PACIFIC LINGUISTICS

Series D - No. 8

INFORMATION STORAGE AND RETRIEVAL: A DICTIONARY PROJECT

by

Adrianne Lang
Katharine E.W. Mather
Mary L. Rose

[^0]PACIFIC LINGUISTICS is published by the Linguistic Circle of Canberra and consists of four series:

```
SERIES A - OCCASIONAL PAPERS
SERIES B - MONOGRAPHS
SERIES C - BOOKS
SERIES D - SPECIAL PUBLICATIONS.
```

EDITOR: S.A. Wurm. ASSOCIATE EDITORS: D.C. Laycock, C.L. Voorhoeve.

ALL CORRESPONDENCE concerning PACIFIC LINGUISTICS, including orders and subscriptions, should be addressed to:

The Secretary, PACIFIC LINGUISTICS, Department of Linguistics, School of Pacific Studies, The Australian National University,

Canberra, A.C.T. 2600.
Australia.

Copyright (c) The Authors. First published 1972.

The editors are indebted to the Australian National University for help in the production of this series.

This publication was made possible by an initial grant from the Hunter Douglas Fund.

National Library of Australia Card number and ISBN 0858830876

ACKNOWLEDGEMENTS

The Enga Dictionary Project was organised and implemented while the authors were at The Australian National University: Adrianne Lang in the Department of Linguistics, Research School of Pacific Studies, Katharine E.W. Mather and Mary L. Rose in the Programming Section, Research School of Social Sciences and Pacific Studies. The Australian National University Computer Centre was used for all computing. We would like to express our appreciation to The Australian National University for having made this research possible. We would also like to acknowledge the assistance of Mrs C.A. Townsend and the Data Processing Unit of the A.N.U. in the tedious task of punching the 30,000 cards used in the project.

Adrianne Lang
Katharine E.W. Mather
Mary L. Rose

table of contents

Page
Acknowledgements 111
0.0 INTRODUCTION 1
1.0 DESCRIPTION OF THE DATA, by Adrianne Lang 2
1.1 PURPOSE AND METHOD 2
1.2 SCOPE 2
1.3 DESCRIPTION OF THE ITEMS 3
1.3.1 Entry Number 3
1.3.2 Enga Entry 3
1.3.3 Existential Verb 4
1.3.4 Incomplete Entries 4
1.3.5 Semantic Domain 4
1.3.6 Source of Entry 4
1.3.7 Source of Tone 4
1.3.8 Notebook and Tape 5
1.3.9 Thesaurus 5
1.3.10 Grammatical Class 5
1.3.11 Dialect 5
1.3.12 Language and Source 5
1.3.13 English Gloss 5
1.3.14 Cross-Reference 6
1.3.15 Class Inclusion 7
1.3.16 Attributive 7
1.3.17 Function 7
1.3.18 Contingency 7
1.3.19 Spatial 7
1.3.20 Operational 7
1.3.21 Comparison 7
Page
1.3.22 Exemplification/Instrumental 7
1.3.23 Provenience/Objective 7
1.3.24 Grading 8
1.3.25 Time and Duration 8
1.3.26 Explicative 8
1.3.27 Subjective 8
1.3.28 List 8
1.3.29 Antonymy 8
1.3.30 Ostensive 8
1.3.31 Method 8
1.3.32 Miscellaneous Information 8
1.3.33 Illustrative Citation 9
1.4 CODING 9
1.5 UTILISATION OF THE DICTIONARY 9
1.5.1 The Master File 9
1.5.2 The Word List 10
1.5.3 The Reversal 10
1.5.4 Like Words 10
1.5.5 Tone Patterns 10
1.5.6 Cross Reference Check 10
1.5.7 Descriptive Statistics 11
1.5.8 Incomplete Entries 11
1.6 UPDATING AND MAINTENANCE 11
1.7 PRINTOUTS 12
1.7.1 Sample Coding Sheet 12
1.7.2 Master Printout 13
1.7.3 Word List Printout 14
1.7.4 Reversal Printout 15
1.7.5 Like Words Printout 16
1.7.6 Tone Patterns Printout 17
1.7.7 Cross References Printout 18
2.0 FILE DESIGN AND CREATION, by Katharine E.W. Mather 19
2.1 DISK FILE STRUCTURE 19
2.1.1 Variable Length Data 19
2.1.2 Fixed Length Data 19
2.1.3 Record Addresses 20
2.1.4 Record Retrieval 20
2.1.5 File Sizes 20
2.1.6 Master File Record Format 21
Page
2.1.7 Record Length File Format 23
2.2 DISK FILE CREATION 23
2.2.1 Card Identification 23
2.2.2 Contents of Card Types 23
2.2.3 Continuation 23
2.2.4 Input Requirements 24
2.2.5 Card Input Format 24
2.2.6 Description of Creation Program 25
2.2.7 Flowchart 26
2.2.8 Listing 38
2.3 UPDATING 47
2.3.1 Description of Updating Program 47
2.3.2 Flowchart 48
2.3.3 Listing 57
3.0 FORTRAN RETRIEVAL TECHNIQUES, by Katharine E.W. Mather 65
3.1 SINGLE-PHASE RETRIEVALS 65
3.2 MULTI-PHASE RETRIEVALS 65
3.3 LISTINGS 67
3.3.1 Incomplete Item Program: No Card 21 67
3.3.2 Single Phase Retrieval: Noun and Noun Phrase 69
3.3.3 Multi Phase Retrieval: Semantic Domains 71
4.0 PL/1 RETRIEVAL TECHNIQUES, by Mary L. Rose 77
4.1 SORT OF MASTER FILE 77
4.1.1 Description of Program 77
4.1.2 Flowchart 79
4.1.3 Listings 86
4.2 CROSS REFERENCES 91
4.2.1 Description of Program 91
4.2.2 Flowchart 92
4.2.3 Listings 101
4.3 REVERSAL (ENGLISH-ENGA) 113
4.3.1 Description of Program 113
4.3.2 Flowchart 114
4.3.3 Listings 118
4.4 LIKE WORDS 126
4.4.1 Description of Program 126
4.4.2 Flowchart 127
Page
4.4.3 Listing 129
4.5 TONE PATTERNS 132
4.5.1 Description of Program 132
4.5.2 Flowchart 133
4.5.3 Listings 137
APPENDIX A: Computational Terms 148
Bibliography 151

1.0 DESCRIPTION OF THE DATA, by Adrianne Lang

1.1 PURPOSE AND METHOD

The goal of this project was to create a dictionary data file to allow the user maximum flexibility in storing and retrieving language data. For this purpose we used The Australian National University IBM 360/50. All data was coded (see also 1.4) and punched on standard 80 column cards. From these cards disk files were formed and the resulting master file functioned as a monolingual ethnographic dictionary of Enga, in which all information was with reference to the Enga entry. For each Enga entry the information was subdivided into 33 "items", each item containing a specific kind of information. Each item was assigned a specific space on the punched cards, in order to allow the computer to deal with each kind of information separately.

1.2 SCOPE

At present the dictionary master file contains 5545 entries in several mutually-intelligible dialects of Enga. Source materials for the Enga master file included word lists and other relevant documents published by the missions in the Enga area, as well as field data collected by A. and R. Lang ${ }^{1}$. In the future it is hoped to code an extensive English-Kyaka Enga Dictionary by the Australian Baptist Missionary Society (Draper n.d.). The Kyaka Enga entries will occupy entry numbers from 5545 upwards, and it will be possible either to sort the Kyaka Enga directly into the present file (using the alphabetic sort) to produce an expanded Enga Dictionary, or to use these entries as a sub-set of the main file and thus form a Kyaka Enga dictionary on which all other programs could be run separately. Further extensions could include the

[^1]coding of Ipili (a language related to Enga on the sub-family level), Nete (another sub-family level language), and possibly Kewa (related to Enga on the family level). All of this data, in combination with data already present in the main file could then be used for comparative work, e.g. the reconstruction of Proto-Engan.

1.3 DESCRIPTION OF THE ITEMS

The items are described in the order in which they follow each other on the punched cards (cf. 2.2.5 Card Format). Each item may be referred to by the final digits of the title, 1.e. 1.3.1 Entry Number, is referred to elsewhere as "Item l". The items include both fixed and variable length data, with the fixed length data occupying items 1 through 12 , and the variable length data occyping items 12 through 33.

1.3.1 Entry Number

A unique number was assigned each entry at the time it was coded. Entries are numbered consecutely in the order in which they are entered, and the entry number uniquely identifies every element on the coding sheets, the IBM cards (back-up storage), and the disk master file. At present six columns are used: the first four are the actual entry number and the final two are the card number within the entry.

1.3.2 Enga Entry

The Enga entry presented in this portion of the file is the item to which all the other information in the entry refers. The Enga entry is a word, phrase, or a bound morpheme. Phrasal entries included are those used in Bible translation, such as betésa ándenge dóko 'yeast' ("the thing that makes bread increase") and anda maki maki katengé yuú 'city' ("place where houses stand in rows"). The bound morphemes (one, the negative prefix, and the remainder suffixes) are included for the convenience of interested users and the entry information (items 15 through 33) is restricted for these entries. Since the hyphen sorts to the beginning in the alphabetic sort, these morphemes may be ignored if desired.

The computer keyboard and printer characters limited the transcription of Enga entries in only two ways: the tone mark followed the vowel over which it occurred, and the symbol 0 was represented by the digraph ng . At the onset of the project (October 1968) the orthography followed the conventions agreed upon by the missions at the Enga Orthography Conference of 1966; at the June 1969 Orthography Conference it was
decided to write the prenasals in Enga. This was accomplished in the master file during updating and re-creation, as the file was read onto the disk. Thus, \cap is presently represented as nng in the master file.

Originally twenty-five columns were allotted for the Enga entry, and this number was adequate for all Enga words and phrases. However, with the prenasals written in, some entries would have exceeded 25 characters. These entries were left unchanged in the master file during creation, and the orthographic changes done later by hand.

1.3.3 Existential Verb

Every noun in Enga co-occurs with a classificatory verb which denotes the habitual state of existence for that noun. These existential verbs formally mark the noun classes and correspond to the English copula 'to be'. The existential verbs were coded by abbreviation of the verb root.

1.3.4 Incomplete Entries

Entries with incomplete information in items 1 through 13 were coded with a question mark in this field, if the question mark was not already coded in the item field. Other entries wanted for reference were coded with an asterisk in the same space. After completion of the first stage of the project (when all incomplete entries would be checked and corrected), this field would be available for whatever other information might be desired.

1.3.5 Semantic Domain

This item contained information clasifying the main entry into semantic domains or fields. During the first stage, this was done using large groupings such as kinship terms, colour terms, artifacts, verbs of motion, verbs of breaking, plants, animal names, etc. Future work will include the sub-grouping of these semantic domains.

1.3.6 Source of Entry

This item was intended to account for the source of each main entry: the user could pinpoint dialectal or idiosyncratic biases of the originator. This item also allowed direct reference to published materials from which entries were taken.

1.3.7 Source of Tone

This item provided the informant's name and the date the main entry was toned in cases where the original entry had been coded without its
tone. When the original main entry was toned, the Source of Tone field was left blank, as the information was already given in item 6.

1.3.8 Notebook and Tape

For the majority of entries which were originally elicited in alphabetic order, this 1tem was left blank. Secondary and feedback 1tems have coded in this field the notebook where elicited; the notebook number refers to the tape used in eliciation.

1.3.9 Thesaurus

This item is to be used in the future as an extension of item 5, Semantic Domain, for the generation of an Enga thesaurus.

1.3.10 Grammatical Class

This item provided a tentative classification into conventional categories (noun, verb, determiner, etc.). The space allotted was large to allow for future sub-categorisation and flexibility. Default entries were left blank.

1.3.11 Dialect

With eight dialects in Enga, entries positively identified as to dialect were coded in this field. Retrieval of this information would produce dialect-specific word lists or dictionaries, as desired. This item also shows the phonological and morphological changes occurring In the Enga dialect change: ast́né 'father' (Laiapo dialect), apáné 'father' (Mae dialect); asingi 'old' (Laiapo), atingi 'old' (Mae).

1.3.12 Language and Source

If the main entry was a loan word, this item gave the source language and source word, when known. Marked for either Pidgin or English, it is most probable that all loan words are directly from Pidgin. This item allows for all loan words to be ignored or printed out separately (cf. Lang, forthcoming, in which loan words are marked with an asterisk).

1.3.13 English Gloss

This item contains the English gloss of the Enga entry; the number of English synonyms given was limited to only a few, since they would be redundant to native speakers of English (cf. Gleason 1955). This is the first item with variable length information, and the field allotted for English glosses and definitions is potentially limitless. Originally
the longest English gloss was 120 characters, but this was increased to 160 characters to allow such kinship definitions as 'husband's male inlaws except brother-in-law (wife's male relatives of other than her own and -2 generations (male ego); husband's cognates of -1 generation)'. All information in this item was coded by placing the head word first to facilitate the reversal of the master file into English-Enga (see 4.3).

Multiple glosses were separated by commas or semicolons for the reversal to the English-Enga index; any information in parentheses (as in the kinship definition given above) was ignored by the computer during the reversal. If alternate English glosses occurred with an entry, the initials of the original source were added following the gloss: 'to grow large (of trees) (LDH); to pay for magic used at marriage (RL)'. Tentative selectional features were included when possible: 'handsome (of men)'. Polysemous words (or possible homophones) were given as separate entries, in order to assign them to the appropriate semantic domains: kana ${ }_{1}$ 'shilling', kana ${ }_{2}$ 'moon', kana ${ }_{3}$ 'stone', $k^{k} a_{4}$ 'month'.

No sub-entries were coded (i.e. all entries were treated as main entries, cf. Mathiot 1967). This was for ease of retrieval and simplification (i.e. the lexicographer was not forced to make subjective decisions as to whether or not a given entry was the sub-entry of another entry).

1.3.14 Cross-Reference

This item was used to cross-reference the Enga entry with other entries of similar semantic domains and glosses. An example of this 1tem 1s:
asáné 'father'
cross-references: asá, apáné, áya, takánge
Another project using this item would be the listing of all crossreferenced items into groups with other desired information on each entry. This would permit the comparison of the glosses, features, etc. of the entries in each group of cross-references. Thus, for the example above, the information desired would be listed for the members of the group:
asáné..., asá..., apáné..., áya..., takánge...

1.3.15 Class Inclusion ${ }^{2}$

This item was used whenever the main entry was defined in the form, "X is a member of the class Y ".

1.3.16 Attributive

X was defined with respect to one or more distinctive or characteristic attributes Y.

1.3.17 Function

X was defined as the means of effecting Y.

1.3.18 Contingency

X was defined with relation to a usual or necessary antecedent or concomitant Y.

1.3.19 Spatial

X was oriented spatially with respect to Y.

1.3.20 Operational

X was defined with respect to an action Y of which it is a characteristic goal or recipient.

1.3.21 Comparison

X was defined in terms of its similarity and/or contrast with Y.

1.3.22 Exemplification/Instrumental ${ }^{3}$

Exemplification: X was defined by citing an appropriate co-occurrent, Y.

Instrumental: $\quad X$ was defined as occurring by or with a specific instrument.

1.3.23 Provenience/Objective

Provenience: X was defined with respect to its source Y.
Objective: X was defined as occurring with a specific object.

[^2]
1.3.24 Grading

X was defined with respect to its placement in a series or spectrum that also included Y.

1.3.25 Time and Duration

X was defined as occurring at a specific time and often as being of a specific duration.

1.3.26 Explicative

X was defined as a reason for Y.
1.3.27 Subjective ${ }^{4}$
X was defined as the subject of Y.

1.3.28 List

X was defined as a member of a list Y.

1.3.29 Antonymy

X was defined as the negation of Y, its opposite.

1.3.30 Ostensive

X was defined ostensively (by pointing, example, etc.).

1.3.31 Method

This item contained the method employed for some activity, such as processing salt, a ceremony, or a magical spell.

1.3.32 Miscellaneous Information

This item was used for the following data: (l) informant's comments or intuitions about the main entry, 1.e. "we don't say it that way here, we say X, they talk that way in Wabag"; (2) secondary and tertiary sources, and additional information on the source that was not placed in items 6 or 7; (3) references in published or unpublished articles to the main entry.

[^3]
1.3.33 Illustrative Citation

This item shows the context of the main entry and gives an example of its use. Preference is given to quotations from fables, myths and stories whenever possible; the aim being to illustrate Enga ethnography, customs and beliefs whenever possible. The item includes the citation and its source; at present most of these are from Rev. Dave Hauser, who made available his Enga dictionary extracted primarily from his study of Enga fables.

After the production of an Enga concordance based on a large corpus of natural conversation (transcribed by R. Lang), as well as the published materials and texts of fables, it is planned to complete this item for all entries. The possibilities for illustrating syntax and semantics are obvious.

1.4 CODING

The actual coding of the data onto coding sheets, an extremely tedious task, is also the most crucial operation performed by the linguist (assuming that data collection and elicitation have been rigorous). The computer cannot check the data content, but can only make mechanical checks: if a continuation is marked, does one actually occur; are the entry and card numbers in consecutive order, etc. The problem of methodology in lexicography has largely been ignored by lexicographers, and is beyond the scope of this work; nevertheless its importance must be stressed. In performing the actual coding, notes were taken of the decisions made while coding, but these only emphasised that the methodological problems need much further work. A sample coding sheet is included in 1.7.1; the details of the card format are presented in 2.2.5.

1.5 UTILISATION OF THE DICTIONARY

1.5.1 The Master File

A printout of the master file after the alphabetic sort and the orthographic changes have taken place is illustrated in 1.7.2. Tones follow the vowel on which they occur, and the trigraph nng represents \quad. The present master file is unedited and presented here only in illustration of the data elements stored. Since interrogation of the master file can be performed on a single item, a sub-item, or a combination of items, the wide range of applications of the dictionary format is apparent.

Some of the major lexicographic tasks performed by the computer are
the alphabetic sort (4.1), the cross reference check (4.2), and the reversal (4.3). A description of the uses of several of the more interesting of the retrieval programs follows.

1.5.2 The Word List

This is a reduced version of the master file which contains only items l, 2, 3, $10,11,13$ and 14 . This listing was produced in the desired format and, after editing, was ready for publication (see Lang, forthcoming). This allowed the publication of an extensive Enga Word List, which filled a much needed spot in Enga studies. Another use for this reduced file might be for a linguist interested in a small language population or in a less intensive study, who could utilise this format to produce a computerised word list, rather than an extensive monolingual ethnographic dictionary. The Word List printout is illustrated in 1.7.3.

1.5.3 The Reversal

The Reversal program (cf. 4.3) was used to create an English-Enga index. Again, a reduced format was used, with item 13 as the entry, followed by items 2, 3, 10 and 11 ; this was utilised, after editing, in Lang (forthcoming). The two main advantages in the computerised reversal were firstly, that it provided a check that all Enga items did appear in the English Index, and secondly, that the time saving was considerable (in contrast to the normal methods of generating a bilingual index by hand) - the reversal was accomplished by the computer in twelve minutes running time. 1.7.4 illustrates the Reversal.

1.5.4 Like Words

This program gives a printout of all orthographically-like pairs, triplets, etc. This results in multiple entries for the polysemous entries, but it also produces all minimal pairs. The printout is 11lustrated in 1.7.5.

1.5.5 Tone Patterns

This program produces groups of all similar tone patterns, subgrouped by syllable length. This was used for tone testing and to determine minimal tonal pairs. One sub-grouping of the Tone Patterns is illustrated in 1.7.6.

1.5.6 Cross Reference Check

This program provided an accuracy check on item 14. The program
listed these items in three ways: (1) Enga feedback entries which did not occur as main entries but only as item 14 to some closely related entry (thus allowing these feedback entries to be added to the master file); (2) main entry A, which occurred as item 14 with entry B, but B was not given as an item 14 with the entry A; and (3) main entry A had given B as item 14, but, entry B did not have A as item 14 . The printout is illustrated in 1.7.7.

1.5.7 Descriptive Statistics

A survey program was used for statistical correlations on the hypothesis that certain grammatical classes would usually have certain types of folk definitions associated with them (i.e. that nouns are usually defined by item 15 (class inclusion), then item 16 (attributive); cf. Casagrande and Hale 1967). Additional work on this would include retrieving the items in combinations including the sub-categorisations.

1.5.8 Incomplete Entries

Various retrievals were used to produce printouts of incomplete entries (item 4 had been marked) and those entries with blank fields: 1.e. untoned main entries, or those with no English gloss, no existential verb, no grammatical classification. These printouts were immediately available for elicitation during later field work.

1.6 UPDATING AND MAINTENANCE

Updating was originally accomplished by the re-creation of the entire master file. As a time and effort saving device, the present updating program (cf. 2.3) was created. The entries which have items to be corrected or added (to date there have been no deletions to the file) are coded in the usual manner, with only the necessary information to be corrected or added being coded. Cards are punched from the coding sheets, sorted, and then the updating program processes them.

The advantages of the updating are that it keeps the master file corrected and current, and the use of the computer produces far fewer errors than would occur with a human lexicographer-updater. The other point is that the new, updated information is written over the original data, so that the original data is no longer present in the master file; this can also be a disadvantage, since the erased data would be difficult to trace. Security is maintained by keeping the dated master file printouts, as well as the coding sheets used for the updating, and this would allow for the comparison between the original and updated data, if desired.

1.7.1 Sample Coding Sheet

NE'NE	
INSECT(GENERIC), ARTHROPODA(ALL	MEMBERS)
NE'NE ANDA	
MAGGOT	

1.7.4 Reversal Printout

BLOOD/PLASMA	tanje'na'		001		4060
BLOW	POO' LENGE'		008004		3616
BLOW FIRE	POO' PINGI'	(M)	0080001M		3618
BLOW NOSE	MA'NJO' nngal' lenge'		0080004		2538
blue	SA'KAPAE	(M)	003 M		5058
BLUE-GRAY ?	LIMBI LIMBI PIAPE		003		2202
BLUE/PURPLE/AQUA	WENE' PYA'PAE		020		4731
BLUNT	LOLA'TA		003		2281
BOARD	*PALA'NNGA		001	P. Plank	3304
BOAST LOUDLY	MAKU' LENGE'		0080004		2574
BOAST/BE FORWARD	YANDAI'TA' LENGE'		0080004		4770
BOAT	*SI'PI		001	P. SIP	3926
BODY	Y ANO'NGE '		001		4922
BODY	YANU ${ }^{\prime}$		001		4925
BODY	YANU'NGI'		001		4929
BODY	YO'NGE'		001		4976
B0G	MANDAU'WA		001		2489
B0G	TA'KE'		001		4072
BOIL	AMU'NGI'	(M)	001 M		346

$\begin{aligned} & 31191 \\ & 31181 \end{aligned}$	NNGILINNGALI LENGE' NNGILINNGALI LENGE'	TO WRANGLE TO GROWL/RUMBLE(OF STOMACH)
$\begin{aligned} & 30741 \\ & 30751 \end{aligned}$	$\begin{aligned} & \text { NO'LE } \\ & \text { NOLE' } \end{aligned}$	```NAME-MAN'S:NOLE(RUTTLIOGE) MARK - SMALL```
$\begin{aligned} & 30871 \\ & 30861 \end{aligned}$	$\begin{aligned} & \text { NUU' PINGI' } \\ & \text { NUU' PINGI' } \end{aligned}$	netbag - to make a TO SWELL
$\begin{aligned} & 31001 \\ & 30991 \end{aligned}$	NYOKO' NYOKO' NYI'NGI NYI	TO TAKE/PULL BACK TO TAKE/PULL BACK
$\begin{aligned} & 31031 \\ & 31021 \end{aligned}$	NYOKONYI'NGI NYOKONYI'NGI	to take selectively TO ORAW BACK/OUT
$\begin{aligned} & 31601 \\ & 31591 \end{aligned}$	$\begin{aligned} & 0^{\prime} L Y A A^{\prime} \\ & 0^{\prime} L Y A{ }^{\prime} \end{aligned}$	NUT MOSQUITO
$\begin{aligned} & 31631 \\ & 31641 \end{aligned}$	$\begin{aligned} & \text { O'MO }^{\prime} \\ & \text { O'MO }^{\prime} \end{aligned}$	THAT OVER THERE(FURTHER AWAY)
$\begin{aligned} & 31731 \\ & 31721 \\ & 31711 \end{aligned}$	$\begin{aligned} & 0^{\prime} \mathrm{NYA}^{\prime} \\ & \text { 'NYA }^{\prime} \text { OYYA' } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { YAM } \\ & \text { NAME-MAN'S } \end{aligned}$
$\begin{aligned} & 31791 \\ & 31781 \end{aligned}$	$\begin{aligned} & 0^{\prime} P A \\ & 0^{\prime} P A \end{aligned}$	THUS SWEET POTATO
$\begin{aligned} & 31801 \\ & 31811 \end{aligned}$	$\begin{aligned} & \text { OPA'KA } \\ & \text { OPA'KA. } \end{aligned}$	TREE VEGETABLE: SPINACH
$\begin{aligned} & 32271 \\ & 32261 \end{aligned}$	PAENGE PAENGE	THIGH TO WALK AROUNO, TO GO ALONG, TO FLY(OF BIROS)
$\begin{aligned} & 32421 \\ & 32431 \end{aligned}$	$\begin{aligned} & \text { PA'I I } \\ & \text { PAI } \end{aligned}$	
$\begin{aligned} & 32571 \\ & 32601 \\ & 32631 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PA'KA } \\ & \text { PAKA' } \\ & P^{\prime} A^{\prime} K A^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FEAR } \\ & \text { FORKED (POST/TREE/FINGER) } \\ & \text { VERY,PLENTY } \\ & \hline \end{aligned}$
$\begin{aligned} & 32611 \\ & 32591 \end{aligned}$	PAKA' PI'NGI PA'KA PINGI'	TC BRACE (BANANA) TREE AWESOME
$\begin{aligned} & 32781 \\ & 32771 \end{aligned}$	PAKENGE' PA'KENGE'	TO BE AFRAID,TO FEAR TO TEAR,TO CLAW
$\begin{aligned} & 32861 \\ & 32851 \\ & 32841 \end{aligned}$	PA'KINGI PAKINGI PAKI'NGI	$\begin{aligned} & \text { NAME-MAN'S } \\ & \text { TO TAKE APART (?) } \\ & \text { TO BREAK OFF } \\ & \hline \end{aligned}$
$\begin{aligned} & 32881 \\ & 32891 \end{aligned}$	$\begin{aligned} & \hline P A^{\prime} K O \\ & P A^{\prime} K O D^{\prime} \end{aligned}$	SHIRKER (LIT. "DOG THAT DOESN'T HUNT GAME MAMMALS") dOG THAT DOESN'T HUNT GAME MAMMALS
$\begin{aligned} & 32951 \\ & 32941 \\ & 32931 \\ & 32921 \\ & \hline \end{aligned}$	PA' KUNGI PA'KUNGI PA'KUNGI PA' KUNGI	TREE SLIPS DOWN TO CHANGE ONE'S MIND TO ACQUIT (IN LITIGATION) TO TRAP LIVE

2.0 FILE DESIGN AND CREATION, by Katharine E.W. Mather

2.1 DISK FILE STRUCTURE

Each entry consisted of the Enga word, a number of constant elements (1tems 1.3.3 through 1.3.12), the English gloss (1.3.13), and up to nineteen variable length items (items 1.3.14 through 1.3.33). Not all of the items existed for each entry. The information pertaining to each dictionary entry was punched on cards for input to the computer. The cards were edited and the information transferred to disk files. The structure of the files was designed to minimise the storage required and the access time during retrieval of information.

2.1.1 Variable Length Data

For ease and speed of retrieval, direct access was used. Since direct access files on the $360 / 50$ must contain fixed length records, nineteen files (each having a different record length) were used to store the variable length items and the English gloss. The record sizes ranged from 40 to 760 characters, in multiples of 40 characters. A file containing records 800 characters long was also established, but has not yet been required. Each item was stored in the shortest record length possible and assigned to the file which contained records of that length. The record length file format is shown in 2.1.7.

2.1.2 Fixed Length Data

The fixed length information relating to each Enga item was stored in a master file, which contained one record per Enga word. Each record in the master file contained an Enga item, the related fixed length information, and the addresses of the storage locations of the English gloss and any items associated with the Enga item. The address area for items which did not exist was set to zero. The master file record format is shown in 2.1.6.

Since the dictionary file was to be sorted, space was left in the master file record format for the address of the next word in the sorted order. After sorting, these addresses were written into the file (see 4.1). Thus, the file could be accessed both sequentially and in alphabetical order.

2.1.3 Record Addresses

Each entry was given a unique sequential identification number which served as its address in the master file. Records in the other nineteen files were stored sequentially as they occurred. At the beginning of each run, control cards were read, which contained counts of the number of records stored in each of the files. These counts were updated during the run, the new record count serving as the address for the new record. The control cards for the succeeding run were punched at the end of processing.

2.1.4 Record Retrieval

This organisation of the file made it possible to access directly any part of the information associated with each dictionary entry. During nearly all retrieval operations, the master only needed to be read for all entries. Only after an entry had satisfied the retrieval criteria were any associated items required for the printout read from the relevant files. Thus unnecessary data transmission was avoided.

2.1.5 File Sizes

The lengths of the twenty files used were as follows. File number seven was the master file. The other files contained variable length information relating to the main Enga entries.

```
File No. No. of characters No. of words
    7
        265
        13 40
        10
        14 80
        120 30
        160 40
        200 50
        240 60
        280 70
        320 80
        360 90
        (continued)
```


\(\left.\begin{array}{ccl}Character \& No. of \& Contents

positions \& characters \&

147-148 \& 2 \& File No.

149-153 \& 5 \& Address

154-155 \& 2 \& File No.

156-160 \& 5 \& Address\end{array}\right\}\)| Attributive |
| :--- |
| $161-162$ |

2.1.7 Record Length File Format

Character	No. of	Contents
position	characters	
$1-6$	6	Word number
$7-8$	2	Card number
$9+$		Record

This format was used for all records stored in the recorded length files, except those containing an English gloss. In these, positions 9-16 were left blank. It was originally intended to sort the file on the English gloss and store the address of the next record in sort order within the record (in characters 9-16), as was done with the Enga sort (4.1). However, this was not possible, since some items had more than one English gloss. A special program had to be written for the English sort and English-Enga print (see 4.3 below), and the space left in the English gloss records was not used.

2.2 DISK FILE CREATION

2.2.1 Card Identification

Twenty-one card types were used; the card format is shown in 2.2.5. The first six columns of each card contained the item identification number. Columns 7 and 8 contained the card numbers which defined the nature of the information on the card.

2.2.2 Contents of Card Types

Card types 1 and 2 contained the Enga item and all the fixed length information (1tems l-12). The English gloss (item l3) started in column 41 of card 2, continuing onto one or more cards, if necessary. Card types 3 to 21 contained the variable length 1tems (1tems 14-33).

2.2.3 Continuation

Card types 2 through 21 could have up to ten continuation cards, numbered 1 to 10 in columns 79-80. (The data when coded required at most ten continuation cards. The number could be increased to accommodate longer character strings.) An asterisk in column 80 of the first card of a card type indicated that a continuation card should follow. The last card of the card type was blank in columns 79-80.

2.2.4 Input Requirements

The only requirements during input were that the cards for each entry be in ascending numerical order and that card types 1 and 2 must exist. The entries themselves did not need to be ordered, since the word number served as the disk file address. Any number of entries could be entered in the master file during each run.
2.2.5 Card Input Format
Card No.: CoZumns Item No. Content

```
    All cards: l-6
```

 All cards: 7-8
 1: 9-33 2

1: 34-35
1: 36
1: 37-40
1: 41-50
1: 51-60
1: 61-70
1: 71-80
2: 9-15
2: 16-17
2: 18-40

2: 41-76
All other cards: 80

$3:$	14
$4:$	15
$5:$	16
$6:$	17
$7:$	18
$8:$	19
$9:$	20
$10:$	21
$11:$	22
$12:$	23
$13:$	24
$14:$	25
$15:$	26

Entry number
Card number
Enga entry
Existential verb
Incomplete items
Semantic domain
Source of entry
Notebook and tape
Source of tone
Thesaurus
Grammatical class
Dialect
Language \& source (if loan word)
English gloss
Continuation asterisk *, numerals
Cross References
Definitions types: class inclusive
Attributive
Function
Contingency
Spatial
Operational
Comparison
Exemplification \& Instrumental
Provenience \& Objective
Grading
Time \& Duration
Explicative

Card No.: Columns	Item No.	Contents
16:	27	Subjective
17:	28	List
18: 9-40	29	Antonyms
18: 41-76	30	Ostensive
19:	31	'How do they do it'
$20:$	32	Miscellaneous Information
$21:$	33	Illustrative Quotation/
		Citation

2.2.6 Description of Creation Program

At the beginning of each run, a number of initialisation procedures were carried out, which included reading and printing control cards containing counts of the number of records stored in each of the record length files and counts of the number of records for which space had been allowed in each file.

The data cards were read one at a time and edited for sequence within each dictionary item. The fixed length information on cards 1 and 2 was stored as it was read in to be written later to the master file. Numer1c items were checked for numeric validity and the orthography of the main Enga item was changed, unless the change made the item more than twenty-five characters long (see 1.3.2).

The remaining cards for the item were then read. When the end of each card type was reached, the length of the string was checked and the orthography changed for card types containing Enga (types 3-21); this change could increase the length of the string (record).

The record was assigned to one of the record length files according to its length. The count in this file was incremented by one and checked to see if it was still within the bounds of the file area. If the bounds had been exceeded, processing was terminated. Otherwise the record was written into the file with the current count as its address; this address and the file number were stored in the master record. The address area for card types which did not exist was set to zero.

When the end of the item was reached (i.e. when another card type 1 was read), the record containing the fixed length information and the addresses of the records containing the variable length information of the different card types was written into the master file. The number of the item served as the address of the master record.

A card with item number 999999 was used to indicate the end of the card input. At the end of each run the new counts for the record length files were printed and also punched to provide the control cards for the following run.

2.2.7 Flowchart

CREATION PROGRAM
DIMENSION KY(70), KARD(20), JFL(3, 20), IND(2,21)

OFFINEFILF $7(5500,265, F, K A A), 13(118 C O, 40, F, K 1), 14(5250,80, E, K 1)$,

2.,$~ K 1), 19(0200,280, E, K 1), 20(0180,320, E, K 1), 2110080,360, E, K 1), 22(007$
$30,40025, K 1), 23(0070,440, E, K 1), 24(0060,480, E, K 1), 25(0060,520, E, K 1)$,
$426(0050,560, E, K 1), 27(0025,600, E, K 1), 28(0025,640 ; E, K 1), 29(0020,680$,
$5 \mathrm{E}, \mathrm{K} 11,30$ (OO20, $720, \mathrm{E}, \mathrm{K} 1), 31(0020,760, \mathrm{E}, \mathrm{K} 1), 32(0020,800, \mathrm{E}, \mathrm{K} 1)$
READ AND WRITE FILE CNUNTERS
50 READ (1,500$)((J F L(J, K), J=1,3), K=1,20)$
500 FORMA (12.2I 8)
505
510 WRITE $=1,20$) $51 \mathrm{JFL}(J, K), J=1,3)$

1 CONTINUE
INITIALIZE
CALL ERRSET(215,0,25E,1)
CALLIREREAD
WRITE 3.505$)$
$\begin{aligned} \text { IER } & =0 \\ K T A & =0\end{aligned}$
$K Y(2)=1$
$K Y(3)=0$
$K Y(12)=0$
C
C
C
515 READ(1, 515)(KARD(J), J=1,20)
IF K KARD(1).EQ.999999)GO TO 214
IF(KARD(2).NE.1)GO TO 200
910 FORMAT $36 \times$)
PROCESS CARD TYPE 1
$2 K Y(1)=K A R D(1)$

$3 K Y(J+1)=K A R D(J)$

C
C
C
READ CARD TYPE 2


```
    RFAD(99;915)JAJ;JBJ
    FORMAT(8X,13,14)
    JVB=0
    IF(JA J.FQ: 2.OP.JAJ.EQ; 8) JVB=
        CALL CSNVIARRA,ARRDV,25,25),
        WPITE FRROF MESSAGES
        IF(IER FFO.0)GC TO 33
    31 WRITE(31,32),IER, (IARRA(J),J=1,7)
        FORMATI':OEXTENSION GT 25-1,14,4X,6A4,A1)
        IER=0
```



```
        IER=0
            MOVF DATA FROM CARD ? TC MASTER RECORD
    33 DO 5 J J=3,10
        KY(J+20)=KARD(J)
        6 KO (J)=0
C
        KREC(1)=KY(1)
        KREC(1)=K
        KREC( 3)=8L
        KRO
    7 KPEC(J-6)=KARD(J)
        KNT=14
            PRJCESS CARD TYPES 2-21
        8 IF(KREC(201).NE:BL)GO TO 206
        M
```



```
        IF(KARD(I):NE\bulletKYII)IGO TO 200
    KR=KRR+1
    26
        OD ('J=3;20
        KNT=KNT+
        KNT=KNT-1
C CHECK LENGTH OF RECORD FOR CARO TYPES 2-21
    10 DO 11 J= \MREC(J):201, 10 : BL)GO TO 27
```

```
    11 CONTINUE
    520 FDRMAT(:I;,10X,'EXECUTION ERROR')
        GNTO
C
                    CALL ORTHOGRAPHY CHANGE ROUTINE FGR CARD TYPES 3-21
        IF(KREC(2).EQ.2)GO TO 29
        CALL CSNVIARRB,ARROV,800,J)
        CALL CSNV(ARRB,ARRDVV,8OO,J)
        J=JIU
    KER=0 3,545)KREC(1),KREC(?),(ARRb(K),K=1,J)
    \begin{subarray}{c}{IF(KREC(J).EQ.PL)GO TO 29}\\{j=j+10}\end{subarray}
        J=J+10
C
    29 LF=J/10
        IND(1,KREC(2))=LU
        JFL(3,LF)=JFL(3,LF)+1
        JFL(3)LFI=JFL(3,LF)-1
    525 FORMAT',
    14 GONTO, 212 INC(2))=JFL(3,LF)
        K1=JFL(3;LF)
        FORMAT(I6,12,198A4)
    530 RO 25 K=11,J
C
    REAN(1,515,ENO=212)(KARD
        READK,515,END=212)(KARD(J),J=1,20)
        IF(KARD(1):NE:KY\1)IGOTO?OO
        KREC(2)KARD(2)
        KREC(2)=KARD(2)
        KNT=3
        KR=1
C
                ADD TO EOUNTER AND WRITE MASTER RECORD
    28 KTA =KTA+1
        KAA=KY(1
    905 FDRMAT(; 905)KTA,KAA
```



```
    IFFKKARD 1).ED.999999)GO'TO 214
    PEAD(99(910)JAJMY(I))GO TO 200
```

```
C
    200 WRITE (3,201)KKARD(1),KARD(2)
    ,16,131
    202 WRITE(3;203)KARO(1)KKARD(2),KARD(2O), (G,13,A4)
    206 GRITE (308207)KARD(1),KARD(2)
    2O7 FORMAT\'O190X;'RECORNS SIZE GT 200:1,16,13)
    208 DD ?O9 J=11,20i
    210 KEAD(1,515,ENN=212)(KARD(J),J=1,20)
        IF(KARD(2):NE.1)GO TO ?IO 200
        WRITEE(3,2II)KARD(1)'
    211 FJRMAT( O;,9OX, NEEXT RECORD:1,(6)
        IF(KARD(1):EQ.999999)GOCORN:`'4
        IF(KARD(
C
    212 HRITE (3,213)KY(1)
    214 WRITEE(3,?15)KTA (%,' RECORDS FILED TO DISK'/1X)
C
WRITE AND PUNCH FILE COUNTERS
216
WRITE(3,510)(JFL(J,K),J=1,3)
    FORMAT('VV,I2,2I8)
    WRIT
```



```
    IT PERFORMS FOUR TYPES OF ORTHOGRAPHY CHANGES ON ALL WORDS PRESENTED
    TO It INCLUDING ANY ENGLISH ON CARDS 3-21.
    TYPE 1: LABIALIZATION.
            ANY CONSONANT + W GOES TO CONSONANT + U
            EG BWAA M BUAA
                KWAA -> KUAA ETC.
    TYPE 2: VOWEL CLUSTERS.
```

```
LAST TWO VOWELS OF THRFE VOWEL SET WHICH ARE NOT IDENTICAL
ARE CHANGED AS FOLLCWS:
V?=I -> IY
V2=U - > UW
V2=E -> Y
V2=0 -> W
EG KAIA M KAIYA
KOEA -> KOYA ETC.
TYPE 3 VOWEL CLUSTERS IN VERB STEMS:
    Iv VERES IF V1 V2 V3 PRECEDES -GI OR -GE, AND IF V2 + V3 ARE
    THE SAME V3 IS REMOVED.
    EG MAIIGI -> MAIGI
TYPE 4 PRENASALIZATION.
    IN THE MIDDLE OF A WORD ONLY (NOT AT THE BEGINNING)
    B - >MB
    D -> ND
    G -> NG
    J -> NJ
    FG KADEGE -> KANDENGE
        AJA -> ANJA
THE SUBROUTINE IS IN THREE SECTIONS.
SECTION 1 REMOVES BLANKS FROM END OF STRING SUPPLIED.
SECTION 2 SPLITS OFF EACH ENGA WORD TO PASS ACROSS TO INTERNAL
        SUBROUTINE CHANGE.
SECTION 3 (SUBROUTINE CHANGE) PERFORMS THE FOUR TYPES OF ORTHOGRAPHY
                                    CHANGES.
PARAMETERS
SA - STRING CONTAINING ENGA WORDS
JVB = I IF MAIN ENTRY IF A VERB
    = O OTHERWISE
```

```
    IFLA = O NO ERROPS IN PROCESSING
    = 1 MAIN ENTRY WOULD EXPAND TO GREATER THAN 25 CHARACTERS
    = ? TONE CODE HAS CGME AFTER A SEMI-VOWEL (Y OR W)
    JM = 1 MAIN ENTRY
    = 0 CARDS 3-21
    OTHER IMPORTANT VARIABLES.
    JPOS - STARTING CHARACTER OF NEXT HORD.
    SA,SO,SR,S INTERMEDIATE STRINGS TO HOLD WORDS TEMPORARILY.
    SUB - USED TO EXAMINE ONF CHARACTER AT A TIME
    ICOUNT - COUNTS NO OF VOWELS FOUND IN SEOUENCE
    L - HOLDS POSITIONS OF V? AND V3
    FOUND - BRANCH TAKEN IF 3 VOWELS FOUND FOR TYPE 2.
    PROC - BRANCH TAKEN IF WORD ENDS IN GI OR GE FOR TYPE 3.
    R - BRANCH TAKEN IF 3 VOWELS FOUND FOR TYPE 3.
DCL SB CHAR(800) VARYING
(JVB,NHN, JM)ED BIN FIXXED (31,0):
/* SOSECTION 1 - REMOVVS BLANKS FROM END OF STRING
JPOS=1:
DO I=LENG TH(SB) TO 1 BY =1; I, THEN
```



```
DCL SA CHARII;,
SUS CHAR(1),
SD CHAR(SOOI VARYING:
SNO
I FLA=1:
RENTUP
KNOUNT=1
KOUNT=1
IF JM=0 THEN SB=(BOO)' !;
S* START PROCESSING AT FIRST NON-BLANK CHARACTER.
DO I= ITTO LENGTH(SA);, THEN DO:
jPOS S=I \i SUB STR(SA,1,I-1);
SB= SBGHSUBS
END:
END: SEARCH FOR NFXT WORD TERMINATOR AND CALL SUBROUTINE CHANGE
%* SEAZCH FOR NFXT WORD TERMINA
LONP: DJ I=JDOS TO
S=0
IF SUB=';' | SUB=',' | SUB=' , THEN DO;
```

```
On J=1 TO LFNGTH(SA)-I:. THEN
GO T\ CALL?
MND:
ENn;
END:
CALL: N=I+J;
CALL CHANGE(SSUBSTR(SA, JPOS,I-JPOS), IFLAG,SD); IF ERROR. BLANK OUT
JPOS=N:
IFLA=IFLAGG; THFN DC:
SB=SA:
RETURN
END:
B=SR| SD|{SUB;
KOUNT=KOUNT+1
```



```
THFN SB = SURSTR(SB, 1, LENG TH(SB)-1):
IF JM=1 THEN LEN=25:
FLSE LEN=800:
SB=SB | ! SUB STR(SD,1,(LEN-LENG TH (SB) ));
RETURN;
END QNE
END:
IFLA=2;
CHANGE: PROCEDURE(S,IFL,SR):
DCL S CHAR(*)',
SR CHAR(8OO)
L(2).
VOWEL(5),CHAR(1) INITIAL('AA', 'E', 'I'','C', 'U')
/* TYPE 1 CHANGE. SEARCH FOR CONSONANT + W AND CHANGE TO U.
IFL=0: TO LENGTH(S)-1;
SUB=SUBSTR(S,I',lliz' THEN GO TC FNO
DO J=1 TO 5: SUB=VOWEL(J) THFN G!O TO END:
END:
IF SUBSTRI
S,I+1,1)='W' THEN SUBSTR(S,I+1,l)='U`;
/* TYPE 4 CHANGE SFARCH FOR B,D,G,J AND INSERT REQUIRED CHARACTER
SR=SFORF COPYING STRING INTO INTERMFDIATE STRING SR.
SR=SUBSTR(S,I, I); ST
nO I=2 TO LENGTH(S)
SUB= SUB STR(S,I,1):
IF SUB='B', THEN SR=SR||'M': THEN SR=SR||'N';
SR=SR||SUB;
```



```
I=LENGTH(SR):
I=LENGTHI
```

```
OOP: IF I<3 THEN GO TO NXT
OO J=1 TO I-1 O BY -1 ;
SUR=SUB STR(SR,J,N'1):' TO ROUNO:
DO K=1 TO 5; SUS VOWFi(K) THEN DO:
ICOUNT =ICOUNT+I;
IF ICOUNT=3
GO TO RIIUND
END:
FIX: ICOUNNT=O:
I=I-1;
GOUND: END:
/* CHECKKFINAL TWN VNWELSSARE NON-IDENTICAL AND THEN PERFORM PRESCRIB-
ED CHANGES PAYING SPECIAL ATTENTION TO, TONE CODES•TO FIX:
SUB= SUBSTR (SRRL( 2), I):'FIX:
IF SUB='EG THEN DO:
SUBSTR(SO
IF SUBSTR(S2,L(2)+1
GOBTRTSIX:
END:
END',
SUBSTR(SR,L(2),1)=i
SURSTRR(SR (L(2)
SUBSTR(SR,L(2)+2);
GNDIN FIX:
IF SURSTR(S2,L(2)+1,1)=!'!'THENL(2)=L(2)+1;
SR=SUB='TR(SR,I,L(2;)||'V'||SUBSTR(SR,L(2)+1);
I=L(2);
ICOUNT=0;
GO TO LOOP:
IF SUB='U' THEN DO:
SR=SUBSTR(SR,1,L(2i)||'W'||SUBSTR(SR,L(2)+1);
I=L(2):
ICOUNT=O:
GO TO LOONP:
/* TVPE 3 CHANGE. CHECK FOR VERB AND LAST SYLLABLE REING GI OR GF.
/* TYPE 3 CHANGE CHECK FOR V
LN=LENGTH(SR);
KK=LN-4;
GO TO PPONC:
ENO:
IF SUBSTR(SR,LN-2)='NGI'|SUBSTR(SR,LN-2)='NGE' THEN DO:
KK=LN-3:
GNO: PROC.
ENO\ GO TO RET;
```

```
/* SEARCH BACKWARDS THROUGH WORD FOR THREE VOWFLS
DO I=KK TONKKK-IO BY -1;
IF I<I THEN GO T
IF SUB= STR!SR,IANII:G TO ND:
OO J=1 TD 5;
IF SUB=VOWEL(J) THEN DO;
ICOUNT=ICWEL(J)
IF ICNUUTT=3 THFN GO TO R;
LIICNUNT)=1:
GO T:
ICOUNT=O;
ND: END;
GO TONRE'TIF FINAL TWO EQUAL ANM DELETE LAST ONF
*)
SR=SUBSTR(SR,1,LENGFIN(1SSURSTR(SR,L(1)+1));
RET I=1F TOM=1ENGTHENGIH(SR)>25 THEN IFL=1;
IF SUBSTR (SR,I,1)=, Y!'SUB STR(SR,I,1)='W' THEN
IF SUBSTR(SR,I+1,1)=:\:THEN DÓ;
IFL=2:
ENO:
END:
RE TURN;
END CHANGE;
```


2.3 UPDATING

2.3.1 Description of Updating Program

This program was used when information on one card type only required modification. When a whole item needed to be changed or a new 1tem added, the creation program was used.

The program was similar to the creation program in its use of control cards for the record length files and the method used for reading and editing the c ards. However, it differed in that only the card type to be corrected needed to be read. Changes were made by overwriting the existing record, unless the new record was too large for the area available. Exactly the same format was used for the cards as was used in the creation program; thus, the number of the main item appeared on every card.

The master file record for the item to be modified was read into core store. If the change to be made was in the fixed length information, the appropriate part of the master record was overwritten, and the record written back into the master file.

If the change was in one of the variable length items, the address of the existing record for the item was picked up from the master record. When the new record was short enough to fit into the same area, the existing record was overwritten. Otherwise, the new record was added to the end of the appropriate record length file, the new address stored in the master record, and the record written back into the master file.

2.3.2 Flowchart


```
C CALCULATE NEM ALDRESS AND STORE IN MASTER RECURD
    15JFL(3,LF)=JFL( 3,LF) +1
        IF(JFL(S,LF),LEOJFLI(2.LF))GO TC 16
        JFL(3:LF)=JFLU
    53.) FIRMAT(if.IEX,'NC. CF RECURDS EXCEEDEU IN FILE '.I2I
    16 INC(1;KKEE(系))=LUU
C
    17 KAA=KY(1)
        KRITE(7'KAA,520)(KY(M),M=1,70)
    nan
    18 Kl=INU(2;KREC(2))
    ち35 FURMAT(16.IEO198A4
    19 CO 19 k=ji.J
        KTA=KK\A+1
        M
    54)
        GO TO 2
C
    20 READ(99:910)JAJ
    910 FORMAT(36X,14)
    21K\ KY(J+1)J=KARCD
    CO2LJ=11,2C
    22 KY(J+2)=KARC(J)
        CALL CSOV(ARRA,ARRCV,25,25)
        CALL XTOPLI(CRTHC,ARROV,JVB,IER,1)
        IF(IER.EG.CIGO TOO 25
        WRITE(3,545)KY(I))(ARRA(J),J=1,7)
    545 FURMATI:CEXTENSICN GT 25-1,I4,4X.6A4.A1)
    23GRITE (34,525)KY(1),KY(2),(ARRA(J),J=1,6)
    24 IER=9
    25 KTA=KTA+1
        KAA=KYY1
        KAB =1
        KABEI
        WRIFE(7iKAN,52Oi(KYiJ),J=1,70)
        GOTO 2
```

```
C
    ERKUR MESSACES
    203 MRITEE 3,2C1IKARC(1)'KARD(2),
    2) GRITE(3,2C3)KARO(1),KARD(2),KARD(20)
    MRITE(3:2C3)KARO(1)IKKARD(2),KARD(20)
    GOT TS 208,20X. CONTINUATION
    206 WRITE(3:2C7)KARO(1),KKARC(2) GT 200:1,16,13)
    2OH DUZOG J=1i,KNT
    21) RREC(J)=E
    21) IFKKARUULJ,NEKKKEC(11)GC,IO, Z
        READI1,5i5,ENO=Z14)(KARDI
    212 WKITE(3, 213)KREC(1)&KREC(2)
    214 WRITE(3:215)KTA
    C
            WRITE ANC PUNCH FILE COUNTERS
        OO 216 K=1,20
    N2, WRITE(3,51O)(JFL(J;K),J=1,3)
        MRITE(3,5C5)
        STUP
    ORTHO: PRUCEDURE\SGOJVE:IFLASJMM:
        THIS SUBROUTINE OPERATES ON ENGA CARDS EXCEPT CARD TWC (ENGLISH)INTC
        IT PERFORMS FOUR TYPES OF ORTHOGRAPHY CHANGES
        TOIITINCLUDING ANY ENGL
            ANY CCNASCNANT + 'W GOES TU CONSUNANT + U
            EG BWAA -> BUAA
            KwAA -> KUAA
            ETC.
        TYPE 2:
            IAST WEL CLUSTER
            LAST THO VOWELS OF THRE
            2=4 -> IV
            V2=U => UW
            2=0 -> w
            EG KAIA M KAIYA
        TYPE 3 VOWEL CLUSTERS INTVERB STEMS:
            N VOWEL CIUSTERS IN VERB STESMS: GI VZ VI PRECEDES -GI OR -GE, AND IF V2 + V3 ARE
```

```
        THE SAME VE IS REMUVED.
    TPE 4 PG MANASALIIATIGI
        IN THE MICDDLE OF A NCRD ONLY (NOT AT THE BEGINNING)
        O->MB
        G-> ND
        J -> NG
        EG KADEGE -> KANDENGE
    THE SUSRUUTINE IS IN THRET SECTIONS.
    SECTIUN 1 KEMCVES BLANKS FROM END UF STKING SUPPLIEO• INTERNAL
    SECTIUN 3 SUUUYRUUIPIE CHANGEE, PERFCRMS THF FUUR TYPES OF UKTHUGRAPHY
        CHANGES.
PARAMETERS
SB - STRING CCNTAINING ENGA WORDS
V8 }=\frac{1}{1}\mathrm{ IF MAIN ENTRY IF A VERB
IFLA = O NC ERRONS IN PROCESSING
FLA }=0\mathrm{ NC ERRONS IN PROCESSING TO GREATER THAN 25 CHARACTERS
= 2 TONE CODE HAS COME AFTER A SEMI-VOWEL (Y OR W)
JM }=1\mathrm{ MAINNENTRY
OTHER IMPURTANT VARIABLES.
JPOS - STARTING CHARACTER OF NEXT WORD. WOROS TEMPORARILY.
SA,SD.SR,S INTERMEDIATE STRINGS TO HOLC WOROS
ICOUNT - COUNTS NO CF VOWELS FGUND IN SEUUENCE
L- HOLDS POSITIONS OF VZ AND V3 
```



```
PROC BRANANCH TAKEN IF WORD ENDS IN GI OR GE FOR TYPE 3.
R - BRANCH TAKEN IF 3 VOWELS FOUND FOR TYPE 3.
OCL SB CHAR(BCC) VARYING
IFLA BIV FIXED (31,C)
IN
DO I=LENGTH(SB) TO, 1 BYY =1:, THEN
/* SECTIUN 2 - CHECKS FOR ERRDR TYPE 1 ANU SPLITS UFF NFXT WOKO */
(STRINGRANGE): UNE: EFGIN;
OCL SA GHARIII.
SUB CHAR(1),
SO CHAR(BOOI YARYING:O
IFLA=1;
RNO:
OUNT=1;
SA=Sa;
SA=SO; IF JM=? THEN SB=(0OC), !
SB=`':
DO I=1 TO LENGTHISAI;
```

```
F SUBSTRISA,I,1Iन=' ( THEN DO:
SPOS=S#fi SUBSTR(SA,1,I-1):
GOTJULOUP:
END:
I* SEARCH FOR NEXT WIIRD TERMINATOR AND CALL SUGROUTINE CHANGE
* /
/* JEARCH FOR NEXT WIIRD TERMI
SUB=SUBST{(SA.I,I):
J=0;
IF SUB=';' | SUB=',' | SUE=' ' THEN DC;
OO J=1 TJ LENGTHISAI-I:!. THEN
GO TJ CALL:
ENO:
\N=J-1
END:
CND: NL: N=I+J:
```



```
/* TEST ERROR FLAG - RETURN ORIGI
JPOS=N:
IFLA=IFLAG: 
SB=SA:
RETURN:
END:
SB=SNBIISOIISUB:
KOUNT=KUUNT+1
(F SUBSTR(SB,LENGTH(SB)-1,1)=SUBSTR(SB,LENGTH(SB),1)
THEN SB = SUBSTR(SB; 1,LENGTH(SBI-1):
IF JM=1 THEN LEN=25;
ELSE LEN=80O:
SB=SBl!SJOS TR(SC,1.(LEN-LFNGTH(SB))):
RETURN:
ENO ONE:
END:
I FL A=2;
RETURN:
CHANGE: PRUCEDUREIS,IFL,SRI:
OCL S CHAR(*)'VARYING,
SR CHAR(8OO)
SUB CH
```



```
IFL=0: TO LENGTF(S)-I:
SUB=SUBSTZ(S,I'I): SO THEN GO TO END:
DO J=1 TUSE:. SUNELIJ) THEN GO TO END:
END:
```

```
IF SUUSTR(S,I+1,1)=0W' THEN SUBSTR(S,I +1,1)='0';
* TVPE & CHANGE& SEARCH FOR B,D,G:J AND INSERT REUUIREC CHARACTER
BEFORE CUPYING STFING INTO INTEP.MEDIATE STRING SR.
SR= SUBSTR(S,1,I):
DO I= 2 TJ LENGTH(S):
IF SUB= 'B' THEN SR=SR||'M'
IF SUB='D'|!SUB='G'|SUB='J' THEN SR=SR||'N';
SR=SR|| SUB;
```



```
I RUW JR SEPAR
LOOP: IF I<3 THEN GO TO NXT:
LOOP: IF I<3 THEN GO,T
F JSI THEN GC TO NX
SUB=SUUSTR(SR:J,I):
IF SUB= TO 5:
IF SUB=VOWEL(K) THEN DO:
ICOUNT=ICOUNT+I:
IF ICOUNT=3 THEN GO TO FOUND:
(|ICOUNT)= J:
GO TO ROUND:
GND:
GND TO FIX:
GO TU FIX:
RUUND: END:
I=IX: I:
/* CHECK FINAL TWO VOWELS ARE NON-IDENTICAL AND THEN PERFORM PRESCRIB-
ED CHANGES PAYING SPECIAL ATTENTION TO TONE CODES•TO THEN GO TO FIX:
SUB= SUBSTR SK,L(2), I):
IF SJB=OA' THEN GO, TG'FIX
IF SUB='E' THEN DO; 
```



```
IN SUBSTR(SR,L)+2)+1
END:
IF SUB='j' THEN DC:
```



```
SUB STRISR:L
GND:
IF SUASTR(SK,L(2)+1,1)=1\cdots. THEN L(2)=L(2)+1:
IF SUB='I: THEN DOi)||:Y'||SUBSTR(SR,L(2)+1):
I=L(2):
GO TU LOOOP
```

```
IF SUB=, THEN CC,
SR=SJESTR(SR.l,L(ź)||'h!|SUBSTR(SR,L(2)+!);
I=L(2):
ICOUNT=O:
END:TPPE 3 CHA
N* TYPE 3 CHANGE CHECK FCR VERB AND LAST SYLLABLE BEING GI OR GE. & F/ 
NN=I=NGTHIOR.NHEN GO RET:
LN=LENGTH(SRI:
SUBSTR(SR,LN-3)='NG,'1!SUHSTR(SK,LN-3)='NGE'1. THEN DO:
KK=L J-4: 
IF SUBSTR(SR,LN-2)='NGI'|SUÖSTR(SR,LN-2I='NGE' THE:N DO:
KK=LN-3:
GO TO
ENS\dot{E}GO TO RET
/* SEARCH BACKWARDS THRCUGH WORD FCR THREE VOWELS
PROC: ICJUNT=0:; BY BY -1:
SUB= SUBSTR(SR,I,I):' TO NO
DO J=1 TU 5: THEN GO TO ND
IF SUB=VOWELIJI THEN DO:
ICOUNT=ICOUNT+1:'
L(ICUUNT)=1:
GO TO NO:
END:
I COUUNT=J:
ND: END:
GO TOHEEET: CHECK IF FINAL TWO EGUAL AND DELETE LAST ONE
```



```
R: IF SUBSTR(SR,L(2), I)R=SUOSTR(SR,I(1),1)T
RET:IF JM=1, & LENGTH(SRI>25 THEN,IFL=1:'
IF SUBSTR(SR,I,1)=:Y:'SUBSTR(SR,I,1)=0'W. THEN
IF SUBSTR(SR,I; I)=iY:'SUBSTR(SR,I
IFL=2:
RETURN:
ENO:
END:
RETURN:
ENO CHANGE:
END ORTHO:
```

3.0 FORTRAN RETRIEVAL TECHNIQUES, by Katharine E.W. Mather

The retrieval technique was essentially the same for all the required printouts. The whole of the master file was read, sequentially if a count was being performed, or in sort order for all listings. If a record satisfied the retrieval criterion being applied (e.g. no tones in Enga item or no English gloss), the Enga main item and any other necessary information from the master record were printed. If cross references or other card types were required to be printed, the master file record was checked to see if these records existed. If so, their addresses were picked up from the master record, and they were read and printed.

3.1 SINGLE-PHASE RETRIEVALS

Two basic types of retrieval problems existed. In some cases one subgroup only had to be selected and printed according to the values in a particular field or fields. Examples of this single phase retrieval are the lists of words with no tones, no English gloss, no existential verb or no grammatical class. For these the master file was read and the required information printed.

3.2 MULTI-PHASE RETRIEVALS

The second type of retrieval problem involved those cases in which a large number of sub-groups existed within the file. There were, for instance, thirty complex verb sub-groups and over eighty semantic domain sub-groups.

To produce listings of the groups without reading the master file again and again checking the same field each time, the master file was read only once and lists of addresses of words of each sub-group were produced. These lists were then stored in direct access disk files.

A second program was used to read and print the information for any
or all sub-groups. The list of addresses for the required group was first read from the disk file. Then the master record for each entry and any associated items required were read and printed as described above (3.0).

```
3.3 LISTINGS
3.3.1 Incomplete Item Program: No Card 21
C PRINT OF ITEIS HAVING NO CARD 2I - QUCTATION
        OIMAFNSION KY(9),JR(36)
        M,
            INITIALIZF CDUNTER - PRINT HFADING
        KTR=O
            READ ADDRESS OF FIRST ENTRY IN SNRT ORDER
        READ(13:1,510)KAA
            READ MASTER RECTRD
            NWA ANORESSOF NEXTENTRY IN SORT ORDER
            LU,KI ENGA ENTRY, EXISTENIIAL VERB, GRAMMATICAL CLASS
            LU,KI ADDRESS OF ENGLISH GLOSS
```



```
        IF(NQ.EQ.O)GO゙ TO` 3
            CHECK FOR END OF FILE - GO BACK TO READ NEXT RECORD
        IF(NWA.EQ.99999)GO TO 6
        KAA=NHA
            ADD TOCOUNTER - READ EN:GLISH GLOSS
        3 KTR=KTR+1
            LF=(LU-12)*10-4
    5 4 9
            PPINT RECORD
        IF(LF.GT.22.AND.JR(23).NF.AL)GOTO 4
        LZ=22
    FJRMAT(; 550)(KY(J),J=1,9),(JR(J),J=1,L2)
        IF(NWA.EN.99999IGO TO 6
        KAA =NWA
C
    4 WRITF(3,550)(KY(J),J=1,9),(JR(J),J=1,22)
    560 FORMAT(5X:30A4),GO TO 6
        IF(NWA.EO.99999)GO TO 6
        GO IO 1
```


C END OF FILE - PRINT COUNTER

WRITE(3,500)
WROP

```
3.3.2 Single Phase Retrieval: Noun and Noun Phrase
C- DZIJT RF NCUNS AN:O MICUN: DHTASFS
    MIYENS!ON KY(Q),JR(5Q)
    MTEGER*4 RL/:M,1,r!1% 3%/
```



```
C
    CALL FR2S:T(?IG,C,25t,1)
            7!M!=!.y.g
            IvITIALIJF ERUATEq - PFIVT HRAOING,
KT?=n
```



```
\stackrel{C}{c}
            REIN ADORESS gF FIRST ENTGY I: SCOT NEDER
G1^FFAD(1301,FIOIKAA
    51~ FJJRYAT{IG)
%- READ MASTER RCCORI
```



```
            NWA MCURESS OF NFXTRFMTRY IN SIIP 
            LUGKl ADDRESS ric raGGISHGGLCSSS
    I READ(7'KAg,53C)NW.G:(KY(J),J=1,Q),NDR,NPN,LU,KI,GUS,KIS
            CHCEK IF NOUN, VQUN PHRASE, OR PRRPEP NIUV
        IF(NDO.VF.NN)GR TNO?
            CHFEK FOR FNN OF FILE - GO BACK TO FEAN NEXT RECODD
        2 IF(NiwA.FO. OgOOOIGO TO 6
        KC^=NWI
            AO) TM :JINNTEF - FEAD ENGIISH GLOSS AND DRINT RECORN
3KTK=KTR+1)
    3 K(F=(L:)-12)*1, %-3
    54) FEAR.4AT(16X,36A!4)J=(J),J=2,LF
```



```
        L7=?`.LT.LT)LL=LF
```



```
C. 4 WRITE(3,55U)(kr(J):J=l,q),(JR{J,J=2, 23)
```

```
56? FURMAT(5X, 3OA4)
C
READ ANJ PRINT CRESS qFFERENCES IF THFY EXIST
    5 IFILUS.ED.OIGO TO 2
        K!=K IS 
        MF=(LUS-12)*1O-1
        FJ?MAT( 3x,53n4;)
        JQ(1)=TH
        WRITE(3,560)(JR(J),J=1,JF)
        IF(NWA.EQ.99909)GG'TUG
        GAA=NWA
C
            END OF FILF - PRINT COUNTER
    6 IF(NN OFO, 1)WRITE( 3,570)KTR
```



```
    7 CONTINUE
        MONTINUE,50NI
        WRIT
        EN!
```


2.3.3 Listing

C JPOATE PRCGRAM
CIMĖVSIUN KY(7C), KARC(20), JFL(3,20), INO(2,21)

$31,40 J, E, K 1), 23(C C 1 E, 440, E, K 11,24(0018,480, E, K 1), 25(0015,520, E, K 1)$,
$426(0) 15,560, E, K 1), 27(C O 15,60 C, E, K 1), 28(0012,640, E, K 1), 29(0012,680$,
$426(0) 15,560, E, K 1), 27(C 015,60 C, E, K 1), 28(0012,640, E, K 1), 29(00$
$5 \mathrm{E}, \mathrm{K} 1), 30(0012,720, \mathrm{E}, \mathrm{K} 1), 31(0012,760, E, K 1), 32(0009,800, E, K 1)$
READ AND WRITE FILE COUNTERS
50) $\operatorname{READ}(1,5 C O)(1 J F L(J, K), J=1,3), K=1,201$

505
RURMAT(I2.2I8)
CO $1 K=1,20$
WRITE(3,510) (JFL(J,K),J=1,3)
FURMATIIIX,I2,2I8
IF (JFL (I, Ki.NF. 1 (K+12))STOP
1 CUNTINUE
INITIALILE
CALL ERRSET(215,0.256.1)
CALL REREAD
WRITE
IER $=$ J
JVB $=$?
KTA $=3$
READ FIRST CF GRCUP OF UPCATE CARDS
51 ㄹ REAJ(1.515)(KARC(J),J=1.2つ)
FORMATIIG:İOIEA4
READ MASTER RECORD OF ENTRY TO BE UPDATED
KAA $=$ KARD(1)
EEAD(7'KAA, 520)(KY(J),J=1,70)
C
C
C
INITIALILE FGR CARD TVPES 2-21
IF (KARU(2), EO.IIGO TO 20
KREC $(1)=K A R C(1)$
KREC $(2)=K A R D(2)$
$K N T=2$
$K R=1$JPDATE LF CARU TYPE 2
IF(KARO(z)-NE.2)GO TO B
KREC(3)=EL
KREC(4
REAU(99.900) JAJ
0) FORYAT(8x,II
CU i J=3,iD
KY(J+2))=KAKC(J)
CJ 5 J=11.19
KREC(J-6)=KARO(J)
KEAC AIND PRLCESS REMAINDEF GF GRUUP OF UPUATE CAROS
6 IF(KREC(2CI),AE,BLIGC TO 206
REKKARJ(2L),NE,CT(KR)\GO TO 202, 2C)
REAJ(1,515, EAC=E1Z)(KARD(J), J=1, 2
IFIKARDILJ.NE.KYIIIIGOTOS200
KR=KK+1
(DU \# J=3;\&S
\ KREC(KNT)=KARD(J)
KREC (KNT
GHECK LENGTH CF RECCRC FOR CARD TYPES 2-21

```

```

 12CONTIN
 C
CALL CRTHCGFAPFY CHANGE ROUTINE FOK CARD TYPES 3-21
IF(KREC(z)\bullettU.Z゙)GO TC 14
CALL CSDV(ARRB,ARRCV,BGO,J)
j=jl XTOPL\&(ORTFO,ARRDV,C,IER,OI
F(IEん.EL.OJGU TCI?
WRITGI
FJRIMAT('CSYNTAX EHRUR - .II4,I2.4X,25A4/(2)X,31A4))
1 3
IF(KREC(J).EL.BLIGO TO }1
GO TO 13
LHECK IF NEn RECCRD TCO LCNG FOR EXISTING AREA
14 LF=JN10+1
LN

```

\subsection*{3.3.3 Multi Phase Retrieval: Semantic Domains}
```

C CRFATE FILF OF ADDRESSES OF ITEMS HELONGING TO EACH SEMANTIC DOMAIN
INTFGFR *2 JK(425,100),KT(100)
INITIALIIE FILE AREA AND RECORD COUNTFPS
CALLGRRSET(215,0,256,1)
O (J=1,4?5
9 JK(J,K)=
500 FORME(3,500)
REAN ADDRESS OF FIRST ENTRY IN SORT ORDER
510 RERRMAT('16;510)KAA
READ MASTEP RECORD
NWD ADORESS OF ENTRY
NWA ADDRESSOF NEXT ENTRY IN SORT ORDER
530 REAO(T:KAA,530)NWD,NHA,KC
CHECK VALIDITY OF SEMANTIC DOMAIN CODF
\35*)
535 FORMATT(ON NKC= =,14,' NWD = 0,14)
EnRMA
C
STJRE ADORESS OF ENTRY IN APPROPRIATE KFCORD
9 KT(KC)=KT(KC)+1
KT(KC)=KT(KC)+1
JK(KTKKC);GCI=NWO
IT(NWA.EJ:99999)OO TO 3
KAA =NWA
C
ERRIR MESSAGE
2 WRITE(3,540)KK
54n FOR\#AGTOOO,9X,4,425 EXCEEDED FOR CODE 1,12/11%)
STID
WP.ITE FILE TO DISK
550 WRITE(8'1,550)((JKK(J;K);J=1,425),K=1,100)
PRIVT COUNTS NF NUMBER OF ADDRFSSFS IN FACH RECORN
WRITE(3,500)

```
\({ }^{03} 7{ }^{7} 7 \mathrm{~K}=1,99\),


570 FORMAT(iOX,I4)
5 FORMAT(10X.I4)
B \(\mathrm{J}=\mathrm{J}-1\)
WRITE( 3,580\() \mathrm{J}\)
580 FORMAT( \(0^{\circ}, 9 X_{0}{ }^{0} N=., I 3 / 0^{\circ}\) )
CONTINUE STIP
END
```

PRINT OF ITEMS BFLONGING TO EACH SEMANTIC DOMAIN

```




```

 M26(0050,560,E,K1),2710025,500,E,K1),2810025,640, E,K1),2910020,680
 SEEKINE MO(302O,72O,E,K1).31(0020,760,E,K1),32(0020,800,E,K1)
 REENOCONROLCAR,
 PEAD CONTRTINOICATOR SJTY\, SEMANTIC DOMAIN CODE &KBI, AND HEADING
 MRITE{3,500)
 1 REAN(1, 505)JTY,KB;(KEO(J),J=1,10)
 privt SEmantic domain code ano heading
 WRITE(3,510)KE, (KED(J),J=1,10)
 FORMATIB,3\times10A4)
 READ RECORD CUNTAINING ADORESSFS OF ENTRIES BELONGING
 the RFOUIRED SEMANTIC DOMMAIN
 READ(8:KB,515)(JK(J),J=1,425)
 15
 SET COUNTER TO IERD
 NC=? TO(?,9), J!%
 PRIVT REQUIRED OF ALL INFORMATION ASSOCIATED WITH EACH ENTRY
 PICK UP ADDRESS IF NEXT FNTRY - read master reCord
 2NC=NC+1
 TFIJK(VCI;EO.OIGO TO 13
 READ(7TKAA,520)KY(12),(KY(J),J=1,7),KY(11),(KY(J),J=8,10),(INF(J,K
 520FORMAT(15,6X,BA4,50X,A4,A3,A2,23X,20(12,15)
 C C READ FNGLISH GLOSS INFRMMTION FROM MASTER RECORD AND ENGLISH GLOSS
5 2 5
LU=NF(1,!
INO(LNK1)
LF=(LU-12)*10-4
FORMAT(16x,3644)
3LF=LF-1

```

\section*{IF JR(LF).EO. QLIGO TR 3}

\(C\)
\(C\) REAN ANS PGINT ALL ASSOCIATEO INFOPMATION:
NOGKK=2,?
4 CONTINUE
GO TO?
\(5 \begin{aligned} & J F=n \\ & L U=N F\end{aligned}\)
\(L U=N F(1, K K)\)
\(K I=N F(?, K K)\)
FINOILU:K!
IF (KK.EO-20)GO TO 7


\(J F=J F+(1)\)
530 READ(LUK1,530)
LU=NF \((1, J j)\)
\(K 1=N F(? ~ J J)\)

\(K I N=J\)
\(K\) COVTINUE
C
7 JR(JF+1)=NR(KK)
\(J G=J F+2\)
\(J F=J F+(U-12) * 10\)
JF=JF+(LU-12)*10-1
\(8 \begin{aligned} & \mathrm{JF}=\mathrm{JF}+1 \\ & J F=J F-1\end{aligned}\)

FORMATIS
PRINT REQUIRED OF CRCSS REFERENCES ONLY PICK UP ADDRESS OF NFXT ENTRY - RFAD MASTER RECORD
\(9 N C=N C+1\)
IF(JK(NC).F2.O)GOTO 13
\(K A A=J K(N C)\)

READ ENGLISH GLOSS

1.0
\(L F=L F-1\)

WRITE(3,570)(KY(J), J=1, \&), (JR(J), J=1,LF)

C READ AND PRINT CROSS REFERENCES IF THEV EXIST IF(NF 1,2\() \cdot E O \cdot O\) OG TO 9 \(\left.\begin{array}{ll}L & =N F \\ K 1 & =N F \\ 2 & 2\end{array}\right)\) \(K 1=N F(2,2)\)
\(J F=(U U-12) * 10-1\) READ (LU'K1, 530) (JR(J) \(J=2\), JF) \(J F=J F+1\)
12 \(J F=J F-1\)

ENO OF FILE PRINT COUNT OF NUMBER OF ENTRIES
BELONGING TO THE SEMANTIC DOMAIN
13 NC=NC-1

GO BACK TO READ ANOTHER CONTROL CARD
GO TO 1 END

\subsection*{4.0 P!/l RETRIEVAL TECHNIQUES, by Mary L. Rose}

This section deals with those programs which required manipulation of characters, and as this was necessary for any problem which required the reordering of information, most of the programs described in this section involve sorting.

\subsection*{4.1 SORT OF MASTER FILE}

\subsection*{4.1.1 Description of Program}

A threaded list sort/merge was used to create pointers to the next item in sort order. These values were then inserted into the main file (2.1.6) to be used as the direct access keys for accessing the file in order. The address of the first word was stored in the first word of the 40 character length file.

This program also used the position of the iones as part of the sort key, so that positions of the tones within words of like orthography would influence their order.

A maximum of five tones was allowed for in any one Enga item, so five consecutive fields of two characters each were set up to contain the character position of each tone in the item. Table 4.1 illustrates the numbers created and the order into which the items would sort.

The sort key consisted of the Enga item with tones removed plus ten numeric characters containing the position of each tone.

This sort technique was used in other programs where direct access print files were created (Reversal 4.3 .0 and Tone Patterns 4.5.0); it was also used in the programs which checked the cross references with the main item (4.2.0).

See Table 4.1 overleaf.
\begin{tabular}{|c|c|}
\hline Word & Tone Position \\
\hline A B C & 0 \\
\hline A \({ }^{\text {A }}\) C & 2 \\
\hline \(A B{ }^{\prime}\) & 3 \\
\hline A B C & 4 \\
\hline \(A \prime B, C\) & 402 \\
\hline A ' B C & 502 \\
\hline \(A B \cdot C\) & 503 \\
\hline \(A{ }^{\prime} \mathrm{B}, \mathrm{C}\) & 60402 \\
\hline
\end{tabular}

In all uses of this sort routine, the arrays for the sort keys and the addresses could not both be kept in core store together, so the addresses and half the sort keys were held in core while the other half were held in a temporary disk file. The direct access facility then made it easy to make a final adjustment of the addresses when merging them.

The flow charts for this program and the sort routine are in 4.1.2 and the listings are in 4.1.3.
4.1.2 Flowchart



\section*{SORT ROUTINE}
```

Key
N = counter used to move down list of sort Keys
NC = pointer to last Key to be sorted in a subset
IL = pointer to first Key to be sorted in a subset
M = pointer to key to be compared with Nth Key
KEY = array of sort Keys
SKEY = smallest Key found
JZ = position of smallest Key found
MX = position of largest Key found
ADDR = array to hold pointer to next Key in sort order

```





PROG: PROC TPTIONS (MAIN):


1* SחRT MAIN ITEM */
2 FLDR CHAP (1) ,
2 FLJD CHAR (25),
2 FLDF CHAR (1), 2 ( 2 FLDH (5)


2 FLDP CHAR (133),
2 TREM CHAR (34)
\(, K C N T)\) DEC FIXED \((5)\)

            (SPLT, KNT) DEC FIXED (5),


            JCCHAR (6) '2 CHAR (2) DEFINED JC,
            JVN CHAR (7)
DJNN (7) PACKED CHAR (1) DEFINEO JNN,
DFL \((5)\) PACKED CHAR (l) DEFINED FLDC,
            ENGA CHAR (25), CHAR (1) DEFINED ENGA,
            SPA CHAR 175 )
            (KEE KEARY(38OD)) CHAP (36),


    NKE Y=0;
    CKE \(Y=N K E Y\);
TKE \(Y=N K E Y:\)
    KCNT \(=0\) :
\(K N T=0 ;\)
                                    /* READ NUMBER OF RECORDS IN
    GET, EDIT (TOP, SPLT, SPA) (2 F(5), A(70));
FA: \(\begin{aligned} & J C=1 \\ & \text { FORMAT(AC } \\ & \\ & O P E N \\ & \text { I }\end{aligned}\)
EED: READ FILE(MANE) INTO (RECD) KEY(CKEY); READ MAIN FILE RECORD **

    KCNT=KCNT+1:
ENGA \(=\) FLDO:
    \(\begin{array}{ll}\mathrm{Jp}=18 \mathrm{j}=1 & \text { TO 5: }\end{array}\)
                                    FINO PORTSITINN OF FACH TONE AMN ADD
```

 FLDH(J)=0 0':
 ENN:,
 KEF=0:0
 IF WN=1 TO\ JN)=xi,..! THFN GC TO AA:
 JC= WN: WN(JN)-=
 \ TEMP(JP)=JCC(3); (3)
 JP=JP-1: 4, \CC(3)
 IF=JP-1:14 THEN GO TO }\triangle
 AA :
|,

```


```

 REmIVE tones for sort N
    ```

```

 REENDI\̇E FILE(MANE) FROM (RECD) KEY (CKEY);
 NKEY=NKEYY1;
 AC: KEARYKNTS=KEE: IFNKN NEY TOP THEN GO TO SRT;
CKEY =NKEY: SPLT THEN GO TO REED;
SRT: NN=KNTi
NG= 5*
CC: IF NC' \NN THFN GO TO CA:
N=NC:
MX=NC
JZ=NC'íN Y(NC)
IL=NC:
NC =NC +NG; THEN DD; NC=NN+1; END:
ADDR(IL)=NC:
: N=N+1: N THEN GO TO AX:
M=IL:
ADOR N) = JZ;';
K
IF KEAZY(N)>KEARY(M) THENGO TO AV:
M=M+1;
GV: GO TO AU: % =NC THENGO TO AW:
ADOR (M)=N;
ADOR(N)=NC.
GONTÓ AT:

```
```

 M=AODR(M):
 AODR (N)=M
 AODR(L)=N
 ADDR(MX)=9999;
 IF MGG=O THEN GO TO CB;
 MG=J2:
 B :
VO=MG:
MG=VL;
VL=ADDR(VL):
CD:
GG=VO;
MP=VO:
CE: IF KEARYYVOJ
ADDR(V
VL=VL!
IF VL=9999'THEN GO TO CG;

```

```

 VP=VO:
 F VO=9999 THFN GO TO CH:
 GO TOCCE;
 CG:
CH:
CA:
GODR (VP) =VL:
GO TO CC:
MUT EEDIT'('ADDRESS OF FIRST NORD ',JZ) (SKIP(5),A,F(8)I;
FILE IST HALF OF SORK K
OPEN FILE(TEMM) DIRECT OUTPUT
MGA =JZ; TO KNT:
KEE=KEARY(N):
TKEYINN;
WRITFFILE TMOMM);
ENOj
CLOSE FILE (TEMM):
NOMO:
AE: CLOSE REEO\MMANE);
MERGE ADDRESSES OF BOTN*, HALVES
OPEN FILE(TEMM) DIRECT INPUT;
vO=MGA
VL=JZZ:

```
```

 READ FILE(TFMM) INTO(KEE) KEY (TKEYI:
 VP=VL;
 VL=ADOR(VL):
 GO TO B3
 MG=V V:
VP=Vn
VO=ADTM(VO):
MGA=V7]
READ FILE'(TEMM) INTO(KEEE) KEY (TKEY):
IF KEE < KEARY(VL) THEN
ADTM(VP) =VL+SPLT:
BA: ADDR(VP)=VL+SPLT:
VP=VL:
VL=ADOR(VL)'{
IF FL=0 THEN GO TO BJ:
GO TO BK:VO:
ADOR(VP)=VO:
FP=VO
VO=ADTM(VO):
IF VO=9999' THEN GO TO BH:
GO TO RE: NO
ADOR (VP) = VO:
ADTM(VP)=VL+SPLT
VP=VL:
ON GO TO BC:
AODR(VP)=VL+SPLT:
GO TOGL:
JUTMGOITT('ADORESS OF FIRST WORD ',JZ) (SKIP(5),A,F(R)):
N=0;
READ FILE(TYPA) INTO (TREC) KEY (TKEY):
RNAOJZ:
CKEY=JZ;
AFST(J)=ACKY(J+2):
I* WRITEAANORESSSOFIST,WORO INTO
REWRITE FILE(TYPA) FROM (TREC) KEY (TKEY)
l
M=SPLT+KNT:

```
BD:

\section*{OO \(\begin{aligned} & \mathrm{N}=1 \\ & \text { NKE } \mathrm{Y}=\mathrm{N}-\mathrm{T} \\ & \mathrm{M} \text { : }\end{aligned}\) \\ NKE \(Y=N-1:\)}

CKE Y=NKFY:
IF NOTM(NLTMTHENGONTOAH:
JNN=ADTM(N):
AH:
GO TO AK:
IF ANOR(L)=9999 THEN GJJ TAGLDC: = \(99999^{\circ}\)
\(J N N=A D D R(L):\)
AK:

END:
RENRITE FILE (MANE) FR
IF NU5I THEN GO TO AI

A J:
5) (SKIP,R(FA)):

\subsection*{4.2 CROSS REFERENCES}

\subsection*{4.2.1 Description of Program}

This program checked all cross references between the main items and their cross references. That is all cross references should be main items and should be cross referenced to each other.

Three programs were written for this problem. The first created a file containing each cross reference for all main items, and kept the main item for each cross reference. The second program sorted the references in exactly the same way as the main items file (Master File) had been sorted (4.1.0) and the sort order address of the references was added to the file. The third program then compared the cross reference file with the Enga file and missing items from either file were reported. In addition, when a match was made, the main item carried in the cross reference file was compared with the references of the Enga file and, if it was not found, then this was also reported.

The flowchart is in 4.2.2 and the listings in 4.2.3. The flowchart for the Sort Routine is in 4.1.2.

\subsection*{4.2.2 Flowchart: Phase I}



Flowchart: Phase II



Flowchart: Phase III






\subsection*{4.2.3 Listings}

\section*{Phase I}

PROG: PROC JPTIJNS (MAIN):
OCL 1 RREC,

DCL (CKEY EKKEY, SKEY, OKEY) CHAR (Q),

SPACHAR (162)
MREC CHAR (265),
(AWDR C.HAR SYAD) CHAR (5).
REST'CHAR (96), EREST CHAR (34).
RESY CHAC FIXED' (2),
SYF CHAR (2)!,
TTEM CHAR ( 1226 ),
SYV CHAR 232\()\),
SYY CHAR (23J) (40)
\(\begin{array}{lll}\text { SRA } & \text { CHAR } & (40) \text {, } \\ \text { SRR } & \text { CHAR } & (80) \text {, } \\ \text { SRC } & \text { CHAR } & (120) \text {, } \\ \text { SR } & \text { CHAR } & (160) \text { : } \\ \text { SRE } & \text { CHAR } & (2 C O) \text { : } \\ \text { SRF } & \text { CHAR } & (240) \text {, }\end{array}\)

Y(G)
OUARELESOR
MANE
KNT \(=0\) :
COV \(=1\);
\(\mathrm{COV}=1\)
\(\mathrm{Y} Y=0\)
YY=O:
FKE \(Y=K N T\)
OREN FILE(MANF) DIRFCT INPUT; CPEN FILESCUT) OIRFCT OUTPUT; \(\begin{array}{lll}\text { OPEN FILE TYPA) DIPFCT INPUT: } & \text { OPFN FILEMTYPE) OIRECT INPUT: } \\ \text { OPEN FILE TYPC, } & \text { DIPECT INPUT: } & \text { OPEN FILF TYYPD) DIRFCT INPUT: }\end{array}\) OPEN FILE(TYPE) DIKECT INPUT; OPEN FILEF(TYPF) OIRFCTINPUT: GETAODRFSS OF ISTMAIN FILE READ FILE (TYPA) INTO(SRA) KEY (EKEY): GET EDIT (TOP,SPA) (A(S)):A/75)I: SAD \(=\) SPA:
NOFL=1
IL = SWD*CON
CKEY=1
\(A D D R=1\);

1* GFT NEXT MAIN FILE ITEM * 1

GEADFILF(MANE), INTC (MFTC) KFY(CKEY):

\(I L=A D O R * C J V:\)
IL \(=A D O R * C\)
IL \(=I L-1!\)
CKE \(Y=I L ;\)
AB:
IL= SYAD*E ON:
ILE =IL-1;
\(L Y=S Y F * C O N ;\)
\(L Y=L Y-12 ;\)
IL \(=L Y\) O
\(S Y N=S P A\)
SYN \(=\) SPA
\(Y Y(I L)=Y Y(I L)+1:\)
IF IL
IF IL \(\rightarrow\) G THFN DO: PUT EDITA('SYNMTCOLONG', MWD, ENGA)
(SKIP,A,A(R) AA(30));
GO TCAD: END:
GO TO Y(IL):
1* SET UD AOORESS FOR SYNOVYM RECJRD ( \(/\) *
Y(1): READ FILE (TYPA) INTO (SRA), KEY (S'́* GEY) GET SYNONYM RECORD * 1
GET STRING (SPA), EDIT (SWD.SYN)

GO TOAH:, A(72));
\(Y(3): \begin{aligned} & \text { GO TO AH: } \\ & \text { GETESTFILF(TYPC) INTO (SRC), KEY (SKEY): }\end{aligned}\)
G (A A A),A(112)):

GET STRING(SRO), EDIT (SWO.SYN)



AH:
\(K A=1 ;\)
\(K B=\eta ;\)

\(M=0 ;\)
\(T E M P=S Y N:\)
\(A C:\)
IF \(Y=0\) THEN GO TO AF:

1* ISOLATE FACH SYNONYM IGNORING

```

PROG: PROC IPTINNS (MAIN):
lol
(NKEY,G\&M,N,NC,NNN,JI,TCP,KNT) MWD CHECRFIX):(XEN (5),
NGG,MG,MX,IL,VO,VL,VP) 'IEC FIXED (5).
INGNDEC FIXXED (3), NIXEN (4),
ADTM(3500) DEC FIXED (4)
(CKEY,TKEY) CHAR (S)
JCC(3) PACKE? CHAR (2) DEFINED JC,
ONNN (7) PACXED CHAR (1) DEFINED JNNQ
ENGA CHAR (25), CHAR (1) OEFINED ENGA.
(KEE,KEARY(35NB)) CHAR (36)
M,
PAKN(2S) PACKED CHAR IIS DEFINED UPAR, F(36)),
KNT=1:
NKEY=1%:
1* REAO NUMBER OR SYNONYMS, IN FILF
GET EDIT (TOP,SPLT,SPA) (2F(5),A(7C)):
GPEN FILE(MANF) DIRECT UPOATE:
1* GET NFXT INTERM. FILE SYNINYM

```

```

 KFE=O
 FINN PNSITIION OF EACH TONNE AND ADO
 DO= JN=1
 IF WחRD(JN),7=i... THEN GO TC AA:
 TEMP(jo)=JCC(3):
 IF=JP-1:14 THEN GOJ TC AB
 AA:
K=
REMOVE TONES FOR SORT K

```

```

FVC:

```

KEARY(KNT) =KEE:
\(K N T=K N T+1\)
VO=NKE \(Y\) :
NKE \(Y=N K \leq Y+1 ;\)
IF NKEY \({ }^{\prime}\) TOP THEN GO TO SRT:
CKENKY:
1* CHECK IF END DF IST OR \(2 N \mathrm{IN}\) HALF
CKEV=NKEYi \(\quad\) IF \(\quad\) SPLT THEN G TO RFED:
SRT: NN=KNT-I:
* SnfT */

\section*{\(N G=-5 *(S Q R T(5 * N N)):\)}
    \(N N=15\)
\(N C=1:\)
\(M G=0\)

\(N=N C:\)
\(M X=N C\)

IL \(=N C\) :
\(N C=N C+N G ;\)
IF NC >NN THEN DO: \(\quad N C=N N+1\)
\(A D D R(I L)=N C:\)
\(N=N+1:\)
\(\mathrm{N}=\mathrm{N}+1\)
if \(\mathrm{N}>\mathrm{N}\)
IF N>NC THFN GC TO AX:
\(M=I L E\)
IF
EARV
(N)
\(A D D R(N)=J Z:\)
\(K E E=K E A R Y(V)\)

ut:
GO TÓ ATín
SKEARY(M) THEN GO TO AV
IF \(A D \cap R(M)=N E\) THEN GO TC \(A W\) :
\(A D D D(M)=N:\)
\(A D O R(N)=N C:\)
\(M X=N\) :
AW:
M=A KRR(M): \(A D N R(N)=M\)
\(A D O R(L)=N\)
AX:

IF MG7=0 THENGO TO CB;
MG= J2: \(C . C\) :
CB:
\(V A=Y G:\)
\(V L=J 2\)
\(I F K E A Z V(V O)<K F A R V(V L)\) THEN GO TO CO; IF KEA
\(M G=V L: ~\)
VL=ADÓR (VL):
GO TR EE;
CD:
* MFRGF */

MG=VD:

VO=ADDP (VO):
IF KEARY(VOi<KEARY(VL) THFN GOTO CF:
IF KEARY(VO;
\(A B R R(V P)=V L:\)
\(\mathrm{VP}=\mathrm{VL}:\)
\(\mathrm{VL}=\mathrm{AD}\) ?

CF: ADOR(VPI自VO;
\(V P=V O:\)
\(V P=A D O\)
\(V J=A D D P(V \cap)\) '
IF \(V U=9999\) TO CH:
GOTDCE:VO:
C G:
CH :
CA:
\(A D O R(V O)=V L:\)
\(G O T O C C:\)
JZZMG:
PUTEEDIT: (ADODESS OF FIRST WORD •, JZ) (SKIP(5), A,F(8)):
VO=NKEY-1:
IF VO \(\boldsymbol{V}\) : SPLT THEN GO TO AE;
FILE IST HALF OF SOFK K KYY

OPEN FILE(TEMM) DIRECT OUTPUT:
OPEN FILESTEM
MGA =JZ:
OO N
KEE \(=K E A R Y(N N\) ):
TKEY=N: WRITE FILE (TEMM) FROM (KEE) KFYFROM (TKEY):
ADTM(N)=ADOR(N):
CND'
KNT=I:
GO TOEN
CLDSE FILE (MANF):
MERGE ADDRESSES OF ROTH H H H V VES
OPEN FILE(TFMM) DIRECT INPUT: \(V D=M G A ;\)
\(V L=J Z ;\)
TKEY=MGA
RKEY=MGA
RFAD FILE (TFMM) INTO(KEE) KEY (TKEY):
IF KEE K KFARY(VL) THFN GO TO GO;
IF KEE \(C\) KF
\(M G=V L+S P L T ;\)
\(M G=V L+S P\)
\(V D=V L ;\)

AD:
GO
\(M G=V)^{B R}\)
\(\begin{aligned} \mathrm{VP} & =\mathrm{V} \cap \text { : }\end{aligned}\)

AE:
TGA \(\quad\) YVÓ
READ FILE (TEMM) INTO(KEE) KEY (TKPY):
BB: IF KEE C KEARY(VL) THEN GO TO GF
IF FL \(=\) O THEN GOTM
ADTM(VP) \(=V L+S P L T ;\)
```

GOTTOBI:M
VP=VL:
VL=ADDR(VL):
IF VL=999G THEN GN TO BG;
GO TO BB:
BF: IF FL =O THEN GO TO BJ;
ADTM(VP) =VO:
O TO 8K:
ADOR(VP) = VO:
Fl=1;
M=ADTM(VO):
FF VO=9999 THEN GO TO BH:
GO TO BE:
ADDR(VP)=VN;
GOTMOV VPIGVL+SPLT;
VP=VL:
VZ=ADODR(VL);
IF VL=9999 THENGGO TO BC:
ADDRIVPIIVL+SPLT:
GN TO BL:
PUT EDIIT ('ADORESS OF FIRST HORD ',JZ) (SKIP(5),A,F(B))
CLOSE FILE(MANE); IIRECT UPDATE:
CLONSEFILE (TEMM):RECT UPDATE:
OPEN FILE (TEMM) DIRECT INPUT:
PUT EDITT ('NUMBER SORTED = ',M) (SKIP(2),A,F(7)):
ADDONRT ADDRESSES ETC I'\#OM INTERM.
DO N=1, TO M;
NKEY=N:
CKEY=NKEYi
l
M,
INN=ADTM(N): GOTO AG; END:
JNN=ADTM(N):
GO TO AK:
L=N-SPLT:
KKEY=KEA\dot{R Y(L),}
IF ADDR(L)=99999 THEN DO: FLOC=0999990:
GO TO AG; END:
JNN =ADDRIL!;
DOLJ=1 TO 5; NN(J+2):
OFLD(
DOKJ=1)TOK 25iJ):
END j=1 TO 5;

```
\(\operatorname{NOF}(\mathrm{l} \boldsymbol{J})=\operatorname{TEMP}(\mathrm{J}+13):\)
END: ITE FILE(MANE) FROM (RECD) KEY (CKEY):
IF NくID1 THENGO TO AI:
AI: PREADFILE(MANE) INTD (RECD) KEY(CKEY):

AJ: END:

PROG: OROC DPTIONS (MAIN);
DCL CON JJFC FIXED (1),
KVT, JT, ILI DEC FIXED (5),
YKEY, CKFY , SKEY, SWD) CHAR (R),
TREC CHAO Jん,
(WIRD, FNGA, SYNO, HOLD, חSYV) CHGR (25).
(FLTA Min)' CHAR (6).

ESVN CHAR (25),
ESBT (25) PACKED CHAR (1) DEFINED ESYN,
TMP( 25 ) PACKED CHAR (1) DEFINED
FTMP (25), PACKED CHAR (1) DEFINED ENGA,
SYN. TEMP) CHAR (152),

REST CHAR (96),
QEC CHAP 12651,
STEM(152) OACKED CHAR(1) DEFINFD TEMP,
STYN(25) PACKED CHAR(1) UEFINED HOLD,




GET EnIT (SPA) (A(160)):
CON=1:
OPEN FILE
OPEN FILETMAN DIPECT INPUT:
OPEN
OPEN FILE(MANE) DIRECT INPUT;
OPEN FILE (TYPA) DIPECT INPUT:
DPEN FILE (TYPE) DIRECT INPUT:
ADOR \(=\) SPA:
SAO \(=\) SPA:
SQA \(=\) SPA
CKE
CZ \(Z=\mathrm{B}=\mathrm{JZ}\);
OPEN FILE(TYPR) DIRECT INPUT:
OREN FILE(TYPD) DIRECT INPUT:
/ * GET AODRESS OF IST MAIN FILE
REA EILE
GET STRING
SYA)
SCA)
\(J Z=F L D A * C O N\);
JZ=JZ-1;
R R :
```

M=7;

```

MM = SÁn=999999' THEN GO TO FIB:
1* GET NEXT INTERM. FILE RECORC
READ FILE(OUT) INTO (OREC) KEY(OKEY):
```

 SET UP LONRFS TF NEXT INNTEY. FILF
 ILESAO*CON
IF OSYN:=SPA THEN GO TO,AR:
SDIT (SYN FIR ;EWISGWORD,' PROGI ERF - REC= ',OREC)
P,1(76)):
AB: IF M=1 THEN GO TO AO;

```


```

 IL=ADDR*CON;
 IL=IL-1;
 CKEY=TL:
 /* FIND UTONE POSITIIONS OF ENGA AND
 L=1:j=1 TO ?5:.... THEN DC: ESRT(L)=ETMP(J): L=L+1; END:
 AD:
IF SYNJ > ESYN THFN GO TN RAX;
CO J=S TO, BY -1 (j) THEN GO TO RAX:
ENDO;
AO! IF SYYAD > IF MM = THEN SO THENGGO TO AE:
QAX:
AE:
1* COMPARE ENGA AND SYNOVYM WITHOUT
1* COMPARE TONE PCSITIONS FO ENGA AVD
IF MM AL: THEN GO TO AO:
MM=1:' RA:

GET STRING (SFA) EDIT (SWD,SYA!)

$$
\operatorname{con}(A(B), A(72)):
$$

(4): GO TA AH FiLE (TYPD) INTO (SRD) KYEV (SKEY):

GET STRIVG (SRD), FDIT (SWD,SYN)
AH: \quad IF $=$ MM $=1$ THEN UD: PUT FOIT (MWD,FNGA,' SHOULO BE SYNS FOR CNE OR
MORE OF ITS SYNONYMS') $\operatorname{CSKIP,A(6),X(4),A(25),A):~}$
$\begin{array}{ll}K A=? ; \\ N C & =0\end{array}$
NC $=0$
IL $=$ SYFFCON:

- ISOLATE MAIN FILE SYNONYM
IGNORING BRACKETS
 $K=J$
END
:

A I:
Nin

 MWD, ENGA) ISKIP
GO TH AK: ENT:
AK: IF STFM(K+3)=1, THEN GO TT RA:
$A K: ~ K A=K+2 i$
$A G: \quad I F K A>I L$
THEN G O TO PA;
AF: \quad OO $J=K A$ TO IL: THFN GO TC AA:

AJ:
$\mathrm{K}=\mathrm{J}$:
END
AA:
$\mathrm{K}=1$:

$H O L D=S P A$ DOJ=KA TOKTi
STYN(N) $=$ STFM
ST) $\mathrm{N}=\mathrm{V}+1$;
ENO:

* COMPARE ENGA'S SYNONYM WITH INTEPM. FILE SYNONYM'S ENGA
IF WORD $=$ HOLD THENGO TO AD:
IF KB ? 2 THEN GO TO AL:
$K A=K+?$; IL THEN GO TOAL:
IF KA
GO TO AC:
/* VARIOUS ERROR MESSAGES WHEN

AP: $M=1$
AM: PUT EDIT' ${ }^{\circ}$:SYN FOR ' $E W D, W O R D 0^{\circ}={ }^{\circ}, O S Y N, O^{\circ}$ BUT SYN NOT DIC WORD')

FIA: PUT LIST' (FOLLOWING SYNS NOT IN DIC') PAGE:
AN: PUT EDIT (OSYN, © FOR : EWD, WORD) (SKIP, A(45), A, A(6), X(4), A(25)): $M=4 \mathrm{C}_{\mathrm{O}} \mathrm{RB}$:
FIB: PUT EDIT ('ALL DIC ITEMS AFTER ',MWD,FNGA.' ARE NOT SYNS'
OVR: PUT LIST ('END, SYN \&HECK 'A SKIP(5):

4.3 REVERSAL (ENGLISH-ENGA)

4.3.1 Description of Program

The problem was to list all English glosses for each Enga main item in alphabetic order along with the Enga, grammatical class, dialect, and loan word source (if applicable); at an intermediate stage the cross references were also printed. (The cross refererces were left in the English-Enga print file but not printed in the final run.)

If the English gloss began with either 'to' or 'to be', then these ('to' and 'to be') were removed from the English gloss item before sorting.

A sort of the English was required and, in order to use as much core as possible for this, two programs were written. One created a file of information needed, and the other sorted and printed it.

Flow charts for these programs are in 4.3.2 and listings in 4.3.3. The flowchart for the Sort Routine is in 4.1.2.

4.3.2 Flowchart: Phase I

Flowchart: Phase II

4.3.3 Listings

Phase I

PRAG: PROC JPTIGNS (MAIN):
or. L

IVA CHAP (9):
TO BF CHAR (6),
ASTK CHAR (3)
ASTM CHAR (6)

(EKEY, TKARY, MKFY) CHAR (8):

MRF SGHAR (2G5 (2)?

ERC CHAR $12 才$,
ERN CHAR (10n):
ERE CHAR (200):
ERE
ERF THAR (240)
2 (6) LAREL:
TOTL
2 KEA CHAR (143),
? FNGA CHAR 125$)$:
2NOD CHAR (5),
2 ECD CHAR (3),
2 CNT CHAR (5),
2 CNTCHAR (5),

3 ESYN CHAR (4O)
KEYA
MANF FILE RECORO
MECORD
TYDA FILF

TYDF FILE RECOPD KEYFN FNV (RFGIMNAL(1) FI240)):
TYILE RECORD KEVEN ENV (REGICNAL(I) Fil20):

OPEN FILE(MANF) CLRESE FILE (SYSPRINT):
OPEN FILE (MANF) DIRECT INPUT
ODEN FILE TYDA) DIRECT INPUT
DPEN FILE (IYPA) DIRECT INPUT
DPEN FILE IYPQ) DIRECT INPUT;
OPEN FITEITYPC) OIRFGT INPUT
OPEN FILE (TYDO) DIRECT IYPUT

OPEN FILE (TYPE) DIRECT INPUT:
OPEN FILE (TYPF) DIRFCT INPUT:
ODEN FILE(KEYA) DIRECT OUTPUT:
1* GET ADDRESS OF $1 S T$ MAIN FILE
GET EDIT (TOP,SPA) (F(5),A(75)):
CON=1:
MK E $\mathrm{Y}=\mathrm{K}, ~ \mathrm{~T}$.
READ FILE (TYPA) INTत (ERA) KEY (MKEY):
GET STRING (ERA) EDIT (TO_BE,TEMP) (A (6), A(34));
$I L=T O-B E \neq C O N$:
ILEIL=1:
MKE $Y=I L:$
$A D D E=S D:$
$A D D E=S R A ;$
$T O B=T O$
TOB= =TO ;
TO_BE= TO BE ;
REED: IF ADDE $=199999^{\prime}$ THEN GO TO FIN:
/ * GET NEXT MAIN FILE ITEM */
READ FILE (MANE) INTO (MREC) KEY (MKEY):
GET STRING (MREC) EDIT (MWD, EWD, ADDE, ENGA,TEMP, ECD, EGF, EGAD,

$I L=A D D E * C O N$;
ILL =IL-I;
MKF $V=I L$:
/* SET UP ADDRESS OF SYNONYM FDR
ENF =SGF\#CON:
ENA $D=$ SADD*CON:
IF ENAD? O THEN GO TO AR:
BN:
CONT=O;
CONT = O:
AR : IL=ENAD-i
EKE $Y=I L$:

G* GET SYNONYM RECORD *
GO TO Y(IL):
GET SADFILEITYPA) INTO (EPA) KEY (EKEY):
GET STRING (ERA), EDIT (DVA,ASYN)
$\operatorname{COVT}=1: 8), A(32))$;
$C O V T=1:$
$G O T O A D$

$C O N T=2 ;$

GET (A(8), A(32),2A(4O)):
COV T=3:
GO TOAD
$Y(4): \begin{aligned} & \text { GO RAD FILE (TYPD) INTN (ERD) KEY (EKEY) : } \\ & \text { GET STRING (ERD) EDIT (} \mathrm{VVA}, A S Y N, B S Y N, C S Y N, D S Y N) ~\end{aligned}$
GETETRING (ERD) EDIT, ($\mathrm{CVA}, A S Y N, B S Y N, C S Y N, D S Y N)$

```
    CONT=4:
Y(5): GO RAD FILE(TYPE) INTO (ERE) KEY (EKEY):
    GET STRING (ERF), EDIT,(OVA,ASYN,BSYN,CSYN,DSYN,ESYN)
    COVT=5:
Y(6):GOREAO FILE(TYPF) INTO (ERF) KEY (EKEY):
    GREA\cap FILE(TYPF) INTO (ERF) KEY (EKEY): 
        (A(%),A(32),5A(4C)):
    COVT=6:
AD: CNT=CONT:
1* SET UP ADDRESS FOR ENGLISH DF
ENF = EGF \#CON:
ENAD=EUAD FCON: \(I F\) ENAD \(\boldsymbol{O}\) THEN GO TO AF:
GO TOREED:
AF:
\(I L=E N A D-1:\)
\(E K E Y=I L:\)
IL \(=\) ENF
IF
I \(2: ~\)
```



```
Z(1): GOTOZ REAL) \(\begin{aligned} & \text { GETTYPA) INTO (ERA) KEY (EKEY): } \\ & \text { GET STRING (ERA) EDIT (EWD,TEMP) }\end{aligned}\)
Z(2): GO TO ABíLE(TYPB) INTO (ERB) KEY (EKEY):
GET STRING (ERB) EDIT (END, TEMP)
GO TOA AB:
Z(3): \(\begin{aligned} & \text { GEAD FILE (TYPC) INTO (ERC) KEY (EKEY): } \\ & \text { GET STRING (ERC) ENIT (EWD, TEMP) }\end{aligned}\)
(A(16),A(104)):
\(2(4): \begin{aligned} & \text { GO TO AB: } \\ & \text { GETEADFILE (TYPD) INTO (ERD) KEY KNG (FRD) EDIT (EWD, TEMP) (EKEY): }\end{aligned}\)
AB:
\(K A=1 ;\)
\(K B=0\)
\(I L=(E N F-12) * 40\)
IF IL \(>=120\) THEN IL \(=145\);
AN:
```



```
1* LOOP THROUGH EACH CHARACTER OF ENGLISH RECORD FOR END OF EACH DEFINITION AND IGNORE BRACKETS
DO K=KA TO IL:
IF LXR1 THEN GO TO AA:
PUTDATA (KA,IL, \(\mathcal{K}, L\) PUT LXIST ('IMBD BRCH') SKIP
PUT DATA (KA,IL,K,L LXI):
PUT EDIT (MHO, EEMP, (STEM
```



```
    IF STEM(K) = .), GOTHENOAL;'LX=LEND; GO TO AL; END;
    AA :
    AC:
    IF STEM(K)=:(OTHENNDO; LX=1; GO TO AL; END;
    IF STEM(K)>: \ THENGGO TO AL: 
    KB=2:
    AL: L=K;
    AJ: IF L=0 THEN DO; PUT EDITT!ENGLISH BEGINS WITH BLANKS IN ',MWO,
                (SKIP:A,A(G),MP)
    IF STEM(KA)=, THEN KA=KA+1;
    KT=L;
                            /* DETERMINE IF "TO" OR "TO BE"
    A STN=SPA:
    NN=0;
    ASTR= SUB STR(TEMP,KA, (KA+2)): 
    IF AST2 A= TOB TTEEN GO TO A Y;
    ASTN=SUGSTR(TEMP KA,'(KA+5))':
    NN=3:
AZ: NN=6;
                                    ** MOVE DEFINITION TO OUTPUT AREA,
    N=1: 
    STYN(N)=STEM(K);
    N=N+1;
    ENO;
    IF KEE=SPA THEN GO TO REED;
    KNT=KNT+1; % SNO THFN DC; PUT LIST ('NNO. OF FGLS GT 7500') SKIP;
    TKEY=KNT;
    KEA=KEE ;
        PUT LIST ('NO. OF FGL.
                            /* WRITE RECORD TO INTERMEDIATE FILE
    WRITE FILE (KEYA) FROM (TOTL) KEYFROM(TKEY); % CHECK IF ANY MORE ENGLISH IN
    IF KB>2 THEN GO TO REFD;
    MA=L+2:
FIN:
PUT EDIIT('NO. OF ENGLISH DEFS = ',KNT) (SKIP(2),A,F(6));
```

```
PROG: PROC GPTIONS (MAIN):
    OCL
        (NG,MG,MX,IL,VO,VL,YP)
        (L,M,N,NC,NN,JZ) DEC FIXESD
        KEARY(3'NN;J2) DEC FIXED (5)
            KEARY(3750) CHAR (20) (4)
            ADDR(3750) DEC FIXED (4);
        WORN CHAR (2O), (IXED (1),
        (FL,CNN) DEC FIXED (1), (5N (5),
            KEF CHAR (20),
            TKE Y CHAR (8):
            SPA CHAR (75),
            l
            OCD CHAR (2);
                TOTLL CHAR (143)
                2 ENGA CHAR (25):
            l
                TSYN, 
                3 DSYN CHAR (40);
            TEMM FIILE RECORD KEYYED ENV (REGIONAL(1) F(20));
    CON=1:
    KNT=O%
    KNT1=0:
    BRB=?!!
    ON FRROR GO TO ERR;
```



```
    OPEN FILE (KEYA) DIRECTINPUT:
    MA=1;
AA: DO J=MA TO MB;
    DOEJ=MA TO MB: 
    KNT=KNT+1
    KEARY(KNT)=KEA:
    M IF J < 50 THEN PUT EDIT(KEARY(KNT)) (SKIP,A(20)):
AB :
    NN=KNT: I* SORT
```


NG = - 5 $\ddagger(S Q P T(5 * N N))$;

$N C=1:$
$M G=0$
IF NC
$\mathrm{N}=\mathrm{NC}$:
$N=V C:$
$M X=N C$
$M X=N C ;$
$J Z=N C$
KEF = KEAR Y NC):
IL = NC ;
IF NC NCNG; THEN DO; $N C=N N+1 ; \quad$ END:
$A D D Q(I L)=N C$;
$N=N+1:$
IF $P N C$
IF $N=N C$
THEN GO TO AX:

ADDR (N) $=J Z$;
$K E E=K E A$
$J Z=N:$

AU: IF KEARY(N)>KEARY(M) THEN GO TO AV:
IF KEAR
$M=M+1$ i
: IF ADOR (M) $=N C$ THEN GO TO AH:
$A D D R(M)=N$.
$A D R(N)=N C:$
$M X=N:$
GO TOT:
$L=M$; $A T$:

$A D D R(N)=M$:
$A D D R(L)=N$:
GDOR (MX) $=9999$:
ADOR $(M X)=9999 ;$
IF MG $\rightarrow=0$ THEN GO TO CB;
MG=JZ;

$M G=V L$:
$V L=A D D R(V L) ;$
CD:
GO TM V ;
$\mathrm{VD}=\mathrm{V}$:
$V P=V C ;$
$V O=A D O R(V O) ;$
CE: IF KEARY VOi<KEARY(VL) THFN GO TO CF:
IF KEAZY(VO)=KEARY(VL) THEN GO TO CF:
ADDR (VP) $=V L$:
VP = VL:
$V L=A D D R(V L)$ i
IF $V L=9999$ THEN GO TO CG;


```
VP=VO;
IF VO=9999 THEN GO TO CH;
GO TO CE;
CG: ADOR(VP)=VO
GO TO CC:
ADDR(VP)=VL:
GO TOC
PUTMGOITM('ADDRESS,OF FIRST, WORD (,JZ,'NUM = ',KNT)
IF MB T=SPLT' THEN GO,TO AE:
```

CH .
CA:
FILE IST half OF SBRK $\underset{*}{\text { KE }} \mathrm{F}$ YS
OPEN FILE(TEMM) DIRECT OUTPUT:
MGA $=J Z:$
KNT $1=K N T$

TKE Y=N: $W R I T E$ FILE(TEMM) FROM (KEE) KEYFROM (TKEY):
WRITE FILE T TEMM)
ADTM
END:
CLDSE FILE (TEMM):
$K N T=0 ;$
$M A=S P L T+1$;
MB = TOP:
ERR: VO = KNT+SPLT; MA, MB,VO,SPLT,TOP) SKIP;
GO TOAB:
AE:
OPFN FILE(TEMM) DIRFCT INPUT:
VO = M GA:
$V \mathrm{~V}=\mathrm{MGA}$
TKEY=MGA:
READ FILE (TEMM) INTO(KEE) KEY (TKEY
IF KEE = KFARY(VL) THEN GO TO BD:
IF KEF $=$ KF
$M G=V L+K N T 1 ;$
$V P=V L:$
$F L=0:$
$V \mathrm{~V}=\mathrm{VL}:$
$F L=0$:
VL = ADOR (VL);
80:
MG =VO;
MG = VO;
$\mathrm{FL}=1:$
$\mathrm{VO}=A \mathrm{~S}_{\mathrm{I}} \mathrm{TM}(V O):$
BE:
MGA $=V O \dot{1}$
TKE
Y
READ FILEE (TEMM) INTO(KEF) KEY (TKEY):

```
    ADTM(VP) = VL+KNT1:
    GOOR(VBI; VL+KNTI;
BA:
    FP=VL;
    VL=ADIVR(VL);
    IF VL=9999 THEN GO T% BG;
IF FL=C THEN GO TO BJ;
ADTM(VP)=VO:
GO TOBK;
VP=VV;
VC=ADTM(VO):
GO TO BE:
ADDR (VP)=VO;
GO TO BC: 
ADTM(VP)=VL+KNT1;
VP=VL
VL=ADDR(VL); THFN GO TO BC:
ADDR(VP)=VL+KNT1:
GO TO BL;
JZ=MG;
SU=MGEDIT ('ANORESS OF FIRST WORD ',JZ) (SKIP(5),A,F(B)):
OPEN FILE (KEVA) DIRECT INPUT;
M=KNT+KNT1
TKE Y=JZ;
LMUT EDIT (!NUMBER SORTED= 1,M) (SKIP(2),A,F(7));
ADD * ( , AND PRINT**
RFAS FILE(KEYA) INTO(TOTL) KEY(TKEV)
GET STRING (ECD) FNIT (KFE,OCD,FVB,SPN) (A(7),A(2),A(1),A(22)):
IF EVB=0! THEN EST=0: ! ;
IF OCD=' 'THFN DO; ORA=SPA;
                GC TO AC: END:
ORA=BRA 
ENF= CNT*CON;
IF KEA < HORD THEN GO TO AQ:
PUT EDIT (KEA,E ST,ENGA,ORA,OCO,ORB,ECD,MND)
AQ:
IF L'> KNT1, THEN GO TO AH:
    MX=AOTM(L):
MX=A DDR(i-KNT1);
MX=ADDR(L-KNT1);
TKE V=MX:
=MX
ENत'PROG:
```


4.4 LIKE WORDS

4.4.1 Description of Program

This program produced a list of the 1tems which had the same orthography, ignoring tone positions, plus their English glosses. This program did not require the use of the sort routine because the main flle was accessed in sort order. However, PLl was required to remove tones before comparing items.

The flow chart for this program is in 4.4 .2 and the listing in 4.4.3.

4.4.2 Flowchart

4.4.3 Listing

OROG: PROC JPTIONS (MAIN):
DCL
 (LAST,KEE, ENGA) CHAR (25), LAST, KEE, ENGA) C
LENA CHAR (25),
CKEYCHAR (8),
SOA CHAR (40) !
SRS CHAR SOA
SRB
SRC
SRD
EWO
ENG
DU EKEY CHAR (8)),
TOBG, CDMT) CHAR (30), EGFG, COMT) CHAR (30), EGAD CHAR (5i, LWD CHAR (6)
LENG CHAR
(64), AIGN CHAR (64):
Yi Y(4$)$ LABEL
Y DEC FIXED (2).

COV
CAST $=0$ INO ENGLISH
TJRG = 'SORRY-TOD BIG
:
IND = =
OPEN FILE TYPA) DIRECT INPUT:
$\begin{array}{lll}\text { OP EN } & \text { FILE (TYPA) DIRECT INPUT: } \\ \text { OPEN } & \text { FILE (TYPB) } & \text { DIRECT INPUT } \\ \text { OPEN } & \text { FILE TYPC) } & \text { DIRECT INPUT: } \\ \text { OPEN } & \text { FILE TYPN) } & \text { DIRECT INPUT: }\end{array}$

/* GET ADORESS OF IST MAIN FILE

GET STRING
$I L=M W D \# C$
IL $=$! $L-1!$
REED: IF ADOR=' 99999° THEN GOTC, FIN:

IL $=A D \cap 2 * C$ ITN:
IL=IL-1;
$\begin{array}{ll}\text { CKEY=IL: } \\ \text { IF EGAD } & \text { 1. THEN GO TO AD: }\end{array}$
1* SET UP ADDRESS OF ENGLISH RECORD
$I L=E G A \cap \# C O N ;$
IL $=1 L-1 ;$
IL =IL-1;
$E K E Y=I L \dot{C}$
$L Y=E G F * C O N: ~$
$Y=E G F * C$
1
$=1$
IF IL > 4 THEN 70 : PUT LIST ' ${ }^{\circ} E N G L$ •GT: 160') SKIP;
ENGL $=$ TOBG: GO TO AE; GEND: ENGLISH RECORD */

GO (A(16),A(24)):
$Y(2):$ R READ FILE (TYPB) INTO (SRB) KEY (FKEY):
GET STRING (SRB) EDIT (EWD,ENGL)
GO (A(16),A(64)):
$Y(3):$ GEAD FILE (TYPC) INTO (SRC) KEY (EKEV):
GET STRING, (SRC) EDIT, (ENO,ENGL,DUPL)
$Y(4):$ GO TO AE FILE
GET STRING (SYPD) INTO (SRD) KEY (EKEY);
AE:

$K=1 ;$
$D O$
1* REMOVE TONES FROM ENGA */

* CHECK IF EQUAL TO PREVIOUS ENGA

IF KEE=LAST THEN GO TO $A A$;
ND=0;
$A C:$
LAST = KEE;
LENA = ENG
LENG=FNGL:
LL=IL;
AIGN=DUPL:
AA: IF IN REED; THFN GO TD AB;
1* $\underset{\text { NEXT }}{\text { HOLDGA }} \underset{\text { ENG/ }}{\text { RECORDS }}$ FOR COMPARISOV WITH

1* WRITE FIRST OF LIKE HORDS
PUT LIST ('~') SKIP:

IF LL, >2 THEN PUTEDIT (AIGN) (SKIP,X(35),A(80)):
IND=1;

$A D:$ ENGL=COM
$X Y Z:$
PUT DATA (MHD,ENGA,EGAD,EGF) SKIP:
FIN: PUT LIST ('END OF JOB,') PAGE:
END PRDG:

4.5 TONE PATTERNS

4.5.1 Description of Program

The purpose of this program was to produce sorted lists of Enga words with like tone patterns. Fifteen groups of pattern types were printed, and these are shown in Table 5.1.

Table 5.1 Tone Pattern Groupings

| No. of Tones | Syllable Position |
| :--- | :--- |
| one | last |
| one | first |
| one | second |
| one | second last |
| one | third |
| one | fourth |
| one | fifth |
| two | last two |
| two | first and second |
| two | second and third |
| two | third and fourth |
| two | first and one other |
| more than two | any position |
| none | |

All words in each Enga item were included except for (1) those beginning with a hyphen (particles cf. item l.l0, sub-group 007), and (2) those where the last word of a phrase was a subcategory of verb phrases, since these had been included as single word items.

The flow chart is in 4.5.2 and the listing in 4.5.3. The flow chart for the Sort Routine is in 4.1.2.

4.5.2 Flowchart: Phase I

Flowchart: Phase II

4.5.3 Listings

Phase I

PROG: PROC DPTICN: (MAIN);
DCL MREC CHAR (265),

(JVMT) DEC FIXXED (2),

MHD CHAR (O).
EKEY, TKEY) CHAR (8),
CON DEC FIXED)
INTM CHAR (25) ?
OAM CHAR 121
TOAN CHAR (55)
IFST 8) IFIN(8),
IL DEC FIXD (5),
DNGA(25) PACKED CHAR (1) DEFINED ENGA.
AR2 (4) DEC FIXED (2),
SENG, SPA) CHAR (25).
SNGA (25) CHAR (1) ÓEFINED SENG,
ADOE CHAR (5), FILE RECORO KEYED ENV(REGIONAL(1) F(19C))

TFIR FILE RECORD KEYED ENVIREGIONAL
TE
TFIV

NO=O: ORROR GO TO ERR:
CON = I;
EKE
OPEN FILE
OPEN FILE(TONE) DIRECT OUTPUT: OPEN FILEITTHC) DIRECT OUTPUT:
OIRECT OUTPUT: OPEN FILEITFORI DIRECT OUTPUT:

```
    OPEN FILE(TFIV) DIRFCT OUTPUT; OPFN FILE(TSIX) DIRECT OUTPUT
    OPEN FILEITFIT; DIRRECT OUTPUT
    OPEN FILF(TNIN) DIRECT GUTPUT;
    OPEN FILE(TTHY) OIPECT DOUTPUT: OPEN FILEITFCT, DIRECT OUTRUT
    OPEN FILEITFIF, DIRECT OUTPUT
    OPEN FILE (MAN'F) DIRECT INPUT
    OPEN FILE (TYPA) DIRFCT INPUT
    OPEN FILE (TYPB), OIRECT INPUT
    OPEN FILF (TYPC), DIRCCT INPUT
    /* GET ADDRESS OF 1ST MAIV FILE
    RFAO FILF (TYPA) INTO (ERA), KEY (EKEY):, (3, (MWO,LFST) (A(G):A(34))
    IL=MWO*CON.
    IL=IL-1;
    EKE Y=IIL' (ADDE,SPA,TOAN) (A(5),A(25),A(50)):
REEO:
    IF ADDE = 999999' THFN GOTO NXT ;
    REAN FILE (MANF), NTOTMREC) KEY (EKEY);', (MNG, TOAN,DAM,
    INTM,EGF,EGGD,LEST), A(7),A(55),A(2),A(25),A(2),A(5
    IL=ADDE *CON;
    IL=IL-1;
                            |* IGNORF IF ENGA BEGINS HITTH -
    IF ONGAI 1' SPA THEN DN: PUT LISTO; 'NO ENGA FOR', SKIP;
                                    PUT EDIT (MWD,ADDE,ENGA,SENG)
                GOTO REED;
                                    /* SFT UP ADDRESSSOF ENGLISH FOR
    L=EGAD*CON;
    IL < I THFN DO; REST=SPA; GOTOAF; END;
    IL=IL-1
    IKEY=IL ;
    /* GET ENGLISH RECORD */
Z(1):: GO EAOZFILE(TYYA) INTO (ERA) KEY (TKEY):
    GET STRIVG (ERA) EDIT (EWD,REST)
    LAST=SPA: 16),A(24))
    LAST=SPA:
Z(2):G GEAD FILE(TYPB) INTO (ERB),KKEY (TKEY):
GET STRIVGGERB),EDIT
LAST=SPA:
```

```
2(3): GETEAD FILE (TYPC) INTO (ERC), KEEY (TKEY):
    Gח TO AE; (16),A(A4),A(40));
z(4): GO 'TEAD AE FILE (TYPO) INTO (ERD) KKEY (TKEY);
    GETSTRING (ERD) ENIT (ENDORRST,LAST)
AE:
    IFIN=0;
    K=1 
    O
    IF IN(K)=J-1:
    K=K+1;
AA: IF JO=2RI THEN DO: IFIN(K) =J: END:
    IFST=O; /* FIND FIRST CHAR IN EACH WORD */
    K=2T(1)=1;
    l
AS: K=k+1:
    OO JEINTO, 8; O THEN GO TO AY;
```



```
    AL: PUT EDIT ('FRRRIN NORD'POSTIIONS', (IFST(KI;IFINNNOS DO K=1 TO 81,
    GO TOREEN:' = O THEN GO TC AZ:
        /* FIND TONE PATTERNS GY FINDING VOWELS AND SETTING UP
```



```
    M,
    ARR=0;
    l
    JV=0;
        lol
    GO TO AD:
AC:
AD:
    JV=JV+1:
END SNGA (J+1) = \cdots'M THEN DO: ARR (K)=JV; K=K+1; END;
AD: END JV=0 THEN DO; PUT, EDIT ('NO VOWELS INN,:MMN, ENGA,TOAN)
```


WRITE FILF (TELV) FROM (FYL) KFYFROM (TKEY):
 AO: \quad NO(12)=NO(12)+1 $N O(13)=N O($
IL =NO(13):
TKE $Y=11 ?$ WRITE FILE (TTHT) FROM (FYL) KEYFROM (TKEY): CHFCK IF VERB FNT TO RE OMITTED RED: IF JB $=1$ THEN GO TO REED: IF I IF JAM JB: 2 THEN GO TO ABEN GO TO REED:
AJ: END:
 NXT:

1* PRINT COUNT FO NUMBER IN EACH
FIN: PUT EDIT((NO(J) DO J=1 TO 15)) (SKIP,15F(7)):

PROG: PROC OPTIONS (MAIN);
DCL
1* TONE PATTERNS (2) */
KEE CHAR (21); DEFINET KEE PNSITICN (6).
CKEE CHAR (16) DHE

KNG,MG,MX, V VO, VL 21) , DPS DEC FIXED (5),
NG,MG,MX, N, VO,VL, VP) DEC FIXED
(NN, JZ,NC, N,
SPA
SPA CHAR (20),
TKEYCHAR (8),
NO 15) BINARY'FIXFD (15).
Y 15) LAREL,

FYL
2
2
2
2
2
2
2
2 REST CHAR (64):
? LAST CHAR (90):
IL
ILEMPC FIL XEN (S)

DO $J=1, ~ T O ~$
IF
NO
IF NO(J)=0 THEN GO TO AG : NN = NO (J):
GO TO $Y(J)$
Y(1): OPELNOSE FILE(TONE):
OPEN FILE (TONE I DIRECT, INPUT:
PUT LIST ITONE ON LAST•) PAGF:
DO L $=1$ TO NN:
TKE Y $=L$ ÍLLE (TONE) INTO (FYL) KEY (TKEY);
READ FIL
KEE = SIZE:
KEARY(L)=KEE;

```
    MRITE FILE (TEMP) FROM (FYL) KEYFROM (TKEY):
    GNO TO AH;
    Y(?): =LOSSEFILE(TTWO):
        OPEN,FILE, ITTWOMOIRECT,INDUT:
        OOL=1 TO NN:
        TKE Y=L;
        TKEY=LILLE (TTWO) INTO (FYL) KEY (TKEY):
    KEE=SILE:
    CKEE=HDRD:
    KFARY(L)=KFFíMMP) FROM (FYL) KEVFROM (TKEY);
        END:
        GO TO AH:
V(3):
    OPENNFILE (TTHR) DIRECT, INPUT:
        OUTLIST ' TON
        TKE Y=LILLE (TTHR) INTO (FYL) KEY (TKEY):
    KEE=SIZE:
    KEARYML)=KEEI'EMP) FROM (FYL) KEYFROM (TKEV):
    END:
Y(4): GO TOAH:
    4): OPELOSEE EILENTFOR)JNRCT INPUYT:
    MUTLLISTV TON
    TKEY=LILLE (TFOR) INTO (FYL) KEY (TKEY):
    KEE=SIZE:
    KKARYYL!)=K
    KEARY(L)=KEEEGEMP) FROM (FYL) KEYFROM (TKEY):
    GNO TO AH:
Y(5): '~CTOSNE AH:ILES(TFIV)
    OPENGILE, TFIVI OIRECT,INPUT:
    OOL=1 TO NN:
    TKE Y=LILLE (TFIV) INTO (FYL) KEY (TKEY):
    KEE=SIZE:
    CKEEEWORD:
    KEARYIL)=EKEEIGMP) FROM (FYL) KEYFROM (TKEY):
    END:TO AH:
Y(6): OPENOSEILILE(TSIX)SIRECT, INPUT:
    OPENNFILE !TSIX) DPRECT, INPUT:
    OO L=1 TONN:
    TKEY=LILLE (TSIX) INTO (FYL) KEY (TKEY):
    READ KEESIZEE.
    CKKEE=MORD:
```

WRITE FILE (TEMP) FROM (FYL) KEYFROM (TKEV): GND:
Y(7): ${ }^{\text {CLCOSE FILE }}$ (TSVN):
OPFN FILE (TSVN) DIRECT, IAPUT:
PUT LIST (TONF ON 5TH') PAGE:
DC $L=1$ TO NN:
READ FILE (TSVN) INTO (FYL) KEY (TKEY);
KEE =SIZE:
CKEF
KORD
KEARY(L)=KEE : GND íO AH:
$Y(8):$ CLOSE FILEITEIT)
PUT LIST (THO TONES ON LAST THO') PAGE:
OO L = 1 TO NN:
READ FÍLE (TEIT) INTO (FYL) KEY (TKEV): KEE=SIZE:
KEARY(L)=KEE
WRITE FILE (TEMP) FROM (FYL) KEYFROM (TKEV); GND fo $A H$:
$v(9):{ }^{\text {OPELNSE FILESTNIN) }}$
PUT LIST ('THO TONES ON ISTUAND 2ND') PAGE;
NN:
READ FIILE (TNIN) INTO (FYL) KEY (TKEY);
KEE =SIZE:

KEARY(L)=KEE END:
$Y(10)$ GO TO AHE
OPEN FILE (TTEN) DIRECT INPUT:
PUT LIST (TWO TONESON $2 N D$ AND 3RD') PAGE;
DO $L=1$ TO NN:
TKE Y=LiLE (TTEN) INTO (FYL) KEY (TKEY);
READ FILE
KEE = SIZE:
CKEE = WORD ;
KEARY(L)=KEE: $\begin{aligned} & \text { WRITE FILE (TEMP) FROM (FYL) KEYFROM (TKEY): } \\ & \text { END }\end{aligned}$ GND:TOAH:
Y(11): CLDSE FILE(TELV)
OLPEN FILE (TELV) DIRECT INPUT: DO L=1 TO NN;
TKE Y=Líle (TELV) INTO (FYL) KEY (TKEY);
READ FiLE
READ FILE
KEE SIZ
RKE
CKEE = WORD;
KEAR $V(L)=K E E ;$

```
    URITE FILF (TEMP) FROM (FYL) KEYFROM (TKEY);
Y(12):GELOSE FILE(TTWL)IIRECT INPUT;
    OPEN FILEE,'TTWLS DIRECT INPUT;OTHER') PAGF:
    DO L=1 TO NN:
    TKEY=LILLE (TTHL) INTO (FYL) KEY (TKEY):
    KEE=SIZE:
    KEARY(L)=KEE;
    WRITEFILE (TEMP) FROM (FYL) KEYFROM (TKFY);
    END :
Y(13):OCLOSEFILE(TTHT):'RECT INPUT:
    PUT LISTT ('REMAINDER HITH TWO'TONES') PAGE;
    DOL=1 TO NN:
    READILILE (TTHT) INTO (FYL) KEY (TKEY):
    REE=SIZE:
    CKKARYNORN:
    KEARY(L)=KEE:
    GND:TO AH:
V(14): CLOSE FILE (TFOT):
    OPEN FILE (TFOT) DIRECT INPUT:', PAGE:
    PUT LIST I'MOR
    TKEY=LILLE (TFOT) INTO (FYL) KEY (TKEY):
    REEESIZE:
    CK
    WRITEFILE (TEMP) FROM (FYL) KEYFROM (TKEY):
Y(15):GO TOOAH:
    OPEN FILE TFIFI DIRECT INPUT:
    PUT LISTTOHORDS HITHOUT TONES') PAGE:
    OO L L =1 TO NN:
    READ FILE (TFIF) INTO (FYL) KEY (TKEY):
    KEE=SIZE:
    KEARY(L)=KEE
    WRITE FILE (TEMP) FROM (FYL) KEYFROM (TKEY):
    END:
AK: NC=i:
NC=1:
CC: IF NC\NN THEN GO TOCA:
    N=NC:
    MX=NC:
    JZ=NC:
```

IF $=N C+N G ; N N$ THEN DO; $N C=N N+1 ; \quad$ END:

THFN GO TO AX:
THFN GO TO AX:
MFIL:
$A D O R(N)=J Z:$
$K E E=K E A R Y(N)$
$K E E=K E A R Y(N)$:
GZ $=\mathrm{N}$;
AU:

IF ADDR(M)

$A D D R(M)=N$
$A D D R(N)=N C$
$A D D R(N)=N C$
$M X=N:$
MX=N: AT :
AH:
$M=M D D R(M)$;
M=ADDR (M)
IF KEARY N
IF KEARY ADOR (N) =M:
ADDR (L) $=\mathrm{N}$:
ADDR $(M X)=9999$:
MGMG?=0 THEN GO TO CB;
$M G=J Z ;$
$G O$ TO
CB:
$V O=M G ;$
$V L=J Z ;$
$V L=J Z A R Y(V O)<K E A R Y(V L)$ THEN GC TO CD;
IF KEAZY(VO)
IF KEAZY(VZ) $M G=V L$;
$V P=V L:$
$V L=A D D R(V L) ;$
$V L=A D D R(V L)$
$G O$ TOCE;
CD:
$\mathrm{vP}=\mathrm{VO}$
VO=ADDR (VO):
CE: IF KEARY(VO) <KEARY(VL) THEN GO TO CF: $A D O R(V P)=V L$;
$V P=V L$
$V L$
IF VL=9999' THEN GO TO CG:
CF:
GO TOCE:
$\mathrm{VP}=\mathrm{VO}:$
VO=ADDR(VO)
IF VO=9999
THEN GO TO CH:
CG:

CH: $\quad A D D R(V P)=V L$:
CA:
TKF Y=MG:
L=MG:
PRINT EACH PATTERN TYPE IN
SORTED ORDER
DO $N=1$ TO NN:

CI:
TKEY=ADDR(L): (SKIP, X(46), A(80)):
LEADDR (L):
IF $=9999^{\circ}$ THEN GO TO AA:
AA:
CLO ŚS FILE (TEMP):
END: PROG:

APPENDIX A

COMPUTATIONAL TERMS

ACCESS TIME The time taken to retrieve data from a storage device, measured from the instant of executing an instruction to call for the data to the moment when the data is stored in the specified location within the computor.

ADDRESS The identification of the position of a location in store.

BACK-UP STORAGE A duplicate or secondary data storage, to be used should the data on the disk happen to be erased.

CODING The writing of instructions or data for a computer.

CODING SHEETS A form on which data or computer instructions are written before being transferred to an input medium, e.g. punched cards (cf. 1.7.1).

CONTROL CARDS A punched card containing data required for control purposes, e.g. totals.

CORE STORE A type of memory composed of magnetic cores; in this case, the main computer memory.

CREATION The initial data collection and organisation of this raw data into a file (e.g. disk file).

DIRECT ACCESS A storage device in which the access time to retrieve items of data is constant, relatively short, and independent of the location previously addressed. For this project, a disk.

DISK A storage device consisting of a number of flat circular plates each coated on both surfaces with some magnetizable material.

DISK FILE A file stored on a magnetic disk.

EDIT To check data for errors.

FEEDBACK The use of information produced at one stage in a series of operations as input to a preceding stage.

FIELD A subdivision of a record or collection of data items which contains a unit of information. In this project, each item (1.3.1-1.3.3) was assigned a particular field (2.2.5).

FILE An organised collection of data units or items, in this project kept on disk.

FILE DESIGN The organisation of a collection of raw data items into receptacles for holding information (the data) and indexed to help storage and retrieval of data items.

FLOWCHART The diagrammatic representation of a sequence of events, usually drawn with conventional symbols representing different types of events and their interconnection. Flowcharts are used to show diagrammatically the logical relation between successive steps in a computer program.

FORMAT The predetermined arrangement of data, e.g. the layout of the coding sheet, the arrangement of data in a record.

FORTRAN IV/G A programming language for scientific and mathematical use.

LISTING A printout of the program statements.
MASTER FILE A file of reference data which is used to provide data on a routine basis; a current fully updated file to which change records of new data items are applied. In this project, the master file was kept in disk storage.

MERGE An operation performed on two, or more, ordered sets of records to create a single set or file.

OVERWRITE To place information in a location and destroy the information previously contained there.

PL/l A programming language which allows efficient handling of large volumes of data and character arrangement.

POINTER The identification of the position of a location in store.

PRINTOUT A general term for the output from a printer; printed pages produced by a printer.

READ To obtain data from one form of store (e.g. punched cards) and transfer it to another (e.g. disk or core store).

RECORD A set of related fields treated as a unit. The set of fields related to any one event. In this project, all data fields accompanying one Enga item.

RETRIEVAL The extraction of data from a file or files by searching for specific items contained in records stored on the file.

RUN The performance of one program or routine.
SEQUENTIAL DISK FILES Files, stored on a disk, which can be accessed only in a one after the other order starting with the first record on the file.

SORT To arrange items of information into groups according to some particular criteria, in this project, in alphabetical order.

SORT ORDER The criteria used to arrange items into ordered groups, in this project, alphabetical order.

STORAGE The process of allocating specific areas of a device capable of receiving information and retaining it over a period of time (in this project a disk), and that allows the information to be retrieved and used when required.

THREADED LIST SORT A technique for sorting data where an address or pointer to the next record in order is set up for each record. These addresses then enable ordered movement through the data, but the data itself is never rearranged.

UPDATING To correct, add or delete records and thus ensure that the file reflects the latest information.

BIBLIOGRAPHY

```
CASAGRANDE, Joseph B. and Kenneth L. Hale
    1967 "Semantic relationships in Papago folk-definitions". In
        Hymes and B1ttle (eds.): 165-93.
DRAPER, Sheila
    n.d. English-Kyaka Dictionary. M1meo.
GLEASON, H.A.
    1955 "Review of Mager, Gedaged-English Dictionary". Language
        31:163-5.
HYMES, Dell and W.E. Bittle (eds.)
    1967 Studies in Southwestern Ethnolinguistics: Meaning and History
        in the Languages of the American Southwest. The Hague: Mouton
        and Co.
LANG, Adrianne
    1971 Nouns and Classificatory Verbs in Enga (New Guinea): A Semantic
        Study. PhD thesis, The Australian National University.
    forthcoming:
        Enga Dictionary with English Index. Pacific Linguistics,
        C20.
MATHIOT, Madeline
    1967 "The Place of the Dictionary in Linguistic Description",
        Language 43:703-24.
```


[^0]: Department of Linguistics Research School of Pacific Studies THE AUSTRALIAN NATIONAL UNIVERSITY

[^1]: ${ }^{\text {l }}$ For a complete breakdown of all sources used, see Lang (forthcoming).

[^2]: ${ }^{2}$ Items 15 through 30 are based on the semantic relationships given in the folk definitions by Enga informants (cf. Casagrande and Hale 1967 and Lang l971, Appendix B).
 3^{3} The data contained only a few examples of Exemplification (item 22) and Provenience (item 23), so that their fields were utilised for the more frequently occurring Instrumental and Objective relationships.

[^3]: ${ }^{4}$ The relationships given in items 22 (Instrumental), 23 (Objective), 25 (Time and Duration), 26 (Explicative) and 27 (Subjective) are not used by Casagrande and Hale, and are not definitions in the usual sense, but contain information of use for an ethnographic dictionary of Enga.

