGACI ILGAYLGHK
>SEQ ID NO:53
MAAGAGAGSAPRWLBALSEPLSAAQLRRLEEHRYSAAGVSLLEPPLQLYWTWLLQW … TELWMAPNSTTL
SLSTVFMAVGAS IAARLGTY 'PDWFFFCSFIGMF VEYCA HWQTYV SGMLREGKVDVTEIQIALVTVEVL BAFGGATMWDYTIEITEIKLKILPVLGPLGGVIESCSND HVILHGGVCKNGSTIFGTSVLSEGERIG LIIILAIMIYKKSAIDVFEEBPCLYILMFGCY FAKYSQKLYVAKMTKSELYIODTVELGPGLIELDQY FNNETDEYVV LWMA WVISSEDMVIYESALCLQISRHLHLNIFKTACHQAPEQVQVLSSKSHONNMD
>SEQ: ID NG;54
MYGSARTIXNLEGSPSR SPRLPRSERLGGRRTSSGGGGGTGKXLSMENIXSLNAAYATSGPMYISDHE
 SMLRQURDSXMLDL QAQLKELQRENDLLRKELDIKDSKLGSSMNS IKXFWSPELKKERVL RKEEAARM SVLKEQMRV SHEENQHLQLXIQALQDELRTQRDLNHLLQQESGNRGAEHFTIELTEENEPRLQAEHDP: QAFELFLTRKTLEEMELRIETOKQTLNARDES IKKLLEMTQS KGLESKSLEDDNERTREMAEAESQUS HLEVILDQKEKENIHLREELHRRS: QLQPEPAKXKALQXVIEMKDXKIASLERNIRDLEDEIQMLKANG.
VLNXEDREEEIKQIEVYKSHSEFMKXKIDQLEQELSKKESELLALQIKLEXLSNQNSDCKQHXEVLEE SLIAKEQRAJVILQXEVDALRLRLEEKE^^ LNKKTKOLQDLTEEKGTTAGEIRDMKDMLEVKERKINVL QKK IENLQEQLRDKDKQL TNLK DRVK SIOT DSSNTDTAIATLEE \& LSEKERT IERLKEQRERDDRERL EEIESERKENKDIKEKVNAJQAELTEKESSUTDLKEHASSLRSAGIKRDSKTKSLEIAIEQKKEECSK LEAQLRKAHNTEDDSRMNEFEADQIKQLDKEASYYRDECGKAOAEVDRLLEILKEVENEKNDKDKKIA ELESLTLRHMEDQNKKVANLKHNQQLEEKKNAQLLEETRRREDSMADNSQHLQIEELMMALEKTRQEL DATEAELASTQOBLAEKEAHLANLRIERKKQLEETLEMKQEALLAATSEKDAMTALLELSASKKKKTQ EEVMALKRERDREVHQLEOQTONRMILMGDNYDDDHHHYHFHHFHHHERSPGRGQHSNHRPSEDQDDE: BGIWA
>SEQ ID NO; 55
MYKIAFNXP XAVQKEEARQDVEALISRXVRTQIL XGKELRVATQEREGSSGRCMLTLIGTSEITAGLT VGGACIYKYFMPKSXIYRGEMCFFDSEDPANSLRGGEPNFLPVXEBADIREDDNIAIIDVPVPSFSDS DPA AIBDFEKGVISYID LL LGNCYLMPLNXSIVMPPFNLVELEGKLASGRELPQTYVVREDLVAVEE IRDVSNLGIFIYQLCNNRKS FRLr<RRDLLLGFNKRAIDKCWKIRHFPNEFIVEIKICQE
>SEQ ID NO:56
MARPVRGGL GAPRRS PCLLLLXLLLLRLEPVTRAAGPRAPCAAACXCA GDSLDCGGRGLAALP GDLPS WTRSLNLSYNKL SE IDPAGF PDLPN LQEVY LNNNEITAVPSLGAA SSHVVSLELQHNKIRGVEGSQLK AYLSLE^LDLSLNNIXEVRNXCFP HGPP IKELNLAGNRIGXLELGAFDGLSRSLLILRLSKNRIXQLP VRAFKLPRLXQLDLNRNRIRLIEGLTFQGLNSLEvLKLQRNNISKLXDGAi'WGLSKMHvLHLEYNSLV EVNSGSLYGLTALHOLHLSNMSIRETHRKGWSFCQKLHELVLSENNTTPLDEESLRELSSLSVLPLSH NSTSHIAEGAFKGLRSLRVLD LDHNETSGTIEDTSGAF SGIDSL,SKITLFGNK IKSVAKRAF SGLEGL EHLINL GGMA IR SVQF DAF VKMENLKETHISSDGFLCDCQLKWLPPWLIGRMLQAFVTATCAHPESLKG QSIFSYpPESFVCDDFLKPQIIIQPEIIMAMVGKDIRFICSAASSS.SSP3/4^FAWKKDNEVLTMADMEN: FVHVHAQDGEVMEYXXILHLRQVXFGHEGRYQCVIXNHFGSXYSHKARLIVNVLPSFIKXPHDIXIRX
IXMSRLEC AATGBPNPQ IAWQKDGG XDFP AARERRMB VMPDODVFF ITDVEIDDAGVY SCXAQN SAGS ISANAILXVLEXPSLWPLEDR\A.3/4VGEXVALQCKAXGNPPiRIXWFKGDRPLSLXERIIIILXPDNQLL VVQNVVAEDAGRYICE,MSNXLGXERAHS L Sy LPAAGCRKDGXXVG IFXIAVVBSIVLTSLVMTIIY QXRKKSEEYSVXNXDEIVvPPDypSYLSSQGILSDRQEXWRXEGGPQANGHIESNGyGPRDASHFPE PD THSVA CRQPKLCA G SAYHKE PWKA \&EKAEGTP GPHKMEHGGRVVCSDCNTEVDCYSRGQAFHPQP Y SRDSAQPS.APNGPEPGGSDQEHSPHHQCSRXAAGSCPECQGSL YPSNHDRMTTATFKKEMASLDGKGD: SSWILARLYHPDSXELQPASSLXSGSPERAEAQYLLVSNGHLPKACDASPESXPLXGQLPGKQRVPLL LAPKS
$>S E Q$ ID NO: 57
MAEPRQEFEYMEDBAGIYGLGDRKDQGGY1MHQD DEGDTDAGLKESPTQTPTEDGSEEPGSETSDAKS
IPXAEDYXAP LyDEGAPGKQAAAQP HXEIPEGXIAEEAGIGDXP SLEDEAAGHYXQEPESGKVYQEGF LREP GPPGLSHOLMSGMP GAPLLPEGPREAXRQP SGXGPEDXEGGRHAPi, LLKHQLLGDLHQEGPPLK

GAGGKERPGSKEEVDEDRDVDESSEQDSPESKASPAQDGRPPQTAAREATSIPGFEAEGAIPLPVDEL SKV STETPASEPDGESK／4 RA K GQDAPIEFTEHVEITPNFOKEQAHSEEHLGRAAFPGZPGRGFERRGP SIGEDTKEADIPEP SEKQPAAAPRGKPVSRVPQLKARMVSKSKDGTGSDDKKAKTSTRSSAKTLKNRP CLSPKHPTPGSSDPLIQPBSPA＾CPEPPSSPKYVSSVISRTGSSGAKEMKLKGADGKTKIAIPRGAAP

PGQKGQANATRIPAKTPPAFKTPPSSGEPPKSGDESGYSSPGSPGTPGSRSRTPS LPTPPTREPKKVA VVRTPPKSPSSAKSR LQTAPVFMPD LKNVKSKIGGTENLFHQPGGGKVQITNKKLDLSNVOSKCGSKD NIKEVPGGGSVQIVEKPVDI，SKXTSKCGSLGNIHHKPGGGQVEVKSEKIJFKDRVQSKIGSIDNIT捡V PGGGHKKIETHKLTFRENAKAKTDHGAEIVYKSPVYSGDXSPRHLSNVSSTGGLDMX／DSPQLATLADE
VSASLARQGL
$>S E Q$ ID NO： 58
fclADPAAGPPPSEGEE．STvRFARKGALP，QKNVAEVKNHKF TARFFKQP TFGHHCTDFTWQPGKQCFQCQ VCGFVVHKRCHEFVXFS，GPGADKGPASDDPRSKHKFKIHTY3SPTFCDHCGS LLYGLIHQGMKCDTCM MNV HKRCVMNVP SLCGIDHTERRGR IYIQAHIDPDVL IVLVEDAKNLVPMDPNGLSDFYVKLKLIPDP KSE SKQKTETIKCSLNPEWNETFRFQLKE SDKDRRISVEIWDWDLTSRNDFMG\＆LSFGISELQKA SVD GWFKLLSQEEGEYFNVPVPPEGSEAMEELRQKFERAKISQGTC＾PEEKTTNTVSKFDNNGNRDRMRLT DFNF IMVLGKGSFGKVMLSERKGTDELYAVKILKKDVVIQDDDVEGTMVEKRVX ALPGKPPF LTQLHS CFQXMDRLYFVMEY VNGGDLMYH IQOVGRFKEPHAVFZAAEIAIGLFFLOSKGITYRDLKLDNVMLDS EGHIKIADFGMCKENIWDGVTTKXFCGTPDYIAPEIIAYQPYGKSVDW解AFGLLYEMLGGQAPEEGE DEDELFQSTMEHNVAYPKSMBKE AVAXCKGLMXKHPGKRIGCGPEGERDTKEHAFFRYTDWEKIERKE： IQPPYKPKARDKRDTSNFDKEFTRQPVEITFTDKLETMNLD DNEFAGFSYTNPEFV INV
＞SEQ ID NO： 59
MIADKDf＾KDKEKDRDRDRDREREKRDKARESENSRPRRSCTLEGGAKNYAESDHS EDEDNDNNSATA
 QA€CRSPTPALCDPPACSLPVASQPPQHL£3EAGRGPVG6KRDHLLMTiVKWYYRQSEVPDSV＂YQHLVQP RHNEWDSGRFiLVIXDPVIKNRELFISDYVDTYHAAALRGKCNISHFSDIFAAREFKARVDSFFYILGY NPETRRLNSXQGEIRVGPSHQAKLPDLQPFPSPDGDXVXQHEELVWMPGVNDCDLLMYLRAARSMAAF AGMCDGGSXEDGGVAASRDDXXLNALNXLHESGYDAGKALQRLVKKPVP KLIELCUTEDEVKEEVRGL：

50 MVGALCGCWPRLGGARP LJPLGPXVVQXSMSRS．QVALLGLSI，LLMLLLYVGLPGPPEQTSOLAGDPNV TVLAGLTPGNSP IF YREVLPLNQAHRVEVVLIHGKAF NSHTWEQLGTLQLLSQRGYRAVALELPGFGN SAP SKEA SX EAGRAA LLERA LR DLEVQNAV V VP SL SGHYA LPF LMRGHHQL HGFVP IAPXSXQNYIQ EQFWAVKTPTLILYGELDH ILARESIROLRHLPNHS Wマ／4 LRNAGHACYLHKPQDFHLVLLAFIDHLP
＞SEQ ID NO：61
MPA TARDGGQLPI，LVVF SAMIFGXITNQDLPVIKCVLINHKNNDS SVGK SSSYPMV SE SPED LGCA LR PQSSGIVYEAAAYEVDZSAS IX LQYLVDAPGN ISC L币YFKHSSLNCQP HFDLQURGVVSMVILKMXEX QAGEYLLFIQSEAXNYXILFXVSlRNTLLYXLRRPYERKMENQDALvCISESVPEPIVEWVLCDSQGE SCKPESPAVVKKEEKVLHELFGTDIRCCARNELGRECTRLFTIDLNOTPQTTLPQLFIKVGEPTWIRC RQYGKNFFRIRKELLPNEEXGELITFYYYWKKTPEAA SSRAHRRHRRQAVFRR IKTRTASTPVNTPSR PPSSEFLDLSSASEDDFDSED SEQEIKGYACRHCFTTTSKDWHFGGRENILLCTDCRIHFKKYGEIPP IEKPVDPPPFMFI \PYKEEDDGLSGKHSMRXRRSRGSMSXLRSGRKJ＜QPASPDGRXSP INEDIRSSGRN．
SPSAASTS SND SKAETVKKSAKKVKEEA SSPLK SNKRQRETVASDTEEADRTSSKKTKTQEISRPNSP SEGEGESSD $3 / 4 S V I \wedge D E G . S S D P-K D I D Q D N R S T: S P \quad S T P S P Q D N E S D S D S S A Q Q Q M L Q A Q P P A L Q A P T G V T$ PPHPSPHPPLQPLTGSAGQPSAPSHAQPPLH GQGPPGP－HS．LQAGPLLQHPGPPQPFGLPPQAS QGQAP LGTSPftftAYPHXSLQLPASQ；SALQSQ：QPPREQP LPPAPLAMFHIKPPPXIPIPQLPAPQAHKHPPHLS GP SPFSMNANLPPPPALKPLSSiLSXHHPPSAHPPPLQLMPQSQPLPSSPAQPPGLXQSQNLPPPPASK
PPTGLHQVAPQPPEAQHPFVPGGPPETTPPTCPSTSTPPAGPGTSAQPPCSGaAASGGSI\＆GGS SCPL P TVQIKEEA IDDAE EPESPPPPPRSP SPEPTVV DTP SHA SQSARFYKFIDRGYNSCARTDLYFMPLAG SKLAKKREEA IEKAKREAEQKAREEREREKEKEKEREREREREREAERAAKA 8SSAHEGRLSDPQISG PGHMRPSFE PPPTTIAAVPPY IGPDXPALRTLSEYAREHVMSPTNRNHPFYMELNPXDPLLAYHMPGL YNVDPTIRERFIREREIREREIREREIRERMKPGFEVKPPELDP LHPAANPMEHFARHSALTIPPTAG PHPFASFHP GLNPLERERLALAGPQLRPENSXPDR LAAER IHAERMASLTSDPLARLQMFNV TP HHHQ HSHIHSHLHLHQQPPLHQGSAGPVHPLVDPLTAGPFILARFPYPPGTLPNPLLGQPPHEHEMLRFLPVFG
TPYPRDLPGATPPPMSAA HOLQAMHAOSAE LQRLAMEQQWLHGHP HMHGGHLPSQEDYYSRIKKEGDK QL
＞SEQ ID NO：60 KAVHVNHGFGLTWELENKALEEGNYFEMSTYSTMRTMIRTLFAEVBSVARNDTGYYTCSSSKHRSQSA LVTIVEKGFINA TNS SEDYET DQYEEFCFSVRFKAYPQTRCTWTF SRKSFPGEQKGIDNGYGIS KFCN

HKHQP GEYTFH³ENDD3/4QFTKMETLNTRRKPQVLAEASASOASCESDGYPLPSWTUKKCSDKSPNCTE: EITEGVWNRKANRKVEGQWVSSSTLNM. SEATKGF LVKC CAYN SLGTSGETIXINSPGP FPPTQDNIsF YAXIGVCLLFIYVLXLLICHKYKKQFRYE.SQL^^^ ${ }^{\text {N }}$ NQUGGSDNEYEYVDFREYEYDLKWEPFRENLEE GKVLGSGAFGKVMNAIAYGI.... SKTGVSIQVA^KMLKEKADSSEREALMSELKMMIQX, GSHENIVNLLGA
>SEQ ID NO: 65
MILQQPLQRGPQGGA QRLPRAALG VTWGLDAS; SPLRGAVPM STKRRLEEE QEPLRKQF LSEENMATHF SQLSLHNDHPYC-SPPMIFSPALPPLRSPCSELLLWRYPGSLIPEALRLLRLGDIPSPPYPAIPAGDIM EL
CT.LSGPI YLIFEYCCYGDLLNYLRSKREKFHRTWT EIEKEHNFSFYPTFQSHPNSSMPGSREVXIHPD SDQISGLHGNSFHSEDEIEYENQKRLEEEEDLNVLTFEDLLCFAYQVAKGMEFLEFKSCVHRDLAARN VLVT.HGKVVKIC:DFGLA³/4:DIMSDSNYVVRGNARLEVKMAPESLFEGIYTI:KSDWSYGILLWEXFSL G'VTSPYPGIPYDANFYKLIQNGFKMDQPFYA TEEIYITMQSCZAEDSRKRPSEPNLTSELGCQLADAEE AMYQNVDGRV SECPHTYQNRRP FSREMDL GLLSPQAQVEDS
>SEQ: ID NO: 62
MTGDRGPQRLSGSSYGSISSPTSPTSPGPQQ APPRETYLEEKTPIPLTKPGTESLRKIWAPTGPGFLM SIAFLDPGNIESDLQAGAVAGFKLLW LLDATVLGLLCORLAARLGVVTGKDLGEVCHLYYPKVPRTV LWLIIELAIYGSDMQEYIGXAIAFNLLSAGRIPLWGGVLIIIVDXFFFLFLDNYGLRKLEAFFGLLII II^LTFGYEYVVARPEQGALLRGLFLPSCPGCGHPELLQAVGTVGAI IMP HNIYLHSALVKSREIDRA AEADIREAMMEIIEATIA I-SVSFITNTFMAVEGQAEYQKTNQAAFICANSSLHDYAKIEPMNNAT
 ILP XYLYAVFRDLRDLSGLNDLLN $3 / 4$ OBLLLPEAVLPILTETSMPTLNQEEANGLLNKVVTSEIMVLX CAINLYFVVSYLPSLPHPA FFGLAALIAAAYLGLSTYLVWTCCLAHGATELAHSSHHHFLYGLLEEDQ KGEXSG
\triangle SEQ ID NO:63
MSLQEMFRFPMGLLIGSVLLY/4 Sस्APALEPPGCSNKEQQVTVSHTYKIDVEKSALVQVDADPQPLSDD GASLLALGEAREEQNI XFRHNLRDQXPQKDCELAGSVQDLLARVKKLEPEMVEMKEQCSAORCCOGYT NCSGHGECVRG ' X 3 / CHEDFM8EDCSEKRCPGDC: SGHGFC^ TGECYCEEGETGLDCAOVVTPQGLOLEK NIEDSLLVSWEPSSQVDHYLLSYYFLGKELSGKQIQVPKEQHSYEILGLLPGTKYIVXLRNVKNEVSS SPQHLLAXXDLAVLGXAWYTDEXENSLDVEwENPSTEYDYYKLRYGPMXGQEVAEVXVPKSSDPKSRY DITGLHPGTEYKIXVVPHRGEDEGKP ILLNGRTEIDSPXNWTDRV TEDTATVSWDEVQAVILKYVVP: YTSADGDTKEMAVHKDESSTVLTGLKPGEAYKVYVWAERGNQGSKKADTN ALTETDSPANLVTDRVTE: NTATISWDPV^ATIDKYVVRYTSADDQETREVL^^ 期EQSTVLTGLRPGVEYTVHVWAQKGDRESKKA DTNAPXDIOSPKNLVXDRVXENMATVSWDPVQAAIDKYWRYISAGGETREYPVGK EQSSTVLTGLRP: GMEYMVHVWAQKGDQESKKADXKAQIDID^ EQNLVTDRYTENMATVSWDPVFATIDPYVYKYTSAKDG EXREypyGKEQSSTyLXGLRPGyEYXyHWAQKGAQESK GADTKAQTDIDSPQNLVTDWVTENTATVS IDGPKNLVIDWVIENMAIVSWDPYQAIIDKYMVRYISADGEIREV^ VGKEHSSTVLTGLRPGVEYMVE yWAQKGAQESKKADTKAQTEXDPPRNLRPSAyTQSGGILXWIPPSAQIHGYILIYQFPDGTYKEMQLG REDQRFALQGLEQGAXYPySLyAFKGGRRSRNVSTTLSXYGARFPHPSDCSaVQQNSNAȦGLYXXYL HGDA SRPLQVYCDMETDGGG3/4VFQRRNTGQLDFFKRWRSYV³/4FGDPMKEFWLG IDKLANLTTGTPA ALTHHGGW YKNCHXANP NGRYGEXKHSEGVNWEPWEGHEFSIPYYELKIRPHGYSREPVLGRKKRTL, RGRXRXF
>SEQ: ID NO: 64
MAALIRDPQFQKLQQWYREHRSELNLRRLFDANKDRFNHFSLI^ MNTMGHITVDYSKNLVTEDVMRML, VD LAKSRGVEAARERMFNGEKINYIEGRAyLHVALRNRSNXPIIA'DGK^^ VMPEDIJYIDEMKSECQRV RSGDWKGYIGKXIIDYiNIGIGGSDLGPLMyiEALKPYSSGGPRyWYVSNIDGIHIAKXLAQLNPESS
 RYSLWSAIGLSIALHVGF DNFE QLLSGAH WMDQ HF RXTP LEKNAEVLLALLGIWYINC.FGCEX HAML P
LXNFIKQQREARVQ
>SEQ ID NO:66

MTLLP GDNSDYDY SALSCTSDASEHPAPLFQRQATKGAFYRRAQRLRPQDEPRQGOQPEDRRRRITIN VGGIKY SLPWTTLDEEPITRLGOLKACTNFDDTLNVCDDYDVTCNEFEFDRNPGAFGTILTFLRAGKL RLLREMCAiSFQEELLYWGIAEDHLDGCCKRRYLQKIEEFAEMy^ REEEDDALDSEGEDSEGEREGEG RLGRC YRR HRDMVERFHSGZPGEVEACLSV LFVTYTBVNLSVSTLESLEEEEEQGHOSQMCHNVEIVE
$10>S F Q$ ID NO: 67
MS 8SKKVTLSVLSEE QSEGVGARTRRSIGEP ELKN LDPF LLFDEFKGGRP GGFP DHP HRGFE TVSYLL EG GSMA EDFGGHTGKMTP GDLQWMIAGRGTZHAENPCSEEPAHGUQLWVNLRSSEKMVEPQYQEJKS EEIPKPSKDGyTVAVISGEALGIKSKWIRTPTLYLDFKLDPGAKHSQPIPKGWTSFIYTISGDVYIG PDLMQQKIEPHHTAYLGEGDSVQVENKDPKRSHFVLIAGEPLREPVIQHGPFVMNTNEEISQA ITDFR
>SEQ ID NO: 72
MSAESGPGIRLRNLPVMGDGLETSQMSTIQAQAQPQPANAASTNPPPPETSNPNKPKRQTNQLQYLLR WLKTLWKHQFAWPFQQPVDAVKLNLPDYYKIIKTPMDMGTIKKRLENNYY $3 / 4 N A Q E C I Q D F N I M F I N C$ YIYNKPGDDIVLt feEALEKLFLQKINBLPTEETEIMIVQAKGRGRGRKETGTAKPGYS

TVPNTTQAST SVCVGWFSLEFLIRLIQLFSKE世FLRSPLTLIDLVAILPYYITLLVDGAAAGRREPGAGNSYLDKVGL. VLRVIRALRILYVP/4R-LARHSL.GLQTL3/4LTARRCTREFG.LLLLFLCVA.IALFAPLLYVIE-NEMA.DSPEF TSIPACYWWAVTTHTTVGYGDMTERSTPGQVVALSSTLSGTLTMAEPVTSIEHTFSRSYLELKQEQER VMFRRAQFLT K т KSQLSy 8QDSDILFGS.ASSDTRDNN

NAKNGFERAKT WK SKIGN
>SEQ ID NO: 68
MSLQWIAVATFLYAEWVVLLLGIPFIS:PKRWQKIFKSRLV ELLVSYGNTEFVVLIVILVLLVIDZVR E IR KYD UY TEKVNLQNNEGAMEEFHMKLFRA QRNLYIRGFSLLLSELLRRLUTLSQQATLLASNEAE KKQAESASEAAKKYMEENDQLKKGAAVDGGKLDVGNAEVKLEEENRSLKADL

QKLKDEIASTKQKLEK
AENQVLAMRKQSEGLTKFYDRLIEEHAKLQAAVDGPMDKKEE
>SEQ ID NO: 69
MDEEEDNLSLLTALLEENESALDCNGEENNFLTRENGEPDAFPELFDADGDGES*TEEADDGETGE TR DEKENLATLFGDMEDLIDEEEVPASQSXBNPA \quad LPAPAPRREK^ EELOEETENLQEOMKALQEQLKVT TIKQTA£3PAT!.LQKSPVEKSPRPPLKERRVQRIQESTCFSAELDVPALPRTKRVARTPI5ASPPDPKSSS SRMI SAPSQPLQTIS RNKP SGITRGQ.IVGIPGSSGETIQPI CVEAF SGLRLRRPRVS STEMNKKMT GR: KLIRLSQIKEKMAREKLEEIDSVIFGVILKKVTPQSVNSGKTFSIWKLNDLRDLIQCVSLFLFGEVHK AJWKTEXGTVVGILEANEMKPKDGSEAVCLSIDHP QKVTTMGEALDLGTCKAKKKNGEPCTQTVNLRD CEYCQYH¥QAQYKKLSAKRADLQSTFSGGRIPKKFARRGTS:LKERLCQDGFYYGGV SSASYZASTAAA VAPKKKIQTTLSN LV ${ }^{3 / 4}$ GTNLI IQETRQKLGIPQKSL 8CSEEFRELMDLPTQGARMLKQHLAKATASG IMGSPKPAIKSISASALLKQQKQRMLEMRRRKSEEIQKRFLQSSSEVESPAVPSS:SRQPPAQPPRIGS EFPRLEGAPATMTPKLGRGyLEGDDVLFYDESPPPRPKLSALAEAKKLAAITKLRAKGQVLTKTNPNS IKKKQKDPQLTLEVKERVE KNTMF SSQAEDELEPARKKRPSQLAYTESEEFQKTLKAKSKATGTLKEA PCGNRS ISLDRLPNRHC SNGGLYKWERDGNLKEKTGPKIGGE TLLPRGEE HAKF LNSLK

SEEQ ID NO: 70
MKDTDELIKYYE LHETIGTGGFAK $3 / 4$ LACHTLTGEMVATKIMDKJTLGSDLPRIKTEIEALKNLRHQH ICQLYHVLEIANKIF >WLEYepGGELFDYIISQDRLSEEETRVVFRQIVSAVAYVHS DGYAHRDLKPE N LLFDE YHKLKL IDF G LCAKPK GNKDYHLQTC CGSLAYAAPE LIQGKSYLGSEADVWSMG LIYV LMC GFLPFDDDNVMALYKKIMRGKYDVPKWLSPaSILLLQQMLQVDPKKRISMKNLLNHPWIMQDYNYPyE WQSKNP FJHLDDDCVTE LSVFHR NNRXTMEDLISLWQYDELTATYLLLLAKKARGEPVRLRLSSFSCG ФASATEFTDIKSNNWSLEDVTASDKIYVAGLIDYDWCEDDLSTGAATPRTSQFTKYWTESNGVESKSL TPALCRTPMIKLKNKENVYTPKSAVKNEEYFMFPEPKTPYNKNQHKREIL TTPNRYTTPSKARNOCLK ETPIKIPVNSTGTDHLMrGVISPERRCRSVELDLNQA HNEFTPKRKGAKVFGSLERGIDKVITVLTRS
KRKGSARDGPRRLKLHYNVTTrRLWFDQLLbJEIMSILPKKHVDFVQKGYTLKCQTQSDFGKVTMQFE LEVCQLQKPDVVG IRRQRL KGD AWVYKRL VEDILSS.CKV
$\Rightarrow S E Q$ ID NO:T1
MAAAAATKILLCLPLLLLLSGWSRAGRADPHSLCYDITVIPKFRPGPRW EAVQGQVDEKTPLHYDCGN KTVTPVSP LGKKLSVTTAWKAQNPVIREYVDILTEQLRDIQLENYTPKEPLTLQARMSCEQKAEGHSS G SWOE SFDGQIFLLFD SE KRMWTTVHP GAR EMEE KWENDEVVAMSF HYF SMGDCIGWLEDF LMGMD \&T LEPSAGAPLAMSSGTTQLRATATTLILCCLLIILPEFILPGI PPQTQTPi2PNPPPVQATPHPFPAVTPDLIVQTPyMIVVPPQPLQTPPPVPPQPQPPPAPAPQ PVQSHP EIIAATPQPVKTKKGVKRK ADTTTETTIDPI. HEPPSLPPEPKTTKLGQRRES SEPUKPPKKDVPDSQQ

HPAPEKS SKVSEQLECGSGTLKEMFAKEHA AYAWPEYKPVDVEALGLEDYCDIJKHEMDMBTIKSKLE: AREYRFA QEFGADVFLMESNC ${ }^{3 / 4}$ INPFDHEVVAMARELQDVEEMRFAKMPDEPEEPVVAVSSFAVPPP TKVVAPP SSSDSSSDSSSDSDSSTDDSEEERAQRIAELQEQLKAVHEQLAALSQPQQNKPEKKEKDKK EKKKEKHKREEEVEENEKSKAKEPPPKKTKKNNSSNSNVQEKEPAEMESKPDPTYESEEEDKCKPMSY EEKRQLGLDINKLPGEKLGRVVHITQSREPSLKNBNPDETETDEETLKPSTTRELERYXTSCLREKEK PQAEKVDWTAGSSKMFGESSSESESSSESSSSDSEDSETEMAPKSKKRGHFGREOKKHHHHHHOOMOQ AFAPVPQQPPPPPQQPPFPRPPQQQQQPPPPFPPESMPQOARFAMKSSPPPEIATQVPVLEPQLFGSV FDPlGHFTQPxläHLPQPELPPHLPQPPEaSTPPHLNQHAVVSPPALHNALPQQPSRPSHRAAALPPKP ARPPAVSPALTQTP LLP $Q P M A Q P P Q W L E D E E P P A P P L T S M Q M Q L Y L Q Q L Q K V Q P E T E L L P S V K Y Q S$
10 QPPPPLFPPPHP SVQQQL $3 / 4 P P P E P P P Q P Q P E P Q Q Q H Q P P R R E T H L Q P M Q E S T H T Q Q P P P P Q Q Q Q P E ~$ HPPPGQOPPPPQPAKPQ QWTQHHESERHHKSDEYSTGHLREAPSETMIHSPQMSQEQSLTHQSPEQQN VQPKKQETRAASVVOPQPIVVVKEEKIHSPITRSEPESPETRPEEPKHPESIKRPVHIPQRPEMKPVD VGRPVIRPPEGNAPPPGAPDRDKQKG^ PKTEVAPKKDLKIENMGSVASLVQKHPTTPSSTAKSSSDSE: EQFRRAAREKEEREKALKAQAEHAEKEKERLRgEPImSREDE DALEQARPAHEDARPRQEQQQQQRQE QQQQQQQQAAAVAAAATPQAQS $3 / 4 P Q S M T D Q Q R E L A R K R E Q E R R R E A M A A T I D M N F Q S D L S I F E E N$ LF
>SEQ: ID NO: 73
ICAERLGQFMTLALVLAT FDPARGTDATNFFEGP QDRSSQQKGRLSLQNTAEIQHCLVNAGDVGCGVF

40 MAMDSSLQARLFEGLAIKIQRSNGITH3ANVRTVNLEESCVSVEWAEGGATKGKETDFDDVAA INPEL LQLLPLHPKDNLPLQENVT IQKOKRPSVNSKIPAPKEGLRSRSTRMSTVSELRITAQENDMEVELPAA AN SRKQF SVPPAPTRPS CPAVAE IPLRMV SEEME EQVH.STRGSS SANPVNS VRRKSC LVKEVEKMKNK REEKKA QNSEMRMKRAQEYDSSF PNGEFARM IKEFRA TLECHP LTNTDP IEEHR ICVCVRKRP LIKGE LARKEIDVI SIPSECLLLVEEP KLKVDITFGLE NQAF GFDFAFDETASNEVVYRFTAEFLVOTIFEGG NATCFAYGOTGSGKTHTMGGDLSG KGONASKGIYAMESRDVELTKNQPCYRKIGLEVYYTEEETYNGK LF DI, INKKSKLRVIEDGKQQVQVVGLQE HLVN ORDDVIKMIDMGSACRTS GQTFANSNSSRSHECFQI ILRAKGRMHGKFSL \backslash. $3 / 4$ LAGNERGADTSSADRQTRMEGAEINKSLLALKECIRALGQNKAHTPFRESKL
TQVLRDSEIGEN SRTCMI ATI SPGISSCEY TLNTLRYADRVKE L 3PHSGPSGEQ LIQMETEEME ACSN GA LIPGULS KE EETSS QMS SEMEAMTQTRETEREAMEETKEITQQGPDTLELSEMTEQPDYDIETEV
NKAESALAQQAKHFSALRDVIKALRLAMQLEEQASRQISSKKRPQ
>SEQ ID NO: 76
セPS SLLGSAMPASXSAAATQEALENA GRLXDRQLQEDRMYPDESE LLMV SAP NISP TV SGMSDMDYP LQ GP GII SV PNLPE ISS IRR VPIPPE LVE QFGHMOCNCMMGVFPFISRAXLTIDSDIEMWNYEDGGDLAY
F LG IISEIIIAVGLTIPRKAGIFQPHVRHIILVIATPVDIVILGLSYANIQTGSGVLNDSLSGGMQLEPDP: LYSLP IDNXYLIIIXSXDNGRIFLAGKD CLYEVAYQAEAGWF SQRCRKINHSKSSLSFLVPSLLQEX FSEDDP ILQIAIDNSRNrLYTRSEKGVTQVYDLGQDGQGMSRVASVSQNAIVSAAGNIARTIDRSVFK PIVQIAVIENSESLDCQLLAVTHAGVRLYFSTCPFRQPXARPMTLTLVHVRLPPGFSASSTVEKPSKV HRALYSKGILLMAASENEDNDILWCVNHDTFPFOKPMHETQMrAGVDGHSWALSA " IDELKVTKTTTPL
60 NKDHIPITDSPVVVDOHMLPPKKFVILSAQGSLMF HKLRPVDQ,RHLIVSMVGGDGEEIEREEKLHQE DOACATCLILACSTAACDREVSAWATRAFFRYGGEAQimFPTTLPPPSNVGPILGSPVYSSSPVPSGS

P YPNP SFLGTP SHGIQPEAMSTPVCALGNPATQAINMSCVXGPEI VYSGKHNGICIYFSRaMGNIWPA SLVVERIFKSIGNREIIAIESSVPCQLLESVLQEL^ LQEFLDRNSQFAGGFLGNPNTTAKVOQRIIGF MPPENGNPQQMQQEIQRKEHBAQLSEKISLQAIQQLVRKSTQALALKKLLCEHOFTIIVAELQKELQE QLKITTEKDLYIRDKELTGALIASLIMCYIRDNAAYDOISLHLODICELLYSTBDAICSKANELLQES

60 MGIQGL LQFTKEASFP IHVRKYKGQVVAVP XYCWLHKGA IACAEKLAKGEPTPRYVGECMKFVNMLLS HG IKPILVFPGC XLPSKKEVERSRRE RRQANLLKGKQLL.REGKVßEAREC FTR SIN 1 THAMAHKVI KA

ARSOGVDCIVAPYEADAQLAYLNKAGTVQEITTEDSDLIAEGCKKVILKMDQFGNGIETDOARTGMCR QLGDVFTEEWPRYMCXL3/4 CDYLSGLPGTGLAKACKVLRLANNPDTVKYIKKIGHYLRMNT TVEEDYT NGFIR ANNTF LYQLVEDPIKRKLIPLNAYEDDVDPETLSYFGQYVDDSIALQTALGNKDINTFEQIDD YNP DTAMPAHSKS H SWDDKTGQKSANYS SIWHRNY SP REESGTVSDAPQLKENESTVGVERVISTKGL NLPRKSSI VERPRSAELSEDDILSQYSLSFTKKTKKNSSEGNKSLSESEVFVPDLVNGETNKKSVSTP PRTRNKFATELQRKNEESGAVNT GTRSRFFCSSDSTDC¥SNKVSIQPLDETAVTDKENNLHESEYGD @EGKRLVDTDVARNSSDDTP WHAPGDHIPDEATVETDEFSYSFEGSKETRTTSPFTLGTLRSCESWS GGLGDFSRTPSPSPBTALQQFRRKSDSPTSLPENNMSDVSQLKSEESSDDESHPLREEACSSQSQESG EFSLQSSNA SKLSQCSSKDSDSEE GDCNLKLLDSQSDQTSKLRL SHFSKKD TP LRNKVP GLYKS SSAD VRDNIQL.TPEAEED IFNKPECGRVQRAIFO.
>SEQ IO INO:83
MAVNVY STSVTSDNLSRHDHLAWINESLQLNLIKIEQLCSGAAYCQFMDMLFPG SIALKKVKFQAKLE HEYIQNF KILQA GEKRMGVDKIIPVDKIVKGKEQDNEEFVQNFKKFFDANYDGKDIDPVAARQGOETA VAP SIVAPALNKPKEPLTSSSAAPQEP ISTQPTAAAPKAGPGVVRKNPGVGNGDDEAAE TMQQVNVLK LTVEDLEKERDFYEGKLRNI.ELI CQENEGEWDPVL/QRIVDILYATDEGFVIPDEGGP.Q EEQEEY
>SEQ. ID MO:84
MEPAPARS PRP QQDPARPQEPTMPPP EXP SEGRQP SPSPSPTERAPASEEE FQFLRC QQCQAEAKGPK LLPCLHTLCSGCLF^SGMQCPICQAPWPLGADTPALDNWFESL

QRRLSVYROIVDAQAVCTRCKESA DFWCF ECE QLLCAKCFEAHQWF LKHEARPLAELPNQSVREFLDGTRKTNNIFCSNPNHRTPTLTSIYC RGCSKPLCCSCZLLDSSHSELKCDISAEIQQRQEELDAMTQALQEQDSAFGAVHAQMHAAB/ QLGRAR AETEELI RERVRQWAHVRAQERELLE,AVDARYQRDYEEMASRLGRLDAV LQRIRTGSALMQRMKCYA

TPRDP IDVDLPEEAERVKAQVQALGLAEAQPMAVVQSVPGAHPVPVYAFSIKGPSYGEDVSNTTXAQK RKC SQTQCPRKV IKME SEEGKEARL ARSSPEQPRP STSKAYSPPHL DGPP SPRSPVIGSEVFLFNSNH VAS GAGEAEE RVVVISSSEDS DAENSSSREL DDSSSESS DLQ.LE GPSTLRVLDE NLADEQAEDRPLVF FDLKIDNETQ;ElSQLAAWRESKER3/4VIQPEAFFSiY SKAYSLEVGLQEELSFLSSMRRPILACKKLW GPGLPNFFRALEDTNRLWEFQEAISGFLAALPLIRERVPGASSFKLKSXAQ TYLARVMGERSAMAAVL. AMRriLCRLLEA'SPGPi2LAQHVYPFSSLQCFASLQPLVQAA ' $\%$ PRAEARLLALHNV \backslash SFMELLSAHRRDR QGGLKKYSRyLSLGTTTLPPAQPAFNLQALGTYFEGLLEGP ALARAEGVSTPLAGRGLAERASQQS
>SEQ: ID NO: 85
MEA SPA SG PRHLMDP H IF TSNF NNG IGRHKTYLCYEVERLDNGT SVKMDQHRGF LHNOAKNLLCGFYG RHAELRFLD LVPGLOLDPAQIYRVTWFISWSPCF S3/4GCAGEVRA F LQENTHVRLRIFAARIXDYDPLX KEALQMLRDAGAQYS IMTYDEFKHCWDTFVDHQGCPFQPWDGLDEHSQALSGRLRAILQNQGN

$$
>S E Q \quad \text { ID NO: } 86
$$

40 MPHSSDSSDSSFSRS PPPGKQDSSDDVRRVQRREKNRTAAQKS RQRQTQKADTL HLESEDLEEQNAAL RKETKQLTEELKYFTSVINSHEPLCSVLAASTPSPPEVVYSAHAFHOP HVSSPRFQP
>SEQ ID NO; 87
MLELLLPLLAVLPGDGNAPGLKEP LSEHVTWIESFYNHSWKOMLVSGWLSDTOTHTWDSNSSTIVELC
PWSR^FSNEEWKELEXLFRIRTIRSFE^IRRYJffiELQFEYPFEIQVTGGCELIISGKVSGSFLQLAYQ
GSDFVSFQNNSWLPYPVAGNMAKHFCKVL^ IQHENDITHMLLSDTCPRFILGLLDAGKAHLQROVKP EAWLSHGP SPGPGHLQLVCHVSGFYPKPVW^MWMRGEQEQQGIQRGDILPSADGTWYLRATLEVAAGE AADLSCRVKHSSLEGQDIVLYWEHHSSVGFIILAVIVPLLLLIGLALWFRKRCFC
$\Rightarrow S E Q$ ID NO: 88
MLLLPFGJLLAVLFPGGNSEHAFQGPISFHVIQTSSFTNS^ ${ }^{\wedge}$ WTQGSGWLDDLQIHGWDSDSGTAIFL KPWSKGNFSDKEVAELEEIFRVYIFGFAREVQDFAGDFQMKYPFEIQGIAGGELHGGGAIVSFLRGAL GGLDF LSVKNAS CVPSPEGGSRAQKF GAL IIQYQGIMETVRILLYETCPRYLLGVLNAGKADL QR.QVK: YEAWLSSGPSP GP GRLQLVCHV SGF YP KPVWFMWMRGEQEQQGTQIGDILFNANWTWYLRATLDVADG EAAGL SCRVKH SSLEGQD I 1LYWRNPTSIGSIVLAI IVPSLLLLLCLALWYMRRRS YQN IP
>SEQ: ID NO: 89
MLFLQFLLLALLLPGGDNADASQEHVSFHVIQIFSFVNQSWARGQGSGWLDELQIHGWDSESGrilFL HlWSK. GNFSNEELSDLELLFR^YLFGLTREjQDHA\&QDYSKY'PFEYQVKAGCE LHSGKSPEGFFQ\3/4F NGLDLLSF QNTTVVP SPGCGSLAQSVGHLTNHQYEGVTETVYNLIRETCPRELLGLLDAGKMYVHRQV

RPEAWLSSRPSLGSGQLLLVCHASGFYPKPVWUTWMPNEQEOLGTKHGDTLPNADGTWYGQVILEVAS EEPAGLSCRVM SSLGGQDIILYWGHHFSMNWTALVVTVPLVTLIVLVLWEKEHCSYODTL
>SEQ ID NO: 90

MLLLFLIFEGLCCP GENTAAPQftLQSYHLAAEEQLSFRMLQTSSFANHSWAHSEGS.GWLGDLQTHGWD
 FLNMAYOGSDF.LSE QGI SWEP SPGAGTRAQNICRVLNRYLDIKEIJQSILGGTCPRFLAGLMEAGE SE LKRKVKPEAKL§CGPSPGPGRLQLVCHVSGFYPKPVWVMWMRGEQEQRGTQRGDVLPNADEIWYLRAT LDVAAGEAAGLSCRVKK§SLGGHDIITHWGGYSIFLILICLTVIYTLYILVVDSRLKKQSSNKNILS PHTPSPVTLMGANTQDTKNSRHQFCLAQ VSWTKNRVLKKKWKTLMOLW
>SEQ: ID NO: 91
MG SNL SP E LCLMPF ILGLLSGGVTITPWSIARPQGSCS:LEGVEIKGGSFRLLQEGQALEYVGP SGFYP YPVQTRTCRSTGSVSTLKTQDQKTVR $\because A E C R A T H C P R P H D F E N G E Y W P R S P Y Y V S D E T ~ S F ~ H C Y D G Y T ~$ LRGSANRTCQVNGRWSGQTAICDNGAQYCSWPGTP IGTRKVGSQYRLEDSVTYBC\&RGLTLRGSQRRT CQEGGSNSGTEPSC.QDSFMYD IPQEVAEAF LSSLTETIEGVDAEDG.HGPGE QQKRFIVLDPSGSMMIY LVLDGSDST GA SNFTGAKKCLVNLJEKVASYGVKERYGFVTYATYPKIWVKVSEADSSNADNVTKQLN EINYEDHKLKSGTNTKKALQAVYSmSWPDDVPPEGWNRTRHYilLMTDGLHNMGGDPITVIDEIRDL LYIGKDRKNFREDYLDVYVFGVGPL VNQVNINALASKKDNEQHVFKyKDMENLEDVF YQMI DESQSLS LCGMVWE. HRKGTDYHKQPWQA.KIS VIPPSKGHESCMGAVVSEYEYITAAHCETVDDKEHSTKVSVGGE: KRDLETEWLFHPNYNIMGKKEAGIPEFYDYDVALIKLKKiKLKYGQTIRPICI , PCTEGTTRAIRIPPT TTCQQQI<EELLPAQDIKALFVSEEEKKLTRKEVYIKNGDKKG.SG.ERDA/ jYAPGYDKVK.DISEWTPRF LCTGGVSPYADPNICRGDSGGPLIVHKRSRFIQVGVISWGVVDVCKNQERQKQVPAHAilDFHTNLFQV LPWLKEKLQDEDLGFL
>SEQ: ID NO: 92
MEGISIYTSDNYTEEMGSGDYDSMKEPCFREENANFNRIFLPTIYSIIF LTGIVGNGLVILVMGYQKK LRSMTDKYRLHL SVADLLEVITLPFYAVDA VANWYFGNFLCKAVHVIYTVNL YSSVLILAF" ISLDRYL A V VAT.NORPRKLLAEKVVYVGVWI PALLITIPDEIEANVSE ADDRY ICDRF YPNDLWVVVFQFQHI MVGL ILPGIVIL 3CyC1IISK SHSKGHQKRKAL KTTVILILAFFACWLP YYIGT S IOSEILLE 11 KQ GCEFENTVHKWISTTEALAFFHCCLNPILYAFLGAKFKTSAQHALTS:VSRGSSLKILSKGKRGGHS.SV STESESSSFHSS
>SEQ: ID NO: 93
35 MSEQSICQAl^SVlrn₹YDDTSKKWVP IKPGQQGF SR IN IY HNTA SN TFRVVGVKLQDQQVVINYSTVKG LKYNQATPTFHQWRDAi^QVYGLNFASKEEATTFSNAMLFALNIMNSQEGGPSSQRQVQNGP SPDEMDI
QRRQVMEQHQQQRQESLERRTSATGPILPPGHPSSAASAPVSCSGPPPPPPPPVPPPPTGATPPPPPP LPAGGAQGSSHDESSMSGLAAAIAGAKLRRVQRPEDASGGSSPSGTSKSDANRASSGGGGGGLMEEMN K LIAKRRKAASQSDKP AEKKEDESQMEDESTSESPGTSAASQPPNSSEAGRKPWERSNSVEKPVSSIL
40 SRTP 3VAKSPEAK.SPLQSQPHSRMKPAGSW DMALDAEDTDRMKOETLEEVTRELHKVKEETTDAIRQ ELSGISTT
>SEQ: ID NO: 94
WAAAAGEEEEEEEAARE SAARPAAGPALWRLPEELLLLICSYLDMRA.LGRLAQVCRWLRRFTSCDLLW RRIARASLNSGFTRLGTDLMTSVPVKERVKvSQNWRLGRCREGILLKWRCSQMPWMQLEDDSLYTSQA NFTLAYQFRPDGASLNRRPLGVFAGHDEDVCHFVLANSHIVSAGGDGKIGIHKIHSTFTVKYSAHEQE VNCVDCKGGIIVSGSRDRIAKVWP LASGRLGQCLHTIQTEDRVWSIAISFLLSSFVTGTACCGHFSPL RIWDLNSGQLMTHLGSDFPPGAGVLDVMYE SPFTLLSCGYDTYVRYWDLRTSVRKCVMEWEEPHDSTL YCLQTDGNHLLATGS SYYGVVRLWDRRQRACLHAFPLTSTP LSSPVYCLRLTTKHLYAALSYNLHVLD FQNP
>SEQ ID NO: 95
MLVMAPRTVLLLLSAALALTETWAGSHSMRyFYTSVSRPGRGEPRFISVGYVDDT^ GVREDSDAASER EEPRAPWIEQ .EGPEYWDRNTQI.YKAQAQTDRESLRNLRGYYNQSEAGS; HTLQSNIYGCDVGPDGRLLRG HDOYAYDGKDY IA LNEDIRSWTA D TSAQITQRKWEAAREAEQRRAY'LEGECVF:TVLRYLENGKDKLE RADPPKTHVTHHPTSDHEA-TLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRTFQKWAAVV WSGEEQRYTCHVQHEGLP KP LTLRWEPSSQSTVP IVGIVAGLAVLAVVVIGAVVAAVMCRRKSSGGK GGS Y SQAACSD SAQGSDVSLTA
>SEQ: ID NO:9\%

MRHLWFELIL3／4 AERWULSQVOLQESGPGLVKPSETLSITCTVSGGSTSGYYWSNTROPAGKGLEWTG RIYISGSXNYNP SLKSRVIMSVDXSK＾＾QFSLKISSVTAADTAVYYCARGRETYEDYWGQGTLVTVSSA S．TKGPSVFPLAP SSKS XSGGTAALGCLYRDYFPEPYX FSWNSGALTSQVHXFPAVLQ SSGLY SLSSVY XVF SSSDGXQIY ICNVNHKP SNIKVDKKVEPESCDKTHTCEPCPAEELLGGPSVELEPPKPKDTLMIS RTPEVTCVVVDVSHEDPEVKFNWYVnGVEV HNAKTKPREEQYNSTYRVVSVTTVLHQDWLNGKEYKCK VSNKALPAPIEKTXSKAKGOPREPQVY＇TLPP SRĐELTKNOVSLTCLVKSEYESDIAVEWE SNCXPENN YKXTPPVLDSDGSEELYSKLTVDKSRWQQQNWESCSVMHEALHNHYXE KSTSISPGK
$>S E Q$ ID MO： 97
10 MSLMVVMVCVGEELLOGAWEHEGVHRLPSLIAHPGPLVKSEETVILQCWSDVEFQHFLLHEEGKFED TIHLIGEHEDGVSKA VFSGEMMQDLAGTYKOYGSVTHSPYOLSABSDELDIVITGIYEXPGLSAOPG P IVLAGESV ILSCSSR SSYDMYGLSREGEAHERRFSAGFKMNGTEQADEPLGEATHGGTYECEGSFRD aPYEWSNSSDPLXVS¥X．GNPSNaWPSPXEPSSEXGNPRHLHVLIGISVVIILFILLLFFLLHRWCGNK KNAYYMDQEPAGNRXWREDBDEQDPQEVIYAQ LNHCVETQRKTTRFQQPPKTEPTDITVYTETPNAE P
＞SEQ ID NO： 98
MR LLAWLIFLAKWGGARAEPGKFWHIADLHLDPDYKG KKDFFOCP SAGS＠PVPDAGPWGDYLGDSP ALINSSXYAMKEIEPEPDFILWXGDDTPHyFDEKLGEAAVLEIVERLXKLIREvFPDXKy IAALGNAD FHP KNQF PA G SN I Y NQ IAELWKPWLSNES IA IFEK GAF YCEKLEGESGAGRIVVINTNLTYTSNALT ADMADPGQQFQWLEDVLTDASKAGDMYYIVGHVPPGFFEKIQNKAWFREGFNEKYL KVVRKHHKVIAG QFFGHHH ID SFRMLYDDA GYX ISA MFIXPGVIP WKTTLFGYYNGANHEFIRVEEYDRATLSLKDMYTY FHMLSQANAQGXPR＾ELEYQLXEAYGYpDASAHSMHTVLDRIAGDQSXLQRYYVYW SVSYGAGVCDEA C SMQHV CAMRQYDXDAY XXCLEA SGXTPVFQLF LLLMALLGL CXLVL
＞SEQ：ID NO： 99
MKXLARALRLCEFGRQASSRRLyAGQGCyGPRRGCCApyQYyGPRADLPPCGACIXGRIMRPDDANVA GNyHGGXIXKMIEEAGAI ISXRHCNSQHGERCYAALARVERIDFLSPMCXGEVAHySAEIXYXSKRSV
 KWRNGDxyQPVLNPEPNXVSYSQSSLIHLYGP SDCXLHGFXmGGVXMKLMDFA＇AG IVAARHCKTNIVT ASVDAINFHDKIRKGCVITISGEMTETS《 SMEIEVLVDADPVVDSSORRYRAASAEETYVSLSQEGR． SXPvPQLypEXEDERKRFEEGKGRYLQMKAKRQGHAEPQP
$>3 E Q$ ID NO： 100 ．
35 MGGDRNCGLXA GAVXGAV LAVF GGXLMPV SDLLIQKTIKKQVVLEEGTIAFKNWVKTGTEVYRQFWTF DY QNPOEY IMN S SN XQVK QRGPYXYRYRF IAKENV XQDAEDNXV SF LQENGATEEPGISVGTEADNET YLNLAyAAASHIYQWQFVQMILNSLXNKSKSSMFQVRILRELLWGYRDPFLSLVPYPVXXXYGLFYPY NNXADGyYKyFNGKDNISKVAIIDXYKGKRNLSYWESRCDMINGXDAASFPPFVEKSQyLQFFSSDIC RSI YAVFESDVNLKGI PYYRFVLPSKAFASPVENP DMYCFCTERIISKNCTSYGVIDISKCKEGRPVY
 YTVPILHLNETGXIGDE KANMFRS QVTGKTNLLGLIEMTLLSVGVYMEVAFMISYCACRSKXXK
$>S E Q$ ID NO； 101
WXVARPSVPAALPLLGELPRLLLLYLLCLPAWGpCGLPPDVPNAQPALEGRTSFPEDTVIXYKCEES
PSLSPKITCLQNLKWSTAVFFCJ＾KSCPNPGEIKNGQIOVPGGIIFGATISFSCNTGYKIFGSTSSFC． LXSGSSY゙QWSDP LPECREIYCPAPFQXDNGIIQGERDHYGYRQSVIYACNKGFIMIGEHSIYCIYNND EGEWSGPPPEeRGKoLXSKypPXyQKPXXyNyPIXEy SPXSQKXXIKXXIPNAQAXRSXPVSRXXKHF HEXXFNKGSGXXSGXXRL工SGHXCFXLXGHLGXLVXMGI，LX
＞SEQ：ID NO： 102
MDLGPLIsUCEEMIILBGGFXLAEQLFHPKALAELXKSDWERVGRP IVEALREISSAAAHSQPFAWKKK ALITIW ${ }^{3 / 4} \mathrm{KVLQP} \operatorname{HPV} T P S D T E T K W Q E$ DFFSV GMMIPTINETITFELLKSTEA SGFF IQLIMALPTTI
 SDPDACPTi＾LLAMLLRGLTOI－QSRILGPGRKCCALANLADMLTVT－ALTEDDPQEVSATVYLDKLATV ISVWNSDTQNP YHQQA LAEKVKEAERDV SLTS．LAKLPSETIFVGCEFLHHLLREWGEELQAVLRSSQG ISYDSYRLCDSLXSFSQNAXLYLNRXSLSKEDRQWSELAECVRDFLRKXSXVLKNRALEDIXASIAM AYiQQKMDRHMEVCYIFASEKKWAFSDEWVACLGSNRALFRQPDLVLRLLEXVIDYSXADRAIPESQI RQUIHLILECYAD LSLPGGNKVLAGILRSWGRKGLSERLLAYVEGFQEDLNTTFNQLTQSASEQGIAK AVASVARLVTVHEEVTVEKMCSIAVVNLGTHKELAQILTABPALREVEEQGPNSSATEMVSCLKETVW： MKFBTPKEEKQFLELLNCLHSPVKPQGIPVAALLEPDEVLKEFVLPFLRLDVEEVDLSLRIFIQ TLEA

NACREEYYLQTCSPFPL LPSLCQILDRF SKY WQLF KEKRC LSLDRKDLATHILEL.LCE IVSANAE TFS PDVWTKSLSWLHRKLEQLDWTVGLRLKSEFEGHEKCEVPATLFETCKLSEDEWTSQAHPGYGAGTGLL FWMECCOVSSGISERMLSILVVDVGNPEEVRLESKGELVZLVQMFWCSPQEWORLEQLTRRLLEKQL LHVPYSLELIQEVELLNLKPEAQELQLSVLELRTEQELCSHSGRDWLPLEGWNHVVKLLCGSLTRLLD

10 DAGNNF LOR SSIGKNRAEAMEELQEIN SDVSGSEVEESPENLLDNDESEFCAFTVVVATQLPESTS URLL ADV LWNSQ:IPLLIGRT YGLVGYHR ITIKE HPVIESHPDNALEDLRLDKFFPE.LREHEQSYDLDHM EKKDH SHTPWIVIIAKYLAQWY SETHGR IEKTYKEKEDERDLIRQGTLKNENGAPEDEENFEEAIKNV
 KLQNV YRERAKKDAAAVGNHVAKLIQS IGQAPE SI SEKE LRL LCSNSAF'LRVVRCRS LAEEYGLDTIN KBEIISSM\# PDNEIVLYLMLRAVI5KPHKQO^RYPGVSNYQVEEDIQKLKSCLTGFLi^YGLS^?KD DYVHEFCRYG^EPHTIA^FLGGAAAQEVIKIITKQFVIFNNTYI-Y-SGM-SQTSATFQL
>SEQ ID NO: 104
MLYFSLFWAARP LQRCGQLVEWHIRAQHSNAAQTQTGEANRGWTQQESLSDSDPEMWELLQREKDROC RGIELIA SENF CSRAALE ALG SCI MNEY SEGYPGKR YYGGAE VVDEIELLG QRRALEAFDLDPAQWGV W QPYSGSPANLZIVYTALTOPHDRIMGLDLPDGGHLTHG³/4 SDVKRXSATSIFFESMPYKLNPKTGLI DYNQLAL TARLFRERLIIAGTSAYARLI DYARMRE VCDEVKAHLLADMAHISGLVAAKVIPSPFKHAD IVTTTTHKTLRGARSGLIFYRKGVKYDPKTGREIPYT EEDRINEAVEPSLQGGEHNHATAZVAVALK QAGTPMFREYSLQVLKNARAMADA-LLE,RGY 's7uvs GGTDKHLVLVDLRPKGLDGARAERVLELVSITAN
40) WVKQIESKTAFQEA LDAAGDKLVXVDFSATWCGPCRMTKPFFHSLSEKYSNVIFLEVDUDDCQDVASE CEVRCMPTFQFFKKGQKVGEFSGANKEKLEATINELV
>SEQ ID NO; 107
MGGAEGKAVAAAAPTELQTKGKKGDGRRS AKDHHPGKTLPEMPAGFT STATADSRALLQAYIDGHSY
VIFSRSTCTRCTEVRRLFKSLCVPYFVLELDQTEDGRALEGTLSELAAETDLPWFVKQRKIGGHGPT
L \mathbb{I}_{4} YQEGRLQKXIKMNGPEDLPK3YDYBLIIIGGGSGGLAARKERAQYGKKVMVLDEVTPTPLGTRWG
LGGTC VNVGCIPRKLMHQAA LLGQA LQDSRNYGWIWEE TVKHDWDRMIEAVQ.NHIGSLN WG YRVALRE KKVVYENAYGQFIGPHRIRATNSKGKERIYSAERFLIATGERPRYLGIPGDKEYCISSDDLFSLPYCP GETLVVGA SYVALE CAGF LAGIGLDV TVMVRS 1 LLRGFDQDMANKIGEHMEEHGTKE IRQFVPTKVEQ PYIYAIGDILEDKVELTPVA IQAGRLLAQR LYAGS TV KCDYENVPTTVFTP LE YGA CGLSEEKAVEKE GEENIEVYHSYFWPLEWTIPSRDNNKGYAKIICNTKDmR\^/GFHVLGPNAGEVTQGFAAALKCGLTK KQLDSTiGIHPVeAEVFTTLSVTRRSGASILQAGCUG
>SEQ ID NO: 108
MDLEGDRNGGAKKENFFKLNNESEKDKKERETVSVESMERYSNWLDKLYMVVGTLAAIIHGAGLPLM MLVEGEMTDIFANAGNLEDLMSD TNRSDINDTGFFMNLEEDMTRYAYYYSGIGAGVLVAAYIQVSEN CLAAGRQiaKIRKQFFHAIMRQEIGWFDVHDVGELNTRLTDDVSRINEGIGDRIGMFFQSMATFFTGF lVGFTRGiWKLTLVILAI:SPVLGLS:AAVWAKTL3SFTDKEL LAYAKAGAVAEEVLAATRTVIAFGGQKK SV云AIQAAGPWVQGPEQDLTQE ALFVYTQVFCHALHIMAMLHPEVCEPI,YVLALETLTCYETLSETNP SVSSLLQRAHE QRF L:Ks IAEG IGPEE RRQTL LQKMS SE
>SEQ ID NO:103
MAQLGKLLKEQKYDRQLRIWGDHGQEALE SABVC LINATATGTEILKNLVLPGIGSFTIIDGNQVSGE

KN XCPG DRSA IIPGGLR LGAPA LXSRQFREDDFRRVVDF IDEGVNIGLEVKSKIAKLQDEKSFLLKDS ETSQRLANLRQRVE QFARAFPHP GFDE H
$>S E Q$ ID NO: 105
MEGP LSVFGDRSTGETIRSQNVXAAASIANTVKSSLGEVGLDEMLVDDIGDVTITNDGATTLKTLEVE HPAAKVLCELADLQDKEVGDGTTSWI IAAELLKNADELYKQKIHPTSVISGYRLACKEAVRYINENL IVNTDEIGRDGLINAZKISMSSKIIGINGDFFANW VEAVLAIKYTDIRGQPRYPVNSVNILKARGRS: QNESMLISGYA LNCVVGSQGMPKRIVNAKIAOLDFSLQKTKMKLGVQVVITDPEKIDQIRQRESDITK ERIQKIL\&TGANVILTXGGJDDMCLKYFVEAGAtiAVRRVLKRDLKRIAKASGATILST! LANLEGEETF
EAAMLGQAEE VVQERIGDDEL ILIKNTKARTSASITLRGANDFMCDEMERS LHDA.LCVVKRVLESKSV VPGGGAVEAAL SIILENYAT 5MG3RE QIA IAEFARS LIVIPNTLAVNAAODSTDLVAKLRAEHNEAQV NPERKWLKWIGLDLSNGKPRDNRQAGVFEPTIVICvKSLKFATEAA ITILRIDDLrKLHPESKD DKHGS YEDAVHSGALND
>SEQ ID ND:106 ELERYNKNLEEAKRIGIKKAI XANISIGAAFLLIYASYATAFWYGXXLVLSGEYSIGOVLXVFESVLI GAFSVGQAS ESIEAFANARGAAYE IEKIIDNKPSIDSYSKSGHRPDNIKGNLEFRNVHFSYPSRKEVR

TLKGLDLKVOSGQTVALVGNSGCGKSTTVQLMQRLYDETEGMVSVDGQDIRTIMVRELREIIGVVGQE: PVLEAT TIAENIRYGRENVTMDE TERAVKEANAYDF IMKTPHKFDTIVGERGAQLSGGQKQRIA IARA. LvRNPKILLLBEAT SALDTESEAWQmL0KARKGRTTIVrAHRLSTVRNADVIAGFDDGVIVEKGiJH DELMKEKG IYFKLVTMQTAGNE VELENA ADESKSEIDA LEMSSNDSRSSLIRKRSTRRSVRGSQAQDR

60 KLS TKEALDBSIPPVSEWR IMKLNLTEWPYFVVGVFC3/4 INGGLQPAFAIIFSKIIGVFTRIDDPETK RQNSNLFSLIFLALGIISEITFFLQGFTFGKAGEILTKRLRYMVFRSMLRQDVSNEDDEKNTTGALTT RTANDAAQVEOA IG\&RLAVIT@NXANTGTGIIISETYGWQLTLILLAIVPI IAIAGVVEMKMLSGQAI. KDKKELEGSGK IATEA IENFRTVVSLTQEQKFEHMYAQGLQVPYRNSLRKAH FFGITFSFTQAMMYES YAGCFRF GAY LVA HKLMSFEDFL LVF SATVFGAMAVGQvS>SFAPDYAKAKISAAHI TMIIEKTPLIDS YSTEGLMPNTLEGNVTFGEYVF NYPTRPDTPVLOGLSLEVKKGOTLALVGSSGCGKSTVYOLLEREYD FIAGKY LLDGKEIKRLNVQWLEABLGTVSQEPTLEDCSIAENTAYGDNSRVYSQEETVRAAREANIHA FIFSLPNKySTKyGDKGrQLSGGQKQRIAIA RALVRQEHTIJLDEATEALDTESEKVVQEALDKAREG RICIVIAFRLSTIQNADLIVYFQNGRYKEHGTHQQLLAOKGIYESMVSVQAGTKRQ
>SEQ ID NOilQ9
MARRPRHSIYSSDE DDEDFEHG DHDYDGLLPKSGKRHLGKTRWTREE DEKLKKLVEQNG TDDWWXIAN YLPNRTD3/4 CQHRWQKVLNPELIKGEWTKEEDQKVIELNQKYGPKRWSVIAKHLKGRIGKQCRERWHN HLNPEVKKTSWIE EEDRIITQAHKRLGNRWEIAKLLPGRTDNATKNHWNSTMRRKVEQEGYLQESSK A SQPAVATSFQENSHLMGFAQAPPTAQLPATGQPTVNNDYSYY3/4 ISE AQNVSSHYPYPVZLHYNIVNV PQPAAAAIQRHYDEDPEKEKRIKELE LLIMSTENELFGQOVLPTQNHTCSTPGNHSTTIADHTRPHG DSAW BOLGEHHBTPSLPADEGSLEEESASPAROMTVHQGTILDNVKNLLEEAETLQEIDSFLNTSSN HENSDLEMPSLTSTPLIGHKLTVITPFBRDQT $3 / 4$ IQKENTVERTFAIKRSILESSPRTPTPFKHZLAA QEIKYGPWiLPQIPSKLVEDLQDVIKQESDESGIVAEFQENGPPLLKKIKQEVESPIDKSGNFFCSH HWEGDSLNTQLFTQTSPVADAPNILTSSVLJ³APASEDEDNVLKAFTVPK NRSLASPLQFCSSTWEPAS CGKMEEOMTSSSQARKYVNAESARILYM
>SEQ ID NO: 110
MPRLFLFHLLEFCLLLNQFSRAVAAKWKDDVIKLCGRELVRAQIAICGMSTSiSKRSLSQEDAPQTPRP VAEIVESEINKDTE TIIIMLEEIANLPPELKAAL SERQPSLPEIQQYVPALKDSNLSFEEFKKLIRNR: QSEARDSNP SELKY LGLDTHKQKKRRP YVAL.FEKC CLIGCTKRS LAKYC
>SEQ ID NO: 111
MQRLQVNLGHLRGPAD SGWMPQASPGL.SGA PQA SAA DV'V" /VHGRRTAICRAGRGGFKDTTPPELLS.AV MTAVX KDVNLRPEQ LGD ICVGNVLQQPGAGATMAR IA QF LSDIPE TVP LSTVNRQC \& SGUQAVASIAGG. IRNGSYDXGMACGVESMSIADRGNPGNITSRIMEKEKARDCLIPMGITSENVRERFGISREKQDTFAL A SQOKAARAQSKGCFQAE IVTV TTTVHDDKGTKRSITVIQDEGIRPSTTMEGLAKLKPAEKKDGSTTA GNSSQVSDGAAAILXARRSKAEELGLPILGVLRSYAVVGVPPDIMGIGPAYAIPVALQKAGLTVSDVD IFEINEAFASQAAYCVEKLRLPPEKyNPLGGAVALGHPlGCIGARQVITLL'NELKRRGKRAYGVVSMC IGTGMGAAVEEYPGN
>SEQ ID NO: 112
MVRPMLLLSLGLLAGLLPALAACPQNGHCHSDLQHVICDKVGLQKIPKVSEKIKLLNLQRNNFPVLAA NSFRAMENLVSLHLQHCQIREVAAGAFRGLKQLIYLYLSHNDIRVLRAGAFDDLTELTYLYLDHNKYT E LPRGLLSPLVNIF ILQ LNNNKIRE LRAGAE QGA KDLRDLYLSENALSSLQEGALDDVENLAEFHVDR NQLSSYPSAAL SKLRVVEeLKLS HNP LKSIP DNAF QSF GRYLetl WLDNTNLEKF SDGAF LGVIX LKH VHLENMRLNQLP SNFPFDSJETLALTNNPWKCTCQLRGLRRWLEAKAGRPDATCASEAKEKGQHIRDT DAFRSCKFPTKRSKKAGRH
>SEQ ID NO:113
50 ME HRTPKVENVRLVDRVSPKIXALGTLYIXATHVTFVENSPDPREETRILHSOISTIEKGATTATGC. PLLIRCKNFQI IQLX IPQERDCEDVYISLIRLARPVKYEEIaY'CFSFNPMLDKEEREQGW \ILIDLSEEY TRMGLP NHY.WQLSDVNRDYRVCDS:YPIELYVPKSATA HII $3 / 4$ SSKFRSRRRFPVLSYYYKDMHASIGR SSQPLSGESARCEEDEQMIQAIRKANPGSDFVYYVDTRFELNAMANRAAGKGYENED IYSNTKFQFIG IENIH ${ }^{3} 4$ RNSIQRH LEYCELK SP SMGDELWGLENSGWL RHIKATMDAGIFTAKAVSEEGASVLVHCBD G® RTAQVGSVASLLLDPHYRTLKGF MYLIEKDWISEGHKFNHRYGNLDGDPKEISPVIDQFIECVWQ LMEQFPCAFEFNERFL IHIQHHIYSCQFGNFLCNSQKE RRELK TQERTYSLWAHLWNKRADYLNELFR ADHSQIQGILHLPXXPCNFMYKFWSGMYOD FEKGMQPRQSVTDYLMAVKEETQQLEEELEALEERLEK IQKYQLNCTKVKSKQSEPSKHSGFSTSDNSIANIPQDYSGNMKSFPSRSPSaGDEDSALILTQDNLKS SDPDLS ANSDQESGVEDLSCRSPSGGEHAP "SEDSGKRRDSDEAVFITA

MDVENEOT LNVNPADP DNLSDSLESGDEENAGTEEIKNETNGNWISASSTNEARINAKAERELRKNSS RDSGRGDSYSDSGBDALRSGLTVPTSFKGRLTDRRSRSGKGRGLEKKGGAGGKGVNGTPGQVYDVEEV D $\overline{V K}$ KPNYPPPQENGVYETVVLP LPERAFEKTLTPITQEYFEHGDTNEXPEMLRDLNLGEMKSGVPVLA VSLA LEGKA SHREMTSELLSDLCGTVM STTDVEKSEDKLLEDLPELALDTERABQLVGQEIARAVGUC IICNTYIDSYKGTVDGYQARAALDKA TV $3 / 4$ LSMSEGGKRKDSVWGSGQGQQSVNHLVEETDMLLKEYLL. SGUTSEAEHCLKELEVPHFHHELVYEAI TMVLESTGESTFKMIHDLJKSLWKSSTITVDQMKRGYERI YNEIPDINLDVPGSYSVI ERFVEECFQAGIISKCIGRDICPSRGRKRFVSEGDGGRIKEESY
>SEQ ID MO: "I 15

60 HIAHIVELLGDIEPAFALSGRYSREFFNRRGELRHIHNLKHWGLYEVLMEKYENP \&EQATQF SAFLLP MMEY IP EKRA SA ADCLQHPWLNP
>SEQ ID NO: 121
M 3 PVEKLVZKGGKKKKQVIKETLDGTHEVEDGIMDAANEEQELQERIKVNGKAGNLQGGVVTIERSKS
RITVTSEXPESKRYLRYLTKRY LKKNNLRDWLRVVANSKESYELRYEQINQDEEEEEDED

5
>SEQ: ID. NG: 122
AAGACAGAGGTCCTCTTTCCTTGCCTAATGC - AGCCATGGCTCGTGGTCCCAAGAAGCATCTGAAGCAG GTAGCAGCTCCAAAGCAITGGATGCIGAATAAATTGAeiGGTGTGTITGCTCCICATCCATCCACCAG TCCCCACAATTTGAGAGAGTGCTCCCCTCATCATTTTCCTAAGAAC AGACTTAAGTATGTCCTCA
TGGAAATGAAGTAAAGAAGAT.TTGCATGCAGCGGTTCATTAAGATCAATGGCAAGG
TCCGTAOTGAT ATAACCTACTCTGCTGGATTCATGGATGTCAACAGCATTGAGAAGTCGGGAGAGAATTTC CGTCTGAT
$>8 E Q$ ID NO: 123
15 MK LY SVALMY IGSLAFLGADTARTDVASEFRFKWNKWALSRGKRELRMSSSYPTGLADVKAGPAQTLI RPC) DMKG:ASRSPEDSSPDAARIRVKRYRQSMNNFQ GLRSFGCREGTCTVQKIAHQIYQETDKDFDNVA PRSKISPQGYGRRRRRSLPEAGPGRTLVSSKPQAHGAPAPPSGSAPHFL
>SEQ: ID MO:124
20 MAAEEEEVDSADTGERSGWLTGWLPIWCPTS ISHLKEAEEKMLRCVPCTYKKEPVRI SNGNRIWTLEF SHNTSNRTP IVLLHGFGGGIGLNALNFGDLOTNRPVYAFDLLGEGESSRPREDSDAEEVENQFVESIE EWRGALGLDKMILLGHNLGGFLAAAYSLKYPSRVNHLILVEPWGFPERPDLADQDRPIPVWIRALGAA
LTPFNPLAGLR IAGPFGLSLVQRLEPDEKRKXSS WFEDDTVTEY I³HCNVQXP SGFTAFKNMTIPYGW AKRPMIQRIGKMHPD IPVSVIF GARSCIDGNSGTSIQSIRP BSYVKTIAILGAGHYVYADOPEEFNQK VRETCDTVD
>SEQ. ID NO: 12.5
MLEELECGAPGARGAATAMDCKDRPAFPVKELIQARLPFKRLNLVPKGKADDM3DDQGTS:VQ SKSPL EASLDTTENNCHVGSDIDFRPKLI3/4GEGPLDNFLRNRIETSIGQSTVITDLTEDSNEQRDSLVDHNKL: NS EASPSREATHGOREDTGD3/4GLLKAIGNDKLAFEGETLSDIFCKTEEEGVGC $3 / 4$ GGRRGDSQECSP RSCPELTSGPRMCPRKEQDSWSEAGGILFRGKVPMVVTXIDILA $3 / 4 P P Q I K S L P A T P Q G K$ MMTEESEVL ESFPEEDSVLSHSSLSSPSSISSPEGPPAPPKQHSSTSPFPISTPLRRIIKKFVKGSIEKNRLRLQRD QERLGRQLKLRAEREEKEKLKEEAKRAKEEAREKKEEEKELKEKERREEREKDEKERAEKQRLREERR
KERQEALEAKLEEKRKKEEEKRLREEEKRTKAEKAEITRFFQKPKTPQAPKTLAGSCGKEAPEEIKEU GD GVPERRRFGRMKLLQF CENHRPAYWGTWMKKTALIRARDEWAQDTKLIDYEVDSDEEVEEEEPGES LSHSEGDDDDDMGEDEDEDDGFF V^RGYLSEDEGVTEECADPENHKVRQRLKAKEWDEFLA KGKRERV LQPVKIGCVWAADRDCAGDDLKVLQQFAACFLEILPAQEEQIPKASKRERRDEQILAQLLPLLHGNVN GSKVXIREFQEHGRRGLISNHTGSPRSPSTTYLHTPTPSEDAATPSKSRLKRLISENSVYEKKPDFRM
40 CWYVHP QVLQSF3/4EHLPVPCGNSYVTSVFSAPKEDSGSVPSTGPBOGTPTSLSRKSAGSMCTTQEMK KRRHDGQ IGAEDMDGFQADTEEEEEEEGDCMIVDVPDAAEVOAFCGAASGAGGGVGUDTGKATITSSE LGA.S
$\triangle S E Q$ ID NO: 126
45 MEMEEW RSIVGKLLKGIDRTNEENLATLERYVETQAKENAYDLEANLAVLKLTQFNEAEEQTTVTAQ ILLKALTMIPHTDFTLCKCMIDQAHQEERPIRQILYLGDLLETCHEQAFWQALDENMULLEGITGFED SVRKFICHWGIIYQHIDRWLLAEMLGDLSDSC!LKA3/MSKYGWSADESGQ:IFICSQEESIKPKNIVF:K IDFDSVOSIMASSQ

SEQ ID NO: 127
MAA SARKKNKKGKTISLTDFLAEDGG TGGGS YVSRPVS.WADETDDL.EGDVSTTMHSNDDVYRAPPI DRSILP TAPRAAREPNIDRSRLPKSPPYIAFLGNLPYDVTEESIREFFRGLNISAVRLPREPSNPERL KGFGiAEFEDI-DSLLSALSLNEESLGNRRIRVDVADQAQDKDRDDRSFGRDRNRDaDKTDTD-WRARPA TDgFDDYPPRRSDDSFGPKYRDRYDSDRYRDGYRpGYRDGPRRDidDRYGGRDRYDDRGS.RDYDRGY.DS RIGSGRRAFGSGYRRDDDYRiaGGDRYEDRYD.RRDDRSWS SRDPYSRDDYRRDDRGPPQRPKLNLKPRS TP KEDDSS ASTSQSTRAAS IFGGARP VDTAARERE VEERLQKEQEKLQRGLDEP KLERRPRERHPSSR SEETQERERSRTGSESSQTGTSTTSSRNARRRESEKSLENETLNKEEDCHSPTSKPPRPDQPLKVMPA PPPKENAWVKRSSNP^ ${ }^{\wedge}$ ARSQSSDTEQQSPTGGGGKVAPAQPSEEGPGRKDEIKVDGMNAPEGQTGNSS RGPGDGGNRDHWKESURKDGKHDQDSRSAP EPKKPEENFASKESSASKYAATSVDGEDENJEGEDYAE

MASVXLSXAEKVYIVHGVQEDLRVDGRGCEDYRCVEVEI DVVSNTSGSARVKLGHTDILVGVKAEMGT PKLEKPNEGYLEFFW OSASATPEFEGRGGDDIGTETANTLTRIFNNKSSYDLKTLGISPREHOWVLY VDVXXLECGGMIFDA ISIAVKAA LFMTRIERVRVLEDEEGGKDIELSDDPYDCIRLGVENVECIVTLC KIGYKHVVDAXLQEEACSLASLLVSVTSKGVVXCHKKVGKGSLDPESIEEMMETGKRVGKVLHASLQS WHKEESXGPKRQKVGFLG
＞SEQ ID NG：129
MIEQMITRGILKGHEGWVTQIAXXPQFPDMILSASRDKTITMAKLTRDETNYGIPQRALRGLSHFVSD V¥IS3DGQFALSGS＾DGILRLWDLIIGXIIRRFVGOT KDYLSVAESSDNROIVSGSRDKTIKLWNTLG VCE 3 TTQDESHSE《VSCW EBPDSSNP IIV SOGWDKLVKWWNLAiJCKLKTNHIGHTGYZNTVTVSPDG SLCASGGKDGQAMLWDLNEGKHLYTLDGGDTTNALCESENKYWLCAATGPSTKIWDTEGKITVDELEQ EVISTSS KAEPPQCTSLAWSAD．GQTLEAGY TDHIERVWQVTIGTR
\triangle SEQ ID NO： 130
MAA AARPRGRA LGPVLPFTP LIX LVXRVXPACGAXARDPGAAAGXSXHPXYFNXAEAARIWAXAXCGE RGPQEGRPQPELYCKLVGQPXAPGSGHTIQGQFCDYCNSEDPRRAHPVXNAIDGSERWWQSPPLSSGX QYNRVNLXLDLGQLFHVAY ILIKFANSPRPDLWVLERSVDFGSTY SPWQYFAESKVDCLKEFGREAMM AVXRDDDVLE¥XEYSRIVPLENGE¥WS，LTMGRPGARNFXFSHXLREFXKAXNIRLRFLRXNXLLGILL ISKAQRDPXVXRRYYYSIKDISIGGQCVCNGHAEVCNIMSPEKLFRCECQHHXCGEXCDRCCXGYNQR
20 RWRPAA WESHECEA CNCHGHA SNGYYDPDVERQQASLNTQGT YAGGGVCTNCQHNTAGVNCEQCARG YYRPYGVPYDEPDGCIPCSCDPEHADGCEQGSGRCHCIPNEHGDNCEKCATGYYNFPECIRTPTEPYS XPSSEDPV？，GDIKGCDCNLEGVLPEIGDAHGRCLCRPGVEGPRCDICRSGFYSFPICQACWCSALGSY QT＾CSSVXGQCEERPGVXGQRCDRCL．SGAYDFPHCQGSS．SACDPAGTI NSNLGYCQCKLHVEGPTCSR CKLTYWNLDKENDSGCSECKCHKRGTVSGTGECRQGOGDCHCKSHVGGDSCDTCEDGYEALEKSNYEG COCDIGALGSMCSGPSGVCOCEGVVGVCORPENMYFPDLHMAYEIEDGOLPNGRDLREGE DELAEPEFSWRGTAOMTSVONDVRITLNVGKS太GSTERVILRYWNPGTEZVSGHITIYPSWGAEOSKE IIFLPSKEPAFYTVPGNGFADPFSITPGITVACIKAEGVLLDYLVLDPREYYEASVLQLPVTEFCAYA GPEQEMCLLYQHLPVTREECTLACEARHELTDGEPRPVAVEOPTEAHPYMYDLSGREVELHLRLRIEQ VGHYVVYVEYSTEAAQLEVVDVNVKSSGSVLAGCVNIYSCNYSVLCESAVIDHMSRTAMEELLADADI QLFGHMARFLLRQVCTIPTEEESEEYVEDQVHCIASYGRFVNQSATCVSLARETPPTALILDVLSGRE： FPHLDOOSSPSVDVLPGVTLKAPQNQVTLRGRVPHLGEYVEVIHEYOASHPTEDAOVSVDGGEPRAGS FHABECPHNLGQRDQVIAEGQIEFDISEEEVAZTVKVEEGRSLVLVRVLVVPAENYDYQILHKKSMDK SX EFXTNCGKNSEYLDPQIA SRF GKNSARSLVAFYHKGALPCECHPTGAXGPHCSPEGGQCPCQPNVI GRQCTRCAXGHYGFPRCKPCSCGRRLCEEMTGQGRCPPRXVRPQCEVCEXHSFSFHPtiAQCEGCNCSR NVEGTEGMVCREGSFHXDPANXKGCISCFCFGVNNQCHSS．HKRRXKFVDMXGWHXEXADRVDIPVSFN PGSNSMVADLQELPAIIHSASWVAPXSYLGDKVSSYGGYXXYQAKSFGLFGDMVLLEKKPDVQLXGQH MSII YEE XNXPRPDRLHHGRVHVVEGNFRHA SSRAPVSREELMXVLSRLADVRIQGLYFXEXQRLILS E＾GXEEASDXGSGRIALAVEICACPPAYAGD＾CQGGSPGYYRDHKGLYXGRCVPCNGNGHSiSIQCQDGS GIG VN CQ HN IAGEHG ERCQEGYYGNAVHGSCKPCPCPHTNSE $T G C V N G G D V R C S C K A G Y T G T Q C E R: ~$ CAPGYFGNPQ．KFGGS＾QPGSCNSKGQLGSCHPLIGDCINQEPKD3SPAEEGDDCDS CVMTX 3 §XAIM GEQLRLVKS．QXQGLSA．SAGLLEQMRHMEIQAKDLRNQLLNYRSAISNHGSKIEGLERELXDLNQEFEX LQEKAQVNSRKAQTXNNNYNRA XQSAKEXDVK IKNV IRNVH ILXKQISGXD GEGNNVP SGDF SREWAE A QRMMREI，RNRNF GKHXREAEADKRE SQILLNRIRXTOKI HQGENNGLANSIRDSXNEYEAKLSDLRA
RXQEAAAQATIQANGXNQENERAXGA IQRQVKE IN SXQSDF XKYLXXADS SLLQXNIAX QXMEFSQKEY ЭKXAZSXNEARQEISDKVREISR3AGKXSXVEE REKHARSXQEXAKQXEEIKRNASGDE LVRCAVDAA IAYENILNAIKAAEDAANRAASASESALQI＾IKEDLPRKAKILSSHSDKLLNEAKMXQKKLKQEVSPA LNNLQQTLNIVTVQKEVIDTNXTTLRDGLHGIQRGDIDAMISSAKSMVRKANDITDEVLDGLNPIQTD VER IKDTYGRTQNEDFKKAXTDA DNSVMKLTNKLP DLWRKX ES INQQLLELGMISDMMDRIREITQQA RDAASK $3 / 4$ W MRFNGKSG画EVRXPNDLEDXKGYTS LSXF LQRPNSRENGGTED KEVMYLGMKDA SRDY IGMAVVDGQITCVYNXGDREAEXQVDQIXTKSETKEAVMDRVKFQRXYQFARXMYTKGATSSKPETPG VYD HDGRNSNTXXNXDPENVVF YVGGYPFDFKXP SRX SFEPYKGCIEXDDXNENVXSLYNFKKTFNLN． TTEVEPCRRR＾EESDKISYFEG．IGYAR¥PTQP HAPIPTFGQXIQITVDRGXLFFAENGDRFISXNIEX）G KLMVRYEX MSXIPKERGVGDAIM GEDHSIQTKIGKLQKPMWINVDVQNTITDGEVFDEETYYLGGIP IATRERFNISTPAFRGCMKNLKKXSGVVR XMDXVGVXKKCSEDEKXVRSZSESRGGQXSFXDLGXPPX DHXQASFGFQXFQPSGILXDHQXWXRNXQY XXEDGYTEXSTSDSGSP IFK SPQXYMDGLLHYVSVISD NSGLRLX IDDQLXRNSKRLKH IS：SSRQSLR LGGSNFEGCISNVFVQRLSLSPEVLDLXSNSLKRDVSX GGCSLNKPPF LML LKGSXRFNKXKXERINQLLQDXPVASB／4 SVKVWQDACSELPKTQANHGALQEGDI P ※SHXXFKLPQELTKPRSQFAVDMQXXS SRGXVFHXGXKN SF MAXYLSKGRXVFAXGXDGKKLRIKSK EKGNDGKWHXVVFGBDGEKGRL \ATDGXRAREGSLPGMSXI SIRAPVYIGSPPSGKPKS LP XNEFVGGL GTF QXDS KP LYXP S SSF GV 33C LGGP LEKGI YF SEEGGHVVLAH SVLXGPEFRLVFS IRPRSLXGILI

HIGSQFGKHL, CVYLEAGRVTASMDS^ AGGTSTSVTPKQSLCDGQWHSVAVTIKQHTIHLELDTDSSYT AGQIPFPPASTQEPLHLGGAPANLT^ RTFVNKSFPGCLRNIHVNHIPVPVTEALEVOGPVSLNGCPD 0
>SEQ ID NO:131
MAFSALLRPISRLIAPARLPSGPSVRSKEYVREPPNAKFDWLKVGETLGTTVELNIYLIKOHNEDILE YKRRNGLE
>SEQ ID MO: 132
10 MSQVQVQVQNP SAM, SGSQILNKNQSLLSOPLMSIESTTSSLP SENAGRP IQNSALPSASITST SAAA ESITPTVELNALCMKLGEKPMYKPVDPYSRMOSTYNYNMRGGAYPERYEYPEPVPPLLYQVELSVGGQ QFWGKGKTRQAAKHDAAAKALRILQNEPLPERLEUNGRESEEENLNKSEISQVFEIALKRNLPVNEEV BRESGPEHMENEVTKVSVGEFVGEGEGKSKKIGKKNAAIAVLEELKKLPPLPAVERVKERIKKKTKPI VKPQXSPEYGQGINPi SRLAQIQQAKKEKEFE YTLLTERGLPRRREFVMQyKVGNHTAEGTGrNKKVA KENA AENMLE ILGFKV PQ³/QPTKPALKSEEKTPIKKPGDGRKV TFFEP GSGDENGTSNKEDEFRMPYI. SHQpLPAGILPMVPEVAQAVGVSQGfthTKDFTP-^PNPAKATVTAMIARELLYG.GTSPTAETILKNMI SSGriVPHGPLTRPSEQLDYLSRl³GFQVEYKDFPM WKNEFVSLIN CSSOPPLISHGIGRDVESCHDM AA LNILKLLSE LDQQSTEHPRT GNGPHSVCGEC
>SF, Q ID NO: 133
MiN EHVNGNGIEEPMDTSAVIHSENFQTLLDAGLPQRVAEKLDETYVAGLXAHSDLDERATEALKEE NEDGALAVLQQFKDSMSHVQNKSAFLCGVM<TY^" QREKQGTKVADSSKGPDEAKIKALLERTGYTLD VITGQRKYGGP P PDSV YSGQQP SVGTEIFVGKJPRDLFEDELVPLFEKAGP IWDLRLM3ZDPLRGLNRG YAFVTFCTKEAAQEAVKLYNNHEIRSGKHIGVCISVANNRLFVGSIPKSKTKEQIL.EE FSKVTEGLTD VILYHQPDDKKKNRGFCFLEYEDHKTAAQARRRLMSGKVKVWGNVGTVEWADPIEDEDEEVMAKVKVL FVRNLANTVTEEI.LEKAFSQFGKLERVKKLKDYAFIHFDERDGAVKAMEEMNGKDLEGENIEIVFAKP PDQI<RKERKAQRQAAKNQMYDDY •YYYGPPHMPPPTRGRGRGGRGGYGYPPDYYGYEDYYDYYGYDYHN YRGGYEDPYYGYEDFQVGARGRGGRGARGAAPSRGRGAAPPRGRAGYSQRGGPGSARGVRGARGGAQQ QRGRGVRGARGGRGGNVGGKRKADGYNQPDSKRRQTNNQNWGSQP IAQQPLQGGDESGNYGYKSENQ:E FYQDTFGQQWK

CLAIMS

1. A.method of detenmning the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a PostTranslational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes Indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.
2. A method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple

Networks metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or eorrelates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis,
3. The method of Claim 1 or Claim 2, wherein the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one of the metagenes or are selected from a plurality of the metagenes.
4. The method of any one of the preceding claims, wherein the Carbohydrate/Li pid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene comprise one or a plurality of genes listed in Table 21.
5. A method of determining the aggressi veness of a Cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modification metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.
6. A method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of rnetagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an immune Response metagene and a Protein .Synthesis/Modification metagene, wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis.
7. The method of Claim 5 or Claim 6, wherein the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one of the rnetagenes or are selected from a plurality of the rnetagenes.
8. The method of any one of Claims 5 to 7, wherein the Metabolism metagene. the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene comprise one or more genes listed in Table 22.
9. The method of any one of Claims 5 to 8 , wherein the one or plurality of overexpressed genes and the one or plurality of underexpressed genes are from one or a plurality of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a PostTranslational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene.
10. The method of any one of the preceding claims, wherein the step of eomparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes includes comparing an average expression level of the one or plurality of overexpressed genes and/or an average expression level of the one or plurality of underexpressed genes.
11. The method of Claim 10, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed genes and the average expression level of the plurality of underexpressed genes.
12. The method of any one of Claims $1-9$, wherein the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes includes comparing the sum of expression levels of the one or plurality of overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes.
13, The method of Claim 12, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes and the sum of expression levels of the one or plurality of underexpressed genes.
14. A method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.
15. A method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes associated with chromosomal instability compared to the one or plurality of underexpressed genes associated with estrogen receptor signalling indicates or correlates with a more favourable cancer prognosis.
16. The method of Claim 15, wherein. the cancer prognosis includes determining responsiveness to anti-cancer therapies targeting aneuploid tumours.
17. The method of Claim 15, wherein the cancer prognosis includes determining responsiveness to anti-cancer therapies targeting chromosomal instability.
18. The method of any one of Claims 15 to 17, wherein the Cancer prognosis includes determining responsiveness to one or more anti-cancer therapies that comprise targeting TTK, PLK 1 and/or one or more Aurora Kinases.
19. The method of any one of Claims 14 to 18, wherein the step of comparing an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling includes comparing an average expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or an average expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling.
20, The method of Claim 19, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed genes associated with chromosomal instability and the average expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling.
21. The method of any one of Claims 14-18, wherein the step of compar ng an expression level of one or a plurality of overexpressed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling includes comparing the sum of expression levels of the one or plurality of overexpressed genes associated with chromosomal instability and/or the sum of expression levels of the one or plurality of underexpressed genes associated with estrogen receptor signalling,
22. The method of Claim 21, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes associated with chromosomal instability and the sum of expression levels of the one or plurality of underexpressed genes associated with estrogen receptor signalling.
23. The method of Claim 20 or Claim 22, wherein the ratio provides an aggressiveness score which is indicative of, or correlates with, cancer aggressiveness and a less favourable prognosis.
24. The method of any preceding claim, wherein the genes associated with chromosomal instability are of a CIN metagene.
25. The method of Claim 24, wherein the CIN metagene comprises a plurality of genes listed in Table 4.
26. The method of Claim 25, wherein the genes are selected from the group consisting of: ATP6V1CI, RAP2A, CALMl, COGS, HELLS, KDM5A, PGKl, PLCHl, CEP55, RFC4, TAF2, SF3B3, GPI, FIR, MCMIO, MELK, FOXMl, KIF2C, NUP155, TPX2, TTK, CENPA, CENPN, EXOL MAPREl, ACOT7, NAE1, SHMT2, TCPI, TXNRDI, AIM, CHAFIA and SYNCRIP.
27. The method of Claim 26, wherein the genes are selected from the group consisting of: MELK, MCM 10, CENPA, EXOL TTK and KIF2C.
28. The method of any one of Claims 14 to 27, wherein the genes associated with estrogen receptor signalling are of an ER metagene.
29. The method of Claim 28, wherein the genes are selected from the group consisting of: BTG2, PIK3IPL SEC14L2, FLNB, ACSF2, APOM, BINS, GLTSCR2, ZMYNDH), ABAT, BCAT2. SCUBE2, RUNXI, LRRC48, MYBPCI, BCL2, CHPTl, IIM2A, LRIGI, MAPZ PRKCB, RERE, ABHDI4A, FLT3, TNN, STC2, BATE, CDIE, CFB, EVL, FBXW4, ABCBI,

ACAAl, CHAD, PDCD4, RPLIO, RPS2S, RPS4X, RPSG, SORBSL RPL22 and RPS4XP3.
30. The method of Claim 29, wherein the genes are selected from the group consisting of: MAPT and MYB.
31. The method of any one of Claims 14 to 30 , further including the step of comparing an expression level of one or a plurality of other overexpressed genes selected from the group consisting of CAMSAPI, CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFCIRI, KCNGI, BCAP31, ULBP2, CARHSPL PML, CD36, (7)55, GEMIN4, TXN, ABHD5, E1F3K, EIF4B, EXOSC7, GNB2LL LAMA 3, $N D U F C l$ and STAUl, and/or an expression level of one or a plurality of other underexpressed genes selected from the group consisting of BRDS, BTN2A2. KIR2DL4. ME1, PSEN2, CALR, CAMK4, YTM2C, NOP2, NSUN5, SF3B1, ZNRDl-ASl, ARNT2, ERC2, SLCllAl, BRD4, APOBEC3A, CDIA, CD IB, CDIC, CXCR4, HLA-B, IGff, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBS 1 and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein; a higher relative expression level of the one or plurality of other overexpressed genes compared to the one or plurality of other underexpressed genes indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of other overexpressed genes compared to the one or plurality of other underexpressed genes indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.
32. The method of Claim 31, wherein the one or plurality of other overexpressed genes are selected from the group consisting of ABHD5, ADORA2B, BCAP3L, CA9, CAMSAPI, CARHSPL CD55, CETN3, E1F3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFCIRL KCNGL MAP2K5, NDUFCl, PML, STA U , TXN and ZNF593 and/or the one or plurality of other underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR7, SMPDIJB and ZNRDI-ASI .
33. The method of Claim 31 or Claim 32, wherein the step of comparing the expression level of the one or plurality of other overexpressed genes and/or the expression level of the one or plurality of other underexpressed genes
includes comparing an average expression level of the one or plurality of other overexpressed genes and/or an average expression level of the one or plurality of other underexpressed genes,
34. The method of Claim 33, which includes calculating a ratio of the average expression level of the other overexpressed genes and the average expression level of the other underexpressed genes,
35. The method of Claim 31 or Claim 32, wherein the step of comparing an expression level of the one or plurality of other overexpressed genes and/or an expression level of the one or plurality of other underexpressed genes includes comparing the sum of expression levels of the one or plurality of other overexpressed genes and/or the sum of expression levels of the one or plurality of other underexpressed genes,
36. The method of Claim 35, which includes calculating a ratio of the sum of expression levels of the one or plurality of other overexpressed genes and the sum of expression levels of the one or plurality of other underexpressed genes.
37. The method of any one of Claims 31 to 36 , wherein the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling is integrated with the comparison of the expression level of the other overexpressed genes and/or the expression level of the other underexpressed genes to derive a first integrated score.
38. A method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of CAMSAP 1, CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFCIRL KCNGI, BCAP31 ULBP2, CARHSP1, PML, CD36, CDS5, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, NDUFCl and STAUL and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. MEL PSEN2, CALR, CAMK4, [TM2C, NOP2, NSUN5, SF3B1, ZNRDI-ASL ARNT2, ERC2, SECUAl, BRD4, APOBEC3A, CDIA, CDIB, CDIC, CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLNL, MTMR7, SORBS! and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative
expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level.
39. A method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of CAMSAPl, CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFCIRI, KCNGL BCAP3L ULBP2, CARHSPl, PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, FJF4B, EXOSC7, GNB2LI, IAMA3, NDUFCl and STAUI, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of BRD8, BTN2A2, KJR2DL4 ME1, PSEN2, CALR, CAMK4, ITM2C, NOP2, NSUN5, SF3BL ZNRDl-ASI, ARNT2, ERC2, SLCl lal BRD4, APOBEC3A, CDIA, CDIB, CDIC, CXCR4, HIA -B, IGH, KIR2DL3, SMPDL3B, MYB, RLNl, MTMR7, SORBS! and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal wherein: a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.
40. The method of Claim 38 or Claim 39, wherein the one or plurality of overexpressed genes are selected from the group consisting of $A B H D 5$, ADORA2B, BCAP31, CA9, CAMSAPl, CARHSP1, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GKHPR, GSK3B, HCFCIRL KCNGJ, MAP2K5, NDUFCL PML, STAUI, TXN and ZNF593 and/or the one or plurality of underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, ME1, MTMR 7, SMPDL3B and ZNRD I-ASI.
41. The method of any one of Claims 38 to 40 , wherein the step of comparing the expression level of the one or plurality of overexpressed genes and/or the expression level of the one or plurality of underexpressed genes includes comparing an average expression level of the one or plurality of overexpressed genes and/or an average expression level of the one or plurality of underexpressed genes,
42. The method of Claim 41, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed genes and the average expression level of the one or plurality of underexpressed genes.
43. The method of any one of Claims 38 to Claim 40, wherein the step of comparing an expression level of the one or plurality of overexpressed genes and/or an expression level of the one or plurality of underexpressed genes includes comparing the sum of expression levels of the one or plurality of overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes.
44. The method of Claim 43, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes and the sum of expression levels of the one or plurality of underexpressed genes.
45. The method of any one of Claims 1 to 44, further including the step of comparing an expression level of a one or a plurality of overexpressed proteins, and/or an expression level of one or a plurality of underexpressed proteins, in one or a plurality of cancer cells, tissues or organs of the mammal to thereby derive an integrated score.
46. The method of Claim 38, wherein the one or plurality of overexpressed proteins are selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASMS and COL6A1, and/or the one or plurality of underexpressed proteins are selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESRL YWHAE, RAD50, PGR, COL6A1, PEA 15 and RPS6, wherein: a higher relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with higher aggressiveness of the cancer and/or a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or
plurality of underexpressed proteins indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.
47. The method of Claim 45 or Claim 46, wherein the step of comparing the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins includes comparing an average expression level of the one or plurality of overexpressed proteins and/or an average expression level of the one or plurality of underexpressed proteins.
48. The method of Claim 47, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed proteins and the average expression level of the one or plurality of underexpressed proteins.
49. The method of Claim 45 or Claim 46, wherein the step of comparing an expression level of the one or plurality of overexpressed proteins and/or an expression level of the one or plurality of underexpressed proteins includes comparing the sum of expression levels of the one or plurality of overexpressed proteins and/or the sum of expression levels of the one or plurality of underexpressed proteins.
50. The method of Claim 49 , which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed proteins and the sum of expression levels of the one or plurality of underexpressed proteins,
51. The method of any one of Claims 45 to 50 , wherein the comparison of the expression level of the one or plurality of overexpressed proteins and the expression level of the one or plurality of underexpressed proteins is integrated with;
(i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling to derive a second integrated score; or
(ii) the first integrated score to derive a third integrated score; or
(iii) the comparison of the expression level of the overexpressed genes selected from the group consisting of CAMSAPL CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFC 1 R $1, K C N G l, ~ B C A P 3 I, ~ U L B P 2, ~ C A R H S P I, ~ P M L, ~$

CD36, CD55, GEMJN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMAS, NDUFC 1 and STAU1 and/of the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DLA. MEI, PSEN2, CALR, CAMK4, ITM2Q NOP2, NSUN5, SF3B1, ZNRD l-ASl, ARN' 2, ERC2, SLCllA 1, $B R D 4_{f}$ AP0BEC3A, GDIA, CDIB, CDIC, CXCR4, HLA^B, IGH, KIR2DL3, SMPDL3B, MYB, RUV1, MTMR7, SORBS! and SRPK3 o derive a fourth integrated score; or
(iv) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene^, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the PostTranslational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene, to derive a fifth integrated score; or
(v) the comparison of the expression level of the overexpressed genes and an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregatioii/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score.

52, The method of Claim 51, wherein the first, second, third, fourth, fifth and/or sixth integrated scores are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation.

53, A method of determining the aggressiveness of a cancer in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3. PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, 1TGA2, AKT1, NFKB1, HER2. ASNS and COL6AL
and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEOFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, CGL6A1, PEA 15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein: a higher relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with higher aggressiveness of the cancer; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with lower aggressiveness of the cancer compared to a mammal having a higher expression level,
54. A method of determining a cancer prognosis for a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, 1NPP4B, EIF4EBPJ, EGFR, Ku80, HER3. SMADl, GATA3, ITGA2, AKT1, NFKB1, HER2, ASNS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD50, PGR, COL6A 1, PEA15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal wherein: a higher relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with a more favourable cancer prognosis compared to a mammal having a higher expression level.
55. The method of Claim 53 or Claim 54, wherein the step of comparing the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins includes comparing an average expression level of the one or plurality of overexpressed proteins and/or an average expression level of the one or plurality of underexpressed proteins.
56. The method of Claim 55 , which includes calculating a ratio of the average expression level of the one or plurality of overexpressed proteins and the average expression level of the one or plurality of underexpressed proteins,
57. The method of Claim 53 or Claim 54 , wherein the step of comparing an expression level of the one or plurality of overexpressed proteins and/or an expression level of the one or plurality of underexpressed proteins includes comparing the sum of expression levels of the one or plurality of overexpressed proteins and/or the sum of expression levels of the one or plurality of underexpressed proteins.
58. The method of Claim 57, which includes calculating a ratio of the sum of expression levels of the overexpressed proteins and the sum of expression levels of the underexpressed proteins.
59. A method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of determining an expression level of one or plurality of genes associated with chromosomal instability in one or a plurality of non-mitotic cells of the mammal, wherein a higher expression level indicates or correlates with relatively increased responsiveness of the cancer to the anti-cancer treatment.
60. The method of Claim 59, wherein the one or plurality of genes associated with chromosomal instability are targeted by the anti-cancer treatment.
61. The method of Claim 59 or Claim 60, wherein the one or plurality of genes associated with chromosomal instability are listed in Table 4 and/or include one or more genes associated with aneuploidy.
62. The method of Claim 61, wherein the one or plurality of genes associated with chromosomal instability and/or aneuploidy are selected from the group consisting of: TTK, CEP55, FOXMl, SKIP2, PLKl and/or Aurora kinases.
63. The method of any one of Claims 59 to 62, wherein the anti-cancer treatment is a treatment targeted to aneuploid tumours.
64. The method of any one of Claims 59 to 63 , wherein the anti-cancer treatment is a treatment targeted to chromosomal instability.
65. A method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a
plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a Post-Translational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene, wherein an altered or modulated relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.
66. The method of Claim 65, wherein the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one metagene or are selected from a plurality of metagenes.
67. The metliod of Claim 65 or Claim 66, wherein the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein Synthesis/Modification metagene and/or the Multiple Networks metagene comprise one or more genes listed in Table 21.
68. A metliod of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes and/or an expression level of one or a plurality of underexpressed genes in one or a plurality of cancer cells, tissues or organs of the mammal, wherein the overexpressed genes and the underexpressed genes are from one or a plurality of metagenes selected from the group consisting of a Metabolism metagene, a Signalling metagene, a Development and Growth metagene, a Chromosome Segregation/Replication metagene, an Immune Response metagene and a Protein Synthesis/Modificatioii metagene, wherein an altered or modulated
relative expression level of the overexpressed genes compared to the underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment,
69. The method of Claim 68, wherein the one or plurality of overexpressed genes and/or the one or plurality of underexpressed genes are selected from one metagene or are selected from a plurality of metagenes,
70. The method of Claim 68 or Claim 69 , wherein the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene comprise one or more genes listed in Table 22.
71. The method of any one of Claims 68 to 70 , wherein the one or plurality of overexpressed genes and the one or plurality of underexpressed genes are from one or a plurality of of a Carbohydrate/Lipid Metabolism metagene, a Cell Signalling metagene, a Cellular Development metagene, a Cellular Growth metagene, a Chromosome Segregation metagene, a DNA Replication/Recombination metagene, an Immune System metagene, a Metabolic Disease metagene, a Nucleic Acid Metabolism metagene, a PostTranslational Modification metagene, a Protein Synthesis/Modification metagene and a Multiple Networks metagene.
72. The method of any one of Claims 65 to 71 , wherein the step of comparing an expression level of the one or plurality of overexpressed genes and/or an expression level of the one or plurality of underexpressed genes includes comparing an average expression level of the plurality of overexpressed genes and/or an average expression level of the plurality of underexpressed genes.
73. The method of Claim 72, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed genes and the average expression level of the one or plurality of underexpressed genes.
74. The method of any one of Claims 65 to 71 , wherein the step of comparing an expression level of the one or plurality of overexpressed genes and/or an expression level of the one or plurality of underexpressed genes includes comparing the sum of expression levels of the one or plurality of
overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes.
75. The method of Claim 74, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes and the sum of expression levels of the one or plurality of underexpressed genes.

76, A method of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of a one or plurality of overexpreSSed genes associated with chromosomal instability and/or an expression level of one or a plurality of underexpressed genes associated with estrogen receptor signalling in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the overexpressed genes associated with chromosomal instability compared to the underexpressed genes associated with estrogen receptor signalling indicates or correlates with relatively increased or decreased responsiveness of the cancer to the antiᄀ cancer treatment,
77. The metliod of Claim 76, wherein the genes associated with chromosomal instability are of a CIN metagene.
78. The method of Claim 77, wherein the CIN metagene comprises a plurality of genes listed in Table 4.
79. The metliod of Claim 78, wherein the genes are selected from the group consisting of: ATP6VIC1, RAP2A, CALMI, COG8, HELLS, KDM5A, PGKl, PLCH1, CEP55, RFC4, TAF2, SF3B3, GPL PIR, MCMIO, MELK, FOXMl, KIF2C, NUP155, TPX2, TTK, CENPA, CENPN, EXOl, MAPREl, ACOT7, NAEl, SHMT2, TCP I, TXNRDl, ADM, CHAF!A and S YNCRIP.
80. The method of Claim 79, wherein the genes are selected from the group consisting of: MELK, MCM 10, CENPA, EXOL TTK and K1F2C.
81. The method of any one or Claims 76 to 80 , wherein the genes associated with estrogen receptor signalling are of an ER metagene.
82. The metliod of Claim 81, wherein the genes are selected from the group consisting of: BTG2, PlK3IPI, SECI4L2, FLNB, ACSF2, APOM, BIN3, GLTSCR2, ZMYNDIO, ABAT, BCAT2, SCUBE2, RUNXI, LRRC48, MYBPCL BCL2, CHPTL TTM2A, LRIG1, MAPT, PRKCB, RERE ABHD14A, FLT3, TNN, STC2, BATE, CDTE, CFB, EVL, FBXW4, ABCBl,

ACAAl CHAD, PDCD4, RPLIO, RPS2S, RPS4X, RPS6, SORBSI, RPL22 and RPS4XP3.
83. The method of Claim 82, wherein the genes are selected from the group consisting of: MAPT and MYB.
84. The method of any one of Claims 76 to 83 , wherein the step of comparing an expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or an expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling includes comparing an average expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or an average expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling.
85. The method of Claim 84, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed genes associated with chromosomal instability and the average expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling,
86. The method of any one of Claims 76 to 83 , wherein the step of comparing an expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or an expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling includes comparing the sum of expression levels of the one or plurality of overexpressed genes associated with chromosomal instability and/or the sum of expression levels of the one or plurality of underexpressed genes associated with estrogen receptor signalling ${ }_{*}$
87. The metliod of Claim 86, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes associated with chromosomal instability and the sum of expression levels of the one or plurality of underexpressed genes associated with estrogen receptor signalling,
88. The method of any one or Claims 76 to 87 , further including the step of comparing an expression level of one or a plurality of other overexpressed genes selected from the group consisting of CAMSAPI, CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2KS, HCFClR1, KCNGl ${ }_{t}$ BCAP31, IJLBP2, CARHSPi, PML, CD36, CD55;

GEMIN4, TIN, ABHD5, EJF3K, EIF4B, EXOSC7, GNB2L1, LAMA3, $N D U F C l$ and STAUl, and/or an expression level of one or a plurality of .other underexpressed genes selected from the group consisting of BRD8, BTN2A2. KIR2DL4. MEl, PSEN2, CALR, CAMK4, TTM2C, NOP2, NSUN5, SF3B1, ZNRD 1-ASI, ARNT2, ERC2, SLC]IAI, BRD4, APOBEC3A, CDIA, CDIB, CDIC CXCR4, HLA-B, IGH, KIR2DL3, SMPDL3B, MYB, RLN1, MTMR7, SORBS! and SRPK3 in one or a plurality of cancer ceils, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of other overexpressed genes compared to the one or plurality of other underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti cancer treatment.

89- The method of Claim 88 , wherein the one or plurality of other overexpressed genes are selected from the group consisting of $A B H D 5, A D O R A 2 B, B C A P 31$, CAP, CAMSAPL CARHSPl, (7) 5.5, CETN3, E1F3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFCIRI, KCNG1, MAP2K5, NDUFCl, PML, STAUl, TXN and ZNF593 and/or the one or plurality of other underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, MEL MTMR7, SMPDL3B and ZNRD I-AS .
90. The method of Claim 88 or Claim 89 , wherein the comparison of the expression level of the one or plurality of other overexpressed genes and/or the expression level of the one or plurality of other underexpressed genes is integrated with the comparison of the expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or the expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling to derive a first integrated score, which is indicative of, or correlates with, responsiveness of the cancer to the antiCancer treatment.
91. The method of Claim 90, wherein the first integrated score is derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation,

92, The method of Claim 91, wherein the first integrated score is derived by exponentiation, wherein the comparison of the expression level of one or a plurality of other overexpressed genes and/or the expression level of one or a
plurality of other underexpressed genes is raised to the power of the comparison of the expression level of the one or plurality of overexpressed genes associated with chromosomal instability and/or the expression level of the one or plurality of underexpressed genes associated with estrogen receptor signalling.
93. The method of any one of Claims 88 to 92 , wherein the step of comparing an expression level of the one or plurality of other overexpressed genes and/or an expression level of the one or plurality of other underexpressed genes includes comparing an average expression level of the one or plurality of other overexpressed genes and/or an average expression level of the one or plurality of other underexpressed genes,
94. The method of Claim 93, which includes calculating a ratio of the average expression level of the one or plurality of other overexpressed genes and the average expression level of the one or plurality of other underexpressed genes.
95. The method of any one of Claims 88 to 92 , wherein the step of comparing an expression level of the one or plurality of other overexpressed genes and/or an expression level of the one or plurality of other underexpressed genes includes comparing the sum of expression levels of the one or plurality of other overexpressed genes and/or the sum of expression levels of the one or plurality of other underexpressed genes,
96. The method of Claim 95, which includes calculating a ratio of the sum of expression levels of the one or plurality of other overexpressed genes and the sum of expression levels of the one or plurality of other underexpressed genes.
97. A metliod of predicting the responsiveness of a cancer to an anti-cancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of CAMSAPl, CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFCIR!, KCNG1, BCAP31, ULBP2, CARHSPl, PML, CD36, CD55, GEM1N4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2LI, IAMA3, NDUFCI and STAU1, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of BRD8, BTN2A2, KIR2DL4. MEL, PSEN2, CALR, CAMK4, JTM2C, NOP2, NSUN5, SF3B1, ZNRD!-ASl, ARNT2, ERC2,

SLCliAl, BRD4, APOBEC3A, CDLA, CDIB, CDIC, CXCR4, HLA-B, IGB, KIR2B I_, SMPDL3B, MYB, RLNI, MTMR7, SQRBSI and SRPK3, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.
98. The method of Claim 97, wherein the one or plurality of overexpressed genes are selected from the group consisting oi ABHD5, ADORA2B, BCAP3L CA9, CAMSAPI, CARHSP!, CD55, CETN3, EIF3K, EXOSC7, GNB2L1, GRHPR, GSK3B, HCFCIRI, KCNGl, MAP2K5, NDUFC1, PML, STAUl, TXN and ZNF593 and/or the one or plurality of underexpressed genes are selected from the group consisting of BTN2A2, ERC2, IGH, MEL MTMR7, SMPDL3B and ZNRDI-ASJ.
99. The method of Claim 97 or Claim 98, wherein the step of comparing the expression level of the one or plurality of overexpressed genes and/or the expression level of the one or plurality of underexpressed genes includes comparing an average expression level of the one or plurality of overexpressed genes and/Or an average expression level of the one or plurality of underexpressed genes.
100. The method of Claim 99, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed genes and the average expression level of the one or plurality of underexpressed genes.
101. The method of Claim 97 or Claim 98, wherein the step of comparing an expression level of the one or plurality of overexpressed genes and/or an expression level of the one or a plurality of underexpressed genes includes comparing the sum of expression levels of the one or plurality of overexpressed genes and/or the sum of expression levels of the one or plurality of underexpressed genes.
102. The method of Claim 101, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed genes and the sum of expression levels of the one or plurality of underexpressed genes.
103. The method of any one of Claims 65 to 103, further including the step of comparing an expression level of a one or plurality of overexpressed
proteins, and/or an expression level of one or a plurality of underexpressed proteins, in one or a plurality of cancer cells, tissues or organs of the mammal to thereby derive an integrated score.
104. The method of Claim 103, wherein the one or plurality of overexpressed proteins are selected from the group consisting of DVL3, PAI1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB 1, HER2, ASNS and CGL6AI, and/or the one or plurality of underexpressed proteins are selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD5Q, PGR, COL6A1, PEALS and RPS6, wherein: a higher relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with higher aggressiveness of the cancer arid/or a less favourable cancer prognosis; and/or a lower relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with lower aggressiveness of the cancer and/or a more favourable cancer prognosis compared to a mammal having a higher expression level.
105. The method of Claim 103 or Claim 104, wherein the step of comparing the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins includes comparing an average expression level of the one or plurality of overexpressed proteins and/or an average expression level of the one or plurality of underexpressed proteins.
106. The method of Claim 105, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed proteins and the average expression level of the one or plurality of underexpressed proteins.
107. The method of Claim 103 or Claim 104, wherein the step of comparing an expression level of the one or plurality of overexpressed proteins and/or an expression level of the one or plurality of underexpressed proteins includes comparing the sum of expression levels of the one or plurality of overexpressed proteins and/or the sum of expression levels of the one or a plurality of underexpressed proteins.
108. The method of Claim 107, which includes calculating a ratio of the sum of expression levels of the one or plurality of averexpressed proteins and the sum of expression levels of the one or plurality of underexpxessed proteins,
109. The method of any one of Claims 103 to 108 , wherein the comparison of the expression level of the one or plurality of overexpressed proteins and the expression level of the one or plurality of underexpressed proteins is integrated with:
(i) the comparison of the expression level of the overexpressed genes associated with chromosomal instability and/or the expression level of the underexpressed genes associated with estrogen receptor signalling to der ve a second integrated score; or
(ii) the first integrated score to derive a third integrated score; or
(i) the comparison of the expression level of the overexpressed genes selected from the group consisting of CAMSAP!, CETN3, GRHPR, ZNF593, CA9, CFDPl, VPS28, ADORA2B, GSK3B, LAMA4, MAP2K5, HCFCIRI, KCNGI, BCAP31 ULBP2, CARHSPL PML, CD36, CD55, GEMIN4, TXN, ABHD5, EIF3K, EIF4B, EXOSC7, GNB2L1, LAMAS; NDUFCl and STAU1 and/or the expression level of the underexpressed genes selected from the group consisting of BRD8, BTN2A2, KJR2DL4. MET, PSEN2, CALM, CAMK4, LTM2C, NOP2, NSUN5, SF3BI, ZNRDl-ASF ARNT2, ERC2, SLCllAl, BRD4, APOBEC3A, CD!A, CD IB, CD1C, CXCR4, HIA-B, IGH, KIR2DL3, SMPDLSB, MYB, RLNl, MTMR7, SORBS! and SRPK3 o derive a fourth integrated score; or
(ii) the comparison of the expression level of the overexpressed genes and/or an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Carbohydrate/Lipid Metabolism metagene, the Cell Signalling metagene, the Cellular Development metagene, the Cellular Growth metagene, the Chromosome Segregation metagene, the DNA Replication/Recombination metagene, the Immune System metagene, the Metabolic Disease metagene, the Nucleic Acid Metabolism metagene, the Post-Translational Modification metagene, the Protein

Synthesis/Modification metagene and/or the Multiple Networks metagene., to deri ve a fifth integrated score; or
(iii) the comparison of the- expression level of the overexpressed genes and/or an expression level of the underexpressed genes, wherein the genes are from one or a plurality of the Metabolism metagene, the Signalling metagene, the Development and Growth metagene, the Chromosome Segregation/Replication metagene, the Immune Response metagene and/or the Protein Synthesis/Modification metagene, to derive a sixth integrated score.
110. The method of Claim 109, wherein the first, second, third, fourth, f fth and/or sixth integrated scores are derived, at least in part, by addition, subtraction, multiplication, division and/or exponentiation,

111, A method of predicting the responsiveness of a cancer to an anticancer treatment in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed proteins selected from the group consisting of DVL3, PAI-1, VEGFR2, INPP4B, EIF4EBP1, EGFR, Ku80, HER3, SMAD1, GATA3, ITGA2, AKT1, NFKB1, HER2, ASMS and COL6A1, and/or an expression level of one or a plurality of underexpressed proteins selected from the group consisting of VEGFR2, HER3, ASNS, MAPK9, ESR1, YWHAE, RAD5Q, PGR, COL6A1, PEA 15 and RPS6, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed proteins compared to the one or plurality of underexpressed proteins indicates or correlates with relatively increased or decreased responsiveness of the cancer to the anti-cancer treatment.
112. The method of Claim 111, wherein the step of comparing the expression level of the one or plurality of overexpressed proteins and/or the expression level of the one or plurality of underexpressed proteins includes comparing an average expression level of the one or plurality of overexpressed proteins and/or an average expression level of the one or plurality of underexpressed proteins.
113. The method of Claim 112, which includes calculating a ratio of the average expression level of the one or plurality of overexpressed proteins and
the average expression level of the one or plurality of underexpressed proteins.
114. The method of Claim 111, wherein the step of comparing an expression level of the one or plurality of overexpressed proteins and/or an expression level of the one or plurality of underexpressed proteins includes comparing the sum of expression levels of the one or plurality of overexpressed proteins and/or the sum of expression levels of the one or plurality of underexpressed proteins,
115. The method of Claim 114, which includes calculating a ratio of the sum of expression levels of the one or plurality of overexpressed proteins and the sum of expression levels of the one or plurality of underexpressed proteins,
116. The method of any one of Claims 59 to 115 , wherein the anti-cancer treatment is selected from the group consisting of a endocrine therapy, chemotherapy, immunotherapy and a moleculaiiy targeted therapy.
117. The method of Claim 116, wherein the treatment comprises administration of an agent selected from the group consisting of an ALK inhibitor, a BCR-ABL inhibitor, a HSP90 inhibitor, an EGFR inhibitor, a PARP inhibitor, retinoic acid, a Bcl2 inhibitor, a gluconeogenesis inhibitor, a p38 MAPK inhibitor, a MEK1/2 inhibitor, a mTOR inhibitor, a P13K inhibitor, an IGF1R inhibitor, a PLCy inhibitor, a JNK inhibitor, a PAK1 inhibitor, a SYK inhibitor, a HDAC inhibitor, an FGFR inhibitor, a XIAP inhibitor, a PLK1 inhibitor, an ERK5 inhibitor, a TTK inhibitor, an Aurora Kinase Inhibitor and/or any combination thereof.
118. The method of Claim 116, wherein immunotherapy is or comprises an immune checkpoint inhibitor,
119. The method of Claim 118, wherein the immune checkpoint inhibitor is or comprises an anti-PD1 antibody or an anti-PDL1 antibody.
120. A method of predicting the responsiveness of a cancer to an immunotherapeutic agent in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of ADORA2B, CD36, CETN3, KCNG1, LAMAS, MAP2K5, MAEI, PGK1, STAU1, CFDP1, SF3B3 and TXN, and/or an expression level of one or a plurality of underexpressed genes selected
from the group consisting of APOBEC3A, BCL2, BTN2A2, CAMSAPI, CAMK4, CARHSPl, FBXW4, GSK3B, HCFCIRL MYB, PSEN2 and ZNF593, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the inmiunotherapeutic agent.
121. The method of Claim 120, wherein a higher relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a relatively increased responsiveness of the cancer \mathbf{b} the immunotherapeutie agent; and/or a lower relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of underexpressed genes indicates or correlates with a relatively decreased responsiveness of the cancer to the immunotherapeutie agent.
122. The method of Claim 120 or Claim J21, wherein the immunotherapeutie agent is an immune checkpoint inhibitor.
123. The method of Claim 122, wherein the immune checkpoint inhibitor is or comprises an anti-PD1 antibody or an anti-PDL1 antibody.
124. A method of predicting the responsiveness of a cancer to an epidermal growth factor receptor (EGFR) inhibitor in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of NAEI, GSK3B, TAF2, MAPREL BRIM, STAUL TAF2, PDCD4, KCNGL ZNRDI-ASI, EIF4B, HELLS, RPL22, ABAT, BTN2A2, CD1B, ITM2A, BCL2, CXCR4, and ARNT2 and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of CDIC, CDIE, CDIB, KDM5A, BATF, EVE PRKCB, HCFCIRL CARHSPL CHAD, KIR2DL4. ABHD5, ABHD14A, ACAAL SRPK3, CFB, ARNT2, NDUFCL BCL2, EVE ULBP2, BIN3, SF3B3, CETN3, SYNCRIP, TAF2, CENPN, ATP6VICI, CD55 and ADORA2B, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to the one or plurality of
underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the irnraunotherapeutic agent.
125. A method of predicting the responsiveness of a cancer to a multikinase inhibitor in a mammal, said method including the step of comparing an expression level of one or a plurality of overexpressed genes selected from the group consisting of SCUBE, CHPTL CDCl, BTG2., ADORA2B and BCL2, and/or an expression level of one or a plurality of underexpressed genes selected from the group consisting of NOP2, CALR, MAPRE i, KCNGl, PGKl, SRPK3, RERE, ADM, LAMAS. KIR2DIA, ULBP2, LAMA4, CA9, and BCAP31, in one or a plurality of cancer cells, tissues or organs of the mammal, wherein an altered or modulated relative expression level of the one or plurality of overexpressed genes compared to tire one or plurality of underexpressed genes indicates or correlates with relatively increased or decreased responsiveness of the cancer to the multikinase inhibitor.
126. The method of any preceding claim, which includes the further step of treating cancer in the mammal.
127. A method for identifying an agent for use in the treatment of cancer including the steps of:
(i) contacting a protein product of GRHPR, NDUFCl, CAMSAPI, CETN3, EIF3K, STAU], EXOSC7, COG8, CFDPl and/or KCNGJ with a test agent; and
(ii) determining whether the test agent, at least partly, reduces, eliminates, suppresses or inhibits the expression and/or an activity of the protein product.
128. The method of Claim 127, wherein the agent possesses or displays little or no significant off-target and/or nonspecific effects.
129. The method of Claim 127 or Claim 128, wherein the agent is an antibody or a small organic molecule.
130. A method of treating a cancer in a mammal, including the step of administering to tire mammal a therapeutically effective amount of the agent identified by the method of any one of Claims 127 to 129.
131. The method of any preceding claim wherein the mammal is a human.
132. The method of any preceding claim wherein the cancer includes breast cancer, lung cancer, ovarian cancer, cervical cancer, uterine cancer,
prostate caneer, cancer of the brain and nervous system, head and neck cancer, colon cancer, colorectal cancer, gastric cancer, liver cancer, kidney cancer, bladder cancer, melanoma, lymphoid cancers, myelomonocytic cancers, pancreatic cancer, pituitary cancer, adrenal cancer or musculoskeletal cancer.

133, The method of Claim 132, wherein breast cancer includes aggressive breast cancers and cancer subtypes such as triple negative breast cancer, grade 2 breast cancer, grade 3 breast cancer, lymph node positive (LNT) breast cancer. HER2 positive $\left(\mathrm{HER} 2^{+}\right)$breast cancer and ER positive $\left(\mathrm{ER}^{+}\right)$ breast cancer.
134. An agent identified by the method of any one of Claims 127 to 129 for use in the treatment of cancer.

FIG. 1

B
All patients

FIG. 1 cont'd
$3 / 80$
A

B

FIG. 2

$4 / 80$

c

Non-TNBC

FIG. 2 cont'd

FIG. 3

$6 / 80$

A

Suanizy	38 $185 \% \mathrm{Cl}$	Proue
	28267 (13885.86875)	6,0m8
(ymphowse (\%)	0840\% (0, \% 27.20459$)$	68785
Gude (1, 2, 3 \%	\$027667978-14767	08826
Exta	¢8880 65223-185\%)	0.5887

8

Counize		Prabue
	2, 44, (60986.4276)	6015
Smphraxe (\%)	2.6040 (1) $5138-50764$	Q0003
crits		02526
crave (t, 2, 9	12347 0.5032-2086)	92898
63 ${ }^{\text {and }} \mathrm{WT}$	1980 $63685-23251$	8.48

c

Coysmase	H205\% 01	Prase
Eqenes Scose gugh foxy	$22123(14433-33510)$	0,0093
Esics		6832

D

Conarisis	HR98800	Prase
3 senses Soxe (high, was		ccote
	5A825 (17312-18783)	100044
	\& 6876 (10067-27718\%	Smes
ERSt?	s.62ct 6070s-3.64s)	乡2589
Grade $4,2,3)$	08293 $00.4080-14835$	0.4806
$\mathrm{pR}+$ ¢	s $718105895-2989$	P848

$7 / 80$

FIG. 5

c
Distribution of high TTK stainitg aecording to subtypes and mitotic courwts

FIG. 6

$8 / 80$

FIG. 7

Comparison of All Genes Across 8 Analyses

Overexpression

Underexpression

\% \sim,	ค\%\%\%	swis						
35	2.38520	Esco						
4.5	4.505	sats						
135	tasers	coxes						
12.5	514ET5	506\%s						
13.0	\$20erto	0 CHO						
14.3	¢. $4.5 \mathrm{E}-46$	Asha						
14.3	601E-94	84\% \%						
19.3	438E45	2, 5183						
20.5	204-13	6.443						
24.3	8838.42	¢ CB B :						
24.3	17 1e14	H3E:						
24.5	170-31	A 4182						
28.0	190E-47	640						
28.5	$2.545-12$	84\%\%\%						
28.5	270 E 5	comes						
28.3	214E-6	Sbst						
290	E.77c-T0	A 4 ¢ ${ }^{\text {a }}$						
40.0	1.35E9	Bas						
430	2.50e-9	Pras						
400	95ecor	smome						
			4		\% 5	\%		8

1. Ereast Caromoma - ERBe2ERFR Negative

Bild Breast, Nature, 2005
2. Duesal Breast Carcinoma - ERBEDENFP Negative Qitiner Breast Rov Pubished, 2005
3. Ducis Ereast Cawinoma - ERBR2ERDPR Negmeme Eonmetoi Ereask, Lancet Onoo, 2007
4. Invasve Ereas Camonna-ERBE2ERPR Negenve

Ghot Breast, Greast Cancer Res Treat 2011

5 Invanve Ereast Carcinoma - ERES $2 E P$ PIPR Negative Hakis Sreast SAMA, 2011
E Breast Carcinoma - EREB2EPMPR Negative
Kac Breast, ENC Cancer, 2011
 Fabchy Breast Clin Cancer Fes, 2010
 TCGA Breast No Associated Paper, 2011

[^2]FIG. 8

10/80

B

Comparison of All Genes Across 7 Analyses

Overexpression

	3\%84*	8\%\%						
320	923E-5	SKCm?						
129,0	St3E-4	9Ex\%						
124.0	0.002	dus						
147.0	0003	980:						
199.0	0.003	Foxs\%						
10x 2	人, 57E-4	NEM2						
1780	7.34E-5	NFes						
1780	76as-5	Qtas						
266	0001	Rads						
2230	S.AEEA	क<						
254.0	0005	0882						
2000	228 Ec	Okdens						
2730	2.808	osemps						
2765	0.06	becose	\&	\%		\%		
2750	0005	pramos						
280	0006	6.队0						
250	20.06	5moki 3						
3040	0.002	12\%\%						
3045	0085	MCsa						
304.0	0.067	803as						
			12	s	14	15	6	7

Underexpression

1 Ereast Carcmoma - Metsrtatic Event as 6 Years Bos Ereast Name 2000
2. Hyasive Ductab Breast Caronoma- Merasitic Event at 5 Years besment Breast, Cun Cancer hes, 2007
3 inamive Ereast Carcinoma - Metastatic Event at 5 Years Hatis Breast, JAMA, 2011
4 Breast Cammonaz - Metastath Event at 5 Years
Kao Greas. BAC Cancer, $201:$
The fank ior a gerk is the meximn rand for that gere aboss adoh of the anadeses The p-vate for a gene is te p-Vahe iof the mentan-anked anaysis.

FIG. 8 cont'd

Overexpression

Legeno

1. Ereast Carcinmas - Dead at 5 vears

Gld Breast, Nature, 200 e
2. invenve Ductal greasi Canchema - Dead at 5 years

Desmedt Breast, Cin Cancer Res, 200 ?
3. Breast Csminnma - Dead at S Years

Kao Breast 8MC Cancer. 2011
4. Breast Carcinoma - Deadat 5 Vears

Fawtan Ereast Ereast Cancer Res 2005

Underexpression

5 Durial Ereas Carcmoma - Dead at 5 Years,
Sonte Ereast 2. Frco Nat Acad Sc USA, 2003
6. Invasive Ductal Ereast Carcirmoma-Dead at 5 Yeass

TCOA Breast, No Assomated Psper, 2013
7. Breast Caminona - Dead at 5 Years
vandeV/ver Breast, N Engl $1 /$ Med, 2002

The rank for 3 gene is the mediai rank for that gene arross each of the mabyses

 For further infomation refer to the tems desubed in the icense agrement.

FIG. 8 cont'd

12/80

Oyerexpression

C

3 THAC $\%$ \%

FIG. 9

\}ata Gene

ne	kta	Gerse
	45	
swecthe atwactor	2	concr furs
rexepker alfactor	13	
mbiched based ongene sek enuchment anaysis, GSEA	140	 cectra

FIG. 10

A

B

FIG. 11
$15 / 80$
A

206 genes score

B
s genes score

PAM50-high score

PAMSO-low score

FIG. 12

FIG. 13

FIG. 14

18/80

FIG. 15

FIG. 15 cont'd

20/80

FIG. 15 cont'd

21/80

A

c

FIG. 16

FIG. 17

FIG. 18

24/80

FIG. 19

25/80

FIG. 20

26/80

A

B

	RFS			D3\%FS		
	hazarus modes			Whenesnate Cox-moportans hazavo model		
	HR	55\%0l	P-athe	HR	As\% O	y-vakue
	W0.3y	\%\%\% $\%$ \% \% \%	SNSUS	2.\% Sk	凶< $\%$ \%	\$,0\%4\%
Tumor sixe (E, T2, T3)	3.3223	04135-20.194	0.2612	2837	44834-31452	02120
	\% 808		\% \% \%			\% \% ¢
Ane $\{550,>50\}$	10481	04564.22129	05024	09372	34243-1891	98779
	$2 \mathrm{k} \mathrm{S}^{2}$		\% $\%$ \%\%			
ER utatus \{ERt, Ent	0.5828	0,1633-1.9874	Q. 800	0.6780	0.18832 .2341	0 S 770

c

RFS			WWFS		
Notwanake Cox-poparbona hazarts moter			Whitwarste Cosmonortional Mazards mondel		
HR	$95 \% \mathrm{C}$	p-sabe	H2	95% \%	9-velua
\% 8.80	\& \lll \% \%	3\%3\%	\% 280	\$, \% $2 \times$,	W, \%
3.370\%	02256-53460	08403	9.7735	90908-586919	0.9213
\%\%\%	\%	\% \% \% \%	\%s\% 4	\% \% \% \% \% \& \%	\%\% $\%$ \%
10968	05835-17604	07730	0.3745	65558 17097	0888
\% 6 k	\% $24 \% \%$ \%	18\%4\%	\% \% \% \%		\% 4 \%

FIG. 21

27/80

FIG. 22

FIG. 23

FIG. 24

FIG. 25

31/80

FIG. 26

32/80
ERAHER2-breast cancer

FIG. 27
$33 / 80$
 そタ\％sMそた ॠね

A．ER negative

8．ER positive

 score Score

Fishers exat test for p values

FIG． 28

FIG. 29

35/80

FIG. 30
$36 / 80$

Comparison of All Genes Across 7 Analyses

[^3]

FIG. 31

[^4]FIG. 31 cont'd

FIG. 32

FIG. 33

41/80

Numberan 35

Numberathisk

FIG. 34

FIG. 35

FIG. 36

44/80

C. Subtraction

FIG. 36 cont'd

45/80

FIG. 38

a
FIG. 38 cont'd

FIG. 39

49/80

[^5]

FIG. 41

51/80

FIG. 42

52/80

FIG. 43

53/80

FIG. 44

54/80

FIG. 45

55/80

C Multivariate analysis

	P value	Hazard Ratio
IECR sig.	<1.0E-16	$2.53(1.93-3.32)$
Histology	0.0249	$1.25(1.03-1.52)$
Stage	$<1.0 \mathrm{E}-16$	1.42 (1.24-1.64)

FIG. 46

56/80

FIG. 47

FIG. 48

58/80

FIG. 48 cont'd

FIG. 48 cont'd

FIG. 49

FIG. 49 cont'd

FIG. 50
LI

$$
\begin{aligned}
& \text { 0.54-478 }
\end{aligned}
$$

FIG. 50 cont'd

Kidney renal clear cell carcinoma (KIRC)

FIG. 51

65/80
Skin cutaneous melanoma (SKCM)

FIG. 51 cont'd

66/80
Uterine corpus endometrioid carcinoma (UCEC)

FIG. 51 cont'd

Ovarian adenocarcinoma (OVAC)

FIG. 52

68/80

Head \& Neck squamous cell carcinoma (HNSC)

FIG. 52 cont'd

69/80
Colon/Rectal Adenocarcinoma (COREAD)

FIG. 52 cont'd

FIG. 53

Bladder urothelial carcinoma (BLCA)

FIG. 53 cont'd

72/80

Lung squamous cell carcinoma (LUSC)

FIG. 53 cont'd

$73 / 80$

FIG. 54

FIG. 55

FIG. 56

FIG. 56 cont'd

FIG. 57

FIG. 58

FIG. 58 cont'd

80/80

FIG. 59

[^0]: X2: Chi square test performed using GraphPad® Prism. ns not significant

[^1]:

[^2]:
 For futher momation, vefer to the tams descrbed mine thense ageoment.

[^3]:

[^4]:
 6 Invasive Ouctal Bresst Carcinoma-Dead at 5 Years TCGA Breast. No Associated Paper, 201\}
 7. Ereas Careinoma - Dead at Evears

 The rank or a gene is the median rank for that gens acros each of the anays*s.

 For buther mbomaton, refer to the terms sescribea in the homense sgeeament.

[^5]: FIG. 40

