
ARTIFICIAL INTELLIGENCE
APPLICATION IN LIFE SCIENCES AND BEYOND

EDITED BY

KARL-HERBERT SCHÄFER

FRANZ QUINT

UR-AI 2021
THE UPPER-RHINE ARTIFICIAL INTELLIGENCE SYMPOSIUM

COLLECTION OF ACCEPTED PAPERS OF THE SYMPOSIUM
KAISERSLAUTERN, 27th OCTOBER 2021

Copyright: This volume was published under the license "Creative Commons Attribution 4.0
International" (CC BY 4.0). The legally binding license agreement can be found at
https://creativecommons.org/licenses/by/4.0/deed.en
Published by: Hochschule Kaiserslautern, University of Applied Sciences
Cover illustration by: vs148/shutterstock

The Upper-Rhine Artificial Intelligence Symposium
UR-AI 2021

ARTIFICIAL INTELLIGENCE - APPLICATION IN LIFE SCIENCES AND BEYOND

Karl-Herbert Schäfer, Franz Quint (eds.)

Kaiserslautern, 27th October 2021

The Upper-Rhine Artificial Intelligence Symposium
UR-AI 2021

ARTIFICIAL INTELLIGENCE - APPLICATION IN LIFE SCIENCES AND BEYOND

Conference Chairs

Karl-Herbert Schäfer, Kaiserslautern University of Applied Sciences
Franz Quint, Karlsruhe University of Applied Sciences

Program Committee

Andreas Christ, Offenburg University of Applied Sciences
Thomas Lampert, Télécom Physique Strasbourg
Jörg Lohscheller, Trier University of Applied Sciences
Enkelejda Miho, Universities of Applied Sciences and Arts Northwestern Switzerland
Ulrich Mescheder, Furtwangen University of Applied Sciences
Christoph Reich, Furtwangen University of Applied Sciences
Karl-Herbert Schäfer, Kaiserslautern University of Applied Sciences
Franz Quint, Karlsruhe University of Applied Sciences

Organising Committee

Matthias Bächle, Kaiserslautern University of Applied Sciences
Anna Dister, TriRhenaTech
Susanne Schohl, Kaiserslautern University of Applied Sciences
Jessica Weyer, Kaiserslautern University of Applied Sciences

Table of contents

Foreword .. v
Karl-Herbert-Schäfer and Franz Quint

Challenges in Live Monitoring of Machine Learning Systems 1
Patrick Baier and Stanimir Dragiev

Prediction of Activators for Pathogen Sensing Receptors using Machine
Learning ... 11
Pyaree Mohan Dash, Pratiti Bhadra, Volkhard Helms and Bernd Bufe

Deep Learning associated with Computational Fluid Dynamics to predict
pollution concentration fields in urban areas ... 13
Xavier Jurado, Nicolas Reiminger, Marouane Benmoussa, José Vazquez and Cédric
Wemmert

Improving COVID-19 CXR Detection with Synthetic Data Augmentation 21
Daniel Schaudt, Christopher Kloth, Christian Späte, Andreas Hinteregger, Meinrad Beer
and Reinhold von Schwerin

Detection of driver drowsiness by calculation the speed of eye blinking 28
Muhammad Fawwaz Yusri, Patrick Mangat and Oliver Wasenmüller

MFmap: A semi-supervised generative model matching cell lines to cancer
subtypes ... 38
Xiaoxiao Zhang and Maik Kschischo

Systematic investigation of Basic Data Augmentation Strategies on
Histopathology Images .. 39
Jonas Annuscheit, Benjamin Voigt, Oliver Fischer, Patrick Baumann, Sebastian
Lohmann, Christian Krumnow and Christian Herta

Online extraction of functional data from video recordings of gut movements
using AI features .. 49
Pervaiz Khan, Manuela Gries, Steven Schulte, Anne Christmann, Ahmed Sheraz, Marko
Baller, Karl-Herbert Schäfer and Andreas Dengel

An artificial neural network-based toolbox for the morphological analysis of
red blood cells in flow ... 52
Marcelle Lopes and Stephan Quint

Comparing a deterministic and a Bayesian classification neural network for
chest diseases in radiological images... 53
Jonas Nolde and Ruxandra Lasowski

i

Gaussian Process Inspired Neural Networks for Spectral Unmixing Dataset
Augmentation ... 61
Johannes Anastasiadis and Michael Heizmann

R&D of a Multisensory System for Excavation Machines for the Real-Time
Generation of AI/ML Classified, Georeferenced and BIM compliant Voxel
Models of Soil (ZIM Project HOBA) .. 71
Reiner Jäger, Mohamed Almagboul, Guru Prashanth Sridhar and Anantha Praveen
Chaitanya

Predictive prognostic for Li-Ion batteries in electric vehicles 73
Inès Jorge, Ahmed Samet, Tedjani Mesbahi and Romuald Bone

An Architecture to Quantify the Risk of AI-Models .. 84
Alexander Melde, Astrid Laubenheimer, Norbert Link and Christoph Schauer

Exercises in Human-Centered AI: On Shneiderman’s Second Copernican
Revolution .. 94
Dieter Wallach, Lukas Flohr, Annika Kaltenhauser and Sven Fackert

Interpretable Machine Learning for Quality Engineering in Manufacturing -
Importance measures that reveal insights on errors 96
Holger Ziekow, Ulf Schreier, Alexander Gerling and Alaa Saleh

Application of Artificial Intelligence/Machine Learning Methods for the
Development of Internal Combustion Engines – An Overview 106
Youssef Beltaifa, Shahida Faisal and Maurice Kettner

Modeling for Explainability: Ethical Decision-Making in Automated Resource
Allocation ... 119
Christina Cociancig, Christoph Lüth and Rolf Drechsler

Condition Monitoring of Electric Motor with Convolutional Neural Network
 .. 128
Tanju Gofran, Maurice Kettner and Dieter Schramm

Classification and Prediction of Bicycle-Road-Quality using IMU Data 138
Johannes Heidt and Klaus Dorer

Modeling natural convection in porous media using convolutional neural
networks ... 150
Mohammad Reza Hajizadeh Javaran, Amadou-Oury Bah, Mohammad Mahdi Rajabi,
Gabriel Frey, Florence Le Ber and Marwan Fahs

Point Cloud Capturing and AI-based Classification for as-built BIM using
Augmented Reality .. 158
Thomas Klauer and Bastian Plaß

ii

A Reference Architecture for Dialog Management in Conversational Agents in
High-Engagement Use Cases .. 167
Stephan Kurpjuweit and Nima Samsami

Verify Embedded Systems faster and more efficiently with AI 175
Björn Morgenthaler, Alexander Schwarz and Manuel Duque-Anton

Suitability analysis of machine learning algorithms: Processing 3D spatial data
for automated robot control ... 184
Benjamin Peric and Michael Engler

VizNN: Visual Data Augmentation with Convolutional Neural Networks for
Cybersecurity Investigation ... 194
Amélie Raymond, Baptiste Brument and Pierre Parrend

Towards generating complex programs represented asnode-trees with
reinforcement learning ... 205
Andreas Reich and Ruxandra Lasowski

Use of AI and Image Segmentation for 3D Modelling 212
Michael Weber, Tobias Weiß, Dr. Franck Gechter and Dr. Reiner Kriesten

Improving Temporal Consistency in Aerial Based Crowd Monitoring Using
Bayes Filters .. 224
Jan Calvin Kramer, Thomas Golda, Jonas Hansert and Thomas Schlegel1

Potentials of Semantic Image Segmentation Using Visual Attention Networks
for People with Dementia .. 234
Liane Meßmer and Christoph Reich

iii

Foreword

When people talk about breakthrough technologies today, artificial intelligence (AI) is at the
forefront. More and more fields are being supported by it in their scientific, economic and social
challenges. The year 2021 undoubtedly highlights two areas in particular where AI is not only
urgently needed, but its development is being driven forward rapidly while being viewed with
some scepticism in society: healthcare and data protection.

The COVID-19 pandemic shows that our society, despite its high level of development, remains
vulnerable to ancient threats. However, it also shows that humanity is capable of finding a
response, albeit imperfect, in a very short time. To this, artificial intelligence provides significant
contributions. It would be unthinkable to manage the analysis and processing of the huge
amounts of data needed, especially in the emerging field of medical image and data analysis, to
find a solution without AI. The pandemic has also made us realize that big data is not just
generated as measurement data by sensor systems. Home schooling, home office, online
banking, online shopping, etc. also generate a huge amount of data, which in its nature is
personal. Artificial intelligence can be used to draw automated conclusions from this data that
touch on privacy. This is not desirable. As such, data protection and the legal and ethical
framework for using this data are becoming increasingly important.

The TriRhenaTech alliance of universities of applied sciences from the Upper Rhine region has
been addressing the topic of artificial intelligence for many years. After the focus in previous
years at the conferences in Offenburg and Karlsruhe was on application-oriented AI research in
the industrial sector, the focus at this year's conference in Kaiserslautern is on the aforementioned
current topics from health, Life sciences, data protection and beyond. The at hand conference
proceeding contains the articles on the oral and selected poster presentations. We hope you enjoy
reading them and we would be pleased if you find interesting approaches, worth to be considered.
We encourage you to contact the authors, jointly develop the ideas presented there further and
possibly incorporate them into new products.

Kaiserslautern, October 2021

Karl-Herbert Schäfer Franz Quint

Challenges in Live Monitoring of
Machine Learning Systems

Patrick Baier1 and Stanimir Dragiev2

1 Hochschule Karlsruhe – University of Applied Sciences
patrick.baier@h-ka.de

2 Zalando Payments
stanimir.dragiev@zalando.de

Abstract. A machine learning (ML) system involves multiple layers of software
and therefore needs monitoring to ensure a reliable operation. As opposed to
traditional software services, the quality of its predictions can only be guaranteed
if the data that flows into the system follows a similar distribution as the data
the ML model was trained on. This poses additional requirements on monitoring.
In this paper we outline a scheme for monitoring ML services based on feature
distribution comparison between the data used for training and for live prediction.
To showcase this we introduce payment risk prediction as an application scenario.
Its long feedback delays and real time requirements motivate monitoring and at
the same time holds specific challenges which we address. In this context we discuss
trade-offs for the practical implementation of the monitoring scheme and share
our best practices.

Keywords: reliable machine learning, monitoring, production systems, feature
distribution, non-stationarity

1 Introduction

Live monitoring of software systems is an important and well studied field [1] that helps to
prevent unexpected service interruption and ensures stability and reliability. Monitoring
typically involves collecting metrics about a system and checking if these values lie within
a range of expected values. If this is not the case, alerts are triggered to warn a system
operator who checks for the healthiness of the system. Example metrics are the size of
the free heap memory of a software process or the CPU utilization of the machine that
it is running on. While monitoring of software systems has a long history and is widely
applied, the proliferation of systems that rely on machine learning (ML) models brings
a new challenge to this field.

A typical ML system consumes input data and maps it to a prediction, which is used
in a downstream decision engine. For instance, a fraud detection system uses payment
transaction data to predict if a transaction is fraud or eligible. This prediction is then
used to decide if a warning to the card holder should be triggered or even to cancel the
transactions. To ensure that the predictions of the ML system are accurate, the model
is tested after training and before live deployment on a held-out test set with respect to
typical quality metrics such as accuracy and area under the ROC curve. In general, the
prediction quality of a ML model on unseen input data is within expectation only if the
input data is similar to the training data [2]. Technically, similarity means that unseen
data points are drawn from the same distribution as the data used for training the model.
The assessed quality measure on the test set – e.g. accuracy – cannot be promised in

1

live operation if the live distribution and the training distribution differ. Hence, a live
monitoring system is needed that periodically checks that the data which is served to
the ML model in the live system is close enough to the training data distribution.

There are two main reasons why the input data distribution in a live system may
differ from the training data distribution: The calculation of an input feature in some
preceding system is flawed (e.g. money values are sent in euros instead of cents) or
there is a natural data drift triggered by, for instance, phenomena like inflation. Without
proper monitoring such data shifts can stay unnoticed. While the technical monitoring
of the software stack can look perfectly fine, the quality of the predictions and hence the
decisions based upon them may already suffer substantially. This happens long before
the impact is measurable, resulting in big monetary damages. Thus, ML systems need an
additional layer of monitoring that is concerned with checking for sane data distributions
to meet the expected quality of service.

While several deployment related concerns of ML models are already tackled [3,4]
the problems that arise with live monitoring of such systems are not well studied yet.
In this paper we propose a ML monitoring system which is based on the experiences of
running and monitoring ML systems in production environments for almost ten years.
Besides giving some basic overview of the nuts and bolts of such a monitoring system,
we highlight the technical challenges and trade-offs that arise with it, e.g. windowing,
seasonality and computational trade-offs.

2 Basic Monitoring System

Before we discuss the technical challenges of ML monitoring, we start with a basic
overview of the monitoring system we propose. To make this more tangible, we first
introduce an example application scenario which will be used to lay out the subsequent
concepts.

2.1 Application Scenario

Given is an online payment provider that handles the complexity of payment transactions
on behalf of an online merchant. The provider strives for the best customer experience
which includes seamless transaction processing and convenient payment options, e.g.
credit/debit card, cash-on-delivery, etc., and most notably deferred payment. For each
transaction, the provider needs to decide if a consumer can be offered a deferred pay-
ment option. For instance, if a person wants to buy shoes online, will the person have
the option to pay only after receiving the shoes? In general, deferred payment options
make the online buying experience closer to the offline shopping and thus increase con-
version rates of online shops, but also bear the risk of not receiving the money from the
customer (also known as payment default). To make sure that deferred payment options
are offered only to the right customers, the payment provider needs to predict the risk
of a payment default for every customer. Moreover, this prediction has to be finished
before the customer arrives at the payment selection page of its shopping session. To
tackle this problem payment providers typically employ ML systems that use features
about the customer and the current shopping session. The output is a prediction of the
payment default likelihood of a customer for this purchase. Such a model can be trained
on historic payment data and is widely employed among online payment providers.

This scenario has two special characteristics which make monitoring especially chal-
lenging: (1) The model has to provide its prediction in real-time, i.e. a payment default

2

Fig. 1: Model Life Cycle

probability has to be provided in a matter of a few hundred milliseconds. Models with
such a requirement are typically running encapsulated in web services that are deployed
in the cloud. (2) The scenario has a delayed feedback loop. This means that we can only
evaluate the decision of the model after a long delay. In the above scenario, if the model
predicts that deferred payment should be granted to a customer it can take weeks until
the money comes in. Only then a label for the data point (customer paid or defaulted)
is available and we know if the model’s prediction was right. Other examples for sys-
tems with such a delayed feedback loop are order return prediction or customer churn
prediction.

Especially the combination of these two properties highlights the importance of mon-
itoring: We need to ensure that the model is working as expected, otherwise we may
only find about it weeks later when the quality of the system’s decisions can finally be
assessed. In worst case, several weeks of wrong predictions may result in a complete
financial fiasco for a company.

2.2 Model Life Cycle

To make the contextual dependencies of model monitoring visible, we shortly sketch the
typical ML workflow that is preceding the monitoring (see Figure 1). What is left aside
here, are all the phases that precede model training (e.g. label definition, data acquisition,
feature engineering, etc).

The model life cycle starts by training the model on the training data. To check the
models performance it is evaluated on a hold-out test data set and performance metrics
like accuracy or area under the curve are calculated. If everything looks fine, the model is
deployed to the live system where it receives requests from a client application. A request
contains a data point to predict on, i.e. it contains all features that the model needs for a
prediction. The model returns its output probability to the client within a few hundred
milliseconds. Typically only a few requests are routed at this stage to the newly deployed
model in order to do a final check on its technical readiness. After that more and more
requests are gradually routed to the new model until the full traffic arrives there. That
is the point when model monitoring kicks in to make sure that the model runs reliably
and that performance observed on the test data can be expected under real conditions.

3

2.3 Monitoring Metrics

The most important question in monitoring is what exactly to monitor to ensure that
the system is working as expected. In systems with a delayed feedback loop we cannot
just monitor a metric like accuracy, since a feedback about the model’s decision is not
immediately observable. However, as a proxy we can monitor the sanity of the data that
is flowing into the model, which are the input feature values.

It is widely understood that ML models only perform as expected if the data fed to
the live system is similar to the data used to train the model [2]. As a result, the primary
candidate metric to monitor is the difference between the data distributions of the train-
ing data and the live data that is currently flowing into the model. Both are empirical
data distributions that can be compared by statistical metrics like the Wasserstein dis-
tance (also known as Earth mover’s distance) or the Kullback–Leibler divergence. Such
a distance score quantifies the similarity of the two distributions. Figure 2 shows an ex-
ample with different empirical distributions and the corresponding Wasserstein distance.
Note that for the rest of this paper, we assume that the Wasserstein distance is used for
comparing distributions.

(a) Similar distributions, WD=0.9 (b) Different distributions, WD=15

Fig. 2: Wasserstein distances (WD) when comparing two empirical distributions.

2.4 Monitoring System

The proposed monitoring system works as follows: Every t seconds the system computes
for every input feature of the model its current live distribution considering the last n
requests that were sent to the model. For every feature, this distribution is compared to
the training data distribution using the Wasserstein distance. As a result, the monitoring
outputs every t seconds the Wasserstein distance for every feature of the model. If one
of the computed scores lies above a preselected alerting threshold the monitoring system
triggers an alert to a system operator to investigates the cause for the distribution shift.
We will quickly discuss possible reasons for this in the following subsection. The whole
monitoring process in summarized in Figure 3 that shows an example flow for one feature.

Finding the right alerting threshold is crucial: If the chosen threshold is too low, false
positive alerts are triggered, which means that the monitoring alerts even though the
feature distributions did not significantly change. This can for instance happen due to

4

Fig. 3: Overview of monitoring process for one feature.

some recent outlier data points in the live system. On the other hand, if the alerting
threshold is too high, real distribution changes can stay unnoticed since no alerts are
triggered. Problems may then not be detected fast enough and the whole purpose of
monitoring becomes obsolete. A typical way to find a good threshold is too start with a
rather low value and then slightly increase the threshold if the resulting alerts can safely
be identified as false positives.

The description of the system above contains two parameters that must be set before
the monitoring system can operate: (1) Time t that determines how often a distribution
comparison is triggered. (2) Window size n which determines how many recent live re-
quests are considered for calculating the live data distribution. Finding good parameter
settings is again not straightforward but crucial. Both are discussed in more detail in the
technical challenges in Section 3.

2.5 Sources of Errors

An alarm triggered by the monitoring system means that there is a change in the data
distribution for at least one of the features. The cause of such a shift typically comes
from one of the following sources: (1) There is a technical problem with delivering the
correct feature value to the model, i.e. the client sends the wrong data. (2) The input
feature data suffers from a natural distribution shift.

In the first case, the model receives wrong data from the preceding system. This
can have several causes. For instance, a downtime in a database or a unstable network
connection may lead to missing feature values which over time lead to a changed data
distribution. Another problem could be a newly introduced bug in the preceding system
that alters a feature value. For instance, money values are sent in cents instead of euros
after a new software deployment. It is crucial to detect such cases since such a tiny bug
can have immense effects on the output of a ML model.

In contrast, a natural shift in the input data does not stem from a technical problem
but some underlying phenomena in the data itself. This can typically be observed by a
gradual shift in the live data over time. The resolution to such a problem could be to
analyse the data shift and remove any trend before the data goes into the model. Another
alternative is to re-train the model in short time intervals to always include the freshest
available data.

5

3 Technical Challenges

In this section we look into the technical challenges that are inherent to the presented
monitoring system. To solve them, one has to decide for certain trade-offs that are specific
to the available data and the application scenario.

3.1 Aggregation Window Size

One important parameter for the system is the size of the aggregation window which is
used to determine the distribution of the live data. In the previous section this window
size was denoted as parameter n. The choice of this parameter has trade-offs in both
directions: If n is chosen rather small, there is only very recent data in the aggregation
window. This is on the one hand desirable since we prefer to build the live data distri-
bution from relatively fresh data. For instance, consider the extreme case in which the
aggregation window contains all live data seen until time t. If there is a change in a
feature at time t+ 1, it would take a long time to be visible in the live data distribution
since the aggregation window is dominated by the old data.

On the other hand, choosing a small n could detect such distribution shifts very
quickly but comes with problems regarding the representation of the distribution. Build-
ing the empirical distribution from only a small aggregation window suffers from uncer-
tainty due to the small sample size. Only if we build the distribution from a large enough
number of empirical data points, we can be sure to approximate the underlying distribu-
tion. Hence, if we choose n too small we will derive a wrong empirical distribution and
the alerting system will kick in since the distance to the training data is too big.

To show this trade-off we conducted a small experiment. For a sample feature, we
created 10k training data points drawn from a Gaussian distribution with μ = 100 and
σ2 = 10. Going back to the sample scenario, this feature could for instance represent the
summed price of items in a customer order. To simulate live data we created a new data
point at every time step which was drawn from the same distribution. In the two plots
in Figure 4 at every 50 time steps the Wasserstein distance between the training and live
distribution with window size n ∈ {10, 100, 1000} is plotted.

(a) No data shift (b) Data shift at t = 2000

Fig. 4: Effect of different window sizes on the Wasserstein distance

From Figure 4a we see that a small window size results in rather high Wasserstein
distances even though the data comes from the same distribution. As discussed before,

6

if the window size is chosen too small, the live distribution is not representative for the
underlying distribution. Only if we increase n to 1000, the Wasserstein distance is small
enough such that the two distributions can be considered equal. Hence, we have to choose
n big enough to avoid false-positive alerts. In Figure 4b, we changed the distribution of
the live data at time t = 2000 by reducing the mean of the Gaussian to 90. Here we can
see that choosing a big n can lead to a rather late detection of a distribution shift, which
may be very costly for the business.

To find a good window size in practice, we recommend to choose n as small as possible
but at the same time to make sure that the Wasserstein distance stays low for data from
the same distribution.

3.2 Seasonality

The second problem that can arise when monitoring distribution shifts is seasonality in
input features. To illustrate this we assume that the amount of payment transactions in
the last hour is a feature in the ML model of the aforementioned payment provider. The
distribution of such a feature naturally fluctuates across one day. For an experiment we
assumed the feature to fluctuate within one day as shown in Figure 5a. The curve in this
figure shows at every time of the day the mean of all data points within the last five
minutes. If we compare the live distribution of this feature against the distribution of the
training data, we face the problem that the current live distribution contains a seasonal
shift, while the training data is aggregated over all training data points and is static with
μ = 1000. As a result, the Wasserstein distance can increase significantly during the day
even when using a big window size of n = 1000 (see the upper curve in Figure 5b).

To overcome this problem, we can limit the comparison of live data to only the set
of training data that comes from the same time window. For instance, if we want to
compare live vs. train distribution at 2pm, we compare the current live distributions
only with training data points for which the data was also collected in that time frame,
i.e. every day in the corresponding window before 2pm. In this way, the seasonality can
be factored out and the distribution comparison results in a low Wasserstein scores (see
the lower curve in Figure 5b).

(a) Feature with seasonality (b) Distribution Monitoring

Fig. 5: Effect of seasonality on distribution monitoring

7

3.3 Computational Aspects

One last consideration is about the computational effort that is required for model mon-
itoring. The Wasserstein distance is computationally complex but has linear approxima-
tions [5] that are usually good enough for model monitoring.

Here we face again a trade-off: If the distribution difference is calculated frequently,
computational costs increase and, hence, also increase monetary efforts for running the
monitoring system. On the other hand, if the distribution difference is calculated only
occasionally there can be a significant delay in detecting problems in the ML system.
To find a good trade-off one has to consider the amount of traffic in the live system
and determine how much computation is actually spend for calculating the Wasserstein
distance. Based on this number a meaningful trade-off between computation costs and
monitoring delay can be found.

4 Related Work

While monitoring in software systems is a field that is studied quite well, the additional
complexity that ML systems introduce to monitoring is only addressed so far in few
publications. Breck et al. [3] were among the first that summarized the challenges that
arise when running ML models in live systems. While they list model monitoring as
one important aspect, they do not go into technical details on how to implement this.
Klaise et al. [6] discuss in their work aspects of monitoring and explainability of deployed
models. In this context, they discuss statistics measure for detecting a drift in the live
distribution but do not cover the comparison between live and training data distribution.
The authors of this articles also provide an open source system that helps to automatically
detect distribution drifts in the live system [7]. Finally, Paleyes et al. [8] review reports
of deployed ML solutions and also shortly discuss the aspect of monitoring. However,
none of the reported system has a delayed feedback loop and hence lacks a concept of
distribution comparison which is necessary in this case.

5 Discussion

5.1 Monitoring adaptive systems

A question that may arise in Section 2.3 is why, in the first place, we should moni-
tor changing feature distributions instead of building a model that can adapt to these
changes? Indeed, some models can accommodate drifts. If a drift is predictable, it can be
modeled explicitly. Unexpected drifts, on the other hand, can be accounted for by updat-
ing the model by online training on the new data points. This is only possible by limiting
the ”memory” in the training process. Training data which does not look far in the past
makes a model more sensible to recent changes. The smaller the training data horizon
back in time, the faster the new models will pick up the new situation. However, a short
training data period poses the risk that the new model ”forgets” patterns available in
the old data but not in the recent data. This introduces another trade-off for how to deal
with drifts and is rather an argument for monitoring than an alternative: each setting
favours a particular case and imposes a risk which is better discovered sooner than later.

8

5.2 Limitations

The approach described in this paper is based on monitoring individual features to catch
a change in order to maintain a promised quality of the ML system. Examples can be
constructed, however, that show a distribution change in a higher-dimensional feature
space while the univariate distributions of the individual features remain stable. The
ML system may not generalize as well as expected to some examples from the changed
distribution and the performance can degrade. With the current approach, such a change
may stay unnoticed. A remedy would be to extend the distribution comparisons to pairs,
triples or higher tuples of features or even to the whole feature space. However, enumerat-
ing all such tuples introduces a huge overhead for a questionable benefit: knowing that,
say, 20 features collectively deviate is not very actionable in general. In special cases,
though, the collective behaviour of subsets of features may well be of interest.

While monitoring distributions does a good job to uncover changes, there are a class
of problems which are rooted in the opposite. A popular write-up with practical advices
for ML engineers [9] features ”stale tables” as a particular pitfall which occurs more
for ML systems than for others. Let us assume a table owned by another team has not
been updated for a while. If a feature aggregates some counts from the table and these
counts are missing for the recent past, the feature will slightly drift towards zero. For
example, consider a feature that counts how often a customer visited a page in the past
week. If a table with the daily visits of customers per page freezes, the aggregations
will decrease. Sooner or later this will appear in the distribution comparison. However,
if a feature does not slide a window, the distribution will not change. Here should be
noted that monitoring feature distributions may help discover bugs opaque to traditional
monitoring, however it mainly aims at detecting shifts innate to the environment.

6 Conclusion

The monitoring of an ML service is a prerequisite for the reliable operation and for main-
taining service levels promised at the time of development of the ML models. Especially
in a complex environment like payment risk prediction, without ML monitoring the en-
terprise is put at risk. Against the background of delayed feedback, not fully observable
decision effects and non-stationary features, we outline the main traits of a monitoring
system based on comparing the observed feature distributions. We discuss ways to aggre-
gate and compare the distributions avoiding misalignment by making trade-offs needed
in the practical implementation.

While monitoring ML services can discover a range of internal and external hazards,
it is not a panacea, in particular it is not a substitute to the traditional software service
monitoring; it is rather an augmentation to the existing well maintained monitoring
practices.

References

1. Gao, L., Lu, M., Li, L., Pan, C.: A survey of software runtime monitoring. (2017)
2. Koh, P.W., Sagawa, S., Marklund, H., Xie, S.M., Zhang, M., Balsubramani, A., Hu, W.,

Yasunaga, M., Phillips, R.L., Gao, I., Lee, T., David, E., Stavness, I., Guo, W., Earnshaw,
B., Haque, I., Beery, S.M., Leskovec, J., Kundaje, A., Pierson, E., Levine, S., Finn, C., Liang,
P.: Wilds: A benchmark of in-the-wild distribution shifts. (2021)

3. Breck, E., Cai, S., Nielsen, E., Salib, M., Sculley, D.: What’s your ML test score? A rubric
for ML production systems. (2016)

9

4. Murphy, C., Kaiser, G., Arias, M.: An approach to software testing of machine learning
applications. (2007)

5. Atasu, K., Mittelholzer, T.: Linear-complexity data-parallel earth mover’s distance approxi-
mations. (2019)

6. Klaise, J., Looveren, A.V., Cox, C., Vacanti, G., Coca, A.: Monitoring and explainability of
models in production (2020)

7. Van Looveren, A., Vacanti, G., Klaise, J., Coca, A., Cobb, O.: Alibi detect: Algorithms for
outlier, adversarial and drift detection (2019)

8. Paleyes, A., Urma, R.G., Lawrence, N.D.: Challenges in deploying machine learning: a survey
of case studies (2021)

9. Zinkevich, M.: Rules of machine learning: Best practices for ML engineering.
https://developers.google.com/machine-learning/guides/rules-of-ml (2017)

10

Prediction of Activators for Pathogen Sensing Receptors using
Machine Learning

Pyaree Mohan Dash1,2, Pratiti Bhadra1, Volkhard Helms1 , Bernd Bufe2

1 Center for Bioinformatics, Saarland Informatics Campus, Saarland University, D-66041 Saarbrücken,
Germany.

2 Department of Informatics and Microsystems Technology, University of Applied Sciences
Kaiserslautern, Germany.
bernd.bufe@hs-kl.de

Abstract. Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs)
that are predominantly expressed in the immune system, where they play a critical
role in detecting bacterial invasion and inflammatory responses [1] through detection
of pathogen-derived formylated peptides [2]. Recent studies highlighted an involvement
of FPRs in various diseases [1, 3], such as bacterial and viral infections, Alzheimer's
and prion diseases, immunodeficiency, diabetes, and cancer. Given the sheer importance
of FPRs, there is an immediate need for a better understanding of the mode of action of
these receptors. A current challenge in FPR research is their well-documented capability
to intact with an extremely vast number of structurally diverse ligands such as bacterial
and virus-derived peptides, various small non-peptide molecules, and even some lipid-
derivatives, that lack any obvious common structural motifs [1]. Because of the high
potential of FPRs as a therapeutic target, we developed a computational method to predict
FPR ligands using machine learning. Moreover, we can provide experimental evidence that
our computation models are promising data mining tools that are useful tools to identify
FPR activators from a vast amount of bacterial amino-acid sequence information that is
contained in public databases.

The human genome encodes the three FPR genes FPR1, FPR2, and FPR3. In this study, we
focused on FPR1 and FPR2. The proposed agonist prediction classifiers utilize amino-
acid composition and physicochemical properties as features. Our optimized prediction
models showed high test accuracy (FPR1: 82% and FPR2: 90%), Matthew’s correlation
coefficient (MCC) of 0.5 (FPR1) and 0.6 (FPR2), and area under the receiver operating
characteristic curve (AUC-ROC) score of 0.76 (FPR1) and 0.90 (FPR2). To demonstrate
the performance of the proposed prediction models in the real world, we screened the
Escherichia coli K12 proteome and selected 30 novel peptides (20 predicted as activators
and 10 as non-activators) for experimental validation. Human embryonic kidney (HEK-
293T) cells were used to perform a cell-based calcium flux assay using Molecular
Devices’ Flex station. The experimental validation showed a true negative rate of 90%
(9/10 non-activators) and a true positive rate of 80% (18/20 activators). Furthermore, our
study also sheds light on the physio-chemical properties of FPR agonists and antagonists.
A feature descriptor analysis revealed that FPR1 is activated by peptides with higher
aromaticity, low hydrophobicity, low volume, and high density when compared to
the peptide activators of FPR2. Moreover, the gene set annotation analysis of the predicted
FPR agonists indicated that FPR1 and FPR2 activators are involved in different
metabolic processes and transport systems related to bacterial stress responses. This
indicates that our models can be used to mine novel information on the biological function
of FPRs, which is potentially helpful for the rational design of therapeutic approaches.

Keywords: Formyl peptide receptors, pathogen sensing, machine learning, gene ontology

11

References

1. The sensing of bacteria: emerging principles for the detection of signal sequences by
formyl peptide receptors. Bufe B, Zufall F. Biomol Concepts. 2016 Jun 1;7(3):205-14.
doi: 10.1515/bmc-2016-0013.

2. Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new
mechanism for sensing pathogens. Bufe B, Schumann T, Kappl R, Bogeski I, Kummerow
C, Podgórska M, Smola S, Hoth M, Zufall F. J Biol Chem. 2015 Mar 20;290(12):7369-
87. doi: 10.1074/jbc.M114.626747.

3. Bacterial MgrB peptide activates chemoreceptor Fpr3 in mouse accessory olfactory
system and drives avoidance behavior. Bufe B, Teuchert Y, Schmid A, Pyrski M, Pérez-
Gómez A, Eisenbeis J, Timm T, Ishii T, Lochnit G, Bischoff M, Mombaerts P, Leinders-
Zufall T, Zufall F. Nat Commun. 2019 Oct 25;10(1):4889. doi: 10.1038/s41467-019-
12842-x.

12

Deep Learning associated with Computational Fluid
Dynamics to predict pollution concentration fields in

urban areas

Xavier Jurado1,2, Nicolas Reiminger1, Marouane Benmoussa1, José Vazquez1,2, and
Cédric Wemmert2

1 AIR&D, Strasbourg, France
2 University of Strasbourg, ICube Laboratory, France

Abstract. air quality is a worldwide major health issue, as an increasing number
of people are living in densified cities. Several methods exist to monitor pollution
levels in a city, either physical models or sensors. Computational Fluid Dynamics
(CFD) is a popular and reliable approach to resolve locally pollutant dispersion
in urban context for its capacity to consider complex phenomenon at local scale.
Nevertheless, this method is computationally expensive and is not suitable for real
time monitoring over large areas and city shape that evolves permanently. To over-
come this issue, a deep learning model based on the MultiResUNetarchitecture
have been trained to learn pollutant dispersion from precalculated computational
fluid dynamics. This model has been used in situ on an area spanning 1km² with
real values from traffic and meteorological sensors in the surroundings of Stras-
bourg (France) and compared against the equivalent CFD results. Classic air
quality metrics shows that the Deep Learning model manages to have satisfying
results against the CFD model. The similarity index used in the study shows a
62% similarity for a result obtained in minutes against the CFD result obtained
in tenth of hours.

Keywords: Computational Fluid Dynamics ; Air pollution ; Machine Learning
; Deep Learning ; Real Time Assessment

1 Introduction

Air pollution is a critical worldwide health issue with about 8 million death related to
it yearly, according to the World Health Organization (WHO) [1,2]. To tackle this issue,
WHO provided pollution concentration values that should not be exceeded. In European
Union, regulation has been enforced on the main air pollutant such as particulate matter
or nitrogen dioxide [3]. To check if these values are respected, several measures have been
implemented in France:

– New real estate project near pollutant sources such as heavy traffic roads, plants, or
central heating system must study thoroughly air quality in the wanted area. How-
ever, these regulations are only applied at some particular timestamps and specific
places.

– Sensor monitoring. But reliable sensors are expensive to acquire and maintain. For
the entirety of Strasbourg city (around 80km²), only 4 sensors are deployed to date.

– Simulation of the annual pollution dispersion on the entire city. However, models
that allow large area to be simulated may not be adapted for urban areas because of
buildings not taken into account.

13

Among the possible models of the third point, a popular approach in the scientific com-
munity is to create airborne pollutant dispersion maps in urban areas is to use Compu-
tational Fluid Dynamics (CFD) [4,5]. It allows to accurately consider a lot of different
physical phenomena from building impact on the flow to solar radiation or chemical re-
action. Indeed, pollutant dispersion concentration field error can reach less than 10%
when compared to experimental data [6] and about 30% when compared to real life in
situ experiments [7]. Nevertheless, the counterbalance of this method is that it is compu-
tationally expensive. For instance, to cover 1km², the method roughly needs around 30
million cells and can require a week of computation to converge on 96 CPUs. Further-
more, each time the building layout changes, it would require starting new simulations
again. CFD is therefore not adapted for real time simulation, despite its great accuracy
and detailed description of physical phenomena.
To accelerate the computation, an innovative solution based on deep learning was devel-
oped. The idea consists in training a neural network with pre-calculated CFD simulations,
to create a new air quality model that can determine pollutant dispersion in a matter
of minutes over a large area. Indeed, recent advances in deep learning for spatial infor-
mation treatment with convolutional based architectures have proved to be able to solve
issues, notably in semantic segmentation that was impossible before. A popular model,
the MultiResUNet[8], heir of UNet[9], has proved to be particularly capable at han-
dling spatial information. This model has been trained with about 5,000 examples of
CFD results of pollutant dispersion from different urban areas. The input of the model
is the 3D shape of the buildings, the wind force and direction, and the position of the
roads, considered as the sources of pollution.
This deep learning model is then included in a wider system that uses real time meteo-
rological, traffic and sensor data to map the concentration field in real time on an entire
urban district.

2 Material and method

2.1 CFD air quality modeling

To train the Deep Learning architecture examples of pollutant dispersion were obtained
using Computational Fluid Dynamics (CFD). The software to compute the simulation
is OpenFoam 5.0 which is an open source software for numerical simulations of different
kind such as fluid mechanics or radiation. The approach elected here to solve the air flow
is a Reynold Averaged Navier Stokes (RANS) with a k-epsilon renormalization group
(RNG) [10] performing unsteady simulation. For the pollutant dispersion a transport
equation coupled with the air flow is used.

The boundary conditions for the upper and lateral boundaries are symmetry condi-
tions, the ground as a wall with a rugosity of z0 = 0.1m, the building as a wall condition,
the outlet as a freestream, the inlet as a logarithmic wind profile law as proposed by [11].

For the meshing, the guidelines from [12] are respected with the top and lateral
boundaries situated at 5H from the closest building including with H the height the
highest building. The mesh is insensitive with cells of 0.5m nearest to the buildings.
The model, equations and validation have been detailed in previous published paper [13]
where the same approach has been described and properly validated.

2.2 Deep learning network

The Deep Learning network used to learn the CFD is the MultiResUNet from [8].
This network is first designed to be applied for segmentation. In this work, it has been

14

converted to solve pollutant dispersion from fluid mechanics. The input are the distance
from the pollutant source and the height of the buildings in the area and the output
is the pollutant dispersion field. The final results covers an area of 100 × 100m2 by AI
predictions as showed in Figure 1. The details of the MultiResUNet architecture are
presented in Figure 2.

Fig. 1: Input/output images for the Deep Learning model

Fig. 2: Architecture details of the MultiResUNet

The loss function used is a custom loss called J3D and defined as followed:

J3D = 1− Vpred

⋂
Vtrue

Vpred

⋃
Vtrue

� 1− min(yi, ŷi)

max(yi, ŷi)
(1)

where Vpred and Vtrue is the volume represented by the grayscale value of respectively
the ground truth and the predicted result, yi and ŷi are respectively the ground truth
image and the predict deep learning result.

The dataset for the training and validation are made of around 5,000 examples of
different CFD simulations with varying building layouts and pollution sources. 20% are
used for the validation and 80% for the training. For the test to check on the AI capability
of predicting pollutant dispersion field on unseen neighborhood, it will be compared with
a real neighborhood presented in Section 2.3 that will be modelled in CFD. The training
was made on 25 epochs with a patience of 5 epochs on the validation data.

15

2.3 Case study

The site is located in the surrounding of Strasbourg (GPS coordinates: 48.603468, 7.743355).
The building layouts of the case study is obtained thanks to the open data of the city of
Strasbourg which provide digital model of the whole city (https://data.strasbourg.eu).
For the test case, a real life situation is used, the first of April of 2021 at the traffic
peak which happens around 08:30 AM (to have the highest concentration related to
road traffic in the area). The wind speed and directions were obtained using the API
openWeatherMap with a wind speed of 2m/s and a wind direction 200°N.

Fig. 3: Map of the Schiltigheim district with the 3 main roads used in this study

There are 27 different roads in the area. The data on traffic were obtained through the
open data of the city of Strasbourg for the 4 available roads (https://data.strasbourg.eu):

– Road Bischwiller (part 1): 560 vehicles in 30 min (18.7 veh/min) with a mean velocity
of 37.9km/h,

– Road Bischwiller (part 2): 784 vehicles in 30 min (26.1 veh/min) with a mean velocity
of 15.5km/h,

– Street Mairie: 488 vehicles in 30 min (16.3 veh/min) with a mean velocity of 17.8km/h,
– Street General de Gaulle: 654 vehicles in 30 min (21.8 veh/min) with a mean velocity

of 16.3km/h.

For other roads in the area, traffic information is lacking, thus they have been classified
as secondary that will have 30% of the traffic of closest main road and tertiary that will
have 5% of the closest main road. Figure 5 shows the map of the district of the study,
with the three main roads and the secondary and tertiary roads. The choice of 30% and
5% is arbitrary for the sake of the example since there is no study on this traffic either
with sensors or models.

Emissions are calculated based on methods proposed by the European Environment
Agency (EEA) in their ”EMEP/EEA Air pollutant emission inventory guidebook 2016”,
Tier 3 method for engine-related NOX, PM10 and PM2.5 emissions (hot and cold emis-
sions); 2017 metropolitan fleet data found in the ”OMINEA” databases provided by the
Centre Interprofessionnel Technique d’Études de la Pollution Atmosphérique (share of
different vehicle types, fuels and EURO standards in France).

16

The whole neighborhood have been modeled at once with CFD spanning an area of
1 km2 made of 28 million cells. The buildings as well as the velocity magnitude field at
an height of 1.5m is shown on Fig. 4.

Fig. 4: Building layouts and flow field at an height of 1.5m

2.4 Evaluation

Seven metrics will be used, 4 from the air quality domain and three others from the
computer vision. The air quality criteria have been chosen according to [14] in which
the authors present several metrics with some overlapping since they evaluate the same
aspect of the model. They also provides empirical threshold to consider a model as making
good predictions:

– Fraction of predictions within a factor of two of observation, noted FAC2, a good
model should respect �> 0.5,

FAC2 = fraction of data that satisfy 0.5 <
Cpred

Cref
< 2 (2)

– Normalised Mean Squared Error, noted NMSE, a good model should respect NMSE
�< 1.5,

NMSE =
(Cref − Cpred)2

CpredCref
, (3)

– Fraction Bias noted FB, |FB| < 0.3,

FB =
(Cref − Cpred)

0.5(Cpred + Cref)
, (4)

– Correlation coefficient, noted R (no threshold is given for this parameter),

R =
(Cref − Cref)(Cpred − Cpred)

σCpred
σCref

, (5)

The three other metrics are:

17

– J3D

J3D � min(Cref , Cpred)

max(Cref , Cpred)
(6)

– Relative mean absolute error MAErel

MAErel =
|Cref − Cpred|

Cpred

(7)

– Structural similarity SSIM

SSIM(A,B) =
(2μAμB + c1)(2σAB + c2)

(μ2
A + μ2

B + c1)(σ2
A + σ2

B + c2)
(8)

c1 = (k1L)
2 c2 = (k2L)

2 (9)

with Cpred the model prediction concentration, Cref the reference concentration (ground
truth), μA and μB are the respective average of A and B, σ2

A and σ2
B are the respective

variances of A and B, σAB is the covariance of A and B, L is the dynamic range of the
pixel values and k1 and k2 are two constants respectively 0.01 and 0.03 (by default).

3 Results

To evaluate the deep learning capabilities to be applied in real life situation, a comparison
has been made with real world data at the traffic at 08:30AM in the south of Schiltigheim,
France the first of April 2021 between results from a CFD simulation and our deep
learning approach on the NOx dispersion from traffic emissions. The results proposed
respectively by the CFD and MultiResUNet for the whole neighborhood are shown on
Fig.5

(a) CFD result (b) MultiResUNet result

Fig. 5: Maps of the studied district and comparison of the two results)

It can be tedious to compare the results between the CFD and the deep learning
network since the CFD determines the dispersion in 3D while the deep learning approach

18

works in 2D only at a given height. Nonetheless, the CFD needed one week of computation
on 96 CPU while the deep learning network needed around 3 minutes on a GTX 1080Ti
GPU, representing a speed up by x3000. To evaluate the accuracy of the predictions, the
metrics presented above were computed between the prediction and the CFD considered
as the ground truth and are presented below on Table 1.

Metrics FAC2 NMSE FB R MAErel J3D SSIM

Score 0.818 1.565 0.176 0.851 0.431 0.620 0.768

Expected values > 0.5 < 1.5 < 0.3 1 0 1 1

Table 1: Evaluation of the quality of the dispersion model given by the deep learning
approach.

4 Conclusion

As demonstrated by our work, deep learning has proved to be able to predict results
close to CFD for air pollutant dispersion. Moreover, the MultiResUNet architecture
was able to compute the dispersion in a matter of minutes over a wide area against several
days for the CFD. This makes the Deep Learning approach a potential model to predict
in real time over large scale the pollutant dispersion from traffic related pollution.

References

1. WHO: Mortality and burden of disease from ambient air pollution, Global Health Obser-
vatory data (2016)

2. WHO: Mortality from household air pollution, Global Health Observatory data (2016)

3. EU: Directive 2008/50/EC of the european parliament and of the council of 21 May 2008
on ambient air quality and cleaner air for Europe. European Union. (2008)

4. Reiminger, N., Jurado, X., Vazquez, J., Wemmert, C., Blond, N., Dufresne, M., Wertel, J.:
Effects of wind speed and atmospheric stability on the air pollution reduction rate induced
by noise barriers. Journal of Wind Engineering and Industrial Aerodynamics 200 (May
2020) 104160

5. Santiago, J.L., Martilli, A., Martin, F.: On dry deposition modelling of atmospheric pollu-
tants on vegetation at the microscale : application to the impact of street vegetation on air
quality. Boundary-Layer Meteorology 162 (2017) 451–474

6. Reiminger, N., Vazquez, J., Blond, N., Dufresne, M., Wertel, J.: How pollutant concen-
trations evolve in step-down street canyons as a function of buildings geometric properties.
(2019)

7. Rivas, E., Santiago, J.L., Lechón, Y., Mart́ın, F., Ariño, A., Pons, J.J., Santamaŕıa, J.M.:
CFD modelling of air quality in Pamplona City (Spain): Assessment, stations spatial rep-
resentativeness and health impacts valuation. Science of the Total Environment (2019)
19

8. Ibtehaz, N., Rahman, M.S.: MultiResUNet : Rethinking the U-Net Architecture for Multi-
modal Biomedical Image Segmentation. Neural Networks 121 (January 2020) 74–87 arXiv:
1902.04049.

9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical
Image Segmentation. arXiv:1505.04597 [cs] (May 2015) arXiv: 1505.04597.

19

10. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.: Development of tur-
bulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid
Dynamics 4(7) (July 1992) 1510–1520

11. Richards, P.J., Hoxey, R.P.: Appropriate boundary conditions for computational wind en-
gineering models using the k-E turbulence model. (1993) 9

12. Franke, J., Hellsten, A., Schlünzen, H., Carissimo, B.: Best practice guideline for the CFD
simulation of flows in the urban environment. COST Action 732 (2007)

13. Reiminger, N., Vazquez, J., Blond, N., Dufresne, M., Wertel, J.: CFD evaluation of mean
pollutant concentration variations in step-down street canyons. Journal of Wind Engineering
and Industrial Aerodynamics 196 (January 2020) 104032

14. Chang, J.C., Hanna, S.R.: Air quality model performance evaluation. Meteorology and
Atmospheric Physics 87(1-3) (September 2004)

20

��������	
������
�� �������� ���� ���������

��� ��	���������

������ ��	�
��1 �	������	�� ����	2 �	������� �����1 ������� �����������2 �������
����2 ��� ����	��� ��� ��	�����1

1 ���������� �	�����
�� �� � �� ���������� 	� ������� ��������

��������	
�����
����� �����������
��������� ����
��������	
������
����
2 ������������������
 �� � �� ���������� ������� ������

	
������
�������
����������������� ��������
���������������������

����������������������������

��������� ����� ��� ��������� 	� ��� �� !"�#$ �������% ����������� ���� ���

���	��� ���� �������� 	���� �	 �������� �� !"�#$ ���
��� ���
	���& �� '���

��� ������ ������ �����% ��� (
����� ��� (
������ 	� ��� ��������� ���� ��

	���� ������& !� ���� '	�� '� ����� � ���� �������� 	��� 	� �
������ ���������

�� !"�#$ ���� ���� ��� ����
��� ��� 	��� 	� �	��� �	������ �����)���� ����&

��� ���� ��� ���� �����'�� ��� ������� �� �'	 ����	�	����� �	 ���
�� � �����

(
����� �������	� 	� ��� ��������*���	� ������������ 	� ��� 	���& +
�����	��%

'� ���
���� � ,��������� ����������� -��'	�� �	 �������� ���������)���� ��

���� ����� 	� ���� ����& �
� ���
��� ��	' ����
���� ��	�� ��������� ����� �	�

���� �
�������	� ��� ���	�� ��� 	���.� ����	����� �����/������& ���� ���

�� � ��	����� ����	��� �	� ��� ������ ���� �	����&

	
������ "��� 0�������% ������� !�����% ,�-�% "��� �
�������	�

� �������	�
��

�	� ������� ��� �!"# �����$�� %����� $��& �	�������� '�� ��������� ��� ���
�� �	�
���%�()�� �	� 	����	���� ������ �� �� �$������� �� ������ ��'����� �������� �� �� �*������
��� �����%�� $�����(�	�� �� ���������& ��
� �� �� �$������& ������� �	��� ��������
������& �+�������� �������� �&$���$�(�	� ��������� ����
��� '�� ��� �!"# ���������
�� �	� ������� ������������� ���&$����� �	��� �������� ,��!-��. /"012(�	�� $��	�� 	��
� 	��	 '���� �������� ���� ��� �	� ���������� ��3
���� ��������� ��������� ��� ��� ��4�
	�
�� �� ��&� /52(

����� �	��� 6!��& ,�6�. �$���� �' ��� �!"# �������� �	�� �&����� 7������ ����
����
�����	���� ��������� ��� ���
�� ����� �������� �� �	� �%����� �' ���
��� �*
���� /5 82
�	�& ��� %�
��� �� � 7���!���� ������ ���� /92(�	�� ��
�� �����
� �	� ������7������
������� �� �6� �$���� ��� ���& �� �%���� ��� ���	�� ���+������� ���	 � ����� ���������
���� �	�� ��$�
��� ��$�����	& ,��. �$����(:���� ���� �������� $����� '�� ���������
�' ��� �!"# ���������� �� �6� �$���� �� ���$����� %���
�� �� ���$������ �	� ���� '��
��������;�� $������ ���* �� �� �$������& �������(�	�� ��� '
��	�� 	��� �� ��������� �	�
�	�������� �� �	� 	����	���� �&���$� ���
�� �	� ����� ��� 	�� �	� ��������� �� ���� �����(

 � �	�� ������������� ��
�& �� ��� �������� � ���� ������
������ ��
��� ������4 ,�<<.
�� �	� �����& ������%�� ��� �+ �=% ������� />2 ��� ����
��� �	� $���� �� ����� 	�������
�6� ����(?� �����7����& �	���� �	�� �������� '��$����4 �� ������ �	� ��������;�����
�%������� �' � �<< �� �	� $������ �$����� �����+�(����� 	��	 3
����& �6� �$��� ����
�� ������ �� ��� �	�� �� �	� $��� ��$$��
�� ���� '�� $����� �� ����
�����(

21

�����������	
� ��� ���� � ������ ������ �� ��� �������� ����������� ��� ��
�������� �������� �� !"#$% &����� ��� �� !"#$% ������� �'(����� ��� ����
�����������) *�� � ���� �� �+��� ���� ������� ��� �+���� ����������� ,� � ����#
,������ ���� ,��
��� ��� ������ ��� ������ ����)

� ������� �	
�

*���� ��� ,��� � ��� �� &������
��- �� �&&���� ���& ������� �� �'(����� ��
������ � �� !"#$% &�������� ������ �.	 %/$0�) 1�
����	 ���� �� ��� �2����
��-
� ���� &�,���� �����,�� �'(��� �� !"#$% ���� ����) 3��� �� ����� ����� ���
��������� ���� ������������� �������
�� ������ ���� ��� ��,�� 4�����	
��� �����
�������� �,��� ��� 4����� ��� ���� ��������� �� ���& ������� ������ �$5	 $6�)

��������� ���������� ���
��-� 7����8 �$9� ���� ,��� ���� ��� ���� �&&�������
� ��� ������ ����� ����� �$:/$��) ���� ������ ���
 &������ ������� �&��������
��� ��� �'(��� �� !"#$% ����� �$%	 0;�) !� �������� �� �2����
��-	
� ��������
�+������,�� ����������� �0$� ��� ��� ��� �����������) *�� ���,��� �� �� ���� ��
� ���� ����� ������� ��� ���� ��� ��������� �������)

� ���
���� ��� ���	��

��� ���� ��� ���
��- � �� ��������� ������ � �� !"#$% &�������� ������ � �����
'#��� ����� �� ����� �������� ���&��� ����� ����) *��������	
� ���� � ���& �������
����� �� &�,���� �����,�� �� !"#$% ���� ���� ��� �������� ��� ����� ,���� ��
��� ����� ����) <� ������� ������� ��� ������ �� �����,�� ������ ���� ,� ���������
�������� '#��� �����) !� ��� ������
� �2&��� ��� ���� ��� ����,���� �� ��� ����	
��
��� �� ��� ���& ������� ����� ��� ������ &������)

��� ����

!� ���
��-
� �����=� ����� '#��� ����� � &������������� 7>�8 ��� ������&�������
7�>8 ����� ��
) *�&����� ��� �> ��
 � ����������� ��� �����
���� ��� &����� �
,�������) ����� $ ���
� �
� ���� &����� �2��&�� �'(����� ���� ��� ����� ����)

���	
	
� ���� <� ��� �
� �+����� ������ ��������	 ��� *�,�� $) �� � ���� ���&	
�
��� ��� �� !"2 �, ������� �.� �� ���� ��� �����) *�� ������� � ��� �� ��� ,�����
������� ��� &�,���� �����,�� �� !"#$% �'(��������) <� ��� ��� ������ �&�� �� ���
�������	
��� ������� $5).%6 �� !"#$% �������� ��� 0)$9� �� !"#$% �	
����� �������
��
 '#��� ����� �� $6)%.� ��4�� &������)

!� � ������ ���&
� ������� ��� ������ ���� ,� ���� 0;);;; �������� ��������
�'(����� ����
� ��������� ,���� �� ��� ����� ����) <�� ����	
� ��� ��� $;);;;
�� !"#$% �	
����� ��� $;);;; �� !"#$% �������� ����� �� ��� �2���� �� !"2 �,
������ ����) *�� �������� ���� � ���� �� ������� ������� ��� ������ �� ��� �����#
������ ����� ��� ������� ���� �������) � ���&�� �� ��� ��������� ����� ��� ,���
����
�� ,� � ��������� �� ������ ���� ��� ����� &������� ��������� ����)

��	���	�
 ���� <� ������� ��� ����� ,� ���������� ���� ������ �� ��� �� ������ ��
�

�&�� �� ��� �� !"2 �? �������) *�� ������� ������� 0;; �� !"#$% &����� ��� 0;;
�� !"#$% ������� �����) <� ���� ��� ������� �� ���� ����� &���������) *�� � ��
���� ��������� ��� ����� �� ��� ������ ����)

22

���� �� ����� ���	
 ��	�� ���� ���� �	���� �� ���� ������ �������� � ����!� ��	�" �
��#	�
$� �����	�� �	#�%#	�� � �	���� �� &���� �'���� �������� ��	��!� ��	��

������� �	�	 ��� ������	
��� �� ���� ��� ����� ���� � ����	� ������ �������������
���
� �� ��� �������������	������ �	�� ��� ���� ���
� ��� �������� �������� ��� ������
 !" �#�$%�& ����� �%"#��' %�� ����(�� � ����	� ����������� ���!�)�*")�!�)�)(���
���	�
�
� ���
��� ��� +��� ������		� ������
 ��
 	�+�	�
 +� �� ��
��	������ �����
�
"
�����
 �������� ���� �������� 	
����� ��
 �������� �������� ��� ������ ��
��	�����
�,-(��� # ����� �� �.�������� �� �������� �������� ���� ����	��
 �� ��) �������� ������
��
 ��% �������� ������' �� ���� �� ��+	� ��
���� �������
��� �� ���
 �� � ��	
��� ��� ��� /��	 ��
�	 ���	������� 0��� ���� �����

� ���� ���� �� ����
 ��� ������� ����	�� +����� ��� �������� ��
 �������
���� ���"
��������' � ��� � ����"1��	��� ���������� �� ��� ������	�2����� ����+�	����� �� ��� ��
�	
��� ���	������ �� ��� �������
���� ���� �� +������ ��� ������� ������ ���� ���� �

�3�����
��� ������' ���� 	��
� �� � ��������
��� �����

���	
 �� ������&��� � � ��	�� � � 	�� �	�	����

����
� ��	�� �������� ������
 �������� �
�����

�����(�)* +�	���� ,��-) �.�/�0

�����(�)* 1 2
������# +�	���� �,��-) ,.�/�0

�����(�)* �	���	�� � ,33 ,33

4�������� 4�� 2���
 +��� ��3 ,,.

�� ������ ������������

��� �	����/������ � ��� ��� 4��5���) ������������ 6��7� ��� ������ ��� +��� ���������

�� ��� 8����5�� 6�%7
���+���� 0� ���	��� ��� /��	 ��		� ��������
 	���� ��� � 	�����

23

β1 =
0.9 β2 = 0.999

0.001
0.006

224 × 224

±5◦

24

��������������	 �
� ����
�
 ���������	 �	 ��	������� ���	 �	 �� �������� ��� ����� ��
�	�
 ��� 	�
������ ���� �
� ���� ��� ��	���	 �����������

��� ��� �������� �
������� �� ����
 ��� ������
� �����	 �
� ��� ���� ���		 ��
!"#$%&'(��	����� �
�
������ ����	� ���	 �	 � 	����� ������ �� �
	��� ���� �� ��

�
����� � 	����)� ���� ���		� ��� ������� ������	 ������
 ��� ����
�
 �����		 �� ���
�������� �
������ 	�� ��*�� +,+' -+./�

� �������

�� �
��	����� ��� �����	 �
 � 0��
�������� ��

��� �� �������� ��� ��������� �	 ����
�	 �'&	����� �����	��
 �
� ������ ��� ���� ���		 �
 ��� ���������
 �
� ��	��
 ����� ���
������	 ��� ��� ���������
 ���� ��� 	���
 �
 ����� +� 1��� �����	 ������� 0���� ���� �

��� ���������
 ���� ���� �
 �������� �� (2 3 �
� (4�4 3 ��	���������� ��� ��	���	 ���
�
 ��
� ���� 5�
 �� ��� +,+, -6/ �
� ����� !"#$%���&!78&+ ������ $
����	��
��� ���
!����9:��
�� ����� ����	 ����
� ��� ����� �����	� ��	���� ����
 � ��� ���� ����
�

����� ���	 ����� �� �
����� �
�������
 �� � ��	��������
�� 	���� ������
 ��� !"#$%9
����	�� �
� ��� 	���� ���� �� ��� ;
����	��*�	���
���� ;���

��� ��	���	 ��� ��� ��	��
 ���� ��� ��	� 	���
 �
 ����� +� ��� ����� 	���	 ���� �
����� ����
�� �
 ��� !"#$%9 ����	�� ��
 ����� 0���� ���� �� ��� ��	��
 ����� ����
�
 �������� �� <(�.(3� ��� ����� �������	 � ����
� �����	��
 ��� !"#$%&'(��	�	
=(,�>+ 3?� ����� �	 ��� 	�
�� ��� ��
� ���	� ��	�����	 ����� �
����	� ��� �����
 ��� ���
���������� 	�	��� ��� �� ���
��� ��� �������
�� @!8 ��	��
� 5��� � ������ ��� ������
�� 62�>2 3 ��� ����� ���	 ��		 0���� � ��� �� !"#$%&'(��	�	� ���	 ��
 �� �	��������
����������� �
 ���	 	�
	����� ������� 	����
� 	�
�� ���	�
������	 ���� �� �
��������
��	�	 �� !"#$%&'(�

���	 �������� ��
 �� ��
������� �� �	�
 �������
�� 	�
������ ���� �� ����
 ��� ������
����� + 	���	 �
 �
����	� �
 �������� =(+�.(3? �
� ��	� ���������
 ������	� A	��������
��� �������� ������ �� (4�.4 3 �	 ���� ��	������� ���	 ����	 ���� ��� ��	� �� � 	����
��������
 �
 �����	��
 =&2�>+ 3?� 1�	�� �
 ���	� ��	���	� �� ��
 �� 	��
 ���� ��� �����	
������� 0���� ����� �	�������� ���
 �
���������
 ��� 	�
������ ����� ��� ����� ��� 	����
	������ ����	 ��� ���������
��

����� �� ���������	
����� ���
����� ������ �	� ���������	�� �	 ���������	 ���� �����
��������
����� ���
 ��	� �� �� !"# ��� �
������	$ �	� �	 �����	� ����

�		
��	� ���	��� ���	����� ��	���

����� �%& ��� �%& 	�� �%& ��� �%& 	�� �%& ��� �%& 	��

���������� 	���

������ ������ ������ ������ ������ ' &()& ' &('' ������

���������	�� ' &))' ' &)*+ ' &))(' &)&, ' &)') ' &)'' ' &,''

�����-��.�/0.(!"# . . . ' &"'' ������ ������ ' &"''

����� 	���

������ ' +&*& ' +(", ' &(** ������ ' +&%" ' ",1, ������

���������	�� ������ ������ ������ ' +*'' ��� �� ������ ' &%'1

25

� ����������	 ��
 ��	�		���

�� ���� ��	
 �� ������ ��� ���� ��	���� ����� �	���� ���� ����	������ �	��

������ �� �������� ������ �� ��	 �������� ��������� �� ��� �� ����	���� ���� ��

������ ���	�� ���� ������� �� ���� ������ �����	����� �� �������� �	����	�

����������� �� ��� �	����� ��! "��� �� ��� ������� ���������� ����� ��� ����	��������

����� ������� ��� �	����� �� ������� �� �� ��� �� ���� ������	��� 	������ ���������

��	 ����	��� ���	��� ��
� ��� 	���� �����!

#� ���� ��� ���� �� �� ���	���� �� ����� ������������ ����	��� �� �� ���

���� ��� �	����� ��! $������� ���� ��	
� %���� ���� ��� �� ��� 	����� ����� ��

	�������� �&��� ��� ����� ��� ���� ������� ���� �	���� 	�������� ������� �

����! $�����	 	���� ����� �� ����� ��	� �� ���� �������� ����� ��� �	�������
��� ���

�������
 ����
 �� ��� ������
���� ���� �� ��� ����	 ������ ����� ��� ��	����� ��������

��� ��
����� ������ �� ��� ����
 �����
��� ��
 ���� ������ ����
 �� ��� ���
���� �� �

������������� ������� ����� ��������� ��� ��
�� ����� �������� ���� ������� ��
 ����

���� � ��
�� �� �� �������	 ������ ����
 � � � ���� ���������� ��� ��� ��� ������ ��

��������	 ���������� ��
 ��������� ����� � ��������
�������!����� ��
 �������� ����!

�������

����������

�� ������	
���	 ����	 ����	 �����	 ����	 ������	 ����	 ���	 ����	 ������	
�
�	 ������	
��!�	
��������"�������	 ��	 ����#��	 ��
�	 �����	 ����	 ����	 ��	 ��	 �	 ��"
������	
��	 ����	 $�	 �%	 &���	 ��'�	 !�	 ���	 (�	 �����%�	 ��	 ��	 ��!�	 ��#	 ��)���	 ��	
)���	 !�	 (�#�����	 (�	 (����	 ��	 (�#���%�	 ��	 ���#�����%��	 ��	 ��*%��	 ��!�	
����	 �	 +���	 +�	
���%����	 ,���	 ����	 !���	 ��-'��)�	 !������	 ��	 .���	 ��	
�/���#�%��	 �	 �'�	
�	 �������	 ��	 ���%�/�)�	 �����'��)�	
��*	
�)�&�	 �0���#	
��	 ��	 ����	 ���'��	 ����	 ��1%��	 !���	 .��2����	 ,�&�3 ��������� �������� ��'
�4����� ��%-������ �5)��)"
��"6 7�("
� -�%��"-��2� ����� 8�-� 6969:

6� ;'���%�	 ��	 ��'������	 �	 ��*��0�#	 <�,�	 ����#/����	 ��	 ��2����	 ��	 �	 ��+�
�	

���	 <�	 ��2���#�)�	 .�22��	 ����	
���	 ��
���3 &�������
���&"�=3 (�� '�����
��' ����� 5�� '�������� �
) ,��� ��8>: 8%�� 6969: ?@66A?@?B

?� +���	 +�	 +���	 ��)���	
�	 ����	 ��	 +���	 ��	 �	 ��	 C����	 ��	 ����	 C�	 $��	 ��	
��	 ��	 ���	 ��	 ����	 .�	 C����	 <�	 ��	 ��	 ���	 ��	 ����	 ��	 �	 ��	 +���	 D�	 C���	
��	 C����	 C�	 ��	 ��	 ��	 +�3 !�������� ��� �������� �5 'E����� ���-������ �-��%���
� ��� ��2������� '������ ��' %������� ��� ���� ���''�� �5 69�="�
�� �5������� 85�2
6969:

>� �������"��'����*	 ��	 �������".����	 &�)%�����"������	 &�	 C�%2����"����	 �	

�%-�	 ��&�	
�--��	 ��)��'	 ��	 ����F��*".���F�	 ��	 ���/��	 ��	 ��0	 ,�	 �������	
 ���	 ���*"�����	 ����	 C�%���	 ��3 ���)!",!.�(��! �!);�() �� �,�(��� �("

� �))�+) ���
���&"�=3 �)+)(!��(�
 �!��!�� 8�-� 6969:

B� ����	 ��	 ����0��	 � �3
���� %���� �--������� �5
���&"�= �5������ ��'�����3

��'�������� �%���� �8�: 85�2 6969: �69996@

G� ��2�	 .�&�	 �������	
���	 <���%��	 ����)���*�����	 ,�	 �����	 �� �	 ����5)�)�������	
,���	 ���-	 ��	 +%	 ����	 �����	 ������	 ��'�����	 &���	 ����	
�	 �����	 (�	 ����	 ��	 &�"
��)���	 ������� .��'�	 .��	 ����	 <�%2���	 ��	 �����	 +�	 ����*��	 <�;�	 ���	 ��	 ��*"
*���	 ���	 ��#�-	 ��	 ��%�"���'�	 ��	 �����'	 ��)����5��" ��#�-	
���	 (�%��%�	
,�	 �����	 ��;�	 �����	 ��,�3 (�� ���� �5 ����� %���� � -����� %�����%��� '����
���
���&"�= -��'�%�3 � %���������� ��������� �����%��� 5��% ��� H������� �������
��'����� ���8�: 8���� 6969: �I6A�@9

I� ����	 ��	 ��	 C�D�	 ����	 ��3
���&"���3 � ������' '��- ������������ ������ ���0��#
'���� 5�� '������� �5
���&"�= ����� 5��% ����� 1"��� %�����)����J� ��-���� ��8�:
8,���%2�� 6969:

26

�� ������� ��� 	�
��� �� �
��� ��� � ����������� ��������� ����
������� ��� �������
�� ��������
��
��������� ��� !"# �$$$%&'(&��������� �� &�)*���� '
�
�� ��� +������ ,�����
�
��
-&'+,.� �$$$ -/��� !"#.

#� ����� ����� ���� /�	�� 0���� 1�1�� &���2��� � ���* ������ ������� ��� ������
�� ���
�
�����
� �� &3'�4�"# ���) ����� 5����
)����� &�)*���� 1������ ��� +�����)�
�
0
�)��
�
�� ��� -2���)��� ! !. "!66�"

"!� 7���� (�� ����)�8� 4�� &3'�4
�����
������ 4��* ������9���8�2�� ����� �
�����
� �� ���
�������
��� �
����� !"# -&3'�4�"#. ���) 5����
)����� 1��
��� :�*������� ��� -/���
 ! !. "!#;<"

""� ��
���� 4�� =����� 4�� >������
�� $�� ������� =�� 0����� ��� &����
����� 	�� �������� ���
	
���
�8� 	�� 	�)������ 4�� 2��)��� ?�� 1
8����
� 1�� :�@��@� 1�� $
8������� 2�� ���� $��
A�
��� &��� 	��
�� +�� 0��@�)
���� 3�� 0������ >�2�� ��)
�� �� ,�*���� =�� ���)
� 4��
����� $�� 4���� ����� 0����� 2�,�� >������
�� ��� �����
�� 2�� $������ =�1�� $����� =�&��
&3'�4�"# �����
B���
�� �� 5����
)���� ��
�� ���* ������ ��������� $���*��� ,��
�����
-)�� ! ".

" � ��)���� (�$�� ���� =�� A�� 2�� ����� ��� +���� /�� 1��
��� ��� /����8C���
� �� A
�����
�
/�� A���� 4�� ?����� 0�� 4����� �� &��� 1�� ,�8��
��� 2�� ������
�8� 4�� �8���� 	�� 1�����
A�� 	�
� =�A�� �*�
�����*������ =�� (�������8�>������ &�� >����� ��/�� �� ���
B�
��

�����
����� �����) ��� *���
��
�� ��� �����
����
�� �� &3'�4�"# *��
����
� ��� �)�������
��*���)���� �*@ 4
�
��� 1��
�
�� �-". -)�� ! ".

"D� �������
���� $�� 0������� &���� 0��8��
�
� &�� &������
� 1�� >��������� 1�� 7���
�
��
&3'�4�"# ���) &:$� 5���� �
�� ���* �����
��� � ������� ���� �
�� �)��� ����� ������
���
���� /������ �� $��
���)����� ,������� ��� +���
� :����� ��-"�. -�*��)��� ! !.
<#DD

"E� 3������,������ 	�� $5*���
�� ��� �����5���"E �������� *�����)� -4�� !";.
"6� >���������� ��� +����������
�� /�� 1
�8�� 1�� F�� 0�� A�����(������ 4�� 38�
�� �� &����
����

��� 0���
�� =�� >������
�� ��������
�� ����� �� >�����)��
� ?�� A���
��� 1�� &������ &��
	�������� 2�� A�
�������� ��G�� ����� ��������
� 2����� �����)��
�� +������
�� ����)��
'���)� ;�� &����� �����
����� ���� - !"E.

"<� (�
������� 1�� 4
�)���� ��� ������ $�� �)
��
� 1�� >���������� /�� >�����*��� :�� >�2�
����� �������
�)��
���
)��� ���)�����
�� ���
�������� &22 *�����)����
� �
��� ���
��
�����
B���
��� 2������)*��
�� ��� -��� !"�. D "HDD"

";� =
� F�� A��
�� $�� 0����� +�� >������
�� ��������
�� �������
�)��
���
)��
��� � ���
���
1��
��� �)��� ������
� 	
 -��� !"#. "!"66

"�� ��8�)
�
�� �� 0���� &�� ��
@*��� ��� ��� >
������� 0�� 2����� 2�� �����9���
� ��
1����*������� ��� >�2� ���)��
���
)��� ������
�� ���
B�
�� ������
�����
� 1��
�
��
��� -��* ! !. "!"#D�

"#� �������
� =�� 0���� ��� >��)� ?�A�� :��� >���� ������ ,�� >������
�� �� �������
� �����
5����
)���� ��� ������
�� �� &3'�4�"#� � ���* �����
�� ����� �**������ 4
������
��
��-6. -)�� ! ". �#6

 !� 1���)��� �� ,������� +�� �������
� (�� ,�24>�2� ,����)
8�� �������
�� ��������
��
������� ��� ������
�� �� &3'�4�"#
� ����� 5����� �
���
B� ,�*���� ��-". -�*� ! ".

 "� ?���� �� 	
�� ?�� 	
�� /�� ?��� /�=�� :��� �� 4
I�����
���� ���)�����
�� ��� ������J�
���
��� ���
�
��� ��� &��������� �� 2����� �����)��
�� +������
�� ����)� -2����+.� - ! !.

 � :�� ��� ?����� F�� ,��� �� ��� /�� 4��* ���
���� �����
�� ���
)��� ������
�
��� ��� !"<
�$$$ &��������� �� &�)*���� '
�
�� ��� +������ ,�����
�
�� -&'+,.� �$$$ -/��� !"<.

 D� 4���� /�� 4���� A�� ������ ,�� 	
� 	�/�� 	
� ��� (�
�(�
� 	�� �)���2��� � ����������� �
�
������
���
)��� ��������� ��� !!# �$$$ &��������� �� &�)*���� '
�
�� ��� +������
,�����
�
��� �$$$ -@�� !!#.

 E� *����� &�� ������
� �������
�� ��)��
���
)���� -��*���
����)�����K� ����
�.� 1�����K�
����
�� �����
���� :��������� 7�)� 7�) - ! ".

 6� �
��)�� 4�+�� 0�� /�� ���)� �)����� ��� ��������
� �*�
)
8��
��� - !"E.
 <�)
��� 	�2�� ��*
�� 2�� �*��������������� '��� ���� ���
�
�� �� ������ �������� ��
�� �����

�����
�� ������ - !";.

27

Detection of Driver Drowsiness by Calculating the
Speed of Eye Blinking

Muhammad Fawwaz Yusri, Patrick Mangat, and Oliver Wasenmüller

Mannheim University of Applied Science, Germany
muhammadfawwaz.yusri@stud.hs-mannheim.de

p.mangat@hs-mannheim.de

o.wasenmueller@hs-mannheim.de

Abstract. Many road accidents are caused by drowsiness of the driver. While
there are methods to detect closed eyes, it is a non-trivial task to detect the gradual
process of a driver becoming drowsy. We consider a simple real-time detection
system for drowsiness merely based on the eye blinking rate derived from the eye
aspect ratio. For the eye detection we use HOG and a linear SVM. If the speed of
the eye blinking drops below some empirically determined threshold, the system
triggers an alarm, hence preventing the driver from falling into microsleep. In
this paper, we extensively evaluate the minimal requirements for the proposed
system. We find that this system works well if the face is directed to the camera,
but it becomes less reliable once the head is tilted significantly. The results of
our evaluations provide the foundation for further developments of our drowsiness
detection system.

Keywords: Computer vision, driver drowsiness detection, eye detection, eye blink-
ing rate

1 Introduction

Around 74% of European road users mostly agree that tired driving or microsleep is
a frequent crash cause. The statistics were gained in 2018 by E-Survey of road users’
attitudes from more than 35,000 respondents across 32 countries [1].

Thus, driver monitoring becomes of increased importance [2], since the consequence
of drowsiness can be recognized distinctively during driving. This behavior can be seen
as the driver slowly starts losing consciousness. Furthermore, one of the important char-
acteristics of drowsiness is slow eye movement [3,4]. In this paper, the movement of the
eyes will be the key criterion to distinguish between wakeful and drowsy drivers. We
implement and evaluate a practical and simple drowsiness detection algorithm that can
be easily integrated into driver-assistance systems. The system is merely based on the
eye aspect ratio and eye blinking rate, where we combine Histograms of Oriented Gradi-
ents (HOG) and linear support vector machines for reliable and accurate eye detection.
Upon extensive experiments, we determine a threshold for the eye blinking rate, below
which our algorithm triggers an alarm. We conducted extensive evaluations based var-
ious test cases, which challenge our system. While our drowsiness detection algorithm
works in principle, we identify circumstances, in which our system is less accurate. In this
way we systematically elaborate the next steps to further improve our simple drowsiness
detection system.

28

2 Related Work

There are several methods to detect the features of the eyes as well as drowsiness. For
instance, some of the researches apply Viola-Jones cascade classifier to differentiate the
eyes from other facial parts [5,6]. By determining the number of pixels on the iris, cornea
and eyelid, the number of blinking and duration of the closed eyes can be calculated.
While comparing the number of blinking with the blink rate set (normal = 8-10 blinks
per minute, sleepy = 4-6 blinks per minute), drowsiness can be identified [5]. Islam et
al. [6] calculate the eye aspect ratio to determine the eye closure time and total blink
per minute. These values can then be compared to appropriate thresholds and an alarm
is activated if the value exceeds or falls below the corresponding thresholds (depending
on the critical variable to consider).

Picot et al. [7] developed a more advanced method to determine the drowsiness state
of a driver. Their idea is analogous to the use of electro-oculograms (EOG) [8], where
electrodes are placed near the eyes and the voltage signals are measured. They record
visual signs from 60 hours of driving from different drivers. Based on data-mining tech-
niques their algorithm then identifies patterns of drowsiness. Moreover, another similar
approach uses a head gear to record the pupils on a driving simulation [9]. The algorithm
computes the vertical length of dark pupils and is able to detect drowsiness from this
variable.

A development in drowsiness detection uses binarization in combination with image
filters. The system proposed by Ueno et al. [10] is able to detect the vertical position of
the eyes. Therein the algorithm takes into consideration the size of the eyes to calculate
the ratio of opened and closed eyes.

The drowsiness of the driver is addressed by detecting the state of the eyes when
they are closed for a certain period of time [11,12,13]. Therein, the relevant parts of the
eyes are detected using Haar-Cascade classifiers [11,12]. This approach seems particularly
suitable to be easily integrated into a driver-assistance system, since it is merely based
on eye detection. However, it only detects whether the driver has already fallen into the
microsleep state, which may be too late for the successful prevention of road accidents.

The goal of our work is to set up a comparably simple real-time drowsiness detection
system with minimal requirements and to challenge it in an extensive evaluation by
executing various test cases. In our work we follow Haq et al. [5] and use the eye blinking
rate to decide if a driver becomes drowsy. However, we determine the eye blinking rate
differently. We measure the eye aspect ratio (used by Islam et al. [6]) and derive the eye
blinking speed from it. In order to set the threshold for the eye blinking rate below which
the driver is considered to be drowsy, we follow Picot et al. [7] and Hayami et al. [9]
by simulating a scenario that imitates sleepiness of a driver. The threshold will also be
dependent on the individual size of the eyes [10]. After fixing the threshold experimentally,
we challenge our drowsiness detection method in a series of test cases (partly inspired
by Suhaiman et al. [13]). While the proposed method works in principle, our extensive
evaluation reveals a reduction of the reliability in certain scenarios (e.g. tilting the head
by larger angles). In this way we can systematically elaborate the next research steps to
increase the accuracy of our simple drowsiness detection system in a broader range of
scenarios.

3 Methods

The drowsiness of a driver can be anticipated by analyzing the movement of the eyelids.
The eyelids move slower than a normal blink. In this paper, we implement an algorithm

29

(a) 6 points eye landmarks (b) EAR over time for an eye blinking around
frame 110

Fig. 1: Comparison between opened and closed eye [18]

that allows us to determine the speed of the blinking eye. Moreover, we use Histogram
of Oriented Gradients (HOG) and a Linear Support Vector Machine (SVM) method to
improve eye detection (4.89% higher accuracy compared to Haar-Cascade, see Rahmad
et al. [14]).

3.1 Eyes Detection

The algorithm is trained to detect the landmarks of the facial features in the dlib library
by using an ensemble of regression tress [15]. HOG image descriptor and SVM are the
method for the process training of an object [16]. There are many datasets available to
detect these landmarks and we are using the dataset from IBUG which has 68 points of
facial landmarks [17].

3.2 Eye Blinking Speed

Having detected the eyes of the driver, the next step is to determine the eye blinking
speed. Firstly, we have to detect whether the state of the eye is opened or closed. A
suitable measure to derive the state of the eye is the eye aspect ratio (EAR). We follow
the definition of Soukupová et al. [18]:

EAR =
|p2 − p6|+ |p3 − p5|

2|p1 − p4| , (1)

where p1 to p6 are the facial landmarks as depicted in Figure 1a. When the eye is opened,
the EAR is above 0.35, but when it is closed, the value rapidly dropped below 0.15 (see
Figure 1b and Section 4 for the corresponding experiments).

Based on the flow diagram in Figure 2, firstly, the algorithm will find the average eye
size (AES) of the driver defined by

Average Eye Size (AES) =
Max EAR1 +Max EAR2 +Max EAR3

3
, (2)

i.e. we take the arithmetic mean of three measured maximum EARs. (Notice that the
accuracy of the AES can be improved by measuring more maximum EARs, but this is
at the expense of a higher computational effort.)

30

Fig. 2: Flow diagram to determine the eye blinking speed

Afterwards, Max and Min Threshold will be calculated based on the average eye’s
size value. Max and Min Threshold are defined by

Max Threshold =
2

3
AES + 0.0467 , (3)

Min Threshold = Max Threshold− 0.05 . (4)

The numerical values in these equations were found empirically. After Max and Min
Threshold have been determined, the algorithm will search for the maximum value of
the EAR (denoted by Max EAR) while capturing the images frame by frame. When
the current EAR is less than the current maximum value, it will start the timer and at
the same time find the minimum value of the EAR (denoted by Min EAR). The final
minimum value is determined, when the current EAR eventually becomes larger than
the minimum value, thus the timer will stop. The blinking speed for each blink can be
calculated by

Blinking Speed =
Max EAR−Min EAR

Start Time− Stop Time
. (5)

If the blinking speed becomes sufficiently low, the algorithm will activate an alarm system.
For this purpose we introduce an empirically determined drowsiness threshold. Whenever
the eye blinking speed is below this drowsiness threshold, the algorithm identifies the
driver as being in a drowsy state.

4 Evaluation

For the evaluation of our drowsiness detection system we proceed as follows. We first
show experimentally that changing the distance between eyes and camera leaves the EAR
invariant. Then, we determine the speed of the eye blinking in the wakeful and sleepy
state, respectively. Finally, we evaluate the impact of changes in the head positions on
our system.

31

(a) The distance between p2 and p6 (b) EAR from both images

Fig. 3: Result for constant EAR’s evaluation

4.1 Evaluation of the Impact of Distance Variations on the EAR

When alternating the distance between eyes and camera, the apparent size of the eyes
will change. However, based on eq. (1) we expect the EAR to remain invariant.

The following evaluation shows experimentally that the EAR is indeed invariant under
modification of the distance of camera and eyes. For this purpose, two similar images
with different sizes are used instead of a live stream video. The reason is to have a fixed
EAR reference from a static image, enabling a comparison of the EAR from both images
that have different eye’s sizes. The sizes of the eyes in both images are relatively different
because one image is close to the camera and the other is far from it. The size can be
measured by calculating the difference distance between two points of facial landmarks
(e.g. p2 and p6 in Figure 3a, which are the upper and lower eyelid) in both images.

The distance between these points in Image 1 (Near, blue line in Figure 3a and
Figure 3b) is two times bigger than Image 2 (Far, orange line in Figure 3a and Figure 3b)
which is approximately 8 and 4 pixels (see Figure 3a), respectively. It shows that the
position of the eyes in Image 1 is nearer to the camera than Image 2.

The ratio between both distances is approximately 1:2. The result in Figure 3b shows
that the measured EARs for Images 1 and 2 are approximately 0.3052 and 0.3006, re-
spectively. The deviation is only 1.5%, which is acceptable for our purposes.

4.2 Evaluation for Normal Blinking

The purpose of this evaluation is to check whether Max EAR, Min EAR, and hence, the
blinking speed in eq. (5) are calculated correctly. Moreover, the average blinking speed
in the wakeful state can be determined from this test.

The participants were asked to blink normally for 8 times. The first three blinks were
analyzed by the algorithm to obtain the average size of the eyes. The other five blinks
were necessary to evaluate the EAR and the speed of the blinking. Three tests from three
participants were conducted thoroughly and the results are as follows.

Participant 1: Figure 4a shows that the maximum of the EAR, which is the highest
value of the EAR before the eyes start to close, is calculated correctly above the Max
Threshold (defined in (3)). Moreover, we see that there is only one data point below the
minimum threshold (orange line). The minimum threshold can be determined using (4).
We experimentally obtain Max EAR = 0.4572 and Min EAR = 0.1098. Figure 4b shows

32

(a) Speed of normal blinking (b) Speed values from five blinks

Fig. 4: Result from Participant 1 (normal blink)

(a) Normal blinking’s speed (b) Speed values from five blinks

Fig. 5: Result from Participant 2 (normal blink)

that the values of the blinking speed are above 1 pixel/second and the average speed is
2.0418 pixel/second.

Participant 2: Figure 5a shows that Max EAR = 0.4522. However, there are two data
points below the minimum threshold, whose difference in the EAR is 0.01 pixels. The
algorithm needs to determine which value to choose as a minimum. The final minimum
value is Min EAR = 0.1401 which is the correct value because this is the value when
the eyes are completely closed. If the differences between the values below minimum
threshold is less than 0.01, then the final minimum will be the first value because this is
the point where the eye is completely shut.
We can see that Figure 5b is similar to Figure 4b where the speed values are above 1
pixel/second and the average speed is 1.5783 pixel/second.

Participant 3: In this case the EAR reaches a rather flat maximum at Max EAR =
0.3558 before dropping sharply below the minimum threshold (see Figure 6a). The mini-
mum EAR is measured to be Min EAR = 0.1049. Again, the blinking speed never drops
below 1 pixel/second (see Figure 6b). The average eye blinking rate is approximately at
2 pixels/second.

33

(a) Normal blinking’s speed (b) Speed values from five blinks

Fig. 6: Result from Participant 3 (normal blink)

(a) Sleepy blinking’s speed (b) Speed values from five blinks

Fig. 7: Result from Participant 1 (sleepy blink)

To summarize the results of the three tests, the average speed for normal blinking
has a threshold value of 1 pixel/second. However, there are certain cases where the eye
blinking speed can slightly drop below this threshold.

4.3 Evaluation for Sleepy Blinking

For the measurement of the EARs and the eye blinking rate in the drowsy state, we
essentially repeat the previous experiments. The evaluation was conducted by testing
three participants with 5 trials. They were asked to imitate the behavior of a sleepy
driver in front of the camera by closing their eyes slowly. The corresponding data are
shown and discussed below.

Participant 1: In Figure 7a it can be seen that the number of frames from Max EAR =
0.3053 down to Min EAR = 0.1406 is larger than in the wakeful state, indicating a lower
eye blinking rate. Indeed, Figure 7b shows the smaller speed values for all five blinks.
The average speed is 0.4421 pixel/second.

Participant 2: Figure 8a has a slightly different result from the first test (see Figure 7a),
specifically regarding the values below the minimum threshold. It can be seen that the
EAR remains below the minimum threshold after Min EAR = 0.1056 has been reached.

34

(a) Sleepy blinking’s speed (b) Speed values from five blinks

Fig. 8: Result from Participant 2 (sleepy blink)

(a) Sleepy blinking’s speed (b) Speed values from five blinks

Fig. 9: Result from Participant 3 (sleepy blink)

The participant was closing his eyes longer than usual which mimics one of the main
behaviors of a sleepy person. The values are in the range between 0.5167 pixel/second
and 0.2172 pixel/second. The average speed value is 0.3557 pixel/second.

Participant 3: The graph in Figure 9a has a similar pattern as in the second test
(Figure 8a), where there are many values below the minimum threshold. The results
from the third test (Figure 9b) came out as expected and the speed values are in the
range between 0.5176 pixel/second and 0.2292 pixel/second. The average speed of the
eye blinking is 0.35586 pixel/second.

As a result of these tests, it can be concluded that the average speed value for sleepy
eye blink is below 0.5 pixel/second and hence the drowsiness threshold to activate the
alarm will be set to 0.55 pixel/second (taking into account a safety buffer). Thus, this is
the threshold value which will activate the alarm if the speed drops below it.

4.4 Evaluation for Different Head Positions

In this last evaluation, the participant went through different situations to test the re-
liability of the system. These test cases, inspired by Suhaiman et al. [13], simulate the
scenario when the driver moves his head in different directions.

35

In the first test case, the participant was instructed to move his head upwards, down-
wards, left and right while looking in front. Eventually, in the second test case, the
participant also move his head in the same direction as in the first situation but the
eyes also follow the direction of the head. For example, if the participant tilts his head
upwards, his eyes should look upwards. Table 1 shows the different situations of the head
movement and the results.

Table 1: Evaluation of different head positions
Eyes look in front

Test case Result

Head faces upward
and downward

• Able to detect eyes up to a certain degree
• Able to detect eye blinking
• EAR becomes smaller
• Smaller EAR affects finding the correct Max EAR and Min EAR

Head turns to the left
and right

• Able to detect eyes as long both eyes are visible to the camera
• Able to detect eye blinking but the speed is inaccurate
• Some speeds cannot be calculated for certain head poses

Eyes follow head’s movement

Test case Result

Head faces upward
and downward

• Able to detect eyes up to a certain degree
• EAR becomes smaller (bigger than when eyes look in front)
• Able to detect eye blinking
• Speed is less accurate

Head turns to the left
and right

• Able to detect eyes as long both eyes are visible to the camera
• Able to detect eye blinking but the speed is inaccurate
• Some speeds cannot be calculated for certain head poses

5 Conclusion

In this paper, we have shown that by calculating the speed of the eye blinking, we are
able to distinguish between a wakeful and a drowsy blink of a driver in real-time. In
particular, we can also detect the gradual process of a driver becoming drowsy. Such a
real-time drowsiness detection system plays a key role in preventing car accidents due to
microsleep.

However, our extensive evaluations also revealed some deficits, which should be ad-
dressed in future developments of our simple algorithm. Firstly, the problem where the
algorithm cannot detect the eyes in a certain angle when the head is in a certain position
(such as tilted upwards or downwards) can be improved either by identifying the rota-
tion of the head and give conditions in the program or by including additional cameras
positioned in different angles [19]. Secondly, facial expression such as smiling has an im-
pact on the measured EAR. Therefore an additional algorithm is needed to detect facial
expression, which can then be used to adapt the maximum and minimum thresholds
defined in (3) and (4). Another improvement of our algorithm regards the inclusion of
optical effects that can occur due to eye glasses.

36

References

1. Goldenbeld, C., Nikolaou, D.: E-survey of road users’ attitude (2019) SWOV Institute for
Road Safety Research SWOV.

2. Cruz, S.D.D., Wasenmüller, O., Beise, H.P., Stifter, T., Stricker, D.: SVIRO: Synthetic vehi-
cle interior rear seat occupancy dataset and benchmark. In: IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV). (2020)

3. Ebrahim, P.: Driver drowsiness monitoring using eye movement features derived from elec-
trooculography. PhD thesis, University of Stuttgart (2016)

4. Soares, S., Monteiro, T., Lobo, A., Couto, A., Cunha, L., Ferreira, S.: Analyzing driver
drowsiness: From causes to effects. MDPI Sustainability 12(5) (2020)

5. Haq, Z.A., Hasan, Z.: Eye-blink rate detection for fatigue determination. In: India Interna-
tional Conference on Information Processing (IICIP). (2016)

6. Islam, A., Rahaman, N., Ahad, M.A.R.: A study on tiredness assessment by using eye blink
detection. In: Jurnal Kejuruteraan. (2019) 209–214

7. Picot, A., Charbonnier, S., Caplier, A.: Drowsiness detection based on visual signs: blink-
ing analysis based on high frame rate video. In: IEEE International Instrumentation and
Measurement Technology Conference (I2MTC). (2010)

8. Galley, N., Schleicher, R., Galley, L.: Blink parameter as indicators of driver’s sleepiness
– possibilities and limitations (2003) University of Cologne, Institute for Clin. Psychology
and Psychotherapy).

9. Hayami, T., Matsunaga, K., Shidoji, K., Matsuki, Y.: Detecting drowsiness while driving
by measuring eye movement-a pilot study. In: IEEE International Conference on Intelligent
Transportation Systems (ITSC). (2002)

10. Ueno, H., Kaneda, M., Tsukino, M.: Development of drowsiness detection system. In:
Vehicle Navigation and Information Systems Conference (VNIS). (1994) 15–20

11. Adochiei, I.R., Oana-Isabela, Adochiei, N.I., Gabriel, M.P., Larco, C.M., Mustata, S.M.,
Costin, D.: Drivers’ drowsiness detection and warning systems for critical infrastructures.
In: IEEE International Conference on E-Health and Bioengineering (EHB). (2020)

12. Kolpe, P., Kadam, P., Mashayak, U.: Drowsiness detection and warning system using
python. In: International Conference on Communication and Information Processing (IC-
CIP). (2020)

13. Suhaiman, A.A., May, Z., Rahman, N.A.A.: Development of an intelligent drowsiness de-
tection system for drivers using image processing technique. In: IEEE Student Conference
on Research and Development. (2020)

14. Rahmad, C., Asmara, R., Putra, D., Dharma, I., Darmono, H., Muhiqqin, I.: Comparison
of viola-jones haar cascade classifier and histogram of oriented gradients (hog) for face
detection. In: IOP Conference Series: Materials Science and Engineering. (2020)

15. Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., Pantica, M.: 300 faces in-the-
wild challenge: database and results. Image and Vision Computing (2016) 3–18

16. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). (2005)

17. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression
trees. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2014)

18. Soukupová, T., Cech, J.: Real-time eye blink detection using facial landmarks. In: 21st
Computer Vision Winter Workshop. (2016)

19. Feld, H., Mirbach, B., Katrolia, J., Selim, M., Wasenmüller, O., Stricker, D.: DFKI cabin
simulator: A test platform for visual in-cabin monitoring functions. In: Commercial Vehicle
Technology, Springer (2021) 417–430

37

MFmap: A semi-supervised generative model matching cell
lines to cancer subtypes

Xiaoxiao Zhang1,2, Maik Kschischo1

1 Department of Mathematics and Technology, RheinAhrCampus, University of Applied Sciences
Koblenz, 53424 Remagen, Germany

kschischo@rheinahrcampus.de
2 Department of Informatics, Technical University of Munich, 81675 Munich, Germany

Abstract. Cell lines are widely used experimental models in cancer research. However,
is limited by the discordance

semi-supervised generative model to integrate high-dimensional geneexpression, copy
number variation and somatic mutation data of both tumours and cell lines into a small set
of features that are highly associated with cancer subtypes, and predict the cell line subtypes
simultaneously. These low-dimensional features are biologically interpretable and can be
used for matching a given cell line to individual tumours. This enables cancer researchers

From an application perspective, we demonstrate how the predicted cancer subtype for cell

glioblastoma and breast cancer. This is helpful for guiding personalised treatment decisions
and could facilitate drug repurposing for cancer treatments. Thanks to its generative nature,
MFmap enables the analysis of cellular status transitions during cancer progression. In

pe to
an aggressive subtype indeed acquires marker features unique to the targeted subtype in
glioblastoma. From a methodological perspective, the newly derived loss function of our

 on both
-step-optimisation manner. We

good generative performance simultaneously. These results show that the MFmap will be
useful for many semi-supervised prediction tasks in the biomedical sciences and beyond.

This work was supported by the FOR2800 research unit funded by the Deutsche
Forschungsgemeinschaft.

38

Systematic investigation of Basic Data Augmentation
Strategies on Histopathology Images

Jonas Annuscheit, Benjamin Voigt, Oliver Fischer, Patrick Baumann,
Sebastian Lohmann, Christian Krumnow and Christian Herta

University of Applied Sciences (HTW) Berlin, Centrum für Biomedizinische Bild- und
Informationsverarbeitung (CBMI), Ostendstraße 25, 12459 Berlin, Germany

{first name}.{last name}@htw-berlin.de

Abstract. Recent years have witnessed the rapid progress of deep neural net-
works. However, in supervised learning, the success of the models hinges on a
large amount of training data. Therefore, data augmentation techniques were de-
veloped to increase the effective size of the training data. Using such techniques is
especially important for domains where the amount of available data is limited. In
digital pathology, data augmentation is therefore often applied to improve the per-
formance of classifications. This work systematically investigates single data aug-
mentation techniques on different datasets using multiple network architectures.
Furthermore, it proposes guidelines on using data augmentation when training
deep neural networks on histopathological data.

Keywords: Convolutional Neural Network, Data Augmentation, Digital Pathol-
ogy

1 Introduction

The prediction quality of supervised learning models relies on the available data’s quan-
tity, quality, and heterogeneity. In training a deep neural network, these factors are
essential to create a robust and generalizing model. Different transformation techniques
can be utilized on the available data to synthesize new samples if a dataset lacks some
of these aspects. Such techniques are summarized under the term data augmentation.

Nowadays, there are a variety of different augmentation methods to synthesize new
data. These range from classic image manipulation approaches to more contemporary
methods like training with adversarial examples [1] or generating entirely new datasets
using generative adversarial networks [2]. Several studies investigated the effect of such
data transformations on traditional machine learning datasets and proved their benefit [3,
4]. We applied and reviewed some of these transformations to the domain of histopatho-
logical datasets.

In recent years, the medical field of pathology has been subject to digital change.
Part of this change is to aid the traditional diagnostics, i.e., inspecting extracted tissue
sections under a light microscope with computer algorithms [5, 6]. A promising option is
to let machine learning or deep learning support pathologists’ diagnostic work. Therefore,
numerous research studies attempt to answer specific pathological questions using neural
networks. Since these questions are usually image classification problems, the approaches
use the supervised learning regime, utilizing convolutional neural networks (CNN) [7–9].

Although there are examples of publicly available digitized tissue samples [10], there
is a lack of well-curated datasets useful for the supervised learning approach. In addition,
highlighting the need for data augmentation methods in this domain, most public datasets

39

are relatively small. Collecting suitable images for a given medical problem is challenging
due to the non-uniformity of manifestations and the need to consider patient rights.
Labeling these images requires the highly specialized expertise of a pathologist, adding
to an already busy workload.

In this work, we build a pipeline to systematically investigate basic data augmen-
tation techniques on different classification datasets and network architectures. For this
purpose, we selected two public histopathological datasets for different medical prob-
lems: classification of mitosis candidates and tissue type classification. We trained three
contemporary CNN architectures for all of these data sets, examining different types of
augmentation methods. This paper describes the experimental setup to measure the in-
fluence of a single data augmentation technique on the model’s performance. In addition,
it proposes guidelines for using data transformations in the supervised learning setting
regarding different types of histopathological data. Finally, it discusses under which cir-
cumstances data augmentation has a reliable benefit for a model’s training process.

2 Related Work

Due to its regularization effect, data augmentation is a popular method used in deep
learning pipelines to reduce overfitting and increase the robustness of a model, especially
concerning an image classification problem. In fact, the method is so established that
several tools exist to make standard techniques more accessible [11–13] or even automate
the augmentation process [14, 15].

Several studies examined the actual influence of different data augmentation tech-
niques and showed its beneficial effects in the context of natural images [3, 16]. A widely
used taxonomy to divide the common techniques into categories is basic image manipula-
tions, e.g., geometric transformations, cropping, occlusion, noise injection, filtering, color
transformations, and deep learning approaches, e.g., adversarial training, style transfer,
synthetic image generation via generative adversarial networks [3, 17].

Unlike in the natural image domain, where datasets can provide millions of images, far
fewer qualitatively annotated samples are available in the field of histopathology. Hence,
data augmentation has established itself as an integral part of the training pipelines in
this area as well. Interestingly, it is almost exclusively the use of newer augmentation
techniques from the deep learning approaches that have been broadly reviewed thus far.
Generative adversarial networks (GANs) were investigated to solve the stain normal-
ization problem using style transfer methods. Color differences and disturbances are a
considerable challenge through various tissue staining protocols and the varying digi-
tization processes. Style transfer can homogenize the color distribution in a data set
and thus the distributional shift in a dataset [18–20]. Some studies even explored the
transfer of staining protocols utilizing GANs; e.g., Mercan et al. trained a model that
converts images obtained from H&E stained tissue into virtual PHH3 staining [21]. In
addition, GANs are used to synthesize completely artificial samples to enrich small data
sets [22–24].

Concerning basic image manipulation, many approaches use several techniques to aug-
ment their datasets but do not evaluate the influence of augmentations; see, e.g. [25, 26].
Primarily, basic manipulation techniques are used intensively in conjunction with semi-
supervised learning methods, which are becoming increasingly popular in this domain
[27–29]. Color transformations, in particular, are one of the most widely used techniques
due to the nature of histopathological images [26]. Tellez et al.[30] and Karimi et al.[31]

40

examined the stain normalization problem more closely and developed custom augmen-
tation techniques for it.

However, in-depth studies which comprehensively evaluate the effect of basic image
manipulation techniques can only be found for radiology images in the medical domain
[17, 32–34].

3 Method

We have developed a pipeline to measure the effect of data augmentation techniques
in supervised learning on histopathology datasets.1 We can configure experiments as a
triple (d,m, t) ∈ D×M ×T where D is the set of possible datasets, M denotes the set of
considered deep neural network architectures, and T corresponds to the set of different
data augmentations. A specific transformation t manipulates online the batches drawn
from the dataset d to create transformed batches, that are used to train a deep neural
network m. Keeping the pair (d,m) constant, the influence of t on the trained model can
be measured by comparing its parameters and performance. This section describes the
sets D, M , T in more detail and contains information about the training and evaluation
protocol used.

3.1 Datasets D

Set D consists of the publicly available datasets MIDOG2 and BACH3. Both sets were
pre-processed to fit a classification problem.

The task of the BACH dataset is to distinguish between four different tissue types.
It is a tiny dataset with images of 2048x1536 pixels and 100 samples per class, i.e., 400
samples overall. Therefore, we cropped patches from the original images using a 512x512
window with a 256-pixel step to increase the dataset size. In addition, we discarded
patches not containing any H&E-stained tissue during the process by removing tiles with
less than 3% tissue. Finally, we split the dataset into three subsets using random sampling
for training (4801 samples), validation (1655 samples), and test (1647 samples). Patches
with overlapping pixels in the subsets were removed. The classes of the dataset are nearly
balanced.

The MItosis DOmain Generalization Challenge [35] published a dataset of human
breast cancer tissue samples. However, we note that up to this point, only the training
set is publicly available, consisting of 1721 mitotic figures and 2714 non-mitotic examples.
The samples were acquired using three different whole slide image scanners and annotated
by trained pathologists with a multi-expert blind annotation pipeline. We pre-processed
the dataset by cropping a 250x250 patch around each annotation center. We sampled
three distinct subsets keeping the class balance: training (2219), validation (1071), and
test (1145).

3.2 Models M

The model set M consists of the networks VGG[36], Inception[37] and Densenet[38]. These
networks form a cross-section over the development of CNN architecture and, therefore,

1 The source code is available via Github: https://github.com/CBMI-HTW/Data-
Augmentation-Histology

2 https://imi.thi.de/midog/the-dataset/
3 https://iciar2018-challenge.grand-challenge.org/Dataset/

41

have distinct structural elements. We intend to investigate whether these structures react
differently to data augmentation. We use a pre-trained PyTorch model with reinitialized
classification head, i.e. vgg11 bn, inception v3 and densenet121, as baseline for each net-
work type. These models require as input square images of a model-dependent size nm,
i.e. the input images have shape nm × nm.

3.3 Transformations T

The transformations in T fall in the categories: color-based, geometric-based, filter-based
transformations, and erasing. All transformations are realized by using the implementa-
tion of the torchvision library.

In our setup, transformations are applied with a certain probability p, with p = 1 if not
stated differently. For most of these transformations t an additional parameter s controls
the strength of the transformation on the input x, i.e. the output of the transformation is
ts(x). For each corresponding transformation, s is sampled from a certain interval, where
the size of this interval is a hyperparameter in our setting.

The hyperparameters of the geometric-based transformations are determined by nm

and the maximal distortion without getting blacked borders. For all other transformations
we perform a hyperparameter optimization on the BACH dataset and VGG model to
identify the best parameter ranges. We trained for each configuration of parameters a
minimum of 7 models and choose the setting with the highest mean validation accuracy as
the best performing one. These models were only used to determine the hyperparamters
and not for the final test results.

Color-Based Transformation As color-based transformations we use the standard
transformation for brightness, contrast, gamma value, hue angle and saturation. The
strength s is sampled randomly from the interval [s0 − s1, s0 + s1] where, the center s0
is defined by ts0 = identity. Here, we sample s indirectly by drawing r ∈ [0, 1] according
to the beta distribution Beta(α = 8, β = 8) and computing s = s0 + (2r − 1)s1. The
half-width s1 was determined in a hyperparameter optimization. The parameters for the
hyperparameter optimization are summarized in Tab. 1, where the intervals for choosing
s1 where found iteratively by hand over multiple trials, ensuring that the chosen value
does not lie on the boundary.

Geometric-Based Transformation As geometric transformations, we investigate flips,
rotations, random cropping to size nm, shearing and scaling. For scaling, rotation, and
shearing, we sample s uniformly from an interval [s0− s1, s0+ s1] as summarized in Tab.
1, where we consider two scaling scenarios. In the case of the flip transformation, we
apply horizontal and/or vertical flips to the input, each with a probability of 0.5. Both
scaling transformations, as well as shearing, is done with p = 0.9.

Filter- and Erasing-Based Transformation As filter-based transformations, we
study Gaussian blurring as well as a sharpness adaption.

For Gaussian blurring, we pick uniformly an odd kernel size between 3 and 15 and use
a minimum and maximum sigma (these are direct inputs to the trochvision implemen-
tation) of 0.001 and 0.5, respectively and set p = 0.5. We did a hyperparameter search
for the maximal kernel-size in {7, 11, 15}, the maximum sigma value in [0.5, 8] and p in
{0.5, 0.75}.

42

Table 1. Parameters used for the color- and geometric-based transformations. The center s0 is
fixed where the interval half-width s1 was either optimized with a hyperparameter optimization
within the given intervals or chosen as stated.

transformation s0 s1 choice of s1 transformation s0 s1 choice of s1

brightness 1.0 0.0175 [0.005, 0.3] rotation 0 180◦ fixed geometrically
contrast 1.0 0.1 [0.025, 0.6] scale I 1 0.15 chosen by hand

hue 0.0 0.00625 [0.00025, 0.6] scale II 1 0.29 fixed geometrically
saturation 1.0 0.025 [0.01, 0.6] shear 0 22◦ fixed geometrically
gamma 1.0 0.05 [0.00625, 0.6]

The sharpness adaption depends on a parameter s ≥ 0 where for s < 1, the image
is blurred and for s > 1 sharpened and s = 1 corresponds to the identity. To define s
we sample r ∈ [0, 1] according to Beta(α = 8, β = 8) and set s = 2r if r ≤ 0.5 and
s = 4.5(2r − 1) + 1 if r > 0.5. The factor 4.5 determines the maximal sharpening factor
and was chosen from a hyperparameter search in the interval [1.0, 8.0].

For erasing-based transformations, we select 3 potentially overlapping erasing rect-
angles with a size ranging from 0.01nm to 0.2nm and aspect ratio ranging from 0.5 to 2.
The trochvision implementation selects the corresponding parameters uniformly within
these ranges. Each rectangle is then applied with p = 0.75. The applied rectangles are
then filled with zeros (erasing (black)) or with white noise (erasing (random)). All three
parameters, the number of rectangles, the maximal size and the appliance probability
were hyperparameter optimized for the erasing (black) scenario over the sets {1, 3},
[0.025nm, 0.4nm] and {0.5, 0.75}, respectively.

3.4 Training Protocol

For the data augmentation experiments we calculated all triplet combinations (d,m, t).
We implemented equal training settings to ensure maximum comparability with the
baseline models, i.e., optimizer, scheduler, learning rates, weight initialization, and fixed
data loading. The only difference in the pipeline was using the investigated transformation
t in the default transformation sequence.

To implement one training cycle, we followed Chollet’s recommendations [39] on fine-
tuning. First, we trained reinitialized layers for a warm-up period before updating all
network parameters’ to prevent the negative effect of a possible large error signal on
previously learned features. We implemented this by training 10 epochs with a 1-cycle
learning rate scheduler [40], a LAMB optimizer [41] and a L2 loss regularization. Then,
followed by another training over 50 epochs, all weights are updated in the network
using the same optimizer and scheduler policies. We always selected the last model of
the training process for the evaluation to ensure that the data was seen equally.

When loading a sample x, we apply a fixed transformation sequence. We perform this
sequence to avoid artificial padded black borders in arbitrary rotation transformations.
However, to maintain comparability, the sequence is always used. (1) Resize the x to√
2∗nm with nm being the network input size. (2) Apply the investigated transformation

t to the resized sample with probability p. (3) Center crop the transformed sample with
the size nm. (4) Normalize the final input by the mean and standard deviation of each
color channel. Exceptions to this sequence are erasing-based transformations, which are
applied at the end of the sequence to not corrupt the normalization process.

43

We performed a hyperparameter optimization for the training settings of each baseline
model and dataset (d,m) using grid search. These final settings are reported in table 2
and used for the training of each triplet (d,m, t).

Table 2. Final parameter used for the training of each triplet (d,m, t) where the parameters
are optimized for the baseline model of every pair (d,m) ∈ D ×M .

BACH MIDOG

Parameter VGG Inception Densenet VGG Inception Densenet

Epochs (total) 60 60 60 60 60 60
Epochs (warm-up) 10 10 10 10 10 10
Learning Rates 0.0016 0.0016 0.0016 0.0064 0.0032 0.0032
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 64 64 64 64 64 64

3.5 Evaluation Protocol

To account for the randomness during training given due to weight initialization of the
classification head, dropout layer and random application of augmentations, that results
in a spread of experiment outcomes, we conducted 10 experiment runs per configuration
(d,m, t). The 10 experiments only differ by a random seed given at the start of training.
This allows gathering a statistic, which makes a more accurate statement about the
effectiveness of an augmentation and also enables an expressive comparison between
them. As metric, we use the accuracy value on the plain test set for testing the model.

4 Results and Discussion

We summarize our findings for each triplet in a boxplot.4 We interpret an augmentation
technique as effective if its median is above the mean of the baseline model (continuous
horizontal line) and their overlap in the interquartile range (IQR = Q3 - Q1) is minimal.
We show the results for each dataset in Figure 1 and Figure 2 grouped by the augmenta-
tion strategies and the network architecture. For a clean plot appearance, a few extreme
outliers were discarded from the visualization.

For the BACH dataset, we observe an expected behavior of the baseline models. With
the rising complexity of the network architecture, the accuracy increases slightly. How-
ever, comparing the baseline with models trained using data augmentations shows that
the geometric transformations stand out. Since the histopathological data is rotation
invariant and the importance of morphological structures, we anticipated such results.
Furthermore, erasing-based augmentations also provide a beneficial effect. On the other
hand, filter-based and color-based transformations do not seem to have a positive in-
fluence, nor do they harm the model’s performance for the chosen hyperparameters.
Especially regarding the color-based augmentations methods, that finding was surpris-
ing since we presumed the manipulation of the color space to be a critical factor in the
context of histopathological data. Our hypothesis that the color distortions caused by

4 Interactive versions of the charts and more details of the results can be viewed at https://cbmi-
htw.github.io/Data-Augmentation-Histology-Website/

44

Fig. 1. Results for the BACH dataset. We show the individual mean accuracies on the test set
as well as resulting boxplots for the 10 runs for the baseline configuration and the individual
transformations for all three network architectures.

Fig. 2. Results for the MIDOG dataset. We show the individual mean accuracies on the test
set as well as resulting boxplots for the 10 runs for the baseline configuration and the individual
transformations for all three network architectures.

45

the hyper-optimized transformations were too close to the identity could not be verified.
Additional experiments with artificial parameter values for the transformations to change
the input drastically lead to similar results. The results for the MIDOG dataset are essen-
tially alike. Geometric-based augmentations raise the performance, whereas color-based
and filter-based transformations have no significant effect. Indeed, the scatter and the
overlap with the baseline is so tremendous that no positive effect can be ascribed to these
transformations. Erasing-based augmentation harms the model performance significantly.
We assume that the augmentation occasionally covers the cell nucleus, which is essential
for distinguishing between mitosis and non-mitosis. However, we did not investigate this
further and leave this for future work.

Additionally, we have to mention that it took much computational effort to get the
results reliable and robust due to intensive hyperparameter optimization. We observed a
strong sensitivity towards the hyperparameters of the learning process. Tiny changes in
the training settings, e.g., learning rate or batch size, let the benefits of data augmentation
vanish in noise. Therefore, we advise using augmentation techniques in combination with
well-optimized training hyperparameters to profit from the method. We even suggest
tuning the transformation parameters for an optimal result.

5 Conclusion

We examined basic data augmentation techniques frequently used in deep learning classi-
fier training pipelines on two histopathological data. Overall geometric-based techniques
increase the model performance on such datasets. However, surprisingly, color-based aug-
mentations do not have the expected impact and are costly due to the required parameter
optimization. Next to supervised learning settings, we expect this work to improve con-
temporary semi-supervised learning methods, e.g., contrastive learning, and assume such
methods will considerably impact the training of deep learning models in the histopatho-
logical domain.

Acknowledgments
The authors thank Dr. Tim-Rasmus Kiehl, M.D. (Charité, Institute of Pathology) for
helpful comments and acknowledge the financial support by the Federal Ministry of Edu-
cation and Research of Germany (BMBF) in the project deep.HEALTH (13FH770IX6).

References

1. Miyato, T., Maeda, S., Koyama, M., Nakae, K., Ishii, S.: Distributional smoothing by virtual
adversarial examples. In: 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. (2016)

2. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convo-
lutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

3. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning.
Journal of Big Data 6(1) (2019) 1–48

4. O’Gara, S., McGuinness, K.: Comparing data augmentation strategies for deep image clas-
sification. In: Irish Machine Vision and Image Processing Conference (IMVIP). (2019)

5. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: Chal-
lenges and opportunities. Medical image analysis 33 (2016) 170–175

6. Niazi, M.K.K., Parwani, A.V., Gurcan, M.N.: Digital pathology and artificial intelligence.
The lancet oncology 20(5) (2019) e253–e261

46

7. Ertosun, M.G., Rubin, D.L.: Automated grading of gliomas using deep learning in digital
pathology images: A modular approach with ensemble of convolutional neural networks.
In: AMIA Annual Symposium Proceedings. Volume 2015., American Medical Informatics
Association (2015) 1899

8. Li, C., Wang, X., Liu, W., Latecki, L.J.: Deepmitosis: Mitosis detection via deep detection,
verification and segmentation networks. Medical image analysis 45 (2018) 121–133

9. Rouhi, R., Jafari, M., Kasaei, S., Keshavarzian, P.: Benign and malignant breast tumors
classification based on region growing and cnn segmentation. Expert Systems with Appli-
cations 42(3) (2015) 990–1002

10. Tomczak, K., Czerwińska, P., Wiznerowicz, M.: The cancer genome atlas (tcga): an immea-
surable source of knowledge. Contemporary oncology 19(1A) (2015) A68

11. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.:
Albumentations: Fast and flexible image augmentations. Information 11(2) (2020)

12. Casado-Garćıa, A., Domı́nguez, C., Garćıa-Domı́nguez, M., Heras, J., Inés, A., Mata, E.,
Pascual, V.: Clodsa: a tool for augmentation in classification, localization, detection, se-
mantic segmentation and instance segmentation tasks. BMC bioinformatics 20(1) (June
2019) 323

13. Bloice, M.D., Roth, P.M., Holzinger, A.: Biomedical image augmentation using augmentor.
Bioinformatics 35(21) (2019) 4522–4524

14. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning aug-
mentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. (2019) 113–123

15. Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. Advances in Neural
Information Processing Systems 32 (2019) 6665–6675

16. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using
deep learning. arXiv preprint arXiv:1712.04621 (2017)

17. Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., Haworth, A.: A review
of medical image data augmentation techniques for deep learning applications. Journal of
Medical Imaging and Radiation Oncology (2021)

18. Cho, H., Lim, S., Choi, G., Min, H.: Neural stain-style transfer learning using gan for
histopathological images. arXiv preprint arXiv:1710.08543 (2017)

19. Zanjani, F.G., Zinger, S., Bejnordi, B.E., van der Laak, J.A., de With, P.H.: Stain normal-
ization of histopathology images using generative adversarial networks. In: 2018 IEEE 15th
International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018) 573–577

20. Mahapatra, D., Bozorgtabar, B., Thiran, J.P., Shao, L.: Structure preserving stain normal-
ization of histopathology images using self supervised semantic guidance. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention, Springer
(2020) 309–319

21. Mercan, C., Mooij, G., Tellez, D., Lotz, J., Weiss, N., van Gerven, M., Ciompi, F.: Virtual
staining for mitosis detection in breast histopathology. In: 2020 IEEE 17th International
Symposium on Biomedical Imaging (ISBI), IEEE (2020) 1770–1774

22. Xue, Y., Zhou, Q., Ye, J., Long, L.R., Antani, S., Cornwell, C., Xue, Z., Huang, X.: Synthetic
augmentation and feature-based filtering for improved cervical histopathology image clas-
sification. In: International conference on medical image computing and computer-assisted
intervention, Springer (2019) 387–396

23. Wei, J., Suriawinata, A., Vaickus, L., Ren, B., Liu, X., Wei, J., Hassanpour, S.: Generative
image translation for data augmentation in colorectal histopathology images. Proceedings
of machine learning research 116 (2019) 10

24. Quiros, A.C., Murray-Smith, R., Yuan, K.: Pathologygan: Learning deep representations
of cancer tissue. In: Proceedings of the Third Conference on Medical Imaging with Deep
Learning. (2020)

25. Roy, K., Banik, D., Bhattacharjee, D., Nasipuri, M.: Patch-based system for classification of
breast histology images using deep learning. Computerized Medical Imaging and Graphics
71 (2019) 90–103

47

26. Lafarge, M.W., Pluim, J.P., Eppenhof, K.A., Moeskops, P., Veta, M.: Domain-adversarial
neural networks to address the appearance variability of histopathology images. In: Deep
learning in medical image analysis and multimodal learning for clinical decision support.
Springer (2017) 83–91

27. Ciga, O., Martel, A.L., Xu, T.: Self supervised contrastive learning for digital histopathology.
arXiv preprint arXiv:2011.13971 (2020)

28. Azizi, S., Mustafa, B., Ryan, F., Beaver, Z., Freyberg, J., Deaton, J., Loh, A., Karthike-
salingam, A., Kornblith, S., Chen, T., et al.: Big self-supervised models advance medical
image classification. arXiv preprint arXiv:2101.05224 (2021)

29. Liu, Q., Louis, P.C., Lu, Y., Jha, A., Zhao, M., Deng, R., Yao, T., Roland, J.T., Yang, H.,
Zhao, S., et al.: Simtriplet: Simple triplet representation learning with a single gpu. arXiv
preprint arXiv:2103.05585 (2021)

30. Tellez, D., Litjens, G., Bándi, P., Bulten, W., Bokhorst, J.M., Ciompi, F., van der Laak, J.:
Quantifying the effects of data augmentation and stain color normalization in convolutional
neural networks for computational pathology. Medical image analysis 58 (2019) 101544

31. Karimi, D., Nir, G., Fazli, L., Black, P.C., Goldenberg, L., Salcudean, S.E.: Deep learning-
based gleason grading of prostate cancer from histopathology images—role of multiscale
decision aggregation and data augmentation. IEEE journal of biomedical and health infor-
matics 24(5) (2019) 1413–1426

32. Fabian, Z., Heckel, R., Soltanolkotabi, M.: Data augmentation for deep learning based
accelerated mri reconstruction with limited data. In: International Conference on Machine
Learning, PMLR (2021) 3057–3067

33. Tran, N.T., Tran, V.H., Nguyen, N.B., Nguyen, T.K., Cheung, N.M.: On data augmentation
for gan training. IEEE Transactions on Image Processing 30 (2021) 1882–1897

34. Nalepa, J., Marcinkiewicz, M., Kawulok, M.: Data augmentation for brain-tumor segmen-
tation: A review. Front Comput Neurosci 13 (12 2019) 83

35. Aubreville, M., Bertram, C., Veta, M., Klopfleisch, R., Stathonikos, N., Breininger, K., ter
Hoeve, N., Ciompi, F., Maier, A.: Mitosis domain generalization challenge (March 2021)

36. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. In Bengio, Y., LeCun, Y., eds.: 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
(2015)

37. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception ar-
chitecture for computer vision. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. (2016) 2818–2826

38. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolu-
tional networks. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. (2017) 4700–4708

39. Chollet, F.: Deep Learning with Python. Manning (November 2017)
40. Smith, L.N., Topin, N.: Super-convergence: Very fast training of neural networks using large

learning rates. In: Artificial Intelligence and Machine Learning for Multi-Domain Operations
Applications. Volume 11006., International Society for Optics and Photonics (2019) 1100612

41. You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Demmel, J.,
Keutzer, K., Hsieh, C.J.: Large batch optimization for deep learning: Training bert in 76
minutes. In: International Conference on Learning Representations. (2020)

48

Online extraction of functional data from video recordings of
gut movements using AI features

Pervaiz Khan1, Manuela Gries2, Ahmed Sheraz1, Steven Schulte2, Anne Christmann2, Marko
Baller2, Karl-Herbert Schäfer2, Andreas Dengel1

1 DFKI (German Research Centre for Artificial Intelligence, Kaiserslautern Germany),
2 University of Applied Sciences Kaiserslautern, Campus Zweibrücken, Germany

Abstract. The gut is an often underestimated organ which contributes significantly
to our health condition 1 . It is also one of the main entry gates for pathogens, toxins
or drugs, thus influencing the whole body. The gut harbors an intrinsic and autonomeously
working nervous system, the socalled enteric nervous system (ENS) that regulates
blood flow, resorption, mucosal barrier function and gastrointestinal motility. The
gastrointestinal motility is an appropriate readout to evaluate the health status of the whole
organ, since all kind of compromising or challenging agents, either orally or systemically
administered will affect the ENS 2,3,4 . Moreover the gut can be compromised in
various diseases. During the last years, the role of the gut in neurodegenerative
processes and diseases came more and more into focus and it could i.e. be demonstrated
that gut motility changes also in models of Alzheimer and Parkinsons disease (PD)
5,6 . In PD patients, gastrointestinal problems often appear long before the disease is
diagnosed. In a recent study it could nicely be demonstrated that in very young (2 month)
mice that overexpress the alpha synuclein pathogenic peptide, the alteration of colonic
motility was related to molecular alterations of the ENS 7 . While the use of muscle strips
with the included ENS to investigate isometric contractions is a rather artificial approach,
using intact gut segments with intact mucous layers and even if necessary, mesenterial
perfusion, can deliver much more in vivo equivalent data to analyse gut activity under the
influence of external or systemic factors.

Figure 1 Heat maps that represent the movement of the colon in a PD model (right) compred to the wild
type mouse colon. While the WT shows a continuous series of propagating contractions, the PD gut is rather
slow.

Gut segments from the colon of adult mice were fixed in a tubing system and placed in an
organ bath under continuous luminal perfusion. The perfusion was performed using an
efflux resistance of 3cm H 2 O to induce gut movements. The organ bath chamber was
equipped with a frontal and bottom glass plate, so that a continuous video recording from

49

front and bottom could be realized. The gut was perfused and superfused with a 37°C
warm Tyrode buffer solution at an pH of 7,4. The buffer was oxygenized prior to perfusion
to obtain a sufficient oxygen saturation. The gut was allowed to equilibrate for 10 min after
fixaton in the organ bath under physiological conditions. Then the experiment was
started. Two cameras, positioned either in front or at the bottom window of the organ bath
chamber, were started at the same time and the spontaneous activity ot the gut recorde for
10 min. Then the gut was challenged with individual drug compounds to stimulate its
activity for another 10 min. At the end of the experiment, a maximal stimulation was
achieved using Acetylecholine. To analyze the movement of the gut, initially 33 virtual dots
positions are selected on the boundary of the gut manually. Then, in each frame of the
video, vertical movement of the dots is tracked using distance transforms while considering
the fixed horizontal position. Then, the distance of every dot is measured to the
corresponding dot in the previous frame. In this way, gut movement is tracked in the
complete video. The heat map of the movement is presented in the Figure below:

Figure 2 Heat map presents the vertical movement of guts in a video.

The approach demonstrates the use of AI algorithms to extract valuable and quantifiable
data from gut movements online in real time. This allows to investigate the impact of either
drugs, toxins, nutritional components or even diseases upon gastrointestinal motility. The
method delivers timely and spatial resolution of gut movements, so that a detailed
analysis of functional distinct entities of the gut (i.e. proximal and distal colon) can be
evaluated and compared.

References

1. Disorders Niesler B, Kuerten S, Demir IE, Schäfer KH.of the enteric nervous system - a
holistic view. Nat Rev Gastroenterol Hepatol. 2021 Jan 29. doi: 10.1038/s41575-020-
00385-2.

2. Schreiber D, Klotz M, Laures K, Clasohm J, Bischof M, Schäfer KH.The mesenterially
perfused rat small intestine: A versatile approach for pharmacological testings. Ann Anat.
2014 May;196(2-3):158-66

3. Schreiber D, Jost V, Bischof M, Seebach K, Lammers WJ, Douglas R, Schäfer KH.
Motility patterns of ex vivo intestine segments depend on perfusion mode. World J
Gastroenterol. 2014 Dec 28;20(48):18216-27. doi: 10.3748/wjg.v20.i48.18216.

50

4. Subramanya SB, Stephen B, Nair SS, Schäfer KH, Lammers WJ.) Effect of Ethanol
Exposure on Slow Wave Activity and Smooth Muscle, Contraction in the Rat Small
Intestine. Dig Dis Sci. 2015 Dec;60(12):3579-89. doi: 10.1007/s10620-015-3813-7

5. Semar S, Klotz M, Letiembre M, Van Ginneken C, Braun A, Jost V, Bischof M, Lammers
WJ, Liu Y, Fassbender K, Wyss-Coray T, Kirchhoff F, Schäfer KH. Changes of the
enteric nervous system in Amyloid Precursor Protein transgenic mice correlate with
disease progression. Journal of Alzheimers Disease, 2013, 36(1):7-20. doi: 10.3233/JAD-
1205116

6. Schäfer KH, Christmann A, Gries M. Can we trust the gut? The role of the intestine in
neurodegeneration. J Physiol. 2020 Oct;598(19):4141-4142. doi: 10.1113/JP280336.
Epub 2020 Aug 20.PMID: 32706398

7. Gries M, Christmann A,Schulte S, Weyland M, Rommel S, Martin M, Baller M, Röth R,
Schmitteckert S, Unger M, Liu Y, Sommer F, Mühlhaus T, Schroda M, Timmermans
Jp, Pintelon I, Rappold Ga, Britschgi M, Lashuel H, Menger Md, Laschke Mw, Niesler
B, Schäfer Kh. Parkinson mice show functional and molecular changes in the gut long
before motoric disease onset. Molecular Neurodegeneration Juni 2021

51

An artificial neural network-based toolbox for the orphological
analysis of red blood cells in flow

Marcelle Lopes, Stephan Quint

Cysmic GmbH, Germany
marcelle.lopes@cysmic.de, stephan.quint@cysmic.de

Abstract. We present a toolbox that combines image processing techniques with artificial
intelligence to enable single-cell the detection and characterization of red blood cells
observed in microfluidic flow. In healthy subjects, red blood cells show a smooth transition
between an axis-symmetric (“croissant”) and non-axis-symmetric (“slipper”) shape
depending on their flow velocity. However, in subjects with blood diseases this shape
dynamics is disturbed and results in deviating blood flow properties. Current diagnostic
methods rely on the identification of genetic mutations in addition to functional tests,
including the manual evaluation of red blood cells in stasis. Although the latter technique
is considered a clinical standard, it is not sufficient to discriminate between blood diseases
and their severities. The automation of the characterization of images of single red blood
cells in flow is an unbiased technique that could set new standards in blood disease clinical
diagnostics. Considering the large variety of red blood cells shape deformations, we
developed a semi-supervised neural network for a reliable and reproducible cell shape
evaluation. By arranging ideal shapes as cornerstones of the training data set, cell shape
transitions are self-learned during the training process of the neural network. This highly
reduces the amount of required training data as well as the need for a manual pre-
classification. Our approach , in addition to avoiding errors due to manually selected
training data (supervised training), also enables the definition of custom thresholds and
metrics for further discrimination and statistical analysis. The technique will be tested on
blood of patients with inherited rare anemias, e.g., sickle-cell disease, as well as on
transfusion blood and chronic and infectious diseases, such as COVID-19.

Keywords: Artificial Neural Networks, Variational Autoencoders, Red Blood cells, Blood
disease clinical diagnostics

52

Comparing a deterministic and a Bayesian
classification neural network for chest diseases in

radiological images

Jonas Nolde and Ruxandra Lasowski

Hochschule Furtwangen University
jonas.nolde@hs-furtwangen.de,

ruxandra.lasowski@hs-furtwangen.de

Abstract. A common mantra for automated decision systems is that a system
should know when it doesn’t know. Bayesian neural networks are designed to
capture uncertainties over the network weights and in theory, they perform better
predictions and output uncertainties. To this end, we compare in this paper a
deterministic neural network and a Bayesian neural network for the classification
of chest diseases in radiological images. We use the ChestX-ray14 data set [1]
involving 14 respiratory diseases like pneumonia and atelectasis. We found that the
deterministic network similar to CheXNet [2] outperformed the Bayesian version
in this task, whereas, employed on the more simplistic MNIST dataset it did not.
Our experiments suggest that there is a gap between theory and practical use of
BNNs for very deep networks and real clinical data.

Keywords: medicine, radiology, classification, deterministic neural networks,
Bayesian neural networks

1 Introduction

In 2016 almost 2.38 million people died from lower respiratory infections worldwide.
This was the sixth leading cause of mortality for all ages that year [3]. For the last three
decades, pneumonia was the most common cause of death for children under 5 years
[4]. While the treatment of a diagnosed pneumonia patient can be done efficiently with
low-cost, low-tech medication and care [5], the detection of lower respiratory infections
leaves room for improvement. The diagnosis of such diseases with the help of chest X-rays
is very effective and currently the best available method [6]. Unfortunately, this task is
challenging and requires expert radiologists which are rare in impoverished regions.

Past work about the detection and classification of lung diseases on chest X-rays with
convolutional neural networks (CNNs) could achieve promising results that match or
exceed the performance of radiologists [2]. These deterministic neural networks, albeit
being right most of the time, won’t tell you how certain they are about their decisions.
In critical applications, where the cost of error is high, an indication of confidence can
be extremely valuable, especially in uncertain edge cases.

While deterministic neural networks contain a specific set of weights, Bayesian neural
networks (BNNs) assign probabilities to all possible sets of weights, allowing for un-
certainty quantification. In this work, we will assess the applicability of Bayesian deep
learning in the field of medical diagnosis. We, therefore, implement a version of the de-
terministic neural network CheXNet [2] and a Bayesian version of CheXNet using recent
advances in Bayesian deep learning. We then evaluate and compare their performance
on the ChestX-ray14 data set [1]. Furthermore, we efficiently measure aleatoric and epis-
temic uncertainties in the Bayesian model’s predictions.

53

2 Related Work

2.1 Bayes’ Theorem

Bayesian deep learning utilizes Bayes’ Theorem to calculate conditional probabilities. In
the context of deep learning, Bayes’ Theorem can be rewritten as

p(w|D) =
p(D|w) p(w)

p(D)
, (1)

with a neural network’s parameters w (the hypothesis) and data D (the evidence).
Bayesian deep learning aims to calculate the posterior distribution p(w|D), which ”cap-
tures the set of plausible model parameters, given the data” [7]. This is done by mul-
tiplying the likelihood p(D|w) of data D occurring given parameters w with the prior
distribution p(w) and normalizing it by the data distribution p(D).

We can implement a Bayesian neural network by replacing a ”deterministic network’s
weight parameters with distributions over these parameters, and instead of optimising
the network weights directly we average over all possible weights (referred to as marginal-
isation)” [7]. With Bayesian inference we can calculate the posterior distribution p(w|D)
and predict probabilities y∗ given new data x∗:

p(y∗|x∗,D) =

∫
p(y∗|x∗, w) p(w|D) dw . (2)

2.2 Variational Inference

Hinton and Van Camp initially proposed variational inference for neural networks in
1993 [8] as an alternative to methods involving expensive Monte Carlo sampling. In
2011, Graves [9] published an improved approach, suitable for more complex neural net-
works. Variational inference solves the intractability of the integral over the true posterior
distribution p in eq. 2 by integrating over a simplified posterior distribution q with varia-
tional parameters θ instead. This variational posterior qθ is an approximation of the true
posterior p but is easier to sample from. In most cases, a Gaussian distribution N (μ, σ2)
with parameters θ = (μ, σ2) for the mean and the variance respectively is used. Graves’
approach optimizes the posterior approximation qθ(w|D) ≈ p(w|D) by minimizing the
variational free energy F , also referred to as the negative variational lower bound or
negative evidence lower bound (ELBO). For deep learning, F can be reinterpreted as
minimum description length cost function [9]:

F(D, θ) = KL[qθ(w)||p(w)]− Eqθ(w)[log p(D|w)], (3)

where KL[qθ(w)||p(w)] is the Kullback-Leibler (KL) divergence between both distri-
butions. It consists of a data-dependent part (the likelihood cost or error loss) and a
prior-dependent part (the complexity loss). The function embodies a trade-off between
satisfying the complexity of the data D and the simplicity of the prior p(w) [10].

Graves’ approach for a tractable approximation of the Bayesian neural network’s pos-
terior distribution was the cornerstone for more efficient and stable estimation methods
like Stochastic Gradient Variational Bayes (SGVB) [11], the local reparameterization
trick [12] and the flipout estimator [13].

54

2.3 Uncertainty Estimation in Bayesian Deep Learning

Kendall and Gal [7] describe the two types of uncertainty in the context of Bayesian deep
learning as follows:

Epistemic uncertainty is often referred to as model uncertainty, as it ”captures our
ignorance about which model generated our collected data” [7].

Aleatoric uncertainty, on the other hand, ”captures noise inherent in the observations”
[7] and thus is often referred to as data uncertainty. This type of uncertainty can further
be categorized into homoscedastic uncertainty and heteroscedastic uncertainty. While
homoscedastic uncertainty stays constant for different inputs, heteroscedastic uncertainty
varies from input to input, with some potentially having more noisy outputs than others.
They note that ”heteroscedastic uncertainty is especially important for computer vision
applications” [7].

The paper concludes, that measuring both types of uncertainty is crucial for the safety
and reliability of models. Aleatoric uncertainty is important for ”large data situations,
where epistemic uncertainty is explained away” and ”real-time applications, because
we can form aleatoric models without expensive Monte Carlo samples” [7]. Epistemic
uncertainty is important for ”safety-critical applications, because epistemic uncertainty
is required to understand examples which are different from training data” and ”small
datasets where the training data is sparse” [7].

Kendall and Gal [7] proposed a method to estimate both the aleatoric and the epis-
temic uncertainty, which was later refined for classification by Kwon et al. [14]:

1

T

T∑
t=1

diag(p̂t)− p̂t p̂
T
t︸ ︷︷ ︸

aleatoric

+
1

T

T∑
t=1

(p̂t − pt)(p̂t − pt)
T

︸ ︷︷ ︸
epistemic

, (4)

with the predicted probability vector p̂t = p(ŵt) = Softmax{f ŵt(x∗)}, that is sampled
T times, the diagonal matrix diag(p̂t) with elements of vector p̂t, and the mean predicted

probability p =
∑T

t=1 p̂t/T . We later use the formula of 4 in our experiment to measure
our model’s uncertainties.

3 Methods

3.1 First Tests with TensorFlow Probability and MNIST

To gain our first practical experience in implementing a Bayesian convolutional neural
network for disease classification on X-rays with TensorFlow 2.0 and its probabilistic
programming library TensorFlow Probability, we first looked at a simpler image clas-
sification task. We implemented the small LeNet-5 network [15]. It consists of only 7
layers (3 convolutional layers, 2 subsampling layers, 2 fully connected layers) making it
a relatively simple and small network in today’s time. The original LeNet-5 architecture
is a deterministic neural network and does not use probabilistic methods. To make it
Bayesian we replaced the deterministic convolutional and fully connected layers from
TensorFlow with the probabilistic layers from TensorFlow Probability. The model’s task
is to classify the images of the MNIST data set [15] and tell which digit is depicted.
The data set contains 28×28 pixel small, grayscale images of a handwritten digit (0-9),
normalized in size and centered in the image and is split into 60,000 training samples and
10,000 test samples. We trained the model in mini-batches with 128 normalized images
each, where the Adam optimizer [16] minimizes the categorical cross-entropy loss.

55

Results and Conclusion After training for 75 epochs, the Bayesian model achieved a
validation accuracy of 0.984, which was good enough for us to stop the training. We then
performed Monte Carlo sampling by asking the trained model to predict the labels of the
same unseen images 50 times. The resulting outputs were different at each prediction as
figure 1(b) shows. For comparison, we trained a non-Bayesian, deterministic version of
the network. 10 epochs of training already yielded a training accuracy of 0.997. Figure
1(a) shows the resulting test prediction plots. Note that a deterministic model always
outputs the same values for the same input, requiring only one prediction per sample
at inference. To show how the models perform on unusual data, we tested with ”fake”
MNIST images from the notMNIST database, which contains images that look similar
to those in the MNIST database but show letters instead of numbers. The resulting
prediction plots can be seen in the last samples of figure 1.

(a) Deterministic model (b) Bayesian model

Fig. 1: Predictions of the deterministic and the Bayesian model on the MNIST data set.

Concluding, the first thing to note is that training the Bayesian neural network takes
considerably longer than training the deterministic one. Figure 1 shows that both models
correctly classified the first sample. However, the Bayesian model predicted wrong classes
several times during the Monte Carlo inference on the second sample. Looking at the input
image, we can argue that the ”5” looks like a ”6” or an ”8” to some degree. Thus, having
the Bayesian model predict those digits a few times is a justifiable and possibly desirable
sign of uncertainty. The third sample depicts the letter ”F” in a circle and is also inverted.
Hence, the sample neither belongs to a class that can be predicted by the model nor did
the model see comparable images during training. While the deterministic model was sure
it saw the digit ”2” (figure 1(a)), the Bayesian model was highly uncertain in its decision
(figure 1(b)). The plot shows that during Monte Carlo sampling the model predicted
different classes every time, causing the average prediction to have a low, almost similar
probability for every class. This can be interpreted as an indication of high uncertainty
and the model saying ”I don’t know”. In critical applications like medical diagnosis, this
behavior is highly desirable.

56

3.2 CheXNet and Bayesian CheXNet

The main goal of this work is to show the advantages of Bayesian deep learning over
traditional, deterministic deep learning for medical image classification. We compare
performances of the deterministic CheXNet [2] and our Bayesian neural network with a
similar architecture.

CheXNet achieves state-of-the-art results on all 14 diseases of the publicly available
ChestX-ray14 data set [1]. The data consists of 112,120 single grayscale image files and
CSV files with metadata like the images’ disease labels and bounding boxes indicating the
location of the disease. We pre-processed the images by down-scaling them to 224×224
pixels and normalizing the 8-bit pixel values (0 - 255) to float values between −1 and 1.
Finally, we split the data into train, validation, and test set containing 98,656 (93.5%),
6,336 (6%), and 432 (0.5%) data points respectively.

Fig. 2: DenseNet121 architecture with Dense Blocks D and Transition Blocks T;
Source: [17]

To replicate CheXNets model architecture, we used a copy of the DenseNet121 model
(depicted in figure 2) coming with TensorFlow’s Keras API. We changed the input shape
of the model to match the monochromatic 224×224 image matrices. Furthermore, we
changed the output layer to return 14 values and used the sigmoid non-linearity activation
function instead of softmax, as we want the model to predict independent continuous
values to indicate each disease. For our Bayesian version of CheXNet, we replace the
deterministic convolutional and fully connected layers with probabilistic layers from the
TensorFlow Probability library.

Training Results We trained both models with mini-batches by minimizing the binary
cross-entropy loss with the Adam optimizer. After 70 epochs, the deterministic model
achieved a training AUC of 0.9006 and a validation AUC of 0.8582. We outperform the
original CheXNet with an average per-class AUC score of 0.8414 by a small margin. Our
Bayesian model failed to achieve good performance just by introducing the probabilistic
layers. We stopped the training after 17 epochs as the validation loss started to increase
while the AUC decreased to 0.5 which is the random baseline.

3.3 Model Improvement Approaches

As our first results show, we couldn’t achieve good model performance in this task simply
by using Bayesian layers. Although we could get additional benefit from implementing
uncertainty measures, a bad performing model isn’t practically useful in any real-world
application, let alone in disease detection. In the following, we will discuss and test several
approaches we took to increase the model’s performance.

57

Choosing Hyperparameters In our first approach, we searched for better hyper-
parameters by training the neural network with different handpicked sets of learning
rates, mini-batch sizes, and optimization algorithms. The model that performed best was
trained with the Adagrad optimizer, a learning rate of 0.1, and a mini-batch size of 64.
An automated search for parameters with Hyperopt [18] led to similar results.

Dealing with Imbalanced Data As our data set is extremely imbalanced (with signifi-
cantly more negatives than positives), we introduce a weighted loss function that penalizes
misclassified positive samples more. This way we can nudge the model towards looking
at positive training samples more carefully. This approach, which was also proposed in
the CheXNet paper, significantly improved our model’s learning and performance on the
F1-score and the AUC value.

Initialization with Pre-trained Weights The deterministic CheXNet is initialized
with weight parameters pre-trained on the ImageNet data set. In an attempt to make use
of parameter transfer learning in our Bayesian model, we initialize the model’s priors with
normal distributions with variance 1, mean-shifted towards the single-point parameter
values from the pre-trained weights. After training for a while, we concluded that the
initialization with weights pre-trained on ImageNet, neither improved model performance
nor sped up the training.

4 Results and Conclusion

Test set AUC F1-score F2-score Epistemic Aleatoric

Deterministic

Full 0.8339 0.1444 0.1019 - -

1 0.7552 0.2858 0.2000 - -

2 0.6940 0.2858 0.2000 - -

3 0.9502 0.0000 0.0000 - -

4 0.8523 0.3333 0.2778 - -

5 0.9091 0.4000 0.2941 - -

6 0.7614 0.0000 0.0000 - -

Bayesian

Full 0.6579 0.1298 0.2551 - -

1 0.5378 0.1176 0.1923 0.0111 0.2098

2 0.4544 0.1176 0.1923 0.0143 0.2088

3 0.4851 0.0571 0.1135 0.0033 0.2149

4 0.6098 0.0851 0.1695 0.0076 0.2129

5 0.5739 0.0976 0.1888 0.0109 0.2080

6 0.6686 0.1499 0.2884 0.0037 0.2166

Table 1: Test results of the deterministic and the Bayesian model on each test set.

We assessed the deterministic and the Bayesian models’ performance on the test set
and additional samples with Gaussian noise. Our deterministic model achieved an AUC

58

of 0.8339, similar to the 0.8414 stated in the original CheXNet paper. This verifies that
our implementation of the model and the rest of our deep learning pipeline work as
expected. The Bayesian model achieved a lower AUC of 0.6579, as well as lower F1-,
and F2-scores. We measured mean epistemic uncertainties (”model uncertainty” [7]) of
0, 0085 and mean aleatoric uncertainties (”data uncertainty” [7]) of 0, 2118.

(a) Deterministic model (b) Bayesian model

Fig. 3: The models’ predictions for a test sample.

(a) Ground Truth (b) Deterministic model (c) Bayesian model

Fig. 4: The models’ CAMs for class 3 of a test sample and the actual location of the
disease.

Figure 3 shows an example of the models’ predicted probabilities for a test sample
with true labels 2 and 3. The deterministic model predicted classes 2 and 3 with the
threshold of 0.5, while the Bayesian model’s averaged predictions of the 50 predictions
sampled show all classes to be true. The generated class activation maps (CAMs) of
figure 4 show that both models didn’t look at the right location for their prediction of
class 3.

We interpret the much higher aleatoric uncertainty as a result of the nature of ra-
diological images, which can also contain pacemakers and/or other patient-specific aids
and the low resolution of the images that were fed into the network. The epistemic
uncertainty suggests that the prior for the model should be adjusted. The sampled pos-
terior probabilities range between 0.6 and 0.8 for each class on most of the test samples,
which could imply that the model’s weight distributions were initialized with a too high
variance that couldn’t be reduced during training. So far, state-of-the-art results with

59

Bayesian neural networks were achieved on simplistic and carefully curated data sets like
MNIST and CIFAR-10 moderate deep networks [19]. Our experiments with radiological
images and very deep networks didn’t achieve state-of-the-art results. This suggests that
the complexity of the data, the model size, and/or the initialized variance are the most
important factors that can be further analyzed.

References

1. Summers, R.: Nih chest x-ray dataset of 14 common thorax disease categories.
https://nihcc.app.box.com/v/ChestXray-NIHCC/file/220660789610 (2017) Accessed: 2020-
07-27.

2. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D.Y., Bagul, A., Lan-
glotz, C., Shpanskaya, K.S., Lungren, M.P., Ng, A.Y.: Chexnet: Radiologist-level pneumonia
detection on chest x-rays with deep learning. CoRR abs/1711.05225 (2017)

3. Troeger, C., Blacker, B., Khalil, I.A., Rao, P.C., Cao, J., Zimsen, S.R., Albertson, S.B.,
Deshpande, A., Farag, T., Abebe, Z., et al.: Estimates of the global, regional, and national
morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–
2016: a systematic analysis for the global burden of disease study 2016. The Lancet infectious
diseases 18(11) (2018) 1191–1210

4. Max Roser, H.R., Dadonaite, B.: Child and infant mortality. Our World in Data (2013)
5. World Health Organization (WHO): Pneumonia. https://www.who.int/news-room/fact-

sheets/detail/pneumonia (2019) Accessed: 2020-07-29.
6. Kesselman, A., Soroosh, G., Mollura, D.J., Abbey-Mensah, G., Borgstede, J., Bulas, D.,

Carberry, G., Canter, D., Ebrahim, F., Escalon, J., et al.: 2015 rad-aid conference on
international radiology for developing countries: the evolving global radiology landscape.
Journal of the American College of Radiology 13(9) (2016) 1139–1144

7. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer
vision? In: Advances in neural information processing systems. (2017) 5574–5584

8. Hinton, G.E., Van Camp, D.: Keeping the neural networks simple by minimizing the descrip-
tion length of the weights. In: Proceedings of the sixth annual conference on Computational
learning theory. (1993) 5–13

9. Graves, A.: Practical variational inference for neural networks. In: Advances in neural
information processing systems. (2011) 2348–2356

10. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural
networks (2015)

11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114
(2013)

12. Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local reparameteri-
zation trick. In: Advances in neural information processing systems. (2015) 2575–2583

13. Wen, Y., Vicol, P., Ba, J., Tran, D., Grosse, R.: Flipout: Efficient pseudo-independent
weight perturbations on mini-batches. arXiv preprint arXiv:1803.04386 (2018)

14. Kwon, Y., Won, J.H., Kim, B.J., Paik, M.C.: Uncertainty quantification using bayesian
neural networks in classification: Application to ischemic stroke lesion segmentation. (2018)

15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11) (1998) 2278–2324

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Ruiz, P.: Understanding and visualizing densenets.
https://towardsdatascience.com/understanding-and-visualizing-densenets-7f688092391a
(2018) Accessed: 2020-08-18.

18. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. The Journal of
Machine Learning Research 13(1) (2012) 281–305

19. Shridhar, K., Laumann, F., Liwicki, M.: A comprehensive guide to bayesian convolutional
neural network with variational inference. CoRR abs/1901.02731 (2019)

60

Gaussian Process Inspired Neural Networks for
Spectral Unmixing Dataset Augmentation

Johannes Anastasiadis and Michael Heizmann

Institute of Industrial Information Technology (IIIT),
Karlsruhe Institute of Technology (KIT),
Hertzstr. 16, 76187 Karlsruhe, Germany

anastasiadis@kit.edu

Abstract. Hyperspectral imaging is increasingly used for product monitoring in
industrial processes. Spectral unmixing is an important task in this context. As
in many other areas of signal processing, neural networks also provide promising
results for spectral unmixing. Unfortunately, it is very time-consuming to prepare
labelled training data for the neural networks. To address this problem, this pa-
per presents a method where small training datasets are augmented to improve
spectral unmixing performance. Inspired by Gaussian processes, simple neural net-
works are trained which are capable of generating additional training data. These
are similar to the original training data but cover areas in the continuous label
space that are not covered by the original data.

Keywords: Spectral unmixing, spectral variability, data augmentation, neural
network, Gaussian process

1 Introduction

Since they are non-contact and non-destructive, optical measurement methods are often
used for monitoring industrial processes. This also includes checking for the correct prod-
uct composition. For this task hyperspectral images are often used because they have a
finely sampled spectrum in each pixel characterizing the materials involved [1]. In con-
trast, conventional colour images are usually not able to solve this problem sufficiently
because these only contain three colour channels and different spectra can result in the
same colour channel values. Spectral unmixing is needed if more than one material is
contained in a pixel and therefore only a mixed material spectrum is available. The aim
is to get the relative proportions, the abundances, of the pure materials covered by the
pixel [2]. This is often done using mixing models, such as the linear mixing model (LMM),
which has proven to be a good approximation. However, depending on the problem, more
complex mixing models can provide better results but are also more difficult to use [3].
In addition, there is spectral variability, which can be taken into account by the models
using additional parameters.

Instead of a model-based, a data-based approach is also feasible. Artificial neural
networks in particular have achieved great success in recent years. This is also true for
spectral unmixing and comes with additional advantages [4]. One of them is that the non-
negativity and the sum-to-one constraints can be enforced by output layer design. The
other advantage is that spectral variability can be taken into account if it is contained in
the training data [5]. Ideally, the trained neural networks are robust to spectral variability.
To achieve this and a good spectral unmixing performance, lots of significant training
data are needed, which are often not available in this domain.

61

Mainly for classification problems, augmentation strategies are widely used to in-
crease the size of training datasets synthetically and improve performance [6, 7]. Data
augmentation can also be used with spectral unmixing, which can be considered as a
regression problem. Here it appears useful to generate spectra based on abundances that
do not occur in the original training dataset. Ideally, spectral variability is also taken
into account by generating many spectra for each abundance set. We have shown in a
previous paper that this improves spectral unmixing performance of convolutional neural
networks (CNNs) [8]. There we used a generative convolutional neural network with addi-
tional random inputs for spectral variability to learn the relationship between abundances
and mixed spectra.

In this paper we model the spectra as Gaussian processes with the wavelength as the
index and the abundances as parameters. Gaussian processes are defined by the mean and
covariance functions. Here we are dealing with functions which depend on the wavelength
and are parametrised by the abundances. To learn these functions, we use simple neural
networks. To generate the additional training data, further abundances are given to the
neural networks. Spectral variability is taken into account by the generation of multiple
spectra.

In a previous paper we have already modelled the spectra as Gaussian random vec-
tors [9]. However, that paper was not about dataset augmentation, but about model-based
data generation taking spectral variability into account. For the model-based approach,
only a set of spectra of each pure material is needed, whereas here we need additional sets
of spectra of material mixtures. The additional information should lead to better spectral
unmixing performance. Another approach exists where spectral unmixing is achieved by
direct application of Gaussian process regression [10], however, not for the augmentation
of training data.

The rest of the paper is organized as follows: Section 2 summarises the necessary
basics regarding spectral unmixing. Afterwards in Section 3 the proposed approach is
described in detail. The evaluation of the approach is given in Section 4. The paper is
summarized and a conclusion is drawn in Section 5.

2 Spectral Unmixing

This paper deals with supervised spectral unmixing, which assumes that the spectra of
the pure substances involved are known [2]. Common spectral unmixing methods are
model-based, with the LMM, representing a good approximation in many cases, being
the most commonly used [2, 11–14]. There also exist non-linear mixing models [3], which
are not considered in this paper. The objective, the estimation of abundances â ∈ R

P , is
achieved using the LMM by

â = arg min
a

‖y −Ma‖22 . (1)

Here y ∈ R
Λ is a measured spectrum, i.e. a pixel of a hyperspectral image, sampled at Λ

wavelength channels, M = [m1, ...,mP] ∈ R
Λ×P are the spectra of the up to P involved

pure materials, and a = [a1, ..., aP]
T ∈ R

P are the corresponding abundances. The
optimisation can be done by calculating the pseudo-inverse. However, constraints must
be fulfilled for the abundances in order to remain physically plausible. Those constraints
are the non-negativity constraint (2) and the sum-to-one constraint (3).

ap ≥ 0 ∀p (2)

62

P∑
p=1

ap = 1 (3)

The consideration of these constraints counteracts model errors caused by the assump-
tion of a linear mixing behaviour. A well established approach that optimises the LMM
considering (2) and (3) is the Fully Constrained Least Squares (FCLS) algorithm [15].
Instead of (1), the Lagrangian L : RP+1 → R with the Lagrange multiplier l ∈ R is
optimized:

L(a, l) = ‖y −Ma‖22 − l

(
P∑

p=1

ap − 1

)
. (4)

The second part of (4) forces constraint (3). Additionally, negative âp and the corre-
sponding spectra in M are removed in an iterative procedure to ensure (2) as well.

Until now, the assumption has been made that the pure substances involved can be
represented by a single spectrum. However, there is so-called spectral variability. It is
caused, among other things, by changing surface conditions and the resulting variation
in the angle of illumination [5]. Extended mixing models are available that take spectral
variability into account by using additional parameters, such as the extended linear mix-
ing model (ELMM) [16] or the generalized linear mixing model [17]. The ELMM uses
the diagonal matrix B ∈ R

P×P to extend the LMM optimization problem to

â = arg min
a,B

‖y −MBa‖22 . (5)

After presenting the basics, the next section describes the approach used to augment
training datasets. The aim is to improve the performance of spectral unmixing for data-
based methods.

3 Proposed Approach

The prerequisites for this approach are a set of available spectra for different abundance
vectors a. This is quite reasonable in an industrial environment, e.g. in a calibration
dataset. The measured spectra are available as vectors ya ∈ R

Λ in which each entry
corresponds to the reflectance of light for a specific wavelength. For each abundance
vector a there are different measured spectra, which differ due to spectral variability.
These are now to be modelled as one Gaussian process Y (λ|a) with the wavelength index
λ ∈ N as the index and parametrised with the abundance vector a.

Gaussian processes are completely defined by a mean function and an (auto-)covariance
function [18, p. 13]. In this case, the mean value function is

mY (λ|a) (6)

and the covariance function with the second wavelength index λ∗ ∈ N

kY (λ, λ
∗|a) . (7)

3.1 Data Preparation

In order to be able to represent this model with neural networks, the data are prepared.
First, for all abundance vectors a, the mean vector (8) and auto-covariance matrix (9)
are calculated.

ma =
1

Na

Na∑
n=1

yan (8)

63

Ka =
1

Na − 1

Na∑
n=1

(yan −ma) (yan −ma)
T

(9)

Here Na ∈ N denotes the number of measured spectra for a given abundance vector a.
The elements of ma and Ka for all available a can now be used as training data for the
neural networks Nm and Nk that are supposed to learn (6) and (7).

The neural network Nm has the abundance vector a and the wavelength index λ as
input variables and as the output variable the corresponding value of ma. The neural
network Nk has the abundance vector a and the transformed indices λ′

1 = λ + λ∗ and
λ′
2 = max(λ)− |λ− λ∗| as input variables and as the output variable the corresponding

value of Ka. The indices λ
′
1 and λ′

2 are used because of two properties that the covariance
matrices have. Firstly, there are higher values on the main diagonal, and secondly, they
are symmetrical. This results in the neural network being kept quite simple later on, as
it has to learn fewer changes in monotonicity (see Fig. 1).

Fig. 1. Illustration of the values of the indices in the auto-covariance matrix (from left to right):
λ, λ∗, λ′

1 and λ′
2. Dark blue denotes a low value, yellow a high value

3.2 Neural Networks for Data Augmentation

The neural networks can now be trained with the prepared training data as described
above. The neural networks each have P +1 (a and λ) or P +2 (a, λ′

1, and λ′
2) inputs and

only one output. To learn the desired relation a quite simple neural network is sufficient.
The networks consist of fully connected layers, i.e. layers in which all neurons of

one layer are connected to all neurons of the neighbouring layers. The rectified linear
unit (ReLU) frelu(z) = max(0, z) is used as the activation function in all layers, with the
exception of the last layer, where the logistic function

flog(z) =
1

1 + e−z
(10)

is used. Batch normalisation is carried out prior to the rectified linear units [19]. The
networks Nm and Nk have the same structure, which is shown in Fig. 2. The logistic loss
function is used as objective function:

− 1

B

B∑
b=1

ob · log(ôb) + (1− ob) · log(1− ôb) . (11)

It is evaluated for each output value ôb ∈ (0, 1) and corresponding label ob ∈ (0, 1) of
a training batch of size B ∈ N. The logistic loss function is often used for a two-class

64

×

Fig. 2. Schematic representation of the neural network: There are four blocks consisting of a
fully connected layer, batch normalisation and a ReLU activation function. This is followed by
a fully connected layer with the logistic activation function

classification problem (cross-entropy loss). However, it also works with continuous labels
and is suitable here because the values of the spectra range between 0 and 1.

Using the trained neural networks Nm and Nk, an augmentation of the original train-
ing dataset can now be performed.

3.3 Augmentation Strategy

For the augmentation, additional mean value vectors and covariance matrices can now
be generated by specifying abundance vectors for Nm and Nk that do not occur in the
original training dataset. This allows pseudo-random generators to be used to produce
spectra that complement the original training dataset. The spectra generated in this way
also show spectral variability.

In order to augment the datasets at a lower effort a second strategy is used, where
the original training datasets are only augmented by the mean value spectra. The neural
network, which is later used for spectral unmixing (see Section 4), then has to learn the
spectral variability on basis of the already existing training data.

The spectral unmixing performance of the augmented datasets is compared with that
of the non-augmented datasets.

4 Experimental Results

Preceding the evaluation, the parameters used for Nm and Nk and the evaluation datasets
are presented. The number of neurons was determined to be 32 for all layers and in both

65

cases (Nm and Nk). The neural networks were trained with the Adam optimizer [20]. The
parameters from [20] were used, except for the learning rate, which was set to 0.01. The
number of epochs was set to 2000 (both networks) for the datasets containing mixtures of
quartz sand (see below) and to 3000 (Nm) and 4000 (Nk) for the colour powder dataset.

4.1 Datasets

Three datasets are used, which were recorded in our image processing laboratory. This
ensures that we know the abundances as accurately as possible. All datasets consist of
fine powders. These were mixed according to the specified abundances until the mixtures
were homogeneous. A white balance with a reflectance standard was carried out after
the recordings of the hyperspectral images, which compensates both spatial and spectral
inhomogeneities of illumination and measurement setup. All datasets were acquired in
91 wavelength channels, ranging from 450 nm to 810 nm. For each mixture, 400 samples
were acquired.

Two of the datasets contain mixtures of coloured quartz sand. The first of them
(quartz-3) contains 45 mixtures of at maximum 3 components varying in abundance steps
of 0.125 . The other one (quartz-4) includes 56 mixtures of at most 4 components, varying
in abundance steps of 0.2 . The quartz sand datasets have a lower spectral variability and
the non-linearity in the mixing behaviour is less significant compared to the following
dataset. The third dataset consists of 56 mixtures of colour powders (colour-4), which
also have up to 4 components. Again, the components are varied in abundance steps
of 0.2 . The colour-4 dataset shows a high non-linearity between mixed spectra and the
spectra of the pure substances and a high spectral variability. Hence, its spectra are more
difficult to unmix.

All three datasets are divided into a test and a training dataset according to the
abundances. For the datasets with four components, the samples with no abundance of
value 0.2 or 0.8 are included in the training dataset. All other samples are included in
the test dataset. This yields 16 abundance vectors in the training and 40 in the test
dataset. The quartz-3 test dataset includes those where at least one abundance has the
value 0.125, 0.375, 0.625 or 0.875. In consequence, there are 30 abundance vectors in the
test dataset and 15 in the training dataset.

4.2 Evaluation of Generated Data

Using the neural networks from Section 3, new data are generated. The abundance vec-
tors used as inputs are exactly the same as those in the test dataset. For each given
abundance vector 400 spectra are generated, which correspond to the number of spectra
per abundance vector in the test dataset.

As a measure of performance, the average minimum norm ΔAMN is used between I
measured spectra yi and H generated spectra ŷh corresponding to an abundance vector:

ΔAMN =
1

I

I∑
i=1

min
h

‖yi, ŷh‖2 . (12)

This performance measure was chosen because it tests whether a spectrum was generated
as similar as possible to each spectrum in the test dataset. The calculation is done
separately for each abundance vector and the corresponding spectra. The mean value of
all ΔAMN over all abundance vectors in the test dataset is called global average minimum
norm ΔGAMN (see Table 1). The results of both proposed augmentation strategies are

66

compared with the performance of the generative convolutional neural network (Gen.
CNN) with and without covariance matrix regularisation (-CovR) we presented in [8].

Table 1. Comparison of ΔGAMN for all test datasets. In the first two columns the results from
[8] are listed for comparison. The third column presents the values for the proposed method and
the last column uses only the generated mean vectors m̂a as generated spectra

ΔGAMN Gen. CNN [8] Gen. CNN-CovR [8] Proposed (normal) Proposed (mean only)

quartz-3 0.1219 0.0812 0.0993 0.1371

quartz-4 0.1113 0.0787 0.0903 0.1298

colour-4 0.1242 0.0967 0.1016 0.1470

Table 1 shows that the inclusion of the covariance matrices results in lower ΔGAMN

values for all datasets compared to only using the mean vectors. This is because spectral
variability is taken into account. The results of the proposed method are better than
those of the unmodified generative CNN. However, the best results were achieved with
the generative CNN with covariance matrix regularisation. It is also noticeable that
within a method, the order of the datasets regarding ΔGAMN always remains the same,
which is due to the difficulty of the datasets.

In the next subsection, it will be investigated whether these results are consistent
with those of spectral unmixing using augmented training datasets.

4.3 Spectral Unmixing Performance

For evaluation of the spectral unmixing performance, we use the same CNN as in [8],
of which we have already presented the three-dimensional version in [4]. The CNN is
trained with the original training dataset as well as with different augmented training
datasets. The performance with respect to the test dataset is compared below. The CNN
for spectral unmixing consists of three convolutional layers with a convolutional kernel
length of 3. Then two fully connected layers follow. The numbers of feature maps from the
input layer to the output layer are 1, 16, 32, 64, 64 and 1. We use the root-mean-square
error over all N samples of a test dataset

ΔRMSE =

√√√√ 1

N

N∑
n=1

1

P

P∑
p=1

(âpn − apn)2 (13)

as a performance measure. For the methods that are not based on neural networks (see
Section 2), the results are shown in Table 2 for the sake of clarity. For the remaining
methods ΔRMSE is displayed in Figure 3.

To obtain the results below, the network was trained with different numbers of epochs
depending on the dataset and method. The quartz-3 dataset was trained for 251, the
quartz-4 dataset for 41 and the colour-4 dataset for 31 epochs for the proposed method.
When only mean vectors are used for augmentation, the number of epochs reduces to
31 (quartz-4) and 21 (colour-4). As a reference, we use the non-augmented training
dataset, that was trained for 81 (quartz-3), 21 (quartz-4) and 21 (colour-4) epochs. The
different numbers of epochs are chosen to avoid overfitting.

The original training datasets were augmented with a different number of spectra.
Figure 3 shows the step size s ∈ [0, 1] in which the additional abundance vectors were

67

Table 2. Comparison of ΔRMSE for all test datasets for FCLS and ELMM based spectral
unmixing

ΔRMSE quartz-3 quartz-4 colour-4

FCLS 0.1608 0.1115 0.2987

ELMM 0.1555 0.1056 0.2990

varied to generate the new data. All possible abundance vectors corresponding to the step
size s are used in spectra generation, except for those already contained in the original
training dataset.

0.00

0.02

0.04
s = 1

5

s = 1
8

s = 1
10

s = 1
20

0.00

0.03

0.06

Δ
R
M

S
E

s = 1
4

s = 1
5

s = 1
8

s = 1
16

0.00

0.05

0.10 s = 1
4

s = 1
5

s = 1
8

s = 1
16

Fig. 3. Comparison of ΔRMSE for the test datasets of the quartz-3, quartz-4, and colour-4
datasets (top to bottom) for CNN-based spectral unmixing using different augmentation strate-
gies. The dashed lines are used for a better visual comparability with the non-augmented case

It is shown that the data-based spectral unmixing methods (Figure 3) perform better
than the model-based methods (Table 2). Gaussian process based augmentation leads to
an improvement compared to the non-augmented training dataset for all datasets and
all step sizes s. The size of s does not have a major influence, unless it is chosen too
large, in which case the performance deteriorates. If only the mean spectra are used
for augmentation, the results are comparable. This is probably due to the fact that the
spectral variability does not depend too much on the abundances and is already well
represented by the spectra available in the original training dataset. For the colour-4

68

dataset, the result is worsened by adding the information from the covariance matrices.
In this case, the assumption of a Gaussian process is likely to be an oversimplification.

The results from [8] cannot be reached with this approach. However, the training
time of the neural networks for augmentation is approximately 9 times1 shorter. On the
one hand, this is due to the lower dimensional data points and therefore simpler neural
networks. On the other hand, the size of the training dataset for augmentation is reduced
if only the described moments are used as training data. The latter is especially true if
only the mean spectra are used. In this case it is only one spectrum per abundance vector
instead of Na. This leads to an approximately 120 times1 shorter training time compared
to [8].

5 Conclusion

In this work, an approach to augment training datasets for spectral unmixing was pre-
sented. For this purpose, inspired by Gaussian processes, a mean and a covariance func-
tion are learned by two neural networks. These networks are then used to generate
additional training data.

It was shown that the performance of spectral unmixing with a CNN can be improved
by the additional training data generated by these neural networks. It depends on the
dataset how significant the improvement is. The improvement is slightly lower as with
an existing method that uses a generative CNN for augmentation. However, the training
time is an order of magnitude shorter. If only the neural network for the mean value
function is used, where a similar increase in performance was observed depending on the
dataset, the training time decreases by another order of magnitude.

In the future, something in between the two approaches presented would also be
feasible. There, only the more relevant parts of the covariance functions would be used.

References

1. Gowen, A., O’Donnell, C., Cullen, P., Downey, G., Frias, J.: Hyperspectral imaging – an
emerging process analytical tool for food quality and safety control. Trends in Food Science
& Technology 18(12) (2007) 590–598

2. Keshava, N., Mustard, J.F.: Spectral unmixing. IEEE signal processing magazine 19(1)
(2002) 44–57

3. Dobigeon, N., Altmann, Y., Brun, N., Moussaoui, S.: Linear and nonlinear unmixing in
hyperspectral imaging. In Ruckebusch, C., ed.: Data Handling in Science and Technology.
Volume 30. Elsevier (2016) 185–224

4. Anastasiadis, J., Puente León, F.: Spatially resolved spectral unmixing using convolutional
neural networks (German paper). tm – Technisches Messen 86(s1) (2019) 122–126

5. Borsoi, R.A., Imbiriba, T., Bermudez, J.C.M., Richard, C., Chanussot, J., Drumetz, L.,
Tourneret, J.Y., Zare, A., Jutten, C.: Spectral variability in hyperspectral data unmixing:
A comprehensive review. arXiv preprint arXiv:2001.07307 (2020)

6. Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for convolutional neural
networks applied to visual document analysis. In: Icdar. Volume 3. (2003)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems. (2012) 1097–1105

8. Anastasiadis, J., Heizmann, M.: CNN-based augmentation strategy for spectral unmixing
datasets considering spectral variability. In Bruzzone, L., ed.: SPIE Remote Sensing – Image
and Signal Processing for Remote Sensing XXVI. Volume 11533 of Proceedings of SPIE.,
SPIE (2020) 188–199

1 Training performed on NVIDIA Quadro P5000.

69

9. Anastasiadis, J., Heizmann, M.: Generation of artificial training data for spectral unmixing
by modelling spectral variability using gaussian random variables. In: OCM 2021 – Op-
tical Characterization of Materials : Conference Proceedings. Ed.: Beyerer, J., Längle, T.,
Karlsruher Institut für Technologie (KIT) (2021) 129–139

10. Altmann, Y., Dobigeon, N., McLaughlin, S., Tourneret, J.: Nonlinear spectral unmixing of
hyperspectral images using Gaussian processes. IEEE Transactions on Signal Processing
61(10) (2013) 2442–2453

11. Bauer, S., Stefan, J., Puente León, F.: Hyperspectral image unmixing involving spatial
information by extending the alternating least-squares algorithm. tm – Technisches Messen
82(4) (2015) 174–186

12. Krippner, W., Bauer, S., Puente León, F.: Optical determination of material abundances
in mixtures (German paper). tm – Technisches Messen 84(3) (2017) 207–215

13. Krippner, W., Bauer, S., Puente León, F.: Considering spectral variability for optical ma-
terial abundance estimation. tm – Technisches Messen 85(3) (2018) 149–158

14. Krippner, W., Puente León, F.: Band selection and estimation of material abundances using
spectral filters (German paper). tm – Technisches Messen 85(6) (2018) 454–467

15. Heinz, D., Chang, C.I., Althouse, M.L.: Fully constrained least-squares based linear unmix-
ing. In: IEEE 1999 International Geoscience and Remote Sensing Symposium. Volume 2.,
IEEE (1999) 1401–1403

16. Veganzones, M.A., Drumetz, L., Tochon, G., Dalla Mura, M., Plaza, A., Bioucas-Dias, J.,
Chanussot, J.: A new extended linear mixing model to address spectral variability. In: 2014
6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS), IEEE (2014) 1–4

17. Imbiriba, T., Borsoi, R.A., Bermudez, J.C.M.: Generalized linear mixing model accounting
for endmember variability. In: 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE (2018) 1862–1866

18. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. Adaptive
computation and machine learning. MIT Press, Cambridge, Mass. [u.a.] (2006)

19. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing
internal covariate shift. CoRR abs/1502.03167 (2015)

20. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

70

R&D of a Multisensory System for Excavation Machines for
the Real-time Generation of AI/ML classified, Georeferenced

and BIM compliant Voxel Models of Soil (ZIM Project
HOBA)

Almagboul, M., Anantha, P. C., Jäger, R. and G. P. Sridhar

Karlsruhe University of Applied Sciences, Center of Applied Research (CAR)
reiner.jaeger@web.de

Abstract. The R&D project “Homogeneous soils assistant for the automatic, construction
site-specific recording of soil classes according to the new VOB 2016”, shortly HOBA,
deals with the development of automatic classification, detection & segmentation of
construction site specific soil types (http://www.navka.de/index.php/de/weitere-
projekte/hoba-project-overview-1). HOBA is financed as a so-called ZIM (Central
Innovation Program for SMEs) research and development project by the Federal Ministry
for Economic Affairs and Energy (BMWI). Research and development are carried out in
the GNSS & Navigation Laboratory (http://goca.info/Labor.GNSS.und.Navigation/index
.php) in collaboration with the main industry partners MTS Schrode AG (www.mts-
online.de) and VEMCON GmbH (www.vemcon.de).

The aim of the R&D at the HKA is the development of the hardware and software of a
compact sensor- and computing system unit, mounted on the excavator, briefly called HKA
HOBA-Box (fig. 1). The hardware and software development of the HKA HOBA-Box is
an innovative contribution to the BIM-compliant digital real-time documentation of
excavation work in civil engineering.

Figure 1 Excavator with distributed sensors and HKA HOBA-Box located in the area of the shovel

The HKA HOBA-Box enables a multi-sensory 3D geo-referencing of the excavation in the
ETRF89 / ITRF, based on GNSS/MEMS/Optics (RGB/ToF-camera) sensors. The complete
geo-referencing steps of the box are based on a Bayesian sensor-fusion algorithmic
fusion in the general NAVKA (www.navka.de) multisensory-multiplatform lever arm
design, leading to the full navigation state vector

71

() = (| |x y z | | , , , | , , ,)

The Bayesian SLAM (Simultaneous Localization and Mapping) means an extension of
 (),, which is based - in the case of HOBA - on the Gauß-Markov-model’s information

of the optical sensor data of the ToF and the RGB camera. The extension of the parameter
space for SALM is on the 3D map (), and so it leads to () = ((), ()).

The SLAM parameters () = ((), ()) are used for the computation of a so-
called ETRF89 / ITRF "voxel"-based 3D model of the excavation volume, based on an
Octree-based representation of the environment, using the ToF-camera data.

Furthermore, the HKA HOBA-box will allow the classification of the soil types on the site
using image-based AI/ML algorithms, and finally the re-calculation of the classified and
geo-referenced 2D images onto the geo-referenced 3D voxel model according to the soil
types. Here pixels to pixels in the image have to be assigned to the 3D surface on the model

3D. The part of Machine Learning (ML) introduces a real-time soil texture classification
and segmentation on the construction site. The R&D target of the abovementioned BIM-
compliant soils assistant, according to the new VOB 2016 - realized as a physical system
by HKA HOBA-box - enables civil engineers an insight into the geo-technical properties
of the excavated soil, as well as to the borders between these soil types, on the construction
site. The mathematical and algorithmic approach for soil classification is the Fully
Convolutional Network-Based Semantic Segmentation (FCN). This is a pixel-level
classification, which achieves a pixel fine-grained inference. Therefore, it is then the best
practice for such application of soil texture labelling on the site.

The improved FCN-based approaches e.g., SegNet & DeepLap, are used as encoders for
the training of the soil texture-model via Transfer Learning (TL). The TL is utilized, as it
is a well-known method and regarded to shorten the processing time of model training, and
therefore decrease the computational efforts considerably. Furthermore, the HKA HOBA-
box trains the model on a specific dataset already, as provided by the HKA industry partner
i.e. MTS Schrode AG. The dataset i.e., images of the construction site with different present
soil types, provides - through a high-precision 2D annotation process - i.e. instance-aware
segmentation and detailed precise masks for a corresponding 15 classes of the soil types,
which are used for training, testing, and validation.

The respective AI/KL developments are based on Python & C/C++, using both machine
learning frameworks, namely TensorFlow 1.x and PyTorch. The re-trained model is
converted into an ONNX (Open Neural Network Exchange), which is an open format for
ML models allowing interchanging between different ML frameworks.

72

Predictive prognostic for Li-Ion batteries in electric
vehicles

Inès Jorge, Ahmed Samet, Tedjani Mesbahi, and Romuald Boné

ICube, CNRS (UMR 7357)
INSA Strasbourg – University of Strasbourg

ines.jorge@insa-strasbourg.fr

Abstract. The development of clean vehicles and more specifically electric and
hybrid vehicles relies on the performances of Lithium Ion batteries. More efficient
than all the other battery chemistry in terms of energy density and output power,
these batteries bring hybrid and electric vehicle in line with thermal vehicles.
However, they still suffer from a limited driving range and lifespan, and their
performances can be affected by numerous factors, one of the most important one
being the driving profile imposed by a user.
Prognostics and health management strategies make use of operating data in
order to better understand the ageing mechanisms of Lithium Ion batteries and
to forecast their future degradation trend. In this article, we introduce our method
to predict the Remaining Useful Life of Lithium Ion batteries based on the dataset
published by the Massachusetts Institute of Technology, through the use of low
computational cost machine learning algorithms. Our artificial neural networks
take both historical data and time series representing the driving profile of a
battery as input, and predict with accuracy the Remaining Useful Life of a battery.
Compared to previous approaches in the literature, we obtain reliable and accurate
predictions of the Remaining Useful Life of any battery at any moment in its life
from the observation of only charge and discharge cycle. The importance of driving
data in prognostics and health management strategies of Lithium Ion batteries is
shown throughout this article.

Keywords: Lithium Ion batteries, Prognostics and Health Management, Ma-
chine Learning, Artificial Neural Networks, Feature extraction, Remaining Useful
Life

1 Introduction

In the case of hybrid vehicles (HEV), and even more so in the case of all-electric power-
trains, the on-board energy storage system remains the weak link: very expensive, limited
in driving range, slow to recharge, main cause of over-costs... The challenge for any car
manufacturer wishing to develop a HEV or an Electric Vehicle (EV) is therefore not only
to optimise the electric power-train, both in terms of cost and range, but also to bring the
battery into line with the life of the vehicle. Battery lifetime is therefore a crucial element
for the development of EVs under acceptable cost conditions. Indeed, the battery is the
key component and the most expensive one in a HEV or EV. In this context, the failure
of battery could lead to serious inconvenience, performance deterioration, accelerated
ageing and costly maintenance.
Therefore, the prognostics and health management (PHM) of on-board energy storage
systems, which aims to monitor their health and to predict their degradation trend,
appears to be a crucial element in the development of new battery powered vehicles.

73

PHM strategies make it possible to forecast the evolution of the storage capacity of
a battery and to predict its Remaining Useful Life (RUL), which correspond to the
number of charge and discharge cycles it can withstand before reaching its end of life.
That allows to perform maintenance service in advance if necessary, using the past and
current information about battery usage and capacity degradation trend.
The aim of this article is to present a method based on machine learning for the predictive
prognostics of Li-Ion batteries in EV applications. The challenge is to use ageing data
of Li-Ion batteries in order to extract knowledge on the state of health (SOH) of the
batteries. In this paper, we focus specifically on the dataset published in [1] as it is the
largest available and contains extremely valuable data that apply very well to machine
learning techniques. The key contributions are (i) the development of low computational
models based on Artificial Neural Networks (ANN), (ii) an online forecasting of the RUL
of batteries, (iii) the use of driving data in the predictive model.

The remainder of this article is structured as follows : section 2 is a brief introduction
to related work in the fields of predictive prognostics of Li-Ion batteries, section 3 provides
a detailed presentation of the dataset on which we based our work, section 4 focuses on the
developed architecture for RUL prediction based on ANN and feature extraction, section
5 presents all experimental results with a comparison with other approaches found in the
literature and section 6 offers a brief conclusion with a presentation of future works.

2 Background

Concerning Li-Ion batteries, prognostics and health management strategies (PHM) aim
at determining how and when a failure will occur and to give a long term image of the
state of health (SOH) of the battery [2]. This can be done either by observing previous
data acquired through various sensors or by simulating the behaviour of a battery in its
environment thanks to physical models.

In a great majority of papers, PHM of Li-Ion batteries consists in determining their
RUL, which is the number of charge and discharge cycles it can go through before reaching
the End of Life (EoL) criteria. A battery is considered out of use for an electric vehicle
when it has reached a SOH of 80%. The SOH of a battery represents the storage capacity
at a given time compared to its initial storage capacity :

SOH =
Qactual

Qnominal
and SOH% =

Qactual

Qnominal
∗ 100 (1)

Most approaches deal with the prediction of the RUL in terms of cycles. This can be
done either by designing a complete physical model and simulating the behaviour of a
battery, or by focusing on real data taken as input of machine learning models. This latter
type of models makes it possible to forecast the temporal evolution of the battery SOH
using a sliding window approach, or to predict the RUL directly from the observation of
ageing features.

2.1 Model based approaches

Model-based techniques were the first ones to be developed, before massive data acqui-
sition and challenges linked to big data appeared. A model-based approach for the PHM
of a system relies on the establishment of a simulation model according to physical rules
and functioning equations. The aim is to understand and reproduce the behaviour of
a system in order to obtain simulated data that could be exploited, in particular with

74

the introduction of disturbances. It implies a complete understanding of the system and
gives a global representation of the different answers to solicitations. Downey et al. in
[3] have modeled the degradation phenomena of active materiel loss in Li-Ion batteries
in order to estimate the battery capacity. The battery was represented by an electro-
chemical model that takes into account heat generation equations in [4]. Zhang et al.
[5] elaborated a comprehensive lead-acid battery model made of seven sub-models each
modeling a physical phenomena. The model estimates internal resistance, terminal volt-
age, internal temperature, SOC and battery capacity using the load current and ambient
temperature.

2.2 Data driven approaches

Data driven approaches for PHM have emerged with the development of industry 4.0 and
massive data acquisition strategies. Real operating data is collected and given as input to
a black box model, that uses past data to forecast the evolution of a system. Operating
data most of the time consists in physical features observed according to time through
different sensors linked to a battery or a battery cell during ageing tests (observation of
current, voltage, internal resistance, temperature...). This results in very large sequences
of data as the cycle life of a Li-Ion battery can reach more than 2000 cycles. All data driven
strategies require a data prepossessing step in order to make operating data compatible
with data driven models. However, there can be a great variety of approaches when
building a data driven predictive model, mainly due to the development of machine
learning algorithms that apply very well to large amounts of data and PHM problematic.
This quick state of the art of data driven approaches separates the different models found
in the literature into two categories : window-based models and early cycle models.

Window approach As explained earlier, operating data of Li-Ion batteries can result
in very larges sequences of data due to their very high lifespan. A common approach for
simplifying the problem is to use a window approach. There are two types of data se-
quences in Li-Ion battery ageing data. The first one are historical data sequences, which
are represented as a function of the number of cycles. For example, SOH is computed at
each cycle, just as internal resistance or charging time. For each of these data sequences,
there is one value for each cycle, and a sequence window is therefore composed of several
consecutive cycles. The second type of data sequence are temporal data, which are rep-
resented as a function of time. Here, operating data is directly acquired though sensors,
and for each cycle, the temporal evolution of several features such as current, voltage
or temperature can be observed. Temporal data represent the real use of the battery. A
window of time sequences can then either be a sample of time series from one cycle, or a
succession of time series that corresponds to several consecutive cycles. Most approaches
deal only with the observation of window of historical data, and especially the SOH.
The evolution of SOH contained in one window makes it possible to forecast the future
degradation trend and therefore to predict the RUL according to the predicted SOH
fade. This method has proved very effective and can be applied to a great variety of ML
techniques [6–10]. However, the main drawback is that the accuracy of the prediction
depends on the size of the window. The larger the amount of historical data, the better
the accuracy. Moreover, very few approaches take advantage of time series.

Early cycle prediction Some approaches mention other RUL prediction techniques
based on features calculated from early cycles data. Severson et al. have computed several

75

features from cycle 1 to cycle 100 and applied a linear regression as a supervised learning
technique to predict the cycle life of a given cell. This method also removes the problem of
dealing with temporal or sequential values but requires to use only brand-new batteries,
after cycling them 100 times.

3 Battery ageing data

Throughout the literature, several datasets are often cited and used for data driven
approaches concerning PHM of Li-Ion batteries. The NASA Prognostics Center of Excel-
lence (PCoE) published a massively used dataset for SOH prediction [11]. It consists in
34 batteries tested under different charge and discharge conditions until the EoL criteria
is reached. More batteries were tested in this dataset without reaching end of life though,
which limits the applications.

The NASA PCoE also published a dataset that consists in testing 4 batteries with
random charge and discharge currents during 1500 cycles [12]. After 1500 cycles, charac-
terisation cycles are performed in order to evaluate the evolution of the batteries’ SOH.

An other dataset published by the Sandia National laboratories aims at studying the
effect of Depth of Discharge (DoD), load current and temperature on battery degradation.
86 cells of three different chemistries (LFP, NMC and NCA) are tested in this study.

Some papers also mention custom battery ageing datasets [13]. The main drawback
when testing batteries for health prognostics is that EoL criteria need to be reached.
Considering the performances of Li-Ion batteries, this may take a long time and require
a lot of resources for testing a representative number of cells. To overcome the resource
and time problem, a paper also shows the use of training data generated with a physic-
based model of Li-Ion battery [14].

Even though all this data is of great interest, we decided to base our approach on
a new dataset described in [1] (with supplementary information in [15]). This dataset
gathers more information than all earlier mentioned datasets, to our knowledge, as it
offers complete operating data of 124 cells tested from beginning to EoL.

3.1 MIT dataset

In [1], the department of chemical engineering of the Massachusetts Institute of Tech-
nology, in collaboration with Toyota engineering and with the Department of Materials
Science and engineering of Stanford university, have built the largest available dataset
regarding Li-Ion battery ageing. This dataset is a highly valuable source of information
as very few public data can provide that much resource. The cells that were used for
testing are LFP/graphite cells from A123 manufacturer, model APR18650M1A. These
cells have a 3.3V nominal voltage and a 1.1Ah nominal capacity. They can provide dis-
charge currents up to 30A.
The cells were tested in a 30°C chamber and cycled with an battery tester from Arbin
manufacturer. The batteries are always discharged at a constant current of 4.4A. The
most important factor in the tests is the charging policy. Batteries are charged following
a multi-steps constant-current/constant-voltage (CC-CV) policy which makes it possible
to reduce the charging time. By applying a fast charging policy, batteries are tested under
conditions that are close to the real use of batteries in an EV. Indeed, one of the main
challenges that EV are facing is the charging time, which should be as short as possible
without damaging the cells.

76

As explained in section 2.2, there are two different kind of data sequences in this
dataset : historical data sequences and times series.

Figures 1, 2 and 3 are representations of time series for one given cycle (the charging
pattern, evolution of external temperature during one cycle, discharge voltage...) and
figures 4, 5 and 6 show the global evolution of a given historical data sequence over the
full life cycle of a battery.

Fig. 1. Charging pattern Fig. 2. Cell T° Fig. 3. Discharge V and I

Fig. 4. Capacity fade Fig. 5. Average cell T° Fig. 6. Internal resistance

The available dataset offers a considerable amount of ageing data from the first cycle
of each cell to the EoL. Every cycle gives information about ageing signs and SOH that
should be taken into account. Both historical data and time series contain information
about the RUL and SOH of the battery at a given time, but they need to be pre-processed
and combined in order to highlight the factors that most represent the degradation trend
of a battery.

3.2 Exploitation of driving data

As detailed in section 2.2, most approaches are based on the exploitation of SOH historical
curves only to forecast the future SOH degradation trend [7, 16, 13]. We see two major
drawbacks in designing a SOH forecasting model based on previous SOH data only. First,
as all available data consists of experimental data built from laboratory cell tests, the
degradation trend is quite steady. Indeed, in the MIT dataset, cells are discharged at a
constant current rate, identically throughout their whole cycle life. Similarly, the charging
protocol does not vary from beginning to end of life. This results in SOH degradation
patterns that are very similar from one battery to another, as can be seen in fig 4.
Therefore, forecasting future SOH degradation trend from past SOH data is simplified
and can be implemented with most machine learning algorithms.

Secondly, studying the global trend of SOH can give a good idea of the long term
degradation but could not make it possible to catch local variations due to a specific
use of the battery. Current (I), voltage (V) and temperature (T°) time series reflect the
real use of the battery : I and V curves represent the driver solicitations (acceleration,
speed, breaks...) and T°brings information about the environment in which the battery
is used (cold or warm weather, night or day etc . . .). Therefore, we believe that using

77

driving data as input to our PHM model is crucial in understanding all possible causes
of deterioration.

3.3 Training dataset

The RUL of a battery decreases at each cycle. Our target is to predict the RUL of a
battery at any given cycle, focusing on only one cycle. That means that in this paper,
a window based approach is used, where the window size is of one cycle. RUL can be
calculated for each cycle following equation 2 :

RUL = ki − n (2)

where ki is the cycle life of cell number i and n is the observed current cycle of the
cell.

Our approach mixes the use of historical data and temporal series. These two types
of data can’t be used directly together as historical data have one scalar value per cycle
and time series have one vector of varying length per cycle. Therefore, before using time
series in our model, a feature extraction technique is used to condense the information
contained in each vector into one scalar value. For example, several features are computed
from each time series such as the root mean square value, area under the curve or average
value. Computed features from time series can then be exploited as input to any given
model in the same way as historical data. The training dataset as used in our approach
is represented in figure 7.

Fig. 7. Training dataset composed of historical data and time series features

In order to compare the performances of different combinations of features, two models
were developed : one using only historical data, and another one using a selection of
historical data and time series features.

78

4 Proposed architecture

As the dataset is quite recent, only little work has been based on it. In this paper,
the architecture described consists in extracting features from temporal series and use
them along with historical data to predict the RUL of a battery. Our predictive model
is based on a well known machine learning regression tool : Artificial Neural Networks
(ANN). Our goal here is not to investigate new predicting approaches but to prove that
the available data combined with low computational models can lead to very efficient
prediction performances. We only used ANN in this work because they can adapt to a
great variety of data types and size. Moreover, we based our approach on a prediction of
RUL as a scalar value. No sequential prediction of SOH or ageing features is made.

Two different ANN were built according to the number of features they take as input.
The first one takes as input features extracted from time series and SOH, and will be
referred to as TSF ANN (Time Series Features ANN). The second one takes as input
only historical features and will be referred to as HF ANN (Historical Features ANN).

As explained is the previous section, this article also studies the impact of input
features on the prediction performances. In the dataset described in section 3.3, each
cycle is considered as one training sample, and the target is the RUL of the battery. As
each cycle of each cell is considered, the dataset results in more than 99000 samples and a
varying number of features according to the model. As there is a great amount of available
data, the structure of the ANN can extend to several layers, each with a great number
of neurons. Dropout was added after each layer in order to avoid over fitting during
training. In order to find the best combination of hyper parameters (number of layers,
number of units per layers, activation function, dropout rate...), several configurations
where tested following a Bayesian optimisation procedure. In all cases, the output layer
of our model only contains one unit and no activation function as a regression is made
on the RUL, directly in terms of number of cycles.

5 Experiments

The following section describes how each model was tested on the different feature se-
lections and compares the performances of our different models between them and in
comparison with other RUL prediction approaches on the same dataset as us.

5.1 Training process

The first step of the training process is to perform the optimisation of the hyper pa-
rameters as explained earlier. After having completed the setup of hyper-parameters for
different models, optimised models are completely re-trained. The dataset described in
section 3.3 is randomly separated into three distinct ensembles : a training, a validation
and a test set. In order to obtain reliable results, the process is repeated several times.
The error measure is computed as the mean of all obtained measures during successive
training.

5.2 Error metrics

During training, the back propagation process for weight optimisation is carried out with
the Adam optimiser. The loss is calculated with Mean Square Error and performance is
judged with the Mean Absolute Error metrics. We used mini-batch gradient descent in

79

order to obtain an efficient and relatively short training time combined with an accurate
convergence towards the minimum loss.

In order to compare the performances of our models between them and with other
approaches in the literature, several scoring measures are used. In a vast majority of
works, the evaluation of models is based on the Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE). We also add the Normalised Mean Square Error (NMSE)
in order to compare the performances of our models with future works, and the Standard
Deviation of the MAE (σMAE) in order to evaluate the reliability of the model. These
quality measures are expressed as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(ypred,i − yi)2 (3)

MAE =
1

N

N∑
i=1

|ypred,i − yi| (4)

σMAE =

√√√√ 1

N

N∑
i=1

(ai −MAE)2 (5)

NMSE =

∑N
i=1(ypred,i − yi)

2

N ∗ V (6)

In all these formulas, ypred,i is the RUL predicted by the model, yi is the real RUL
and N is the number of samples on which error is calculated.

In the equation of standard deviation, a is the absolute error of sample i.

V is the variance of y. For example, the use of the mean of y as the predicted values
would give an NMSE of 1.

5.3 Prediction performances

In this section the predicting results of our ANNs will be compared between them. Our
two models are built to predict one single value of RUL. A 2D dataset is fed to the
networks and a 1D output is given, which corresponds to the predicted RUL in terms
of cycle. The output can take any possible positive value. Figures 8 and 9 represent the
predicting performances of the different networks. The predicted RUL is plotted as a
function of the real RUL.

Table 1 details the predicting performances of the two developed models. The best
prediction performances are obtained with the TSF ANN, which proves that the infor-
mation contained in time series is highly valuable when designing a PHM strategy for
Li-Ion batteries. Not only is the MAE lower with the TSF ANN (11.44 cycle compared
to 15.08 with the HF ANN), but the predictions are more reliable. Indeed, the standard
deviation of absolute error is lower with the TSF ANN, which means that there are less
aberrant predictions and that more prediction errors are closer to the MAE. Histograms
of the absolute error are represented in figures 10 and 11 show that a greater number of
prediction with the TSF ANN have an error between 0 and the MAE.

80

Fig. 8. TSF ANN predicting performances Fig. 9. HF ANN predicting performances

Fig. 10. TSF ANN absolute error histogram Fig. 11. HF ANN absolute error histogram

Table 1. Performance of the cycle-window based ANN according to the type of features

MAE σMAE RMSE NMSE

Historical features 15.08 31.45 34.88 8.4*10−3

Time series features 11.44 26.78 29.16 5.9*10−3

5.4 Comparison with other approaches

Although many papers in the literature mention their performances in the prediction of
RUL, we can only compare our results with others that were obtained using the same
dataset. For now, very few papers have based their approach on this dataset. The original
paper [1] proposed a feature-based approach using a linear combination of the selected
features. The only other approach we have found using this dataset was proposed by a
research group in an online application designed to predict the RUL and current cycle of
any battery [10]. They have based their approach on a CNN.

Table 2. Comparison of different approaches in the literature

RMSE MAE

Historical Cycle based ANN 34.88 15.08

TSF Cycle based ANN 29.16 11.44

LR from [15] 173 N/A

CNN from [10] N/A 115

Table 2 compares the results obtained by all existing approaches with our best per-
forming model. Although not all the same scoring measures were used in the two com-
parative works, the available scores show that our approach outperforms the prediction
performances of the linear model developed by [1] and CNN developed by [10]. These

81

results illustrate the fact that accurate prediction through machine learning needs a great
number of training samples and a good feature extraction strategy. Designing a window
based approach at the scale of one cycle, and extracting features from driving curves is
more efficient than building features from early cycles or from a temporal window over
several consecutive cycles for a use in ANN.

6 Conclusions

This paper is a description of our work on an innovative dataset published by the MIT,
dealing with the ageing of Li-Ion batteries. Building a performing data-driven model re-
lies essentially on the quality of data. With this work, we have proved that the dataset
that had triggered our attention contains highly valuable information, with features rep-
resenting the ageing phenomenon both in the historical domain and time series domain
(driving data). We propose a low computational cost technique with well-known machine
learning models such as artificial neural networks combined with features extraction tech-
niques based on the exploitation of driving curves.
Our results show that a basic approach can outperform more complex models such as
CNN. With our one cycle window based approach, we take advantage of all the infor-
mation contained in the dataset. The prediction of RUL can be made at any cycle when
testing a battery, and can above all be applied to cells whose current cycle is not known.
For future work, we plan to dig further in the same direction. The use of driving data
appears to be crucial, and we believe that employing Recurrent Neural Networks that
are particularly adapted to the study of temporal series and forecasting problems could
improve the performances of our models.

References

1. Severson, K.A., Attia, P.M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M.H., Aykol,
M., Herring, P.K., Fraggedakis, D., Bazant, M.Z., Harris, S.J., Chueh, W.C., Braatz, R.D.:
Data-driven prediction of battery cycle life before capacity degradation. Nature Energy 4(5)
(2019) 383–391

2. Wang, J., Wen, G., Yang, S., Liu, Y.: Remaining Useful Life Estimation in Prognostics Using
Deep Bidirectional LSTM Neural Network. Proceedings - 2018 Prognostics and System
Health Management Conference, PHM-Chongqing 2018 (2019) 1037–1042

3. Downey, A., Lui, Y.H., Hu, C., Laflamme, S., Hu, S.: Physics-based prognostics of lithium-
ion battery using non-linear least squares with dynamic bounds. Reliability Engineering
and System Safety 182(October 2018) (2019) 1–12

4. Kozlowski, J.D., Byington, C.S., Garga, A.K., Watson, M.J., Hay, T.A.: Model-based predic-
tive diagnostics for electrochemical energy sources. IEEE Aerospace Conference Proceedings
6 (2001) 63149–63164

5. Zhang, Y., Xiong, R., He, H., Liu, Z.: A LSTM-RNN method for the lithuim-ion battery
remaining useful life prediction. 2017 Prognostics and System Health Management Confer-
ence, PHM-Harbin 2017 - Proceedings (20150098) (2017)

6. Chen, C., Pecht, M.: Prognostics of lithium-ion batteries using model-based and data-
driven methods. Proceedings of IEEE 2012 Prognostics and System Health Management
Conference, PHM-2012 (2012) 1–6

7. Li, X., Zhang, L., Wang, Z., Dong, P.: Remaining useful life prediction for lithium-ion
batteries based on a hybrid model combining the long short-term memory and Elman neural
networks. Journal of Energy Storage 21(December 2018) (2019) 510–518

8. Zhang, L., Mu, Z., Sun, C.: Remaining Useful Life Prediction for Lithium-Ion Batteries
Based on Exponential Model and Particle Filter. IEEE Access 6 (mar 2018) 17729–17740

82

9. Zheng, S., Ristovski, K., Farahat, A., Gupta, C.: Long Short-Term Memory Network for
Remaining Useful Life estimation. In: 2017 IEEE International Conference on Prognostics
and Health Management, ICPHM 2017, Institute of Electrical and Electronics Engineers
Inc. (jul 2017) 88–95

10. H. Knobloch, A. Frenk, W.C.: Predicting Battery Lifetime with CNNs (2019)
11. Saha, B., Goebel, K., Christophersen, J.: Comparison of prognostic algorithms for estimating

remaining useful life of batteries. Transactions of the Institute of Measurement and Control
31(3-4) (2009) 293–308

12. Bole, B., Kulkarni, C.S., Daigle, M.: Adaptation of an electrochemistry-based Li-ion battery
model to account for deterioration observed under randomized use. PHM 2014 - Proceedings
of the Annual Conference of the Prognostics and Health Management Society 2014 (2014)
502–510

13. Zhang, Y., Xiong, R., He, H., Pecht, M.G.: Long short-term memory recurrent neural
network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on
Vehicular Technology 67(7) (2018)

14. Veeraraghavan, A., Adithya, V., Bhave, A., Akella, S.: Battery aging estimation with deep
learning. 2017 IEEE Transportation Electrification Conference, ITEC-India 2017 2018-
Janua (2018) 1–4

15. Severson, K.A., Attia, P.M., Jin, N., Yang, Z., Perkins, N., Chen, M.H., Aykol, M., Herring,
P., Fraggedakis, D., Bazant, M.Z., Harris, S.J., Chueh, W.C., Braatz, R.D.: (Supplementary
information)Data-driven prediction of battery cycle life before capacity degradation

16. Qu, J., Liu, F., Ma, Y., Fan, J.: A Neural-Network-Based Method for RUL Prediction and
SOH Monitoring of Lithium-Ion Battery. IEEE Access 7 (2019) 87178–87191

83

An Architecture to Quantify the Risk of AI-Models

Alexander Melde1, Astrid Laubenheimer1, Norbert Link2, and Christoph Schauer2

1 Karlsruhe University of Applied Sciences
alexander.melde@h-ka.de astrid.laubenheimer@h-ka.de

2 Inferics GmbH
norbert.links@inferics.com christoph.schauer@inferics.com

Abstract. In this paper we propose a multi-step approach to quantify the risk of
AI-models. To evaluate the quality of a learned AI-model for image classification,
a previously unseen part of a dataset is classified and the predictions are compared
with their groundtruth to measure the accuracy of a model. In contrary, we first
split the test dataset into two parts based on how unambiguous each sample can
be assigned to a class. Samples that are close to the class decision boundary of
multiple learned models are considered particularly difficult to classify. Second, we
create a quantification of the model’s ability to extrapolate on hard-to-classify or
unseen data by training the model on “easy” data and evaluating it on the “diffi-
cult” split. Inside our models, we project the data into a 3-dimensional space using
a neural network. We analyze this projection using the histogram of mutual dis-
tances, the silhouette measure [1] and the entropy of it to assess the extrapolation
quality and thus robustness of the model. Subsequently, we apply our approach to
the MNIST dataset [2] to prove its effectiveness. We see that models trained only
on “easy” data are less robust than models trained on mixed data, which includes
“difficult” data that lies in-between classes. This behavior is evident in both our
quantitative measurements and qualitative evaluation In this paper, after an in-
troduction to the topic and scope, related work is presented and the approach is
explained in general terms. Subsequently, the application of the approach to the
MNIST dataset is described and the results of these experiments are presented.
Finally, a conclusion is drawn and options for future work are given.

Keywords: quality assurance, explainable AI, explainability, artificial intelli-
gence, machine learning, explainable artificial intelligence, human activity recog-
nition, action recognition, evaluation of AI systems, applications of AI in life
sciences

1 Introduction

In recent years, there has been increasing research on artificial intelligence (AI) methods
in order to make our everyday lives easier and safer. For instance, assisted living in com-
bination with outpatient care services has become increasingly popular as an alternative
to nursing homes. In addition to the established emergency call systems, more and more
sensor-based AI systems are entering the market. These systems can inform nursing staff
or trigger an alarm when they detect dangerous situations or unusual activities involving
residents. Further increases in popularity are to be expected for these systems as new
AI-based technologies support safety and security for self-determined living in familiar
surroundings. In general, these technologies are based on machine learning (ML) mod-
els trained on datasets whose quality of being representative for real world scenarios is
unknown.

84

For providers of such systems the introduction of new ML models into their products
is of a high risk. The set of data on which the model can be evaluated in advance
of the product launch commonly is not numerous enough and often generated under
laboratory conditions which do not represent the true conditions for the product in real
use. Furthermore, the performance of the models (from sight of economic efficiency) can
not securely be predicted in advance because well introduced measures such as precision
and recall [3, 415] do not lead to a reliable estimation of the risk of failures such as false
alarms or missed detections and the associated financial cost.

In the context of systems that rely on activity recognition in domestic environments,
this leads to problems, when closely related activities have to be distinguished. As one
example “drinking a glass of water” and “brushing your teeth” are hard to distinguish,
especially when the decision has to be made in the absence of a semantic context. In
practice, classifiers usually are trained and tested on data that represents both activities
in a clearly distinguishable way, which often leads to models with high accuracy.

In the wild however, one has to expect situations that are positioned fuzzy between
the two classes and therefore hard to recognize. If such situations are not only underrep-
resented in the training data but also in the test data, they are not sufficiently considered
in the quality assessment as well. Nevertheless, the behavior of the model on exactly these
situations defines the risk of the use of the model in a real-life system.

In this paper, we propose a framework to evaluate how models which are trained on
“easy” data only perform on “difficult” data which lies in-between classes. We demon-
strate its effectiveness on the MNIST dataset [2].

2 Related Work

Approaches to assess model quality regardless of the distribution of the test data are
provided by the field of Explainable Artificial Intelligence (XAI), which is a term to de-
scribe methods that explain decisions made by AI algorithms. Many deep neural network
architectures are fundamentally black boxes whose decision-making is not comprehensi-
ble. Explainable AI attempts to make individual model executions or the entire model
decision strategy more transparent. By understanding the decisions of a model, its qual-
ity can be assessed more independently from the particular test data and misconceptions
arising from a limited scope of test data can be avoided. In recent years, numerous meth-
ods for XAI have been published. So far, these usually follow one of the following three
approaches: First, the model can be built in a way that it is explainable naturally [4]
(or by design, e.g. by using decision trees [5]), second original models can be replaced
by fitted surrogate models that allow local or global interpretations [6, 7] and third, ex-
planations can be generated using a direct process for either local or global explanations
by putting a model into a more explainable state during training or by explaining single
predictions, e.g. by determining the most important features for a certain decision [8, 9].
An extensive survey of XAI methods is given by Burkart and Huber in 2021 [9]. XAI
tries to identify the risk of an AI model’s decision being wrong and questions decisions
made by the model. However, our approach does not explain the model itself, but instead
attempts to quantify this risk. It describes the set of training data and how well it can
be used to describe a real-world problem, and therefore does not fall into any of these
categories.

Another related field of research is coverage testing, a technique determining whether
the test cases used are actually covering the application area. Mani et. al. [10] explain
the necessity to measure the quality of a dataset beyond the standard accuracy measure

85

(proposing a set of four metrics to measure the coverage quality of a test dataset in the
feature space of a model) and propose and demonstrate the effectiveness of a systematic
test case generation system (samples additional test cases from the feature space) [10, 1].
They propose four different test quality dimensions that (1) measure the distribution of
test data across individual classes, (2) measure the percentage of test data for each class
that lies close to the centroid of the trained cluster or (3) near the boundary with respect
to every other class of trained class clusters and (4) measure for each pair of classes the
percentage of the boundary-condition (3) [10, 2]. This proposed system is evaluated on
the MNIST dataset as well. This approach is closely related to active learning, a term to
describe methods that find areas of the feature space that are not sufficiently sampled
and ask the user to add test data for this specific areas [11]. This might also be done
by evaluating the density function in the feature space. In contrary to these approaches,
we do not measure the quality of coverage in the feature space but the quality of data
distribution in the latent space.

A related approach that can be applied in both the latent and feature space is outlier
detection, which looks for data points outside the distribution of the dataset [12]. In
contrast, we evaluate quality using only the data points that lie between classes.

3 Approach

Our proposed approach starts by splitting the test split of a dataset into two parts:
one of them representing data samples that can clearly be assigned to one class (“easy
data”) and the other one representing data samples that cannot be assigned to a class
unambiguously due to its proximity to the class decision border in the latent space of
the network (“difficult data”). The split can be found by means of a majority voting
approach across several proven model architectures.

In the second step, we quantify the ability of arbitrary models to extrapolate from
“easy” to “difficult” data, by training the model on “easy” data and evaluating it on the
“difficult” split, which then leads to a quantification of the models ability to extrapolate
onto hard to classify or unseen data. For our approach we assume that the model consists
of an embedder backbone network which projects the data into the latent space and
a classifier head evaluating the projections. The extrapolation quality of the model is
assessed by analyzing the projections in the latent space, where the histogram of mutual
distances is analyzed. The silhouette measure [1] and the entropy are used to compare
the model performance on the “easy” and “difficult” datasets as well as to measure the
extrapolation power of the model.

The steps are visually summarized in Fig. 1 and described in detail below.

3D Plots

Silhouette Entropy
sorting method

(sort data by
difficulty)

easy

difficult

dataset
experiments

Acurracy

Fig. 1: Simple Overview of our architecture

86

To split the dataset by difficulty, we train seven different models using the same
original training split but each time a different network architecture. We are using con-
volutional neural networks (CNNs) [13] of various complexity.

For each learned model, the test set is predicted and compared with the ground truth.
We count the number of incorrect predictions per sample image of the test set to quantify
the difficulty of each sample. The higher this number is, the more difficult this sample was
to predict. We then group all of these samples into the two datasets which we consider
“easy” and “difficult”.

We train and test different combinations of dataset splits for test and training, loss
functions, network architectures and number of epochs to measure the accuracy [3, 101]
of different combinations to finally be able to find the “best working” combination in the
traditional sense.

In order to measure robustness, we first create a visual representation of the model.
For this we train multiple deep neural networks (with different dataset difficulties). We
analyze the latent space of a model, which represents the training quality of a model
and will serve as an important indicator for its robustness. The samples of each class
are expected to form clusters in this space. We use both this visual representation of the
3-dimensional latent space and the silhouette histogram [1] and its entropy to measure
the separability of these clusters.

The silhouette value of an object ranges between −1 and 1. Higher values mean the
object is positioned better in the clustered space. The distribution of these values for
a certain set of objects can serve as an indicator of the quality of the clustering. The
silhouettes are calculated as

s(�x) =
b(�x)− a(�x)

max{a (�x) , b (�x)} (1)

with a(�x) being the average dissimilarity (distance) of an object �x to all other objects of
its own cluster X and b(�x) being the minimum average dissimilarity of �x to all objects of
all other clusters Cx [1, 55]. To quantize this primarily visual measurement, we calculate
the entropy of the frequency distribution of the calculated silhouette using the following
formula:

S =
∑
i

(pi ∗ log2(pi)) (2)

with each pi being a bin of the histogram representing the silhouette values. In our
examples we used 500 bins because it provided well distinguishable visual results, neither
being too abstract nor too detailed to visually assess separation quality.

A well separated cluster will lead to a more robust implementation and a lower risk
when applied to a real-world use case. These “easy” situations are characterized by a
silhouette diagram where most values are concentrated in a peak on the right hand
side (see Fig. 2a), leading to a low entropy value. In contrast, for “difficult” situations
the silhouettes values are spread across the histogram (see Fig. 2b) leading to a higher
entropy.

4 Application to MNIST

In this paper our method is applied on MNIST, a dataset of 70.000 fixed-size images of
size-normalized and centered handwritten digits. It was created in 1998 by LeCun et.
al. [2] based on a subset of the NIST handprinted forms and characters dataset [14].

87

(a) The model is trained with both “easy” and
“difficult” data, the silhouette has a peak on
the right side.

(b) The model is trained with “easy” data, the
silhouette values are spreaded across the cosine
similarity spectrum.

Fig. 2: Visual distinction of training dataset difficulty based on the silhouette. The same
network was trained using differently difficult dataset splits and each time tested with
the same previously unseen “difficult” data.

The complete process of our approach applied to the MNIST dataset is shown in the
architecture diagram (see Fig. 3).

Step1-ML-Classifier Step1-Evaluation Step2-Evaluation

(v
er

y
ea

sy
)

(v
er

y
di

ffi
cu

lt)

test

test

M
ea

su
re

m
en

t f
or

 th
e

m
od

el
s d

ec
is

io
n

m
ak

in
g

re
lia

bi
lit

y

Step1-ML-Classifier
(with different network architecture)

test

M
N

IS
T-

Te
st

-s
or

te
d

Training

Test

...

3D Plots

Silhouette
Histograms

Entropy

Step2-ML-Classifier

Step2-ML-Classifier Step2-Evaluation
training

images

labels

Te
st

 -
Sp

lit A
gg

re
ga

to
r

(c
ou

nt
s n

um
be

r o
f i

nc
or

re
ct

 p
re

di
ct

io
ns

 p
er

 sa
m

pl
e)

incorrect
predictions

Sp
lit

 b
y

D
iff

ic
ul

ty
/S

ep
ar

ab
ili

ty
 (T

re
sh

ho
ld

-b
as

ed
)

Step1-Evaluation

Tr
ai

ni
ng

Pr
ep

ro
ce

ss
in

g

N
eu

ra
l N

et
w

or
k

(n
, 2

8,
 2

8)
[0

, 1
]

learned
model

predicted
labels
(n)[0-9]

Model inference
(classification /

prediction)

Comparison of
prediction and
ground truthim

ag
es

labels

Step2-ML-Classifier

Step2-ML-Classifier

images
labelsTe

st
 -

Sp
lit

Training

im
ag

es

labels

Tr
ai

n
- S

pl
it

predictions (n)[0-9]

Model
inference

(classification)learned model

Loss (Distance) Function
(e.g. ArcFace, SoftMax)

Accuracy

M
N

IS
T-

Te
st

...

Tr
ai

n
- S

pl
it

Pr
ep

ro
ce

ss
in

g

M
T-

di
M

T-
ez

Neural Network
Input Layer

Hidden Layers

Output Layer(n
, 2

8,
 2

8)
 [0

-2
55

] representation of
latent feature space

during inference
(n) [0-1]3

Step2-Evaluation

Step2-Evaluation

Sorting and Splitting a Dataset by Difficulty Measuring Robustness (in latent space)

M
N

IS
T-

Tr
ai

n

Fig. 3: Detailed overview of our architecture applied to the MNIST dataset

We use the original MNIST training and test split from the ‘keras.datasets‘ library
and apply common preprocessing steps to reshape the list of pixels to a multidimensional
array of shape (28,28,1), then rescale all values between 0 and 1 and finally one-hot encode
the class labels.

For splitting the dataset by difficulty we use various architectures taken from popular
publications and blog posts for image classification [15–17]. An exemplary selection of
these is shown in Fig. 4 to visualize the differences in their approaches and complexity
(different amount, selection, arrangement and sizes of layers and filters).

The trained deep neural networks for determining robustness are based on a version of
the established VGG architecture [17]. We use the VGG8 architecture shown in Fig. 4c,
which, unlike VGG16, allows us to process images smaller than 32x32px [17], which
is important when applying this method to the MNIST dataset, of which the images
have a size of 28x28px [2]. The architecture is retrieved from a repository containing an
implementation of the ArcFace loss function [18], which we will use to visualize what
the model has learned. By removing the output layer of the tested deep neural network
architecture (SoftMax/ArcFace Layer in Fig. 4c), we can directly access the last dense
layer representing the latent space of the model.

88

M
ax

 P
oo

lin
g

2D
 (2

,2
)

D
ro

up
ou

t (
0.

5)

D
en

se

C
on

vo
lu

tio
n

2D
 (5

,5
)

M
ax

 P
oo

lin
g

2D
 (2

,2
)

C
on

vo
lu

tio
n

2D
 (5

,5
)

28

28

1

24

24

32

10

Fl
at

te
n

1024

R
eL

u

R
eL

u

R
eL

u

64

4
4

64

8

8

32

12

12

(a) CNN1 [15]

D
en

se

C
on

vo
lu

tio
n

2D
 (3

,3
)

C
on

vo
lu

tio
n

2D
 (3

,3
)

28

28

1

26

26

32
32

24

24

10

Fl
at

te
n

So
ft

M
ax

B
at

ch
 N

or
m

al
iz

at
io

n

R
eL

u

C
on

vo
lu

tio
n

2D
 (3

,3
)

B
at

ch
 N

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 N

or
m

al
iz

at
io

n

R
eL

u

D
ro

po
ut

 (0
.4

)

C
on

vo
lu

tio
n

2D
 (3

,3
)

C
on

vo
lu

tio
n

2D
 (3

,3
)

B
at

ch
 N

or
m

al
iz

at
io

n

R
eL

u

1024

C
on

vo
lu

tio
n

2D
 (3

,3
)

B
at

ch
 N

or
m

al
iz

at
io

n

R
eL

u

B
at

ch
 N

or
m

al
iz

at
io

n

R
eL

u

D
ro

po
ut

 (0
.4

)

B
at

ch
 N

or
m

al
iz

at
io

n

D
ro

po
ut

 (0
.4

)

R
eL

u

D
en

se

32

12

12

64

10

10

64

8

8

64

4
4

128

(b) CNN2 [16]

M
ax

 P
oo

lin
g

2D
 (2

,2
)

D
ro

up
ou

t (
0.

5)

Fl
at

te
n

D
en

se

B
at

ch
 N

or
m

al
iz

at
io

n

R
eL

u

C
on

vo
lu

tio
n

2D
 (3

,3
)

M
ax

 P
oo

lin
g

2D
 (2

,2
)

B
at

ch
 N

or
m

al
iz

at
io

n

R
eL

u

C
on

vo
lu

tio
n

2D
 (3

,3
)

M
ax

 P
oo

lin
g

2D
 (2

,2
)

B
at

ch
 N

or
m

al
iz

at
io

n

R
eL

u

C
on

vo
lu

tio
n

2D
 (3

,3
)

28

28

1

28

28

1616

16

14

14

32

14

14
3
3

64

576

× 2 × 2 × 2

3

So
ft

M
ax

 /
A

rc
Fa

ce

D
en

se

10

B
at

ch
 N

or
m

al
iz

at
io

n

64

7

7

32

7

7

(c) VGG8 (VGG16: [17])

Fig. 4: Selected network architectures used in our experiments. Network layers are colored
green, the dimension of data between layers is visualized by yellow boxes. The size of the
convolutional filters is given in parentheses after the layer name (width, height), similar
to the percentage of the drop-out in the corresponding layers.

In our experiments, we are measuring the dissimilarity of two objects d(�x, �y) using
the cosine function where �x · �y is the dot product of �x and �y:

d(�x, �y) = 1− �x · �y
||�x||2 ||�y||2 . (3)

Consisting of very basic mathematical functions, it is computationally simple and in
our experiments provided well distinguishable results in the silhouette graphs.

5 Results

We apply the proposed method on the well-known MNIST dataset of handwritten digits
[2] to demonstrate the effectiveness of our proposed approach.

To determine the difficulty of the image samples, seven different CNN-based classifi-
cators were trained and used to classify the test dataset. We consider every element that
was incorrectly classified at least once as part of the “difficult” data split, leading to a
final split of 9632 “easy” and 368 “difficult” images (colored green and orange in Fig. 3).

Next, the classifiers shown in Fig. 4 are trained with the “easy” data and then were
validated using the “difficult” data split and the standard accuracy measurement. The
results in Table 1 indicate that the different network architectures have different learning
curves and in general perform differently well, pointing out they differ enough to ensure
a reliable selection of network architectures to measure dataset sample difficulty.

89

Table 1: Testing accuracy when training with “easy” and testing with “difficult” data.

Validation Accuracy after Training Accuracy after
Network 7 Epochs 100 Epochs 7 Epochs 100 Epochs

CNN1 0.56739 0.78190 0.99686 0.99956
CNN2 0.37174 0.84733 0.99476 0.99967
VGG8 0.45435 0.78408 0.97935 0.99978

To visualize the classification confusion, the predicted classes of the VGG8 classifier
are grouped by their groundtruth classes in Fig. 5a) in the form of a confusion matrix.
A confusion matrix representing a classifier with high accuracy shows high values on the
main diagonal and small values outside of it. We consider training with the “easy” data
and testing the “difficult” data as a difficult task, which explains why in this case high
numbers appear outside the diagonal. The highest number of confusions is given for the
case that a handwritten digit 9 is classified as 5, but we also see that the number 9 is
generally over-represented in the “difficult” dataset. Example images of these confused
MNIST digits can be seen in the other images of Fig. 5, labeled with the groundtruth
followed by predictions of two classificators used in our experiments.

(a) Confusion matrix of final VGG8 classifier

(b) 4: 4/9 (c) 7: 7/4

(d) 7: 7/9 (e) 9: 9/7

Fig. 5: Confusion matrix of MNIST images and sample images [2], their groundtruths
and predictions made by one (a) or two (b – e) classificators. The label of images b – e
show the ground truth followed by the different predictions of the two classificators.

For all following experiments, we will use both the traditional SoftMax loss [3, 181]
as well as the ArcFace loss [18].

To visualize what the model has learned, the latent space is plotted in a 3D space.
As expected, the different MNIST classes form clusters in this space. Datasets varying in
difficulty will lead to differently well separated clusters. The better the clusters are sepa-
rated, the more robust the model should be. This 3D visualization of the learned clusters
is shown in Fig. 6. For both losses, different combinations of training and test datasets
are shown. This overlapped view is useful to detect outliers arising from difficult data.
From this visualization alone, we can see that when training with not only the “easy”
images, but the complete train dataset (which also includes more difficult elements), a
far better separability could be achieved. We can also notice that in our experiments,

90

using the ArcFace loss [18] resulted in better separated clusters than using the SoftMax
loss. This pattern is observed independently of the number of training epochs.

(a) ArcFace [18] loss function (b) SoftMax [3, 181] loss function

Fig. 6: Visualization of learned features in the latent space when trained for 100 epochs
using different loss functions and different combinations of train and test datasets. Dif-
ferent colors represent different classes of the MNIST [2] dataset, different symbols are
used to represent the different dataset combination.

Different Splits of difficulty lead to the distributions of silhouettes shown in Fig. 7. A
high silhouette means an item is located near the center of the learned cluster.

The quantitative results of our experiments (shown in Table 2) and the visualized
silhouette values (see Fig. 7) show the generally better performance of ArcFace over
SoftMax and the benefits of training more epochs.

Fig. 7: Histograms of the silhouette values after training for 200 epochs with the SoftMax
and ArcFace loss. Using ArcFace leads to more high silhouette values (especially in the
rightmost bin) representing a better separation for all combinations of test and training
datasets.

In general, if an image sample has a high silhouette value, it is well positioned in
the clustered feature space. We can see that combinations that are deemed “difficult”
lead to a wider distribution, e.g. training with easy images and testing difficult images,
while “easy” combinations lead to a peak near the high end of the histogram. A wide
distribution shows that there is no clear tendency to how good the elements are clustered,
but a peak on the right side shows that most elements are clustered well. This is also

91

Table 2: Entropy values measured in our experiments. A low entropy is an indicator of
good cluster separation in the latent space.

Dataset for SoftMax Entropy after ArcFace Entropy after
training testing 7 100 200 Epochs 7 100 200 Epochs

original train easy test 2.09 1.65 1.57 2.13 0.39 0.30
original train original test 2.27 1.80 1.71 2.37 0.57 0.40
original train difficult test 4.89 4.45 4.21 4.91 3.24 3.38
easy train difficult test 5.39 4.96 5.09 5.52 4.99 4.81

represented in the entropy value of each graph, shown in Table 2. The wider the graph,
the higher the entropy. The smallest value for the “easy” train and “difficult” test scenario
is given when training with ArcFace for 200 epochs. Overall, we see that in most cases
training using the SoftMax Loss is less effective than training with the ArcFace Loss. This
is also shown in the histogram in Fig. 7, as with SoftMax the classic “blue” combination
of training and testing using the official dataset splits shows a wider peak at the right side
than with ArcFace, visualizing that more elements are worse positioned in the feature
space.

6 Conclusion

We proposed a framework to separate a dataset into different levels of difficulty using
a majority voting approach and evaluated how models which are trained on the “easy”
data split only perform when the “difficult” data split is used for testing. We ensure a
both qualitative and quantitative measurement by evaluating plots of the latent space
and silhouette histograms as well as the entropy value of the silhouette histogram.

This theoretical approach has been applied to the MNIST dataset [2] to prove its effi-
ciency. The results of the experiments are as expected: training with a dataset consisting
of only “easy” data leads to less robust models than training with the full dataset that
also contains “difficult” samples. We have also proven that the entropy of the silhouette
measure histogram and both the visualizations are useful to determine the robustness of
an AI-model. During these experiments, we also measured that using the ArcFace loss
instead of SoftMax leads to a better clustering and therefore more robust models in most
cases.

7 Future Work

In future work, this approach will be transferred to more complex applications using
action recognition to support the use cases in the area of life sciences. For this we will
use an activity recognition video dataset and matching machine learning models for video
action classification.

Independently, in future projects, the majority voting approach can be replaced by
using the silhouette coefficient to separate “easy” and “difficult” samples. The assumption
that a high silhouette value implies that the data sample is easy to classify will result in
shorter training time, as the number of required classificators is reduced.

92

References

1. Rousseeuw, P.J.: Silhouettes: A Graphical Aid to the Interpretation and Validation of
Cluster Analysis. Journal of computational and applied mathematics 20 (1987) 53–65

2. LeCun, Y.: The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998)

3. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
http://www.deeplearningbook.org.

4. Loh, W.Y.: Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 1(1) (2011) 14–23

5. Yang, Y., Morillo, I.G., Hospedales, T.M.: Deep neural decision trees. arXiv preprint
arXiv:1806.06988 (2018)

6. Ribeiro, M.T., Singh, S., Guestrin, C.: ”Why should i trust you?” Explaining the predictions
of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining. (2016) 1135–1144

7. Lundberg, S.M., Lee, S.I.: A Unified Approach to Interpreting Model Predictions. In:
Proceedings of the 31st international conference on neural information processing systems.
(2017) 4768–4777

8. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with
feature contributions. Knowledge and information systems 41(3) (2014) 647–665

9. Burkart, N., Huber, M.F.: A Survey on the Explainability of Supervised Machine Learning.
Journal of Artificial Intelligence Research 70 (2021) 245–317

10. Mani, S., Sankaran, A., Tamilselvam, S., Sethi, A.: Coverage Testing of Deep Learning
Models using Dataset Characterization. arXiv preprint arXiv:1911.07309 (2019)

11. Settles, B.: Active Learning Literature Survey, University of Wisconsin-Madison Depart-
ment of Computer Sciences (2009)

12. Wang, H., Bah, M.J., Hammad, M.: Progress in Outlier Detection Techniques: A Survey.
Ieee Access 7 (2019) 107964–108000

13. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel,
L.D.: Backpropagation Applied to Handwritten Zip Code Recognition. Neural computation
1(4) (1989) 541–551

14. Grother, P.J.: NIST special database 19-Hand-printed forms and characters database. Tech-
nical Report, National Institute of Standards and Technology (1995)

15. Leban, J.: Image recognition with Machine Learning on Python, Con-
volutional Neural Network. Towards Data Science (2020) retrieved from
https://towardsdatascience.com/363073020588 on 03.08.2021.

16. Deotte, C.: What is the best CNN architecture for MNIST? Kaggle notebook (2018)
retrieved from https://www.kaggle.com/cdeotte/how-to-choose-cnn-architecture-mnist on
03.08.2021.

17. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv preprint arXiv:1409.1556 (2014)

18. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: Additive Angular Margin Loss for Deep
Face Recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. (2019) 4690–4699

Acknowledgements

We thank J. Wetzel and T. Iraki for helpful comments and discussion. This work was
funded by the Ministry of Science, Research and Arts of Baden-Württemberg (MWK) as
part of the project Q-AMeLiA (Quality Assurance of Machine Learning Applications).

93

Exercises in Human-Centered AI: On Shneiderman’s Second
Copernican Revolution

Dieter Wallach1, Lukas Flohr2, Annika Kaltenhauser2, Sven Fackert1

1 Hochschule Kaiserslautern
dieter.wallach@hs-kl.de, sven.fackert@hs-kl.de

2 Ergosign GmbH
annika.kaltenhauser@ergosign.de, lukas.flohr@ergosign.de

Abstract. In his stimulating paper “Human-centered Artificial Intelligence” Shneiderman
(2020) reframed AI research and application development by putting human users at the
center of system design. Shneiderman requests a reunification of the view where humans
are in the loop around algorithms and AI and suggests putting AI in the loop around humans,
with a dedicated focus on the needs of users. From a UX designer’s point of view, we
discuss the idea of putting humans at the center and illuminate the implications of
Shneiderman’s arguments by referring to projects from our lab. By this, we emphasize the
role of empirical research, (collaborative) UX Design, and evaluation in the development
of human-centered AI systems. Our case studies exemplify a human-centered design
approach of AI-injected systems in different domains and carve out the core learnings we
gathered. The first case study, IMEDALytics, is taken from a project targeted at the
development of a clinical decision-support system (CDSS) for individualized medical risk
assessment, monitoring, and therapy management in intensive care medicine. We select this
project to illustrate the indispensable nature of ethnographic user research to arrive at a
holistic understanding of user needs. By visualizing the results of contextual observations
and interviews in comprehensive user journeys, we shift the focus from problem solving
through technology to the design of experience potentials (see Hassenzahl, 2010). We argue
that it is paramount to present information to physicians in an unambiguous and
understandable way, which classifies the task as an Explainable AI example in which
answers to the following questions need to be derived:

• How can we combine human abilities of healthcare professionals – such as their
general understanding, previous experiences, flexibility and creativity in the decision-
making process – with the powerful possibilities of an AI-based system?

• How can we make diagnosis and therapy suggestions provided by the system
accessible to healthcare professionals without depriving their self-efficacy?

• Which design processes are needed to design an interactive interface that leads to a
long-term positive UX?

• Which influence has (the type of) presented information – e.g., in the form of
information visualizations – on the perceived transparency or even trust in a CDSS?

Our second example focuses on the development of real-world autonomous mobility-on-
demand (AMoD) public buses and required services for their operation. In autonomous
mobility-on-demand systems, passengers are transported by self-driving cars, i.e., by
vehicles with high or full driving automation capabilities. Comparable to taking a ride in a
(shared) taxi, journeys in AMoD systems are temporally and spatially flexible. This means
that there are neither fixed timetables nor fixed pick-up or drop-off locations required.
Given that there is neither a driver nor an accompanying assistant available to answer

94

traveler queries, AMoD rides vary greatly from current mobility-on-demand or taxi
services. This new situation of riding in a driverless vehicle might feel awkward to
passengers who are exposed to the decisions and actions of an autonomous system.
Consequently, user interfaces capable of compensating the absence of a human driver are
needed to establish a trustful AV-passenger communication. To counteract these
challenges, we had to find answers to questions that include the following:

How can and how should AI-infused AMoD systems communicate with
passengers?

How can we design and evaluate user interfaces while taking the complete user
experience – before, during and after a ride – into account?

In our talk, we illustrate the applied formative design approach that is used for an iterative
refinement of mobile and in-vehicle passenger UI prototypes (GUI- and Chatbot-based) and
their subsequent empirical evaluation in simulators with increasing fidelity — ranging from
video-based lab setups to real-word (Wizard-of-Oz) on-demand drives. In our third case
study, AI science and AI engineering (Shneiderman, 2020) — i.e., emulating human
behavior and developing useful applications — are combined in the creation of an AI-based
(predictive) prototyping tool. The resulting tool allows the creation of complex interactive
prototypes for which quantitative performance predictions are derived by running cognitive
models. Such models are automatically generated by monitoring a designer’s interaction
while completing a task scenario using a prototype. The underlying models are based on
the ACT-R cognitive architecture (Anderson & Lebiere, 2020) comprising hybrid (i.e.,
symbolic and sub-symbolic) structures and processes. ACT-R is a prominent example of a
Unified Theory of Cognition integrating empirically supported assumptions about the
interplay between human memory, learning, attention, perception and motor behavior
which has been successfully applied to a broad range of tasks. The generated models can
directly interact with a prototype, perceive its interface elements, learn task interactions and
be able to manipulate the state of controls. In our talk we demonstrate that — by generating
the behavior of synthetic participants — we can successfully predict human performance
in real-world tasks ranging from mobile phone applications to the operation of commercial
riveting machines in aviation industry. By using the very same tool, interface designers can
create a prototype and receive almost instant evidence about its interactional efficiency by
running artificial user models. Predictive prototyping opens the potential to significantly
shorten iteration cycles by providing quantitative performance KPIs without the need to
conduct effortful user studies. In the light of the case studies presented, we argue that the
methodological apparatus of UX research and collaborative design practices contributes to
the development of “human-centered” AI-based systems that result in positive user
experiences — and thus increase the likelihood of adoption of AI-based systems in practice.

This work has been funded by the German Federal Ministry of Education and Research
(BMBF) under the grant numbers 13GW0280B and 02L15A212 as well as by the German
Federal Ministry of Transport and Digital Infrastructure (BMVI) under the grant number
16AVF2134G.

Keywords: User Experience Design, User Research, Prototyping, Autonomous driving,
Clinic decision support systems, Evaluation, Human-Computer Interaction

95

96

97

98

99

100

101

102

103

104

105

Application of Machine Learning Methods for the
Development of Internal Combustion Engines

–
An Overview

Youssef Beltaifa, Shahida Faisal, Maurice Kettner

Karlsruhe University of Applied Sciences
Gas Engine Laboratory (GenLab)

Youssef.beltaifa@h-ka.de
shahida7085@gmail.com
Maurice.kettner@h-ka.de

Abstract. Machine Learning (ML) has a strong potential to improve the performance and
effectiveness of several technologies and processes. In recent years, ML has gained in im-
portance, primarily due to its matchless success in image recognition and computer games.
These ML accomplishments have motivated to transfer and adapt its algorithms and mod-
eling methods to most scientific disciplines. For instance, in mechanical engineering, ML
is coming to hold a crucial position ranging from value chain optimization (production) to
substitution of complex simulation models (research and development). In the case of tra-
ditional research and development approach, the analysis and optimization of a process are
implemented according to the understanding of the governing mechanisms described by
physical and mathematical rules. On the contrary, the intelligence of the ML method origi-
nates from the extraction of trends and laws based on data patterns, which produces sur-
prisingly good results in many cases. However, it is not entirely evident why it performs so
well. One of the most challenging mechanical engineering topics is the improvement of the
Internal Combustion Engine (ICE) towards higher efficiency and lower negative impact on
the environment. ICEs are very complex systems, which involve high-speed reciprocating
motions, transient gas flow and combustion chemistry. Thus, the application of ML meth-
ods for ICEs opens new perspectives regarding the modelling, control and maintenance.
These topics are addressed in detail in the course of this paper, based on the most relevant
published results found in the literature, to provide an overview to the actual research and
development of ICE using ML methods.

Keywords: Machine Learning; Mechanical Engineering; Internal Combustion Engines;
Modelling; Control; Predictive Maintenance

1 Introduction

Internal combustion engines will maintain their position as major power source during the com-
ing decades, particularly for heavy-duty applications [1, 2]. Future internal combustion engines

106

have to comply with tightening legislative emission-limits, high fuel-energy conversion-effi-
ciency, affordable prices and customer requirements. To reach this target, engine researchers
worldwide are working on innovative exhaust aftertreatment systems, alternative combustion
processes, bio- and renewable fuels, lightweight materials, modern lubricants and advanced man-
ufacturing processes. Within the development of innovative combustion processes (research fo-
cus of Gas Engine Laboratory at Karlsruhe University of Applied Sciences) mainly experimental
(mostly at the engine test bench) and numerical investigations (0D, 1D and 3D-CFD) are per-
formed. Engine tests are expensive (costly metrology, etc.) and very time-consuming. Moreover,
numerical simulations are very dependent on the validation of the implemented physics-based
models and necessitate in many cases a large computational capacity. Considering this facts,
different alternative approaches that enable saving costs, time and computational power are re-
quired. One of the possible solutions that has been increasingly used in recent years is machine
learning.
Machine learning is a branch of knowledge dealing with training computers to forecast output
values or to classify things without having been explicitly programmed for such function. Ma-
chine learning success in many areas like image/speech recognition, effective internet search,
self-driving cars is mainly lead by the availability of huge datasets. Machine learning methods
can be categorized into two main groups: supervised and unsupervised algorithms, as shown in
Figure 1, which depicts some of the most used machine learning algorithms.

Figure 1. Classification of the most common machine learning algorithms

The methods marked in bold in Figure 1 are the methods that have been used the most in recent
studies dealing with internal combustion engines, which are collected and analyzed within this
paper. These works are classified within this paper depending on the intended use of machine
learning into three categories: Prediction of engine operation parameters and emissions, anomaly
detection and predictive maintenance, and real-time engine control. These three topics are cov-
ered throughout this paper in detail.

107

2 Prediction of Engine Operation Parameters and Emissions

Many studies [3-18] have demonstrated that engine combustion associated parameters and emis-
sions can be predicted accurately using neural networks over a wide range of operating condi-
tions, given that the training data provides good knowledge of the system’s behavior. The com-
bination of fast-computational time and the network’s ability to analyze broad non-linear prob-
lems can potentially replace expensive exhaust gas sensors (FID, Gas Chromatograph, etc.) and
physics-based, computationally intensive engine modeling approaches. Multi-Layer Perceptron
(MLP) is a conventional artificial neutral network (ANN) structure that is commonly used for
the prediction of engine operating parameters and exhaust gas components. MLP consists of
input, hidden and output layers, as seen in Figure 2 on the left.

Figure 2. Structure of MLP with two (as example) hidden layers (left), Structure of Perceptron (right)

As shown in Figure 2 on the right, each input is assigned to a weighting factor, representing the
importance of the input factor given by the model when predicting the output. Activation func-
tions are employed in the hidden and output neurons, allowing mapping the non-linear relation-
ships between outputs and inputs. For the model training, MLP uses among others gradient de-
scent backpropagation algorithm, where the goal is to minimize the modeling error, meanwhile
the weights between neurons are gradually adjusted. Usually, the network training takes place
using the Levenberg-Marquardt (LM) backpropagation algorithm, known for high computational
efficiency. LM algorithm is a curve-fitting method for solving nonlinear least-squares problems.
LM combines the two minimization algorithms gradient descent and Gaussian-Newton to mini-
mize the sum of the squared errors between the fitted model function and the experimental data
[19]. MLP with the weighting approach can also be used to have an insight on the dependency
of the model output on the input parameters. As an example, the authors in [20] analyzed the
relative importance of the in-cylinder parameters affecting the NOx and HC model output by
extracting the saved weights from the trained network. The results yielded that both HC and NOx

were commonly dependent on the engine load and IMEP. The model showed a significant de-
pendency of the NOx emissions on the peak pressure in the combustion chamber, which is phys-
ically reasonable. Higher peak pressures in the combustion chamber are associated with high
charge temperatures, which result in turn in a high temperature oxidation of the diatomic nitrogen
in the combustion air and the formation of “thermal” NOx. Further studies demonstrating the
success of artificial neural networks in predicting and modeling of engine-operation associated
parameters and emissions are summarized in Table 1. For these studies, the statistical efficiency
of the models lies between 94% and 99.9%. It is important to notice, that MLP with backprop-
agation is the most frequent encountered machine learning approach in the field of the research
and development of internal combustion engines.

108

Table 1. Summary of MLP applications for the prediction of engine operation characteristics and
emissions found in literature

Further neural network concepts/architectures have
been used in other studies. Taghavi et al. [21] con-
sidered in addition to the MLP network the non-lin-
ear autoregressive network with exogenous inputs
(NARX) as well as the radial basis function (RBF)
network for the prediction of start of combustion
(SOC) of a HCCI engine. Input parameters were the
intake mixture characteristics (Air-Fuel-Ratio,
EGR, intake mixture temperature) as well as the en-
gine speed. The NARX algorithm has, depending on
the usage (training or prediction) two structures: The
series-parallel (or open loop) and the parallel (or
closed loop) architectures. The two network archi-
tectures are shown schematically in Figure 3.
The series-parallel architecture is used for training:
the prediction at time-step + 1 is provided based
on real input and output values at the current time
step , as well as those from the previous time steps, as shown in Eq. 1. The pure feedforward
architecture of the series-parallel (open-loop) structure is applied during training due to the fast
static backpropagation [22]. By providing the real input-output pairs during training, the model

Figure 3. NARX networks architectures

109

is able to make future prediction with excellent accuracy. After training, the model produces a
final set of adjusted weights, which minimizes the error between the predicted and the true output
values. The adjusted weights together with the activation functions approximate the nonlinear
mapping function F in Eq. 1. During the prediction stage, the open-loop structure is converted to
a closed-loop architecture. Instead of using the real output when making future prediction (time
step t+1), the trained model takes the output predicted by itself from the current time step as
input, as well as those from the previously n time-steps, as shown in Eq. 2.

Additionally, Taghavi et al. [21] applied the radial basis function (RBF) networks also for pre-
dicting the SOC using the same input parameters as in the case of the NARX network. The RBF
network typically uses only an input layer, a single hidden layer and an output layer [23], as
shown in Figure 4 on the left.

Figure 4. RBF network architecture (left), Schematic description of data dimensionality increase enabling
linear separation (from 2D to 3D) (right)

The RBF network is shallow and its behavior is strongly influenced by the nature of the special
hidden layer, which performs a computation based on a comparison with a prototype vector [23].
The structure and computations performed in the hidden layer are the key to the power of the
RBF network. Here, a hybrid calculation involving two stages takes place. Within the first stage,
the linear separability should be ensured: If needed, a projection of the original data points into
a higher dimensionality, so that they become linearly separable, is performed. This is based on
the Cover’s theorem on separability of patterns [24]. For a simplified understanding, Figure 4 on
the right shows this step schematically. The second stage is the RBF (Radial Basis Functions)
computation, which is based on the comparison of the input units with the prototype vectors

in the hidden layer units according to the equation (3) [23].

= () = exp
2 .

{1, … ,m }

(3)

(+ 1) =
(), (1), … , , (+ 1),

(), (1), … , () (1)

(+ 1) =
(), (1), … , , (+ 1),

(), (1), … , () (2)

110

m is the total number of the hidden units. Each of these m units is created to have a high impact
on a particular cluster of points, which is closest to its prototype vector [23]. Therefore, m can
be regarded as the number of clusters used for modeling, and it represents an important hyper-
parameter available to the algorithm [23]. Each unit has a bandwidth , which is often the same
for all units with the different prototype vectors [23]. After the RBF calculation in the hidden
layer, the outputs from the RBFs are weighted and summed by a simple connection to the output
layer. The values of the weights need to be learned in a supervised way, dealing with the specific
studied case [23]. On the contrary, the hidden layer is trained in an unsupervised way [25]. This
involves several parameters such as the prototype vectors, the bandwidths and the number of
hidden neurons m. Elaborate description about the determination methods of these parameters
can be found in [23]. In comparison to MLP and RBF, the NARX network featured a better
prediction accuracy, reaching R = 0.99933 [21].

Another machine learning process used for
the prediction of engine-operation related pa-
rameters is the Ensemble modeling. For the
prediction of the performance as well as effi-
ciency of an engine converted from the diesel
CI to the natural gas SI combustion process,
Liu et al. [26] applied ensemble methods
(bagging and boosting) and compared their
prediction performances. The model output
was the indicated mean effective pressure
(IMEP). Input parameters were spark timing,
fuel/air-ratio and engine speed with overall
153 sets of data (122 for training and 31 for
testing). “Unity is strength”: This statement
describes in three words the core idea behind
the strength of ensemble methods in machine
learning. Such methods improve the predic-
tive performance of a single model by train-
ing multiple models and combining their pre-
dictions [27]. The base models building the
ensemble model are “weak” learners, which
feature either a high bias or much variance.
These are combined within the ensemble
method in such a way that they build a strong
learner. The combination strategy of the base
learners enables to group the ensemble methods in two main categories, depending on how the
base learners are generated [28]. The first category is “bagging”. Here the individual learners are
created independently and their generation can be parallelized [28]. The second category, called
“boosting”, creates individual learners sequentially in a very adaptive way [28]. Both ensemble
methods are shown schematically in Figure 5. For the first step of the bagging algorithm, multi-
ple bootstrap samples (data subsets) are created. These subsets are almost independent datasets
created from the original one using random selection [26]. It is important to notice, that the size
of the original dataset should be large enough compared to the size of the bootstrap samples so
that they are “sufficiently” independent. Subsequently, one “weak” learner (usually the same) is

Figure 5. General structure of bagging (top) and
boosting (bottom) ensemble algorithms

111

fitted for each bootstrap sample. The predictions of the base learners are then combined to the
final prediction of the ensemble model in some kind of weighting process [27]. The combination
of the base learners within the bagging method enables the reduction of the variance compared
to the variance levels of the single base learners [28]. Therefore, base models with low bias but
high variance are more suitable for bagging. Concerning the boosting algorithm, it is not suitable
for parallelized computation. Boosting starts with training a first base “weak” learner and then
adapt the distribution of the training data according to the output of the base learner such that
incorrectly classified samples will have increased consideration from subsequent basic learners
[28]. In other words, each new base learner focuses on the most difficult samples (wrongly pre-
dicted by the previous learner), so that we get a strong ensemble model with low bias. Hence,
base learners with low variance but high bias are suitable to be combined within boosting en-
semble methods. Liu et al. [26] found that boosting outperformed bagging, can deal with data
set with uneven distributed conditions among the operating range, and provided a high accuracy
prediction (R2 = 0.9623) even for low frequency cases, which are poorly presented in the original
data set.

3 Anomaly Detection and Predictive Maintenance

With recent developments, powertrain systems are becoming more complex. Understanding this
complexity and dealing with associated particular problems/failures requires evolved methods.
New detection methodologies involving machine learning and predictive diagnostics have be-
come the need of the hour [29]. In this frame, Farsodia et al. [30] proposed an approach com-
bining unsupervised learning and clustering to detect anomalies, which may occur in engines or
after-treatment-systems (ATS). To validate their strategy, Farsodia et al. [30] addressed the ex-
ample of the backpressure problem occurring in the diesel particulate filter (DPF) of an automo-
tive diesel engine. Figure 6 depicts schematically the approach proposed by Farsodia et al. [30].

Figure 6. Schematic description of the approach proposed by Farsodia et al. [30] for anomaly detection

As shown in Figure 6, the pressure values before and after the DPF are measured and clustered
in a supervised way using the k-means clustering algorithm. Here, the data set will be distributed
into “k” clusters. Each cluster has a centroid, which is defined by averaging (taking mean) of the
assigned data. First, centroids are determined randomly. Then, data points from the dataset are
arranged to the nearest available centroid. The positions of the centroids change within an opti-
mization process until further movement of centroid is not possible. The algorithm is one of the
most commonly used techniques for clustering purposes, as it quickly finds the centers of the
clusters. Detailed specifications to the k-means clustering algorithm can be found in [31]. In a
further step, a classification MLP is trained with the defined classes (clusters) from the super-
vised clustering step and the associated data. The trained classification MLP is then used in a

112

third step to predict in an unsupervised manner the operating mode of the DPF. For a better
monitoring of malfunction cases, Farsodia et al. [28] defined a “severity factor”, which enables
a time dependent tracking of the DPF functionality degradation. The “severity factor” is derived
based on the relative density of data (e.g. malfunction, backpressure, etc.) with respect to total
available data points [30]. This “severity factor” gives a pre-warning about any component’s
malfunction, which will enable the end user to take necessary preventive measures [30].

In a further case, Farsodia et al. [30] presented a methodology involving the weighted k-nearest
neighbor (w-kNN) algorithm to predict the temperature shoot-up events in a DPF, which are
harmful for the ATS from thermal aging and safety perspectives. kNN is among the simplest
statistical learning tools in density estimation, classification as well as regression and known to
be trivial to train and easy to code [32]. The difference between the standard and the weighted
kNN is that in the weighted approach the prediction of a test point is more depended on the
nearest observations [30]. In other words, the k points within the neighborhood of the test point
do not contribute equally to the final decision of the test point. Indeed, the closer an observation
is from a test point, the more it contributes to its classification. For deeper insight into the w-
kNN-methodology, please refer to [33]. After defining the most probably governing parameters
on the temperature shoot-up event (engine speed, torque, airflow, HC injection quantity, etc.),
Farsodia et al. [30] classified the training dataset, containing temperature shoot-up events, into
three different risk categories: “high”, “medium” and “low”, using w-kNN within a supervised
learning process. Category “high” risk implied that there are very high chances that there will be
temperature shoot-up post DOC. When testing the trained model with test data from the same
vehicle, the model released a warning signal about 60 seconds before the temperature shoot-up
event occurred. The algorithm derived from the data is “smart” enough to detect the difference
between the high-end temperatures and shoot-up events. However, the excellent beforehand pre-
diction performance was not precisely explained by the authors. Especially, the relationship be-
tween the algorithm behind the occurrence of the warning signal and the previous classification
step was not discussed.

For a 2.4L diesel excavator engine, Jang et al. [34] proposed also an anomaly detection model,
which is depicted schematically in Figure 7. The main idea of the proposed approach is to extract
abundant features from gathered data using an autoencoder and then to distinguish between nor-
mal and abnormal operating conditions with help of a one-class support vector machine
(OCSVM). First, data was collected from 123 different sensors at high frequency (one value
every 0.1 s) over 12 days. Due to the large learning dimension, raw collected data cannot be
applied to the autoencoder. Therefore, the authors used statistical values instead (median, vari-
ance, deciles, etc.). This enabled the reduction of the data amount and the expression of data
characteristics more prominently. In a second data-dimensionality-reduction step, the autoen-
coder is applied to the derived statistical indicators. Autoencoders are neural networks that can
automatically (unsupervised) learn useful features from data [35]. Autoencoders work by com-
pressing the data into a latent-space representation also known as bottleneck, and then recon-
structing the output from this representation. Jang et al. [34] used compressed features from the
latent space of the autoencoder network as input for the classification algorithm, which is the
OCSVM, which is used in the context of pattern classification to discriminate between two clas-
ses [36]. More details to support vector machines can be found in [37]. Ten days of “healthy”
measurement data were used to train the OCSVM model. The anomaly classification perfor-
mance was evaluated using data from two days, where faulty events were present. The model

113

accuracy reached up 73%. However, the model achieved an excellent recall score with 83%,
indicating the model reliability to ignore false alarms.

Figure 7. Schematic description of the approach proposed by Jang et al. [34] for anomaly detection

In a classification task, the positive or negative results are insufficient without explaining the
classifier’s decision-making. Therefore, Jang et al. [34] used Local Interpretable Model-agnostic
Explanation (LIME) to get more in-depth interpretation regarding the most critical factors con-
tributing to the classification results. LIME is an algorithm for providing interpretable explana-
tions for the non-interpretable (black box) ML models such as neural networks. An in-depth
explanation to the LIME approach can be found in [38].

4 Real-Time Engine Control

Conventionally, ICEs control is based on map-calibrations tuned by full factorial or design of
experiments processes. To reach engine efficiency targets, manufacturers are increasing the
number of actuators [39], leading to an increase in the calibration design space and thus affecting
the real-time capability of the control unit, especially for transient operating conditions. Thus,
new control techniques, which can better deal with increasing actuators number, are developed.
In this context, Egan et al. [40] introduced a hybrid modelling approach involving the non-linear
model predictive control (nMPC) in combination with static and dynamic (time-dependent be-
havior) artificial neural networks. nMPC is an advanced control strategy that has the greatest
acceptance in the industry, because it provides an intuitive approach to the optimal control of
systems subject to constraints [41]. Nevertheless, it has its drawbacks, mainly the large amount
of calculation required, since an optimization problem is being solved at every sampling time
[41]. Thus, non-linear MPC use for ICE is usually limited due to the short period available be-
tween engine cycles (~25ms at 5000 rpm) and the limited computational power of automotive
control units [42]. Alone the evaluation of non-linear engine-models and its linearization take
about 60%-75% of the total computational time per nMPC iteration [41]. Taking into consider-
ation that neural networks can computationally efficient capture non-linear behavior and have
the ability to be linearized in minimal time [40], Egan et al. [40] proposed to replace traditional
engine modeling methods by artificial neural networks and use them within the nMPC frame-
work, as shown schematically in Figure 8. Their aim was to accelerate the nMPC processing
time and thus facilitating its integration into the engine control unit. Egan et al. [40] found that
the proposed control system successfully controls the investigated engine with tractable compu-
tational load, opening doors for the application of their approach for future Engine Control Units.

114

Figure 8. MPC architecture with ANN as engine modeling approach, approach proposed by Egan et al.
[40]

5 Summary and Outlook

This paper deals with existing applications of machine learning in the field of internal combus-
tion engine development. Most of the work found in literature handles empirical model building
with the use of artificial neural networks, especially the MLP structure, which is quite suitable
for mapping non-linear processes occurring in an IC engine. Other structures for modeling and
predicting engine-related parameters have also been found in the literature, such as the NARX
and the RBF networks. Further studies considered ensemble methods, which are well suitable
for modeling engine parameters (especially the boosting algorithm).
In addition to model building, machine-learning methods in the field of combustion engines are
also used for the predictive maintenance and anomaly detection. Especially, Clustering (k-means
clustering, k-nearest neighbors, support vector machine, etc.) and “deep learning” (autoencoder,
convolutional neural network, etc.) methods are used for these purposes. In this process, XAI
(explainable artificial intelligence) methods (e.g. Local Interpretable Model-agnostic Explana-
tion) were also employed to get more in-depth explanations and interpretations for the machine
learning model decisions. These methods then ultimately allow a more advanced understanding
of the engine's behavior.
One more field of machine learning application in the engine development segment is the real-
time engine control. New engine Control systems face the challenge of dealing with growing
engine complexity and thus increasing computational intensity. In this context, artificial neural
networks offer the possibility to reduce the computational effort without affecting the number of
actions to be managed with a given time slot. Indeed, the MLP structure have the advantage that
it can simply map the engine operation (highly non-linear) and be easily linearized (from non-
linear to linear), which motivates for its integration into existing control systems involving com-
puting intensive optimizers.
However, machine learning also has its drawbacks. One cannot expect any magic from machine
learning algorithms. Indeed, simple learning programs are unable to learn complex concepts
from few input data. To deal with this fact, more data and “smarter” algorithms are needed.
Therefore, researchers are increasing the application of deep learning (DL) methods such as con-
volutional neural networks (CNN) [43], generative adversarial networks (GAN), and autoencod-
ers (AE), which has proven to enable the automatic detection of most significant features during
the training phase and to exceed the prediction accuracy of the simpler ML models with conven-
tional human-aided feature extraction. Therefore, we expect an increasing use of deep learning
algorithms within the future research and development of internal combustion engines.

115

References

1. Zhao, L., Ameen, M., Pei, Y., Zhang, Y., Kumar, P., Tzanetakis, T. and Traver, M.,
“Numerical evaluation of gasoline compression ignition at cold conditions in a heavy-
duty diesel engine”, SAE Technical Paper, No. 2020-01-0778, 2020

2. Xu, Z., Ji, F., Ding, S., Zhao, Y., Wang, Y., Zhang, Q., Du, F. and Zhou, Y., „Simula-
tion and experimental investigation of swirl-loop scavenging in two-stroke diesel engine
with two poppet valves”, International Journal of Engine Research, 1468087420916083,
2020.

3. Danaiah P., Kumar P., Rao Y., “Performance and emission prediction of a tert butyl al-
cohol gasoline blended spark ignition engine using artificial neural networks”. Int J Am-
bient Energy 36:37–41, https://doi.org/10.1080/01430750.2013. 820147, 2013

4. Uslu S., Celik M., “Performance and exhaust emission prediction of a SI engine fueled
with I-amyl alcohol gasoline blends: an ANN coupled RSM based optimization”. Fuel
265:116922, https://doi.org/10.1016/j.fuel.2019.116922, 2020

5. Gürgen S., Ünver B., Alt n . “Prediction of cyclic variability in a diesel engine fueled
with n-butanol and diesel fuel blends using artificial neural network”. Renew Energy
117:538–544, https://doi.org/10.1016/j.renene.2017.10.101, 2018

6. Kara Togun N., Baysec S. “Prediction of torque and specifc fuel consumption of a gaso-
line engine by using artificial neural networks”. Appl Energy 87:349–355,
https://doi.org/10.1016/j. apenergy.2009.08.016, 2010

7. Tasdemir S., Saritas I., Ciniviz M., Allahverdi N. “Artificial neural network and fuzzy
expert system comparison for prediction of performance and emission parameters on a
gasoline engine”. Expert Syst Appl 38:13912–13923, https://doi.org/10.
1016/j.eswa.2011.04.198, 2011

8. Roy S., Banerjee R., Bose P., “Performance and exhaust emissions prediction of a
CRDI assisted single cylinder diesel engine coupled with EGR using artifcial neural
network”. Appl Energy 119:330–340, 2014, https://doi.org/10.1016/j.apenergy. 01.044,
2014

9. Maurya R., Saxena M., “Characterization of ringing intensity in a hydrogen-fueled
HCCI engine”. Int J Hydrogen Energy 43:9423–9437,
https://doi.org/10.1016/j.ijhydene.2018. 03.194, 2018

10. Martínez-Morales J., Quej-Cosgaya H., Lagunas-Jiménez J. et al., “Design optimization
of multilayer perceptron neural network by ant colony optimization applied to engine
emissions data”. Sci China Technol Sci 62:1055–1064, https://doi.org/10. 1007/s11431-
017-9235-y, 2019

11. Hariharan N., Senthil V., Krishnamoorthi M., Karthic S. “Application of artifcial neural
network and response surface methodology for predicting and optimizing dual-fuel CI
engine characteristics using hydrogen and bio fuel with water injection”, Fuel
270:117576, https://doi.org/10.1016/j.fuel.2020.117576, 2020

12. Mehra R., Duan H., Luo S. et al., “Experimental and artificial neural network (ANN)
study of hydrogen enriched compressed natural gas (HCNG) engine under various igni-
tion timings and excess air ratios”. Appl Energy 228:736–754, https://doi.
org/10.1016/j.apenergy.2018.06.085, 2018

13. Ghobadian B., Rahimi H., Nikbakht A. et al. „Diesel engine performance and exhaust
emission analysis using waste cooking biodiesel fuel with an artificial neural network”.
Renew Energy 34:976–982, https://doi.org/10.1016/j.renene.2008.08.008, 2009

116

14. Kapusuz M., Ozcan H., Ahmad J., “Research of performance on a spark ignition engine
fueled by alcohol e gasoline blends using artificial neural networks”. Appl Therm Eng
91:525–534, https://doi.org/10.1016/j.applthermaleng.2015.08.058, 2015

15. Aydin M., Uslu S., Bahattin Çelik M., “Performance and emission prediction of a com-
pression ignition engine fueled with biodiesel-diesel blends: a combined application of
ANN and RSM based optimization”, Fuel. https://doi.org/10.1016/j.fuel. 2020.117472,
2020

16. Akkouche N., Loubar K., Nepveu F. et al., ,”Micro-combined heat and power using
dual fuel engine and biogas from discontinuous anaerobic digestion”. Energy Convers
Manag 205:112407, https://doi.org/10.1016/j.enconman.2019.112407, 2020

17. Oguz H., Sar tas I., Baydan H., “Prediction of diesel engine performance using biofuels
with artificial neural network”. Expert Syst Appl 37:6579–6586,
https://doi.org/10.1016/j.eswa.2010. 02.128, 2010

18. Cay Y., Korkmaz I., Cicek A., Kara F., “Prediction of engine performance and exhaust
emissions for gasoline and methanol using artificial neural network”. Energy 50:177–
186, https://doi. org/10.1016/j.energy.2012.10.052, 2013

19. Henri P. Gavin, “The Levenberg-Marquardt algorithm for nonlinear least squares curve-
fitting problems”, Department of Civil and Environmental Engineering, 2020

20. Janakiraman V., Suryanarayanan, S., Saravanan, S., and Rao, G., "Analysis of the Effect
of In-cylinder Parameters on NOx and HC Emissions of a CI Engine Using Artificial
Neural Networks," SAE Technical Paper 2006-01-3313, 2006

21. Taghavi, M.; Gharehghani, A.; Nejad, F. Bakhtiari; Mirsalim, M., “Developing a model
to predict the start of combustion in HCCI engine using ANN-GA approach”. In Energy
Conversion and Management 195, pp. 57–69, doi: 10.1016/j.enconman.2019.05.01,
2020

22. Huo F., Poo A., “Non-linear autoregressive network with exogenous inputs based con-
tour error reduction in CNC machines”. In International Journal of Machine Tools and
Manufacture 67, pp. 45–52, doi: 10.1016/j.ijmachtools.2012.12.007, 2013

23. C. C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018
24. F. Samuelson and D. G. Brown, "Application of Cover's theorem to the evaluation of

the performance of CI observers," The 2011 International Joint Conference on Neural
Networks, pp. 1020-1026, doi: 10.1109/IJCNN.2011.6033334.P, 2011

25. Faris H., Aljarah I., Mirjalili S., Chapter 28 - Evolving Radial Basis Function Networks
Using Moth–Flame Optimizer, Handbook of Neural Computation, Academic Press,
ISBN 9780128113189, 2017

26. Liu, J, Ulishney, C, & Dumitrescu, CE. "Improving Machine Learning Model Perfor-
mance in Predicting the Indicated Mean Effective Pressure of a Natural Gas Engine."
Proceedings of the ASME 2020 Internal Combustion Engine Division Fall Technical
Conference, 2020

27. Sagi O., Rokach L., “Ensemble learning: A survey”, WIREs Data Mining and
Knowledge Discovery, Volume 8, Issue 4, 2018

28. Zhou Z., “Machine Learning”, Springer, Nanjing, Jiangsu, China, ISBN 978-981-15-
1967-3 (eBook), 2021

29. Stephen M., Machine Learning, Second Edition, 2015
30. Farsodia, M., Pandey, S., and Ganguly, G., “Advance Data Analytics Methodologies to

Solve Diesel Engine Exhaust Aftertreatment System Challenges,” SAE Technical Paper
2019-01-5035, doi:10.4271/2019-01-5035, 2019

31. Aristidis Likas, Nikos Vlassis, Jakob J. Verbeek, The global k-means clustering algo-
rithm, Pattern Recognition, Volume 36, Issue 2, Pages 451-461, ISSN 0031-3203, 2003

117

32. K. S. Ni and T. Q. Nguyen, "An Adaptable k-Nearest Neighbors Algorithm for MMSE
Image Interpolation," in IEEE Transactions on Image Processing, vol. 18, no. 9, pp.
1976-1987, doi: 10.1109/TIP.2009.2023706, 2009

33. M. Bicego and M. Loog, "Weighted K-Nearest Neighbor revisited," 2016 23rd Interna-
tional Conference on Pattern Recognition (ICPR), pp. 1642-1647, doi:
10.1109/ICPR.2016.7899872, 2016

34. Jang G-b, Cho S-B. Anomaly Detection of 2.4L Diesel Engine Using One-Class SVM
with Variational Autoencoder, ANNUAL CONFERENCE OF THE PROGNOSTICS
AND HEALTH MANAGEMENT SOCIETY, 2019.

35. Walter Hugo Lopez Pinaya, Sandra Vieira, Rafael Garcia-Dias, Andrea Mechelli, Chap-
ter 11 - Autoencoders, Machine Learning, Academic Press, Pages 193-208, ISBN
9780128157398, 2020

36. G. D. Fraser, A. D. C. Chan, J. R. Green and D. T. MacIsaac, "Automated Biosignal
Quality Analysis for Electromyography Using a One-Class Support Vector Machine," in
IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 12, pp. 2919-
2930, doi: 10.1109/TIM.2014.2317296, 2014

37. Suthaharan S., “Support Vector Machine. In: Machine Learning Models and Algorithms
for Big Data Classification”. Integrated Series in Information Systems, vol 36. Springer,
Boston, MA, https://doi.org/10.1007/978-1-4899-7641-3_9, , 2016

38. Peltola T., Local Interpretable Model-agnostic Explanations of Bayesian Predictive
Models via Kullback-Leibler Projections, Machine Learning, Cornell University, 2019

39. Atkinson, C., “Fuel Efficiency Optimization Using Rapid Transient Engine Calibra-
tion,” SAE Technical Paper 2014- 01-2359, doi: 10.4271/2014-01-2359, 2014

40. Egan, D., Koli, R., Zhu, Q., and Prucka, R., “Use of Machine Learning for Real-Time
Non-Linear Model Predictive Engine Control,” SAE Technical Paper 2019-01-1289,
doi:10.4271/2019-01-1289, 2019

41. Bordons C., Garcia-Torres F., Ridao M.A. “Model Predictive Control Fundamentals. In:
Model Predictive Control of Microgrids”. Advances in Industrial Control. Springer,
Cham, https://doi.org/10.1007/978-3-030-24570-2_2, 2020

42. Zhu, Q., Prucka, R., Prucka, M., and Dourra, H., “A Nonlinear Model Predictive Con-
trol Strategy with a Disturbance Observer for Spark Ignition Engines with External
EGR,” SAE Int. J. Commer. Veh. 10(1):360-372, doi:10.4271/2017-01-0608, 2017

43. Gofran T., Neugebauer P., Schramm D., „Feature extraction from raw vibration signal
and classification of bearing faults using convolutional neural networks”, Artificial In-
telligence from research to application, The Upper-Rhine Artificial Intelligence Sympo-
sium UR-AI, 2019

118

Modeling for Explainability: Ethical Decision-Making in
Automated Resource Allocation

Christina Cociancig1, Christoph Lüth2, Rolf Drechsler3

1,2,3 University of Bremen; German Research Center for Artificial Intelligence (DFKI GmbH), Germany
1 chrcoc@uni-bremen.de

2 christoph.lueth@dfki.de
3 drechsler@uni-bremen.de

Abstract. Decisions delegated to artificial intelligence face an alignment problem: humans
expect the algorithm to make fast and well-informed decisions aligning with human morals.
In the design and engineering process of algorithms, ethical principles enter the black box
explicitly and implicitly as functional or non-functional properties, much to the detriment
of explainability and transparency. Previous work has established surrogate modeling to
promote explainability and transparency of the decision-making process. We extend on this,
model in lower complexity decision trees and as labeled transition systems, which is a
method inherent to bisimulation theory, as well as evaluate on synthetic data with a rule-
based algorithm. As a case study, we analyze the triage processes in German and Austrian
hospitals during the COVID-19 pandemic, based on official guidelines that regulate the
allocation of intensive care unit beds. We discovered that the decision processes are similar,
however, the systems do not behave in the same manner. The diverging behavior equates
to a discrepant ratio of patients treated in intensive care in contrast to the general ward. Our
insight leads us to the conclusion that our approach ensures ethical decision-making in
healthcare and should be considered due to its explainability and transparency.

Keywords: explainability; transparency; automated decision-making; surrogate modeling.

1 Introduction

Machine learning and artificial intelligence (AI) in general can support virtually any human
decision. Whether we assume the decisions made or intervene to revise it, with data supply and
automation, we entrust a mostly black box with coming to the best conclusion it possibly can.
Often, these decisions we delegate require fast conclusions and a high degree of expert
knowledge. While algorithms can fulfill these criteria of decision-making, a human decision is
inherently one that draws upon human morals. That we demand of algorithms to emulate this,
gave rise to a new field of research that is located at the intercept of computer science and
philosophy: machine ethics [1].
 Machine ethics, also referred to as AI ethics when defined in a narrower sense, became an
increasingly vital factor in AI research, because the decisions we now automate, have direct
implications on human lives. Machine ethics places an emphasis on the establishment of values
that should steer the development and deployment of artificial intelligences in the form of
guidelines for “ethical AI” [2]. Ethicists agree with the pressing issue of ethical algorithmic
decision-making by advocating particularly for transparency [3] and explainability [4] of the
decisions produced by the black box that a machine learning algorithm, or even more so a deep
learning algorithm, can represent.
Related work in algorithmic explainability and transparency put forward various approaches,
including but not limited to, surrogate modeling and formal verification. Previous research in the

119

area of surrogate modeling advanced to complex cases of decision tree modeling of a neural net,
with a well-founded result of reduced complexity, high fidelity, and comprehensibility [4]. Even
though it has not yet been done in full terms, approximate-bisimulation has been employed to
model (dynamic) neural networks and their behavior in terms of their input and output [5]. These
approaches add to the extensive list of measures to analyze the decision-making process with the
intention of optimizing for ethical decision-making of the system. However, they fail to consider
that some explainability and transparency is better than none, especially for use cases that involve
critical decisions in healthcare.
 AI represents an evolution of informed decision-making in the medical field [6]. In the
clinical environment, well informed decisions must be made fast. Not only in Germany this
potential has been identified, and discussions to implement decision-making software are well
under way or already implemented. SmED (short for “structured initial medical assessment in
Germany”) is an algorithm that assists medical on-call services to decide where a patient’s
healthcare needs can be addressed best: a general practitioner or an emergency clinic [7]. While
both are not yet applied in the clinical context, OPTINOFA (short for “optimization of
emergency care through a structured initial assessment using intelligent assistance services”)
aims to provide an algorithmic assessment of the urgency of treatment in clinics [8]. The most
striking difference between the softwares: SmED appears to be rule-based and is not openly
accessible, OPTINOFA is composed of an AI and will be openly accessible.
 In the interest of examining a contemporary decision process in healthcare, as a case study,
we compare approaches to the decision-process of triage during the COVID-19 pandemic in two
countries: Germany and Austria. The decision processes of triage are based on a practice of
resource allocation historically attributed to military medicine, which categorizes patients and
commonly prioritizes treatment of patients with a high chance of survival [9]. At the beginning
of the pandemic, the allocation of resources, i.e., particularly intensive care beds that can
accommodate a ventilator, has been regulated by strict guidelines in Germany [10] and Austria
[11]. It is exactly this type of situation in which algorithms are capable to provide humans with
relief to make well informed, fast decisions. However, it is of the utmost importance that the
decisions provided by machines agree with human ethical values.
 With this paper we provide a recommendation for transparent and explainable algorithmic
decision-making in healthcare, that complies with the ethical principles of explainability and
transparency in form of non-functional properties of the system. We build on related work in the
area and propose formal surrogate modeling with decision trees, including associated entropy
and information gain values indicating the informative strength of a node within the tree, as well
as modeling as labeled transition systems, a method inherent to bisimulation, which provides a
comparative analysis of the behavior of two systems [12]. With an algorithmic data evaluation,
we support the findings of our analysis numerically, and demonstrate, that drawing on metrics
inherent to the models provide reference for a comparative analysis of systems. With this
recommendation, we hope to contribute an opportunity for ethical healthcare software to be
transparent and explainable for medical professionals and patients alike.

2 Methods

This section outlines the methodology applied to construct decision trees and a bisimulation
evaluation of triage processes, as well as a description of the algorithm we deployed to measure
effects in ratios. Our hybrid approach of two comparative modeling systems and a test with
synthetic data was chosen, because it gives a valuable insight into robust tools that can be

120

accessed for the purpose of investigating strengths and weaknesses of systems such as the triage
decision process. We compared and identified differences in the German and Austrian triage
guidelines first by focusing on their underlying ethical principles and subsequently in terms of
their functional properties.
 Both guidelines are governed by implicitly or explicitly defined ethical principals. The
Austrian guideline, “Allocation of intensive care resources due to the Covid-19 pandemic”, lists
four ethical principles influencing every decision within the triage process: justice, non-
maleficence, doing good, and the observation of autonomy of the patient [11]. The definition of
each principle is linked to several more, some non-ethical, values that shall be upheld: using
resources efficiently, allocating fairly, not endangering the supply system, serving the well-being
of each individual patient, respecting guardians of patients, and respecting individual freedom
[11]. Although the Austrian guideline does not connect these values and principles to individual
decisions, each decision made within the process should be guided by them. The German
guideline mentions ethical principles predominantly implicitly by connecting them to decisions
in the assessment process, including the needs of the patient for intensive care unit (ICU)
treatment and the patients will that are directly reflected in decisions within the process, whereas
a prohibition of discrimination due to age, social characteristics, and disabilities, as well as
fairness are implicit and not represented as decisions within the process per se [10].

Decision Trees

To investigate the sequence of decisions and the associated informative value of decisions, we
manually translated the triage guidelines into their respective decision trees and compared the
metrics of entropy and information gain, both inherent to information theory. Each decision
outlined in the triage guidelines translates into a decision node of a tree. The end nodes represent
the decision for or against ICU treatment of an individual patient.
 Entropy is measured in bits and represents the average level of information or uncertainty of
possible outcomes of a variable. Given a variable X, with possible outcomes x1,…, xn, with an
associated probability of P(x1),…, P(xn), the entropy of X is defined by Shannon [13] as:

H() = P() log P() (1)

Entropy can be calculated for each node in a decision tree. For a description of the strength of
the node, the value of information gain expresses the change in information entropy from one
node to the next:

(,) = H() H(|), (2)

where H(|) is the conditional entropy of T given the value of [14]. Information gain can
therefore adopt values between zero and one, a higher information gain is associated with a
strong decision node, at which an informative decision is made.

Evaluation

To verify the differences in the performance of the two systems, we evaluated benchmark data
flowing through the process modeled as decision trees. To this end, we implemented a rule-based
algorithm that sorted and evaluated synthetic data of 100 patients based on the health data
required for the German triage decision process.

121

 Although the triage criteria to receive intensive care are different for German and Austrian
patients, both guidelines have baselines in common, whose negation can in no circumstance lead
to treatment in intensive care. For one, a patient must give consent to receive intensive care.
Moreover, though the German guideline explicitly states that a necessity for intensive care must
be assessed, the same can be assumed for the Austrian system. German medical personnel are
furthermore urged to assess the prospect of success of intensive care for a patient as one of the
first steps in the triage process, whereas Austria assesses hopelessness and proportionality of
ICU treatment only as a criterion for the abortion of intensive care [11]. For our purpose, we
equate the assessment of prospect of success in Germany with the assessment of hopelessness
and proportionality in Austria and quantify this criterion with 96%, i.e., the average reported
survival rate of COVID-19 in Germany and Austria [15].
 Beyond the shared baseline assumptions, the triage systems additionally assess the patients
on health criteria. These criteria have determined our algorithmic implementation and data
development and have been summed to a health score. The criteria formulated for the health
assessment of German patients consist of five points, which quantify scores or represent the
presence or absence of a criterion: heightened severity of illness, e.g., acute pulmonary
embolism, acute organ failure assessed on the sepsis-related organ failure assessment score
(SOFA), a prognostic marker for COVID-19 patients (we assume this marker to be a positive
COVID-19 test), comorbidity, e.g., neurological disease, and health status assessed on the
clinical frailty scale (CFS) [10]. In Austria, health assessment is done in nine points: chance of
survival via SOFA score, comorbidity, presence of cardiac insufficiency or failure, renal
insufficiency or failure, presence of immunosuppression, dementia assessed on Activities of
Daily Living score (ADL), pulmonary disease, other primary disease, and other relevant criteria
[11].
 As a first step to data creation, we affirmed the baseline assumptions for ICU treatment and
created five health data points for each patient randomly, modeling the German health
assessment. We randomly one-hot encoded for the presence or absence of a criterion and appoint
scores where applicable, i.e., a SOFA score between 0-24, counts of comorbidities between 0-5,
and overall health status of CFS score between 1-9. This encoding resulted in an overall health
assessment score sum between 1-40, with a higher score being associated with a more critical
condition. For scores under 20, we assumed care at the general ward as sufficient, patients with
scores over 20 require intensive care. In the corresponding trees, this decision node is represented
as a score of under 50% or over 50%.
 As a next step we translated the patient data for the Austrian decision process of nine health
assessment points, which involved the addition of more scores. As the survival chance in Austria
is also indicated by the SOFA score, we adopted it from the German model patient. We
transferred comorbidity counts over zero as the presence of a comorbidity and associate a
heightened severity in Germany with a primary disease in Austria, as well as translate the CFS
score of five and above as the presence of dementia. The remaining criteria, i.e., cardiac or renal
insufficiency, immunosuppression and pulmonary disease were again one-hot encoded with a
random distribution. The complete assessment results in an overall summed score between 1-31.
We again divided the score in over 50% and under 50%, a score of 15 or lower does not receive
intensive care.

122

Bisimulation

To further investigate the difference in behavior of the two triage processes, we remodeled the
decision trees as a bisimulation evaluation. Our notation for this evaluation was adopted from
Davide Sangiorgi [12]. Specifically, we explore the states and transitions of the processes
modeled as labelled transition systems (LTS), which are formally described with triples, i.e.,
(, ,) where Pr is a (non-empty) set, also referred to as the domain or the set of the
processes of the LTS, Act is the set of actions or transitions, and denotes the transition relation
between processes. Bisimulation is a binary relation on the states of two systems P and Q, if for
all we have:

 1) for all P’ with , there is Q’ such that and ;

2) for all Q with , there is P’ such that and .

(3)

If the bisimulation is complete, meaning for each process in the system P there is an equivalent
process in system Q, the systems are bisimilar, i.e., they behave in the same way. If not all
processes in system P can be mapped to an equivalent process in system Q, the systems might
have equal inputs and outputs, but internally do not behave the same way.

3 Results

Decision Trees

Both triage decision processes were modeled as decision trees. Figure 1 is a comparison of the
German triage system and the Austrian triage system. For reference, we added entropy (H) values
for each decision node in the trees. Due to our assumption of the baseline criteria for intensive
care treatment as being met, i.e., necessity of treatment (represented as the first decision node
with H = 1 as is standard for decision trees) and consent of the patient, the respective entropy
values do not amount to expressive decision nodes.

However, we were specifically interested in the decision node labeled prospect of success,
as the location of this decision and the corresponding nodes in the trees is an identifiable
difference between the two decision processes. Based on our assumption that the prospect of
success of treatment, which is assessed early on in Germany, is equivalent to the criterion of
hopelessness and proportionality, which is assessed after the ICU treatment has already
commenced for the Austrian patient, the anticipated entropy values correspond to the same
entropy of H = .24. Again, these values are identical, because we assume a survival chance of
96% for both countries, as it is the reported survival rate of COVID-19 in both countries [15].
The information gain, however, of the prospect of success node amounts to IG = .76 in the
German system, compared to the Austrian system of IG = .75.

123

Evaluation

The rule-based algorithmic evaluation of our data of 100 patients revealed, that the Austrian
system initially treats more patients in ICU, more specifically 56% in comparison to 39% in the
German system. This ratio is not representative, however, of the mandatory re-evaluation which
is featured in both triage processes and more visible in the labeled transition systems.

Bisimulation

The LTS of triage in Germany and Austria offer valuable cues as to how the decision process is
executed and can be described and analyzed formally. Figure 2 compares the LTS side by side
and indicates their domain, actions, and transition relations. For the sake of clarity and brevity,
we indicated transitions abbreviated, e.g., from R1 to R6, instead of “No Necessity assessed” as
it would be formally described, we simply indicated “No Necessity”.
Not only does the LTS comparison demonstrate that the Austrian triage ultimately has less states
until it arrives at a final decision over ICU treatment or no ICU treatment, the formal description
of the LTS is a further indicator for the similarity of the systems. As we examine the binary
relation between the two systems, we pair processes with the same transition relations:

R = { (R1, Q1), (R3, Q2), (R4, Q3), (R6, Q5) }. (4)

Fig. 1. German (left) and Austrian (right) triage decision tree, entropy value per decision node

124

Given that not all states in the German system have equals in the Austrian system, the bisimilarity
of the systems cannot be proven and therefore indicate that the systems do not behave in the
same way.

4 Discussion

The importance of interpretable models, that promote transparency and explainability cannot be
emphasized too much. Our method of surrogate modeling as decision trees and labeled transition
systems, as well as evaluating on synthetic data, has not only enabled us to identify the different
approaches between the triage processes in Germany and Austria, but also given us the
possibility to explain any given final decision by traversing through the models. Therefore, by
modeling in comparison, we achieve transparent and explainable decision-making as it is
promoted by machine ethics [1,3].

At first sight, the systems seem to align in their design, as they assess patients on similar
criteria. With the data evaluated based on the decision trees, however, we see that the smallest
differences in the processes have a substantial effect on the number of patients treated and thus
possibly on the number of lives saved. The decision trees have provided a comprehensible model
to enable further evaluation, as we expected and was touched on in [4]. The most striking
observation to emerge from the evaluation of information gain, is the difference between the
values for the prospect of success decision node. Even though the numeric difference between
the German and Austrian node is marginally small, it indicates that the informational value of
the node is in fact different, and this difference is due to its position in the decision process, i.e.,
the rank of the decision.

Even though a bisimulation of neural networks has not yet been successful [5], we were able
to considerably benefit from modeling the rule-based triage systems as labeled transition systems
to reproduce the finding of differences from the decision trees. As the binary relation is
incomplete, the evaluation confirms that the decision processes are not equal, and furthermore,
that this inequality can be attributed to an inequality in the patient’s health assessment and the
order of the decisions made in both countries. The model borrowed from bisimulation has

Fig. 2. LTS of triage in Germany (left) and Austria (right)

125

provided us with the ability to formally describe with states and transition relations are
represented in both decision processes.
 Although we gained considerable insight from modeling the processes, the link to ethical
principles, especially to the overarching principles of explainability and transparency of
(algorithmic) decisions, were made by us. Neither the German nor Austrian guideline mentions
these principles as essential to decisions in triage. Furthermore, despite the insight, we are not
qualified to make statements regarding fairness of the decision process, even though the German
triage guideline acknowledges this ethical value [10]. Synthetic data is simply not suitable to
evaluate this metric on.

5 Conclusion

We have outlined a comparative method of evaluating decision-making by modeling the decision
processes in form of labeled transition systems, as well as decision trees and the corresponding
metrics of entropy and information gain, to promote the transparency and explainability of
decisions within the triage process. For our case study of triage processes in Germany and
Austria, we found that differences in the non-functional properties the decision process adheres
to, i.e., in broader terms the ethical implications of the triage system, has consequences for the
behavior of the system and these consequences can be measured. In the context of triage, the
measurable difference of courses of action ultimately equates to lives saved or lost.
 For decision-making in triage, we conclude that a formal modelling allows for the analysis
and precise comparison of systems. This can be applied to systems of different countries, or two
competing systems within one country. Our findings assert that a careful engineering of the
decision process, whether with implicitly or explicitly translating ethical principles into
decisions, can lead to more efficient decision-making. Besides efficiency, with modeling of the
design we access insight about comparability and weaknesses of systems, and measurable
metrics can lead to a better understanding of the outcome of specific decisions. In combination,
formal modelling, i.e., decision trees and bisimulation, lead to transparency and explainability
of the decisions made.
 Our method could advance many other decision processes conducted by AI or machine
learning in healthcare. Decision-making softwares, whether they include an AI or rule-based
algorithm similar to what we employed and SmED appears to be, behave according to underlying
ethical principles. As we have concluded from the triage guidelines in our use case, the link
between these principles and the properties of the system they are embedded into, are not always
functional, i.e., direct and apparent. Yet, the insight gained from the models and their
corresponding metrics provides an excellent resource to ensure ethical decision-making. Future
work evaluating its models algorithmically on benchmark data should, however, aim to collect
or obtain organic data, which was beyond of the scope of this research.

References

1. Anderson, M., Anderson, S. L.: Machine ethics: Creating an ethical intelligent agent. AI
magazine 28(4), 15-26 (2007). doi.org/10.1609/aimag.v28i4.2065.

2. Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nature
Machine Intelligence 1, 389–399 (2019). https://doi.org/10.1038/s42256-019-0088-2.

3. Garcia-Gasulla, D., Cortés, A., Alvarez-Napagao, S., Cortés, U.: Signs for Ethical AI: A
Route Towards Transparency. arXiv:2009.13871. (2020).

126

4. Schaaf, N., Huber, M.F., Maucher, J.: Enhancing Decision Tree based Interpretation of
Deep Neural Networks through L1-Orthogonal Regularization. arXiv:1904.05394.
(2019).

5. Donnarumma, F., Aniello, M., Prevete, R.: Dynamic network functional comparison via
approximate-bisimulation. Control and Cybernetics 44(1): 99-127 (2015).

6. Jones, L.D., Golan, D., Hanna, S.A., Ramachandran, M.: Artificial intelligence, machine
learning and the evolution of healthcare: A bright future or cause for concern? Bone &
Joint Research. 7, 223–225 (2018).

7. Graf von Stillfried, D., Czihal, T., Meer, A.: Sachstandsbericht: Strukturierte
medizinische Ersteinschätzung in Deutschland (SmED). Notfall Rettungsmed. 22, 578–
588 (2019). https://doi.org/10.1007/s10049-019-0627-8.

8. Abstracts zu Vorträgen und Postern der 14. Jahrestagung der Deutschen Gesellschaft
Interdisziplinäre Notfall- und Akutmedizin: 14.–16. November 2019, Bremen. Notfall
Rettungsmed. 22, 1–17 (2019). https://doi.org/10.1007/s10049-019-00645-y.

9. Iserson, K. V., Moskop, J. C. Triage in medicine, Part I: Concept, History, and Types.
Annals of Emergency Medicine 49(3): 275-281 (2007).

10. Marckmann, G., Neitzke, G., Schildmann, J., Michalsen, A., Dutzmann, J., Hartog, C.,
Jöbges, S., Knochel, K., Michels, G., Pin, M., Riessen, R., Rogge, A., Taupitz, J.,
Janssens, U.: Entscheidungen über die Zuteilung intensivmedizinischer Ressourcen im
Kontext der COVID-19-Pandemie: Klinisch-ethische Empfehlungen der DIVI, der
DGINA, der DGAI, der DGIIN, der DGNI, der DGP, der DGP und der AEM.
Medizinische Klinik – Intensivmedizin und Notfallmedizin 115(6): 477-485 (2020).
https://doi.org/10.1007/s00063-020-00708-w.

11. ARGE Ethik ÖGARI, Allokation intensivmedizinischer Ressourcen aus Anlass der
Covid-19-Pandemie. Klinisch-ethische Empfehlungen für Beginn, Durchführung und
Beendigung von Intensivtherapie bei Covid-19-PatientInnen. Vienna: ÖGARI,
http://www.oegari.at/web_files/cms_daten/, last accessed: 2021/08/24.

12. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University
Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511777110.

13. Shannon, C.E.: A Mathematical Theory of Communication. The Bell system technical
journal 27(3): 379-434 (1948).

14. Kent, J.T.: Information gain and a general measure of correlation. Biometrika 70(1): 163-
173 (1983).

15. Dong, E., Du, H., Gardner, L.: An interactive web-based dashboard to track COVID-19
in real time. Lancet Inf Dis. 20(5): 533-534. doi: 10.1016/S1473-3099(20)30120-1,
accessed: 2021/03/07.

127

Condition Monitoring of Electric Motor with Convolutional
Neural Network

Tanju Gofran 1, Maurice Kettner 1 and Dieter Schramm2

1 IEEM-Institute of Energy Efficient Mobility, Karlsruhe University of Applied Sciences
gota000 @h-ka.de maurice.kettner@h-ka.de

2University of Duisburg-Essen
dieter.schramm@uni-due.de

Abstract. Safe, efficient and uninterrupted operation of machine requires continuous
monitoring of its health and modern autonomous smart factory demands a Condition
Monitoring (CM) process without direct human involvement. Deep Learning (DL)
algorithms have shown great success of learning directly from data in various real life
applications and recently it become also popular in CM researches but still detail
clarification of selecting the DL design and its relevance to learn the features from data
are often missing. This paper shows a DL algorithm - Convolutional Neural Network
(CNN) to CM of an Electric motor from its external vibration. The output of the deep
layers of the learned model is analyzed to explain how the model extract features of raw
vibration input and do the classification of different conditions.

Keywords: Condition Monitoring (CM) 1; Convolutional Neural Network (CNNs) 2;
Feature Map 3;

1 Introduction

In the age of the fourth Industrial Revolution, application of Artificial Intelligence is not just a
demand but a necessity. A smart factory involves numerous machines and sensors requiring
machine to machine and machine to human communication without interruption. Condition
monitoring and predictive maintenance of the machines to prevent failure in advance or detect
any anomaly early enough before breakdown is one of the key trends of Industry 4.0.

Application of Machine Learning (ML) algorithms in the field of Condition Monitoring
(CM) of Electric machines (EM) has been investigated and implemented in reality in various
researches for the last several years, but this is still relatively new and has a lot of room for
improvement. Vibration based CM of EM has been found very effective as the vibration
frequency analysis can uncover several electrical, mechanical defaults and as well as running
conditions of the machines. But for such analysis exact parameters of the machine and its drive
is required and furthermore in real life impending fault signatures are not as ideal as theoretical
fault signature. ML algorithms can learn from monitoring sensor data without prior knowledge
of the EM and traditional ML based CM process involves extraction of useful information
from raw data and use the extracted features as input of the ML and finally classify different
faults. This feature extraction rules is often depend on the domain, so the same algorithm may
not work for other domain or motor drive. Deep Learning (DL) algorithms which can directly
learn the features from data have recently become very popular approach in many fields
because of advancement of computation power, cloud computing, simpler tools or frameworks
and also for easily accessible large database.

128

The presented paper is a continuation of previous work where novel convolutional neural
network (CMCNN) architecture was shown to detect bearing faults using a public dataset [1].
In this work we used a newly generated vibration dataset for bearing faults to model the
CMCNN architecture for multi-sensory input. Separately generated test data is used to evaluate
the accuracy of the model and the learned model s deep layers are analyzed to understand the
feature extraction process.

2 Related work:

The challenge of beginning researching ML and DL algorithms for CM or fault diagnosis is the
access of dataset because creating a realistic mechanical fault dataset generating test-bench is
complex and costly. For vibration based rolling bearing fault diagnosis the dataset produced by
Case Western Reserve University (CWRU) is the most popular and easily accessible dataset
that has been considered as standard reference in many publications [3]. Neupane and Seok
reviewed a large number of publications regarding DL algorithms using CWRU dataset in their
paper [3]. Smith and Randall have analyzed the entire dataset of CWRU to recommend
benchmark for diagnostic technique [4]. CWRU dataset has mainly six classes of data:
healthy, inner ring fault, rolling element fault and outer ring fault at three load zone [2]. The
faults were implemented in sizes of 0.007 to 0.028 inch with Electric Discharge Machining and
the monitoring bearings were either at Drive-side (DE) or Fan-side (FA) of the motor. All the
vibrations are measured with three sensors located at DE, FE and at base plate and
measurements were taken for four motor speeds.

Various DL algorithms like Deep Belief Networks (DBN), Autoencoder (AE), Generative
Adversarial Networks (GAN), Recurrent Neural Networks (RNN), Convolutional Neural
Networks (CNN) etc. are investigated to detect bearing faults using the CWRU dataset in the
literatures. Stacks of AE based deep neural network (DNN) is applied to classify CWRU
dataset among ten classes considering different fault sizes as different classes by Jia and et al,
where they used the frequency spectrum of the raw data as the input [2]. Shao and et al.
showed DBN based bearing fault classification using both simulated vibration data for inner
and outer ring fault and the CWRU dataset dividing all the dataset into ten classes [6]. Jiang
and et al proposed a deep recurrent network (DRNN) to automatically extract feature from
input spectrum and diagnose rolling bearing fault in their work [7]. They consider frequency
domain signal as input believing noisy vibration data may not be robust. The proposed DRNN
has stack of recurrent hidden layers of long short-term memory (LSTM) units and classify the
CWRU dataset into 12 conditions. GAN based fault diagnosis on CWRU dataset is studied by
Jiang and et al [8]. Their idea of implementing GAN algorithm to differentiate faulty vibration
from healthy vibration as anomaly detection, relating with real industrial scenario where faults
appear in the bearings after millions of cycle hence data collection for faulty bearing is
difficult. For Robust feature extraction and fault classification Shaheryar and et al proposed
hybrid model (MCNN-SDAE) of two layers multi-channel CNN combined with three stacks of
Denoising Autoencoder (DAE) using the CWRU dataset [9].

Gua and et al showed a hierarchical adaptive deep convolutional network (ADCNN) using
CWRU data where the 1D vibration is converted to 2D matrix and they tested their model for
both fault classification also fault size predictions [10].Wide first-layer kernels with deep CNN
(WDCNN) model is proposed by Zhang and et al also using the CWRU data [11]. They used
data argumentation technique which is basically dividing the long signal into segments to
create bigger dataset in which the input width is 2048. Some sets of the training data were

129

overlapped segments and some were not. Their five layer CNN was designed as the first layer
has wide kernel size and following layers have very small kernel width and finally the model
classified 10 labels. Other works of CNN based bearing fault diagnosis are presented in the
literatures [12-15].

The investigated works in the literatures mostly used same dataset to test their model
accuracy to test their domain adaptively for example the fan-end and drive-end vibration
information should be clearly different and most cases it is not clear if they considered fault
classes for both locations learn the domain robustly or not. Another most interesting note is
many of the studies considered the faults sizes as separate classes, where the CWRU dataset
fault sizes are clearly different (0.007 inch, 0.014 inch, 0.021 inch) which should be easily
diagnosable. Among many DL based CM approaches, CNN has shown the most suitability of
using raw data directly.

In our previous work we used the CWRU dataset to train CMCNN model and classified the
classes considering both location of the bearing and fault sizes in same class. The aim of the
current work is to introduce a new dataset to model the CNN model where same design
approach is considered as CMCNN presented in previous work [1].

3 Dataset: IEEM - CMData

The dataset contains external vibrations of a motor having different types of faulty bearings at
various speed and load combinations. External vibration means it should contain more noise or
additional vibration from the rotating parts which is ideal for industrial applications. The
bearing data generating test-bench is developed at the Institute of Energy Efficient Mobility
(IEEM) of University of Applied Science and Technology Karlsruhe and supported by SEW-
Eurodrive GmbH (SEW). In the Fig. 1 a view of the test-bench (left) and the CAD design (left)
is shown.

Fig. 1. IEEM-CMData test bench

The test-bench has test motor of power 0.75 kW and speed of 1440 RPM which is an
asynchronous gear motor (R47 DRN80M4 by SEW) with 8.01 gear ratio connected thorough a
highly flexible coupling with the load motor of output torque 144Nm, speed of 3000 RPM
which is a synchronous gear motor (R47 CMP80M by SEW) with gear ratio 3.83. Artificial
faults were implemented on different parts of the deep groove ball bearing (6304-2RSH by
SKF). Three acceleration sensors (iCS80 by IDS Innomic GmbH) were installed near FE, DE
and base plate (BA) to measure the vibrations. For training all types of data are generated for
both bearings at Fan-End (FE) and Drive-end (DE) at two different sample rates. In this work

130

the sample rate of all input data of the model is 12.8kS/s. National Instrument s cDAQ-9174 is
used for data acquisition and data processing is done with MATLAB 2018a with additional
package NI-DAQmx.

Fig. 2. Example of engraved spall in the inner-ring (left) and example of reduced amount of lubrication
for measurement (right)

Artificial faults are implemented on different parts of the bearing to achieve different types of
faults and one third of the recommended lubrication is used during measurements. Fig. 2 shows
an example of a prepared bearing having a small inner-ring spall created by electric engraver
(left) and the amount of lubrication used for the measurement (right). Table 1 contains the
description of different types data created for the dataset with short names and labels of classes
for the model. Among all prepared bearings, ten bearings (Training Bearings) are used to create
training data for the CMCNN model and three bearings (Test Bearings) are kept for testing the
model. Four speeds (Speed-1 to 4) and five loads (Load-0 to 4) were pre-selected for the
measurements, which are called Known Speed-Load data used for training the model and some
data are collected at randomly selected Speed and Load combinations which are called
Unknown Speed-Load data used for testing the model accuracy.

Table 1. Fault description and short naming of the data types with labels for the model

Fault Description Short Name Class Labels

Fault DE FE 4 class 8 class

Healthy(NO) NoFault DEOK FEOK 0 0 20 10

Inner ring ((IR) spall of 2mm(S1) IRSpall DEIRS1 FEIRS1 1 1 21 11

Inner ring (IR) spall of 3.5mm(S2) IRSpall DEIRS2 FEIRS2 1 1 21 11

Outer ring (OR) spall of 2mm (S1) ORSpall DEORS1 FEORS1 2 2 22 12

Outer ring (OR) spall of 3.5mm (S2) IRSpall DEORS2 FEORS2 2 2 22 12

Rough rolling surface (RR) RRSurface DERR FERR 3 3 23 13

4 IEEM-CMCNN Architecture for Bearing Fault Classification

The model is named as IEEM-CMCNN; has input of three channels 1D data, six convolution
layers, three Fully-connected layers and four or eight output classes. The detail architecture of
the IEEM-CMCNN is described in the Fig. 3.

131

The input is a three-channel 1D vibration data considering three sensors at three positions. The
first channel contains the main-sensor data, second channel belongs to the opposite-sensor data
and third channel for the base-sensor data. Main-sensor for the FE bearing is the sensor at FE
and sensor at DE is the opposite-sensor; for DE bearing this is reversed accordingly. During
training the input of IEEM-CMCNN is a fixed-size: 1 x 1000 x 3 vibration data. The one
dimensional vibration input length is considered as approximately one revolution of the motor
shaft as described in previous paper [1]. No pre-processing is done on the training dataset.

Fig. 3. IEEM-CMCNN architecture for four fault classes

The three sensor vibration input is than passed through stack of six convolution (Conv)
layers. At the first layer the filters have very large receptive field i.e. and gradually
reduced sized filters towards higher level thus at final layer filter size become . The
convolution stride is fixed to and padding varies from lower layers i.e. to
higher layers i.e. (where the stride and padding size is to capture left/right centre). The
last Conv Layer padding is . The convolution stride and padding in layers are calculated
in way to preserve the most of length of the input of each layer. After first Conv layer one
batch normalization layer is kept. Each convolution layers are followed Rectified-Linear unit
Layer (ReLu) to remove the negative value, those followed by Max-Pooling layers (Pool) of
window size 1x2 with stride 2 and zero-padding.

The stack of Conv layers is then followed by three fully connected (FC) layers: first FC
layer has 1024 channels with a ReLu layer, second FC layer has 1000 channels also with one
ReLu layer and third has same number of channel as number of class. The final layer is soft-
max layer. We compared different architecture of different number of filters after analysing the
filter activities at each Conv layer: in this work the developed architecture has similar number
of filters as VGG16 [16].

The training was stopped when accuracy is not improving after 3 epochs.

5 Model Accuracy Analysis

As discussed in Section-2, most of the literatures considered to classify all data types where FE
and DE data should be easily detectable. In this work we compare two models: 1) training the
model for four classes (Model: 4-Class) where location of bearing (DE and FE) is not known to

132

the model and 2) training the model for eight classes (Model: 8-Class) where two bearing
locations belonged to different classes.
 The accuracy of the models are also evaluated by testing Unknown speed-load data from
training bearings and test bearings as well as Known Speed-Load data from test bearing. This
way, the test data can be divided into three groups: 1) Unknown Speed-Load data from
Training Bearings (UnSpLd_TrBr), 2) Known Speed-Load data from Test Bearings
(KnSpLd_TsBr) and 3) Unknown Speed-Load data from Test Bearings (UnSpLd_TsBr).

Fig. 4. Test accuracy comparison for 4 Class Model Vs 8 Class Model

Model: 4-Class and Model: 8-Class both has average training accuracy above 99% and to
evaluate the performance accuracies are checked per class labels. In Fig. 4 the performance of
two models are compared for fault sizes and location of the bearings. The labeling of the
classes is given in Table 1.

6 Feature Map Analysis

DL based CM of electric machine has been successfully applied in many researches but in
general it is still not clear why the fault detections were made with high accuracy and how the
network is learning the features from vibration. In a previous work [1], we analyse the first
Conv layer output by converting them to frequency domain and showed that a significant range
of frequencies were learned by each filters for each classes. In the paper [11] the authors also
focused feature visualization with FFT and showed feature distribution for each layer and each
10 classes using Stochastic Neighbour Embedding (t-SNE). In this work, we focused on
understanding the how in all convolution layers features are learned and thus the classes are
separated.

Fig. 5. Tasks involed for analysis the feature map of trained IEEM-CMCNN

 One feature visualizing technique in computer vision is to feed the network with large
amount of dataset and keep track of which images highly activate some neurons, which is
shown by Girscick et al [17]. We followed similar approach, aiming to understand among

133

number of filters in the convolution layers if certain filters are contributing to learn the features
comparing other filters of the same layers.
 The tasks involved to analyse the feature map of IEEM-CMCNN can be described by Fig 5.
As the trained dataset has different motor operating conditions and two bearing locations in
first step we define the Data type, so one specific class (i.e. IRSpall) has 4 Speeds times 5
Loads in total 20 types of data type for both bearing location. Each type of data is feed through
the trained model and all the feature maps of all the filters of all layers are saved for later
analysis. Filter activity is measured by calculating the area under the curve of the Pool output.
In Fig. 6 the Conv output or the feature map of all six layers (left) for one input for DE bearing
at Speed-4, Load-4 and the filter activity pointing the most active filter in red star at all layers
for the same input (right) is shown. It is seen that at each layer one filter is highest active than
others; for example at layer-1, filter-3 is most active among the 16 filters and at layer-6 filter-
338 is the most active among 512 filters.

Fig. 6. Convolution output or Feature Map of all layers (left) and filter activity for the same input at all

layers (right)

In the next step for all data type Filter Activity is checked thus the most active filter (MAF) of
all data type is known. MAF means for all 128 inputs of a specific data type most of the time
(i.e. 90% times) one particular filter is always highest active. In Fig.7 MAF for all 20 data of
for both bearings are shown for four layers. In the similar figure MAF for one test data
(TsKnLd) is also plotted and it is shown that almost all time MAF for test data and training
data are same. In this way it can be concluded that for one trained model some certain filters
are contributing to learn the class features and now these features of MAFs can be examined to
know if the features are more differentiable for classes and thus fault classification is highly
accurate. In Fig. 8 extracted feature or Conv output of MAFs for four classes is plotted over
each other over for 1st, 2nd 4th and 6th layers and it is observed that from to higher layers the
classes are becoming more distinguishable and thus easily diagnosable as different class.

134

Fig. 7. MAF for all data type for four layers (1st, 2nd, 5th and 6th) of trained IEEM-CMCNN for 4 classes

Fig. 8. Extracted features or Conv output by the MAF relevant to the classes at four layers (1st, 2nd, 5th and
6th) of trained IEEM-CMCNN for 4 classes

135

The plotted Conv outputs of all classes are of same Speed-Load, that means all the inputs has
same noise or vibration infused in their data and the different fault classes should have
different significant pattern after de-noising. In Fig. 8 we can see that the infused noise in this
case the healthy or NOFault (in bright green colour) is becoming less and less visible in higher
layers and the patterns of the fault classes are becoming more visible in higher layers.

7 Conclusion

This work shows that the design criteria for the CNN architecture in previous work can be
adapted for different test-bench data. The accuracy comparison in section-5 (Fig. 4) reveals
that both models can detect fault classes with high accuracy for both Training Bearings and
Test Bearings. The feature analysis explains how in deep layers the model learns the features
for different classes.

 This work shows the approach of designing the input size for vibration based bearing fault
detection applied for CWRU dataset also adaptable for IEEM-CMData. The multi-channel
input design can be considered in other applications where multiple sensors are involved.
Feature analysis shows that how features are learned from noisy data similar like computer
vision where it is known that lower layers detect the low-level features like edges, dark spots
and high-level features like shape, object are learnt in the higher layers. It shows in vibration
based detection the lower layers are de-noising the data and in higher layers the pattern of the
vibration curve which is becoming trainable for the classifier or final layer with high accuracy.
This analysis approach can be implemented in different vibration based problems and number
and thus sizes or numbers of filters in each layer can be analyzed to optimize the model
architecture.

8 References

[1] Gofran, Tanju; Neugebauer, Peter; Schramm, Dieter. Feature Extraction from Raw
Vibration Signal and Classification of Bearing Faults Using Convolutional Neural
Networks (2019). Proceedings of the Upper-Rhine Artificial Intelligence Symposium on
Artificial Intelligence From Research to Application. 15-21. ISBN 17 21. 978-3-
9820756-1-7

[2] Case Western Reserve University Bearing Data Center. Accessed: Jul. 27, 2021.
[Online]. Available: https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-
western-reserve-university-bearing-data-center-website

[3] Neupane, Dhiraj; Seok, Jongwon (2020). Bearing fault detection and diagnosis using case
western reserve university dataset with deep learning approaches. A review. IEEE
Access. 8. 93155 93178

[4] Smith, Wade A.; Randall, Robert B. (2015). Rolling element bearing diagnostics using
the Case Western Reserve University data. A benchmark study. Mechanical systems and
signal processing. 64. 100 131

136

[5] Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na (2016). Deep neural networks. A
promising tool for fault characteristic mining and intelligent diagnosis of rotating
machinery with massive data. Mechanical systems and signal processing. 72. 303 315

[6] Shao, Haidong; Jiang, Hongkai; Zhang, Xun; Niu, Maogui (2015). Rolling bearing fault
diagnosis using an optimization deep belief network. Measurement Science and
Technology. 26. 115002

[7] Jiang, Hongkai; Li, Xingqiu; Shao, Haidong; Zhao, Ke (2018). Intelligent fault diagnosis
of rolling bearings using an improved deep recurrent neural network. Measurement
Science and Technology. 29. 65107

[8] Jiang, Wenqian; Cheng, Cheng; Zhou, Beitong; Ma, Guijun; Yuan, Ye (2019). A novel
GAN-based fault diagnosis approach for imbalanced industrial time series. arXiv preprint
arXiv:1904.00575

[9] Shaheryar, Ahmad; Yin, Xu-Cheng; Yousuf, Waheed (2017). Robust feature extraction
on vibration data under deep-learning framework. An application for fault identification
in rotary machines. International Journal of Computer Applications. 167. 37 45

[10] Guo, Xiaojie; Chen, Liang; Shen, Changqing (2016). Hierarchical adaptive deep
convolution neural network and its application to bearing fault diagnosis. Measurement.
93. 490 502

[11] Zhang, Wei; Peng, Gaoliang; Li, Chuanhao; Chen, Yuanhang; Zhang, Zhujun (2017). A
new deep learning model for fault diagnosis with good anti-noise and domain adaptation
ability on raw vibration signals. Sensors. 17. 425

[12] Hoang, Duy-Tang; Kang, Hee-Jun (2019). Rolling element bearing fault diagnosis using
convolutional neural network and vibration image. Cognitive Systems Research. 53. 42
50

[13] Xia, Min; Li, Teng; Xu, Lin; Liu, Lizhi; Silva, Clarence W. de (2017). Fault diagnosis for
rotating machinery using multiple sensors and convolutional neural networks.
IEEE/ASME transactions on mechatronics. 23. 101 110

[14] Zhang, Jiangquan; Yi, Sun; Liang, G. U.O.; Hongli, G. A.O.; Xin, HONG; Hongliang,
SONG (2020). A new bearing fault diagnosis method based on modified convolutional
neural networks. Chinese Journal of Aeronautics. 33. 439 447

[15] Zhang, Wei; Peng, Gaoliang; Li, Chuanhao. Bearings fault diagnosis based on
convolutional neural networks with 2-D representation of vibration signals as input
(2017). MATEC web of conferences. 13001

[16] Simonyan, Karen; Zisserman, Andrew (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556

[17] Girshick, Ross; Donahue, Jeff; Darrell, Trevor; Malik, Jitendra. Rich feature hierarchies
for accurate object detection and semantic segmentation (2014). Proceedings of the IEEE
conference on computer vision and pattern recognition. 580 587

137

Classification and Prediction of Bicycle-Road-Quality
using IMU Data

Johannes Heidt and Klaus Dorer

Institute of Machine Learning and Analytics, Offenburg University
johannes.heidt@hs-offenburg.de

klaus.dorer@hs-offenburg.de

Abstract. The present work ties in with the problem of bicycle road assessment
that is currently done using expensive special measuring vehicles. Our alternative
approach for road condition assessment is to mount a sensor device on a bicycle
which sends accelerometer and gyroscope data via WiFi to a classification server.
There, a prediction model determines road type and condition based on the sensor
data. For the classification task, we compare different machine learning methods
with each other, whereby validation accuracies of 99% can be achieved with deep
residual networks such as InceptionTime. The main contribution of this work with
respect to comparable work is that we achieve excellent accuracies on a realistic
dataset classifying road conditions into nine distinct classes that are highly relevant
for practice.

Keywords: Machine Learning, Deep Learning, InceptionTime, ResNet, Time-
series Classification, Road-Quality Prediction

1 Introduction

In November 2019 the Bundestag passed the climate package [1]. There it was decided
that at least 900 million Euros should be invested in the expansion and renewal of the
German cycling infrastructure. This raises the question of how to obtain an overview of
the current state of cycle tracks.

While the Federal Ministry of Transport and Digital Infrastructure (BMVI) is respon-
sible for recording and assessing the condition of the major highways, responsibility for
inner-city roads lies with the communes. The BMVI carries out these assessments at
fixed intervals of four years, using special measuring vehicles that use laser technology
and digital cameras1. At the communal level, it depends on individual requirements
[2]: Expensive measuring vehicles are used as well, and often random surveys of the
residents are conducted on the condition of the roads. With passing the climate package
in November 2019, this topic is likely to take on a greater role for local authorities in
Germany in the near future [1]. The government decided to invest at least 900 million
euros in the expansion and renewal of the cycling infrastructure.

The aim of this work is to develop a new approach for the condition monitoring of
cycling tracks. For this purpose, we attach an acceleration, gyroscope and GPS sensor to
a bicycle. With the help of machine learning methods, the recorded acceleration values
and angular velocities are used to predict the road type and condition. Here, the classifier
differentiates between the road types asphalt, cobblestone and gravel as well as the

1 https://www.bmvi.de/SharedDocs/DE/Artikel/StB/zustand-netzqualitaet-der-
fahrbahnen.html

138

conditions smooth, rough and bumpy. Finally, the system sends the recorded sensor data
to a server, which is responsible for the classification and visualization of the results. In
this way, our setup determines the condition of the roads concurrently, so that it requires
no further monitoring tasks by the cyclist.

For the training and testing of the machine learning algorithms, we collected the
required sensor data manually. The setup consists of a smartphone and a Bosch XDK
which is equipped with an accelerometer and a gyroscope. Furthermore, we developed
an app which communicates with the XDK via Bluetooth – this enables us to annotate
the data. Alternatively, the XDK can persist the sensor data on its memory card. In this
case it can be labeled manually afterwards. In this way, we created two data sets with
different sampling rates and trained, evaluated and compared different classifiers. The
models use common algorithms such as tree-based procedures or state-of-the-art residual
networks. To test the transferability of the models, we collected a data set with another
bicycle and used it for testing the previously trained models. Finally, we created a setup
which allows the wireless transmission of the sensor data to a classification server.

2 Related Work

[3] dealt with both the classification of road quality and the detection of bumps. In order
to accomplish this, the authors attached a smartphone to the steering wheel of a bicycle
and covered a distance of almost 14 km for a total of 16 times [3][p. 40 f.]. During the rides,
they used the smartphone to record GPS coordinates at a rate of 1 Hz and accelerometer
data at 37 Hz. From this data, the authors extracted five attributes - inclination, speed,
as well as mean, variance and standard deviation of acceleration. Finally, they combined
the features into segments based on the GPS coordinates and annotated them manually.

In this case, Hoffmann et al. distinguished three classes: smooth, rough and bumpy.
For prediction they chose the classifiers k-Nearest Neighbors (kNN) and Naive Bayes.
Furthermore, Hoffmann et al. tested different segment lengths (1 m, 2 m, 5 m, 10 m, 15 m,
20 m) and feature combinations. In the end, they achieved the best results by choosing a
segment length of 20 m and relying only on the three acceleration features. Moreover, the
other two features proved to be unhelpful, because the speed could not contribute to the
prediction and the slope even confused the classifiers. The class distribution was not very
balanced with 6772 smooth, 2044 rough and 646 bumpy segments. For evaluation, the
authors performed a tenfold cross-validation, with the kNN classifier achieving a slightly
better result than Naive Bayes with a mean accuracy of 77.457% [3][p. 41 f.]. In our work,
we achieve significantly higher accuracies, mainly due to the higher sampling frequency.

Litzenberger et al. also deal with the classification of bicycle tracks using accelerometers
[4]. They compared different experimental setups [4][p. 1]. They recorded all data on
three flat and straight sections, each 100 m long. Furthermore, the authors chose three
different section types: cobblestone, gravel and asphalt. These also represent the classes to
be predicted. For the data set generation, they drove each route at three different speeds
(10/20/30 km/h) and three different tire pressures (3/4/5 bar). Consequently, each route
was covered nine times.

Furthermore, the authors used two different devices for data recording [4][p. 2]: First,
Litzenberger et al. attached an accelerometer sensor with a sampling rate of 500 Hz to
the fork of a bicycle. On the other hand, the rider had placed a smartphone in his back
pocket, which recorded accelerometer data at a frequency of 100 Hz. Subsequently, they
formed samples that encompassed time windows of different sizes. Values of one and two
seconds were tested here. In the next pre-processing step, they calculated 16 summary

139

statistics for each of the four channels of the accelerometer (X, Y, and Z direction and
total acceleration). These statistics are: average, maximum, and minimum values, average
peak distance and amplitude, median FFT (Fast Fourier Transform) signal frequency,
maximum and minimum FFT signal frequency, maximum and minimum FFT signal
amplitude, average positive and negative slope, maximum and minimum positive slope,
and maximum and minimum negative slope.

For the classification task the authors trained and tested different tree-based methods
and SVMs in a fivefold cross-validation. In the end, an SVM with a polynomial kernel was
able to achieve the highest accuracy in the detection of three classes - both when using
accelerometer data (99.2%) and smartphone data (97.7%). In another test, Litzenberger
et al. tried to additionally predict speed and tire pressure, resulting in 27 classes. Here
an ensemble of boosting trees scored best. With the data from the accelerometer, the
classifier scored 97.9%, whereas the smartphone data lead to an accuracy of 48.4%. In all
trials, the time window of two seconds produced slightly better results.

Hoffman et al. only relied on one track that is run a total of 16 times [3]. This is not
optimal, because it means that similar data is used in the process of training as in the
validation. Furthermore, the validation accuracy can possibly be improved. Litzenberger
et al. drove three selected routes several times as well [4]. Although they used different tire
pressures and speeds, the selected courses are only 100 m long. Consequently, the question
arises to what extent the models are suitable for application in practice. In this work,
we achieve a similarly high or even higher validation accuracy compared to Litzenberger
et al. At the same time, a larger and more varied route selection was performed while
attempting not to run the same tracks more than once.

3 Approach

The goal of this work is to find classifiers, that predict road types and their condition with
the help of a wireless sensor network. The sensor attached to the bicycle is supposed to
transmit the data to a classification server. Ideally, the model should achieve the highest
possible prediction accuracy for unknown roads. The pursued approach is described in
this chapter.

3.1 Hardware

With regard to the classification task, we chose a Bosch XDK 110 which has a BMA 280
accelerometer and a BMG 160 gyroscope. Both sensors offer a sampling rate of up to
2000 Hz. The measuring range of the accelerometer is �16 g, that of the gyroscope �2000
� /s. The other sensors of the XDK are not needed in this case. There is also a slot for
micro SD cards. Three programmable LEDs and two programmable buttons are available
for user interaction. Finally, the XDK offers two options for wireless data transmission:
Bluetooth 4.0 Low Energy IEEE 802.15.1 and Wireless LAN IEEE 802.11b/g/n.

3.2 Measurement

For data set generation, we mounted a plastic box modified for this application to the
basket of a 28-inch trekking bike (see figure 1 bottom left). Before that, we attached the
bicycle basket to a carrier, which is located above the rear wheel (top left). The Bosch
XDK can be hooked into the mounted device (middle picture). The lockable plastic box
has proven to be a reliable rain protection. Both the bicycle basket and the box device

140

are securely fixed with several cable ties so that no additional bouncing occurs during the
ride. The two components only ”vibrate” together with the carrier.

Fig. 1: Setup for data recording.

We created a total of three data sets: Two training sets at different sampling rates and
a final test set. The data collection took place with as many different routes as possible.
At the same time, we ensured that the data set had a relatively balanced class ratio, with
each of the nine classes accounting for about one-ninth of the entire dataset. As a result,
routes of rarely occurring classes were sometimes used several times. When creating the
data sets, the cyclist tried to vary the driving speed. With regard to the amount of data
to be collected.

Moreover, we developed a labelling app to create the first training set. It connects via
Bluetooth to the Bosch XDK, which in turn sends the recorded sensor data to the app.
Via the app the cyclist can assign the data to one of the nine classes. Afterwards the app
persists the sensor values on the smartphone. However, since the Bluetooth protocol limits
the length of a message to 20 bytes, it is not possible to achieve a very high sampling rate.
In this way, the system recorded 734,441 values per sensor axis (x-, y- and z-values of the
accelerometer and the gyroscope) in a period of 376 minutes, which results in a sampling
rate of 32.5 Hz. We drove 91.34 km with an average speed of about 14.6 km/h. In general,
there were no multiple runs on the same route - except for the rarely occurring classes
of smooth and bumpy cobblestone. Furthermore, we achieved a relatively balanced class
ratio (the distances covered range from 9.2 to 11.3 km per class).

With regard to the second data set, we aimed to maximize the sampling rate. Therefore,
we omitted the Bluetooth app and stored the data directly on the SD card of the XDK.
For the labelling of the collected sensor data we programmed a simple user interface
using the buttons and LEDs of the XDK. With this approach, the XDK was able to
record 5,632,000 values per sensor axis over a period of roughly 314 minutes. Compared
to the first data set, the total recording time is about 62 minutes shorter, but we collected
significantly more data (factor approx. 7.7). This results in an approximate sampling rate
of 294.1 Hz - more than nine times higher than in the first approach. We sampled 76.85
km, with the routes largely identical to those of the first data set. Moreover we omitted
some shorter tracks for practical reasons, so that we drove in total about 15 km less. The

141

average speed was about 14,5 km/h and is very close to that of the first data set (14.6
km/h). Lastly, the class ratio is relatively balanced, similar to the first case.

Finally, we created a last data set that is only used for testing purposes and not for
training models. By using another bike to collect the sensor data, it should be checked to
what extent the trained models are transferable to another bike. Therefore, we chose a
bike from the local rental system. As shown in figure 1 (pictures on the right), we placed
the plastic box device in a similar way above the rear wheel. For data acquisition again
the variant with the memory card was our choice because it offers the higher sampling
rate. Apart from the new bike, the procedure is the same as for the creation of the
second data set. In about 34 minutes, the XDK recorded 514,500 measurements per
sensor axis, resulting in a sampling rate of approx. 252 Hz. Thus the size of the test data
set corresponds to roughly 9.1% of the second data set. For each of the nine classes, we
recorded a distance of around one kilometer, totalling 9.32 km. Compared to the previous
data sets, the average speed of 16.4 km/h is slightly higher. However, the class ratios are
not quite as balanced as with the previous data sets: The number of measured values per
axis is between 40,000 and 76,000 for the individual classes.

3.3 Data Preprocessing

Before the collected data is used, several preprocessing steps are performed. To reduce
noise in the data, idle times are removed from the data set. These can occur when stopping
the bike to annotate the data with the smartphone app. Since the timestamps of all
sensor data are known, including the GPS coordinates, the idle times can be removed in
an automated manner.

Before the data is used as model input, it is normalized. The individual measurements
of the six sensor channels are transformed so that they have a mean value of 0 and a
standard deviation of 1. In addition, the transformation is performed independently for
training and test data. Finally, this is the model input for the deep learning-based methods.
For all other methods, the data are statistically summarized before normalization, whereby
the following metrics are calculated for the individual features of a sample: arithmetic
mean, standard deviation, maximum and minimum value, mean width and amplitude of
signal peaks, mean peak distance, mean positive and negative slope as well as maximum
positive and minimum negative slope. A total of 14 new features are calculated for each of
the six features (accelerometer and gyroscope each with x-, y-, and z-values). Consequently,
the original sample matrix with dimensions si × 6 becomes a sample vector of length
sj = 84. Here, si is the sample size respectively the number of time steps and thus a
configurable hyperparameter.

4 Results

This chapter presents the results of the classification using several machine learning
models that were trained and evaluated using cross-validation.

4.1 Hyperparameter Selection

We used the scikit-learn library to implement the machine learning methods [5]. Only an
implementation for XGBoost is missing, so here the XGBoost library is used [6]. Lastly, we
implemented the deep-learning based methods using keras [7] and TensorFlow [8]. When
implementing our algorithms, we had to choose the parameters carefully. Eventually, we

142

tested different parameter combinations for each classifier in a grid search, whereby each
parameter combination of this grid was tested using a tenfold stratified cross-validation.
The final parameter selection is presented in the following chapters. It should be noted
beforehand that all the other standard parameters, which are not explicitly mentioned in
the following parameter grids, remain unchanged and can be looked up in the according
documentation [5–7].

Tree Based Methods In general, tree based methods provide good results for differ-
ent types of classification problems [6][p. 785 f.]. Furthermore, their decision-making
process is easy to interpret. That is why this evaluation process includes random forest
and Extreme Gradient Boosting (XGBoost) [9, 10]. In the case of the first data set,
we used the following parameter grid for the grid search: t ∈ {5, 10, 25, 50, 100, 200},
max depth ∈ {10, 25, 50}, min samples leaf ∈ {1, 2, 5}, min samples split ∈ {2, 5, 10}
and n estimators ∈ {2, 5, 10}. Please note that t is not a parameter of the scikit-learn or
XGBoost models which we used. It describes the number of time steps for which we calcu-
lated summary statistics such as mean values and standard deviations. With the following
parameters the random forest has achieved the best result: t = 200, max depth = 50,
min samples leaf = 1, min samples split = 5 and n estimators = 100, resulting in a
mean accuracy of 68.546% with a standard deviation of 3.271%. In contrast, the highest
mean validation accuracy of the XGBoost classifier is slightly better with 68.963%. At
the same time, the standard deviation of 1.646% is slightly lower than with the Ran-
dom Forest. The parameter selection t = 200, max depth = 50, min samples leaf = 1,
min samples split = 2 and n estimators = 300 leads to this result.

We adjusted the first grid slightly for the second data set, regarding its higher sampling
rate: t ∈ {50, 100, 250, 500, 1000, 2000} and n estimators ∈ {100, 300, 1000}, while the
possible values for the other three variables remain the same. The best result of the
random forest is achieved with t = 2000, max depth = 25, min samples leaf = 2,
min samples split = 5 and n estimators = 300 - this leads to a validation accu-
racy of 83.333%. With XGBoost the parameter values t = 2000, max depth = 25,
min samples leaf = 1, min samples split = 2 and n estimators = 1000 result in the
highest validation accuracy (86,17%).

Support Vector Machine The support vector machine (SVM) also proves to be
a reliable model for a wide range of classification tasks [11]. Here we use the follow-
ing parameter grid in connection with the first data set: t ∈ {5, 10, 25, 50, 100, 200},
kernel ∈ {linear, poly, rbf, sigmoid}, C ∈ {2−5, 2, 210}, gamma ∈ {scale, auto} and
degree ∈ {2, 3}. Regarding gamma, a value of auto means 1/nfeatures and scale means
1/(nfeatures × σ2

x). With the parameter combination t = 200, kernel = linear and C = 2,
we achieved a mean accuracy of 66.539% with a standard deviation of 2.377%, which is
the best result.

For training with the second data set, we adjusted only the time steps t ∈ {50, 100, 250,
500, 1000, 2000}. With the parameter selection t = 2000, kernel = linear and C = 2 we
achieved the highest validation accuracy of 86.702%.

Deep Learning Based Methods As deep learning approaches we tested long short-term
memory (LSTM) and convolutional neural networks (CNNs) with different architectures
[12, 13]. Hence, we tested a single LSTM layer, which is fully connected to the output
layer. When working with CNNs, we also adjusted the sample size and dropout. The

143

sample size specifies the number of instances which we combine into one input. It can be
considered as the number of time steps, but in comparison to t we calculated no summary
statistics. Additionally, we analyzed different values for the number of filters, kernel size
and pooling size. Here, we tested different architectures: a simple CNN consisting of two
convolutional layers with dropout and max pooling followed by a fully connected hidden
layer which is again fully connected to the output layer. Next, we evaluated a CNN-LSTM
which has a similar architecture like the simple CNN, we only replaced the hidden layer
with an LSTM layer. Lastly, we tested two residual networks from Fawaz et al.: ResNet
[14] and InceptionTime [15]. The main part of the architecture are the residual blocks,
which contain three convolutional layers and use batch normalization in between. The
blocks themselves are also linked via residual connections. ResNet consists of three and
InceptionTime of two blocks. Moreover, the residual blocks for InceptionTime include an
inception module, which enables the use of multiple, concatenated filter types. In this
paper both model architectures remain unchanged.

For the plain LSTM architecture the parameter grid for the first data set looked like
this: sample size ∈ {20, 50, 100, 150, 200}, recurrent dropout ∈ {0, 1/4, 1/2} and units ∈
{32, 64, 128}. With the parameters sample size = 50, units = 128 and recurrent dropout
= 1/4, we achieved the highest mean validation accuracy - 65.329% with a standard
deviation of 1.03%. The tested CNN architecture uses the following grid: sample size ∈
{20, 50, 100, 150, 200}, filters ∈ {32, 64, 128}, dropout ∈ {0, 1/4, 1/2}, kernel size ∈
{3, 5, 7}, pool size ∈ {2, 5}. With the parameters sample size = 100, dropout = 1/2,
filters = 32, kernel size = 5 and pool size = 5, we achieved a mean validation accuracy
of 62.912% with a standard deviation of 1.792%. The CNN-LSTM architecture uses the
same grid as the CNN and achieved a slightly better result with a validation accuracy of
70.222% at a standard deviation of 1.699%. The model uses the parameters sample size =
200, dropout = 0, filters = 64, kernel size = 3 and pool size = 5. In the case of residual
nets, we examined only different values for sample size ∈ {20, 50, 100, 150, 200}. With
a value of sample size = 200, the residual nets achieved the highest mean validation
accuracy: InceptionTime scores 77.645% with a standard deviation of 1.925%, ResNet
is just below that with 77.484%. But the standard deviation of 1.382% is slightly lower
than with InceptionTime.

(a) First dataset (b) Second dataset

Fig. 2: Comparison of classification results.

In the case of the second data set, the parameter grid for all the deep learning
based models remained almost the same. We only adjusted the sample size for the
higher sampling rate: sample size ∈ {50, 100, 250, 500, 1000, 2000}. The best result of
the LSTM is 71.129% which uses the parameters sample size = 100, units = 32 and
recurrent dropout = 0. When using a CNN, we achieved the highest accuracy of 77.852%
with the parameters sample size = 250, filters = 128, dropout = 1/2, kernel size = 7

144

and pool size = 2. The CNN-LSTM scored a significantly higher validation accuracy of
91.312%. Already during the tests with the first data set we noticed that the accuracy of
LSTMs drops rapidly with sample size >= 150, which seems to be a common issue [16].
To prevent these problems, we adjusted the pooling size (pool size ∈ {5, 15, 50}) compared
to the first parameter grid. The parameter selection sample size = 2000, filters = 32,
dropout = 0, kernel size = 7 and pool size = 50 finally leads to the best result for this
model. All in all, the residual networks provide the best results. With a sequence length
of sample size = 2000, InceptionTime achieves 98.404%, the ResNet scores with 98.227%
marginally below.

We trained all models over 200 epochs, only the residual nets over 1000 epochs as
it took significantly longer for overfitting to occur. In all cases, we stopped the training
process as soon as the training accuracy did not improve over 30 consecutive epochs.
Furthermore, we used a local computer with 64 GB of RAM and an nVidia GeForce GTX
1080 graphics card.

4.2 Classification

Next, we compare the presented models with each other using the hyperparameter selection
from the previous chapter.

First Data Set As seen in figure 2 (a), the deep-learning-based methods deliver the best
results - especially the two deep residiual networks ResNet and InceptionTime. While
InceptionTime has the highest mean validation accuracy of the examined models with
77.65%, ResNet with 77.42% has a slightly higher median than InceptionTime (77.26%).
Furthermore, the variance in the validation accuracy of the ResNet is lower than that of
InceptionTime because the ResNet has a lower standard deviation (1.382% vs. 1.925%)
and a smaller interquartile range (1.129% vs. 3.226%). The top two models are followed
by the CNN-LSTM, which has an average validation accuracy of 70.22% with a standard
deviation of 1.699%. In addition, the median lies at 69.84% with an interquartile range of
2.484%. After that follow the models XGBoost, Random Forest and SVM with median
values of 68.90%, 68.23% and 66.88% respectively. The interquartile ranges are 1.553%,
2.958% and 2.605% respectively.

During the tests in chapter 4.1 we observed that almost all classifiers achieved their
best results with longer sequences. Consequently, the question arises why no values t > 200
or sample size > 200 were examined. In the end, we set this value as the upper limit for
practical reasons: At an average speed of about 14.6 km/h and a sampling rate of 32.5
Hz, 200 time steps result in a time period of about 6.15 seconds and thus an approximate
distance of 25 m. In terms of application of the model in practice, a classification of
shorter sequences seems preferable.

To gain a better understanding of the strengths and weaknesses of the single classifiers,
we examined the precision and recall rates for the individual classes. It became apparent
that all models have problems in recognizing the classes rough asphalt, rough cobblestone
and bumpy gravel. When also looking at the confusion matrices of these models, it is
noticeable that the models often confuse the problem classes with each other. The reason
for this could be the sampling rate: At an average speed of about 14.6 km/h, roughly 4.05
m are covered in one second, so that the smartphone app records a sensor measurement
approximately every 12.5 cm. However, there are cobblestones that have a shorter length
than this. Also in the case of asphalt and gravel, bumps can occur at shorter intervals.
Consequently, the tests with the next data set should show what influence the sampling
rate can have.

145

(a) Rough asphalt and rough cobblestone
(32.5 Hz)

(b) Rough asphalt and rough cobblestone
(294.1 Hz)

Fig. 3: Comparison of selected sequences at different sampling rates.

Second Data Set As in the test with the first data set, the two deep residual networks
clearly provide the best results (figure 2 (b)). Between the two, InceptionTime achieves
slightly better results: The mean validation accuracy is 99.18% and the median is 99.11%.
For the ResNet, it is 98.97% and 99.11%. Again, the variance metrics are nearly equal:
While the validation accuracy of InceptionTime has a standard deviation of 0.60% and
an interquartile range of 0.98%, the corresponding values of the ResNet are 0.60% and
0.98%. The CNN-LSTM also achieves very good results with a median of 94.14% and an
interquartile range of 1.87%. The SVM follows with a median of 87.77% at an interquartile
range of 1.54%. Finally, the tree-based methods XGBoost and Random Forest achieve a
median of 86.40% and 82.74%, with an interquartile range of 1.42% and 1.60%.

Already during the tests with the first data set we observed that most models benefit
from longer sequence lengths. This is also the case with the second data set, but again we
limit the maximum sequence length for practical reasons. In case of the first data set we
selected 200 time steps as maximum. Since the sampling rate is almost ten times higher
for the second data set, we set a corresponding value of t = 2000. At a sampling rate of
294.1 Hz, an average sequence of length t = 2000 records a period of about 6.8 seconds.
Thus, at an average speed of 14.45 km/h, the cyclist covers a distance of roughly 27.3
meters.

Figure 3 (a) shows some selected sequences that indicate why a correct classification
can be difficult with a lower sampling rate. Rough asphalt and rough cobblestone are two
classes that were very frequently confused with each other in the case of the first data set.
The measured value is the acceleration in the x-direction of the XDK (perpendicular to
gravity) and it is plotted over 200 time steps. It is noticeable that both time series have
very similar characteristics: The measurements vary quite regularly between -5 and 15
m/s2 with just a few outliers. In addition, the number of peaks and the average period
lengths appear to be similar. Consequently, a simple distinction of the classes based on the
graphs is not possible. For comparison with sequences at 294.1 Hz, we slightly adjusted
the x-axis in 3 (b): 1800 time steps are mapped here, which corresponds to a duration
of about 6.12 seconds. This is about the same time period mapped in the left graphs
(6.15 seconds). In addition, the measured values of the right-hand figures fluctuate within
approximately the same range as in figure 3 (b). Furthermore, the number of peaks is
comparable to the left-hand time series. Nevertheless, the higher frequency sequences
seem to be more easily distinguishable. In the case of the first dataset, our setup recorded
a sensor measurement on average about every 12.5 cm. With the second dataset, the
average speed is 14.45 km/h, so that the cyclist covers roughly 4.014 m in one second.

146

Consequently, our second setup performs a sensor data recording approximately every
1.36 cm. This allows a much more precise ”scanning” of the road surface.

Third Data Set As already described in chapter 3.2, we chose the same procedure
for data acquisition as for the second data set to record a third data set. The setup
only included a different bicycle. The purpose is to check whether the previously trained
models are transferable to a new bicycle.

When looking closer at the recorded test data, in particular the standard deviations
in relation to the measured values of the individual sensor axes, it is noticeable that these
in some cases differ significantly from the training data. Compared to the second data set,
almost all standard deviations are about 20-40% lower. Even more significant differences
can be found with the gyroscope values, which sometimes deviate by a factor of 3 to 4.
The reason for this is most likely the choice of a different bicycle and the slightly different
mounting of the XDK support (see figure 1).

Using the third data set, we tested the models from chapter 4.2, which we trained
using the second data set. The differences between the training and test data are reflected
in the classification results of the models: ResNet achieves the highest accuracy with
26.459%, InceptionTime reaches 26.07%, and all other models fall below the 20% mark.
This results conclude that the data from chapter 4.2 is not sufficient to easily transfer the
models to any bicycle. Besides the choice of the bicycle, the mounting of the XDK holder
and the tire pressure might also influence the recorded sensor data. To train a robust
model that delivers solid results regardless of all these factors, the training data must
represent these elements.

4.3 Comparison to Related Work

Chapter 2 presented the work of Hoffmann et al. [3], which distinguishes three classes of
bicycle tracks: smooth, rough and bumpy. They covered one track with a distance of 14
km 16 times in total and recorded accelerometer data at 37 Hz. The best classification
result is a mean validation accuracy of 77.457%, determined by tenfold cross-validation.
With respect to the present work this is most comparable to the results of the first data
set, since we used a similar sampling rate with 32.5 Hz. However, in addition to the
accelerometer data, we also used gyroscope data, which were not available in the case of
Hoffmann et al. On the other hand, this work distinguishes nine classes, whereas Hoffmann
et al. distinguish three. The data set of this work is smaller by a factor of about 2.5
and we attempted to avoid multiple runs on the same track. Finally, the highest mean
validation accuracy with respect to the first data set is 77.645% (InceptionTime) which is
slighlty higher than the best result of Hoffmann et al. (77.457%). However, when using our
second data set (294 Hz), the validation accuracy of InceptionTime is significantly higher:
99.183%. Itt should also be noted that our training and test data include a greater variety
of tracks compared to Hoffmann et al., while avoiding multiple runs of the same routes as
far as possible. This makes our models particularly suitable for real-world applications.

The second work discussed is a paper by Litzenberger et al. [4]. They selected three
routes of 100 m length each and have run each of the three routes nine times. They
combined three different tire pressures (3, 4 and 5 bar) with three different speeds (10, 20
and 30 km/h). They also recorded accelerometer data, firstly with a smartphone (100
Hz) and secondly with a sensor device (500 Hz). Here the authors distinguish the classes
of asphalt, cobblestone and gravel, with the highest mean validation accuracy at 99.2%
(500 Hz) and 97.9% (100 Hz) respectively, determined with a five-fold cross-validation.

147

This is comparable to the results of the second data set of this study, since the sampling
rate of 294 Hz is almost in the middle of the sampling rates used by Litzenberger et
al. There are also differences between the two works: The data set used in this paper is
significantly larger and the tracks to be predicted are much more diverse. In contrast to
Litzenberger et al., we additionally use gyroscope values. When predicting nine classes,
InceptionTime achieves the highest average validation accuracy of 99.18% within the
tenfold cross-validation, which is minimally lower than the best result of Litzenbeger et
al. (99.2%), but on nine classes making the results more practically relevant.

In order to make our results more comparable to the work of Litzenberger et al.,
we also tested the classification for three classes - asphalt, cobblestone and gravel. For
this purpose, we combined the road types of the second data set so that there is no
distinction between the road conditions smooth, rough and bumpy. Consequently, the three
combined classes of asphalt, cobblestone and gravel now comprise 1,735,500, 1,887,500
and 2,009,000 measurements per sensor channel. Using this data, we trained the two
residual networks InceptionTime and ResNet using the previously determined parameter
settings from chapter 4.1. We performed a tenfold stratified cross-validation, whereby
the models trained in each run for 500 epochs and the highest validation accuracy is
used for evaluation. In this way, the residual nets slightly exceeded the results previously
achieved with nine classes: The mean validation accuracy of the ResNet is 99.54% with a
standard deviation of 0.163%. InceptionTime performs slightly better with 99.72%, only
the standard deviation is a bit higher with 0.213%. To sum up, our models (99.72%) have
a slighty higher prediction accuracy compared to Litzenberger et al. (99.2%) At the same
time, our route selection for training and testing is significantly larger and more varied,
so that our models should be way more suited for use in real-world applications.

5 Conclusion and Future Work

This paper describes the development of an approach for condition assessment of cycling
tracks. In total, we collected three different data sets: Two training sets with different
sampling rates (32.5 Hz and 294 Hz) as well as a test set using a different bicycle. For the
first data set, the two residual networks achieved the highest validation accuracy of about
77%. However, all models show difficulties in recognizing certain classes, and mix-ups
often occur. A closer look at these classes led to the assumption that a higher sampling
rate could solve these problems. With the second data set, all models were able to achieve
a significantly higher validation accuracy with the residual nets achieving 99% accuracy.

The evaluation of the transferability of the models to a different bicycle did not lead
to good results. The recorded data of the third set differs too much from the training
values of the second data set, so that none of the models can make reliable predictions.
Once again, the two residual networks record the highest test accuracy, but they reach
only about 26%. Despite the poor performance of the third data set, the initial results
suggest that this is a very promising approach. The models developed provide higher
validation accuracy than existing approaches. At the same time, we use a much larger
and more varied selection of cycling tracks, which results in robust models that should be
more suitable for use in real-world applications.

In future work, a variety of routes, bicycles, riders, speeds and tire pressures should
be taken into account when creating the training data. Furthermore, the final setup
for the transmission of sensor data could be adapted so that it can be used for the
annotation of training data. For this the already developed bluetooth labelling app
would have to be adjusted only slightly. In this way, the user experience could be made

148

much more convenient compared to the previous recording with the XDK’s memory
card. Lastly, the final test setup could be made more user-friendly by removing the
smartphone dependencies from the current architecture. At the moment, the GPS sensor
of a smartphone is still required. To resolve this dependency, the Bosch XDK could be
extended with a corresponding sensor via its GPIO ports. Finally, the XDK needs a
Wifi-hotspot - for this purpose a mobile router could be mounted on the bicycle. With
these changes, the recording and classification of the road condition could be completely
automated, so that the cyclist can fully concentrate on the riding itself.

References

1. EMU: Klimaschutzprogramm 2030 der Bundesregierung zur Umsetzung des Klimaschutzplans
2050. https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaschutzprogramm-
2030-1673578 (2019)

2. Maerschalk, G., Krause, G., Socina, M., Köhler, M., Stöckner, M.: Daten und Methoden für
ein systematisches Erhaltungsmanagement innerörtlicher Straßen. Forschung Straßenbau
und Straßenverkehrstechnik (1079) (2013)

3. Hoffmann, M., Mock, M., May, M.: Road-quality classification and bump detection with
bicycle-mounted smartphones. In: Proceedings of the 3rd International Conference on
Ubiquitous Data Mining-Volume 1088, CEUR-WS. org (2013) 39–43

4. Litzenberger, S., Christensen, T., Hofstätter, O., Sabo, A.: Prediction of road surface quality
during cycling using smartphone accelerometer data. In: Multidisciplinary Digital Publishing
Institute Proceedings. Volume 2. (2018) 217

5. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12 (2011) 2825–2830

6. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining. (2016)
785–794

7. Chollet, F., et al.: Keras. https://keras.io (2015)
8. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous
systems (2015) Software available from tensorflow.org.

9. Breiman, L.: Random forests. Machine learning 45(1) (2001) 5–32
10. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals of

statistics (2001) 1189–1232
11. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3) (1995) 273–297
12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8) (1997)

1735–1780
13. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel,

L.D.: Backpropagation applied to handwritten zip code recognition. Neural computation
1(4) (1989) 541–551

14. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning for time
series classification: a review. Data Mining and Knowledge Discovery 33(4) (2019) 917–963

15. Fawaz, H.I., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D.F., Weber, J., Webb, G.I.,
Idoumghar, L., Muller, P.A., Petitjean, F.: Inceptiontime: Finding alexnet for time series
classification. arXiv preprint arXiv:1909.04939 (2019)

16. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

149

Modeling natural convection in porous media using
convolutional neural networks

Mohammad Reza Hajizadeh Javaran1, Amadou-oury Bah2, Mohammad Mahdi Rajabi1, Gabriel
Frey3, Florence Le Ber3, Marwan Fahs2

1Civil and Environmental Engineering Faculty, Tarbiat Modares University, PO Box 14115-397, Tehran,
Iran.

2Université de Strasbourg, CNRS, ENGEES, ITES UMR 7063, 67000 Strasbourg, France.
3Université de Strasbourg, CNRS, ENGEES, ICube UMR 7357, 67000, Strasbourg, France

mrhj75@gmail.com, amadou-oury.bah@etu.unistra.fr,
mmrajabi@modares.ac.ir, g.frey@unistra.fr,

florence.leber@engees.unistra.fr, fahs@unistra.fr

Abstract. Deep learning has become increasingly prevalent in a wide range of engineering
contexts. In this work, we tried to make a connection between the groundwater engineering
community and the field of deep learning. Natural convection in porous media is usually
simulated using common numerical modeling tools with high computational costs. In this
work, we aim to use supervised learning in input-output pairs (porous media characteristics-
heat map distribution) in an image regression task, employing an encoder-decoder
convolutional neural network (ED-CNN) to develop a meta-model that is able to predict the
distribution of heat map resulting from a natural convection process in porous media or to
estimate the characteristics of the porous domain when the heat map distribution is given.
In order to achieve this objective, a training data set of samples is prepared using Comsol
Multiphysics numerical modeling and is trained with the proposed encoder-decoder CNN.
We also employed several evaluation metrics such as root mean squared error (RMSE),
coefficient of determination (-score) to assess the robustness of the developed network.
We observed promising results in both approaches, as well as accuracy and speed,
indicating the network's relevance in a variety of groundwater engineering applications to
come in the future.

Keywords: natural convection; porous media; convolutional neural network; encoder-
decoder.

1 Introduction

Natural convection is an important concept in porous media problems [1]. It is encountered in
several applications such as in heat storage in aquifers, CO2 sequestration in geological
formations, geothermal energy extraction, and geological deposition of nuclear waste. Physics-
based numerical models are commonly used for simulating natural convection in porous media.
Despite the effectiveness of these models in most cases, they encounter some critical challenges.
One key challenge is the computational time cost, which is more noticeable at large time and
space scales, especially in repetitive runs. In recent years, several meta-models, such as
polynomial chaos expansions and feed-forward neural networks, have been proposed in order to
reduce the simulation time of natural convection models. These meta-models have demonstrated
acceptable performance in low-dimensional domains, but they do not scale well to high-
dimensional problems [2]. To overcome this challenge, we propose the use of a convolutional
neural network (CNN) architecture [3]. We apply the proposed ED–CNN in the context of

150

'image-to-image regression to (a) estimate the entire heat distribution resulting from a specified
permeability or (b) estimate the permeability from a heat map.

2 Methodology

We first develop a numerical model based upon a hypothetical square porous media example,
generating heat map distribution images as training data. Each image references a unique value
of a porous domain characteristic, known as the Rayleigh number. The generated data are then
trained and validated using an encoder-decoder CNN, and results are analyzed using various
methods.

2.1 Example description and governing equations

A hypothetical, two-dimensional saturated square porous media is considered. As demonstrated
in Fig. 1, Dirichlet temperature boundary conditions are assigned to the side walls. and
have constant values and > . We also consider Neumann boundary conditions for the
bottom and the upper boundaries, which emphasizes impermeable and thermally adiabatic
conditions. The flow is assumed to be steady-state with a Newtonian and incompressible fluid
following Darcy's law. The test case is a homogeneous media, with equal hydraulic and thermal
properties considered as Rayleigh number (Ra). The natural convection in porous media is
explained by the heat transfer equation showing the energy balance, the continuity equation for
mass balance, coupled with a variable fluid density function. The governing equations are [4]: + = 0 (1)

= (2)

= + . (3)

= (4)

+ = +
(5)

Where () and () are velocity in the and directions, respectively, is the pressure, and
is temperature. The dimensionless Rayleigh value is defined while () is hydraulic

conductivity, (/ 3) is the fluid density, (1/) is the fluid thermal expansion, (/ 2) is
the acceleration due to gravity, (K) is the temperature gradient between the left and right
walls (i.e.,), () is the size of the domain, (/ .) is the fluid viscosity, and
(2/) is the medium equivalent thermal diffusivity coefficient.

151

Fig.1. Schematic of the problem domain

2.2 Training Data preparation

In order to train the CNN models, we generated data using a COMSOL Multiphysics model,
solving the above-mentioned equations, which takes about 600 minutes to reach a steady state.
Using uniform probability distribution, sampling is done using Latin hypercube sampling, and
independent Rayleigh numbers are chosen on the interval [10, 210] to generate 2000 heat map
images. To train an image-to-image regression model, we converted the Rayleigh value numbers
to 32×32 images using Numpy and Matplotlib packages, each representing a specific Rayleigh
value pertaining to a heat map image and pixel values of images are normalized between 0 and
1 in the preprocessing step of neural network training. All pixels of Rayleigh images have the
same values for each image due to homogeneity; this is because we are developing a
methodology, and though it might seem counterintuitive, we are using a homogeneous case as a
first step. The input-output pairs are used to train an encoder-decoder CNN.

2.3 Encoder-Decoder CNN

We employ an encoder-decoder architecture for this problem, consisting of two separate
subnetworks; encoder is a subnetwork that extracts features through a contracting process,
followed by a decoder, which reconstructs the image [5],[6]. Decoder CNNs usually have the
same network architecture as encoders, except that they are oriented in the opposite direction
[7]. They recover the spatial resolution lost at the encoder by deconvolution and up-sampling
and construct output maps based on the feature maps from the encoder [8],[9]. After data
preparation, we trained the model with a maximum number of 2,000 samples, where 50% are
used for training, 30% for validation, and 20% for testing. We developed two ED-CNNs, one as
a meta-model and the other as an optimizer. The meta-model is trying to estimate the heatmap
distribution as an output while the input Rayleigh parameter images are fed to the model.
Furthermore, a similar methodology has also been employed to develop a model that acts as an
optimizer to estimate the Rayleigh number from the heat distribution. The ED-CNN models have
been developed using Keras and Tensorflow python machine learning libraries. Fig.2 shows our
proposed ED-CNN [2], which is constructed using convolutional layers, each of which is
followed by a batch normalization layer, which regularizes the network while enhancing the

152

accuracy [10] Two times, down-sampling and rebuilding is done using two pooling layers and
two upsampling layers, respectively in the middle of the network. Furthermore, the activation
function is rectified linear unit (Relu), but the sigmoid function is also used in some layers, and
the loss function is mean squared error. The model is trained with 300 epochs using batch size
24 and the learning rate of 0.0001 with Adam optimizer.

Fig 2. The architecture of the proposed encoder-decoder CNN

3 Result and discussion

3.1 CNN as meta-model

Different numbers of training input-output images (including 100, 500, 1000, and 2000)
generated from the numerical model are employed to train the proposed networks. Two
evaluation criteria are used to assess the performance of the developed ED-CNN modes: (1) the
root mean squared error (RMSE) [11], and (2) the coefficient of determination (-score), a
number that shows a good prediction as it gets closer to 1 [12].

= 1 (6)

= 1
 (7)

Fig3.a illustrates RMSE decay with different numbers of sample sets. It is apparent from the plot
that training the network with about 60 epochs could be enough to reach a stable value of errors.
Increasing the number of samples to 2000, the RMSE converges to an acceptable value of
0.0186. Fig3.b shows -score changes with the number of samples. As it is apparent from the
plot, increasing the number of samples from 100 to 2000 samples slightly improves the accuracy,
which is more than 0.97, conforming the RMSE plot results. As an example of the results, the
performance of ED-CNN used as the meta-model is visualized for a specific value of the
Rayleigh number in Fig4 using different numbers of sample sets to assess the effect of the
number of samples. In this figure, we compare the CNN's predicted heat map with the numerical
modeling result, which shows a prediction with a decreasing error as we increase the samples
from 100 to 2000. Using only 100 images shows a noticeable spatial error with a total error of

153

0.05, but increasing samples to 2000 decreases the total error to about 0.01. The spatial
distribution of the error, that is, the absolute value of the difference between CNN and numerical
model predictions of temperature, is calculated pixel by pixel. In the meta-model case, we can
see that in the middle of the domain, errors are more prominent.

Fig 3. a) RMSE(K) and b) -score ED-for CNN as meta model

Number of
samples Real HeatMap Predicted HeatMap Spatial distribution of the

error

100

500

1000

154

2000

Fig 4. Real and predicted heat map comparison for different number of samples for CNN as meta-model

3.2 CNN as an optimizer

To evaluate the proposed network for parameter estimation, the same performance metric,
RMSE and -score are employed. Fig5 a. illustrates the RMSE decay with the number of
epochs. It can be inferred from the plot that increasing the number of samples from 100 to 500
significantly decreases the error while using more than 500 does not affect the RMSE noticeably;
this fact is also approved by Fig5. b, while using 500 samples instead of 100, enhances the -
score from 0.59 to a value of more than 0.98. The other assessment method is shown in Fig. 6
as a scatter plot, comparing the predicted and actual values using a maximum training data of
2000. As it is apparent from the plot, the majority of predicted and real cases cluster around the 45° line, approving the network's effectiveness. Furthermore, an exemplary table of random
predicted and test values also confirms the robustness of the network showing a deficient relative
error.

Fig5. a) RMSE(-) and b) -score for ED-CNN as optimizer

155

Fig 6. Real and predicted Rayleigh value scatter plot

Table 2. Relative error of real and predicted Rayleigh value for random test cases

Real Rayleigh number Predicted Rayleigh
number Relative error (%)

49.11 50.16 2.13

56.25 57.30 1.86

60.0 60.8 1.33

89.4 89.8 0.44

117.5 117.7 0.17

192.68 190.16 1.30

4. Conclusion

In this paper, we have developed an encoder-decoder CNN to achieve a meta-model and
optimizer for natural convection problems in porous media, considering the time cost and
accuracy of the model. We initially generated 2000 heat map images; The data is then trained
using similar architectures as meta-model and optimizers. It is apparent from the accurate results
that the proposed methodology can be employed as a tool for estimating natural convection heat
distribution as a meta-model and estimating the properties of the porous cavity in inverse
modeling. It is also observed that this network is trained in about 40 minutes while the numerical
modeling process takes more than 600 minutes, which means it saves time, more than 93%
compared to numerical modeling tools, showing its robustness in solving the time cost problem.
In summary, this network can be used as a meta-model and optimizer and should be also useful
for uncertainty analysis.

156

References

1. Nield, D. A., & Bejan, A. (2017). Convection in Porous Media. Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-319-49562-0

2. Rajabi, M. M., Hajizadeh Javaran, M. R., Bah, A. O., Frey, G., Le Ber, F., Lehmann, F., &
Fahs, M. (2021). Analyzing the Efficiency and Robustness of Deep Convolutional Neural
Networks for Modeling Natural Convection in Heterogeneous Porous Media, submitted to
International Journal of Heat and Mass Transfer.

3. Ji, X., Yan, Q., Huang, D., Wu, B., Xu, X., Zhang, A., ... & Wu, M. (2021). Filtered selective
search and evenly distributed convolutional neural networks for casting defects recognition.
Journal of Materials Processing Technology, 292, 117064.

4. Fajraoui, N., Fahs, M., Younes, A., & Sudret, B. (2017). Analyzing natural convection in
porous enclosure with polynomial chaos expansions: Effect of thermal dispersion,
anisotropic permeability and heterogeneity. International Journal of Heat and Mass
Transfer, 115, 205-224.

5. Mo, S., Zabaras, N., Shi, X., & Wu, J. (2019a). Deep autoregressive neural networks for
high dimensional inverse problems in groundwater contaminant source identification Water
Resources Research, 55(5), 3856-3881.

6. Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2017,
September). Stock price prediction using LSTM, RNN and CNN-sliding window model. In
2017 international conference on advances in computing, communications and informatics
(icacci) (pp. 1643-1647). IEEE

7. Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention (pp. 234-241). Springer, Cham.

8. Jiang, Z., Tahmasebi, P., & Mao, Z. (2021). Deep residual U-net convolution neural networks
with autoregressive strategy for fluid flow predictions in large-scale geosystems. Advances
in Water Resources, 150, 103878.

9. Tahmasebi, P., Kamrava, S., Bai, T., & Sahimi, M. (2020). Machine Learning in Geo-and
Environmental Sciences: From Small to Large Scale. Advances in Water Resources, 103619

10. Zhu, Y., & Zabaras, N. (2018). Bayesian deep convolutional encoder–decoder networks for
surrogate modeling and uncertainty quantification. Journal of Computational Physics,
366,415-447.

11. Zhu, Y., Zabaras, N., Koutsourelakis, P. S., & Perdikaris, P. (2019). Physics-constrained
deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Computational Physics, 394, 56-81.

12. Kumar, D., Roshni, T., Singh, A., Jha, M. K., & Samui, P. (2020). Predicting groundwater
depth fluctuations using deep learning, extreme learning machine and Gaussian process: a
comparative study. Earth Science Informatics, 13(4), 1237-1250.

157

Point Cloud Capturing and AI-based Classification for as-built
BIM using Augmented Reality

Thomas Klauer and Bastian Plaß

i3mainz, Institute for Spatial Information and Surveying Technology,
Mainz University of Applied Sciences

(thomas.klauer, bastian.plass)@hs-mainz.de

Abstract. The benefits of using Building Information Modeling (BIM) have been proven
in architecture, engineering and construction industry. However, implementing BIM in in
facility management has not been achieved yet due to missing complete and accurate as-
built BIM. Modeling comprehensive information for as-built documentation from 3D point
cloud data is referred as Scan-to-BIM but lacks automation caused by unstructured data and
high user input. We tackle the main issue of structuring the 3D point cloud data by using
artificial intelligence while capture. With both, a highly reliable and low-cost technology
we achieve less time-consuming point cloud capturing and segmentation contributing to a
novel Scan-to-BIM approach with promising initial results.

Keywords: LiDAR; Point Cloud; Classification; Augmented Reality; Scan-to-BIM.

1 Introduction
Similar to many other sectors, digitalisation is advancing rapidly in the architecture, engineering
and construction (AEC) industry. An important component here is the concept of the "digital
twin" of a new building to be constructed or an existing building to be operated on. Building
Information Modelling (BIM) has been established as the method for this, in which a 3D building
model represents the core element. There are various ways to create such a model: in the case of
new buildings to be planned, the model is generated "form the scratch" by the planners with
specialised design software, while in the case of existing buildings it is necessary to capture the
real building geometry with its relevant component information in reality. In addition to planning
and construction, the management of existing buildings also benefits from digital BIM solutions,
so that facility management will be able to exploit the advantages of BIM in the future with the
ongoing development of efficient solutions for digitising existing buildings.
There are various approaches to 3D as-built modelling, such as deriving from 2D CAD plans
(as-planned BIM) or capturing the up-to-date building representation by metrological methods
(as-built BIM). In the latter, state-of-the-art 3D point cloud data are obtained from laser scanning
or structure from motion (SfM) methods and serve both registered and manually pre-processed
as the information basis for modelling a semantically enriched as-built BIM (Scan-to-BIM). The
as-built modelling process lacks automation yet due to missing, sparse, outdated and complex
information about the captured objects, relationships and attributes as well as customisable uses
of the BIM [1,3-4]. In addition, the use of professional and therefore expensive metrology
hardware has been required to perform such scans and specialised experts are needed to carry
out both the scanning and modelling processes. This paper will show how these processes can
be improved in terms of automation and simplification.
For an initial simplification of the scanning process, preliminary work [2] has shown that
sufficient point cloud quality can be achieved with inexpensive consumer products such as the

158

Apple iPad Pro or the Intel RealSense L515 for as-built modelling of indoor scenes. This
hardware can be handled by non-experts after a brief instruction, resulting in a significant cost
reduction for capturing the 3D building geometry. In order to automate and thus simplify the
modelling process, methods are needed that can provide semantically structured information of
the scanned building geometry to identify relevant, constituent objects, such as building
components, furnishings or building services elements.
One way to achieve this is to divide the raw and unstructured 3D point cloud into semantic
regions by means of segmentation, in which objects are then automatically recognised [3] and
finally geometrically approximated by standard geometries. Structuring the 3D data into
semantic regions for further understanding thus represents the initial technical step in the BIM
modelling process (c.f. Fig. 1). Artificial Intelligence (AI) methods such as machine learning
(ML) can be used for segmentation and classification of 3D point cloud data showing various
characteristics and dealing with different conditions usually. Published research [1,4-5] confirms
the successful use of automated approaches for highly simplified building representations, but
less so for the representation of complex reality.

This paper presents the development of an intelligent 3D data acquisition and processing method
using LiDAR-based consumer hardware, designed for Apple’s Pro Series such as the iPhone 12
Pro and the iPad Pro. The prototyped 3D data application called “Semantic Data Capture”
provides a detailed and semantically structured point cloud using AI based on high-resolution
depth data acquired by Apple's vision technology without prior calibration and less technical
knowledge. This is done by capturing a depth map with the mobile device's built-in sensors. In
combination with MLCore, extended by a third party ML model, captured geometries can be
classified simultaneously into pre-defined building component categories. The prototype also
uses Apple's augmented reality framework (ARKit), which allows users to visualise the results
of the captured and classified data in the overlaid AR-image of the integrated RGB-camera
synchronously. An application prototype has been developed that is usable also for non-experts,
able (a) to generate detailed geometric representations of interior scenes, (b) to combine them
with semantic attributes in real time and (c) to deliver a structured 3D point cloud for the further
Scan-to-BIM process. As an application example, an interior analysis in the care sector was
chosen here, which, for example, checks the suitability of living sites for certain diseases or care
situations. A key feature of this novel application in academia is the simultaneous geometric
capture and AI-based 3D data classification through a low-cost optical technology with direct
visualisation for non-expert users, which has the potential to establish a new state-of-the-art
Scan-to-BIM method.

2 Requirements for Scan-to-BIM and why it lacks automation

Referred as Scan-to-BIM, the automated reconstruction of existing buildings for BIM modelling
is based on 3D point clouds, acquired by consolidated techniques such as laser scanning or SfM.
Both techniques allow a rapid and up-to-date acquisition of as-built components with high spatial
resolution but produce a huge amount of data as a consequence, that needs to be processed in a
time-consuming and almost entirely manual process chain as presented in Fig. 1. The BIM model
generation from acquired point cloud data can be roughly organised into the four main categories
data preprocessing, segmentation, classification and BIM modelling.
Representing indoor scenes full covered by point clouds requires a variety of scan stations and
viewpoints that need to be registered immediately after acquisition. The scope of the

159

preprocessed step is to remove outliers, smooth noise effects and for example downsampling or
transforming the point cloud data into a usable format for subsequent processes [6]. Following
that, the segmentation serves as the first technical step to transform the unstructured point cloud
into several subsets according to the semantic property of points with respect to the scene
characteristic. In line with the subsequent demand, the subsets can address rooms, unique
constituent elements or specific regions of interest such as interiors or furnishing elements. Aside
the segmentation, classification becomes relevant for mapping the segmented but disordered
point cloud data by feature extraction and component identification into regular forms that are
capable for the final BIM modelling.

Fig. 1. Scan-to-BIM stages according to [6]. The presented approach summarises the first three categories
in order to achieve automation and simplification. Consequently, it reduces the manifold

process chain for as-built BIM reconstruction.

Despite the increasing popularity of BIM for years and a quantity of technical solutions for
automated Scan-to-BIM, the overall process remains costly and manually. Recent research
efforts have been made in the development of automated point cloud segmentation and
classification methods, mostly using ML approaches based on artificial neural networks and deep
learning [7-12]. However, point cloud processing is still in its infancy because of several
challenges described below.

As a consequence of evolving 3D data acquisition technologies, point clouds represent the state-
of-the-art in surface reconstruction for engineering and 3D modeling tasks in the last decades
[13]. Given a number of discrete points that sample a surface, point clouds are used prevalently
but their processing still faces many challenges due to data imperfections and a variety of special
data structure characteristics. The most challenging properties dealing with point clouds are the
arbitrary sampling density that results in high redundancy on the one hand but still missing,
sparse or obsolete data on the other hand due to occlusions, clutter and noise [1,4-5]. Apart from
that, 3D point clouds have no inherent order such as pixel neighbours. That is why permutation
invariance is another main property to take care of. Furthermore, point clouds are often dense
with millions of single points that will provoke big data and large computational times raising
cubicly on the number of point instances. All these properties affect the automatic processing of
point clouds. Nevertheless, many efforts have been made to improve the quality of automated
point cloud processing and to detach manual work. Even if the methods differ in approaches
according to [14,15], they all used to apply after acquisition in postprocessing. Considering the
large amount of data, postprocessing methods require the point cloud to be patched or
significantly downsampled resulting in a loss of information and additional cost. While
performing segmentation tasks on 2D image data using DL techniques represents state-of-the-
art, a transfer to 3D point cloud data lacks due to above-mentioned reasons. Therefore, this paper
proposes a new approach for point cloud segmentation in real-time during the acquisition process
using deep learning techniques for both data paradigms, 3D mesh classification and reprojected
2D object classification result by a pre-trained model. Further details about our approach that is
also using Augmented Reality (AR) for result visualisation are given in the following chapter.

160

3 Mobile AI-based Augmented Reality Approach
Mobile devices, such as tablets and especially smartphones with integrated LiDAR sensors, are
in principle well suited for the 3D acquisition of buildings and building components, as they are
widely used as personal devices and thus the users are usually familiar with their functionality
and usability. Compared to professional acquisition hardware, they are also comparatively cheap
to purchase and operate with and can be used also by non-experts. Just a few apps like1,2,3,4 on
the consumer market enable 3D scanning of indoor spaces. However, these apps are not able to
carry out the necessary process steps such as segmentation and classification after the pure
geometric acquisition. In order to avoid processing steps with a separate software after or
detached from the capture, the main scope of the concept presented here was to integrate this
directly into the mobile application, hereinafter app. The “Semantic Data Capture” app
introduced here integrates the functionalities pointed out in Tab. 1.

Tab. 1. Functionality of the presented approach based on a mobile application.

Capturing the 3D geometries of inner building structures and interiors.
Segmentation, classification and recognition of components and furnishings.
Immediate visualisation of the capture and recognition with corresponding usability.
Saving of the results.
Exporting the results in relevant and open 3D formats.

3.1 Geometry Capturing

On a current mobile device from Apple, geometry capturing and also parts of object recognition
are performed with the ARKit framework [16] using the built-in LiDAR sensor. In an AR session,
ARKit stores all information that belongs to the captured environment. The core functionalities
are tracking, i.e. the ability to follow objects relative to the position of the device, and scene
understanding, i.e. the ability to collect information about the detected objects. In addition,
ARKit offers simple integration into existing visualisation libraries (e.g. SceneKit and SpriteKit)
as well as into individual visualisation solutions with Metal, Apple's computer graphics API.
ARKit uses the built-in sensors of the mobile device such as the namely HD camera, 6D sensor
for rotation, position and accelerometer as the basis for so-called Visual Inertial Odometry
(VIO), for e.g. the determination of position and orientation supported by the RGB camera feed.
The captured optical data is superimposed with the other device sensors (e.g. gyroscope and
accelerometer) and then position and movement of the device in 3D space are calculated.
A method called raycasting is used to capture the spatial geometry, which allows 3D scenes to
be displayed quickly. This is done by using a virtual ray that is projected from a point on the
screen into the real world and allows the calculation of the intersection point with real objects
(c.f. Fig. 2b). During the ongoing capture, ARKit then creates a virtual world of the captured
geometries. To ensure that the computer-generated elements remain in their real positions, so-
called virtual anchors are generated. The anchors used in the app presented here contain 3D
geometry data that describe the objects from the environment in the form of nodes, polygons and

1 3d Scanner App: https://apps.apple.com/de/app/3d-scanner-app/id1419913995
2 Canvas: Pocket 3D Room Scanner: https://apps.apple.com/us/app/canvas-pocket-3d-room-scanner/id1514382369
3 Trnio 3D Scanner: https://apps.apple.com/de/app/trnio-3d-scanner/id683053382
4 Capture: 3D Scan Anything: https://apps.apple.com/de/app/capture-3d-scan-anything/id1444183458

161

normals, which in turn form a polygonal mesh. In addition, semantic information can be
predicted and assigned to each polygon from the mesh. Eight classes are currently supported
with ARMeshClassification [17], namely ceiling, door, floor, seat, table, wall, window and none,
when ARKit cannot predict the class of the polygon. Since these eight classes are not sufficient
to recognise interiors with various other components and furnishings, an AI-based extension has
been developed.

3.2 AI-based Mesh Classification and Object Detection

In order to be able to recognise objects in the virtual representation of a captured interior that are
not part of the ARMeshClassification classes, i.e. they have been assigned to the class none, an
AI-based extension was designed and prototyped. Various libraries or models are available here
that can detect objects from (moving) images in real time. The YOLO (You Only Look Once)
model was chosen in this work [18]. The approach of YOLO, in contrast to many other systems
that work based on Convolutional Neutral Networks (CNN), is to perform object detection in a
single pass – hence “you only look once”. To make this possible, the CNN YOLO was trained
with data from Microsoft's Common Objects in Context (COCO) database [19]. This trained
network can now be applied to images or videos to perform multiple object detection in a fast
manner. The model recognises features across the entire image and creates individual bounding
boxes that assign a class to recognised objects according to the highest probability. Images are
divided into a symmetric grid, where frames are suggested from each cell. Class probabilities are
also calculated per cell, corresponding to the number of known classes in the training dataset.
The class probabilities depend on the probability that an object is present in the cell.
The captured images are first preprocessed with Apple's vision framework. Afterwards a
collection of the objects found is returned in the form of observations or an empty array if no
objects were found by ARMeshClassification. An observation contains the class of the object
and the normalised coordinates of the origin as well as the width and length of a frame within
which the object should be located. This data is then passed to CoreML, Apple's ML framework,
where it is classified in the app using YOLO, which is one of several models that can be
integrated into CoreML. As an example for indoor scenes, five new classes were implemented,
namely tvmonitor, laptop, bed, sink and toilet. The integration of YOLO was a particular
challenge in terms of software technology, as mesh classification with ARKit and object
detection with YOLO could not be processed in the same procedure. Instead, the processes were
split, first the classification with ARKit and then detection with YOLO. The processes could also
not be parallelised in the prototype because of the permanently regeneration of the mesh
geometry by ARKit. That is why YOLO processes static areas after they are already classified
as none.

3.3 AR-based Interactive Visualisation

To visualise the detection process on the mobile device, the classified mesh is overlayed with
the real camera image, i.e. AR is created. In case of successful object detection with both the
eight ARKit standard classes and the extended five YOLO classes, the affected area of the mesh
is coloured associated to the object class. The SceneKit framework [20] (among others) was used
for visualisation on the mobile device screen in real-time. SceneKit displays a 3D scene, such as
the virtual image created while capturing the interior spaces, on the screen. It calculates which
elements of the generated mesh are visible from the current camera angle and displays them on
the screen. Since the colouring of the mesh runs parallel to the classification, the mesh generated

162

by ARKit is coloured first and then, after the scan has been completed, all grey (i.e. ARKit class
none) mesh parts are processed with YOLO and coloured in terms of highest class probability
accordingly to the object detected. For this purpose, the objects detected in the camera frames
by YOLO,as explained in the previous section are then spatially assigned and reprojected from
the 2D screen to all anchors in the 3D mesh by raycasting operations. The result can be seen in
the following Fig. 2, where an object of the class laptop is classified first as none (c.f. Fig. 2a).
After that, the region is detected by YOLO, thus framed in yellow and reprojected to the
generated anchors of the 3D mesh by ARKit (c.f. Fig. 2b).

(a) (b)
Fig. 2. Acquisition process of a specific object that is classified first as none with ARMeshClassification

(a) and later finalised with YOLO as laptop (b). The yellow bounding box represents the region of
interest for YOLO that is projected to the captured mesh surface by ray traces. The video sequence5

according to that figure was captured by an Apple iPad Pro in debug mode with 30 fps.

4 Result and Outlook
This paper presented the mobile app “Semantic Data Capture” based on iOS for (a) capturing
3D building sites with consumer products and (b) recognising interior structures and furnishings
using efficiently augmented reality (AR) and machine learning (ML) methods. This serves to
support the AEC industry in general for planning purposes and facility management for e.g.
automated space analysis with respect to BIM. It was shown how user-centred working can also
be made possible for non-expert users with the help of an integrated LiDAR sensor and
augmented reality. For this, consumer hardware from Apple was used, which is currently the
only manufacturer offering the functionality of active low-cost and real-time 3D scanning. With
a combination of both, in-built sensors and close software libraries using AR and ML techniques,
a new method for Scan-to-BIM was suggested and successfully prototyped. Here, Apple's own

5 Video sequence of “Semantic Data Capture”: https://video.hs-mainz.de/Panopto/Pages/Viewer.aspx?id=6838959a-
83af-4e36-918d-ad970123048d

163

recognition methodology for furnishings was extended with classes from the freely available
YOLO model. The results after the data export are shown in Fig. 3.

(a) (b)
Fig. 3. Results of the app “Semantic Data Capture” (b) illustrated by CloudCompare in comparison to an

RGB coloured point cloud captured by 3D Scanner App1 (a). The first six classes are from the ARKit
mesh classification while the class laptop originated from the extended YOLO model.

Despite the successful implementation of the prototype, there are several challenges that need to
be considered in future. First, the simultaneous mesh classification by ARKit and object
detection by YOLO could not yet be implemented. This is one of the improvement possibilities
envisaged for the immediate future. Improving this aspect, the dual data acquisition could be
avoided and working in real-time will be possible. Further additions can be made in the area of
object detection with ML models. For example, YOLO or other models can be used to add further
classes for additional components or furnishings at free will. As another main improvement, the
acquired data could be used in combination with existing models to generate more precise ones
individually prepared for the situation through training. One of the core disadvantages of the
solution presented here is the utilisation of libraries provided by Apple that cannot be viewed
and changed by their black box character. Considering the geometrical accuracy of the captured
and classified objects, LiDAR could not keep up terrestrial laserscanning or SfM techniques in
terms of reliability and precision. As a consequence, LiDAR results serves currently just for
coarse BIM modelling.
Nevertheless, in future, the ability of LiDAR will increase with respect to acquisition and
registration accuracy. By means of that, LiDAR will be among the most important acquisition
methods for 3D point cloud capturing even for fine geometry and BIM valid model fitting. In
collaboration with powerful and smart mobile devices, the possibilities to process 3D data are so
far not limited as the prototype shows. “Semantic Data Capture” provides a new paradigm of
building indoor acquisition and processing simultaneously in order to achieve the final scope of
Scan-to-BIM: the automated 3D modelling of buildings with appropriate accuracy by using
mobile devices.

5 Acknowledgements
The authors would like to thank D. Iordanov for the contribution to the development of the
application within his studies at Mainz University of Applied Sciences.

164

References

1. López Iglesias, J.; Díaz Severiano, J. A.; Lizcano Amorocho, P.E.; Del Manchado Val,
C.; Gómez-Jáuregui, V.; Fernández García, O. et al. (2020): Revision of Automation
Methods for Scan to BIM. In: Advances in Design Engineering. Cham: Springer
International Publishing (Lecture Notes in Mechanical Engineering), pp. 482–490.

2. Plaß, B.; Emrich, J.; Goetz, S.; Kernstock, D.; Klauer, T. (2021): Evaluation of point
cloud data acquisition techniques for Scan-to-BIM workflows in Healthcare. In:
Proceedings of the FIG e-Working Week 2021. Amsterdam.

3. Plaß, B.; Prudhomme, C.; Ponciano, J.J. (2021): BIM ON ARTIFICIAL
INTELLIGENCE FOR DECISION SUPPORT IN E-HEALTH. In: Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, pp. 207–214. DOI:
10.5194/isprs-archives-XLIII-B2-2021-207-2021.

4. Tang, P.; Huber, D.; Akinci, B.; Lipman, R.; Lytle, A. (2010): Automatic reconstruction
of as-built building information models from laser-scanned point clouds: A review of
related techniques. In: Automation in Construction 19 (7), pp. 829–843. DOI:
10.1016/j.autcon.2010.06.007.

5. Volk, R.; Stengel, J.; Schultmann, F. (2014): Building Information Modeling (BIM) for
existing buildings – Literature review and future needs. In: Automation in Construction
38, p. 109–127. DOI: 10.1016/j.autcon.2013.10.023.

6. Loges, S.; Blankenbach, J. (2017): As-built Dokumentation für BIM - Ableitung von
bauteilorientierten Modellen aus Punktwolken. Photogrammetrie - Laserscanning -
optische 3D-Messtechnik. In: Beiträge der Oldenburger 3D-Tage, pp. 290–298.

7. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. (2017): PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 77-85.

8. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. (2017): PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. In: Advances in Neural Information
Processing Systems (NeurIPS), pp. 5105-5114.

9. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. (2018): PointCNN: Convolution on
x-transformed points. In: Advances in neural information processing systems, pp. 820–
830.

10. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A.
(2020): RandLA-Net: Efficient semantic segmentation of large-scale point clouds. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11108–11117.

11. Huang, Q.; Wang, W.; Neumann, U. (2018): Recurrent slice networks for 3D
segmentation of point clouds. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2626–2635.

12. Phan, A.V.; Le Nguyen, M.; Nguyen, Y.L.H.; Bui, L.T. (2018): DGCNN: A
convolutional neural network over largescale labeled graphs. In: Neural Networks
(108), pp. 533–543.

13. Berger, M.; Tagliasacchi, A.; Seversky, L.; Alliez, P.; Guennebaud, G., Levine, J.;
Sharf, A.; Silva, C. (2016): A Survey of Surface Reconstruction from Point Clouds. In:
Computer Graphics 36 (1), pp. 301-329. DOI: 10.1111/cgf.12802.

14. Xiaoyi, R.; Baolong, L. (2020): Review of 3D Point Cloud Data Segmentation Methods.
In: International Journal of Advanced Network, Monitoring and Controls 5 (1), pp. 66–
71. DOI: 10.21307/ijanmc-2020-010.

165

15. Ponciano, J.J.; Roetner, M.; Reiterer, A.; Boochs, F. (2021): Object Semantic
Segmentation in Point Clouds – Comparison of a Deep Learning and a Knowledge-
Based Method. In: ISPRS Int. J. Geo-Inf. 10 (4). DOI: 10.3390/ijgi10040256.

16. Apple ARKit Documentation (2021): https://developer.apple.com/documentation/arkit,
accessed on Sept., 1., 2021.

17. Apple ARMeshClassification Documentation (2021): https://developer.apple.com/
documentation/arkit/armeshclassification, accessed on Sept., 1., 2021.

18. Redmon, J; Divvala, S.; Girshick, R.; Farhadi, A. (2016): You Only Look Once:
Unified, Real-Time Object Detection. In: Proceedings Conference on Computer Vision
and Pattern Recognition, arXiv:1506.02640.

19. Lin, T.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick,
C. L. (2014): Microsoft COCO: Common Objects in Context. In: Computer Vision --
ECCV 2014, European Conference on Computer Vision, Springer International
Publishing 2014, pp.740-755.

20. Apple SceneKit Documentation (2021): https://developer.apple.com/documentation/
scenekit/ , accessed on Sept., 1., 2021.

166

A Reference Model for Dialog Management in
Conversational Agents in High-Engagement Use Cases

Nima Samsami, Stephan Kurpjuweit

Hochschule Worms – University of Applied Sciences
samsami@hs-worms.de

kurpjuweit@hs-worms.de

Abstract. The objective of our research is to systematically derive a refined
reference model for the dialog management component of a conversational agent.
Firstly, we characterize high-engagement conversational agents and derive solution
strategies to address this class of agents. Secondly, we propose a set of conceptual
components that refines the dialog management component and addresses the so-
lution strategies. Thirdly, we survey implementation approaches for the individual
components of the reference model.

Keywords: Conversational Agent; Dialog Management; Natural Language Un-
derstanding; Natural Language Generation

1 Introduction

With the general availability of smart speakers since 2017, conversational agents have
gained increased popularity among consumers [1]. Based on our experience, the use cases
of conversational agents in the consumer domain can be characterized as either “task-
oriented use cases” or ”high-engagement use cases”.
The objective of our research is to systematically derive a reference model for the di-
alog management component of a conversational agent from the requirements of high-
engagement use cases. Our research is based on the following approaches: We characterize
high-engagement conversational agents (section 2) and derive solution strategies to ad-
dress this class of agents (section 3). Then we propose a set of conceptual components
that refines the dialog management component and addresses the solution strategies and
survey implementation approaches for the individual components of the reference model
(section 5).

2 Quality characteristics of high-engagement conversational
agents

Based on our experience, the use cases of conversational agents in the consumer domain
can be characterized as either “task-oriented” or ”high-engagement”: For task-oriented
use cases the objective is to answer the users‘ information needs or to complete a task
in as few conversational turns as possible. Example domains include banking, customer
service or directory services. As the user wants to ’get a job done’, satisfying the following
two quality characteristics is essential:

(1) Relevance and (2) Focus: By nature, the bandwidth of conversational agents (i.e.
the amount of information that can be communicated to the user per time) is small
compared to other - esp. screen-based - digital channels like web or mobile apps. Thus,

167

conversational agents must deliver relevant and focused responses and reduce the number
of conversational turns users have to take (‘get to the point‘).

For high-engagement use cases the objective is to keep the user engaged in the con-
versation for as long as possible. Example domains include media, news, entertainment
or conversational commerce. In the context of our research, the level of user engagement
is characterized by (a) how often the user starts a session with the agent per time [2],
(b) how much time the user spends per session [3], and (c) for how long the user is active
overall (customer lifetime).

While focus and relevance is central to all conversational agents, it may not be enough
to ensure a high level of user engagement. Depending on the concrete nature of the agent,
other quality characteristics should be taken into consideration, including:
(3) Variety: Agent should provide a natural, varied language and avoid repetitive phrases
(’don’t bore me).
(4) Topicality: Agents should provide pieces of information that are current and new
to a user, so that users frequently feel the need to engage with the agent (’satisfy my
curiosity’).
(5) Discoverability: Agents should suggest follow-up actions that may be of interest to
the user (’show me what else you can do for me’).
(6) Adaptability: Agents should be personalized and adapt to the user’s needs over time
(’become my companion’).

3 Solution strategies for high-engagement conversational agents

To address the quality characteristics of the high-engagement conversational agents out-
lined above, concrete solution strategies have to be implemented. The following list
describes generic solution strategies which we expect to be beneficial for most high-
engagement conversational agents:
(1) Text variation generation: To avoid repetitive phrases, text variations should be gen-
erated (ideally automatically).
(2) Personalized content: Personalized and current content should be selected and deliv-
ered to the user.
(3) Education: Short messages that explain additional features and follow-up actions
should be delivered to the user.
(4) Graceful error handling / disambiguation: Instead of entering error flows, the agent
should try to understand the user’s intent, e.g. via disambiguation.
(5) Context-awareness: The agent should adapt to the usage context. For example, the
agent may decide to deliver a longer response of the user is driving in a car.
(6) Modular responses: To deliver varied responses, personalized content, educational
messages, etc. the response should be composed of text fragments in a flexible way.

4 Conversational agent reference architecture

Figure 1 shows a well-adapted reference architecture for conversational agents, which
decomposes the dialog management component into four sub-components. This architec-
ture serves as a basis for the refined reference model in section 5:
(1) Natural Language Understanding (NLU): Identifies and parses a user’s text input to
obtain semantic tags that can be understood by computers, such as entites and intents
[4].
(2) Conversational State (CS): Maintains the current conversation state based on the

168

conversation history. The conversation state is the cumulative meaning of the conversa-
tion history, which is generally expressed as slot-value pairs.
(3) Conversational Flow (CF): Outputs the next system action based on the current
conversation state.
(4) Natural Language Generation (NLG): Converts system actions to natural language
output [5].

We select this modular architecture over an end-to-end architecture (see [6]). End-
to-end architectures are based on successes of deep learning approaches in recent years.
The system consists of a large neural network that handles all tasks such as NLU, NLG,
CF, etc. This model is still being explored and is as yet rarely applied in the industry [6].
Although the trend is toward end-to-end systems, these approaches are still limited and
cannot clearly outperform the traditional methods [7]. In practice, it may not be feasible
to implement a specific agent solely based on an end-to-end architecture due to a lack of
training data.

Fig. 1. Modular structure of dialog system

5 Reference model for high-engagement agents

Based on the strategies outlined in section 3, we derive a reference model for high-
engagement agents. The reference model is a based of the reference architecture described
in section 4. The reference model consists of a set of conceptual software components (see
figure 2). Some components are optional and not required for all agents.

For the decomposition of the dialog management component we apply the following
criteria: (1) Each component has a manageable set of responsibilities. (2) The implemen-
tation approaches for the components can be chosen - to a large degree - independently
from each other. (3) The model can be implemented on the basis of existing conversational
AI platforms and frameworks like RASA [8] or IBM Watson [9]. Available implementa-
tion approaches for the components typically range from traditional (e.g., rule-based)
approaches to more sophisticated machine learning (ML)-based approaches. In practice,
it may not be feasible to implement a specific agent solely based on ML approaches due
to a lack of training data or development budget. Thus, in our opinion the latter criterion
is important to allow for a selective component-by-component migration of a traditional
implementation towards a ML-based implementation.

For each component we describe its responsibilities and survey possible implementa-
tion approaches. Figure 2 lists the conceptual software components. Flows between the
components are omitted for clarity.

169

5.1 Component: Conversational Memory

Responsibilities: One limitation of conversational agents is that they cannot go back
and forth in a conversation. This makes natural and dynamic communication between
humans and computers difficult. A conversation can be carried across multiple topics. To
do this, the agent must store what it has already talked about.
(1) Usage History: The entire usage history of a user stored for analytics purposes.
(2) Session State: The usage history of the current conversational session is stored with
the goal to determine the current conversational context, i.e. which pieces of information
a user request may refer to.
Approaches: The literature contains descriptions of many models of conversational
memory. These models mainly seek to reflect how the human brain implements memory.
Elvir et al. also describe an Episodic Memory Architecture to address this problem.
[10] Vinkler et al. present an architecture consisting of two memory types. A short-term
memory to understand the context and a long-term memory to allow the conversational
agent to refer to previous information in the conversation [11].

5.2 Component: Personalization & Context-Awareness

Responsibilities: The personalization and context-awareness component accesses the
usage history and calculates context information that may be required to interpret a new
user request and determine the response. There are multiple flavours of conversational
context which can be addressed by individual sub components:
(1) Personal Preferences: The personal preferences capture which intents and entities the
user is especially interested in. These may be set explicitly or derived from the usage
history. Personal preferences can be used to prioritize the text fragments selected for a
user.
(2) Usage Context: The usage context captures aspects like the time of day, the usage
environment (at home, in car, etc.), the device type (smartphone, smart speaker, etc.),
and the interface type (chat, voice, multi model, etc.), which all may impact the response
delivered to the user.
(3) Emotion Detection: The human being is an emotional being. Each person condi-
tioned by his emotions and type expresses himself differently. To carry out a pleasant
communication, it is therefore important to address the emotional intelligence aspect of
communication.
Approaches: Hao et al. present a method for using content-consistent conversation to
also engage in emotion-consistent communication. Emotional Chatting Machine (ECM)
addresses this factor with three new mechanisms that respectively (1) model high-level
abstraction of emotion expressions by embedding emotion categories, (2) capture the
change of implicit internal emotion states, and (3) use explicit emotion expressions with
an external emotion vocabulary. [12]

5.3 Component: Conversational Flow

Responsibilities: Check if all pieces of information to answer the user request are avail-
able (intent, slot values, context information) with sufficiently high confident values and
decide whether to (1) answer the user request (standard path), (2) ask a disambiguation
/ clarification question (esp. if indicated by the entity disambiguation detection com-
ponent), (3) enter an error handling flow or (4) hand over the conversational flow to a
human (optional). Especially check if the input makes sense in the context of the current

170

conversational state (e.g., if the agent is waiting for a response to a specific question) (5)
Conversational State: The conversational state captures ”what the conversation has been
about” so far, so that the user can refer to entities mentioned in previous conversational
turns and ask follow-up questions. The conversational state also determines if a specific
type of input is expected in the upcoming conversational turn.

(1) Intent Ambiguity: aims to clarify the semantics of an Intent in context by finding the
most appropriate meaning from a predefined Intent.

(2) Entity Ambiguity: Beyond word sense disambiguation, a word can mean something
different in different contexts. E.g. Mars, Galaxy and Bounty are all delicious. It is
difficult for an algorithm to figure out if it is talking about an astronomical structure
or chocolate tokens.

(3) Conversational State: Maintains the current Conversational state based on the con-
versation history. The conversation state is the cumulative meaning of the conversa-
tion history, which is generally expressed as slot-value pairs.

Approaches: Decisions can be made rule-based. Decision criteria are the request data,
the conversational state, and the confidence levels. The rules can be specified as part of
the language model. Jan-Gerrit Harms et al. define Dialog Management as a component of
Conversational Agents that processes the dialog context and determines the agent’s next
action [13]. Yinpei Dai et al. kategorisieren Dialog Management in three Generations. a)
The first-generation dialog systems were mainly rule-based. b) Second-generation dialog
systems driven by statistical data (hereinafter referred to as the statistical dialog systems)
emerged with the rise of big data technology. At that time, reinforcement learning was
widely studied and applied in dialog systems. A representative example is the statistical
dialog system based on the Partially Observable Markov Decision Process (POMDP)
proposed by Professor Steve Young of Cambridge University in 2005 c) third-generation
dialog systems built around deep learning have emerged. These systems still adopt the
framework of the statistical dialog systems, but apply a neural network model in each
module [6]. In general, third-generation dialog systems are better than second-generation
dialog systems, but a large amount of tagged data is required for effective training.
Therefore, improving the cross-domain migration and scalability of the model has become
an important area of research [6]. To solve the problems of domain dependency in end-
to-end systems, Lu Chen et al. propose to use a multi-agent system, where the tasks are
passed from a domain specialized agent to an agent trained on another domain [14] .
Jan-Gerrit Harms et al. show a taxonomy of the approaches for managing dialogs and a
classification of a selection of tools. [13]
Ambiguities can be determined by analyzing the entity and synonym lists of the language
model. The problem can also be addressed using entity linking (EL). EL aims to resolve
such ambiguities by establishing an automatic reference between an ambiguous entity
mention/span in a context and an entity (persons, locations, organization, etc.) in a
knowledge base. [15] Neural networks are used for this purpose as end2end systems
[16] or in conjunction with ontologies [17] [18]. Sevgili et al. use graph embeddings as
an efficient method [15]. Maŕıa G Buey et al. present a method that work even if the
ontology is not known at training time [19].

5.4 Component: Response Generation

Responsibilities: Decide which types of text fragments to include in the response and in
which order, request the individual text fragments from the text generation components,
build the response to the user by concatenating the text fragments.

171

(1) Response Assembly: Decide which types of text fragments to include in the response
and in which order, request the individual text fragments from the text generation
components, build the response to the user by concatenating the text fragments

(2) Text Fragment Generation: Generate the natural language response of a specific type.
The response types are usually specific for the intent at hand. However, there are
response types that can be used across intents. Examples include: Disambiguation /
clarification questions, error messages and educational messages (which suggest ad-
ditional features to the user).

(3) Text Variation Generation: This module ensures that the texts vary based on the
situation and the course of the conversation to enable a dynamic conversation. It
avoids that always the same answers follows to the same questions.

(4) Education: Helps the user to learn how to use the agent from agent itself and improve
his experience with the agent.

(5) Personal Recommendations: Through entertainment history and usage of the agent,
the agent learns more about the user and can include this information in the answer.
E.g. in the form of interesting facts.

Approaches: Decision which types of text fragments to include can be made rule-based.
Decision criteria are the intent and the context information (esp. the conversational
state). The component may query the text generation components upfront to figure out,
if a new text fragment of a specific type is available.
Text generation can be done rule-based by filling in data from a structured data source
into text templates for individual sentences and concatenating the sentences. Traditional
language generation methods are based on pipelines, such as the well-known standard
Architecture six Component Pipeline, which was originally proposed by Reiter [20] and
has been further developed by others. This includes the following stand-alone compo-
nents: (1) Content Determination [21] (2) Document Structuring [22] (3) Lexicalization
[23] (4) Referring expression generation [24] (5) Sentence aggregation [25] (6) Linguis-
tic realization [20] for this module exists different flavors: Hand-coded grammar-based
systems, Templates and Statistical Approaches [5] New approaches are based on deep
learning. Santhanam et al. divide these into four categories [5] (1) Language Models [26]
(2) Encoder-Decoder Archiecture [27] (3) Memory Networks [28] (4) Transformer Models
[29]. Lowe et al. present a system for high engaging dialog generation [30].

6 Conclusion

In this contribution we propose a reference model for the dialog management component
of a conversational agents which addresses high-engagement use cases.
The reference model may serve as a basis for multiple tasks, especially: system design
(as a starting point to design both individual agents and agent creation platforms),
system evaluation (as a structure to evaluate and compare agent creation platforms),
and research (as a framework to structure future research projects and to put individual
research contributions in context).

172

Fig. 2. Dialog Management Refernce Model (Conceptual Sub-components)

References

1. Adamopoulou, E., Moussiades, L.: Artificial Intelligence Applications and Innovations, 16th
IFIPWG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, June 5–7, 2020,
Proceedings, Part II. IFIP Advances in Information and Communication Technology (2020)
373–383

2. Moore, R.J., Arar, R.: Conversational Ux Design: A Practitioner’s Guide to the Natural
Conversation Framework. Illustrated edition edn. ACM Books (5 2019)

3. Mandryk, R., Hancock, M., Perry, M., Cox, A., Porcheron, M., Fischer, J.E., Reeves, S.,
Sharples, S.: Voice Interfaces in Everyday Life. Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (2018) 1–12

4. Peng, B., Li, X., Gao, J., Liu, J., Wong, K.F., Su, S.Y.: Deep Dyna-Q: Integrating Planning
for Task-Completion Dialogue Policy Learning. arXiv (2018)

5. Santhanam, S., Shaikh, S.: A Survey of Natural Language Generation Techniques with a
Focus on Dialogue Systems - Past, Present and Future Directions. arXiv (2019)

6. Dai, Y., Yu, H., Jiang, Y., Tang, C., Li, Y., Sun, J.: A Survey on Dialog Management:
Recent Advances and Challenges. arXiv (2020)

7. Chernyavskiy, A., Ilvovsky, D., Nakov, P.: Transformers: ”The End of History” for NLP?
arXiv (2021)

8. Bhattacharyya, S., Ray, S., Dey, M.: Proceedings of the Global AI Congress 2019. Advances
in Intelligent Systems and Computing (2020) 303–318 URAI21: Context-Aware Conversa-
tional Agent for a Closed Domain Task.

9. IBM: Conversational chatbot reference architecture

10. Elvir, M., Gonzalez, A.J., Walls, C., Wilder, B.: Remembering a Conversation – A Conver-
sational Memory Architecture for Embodied Conversational Agents. Journal of Intelligent
Systems 26(1) (2017) 1–21

11. Vinkler, M.L., Yu, P.: Conversational Chatbots with Memory-based Question and Answer
Generation. PhD thesis (11 2020)

12. Zhou, H., Huang, M., Zhang, T., Zhu, X., Liu, B.: Emotional Chatting Machine: Emotional
Conversation Generation with Internal and External Memory. arXiv (2017)

173

13. Harms, J.G., Kucherbaev, P., Bozzon, A., Houben, G.J.: Approaches for Dialog Management
in Conversational Agents. IEEE Internet Computing 23(2) (2018) 13–22

14. Chen, L., Chen, Z., Tan, B., Long, S., Gasic, M., Yu, K.: AgentGraph: Towards Universal
Dialogue Management with Structured Deep Reinforcement Learning. arXiv (2019)

15. Sevgili, O., Panchenko, A., Biemann, C.: Improving Neural Entity Disambiguation with
Graph Embeddings. Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics: Student Research Workshop (2019) 315–322

16. Kolitsas, N., Ganea, O.E., Hofmann, T.: End-to-End Neural Entity Linking. Proceedings
of the 22nd Conference on Computational Natural Language Learning (2018) 519–529

17. Gracia, J., Mena, E.: Multiontology semantic disambiguation in unstructured web contexts.
In: Proceedings of the 2009 K-CAP Workshop on Collective Knowledge Capturing and
Representation. 1–9

18. Distante, D., Faralli, S., Rittinghaus, S., Rosso, P., Samsami, N.: DomainSenticNet: An
Ontology and a Methodology Enabling Domain-Aware Sentic Computing. Cognitive Com-
putation (2021) 1—16

19. Buey, M.G., Bobed, C., Gracia, J., Mena, E.: Semantic Relatedness for Keyword Disam-
biguation: Exploiting Different Embeddings. arXiv (2020)

20. Reiter, E., Dale, R.: Building Natural Language Generation Systems. (2000) 23–40
21. Konstas, I., Lapata, M.: Unsupervised Concept-to-text Generation with Hypergraphs. In:

Proceedings of the 2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Montréal, Canada, Association
for Computational Linguistics (6 2012) 752–761

22. Dimitromanolaki, A., Androutsopoulos, I.: Learning to Order Facts for Discourse Planning
in Natural Language Generation. arXiv (2003)

23. Gatt, A., Krahmer, E.: Survey of the State of the Art in Natural Language Generation:
Core tasks, applications and evaluation. Journal of Artificial Intelligence Research 61 (2018)
65–170

24. Engonopoulos, N., Koller, A.: Generating effective referring expressions using charts. Pro-
ceedings of the INLG and SIGDIAL 2014 Joint Session 162–171

25. Barzilay, R., Lapata, M.: Aggregation via set partitioning for natural language generation.
Proceedings of the main conference on Human Language Technology Conference of the
North American Chapter of the Association of Computational Linguistics - (2006) 359–366

26. Ghosh, S., Chollet, M., Laksana, E., Morency, L.P., Scherer, S.: Affect-LM: A Neural
Language Model for Customizable Affective Text Generation. Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
(2017) 634–642

27. Ke, P., Guan, J., Huang, M., Zhu, X.: Generating Informative Responses with Controlled
Sentence Function. Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers) (2018) 1499–1508

28. Wang, P., Wu, Q., Shen, C., Dick, A., Hengel, A.v.d.: FVQA: Fact-Based Visual Question
Answering. IEEE Transactions on Pattern Analysis and Machine Intelligence 40(10) (2016)
2413–2427

29. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. arXiv (2018)

30. Lowe, R., Noseworthy, M., Serban, I.V., Angelard-Gontier, N., Bengio, Y., Pineau, J.: To-
wards an Automatic Turing Test: Learning to Evaluate Dialogue Responses. arXiv (2017)

174

Verify Embedded Systems Faster and more Efficiently with
Artificial Intelligence

Alexander Schwarz1, Björn Morgenthaler2, Victor Vaquero Martinez3, Miguel Garrido García4,
Manuel Duque-Antón5

1 comlet Verteilte Systeme GmbH
alexander.schwarz@comlet.de

2 comlet Verteilte Systeme GmbH
bjoern.morgenthaler@comlet.de

3 comlet Verteilte Systeme GmbH
victorvaquero.etereot@gmail.com

4 comlet Verteilte Systeme GmbH
miguel.garrido@comlet.de

5 comlet Verteilte Systeme GmbH
manuel.duque-anton@comlet.de

Abstract. Embedded systems are the basis for many electronic devices. As a combination
of hardware and software designed for specific purposes, Embedded Systems ensure the
functionality of Connected Cars, Autonomous Driving, Smart Farming, Industrial Internet
of Things and Smart Homes. The enormous competitive pressure forces manufacturers to
significantly shorten their time to market and thus reduces the corresponding production
cycles. This challenge is directed to the same extent to quality assurance. Due to the
constantly growing number of (regression) tests, it is no longer practicable to perform all
verifications in all development phases up to the finished product: each quality feature is
planned and configured individually. But this approach is usually carried out manually with
a lot of effort and is rather rarely adapted over time. On the other hand, software changes
very quickly: new features are added, new dependencies arise or are resolved.
Communication between individual components change. The probability that errors are
found by tests (too) late is substantially increased with each change.

This paper presents an approach that successfully mitigates this challenge with the help of
suitable Artificial Intelligence methods. To reduce lead time, a mechanism is developed
that reduces the number of required tests. Based on the data from previous verifications, a
(significantly) smaller subset of tests, which is sufficient to verify the correctness of the
change, is selected. The remaining probability that tests necessary for negative verification
of the software are not considered, is thereby accepted. Initial results, using data from
several open-source projects as well as the use of a prototype machine learning pipeline,
show promising results with respect to their predictive capabilities.

Keywords: Embedded Systems; Automated Testing; Artificial Intelligence; Reduced
Complexity of Testing; Machine Learning; Continuous Testing; Industrial Internet of
Things (IIoT); Agile Software Development

1 Introduction

As a technology partner and solution provider, comlet connects embedded systems of both global
manufacturers (OEMs) and medium-sized companies into an overall system and offers intuitive
usability by Artificial Intelligence (AI) while generating increased value. For example,
predictive maintenance can be offered in the Industrial Internet of Things and new security risks

175

can be detected in digital networking with the help of intelligent anomaly detection. To assure
quality, comlet can also reduce the complexity of necessary tests with the help of AI while
maintaining reliability.

The rise of monolithic databases, agile methodologies doing fast integration and multimillion
source code line projects have created a practical problem in terms of computing power. What
previous methodologies could do with branch manual testing and nightly runs is impossible or
too time consuming to do for Continuous Integration (CI) teams.

2 Problem

Approaches have been established that take the introduced challenge into account: one of which
being Continuous Testing (CT) as the integration of automated tests into a CI pipeline (see
Figure 1), including the requirement of detecting errors as early as possible ("fail fast").

Fig. 1. Test automation as quality gate for a CI pipeline

In a CI pipeline, software is continuously developed in separate branches and eventually merged
with the main development branch (trunk) once it has been completed. To assess the quality level
before the individual branches are merged, various checks are performed at the so-called quality
gates (QG).

Each QG is adequately planned at each integration step and configured with respect to the
trade-off between duration, the risk of not detecting errors and feedback (see Figure 2).

176

Fig. 2. Trade-Off while planning QGs

This process is usually carried out manually and must be adapted according to the changing
requirements during development.

The developer also receives immediate feedback by the QG whether the changes contain
errors and is obliged to eliminate these accordingly before integration.

As every step of development gets moved to the trunk, there is a higher need for quality
control before and after the integration. The problem resides here, as projects with hundreds or
thousands of commits and thousands or more of test suites cannot bear the computing power
needed for running every test on every new code change – even with CT.

3 State of the art

To manage the previously mentioned problems, there have been multiple solutions: Google [1],
for example, uses a simplification by accumulation. First, they use a bigger aggregation of tests
named test targets. Secondly, they batch multiple code changes until they reach a specific
threshold, e.g., 100 commits. At that moment the new code version, with the complete
recollection of code changes, is run as a single unit on every test target (needed) that has not
been run since the latest quality control.

This solution is based on a couple of heuristics and approximations but at its core it runs on
something named change-based testing. The main property of this scheme is to only run the tests
that somehow (the means change between methods) depend on the code changes, and as such
are likely to fail, to reduce the resources needed. For this, useful features like historical failure
data or code dependencies could be used. It can be done by any manual or automatic heuristic,
but any non-automatic means bear a problem of scalability.

As of now there have been quite a few ad-hoc attempts at resolving the change-based testing
task, and specifically, selecting an optimal subset of tests. Other companies commonly do it with
specialized automatic solutions for some business or project - sometimes in conjunction with
manual work [2] [3] [4]. There have also been some attempts at solving this problem [5] [6] by
using simple heuristics and rules like recent failures, similarity between test and code; and
specially code coverage. Some try to develop a set of diversified tests, with coverage measures
or input analysis to cover the whole code change through search methods like greedy or local
beam search [7]. There’s also some more general development in risk prediction through specific
features like historic failure data, similarity measures, code changes [2], etc.

To the author’s knowledge there are only a couple of public papers, from Google [1] and
Facebook [8], trying a similar approach of using machine learning to resolve the problem of
selecting an optimal test subset but, as mentioned before, only for their own companies in an ad-
hoc fashion. Another paper [9] used a reinforcement learning method only with historical failure
input data.

The tool “Sherlock” by OMICRON [10] [11] tries to blend automatic and manual test
selection by means of code-test dependency by dynamic analysis but without taking care of the
remaining information.

To the author’s knowledge up until today there is no homogenized approach that analyzes
the general problem for every possible available input.

177

4 Solution

To solve the above stated problem more universally, the development of a pipeline capable of
predicting a minimal test subset through training on historical test failure data is approached (see
Figure 3).

Main objective then is to create a data model to input this learning algorithm and identify the
minimum features required, the cost-effectiveness of the features, the most suitable algorithms
and finally the actual predictive capability of the learning model.

Fig. 3. Overview of proposed pipeline

The pipeline transfers all available data into a common, unified and abstract data model, the
Unified Data Model (UDM). This data can come from various, very different sources, such as
issue or bug trackers, source control management, documentation, (static) code analysis and
automation servers.
Prior to transferring the data from all possible sources into the UDM, preprocessing and data
preparation is required. The raw data presents itself in very diverse formats, for example all sort
of databases such as SQL or No-SQL or file formats like JSON or CSV. Therefore, those (raw)
data points are converted into a generalized data structure which is easy to work with. While this
structure is created, it is also assured that the different values like dates or time are converted to
common formats as well. Eventually, all data points can be classified into the following five
categories:

Info Point: Abstraction of any documentation about architecture, tasks, bugs, issues,
pull requests

178

Code Block: Abstraction of any possible aggregation of code as it is in the current
moment in time. There are multiple possible types, but some would be modules, files,
classes, functions, etc.
Code Change: A basic data point that records every historic modification to the code
base and serves as a version reference.
Test: One of the basic data points comprised of the most updated information about the
tests that are currently in use.
Execution: Record of every time a Test has been run, keeping historical data about the
successes or failures of every Test and Code Change to which every Execution is related
to.

These five categories define the basis for the Unified Data Model which serves as an interface
between source specific raw data and the unified feature engineering and machine learning
algorithms, resp. models. Thus, it completely separates feature engineering and training of
machine learning models from the specific (raw) data. The UDM itself provides raw and basic
features out of the box that do not require further processing. Of course, a more thorough data
analysis including data preprocessing and complex feature engineering based on the unified data
is also performed to optimize the machine learning results.

Based on the data provided by the UDM, an attempt is now being made to reduce the time
required to test software together with the time a developer waits for feedback whether the
changes are causing test failures. This results in two different goals:

Subset selection: Given a set of Tests and Code Changes, output the subset that finds
all the failures. The preferred method to achieve this is to analyze every test individually
and determine a value between 0 and 1 that reflects the probability of failing. With these
probability values for all tests, it is possible to create an optimal subset.
Test prioritization: Given a set of Tests and Code Changes, output the optimal order of
the set. This optimality can be measured in several different ways, such as mean time
or maximum wait time. The objective is to give feedback to the developer as soon as
possible. It is also possible to use the same setup as in the subset selection algorithm
simply by choosing those tests with a greater risk of failure first.

The specific approach as an initial step towards the general solution is to identify a minimal
subset of tests that are very likely to fail, i.e. to fulfill the subset selection goal. No further
prioritization of these tests will be done for the time being. For this purpose, data is collected
from two large open-source projects, Pytorch [12] and Chromium [13]. This data is then merged
into the UDM.

Since the UDM can manage different projects, it also ensures that non-existing features and
missing values in the raw data are filled with meaningful values. This is necessary so that all
further steps such as feature engineering or machine learning can be performed independently of
the source project.
The UDM and the general approach of selecting a set of tests that are likely to fail are validated
with a simple decision tree (DCT) algorithm. The DCT was chosen because it is easy to
understand and a look at the internal structure is possible at any time. This gives more insight
into the underlying data and features.

179

5 Results

The first step is defining performance metrics to compare the quality of different experiments
objectively. After that, multiple experiments are conducted with different sets of features. From
these experiments the first ones use only raw features which are directly available from the data
and the next experiments use more complex engineered features.

5.1 Performance / Quality metrics
Predicting the outcome of a test is mainly a classification problem. Therefore, the data is labeled
with two classes: the successful tests are labeled with “success” and the failing tests with
“failed”. Because the goal is to predict if a test fails, the failing tests are considered as positives.
The following performance metrics are used to evaluate the quality of the trained models and the
overall approach.

Precision is a measure for false positives. This means that a successful test is predicted as
failed test. A low precision leads to a subset of tests with many tests that are successful.

On the other hand, there is the Recall which is a measure for the false negatives. False negatives
are failing tests that were predicted as successful, so a low recall will lead to the problem that
many failing tests are not predicted as those.

The overall Accuracy is simply a measure for how many tests were correctly predicted.

The focus lies on improving the recall as much as possible without decreasing the overall
accuracy and precision too much. This is due to the higher-level goal in predicting failing tests
as early as possible. With a high recall fewer failing tests will be wrongly predicted.

5.2 Raw features
For the first prototype, it was decided not to work with individual test cases, but on the next
higher hierarchical level: test suites. Test suites combine several tests that belong together
thematically. This makes it much easier to deal with the huge amount of data in the first step.
Another advantage is that it is easier to create a measure of complexity. In the case of test suites,
complexity is the number of associated test cases. If individual test cases were considered, such
a complexity measure could be, for example, the number of lines of code or even the number of
function calls. This information is not directly available in the open-source projects considered
and is very complicated to generate from the existing data. Another limitation chosen for the first
prototype is to set the focus on whole commits and not on single files that changed. A commit
can consist of changes in multiple files.

On this basis, initial experiments were conducted with a small subset of the collected data to
better assess the underlying data. Figure 4 shows the results of a decision tree when all directly
usable features from the raw data are included. These are for example added, removed, changed
lines of code, number of changed files, number of comments in an issue, number of reviews,
number of tests inside a test suite, etc.

180

Fig. 4. Confusion matrix and metrics using only raw features

These results are from a 10-fold cross validation. The overall accuracy of the decision tree is
close to 100%, as expected, because there is a strong imbalance in the data: there is much more
data from successful tests than from failing ones. But despite this imbalance, already more than
50% of the failed tests are correctly identified as such, which is reflected by a recall of 53.99%.
In principle, this shows that it is possible to predict the probability that a test will fail.

5.3 Additional and more complex features
Since it is not sufficient to predict only half of the failed tests, the recall must be increased even
further. This is achieved by encoding the unused information in the raw data so that it can be
used to train machine learning models and by engineering entirely new features from the existing
data.

An example of such raw data that can still be usefully encoded is the build target, i.e. the
underlying architecture or the operating system. In the raw data this is only present as a simple
string containing all this information. A feature that was created completely new is the number
of historical failures of a test; more precisely: how often a test failed in the last n runs.

With these new features, a recall of 66.4% is already achieved, as can be seen in Figure 5.
Compared to the previous results, this value is already an improvement of 22.98%.

181

Fig. 5. Confusion matrix and metrics with additional features

It is expected that with further features the recall can be increased significantly without degrading
the accuracy or precision. In the raw data, there is still a lot of information available, from which
suitable features are yet to be generated through appropriate encoding and feature engineering.

6 Conclusion

The results from the experiments show that the introduced Unified Data Model works. The data
from different software projects can be unified with it, which was examined at the example of
two open-source projects. This makes it possible to carry out further data processing and feature
engineering independently of the specific project. Also, the used machine learning algorithm can
be exchanged now without adjustments. This makes it much easier to compare the performance
of different algorithms and to select the best suitable one. The results also show that, despite the
strong imbalance in the data in favor of successful tests, a recall of over 50% can be achieved
even with a relatively small set of features. That is, over half of the tests that fail are correctly
predicted. This recall could even be improved significantly with the first additionally engineered
features.

The next steps are now to validate the Unified Data Model using a third open-source project
as well as the first results of the machine learning model with significantly larger data sets. Also,
the recall must be improved by further feature engineering and appropriate encoding of the still
unused information in the raw data. Furthermore, it should also be investigated what results can
be achieved if the granularity is changed away from test suites back to individual test cases.
Likewise, it could improve the recall again clearly, if the focus lies no longer on the individual
commits, but directly on the changed files. This would also give the opportunity to use some sort
of code/test dependency if available as feature. It should also be possible to learn this dependency
from historical test executions if it shouldn’t be available.

References

1. Atif Memon, Zebao Gao, et al. “Taming Google-Scale Continuous Testing”, IEEE/ACM
39th International Conference on Software Engineering, 2017

182

2. Quinten David Soetens et al., “Change Based Test Selection in the Presence of Developer
Tests”, 17th European Conference on Software Maintenance and Reengineering, 2013

3. Elmar Juergens et al., “Regression Test Selection of Manual System Tests in Practice”,
15th European Conference on Software Maintenance and Reengineering, 2011

4. Everton Note Narciso et al., “Test Case Selection: A Systematic Literature Review”,
International Journal of Software Engineering and Knowledge Engineering, Vol. 24 No.
04 pp. 653-676, 2014

5. Armin Najafi et al., “Improving Test Effectiveness Using Test Executions History: An
Industrial Experience Report”, IEEE/ACM 41st International Conference on Software
Engineering, 2019

6. S. Yoo, M. Harman, “Regression Testing Minimisation, Selection and Prioritisation: A
Survey”, Software Testing, Verification & Reliability, ACM Digital Library, 2012

7. Bo Jiang et al., “Input-based adaptive randomized test case prioritization: A local beam
search approach”, Journal of Systems and Software, 105: 91-106, 2015

8. Mateusz Machalica et al., “Predictive Test Selection”, IEEE/ACM 41st International
Conference on Software Engineering, 2019

9. Helge Spieker et al., “Reinforcement Learning for Automatic Test Case Prioritization and
Selection in Continuous Integration”, ISSTA 2017: Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp. 12-22, 2017

10. Rudolf Ramler et al., “Tool Support for Change-Based Regression Testing: An Industry
Experience Report”, International Conference on Software Quality, Springer Press, pp.
133-152, 2016

11. Christian Salomon et al., “Sherlock: A tool prototype for change-based regression
testing”, ASQT 2013 - Selected Topics to the User Conference on Software Quality, Test
and Innovation 2013, OCG, Vol. 303 pp. 33-36 2014

12. Adam Paszke et al., “Pytorch: An Imperative Style, High-Performance Deep Learning
Library”, Advances in Neural Information Processing Systems 32, pp. 8024-8035, 2019

13. The Chromium Authors, “Chromium” [Online] https://www.chromium.org/Home
[Accessed 24.08.2021]

183

Suitability analysis of machine learning algorithms: Processing
three-dimensional spatial data for automated robot control

Benjamin Peric, Michael Engler

Hochschule Furtwangen University, Faculty of Business Administration and Engineering, Robert-

Gerwig-Platz 1, D-78120 Furtwangen, Germany

benjamin.peric@hs-furtwangen.de

Abstract. Global competition, rapidly rearranging market requirements and shorter product
life cycles are expressed in constantly changing environmental conditions, which further
complicate the demands on the production process. Given smaller batch sizes in small to
medium-sized companies, the importance of flexibly varying handling tasks, which must
be implemented through a robot gripping system, increases. Standardized workflows are
difficult to establish in undefined environments since the products to be handled vary
strongly in orientation and position.

 The work aims to determine whether artificial intelligence can be developed through the
combination of a color camera including an infrared depth measurement, which enables
industrial robots to interact with the environment. The following two research questions
arise: 1. to what extent can the potentials of artificial intelligence and its success of the
recent period be adapted for the application of a robot gripping process and 2. how this
symbiosis effects the use of industrial applications. The combination of intelligently
controlled robotics using artificial intelligence and the processing of data without server-
driven computing power at the end device form the basis of the investigation. The behavior
of neural networks in scenarios with a small amount of data is the focus of the question.
The realization of artificial intelligence is carried out in an iterative approach and the
development process is available in written form.

 The overall context of the approach is questioned via a suitability analysis to gain an
understanding of possible applications and to name the limits of the system in the given
scenario. With this approach, it can be examined which factors support the use of neural
networks in the outlined context and whether they can be used successfully, despite of
additional aggravating environmental influences.

Keywords: Artificial Intelligence; Neural Networks; Small Data; Robotics; 3D-Data

1 Introduction

Self-learning computer programs are conquering economic structures as a sustainable branch of
industry. The efficiency increase in all areas of a company indicates the potential of digital data
processing. Machine learning algorithms can be identified as an essential driver for monitoring,
regulation and control of industrial processes [1]. The degree of automatization is to be
recognized as a fundamental prerequisite for the long-term safeguarding of competitiveness in
manufacturing industries along with the key technology of artificial intelligence. The increase in
flexibility, humanity, quality and productivity lies at the core of digitalization and Industry 4.0

184

in this branch of industry [2]. Autonomously controlled robot processes, digital quality assurance
requirements, operational resource planning and preventive process analyses are mostly based
on intelligent sensor technology [3].
 Robotic applications are becoming increasingly challenging in the field of automation due to
growing demands for flexibility. These requirements increase exponentially because of smaller
batch sizes which creates an even more difficult starting situation in small to medium sizes
companies. Common computer vision approaches could enable applications to deal with a
dynamic scenery characterized by the opposing trend currents of automation and flexibility.
Automated object manipulation, motion planning and even navigation through a dynamic
scenery are the focus of these problems. Application areas within logistics, assembly and
production include these problem issues [4].
 In addition, the initial situation inhibits access to data collection and data processing. Large
information structures often enable machine learning and are widely accepted as a prerequisite.
Therefore, the impact of small data is the core of the following investigation.
 Low computing power at the end device is another supplemental condition that is closely
rooted in the initial scenario. Digital infrastructures cannot be established as a requirement in the
manufacturing industry of small to medium-sized enterprises. Server-driven calculations are
therefore not available as a solution option for answering the research questions posed [5].

2 Trend Research

Trend research is a methodological tool that attempts to identify the development process based
on observations of technical and social changes. The newly acquired knowledge serves as an aid
for the user to name individual trends, avoid surprises, assess interactions and enable
interpretations through the collection of observations [6]. The scope is limited here to the analysis
of already recognized trends and their origins. This approach aims to narrow down the relevant
content of the suitability analysis by identifying the potentials and accurately define the core
fields for the use case of the work. The high complexity inevitably requires the reduction of
manageable factors.

2.1 Drivers of Artificial Intelligence

The applications of artificial intelligence have gained momentum in the last decade. The rapid
increase in development can be attributed to the interaction of several factors, which can be seen
in the following figure.

Fig. 1. Factors influencing the development of artificial intelligence

One of the strongest influencing factors is the massive increase in the computing power of
intelligent circuits. Already in 1958, a regularity was derived by G. Moore through observations,
in which the doubling of the performance can be continuously determined within a period of two

185

years. The so-called Moore's law comprises more than 32 doubling cycles in the present period
[7].
 The applications of machine learning algorithms benefit especially when processing large
amounts of data due to the exorbitant increase in computing power. The handling of large data
structures can be described with the term Big Data. At the same time, it implies the possibility
of being able to gain target-oriented insights by skillfully processing and analyzing mass data
[8]. Symbiosis can be derived in which both the processing task and the medium to be processed
will benefit from the constant growth [9].
 In a business context, providing useful information, at the right time and in a usable form is
critical to success. In addition to real physical data sets, so-called digital twins also serve to
calculate and assess real scenarios. These furthermore support the creation process of well-
founded data structures [10].
 This core value creation process can be derived from the investments within the technology,
which have increased fiftyfold to over 15 billion in the last ten years [11]. The leadership position
is being fought by big players such as Google, Amazon, and Facebook on an international level.
However, access to data sets is not only reserved for the technology giants. The German Federal
Statistical Office estimates a tripling of the sensor market by 2025 [12]. The digitalization of
industrial production and the high degree of connectivity favor the evaluation of the collected
information. In the literature, terms such as "Internet of Things" or "Internet of Everything" are
therefore already chosen to describe the development [13].

2.2 Alignment: Research and real-life applications

The following chapter offers a more specific insight into concrete fields of robot applications,
which are optimized and implemented with the help of neural networks.
 The subject area of robotics mostly covers technical apparatuses that usually interact with the
physical world employing mechanical movements. Actuators are operated via kinematic
variables by control systems, whereby a specific task can be performed automatically due to its
structure [14].
 One first milestone was published in October 2020 by Knapp AG in an interview. Through
cooperation with Covariant Embodied Intelligence Inc., the transfer of research results to a real-
life scenario has taken place. As an operational packaging robot, the system supports an
electronics distributor for wholesale within logistics. Smaller goods are automatically
transported to the robot arm via a conveyor belt. The gripper system recognizes the type, the lay,
and the position of the objects. Transported via a pneumatic suction cup, each of these arrives at
the desired packaging location. According to the company's information, this categorizes and
recognizes almost 78,000 different small goods, whereby the products are initially unordered in
a carton. A short-term maximum of approximately 600 objects per hour is stated. The system
detects the products with an accuracy of more than 99% during operation. The gripping process
appears very precise considering the error rate of less than one percent. Nevertheless, the
manufacturers state a daily working time of just 14 hours [15].
 The selected example impressively shows the different demands between research work and
real-life solutions. An error rate of less than one percent is to be recognized as a groundbreaking
and remarkable performance in the context of new research results. Within one of the most well-
known international competitions, such as the ImageNet Challenge, a similar network could
replace the previous titleholders [16]. However, these results represent the minimum level of

186

acceptance in real-world use cases. The following short thought experiment illustrates the reason
for this fact through an overall system effectiveness calculation.
 With an average operating speed of approximately 400 objects per hour, with the assumed
error rate of one percent, 96 objects are incorrectly detected during the day and therefore not
processed. If the cause of this problem can be solved within five minutes, a machine downtime
of approximately eight hours per day can be expected, assuming shift operation as the work
design in this example. The downtime under consideration is only caused by a purely technical
system error. Other recovery times, such as maintenance and servicing, occupancy, or manning
times are disregarded in this consideration. Therefore, the specified working time of the "Pick-
it-Easy" robot seems realistically evaluated.

2.3 Challenges of Artificial Intelligence in the manufacturing industry

In the following chapter, some decisive influencing factors are named which limit the use of a
machine learning solution in a corporate context. Based on this very compact presentation, the
limits of this technology will be critically examined and considered.

Failure of drivers as amplifiers. One of the obvious challenges in implementing meaningful
AI-based robotics solutions is the absence of the drivers in business applications.

Hardware requirements. High computing capacities and memory requirements are a condition
of practical applications. The necessity has an additional effect on the acquisition and operating
costs of the system, which are particularly significant when a battery is used.

Performance standards. Whereas momentary successes of classification in worldwide
competitions reach unprecedented accuracies, these results represent only the minimum of
acceptance for real requirements.

Specialist personnel and interface disciplines. The pure basic knowledge of machine learning
processes can only be implemented successfully in combination with specialist know-how. The
generated results can only be validated based on a critical examination. The application of AI-
based systems is to be defined as a highly interdisciplinary work process, which requires the
combination of trained professional competencies [17].

Flexible in use - rigid in applications. Artificial intelligence can be embedded in almost any
core activity of a company across industries. The integrity of the technology is highly dependent
on each individual dataset used. The quality and quantity of training data ultimately determine
the validity of the entire system. Changing environmental conditions limit the use of neural
networks enormously. As soon as these changes are not reflected in the dataset used, this harms
the capabilities of the whole system [18].

2.4 Experimental approach

The simulation of a simple gripping and joining process serves as the essence of the
investigation. The analysis is based on a wooden game with small geometric wooden figures.
The handling of unknown figures in a partly undefined environment is to be tested. The following
investigation addresses common computer vision tasks, which allow object recognition. Besides

187

the classification and detection, the localization and positioning of objects is the focus of this
work. Six degrees of freedom are available to the target objects, which must be defined before
grasping. In addition to three translational movements, the geometric bodies can rotate around
all three spatial axes [19].
 Applications within the sub-discipline of "Transfer-Learning" represent a variant to deal with
very small amounts of data. This application area uses pre-trained networks, which are connected
beforehand of the algorithms. The stored knowledge of the exorbitantly large networks transfers
to the use case by interconnection and the probability of successful generalization increases in
the ideal case [20].
 The number of parameters in structures such as AlexNet, VGGNet, or ResNet reaches into
the high millions. Due to the predefined application criteria, this discipline is left out in the
following analysis. Consequently, approaches are chosen which hardly require any major
computing power in operation. In addition to the redefinition of learning processes via a so-
called Siamese network, compression via knowledge distillation, synthetic data generation, and
data augmentation is the focus of the experiments.

 A lightweight and very compact time of flight design with stereovision is offered by the
infrared depth camera "Intel Realsense D435". The manufacturer of the product offers a
comprehensive development platform compatible with free programming libraries and includes
the most widely used programming languages [21]. Therefore, this depth sensor technology is
the basis of the following work to create three-dimensional datasets and perception of the
environment.

3 One-Shot-Learning: Rotation determination of unknown objects

Grasping objects are often located in a two-dimensional disordered initial situation. The
localization of the target objects is only one part of the necessary scene determination. The
rotation of an object cannot be determined with the help of the image segmentation illustrated
above. If the components lie on a surface, it is necessary to extract the position and rotation of
the objects, based on which the gripping and joining process can be derived.
 It is assumed that the position of the target objects is already clearly determined.
Consequently, the grasping objects are perceived in the zenith from the top view. Now the
rotation of the object figures on the image plane must be determined. The rotation symmetry
properties of the objects specify the maximum rotation on the image plane.

Synthetic data preparation. A single image is captured of each target object. Using image
processing techniques, the subsequently visualized test figures are aligned and rotated with a
rotation step size of half a degree. Consequently, each class receives a single original image to
train. As a test set, five new images are taken of each object, which is augmented using the same
methodology. The trainingset of the objects can be seen in the figure below.

Fig. 2. Rotation determination of three geometric figures

188

Problem definition. The rotation is to be determined via a regression. Trigonometric relations
represent periodic processes as mathematical elementary functions. Therefore, the use of a
direction vector allows a regression with the support of oscillation functions. All rotationally
symmetrical properties can be mapped via compression and extension of the oscillation
functions. Here, the determination of the direction vectors is the focus of the neural regression.
The neural network outputs the real vector elements in this approach.

CNN for rotation determination. Two convolutional layers with a kernel of size 3 x 3 scan the
characteristics of the figures in 6 and 12 feature maps using relu activation functions. Via a dense
layer, the data reach the output, which contains two neurons. The tangent hyperbolic function
has the same range of values as the sine and cosine, so the network can determine the real vector
elements using the mean squared error.

Table 1. Comparison: Vector and unit vector regression for rotation determination

Approach Standard deviation Maximum Intolerance < 2.5°
Vector output 4.28° 2.49° 21.46° 54.91%
Unit vector output 1.25° 0.95° 5.63° 90.65%

The validation shows that the regressive determination of the output over a simple vector fails.
Only 55% of the test data fall within the set tolerance. The regression is therefore extended by
the determination of the unit vector. The unit vector amount must always have the length of one.
As soon as this condition is included in the output layer, it improves the rotation determination
of the three target objects enormously, as shown in the table above.

4 Handling small data sets: Classification of unknown objects

The small geometric figures are to be classified and recognized based on their shapes. This
enables the robot system to deal with unknown scenery.

Data acquisition. Four small target figures are measured as a test by the depth camera and stored
in a data set. In total, this comprises 10,000 images per class. The captured images have a size
of 100 x 100 pixels. The subsequent neural networks each receive a greatly reduced data number
of 500 images per class to approximate the problem. The remaining data points are available to
the test as validation. The data set represents the point clouds of the target objects from all
viewing directions and varies strongly in the distance to the target objects.

The problem of small data. The phenomenon of overfitting occurs especially with small data
sets, where the networks over-specify on the existing data points. Overfitting massively
counteracts the primary goal of generalization, which is why neural networks can respond poorly
to new input in this case [22].

Augmentation. Synthetic augmentation provides an effective method for extracting meaningful
information structures despite having few representative data points [23].
 The operations to augment the set of data points can be implemented using an integrated
development tool called "Keras-Experimental" within the TensorFlow programming library and
prepended to the architecture of the network.

189

The following methods are randomly selected and executed for each input.
• Zooming in and out of the original image up to a maximum of 20% of the existing

image dimension
• Mirroring around the horizontal and vertical axis
• Average intensity contrast change by a maximum of 10% of the original image
• Shifting the image by a maximum of 10% in the horizontal or vertical direction

Structure of Siamese Neural Network. The Siamese Neural Network (SNN) is an architecture
that enables the handling of very small amounts of data. It constantly receives temporally
staggered impulses, which are to be linked together. The two input images are processed in
parallel by the same convolutional neural network (CNN) architecture [24]. The SNN receives
input pairs of data images with a size of 100 x 100 pixels. Two convolutional layers including
max-pooling, alongside 24 and 48 feature maps respectively, process the data each with a kernel
of 3 x 3 weights. Using a dropout of 50%, the data is transformed into the dimension of a vector
with 50 elements as a result of a dense layer. The parallel processing of the input images enables
the SNN to compare the vectors over the Euclidean distance of the intermediate output and

 , which represent the similarity of the input pair in an abstract form. This scalar value is
calculated using a sigmoid activation function.

 (1)

The more similar the input images are, the smaller is the Euclidean distance of the vectors and
the output approaches zero. Hereby the similarity of the three-dimensional shapes of the objects
can be measured. A simple comparison image set of the figures to be compared is sufficient for
classification since the closest match of the unknown input to the comparison set can be used as
a discriminator.
 To validate this architecture, almost identical CNNs are used, which map the number of
classes to be distinguished in the output layer. With the help of a softmax activation function,
the class probability distributions of the target object can be directly specified. The SNN uses
the binary cross-entropy due to the binary similarity output structure, whereas the simple CNNs
use the pure cross-entropy loss.

Table 2. Comparison: CNN with augmentation vs. Siamese Neural Network

Network Epochs Train: 500 images Test: 9500 images
CNN without augmentation 100 99.17 % 66.24 %
CNN with augmentation 1000 91.17 % 81.87 %
SNN with augmentation 500 99.01 % 90.21 %

The very small datasets cannot be successfully distinguished without augmentation. The
classification task of only four targets cannot be performed by simple CNNs for this small
dataset. The augmentation methods allow the approximation of the problem, which can
counteract the phenomenon of overfitting. The SNN outperforms the results by more than 10%,
despite a nearly equal architecture of the model. However, a tenfold calculation time of an epoch
must be accepted by doubling the input data. The validation of the SNNs is repeatedly done by
pairing the test data. The achieved performance of more than 90% is to be considered as very
good in this context since the use of several comparison images per class can additionally raise
the result.

190

5 U-Net Compression with Knowledge Distillation: Image Segmentation

The three-dimensional scenery only acquires a complete meaning through the understanding
within the pixel level. In addition to the classification, the object recognition and extrapolation
of the object surfaces is therefore the focus of the next task. The recognition of a reference surface
enables the robot system to form a normal, which can be used to determine gripping points.
Object recognition is one of the central issues of a gripping process, in addition to grip
evaluation, behavior coordination, and the determination of minimum holding forces [25].

Data acquisition. The question reflects a binary image segmentation of the point clouds. The
generation of the target masks is typically done by hand, which is why the data preparation itself
takes a very time-consuming process. However, the Intel-Realsense sensor technology offers
some synergy effects. The recorded point clouds can be overlaid with a color image, whereby
both data streams reproduce the same scenery. With the help of a simple color filter, the color
channels can be used to distinguish the body surfaces. The top of the searched target figure is cut
out from the rest of the environment in the color stream, allowing the corresponding mask to be
formed to the depth data. The captured scene contains eight different geometric figures. The
objects are set in motion on a tabletop, creating a dynamic environment. Different viewing
directions and distances are again included in the dataset. The point clouds and the mask images
assume a dimension of 200 x 200 pixels and contain 7,500 data points each. The test-training
split assumes the ratio of 30 - 70%.

Fig. 3. U-NET Architecture for binary image segmentation

U-Net architecture. The original U-Net structure is used for binary image segmentation and
reduced in size for the present application as shown in the figure above [26]. Via convolutional
layers, the input data is compressed and brought back to the original size. During deconvolution,
an additional dropout of 10% is integrated after each max-pooling layer, which is not visible in
the figure above.

Knowledge Distillation. Considering a binary pixel classification, a sigmoid activation function
is present in the output layer. The pure U-Net architecture outputs the pixel-probability mask ,
which is compared to the target masks via the binary cross-entropy.

(2)

The architecture is trained using the existing data sets and their target masks. This Teacher
Network is then used to develop a compressed architecture using Knowledge Distillation. The
compressed U-Net structure receives as knowledge distillation loss the pure binary cross-entropy
in combination with the Kullback-Leibler divergence [27].

191

(3)

The products of the teacher and student architecture are aligned via the Kullback-Leibler
divergence. However, even softer probability distributions of the student and teacher outputs
are used. The divergence considers the temperature during the final computation with the
activation function . The binary cross-entropy falls with the value to 10%
in the combined loss of the student. The temperature receives the value 3. Hereby, the student
not only receives the hard mask targets but also the corresponding soft probability distributions
of the larger teacher network to approximate the problem.

Table 3. Comparison: Compression of U-Net Architectures with Knowledge Distillation

U-Net Network Parameter Accuracy Loss IoU of the target class
Teacher 80,485 99.02 % 0.0257 85.72 %
Student from scratch 7,753 97.63 % 0.0592 67.54 %
Student with KD 7,753 98.74 % 0.0323 81.27 %

Given the number of parameters that can be trained, the student U-Net architecture represents a
tenfold reduction of the teacher, while the basic architecture remains the same. Accuracy does
not correctly represent the binary image segmentation problem. Therefore, the Intersection over
Union (IoU) is used for validation. The direct comparison of the student architectures with and
without knowledge distillation shows optimization of the IoU of 14 percentage points. The
tenfold compression therefore takes place with a drop of less than 4 percentage points.

6 Conclusion
The development of neural networks on the end device extremely complicates the development
of neural networks. The experiments address extreme cases of an application under the chosen
conditions. It was shown that some approaches facilitate the use of small data. Considering real
application scenarios, however, the gap between the research results and real requirements
becomes strongly apparent.

7 References

1. BMWi: Strategie Künstliche Intelligenz der Bundesregierung. pp. 15-20. BMWi
Publikation Schlüsseltechnologien, Berlin (2018).

2. Jeske T., Lennings F.: Produktivitätsmanagement 4.0: Praxiserprobte Vorgehensweisen
zur Nutzung der Digitalisierung in der Industrie. pp. 15-18. Springer Vieweg, Berlin
(2021).

3. Seifert I. et al.: Potentiale der Künstlichen Intelligenz im produzierenden Gewerbe in
Deutschland. pp. 12-15. Institut für Innovation und Technik in der VDI/ VDE Innovation
+ Technik GmbH, Berlin (2018).

4. Wittpahl V.: iit – Themenband: Künstliche Intelligenz Technologie | Anwendung |
Gesellschaft. pp. 110-112. Springer Vieweg, Berlin (2019).

5. Arnold N. und Wangermann T.: Digitalisierung und Künstliche Intelligenz:
Orientierungspunkte. pp. 7. Konrad-Adenauer-Stiftung, Berlin (2018).

192

6. Blechschmidt J.: Quick Guide Trendmanagement: Wie Sie Trendwissen in Ihrem
Unternehmen wirksam nutzen. pp. 13. Springer Gabler-Verlag, Berlin (2020).

7. Kreutzer R., Sirrenberg M.: Künstliche Intelligenz verstehen: Grundlagen – Use Cases –
unternehmenseigene KI-Journey. pp. 74. Springer Fachmedien, Wiesbaden (2019).

8. Wagener A.: Künstliche Intelligenz im Marketing – ein Crashkurs. pp. 38-43. Haufe-
Lexware GmbH & Co. KG, Freiburg (2019)

9. Scheier C., Held D.: Künstliche Intelligenz in der Markenführung: Der effiziente Weg
den Erfolg von Marken zu steuern. pp. 33. Haufe-Lexware GmbH & Co. KG, Freiburg
(2019).

10. Pistorius J.: Industrie 4.0 – Schlüsseltechnologien für die Produktion: Grundlagen
Potentiale Anwendungen. pp. 10 and 41-46. Springer Verlag, Berlin (2020).

11. Lünendonk L. et al.: Künstliche Intelligenz: Eine Studie zum Status quo in deutschen
Unternehmen und zu zukünftigen Anwendungsfällen. pp. 7. Lünendonk & Hossenfelder
GmbH, Mindelheim (2019).

12. Statistisches Bundesamt: Dossier: Internet of Things. [Data set]. pp. 15 and 29. [Status:
12th August 2021]. Available from: https://www.statista.com/topics/2637/.

13. Pistorius J.: Industrie 4.0 – Schlüsseltechnologien für die Produktion: Grundlagen
Potentiale Anwendungen. pp. 9 and 12. Springer Verlag, Berlin (2020).

14. Haun M.: Handbuch Robotik: Programmieren und Einsatz intelligenter Roboter. pp. 18-
22. Springer Verlag, Berlin. (2007).

15. Covariant: Case Study: Making Obeta´s warehouse more resilient with KNAPP and
COVARIANT´s AI-powered robot. Embodied Intelligence Inc. [Status: 11th August
2021]. Available from: https://covariant.ai/case-studies/obeta.

16. CC-BY-SA 4.0.: Image Classification on ImageNet. [Status: 13th Mai 2021]. Available
from: https://paperswithcode.com/sota/image-classification-on-imagenet.

17. Stowasser S., Suchy O. et al.: Einführung von KI-Systemen in Unternehmen:
Gestaltungsansätze für das Change-Management. pp. 23-25. Plattform Lernender
Systeme, München. (2020).

18. Abdelkafi N. et al.: Künstliche Intelligenz (KI) im Unternehmenskontext:
Literaturanalyse und Thesenpapier. pp. 19-24. Apress Inc, New York City (2019).

19. Wolf A. und Schunk H.: Greifer in Bewegung: Faszination der Automatisierung von
Handhabungsaufgaben. pp. 109. Carl Hanser Verlag, München (2016).

20. Yang Q. et al.: Transfer Learning. pp. 13. University Press, Cambridge (2020).
21. Intel Corporation: Intel RealSense Depth Camera D435. [Status: 12th August 2021].

Available from: https://www.intelrealsense.com/depth-camera-d435/.
22. Ukil A.: Intelligent Systems and Signal Processing in Power Engineering. pp. 111-115.

Springer Verlag, Berlin (2007).
23. Koonce B.: Convolutional Neural Networks with Swift for Tensorflow: Image

Recognition and Dataset Categorization. pp. 36-38. Apress, New York City (2021).
24. Jadon S., Garg A.: Hands-On One-shot Learning with Python: Learn to implement fast

and accurate deep learning models with fewer training samples using PyTorch. pp. 27-
30. Packt Publishing Ltd., Birmingham (2020).

25. Haase T.: Greifplanung und Greifskills für reaktives Greifen. pp. 10-15. KIT Scientific
Publishing, Karlsruhe (2011).

26. Ronneberger O., Fischer P., Brox T.: U-Net: Convolutional Networks for Biomedical
Image Segmentation. University of Freiburg, Freiburg (2015). arXiv:1505.04597v1
[cs.CV].

27. Hinton G., Vinyals O., Dean J.: Distilling the Knowledge in a Neural Network. (2015)
arXiv:1503.02531v1 [stat.ML].

193

VizNN: Visual Data Augmentation with

Convolutional Neural Networks for Cybersecurity

Investigation

Amélie Raymond1, Baptiste Brument1, and Pierre Parrend2,3

1 Télécom-Physique – University of Strasbourg, France
amelie.raymond@etu.unistra.fr, baptiste.brument@etu.unistra.fr

2 EPITA
pierre.parrend@epita.fr

3 ICube laboratory
University of Strasbourg

Abstract. One of the key challenges of Security Operating Centers (SOCs) is to
provide rich information to the security analyst to ease the investigation phase
in front of a cyberattack. This requires the combination of supervision with de-
tection capabilities. Supervision enables the security analysts to gain an overview
on the security state of the information system under protection. Detection uses
advanced algorithms to extract suspicious events from the huge amount of traces
produced by the system. To enable coupling an efficient supervision with perfor-
mance detection, the use of visualisation-based analysis is a appealing approach,
which into the bargain provides an elegant solution for data augmentation and
thus improved detection performance. We propose VizNN, a Convolutional Neu-
ral Networks for analysing trace features through their graphical representation.
VizNN enables to gain a visual overview of the traces of interests, and Convo-
lutional Neural Networks leverage a scalability capability. An evaluation of the
proposed scheme is performed against reference classifiers for detecting attacks,
XGBoost and Random Forests.

Keywords: Data augmentation, Visualisation, Neural Network, Benchmark, Cy-
bersecurity, Investigation

1 Introduction

Security Operating Centre (SOCs) continuously experience increasing amounts of super-
vision data, that require scalable processing capability coupled with fine-grained detection
of known and unknown (zero-days) attacks. New solutions are thus required to back the
investigation efforts of security analyst teams. The core requirements of these solutions
are: explicability and traceability of alert to the original trace; investigation support
through visualisation; scalability of detection.

The availability of scalable detection algorithms is thus key for building efficient SOCs
capable of handling the data deluge. To this aim, neural networks such as Convolutional
Neural Networks [1] are very competitive candidates, but still lack of maturity for rapid
operational deployment. One of the key challenges for using neural networks in operation
environment is the capability of performing suitable data augmentation in the analysis
flow [2, 3]. Data augmentation can serve several goals: completing the data representation
is areas where available information do not support satisfactory learning (scarce zones
of valid data, or imbalanced dataset); altering the information to avoid overfitting and

194

anticipate random modifications of the observed behaviours; changing the data format,
for instance to apply algorithms with specific data input such as images to other data
types such as text, sequences or qualitative features.

In this paper, we propose VizNN, a visual data augmentation model with Convo-
lutional Neural Networks (CNN) for cybersecurity investigation. Its goal is to leverage
scalability and detection capability of CNNs to the analysis of quantitative logs for de-
tection of known attacks. Alternative detection solutions such as Random Forests [4] and
XGBoost [5] also provide excellent results for medium size dataset. They are used as
reference for benchmarking.

To evaluate the relevance and efficiency of the proposed approach, we apply it to
the analysis of security properties of the DoH protocol [6]. DoH (DNS-Over-HTTPS)
aims at encrypting DNS requests by encapsulating them in a classic HTTPS stream.
Its goal is to solve the vulnerabilities of DNS (Domain Name Systems) which is used
for each and every request on the Internet to bind human-readable domain names with
machine-readable IP addresses. DNS experiences several majors weaknesses in its default
configuration [7, 8], which urge the community to propose adequate countermeasures.

The evaluation of VizNN scheme is performed on CIRA-CIC-DoHBrw-20204 dataset
[9], created by the Canadian Institute of Cybersecurity (CIC) and funded by the Canadian
Internet Registration Authority (CIRA). Data is collected from the top 10,000 visited
websites according to Alexa rankings. The raw data, in PCAP format, was processed and
converted into CSV files using the DOHMeter tool.

The paper is organised as follows. Section 2 introduces the related works. Section
3 defines the data processing methodology, section 4 details the data preparation and
exploration phase, whereas section 5 defines the propose data anaysis scheme. Section 6
evaluates the results. Section 7 concludes this work.

2 Related Work

2.1 Neural networks for cybersecurity

The advent of Deep Learning (DL) for the analysis of cybersecurity events takes its roots
in the limitation of pre-existing Machine Learning (ML) algorithms. Machine Learning
is used mainly for classification or regression, and keeps relying on feature engineering
[10]. The expected advantages of Deep Learning is its capacity to perform well when data
amount increases, and to provide very efficient test operation even though training phase
is usually significantly longer. One of the key factors for the performance of Deep Learning
is the numerous matrix operations it relies on, which let it be preferably executed over
GPU.

Deep Learning comes in numerous flavours when applied to cybersecurity: Deep Neu-
ral Networks, which extracts hidden patterns from in the internal layers of the network,
Recurrent Neural Networks such as LSTM (Long Short Term Memory) [11] which retain
the memory of previous states, Convolutional Neural Networks [1, 12] to process data
having a high degree of similarity, Restricted Boltzmann Machines for data generation
or classification, Deep Belief Networks as brick of larger neural nets, Deep auto-encoders
for trace de-noising or classification [13, 14].

4 https://www.unb.ca/cic/datasets/dohbrw-2020.html

195

2.2 Data augmentation for neural network learning

Data augmentation is the process of artificially enriching real data with synthetic mock-
ups to improve learning, in particular to remove learning bias [2]. One typical application
of data augmentation is the densification of data zones where events are legit but scarce
to avoid the generation of false negatives. The principle of data augmentation originally
referred to statistical data enhancement like SMOTE [15], which is meant for handling
imbalanced data. It increasingly refers now to the generation and enrichment of images to
be analysed, in particular in the context of Convolutional Neural Networks. The objective
is to leverage the capability of data volume scaling of deep learning approaches. It proves
to be efficient for the detection of object landmarks such as invariance in shape, pose
and illumination [16].

Image augmentation can be performed through basic image manipulations such as
geometric transformations, flipping, colouring, cropping, noise injection, through geo-
metric and photometric transformations such as kernel filters, mixing images, random
erasing, or through deep-learning such as feature space augmentation, adversarial train-
ing, Generative Adversarial Networks or neural style transfer [2]. The combination of
these operations, especially the simple ones, can be performed automatically to improve
the validation accuracy like with AutoAugment tool [3]. The first image augmentation
tool can be considered to be the auto-encoder of Hinton, which is applied for dimension
reduction, noise reduction, data and image generation bases on multi-layer architec-
ture with internal small-dimension layers [17]. More recent solutions focus on Generative
Adversarial Networks (GAN) for data and image generation, which base on a pair of
Deconvolutional/Convolutional Neural Networks [18]. This approach has made radical
qualitative progress since its inception in 2014 [19].

2.3 Data augmentation for cybersecurity

Data augmentation for cybersecurity is used both for supervised and for unsupervised
detection. It is used for supervised detection of malwares to address the variability of
malicious code by adding noise in the training mode under Gaussian, Poisson or Laplace
model. Then, a Convolutional Neural Networks performs the learning operation [20].

For unsupervised anomaly detection, the strategy is to oversample normal, rare data
which usually causes most false positives. This approach is only applicable to well-defined
data distribution if one does not want to inject excessive bias in the dataset. Lim proposes
to augment not the input data, but a representative latent vector at the core of the
neural network, through multivariate Gaussian sample generation [21]. It integrates an
adversarial auto-encoder (AAE), which is an extension of GAN [22].

3 Data processing

Performed data analysis is performed in two steps: first, a generic DAP (Data Analy-
sis Process), which is meant for reuse independently of the analysis methodology; then,
VizNN, the visual data augmentation model we propose for Convolutional Neural Net-
works.

3.1 DAP - the Data Analysis Process

The Data Analysis Process entails following steps:

196

◦ Capture: the system behaviour is collected and gathered in a dedicated datalake for
immediate analysis or later reference. The behaviour can be represented as actions
(logs), system measures (scalar probes) or action measures (scalar measures derived
from logs).

◦ Cleanup: incomplete or inconsistent data is removed, such as action or probe occur-
rences (data lines) with missing values or features (data columns) with non discrim-
inating values.

◦ Standardisation: data is normalised or enhanced with metadata, in particular through
FAIRification5 (i.e to make it Findable; Accessible; Interoperable; Reusable).

◦ DE – Data Exploration: a manual scrutiny of the data is performed to highlight its
particularities.

◦ DA – Data Analysis: automated statistical or Machine Learning algorithms are ap-
plied to the data in order to perform anomaly detection (in unknown rare events such
as an abnormal access to a resource) or classification (discriminate known events such
as a known attack).

◦ Visualisation: the data or extractions thereof is presented to the user.

◦ Investigation: the expert, here the security analyst, performs computer-assisted com-
plementary inspection of the data to understand the output of the automated analysis
and to identify behaviours not characterised by automation.

3.2 VizNN - Visual data augmentation for Convolutional Neural Network

The VizNN pipeline, shown in Figure 1, consists of five steps: data import and clean-up;
selection of the features you want to keep; creation of images; preparation of images;
training of the CNN model.

Data import and cleanup The import and cleaning steps are similar to those of a Machine
Learning project.
After importing the data, missing values are completed or deleted. Categorical features
are then converted to numerical ones. A correlation analysis may be relevant to remove
unnecessary features. Finally, a ”label” column is added to each row for classification.

Selection of the features you want to keep Rather than converting the entire dataset into
images, a feature selection step is performed to only keep the columns that maximize
performance.

Therefore, a basic XGBoost model is trained in order to retrieve the list of most
important features on the model’s gain.
Our proposal is to create images with the N most important features. To create images,
this number cannot be a prime number since the width and the height have to be integers.
The data is then filtered so that only the N most important features are kept.

Creation of images The filtered DataFrame is converted to a list of grayscale Image
objects using PIL library6.
Images then undergo data augmentation through resizing with bicubic interpolation to
generate new pixels and therefore enlarge them.

5 https://www.go-fair.org/fair-principles/fairification-process/
6 https://pillow.readthedocs.io/en/stable/reference/Image.html

197

Fig. 1. Full pipeline process
Fig. 2. Image creation process

Fig. 3. Examples of augmentated feature images for VizNN

Preparation of images Several operations are performed on the images to transform them
into CNN inputs.
First, the list of Image objects is converted to a NumPy array. Second, the data is
split into a training and a testing dataset with the ”StratifiedShuffleSplit” method. It
shuffles and separates the data while respecting the proportion of each class. Thus, it
ensures that even with unbalanced data, models are trained and tested on all classes with
representative proportions.
Third, a dimension is added to the image so that it has three dimensions: width, height
and number of channels(1 for gray-scale images and 3 for RGB images). Finally, images
are normalized to have, for each pixel, values between 0 and 1.

Training of the CNN model The Convolutional Neural Networks is trained using the
images generated by the reference dataset.

4 Data Preparation and Exploration

Data exploration is performed by data cleaning and subsequent scrutiny through highly
efficient, through very widespread, learning algorithms: Random Forests and XGBoost.

4.1 The dataset

The CIRA-CIC-DoHBrw dataset entails two kind of traffic: HTTPS traffic without DOH
and DOH traffic. In case of DOH traffic, attacks and normal traffic were distinguished.
Thus, 4 subdatasets are considered: “non DOH”, “DOH”, “benign DOH” and “malicious
DOH”. These datasets include 33 features that define the traffic.

This study focuses on the classification of DOH traffic (benign or malicious). The
two corresponding CSV files are imported and combined into one DataFrame with an

198

added column entitled ”label”. Label 0 corresponds to benign DOH traffic and label 1
to malicious DOH traffic.
The dataset is unbalanced: there are 67% of attacks and 23% of benign traffic. Several
columns such as ”sourceIP”, ”DestinationPort” were removed since they are artifically
crafted for analysis stakes. Afterwards, the ”TimeStamps” column is transformed into
categorical data. In this way, four categories are used to describe the period of the day:
”morning”, ”day”, ”evening” and ”night”.

4.2 Random Forests

Random Forests is a classification algorithm based on ensemble learning, which consists
of using so-called “weak” models to make predictions and then to combine them into a
larger model. It operates by creating a given number of decision trees. More specifically,
an improved version of bagging is used in order to reduce the correlation between each
tree. The samples of the training data are provided as an input for each tree. The latter
then make their prediction. The results are aggregated using a majority rule which means
that the final predicted class is the class that was predicted the most by the individual
decision tree.

Fig. 4. The learning curves for Random Forests Fig. 5. The learning curves for XGBoost

Figure 4 shows the loss curve for Random Forests learning. Note that the ordinate
spans from 0 to 0.045, which makes it a very close zoom. Training curve do not stabilise
before 14,000 iterations.

The extraction of feature importance by gain, for the Random Forests algorithm,
shows that the main features are statistics derived from the packet length: mode, mean,
median and standard deviation. Note that the original dataset entails such aggregated
data, and not directly raw communication traces.

4.3 XGBoost

XGBoost stands for Extreme Gradient Boosting [5]. This algorithm is also based on
ensemble learning strategy. Gradient boosting is a subclass of boosting algorithms. In
boosting, each sub-model is weighted. This allows greater flexibility as it gives the ability
to give more importance to certain models in certain learning cases. Thus, this type of

199

models is particularly effective when the training data is not balanced. The specificity of
gradient boosting is that the contributions of the decision tree models to the final model
are calculated from the optimization of the gradient descent. This technique gives very
accurate results. XGBoost is considered one of the best algorithms in the current state
of the art classification algorithms.

Figure 5 shows the loss curve for XGBoost learning.
The extraction of feature importance by gain, for the XGBoost algorithm, shows that

the main features there are packet length mode, number of flow bytes received, duration,
as well as packet length statistics.

5 DA – Data Analysis with VizNN

This section presents the implementation of VizNN and the search for optimal model
parameters for the data preparation flow. The Convolutional Neural Networks takes
a series of images representing the features to be analysed as input. It is built by a
convolutional layer, maxpooling layer, renewed convolutional and maxpooling layers, two
flatten and dense neuron layers, and a two-value output layer. RELU activation is used.
Each experiment is performed with 50-folds cross-validation, a validation set consisting
of 20% of the training data and over 20 epochs. Figure 6 shows this architecture.

Fig. 6. VizNN architecture

Influence of image size To evaluate the impact of image size on the quality of the de-
tection, we first evaluate the detection performance for square images with side ranging
from 50 to 95 pixels. Images are created using all dataset features. Several models with
the same architecture are then trained on these images, each model testing a different im-
age size. The results indicate that image size has a significant influence on performance,
as shown in Figure 7. According to the scores, 75 × 75 is the size that maximises the
performance. Hence, the size is set as 75× 75 for the rest of the study.

Influence of the number of features Another image-specific parameter that can influence
the results is the number of features used to create images. Following the same procedure
as for the image size search, several models are trained with images created from different
number of features. For the dataset used for the experiment, keeping the 16 (out of 33)
most important features from XGBoost’s gain provides the best scores, as shown in
Figure 8. Also, the model is under-trained when there are not enough features because
the training images are not representative enough. On the contrary, if too many features

200

are kept, the model is over-trained.
For the rest of the study, the number of features is thus set to 16.

Fig. 7. Performance of VizNN according to the
size of the images

Fig. 8. Performance of VizNN according to the
number of features

Influence of the architecture Once the image-related parameters are set, several CNN
architectures are tested by changing the number of layers and filters. As shown on Fig-
ure 9, an architecture with 32 and 48 for the first and the second convolutional layer
respectively provides the best detection capability for the dataset under consideration.

Figure 10 shows the loss for resulting architecture. Learning stabilised after 12 epochs
for both training and validation.

Fig. 9. Impact of CNN architecture on perfor-
mance

Fig. 10. The learning curves for VizNN Model

These evaluations for parameter settings show that each parameter has a specific
optimum for optimising learning performance on the current dataset. It is highly likely
that these values are dependant on the data, and can not be considered as general
recommendations. Rather, the described process should be perform over again when the
security context changes.

6 Evaluation

This section presents the overall results of the experiments on CIRA-CIC-DoHBrw-2020
dataset. Learning performance is evaluated using the AUPRC (Area under the Preci-
sion Recall Curve, suitable for imbalanced data), precision and recall metrics. Train-
ing and prediction time is evaluated for the VizNN and the two reference algorithms,

201

Random Forests and XGBoost. Each score corresponds to an average over a 50-folds
cross-validation process.

Fig. 11. Comparison of scores by model with and without SMOTE

Figure 11 shows the comparison of the different models: Random Forests, XGBoost
and VizNN, without and with SMOTE (Synthetic Minority Over-Sampling TEchnique)
oversampling strategy.

The first observation is that XGBoost outperforms Random Forests and VizNN for
the three metrics AUPRC, precision and recall. Indeed, for the tests without SMOTE
XGBoost reaches 0.9998 in AUPRC and 0.9997 for the precision and the recall. Random
Forests comes in second place with an AUPRC of 0.9997, a precision of 0.9995 and a
recall of 0.9995 VizNN gets an AUPRC of 0.9991, a recall of 0.9990 and a precision of
0.9990. Concerning the experiments on the dataset increased by SMOTE, the results
are slightly different but the order remains unchanged. XGBoost provides an AUPRC of
0.9998, a precision of 0.9996 and a recall of 0.9996. Random Forests gets better results
and reaches the same scores than XGBoost, namely 0.9998 for its AUPRC, 0.9996 of
precision and 0.9996 for the recall. Finally, VizNN yields to 0.9986 in AUPRC, 0.9987 in
precision and 0.9987 in recall.

For all these evaluation rounds, VizNN proves to be very competitive though slightly
behind the reference algorithms – less that 0,08%.

Fig. 12. Comparison of training time Fig. 13. Comparison of prediction time

202

Figure 12 shows the respective training times of Random Forests, XGBoost and
VizNN. Training requires 9 seconds for Random Forests, 7.9 seconds for XGBoost, and
210.7 seconds for VizNN.

Figure 13 shows the respective prediction times of Random Forests, XGBoost and
VizNN. Prediction requires 0.04 seconds for Random Forests, 0.2 seconds for XGBoost,
and 2.2 seconds for VizNN.

In VizNN, the detection process is performed through a CNN which architecture is the
following one: a convolutional layer with 32 filters and RELU activation; a maxpooling
layer; a convolutional layer with 64 filters and RELU activation; a second maxpooling
layer; and three final filtering layers. The configuration of our experimental setup has
optimal results for 16 features, image size of 75x75 pixels and an architecture of 32 and
48 layers.

The evaluation of the proposed scheme shows that it is highly competitive with the
reference algorithms XGBoost and Random Forest. It is performed by detecting attacks
present in CIRA-CIC-DoHBrw-2020 dataset, which entails 60178 rows and 35 columns.
The AUPRC metric achieves 0,9991 for VizNN, against 0,99982 for XGBoost and 0,99975
for Random Forest. The use of SMOTE has a slightly positive impact on detection
capability in the Random Forest case only (AUPRC = 0, 99970), and slightly negative
impact for VizNN (0,9985) and for XGBoost (0,99976).

7 Conclusions

In this work, we propose VizNN, a new scheme for applying Convolutional Neural Net-
works to the detection of cybersecurity attacks through data augmentation. VizNN works
by generating images from the system logs. It deliberately ignore non-representative in-
formation such as IP addresses and ports, and uses one-hot encoding of categorical infor-
mation and timestamps. VizNN selects the most importance features as ranked by the
gain they bring to learning, converts this features to image and resize them for optimizing
the detection.

VizNN succeeds at integrating data augmentation in the analysis flow and at applying
a highly scalable detection approach through Convolutional Neural Networks. It enhances
the visibility of the analysis process by providing intermediate graphical representations
of the system states to the security analyst. Nonetheless, VizNN still experience several
limitations that need to be solved in future works. First, the graphical representations
need important experience to be readable by the security analyst, like medical X-Rays
require experienced practitioners. Second, the explicability and traceability of alerts to
original traces are still better performed by alternative solutions like Random Forests or
XGBoost.

The next step of this study is the evaluate to proposed scheme for massive datasets
(> 106 data entries) to challenge the scalability capability of the various schemes under
evaluation. Such an evaluation would be more representative of the amount of data that
a Security Operating Centre (SOC) handles daily.

References

1. Kravchik, M., Shabtai, A.: Detecting cyber attacks in industrial control systems using
convolutional neural networks. In: Proceedings of the 2018 Workshop on Cyber-Physical
Systems Security and PrivaCy. (2018) 72–83

203

2. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning.
Journal of Big Data 6(1) (2019) 1–48

3. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning aug-
mentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. (2019) 113–123

4. Breiman, L.: Random forests. Machine learning 45(1) (2001) 5–32
5. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the

22nd acm sigkdd international conference on knowledge discovery and data mining. (2016)
785–794

6. Hounsel, A., Borgolte, K., Schmitt, P., Holland, J., Feamster, N.: Analyzing the costs (and
benefits) of dns, dot, and doh for the modern web. In: Proceedings of the Applied Networking
Research Workshop. (2019) 20–22

7. Ariyapperuma, S., Mitchell, C.J.: Security vulnerabilities in dns and dnssec. In: The Second
International Conference on Availability, Reliability and Security (ARES’07), IEEE (2007)
335–342

8. Afek, Y., Bremler-Barr, A., Shafir, L.: Nxnsattack: Recursive {DNS} inefficiencies and
vulnerabilities. In: 29th {USENIX} Security Symposium ({USENIX} Security 20). (2020)
631–648

9. Banadaki, Y.M.: Detecting malicious dns over https traffic in domain name system using
machine learning classifiers. Journal of Computer Sciences and Applications 8(2) (2020)
46–55

10. Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., Wang, C.: Machine
learning and deep learning methods for cybersecurity. IEEE Access 6 (2018) 35365–35381

11. Gasmi, H., Bouras, A., Laval, J.: Lstm recurrent neural networks for cybersecurity named
entity recognition. ICSEA 11 (2018) 2018

12. Kwon, D., Natarajan, K., Suh, S.C., Kim, H., Kim, J.: An empirical study on network
anomaly detection using convolutional neural networks. In: 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), IEEE (2018) 1595–1598

13. Berman, D.S., Buczak, A.L., Chavis, J.S., Corbett, C.L.: A survey of deep learning methods
for cyber security. Information 10(4) (2019) 122

14. Ferrag, M.A., Maglaras, L., Moschoyiannis, S., Janicke, H.: Deep learning for cyber security
intrusion detection: Approaches, datasets, and comparative study. Journal of Information
Security and Applications 50 (2020) 102419

15. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority
over-sampling technique. Journal of artificial intelligence research 16 (2002) 321–357

16. Jakab, T., Gupta, A., Bilen, H., Vedaldi, A.: Unsupervised learning of object landmarks
through conditional image generation. In: Advances in neural information processing sys-
tems. (2018) 4016–4027

17. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: International
conference on artificial neural networks, Springer (2011) 44–51

18. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks. arXiv preprint arXiv:1406.2661
(2014)

19. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial networks. Communications of the ACM 63(11) (2020)
139–144

20. Catak, F.O., Ahmed, J., Sahinbas, K., Khand, Z.H.: Data augmentation based malware
detection using convolutional neural networks. PeerJ Computer Science 7 (2021) e346

21. Lim, S.K., Loo, Y., Tran, N.T., Cheung, N.M., Roig, G., Elovici, Y.: Doping: Generative data
augmentation for unsupervised anomaly detection with gan. In: 2018 IEEE International
Conference on Data Mining (ICDM), IEEE (2018) 1122–1127

22. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders.
arXiv preprint arXiv:1511.05644 (2015)

204

Towards generating complex programs represented as
node-trees with reinforcement learning

Andreas Reich and Ruxandra Lasowski

Hochschule Furtwangen University
reich@digitalmedia-design.com

ruxandra.lasowski@hs-furtwangen.de

Abstract. In this work we propose to use humanly pre-built functions which
we refer to as nodes, to synthesize complex programs. As e.g. in the node-tree
programming style of Houdini (sidefx.com), we propose to generate programs by
concatenating nodes non-linearly to node-trees which allows for nesting functions
inside functions. We implemented a reinforcement learning environment and per-
formed tests with state-of-the-art reinforcement learning algorithms. We conclude,
that automatically generating complex programs by generating node-trees is possi-
ble and present a new approach of injecting training samples into the reinforcement
learning process.

Keywords: Neural program synthesis; node-trees; machine learning; reinforce-
ment learning; supervised learning; sample injection

1 Introduction

Many modern computer programs, especially in the 3D sector, offer users to interact with
their software via so-called nodes, constructing so-called node-trees. Nodes are atomic
parts of node-trees. Every node represents a function, a pre-programmed sequence of
computer code visually. Node-trees are a visual high-level representation of non-linear
sequences of nodes and are simpler to understand then regular code [1]. Due to the
increasing prevalence of nodes in computer software, the idea arose to utilize machine
learning to automatically generate node-trees with neural networks. Because nodes rep-
resent computer code, automatically generating node-trees with AI means automatically
generating computer code with AI. Therefore, our approach is classified in the field of
neural program synthesis.

The task of program synthesis is to automatically find programs for a given program-
ming language that satisfy the intent of users within constraints [2]. Researchers like
Bunel et. al. use supervised and reinforcement learning techniques to generate programs
by concatenating low-level nodes linearly [3]. In contrast to their approach we propose
to to generate programs concatenating high-level nodes non-linearly because this allows
for more complex programs when using the same count of nodes. Our approach aims for
automating the manual node-tree generation pipeline with AI that uses non-linear and
high-level nodes. Using high-level nodes in the generation process is beneficial:

When compiled, all non-linear node-trees are transformed into linear sequences of
code. The use of high-level nodes that consist of many low-level nodes is beneficial for
certain use cases since more complex tasks can be solved with high-level nodes than
low-level nodes (if the correct nodes are available) because more code is executed.

Most existing node-driven software solutions have a highly optimized set of high-
level nodes that are software-specific. Consequently, users can perform a great variety

205

of tasks solely using few domain-specific nodes. Automatically creating and combining
these specialized nodes with the help of AI would save users a lot of time and resources,
while keeping full editability of generated node-tress.

Developing algorithms that search for valid node-trees in a search space (space of all
possible connections) is challenging because the search space grows exponentially when
adding nodes or depth and best regular program synthesis algorithms like Chlorophyll++
are currently able to find programs in a search space of 1079 [4]. This means if the
aforementioned algorithm would work with nodes it could reliably find programs out
of a pool of 100 individual nodes and a depth of 39 nodes. According to Bod́ık finding
programs in a search space of 1079 is not sufficient to solve complex problems, e.g. like
implementing the MD5 hashsum algorithm, located in a search space of 105943 [4], since
the algorithm works with low-level functions.

However, the generation of programs becomes easier if few high-level functions, that
achieve the same result as many low-level functions, are combined. For instance, a pro-
gram could just consist of 5 pre-assembled, high-level functions that themselves consist
of hundreds of lines of code. Most algorithms could find such a program, just consisting
of 5 nodes, with ease. The complexity of finding valid programs is constrained to the size
of the search space. This means the complexity of finding node-trees built from high-level
and low-level nodes are equal since the complexity is constrained to valid connections.
Nonetheless, training an AI with high-level nodes is more costly computationally since
more code needs to be executed.

This paper strives to point out the benefits of working with high-level over low-level
functions. Performing some tests with the 3D Engine Blender and utilizing a node-based
modeling tool showed that a specific node-tree in Blender with as little as 4 nodes already
represents more than 1000 lines of computer code, whereas approaches from the Google
Brain team are able to reliably generate programs with up to 25 lines of code with AI
[5]. Figure 1 visualizes the difference between the count of nodes with the complexity of
the resulting programs.

figure 1: complexity of high-level and low-level nodes

A possible real-world use case for using automatically synthesized node-trees could be
the software Substance Designer with a completely node-driven workflow for texture and
material creation. The Substance Designer documentation states that there are about
300 individual (high-level) nodes, yet also that most of these nodes only find application
in rare, specific use cases [6]. Assuming one could build basic substance materials with

206

50 different nodes and a node-tree length of 40, the complexity of the search space would
be 5040 ≈ 1068 – less than what is currently possible in regular program synthesis.
Nevertheless, a lot of the Substance Designer nodes have internal states that need to be
adjusted, so the number of nodes necessary increases since changing an internal state can
also be represented by the creation of a specific node.

Assuming one could create nearly all common Substance Designer materials by using
all 300 nodes and 300 extra nodes that represent internal state changes, the creation of
node-trees with lengths of 100 nodes leads to a search space of 600100 ≈ 10278. Compared
to solving MD5 with low-level functions and a search space complexity of 105943 [4], a
search space with the complexity of 10278 would still be way out of scope, yet more
realistic to be achievable in the upcoming decades.

Besides Substance Designer, there are many node-based software solutions that offer
a set of highly specialized nodes for different use cases. Making use of a predefined
set of nodes is beneficial since most applications with node collections are capable of
performing almost all tasks in a specific domain. We therefore identified certain areas
where generating nodes with AI could be useful:

– Parameterization of 3D meshes (input: 3D mesh, output: node-tree approximating
the modelling steps necessary to generate the mesh)

– Parameterization of photoscanned point clouds (input: point cloud, output: node-tree
approximating the modelling steps necessary to generate the point cloud)

– Creation of 2D materials from images (input: 2D image, output: node-tree approxi-
mating a PBR-material)

– Reverse-engineering of functions and programs for optimization (input: program/function,
output: optimized node-tree that approximates the program/function)

2 Purpose and Methods

We start our research for node-tree synthesis with the task of calculating a number with
combinations of mathematical low-level nodes, e.g. plus and multiplication nodes, that
are organized in a tree. In this way, we first heavily abstract more complex tasks to show
feasibility. Figure 3 shows a node-tree reliably generated by our AI. We do not directly
try to synthesize node-trees for complex graphic industry software because they require
pipeline API’s that could be implemented once the feasibility is shown. The purpose of our
research is to show that we are able to automatically create node-trees from nodes with
AI. Furthermore we want to point out the benefits of creating more complex programs
by using high-level nodes instead of low-level nodes. Positive results could enable node-
driven software solutions to utilize AI to automate processes that currently are solely
performed by human users.

We use the qualitative method to investigate the state-of-the-art through literature
research, especially concerning the comparison of publications and results of other re-
searchers. Furthermore, we use the quantitative method to build experiments to prove
that creating node-trees with supervised and reinforcement learning is possible.

To investigate the feasibility of generating node-trees with AI we implement an Ope-
nAI Gym [7] reinforcement learning environment for automated node-tree generation and
perform about 50 training sessions over the course of nine months. We use the reinforce-
ment learning neural network architecture DDPG [8] and adjust its parameters.

207

To detect valid programs our actor explores a space of 825 (≈ 3.7 ∗ 1022) in which
it can perform 25 actions out of a pool of 8 individual actions. The following types of
actions can be performed by the network:

• creating and automatically
switching to new nodes

• changing internal states of
nodes

• switching back to the
previous node

figure 2: All actions that can be performed by the network

The following states are observable by the network:

• specification/goal number • relative distance to target • number of nodes in total
• count of open connections • type of the active node • id of the active node

• internal state of the active node

Since our actor is not capable of finding valid samples without guidance we use an ap-
proach which we refer to as sample injection (figure 4). During exploration we randomly
inject a valid action sequence (complete episode), which fulfils a given specification, into
the current batch instead of the actors own chosen action sequence. This yields good
results, since the actor learns from these optimal action sequences and is still capable
of exploring the environment. This method is a combination of supervised- and rein-
forcement learning. The supervised samples are random sequences of valid connections
between nodes that lead to a result (node-tree) which can be used as a specification for
training. Therefore the actor can learn how to use which node in which context in or-
der to fulfill a specification. Due to this on-the-fly generation process no data collection
is necessary. Moreover the actor can learn how to use all available nodes in different
contexts.

figure 3: node-tree found reliably in a search
space of the size of 825

(8 individual actions and max. 25 actions) figure 4: sample injection

Because the search space in which valid node-trees can be found is very large our
machine learning agent only receives sparse rewards and needs to learn from many sam-
ples. Therefore we decrease the learning rate to 10−5 and increase the replay buffer size
to 107. For the most successful training sessions we train the network for ≈ 20 million
steps. We use the following reward function, which rewards the actor for approximating
a specification. Since we use mathematical nodes the goal number serves as specification
and the current result of a node tree can be used to calculate the current distance which

208

is minimized:

((goalNumber − currentDistance)− (goalNumber − previousDistance))

goalNumber
∗ incentive

DDPG uses the random Ornstein-Uhlenbeck process [9] which results in few valid
programs to be found. We therefore complement the process with a supervised process
to inject samples to enhance results. For most training sessions we inject samples 10%
of the time instead of the action of the neural network. To reduce the impact of outliers
we use the Huber loss [10] to enhance regression quality.

Figure 5 shows the network architecture of DDPG for the actor (left side) and the
critic (right side). Figure 6 shows the parameters used for training. Figure 7 shows the
pseudocode of DDPG with sample injection.

figure 5: DDPG network architecture: left: actor, right: critic

figure 6: parameters used for training DDPG

3 Results

Our experiments show that our trained AI agent is capable of generating certain node-
trees reliably from low-level nodes when given a specification. Some generated node-trees
are found with 100% accuracy in regard to a given specification whereas other node-
trees approximate a given specification to some degree. Our results therefore show the
feasibility of generating node-trees from low-level nodes with AI. Hence, We observe
that more complex specifications, that need more nodes to be solved, lead to decreasing
accuracy of our agent (table 1). This is due to the fact that the search space grows
exponentially.

209

figure 7: DDPG with sample injection pseudocode

4 Limitations

Due to time and hardware limitations we are not able to find programs in a search space
of 1079 and therefore work with a smaller search space. Furthermore, we are only able
to set up our experiments using low-level nodes. However, the size of the search space
of high- and low-level nodes are equal when the same count of actions and nodes are
available. Therefore, the results of our experiments can be transferred and therefore also
apply to high-level nodes.

Table 1. Node-trees reliably generated by our algorithm in a search space with the size of 825

and their accuracy in relation to a given specification (sorted by accuracy)

Specification Exemplary action trajectory Accuracy

1,2,3,4,5,6,9 add, num, set(2), back, num, set(2) 100%
10 add, multiply, num, set(3), back, num, set(3) 90%
7,8 add, add, num, set(3), back, num, set(3), back, num, set(2) 86%
11 add, multiply, num, set(3), back, num, set(3) 81%
12 add, multiply, num, set(3), back, num, set(3) 75%

210

5 Conclusions

In this work we use reinforcement learning in combination with supervised learning and
the technique of sample injection to tackle the problem of solving the combinatorial
search over node-trees that lead to the user specified result. We think that our technique
could be used to ease many tasks in computer graphics like 3D mesh generation, VFX
compositing, material generation and node-tree based scripting. We show that it is pos-
sible to automatically create node-trees from nodes with AI. Furthermore we point out
that the size of the search space when using low-level nodes and the size of the search
space when using high-level nodes are equal. This means that one can create more com-
plex programs with the same amount of high-level nodes since high-level nodes consist
of more lines of code. We therefore conclude that our technique will find application in
node-driven software solutions and will leverage academia’s interest in node-based neural
program synthesis.

References

1. Blackwell, A.F.: Metacognitive theories of visual programming. IEEE symposium on visual
languages (1996) 240–244

2. Gulwani, S.: Program synthesis. FNT in Programming Languages 4 (2017) 1–2
3. Bunel, R., Hausknecht, M., Devlin, J., Singh, R., Kohli, P.: Leveraging grammar and rein-

forcement learning for neural program synthesis. ICLR 2018 (2018)
4. Bod́ık, R.: Program synthesis. opportunities for the next decade. (2015)
5. Abolafia, D., Norouzi, M., Shen, J., Zhao, R., Le, Q.V.: Neural program synthesis with

priority queue training. (2018)
6. Adobe: Substance designer - node library. (2021)
7. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba,

W.: Openai gym (2016)
8. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. (2015)
9. Uhlenbeck, G.E., Ornstein: On the theory of the brownian motion. (1930)

10. Huber, P.J.: A robust version of the probability ratio test. The Annals of Mathematical
Statistics (1965)

211

Use of Artifical Intelligence and Image Segmentation
for 3-Dimensional Modeling

Michael Weber1,2, Tobias Weiß1,2, Franck Gechter2, and Reiner Kriesten1

1 Institute of Energy Efficient Mobility
Hochschule Karlsruhe - University of Applied Sciences, HKA

Karlsruhe, Germany
{michael.weber, tobias.weiss, reiner.kriesten}@h-ka.de

2 CIAD (UMR 7533)
Univ. Bourgogne Franche-Comte, UTBM

Belfort, France
LORIA-MOSEL (UMR 7503)

Université de Lorraine
Nancy, France

franck.gechter@utbm.fr

Abstract. To use Augmented Reality in an automotive vehicle for testing Ad-
vanced Driver Assistance Systems a new development approach with high com-
puting power is needed. Reasons for this are a high vehicle speed as well as fewer
possible orientation points on an urban test track compared to using AR appli-
cations inside a building. With the help of Image Segmentation, Artificial Intelli-
gence for Object Detection, and Visual Simultaneous Localization and Mapping a
3-Dimensional Model with precise information of the urban test site is to be gener-
ated. Through the use of AI and Image Segmentation, it is expected to significantly
improve performance like computing speed and accuracy for AR applications in
automotive vehicles.

Keywords: Artificial Intelligence, Augmented Reality, Advanced Driver Assis-
tance Systems, Visual Simultaneous Localization and Mapping, 3-Dimensional
Modeling, Image Segmentation, Object Detection

1 Introduction

Camera-based Advanced Driver Assistance Systems (ADAS) such as the active lane de-
parture warning system and traffic sign recognition support the driver, offer comfort,
and take responsibility for increasing road safety. These complex systems go through an
extensive testing phase, which results in optimization potential regarding quality, repro-
ducibility, and costs. ADAS in the future will support ever-larger proportions of driving
situations in increasingly complex scenarios. Due to the increasing complexity of vehicle
communication and the rising demands on these systems in terms of reliability to func-
tion safely even in a complex environment and to support the driver and increase safety,
the test scenarios for ADAS are constantly further developed and adapted to higher re-
quirements. European New Car Assessment Programme (Euro NCAP) has introduced a
series of new safety tests for ADAS into its program and created a road map until the
year 2025 [1] [2].

Today’s test methods can be separated into two categories. On the one hand, the test-
ing of the ADAS with the help of virtual worlds and on the other hand, the testing in

212

reality on the test track using objects in real life. The central idea of the virtual test
procedure is to transfer vehicle behavior to virtual test drives as realistically as possible.
The approach for virtual tests is aimed at benefit from the advantages of simulation in
terms of reproducibility, flexibility, and reduction of effort. In this way, specifications and
solutions derived from them should be able to be tested and evaluated at an early stage
of the development process. The use of suitable simulation methods enables the efficient
design, development, and application of vehicles and vehicle components. However, vir-
tual development methods cannot yet replace real-life driving tests in all respects. Due
to the complex physical conditions in which a vehicle is transferred when testing ADAS,
real-life driving tests are still necessary to the current status. For example, the weather,
the surface texture of the road, and other influencing parameters take a decisive role in
the evaluation process of ADAS test drives [3] [4].

The presented research background of this paper combines the advantages of ADAS-tests
in a virtual simulation and these of ADAS-tests in a real environment. The camera im-
ages of the vehicle are augmented with additional virtual information. The augmentation
of virtual road lanes allows, for example, the testing of a lane departure warning sys-
tem independent of the test track. Scenarios such as the appearance of temporary lane
markings or the absence of sections can be tested on the same test area. Narrowing and
widening of lane markings can be represented as well as international differences between
road markings. For testing traffic jam assistance systems, vehicles driving ahead can be
augmented with camera images. In the first phase of testing, second vehicles including
drivers can thus be dispensed with, reducing the costs of the tests and increasing the
safety of the test engineers. Furthermore, ADAS-test cases with traffic signs as well as
pedestrians and cyclists can be augmented situationally and quickly.

Furthermore, by using Augmented Reality (AR) for testing camera-based ADAS, new
possibilities for testing complex, critical, and even forbidden test cases arise. For example,
for testing the lane departure warning system, the traffic lane can be inserted into the
image in any given width, regarding the lane and the white stripe itself. Therefore it is
possible to test the system to its limits, a feature not possible by testing in reality on the
test track.

For the use of AR, the system must be located (position and orientation) in its environ-
ment. This technology requires precise 3-dimensional (3D) modeling based on existing
sensors. Usually, AR-applications are designed for human users and are mostly used inside
buildings. Through a variety of orientation points inside a building and the movement
speed of the user at walking speed, this technology is already quite advanced. The ap-
proach of this research project, by contrast, is being developed for a Electronic Control
Unit (ECU), which requires a novel development approach with high computing power
due to the high vehicle speed. Furthermore, compared to using AR-applications inside
a building, fewer orientation points are available on a test site, so a new concept has to
be developed here as well. The target of research described in this paper is to use Image
Segmentation to analyze the environment of an mostly urban test site. Based on these
results, a 3D model of the environment is to be created. In a further step, the 3D model
is to be added by objects such as traffic signs, road markings, pedestrians, cyclists, etc.
The use of Artificial Intelligence (AI) should provide precise information on the depth of
the environment using 2-dimensional (2D) image sequences. Through the use of AI and
Image Segmentation, it is expected to significantly improve the performance like com-
puting speed and accuracy of the environment model. Moreover, conventional algorithms
such as Simultaneous Localization and Mapping (SLAM) will be used for comparison
within the research project.

213

Fig. 1. Augmented Reality application showing a possible scenery

The main contributions of this paper include:
1. An overview of challenges for the use of AR in the automotive vehicles with regard to
camera-based ADAS.
2. An introduction of a novel approach based on visual SLAM (vSLAM) and using of AI
for object identification and thus increasing the accuracy and reproducibility of ADAS
in automotive vehicles.

2 Necessary Criteria for Augmented Reality

To use AR in ADAS of automotive vehicles different criteria are necessary compared
to conventional AR-applications like on a smartphone. This section will describe the
contrasting criteria for this approach.

2.1 Augmented Reality for Conventional Applications

According to a proposal by Azuma, Augmented Reality can be defined as a combination
of three fundamental features: the combination of real and virtual worlds and precise
three-dimensional registration of the real and virtual objects, both in an interactive real-
time environment [5].The basic principle of AR is best known by the mobile phone game
Pokémon Go, published in 2016 by Niantic [6]. Within this game, the users can interact
with digital creatures through their smartphones. These creatures are placed virtually in
the environment of the user. Such an AR application can be seen in Figure 1 [6]. Figure
2 shows the three parts of the algorithms behind augmented reality: image analysis, 3D
modelling, and augmentation.

The image analysis serves to detect points or regions of interest within the given im-
age. Feature detections like corner detection or edge detection are often used for this

214

Fig. 2. Augmented Reality steps

step [7]. With the results of the image analysis, a three-dimensional model of the envi-
ronment is created. The kinds of algorithms used for this step vary depending on the
type of AR application. For AR in unknown locations, simultaneous localization and
mapping (SLAM) or structure from motion (SfM) algorithms are widely spread [8]. The
augmentation is based on the results of the 3D modelling. The scene model is usually
provided as a positional description of a plane or a coordinate system representing the
real world [9]. With this information, a virtual object can be placed upon the plane or in
the coordinate system with adequate characteristics such as size and orientation. After
the object placement, virtual content is combined with the real-world image [10].

There are several publications of applications for AR. These applications vary heav-
ily in their fields, from the usage of AR in psychology [11] to the use in operating rooms
in hospitals [12] to mobile games [6] to military applications [13]. What all these appli-
cations have in common is that the reality of a human is augmented. With the human
as the user of AR, there are some implicit consequences for the application. One of them
is that the human user is, in most cases, lenient towards virtual objects not placed pre-
cisely within a small range of error. Furthermore, the velocity of human movement and
therefore the distance travelled by any given time is limited. By these restrictions, the
requirements for localization, mapping, object placement, and runtime are not as high
as in an automotive environment, as is discussed in the next chapter.

2.2 Augmented Reality for Advanced Driver Assistance Systems (ADAS)
in Automotive Vehicles

For the use of AR in automotive vehicles and the associated specific use of ADAS-sensor
technology on conventional test tracks, special criteria are to consider. For instance, the
test sites are located outside of buildings and are usually therefore low textured [14]. In
addition, there are quick scene changes due to the speed of the automotive vehicle. These
points lead to the fact that conventional AR-SLAM approaches cannot perform the nec-
essary localization- and mapping-process for SLAM-Algorithm (a reference to section 3)
with the desired accuracy and resolution. Due to the desired integration of the presented
approach into a serial automotive vehicle without any additional sensor technology, the
aim is to generate information about the depth and texturing of the environment based
solely on the installed camera. This camera is usually a mono-view-camera system that is
often integrated into the rear view mirror of the automotive vehicle. Mono-view-camera
systems are established vehicle hardware, which is mostly used in low-priced series mod-
els due to their compact design, high resolution, robustness, long-range and low cost.
On the other hand, high-priced vehicles use stereo-view-camera systems, which enable
spatial vision like a human [15].

In addition to the low textured environment of the test track and the fast change of

215

scenery, other aspects such as weather influences like rain and the sun position, soiling
of the windshield, bumps of the road surface and the lack of road markings have to be
considered [16]. Furthermore, when augmented reality is used in automotive vehicles, the
end-user is not the human driver, but an ECU. This implies that very high accuracy
and a high realism, e.g. correct shadowing and occlusion of the augmented objects are
required in the overall process [17]. In comparison to a human driver, the ECU must not
detect any difference between reality and the augmented reality, otherwise, the ECU will
be transferred to an error state. It is also highly relevant to consider the constant further
development of ADAS, which persistently demands increased requirements for realistic
test scenarios. This approach aims to achieve the same driving behavior as in reality.

In addition to accuracy, the runtime of the overall algorithm is also of great impor-
tance. Nowadays camera systems work with a frame rate of 30 to 60 Frames per Seconds
[fps]. The resulting maximum overall runtime for handling one frame can be found in
Table 1.

Framerate Maximum runtime

10 fps 1
10

s = 0.1000 s

30 fps 1
30

s = 0.0333 s

40 fps 1
40

s = 0.0250 s

45 fps 1
45

s = 0.0222 s

50 fps 1
50

s = 0.0200 s

60 fps 1
60

s = 0.0167 s

Table 1. Several Framerate and the according maximum runtime.

For a successful evaluation of ADAS-test scenarios, the AR system must be able to orient
itself in the environment very accurately [18]. One cause is the missing feedback about
the impact intensity of test dummies when crashing them. For this reason, it is necessary
to know the exact position of the car on the test track to calculate the intensity of the
impact based on the braking distance. When using Euro NCAP test scenarios, velocities
up to

130
km

h
=̂ 36.111

m

s
(1)

are tested. The AR algorithm must have a faster runtime compared to the speed of the
camera system. The distance d the vehicle covers within a frame at any given velocity
and framerate can be calculated by:

d =
vV ehicle [

m
s]

Framerate [frames
s]

(2)

At a speed of 130 km
h and a camera framerate of 30 fps, the vehicle travels

d =
36.111 [ms]

30 [frames
s]

= 1.204
m

frame
. (3)

216

Accordingly, for a framerate of 60 fps at the same speed, a distance of

d =
36.111 [ms]

60 [frames
s]

= 0.602
m

frame
(4)

is covered. A deceleration of one frame means a deviation of the test results of 0.602 to
1.204 meters.

Based on the high speed of the car and the camera, and the high need for precision in
object placement, it is clear that the requirements for this application of Augmented
Reality are far more strict than for the usual application for human users.

3 Development Approach

Simultaneous Localization and Mapping (SLAM) is a method for obtaining the 3D struc-
ture of an unknown environment and sensor motion in the environment. This system
was initially intended to achieve autonomous control of robots [19]. Due to continuous
development, SLAM-based applications have also found their way into mobile device ap-
plications and self-driving cars. To increase the accuracy of SLAM algorithms, various
approaches allow the integration of different sensors, such as laser range sensors, rotary
encoders, inertial sensors, Global Position Systems (GPS), and cameras. These algo-
rithms are summarized in the following papers [20] [21] [22] [23]. Since cameras primarily
are used for the most part in automotive vehicles, the approach presented in this paper
is based on a subcategory of SLAM algorithms - visual Simultaneous Localization and
Mapping (vSLAM). In the following section, the State of the Art for vSLAM-techniques
are described. Based on these methods a new approach for AR using SLAM in automotive
vehicles is presented.

3.1 State of the Art - Visual Simultaneous Localization and Mapping
(vSLAM)

The approach of vSLAM uses only visual inputs to perform localisation and mapping.
This means that no vehicle sensors other than the vehicles camera system are needed to
create a 3D model of the environment thus making this approach more flexible than LI-
DARS, Radars, and Ultrasonics. The framework of vSLAM-algorithm is mainly composed
of three basic modules: Initialization, Tracking, Mapping, and two additional modules:
Relocalization and Global Map Optimization (including Loop Closing) [24].

Basic modules:

1. Initialization: To use vSLAM, the fundamental step is to define a specific coordinate
system for camera position estimation and 3D reconstruction in an unknown environ-
ment. Therefore, the global coordinate system should be defined first during initializa-
tion. A part of the environment is therefore reconstructed as an initial map in the global
coordinate system [24].
2. Tracking: After the initialization process, tracking and mapping are performed. Track-
ing involves following the reconstructed map in the image to continuously estimate the
camera position of the image to the map. For this purpose, distinctive matches between
the captured image and the created map are first determined by feature matching or
feature tracking in the image [24].

217

3. Mapping: The mapping process expands the map by understanding and calculating
the 3D structure of an environment when the camera detects unknown regions where
mapping has not been done before [24].

Additional modules:

4. Relocalization: When tracking has failed, Relocalization is required. Reasons for this
can be, among others, fast camera movements. In this case, relocalization makes it pos-
sible to recompute the current camera position about the reconstructed map [24].

5. Global Map Optimization (including Loop Closing): The map usually contains a cu-
mulative estimation error corresponding to the distance of the camera movement. To
eliminate this error, Global Map Optimization is usually performed. In this method, the
map is refined considering the consistency of the whole map information. If previously
recorded map elements are recognized, loops are closed and the cumulative estimation
error can be corrected from the beginning to the present. Loop Closing is a method for
obtaining reference information. While closing loops, a closed loop is first searched by
comparing a current image with previously acquired images. Generally, relocalization is
used to recover the camera position and loop detection is used to obtain a geometrically
consistent map. Pose Graph Optimization is widely used to suppress the cumulative error
by optimizing the camera positions. Bundle Adjustment (BA) is also used to minimize
the map reprojection error by optimizing the map and the camera positions. In large
environments, this optimization method is used to efficiently minimize estimation errors.
In small environments, BA can be performed without loop closure as the cumulative
error is small [24].

For the use of SLAM in automotive vehicles and the associated properties such as fast
scene changes and low texturing of the environment, various approaches are available
using vSLAM-Algorithm, which can be found in [14]. In this paper, different SLAM ap-
proaches are compared based on accuracy and robustness, among others. Some other
approaches, which are not compared in [14] but seem promising for the presented ap-
proach in this paper, are briefly described in the following:

ORB-SLAM:

The ORB-SLAM algorithm was first presented in 2015 and seems to be the current
state of the art as it has higher accuracy than comparable SLAM algorithms [25]. Here,
ORB-SLAM represents a complete SLAM system for monocular, stereo, and RGB-D
cameras. The system operates in real-time and achieves remarkable results in terms of
accuracy and robustness in a variety of different environments. ORB-SLAM is used for
indoor sequences, drones, and cars driving through a city. The ORB-SLAM consists of
three main parallel threads: Tracking, Local Mapping, and Loop Closing. A fourth thread
can be created to execute the BA after a closed loop. This algorithm is a feature-based
approach, which represents the detected points in a three-dimensional MapPoint [14].
Figure 3 shows a MapPoint, which is created using image sequences captured in-house.
The MapPoint shows a recognized house in an urban environment using ORB2-SLAM.
Various advancements and improvements in terms of accuracy, robustness, etc. can be
found in further developments based on this approach of ORB-SLAM (ORB2-SLAM
[18] and ORB3-SLAM [14]). While the performance of ORB-SLAM is impressive in well-
structured sequences, error conditions can occur in poorly structured sequences or when
feature points temporarily disappear, e.g., due to motion blur [26].

218

Fig. 3. MapPoint with red dots and green line for trajectory based on ORB2 with own image
material in an urban environment

DS-SLAM:

ORB-SLAM exhibits excellent performance in most practical situations. However, some
problems are not solved by the ORB-SLAM. First, the ORB-SLAM algorithm exhibits
weaknesses in exceptionally dynamic and harsh environments. On the other hand, the
map model created is based on geometric information like the MapPoint in Figure 3. This
MapPoint does not provide a higher-level understanding of the environment. The DS-
SLAM approach, firstly presented in 2018, combines the ORB-SLAM with the Semantic
Segmentation approach using artificial intelligence to achieve a higher-level understand-
ing of the environment. This approach further intends to increase the robustness of the
SLAM system in dynamic environments. Based on ORB2-SLAM the DS-SLAM consists
of basic SLAM-Modules like Tracking, Mapping, and Loop-Closing. Furthermore, DS-
SLAM has two additional threads like Sementic Segmentation and Dense Map Creation.
Using these additional threads improves the localization and mapping concerning robust-
ness and accuracy in dynamic scenarios [26].

PL-SLAM:

Another approach to increase accuracy in poorly textured environments is PL-SLAM
(Point and Line Simultaneous Localisation and Mapping), firstly presented in 2017. PL-
SLAM extends the point-based approach known from ORB-SLAM with a line-based
method. This line-based approach enables an improvement in terms of occlusions and
false detections. Besides the improvement in poorly textured environments, this ap-
proach also shows increased performance in very well-textured environments, without
significantly degrading the efficiency of this algorithm. Like the ORB-SLAM algorithm,

219

the PL-SLAM has the basic SLAM modules for initialization, tracking, mapping, and
loop closing. The extension of this approach is to use line-based algorithms in parallel
with the point-based algorithms in each SLAM module. This approach ensures that the
resulting map is more valuable and more diverse in 3D elements to derive important
higher-level scene structures such as planes, voids, ground surfaces, etc. [27].

Based on the presented approaches in this section, in a further step single features of
these SLAM-Algorithm are to extend and insert in a new approach for testing of ADAS
in automotive vehicles. An introduction for the next steps is presented in the following
section.

3.2 Use of Object Detection and vSLAM for AR in Automotive

For the use of AR in automotive vehicles, the approach should consist of using a state-
of-the-art method and extending the feature point detection with an object detection.
This should improve the following criteria:

- Robustness against blurred effects.
- Increase the accuracy of the 3D environment through improved depth information.
- Detect occlusions and improve 3D environment detail.
- Achieve robustness against weather effects.
- Increase realism for the control unit as end device.
- Increase computational speed with improved accuracy.
- Achieve higher-level understanding of the environment.

To achieve these criteria, the following features are to be extracted from the vSLAM
approaches presented and examined in more detail for further research investigations:

ORB-SLAM:

- State-of-the-Art method to generating a MapPoint.
- Feature-Point approach should represent the basic framework.
- Selection of which criteria can be used from ORB or the further developments ORB2
and ORB3 based on it.

DS-SLAM:

- Approach of AI and Image Segmentation to generate an Object Detection.
- Creation of a Dense-Map for overlay on MapPoint.
- Achieve a higher-level understanding of the environment.

PL-SLAM:

- Based on edges to improve occlusions and improve object detection.
- Better 3D-reconstruction of objects through the detection of edges, points and lines.
- Improved realism through correct lighting and shadowing of augmented objects.

By cleverly combining the individual elements of the previously known SLAM algorithms,
augmented reality in automobiles could be used in high-speed ADAS tests. In addition
to the increased computing speed, increased accuracy should be achieved to be able to

220

Fig. 4. Top: Original Image in an Urban Environment;
bottom left: Feature-Point-Detection using ORB2-SLAM-Algorithm;

bottom right: Object Detection using Image Segmentation

make a meaningful assessment of the performance of the ADAS tests. Figure 4 shows the
original image, the feature point detection of the ORB2 algorithm, and the image seg-
mentation used so far for object detection. The next step is to combine these approaches
using AI.

4 Conclusion

In this paper, we have proposed an approach to use Augmented Reality in automotive
vehicles. We modeled the problem of creating an urban environment to use AR for testing
in high-speed ADAS. Our approach is based on a combination of vSLAM-Algorithms like
ORB-SLAM, DS-SLAM, and PL-SLAM within the combination of Artificial Intelligence
to use Object Detection. This should help to generate a better overall performance con-
cerning computing speed and accuracy.

The creation of a virtual 3D environment with a superior understanding of the individual
objects should, in a further step, make it possible to augment other sensors such as the
car’s radar and lidar with objects in addition to the camera data. This should once again
increase the overall performance of the entire system.

221

References

1. Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of
driver assistance systems: Review and future perspectives. IEEE Intelligent Transportation
Systems Magazine (2014) 6–22

2. Schuldt, F., Saust, F., Lichte, B., Maurer, M., Scholz, S.: Effiziente systematische testgener-
ierung für fahrerassistenzsysteme in virtuellen umgebungen. (2013)

3. Kim, B.J., Lee, S.B.: A study on the evaluation method of autonomous emergency vehicle
braking for pedestrians test using monocular cameras. Applied Sciences (2020)

4. Miquet, C., Schwab, S., Pfeffer, R., Zofka, M., Bär, T., Schamm, T., Zöllner, J.: New test
method for reproducible real-time tests of adas ecus: ”vehicle-in-the-loop” connects real-
world vehicle with the virtual world. (06 2014)

5. Azuma, R.T.: A Survey of Augmented Reality. Presence: Teleoperators and Virtual Envi-
ronments (08 1997) 355–385

6. Krüger, J., Möllers, F., Vogelgesang, S.: Pokémon go. Informatik-Spektrum (12 2016)
7. State, A., Hirota, G., Chen, D., Garrett, W., Livingston, M.: Superior augmented reality

registration by integrating landmark tracking and magnetic tracking. proceedings of ACM
Siggraph ’94 (Computer Graphics) (08 1996)

8. Saputra, M.R.U., Markham, A., Trigoni, N.: Visual slam and structure from motion in
dynamic environments: A survey. ACM Comput. Surv. (February 2018)

9. Afanasyev, I., Sagitov, A., Magid, E.: Ros-based slam for a gazebo-simulated mobile robot
in image-based 3d model of indoor environment. (10 2015) 273–283

10. Chekhlov, D., Gee, A.P., Calway, A., Mayol-Cuevas, W.: Ninja on a plane: Automatic
discovery of physical planes for augmented reality using visual slam. In: 2007 6th IEEE and
ACM International Symposium on Mixed and Augmented Reality. (2007) 153–156

11. Juan, M., Alcaniz, M., Monserrat, C., Botella, C., Banos, R., Guerrero, B.: Using augmented
reality to treat phobias. IEEE Computer Graphics and Applications (2005) 31–37

12. Kersten-Oertel, M., Gerard, I., Drouin, S., Mok, K., Sirhan, D., Sinclair, D., Collins, L.:
Augmented reality in neurovascular surgery: feasibility and first uses in the operating room.
International journal of computer assisted radiology and surgery (02 2015)

13. Livingston, M., Rosenblum, L., Brown, D., Schmidt, G., Julier, S., Baillot, Y., Swan, J., Ai,
Z., Maassel, P. In: Military Applications of Augmented Reality. (07 2011) 671–706

14. Campos, C., Elvira, R., Rodŕıguez, J.J.G., M. Montiel, J.M., D. Tardós, J.: Orb-slam3: An
accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transac-
tions on Robotics (2021) 1–17

15. Winner, H., Hakuli, S., Lotz, F., Singer, C.: Handbook of driver assistance systems - basic
information, components and systems for active safety and comfort. (08 2016) 1592

16. Dabral, S., Kamath, S., Appia, V., Mody, M., Zhang, B., Batur, U.: Trends in camera based
automotive driver assistance systems (adas). (08 2014) 1110–1115

17. Nilsson, J., Odblom, A., Fredriksson, J., Zafar, A. In: Using Augmentation Techniques for
Performance Evaluation in Automotive Safety. (07 2011)

18. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular,
stereo and RGB-D cameras. CoRR (2016)

19. Chatila, R., Laumond, J.: Position referencing and consistent world modeling for mobile
robots. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation.
Volume 2. (1985) 138–145

20. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE
Robotics Automation Magazine (2006) 99–110

21. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (slam): part ii. IEEE
Robotics Automation Magazine (2006) 108–117

22. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard,
J.: Simultaneous localization and mapping: Present, future, and the robust-perception age.
IEEE Transactions on Robotics (06 2016)

23. Aulinas, J., Pétillot, Y., Salvi, J., Lladó, X.: The slam problem: a survey. In: CCIA. (2008)

222

24. Taketomi, T., Uchiyama, H., Ikeda, S.: Visual slam algorithms: a survey from 2010 to 2016.
IPSJ Transactions on Computer Vision and Applications (12 2017)

25. Mur-Artal, R., Montiel, J., Tardos, J.: Orb-slam: a versatile and accurate monocular slam
system. IEEE Transactions on Robotics (10 2015) 1147 – 1163

26. Yu, C., Liu, Z., Liu, X., Xie, F., Yang, Y., Wei, Q., Qiao, F.: DS-SLAM: A semantic visual
SLAM towards dynamic environments. CoRR (2018)

27. Pumarola, A., Vakhitov, A., Agudo, A., Sanfeliu, A., Moreno-Noguer, F.: Pl-slam: Real-time
monocular visual slam with points and lines. (06 2017)

223

Improving Temporal Consistency in Aerial Based
Crowd Monitoring Using Bayes Filters

Jan Calvin Kramer1, Thomas Golda2, Jonas Hansert1, and Thomas Schlegel1

1 Karlsruhe University of Applied Sciences, Institute of Ubiquitous Mobility Systems IUMS
{Jan Calvin.Kramer, Jonas.Hansert, Thomas.Schlegel}@h-ka.de

2 Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB
Thomas.Golda@iosb.fraunhofer.de

Abstract. In order to monitor mass events, crowd managers continuously require
reliable measurements of the crowd count. For this purpose, a variety of deep
learning algorithms has been developed. Most of these so-called crowd counting
algorithms return good results for still imagery but return oscillating crowd counts
for video data. This is because, most crowd counting algorithms evaluate video
data frame by frame and ignore the temporal relation between adjacent frames. In
this paper, a variety of Bayesian filters is presented that successfully smooth the
oscillating counts which in turn can lead crowd managers to trust the system more.
The proposed filters work on top of the crowd counting algorithms’ estimates.
Thus, they can be easily used with any existing crowd counting algorithm that
outputs a density map for a given input image.

Keywords: crowd counting, crowd count, density map, crowd manager, mass
panic, video data, bayesian filters, kalman filter, particle filter, aerial imagery

1 Introduction

Mass events take place every day all over the world. Despite the joy these events bring to
many people, they always come with the threat of turning into a stampede. To prevent
this, crowd managers must be aware of the current crowd count and density and take
the right measures in time.
For this purpose, a variety of algorithms have been developed since 2006. These so-called
crowd counting algorithms take an image as their input and estimate the amount of
people in the picture. Recent crowd counting algorithms go even further. Using Convo-
lutional Neural Networks, they estimate a whole density map for a given input image.
The density map itself holds the information of the crowd count that can be obtained
by adding up the density map’s pixel values. Gao et al. give a good insight into current
advances and the huge amount of different crowd counting algorithms that exist [1].
Despite the many advances, current crowd counting algorithms do not consider the tem-
poral relation between adjacent frames. Most crowd counting algorithms evaluate video
data frame by frame and ignore the temporal relation. This often leads to fluctuating
counts that the crowd manager cannot rely on. Only a few isolated approaches, e.g.,
the Temporal Aware Network [2], exist, that try to incorporate the temporal relation
of adjacent frames. In contrast to their approach of presenting a new architecture that
incorporates the temporal relation, we developed a variety of Bayesian filters that work
on top of the counts estimated by current crowd counting algorithms. The filters can be
used with any modern crowd counting algorithm that outputs a density map for a given
input image.

224

2 Related Work

The following section gives a brief overview of the existing technologies this work builds
upon. Firstly, two crowd counting algorithms, i.e., the CSRNet and MRCNet, are intro-
duced. The crowd counters are used throughout this work to estimate the crowd counts
of different data sets and to reproduce the problem of having oscillating counts. Secondly,
Bayesian filters on which the developed concepts are based are briefly discussed.

2.1 CSRNet

The Congested Scene Recognition Network (called CSRNet hereafter) is a crowd counting
algorithm developed by Li et al. in 2018 [3]. The network is divided into two parts, i.e.
the front- and back-end. Both parts exclusively rely on (dilated) convolutional and max
pooling layers.
The CSRNet’s front-end consists of the VGG-16’s first 10 layers. It extracts several
features from an input image. The features are stored in a so-called feature map whose
resolution is 1/8 of the resolution of the input image. The feature map is further processed
by the back-end of the network. The back-end uses several dilated convolutional layers.
Thus, it is able to extract even deeper features without further shrinking the resolution
of the feature map. In order to output a density map that has the same size as the
input image, the CSRNet uses bilinear interpolation with a factor of 8. A more detailed
description can be taken from [3].

2.2 MRCNet

The Multi-Resolution Crowd Network (called MRCNet hereafter) is a crowd counting
algorithm developed by Bahmanyar et al. from the German Aerospace Center [4]. The
network relies on an encoder-decoder-structure. Analogous to the front-end of the CSR-
Net, the encoder of the MRCNet relies on the VGG-16. Yet, it does not only use the first
ten layers but the first five CNN blocks of the VGG-16 that consist of 13 convolutional
layers and five max-pooling layers in total. Since it uses more pooling layers, the size of
the outputted feature map is 1/32 the size of the input image. Such a drastic reduction of
the resolution can accidentally lead to people being removed. To prevent this, the feature
maps at different stages of the encoder are added element-wise to the feature maps of
the decoder.
The decoder of the MRCNet consists of five CNN blocks as well. However, instead of
using pooling layers at the end of each CNN block, the decoder uses up-sampling layers.
Each up-sampling layer increases the size of the feature map by a factor of two. Thus, at
the end of the decoder, the MRCNet outputs a density map that has the same resolution
as the input. Prior to outputting the density map, the MRCNet outputs a feature map
whose resolution is 1/4 the resolution of the input image. This feature map is used to
estimate the overall amount of people in an image. By estimating the amount of people
at an early stage of the decoder, the remaining part of the decoder can be further used
to output a full-resolution density map that has a higher localization precision. Further
information about the MRCNet can be taken from [4].

2.3 Bayesian Filters

Bayesian filters have been around for quite a while. In short, they are a set of algorithms
that iteratively estimate the hidden state of a system, e.g., the current crowd count, using

225

imprecise measurements, e.g., estimated density maps, and a model of the system state,
e.g., a traffic flow model [5].
The Kalman and particle filter are a subset of the Bayesian filters. They differ in that the
Kalman filter returns an optimal solution under certain restrictions whereas the particle
filter returns a good approximation while being less restrictive. The Kalman filter assumes
the underlying model to be linear and discrete in the time domain. Furthermore, the
process and measurement noise are assumed to be Gaussian with a zero mean. If these
restrictions are not fully complied with, the particle filter is likely to return even better
results than the Kalman filter.
A thorough understanding of both filters is necessary to fully understand the concepts
that follow. A good insight is given by [5], [6] and [7].

3 Concepts

The following chapter explains the developed concepts of this paper.

3.1 Kalman Filter

A complete concept of a Kalman filter requires the definition of the state vector, state
transition matrix, measurement matrix, process noise variance and measurement noise
variance.
To not further increase the computational costs that come with crowd counting, the state
vector considers only the crowd count and not the density map as a whole. The crowd
count is further expected not to change between two consecutive frames. This assumption
leads to a linear state transition matrix that only consists of the value 1.
The accuracy of this assumption depends mainly on two variables, i.e., the area under
consideration (denoted by A) and the frame rate of the video (denoted by f). For either
A going towards zero or f going towards infinity, the assumption that the crowd count
does not change becomes true. Thus, the concept is supposed to return better results for
video data with higher frame rates and scenes with smaller areas. The scene of an image
can be artificially reduced by applying the Kalman filter on grids rather than the whole
image. Experiments testing this behavior are conducted in the next chapter.
Yet, in practice, neither A becomes zero nor f goes towards infinity. This makes the
state transition matrix inaccurate. To model this error, one must define the process noise
variance (matrix).

Data-Driven Process Noise Variance. To get an estimate for the process noise
variance, the information given by the training data is used. Given the annotations of the
training data, one can calculate the change of pedestrians between two consecutive frames
by subtracting their annotated crowd counts. The calculated pedestrian changes can be
fitted to a Gaussian curve in a next step. Assuming that the set of pedestrian changes is
normally distributed with a zero mean, the variance of the Gaussian curve corresponds
to the actual variance of the process noise when the Kalman filter was applied to the
training data. To obtain an estimate that generalises better on data sets with different
crowd counts, one must consider the percentage change of pedestrians rather than the
absolute change. Let ck−1 and ck be the crowd count of two consecutive frames, then the
percentage change of pedestrians (Δcrel) can be calculated as follows:

Δcrel =
ck − ck−1

ck−1
(1)

226

Fitting the percentage changes to a Gaussian curve results in a relative process noise
variance denoted by σrel. To retrieve an absolute estimate of the process noise variance,
one must iteratively multiply the relative variance with the previous posterior estimate
of the Kalman filter and the frame rates’ ratio:

σk = c̄k−1 · σrel · ftraining
ftesting

(2)

Data-Driven Measurement Noise Variance. To model the measurement noise vari-
ance, a data driven approach similar to the one of the process noise variance is used.
Yet, instead of computing pedestrian changes of the training data, the performance of
the crowd counter on the validation data is used. For this purpose, the percentage dif-
ferences between the crowd counter’s estimate and the corresponding ground truth is
calculated. The percentage differences are also fitted to a Gaussian curve. Again, the
variance that is obtained using this approach is a relative value that must be iteratively
multiplied with the current measurement of the crowd count.

Data-Driven Observation Matrix. The final parameter that must be modelled to
obtain a complete concept of a Kalman filter is the observation matrix. The observation
matrix says how the measurements must be processed before they are further used within
the Kalman filter. Therefore, if the measurements that are passed to the Kalman filter
do not have an error with a zero mean, the observation matrix can theoretically be used
to process the measurements in such a way that their error has a zero mean afterwards.
For this purpose, the Gaussian curve, that is obtained during the computation of the
variance of the measurement noise, is used. The relative mean denoted by μrel expresses
the average deviation of the ground truth from the estimates computed by the crowd
counter on the validation set. The oversimplified assumption that the error of the crowd
counter depends only on the crowd count, lets one use the simple term 1 − μrel for the
observation matrix.

3.2 Particle Filter

The developed particle filter only considers the crowd count as well. Yet, a more complex
model for the state transition matrix is used. The model of choice is the macroscopic
fundamental diagram of traffic flow. Let Q be the flow, Q∗ be the flow density, v0 be the
velocity of the pedestrians, w be the width through a gateway in meters, ρ and ρmax be
the current density and maximum density of pedestrians respectively, then the flow of
pedestrians can be calculated as follows:

Q∗(ρ) = ρ · v0 · (1− ρ

ρmax
) [

pedestrians

m · s] (3)

Q = Q∗ · w [
pedestrians

s
] (4)

Assuming that ρmax = 5pedestrians
m2 and v0 = 1.4m

s , it only requires the current density
and the width of the gateway to estimate the flow of pedestrians [8].
Unfortunately, the traffic flow model comes with a major restriction that it assumes the
flow of pedestrians to be unidirectional. To loosen this restriction and obtain a more
realistic model, the filter does not assume the overall flow of a scene to be unidirectional.

227

Flows of open borders that are located at the edge of the image are assumed to be
independent from each other and unidirectional. Making this assumption, three questions
arise that must be further clarified:

– How does the system detect open borders at the edge of the image?
– What area around an open border must be considered to estimate the density at the

open border?
– Given the flow at an open border, how does one estimate the direction of flow?

3.3 Detection of Open Borders

The annotation of open borders is assumed to be manually done by the user at the
beginning. The user is expected to create a mask for the first frame of a video. Areas
where people can possibly walk are supposed to be colored in white, whereas areas where
people cannot be, e.g., a frontage, must be colored in black. By reading in the mask
and dividing the pixel values by 255, one obtains a 2 dimensional matrix of zeros and
ones. The information where the open borders are located can then be easily obtained
by looking for non-zero sequences in its outermost rows and columns.
It is further used as an alternative measurement matrix that is multiplied element-wise
with incoming density maps. Subsequently, all elements of the resulting matrix are added
up to obtain the crowd count that is further processed by the particle filter. It should be
noted that this approach might delete some rightfully annotated persons. This is because
the ground truth density maps that are used to train the crowd counting algorithms
are created by blurring the given head annotations using a Gaussian kernel. Thus, per-
sons standing nearby a frontage might overlay the frontage in a density map. Yet, this
approach ensures that areas where pedestrians can impossibly be, e.g., a sea, are not
wrongfully labeled by the crowd counter.

3.4 Determining the Density at an Open Border

To estimate the density at an open border j at the previous point in time k − 1, a
rectangular cutout of the density map at k − 1 is used. One side of the rectangle is the
open border itself, whereas the length of the other side is determined by the maximum
distance pedestrians are assumed to walk between two consecutive frames (called step
size hereafter). Let v0 be the pedestrian’s estimated velocity and Δt be the time between
two consecutive frames, then the step size can be calculated as follows:

Δsm = Δt · v0 [m] (5)

Δspixel = Δt · v0 · 1/g [pixel] (6)

where g corresponds to the ground sampling distance in meter per pixel.
Given a cutout of a density map, you can easily calculate the estimated crowd count
within the cutout (denoted by cj,k−1) by adding up the pixel values of the cutout. Let
further aj and bj be the lengths of the rectangle in pixels, then the density of the rect-
angle can be calculated as follows:

ρj,k−1 =
cj,k−1

aj · bj · g2 [
pedestrians

m2
] (7)

228

where

– ρj,k−1 [pedestrians/m
2] is the density of the j’th rectangle at k-1,

– g [m/pixel] is the ground sampling distance in meter per pixel.

Given ρj,k−1, the estimated flow at the rectangle can be calculated using the equations 3
and 4. It should be noted that w corresponds to the length of the open border in meters.

3.5 Determining the Flow of Direction at an Open Border

It is further important to know whether pedestrians are either leaving or entering the
scene. To estimate the flow of direction, Gunnar Farneback’s algorithm is used. For each
open border, the algorithm is given an enlarged rectangular cutout of the previous and
current frame (not the density map!). The algorithm estimates the movement of the
pixels in the x- and y-direction within the enlarged rectangle [9]. Although the algorithm
calculates the movement in both directions, only one direction is relevant. For open
borders located on the left or right of the image, the x-direction is of interest, whereas
for open borders located at the top or bottom of the image the movement in the y-
direction is of interest. By adding up the magnitudes by which the pixels are estimated
to move along the relevant direction, you can obtain the magnitude of the pixels’ overall
movement along the direction. This value is denoted by mj,k−1 [pixel] in the following.
Whereas negative values of mj,k−1 measured on the left side or at the bottom of an image
indicate an outflow, they indicate an inflow when they are measured at the top or on the
right side of an image.
If you would use a rectangle with the same dimensions as the rectangle used to determine
the density, you would probably run into the problem that the algorithm would detect no
movement when all pedestrians in the rectangle were to leave the rectangle. Therefore, an
enlarged rectangle is used that holds pedestrians that are unable to leave the rectangle
between two consecutive frames. One side of the enlarged rectangle is the open border
itself. The other side is three times the step size.
Given this information, one can calculate the maximum magnitude the algorithm can
detect. Let wj be the length of the open border in pixel, then the maximum magnitude
can be calculated as follows:

mj,max = 2 ·Δs2pixel · wj · 1

pixel2
[pixel] (8)

Whereas Q is an estimate of the pedestrian’s flow obtained by the fundamental traffic
flow model, the ratio of mj,k−1/mj,max is an actual measurement. To get an estimate of
the pedestrian change, both values are combined:

Δcj,k−1 = Q(ρj,k−1) ·Δt · |mj,k−1|
mj,max

[pedestrians] (9)

Depending on whether mj,k−1 indicates an outflow, Δcj,k−1 must be further multiplied
by −1:

Δcj,k−1 =

{
+Δcj,k−1 inflow

−Δcj,k−1 outflow
(10)

To get the total change of pedestrians that is expected between the consecutive frames,
one must add up all Δc:

Δck−1 =
k=n∑
j=1

Δcj,k−1 (11)

229

Adding this result to the samples of the posterior distribution at k−1 returns the samples
of the priori distribution at k. Let c̄ i

k−1 be the i’th sample from the posterior distribution
at k − 1, then the priori estimate of the i’th sample can be calculated as follows:

c̄ i
k|k−1 = c̄ i

k−1 +Δck−1 (12)

4 Experiments

To train and test the crowd counting algorithms and filters, different data sets are used.
Table 1 shows the fundamental differences of the data sets. Tests in the aerial domain
are conducted as follows: Firstly, the crowd counters are pre-trained using the DLR-ACD
data set [4] to overcome the lack of video data in that domain. Then, the crowd counting
algorithms are fine-tuned on the VisDrone-CC2020 data set [10]. Subsequently, tests on
the VisDrone-CC2020 and AgoraSet [11] are conducted.
Finally, tests on the WorldExpo’10 data set [12] are conducted. Due to the different
domain, the crowd counting algorithms must be trained from scratch prior to testing.

Table 1. Comparison of the data sets. N is the number of annotated frames; FPS is the number
of annotated frames per second; GSD is the ground sampling distance in cm/pixel; AR is the
average resolution and IP is the interval in which the annotated crowd counts lay. The GSDs of
the AgoraSet and VisDrone-CC2020 are estimated values. All specified values of the AgoraSet
refer to the the frames 418-1936 of its first sequence

N FPS Aerial Artificial GSD AR IP

DLR-ACD 33 image true false 4.5 - 15 3619×5226 285-24368

VisDrone-CC2020 3360 1 true false 0.118 - 0.706 1920×1080 25-421

AgoraSet 1519 25 true true 4.5 640×480 1-180

WorldExpo’10 3980 1/30 false false perspective 576×720 1-253

To determine the performance of the filters, the Mean Absolute Error of the estimated
crowd counts and the Mean Absolute Error of the estimated crowd counts’ slope is
calculated. Let c be the crowd count and c̄ be the estimated crowd count, then the MAE
of the estimated crowd count and its slope can be calculated as follows:

MAEcrowd count =

k=n∑
k=1

|ck − c̄k|
n

(13)

MAEslope =

k=n∑
k=2

|ck − ck−1 − (c̄k − c̄k−1)|
n− 1

(14)

Both MAEs indicate better performance for values closer to zero and worse performance
for higher values. They differ in that the MAEslope shows how good the filters smooth
the data and the MAEcrowd count shows how close the counts are to the actual crowd
count. Since the focus of this paper lays on smoothing the counts, it is the overriding
goal to reduce the MAEslope without increasing the MAEcrowd count.

230

4.1 VisDrone-CC2020

Tests on the VisDrone data set are conducted to test the behavior of the filters on a data
set from the aerial domain the crowd counters are fine-tuned on.
Table 2 shows the results. In general, the filters smooth the temporal courses of the
estimated crowd counts. This is shown by a decrease in the MAEslope. The values of the
raw crowd counters are reduced by 56% to 65%.
The Kalman filter applied to the whole frame smooths the data the most. This contradicts
the initial assumption that the Kalman filter works better on smaller grids. The problem
here is that the pixel values of the estimated density maps are not consistently positive.
Therefore, if the density map is divided into smaller grids, some of the grids contain
negative crowd counts. If one inputs these negative values into a Kalman filter, the filter
outputs arbitrarily high or low numbers over time. To solve this problem, the count is
set to zero, the process noise variance is set to 1, and the measurement noise variance is
set to 1000 when a negative crowd count occurs.
Although this approach makes the grid-based Kalman filter work, it does not enable the
filter to develop its full potential. Yet, it comes with a more than welcome side effect.
By setting the negative crowd counts of single grids to zero, the grid-based Kalman filter
returns the best results for the MAEcrowd count.
The displayed results of the grid-based Kalman filter are obtained using 1x1 meter grids.
Tests with 3x3 and 10x10 meter grids were conducted. Yet, it turned out that on the
VisDrone as well as on the other data sets, 1x1 meter grids return the best results.

Table 2. Results on the VisDrone-CC2020 data set. The MAEslope is reduced by 56% to 65%.
All filters successfully smooth the estimated crowd counts

MAEcrowd count MAEslope

CSRNet MRCNet CSRNet MRCNet

Unfiltered 29.30 21.08 4.23 3.98

Kalman 30.89 (+5%) 18.31 (-13%) 1.47 (-65%) 1.44 (-64%)

Kalmangrid 25.78 (-12%) 16.52 (-22%) 1.60 (-62%) 1.75 (-56%)

Particle 28.63 (-2%) 17.00 (-19%) 1.59 (-62%) 1.62 (-59%)

4.2 AgoraSet

In order to see how the filters work on data with more realistic frame rates (25 fps),
tests on the AgoraSet are conducted. Although its frame rate covers a more realistic use
case, its data is artificial. To the best of our knowledge, non-artificial alternatives are not
publicly available due to the high effort that comes with annotating such data sets.
When speaking of the AgoraSet only the first sequence of the AgoraSet is meant. This
is because, all sequences cover a pretty similar scenario from a crowd counting perspec-
tive. The backgrounds are monotonous and do not significantly differ. In addition to
that, pretty much all of the sequences’ temporal courses of the crowd count resemble a
parabola with a downward opening.
The tests were directly conducted after the tests on the VisDrone-CC2020 data set with-
out fine-tuning the crowd counters on the AgoraSet or reconfiguring the Kalman filter’s

231

parameters. Nevertheless, the filters are able to smooth the temporal courses of the crowd
count even more. The MAEslope is reduced by 68% to 88%. Again, the Kalman filter ap-
plied to the whole image smooths the data the best. Yet, the particle and grid-based
Kalman filter return good results as well. If only the MAEcrowd count is considered, the
particle filter returns the best results.
The results show that the filters smooth the data even better on data sets with higher
frame rates. In addition to that, the tests indicate that the initialization of the Kalman
filter’s parameters on a previous data set does not impair its performance on another
data set.

Table 3. Results on the first sequence of the AgoraSet. Although the crowd counting algorithms
and filters have not seen data from the AgoraSet before, the filters are able to smooth the
estimated crowd counts even more

MAEcrowd count MAEslope

CSRNet MRCNet CSRNet MRCNet

Unfiltered 26.06 43.72 1.5 2.01

Kalman 27.55 (+6%) 44.45 (+2%) 0.27 (-82%) 0.25 (-88%)

Kalmangrid 25.49 (-2%) 43.98 (+1%) 0.45 (-70%) 0.65 (-68%)

Particle 25.40 (-3%) 43.84 (±0%) 0.39 (-74%) 0.42 (-79%)

4.3 WorldExpo’10

Finally, tests are conducted on a perspective data set that has a significantly lower frame
rate than the previous ones. Since the WorldExpo’10 data set does not contain aerial im-
ages, the particle filter as conceptualised in this paper cannot be applied. The grid-based
Kalman filter also runs into the problem that its hard to divide a perspective image into
same sized grids. To handle this problem, the face length of a person in the front and
back of a random frame is measured. Assuming that the average face length of a person
is 23 centimeters, one can calculate two GSDs - one for the front and one for the back
of the image. The average of the two GSDs is used to determine the grids. It should be
noted that this approach is only a hot-fix to make the filter work and that grids in the
back still cover larger areas than grids in the front.
Table 4 shows the results. It can be seen that the MAEslope does not significantly improve.
However, this is much more due to the low frame rate and not the perspective of the
data set. The time between two frames of the WorldExpo’10 data set is 30 seconds. Due
to the large time interval between the frames, it can be said that consecutive frames do
not hold any temporal information that could be incorporated by the filters. To sum up,
the results stress out the importance of the frame rate when applying the filters. If the
time interval between consecutive frames becomes too large, the filters do not improve
the estimates of the crowd counters. Yet, since a frame rate of 1/30 fps does not capture
a realistic scenario, the results of the tests on the WorldExpo’10 do not contradict with
the applicability of the filters in a real-life situation.

232

Table 4. Results on the WorldExpo’10 data set. Due to the low frame rate, adjacent frames do
not share temporal information that can be incorporated by the filters

MAEcrowd count MAEslope

CSRNet MRCNet CSRNet MRCNet

Unfiltered 17.15 18.12 8.8 8.6

Kalman 19.74 (+15%) 18.14 (±0%) 8.2 (-7%) 8.4 (-2%)

Kalmangrid 19.73 (+15%) 17.95 (-1%) 9.54 (+8%) 8.9 (+3%)

5 Conclusions

The paper shows that the oscillating counts estimated by current crowd counters for
video data can be smoothed using Bayesian filters. As a measurement of the false oscil-
lation the MAEslope is introduced. Provided that the frame rate of a data set is large
enough that consecutive frames share temporal information, all of the three filters are
able to smooth the temporal course of the crowd count without significantly increasing
the MAEcrowd count. Future work may further address the maturation of the concepts.
The development of Bayesian filters that smooth the estimated crowd counts is still in its
infancy. A variety of traffic flow models exist that can be used to develop new concepts
that may smooth the crowd counts even more.

References

1. Gao, G., Gao, J., Liu, Q., Wang, Q., Wang, Y.: Cnn-based density estimation and crowd
counting: A survey (2020)

2. Wu, X., Xu, B., Zheng, Y., Ye, H., Yang, J., He, L.: Fast video crowd counting with a
temporal aware network. Neurocomputing 403 (Aug 2020) 13–20

3. Li, Y., Zhang, X., Chen, D.: Csrnet: Dilated convolutional neural networks for understanding
the highly congested scenes (2018)

4. Bahmanyar, R., Vig, E., Reinartz, P.: Mrcnet: Crowd counting and density map estimation
in aerial and ground imagery (2019)

5. Elmar, G.: Bayes–Filter zur Genauigkeitsverbesserung und Unsicherheitsermittlung von
dynamischen Koordinatenmessungen. dissertation, Friedrich–Alexander–Universität (2014)

6. Rhudy, M.B., Salguero, R.A., Holappa, K.: A KALMAN FILTERING TUTORIAL FOR
UNDERGRADUATE STUDENTS. (February 2017) Accessed: 2021-01-23.

7. Simon, Maskel an Neil, G.: A tutorial on particle filters for on-line nonlinear/non-gaussian
Bayesian tracking - Target Tracking. (2001)

8. Treiber, M.: Skript zur vorlesung verkehrsdynamik und -simulation (2017)
9. Farnebaeck, G.: Two-frame motion estimation based on polynomial expansion. In: Scandi-

navian Conference on Image Analysis. Volume 2749. (2003) 363–370
10. Du, D., Wen, L., Zhu, P., Fan, H., Hu, Q., Ling, H., Shah, M., ..., Zhao, Z.: Visdrone-cc2020:

The vision meets drone crowd counting challenge results (2021)
11. Allain, P., Courty, N., Corpetti, T.: Agoraset: a dataset for crowd video analysis. In: 1st

ICPR International Workshop on Pattern Recognition and Crowd Analysis. (2012)
12. Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd counting via deep convolutional

neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2015) 833–841

233

Potentials of Semantic Image Segmentation Using
Visual Attention Networks for People with Dementia

Liane Meßmer and Christoph Reich

Hochschule Furtwangen – University of Applied Sciences
l.messmer@hs-furtwangen.de

christoph.reich@hs-furtwangen.de

Abstract. Due to the increasing number of dementia patients, it is time to in-
clude the care sector in digitization as well. Digital media, for example, can be
used on tablets in memory care and have considerable potential for reminiscence
therapy for people with dementia. The time consuming assembly of digital media
content has to be automated for the caretakers.
This work analyzes the potentials of semantic image segmentation with Visual
Attention Networks for reminiscence therapy sessions. These approaches enable
the selection of digital images to satisfy the patients individual experience and
biographically. A detailed comparison of various Visual Attention Networks eval-
uated by the BLEU score is shown. The most promising networks for semantic
image segmentation are VGG16 and VGG19.

Keywords: Dementia, Alzheimer, Visual Attention Network, CNN, RNN, LSTM,
GRU, Inceptionv3, VGG, ResNet, Semantic Segmentation, Natural Language Pro-
cessing, Health Care, Reminiscence Therapy, Memory Triggering

1 Introduction

The German Federal Statistical Office examines the population development until the
year 2060. They conclude that the percentage of people older than 67 years will increase
from 19% in 2018 to 27% in 2060 [1]. As people live longer than ever before and there-
fore, the number of dementia patients is also increasing. Today, more than 44 Million
people worldwide are living with dementia, 1.5 Million of them live in Germany [2].
Non-pharmacological methods are effective in improving the lives of dementia patients.
Reminiscence therapy belongs to the non-pharmacological techniques, used to address
the activation process of people with Dementia (pwD) [3].

Nowadays, Reminiscence therapy sessions use digital support systems, which consists
of digital content such as images, movies or music. These can be applied for example on
mobile devices. Images, movies or music is used for life review and to evoke memories
in patients [4], [5]. Thus, demand-oriented and technical solutions cause a valuable con-
tribution to the care of pwD. Their potential is far from exhausted. Yet, a well known
challenge is the identification of suitable content as well as the design and evaluation of
high-quality reminiscence care services are very labor-intensive. Besides, this task places
high demands on the caretakers qualifications.

Currently, the reminiscence session content must be identified and evaluated by care-
takers, because the content of a reminiscence session should be suitable and individual
for pwD. So, in practice, a very limited pool of standard content is often used.

To support the reminiscence therapies the caretaker would select images according to
the following image characteristics such as objects, colors, shapes, number of objects or

234

meaning according to life themes [6]. In particular, automated, individual and biography-
related media selection improves the quality of the reminiscence session and reduces the
workload of the caretakers by shortening the preparation time. However, this potential
of automation relieves the caretaker in terms of reminiscence sessions. It also gives care
giving relatives the opportunity to include memory-triggering content in their care.

The approach of this paper is semantic image segmentation, to extract the features of
an image. Semantic segmentation is one of the high-level tasks that pave the way to full
understanding of a scene [7]. The importance of full scene understanding as a core com-
puter vision problem affirms by the fact, that an increasing number of applications using
the knowledge derivation from images. Some of these applications include medical assis-
tance systems or human-computer interactions. With the popularity of Deep Learning,
many semantic segmentation problems are addressed with Deep Learning approaches.
They far exceed other methods in terms of accuracy and efficiency.

The goal of this work is to analyzes the potentials of semantic image segmenta-
tion using different Convolutional Neural Networks (Inceptionv3, VGG16, VGG19 and
ResNet101) in combination with a Recurrent Neural Network (LSTM, GRU) related to
people with dementia, to generate automatic descriptions from images (also called image
captioning).

This work consists of 8 chapters. Chapter 2 deals with the related work. Life themes
identified to activate pwD are described chapter 3. In Chapter 4, the concepts of visual
attention networks are presented and explained. The data used for training, as well as
the training process, are described in Chapters 5 and 6. Finally, the results are presented
in Chapter 7 and Chapter 8 describes the conclusion and future work.

2 Related Work

2.1 Reminiscence Aid Systems

The Computer Interactive Reminiscence and Conversation Aid (CIRCA) project, pro-
posed by Astell et al. [8] was the first project that developed an application for digital
reminiscence therapy to support people with dementia. Over the years, it was supple-
mented by different new technologies, like a specific interface for the interaction with the
system [9] or a touch screen computer to enable an easier interaction with the system
[10]. Today, CIRCA is an interactive multimedia application. The latest publication of
the project “Computer Interactive Reminiscence and Conversation Aid groups - Deliv-
ering cognitive stimulation with technology” demonstrates the effectiveness of CIRCA
for group interventions [11]. The growing process of the project shows the effectiveness
of digital assistance systems in the area of reminiscence therapies. The difference with
our work is that we do not want to use random content for a reminiscence session, but
individual content that fits the biography of a patient. Therefore, our system should be
able to describe images, that match the life themes of pwD, automatically.

Carós et al. [12] presented in their work “Automatic Reminiscence Therapy for De-
mentia” a solution approach to automate reminiscence therapy, which uses artificial in-
telligence based systems. Their system is called “Elisabot” and consists of a system that
uses personal images of users and generates questions about their lives, using Visual
Attention Networks (VATs) In our work we compare different architectures of Visual
Attention Networks to find the potentials of these Networks and whether their generated
image captions fit to pwDs needs. All encoder models are pretrained on the ImageNet
dataset.

235

In the work “Image Captioning and Comparison of Different Encoders” by Pal et al.
[13] a comparison is presented of different encoder implementations as they are used in a
Visual Attention Network, for the automatic generation of image captions. As encoder,
they compare different convolutional neural networks, these are Inception v3, VGG16,
VGG19 and InceptionResNetV2. The result is that the Inceptionv3 Encoder works best.
Since the range of the BLEU score is lowest for the model. Similar to our work, they
use BLEU score for result evaluation. We use the MS COCO dataset for training and
instead of using the InceptionResNetV2 for model comparison, a ResNet-101 is used. Fur-
thermore, this work additionally presents differences between Long-Short-Term-Memory
(LSTM) and Gated Recurrent Unit (GRU) decoder .

2.2 Visual Attention Networks

The caption generation in this paper is based on the work “Show, Attend and Tell”
proposed by Xu et al. [14]. They describe a mechanism that generates image captions
based on Convolutional Neural Network (CNN) encoder and Recurrent Neural Network
(RNN) decoder by using an attention layer in the network. The Encoder extracts specific
features from an image and generates a set of feature vectors, which were referred to
as annotation vectors in this context. The attention layer takes an annotation vector, to
focus on a specific part of an image, because every vector is a representation corresponding
to a part of an image. This allows the decoder to selectively focus on specific parts of
an image by selecting a subset of all annotation vectors [15]. The results are automatic
generated, textual image captions in a natural language.

Encoder Recent works have represented the successful deployment of Convolutional En-
coder. Therefore, our work is focused on image caption generation using a CNN as En-
coder [16], [17]. There are different CNN implementations for image feature extraction,
which are compared in this work: VGG16, VGG19, ResNet-101 and Inceptionv3.

Simonyan et al. [18] proposed multiple Versions of VGG Networks in their work “Very
Deep Convolutional Networks for Large-Scale Image Recognition”. They differ mainly in
their depth, i.e. in their number of layers. As the name suggests, one network has 16
layers and the other 19.

In the work “Deep Residual Learning for Image Recognition”, the Residual Network
(ResNet) Architecture is described from He et al. [19]. The special feature of a ResNet
is that each layer in the network consists of several blocks. As the depth of the network
increases, the number of operations in a block increases too, but not the total number
of layers. Thus, ResNets solve the problem of vanishing gradients as neural networks
become deeper.

The architecture of the Inceptionv3 network emerges from the GoogleNet architecture
and was proposed from Szegdy et al. [20] in the work “Rethinking the Inception Architec-
ture for Computer Vision”. The model is a combination of many ideas that have emerged
in recent years. The network consists of several symmetric and asymmetric blocks, which
can contain different types of layers. For example, convolutions, average pooling, max
pooling, etc. In total, the network has 42 layers [21].

Decoder As decoder, a Recurrent Neural Network (RNN) is used. The first RNN was
published in the work “Finding structure in time” from Jeffrey Elman [22]. This network
is capable of reading the annotation vectors extracted by the CNN in previous steps. The
important features of RNNs are the memory cells. A normal feed forward network has an
input, hidden and output layer. The RNN loops the hidden layer to process sequential

236

data. With this looping mechanism, the RNN allows flowing information from one step
to the next step. During training a RNN Model is enrolled (each word acts as layer) and
trained with backpropagation trough stochastic gradient descent [23]. RNNs often have
a problem known as short term memory. As the number of words increases, so does the
depth of the network. The more steps an RNN has to process, the greater the problem of
retaining the information from the previous steps. This phenomenon occurs due to the
backpropagation used for training the network.

There are two approaches to tackle the problems of RNNs caused by short-Term-
Memory: Long-Short-Term-Memory (LSTM) and Gated-Recurrent Unit (GRU). The
LSTM Network was proposed from Hochreiter et al. [24] in the work “Long Short-Term
Memory” and the GRU Network was proposed from Cho et al. [25] in the work “Learn-
ing Phrase Representations using RNN Encoder-Decoder for Statistical Machine Trans-
lation”. The underlaying structure of these networks is the same as the structure from
an RNN extended by a mechanism that can learn long-term dependecies using “gates”.
LSTMs are using three gates to process the data while GRUs only use one gate for data
selection [26].

3 People with Dementia Life Themes

The reminiscence sessions should include content that matches the biographical needs of
a pwD. So that an activation in reminiscence sessions can take place [27]. Life themes
represent a generalized categorization of life stages or events that play a role in a person’s
life. The goal of these particular subjects is to evoke memories in pwD, that are associated
with a life theme. Life themes can be represented by pictures, videos, music or physical
objects. This work focuses on picture retrieval. The following table 1 shows the life
themes we identified and used for image feature extraction in this work. As the table
shows, there are not only positive activation for pwD, but also negative/fearful issues,
which should be avoided. If these negative loaded images are also labeled, they can be
discarded before using them in a reminiscence session. Anxiety-producing image content
should be screened out before sessions. This prevents a session from having a negative
impact on a patient’s well-being.

Table 1. Life themes used in reminiscence sessions for pwD

Life Themes

Travel Animals Professions
Hobbies and Activities Preferences and Habits Exterior Appearance
Religion Education Nature
Childhood and Youth Home Tradition and Culture
Literature Media Theather
Garden People Fears and Disease
Food

237

4 Visual Attention Networks

Automatic generation of image descriptions is a difficult task in the field of full scene
understanding. The model must transform large disparate sets of data into a natural
language. To address this problem, Visual Attention Networks (VATs) are used [14].

Fig. 1. Visual Attention Network Architecture

A VAT consists of two sub-models, as shown in Figure 1. a) Encoder: First, an image
is given as input to the CNN to obtain vectorial representation of input images, on the
last hidden layer of the network. b) Decoder: The feature vector is used from the RNN
decoder as input to generate sentences that contain the objects and the relationships
between them [14],[28]. The visual system of a human has the function to pay attention
on different parts of an image instead of processing the scene as a whole [29]. Based on
this human attention mechanism, an attention layer is integrated into a visual attention
network. In this paper we use soft attention mechanisms for training [30]. The areas
selected by attention mechanism are captured by the RNN for further processing. Based
on this process suitable textual descriptions are generated.

5 Dataset Used for Training and Evaluation

The dataset used for training should contain everyday objects, which match the life
themes from section 3. There are several datasets that contain labeled content for image
captioning, for example MS COCO, Pascal VOC or Flickr30k. Since the MS COCO
dataset [31] has the most objects in common with the life themes described in section 1,
this dataset was used for training in this work. The matching life themes are for example
“Animal”, “Person” and “Food” . Each image from the MS COCO Caption dataset is
described (labeled) with 5 different sentences. This work primarily targets the description
of dogs and cats images, so these categories are filtered from the dataset. Dog images fall
into two categories in the context of Reminiscence Therapy: Dog images that activate
positive memories in the pwD and dog images that might trigger negative memories. For
example dangerous looking dogs, aggressive dogs or snarling dogs. In total, 4298 images
of the category “cat” and 4562 images from the categorie “dog”, with a total of 43200
image descriptions, are filtered from the dataset.

Since the MS COCO dataset only contains images with friendly looking dogs, the
dataset is extended with the category “Angry Dogs” and filled with our own image

238

content. Each image is described with 5 description sentences, similar to the the caption
style of MS COCO dataset. The number of images in this category amounts to 360
training images with 1800 descriptions. In total, our dataset consists of 9000 images,
with 45000 image descriptions. For training, we use a random 80/20 split on the dataset,
to split it into train and validation set.

6 Training

This work compares different networks which are used in a Visual Attention Network Ar-
chitecture. We use ResNet-101, VGG16, VGG19 and Inceptionv3 as encoder and Gated
Recurrent Unit (GRU) or Long-Short-Term Memory (LSTM) as decoder, to compare
them with each other. The CNNs are all pretrained on the ImageNet [32] dataset. This
dataset contains many objects related to the Life themes of people with dementia. Ad-
ditional we use MS COCO Dataset for training the RNN, as described above.

For training, we use a fixed-length image caption of 9 words per sentence, because the
network performes poor on long input or output sequences. This is caused by rolling out
the RNN, where each word represents a hidden layer. The longer a caption is, the slower
the network is trained. In addition, for our use case of image descriptions for the use in
reminiscence therapy, captions of length 9 are sufficient to make sense of the content and
at the same time short enough to not impair the performance of the model.

In total, we get 6660 different words as vocabulary, from which we use all words that
occur more than three times in the vocabulary. This results in 2206 words. Unknown
words, are provided with the token <unk>. We trained the Networks with a batch size
of 8 and 100 Epochs.

7 Evaluation and Comparison of the VGG16, VGG19,
ResNet-101 and Inceptionv3 Model

For evaluation and comparison, a dataset, containing 10 images for each class in the
training dataset (cat, dog, angry dog), was created. These images are with 5 captions per
image for result evaluation with BLEU score. In the area of image caption generation it’s
hard to evaluate resulting captions formally. We only have five reference sentences for an
image, but there are much more image descriptions that match the image content. Thus,
we decided to evaluate the results formally with BLEU score and verify the results with
human evaluation. BLEU is a method for automatic evaluation of machine translation
[33], it’s quickly, inexpensive, and language-independent. The metric correlates highly
with human evaluation, because it measures the closeness of the machine translation to
human reference translations by taking translation length, word choice and word order
into consideration. For our evaluation we use 2-gram BLEU score. This approach does
not check the specific order of all words in the generated caption, but only the adjacent
ones and compares them with the reference descriptions.

The following Table 2 shows the average calculated BLEU score, using different
encoder-decoder combinations, for (a) Inceptionv3, (b) ResNet101, (c) VGG16 and (d)
VGG19. Every category contains 10 images for inference. The generated captions of an
RNN are not identical, since such a model has no fixed hidden layer size. They always
depend on the generated caption length. Therefore, each model was trained five times
(GRU-1, GRU-2,...,GRU5 or LSTM-1, LSTM-2,...,LSTM-5). At the end of the tables,
the respective average value (ø) is shown, which is used for result comparison. The scores

239

in the tables show that ResNet101 behaves the worst. The BLEU scores are below the
scores of the other networks, regardless of which model combination was used. Incep-
tionv3 has the best average BLEU for the category “Cat”, combined with a GRU model.
The best results are produced by VGG16 and VGG19 models, with VGG19 performing
best in combination with a GRU decoder and the VGG16 in combination with an LSTM
decoder. The Inceptionv3 model outperforms the VGG16 model in the category “Cat”
with a BLEU score of 0.02322 compared to 0.2005. The difference is so small that for all
classes in general, the VGG16 model perfomes better.

All models provide the worst results for the category “Dog” and the best for the
category “Angry Dog”. This is because the images in the angry dog category were self-
labeled, specifically tailored to our problem set. The other two categories are labeled
with general captions from the COCO dataset. In general, the BLEU scores are stable
for each model in each class; no outliers are apparent.

Table 2. Calculated BLEU scores

(a) BLEU score for Inceptionv3

Decoder Cat Dog Angry Dog

GRU-1 0.2377 0.1018 0.6600
GRU-2 0.2629 0.1619 0.6423
GRU-3 0.2793 0.1650 0.6526
GRU-4 0.1701 0.1846 0.5806
GRU-5 0.2114 0.1467 0.6682
ø 0.2322 0.1250 0.6407

LSTM-1 0.2511 0.1126 0.5386
LSTM-2 0.1620 0.0702 0.5750
LSTM-3 0.2336 0.0967 0.5910
LSTM-4 0.1718 0.0845 0.6724
LSTM-5 0.1616 0.0759 0.5704
ø 0.1960 0.0879 0.5894

(b) BLEU score for ResNet101

Decoder Cat Dog Angry Dog

GRU-1 0.0875 0.0500 0.3789
GRU-2 0.1889 0.0500 0.2951
GRU-3 0.0634 0.0375 0.3361
GRU-4 0.0375 0.0625 0.3020
GRU-5 0.1000 0.0625 0.3896
ø 0.0954 0.0525 0.3403

LSTM-1 0.1697 0.0611 0.2402
LSTM-2 0.0960 0.0500 0.2339
LSTM-3 0.1625 0.1000 0.2000
LSTM-4 0.1000 0.0723 0.2978
LSTM-5 0.0986 0.0611 0.2216
ø 0.1253 0.0689 0.2387

(c) BLEU score for VGG16

Decoder Cat Dog Angry Dog

GRU-1 0.2154 0.0666 0.5346
GRU-2 0.1785 0.0767 0.5974
GRU-3 0.2236 0.1142 0.6947
GRU-4 0.2339 0.1077 0.5626
GRU-5 0.2378 0.0583 0.6252
ø 0.2178 0.0847 0.6029

LSTM-1 0.1918 0.0875 0.6417
LSTM-2 0.2430 0.0916 0.6165
LSTM-3 0.2085 0.1139 0.6167
LSTM-4 0.1805 0.1111 0.6032
LSTM-5 0.1791 0.0800 0.6990
ø 0.2005 0.0968 0.6354

(d) BLEU score for VGG19

Decoder Cat Dog Angry Dog

GRU-1 0.1932 0.0951 0.6087
GRU-2 0.1883 0.1468 0.6545
GRU-3 0.2231 0.1571 0.6934
GRU-4 0.2261 0.1303 0.6989
GRU-5 0.1723 0.1105 0.7291
ø 0.2006 0.1279 0.6769

LSTM-1 0.1684 0.0382 0.5244
LSTM-2 0.2682 0.0454 0.4502
LSTM-3 0.2220 0.0737 0.6332
LSTM-4 0.2316 0.0722 0.5741
LSTM-5 0.1986 0.0737 0.6888
ø 0.2177 0.0606 0.5741

240

The results, calculated by BLEU score are verified manually. The best and worst
BLEU scores for eachmodel are taken and the corresponding generated captions were
checked. For each model, the best and worst results for all categories are shown in Figure
2. Figure (a) shows the generated captions for cats, (b) shows the captions for dogs and
(c) the captions for angry dogs.

(a) Resulting Captions “Cat”[31]

(b) Resulting Captions “Dog”[34]

(c) Resulting Captions “Angry Dog”[35]

Fig. 2. Resulting Captions

The resulting captions of the category dogs are as good as the BLEU score describes
them. Only one bad caption was produced by the ResNet101, GRU-2. The other results
coincide with the BLEU score, ResNet101 predictions are generally worse than the others
and VGG16, VGG19 generate the best image captions. By comparing the BLEU scores
with human evaluation, we came to the conclusion: the better the BLEU score, the better
the caption.

241

8 Conclusion

This work reveals that the use of Visual Attention Networks in the context of reminiscence
sessions for dementia patients has significant potential. The result of the comparison from
different encoder-decoder combinations is that the use of VGG16-LSTM and VGG19-
GRU Models generating promising results. This approach allows activation sessions to
be simpler, faster and tailored for a patient’s needs. Thereby, higher quality and quantity
of reminiscence sessions is created. At the same time, the life of a dementia patient is
positively influenced.

In the future, it’s important to extend the dataset with more categories, to match
more life themes from pwD. In addition, it’s possible to extend the system with the
ability to describe not only images automatically. There are also music and videos that
match the life themes of pwD.

References

1. Bundesamt, S.: 14. koordinierte Bevölkerungsvorausberechnung - Ergebnisse für Deutsch-
land (Jul 2021) [Online; accessed 14. Jul. 2021].

2. Association, A.: Alzheimer’s & Dementia Help | Germany | Alzheimer’s Association (Jul
2021) [Online; accessed 14. Jul. 2021].

3. Khait, A.A., Shellman, J.: Uses of Reminiscence in Dementia Care. Innovation in Aging
4(Supplement 1) (12 2020) 287–287

4. Lazar, A., Thompson, H., Demiris, G.: A systematic review of the use of technology for
reminiscence therapy. Health Education & Behavior 41(1 suppl) (2014) 51S–61S PMID:
25274711.

5. Ĺatha, K., Bhandary, P., Tejaswini, S., Sahana, M.: Reminiscence therapy: An overview.
Middle East Journal of Age and Ageing 11 (2014)

6. Ji, Z., Yao, W., Pi, H., Lu, W., He, J., Wang, H.: A Survey of Personalised Image Retrieval
and Recommendation. In Du, D., Li, L., Zhu, E., He, K., eds.: Theoretical Computer Science,
Singapore, Springer Singapore (2017) 233–247

7. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image seg-
mentation with deep convolutional nets and fully connected crfs (2016)

8. Alm, N., Astell, A., Ellis, M., Dye, R., Gowans, G., Campbell, J.: A cognitive prosthesis
and communication support for people with dementia. Neuropsychological Rehabilitation
14(1-2) (2004) 117–134

9. Gowans, G., Dye, R., Alm, N., Vaughan, P., Astell, A., Ellis, M.: Designing the interface
between dementia patients, caregivers and computer-based intervention. The Design Journal
10(1) (2007) 12–23

10. Astell, A.J., Ellis, M.P., Bernardi, L., Alm, N., Dye, R., Gowans, G., Campbell, J.: Us-
ing a touch screen computer to support relationships between people with dementia and
caregivers. Interacting with Computers 22(4) (07 2010) 267–275

11. Astell, A.J., Smith, S.K., Potter, S., Preston-Jones, E.: Computer interactive reminiscence
and conversation aid groups—delivering cognitive stimulation with technology. Alzheimer’s
& Dementia: Translational Research & Clinical Interventions 4(1) (2018) 481–487

12. Caros, M., Garolera, M., Radeva, P., i Nieto, X.G.: Automatic reminiscence therapy for
dementia (2021)

13. Pal, A., Kar, S., Taneja, A., Jadoun, V.K.: Image captioning and comparison of different
encoders. Journal of Physics: Conference Series 1478 (apr 2020) 012004

14. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.C., Salakhutdinov, R., Zemel, R.S., Bengio,
Y.: Show, attend and tell: Neural image caption generation with visual attention. CoRR
abs/1502.03044 (2015)

15. Sarkar, S.: Image Captioning using Attention Mechanism - The Startup - Medium. Medium
(Jun 2021)

242

16. Aneja, J., Deshpande, A., Schwing, A.: Convolutional image captioning (2017)
17. Katiyar, S., Borgohain, S.K.: Analysis of convolutional decoder for image caption generation

(2021)
18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-

nition (2015)
19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)
20. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception archi-

tecture for computer vision (2015)
21. Maeda-Gutiérrez, V., Galván-Tejada, C.E., Zanella-Calzada, L.A., Celaya-Padilla, J.M.,

Galván-Tejada, J.I., Gamboa-Rosales, H., Luna-Garćıa, H., Magallanes-Quintanar, R.,
Guerrero Méndez, C.A., Olvera-Olvera, C.A.: Comparison of convolutional neural network
architectures for classification of tomato plant diseases. Applied Sciences 10(4) (2020)

22. Elman, J.L.: Finding structure in time. Cognitive Science 14(2) (1990) 179–211
23. Sherstinsky, A.: Fundamentals of recurrent neural network (rnn) and long short-term mem-

ory (lstm) network. Physica D: Nonlinear Phenomena 404 (Mar 2020) 132306
24. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation 9(8) (11

1997) 1735–1780
25. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Ben-

gio, Y.: Learning phrase representations using rnn encoder-decoder for statistical machine
translation (2014)

26. Gao, Y., Glowacka, D.: Deep gate recurrent neural network. In Durrant, R.J., Kim, K.E.,
eds.: Proceedings of The 8th Asian Conference on Machine Learning. Volume 63 of Proceed-
ings of Machine Learning Research., The University of Waikato, Hamilton, New Zealand,
PMLR (16–18 Nov 2016) 350–365

27. Huber, S., Berner, R., Uhlig, M., Klein, P., Hurtienne, J.: Tangible objects for reminiscing
in dementia care. In: Proceedings of the Thirteenth International Conference on Tangi-
ble, Embedded, and Embodied Interaction. TEI ’19, New York, NY, USA, Association for
Computing Machinery (2019) 15–24

28. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: A neural image caption
generator (2015)

29. Wang, W., Shen, J.: Deep visual attention prediction. IEEE Transactions on Image Pro-
cessing 27(5) (May 2018) 2368–2378

30. Sharma, S., Kiros, R., Salakhutdinov, R.: Action recognition using visual attention. CoRR
abs/1511.04119 (2015)

31. Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan,
D., Zitnick, C.L., Dollár, P.: Microsoft coco: Common objects in context (2015)

32. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hi-
erarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition. (2009) 248–255

33. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: A method for automatic evaluation of
machine translation. In: Proceedings of the 40th Annual Meeting on Association for Com-
putational Linguistics. ACL ’02, USA, Association for Computational Linguistics (2002)
311–318

34. : Pixabay - Dog Picture (Aug 2021) [Online; accessed 31. Aug. 2021].
35. : iStock - Angry Dog Picture (Aug 2021) [Online; accessed 31. Aug. 2021].

243

