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Preface

The topic of this work is a special sort of algorithms summarized under the name of
Computer Algebra. Secondly, these algorithms are applied in the theory of dynamical
systems. This rare combination of research interests is the result of being a member
of the department Symbolik at ZIB and working together with people in the dynamical
systems community. This rare combination gives the chance to attack problems in a
challenging way.

What is Computer Algebra? Basically, Computer Algebra means computation
with algebraic structures and answering questions from algebra and algebraic geometry in
an algorithmic way. A good algorithm reflects and exploits the underlying mathematical
stuctures as best as possible. While for combinatorial algorithms these are graphs, poly-
topes etc., for numerical algorithms these are analytical structures and structures from
functional analysis, the underlying structures of Computer Algebra are from commutative
and non-commutative algebra, algebraic geometry etc.

While in numerics the computed result may be a huge amount of real numbers en-
coding an approximate solution of a partial differential equation, in Computer Algebra
the result is an algebraic object such as a Hilbert series of a module of splines encoding
the dimensions of vector spaces of splines up to a certain degree [18, 42] or generators of
Lie algebras encoding the symmetry group of self-similar solutions of partial differential
equations [94, 95, 170, 193].

While numerical algorithms approximate symbolic computations are exact. Even with
numbers this is obvious. The floating point numbers reflect the real numbers as a Banach
space, but in exact computation the numbers are considered as elements of a field.

In both numerics and Computer Algebra Newton’s method plays a prominent role.
In numerics the family of inexact Newton methods and Quasi-Newton methods produces
sequences in Banach spaces and Hilbert spaces [49], [105]. In symbolic computation
the Newton method is used in order to find factorizations of polynomials in Z[x] or
Z[x1, . . . , xn] in a completion space exploiting Hensel’s lemma [80], [196].

Although there are a lot of differences between symbolic computations and other areas
of algorithmic mathematics they share some main principles.

- Restrict the computation to the essential information only.

- Reuse information which is available anyway.

- Use the underlying mathematical structure as best as possible.

- Exploit special structure.

The combination of algorithms of different types appears to be rather difficult. An ap-
propriate combination of symbolic algorithms with numerics requires that both algebraic



structures and analytic structures are simultaneously present without interfering each
other. First symbolic computations are performed followed by the numerical algorithm.
In general the data of a run of a numerical algorithm should not be the input of a symbolic
algorithm. If the analytic and algebraic structures interfere each other the combination
of symbolic and numerical methods appears to be inappropriate.

Successful examples of combination include the symbolic exploitation of equivariance
with respect to a linear representation of a finite group and numerical pathfollowing and
computation of bifurcation points as in Symcon [75, 69] and secondly the computation of
a mixed subdivision of a tuple of Newton polytopes in order to determine all solutions of
a sparse polynomial system numerically [187], [188].

But the most common use of Computer Algebra seems to be the automation of hand
calculations. Especially for theoretical investigations it can save a lot of time and make
tedious calculations more reliable.

Far beyond this Computer Algebra methods are alternative tools bringing a different
point of view to a problem. The algebraic algorithms are able to exploit much more struc-
ture of a problem than numerical algorithms which basically approximate. The purpose
of Computer Algebra is the computation of structural information. The demonstration
of this in the context of dynamical systems is the aim of this work.

What is equivariant dynamics? In the theory of equivariant dynamical systems
long time phenomena are investigated which are structured and classified by the symme-
try. In engineering and science the symmetry enters in a natural way because geometric
configurations may be symmetric. The formal description of symmetry is done using group
theory, e.g. the linear representation of a compact Lie group. The main point is that the
problem remains unchanged under the group action. First of all the differential equations
remain unchanged, i.e. are equivariant. Secondly, the domain has the symmetry of this
group. Besides the symmetry the problem may depend on some parameters which have
a physical meaning such as temperature, aspect ratio, Rayleigh number etc. Of course
the solution and long time behavior change with values of the parameters. Bifurcation
theory deals with the study of dramatic changes in the solution quality depending on the
parameters. It is well-known that the genericity of bifurcation phenomena is essentially
dominated by the symmetry. Moreover, the dynamics is structured by the symmetry.

The theory of equivariant dynamical systems is motivated by several examples: In the
Taylor-Couette problem [35, 87] (see the description in Section 4.3) the flow of some liquid
between two rotating cylinders depends on the velocities of the cylinders. At different
velocities different patterns of the flow appear. In the Bénard problem [87] a liquid in a
thin plate is heated from below. The induced flow show hexagonal pattern and various
other regular configurations. Another source of motivation is the magnetic field of the
earth which has been going through a lot of pol reversals in the history of the earth [34].
This may be explained by heteroclinic cycles. For an introduction to heteroclinic cycles
and symmetry see [57]. In the Faraday experiment light is reflected by the surface of
a liquid which is vibrating and oscillating irregularly [141, pp. 255]. Especially in this
experiment the phenomena of ordered chaos has been studied since the symmetry puts
some structure on the chaotic attractors.

The aim of the theory of dynamical systems is the study of long time behavior and
invariant sets. Secondly, the influence of a parameter which may cause dramatic changes
is the goal of understanding. Analytical tools such as Liapunov-Schmidt reduction [86],
and center manifold reduction [92, 122] reduce a given dynamical system to a smaller one



which reflects the main phenomena. By now these became standard methods. For the
study of attracting sets ergodic theory became more and more important in the recent
years. Symmetric attractors using ergodic theory have been studied e.g. in [7, 9, 58], see
also [70, 72].

Working in analysis one does not expect the occurrence of Computer Algebra within
this context. But the symmetry brings in questions different from analysis. Symmetry
goes along with algebraic structures such as groups, invariant rings, algebras, and varieties
which are the objects of symbolic computation. Certainly, this modern tool will be used
much more in the future when more people are familiar with it.

Summary Although some attempts have been made to use Computer Algebra in
dynamical systems the full power of constructive algebraic methods still needs to be
discovered. This book is a start and will hopefully lead in the right direction.

In this work three topics within equivariant dynamical systems theory are treated.
Once a symmetry of a problem class is described by a group action a general equivari-
ant vector field is created in order to study generically occurring bifurcation phenomena.
The derivation of the general equivariant vector field is the first point. Secondly, the
application of Computer Algebra to local bifurcation theory is demonstrated. The most
advanced topic is a special method known as orbit space reduction. The basic idea is to
exploit the symmetry by dividing out the group action. Our investigation concerns the
choice of symmetry adapted bases. In all three topics I use Gröbner bases, especially vari-
ants of their efficient computation. In order to prepare their application an introduction
to Gröbner bases is presented in the first chapter.

Using Gröbner bases means algorithmic commutative algebra. Given a set of polyno-
mials f1 . . . , fm ∈ C[x1 . . . , xn] one asks questions about their common zeros V ⊂ Cn such
as finiteness, number, dimension or structure. These questions are attacked indirectly by
investigating the ideal I = 〈f1, . . . , fm〉 and the quotient ring C[x]/I. The desired answers
are given by the properties of the ring C[x]/I such as being a finite-dimensional vector
space, its dimension as vector space or the structure over a subring. With the help of
Gröbner bases these questions are reduced to examining monomials.

In the beginning of Chapter 1 the Gröbner basics are recalled and the efficient imple-
mentation details are discussed. Then three more advanced topics follow. The Hilbert
series driven Buchberger algorithm exploits a priori information. Sometimes a set of given
polynomials which needs to be investigated form already a Gröbner basis with respect
to some term order, but which is not what one wants. On the other hand this enables
the computation of the Hilbert series and thus the usage of the efficient Hilbert series
driven variant. In a lot of cases the term order can be found by combinatorial methods
(Structural Gröbner Basis detection). The exploitation of sparsity is treated here for the
first time. The third topic is the change of the term order during the Buchberger algo-
rithm (Dynamic Buchberger algorithm). In the last section of this chapter the standard
application of Gröbner bases to the solution of polynomial equation systems is recalled
for sake of completeness. Throughout the text and especially in this section I try to keep
the description as simple as possible in order to address applied mathematicians as well.

In the third chapter the results from algorithmic invariant theory are presented which
are needed in order to construct a generic equivariant vector field and guarantee the
unique representation as required in the following chapters. The algorithms are classified
by the structures they are exploiting. Examples illustrate the usefulness for equivariant
dynamical systems theory. First the computations of invariants and equivariants using



the Hilbert series are described in detail. The famous algorithm by Derksen using the
algebraic group structure is recalled. Its generalization to the equivariant case is presented
here for the first time. The algorithms exploiting the Cohen-Macaulay structure are given
together with time comparisons. Then the algorithms follow which give generators such
that a unique representation is guaranteed. The computation of a Hironaka decomposition
by algorithmic Noether normalization and the computation of a Stanley decomposition
of the module of equivariants are presented.

In Chapter 3 the typical argumentation of local symmetric bifurcation theory is out-
lined and illustrated by an example. The result on secondary Hopf bifurcation with cyclic
symmetry shows the typical usage of Computer Algebra. The generic equivariant vector
field is achieved by symbolic computation and also some other more simpler usages of sym-
bolic computations are demonstrated. The invention of a different style of investigation
within dynamical systems theory is the aim of this section.

In the last chapter the full power of the algorithms developed in the third chapter
are exploited in the orbit space reduction, a very special method in equivariant dynamical
systems theory. Treating the equivariant system modulo the group action yields a related
system on a part of a real variety. In fact the domain of definition is stratified by semi-
algebraic sets. These are submanifolds corresponding to different orbit types. Coordinates
are introduced by choosing a Hilbert basis of the invariant ring. The group actions
typically investigated in equivariant dynamical systems theory have a special property
such the invariant ring is Cohen-Macaulay which implies a certain structure of the complex
variety, the solutions of the relations of the Hilbert basis. The exploitation of Cohen-
Macaulayness has not been done before. It yields new insight into the properties of the
method of orbit space reduction. In appropriate coordinates the orbit space shows its
structure in a clear form. Even more the differential equations on the orbit space reflect
the fixed point spaces which are as flow invariant sets the main structure in the theory of
equivariant dynamical systems. Also the Jacobians have a special structure simplifying
the determination of eigenvalues and thus simplifying the bifurcation analysis. Examples
such as the Taylor-Couette problem illustrate the advantages of special coordinates. The
methods of Chapter 1, the computation of Gröbner bases, are exploited in multiples
ways. They are used for the computation of the generic equivariant vector field, the
computations of Chapter 2, rewriting an invariant in terms of a Hilbert basis, checking
radicals and many more aspects.

Altogether this work links very different areas of mathematics. Hopefully, it helps to
change the style in dynamical systems theory in the direction of making more usage of
computers instead of doing work by pencil and paper.

Berlin, May 1999 Karin Gatermann
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1.2.2 Computation of a Hilbert series . . . . . . . . . . . . . . . . . . . . 16
1.2.3 The Hilbert series driven Buchberger algorithm . . . . . . . . . . . 20
1.2.4 The computation with algebraic extensions . . . . . . . . . . . . . . 25
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Die eine Kerze zur Rechten. Wie immer. Kaum wahrnehm-
bar das Atmen, mit dem sie sich verzehrt. Ihr Licht taugt zu
nichts. Die Helligkeit, die meinen Augen nötig ist, kommt von
der Lampe links. Und doch habe ich sie angezündet. Wieder
und wieder. Ein Jahr. Zwei Jahre. Ehe ich mich versah, waren
es zwanzig und mehr. Solange ich an diesem Schreibtisch sitze.
Wie auch die Lichtverhältnisse waren - ich wollte sie unbe-
dingt, diese eine Kerze. Natürlich handelte es sich nicht im-
mer um denselben Tisch, dieselbe Kerze. Für einen Moment
will es mir sogar scheinen, als wäre ich niemals aufgestanden.
Als wäre dieses Dasein, vornübergebeugt am Schreibtisch,
mathematische Formeln auf ein Blatt Papier kritzelnd, das
eigentliche Leben gewesen. O diese Lust! Diese Klarheit!
Diese hochmütigen Konstruktionen! Aber dann die Zusam-
menbrüche. Der scharfe Schmerz in der Scheitelgegend, gegen
den kein Haareraufen half. Der Zweifel an der eigenen Exis-
tenzberechtigung. Plötzlich, wenn schon alles verloren aussah:
ein neuer Einfall. Also wieder von vorn. Verglichen mit diesem
höllischen Pendeln zwischen Fegefeuer und Hosianna war das
übrige Dasein fast eine Plattheit.

Helga Königsdorf
Respektloser Umgang
Luchterhand 736 S. 7



Chapter 1

Gröbner bases

[Kronecker] believed that one could, and that one must, in these parts
of mathematics, frame each definition in such a way that one can test in
a finite number of steps whether it applies to any given quantity. In the
same way, a proof of the existence of a quantity can only be regarded as
fully rigorous when it contains a method by which the quantity whose
existence is to be proved can actually be found.

K. Hensel (cited in Mishra [145])

The algorithmic treatment of varieties is the topic of this chapter. This deals as
preparation for the investigation of varieties in equivariant dynamical systems in Chap-
ter 4. Secondly, the computation of invariants and equivariants in Chapter 2 necessitates
algebraic computations based on Gröbner bases.

Since Gröbner bases are the most important tool of this work their basic theory and
algorithmic determination is presented. The standard theory of Gröbner bases may be
found in the books [3], [14], [41], [52], [61], [80], [145], [186], [192] and more advanced
theory in [177]. In the first section some elementary notions of Gröbner bases are recalled
emphazising on easy understandable presentation and illustration of ideas by pictures.
Then the recent progress on this topic follows which is new or which is not included in text
books. The main points are our implementation of the Hilbert series driven Buchberger
algorithm, the exploitation of the sparsity of polynomials in the structural Gröbner basis
detection, and the dynamic version of the Buchberger algorithm.

The exposition of the text is made for non-experts by including some elementary
explanations where it seems appropriate. Especially Section 1.5 contains easy readable
material and explains the purpose of Gröbner bases.

1.1 Buchberger’s algorithm

For given polynomials f1, . . . , fm ∈ C[x1, . . . , xn] we would like to study the solutions
x ∈ Cn of the system of algebraic equations given by f1(x) = 0, f2(x) = 0, · · · , fm(x) = 0.
Since the solution set does not change by addition and multiplication one equivalently
studies the variety

V (I) = {x ∈ Cn| f(x) = 0, ∀ f ∈ I}

1



2 CHAPTER 1. GROBNER BASES

of the ideal I = 〈f1, . . . , fm〉 which is generated by the given polynomials. Even more it
is possible to study the properties of the variety indirectly. The ideal I and the quotient
ring C[x]/I give insight into the variety, e.g. on the number of isolated solutions or the
dimension. So we are dealing algorithmicallywith ideals in a polynomial ringK[x 1, . . . , xn]
where the field1 K is in most practical computations Q. But we will as well discuss details
of computation for extensions ofQ in Section 1.2.4. A Gröbner basis is a special ideal basis
depending on an order of the monomials xα = xα1

1 · · ·xαn
n carrying essential information

on the properties of the variety.

Definition 1.1.1 ([14] p. 189) The relation ≤ is called a term order, if for all monomials
xα, xβ, xγ ∈ K[x1, . . . , xn]

xα ≤ xα (reflexive)
xα ≤ xβ and xβ ≤ xγ ⇒ xα ≤ xγ (transitive)
xα ≤ xβ and xβ ≤ xα ⇒ xα = xβ (antisymmetric)
xα ≤ xβ or xβ ≤ xα (connex)
1 ≤ xα (Noetherian)
xα ≤ xβ ⇒ xαxγ ≤ xβxγ

The first conditions have the meaning of total ordering of the monomials while the last
two conditions assure that the term order is admissible with the polynomial structure.

Example 1.1.2 Examples of term orders on K[x1, . . . , xn] with variable order
x1 > x2 > · · · > xn include

a.) the lexicographical ordering (>lex) defined by

xα >lex x
β ⇔ ∃i with αj = βj, 1 ≤ j < i− 1 and αi > βi,

b.) the graded lexicographical ordering (>grlex) defined by

xα >grlex x
β ⇔

n∑
k=1

αk >
n∑

k=1

βk or
n∑

k=1

αk =
n∑

k=1

βk and xα >lex x
β,

c.) the graded reverse lexicographical ordering (>grevlex) defined by

xα >grevlex x
β ⇔ ∑n

k=1 αk >
∑n

k=1 βk or

∑n
k=1 αk =

∑n
k=1 βk and ∃ i with

αj = βj, i− 1 ≤ j < n and αi < βi.

In Maple this order is called tdeg.

The term orders b.) and c.) use the notion of the degree of a polynomial. There is a
concept of a generalized degree which we will use later. Since it makes the notion of a
term order more transparent we recall it here.

�Fields in general purpose Computer Algebra systems are Q,Zp or extensions. The fields of real
numbers and complex numbers are not computable. Within symbolic computations the use of floating
point numbers does not make sense. Also the conversion of floating point numbers to rationals and then
computing exactly is of doubtful value.
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Figure 1.1: The ring K[x1, x2] graded by W (x1) = 2,W (x2) = 1

Definition 1.1.3 ([52] p. 29) A ring is called graded, if a direct sum decomposition
R =

⊕∞
i=−∞Ri exists such that

Ri · Rj ⊆ Ri+j ,

holds for all i, j ∈ Z, where Ri · Rj is defined as Ri · Rj := {ri · rj| ri ∈ Ri and rj ∈ Rj}.

Example 1.1.4 : The polynomial ring K[x] with the usual degree is a graded ring. Be-
sides this natural grading there are other gradings: Let w1, . . . , wn ∈ Z be weights on
the variables x1, . . . , xn. (W : {x1, . . . , xn} → Z,W (xi) = wi). The weighted degree is
defined by

degW (xα) =
n∑

i=1

wiαi = wtα .

Polynomials f =
∑

α∈A aαxα with degW (xα) equal for all α ∈ A ⊂ Nn are called W -
homogeneous. All homogeneous polynomials of degree i generate a vector space HW

i (K[x])
yielding the graded structure

K[x] =
∞⊕

i=−∞
HW

i (K[x]) .

The natural grading K[x] = ⊕∞
i=0H

N
i (K[x]) is included by the weights 1, . . . , 1. All grad-

ings of K[x] are given by weights in this way ([14] p. 467).
In Figure 1.1 the example of the grading W (x1) = 2,W (x2) = 1 is illustrated. It is nice
to observe that the word grading has its origin in the German word Grad.

Of course a ring may be graded several times. For examples with two gradings W1,W2

the vector space of all W1-homogeneous and W2-homogeneous polynomials of degree
degW1,W2

(p(x)) = (i, j) is given by

HW1,W2
i,j (K[x]) := HW1

i (K[x]) ∩HW2
j (K[x]).
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Figure 1.2: Two term orders defined by linear mappings and their interpretation as col-
lection of gradings

Writing W = (W1,W2) the bigrading is

K[x] =
⊕
α∈Z2

HW
α (K[x]) =

∞⊕
i=−∞

∞⊕
j=−∞

HW1,W2
i,j (K[x]) .

Almost all term orders are defined by certain matrices whose rows define various gradings.

Definition 1.1.5 : Let the matrix M ∈ Zn,n have the following properties:

i.) for each column j the first nonzero entry is positive.

∀j ∃k with mij = 0 ∀i < k and mkj > 0.

ii.) M has full rank.

By Mα < Mβ (which means there exists a k such that (Mα)i = (Mβ)i for all i < k and
(Mα)k < (Mβ)k ) a term order <M is defined.

The full rank of M assures that the relation <M is connex. The condition i.) on
M assures that the constant is the smallest monomial, in other words the term order
is Noetherian. In [161, 190] all term orders are classified by (r × n)-matrices with real
entries.

The interpretation is that each row of M defines a grading. First the grading of the
first row sorts the monomials. The second grading sorts the monomials which have the
same degree in the first grading and so on. Term orders are given by distinction with
respect to different gradings. This principle is reflected in the examples in Figure 1.2.

For a polynomial f ∈ K[x] one denotes by ht(f) its head term or leading term, i.e.
the monomial with highest order and non-vanishing coefficient hc(f) in f :

f = hc(f) · ht(f) + lower order terms.

Definition 1.1.6 An ideal basis {f1, . . . , fm} of I = 〈f1, . . . , fm〉 is called a Gröbner
basis, if the ideal of the leading terms equals the initial ideal generated by all leading
terms of elements of I:

〈ht(f1), . . . , ht(fm)〉 = 〈{ht(f)|f ∈ I}〉.
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The initial ideal carries structural informations about the variety. Knowing the Gröbner
basis enables the computations which involve the initial ideal such as computation of di-
mension, parameterization or the number of solutions for zero-dimensional ideals.

Before we discuss the details of the algorithmic computation of Gröbner basis the
geometric interpretation of the leading term is presented.

Definition 1.1.7 Let the polynomial f ∈ K[x] have a representation f(x) =
∑

a∈Nn cax
a,

with coefficients ca ∈ K where only a finite number of coefficients is nonzero. Then

supp(f) = {a ∈ Nn| ca �= 0},

is called the support of f and the convex hull of supp(f) in Rn is called the Newton
Polytope.

In general a polytope is a bounded convex set which is the intersection of a finite number
of halfspaces given by hyperplanes.

Each vector ω ∈ Rn defines a linear functional ω∗ : Rn → R, a �→ ωta.

Definition 1.1.8 ([195]) A subset of a polytope P in Rn is called face if a linear func-
tional ω∗ attains its maximum over the polytope at this set. The vector ω is called an
outer normal of F and we write Fω ⊂ P . The dimension of a convex set is the dimension
of the affine space generated by its points. A face F of dimension dimF = dimP − 1 is
called facet.

In most cases polytopes of dimension n in Rn are considered. Then the outer normal
of a facet is unique up to normalization.

In the context of Newton Polytopes NewP (f) we are interested in cases where the
linear functional is given by a gradingW ∈ Zn or a row of a matrix defining a term order.
Then F := Zn ∩ FW picks some points of the lattice where FW is the face of NewP (f)
corresponding to the grading W . The polynomial inW (f) =

∑
a∈Zn∩FW

cax
a is called the

initial form.

Lemma 1.1.9 Let M ∈ Zn fulfill the conditions in Definition 1.1.5 denoting by <M the
associated term order and let the rows be W1, . . . ,Wn. For each polynomial f ∈ K[x]

hc<M
(f) · ht<M

(f) = inWn(· · · inW2(inW1(f)) · · ·).

The example in Figure 1.3 illustrates that the first row (grading) of a matrix term
order is often sufficient to determine the leading term.

We return to the definition of the Gröbner basis and its importance for practical
computations. If F = {f1, . . . , fm} ⊂ K[x] is a Gröbner basis with respect to a term order
then the question whether f ∈ I := 〈f1, . . . , fm〉 can be decided in finitely many steps. If
j ∈ {1, . . . , m} and a monomial xα with xα · ht(fj) = ht(f) and c := hc(f)/hc(fj) exists,
the new polynomial r := f−cxαfj ∈ K[x] is easier than f in the sense that ht(r) < ht(f).
Observe that r is an element of the ideal I if and only if f ∈ I. Repeating this procedure
which is called top reduction we end with a polynomial g which has lowest possible leading
term, i.e. ht(g) < minj=1,...,m(ht(fj)). If F is a Gröbner basis then f ∈ I is equivalent
to g = 0. The repeated procedure is called division algorithm while the result g is called
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Figure 1.3: Support, Newton Polytope, and leading terms with respect to 2 term orders
of f(x) = x1x

4
2 + 2x21x

3
2 − x31x

2
2 + 4x41 + 6x21x2 + 3x1x2 + 2x1x

2
2 + 9x22. The initial form

inω(f) = x1x
4
2 + 2x21x

3
2 − x31x

2
2 with respect to the natural grading ω = (1, 1) is visualized

as corresponding facet of the Newton Polytope

normal form. It is denoted by g = normalf(f) and more precisely g = normalf<(f(x), F ),
if we want to express the dependence on the set F and the term order <. Besides the top
reductions of course also elimination of other monomials of f is possible. Observe that
the reductions and thus the normal form depend on the term order. If F is a Gröbner
basis the normal form does not depend on how the division algorithm is performed. For
more details see [14] p. 195–204.

Lemma 1.1.10 ([177] Prop. 1.1, [14] p. 206) Let F = {f1, . . . , fm} ⊂ K[x] be a Gröbner
basis with respect to a term order < and denote by I = 〈f1, . . . , fm〉 the ideal generated by
them.

i.) The polynomials g which are in normal form with respect to F and < form unique
representatives of classes g + I of the quotient ring K[x]/I.

ii.) The classes of the monomials xα with xα �∈ 〈ht(f1), . . . , ht(fm)〉 form a vector space
basis of the quotient ring K[x]/I.

The importance of i.) is that one can decide algorithmically whether f is a member
of the ideal or not. One just applies the division algorithm.

The monomials in ii.) are called standard monomials.

Definition 1.1.11 ([41] p. 90, [177] Prop. 1.1) A Gröbner basis {f1, . . . , fm} such that
{ht(f1), . . . , ht(fm)} form a minimal basis of the initial ideal and hc(f1) = 1 = · · · =
hc(fm) is called minimal Gröbner basis. If the fi are additionally inter-reduced F is
called a reduced Gröbner basis.
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Figure 1.4: The Newton Polytopes of g(x) = x41x2 + 5x21x
2
2 − 3x1 + 2x2 as well as of f

(Figure 1.3) are illustrated in the picture on top. The picture at the bottom gives the
support, the Newton Polytope, and leading term of the S-polynomial S(f, g) = x3

1f(x)−
x32g(x) along with the Newton Polytopes of x3

1f(x) and x
3
2g(x)

For each term order and each ideal inK[x] there exists a Gröbner basis which generates
this ideal. Of course there may be many Gröbner bases with this property. But the
reduced Gröbner basis is unique. Although there exist infinitely many term orders for
each ideal only a finite number of reduced Gröbner bases exists ([11, 149, 177]). This is
a consequence of the polynomial ring being Noetherian, see [177] Thm. 1.2.

The following classification of Gröbner bases is the foundation of its algorithmic de-
termination. The next example clearly shows the point.

Example 1.1.12 Do the polynomials g(x) = x41x2 + 5x21x
2
2 − 3x1 + 2x2 and f(x) =

x1x
4
2 +2x21x

3
2 − x31x

2
2 +4x41 +6x21x2 +3x1x2 +2x1x

2
2 +9x22 with leading terms ht(g) = x41x2

and ht(f) = x1x
4
2 with respect to the matrix term order [[1, 1], [1, 2]] form a Gröbner

basis? If they do form a Gröbner basis, then each element of I = 〈f, g〉 can be reduced
to zero by the division algorithm. For example h(x) := x1 · x2 · g(x) + 5 · x2 · f(x) ∈ I.
Since ht(h) = x2 · ht(f) = x1x

5
2 the polynomial r := h − 5x2f gives a top reduction

h = 5x2f + r with ht(r) < ht(h). The next reduction is with r = x1 · x2 · g obvious and
gives normalf(h) = 0.

But for k(x) := x31f(x) − x32g(x) the normal form computation is less obvious since
ht(k) < ht(x31f) = ht(x32g). The cancellation of leading terms in k(x) is the problem. For
illustration see Figure 1.4.

Theorem 1.1.13 ([41] p. 106) Let F = {f1, . . . , fm} ⊂ K[x] generate the ideal I =
〈f1, . . . , fm〉. Fix a term order <. Then the following statements are equivalent

i.) F forms a Gröbner basis of I with respect to <.

ii.) For all f ∈ I the division algorithm gives normalf<(f, F ) = 0.

iii.) For all (g1, . . . , gm) ∈ K[x]m the division algorithm computes the normal form of∑m
j=1 gjfj to be zero, i.e. normalf<(

∑m
j=1 gj(x)fj(x), F ) = 0.
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iv.) For all (s1, . . . , sm) ∈ K[x]m with
∑m

j=1 sj(x) · hc(fj) · ht(fj)(x) = 0 the division
algorithm gives normalf<(

∑m
j=1 sj(x)fj(x), F ) = 0.

Remark 1.1.14 The Condition ii.) enables to explain the link between Gröbner bases
and H-bases as they have been introduced in [134]. The set F = {f1, . . . , fm} of degrees
d1, . . . , dm is called a H-basis (nowadays called Macaulay basis) if for each f ∈ I =
〈f1, . . . , fm〉 of degree d there exists a representation f(x) = g1(x)·f1(x)+· · ·+gm(x)·fm(x)
with deg(gi) ≤ d− di, i = 1, . . . , m. Writing N = (1, . . . , 1) for the natural grading this is
equivalent to 〈inN (f1) . . . , inN(fm)〉 = 〈{inN (f)|f ∈ I}〉. Instead of the natural grading
the definition can be extended to ω-H-bases with respect to gradings ω given by the first
row of a matrix term order. Condition ii.) means that each f has a representation
f = g1f1 + · · ·+ gmfm with ht(g1f1) ≤ ht(f), . . . , ht(gmfm) ≤ ht(f). If ω is the first row
of the matrix term order this includes degω(g1f1) ≤ degω(f), . . . , degω(gmfm) ≤ degω(f).
Thus condition ii.) shows that Gröbner bases are just a generalization of ω-H-bases.
For more on the relation between Gröbner bases and Macaulay bases see [147] and [182]
Section 2.3.

Because of their importance the elements in iv.) have a special name.

Definition 1.1.15 Given a set F = {f1, . . . , fm} with leading terms ht(fi) a syzygy is a
tuple (s1, . . . , sm) ∈ K[x]m such that

m∑
i=1

si · hc(fi) · ht(fi) = 0.

The set of all syzygies forms a K[x]-module denoted by S(F ). Each syzygy s corre-
sponds to a polynomial in the ideal generated by F by defining s · F =

∑m
i=1 sifi.

The Buchberger algorithm is based on the fact that special sparse syzygies

Sij ∈ S(F ), 1 ≤ i < j ≤ m, (1.1)

form a module basis of S(F ), where S ij
k = 0, ∀ k �= i, k �= j, and

Sij
i =

lcm(ht(fi),ht(fj ))

ht(fi)
hc(fj), Sij

j = − lcm(ht(fi),ht(fj))

ht(fj)
hc(fi).

S(fi, fj) := Sij ·F is called S-polynomial. Although S ij is defined for the index order i < j
only, the notation is often used in a sloppy way by defining S ji := Sij, S(fj, fi) := S(fi, fj).

Theorem 1.1.16 ([41] p. 106) Let F = {f1, . . . , fm} ⊂ K[x] generate the ideal I =
〈f1, . . . , fm〉 and assume a term order <. The following statements are equivalent

i.) F forms a Gröbner basis of I with respect to <.

ii.) All syzygies s ∈ S(F ) have the property that s · F reduces to zero with respect to <
and F .

iii.) All elements s in a module basis of S(F ) have the property that normalf(s·F, F ) = 0.

iv.) All S-polynomials S(fi, fj), 1 ≤ i < j ≤ m reduce to zero.
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The basic version of the classical Buchberger algorithm is based on criterion iv.).

Algorithm 1.1.17 (Buchberger [23, 24])
Input: F = {f1, . . . , fm}, term order <
Output: Gröbner basis GB of I = 〈f1, . . . , fm〉

GB := F
m := |F |
S := {(i, j)|1 ≤ i < j ≤ m}
while S �= {} do

choose (i, j) ∈ S,
S := S \ {(i, j)}
g :=normalf(S(fi, fj)) wrt < and GB
if g �= 0 then GB := GB ∪ {g}

m := m+ 1
S := S ∪ { (i,m) | i = 1, . . . , m− 1}

# minimal Gröbner basis
for each g ∈ GB do

if ht(g) ∈ 〈{ht(f)|f ∈ GB, f �= g} > then GB := GB \ {g}
# reduced Gröbner basis
for each g ∈ GB do

g̃ :=normalf(g) wrt GB \ {g} and <
GB := GB \ {g} ∪ {g̃}

Although the set of pairs S is enlarged the terminates because the polynomial ring is
Noetherian.

Remark 1.1.18 For each g ∈ 〈GB〉 one easily finds the coefficient polynomials in the
representation g(x) =

∑
f∈GB gf(x) · f(x) by the division algorithm. The coefficients gi

in the representation g =
∑m

i=1 gi(x) · fi(x) can be computed as well. But a bookkeeping
of reduction steps during the Buchberger algorithm is required. For details see [3]. The
complexity of Algorithm 1.1.17 is discussed in [139, 123].

For the efficient computation various aspects are important.

- software aspects: good data structures for storing multivariate polynomials and
determination of the leading term are important.

- growth of coefficients: the computations in K = Q or Z respectively may lead to
enormous integer arithmetic with very long numbers. An attempt to get around this
is the computation modulo a prime number as is done in Macaulay [88]. Secondly,
the content of polynomials is extracted. A heuristic is necessary in order to decide
when contents (after each normal form computation or after each reduction step)
are computed and extracted.

- parallel implementation [160].

- ambiguity of division algorithm: Often several polynomials would fit for a reduction
step. A strategy proven to be efficient is to choose the oldest polynomial (the first
on the list which fits).
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- order of S-polynomials: The description in Algorithm 1.1.17 does not clarify which
of the S-polynomials to choose first for the normal form computation. A good
strategy is the so-called sugar selection strategy, introduced in [83] where a ghost
degree is associated to each polynomial and thus to each S-polynomial. For the
input polynomials this is just their degree. For all after polynomials the sugar is
determined recursively, see also [66].

- superfluous S-polynomials: most important for efficiency is to avoid the application
of the division algorithm to S-polynomials which will reduce to zero anyway. The
first point are the so-called Buchberger criteria which reflects the fact that the S-
polynomials correspond to a module basis of the module of syzygies which do not
form a minimal basis. Secondly, the Hilbert series may be exploited, see Section 1.2.

The main point for efficiency of the Buchberger algorithm is to avoid the treatment
of superfluous S-polynomials. Proposition 4 in [41] shows that if lcm(ht(f i), ht(fj)) =
ht(fi) ·ht(fj) the syzygy Sij ∈ S(F ) leads to a S-polynomial which automatically reduces
to zero (normalf<(S(fi, fj)) = 0 with respect to {fi, fj}). The occurrence of this case is
easily checked since only a property of leading terms needs to be tested:

1. Buchberger criterion: If ht(fi), ht(fj) are relatively prime then S(fi, fj) is superflu-
ous.

In [143], an improvement of the 1. criterion is formulated. But this criterion is more
expensive since it requires the factorization of polynomials.

Criterion D: If g(x) ∈ K[x] is a common divisor of fi and fj, i.e. fi(x) = g(x) · f ∗
i (x)

and fj(x) = g(x) · f ∗
j (x) and ht(f

∗
i ) and ht(f

∗
j ) are coprime then normalf(S(fi, fj)) = 0

with respect to < and fi, fj.
A second group of superfluous S-polynomials is given by the fact that in general S ij do

not form a minimal module basis. If fk divides lcm(fi, fj) then S
ij = cix

α
i · Sik + cjx

α
j S

jk

for appropriate cix
α
i , cjx

α
j , see Proposition 10 in [41] or Proposition 5.70 in [14].

2. Buchberger criterion: If ht(fk)|lcm(ht(fi), ht(fj)) and normalf(S(fi, fk)) = 0 as
well as normalf(S(fj , fk)) = 0 are satisfied then normalf(S(fi, fj)) = 0.

The criterion characterizes a case where among the generators S ik, Sjk, Sij the generator
Sij is superfluous in a generating set of the module of syzygies. Observe that

ht(fk) | lcm(ht(fi), ht(fj))

⇔ lcm(ht(fi), ht(fk)) | lcm(ht(fi), ht(fj))

⇔ lcm(ht(fj), ht(fk)) | lcm(ht(fi), ht(fj)).

The use of the 2. Buchberger criterion becomes complicated, if one tries to use it before
S(fi, fk), S(fj, fk) have been treated. In case lcm(ht(fi), ht(fk)) = lcm(ht(fi), ht(fj))
there is the danger to delete both pairs (i, k), (i, j) without doing any normal form com-
putation which is wrong in general. Either S ik or Sij is superfluous, but not both. That’s
why Gebauer and Möller [79] split it into three criteria. The index order i < j is assumed.

Criterion M(i, j): If k exists such that k < j and lcm(ht(fk), ht(fj)) is a divisor of
lcm(ht(fi), ht(fj)), but lcm(ht(fk), ht(fj)) �= lcm(ht(fi), ht(fj)), then S(fi, fj) is super-
fluous.

Criterion F(i, j): If k exists such that k < i and lcm(ht(fk), ht(fj)) = lcm(ht(fi), ht(fj)),
then S(fi, fj) is superfluous.
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Criterion Bk(i, j): If k exists such that k > j and lcm(ht(fk), ht(fj)) is a divisor
of lcm(ht(fi), ht(fj)), and lcm(ht(fk), ht(fj)) �= lcm(ht(fi), ht(fj)), lcm(ht(fk), ht(fi)) �=
lcm(ht(fi), ht(fj)), then the S-polynomial S(fi, fj) is superfluous.

Experience shows that the correct exploitation of the second Buchberger criterion
is a tricky task. It requires the distinction between new and old critical pairs and a
sophisticated ordering of pairs and use of parts of the criterion, see [83], [66] and [14]
p. 230.

It is well-known that the standard implementations in the general purpose systems
Mathematica and Maple are rather pour. Better are special implementations such as GB
[55], Macaulay [12], Macaulay 2 [88], the Groebner package in REDUCE [142], CoCoa
[31], Singular [90], Magma [30], the package Mgfun [37] in Maple V.5, Bergman, Felix,
MAS, and the package moregroebner [66] in Maple.

Besides the Gröbner bases in polynomial rings there are as well Gröbner bases for
ideals where the coefficient field is a polynomial ring itself and secondly for ideals in
non-commutative algebras. For the computation over rings the theoretical results on
these so-called comprehensive Gröbner bases are given in [191] and an implementation is
available in REDUCE. The non-commutative Gröbner bases are needed for the solution
of differential equations and for the computation of recurrence formulas. In both cases it
is not the general non-commutative case. For theoretical results we exemplary cite [103].
Non-commutative Gröbner bases are implemented in REDUCE, Bergman, and Mgfun.

The third type of generalization of Gröbner bases is given by a modification of the
property of term orders. The standard bases are defined with respect to a term order
which do not insist to be Noetherian (property (v) in Definition 1.1.1) thus being inter-
mediate between the tangent cone algorithm by Mora and the traditional Gröbner bases
as described in this chapter. Exemplary we cite [89].

Besides the generalization of Gröbner bases also the restriction to special cases such
as the binomial ideals occurring in the context of integer programming ([42], Chapter 8)
are important. As an example of several articles in the literature I refer to [117].

1.2 The consequence of grading

For special ideals the definition of a truncated Gröbner basis makes sense. The same idea
enables the extension of the Gröbner basis concept to modules and gives rise to an efficient
version of the Buchberger algorithm. The explanation of these results is the purpose of
this section.

1.2.1 Definitions and the relation to Gröbner bases

Definition 1.2.1 ([52] p. 42) Consider a module M over the ring R which is assumed
to be graded by R = ⊕∞

i=−∞Ri. The module M is called graded, if it is a direct sum
M =

⊕∞
j=−∞Mj such that Ri ·Mj ⊂ Mi+j ∀ i, j ∈ Z.

Example 1.2.2 : Let W : {x1, . . . , xn} → Z,W (xi) = wi be a grading of K[x1, . . . , xn].

i.) Each ideal of K[x] which is generated by W -homogeneous polynomials is an example
for a graded module:

I =
∞⊕

i=−∞
HW

i (I) .
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ForW (x1) = 1,W (x2) = 2 the ideal 〈x2x1+5x31, x
2
2−2x2x

2
1−x41〉 is W -homogeneous.

On the other hand for each W -graded ideal there exists a set of generators which
are W -homogeneous each.

ii.) If I is a W -homogeneous ideal the quotient ring K[x]/I is a W -graded module over
K[x] as well.

Definition 1.2.3 Let K[x] be graded by W . A W -homogeneous ideal I of K[x] is an
ideal which respects the grading, i.e. is a W -graded module.

It is well-known that homogeneous ideals are very valuable for the study of the solu-
tions of a system of polynomial equations by interpreting the affine zeros as curves in the
weighted projective space: Let I = 〈f1, . . . , fm〉 ⊂ K[x1, . . . , xn], and

V (I) = {x ∈ Cn| f(x) = 0, ∀ f ∈ I},

its affine variety and w = (w0, w1, . . . , wn) ∈ Nn+1 a grading W on K[x0, x1, . . . , xn].
Then

f̃i(x0, x1, . . . , xn) := fi(x
−w1
0 xw0

1 , . . . , x−wn
0 xw0

n ) · xdegW (fi)
0 , i = 1, . . . , m,

defines W -homogeneous polynomials of degrees deg(f̃i) = wo degW (fi) and thus a W -
homogeneous ideal Ĩ = 〈f̃1, . . . , f̃m〉. Since homogeneous ideals are generated by homoge-
neous polynomials the varieties have special properties:

x ∈ V (Ĩ) ⇒ (aw0x0, a
w1x1, . . . , a

wnxn) ∈ V (Ĩ), ∀ a ∈ C.

This one-dimensional torus action implies an equivalence relation in the natural way.
The classes [(1, x1, . . . , xn)] ∈ V (Ĩ)/∼ correspond to the affine zeros (x1, . . . , xn) ∈ V (I).
Secondly, it is sufficient to deal with Gröbner bases of Ĩ. Choosing a matrix term order⎛⎜⎜⎜⎜⎝

w0 w1 · · ·wn

0
...
0

M

⎞⎟⎟⎟⎟⎠ (1.2)

a Gröbner basis of Ĩ corresponds by substitution of x0 = 1 to a Gröbner basis of I with
respect to the term order defined by M . This is obvious by the elimination technique
explained in Section 1.5. That’s why one restricts in Macaulay to ideals which are homo-
geneous with respect to a grading.

Of course also multiple grading may occur in several situations. Its algorithmic exploita-
tion is the purpose of this section.

Example 1.2.4 Let W = {W1, . . . ,Wr} be a set of gradings of K[x1, . . . , xn] such that
K[x] = ⊕∞

j=−∞H
Wi
j (K[x]), i = 1, . . . , r. Then

K[x] =
⊕
j∈Zr

HW
j (K[x]) with HW

j (K[x]) = HW1
j1 (K[x]) ∩ · · · ∩HWr

jr (K[x]),
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is a multiple grading of the ring K[x]. Consider K[x, z] with the Kronecker grading
Γ(xk) = 0, k = 1, . . . , n,Γ(zl) = 1, l = 1, . . . , s. Then the module HΓ

1 (K[x, z]) is multi-
graded by W = {W1, . . . ,Wr} by extension to K[x, z] by adding weights 0 on the zl.

HΓ
1 (K[x, z]) =

⊕
j∈Zr

HΓ,W
1,j (K[x, z]).

Grading enables the definition of truncated Gröbner bases and module Gröbner bases.

Definition 1.2.5 Let W = {W1, . . . ,Wr} be some gradings of K[x1, . . . , xn] with Wi ∈
Nn, i = 1, . . . , r and I a W -homogeneous ideal. Let < be a term order and d ∈ Nr be a
fixed degree. A finite set of W -homogeneous polynomials F ⊂ I is called a d-truncated
Gröbner basis of I with respect to W and term order <, if

{ht(f)| f ∈ F and degWi
(f) ≤ di, i = 1, . . . , r},

generates
r⋂

i=1

di⊕
ji=0

HWi
ji (LT (I)) =

⊕
j≤d

HW
j (LT (I)),

where LT (I) = 〈{ht(f)|f ∈ I}〉 denotes the initial ideal. The truncated Gröbner basis is

denoted by GB
(⊕

j≤dH
W
j (I)

)
.

Remark 1.2.6 i.) Observe that the grading is restricted such that the weights are non-
negative. Then HW

0 (K[x]) is the smallest part and there are no components with negative
index. ii.) In [26] the truncated Gröbner basis is defined in a similar way, but using
W -compatible term orders, i.e. putting rows W1, . . . ,Wr as first rows of the matrix rep-
resenting the term order. But the compatibility is not necessary. In [26] is is only needed
for the formulation. Even if the Buchberger algorithm is started with non-homogeneous
generators of aW -homogeneous ideal and using a non-compatible term order the computed
reduced Gröbner basis will consist of W -homogeneous polynomials. So the computation of
a truncated Gröbner basis with respect to a non-compatible ordering is no problem as long
as we start with homogeneous polynomials.

This definition is useful in at least two ways.

Definition 1.2.7 ([14]) Consider K[x, z] together with the Kronecker grading Γ(xi) =
0, i = 1, . . . , n,Γ(zj) = 1, j = 1, . . . , s. A module Gröbner basis of a submodule of the
module HΓ

1 (K[x, z]) is a truncated Gröbner basis of Γ-degree 1.

Since every finitely generated, freeK[x]-module is isomorphic to a moduleH Γ
1 (K[x, z]) the

truncated Gröbner bases enables to deal algorithmically with finitely generated modules
and their submodules.

Lemma 1.2.8 Let W = {W1, . . . ,Wr} be a set of gradings of K[x] and d ∈ Nr a fixed
degree. Assume GB ⊂ K[x] is a d-truncated Gröbner basis of a W -homogeneous ideal I.
Let f ∈ K[x] be a polynomial with degWi

(f) ≤ di, i = 1, . . . , r. Then

f ∈ I ⇔ normalf(f,GB) = 0.
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Figure 1.5: The supports of g(x) = x52 + 2x42x1 − x32x
2
1 − 3x22x

3
1 and f(x1, x2) = x2x

2
1 + x31,

and S(f, g) = x42f − x21g as well as normalf(S(f, g), {f, g}) = x7
1. The matrix term order

is [[1, 1], [1, 2]]. Since f and g are homogeneous with respect to the natural grading so is
S(f, g) and each other intermediate polynomial of the Buchberger algorithm

This is the generalization of Thm. 10.39, p. 471 in [14] from one grading to multiple
grading. As shown in [74] the restriction in degree can make difficult problems computable
in short time.

In the following I consider the efficient computation of truncated Gröbner bases. The
gradings W = {W1, . . . ,Wr} give rise to gradings on the module of syzygies S(F ) for a
set F = {f1, . . . , fm} of homogeneous polynomials in the following way:

S ∈ HW1...Wr
j1...jr (S(F )) :⇔ Sk · ht(fk) ∈ HW1...Wr

j1...jr (K[x]), k = 1, . . . , m.

Especially the syzygies S ij corresponding to the S-polynomials (defined in (1.1)) are ho-
mogeneous of degree

degW (lcm(ht(fi), ht(fj)).

A W -homogeneous syzygy S of degree (j1, . . . , jr) gives aW -homogeneous polynomial
S ·F = S1 ·f1+ · · ·+Sm ·fm. Even more the degree of S ·F is known before it is computed
since it is the degree of the syzygy. Additionally the division algorithm preserves the
homogeneity and the degree. Sloppy speaking the Buchberger algorithm is performing in
the slices HW

j (K[x]). Figure 1.5 gives an illustration of this abstract concept.

Consequently, the following heuristic is suggested as selection strategy of S-polyno-
mials: sort the S-polynomials by their degree and treat the lowest first. On average this
will give the best exploitation of Buchberger criteria.
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Some structural information of an ideal is given by the grading which can be exploited
by a special variant of the Buchberger algorithm. The following concept goes back to
Hilbert.

Definition 1.2.9 ([8] p.116) Let M be a finitely generated module M graded by M =⊕∞
i=0Mi over a Noetherian graded ring R =

⊕∞
j=0Rj such that R0 = K is a field. Then

HP(λ) =
∞∑
i=0

dim(Mi) · λi,

is called the Hilbert-Poincaré series of M and h : N → N, h(i) = dim(Mi) is the
generating function or characteristic function. Here dim(Mi) denotes the dimension of
the K-vector spaces Mi.

If M is multi-graded the multiple Hilbert series is defined in a similar way:

HPW
M (λ1, . . . , λr) =

∞∑
i∈Nr

dim
(
HW1,...,Wr

i1,...,ir (M)
)
· λi1 · · ·λir .

The series is always represented as a rational function in the variables λ. This enables
the algorithmic use. Especially one compares the series of a module and some submodules.
Once this rational representation is known its Taylor expansion gives the dimension of
the vector spaces yielding some valuable structural information, see Section 1.2.3 and
Section 2.1.

Under some restriction the gradings on the polynomial ring K[x] fulfill the require-
ments in Definition 1.2.9 since HW

0 (K[x]) is a subring of K[x] and the spaces HW
j (K[x])

are HW
0 (K[x])-modules.

Definition 1.2.10 ([26]) A tuple of gradings (W1, . . . ,Wr) of K[x] is a weight system if

a.) Wj(xi) ≥ 0, for all j = 1, . . . , r, i = 1, . . . , n,

b.) for all i = 1, . . . , n exists j ∈ {1, . . . , r} with Wj(xi) > 0,

c.) W1, . . . ,Wr are linear independent.

The weight system guarantees HW
0 (K[x]) = K. For each W -homogeneous ideal I the

quotient ring K[x]/I is a graded module and its series HPW
K[x]/I(λ) is well-defined. Then

dim(HW
i (K[x]/I) equals the codimension of HW

i (I) in HW
i (K[x]).

Example 1.2.11 The Kronecker grading on K[x, z] in Example 1.2.4 is not a weight sys-
tem. Because HΓ

0 (K[x, z]) = K[x] the condition for the definition of the Hilbert-Poincaré
series is not fulfilled. But on K[x1, x2, x3] the gradingW1(x1) = 2,W1(x2) = 1,W1(x3) = 0
together with the second grading W2(x1) = 0,W2(x2) = 3,W2(x3) = 5 forms a weight sys-
tem. Since HW1,W2

0,0 (K[x]) = K the homogeneous components are K-vector spaces of finite
dimension. The series of K[x] is

HPW1,W2

K[x] (λ1, λ2) =
1

(1− λ21)(1− λ1λ32)(1− λ52)
.

For I = (x22) the quotient ring is K[x]/I = K[x1, x3]⊕ x2K[x1, x3] and its series is

HPW1,W2

K[x]/I (λ1, λ2) =
1

(1− λ21)(1− λ52)
+

λ11λ
3
2

(1− λ21)(1− λ52)
.
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Hilbert series are not only an abstract concept but have a meaning for varieties. As-
sume J ⊂ K[x1, . . . , xn] is an ideal and J̃ ⊂ K[x0, . . . , xn] its homogenization with re-
spect to the natural grading. Then the codimension of J ∩ Pi in Pi = ⊕i

j=0H
N
i (K[x])

equals dim
(
HN

i (K[x]/J̃)
)
and thus HPN

K[x]/J̃(λ) equals the affine Hilbert series of J ,∑∞
j=0 codim (J ∩Pj in Pj)) · λj , see [41] p. 434. The Hilbert polynomial satisfies p(j) =

codim(J̃ ∩Pj in Pj)) for all j sufficiently big. It may be easily computed from the Hilbert
series, see [13]. An example is given in 1.2.17. The degree of p is the dimension of the vari-
ety V (J). If the Hilbert polynomial is a constant then the ideal is called zero-dimensional
and has only finitely many zeros. This constant (codimension of J ∩Pj in Pj for some big
j) is the number of affine zeros of J in Cn (counted with multiplicity), see [14] Thm. 8.32.
Consequently many Computer Algebra systems offer implementations of algorithms for
computation of Hilbert series or Hilbert polynomials. For example REDUCE has an
implementation of the affine Hilbert polynomial, based on [62].

1.2.2 Computation of a Hilbert series

Once a Gröbner basis is known the computation of the Hilbert series pulls down to a
purely combinatorial problem.

Lemma 1.2.12 (Macaulay [135]) Let (W1, . . . ,Wr) be a weight system for K[x] and I a
W -homogeneous ideal. Let LT (I) be the initial ideal of I with respect to a term order of
K[x]. Then the Hilbert series of I and LT (I) are equal.

Since the leading terms {ht(f), f ∈ GB} of a Gröbner basis GB generate the mono-
mial ideal LT (I) the series HPK[x]/I is easily computed. We only need an algorithm for
monomial ideals.

Suppose we have a weight system {W1, . . . ,Wr} for K[x1, . . . , xn] with Wi(xj) = wij.
Then the Hilbert-Poincaré series of the full ring is given by

HPW
K[x](λ1, . . . , λr) =

1

(1− λw11
1 · · ·λwr1

r ) · · · · · (1− λw1n
1 · · ·λwrn

r )
.

The Hilbert series of an ideal has always a representation

HPW
K[x]/I(λ1, . . . , λr) =

gI(λ)

(1− λw11
1 · · ·λwr1

r ) · · · · · (1− λw1n
1 · · ·λwrn

r )
,

where the numerator num(I) := gI(λ) is a polynomial in λ.

Lemma 1.2.13 Let xβ1 , . . . , xβm ∈ K[x] be a minimal generating set of J and xα �∈ J
such that xα, xβ1, . . . , xβm ∈ K[x] is a minimal generating set of I = 〈J ∪ {xα}〉. Let
{W1, . . . ,Wr} be a weight system given by Wi(xj) = wij, i = 1, . . . , r, j = 1, . . . , n. By
Wi(α) = degWi

(xα) an abbreviation for the degree of a monomial is used. Then

a.) num(〈xα〉) = 1− λ
W1(α)
1 · · ·λWr(α)

r ,

b.) num(J ∩ 〈xα〉) = 1− λ
W1(α)
1 · · ·λWr(α)

r + λ
W1(α)
1 · · ·λWr(α)

r · num(J : xα),
where J : xα denotes the ideal quotient {f ∈ K[x] | f(x) · xα ∈ J}.
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α

β

γ

=

α

+

β

−

γ

Figure 1.6: Illustration of Lemma 1.2.13: The monomials outside of 〈J ∩ 〈xα〉〉 with
J = 〈xβ〉 equal the monomials outside of 〈xα〉 plus those outside of J minus those outside
of J ∩ 〈xγ〉 with xγ = lcm(xα, xβ)

c.) num(I) = num(J)− λ
W1(α)
1 · · ·λWr(α)

r · num(J : xα).

Proof: a.) In order to determine dim
(
HW

i (K[x]/〈xα〉)
)
we need to count the mono-

mials xγ with xγ �∈ 〈xα〉. These are the monomials in K[x] minus the monomials of

type xδ · xα where xδ runs through all monomials in K[x]. Thus dim
(
HW

i (〈xα〉)
)
=

dim
(
HW

i−degW (xα)(K[x])
)
and

HPW
〈xα〉(λ) =

∑
i∈Nr dim

(
HW

i (〈xα〉)
)
· λi11 · · ·λirr

=
∑

i∈Nr dim
(
HW

i−degW (xα)(K[x])
)
· λi11 · · ·λirr

=
∑

i∈Nr dim
(
HW

i (K[x])
)
· λi1+W1(α)

1 · · ·λir+Wr(α)
r

= λ
W1(α)
1 · · ·λWr(α)

r · HPW
K[x](λ) .

This yields num(〈xα〉) = 1− λ
W1(α)
1 · · ·λWr(α)

r .
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b.) K[x]/(J ∩ 〈xα〉) � K[x]/〈xα〉 ⊕ 〈xα〉/(J ∩ 〈xα〉) yields

HPW
K[x]/(J∩〈xα〉)(λ) = HPW

K[x]/〈xα〉(λ) +HPW
〈xα〉/(J∩〈xα〉)(λ) .

The first series is known from a.). For the second series J ∩ 〈xα〉 � xα(J : xα) gives
〈xα〉/(J ∩ 〈xα〉) � K[x]/(J : xα). But a shift in the indexing has occurred.

num(J ∩ 〈xα〉) = num(〈xα〉) + λ
W1(α)
1 · · ·λWr(α)

r · num(J : xα)

= 1− λ
W1(α)
1 · · ·λWr(α)

r + λ
W1(α)
1 · · ·λWr(α)

r · num(J : xα) .

c.) The monomials outside of I = 〈J ∪ {xα}〉 are counted by those outside of J , those
outside of 〈xα〉 minus those outside of J ∩ 〈xα〉.

num(I) = num(J) + num(〈xα〉)− num(J ∩ 〈xα〉)

= num(J) + 1− λW (α) −
(
1− λW (α) + λW (α) · num(J : xα)

)
= num(J)− λ

W1(α)
1 · · ·λWr(α)

r · num(J : xα)

�Multiple use of c.) gives a recursive formula exploited in Algorithm 1.2.15.

Corollary 1.2.14 Let I = 〈xα1 , . . . , xαm〉 ⊂ K[x]. Then

num(I) = num(〈xα1〉)−
m∑
j=2

λW (αj) · num(〈xα1 , . . . , xαj−1〉 : xαj ) .

Lemma 1.2.15 ([13]) Let I be generated by monomials. Assume that the monomials
split the set of variables into disjoint sets Xi, i = 1, . . . , j. Furthermore assume that the
set of generating monomials split into disjoint sets M1, . . . ,Mj such that the monomials
in the set Mi depend on the set of variables Xi only. Define Ii := I ∩K[Xi]. Then

num(I) = num(I1) · · · · · num(Ij).

Algorithm 1.2.16 (Hilbert-Poincaré series)
Input: monomial ideal I minimally generated by Ims := {xα1 , . . . , xαm},

a weight system Wi(xj) = wij, i = 1, . . . , r, j = 1, . . . , n,
variables x1, . . . , xn,
variables λ1, . . . , λr

Output: HPW
K[x]/I(λ) ∈ K(λ)

g := hilbinumerator(Ims, x,W, λ)
HP := g
for i from 1 to n do

HP = HP/(1− λw1i
1 · · ·λwri

r )
return(HP )
Subroutine hilbinumerator(Ims, x,W, λ) # I = 〈Ims〉
if Ims = {} # Ims = {xα1 , . . . , xαm}

then numI = 1
else xα = Ims[1] # xα = xα1

numI = 1− λ
W1(α)
1 · · ·λWr(α)

r # num(〈xα1〉)
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for j from 2 to m do # Jj = 〈xα1 , . . . , xαj−1〉 : xαj

Jms := {lcm(xα1 , xαj )/xαj , . . . , lcm(xαj−1, xαj )/xαj}
Jms :=minimal set of generators of Jj # Jj = 〈Jms〉
{xj1 , . . . , xjk} := linear monomials in Jms
J1ms := Jms \ {xj1, . . . , xjk}
numJ1 := hilbinumerator(J1ms, x,W, λ) # num(Jj)
numJ := (1− λ

w1i1
1 · · ·λwri1

r ) · · · (1− λ
w1ik
1 · · ·λwrik

r ) · numJ1
numI := numI − λ

W1(αj )
1 · · ·λWr(αj)

r · numJ # Corollary 1.2.14
return(numI) # num(I)

An implementation is available in [66] and Macaulay. The algorithm is essential Algo-
rithm 2.6 variant A in [13] modified from the natural grading to multiple grading. Also
Lemma 1.2.13 and Corollary 1.2.14 are the improved versions of results in [13]. The algo-
rithmic computation of the affine Hilbert polynomial has first been attacked in [146] and
improved in [62]. The implementation in REDUCE is based on the latter. More recently
Bigatti [16] described an improved algorithm for the Hilbert series which makes use of
the splitting of the set of monomials depending on disjoint sets of variables according to
Lemma 1.2.15. Also in Maple V.5 Hilbert series and Hilbert polynomial are available.

Example 1.2.17 The cyclo hexane problem ([143, 71, 78, 136]) is defined with the ma-
trices

A :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1

1 0 1 8/3 x1 8/3

1 1 0 1 8/3 x2

1 8/3 1 0 1 8/3

1 x1 8/3 1 0 1

1 8/3 x2 8/3 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1

1 0 1 8/3 x1 8/3 1

1 1 0 1 8/3 x2 8/3

1 8/3 1 0 1 8/3 x3

1 x1 8/3 1 0 1 8/3

1 8/3 x2 8/3 1 0 1

1 1 8/3 x3 8/3 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the polynomials

f4(x) = det(B),
f3(x) = det(A), f1(x1, x2, x3) = f3(x2, x3, x1), f2(x1, x2, x3) = f3(x3, x1, x2).

The Gröbner basis with respect to <grevlex has leading terms

x1
2x3

2, x2
2x3

2, x1x3
3, x2x1

2, x2
2x1, x2x1x3 .

Homogenizing the polynomials of the Gröbner basis with respect to the natural grading
gives a Gröbner basis of the homogeneous ideal. The set of leading terms remains the
same. The Hilbert series computed by Algorithm 1.2.16 is

−λ
4 − λ3 − 3 λ2 − 2 λ− 1

(−1 + λ)2
=

−7

1− λ
+

6

(1− λ)2
− λ2 − λ + 2

Since the degree of the Hilbert polynomial p(λ) = 6(1 + λ) − 7 is one there is a one-
dimensional variety of solutions.

This example clearly illustrates the advantages of Gröbner bases. Structural informa-
tion such as the dimension can be computed.
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1.2.3 The Hilbert series driven Buchberger algorithm

A variant of the Buchberger algorithm uses the structural information on the ideal given
by the Hilbert series. With this the number of remaining elements in a Gröbner basis of
a certain degree are known. Consequently, S-polynomials can be dropped which means a
speed-up of the algorithm.

Lemma 1.2.18 Let W be a single grading on K[x] which forms a weight system. Let F =
{f1, . . . , fm} ⊂ K[x] be a set of W -homogeneous generators of the homogeneous ideal I =
〈f1, . . . , fm〉. Assume a term order < and denote by J = 〈ht(f1), . . . , ht(fm)〉 a subideal
of the initial ideal LT (I). Denote by HPW

K[x]/LT (I)(λ) =
∑∞

i=0 aiλ
i and HPW

K[x]/J(λ) =∑∞
i=0 biλ

i the Hilbert series of I and J . If ai = bi, i = 0, . . . , d then F forms a d-truncated
Gröbner basis of I with respect to <. Furthermore if ad+1 < bd+1 then d is the maximal
degree with this property. A minimal Gröbner basis of I includes bd+1 − ad+1 polynomials
of degree d+ 1 which form (in HW

d+1(I)) a direct complement of

HW
d−deg f1+1(C[x]) · f1 + · · ·+HW

d−deg fm+1(C[x]) · fm ⊂ HW
d+1(I) .

Proof: The module of syzygies is graded as well. For all syzygies S of degree ≤ d
the associated polynomial S · F has degree d or less. Since ai = bi for i = 0, . . . , d
we have ⊕d

i=0H
W
i (J) = ⊕d

i=0H
W
i (LT (I)) and the division algorithm reduces S · F to

zero. Considering the degree d + 1 the bd+1 − ad+1 additional polynomials have leading
terms which are not members of J and are all different since we construct a minimal
Gröbner basis. Amending these bd+1 − ad+1 polynomials gives a truncated Gröbner basis
of degree d+ 1. �

Lemma 1.2.18 reflects the fact that W -homogeneous Gröbner bases are W -H-bases.
It means that at exactly bd+1 − ad+1 linear independent polynomials of degree d + 1 are
missing in a Gröbner basis. This is the key for the Hilbert series driven Buchberger
algorithm. The idea is to climb up the degree and add polynomials at degrees where
some are missing. Once bd+1 − ad+1 S-polynomials which are not reducing to zero are
found all remaining S-polynomials of degree d+ 1 are dropped. The idea of the following
algorithm has been presented in [182].

Algorithm 1.2.19 (HP driven Buchberger algorithm)
Input: one grading W , forming a weight system

set of W -homogeneous polynomials F = {f1, . . . , fm},
term order <
Hilbert series HPW

K[x]/I(λ) =
∑∞

i=0 aiλ
i

Output: Gröbner basis GB of I = 〈f1, . . . , fm〉

GB := F
m := |F |
HT := {ht(f1), . . . , ht(fm)} # leading terms
HP := HPW

K[x]/〈HT 〉(λ) =
∑∞

i=0 biλ
i # tentative Hilbert series

d := min{i | bi �= ai} # minimal deg. of missing pols.
cd := bd − ad # nr of missing pols. of deg. d
S := {(i, j) | 1 ≤ i < j ≤ m, degW (lcm(ht(fi), ht(fj))) ≥ d}
while S �= {} do
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choose (i, j) ∈ HW
d (S), # a pair of degree d

S := S \ {(i, j)}
g :=normalf(S(fi, fj)) wrt < and GB
if g �= 0 then

GB := GB ∪ {g}
HT := HT ∪ {ht(g)}
m := m+ 1
cd := cd − 1
if cd = 0 then # all pols. of degree d found
HP := HPW

K[x]/〈HT 〉(λ) # Algorithm 1.2.16

if HP = HPW
K[x]/I(λ) then break# GB found (Lem. 1.2.18)

d := min{i | bi �= ai} # new degree d
cd := bd − ad
S := S \ {(i, j) | degW (S(fi, fj)) < d} # skipping

S := S ∪ { (i,m) | i = 1, . . . , m− 1, degW (S(fi, fm)) ≥ d}
# reduce to minimal and reduced Gröbner basis

This is still a basic version since the exploitation of the Bucherger criteria for deletion of
superfluous S-polynomials are missing. Also the possibilitity of truncation is not consid-
ered.

In the sequel I will generalize Algorithm 1.2.19 for multiple grading. Then the Hilbert
series is used in a more sophisticated way.

Lemma 1.2.20 (Lemma 3.5 in [26]) Let W = (W1, . . . ,Wr) be a weight system of K[x]
such that the subsystem (W1, . . . ,Ws) forms a weight system of minimal length. Let I be
a W -homogeneous ideal and

HPW
K[x]/I(λ) =

∑
i∈Nr

aiλ
i, HPW1,...,Ws

K[x]/I (λ) =
∑
j∈Ns

cjλ
j ,

the corresponding Hilbert-Poincaré series. Then cj =
∑

k∈Nr−s a(j,k) and

HPW1,...,Ws

K[x]/I (λ1, . . . , λs) = HPW
K[x]/I(λ1, . . . , λs, 1, . . . , 1).

Proof: The vector spaces are decomposed as

HW1,...,Ws
j (K[x]/I) =

∞∑
ks+1=0

· · ·
∞∑

kr=0

HW1,...,Wr

j1,...,js,ks+1,...,kr
(K[x]/I), (1.3)

for all j ∈ Ns. Since W1, . . . ,Ws is a weight system the vector space at the left has finite
dimension and consequently the sum on the right hand side only runs over a finite number
of spaces. Denoting the dimensions as

cj = dim
(
HW1,...,Ws

j (K[x]/I)
)
, aj,k = dim

(
HW

j,k(K[x]/I)
)
,

the formula cj =
∑

k∈Nr−s aj,k follows immediately. From this the formula for the Hilbert
series is obvious. �

Using the decomposition (1.3) Lemma 1.2.18 is refined to multiple grading.
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Lemma 1.2.21 LetW = (W1, . . . ,Wr) be a grading ofK[x] and the subgrading (W1, . . . ,Ws)
be a weight system. Let I ⊂ K[x] be aW -homogeneous ideal and F = {f1, . . . , fm} a set of
W -homogeneous generators. Assume a term order < and denote by J = 〈ht(f1), . . . , ht(fm)〉
a monomial ideal J ⊂ LT (I). Denote by

HPW
K[x]/LT (I)(λ1, . . . , λr) =

∑
i∈Nr ciλ

i and

HPW
K[x]/J(λ1, . . . , λr) =

∑
i∈Nr diλ

i and

HPW1,...,Ws

K[x]/LT (I)(λ1, . . . , λs) =
∑

i∈Ns aiλ
i and

HPW1,...,Ws

K[x]/J (λ1, . . . , λs) =
∑

i∈Ns biλ
i

the Hilbert series of I and J . Let d ∈ Ns be a multi-degree. If ai = bi, i ≤ d then F
forms a d-truncated Gröbner basis of I with respect to the order < and with respect to
(W1, . . . ,Ws). Let δs = ds + 1, δj = dj, j = 1, . . . , s − 1 be a greater multi-degree. If
ai = bi, i ≤ d and aδ < bδ then there exists a finite number of degrees E = {e ∈ Nr−s}
with the following properties:

i.) There are bδ − aδ linear independent polynomials of (W1, . . . ,Ws)-degree δ missing
in F in order to form a δ-truncated Gröbner basis of I.

ii.) For each degree e ∈ E there are dδ,e−cδ,e linear independent polynomials ofW -degree
(δ, e) missing in F in order to form a δ-truncated Gröbner basis of I.

iii.) Assume the Gröbner basis consists of (W1, . . . ,Wr)-homogeneous polynomials. Each
missing polynomial of degree δ has a W -degree (δ, e) with e ∈ E and

bδ − aδ =
∑
e∈E

dδ,e − cδ,e.

Lemma 1.2.21 is the basis for the multi-graded Hilbert series driven Buchberger algorithm
in [26]. There the authors have restricted to the special case s = 1 which is reasonable since
a sufficient linear combination of gradings W1, . . . ,Wr will be a weight system consisting
of one single grading. Often we would like to compute truncated Gröbner bases. In most
cases the truncation will be taken with respect to the weight system. But sometimes it is
convenient to consider as well the truncation with respect to a different set of gradings.

Lemma 1.2.22 For the ring K[x] let U = (U1, . . . , Uν) be a set of gradings and W =
(W1, . . . ,Wr) be a weight system. Let the notations F, I, J, <, ai, bi and the Hilbert series
be as in Lemma 1.2.21. By S(F ) we denote the module of syzygies and by Skl its sparse
elements corresponding to the S-polynomials. Let d ∈ Nν be a given degree and

jmax = max
{
j | exists i ≤ d and HU,W

i,j (S(F )) �= {0}
}
.

The following conditions are sufficient for F being a d-truncated Gröbner basis of I with
respect to U .

i.) ∀ S ∈ HU
i (S(F )), i ≤ d normalf<(F · S, F ) = 0,

ii.) ∀ Skl ∈ HU
i (S(F )), i ≤ d normalf<(F · Skl, F ) = 0,
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iii.) ∀ Skl ∈ HU,W
i,j (S(F )), i ≤ d, j ∈ N normalf<(F · Skl, F ) = 0,

iv.) ∀ Skl ∈ HW
j (S(F )), j ≤ jmax normalf<(F · Skl, F ) = 0,

v.) ∀j ≤ jmax aj = bj.

If for a degree j ∈ Nr the coefficients aj and bj are equal, then for all syzygies S ∈
HW

j (S(F )) we have normalf<(F · S, F ) = 0. Especially all Skl ∈ HU,W
i,j (S(F )) reduce to

zero.

Proof: The induced grading on S(F ) enables to restrict to the vector spaces HU
i (S(F )).

The definition of jmax was chosen such that a jmax-truncated Gröbner basis with respect
to W is a d-truncated Gröbner basis with respect to U . �

This suggests successive increasing of the degree j ∈ Nr. For small degrees we expect
aj = bj and thus we have treated a lot of HU,W

i,j (S(F )). This is the case right from the
input polynomials or after some reduction of S-polynomials. If this criterion cannot be
used one needs to reduce all S-polynomials in the vector space slices H U,W

i,j (S(F )), i ≤ d.
In [26] a multi-graded Hilbert series driven Buchberger algorithm is presented. But

there no truncation to a different grading is considered and it is used that W1 is a weight
system. The following algorithm generalizes this concept for the case that one needs
several gradings in order to form a weight system. In several situations (see Chapter 2)
it is convenient to have an algorithm in this general form.

Algorithm 1.2.23 (multi-truncated, multi-graded HP driven algorithm)
Input: weight system W = (W1, . . . ,Wr),

s minimal such that the subsystem (W1, . . . ,Ws) is a weight system,
set of gradings U = (U1, . . . , Uν),
set of (U,W )-homogeneous polynomials F = {f1, . . . , fm},
term order <
Hilbert series HPW

K[x]/I(λ) =
∑

i∈Nr ciλ
i

degree d ∈ Nν

Output: d-truncated Gröbner basis GB wrt U of I = 〈f1, . . . , fm〉

GB := F
m := |F |
HPW1,...,Ws

K[x]/I (λ) = HPW1,...,Wr

K[x]/I (λ1, . . . , λs, 1, . . . , 1) =
∑

i∈Nr aiλ
i

HT := {ht(f1), . . . , ht(fm)}
HP1s := HPW1,...,Ws

K[x]/〈HT 〉(λ) =
∑∞

i=0 biλ
i # tentative Hilbert series

if HPW1,...,Ws

K[x]/I (λ) = HP1s then break

δ := min{i | bi �= ai} # minimal deg. of missing pols.
if d < δ then break
Cδ := bδ − aδ # nr of missing pols. of deg. δ

HP := HPW1,...,Wr

K[x]/〈HT 〉(λ) =
∑∞

i=0 diλ
i

E := {e ∈ Nr−s|cδ,e �= dδ,e} # missing degrees (δ, e)
ε := min(E) # minimal missing deg. (δ, e)
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Dδ,ε = dδ,ε − cδ,ε # nr of missing pols of deg (δ, e)
S := {(i, j) | 1 ≤ i < j ≤ m, degU(lcm(ht(fi), ht(fj))) ≤ d,

degW (lcm(ht(fi), ht(fj))) ≥ (δ, ε)}
if S = {} then break
if HW

δ,ε(S) = {} then update(δ, ε, E, Cδ,Dδ,ε)
S := S \ {(i, j)| degW (Si,j) < (δ, ε)}

while S �= {} do

choose (i, j) ∈ ⊕d
k=0H

U
k

(
HW

δ,ε(S)
)
, # a pair of degree (δ, ε)

S := S \ {(i, j)}
g :=normalf(S(fi, fj)) wrt < and GB
if g �= 0 then

GB := GB ∪ {g}
HT := HT ∪ {ht(g)}
m := m+ 1
Cδ := Cδ − 1
Dδ,ε := Dδ,ε − 1
S := S ∪ { (i,m) | i = 1, . . . , m− 1,

degW (Sim) ≥ (δ, ε), degU(S
im) ≤ d }

if Dδ,ε = 0 then
E := E \ {ε}
if E = {} or

⊕
e∈E HW

δ,e(S) = {} then
update(HP1s, HP )
update(δ, ε, E, Cδ,Dδ,ε)
S := S \ {(i, j)| degW (Si,j) < (δ, ε)}

else
update(ε, E,Dδ,ε)
S := S \ {(i, j)| degW (Si,j) < (δ, ε)}

if Cδ = 0 then
update(HP1s, HP )
update(δ, ε, E, Cδ,Dδ,ε)
S := S \ {(i, j)| degW (Si,j) < (δ, ε)}

# reduce to minimal and reduced Gröbner basis

Algorithm 1.2.23 shows the full power of using gradings. The restriction with respect
to grading and the exploitation of the Hilbert series with respect to a weight system and
its refinement is done as best as possible. But there are still points which are not carried
out in Algorithm 1.2.23. The exploitation of Buchberger criteria needs to be taken into
account. Secondly, the computation of the tentative Hilbert series

HPW1,...,Ws

K[x]/〈ht(f1),...,ht(fm)〉(λ) and HPW
K[x]/〈ht(f1),...,ht(fm)〉(λ)

can be simplified in the beginning (for small degrees δ). The computation of the series can
be restricted to the set {ht(fi)| degW1,...,Ws

(fi) ≤ δ} since only the dimensions bδ −aδ and
dδ,ε−cδ,ε are essential. The third point is the consideration of the field. Since standard im-
plementations are dealing with Q (or Z by according multiplication of input polynomials)
for algebraic numbers such as

√
2 additional tricks are necessary, see Section 1.2.4.
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Table 1.1: Timings in seconds on a Dec Alpha work station for the new Maple imple-
mentation moregroebner [66], the standard Maple package grobner, and the REDUCE 3.6
implementation [142]. The symbol − means that computation was not possible because
the implementation of the term order is missing

Maple 5.3 REDUCE 3.6
example term order moregroebner grobner groebner

cyclo hexane lex 2.9 3.3 0.2
[143] tdeg=revgradlex 3.3 3.4 0.1

tdeg in matrix form 7.7 - 0.2
gradlex 3.2 - 0.2

gradlex in matrix form 7.7 - 0.1
Complex n = 4 tdeg=revgradlex 6.4 6.6 8
Complex n = 5 tdeg=revgradlex 33.5 37.3 13
Complex n = 6 tdeg=revgradlex 45.1 60.1 26
Complex n = 7 tdeg=revgradlex 148.8 236.4 50
Lotka Volterra lex 46.1 422.8 871.9

[67], [71] inv.+ lex. 20.1 913.0 0.9
inv. + weighted lex 56.8 - 0.6

This algorithm including the mentioned details has been implemented in Maple in [66].
It has been tested successfully. Timings for typical test examples are shown in Table 1.1
in comparison with the standard Maple package and the REDUCE package.

The experience has shown that the timings are very sensitive against good data struc-
tures (REDUCE handles multivariate polynomials as it is required in Buchberger’s algo-
rithm much better than Maple), implementation of basic routines (the determination of
leading terms depend at lot on the realization of the term order as condensed form or
in general form as a matrix term order), and use of tricks (adding polynomials involving
invariants of the symmetry of the system, see [71] and Section 4.1).

1.2.4 The computation with algebraic extensions

Since in some Computer Algebra Systems e.g. Maple the implementation of the Buch-
berger Algorithm is done for the field Q only one needs to use a special trick if the
coefficients of the polynomials are elements of an algebraic extension of Q.

Let the field K be given by Q and some additional elements w1, . . . , wr ∈ C which
satisfy the algebraic relations h1(y), . . . , hr(y) ∈ Q[y]. Thus

hi(wi) = 0, i = 1, . . . , r.

Let the polynomials f1, . . . , fs depend on the variables x1, . . . , xn and the coefficients be
elements of Q(w1, . . . , wr). By appropriate multiplication one can always assure that the
coefficients are not fractions, but polynomials in w1, . . . , wr. It is well-known that one
may use w1, . . . , wr as additional variables, add h1(w1), . . . , hr(wr) ∈ Q[w] to f1, . . . , fs
and compute the Gröbner basis of the ideal in Q[x1, . . . , xn, w1, . . . , wr] generated by
f1, . . . , fs, h1, . . . , hr with respect to an appropriate term order.
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Lemma 1.2.24 Let f1, . . . , fs ∈ Q[w][x] be given. Let h1, . . . , hr ∈ Q[w] describe the al-
gebraic extension of Q. Let I ⊂ Q[x, w] denote the ideal generated by f1, . . . , fs, h1, . . . , hr
and J ⊂ Q(w)[x] the ideal generated by f1, . . . , fs ∈ Q[w][x]. Assume GB is a Gröbner
basis of I with respect to a term order < which eliminates the variables x1, . . . , xn. Then
the polynomials in GB which depend on x and w minus the polynomials in GB which
depend on w only form a Gröbner basis of J ⊂ Q(w)[x] with respect to the term order
<|Q[x] (order < restricted to Q[x]). If there are no polynomials in GB really depending
on x then the Gröbner basis of J is 1.

In the case of the Hilbert series driven Buchberger algorithm this trick can be modified.
We additional assume that the polynomials f1, . . . , fs ∈ Q[w][x] are homogeneous with
respect to a weight systemW ofK[x] withK = Q(w) and that the Hilbert seriesHPW

K[x]/J

of J ⊂ K[x] generated by f1, . . . , fs is known. There are infinitely many ways of extending
the weight system W to a set of gradings of Q[x, w]. But it does not extend to a weight
system of Q[x, w] such that h1(w1), . . . , hr(wr) are homogeneous since these polynomials
define the algebraic extension ofQ. Thus there is no Hilbert series of the ideal I ⊂ Q[x, w]
generated by f1, . . . , hr.

Nevertheless one can combine the Hilbert series driven Buchberger algorithm with the
trick described in Lemma 1.2.24. Let the ideal I and the term order < be as in Lemma
1.2.24.

(1) Compute the Gröbner basis GB(h1, . . . , hr) of h1, . . . , hr with respect to <|Q[w].

(2) Compute the Gröbner basis GB of I by climbing up the degree and using the modified
tentative Hilbert series. For any set of intermediate polynomials g i in the Buchberger
algorithm choose the set of modified leading terms

LT := {m(x) ∈ Q[x] | ∃i and ni(w) with m(x) · ni(w) = ht(gi) ∈ Q[x, w]}

The Hilbert series HPW
Q[x]/(LT ) measures how close the set is to forming a Gröbner

basis of I.

(3) While counting those S-polynomials which do not reduce to zero one has to modify
this count. If the S-polynomial is formed by one intermediate polynomial and one h i

the reduced S-polynomial is just a multiple of the previous polynomials in Q[w][x].
Thus it does not contribute. This case is easily recognized since the intermediate
polynomial and the new S-polynomial has the same degree with respect to the
grading of Q[x] extended with weights zero on the variables wi.

The first step is superfluous if the term order is chosen such that h1, . . . , hr already form
a Gröbner basis.

Observe that the ideal membership problem in Q(w)[x] can not be transported im-
mediately to the ideal membership problem in Q[w, x] since the leading coefficient may
depend on w considering Q(w)[x].

Example 1.2.25 Is f(x) = x21+
1
2

√
2x2 an element of 〈

√
2x21+x1, x2−x1〉? The division

algorithm in Q[w, x1, x2] with respect to the lexicographical term order and x2 > x1 > w
yields normalf(f) = x21 + 1

2

√
2x1 which is not the correct answer. Only the division

algorithm in Q[w][x] gives the desired answer.
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Either one uses a pseudo division algorithm allowing for multiplication with polyno-
mials in w or one normalizes the system of polynomials by multiplication of the inverse
of the leading coefficient in Q[wi]/〈hi〉 using the extended Euclidean algorithm.

1.3 Detection of Gröbner bases

The algorithms 1.2.19 and 1.2.23 in Section 1.2 necessitates the knowledge of the Hilbert-
Poincaré series. There is only one chance in order to derive this series. One needs the
knowledge of a Gröbner basis with respect to a term order and then compute the series
with Algorithm 1.2.16. Observe that this term order might be different from the order in
Algorithm 1.2.19. So the Gröbner basis computation still makes sense.

There are several situations where one knows the Gröbner basis with respect to the
’wrong’ term order.

- Computations with respect to graded orders are much cheaper than with respect
to purely lexicographical orders. So one might want to make a computation with
respect to gradlex or even better graded reverse lex (which has been proven to be
cheapest –remark in [41] p. 57) and then use the Hilbert series to speed up the
interesting lex computations.

- Sometimes the term order is obvious for which the given polynomials form a Gröbner
basis by the 1. Buchberger criterion. This will used in Section 2.1.

- In [91] a combinatorial algorithm is presented for the detection of the term order
such that the input polynomials are a Gröbner basis with respect to this term
order. Unfortunately, the complexity of this algorithm is too bad for practical
computations. Considering a special case of a Gröbner basis as in [180] is much
easier. The complexity is less bad than expected since the complexity analysis is
done for dense polynomials which are rarely treated in Computer Algebra, see the
description of the algorithm and the discussion below.

The Hilbert series driven Buchberger algorithm is an example of several algorithms
which are exploiting the knowledge of one Gröbner basis for the computation of another. A
straightforward way is the use of linear algebra technique as in the FGLM-class algorithms,
see [56] and the improvements. Implementations are available in [55, 31, 37]. Secondly, for
homogeneous ideals the structure of the state polytope (introduced in [11]) is exploited
in the Gröbner walk [39]. Since the polynomial ring is Noetherian each ideal has only
finitely many reduced Gröbner bases, although there exists infinitely many term orders.
Each vertex of the state polytope corresponds to a reduced Gröbner basis and thus to a
monomial ideal. Along an edge two monomial ideals are connected by a non-monomial
ideal generated by all initial terms with respect to a vector not representing a term order.
The Gröbner walk uses this intermediate ideal in the conversion from one Gröbner basis
at one vertex to the Gröbner basis at the neighboring vertex. The corresponding fan to
the state polytope was first introduced in Mora and Robbiano [149]. Implementations are
given for example in Magma [30] and [4]. Since this theory is described nicely by Sturmfels
in [177] there is no need to repeat it here. A recent improvement has been given in the
Fractal walk by Amrhein and Gloor [5] where a step through a low-dimensional face is
perturbed into several steps through facets.
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In the final of this section I will discuss the Gröbner basis detection of a special case
in [180]. The ingredients are Buchberger’s 1. criterion, maximal weighted matching of a
bipartite graph and linear programming.

Lemma 1.3.1 Let f1, . . . , fm ∈ K[x] and < be a term order. If the set of leading terms
ht(f1), . . . , ht(fm) are relatively coprime then {f1, . . . , fm} forms a Gröbner basis with
respect to <.

Proof: By the 1. criterion of Buchberger (see Section 1.1) all S-polynomials reduce to
zero. This implies the Gröbner basis property. �

The lemma reduces the problem of Gröbner basis detection to inspection of the mono-
mials in fi and the appearance of variables in it. The second source of simplification is
a lemma by Ostrowski. Since all computations are done with finitely many polynomials
which are represented by finitely many monomials it suffices to order all monomials up
to a certain degree d. This relaxes the requirements for a term order.

Lemma 1.3.2 (Ostrowski, see [91] Lemma 1.3.1): Let < be a term order and d ∈ N.
There exists a positive vector ω ∈ Rn

+ with the following property.

For all monomials xα, xβ ∈ ⊕d
i=0H

N
i (K[x]) it is true that xα < xβ is equivalent to

ωtα < ωtβ.

With this lemma the search of a term order is restricted to the search of a vector ω ∈
Rn

+. Consequently, Sturmfels and Wiegelmann [180] formulate the following structural
Gröbner basis detection problem which is an important special case of the general detection
problem.

(SGBD) Given {f1, . . . , fm} ⊂ K[x1, . . . , xn]. Does there exist a term order ω ∈ Rn
+

(and if so compute ω) such that the leading terms ht(f1), . . . , ht(fm) (with respect to ω)
form a set of pairwise coprime monomials?

The solution of (SGBD) is based on results of Gröbner basis detection for square
systems (m = n). In [180] a necessary condition is presented which leads to a bipartite
maximum matching problem and linear programming problem. But the general case is
treated in a way such that combinatorial bad behavior is expected. In contrast to [180] I
exploit the sparsity of polynomials

which is reasonable since most of the time special polynomials are treated in Computer
Algebra systems.

First the results for square systems are recalled. Here the problem (SGBD) is more special.

(SGBD)n=m Given F = {f1, . . . , fn} ⊂ K[x1, . . . , xn]. Does there exist a term order
ω ∈ Rn

+ and a permutation σ of indices {1, . . . , n} and exponents a1, . . . , an ∈ N \ {0}
such that inω(fσ(1)) = c1x

a1
1 , · · · , inω(fσ(n)) = cnx

an
n with some non-zero constants ci?

Obviously, it is important to see whether fi is monic in xj . Thus one rewrites each
polynomial fi as a polynomial in the variable xj with coefficients which are polynomials
in the rest of the variables. Using the notation X̃j := {x1, . . . , xn} \ {xj} we write
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f1 = x21 + (x2 + x3)x1 + (x2x
2
3 + x32 − x53 + 7)

= x32 + (x1 + x23)x2 + (x21 − x53 + x1x3 + 7)

= −x53 + x2x
2
3 + x1x3 + (x32 + x21 + x1x2 + 7)

f2 = x1 + (x23 + 2x2x3 + 1) ∈ K[x2, x3][x1]

= (2x3)x2 + (x23 + x1 + 1) ∈ K[x1, x3][x2]

= x23 + (2x2)x3 + (x1 + 1) ∈ K[x1, x2][x3]

f3 = (x2 + x3)x1 + x32 + x23
= x32 + x1x2 + (x1x3 + x23)

= x23 + x1x3 + (x2x1 + x32)
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Figure 1.7: A simple example of a weighted bipartite graph associated to three polyno-
mials in three variables. The maximal matching (f 1, x3), (f2, x1), (f3, x2) corresponds to
a Gröbner basis with respect to the term order ω = (2.4, 1.3, 1). The number of complex
solutions equals the matching value 5 · 1 · 3 = 15

fi ∈ K[X̃j ][xj ] giving the representations for i = 1, . . . , n, j = 1, . . . , n

fi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cij · xaijj +
∑aij−1

k=0 pk(x) · xkj where aij ≥ 0, cij ∈ K \ {0},
and pk ∈ K[X̃j ]

or

qij(x) · xbijj +
∑bij−1

k=0 pk(x) · xkj where bij ≥ 0, qij ∈ K[X̃j ] \K,
and pk ∈ K[X̃j ].

This gives rise to a weighted bipartite graph with one set of vertices f1, . . . , fm and a second
set x1, . . . , xn and edges (fi, xj) between these two sets (see Figure 1.7 for an example).
The tuple (fi, xj) is an edge if aij > 0 exists in the above representation. Then aij is

the weight of this edge. If fi does not depend on xj or the coefficient of x
bij
j depends on

variables in X̃j (the second case above) then the tuple (fi, xj) is not an edge and we set
aij = 0.

Lemma 1.3.3 ([180] Lemma 5) Let F = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be a system of
polynomials and the integers aij be given by the representations above. Assume there
exists a solution of (SGBD)n=m, i.e. there exists a vector ω ∈ Rn

+ and a permutation

σ of indices such that inω(fi) = cix
aiσ(i)

σ(i) , i = 1, . . . , n with ci ∈ K \ {0}. Then for each
permutation ρ the following inequality holds

n∏
i=1

aiσ(i) ≥
n∏

i=1

aiρ(i) .

Proof: Since ω represents a term order we have

ωσ(i)aiσ(i) ≥ ωρ(i)aiρ(i), i = 1, . . . , n,
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where strong inequality holds for σ(i) �= ρ(i). Multiplication of the inequalities yields

n∏
i=1

ωσ(i)aiσ(i) ≥
n∏

i=1

ωρ(i)aiρ(i),

and thus the statement is proved by dividing through the common factor
∏n

i=1 ωi > 0. �

This lemma is the key for the structural Gröbner basis detection problem since it
reduces the problem to finding the permutation σ with maximal value of

∏n
i=1 aiσ(i) (bi-

partite maximum matching problem). Then one tests whether a term order ω exists by
solving a linear programming problem as follows.

inω(fi) = cix
aiσ(i)

σ(i) , i = 1, . . . , n for ω ∈ Rn
+,

is equivalent to

ωσ(i)aiσ(i) > ωtbi, i = 1, . . . , n, ∀ bi ∈ Ai \ {aiσ(i)eσ(i)}
ωi > 0 i = 1, . . . , n,

where xbi runs through all monomials of fi(x) =
∑

b∈Ai
cbx

b except of x
aiσ(i)

σ(i) .
That’s why Algorithm 7 in [180] searches in the weighted bipartite graph the maximal

matching and tests whether the associated linear programming problem has a solution.
The largest matchings of a bipartite graph may be found by a reformulation as transship-
ment problem and solution of the associated linear programming problem [36].Comparing
the values

∏
aiσ(i) of all matchings gives the maximal one. More efficient algorithms may

be found in the literature.
The key for the general problem (SGBD) is the reduction to the problem (SGBD)n=m

for square systems. Solutions of (SGBD)n=m imply solutions of (SGBD).

Lemma 1.3.4 Let m ≤ n and F = {f1, . . . , fm} ⊂ K[x1, . . . , xn] be given. Let S1, . . . , Sm

be disjoint subsets of the variable set {x1, . . . , xn} (Si∩Sj = {} for i �= j). The remaining
variable set is denoted by R = {x1, . . . , xn} \ ∪m

j=1Sj. The substitutions π(xi) = yj if
xi ∈ Sj and π(xi) = ym+1 for xi ∈ R results into a mapping on the polynomial ring π :
K[x1, . . . , xn] → K[y1, . . . , ym+1]. Assume there exists a term order <y on K[y] such that
(with respect to <y) the leading terms ht(π(fi)) are powers of yσ(i) for i = 1, . . . , m, where
σ denotes a permutation of indices. Then there exists a term order <x on K[x] such that
the leading terms ht(fi) = xαi with respect to <x have a variable set Ti = {xk | (αi)k > 0}
which is a subset of Sσ(i) for all i = 1, . . . , m.

Proof: We define <x by any refinement of <y. �

Observe that the other direction is wrong in general.

Example 1.3.5 The polynomials f1(x) = x1x
2
2 + x41x3, f2(x) = x113 − x1 have leading

terms x1x
2
2 and x113 with respect to ω = (10, 20, 1). This is a solution of (SGDB). The

variable sets are S1 = {x1, x2}, S2 = {x3}. The projected polynomials are π(f1) = y31 +
y41y2, π(f2) = y112 − y1. There is no ω ∈ R2

+ such that y31 is the leading term of π(f1). But
a different choice of π gives the desired solution of (SGBD)n=m. π(x1) = y101 , π(x2) =
y201 , π(x3) = y2 yields π(f1) = y501 + y401 y2, π(f2) = y112 − y101 . With respect to ω = (1, 1)
they have leading terms y501 and y112 and thus π(f1), π(f2) form a Gröbner basis.
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Lemma 1.3.6 Let m ≤ n and F = {f1, . . . , fm} ⊂ K[x1, . . . , xn] be given. Assume the
vector ω ∈ Nn

+ represents a term order such that ht(f1), . . . , ht(fm) have pairwise disjoint
variable sets Si ⊂ {x1, . . . , xn}, i = 1, . . . , m. There exists a mapping π : K[x1, . . . , xn] →
K[y1, . . . , ym+1] such that π(f1), . . . , π(fm) form a Gröbner basis because of coprime lead-
ing terms, i.e. exists a vector ωy ∈ Rm+1

+ representing a term order on K[y] such that
inωy(π(f1)) = c1y

α1
1 , . . . , inωy(π(fm)) = cmy

αm
m with ci ∈ K \ {0}, αi ∈ N.

Proof: : The mapping π is given by the substitution π(xi) = yωi
j , xi ∈ Sj and π(xi) =

ym+1 for xi ∈ {x1, . . . , xn} \ (S1 ∪ · · · ∪ Sm). �

The example and the lemmas show that Lemma 9 in [180] is wrong. Nevertheless the
statements based on the lemma remain valid, but needs an alternative proof as has been
communicated by Markus Wiegelmann. In [180] the idea of the algorithmic treatment is
the following. In order to solve (SGBD) for a given set {f1, . . . , fm} ⊂ K[x1, . . . , xn] it is
suggested to try for all partitions S1 ∪ · · · ∪ Sm of {x1, . . . , xn} to solve (SGBD)n=m for
π(f1), . . . , π(fm) ⊂ K[y1, . . . , ym].

For each partition this means the solution of a bipartite maximum weighting problem
and a linear programming problem. Unfortunately, there is no guarantee that one will
find an existing solution of (SGBD) by this approach. Nevertheless the developed tools
in [180] are very valuable and are able to find a lot of structural Gröbner bases. The only
drawback is the expected complexity which is rather pessimistic although polynomial.

On the other hand this complexity analysis was done for dense polynomials. But
in symbolic computations usually sparse polynomials are treated. We generalize the
approach in [180] in two ways. First I exploit the sparsity of polynomials. Secondly, I
deal with partitions S1 ∪ · · · ∪ Sm ∪ R consisting of m + 1 sets instead of m. Exploiting
the sparsity obviously the treatment of all partitions S1 ∪ · · · ∪ Sm ∪ R is reduced to a
small number of partitions S1 ∪ · · · ∪ Sm ∪ R.

For i = 1, . . . , m denote the set of all variable sets of monomials in f i by

T i= {S ⊂ {x1, . . . , xn} | exists a monomial xα in fi with variables(xα) = S}.

Then T = T 1∪· · ·∪Tm consists of variable sets S ⊂ {x1, . . . , xn} encoding the appearance
of variables in all monomials of f1, . . . , fm. Instead of trying all partitions it suffices to
check all combinations S1 ∪ · · · ∪ Sm with

i.) Si ∩ Sk = {} for all i �= k.

ii.) There exists a permutation σ with Sj ∈ T σ(j), j = 1 . . . , m.

If S1∪· · ·∪Sm is not a partition there are k = n−|∪m
i=1Si| additional variables xj1 , . . . , xjk .

Thus S1 ∪ · · · ∪ Sm ∪ {xj1} ∪ · · · ∪ {xjk} is a partition of {x1, . . . , xn}. A mapping π as in
Lemma 1.3.4 is defined.

Then one needs to solve the maximal bipartite matching problem induced from the
polynomials π(f1), . . . , π(fm), xj1, . . . , xjk and the variables y1, . . . , ym, xj1, . . . , xjk .

Algorithm 1.3.7 (Structural Gröbner basis detection)
Input: n ≥ m, polynomials F = {f1, . . . , fm} ⊂ K[x1, . . . , xn] in encoding

fi(x) =
∑

α∈Ai
cα · xα, cα ∈ K \ {0} ∀ α ∈ Ai ⊂ Nn, i = 1, . . . , m

Output: Yes or No (if Yes then term order ω ∈ Rn
+)
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1. determine set of all variable sets in F
T = {S ⊂ {x1, . . . , xn}| ∃i and α ∈ Ai such that xα has variable set S}
for each Tj ∈ T

associate the list Ij = {i1, . . . , ikj} and degrees Aj = {ai1j , . . . , aikj j}
Ij := {}
for i = 1, . . . , m do

aij := max
{
deg(

∏
xk∈Tj

xαk
k ) =

∑
xk∈Tj

αk | α ∈ Ai,

variables(xα) ⊆ Tj}
for all α ∈ Ai do

if variables(xα) ∩ Tj �= {} and
∏

xk∈Tj
xαk
k > aij then aij = 0

if aij �= 0 then Ij := Ij ∪ {i}, Aj := Aj ∪ {aij}
2. search for all m-tuples (j1, . . . , jm) of indices

I. such that
jk �= jl for k �= l
Tj1 , . . . , Tjm ∈ T
Tjk ∩ Tjl = {} for k �= l
exists γ : {j1, . . . , jm} → {1, . . . , m} such that

a.) γ(jk) ∈ Ijk , k = 1, . . . , m
b.) γ is injective
c.) aγ(jk),jk �= 0, k = 1, . . . , m # matching in bipartite graph

II. for each tuple (j1, . . . , jm) with existing matching γ
search in the bipartite graph of π(f1), . . . , π(fm) defined
by {j1, . . . , jm} and degrees aij the maximal matching,
i.e. the mapping γ : {j1, . . . , jm} → {1, . . . , m} satisfying

conditions a.), b.) and c.) such that
∏m

k=1 aγ(jk),jk is maximal

III. if a maximal matching γ was found then solve the linear
programming problem according to {Tj1, . . . , Tjm} and
the polynomials π(fγ(j1)), . . . , π(fγ(jm)).

if solution ω exists then STOP

For dense polynomials the set T of variable sets is a huge set and combinatorial bad
behavior can be expected. On the other hand if only a few monomials appear in each
polynomial and even more only part of the variables appear this algorithm has a much
better behavior than the one given in [180]. The following example is a typical example in
algorithmic invariant theory as discussed in Chapter 2. In order to compute the algebraic
dependencies of the three polynomials x2

1 + x22, x
3
1 − 3x1x

2
2, x

2
1x2 − 1

3
x32 one considers

polynomials with slack variables and computes a Gröbner basis with respect to a special
term order, see Section 1.5.

Example 1.3.8 In order to compute algebraic relations one considers

f1 = x3 − (x21 + x22)
f2 = x4 − (x31 − 3x1x

2
2)

f3 = x5 − (x21x2 − 1
3
x32)

with A1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
2
0
0
0
0

⎞⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎝

0
2
0
0
0

⎞⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎝

0
0
1
0
0

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,
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Table 1.2: Illustration of the structural Gröbner basis detection as in Algorithm 1.3.7.
All possible combinations in Example 1.3.8 are presented

Tj {x1} {x2} {x3} {x4} {x5} {x1, x2}
∏
aij term order ω

Ij {1, 2} {1, 3} {1} {2} {3} {1, 2, 3}
degs aij {2, 3} {2, 3} {1} {1} {1} {2, 3, 3}

Tj x x x
γ1 2 3 1

degree 3 3 1 9 −

Tj x x x
γ1 1 3 2

degree 2 3 1 6 −

Tj x x x
γ1 2 1 3

degree 3 2 1 6 −

Tj x x x
γ1 2 1 3

degree 3 1 1 3 (1, 0.1, 10, 0.1, 10)

Tj x x x
γ1 1 2 3

degree 2 1 1 2 (1, 0.1, 0.1, 10, 10)

Tj x x x
γ1 3 1 2

degree 3 1 1 3 (0.1, 1, 10, 10, 0.1)

Tj x x x
γ1 1 2 3

degree 2 1 1 2 (0.1, 1, 0.1, 10, 10)

Tj x x x
γ1 1 2 3

degree 1 1 1 1 (0.1, 0.1, 1, 1, 1)

Tj x x x
γ1 1 2 3

degree 1 1 3 3 (2, 1, 10, 7, 0.1)

Tj x x x
γ1 1 3 2

degree 1 1 3 3 (1, 2, 10, 0.1, 7)
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and A2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
3
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎝

1
2
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, A3 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
2
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎝

0
3
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

The list of all variable sets is

T = {{x1}, {x2}, {x3}, {x4}, {x5}, {x1, x2}.}

The associated index sets are

I1 = {1, 2}, I2 = {1, 3}, I3 = {1}, I4 = {2}, I5 = {3}, J6 = {1, 2, 3},

and their degrees are

(aij)i=1,...,3,j=1...,6 =

⎛⎜⎝ 2 2 1 0 0 2
3 0 0 1 0 3
0 3 0 0 1 3

⎞⎟⎠ .
In Table 1.2 we list all possible combinations of variable sets and their weight of matching.
There are only 10 possibilities which we need to consider instead of the 25 partitions by
neglecting the sparsity of the polynomials. There are 7 possibilities of classes of term orders
such that the input forms a Gröbner basis. The maximal bipartite matching problems are
all trivial since only one matching exists for each problem. Note that the algorithm would
stop at the first Gröbner basis found. The three input polynomials are homogeneous with
respect to the grading (1, 1, 2, 3, 3). Thus the state polytope of the generated ideal 〈f1, f2, f3〉
is a polytope in four-dimensional space. It has at least 7 vertices.

1.4 Dynamic Buchberger algorithm

In several situations the input polynomials do not form a structural Gröbner basis as
defined in Section 1.3 or the complexity of the detection problem prevents one from
starting these algorithms. Nevertheless one might want to determine the Gröbner basis
with respect to any term order in the cheapest way. There may be several reasons for this.
Possibly, one is only interested in some structural information on the variety such as the
dimension. Then it suffices to know the initial ideal with respect to any term order. Or
one wants to convert to the Gröbner basis with respect to the desired term order. Then
the knowledge of a Gröbner basis with respect to the ’wrong’ term order can be exploited
in the Hilbert series driven Buchberger algorithm (see Section 1.2) or in the FGLM-class
algorithms or in the Gröbner walk.

Gritzmann and Sturmfels presented in [91] the idea of a dynamic Buchberger algo-
rithm. It exploits the observation of Lemma 1.3.2 that term orders are represented by a
vector and the fact that only finitely many term orders exists. First one uses the Hilbert
series in order to measure the closeness to a Gröbner bases. Secondly, one changes the
term order within the Buchberger algorithm whenever it seems to be appropriate.
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Definition 1.4.1 ([91] p. 268) Let a weight system W on K[x1, . . . , xn] consist of one
grading. Let the W -homogeneous ideal I be generated by W -homogeneous polynomials
f1, . . . , fm. A term order ω1 ∈ Rn

+ is preferable to the term order ω2 ∈ Rn
+ if in the

tentative Hilbert-Poincaré series

HPW
K[x]/HT1

(λ) =
∞∑
i=0

aiλ
i, HPW

K[x]/HT2
(λ) =

∞∑
i=0

biλ
i ,

where HT1 := 〈inω1(f1), . . . , inω1(fm)〉 and HT2 := 〈inω2(f1), . . . , inω2(fm)〉 there exists
an index j such that ai = bi, i = 0, . . . , j − 1 and aj < bj.

Remark 1.4.2 It suffices to compare indices from 0 to 2R − 1 where R is the maximal
degree degW (fi) of the given polynomials. This follows from the fact that all S-polynomials
which might reduce to something unequal zero have degree ≤ 2R− 1.

The definition reflects the fact that the true Hilbert series of I bounds all tentative
Hilbert series. Compare as well with the results in Section 1.2.

Of course Definition 1.4.1 has a generalization to multiple grading.

Algorithm 1.4.3 (Dynamic Buchberger algorithm)
Input: one grading W on K[x1, . . . , xn] which forms a weight system

W -homogeneous polynomials F = {f1, . . . , fm}

Output: Gröbner basis GB and term order ω

1.) Find an initial term order:
determine maximal degree R of F with respect to W

HP :=
∑2R−1

i=0 aiλ
i with ai = dim

(
HW

i (K[x])
)
, i = 0, . . . , 2R− 1

choose randomly several vectors ωj ∈ Rn
+, j = 1, . . . , N and

− compute by Algorithm 1.2.16 the Hilbert series
HPj := HPW

K[x]/〈HTj〉(λ) of the monomial ideal

〈HTj〉 = 〈ht(f1), . . . , ht(fm)〉
− expand into a Taylor series HPj :=

∑2R−1
i=1 biλ

i + · · ·
− for i := 0 to 2R− 1 do # choose the preferable term order

if ai < bi then stop;
if ai > bi then stop; HP := HPj; ω := ωj HT := HTj

2.) Buchberger algorithm with adaptive change of term order
GB := F ; t = 1; ω1 := ω # initialization
J := {1, . . . , m} # indices of elements in Gröbner basis
S := {(i, j) | 1 ≤ i < j ≤ m} # generators for module of syzygies wrt ωt

while S �= {} do
choose (i, j) ∈ S; S := S \ {(i, j)}

# degW (lcm(htωt(fi), htωt(fj))) minimal
if criteria1((i, j)) then # use 1. Buchberger criterion

g := 0 else
g :=normalf(S(fi, fj)) wrt term order ωt and GB

if lcm (ht(fi), ht(fj)) = ht(fj) then
J := J \ {j} # delete superfluous fj
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if lcm (ht(fi), ht(fj)) = ht(fi) then
J := J \ {i} # delete superfluous fi

if g �= 0 then
fm+1 := g; J := J ∪ {m+ 1}; R := max(R, degW (fm+1))
GB := GB ∪ {fm+1}; HT := HT ∪ {htωt(fm+1)}
S := S ∪ { (j,m+ 1) | j ∈ J}
m := m+ 1
HP := HPW

K[x]/〈HT 〉(λ)
choose randomly several term orders ω ∈ Rn

+ and
compute the Hilbert series of 〈htω(fj), j ∈ J〉

if the series is preferable in comparison to HP then
ωt+1 := ω # dynamic adaptation
t := t + 1
for j ∈ J do # update set S
if htωt−1(fj) �= htωt(fj) then
S := S ∪ { (j, i) | i ∈ J, i > j} ∪ { (i, j) | i ∈ J, i < j}
HT :=

(
HT \ {htωt−1(fj)}

)
∪ {htωt(fj)}

fi
fi

3.) reduce {fj | j ∈ J} to minimal and reduced Gröbner basis wrt ωt

Remark 1.4.4 While an inter-reduction of input polynomials is not appropriate in the
classical Buchberger algorithm, the dynamic version might profit from that.

The key idea of this algorithm appeared in [91] as Algorithm 3.1.3. Also Caboara suggests
in [25] a dynamic version of the Buchberger algorithm. Choosing the first term order
by comparing Hilbert series information as in [91] the term order is only refined after
each computation of a new polynomial. Previous computations stay valid since only a
refinement of the cone is done. In [25] the computational experience is reported that
during the final phase the choice of new term orders should be dropped due to overhead
computations.

Theorem 1.4.5 Algorithm 1.4.3 computes a Gröbner basis and terminates.

Proof: Correctness: The algorithm computes a Gröbner basis since all S-polynomials
with respect to the last term order reduce to zero which is sufficient by Theorem 1.1.16.
The S-polynomials are either reduced by the division algorithm and amended onto the
list or the 1. Buchberger criterion implies that they reduce to zero. If the term order
changes then the critical pairs are put on the list of S-polynomials again. The algorithm
also includes the elimination of superfluous elements. If lcm (ht(f i), ht(fj)) = ht(fj) then
S(fi, fj) = fj − cix

αfi for an appropriate constant ci and a monomial xα. This shows
ht(S(fi, fj)) = ht(fj) and that fj is not necessary nor its critical pairs (i, j).

Termination: For each homogeneous ideal there exist only a finite number of inequivalent
term orders w1, . . . , wr. Thus the set {fj | j ∈ J} gives rise to a tuple of monomial ideals
HT m := 〈htw1(fj), j ∈ J〉 × · · · × 〈htwr(fj), j ∈ J〉. Each new polynomial fm+1 gives
a new tuple. These tuples are ordered by inclusion. Each ωt is equivalent to one wi.
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Thus the actual HT in the algorithm is a generating set of a component HT m
i of the

tuple of monomial ideals. Since the polynomial ring is Noetherian each ascending chain
of monomial ideals becomes stationary. This is true as well for tuples of monomial ideals.
From this it follows that the algorithm terminates. �

An important point which needs to be discussed is the exploitation of Buchberger criteria.

The new term order is chosen by comparing the associated tentative Hilbert series. Alter-
natives might be able to exploit the faces of the Newton polytope of the new polynomial
fm+1. Especially, for fewnomial polynomial ideals as for example the binomial ideals in
the context of integer programming the dynamic Buchberger algorithm might be an in-
teresting alternative. Once a Gröbner basis is found the Hilbert series driven version will
give the Gröbner basis with respect to the true term order.

1.5 Elimination

In the engineering literature e.g. [10] one finds the statement that a computation of a
Gröbner basis is the method which converts a set of equations into upper triangular form

g1(x1, x2, . . . , xn) = 0
g2(x2, . . . , xn) = 0

. . .
...

...
gn(xn) = 0 .

(1.4)

Indeed, given a system of polynomial equations f1(x) = 0, . . . , fm(x) = 0 one manipulates
this system into a different set g1(x) = 0, . . . , gl(x) = 0 having the same set of solutions
(even with the same multiplicity). This means that the two sets generate the same
ideal. Obviously, the existence of one gi depending only on one variable xj is preferable.
After the solution of this single equation the substitution of the solutions x j = ãk ∈
C, k = 1 . . . , deg(gi) yields a couple of smaller and easier systems. Below we will discuss
the question which term orders have the property that the Gröbner basis of the ideal
〈f1, . . . , fm〉 contains such a polynomial depending on just one variable. The best situation
would be the case of an upper triangular form as in (1.4). Even if the original system
f1(x) = 0, . . . , fm(x) = 0 has finitely many solutions such a triangular form does not
necessarily exist. A counterexample is given in Figure 1.8. On the other hand each
system with finitely many solutions can be decomposed into smaller subsystems which
can be written in upper triangular form, see Lazard [128].

There are other approaches in elimination theory such as the characteristic sets of Ritt-
Wu ([14] p. 520, [145] Chapter 5, [41] Section 6.5) and the resultants. Even in numerics
the concept of resultants is used (detection of
Hopf bifurcation, see [112] p. 289). Of course the sparsity of the polynomial system is used
in the computation of the resultant. All resultant methods for multivariate homogeneous
polynomials (Dixon, Macaulay, sparse) have in common that a matrix is built and some
determinant is computed, for an introduction see [178], [42] Chapter 3. The sparse mixed
resultant has been applied for problems in robotics.

For the case of infinitely many solutions one likes to identify a subgroup of variables
(e.g. x1, . . . , xd) such that the system of equations has for each value of x = a ∈ Cd

only finitely many solutions (a, b) ∈ Cn. Gröbner basis computation can test whether
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g21(x1, x2) = x1
2 − 3 x1 + 2,

g11(x1, x2) = x1x2 − 2 x1 − 2 x2 + 4,

= (x2 − 2)(x1 − 1)

g2(x2) = x2
2 − 3 x2 + 2

= (x2 − 2)(x2 − 1)

1

x2

x1

V(I)

32

2

3

1

x2

3

2

1

V(J)

0

Figure 1.8: A variety consisting of three isolated points and a Gröbner basis of the
associated ideal I = 〈g21, g11, g2〉 with respect to the lexicographical order which is not in
triangular form. The primary decomposition of I consists of three prime ideals having
Gröbner bases in upper triangular form. The variety of the elimination ideal J = I ∩
C[x2] = 〈g2〉 consists of 2 points

this situation occurs. Obviously this is a parameterization of the variety. The number
d is called dimension and equals the degree of the Hilbert polynomial. The variables
x1, . . . , xd are called parameters. By linear or nonlinear change of coordinates one can
always convert the variety into such a form, the so-called normal form. This process is
called Noether normalization and can be performed algorithmically, see [132].

The advantage of Gröbner bases is that characteristics of the variety are computed
without knowing the variety itself. The dimension is computed from the degree of the
Hilbert polynomial and for zero-dimensional ideals the number of solutions is computed
from the codimension of the ideal in the ring.

Let I ⊂ K[x1, . . . , xn, y1, . . . , yl] be an ideal which is given for example by f1, . . . , fm.
We are searching for polynomials which depend on the variables y1, . . . , yl only and have
the same solutions than I. This means one computes the generators of the elimination
ideal.

Definition 1.5.1 The ideal I ∩K[y] is called elimination ideal of I in K[y].

A set of generators of the elimination ideal can be computed with the Buchberger
algorithm, if one chooses a term order with a special property.

Definition 1.5.2 A term order ≤ of K[x, y] is called an elimination order, if for all cases
with xα �= 1 we have

xαyγ ≥ yδ .

By [14] p. 257 Lemma 6.14 it is sufficient to demand xα ≥ yδ ∀ xα �= 1, yδ . One says the
variables x1, . . . , xn are eliminated.

Example 1.5.3 Elimination orders include

a.) the lexicographical order,
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b.) all matrix orders with matrix M = (Mij) with entries in the first column M1i =
1, i = 1, . . . , n, M1i = 0, i = n+ 1, . . . , n+ l. This includes the elimination order by
Bayer and Stillman.

c.) block orders ≥ consisting of orders ≥x and ≥y on K[x] and K[y], respectively.
(xαyγ > xβyδ ⇔ xα >x x

β or xα = xβ and yγ >y y
δ).

If GB forms a Gröbner basis of I with respect to an elimination order then GB ∩K[y] is
a Gröbner basis of the elimination ideal with respect to < |K[y].

Remark 1.5.4 In subsection 1.2.4 an elimination order was used for the handling of alge-
braic extensions in case the implementations are restricted to the field Q. It is also useful
for the relation between Gröbner bases of the affine ideal and the associated projective
ideal.

If we want to compute an upper triangular form as above we need a term order which
successively eliminates x1 than x1, x2, next x1, x2, x3 and so on. It is well-known that a
lexicographical order fulfills these requirements of nested multiple elimination.

Remark 1.5.5 In Section 1.4 the idea of the dynamic Buchberger algorithm is presented.
The term order represented by one vector is updated during the Buchberger algorithm such
that the polynomials are as close to a Gröbner basis as possible. A variant of this is possible
in elimination although the elimination orders are restricted. One only has to assure that
the weights on xi are much larger than on yj. Just start with one bound. If during
computation the degrees of the intermediate polynomials become too high one enlarges the
bound.

Algorithm 1.5.6 (Test for Noether normal form)
Input: one grading W forming a weight system

W -homogeneous polynomials f1, . . . , fm ∈ K[x1, . . . , xn]
assume the parameters are x1, . . . , xd

Output: Yes or No

1.) Choose a term order

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1 . . . wd−1 wd wd+1 . . . wn−1 wn

−w1 . . . −wd−1 −wd 0 . . . 0 0
0 · · · 0 0 1 0 0
... · · · ...

...
. . .

...
0 · · · 0 0 0 1 0
1 · · · 0 0 0 . . . 0 0

. . .
...

...
. . .

...
...

0 · · · 1 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and compute the Gröbner basis of 〈f1, . . . , fm〉 with respect to this term order.
2.) If the leading terms of GB do not contain any monomial which depends on the param-
eter variables x1, . . . , xd only and for each of the remaining variables there exists a monic
leading term in this variable then indeed the variables x1, . . . , xd form a homogeneous
system of parameters and the output is YES.
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In the algorithm it is important to use an order which eliminates the non-parameter
variables and then successively eliminates all variables one after each other.

Algorithm 1.5.6 is inspired by subroutine 3.9 in [179] where a gradrevlex order has
been used. We come back to the topic of Noether normalization in Chapter 2, Section 4.

The algorithmic Noether normalization shows some typical features of Gröbner bases.
The use of Gröbner bases pulls difficult questions of commutative algebra down to the
question whether a variable appears in a monomial or not. In turn these algebraic prop-
erties give the structural information on varieties.



Chapter 2

Algorithms for the computation of
invariants and equivariants

Haben Sie auch ein Beispiel gerechnet?

Did you compute an example?

Lothar Collatz1

In Chapter 3 and Chapter 4 the investigations are started with a symmetric vector
field having arbitrary coefficients. This dynamical system might be thought of as the re-
sult of a center manifold reduction or of a Liapunov Schmidt reduction of a bigger system
of ordinary differential equations or of a partial differential equation. Each equivariant
vector field can be written as a combination of fundamental invariants and fundamental
equivariants. These fundamental invariants and fundamental equivariants can be com-
puted by algorithms in a systematic way. In this chapter I give several algorithms where
I emphasize on those aspects which are essential for efficient computations. Some theo-
retical background is recalled where it is necessary. But the development of theory is not
the aim since there are several textbooks on invariant theory, see e.g. [50], [174]. In [176]
Sturmfels presents invariant theory together with its algorithmic treatment. Chapter 4
of [176] also includes Hilbert’s classical algorithm which we do not follow here since it is
not appropriate to generalize it to equivariants. Two alternatives of the classical way are
both based on the canonical cone and algorithmic normalization, see Chapter 4.7 of [176]
and [46] p. 85 using algebraic groups.

2.1 Using the Hilbert series

For the rest of this chapter G will denote a real compact Lie group and ϑ : G→ GL(Rn)
a linear representation on the vector space Rn. Of course only faithful representations
are considered, that means G and ϑ(G) are isomorphic as groups. Often ϑ is extended to
a representation on Cn.

�Prof. Dr. L. Collatz (1910–1990), a famous applied mathematicsm, used to ask this question. He
liked to tell a story about a special publication. The topic of the paper was an algorithm for a highly
specialized problem class with certain properties, but no example was included. After this paper had
been published, people realized that the class of problems with these specific properties is the empty set.

41



42 CHAPTER 2. ALGORITHMS FOR THE COMPUTATION OF INVARIANTS

6 × × × � � × ×

5 × × � × × ×

4 × × � × ×

3 × × � ×

2 × � ×

1 × ×

0 ×

6 × × × � � × ×

5 × × × × × ×

4 × � � × ×

3 × × × ×

2 × � ×

1 × ×

0 ×

Figure 2.1: The polynomial ring C[x1, x2] and the dimensions of its homogeneous parts
are symbolized by ×,�,�. The invariant rings C[x1, x2]

D3 and C[x1, x2]
D4 are graded

C-algebras. The dimensions of vector spaces of homogeneous D3 or D4- invariants are
visualized by �,�, respectively

In equivariant dynamical systems one focuses on dihedral groups Dn, S1, H × S1,
O(2)× S1, SO(3), O(3). That means that the group G is of one of the following types

a.) finite group

b.) a torus or a semi-simple Lie group (that means that the group is connected as
manifold and has an associated Lie algebra which as complexified Lie algebra is
semi-simple, i.e. has no nontrivial solvable ideals)

c.) a direct product H ×G0 of a finite group H and a Lie group G0 of type b.)

d.) a semi-direct product of a finite group H and a Lie group G0 from b.) being normal
in G.

The theoretical statements are as general as possible. But for practical computations we
restrict to one of these types. Especially, the equivariant Reynolds projection exploits the
Cartan decomposition valid for semi-simple Lie algebras.

In this section we start with definitions and give the first basic algorithms.

2.1.1 Invariants

Definition 2.1.1 A polynomial p(x) ∈ K[x1, . . . , xn] is called invariant (with respect to
a representation ϑ of a compact Lie group G), if

p(ϑ(s)x) = p(x), ∀ s ∈ G.

The set of all invariant polynomials is called invariant ring and is denoted by K[x]G or
more precisely by K[x]ϑ(G).



2.1. USING THE HILBERT SERIES 43

In factK[x]G is a graded K-algebra where the grading is induced by the natural grading
onK[x]. That means that elements ofHi(K[x]G) are homogeneous polynomials consisting
of monomials of degree i. In Figure 2.1 this is visualized for R[x]D3 and R[x]D4 .

Theorem 2.1.2 (Hilbert [97, 98]) The invariant ring C[x]G of a compact Lie group G is
generated by finitely many homogeneous invariant polynomials.

A finite set of invariants which generates the invariant ring is called Hilbert basis
and the elements are called fundamental invariants. If the fundamental invariants of
C[x]G have real coefficients they generate the real invariant ring R[x]G. That means that
for theoretical purposes it is sufficient to deal with the field of complex numbers while
practical computations often will be performed for a subfield of R, especially Q.

Definition 2.1.3 A polynomial mapping f : Cn → Cn is called equivariant, if

f(ϑ(s)x) = ϑ(s) · f(x), ∀ s ∈ G.

The set of all equivariants forms a module over the invariant ring and is denoted by C[x]GG
or more precisely by C[x]ϑϑ.

Also the module of equivariants is finitely generated over C[x]G ([87] p. 51). The genera-
tors are called fundamental equivariants. Finite generation means the following. Given a
Hilbert basis π1, . . . , πr ∈ R[x]G and a set of fundamental equivariants b1, . . . , bs ∈ R[x]G

each equivariant polynomial mapping f : Rn → Rn can be written as

f(x) = p1(π(x)) · b1(x) + · · ·+ ps(π(x)) · bs(x), (2.1)

where the pi are polynomials in r variables with real coefficients. The question of a
unique representation will be discussed in Section 2.4, see also Remark 2.1.19 and Algo-
rithm 2.3.20.

Sometimes one generalizes the concept of equivariants to mappings f which fulfill

f(ϑ(s)x) = ρ(s) · f(x), ∀ s ∈ G,

where ρ is another representation of G. Of course the module of these ϑ-ρ-equivariants is
finitely generated over C[x]ϑ(G) as well.

In the following we first present a naive algorithm for the computation of a Hilbert
basis of a given group action followed by a similar algorithm for the equivariants. Climbing
up the degree candidates for fundamental invariants are produced and the next degree
is determined at which fundamental invariants are missing. While the production of
candidates may be done with a certain projection the dimension of the vector space of
homogeneous invariants of degree d is given by the Molien series.

Definition 2.1.4 The Molien series of the invariant ring C[x]G is defined by

HPC[x]G(λ) =
∞∑
i=0

dim
(
HN

i (C[x]G)
)
· λi.
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Remark 2.1.5 i.) The Molien series is a special case of the Hilbert-Poincaré series in
Definition 1.2.9. ii.) In case the representation of G is reducible and the coordinate
system is such that the representation matrices have all the same block diagonal structure
a modified series may be defined. Decomposing the variables x = [X1, . . . , Xl] into l
groups according to the blocks some Kronecker gradings are defined by Wi(x) = 1, x ∈
Xi, Wi(x) = 0, x ∈ Xj , j �= i, j = 1, . . . , l, i = 1, . . . , l. Since W = (W1, . . . ,Wl) is a
weight system the series HPW

C[x]G(λ1, . . . , λl) is well-defined.

It is well-known that the Molien series can be computed, for finite groups see [176] p. 29
and for compact Lie groups see [174].

Lemma 2.1.6 For finite groups G we have

HPC[x]G(λ) =
1

|G|
∑
s∈G

1

det(id− λϑ(s))
.

For compact Lie groups similarly it holds

HPC[x]G(λ) =
∫
G

1

det(id− λϑ(s))
dμG,

where μG is the unique normalized Haar measure of G.

In order to explain the evaluation of the integral I need to exploit the group structure.
Let G0 denote the connected component of the identity in G. The representation ϑ :
G → GL(Rn) is restricted to the connected Lie group G0. Each connected compact Lie
group G0 contains a maximal torus group T (maximal Abelian subgroup) which is non-
unique in general. Then the Weyl groupW is defined as the normalizer of T in Go modulo
the torus T (NG0(T )/T � W ). This is a finite group and its order is denoted by |W |.
Moreover we denote by g the Lie algebra associated to G0. Since we restrict to semi-simple
Lie groups G0 the theorem of Cartan-Chevalley (see e.g. [63]) is valid and the Cartan
subalgebra is denoted by h. As a vector space the Lie algebra decomposes as g = h⊕ g/h

and the adjoint mapping Ad : G0 → Aut(g), Ad(g0)(X) = d
d s

(
g0 exp(sX)g−1

0

)
s=0

may

be restricted to the complement g/h. With these notations the Weyl integral formula in
[19] yields

HPC[x]G0 (λ) =
∫
G0

f(g0;λ)dμG0 =
1

|W |

∫
T
det(idg/h − Adt−1|g/h) · f(t;λ)dμT ,

with f(g0;λ) =
1

det(id− λϑ(g0))
,

where |W | denotes the order of the Weyl group and μG0, μT denote the unique normalized
Haar measures. Moreover, t is an element of the torus group T and g0 ∈ G0. Observe
that one uses the property of f to be equal on conjugacy classes of G0. Analogously, the
Molien series of G (direct or semi-direct product of finite H and G0) is derived as

HPC[x]G(λ) =
1

|H|
∑
s∈H

1

|W |

∫
T
det(idg/h −Adt−1|g/h)

1

det(id− λϑ(s t))
dμT .

The integral over the torus can be written as a curve integral which is solved with the
theorem of residues. Since Maple includes the computation of residues the Molien series
is computed in [73] along this way. Experience shows that most of the time is spent in
the simplification of expressions obtained from the theorem of residues.
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Example 2.1.7 The group SO(3) is generated by three rotations around one coordinate
axis. Thus the associated Lie algebra so(3) is generated by

L1 =

⎛⎜⎝ 0 0 0
0 0 1
0 −1 0

⎞⎟⎠ , L2 =

⎛⎜⎝ 0 0 1
0 0 0
−1 0 0

⎞⎟⎠ , L3 =

⎛⎜⎝ 0 1 0
−1 0 0
0 0 0

⎞⎟⎠ .
Considering so(3) as a Lie algebra over C a different set of generators is J0 = −iL3, J± =
iL1 ± L2. It has the advantage that the Cartan subalgebra h is generated by J0 and
J−, J+ are elements of the so-called root spaces. (For more on the Cartan decomposition
of semi-simple Lie algebras see [63] and Thm. 2.1.15.) A maximal torus group T of
SO(3) is given by T = {exp(sL3) | s ∈ [0, 2π[}. The Weyl group W = NSO(3)(T )/T has
order 2. The images of the adjoint action Ad : SO(3) → Aut(so(3)) are represented by
matrices with respect to a vector space basis of SO(3). In oder to deal with the restriction
Ad|T : T → Aut(so(3)) we use the splitting so(3) = h ⊕ so(3)/h and choose L1, L2 as a
vector space basis of so(3)/h. This gives

Adexp(sL3)|so(3)/h =

(
cos(s) −sin(s)
sin(s) cos(s)

)
,

which is used in the Weyl integral formula yielding the Molien series

HPC[x]SO(3)(λ) =
∫
SO(3)

1

det(id− λϑ(g0))
dμSO(3)

=
1

2

∫
T

det(idso(3)/h −Adt−1|so(3)/h)
det(id− λϑ(t))

dμT .

Representations ϑ of SO(3) are usually presented by the actions ζ of the Lie algebra so(3)
for the generators J0, J±, see [166]: for each l = 1, 2, . . . there is a representation of
degree 2l + 1. Denoting a vector space basis of C2l+1by {f−l, f−l+1, . . . , f0, f1, . . . , fl} the
representation in this coordinate system is given by

ζ(J0)fm = mfm, ζ(J±)fm = ±γmfm±1, m = −l, . . . , l,

γm =
√
(l −m)(l +m+ 1) .

where we use the convention f−l−1 = 0 = fl+1. Additionally, f̄m = (−1)mf−m, m =
0, 1, . . . , l can be chosen, see e.g. [166] p. 140. By ϑ(L3) = exp(−i ζ(J0)), ϑ(L1) =
exp(− i

2
ζ(J+ + J−)), ϑ(L2) = exp(1

2
ζ(J+ − J−)) a real representation of SO(3) on the

real vector space

{(f−l, . . . , fl) ∈ C2l+1 | f̄m = (−1)mf−m, m = 0, . . . , l}
is given. Using a parameterization of the torus group T the rules for integration yield for
R = C[x]SO(3)

HPR(λ) =
1

2

∫ 2π

s=0

det(idso(3)/h −Ad(exp(sL3))−1|so(3)/h)
det(id− λϑ(exp(sL3)))

ds

=
1

2

∫ 2π

s=0

(1− (cos(−s) + i sin(−s)))(1− (cos(−s)− i sin(−s)))∏l
m=−l(1− λ exp(i sm))

ds

=
1

2πi

1

2

∫
|z|=1

(1− z)(1− z−1)∏l
m=−l(1− λzm)

dz

z
.
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The curve integral is evaluated by the theorem of residues. For l = 2 and |λ| < 1 the poles
inside the curve are λ,±

√
λ. With

h(λ, z) =
(1− z)(1− z−1)

z(1 − λz−2)(1− λz−1)(1− λ)(1− λz)(1 − λz2)
,

HPC[x]SO(3)(λ) =
1

2

(
Resλh(λ, z) +Res√λh(λ, z) +Res−√

λh(λ, z)
)

=
1

(1− λ2)(1− λ3)
,

where the residues are computed with the help of Maple. The package Symmetry [73]
includes an operator for the computation of the Molien series along this lines.

Given some homogeneous invariants π1(x), . . . , πk(x) one would like to know how the
invariant ring C[x]G compares with the ring C[π1(x), . . . , πk(x)] generated by the given
invariants. The key to this question is given by the relations or syzygies r ∈ C[y1, . . . , yk]
with r(π1(x), . . . , πk(x)) ≡ 0. Denoting by I the ideal of relations the ring C[π(x)] is
isomorphic to C[y]/I. Moreover they are isomorphic as graded C-algebras where C[π(x)]
is graded by the natural degree and C[y] by W (yi) = degN(πi(x)), i = 1, . . . , k, the
induced grading. Since I is aW -homogeneous ideal the gradingW on C[y] induces to the
quotient ring C[y]/I. This is illustrated in Figure 2.2. It is well-known that a basis of the
ideal of relations is computed by means of Gröbner bases. Moreover a Gröbner basis of I
is determined and thus the Hilbert series of C[y]/I (equal to the series of C[x]/init(I))
is known by Algorithm 1.2.16. Since this is the same series as of C[π(x)] this gives the
method in [176] Algorithm 2.2.5 p. 32 for the determination of complete generation of the
invariant ring. In [74] it has been improved by two details, the truncation at degree d
and the Hilbert series driven Buchberger algorithm for the algorithmic determination of
algebraic relations.

x
1
a

1

1 2 3 4 5 6 7 8

x
2
a

2

y
1
a

1

2 3 4 5 6 7 8

y
2
a

2

Figure 2.2: The invariant ring of D3 acting on a plane is generated by two algebraic
independent polynomials π1(x), π2(x) of degrees 2 and 3, respectively. The dimensions
of the homogeneous components of K[π1(x), π(x)] are given on the left. On the right
K[y1, y2] with respect to the induced grading W (y1) = 2,W (y2) = 3 is pictured
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Algorithm 2.1.8 (Completeness of invariant ring up to degree d, [176])
Input: Homogeneous invariant polynomials π1(x), . . . , πk(x) ∈ K[x]G

Molien series HPK[x]G(λ)
degree d

Output: TRUE or minimal degree of missing invariant

Js := {y1 − π1(x), . . . , yk − πk(x)} # generators of ideal J
define grading W (xi) = 1, i = 1 . . . , n, W (yi) = degN(πi), i = 1, . . . , k
HP := 1/(1− λ)n # series of K[x, y]/J wrt W
compute a Gröbner basis GB(∑d

i=0H
W
i (J))

with respect to an order which eliminates x
using the Hilbert series driven Buchberger algorithm with series HP
and truncation at degree d # using Algorithm 1.2.23

Is := GB ∩K[y]
HTs := {ht(f), f ∈ Is}
HP2 := HPW

K[y]/〈HTs〉(λ) # using Algorithm 1.2.16

if HP2 = HPK[x]G(λ) then ‘ring is completely generated’
else compare Taylor expansions HP2 = b0 + b1λ+ b2λ

2 + · · ·
HPK[x]G(λ) = a0 + a1λ+ a2λ

2 + · · ·
dmin := min{i | ai > bi}
if d < dmin then TRUE else OUTPUT(dmin)

fi

The polynomials y1 − π1(x), . . . , yk − πk(x) with slack variables yi generate an ideal J ⊂
C[x, y]. Since an elimination order is chosen a Gröbner basis of the ideal of relations
I = J∩C[y] is computed. So far this is standard. The natural grading onC[x] gives rise to
the weighted grading W on C[x, y]. Then the polynomials yi−πi(x) are W -homogeneous
which enables truncation. With respect to a suitable term order the monomials y i are the
leading terms of the polynomials y i − πi(x). Since the yi are coprime the set {yi − πi(x)}
forms a Gröbner basis. Consequently, the Hilbert series of C[x, y]/J equals the series of
the ring C[x, y]/〈y1, . . . , yk〉. Obviously, the series is 1/(1 − λ)n. This enables the use of
the Hilbert series driven Buchberger algorithm as it has been pointed out in [182] and has
been used independently in [74]. These two details gain efficiency.

Example 2.1.9 In order to investigate a Takens-Bogdanov point with D3-symmetry in
[138] a generic equivariant vector field is investigated for the action of D3 decomposing as
two times the two-dimensional natural representation. The real representation ϑ : D3 →
GL(R4) is written in a different way by changing coordinates from (vr, vi, wr, wi) ∈ R4

to (v, v̄, w, w̄) ∈ C4 by v = vr + i · vi, w = wr + i · wi and identifying {(x1, x2, x3, x4) ∈
C4 | x1 = x̄2, x3 = x̄4} as real vector space. In these complex coordinates the group action
is nicely written as

flip(v, w) = (v̄, w̄), and rotation(v, w) = (ei
2π
3 v, ei

2π
3 w) .
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Since the author of [138] did not know about Algorithm 2.3.17 he suggested the invariants

s1 = vv̄ = vr
2 + vi

2, s2 = ww̄ = wr
2 + wi

2,
t0 = w3 + w̄ 3 = 2wr

3 − 6wr wi
2, t3 = v3 + v̄ 3 = 2 vr

3 − 6 vr vi
2,

s3 = vw̄ + v̄ w = 2 vr wr + 2 vi wi ,
t1 = vw2 + v̄ w̄ 2 = 2 vr wr

2 − 2 vr wi
2 − 4 vi wr wi ,

t2 = v2w + v̄ 2w̄ = 2 vr
2wr − 4 vr vi wi − 2 vi

2wr ,

and showed that they generate the invariant ring C[v, v̄, w, w̄]D3 completely. Since they
are real polynomials they generate R[vr, vi, wr, wi]

D3 as well. In [74] this was alternatively
shown by Algorithm 2.1.8. By Lemma 2.1.6 the Molien series is

λ6 + λ4 + 2 λ3 + λ2 + 1

(1− λ3)2 (1− λ2)2
.

The relations with respect to the revgradlex term order are

4 s2
3t2 − 4 s2

2t1s3 + t0s2s3
2 − t2t0

2 + t0t1
2,

t3s3
2s1 − t1t3

2 + t3t2
2 + 4 s1

3t1 − 4 s1
2t2s3,

4 s3s2
2t2 − 4 s2s3

2t1 + t0s3
3 − t3t0

2 + t1t2t0,
4 s3s1

2t1 − 4 s1s3
2t2 + t3s3

3 − t3
2t0 + t2t1t3,

4 s2s1
2 − s3

2s1 + t1t3 − t2
2, 4 s2

2s1 − s3
2s2 + t2t0 − t1

2,
4 s3s2s1 − s3

3 + t3t0 − t2t1, t2s2 + t0s1 − t1s3, t3s2 + t1s1 − t2s3,

(2.2)

with t0s2s3
2, t3s3

2s1, t0s3
3, t3s3

3, s2s1
2, s2

2s1, s3s2s1, t0s1, t3s2 as leading terms. The Hilbert
series of the quotient ring with respect to the ideal generated by these leading terms with
respect to the induced grading

W (s1) =W (s2) = 2, W (t0) = W (t3) = 3, W (s3) = 2, W (t1) = W (t2) = 3,

equals the Molien series. Thus the invariant ring is completely generated.

Now we turn our attention to the Reynolds projection

R : C[x] → C[x]G, (2.3)

which obviously respects the degree: Rd : Hd(C[x]) → Hd(C[x]G).
For finite groups the projection is easily realized by (see e.g. [176] p. 25)

R(p(x)) =
1

|G|
∑
s∈G

p(ϑ(s)x).

For compact Lie groups the description of the projection is more involved.
Recall that G0 denotes the connected component of the identity of G and Res(ϑ,G0)

the restriction of ϑ : G → GL(Rn). The representation Res(ϑ,G0) corresponds to a
representation ζ : g → M(Rn) of the associated Lie algebra g of G0 where ζ(Y ) are real
(n×n)-matrices. Each Y ∈ g is given by a path γ : [−1, 1] → G0, γ(0) = e, d

ds
γ(s)|s=0 = Y .

The group action Res(ϑ,G0) gives rise via the representation

Θ : G0 → Aut(C[x]), Θ(t)(p(x)) = p(ϑ(t−1)x), t ∈ G,
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gamma

Y

Figure 2.3: A connected compact Lie group G viewed as a differential manifold. The
tangent space at the identity is the associated Lie algebra g. A path γ(μ) through the
identity in G defines by differentiation an element Y ∈ g. The conjugation G → G, s �→
tst−1 of group elements gives rise to the Lie bracket [X, Y ] = adX(Y ) in the Lie algebra

Table 2.1: Data structure of a compact Lie group which is semi-simple or a direct or a
semi-direct product of a semi-simple compact Lie group with a finite group H

structure of the abstract group G: representation ϑ of G:

− connected component G0, − action ζ(Y ) of generators Y
− finite subgroup H , of the Lie algebra g,
− generators t of torus group T − action Res(ϑ,H)(s) for all s ∈ H
− order of the Weyl group W , − indices for maximal weight spaces
− generators of the Lie algebra g − matrix for change of coordinates

associated to G0, distinguished by
elements of the Cartan subalgebra
and of the root spaces,

− Adjoint action Adt−1|g/h

to an action of the Lie algebra on the polynomials. Elements of the tangent space of
Tϑ(e)ϑ(G0) are given by paths

γ : [−1, 1] → G0, γ(0) = e, γ′(0) = Y ∈ g,

ζ : g → M(Cn), ζ(Y ) =
d

ds
ϑ(γ(s))|s=0.

Analogously, we have TΘ(e)Θ(G0) by θ : g → Aut(C[x])

θ(Y )(f(x)) = d
ds
[Θ(γ(s))(f(x))]|s=0

= d
ds
[f (ϑ(γ(s)−1)x)]|s=0

= ∇f(x) · d
ds
ϑ(γ(s)−1)|s=0 · x = ∇f(x) · ζ(−Y ) · x

= −∇f(x) · ζ(Y ) · x.
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From this construction it is obvious that a polynomial f is invariant with respect to
Res(ϑ,G0) iff

θ(Y )(f(x)) = −∇f(x)ζ(Y )x = 0, (2.4)

for a set of generators of g. This is well-known, see e.g. [186] p. 206. It is the key for
Algorithm 2.1.10.

Provided a vector space basis Ṽ = {v1(x), . . . , vm(x)} of a subvector space V of C[x]
(e.g. the monomials in Hd(C[x]) is given the projection R|V : V → V ∩C[x]G0 is realized
in the following way: We make an ansatz f(x) =

∑
v∈Ṽ avv(x) ∈ C[av1 , . . . , avm ][x]. The

conditions (2.4) result in a linear system of equations in the unknowns av by comparing
coefficients. By solving this system and substitution of the result back into f one easily
determines a vector space basis of V ∩C[x]G0 .

If G is a direct product G = H × G0 with a finite group H the application of the
Reynolds projection of H on G0-invariants yields G-invariants. Since H and G0 commute
the Reynolds projections commute and thus we have RG = RHRG0 = RG0RH .

In case of a semi-direct product the system of linear equations above is amended by
the equations resulting from comparing coefficients for all generators s of the finite group
H in f(x)− f(ϑ(s)x).

Algorithm 2.1.10 (Computation of fundamental invariants up to degree d)
Input: representation ϑ of G:

− action ζ(Y ) of the generators Y of the Lie algebra g
− action Res(ϑ,H)

Molien series HPK[x]G(λ) =
∑∞

i=0 aiλ
i

maximal degree d

Output: invariants

Π := {}, m := 0 # set of invariants
choose term order < on K[x]
GB := {}
k := min({i | ai �= 0, i ≥ 1} # minimal missing degree
HP := 1 # tentative Hilbert series HPK[π(x)](λ) =

∑
i biλ

i

while k ≤ d do
s := ak − bk # number of missing invariants

Ṽ := { monomials in HN
k (K[x])}

M := { monomials in HW
k (K[y1, . . . , ym])}

# W � induced weighted grading
M := {q(ht(p1), . . . , ht(pm)) ∈ K[x]| q ∈M}
Ṽ := Ṽ \M
Q := R(Ṽ ) # vector space basis Q = {q1, . . . , ql} of HN

k (K[x]G) ∩ V
P := {} # new invariants of degree k
for i from 1 to l do

h := normalf<(qi, GB)
if h(x, y) �∈ K[y1, . . . , ym] then

p := qi − h(0, π(x))
# p ∈ P with HN

k (K[x]G) = HN
k (K[π(x)])⊕P

p̃ := normalf<(p, P )
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# linear combination yields ht(p̃) �= ht(p), p ∈ P
if p̃ �= 0 then P := P ∪ {p̃} # ht(p̃) �∈ 〈ht(π1), . . . , ht(πm)〉

Π := Π ∪ {p1, . . . , ps} = Π ∪ P # invariants found

k̃ := min({i | ai �= bi, i > k}
if k̃ > d then OUTPUT(Π)
else # compute relations
extend elimination order < to K[x, y1, . . . , ym+s] eliminating x
GB := GB(GB ∪ {ym+1 − p1, . . . , ym+s − ps}) # Gröbner basis
- using the Hilbert series driven version
- using truncation at degree d
m := m+ s
HT := {ht(f) | f ∈ GB ∩K[y]}
HP := HPW

K[y]/〈HT 〉 = HP
K[π(x)]

(λ) =
∑

i biλ
i # Algorithm 1.2.16

k := min({i | ai �= bi} # minimal missing degree
if k > d then OUTPUT(Π)

Remark 2.1.11 i.) The step h = normalf<(qi, GB) rewrites the polynomial qi(x) =
h(π1(x), . . . , πm(x)) in terms of invariants if the result h(x, y) depends on y only. (Com-
putation in a ring, see [14] p. 270.) Once a term order has been fixed the representation
in fundamental invariants is unique, but h depends on the term order in general. ii.)
The linear combination from pi to p̃i is necessary in order to skip some monomials in
the set Ṽ . For this it is preferable that all p ∈ P have different leading terms. Never-
theless in general it is not possible to derive a direct complement P of Hk(C[π(x)]) in
Hk(C[x]G) since C[π1(x), . . . , πr(x)] and C[ht(π1(x)), . . . , ht(πr(x))] are not isomorphic
as graded algebras in the general case. (If they were {πi} would be called a SAGBI basis
[162, 104], Chapter 11 in [177], p. 199 in [186]) iii.) A part of the input polynomials
of the Buchberger algorithm forms a Gröbner basis. An implementation of the Buch-
berger algorithm taking advantage of this fact would be desirable. Secondly, as far as
the computation of the Hilbert series is concerned the computation of a minimal Gröbner
basis suffices. The final intermediate reduction could be skipped. iv.) The advantage of
this algorithm is that it also works if only a Taylor series expansion of the Molien series
HPK[x]G(λ) = 1+a1λ+ · · ·+adλd+ · · · up to degree d is known. v.) The second advantage

is that it is very flexible. In case a set of fundamental invariants of a subgroup G̃ of G
is known one only needs to replace the set of monomials Ṽ by a vector space basis of
G̃-invariants of degree k. Secondly, in case the user knows some candidates of invariants
these can easily be incorporated.

Example 2.1.12 In [129] Leis has investigated a bifurcation problem with O(2) × S1-
symmetry and computed the fundamental invariants and equivariants. With Algorithm
2.1.10 the systematic computation of the Hilbert basis is possible. The real representation
ϑ : O(2) × S1 → GL(R6) is written as a representation on {y ∈ C6 | exists z−2, z0, z2 ∈
C with y1 = z−2, y2 = z̄−2, y3 = z0, y4 = z̄0, y5 = z2, y6 = z̄2} which is a real 6-dimensional
vector space. By z−2 = 1√

2
(x1 + ix2), z0 = 1√

2
(x3 + ix4), z2 = 1√

2
(x5 + ix6) a change of

coordinates y = Ax is defined resulting in

ϑ̃ : O(2)× S1 → GL(C6), ϑ̃(s) = A−1ϑ(s)A, s ∈ O(2)× S1,

ϑ̃(κ)(z−2, z0, z2) = (z2, z0, z−2),
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ϑ̃(rθ)(z−2, z0, z2) = (e−iθz−2, z0, e
iθz2),

ϑ̃(φ)(z−2, z0, z2) = (eiφz−2, e
iφz0, e

iφz2).

A torus group is generated by rθ and φ. The action ζ of the associated Lie algebra on C6

is given by

ζ(Y1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ζ(Y2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Additionally, there is the finite group Z2 = {id, κ}. In the Maple package symmetry
[73] the representation matrices ζ(Y1), ζ(Y2) with respect to the complex coordinate system
and ϑ(κ) with respect to the original real coordinate system are stored as well as the
transformation matrix A. The invariant generators of C[z]O(2)×S1 are easily computed to
be

z̄2z2 + z̄−2z−2, z̄0z0, z̄2z2z̄−2z−2, z2z̄
2
0z−2, z̄2z0

2z̄−2,

once the Molien series

HPSO(2)×S1
(λ) =

1 + λ4

(1− λ2)2(1− λ4)2
,

is known. The invariants of R[y]O(2)×S1 with real coefficients are easily obtained by linear
combination. The experience shows that the possibility to restriction in degree is very
valuable for efficiency.

2.1.2 Equivariants

The treatment of equivariants is analogously. The most important fact on ϑ-ϑ-equivariants
is the correspondence to invariants of degree one.

The representation ϑ : G→ GL(Cn) induces a representation

ϑ̃ : G→ GL(C2n), ϑ̃(s)(x, z) = (ϑ(s)x, ϑ(s)z), ∀ s ∈ G, x, z ∈ Cn. (2.5)

Naturally the ringC[x, z]ϑ̃ is bigraded by the weight system (U,W ) with U|K[x] = 0, U|K[z] =

N,W|K[x] = N,W|K[z] = 0. The module of equivariantsC[x]ϑϑ is isomorphic toHU
1 (C[x, z]ϑ̃)

by identification of an equivariant f(x) with a ϑ̃-invariant (z, f(x)), where (·, ·) is a ϑ-
invariant inner product on Cn. By this isomorphy a lot of results for invariants imme-
diately generalize to the module of equivariants. Moreover, this relation is important
for computations. In practice ϑ(s) are orthogonal (unitary) matrices. (For compact Lie
groups a unique normalized Haar measure exists such that one has a G-invariant inner
product. For groups with G-invariant inner product the coordinate system may be chosen
such that the representation matrices are unitary or orthogonal, respectively.) Instead of
computing with tuples f(x) one computes with polynomials z tf(x).
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C[x]ϑϑ is graded by the natural degree and thus the Hilbert-Poincaré series is well-
defined. Analogous to the case of invariants we obtain

HPN
C[x]ϑ

ϑ
(λ) =

1

|G|
∑
s∈G

trace(ϑ(s−1))

det(id− λϑ(s))
, (2.6)

for finite groups G (see e.g. [166], [194] or [71]) and

HPC[x]ϑ
ϑ
(λ) =

∫
G

trace(ϑ(s−1))

det(id− λϑ(s))
dμG,

for compact Lie groups [166]. For groups of cases b.), c.) and d.) this is evaluated by

HPC[x]ϑ
ϑ
(λ) =

1

|H|
∑
s∈H

1

|W |

∫
T
det(idg/h − Adt−1|g/h)

trace(ϑ(g−1
0 s−1))

det(id− λϑ(sg0))
dμT , (2.7)

where t is an element of the torus T and |W | denotes the order of the Weyl group
NG0(T )/T .

Given some homogeneous invariant polynomials π1(x), . . . , πk(x) and some homoge-
neous equivariants f1(x), . . . , fl(x) one likes to know whether they generate the module of
equivariants. Comparing the Hilbert series HPN

C[x]ϑ
ϑ
(λ) of the C[x]G-module of equivari-

ants with the C[π(x)]-module generated by f1(x), . . . , fl(x) gives the answer. Analogous
to the syzygies of invariants the computation of the latter series is based on the relations

R = {r ∈ C[y, u] | r(y, u) = r1(y)u1 + · · ·+ rl(y)ul, r(π(x), f(x)) ≡ 0} .

Lemma 2.1.13 Given some homogeneous polynomials π1(x), . . . , πk(x) ∈ C[x] and some
homogeneous polynomial tuples f1(x), . . . , fl(x) ∈ C[x]n we denote by M the module gen-
erated by f1, . . . , fl over C[π1(x), . . . , πk(x)]. We define a Kronecker grading U|C[x,y] =
0, U|C[z,u] = N and denote by M ⊂ ⊕1

ν=0H
U
ν (C[x, y, z, u]) the C[x, y]-module generated by

y1 − π1(x), . . . , yk − πk(x), u1 −
n∑

j=1

(f1(x))jzj , . . . , ul −
n∑

j=1

(fl(x))jzj .

Denote by GB a Gröbner basis of M which is truncated at degree 1 with respect to U with
respect to a term order which eliminates x and z. Then the Hilbert series HPN

M(λ) of the
C[π(x)]-module generated by f1, . . . , fl is given by

HPN
M(λ) = λdeg(f1) · HPW

C[y]/〈HT1〉(λ) + · · ·+ λdeg(fl) · HPW
C[y]/〈HTl〉(λ),

where W is the induced weighted grading with W (yi) = degN (πi), i = 1, . . . , k and HTj
denote the sets of all monomials yα where yαuj is a leading term of an element of GB.

Proof: Recall the ideal J = 〈y1 − π1(x), . . . , yk − πk(x)〉 and the elimination ideal I =
J ∩C[y]. The rings C[π(x)] and C[y]/I are isomorphic as rings and even more as graded
algebras where the natural grading and the induced weighted grading W are taken. The
Gröbner basis of the theorem includes a Gröbner basis of J and of I.

The module of relations R as defined above is equal toM∩HU
1 (C[y, u]). It is a C[y]/I-

module. The quotient ring C[y]/I is graded by W and so R is a W -graded module where
we define W (ui) = degN(fi). As W -graded module R is isomorphic to M graded by
the natural degree. Thus R can be used for the computation of the Hilbert series. By
Lemma 1.2.12 the leading terms of the Gröbner basis give the Hilbert series. �
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Remark 2.1.14 i.) The Hilbert series driven version of the Buchberger algorithm 1.2.23
can be used with the bigrading (U +W,W ) and the series

HPU+W,W
C[x,y,z,u]/〈M〉(λ1, λ2) =

1

(1− λ1)n (1− λ1λ2)n
,

since y1, . . . , yk, u1, . . . , ul are the leading terms of a Gröbner basis with respect to an
appropriate term order and C[x, y, z, u]/〈y, u〉 = C[x, z].
ii.) For efficiency it is important to observe that truncation of the Gröbner basis of J with
respect to W is possible. Then only a truncation of the Hilbert series is guaranteed to be
correct.

In [74] this Lemma has been used in order to show that the module of O(2) × S1-
equivariants is generated completely by the equivariants suggested by Leis in [129].

The natural grading of C[x]ϑϑ is respected by the equivariant Reynolds projection

R : (C[x])n → C[x]ϑϑ.

For finite groups G the projection is realized by

R(f(x)) =
1

|G|
∑
s∈G

ϑ(s−1)f(ϑ(s)x), (2.8)

see [71] for more theoretical background.
For connected compact Lie groups G0 the computation of the projection is done with

the help of the associated Lie algebra g. Analogous to equation (2.4) for the case of
invariants we have: A polynomial mapping f(x) ∈ (C[x])n is equivariant, iff

θ(−Y )(f(x)) = ζ(Y )f(x), (2.9)

for a set of generators Y of g. Observe that this easily generalizes to the ϑ-ρ-equivariants
by using the representation of the Lie algebra g associated to ρ.

The realization of the projection is similar to the case of invariants. Given a vector
space basis of Hd((C[x])n) a projection to Hd((C[x])n ∩ C[x]ϑϑ) is realized by a formal
ansatz with unknown coefficients and condition (2.9) for a set of generators of g which
gives by comparing coefficients of monomials xα in the tuple a system of linear equations
in the unknown coefficients. Additionally, the vector space basis can be chosen much
smaller, if one exploits that the group G0 is semi-simple and thus the associated Lie
algebra has special properties. This was first described in [166] for SO(3) and generalized
for arbitrary semi-simple Lie groups by Guyard in [74].

Assume the Lie algebra g is semi-simple. Then there exists a decomposition of g as a
C-vector space

g = h⊕ g1 ⊕ · · · ⊕ g2s , (2.10)

having the additional property that for each gi a linear from αi : h→ C exists such that

[X, Y ] = ad(X)(Y ) = αi(X) · Y, ∀X ∈ h, Y ∈ gi.

That means that ad(X) acts diagonally on g. Moreover, for each αi there exists one αj

with αi = −αj . Collecting the forms αi in a set R, one usually uses α as index and writes
the well-known Cartan decomposition (2.10) as g = h⊕ ⊕

α∈R gα. The gα are called root
spaces.



2.1. USING THE HILBERT SERIES 55

Theorem 2.1.15 (Cartan-Weyl, see [63]) Assume the Lie algebra g is semi-simple. Then
there exists a vector space basis {H1, . . . , Hr} of the Cartan subalgebra h and for each
α ∈ R some Yα generates gα such that

ad(Hi)Yα = [Hi, Yα] = α(Hi)Yα,

ad(Yα)Y−α = [Yα, Y−α] ∈ h,

ad(Yα)Yβ = [Yα, Yβ] = Nα,βYα+β with Nα,β = 0 unless α+ β ∈ R,

with Nα,β = −Nβ,α = N−β,−α = −N−α,−β.

Example 2.1.16 The Lie algebra so(3) is generated by L1, L2, L3 or over C by J0, J+, J−
(see Example 2.1.7). There are two root spaces gα1 = span(J+), gα2 = span(J−). The
linear forms αi : h → C, i = 1, 2 are defined by α1(J0) = 1, α2(J0) = −1 since [J0, J±] =
±J±. Additionally we have [J+, J−] = 2J0.

Moreover, one might choose a special coordinate system on Cn such that the repre-
sentation matrices of ζ : g → M(Cn) are sparse. The vector space is decomposed into
weight spaces

Cn = ⊕β∈WVβ,

where W is a set of linear forms on h, such that

∀v ∈ Vβ, ∀X ∈ h, ζ(X)(v) = α(X) · v.

The rest of the Lie algebra g acts in the following way

ζ(gα)(Vβ) ⊂ Vα+β if α+ β ∈ W,

ζ(gα)(Vβ) = 0 if α+ β �∈ W.

Furthermore there exists a decomposition into positive and negative root spaces R =
R+ ∪ R− and there exists a maximal weight space Vβ0 such that

ζ(Yα)Vβ0 = 0 ∀ α ∈ R+.

It also holds that for each v ∈ Vβ0 the vectors v, ζ(Yα)v, α ∈ R− generate a vector space
such that the restriction of ζ to this space is an irreducible representation. In an irreducible
representation the maximal weight space is one-dimensional and unique.

In order to work with an efficient Reynolds projection we assume that the matrices
ζ(Y ) are given in a coordinate system such that the spaces Vβ are generated by unit vec-
tors. For an equivariant F this means that each component Fi corresponds to an element
of one of the Vβ. One makes an ansatz Fi(x) =

∑
m∈M aimm(x) (M basis of Hk(C[x])) for

the components Fi, i ∈ Imax corresponding to the maximal weight space. Conditions for
the coefficients aim are given by the Lie algebra elements of the Cartan subalgebra and
the positive roots. The conditions θ(−H)(F (x)) = ζ(H)F (x) for generators H of h and
θ(−Yα)(F (x)) = ζ(Yα)F (x) for α ∈ R+ result into

(θ(−H)(F (x))i = ζ(H)iiFi(x), i ∈ Imax, H ∈ h,

(θ(−Yα)(F (x))i = 0, i ∈ Imax, α ∈ R+.
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The other components Fi, i �∈ Imax of the equivariant are derived successively by shifts.
The condition (θ(−Yα)F (x))i = ζ(Yα)ijFj(x), α ∈ R− for some i ∈ Imax and some j �∈
Imax implies

Fj(x) =
1

ζ(Yα)ij
(θ(−Yα)F (x))i .

Once Fj is known other components are derived analogously. Of course this only works
if the matrices ζ(Y ) are taken in a coordinate system according to the weight spaces Vβ.

Example 2.1.17 Consider the representation l = 1 of the Lie algebra so(3). With respect
to a basis {f−1, f0, f1} of C3 the coordinates are denoted by z−1, z0, z1 and the representa-
tion matrices are

ζ(J+) =

⎡⎢⎢⎢⎣
0

√
2 0

0 0
√
2

0 0 0

⎤⎥⎥⎥⎦ , ζ(J−) =

⎡⎢⎢⎢⎣
0 0 0
√
2 0 0

0
√
2 0

⎤⎥⎥⎥⎦ .
The third coordinate corresponds to the maximal weight space. An equivariant of degree 3
is

F (z) = [2 z1z−1
2 − z0

2z−1, 2 z1z0z−1 − z0
3, −z1z02 + 2 z1

2z−1]
t.

Once F3(z) is determined F2(z), F1(z) are derived by J− by

F2(z) =
1√
2
∇F3(z) · ζ(J−) z, F1(z) =

1√
2
∇F2(z) · ζ(J−) z.

The Lie algebra so(3) has one shift operator only. For other Lie algebras there might be
more. Then a component Fj may be derived in several ways. The package symmetry [73]
contains a routine which automatically finds out which root α ∈ R− and which previous
index to use provided the matrices ζ(Y ) and the index set Imax of the maximal weight
space are known.

If G is a direct or semi-direct product of a semi-simple Lie group G 0 with a finite
group H the Reynolds projection of G consists of the Reynolds projection of G0 and the
projection for the finite group H . In the direct case one may just apply the Reynolds
projection ofH to anG0-equivariant. In the semi-direct case one considersG0-equivariants
f1, . . . , fr ∈ R[x]GG. Then comparing coefficients in f(ϑ(s)x) = ϑ(s)f(x) for a set of
generators s ofH and for f =

∑
aifi yields a system of linear equations in the unknowns ai.

While the usage of the Cartan decomposition produces G0-equivariants with complex
coefficients it is important here to start with G0-equivariants with real coefficients.

Algorithm 2.1.18 (Computation of fundamental equivariants up to degree d)
Input: representation ϑ of G:

− action ζ(Y ) of generators Y of the Cartan subalgebra h of g and
of generators Y of the root spaces

− action Res(ϑ,H)

homogeneous invariants π1(x), . . . , πr(x)

Hilbert-Poincaré series HPK[x]GG
(λ) =

∑∞
i=0 aiλ

i

maximal degree d

Output: homogeneous equivariants f1, . . . , fl which generate the module of
equivariants over C[π(x)] up to degree d
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M := {}, m := 0 # set of equivariants generating module M over K[π(x)]
choose term order < on K[x1, . . . , xn, y1, . . . , yr] eliminating x
GBinv := GB(y1 − π1(x), . . . , yr − πr(x)) # compute Gröbner basis wrt <

- using Hilbert series driven version
- using truncation at degree d

GB:= GBinv # Gröbner basis of module in ⊕1
i=0H

W
i (K[x, y, z, u])

k := min({i | ai �= 0}) # minimal missing degree
HP := 0 # Hilbert series HPN

M(λ) =
∑

i biλ
i of module M

while k ≤ d do
s := ak − bk # number of missing equivariants

Ṽ := { monomials in HN
k (K[x])}

for j ∈ {j1, · · · , jdim} do # dim - dimension of weight space

V̂j = {w(x) ∈ K[x]n |wi(x) = 0, i = 1, . . . , n, i �= j, wj(x) ∈ Ṽ }
V̂ := V̂1 ∪ · · · ∪ V̂dim
Q := R(V̂ ) # vector space basis Q = {q1, . . . , ql} of HN

k (K[x]GG) ∩ V̂
F := {} # new equivariants of degree k
for i from 1 to l do

p := normalf<(
∑n

j=1(qi)jzj , GB)
if p(x, y, z, u) �∈ K[y1, . . . , yr, u1, . . . , um] then

p :=
∑n

j=1(qi)jzj
−p(0, π(x), 0,∑n

j=1(M1(x))jzj , . . . ,
∑n

j=1(Mm(x))jzj)

p := normalf<(p, F ) # p(x, z) = f1(x)z1 + · · ·+ fn(x)zn
if p �= 0 then F := F ∪ {f}

m := m+ s
M :=M ∪ {f1, . . . , fs} =M ∪ F

# equivariants M = {M1, . . . ,Mm} found

k̃ := min({i | ai �= bi, i > k}
if k̃ > d then OUTPUT(M)
else # compute relations

extend < to K[x, y1, . . . , yr, z1, . . . , zn, u1, . . . , um]
eliminating x and z

J := GB ∪
{
um−s+1 −

∑n
j=1(f1)jzj, . . . , um −∑n

j=1(fs)jzj
}

GB := GB(J ) # compute Gröbner basis by Algorithm 1.2.23
− using grading W and Kronecker grading U
W (xi) = 1,W (yi) = degN(πi(x)),
W (zi) = 0,W (ui) = degN(fi(x))
U(xi) = 0, U(yi) = 0, U(zi) = 1, U(ui) = 1

− using the Hilbert series

HPU+W,W
K[x,y,z,u]/〈J 〉(λ1, λ2) =

1
(1−λ1)n(1−λ1λ2)n

− using truncation at degree d (wrt W ) and 1 (wrt U)

HT := {ht(p) | p ∈ GB ∩K[y, u]} # leading terms of relations
HP := 0
for j = 1, . . . , m do # Lemma 2.1.13

HTj := {p | uj · p ∈ HT}
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HP := HP + λdeg(fj)HPW
K[y]/〈HTj〉(λ) # Algorithm 1.2.16

HP = HPM(λ) =
∑

i biλ
i # Hilbert series of M

k := min({i | ai �= bi} # minimal missing degree
if k > d then OUTPUT(M)

Remark 2.1.19 i.) Experience shows that it is more efficient to compute the relations
for the invariants first. ii.) If the degree d is ∞ the algorithm terminates provided the
module of equivariants is finitely generated over K[π(x)] where π1(x), . . . , πr(x) are the
given invariants. This is fulfilled for a homogeneous system of parameters. iii.) The
division algorithm (step p := normalf<(

∑n
j=1(qi)jzj , GB)) computes a representation of an

equivariant qi of degree ≤ d in terms of invariants and equivariants since an elimination
order has been chosen and by Lemma 1.2.8. Once the term order has been fixed the
representation in (2.1) is unique. iv.) The algorithm is very flexible. If the user already
knows some fundamental equivariants this knowledge can easily be incorporated. v.) If the
group is a connected semi-simple group then less slack variables are needed. In the right
coordinates system the components of the equivariants fi,Mj correspond to the weight
spaces. The other components of the tuple are given by the shift operators in the root
spaces of the Lie algebra. For efficiency this is an important point since the complexity of
the Buchberger algorithm increases dramatically with the number of variables.

Example 2.1.20 In [34] P. Chossat, F. Guyard and R. Lauterbach investigate mode
interaction, a dynamical system with symmetry of O(3) acting on R8. The representation
decomposes into two irreducible representations. The restrictions to SO(3) act as the
irreducible representations denoted by l = 1 and l = 2 (see Example 2.1.17). Since O(3)
is the product of SO(3) with Z2 it remains to explain the action of the reflection. For
both representations the natural action is assumed. That means that for l = 1 the action
is faithful and for l = 2 it is non-faithful. The first step in [34] is the determination of
the general equivariant vector field. The Molien series of the invariant ring is

HPC[x]O(3)(λ) =
1

(1− λ2)2 (1− λ3)2 (1− λ4)
,

while the equivariant Molien series is

HP
C[x]

O(3)

O(3)

(λ) =
2 λ+ 3 λ2 + 2 λ3 + λ4

(1− λ2)2 (1− λ3)2 (1− λ4)
.

By Algorithm 2.1.10 we computed the invariants
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√
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√
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√
6 y0
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The following equivariants have been computed with truncation at degree 3 within two
hours.

[ [ x−1, x0, x1, 0, 0, 0, 0, 0], [0, 0, 0, y−2, y−1, y0, y1, y2 ],

[ y0x−1 −
√
3y−1x0 +

√
2
√
3y−2x1,

√
3y1x−1 − 2 y0x0 +

√
3y−1x1,

y0x1 − y1x0
√
3 + y2x−1

√
2
√
3, 0, 0, 0, 0, 0 ],

[ 0, 0, 0, 3 x−1
2, 3

√
2x−1x0,

√
6x−1x1 +

√
6x0

2, 3
√
2x0x1, 3 x1

2 ],

[ 0, 0, 0, 4 y0y−2 − y−1
2
√
6,−2 y0y−1 + 2 y1y−2

√
6, 4 y2y−2 + 2 y1y−1 − 2 y0

2,

2 y−1y2
√
6− 2 y1y0,−y12

√
6 + 4 y2y0 ],

[ x0
√
3y−1y0 − 3

√
2x0y1y−2 + 2 y−2

√
2
√
3y0x1 − 3 y−1

2x1 − 5 y1y−1x−1 + 2 x−1y0
2
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√
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√
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√
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3 ] ].

2.2 Using the nullcone

In this section we concentrate on algebraic groups. While Lie groups are additionally to
the group structure endowed with the structure of a manifold, algebraic groups have the
additional structure of a variety. An algorithm by Derksen [48] (see also [186] p. 205)
for the computation of invariants is recalled and generalized to equivariants. Hilbert’s
first proof has been criticized to be non-constructive last century. Derksen replaced the
non-constructive argument by an algorithm exploiting Gröbner bases. We start with the
definition of the nullcone which is the most important object in invariant theory.

Definition 2.2.1 Let ϑ : G → GL(Cn) be a faithful representation of a group G and
C[x]ϑ the ring of invariants. The ideal generated by all homogeneous invariants over C[x]
is denoted by IN ⊂ C[x]. The variety V (IN ) ⊂ Cn is called nullcone.

Of course all homogeneous invariants generate an ideal in C[x]ϑ as well. Projecting a
set of generators of IN to a set of generators of IN ∩C[x]ϑ gives the Hilbert basis. (This is
recalled in Lemma 2.2 in [48].) The non-constructive argument of existence of generators
of IN could be replaced by a computational way, see the algorithm below.

A variety G with the structure of a group is called algebraic group if μ : G × G →
G, μ(x, y) = xy and ι : G → G, ι(x) = x−1 are mappings of varieties. Finite groups and
most of the compact Lie groups are algebraic groups.

Algorithm 2.2.2 (Computation of invariants of an algebraic group)
(Derksen [48])

Input: algebraic group, represented by h1(z), . . . , hr(z) ∈ K[z1, . . . , zs] and
(aij(z))i,j=1,...,n where aij(z) ∈ K[z]/JG with JG = 〈h1, . . . , hr〉
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and its representation as a compact Lie group
degree d

Output: invariants

1.) Compute a Gröbner basis GB of

IΓ :=

〈
h1(z), . . . , hr(z), y1 −

n∑
j=1

a1j(z)xj , . . . , yn −
n∑

j=1

anj(z)xj

〉

in K[x, y, z] with respect to a term order which eliminates z,
using truncation at degree d with respect to
W (xi) = 1 =W (yi), i = 1, . . . , n,W (zj) = 0, j = 1, . . . , s.

2.) Substitute zeros: IN = {f(x, 0) | f(x, y) ∈ GB ∩K[x, y]}.
This gives generators of IN .

3.) Compute a Gröbner basis GB = {f1, . . . , fm} of the ideal 〈IN〉
(truncate at degree d).

4.) Apply the Reynolds projection: R(f) , f ∈ GB in the following way:
Denote by i1, . . . , ik the sorted degrees of elements in GB
Invs := {f ∈ GB | deg(f) = i1}
for j = 2, . . . , k do
i := ij
Apply the projection to the vector space spanned by
{m(x)fl(x) | fl ∈ GB, deg(fl) ≤ i, deg(m) = i− deg(fl),

m(x) monomial, ht(fs) � |m(x)ht(fl) for all s < l}
Update(Invs)

Remark 2.2.3 i.) The examples presented in [48] show that in general the set of gen-
erators is not minimal. ii.) The ideal IΓ is homogeneous with respect to the grading W
given by W (xi) = 1 = W (yi), i = 1, . . . , n,W (zi) = 0, i = 1, . . . , s. So the computation of
the Gröbner basis may be restricted in degree. Consequently, only the low-degree part of
IΓ∩K[x, y] and the low-degree part of IN is computed. iii.) For finite groups the Reynolds
projection is easily realized while for compact Lie groups the Reynolds projection may be
realized as in Section 2.1 with the Lie algebra associated to the connected compact Lie
group.

The proof in [48] is based on the ideal b = {h ∈ C[x, y] | h(x, ϑ(g)x) = 0}. Since in
Section 4.1 analogous arguments are given the proof is not recalled here.

Algebraic groups include especially torus groups. A torus action is defined as a matrix
B = (bij)i=1,...,n,j=1,...,d with bij ∈ Z. It is most convenient to split it uniquely into

B = B̃ − B̂ with B̃, B̂ ∈ Nn×d with B̃, B̂ as sparse as possible. The matrix A = (aij) is
defined by a diagonal matrix

aii(z1, . . . , z2d) =
d∏

j=1

z
b̃ij
j z

b̂ij
d+j , aij = 0, i �= j.

The restrictions in z are given by h1(z) = z1zd+1−1, . . . , hd(z) = zdz2d−1. This shows that
Algorithm 2.2.2 is a generalization of Algorithm 1.4.5 in [176] which computes invariants
of torus group actions.
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Example 2.2.4 In [100] Igor Hoveijn investigates Hamiltonian systems where the Jaco-
bian has eigenvalues ±i,±i,±2i. This case is called 1:1:2 resonance. In the Birkhoff
normal form of the dynamical system this leads to the study of the torus group action on
a 6-dimensional space. The group acts with t = e2πiφ on the real vector space

R6 � {x ∈ C6 | x4 = x̄1, x5 = x̄2, x6 = x̄3},

as (x1, x2, x3, x4, x5, x6) → (t x1, t x2, t
2 x3, t

−1 x4, t
−1 x5, t

−2 x6).
This may be considered as a one-dimensional torus action with t ∈ C on C6. It is

written as algebraic group by introducing t = z1, t
−1 = z2 and h1(z) = z1 z2−1. The group

action is a diagonal matrix

A(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1 0 · · · 0

0 z1 0 · · · ...
... 0 z1

2 0 · · ·
... 0 z2 0
... · · · 0 z2 0
0 · · · 0 z2

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
mod JG = 〈h1〉.

There are 11 invariants:

x1x4, x6x3, x5x2, x2x4, x1x2x6, x1
2x6, x4x5x3, x3x4

2, x5x1, x5
2x3, x2

2x6.

The algorithmic computation of torus invariants is also interesting for other group
actions. In case the torus T is normal in the group the group G/T is acting on the set of
T -invariants and their conjugates. Then G-invariants are derived from G/T -invariants.
This is described in [110].

Equivariants

Since equivariants correspond to certain invariants of degree one, Algorithm 2.2.2 imme-
diately generalizes to the computation of equivariants. The invariants of degree one are
taken with respect to the representation in (2.5). We restrict to orthogonal (unitary)
group representations.

Let the matrix A(z) ∈ C[z]n,n and the polynomials h1(z), . . . , hr(z) define an algebraic
group. Assume Ã(z) is a matrix with

A(z) · Ã(z) ≡ Id mod JG = 〈h1, . . . , hr〉.

Decompose the variables x1, . . . , x2n and y1, . . . , y2n into two groupsX1 = {x1, . . . , xn}, X2 =
{xn+1, . . . , x2n} and Y1 = {y1, . . . , yn}, Y2 = {yn+1, . . . , y2n}. Then(

Y1
Y2

)
=

(
A(z) 0
0 A(z)

)(
X1

X2

)
,

is the algebraic group action corresponding to the representation in (2.5) for the case of
equivariants. Defining the grading W with W (xi) = W (yi) = 0, i = 1, . . . , n,W (xi) =
W (yi) = 1, i = n + 1, . . . , 2n,W (zi) = 0, i = 1, . . . the ideal IΓ defined in Algorithm 2.2.2
is W -homogeneous. Thus a truncation to degree one with respect to W is possible. Since
the projection IΓ ∩K[x, y] → IN , f(x, y) → f(x, 0) and the Reynolds projection respects
the degree a computation of a generating set of equivariants is possible.
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Algorithm 2.2.5 (Computation of invariants and equivariants of
an algebraic group)

Input: algebraic group, represented by
h1(z), . . . , hr(z) ∈ K[z1, . . . , zs] generating JG = 〈h1, . . . , hr〉
and matrix A = (a(z)ij)i,j=1,...,n

and its representation as compact Lie group
degree d

Output: invariants and equivariants generating the ring and the module up
to degree d

1.) a.) Compute a Gröbner basis GB1 of I1Γ ⊂ K[X1, Y1, z] generated by

h1(z), . . . , hr(z) , y1 −
∑n

j=1 a1j(z)xj , . . . , yn −
∑n

j=1 anj(z)xj ,

with respect to a term order which eliminates z.
One may truncate at degree d with respect to
W (xi) = W (yi) = 1, i = 1, . . . , n,W (zj) = 0, j = 1, . . . , s.

b.) Substitute the second group of variables

GB2 := {f(X2, Y2, z) | f(X1, Y1, z) ∈ GB1, degU(f) ≤ 1}
where the degree is taken with respect to the Kronecker grading
U(xi) = 1 = U(yi), i = 1, . . . , n, U(zj) = 0, j = 1, . . . , s.

c.) Compute a truncated Gröbner basis GB of the K[z]-module HW
0,1(IΓ)

generated by GB1 and GB2 with respect to a term order which elimi-
nates z. Here IΓ ⊂ K[x, y, z] denotes the ideal which is generated by

h1(z), . . . , hr(z),

y1 −
∑n

j=1 a1j(z)xj , . . . , yn −
∑n

j=1 anj(z)xj ,

yn+1 −
∑n

j=1 a1,j(z)xn+j , . . . , y2n −
∑n

j=1 an,j(z)xn+j ,

The Gröbner basis is truncated at degree 1 with respect to the
grading U given by U(xi) = U(yi) = 0, i = 1, . . . , n,

U(xi) = U(yi) = 1, i = n+ 1, . . . , 2n
and truncated at degree d with respect to the grading
W (xi) = W (yi) = 1, i = 1, . . . , 2n,W (zj) = 0, j = 1, . . . , s.

2.) Substitute zeros: IN = {f(x, 0) | f(x, y) ∈ GB ∩K[x, y]}.
3.) Compute a truncated Gröbner basis GB of

⊕1
i=0

⊕d
j=0H

U,W
i,j (〈IN〉).

4.) Apply the Reynolds projection: R(f) , f ∈ GB.

5.) Polynomials of degree zero with respect to U are invariant polynomials.
Polynomials of degree one correspond to equivariants.

Remark 2.2.6 The precomputation of GB1 and GB2 are just done for efficiency reasons.
One may generalize the algorithm to the case of general ϑ-ρ-equivariants, but then Step
1.) b.) is not valid any longer.

Example 2.2.7 In [87] p. 328 the group action of O(2)×S1 on the four-dimensional real
vector space {(x1, cx1, x2, cx2) ∈ C4 | x̄1 = cx1, x̄2 = cx2} is considered. In these complex
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coordinates this group action is nicely written as

ϑ(θ)(x1, x2) = (eiθx1, e
iθx2), θ ∈ S1,

ϑ(φ)(x1, x2) = (e−iφx1, e
iφx2), φ ∈ O(2),

ϑ(κ)(x1, x2) = (x2, x1), κ flip in O(2).

As algebraic group this group representation is written with 5 variables Z1, Z2, Z3, Z4, Z5

where h1(Z) = Z1Z3 − 1, h2(Z) = Z2Z4 − 1, h3(Z) = Z2
5 − 1 and

A(Z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Z4 Z1 Z5 (Z5+1)
2

0 Z4 Z1 Z5 (Z5−1)
2

0

0 Z2 Z3 Z5 (Z5+1)
2

0 Z2 Z3 Z5 (Z5−1)
2

Z2 Z1 Z5 (Z5−1)
2

0 Z2 Z1 Z5 (Z5+1)
2

0

0 Z4 Z3 Z5 (Z5−1)
2

0 Z4 Z3 Z5 (Z5+1)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Denoting by z1, cz1, z2, cz2 the second group of variables for the correspondence between
equivariants and linear invariants the 3 Gröbner basis computations yield the generators
of IN :

[ x2
2cx2

2, x2cx2
2z2, x2

2cx2cz 2, z1x2cx2 − x1z2cx2,

cz 1x2cx2 − cx1cz 2x2, x2cx2 + x1cx1, cx2z2 + z1cx1, x2cz 2 + cz 1x1 ]

such that the Reynolds projection gives the well-known Hilbert basis

x1cx1 + x2cx2, (x2cx2 − x1cx1)
2,

and the set of fundamental equivariants(
x1
x2

)
, (x2cx2 − x1cx1) ·

(
x1
−x2

)
.

A truncation to degree 4 has been used. During the big Gröbner basis computation 14024
S-polynomials have been treated. 22022 pairs were neglected because of the restriction in
degree and 11747 pairs were superfluous because of the Buchberger criteria.

Discussion of Table 2.2: We tested the algorithms for computation of invariants and
equivariants for a couple of group actions. For a final judgment the algorithms have to
be tested for more examples and with different and more efficient implementations of
the Buchberger algorithm. Especially, one reason for different timings is that heuristics
are involved in the computation of Gröbner bases which may be well tuned for one class
of problems and for others not. Since Derksen’s idea (computation of the basis of the
zero-fiber ideal) is valid for algebraic groups, but the other algorithms work for compact
Lie groups it is kind of unfair to compare the algorithms. Algorithm 2.2.2 implementing
Derksen’s idea and its generalization to equivariants (Algorithm 2.2.5) have much wider
application than the other algorithms. But this is also the reason for their efficiency. By a
rule of thumb algorithms exploiting more special structure are faster. Viewing a group as
a differential manifold (compact Lie group) gives much more structure than the algebraic
structure as a variety. The compact Lie group structure enables the computation of the
Molien series and the implementation of the Reynolds projection which gives a lot of
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Table 2.2: Time comparisons of the computation of invariants and equivariants for various
group actions. The degree d indicates the restriction of the computation with respect to
this degree. The sign > means that the computation has been canceled or collapsed after
the given timing

Group Dim Literature Invariants

HP d Alg. 2.1.10 d Alg. 2.2.2

SO(3), l = 2 5 38 sec 14 sec 2 54117 sec
O(2)× S1 6 [87, 144] 217 sec ∞ 6309 sec ∞ 56758 sec

[163] 12 1497 sec 6 34617 sec

O(2)× S1 4 [87] p. 331 42 sec ∞ 3 sec ∞ 904 sec
O(2)× S1 6 [129] 263 sec ∞ 59 sec ∞ 70836 sec

Group Literature Equivariants

HP d Alg. 2.1.18 Alg. 2.3.21 Alg. 2.2.5

SO(3), l = 2 37 sec ∞ 131 sec 5 sec
O(2)× S1 [87, 144] 340 sec ∞ > 4 days 189 sec

[163] 6 3839 sec > 2 weeks
3 90 sec 42 sec

O(2)× S1 [87] p. 331 30 sec ∞ 61 sec 15 sec 13202 sec
O(2)× S1 [129] 278 sec ∞ 37526 sec 202 sec > 5 days
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structural insight of the invariant ring. Secondly, Algorithms 2.1.10 and 2.1.18 are able to
use the Hilbert series driven Buchberger algorithm, are more flexible, and are able to use
additional input (e.g. candidates of fundamental invariants) given by the user. For the
equivariants Algorithm 2.3.21 behaves best because it additionally exploits the Cohen-
Macaulay property of the module of equivariants for those cases where this property is
known to be true. Derksen’s idea is important because it replaces a non-constructive
argumentation in Hilbert’s first proof by an algorithmic step. But mathematical deepness
does not necessarily equal algorithmic efficiency.

2.3 Using a homogeneous system of parameters

In this section I explain the algorithm by Sturmfels for computation of invariants for finite
groups along with its implementation details and the generalization to equivariants. In
order to explain the algorithm some concepts from commutative algebra are recalled and
explained first. Along the way we derive Algorithm 2.3.11 testing for parameters and
integral elements.

Definition 2.3.1 ([137] p. 71) Let R be a ring and I0 ⊃ I1 ⊃ · · · ⊃ Ih a chain of prime
ideals. The maximal length of a prime chain is called height of I0. The maximal height
of a chain of prime ideals in R is called Krull dimension.

The dimension of a quotient ringC[x]/J is computed by the degree of the Hilbert poly-
nomial as mentioned in Example 1.2.17 or by inspecting the leading terms of a Gröbner
basis of J with respect to a lexicographical order as suggested in [132] Proposition 2.1.

Definition 2.3.2 ([137] p. 73) Let R be a local ring and M its maximal ideal. An ideal
I with Mν ⊆ I ⊆ M for some ν > 0 is called an ideal of definition.

The ideal of the nullcone (IN in Definition 2.2.1) is maximal and homogeneous, even
more it is the unique maximal homogeneous ideal. Rings with unique maximal ideal are
called local rings.

One can show that there are ideals of definition generated by d elements where d
denotes the Krull dimension.

Definition 2.3.3 ([137] p. 78) Let R be a local ring of Krull dimension d and I an
ideal of definition generated by x1, . . . , xd. Then the set x1, . . . , xd is called a system of
parameters. If R is graded, the maximal ideal is homogeneous, and x1, . . . , xd are chosen
homogeneous then x1, . . . , xd are called a homogeneous system of parameters.

Example 2.3.4 Consider the ideal J generated by y1
3−y1x12, y1y2, y22−y2x2, y3−x1−x2

in C[y1, y2, y3, x1, x2]. Since the polynomials are homogeneous the ring C[y, x]/J is a local
ring. The maximal ideal M is generated by all homogeneous rest classes. The polynomials
form a Gröbner basis with respect to the matrix term order with y1 > y2 > y3 > x1 > x2
and with matrix ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1

0 0 0 −1 −1

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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which is eliminating y1, y2, y3. They have leading terms y1
3, y1y2, y2

2, y3. Since there are
no monic terms in x1 or x2 an ideal of definition is given by I = 〈[x1], [x2]〉. For other
rest classes [y1], [y2], [y3] ∈ M the relations show that M3 ⊂ I, e.g. [y1]

3 = [y1][x
2
1] ∈ I.

The element [y1] ∈ C[y, x]/J solves the monic relation y31 − [x1]
2y1 = 0 with coefficient

x21 ∈ C[x1, x2]. The parameters are x1, x2 and the dimension is two. Indeed the variety
V (J) = {(y, x) ∈ C5 | y = (±x1, 0, x1 + x2) or y = (0, 0, x1 + x2) or y = (0, x2, x1 +
x2), x1, x2 ∈ C} has a parameterization over x1, x2. The number of leaves equals four
which is as well the number of standard monomials of J in C[y].

Definition 2.3.5 ([8]) Let R ⊃ S be two rings. An element r ∈ R is called integral, if it
is the solution of a monic polynomial yn +

∑n−1
i=0 aiy

i with coefficients ai in S.

Imagine we have a polynomial in two variables which is not monic (e.g. f(u, y) =
u2y2−uy+u−1) by a change of coordinates one can always achieve that we have a monic
polynomial. For example x = u−y leads to f̃(x, y) = y4+2 xy3+(x2−1)y2−(x−1)y+x−1
such that [y] ∈ C[y, x]/〈f̃〉 is integral overC[x]. The advantage is that in these coordinates
the variety V (f̃) is much clearer. For each x ∈ C there are four points (x, y) ∈ V (f̃). The
ring C[x, y]/〈f̃〉 is a C[x]-module generated by 1, [y], [y2], [y3] which are four generators.
This principle is valid more generally. We refer for example to [22] Appendix A p. 370.

Theorem 2.3.6 (Noether’s normalization) Let R be an affine algebra over a field k, and
let I be a proper ideal of R then there exist x1, . . . , xd ∈ R such that

a.) x1, . . . , xd are algebraically independent over k;

b.) R is an integral extension of k[x1, . . . , xd] (and thus a finite k[x1, . . . , xd]-module);

c.)

I ∩ k[x1, . . . , xd] =
d∑

i=r+1

xik[x1, . . . , xd] = 〈xr+1, . . . , xd〉 ,

for some r, 0 ≤ r ≤ d.

Moreover, if x1, . . . , xd satisfy a.) and b.), then d = dimR.

Also a variant with respect to grading exists which is much older. It dates back to
Hilbert’s work from 1893 [98], see [22] p. 37 or [46] Thm. 1.7 p. 68.

Definition 2.3.7 ([22] p. 3) Let R be a ring and M a R-module. An element x ∈ R is
called M-regular if it is not a zero-divisor of M (x · z = 0 with z ∈ M implies z = 0). A
sequence x1, . . . , xd ∈ R is called an M-sequence if

(i) xi is an M/(x1, . . . , xi−1)M-regular element for i = 1, . . . , d and
(ii) M/(x1, . . . , xd)M �= 0.

An R-sequence is simply called a regular sequence.

Definition 2.3.8 ([22] p. 10) If R is a local ring and M the maximal ideal then the
maximal length of a M-regular sequence x1, . . . , xd ∈ M is called depth.

The following example shows that in general the Krull dimension is unequal the depth.
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Example 2.3.9 (Example 2.3.4 modified) Additional to the generators of J in Exam-
ple 2.3.4 we amend (2x2 − x1) (y1

2 − x1
2)x2. This modifies the variety. The variety has

still the property that for each value of x1, x2 there are finitely many zeros, but their
number varies.

V = {(y, x) ∈ C5 | y = (±x1, 0, x1 + x2), x1 �= 2x2, x2 �= 0 }
∪ {(y, x) ∈ C5 | y = (±2x2, 0, 3x2) or y = (0, 0, 3x2) or y = (0, x2, 3x2),

x1 = 2x2, x2 �= 0 }
∪ {(y, x) ∈ C5 | y = (±x1, 0, x1) or y = (0, 0, x1), x1 �= 2x2, x2 = 0 }
∪ {(0, 0) ∈ C5 } .

The leading terms of a Gröbner basis with respect to the term order used in Example 2.3.4
are

y2x2x1
3, x2x1y1

2, y1
3, y1y2, y2

2, y3.

Since there are no monic terms in x1 or x2 an ideal of definition is still given by I =
〈[x1], [x2]〉. For other rest classes [y1], [y2], [y3] ∈ M the relations show that M3 ⊂ I, e.g.
[y1]

3 = [y1][x
2
1] ∈ I. But the difference is that now some leading terms involve x1 or x2.

Substituting special values of x1 or x2 the polynomials may or may not form a Gröbner
basis. First consider the case that they still form a Gröbner basis. Then the variety for the
specialization of x1, x2 is zero-dimensional and the number of isolated solutions is given
by Thm. 8.32 in [14] by the codimension of the ideal in the ring. This is easily read off
from the leading terms of a Gröbner basis and is in this case two. If the specialization
destroys the Gröbner basis property there are more isolated solutions. But y31, y

2
2, y3 are

leading monomials and thus there are at most four standard monomials in C[y]. This
shows that the number of leaves varies between two and four.

The depth of the homogeneous maximal ideal is one, since in the sequence x1, x2 the
second element x2 is not regular. Denoting by R = C[y, x]/J the ring we have to show
that x2 is not R/x1R-regular. Although in R/x1R we have (2x2−x1)(y21−x21) �= 0 it holds
(2x2 − x1)(y

2
1 − x21)x2 = 0 in R since this is an element of J .

Observe that R has a regular sequence is equivalent to the fact that R is a free module
over the ring in the parameters. In [176] (Thm. 2.3.1 p. 38) it is proven: if a ring is
a finitely generated free module over a system of homogeneous parameters then it is a
finitely generated free module for every system of homogeneous parameters.

Definition 2.3.10 ([137] p. 103) A local ring is called Cohen-Macaulay if the dimension
equals the depth.

For example the quotient ring in Example 2.3.4 is Cohen-Macaulay. Algorithm 1.5.6 in
Section 1.5 gives a procedure for testing whether some variables are the parameters of the
quotient ring. It has been inspired by Subroutine 3.9 in [179] where a special property of
the graded reverse lexicographical order is exploited.

Algorithm 2.3.11 (Test for parameters, module basis and free module basis)
Input: W -homogeneous polynomials p1, . . . , pm ∈ K[x1, . . . , xd, yd+1, . . . , yn]

suggestion for parameters x1, . . . , xd
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1.) Compute a reduced Gröbner basis of J = 〈p1, . . . , pm〉 with respect to a
term order which
− eliminates yd+1, . . . , yn as a block (yαxβ > xγ ∀α �= 0, β, γ)
− and yα > xβyγ ∀α �= 0, β �= 0, γ with degW (yα) = degW (xβyγ)

(e.g. eliminates each variable yd+1, . . . , yn successively
for W -homogeneous ideals).

2.) Inspect leading monomials:
If there are no monic leading terms xa11 , . . . , x

ad
d then K[x, y]/J

is a K[x1, . . . , xd]-module.
If additionally there are monic leading terms y

ad+1

d+1 , . . . , y
an
n then

K[x, y]/J is a finitely generated K[x]-module.
If additionally there are no mixed leading terms xαyβ with
αi > 0, βj > 0 for at least one i ∈ {1, . . . , d} and
one j ∈ {d+ 1, . . . , n} then K[x, y]/J is Cohen-Macaulay.

Observe that the term order in [176] Subroutine 2.5.6 p. 52 for the representation in the
Hironaka decomposition does not have the desired property.

This test is the key for an iterative Noether normalization in Algorithm 2.4.1.

Lemma 2.3.12 Let J = 〈p1, . . . , pm〉 ⊂ K[x1, . . . , xd, yd+1, . . . , yn] be an ideal. The fol-
lowing two statements are equivalent.

a.) The leading terms of a Gröbner basis with respect to a term order which eliminates
yd+1, . . . , yn contain monic monomials yaii , ai > 0 for all i = d + 1, . . . , n, but no
monomials xα.

b.) The variables x1, . . . , xd are algebraic independent in K[x, y]/J and K[x, y]/J is a
finitely generated module over the subring K[x1, . . . , xd].

Proof: Assume we have a Gröbner basis with the properties in a.). The standard mono-
mials Std represent the quotient ring K[x, y]/J uniquely as a K-vector space. Thus

K[x, y]/J =
⊕

yαxβ∈Std
yαxβ K.

Since no leading terms xγ appear all monomials in K[x] are standard monomials. This
means that x1, . . . , xd are algebraically independent and K[x, y]/J is a K[x]-module. Be-
cause for each i = d+ 1, . . . , n there is a leading term yaii the quotient ring K[x, y]/J is a
finitely generated module over K[x].

For the opposite direction assume that x1, . . . , xd are algebraically independent in
K[x, y]/J and K[x, y]/J is a finitely generated K[x]-module. Then no term xα appears
as leading term in a Gröbner basis. Suppose it would. By the elimination property there
exists a polynomial p(x) in the Gröbner basis. This is a contradiction to x 1, . . . , xd being
algebraic independent in K[x, y]/J .

Secondly, for each i = d + 1, . . . , n there is a monic monomial y ai
i as a leading term

in the Gröbner basis. If it where not then all yi, y
2
i , y

3
i , . . . would be standard monomials

and thus K[x, y]/J would not be finitely generated as a K[x]-module. �
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Lemma 2.3.13 Let J = 〈p1, . . . , pm〉 ⊂ K[x1, . . . , xd, yd+1, . . . , yn] be a W -homogeneous
ideal with respect to a grading W (xi) > 0,W (yj) > 0 of K[x, y]. The following two
statements are equivalent.

a.) The reduced Gröbner basis of J with respect to a term order which eliminates
yd+1, . . . , yn and fulfills yα > xβyγ ∀α �= 0, β �= 0, γ with degW (yα) = degW (xβyγ)
has leading terms which are all in K[y].

b.) The ring K[x, y]/J is a free module over K[x1, . . . , xd].

Proof: Assume a reduced Gröbner basis with respect to a term order as in a.) such that
all leading monomials are in K[y]. Then all monomials in K[x] are standard monomials.
The standard monomials Std consist of yαxβ where yα ∈ Stdy = Std∩K[y] is a standard
monomials and xβ is any monomial in K[x]. Thus

K[x, y]/J =
⊕

yαxβ∈Std
yαxβ ·K =

⊕
yα∈Stdy

yα ·K[x].

This shows that Stdy form a free K[x]-module basis.
For the converse direction assume that K[x, y]/J is a free K[x]-module. We have to

show that each leading term of a reduced Gröbner basis with respect to a term order
fulfilling the requirements in a.) is in K[y]. Let us assume the contrary. There exists a
polynomial p in the reduced Gröbner basis with leading term y αxβ , β �= 0. Then p has a
representation

p(x, y) = yαxβ +
∑

yγxδ∈A⊂Std

cγ,δ · yγxδ, cγ,δ ∈ K.

By the second property of the term order δ = 0 is not possible. (Then we would have a
different leading term.) Since p ≡ 0 in K[x, y]/J we have

yαxβ +
∑

yγxδ∈A
cγ,δ · yγxδ ≡ 0 in K[x, y]/J.

Division by an appropriate monomial xa leads to an identity

c · yγ′
+

∑
c′γ,δ · yγxδ ≡ 0 in K[x, y]/J.

There has to be a monomial yγ
′
since otherwise the quotient ring is not free over K[x].

This polynomial is an element of J and has leading term y γ′
by the second property of

the term order. But yγ
′
divides a monomial in p properly. This is a contradiction to the

assumption that p is an element of a reduced Gröbner basis. �

The theory and algorithm above yield the following interpretation of Cohen-Macaulay
rings: Assume an ideal J ⊂ K[x, y] with K a subfield of C such that x1, . . . , xd form
parameters and K[x, y]/J is a finitely generated, free module over K[x]. Then the
variety V (J) ⊂ Cn has a special form. For each value x = a ∈ Cd the reduced
Gröbner basis p1(a, y), . . . , pm(a, y) is a minimal Gröbner basis of an ideal I ⊂ K[y].
Since there are leading terms y

ad+1

d+1 , . . . , y
an
n the ideal I is zero-dimensional. For zero-

dimensional ideals the number of solutions (counted with multiplicity) equals codim(I)
in K[y] which is equal to the number of standard monomials. This gives solutions
(a, bj) ∈ Cn, j = 1, . . . , dim(K[y]/I). What happens if we vary a? Because K[x, y]/J
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Table 2.3: Relations of primary and secondary invariants of an action of D3

n2
2−t3t0n2 + 3 s2

2s1
2n1 − 2 t1s2

2s1t3 − 2 s2s1
2t2t0 + t3s2s3t0s1

−12 s2
3s1

3 + s1
3t0

2 + t3
2s2

3 ,
n1n2 −s2s1n2 − t1s1

2t0 − t3s2
2t2 − t3s2t0s1 ,

t1n2 +t0s1n1 − t0t1t3 − 3 t2s2
2s1 + s3s2

2t3 − 3 s2s1
2t0 ,

t2n2 +t3s2n1 − 3 t1s2s1
2 − t3t2t0 + s3s1

2t0 − 3 s22s1t3 ,
s3n2 +s2s1n1 − t1t3s2 − t2t0s1 − 4 s2

2s1
2 ,

n1
2−5 s2s1n1 + t1t3s2 + t2t0s1 − s3t3t0 + 4 s2

2s1
2 ,

t1n1 −s2t1s1 − s3t0s1 − t3s2
2 ,

t2n1 −s1t2s2 − s3t3s2 − s1
2t0 ,

s3n1 +n2 − 4 s3s2s1 − t3t0 ,
t1

2+s2n1 − t2t0 − 4 s2
2s1 ,

t2t1 −n2 ,
t2

2+s1n1 − t1t3 − 4 s2s1
2 ,

−t2s2−t0s1 + t1s3 ,
−t3s2−t1s1 + t2s3 ,
s3

2−n1 .

is free no mixed leading terms appear. This means the initial ideal of I is independent of
the choice of a ∈ Cd and thus the number of solutions (a, bj). Comparing Examples 2.3.4
and 2.3.9 we get the impression that non-Cohen-Macaulay rings are exceptional.

Example 2.3.14 (Example 2.1.9 continued) The polynomials in (2.2) generate a homo-
geneous ideal J with respect to the induced grading. Thus C[s1, s2, t0, t3, s3, t1, t2]/J is a
local ring. Recomputing a Gröbner basis with respect to s1 > s2 > t0 > t3 > s3 > t1 > t2
and the matrix term order given by⎡⎢⎢⎢⎢⎢⎢⎣

2 2 3 3 2 3 3

−2 −2 −3 −3 0 0 0

O2,3 02 id2,2 02

id3,3 02 O3,2 02

⎤⎥⎥⎥⎥⎥⎥⎦ ,

gives

−4 s3s2s1 + s3
3 − t3t0 + t2t1, −4 s2

2s1 + s3
2s2 − t2t0 + t1

2,
−4 s2s1

2 + s3
2s1 − t1t3 + t2

2, −t2s2 − t0s1 + t1s3, −t3s2 − t1s1 + t2s3,

with leading terms s3
3, t1

2, t2
2, t1s3, t2s3. The term order is eliminating s3, t1, t2 because

of the second row. Since no monic terms in s1, s2, t0, t3 appear these four variables are a
system of homogeneous parameters of C[s, t]/J . Moreover, the parameters do not appear
at all in the leading terms. Consequently, C[s, t]/J is a free module over C[s1, s2, t0, t3].
The generators are the standard monomials 1, s3, s

2
3, t1, t2, t1t2. The ring C[s, t]/J is

Cohen-Macaulay. Since the ring is isomorphic to the invariant ring of a finite group action
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this agrees with the theorem that invariant rings of finite groups are Cohen-Macaulay.
In this case of the invariant ring the parameters are called primary invariants and the
generators of the free module secondary invariants. In this example the two new secondary
invariants are introduced by new variables n1, n2 and new relations n1 − s23, n2 − t1t2.
Similarly to the term order in [176] p. 52 the relations with respect to s1 > s2 > t0 > t3 >
s3 > t1 > t2 > n1 > n2 and the matrix term order⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 3 3 2 3 3 4 6

−2 −2 −3 −3 01,5

01,3 0 1 1 1 1 1

03,3 03 id3,3 03,2

id3,3 03 03,3 03,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

are given in Table 2.3. The relations have the classical form where the product of two
generators of the free module is a combination which involves the generators only linearly.

Cohen-Macaulay rings have a Hironaka decomposition

R =
l⊕

i=1

σiC[π1, . . . , πd].

So for each pair of generators σi, σj of the free module R we have a relation

σi σj =
l∑

k=1

σk pk(π), 1 ≤ i ≤ j ≤ l,

since σi σj ∈ R and as a module over C[π] a different representation exists. Secondly, from
the Hironaka decomposition the Hilbert series is easily determined ([176] Corollary 2.3.4):

HPR(λ) =

∑l
i=1 λ

deg(σi)∏d
j=1(1− λdeg(πj))

.

The following theorem due to Hochster and Roberts [99] can be found in [22] (Thm. 6.5.1
p. 280) and Vasconcelos [186] (Thm. 7.4.3 p. 203). For finite groups see also Sturmfels
[176] p. 40 Thm. 2.3.5).

Theorem 2.3.15 Invariant rings of groups which are linear reductive are Cohen-Macaulay.

From this it is clear that finding a Hilbert basis of an invariant ring can be done by
finding a homogeneous system of parameters (the so-called primary invariants) and then
finding the free module basis (secondary invariants). For finite groups there is a criterion
for parameters: Since N = V (IN ) = {0} one has V (〈π1, . . . , πn〉) = {0} and d = n. This
is the key for the well-known Algorithm 2.3.17. Secondly, the form of the Hilbert series
deduced from the Hironaka decomposition is a great help since it gives the degrees of the
secondaries.

Here it is reasonable to comment on common misunderstandings about invariant the-
ory by scientists working in dynamical systems, see e.g. Appendix A in [27].
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A form of the Molien series of type
∑

i ciλ
ei/

∏
j(1−λj) does not necessarily correspond

to a Hironaka decomposition, see the example in the paper by Sloane [173] due to Stanley.
Secondly, the primary invariants nor their degrees are unique. Thirdly, the parameters
are algebraic independent. But not every set of n algebraic independent homogeneous
polynomials form a homogeneous system of parameters.

Example 2.3.16 Let Z2 = {id, s} act on C2 by (x1, x2) → (−x1,−x2). Although the
invariants x21, x1x2 are algebraic independent they do not form parameters. The relation
in the invariants π1 = x21, σ2 = x1x2, π2 = x22 is given by π1π2 = σ2

2 and π2
2 �∈ 〈π1, σ2〉.

The following algorithm appeared in [179] and in [176] p. 57 Algorithm 2.5.14.

Algorithm 2.3.17 (Computation of invariants of a finite group)
(Sturmfels [176] p. 57)

Input: finite group G, given by matrices ϑ(s), ∀ s ∈ G

Output: primary and secondary invariants

1. Compute Molien series HPK[x]G(λ) =
∑∞

i=0 aiλ
i # Lemma 2.1.6

2. Compute primary invariants
Π := {} S := {} # lists of primary and secondary invariants
d := min{i | ai > 0, i > 0}
Md = { monomials of degree d }, bd := 0
while |Π| < n or V (Π) �= {0} do # Subroutine 2.3.19

if |Md| = 0 then d := min{i | ai > 0, i > d}
Md = { monomials of degree d }, bd := 0

choose m ∈Md, Md :=Md \ {m}
p := R(m) # Reynolds projection 2.3
if p �∈ Rad(Π) then # Kantorovich trick

Π := Π ∪ {p}, bd := bd + 1
if bd = ad then d := min{i | ai > 0, i > d}

Md = { monomials of degree d }, bd := 0
while |Π| > n do

choose π ∈ Π
if V (Π \ {π}) = {0} then Π := Π \ {π}

S := S ∪ {π}
3. Determine degrees of secondary invariants

HPK[x]G(λ) ·
∏n

i=1(1− λdeg(πi)) = ce1λ
e1 + · · ·+ cerλ

er

4. Search secondary invariants
for each σ ∈ S do cdeg(σ) := cdeg(σ) − 1
compute truncated Gröbner basis GB(⊕max ej

i=0 Hi(Π(x)) # cheap order

S̃ := {normalf(σ,GB | σ ∈ S)} # prepare test
for e ∈ {e1, . . . , er} do

while ce > 0 do
choose m ∈Me, Me :=Me \ {m}
σ := R(m) # Reynolds projection 2.3
σ̃ := normalf(σ,GB)
if σ̃ is linear independent of S̃ then
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S := S ∪ {σ}, S̃ := S̃ ∪ {σ̃}
ce := ce − 1

Table 2.4: Performance of computation of fundamental invariants and equivariants by
Algorithm 2.3.17 and Algorithm 2.3.20 for various group actions on a Sun

group dim use in reference invariants equivs
dynamics primaries sec.

D3, ϑ
2 + ϑ3 3 C3-Hopf bif. [77] 4.4 sec 4.4 sec 41.5 sec

D3, ϑ
3 + ϑ3 4 TB-pkt. [125, 138] 28.3 sec 20.9 sec 254.5 sec

D4, ϑ
2 + ϑ5 3 C4-Hopf bif. [125] 8.1 sec 7.2 sec 91.2 sec

D4, ϑ
3 + ϑ5 3 secondary bif. [29, 125] 12.0 sec 3.5 sec 75.5 sec

D4, ϑ
5 + ϑ5 4 TB-pkt. [125] 42.3 sec 42.2 sec 475.9 sec

Z4 · Z4
2 4 sym. chaos [194] 240.7 sec 69.2 sec 1297.9 sec

Remark 2.3.18 i.) The implementation details are taken from Invar [106].
ii.) Other implementations are available in Magma [30], Singular [96] and in Maple [73].
iii.) The key in step 2 is that the primary invariants have as common solution the zero
point only. This means in algebraic notation Rad(〈π1(x), . . . , πn(x)〉) = 〈x1, . . . , xn〉. So
in order to decrease the variety by a new πi one needs to test whether the new candidate πi
satisfies πi ∈ Rad(〈π1, . . . , πi−1(x)〉). This can be done by the usual Kantorovich trick for
testing radical membership. In [107] it is suggested to decrease the dimension of the variety
which is an even stronger requirement. In order to assure this a factorized Gröbner basis of
〈π1(x), . . . , πi−1(x)〉 is computed which is close to a primary decomposition. This enables
to test for decreasing dimension. In [47] it is suggested to compute the dimensions and
compare them. iv.) In [107] another variant is suggested. After primaries have been found
first secondary invariants for a subgroup are computed and then a module intersection gives
the required secondaries. v.) In [108] improvements are suggested in order to achieve the
lowest possible degrees of the primary invariants. (Implementations exist by Steel and
Kemper in Magma [30]). Also [150] address this question. But the work in Section 4.3
shows that in the context of dynamical systems with symmetry the minimality might be
unnecessary. vi.) In [109] another variant for the search of secondaries is presented.
One first tries to use products of previously computed secondary invariants. This is a
helpful approach in order to find a minimal Hilbert basis which is important for dynamical
systems [163]. vii.) In [74] other possibilities for the module membership test (secondary
invariants) are presented and tested. The presented variant turned out to be most efficient.

The test V (Π) = {0} could be done by multiple application of the Kantororich trick
since the condition is equivalent to Rad(〈π1, . . . , πn〉) = 〈x1, . . . , xn〉 where we denote by
Rad(I) = {f | ∃r with f r ∈ I} the radical of an ideal. The condition f ∈ Rad(〈g1, . . . , gs〉)
is tested by computing the Gröbner basis of 〈g1, . . . , gs, 1 − zf〉 with a slack variable z.
If GB = {1} then f ∈ Rad(〈g1, . . . , gs〉), see [41] p. 177. Since in this context we have a
special situation a more efficient variant is preferable.
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Subroutine 2.3.19 (Test V (〈π1, . . . , πd〉) = {0}) (Kemper [106])
Input: homogeneous polynomials π1, . . . , πd

Output: Yes or No

Compute a Gröbner basis GB of 〈π1(1, x2, . . . , xn), . . . , πd(1, x2, . . . , xn)〉
if GB �= {1} then OUTPUT(No)
else i = 2

Repeat
compute a Gröbner basis GB of
〈π1(0, . . . , 0, 1, xi+1, . . . , xn), . . . , πd(0, . . . , 0, 1, xi+1, . . . , xn) >
i := i+ 1
if GB �= {1} then OUTPUT(No) Stop

until i = n

In [71] and [194] it was shown that for finite groups the module of equivariants is
Cohen-Macaulay. The proof in [71] is easily derived from the fact that the modules
of semi-invariants are free modules over the ring in the primary invariants as stated in
[175]. Thus Algorithm 2.3.17 easily generalizes to equivariants. Applications are given in
Section 3.2 and [76], [125].

Algorithm 2.3.20 (Computation of equivariants of a finite group) ([71, 74])
Input: finite group G, given by matrices ϑ(s), ∀ s ∈ G

primary invariants π1, . . . , πn

Output: equivariants

1. Compute the Hilbert series HPK[x]G
G
(λ) =

∑∞
i=0 aiλ

i # Formula (2.6)

2. Determine degrees of equivariants

HPK[x]GG
(λ) ·∏n

i=1(1− λdeg(πi)) = ce1λ
e1 + · · ·+ cerλ

er

3. Prepare computation
Π := {π1, . . . , πn} # list of primary invariants

S := {} S̃ := {} # lists of equivariants
compute truncated Gröbner basis GB(⊕max ej

i=0 Hi(Π(x)) # cheap order
4. Search equivariants

for e ∈ {e1, . . . , er} do
Me := { monomials of degree e}
M̃e := { tuples consisting of zeros and one monomial in Me}
while ce > 0 do # vector space basis of He(K[x]n)

choose m ∈ M̃e, M̃e := M̃e \ {m}
f := R(m) # Reynolds projection 2.8

f̃ := normalf(
∑n

j=1 fj(x)zj ,GB)
if f̃ is linear independent of S̃ then

S := S ∪ {f}, S̃ := S̃ ∪ {f̃}
ce := ce − 1

In equivariant dynamics it has been an open question for a long time whether the
module of equivariants is Cohen-Macaulay for non-finite groups as well. In general this
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is not true, see [20, 183]. If the module is Cohen-Macaulay (a free module over a ring
generated by a system of parameters of the invariant ring) the Algorithm 2.3.20 for com-
putation of equivariants of finite groups generalizes to equivariants of compact Lie groups
which are algebraic groups. Only the computation of the Hilbert series and the Reynolds
projection are different. But one requires a set of primary invariants whose computation
from a given set of invariants is the goal of the next section.

Algorithm 2.3.21 (Computation of equivariants of an algebraic and
compact Lie group)

Input: data structure of a compact Lie group G,
with two representations ϑ and ρ

Hilbert series HPK[x]ϑρ
(λ) =

∑∞
i=0 aiλ

i # Formula (2.7)
primary invariants π1, . . . , πd

Assumption: module of equivariants is Cohen-Macaulay

Output: free module basis of module of equivariants

1. Determine degrees of equivariants

HPK[x]ϑρ
(λ) ·∏d

i=1(1− λdeg(πi)) = ce1λ
e1 + · · ·+ cerλ

er

if one cei is negative then STOP print(module is not CM)
2. Prepare computation

Π := {π1, . . . , πd} # list of primary invariants

S := {} S̃ := {} # lists of equivariants
compute truncated Gröbner basis GB(⊕max ej

i=0 Hi(Π(x)) # cheap order
3. Search equivariants

for e ∈ {e1, . . . , er} do

Ṽ := { monomials in HN
e (K[x])}

for j ∈ {j1, · · · , jdim} do # dim - dimension of weight space

V̂j = {w(x) ∈ K[x]m |wi(x) = 0, i = 1, . . . , m, i �= j, wj(x) ∈ Ṽ }
V̂ := V̂1 ∪ · · · ∪ V̂dim
Q := R(V̂ ) # vector space basis Q = {q1, . . . , ql} of HN

e (K[x]ϑρ) ∩ V̂
while ce > 0 do # vector space basis of He(K[x]m)

choose next equivariant qi
q̃i := normalf(

∑m
j=1(qi(x))jzj ,GB)

if q̃i is linear independent of S̃ then

S := S ∪ {qi}, S̃ := S̃ ∪ {q̃i}
ce := ce − 1

The algorithm has been implemented and tested. Since it exploits more structure than
the other algorithms it is reasonable that it performs best as Table 2.2 demonstrates.

2.4 Computing uniqueness

While the Hilbert basis for a finite group computed with Algorithm 2.3.17 guarantees
that each invariant polynomial p has a unique representation

p(x) =
l∑

i=1

σi(x) pi(π1(x), . . . , πn(x)),
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this is not true for the Hilbert bases computed by Algorithm 2.1.10 and Algorithm 2.2.2.
The basis computed by Algorithm 2.2.2 is not even minimal. For equivariants this is
analogously.

On the other hand invariants of linear reductive groups are known to possess a Hi-
ronaka decomposition (Theorem 2.3.15). Given any Hilbert basis an algorithmic Noether
normalization respecting the weighted degree converts the Hilbert basis to a set of primary
and secondary invariants. This algorithm was inspired by [132] where the algorithmic
Noether normalization without degree distinction is presented. There linear changes of
coordinates y1− > y′1, . . . , yn−1− > y′n−1 are performed such that yn then becomes integral
(analogous to [8] p. 69). This is recalled in [186] p. 35pp. Our approach is analogous, but
it allows nonlinear changes of coordinates.

Algorithm 2.4.1 (Iterative Noether normalization of a W -homogeneous
ideal)

Input: grading W on K[y1, . . . , yn] with degW (yi) = wi > 0, i = 1, . . . , n
W -homogeneous polynomials f1, . . . , fm

Output: new homogeneous coordinates:
parameters pj = Pj(y) ∈ K[y], j = 1, . . . , d,
integral elements zi = Ci(y), i = 1, . . . , r, and
Gröbner basis g1(p, z), . . . , gs(p, z)

1.) Check for parameters and integral elements:
We assume the variables are blocked into groups Y1, . . . , Ys having
the same degree d1 < · · · < ds, respectively.
a.) Choose a term order which

− eliminates groups of variables of the same degree
− first eliminates Y2, . . . , Ys, then Y1, Y3, , . . . , Ys etc.
− eliminates successively all variables.

b.) Compute a Gröbner basis GB with respect to this term order.
c.) Inspect the leading terms:

Π = { variables not appearing }
Z = { variables yi such that a monic leading term yaii appears}
R = Y \ (Π ∪ Z)

2.) while R �= {} do
a.) Choose a change of coordinates p = P (y) ∈ Hd(K[y])

depending weighted homogeneous on the variables y ∈ r of degree
d ≤ lcmy∈R(degW (y)) (first try lowest possible degree)
− add new variable {p} of degree W (p) := degW (P (y)): Y = Y ∪ {p}
− new set of polynomials GB ∪ {p− P (y)}.

b.) Choose a term order which
− eliminates Z ∪R as a block
− eliminates the variables in Z and Π ∪ {p} successively

for W -homogeneous ideals
− then break ties.

c.) Compute a Gröbner basis G̃B of GB ∪ {p− P (y)} with respect to <.
d.) Check for parameters and integral elements:

Π̃ = { variables not appearing }
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Z̃ = { variables such that a monic leading term appears}
e.) If Π̃ = Π ∪ {p} and |Z̃| > |Z| then accept this step and set

Π = Π ∪ {p}, Y = Y ∪ {p}, Z = Z̃, R = Y \ (Π ∪ Z) GB = G̃B
else try another guess P in step 2.)a.).

Lemma 2.4.2 For sufficiently generic choices of polynomials P in step 2.) a.) the
algorithm computes a set of homogeneous parameters of K[y]/J .

Proof: The existence of a set of homogeneous parameters follows from Noether’s lemma.
Algorithm 2.3.11 explains the choice of the term order and the three sets of variables.
Since in each step the number of parameters increases the algorithm stops after finitely
many steps. �

Example 2.4.3 (Example 2.2.4 continued)
Recall the torus action associated to the 1 : 1 : 2 resonance from Example 2.2.4. The ring
of invariants C[x]T is generated by 11 invariants. In [155] the determination of primary
invariants is discussed with the help of circuits. Unfortunately, we are interested in the
real fundamental invariants of the real algebra which is not considered in [155]. From the
given invariants we deduce 11 real generators of the real invariant ring R[x]T :

p1(x) = x1x4, p2(x) = x5x2,

p3(x) = x6x3, p4(x) = x5x1 + x2x4,

p5(x) = i (x5x1 − x2x4) , p6(x) = x1
2x6 + x3x4

2,

p7(x) = i (x1
2x6 − x3x4

2) , p8(x) = x2
2x6 + x5

2x3,

p9(x) = i (x2
2x6 − x5

2x3) , p10(x) = x4x5x3 + x1x2x6,

p11(x) = i (x1x2x6 − x4x5x3) .

In the following we use the variables πj , j = 1, . . . , 11 for representing these invariants.
The relations f1(π), . . . , fm(π) are computed in the standard way by computation of a
Gröbner basis of πj − pj(x), j = 1, . . . , 11 eliminating x and restricting to the elements in
K[π] only. The relations are homogeneous with respect to the induced weighted grading
W (πj) = 2, j = 1, . . . , 5, W (πj) = 3, j = 6, . . . , 11. (A more careful analysis shows
that they are homogeneous with respect to 3 different gradings.) Another Gröbner basis
computation of J = 〈f1, . . . , fm〉 checks for possible parameters and integral elements by
choosing a term order with matrix

B =

⎡⎢⎢⎢⎢⎢⎣
2 2 2 2 2 3 3 3 3 3 3

−2 −2 −2 −2 −2 0 0 0 0 0 0

− id4,4 04 04,5 04
05,4 05 − id5,5 05

⎤⎥⎥⎥⎥⎥⎦ ,

and the variable order πi, i = 1, . . . , 11. The leading terms

[ π6π4π9, π4π6π8, π11
2, π11π10, π10

2, π11π9, π10π9, π9
2, π11π7, π10π7,

π9π7, π8π7, π7
2, π11π5, π10π5, π9π5, π8π5, π7π5, π6π5, π11π4, π10π4, π5

2 ],
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yields that Π = {π1, π2, π3} are parameters, Z = {π5, π7, π9, π10, π11} are integral over
the rest, and for R = {π4, π6, π8} no decision can be made. The new variables are
[π1, π2, π3, π4, π5, p68, π7, π8, π9, π10, π11] with p68 = π6 + π8 which is simply substituted
into the relations. One may choose whether one drops π6 or π8. We decided for π6.
A Gröbner basis computation with respect to π1, . . . , π5, p68, π7, . . . , π11 and the matrix
term order given by

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 2 2 3 3 3 3 3 3

−2 −2 −2 0 0 −3 0 0 0 0 0

− id3,3 03 03,4 03,3
0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

03,3 03 03,4 id3,3
0 0 0 −2 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which eliminates Z ∪ {π4, π8} by the second row yields the leading terms

[ π4π8
2, π7

2, π9π7, π10π7, π11π7, π8π7, π9
2, π10π9, π11π9,

π9π8, π10
2, π11

2, π7π5, π9π5, π10π5, π11π5, π8π5, π7π4, π10π4, π11π4, π5
2 ].

This confirms the set of parameters Π = {π1, π2, π3, p68} and the integral elements Z =
{π5, π7, π9, π10, π11}. So we are left with R = {π4, π8}. Since degW (π4) = 2 �= degW (π8) a
nonlinear change of coordinates is required. We add the polynomial p48 − π4

3 − π8
2 and

the new variable p48. A Gröbner basis with respect to the matrix

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 2 2 3 3 3 3 3 3 6

−2 −2 −2 0 0 −3 0 0 0 0 0 −6

− id3,3 03 03,4 03,3 03
0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

03,3 03 03,4 id3,3 03
0 0 0 1 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the ordering of variables [π1, π2, π3, π4, π5, p68, π7, π8, π9, π10, π11, p48] has the following
leading terms:

[ π8
4, π8π11π10, π8

2π10, π11π8
2, π4π8

2, π7
2, π9π7, π10π7,

π11π7, π8π7, π9
2, π10π9, π11π9, π9π8, π10

2, π11
2, π4

3,

π7π5, π9π5, π10π5, π11π5, π8π5, π7π4, π10π4, π11π4, π5
2 ].

This shows that Π = {π1, π2, π3, p68, p48} are parameters and over R[Π] the elements
{π4, π5, π7, π8, π9, π10, π11} are integral. So each invariant f(x) has a unique representation

f(x) =
∑
η

Aη (p1(x), p2(x), p3(x), p̃68(x), p̃48(x)) · η(x),
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where p̃68(x) = p6(x) + p8(x) and p̃48(x) = (p4(x))
3 + (p8(x))

2 and Aη are polynomials
in 5 variables. The η are polynomials associated to the standard monomials in the non-
parameter variables not appearing in the leading terms. There are 18 standard monomials.
That means that for each choice Π = a ∈ C5 there are 18 possibilities Z = bj ∈ C7, j =
1, . . . , 18 such that (a, bj) solves the relations. Of course there might be less than 18 leaves
for the restriction to the real variety. In Example 4.3.6 this will be continued.

Remark 2.4.4 It remains to be discussed what are sufficiently generic coefficients in Step
2.) a.). In applied mathematics genericity means that the set of exceptional values has
measure zero. In algebra non-generic means that the values are zeros of a special polyno-
mial. For the special case of the natural grading one can restrict to linear combinations
pi = ci1y1 + · · ·+ cinyn and choose all parameters at once. In [53] a polynomial H(c) in
the coefficients cij, the so-called Chow form, is considered such that H(c) �= 0 guarantees
that pi form parameters. Sturmfels and Eisenbud [53] also give a Greedy algorithm based
on the primary decomposition for a sparse choice of the coefficients cij. For the case
of different weights on the variables the idea of Dade’s algorithm (see [176] p. 56) is to
consider powers of the variables such that all powers have the same degree. This reduces
to the case of linear combinations above. However, in Algorithm 2.4.1 the degree of the
generic polynomial P is not fixed. For the investigation of the genericity the coefficients
of P 2 or P 3 or . . . have to be considered in the Chow form. One just exploits the fact that
if p1, . . . , pd forms a system of parameters so does pa11 , . . . , p

ad
d .

Applications of the Noether normalization are shown in Section 4.3. Observe that the
Noether normalization is useful as a preparing step of Algorithm 2.3.21.

For the equivariants the question of unique representations is more complicated. In
many practical situations the module is a free module over the ring in the primary invari-
ants. The key for the general question is the Stanley decomposition of rings.

Definition 2.4.5 ([179] p. 277) Let R = K[x]/I be a quotient ring of an ideal I ⊂
K[x1, . . . , xn]. Then a decomposition as direct sum of free modules

R =
⊕
α∈F

xαK[Xα],

where F is a finite subset of Nn and each Xα is a subset of {x1, . . . , xn} is called a Stanley
decomposition.

Of course there may exist several Stanley decompositions of R. But once a Stanley
decomposition is fixed each r ∈ R has a unique representation. A Stanley decomposition
can be algorithmically determined. As usual the computations are based on the initial
ideal. Thus first a Gröbner basis needs to be computed.

Algorithm 2.4.6 (Stanley decomposition, Sturmfels and White [179],
see [186] p. 24)

Input: generators f1, . . . , fm of ideal I ⊂ K[x1, . . . , xn]

Output: Stanley decomposition

1.) Compute a Gröbner basis GB of 〈f1, . . . , fm〉.
2.) Choose xn as special variable: there exists monomials m1, . . . , ml
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in K[x1, . . . , xn−1] and degrees d1 ≤ d2 ≤ · · · ≤ dl such that
m1x

d1
n , . . . , mlx

dl
n are the leading terms of the Gröbner basis and thus

init(I) = 〈ht(g) | g ∈ GB〉 = 〈m1x
d1
n , . . . , mlx

dl
n 〉

3.) SD(K[x]/〈m1x
d1
n , . . . , mlx

dl
n 〉)

Subroutine SD(K[x1, . . . , xn]/〈g1, . . . , gs〉)
(gi are expected to be monomials)
reduce to minimal monomial generators m1x

d1
n , . . . , mlx

dl
n

with d1 ≤ d2 ≤ · · · ≤ dl and m1, . . . , ml ∈ K[x1, . . . , xn−1].

if n = 1 then
K ⊕ xnK ⊕ x2nK ⊕ · · · ⊕ xd1−1

n K
else ⊕dl−1

j=0 x
j
n · SD (K[x1, . . . , xn−1]/〈{mi | di ≤ j}〉)⊕

xdln ·K[xn] · SD(K[x1, . . . , xn−1]/〈m1, m2, . . . , ml〉)

Proof: Gröbner bases enable the unique computation in the residue ring K[x]/I. That
means that K[x]/I and K[x]/init(I) are isomorphic as vector spaces. Since Stanley
decompositions are invariant under this isomorphism we need to show that the recursive
algorithm computes a Stanley decomposition ofK[x]/init(I) which restricts the discussion
to the standard monomials.

The proof is done by induction on the number of variables.

If n = 1 then l = 1, m1 = 1 and init(I) = 〈xd11 〉. Then K[x1]/init(I) is isomorphic to the
vector space spanned by the standard monomials 1, x1, . . . , x

d1−1
1 .

For n ≥ 2 we have to show that each standard monomial xα = xα1
1 · · ·xαn

n occurcs
exactly ones. By the distinction of the degree αn it is clear that xα is either in the last
summand (for αn ≥ dl) or in the summand j = αn (for αn < dl). Then existence and
uniqueness follows from the induction hypothesis. �

Example 2.4.7 In [164] Sanders and Wangrefers to the C-algebra R generated by

u51u4, uu
2
1u4, u

3u1u
2
4, u

5u34, u
2u2u4, u

3
1u3, uu3, u1u2, uu

3
2 .

These 9 generators are abbreviated by y1, . . . , y9. The algebra R is isomorphic to the
quotient ring C[y]/I where I is the ideal of relations. Observe that I is generated by
binomials since it is a toric ideal. There are various ways of finding generators of I in
this special case, see [177] Algorithm 7.2 and [2] Theorem 2.1. We used the traditional
way of using slack variables and a Gröbner basis computation with respect to a term order
with elimination property. A Gröbner basis of I with respect to a lex term order has been
computed in Macaulay 2 (modulo 31991) yielding the leading terms

y6y9, y4y9, y4y7y
3
8, y3y9, y3y7y

2
8, y3y5, y

2
3y7y8, y

3
3y7, y2y9,

y2y7y8, y2y5, y2y4, y2y3y7, y
2
2y7, y1y9, y1y7, y1y5, y1y4, y1y3.

Various choices of ordering of variables are possible. The variable order y9, y8, . . . , y1 gives
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in the beginning of the recursion

1 · SD (K[y9, . . . , y2]/〈y6y9, . . . , y22y7〉)
⊕ y1 ·K[y1] · SD (K[y9, . . . , y2]/〈y6y9, . . . , y22y7, y9, y7, y5, y4, y3〉)

= 1 · SD (K[y9, . . . , y3]/〈y6y9, . . . , y33y7〉)
⊕ y2 · SD (K[y9, . . . , y3]/〈y6y9, . . . , y33y7, y9, . . . , y3y7〉)
⊕ y22 ·K[y2] · SD (K[y9, . . . , y3]/〈y6y9, . . . y33y7, y9, . . . , y3y7, y7〉)
⊕ y1 ·K[y1] ·K[y8, y6, y2]

= 1 · SD (K[y9, . . . , y3]/〈y6y9, . . . , y33y7〉)
⊕ y2 · SD (K[y9, . . . , y3]/〈y6y9, . . . , y33y7, y9, . . . , y3y7〉)
⊕ y22 ·K[y8, y6, y3, y2]
⊕ y1 ·K[y8, y6, y2, y1]

and finally the Stanley decompostion

y3 y7 ·K[y7 , y6 , y4 ]⊕ y4 y7 ·K[y7 , y6 , y5 , y4 ]⊕ y7 y8
2y4 ·K[y7 , y6 , y5 , y4 ]

⊕y3 y7 y8 ·K[y7 , y6 , y4 ]⊕ y3
3 ·K[y8 , y6 , y4 , y3 ]⊕ y6 ·K[y8 , y7 , y6 , y5 ]

⊕y3
2y7 ·K[y7 , y6 , y4 ]⊕ y7 y8 y4 ·K[y7 , y6 , y5 , y4 ]⊕ 1 ·K[y9 , y8 , y7 , y5 ]

⊕y4 ·K[y8 , y6 , y5 , y4 ]⊕ y3
2 ·K[y8 , y6 , y4 ]⊕ y3 ·K[y8 , y6 , y4 ]

⊕y3 y2 ·K[y8 , y6 , y3 ]⊕ y2 y7 ·K[y7 , y6 ]⊕ y2 ·K[y8 , y6 ]
⊕y2

2 ·K[y8 , y6 , y3 , y2 ]⊕ y1 ·K[y8 , y6 , y2 , y1 ] .

Definition 2.4.8 Let R = K[x]/I be a quotient ring of an ideal I in K[x1, . . . , xn]. For
the restriction to modules we define the Kronecker gradingW (xj) = 0, j = 1, . . . , n,W (yi) =
1, i = 1, . . . , s. Let

{f = (f1, . . . , fs) ∈ K[x]s |
s∑

i=1

yifi(x) ≡ 0} � J ⊂ HW
1 (K[x, y])

be a submodule and M = HW
1 (K[x, y])/J the corresponding R-module. A Stanley decom-

position of M is a direct sum of free modules

M =
s⊕

i=1

⊕
α∈Fi

yix
αK[Xα],

where the Fi are finite subsets of Nn and each Xα is a subset of {x1, . . . , xn}.

Theorem 2.4.9 Let I be an ideal in K[x] and J ⊂ HW
1 (K[x, y]) a submodule, whereW is

the Kronecker grading W (xj) = 0,W (yi) = 1. If yif ∈ J for all f ∈ I and yi, i = 1, . . . , s
then the K[x]/I-Module M = HW

1 (K[x, y])/J has a Stanley decomposition.

Proof: Consider the ringK[x, y]/S where the ideal S is generated by I and J and yiyj, 1 ≤
i ≤ j ≤ s. By Algorithm 2.4.6 a Stanley decomposition of K[x, y]/S or K[x, y]/init(S)
is computed. If we choose a special term order for the Gröbner basis this gives a Stanley
decomposition of M . We are choosing an order which is eliminating y and then uses the
Kronecker grading W . The corresponding Gröbner basis of S includes a Gröbner basis
of I (by the elimination property) and includes the monomials y iyj, 1 ≤ i ≤ j ≤ s (by
the use of W ) and some generating elements of J . In the algorithm we are choosing the
variable order x1, . . . , xn, y1, . . . , ys. Then a Stanley decomposition of K[x, y]/S is a direct
sum of a Stanley decomposition of K[x]/I and a Stanley decomposition of M . �
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Example 2.4.10 (Example 2.4.7 continued) The monomials

uu24, u1u3u4, u
2
2u4, u2u

2
3, u

4
2u3, u

2
1u

3
3, u

3
1u

2
4, u

7
2 .

generate a module over the ring R from Example 2.4.7. We abbreviate the monomials by
b1, . . . , b8. One Stanley decomposition is computed to be

y7 b1 ·K[y4 ]⊕ y7
2b1 ·K[y4 , y7 ]⊕ y5 y7 b1 ·K[y4 ]⊕ y3 b1 ·K[y2 , y3 ]

⊕y5 b1 ·K[y2 , y3 ]⊕ y8 b1 ·K[y1 , y2 ]⊕ y4 b1 ·K[y3 , y4 ]
⊕y5 y4 b1 ·K[y3 , y4 ]⊕ b1 ·K[y1 , y2 ]⊕ y4 y7 b2 ·K[y3 , y4 , y7 ]
⊕y6 y7 b2 ·K[y2 , y6 , y7 ]⊕ y5 y4 b2 ·K[y3 , y4 ]⊕ y5 b2 ·K[y2 , y3 ]
⊕y6 b2 ·K[y1 , y2 , y6 ]⊕ y4 b2 ·K[y3 , y4 ]⊕ y8 b2 ·K[y1 , y2 ]
⊕y7 b2 ·K[y2 , y3 , y7 ]⊕ y3 b2 ·K[y2 , y3 ]⊕ b2 ·K[y1 , y2 ]
⊕y3 y7 b3 ·K[y5 , y2 , y3 ]⊕ y4 b3 ·K[y5 , y3 , y4 ]⊕ y6 y1 b3 ·K[y8 , y2 , y1 ]
⊕y1 b3 ·K[y8 , y2 , y1 ]⊕ y6 y2 b3 ·K[y8 , y5 , y2 ]⊕ y6 b3 ·K[y8 , y5 ]
⊕y2 b3 ·K[y8 , y5 , y2 ]⊕ y2 y7 b3 ·K[y5 , y2 ]⊕ y4 y7 b3 ·K[y5 , y3 , y4 ]
⊕y3 b3 ·K[y5 , y2 , y3 ]⊕ y7 b3 ·K[y8 , y9 , y5 ]⊕ b3 ·K[y8 , y9 , y5 ]
⊕y6 b4 ·K[y8 , y7 , y6 , y5 ]⊕ y4 b4 ·K[y7 , y5 , y3 , y4 ]⊕ y2 b4 ·K[y8 , y6 , y5 , y2 ]
⊕y2 y7 b4 ·K[y7 , y6 , y5 , y2 ]⊕ y1 b4 ·K[y8 , y6 , y2 , y1 ]
⊕y3 b4 ·K[y7 , y5 , y2 , y3 ]⊕ b4 ·K[y8 , y7 , y9 , y5 ]⊕ b5 ·K[y8 , y9 ]
⊕b6 ·K[y6 , y7 ]⊕ y8 b7 ·K[y1 ]⊕ b7 ·K[y1 ]⊕ b8 ·K[y8 , y9 ] .

Corollary 2.4.11 Let ϑ : G → GL(Kn), ρ : G → GL(Km) be two linear representations
of a compact Lie group. Then the module of equivariants K[x]ϑρ has a Stanley decomposi-
tion.

Proof: Let denote the generators of the invariant ring by y1 = π1(x), . . . , yr = πr(x) and
the ideal of relations by I ⊂ K[y]. Analogously, denote the generators of the module of
equivariants by u1 = f1(x), . . . , us = fs(x) and J ⊂ HW

1 (K[y, u]) the module of relations.
W denotes as usual the Kronecker grading. The module of equivariants is isomorphic
to the K[y]/I-module HW

1 (K[y, u])/J where the invariant ring is isomorphic to K[y]/I.
Thus the previous theorem induces its Stanley decomposition

M =
s⊕

i=1

⊕
α∈Fi

ui · yα ·K[Yα], Yα ⊂ {y1, . . . , yr},

to the Stanley decomposition

K[x]ϑρ =
s⊕

i=1

⊕
α∈Fi

fi(x) · π1(x)α1 · · ·πr(x)αr ·K[πj1(x), . . . , πjlα (x)].

with yj1, . . . , yjlα ∈ Yα. This means that every equivariant f has a unique representation

f(x) =
s∑

i=1

∑
α∈Fi

fi(x) · (π1(x))α1 · · · (πr(x))αr · Pα(πj1(x), . . . , πjlα (x)),

where the Pα are polynomials in lα = |Yα| variables. �

Additionally, we may distinguish primary invariants y 1 = π1(x), . . . , yd = πd(x) and
secondary invariants z1 = 1, z2 = σ2(x), . . . , zm = σm(x). In order to adjust to this
situation we choose a term order < which is
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- eliminating u (uα > yβzγ ∀α �= 1, β, γ),

- uses the Kronecker grading W (degW (uα) > degW (uβ) ⇒ uα > uβ, ∀α, β)

- and uses a Kronecker grading U(yi) = 0, U(zj) = 1, U(uk) = 0.

Then a representation as a direct sum of free modules over subrings of K[y] is the result

M =
s⊕

i=1

m⊕
j=1

⊕
α∈F j

i

ui · zj · yα ·K[Yα].

From this decomposition the Hilbert series can easily be computed.
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Chapter 3

Symmetric bifurcation theory

“Hinter der Mathematik stecken die Zahlen. Wenn mich jemand fragen würde, was
mich richtig gücklich macht, dann würde ich antworten: die Zahlen. Schnee und Eis
und Zahlen. Und weißt du warum?” . . . “ Weil das Zahlensystem wie das Men-
schenleben ist. Zu Anfang hat man die natürlichen Zahlen. Das sind die ganzen
und positiven Zahlen. Die Zahlen des Kindes. Doch das menschliche Bewußtsein
expandiert. Das Kind entdeckt die Sehnsucht, und weißt du, was der mathema-
tische Ausdruck für die Sehnsucht ist?” . . . “ Es sind die negativen Zahlen. Die
Formalisierung des Gefühls, daß einem etwas abgeht. Und das Bewußtsein erweitert
sich immer noch und wächst, das Kind entdeckt die Zwischenräume. Zwischen den
Steinen, den Mosen auf den Steinen, zwischen den Menschen. Und zwischen den
Zahlen. Und weißt du wohin das führt? Zu den Brüchen. Die ganzen Zahlen plus
die Brüche ergeben die irrationalen Zahlen. Aber das Bewußtsein macht dort nicht
halt. Es will die Vernunft überschreiten. . . .”

Peter Høeg
Fräulein Smillas Gespür für Schnee

In this section I show how symbolic computations enter symmetric bifurcation theory.
The aim is to demonstrate the usage of Computer Algebra in this area of research. Tradi-
tionally papers in this area are full of hand calculations and basic manipulations. My aim
is to introduce a different working method. As a simple example I investigate secondary
Hopf bifurcation with D3-symmetry showing the reliability and efficiency of automatic
manipolation of formulas. Here the results of Section 2.3 on algorithmic determination of
invariants and equivariants are applied in order to find a generic equivariant vector field.
In the presentation of this chapter we assume again that the reader is familiar with linear
representation theory of groups.

3.1 Local bifurcation analysis

It is a common understanding that the symmetry of a bifurcation problem strongly de-
termines the bifurcation scenario and structures the dynamics.

Symmetry is formally described by a faithful representation of a group operating on

85
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the system of differential equations. In the system

ẋ = f(x, λ), f : Rn+l → Rn, (3.1)

where f is sufficiently differentiable and is even more equivariant

f(ϑ(s)x, λ) = ϑ(s)f(x, λ), ∀s ∈ G ,

with respect to a representation ϑ : G→ GL(Rn).
The aim of symmetric bifurcation theory is the study of solutions of (3.1) (stationary

or more complicated dynamical phenomena) and their stability depending on the values
of the parameters λ.

The following definitions are standard in symmetric bifurcation theory.

Definition 3.1.1 Let ϑ : G→ GL(Rn) be a representation of a compact Lie group G.

i.) Assume that H is a subgroup. Then

Fix(H) := {x ∈ Rn | ϑ(s)x = x, ∀s ∈ H},

is called the fixed point space of H.

ii.) For any given x ∈ Rn the set

Ox := { y ∈ Rn | exists s ∈ G , such that ϑ(s)x = y}

is called orbit.

iii.) For any given x ∈ Rn the subgroup

Hx := {s ∈ G | ϑ(s)x = x} ,

is called isotropy group of x.

iv.) The isotropy group Hx together with its conjugates sHxs
−1, s ∈ G is called orbit

type.

Of course the structure of a group orbit Ox depends on the isotropy group of x. All
conjugates sHxs

−1 of Hx appear as isotropy groups of elements of Ox.

For finite groups it is possible to determine the isotropy subgroup lattice for a repre-
sentation of a group G if the inequivalent irreducible representations of all finite groups
being isomorphic to a subgroup H of G are known. It uses the fact that a fixed point
space is the isotypic component corresponding to the trivial irreducible representation
in the isotypical decomposition. The dimensions of an isotypic decomposition are easily
computed by a trace formula.

Algorithm 3.1.2 (Computation of isotropy subgroup lattice, Symcon [69])
Input: linear faithful representation ϑ : G→ GL(Rn), given by

group table of G and matrices ϑ(s), ∀ s ∈ G

Output: list of isotropy subgroups



3.1. LOCAL BIFURCATION ANALYSIS 87

1.) Compute subgroup lattice
2.) For each subgroup H determine dim(Fix(H)) = 1

|H|
∑

s∈H trace(ϑ(s))
3.) for each subgroup H in G do

for each subgroup K of G such that H is a proper subgroup of K do
if dim(Fix(K))= dim(Fix(H)) then

H is not an isotropy group for ϑ

In Symcon additionally conjugate groups and normalizers of groups are determined since
these have a meaning for the bifurcation scenario.

The first and basic result of symmetric bifurcation theory is the equivariant branching
lemma by Vanderbauwhede [185] for one-parameter problems (l = 1). Bifurcation of
steady states from a stationary solution (x0, λ0) is dominated by a zero-eigenvalue of the
Jacobian fx(x0, λ0). Since the matrix fx(x0, λ0) commutes with the isotropy group Gx0

of x0 it is generic for one-parameter problems that the eigenspace of the eigenvalue zero
of fx(x0, λ0) defines an absolutely irreducible representation ϑi

Gx0
of Gx0. Restriction to

subgroups H of Gx0 with fixed point space with respect to ϑi
Gx0

of dimension one enables
the application of standard functional analytic results. Generically branches of stationary
solutions with isotropy H bifurcate1.

Definition 3.1.3 Let G be a group and ϑi an absolutely irreducible representation of G.
A subgroup H of G is called a bifurcation subgroup of type ϑi, if the fixed point subspace
of H has dimension one and H is a maximal proper subgroup of G with this property.

Algorithm 3.1.4 (Computation of relevant bifurcation subgroups, Symcon [69])
Input: linear faithful representation ϑ : G→ GL(Rn), given by

group table of G and matrices ϑ(s), ∀ s ∈ G

Data Basis: for finite groups H:
group table of H
characters ψi

H of inequivalent irreducible representations ϑiH

Output: list of relevant bifurcation subgroups

1.) Compute all subgroups
2.) For each subgroup K of G

determine a group isomorphism ϕ : K → H to a subgroup H in the
data basis.

3.) For all absolutely irreducible representations ϑiϕ(G) of G do

find all bifurcation subgroups H of type ϑiϕ(G)

- searching through all subgroups

- check 1
|H|

∑
s∈H trace(ϑi(ϕ(s))) = 1

- check whether there exist no subgroup K such that
H is a proper subgroup of K and
1

|K|
∑

s∈K trace(ϑi(ϕ(s))) = 1

4.) For all previously found bifurcation subgroups H do
For all absolutely irreducible representations ϑiϕ(H) of H do

�Of course this does not exclude the existence of other branches with other isotropy.
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find all bifurcation subgroups of type ϑiϕ(H)

5.) Erase all bifurcation subgroups which are not isotropy subgroups with
respect to ϑ

The computation of the bifurcation subgroups is one topic of the Computer Alge-
bra part of Symcon. It prepares the automatic symmetry exploitation of the numerical
computations. In the numerical part of Symcon the bifurcation points and bifurcat-
ing branches are computed numerically taking into account all possibilities due to the
equivariant branching lemma. Motivated by Symcon the Computer Algebra system GAP
provides an operator for the computation of bifurcation subgroups.

But there are still other phenomena in the bifurcation analysis to be investigated.
The analysis typically uses reduction techniques such that the essential phenomena can
be demonstrated for a small sized system but are valid for the original system.

There are three standard ways of how a low-dimensional vector field may be derived:

i.) Liapunov Schmidt reduction,

ii.) Center manifold reduction,

iii.) Symmetry adapted ansatz for a solution of a PDE by Fourier modes, see e.g [115].

This yields a low-dimensional vector field f : Rn×Rr → Rn with f ∈ C∞ and ẋ = f(x)
such that the Jacobian has zero-eigenvalues or complex eigenvalues on the imaginary axis
only. Once f is obtained the general line of idea is to restrict to the investigation of local
bifurcation phenomena which leads to the investigation of germs (classes of C∞-functions)
and use of singularity theory. For an introduction to the application of singularity theory
to bifurcation theory see [86, 87]. The idea of identifying similar bifurcation phenomena
leads to the notion of contact equivalence classes. Representatives of these classes may
be taken to be polynomial vector fields (at least if the codimension - number of unfolding
parameters - is finite). It remains to check at which order the Taylor expansion may be
truncated.

So the bifurcation phenomena of polynomial vector fields show the typical bifurcation
phenomena of huge sized systems and (to some extent) of partial differential equations.

3.2 An example of secondary Hopf bifurcation

In this section I present a simple example in order to demonstrate the argumentation in
the previous section and the appropriate usage of Computer Algebra within this theory.
This result on secondary Hopf bifurcation first appeared in [77].

Theorem 3.2.1 Let ϑ : D3 → Gl(Rn) be a linear representation such that both non-
trivial irreducible representations appear at least once in the isotypic decomposition. Let Z3

denote the cyclic subgroup of order 3. Let x0 ∈ Fix(D3) = {x ∈ Rn | ϑ(s)x = x ∀ s ∈ D3}
and λ0 ∈ R2 define our point of interest. Assume f : U(x0, λ0) → Rn is an equivariant
function which means

f(ϑ(s)x, λ) = ϑ(s)f(x, λ), ∀ s ∈ D3 ∀ (x, λ) ∈ U(x0, λ0),
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where U(x0, λ0) is an open surrounding of (x0, λ0) in Rn+2. Moreover, we assume that
f is C∞ in its domain of definition and f(x0, λ0) = 0 and that the D3-invariant kernel
of the Jacobian fx(x

0, λo) is a subspace W of Rn such that the subrepresentation ϑW de-
composes into the alternate and the two-dimensional irreducible representation of D3.
Then generically there exists locally a branch (x(t), λ(t)) of Z3-invariant Hopf bifur-
cation points such that (x(0), λ(0)) = (x0, λ0), (x(t), λ(t)) ∈ U(x0, λ0) for all t and
(x(−t), λ(−t)) = (ϑ(s)x(t), λ(t)) for all t and some reflection s ∈ D3. For all t �= 0
the point x(t) has isotropy Z3 and is a Hopf point, i.e. there exists a vector α ∈ R2 such
that (x(t), 0) is a Hopf bifurcation point of

ẋ = g(x, β), (3.2)

where g(x, β) = f(x, λ(t) + βα) is defined for all (x, β) ∈ Rn+1 such that (x, λ(t) + βα) ∈
U(x0, λ0). For t �= 0 a branch of periodic orbits of (3.2) emanates from (x(t), 0).

Proof: By the Liapunov-Schmidt reduction it is sufficient to investigate a generic
germ in �εx,λ being equivariant with respect to a representation of D3 decomposing into
the alternate and two-dimensional irreducible representation. Assume the generators of
D3 are operating as

[ s =

⎡⎢⎢⎢⎣
−1 0 0

0 1 0

0 0 −1

⎤⎥⎥⎥⎦ , r =

⎡⎢⎢⎢⎢⎣
1 0 0

0 −1/2
√
3
2

0 −
√
3
2

−1/2

⎤⎥⎥⎥⎥⎦].

The primary invariants π1, π2, π3 and secondary invariant σ2 of the Hironaka decompo-
sition are computed to be

primary invs = [x1 2, x2 2 + x3 2, x2 3 − 3 x2 x3 2],

secondary invs = [1, x1 x2 2x3 − x1 x3 3

3
]

while the generators bi, i = 1, . . . , 6 of the module of equivariants are computed as

equivariants = [ [x1 , 0, 0], [0, x2 , x3 ], [0, x1 x3 ,−x1 x2 ],

[0, x2 2 − x3 2,−2 x2 x3 ], [0, x1 x2 x3 , x1 x22

2
− x1 x32

2
],

[x2 2x3 − x33

3
, 0, 0] ].

By the Theorems of Schwarz and Poénaru (see [87] p. 46 and p. 51) each equivariant
germ has a representation

∑6
i=1Ai(π(x), σ2(x))bi(x) where the Ai are germs in 4 variables.

By a standard argumentation it suffices to study Taylor series expansions up to a certain
degree. A generic equivariant polynomial vector field has a unique representation

fgeneric = A1(π1, π2, π3)b1 + A2(π)b2 + A3(π)b3 + A4(π)b4 + A5(π)b5 + A6(π)b6,

where Ai are polynomials in three variables. A generic polynomial equivariant f(x) of
degree 3 has a representation

c1,1b1 + c1,2b2 + c2,3b3 + c3,1,1b1π1 + c3,1,2b1π2 + c3,2,1b2π1 + c3,2,2b2π2,
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where the coefficients ci,j,k are arbitrary real numbers. If we are choosing λ1 = c1,1, λ2 =
c1,2 as unfolding parameters then f(x, λ) has the properties that f(0, λ) ≡ 0 and that the
Jacobian fx(0, λ) has the structure ⎡⎢⎢⎢⎣

λ1 0 0

0 λ2 0

0 0 λ2

⎤⎥⎥⎥⎦ .
By the generalized equivariant branching lemma one gets a branch of equilibria with
isotropy Z3. The restriction of the equivariant f(x, λ) on Fix(Z3) = {(x1, 0, 0) | x1 ∈ R}
is given by [λ1x1 + c3,1,1x1

3, 0, 0] with solutions

[{x1 = 0} ,
⎧⎨⎩x1 =

√
−c3,1,1λ1
c3,1,1

⎫⎬⎭ ,
⎧⎨⎩x1 = −

√
−c3,1,1λ1
c3,1,1

⎫⎬⎭].

The last two correspond to the pitchfork bifurcation of Z3-equilibria. For Hopf bifurca-
tion the eigenvalues of the Jacobian needs to be inspected. On Fix(Z3) the Jacobian
fx((x1, 0, 0), λ) has the form⎡⎢⎢⎢⎣

λ1 + 3 c3,1,1x1
2 0 0

0 λ2 + c3,2,1x1
2 c2,3x1

0 −c2,3x1 λ2 + c3,2,1x1
2

⎤⎥⎥⎥⎦ .
The second block has complex conjugate eigenvalues. If the two entries on the diagonal are
zero the eigenvalues are on the imaginary axis. This condition together with the property
of being a solution yields a branch

{
x1 = x1 , λ2 = −c3,2,1x1 2, λ1 = −c3,1,1x1 2

}
of potential

Hopf bifurcation points. In order to proof the bifurcation of periodic orbits one needs to
show that there are no other eigenvalues on the imaginary axis (λ1 + 3 c3,1,1x1

2 �= 0)
and that the real part of the complex eigenvalue crosses the imaginary axis with nonzero
speed. Choosing a direction α ∈ R2 \ {0} in the λ-plane the derivative in this direction
of the real part of the eigenvalue pair is given by

−α1c3,2,1
c3,1,1

+ α2.

If c3,1,1 �= 0 it is possible to choose α such that this expression is unequal zero and thus
periodic orbits bifurcate. �

The formulas in the proof have been computed with the Maple commands given below
and by the command latex they have been converted to the form presented in the text
above. More examples of usage of the symmetry package within dynamical systems theory
are given in [125], but deeper results concerning singularity theory, Computer Algebra and
symmetric bifurcation theory are presented in [76].

Remark 3.2.2 i.) In order to make the proof complete one still needs to argue that
a truncation of the vector field at degree 3 is no restriction. An argumentation would
use the concept of contact equivalence classes and show that each other vector field h(x, λ)
with the same properties is contact equivalent to f(x, λ) (existence of S,X,Λ with S(x, λ) ·
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h(X(x, λ),Λ(λ)) ≡ f(x, λ)). In [81] an argumentation in a similar case is performed using
Maple. ii.) The period (or frequency) of the periodic orbits close to the Hopf bifurcation
point is determined by the pair of complex conjugate eigenvalues. Periodic orbits close to
the mode interaction point (x0, λ0) have almost period infinity.

# Maple 5.5 worksheet

# secondary Hopf bifurcation caused by mode interaction

# load packages first

> with(linalg): # Maple built in package

> read(moregroebner); # tool for algebraic computation

# see: http://www.zib.de/gatermann/moregroebner.html

> read(symmetry); # tool for computation of invariants + equivariants

# see: http://www.zib.de/gatermann/symmetry.html

> ?symmetry

> ?finitegroup

# What is a generic equivariant vector field for D3?

> D3:=dihedral(3,[2,3]);

> latex(D3[generators]);

> varias:=[x1,x2,x3];

> cmb:=CMbasis(D3,varias); # compute primary and secondary invariants

> latex(cmb[1]); latex(cmb[2]);

> prims:=rhs(cmb[1]):

> aequivarias:=equis(D3,D3,varias,prims); # compute equivariants

> latex(aequivarias[1]); latex(aequivarias[2]);

# define equivariant up to degree 3

> p1:=prims[1]; p2:=prims[2]; p3:=prims[3];

> for i from 1 to 6 do b.i:=rhs(aequivarias[2])[i]; od;

> fgeneric:=A[1](pi[1],pi[2],pi[3])*b[1]+A[2](pi)*b[2]+A[3](pi)*b[3]

> +A[4](pi)*b[4]+A[5](pi)*b[5]+A[6](pi)*b[6];

> latex(fgeneric);

> f:= c[1,1]*b[1]+c[1,2]*b[2] + # degree 1

> c[2,3]*b[3] + # degree 2

> c[3,1,1]*b[1]*pi[1]+ c[3,1,2]*b[1]*pi[2] # degree 3

> + c[3,2,1]*b[2]*pi[1] + c[3,2,2]*b[2]*pi[2];

> latex(f);

> fsub:={pi[1]=p1,pi[2]=p2,b[1]=evalm(b1),b[2]=evalm(b2),b[3]=evalm(b3)}

> ;

> f:=subs(fsub,f);

> f:=map(expand,evalm(f));

# We assume that the truncation at degree 3 is okay.

# fixed point space of D_3

> fixD3:={x1=0,x2=0,x3=0};

> fD3:=subs(fixD3,evalm(f));

# linearization at fixed point space of D3

> jacf:=matrix(3,3,[

> [diff(f[1],x1), diff(f[1],x2), diff(f[1],x3)],

> [diff(f[2],x1), diff(f[2],x2), diff(f[2],x3)],

> [diff(f[3],x1), diff(f[3],x2), diff(f[3],x3)]]);

> subs(fixD3,evalm(jacf));
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# The coefficients c_1_1 and c_1_2 are unfolding parameters

> c[1,1]:=lambda[1];c[1,2]:=lambda[2];

> f:=map(eval,f);

> jacf:=map(eval,jacf);

> latex(subs(fixD3,evalm(jacf)));

# A generalization of the equivariant branching lemma states that

# at (x1,x2,x3,lambda_1, lambda_2)=(0,0,0,0,0) bifurcation of solutions

# with Z_3-isotropy happens. Obviously, Fix(Z_3)=<(1,0,0)>.

> fixZ3:={x2=0,x3=0};

# vector field restricted to Fix(Z_3)

> fZ3:=subs(fixZ3,evalm(f));

> latex(fZ3);

> solsZ3:=[solve(fZ3[1],{x1})];

> latex(solsZ3);

# We see the trivial solution x_1=0 and two branches beeing conjugate

# to each other. Depending on whether the generic coefficient c_3,1,1

# s positive or negative both solutions branch in the direction

# of positive or negative lambda_1.

# Linearization in Fix(Z_3)

> A:=subs(fixZ3,evalm(jacf));

> latex(evalm(A));

# For c_2,3 <> 0 there are a pair of pure complex eigenvalues.

# If the two entries on the diagonal are zero, the necessary condition

# for the Hopf bifurcation is fullfilled.

# search Hopf bifurcation points with Z_3 Isotropy

> Hopfs:=[solve({fZ3[1],A[2,2]},{x1,lambda[1],lambda[2]})];

> latex(Hopfs[2]);

# The case x1=0 refers to the steady states with D_3 isotropy and

# bifurcation of type of 2-dimensional irreducible representation

# leading

# to steady states with Z_2-isotropy. The other case defines a curve of

# of (possible Hopf points).

# But we still need to check the transversality condition.

# transversality condition, Hopf points

# (Parametrization of Z_3 branch by lambda1)

> eigenvalue:=simplify(A[2,2],

> {normal(fZ3[1]/x1)},{x1}) + I*simplify(A[2,3],{normal(fZ3[1]/x1)},

> {x1});

> realval:=simplify(A[2,2],{normal(fZ3[1]/x1)},{x1}) ;

# derivative in direction of alpha[1]*lambda[1]+alpha[2]*lambda[2]

> transcond:=alpha[1]*diff(realval,lambda[1])

> +alpha[2]*diff(realval,lambda[2]);

> latex(transcond);

# Other eigenvalue has to be nonzero

> eigenvalue0:=simplify(A[1,1],{normal(fZ3[1]/x1)},{x1}) ;

# Let’s consider the 1-parameter bifurcation problem defined by

# (lambda_1,lambda_2)=(-c_3,1,1 x1^2, -c_3,2,1 x1^2)

# + (alpha[1],alpha[2])*beta.

# For a special value of x1 there is one possible Hopf point.

# For alpha[1],alpha[2] such that transcond<>0 and eigenvalue0 <> 0

# there is a bifurcation of periodic orbits.



Chapter 4

Orbit space reduction

“But if I have a weather system that I start up with a certain temperature and
a certain wind speed and a certain humidity- and if I then repeat it with almost
the same temperature, wind, and humidity-the second system will not behave
almost the same. It’ll wander off and rapidly will become very different from the
first. Thunderstorms instead of sunshine. That’s nonlinear dynamics. They are
sensitive to initial conditions: tiny differences become amplified.”
“I think I see.” Gennaro said.
“The shorthand is the ’butterfly effect.‘ A butterfly flaps its wings in Peking,
and weather in New York is different.” . . .
“There is a problem with that island. It is an accident waiting to happen.”

Michael Crichton

Jurassic Park

The idea of the orbit space reduction is the investigation of the system of differential
equations modulo the group action. Dividing out the group action the system of differen-
tial equations to be studied is transported to another system on a space with a complicated
structure. The stratification of this set is deduced from the structure of orbit types of
the group action. The orbit space reduction is performed with the help of a Hilbert basis
of the invariant ring. The new idea in this chapter is the use of a special Hilbert basis
reflecting the orbit type structure as best as possible. Since steady state solutions are the
most fundamental objects in dynamics we first recall the influence of symmetry and the
symbolic methods on the exact solution of symmetric polynomial systems using invariant
theory.

In Section 4.2 and Section 4.3 we will study a low-dimensional system of differential
equations

ẋ = f(x, λ), f ∈ εx,λ

close to (0, 0) where the right hand side f is a C∞-germ and λ are parameters. Addition-
ally, we assume that f is equivariant with respect to an orthogonal faithful representation
of a compact Lie group G. The restriction to orthogonal representations is natural since
a lot of group actions in nature or engineering science are orthogonal anyway. Secondly,
whenever a G-invariant inner product exists (e.g. for finite groups and compact Lie groups)
the coordinate system can be chosen such that the representation matrices are orthogonal.

93
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Following a standard argumentation based on singularity theory we are left with a
polynomial system

ẋ = f(x, λ), fi ∈ R[λ][x], i = 1, . . . , n, (4.1)

where f ∈ R[λ][x]ϑϑ of some degree ≤ d. The first goal is the computation of equilibria.

4.1 Exact computation of steady states

For the discussion of orbit space reduction it is helpful to know the ideas of exact solution
of symmetric polynomial systems

f(x) = 0, f ∈ R[x]ϑρ , (4.2)

ϑ : G→ GL(Rn), ρ : G→ GL(Rm) orthogonal representations of a compact Lie groupG,
ϑ being faithful. In exact computations we will assume that the coefficients are elements
of a subfield K ⊂ R.

The most basic idea for the solution, the restriction to fixed point spaces, has been
mentioned in Chapter 3 already. The aim of this section is to examine the role of invariants
for the solution of systems. Let us first consider the case that each fi is G-invariant.
Denote a Hilbert basis by π1, . . . , πr. By the theorem by Hilbert a representation

fi(x) = gi(π(x)), i = 1, . . . , n,

exists and decomposes the system (4.2) into the ’easier’ system g(y) = 0 and the resolution
of orbits into its elements π(x) = y. The advantage is that the gi have smaller degrees
than the fi. The polynomials gi are easily found using Gröbner bases (computation in a
subring, see e.g. [14] p. 269).

Definition 4.1.1 Given a Hilbert basis π1, . . . , πr of the invariant ring the mapping

π : Cn → Cr, x �→ (π1(x), . . . , πr(x))

is called the Hilbert mapping.

This mapping is contracting orbits as illustrated in Figure 4.1. The following well-known
lemma means that the Hilbert mapping is distinguishing group orbits.

Lemma 4.1.2 For finite groups the Hilbert mapping is an isomorphism between the set of
orbits Cn/ϑ(G) and the image π(Cn) ⊆ V (J) ⊆ Cr where J is the ideal of relations. For
orthogonal representations of compact Lie groups the Hilbert mapping is an isomorphism
between the real orbits Rn/ϑ(G) and the image π(Rn) ⊆ V R(J) ⊆ Rr.

Proof: The first statement means that for finite groups the nullcone consists of 0 only.
Assume a, b ∈ Cn are two points such that no s ∈ G exists with ϑ(s)a = b and π(a) =
π(b). Since G is finite we can find a polynomial p ∈ C[x] with p(a) = 1, p(b) = 0
and p(ϑ(s)b) = 0, ∀ s ∈ G and p(ϑ(s)a) = 0 for all s ∈ G with ϑ(s)a �= a. Then
P (x) = R(p(x)) = 1

|G|
∑

s∈G p(ϑ(s)x) is an invariant polynomial with P (a) = 1
|G| , P (b) = 0.

Since π(a) = π(b) there is no representation P (x) = g(π(x)). This is a contradiction to
the fact that π1, . . . , πr form a Hilbert basis.
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Figure 4.1: Three D4-orbits of different types mapped by the Hilbert mapping onto the
orbit space. Here the invariants π1(x) = x21 + x22 and π2(x) = x21x

2
2 have been used

For the second statement assume a, b ∈ Rn are real and a �= 0 and π(a) = π(b). Since
ϑ is orthogonal the norm is invariant. Thus we may assume π1(x) = ||x||22 = x21+ · · · +x2n.

We distinguish two cases:
a.) The set {ϑ(s)a for all s in the torus T of G} generates Rn as a vector space. Then
for each b ∈ Rn with π1(b) = π1(a) there exists t ∈ T with ϑ(t)b = a.
b.) The set ϑ(s)a for all s ∈ T generates a proper subvector space V ∈ Rn. Then there
are finitely many group elements s1, . . . , sm ∈ G modulo T and modulo Ga such that
ϑ(si)a �= a and ϑ(si)a �∈ V . Let p ∈ R[x] be a polynomial with p(a) = 1, p(ϑ(si)a) = 0
and p(ϑ(s)b) = 0 for all s ∈ G. Then P (x) := R(p(x)) is a G-invariant polynomial with
P (a) �= 0, but P (b) = 0. This yields the same contradiction than above. �

An alternative proof of the second statement may be found in [144] p. 50.

If the fi are not invariant one nevertheless wants to use invariant theory. Obviously,
I = 〈f1, . . . , fn〉 is G-invariant and IG = I ∩K[x]ϑ is an ideal of invariant polynomials in
K[x]ϑ. But IG generates an ideal IGo in K[x] as well. In general one expects I �= IGo .

Lemma 4.1.3 Assume G is a compact Lie group and ϑ, ρ are two linear representations
of G. Furthermore let the polynomial mapping f be ϑ-ρ-equivariant. Let I = 〈f1, . . . , fm〉
denote the G-invariant ideal and IG = I ∩ R[x]ϑ and IGo = 〈IG〉 ⊂ R[x]. If G is a
finite group then the complex solutions are the same: V (I) = V (IGo ) ⊂ Cn (equivalently
Rad(I) = Rad(IGo ) in C[x]). If ϑ : G → GL(Rn) is an orthogonal group action then the
real solutions are the same: V R(I) = V R(IGo ) ⊂ Rn.

The proof of the finite group part may be found in [176] p. 61. Each f ∈ IG is represented
as f(x) = g(π1(x), . . . , πr(x)) giving rise to an ideal I ⊂ R[x]/J where J denotes the ideal
of relations. Since I carries the information on solutions it is appropriate to compute a
set of generators of 〈I, J〉 ⊂ R[y]. In Algorithm 2.6.2 p. 59 [176] the Gröbner basis of

J = 〈f1(x), . . . , fm(x), y1 − π1(x), . . . , yr − πr(x)〉 ⊂ K[x, y] (4.3)

is computed with respect to a term order eliminating x. (For efficiency reasons one might
want to precompute the Gröbner basis of the last set of polynomials.) The Gröbner basis
g1(y), . . . , gm(y) of J ∩ K[y] yields a generating system g1(π(x)), . . . , gm(π(x)) of IGo or
IG, respectively. The obvious disadvantage of (4.3) is the doubling of variables.
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A more recent variant was derived as a remark by Derksen [48].

Lemma 4.1.4 (Derksen [48] Remark 3.3) Let I = 〈f1(x), . . . , fm(x)〉 ⊆ K[x] be a G-
invariant ideal, where G is an algebraic group given by A(z) ∈ K[x]n,n modulo JG =
〈h1(z), . . . , hs(z)〉. Consider the ideal

IΓ =

〈
h1(z), . . . , hs(z), y1 −

n∑
j=1

a1j(z)xj , . . . , yn −
n∑

j=1

anj(z)xj

〉
,

in K[x, y, z] and

b = {g(x, y) ∈ K[x, y] | g(x, ϑ(s)x) = 0, ∀ s ∈ G, ∀ x} = IΓ ∩K[x, y].

Then
(I + b) ∩K[x] = IGo .

Proof: Let g(x) ∈ IGo . Since IGo is generated by invariant polynomials we may assume
that g(x) is invariant. Then g(x) = (g(x)− g(y)) + g(y). Since I ⊆ IGo we have g(y) ∈ I.
Because g is invariant (g(x)− g(y))(x, ϑ(s) x) = 0. This means g ∈ I + b.

For the other direction let g(x) ∈ K[x] and even more g(x) ∈ I + b ⊆ K[x, y]. Then
one has a representation

g(x) =
∑
i

ci(x)fi(y) + b(x, y),

with ci(x) ∈ K[x] and b(x, y) ∈ b. Consider the linear representation Id + ϑ : G →
GL(K2n), (x, y) �→ (x, ϑ(s)y). The corresponding Reynolds projection RId+ϑ is a K[x]-
module homomorphism which gives

RId+ϑ(g(x)) = g(x) = RId+ϑ (
∑

i ci(x)fi(y) + b(x, y))

=
∑

i ci(x)R(fi(y)) +RId+ϑ(b(x, y))

=
∑

i ci(x)R(fi(y)).

Substituting y = x yields
g(x) =

∑
i

ci(x)R(fi(x)).

Since the R(fi(x)) are invariant this means g(x) ∈ IGo . �

This proof is essentially the proof of Theorem 3.1 in [48]. The role of 〈y1, . . . , yn〉 has
been replaced by I. That’s why this proof also proves the correctness of Algorithm 2.2.2
in Section 2.2. Concerning the ideal b a comment is in favor. Knowing a Hilbert basis
π1, . . . , πr the ideal 〈π1(x) − π1(y), . . . , 〈πr(x) − πr(y)〉 is a subideal of b. But in general
the inclusion is proper.

Lemma 4.1.4 suggests an algorithm for the solution of symmetric systems. I like to
thank H. Derksen for pointing out to me in an email that his work might be interesting
for symmetric system solving.

Algorithm 4.1.5 (Solution of symmetric systems)
Input: hom. f1, . . . , fm generating a G-invariant ideal I ⊂ K[x]

generators k1(x, y), . . . , ks(x, y) of
b = {g(x, y) | g(x, ϑ(s)x) = 0, ∀s ∈ G}

homogeneous invariants π1(x), . . . , πr(x) generating K[x]ϑ

Gröbner basis GB of ideal of relations 〈u1 − π1(x). . . . , ur − πr(x)〉
with respect to a term order < eliminating x.
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1.) Compute a Gröbner basis GB of

〈 f1(y), . . . , fm(y), k1(x, y), . . . , ks(x, y), 〉 ⊂ K[x, y],
with respect to a term order eliminating x.

2.) J := {}
for f ∈ GB ∩K[y] do

g(u) = normalf<(R(f)(x),GB) or
g(x, u) = normalf<(f(x),GB), g(u) := g(0, u)
J = J ∪ {g}

3.) Compute a Gröbner basis of 〈J〉 ⊂ K[u] with respect to a lex term order.
4.) For each solution u ∈ Cn the resolution of orbits is obtained

with the Gröbner basis GB.

Proof of Correctness: The algorithm first computes an ideal basis of IG
o as shown in

Lemma 4.1.4. Since I is a homogeneous ideal a Reynolds projection of the generators yield
an ideal basis of IG ⊂ K[y]G by Nakayama’s lemma. Then these invariant polynomials are
rewitten in terms of the Hilbert basis. These steps may be realized in several ways. Either
one uses the Reynolds projection and performs the rewriting with the help of Gröbner
bases (or with the subduction algorithm if a SAGBI basis is available) or one uses Gröbner
bases for the projection right away. �

The bottleneck of this algorithm is that an ideal basis of b is required. Typically it
is computed by an elimination ideal computation from IΓ. A speed up can be obtained
by using additionally 〈π1(x) − π1(y), . . . , πr(x) − πr(y)〉 ⊂ b as input of the elimination
computation.

In case the input polynomials f1, . . . , fm are not homogeneous one needs to use ho-
mogenization of a Gröbner basis with respect to grevlex and dehomogenization as a final
step.

The second ideal in the invariant ring is derived with equivariants and still carries the
information on real solutions. The following lemma has been used in [194] and [71] for
the exact solution of symmetric systems.

Lemma 4.1.6 (Jaric, Michel, Sharp [102]) Let ϑ : G → GL(Rn), ρ : G → GL(Rm) be
two orthogonal linear representations of a compact Lie group G, as usual ϑ being faithful,
and f ∈ R[x]ϑρ a ϑ-ρ equivariant vector field (f(ϑ(s) x) = ρ(s) f(x), ∀ s ∈ G). Denote the
ϑ-invariant ideal 〈f1, . . . , fm〉 ⊂ R[x] by I. Assume b1(x), . . . , bs(x) ∈ (R[x])m generate
the module of ϑ-ρ equivariants R[x]ϑρ . Then the polynomials

bt1f, . . . , b
t
sf ∈ R[x]ϑ,

are invariant (with respect to ϑ) and the ideal Ĩgo ⊂ R[x] generated by them has the same
set of real solutions than I.

Proof: Let a ∈ Rn be a common zero of f1, . . . , fm. Then obviously (bi(a))
tf(a) = 0 for

all i = 1, . . . , r.
As the module of equivariants is finitely generated the vector field f has a representa-

tion

f(x) =
r∑

i=1

pi(π(x)) bi(x)
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Table 4.1: The first set of polynomials is a Gröbner basis of the ideal in the invariant ring
of the cyclo hexane problem. The second set is the resolution of orbits

[ 81 π3
2 − 21654 π3 − 956880 π2 − 11815656 π1 − 775404 π1

2 + 478098 π1
3

+77727320− 60156 π1
4 + 3564 π1

5 − 81 π1
6,

27 π3π2 − 1089 π3 + 28455 π2 + 287496 π1 + 45969 π1
2 − 13293 π1

3 − 2325620
+990 π1

4 − 27 π1
5,

9 π1π3 − 99 π3 − 1080 π2 − 3286 π1 − 2262 π1
2 + 297 π1

3 + 89870− 9 π1
4,

9 π2
2 − 1686 π2 − 3432 π1 − 1702 π1

2 + 264 π1
3 + 77440− 9 π1

4,
−22 π1 + 29 π1

2 + 15 π2 − 3 π1
3 + 3 π1π2 − 1210 ]

[ −π1 + x1 + x2 + x3,
2 x2

2 + 2 x3x2 + 2 x3
2 − 2 x2π1 − 2 x3π1 + π1

2 − π2,
6 x3

3 − 6 x3
2π1 + 3 x3π1

2 − 3 x3π2 − π1
3 + 3 π1π2 − 2 π3 ]

where π1, . . . , πr is a Hilbert basis and the pi are polynomials in R[y1, . . . , yr].
Then ||f(a)||22 = (f(a))tf(a) =

∑r
i=1 pi(π(x))b

t
i(a)f(a). If a ∈ Rn is a common zero

of btif, i = 1, . . . , s, then ||f(a)||22 =
∑m

i=1(fi(a))
2 = 0. Since a is real f(a) = 0 follows

immediately. �

Remark 4.1.7 i.) In case the representation matrices ρ(g) are not orthogonal, but a G-
invariant inner product (·, ·) exists an analogous result is still valid with the polynomials
(b1, f), . . . , (bs, f). ii.) For ϑ = ρ Jaric et al. even show a sharper variant. It is sufficient
to use the equivariants bi = ∇πi, i = 1, . . . , r, the gradients of a Hilbert basis. iii.) From
the proof it is not clear that the complex solutions remain the same. Since Ĩgo ⊆ IGo it
remains the question whether Ĩgo might have more complex solutions than I even in the
case of finite groups.

Algorithm 4.1.8 (Solution of symmetric systems)
Input: ϑ-ρ-equivariant f(x) generating a G-invariant ideal I = 〈f1, . . . , fm〉

homogeneous invariants π1(x), . . . , πr(x) generating R[x]ϑ

homogeneous equivariants b1(x), . . . , bs(x) generating R[x]ϑρ
Gröbner basis GB of ideal of relations 〈u1 − π1(x). . . . , ur − πr(x)〉

with respect to a term order < eliminating x.

1.) Compute g1 = normalf<(b
t
1f,GB), . . . , gs = normalf<(b

t
sf,GB)

2.) Compute a Gröbner basis of 〈g1, . . . , gs〉 ⊂ K[u] with respect to a lexico-
graphical term order.

3.) For each solution u ∈ Rr of 〈g1, . . . , gs〉 the resolution of orbits is
obtained with the Gröbner basis GB.

In contrast to the approach in [176] the doubling of variables appears in this algorithm
only in the problem independent part, in the computation of relations which is done once
for one group action.
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Table 4.2: Nested ideal quotient computations of the first ideal in Table 4.1 give three
ideals with Gröbner basis in upper triangular form. Since the coordinates x i have to be
positive and thus the invariants πj have to be positive the first basis is irrelevant

[18 π3 + 135 π2 − 875,−562 π2 + 4475 + 3 π2
2, 5 + π1]

[(9 π3 − 1075) (9 π3 − 1331) , 3 π2 − 121, π1 − 11][
−3 π1

3 + 66 π1
2 − 388 π1 + 3 π3 − 250

3
,−π12 + 44π1

3
− 242

3
+ π2

]

Example 4.1.9 We compare the three different approaches for the simple example of the
cyclo hexane with D3-symmetry which has already been investigated in Example 1.2.17.
(The cyclo heptane has been studied by Levelt [130].) Recall that the polynomials are
defined with determinants of matrices

f4(x) = det(B), f3(x) = det(A),

f1(x1, x2, x3) = f3(x2, x3, x1), f2(x1, x2, x3) = f3(x3, x1, x2).

This surely defines an equivariant system with respect to D3 = S3 acting by permutation of
variables. The invariants are π1(x) = x1+x2+x3, π2(x) = x21+x

2
2+x

2
3, π3(x) = x31+x

3
2+x

3
3

and the fundamental equivariants are (1, 0, 0, 0)t, (0, 1, 1, 1)t, (0, x1, x2, x3)
t, (0, x21, x

2
2, x

2
3)

t.

All three approaches yield the same Gröbner basis (Table 4.1), but the timings differ
(Table 4.3). In order to use Derksen’s approach one needs the ideal b which is computed
by elimination technique from IΓ. The permutation group D3 is written as algebraic group
with the matrix A(z) equal to

⎡⎢⎢⎢⎣
1+z2
2

1−z2
2

0

1−z2
2

1+z2
2

0

0 0 1

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
2 z1 + 2 z1

2 + 2 a12 ã

ã 2 z1 + 2 z1
2 + 2 a12

a12 ã 2 z1 + 2 z1
2 + 2

⎤⎥⎥⎥⎦

with a12 := 2− i
√
3z1

2 − z1
2 + i

√
3z1 − z1, ã := 2 + i

√
3z1

2 − z1
2 − i

√
3z1 − z1,

and h1(z2) = z22 − 1, h2(z1) = z31 − 1. Although I first computed a Gröbner basis of
〈π1(x) − π1(y), π2(x) − π2(y), π3(x) − π3(y), h1(z), h2(z)〉 and then a basis of the ideal
generated by this plus IΓ, the computation needed 14013 sec. As a consequence of the
time comparison I recommend the approach using equivariants. Here no doubling of the
number of variables appears while in both the two other algorithms this doubling happens.

Example 4.1.10 Kotsireas gives on the webpage [118] the following system G(x) = 0, G :
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Table 4.3: Comparision of three different methods for solving symmetric systems. The
timing has been taken in a way such that the steps depending on the group only have not
been taken into account. Only the steps depending on the problem contributed to the
time given here

Alg. 2.6.2 in [176] Alg. 4.1.8 Alg. 4.1.5
problem G n Sturmfels Jaric Derksen

cyclo hexane [143] D3 3 85 s 7 s 12 s
celestial mechanics Z2 6 > 2 days 45675 s 3 days
(Kotsireas [118])
Lotka Volterra D3 3 42 s 8 s 2505 s
(Noonburg [153])

R6 → R6 with variables x = (B,D, F, b, d, f) related to celestial mechanics.

G1(x) := (b− d)(B −D)− 2F + 2 = 0,

G2(x) := (b− d)(B +D − 2F ) + 2(B −D) = 0,

G3(x) := (b− d)2 − 2(b+ d) + f + 1 = 0,

G4(x) := B2b3 − 1 = 0,

G5(x) := D2d3 − 1 = 0,

G6(x) := F 2f 3 − 1 = 0.

The system is equivariant with respect to Z2 = {id, s}. While the reflection operates
on the variables as ϑ(s)(B,D, F, b, d, f) = (D,B, F, d, b, f) on the image of G it operates
as ρ(s)(G1, . . . , G6) = (G1,−G2, G3, G5, G4, G6). The methods described above apply and
their timings are given in Table 4.3. For the approach in Algorithm 4.1.5 we need to write
Z2 as algebraic group

A(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
(z1 + 1) 1

2
(1− z1 ) 0 0 0 0

1
2
(1− z1 )

1
2
(z1 + 1) 0 0 0 0

0 0 1 0 0 0

0 0 0 1
2
(z1 + 1) 1

2
(1− z1 ) 0

0 0 0 1
2
(1− z1 )

1
2
(z1 + 1) 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
modulo h1(z) = z21 −1. Algorithm 4.1.8 requires the knowledge of invariants and equivari-
ants which are computed by Algorithm 2.3.17 and Algorithm 2.3.20. For these Z2 actions
there are seven invariants and 12 fundamental equivariants.

Example 4.1.11 Noonburg investigates in [153] a Lotka-Volterra system. First the steady
states needs to be found yielding the D3-equivariant system

1− cx1 − x1x
2
2 − x1x

2
3 = 0,

1− cx2 − x2x
2
3 − x2x

2
1 = 0,

1− cx3 − x3x
2
1 − x3x

2
2 = 0.
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The computations are more complicated since they depend on a parameter c requiring
computations over the ring K[c]. Since the D3 action on this system is similiar than in
Example 4.1.9 the computed invariants and equivariants are used again. The timings of
the three solution methods are given in Table 4.3.

In the end of this section I like to make a few more comments on the different ap-
proaches of the solution of symmetric systems.

i.) The most basic idea is the restriction to fixed point spaces. One solves f |Fix(H)(x) = 0,

for x ∈ Fix(H), f : Rn → Rm for a subgroup H of G and finds all solutions with isotropy
group H or higher. For example this can be done by computing the Gröbner basis of
〈(f|Fix(H))1, . . . , (f|Fix(H))r〉 with r = dimFix(H). Searching for solutions of isotropy less

than H means the consideration of the original system (4.2). Except one computes the
ideal quotient 〈f1, . . . , fn〉 : 〈(f|Fix(H))1, . . . , (f|Fix(H))r〉 or even the saturation.

ii.) Another idea leads to a splitting of the system into smaller subsystems. As described
in [67] the case of a group generated by reflections with respect to hyperplanes leads to
polynomials having linear factors.
iii.) In the same paper a transformation of coordinates y = Ax with respect to symmetry
adapted bases is suggested for finite Abelian groups. By linear combination one finds
polynomials which are elements of the isotypic components of the isotypic composition
K[x] =

∑h
i=1K[x]i. For Abelian groups these polynomials have a dense representation

in terms of monomials. Since this property is automatically exploited in the Buchberger
algorithm a system in the transformed form requires less computing time.
iv.) Consider the k-th elimination ideal Ik = I ∩K[xk+1, . . . , xn] of a G-invariant ideal.
Assume there exists a subgroup H of G such that the action decomposes into two blocks,
operating on x1, . . . , xk and xk+1, . . . , xn, respectively. Then Ik is H-invariant.
v.) If the polynomials f1, . . . , fm are invariant itself one may even more use the structure
of the invariant ring or moreover of the field of invariants being generated by the primary
invariants and one additional element. In [38] computations are carried out for the n-cyclic
root problem.

4.2 Differential equations on the orbit space

The idea of Lemma 4.1.6 on the steady states carries further on to the dynamics of a
system. For a Hilbert basis π1(x), . . . , πr(x) the computation of derivatives with respect
to time yields

π̇i(x(t)) = (∇πi(x(t)))tẋ(t) = (∇πi)tf(x(t), λ) = gi(π(x(t)), λ), i = 1, . . . , r.

The first equality is given by the chain rule. The second exploits that the trajectory x(t)
satisfies the differential equation (4.1). Since (∇πi)

tf is invariant for orthogonal represen-
tations there exists a polynomial gi ∈ R[λ][y1, . . . , yr] with (∇πi)tf(x, λ) = gi(π(x), λ).
This yields a differential equation

ẏ = F (y, λ), for y ∈ π(Rn) ⊆ Rr . (4.4)

The dynamics of this system is closely related to the dynamics of (4.1). The relation
of steady states has been investigated in Section 4.1. But there is no correspondence of
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periodic orbits or homoclinic orbits of (4.1) and of (4.4). For example a drift along a
group orbit is contracted to an equilibrium by the Hilbert mapping. A second difficulty
is the determination of stability. Nevertheless orbit space reduction has been applied
successfully in [32, 33, 34, 127, 129, 184]. In [1] p. 336 an old example with S3-symmetry
is presented.

First we will investigate the structure of the domain of (4.4), the image π(Rn). De-
noting by I ⊂ R[y1, . . . , yr] the ideal of relations of π1(x), . . . , πr(x) and by V R(I) ⊂ Rr

the corresponding real variety the inclusion π(Rn) ⊂ V R(I) is trivially satisfied. Procesi
and Schwarz give in [157] an even sharper characterization.

Theorem 4.2.1 ([157] p. 541) Let π1, . . . , πr be a Hilbert basis of an orthogonal, n-dimen-
sional representation of a compact Lie group G and V R(I) the real variety of the ideal of
relations. The matrix B(y) = (bij(y))i,j=1,...,r with entries bij ∈ R[y1, . . . , yr] is defined by

(∇πi(x))t∇πj(x) = bij(π1(x), . . . , πr(x)).

Then
π(Rn) = {y ∈ Rr | y ∈ V R(I), B(y) ≥ 0},

where the sign ≥ means that the matrix is positive semidefinite.

The proof is based on complexification, the existence of a closed orbit and the slice
theorem.

Next we recall more refined structures of the image of the Hilbert mapping, the sub-
division into manifolds.

Definition 4.2.2 A stratification of a set S is a finite collection of subsets {S1, . . . , Sm}
such that

a.) each stratum Si is a smooth manifold;

b.) S = S1 ∪ · · · ∪ Sm;

c.) If Si ∩ S̄j �= {} for some i �= j then Si ⊂ S̄j and dimSi < dimSj;

On Rn/ϑ(G) there exists a natural stratification by orbit type. There exists a unique
stratum of maximal dimension which is called principal stratum. But in this natural
stratification there may be some strata which decomposes into non-connected sets. The
stratification into connected smooth manifolds is called secondary stratification.

On the other hand also the image π(Rn) ⊂ Rr processes a stratification. The strata
are semi-algebraic sets, that means they are part of a real variety which is bounded by
polynomial inequalities or is a finite collection of such sets.

The main result on the structure of the stratification of the orbit space is given by a
Lemma by Bierstone.

Theorem 4.2.3 (Bierstone [15] Thm. A p. 246)
The semi-analytic stratification of the orbit space π(Rn) coincides with the stratification
of Rn by components of submanifolds of given orbit type.

In the next section a systematic way is gained to describe the strata by equalities and
inequalities.
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4.3 Using Noether normalization

The description of the orbit space reduction in the last section focuses on one group G
only. Since fixed point spaces Fix(H) are flow-invariant often the restriction of (4.1)
to Fix(H) is studied first. Thus one also likes to study the corresponding restriction
of (4.4). That’s why the aim of this section is to exploit the isotropy group lattice and to
choose symmetry adapted coordinates according to this lattice, or at least for a chain of
subgroups G ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hl.

Lemma 4.3.1 Let ϑ : G→ GL(Rn) be a linear representation of a compact Lie group G
and π1, . . . , πr a Hilbert basis. Denote by I the ideal of relations in R[y1, . . . , yr]. Suppose
H is an isotropy subgroup of G. The relations of π

1|Fix(H)
, . . . , π

r|Fix(H)
define a second

ideal J in R[y]. Then

I ⊂ J, V (J) ⊂ V (I), V R(J) ⊂ V R(I)

π(Rn) ⊂ V R(I), π(Fix(H)) ⊂ V R(J), π(Fix(H)) ⊂ π(Rn).

The lemma has a meaning for the description of the (primary) semi-algebraic stratifi-
cation. The principal stratum is given by

S = {y ∈ Rr | fi(y) = 0, i = 1, . . . , m, mj(y) ≥ 0, j = 1, . . . , r,

for all minimal isotropy subgroups H

exists k ∈ {1, . . . , mH} with gHk (y) �= 0 },

where f1, . . . , fm is an ideal basis of I and mj(y) are the determinants of the principal
minors of B(y). For an isotropy subgroups H denote by gH1 , . . . , g

H
mH

a basis of the ideal
of relations of π

1|Fix(H)
, . . . , π

r|Fix(H)
modulo I. For the other strata SH corresponding

to orbit types H the description is analogously. The role of I is replaced by J and the
role of the minimal isotropy subgroups H of G by isotropy subgroups K with H ⊂ K
which are minimal with this property. Doing some simple manipulations one easily sees
that each stratum is defined by a set of equalities and a set of inequalities. Observe that
for the strata of the secondary stratification the distinction into connected manifolds still
needs to be done.

Example 4.3.2 In [116] Koenig investigates the standard example of a D3 action on the
plane which is generated by

ϑ(s) =

⎡⎣ 1 0

0 −1

⎤⎦ , ϑ(r) =

⎡⎣ −1/2
√
3
2

−
√
3
2

−1/2

⎤⎦ .
The invariant ring is polynomial and is generated by π1(x) = x21+x

2
2, π2(x) = x31−3x1x

2
2.

Then

B(y) =

⎡⎣ 4 y1 6 y2

6 y2 9 y1
2

⎤⎦ with det(B) = 36 y1
3 − 36 y2

2.



104 CHAPTER 4. ORBIT SPACE REDUCTION

-6

-4

-2

0

2

4

6

pi2

0.5 1 1.5 2 2.5 3
pi1

0
0.5

1
1.5

2
2.5

3

pi1

-4
-2

0
2

4

s2

0
5

10
15
20
25
30

pi3

Figure 4.2: For the two-dimensional standard action of D3 in the plane one may choose
π1 = x21 + x22, π2 = x31 − 3x1x

2
2 or π̃1,= π1, π̃2(x) = (x21 + x22)

3 − (x31 − 3x1x
2
2)

2, σ̃2 = π2 as
invariants. In both cases the stratification has 4 strata. The principal stratum is either

given by {π3
1 − π2

2 > 0} or in the second case by {π̃1 > 0, π̃2 > 0, σ̃2 = ±
√
π̃3
1 − π̃2}. The

fixed point space Fix(Z2) decomposes into three strata and corresponds to {(π1, π2) ∈
R2 | π3

1 − π2
2 = 0} or {(π̃1, π̃2, σ̃2) ∈ R3 | π̃2 = 0, σ̃2 = ±

√
π̃3
1}

There is an isotropy subgroup Z2 and its conjugates. The restriction to Fix(Z2) = {(x1, 0)}
gives the relation y31 − y22. Thus the strata as illustrated in Figure 4.2 are given by

SId = {y ∈ R2 | y1 ≥ 0, y31 − y22 ≥ 0, y31 − y22 �= 0}
= {y ∈ R2 | y1 > 0, y31 − y22 > 0},

SZ2 = {y ∈ R2 | y31 − y22 = 0, y1 ≥ 0, y31 − y22 ≥ 0, y1 �= 0, y2 �= 0}
= {y ∈ R2 | y31 − y22 = 0, y1 > 0}
= {y1 > 0, y31 − y22 = 0, y2 > 0} ∪ {y1 > 0, y31 − y22 = 0, y2 < 0},

SD3 = {(0, 0)}.

Our aim is to investigate the structure which is imposed on the polynomials f i, g
H
k by

the Cohen-Macaulayness of the invariant ring.

Lemma 4.3.3 Let the homogeneous invariants π1, . . . , πr ∈ K[x1, . . . , xn] form a Hilbert
basis of a faithful representation ϑ of a compact Lie group G. Assume H is an isotropy
subgroup of G with respect to ϑ and Fix(H) the corresponding fixed point space. Then
there exists invariants

π̃1(x) = g1(π(x)), . . . , π̃d(x) = gd(π(x));

σ̃2(x) = h2(π(x)), . . . , σ̃t(x) = ht(π(x));

with gi, hj ∈ K[y1, . . . , yr] such that

i.) gi, hj are homogeneous with respect to the grading
W (yi) = deg(πi(x)), i = 1, . . . , r;

ii.) π̃1, . . . , π̃d are algebraic independent;
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iii.) π̃
i|Fix(H)

�≡ 0, i = 1, . . . , c and π̃
i|Fix(H)

≡ 0, i = c+ 1, . . . , d;

iv.) π̃
1|Fix(H)

, . . . , π̃
c|Fix(H)

are algebraic independent;

v.) π̃1, . . . , π̃d form a system of hom. parameters and σ̃1 = 1, σ̃2, . . . , σ̃t form the sec-
ondary invariants, i.e. the invariant ring has a Hironaka decomposition R[x]G =⊕t

i=1 σ̃iR[π̃].

vi.) σ̃i|Fix(H) �≡ 0, i = 2, . . . , s and σ̃i|Fix(H) ≡ 0, i = s + 1, . . . , t. The number t − s is

the maximal number of secondaries vanishing on Fix(H).

Proof: : Basically this is Noether’s normalization. Let I ⊂ K[y1, . . . , yr] be the ideal
of relations. The polynomials π

i|Fix(H)
, i = 1, . . . , r fulfill relations f ∈ R[y1, . . . , yr]

with f(π1|Fix(H), . . . , πr|Fix(H)) ≡ 0 as well. Let this ideal of relations be denoted by
J . Of course I ⊆ J . Since H is an isotropy subgroup I �= J . So there is a non-trivial
ideal J ⊂ R[y]/I. By Noether’s Lemma 2.3.6 there exists elements u1, . . . , ud ∈ R[y]/I
given by u1 = g1(y), . . . , ud = gd(y) where gi are representatives of rest classes in R[y]/I
such that π̃1(x) = g1(π(x)), . . . , π̃d(x) = gd(π(x)) are algebraic independent. Moreover,
R[y]/I is integral over R[u1, . . . , ud] and J ∩R[u1, . . . , ud] = 〈uc+1, . . . , ud〉. But ui ∈ J
means π̃

i|Fix(H)
≡ 0 for i = c + 1, . . . , d and J ∩ R[u] = 〈uc+1, . . . , ud〉 means that

π̃
1|Fix(H)

, . . . , π̃
c|Fix(H)

are algebraic independent. Of course u1, . . . , ud may be chosen to
be homogeneous which means that the gi are weighted homogeneous with respect to W .
Since C[y]/I is Cohen-Macaulay there exists elements z1 = 1, z2, . . . , zt ∈ R[y]/I given
by z2 = h2(y), . . . , zt = ht(y) which generate R[y]/I as a free module over R[u1, . . . , ud].
Equivalently, σ̂1 = 1, σ̂2(x) = h2(π(x)), . . . , σ̂t(x) = ht(π(x)) form a module basis ofR[x]G

over R[π̃(x)] which generates R[x]G as a free module. Moreover, hj may be chosen to
be homogeneous (with respect to W ) which enables the special choice in vi.) by the
following construction. The idea is to climb up degree by degree. Let σ̃2(x), . . . , σ̃l(x) be
the secondaries of degree < k. The vector space Hk(R[x]G) of homogeneous invariants
of degree k is partially generated by σ̃2(x), . . . , σ̃l(x) over R[π̃1(x), . . . , π̃d(x)]. A vector
space basis of a direct complement in Hk(R[x]G) gives a choice of secondaries of degree k.
The condition σ̃|Fix(H)

≡ 0 defines a subvector space of this direct complement. Choosing
a vector space basis of this subvector space and a vector space basis of a complement
gives the maximal number of secondaries of degree k which vanish on Fix(H).

Once all secondaries are found there are relations

fij(u, z) = zizj −
t∑

k=2

zkB
ij
k (u1, . . . , ud)−Bij(u), 1 < i ≤ j ≤ t (4.5)

with fij ∈ R[u1, . . . , ud, z2, . . . , zt] such that fij(g(y), h(y)) ≡ 0 in R[y]/I and as well
fij(π̃(x), σ̃(x)) ≡ 0 in R[x]. They are weighted homogeneous with respect to U(ui) =
deg(π̃i(x)), i = 1, . . . , c, U(zj) = deg(σ̃j(x)), j = 2, . . . , t. The ideal Ĩ ⊂ R[u, z] of relations
of π̃ and σ̃ is generated by the polynomials fij in (4.5). In these coordinates the ideal
J̃ of relations for the restriction to Fix(H) is generated by uc+1, . . . , ud, zs+1, . . . , zt, the
representatives of relations fij(u, z) for 1 < i ≤ j ≤ s of type

zizj −
t∑

k=2

zkB
ij
k (u1, . . . , uc, 0)− Bij(u1, . . . , uc, 0) ,
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and those for 1 < i ≤ t, s < j ≤ t of type

s∑
k=2

zkB
ij
k (u1, . . . , uc, 0) +Bij(u1, . . . , uc, 0) ,

being linear in z and may be some other elements Fν ∈ R[u1, . . . , uc, z2, . . . , zt] which
are homogeneous with respect to U and linear in z. Observe that the third condition of
Noether’s lemma J̃ ∩ (R[y, u]/Ĩ) = 〈u1, . . . , uc〉 is satisfied. �

Remark 4.3.4 It is not guaranteed that the module generated by σ̃1,σ̃2|Fix(H)
, . . . , σ̃

s|Fix(H)

over R[π̃1|Fix(H), . . . , π̃c|Fix(H)] is free. But in many practical situations this will be the

case. In turn this gives a simpler structure of the relations in J̃ . Observe that in many
cases there is still the group NG(H)/H acting on Fix(H). The stratum corresponding to
the orbit type H decomposes in the secondary stratification into its connected components.
The group NG(H)/H is permuting these connected components.

Now we like to discuss the special case that already sets of primary and secondary
invariants π1(x), . . . , πd(x), σ2(x), . . . , σm(x) are given. Then the choice of the polyno-
mials gi, hj is more special. Denote by W (yi) = deg(πi(x)), i = 1, . . . , d,W (zj) =
deg(σj(x)), j = 2, . . . , m the weighted grading and by U(yi) = 0, i = 1, . . . , d, U(zj) =
1, j = 2, . . . , m the Kronecker grading. Then

gi, hj ∈ HU
0 (K[y, z]) +HU

1 (K[y, z]),

and they are homogeneous with respect to W each. The restriction on the polynomials
gi is that

Rad(〈π1(x), . . . , πd(x)〉) = Rad(〈π̃1(x), . . . , π̃d(x)〉) ,

since the parameters have the nullcone as common solutions. This imposes conditions on
the coefficients of g1, . . . , gd which are easily checked by Gröbner bases since the radical
containment is done by the Kantorovich trick (see [41] p. 177).

Example 4.3.5 (Example 4.3.2 continued) For the D3-action in Example 4.3.2 one may
as well choose the invariants π̃1 = π1, σ̃2 = π2, π̃2 = π3

1 − π2
2 with relation σ̃2

2 − (π̃3
1 − π̃2).

Applying the rules above the strata are given by

Sid = {(π̃1, π̃2, σ̃2) ∈ R3 | σ2
2 − (π̃3

1 − π̃2) = 0, π̃1 ≥ 0, π̃2 ≥ 0, π̃2 �= 0}
= {(π̃1, π̃2, σ̃2) ∈ R3 | σ̃2 = ±

√
π̃3
1 − π̃2, π̃1 > 0, π̃2 > 0},

SZ2 = {(π̃1, π̃2, σ̃2) ∈ R3 | σ2
2 − (π̃3

1 − π̃2) = 0, π̃1 ≥ 0, π̃2 ≥ 0,
π̃2 = 0, π1 �= 0, σ̃2 �= 0 }

= {(π̃1, π̃2, σ̃2) ∈ R3 | σ̃2 = ±
√
π̃3
1 , π̃2 = 0, π̃1 > 0},

SD3 = {(0, 0, 0)}.

Figure 4.2 is showing the stratification in these coordinates in comparison to the orig-
inal coordinates. The symmetry adapted coordinates correspond to a subdivision of the
symmetry cell in R2.



4.3. USING NOETHER NORMALIZATION 107

Example 4.3.6 (Examples 2.2.4 and 2.4.3 continued) In Example 2.4.3 we found the five
primary invariants π1, π2, π3, p68, p48 and the integral elements π4, π5, π7, π8, π9, π10, π11 of
a torus action which are real generators of the real invariant ring.

In order to describe the image of the Hilbert mapping we need the matrix B of The-
orem 4.2.1 which is in this case a 12 × 12 matrix whose entries are polynomials in
π, p68, p48. In Example 2.2.4 the invariants are computed in the ’complex’ coordinates
(x1, x2, x3, x̄1, x̄2, x̄3). Changing to the ’real’ coordinates xj = xrj + i · xij enables the
computation of the gradients and thus bij(x) = (∇πi)t∇πj. As usual a Gröbner basis
of the ideal 〈π1 − π1(x), . . . , 〉 gives the representation of the bij in terms of invariants
by the division algorithm. I have chosen the matrix term order with order of variables
xr1, . . . , xi3, π1, π2, π3, p68, p48, π4, π5, π7, π8, π9, π10, π11 and matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 2 2 2 3 6 2 2 3 3 3 3 3

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 −2 −2 −3 −6 0 0 0 0 0 0 0

0�,� −Id�,� 0�,�

0�,�� Id�,� 0�

0� −Id�,� 0�,��

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
since it is eliminating xr1, . . . , xi3 and has the properties on K[π] as required in Lemma
2.3.13 distinguishing between parameters and integral elements. Restriction to degree 10
with respect to the induced weighted grading may be used (9274 sec). The computation of
derivatives and normal forms takes 13270 sec yielding

B =

⎛⎜⎝ B1,4 B1 B2

B1t B5,8 B3

B2t B3t B9,12

⎞⎟⎠ ,
with

B1,4 =

⎡⎢⎢⎢⎢⎢⎢⎣
π1 0 0 −π8 + p68

0 π2 0 π8

0 0 π3
p68
2

−π8 + p68 π8
p68
2

4 π1π3 + 2 π2π1 + π1
2 + 4 π2π3 + π2

2 − π5
2

⎤⎥⎥⎥⎥⎥⎥⎦
and B9,12 equal to

⎡⎢⎢⎢⎢⎢⎢⎣
4 π2π3 + π2

2 0 π4π3 +
π4π2

2
π5π3 +

π5π2

2

0 4 π2π3 + π2
2 −π5π3 − π5π2

2
π4π3 +

π4π2

2

π4π3 +
π4π2

2
−π5π3 − π5π2

2
π1π3 + π2π1 + π2π3 0

π5π3 +
π5π2

2
π4π3 +

π4π2

2
0 π1π3 + π2π1 + π2π3

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then

π(R6) = {y ∈ R12 | y1 ≥ 0, y2 ≥ 0, y3 ≥ 0 + conditions,

yi = gji (y1, . . . , y5), i = 6, . . . , 12, for a j ∈ {1, . . . , 18} }.
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Since Fix(Z2) = {(0, 0, x3, 0, 0, x̄3) ∈ C6} � {(0, 0, 0, 0, xr3, xi3) ∈ R6} the stratification
is given by

SId = {y ∈ R12 | y1 > 0, y2 > 0, y3 ≥ 0, y4 �= 0, y5 �= 0,+conditions,

yi = gji (y1, . . . , y5), i = 6, . . . , 12, j = 1, . . . , 18 },
SZ2 = {y ∈ R12 | yi = 0, i ∈ {1, . . . , 12} \ {3}, y3 > 0},
ST = {y ∈ R12 | y = 0}.

Since Birkhoff normal forms of Hamiltonian systems in resonance have the symmetry of
the associated torus action the Hamiltonian function H is assumed to be invariant with
respect to this torus action as well. Intersections of π(R6) with H ≡ const. are sets with
equal energy or analog. Since solutions of Hamiltonian systems preserve the Hamiltonian
(e.g. energy) it is interesting to study all possible intersections for arbitrary invariant
Hamiltonians. This classifies the dynamics of Hamiltonian systems close to resonance.

Example 4.3.7 In [32] Chossat investigates the group O(2) acting on the vector space
R4 � {z ∈ C4 | z3 = z̄1, z4 = z̄2} given by

ϑ(φ)(z1, z2) = (eiφz1, e
2iφz2),

ϑ(κ)(z1, z2) = (z̄1, z̄2).

The Molien series is computed in 23 sec to be 1/(1− λ3)(1 − λ2)2. By Algorithm 2.1.10
the Hilbert basis π1(z) = z1z̄1, π2(z) = z2z̄2, π3(z) = z21 z̄2 + z̄21z2 is computed in 7.5 sec.
The isotropy subgroups are Z2(π), Z2(κ), Id with Fix(Z2(π)) = {(0, z2, 0, z̄2)} and the fixed
point space Fix(Z2(κ)) = {(a, b, a, b) | a, b ∈ R}. The relations for the restriction to
Fix(Z2(π)) are generated by π1 and π3. For Fix(Z2(κ)) the generator is 4π2

1π2 − π2
3. The

subgroup Z2 × Z2 is an isotropy subgroup as well. Since the fixed point spaces of the
conjugates fill all of Fix(Z2(π)) this subgroup is not considered.

For the subgroup tower Id ⊂ Z2(π) ⊂ O(2) the invariants are symmetry adapted
according to Lemma 4.3.3, namely the relations for the restriction to Fix(Z2(π)) are gen-
erated by 〈π1, π3〉.

Since the matrix B is given by

B(π) =

⎡⎢⎢⎢⎣
π1 0 π3

0 π2
π3

2

π3
π3

2
π1

2 + 4 π1π2

⎤⎥⎥⎥⎦

with det(B) = −(π1 + 4 π2) (−4 π2π1
2 + π3

2)

4
,

the strata in these coordinates are

SId = {0 ≤ π1, 0 ≤ π2, 0 ≤ −(π1 + 4 π2) (−4 π2π1
2 + π3

2),
π1 �= 0, π3 �= 0, 4 π2π1

2 − π3
2 �= 0}

= {0 < π1, 0 < π2, 0 < 4 π2π1
2 − π3

2},
SZ2(π) = {π1 = 0, π3 = 0, π2 > 0},
SZ2(κ) = {π1 > 0, π2 > 0, 4π2

1π2 − π2
3 = 0},

SO(2) = {(0, 0, 0)}.
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The Hilbert series of the module of equivariants is (2λ + 2λ2)/(1− λ3)(1− λ2)2 which is
derived in 19 sec. The four equivariants⎛⎜⎜⎜⎝

z1
0
z̄1
0

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝

0
z2
0
z̄2

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
z̄1z2
0
z1z̄2
0

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝

0
z21
0
z̄21

⎞⎟⎟⎟⎠ ,
are computed in 298 sec by Algorithm 2.1.18. The equation with generic equivariant
f =

∑4
i=1Ai(π)bi is projected on the orbit space to

π̇1 = 2A1π1 + A3π3 ,
π̇2 = 2A2π2 + A4π3 ,

π̇3 = 2A4π
2
1 + 4A3π1π2 + (2A1 + A2)π3 .

The restriction to Fix(Z2(π)) is just

π̇2 = 2A2(0, π2, 0) π2 and π1 = 0, π3 = 0.

For the restriction to Fix(Z2(κ)) of the differential equations on the orbit space one needs
to use a parameterization. Or one chooses a symmetry adapted set of invariants according
to the subgroup tower Id ⊂ Z2(κ) ⊂ O(2). For the invariants π̃1 = π1, π̃2 = π2, π̃3 =
4π2

1π2−π2
3, σ̃2 = π3 we have the relation σ̃2

2 = −π̃3+4π̃2
1π̃2. Then the strata are written as

SId = {π̃1, π̃2, π̃3, σ̃2) ∈ R4 | π̃1 > 0, π̃2 > 0, π̃3 > 0, σ̃2 = ±
√
4π̃2

1π̃2 − π̃3 },
SZ2(π) = {π̃1, π̃2, π̃3, σ̃2) ∈ R4 | π̃1 = 0, π̃2 > 0, π̃3 = 0, σ̃2 = 0},
SZ2(κ) = {π̃1, π̃2, π̃3, σ̃2) ∈ R4 | π̃1 > 0, π̃2 > 0, π̃3 = 0, σ̃2 = ±

√
4π̃2

1π̃2 },
SO(2) = {0}.

For the generic equivariant f =
∑4

i=1 Ãi(π̃, σ̃)bi the equations on the orbit space read

˙̃π1 = 2Ã1π̃1 + Ã3σ̃2 ,
˙̃π2 = 2Ã2π̃2 + Ã4σ̃2 ,

˙̃π3 = (4Ã1 + 2Ã2)π̃3 ,

˙̃σ2 = 2Ã4π̃
2
1 + 4Ã3π̃1π̃2 + (2Ã1 + Ã2)σ̃2 ,

σ̃2 = ±
√
−π̃3 + 4π̃2

1π̃2 .

Then the equations on Fix(Z2(κ)) are easily derived as

˙̃π1 = 2Ã1π̃1 + Ã3σ̃2 ,
˙̃π2 = 2Ã2π̃2 + Ã4σ̃2 ,

˙̃σ2 = 2Ã4π̃
2
1 + 4Ã3π̃1π̃2 + (2Ã1 + Ã2)σ̃2 ,

σ̃2 = ±
√
4π̃2

1π̃2 ,

where Ãi = Ãi(π̃1, π̃2, 0, σ̃2) do not depend on π̃3. The stability of an equilibrium x with
isotropy Z2(κ) ((π̃1, π̃2, π̃3, σ̃2) = (π̃1(x), π̃2(x), 0, σ̃2(x))) outside of Fix(Z2(κ)) is deter-
mined by the expression (4Ã1 + 2Ã2).
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This example clearly illustrates the advantage of choosing appropriate coordinates of
the invariant ring. The restriction to the flow-invariant fixed point spaces is obvious on
the orbit space. The second advantage is the transparance of the description of the strata.
They are mainly described by linear equalities and linear inequalities in the parameters.
The secondaries are expressions in the parameters. The third advantage concerns the
computation of stability. If an equilibrium has isotropy H then one distinguishes between
stability inside of Fix(H) and outside of Fix(H). On the orbit space the restriction to
Fix(H) corresponds to the restriction to π1, . . . , πc, σ2, . . . , σs and the corresponding dif-
ferential equations π̇j = Fj(π, σ), j = 1, . . . , c, σ̇j = F s

j (π, σ), j = 2, . . . , s. The restricted
Jacobian ⎛⎝ ∂Fj

∂πi

∂Fj

∂σl

∂F s
k

∂πi

∂F s
k

∂σl

⎞⎠ , i, j = 2, . . . , c, k, l = 1, . . . , s,

and their eigenvalues determine the stability in Fix(H). Choosing a subgroup H 2 ⊂ H
and the associated invariants one finds the stability in Fix(H2), but outside of Fix(H).
Here one profits from the fact that the right hand side F has a special form.

Changing the coordinates π̃i = gi(π, σ), σ̃j = hj(π, σ) (linear in σ) also changes the
representation of the vector field

f(x) =
s∑

i=1

Ai(π(x), σ(x)) · bi(x)

=
s∑

i=1

(
A1

i (π(x)) +
τ∑

k=2

Ak
i (π(x)) · σk(x)

)
bi(x),

to

f(x) =
s∑

i=1

Ãi(π̃(x), σ̃(x)) · bi(x)

=
s∑

i=1

(
Ã1

i (π(x)) +
t∑

k=2

Ãk
i (π̃(x)) · σ̃k(x)

)
bi(x),

by Ãi(π̃, σ̃) = Ai(θ(π̃, σ̃), ρ(π̃, σ̃)) where θ, ρ expresses the inverse nonlinear change of
coordinates. For a unique representation of the vector field see the Stanley decomposition
in Section 2.4.

With this change of coordinates also the differential equations on the orbit space
changes. Either one evaluates

˙̃πj =
s∑

i=1

Ãi(π̃, σ̃)(∇π̃j)tbi =
s∑

i=1

Ãi(π̃, σ̃)bij(π̃, σ̃),

˙̃σj =
s∑

i=1

Ãi(π̃, σ̃)(∇σ̃j)tbi =
s∑

i=1

Ãi(π̃, σ̃)b
s
ij(π̃, σ̃),

by first computing ∇π̃j ,∇σ̃j, then the inner products with the equivariants bi, applying
the division algorithm in order to receive representations in the invariants, multiplication
with the coefficients Ãi and finally using the relations again gives unique descriptions.
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Figure 4.3: In the Taylor-Couette experiment the velocity of a liquid between two centered
cylinders is studied. Depending on the velocity of the rotating cylinder different pattern
are observed

Or one uses the already computed differential equations π̇j = Fj(π, σ), j = 1, . . . , d,
σ̇j = F s

j (π, σ), j = 2, . . . , τ . By the chain rule

˙̃πi =
d∑

j=1

∂gi
∂πj

π̇j +
τ∑

j=2

∂gi
∂σj

σ̇j =
d∑

j=1

∂gi
∂πj

Fj +
τ∑

j=2

∂gi
∂σj

F s
j

= ki(π, σ) = ki(θ(π̃, σ̃), ρ(π̃, σ̃)),

˙̃σi =
d∑

j=1

∂hi
∂πj

π̇j +
τ∑

j=2

∂hi
∂σj

σ̇j =
d∑

j=1

∂hi
∂πj

Fj +
τ∑

j=2

∂hi
∂σj

F s
j

= ksi (π, σ) = ksi (θ(π̃, σ̃), ρ(π̃, σ̃)),

for i = 1, . . . , d and i = 1, . . . , t is obtained. Observe that the derivatives ∂gi
∂πj
, ∂gi
∂σj
, ∂hi

∂σj
, ∂hi

∂σj

are needed only. Use of relations implies the unique representation once more.
There is also a second aspect concerning the elimination of lower order terms analog

to Birkhoff normal form. If the symmetry adapted coordinates of Lemma 4.3.3 (for a
tower of subgroups) are not unique the coordinates may be chosen such that some lower
order terms in the differential equations vanishes.

Finally, I give an example with relevant application.

Example 4.3.8 The Taylor-Couette experiment is the topic of the book [35]. It is de-
scribed in [87] pp. 485ff as well. A liquid is between two centered cylinders. While the
outer cylinder is rotating the velocity field of the liquid shows interesting pattern varying
with the velocity of the cylinder. The velocity field satisfies the Navier-Stokes equations
on the cross section times an interval [0, h] fulfilling no-slip boundary conditions on the
cylinders and periodic boundary conditions in axial direction. Thus the problem has the
symmetry of O(2) × SO(2) where the reflection is the reflection with respect to a cross
section, see Figure 4.3. In order to study bifurcations the linearization of the PDE around
the trivial Couette flow is considered and a Fourier expansion is performed.
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Table 4.4: Correspondence of steady states and periodic orbits as solutions of the differ-
ential equations on the orbit space to the solutions of the system of differential equations
obtained by center manifold reduction

name meaning on orbit space isotropy strata

Couette flow steady state equilibria O(2)× S1 SO(2)×S1

Taylor vortex steady state equilibria Z2(κ)× S1 SZ2(κ)×S1

spiral wave flow periodic orbit equilibria ˜SO(2) S
S̃O(2)

(rotating wave)

ribbon flow periodic orbit equilibria Z2(κ)× Z2(π, π) SZ2×Z2

(standing wave)

wavy vortex flow periodic orbit equilibria Z2(κπ, π) SZ2(κπ,π)

twisted vortex flow periodic orbit equilibria Z2(κ) SZ2(κ)

mod. spiral wave quasiperiodic equilibria Id S Id

quasiperiodic drift quasiperiodic equilibria Z 2(π, π) SZ2(π,π)

2-tori + drift 3-tori periodic orbit SZ2(κ)

A center manifold is a manifold being tangent to the generalized eigenspace of eigneval-
ues on the imaginary axis attracting the dynamics in a neighborhood. Thus a small dynam-
ical system on the center manifold is representing the essential dynamics. The symmetry
of the eigenspace inherits to equivariance of the dynamical system. Taylor expansions of
the center manifold mapping and the dynamical system may be computed. However, often
one starts with a generic polynomial equivariant vector field on the center manifold and
studies its typical behavior. Thus one can read off bifurcation behavior of the Navier-Stokes
equations once one has calculated a Taylor expansion of the reduced dynamical system on
the center manifold. If the group action on the generalized eigenspace (with respect to
eingenvalues 0 and ±ωi) is the sum of two real irreducible representations one calls this
situation mode interaction.

The equations on the center manifold for a mode interaction problem has been investi-
gated in [144, 163, 168] with the method of orbit space reduction. The group action of this
problem is a real representation of O(2)× S1 on {(z0, z1, z2, z3, z4, z5) ∈ C6 | z3 = z̄0, z4 =
z̄1, z5 = z̄2} given by

ϑ(κ)(z0, z1, z2) = ( z̄0, z2, z1 ),

ϑ(ϕ)(z0, z1, z2) = ( eiϕz0, eiϕz1, e−iϕz2 ),

ϑ(θ)(z0, z1, z2) = ( z0, eiθz1, eiθz2 ),

where SO(2) � S1 describes the geometry of the apparatus (two cylinders) and O(2)
comes in by assuming a cylinder of infinite length with periodic boundary conditions.
The isotropy groups (orbit types) and the corresponding fixed point spaces are given in
Figure 4.4 and Table 4.5.
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O(2)× S1
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Figure 4.4: Isotropy subgroup lattice of the representation of O(2)× S1

The question of the generic equivariant vector field has been treated with the methods
in Chapter 2. The Molien series

λ4 − λ2 + 1

(1− λ4) (1− λ2)3
=

λ6 + 1

(1− λ2)2 (1− λ4)2
,

has been computed within 217 sec. The Hilbert basis is derived by Algorithm 2.1.10 within
6309 sec to be

[z̄0z0, z̄1z1 + z̄2z2, z2z̄1z0
2 + z̄2z1z̄

2
0 , z̄2z2z̄1z1, z̄

2
0 z1

2z̄1z̄2 + z̄1z0
2z2

2z̄2].

The first 4 are real functions which we denote by π1, π2, π3, π4.
With π5 = i (z2z̄1z0

2 − z̄2z1z̄
2
0 ) (z̄2z2 − z̄1z1) derived from the last invariant we have a

Hilbert basis of the invariant ring over the reals which differs from the Hilbert basis given
in [87] p. 459 in the third and fourth element.

There is only one relation (π2
2 − 4 π4) (4 π1

2π4 − π3
2)− π5

2 derived in 4081 sec. This
computation is an example of a computation over an algebraic extension as discussed in
Section 1.2.4. The extension can be avoided by first converting to real coordinates. But
then the computation of the relation needs 13484 sec. Obviously, π1, π2, π3, π4 form a
homogeneous system of parameters and π5 can be chosen as secondary invariant.

Using the fixed point spaces as in Table 4.5 and computing the relations of the restricted

invariants one sees that these invariants are symmetry adapted with respect to ˜SO(2) and
Z2(π, π). The relations for Z2(π, π) are generated by π1, π3, π5. For Z2(π, π)× Z2(κ) the

generators are π1, π3, π5, π
2
2 − 4π4. For

˜SO(2) the set π1, π3, π4, π5 form generators. Some
special strata are given by

SZ2(π,π) = {π ∈ R5 | π1 = 0, π3 = 0, π5 = 0, π4 �= 0, π2
2 − 4π4 �= 0},

SZ2×Z2 = {π ∈ R5 | π1 = 0, π3 = 0, π5 = 0, π2
2 − 4π4 = 0, π2 �= 0},

S ˜SO(2)
= {π ∈ R5 | π1 = 0, π3 = 0, π4 = 0, π5 = 0, π2 �= 0}

In order to find the generic equivariant vector field the Hilbert series of the module of
equivariants 3λ

(1−λ2)4
= 3λ5+6λ3+3λ

(1−λ2)2(1−λ4)2
is derived within 340 sec.
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Table 4.5: Isotropy groups of the repr. of O(2)× S1 and their fixed point spaces

Isotropy Fixed point space dim Fix

O(2)× S1 {(0, 0, 0)} 0

Z2(κ)× S1 {(z0, 0, 0) | z0 = a ∈ R} 1˜SO(2)(ϕ = −θ) {(0, 0, z2)} 2

Z2(κ)× Z2(π, π) {(0, z1, z2) | z1 = z2} 2

Z2(κ) {(z0, z1, z2) | z0 = a ∈ R, z1 = z2 } 3

Z2(π, π) {(0, z1, z2)} 4

Z2(κπ, π) {(z0, z1, z2) | z0 = ib, b ∈ R, z1 = z2 } 3

Id {(z0, z1, z2)} = R6 6

Thus Algorithm 2.3.21 yields the equivariants of Table 4.6 in 188 sec. A coordinate
transformation z = Ax to the normal embedding of R6 in C6 yields 12 equivariants
bi(x) = A−1fi(Ax) with real coefficients and the invariants πj(x) = πj(Ax). The mod-
ule of equivariants is a free module over R[π1(x), π2(x), π3(x), π4(x)] and thus a generic
equivariant polynomial vector field has a unique representation

f(x) =
12∑
i=1

Ai(π(x)) · bi(x).

The reduction onto orbit space is given by π̇j = ∇πjf = gj(π), j = 1, . . . , 5. The
polynomials are easily determined by use of Gröbner bases. Once the Gröbner basis of
〈y1−π1(x), . . . , y5−π5(x)〉 with respect to an elimination order (which also considers that
π5 is a secondary invariant as in [176] Alg. 2.5.6) is known the polynomials gj are derived
by the division algorithm. (Observe that one can use the Hilbert series driven version
1.2.19 and the truncation with respect to degree 10 with respect to the induced weighted
grading). The computation of the 5 gradients, scalar products, and normal forms is done
within 2642 sec yielding

ẏ1 = 2A1y1 + A5y3 + A10y5

ẏ2 = 2A9y2
2 + A12y2y3 + 2A3y2 + 2A7y3 − 4A9y4 − A11y5

ẏ3 = 2A7y1
2y2 + 4A12y1

2y4 + 4A5y1y4 + A9y2y3 + 2A1y3 + 2A3y3
− (2A4 −A8) y5,

ẏ4 = A7y2y3 + 2A9y2y4 + 2A12y3y4 + 4A3y4 + A6y5

ẏ5 = 2A6y1
2y2

2 − 4A11y1
2y2y4 − 16A6y1

2y4 + 4A10y1y2
2y4 − 16A10y1y4

2

−A8y2
2y3 + 2A4y2

2y3 + A11y2y3
2 + 2A6y3

2 − 8A4y3y4 + 4A8y3y4
+ (3A9y2 + A12y3 + 4A3 + 2A1) y5 .

By the choice of the special term order the invariant π5 appears only linearly. Since

the coordinates are symmetry adapted according to Z2(π, π) and
˜SO(2) the restrictions to
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Table 4.6: Equivariants of O(2)× S1

[ [z0, z̄0, 0, 0, 0, 0],

[0, 0, i z1,−i z̄1, i z2,−i z̄2],
[0, 0, z1, z̄1, z2, z̄2],

[i z0z̄1z1 − i z0z̄2z2,−i z̄0z̄1z1 + i z̄0z̄2z2, 0, 0, 0, 0],

[z̄2z1z̄0, z2z̄1z0, 0, 0, 0, 0],

[0, 0, i z2z0
2,−i z̄2z̄ 20 , i z1z̄ 20 ,−i z̄1z02],

[0, 0, z2z0
2, z̄2z̄

2
0 , z1z̄

2
0 , z̄1z0

2],

[0, 0, i z̄1z1
2,−i z̄ 21 z1, i z22z̄2,−i z̄ 22 z2],

[0, 0, z̄1z1
2, z̄ 21 z1, z2

2z̄2, z̄
2
2 z2],

[i z̄0z̄2z̄1z1
2 − i z̄0z̄

2
2 z2z1,−i z0z2z̄ 21 z1 + i z0z̄2z2

2z̄1, 0, 0, 0, 0],

[0, 0, i z0
2z1z2z̄1,−i z̄ 20 z̄1z1z̄2, i z̄ 20 z̄2z2z1,−i z02z̄2z2z̄1],

[0, 0, z0
2z1z̄1z2, z̄1z1z̄2z̄

2
0 , z̄2z2z1z̄

2
0 , z̄2z2z̄1z0

2] ] ,

Fix(Z2(π, π)) = {π1 = 0, π3 = 0, π5 = 0} and Fix( ˜SO(2)) = {π1 = π3 = π4 = π5 = 0} on
the orbit space are easily given as

ẏ2 = 2A9y
2
2 + 2A3y2 − 4A9y4

ẏ4 = 2A9y2y4 + 4A3y4
ẏ2 = 2A9y

2
2 + 2A3y2 .

The Jacobian of the full system have for points with orbit type Fix(Z2(π, π)) or
˜SO(2)

the special structures⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 ∗ 0 ∗
∗ ∗ ∗ ∗ ∗
∗ 0 ∗ 0 ∗
∗ ∗ ∗ ∗ ∗
∗ 0 ∗ 0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 ∗ 0 ∗
∗ ∗ ∗ ∗ ∗
∗ 0 ∗ 0 ∗
∗ 0 ∗ ∗ ∗
∗ 0 ∗ 0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
respectively. For example the stability of a point with isotropy ˜SO(2) within Fix(Z2(π, π))
is determined by the expression 2A9y2 + 4A3.

The fifth differential equation for π5 has a special meaning. For given π1, π2, π3, π4 the
value of π5 is already determined by the relation. So the fifth differential equation means
that a trajectory stays on the orbit space. Consequently, the derivative of the relation with
respect to time should yield zero once the Fi are substituted and the relation is exploited.
A computation verified the result is zero. The Maple Code is included, see last pages.

A second choice of symmetry adapted coordinates is derived by the principles described
in the beginning of this section. In order to receive symmetry adapted coordinates with
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respect to Z2(κ) and Z2(κ)× S1 we choose

u1 = π1, u2 = π2
2 − 4π4, u3 = π1π2 − π3, u4 = π4, σ2 = π2, σ3 = π5.

Obviously 〈u1(x), u2(x), u3(x), u4(x)〉 and 〈π1(x), π2(x), π3(x), π4(x)〉 have the same radical
and thus u1, u2, u3, u4 qualify as parameters. The secondary invariants are given by σ2, σ3
and the product σ2σ3 which we will not use. Then the ideal of relations is generated by

u2 + 4 u4 − σ2
2, u2

(
−u12u2 + 2 σ2u3u1 − u3

2
)
− σ3

2.

The strata are derived in these coordinates in a systematic way by changing the in-
equalities in B ≥ 0 and the relations on the fixed point space by the division algorithm
with respect to a Gröbner basis in K[π, u, σ].

SId = {(u, σ) ∈ R6 | u1 > 0, u2 > 0, u3 > 0, u4 > 0, σ2 =
√
u2 + 4u4,

σ3 = ±
√
u2 (−u12u2 + 2 s2u3u1 − u32) },

SZ2(κ) = {(u, σ) ∈ R6 | u1 > 0, u2 = 0, u3 = 0, u4 > 0, σ2 = 2
√
u4,

σ3 = 0},
SZ2(κπ,π) = {(u, σ) ∈ R6 | u1 > 0, u2 = 0, u3 = 2u1σ2, u4 > 0,

σ2 = 2
√
u4, σ3 = 0},

SZ2(π,π) = {(u, σ) ∈ R6 | u1 = 0, u2 > 0, u3 = 0, u4 > 0,
σ2 =

√
u2 + 4u4, σ3 = 0},

SZ2(κ)×S1
= {(u, σ) ∈ R6 | u1 > 0, u2 = 0, u3 = 0, u4 = 0, σ2 = 0, σ3 = 0},

SZ2×Z2 = {(u, σ) ∈ R6 | u1 = 0, u2 = 0, u3 = 0, u4 > 0, σ2 = 2
√
u4,

σ3 = 0},
S ˜SO(2)

= {(u, σ) ∈ R6 | u1 = 0, u2 > 0, u3 = 0, u4 = 0, σ2 =
√
u2,

σ3 = 0},
S ˜O(2)×S1

= {(u, σ) ∈ R6 | u = σ = 0} .

The differential equations in these new coordinates are computed from the old differential
equations by use of chain rule and the division algorithm. Observe that the module of
equivariants is free over R[u] as well, but the basis is bj , σ2bj. This introduces the arbitrary
polynomial functions Aj = Aj,1 + σ2Aj,2 with Aj,i depending on u.

u̇1 = A5,2u2u1 + A10,2σ3σ2 + A10,1σ3 − A5,2u3σ2 + 2A1,1u1 − A5,1u3+
(2A1,2 + A5,1)u1σ2 + 4A5,2u4u1,

u̇2 = 16A9,2u4u2 − 2A11,2u2σ3 − 8A11,2u4σ3 + (−2A11,1 − 4A6,2)σ3σ2
−4A6,1σ3 + (4A3,2 + 4A9,1) u2σ2 + 4A9,2u2

2 − 2A12,2u2u3σ2
+4A3,1u2 + 2A12,1u2u1σ2 + 8A12,2u4u2u1 + 2A12,2u1u2

2

−2A12,1u3u2,

u̇3 = −A12,2u3u1u2 + (A9,1 + A5,1)u2u1 − 2A7,1u3u1 + A12,2u1
2σ2u2

+A10,2u2σ3 − 4A12,2u3u1u4 + 4A10,2u4σ3
+ (A10,1 −A8,2 + 2A4,2) σ3σ2 + (−A8,1 + 2A4,1)σ3 − A11,1σ3u1
+ (−A5,1 + 2A3,2 + 2A1,2 + A9,1) u3σ2 + (−2A7,2 − A12,1)σ2u3u1
+ (2A1,1 + 2A3,1) u3 + (A9,2 + A5,2)u2u1σ2 + A12,1u1

2u2
−A11,2σ3u1σ2 + (−A5,2 + A9,2)u3u2 + (−4A5,2 + 4A9,2)u4u3,
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u̇4 = A7,1u2u1 + (4A3,2 + 2A9,1) u4σ2 − 2A12,2u4u3σ2 + 2A9,2u4u2
+8A9,2u4

2 + A6,2σ3σ2 + A6,1σ3 + (2A12,1 + 4A7,2) u4u1σ2
−A7,1u3σ2 + A7,2u2u1σ2 + 8A12,2u4

2u1 + 4A3,1u4 + 2A12,2u4u2u1
+4A7,1u4u1 + (−2A12,1 − 4A7,2)u4u3 − A7,2u3u2,

σ̇2 = (2A7,2 + A12,1) u2u1 + 2A9,2u2σ2 + 4A9,2u4σ2 − A11,2σ3σ2 + 2A3,1σ2
−A11,1σ3 + 4A12,2u4u1σ2 + (−2A7,2 −A12,1) u3σ2
+ (2A3,2 + 2A9,1) u2 − 2A7,1u3 + A12,2u2u1σ2 + 2A7,1u1σ2
+ (4A9,1 + 8A3,2) u4 + (8A7,2 + 4A12,1)u4u1 − A12,2u3u2
−4A12,2u4u3,

σ̇3 = (4A3,1 + 2A1,1)σ3 + 2A6,1u3
2 − A11,2σ3

2 + 4A6,1u1
2u2 + 12A9,2u4σ3

−A12,1σ3u3 + 3A9,2u2σ3 + (2A6,2 + A11,1) u3
2σ2 + 4A11,2u4u3

2

+ (4A3,2+ 2A1,2 + 3A9,1)σ3σ2 + (A8,1 − 2A4,1) u3u2
+ (2A4,2 − A8,2) u1u2

2 + 4A11,2u4u1
2u2 + (−A8,1 + 2A4,1)u2u1σ2

−A12,2σ3u3σ2 + (−2A4,2 + A8,2)u2u3σ2
+ (8A4,2 − 4A8,2 + 4A10,1) u4u2u1 + 4A12,2u4σ3u1 − 4A6,1σ2u3u1
+4A10,2u2u4u1σ2 + A12,1σ3u1σ2 + A12,2u2σ3u1
+ (−8A11,1 − 16A6,2) u3u1u4 − 8A11,2σ2u3u1u4
+ (4A6,2 + A11,1) u1

2σ2u2 + (−2A11,1 − 4A6,2) u3u1u2 .

The equations look more complicated, but there is some obvious structure. The restriction
to Fix(Z2(κ)× S1) simply is u̇1 = 2A1,1u1 , the restriction to Fix(Z2 × Z2) is

u̇4 = (4A3,2 + 2A9,1)u4σ2 + 8A9,2u4
2 + 4A3,1u4,

σ̇2 = 4A9,2u4σ2 + 2A3,1σ2 + (4A9,1 + 8A3,2) u4,

σ2 = 2
√
u4 ,

while the restriction to Fix(Z2(κ)) is easily given by

u̇1 = 2A1,1u1 + (2A1,2 + A5,1) u1σ2 + 4A5,2u4u1,

u̇4 = (4A3,2 + 2A9,1)u4σ2 + 8A9,2u4
2 + (2A12,1 + 4A7,2)u4u1σ2

+8A12,2u4
2u1 + 4A3,1u4 + 4A7,1u4u1,

σ̇2 = 4A9,2u4σ2 + 2A3,1σ2 + 4A12,2u4u1σ2 + 2A7,1u1σ2
+ (4A9,1 + 8A3,2) u4 + (8A7,2 + 4A12,1)u4u1,

σ2 = 2
√
u4 .

The second structural property is that the Jacobian evaluated at a point in a stratum which
has symmetry adapted coordinates has a special shape.

Rumberger [163] has investigated a Hopf bifurcation in Fix(Z2(κ)) of this Taylor-
Couette problem by first choosing a certain parameterization of the differential equations
on Fix(Z2(κ)). In turn this means a bifurcation of periodic orbits to 2-tori in the original
system.

The advantages of Noether normalization are demonstrated in this context. The flow-
invariance of the orbit types is clearly present in the differential equations on the orbit
space. Secondly, the stratification is much more transparent. Moreover, the Jacobians
have a special structure according to the fixed point spaces.

So far we have discussed the consequences of Cohen-Macaulayness and the Noether
normalization for the structure of the differential equations on the orbit space. Of course
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there are many more aspects. From the literature we cite the following results. Krupa
decomposes in [121] the vector field f(x) into one part being tangent to the orbit and
the relevant part being normal to the orbit. This implies some theoretical results on the
structure of the dynamics. Rumberger [163] relates the Poincaré mappings of periodic
orbits of the vector field and the projected vector field to each other. In case the orbit
space reduction becomes too complicated one also uses a local version of it, see for example
[34]. In [116] Koenig investigates the relation of the linearization Dxf(0) of the equations
at the origin on the original space and the linearization DyF (0) of the equations on the
orbit space. The eigenvalues of DyF (0) are linear combinations with positive coefficients
of the eigenvalues of Dxf(0), if the Hilbert basis is chosen in an appropriate way. In
order to define hyperbolicity of relative equilibria a variant of the tangent cone for semi-
algebraic sets is introduced. Tangent cones of varieties (or a basis of their corresponding
ideal) are computed by the tangent cone algorithm by Mora [148], see also [42] p. 170.
Note that the computation of standard bases as in [89] is intermediate between Gröbner
bases and tangent cones. Also Rumberger [163] discusses the question of relation of
eigenvalues of Dxf(0) and DyF (0). He exploits that the Hilbert basis is minimal. A
stable equilibrium of ẋ = f(x, λ) relates to a stable equilibrium of ẏ = F (y, λ). An
unstable equilibrium of ẋ = f(x, λ) relates to an unstable equilibrium of ẏ = F (y, λ).
This gives two cases where bifurcation may be studied on the orbit space. The symmetry
adapted coordinates as discussed in this section enable a more distinguished investigation
of bifurcation phenomena on the orbit space.
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> # load packages

> with(linalg): read(moregroebner): read(symmetry):

> infolevel[symmetry]:=1; infolevel[moregroebner]:=1; # print infos

----------------------------------------------------------------------

# group of Taylor-Couette example

----------------------------------------------------------------------

> go2:=S1([1,1,-1]);

> C:=matrix(6,6,0):

> C[1,1]:=1:C[2,2]:=-1:C[3,5]:=1:C[4,6]:=1:C[5,3]:=1:C[6,4]:=1:

> evalm(C);

> Z2:=mkfinitegroup({_s=evalm(C)},_Z2);

> go2[_fgnoncommute]:=op(Z2);

> s1:=S1([0,1,1]);

> g:=ProductCG(go2,s1);

----------------------------------------------------------------------

> # compute invariants

> mol:=Molien(g,lambda); # Molien series of invariant ring

> expand(simplify(mol*(1-lambda^2)^2*(1-lambda^4)^2)); # degrees

> series(mol,lambda=0,11);

> complexvars:=[z0,cz0,z1,cz1,z2,cz2];

> Hominvs(g,complexvars,4,_coords=complex);

> iis:=Invariants(g,complexvars,mol,6,_coords=complex);

> konjugate:={z0=cz0,cz0=z0,z1=cz1,cz1=z1,z2=cz2,cz2=z2}:

> realinvs:=[iis[1..4], I*(iis[5]-subs(konjugate,iis[5]))];

----------------------------------------------------------------------

> # compute relations

> rel:=invrelations([seq(pi[i]=realinvs[i],i=1..5)],complexvars);

> rel:=factor(rel+pi[5]^2)-pi[5]^2;

> realvs:=[x0,y0,x1,y1,x2,y2];

> invs:=map(convertinv,realinvs,complexvars,realvs,g,_coords=real);

> relationpireal:=invrelations([seq(pi[i]=invs[i],i=1..5)],realvs);

> slacks:=[seq(pi[i],i=1..5)]; vs:=[op(slacks),op(realvs)];

> MM:=matrix(3,11,0):

> for i from 1 to 6 do MM[1,5+i]:=1: od: # elimination property

> for i from 1 to 5 do MM[2,i]:=degree(invs[i],{op(realvs)}); od:

> MM[3,5]:=1: # matrix term order showing Hironaka form

> evalm(MM);

> totaldeg:=mktermorder(vs,tdeg):

> eliorder:=mktermorder(vs,mat,evalm(MM),op(totaldeg)):

> eligrad:=table([_Hseriesvar=lambda,minint=0,maxint=10]):

> for i from 1 to 5 do eligrad[pi[i]]:=degree(invs[i],{op(realvs)});

> od:

> for i from 1 to 6 do eligrad[realvs[i]]:=1: od:

> gls:=[seq(slacks[j]-invs[j],j=1..5)]: hp:=1/((1-lambda)^6);

> gb:=homgroebner(gls,op(eliorder),{op(eligrad)},[op(eligrad)],hp);

----------------------------------------------------------------------
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> # compute strata

> for i from 1 to 5 do

> grad[i]:=vector(6): # gradients

> for j from 1 to 6 do grad[i][j]:=diff(invs[i],realvs[j]) od;

> od:

> B:=matrix(5,5); # semi-positive matrix

> for i from 1 to 5 do

> for j from i to 5 do

> B[i,j]:=innerprod(grad[i],grad[j]):

> B[i,j]:=normalform(B[i,j],gb,vs,op(eliorder));

> B[j,i]:=B[i,j]:

> od;

> od;

> evalm(B);

> bs:=[seq(det(submatrix(B,1..i,1..i)),i=1..5)];

> bs:=map(normalform,bs,{rel},vs,op(eliorder));

> bs:=map(factor,bs);

... ... ... ... ... ... ...

----------------------------------------------------------------------

> # find generic equivariant vector field

> emol:=Equimolien(g,g,lambda); # Hilbert series

> Equivariants(g,g,complexvars,realinvs,emol,5,_coords=complex);

> Homequis(g,g,[z0,cz0,z1,cz1,z2,cz2],3,_coords=complex);

> paras:=[realinvs[1..4]];

> equivs:=CMEquivariants(g,g,complexvars,paras,emol,_coords=complex);

> f:=vector(6,0);

> for j from 1 to nops(equivs) do

> f:=evalm(f+A[j]*equivs[j]);

> od;

> # conversion to real coordinates

> ff:=convertvectorfield(f,complexvars,realvs,g,g,_coords=real);

----------------------------------------------------------------------

> diffgl:=[]; # compute differential equations

> for j from 1 to 5 do

> p:=innerprod(evalm(grad[j]),evalm(ff));

> diffgl:=[op(diffgl),normalform(p,gb,eliorder[vars],op(eliorder))]

> od:

> diffgl; # right hand side of differential eq.

> dglfixZ2pi:=subs({seq(rels[Z2pi][i]=0,i=1..nops(rels[Z2pi]))},diffgl);

> dglfixSO2:=subs({seq(rels[SO2][i]=0,i=1..nops(rels[SO2]))},diffgl);

-----------------------------------------------------------------------

> # derivative of relation

> define(di,binary, forall([x,y,t], di(x+y,t)=di(x,t)+di(y,t)),

> forall([integer(a),x,t], di(a*x,t)=a*di(x,t)),

> forall([x,y,t], di(x*y,t)=di(x,t)*y+x*di(y,t)),

> forall([x,y,z,t], di(x*y*z,t)=di(x*y,t)*z+x*di(y*z,t)+y*di(z*z)),

> forall([integer(n),x,t], di(x^n,t)=n*x^(n-1)*di(x,t)));

> h:=di(rel,t);

> hh:=expand(subs({seq(di(pi[i],t)=diffgl[i],i=1..5)},h));

> normalform(hh,{rel},eliorder[vars],op(eliorder));
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A lot of people have explored how Computer Algebra methods are useful for the qualita-
tive study of differential equations. Of course qualitative study means something different
than looking for closed form solutions as done in symbolic computations based on differ-
ential Galois theory. Lie symmetry analysis is the second traditional branch of Computer
Algebra methods for partial differential equations. In contrast to these algebraic compu-
tations the combination of Computer Algebra in the qualitative study within dynamical
systems often restricts to the use of linear algebra techniques although in some cases ad-
vanced Lie group theory is involved. However, we mention the symbolic manipolations
in the context of Birkhoff normal forms, center manifold reductions, and related topics
[28, 43, 44, 45, 60, 64, 65, 82, 119, 126, 140], [144, 151, 158, 159, 172, 181, 189]. This list
is far from being complete.

The most important link of dynamics to Computer Algebra is that to Computational
Algebraic Geometry. Obviously, the steady state solutions x(t) ≡ x0 ∈ Rn of ẋ = f(x)
where the right hand side f is polynomial form a real variety. Thus the Gröbner basis
method of Chapter 1 is applicable. Many other questions indirectly lead to the study of
varieties.

i.) How many limit cycles may a polynomial vector field in the plane have? One
attempt to this question is the study of bifurcation of this special trajectories at a point
where the linearization has eigenvalues ±i. Typically the degenerate situation is studied
with the help of Liapunov functions which help to investigate the stability of this special
point. Requiring multiple bifurcation of periodic orbits leads to a system of polynomial
equations in the coefficients of the vector field and the coefficients in the ansatz of the
Liapunov function. Because of the nature of the question the only way to solve this system
of equations is by Computer Algebra, see [131]. For more computations in this direction
see [51, 93, 156, 169].

ii.) In [101] normal forms of reversible discrete systems are investigated exploiting the
combination of Gröbner bases with a factorizer. With factorization the ideal is decom-
posed as intersection of other ideals which almost gives the primary decomposition.

iii.) In [124] a bifurcation problem being equivariant with respect to a group G is
investigated for cases where the equivariant branching lemma by Vanderbauwhede [185]
does not apply because the fixed point space with respect to a subgroup does not have
dimension 1. For multidimensional fixed point spaces a blow up is performed leading to a
different polynomial system. Blow up technique is a method from algebraic geometry in
order to study singularities. The introduction of another variable transports the study of
the affin object into projective space. Solvability and nonsingular Jacobian (application of
the Theorem of Implicit Functions) guarantees the existence of bifurcating branches. Since
the system is small, Gröbner bases are well suited. Especially the degeneracy conditions
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are computed, see [124].

The second point I like to mention is the combination of numerics and symbolic com-
putation.

i.) The most elementary point is to use the C-Code generator in order to produce
the differential equations as numerical source Code, see [120] for multibody system.
The same group of people came up with a symbolic-numerical method for the detec-
tion and computation of bifurcation of special trajectories of ẋ = f(x) called periodic
orbits (x(t + T ) = x(t), ∀ t), especially of higher codimension. The bifurcation depends
on the coefficients of the Taylor polynomial approximation of the Poincaré map. The
Poincaré map is a mapping in the phase space. A surrounding of a point on the orbit
which is a transverse intersection with the orbit is mapped onto this surrounding. The co-
efficients of the Taylor expansion of the Poincaré map satisfy itself a system of differential
equations which is solved numerically. But the explicit form of the differential equation
for the coefficients involve higher order derivatives of the right hand side f of the original
system. Setting up this system is a typical task of Computer Algebra, see [113, 114]. Of
course this method is restricted to rather small systems.

ii.) Much more algebraic computations are performed in Symcon [75, 68, 69] where
the group-theoretical computations automate the numerical investigation of steady states
and their bifurcations of parameter dependent equivariant systems. Since the group ac-
tion forces eigenvalues to be multiple the symmetry must be exploited in the numerical
determination of bifurcation points. Computer Algebra automates the exploitation of
symmetry. The underlying data basis of Symcon consists of group tables for some small
finite groups (Z2, D3, D4, A4, S4 etc.) and their irreducible representations (group actions
which cannot be decomposed). The problem independent part computes the subgroup lat-
tice, group homomorphisms, conjugate groups, normalizers and the bifurcation subgroups
which describe the symmetry of generically bifurcating branches of equilibria. Then the
equivariant system is prepared for the numerical algorithm. The isotropy subgroups de-
scribe the possible symmetry of equilibria. They are determined using the trace formula
for multiplicities of irreducible representations [54, 171]. This algorithmic determination
of isotropy subgroups is given in Algorithm 3.1.2. The numerical treatment necessitates
even more functions such as the restriction to the fixed point subspaces and the evaluation
of the Jacobian blocks, monitor functions, offset directions for handling of bifurcation
points. They are generated by the Computer Algebra part in a C-Code file. This means
that the symbolic part produces the numerical algorithm. Nevertheless, Symcon has often
been misunderstood as a purely numerical algorithm.

In Chapters 3 and 4 we have seen that algorithmic invariant theory is a powerful
tool in equivariant dynamics. In [27] algorithmic invariant theory is used in symmetric
bifurcation theory, especially in [125] problems of mode interactions are studied. Another
example is [76].

Finally, I like to present literature on using singularity theory within bifurcation theory
and algorithmic approaches therein. The unfolding of bifurcation problems of higher
codimension is investigated by inspecting the linearization of the family of bifurcation
problems, the so-called tangent space. See [86, 87] for an introduction to singularity theory
and bifurcation theory. The codimension of the tangent space in the full space of germs
means the number of parameters which are required in order to unfold the bifurcation
problem to the generic situation. With Gröbner bases the codimension of an ideal in
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the ring is easily determined. This fact was first used in [6]. A different approach has
been used in [76]. Instead of starting with a bifurcation problem one starts with spaces
which might be possible tangent spaces and deduces from this the associated bifurcation
problems. Gröbner bases help to classify the possible tangent spaces.

However, instead of Gröbner bases the standard bases for ideals in local rings (such as
the ring of formal power series) are much more suitable for bifurcation theory. Standard
bases bases for K[x1, . . . , xn]〈x1,...,xn〉 and other local rings are implemented in Singular
[90]. A nice introduction is given in Chapter 4 of [42]. For example in [21] this is used
for studying unfoldings of Hamiltonian systems. In [133] Lunter improves the techniques
of standard bases since in his study of a singularity in a Hamiltonian system he needs to
compute the codimension of a direct sum of an ideal, an algebra, and a module. Thus he
needed to generalize SAGBI-bases of algebras to the local case. Secondly, he adjusts the
theory of Gröbner bases, standard bases, SAGBI bases altogether to this particular case.

I am looking forward to learning more on useful application of Computer Algebra to
the theory of dynamical systems.
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complexity and applications to Gröbner bases. SIAM J. Disc. Math., 6:246 – 269,
1993.

[92] J. Guckenheimer and Ph. Holmes. Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, volume 42 of Applied Mathematical Sciences. Springer,
New York, 1983.

[93] J. Guckenheimer, R. Rand, and D. Schlomiuk. Degenerate homoclinic cycles in
perturbations of quadratic Hamiltonian systems. Nonlinearity, 2:405–418, 1989.

[94] W. Hereman. Review of symbolic software for the computation of Lie symmetries
of differential equations. Euromath Bull., 2:45 – 82, 1994.

[95] W. Hereman. Symbolic software for Lie symmetry analysis. In N.H. Ibragimov,
editor, CRC Handbook of Lie Group Analysis of Differential Equations, volume 3 of
New Trends in Theoretical Development and Computational Methods, chapter 13.
CRC Press, Boca Raton, Florida, 1995.

[96] A.E. Heydtmann. Finvar.lib, a Singular library to compute invariant rings and more,
1997. Available at http://www.mathematik.uni-kl/ zca/Singular. Demonstration at
workshop Algorithmic Invariant Theory, Dagstuhl, May 1996.
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K. Böhmer, and M. Golubitsky, editors, Bifurcation and Symmetry, volume 104 of
ISNM, pages 241–252, Basel, 1992. Birkhäuser.
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[191] V. Weispfenning. Comprehensive Gröbner bases. J. Symb. Comp., 14:1–29, 1992.

[192] F. Winkler. Polynomial Algorithms in Computer Algebra. Texts and Monographs
in Symbolic Computation. Springer, Wien, 1996.

[193] Th. Wolf and A. Brand. CRACK: Solving overdetermined systems of PDEs or
ODEs. In: REDUCE User’s Manual 3.6.

[194] P. Worfolk. Zeros of equivariant vector fields: Algorithms for an invariant approach.
J. Symb. Comp., 17:487–511, 1994.

[195] G.M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics.
Springer, New York, 1995.

[196] R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, Boston,
Dordrecht, London, 1993.



Index

algebraic extension, 25
algebraic group, 59, 96
algebraic relations, 46
algorithm, Buchberger, 9
algorithm, completeness, 47
algorithm, equivariants, 56, 62, 74, 75
algorithm, FGLM, 27
algorithm, invariants, 50, 59, 72
algorithm, torus invariants, 60

Bergman, 11
bifurcation subgroup, 87
bipartite graph, 29
bipartite graph, matching, 30
Buchberger algorithm, 9, 20, 23, 34, 35,

54
Buchberger criteria, 10

canonical basis, 51
Cartan decomposition, 54
Cartan subalgebra, 55
Center manifold reduction, 88
characteristic sets, 37
CoCoa, 11
Cohen-Macaulay module, 75
Cohen-Macaulay ring, 67, 69, 104
compact Lie group, 42
conjugate group, 86
contact equivalent, 88
cyclo hexane, 19, 99

depth, 66
dimension, 5, 38
division algorithm, 6, 9, 58

elimination, 97
elimination ideal, 38
equivariant, 43
equivariant branching lemma, 87, 90
equivariants, 97
exact solution, 94

face, 5
facet, 5
fixed point space, 86
flow-invariant, 110
Fractal walk, 27
function, generating, 15
fundamental equivariants, 43
fundamental invariants, 43

GAP, 88
GB, 11
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