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Abstract 
Recent computing advances are driving the integration of artificial intelligence (AI)-based 
systems into nearly every facet of our daily lives. To this end, AI is becoming a frontier for 
enabling algorithmic decision-making by mimicking or even surpassing human intelligence. 
Thereupon, these AI-based systems can function as decision support systems (DSSs) that assist 
experts in high-stakes use cases where human lives are at risk. All that glitters is not gold, due 
to the accompanying complexity of the underlying machine learning (ML) models, which apply 
mathematical and statistical algorithms to autonomously derive nonlinear decision knowledge. 
One particular subclass of ML models, called deep learning models, accomplishes unsurpassed 
performance, with the drawback that these models are no longer explainable to humans. This 
divergence may result in an end-user’s unwillingness to utilize this type of AI-based DSS, thus 
diminishing the end-user’s system acceptance. 

Hence, the explainable AI (XAI) research stream has gained momentum, as it develops 
techniques to unravel this black-box while maintaining system performance. Non-surprisingly, 
these XAI techniques become necessary for justifying, evaluating, improving, or managing the 
utilization of AI-based DSSs. This yields a plethora of explanation techniques, creating an XAI 
jungle from which end-users must choose. In turn, these techniques are preliminarily engineered 
by developers for developers without ensuring an actual end-user fit. Thus, it renders unknown 
how an end-user’s mental model behaves when encountering such explanation techniques. 

For this purpose, this cumulative thesis seeks to address this research deficiency by 
investigating end-user perceptions when encountering intrinsic ML and post-hoc XAI 
explanations. Drawing on this, the findings are synthesized into design knowledge to enable the 
deployment of XAI-based DSSs in practice. To this end, this thesis comprises six research 
contributions that follow the iterative and alternating interplay between behavioral science and 
design science research employed in information systems (IS) research and thus contribute to 
the overall research objectives as follows: First, an in-depth study of the impact of transparency 
and (initial) trust on end-user acceptance is conducted by extending and validating the unified 
theory of acceptance and use of technology model. This study indicates both factors’ strong but 
indirect effects on system acceptance, validating further research incentives. In particular, this 
thesis focuses on the overarching concept of transparency. Herein, a systematization in the form 
of a taxonomy and pattern analysis of existing user-centered XAI studies is derived to structure 
and guide future research endeavors, which enables the empirical investigation of the 
theoretical trade-off between performance and explainability in intrinsic ML algorithms, 
yielding a less gradual trade-off, fragmented into three explainability groups. This includes an 
empirical investigation on end-users’ perceived explainability of post-hoc explanation types, 
with local explanation types performing best. Furthermore, an empirical investigation 
emphasizes the correlation between comprehensibility and explainability, indicating almost 
significant (with outliers) results for the assumed correlation. The final empirical investigation 
aims at researching XAI explanation types on end-user cognitive load and the effect of cognitive 
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load on end-user task performance and task time, which also positions local explanation types 
as best and demonstrates the correlations between cognitive load and task performance and, 
moreover, between cognitive load and task time. Finally, the last research paper utilizes i.a. the 
obtained knowledge and derives a nascent design theory for XAI-based DSSs. This design 
theory encompasses (meta-) design requirements, design principles, and design features in a 
domain-independent and interdisciplinary fashion, including end-users and developers as 
potential user groups. This design theory is ultimately tested through a real-world instantiation 
in a high-stakes maintenance scenario. 

From an IS research perspective, this cumulative thesis addresses the lack of research on 
perception and design knowledge for an ensured utilization of XAI-based DSS. This lays the 
foundation for future research to obtain a holistic understanding of end-users’ heuristic 
behaviors during decision-making to facilitate the acceptance of XAI-based DSSs in 
operational practice. 
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Zusammenfassung 
Jüngste technische und algorithmische Fortschritte treiben die Integration von Systemen auf 
der Basis von künstlicher Intelligenz (KI) in nahezu alle Bereiche unseres täglichen Lebens 
voran. Inzwischen sind diese Systeme in der Lage, menschliche Intelligenz anhand von 
algorithmischer Entscheidungsfindung nachzuahmen und sogar zu übertreffen. Insbesondere 
können KI-basierte Systeme als Entscheidungsunterstützungssysteme (Decision Support 
Systems - DSS) dienen und damit Domänenexperten in hochsensiblen Anwendungsfällen 
helfen, bei denen Menschenleben auf dem Spiel stehen.  

Dies resultiert in komplexen Modellen des maschinellen Lernens (ML), welche mathematische 
und statistische Algorithmen benutzen, um nichtlineares Entscheidungswissen automatisch 
abzuleiten. Besonders eine Unterklasse von ML-Modellen, die sogenannten Deep-Learning-
Modelle (DL-Modelle), erreichen eine unübertroffene Leistung. Sie haben allerdings den 
Nachteil, dass sie für den Menschen nicht mehr nachvollziehbar sind. Diese Divergenz kann 
jedoch dazu führen, dass Endanwender nicht bereit sind, diese Art von KI-basierten DSS zu 
benutzen. Dadurch wird die Akzeptanz solcher Systeme beeinträchtigt. 

Um dieses Problem anzugehen, ist der Forschungszweig der erklärbaren KI (Explainable 
Artificial Intelligence - XAI) entstanden. Darin werden Techniken und Methoden entwickelt, 
die das wahrgenommene Blackbox-Verhalten dieser Modelle aufbrechen. Die XAI-Methoden 
können für KI-basierte DSS eingesetzt werden und ermöglichen es, Entscheidungen und 
Modelle zu rechtfertigen, zu bewerten, zu verbessern und zu verwalten. Dieser Ansatz resultiert 
jedoch in einer Vielzahl von Erklärungstechniken, aus denen die Anwender eine passende 
Erklärung wählen müssen. Gleichzeitig werden diese Methoden zurzeit primär von Entwicklern 
für Entwickler konzipiert, ohne, dass dabei ermittelt wird, ob eine tatsächliche Eignung für den 
Endanwender gewährleistet ist. Im Umkehrschluss ist daher unbekannt, wie sich das mentale 
Modell eines Endanwenders im Umgang mit solchen Erklärungstechniken verhält. 

Die vorliegende kumulative Dissertation thematisiert dieses Forschungsdefizit, indem die 
Wahrnehmung des Endanwenders im Umgang mit intrinsischen ML- und Post-Hoc-XAI-
Erklärungen untersucht wird. Die gewonnenen Erkenntnisse werden in gestaltungsorientiertes 
Wissen synthetisiert, um den Einsatz von XAI-basierten DSS in der Praxis zu ermöglichen. Zu 
diesem Zweck umfasst die Dissertation sechs Forschungsbeiträge. Diese richten sich nach dem 
für den Bereich Information Systems (IS) typischen alternierendem Zusammenspiel zwischen 
verhaltenswissenschaftlicher und designorientierter Forschung und tragen wie folgt zu den 
übergeordneten Forschungszielen bei:  

Zu Beginn erfolgt durch Erweiterung und Validierung des Modells Unified Theory of 
Acceptance and Use of Technology eine Untersuchung des Einflusses von Transparenz und 
(initialem) Vertrauen auf die Akzeptanz der Endanwender. Die Studie zeigt einen starken, aber 
indirekten Effekt beider Faktoren auf die Systemakzeptanz und liefert damit die 
wissenschaftliche Bestätigung für weitere Forschungsinitiativen. Diese Arbeit konzentriert sich 
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insbesondere auf diesen übergeordneten Einflussfaktor Transparenz. Darauf aufbauend wird 
eine Systematisierung in Form einer Taxonomie und Analyse bestehender nutzerzentrierter 
XAI-Studien durchgeführt, um zukünftige Forschungsbestrebungen zu strukturieren. Diese 
Systematisierung ermöglicht anschließend empirische Untersuchungen weiterer 
Einflussfaktoren auf die Endanwenderwahrnehmung. Zunächst wird eine Untersuchung des 
theoretischen Zielkonflikts zwischen Leistung und Erklärbarkeit in intrinsischen ML-
Algorithmen vorgenommen, welche eine dreiteilige Anordnung empirisch bestätigt. Ebenso 
erfolgt eine empirische Untersuchung der vom Endanwender wahrgenommenen Erklärbarkeit 
von Post-Hoc-Erklärungstypen, wobei hier lokale Erklärungstypen am besten abschneiden. 
Anschließend wird der Zusammenhang zwischen Verständlichkeit und Erklärbarkeit betrachtet, 
wobei sich eine überwiegend (mit Ausreißern) signifikante Korrelation aufzeigen lässt. Der 
letzte Teil der empirischen Untersuchungen widmet sich dem Einfluss von XAI-
Erklärungstypen auf die kognitive Belastung und die Auswirkung dieser Belastung auf die 
Aufgabenleistung und -zeit des Endanwenders. Hier zeigt sich, dass lokale Erklärungstypen 
ebenfalls verhältnismäßig am besten abschneiden und die Korrelationen zwischen kognitiver 
Belastung und Aufgabenleistung sowie kognitiver Belastung und Aufgabenzeit gegeben sind. 
Der letzte Forschungsbeitrag fügt u. a. die Ergebnisse zusammen und leitet daraus eine Design-
Theorie für XAI-basierte DSS ab. Diese Design Theorie umfasst (Meta-)Design-
Anforderungen, Design-Prinzipien und Design-Merkmale in einer domänenunabhängigen und 
interdisziplinären Art und Weise, welche den Einbezug sowohl von Endanwendern als auch 
von Entwicklern als potenzielle Nutzergruppen ermöglicht. 

Aus der Perspektive der IS Disziplin widmet sich diese kumulative Dissertation dem Mangel 
an Forschung zu Wahrnehmung und Designwissen für eine gesicherte Nutzung von XAI-
basierten DSS. Damit legt sie den Grundstein für zukünftige Forschung, um ein ganzheitliches 
Verständnis des heuristischen Verhaltens der Endanwender während der Entscheidungsfindung 
zu erlangen und somit die Akzeptanz von XAI-basierten DSS in der betrieblichen Praxis zu 
fördern.
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1 Introduction 
1.1 Research Motivation 

Artificial intelligence (AI) is a leading advancement in computer technology that is currently 
expanding the application possibilities for data-driven problem-solving (Berente et al., 2021; 
Janiesch, Zschech, et al., 2021). Notably, AI-based decision support systems (DSSs) are now 
capable of performing in high-stakes workspaces (Herm, Steinbach, et al., 2022). Moreover, 
they can enable professionals and experts to rely almost entirely on AI-based DSSs to perform 
tasks, even when human lives are at risk (McKinney et al., 2020). 

While in the context of information systems (IS) research, the umbrella term AI is defined as a 
technology-independent, evolving frontier of computational capabilities to mimic or surpass 
human intelligence, its implementation occurs primarily through machine learning (ML) 
algorithms (Berente et al., 2021; Russell & Norvig, 2021). This involves deploying statistical 
and mathematical algorithms to automatically derive nonlinear decision-making knowledge via 
data analysis without the necessity of conscious programming (Janiesch, Zschech, et al., 2021). 
In addition, previous research endeavors have centered on surmounting mathematical 
constraints to improve the performance of the generated ML modes by increasing their inherent 
algorithmic complexity (Arrieta et al., 2020). In particular, a subclass of ML algorithms, called 
deep learning (DL), exceeds established ML models in terms of model performance due to their 
deep neural network structure (Janiesch, Zschech, et al., 2021). 

In turn, these deeply integrated ML cores in contemporary AI-based DSSs are no longer 
traceable by humans. That is, while their decision support quality is constantly increasing, 
humans are not able to comprehend why an AI-based DSS recommends a decision or how the 
integrated ML model operates, resulting in a perceived black-box (Dwivedi et al., 2023). 
Despite the fact that users subconsciously attribute anthropomorphic traits to these systems and 
thus assume them to be capable of efficiently handling complex tasks, the absence of 
explanation causes an information asymmetry between the user and the AI-based DSS (Pfeuffer 
et al., 2019). This may create system acceptance barriers and thus hinder initial user trust 
development toward the system (McKnight et al., 2002; Shin et al., 2020). Thereon, this can 
lead to algorithm aversion, which represents the unwillingness of users to rely on and accept a 
high-performance AI-based DSS within a professional workspace (Berger et al., 2021). This 
becomes critical since a hybrid intelligence can only be effective if a user relies on the 
recommendations of an AI-based DSS (Dellermann et al., 2019; Wanner, Herm, et al., 2022a). 

To address this information asymmetry, the emerging research stream of explainable AI (XAI) 
develops techniques to transform the inner decision logic of a black-box model into an 
explanation comprehensible to humans while maintaining the ML model’s performance level 
(Arrieta et al., 2020; Dwivedi et al., 2023). Although this research stream has gained significant 
momentum in recent years, drawbacks remain (Meske et al., 2022). Herein, numerous 
explanation techniques have materialized to cover the different ML algorithm types, task types, 
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and explanation scopes, creating an XAI jungle from which one must select a suitable XAI 
technique (Das & Rad, 2020; Herm, Wanner, et al., 2022). Moreover, these developed 
techniques are mostly mathematically driven and have been engineered by developers for 
developers, resulting in inappropriate explanations for end-users (van der Waa et al., 2021). 

To this extent, it remains unknown how end-users perceive these XAI explanations in terms of 
distinct factors such as transparency, explainability, comprehensibility, or cognitive load, and 
to what magnitude explanations increase end-user’s initial trust and thus system acceptance 
(Herm, Wanner, et al., 2022). These findings can contribute to the design of a sound knowledge 
transfer from an explainer (XAI-based DSS) to the explainee (end-user) (Miller, 2019). In light 
of current XAI developments, it becomes necessary to conduct interdisciplinary research 
involving research disciplines such as psychology and cognitive science to conduct end-user-
centered evaluations rather than focusing solely on technically driven evaluations (Mohseni et 
al., 2021). Conversely, research also lacks knowledge on how to integrate XAI explanations 
into a developer-centered XAI-based DSS to facilitate the evaluation, improvement, and 
management of integrated ML models (Herm, Steinbach, et al., 2022). Bearing this in mind, it 
is unclear how user perceptions should be incorporated into design knowledge to develop a 
profound XAI-based DSS that fulfills the needs and requirements of multiple XAI stakeholders 
and thus also facilitate acceptance. From an IS research perspective, combining behavioral 
science and design science research (DSR) seems necessary to discuss the role of AI-based 
explanations (Gregor & Benbasat, 1999; Shin, 2020a) and also facilitate explainable 
algorithmic decision-making in operational practice (Meske et al., 2022). 

Against this background, this cumulative thesis utilizes this IS research procedure to address 
the lack of knowledge in end-user perception of XAI-based explanations and further the 
deficiencies in design knowledge to ensure the application of XAI-based DSSs in practice. To 
accomplish this, the topics of perception and design are combined into a structured research 
approach by defining two overarching research objectives (RO), of perception (RO1) and 
design (RO2), for XAI-based DSSs. Furthermore, these ROs are subdivided into sub-ROs that 
are addressed by six closely related scientific research contributions. The remainder of this 
section is structured as follows. First, Subsection 1.2 provides a conceptual background that 
serves as the theoretical foundation. Subsection 1.3 complements this by framing the thesis in 
an IS-related methodological context. Furthermore, Subsection 1.4 comprehensively describes 
the ROs and an overview of the included research contributions. Subsection 1.5 places the 
research contributions in the holistic context of the author’s XAI-related publications. Finally, 
Subsection 1.6 discusses the results of this thesis, before a conclusion and outlook are provided 
in Subsection 1.7. 

1.2 Conceptional Background 

This section serves as a conceptual background for the rest of the thesis to facilitate an 
understanding of the theoretical foundation. According to the findings of Gunning et al. (2019), 
Miller (2019), Herm, Steinbach, et al. (2022), and Wanner, Herm, et al. (2022a), Figure 1.1 
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provides an overview of an interaction process occurring when using an XAI-based DSS. 
Building on this, the remainder of the section provides a comprehensive overview of the 
associated topics of DSSs, AI, user-centric explanations, and XAI. 

 

Figure 1.1 User-System Interaction Process 

Within a decision scenario, two distinct design components interact with each other. The first 
is the user-centric one, which embraces the perceptions and actions of a user (e.g., end-user or 
developer) when processing a task, and the second is the system-centric one, which 
encompasses the actions that an XAI-based DSS performs during operation (Meske et al., 
2022). The former involves a user and the associated mental model receiving an explanation 
from an XAI-based DSS to perform a task (Gunning, 2019). By receiving an explanation, the 
user develops an attitude toward the XAI-based DSS (e.g., algorithmic aversion or appreciation) 
(Wanner, Herm, et al., 2022a) based on their own perception and thus revises their mental 
model (Berger et al., 2021; Miller, 2019). The latter involves the XAI-based DSS. Here, an 
XAI-based DSS recommends actions for a decision problem and thus generates an explanation 
for its reasoning. Due to the strong interaction of both design components, it is essential to 
incorporate the user’s design requirements into the XAI-based DSS to provide an adequate 
explanation and thus promote the user’s acceptance toward the XAI-based DSS (Herm, 
Steinbach, et al., 2022). 

Decision Support Systems. Due to the increasing amount of available information and the 
complexity of use cases, the application of DSSs has gained momentum, especially in the 1970s 
to 1980s (Liu et al., 2008). Since then, they have supported users, empowering them to make 
informed and efficient decisions on unstructured or semi-structured problems (Power, 2008), 
distinguishing them from expert systems designed to replace the actual user (Turban & Watkins, 
1986). This becomes particularly necessary when a decision problem arises within a constrained 
situation requiring an action where multiple decision alternatives exist. This applies to not only 
new or inexperienced employees in a field but also experienced and qualified employees 
(Power, 2008). 
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In this context, a DSS is characterized as any computer-based IS that contribute to the decision-
making process by providing recommendations, additional information, and optimization 
strategies to users that enable them to conduct their work (Arnott & Pervan, 2008). That is, this 
interactive computer-based system interacts with a user through a human-computer interface. 
Preliminary research distinguishes between five different types of DSS application 
developments, with data-driven DSSs (e.g., executive information systems) equipped with 
analytic processing capabilities valued with the highest functionality due to their ability to 
analyze complex data (Shim et al., 2002). 

In the early days of DSS development, software engineers handcrafted the decision logic within 
a DSS. In doing so, experienced staff transferred their knowledge into these computationally 
readable decision rules (Sprague, 1980). With increasing monitoring of real-world events, these 
rule sets are becoming more complex, making it nearly impossible for software engineers to 
handcraft them for complex situations (Herm, Steinbach, et al., 2022). AI-based algorithms 
concurrently provide the foundation for the autonomous creation of complex decision rules 
through computational breakthroughs that empower users to make complex decisions even in 
unstructured, time-constrained, or highly sensitive situations, which results in a hybrid 
intelligence (Dellermann et al., 2019; Janiesch, Zschech, et al., 2021). From an IS research 
perspective, integrating AI-based knowledge generation and human decision-making into IS 
enhances organizations’ effectiveness and strategic alignment. These types of AI-based DSSs 
are also called intelligent systems (Gregor & Benbasat, 1999; Mohseni et al., 2021). Within this 
context, relying on academic principles and design knowledge ensures an effective and valuable 
intelligent system application in practice (Demigha, 2021). 

Artificial Intelligence. In recent IS literature, the term AI is not linked to a specific set of 
technologies but is instead seen as a “frontier of computational advancements that references 
human intelligence in addressing ever more complex decision-making problems” (Berente et 
al., 2021, p. 5). In this regard, recent AI-based applications reflect not only human-like 
intelligence but also surpass human capabilities, creating superhuman cognitive capabilities 
(Herm, Heinrich, et al., 2023; Janiesch, Zschech, et al., 2021). Non-surprisingly, AI-based 
DSSs are frequently applied (Meske et al., 2022). 

While in the early stages of AI research, these inference models, known as symbolic AI, were 
built by hand (Goodfellow et al., 2016), recent groundbreaking computational advances have 
enabled the automatic generation of decision knowledge by using mathematical and statistical 
algorithms (Thiebes et al., 2021). To this end, ML algorithms have received increasing attention 
in the last few decades (Goodfellow et al., 2016; Russell & Norvig, 2021).  

Here, different types of ML-based algorithms have emerged that can be subdivided into three 
application types: i) reinforcement learning, a stateful agent-based approach to interact within 
an environment (e.g., games or autonomous driving) by performing actions and getting 
feedback from it, to optimize an overall goal; ii) unsupervised learning, an approach to detect 
patterns in unstructured and unlabeled data (e.g., cluster analysis, dimension reduction); and iii) 
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supervised learning, an approach to learn functions that associate input data with output labels 
to predict new unlabeled data (e.g., classification or regression) (Goodfellow et al., 2016). 

Accompanying the opportunities and benefits of ML that impact people’s lives throughout all 
domains, challenges emerge that impede sound ML application (Berente et al., 2021). This also 
includes the trade-off between performance and explainability, which assumes a linear 
correlation between the performance (e.g., accuracy) and explainability of an ML model. That 
is, ML models with less complex decision logic and thus high explainability tend to perform 
worse than ML models with more complex decision logic but lower explainability (Dam et al., 
2018; Gunning et al., 2019). The scholarly literature assumes that this behavior results due to 
the mathematical concept of the applied ML algorithm. That is, single tree-based (e.g., decision 
trees) or coefficient-based (e.g., linear regression) models seems to be more traceable for users 
compared to mathematically more complex models such as support vector machines (Gunning 
et al., 2019). Furthermore, a subclass of ML algorithms called DL is classified as having the 
highest complexity but the lowest explainability. DL models consist of multiple layers forming 
artificial neural networks (ANN). As their architectural structure becomes increasingly 
complex, the internal decision logic becomes untraceable for humans (Janiesch, Zschech, et al., 
2021). In recent applications, DL models have been able to generate precise results, even in 
high-stakes use cases such as medicine (Dwivedi et al., 2023). However, their application in 
practice is hampered, as users might not be permitted to use such systems due to regulations or 
may be unwilling to do so due to concerns of ambiguity and uncertainty while decision-making 
(Epley et al., 2007; Goodman & Flaxman, 2017). Ultimately, this diminishes the user’s 
acceptance of ML-based systems in practice (Wanner, Herm, et al., 2022a). 

User-Centric Explanations. Following Miller (2019)’s explanation theory, explanations are 
products of cognitive and socio-knowledge transfer processes. That is, an explanation describes 
the outcome of an interactive knowledge transfer from an explainer (e.g., XAI-based DSS) to 
an explainee (e.g., end-user), with the resulting product indicating how well an explainee 
receives an explanation (Miller, 2019). A not well designed transfer process consequently 
results in an information asymmetry between the explainee and the XAI-based DSS (Pfeuffer 
et al., 2019). As IS research centers on human-technology interaction, the role of AI 
explanations is widely discussed (Bauer et al., 2021). Unsurprisingly, IS research is currently 
exploring the potential benefits, pitfalls, and designs of (X)AI-based explanations (Gregor & 
Benbasat, 1999; Meske et al., 2022). 

However, since the perception of explanations is highly dependent on the user’s preferences, 
the process of knowledge transfer and the resulting product vary between individuals (Chromik 
& Butz, 2021; Herm, Steinbach, et al., 2022). This behavior is embodied in the user’s mental 
model. It reflects the user’s understanding of how the system (e.g., XAI-based DSS) may 
operate and what impact an action will have on this system (Hoffman et al., 2018). Due to the 
complexity of real-world scenarios, this mental model functions by using a heuristic behavior 
while iteratively adjusting the attitude toward this system (Kenny et al., 2021). As a 
consequence, an explanation is a complex product consisting of multiple dimensions, such as 
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information requirements, information access, the pragmatic goals of the explainee, beliefs, 
emotions, intentions, cognitive, and social aspects (Miller, 2019). Hence, an explanation is not 
perceived as satisfactory if the explanation is misunderstood or not comprehended as relevant 
by the explainee (Hilton, 1996). 

The goodness of an explanation defines the perceived degree to which one processes and 
transforms information into logical decision chains (Hoffman et al., 2018). In turn, an 
inadequately perceived explanation leads to trust issues and thus reduces the overall acceptance 
(Wanner, Herm, et al., 2022a). This behavior is also referred to as algorithm aversion. 
Conversely, increased acceptance is termed algorithmic appreciation (Berger et al., 2021; Shin 
et al., 2020). Significantly, when it comes to new technologies, building initial trust is hampered 
due to unknown risk factors, as users may fear uncertainties (Epley et al., 2007). Although users 
suspect no ill will from the system, the capabilities and abilities of the system are still unknown 
to them, making it difficult to build initial trust (Dam et al., 2018; McKnight et al., 1998). In 
this context, psychology and social sciences have developed numerous techniques to evaluate 
how users perceive explanations (Hoffman et al., 2018). These evaluations are preliminary 
conducted through qualitative (e.g., interviews, discussions) and quantitative (e.g., 
questionnaires) evaluations. Similarly, socio-technical AI research has derived several 
measurement constructs, including transparency, explainability, comprehensibility, cognitive 
load, time, and confidence, to scrutinize an explanation (Herm, Wanner, et al., 2022). 

Explainable Artificial Intelligence. Accordingly, explaining the logic of ML-based models is 
of paramount importance (Lebovitz et al., 2021). The multidisciplinary XAI research stream 
aims to develop transfer techniques to overcome the black-box behavior of ML-based models, 
thereby providing tractable explanations for the model’s decision logic (Arrieta et al., 2020). 
Moreover, recent regulatory policies, such as the General Data Protection Regulation (GDPR), 
are forcing the development of XAI techniques (Goodman & Flaxman, 2017). In this sense, 
XAI-based DSS becomes necessary to justify, evaluate, improve, and manage AI-based 
systems, especially in high-stakes use cases. Unsurprisingly, utilizing XAI is essential for 
different types of user groups, such as regulators, developers, managers, and end-users (Meske 
et al., 2022). 

Explanation techniques have consequently been devised for a subset of ML models (model 
agnostic) or specific ML model types (model specific) for different data formats (e.g., tables, 
text, or images) and data task types (classification, regression). Furthermore, two distinct 
approaches exist to illuminate a model’s decision logic. The first describes intrinsically 
explainable models that are comprehensible to humans due to the nature of the employed 
algorithms, and the second post-hoc models approximating actual ML models (Das & Rad, 
2020; Speith, 2022). Here, techniques such as shapely values or sparse linear models are used 
to analyze the actual model and develop a separate one that is interpretable to humans but 
potentially comprises a simplified decision logic compared to the original (Lundberg et al., 
2020; Speith, 2022). The purpose is to provide explanations that describe the internal decision 
logic of the model (global) or a particular prediction (local) (Arrieta et al., 2020). In addition, 
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five explanation types have emerged to deliver explanations to explainees with differing 
objectives. 

First, how explanations provide holistic descriptions of how the ML model’s inner decision 
logic functions. Second, how-to explanations describe how hypothetical adjustments to the 
input data modify the outcome of the ML model (counterfactual explanation). Third, what-else 
explanations aim to provide instances for the input data of the ML model that result in similar 
output to the ML model (explanation by example). Fourth, why explanations describe why 
predictions were made for the input data of the ML model based on features relevant to the 
model’s decision logic. Fifth, why-not explanations describe why the input features are not 
relevant to the ML model’s decision logic for certain outputs (contrastive explanation) (Herm, 
Heinrich, et al., 2023; Mohseni et al., 2021). 

This variety of explanation types, combined with the possible set of ML models, data formats, 
and task types to be explained, leads to a plethora of explanation possibilities and thus to 
countless potential XAI applications from which to pick (Herm, 2023a). To this end, an XAI 
jungle is created, complicating the XAI selection and development process (Herm, Wanner, et 
al., 2022). Moreover, developers generate these XAI applications predominantly for developers 
(van der Waa et al., 2021). As a consequence, research and practice lack an understanding of 
how actual end-users perceive these explanations when it comes to factors such as transparency, 
explainability, comprehensibility, or cognitive load, making how well an end-user performs 
when using these explanations unknown (Herm, Wanner, et al., 2022; Shin, 2021). 

To this end, recent IS research proposes several research challenges. From a behavioral science 
perspective, this includes open research topics on how the different explanation types influence 
the end-user’s perception, what an appropriate explanation should look like, and how these 
explanations can increase or inhibit the end-user’s trust in AI and thus increase system 
acceptance. From a DSR perspective, research should address the lack of interdisciplinary 
design principles for different stakeholders to develop an appropriate XAI-based system (e.g., 
XAI-based DSS). Ultimately, it becomes evident that a combination of behavioral science and 
DSR is essential to support socio-technical XAI research within IS research (Ågerfalk et al., 
2022; Meske et al., 2022; Venkatesh, 2022). 

1.3 Methodological Background 

This section provides a brief overview of the methodology applied within this cumulative thesis. 
This includes the overarching methodology of IS research and the included research paradigms 
of behavioral science and DSR. 

Overview of Information Systems Research. IS research aims to gather knowledge for the 
development, use, and impact of the IS used within an organization to improve its effectiveness 
and efficiency (Silver et al., 1995). For this purpose, the IS research framework uses the 
paradigms of behavioral science and DSR to guide IS research projects (Hevner et al., 2004). 
See Figure 1.2 for an overview of the framework. 
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Figure 1.2 Interaction of Behavioral Science and Design Science Research in Information 
Systems Research Framework according to Hevner et al. (2004) 

Within this framework, the environment influences IS research by defining a problem space for 
IS research projects. This environment exposes business needs that arise due to business- or 
people-related problems (e.g., people, organizations, or technology) (Simon, 2019). 
Concurrently, the knowledge base delivers applicable knowledge (e.g., foundations or 
methodologies) to support IS research. In turn, IS output contributes by integrating applications 
in the environment and knowledge contributions in the knowledge base. IS research is 
consequently characterized by the interplay between the relevance of a problem and the rigor 
of the knowledge base (Hevner et al., 2004). The quality of IS research must be measured 
according to both theoretical and practical impacts (Baskerville et al., 2018). Furthermore, IS 
research is subdivided into two corresponding but distinct major research paradigms: behavioral 
science and DSR (Winter, 2008). While behavioral science aims to explain and predict 
organizational and human behavior to derive cause-effect relationships, DSR aims to derive 
artifacts for solving defined problems (Hevner et al., 2004). Thus, IS research attempts to 
combine the empirical knowledge of behavioral science (truth) with the creativity and precision 
of DSR (utility). Consequently, “Truth informs design and utility informs theory” (Hevner et 
al., 2004, p. 80). That is, the empirical knowledge gained from theories should contribute to the 
creation of artifacts, and in turn, the DSR artifact instantiation should postulate empirical 
knowledge to derive additional theories (Hevner & March, 2003).  

Behavioral Science. Behavioral science roots in the natural sciences and represents one of the 
research paradigms in the dual nature of IT research (Hevner et al., 2004). It aims to explain 
how and why objects behave the way they do to develop concepts that can be used to 
characterize observed processes. That is, behavioral science targets developing and justifying 
theories (e.g., principles, laws) to explain or predict organizational and human phenomena (e.g., 
user perception) (Achinstein, 1968; Österle et al., 2010). In particular, it focuses on the 
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interaction between humans and technology by analyzing, designing, implementing, managing, 
and using IS (Hevner et al., 2004). New theories evolve, facilitating more profound and 
comprehensive explanations of observed phenomena (March & Smith, 1995). To measure the 
quality of these theories, their explanatory power is assessed by their ability to predict future 
occurrences. From an applied research perspective, behavioral science projects predominantly 
employ hypothetico-deductive methods (Holmström et al., 2009). For this, theories such as the 
unified theory of acceptance and use of technology (UTAUT) (Venkatesh et al., 2003) and the 
theory of mind (Malle, 2004) are transposed to new application domains (e.g., AI) to derive 
hypotheses and subsequently assess them with empirical data. Ultimately, this research 
outcome impacts DSR, and vice versa (Hevner et al., 2004; Holmström et al., 2009). 

Design Science Research. DSR, the second research paradigm within the dual nature of IT 
research (Hevner et al., 2004), is a pragmatic research paradigm that centers on artifacts with 
the intention of creating innovative IT-related artifacts to solve real-world problems (March & 
Storey, 2008; Winter, 2008). Unlike behavioral science, it has its roots in engineering and 
artificial sciences (Simon, 2019). While a kernel theory is required to initialize a DSR project, 
it draws from evaluated and modified behavioral science theories (Kuechler & Vaishnavi, 
2008). During the execution of a DSR project, the research process may consist of multiple 
design cycles, constantly iterating between the building and evaluating of an artifact, facilitated 
by the relevance and the rigor cycle to incorporate the appropriate environment into the DSR 
project and simultaneously ensure theoretical grounding through the knowledge base. 
Accordingly, this research paradigm borrows its overarching structure from the IS research 
framework. It enables the design of complex, relevant, and rigorous IT artifacts to push the 
boundaries of organizational and human capabilities (Gregor & Hevner, 2013). These artifacts 
manifest as different output types: constructs, models, methods, instantiations, or theories 
(Cleven et al., 2009). Typically, recent DSR-based publications have contributed research 
artifacts such as taxonomies (Kundisch et al., 2022; Nickerson et al., 2013), design theories 
(Möller et al., 2020), and reference models (vom Brocke, 2007). 

1.4 Research Objectives and Thesis Overview 

Research Objectives. Following the IS research methodology, this thesis combines behavioral 
science and DSR, as suggested by Meske et al. (2022), in an alternating and sequential fashion 
to address open research challenges in socio-technical XAI research (cf. Section 1.1). To this 
end, this thesis aims to shed light on the perception of XAI-based DSSs from an end-user 
perspective and subsequently addresses the lack of design knowledge for XAI-based DSSs. 
These research fields consequently serve as overarching ROs. In this regard, RO1 aims to 
investigate end-user perceptions of XAI-based DSSs and is divided into three sub-ROs, namely 
a preliminary study on end-user acceptance (RO1.1), a systematization of existing user-centered 
XAI studies (RO1.2), and investigations on various factors contributing to the perception of 
(X)AI-based explanations (RO1.3). RO2 subsequently contributes to the design knowledge of 
XAI-based DSSs (RO2). See Figure 1.3 for an overview. 
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Figure 1.3 Research Design of Thesis 

RO1 aims to research the end-user’s perception of XAI-based DSSs. To do so, it is subdivided 
into three sub-ROs: 

First, RO1.1 investigates the end-user acceptance of XAI-based DSSs by utilizing the 
behavioral science paradigm. Based on the theoretical assumption of recent XAI-based 
literature that increased transparency can influence end-users’ trust and acceptance of XAI-
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factors influencing end-users’ perception of XAI-based DSSs. That is, this sub-RO aims to 
explore the high-level factors of transparency and trust to determine the need for future in-depth 
research endeavors that measure end-user perceptions in detail. Here, a theoretical model 
scrutinizes the end-user acceptance of XAI-based DSSs. As a consequence, this preliminary 
study utilizes and extends the UTAUT model (Venkatesh et al., 2003) to include the AI-related 
factors of transparency and trust. 
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to the current body of knowledge by providing a starting point to facilitate XAI-based end-user 
studies. 

Third, based on RO1.1 and following Mohseni et al. (2021), a significant effect of transparency 
on system acceptance, deems it essential to focus on its measurable factors including 
explainability and comprehensibility to investigate end-user perception. In this context, recent 
research also calls for the investigation of cognitive load (e.g., Hudon et al., 2021). Thus, using 
the systematization of RO1.2, RO1.3 strives to examine relevant factors that contribute to the 
end-user perception of (X)AI-based DSSs by relying on the behavioral science paradigm. This 
RO is subdivided into three sub-ROs: RO1.3a, explainability; RO1.3b, comprehensibility; and 
R1.3c, cognitive load. Here, RO1.3a aims to address two research incentives: First, an end-user-
focused experiment investigates the explainability of intrinsic explainable ML models and thus 
examine whether empirical evidence exists for the theoretical performance-explainability trade-
off in common ML algorithms. In addition, an end-user investigation compares the perceived 
level of explainability for various implementation-independent XAI-based explanation types to 
investigate the explainability of post-hoc models. Following that, RO1.3b aims to empirically 
investigate whether a correlation exists between the perceived level of explainability in 
common ML algorithms (intrinsic explainability), XAI explanations (post-hoc explainability), 
and the tested comprehensibility of end-users. RO1.3c builds on these findings and aims to 
examine the perceived cognitive load level of implementation-independent XAI explanations. 
This also include investigating the cognitive load’s impact on task performance and task time. 
Finally, the results contextualize a metric for mental efficiency that enables its evaluation and 
thus an assessment of the appropriateness of an explanation for high-stakes use cases. 

RO2 builds on the findings of RO1. Here RO2 aims at deriving design knowledge for the 
ensured application of XAI-based DSSs, thus facilitating their acceptance. In this context, 
research applies the DSR paradigm to derive a domain-independent and interdisciplinary 
nascent design theory (Möller et al., 2020) that includes meta-design requirements, design 
requirements, design principles, and design features. This also includes integrating the user 
group developer into the design theory, as developers use XAI explanations to evaluate, 
improve, and manage the underlying ML models. It is thus essential to include developer-
specific design elements to ensure their acceptance and adoption of XAI-based DSSs. Hence, 
RO2 compromises design considerations from the environment and knowledge base, using 
DSR evaluation strategies according to Venable et al. (2016)’s FEDS framework to maintain 
scientific rigor while ensuring relevance for practice. 

Thesis Overview. To address the proposed ROs and sub-ROs, this thesis utilizes an 
accumulative research process, compromising six publications published between 2021 and 
2023. The following paragraphs describe these publications comprehensively and provide an 
overview of the thesis structure and scope. 
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Section 2 addresses RO1.1 by presenting the publication of Wanner, Herm, et al. (2022a). This 
contribution seeks to empirically research the factors of trust and transparency within AI-based 
DSSs in terms of their influence on end-user system acceptance. For this purpose, the widely 
used UTAUT model (Venkatesh et al., 2003) is extended by constructs on the factors (initial) 
trust and transparency and evaluated by related scientific literature and practitioners. This 
extended model is subsequently tested in an industrial maintenance scenario through 
quantitative studies with domain experts. While the results imply that end-user acceptance 
depends mainly on performance, transparency and trust have a significant but indirect effect on 
end-user acceptance. This demonstrates the need for future research on the measurable factors 
of transparency and trust within XAI research.  

Section 3 focuses on the systematization of XAI end-user studies (RO1.2) by referring to Herm, 
Wanner, et al. (2022). Here, a structured literature review (vom Brocke et al., 2015) is 
conducted to identify a knowledge base of end-user-centered XAI studies, which is 
systematized into a taxonomy (Nickerson et al., 2013) that includes the meta-characteristics of 
objectives, participants, methods, and measurements. Drawing from this classification, 
descriptive, cluster, and archetype analyses are derived for this knowledge base to reveal 
contemporary research streams and shortcomings. This research contribution also summarizes 
characteristics to holistically structure future user-centered XAI studies. In doing so, the 
findings are contextualized in an overarching, cross-disciplinary nomenclature to help 
researchers address predominant research gaps and precisely position their research incentives. 

Using the findings of Section 3, RO1.3 investigates the end-user perception of XAI-based DSSs 
in a threefold research incentive: 

First, RO1.3a, which originates from Herm, Heinrich, et al. (2023) (Section 4), is concerned 
with investigating the perceived explainability in (X)AI research. In this research contribution, 
two end-user studies are conducted to examine, first, the lack of empirical evidence on the trade-
off between performance and explainability in common ML algorithms and second, the end-
user perception of implementation-independent XAI explanation types. To do so, this 
contribution has deduced and validated hypotheses for both experiments through quantitative 
end-user studies. By using this research design, the research contributions target the different 
types of explanation approaches, namely intrinsic explainable ML models and post-hoc 
explainable models. For the first experiment, the results deviate from the theoretical trade-off 
assumption and imply a less gradual ratio in terms of end-user perceptions, which fall into three 
groups: no perceived explainability (e.g., DNNs), mediocre explainability (e.g., support vector 
machines), and high explainability (e.g., decision trees). The results of the second experiment 
further indicate a stark differentiation in end-user perception across explanation types, with 
local types rated as best. Lastly, the research contribution proposes future ROs and implies that 
evaluating (XAI) explanations should not depend solely on perceived explainability, as this 
may introduce bias in the end-user’s perception. The results suggest that perceived 
explainability does not automatically translate into comprehensibility and that end-users may 
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prefer local explanation types, surmising a potential preference for explanations demanding less 
mental effort. 

Second, Section 5 addresses RO1.3b by reflecting the results of Herm, Wanner, et al. (2021a). 
Similar to Herm, Heinrich, et al. (2023), this research contribution addresses the lack of 
empirical evidence in end-user-centered XAI research. Building on the findings of RO1.3a, this 
contribution examines the theoretical correlation between task-solving ability (degree of 
comprehensibility) and the explainability of intrinsically explainable ML models and XAI post-
hoc explainable models. This contribution thus comprises a quantitative study examining 
different use cases to measure the perceived degree of explainability and comprehensibility. To 
this end, the research contribution compares commonly used ML algorithms and the post-hoc-
based shapley additive explanation (SHAP) (Lundberg et al., 2020) by benchmarking 
participants with different task types in real-world scenarios adapted from the cognitive theory 
of multimedia learning (Mayer & Mayer, 2005). The results indicate a correlation between 
comprehensibility and explainability, with SHAP scoring highest for both factors. 

Third, Herm (2023a) answers RO1.3c by researching the end-user’s cognitive load, as presented 
in Section 6. This research contribution emerges from the results of RO1.3a, pointing to the 
need for an in-depth investigation of the factor of mental effort for XAI explanation types. 
Following the results of RO1.3a and RO1.3b, wherein post-hoc explanation models perform 
best regarding end-user perception, this research paper aims to investigate the impact on end-
user cognitive load for different XAI explanation types. Here, this contribution presents several 
hypotheses to investigate the relationship between cognitive load, the resulting task 
performance, and task time by conducting a quantitative study with prospective physicians 
within a COVID-19 use case. To this end, the study determines how mental effort, task 
performance, and task time are affected when using distinct XAI explanation types to solve 
classification tasks. The results exhibit the lowest mental effort and the highest task 
performance for local explanation types. Transferring these results into a mental efficiency 
metric, these explanation types are deemed to be the most efficient. Finally, this yields 
implications for using XAI in high-stakes use cases and future research incentives. 

Lastly, Herm, Steinbach, et al. (2022) addresses RO2 (Section 7), which centers on the design 
of XAI-based DSSs. Using the findings from RO1, this research paper develops a nascent 
design theory (Möller et al., 2020) to facilitate the acceptance of XAI-based DSSs in high-
stakes use cases for multiple user groups. In doing so, the nascent design theory aims to provide 
interdisciplinary design guidelines for both end-users and developers in a domain-independent 
fashion. To ensure the relevance and rigor of this nascent design theory, the contribution applies 
a DSR methodology (Vaishnavi & Kuechler, 2007) comprising two design cycles. Furthermore, 
by conducting a structured literature review (vom Brocke et al., 2015), two qualitative expert 
studies (Glaser & Strauss, 1967), a quantitative evaluation (Iivari et al., 2021), and a real-world 
use case instantiation, the contribution incorporates meta-design requirements, design 
requirements, design principles, and design features. To this end, the design theory targets the 
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topics of global explainability, local explainability, personalized interface design, and 
psychological/emotional factors. 

All contributions are presented as published, with minor corrections (e.g., unification of 
capitalization, references, and section format; adjustment of section, table, and figure 
numbering), to standardize the layout of this thesis. See Figure 1.4 for an overview of the thesis 
structure and a comprehensive description of the sections. 

 

Figure 1.4 Thesis Overview 

1.5 Positioning within Scientific Context 

This section sets the research contributions included in this thesis (cf. Section 1.4) in the holistic 
context of the author’s XAI-related publications. These contributions (n=6) form the core of 
the author’s XAI research endeavors and thus the scope of this cumulative thesis. However, the 
publications not included are relevant because they either serve as input knowledge for the 
included research contributions or derive research outcomes closely related to the thesis topic. 
For the sake of clarity, these not-included publications are referred to as research outcomes 
(n=10). In addition, this section demonstrates the connections of these research outcomes and 
the included research contributions. See Figure 1.5 for an overview. Thus, this section 
summarizes and contextualizes the author’s XAI-related publications. Lastly, Appendix A 
provides an overview of all authored contributions (n=31), including those not related to the 
research stream of XAI. 
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Figure 1.5 Author’s XAI-related Publications 
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Research Outcome 1. This research outcome (Wanner, Herm, Hartel, et al., 2019) serves as a 
starting point for the author’s XAI-driven research endeavor. It develops an approach to 
integrate techniques from the field of process mining (PM) and ML into a demonstrator to 
leverage binary sensor data from today’s Industry 4.0 (I4.0) machines. To this end, this research 
contribution illustrates the applicability of PM and ML to binary data and thus the ability to 
integrate analytical maintenance strategies into production facilities. Likewise, the evaluation 
reveals that black-box ML algorithms are unsuitable for high-stakes use cases and that tractable 
ML models must be used instead, resulting in a research call on perceived explainability in ML 
models for decision support. 

Research Outcome 2. Building on the findings of research outcome 1, this publication 
(Wanner, Herm, & Janiesch, 2020) seeks to investigate the perception of black-box ML models 
from an end-user perspective. To this end, this paper provides a literature-based classification 
of technical explanation approaches and intrinsic explainable ML algorithms and proposes a 
survey design to systematize existing XAI research, laying the foundation for subsequent end-
user-centric research. 

Research Outcome 3. Within this research outcome (Wanner, Herm, et al., 2022b), the survey 
design developed in research outcome 2 has been extended and applied to measure derived 
factors that influence the goodness of perceived explainability of ML models. These include 
the factors of intuitiveness, complexity, trustworthiness, understandability, satisfaction, and 
sufficiency. This evaluation targeted several ML algorithms, different types of stakes (low and 
high), and ML problem types (classification and regression). The results indicate that 
trustworthiness is the most critical factor for perceived goodness of explainability. 

Research Outcome 4. Using the two-factor XAI survey design of research outcome 3, this 
publication (Wanner, Herm, Heinrich, et al., 2021) examines the theoretical trade-off between 
the explainability and performance of common ML algorithms from the end-user perspective. 
In doing so, it i.a. reveals that tree-based algorithms are perceived to be more explainable than 
ML algorithms, such as ANNs. 

Research Outcome 5. As research outcomes 1 and 3 reveal the importance of the factors of 
trust and explainability, this contribution (Wanner, Popp, et al., 2021) conducts several 
quantitative and qualitative studies to extend the UTAUT model with constructs related to trust 
and transparency when dealing with an AI-based DSS. To this end, this contribution lays the 
foundation for the contribution in Section 2 (Wanner, Herm, et al., 2022a). Thus, the derived 
UTAUT model has been extended and tested in an industrial maintenance use case (see Section 
2). This necessitates systematizing user-centered XAI research (Section 3), as shown in Herm, 
Wanner, et al. (2022), and provides the requisite to investigate further XAI-related constructs 
(Sections 4-6), such as perceived explainability (Herm, Heinrich, et al., 2023), 
comprehensibility (Herm, Wanner, et al., 2021a), and cognitive load (Herm, 2023a) and, lastly, 
to demonstrate the need to derive a nascent design theory for XAI-based DSSs (Herm, 
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Steinbach, et al., 2022) (Section 7). See Section 1.4 for more information about the 
contributions included in this thesis. 

Research Outcome 6. Following the necessity for explainability in AI-based DSSs for I4.0 
maintenance (see research outcome 1), this research outcome (Wanner, Herm, & Janiesch, 
2019) develops and demonstrates a prototype that leverages trained ML models and expert 
knowledge to automatically derive intelligible rule sets for real-time anomaly detection within 
production facilities. 

Research Outcome 7. Building on research outcome 1, this research outcome (Wanner, Herm, 
& Janiesch, 2021) extends the developed prototype with a novel technique to translate decision 
knowledge from more complex ML models, such as random forests, into traceable but accurate 
decision rules. These decision rules apply for real-time sensor data monitoring in production 
facilities. 

Research Outcome 8. This research outcome (Wanner, Herm, Janiesch, et al., 2022) focuses 
on German manufacturing companies. Its primary objective is to investigate the state of the art 
in AI-based I4.0 maintenance strategies in German manufacturing companies, and it thus 
indirectly compares the maturity of the German industry with the developed approach of 
research outcome 7. This includes tracking, perceiving, and utilizing sensor data for data-based 
maintenance approaches. 

Research Outcome 9. While previous work (e.g., research outcome 7) has argued that training 
ML algorithms with unknown or unsupervised data may introduce bias, this bias can lead to 
unfair and discriminatory erroneous decisions. Thereon, this research contribution (Herm, 
Janiesch, et al., 2022) investigates what types of bias may occur. To this end, a structured 
literature review of AI-based research identifies distinct bias types and provides 
recommendations for addressing and avoiding bias in AI research and practice. 

Research Outcome 10. Lastly, the research outcome of Wanner, Herm, Heinrich, et al. (2020) 
pursues the idea of investigating end-user-related factors for using XAI-based DSSs. 
Hypotheses and a study procedure have been derived to examine end-user confidence in XAI-
based DSSs. Specifically, this aims at the influence of different explanation types for XAI-
based DSSs and the use case stake on the end-user’s confidence. 

1.6 Discussion 

Recognizing that this cumulative thesis’s overall goal is to shed light on the perception and 
design of XAI-based DSSs, the following section discusses the results in an overarching 
manner, comprehensively summarizing the findings and providing implications and 
prospective limitations. As such, this section comprises three subsections, which discuss the 
perception of XAI-based DSSs (RO1), deliberate on the design of XAI-based DSSs (RO2), and 
outline the thesis’s contribution to research, respectively. 

Perception of XAI-based DSSs. In recent years, user-centered XAI research has emphasized 
several under-researched factors to uncover the nature of user’s rationale in the decision-making 
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process (Herm, Wanner, et al., 2022). This implies the consideration of complex heuristic 
human behavior and, accordingly, a multifaceted mental model (Gunning et al., 2019) to 
facilitate the acceptance of XAI-based DSSs (Wanner, Herm, et al., 2022a). This cumulative 
thesis consequently aims to address this issue by providing first-hand empirical evidence of 
end-user perception and subsequent design knowledge for the application of XAI-based DSSs; 
hence, it represents a starting point for future XAI research to draw upon. 

First, a preliminary study establishes the rationale for the research incentive to investigate the 
end-user’s mental model during the utilization of XAI-based DSSs. Here, an extended UTAUT 
model for AI-based DSSs reveals the importance of the factors of transparency and (initial) 
trust for end-user acceptance. Although performance expectancy is revealed as the most 
relevant direct factor, this study indicates the significance of transparency and trust through 
indirect effects, denoting a multifaceted construct. In this sense, the results imply the need for 
future research on indirect factors to understand the user’s mental model as well. 

As part of these research incentives, this thesis focuses on the complex construct of 
transparency by examining its measurable factors of explainability and comprehensibility 
(Mohseni et al., 2021). Further following recent research calls (e.g., Hudon et al., 2021), this 
thesis also emphasizes on the factor of cognitive load to investigate end-user’s perception. 
Using a cumulative research approach, this thesis also examines on related aspects of these 
factors. That is, the results of the empirical studies indicate that the type of explanation strongly 
influences the end-user’s perception (explainability, mental effort) and performance 
(comprehensibility, task performance, and task time). It is apparent that end-users prefer local 
explanation types over global ones. Furthermore, examining mental effort reveals that end-users 
perceive local explanation types as less demanding. Analogously, perceived mental effort 
correlates with task time and task performance, which in combination denotes positive mental 
efficiency only for local explanation types. However, it should be noted that with the preference 
for a more straightforward (local) explanation type, the amount of information provided 
decreases compared to global explanation types. That is, relying exclusively on these 
explanation types can lead to unpredictable side effects. For example, within the investigation 
of the comprehensibility factor, it became apparent that participants often miscomprehend these 
gray-box explanations. Recent research (e.g., Rudin, 2019) advocates using comprehensible 
white-box ML models rather than augmenting black-box models with XAI post-hoc models. 
Apart from XAI-based explanations, the empirical studies on explainability and 
comprehensibility demonstrate that end-users prefer intrinsic ML models that represent their 
decision logic in a tree- or coefficient-based manner, which may be due to prior knowledge or 
a more accustomed representation format. 

Altogether, the results indicate that one must determine the explanation selection individually 
for different use cases. Similarly, empirical studies address the perceptions of novice end-users 
without prior knowledge of AI or ML. Thus, these studies do not consider learning effects or 
additional user groups. Similarly, the research findings may imply an over-reliance on 
straightforward explanation types, causing unintended downstream consequences. That is, to 
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study these effects, it is necessary to perform long-term studies on different types of end-users. 
Similarly, these studies have been conducted in a controlled environment where participants 
must place themselves in a high-stakes scenario without worrying about the consequences for 
poor or incorrect performance or having to deal with time constraints or interference times. 
Therefore, one might assume that the pressure placed on participants would lead to new insights 
and different results regarding the studied factors (Saeed & Omlin, 2023). Similarly, it is 
currently not apparent how end-users deal with erroneous system recommendations, biases in 
the ML model’s decision logic, or information asymmetries due to human decision biases 
(Venkatesh, 2022). 

The systematization in Section 3 derives several factors that may contribute to heuristic user 
behavior within current user-centered XAI research. In conclusion, this cumulative thesis 
addresses some of the stated factors: transparency and trust (Section 2), explainability (Section 
4), comprehensibility (Section 5), and cognitive load (Section 6). In turn, open factors remain 
that must be addressed: accuracy, decision quality, time constraints, and satisfaction. Future 
XAI research must consequently address this shortcoming and thereby develop a holistic 
understanding of an end-user’s mental model during decision-making (Herm, 2023a; Herm, 
Heinrich, et al., 2023). 

Design of XAI-based DSSs. According to the IS research framework (cf. Figure 1.2), the 
design of XAI-based DSSs is based on preliminary studies such as those conducted in the 
context of the first RO. Hence, within this cumulative thesis, the derived nascent design theory 
(RO2) compromises (meta-) design requirements, design principles, and design features that 
originate from an interdisciplinary research endeavor. To this end, the proposed design theory 
contains design elements primarily researched within RO1. To facilitate the acceptance of XAI-
based DSSs, the design theory addresses transparency and trust factors through meta-design 
requirements that result in design requirements and design principles to provide global and local 
explanations. Similarly, the design requirement of cognitive effort is addressed through RO1 
by examining the end-user’s cognitive load. In turn, the design theory extends this body of 
knowledge by additionally considering design elements that arise due to developer-specific 
characteristics and the related research field of human-computer interaction (Herm, Steinbach, 
et al., 2022). 

Overall, the nascent design theory addresses the prevailing lack of design knowledge in IS 
literature. In particular, the design theory expands the body of knowledge by incorporating 
technical and socio-technical aspects that can relate to multiple user groups and enables holistic 
design guidance to facilitate the adoption of XAI-based DSSs in practice. Thus, the design 
theory provides a starting point for future research and practice to draw upon. To realize this, it 
aims to provide interdisciplinary design knowledge for domain-independent applications by 
considering the user groups of end-users and developers. In line with RO1, RO2 aims to provide 
an initial foundation for the design of XAI-based DSSs. In this sense, this design theory is not 
intended to be a one-size-fits-all solution; rather, research and practice must tailor the results 
for specific application domains and extend them for additional user groups (Herm, Steinbach, 
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et al., 2022). However, the design theory reveals that end-users and developers share the same 
design requirements, three out of four design principles, and half of the design features, 
indicating a potential overlap between different stakeholders using XAI-based DSSs for diverse 
types of actions. 

So far, research has to delve deeper into distinct design elements, for instance, to derive 
mechanisms and design knowledge for an ensured trust development and to determine an 
appropriate explanation selection within use cases (Herm, Heinrich, et al., 2023; Venkatesh, 
2022). Hence, it may be critical to incorporate design elements that facilitate the development 
of interactive XAI-based DSSs by keeping humans in the loop, thus providing a feedback 
mechanism to improve the decision quality of the system and facilitate user attitudes toward 
the XAI-based DSS (Meske et al., 2022). Similar to RO1, applicability beyond a real-world 
initialization must be tested through multiple long field studies. This applicability also includes 
technical considerations due to the nature of XAI’s post-hoc models. This also embraces the 
definition of computational metrics for evaluation, as post-hoc models approximate the actual 
black-box model, which may lead to varying inherent ML decision-making rationales (Mohseni 
et al., 2021). This consequently raises the relevance of legal considerations when addressing 
liability and legally compliant application in high-risk use cases (Górski & Ramakrishna, 2021; 
Thiebes et al., 2021). 

Contribution to Research. During the 1980s and 1990s, research began to investigate the role 
of explanations within intelligent agents (Gregor & Benbasat, 1999). While these types of 
systems transitioned into AI-based systems, causing the shift toward “newer-paradigm 
intelligent systems” (Gregor & Yu, 2002, p. 289), the requisite to investigate the impact of 
explanations leveraged due to the increasing complexity of ML models (Maedche et al., 2021). 
Unsurprisingly, IS research is calling for examinations of the AI’s explainability (Meske et al., 
2022). So investigating the explainability of ML models is critical to IS research, as it has a 
multitude of requirements and implications for the daily tasks of decision-makers (Bauer et al., 
2021). Hence, IS research (Bauer et al., 2021; Meske et al., 2022; Venkatesh, 2022) proposes 
several high-level problem spaces: Perception) an examination of how XAI explanations 
influence users’ beliefs and consequently their mental models; Design) a concentration on user-
centered model explanations, thus addressing the design and implementation of user-centered 
AI-based systems to accommodate the requirements of multiple user groups; and Concept 
shifts) a determination of how explanations can cause endogenous concept shifts within AI 
usage. 

Building on these problem spaces, this thesis follows the IS research framework (cf. Figure 1.2) 
to investigate the topic of XAI-based DSSs, from not only a behavioral science perspective but 
also a DSR one. In particular, this thesis targets on the first and second problem spaces by 
deriving knowledge about end-users’ mentals model based on empirical research (perception), 
which subsequently transfers into design knowledge for the design of XAI-based DSSs 
(design). However, the scope of this thesis aims not to address these issues exhaustively. From 
that, the thesis contributes to an understanding of end-users’ mental models during decision-
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making by focusing on several factors to provide an empirical starting point and subsequently 
a domain-independent and adaptable design theory. Furthermore, this design theory is extended 
due to the consideration of developers as an XAI-based DSS user group. This implies that future 
research must reflect the findings of RO2 from a behavioral science perspective, which can 
yield additional insights about user perception and thus contribute to a more sophisticated 
design theory. Also, as this thesis focuses on the user groups of end-users and developers, 
research has already proposed further user groups (e.g., regulators, managers) (Meske et al., 
2022), which in turn implies the relevance of future research endeavors. 

However, as this thesis is concerned with the ROs perception and design, it still encountered 
initial XAI conceptual shifts constituting prospective research endeavors aside from traditional 
decision support traits. As an example, the results suggest that the application of XAI must be 
reconsidered, as the conducted expert studies pointed to the potential of using XAI as a toolkit 
for training novice workers (Herm, Steinbach, et al., 2022). Likewise, recent XAI research 
proposes a paradigm shift from recommendation-driven toward hypothesis-driven support 
(Miller, 2023). Given these conceptual shifts, research must refine and rethink the role of AI 
explanation and thus its perception and design. The application of XAI consequently remains 
in its infancy, which means that a considerable amount of research must be done to prevent 
opening Pandora’s box. 

1.7 Conclusion and Outlook 

As computational advances drive the integration of AI-based products into any system, these 
AI-based solutions empower the utilization of new capabilities for decision-making, even in 
high-stakes scenarios (Berente et al., 2021; Janiesch, Zschech, et al., 2021). To this end, the 
resulting AI-based DSS includes ML and DL models capable of outperforming domain experts 
(McKinney et al., 2020). In contrast, performance accompanies a diminishment of these 
models’ inherent explainability. Overall, the resulting information asymmetry can adversely 
impact the user’s mental model and thus reduce their system acceptance (Gunning et al., 2019; 
Shin, 2021). Hence, the XAI research stream aims to develop techniques that remedy this 
deficiency by making the model’s decision-making process traceable to humans. So far, 
developers have engineered these techniques primarily for developers, without involving the 
actual end-users of the system (Meske et al., 2022; van der Waa et al., 2021). 

Accordingly, this cumulative thesis aims to address the proposed shortcomings by researching 
end-user perceptions (RO1) of (X)AI explanations and subsequently deriving design 
knowledge (RO2) for the rigorous development of an XAI-based DSS. To accomplish this, the 
thesis embraces six research contributions that contribute to this overarching goal, as follows: 
First, Wanner, Herm, et al. (2022a) extends and tests a UTAUT model that combines the factors 
of transparency and (initial) trust and subsequently identifies the indirect influence of both 
factors on end-user system acceptance. Based on this preliminary study, Herm, Wanner, et al. 
(2022) systematizes existing user-centered XAI studies and derives a taxonomy that enables 
future research to construct substantiated studies and address identified research gaps. From 
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that, the included research contributions investigate the end-user’s perception of explainability 
(Herm, Heinrich, et al., 2023), comprehensibility (Herm, Wanner, et al., 2021a), and cognitive 
load (Herm, 2023a). To summarize, the results indicate that end-user perception varies 
markedly per explanation type, with primarily local explanation types rated best. In addition, 
the studies provide empirical evidence for a partially confirmed trade-off between performance 
and explainability, for the correlation between comprehensibility and explainability, and for the 
influence of cognitive load on end-user task performance and task time. Drawing on this, the 
results from the hypothetico-deductive end-user studies were incorporated into a nascent design 
theory (Herm, Steinbach, et al., 2022). This artifact comprises (meta-) design requirements, 
design principles, and design features, embodying an initial, interdisciplinary design proposal 
in a domain-independent fashion, which integrates multiple user groups. Lastly, a real-world 
instantiation in a predictive maintenance scenario has ensured the applicability of the design 
theory. 

As IS research is driven through the continuous interaction of behavioral science and DSR 
(Hevner & March, 2003), so is this cumulative thesis, in which design knowledge for XAI-
based DSSs is grounded on users’ perceptions. This thesis’s research results can thus be 
considered a vehicle for future user-centered XAI research, thereby also contributing to IS 
research and related research stream endeavors. That is, it provides the rationale for gaining 
first-hand insights about the perception and design of XAI-based DSSs. In turn, to establish a 
holistic understanding of an end-user’s mental model, it is essential to examine further factors 
thoroughly (cf. Herm, Wanner, et al., 2022) to obtain insights on behavioral changes that may 
impact the design of XAI-based DSSs in the long run. Ultimately, this may yield a more 
nuanced comprehension of end-user perception and thus a sophisticated design theory for XAI-
based DSS applications, overcoming the phenomenon of the “inmates running the asylum” 
(Miller, 2019, p. 4) in XAI research. 
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2 The Effect of Transparency and Trust on Intelligent 
System Acceptance: Evidence from a User-based Study 
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Abstract. Contemporary decision support systems are increasingly relying on 
artificial intelligence technology such as machine learning algorithms to form 
intelligent systems. These systems have human-like decision capacity for selected 
applications based on a decision rationale which cannot be looked-up conveniently 
and constitutes a black box. As a consequence, acceptance by end-users remains 
somewhat hesitant. While lacking transparency has been said to hinder trust and 
enforce aversion towards these systems, studies that connect user trust to 
transparency and subsequently acceptance are scarce. In response, our research is 
concerned with the development of a theoretical model that explains end-user 
acceptance of intelligent systems. We utilize the unified theory of acceptance and 
use in information technology as well as explanation theory and related theories on 
initial trust and user trust in information systems. The proposed model is tested in 
an industrial maintenance workplace scenario using maintenance experts as 
participants to represent the user group. Results show that acceptance is 
performance-driven at first sight. However, transparency plays an important 
indirect role in regulating trust and the perception of performance. 
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2.1 Introduction 

Would you trust a superintelligent computer’s recommendation on a critical decision such as 
turning off crucial machinery if it offered no transparency into the decision-making? 

Intelligent systems with human-like cognitive capacity have been a promise of artificial 
intelligence (AI) research for decades. Due to the rise and sophistication of machine learning 
(ML) technology, intelligent systems are becoming a reality and can now solve complex 
cognitive tasks (Benbya et al., 2021). They are being deployed rapidly in practice (Janiesch, 
Zschech, et al., 2021). More recently, deep learning allows tackling even more compound 
problems such as playing Go (Silver et al., 2016) or driving autonomously in real traffic 
(Grigorescu et al., 2020). On the downside, the decision rationale of intelligent systems based 
on deep learning is not per se interpretable to humans and requires explanations. That is, while 
the decision is documented, its rationale is complex and essentially intransparent from the point 
of human perception constituting a perceived black box (Kroll, 2018). 

Further, users tend to credit anthropomorphic traits to an intelligent system subconsciously to 
ascribe the system’s AI a sense of efficacy (Epley et al., 2007; Pfeuffer et al., 2019). In this 
respect, intelligent systems are credited with the trait of agency (Baird & Maruping, 2021), 
creating a situation comparable to the principal-agent problem as their decision rationale is self-
trained (self-interest) and intransparent to the principal. This results in an information 
asymmetry between the user (principal) and the intelligent system (agent). This information 
asymmetry constitutes a major barrier for intelligent system acceptance and initial trust in 
intelligent systems (McKnight et al., 2002; Shin et al., 2020), because the system cannot provide 
credible, meaningful information about or affective bonds with the agent (Bigley & Pearce, 
1998). 

Altogether, this lack of transparency and, subsequently, trust can be a hindrance when 
delegating tasks or decisions to an intelligent system (Shin, 2020a, 2021). More specifically, 
the acceptance and adoption of AI currently remains rather hesitant (Chui & Malhotra, 2018; 
Milojevic & Nassah, 2018; Wilkinson et al., 2021). The result is observable user behavior, such 
as algorithm aversion, where the user will not accept an intelligent system in a professional 
context even though it outperforms human co-workers (Burton et al., 2020). While this can be 
attributed at least partially to lack of control and the information asymmetry due to its black-
box nature, we also observe the inverse, algorithm appreciation, and, thus, acceptance and use 
of intelligent systems in other scenarios (Herm, Wanner, et al., 2021a; Logg et al., 2019). 

This is a crucial point, as intelligent systems can only be effective if users are willing to engage 
with them actively and have confidence in their recommendations. Consequently, it is of great 
importance to understand what the intended users of such systems expect, and which influences 
have to be considered for mitigation of algorithm aversion and successful acceptance (Mahmud 
et al., 2022). 
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While the factors of performance, trust, and transparency have been connected to user 
perception of technology, a rigorous study to connect them to intended usage behavior of 
intelligent systems is missing (Venkatesh, 2022). With our research, we expand the body of 
knowledge on the acceptance of intelligent systems by considering system transparency and 
trust in combination as pivotal factors (e.g., Adadi & Berrada, 2018; Mohseni et al., 2021; 
Rudin, 2019). Furthermore, we extend beyond the measurement of direct effects and investigate 
their mediating, indirect roles regarding the drivers of behavioral intention. 

We build a theoretical model by synthesizing explanation theory, user trust theory, and the 
unified theory of acceptance (UTAUT) to fit the nature of intelligent systems and to understand 
the human attitude towards them. 

Thereby, we offer three key contributions. First, we provide an explanatory model for the 
context of intelligent systems. It can serve as a starting point for research in distinct fields. 
Second, by validating established hypotheses, we provide a better understanding of the actual 
factors that influence the user’s acceptance of intelligent systems and explain user behavior 
towards AI-based systems in general. This allows both the use of this knowledge for the 
(vendor’s) design and implementation of intelligent systems and its use for the (customer’s) 
process of software selection. Third, by establishing new hypotheses that regard the nature of 
trust and transparency in system acceptance, we take into account the unique attributes of 
intelligent systems related to the perceived black-box nature of their underlying rationales 
(Herm, Heinrich, et al., 2023; Mohseni et al., 2021). 

Our paper is structured as follows: In Section 2.2, we introduce the theoretical background for 
our research. In Section 2.3, we describe our research design. In Section 2.4, we describe our 
research theorizing. This includes the review of existing UTAUT research on trust and system 
transparency as well as the hypothesis and items of the derived constructs and relationships. In 
Section 2.5, we describe the empirical testing of the theoretical derivations and their results. 
Finally, we discuss the implications for theory and practice in Section 2.6, before we summarize 
and offer an outlook on future research in Section 2.7. 

2.2 Theoretical Background 

2.2.1 Artificial Intelligence and Intelligent Systems 

AI is an umbrella term for any technique that enables computers to imitate human intelligence 
and replicate or even surpass human decision-making capacity for complex tasks (Russell & 
Norvig, 2021). This entails that the meaning and scope of AI is constantly being refined as 
technology evolves while the reference point of human intelligence remains relatively static 
(Berente et al., 2021). 

In the past, AI focused on handcrafted inference models known as symbolic AI or the 
knowledge-based approach (Goodfellow et al., 2016). While this approach is inherently 
transparent and enabled trust in the decision process, it is limited by the human’s capability to 
explicate their tacit knowledge relevant to the task (Brynjolfsson & Mcafee, 2017). More 
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recently, ML and deep learning algorithms have overcome these limitations by automatically 
building analytical models from training data (Janiesch, Zschech, et al., 2021). However, the 
resulting advanced analytical models often lack immediate (system) transparency constituting 
an information asymmetry to the user. 

Intelligent systems are software systems that make use of AI technology. They exhibit at least 
two traits towards end-user that separate them from traditional commercial-off-the-shelf 
software with decision support such as accounting information systems or enterprise resource 
planning software. First, intelligent systems enable decision-making with human-like or even 
super-human cognitive abilities for certain tasks (McKinney et al., 2020). Second, the decision 
rationale of intelligent systems cannot be looked up conveniently. 

That is, intelligent systems do not use handcrafted and thus traceable, deterministic rulesets to 
make decisions, but intelligent systems exhibit complex probabilistic behavior with superior 
performance that was learned based on data input rather than explicitly programmed, for 
example using ML algorithms (Janiesch, Zschech, et al., 2021; Mohseni et al., 2021). While the 
underlying relations in the analytical models can be analyzed by experts given enough time and 
resources (and technically constitute white-box decision making), no end-user is capable of 
extracting explanations on the decision process or individual decisions. Rather, the model 
constitutes a black box from the perspective of the end-user (Savage, 2022). 

This circumstance leads to an increased tension between human agency and machine agency 
during decision making (Sundar, 2020). In this context, intelligent systems inherit 
characteristics associated with new, revolutionary technologies, including technology-related 
anxiety and alienation of labor through a lack of comprehension and a lack of trust (Mokyr et 
al., 2015). Hence, when facing these properties, due to effecting motivation, the human has a 
“desire to reduce uncertainty and ambiguity, at least in part with the goal of attaining a sense of 
predictability and control in one’s environment” (Epley et al., 2007). 

2.2.2 Transparency and Trust in Intelligent Systems 

Trust in the context of technology acceptance has widely been studied and derived from 
organizational trust towards humans. Notably, besides the core construct of the cognition-based 
trust in the ability of the system, additional affect-based trust aspects like the general propensity 
to trust technology and the believed goodwill or benevolence of the trustee towards the trustor 
exist (von Eschenbach, 2021). While it can be argued that the system has no ill will by itself, in 
the case of black-box systems, we cannot observe whether it acts as intended, possibly hindering 
initial trust formation (Dam et al., 2018). 

Building trust in new technologies is initially hindered by unknown risk factors and thus 
uncertainty, as well as a lack of total user control (McKnight et al., 2011; Shneiderman, 2020). 
The main factors in building initial trust are the ability of the system to show possession of the 
functionalities needed, to convey that they can help the user when needed, and to operate 
consistently (McKnight et al., 1998; Paravastu & Ramanujan, 2021). 
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For human intelligence, it is generally an important aspect to be able to explain the rationale 
behind one’s decision, while simultaneously, it can be considered as a prerequisite for 
establishing a trustworthy relationship (Samek et al., 2017). Thus, observing a system’s 
behavior in terms of transparency plays an important role. In IS research, it has been argued 
that transparency can increase the cognition-based part of trust towards the system (Shin et al., 
2020). In addition, system transparency is assumed to have an indirect influence on IS 
acceptance via trust in the context of recommending a favorable decision to the user (Wilkinson 
et al., 2021). 

While general performance indicators of ML models can be used to judge the recommendation 
performance of an intelligent system, the learning process and the inner view of the intelligent 
system towards the problem can be different from the human understanding, generating a 
dissonance, suggesting system performance by itself is not sufficient as a criterion (Miller, 
2019). 

Thus, the ML model underlying an intelligent system cannot address these factors itself. 
Therefore, it is widely suggested that this issue can be alleviated or resolved by providing an 
overall system transparency by offering explanations of the decision-making process (i.e., 
global explanations) as well as explanations of individual recommendations (i.e., local 
explanations) (Mohseni et al., 2021). That is, in recent AI-based IS literature the perceived 
explanation quality is defined as the level of explainability (Herm, Wanner, et al., 2021a). The 
field of explainable AI (XAI) offers augmentations or surrogate models that can explain the 
behavior of intelligent systems based on black-box ML models (Injadat et al., 2021). 

Altogether, the rise of design-based literature on explainable, intelligent systems suggests that 
the lack of transparency of deep learning algorithms poses a problem for user acceptance, 
rendering the systems inefficacious (Bentele & Seidenglanz, 2015; Sardianos et al., 2021). It is 
reasonable to assume that system transparency or its explainability, as well as trust, play a 
central role when investigating socio-technical aspects of technology acceptance. Furthermore, 
both seem to be interrelated to one another (Shin, 2021). Nevertheless, it is not evident to what 
extent an increase in the user’s perceived system explainability improves the user’s trust factor 
or how this affects the user’s technology acceptance of intelligent systems (Shin et al., 2020; 
Wang & Benbasat, 2016). 

2.2.3 Technology Acceptance 

Technology acceptance has been widely studied in the context of several theoretical 
frameworks. In its core idea, a behavioral study is used to draw conclusions regarding the 
willingness of a target group to accept an investigative object (Jackson et al., 1997; Venkatesh 
et al., 2012). 

Davis (1989) utilized the Theory of Reasoned Action to propose the Technology Acceptance 
Model (TAM) that explains the actual use of a system through the perceived usefulness and 
perceived ease of use of that system. It was later updated to include other factors such as 
subjective norms (Marangunić & Granić, 2015). An extension of the theory that includes the 
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additional determinant is the Theory of Planned Behavior by Taylor and Todd (1995). As a 
competing perspective of explanation, the Model of PC Utilization includes determinants that 
are less abstract to the technology application environment, such as job-fit, complexity, affect 
towards use, and facilitating conditions that reflect on the actual objective factors from the 
application environment, it can differ largely from case to case. The Innovation Diffusion 
Theory by Rogers (2010) is specifically tailored to new technologies and the perception of 
several determinants like a gained relative advantage, ease of use, visibility, and compatibility. 
Furthermore, the Social Cognitive Theory was extended to explain individual technology 
acceptance by determinants like outcome expectancy, self-efficacy, affect, and anxiety 
(Bandura, 2001). 

Venkatesh et al. (2003) combined those theories in the Unified Theory of Acceptance and Use 
of Technology (UTAUT). It provides a holistic model that includes adoption theories for new 
technologies and approaches to computer usage that capture the actual factors of the 
implementation environment. Compared to ABM, UTAUT is favored due to its ability to 
explain the variance within the dependent variable more precisely (Demissie et al., 2021). Here, 
behavioral intention (BI) acts as an explanatory factor for the actual user behavior. 
Determinants of BI in the UTAUT model are, for example, performance expectancy (PE), effort 
expectancy (EE), or social influence. UTAUT has been used extensively to explain and predict 
acceptance and use in a multitude of scenarios (Williams et al., 2015). 

Despite the fundamental theoretical foundation, it has become a common practice to form the 
measurement model for a specific use case given by multiple iteration cycles (e.g., Yao & 
Murphy, 2007). Thus, many authors modify their UTAUT model (e.g., Oliveira et al., 2014; 
Shahzad et al., 2020; Slade et al., 2015). Typically, an extension is applied in three different 
ways (Slade et al., 2015; Venkatesh et al., 2012): i) using UTAUT for the evaluation of new 
technologies or new cultural settings (e.g., Gupta et al., 2008); ii) adding new constructs to 
expand the investigation scope of UTAUT (e.g., Baishya & Samalia, 2020); and/or iii) to 
include exogenous predictors for the proposed UTAUT variables (e.g., Neufeld et al., 2007). 
Furthermore, many contributions such as Esfandiari and Sokhanvar (2016) or Albashrawi and 
Motiwalla (2017), combine multiple extension methods to construct a new model. Lastly, Blut 
et al. (2021) introduce four new broad predictors for future technology acceptance and use. 
However, they do not incorporate the idea of black-box systems common with contemporary 
AI. 

Related work of technology acceptance research is primarily focused on e-commerce, mobile 
technology, and social media (Rad et al., 2018). The intersection with AI innovations is rather 
small yet. Despite contributions for autonomous driving (e.g., Hein et al., 2018; Kaur & 
Rampersad, 2018) or healthcare (e.g., Fan et al., 2018; Portela et al., 2013), only a few studies 
exist for industrial applications, such as on the acceptance of intelligent robotics in production 
processes (e.g., Bröhl et al., 2016; Lotz et al., 2019). Also, there is the intention to understand 
the acceptance of augmented reality (Jetter et al., 2018). 
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Consequently, knowledge about the technology acceptance of intelligent systems is still limited. 
In particular, trust and system transparency have not been considered in conjunction as potential 
factors for technology acceptance of intelligent systems. 

2.3 Methodological Overview 

The focus of our research problem is the acceptance of an intelligent system from an end-user 
perspective. It is located at the intersection of two fields of interest: technology acceptance and 
AI, more specifically XAI. 

Figure 2.1 presents our methodological frame to develop our UTAUT model for the context of 
intelligent systems. It corresponds to the procedure presented by Šumak et al. (2010), which we 
modified to suit our objective. We detail the steps in the respective sections. 

 

Figure 2.1 Methodology Overview 

The kernel constructs to form our model are derived from the related research on UTAUT, trust, 
and system explainability. Thus, in the theorizing section (THEO, see Section 2.4), we derive 
a suitable model from existing UTAUT research on (a-c) system transparency and attitude 
towards technology. We then (d) hypothesize the derived measurement model constructs and 
connections based on empirical findings, and we I collect potential measurement items. 

In the evaluation section (EVAL, see Section 2.5), we (f) validate and modify our UTAUT 
model by using an exemplary application case in the field of industrial maintenance. Further, 
we (g, h) iteratively adapt it in empirical studies, perform the main study, and (i) discuss the 
results. 

As scientific methods, we use empirical surveys (see e.g., Lamnek & Krell, 2010) in 
combination with a structural equations model (SEM) (see e.g., Weiber & Mühlhaus, 2014). 
For the analysis of the SEM, we apply the variance-based partial least squares (PLS) regression 
(see e.g., Chin & Newsted, 1999). 

2.4 Research Theorizing 

2.4.1 Trust Extensions in UTAUT 

While trust has been widely recognized as an important factor in information system usage in 
ABM theory, the UTAUT model does not account for trust in its original form (Carter & 
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Bélanger, 2005). While several extensions of the UTAUT model have been proposed to address 
this drawback, both the inclusion and definition vary among research contributions (Venkatesh 
et al., 2016). Table 2.1 depicts a summary of UTAUT extensions regarding the construct of 
trust. 

We can characterize these extensions by inclusion type regarding the dependent variables, 
which are affected by the trust construct in the respective UTAUT model. Endogenous inclusion 
refers to a direct connection between trust and BI, while exogenous inclusion refers to an 
indirect relationship through other variables. Furthermore, we indicate which determinants are 
included for the trust variable itself. 

Inclusion Type Dependent Variables Determinants Example References 

Endogenous BI 

None 

Alaiad and Zhou 
(2013); Carter and 
Bélanger (2005); Oh 
and Yoon (2014) 

Personal Propensity to Trust Oliveira et al. (2014) 

Trust Integrity, Trust Ability 
Komiak and Benbasat 
(2006) 

Trust Property, Satisfaction Kim (2014) 

Exogenous 

PE 
Trust Benevolence, Trust Integrity, 

Trust Ability 
Cheng et al. (2008); 
Lee and Song (2013) 

Perceived Usefulness 
Perceived Ease of Use, Consumer 

Decision Making 
Xiao and Benbasat 
(2007) 

Perceived Risk, 
Perceived Usefulness 

System Transparency, Technical 
Competence, Situation 

Management 
Choi and Ji (2015) 

Endogenous/ 
Exogenous 

Perceived Risk, BI None Slade et al. (2015) 

PE, BI 
Trust Benevolence, Trust Integrity, 

Trust Ability 
Cody-Allen and 
Kishore (2006)  

Table 2.1 Trust-based UTAUT Extensions 

In terms of trust-based model components, we found i) several theoretical approaches to 
describe trust itself; ii) multiple determinants of the embedded trust construct (determinants); 
iii) several different ways of embedding trust into existing technology acceptance models such 
as ABM or UTAUT (inclusion type/ dependent variable). 

While a majority of contributions (e.g., Oh & Yoon, 2014) include trust as a single variable 
with no determinants in an endogenous manner, other studies (e.g., Cheng et al., 2008) adopted 
more complex theoretical frameworks. McKnight et al. (2002) present a frequently adopted 
framework. They define a model to determine the intention to trust a system by building upon 
trust perception theory by Mayer et al. (1995). Specifically, they determine the users’ intention 
to trust as the willingness of the user to depend on the system. This intention is influenced by 
three variables: disposition to trust/trust propensity, institution-based trust, and trusting beliefs. 
Disposition to trust or trust propensity is the general tendency to trust others, in this case an 
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intelligent system. Institution-based trust refers to the contextual propitiousness that supports 
trust, indicating an individual’s belief in good structural conditions for the success of the 
system. Trusting beliefs indicate an individual’s confidence in the system to fulfill the task as 
expected (Mayer et al., 1995; Vidotto et al., 2012). 

Trusting Beliefs itself is comprised of three determinants: trust benevolence, trust integrity, and 
trust ability/ability beliefs. Ability beliefs (AB) refers to the system’s perceived competencies 
and knowledge base for solving a task, that is trust in the ability of the system. Trust integrity 
involves the user’s perception that the system acts according to a set of rules that are acceptable 
to him or her. Trust benevolence is indicated to be the belief in the system to do good to the 
user beyond its own motivation (Cheng et al., 2008; Mayer et al., 1995; McKnight & Chervany, 
2000). 

Considering the problem of a complex, intelligent system that mimics human functions, we 
adopted the unified model of McKnight et al. (2002) but made several modifications. First, we 
adopt trust propensity towards an AI system (TP) as the indicator for an aggregation of prior 
beliefs that potentially allow a professional to become vulnerable to an intelligent system. 
Moreover, we include this measure as an important determinant as in comparison to other 
information systems, perception of intelligent systems is different since the belief is also formed 
by outside media and social influence in more drastic way (e.g., sentient AI) that can increase 
factors of fear and/or aversion leading to decreased trust. We adopt AB as the determinant for 
TP, since it is the component that directly measures trust in the system itself rather than 
environmental factors and personal factors that are covered by facilitating conditions and 
moderators of the core UTAUT model already. Following the discussion in the realm of 
algorithm aversion, we argue that the trust propensity will be changed by seeing the system 
perform. While this is contrary to related work on trust, we believe that based on findings rooted 
in the algorithm aversion theory that for intelligent systems, TP also encompasses the 
changeable beliefs regarding the ability of algorithms. As argued above trust propensity also 
reflects beliefs that reflect external sources like media. This renders its role more important than 
merely reflecting on a general trusting behavior but rather as an indicator of trusting an 
intelligent system specifically. Thus, we also used items that express a tendency for trust 
propensity that can be subject to change. Third, we model TP as a direct influence factor of BI 
and as an exogenous factor for PE. Following the discussion in Lankton et al. (2015) between 
human-like and system-like trust, we come to understand that with a system, AB reflects the 
system-like trust properties of reliability, functionality, and helpfulness, as a system is not able 
to exhibit behaviors on its own that would not adhere to the given rules (trust integrity) or 
exocentric motive (trust benevolence). Thus, in a bid to limit complexity, we omit the factors 
trust benevolence and trust integrity and adopt AB as the sole determinant for TP by assuming 
that no matter how many functions or tasks are assigned, the system has no hidden intention to 
extend its tasks beyond its programming and it cannot change its “promise” by itself. For a 
possible pre-existing perception of ill will towards the system, trust propensity will collect those 
prior beliefs reflected by the tendency of the user to trust the system prior to use. This is also 
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confirmed by Jensen et al. (2018) who in the case of computer systems attribute the most 
influence on benevolent beliefs and perception to dispositional characteristics that are already 
reflected in our model by trust propensity. However, if we extend the definition of the system 
by including system providers, programmers, and other stakeholders that are involved in the 
creation and maintenance, this simplification will pose a limitation, since hidden, malicious 
behavior can then play a pivotal, especially with intelligent systems since they can be subject 
to manipulation for example via adversarial learning (Heinrich et al., 2020). 

2.4.2 System Transparency Extensions in UTAUT 

Especially in recent years, the transparency of a system, as the backbone of an XAI’s system 
explainability, has been increasingly integrated into studies of technology acceptance of 
intelligent systems and seems to have a direct influence on the perceived trust of users (e.g., 
Nilashi et al., 2016; Peters et al., 2020). In the context of intelligence systems, we define system 
transparency (ST) as the ability of the system to explain and reveal its decision rationale to the 
user by visual means (e.g., a visual panel that shows based on which maintenance-related input 
variables the suggestion of imminent maintenance was made). Table 2.2 depicts a summary of 
UTAUT extensions regarding the construct of ST. 

Inclusion Type Dependent Variables Determinants Example References 

Exogenous/ 
Endogenous 

Trust, BI 
None 

Brunk et al. (2019); Slade et al. 
(2015); Choi and Ji (2015); 
Hebrado et al. (2011); Hebrado et 
al. (2013) 

Explanation Nilashi et al. (2016) 
Accuracy, Completeness Peters et al. (2020) 

ATT, Trust, BI None Shahzad et al. (2020) 
Understanding, BI, 

Users’ Privacy Concerns 
None Zhao et al. (2019) 

Trusting Beliefs, 
Understanding, 

Competence, Acceptance 
None Cramer et al. (2008) 

AB, 
Information Satisfaction 

Accuracy, Completeness, 
Time Information 

Currency 
Cody-Allen and Kishore (2006) 

EE, Trusting Beliefs None Wang and Benbasat (2016) 

Table 2.2 System-Transparency-based UTAUT Extensions 

We can characterize these extensions regarding the dependent variables, which are affected by 
the ST construct in the respective UTAUT model. Again, we found only references for the 
exogenous/ endogenous inclusion type. Similarly, we indicate which determinants are included 
for the transparency variable itself. 

Among others, Brunk et al. (2019) and Hebrado et al. (2013) define ST as a factor to increase 
the user’s understanding of how a system works. It further entails an understanding of the 
system’s inner working mechanisms. That is why specific recommendations were made 
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according to different characteristics and assumptions for a single item (Nilashi et al., 2016; 
Peters et al., 2020) as well as the system’s overall decision rationale. Furthermore, ST should 
be used for required justifications (Shahzad et al., 2020). 

Nevertheless, the influence of other factors on ST differs in these models. While many 
contributions, such as Brunk et al. (2019) and Peters et al. (2020), take no further factors into 
account, Nilashi et al. (2016) consider the type of explanation and the kind of presented 
information. They measure the factor of explanation through the level of explainability 
according to the user’s perception and, thus, how, and why a recommendation was made and 
the interaction level within the recommendation process. For Shahzad et al. (2020), it is about 
characteristics of the information quality, such as for example accuracy and completeness, 
which influence ST. 

Further, we noticed ST influences many factors: BI, PE, EE, and trust. As argued above, the 
factor of trust is modeled as TP and AB. Here, it is assumed that a highly transparent decision-
making process results in an increasing TP (Shin, 2020b; Vorm & Combs, 2022), while also 
increasing transparency results in a better AB of the user (Cody-Allen & Kishore, 2006). It is 
important to know that our assumption reflects a time-dependent use behavior were an 
introduction of the system takes place and through experiencing performing and through 
explanation of the decision rationale, the prior trust behavior (TP) changes through a change in 
the beliefs of the system’s ability (AB) after seeing it perform (Dietvorst et al., 2015). BI is 
defined as the degree to how a user’s intention changes through the level of ST (Peters et al., 
2020). Lastly, an increase in ST results in a clearer assessment by the user, and thus the user’s 
mental model assumes a higher performance of the system leading to increased PE. Likewise, 
a transparent system can reduce a user’s efforts to understand the systems’ inner working 
mechanisms (Wang & Benbasat, 2016). 

2.4.3 Attitude Towards Technology Extension in UTAUT 

Consistent with the theory of planned behavior, an individual’s attitude towards technology, in 
this case attitude towards AI technology (ATT), has been found to act as a mediating construct 
(Dwivedi et al., 2019; Kim et al., 2009; Yang & Yoo, 2004). People are said to be more likely 
to accept technology when they can form a positive attitude towards it. It is important to note 
that usually the construct is placed between the endogenous variables in the UTAUT context 
(e.g., PE and EE) and intention to use (e.g., BI). Furthermore, we believe that ATT is influenced 
the individual’s pre-formed opinion about AI technology. The prevailing opinion that forms 
into attitude is not changed easily and depends on an individual’s prior exposure to the 
technology (Ambady & Rosenthal, 1992). Factors accumulated in ATT can be religious beliefs, 
job security, attitude carried over from popular culture, as well as knowledge and familiarity 
and privacy, and relational closeness (Persson et al., 2021). Thus, it acts as a place to collect 
emotional attitude towards a technology, which in the case of AI is reinforced by its 
anthropomorphic and intransparent nature. While some studies show that not all of these factors 
are present in an individual’s mind, general states of mind like fear towards the technology can 
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influence and form the person’s attitude (Dos Santos et al., 2019; Kim, 2019). Thus, we argue 
to include ATT and hypothesize that the mediation strength and thus indirect connections to 
ATT are increasingly present for intelligent systems. 

2.4.4 Model and Hypotheses 

As a result of the above construct derivation, we present our UTAUT model for intelligent 
systems along with the hypotheses and their respective direction (- or +) in Figure 2.2. The 
measurement model can be divided into three major parts: i) UTAUT core (PE, EE, and BI), ii) 
UTAUT AI (AB, TP, ST, and ATT), and iii) moderators (gender, age, experience). 

  

Figure 2.2 Derived Acceptance Model for Intelligent Systems 

The derivation of the hypotheses from i) UTAUT core research is primarily based on general 
research on UTAUT (e.g., Dwivedi et al., 2019; Venkatesh et al., 2003). Nevertheless, these 
construct interrelations can also be found in UTAUT studies on trust or system transparency 
(e.g., Lee & Song, 2013; Wang & Benbasat, 2016). Compared to the UTAUT core established 
by Venkatesh et al. (2003), the constructs of facilitating conditions and social influence are not 
included due to the results of our multistage reduction process (cf. Section 2.5.2). 

The construct BI represents our target variable. It measures the strength of a user’s intention to 
perform a specific behavior (Fishbein & Ajzen, 1977). Here, it is about the willingness of a user 
to adopt an intelligent system or more specifically the willingness of the user to take advice 
recommended by the intelligent system. This is an important distinction as intelligent system 
use can be mandated in a professional setting. For example, in the case of intelligent systems 
for decision support, technically it is not about the intention of the user to adopt the system as 
such, but about the intention of the user to considers the system’s output in his or her work 
processes. 

The construct is influenced endogenously by the two basic UTAUT constructs of PE and EE. 
PE measures the degree to which an individual believes that using the system can increase their 
job performance. This includes factors such as perceived usefulness, job-fit, relative advantage, 
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extrinsic motivation, and outcome expectation (Venkatesh et al., 2003). Whereas EE measures 
the degree of individual ease associated with the use of the system, including factors such as 
perceived ease of use and complexity (Venkatesh et al., 2003). For both constructs, we assume 
that they have a positive influence on BI. This correlation can be seen in UTAUT (e.g., Dwivedi 
et al., 2019; Venkatesh et al., 2003) as well as in UTAUT model studies on trust and on ST 
(Cheng et al., 2008; Cody-Allen & Kishore, 2006; Lee & Song, 2013; Wang & Benbasat, 2016). 
Thus, we state: 

H1: Performance Expectancy positively affects Behavioral Intention. 

H2: Effort Expectancy positively affects Behavioral Intention. 

The hypotheses of ii) UTAUT AI, and thus, for ATT, AB, TP, and ST are primarily based on the 
references from Table 1 and Table 2 as well as Venkatesh et al. (2003)’s considerations. 

ATT is defined as a user’s overall affective reaction to using AI technology or an AI system 
(Venkatesh et al., 2003). While the authors did not include the construct in his final model, it is 
regularly used in the context of decision support systems. UTAUT research, as well as ABM 
research on trust, indicate that ATT has a positive effect on BI (e.g., Chen, 2013; Hwang et al., 
2016; Mansouri et al., 2011). That is, people form intentions to engage in behaviors to which 
they have a positive attitude (Dwivedi et al., 2019). Inversely, it is assumed that both PE and 
EE have a positive influence on a user’s ATT. Suleman et al. (2019) derive this significantly 
positive influence from the ABM research (Hsu et al., 2013; Indarsin & Ali, 2017) and later 
confirm it in their own research. Dwivedi et al. (2019) and Thomas et al. (2013) confirm the 
connection. We summarize these findings by our next hypotheses: 

H3: Attitude Towards AI Technology positively affects Behavioral Intention. 

H4: Performance Expectancy positively affects Attitude Towards AI Technology. 

H5: Effort Expectancy positively affects Attitude Towards AI Technology. 

Trust is regarded as a necessary prerequisite to forming an effective intelligent information 
system (e.g., Dam et al., 2018) and, thus, it is a crucial construct to build our model. In Section 
2.4.1, we have explained that TP is influenced by AB and thus can be changed by observing 
the system behavior. AB measures the assumed technical competencies of the system to solve 
a task (Schoorman et al., 2007). TP is about the user’s general disposition to trust an intelligent 
system with a task. For TP, we expect a positive effect on ATT and on BI, as this preformed 
trust is a major influence that has formed from user experienced and external exposure (e.g. 
through media) which is increasingly critical for intelligent system (Gherheş, 2018). For 
Suleman et al. (2019), trust in general was the most influential and significant factor affecting 
a participant’s ATT. The positive influence of trust on BI is well proven by several UTAUT 
studies (Choi & Ji, 2015; Lee & Song, 2013). In addition, we argue that specifically for 
intelligent systems, while the assumed ability of the system is quite high, the black-box nature 
and skepticism or the presence of algorithm aversion in humans can make it increasingly harder 
to form trust towards a system. As opposed to traditional software systems, intelligent systems 
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make decisions based on a learning process and do not necessarily follow the same reasoning 
as the human decision-making process. Thus, building trust towards an intelligent system seems 
more important since the natural state usually assumes a rather critical view of aversion 
(Mahmud et al., 2022). We summarize this with the next hypotheses: 

H6: Trust Propensity Towards AI positively affects Attitude Towards AI Technology. 

H7: Trust Propensity Towards AI positively affects Behavioral Intention. 

In turn, we assume that AB has a positive influence on a user’s TP, which in turn has a positive 
influence on PE. However, the direction of the latter influence is disputed in prior research. 
While Oliveira et al. (2014), Nilashi et al. (2016), and Wang and Benbasat (2016) assume that 
PE has a positive influence on trust, Cody-Allen and Kishore (2006), Lee and Song (2013), and 
Choi and Ji (2015) think that trust affects PE. We additionally argue that the propensity to trust 
an intelligent system will also result in increased expectance of future performances, while 
distrust in a system will also lower the expectations towards future high performance. As 
mentioned earlier with intelligent systems there is a general aversion on the one side, while 
there is also evidence of performance that exceeds human decision makes. Although intelligent 
systems can outperform humans, humans are sometimes preferred despite performing worse 
because of trust issues (Dietvorst et al., 2015). This is partially reflected by a person’s trust 
propensity. Therefore, we assume a positive influence of TP on PE. The influence of AB on TP 
is also relying on the fact that humans change behavior towards algorithms once they observe 
their behavior, which even can result in switching from a state of aversion to a state of algorithm 
appreciation (Logg et al., 2019). In fact, we argue that the assumed effect is even stronger with 
the performance promise that is attributed to intelligent systems compared to a traditional 
software system. Accordingly, we formulate our hypotheses: 

H8: Trust Propensity Towards AI positively affects Performance Expectancy. 

H9: Ability Beliefs positively affect Trust Propensity Towards AI. 

Trust - as a multifaced term - is assumed to have a strong correlation with ST (e.g., Dam et al., 
2018). ST measures the user’s understanding of the intelligent system’s decision rationale 
(Hebrado et al., 2011). In other words, it represents how openly an intelligent system’s inner 
decision rationale is working as well as how openly characteristics that determine why an 
intelligent system made a certain decision hare communicated (Mohseni et al., 2021). As the 
user of such an intelligent system decides whether or not to adopt the system recommendation, 
ST might influence his or her decision-making process. We expect a positive effect of ST on AB 
and TP based on the findings of Pu and Chen (2007) and Wang and Benbasat (2016) that rely 
on trust in  general. The former found that users assign a recommender system a higher level of 
competence if the decision-making process is explained in a traceable manner. The latter is 
supported by the preliminary UTAUT research of Brunk et al. (2019), Hebrado et al. (2013), 
Nilashi et al. (2016), Peters et al. (2020), and Chen and Sundar (2018). For example, Peters et 
al. (2020) found that ST positively influenced trust in the intelligent system significantly in the 
context of testing a consumer’s willingness to pay for transparency of such black-box systems. 
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We further argue that the ability to experience the reasoning of the system as a form of self-
disclosure will be accepted as some kind of honesty. In addition to the related work that deals 
with trust as a general construct, we argue that based on an existing state of aversion towards 
intelligent systems before seeing them perform and experiencing their decision rationale, a 
method to create transparency not only with regard to the performance but also with regard to 
the inner logic on a case-to-case basis we increase likelihood of mitigating the aversion (Herm, 
Heinrich, et al., 2023; Mohseni et al., 2021). While a prior trust (measured through trust 
propensity) has already been made up, we argue that through the usually missing experience 
with the design of intelligent systems, this formed opinion can be changed through visual means 
and demonstrations such as how-to or why-explanations as presented in the XAI literature 
(Arrieta et al., 2020; Herm, Heinrich, et al., 2023). We conclude with the hypotheses: 

H10: System Transparency positively affects Ability Beliefs. 

H11: System Transparency positively affects Trust Propensity Towards AI. 

Technology acceptance research supposes that ST also influences the residual UTAUT 
constructs of PE, EE, and BI. We derive the assumed positive effect of ST on PE from Zhao et 
al. (2019), who revealed that a higher level of a decision support system supports the user’s 
perception of the performance of that system. If users understand how a system works and how 
calculations are performed, they will perceive that, in some cases, implementing and using the 
system requires more effort (Gretzel & Fesenmaier, 2006). This is a special case with black-
box intelligent systems since not everything is transparent out-of-the-box and, thus, an 
associated effort cannot always be clearly derived. However, through ST the effort can be 
monitored and revealed. Thus, we expect a positive influence of ST onto EE. We also expect a 
positive influence of ST for BI. Making the reasoning behind a recommendation transparent 
allows for an understanding of the recommendation process, significantly increasing acceptance 
(Bilgic & Mooney, 2005). This significant and strong influence is also reflected in further 
studies by Venkatesh et al. (2016) and Hebrado et al. (2011). Furthermore, the basic concept of 
seeing an algorithm perform well can, for some tasks, increase performance expectancy. As a 
prerequisite of making up one’s mind about an algorithm, the ability to experience it is a 
fundamental necessity (Dietvorst et al., 2015; Logg et al., 2019). We address this through three 
hypotheses: 

H12: System Transparency positively affects Performance Expectancy. 

H13: System Transparency positively affects Effort Expectancy. 

H14: System Transparency positively affects Behavioral Intention. 

The hypothesis for the iii) moderators is also part of the original UTAUT model according to 
Venkatesh et al. (2003). We assume that gender, age, and experience have a moderating effect 
on PE, EE, and BI constructs. We derive this assumption from the initial UTAUT model 
(Venkatesh et al., 2003). It has been confirmed in several other UTAUT studies (e.g., Alharbi, 
2014; Esfandiari & Sokhanvar, 2016; Wang & Benbasat, 2016). In contrast, we do not consider 
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voluntariness of use due to the obligatory use of intelligent systems in day-to-day business. 
From this, we derive the following hypotheses: 

H15: Gender, Age, and Experience moderate the effects of PE on BI. 

H16: Gender, Age, and Experience moderate the effects of EE on BI. 

2.5 Study and Results 

2.5.1 Study Use Case 

In the following, we offer an exploration of the theoretical constructs put forward. For this 
purpose, we defined a real-world use case and transferred it to the UTAUT model in a step-by-
step procedure. In this way, we validate the applicability of our proposed model. Moreover, we 
gain first insights into the user’s willingness to accept intelligent systems at their workplace. 

We consider industrial machine maintenance to be a suitable scenario. Its focus is to maintain 
and restore the operational readiness of machinery to keep opportunity costs as low as possible. 
In contrast to reactive strategies, anomalous machine behavior can be identified and graded 
early on using statistical techniques to avoid unnecessary work. Given the technological 
possibilities to collect large and multifaceted data assets in a simplified manner, intelligent 
systems based on machine learning are a promising alternative for maintenance decision 
support (Carvalho et al., 2019). 

In this context, rolling bearings are used in many production scenarios of different 
manufacturers. For example, they are often installed in conveyor belts for transport or within 
different engines and show signs of wear and tear over time that requires maintenance 
(Pawellek, 2016). 

For our evaluation, we decided to use an automated production process to manufacture window 
and door handles, as these are common everyday items every respondent can relate to. In our 
scenario, there shall be several production sections connected by high-speed conveyor belts. 
Inside these conveyor belts, several bearings are installed. These are monitored by sensors to 
monitor change (e.g., noise sensor, vibration, and temperature). A newly introduced intelligent 
system evaluates this data automatically. In case of anomalous data patterns, a dashboard 
displays warnings and errors with concrete recommendations for action (cf. Appendix B.1). 

The respondents of the survey(s) shall be confronted with a decision situation that tests whether 
or not the user adopts the system recommendation in his or her own decision-making process. 
That is, they need to decide for or against an active intervention in the production process as 
recommended by the system. In an extreme case, the optical condition of the conveyor belt 
bearings is perceived as good. However, the system recommends that the conveyor belt must 
be switched off immediately. This error does not occur regularly, and the message contradicts 
the previous experience of the service employee (here, the respondent) with this production 
section. As additional information, we provide the reliability of the system recommendations 
and hint at the high follow-up costs in case of a wrong decision. 
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2.5.2 Study Design 

Our design and conduct of the survey are based on Šumak et al. (2010), which we modified to 
our objective. We used five steps to obtain our study results: i) collection of established 
measurement items; ii) pre-selection by author team; iii) reduction by experts; iv) evaluation 
and refinement through pre-study; and v) execution of the main study. See Appendix B.2 for 
the results of each step, as well as the primary and secondary source(s) for all measurement 
items. A more detailed result table of the validity and reliability measures of the pre-study and 
main study is available in Appendix B.3. 

Step i). First, we collected those measurement items that already exist for the respective 
constructs of interest and are, thus, empirically proven. 

As we adopted PE, EE, and BI from Venkatesh et al. (2003), we built on their findings. 
Venkatesh et al. (2003) chose the measurement items for UTAUT by conducting a study and 
testing the measurement items for consistency and reliability. For the additional constructs ATT, 
ST, AB, and TP, we examined the source construct measurement items as well as examples of 
secondary literature and derived constructs. Initially, we used three items to form the construct 
of ATT - one was adopted from Davis et al. (1992) and two from Higgins and his co-authors 
(Compeau et al., 1999; Thompson et al., 1991). As we derived ST from the perceived local 
explainability of an intelligent system decision’s result visualization as well as the perceived 
global explainability of the intelligent system’s decision process, we initially included five 
items from Madsen and Gregor (2000) to address the global component and two items from 
Cramer et al. (2008) to address the local component, as noted in recent XAI-related research 
(Adadi & Berrada, 2018; Mohseni et al., 2021). The measurement items for AB and TP were 
derived from McKnight et al. (2002) (trust competence) and Lee and Turban (2001) (trust 
propensity). Lastly, the measurement items for facilitating conditions and social influence were 
adapted from Taylor and Todd (1995), Thompson et al. (1991), Moore and Benbasat (1991), 
and Davis (1989). 

Step ii). Next, we discussed the appropriateness of each of the collected measurement items 
within the team of authors. 

The team members merge knowledge in the respective domains of industrial maintenance, 
technology acceptance, and (X)AI research. Special attention was paid to the duplication of 
potential item questions and their feasibility for the use case. We reduced the total number of 
measurement items for the model’s constructs from 71 to 24. 

Step iii). Subsequently, we conducted an expert survey with practitioners from industrial 
maintenance regarding our intended main study. 

The survey with ten experts had two goals: reducing the remaining measurement items and 
understanding the explainability of intelligent system dashboards. For the former, we briefly 
explained each of the model measurement constructs to the experts. Thereby, we removed the 
constructs of facilitating conditions and social influence completely. Subsequently, the experts 
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selected the most appropriate remaining measurement items for the use case per measurement 
construct. They were given at least one vote and at most votes for half the items. Then, we 
selected the final measurement items based on a majority vote. For the latter, we presented the 
experts with four different maintenance dashboards of intelligent systems as snapshots adapted 
from typical software in the respective field (e.g., Aboulian et al., 2018; Moyne et al., 2013). 
Here, the experts rated their perceived level of explanation goodness on a seven-point Likert 
scale. Using the dashboard with the highest overall (median) explanation goodness, ensures that 
the dashboard for the quantitative survey has inherent explainability to the end-user and thus 
provides enhanced system transparency (cf. Appendix B.1). 

Step iv). Then, we conducted a quantitative pilot study to critically examine our questionnaire 
and research design (Brown et al., 2010). The testing includes checks for internal consistency, 
convergent reliability, indicator reliability, and discriminant validity. 

The study contained 60 valid responses. Here, we ensured representative respondents, that is, 
maintenance professionals holding a position to use an intelligent system for their job-related 
tasks (e.g., experience in maintenance). See Appendix B.5 for the demographics of the 
responses. We provided the participants with a description of the exemplary use case and 
screenshots of the prototype. We asked them to respond to their perceptions of each of the 
measurement items on a seven-point Likert scale. See Table 2.3 for the assessment of 
measurement items and Appendix B.4 for a summary of our decisions on individual items. 

Construct Assessment Measurement Items 
CA AVE CR FL Criterion Cross-Loadings Item Loadings 

PE 0.86 0.64 0.90 - - - 
EE 0.74 0.57 0.84 - - EE1 
ST 0.67 0.75 0.86 - - - 
TP 0.23 0.56 0.67 - TP4 (BI) TP3, 4 
AB 0.74 0.66 0.85 - - - 

ATT 0.67 0.59 0.81 - - ATT2 
BI 0.83 0.74 0.89 - - - 

Internal consistency: Cronbach’s alpha (CA) > 0.7; composite reliability (CR) > 0.7 (Gefen et al., 2000; Hair et 
al., 2011) 
Convergence reliability: average variance extracted (AVE) > 0.5 (Hair et al., 2011) 
Indicator reliability: item loadings 0.7<x<1 (Hair et al., 2011) 
Discriminant validity: cross-loadings; Fornell-Larcker (FL) criterion (Fornell & Larcker, 1981; Hair et al., 2011) 

Table 2.3 Validation and Reliability Testing of Pre-Study 

Step v). Then, we conducted our main quantitative study. Table 2.4 comprises the final set of 
measurement items. We, again, checked for internal consistency, convergent reliability, 
indicator reliability, and discriminant validity. Further, while we did not include explicit control 
variable, we included control questions (CQ) following Meade and Craig (2012) and 
Oppenheimer et al. (2009) to increase result validity. 
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Construct Measurement Item Reference(s) 

PE 

PE1 Using this system in my job would enable me to accomplish 
tasks more quickly. 

Davis (1989) 

PE2 Using this system would improve my job performance. 
PE3 Using this system would make it easier to do my job. 
PE4 I would find this system useful in my job. 
PE5 Using this system would increase my productivity. Moore and Benbasat (1991) 

EE 

EE1 Learning to operate this system would be easy for me. Davis (1989) 

EE2 I would find it easy to get this system to do what I want it to 
do. 

EE3 My interactions with this system would be clear and 
understandable. 

EE4 I would find this system easy to use. 

ATT 

ATT1 The actual process of using this system would be pleasant. Davis et al. (1992) 
ATT2 This system would make work more interesting. Thompson et al. (1991) 
ATT3 I would like to work with this system. Compeau et al. (1999) 
ATT4 Using the system would be a bad/good idea. Peters et al. (2020); Taylor and 

Todd (1995) ATT5 Using the system would be foolish/wise move. 

BI 

BI1 If this system was available to me, I would intend to use this 
system in the future. 

Venkatesh et al. (2003) 

BI2 If this system was available to me, I predict I would use this 
system in the future. 

BI3 If this system was available to me, I would plan to use this 
system in the future. 

ST 

ST1 I would understand how this system will assist me with 
decisions I have to make. 

Madsen and Gregor (2000) 

ST2 I would understand why this system provided the decision it 
did. 

Cramer et al. (2008) 

ST3 I would understand what this system bases its provided 
decision on. 

AB 

AB1 This system would be competent in providing maintenance 
decision support. 

Cheng et al. (2008); McKnight 
et al. (2002) 

AB2 This system would perform maintenance decision support 
very well. 

AB3 In general, this system would be proficient in providing 
maintenance decision support. 

TP 

TP1 It would be easy for me to trust this system. Cheng et al. (2008); Lee and 
Turban (2001); Wang and 
Benbasat (2007) 

TP2 My tendency to trust this system would be high. 

TP3 I would tend to trust this system, even though I have little or 
no knowledge of it. 

C
Q

 

CQ1 I would not find this system easy to use. - 

CQ2 

Although I may would not know exactly how this system 
works, I would know how to use it to make decision 
regarding the quality of its output. Please do not rate this 
statement and please choose scale point one instead to ensure 
the data quality of this survey. This only applies to this 
question. 

Meade and Craig (2012) 

CQ3 I have read all questions carefully and answered truthfully. 

CQ4 

Thank you for taking the time to participate in this survey. 
We end the survey by capturing data about the demographics 
of the participants. As such, data about gender, age, and 
experience in the topic of the survey is being collected. In 
addition, we want to make sure the collected data is reliable. 
Please select the option “No answer” for the next question 
that asks about the length of the survey and simply write 
“I’ve read the instructions” in the box labeled “Additional 
remarks”. 

Oppenheimer et al. (2009) 

Table 2.4 Final Set of Measurement Items for Main Study 
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We acquired a total of 240 participants who completed the questionnaire via the academic 
survey platform prolific.com. Out of this sample, 240 respondents answered CQ1 correctly. 
Twenty-three respondents failed CQ2. For CQ3 and CQ4, we decided to add a tolerance of ±1 
point. The scale for CQ3 was inverted, and answers compared to PE4, while answers for CQ4 
were compared to TP1. The final dataset consists of 160 samples. See the following Table for 
the demographics of the sample. The demographical data (gender, age, experience) was used 
for the interaction moderation of the UTAUT model’s results presented in Section 2.5.3. 

Characteristic Attribute Value Characteristic Attribute Value 
Freq. Percent. Freq. Percent. 

Gender 
Male 110 68.75 

Experience with 
intelligent systems 

(EXP2) 

None 87 54.38 
Female 50 31.25 <1 year 22 13.75 
Others 0 0.00 1-3 years 24 15.00 

Age 

<=20 2 1.25 3-5 years 12 7.50 
21-30 62 38.75 5-10 years 10 6.25 
31-40 52 32.50 >10 years 5 5.00 
41-50 31 19.38 

Experience 
with AI 
(EXP3) 

None 47 29.38 
51-60 12 0.75 <1 year 39 24.38 
>61 1 0.06 1-3 years 43 26.88 

Experience in 
industrial 

maintenance 
(EXP1) 

None 59 36.88 3-5 years 16 0.10 
<1 year 31 19.38 5-10 years 11 6.88 

1-3 years 30 18.75 >10 years 4 2.50 
3-5 years 17 10.06 Note: Gender, Age, EXP1, EXP2, and EXP3 were used 

as interaction moderation. 5-10 years 15 9.38 
>10 years 8 5.00 

Table 2.5 Demographics of Main Study Sample 

All constructs achieved reliability and validity across all measurements. Values for Cronbach’s 
alpha, average variance extracted, and composite reliability are well above their respective 
thresholds. Item ATT2 was below this limit for item loadings (0.59 < 0.7) and was thus 
excluded from the measurement model, resulting in an overall good reliability of ATT. We did 
not observe any cross-loadings, and none of the constructs failed the Fornell-Larcker criterion 
(cf. Table 2.6). We additionally checked for collinearity-based indicators of common method 
bias following the suggestions of Kock (2015). We thus compared the variance inflation factor 
with the proposed threshold and found that no independent variable exhibits the variance 
inflation factor threshold of 3.30 and thus no common method bias was detected. See Appendix 
B.6 for null validation and reliability testing results and Appendix B.7 for the inner and outer 
variance inflation factor values. Lastly, see Appendix B.8 for the median and standard deviation 
of the conducted measurement items. 
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Assessment Measurement Items 
Construct CA AVE CR Constr. CA AVE CR 

PE 0.91 0.74 0.93 AB 0.89 0.82 0.93 
EE 0.85 0.70 0.90 ATT 0.86 0.71 0.91 
ST 0.87 0.80 0.92 BI 0.95 0.90 0.97 

TP 0.85 0.77 0.91 
Note: No FL criterion, cross-loadings, and item 
loadings measured 

Internal consistency: Cronbach’s alpha (CA) > 0.7; composite reliability (CR) > 0.7 (Gefen et al., 2000; Hair 
et al., 2011) 
Convergence reliability: average variance extracted (AVE) > 0.5 (Hair et al., 2011) 
Indicator reliability: item loadings 0.7<x<1 (Hair et al., 2011) 
Discriminant validity: cross-loadings; Fornell-Larcker (FL) criterion (Fornell & Larcker, 1981; Hair et al., 
2011) 

Table 2.6 Validation and Reliability Testing of Main Study 

2.5.3 Study Results 

In the following, we present the results from the main study. The estimated model with direct 
effect estimates is depicted in the upper part of Table 2.7, while the lower part contains the 
observed indirect effects. 
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Construct Indirectly Effecting Strength p-Value Mediation 
EE BI 0.056 0.059 Indirect-only (full mediation) 
PE BI 0.167 0.003 Complementary (partial mediation) 
ST ATT 0.441 0.000 Indirect-only (full mediation) 
ST BI 0.278 0.000 Complementary (partial mediation) 
ST PE 0.159 0.000 Indirect-only (full mediation) 
ST TP 0.394 0.000 Indirect-only (full mediation) 
AB ATT 0.295 0.000 Indirect-only (full mediation) 
AB BI 0.198 0.000 Indirect-only (full mediation) 
AB PE 0.249 0.000 Indirect-only (full mediation) 
TP ATT 0.185 0.000 Complementary (partial mediation) 
TP BI 0.268 0.000 Indirect-only (full mediation) 

Confidence levels: * 0.10, ** 0.05, *** <0.001 

Table 2.7 Results of Main Study 

0.610***

0.346*** Performance 
Expectancy (PE)

[0.371]

Effort Expectancy 
(EE)

[0.286]

Gender Age Experience

Attitude Towards AI 
Technology (ATT)

[0.594]

Interaction Moderation

Trust Propensity 
Towards AI (TP)

[0.423]

System Transparency 
(ST)

Ability Beliefs (AB)
[0.369]

Behavioral Intention 
(BI)

[0.438]

0.645***

0.539***

0.0
17 0.272***

0.348***

0.386***

0.
02
9

0.480***

0.1
62*
**0.313***

-0.044

UTAUT
Core

UTAUT
AI

0.152*
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In addition, we conducted a mediation analysis based on the indirect and direct effects in our 
SEM to further investigate the role of system transparency and the two trust constructs 
following the methodology described in Zhao et al. (2010) and Hair Jr et al. (2021). The type 
of the mediation effect was derived by comparing direct and indirect effects of the constructs 
and is subsequently given in Table 2.7. The effects are determined according to the common 
decision scheme of mediation roles in SEM that was suggested by Hair Jr et al. (2021). 

2.5.4 The Role of UTAUT Core Constructs 

First, we examine the role of the initial exogenous UTAUT constructs PE and EE. In 
accordance with Venkatesh et al. (2016) and Dwivedi et al. (2019), PE is connected 
significantly to BI. While we observe this effect of PE with magnitude 0.313, we cannot confirm 
a significant effect of EE on BI. Thus, we can confirm H1 but reject H2. However, we can 
confirm a significant effect from ATT to BI in its exogenous role with an effect strength of 
0.348. With the established confirmation of H3, we can observe a significant effect of 
magnitude 0.162 from EE to the construct ATT in its endogenous role, resulting in an indirect 
relationship to BI. Likewise, with a comparably more substantial effect than its direct 
connection (0.480), PE affects ATT significantly. We can therefore confirm H4 and H5, 
respectively. Comparing the bias-corrected confidence intervals of EE to BI (width 0.338, from 
-0.218 to 0.120) and EE to ATT (width 0.25, from 0.027 to 0.278) further strengthen the notion 
that EE affects BI rather indirectly through ATT in our context of intelligent systems, confirming 
results by Dwivedi et al. (2019) and Thomas et al. (2013). 

2.5.5 The Role of the User’s Attitude Towards Intelligent Systems 

Since ATT is defined as an affective reaction, we conclude that this construct has increased 
presence in the case of intelligent systems, resulting in its role as a transitory connection of EE 
and PE to BI. It is reasonable to assume that a user is less affectionate about AI technology 
when it seems to be complicated to use. However, since intelligent systems are attributed with 
black-box properties, the ease of use can be difficult to determine beforehand. Hence, a direct 
connection between EE and BI seems less likely in the case of intelligent systems. The strong 
indirect relationship of PE to BI via ATT can be strengthened further by the notion of algorithm 
appreciation. Logg et al. (2019) found that an algorithmic system that is perceived as complex 
is expected to have high performance, preferable to that of humans. Thus, the increased PE will 
positively influence their ATT before an intention to use is formed. Contrary, the notion of 
algorithm aversion, as expressed by Castelo et al. (2019) can cause the PE to drop if it is 
observed or expected that the system errs, resulting in a transitory decrease of positive attitude 
towards the system and making it less likely for the intelligent system to be used. This can be 
explained by the feeling of missing control over the (partially) autonomous intelligent system 
(Dietvorst et al., 2015). 

2.5.6 The Role of Trust Towards Intelligent Systems 

Further, we examine the role of the trust-related exogenous constructs. We observe a significant 
effect from TP on ATT with a strength of 0.272. Again, we assume an indirect relation to BI 
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through ATT, since the direct effect of TP on BI is not significant. This confirms that, especially 
in the context of intelligent systems, a priori formed trust influences the affection towards 
technology and, in a transitory fashion, the intention to use said technology. This is further 
supported by the mediation analysis that found a purely mediating role for TP with regard to 
BI. Furthermore, we argue that there is a certain order that is important towards forming a 
decision. While trust is an important catalyst and mediator, it is not the sole determinant and it 
seems, from the results, inferior to actual performance. Similar findings are confirmed by 
Wanner, Heinrich, et al. (2020) where in a choice experiment, the performance of an intelligent 
system played the most pivotal part. For some tasks it has also been found that trust is not a 
necessary condition for actual use (Logg et al., 2019). Especially for less critical scenarios such 
as maintenance, one can imagine that while important, pure performance can override trust. 
However, for tasks that have a more ethical and/or critical nature like healthcare, this might be 
different. Regarding H6, TP and ATT are highly affection-based constructs, and thus a 
connection between them seems highly appropriate. We can therefore confirm H6 and reject 
H7. We also found that TP has an effect on PE with a magnitude of 0.345. The confidence 
interval (width 0.269, from 0.239 to 0.508) confirms a strong effect along with hypothesis H8. 
The observations are in accordance with the findings of Cody-Allen and Kishore (2006), Lee 
and Song (2013), Choi and Ji (2015) and thus confirm H8. Drawing from the findings of Logg 
et al. (2019), we can explain the increase in trust through algorithm appreciation that occurs 
with increasing algorithm performance. Thus, if a user experiences a well-performing 
intelligent system, the user is more likely to subsequently change the initial propensity to trust 
with regard to the system. To no surprise, also the user’s trust in the algorithm’s ability to 
perform well, AB, has a very strong effect on TP with a magnitude of 0.645, confirming H9. 
This is also expressed by the mediation analysis that shows no sign of a possible omitted 
mediator and identifying the role as full mediation. 

2.5.7 The Role of Transparency of Intelligent Systems 

Finally, we investigate the role of system transparency. Regarding the trust constructs AB and 
TP, we can confirm H10 since we observe a very strong effect of ST on AB with a magnitude 
of 0.610. However, we cannot confirm a significant direct connection from ST to TP and, thus, 
reject H11. This is not surprising since we expect the user to partially form a pre-existing 
opinion within trust propensity based on the pre-existing trust in the system’s ability that can 
be better assessed when the user has access to an explanation of the system or the underlying 
algorithms. This is also supported by the full mediation role of TP that was added for this 
purpose and worked as expected. Furthermore, having a competitive or complementary 
mediation, while befitting our proposed hypothesis could imply the presence of other trust-
related, yet unexplored mediation constructs as suggested in Zhao et al. (2010). 

Regarding the initial UTAUT indicators, we find that an understanding of the system also 
affects the expected performance, as we observe a strong effect of 0.346 of ST on PE, 
confirming H12. The effect can be explained by the influences of explanations on perceived 
performance and decision towards an intelligent system as described by Wanner, Heinrich, et 
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al. (2020) through the means of local and global explanations. Through a global explanation of 
the intelligent system, the user is made aware of its complexity, leading to increased 
performance expectancy because intelligent systems based on deep learning models are 
expected to outperform other systems. Likewise, local explanations that explain a single 
prediction enable a consensus between the mental model of the user and the system resulting in 
increased PE. An even more potent effect of ST was observed regarding EE with magnitude 
0.539 and confirming H13. Revealing the system’s complexity through global explanations also 
enables the user to realize the effort required to implement an intelligent system, thus increasing 
EE. Besides, we observe a direct effect of ST on BI, confirming H14 at the 0.10 significance 
level with a magnitude of 0.152. These results are in line with Wanner, Heinrich, et al. (2020), 
who indicate that explainability plays a key role when deciding on an intelligent system. The 
direct effect is rather low compared with the indirect effect via PE, which is also in accordance 
with their findings, where explainability was not as strong a decision factor as performance. 
While the complementary mediation effect of ST regarding BI could indicate omitted mediators, 
we rather suspect the variety of functions of explanations in intelligence systems pose different 
influences that affect the behavioral intention in an either indirect or direct way. One can 
imagine the sheer presence of a self-disclosing explanation of how the system forms a decision 
will positively influence the BI, in addition with positively influencing trust in the system. In 
summary, we find that ST poses a strong influential factor concerning the attitude and intention 
to use an intelligent system either indirectly through previously introduced constructs or as a 
minor direct effect. 

2.5.8 The Role of User Characteristics 

Lastly, we look at the moderating effects of age, gender, and experience on PE and EE. We 
found no significant moderating effects of either variable or construct, contradicting the 
findings of Alharbi (2014) and Esfandiari and Sokhanvar (2016). We assume that this is because 
our pre-screening sets boundary conditions that do not allow for a great deal of variance within 
the participants. Thus, we observed mostly minor experiences and age gaps. In addition, due to 
the application domain, the sample was skewed towards men (68.75 %), barely allowing for 
reliable variation. 

2.6 Discussion 

2.6.1 Theoretical Implications 

Performance is Crucial (When Looking at Direct Effects). We extended the modified 
UTAUT model by Dwivedi et al. (2019), which itself is based on the UTAUT model of 
Venkatesh et al. (2003), and derived additional constructs and connections in the context of 
intelligent systems acceptance and use. The direct and indirect effects of PE play a major role 
and are comparable to the findings of Dwivedi et al. (2019). The findings of Wanner, Heinrich, 
et al. (2020) confirm the dominating role of the expected performance. Contrary, we found that 
the expected effort is not of major concern when looking at the direct effects since it only 
delivers impact via indirect connections. We consider this as a first indication of the increased 
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difficulty to build a direct intention to use in the case of intelligent systems, since the intention 
relies on the affection towards the system more heavily as expressed by the extended UTAUT 
model of Dwivedi et al. (2019). Thus, while performance is king, it is insufficient to focus only 
on direct effects when evaluating an intelligent system’s acceptance. 

Human Attitude and Trust Steer Acceptance as Latent Indirect Factors. As mentioned 
previously, the strength of indirect effects delivered through the more affectionate construct of 
ATT is substantial and shows the necessity for recognizing the deviation from a purely 
performance- and effort-centered model. Following that thought of increased affection 
constructs, we found that initial TP plays an essential role in determining the PE regarding the 
system. Thus, we revealed a significant indirect influence of PE so that we assume it is more 
likely that a user thinks the system will perform well when he or she trusts the system. 

This transitory connection reveals the importance of trust in the context of intelligent system 
acceptance. The strong effect of AB also reveals that a prior belief in the system’s problem-
solving capability is fundamental. Especially when discussing algorithm appreciation vs. 
algorithm aversion, this particular construct plays a central role in building up TP towards the 
system. We theorize that the observation of algorithm appreciation or aversion is connected to 
AB and TP since they determine what to expect from a system. Trusting a system and expecting 
super-human performance in the case of algorithm appreciation can turn into mistrust when an 
aversion is built up due to the individuality of a single task or erratic system behavior (Dietvorst 
et al., 2015; Logg et al., 2019). However, as argued in XAI literature, an explanation of some 
sort can help to increase trust in the system (Adadi & Berrada, 2018; Páez, 2019). 

System Transparency Enables Trust Building and Contributes to Performance 
Expectancy in Both Ways. Including ST, we found that revealing the system’s internal 
decision structure (global explanation) and explaining how it decides in individual cases (local 
explanation) positively affects almost all constructs. First, we can confirm that an understanding 
of or at least visibility into the system’s decision process has a powerful effect on the user’s 
(initial) trust in the system, confirming the often-postulated connection that motivates much 
XAI research (Ribeiro et al., 2016b). Second, we find that ST also has substantial effects on PE 
and in terms of usability (i.e., EE). We expected the strong connection of ST to EE as a global 
system explanation is usually required to determine the effort it takes to efficiently train and 
subsequently use an intelligent system (Wanner, Heinrich, et al., 2020). It is reasonable to 
assume that the presence of an explanation in a psychological sense reduces uncertainty and 
thus technological anxiety towards the system (Miller, 2019). Therefore, we theorize that the 
presence of local and global explanations lets the user shift to a more rational behavior since he 
or she can make more informed decisions rather than relying on their gut when dealing with 
black-box intelligent systems. 

When comparing the observed effects with related literature such as Wanner, Heinrich, et al. 
(2020), which deals with determining the decision factors for adopting intelligent systems, we 
find that the relationship between explanation performance and using a system is a more 
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complex one. While we cannot draw conclusions regarding a trade-off, as stated in Wanner, 
Heinrich, et al. (2020), we found that the presence of an explanation indirectly influences the 
expected performance of a system, which is often the dominant influence factor. Therefore, we 
argue that while performance remains an essential factor for the actual intention to use, ST 
should be attributed a more critical role than current findings suggest since it can significantly 
increase the PE (or lower it depending on the revealed information through the explanation). 

Additionally, taking temporal factors into account, we argue that initial trust factors and 
subsequently expected performance and attitude towards the system are formed by the 
information that is revealed before the system is used. That is, the availability of ST can steer 
those factors in one direction or another before the user sets his or her PE. Thus, we argue that 
it is less of a situational trade-off and more of a decision process that is repeated with each use 
and thereby manifesting in the user’s attitude toward the system and AI technology in general. 

Intelligent Systems Are a Broad Concept and May Require Contextualization. There is a 
plethora of research on trust in and transparency of technology - considering each aspect 
separately for the most part - as pointed out in the theorizing sections. We have focused our 
theorizing on UTAUT-related literature, but we have found that the relating constructs have 
been discussed similarly without relation to UTAUT. Our core contribution is twofold in that 
we propose to consider the combination of transparency and trust as well as their latent indirect 
effects to explain a user’s intention to use a system. So far, research on AI acceptance has 
primarily focused on direct effects, where performance stands out (cf. e.g., Wanner, Heinrich, 
et al., 2020) or considered trust or transparency separately (see Section 2.4). 

Our contribution further distinguishes itself from prior art as we focus on intelligent systems as 
any IT system that can make decisions indistinguishable in performance from or better than a 
human being based on analytical models that are opaque to the end-user. This definition is 
independent of the decision task. Consequently, our UTAUT model is designed as a broad 
model. Hence, its contribution is that it is applicable to multiple types of intelligent systems. 
As a consequence of this breadth, our model may lack precision for some applications. There 
may be factors that further affect intention to use in one case but not in another. We do not 
cover these domain-specific factors. We provide a base model that has merits of its own and 
can be extended with further constructs such as, for example, facilitating conditions or social 
influence if the scenario necessitates this. 

Much of the extant literature has focused on domain-specific applications such as 
recommendation systems to support selection processes or human-computer interaction with 
AI agents that exhibit physical anthropomorphic demeanor. Our model can be used in these 
contexts but will not measure demarcating aspects such as the effect of physical interaction with 
AI agents. 

2.6.2 Practical Implications 

Use Expectation Management to Form Attitude Towards the System. In order to avoid 
disappointment and algorithmic aversion, managing the expectations towards performance can 
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increase subsequent intention to use, even if the problem field for application is limited in the 
process since hesitation is build up through the system’s self-signaling of suboptimal 
performance. In line with Dietvorst et al. (2016), it is important to manage expectations and 
show the user control opportunities of the system. This can be done with a pre-deployment 
introductory course involving users in the configuration state while using their knowledge in 
training the algorithms at the base of the intelligent system (Nadj et al., 2020). 

Besides providing support for managing expectations and learning to use the system (Dwivedi 
et al., 2019), overcoming initial hesitation has a high priority in the case of intelligent systems. 

Control the Level of System Transparency Based on the Target Audience’s Capabilities 
and Requirements. Global explanations depict the inner functioning and complexity of an 
intelligent system. They are suitable to manage the expected effort when procuring an 
intelligent system, specifically through either outsourcing or in-house development. In addition, 
global explanations can provide a problem/system-fit perspective in that the user can observe 
whether the complexity of the model is suitable for the task. For example, using a complex deep 
learning model for an intelligent system to detect simple geometric shapes such as cracks might 
even decrease performance. 

Local explanations can assist with explaining single predictions of intelligent systems, helping 
the user to compare the decision process by i) visualizing the steps towards the decision (e.g., 
by creating images of the intermediate layers of the artificial neural network) and by ii) 
attributing the input data importance regarding the output decision (e.g., by creating a heatmap 
of input pixels that caused the intelligent system’s decision). 

Explanations can also prove useful as a communication bridge between developers of the 
intelligent system who are not domain experts and the domain experts who are AI novices. This 
helps to diagnose the model and create a common understanding of the decision process from 
a human point of view enabling all stakeholders to jointly avoid false system behavior that can 
lead to algorithm aversion, such as learning a wrong input-output relation. 

However, disclosing too much information about the principal rationale of the intelligent 
system can lead to the opposite effect (Hosanagar & Jair, 2018; Kizilcec, 2016). Especially for 
the stakeholder group of domain experts that are the users of the system, as opposed to 
developers who are required a global explanation to diagnose system failure. 

Implement Trust Management Independent of Transparency Efforts. Our results also 
show that while being influenced by transparency, trust is not solely explained by it. In 
accordance with Madsen and Gregor (2000), the pre-existing propensity to trust that is reflected 
by TP requires extra treatment that goes beyond simply providing explanations. Thus, trust 
issues need to be addressed head-on by implementing guidelines for trustworthy AI (Thiebes et 
al., 2021). Furthermore, companies should think about introducing trust management. For 
similar reasons, the standard and idea of risk management were introduced decades ago: 
identify uncertainty roots and trust concerns and create trust policies (Müller et al., 2021). 
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The uncertainty regarding PE and EE could be reduced proactively by offering training to the 
users to experience the intelligent system to form a feeling of beneficence (Thiebes et al., 2021). 
Using the system in a training session in a non-critical context can support the acceptance of 
the system and provide a solution to the initial uncertainty about the performance. According 
to Miller (2019), this could provide partial transparency, in this case, as an indicator of ability 
and performance. 

2.6.3 Limitations 

In our study, we presented a use case based on a medium-stake scenario. Here, wrong decisions 
have consequences such as machine breakdown or downtimes within the production plant. This 
can result in high monetary loss. Nevertheless, wrong decisions do not endanger human lives. 
We used this scenario for two reasons. First, for the sake of generalization, and second, we tried 
to replicate a typical industrial medium-stake maintenance use case. However, following Rudin 
(2019), we need to keep in mind that user behavior may differ in high-stake use cases resulting 
in bodily harm due to the potential consequences of wrong decisions. Inversely, this also applies 
to low-stake use cases. Further, using a work system scenario entails that users cannot opt to 
not use the system. In the consumer space, where consumers can decide to choose a non-
intelligent system or use no system at all, the results and necessary constructs may differ. 

Further, we focused on user perception. Consequently, we cannot verify if the user’s perception 
corresponds to the actual user behavior. This is especially related to the following: PE on 
whether the system can increase the user’s productivity, EE on whether the user finds the system 
easy to use, and ST on whether the user understands why the system made the decision it did. 
The latter is closely related to findings from Herm, Wanner, et al. (2021a), who address the 
knowledge gap on the perceived explainability of intelligent system explanations and user task 
solving performance. 

Lastly, within our use case, we provided a textual and graphical explanation for intelligent 
system predictions and did not impose time limits for decision. While many different XAI 
augmentation techniques have been developed in XAI research, further evaluation of these 
techniques seems necessary. Similarly, the results may differ when different XAI augmentation 
techniques are applied. Hereby, inappropriate explanations can cause an overload of the user’s 
cognitive capacity (Grice, 1975). Furthermore, a personalized explanation can increase the 
behavior intention (Schneider & Handali, 2019). 

2.7 Conclusion and Outlook 

By extending the UTAUT model with factors of attitude, trust, and system transparency, we 
were able to explain better the factors that influence the willingness to accept intelligent systems 
in the workplace. 

Our extension centers on affection constructs such as ATT, TP, and AB while simultaneously 
integrating ST as an opportunity to steer both to address the information asymmetry between 
black-boxed, anthropomorphic agents and their human principal. This combination as well as 
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the consideration of latent indirect factors provides the community with a means to look beyond 
performance as the dominating decision factor for intelligent system efficacy. 

In summary, on the one hand, our model enables researchers to understand the influence of this 
human factor for intelligent systems and in more general for analytical AI models. On the other 
hand, our findings can help to create measures to reduce acceptance barriers in practice and 
thus better leverage AI capabilities. Since our research is based on the UTAUT model and 
established extensions, we assume that our model is of general nature and generally transferable 
to or contextualizable in other domains. The results of our model application may be more 
specific to work system in maintenance as discussed in the limitations. 

Since our research results clearly indicate how behavioral intention is influenced by this human 
factor, we aspire to develop design principles for intelligent systems that contribute to the user’s 
willingness to accept and use these systems in their daily work. 
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3 A Taxonomy of User-centered Explainable AI Studies 
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Abstract. The progress in the research field of machine learning is fast-paced and 
it is most noticeable in terms of prediction performance. However, there seems to 
be a lack of understanding of the explanatory value for the actual user. As only a 
user-appropriate implementation realizes effective human-machine cooperation, 
this must be the goal for any intended intelligent system development. Accordingly, 
some studies have addressed the problem. However, their aims and methods vary, 
and a meta synthesis of the results is missing. To address these problems, we have 
developed a taxonomy of user-centered XAI studies. It allows both the conception 
and the classification of current user-centered XAI studies. Furthermore, through 
descriptive analytics and a cluster analysis, we identify patterns and archetypes to 
better conceptualize the field and support future research. 
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3.1 Introduction 

Machine learning (ML) is the state-of-the-art for knowledge discovery and decision support 
nowadays (Janiesch, Zschech, et al., 2021). Thereby, ML denotes a concept where computer 
systems learn to solve tasks autonomously using mathematical algorithms (Bishop, 2006). The 
resulting analytical models offer novel possibilities for automated decision support in complex 
decision situations and the resulting intelligent systems even outperform humans at certain 
tasks. Consequently, ML gradually begins to support or replace humans in various areas of 
business and daily life (Adadi & Berrada, 2018). 

Be that as it may, ML technology is not as widely used in practice as its benefits might suggest. 
While researchers continually try to improve algorithms and tackle robustness problems, they 
have reduced the traceability of analyses at the same time due to the algorithms increasing 
complexity (Janiesch, Zschech, et al., 2021). Thus, the underlying decision logic and, hence, 
the output of these algorithms became inexplicable for humans (Shin, 2021). Particularly for 
end users, such systems appear as black boxes and the system’s lack of transparency leads to a 
reduction of trust in its predictions (Wanner, Popp, et al., 2021). This could be fatal, especially 
when ML is applied in sensitive and safety-critical areas such as in medical science or in high-
stake maintenance (McKinney et al., 2020). 

Explainable artificial intelligence (XAI) addresses this problem and, consequently, is receiving 
increasing attention in research and practice (Arrieta et al., 2020). By displaying appropriate 
visualizations, XAI aims at converting or augmenting black-box models into surrogate grey-
box or white-box models to enhance user trust and eventually system acceptance, while 
maintaining high performance at the same time (Yang et al., 2022). Here, explanation refers to 
the system’s ability to provide additional information to address the information asymmetry 
between the intended end user and the intelligent system in an understandable manner (Shin, 
2021). Various frameworks such as SHAP and LIME have been developed to address this 
(Jesus et al., 2021). 

However, XAI technology often only provides data-driven interpretability explicating cause 
and effect, but additional factors, which influence the decision situation, seem relevant as well 
(van der Waa et al., 2021). Only predictions that are explainable associate interpretable data 
with a representation and importance and makes it accessible for its respective target audience. 
Consequently, the usefulness of a given explanation in an intelligent system crucially depends 
on the individual receiver’s expectations and knowledge base (Wanner, Popp, et al., 2021). 
Thus, comprehending user priorities and user-specific needs directly impacts the effectivity of 
the intelligent system. So far, we do not know much about the human evaluation of intelligent 
systems (Miller, 2019). 

To date, several studies already examine the perception of user towards XAI applications in 
different scenarios (e.g., Khodabandehloo et al., 2021). However, to the best of our knowledge, 
there is no comprehensive summary and structuring of these user centered XAI studies in 
academic literature. However, this is necessary to gain a comprehensive overview of the 
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research field and to identify further research needs and potentials. We seek to close this gap 
by analyzing the state-of-the-art in user-centered XAI studies using a structured literature 
research as backbone for the development of a holistic taxonomy to analyze the meta-
characteristics of XAI as well as their dimensions to ultimately discover patterns and   
archetypes within. 

Thus, our paper’s goal can be summarized with the following two research questions (RQ): 

RQ1: How can we systematize user-centered XAI studies in academic literature in a taxonomy? 

RQ2: Which patterns and archetypes can we derive from the analysis of user-centered XAI 
studies? 

To address these two research questions, our paper is structured as follows: In Section 3.2, we 
present the theoretical background of XAI and the related work. Section 3.3 covers our 
methodology and Section 3.4 outlines the literature search process. In Section 3.5, we develop 
and present out taxonomy and in Section 3.6, we detail our analysis. Lastly, we present a 
conclusion, limitation, outlook as well as derived research implications in Section 3.7. 

3.2 Theoretical Background 

3.2.1 Machine Learning 

ML is a concept belonging to the generic field of artificial intelligence in which machines learn 
to solve tasks based on mathematical models and algorithms. Without being explicitly 
instructed to do so, the algorithms learn from observations and improve their analyses 
automatically (Bishop, 2006). Learning in this context refers to the process of optimizing 
predefined parameters by using training data (Janiesch, Zschech, et al., 2021). Intelligent 
systems can provide improved decision support through predictions and help to gain in-depth 
knowledge into extensive amounts of data (Carvalho et al., 2019). It is therefore a promising 
technology for applications in various data-driven fields such as the medical diagnostics or 
industrial maintenance (McKinney et al., 2020). 

For several reasons, well-founded decisions in practice are chiefly based on a combination of 
both, human and machine intelligence also termed hybrid intelligence (Dellermann et al., 2019). 
Essential prerequisites for hybrid intelligence are the comprehensibility of and the confidence 
in the system by the user (Das & Rad, 2020). Today, this is often not the case as the algorithm’s 
underlying logic and the resulting outputs are not comprehensible for end users (Herm, Wanner, 
et al., 2021a). Consequently, humans tend to value those black boxes less, which comprise 
models that are not transparent, interpretable, or trustworthy (Shin, 2021). As the development 
of opaque models such as deep neural networks is trending in recent years, the black-box 
problem intensifies. This finding together with several governmental approaches such as the 
“right to explanation” by the General Data Protection Regulation (GDPR) of the European 
Union (Goodman & Flaxman, 2017) or the Explainable AI (XAI) program of the Defense 
Advanced Research Projects Agency (DARPA) (Gunning, 2017), reinforced the vehement 
claim of researchers for transparent models and comprehensible ML designs. 
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3.2.2 Explainable AI 

XAI is a multidisciplinary field of research that targets the conflict of complexity and 
effectiveness in ML (Meske et al., 2022). By augmenting black-box models, XAI tries to 
generate interpretable and comprehensible transparent models that retain a high level of 
prediction performance (Herm, Wanner, et al., 2021a). Thus, XAI research in a narrower sense 
focuses on mathematical methods that are used to make the black-box model’s internal 
computational logic interpretable (Yang et al., 2022). At best, this results in a system with a 
transparent inner reasoning and programming logic (Mohseni et al., 2021). So, an explainable 
algorithm may provide reasons why a certain result was achieved, or which inputs could be 
changed to receive a different output (Miller, 2019). 

In a wider sense when seeing artificial intelligence as intelligence demonstrated by machines 
that is not well understood (Makridakis, 2017), XAI is also a general concept aiming at 
increasing the accessibility of intelligent systems rather than a concrete technological approach 
(Meske et al., 2022). Consequently, the question of what constitutes a good explanation is not 
trivial and subject to many research fields (Förster et al., 2020a). Dam et al. (2018) defined 
explainability as “the degree to which a human observer can understand the reasons behind a 
decision (e.g. a prediction) made by the model”. Cui et al. (2019) described it as the system’s 
capability to provide additional information for filling the information gap between the user 
and the artificial intelligence in an understandable manner. More precisely, Arrieta et al. (2020) 
also take the audience into account and state: “Given a certain audience, explainability refers 
to the details and reasons a model gives to make its functioning clear or easy to understand”. 
As it is in the nature of any research, different approaches and types of explanations have been 
proposed recently (Mohseni et al., 2021). Overall, these approaches can be differentiated by 
their focus on a functional (global) and a social (local) focus of explanations (Zhang et al., 
2021). While the former term implies the process of adding transparency to the decision model 
or to individual components such as parameters and algorithms, the latter is characterized by 
post-hoc explanations that are either textual, visual, or example-based (Wanner, Herm, 
Heinrich, et al., 2021). Global explanations mainly target explanations among ML experts. 
Local explanations focus on the communication between experts and intended user (Miller, 
2019). 

3.2.3 User Studies 

User studies are a common method in research to investigate the perception and the attitude of 
a user (group) regarding the subject under examination. Amongst others, methodological 
approaches are questionnaires, task analyses, behavioral observations, or a combination of 
several methods. To empirically test the user acceptance of new technologies in the field of IS 
and to reveal the mediators between system characteristics and user behavior, researchers often 
build their hypotheses on the technology acceptance model (TAM) (Davis, 1989) or variations 
thereof. In the TAM, influential factors for the acceptance are perceived usefulness and 
perceived ease of use that led to a certain attitude and, thus, to a behavioral intention to use the 
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system. Facilitating conditions such as trust or performance expectancy are assumed to have an 
impact as well (Wanner, Popp, et al., 2021). 

Especially in the field of user centered XAI studies, it seems as there is a great diversity of the 
assessed constructs that influence the perception of the explanation and, thus, the acceptance of 
the XAI system in practice. While some studies concentrate more on social conditions such as 
perceived trust or perceived transparency, others emphasize the system performance, and still 
others differentiate the level of expertise or the user group, respectively. In summary, as 
Mohseni et al. (2021) and Hoffman et al. (2018) state, most of the constructs are somehow 
interrelated or even denote the same. A comprehensive analysis to consolidate the available 
knowledge is necessary. 

3.2.4 Research Gap 

In recent years, numerous contributions dealing with the topic of XAI and the assessment of 
XAI applications through user-centered studies have been published (Herm, Wanner, et al., 
2021a; Wanner, Popp, et al., 2021). Among others, Arrieta et al. (2020) provides a thorough 
overview of the field of XAI. They explain relevant concepts of XAI, develop a taxonomy of 
explainability techniques related to different ML models and outline future challenges 
regarding responsible AI while focusing target audiences. Wang et al. (2019) shed light onto 
theoretical underpinnings of human decision-making by proposing a framework for building 
human-centered decision-theory-driven XAI systems. The framework draws on findings from 
social sciences through an extensive review and is applied in practice. Moreover, Wanner, Herm 
and Janiesch (2020) conducted a literature review to examine the value of explainability in ML 
models through XAI model transfers to understand the trade-off in XAI from a user’s 
perspective. Yet, the conduced literature review itself was focused on technical model transfers 
rather than user-centered XAI studies. Further, Mohseni et al. (2021) surveyed different 
evaluation methods and measures for interpretable ML systems in computer science literature. 
By analyzing evaluation measures (e.g., mental model, usefulness, satisfaction) combined with 
targeted user types or evaluation methods, they build a comprehensive framework for 
evaluation methods in XAI systems. The framework of Hoffman et al. (2018) also comprises 
steps and measures for user satisfaction, the understanding of explanations or user trust in XAI. 
Contrary to our contribution, the emphasis of the latter however was more on the measurement 
side whereas in our review, we seek to focus the respective user needs in. 

Summarizing, to the best of our knowledge, no holistic review of the state-of-the-art in user-
centered XAI studies exists. Further, no contribution links the results of the user studies to the 
needs of special user groups in a comprehensive manner. 

3.3 Methodology 

To address the identified research gaps, we applied a sequence of three major steps: i) literature 
collection; ii) taxonomy development; and iii) analysis of XAI patterns and archetypes. See 
Figure 3.1 for an overview. 
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Literature Collection. We have collected user-centered XAI studies as our preliminary work 
for the structured analysis of the respective research area. For scientific rigor, this was done in 
accordance with vom Brocke et al. (2009). The recommendation framework comprises five 
phases to ensure a comprehensive review process of (sub-)areas of research. 

Taxonomy Development. The research artifact taxonomy has established itself in the 
Information Systems community as a popular method to organize knowledge in a structured 
way (Kundisch et al., 2022). By enabling a classification of individual objects (or publications), 
taxonomies allow for analyzing relationships within objects in the respective context and for 
understanding of complex areas. For the taxonomy development process, we have followed the 
framework by Nickerson et al. (2013). Lastly, we evaluate our taxonomy according to the 
guidelines of Rich (1992). 

XAI Pattern Analysis. To identify research trends and gaps in the field of user-centered XAI 
studies, we first classified all papers into the developed taxonomy. Then, we applied a 
descriptive dimension analysis for every characteristic we derived within our taxonomy. Lastly, 
we made a cluster analysis to find patterns and derive archetypes within these contributions.  

 

Figure 3.1 Overview of Applied Methodology 

3.4 Literature Collection 

vom Brocke et al. (2009)’s framework for structured literature research implies a sequence of 
five distinct steps: the i) definition of the review scope, the ii) conceptualization of the topic, 
the actual iii) literature search, the iv) analysis and synthesis of the literature, and the v) 
identification of research gaps to establish an agenda for future research. 

Definition of Review Scope. Based on Cooper (1988)’s taxonomy, the focus is on research 
outcomes of user-centered XAI studies and on XAI applications. Our goal is to derive user 
concerns connected to XAI to better integrate XAI research and its implementation in practice. 
Thereby, we take a neutral perspective. We searched the academic literature in an iterative 
process. However, as we did not include literature from related fields or built upon previous 
meta-syntheses, the review coverage is neither exhaustive nor central but representational. 
Results were grouped based on similar concepts, consistent with our research questions. As 
target audience, we primarily define specialized researchers from the field of XAI or ML, but 

i) Literature Collection ii) Taxonomy iii) XAI Pattern Analysis

Following vom Brocke et al. (2009) Following Nickerson et al. (2013)

Dimension Characteristic n 
C1 C2 C3 

Dimension Characteristic n 
C1 C2 C3 

59 50 43 59 50 43 

Purpose 

Validation 38 23 0.39 3 0.06 12 0.28 
Incentives 

Monetary 46 6 0.10 24 0.48 16 0.37 

User perception 48 25 0.42 14 0.28 9 0.21 Non-monetary 101 52 0.88 22 0.44 27 0.63 

Theory formation 12 9 0.15 0 0 3 0.07 
Study 

Treatment 

No-explanation baseline 63 12 0.20 23 0.46 28 0.65 

Effect measurement 58 4 0.07 33 0.66 21 0.49 Diff. Explanation baseline 37 10 0.17 19 0.38 8 0.19 

Focus 

Framework development 16 10 0.17 1 0.02 5 0.12 No differentiation 47 34 0.58 6 0.12 7 0.16 

Empirical insights 75 21 0.36 41 0.82 13 0.30 

Explanation 
Presentation 

Text explanation 52 15 0.25 20 0.4 17 0.40 

Method development 39 13 0.22 5 0.1 21 0.49 Visualization 72 28 0.47 23 0.46 21 0.49 

Prototyp evaluation 22 15 0.25 3 0.06 4 0.09 Explanation by example 10 2 0.03 1 0.02 7 0.16 

Domain 

Commodity 8 4 0.07 4 0.08 0 0.00 Explanation by simplification 11 4 0.07 7 0.14 0 0.00 

Manufacturing 4 1 0.02 0 0 3 0.07 Feature relevance explanation 20 11 0.19 3 0.06 6 0.14 

Services 76 39 0.66 33 0.66 4 0.09 
Study 
Scales 

Rating 96 31 0.53 36 0.72 29 0.67 

Information 60 13 0.22 12 0.24 35 0.81 Ranking 12 4 0.07 4 0.08 4 0.09 

Expertise 

(ML) Novice user 102 23 0.39 43 0.86 36 0.84 Dichotomous 17 9 0.15 5 0.1 3 0.07 

ML experts 16 12 0.20 0 0 4 0.09 

Evaluation 
Approach 

Case study 14 7 0.12 3 0.06 4 0.09 

Domain expert 40 28 0.47 6 0.12 6 0.14 (Expert) Interviews 24 21 0.36 0 0 3 0.07 

Sample 
Size 

< 10 16 15 0.25 1 0.02 0 0.00 Questionnaire 95 23 0.39 45 0.9 27 0.63 

10-50 57 27 0.46 7 0.14 23 0.53 Group discussion 3 2 0.03 1 0.02 0 0.00 

51-100 22 7 0.12 7 0.14 8 0.19 Observation 33 14 0.24 3 0.06 16 0.37 

>100 49 7 0.12 33 0.66 9 0.21 

Measured 
Construct 

Trust 45 19 0.32 17 0.34 9 0.21 

Data 
Type 

Sensor 5 2 0.03 1 0.02 2 0.05 Accuracy 34 10 0.17 7 0.14 17 0.40 

Synthetic 29 9 0.15 9 0.18 11 0.26 Explainability 18 9 0.15 6 0.12 3 0.07 

Image 24 7 0.12 6 0.12 11 0.26 Effort 17 8 0.14 4 0.08 5 0.12 

Real world 63 32 0.54 18 0.36 13 0.30 Decision quality 18 7 0.12 5 0.1 6 0.14 

Social 34 12 0.20 15 0.3 7 0.16 Interpretability 45 17 0.29 19 0.38 9 0.21 

Study 
Design 

Single treatment 35 23 0.39 6 0.12 6 0.14 Time 17 6 0.10 0 0 11 0.26 

Between-group 65 8 0.14 35 0.7 22 0.51 Confidence 22 3 0.05 6 0.12 13 0.30 

Within-subject 52 28 0.47 8 0.16 16 0.37 Satisfaction 42 20 0.34 7 0.14 15 0.35 

 

C1 C2 C3

Hevner et al (2004, pp. 88–89). Finally, our method adds
the important concept of meta-characteristic that Bailey
does not identify explicitly or implicitly.
Figure 1 shows the method that we propose. Steps in

this figure are numbered for later reference. A step-by-
step explanation follows the figure.
The first step is to identify the meta-characteristic,

which, as discussed previously, is based on the purpose of
the taxonomy and in turn based on the users and their
expected use of the taxonomy. Next, the conditions that
end the process need to be determined. As discussed
previously, there are both objective and subjective ending
conditions. The researcher has a number of objective
conditions that can be applied (Table 2). The subjective
ones are the most difficult to identify and to apply.
Table 3 provides initial guidance but the experience of
the researcher will have an impact on the selection of
subjective conditions. In the case of multiple researchers
developing a taxonomy, various collaborative techni-
ques, including the Delphi method, could be used to
determine these conditions.
After these steps the researcher can begin with either an

empirical approach or a conceptual approach. The choice
of which approach to use depends on the availability
of data about objects under study and the knowledge
of the researcher about the domain of interest. If little
data are available but the researcher has significant
understanding of the domain, then starting with the
conceptual-to-empirical approach would be advised.

On the other hand, if the researcher has little under-
standing of the domain but significant data about the
objects is available, then starting with the empirical-to-
conceptual approach is appropriate. If the researcher has
both significant knowledge of the domain and significant
data available about the objects, then the researcher will
have to use individual judgment to decide which app-
roach is best. In the fourth case, where the researcher has
little knowledge of the domain and little data available,
the researcher should investigate the domain of interest
more before attempting to develop a taxonomy for it.
In subsequent iteration the researcher may choose to use
a different approach in order to view the taxonomy from
a different perspective and possibly gain new insight
about the taxonomy.
In the empirical-to-conceptual approach, the research-

er identifies a subset of objects that he/she wishes
to classify. These objects are likely to be the ones with
which the researcher is most familiar or that are most
easily accessible, possibly through a review of the lite-
rature. The subset could be a random sample, a syste-
matic sample, a convenience sample, or some other type
of sample. Next, the researcher identifies common cha-
racteristics of these objects. The characteristics must
be logical consequences of the meta-characteristic.
Thus, the researcher starts with the meta-characteristic
and identifies characteristics of the objects that follow
from the meta-characteristic. The characteristics must,
however, discriminate among the objects; a characteristic

1. Determine meta-characteristic

No

2. Determine ending conditions

End

3. Approach?

Yes

Empirical-to-conceptual Conceptual-to-empirical 

4c. Conceptualize (new)
characteristics and dimensions of objects

5c. Examine objects for these
characteristics and dimensions

6c. Create (revise) taxonomy

4e. Identify (new)
subset of objects  

5e. Identify common characteristics
and group objects  

 6e. Group characteristics into
dimensions to create (revise)

taxonomy  

7. Ending conditions met?

Start

Figure 1 The taxonomy development method.
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can vary referring to subject matter, period covered, and degree of coverage of sources (Manten 1973; 
Woodward 1972; as cited in Garfield 1987, p. 114). Furthermore, literature reviews can serve a wide 
range of, sometimes very different, purposes, reaching from gaining new and synthesising existing 
research outcomes to identifying research methodologies or techniques commonly used in a field (cf. 
Hart 1998, pp. 27ff.). In order to clearly define the scope of a review, we propose to draw on an estab-
lished taxonomy for literature reviews presented by Cooper (cf. Cooper 1988, pp. 109ff., and Figure 4 
in the follow-up). Cooper’s taxonomy is comprised of six constituent characteristics, each containing 
certain categories, some of which are mutually exclusive (perspective and coverage), while others can 
be combined (audience, organisation, goal, and focus). The focus (1) of a literature review is con-
cerned with what is of utmost importance to the reviewer. Most literature reviews focus on research 
outcomes, research methods, theories, and/or applications (cf. Bem 1995; Torraco 2005, p. 361). Com-
mon goals (2) of literature reviews include summarising, criticising, and/or integrating findings (cf. 
Jackson 1980, p. 438). For organising a literature review (3), Cooper suggests a historical, conceptual 
or methodological structure. The perspective (4) of a review reflects whether a certain position is es-
poused or not; the audience (5) particularly determines the writing style of the author(s) (cf. Bem 
1995, pp. 173f.). 

 
Figure 3. Framework for literature reviewing 

This paper is based on the perception that in particular the degree of coverage of sources (6) is crucial 
for reviewing the literature on a topic. According to Cooper, four levels of coverage can be distin-
guished, namely: exhaustive (including the entirety of literature on a topic or at least most of it), ex-
haustive with selective citation (considering all the relevant sources, but describing only a sample), 
representative (including only a sample that typifies larger groups of articles), and central (reviewing 
the literature pivotal to a topic) (Cooper 1988, pp. 110f.).  

 
Figure 4. Taxonomy of literature reviews (following Cooper 1988, p. 109) 

While the above framework does not provide immediate answers to the questions of literature search, 
its application is a necessary first step of clarification in any literature review, which bears implica-
tions for the later search process. An exemplary application of Cooper’s taxonomy is also given in 
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general Information Systems researchers as well as practitioners that can use the summarized 
insights from the user-centered XAI studies are also addressees. 

Conceptualization of Topic. We have conceptualized the relevant research topics previously 
in the theoretical background (cf. Section 3.2). Therein, we characterized the main concepts 
and applications of ML and XAI. Furthermore, we clarified key terms such as explainability 
and presented important aspects associated with user studies. For our search, we define that a 
pertinent search result must explicitly encompass a user study about an XAI application. A user 
is thereby any person that uses the application in practice. We separate the user groups (e.g., 
non-expert, expert) later in the analysis. 

Literature Search. Following vom Brocke et al. (2009), we successively conducted a journal 
search, a database search, a keyword search, as well as a forward and backward search. In terms 
of quality and relevance, the journal search was initially restricted by journals rankings. We 
removed the restriction later to increase the relevant hits. We conducted the subsequent database 
search on eight common databases in the field of computer science, business management and 
information systems. The underlying aim was to open the search for possible business 
applications and related disciplines rather than restricting it to the technological facets of XAI 
in the IT-related databases only. For our keyword search, we used a two-part string. The first 
element consisted of the broader term “explainable AI” and related terminology. The second 
part comprised specific terms that target the user focus and constructs associated with the model 
understandability. Our search comprises contributions index by February 2022. 

During the first iteration of our search, we retrieved 76.476 possibly relevant publications 
before a deletion of duplicates. After a closer examination of title, abstract and key words, we 
reduced the hits to 2.731 unique and potentially relevant publications. After a full-text analysis 
118 relevant articles remained. We retrieved them mainly from two databases, SCOPUS and 
ACM Digital Library. We also conducted a forward search via the citation data using Google 
Scholar as well as a backward search based on the reference list to identify further 35 articles. 
The final set comprises 152 articles. To ensure validity of our results, we used a inter-rater 
reliability test according to Fleiss (1971). See Figure 3.2 for an overview. 

 

Figure 3.2 Overview of Literature Review Procedure 
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3.5 Taxonomy Development 

3.5.1 Taxonomy Building 

Nickerson et al. (2013)’s framework comprises three main parts: i) determining meta-
characteristics, ii) specifying ending conditions, and iii) identifying dimensions and 
characteristics. Lastly, we validated our results. 

Meta-characteristics. As we aim at a holistic view of user-centered XAI studies, we have opted 
for a quadripartite meta-characteristic classification as described below: objective, participant, 
method, and measurement. Nunes and Jannach (2017) define the first dimension that we use, 
objective, as the intention(s) behind the study. In addition, Adadi and Berrada (2018) defined 
three dimensions of relevance that we use: participant, as an ML model has to be 
understandable by humans, which implies their individual perception shaped by their know-
how and experience; method refers to the (technical) quest to make an intelligent system 
explainable; and measurement as the approach to address the need to evaluate these methods 
focusing on the respective users (Adadi & Berrada, 2018). 

Ending Conditions. Nickerson et al. (2013) defined subjective and objective criterions to 
ensure a valid status of taxonomy completeness. We adopted their conditions except for the 
restriction of object exclusivity. This happened in agreement with other authors in the field 
(e.g., Püschel et al., 2016). Thus, our final taxonomy allows specific objects to be classified in 
more than one characteristic per dimension. This improves the taxonomy’s clarity. 

Dimensions and Characteristics. We used the defined ending conditions in our iterative 
process of identification and selection of dimensions and related characteristics. Thus, we 
performed a total of four iterations. Iteration I - In our first iteration, we aimed at an initial 
conceptualization of our taxonomy. For this purpose, we used publications that also take a 
holistic view. These were mainly literature reviews and survey articles. Further, we used 
taxonomies and frameworks. The contained categorization information was used to derive first 
dimensions and related characteristics. Iteration II - In our second iteration, we aimed at an 
extension and refinement of our first iteration’s categorization schema. Thus, we used 
publications that are topic specific review articles of the dimensions identified beforehand. A 
precondition for the results is that the respective authors have prepared their data in a taxonomic 
or categorical way. The new information was used to further improve our developed dimensions 
and related characteristics. Iteration III - Due to the size of the preliminary taxonomy from the 
second iteration cycle, we decided to move from a conceptualization perspective to an empirical 
evaluation. For this new purpose, 60 out of our 152 user-centered XAI studies (cf. Chapter 4) 
were randomly selected to validate the ability of our taxonomy’s scheme developed for 
classifying. Thus, we were able to modify several dimensions and characteristics that were not 
proofed as suitable for a classification for user centered XAI studies. Iteration IV - In the next 
iteration, we adopted our procedure from the previous iteration. We have randomly selected 40 
out of the remaining 92 user centered XAI studies found and further modified dimensions and 
characteristics until we met our predefined ending conditions. See Table 3.1 for a summary. 
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It. Ap. Summary # 

I C2E 
Analysis of articles that take a holistic view of the research area to structure it 
to achieve a first categorization schema. 

D=25; C=168; 
P=13 

II C2E 
Analysis of articles that are topic specific with own levels of categorization to 
further extend and refine our schema. 

D=27; C=181; 
P=15 

III E2C 
Classification of study articles with the respective schema to assess its quality 
and to update detected weaknesses. 

D=15; C=65; 
P=60 

IV E2C 
Confirmation of the third iterations’ classification scheme and activation of 
the specified ending conditions. 

D=13; C=52; 
P=40 

It.=Iteration; Ap.=Approach; C2E=Conceptual-to-Empirical; E2C=Empirical-to-Conceptual; #=Numbers; 
D=Dimensions; C=Characteristics; P= Number of Contributions 

Table 3.1 Summary of Taxonomy Development 

3.5.2 Final Taxonomy 

In the following section, we describe our final taxonomy (cf. Table 3.2). We distinguish the 
four different meta-characteristics as introduced above, which we have expanded into 
dimensions and characteristics. 

MC Dimension Characteristic 

O
B

J.  Purpose Validation User perception Theory formation Effect measurement 

Focus Framework development Empirical insights Method development Prototype evaluation 

PA
R

TI
C

IP
A

N
T  Domain Commodity Manufacturing Services Information 

Expertise (ML) Novice user Domain expert ML expert 

Incentives Monetary Non-monetary 

Sample Size <10 10-50 51-100 >100 

M
ET

.  Data Type Sensor Image Social Synthetic Real world 
Explanation 

Presentation* 
Text Visualization Example Simplification 

Feature 
relevance 

M
EA

SU
R

EM
EN

T 

Study Design Single treatment Between-group Within-subject 

Study Treatment No-explanation baseline Different explanation baseline No differentiation 

Study Scales Rating Ranking Dichotomous 

Eval. Approach Case study Interview Questionnaire Group discussion Observation 

Measured 
Construct* 

Accuracy Trust Explainability Decision quality Interpretability 

Satisfaction Confidence Effort Time 

MC=Meta-Characteristics; OBJ.=Objective; MET=Method; *Dimensions are non-exclusive 

Table 3.2 Taxonomy of user-centered XAI-Studies 

Objective: Purpose. The purpose highlights the general intention of the user-centered XAI 
study. Validation describes the evaluation of existing artefacts (Madumal et al., 2019). User 
perceptions is about deriving new insights by the perception of users considering an XAI 
artifact (Lakkaraju & Bastani, 2020). Theory formation deals with the design of new artefacts 
from summarized knowledge (El Bekri et al., 2019). In contrast to user perception, the effect 
measurement focuses on the overall effects through XAI (Zhang et al., 2020). 

Objective: Focus. This dimension is about the focus of the study’s contribution. The 
characteristic framework development signals the building of a theoretical framework for XAI 
(Lu et al., 2019). Empirical insights focus on gaining new knowledge based on user studies 
(Zhang et al., 2020). Method development focuses on developing new methods for gaining 
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knowledge (Hohman et al., 2019). Lastly the prototype evaluation is dealing with the 
assessment of developed XAI approaches (Schreiber & Bock, 2019). 

Participant: Domain. The categorization of the domain is oriented on the (extended) sector 
theory according to Forastié (2020). This clusters the different domains of the respective 
preliminary works (e.g., Adadi & Berrada, 2018; Nunes & Jannach, 2017). Commodity 
comprises all related topics, such as food or milling, while manufacturing summarizes all areas 
in which end products are physically created or processed such as industrial maintenance. 
Further, services are activities without a physical product exchange such as health care services. 
Information is a new sector covering information-technology-related topics such as ML-based 
software or social networks. 

Participant: Expertise. The second dimension of the meta-characteristic participant takes the 
user-background into consideration. Here (ML) Novice User are general end users and laymen 
without expertise in the field of ML. Domain Experts use applications as part of their profession 
(e.g., medical professionals, data analysts) and have expertise in the application domain itself. 
However, they lack expertise in the technical aspects of the algorithms behind the applications. 
ML experts (e.g., ML model engineers or data scientists) have a high level of knowledge in the 
field. They build and improve ML models as part of their daily business (Chromik & 
Schuessler, 2020; Mohseni et al., 2021). 

Participant: Incentives. The motivation to participate in a study and the user evaluation itself 
might be biased when participants receive a monetary reward (Chromik & Schuessler, 2020). 
Accordingly, we distinguish between monetary and non-monetary incentives for the 
participation in the user study. 

Participant: Sample Size. The sample size considers the number of participants that have been 
involved in the user study. We used a numerical differentiation of the sample size and split it 
in <10, 10-50, 51-100, and >100 (Nunes & Jannach, 2017). 

Method: Data Type. Since ML problems are strongly dependent on the respective dataset, 
there is a subdivision according to the data type (e.g., Wanner, Herm, & Janiesch, 2020). Sensor 
data describes sensor-measured values, such as pressure or temperature. Image data represents 
all kind of images such as thermal images. Social data is all data generated by humans such as 
social media entries. Synthetic data does not originate from a real data basis, whereas real world 
is data from business environments such as financial transactions or product ratings. 

Method: Explanation Presentation. The style and mode of explanations presented to the users 
are categorized in the dimension explanation presentation (Abdul et al., 2018; Arrieta et al., 
2020; Mohseni et al., 2021). Text thereby denotes textual explanations such as natural language 
explanations or word-level feedback. Visualization comprises graphical and interactive 
explanation styles such as saliency maps. Explanation by example entails that a certain example 
is provided to explain the behavior such as specific recommendations. Simplification is a 
presentation mode where the inherent logic of the AI application is explained through simplified 



Taxonomy of User-centered XAI Studies 

 

62 

rules for example through hierarchical decision trees. Feature relevance explanation styles 
display the main characteristics of items on an instance-level. 

Measurement: Study Design. The study design specifies the test layout of the user study. In 
single treatment studies, there is only one group of participants. They must solve a certain task 
or assess an application without being confronted with different explanation conditions (e.g., 
design studies). Between-group studies (randomly) assign the participants to two or more 
different treatment groups, which only receive one of the treatment conditions. Thus, the 
analysis is based on a group-comparison. Within-subject user studies display different treatment 
conditions to the same individual until all participants experienced all treatment conditions. The 
evaluation of within-subject studies can therefore be conducted on an individual level (Nunes 
& Jannach, 2017). 

Measurement: Study Treatment. The type of treatment describes the different explanation 
modes within the user study. Thereby, the characteristic no-explanation baseline includes all 
studies in which a certain explanation type is compared with the original algorithm or model 
without any explanation (with vs. without explanation). When the investigated explanation type 
is assessed against another explanation type, it refers to the characteristic different explanation 
baseline. No differentiation covers cases when the evaluation comprises only one explanation 
mode or when there is no further specification (Mohseni et al., 2021). 

Measurement: Study Scales. Scales measure the constructs and elicit knowledge about the 
users’ attitude. Rating scales (e.g., Likert scale) are numeric or descriptive and consist of an 
ordinal continuum of categories. Users must rate their personal level of agreement or 
satisfaction. Ranking scales imply an order of the objects under assessment where users may 
choose between a list of options. Dichotomous scales comprise questions that are diametrically 
opposed to each other and only have two choices (e.g., yes / no, true / false) (Albert et al., 2009; 
Gena et al., 2011). 

Measurement: Evaluation Approach. Based on how the data was collected methodically, one 
can distinguish five major evaluations (e.g., Chromik & Schuessler, 2020; Hoffman et al., 2018; 
Mohseni et al., 2021). While case studies provide insights into user studies without collecting 
the user data directly, the other approaches do so. Interviews question the users through a 
conversation or discussion. Questionnaires are written surveys where the users must answer or 
rate specific predefined questions. A group discussion is an approach where several participants 
are questioned together and is often used in design studies. Observations comprise the 
examination of a problem-solving task such as card sorting or prediction tasks, which are often 
conducted in combination with think-aloud protocols. 

Measurement: Measured Construct. The independent variables measured and evaluated in 
the user study are condensed in the dimension measured constructs (Hoffman et al., 2018; 
Mohseni et al., 2021). Accuracy denotes the technical performance of the algorithm itself. 
Further, trust signifies trust in the system and transparency respectively transparency of the 
system. Decision quality measures the usefulness of the decisions made by the system. 
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Understandability of the system indicates the compatibility of the explanation with the users’ 
mental model. Satisfaction of the user measures the users’ overall system perception and 
rationale. Confidence refers to how certain the result is from the user perspective. Effort implies 
measures for the cognitive load of the user. The construct time measures the duration to solve 
a certain user task. 

3.5.3 Evaluation of Taxonomy 

Lastly, to ensure the validity of our findings, we used the evaluation guidelines from Rich 
(1992). Table 3.3 describes these guidelines and how our taxonomy addresses those. The author 
defines seven guidelines for the design and evaluation of taxonomies: breadth, meaning, depth, 
theory, quantitative measurement, completeness, and recognizability. 

Guideline Description Application within Taxonomy 

Breadth 
Classification system must be 
typology or taxonomy to 
shape character selection. 

We derived a taxonomy consisting of four meta-
characteristics. 

Meaning 
Build upon a philosophical 
foundation to explain and 
emerge classification groups. 

We build a taxonomy on the existing body of knowledge 
of user-centered XAI research. This taxonomy enables 
researcher to uncover lack in XAI research and further 
address these research gaps. 

Depth Basis should be multivariate 
analysis. 

Following Nickerson et al. (2013), we developed 
through four iterative conceptional and empirical steps a 
taxonomy, which compromises all characteristics 
exhaustively. Further, we derived a cluster and 
archetype analysis. 

Theory 
Use theory to gain qualitative 
base for determination of units 
and variables. 

We used 152 research contributions to build a 
qualitative base to detected dimensions and 
characteristics of user-centered XAI studies. 

Quantitative 
Measurement 

Placement of taxa into groups 
through numerical procedures 
and multivariate data analysis. 

We applied empirical steps in our taxonomy building 
process and a quantitative ex-post analysis to determine 
the completeness of our result. 

Completeness 
and logic 

Classification must be 
thorough, comprehensive, and 
detailed. 

As we adopted and fulfilled five subjective and seven 
objective ending conditions from Nickerson et al. 
(2013). 

Recognizability Mirror real world with 
taxonomy. 

We derived the taxonomy through a comprehensive 
literature review. As we focus on XAI research, and we 
define this area as target. We did not encounter a 
contribution, that we were not able to classify.  

Table 3.3 Evaluation of Taxonomy According to Rich (1992) 

3.6 XAI Pattern Analysis 

3.6.1 Descriptive Dimension Analysis 

In the following, we describe the distribution of the identified characteristics and thereby show, 
from a quantitate point of view, well researched areas as well as topic, that may need further 
research. For a detailed overview please see Figure 3.3. 
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Figure 3.3 Frequency and Occurrence of Characteristics 

Objective. Looking at the explanation purpose, it becomes apparent, that most of the 
contributions (n=58; ≈37 %) deal with the effect measurement of XAI. Also, many (n=38; 
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≈30 %). In contrast, only (n=12; ≈8 %) studies are forming new theories for the investigation 
of users in the context of XAI. While the evaluation focus is mostly set on gaining empirical 
insights (n=75; ≈49 %) or developing new methods (n=39; ≈26 %), the development of 
frameworks is rarely approached (n=16; ≈11 %). The same applies for the evaluation of new 
XAI prototypes (n=22; ≈14 %). 

Participants. Looking at the meta-characteristic participants, most studies are from the field 
of Service (n=76; ≈50 %) or the Information Technology (n=60; ≈41 %) domain, while the 
user-centered impact of XAI in the field of manufacturing (n=6; ≈4 %) and commodity (n=10; 
≈7 %) is rarely researched. Regarding expertise, most of the contributions focus on ML novice 
users (n=102; ≈65 %) or domain experts (n=40; ≈25 %), while only few focus on ML experts 
(n=16; ≈10 %). In that context, user-centered studies primarily use non-monetary incentives 
(n=101; ≈69%). Likewise, considering at the size of the interviews participants most 
contributions used a sample size of 10-50 participants (n=59; ≈39 %), followed by a sample 
size of over 100 participants (n=52; ≈34 %). 
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Methods. Used ML models are typically applied on real-world data types (n=62; ≈41 %) or 
social data types (n=34; ≈22 %). However, many contributions are using simulation (n=28; 
≈19 %) or image data (n=23; ≈15 %). Thereby, we noticed a lack of research when it comes to 
sensor data (n=5; ≈3 %). Further, different XAI approaches are used. Most contributions rely 
on visualization (n=65; ≈26 %), explanation by simplification (n=63; ≈25 %), or explanation 
by example (n=52; ≈21 %) for their studies. Thereby, it is noticeable that only relatively little 
research is done with respect to textual explanations (n=35; ≈14 %). 

Measurement. Regarding the dimension study design, studies mainly differentiate within 
subjects (n=65; ≈46 %) and between groups (n=37; ≈26 %), but many studies also use single 
treatments (n=40; ≈28 %). These studies often employ a differentiation explanation baseline 
(n=61; ≈41 %) or provide no differentiation baseline (n=53; ≈36 %). To measure their 
constructs, these contributions predominantly use ratings (n=96; ≈77 %) for their study scales. 
Consequently, rankings (n=12; ≈10 %) and dichotomous (n=17; ≈14 %) are less used. As an 
evaluation approach, questionnaires are most frequently used (n=82; ≈54%) for the developed 
XAI artifacts followed by observation (n=31; ≈20%) and expert studies (n=24; ≈14 %). Lastly, 
these contributions focus on the satisfaction (n=42; ≈16 %), interpretability (n=45; ≈17 %), and 
trust (n=45; ≈17 %) as the measured constructs. In contrast, relatively little research is 
conducted to address decision quality (n=18; ≈7 %), explainability (n=18; ≈7 %), time (n=17; 
≈7 %), or effort (n=17; ≈7 %). 

3.6.2 Cluster and Archetype Analysis 

Further, to uncover hidden patterns or archetypes in current XAI literature, we conducted a 
cluster analysis and uncovered archetypes these clusters. We show and explain the results in 
the following. 

 

Figure 3.4 Result of Cluster Analysis 

C1 C2 C3
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Table 3.4 Results of Archetype Analysis 
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We used the agglomerative hierarchical clustering algorithm from Ward (1963) in combination 
with the Euclidean metrics to calculate the distance. To find the optimal number of clusters, we 
analyzed different evaluation metrics (elbow method, silhouette score, and Davies-Bouldin 
score), resulting in a non-uniform cluster solution. Lastly by following Fischer et al. (2020), we 
decided on a n=3 cluster solution, as we noticed the highest gradient decrease in cluster distance 
and found it to be a sound foundation for our cluster interpretation. These results are represented 
as dendrogram in Figure 3.4. In the corresponding Table 3.4 we calculated the absolute and 
relative occurrence for each characteristic in each cluster. We present the resulting archetypes 
in the following: 

Cluster C1 - Focused Domain Dialog. The contributions (n=59) in this cluster target ML and 
domain experts with a small to medium user sample to validate developed 
frameworks/prototypes or measure user perceptions. Therefore, they use real-world data to 
evaluate their findings. Since they focus on experts in a more qualitative approach, they merely 
present their artifact with no differentiation study treatment with a single or within-subject study 
design, providing no monetary incentives to their participants. 

This cluster can be conceptualized as the “focused domain dialog” archetype, which emphasizes 
the domain-specific nature of XAI applications. It highlights research that is performed in-situ 
and improves not only the knowledge base of XAI, but it is of direct benefit to the according 
domains. 

In this context, e.g., Ming et al. (2018) and Khodabandehloo et al. (2021) validate their 
visualization-based prototypes with a small sample size of ML experts. Similarly, Wang, Gou, 
et al. (2018) and Cabitza et al. (2020) validate their visualization-based framework with a 
medium size group of domain experts focusing on decision quality. In addition, contributions 
measure user perception of the constructs of trust (Ghai et al., 2021; Wintersberger et al., 2020) 
and interpretability (Brennen, 2020; Spinner et al., 2020) with domain or ML experts without 
any incentives. Lastly, contributions employ a user-centered XAI study in multiple fields of the 
service domain such as health care (Le et al., 2020; Xie et al., 2020). 

Cluster C2 - Broad Empirical Comparative Study. Research in this cluster (n=50) measures 
various effects within user-centered studies in a broad audience often surveying more than 100 
participants. For their objectives, authors compare different groups of participants using a 
between-groups study design and often use a differentiation explanation baseline. 

Thus, the second cluster can be described as the “broad empirical comparative study” archetype, 
which focuses on gaining empirical insights from (ML) novice users. It relies on survey 
instruments to tap into a large audience and receive representative albeit not contextualized 
results. 

Contributions measure the construct of trust (Cai et al., 2019; Dominguez et al., 2020) or 
interpretability (Fürnkranz et al., 2020) through studies with more than 100 participants within 
the service domain (Quijano-Sanchez et al., 2017) by providing different types of ML 
visualizations. As these types of studies often use survey platforms such as Amazon Mechanical 
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Turk (Poursabzi-Sangdeh et al., 2021) or Prolific (Herm, Wanner, et al., 2021a), they typically 
provide monetary incentives. 

Cluster C3 - Medium Group Intervention Testing. In addition to clusters C1 and C2, the 
contributions (n=43) within this cluster examine technological interventions such as new 
methods in the field of XAI. In these contributions, observations, or questionnaires with a 
medium to large number of users are used to measure the effects of constructs such as accuracy, 
satisfaction, confidence, or time primarily in the domain of information, often using a no 
explanation baseline.  

The third cluster can be described as the “medium group intervention testing” archetype, which 
stresses the significance of XAI applications as interventions that affect user perception and 
behavior. Although this is the smallest group in our analysis, we noted several types of user-
centered XAI studies, as these papers address less researched user-centered XAI topics. 

For example, Kenny et al. (2021) test a rarely studied explanation type in the context of image 
classification through a qualitative analysis. Similarly, Das and Rad (2020) focus on user 
performance from the application of an XAI-based recommender system. In contrast, Wiegand 
et al. (2020) investigate initial user needs for decision explanations for autonomous driving 
systems, while Alipour et al. (2020) measure the correlation between system accuracy and user 
perception. 

3.7 Discussion and Conclusion 

With our taxonomy, we present a comprehensive framework that can be used to evaluate and 
classify existing user studies and plan new XAI research. While there is growing body of 
knowledge in this area, its focus is often on ML performance rather than its explainability, 
which is important in a socio-technical context. In answering our research questions, we 
brought structure to the discussion to overcome these shortcomings and we identified initial 
relations within the dimensions. To do so, we investigated the literature in a descriptive 
approach as well as a cluster analysis. Thereby, we were able to derive three archetypes in 
contemporary XAI research. We can use the gained knowledge to shed light on some apparent 
deficiencies in current research and point to potential future research directions. 

In analyzing the different research contributions derived during the literature collection, we 
noticed several shortcomings of current literature and identified research streams future 
research should address: 

Looking at Table 3.4 it become obvious that XAI research is still in its infancy, as current 
contributions focus mainly on the measurement constructs of explainability and interpretability. 
Cognitive effort and decision quality have hardly been investigated. Consequently, it remains 
vague whether proposed XAI approaches are suitable in real-world conditions rather than in a 
laboratory experiment. Further, while many studies examine similar constructs, there is no 
general definition of measurement constructs. For example, articles empirically test the 
interpretability of XAI frameworks. However, in research, this measurement construct is often 
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also referred to as understandability (Wang, Gou, et al., 2018) or comprehensibility (Herm, 
Wanner, et al., 2021a). The same is true for explainability (Wanner, Herm, Heinrich, et al., 
2021) and transparency Peters et al. (2020), which are often used as synonyms. 

Throughout our research, we identified many contributions that aim at breaking down the black-
box behavior of ML models in healthcare or autonomous driving. For example, while many 
researchers describe their research as promising, the lack of consistency with jurisdiction is 
evident (e.g., Wiegand et al., 2020). Therefore, this highly interdisciplinary topic should aim at 
involving legal experts to validate these results. This becomes even more critical as many 
different jurisdictions across various countries need to be addressed (Górski & Ramakrishna, 
2021). 

As mentioned above, many contributions describe different XAI approaches. Here, it is 
noticeable that most of them do not follow any design patterns or guidelines (e.g., 
Khodabandehloo et al., 2021). Since these approaches can be used in challenging scenarios, it 
is essential that users are not overwhelmed by the complexity of the explanation. Future 
research should therefore propose validated design patterns that can serve as a starting point for 
further XAI research (Herm, Wanner, et al., 2021a). Relying on the XAI design jungle, the 
identified XAI contributions use specific XAI argumentations such as visualizations for their 
use cases. Often, it is not apparent, why this type of explanation was used (e.g., Kenny et al., 
2021). While Mohseni et al. (2021) has introduced an overview of different XAI argumentation 
types, the holistic comparison and evaluation is still missing. 

In summary, these deficiencies emphasize the emerging nature of the field and the need for an 
overarching discipline-spanning nomenclature and understanding to enable interdisciplinary 
research. Our taxonomy can be seen as a vehicle of structuring and our cluster analysis provides 
a first step in this direction. That is, researcher can use our findings, to address different lacks 
as well as position their research more precisely according to our taxonomy.  

In terms of limitations, a taxonomy is never complete and should always be considered as a 
starting point for further contextualization. We could not delve into each dimension in very 
detail but focused on interesting relations and connections. Our analysis shows more potentially 
interesting patterns that need to be explored. In the future, our taxonomy could be 
contextualized for specific applications or to derive novel best practices for XAI 
implementations and their evaluations.
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4 Stop Ordering Machine Learning Algorithms by their 
Explainability! A User-Centered Investigation of 

Performance and Explainability 
 

 

Lukas-Valentin Herm, Kai Heinrich, Jonas Wanner, and Christian Janiesch 
 

 

Abstract. Machine learning algorithms enable advanced decision making in 
contemporary intelligent systems. Research indicates that there is a tradeoff 
between their model performance and explainability. Machine learning models with 
higher performance are often based on more complex algorithms and therefore lack 
explainability and vice versa. However, there is little to no empirical evidence of 
this tradeoff from an end user perspective. We aim to provide empirical evidence 
by conducting two user experiments. Using two distinct datasets, we first measure 
the tradeoff for five common classes of machine learning algorithms. Second, we 
address the problem of end user perceptions of explainable artificial intelligence 
augmentations aimed at increasing the understanding of the decision logic of high-
performing complex models. Our results diverge from the widespread assumption 
of a tradeoff curve and indicate that the tradeoff between model performance and 
explainability is much less gradual in the end user’s perception. This is a stark 
contrast to assumed inherent model interpretability. Further, we found the tradeoff 
to be situational for example due to data complexity. Results of our second 
experiment show that while explainable artificial intelligence augmentations can be 
used to increase explainability, the type of explanation plays an essential role in end 
user perception. 
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4.1 Introduction 

Artificial intelligence (AI) technology enables human-like cognitive capacity for advanced 
decision making in contemporary intelligent systems (Dwivedi et al., 2021; Hradecky et al., 
2022). Despite these advances, research shows that human perceptions can trigger behavioral 
responses that affect an organization’s capability to leverage such systems when predictions are 
presented to end users (Berger et al., 2021; Chiu et al., 2021). As certain algorithms exhibit a 
higher degree of explainability through their inherent interpretability, end users may perceive 
them more benevolently than others (Shin, 2021; Wanner, Herm, et al., 2022b). In contrast, 
much of the current AI research focuses solely on the statistical performance measures of 
machine learning (ML) models (Collins et al., 2021; La Cava et al., 2019), and data 
competitions are dominated by deep neural network algorithms outperforming shallow ML 
algorithms (e.g., Hyndman, 2020; Rudin & Radin, 2019). 

The processing of these deep neural network algorithms is based on complex calculation logic, 
which is practically untraceable. While the decision-making is documented in the learned model 
and could be traced, its inner complexity renders it unfeasible for humans to do so and interpret 
its decision-making process or even actual prediction results. It practically renders the model a 
black box as it does not provide any explanations for its predictions (Dwivedi et al., 2021; 
Loyola-Gonzalez, 2019). This results in a tradeoff between performance and explainability, 
which is not yet sufficiently understood from a user-centered perspective. 

The performance of an algorithm can be measured by indicators such as accuracy, precision, 
recall, or the F-score. Yet, it remains unclear which ML algorithm’s inherent interpretability is 
perceived as more explainable by end users. Even more so, explanations can be provided in 
several ways. Currently, it is unclear which types of explanation humans perceive more 
benevolently (Shin et al., 2020; von Eschenbach, 2021). 

This is crucial as the perceived explainability of a prediction determines the effectiveness of an 
intelligent system: if human decision-makers can interpret the behavior of an underlying ML 
model, they are more willing to act based on it, especially in cases where the predictions do not 
conform to their own expectations (Berger et al., 2021; Ribeiro et al., 2016b). Even more so, 
intelligent systems without sufficient explainability may even be inefficacious if end users 
disregard their advice (Shin et al., 2020; Wanner, Popp, et al., 2021). 

In scholarly literature, several theoretical considerations on the tradeoff of performance and 
explainability exist (e.g., Angelov & Soares, 2019; Arrieta et al., 2020; Dam et al., 2018; 
Gunning, 2019; James et al., 2013; Nanayakkara et al., 2018; Yang & Bang, 2019). Yet, they 
are of theoretic nature, and an empirical investigation of model explainability is missing. We 
intend to close this gap with our first research question: 

RQ1: How do common classes of machine learning algorithms compare empirically in the 
tradeoff between their performance as measured by model accuracy and their explainability as 
perceived by end users? 
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While we cannot increase the performance of individual ML models without modification of 
the actual analytics process (e.g., data preparation, hyperparameter tuning, etc.), any ML 
model’s predictions can be augmented with external explanations. This is especially important 
for high-performing algorithms based on deep learning as they offer no inherent explainability 
to end users (Arrieta et al., 2020; Sharma et al., 2021). In response, several types of explainable 
AI (XAI) augmentations have been developed. Their visualizations can be grouped into several 
common types of explanations (Guidotti et al., 2018; Mohseni et al., 2021). There is little to no 
empirical evidence on actual end user perception when considering their role in intelligent 
system use (Hoffman et al., 2013; Hoffman et al., 2018). We formulate our second research 
question accordingly: 

RQ2: How do common types of explanations compare empirically in their explainability as 
perceived by end users? 

Our insights have a high potential to explain better AI adoption of different classes of ML 
algorithms, contributing to a better understanding of AI decision-making and the future of work. 
On the one hand, the results can help us to understand to what extent various classes of ML 
algorithms differ in their perceived explainability from an end user perspective. It allows us to 
draw conclusions about their future improvement and their suitability for a given situation in 
practice. On the other hand, the results can help us understand how much performance end users 
may be willing to forfeit in favor of explainability. Ultimately, Rudin (2019)’s call to avoid 
explaining black-box models in favor of using inherently interpretable white-box models could 
be better approached if the tradeoff was sufficiently understood from a social-technical, end 
user perspective (Arrieta et al., 2020; Herm, Wanner, et al., 2021a). 

The remainder of the paper is structured as follows: Section 4.2 introduces related work on ML 
algorithms and model explainability. In Section 4.3, we discuss the hypothesis development for 
our research questions, and in Section 4.4, we introduce our methodology as well as outline 
datasets and algorithms, implementation details, and survey design. In Section 4.5, we present 
the results of the empirical study before we discuss them in Section 4.6 and present 
implications. The paper closes with a brief summary. 

4.2 Literature Review 

4.2.1 Machine Learning Algorithms 

ML focuses on algorithms that improve their performance through experience. They are able to 
find non-linear relationships and patterns in datasets without being explicitly programmed to 
do so (Bishop, 2006; Russell & Norvig, 2021). The process of analytical modeling building to 
turn ML algorithms into concrete ML models for the use in intelligent systems is a four-step 
process comprising data input, feature extraction, model building, and model assessment 
(Goodfellow et al., 2016; Janiesch, Zschech, et al., 2021). 

ML algorithms are commonly grouped into shallow and deep ML algorithms. Each ML 
algorithm has different strengths and weaknesses regarding its ability to process data. Shallow 
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ML algorithms generally require the feature selection of relevant attributes for model training. 
This task can be non-trivial and time-consuming if the dataset is high-dimensional or if the 
context is not well-known to the model engineer. Common classes of shallow ML algorithms 
are linear regressions, decision trees, and support vector machines (SVM). Deep neural 
networks with multiple hidden layers and advanced neurons for automatic representation 
learning provide a computation- and data-intensive alternative (Janiesch, Zschech, et al., 2021; 
Mahesh, 2020). They master feature selection on increasingly complex data by themselves 
(LeCun et al., 2015; Schmidhuber, 2015). The performance of these deep-learning-based 
models surpasses shallow ML models and even exhibits super-human performance in specific 
applications such as data-driven maintenance (e.g., Wang, Ma, et al., 2018) or medical image 
classification (McKinney et al., 2020). On the downside, the resulting models have a nested, 
non-linear structure, which is not per se interpretable for humans, and thus their predictions are 
difficult to retrace. In summary, many shallow ML algorithms are considered interpretable and, 
thus, white boxes, but deep learning algorithms tend to perform better but are non-transparent 
and, thus, black boxes (e.g., Adadi & Berrada, 2018; Wanner, Herm, et al., 2022b). 

4.2.2 Interpretability and Explainability in Machine Learning 

In this context, interpretability signifies how accurately an ML model can associate cause and 
effect. It is an inherent, data-driven property that is related to the ML model’s ability to provide 
meaning in understandable terms to a human by itself (Fürnkranz et al., 2020; Rudin, 2019). 

In turn, explanations have the ability to fill the information gap between the intelligent system 
and its end user similar to the situation in the principal-agent problem (Arrieta et al., 2020; 
Baird & Maruping, 2021) whenever the ML model is non-transparent and therefore not 
sufficiently interpretable. Explanations are decisive for the efficacy of the intelligent system as 
the end user decides based on the given information whether he or she integrates the prediction 
into his or her decision-making or not (Shin, 2021; Thiebes et al., 2021). 

The question of what constitutes explainability and how explanations should be presented to be 
of value to human users fuels an interdisciplinary research field, that consists of various 
disciplines, including philosophy, social science, psychology, computer science, and 
information systems (Collins et al., 2021; Miller, 2019). From a socio-technical perspective, 
explainability can be considered as the perceived quality of an explanation by an individual or 
user group (Adadi & Berrada, 2018; van der Waa et al., 2021). While the perceived quality can 
be circumstantial, we assume that there is a shared perception across user responses that can be 
used to explain at least part of the judgement. 

From a technical point of view, explainability in intelligent systems is about two questions: the 
“how” question and the “why” question. The former is about global explainability, which 
provides answers to the ML algorithm’s internal processing (Dam et al., 2018; Rudin, 2019). 
The latter is about local explainability, which answers the ex-post reasoning about a concrete 
prediction by an ML model (Arrieta et al., 2020; Dam et al., 2018). In this context, as noted 
above, many shallow ML models are considered to be white boxes that are interpretable per se 
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(Arrieta et al., 2020; Janiesch, Zschech, et al., 2021). In contrast, a black-box ML model is 
either too complex for humans to understand or opaque for a reason and, therefore, equally hard 
to understand (Dwivedi et al., 2021; Rudin, 2019). Consequently, we consider an ML model’s 
innate interpretability as its explainability towards end users not using any XAI augmentations 
(Adadi & Berrada, 2018; Kenny et al., 2021). 

Theoretical contributions typically assume a continuous decrease in explainability with 
increasing performance of ML models. While it is generally depicted as a linear or cubic curve, 
it is not apparent whether this relation of explainability and performance is consistent across 
different ML models in a socio-technical evaluation with end users. 

Likewise, there are numerous ways explanations can be presented with XAI. These 
augmentations can be summarized in six common explanation types (Mohseni et al., 2021).  

How explanations represent a global view of the ML algorithm; common XAI augmentations 
display decision boundaries or model graphs. Why explanations represent a local view and 
describe why a prediction was made based on a singular input, demonstrating the importance 
of input variables for the decision of the model. Contrastive visualizations can be used to 
produce Why-Not explanations that outline the difference between an actual and the expected 
prediction. Furthermore, the algorithms’ reaction to change in data or algorithmic 
hyperparameters can be outlined by What-If explanations. In a similar way, How-To or 
counterfactual explanations provide an interactive user experience, where the input of the model 
is changed in a way so that the output changes. Lastly, What-Else explanations offer 
explanations by example in providing training data that generate similar outputs from the 
model. 

Aside from the type of explanation, it is essential to distinguish the target audience of the 
explanation. Research distinguishes four different groups: developers, theorists, ethicists, and 
users (Mohseni et al., 2021; Preece et al., 2018). As empirical findings differ for the stakeholder 
groups, we solely aim our study at the (end) user (Herm, Wanner, et al., 2021a; Meske et al., 
2022). In our case, end users are domain experts that use an intelligent system in their work 
routines to obtain predictions that assist their decision making. They do not participate directly 
in the system’s planning, engineering, maintenance, or support and typically do not possess 
technical knowledge about its analytical model. 

4.3 Theoretical Background and Hypotheses Development 

4.3.1 Machine Learning Tradeoffs 

Considerations about the (hypothesized) tradeoff between model performance and model 
explainability have been the subject of discussion for some time. Originating from theoretical 
statistics, a distinction for different ML algorithms was first made between model 
interpretability and flexibility (James et al., 2013). More recently, this changed towards a 
comparison between model accuracy and interpretability (e.g., Arrieta et al., 2020; Yang & 
Bang, 2019) or algorithmic accuracy and explainability (Dam et al., 2018; Rudin, 2019). All 
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tradeoffs address the same compromise of an algorithm’s performance versus the algorithm’s 
degree of result traceability. 

Many subjective classifications of this tradeoff exist (Angelov & Soares, 2019; Arrieta et al., 
2020; Dam et al., 2018; Gunning, 2019; Nanayakkara et al., 2018; Vempala & Russo, 2018; 
Yang & Bang, 2019). Overall, there is high conformity between the subjective classifications 
of the different authors. We synthesized these schemes into a generalized classification 
scheme.1 The resulting Cartesian coordinate system shows five common classes of ML 
algorithms ordered by their assumed performance (y-axis) and explainability (x-axis). 

  

Figure 4.1 Synthesis of Common ML Algorithm Classification Schemes 

There is a general agreement on key classes of ML algorithms, but there are some differences 
in their placement and the granularity of representation. The general notion is that with a loss 
of performance, algorithms provide better explainability so that algorithms can be ordered on 
some curve. Hence, deep neural networks are categorized as the most powerful algorithms with 
the least degree of explainability, followed by ensemble algorithms, which consist of multiple 
ML models. SVMs serve as a large margin classifier based on data point vectors and come third 
in performance, superior to decision trees that use sorted, aligned trees for the development of 
decision rules. Finally, linear regressions (or linear models in general) are considered least in 
performance yet straightforward to interpret (Goodfellow et al., 2016; James et al., 2013). Note 
certain classes of ML algorithms are thought to perform closer to each other than the conceptual 
equidistant visualization of Figure 4.1 (e.g., Dam et al., 2018; Gunning, 2019; Guo et al., 2019). 

In essence, these theoretical classification schemes represent a hypothetical and data-centered 
view on the tradeoff of model accuracy vs. model interpretability. They have neither yet been 
validated for specific applications based on real data nor confirmed by including end users to 

 
1 See Appendix C.1 for an enlarged version of the figure, including the different classification schemes from 
literature. 
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unearth their true pertinency towards said tradeoff between performance vs. explainability. An 
empirical quantification of end user explainability is necessary to provide first-hand knowledge 
to the engineers of intelligent systems for the development of intelligent systems (Jauernig et 
al., 2022; Meske & Bunde, 2022). Despite this apparent deficiency, they are commonly 
referenced as a motivation for a user- or organization-centered XAI research or intelligent 
system deployment (e.g., Asatiani et al., 2021; Guo et al., 2019; Rudin, 2019). 

Augmented models (i.e., ex-post explainers) were the subject of several of those studies (e.g., 
Angelov & Soares, 2019; Nanayakkara et al., 2018). We have not included them in this 
synthesis as our focus was on the ML algorithms’ inherent explainability. Yet, as noted above, 
XAI augmentations aim to provide more transparent ML models with both high performance 
and high explanatory power to improve the acceptance of predictions by end users (Arrieta et 
al., 2020; Gunning, 2019). Hence, it is self-evident that we need to consider how XAI 
augmentations can improve the explainability of the highest-performing - supposedly least 
explainable - ML algorithm. 

There are human-centered evaluations of XAI algorithms. However, most of the evaluations 
revolve around testing certain novel algorithms. They often focus on variable importance and 
semi-automated evaluations by perturbating features to identify the most influential features 
and compare the result set with the XAI algorithms’ explanations (Doshi-Velez & Kim, 2017; 
Nguyen, 2018). Thus, they measure the algorithms’ explanatory performance towards a truth 
value rather than their explanatory quality towards end users. 

In summary, it remains unclear how end users perceive explainability and how this is in line 
with the considerations presented above. We propose to approach this as follows: First, we 
focus on the tradeoff between performance and an ML model’s inherent explainability to avoid 
biases introduced by model transfer techniques from the field of XAI. Second, we focus on five 
of Mohseni et al. (2021)‘s six common types of explanation to augment the best-performing 
ML model to uncover which types of XAI explanations end users prefer independently of their 
potential to correctly explain an ML model or its predictions. 

4.3.2 Hypotheses 

Performance vs. Explainability Tradeoff. Our research design uses a simple group structure, 
where the independent variable is the choice of algorithm, and the dependent variables are 
performance and perceived goodness of explanation. The independent variable reflects the 
nature of an algorithm as it is applied to practical problems. The dependent variable 
performance measures the objective performance of the algorithm. The perceived goodness of 
explanation is more subjective and we base the choice of this second dependent variable on the 
proposed tradeoff that requires a quantification of explanation as it is perceived by users and 
knowingly can influence the user’s mindset towards algorithms (Berger et al., 2021; Jauernig 
et al., 2022). The moderating group variable data complexity is expressed through different 
cases using different datasets reflecting low complexity and high complexity. We choose to 
introduce this variable to also reflect on more complex practical problems that involve large, 
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non-tabular datasets like image and video data. These complex datasets are massive in size, 
high-dimensional, possibly biased, and not straightforward to explore by the human user. This 
also combats the predisposition that it is always viable to choose a simple algorithm that is 
explainable when clearly in those complex cases these types of algorithms are not interpretable 
as the data is neither (Castiglioni et al., 2021; Wang et al., 2021). When it comes to using 
algorithms for complex cases, post hoc XAI explanations can be used to provide insights into 
the decision-making process (Meske & Bunde, 2020; van der Waa et al., 2021) as they have an 
increased need for explainability (Lebovitz et al., 2021; Liu et al., 2007). 

In terms of performance, we hypothesize that for less complex cases, which use tabular data, 
the performance of the ML models will be very close and not significantly distinguishable 
(Rudin & Radin, 2019; Zhang & Ling, 2018). Recent replication studies show that prediction 
scenarios using tabular data can be solved with small-scale models and will hold similar 
performance or even outperform the more advanced models for those low complexity cases 
(DeVries et al., 2018; Mignan & Broccardo, 2019). Thus, we expect no significant difference 
in performance following the ordering of Figure 4.1.  

H1a: The choice of algorithm has no significant impact on the performance for cases with low 
complexity. 

Contrary, since shallow learning algorithms are limited in their way of extracting higher-level 
features for complex data, we expect the performance to deviate for complex cases (Janiesch, 
Zschech, et al., 2021; LeCun et al., 2015). Related research shows a decline in error rates for 
deep neural networks when applied to image datasets that even outperform human judgment 
(Heinrich et al., 2019; McKinney et al., 2020). Hence, we theorize that the performance of the 
shallow ML algorithms will be sub-par to deep neural networks and less grouped since they 
will fall off at different paces. 

H1b: The choice of algorithm has a significant impact on the performance for cases with high 
complexity. 

As a next step, we introduce the hypotheses regarding the goodness of explanations of common 
classes of ML algorithms. While we expect the black-box deep learning model to be the poorest 
in explainability (Meske et al., 2022; Rudin, 2019), we can only offer some thoughts on the 
ordering of shallow ML algorithms. First, we believe that the design of the explanation plays 
an important role in conveying the intended level of transparency (Miller, 2019; Shin, 2021). 
Shallow ML algorithm classes that have intrinsic means of local interpretability, such as SVM 
and linear regression in terms of their input feature weights, still have no natural way of visually 
presenting local variable importance out-of-the-box. The only exception are decision trees that 
present a logical structure, which is in line with the human thought process (Herm, Wanner, et 
al., 2021a; Subramanian et al., 1992). Thus, we believe that contrary to the existing theories, 
only decision tree explainability will be distinguishable from the rest of the ML algorithms. 

H2a: The choice of algorithm has a significant influence on the perceived goodness of 
explanation for cases with low complexity. 
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Following our argumentation, we believe that post hoc analysis will reveal that the significant 
overall difference can only be attributed to the difference between the decision tree and the 
other groups of algorithms for less complex cases. 

Further, we believe this will not hold for the less complex case. Complex data structures like 
images, even when referred to by a tree structure, have no convincing explanatory value since 
there are so many input variables (in the image case: pixels) to choose from (Chandra & Bedi, 
2021; Heinrich et al., 2019). For this type of data, an additional step is required to produce high-
level features that humans can relate to, such as specific geometric forms. 

H2b: The choice of algorithm has no significant impact on the perceived goodness of 
explanation for cases with high complexity. 

Perception of Explanation Types. For our second research question, we follow up on the first 
experiment to investigate the question of how the high-performing but black-box class of deep 
learning algorithms should be augmented with XAI explanation types. We aim to find out which 
type of explanation augmentation will help to elevate the transparency of deep learning models 
in the case of complex data. Thus, as independent treatment variables, we use the type of 
explanation (Mohseni et al., 2021). As a dependent variable, we again use the perceived 
goodness of explanation. Since deep learning algorithms come with no explanation at all, we 
theorize that any explanation will be favorable or equal to no explanation (Adadi & Berrada, 
2018; Miller, 2019). Furthermore, we suspect that explanation types with straightforward, non-
complex visualizations (e.g., Why) will be perceived more benevolently by end users. Thus, we 
formulate the following hypothesis: 

H3: The type of explanation has a significant impact on the perceived goodness of explanation. 

We believe that the distinction between more local-oriented (Why, Why-Not, and What-Else) 
and global-oriented types (How and How-To) will be notable. We grounded this expectation in 
our focus on end users. Developers and theorists need to understand the nature of the algorithm. 
End users are satisfied with simpler and more targeted example-based explanations of 
predictions that rationalize their belief in the system and assist in solving the task at hand 
(Miller, 2019; Preece et al., 2018). Figure 4.2 summarizes the research models for RQ1 and 
RQ2. Note that both experiments stand alone, and that experiment 2 has a set choice of 
algorithm (deep neural network) and dataset (high complexity) and uses post hoc XAI 
augmentations rather than presenting the non-augmented, inherent explanations as in RQ1. 
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Figure 4.2 Proposed Research Models for RQ1 and RQ2 

4.4 Methodology 

Performance vs. Explainability Tradeoff. To execute our research design for RQ1, we use a 
standard ML analysis process and subsequently conduct an empirical analysis (Müller et al., 
2017). In our experiment, low data complexity is represented by a standard tabular dataset with 
a moderate number of observations and low dimensionality. High data complexity is 
represented by a large image dataset that exhibits high dimensionality and initial non-tabular 
form (i.e., pixel-tensors). See Table 4.1 for details on the datasets. Both datasets represent 
classification tasks. 

Dataset 
Moderator 

Effect 
Description 

HEART 
(Janosi et al., 
1988) 

Low complexity 

The heart disease dataset (HEART) is a low complexity dataset, which is 
used to classify the presence of heart disease based on medical patient 
features. It contains 303 observations of 13 different features and a binary 
target variable. 

BRAIN 
(Bohaju, 
2020) 

High complexity 
The brain tumor dataset (BRAIN) contains images of brain MRIs of which 
2.079 depict no brain tumor and 1.683 depict a brain tumor. The images have 
dimensions of 224x224 pixels each. A binary label indicates the tumor status. 

Table 4.1 Overview of Datasets and Moderating Effects 

For each dataset, we apply several classes of ML algorithms that represent the levels of the 
independent treatment variable choice of algorithm (see Table 4.2). We applied data 
preprocessing and grid search optimization for every ML algorithm. We ensured that each 

Choice of Algorithm

Performance

Perceived 
Goodness of 
Explanation

Data Complexity
a … Low Complexity
b … High Complexity

H1a / H1b

H2a / H2b

Type of Explanation
Perceived 

Goodness of 
Explanation

H3

RQ1:

RQ2:

Constraint
Choice of Algorithm:
Deep Neural Network

Constraint
Data Complexity:
High Complexity
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algorithm provides an acceptable answer for each case so that the class of algorithms can - in 
principle - be considered fully interchangeable from an end user perspective except for their 
performance and explanation. 

Class of ML 
Algorithm Implementation 

Linear Regression 
Due to data preprocessing, we skipped default normalization and used the default 
settings. For the non-centered datasets, we included the intercept of the model. 

Decision Tree 
We did not restrict the models by regulations such as the minimum sample split 
numbers of the estimators. The resulting trees have a depth of five or six, depending 
on the treatment. 

SVM For all datasets, we applied an SVM using a radial basis function as kernels. 

Random Forest 
(Ensemble) 

We used the bagging algorithm random forest as a proxy for ensembles. Random 
forests consist of 100 estimators each, and their complexity was not restricted (see 
decision tree). 

Deep Neural Network 
For HEART, we used a multi-layer-perceptron with eight hidden layers, including 
dropout layers. For BRAIN, we used a convolutional neural network consisting of 
13 hidden layers also including maxpooling and dense layers. 

Table 4.2 Overview of ML Algorithm Implementations 

After implementation and execution, we measure the dependent variable performance by 
measuring the accuracy of the classification by applying 15-fold cross-validation for each ML 
algorithm to ensure algorithm behavior in terms of reliability and possible variations. The 
accuracy of the model refers to the system’s ability to correctly predict an outcome and is given 
by the ratio of correctly classified entities to all entities. The measure allows us to objectively 
estimate the performance without including perceived advice quality that can be biased by user 
perception (Janiesch, Zschech, et al., 2021; Mahmud et al., 2022). In addition, we reviewed 
recall and F-score to ensure that a single performance metric did not produce outliers. 

While a model’s performance can be evaluated independently of the user, its explainability 
depends on the perceptions of its users (Miller, 2019; Shin, 2021). Therefore, we measured the 
dependent variable, perceived goodness of explanation, in a survey. We used the platform 
prolific.co providing a monetary incentive. Since both our cases are healthcare cases and we 
aim our analysis at end users, we assume that the users of such systems would be healthcare 
professionals. Therefore, we used the filtering functionality of the platform to narrow down 
subjects to this group. Furthermore, to ensure a basic acceptance of AI among the group, we 
selected novice healthcare professionals (i.e., enrolled medical students) since experienced 
healthcare professionals can have a substantial bias to medical AI applications (Logg et al., 
2019; Strohm et al., 2020). This also ensures the continuance of the results as those novices 
constitute the core of the future workforce. We find the notion of catering to as many groups as 
possible intriguing, but it is out of the scope of this research to consider technology acceptance 
as a factor (Straub & Burton-Jones, 2007). 
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For reasons of duration and repetitiveness, we designed two studies, one for each case. The 
cases were assigned at random. The procedure within each variant was identical. To ensure the 
validity and reliability of our study, we first asked a senior researcher for a review of our study. 
Then, we conducted a pre-study to check whether participants had understood the research 
design and the intended focus of the questions correctly. Furthermore, we asked about any 
difficulties encountered in completing the survey. 

In the survey, we first collected demographics, prior experience with AI, as well as the 
participant’s willingness to take risks. In the second part, we provided them with an introduction 
to the respective case and the task that the system is carrying out in that context. Third, we 
informed the participants that they had to put themselves in the situation of a physician who 
could not delegate the case. Then, we evaluated the participant’s perceived goodness of 
explanation based on the propositions of Hoffman et al. (2018): We provided the participants 
with a graphical visualization of specific predictions dependent on the algorithm’s inherent 
means to produce such explanations. Thereby, we account for each algorithm’s natural way of 
explanation without adding further augmentations. For each ML model, the participants had to 
rate their overall perceived goodness of explanation of the model on a seven-point Likert scale. 
After yielding results for both dependent variables, to check on our hypotheses, we conducted 
an analysis of variance based on the design in Figure 4.2. 

To reduce participant bias, we applied different mechanisms and design elements. First, we 
randomized the order of treatments within every study to avoid any learning effects or sequence 
bias. Second, we did not use any colors or explanations from common ML implementation 
packages, as the participants could be biased through the presentation type (confirmation bias). 
Third, we only provide input information, an explanation, and a comprehensive description to 
each explanation, to not force anchoring biases. As an example, the participants did not receive 
any information about the performance of the ML models to avoid performance bias. Fourth, 
we assume no focus effects took place, as novice end users (generally) do not have actual prior 
experience in ML model explanations. Lastly, we applied a validation question as an awareness 
check. See online Appendix B of (Herm, Heinrich, et al., 2023) for the used study designs to 
answer RQ1. 

Perception of Explanation Types. For RQ2, we adopted a similar approach to measure the 
quality of explanation. As a dataset, we used BRAIN as it represents the more complex dataset 
and applied only the deep neural network algorithm. Then, we implemented different XAI 
algorithms that reflect the levels of the independent treatment variable types of explanation 
levels as derived from Mohseni et al. (2021). We measured the perceived goodness of 
explanation analog to RQ1 by conducting a survey. We presented the case and the different 
explanations as a treatment to the participants. The treatment consists of three boxes: the 
original input image, the ML algorithm’s decision (tumor/no tumor), a form of explanation, and 
a short textual description of the explanation to ensure a basic understanding. See Appendix 
C.4 for the study design to answer RQ2. 
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Table 4.3 comprises the images presented as treatments to the participants for all explanation 
types. Please note that for our study, we combined Mohseni et al. (2021)’s explanation types 
How-To and What-If (in the following: How-To) as both focus on hypothetical adjustments to 
the input to generate what-if scenarios and counterfactual explanations. Due to our focus on 
end users, the wider scope of What-If explanations to include the changing model parameters 
is not applicable to our analysis. Furthermore, What-If explanations are not well suited for high-
dimensional data and deep neural networks (Mohseni et al., 2021). 

Input Image 

 

Explanation 
Type 

Description of Explanation Types Treatment Visualization 

How 
Explanation of which input areas are 
relevant to the trained model, i.e., the ML 
algorithm’s inner logic.1  

Result: Tumor 

Why 
Explanation of which areas of the given 
input are relevant to the outcome of the 
prediction.1  

Result: Tumor 

Why-Not 
Explanation of which areas of the given 
input are not relevant to the outcome of the 
prediction.1  

Result: Tumor 

How-To 

Explanation of how hypothetical 
adjustments of the given input (e.g., the 
bright shades in the MRI) would result in a 
(different) model prediction. 

 
Result: 
Tumor 

Input  
Adjustment: 

 
 

Result:  
No Tumor 

What-Else Explanation by example; showing similar 
inputs and their respective predictions. 

 
Sample 1 -  

Result: 
Tumor 

 
Sample 2 -  

Result: 
Tumor 

 
Sample 3 -  

Result: 
Tumor 

1 The described XAI augmentations are highlighted as a white area in the treatment visualization. 

Table 4.3 Overview of Explanation Type Treatments for RQ2 
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4.5 Results 

4.5.1 Result Experiment I: Performance vs. Explainability Tradeoff (RQ1) 

Participant Demographics. In total, we received feedback from n=223 subjects (HEART 
n=111; BRAIN n=112). To ensure the data quality of our findings, we excluded feedback by 
applying various preprocessing techniques, such as using control questions, detecting lazy 
patterns, deleting randomly filled questionnaires, and considering time constraints. This results 
in a final sample of n=100 for HEART and n=101 for BRAIN. Table 4.4 shows the 
demographics for both surveys. 

Characteristics Attributes HEART1 BRAIN2 

Freq. Percent. Freq. Percent. 

Gender 
Male 

Female 
Others 

46 
53 
1 

46.00 
53.00 
1.00 

49 
52 
- 

48.85 
51.15 

- 

Age (years) 

<20 
20-30 
31-40 
41-50 

13 
84 
2 
1 

13.00 
84.00 
2.00 
1.00 

20 
78 
3 
- 

19.80 
77.23 
2.97 

- 

Location 

Africa 
Europe 

North America 
South America 

19 
38 
32 
11 

19.00 
38.00 
32.00 
11.00 

19 
39 
37 
6 

18.81 
38.61 
36.63 
5.94 

Experience with AI 
(years) 

None 
<2 
2-5 
6-10 
>10 

44 
28 
19 
4 
5 

44.00 
28.00 
19.00 
4.00 
5.00 

41 
33 
19 
5 
3 

40.59 
32.67 
18.81 
4.95 
2.97 

1 n=100; 2 n=101 

Table 4.4 Descriptive Statistics of Subjects for Surveys from Experiment I (RQ1). 

Performance. In general, the performance results support the theoretical ordering in Figure 4.1 
(y-axis). Nevertheless, the relative performance and thus the interval of the ordering differs. 
Especially, the difference between ensemble and SVM is more negligible than assumed. In our 
case, this may be due to the datasets and the ensemble algorithm. It reveals that the ordering of 
algorithms by their performance is as assumed in theory, but hardly deterministic. 

Further, the performance difference between shallow ML algorithms and deep learning 
algorithms can be almost neglectable in scenarios with low complexity, such as HEART. Still, 
linear regression constantly performed worst while the deep neural network performed best. 
For the more complex case BRAIN, we encounter a strong decline in performance for all 
models except for the deep neural network. Table 4.5 illustrates the results of our performance 
evaluation derived through a mean calculation. 
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Choice of Algorithm 
HEART BRAIN 

Mean 
Accuracy1, 2 

StdDev 
Accuracy2 

Mean 
Accuracy1, 2 

StdDev 
Accuracy2 

Linear Regression 63.43 0.09 44.47 0.03 
Decision Tree 73.86 0.06 57.98 0.03 
SVM 82.34 0.09 65.66 0.08 
Random Forest (Ensemble) 77.52 0.08 66.04 0.02 
Deep Neural Network 84.42 0.11 89.45 0.04 
1 higher = better, in %; 2 calculations based on results from 15-fold cross validation 

Table 4.5 Descriptive Statistics of Performance for Choice of Algorithm 

Using the folds from cross-validation, we executed a one-way analysis of variance (ANOVA) 
to check hypotheses H1a and H1b, respectively. Table 4.6 shows the results of the ANOVA. 
The full table with post hoc test results can be found in Appendix C.2. 

Dataset Variable Df1 Sum Sq2 Mean Sq3 F-value4 Pr(>F)5 

Low complexity 
(HEART) 

Choice of 
Algorithm 

4 0.4074 0.10186 16.85 <0.00001 

Residuals 70 0.4230 0.00604 - - 

High complexity 
(BRAIN) 

Choice of 
Algorithm 

4 1.4974 0.3743 165 <0.00001 

Residuals 65 0.1475 0.0023 - - 

1 Degree of freedom; 2 sum squares; 3 mean squares; 4 result F-test; 5 result p-value 

Table 4.6 ANOVA Results for Choice of Algorithm and Performance 

Following the ANOVA, we cannot support H1a, but we can support H1b. The post hoc testing 
(see 0) revealed the hypothesized differences between the two scenarios. In the case of low 
complexity, we found that linear regression significantly diverted from all other algorithms at 
the p<0.01 level. We found no significant distinction for the other models. 

Observing the post hoc result for the complex case BRAIN yields another picture: While we 
can show the worst-performing role of linear regression in this scenario as well, the decision 
tree falls off as well and shows significant differences to all other models. Random forest and 
SVM exhibit nearly similar performance that does not distinguish significantly. In the top end, 
we find that deep neural network performance is a group of its own with significant distances 
to all other ML algorithms. In summary, we find that in the complex case BRAIN, the 
performance differences are more discernible and all ML algorithms except deep neural 
networks perform notably worse. 

Explainability. We present the perceived goodness of explanation from the conducted survey 
for each choice of algorithm in Table 4.7. We followed Boone and Boone (2012) and applied a 
median calculation for the Likert-type data. As the standard deviations appear normal with no 
natural anomalies, we applied an ANOVA for the results. 
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Choice of Algorithm 
HEART BRAIN 

Median  
Explainability* 

StdDev  
Explainability** 

Median  
Explainability* 

StdDev  
Explainability** 

Linear Regression 4.00 1.31 3.00 1.14 

Decision Tree 6.00 1.59 4.00 1.25 

SVM 3.50 1.29 3.00 1.09 

Random Forest 
(Ensemble) 5.00 1.59 4.00 1.21 

Deep Neural Network 2.00 1.32 2.00 0.89 

* Median of seven-point Likert scale: 1,00 = very low; 7,00 = very high; ** standard deviation of seven-point 
Likert scale 

Table 4.7 Descriptive Statistics of Perceived Goodness of Explanation for Choice of 
Algorithm 

Across all treatments, random forests and decision trees achieved the highest or second-highest 
ratings. We show the results of the ANOVAs for perceived goodness of explanation in Table 
4.8, and we can support H2a, but we cannot not H2b. 

Dataset Variable Df1 
Sum 
Sq2 

Mean Sq3 F-value4 Pr(>F)5 

Low complexity 
(HEART) 

Choice of 
Algorithm 

4 486.1 121.52 59.78 <0.00001 

Residuals 70 1006.3 2.03 - - 

High complexity 
(BRAIN) 

Choice of 
Algorithm 

4 343.7 85.92 68.28 <0.00001 

Residuals 65 629.1 1.26 - - 
1 Degree of freedom; 2 sum squares; 3 mean squares; 4 result F-test; 5 result p-value 

Table 4.8 ANOVA results for Choice of Algorithm and Perceived Goodness of Explanation 

For the low complexity case, we find the expected distribution of ML algorithms with 
interpretable models being superior in terms of explainability. Hence, the perceived explanation 
quality of the ML algorithms is significantly distinguishable with some notable exceptions: 
decision tree and random forest are perceived as similar, presumably due to both being based 
on tree algorithms and providing tree-structure visualization. In addition, we found that SVM 
and linear regression are perceived as equal when it comes to explanation goodness. 

Surprisingly, for the complex case we find a similar picture. Although the perceived goodness 
of the decision tree has declined significantly, the perceived goodness between the groups 
SVM/linear regression and decision tree/random forest is still significantly distinguishable. The 
post hoc test indicates a strong deviation of the deep neural network from any other algorithm. 
The reason is straightforward as a deep neural network offers no inherent interpretability. It 
also shows that decision trees are still perceived as valuable explanations in complex cases. 



Investigation of Performance and Explainability in (X)AI-based DSSs 

 

86 

4.5.2 Result Experiment II: Perception of Explanation Types (RQ2) 

Demographics. For the second experiment, we obtained n=109 responses using the high-
complexity dataset BRAIN for the perception of different XAI explanation types (in the 
following, we refer to the sample as BRAIN-XAI) for the deep neural network. To ensure the 
data quality of our findings, we applied the same preprocessing techniques as in the first survey. 
The final sample consists of n=98. The following table describes the demographics of the 
survey. 

Characteristics Attributes BRAIN-XAI1 
Freq. Percent. 

Gender Male 
Female 

50 
48 

51.02 
48.98 

Age (years) 
<20 

20-30 
31-40 

17 
77 
4 

17.35 
78.57 
4.08 

Location 

Africa 
Europe 

North America 
South America 

17 
41 
35 
5 

17.35 
41.84 
35.71 
5.20 

Experience with AI (years) 

None 
<2 
2-5 
6-10 
>10 

40 
33 
17 
4 
3 

40.82 
33.67 
17.35 
4.08 
3.06 

1 n = 98 

Table 4.9 Descriptive Statistics of Subjects for Survey from Experiment II (RQ2) 

Explainability. We present the perceived goodness of explanation from the survey for each 
type of explanation in Table 4.10. Since we used the same survey design as in the first 
experiment, we also applied a median calculation. Likewise, the standard deviations appear 
normal with no discernible anomalies. 

Explanation Type1 Median Explainability2 StdDev Explainability3 

Baseline (Black Box) 2.00 1.13 

How 3.00 1.94 

Why 6.00 1.43 

Why-Not 5.00 1.87 

How-To 4.00 1.19 

What-Else 6.00 1.35 
1 All augmentations are based on same CNN model (acc: 89.45 %); 2 median of seven-point Likert scale: 1,00 
= very low; 7,00 = very high; 3 standard deviation of seven-point Likert scale 

Table 4.10 Descriptive Statistics for Perceived Goodness of Explanation for Type of 
Explanation 

Conducting the respective ANOVA, we can support H3 (see Table 4.11). Looking at the post 
hoc results (see Appendix C.4) in alignment with the descriptive statistics from Table 4.9, we 
find that there is a significant difference between no explanation and some sort of explanation, 
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no matter what the type. The local explanations of Why, What-Else, Why-Not scored best, while 
the global explanation of How scored worst aside from the baseline of no explanation. 
Furthermore, we only find Why-Not and How-To explanations not significantly distinguishable. 

Dataset Variable Df1 Sum Sq2 Mean Sq3 F-value4 Pr(>F)5 

High complexity 
(BRAIN-XAI) 

Explanation 
Type 

5 960.5 192.11 82.94 <0.00001 

Residuals 582 01348.0 2.32 - - 

1 Degree of freedom; 2 sum squares; 3 mean squares; 4 result F-test; 5 result p-value 

Table 4.11 ANOVA results for Type of Explanation and Perceived Goodness of Explanation 

4.6 Discussion and Implications 

4.6.1 Discussion 

As the baseline for the discussion and the generalization of our findings to analyze the tradeoff 
between performance and explainability (RQ1), we have merged all data from the first 
experiment. We normalized the data to the range of 0 to 1 to allow for a relative comparison of 
the ML algorithms regarding the different use cases. We transferred our findings into a 
Cartesian coordinate system as in Figure 4.1 to visualize our results next to the theoretical 
assumption. We used mean values to yield a position for each algorithm. Figure 4.3 shows the 
resulting averaged scheme calculated from the data in Table 4.5 and Table 4.7. It mirrors the 
results of (Wanner, Herm, Heinrich, et al., 2021). 

 

Figure 4.3 Theoretical vs. Empirical Scheme for the Tradeoff of Performance vs. Perceived 
Explainability in Machine Learning 

We can support some tendencies mostly concerning ML model performance as reflected by 
accuracy. A few things are notably different from the theoretical proposition. In particular, the 
hypothetical curve between ML model performance and ML model explainability assumed by 
prior research (left) does not hold in our user-centered treatments (right). 
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As a result, our empirical evidence shows a grouped structure and challenges the assumption 
of a tradeoff curve. It is visible in both treatments in terms of explainability. We find that the 
tree-based models, such as decision trees and random forests, are perceived to provide the best 
explainability of the five ML models from an end user’s perspective. While random forests fall 
into the ensemble class, the base class model for the ensemble is the decision tree. This explains 
the random forest’s comparably high scores despite being an ensemble algorithm. Contrary to 
our expectations, we could not substantiate that a single decision tree is perceived as 
substantially more explainable than a random forest with many unbalanced decision trees. We 
assume that this may be the case since we did not present all resulting trees of the random forest 
to the participants for review. 

This observation provides new knowledge about the perceived explainability of ML algorithms 
and renders a more realistic picture of the performance vs. explainability tradeoff than the 
predominantly theoretical discussion considered the state-of-the-art (e.g., Arrieta et al., 2020; 
Gunning, 2019; Rudin, 2019). 

Figure 4.4 shows the non-normalized and normalized results for the two cases. 

 

Figure 4.4 Non-normalized and Normalized Empirical Schemes for the Tradeoff Between 
Performance and Explainability for Both Cases (HEART and BRAIN) 
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Continuing with the non-normalized schemes, we can also see that the shallow ML algorithms 
are positioned relatively close together in terms of their performance. For low complexity 
datasets, performance gains of deep learning over shallow ML are neglectable. Performance 
only becomes a factor for high complexity datasets. Hence, as expected, the performance 
distance between all algorithms widens with increasing dataset complexity and, thus, the choice 
of algorithm has a larger impact on an intelligent system’s performance. Notably, we can also 
see that the absolute perceived explainability of tree-based algorithms wanes in the non-
normalized schema with increasing dataset complexity, and the overall explainability distance 
decreases. 

Consolidating both axes, we find the tradeoff to be dependent on the complexity of the case as 
well as on real-world performance and explainability requirements. As performance behaves 
differently than explainability, the tradeoff is non-trivial and consequently a multi-criteria 
decision (Gunning, 2019; Meske et al., 2022; Wanner, Heinrich, et al., 2020). We provide 
further evidence of this cause. 

Since XAI augmentations can be used to provide post hoc explanations of predictions, the 
tradeoff becomes even more complex as it becomes evident that - at least for certain 
applications - the use of high-performing deep learning algorithms may become an option 
despite their lack of explainability. To investigate how one can best augment these algorithms 
for end users, we implemented five common types of explanation in a subsequent survey (RQ2). 

In Figure 4.5, we summarize the perceived goodness of explanation regarding the explanation 
types on the employed Likert scale. 

 

Figure 4.5 Average End User Ratings of Explanation Type Visualized on Likert Scale 

We can clearly see the local explanations such as Why and Why-Not are superior in comparison 
to the global explanation type How. Pointing out the tumor in a direct manner seems to resonate 
most with the end user as it supports their perception of the tumor’s size and location. Even 
though similar, Why-Not explanations that require higher cognitive effort received lower scores 
than Why explanations. A similar argument can be made for How-to explanations as those 
explanations reference a decision to certain input changes to convey an understanding of the 
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decision behavior. Surprisingly, the design of the How-To explanation seems to be perceived 
more benevolently than the How explanation. Lastly, What-Else explanations are well-received 
and show that it is beneficial to provide examples for the user to check whether the decision 
behavior of the algorithm is in line with his or her personal expectancy. 

Across all types, we found that end users prefer local explanations that explain the result of a 
prediction either by pointing to a reason (Why) or giving examples (What-Else). Inversely, end 
users tend to disdain global explanations that merely visualize where the algorithms look (How) 
or show the mechanism behind a prediction (How-To). The results for contrastive explanations 
(Why-Not) were ambiguous, indicating that there may be applications for this kind of 
explanation, but while end users prefer them over global explanation, they generally favor non-
negated reasoning. 

With our socio-technical analysis, we provide first-hand evidence that the design of the 
explanation (i.e., how it is presented) plays an important role besides the content that is 
displayed (Das & Rad, 2020; Mualla et al., 2022). We also provide indicative knowledge of 
which types of explanation are more suitable for end users. 

4.6.2 Theoretical Implication 

Our in-depth discussion focused on three major observations: the generalizability of results 
across the treatments, the relation between assumed model interpretability and perceived 
explainability, and end user preferences for explanation types. This allows us to summarize the 
key points of our theoretical findings as follows: 

Tackling the tradeoff between performance and explainability is non-trivial. We showed 
that the tradeoff curve assumption between performance and explainability does not always 
hold. While we cannot prove that the relationship always exhibits a grouped structure, other 
evidence points to the fact that the tradeoff can be characterized as a group decision-making 
process where explanation and performance cannot be approached in isolation but in alignment 
with organizational policy and external factors such as laws (Ebers, 2020; Goodman & 
Flaxman, 2017). The decision process is also influenced by the perception of the system by the 
decision maker. Especially in intelligent systems that use ML algorithms as a basis for decision 
making, a plethora of individual factors like self-efficacy, general distrust, or neuroticism can 
influence the view of the tradeoff (Mahmud et al., 2022; Zhou et al., 2021). It requires a 
weighted multi-criteria decision process to represent and quantify elements for both 
dimensions, performance, and explainability (Meske et al., 2022; Wanner, Heinrich, et al., 
2020), which is complicated by increasing and decreasing distances between the respective 
algorithms. Furthermore, identifying decision elements is a challenge as some effects may only 
be detectable as latent indirect factors (Wanner, Popp, et al., 2021). Lastly, it is important to 
note if enhanced explainability does not translate into firm productivity, investing in XAI may 
be in vain for businesses. Further research using mixed-method approaches, including 
qualitative studies, can provide more detailed insights into end users valuations and avoid an 
explainability paradox. 
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Model-inherent interpretability does not entail explainability. The discrepancy between 
what is assumed in theory and our empirical findings can be explained at least in parts by the 
nature of our observations. Theoretical contributions look at the algorithmic and mathematical 
description of objects (data-centered perspective). We have employed a socio-technical and 
thus user-centered perspective. In our study, we targeted the naturally biased perception of end 
users of an ML algorithm directly and found that the difference between performance and 
explainability is not constantly increasing. Instead, we found that there are three groups of 
perceived explainability: none (deep neural networks), mediocre (coefficient-based algorithms 
such as linear regressions and SVM), and high (tree-based algorithms such as decision trees 
and random forests). The former group represents the concept of deep learning. The latter two 
represent shallow ML. 

Decision trees are considered highly interpretable by humans in terms of their global and local 
explainability since it is possible to retrace a path of variables from the root node to a leaf node 
containing the final decision (Arrieta et al., 2020; Herm, Wanner, et al., 2021a). This 
explainability by design makes the model itself (global) as well as every prediction (local) 
intuitively accessible. The similarity of coefficient-based models can be explained by the fact 
that both offer variable weights in the form of coefficients and, hence, any visualization that 
can be done for SVM would be valid for visualizing linear regression coefficients as well. This 
suggests that the goodness of the explanation can be attributed largely to its design and, thus, 
the basic type of the explanation rather than the actual content of the explanation. Lastly, deep 
neural networks are considered to be black boxes to the end users that are not interpretable by 
humans. They need to be augmented with XAI to offer any explainability to end users. 

Explanations and XAI augmentations that require low cognitive effort fare better. End 
users clearly indicated that they perceive local explanations as more explainable. From this, we 
infer that people prefer explanations that require less cognitive effort to process and translate 
into their mental model. Tree-based algorithms that offer intuitive text-based access are 
perceived as more explainable than the competition. They combine local post hoc explanations 
with global decision process knowledge. This is in line with the observations of algorithm 
aversion theory, where it is required to see how the algorithm behaves to form a proper 
judgment (Berger et al., 2021; Jussupow et al., 2020). In line with Miller (2019), we also 
observed that end users prefer straightforward XAI augmentations, which require low cognitive 
effort such as local Why and Why-Not explanations, over complex global explanations such as 
How or How-To. Explanations that show decision examples, such as What-Else explanations, 
have a positive influence on the perception of explanations. It is important to note that the 
experiment only showed reactions to initial exposure and did not consider learning that occurs 
through either teaching or experience. The learning effects might reduce cognitive effort and 
make other means of explanation more accessible. 
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4.6.3 Practical Implications 

Our analysis and theoretical findings bear relevance for business practice as we can derive 
several practical implications from observing how people perceive algorithmic advice and 
explanations. Below, we summarize our findings by providing three guidelines that should be 
considered when employing an intelligent system for a specific task: 

Start with the performance threshold. If an analytical model does deliver the required 
performance, it is not fit for the task. An explainable model that cannot provide the requested 
minimum quality will have no value in practice. Hence, all candidate algorithms must fulfill 
this requirement. The threshold will usually be determined by the overarching goal of the 
system involving business goals (e.g., cost savings) that can be realized by using the system. 

Consider organizational or project context beyond performance. Other constraints 
typically influence the choice of algorithm. They largely depend on environmental factors such 
as cost (training and inference), time constraints, end user abilities, and laws. For example, 
models with high inference times cannot be used in real-time settings (e.g., defect detection in 
production). Tree-based algorithms are particularly accessible for ML laypeople, while 
coefficient-based algorithms may provide better performance and still be explainable enough 
for a trained workforce. Furthermore, laws such as the GDPR could require you to implement 
either a per se interpretable algorithm or a post hoc XAI augmentation. Therefore, the candidate 
pool must deliver acceptable explanations not only to end users but potentially also to the 
authorities. In that regard, consider Rudin’s call for using inherently interpretable models 
whenever possible and keep note that the performance gain through deep learning can be 
neglectable for low complexity datasets (Rudin, 2019). 

Consider the degree of explanation that end users need. Do not confuse model 
interpretability (required by experts to analyze the decision-making process) and prediction 
explainability (necessary for end users to make decisions in their work processes). After 
deploying an intelligent system, end users will use the system to fulfill their work tasks and not 
to analyze the model’s decision process. These end users should be included in the explanation 
design process (explanation type, but also colors, visuals, etc.). This ensures that the 
explanations are appropriate for end users to assess the quality of the system’s predictions and 
consider its advice appropriately. For novice users of the system, local Why and What-Else 
explanations promise the best user acceptance. In contrast, more global How and How-To 
explanations require more cognitive effort but may help them to better understand the decision 
process and gather expertise faster. 

4.6.4 Limitations and Future Research Directions 

As with any empirical research, our study faces some limitations. 

First, our study uses online surveys with benchmarking datasets. While we only allowed for 
participants with a certain background, participants may have been exposed to the scenarios 
and several of the ML algorithms for the first time. Hence, we measured an initial 
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explainability. Both datasets stem from the healthcare sector. This may introduce bias. In 
response, we have piloted similar surveys in different domains with comparable results 
(Wanner, Herm, Heinrich, et al., 2021). Furthermore, there was no time constraint for viewing 
and assessing an explanation. We expect results to differ in a high-velocity treatment where 
faster inference time becomes more valuable. Moreover, we compared inherently interpretable 
shallow ML algorithms and deep neural networks without further augmentations. We assume 
that XAI augmentations will affect explainability positively and initial evidence points to the 
fact (Herm, Wanner, et al., 2021a), but we refrained from including it in the first experiment 
due to the diversity of explanation types and visualization options that we only began to explore 
in the second experiment. Nevertheless, a comprehensive evaluation of the explainability of 
XAI augmentations is necessary to gain a better understanding. This would include assessing 
whether single, isolated explanations work best or if users should be presented with 
explanations in pairs, triplets, or even more explanation types at the same time. 

Second, choosing an ensemble model (in our case, random forest) always yields bias toward 
the interpretability of the base algorithm class of the ensemble model. In our case, the choice 
of random forest caused an overestimation of ensemble explainability due to the high degree of 
explainability of decision trees. Consequently, we expect other ensemble models to perform 
consistently according to their respective algorithm base classes. To evaluate this, we suggest 
testing multiple ensemble models that use a variety of base class permutations to give a more 
objective overview of ensemble explainability. Performing such an analysis was out of scope 
for our research. 

Third, it is possible that participants were biased in their judgment by the perceived capability 
or promise of algorithms and therefore assumed a higher value (Hilton, 1996; Mehrabi et al., 
2021). That is, shallow ML algorithms such as SVM and linear regression offer a form of 
internal explainability. Hence, they were supposed to result in a better-perceived explainability 
than black-box models with no internal explainability, such as deep neural networks. However, 
we found that difference to be smaller than expected. This may be due to participants who were 
not able to understand the presentation of SVM and linear regression as they lacked prior 
knowledge (Amershi et al., 2019; Arrieta et al., 2020), which may be a practical problem in 
real-life cases as well. Due to high expectancy in one category (performance), end users may 
attribute higher scores in another category (explainability), resulting in a halo effect. 
Furthermore, the perceived overall impression of an algorithm can be attributed to other factors 
that were omitted from the study in a controlled manner. Lastly, we did not measure whether 
the use of certain ML algorithms or XAI augmentations improved end user task performance 
and thus productivity. We assume a correlation between perception, understanding, and task 
performance as Herm, Wanner, et al. (2021a) report. However, we did not directly measure 
this. 
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4.7 Conclusion 

Despite its fundamental importance for human decision-makers, empirical evidence regarding 
the tradeoff between ML model performance and explainability is scarce. In response, we 
conducted an empirical study to develop a more realistic understanding of this relationship 
(RQ1) and explore the effect of various explanation types on end users (RQ2). 

We underscore that existing theoretical propositions on the tradeoff are data-centered and 
misleading oversimplifications in terms of end user explainability. You cannot exchange 
performance for explainability and vice versa in a continuous fashion. Rather than a tradeoff 
curve assumption, we found a grouped structure of no, mediocre, and high explainability, where 
the explanation quality of decision trees and random forests constantly dominates other ML 
models. Further, we found that explanations fare better when they require less cognitive effort 
such as local explanations. 

In our research, we measured the naturally biased perception of explanations by end users and 
not their understanding, learning effects, or task performance. Research into the usefulness of 
AI and human biases in ML is still in its infancy and requires substantial advances to pinpoint 
the effects of the various factors in play.
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5 I Don’t Get It, But It Seems Valid! The Connection 
Between Explainability And Comprehensibility In 

(X)AI Research 
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Abstract. In explainable artificial intelligence (XAI), researchers try to alleviate 
the intransparency of high-performing but incomprehensible machine learning 
models. This should improve their adoption in practice. While many XAI 
techniques have been developed, the impact of their possibilities on the user is 
rarely being investigated. Hence, it is neither apparent whether an XAI-based model 
is perceived as more explainable than existing alternative machine learning models 
nor is it known whether the explanations actually increase the user’s comprehension 
of the problem, and thus, their problem-solving ability. In an empirical study, we 
asked 165 participants about the perceived explainability of different machine 
learning models and an XAI augmentation. We further tasked them to answer 
retention, transfer, and recall questions in three scenarios with different stake. The 
results reveal high comprehensibility and problem-solving performance of XAI 
augmentation compared to the tested machine learning models. 
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5.1 Introduction 

Decision support systems (DSS) based on Artificial intelligence (AI) are increasingly being 
used in research and practice to support humans in various areas of daily life and business 
(Zhang et al., 2018). Thereby, AI describes a concept of data-driven problem solving using 
multiple mathematical algorithms, often related to area of machine learning (ML) (Goodfellow 
et al., 2016). During the decades, several types of ML algorithms have been developed, with 
different kinds of calculation logic (Bishop, 2006). In practice, it is noticeable that lower 
complexity algorithms, that is algorithms that are transparent from a user’s perspective, are 
often preferred over higher complexity algorithms that lack traceability even though they may 
outperform their counterparts (Adadi & Berrada, 2018). Hence, users prefer white-box ML 
algorithms over black-box ML algorithms. The assumed reason is that AI-based DSS users 
would have to trust the recommendation of a black-box without understanding its rationale 
(Rudin, 2019). Such a circumstance holds several dangers for decision-makers and also brings 
up legal issues regarding general data protection regulation (GDPR) (Goodman & Flaxman, 
2017). 

The research domain of explainable AI (XAI) deals with this issue by developing solutions to 
overcome the intransparency of black-box ML algorithms while maintaining their high model 
performance (Gunning, 2017). There are already some XAI transfer techniques for transferring 
black-box models into a more comprehensible form (Wanner, Herm, & Janiesch, 2020). 
However, there is criticism as two independent models with their related complexity are trained 
instead of using a white-box ML model from the very beginning and improve it iteratively to 
achieve a comparable performance (Rudin, 2019). However, since the performance of black-
box models is indispensable, there is increasing research on ex-post explanatory approaches. 
These are referred to as grey-box ML models (Gunning et al., 2019). Through XAI 
augmentation techniques, methods are applied to the trained model to make its internal logic or 
predictions transparent (Slack et al., 2020) and there are already encouraging results (Lundberg 
et al., 2020). Nevertheless, on the one hand, scientists say that these methods are only an 
approximation and, therefore, inherently inaccurate (Rudin, 2019). On the other hand, little is 
known about how users perceive (X)AI explanations (Adadi & Berrada, 2018). 

XAI research should therefore address both points of criticism to resolve this trade-off (Doran 
et al., 2017; Gilpin et al., 2018; Guidotti et al., 2018). A particular problem seems to be that an 
AI-based DSS’s high performance is still associated with a high decision quality. However, the 
decision quality only becomes efficacious, if the user of the system includes the 
recommendation of the algorithm in his or her decision process, which requires the perception 
of credibility (Nawratil, 2013). Existing XAI research shows that this depends heavily on the 
extent to which a person understands the behavior of a model (Ribeiro et al., 2016b). Therefore, 
the given information gap between the AI-based DSS and its user must be closed by appropriate 
explanations (Cui et al., 2019; Dam et al., 2018; Gilpin et al., 2018). 
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However, a high perceived explainability should not be considered as the final objective of 
XAI. Further, research demonstrates that a hybrid intelligence consisting of humans (here: 
system users) and machines (here: AI-based DSS) can be considered the (future) state-of-the-
art to accomplish tasks (Dellermann et al., 2019). What seems to be problematic is that precise 
explanations are often not easy to interpret for humans, and conversely, understandable 
explanations often lack predictive power (Doran et al., 2017; Gilpin et al., 2018; Guidotti et al., 
2018). In addition to an explanation that is perceived as interpretable, the question arises, to 
what extent the user really comprehends what the system explains to be able to act as a validator 
and form a functional hybrid intelligence (Futia & Vetrò, 2020). 

As current XAI research focuses primarily on solving the trade-off between model performance 
and model explainability from a feature perspective, we are trying to understand the correlation 
between perceived explainability and subsequent comprehensibility. To do so, we ask to what 
extent this circumstance already exists in today’s ML algorithms as the backbone of an AI-
based DSS and to what extent a popular XAI augmentation (feature influence method) can 
compete with those or even surpass them. Thus, we first try to determine if and to what extent 
an (X)AI explanation is perceived as explainable by system users. Following that, we examine 
if the perceived explainability improves the comprehension for problem-solving. Thus, we 
formulate the following research question: 

RQ: What is the relationship between the perceived explainability and comprehensibility of 
predictions for the user of AI-based DSS and how do XAI augmentations influence this 
relationship? 

To answer the RQ, we proceed as follows: In Section 5.2, we present the theoretical background 
and the related work based on (XAI) dimension and interrelation, as well as a structured 
literature review on the research gap. Section 5.3 describes our research design, including the 
methodology, the theoretical derivation of the research model, the scenarios, technical 
realization, and the survey design. In Section 5.4 we describe the survey results. We critically 
discuss these in Section 5.5, including the own implications. Concluding in Section 5.6, we 
describe limitations, and provide an outlook for future research. 

5.2 Theoretical Background and Related Work 

5.2.1 Artificial Intelligence 

AI in the Information Systems (IS) discipline research is a generic term for intelligent agents. 
Thereby, through data-based observations, these agents generate decision knowledge and 
further use this knowledge to solve related tasks with high accuracy (Poole et al., 1998). To do 
so, they need the cognitive abilities of pattern detection and problem solving resembling the 
intelligent abilities of a human being (Nilsson, 2014). Recently, ML as a major class of AI 
algorithms has gained a lot of interest, especially for real-life applications (Janiesch, Zschech, 
et al., 2021). Thereby, ML is the science of using mathematical models and algorithms that 
improve their performance through experience (Goodfellow et al., 2016). Hereby, they learn 
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iteratively from empirical data, enabling them to find non-linear relationships and complex 
patterns without being explicitly programmed to do so (Bishop, 2006). 

The current focus of ML research is on the optimization of the model performance. More 
specifically, deep learning (DL) models regularly outperform other types of ML models. 
Thereby, DL models, represent a specific type of ML algorithms, by using (deep) artificial 
neural networks (ANN). These models are especially good at analyzing highly complex datasets 
(Zhang et al., 2018). However, due to their complex structure, they are intransparent. Thus, a 
user often can trace neither the inner model logic nor specific decision making (Ribeiro et al., 
2016b). Therefore, these models are black boxes that face the problem of a lack of trust, which 
reduces the willingness of users to accept the recommendations of such a system (Adadi & 
Berrada, 2018). 

5.2.2 Explainable Artificial Intelligence 

Since complex deep learning models tend to outperform lower complexity models, they are 
considered to have the greatest potential for further optimization (Rudin, 2019). The research 
area of XAI tries to develop methods to explain these black-box models by converting them 
into comprehensible grey-box models (Gunning et al., 2019), while preserving their high model 
performance (Lundberg et al., 2020). Here, comprehension refers to the ability to understand a 
decision logic within a model and therefore the ability to use this knowledge in practice (Futia 
& Vetrò, 2020). Therefore, grey-box models should enable users to understand two different 
components of the model (Dam et al., 2018; Lipton, 2018): the inner logic (global 
explainability) and the reasoning for a specific prediction (local explainability). 

Multiple XAI techniques have been developed. On the one hand, there is the option of XAI 
model transfers. Here, a second, white-box model, that is a model that is perceived as per-se 
explainable (global), is used to explain the black-box model (Adadi & Berrada, 2018). On the 
other hand, there are XAI augmentations calculated on top of the black-box model (local). 
Multiple augmentation techniques can be used such as explanation by simplification, 
visualization, knowledge extraction, or influence methods. In terms of influence methods, 
Shapley additive explanations (SHAP) is a commonly used XAI tool (Lundberg et al., 2020). 
XAI toolsets estimate the influence of a single feature on a specific prediction post-hoc. By 
iterative manipulation of the feature values, the tools analyze how these features truly influence 
the prediction or the overall model’s decision behavior (Ibrahim et al., 2019). 

However, many researchers, such as Rudin (2019) claim that these explanations are only a 
mathematical approximation to the actual values and thus inferior as the techniques are 
insufficiently detailed to enable users to use the AI as a DSS (Hoffman et al., 2018). 
Aggravating this issue, there is no shared understanding of how a proper explanation should 
look like to ensure explainability and also comprehensibility (Miller, 2019). 
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5.2.3 (X)AI Dimensions and Interrelations  

The trade-off that XAI research tries to solve in the best possible way is between model 
performance and model explainability (Adadi & Berrada, 2018; Angelov & Soares, 2020; 
Arrieta et al., 2020; Dam et al., 2018). It can be assumed that these two dimensions are related 
to the comprehensibility of the explanation for the AI-based DSS user. Thereby, the user acts 
as a validator (cf. Table 5.1). 

Dimension Description Reference(s) 
Performance Accuracy of an AI model regarding its predictions. Arrieta et al. (2020) 
Explainability Perceived quality of a given explanation by the user. Adadi and Berrada (2018) 
Comprehensibility Degree of user understanding of the explanation enabling 

the user to apply the information for new tasks. Fürnkranz et al. (2020) 

Table 5.1 Dimensions of XAI Research 

Many authors have tried to classify different types of ML models according to the trade-off 
between model performance and model explainability. Typically, a two-dimensional grid is 
used for this purpose. Commonly classified ML models here are support vector machines 
(SVM), linear regressions, rule set algorithms, decision trees, ensemble learning, and ANNs 
(Arrieta et al., 2020; Dam et al., 2018; Luo et al., 2019; Morocho-Cayamcela et al., 2019). 
SVMs are a margin-based classifier for datapoint vectors. Decision trees are sorted decision 
rules, which are aligned in a structured tree hierarchy. Ensemble learning models are a 
combination of different ML models combined with a majority voting. An ANN consists of 
many (hidden) computational layers and perceptrons. Input is processed through these layers 
and their perceptrons using mathematical operations. Linear regression is a popular statistical 
technique included in these comparisons, aiming to find a linear function to describe a 
dependent variable according to one or more independent ones (Goodfellow et al., 2016). We 
did not include rulesets in our analysis as they are rarely used in practice nowadays (Nosratabadi 
et al., 2020) and they were already examined by Fürnkranz et al. (2020). 

The left side of Figure 5.1 illustrates the trade-off of performance vs. explainability by a cross-
section of the authors’ classification. We further integrated the classification advances by 
Angelov and Soares (2020) and Nanayakkara et al. (2018) who also consider XANN. The y-
axis represents the accuracy-based performance metric, for every model. The x-axis represents 
the relative explainability scoring. The authors’ classification entails that complex models 
achieve higher performance compared to less complex models, but at the cost of explainability 
(Arrieta et al., 2020; Dam et al., 2018; Duval, 2019; Gunning, 2017; Luo et al., 2019; Morocho-
Cayamcela et al., 2019; Salleh et al., 2017; Yang & Bang, 2019). 
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Figure 5.1 Relation of Performance, Explainability, and the Presumed Comprehensibility 

Despite a general agreement on the trade-off classification of existing ML algorithms, the 
suitability of the users’ explanations has not been evaluated yet. Hence, we need to verify if a 
higher perceived model explainability also results in a higher comprehensibility, and thus, 
problem-solving performance. Several contributions theoretically assume that there is a linear 
correlation between explainability and comprehensibility (Blanco-Justicia & Domingo-Ferrer, 
2019; Došilović et al., 2018; Futia & Vetrò, 2020; Holzinger et al., 2019; Páez, 2019). This 
leads to the hypothetical assumption of certain comprehensibility levels for the different ML 
models (cf. Figure 5.1, right side). Here, the y-axis represents the achieved comprehensibility 
scoring, while the x-axis represents the explainability scoring. 

5.2.4 Preliminaries and Research Gap 

To investigate the state-of-the-art on empirical user-based studies about the correlation between 
perceived model explainability and user comprehensibility of (X)AI models, we conducted a 
structured literature review according to Webster and Watson (2002). We focused on the 
Computer Science related databases IEEE Xplore and ACM Digital Library. Further, we 
queried relevant Information Systems databases: AIS eLibrary, Science Direct, and Web of 
Science. Due to the subject’s novelty, we did not restrict our search to (journal) rankings. We 
used the following pseudocode for our search term: “((Expla* | Interpreta* | Comprehensib* | 
Decision Quality | Black box | Blackbox) AND (Machine Learning | Artificial Intelligence | AI 
| Deep Learning | Neural Net* | ANN) AND (XAI) | Explainable Artificial Intelligence)”. 
Through the extension of a forward and backward search, we identified 12,321 publications. 
After an abstract and keyword analysis, and full-text analysis, we considered n=42 publications 
to be relevant. 

Theoretical Contributions. Most preliminary work (n=26) is about the theoretical evaluation 
of the usefulness criterion of (X)AI explanations. In particular, authors try to theoretically 
assess factors that affect the perceived model explainability, such as explanation fidelity (e.g., 
Guidotti et al., 2018), trust (e.g., Guo, 2020), effort (e.g., Calegari et al., 2020), privacy (e.g., 
Ras et al., 2018), and interpretability (e.g. Tjoa & Guan, 2019). The factor of user 
comprehension is only examined to a limited extent so far. Research has attempted to derive 
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measurements and influences for AI explanations by using literature from related topics such 
as Cognitive Science (Arrieta et al., 2020; Schneider & Handali, 2019). Often, the term 
interpretability is used instead of comprehensibility (e.g., Freitas, 2014). 

Empirical Contributions. Several contributions (n=16) already evaluated their findings on 
(X)AI empirically. Here, different contributions examined the influence of fidelity and 
interpretability (Lakkaraju et al., 2019), trust (Weitz et al., 2019), effort (Wang et al., 2019) as 
well as privacy (Pereira & de Carvalho, 2019). Furthermore, authors such as Förster et al. 
(2020a) compare different XAI methods to reveal key criteria for XAI augmentations’ adaption. 
Likewise, a large stream of research investigates the willingness to adopt different (X)AI 
explanation in practice, such as, for example, in medicine (Gale et al., 2019), industrial 
maintenance (Wanner, Heinrich, et al., 2020), or education (Putnam et al., 2019). Two 
contributions investigate the influence of comprehensibility within a rule-based system 
(Fürnkranz et al., 2020) and decision trees (Huysmans et al., 2011). Contrary, comprehensibility 
within (X)AI-based systems is only proposed to be examined by Kuhl et al. (2019) who plan to 
do an exploratory study to analyze the task-solving performance of AI models through the 
influence of the compliance with (X)AI learning algorithms and explanations. 

Summary and Research Gap. Research on the perceived explainability of X(AI) models and 
the resulting user comprehension has so far been theoretical rather than practical in 
investigation. Further, we did not find any contributions dealing with the comparison of XAI 
comprehensibility with other AI models by using augmentation techniques. 

5.3 Research Design 

5.3.1 Methodology Overview 

To ensure the quality of our research, we follow the methodology according to Müller et al. 
(2017). This methodology is divided into four steps: (1) Research Questions, (2) Data 
Collection, (3) Data Analysis, and (4) Results Interpretation. We explain the steps in Figure 5.2 
and briefly below. 

 
Figure 5.2 Research Methodology According to Müller et al. (2017) 

(1) Research Question. We identified a research gap through a structured literature review: 
First, we want to investigate how users perceive the level of explanation of different types of 
ML models and an XAI-transferred ANN (XANN) augmentation. Second, we want to check 
whether higher perceived explainability leads to better problem-solving performance, requiring 
explanation comprehension. 
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(2) Data Collection. We perform an empirical study to answer the questions of interest. Further, 
we use different scenarios with different stakes to enable result generalization. (3) Data 
Analysis. After steps of data preprocessing, we apply various quantitative as well as qualitative 
analyses for knowledge discovery. (4) Results Interpretation. In the last step, we analyze our 
data and clarify the relation between the perceived level of explainability and users’ 
comprehension regarding the different ML models and scenarios. Finally, we discuss our 
findings in comparison to existing research and theories. 

5.3.2 Measurement Model 

We developed a corresponding measurement model through theoretical research before we 
conducted the survey to investigate the assumed connection between the two dimensions. 

Variables and Dependency. The theoretical relationship between the (perceived) model 
explainability and the related user comprehension can be found in explanation and ML theory 
(cf. Section 3.2). So, explanations that are perceived as more complex are assumed to decrease 
user comprehension (Futia & Vetrò, 2020). Especially for users that are inexperienced with AI 
systems, this might negatively impact their acceptance of AI-based DSS as they do not 
comprehend the results (Došilović et al., 2018). Nevertheless, Blanco-Justicia and Domingo-
Ferrer (2019) recommend further investigation since an XAI surrogate model, and thus 
theoretically explainable but not comprehensible model, can confuse users since many XAI 
researchers build XAI augmentations for their purposes rather than for the intended system user 
(Miller et al., 2017). Therefore, we assume a linear relationship between both variables, 
whereby a misapprehension may exist. 

Stake of Scenario. It has been shown that people act differently in terms of their decision-
making behavior, depending on the criticality of the scenario they are confronted with (Arnott 
& Pervan, 2005). We therefore assume that criticality (i.e., stake of scenario) has a moderating 
effect on the connection between the perceived explainability and subsequent user 
comprehension. Here, low-stake scenarios describe user decisions that have only minor (cost) 
effects. In contrast, high-stake scenarios are associated with user decisions that may even 
potentially cost human lives (Kunreuther et al., 2002). 

Measurement Method. The explainability of a model is a sociological measure and must 
therefore be approximated, and thus objectivated, by user perceptions toward the presented 
explanations of an ML model (Hoffman et al., 2018; Miller, 2019). The comprehensibility of 
ML model explanations can be measured by asking the user related to the given scenario and 
results (Lage et al., 2018; Poursabzi-Sangdeh et al., 2018). Based on the Cognitive Theory of 
Multimedia Learning (Mayer & Mayer, 2005), our examination uses three types of tasks: 
retention, transfer, and recall. Retention is about understanding the model’s prediction, and thus 
what the AI model presents to the user. Transfer is about the user’s ability to use the gained 
knowledge, for example to process further tasks based on the AI model’s decision. Finally, 
recall tests the ability to reproduce the knowledge. This tests whether participants have 
difficulties remembering the information due to limitations of the user’s cognitive abilities 
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regarding the given explanations. We used a group interaction calculation to measure the 
influence of the stake of scenario on the relationship between explainability and 
comprehensibility. We divide the test sample into groups per scenario so that the answers can 
be calculated separately. This allows post-hoc comparability of the group results (e.g., Tausch 
et al., 2007). We present the final measurement model in Figure 5.3.  

 
Figure 5.3 Measurement Model 

5.3.3 Scenario Selection and Technical Realization for Survey 

To enable a generalization of our findings, we use three different regression scenarios. These 
three scenarios differ in their stake (low, medium, and high) and are described in the following. 
Further we describe the technical realization of our model implementations. 

Dataset WINE. We used the dataset on WINE quality from the UCI machine learning library 
for our low-stake scenario (Cortez, 2009). We consider it low stake since a wrong prediction 
only results in falsely predicted wine quality. The dataset consists of 11 different features 
describing different “vinho verde” wines from Portugal. For our approach, we have used the 
red wine dataset only. This dataset includes 1599 wines, which are ranked numerically between 
0 to 12 in their quality level. 

Dataset Bakery. We cooperated with a local German bakery retailer to obtain sales data from 
40 stores over the last 3.5 years. In total, we used 11 different features, such as weather data, 
past sales, or school holidays, to predict the sales quantity for the next day. Since wrong order 
decisions reduce the company’s profit, we used this dataset as our medium-stake scenario. 

Dataset C-MAPSS. We use the regression dataset modular aero propulsion system simulation 
(C-MAPSS) from the NASA Prognostic Center of Excellence as our high-stake scenario 
(Saxena & Goebel, 2008). The dataset contains simulation data from different turbofan engines. 
The simulation of each turbofan is tracked by 25 sensors and contains over 93 turbines on 50 
simulation cycles each. After each cycle, the remaining useful lifetime (RUL) is verified. A 
wrong decision and, thus, a turbine failure can lead to the loss of human life. Hence, we consider 
the scenario to be of high stake. 

Technical Realization. Starting with data processing, we stick to the recommendation of 
García et al. (2016) and deleted any incomplete observations and outliers as well as applied a 
feature selection and normalization. Subsequently, we have implemented the different common 
ML models (ANN, XANN, random forest, decision tree, SVM, and linear regression) for each 
scenario, we described in Figure 5.2. For the implementation of the models, we use the python 
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package scikit-learn and keras as well as the package SHAP for the XAI augmentation. We 
selected the parameters through hyperparameter tuning using scikit-learn’s GridSearchCV. 
Further, each result presentation is set in the same color scheme. For further information about 
the technical realization see Herm, Wanner, et al. (2021b). 

5.3.4 Survey Design 

To evaluate the three use scenarios (cf. Section 5.4.1), we set up three separate but identical 
surveys (cf. Section 5.3.3). Further, each survey is divided into three parts: i) demographics and 
introduction, ii) perceived model explainability, and iii) examination of the user 
comprehensibility. 

Demographics and Introduction. First, we examined the participants’ demographics. In 
addition to gender, age, and location, we asked them whether they already have had experience 
with AI systems and whether they were willing to adopt them. Subsequently, we presented the 
procedure of the survey. We also introduced AI to ensure a shared understanding of the 
necessary knowledge. 

Perceived Model Explainability. Second, we examined the users’ perceived explainability of 
the implemented ML models (cf. Section 5.4.1). We started with a description of the respective 
scenario. This includes information about the scenario, the dataset, the task objective, and the 
criticality of wrong decisions. Afterwards, we presented a prediction of a particular observation 
for each of our five ML models to the participants. To avoid sequence bias, we randomized the 
order of the models. Also, we instructed user to assume similar model performance to avoid 
performance bias. First, we explained the algorithm themselves theoretically to ensure an 
understanding of their general global explainability. Also, where technically applicable, we 
include an average feature importance or feature impact calculated by the trained model (partial 
dependence plot) as well as the local explanation of the calculated result by the ML model 
(visualization). Figure 5.4 shows a SHAP-based XANN for the scenario of WINE as an 
example. Based on this information, we asked the user to rate the statement “The presented 
explanations are good” on a seven-point Likert-scale (strongly disagree to strongly agree) 
(Joshi et al., 2015). This kind of question is based on the recommendation for XAI-based studies 
by Hoffman et al. (2018) and Luo et al. (2019). The full questionnaire is available at Herm, 
Wanner, et al. (2021b). 

Examination of User Comprehensibility. Lastly, we performed a review of the user’s 
comprehension based on the given explanations to examine the effect of the AI model support 
(Miller, 2019). Therefore, we asked the participants to choose their preferred explanation from 
the five ML models. The remainder of the survey is conducted based on the comprehensibility 
of the selected explanation. Based on Mayer’s Cognitive Theory of Multimedia Learning 
(Mayer & Mayer, 2005), we examined user comprehension by asking three types of questions 
for retention, transfer, and recall. An example from the WINE dataset for retention is “Does the 
pH level have a significant influence on the quality of the wine relative to the other features?” 
We provided single choice options as answers. To examine the ability to transfer, we asked for 
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example “Explain the influence of the sulfate level on the quality of the specific wine in 
comparison to the other wines”. These questions had to be answered as open text. To test the 
recall of users by using cloze questions, we asked for example “The explanations of the models 
show how the different [features] influence the [quality] of the wine”. Here, the complete 
sentence with the missing words was presented at the beginning of the survey and can be 
reconstructed from the tasks conducted during the investigation. 

 
Figure 5.4 Example: Introduction to the XANN Model and Prediction 

5.4 Data Analysis 

5.4.1 Survey and Demographics Overview 

We used the platform Prolific.co to recruit our participants, granting them a monetary incentive 
of £10 per hour. The platform allows specifying one’s target group by characteristics and 
abilities to achieve valid results within research tasks (Peer et al., 2017). In this way, we have 
ensured that we survey appropriate experts for each use cases. We received feedback from 
n=175 participants. To ensure the data quality of the answers, we further used several validating 
checks, looking for randomly filled questionnaires, lazy patterns, failure in answering control 
questions, and time constraints. Subsequently, we used the feedback from n=165 participants 
(WINE n=55, Bakery n=53, C-MAPSS n=57). The raw survey data is available at Herm, 
Wanner, et al. (2021b). Out of those n=165 participants, n=98 were male, while n=66 were 
female and n=1 answered diverse. Most of the participants were between 20 and 30 (≈58%) or 
between 31 and 40 (≈24%) years old. Most answers came from Europe (≈89%). Overall, on a 
five-point Likert-Scale, the participants shared a medium (median) willingness to accept AI at 
their workplace and a medium (median) trust in AI. 

An artificial neural network (ANN) is an information processing paradigm that is inspired by the way the biological
nervous system such as a human brain processes information. The algorithm is composed of a large number of
highly interconnected processing elements (neurons) working in unison to solve a specific problem. The input layer
receives new cases, which are calculated, through different mathematical operations, within the hidden layers.
In the example on the left side data from a wine is forwarded to the ANN. Using many calculations in different
layers, the model estimate the quality of a wine.

General Introduction: Algorithm of Artificial Neural Networks (ANN)

Result: ANN on wine dataset
On the left side, the mean global impact of the different features within the dataset in percent is
shown. On the right side, the features with the influence (positive: red, negative: blue) on a
specific prediction (model output value) based on the mean of all predictions (base value) in the
dataset are presented.

Feature importance of all observations:

Specific prediction:

:

Dog6.93

Rate the following statement: “The presented explanations are good”
Please consider both, your perceived explanatory goodness of the algorithm’s decision logic and the result.

Result: 5.43

Wine
quality

Strongly disagree Disagree More or less disagree Undecided More or less agree Agree Strongly agree



Investigation of Explainability and Comprehensibility in (X)AI-based DSSs 

 

106 

5.4.2 Result Analysis 

In the following, we present the survey results according to the study structure. First, we detail 
the results of the participants’ perceived explainability per model. This is followed by the 
selection of the interviewees’ preferred ML model to solve problems. Finally, we discuss the 
comprehension tasks (retention, transfer, and recall). The calculated results can be found in 
Table 5.2. They are presented per scenario, ML model, and question, subdivided into perceived 
explainability, retention, transfer, and recall. Further, the table includes standard deviations, 
aggregations, mean, and min-max-normalized results to support generic insights according to 
the theoretical assumption (Boone & Boone, 2012). 

Case Model 
Perceived 

Explainability / 
Standard Dev. 1) 

Comprehensibility / Accuracy of Answers 2) 
Retention Transfer Recall Overall / 

Standard Dev.3) RT1 RT2 T1 T2 RC1 RC2 

W
IN

E 

ANN 4.00 / 1.63 0.13 0.25 0.00 0.38 0.63 0.63 0.34 / 0.19 
XANN 6.00 / 0.97 0.64 0.71 0.86 0.86 0.93 0.86 0.81 / 0.19 
Ensemble Learning 5.00 / 1.15 1.00 1.00 0.00 0.67 0.67 0.67 0.67 / 0.16 
Decision Tree 5.00 / 1.46 0.58 0.83 0.83 0.67 0.83 1.00 0.79 / 0.29 
SVM 5.00 / 1.37 0.25 0.33 0.33 0.75 0.83 0.83 0.55 / 0.20 
Linear Regression 5.00 / 1.14 0.50 0.67 0.50 0.67 0.67 1.00 0.67 / 0.14 

B
ak

er
y  

ANN 3.00 / 1.38 0.71 0.43 0.29 0.86 0.43 0.86 0.60 / 0.19 
XANN 6.00 / 1.41 0.93 0.93 0.79 1.00 0.79 1.00 0.91 / 0.24 
Ensemble Learning 6.00 / 1.45 0.88 0.63 0.50 0.75 0.50 1.00 0.71 / 0.34 
Decision Tree 5.00 / 1.46 1.00 0.82 0.45 0.91 0.55 0.91 0.73 / 0.29 
SVM 5.00 / 1.48 1.00 0.50 0.50 1.00 0.50 1.00 0.38 / 0.23 
Linear Regression 5.00 / 1.47 0.36 0.55 0.73 0.91 0.73 1.00 0.71 / 0.20 

C
- M

A
PS

S 

ANN 3.00 / 1.72 0.50 1.00 0.00 0.00 0.50 0.50 0.42 / 0.11 
XANN 5.00 / 1.23 0.95 0.95 0.95 0.82 0.91 0.82 0.90 / 0.17 
Ensemble Learning 5.00 / 1.47 1.00 0.89 0.56 0.78 0.67 0.89 0.80 / 0.20 
Decision Tree 4.00 / 1.40 1.00 0.00 0.50 1.00 1.00 0.00 0.58 / 0.35 
SVM 5.00 / 1.36 0.78 0.33 0.33 0.78 1.00 0.89 0.69 / 0.16 
Linear Regression 5.00 / 1.28 0.92 0.38 0.46 0.62 0.92 0.92 0.70 / 0.16 

O
ve

ra
ll 
4)

 

ANN 0.00 0.45 0.56 0.10 0.69 0.52 0.66 0.00 
XANN 1.00 0.84 0.86 0.87 0.89 0.88 0.89 1.00 
Ensemble Learning 0.86 0.96 0.84 0.35 0.73 0.61 0.85 0.60 
Decision Tree 0.57 0.86 0.55 0.59 0.86 0.79 0.64 0.60 
SVM 0.71 0.68 0.39 0.39 0.84 0.75 0.91 0.43 
Linear Regression 0.71 0.59 0.53 0.56 0.73 0.77 0.97 0.51 

Legend: 1) Perceived Explainability by median / Standard Dev.; 2) Comprehensibility / Accuracy of Answers by relative number (number 
correct answers / total number of answers); 3) Overall as average of Comprehensibility / Accuracy of Answers per model and Standard 
Dev. of Overall; 4) Overall as normalized average for explainability and comprehensibility per scenario and tasks types 

Table 5.2 Results of Explainability and Comprehensibility Questionnaire 

Explainability. First and as expected, the ANN model is perceived worst across all scenarios 
and in relative comparison to all other ML models (0.00). However, if an XAI augmentation 
(here via SHAP) is used, the user’s perception changes profoundly. Across all scenarios that 
we tested, the XANN was perceived to be highly explainable. In relative comparison, XANN 
even scored best (1.00). However, the perception seems to decrease with an increasing stake. 
The relative positioning of decision tree, SVM, and ensemble learning between 0.57 and 0.86 
is generally consistent with the theoretical assumption across the different stakes and 
complexities. However, our results contradict theory regarding ensemble learning’s positioning 
within this group. The assumption was that a single decision tree is better explainable than a 
complex ensemble learning model. In our case, participants preferred ensemble learning to a 
decision tree in terms of explainability. 
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Choice of Best Model. Following the presentation of the scenario and ML models, the 
participants had to choose their preferred model for solving different comprehension evaluation 
questions. We present the selection results per scenario in Figure 5.5. The ratings of the 
participants’ perceived explainability per ML model and scenario are given in Table 5.2. As 
expected, there is a strong correlation between evaluating the participants’ perceived 
explainability and their best model choice for solving the problem. In each scenario, XANN 
was rated best in explainability and is accordingly also most frequently selected (n=50). On the 
contrary, we could confirm that the ANN was selected least as the model with the worst 
perceived explainability (n=17). Furthermore, decision trees were chosen primarily for 
scenarios with a lower stake (n=12, n=11), whereas they do not seem to be an alternative for 
high-stake scenarios (n=2). This is also in line with their perceived explainability scoring. The 
results for the decision tree are contrary to the choice of linear regression. Here, users seem to 
prefer its option with an increasing stake (n=6, n=11, n=13). Similarly, there is a similar 
tendency in the choice of random forest as the best model (n=3, n=8, n=9). However, the 
selection of SVM seems to depend strongly on the respective scenario (n=12, n=2, n=9). 

 

Figure 5.5 Choice of Preferred ML Model for Problem-Solving 

Comprehensibility. Examining the users’ comprehension of the ML model explanations shows 
similar results regarding the perceived explainability. Again, the results of the ANN are worst 
(0.00) and those of the XANN are best (1.00). The understanding even seems to increase with 
an increased stake. XANN seems to support users well, especially for transfer tasks in 
comparison to other ML models. On the other hand, ensemble learning seemed particularly 
useful in supporting users for retention tasks, but fall behind in transfer tasks. In a relative 
comparison, decision trees show equally good user comprehension (0.60). These, on the other 
hand, are characterized by an excellent balanced rating across the comprehension evaluation 
categories, but do not stand out in any of them. SVM (0.43) and linear regressions (0.51) 
perform worst (except for ANN) for comprehensibility. Yet, they scored higher in perceived 
explainability than decision trees. Nevertheless, both were helpful in answering recall 
questions. 

Figure 5.6 provides an overview of the distributions based on the relative number of correct 
answers per model across all scenarios as the number of correct answers relative to the six 
questions. Overall, as expected ANN has the lowest median. In contrast, XANN has the highest 
median compared to the other models. Decision tree, linear regression, ensemble learning, and 
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SVM share roughly the same median. Nonetheless, the top quartile of the decision tree is much 
higher in comparison to these models. 

 

Figure 5.6 Boxplot on the Relative Comprehensibility per Model across all Scenarios 

5.5 Discussion and Implications of Findings 

5.5.1 Discussion of Findings 

To investigate the correlation between the perceived ML model’s explainability and ML 
model’s user comprehension, we plotted the results into a two-dimensional grid presented in 
Figure 5.7. 

 
Figure 5.7 Theoretical Correlation of Explainability and Comprehensibility vs. Study Results 

The left part of Figure 5.7 shows the hypothetical assumptions (see Section 5.3.2). The right 
part of the figure shows the empirical results of our survey. For the sake of generalization, we 
merged the results of the different scenarios. By doing so, we enable more general claims across 
criticalities as described in literature. Furthermore, we used the normalized results of the two 
dimensions to compare the theoretical assumption within Figure 5.2 and our results (cf. Table 
5.2). To prove the presumed linear correlation, we followed Meng et al. (1992) and applied a 
linear correlation between both dimensions using Pearson’s r (p-value: 0.01; corr: 0.91). 
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General Correlation. The results, especially considering Pearson’s linear correlation, show a 
high agreement with the theoretical assumptions from the preliminary work of various authors 
such as Blanco-Justicia and Domingo-Ferrer (2019) and Holzinger et al. (2019). We also have 
to agree with Páez (2019) describing that explanations focusing on the post-hoc interpretability 
(XANN) lead to a better task solving performance comparing a model’s inherent transparency 
(e.g., linear regression). Further, we can also validate the assumptions from Freitas et al. (2008) 
and Verbeke et al. (2011) that models such as decision trees are more comprehensible in 
comparison to non-linear-models such as ANN or SVM. Likewise, Ribeiro et al. (2016a) 
assume black-box ANNs to be the worst explainable models. Nonetheless, we also found 
discrepancies in our results: Futia and Vetrò (2020) indicate that comprehensibility for users 
should correlate with the focus on user-centered explanations. They claim that interactive 
explanations are necessary for problem-solving. This contradicts our results, since our 
participants were able to solve the different tasks (retention and transfer). Therefore, we link 
this assumption instead to the willingness to accept (X)AI-based DSS (Burton et al., 2020). We 
see that the user’s perceived model explainability does not perfectly transfer to the actual user 
understanding, but both dimensions share a high correlation, and thus, a strong dependency. 
Since, we conducted a study with experts, the results may differ compared to non-experts 
(Castelo et al., 2019). 

Model Details. We show that especially the decision tree ML model offers above-average 
comprehensibility. Ensemble learning also scored above the presumed expectations in our 
study. We concluded that the choice of using a random forest algorithm might have influenced 
this, as it allows for similar interpretability as the decision tree model. These findings are 
discussed in Subramanian et al. (1992). Following them, these representations have the ability 
to show decision patterns for the data more clearly than other ML models. Nonetheless, we also 
recognized different task performances levels and thus a high standard deviation within the 
group of participants who chose decision tree and random forest. Referring to Huysmans et al. 
(2011), we assume differences through users’ preexisting knowledge in AI and, thus, their 
understanding of the explanation representation (Amershi et al., 2019). Further, it is noticeable 
that users perceive the ensemble behavior as more explainable than the individual tree. One 
possible explanation is that users often expect that a model perceived as more complex should 
provide a more precise prediction (Nawratil, 2013; Pratt & Zeckhauser, 1985). Likewise, the 
influence of the factor trust concerning the model’s complexity through the applied majority or 
average vote can lead to those user rankings (Guo, 2020; Tintarev & Masthoff, 2012). However, 
looking at the transfer questions, it appears that participants using decision trees perform better 
in reusing the given information compared to ensemble learning. A further indication of this 
can be seen in comparing the SVM model and the linear regression model. Both models are 
perceived as equally good in their explainability. However, linear regression models had better 
user comprehension. A possible explanation of the result is that the intuitiveness of those 
models for a human decision maker may be increased due to his or her preexisting knowledge 
(Narayanan et al., 2018; Weld & Bansal, 2019). Nonetheless, keeping the clarity and theoretical 
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considerations (cf. Figure 5.2) of linear regression models in mind, they perform worse 
(transfer). We assume that this is due to the resulting complexity of many features in real-life 
data. Further we assume that due to the good recall performance, linear regression does not 
overload the cognitive abilities of the participants.  

XANN Details. XANN showed the best performance in both dimensions (explainability=1; 
comprehensibility=1). Thus, the XAI augmentation improved the worst perceived and problem-
solving ANN model (explainability=0; comprehensibility=0) substantially (cf. Figure 5.6). The 
high appropriateness of the augmentations is also reflected in the users’ frequent choice of 
XANN as the best model to support comprehension tasks (cf. Figure 5.5). This corresponds 
with the theory regarding the overload of user’s cognitive capacity having inappropriate 
explanations (Grice, 2019). Fürnkranz et al. (2020) argue that there must be an appropriate way 
to explain the user’s prediction. Due to relatively low standard deviation of comprehensibility 
of XANN (compared to the other models), we assume that most participants were able to use 
these explanations. Further, we noticed, that the color scheme of SHAP and therefore the 
presentation style can cause misunderstandings since the participants were not familiar with the 
explanation type and a uniform and standard visualization seems therefore necessary to support 
adoption (Förster et al., 2020a; Schneider & Handali, 2019). Looking at the transfer questions 
of the high-stake scenario, we noticed a strong primary use of local explanations by the 
participants instead of the global explanation. This is in line with Wolf and Ringland (2020) 
stating that the importance of local explanations helps solve tasks correctly in real-life scenarios 
and understanding the overall decision logic becomes less relevant for the respective decision 
instance. This goes in line with our findings, where XANN also performs good at retention 
questions. The high potential of XANN for problem-solving seems to be particularly evident in 
high-stake scenarios (cf. Table 5.2) and is also recognized by the users (cf. Figure 5.5). Both 
findings stand in contrast to the recommendations from Rudin (2019). However, in the low-
stake scenario, the XANN shows weaknesses in retention. Also, its average overall result shows 
further potential for increasing the comprehensibility dimension. Nonetheless, it showed that 
XANN scored best overall compared to the other common ML algorithms (cf. Table 5.2). We 
assume that a personalized explanation, as Schneider and Handali (2019) suggested, can further 
increase the XANN’s comprehensibility. 

5.5.2 Implications of Findings 

Theoretical Implications. We noticed a lack of knowledge regarding the tested 
comprehensibility at (X)AI models. While contributions such as Fürnkranz et al. (2020) already 
describe the importance of comprehensibility in theory and Kuhl et al. (2019) intend to 
investigate this in future research, we aimed at closing this gap. Due to the participants ability 
to choose their model for task solving on their own, the sample size for specific models is 
relatively low. Thus, using statistical tests indicate misleading results. Nonetheless, our results 
provide a first overview of participants’ problem-solving performance on common (X)AI 
models and clearly highlight user preference based on scenario stake. Following that, future 
research can use our findings to concentrate on promising models and test their significance in 
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more detail. Further, our findings provide a first insight, where models explanations are lacking 
in terms of user’s comprehensibility and scenario stake. Nonetheless, further investigations are 
necessary regarding different dataset types and XAI augmentation techniques, as we only used 
SHAP and regression datasets. Similarly, we assume that the differences between perceived 
explainability and tested comprehensibility often result from different factors such as trust. 
Thus, further research methods such as technology acceptance models may be necessary to 
understand perceived explainability better. 

Practical Implications. Likewise, due to the proven correlation, we can assume that the 
commonly used SHAP-based XAI augmentation technique is suitable to support problem-
solving. However, this recommendation must be taken with a grant of salt, since this approach 
consists of a post-hoc trained grey-box. Therefore, in many cases, using white-box models such 
as decision trees is necessary due to governmental regulations (Rudin, 2019). While literature 
stated that linear regression is the most explainable model, we noticed a lack of 
comprehensibility. In contrast, in our study the decision tree performed well. Nonetheless, the 
use of decision tree requires skilled employees due to the data-centered and thus complex 
representation of decision logic (Subramanian et al., 1992). 

5.6 Conclusion, Limitation, and Outlook 

A high perceived explainability does not necessarily require user understanding and vice versa 
(e.g., Gilpin et al., 2018 ). While XAI research focuses on explainability, the comprehensibility 
of models and their predictions is of great relevance to form an effective hybrid intelligence 
that outperforms man and machine individually (Dellermann et al., 2019). Therefore, the goal 
of our research was to understand the connection between explainability and comprehensibility 
as well as the extent to which XAI augmentations can compete with existing ML models in user 
comprehension in real-life scenarios. 

In our approach, we performed an empirical study with different stakes as moderator with 
common ML models and the XAI augmentation SHAP. Our results indicate that grey-box XAI 
explanations achieve the best results and are perceived to be even superior to inherently 
interpretable white-box ML models. One explanation seems to be that local explanations are 
more helpful in solving tasks correctly, while understanding the overall decision logic becomes 
less relevant for concrete decision situations. This entails that for example the need to explain 
the decision logic within a black-box ANN seems to be less critical than representing the 
approximated impact of the features on a decision. The results for decision trees showed that 
the importance of user-centered rather than data-centered explanations are especially related to 
good user comprehension. Likewise, our results reveal that XANN models perform best in the 
users’ perceived explainability. We also show that there is a good correlation between the 
perceived explainability and the associated user comprehension across all other ML models, 
and thus, problem-solving performance. Subsequently, we have shown that there is a linear 
correlation between perceived explainability and comprehensibility of the models, with 
decision trees and XANNs being most consistent. However, while XANN’s perceived 
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explainability excelled in low- and medium-stake scenarios, it decreased with high-stake 
scenarios, which underlines Rudin (2019)’s call for the use of (novel) white-box models rather 
than developing new XAI augmentations. 

There are some limitations to our contribution. We assume a correlation between scenario 
complexity and scenario stake for our datasets. A further isolated observation with more 
observations may help to differentiate this better. In addition, our literature review revealed 
additional factors for the usefulness of (X)AI explanations such as explanation fidelity, that we 
did not examine here. Lastly, we also must consider further XAI augmentation techniques to 
examine influences such as the cognitive load within these augmentations. Likewise, using XAI 
augmentations for example for image classification can produce different results that with 
numerical data. 

Looking forward, we also intend to investigate the perceived level of comprehensibility within 
different XAI augmentation techniques as well as to overcome the lack of design principles for 
(X)AI in practical use. Further research also needs to extend our study and give user-centered, 
socio-technical recommendations for the development and sophistication of XAI frameworks 
to overcome the issue of “inmates running the asylum” in XAI research (Miller et al., 2017).
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6 Impact Of Explainable AI On Cognitive Load: 
Insights From An Empirical Study 

 

 

Lukas-Valentin Herm 
 

 

Abstract. While the emerging research field of explainable artificial intelligence 
(XAI) claims to address the lack of explainability in high-performance machine 
learning models, in practice, XAI targets developers rather than actual end-users. 
Unsurprisingly, end-users are often unwilling to use XAI-based decision support 
systems. Similarly, there is limited interdisciplinary research on end-users’ 
behavior during XAI explanations usage, rendering it unknown how explanations 
may impact cognitive load and further affect end-user performance. Therefore, we2 
conducted an empirical study with 271 prospective physicians, measuring their 
cognitive load, task performance, and task time for distinct implementation-
independent XAI explanation types using a COVID-19 use case. We found that 
these explanation types strongly influence end-users’ cognitive load, task 
performance, and task time. Further, we contextualized a mental efficiency metric, 
ranking local XAI explanation types best, to provide recommendations for future 
applications and implications for sociotechnical XAI research. 
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6.1 Introduction 

Due to recent advances in computing, the spectrum of potential use cases for the application of 
artificial intelligence (AI) is constantly expanding, enabling end-users to rely almost solely on 
data-driven decision support systems (DSS) (Berente et al., 2021; Janiesch, Zschech, et al., 
2021). That is, integrating AI into information systems forms intelligent systems to enhance 
end-users’ and organizations’ effectiveness (Gregor & Benbasat, 1999; Herm, Steinbach, et al., 
2022). In this context, AI refers to an abstract concept mimicking human cognitive abilities 
through the application of mathematical and statistical algorithms, to generate (i.a.) machine 
learning (ML) models capable of automatically finding nonlinear relationships within data. So, 
decision knowledge is derived without the need for explicit programming (Goodfellow et al., 
2016; Russell & Norvig, 2021). Research has focused on overcoming algorithmic constraints 
by increasing the decision complexity of ML algorithms, resulting in ML applications capable 
of outperforming domain experts even in complex and high-stakes use cases (Janiesch, 
Zschech, et al., 2021; McKinney et al., 2020). Furthermore, a subclass of ML algorithms, called 
deep learning (DL), uses deep neural network architectures to achieve unsurpassed 
performance. In turn, the inner decision logic of these models is no longer traceable by humans, 
which reduces end-users’ willingness to use these AI-based DSSs; thus, their overall acceptance 
is decreased, potentially leading to algorithm aversion (Berger et al., 2021; Wanner, Herm, et 
al., 2022a). 

To address this issue, the research stream of explainable AI (XAI) has developed approaches 
to overcome the lack of traceability while maintaining the performance of these black-box 
models (Meske et al., 2022). However, as all that glitters is not gold, these approaches are 
mostly mathematically driven models that provide technical explanations, as opposed to 
addressing the actual end-users of the system with a sound explanatory scope. That is, recent 
XAI approaches have mainly been designed by developers for developers (Arrieta et al., 2020; 
van der Waa et al., 2021). Consequently, first research endeavors emerged proposing research 
agendas (Laato et al., 2022), first-hand end-user evaluations (Herm, Heinrich, et al., 2023; Shin, 
2021), and design knowledge (Herm, Steinbach, et al., 2022; Meske et al., 2022). Yet, it is not 
completely apparent how an end-user’s heuristic mental model behaves, in terms of different 
perception factors, when operating within a use-case (Laato et al., 2022). Unsurprisingly, IS 
research calls for further examinations of AI-based explanations from a sociotechnical 
perspective (Gregor & Benbasat, 1999; Herm, Heinrich, et al., 2023), which also interfere with 
the research streams of human-computer interaction and cognitive science (Langer et al., 2021; 
Liao & Varshney, 2022). 

Crucially, an explanation is a social and cognitive process of knowledge transfer from an XAI-
based DSS to the end-user (Miller, 2019). It is unclear how end-users perceive these 
explanations, as  increased cognitive load may be imposed when end-users rely on them to solve 
real-world tasks (Hudon et al., 2021). Furthermore, it is unknown whether this increased 
cognitive load affects end-user performance or the time required to solve a task (Hemmer et al., 
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2021). Consequently, XAI explanations should be perceived as mentally efficient to prevent 
end-users from feeling overwhelmed, stressed, and unable to perform well (Buçinca et al., 2020; 
Paas et al., 2016).Complicating matters further, due to the increasing attention to XAI in 
research and practice, numerous XAI applications are being developed, creating an XAI jungle 
from which to select an appropriate XAI approach (Das & Rad, 2020; Dwivedi et al., 2023). 
That is, organizations must determine how XAI explanations affect end-user behavior and what 
type of explanation should be used to form a sound DSS application within intelligent systems 
(Gregor & Benbasat, 1999). Hence, Mohseni et al. (2021) proposed an initial systematization 
that groups XAI explanation types in an implementation-independent manner, providing a 
foundation for future research and further facilitating generalizable findings that can be 
transferred to any type of XAI application in practice. 

Following Mohseni et al. (2021)’s systematization, we contribute to IS research (Gregor & 
Benbasat, 1999; Meske et al., 2022) by comparing these explanation types in an end-user-
centered manner. Therefore, we conduct an empirical study in the field of medicine using 
COVID-19 X-ray images to measure end-users’ cognitive load. Similarly, we benchmark end-
users’ task performance and time required to solve the task. Lastly, we combine these findings 
to put the mental efficiency metric of Paas et al. (2016) into the context of sociotechnical XAI 
research. To summarize our research intent, we propose the following research question (RQ): 

RQ: Do XAI explanation types affect end-users’ cognitive load and what are the 
ramifications for task performance and task time? 

The remainder of this paper is organized as follows: Section 6.2 presents the theoretical 
foundations, related work, and our measurement model. Section 6.3 describes the research 
methodology by following Müller et al. (2017) and the applied study design. Section 6.4 
presents the data analysis, including demographic data, descriptive statistics, and hypotheses 
testing. Then, Section 6.5 discusses the findings to answer our RQ, derives implications for 
research and practice, and describes the study’s limitations and recommendations for future 
research. Finally, Section 6.6 summarizes our research findings by drawing conclusions. 

6.2 Theoretical Foundation 

6.2.1 (Explainable) Artificial Intelligence 

Artificial Intelligence. Following Berente et al. (2021), AI can be envisioned as an arbitrary 
frontier of computational advancements that mimics human-like or superhuman intelligence, 
enabling DSSs to assist end-users in accomplishing any task. A DSS employs ML models to 
enable these artificial cognitive capabilities. Here, ML is an umbrella term that encompasses 
mathematical and statistical algorithms used to automatically infer decision knowledge using 
historical data (Goodfellow et al., 2016). To this end, recent research has developed 
increasingly complex algorithms with high predictive power, making the models’ rationale less 
tractable (Janiesch, Zschech, et al., 2021). Unsurprisingly, research has derived the 
performance-explainability trade-off, where inherently understandable models have been 
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proposed to have the lowest performance and - conversely - DL models to have the highest 
performance (Herm, Heinrich, et al., 2023). Here, DL is subsumed under the umbrella term ML 
and refers to a deep neural network architecture with decision logic that is no longer 
comprehensible to humans (Janiesch, Zschech, et al., 2021). DL applications can generate 
promising outcomes, even in high-stakes use cases (e.g., medicine) where a wrong decision 
could cost human lives  (Dwivedi et al., 2023; McKinney et al., 2020). However, this may 
reduce end-users’ willingness to use the system as non-traceability could lead to ambiguity and 
uncertainty in task solving (Epley et al., 2007). Alternatively, end-users may not be allowed to 
use the system due to regulations, such as the General Data Protection Regulation (GDPR) 
(Goodman & Flaxman, 2017). 

Explainable Artificial Intelligence. In response, the multidisciplinary research stream of XAI 
has emerged. Its objective is to develop transfer techniques that make these opaque black-boxes 
comprehensible to users while preserving the predictive power of the underlying DL model 
(Arrieta et al., 2020; Meske et al., 2022). Thus, post-hoc explainability methods have been 
developed for specific types of ML models (model-specific) or a subset of them (model-
agnostic); for different dataset formats (e.g., images, text, or tabular); and for different task 
types (e.g., classification or regression). They can also be distinguished by the nature of their 
explanatory scope - either explaining predictions for individual observations (local) or 
explaining the ML model’s inner decision logic (global) (Das & Rad, 2020; Speith, 2022). This 
results in a plethora of explanation possibilities for depicting a rationale. In conjunction, 
countless distinct XAI applications have been developed in practice, creating an XAI jungle 
from which to choose and thus complicating the development process. Therefore, Mohseni et 
al. (2021) systematized these explanation types in an application-independent fashion. Table 
6.1 summarizes these explanation types, their respective descriptions, and an exemplary excerpt 
of XAI’s implementation jungle for each explanation type: 

Type1 Description1 Exemplary 
Implementations2 

How Holistic representation of how the ML model’s inner decision logic 
operates - global explanation type. 

ProfWeight, SHAP, 
DALEX, Saliency 

How-To Hypothetical adjustment of the ML model’s input yielding a different 
output (counterfactual explanation) - local explanation type. 

DiCE, KNIME, PDP 

What-Else Representation of similar instances of inputs that result in similar ML 
model outputs (explanation by example) - global explanation type. 

SMILY, Alibi 

Why Description of why a prediction was made by informing which input 
features are relevant to the ML model - local explanation type. 

SHAP, LIME, ELI5, 
Anchor 

Why-Not Description of why an input was not predicted to be a specific output 
(contrastive explanations) - local explanation type. 

CEM, ProtoDash 

Legend: 1) Types and definitions adapted from Mohseni et al. (2021); 2) exemplary classification of frequently mentioned XAI 
implementation packages based on Das and Rad (2020), Dwivedi et al. (2023), Liao and Varshney (2022), and Mohseni et al. (2021).  

Table 6.1 Description and Implementation of XAI Explanation Types 
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In practice, this XAI jungle is exacerbated by developers primarily designing these XAI 
implementations for developers without prioritizing the actual end-users (van der Waa et al., 
2021). As first research endeavors target the end-user of an XAI-based DSS, these 
interdisciplinary research outcomes must be incorporated into practical applications to design 
valuable explanations for end-user (Arrieta et al., 2020). Following the explanation theory of 
Miller (2019), a useful explanation is defined as a social and cognitive process of knowledge 
transfer from an XAI-based DSS to the end-user. Thus, if an explanation is perceived as 
inadequate, contradicts an end-user’s mental model, or does not appeal to their emotions or 
beliefs, trust issues can occur and user acceptance may be reduced, leading to algorithm 
aversion (Berger et al., 2021; Shin, 2021). Following recent IS research, a mental model defines 
any type of mental representation used to encode beliefs, facts, and knowledge when 
conceptualizing cognitive processes (Bauer et al., 2023). In this sense, the extent to which these 
explanation types affect end-users’ cognitive load is unknown, which is an essential factor in 
the design and development of appropriate XAI implementations (Herm, Heinrich, et al., 2023). 

6.2.2 Cognitive Load Measurement 

Although the human cognitive system can be considered an information-processing engine, its 
capacity is limited when using information systems. Providing too much or distracting 
information in an instructional design can lead to a high cognitive load for the end-user (Bahari, 
2022). The cognitive fit theory (CFT) (Vessey, 1991) posits the relationship between a task and 
the required information presentation (i.e., the type of XAI explanation), where an inappropriate 
explanation type leads to poor end-user task performance. Moreover, end-users are unlikely to 
have a solid understanding of the instructional design or to build a representative mental model 
of the task problem (Simon, 1955). This leads to them feeling overburdened, stressed, and 
incapable of performing sound decision-making (Anderson et al., 2020; Paas et al., 2004). 
Therefore, cognitive research developed a computational approach that combines mental effort, 
task performance, and task time into a quantitative variable called mental efficiency to classify 
the goodness of instructional design with respect to end-users’ information processing to 
prevent excessive mental workload in complex cognitive tasks (Paas et al., 2016). Accordingly, 
XAI explanations should require an appropriate level of cognitive load to represent the model’s 
decision and facilitate seamless knowledge transfer to the end-user. Paired with an appropriate 
level of task performance and task time, the high mental efficiency of an XAI explanation 
constitutes a well-designed XAI-based DSS (Herm, Heinrich, et al., 2023; Hudon et al., 2021). 

While cognitive load is a multifaceted construct comprising various components, cognitive 
science research has developed several approaches for measuring it. Objective measures exist, 
such as eye activity, along with subjective measures, such as self-reported mental effort 
(Schmeck et al., 2015). While the former focuses on the identification of unconscious factors 
among participants, the latter targets conscious factors. Accordingly, both approaches behave 
complementary (Tams et al., 2014). 
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6.2.3 Preliminaries and Research Gap 

To investigate the extent to which cognitive load from the perspective of XAI explanations has 
already been researched, we conducted a structured literature review according to Webster and 
Watson (2002). We focused on the information systems-related databases ScienceDirect, AIS 
eLibrary, and Web of Science, as well as the computer science-related databases ACM Digital 
Library and IEEE Xplore. Specifically, we used the following search term: “((expla* | 
interpreta*) AND (explainable artificial intelligence | artificial intelligence | deep learning | 
machine learning | AI | XAI)) AND (cognitive load | mental load | mental effort | mental 
workload | cognitive capacity)”. Without restricting our search in terms of (journal) rankings, 
we identified n = 2,814 publications as potentially relevant. Hence, we consider publications 
that examine or discuss the effects of XAI explanations (packages) on end-users' cognitive load 
as relevant. This results in n = 17 publications after performing an abstract, keyword, and full-
text analysis. 

Theoretical Considerations. Most publications (n = 12) have merely centered the theoretical 
relevance of cognitive load (e.g., Herm, Wanner, et al., 2021a) and assumed that reduced 
cognitive load positively affects end-user performance (e.g., Hemmer et al., 2021) and assists 
end-users to solve the task faster (Bertrand et al., 2022). It is also hypothesized that increased 
problem complexity might be perceived as cognitively demanding (Cai et al., 2019). Similarly, 
research suggests that increased cognitive load reduces end-user trust in the system (e.g., 
Sultana & Nemati, 2021). In this context, research has derived tentative design principles 
(Fahse, Blohm, Hruby, et al., 2022) or design frameworks that assume reduced information 
granularity diminishes cognitive load (Barda et al., 2020). 

Empirical Research. Only scarce research (n = 5) has focused on testing XAI’s cognitive load. 
These contributions have mainly compared a single XAI implementation package or single XAI 
explanation type with a black-box implementation (e.g., Abdul et al., 2020) under simplified 
conditions, such as proxy tasks (Buçinca et al., 2020). From that, these contributions provide 
first evidence, that increased explainability will reduce end-user’s cognitive load (Kulesza et 
al., 2013). In addition, research has focused on the connection between the end-user’s cognitive 
load and their confidence or trust (Davis et al., 2020; Karran et al., 2022), implying that 
increased cognitive load slightly negatively affects perceived confidence and trust. 

Research Gap. In summary, this sparse stream of research contains merely a handful of 
theoretical and empirical contributions. Regarding the former, theoretical considerations 
already hypothesize that use case complexity may affect end-users' cognitive load, which in 
turn affects task performance, task time, and trust. Concerning the latter, previous empirical 
contributions have mainly examined the cognitive load of end-users on a single XAI 
explanation package or type. Most strikingly, there is currently no research contribution that 
examines multiple implementation-dependent XAI explanation types simultaneously to provide 
conceptual guidance for a domain-independent XAI-based DSS application. Furthermore, 
while research has emphasized the potential impact of cognitive load on end-user task 
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performance and time to solve a particular task, empirical evidence is lacking. As a result, to 
the best of our knowledge, we are the first to use these preliminary results to perform a holistic 
empirical cognitive load evaluation of these implementation-independent XAI explanation 
types and their impact on task performance and task time. 

6.2.4 Measurement Model 

To conduct our research, we derive and test hypotheses to investigate the cognitive load of the 
aforementioned explanation types and their effects on task performance and task time. Beyond 
this hypothesis testing, the findings are then used as input for the mental efficiency metric of 
Paas et al. (2016) to enable a summative evaluation (cf. Table 6.2). In the following, we describe 
the derivation of the hypotheses for our RQ and provide an overview of the measurement model. 

 

Figure 6.1 Measurement Model 

In line with the CFT, we derive a group structure consisting of one independent variable and 
three dependent variables. The independent variable is the type of XAI explanation, while the 
dependent variables are mental effort, task performance, and task time. Here, the independent 
variable represents the choice of XAI explanation types to provide reasoning for the DL model’s 
decision logic. The dependent variable of mental effort, defined as the total sum of cognitive 
processing that a human is engaged in, indicates the perceived level of cognitive load required 
to comprehend the provided XAI explanation for task solving (Leppink & Pérez-Fuster, 2019; 
Paas & Van Merriënboer, 1993). Similarly, the dependent variable of task performance results 
from the end-user’s ability to use the provided XAI explanation to solve a task within a use case. 
Finally, the dependent variable of task time results from the time required by an end-user to 
solve a task when using an XAI explanation. 

First, we assume that assisting an end-user with any type of XAI explanation would reduce the 
mental effort required to comprehend an ML model’s reasoning for a classification (Mohseni 
et al., 2021). This is because these explanations pinpoint towards relevant parts of the 
observation for the model’s classification, compared with end-users who have to figure this out 
for themselves (Meske et al., 2022). Therefore, we propose the following hypothesis: 

H1: Any type of XAI explanation reduces mental effort compared with no explanation. 

Second, while research suggests that XAI explanations differ in terms of their perceived 
explainability (Herm, Heinrich, et al., 2023), we assume that this degree of explainability is in 
line with the perceived mental effort required to comprehend the reasoning of an ML model. 
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That is, while explanation types such as Why and Why-Not explanations are local explanations 
- and therefore have a more straightforward explanatory fashion and scope than global 
explanation types (e.g., How) (Buçinca et al., 2020; Speith, 2022) - we hypothesize that 
variations in explanatory scope and style would result in a different level of required mental 
effort for each XAI explanation type. Thus, we formulate the following hypothesis: 

H2: Each type of XAI explanation differs in terms of mental effort. 

Third, providing information that requires a high cognitive load may overwhelm people during 
task solving, resulting in weak task performance (Hemmer et al., 2021). This may be the case 
when too much information is presented in a complex scenario, wherein humans are either 
incapable of comprehending all of it or deliberating among the levels of relevance within it 
(Hudon et al., 2021). Bringing this into an XAI perspective, we hypothesize that XAI 
explanation types that require less mental effort would improve end-user task performance. 
Therefore, we propose the following hypothesis: 

H3: Less mental effort when using XAI explanations leads to improved end-user task 
performance. 

Fourth, in research, cognitive load is considered as the number of items processed within a 
limited time period (Leppink et al., 2014); thus, it impedes any other cognitive tasks or activities 
(Barrouillet et al., 2007). That is, tasks that require a relatively significant amount of time to 
solve are perceived as requiring increased mental effort, resulting in a linear relation (Leppink 
& Pérez-Fuster, 2019; Otto & Daw, 2019). Hence, we hypothesize that XAI explanations that 
require less mental effort would help end-users to solve tasks faster than explanations that 
demand more mental effort. Therefore, we formulate the following hypothesis: 

H4: Less mental effort when using XAI explanations leads to reduced end-user task time. 

6.3 Research Design 

6.3.1 Methodology Overview 

We follow the methodology of Müller et al. (2017) to ensure the rigor of our research. This 
involves a four-step process, namely 1) RQ, 2) data collection, 3) data analysis, and 4) results 
interpretation. Figure 6.2 presents an overview of the research design, followed by descriptions 
of the four research steps. 

 

Figure 6.2 Overview of the Research Design 
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1) RQ: Based on the structure literature review, we found that only a handful of contributions 
have investigated various XAI explanation types in a holistic and implementation-independent 
manner. Moreover, research assumes that these explanations differ in their cognitive load. 
Building on this knowledge gap, we derived hypotheses to investigate this assumption and 
further demonstrate whether this also affects task performance and task time. We use these 
findings to calculate the mental efficiency of these XAI explanation types. 2) Data collection: 
We use a publicly available dataset of COVID-19 chest X-ray images, a DL model, and the 
aforementioned XAI explanation types to test our hypotheses through a user-based study. 3) 
Data analysis: From the analysis, we derive a knowledge base for our research. 4) Results 
interpretation: Ultimately, we answer our RQ and derive implications for research and practice. 

6.3.2 Survey Design 

To answer our RQ, we focused on a high-stakes use case from medicine. Specifically, we used 
chest X-ray images of COVID-19-infected and healthy humans (Tawsifur et al., 2022) to train 
a DL model - a convolutional neural network (CNN) - consisting of 11 layers, which yields a 
classification accuracy of 96.43% on the validation set. Then, we had the CNN classify several 
images of infected and healthy humans and enriched the images with the explanation style of 
the aforementioned XAI explanation types from Section 6.2.1. 

Following the study design of Herm, Heinrich, et al. (2023), we chose a within-subjects design 
for our study. First, we asked participants about their demographics, introduced the high-stakes 
use case, and described how the XAI-based DSS operates, enabling them to put themselves in 
the position of a physician deciding on a patient’s well-being. Subsequently, we asked each 
participant to perform one assignment for every explanation type: Within each assignment, they 
received an input image of a chest X-ray, the corresponding XAI augmented image (XAI 
explanation), and a comprehensive description of the XAI explanation. For each explanation 
type, we designed two variants, one image with an infected chest and one for healthy patients. 
Only one variant is shown at a time (evenly and randomly distributed). Using the provided XAI 
explanation, each participant was asked to classify whether the depicted chest is infected with 
COVID-19 or not. Then, they were asked to rate the mental effort required for this classification 
task on a seven-point Likert scale (extremely low to extremely high). 

Using their classification, we measured their (task) performance (correct or incorrect) and 
clocked the required time to complete the task (task time). Both measurements were performed 
for every assignment and every participant. An example of the study design for the explanation 
type Why is presented in Figure 6.3. See Herm (2023b) for the complete questionnaire. 
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Figure 6.3 Example of the Study Design 

To avoid bias, we did not present the performance metrics of the used CNN (performance bias); 
did not use colors nor representations of XAI implementation packages (e.g., SHAP) to avoid 
confirmation bias; avoided learning effects through randomization; and only provided a 
comprehensive description for the XAI explanation to avoid forcing anchoring bias. 
Additionally, we incorporated several mechanisms, including attention checks, to ensure the 
validity of responses. Furthermore, we asked an XAI researcher to appraise our study design 
and a physician to review whether the classification tasks are equally difficult. Also, we 
conducted a preliminary study to test its validity. As we focused on the actual end-user of an 
XAI-based DSS, we targeted novice users in terms of AI experience. That is, we focused on 
prospective physicians currently enrolled as medical students, since experienced physicians 
might exhibit bias toward XAI-based DSS, and moreover, we wanted to focus on the future 
healthcare workforce (Herm, Heinrich, et al., 2023; Logg et al., 2019).  

6.4 Data Analysis 

6.4.1 Survey Overview and Demographics 

To recruit our participants, we used the Prolific.co platform, where we offered a monetary 
incentive of £10 per hour. Using this platform, we were able to specify and address our target 
group of prospective physicians (Peer et al., 2017). For this purpose, we gathered feedback from 
n = 271 participants. Since we performed several validation checks, such as randomly 
completed questionnaires, time-based outliers, lazy patterns, and control questions, we 
considered feedback from n = 246 participants to be optimal for our study. Among these, n = 
130 participants were female, n = 115 were male, and n = 1 was diverse. Since we targeted 
enrolled students, n = 12 participants were younger than 20 years, n = 193 were 20-30 years 
old, and n = 41 were older than 31 years. They were located in Europe (n = 125), North America 
(n = 64), or Africa (n = 50). Regarding AI experience, n = 95 had no experience, while n = 112 
had fewer than 2 years, and only n = 39 had more than 2 years. Further, n = 84 participants had 

Is this chest diseased with Covid-19?
Please use the information provided above to solve this task. 

Yes No

Rate your perceived level of mental effort during this task.

Extremely
low Low Somewhat

low Neutral Somewhat
low High Extremely

high

Description of Explanation:

In the center section, the system's decision-
making process is explained. Here, the light 
gray area with black border represents the area 
that the system considers relevant to the 
overall classification of Covid-19 or no 
Covid-19. The rest of the image is not 
considered as relevant.

Input Image: Explanation:
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less than 2 years of experience in medicine, n = 101 had 2-5 years, and n = 61 had more than 6 
years. 

6.4.2 Data Results 

First, we provide an overview of the results and their distribution for the dependent variables 
for each explanation type (cf. Table 6.2). Subsequently, we utilize the findings to test our 
hypotheses in Table 6.3. 

Descriptive Statistics. Table 6.2 highlights the results of the dependent variables: First, the 
mental effort findings, including medians and deviations, are plotted in Figure a). Second, the 
total numbers of correct and incorrect answers are presented in Figure b). Here, the average 
task performance is calculated by the ratio between correct and incorrect answers per type. 
Third, an overview of the distribution and kernel density of the time required per task is 
provided in Figure c). These results are also summarized in tabular form. Thereon, we calculate 
the mental efficiency of the explanation types (Paas et al., 2016). 

 

Type 
Median 
Mental 
Effort1 

SD 
Mental 
Effort2 

AVG Task 
Performance3 

AVG 
Task 
Time3 

SD 
Task 
Time2 

AVG Mental 
Efficiency3,4 

Baseline 6 1.34 0.49 72.59 26.15 -0.34 
How 5 1.15 0.55 51.68 17.49 -0.15 
How-To 5 1.05 0.65 49.84 16.71 -0.11 
What-Else 4 1.20 0.68 60.10 18.49 -0.08 
Why 2 0.92 0.87 34.50 10.25 0.34 
Why-Not 3 0.90 0.81 38.92 15.40 0.23 
Legend: 1) Median on a 7-point Likert scale [1,7] according to Boone and Boone (2012); participant-fixed model (LSDV): RSE: 1.047, 
multiple R2 = 0.632, adjusted R2 = 0.563, F=7.741, p < 2.2e-16; 2) standard deviation of mental effort/ task time; 3) average of task 

performance [0,1]/ task time (in seconds)/ mental efficiency {-1..1}; 4) mental efficiency as 𝑀𝐸 = !!"#$	&'()*(+",-'	×	!!"#$	!.+'	$	!+',!"/	'))*(!

√&
 

adapted from Paas et al. (2016), mental effort and task performance standardized and task time standardized and reversed scale applied for 
computation. 

Table 6.2 Descriptive Results of Cognitive Load Questionnaire 

Mental Effort. The absence of an XAI explanation (Baseline) led to the highest required mental 
effort in this study (median = 6). The local explanations Why (median = 2) and Why-Not 
(median = 3) required the least mental effort to solve the task. By contrast, the global 
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explanation How (median = 5) and the How-To explanation (median = 5) required the most 
mental effort across all XAI explanation types. Within this range, providing multiple images 
for a task to indicate similar examples (What-Else, median = 4) was rated as requiring moderate 
mental effort. 

Task Performance. Regarding task-solving performance, without any XAI explanation 
(Baseline), the participants solved approximately 49% of the tasks correctly. Consistent with 
the mental effort results, using the explanations Why (87%) and Why-Not (81%) led to the 
highest task performance. When participants were supplied with a global explanation (How), 
their task performance increased slightly (55%) compared with no XAI explanation. Finally, 
the explanation types How-To (65%) and What-Else (68%) were in the middle of this 
comparison. 

Task Time. When participants did not use XAI explanations (Baseline), they took the longest 
time on average (72.59 sec) to solve a task. By contrast, the explanations Why (34.50 sec) and 
Why-Not (38.92 sec) almost halved the elapsed time. We noticed that these explanation types 
exhibited a high density around this meantime compared with explanations the What-Else or 
How-To. In this respect, the mean task times of the How-To (49.84 sec), How (51.68 sec), and 
What-Else (60.10 sec) explanations were much closer to the baseline than those of the Why and 
Why-Not explanations. 

Mental Efficiency. Since an ME above null would indicate that the end-users’ performance was 
higher than expected compared with the mental effort invested (Paas et al., 2016), the 
explanations Why (0.34) and Why-Not (0.23) can be considered highly efficient. By contrast, 
the most mental effort was required to solve a task when no XAI explanation (Baseline, -0.34) 
or How explanation (-0.15) was presented. The explanations How-To (-0.11) and What-Else (-
0.08) also performed slightly better in this calculation but still yielded negative values. 

Hypotheses Testing. To test our hypotheses (cf. Section 6.2.4), we follow Motulsky (2014) 
and apply different testing methods for H1-H4 depending on the type of test case, as 
demonstrated in Table 6.3. For each hypothesis, the results are plotted and then the statistical 
method, resulting p-value, and corresponding decision of acceptance or rejection are provided 
below.  
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H. Description Test p-Value1,2 Dec.3 

H1 Mental effort of every XAI explanation is lower than baseline. Kruskal-Wallis Cf. Figure a)*** Acc. 
H2 Mental effort of every XAI explanation differs. Friedman 3.48e-15*** Acc. 
H3 Decreased mental effort results in increased task performance. Spearman 0.024** Acc. 
H4 Decreased mental effort results in decreased task time. Spearman 2.78e-12*** Acc. 

Legend: 1) * <0.10, ** <0.05, *** <0.001; 2) for H1, each test yielded high significance; 3) decision of acceptance (acc.) or rejection (rej.) 
of the hypothesis. 

Table 6.3 Results of Hypotheses Testing 

Using the results in Table 6.3, we decide whether to accept or reject our hypotheses as follows: 
First, to test whether providing an XAI explanation reduces the mental effort required to solve 
a task compared with no explanation (Baseline) (H1), we performed five Kruskal-Wallis tests 
that compared each XAI explanation with our baseline individually. This yielded highly 
significant results for each comparison, which confirm H1. Second, to investigate whether, due 
to the different explanatory scopes, each XAI explanation led to different levels of perceived 
mental effort, we performed a Friedman test and compared all types. Since this procedure 
revealed highly significant results, we accept H2. Third, to test whether using XAI explanations 
perceived as less demanding in terms of mental effort led to higher task performance (H3), we 
performed a Spearman correlation test to find an association between these two dependent 
variables. We found evidence of a significant correlation and thus accept H3. Finally, to test 
whether lower mental effort also correlates with lower task time (H4), we performed a 
Spearman correlation test to detect an association between mental effort and task time. We 
obtained a highly significant correlation, confirming H4. 

6.5 Results Interpretation 

6.5.1 Discussion of Results 

To address our RQ, we interpret the results presented in Section 6.4.2 compromising end-users’ 
cognitive load, task performance, and task time. Subsequently, we discuss the computed metric 
mental efficiency (cf. Table 6.2) to combine the findings of these dependent variables. 

Impact of XAI Explanation Types on Cognitive Load. Recent research (Karran et al., 2022) 
already assumed that any type of XAI explanation assists the end-user in solving tasks, thereby 
reducing the required cognitive effort, as any type of explanation helps to render the end-user’s 
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mental model more congruent with the task problem compared with no explanation. We support 
this assumption through H1. Conversely, unstable explanations can influence the mental model. 
Thus, explanations are likely to impact end-user trust, especially when abductive reasoning is 
engaged (e.g., in complex or high-stake use cases) (Lakkaraju & Bastani, 2020). Hence, 
providing explanations to end-users encourages them to simplify their mental model based on 
the information supplied and potentially rely solely on the ML model’s rationale, which could 
theoretically lead to mispredictions (Janssen et al., 2022).  

As previous work (e.g., Buçinca et al., 2020) has already assumed that end-users perceive 
explanations to be individually demanding due to variations in the amount of information 
available and the style of explanation, we found that each XAI explanation type differs in terms 
of mental effort (H2). These results are reinforced, as end-users reasoning can be distinguished 
into a rational or an intuitive cognitive process, emphasizing a salience features evaluation or a 
systematic evaluation (Hamilton et al., 2016). In this regard, local explanations, namely the 
explanation types Why and Why-Not, yielded the lowest median and standard deviation among 
our results concerning mental effort. While this is consistent with Weerts et al. (2019)’s 
empirical study, which tested a local explanation using the SHAP package, Herm, Wanner, et 
al. (2021a) also found that using this package can lead to misinterpretation due to confusing 
color palettes or additional information. Combining our research and related studies, we 
expected the use of color-free Why or Why-Not explanations to impose the least mental effort 
on end-users. By contrast, the XAI explanation How returned the highest mental effort score of 
our study and ranked close to the baseline. In research, this type of explanation is highly debated 
as it provides the most information compared with other types; hence, it can be presumed to 
have the highest explanatory scope (Hudon et al., 2021). Still, it could possibly also overwhelm 
non-ML experts (Fürnkranz et al., 2020). 

Comparing our findings with Herm, Heinrich, et al. (2023)’s explainability evaluation and their 
assumption that explainability is concomitant with cognitive load, we observe tendencies 
indicating a correlation between the two factors. That is, when comparing explainability and 
mental effort, comparative results emerged for the Baseline, How, How-To, and Why 
explanation types. In turn, we identified differences for Why-Not and What-Else explanation 
types. Here, end-users perceive What-Else explanations as more explainable (presumably) due 
to their information scope, but requiring increased mental effort to comprehend, which is 
congruent with the assumption of Miller (2019). Still, in this clinical context, distinct 
requirements for the explanatory scope and domain-specific regulations necessitate a detailed 
level of granularity (Ghanvatkar & Rajan, 2022). Also, contrary to the research of Herm, 
Heinrich, et al. (2023), the local How-To explanation demanded an increased mental effort 
compared to the global What-Else explanation. Reflecting Sultana and Nemati (2021), we 
surmised that this was due to the complexity of our task, which might be different with fewer 
features or image segments. Given the broad distribution of task time when using the What-
Else explanation, we assumed that mental effort also depends on whether end-users grasp or 
struggle with this type of explanation. Still, researchers argued that this type is relatively facile 
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to realize and its application merits prior training of end-users (Kim et al., 2016). Lastly, 
considering local explanation types (Why, Why-Not) perceived best, these explanation types 
might cause difficulties, as end-users tend to rely on features that are highlighted by the 
explanations (Bauer et al., 2023). Hence, guidelines are required to ensure the application of 
XAI in high-stakes use cases (Kloker et al., 2022). 

Impact of Cognitive Load on Task Performance. As we obtained significant results for a 
linear correlation between perceived mental effort and task performance (H3), this denotes a 
general surplus in end-user task performance. Yet, our results are consistent with Fahse, Blohm 
and van Giffen (2022)'s and Hemmer et al. (2021)’s assumptions that cognitive load and task 
performance are diametrically related. However, we recognize some relative outliers. In 
particular, one might expect the responses rated “extremely low” in terms of mental effort to 
have produced the best task performance results; however, we found moderate to high relative 
task performance. This could be due to the relatively small sample size, and an outlier could 
skew the results. In addition, a related study already found that participants become negligent 
when a task is not mentally demanding (so-called “cognitive underload”), and thus, errors 
accumulate (Lavie, 2010). Nevertheless, when explanations require less cognitive load, the end-
user’s mental model is more capable of retrieving information and recognizing new 
circumstances more quickly (Abdul et al., 2020). In this regard, these results should be taken 
with a grain of salt as we targeted novice medical end-users who were unlikely to have actively 
used an XAI-based DSS before. These results may change once end-users are taught how to 
use these types of systems or use them more frequently due to the iterative learning process 
(Engström et al., 2017). Thus, the explanations What-Else or How may be favored due to their 
increased information scope but cease to overwhelm eligible participants. 

Impact of Cognitive Load on Task Time. Given that research has previously assumed a linear 
relationship between perceived mental effort and task time (Bertrand et al., 2022; Leppink & 
Pérez-Fuster, 2019), highly significant results also emerged for H4. Here, the task time per level 
of mental effort was consistent with the results and the corresponding mental effort medians. 
The high density within the Why and Why-Not explanation types indicates general 
straightforward intelligibility for novice end-users. Surprisingly, considering this linear 
relationship, the global What-Else explanation was perceived as less demanding, yet 
participants were able to solve our tasks faster with the local How-To explanation. We attribute 
this to the nature of the explanation, as participants might not have used such support before. 
Further, Buçinca et al. (2020) argue that increased task time results from end-users’ 
commitment to comprehend the provided explanation, as they may not trust the AI's 
recommendations. Conversely, a comparatively low task time could indicate over-reliance on 
explanations. In research, the task time factor is highly controversial: Liao and Varshney (2022, 
pp. author-year) stated that in the absence of time pressure, more complex explanations should 
be preferred as an end-user is able to iteratively discover new relationships within the 
explanations. Contrary, in real-world applications, a thorough evaluation process is temporarily 
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infeasible (Shaft & Vessey, 2006). However, research has already discussed that increased task 
time may impact end-user satisfaction (Hsiao et al., 2021). 

Mental Efficiency Ramifications. Local explanation types perform best regarding mental 
efficiency, resulting in a positive value. Therefore, end-users employing Why and Why-Not 
explanations exceed the performance-mental effort ratio, leading to a higher-than-expected 
result (Paas et al., 2016). However, compared to the cognitive load results of What-Else 
explanations, these explanations are about the participants' expected value. That is, while our 
findings imply relatively high mental effort, this mental efficiency result hints at relatively high 
end-user commitment levels, which could be consistent with the perceived explainability results 
of Herm, Heinrich, et al. (2023). Comparatively, there is limited research evaluating XAI 
explanation metrics that incorporate end-user understanding (Gentile et al., 2021). Merely 
Ghanvatkar and Rajan (2022) and Fahse, Blohm and van Giffen (2022) derived metrics to 
measure a person's effectiveness. Since we target cognitive load, we also transfer the cognitive 
load into the context of XAI. Accordingly, we distinguish as follows: Ghanvatkar and Rajan 
(2022) consider layer-wise relevance propagation (global explanation) to be the most effective 
as it provides the utmost information. However, this can also be critical as end-users may be 
unable to complete a task when overloaded. Conversely, for domain-specific requirements (e.g., 
in a clinical context), XAI explanations mandate a certain level of information, raising the 
importance to focus on effectiveness rather than efficiency. With this in mind, while one should 
not rely solely on effectiveness or efficiency, the trade-off should be determined based on the 
use case at hand (Forsythe et al., 2014). 

6.5.2 Implications, Limitations, and Future Research 

Theoretical Implications. While research (e.g., Buçinca et al., 2020; Hudon et al., 2021) has 
only partly investigated the cognitive load of singular XAI implementations, holistic 
comparisons of distinct implementation-independent XAI explanation types are lacking. This 
is especially critical when considering potential bias, which may confuse end-users or even 
force them to make erroneous decisions (Nourani et al., 2022). From a theoretical perspective, 
we have contributed to the existing body of human-technology interaction knowledge, one of 
the cores in IS research (Riefle & Benz, 2021), by researching XAI’s cognitive load and related 
effects on task performance and task time to ultimately derive a mental efficiency metric for 
the evaluation of XAI explanations. To best of our knowledge, we are the first to place this type 
of metric into the context of XAI and thus also take the end-user's mental model into account. 
Likewise, by directly comparing task performance and task time to cognitive load, we 
contribute to this relatively sparse body of knowledge in XAI research. 

Here, we demonstrate that XAI explanations are essential for recommendation-based decision 
support because they reduce cognitive load, increase task performance, and reduce task time. 
Consequently, local explanations perform best in terms of mental efficiency. Following the 
ongoing (IS research) debate on the selection of explanation types (Gregor & Benbasat, 1999; 
Herm, Heinrich, et al., 2023; Meske et al., 2022), we therefore provide initial insights on 
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cognitive load for implementation-independent XAI explanation types. Drawing on this, this 
jigsaw piece contributes to the overall puzzle of the end-user's heuristic mental model. Although 
we did not measure trust and reliance during the experiment, we can identify some tendencies 
that could indicate end-user over-reliance especially on more straightforward explanations (e.g., 
Why). Thus, while Miller (2019) posits four requirements for the goodness of an explanation, 
our research indicates that focusing on causal reasoning and selective representation likely 
facilitates misclassification when the AI's recommendation is inaccurate. This may also be 
related to the type of end-users, as we focus on young professionals who tend to use the XAI-
based DSS for support and pattern learning. In contrast, experts are prone to focus on using 
these explanations for verification (Gregor & Benbasat, 1999) and AI-experienced individuals 
have more reservations about AI explanations (Herm, Steinbach, et al., 2022). In this regard, 
our results may differ as we focus on additional end-user groups, which means that the role of 
explanations may vary (Bauer et al., 2023). As recent research has shown that providing an 
explanation has a positive impact on trust and attitudes toward an AI-enabled DSS (Wanner, 
Herm, et al., 2022a), this end-user over-reliance can lead to unwarranted trust that results in 
automation bias, even in high-risk use cases (Jacovi et al., 2021). Therefore, cognitive forcing 
strategies should accompany the utilization of XAI-based explanations. 

Although recent IS research calls for a paradigm shift in XAI, proposing the application of 
hypothesis-driven support instead of recommendation-driven support to accommodate the end-
user's cognitive process (Miller, 2023); the evaluation of explanations remains critical to ensure 
appropriate knowledge transfer of inferred evidence for an end-user action. Moreover, this 
approach forces end-users to be more committed, which increases their cognitive load and 
consequently emphasizes the need for mentally efficient explanations. To this end, we further 
advance the theoretical debate through the provision of a sociotechnical metric to evaluate XAI 
explanation types. As our results can be considered as a cognitive load-centered starting point 
for the discussion on the role of explanations in IS research, it currently lacks longitudinal 
analysis to determine additional aspects such as learning effects. This includes a combined 
study of other factors such as trust, acceptance, and satisfaction, which appear to be essential to 
understand the end-users' heuristic behavior. Ultimately, the benefits of providing XAI-based 
explanations in DSS will facilitate the integration of ML algorithms into organizational 
information systems, thus embedding the potentials of AI into intelligent systems (Gregor & 
Benbasat, 1999; Wanner, Herm, et al., 2022a). 

Practical Implications. In the early days of XAI research, XAI was seen as the silver bullet 
for end-user adoption of AI in any use case (Goebel et al., 2018); however, we found significant 
differences in perceived cognitive load, task performance, and required task time among the 
XAI explanation types. Thus, several considerations must be made: First, our research 
identified that developers of recent XAI implementations (cf. Table 6.1) must reconsider their 
applications, building upon our results, with respect to sociotechnical factors (e.g., cognitive 
load) and redesign them to match end-users’ mental model. Second, we demonstrated that not 
every explanation type is appropriate for every situation; thus, practitioners must determine an 
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appropriate explanation based on various factors, such as performance constraints, time 
constraints, or use case requirements. Third, it should be considered that explanations are 
usually a simplification of the ML model’s rationale, and therefore, they are unlikely to contain 
the entire decision logic, which may include bias, adversarial attacks, or open Pandora’s box 
due to the non-applicability of the GDPR (Slack et al., 2021). That is, relying on inherently 
explainable ML models could be essential once a defined performance threshold is fulfilled 
(Rudin, 2019).  

Limitations and Future Research. Like any empirical study, ours has its limitations. We 
focused our fundamental XAI research on implementation-independent explanation types to 
derive unbiased insights for further XAI development, which must be translated into concrete 
and use case-specific applications. Specifically, researchers and practitioners must integrate 
these insights into their XAI explanations and then re-evaluate their improved artifacts. Our 
research could also be expanded as follows: Following the triangulation approach of Tams et 
al. (2014), future research should validate our findings by using further complementary 
measurement approaches such as eye-tracking studies and electro-encephalograms to identify 
how end-users behave when using these explanation types. Second, our study should be 
expanded by examining additional factors to determine a holistic understanding of an end-user's 
behavior. Third, given the assumption of a tendency toward over-reliance within our study, 
future research should carry out dedicated research to examine potential trust miscalibrations. 
This includes investigating whether end-users are able to detect erroneous recommendations 
from the XAI-based DSS. Fourth, while we focused on a representative use case from the 
medical field, future research should leverage our findings to conduct further studies in other 
high-stakes use cases and with different types of end-user groups. However, our results lay the 
foundation for the end-user-centered design of XAI explanations and the derivation of design 
principles for XAI-based DSSs (Herm, Steinbach, et al., 2022). 

6.6 Conclusion 

AI is emerging as a frontier of computational advances for mimicking or surpassing human 
intelligence. However, in high-stake decision-making use cases, the models’ internal decision 
logic hinders the use of DL-based applications due to being incomprehensible to end-users and 
thus reducing their willingness (Berente et al., 2021; Wanner, Herm, et al., 2022a). XAI has 
gained momentum by making these black-boxes understandable while maintaining the 
predictive power of the underlying model (Janiesch, Zschech, et al., 2021). Despite the 
proliferation of XAI applications, actual end-users are not sufficiently addressed (van der Waa 
et al., 2021). Unsurprisingly, using these systems for high-stakes use cases will likely result in 
overwhelmed and stressed end-users, which might not perform well due to high cognitive load 
(Hudon et al., 2021). In this regard, actual user-centered XAI research is relatively limited 
(Laato et al., 2022). To address this knowledge gap on end-users’ cognitive behavior, we used 
COVID-19 X-ray images to conduct an empirical study, thereby investigating how distinct 
implementation-independent XAI explanation types affect end-users’ cognitive load, task 
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performance, and the time required to solve a task. Combining our results, we calculate the 
mental efficiency of these explanation types. This facilitates an in-depth empirical study and 
thus, the derivation of implications for future research and practice. In doing so, we contributed 
to the current body of XAI knowledge to surmount the “inmates running the asylum” situation 
(Miller, 2019) in sociotechnical XAI research.
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7.1 Introduction 

As the frontier of computational advancements, artificial intelligence (AI) is currently pushing 
the boundaries of what is feasible in data-driven problem-solving (Berente et al., 2021). In this 
context, AI can be considered as an abstract concept for solving data-driven problems by using 
mathematical and statistical algorithms to build machine learning (ML) models that do not 
require explicit programming (Hutson, 2017; Janiesch, Zschech, et al., 2021). Unsurprisingly 
many kinds of systems are using AI today to achieve or surpass human intelligence for selected 
tasks (Berente et al., 2021). AI-based decision support systems (DSS) are a particular type of 
such systems capable of supporting human decision-making in many situations (Herm, 
Heinrich, et al., 2023; Mohseni et al., 2021) such as evaluating heat-flux sensor data to track 
plastic welding processes and ensure the durability of the welding seam (see Section 5). 

As past research has primarily focused on solving mathematical constraints and thereby 
improving the performance of ML models, their inherent algorithmic complexities steadily 
increased (Arrieta et al., 2020; Meske et al., 2022). Lately, a class of ML algorithms called deep 
learning (DL) algorithms is employed increasingly as their deep ML models regularly 
outperform shallow ML models (Janiesch, Zschech, et al., 2021). In turn, these models are 
particularly opaque to the user, making them de facto black boxes for human users. Hence, 
these models cause difficulties in interpreting or even understanding the model’s inherent 
processing logic or even their predictions in complex real-world use cases (Herm, Wanner, et 
al., 2021a; Sharma et al., 2021). This lack of explainability of the decision-making process leads 
to reduced trust and lowers the acceptance of intelligent systems, especially in high-stake use 
cases (Shin, 2021; Thiebes et al., 2021). Hence, their overall adaptation in practice is still 
hesitant (Hradecky et al., 2022; Kelly et al., 2019). In response, multiple studies have shown 
that explainability can directly contribute to adopting these models for decision support in 
practice (Sardianos et al., 2021; Wanner, Popp, et al., 2021). 

The research domain of explainable AI (XAI) addresses this issue by developing diverse 
techniques to maintain the high level of performance of black-box algorithms while increasing 
the level of explainability at the same time (Mohseni et al., 2021). Consequently, the integration 
of such XAI techniques in intelligent systems and the development of explainable intelligent 
systems (EIS) for decision support is considered a key factor for intelligent system acceptance 
(Gunning et al., 2019; Mohseni et al., 2021). Due to the novelty of the research domain, there 
are several unsolved problems (Abedin et al., 2022; Meske et al., 2022). Despite numerous 
applications and developments of XAI techniques, there is still a lack of a holistic reappraisal 
of design factors to enable the integration of XAI techniques into intelligent systems (Abedin 
et al., 2022; Herm, Wanner, et al., 2021a; Meske et al., 2022; Mohseni et al., 2021). 
Complicating matters further, recent XAI techniques are predominantly developed by ML 
experts for ML experts leading to a situation where the desired explainability of the models 
only becomes accessible to experts but is barely accepted by end-users in practice. In this 
context, ML experts are developers with in-depth knowledge of ML algorithms to build and 
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evaluate ML models. In contrast, end-users are users who are skilled in their application domain 
and thus use EIS in support of decision making without having any profound ML background 
(Arrieta et al., 2020; Herm, Wanner, et al., 2022). As intelligent systems rapidly emerge as a 
core assistance for daily work, in our research we predominantly address the future workforce 
that will be affected by such systems (Berente et al., 2021; McKinney et al., 2020). Users come 
with various age and experience profiles. We focus on educated people with some work 
experience as well as little (for end-users) to pre-existing (for developers) AI background. We 
do not consider in-training or late-career specificities. In this respect, through our requirements 
analysis and evaluations we focus on work systems and professional work situations and do not 
consider EIS for private uses such as entertainment. 

In our research, we address this lack of system development guidelines and the consideration 
of both user groups to foster the acceptance of EIS. Employing design science research (DSR), 
we investigate which design requirements, design principles, and design features, cumulated as 
a nascent information systems design theory, are relevant for EIS in theory and practice. The 
following research questions (RQ) summarize our socio-technical research intent: 

RQ1) What are design requirements, design principles, and design features of a nascent design 
theory for EIS? 

RQ2) How do the results vary for end-users and developers? 

To answer our research questions, we applied a two-cycled DSR methodology according to 
Vaishnavi and Kuechler (2007). In the first design cycle, we conducted a structured literature 
review to derive an initial theory-based design theory, which we then adjusted and validated 
through expert interviews. In the second design cycle, we refined our design theory and 
evaluated it against a real-world use case application. Ultimately, we propose a nascent design 
theory crafted for domain-independent development of EIS comprising multiple user groups. 
Due to its multidisciplinary nature, our design theory takes the diverse facets of XAI’s human-
agent interaction (Miller, 2019) into account and can be considered as a starting point for 
adaptations for all types of use cases, including electronic market scenarios that require decision 
support such as e-business, supply chain, or service management. 

Our paper structures as follows: In the second section, we present the theoretical background 
and related research of EIS. Section 7.3 describes the used DSR methodology, including a 
comprehensive description of the two design cycles. Section 7.4 introduces the final nascent 
design theory and Section 7.5 presents an EIS real-world use case application and evaluation. 
We discuss the results in Section 7.6, before we conclude with a summary. 

7.2 Research Background 

7.2.1 From Decision Support Systems to Intelligent Systems 

While DSS gained significant momentum in information systems research in the 1970s and 
1980s, their application is still essential today (Liu et al., 2008). In this context, DSS are 
interactive and computer-based software systems that use decision rules and models to aid 
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decision makers in solving unstructured problems (Turban & Watkins, 1986). Since this is a 
broad definition, any system that contributes to a decision-making process can be defined as a 
DSS (Sprague, 1980). Unlike expert systems, DSSs do not replace users but rather provide them 
with decision recommendations (Turban & Watkins, 1986). In the early days of the DSS era, 
software engineers handcrafted decision rules and decision models underlying the DSS. That 
is, knowledge workers had to transfer their skills into DSS’s logic explicitly (Sprague, 1980). 
Since then, computational breakthroughs due to advances in ML technology have enabled the 
use of DSS in highly complex and critical situations (Janiesch, Zschech, et al., 2021). Recent 
examples can be found in all kind of application fields, such as medicine (McKinney et al., 
2020), manufacturing (Nor et al., 2022), or social media (Meske & Bunde, 2022). For the 
following, we align with Herm, Heinrich, et al. (2023) and Mohseni et al. (2021) by referring 
to these types of AI-based DSS or intelligent DSS as intelligent systems. 

7.2.2 Artificial Intelligence and Intelligent Systems 

According to definition of Berente et al. (2021, p. 4), AI is the “frontier of computational 
advancements that references human intelligence in addressing ever more complex decision-
making problems”, which is pushed further by intelligent systems to provide decision-making 
with human-like or even superhuman cognitive abilities (Herm, Heinrich, et al., 2023; Janiesch, 
Zschech, et al., 2021). To enable these decision-making abilities for decision support, intelligent 
systems use ML to allow for the autonomous generation of decision knowledge based on 
observations (Nilsson, 2014; Poole et al., 1998). The field of ML has gained increasing attention 
due to groundbreaking computational advances (Thiebes et al., 2021). Here mathematical and 
statistical algorithms are used to iteratively learn nonlinear relationships and complex patterns 
from empirical data to train ML models (Goodfellow et al., 2016; Janiesch, Zschech, et al., 
2021). This includes models from DL, which are based on (deep) artificial neural network 
(DNN) (LeCun et al., 2015). Nowadays, the predictive performance of DNNs exceed that of 
domain experts (McKinney et al., 2020). On the downside, while their architectural structure is 
becoming more complex, the user’s ability to comprehend the inner decision logic decreases 
(Ribeiro et al., 2016b). In practice, this results in a complex tradeoff between the performance 
and the explainability of these models (Herm, Heinrich, et al., 2023). That is, models with high 
predictive accuracy also tend to be more challenging to comprehend and vice versa (Herm, 
Wanner, et al., 2021a). Since we do not make a distinction between shallow ML and DL in this 
article, as we focus on any non-white-box model, in the following we subsume DL under the 
larger umbrella term ML. 

When integrating ML models into intelligent systems, this results in an increased tension 
between a user and the intelligent system during a decision-making process (Sundar, 2020), as 
a user may not be able to understand the underlying rationale of the ML model. Consequently, 
the user’s willingness to adopt this system diminishes as humans desire to reduce uncertainty 
and ambiguity in their environment (Epley et al., 2007). Ultimately, the overall goal should be 
to implement intelligent systems, which can describe their rationale with sufficient explanations 
to aid in decision making (Mohseni et al., 2021; Rudin, 2019). We define those systems as EIS. 
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7.2.3 Explainable Artificial Intelligence in Explainable Intelligent Systems 

According to Miller (2019), explanations as the product of explanation theory are about the 
assignment of causal responsibility derived through a cognitive and social process of 
knowledge transfer. Hence, he outlines that explanation theory for AI must account for multiple 
dimensions ranging from information requirements, information access, functional capacities 
to pragmatic goals of the explainer and explanatory tool to address cognitive aspects as well as 
beliefs, desires, intentions, emotions, and thoughts derived from the theory of mind to address 
social aspects. 

Correspondingly, we define explainability as the ability to use information to comprehend an 
event by formalizing logic-based causal chains (Arrieta et al., 2020; Lewis, 1986). In this 
regard, missing explainability can cause trust issues and reduce the acceptance of those systems 
(Shin et al., 2020; Zerilli et al., 2022), resulting in so-called algorithmic aversion (Berger et al., 
2021). As an explanation includes both the product of cognitive reasoning and the social 
process, an explanation may be inappropriate if it is not correctly understood by the receiver or 
perceived as irrelevant (Hilton, 1996). Accordingly, recent research has demonstrated the 
importance of considering a plethora of factors to provide the receiver with an adequate 
explanation (Mahmud et al., 2022; Shin et al., 2020). 

Explaining ML decisions is of paramount importance as misclassified training data can have 
devastating consequences when human lives are at stake (Lebovitz et al., 2021). To achieve 
explainability in intelligent systems, the system must either apply inherently explainable 
shallow ML models (e.g., decision trees), that is white-box models, and thus potentially forfeit 
predictive power or consider more complex models (e.g., DNNs) that are black boxes if 
considered in isolation and require explanation augmentations (Arrieta et al., 2020; Rudin, 
2019).  

The multidisciplinary research field of XAI addresses this objective by developing transfer 
techniques that provide users with comprehensible explanations of an intransparent model’s 
decision logic or insights from the utilized data of a decision (Das & Rad, 2020; Meske et al., 
2022). XAI is gaining momentum due to policy initiatives and regulations such as the “right to 
explanation” in the wake of the General Data Protection Regulation (GDPR) (Goodman & 
Flaxman, 2017). In addition, the integration of XAI into intelligent systems for decision support 
is motivated by the need to manage, control, and improve intelligent systems (Arrieta et al., 
2020; Mohseni et al., 2021), establishing the need of EIS (Herm, Heinrich, et al., 2023). 

Hence, various techniques have been developed for DNNs (Adadi & Berrada, 2018), showing 
a promising suitability for resolving the tradeoff between performance and explainability 
(Arrieta et al., 2020; Herm, Heinrich, et al., 2023). In this context, using model-agnostic 
techniques enable the transformation of opaque black-box models into transparent white-box 
models, with the coincident goal of maintaining their predictive power (Mohseni et al., 2021). 
They can be distinguished in two different post-hoc explanation types (Gunning et al., 2019): 
global explanations and local explanations. Global explanations allow a deeper traceability of 



Nascent Design Theory for XAI-based DSSs 

 

137 

the model’s behavior, making the holistic decision-making process of models transparent 
(Lundberg et al., 2020). In theory, these types of explanations are mainly used by developers to 
validate trained models (Miller, 2019). In contrast, local explanations, primarily aimed at end-
users, provide explanations for specific predictions presented in the form of visual, textual, or 
example-based explanations (Arrieta et al., 2020; Herm, Wanner, et al., 2021a; Lipton, 2018). 
However, literature claim the lack of user-centered evaluation of existing XAI techniques, 
which may lead to inadequate XAI explanations and thus hinder successful human-agent 
interaction (Miller, 2019; van der Waa et al., 2021). 

7.2.4 Related Work 

Apart IS-related contributions such as Förster et al. (2020b) who provide a design process for 
user-centric XAI systems and Herm, Wanner, et al. (2022) who introduce a taxonomy to assist 
user-centered XAI research, we were only able to identify a handful of DSR-based contributions 
that focus on user-based studies for EIS (Bunde, 2021; Cirqueira et al., 2021; Landwehr et al., 
2022; Meske & Bunde, 2022; Schemmer et al., 2022). Meske and Bunde (2022) and Bunde 
(2021) provide design principles for explainable DSS limited to detecting hate speech. 
Landwehr et al. (2022) derive design knowledge for image-based DSS. Further, Cirqueira et al. 
(2021) stated design principles for XAI-based systems in fraud detection and Schemmer et al. 
(2022) propose design principles for an XAI-based DSS at real estate appraisals. 

Related to this, we identified further XAI design studies in the field of human-computer 
interaction (HCI) relevant to our cause. Here, Amershi et al. (2019) and Mohseni et al. (2021) 
provide some generic design recommendations for XAI research. Moreover, Sokol and Flach 
(2020) and Liao et al. (2020) primarily focus on design needs for EIS. Similarly, current 
research in the field of HCI-based XAI investigates how users perceive user interfaces (UI) and 
thereby their expectations towards the use of intelligent systems (e.g., Mualla et al., 2022; 
Stumpf et al., 2009). This research aims to reveal the influence of HCI in the field of XAI 
research (e.g., Abdul et al., 2018; Bove et al., 2022). Lastly, research addresses the impact of 
interactive UI elements within intelligent systems (e.g., Evans et al., 2022; Khanna et al., 2022). 

In addition, we identified XAI-related research, which implicitly derives challenges and thus 
requirements for the use of EIS. This includes human-in-the-loop for EIS development (Chou 
et al., 2022), identifying the degree of EIS’s decision explainability (Herm, Heinrich, et al., 
2023), or defining new responsibilities to handle EIS’s outcome (Storey et al., 2022). 

While preliminary research has already derived a first theoretical foundation for the derivation 
of a design theory, it is apparent that this research has not been synthesized to design knowledge 
as starting point for the derivation of use case dependent design theories yet. In contrast, recent 
research primarily focuses on specialized use cases. To this end, this manifests the deficit and 
thus the need for first-hand and use case independent design knowledge to enhance and ensure 
future EIS design theory development. 
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7.3 Research Methodology 

7.3.1 Design Science Research Methodology 

Design Science Research. DSR is a problem-solving-oriented research approach to generate 
IT artifacts (e.g., design theories) for a more effective and efficient use, implementation, and 
management of information systems or to solve a specific organizational problem. The goal is 
to transform a defined problem state into a solution state by intervening with a defined IT 
artifact (Hevner et al., 2004; Möller et al., 2020). In this context, the role of DSR is twofold. 
First, a kernel theory initiates the search progress for an appropriate solution state. As elaborated 
above, explanation theory (Miller, 2019) serves as a kernel theory with XAI as its instantiation 
to enable AI-based applications in DSS resulting in EIS. Second, the application of DSR aims 
at providing prescriptions for how to solve a defined problem state. These prescriptions can be 
provided by a design theory (Vaishnavi & Kuechler, 2007). Design theories contain certain 
classes of (meta-) design requirements, practices for IT artifact development (e.g., design 
principles), and IT artifacts themselves or distinctive design features that contribute to design 
knowledge (Meth et al., 2015). Gregor and Hevner (2013) distinguish situated implementation 
from nascent design theories from well-developed design theories. While the former deals with 
instantiations and the latter encompasses mid-range to grand theories, nascent design theories 
focus on knowledge as operational principles expressed through design principles. Design 
principles are precepts that are inductively or deductively derived from experience or empirical 
evidence to support achieving a prosperous solution state. Finally, the concrete problem is 
solved by visualizing the design principles into concrete design features (Fu et al., 2015; Möller 
et al., 2020). 

Application of Design Science Research. The aim of our research is to develop a nascent 
design theory. To ensure the quality of the IT artifact, we applied the DSR methodology 
according to Vaishnavi and Kuechler (2007) and extended it by including multiple theory-
building elements (Glaser & Strauss, 1967; vom Brocke et al., 2015). This combination of 
qualitative and quantitative research is also recommended by Mohseni et al. (2021). The 
resulting methodology divides into five phases: problem awareness, suggestions, design & 
development, evaluation, and conclusion. For our research, we applied two of these design 
cycles (see Figure 7.1). 
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Figure 7.1 Application of DSR according to Vaishnavi and Kuechler (2007) 

Overview of First Design Cycle. Initially, the design cycle began with the phase of problem 
awareness where we identified the lack of design knowledge and built the knowledge 
foundation. Here, we identified that information systems research currently lacks design 
knowledge for the derivation of use-case-independent design theories for EIS (cf. Section 
7.2.4). To address this lack, we used prior design knowledge as input for the derivation of three 
meta design requirement proposals (vom Brocke et al., 2020). In order to do so, we conducted 
a structured literature review according to vom Brocke et al. (2015), including design studies, 
case studies, scenarios, and reviews. During the suggestions phase, we extracted goals, design 
requirements, design principles, and design features from the structured literature review to 
address our meta design requirements (Möller et al., 2020). Extending this, we follow the 
guidelines of Gregor et al. (2020) to propose an initial design theory. In the subsequent design 
& development phase, we specified design principles using the development process of Möller 
et al. (2020) to materialize the theory-based design theory. In the evaluation phase, we enriched 
the theory-based design theory and demonstrated as well as validated it with practitioners and 
researchers in qualitative semi-structured interviews according to Kaiser (2014). This 
preliminary nascent design theory constitutes the result of the conclusion phase of the first 
design cycle and as input for the second design cycle. 

Overview of Second Design Cycle. As we observed improvement potential during the 
evaluation of the first design cycle, we conducted a second design cycle, including findings 
from recent XAI publications and input from the evaluation phase of the first design cycle in 
the awareness of problem phase. Then, we refined the design principles and features in the 
suggestions phase and, consequently, the overall design theory in the design & development 
phase. Subsequently, we performed a threefold evaluation in the evaluation phase with experts 
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from a German predictive maintenance project to prove the rigor of our design theory (Hevner 
et al., 2004; Mohseni et al., 2021). This includes a qualitative study to ensure the validity our 
design theory and reveal possible improvement potentials, an instantiation of the design theory 
through the implementation and evaluation of an EIS through a real-world use case within the 
maintenance project, and lastly a quantitative evaluation against Iivari et al. (2021)’s reusability 
criteria. Lastly, we operationalized the final design theory and thereby contribute to theory and 
practice by revealing novel design knowledge (Vaishnavi & Kuechler, 2007). Section 7.4 
introduces and details our final nascent design theory, while Section 7.5 comprises the design 
theory instantiation and the quantitative evaluation. 

7.3.2 Results of First Design Cycle 

Awareness of Problem, Suggestions, Design, and Development. To obtain the theoretical 
foundation for the derivation of the design theory, we applied a structured literature review 
according to vom Brocke et al. (2015). Due to the interdisciplinary nature of the topic, we 
considered databases from economics (Emerald Insight, EBSCOhost), computer science (IEEE 
Xplore, ACM Digital Library), and from information systems (AISeL, ScienceDirect). We 
queried contributions focusing on the topics of XAI, HCI, explainability, and (design) 
requirements. Please see Appendix D.1 for a comprehensive overview of the search strings, the 
used terms, and synonyms. Further, due to the novelty of the subject, we did not restrict search 
in terms of rankings. This resulted in 1.426 potential hits, which we then screened and analyzed 
using reduction criteria consisting of title, keyword, abstract analysis, as well as duplication and 
language checking. This leads to 114 remaining contributions, of which we classified 86 as 
relevant using full-text and forward/backward search analysis. As inclusion criteria, we 
considered contributions from the XAI domain, focusing on requirements, guidelines, best-
practices, and different explanatory concepts from a (non-)technical perspective. Figure 7.2 
summarizes the process of the literature review. 

 

Figure 7.2 Process of Structured Literature Review according to vom Brocke et al. (2015) 

We iteratively developed a concept matrix using these 86 contributions by following Möller et 
al. (2020), including three iterations to develop a theory-based design theory. Please note that 
to improve readability, we will only provide details on the evaluated design theory of the first 
design cycle within the following subsection. See Appendix D.2 for a full overview of the 
iterations of the first design cycle and a visualization of the initial theory-based design theory. 
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Adjustment and Evaluation of Theory-based Design Theory. Following the FEDS 
framework from Venable et al. (2016), we conducted an artificial summative evaluation to 
“demonstrate the utility, quality, and efficacy” (Venable et al., 2016, p. 77) of our design theory. 
First, we conducted two preliminary expert test interviews (TI) to make initial adjustments to 
the design theory (cf. Appendix D.3). Then, we conducted eleven additional semi-structured 
expert interviews to evaluate the design theory (Kaiser, 2014). Here, we define an expert as a 
person who has theoretical and practical knowledge in the field of AI and XAI. In this context, 
we interviewed German-speaking researchers and practitioners who classified themselves in 
the role of an end-user (n=5) or a developer (n=6). All interviews were in the age group of late 
20s to mid-40s. See Table 7.1 for more information also on their demographics such as 
experience with AI. 

I# Group1 Role Duration2 Demographics 
TI1 R Postdoctoral researcher 32  End-user Developer 
TI2 R Professor 53 

Experience 
with AI3 

2.4 3.8 
I1 P Head of innovation 39 
I2 R Research associate 40 
I3 R Research associate 39 
I4 R Professor 53 

Acceptance in 
AI4 

5.0 4.0 
I5 R Research associate 32 
I6 R Postdoctoral researcher 37 
I7 R Postdoctoral researcher 34 
I8 P Head of digitalization 42 

Trust in AI4 4.0 4.0 
I9 P Process engineer 49 
I10 P Data scientist 61 
I11 P Data scientist 48 

1 Group: R: Researcher, P: Practitioner; 2 In minutes; 3 Mean in years; 4 Median scale 0-5 

Table 7.1 Overview Interviewees and Demographics (First Design Cycle) 

We divided the interviews into four phases: 1) At the beginning, we asked the experts about 
their demographics and their knowledge and experience in the field of XAI, including their 
estimation about potential barriers for the adoption of intelligent systems to carry out an initial 
completeness check of our meta design requirements. 2) Furthermore, we asked them to classify 
themselves as either end-users or developers. 3) We then evaluated our nascent design theory 
with these experts by presenting the theory-based design theory and openly discussing it with 
them. Here, we assessed appropriateness and completeness by asking them if they would add, 
change, or replace any elements. As additional support, we used hypothetical use cases to 
empower the participants to put themselves in a corresponding situation. 4) Lastly, we asked 
them to rate the perceived relevance of the design requirements, design principles, and design 
features based on a seven-point Likert-scale. 

In line with Glaser and Strauss (1967), we transcribed and classified the results by creating 
inductive and deductive codes. Likewise, according to Flick (2020), we made a qualitative 
analysis. As a single coder primarily coded the data, we obtained intercoder reliability 
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according to O’Connor and Joffe (2020) through coding a sample of data by an additional coder. 
Altogether, the interviews comprise 559 minutes of audio material, which is equivalent to 126 
pages of transcripts (Herm et al. 2022). 

Initial Design Theory. Using the relevance rating of the experts, we categorized the design 
requirements, principles, and features into a user group if the median of the perceived relevance 
is “slightly important” or above. The following table illustrates the derived and evaluated design 
requirements, design principles, and design features, as well as the related rating from the 
experts of the first design cycle. See Appendix D.4 for a graphical overview of the detailed 
description of the applied steps and the corresponding design theory, in Section 7.4 we will 
provide a comprehensive explanation of each element of the design theory except DF113. 

Type1 Description 
Relevance rating2 

End-user Developer 
DR1 Improve explainability 6.0 7.0 
DR2 Support human in own decision-making 6.5 6.5 
DR3 Increase user motivation 5.0 5.0 
DR4 Reduce cognitive effort 5.5 5.0 
DP1 Provide global explanations 3.5 6.5 
DP2 Provide local explanations 7.0 7.0 
DP3 Provide personalized interface design (preference, needs) 4.0 6.0 

DP4 
Provide ability to address psychological/emotional factors (intrinsic 
barriers) 

5.0 5.0 

DF1 Provide (technical) information 5.0 6.0 
DF2 Provide (performance) metrics 6.0 7.0 
DF3 Provide input information 6.0 7.0 
DF4 Provide archive of historical decisions 7.0 4.0 
DF5 Provide associative information 6.0 5.0 
DF6 Provide information about decision alternatives 7.0 5.5 
DF7 Provide hypothetical scenarios 7.0 3.5 
DF8 Use visualization techniques 6.0 5.0 
DF9 Incorporate granularity and navigability 4.5 6.0 
DF10 Group and prioritize explanations 4.0 6.0 
DF11 Use anthropomorphic content and designs 2.0 1.5 

1 DR = Design requirement; DP = Design principle; DF = Design feature; 2 Median of “How do you perceive the relevance of [DRx; 
DPx; DFx]?” on seven-point Likert scale from 1 - “very unimportant” to 7- “very important”. 

Table 7.2 Design Requirements, Design Principles, and Design Features of First Design Cycle 
Including their Relevance 

During the expert study, we found that there was improvement potential for our design theory. 
We used this as input knowledge for the second design cycle. 

 
3 DF11 characterizes design considerations that represent human-like behaviors such as emojis or chatbots. We 
discarded DF11 in the second design cycle. 
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7.3.3 Results of Second Design Cycle 

Awareness of Problem, Suggestions, and Design & Development. In the second design 
cycle, we refined the nascent design theory. Thereby, we included the input from the expert 
study of the first design cycle and revisited current XAI and HCI research. That is, we adapted 
DR1 to “improve intelligibility of system’s decision” to emphasize that users must have some 
access to the logic of ML models for decision support rather than explanations per se. 
Explanations represent one means to do so as introduced by the subsequent design principles. 
With this change, we acknowledge that the solution space may actually be larger than only 
considering explanations. In addition, we assigned DP3 to end-user relevance because a 
personalized interface design decreases the perceived cognitive effort and increases end-users’ 
motivation to use the EIS for decision-support (Arrieta et al., 2020; Conati et al., 2021). 
Likewise, we made DF1 only applicable for developers as end-users are often overwhelmed by 
(technical) details about the used ML model and are not able to comprehend the provided 
information (Evans et al., 2022; Holzinger et al., 2022). Further, we added the need for 
visualization technique explanation into DF8, which results from the fact that XAI 
visualizations are often difficult to understand for non-technical users and thus may hamper 
decision support (Herm, Wanner, et al., 2021a; Mualla et al., 2022; van der Waa et al., 2021). 
Lastly, following the first evaluation we discarded DF11, since “users are used receiving 
abstract information from different systems, so [they] don’t need these anthropomorphic 
stories” (I8) and the experts rated the relevance of this design feature as overall unimportant. 
We could not identify any further aspects through the inclusion of recent XAI-related literature. 

Expert Study, Use Case Application, and Reusability Evaluation. The evaluation phase in 
the second design cycle consists of a threefold naturalistic summative evaluation (Venable et 
al., 2016). First, we conducted a semi-structured expert study, consisting of a pre-test (TU1-2) 
and the main expert study (U1-6), with four end-users and four developers (Kaiser, 2014) that 
are part of an AI project in the field of predictive maintenance involving two German 
companies. Since we observed theoretical saturation, we did not include further expert 
interviews in our evaluation (Strauss & Corbin, 1994). In line with the first semi-structured 
expert interview study, we asked the participants about their demographics. Subsequently, we 
showed the adjusted design theory to them and asked them about their perception and if they 
would modify, add, or remove any elements within the design theory. Again, all interviews 
were in the age group of late 20s to mid-40s. See Table 7.3 for more information also on their 
demographics such as experience with AI. To minimize group bias, we conducted the 
interviews with each expert individually. Altogether, the interviews comprise 271 minutes of 
audio. 
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U# Group1 Role Duration2 Demographics 
TU1 D Full stack developer 19 

 End-user Developer 
TU2 E Process owner 22 
U1 D Lead ML developer 31 Experience 

with AI3 
1.7 6.7 

U2 E Team lead 32 
U3 D ML developer 46 Acceptance in 

AI4 
2.0 5.0 

U4 D Head of research 30 
U5 E Process engineer 43 

Trust in AI4 3.0 3.0 
U6 E Process engineer 48 

1 Group: E: End-user, D: Developer; 2 In minutes; 3 Mean in years; 4 Median scale 0-5 

Table 7.3 Overview Interviewees and Demographics (Second Design Cycle) 

In the second step, we presented the implemented EIS following our design theory to them. We 
provided them with the opportunity to use this system and think about the corresponding design 
theory once again. Lastly, we asked them to rate the design principles according to the 
reusability evaluation criteria of Iivari et al. (2021). We illustrate the use case application of the 
design theory as well as the results from the evaluation according to Iivari et al. (2021) in 
Section 7.5. 

7.4 Final Nascent Design Theory 

While contemporary intelligent systems can support users with precise recommendations for 
decision support, their application is hampered especially in high-stake scenarios due to their 
lack of explainability (Shin, 2021), which highlights the need for EIS (Herm, Heinrich, et al., 
2023). However, due to the novelty of the subject, there is only scarce research on EIS design 
theories, which are predominantly developed for domain-dependent tasks (e.g., Landwehr et 
al., 2022). To this end, we propose a broad and domain-independent nascent design theory for 
EIS, that facilitates the adaptation to different types of use cases (RQ1). Moreover, since XAI 
research has primarily focused on developers as target group and not the actual end-user of an 
EIS (van der Waa et al., 2021), we extend this body of knowledge through the differentiated 
consideration of end-users and developers within the design theory (RQ2). In Figure 7.3, we 
comprehensively visualize the results of the derived design theory for EIS and its dependencies. 
We present meta design requirements that form the basis for our design requirements and 
subsequently for the design principles and design features. In addition, we present the user 
group relevance for each element. When both user groups deemed an aspect necessary, we 
marked it as “end-user and developer relevance”. 
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Figure 7.3 Visualization of Final Nascent Design Theory 
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must be projectable to propagate design knowledge. Following the argument of Zschech et al. 
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2020) to gather meta design requirements (Chandra Kruse et al., 2022; Lee & Baskerville, 
2003). To this end, we derived the three meta design requirements: system transparency, user 
trust, and system accessibility, as described below. 
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barrier to the adoption of AI in practice (Wanner, Herm, et al., 2022a), as users are incapable 
of comprehending a models’ internal logic or the reasoning behind a models’ recommendation, 
rendering EIS for decision support inefficacious (Arrieta et al., 2020; Sardianos et al., 2021). 
Consequently, system transparency can be seen as a prerequisite for enabling a trustworthy user 
interaction with the EIS (Landwehr et al., 2022; Samek et al., 2017; Shin et al., 2020). 
Increasing system transparency also results in a shift in user perception making decisions more 
conscious (Chazette & Schneider, 2020). Simultaneously, system transparency increases the 
acceptance of using an EIS in work environments (Arrieta et al., 2020; Bhatt et al., 2020). 

MDR2: Increase User Trust. The acceptance of EIS and, consequently, their adoption depends 
on trust in the results a system provides (Carvalho et al., 2019; Thiebes et al., 2021; Wanner, 
Herm, et al., 2022a). Especially for critical decisions, users have to rely on these results to make 
an informed decision (Choi & Ji, 2015; Herm, Wanner, et al., 2021a). Consequently, it is only 
possible to establish initial trust in a (new) intelligent system if there are no unknown risk 
factors present or users are not afraid of losing control due to a lack of information about the 
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results (McKnight et al., 2011; Slade et al., 2015). However, while this may lead to the 
perception that trust is influenced by system transparency (e.g., Schmidt et al., 2020), empirical 
research has proven that there is no significant direct effect of system transparency on the 
perceived level of trust (Cramer et al., 2008; Wanner, Herm, et al., 2022a). Lastly, the EIS must 
take into account several influencing factors, such as keeping humans in the loop during system 
development, to ensure that users perceive the EIS as a competent decision support system for 
their use case, leading to increased user trust and thus acceptance of EIS (Mualla et al., 2022; 
Shin, 2021). 

MDR3: Enhance System Accessibility. Crucial in using EIS is the transfer of knowledge towards 
the user (Berger et al., 2021). Here, a fluent and non-restrictive interaction must be ensured if 
recommendations differ from user expectations due to the user’s reservations or domain 
knowledge (Chander et al., 2018; Meth et al., 2015). The use of XAI transfer techniques to 
ensure an interaction enables the increase of acceptance and the improvement of the intrinsic 
attitude towards the systems (Sokol & Flach, 2020). This also includes the adaptation of the 
system’s recommendation (Ferreira & Monteiro, 2020) as well as the ability to generate 
causalities for following actions (Liao et al., 2020). 

Design Requirements. Design requirements describe how general meta design requirements 
from related fields of the IT artifact’s topic should be addressed in a way that allows for an 
evaluation of a developed design solution (Baskerville & Pries-Heje, 2019; vom Brocke et al., 
2020). During our structured literature review, we scrutinized the meta requirements unearthed 
initially and operationalized them into more output-related design requirements. We ensure 
their validity and completeness through the expert interviews in the first and second design 
cycle (see Section 7.3.2 and 7.3.3). We describe them in the following. 

DR1: Improve Intelligibility of System’s Decision. The use of EIS empowers end-users and 
developers to compare their intrinsic mental model and consequently their expectations with 
the recommendation of an EIS. So, when user’s expectations conform with the recommendation 
explanations, their willingness to use the system in practice increase (Carvalho et al., 2019; 
Malhi et al., 2020). In doing so, EIS must provide recommendations with associated accounts 
in a way that adequately supports users during the decision process (Longo et al., 2020). 

DR2: Support Human in own Decision-Making. To support and improve a human’s own 
decision-making by providing accounts for predictions, those need to be enriched with domain 
knowledge and situation-specific context (Dikmen & Burns, 2022). Providing such accounts 
increases the user’s confidence during the decision-making process (Evans et al., 2022). Once 
end-users can understand the recommendation, they are skilled in making sound decisions. This 
is also true for developers when they intent to understand the internal processing logic of the 
model (Malhi et al., 2020). 

DR3: Increase User Motivation. In case users are extrinsically or intrinsically motivated to use 
the EIS, the degree of motivation increases, and consequently their system acceptance will 
increase as well (Stumpf et al., 2009). EIS should therefore incorporate features that rise the 
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motivation of the end-users using an EIS for decision support (Ferreira & Monteiro, 2020). This 
could include different paradigms, as they are directly related to user expectations, leading to a 
well-perceived user experience (Nunes & Jannach, 2017). 

DR4: Reduce Cognitive Effort. If users require a long time to understand recommendation and 
their accounts, for example if they are counterintuitive or complex, it may be perceived as 
cognitively demanding and lead to frustration and rejection (Fürnkranz et al., 2020). It is worth 
noting that the perceived cognitive load may vary by an individual due to context-specific 
circumstances (Oviatt, 2006). Hence, EIS must provide accounts in a manner that reduces the 
cognitive effort of users (Zschech et al., 2020). 

7.4.2 Design Principles and Corresponding Design Features 

Design principles and design features are intended to explain how derived design requirements 
can be addressed in a design theory (Baskerville & Pries-Heje, 2019; vom Brocke et al., 2020). 
In the following, we present the final and validated design principles and design features of our 
nascent design theory. For each design principle, we first provide a comprehensive rationale, 
followed by a tabular formulation of the design principle using the design principle schema 
established by Gregor et al. (2020) (see Table 7.4 - Table 7.7). Lastly, we present corresponding 
design features to illustrate how the design principles can be implemented into an associated 
instantiation (Gregor et al., 2020; Seidel et al., 2018). 

DP1: Principle of Global Explanations. With an EIS, users can understand the general 
behavior of an intelligent system within the decision-making process and thereby comprehend 
the inner logic of the model to a certain level. For this purpose, the internal logic of the system 
must be represented in a user-friendly manner in order for the developer to understand the ML 
model (Das & Rad, 2020). It is essential to grasp the capabilities of the model beforehand 
because “it is pointless using an ML model that makes completely insufficient predictions” (I5). 
Furthermore, Rudin (2019) calls for per-se interpretable but performance-wise appropriate ML 
models, when deploying intelligent systems in highly critical environments as this may be 
necessary due to regulatory constraints (Vale et al., 2022). 

Design principle title Provide global explanations 

Aim, implementer, and users 
For the EIS (enactor) to provide global explanations for developers 
(implementors) enabling them to understand the general behavior of the 
EIS’s ML model for debugging and optimization purposes (aim) 

Context During implementation and during usage of EIS 

Mechanism 
Ensures that developers comprehend the inner decision logic of the EIS’s 
ML model 

Rationale 
Inner decision logic of ML model must be transparent for evaluation 
purposes or due to regulatory constraints 

Table 7.4 Principle of Global Explanations 

On the one hand, (technical) information (DF1), such as system capabilities of the ML model, 
(hyper-) parameters, and information about the training data and training history, must be 
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provided to ensure lawfulness and fairness of the training process (Hepenstal & McNeish, 2020; 
Kaur et al., 2022) (U3; U4). This is primarily relevant to developers, since if the logic of an ML 
model “is far above the level of knowledge, then it’s all magic [for them]” (U5). Furthermore, 
(performance) metrics must be provided (DF2) to quantitatively evaluate the decision support 
capability of an EIS (e.g., accuracy, F1-score, decision certainty) (Glomsrud et al., 2019; Sun 
et al., 2022). 

DP2: Principle of Local Explanations. To render the recommendation of individual 
observations explicable, an EIS must provide local explanations. This allows (end-)users to 
validate or adjust their own expectations if certain recommendations “fit somewhere in [their] 
expectations” (I8). This internal process can assist in resolving cognitive restrictions (Hepenstal 
& McNeish, 2020). Local explanations complement global explanations and make 
recommendations easier to understand. Consequently, they are necessary, especially for end-
users and novices (Hohman et al., 2019; Mohseni et al., 2021). Moreover, our research shows 
that this representation is also relevant for developers, since they “[..] can use local 
explanations to analyze the pre-trained models for reliability by manipulating data and seeing 
how the model’s outputs change” (U1). This becomes specially important if transfer-learned 
models are used. 

Design principle title Provide local explanations 

Aim, implementer, and users 
For the EIS (enactor) to provide local explanations for end-users (users) 
and developers (implementors) to understand the reason for a concrete 
EIS recommendation (aim) 

Context During usage of EIS 

Mechanism 
Ensures that developers and end-users comprehend the reasoning of an 
EIS’s recommendation 

Rationale 
Users can only make an appropriate decision if they can trace the 
reasoning process by comparing their expectations for a particular 
recommendation with those of the EIS 

Table 7.5 Principle of Local Explanations 

The EIS must display related input data to enable end-users and developers to trace the specific 
data input used (DF3) for the recommendations and the resulting data output (Liao & Varshney, 
2022; Nunes & Jannach, 2017). This is also true for associative information (DF5) to understand 
causal decision chains of the EIS in a user-friendly way (Haynes et al., 2009; Nunes & Jannach, 
2017). This also includes process diagrams, graphical explanations (e.g., correlation matrixes) 
(U4), and look-up glossaries to understand complex issues in time-constrained situations (U1; 
U3). Similarly, filterable historical information about past decisions (DF4), including the used 
visualizations, must be displayed (Atkinson et al., 2020) (U3) as users can form their decision 
based on previous data and receive information about the decision-making process when legal 
issues arise (e.g., in high-risk cases) (U1). Moreover, additional information about possible 
decision alternatives (DF6) must be presented especially in cases of low decision certainty (Nor 
et al., 2022). In addition, providing input options to customize the input data allows developers 
to validate and debug an ML model according to (regulatory) unit tests (U3). Lastly, providing 
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hypothetical scenarios (DF7), for example simulations to end-users, would reveal the potential 
impacts of the provided recommendations (Amershi et al., 2019). 

DP3: Principle of Personalized Interface Design. When using EIS, different user groups have 
varying preferences and needs for information presentation (Arrieta et al., 2020; Bhatt et al., 
2020). Only flexible customization of system components can ensure user comprehension and 
consequently increase adoption of an EIS (Conati et al., 2021; Mualla et al., 2022). In addition, 
it is essential to pay attention to reducing the cognitive effort for the user when designing 
individual EIS components (Carvalho et al., 2019; Cheng et al., 2019). That is, established UI 
design guidelines (e.g., Shneiderman & Plaisant, 2016), and best practices from numerous 
application domains must be consulted (Amershi et al., 2019) to avoid being “a confusing 
system with a thousand numbers and variables and layers” (I8). While developers primarily 
identified this requirement, it is apparent that this is meant to support end-users. 

Design principle title Provide personalized interface design (preference, needs) 

Aim, implementer, and users 
For the EIS (enactor) to provide the end-users (users) and developers 
(implementors) with a personalized interface design that meets their 
preferences and needs (aim) 

Context During usage of EIS 
Mechanism Ensures that users are not cognitively overwhelmed when using the EIS 

Rationale 
A personalized interface design reduces perceived cognitive effort and 
consequently increases the system’s accessibility 

Table 7.6 Principle of Personalized Interface Design (Preference, Needs) 

To enable personalized adaptation, several visualization techniques, for example XAI-based 
argumentations, should be used (DF8) (Jesus et al., 2021), including justifications for why these 
types of visualizations are used to gain the trust of end-users and developers (U1). Therein, 
these visualizations should offer different levels of granularity in information presentation 
(DF9) and should be independently adjustable by users (Amershi et al., 2019). An example 
would be zooming into an explanation “so [it] can be successively traced further and further 
in detail” (I2). Similarly, it is necessary to group and prioritize (DF10) individual explanation 
components for specific user groups to enable adequate presentation and consequently not 
overwhelm users cognitively (Schneider & Handali, 2019). 

DP4: Principle of Ability to Address Psychological/Emotional Factors. For successful 
interaction with end-users and developers, the EIS should address their emotions, beliefs, and 
expectations to achieve the intended goals (Arrieta et al., 2020). This includes situational 
representations to support the user emotionally and psychologically (Kocielnik et al., 2019), 
thus addressing their “[..] personal idiosyncrasies and preferences so that they are satisfied 
with the results” (I1). This improved interaction increases the perceived ease of use, leading to 
higher adoption of the EIS (Ferreira & Monteiro, 2020). 
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Design principle title 
Provide ability to address psychological/emotional factors (intrinsic 

barriers) 

Aim, implementer, and users 
For the EIS (enactor) provides the ability to address psychological and 
emotional factors (aim) of end-users (user) and developers (developers) 

Context During usage of EIS 
Mechanism Increase the perceived ease of use for the EIS 

Rationale 
Addressing psychological and emotional factors to reduce users’ intrinsic 
barriers leads to greater user motivation and system accessibility resulting 
in an improved EIS adoption 

Table 7.7 Principle of Ability to Address Psychological/Emotional Factors (Intrinsic barriers) 

The incorporation of multiple visualization techniques (DF8) enables users to handle individual 
emotions, such as stress, when faced with time-critical decisions by allowing them to customize 
the UI to their individual preferences (Chromik & Butz, 2021). In addition, end-users must be 
able to reexamine textual explanations to the corresponding visualizations, in case of 
interpretational uncertainties during process execution. Besides, end-users require training prior 
to using EIS to reduce the cognitive effort required (U1; U2). 

7.5 Evaluation of the Final Nascent Design Theory 

Overall, the naturalistic summative evaluation in the last design cycle consists of a threefold 
evaluation following the FEDS framework of Venable et al. (2016). While we demonstrate the 
qualitive expert study and their findings in Section 7.3.3 and 7.4, in this subsection, we describe 
the instantiation of the nascent design theory using an EIS prototype implemented in a 
production-ready environment, including a subsequent reusability evaluation (Iivari et al., 
2021) through use-case-related employees. 

The use case is part of an AI-based predictive maintenance project performed by the two 
German companies ROBOUR Automation GmbH and SKZ - German Plastics Centre. In this 
project, heat-flux sensors track plastic welding processes of polypropylene homopolymer pipes 
(Lambers & Balzer, 2022). This welding process is used when setting up infrastructural 
underground pipes for freshwater or wastewater supply. The application of poorly welded pipes 
can lead to the loss of the transported goods and, consequently to the contamination of the soil 
with potential toxic substances. 

According to tracked senor data, a multi-layer DNN predicts the ratio between the flexural 
strength of the welded specimen and the raw materials, whereby a ratio lower than 0.7 indicates 
an insufficient welding process. Taking the DNN’s ability to outperform experts and the 
relatively low acceptance of DNNs in this high-risk scenario into account, the application of an 
EIS that supports the decision-making process of experts is promising for evaluating our 
nascent design theory. As an in-depth pre-test with one developer and one end-user during EIS 
development revealed, splitting the EIS into multiple dashboards reduces the cognitive load of 
end-users and developers. As illustrated in Figure 7.4, the implemented EIS consists of five 
different dashboards. Following the proposed nascent design theory, the user specific 
dashboards are only accessible to the certain user groups. 
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Figure 7.4 Overview of the Different Dashboards of the EIS Instantiation 
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and then welded together by pressing them against each other. A heat flux sensor is installed in the heating
element, the voltage signal of which represents a measure of the heat flux flowing into the right-hand
specimen. The welded specimens were then freed from the weld bead using a router and measured to
failure in a three-point bend test to determine the weld factor. The weld factor is the ratio of the flexural
strength of the welded specimen to the flexural strength of the raw material. If the weld factor is 1, then the
strength of the weld is as high as that of the base material.

Design of Experiment
For the experiement various test points were approached, with 5 welds being made at each test point. In the
experimental plan, the heating element temperature T_Heiz and the heating time t_anwere varied. Two
materials PP and PVC were welded. During the welding process, the following parameters were recorded at a
cycle rate of 5 Hz:
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cycle rate of 5 Hz:

Captured Features

Parameter

Forceright

Forceleft

Displacement_right

Displacementleft

Heatflux

Thermocouple

Explanation

Forcewithwhichtherightspecimenispressedagainstthe
heatingelement[N].

Forcewithwhichtheleftspecimenispressedagainstthe
heatingelement[N).

Positionoftherightspecimen[mm].

Positionoftheleftspecimen[mm].

Voltagesignalofheatfluxsensor[uV].

Temperatureofthermocoupleinheatflowsensor(°C).

In addition, the cross-sectional areas of the specimens were measured, as well as the surface temperature of
the heating element at the beginning of each weld manually with an infrared thermometer. Time series data
is also available from the three-point bend test, but the bending strength at the time of failure was extracted
and used to calculate the weld factor. The weld factor can thus be used as a target value.

Data Processing
The raw data are available in time series (PARQUET data format), with the welds having different durations.
All time series have been sychronized so that they start with the first contact of plastic body with heating
element. The rest of the above data is available in the form of an Excel spreadsheet (data_summary.xlsx),
with each sample defined by a unique identification number (META_ID). Some welds were defective, which
is why they are marked with "-1" in the "Training" column.Based on expert knowledge, features were
extracted from the time series that represent the most important points of the respective time series or
describe the course of the curves. These are explained in more detail in the appendix.All data are combined
into a single PARQUET file during preprocessing and the origin of the data is marked with a prefix. The
PARQUET file can be represented in tabular form, with each row containing the data for one weld (with a
one-to-one META_ID). The time series data are summarized, in which they are deposited as array in a cell.
The TIMESERIES_Timestamp[s] column contains the time stamps of the time series belonging to the weld of
the respective row. To plot the time series data, ergo the values of the TIMESERIES_Timestamp[s] cell can be
used as x-values and the values of a time series cell, such as TIMESERIES_force_right[N], can be used as y-
values.The following prefixes are assigned:)

Preprocssed Features

Author: Jonathan Lambers, Company: German Plastics Center
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specimen. The welded specimens were then freed from the weld bead using a router and measured to
failure in a three-point bend test to determine the weld factor. The weld factor is the ratio of the flexural
strength of the welded specimen to the flexural strength of the raw material. If the weld factor is 1, then the
strength of the weld is as high as that of the base material.
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For the experiement various test points were approached, with 5 welds being made at each test point. In the
experimental plan, the heating element temperature T_Heiz and the heating time t_anwere varied. Two
materials PP and PVC were welded. During the welding process, the following parameters were recorded at a
cycle rate of 5 Hz:
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The welding process goes as follows: Two plastic cuboids are heated at the end faces by a heating element
and then welded together by pressing them against each other. A heat flux sensor is installed in the heating
element, the voltage signal of which represents a measure of the heat flux flowing into the right-hand
specimen. The welded specimens were then freed from the weld bead using a router and measured to
failure in a three-point bend test to determine the weld factor. The weld factor is the ratio of the flexural
strength of the welded specimen to the flexural strength of the raw material. If the weld factor is 1, then the
strength of the weld is as high as that of the base material.

Design of Experiment
For the experiement various test points were approached, with 5 welds being made at each test point. In the
experimental plan, the heating element temperature T_Heiz and the heating time t_anwere varied. Two
materials PP and PVC were welded. During the welding process, the following parameters were recorded at a
cycle rate of 5 Hz:
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Feature Trend Analysis

Distribution of Historical Data

Boxplot

Representation of location and distribution measures per feature as well as the corresponding quantiles.

AxesSubplot(0.125,0.11;0.775x0.77)

Heatmap

Representation of correlation and cluster between different features within the dataset.

<seaborn.matrix.ClusterGrid object at 0x16c0c56d0>
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These five dashboards comprise the different views for the end-users and the developers of the 
EIS and consequently postulate a meaningful representation of the derived nascent design 
theory. The first dashboard provides an overview of the input information (DF3) from the 
tracked sensors, the corresponding prediction from the ML model, and a (local) explanation of 
this prediction and thus the resulting decision recommendation (DF8). By clicking on a button 
below the shown prediction (DF6), the dashboard highlights decision alternatives. In 
conjunction with the prediction, a hypothetical scenario is presented to the end-user (DF7). The 
second dashboard contains the associative information for end-users and developers, including 
(graphical) information about the related sensors, process execution, and data processing steps 
(DF5). The third dashboard provides (technical) information about the EIS, including a 
comprehensive description, the applied ML model architecture, information about ML model 
training (DF1), and the corresponding performance metrics (DF2). Comparable to the first 
dashboard, the fourth dashboard addresses DF8 by providing (global) explanations of the ML 
model for the developer. The last dashboard contains an archive of historical decisions 
including the associated sensor data and its history (DF4). By dividing the EIS into multiple 
dashboards, we ensure granularity and navigability throughout the EIS (DF9). Similarly, within 
the first and fourth dashboards, we provide drop-down menus that allow end-users and 
developers to group and prioritize explanations concurring to their own preferences (DF10). 

We asked the experts using the system to speak unreservedly about their impressions and 
whether they would change, add, or remove any elements. In doing so, we qualitatively 
analyzed their feedback to identify if this would affect the proposed design theory. In this 
regard, we noticed that our experts, except for occasional comments, are satisfied with this EIS 
instantiation. Here a developer stated, that “The system is well designed and offers all necessary 
functions to assist me during my work” (U3) or “I would like to use the system in our production. 
As a minor improvement, more technical information about data gathering and preprocessing 
would be appreciated, at least for our use case” (U1). Likewise, an end-user concluded “The 
system seems to offer a solid and comprehensible approach to support end-users.” (U5), while 
another one claimed that “At first, I perceived the dashboard as complex, which is why I believe 
that a short introduction is necessary, especially for new end-users. Afterwards, the system 
appears complete and well designed.” (U6). 

Lastly, we evaluate the derived design principles by following the reusability evaluation 
propositions for DSR-based design principles of Iivari et al. (2021). We performed this 
quantitative evaluation at the end to verify that users are aware of the implemented EIS and 
thus of our nascent design theory, as real-world use of an EIS may reveal additional changes to 
the proposed design theory. To do so, we asked the participants to rate the constructs of 
accessibility, importance, novelty & insightfulness, actability & guidance, as well as 
effectiveness through multiple questions constructs on a 5-Point Likert scale (1 = strongly 
disagree, 5 = strongly agree). We conducted the evaluation anonymously via an online survey, 
to not force biases. The following Figure illustrate the corresponding results. Please see 
Appendix D.5 for the questionnaire.  
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Figure 7.5 Results of reusability evaluation according to Iivari et al. (2021) 

Since we used multiple questions per construct, we calculated the median for each construct 
and expert group. Then, we used the median, minimum, and maximum of this data for the 
overall construct evaluation per user group (Boone & Boone, 2012). 

This results in overall positive expert feedback. As, the experts considered no further changes 
within our design theory, as “the design theory seems complete” (U4) and had a positive 
perception of the design principles (cf. Figure 7.5), we consider our nascent design theory 
ready-to-use. 

7.6 Discussion of Findings 

7.6.1 Discussion and Implications 

Discussion. There are several contributions dealing with design approaches for EIS (e.g., 
Bunde, 2021; Landwehr et al., 2022; Meske & Bunde, 2022; Schemmer et al., 2022) to create 
a hybrid intelligence as Dellermann et al. (2019) have called it. 

While we conclude, that intelligibility (DR1) expressed through global and local explanation is 
both important, Meske and Bunde (2022) and Landwehr et al. (2022) are limited to local 
explanations; only Schemmer et al. (2022) describe the need for providing an overall 
explainability. Further, recent DSR-based XAI contributions (e.g., Landwehr et al., 2022; 
Meske & Bunde, 2022) do not include the support of own decision-making (DR2) within their 
design theory. In contrast, these research findings are primary derived from the HCI field (e.g., 
Dikmen & Burns, 2022) and demonstrate the need for an interdisciplinary design theory. The 
same applies for increasing the user motivation (DR3) (e.g., Ferreira & Monteiro, 2020) and 
reducing cognitive effort (DR4) (e.g., Oviatt, 2006). Moreover, while we observed the need for 
increasing user motivation and reducing cognitive effort within recent literature, end-users and 
developers did barely envision this need, when talking about both design requirements on a 
theoretical basis. Nonetheless, we were able to uncover, during EIS application, that users still 
require design principles related to DR3 and DR4. 
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In terms of the derived design principles, our study also extends the current body of design 
knowledge. That is, while recent research targets end-users and is thus limited to addressing 
local explainability (e.g., Bunde, 2021; Landwehr et al., 2022; Meske & Bunde, 2022), our 
nascent design theory does not only include local explainability (DP2) but also incorporates 
global explainability (DP1) for developers. In addition, while theoretical contributions (e.g., 
Mohseni et al., 2021) are mainly assigning DP2 to end-users, our research indicate, that 
developers also benefit from using local explanations. This extension of design science 
knowledge based on our research applies for DP3 and DP4 as well. While personalized interface 
design (DP3) is considered important (Conati et al., 2021), during our first design cycle only 
developers confirmed this finding. Nonetheless, during the second design cycle, end-users also 
confirmed the importance of DP3. Regarding the consideration of psychological/emotional 
factors (DP4) for end-users and developers our findings are in line with recent research (Arrieta 
et al., 2020).  

Lastly, matching theoretical foundations with our research findings also reveals differences. 
Comparing our findings with related design theories (Bunde, 2021; Landwehr et al., 2022; 
Meske & Bunde, 2022; Schemmer et al., 2022) shows that only four out of our ten design 
features have been mentioned earlier. This includes design features such as providing input 
information (DF3) and historical information (DF4) as well as using explanation techniques 
(DF8) and incorporating granularity and navigability (DF9). Six out of our ten design features 
were derived from interdisciplinary contributions. Comparing the targeted user groups from 
theory with our findings uncovers further distinctions: while the six design features DF1 
(Hepenstal & McNeish, 2020), DF2 (Sun et al., 2022), DF3 (Nunes & Jannach, 2017), DF4 
(Atkinson et al., 2020), DF6 (Nor et al., 2022), and DF7 (Amershi et al., 2019) are in line with 
recent interdisciplinary research, four design features are not. Although previous research 
consider DF5 (Haynes et al., 2009), DF8 (Jesus et al., 2021), DF9 (Amershi et al., 2019), and 
DF10 (Schneider & Handali, 2019) for both user groups, our evaluations reveal, that DF5 and 
DF8 have a purely unilateral preference towards end-users and DF9 and DF10 towards 
developers. While our theory-based initial design theory, drawing on scholarly literature, 
included the need for anthropomorphic design language, as in chatbots, to reduce adaptation 
barriers (Weitz et al., 2019), we did not include this design principle in our final nascent design 
theory because our experts rejected this, as non-novice users are accustomed working with 
abstract information, which leads to undesirable complexity within the EIS. We could not find 
evidence with the EIS instantiation either. We acknowledge though that DF11 may be relevant 
in situation where end-users possess no technical skills at all (e.g., private use of intelligent 
assistance services, chatbots, etc.). 

Theoretical Implications. DSR seeks to develop prescriptive design knowledge by developing 
and evaluating novel IT artifacts to solve practical problems (Hevner et al., 2004). 
Corresponding to mode 3B of Drechsler and Hevner (2018)’s design theorizing modes, we 
derived a nascent design theory that provides explicit prescriptions for entity realization for a 
class of explainable AI-based DSS, so-called EIS. Further, following Gregor and Hevner 
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(2013)’s DSR knowledge contribution framework, we contribute with a nascent design theory 
including (meta) design requirements, design principles, and design features (level 2 
contribution) and a situated implementation of the IT artifact (level 1 contribution). Since we 
applied two design cycles, the design theory can be considered rigorous and consequently can 
serve as input for future research (Hevner, 2021). 

Looking at previous design science research reveal that the integration of AI in DSS leads to 
intelligent systems that are capable of supporting users in their decision-making process 
(Janiesch, Zschech, et al., 2021). However, due to their focus on user performance, these 
systems are primarily developed for low-stake use cases wherein users do not rely on 
comprehending the reasoning of a ML model (e.g., Zschech et al., 2020) as an incorrect 
recommendation has no significant impact on humans or the environment (Rudin, 2019). In 
contrast, utilizing these systems in high-stake use cases, wherein incorrect decisions may 
endanger human lives or may have vast consequences, designing intelligent systems require the 
explicit consideration of techniques such as XAI to make the ML model’s behavior traceable 
(Mohseni et al., 2021), resulting in the need of EIS applications (Herm, Heinrich, et al., 2023). 
Hence, recent research has already developed first design principles for domain-dependent EIS 
development (e.g., Landwehr et al., 2022). To extend this sparse research, we position our 
research as a broad design theory for EIS development (Chandra Kruse et al., 2022), that 
distinguishes itself from recent research: 

First, to best of our knowledge, there is no other scholarly contribution providing a nascent 
design theory for a domain-independent EIS including an instantiation. That is, compared to 
current research contributions that develop DSR-based design principles for specific use cases 
(e.g., Bunde, 2021; Landwehr et al., 2022; Meske & Bunde, 2022), our research provides a 
first-hand design knowledge as a starting point for adoption and refinement for all types of 
decision support use cases. As an example, applying our design theory to a healthcare use case 
may lead to the consideration of additional factors to assist physicians in high-stake cases when 
human lives could depend on a decision. 

Second, in our design theory we consider recent findings from design-based XAI, 
interdisciplinary XAI, and HCI research. To this end, our design theory compromises not only 
technical XAI aspects but also socio-technical aspects that origin from the field of HCI and 
psychology. In doing so, we take into account the diverse facets of human-agent interaction that 
unfold due to XAI’s nature (Miller, 2019). 

Third, our design theory also includes the consideration of different user groups. Since previous 
XAI research has not sufficiently addressed the integration of end-users, we have focused our 
design theory not only on the developer and ML expert, but also on the end-users. However, 
we recognize that there is no one-size-fits all EIS. That is, during the interview studies, we 
mostly rely on end-users that are domain-expert but mostly unskilled in terms of ML. During 
our qualitative research, we identified this type of end-user as widely spread. Hence, we take 
our design theory as a starting-point for the consideration of end-users, with the potential need 
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of design theory adjustment, when it comes to specific use cases, for instance, when novice 
users perform tasks. 

Practical Implications. During our research, we found that XAI is not a silver bullet. That is, 
in practice the use of XAI does not automatically ensure utilization of EIS. Even when using 
XAI-based transfer techniques, novice users need to be empowered to use these EIS and thereby 
develop a widespread understanding. This is especially true for high-stake scenarios, where 
recommendations and explanations must be comprehensible to users at all times. In addition, 
this can (psychologically) support users, when they compare explanations with their own 
expertise and expectations. 

Besides, companies should discuss the required cognitive effort with their end-users. 
Surprisingly, as we particularly focused on reducing this effort, end-users told us, that using 
this EIS seemed quite complicated for them at first. Consequently, conducting training before 
using an EIS guides these novice users and similarly reduces the required cognitive effort, as 
they become familiar with the system. 

Nevertheless, we revealed that some end-users do not only want to comprehend the 
recommendation but also want to determine the quality of the ML model based on metrics such 
as accuracy, F1-score, or decision certainty to critically evaluate the provided recommendation. 
In contrast, these users are not interested in understanding how the models operate. Instead, we 
have found that end-users trust the model development and selection by the EIS designers. 
Conversely, talking to the experts shed light on the correlation between AI knowledge and trust 
in AI. This means that AI experts tend to have more reservations about AI because they are 
aware of potential difficulties during selecting, training, and developing ML models. 

Finally, in the second evaluation phase of the design cycle, we found that experts not only view 
the implemented EIS as an opportunity to deploy AI into practice in an explainable fashion but 
also to use the data-driven generated knowledge to train end-users for use case execution. In 
doing so, we noticed that the utilization of an EIS fosters the acceptance of AI and allows 
experts to view AI as trustworthy. 

7.6.2 Limitation and Future Research 

Although we ensured scientific rigor by applying established DSR guidelines (Gregor & 
Hevner, 2013; Iivari et al., 2021; Vaishnavi & Kuechler, 2007), we noticed certain limitations 
in our research. This includes the two expert studies we conducted while adjusting and 
evaluating the proposed nascent design theory, where experts already had several years of 
experience in the field of AI. Hence, we must assume that the results could differ for novice 
users. Further, all interviewees were early to mid-career employees. Hence, our results are more 
likely to apply for this age group than for mid-50s and older. We conducted the last evaluation 
phase based on an exemplary and thus context-dependent scenario, which is why the results 
could vary in other scenarios. Also, end-users did not have to make time-critical decisions in 
the use case application. With this in mind, we assume that the design of EIS systems may 
differ, when there are additional technical, privacy, or cognitive constraints to consider. Lastly, 
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we did not test all 15 possible design principles configuration to ensure design principle 
expressiveness (Janiesch et al., 2020). Our design theory represents a nascent design theory, it 
is not yet a fully developed grand theory. 

During our research, we noticed several shortcomings in current XAI literature and XAI 
applications in practice leading to novel research opportunities. As part of a DSR-based 
research project, we provide research prospects that future research projects can use as a starting 
point and thus as meta design requirements for their work (Peffers et al., 2007). 

Contrary to existing theoretical assumptions (e.g., Liao et al., 2020), global explanations are 
not necessarily suitable for developers, as they as well may be cognitively overwhelmed. For 
future research, it is therefore necessary not only to investigate interactive XAI-based 
explanations with different levels of granularity for end-users but also to consider developers 
as a relevant user group. This is especially true since the algorithmic output of common XAI 
tools can be challenging for these user group (Herm, Wanner, et al., 2021a; van der Waa et al., 
2021), as not all developers have a data science related background. 

Connected to this, we found that all experts emphasized the importance of adequate XAI-based 
explanations during the evaluation of the use case. However, none of these experts were able 
to provide dedicated requirements for such an explanation. Consequently, research should 
target the derivation of frameworks and guidelines for selecting context specific and appropriate 
XAI explanation types to assist decision-making. This includes evaluation metrics and 
standards to define the quality of an explanation. This evaluation may also differ due to different 
use case scenarios. While previous research has already endeavored to define criteria such as 
clarity, fairness, bias, completeness, and soundness (e.g., Zhou et al., 2021), it is not evident 
how these can be objectively measured and whether they are sufficient in constrained scenarios. 
In addition, the use of EIS requires interdisciplinary research to define guidelines and norms 
that ensure legally compliant utilization of EIS across different application domains, 
transitioning EIS into trustworthy AI (Thiebes et al., 2021). 

Lastly, we found divergent results for the relevance of user motivation (Ferreira & Monteiro, 
2020). Here, we assume that the inclusion of components to increase user motivation is 
primarily necessary for novice users, since experienced users have already internalized the 
benefits provided by an EIS. Although our experts have mentioned the potential of using 
gamification concepts to reduce EIS acceptance barriers through play, recent research has not 
yet focused on this approach. While research has already shown how students can learn and 
perform new content through an interactive, game-based learning platform (Xinogalos & 
Satratzemi, 2022), a gamified approach with a leaderboard could provide employees with 
necessary EIS knowledge and potentially increase adaptation or reduce learning barriers when 
it comes to using yet unknown technologies. However, our experts were unable to define how 
such a learning platform should be designed to support their employees without overwhelming 
them.  
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7.7 Conclusion and Outlook 

The lack of explainability of intelligent systems inhibits their acceptance. XAI offers a potential 
path out of this dilemma. In response, we have developed a rigorous nascent design theory for 
EIS that includes four design principles and ten design features to foster the acceptance of AI-
assisted decision-making focusing on local and global explanation, personalization as well as 
addressing intrinsic barriers. In doing so, we incorporate both technical and socio-technical 
aspects of XAI to address the needs of different user groups, including end-users and developers 
to develop a broad, domain-independent design theory also considering human-agent 
interaction. In summary, our nascent design theory provides novel knowledge design 
knowledge for a symbiosis of expert and system and can further foster the integration of AI into 
operational practice. 
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Appendix B. The Effect of Transparency and Trust on Intelligent System Acceptance: Evidence from a User-based 
Study 

Appendix B.1. Dashboard Design 

 

Figure B.1 Dashboard Design  
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Appendix B.2. Measurement Item Collection Procedure 

Construct Measurement Item Abbrev. Primary Source Secondary 
Source 

Sequential 
Reduction 

1 2 3 4 5 

Pe
rfo

rm
an

ce
 E

xp
ec

ta
nc

y 
 

(P
E)

 

Perceived Usefulness 

Using the system in my job would enable me to accomplish tasks more 
quickly. PE1 

Davis (1989) Venkatesh et al. 
(2003) 

• • • • • 

Using the system would improve my job performance. PE2 • • • • • 
Using the system would enhance my effectiveness on the job. - • • •   
Using the system would make it easier to do my job. PE3 • • • • • 
I would find the system useful in my job. PE4 • • • • • 

Job-fit 

Use of the system will have no effect on the performance of my job 
(reverse scored). 

- Venkatesh et al. 
(2003) 

Thompson et al. 
(1991) 

•     

Use of the system can decrease the time needed for my important job 
responsibilities. •     

Use of the system can significantly increase the quality of output on my 
job. • • •   

Using this system can significantly increase the quantity of output for the 
same amount of effort in my job • • •   

Use of the system can increase the effectiveness of performing job tasks. •     
Use can increase the quantity of output for the same amount of effort. • • •   
Considering all tasks. the general extent to which use of the system could 
assist on the job. • • •   

Relative Advantage 

Using the system enables me to accomplish tasks more quickly. 

- Moore and 
Benbasat (1991) 

Venkatesh et al. 
(2003) 

• •    
Using the system improves the quality of the work I do. • • •   
Using the system makes it easier to do my job. •     
Using the system enhances my effectiveness on the job. •     
Using the system in my job would increase my productivity. PE5 • • • • • 

Outcome Expectations - 
Performance 

 

If I use the system, I will increase my effectiveness on the job. 

- Venkatesh et al. 
(2003) 

Compeau and 
Higgins (1995) 

•     
If I use the system, I will spend less time on routine job tasks. • • •   
If I use the system, I will increase the quality of output of my job. •     
If I use the system, I will increase the quantity of output for the same 
amount of effort. • • •   

If I use the system, my coworkers will perceive me as competent. • • •   
If I use the system, I will increase my chances of obtaining a promotion. • • •   
If I use the system, I will increase my chances of getting a raise. • • •   

Ef
fo

rt 
Ex

pe
ct

a
nc

y  
(E

E)
 

Perceived Ease of Use 
Learning to operate the system would be easy for me. EE1 Venkatesh et al. 

(2003) Davis (1989) 
• • • • • 

I would find it easy to get the system to do what I want it to do. EE2 • • • • • 
My interaction with the system would be clear and understandable. EE3 • • • • • 
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I would find the system easy to use. EE4 • • • • • 
I would find the system to be flexible to interact with. - • • •   
It would be easy for me to become skillful at using the system. - •     

Complexity 

Using the system takes too much time from my normal duties. 

- Venkatesh et al. 
(2003) 

Thompson et al. 
(1991) 

• • •   
Working with the system is so complicated. it is difficult to understand 
what is going on. • • •   

Using the system involves too much time doing mechanical operations 
(e.g.. data input). • • •   

It takes too long to learn how to use the system to make it worth the effort. • • •   

Ease of Use 

My interaction with the system is clear and understandable. 

- Venkatesh et al. 
(2003) 

Moore and 
Benbasat (1991) 

•     
I believe that it is easy to get the system to do what I want it to do. •     
Overall. I believe that the system is easy to use. •     
Learning to operate the system is easy for me. •     

A
tti

tu
de

 T
ow

ar
ds

 A
I T

ec
hn

ol
og

y 
(A

TT
) 

Intrinsic Motivation 

I find using the system to be enjoyable - 

Davis et al. (1992) 

- •     

The actual process of using the system would be pleasant. ATT1 Venkatesh et al. 
(2003) • • • • • 

I have fun using the system. - - •     

Affect Toward Use 

This system would make work more interesting. ATT2 (Thompson et al., 
1991) 

Venkatesh et al. 
(2003) • • • • • 

Working with the system is fun. 
- 

Venkatesh et al. 
(2003) - 

•     

The system is okay for some jobs. but not the kind of job I want. (R) (Thompson et al., 
1991) • • •   

Affect 

I would like to work with the system. ATT3 
Compeau et al. 
(1999) 

Venkatesh et al. 
(2003) 

• • • • • 
I look forward to those aspects of my job that require me to use the system. 

- 
• • •   

Using the system is frustrating for me. (R) • • •   
Once I start working on the system. I find it hard to stop. • • •   

Attitude Toward 
Behavior 

Using the system would be a good idea ATT4 (Peters et al., 2020); 
Taylor and Todd 
(1995) 

Venkatesh et al. 
(2003) 

• • •  • 
I dislike/like the idea of using the system. - •     
Using the system would be wise move. ATT5 • • •  • 
Using the system is unpleasant/pleasant. - • • •   

Behavioral Intention 
(BI) 

If this system was available to me, I would intend to use this system in the 
next months. BI1 

Venkatesh et al. 
(2003) - 

 • • • • 

If this system was available to me, I predict I would use this system in the 
next months. BI2  • • • • 

If this system was available to me, I would plan to use this system in the 
next months. BI3 • • • • • 

System Transparency 
(ST) 

I know what will happen the next time I use the system because I 
understand how it behaves. - Madsen and Gregor 

(2000) - • • •   
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I would understand how this system will assist me with decisions I have to 
make. ST1 • • • • • 

Although I may not know exactly how the system works. I know how to 
use it to make decisions about the problem. 

- 

• • •   

It is easy to follow what the system does. • • •   
I recognize what I should do to get the advice I need from the system the 
next time I use it. • • •   

I would understand why this system provided the decision it did. ST2 Cramer et al. (2008) • • • • • 
I would understand what this system bases its provided decision on. ST3 • • •  • 

Ability Beliefs 
(AB) 

This system would be competent in providing maintenance decision 
support. AB1 

McKnight et al. 
(2002) 

Cheng et al. 
(2008) 

• • • • • 

This system would perform maintenance decision support very well. AB2 • • • • • 
In general, this system would be proficient providing maintenance 
decision support. AB3 • • • • • 

Trust Propensity Towards AI (TP) 

It would be easy for me to trust this system. TP1 

Lee and Turban 
(2001)  

Cheng et al. 
(2008); Wang and 
Benbasat (2007) 

• • • • • 
My tendency to trust this system would be high. TP2 • • • • • 
I would tend to trust this system, even though I have little or no knowledge 
of it. TP3 • • • • • 

Trusting this system would be difficult for me. TP4 Wang and 
Benbasat (2007) • • • •  

Facilitating 
Conditions 

(FC) 

Perceived 
Behavioral 

Control 

I have control over using the system. - 

(Taylor & Todd, 
1995) 

Venkatesh et al. 
(2003) 

•     
I have the resources necessary to use the system. - • • •   
I have the knowledge necessary to use the system. - • • •   
Given the resources, opportunities and knowledge it takes to use the 
system, it would be easy for me to use the system. - • •    

The system is not compatible with other systems I use. - • • •   

Facilitating 
Conditions 

Guidance was available to me in the selection of the system. - 
(Thompson et al., 
1991) 

Venkatesh et al. 
(2003) 

•     
Specialized instruction concerning the system was available to me. - • • •   
A specific person (or group) is available for assistance with system 
difficulties. - • • •   

Compatibility 
Using the system is compatible with all aspects of my work. - (Moore & 

Benbasat, 1991) 
Venkatesh et al. 
(2003) 

• • •   
I think that using the system fits well with the way I like to work. - • •    
Using the system fits into my work style. - •     

 
Social Influence 

(SI) 

Subjective Norm 

People who influence my behavior think that I should use the system. - (Davis, 1989; 
Fishbein & Ajzen, 
1977; Taylor & 
Todd, 1995) 

Venkatesh et al. 
(2003) 

• •    
People who are important to me think that I should use the system. - • 

•    

Social Factors I use the system because of the proportion of coworkers who use the 
system. 

- (Thompson et al., 
1991) 

Venkatesh et al. 
(2003) 

•     



Appendix  

 

166 

The senior management of this business has been helpful in the use of the 
system. 

- •     

My supervisor is very supportive of the use of the system for my job. - •     
In general, the organization has supported the use of the system. - • •    

Image 

People in my organization who use the system have more prestige than 
those who do not. 

- 

(Moore & 
Benbasat, 1991) 

Venkatesh et al. 
(2003) 

•     

People in my organization who use the system have a high profile. - •     
Having the system is a status symbol in my organization. - • 

    

Legend: Sequential reduction of the item collection to fit the defined use case: 1) preliminary work, 2) authors’ internal discussion, 3) expert survey, 4) pre-study, 5) main study. 

Table B.1 Measurement Item Collection Procedure 
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Appendix B.3. Validation and Reliability Testing Results Pre-Study 

Crossloadings 

Factors ATT BI EE PE ST AB TP 
ATT1 0.819 0.436 0.521 0.518 0.180 0.658 0.580 
ATT2 0.581 0.107 0.285 0.268 0.021 0.345 0.179 
ATT3 0.872 0.269 0.622 0.482 0.110 0.565 0.453 
BI1 0.498 0.859 0.500 0.536 0.325 0.458 0.589 
BI2 0.190 0.911 0.250 0.321 0.343 0.264 0.318 
BI3 0.229 0.800 0.276 0.330 0.361 0.315 0.275 
EE2 0.476 0.208 0.773 0.313 0.002 0.480 0.495 
EE3 0.366 0.331 0.758 0.177 0.214 0.285 0.198 
EE4 0.686 0.437 0.891 0.452 0.203 0.520 0.449 
PE1 0.327 0.443 0.207 0.746 0.396 0.398 0.371 
PE2 0.461 0.497 0.281 0.846 0.228 0.432 0.429 
PE3 0.509 0.300 0.342 0.776 0.129 0.454 0.347 
PE4 0.483 0.219 0.386 0.739 0.132 0.342 0.255 
PE5 0.530 0.437 0.376 0.881 0.305 0.404 0.348 
ST1 0.188 0.225 0.263 0.211 0.842 0.269 0.268 
ST2 0.091 0.445 0.235 0.309 0.890 0.239 0.105 
AB1 0.677 0.421 0.524 0.522 0.241 0.918 0.731 
AB3 0.521 0.215 0.328 0.338 0.222 0.799 0.558 
AB3 0.520 0.399 0.463 0.356 0.260 0.707 0.419 
TP1 0.637 0.410 0.503 0.405 0.191 0.751 0.929 
TP2 0.507 0.436 0.475 0.440 0.103 0.632 0.906 
TP3 0.213 0.412 0.335 0.254 0.267 0.339 0.584 
TP4 0.014 -0.180 0.055 0.083 -0.093 -0.107 -0.450 

Fornell-Larcker Criterion 
Factors ATT BI EE PE ST AB TP 

ATT 0.768 - - - - - - 
BI 0.391 0.858 - - - - - 
EE 0.650 0.427 0.757 - - - - 
PE 0.576 0.486 0.393 0.799 - - - 
ST 0.156 0.397 0.285 0.305 0.866 - - 
AB 0.710 0.423 0.540 0.509 0.291 0.813 - 
TP 0.575 0.495 0.526 0.443 0.207 0.720 0.746 

Table B.2 Validation and Reliability Testing Results Pre-Study 
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Appendix B.4. Decisions on Measurement Items after Pre-Study 

We conclude that the items for EE are well chosen, as these have been tested and verified in 
many studies based on the UTAUT model. In addition, EE does not fail any other criteria except 
indicator reliability (EE1). Thus, we retain all measurement items for EE. We conclude that 
items for ST are, in principle, well chosen. However, we conclude that an additional 
measurement item for ST must be added as it lacks internal consistency (CA < 0.7). Hence, we 
extend our items by ST3, which is derived from Cramer et al. (2008). Item loadings for TP3 
(0.58) and TP4 (-0.45) are below the threshold of 0.7. TP4 seems to be particularly problematic, 
as the reverse wording suggested by Cheng et al. (2008) as well as Wang and Benbasat (2007) 
causes convergence reliability issues. Removing TP4 leads to a higher CA (0.75), AVE (0.68), 
and CR (0.86). Since using reversed wording is not advised (Van Sonderen et al., 2013; Zhang 
et al., 2016), we decide to drop TP4. We decided to follow Lee and Turban (2001) and use the 
original wording in line with the other items for the main study (TP1-3). We decide to retain 
TP3 in the main study, as the loading is satisfactory and the construct itself is reliable if TP4 is 
dropped. As ATT2 performs subpar in terms of item loading, we decided to add additional 
items. Additionally, ATT has a low value for CA, indicating low internal consistency. Thus, 
we added ATT4 and ATT5 following Taylor and Todd (1995). It was recently used in a similar 
context by (Peters et al., 2020). 

Appendix B.5. Demographics of Pre-Study 

Characteristics Attributes Value Characteristics Attributes Value 
Freq. Percent. Freq. Percent. 

Gender 
Male 49 81.67 

Experience with 
intelligent systems in 

industrial maintenance 
(EXP2) 

None 7 11.67 
Female 9 15.00 <1 year 22 36.67 
Others 2 3.33 1-3 years 15 25.00 

Age 

<=20 0 0.00 3-5 years 16 26.67 
21-30 7 11.67 5-10 years 0 0.00 
31-40 11 18.33 >10 years 0 0.00 
41-50 10 16.67 

Experience 
with AI 
(EXP3) 

None 0 0.00 
51-60 26 43.33 <1 year 2 3.33 
>61 6 0.10 1-3 years 17 28.33 

Experience in 
industrial 

maintenance 
(EXP1) 

None 0 0.00 3-5 years 22 36.67 
<1 year 19 26.67 5-10 years 15 25.00 

1-3 years 9 15.00 >10 years 4 6.67 
3-5 years 8 13.33 Note: Gender, Age, EXP1, EXP2, and EXP3 were used 

as interaction moderation. 5-10 years 4 6.67 
>10 years 19 26.67 

Table B.3 Demographics of Pre-Study 

 

 



Appendix  

 

169 

Appendix B.6. Validation and Reliability Testing Results for Main Study 

Fornell-Larcker Criterion Main Study 
Factors AGE AGE-EE AGE-PE ATT BI EE EX1-EE EX1-PE EXP2-EE EXP3-PE EXP3-EE EXP3-PE EPX1 EXP2 EXP3 GEN GEN-EE GEN-PE PE ST AB TP 

Age 1.000 - - - - - - - - - - - - - - - - - - - - - 

AGE-EE 0.030 1.000 - - - - - - - - - - - - - - - - - - - - 

AGE-PE -0.003 0.515 1.000 - - - - - - - - - - - - - - - - - - - 

ATT -0.026 -0.053 -0.008 0.841 - - - - - - - - - - - - - - - - - - 

BI 0.075 -0.056 -0.084 0.634 0.951 - - - - - - - - - - - - - - - - - 

EE 0.024 -0.283 -0.071 0.573 0.434 0.835 - - - - - - - - - - - - - - - - 

EXP1-EE -0.019 -0.038 -0.022 0.056 0.086 0.053 1.000 - - - - - - - - - - - - - - - 

EXP1-PE 0.073 -0.026 -0.066 0.076 0.039 0.019 0.630 1.000 - - - - - - - - - - - - - - 

EXP2-EE 0.098 0.043 -0.019 0.127 0.082 0.036 0.604 0.387 1.000 - - - - - - - - - - - - - 

EXP3-PE 0.040 -0.056 0.004 0.110 0.065 0.037 0.353 0.561 0.321 1.000 - - - - - - - - - - - - 

Exp3-EE -0.078 0.039 -0.053 0.027 0.000 0.005 0.546 0.347 0.506 0.520 1.000 - - - - - - - - - - - 

Exp3-PE 0.144 -0.024 -0.066 0.039 -0.009 0.007 0.456 0.713 0.664 0.528 0.370 1.000 - - - - - - - - - - 

EXP1 0.023 -0.022 0.083 0.120 0.134 0.252 0.382 0.226 0.286 0.129 0.261 0.077 1.000 - - - - - - - - - 

EXP2 0.079 0.121 0.149 0.097 0.059 0.216 0.303 0.071 0.235 0.001 0.168 0.107 0.571 1.000 - - - - - - - - 

EXP3 0.033 -0.097 0.048 0.082 0.143 0.158 0.279 0.138 0.170 0.047 0.049 0.001 0.536 0.429 1.000 - - - - - - - 

GEN -0.028 -0.070 0.048 0.027 -0.025 0.031 -0.018 0.020 -0.113 0.056 -0.047 -0.075 0.042 0.117 0.077 1.000 - - - - - - 

GEN-EE -0.052 -0.126 -0.163 -0.139 -0.146 -0.227 0.066 0.067 0.163 0.153 0.244 0.124 -0.016 -0.106 -0.044 -0.023 1.000 - - - - - 

GEN-PE 0.038 -0.170 -0.175 -0.153 -0.156 -0.176 0.061 0.139 0.101 0.090 0.148 0.185 0.017 -0.061 0.052 -0.040 0.633 1.000 - - - - 

PE 0.010 -0.073 -0.054 0.720 0.616 0.596 0.018 0.004 0.006 0.038 0.036 -0.127 0.202 0.139 0.105 0.053 -0.174 -0.191 0.860 - - - 

ST -0.024 -0.089 0.075 0.559 0.472 0.539 0.088 0.048 0.033 0.117 0.073 -0.016 0.170 0.105 0.040 -0.015 -0.098 -0.149 0.505 0.892 - - 

AB 0.025 -0.013 0.118 0.687 0.552 0.531 0.000 -0.027 -0.018 0.132 0.026 -0.078 0.115 0.093 0.105 -0.007 -0.173 -0.144 0.594 0.610 0.905 - 

TP -0.007 -0.040 -0.060 0.600 0.444 0.462 0.111 0.071 0.069 0.148 0.121 0.010 0.045 0.084 0.069 -0.005 -0.065 -0.131 0.528 0.411 0.656 0.877 

Table B.4 Fornell-Larcker Criterion Main Study 
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Crossloadings Main Study 
Factors AGE AGE-EE AGE-PE ATT BI EE EXP1-EE EXP1-PE EXP2-EE EXP3-PE EXP3-EE EXP3-PE EXP1 EXP2 EXP3 GEN GEN-EE GEN-PE PE ST AB TP 

AGE 1.000 0.030 -0.003 -0.026 0.075 0.024 -0.019 0.073 0.098 0.040 -0.078 0.144 0.023 0.079 0.033 -0.028 -0.052 0.038 0.010 -0.024 0.025 -0.007 

ATT1 -0.125 -0.093 0.038 0.764 0.460 0.566 0.021 -0.021 0.053 0.029 -0.008 0.007 0.142 0.129 0.045 -0.047 -0.066 -0.148 0.510 0.454 0.530 0.372 

ATT3 -0.038 -0.107 -0.017 0.856 0.557 0.490 0.116 0.137 0.146 0.166 0.088 0.080 0.132 0.166 0.055 -0.010 -0.068 -0.110 0.643 0.521 0.551 0.495 

ATT4 0.091 -0.015 -0.025 0.881 0.557 0.462 0.016 0.074 0.126 0.078 0.009 0.026 0.089 0.028 0.110 0.059 -0.160 -0.124 0.646 0.463 0.650 0.603 

ATT5 -0.036 0.030 -0.015 0.861 0.554 0.430 0.032 0.053 0.095 0.087 -0.004 0.015 0.047 0.012 0.063 0.079 -0.166 -0.137 0.613 0.445 0.576 0.531 

BI1 0.026 -0.011 -0.085 0.610 0.953 0.421 0.028 -0.008 0.059 0.029 0.009 -0.047 0.132 0.056 0.120 -0.038 -0.141 -0.163 0.591 0.428 0.506 0.416 

BI2 0.155 -0.077 -0.063 0.606 0.931 0.424 0.121 0.069 0.091 0.060 -0.030 0.017 0.141 0.079 0.142 -0.027 -0.130 -0.118 0.595 0.442 0.540 0.421 

BI3 0.032 -0.072 -0.092 0.593 0.968 0.393 0.094 0.048 0.084 0.095 0.022 0.003 0.108 0.034 0.146 -0.008 -0.147 -0.166 0.572 0.477 0.527 0.429 

EE1 0.017 -0.279 -0.053 0.373 0.273 0.814 0.060 -0.043 0.019 -0.022 -0.047 -0.038 0.212 0.190 0.182 0.067 -0.180 -0.186 0.423 0.339 0.291 0.279 

EE2 0.001 -0.167 0.006 0.381 0.232 0.724 0.099 0.088 0.080 0.059 0.035 0.093 0.236 0.262 0.153 0.058 -0.135 -0.054 0.346 0.449 0.450 0.415 

EE3 -0.042 -0.221 -0.109 0.582 0.466 0.893 0.026 0.013 0.012 0.062 0.050 -0.020 0.186 0.142 0.084 0.015 -0.271 -0.195 0.619 0.520 0.529 0.457 

EE4 0.107 -0.284 -0.061 0.528 0.422 0.898 0.013 0.005 0.020 0.013 -0.035 -0.001 0.224 0.161 0.140 -0.013 -0.154 -0.142 0.546 0.466 0.465 0.372 

PE1 -0.034 -0.106 0.002 0.514 0.447 0.518 -0.021 -0.009 0.008 0.028 0.075 -0.100 0.224 0.121 0.072 -0.020 -0.097 -0.127 0.838 0.421 0.449 0.361 

PE2 0.012 -0.028 -0.048 0.661 0.505 0.459 0.075 0.061 0.068 0.063 0.056 -0.058 0.162 0.195 0.131 0.161 -0.160 -0.168 0.855 0.452 0.536 0.476 

PE3 -0.020 -0.072 -0.048 0.659 0.545 0.577 0.009 0.002 -0.034 0.032 0.059 -0.141 0.181 0.109 0.082 -0.041 -0.164 -0.137 0.895 0.449 0.544 0.473 

PE4 0.058 -0.019 -0.071 0.647 0.608 0.545 0.034 -0.002 0.025 0.021 -0.025 -0.104 0.144 0.087 0.060 0.025 -0.131 -0.125 0.853 0.404 0.509 0.484 

PE5 0.018 -0.098 -0.060 0.595 0.529 0.460 -0.026 -0.039 -0.043 0.019 -0.001 -0.143 0.168 0.086 0.104 0.095 -0.188 -0.263 0.858 0.446 0.508 0.463 

ST1 -0.032 -0.027 0.045 0.531 0.481 0.476 0.034 -0.023 0.008 0.089 0.062 -0.063 0.096 0.015 0.018 -0.060 -0.132 -0.176 0.469 0.854 0.600 0.400 

ST2 -0.023 -0.076 0.111 0.472 0.401 0.470 0.040 -0.004 0.013 0.075 0.025 -0.044 0.159 0.143 0.045 0.012 -0.105 -0.173 0.430 0.920 0.524 0.335 

ST3 -0.008 -0.140 0.046 0.486 0.373 0.496 0.166 0.162 0.070 0.150 0.109 0.070 0.206 0.132 0.046 0.014 -0.020 -0.044 0.448 0.902 0.501 0.358 

AB1 -0.024 0.057 0.154 0.565 0.463 0.404 -0.029 -0.062 -0.076 0.097 -0.013 -0.167 0.104 0.093 0.096 0.038 -0.153 -0.169 0.507 0.554 0.899 0.537 

AB2 0.055 -0.060 0.052 0.653 0.514 0.573 -0.007 -0.077 0.019 0.053 0.008 -0.047 0.124 0.132 0.111 -0.017 -0.157 -0.115 0.563 0.518 0.888 0.588 

AB3 0.035 -0.028 0.115 0.643 0.519 0.466 0.031 0.056 0.004 0.200 0.070 -0.007 0.086 0.034 0.079 -0.037 -0.159 -0.111 0.543 0.582 0.926 0.649 

TP1 -0.051 0.009 -0.031 0.596 0.449 0.456 0.097 0.093 0.083 0.144 0.139 0.038 0.057 0.081 0.067 0.006 -0.074 -0.157 0.519 0.419 0.628 0.937 

TP2 -0.006 -0.065 -0.049 0.566 0.402 0.446 0.113 0.112 0.110 0.197 0.147 0.085 0.039 0.047 0.050 -0.015 -0.065 -0.121 0.497 0.397 0.606 0.935 

TP3 0.060 -0.058 -0.091 0.393 0.300 0.291 0.080 -0.046 -0.036 0.022 0.006 -0.135 0.017 0.102 0.066 -0.005 -0.024 -0.051 0.355 0.240 0.477 0.744 
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AGE * EE 0.030 1.000 0.515 -0.053 -0.056 -0.283 -0.038 -0.026 0.043 -0.056 0.039 -0.024 -0.022 0.121 -0.097 -0.070 -0.126 -0.170 -0.073 -0.089 -0.013 -0.040 

EE * EXP1 -0.019 -0.038 -0.022 0.056 0.086 0.053 1.000 0.630 0.604 0.353 0.546 0.456 0.382 0.303 0.279 -0.018 0.066 0.061 0.018 0.088 0.000 0.111 

EE * EXP2 0.098 0.043 -0.019 0.127 0.082 0.036 0.604 0.387 1.000 0.321 0.506 0.664 0.286 0.235 0.170 -0.113 0.163 0.101 0.006 0.033 -0.018 0.069 

EE *EXP3 -0.078 0.039 -0.053 0.027 0.000 0.005 0.546 0.347 0.506 0.520 1.000 0.370 0.261 0.168 0.049 -0.047 0.244 0.148 0.036 0.073 0.026 0.121 

EE * GEN -0.052 -0.126 -0.163 -0.139 -0.146 -0.227 0.066 0.067 0.163 0.153 0.244 0.124 -0.016 -0.106 -0.044 -0.023 1.000 0.633 -0.174 -0.098 -0.173 -0.065 

PE- *AGE -0.003 0.515 1.000 -0.008 -0.084 -0.071 -0.022 -0.066 -0.019 0.004 -0.053 -0.066 0.083 0.149 0.048 0.048 -0.163 -0.175 -0.054 0.075 0.118 -0.060 

PE-*EXP1 0.073 -0.026 -0.066 0.076 0.039 0.019 0.630 1.000 0.387 0.561 0.347 0.713 0.226 0.071 0.138 0.020 0.067 0.139 0.004 0.048 -0.027 0.071 

PE-*EXP2 0.144 -0.024 -0.066 0.039 -0.009 0.007 0.456 0.713 0.664 0.528 0.370 1.000 0.077 0.107 0.001 -0.075 0.124 0.185 -0.127 -0.016 -0.078 0.010 

PE- * EXP3 0.040 -0.056 0.004 0.110 0.065 0.037 0.353 0.561 0.321 1.000 0.520 0.528 0.129 0.001 0.047 0.056 0.153 0.090 0.038 0.117 0.132 0.148 

PE-*GEN 0.038 -0.170 -0.175 -0.153 -0.156 -0.176 0.061 0.139 0.101 0.090 0.148 0.185 0.017 -0.061 0.052 -0.040 0.633 1.000 -0.191 -0.149 -0.144 -0.131 

Table B.5 Crossloadings Main Study 
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Appendix B.7. Variance Inflation Factor Values for Main Study 

Inner Variance Inflation Factor Values 

 AGE AGE_EE AGE_PE ATT BI EE EX1_EE EX1_PE EXP2_EE EXP3_PE EXP3_EE EXP3_PE EXP1 EXP2 EXP3 GEN GEN_EE GEN_PE PE ST AB TP 

AGE - - - - 1.086 - - - - - - - - - - - - - - - - - 

AGE_EE - - - - 1.774 - - - - - - - - - - - - - - - - - 

AGE_PE - - - - 1.529 - - - - - - - - - - - - - - - - - 

ATT - - - - 2.907 - - - - - - - - - - - - - - - - - 

BI - - - - - - - - - - - - - - - - - - - - - - 

EE - - - 1.625 2.325 - - - - - - - - - - - - - - - - - 

EX1_EE - - - - 3.485 - - - - - - - - - - - - - - - - - 

EX1_PE - - - - 4.606 - - - - - - - - - - - - - - - - - 

EXP2_EE - - - - 3.763 - - - - - - - - - - - - - - - - - 

EXP3_PE - - - - 2.117 - - - - - - - - - - - - - - - - - 

EXP3_EE - - - - 2.208 - - - - - - - - - - - - - - - - - 

EXP3_PE - - - - 5.245 - - - - - - - - - - - - - - - - - 

EXP1 - - - - 2.200 - - - - - - - - - - - - - - - - - 

EXP2 - - - - 1.910 - - - - - - - - - - - - - - - - - 

EXP3 - - - - 1.623 - - - - - - - - - - - - - - - - - 

GEN - - - - 1.086 - - - - - - - - - - - - - - - - - 

GEN_EE - - - - 1.924 - - - - - - - - - - - - - - - - - 

GEN_PE - - - - 1.859 - - - - - - - - - - - - - - - - - 

PE - - - 1.774 2.668 - - - - - - - - - - - - - - - - - 

ST - - - - 1.747 1.000 - - - - - - - - - - - - 1.203 - 1.000 1.594 

AB - - - - - - - - - - - - - - - - - - - - - 1.594 

TP - - - 1.455 1.778 - - - - - - - - - - - - - 1.203 - - - 

Outer Variance Inflation Factor Values 

VIF 

AGE ATT1 ATT3 ATT4 ATT5 BI1 BI2 BI3 EE1 EE2 EE3 EE4 EXP1 EXP2 EXP3 GEN PE1 PE2 PE3 PE4 

1.000 1.750 2.192 2.814 2.674 6.357 3.598 7.907 2.396 1.514 2.385 3.116 1.000 1.000 1.000 1.000 2.624 2.576 3.707 2.781 
PE5 ST1 ST2 ST3 AB1 AB2 AB3 TP1 TP2 TP3 AGE_EE EE_EXP1 EE_EXP2 EE_EXP3 EE_GEN PE_AGE PE_EXP1 PE_EXP2 PE_EXP3 PE_GEN 

2.719 1.775 3.599 3.262 2.625 2.354 2.968 4.150 4.152 1.444 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table B.6 Variance Inflation Factor Values for Main Study 
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Appendix B.8. Distribution of Factors of Main Study 

Median and Standard Derivation of Factors 
Factor Median SD 

BI1 6.00 1.08 
BI2 6.00 1.03 
BI3 6.00 1.11 
ST1 6.00 0.97 
ST2 6.00 1.18 
ST3 6.00 1.12 
AB1 6.00 0.86 
AB2 6.00 0.95 
AB3 6.00 0.94 
TP1 5.00 1.09 
TP2 5.00 1.12 
TP3 5.00 1.18 
TP4 2.50 1.29 
EE1 6.00 1.08 
EE2 5.00 1.14 
EE3 6.00 0.96 
EE4 6.00 1.03 
PE1 6.00 1.25 
PE2 6.00 1.07 
PE3 6.00 1.09 
PE4 6.00 1.06 
PE5 6.00 1.05 

ATT1 5.00 1.06 
ATT2 5.00 1.18 
ATT3 6.00 0.99 
ATT4 6.00 0.82 
ATT5 6.00 0.86 

Table B.7 Distribution of Factors of Main Study 

 

  



Appendix 

 

174 

Appendix C. Stop Ordering Machine Learning Algorithms by their 
Explainability! A User-Centered Investigation of Performance and 
Explainability 

Appendix C.1. Synthesis of Common ML Algorithms Classification Schemes 

 

Figure C.1 Synthesis of Common ML Algorithm Classification Schemes (Arrieta et al., 2020; 
Dam et al., 2018; Gunning, 2019; Nanayakkara et al., 2018; Rudin, 2019; Vempala & Russo, 

2018; Yang & Bang, 2019) 
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Appendix C.2. Tukey’s HSD Performance Results for Experiment I 

Tukey’s HSD Results for Performance at HEART 
Model 1 Model 2 Difference Lower Upper 

Linear Regression Decision Tree -0.10423810 -0.183724224 -0.02475197 
SVM Linear Regression 0.18915873 0.109672601 0.26864486 
Random Forest Linear Regression 0.14090476 0.061418633 0.22039089 
Linear Regression Deep Neural Network -0.20741270 -0.286898827 -0.12792657 
SVM Decision Tree 0.08492063 0.005434506 0.16440676 
Random Forest Decision Tree 0.03666667 -0.042819462 0.11615280 
Decision Tree Deep Neural Network -0.10317460 -0.182660732 -0.02368847 
SVM Random Forest 0.04825397 -0.031232161 0.12774010 
SVM Deep Neural Network -0.01825397 -0.097740097 0.06123216 
Random Forest Deep Neural Network -0.06650794 -0.145994066 0.01297819 

Adjusted p-Value 
Linear 
Regression 1 - - - - 

Decision Tree 0.0041340 1 - - - 

SVM 0.0000001 0.0303912 1 - - 

Random Forest 0.0000452 0.6971360 0.4406984 1 - 
Deep Neural 
Network <0.0000001 0.0046519 0.9673788 0.1437956 1 

 Linear 
Regression 

Decision 
Tree SVM Random 

Forest 
Deep Neural 

Network 

Table C.1 Tukey’s HSD Performance Results for Experiment I 

 

  

 
Tukey’s HSD Results for Performance at BRAIN 

Model 1 Model 2 Difference Lower Upper 
Linear Regression Decision Tree -0.135090446 -0.18560311 -0.08457779 
SVM Linear Regression 0.211848639 0.16133598 0.26236130 
Random Forest Linear Regression 0.215705797 0.16519314 0.26621846 
Linear Regression Deep Neural Network -0.449773810 -0.50028647 -0.39926115 
SVM Decision Tree 0.076758194 0.02624553 0.12727085 
Random Forest Decision Tree 0.080615351 0.03010269 0.13112801 
Decision Tree Deep Neural Network -0.314683364 -0.36519602 -0.26417070 
SVM Random Forest -0.003857158 -0.05436982 0.04665550 
SVM Deep Neural Network -0.237925170 -0.28843783 -0.18741251 
Random Forest Deep Neural Network -0.234068012 -0.28458067 -0.18355535 

Adjusted p-Value 
Linear 

Regression 1 - - - - 

Decision Tree <0.0000001 1 - - - 

SVM <0.0000001 0.0006182 1 - - 

Random Forest <0.0000001 0.0002936 0.9995189 1 - 
Deep Neural 

Network <0.0000001 <0.0000001 <0.0000001 <0.0000001 1 

 Linear 
Regression 

Decision 
Tree SVM Random 

Forest 
Deep Neural 

Network 
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Appendix C.3. Tukey’s HSD Explainability Results for Experiment I 

Tukey’s HSD Results for Explainability in HEART 
Model 1 Model 2 Difference Lower Upper 

Linear Regression Decision Tree -1.38 -1.9320503 -0.82794965 
SVM Linear Regression -0.08 -0.6320503 0.47205035 
Random Forest Linear Regression 0.87 0.3179497 1.42205035 
Linear Regression Deep Neural Network 1.51 0.9579497 2.06205035 
SVM Decision Tree -1.46 -2.0120503 -0.90794965 
Random Forest Decision Tree -0.51 -1.0620503 0.04205035 
Decision Tree Deep Neural Network 2.89 2.3379497 3.44205035 
SVM Random Forest -0.95 -1.5020503 -0.39794965 
SVM Deep Neural Network 1.43 0.8779497 1.98205035 
Random Forest Deep Neural Network 2.38 1.8279497 2.93205035 

Adjusted p-Value 
Linear 
Regression 1 - - - - 

Decision Tree <0.0000001 1 - - - 

SVM 0.9947633 <0.0000001 1 - - 

Random Forest 0.0001870 0.0858495 0.0000314 1 - 
Deep Neural 
Network <0.0000001 <0.00000001 <0.0000001 <0.0000001 1 

 Linear 
Regression 

Decision 
Tree SVM Random 

Forest 
Deep Neural 

Network 

Table C.2 Tukey’s HSD Explainability Results for Experiment I 

 

 

 
Tukey’s HSD Results for Explainability in BRAIN 

Model 1 Model 2 Difference Lower Upper 
Linear Regression Decision Tree -0.67326733 -1.10541022 -0.24112443 
SVM Linear Regression -0.05940594 -0.49154883 0.3727395 
Random Forest Linear Regression 0.46534653 0.03320364 0.89748943 
Linear Regression Deep Neural Network 1.67326733 1.24112443 2.10541022 
SVM Decision Tree -0.73267327 -1.16481616 -0.30053037 
Random Forest Decision Tree -0.20792079 -0.64006368 0.22422210 
Decision Tree Deep Neural Network 2.34653465 1.91439176 2.77867755 
SVM Random Forest -0.52475248 -0.95689537 -0.09260958 
SVM Deep Neural Network 1.61386139 1.18171849 2.04600428 
Random Forest Deep Neural Network 2.13861386 1.70647097 2.57075675 

Adjusted p-Value 
Linear 

Regression 1 - - - - 

Decision Tree 0.0002307 1 - - - 

SVM 0.9957290 0.0000434 1 - - 

Random Forest 0.0275570 0.6806068 0.0084095 1 - 
Deep Neural 

Network <0.0000001 <0.0000001 <0.0000001 <0.0000001 1 

 Linear 
Regression 

Decision 
Tree SVM Random 

Forest 
Deep Neural 

Network 
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Appendix C.4. Tukey's HSD Explainability Results for Experiment II 

Tukey’s HSD Results for Explainability in BRAIN (XAI) 
Model 1 Model 2 Difference Lower Upper 

How Black-Box 1.316327 0.694698 1.937955 
How-To Black-Box 2.428571 1.806943 3.0502 
What-Else Black-Box 3.510204 2.888575 4.131833 
Why Black-Box 3.714286 3.092657 4.335914 
Why-Not Black-Box 2.571429 1.9498 3.193057 
How-To How 1.112245 0.490616 1.733873 
What-Else How 2.193878 1.572249 2.815506 
Why How 2.397959 1.776331 3.019588 
Why-not How 1.255102 0.633473 1.876731 
What-Else How-To 1.081633 0.460004 1.703261 
Why How-To 1.285714 0.664086 1.907343 
Why-Not How-To 0.142857 -0.47877 0.764486 
Why-Not What-Else 0.204082 -0.41755 0.82571 
Why-Not What-Else -0.93878 -1.5604 -0.31715 
Why-Not Why -1.142860 -1.76449 -0.52123 
How Black-Box 1.316327 0.694698 1.937955 

Adjusted p-Value 
Black-
Box 1 - - - - - 

How <0.0000001 1 - - - - 

Why <0.0000001 <0.0000001 1 - - - 

Why-Not <0.0000001 0.0000002 0.0000031 1 - - 

How-To <0.0000001 0.0000063 0.0000001 0.9863960 1 - 

What-Else <0.0000001 <0.0000001 0.9363242 0.0002666 0.0000127 1 

 Black-Box How Why Why-Not How-To What-Else 

Table C.3 Tukey's HSD Explainability Results for Experiment II 
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Appendix D. A Nascent Design Theory for Explainable Intelligent 
Systems 

Appendix D.1. Overview of Search String for Literature Review 

Database Search string Filter # 

Generic 
search string 

(“Explainable AI” OR “XAI OR Machine Learning” OR 
“Black*” OR “Intelligent*”) AND (“User*” OR “UX” OR “UI” 

OR "Human*” OR “HCI” OR “Practic*” OR “Stakeholder”) 
AND (“Expla*” OR “Understand*” OR “Interpre*” OR 

“Transparency” OR “Comprehen*”) AND (“Design*” OR 
“Principle*” OR “Guideline” OR “Requirement”). 

- - 

Science 
Direct 

(“Explainable AI” OR XAI OR “Machine Learning”) AND 
(User) AND (Design OR Principle OR Guideline OR 

Requirement) 

Abstract, title, 
author-specified 

keywords, 
research articles, 
review articles, 

practice, 
guidelines 

326 

EBSCO host 

((Explainable AI OR XAI OR Machine Learning OR Black* OR 
Intelligent*) AND (User* OR UX OR UI OR Human* OR HCI 

OR Practic* OR Stakeholder) AND (Expla* OR Understand* OR 
Interpre* OR Transparency OR Comprehen*) AND (Design* OR 

Principle* OR Guideline OR Requirement)) 

No restrictions 189 

IEEE Xplore 

((Explainable AI OR XAI OR Machine Learning OR Black* OR 
Intelligent*) AND (User* OR UX OR UI OR Human* OR HCI 
OR Practic OR Stakeholder) AND (Expla* OR Understand OR 
Interpre OR Transparency OR Comprehen*) AND (Design* OR 

Principle OR Guideline OR Requirement)) 

Abstract, 
publication title, 
author keywords, 

conferences, 
journals, 

magazines 

235 

AISeL 

abstract:( (Explainable AI OR XAI OR Machine Learning OR 
Black* OR Intelligent*) AND (User* OR UX OR UI OR 

Human* OR HCI OR Practic OR Stakeholder) AND (Expla* OR 
Understand OR Interpre OR Transparency OR Comprehen*) 

AND (Design* OR Principle OR Guideline OR Requirement)) 
AND title:( (Explainable AI OR XAI OR Machine Learning OR 

Black* OR Intelligent*) AND (User* OR UX OR UI OR 
Human* OR HCI OR Practic OR Stakeholder) AND (Expla* OR 

Understand OR Interpre OR Transparency OR Comprehen*) 
AND (Design* OR Principle OR Guideline OR Requirement)) 

Abstract, title 101 

ACM 
Digital 
Library 

[[Abstract: explainable ai] OR [All: xai] OR [All: machine 
learning] OR [All: black*] OR [All: intelligent*]] AND [[All: 

user*] OR [All: ux] OR [All: ui] OR [All: human*] OR [All: hci] 
OR [All: practic*] OR [All: stakeholder]] AND [[All: expla*] OR 
[All: understand*] OR [All: interpre*] OR [All: transparency] OR 
[All: comprehen*]] AND [[All: design*] OR [All: principle*] OR 

[All: guideline] OR [All: requirement]] 

Abstract, 
 

journals, 
proceedings 

348 
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Emerald 
Insight 

title:”((Explainable AI OR XAI OR Machine Learning OR 
Black* OR Intelligent*) AND (User* OR UX OR UI OR 

Human* OR HCI OR Practic* OR Stakeholder) AND (Expla* 
OR Understand* OR Interpre* OR Transparency OR 

Comprehen*) AND (Design* OR Principle* OR Guideline OR 
Requirement))” AND (abstract: ”((Explainable AI OR XAI OR 

Machine Learning OR Black* OR Intelligent*) AND (User* OR 
UX OR UI OR Human* OR HCI OR Practic* OR Stakeholder) 
AND (Expla* OR Understand* OR Interpre* OR Transparency 
OR Comprehen*) AND (Design* OR Principle* OR Guideline 

OR Requirement))”) 

Abstract, title, 
article, case study 

149 

Web of 
Science 

(ALL= ((“Explainable AI” OR XAI OR “Machine Learning” OR 
Black OR Intelligent*) AND (User OR UX OR UI OR Human 

OR HCI OR Practic OR Stakeholder) AND (Expla OR 
Understand OR Interpre OR Transparency OR Comprehen) AND 

(Design OR Principle OR Guideline OR Requirement))) 

Article, 
proceedings, 
paper, review 

78 

Table D.1 Overview used Search Strings for Databases 

Appendix D.2. Iterations of the Theory-based Nascent Design Theory 

Iteration I. To provide an overview of the topic explainable intelligent systems (EIS), we first 
analyzed and included an unstructured list of 20 publications. We identified these as 
comprehensive reappraisals of the topic area during the literature search (e.g., Amershi et al. 
2019; Lim and Dey 2009; Mohseni et al. 2018). To this end, we synthesized design goals for 
EIS and used them as prior knowledge to derive meta design requirements (vom Brocke et al. 
2020). Following the design theory development procedure of Möller et al. (2020), we then 
translated these meta design requirements into more output-related design requirements using 
the reasoning presented in the analyzed publications. Based on these design requirements, we 
defined an initial set of prescriptive instructions for our artifact in form of design principles and 
design features. 

Iteration II. During the second iteration, we arranged and structured design (meta-) 
requirements, principles, and features in an explicit scheme, that is in a concept matrix 
according to Webster and Watson (2002). In addition, we expanded the initial literature set with 
66 additional publications obtained in the literature search and analyzed the entire set of 86 
publications. 

Iteration III. Due to the large number of design elements in the third iteration cycle, we 
determined that specific properties were only considered relevant if they were mentioned in at 
least four publications. This restriction led to further condensation and summarization of 
individual design elements. 

The following table describes an overview of the applied iterations. 
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Iteration Summary # 

I 
Initial extraction and derivation of design (meta-) requirements and 
goals from the initial literature set. 

MDR=3 
DR=7 
DP=32 
DF=201 
C= 20 

II 
Analysis of the complete literature set to refine the schema. Mapping the 
derived design (meta-) requirements with the design principles and 
design features. 

MDR=3 
DR=5 
DP=16 
DF=62 
C= 86 

III 
Summary, restructuring and extension of design theory. Checking for 
compliance with quality criteria according to Möller et al. (2020). 

MDR=3 
DR=4 
DP=4 
DF=11 
C=86 

MDR = Meta design requirements; DR = Design requirements; DP = Design principles; DF = Design features; C = Count of contributions 

Table D.2 Overview of Iterations 

Appendix D.3. Resulting Theory-based Nascent Design Theory 

 

Figure D.1 Theory-based Nascent Design Theory 
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Appendix D.4. Evaluated Nascent Design Theory (First Design Cycle) 

A comprehensive overview of the adjustment and evaluation of the theory-based design theory 
is shown in the following table. Likewise, Figure D.1 illustrates the operationalized design 
theory of the first design cycle. Lastly, in Table D.2 we present the concept matrix for the 
literature that we used in the design theory of the first design cycle. 

Iteration IV. Within the fourth iteration, we presented our artifact within test interviews to 
make first adjustments to our theory-based design theory. 

Iteration V. Within the last iteration of the first design cycle, we conducted eleven expert 
interviews to evaluate our design theory. First, based on their perception of potential barriers to 
intelligent system adoption, we carried out an initial completeness check of our meta design 
requirements. Second, due to the novelty of the topic, we further verified the appropriateness 
and completeness of our design theory through open discussions with the experts of the 
interview study, by asking if they would add, modify, or replace any design element. 

Iteration Summary # 

IV 
Restructuring theory based on two expert test interviews1. Revaluation 
of literature (cf. Table D.2). 

MDR=3 
DR=4 
DP=4 
DF=11 

V 
Demonstration, enrichment, and evaluation of theory-based nascent 
design theory using eleven expert interviews1.  

MDR=3 
DR=4 
DP=4 
DF=11 

MDR = Meta design requirements; DR = Design requirements; DP = Design principles; DF = Design features 
1 Please see Table 1 of the paper for more information. 

Table D.3 Iteration within the Adjustment and Evaluation of the Nascent Design Theory 
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Figure D.2 Evaluated Nascent Design Theory of first DSR Cycle 
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Table D.4 Concept Matrix for Nascent Design Theory 
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Design Features ∑
Provide technical information x x x x x x x x x x x x x x x x x x x x x x x x 25
Provide input information x x x x x x x x x x x x 12
Provide (performance) metrics x x x x x x x x x x x x x x x x x x 20
Provide information about 
decision alternatives x x x x x x x 7

Provide hypothetical scenarios x x x x x x x 7
Provide archive of historical 
decisions x x x x x x x 7

Provide associative information x x x x x x x x x x x x x x 14

Use visualization techniques x x x x x x x x x x x x x x x x 17
Incorporate granularity and 
navigability x x x x x x x x x x 12

Group and prioritize 
explanations x x x x x x x x x x x 13

Use anthropomorphic content 
and designs x x x x x x x x x x 10

Design Principles ∑
Provide global explanations x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 40
Provide local explanations x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 47
Provide personalized interface 
design (preference, needs) x x x x x x x x x x x 13

Provide ability to address 
psychological/emotional factors 
(intrinsic barriers)

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 33

Design Requirements ∑
Improve intelligibility of 
system’s decision

x x x x x x x x x x x x x x x x x x x x x x x x 25

Support human in own decision-
making

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 31

Increase user motivation x x x x x x x x x x x x x x x x x x x x x x x x 25
Reduce cognitive effort x x x x x x x 10

Meta Design Requirements ∑
Increase system transparency x x x x x x x x x x x x x x x x x x x x 22
Increase system user trust x x x x x x x x x x x x x x x x x x 20
Increase system accessibility x x x x x x x x x x x x x x x x x x x x x x x 24
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Appendix D.5. Applied Use Case Evaluation (Second Design Cycle) 

Evaluation 
Criteria 

Construct Statement 

Accessibility 
AC1 The design principles are easy for me to understand. 
AC2 The design principles are easy for me to comprehend. 
AC3 The design principles are intelligible to me. 

Importance 
IM1 

In my view the design principles address a real problem in my professional 
practice. 

IM2 
In my view the design principles address an - acute or foreseeable - important 
problem in my professional practice. 

Novelty and 
insightfulness 

NI1 I find that the design principles convey new ideas to me. 
NI2 I find the design principles insightful to my own practice. 

Actability 
and guidance 

AG1 I think that the design principles can realistically be carried out in practice. 
AG2 I think that the design principles can easily be carried out in practice. 

AG3 
I think the design principles provide sufficient guidance for designing an 
explainable intelligent system. 

AG4 
I think that the design principles are not restrictive when designing an 
explainable intelligent system. 

Effectiveness 

EF1 
I believe that the design principles can help design explainable intelligent 
systems. 

EF2 
I find the design principles useful for designing explainable intelligent systems 
in practice. 

EF3 
Compared to my current situation, I believe that the design principles would 
increase my productivity in using an explainable intelligent system. 

EF4 
Compared to my current situation, I believe that the design principles would 
enhance my effectiveness in using an explainable intelligent system. 

Table D.5 Adapted Questionnaire for Evaluating the Design Principles according to Iivari et 
al. (2021) 
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