Roads Department, Ministry of Regional Development and Infrastructure (RDMRDI)

Preparatory Survey for East-West Highway (E-60) Development Project (Phase 2) in Georgia

Final Report

Appendix – Volume 2

Disclosure Document

September 2018

JAPAN INTERNATIONAL COOPERATION AGENCY

PADECO Co., Ltd. Oriental Consultants Global Co., Ltd.

<Appendix List>

(Appendix - Volume 1)

Appendix 4.1	Design Drawings of Super Structure for Steel Bridge
Appendix 4.2	Alignment Design Change History of Mountainous Side (from FS to final DD version)
Appendix 4.3	Inter-Change Design Change History (from FS to final DD version)
Appendix 4.4	Topography and Tunnel Location
Appendix 4.5	Additional Geotechnical Investigation
Appendix 6.1	Evidence for the calculation results of Construction Cost by Construction Period : (A part has been removed because of confidential information.)
Appendix 7.1	F4-Bill of Quantities (Final Version) : (This appendix has been removed because of confidential information.)

(Appendix - Volume 2)

- Appendix 8.1 EIA (Final Version)
- Appendix 8.2 LARAP (Final Version)
- Appendix 12.1 Team Member List
- Appendix 12.2Minutes of the Meeting Extract the main ones -
: (This appendix has been removed because of confidential information.)

Appendix 8.1

Environmental Impact Assessment (EIA)

Final – March 2018

Environmental Impact Assessment of Section F4 of the Khevi-Ubisa-Shorapani-Argveta Road (E60 Highway) Republic of Georgia.

Table of Contents

EX	cecut	ive Summary13	
	1.	Introduction	13
	2.	Project Background	13
	3.	Project Description	14
	4.	Alternatives	15
	5.	Description of the Environment	16
	6.	Impact Identification	19
		Mitigation Actions	
		Monitoring Actions	
		Consultations	
	10.	Implementation	
Α.	Int	roduction	
	A.1	General	34
	A.2	Overview	
	A.3	Purpose of the EIA report	
	A.4	Category of Project	
	A.5	Scope of the EIA	
	A.5	5.1 Scoping Consultations	
	A.5	5.2 EIA Project Area	
	Α.5	5.3 ADB Requirements	
	A.5	5.4 Best Practice	
	A.5	5.5 Scope of the Report	38
		Methodology	
		Structure of the Report	
	B.1	oject Description	44
	B.1 15	Section Layout	
	B.1 15 pro	Section Layout 2. This section of the EIA provides the Project description. More specifically it ovides:	44
	B.1 15 pro B.2	Section Layout 2. This section of the EIA provides the Project description. More specifically it ovides: Type and Location of project	44 44
	B.1 15: pro B.2 B.3	Section Layout 2. This section of the EIA provides the Project description. More specifically it ovides: Type and Location of project Category of project	44 44 44
	B.1 15: pro B.2 B.3 B.4	Section Layout 2. This section of the EIA provides the Project description. More specifically it ovides: Type and Location of project Category of project Environmental Setting	44 44 44 45
	B.1 15 pro B.2 B.3 B.4 B.5	Section Layout 2. This section of the EIA provides the Project description. More specifically it ovides: Type and Location of project Category of project Environmental Setting Road Standards and Profiles.	44 44 44 45 60
	B.1 15: pro B.2 B.3 B.4 B.5 B.6	Section Layout 2. This section of the EIA provides the Project description. More specifically it ovides: Type and Location of project Category of project Environmental Setting Road Standards and Profiles Bridges	44 44 45 60 63
	B.1 15. pro B.2 B.3 B.4 B.5 B.6 B.7	Section Layout 2. This section of the EIA provides the Project description. More specifically it ovides: Type and Location of project Category of project Environmental Setting Road Standards and Profiles Bridges Tunnels	44 44 45 60 63 65
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8	Section Layout 2. This section of the EIA provides the Project description. More specifically it by ides: Type and Location of project Category of project Environmental Setting Road Standards and Profiles Bridges Tunnels Retaining Walls	44 44 45 60 63 65 67
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9	Section Layout 2. This section of the EIA provides the Project description. More specifically it by ides: Type and Location of project Category of project Environmental Setting Road Standards and Profiles Bridges Tunnels Retaining Walls Interchanges	44 44 45 60 63 65 67 67
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10	Section Layout 2. This section of the EIA provides the Project description. More specifically it by ides: Type and Location of project Category of project Environmental Setting Road Standards and Profiles Bridges Tunnels Retaining Walls Interchanges Culverts and Underpasses	44 44 45 60 63 65 67 67 68
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11	Section Layout 2. This section of the EIA provides the Project description. More specifically it by ides: Type and Location of project Category of project Environmental Setting Road Standards and Profiles Bridges Tunnels Retaining Walls Interchanges Culverts and Underpasses Overpasses	44 44 45 60 63 65 67 67 68 70
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 B.12	Section Layout	44 44 45 60 63 65 67 67 67 68 70 70
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 B.12 B.13	Section Layout	44 44 45 60 63 65 67 67 67 68 70 70 74
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 B.12 B.13 B.14	Section Layout	44 44 45 60 63 65 67 67 68 70 70 70 74 75
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 B.12 B.13 B.14 B.15	Section Layout	44 44 45 60 63 65 67 67 67 67 70 70 74 75 75
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 B.12 B.13 B.14	Section Layout	44 44 45 60 63 65 67 67 67 67 70 70 74 75 75
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 B.12 B.13 B.14 B.15 B.16	Section Layout	44 44 45 60 63 65 67 67 67 67 70 70 74 75 75
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 B.12 B.13 B.14 B.15 B.16 Alt	Section Layout	44 44 45 60 63 65 67 67 67 70 70 70 75 75 76
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 B.12 B.13 B.14 B.15 B.16 Alt C.	Section Layout	44 44 45 60 63 65 67 67 67 70 70 70 75 75 76 78
	B.1 15: pro B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 B.12 B.13 B.14 B.15 B.16 Alt	Section Layout	44 44 45 60 63 65 67 67 67 70 70 70 75 75 76 78 78 78

	C.5	Alternative Alignments		
	C.6	Alternative Pavement Types		80
D.	Envir	onmental Laws, Standards and Regulations82		
υ.	D.1	General	2	82
	D.2	General		
	D.3	Environmental Legislation of Georgia		
	D.4	Administrative Framework		
	D.5	Environmental Regulations and Standards		
	D.6	National Technical Regulations Relevant to the Project	. (97
	D.7	Environmental Permitting Procedures		
	D.8	Licenses, Permits, and Approvals	1(00
	D.9	State Forest Fund		
	D.10	International Conventions and Agreements		
	D.11	Asian Development Bank Safeguard Policies 2009		
	D.12	JICA Guidelines for Environmental and Social Considerations (April, 2010)	1	10
E.	Descr	iption of the Environment111		
		hysical Resources	1	11
-	E.1.1	Air quality		
	E.1.2	Climate		
	E.1.3	Topography		
	E.1.4	Natural Hazards		
	E.1.5	Hydrology		
	E.1.6	Geology & Soils		
	E.1.7			
E	E.2 Eo	cological Resources		
	E.2.1	Flora		
	E.2.2	Fauna	14	49
	E.2.3	Avifauna	1	57
	E.2.4	Fish	1(61
	E.2.5	Protected Areas	1(64
E	E.3 Eo	conomic Development	1(66
	E.3.1	0		
	E.3.2			
	E.3.3	Tourism and Recreation		
E		ocial and Cultural Resources		
	E.4.1	Socio-economic conditions		
	E.4.2	Community Health & Education		
	E.4.3	Economy and Employment		
	E.4.4	Waste Management		
	E.4.5	Physical and Cultural Resources		
	E.4.6	Noise & Vibration	1	79
F.	Envir	onmental Impacts and Mitigation Measures		
F	.1 Int	troduction		
F	.2 Im	pact Assessment Methodology	18	84
	F.2.1		18	84
	F.2.2	Impact Significance Rating		
F	3 Mi	itigation, Management and Good Practice Measures		
F		creening of Impacts		
F	⁻ .5 Pł	nysical Resources	1	96
	F.5.1	Air quality	1	96
	F.5.3	Climate Change	2	14

F.5.4	Soils	215
F.5.5	Hydrology	219
F.5.6	Natural Hazards	
	logical Resources	
F.6.1	Flora	
F.6.2	Fauna	
F.6.3	Forests and Protected areas	
	nomic Development	
F.7.1	Transportation Facilities & Utilities	
F.7.2	Land use	
F.7.3	Waste Management.	
F.7.4 F.7.5	Construction Camps & Batching Plants	
F.7.5 F.7.6	Borrow Pits Tunnels	
	sial and Cultural Aspects	
F.8.1	Employment Creation, Skills Enhancement and Local Business Opportuni	
F.0.1	238	
F.8.2	Community Health and Safety	
F.8.3	Workers' Rights & Occupational Health and Safety	
F.8.4	Emergency Response Planning	
F.8.5	Physical and Cultural Resources	
F.8.6	Noise & Vibration	-
F.8.7	Noise Model	
F.8.8 (Compliance Impacts	306
	nmental Management Plans and Institutional Requirements	
	oduction	
	vironmental Management Plan	
	trumental Monitoring Plan IP Costs	
	e Specific EMP (SSEMP)	
	Documents	
	ntract Documents	
	ntractor Requirements	
	gineer Requirements	
	MU Requirements	
	MP Implementation Summary	
0.11 2		0 17
H. Public	Consultation, Information Disclosure & Grievance Mechanism349	
	blic Consultations	349
H.1.1	Scoping Consultations	349
H.1.2	Public Consultations	351
H.2 Pla	nned Information Disclosure	353
H.3 Gri	evance Mechanism	353
	ntroduction	
	Georgian Regulations	
	DB Policy (SPS, 2009) Requirements	
	Grievance Redress Process	
	Grievance Redress Mechanism	
	Grievance Redress Commission for Stage 1	
	Grievance Redress Commission for Stage 2	
	Grievance Redress Procedures	
H.3.9 C	Grievance Log	360
	Disclosure of the Grievance Process	

Ι.	Со	onclusions and Recommendations362	<u>)</u>
	I.1	Conclusions	362
	1.2	Recommendations	362

Figures

Figure ES-1: Road Location Map	14
Figure A-1: Status of Road Construction / Rehabilitation Projects in Georgia	34
Figure B-1: Road Location Map	46
Figure B-2: Project Road	
Figure B-3: Project Road (KM0 – 0.6)	47
Figure B-4: Project Road (KM0.4 – 2.1)	
Figure B-5: Project Road (KM2.1 – 3.7)	48
Figure B-6: Project Road – KM3.7 – 5.5	48
Figure B-7: Project Road (KM5.5 – 7.0)	
Figure B-8: Project Road (KM7.0 – 8.7)	
Figure B-9: Project Road (KM8.7 – 10.3)	
Figure B-10: Project Road (KM10.0-11.6)	
Figure B-11: Project Road – KM11.5 – 13.0	
Figure B-12: Project Road – KM13.0 – 14.7	
Figure B-14: Cross Section on Embankment and Cuts	
Figure B-15: Cross Section on Bridges	
Figure B-16: Cross Section in Tunnels	
Figure B-17: For steel-concrete bridges – type 1:	
Figure B-18: For pre-stressed precast PSC beams bridges – type 2	
Figure B-19: Bridge Cross Section	
Figure B-20: Typical Retaining Wall	
Figure B-21: Road Pavement Structure for Interchanges	
Figure B-22: Forecasted Traffic, Dzirula, 2017 - 2037	
Figure B-23: Forecasted Traffic, Argveta (approx. KM 14), 2017 - 2037	/ /
Figure E-1: Ambient Air Quality Data	111
Figure E-2: Visible Air Emissions from GAA Plant, 2017 (taken from boundary of the Pro	
road around KM 11.1)	
Figure E-3: Ambient Air Quality Monitoring Locations	
Figure E-4: Temperature and Precipitation (mm), Zestafoni	
Figure E-5: Precipitation Levels (mm), Zestafoni	
Figure E-6: Wind Rose, Zestafoni	
Figure E-8: Forecasted changes of annual air temperature in the Georgia	
Figure E-9: Forecasted changes of annual precipitation in Georgia	119
Figure E-10: Topography of the Road Corridor (existing road can be observed to the left	
the valley)	120
Figure E-11: Topography looking over Shorapani towards Zestafoni	120
Figure E-12: Topography of the Project Area with Existing Road	
Figure E-13: Seismicity Map of Georgia (MSK Scale)	125
Figure E-15: Dzirula and Kvirila Rivers	127
Figure E-16: Dzirula River, KM 4.4, June 2017	128
Figure E-17: Surface Water Monitoring Locations	
Figure E-18: Soil Monitoring Locations	
Figure E-19: The study area with indication of the transects and boundaries of the habit	ats
	141

Figure E-19: Areas Checked for the Presence of Otters Figure E-20: Darevska derhugini (coordinates 346891.28; 4660857.92) Figure E-21: Pelophylax ridibundus (coordinates 340072.18; 4662963.5)	154 154
Figure E-22: Gryllus campestris (coordinates 337730.19; 4664604.82)	
Figure E-23: Ischura elegans (coordinates 339946.92; 4662915.10)	
Figure E-24: Pisaura mirabilis (coordinates 347288.84; 4660981.14)	
Figure E-25: Pardosa hortensis (coordinates 344707.22; 4662074.4)	
Figure E-26: Asinelllus festivus (coordinates 345050/30; 4661910.7	
Figure E-27: Significant Bird Habitat in Georgia	
Figure E-28: Location of the Ajameti Managed Reserve (reserve comprises several portion	
Figure E-29: Ajameti Managed Reserve.	
Figure E-30: Protected Areas Within the Vicinity of the Project Road	
Figure E-31: Location of GAA – Approximately Km 9.5 – Km 10.7	
Figure E-32: Location of GAA – Approximately Km 10.7 – Km 12.5	
Figure E-33: Location of Road Crossing Railway Line	
Figure E-35: Towns and Villages of Zestaphoni Municipality	
Figure E-36: Lower Sector Medical Outpatient	
Figure E-37: Collisions by type (section F4, period 2012 – 2016)	
Figure E-38: Collisions by cause (section F4, period 2012 – 2016)	
Figure E-40: Shorapani Fortress	176
Figure E-42: Cemetery close to Tunnel TUN 4.0.06-AT/TA	177
Figure E-43: Natural Spring Adjacent to the GAA Facility (KM 10.1)	178
Figure E-44. Churches, cemeteries and places of worship in the region	
Figure E-44: Noise and Vibration Monitoring Locations	
Figure F-1: PM10, 2019 (Km 0 – Km 8)	202
Figure F-2: PM10, 2034 (Km 0 – Km 8)	
Figure F-3: PM10, 2019 (Km 8 – Km 14.7)	
Figure F-4: PM10, 2034 (Km 8 – Km 14.7)	
Figure F-5: NO2, 2019 (Km 0 – Km 8)	
Figure F-6: NO2, 2034 (Km 0 – Km 8)	
Figure F-7: NO2, 2019 (Km 8 – Km 14.7)	
Figure F-8: NO2, 2034 (Km 8 – Km 14.7)	209
Figure F-9: CO, 2019 (Km 0 – Km 8)	210
Figure F-10: CO, 2034 (Km 0 – Km 8)	
Figure F-11: CO, 2019 (Km 8 – Km 14.7)	
Figure F-12: CO, 2034 (Km 8 – Km 14.7)	
Figure F-13: Location of Potentially Contaminated Land (spoil heaps in blue)	
Figure F-15: Estimated Construction Phase Noise	
Figure F-16: Settlement Analysis for Tunnels	
Figure F-17: Area of influence and buildings potentially affected by excavation of tunnel T	
4.0.06 AT/TA Figure F-18: Approximate Location of Portion	
•	
Figure F-19: Portion 1	
Figure F-20: Portion 1	
Figure F-21: Portion 1	
Figure F-22: Portion 1	
Figure F-23: Portion 2	
Figure F-24: Portion 2	
Figure F-25: Portion 2	
Figure F-26: Portion 2	
Figure F-27: Portion 3	
Figure F-28: Portion 3	273

Figure F-29: Portion 3	274
Figure F-30: Portion 3	
Figure F-31: Portion 4	276
Figure F-32: Portion 4	277
Figure F-33: Portion 4	
Figure F-34: Portion 4	
Figure F-35: Portion 5	280
Figure F-36: Portion 5	281
Figure F-37: Portion 5	
Figure F-38: Portion 5	283
Figure F-39: Portion 6	
Figure F-40: Portion 6	285
Figure F-41: Portion 6	286
Figure F-42: Portion 6	287
Figure F-43: Portion 7	288
Figure F-44: Portion 7	
Figure F-45: Portion 7	
Figure F-46: Portion 7	
Figure F-47: Portion 8	
Figure F-48: Portion 8	293
Figure F-49: Portion 8	
Figure F-50: Portion 8	295
Figure F-51: Portion 9	
Figure F-52: Portion 9	
Figure F-53: Portion 9	
Figure F-54: Portion 9	299
Figure F-55: Portion 10	
Figure F-56: Portion 10	
Figure F-57: Portion 10	302
Figure F-58: Portion 10	303
Figure F-59: Noise Barrier behind safety barrier	306
Figure F-60: Noise barrier integrated in safety barrier	306
Figure G-1: Construction Phase EMP Implementation	348
Figure H-1: Scoping Consultation in Zestafoni, 7 th June, 2017	351
Figure H-2: Consultation in Zestafoni, January 17 th , 2018	

Tables

Table A-1: Chumateleti – Argveta Road Sections	
Table A-2: Assessment Boundaries adopted for this EIA	
Table A-3: Summary of Methodology of Environmental Assessment	
Table B-1: Bridges	
Table B-2: Tunnels in Section F4	
Table B-3: Typical Tunnel Dimensions	66
Table B-4: F4 Culvert Requirements	68
Table B-5: F4 Underpasses	70
Table B-6: ADECO Tunnelling Method	
Table B-7: Estimated Earthworks for Section F4	
Table B-8: Key Equipment Section F4	

Table D-1: List of environmental laws and regulations relevant to the project Table D-2: List of social and land ownership related laws relevant to the project Table D-3: Georgian Standards for Ambient Air Quality	. 89
Table D-4: IFC Ambient Air Quality Guidelines	
Table D-5: Applicable Standards for Surface Water Quality	
Table D-6: Water quality requirements by water use category	
Table D-7: Drinking water quality criteria	
Table D-8: Georgian Standards for Noise Levels	05
Table D-9: IFC Noise Level Guidelines	05
Table D-10: IFC Work Environment Noise limits	
Table D-11: Georgian General Admissible Vibration Values in Residential Houses, Hospita	
and Rest Houses, Sanitary Norms 2001	
Table D-12: Soil screening values	
Table D-12: Soli screening values Table D-14: Environmental impact permit issuance procedure (after January 1, 2018)	
Table D-15: Permits / Licences and Approvals Register	
Table D-16: International Agreements and Treaties ************************************	105
Table E-1: Ambient Air Quality Monitoring Locations	112
Table E-2: Ambient Air Quality Monitoring Results	
Table E-2: Amblent Air Quality Monitoring Results	
Table E-4: Average monthly discharges of the Kvirila and Dzirula Rivers	
Table E-4: Peak Discharges of the Kvirila and Dzirula Rivers Table E-5: Surface Water Overlity Manitarian Lagetters	
Table E-5: Surface Water Quality Monitoring Locations Table E-6: Surface Water Quality Monitoring Locations	
Table E-6: Surface Water Quality Monitoring Results	
Table E-7: Groundwater Quality Monitoring Locations	
Table E-8: Groundwater Quality Monitoring Results	
Table E-9: Lithology – Rikoti - Argveta	
Table E-10: Soil Temperature	
Table E-11: Topsoil Thickness in the Project Corridor	
Table E-12: Soil Monitoring Locations	
Table E-13: Soil Sampling Results	
Table E–14: US EPA 16 PAHs Results	
Table E-15: Mercury report	
Table E-17. Reptiles, known within the project area based on literary sources	
Table E-16: Mammals, identified within the project area based on literary sources	
Table E-20. Insects, known within the project area based on literary sources	156
Table E-21. Round Worms (Nematodes), known within the project area based on literary	
sources	
Table E-23. Oribatida, known within the project area based on literary sources	
Table E-24: Birds within the study area, known according to literary sources	
Table E-25: Birds, observed within the project area during the survey	
Table E-26: List of fish species available in the rivers in the project area	
Table E-27: Species found as the result of fishing in the project area	
Table E-29: Agricultural Areas (Hectares)	
Table E-29: Population of Imereti and its Municipalities	
Table E-30: Medical Facilities in the Project Area (within 1 km)	
Table E-31: Collisions and Casualties in the Period 2012 – 2016	
Table E-32: Collisions and Casualties Rates in the Period 2012 – 2016 (per km)	172
Table E-33: Collisions and Casualties in Section F4	
Table E-35: Schools in the Project Area (within 1 km)	
Table E-36: Noise and Vibration Monitoring Locations Control	
Table E-37: Baseline Vibration Monitoring Results	
Table E-38: Baseline Noise Monitoring Results	182

 Table F-1: Characteristics Used to Describe Impact	188 191 n /
	200
Table F-6 - NO ₂ (μ g/m ³) Comparison of expected values at 2019, background and limits. Table F-7: General scenario at 2034 for PM ₁₀ , NO _X and NO ₂	
Table F-8: Yearly scenario 2019 to 2034 for PM_{10} (including background at 2019) Table F-9: Yearly scenario 2019 to 2034 for NO ₂ (No background)	201
Table F-10: Yearly scenario 2019 to 2034 for CO (No background)	
Table F-5: Estimated Energy Consumption, CO2 Emissions and GHG Emissions for a Concrete Pavement 13 m wide	
Table F-11: Waste Types and Estimated Volumes	
Table F-12: Typical Noise Levels from Construction Equipment	
Table F-13: Cumulative Noise Levels from Construction Equipment at a Range of Distant	
Table F-14: Criteria for Structural Damage Due to Vibration	
Table F-15: Approximate Vibration Levels for Various Sources	
Table F-16: Factors in Acoustic Mapping	
Table F-17: Examples of Components Variations	
Table F-18: Daily average vehicles/day (working day) (2017 – 2037)	
Table F-19: Traffic Flux Per Day, 2017	
Table F-20: Night Traffic	
Table F-21: Noise Model Findings	
Table F-22: Recommended Noise Barrier Locations and Lengths	
	004
Table G-1: Environmental Management Plan - Detailed Design / Pre-construction Phase	309
Table G-2: Environmental Management Plan - Construction Phase	
Table G-3: Environmental Management Plan – Operational Phase	
Table G-4: Construction Phase Instrumental Monitoring	
Table G-5: Operational Phase Instrumental Monitoring	
Table G-6: EMP Costs	
Table G-7: Construction Phase Instrumental Monitoring Costs	
Table G-8: Operational Phase Instrumental Monitoring Costs	
Table G-7: EMP Implementation	347
Table H-1: Zestafoni Scoping Consultation	349
Table H-3: Zestafoni Public Consultation	
Table H-4: GRCE Composition	
Table H-5: GRCN Composition	
Table H-6: Grievance Resolution Process	359

Appendices

Appendix A	List of Consultation Attendees, June 2017
Appendix B	Consultation Presentation, June 2017
Appendix C	List of Consultation Attendees, November 2017
Appendix D	Consultation Presentation, November 2017
Appendix E	Chance Find Procedure
Appendix F	Noise Barrier Locations
Appendix G	State Forest Fund

Appendix HNoise Barrier Cost EstimateAppendix IVibration Analysis

Abbreviations and Acronyms

Nm ³ NOx NO ₃ Ni OHS PAH PCR Pb PM POPs PO ₄ PMU PPE PPTA PPM SPM SPM SniP STD SSEMP SO ₂ TEM TOR TSP UNEP USAID USD WB WHO	Normal cubic meter Nitrogen oxides Nitrate Nickel Occupational Health and Safety Polycyclic aromatic hydrocarbons Physical and cultural resources Lead Particulate matter Persistent organic pollutants Phosphate Project Managing Unit Personal Protective Clothing Project Preparatory Technical Assistance Parts per million Suspended Particulate Matter Construction Standards Sexually transmitted diseases (such as HIV/AIDS) Site Specific Management Plan Sulfur Dioxide Trans-European North-South Motorway Terms of Reference Total Suspended Particulates United Nations Environment Program United States Agency for International Development United States Dollar World Bank World Health Organization
WHO WMP °C	
µg/m ³	

Currency Exchange Rates as of 13th January, 2018: 1 US\$ = 2.56 (GEL) (\$ refers in this report to US-Dollars)

Executive Summary

1. Introduction

1. This Environmental Impact Assessment (EIA) is part of the process of compliance with the ADB guidelines and JICA Guidelines for Environmental and Social Considerations (April, 2010) in relation to the construction of Section F4 of the new Khevi-Ubisa-Shorapani-Argveta section of the E60 Highway, or more simply, the "Project". The Project road is approximately 14.7 kilometers long and for construction purposes will be divided into two construction packages, or 'Lots'. The first Lot extends from KM0.00 to KM5.6 with the second Lot covering KM5.6 to the end of the Project road at KM14.7.

2. The EIA provides a road map to the environmental measures needed to prevent and/or mitigate negative environmental effects associated with the project. More specifically, the EIA:

- Describes the existing socio-environmental conditions within the Project area;
- Describes the extent, duration and severity of potential impacts;
- Analyzes all significant impacts; and
- Formulates the mitigation actions and presents it all in the form of an Environmental Management Plan (EMP).

3. Based on the existing ADB Environmental Safeguards Policy (2009), this Project falls under ADB's project **Category A** and **Category A** under JICA Guidelines for Environmental and Social Considerations (April, 2010).

2. Project Background

4. The Government of Georgia is endeavoring to make Georgia a regional and logistics hub and more attractive for businesses. The East West Highway (EWH), stretching 410 km from Sarpi on the Black Sea, at the border with Turkey, through the center of the country to the capital Tbilisi and on to the border with Azerbaijan, is the main inter-regional and international route between western and eastern Georgia, as well as its neighboring countries. Representing about 2% of Georgia's road network and one fourth of its international roads, the EWH serves 8,000 to 10,000 vehicles per day and carries over 60% of the country's international trade. The EWH will be an integral part of one of the six key CAREC corridors providing the shortest transit link to connect Central Asia with Europe and East Asia.

5. In light of the traffic growth on EWH, the high percentage of truck traffic, and the difficult terrain and resulting geometric profiles, capacity expansion of the current 2-lane mountainous section between Chumateleti and Argveta is crucial to realizing full potential of the EWH with improvements to the highway either completed or underway on each side of this section.

6. Therefore, the Government has requested the Asian Development Bank (ADB) and several other development partners to finance the remaining bottleneck sections (Chumateleti - Argveta) on the EWH. A feasibility study financed under a World Bank project for the Chumateleti Argveta section (comprising four sections F1 through F4) of the EWH was completed in 2015. The detailed design of Section F1 has been completed and selection of the construction Contractor is on-going. Detailed design of sections F2, F3 and

F4 is now on-going and this report forms the EIA for detailed design phase of section F4 which will be followed by sections F3 and F2.

3. **Project Description**

7. The Project involves construction of a new road section of the E-60 highway located in Imereti Region of central Georgia (see **Figure ES-1**). Section F4 forms the Shoropani – Argveta portion of the Khevi-Ubisa-Shorapani-Argveta section of the E-60. The length of the Project road is as follows:

- Right lane (TA) 14.778 km;
- Left lane (AT) 14.726 km.

Figure ES-1: Road Location Map

8. The Projects geometric design standards have been selected based on traffic flow, road category and relief to ensure safe and unimpeded traffic flow. The road design is based on Georgian National Standard SST 72: 2009 "Standard on Geometrical and Structural Requirements for the Public Motor Roads of Georgia" and TEM (Trans-European North-South Motorway) Standards.

- 9. The main technical parameters adopted in the detailed design are as follows:
- Design speed 100 km/h;
- Number of traffic lanes 4;
- Width of traffic lane 3.75 m;
- Width of each carriageway 7.5 m;
- Width of paved shoulder (emergency lane) 2.5 m;

- Width of verge 1.0 m;
- Width of central reserve- 5.0 m;
- Width of paved shoulder at the central reserve 1.0 m;
- Total width of each paved platform 11.0 m
- Width of road bed 27.0 m;
- Carriageway cross-fall on straight sections 2.5%;
- Minimum radius of horizontal curve 400 m;
- Maximum longitudinal gradient 4%;
- Minimum convex curve 15 000 m;
- Minimum concaved curve 15 000 m.

10. Five long span bridges and one short span bridge will be constructed during the project works. The total length of the five bridges is 4,912 meters, the longest of which is 941 meters. The bridges are grouped into the following main typologies:

- Steel-concrete bridges bridges 1,2,4: maximum span length up to 60 m for bridges 1 and 2 and up to 72 meters for bridges 4-AT and 4-TA.
- Precast concrete bridges bridges 3 and 5: maximum span up to 34m

11. Six tunnels will be constructed with double tubes with length from 399 m to 1166 m.

12. To construct the roadbed in the project section concrete retaining walls and reinforced concrete support structures will be required on several sections due to the difficult relief conditions of the project section. Reinforced concrete retaining walls are required at the beginning of the project section from:

- KM 0.00 to KM 0.25
- KM 8.63 to KM 8.71
- KM 8.84 to KM 8.94

13. There are four interchanges planned in F4 Section.

14. The following types of culverts will be constructed:

- Underpasses for rural roads, which are construction of cast in situ reinforced concrete structures of closed contours cross sections 6.0x4.5 m - 6 units for passing rural roads is envisaged in the design.
- Cattle passes, which ensure cattle cross the project road. Construction of cast in situ reinforced concrete structures of closed contours cross sections 4.0x2.5 m 4 units is envisaged in the design.
- Culverts, for which cast in situ reinforced concrete culverts cross section 2.0x2.5 m 17 units, 4.0x2.5m - 2 units is envisaged in the design to provide water discharge from ravines and canals.

15. Eight underpasses will be constructed using reinforced concrete culverts. One overpass will be constructed at km 11+854 with a length of 40 meters.

16. Two different pavement structures will be used:

- Concrete pavement structure for the motorway and interchanges; and
- Asphalt pavement structure for all Slip Roads and all Minor Roads and bridges.

4. Alternatives

17. The "No Action" Alternative in this instance is defined as a decision not to undertake the proposed construction of the Project Road. The "No Action" Alternative would result in the continued deterioration of the road, bridges and drainage structures along the RoW,

thereby impeding the economic development of the Project Area and the Imereti region. All positive benefits would be foregone. The relatively minor, less than significant environmental impacts (such as noise and short-term air quality impacts due to maintenance activities) and inconveniences (such as traffic diversions) would be avoided in the short-run. In the long run, however, the steadily declining state of the roadway would severely hamper economic development in the area. In light of these considerations, the "No Action" Alternative is deemed to be neither prudent nor in the best interest of Georgia or those with an interest in, and attempting to assist restoration of, Georgia's well being.

18. Given the complex topography of the region and Georgia in general, there are no other feasible alternative corridors that would be able to compete with the existing corridor in terms of travel times. In addition the Project forms part of the overarching program to upgrade the E-60 motorway which includes many sections that have recently been upgraded, or are in the process of upgrading (or detailed design), including the sections of road joining the start and end points of the Project road.

19. As noted above, the Project forms part of a program upgrading the E-60. The Khevi – Argveta section of the E-60 (including section F4) if one of the last remaining sections of the road requiring upgrading. Accordingly, the Project is focusing on the upgrading of the E-60 and will not consider any other transport mode as an alternative.

20. During the Projects Feasibility Phase a number of alignments were considered that broadly follow the existing E-60 corridor. The result of the Feasibility Report was a draft final corridor which the detailed design would use as a basis for the final road alignment (horizontal and vertical). During the detailed design phase a number of factors were taken into account to determine the final alignment, they included the consideration of potential resettlement issues and social aspects such as access and noise.

21. Only one pavement type was considered for the main pavement; rigid concrete mainly due to the fact that concrete pavements are already constructed on preceding sections of the E60 Highway. Asphalt pavement structure will however be used for all Slip Roads, bridges and all Minor Roads and bridges.

5. Description of the Environment

22. Within the Project area the main sources of air emissions are from transport, including vehicles on the existing Project road, and large scale industrial facilities including the Georgian American Alloys (GAA) manganese processing plant which is located almost adjacent to the southern boundary of the Project road between KM 11 and KM 12. Air quality monitoring was carried out at nine different locations during August, 2017 to characterize the current air quality within the Study Area. The results of the ambient air quality monitoring show that in all instances the parameters monitored were below national, and where applicable, IFC standards. The most noticeable factor was the higher levels of PM recorded at the first four monitoring stations which are adjacent to the existing road. This suggests that these levels PM_{10} and $PM_{2.5}$ are attributable to vehicle movements on the existing road.

23. Annual precipitation in Zestafoni is around 1,200 mm. Rainfall is highest in the Winter, Autumn and Spring, although rainfall can still be observed during the hotter summer months. The monthly temperature for Zestafoni which ranges on average, from 5 °C in the winter months to around 25 °C in the summer. The dominant wind direction is from the east. However, strong winds from the west are also experienced quite frequently.

24. No site-specific data has been found relating to climate change. However, given the general overview for Georgia it can be assumed that there will be an increase in average

annual temperatures of between 1 and 1.5 °C over the next 30 years and that precipitation will decrease. The number of hot days may increase, and as such, consideration of suitable pavement types shall be given.

25. The Project area is located to the west of the Likhi Range which connects the Greater and Lesser Caucus Mountains. The Project corridor is set within a landscape of mountains, rolling hills and valley plain. The existing road is located within the bottom of the river valley and as such elevation only varies between 200 and 170 meters above sea level.

26. Within the Project area a few areas prone to landslides have been identified. Generally, the landslides do not affect the project alignment, except for the mass movements identified above around KM 0.6 affecting TUN 4.0.01-TA/AT and its eastern and western portals. According to the Seismic Hazard Map of Building Norms and Rules effective in Georgia the study area is located in the 8-point earthquake zone (MSK 64 scale).

27. Two main rivers can be found within the Project area, the Kvirila and the Dzirula. The confluence of the two rivers is in Shorapani adjacent to the Project road at Km 5.0. Other small tributaries within the are include the Borimela River (which the Project road crosses at KM 3.5), and the Ajamura and Samanishvilisghele rivers, both of which located on the south bank of the Kvirila river more than 1.3 km from the Project road. To assess the status of water quality in the Project area, including the Kvirila and Dzirula rivers, monitoring of surface water was undertaken in September 2017. The results of the monitoring exercise show that both the Dzirula and Kvirila rivers meet the national Maximum Allowable Concentrations (MACs) for surface water quality, although the levels of manganese in the Kvirila sample was above the recommended standards for drinking water, this is due to the presence upstream of manganese mining operations.

The soils in the Project area are very productive and range of crops are grown in the 28. region which is well known for its wine production. However, hazardous wastes generated by the GAA, Chiatura manganese enrichment plant, and many small-size smelters operating in various settlements of Imereti are sources of soil pollution in the region. To assess the status of soil quality in the Project area, specifically around the Georgian American Alloys Plant (GAA) plant, soil samples were taken and analyzed. The results of the sampling show that all parameters are within the current Georgian limits with the exception of Arsenic and Lead. However, these limits are considered outdated, stemming from old regulations developed during Soviet times. Assessing the results against EU limits (Italy and the UK), the results of all parameters sampled are well within the limits for residential areas. In addition, the results are also well within the proposed Georgian maximum allowable concentrations recently developed by the MoENRP which should come into force in 2018. Most importantly, all parameters are also below the proposed Georgian preventive limits of risk elements in agricultural soil, which is an important facor considering that much of the spoil material may be disposed of at the Kutaisi bypass which borders on an area of agricultural land. Additional analysis of PAHs shows that both samples meet the Dutch target levels meaning that the soil is considered a sustainable soil quality and will have negligible risk to the ecosystem.

29. The project corridor crosses forest areas, agricultural land plots, hilly forest slopes, residential areas and riparian ecosystems. 17.3 hectares (ha) of the municipality of Zestaphoni is covered by forest and shrubbery. Due to human pressures natural vegetation has been taken over by agricultural crops and other human development. In these areas arable lands and pastures have developed. Some of the animal species typical for the area have moved to other areas in away from human activity. Over the time the fauna of the region has changed significantly. Animals currently found in the area of interest are mainly presented by those species that live in forested areas and/or can tolerate presence of humans.

30. A study of flora within the Project area showed that the corridor could be split broadly into six sections, most of which were classified as a mix of 'high' and 'low' status. The low status areas were mainly classified in this was due to the absence of any unique flora in these areas and the generally degraded nature of the landscape due to human interference. The 'high' status areas were classified as such primarily due to the presence of a number of tree species fund on the Georgian Red List.

31. According to available information there are two species (Caucasian squirrel and Eurasian otter) considered as vulnerable in Georgia (Georgian Red List) that may be found within the Project area. As part of a fauna survey the bridge locations were checked with particular care and no otters were noted. During the survey trees within the RoW of the new alignment (with exclusion of the areas where tunnels are planned) have been checked. Neither burrows, nor squirrels have been registered in the survey area. The review of the habitat along the alignment indicates that it is not optimum for existence of the Caucasian squirrel.

32. The nearest protected area to the Project road is the Ajameti Managed Reserve, which is located approximately 5 kilometers south west of the end point of the road (km14.7). The nearest Important Bird Area (IBA) to the Project road is the Adjara-Imereti Ridge more than twenty kilometers south of the Project road.

33. Viticulture is the main economic activity in the municipality of Zestaphoni providing 80% of agricultural output. Its development is supported by favorable soil-climatic conditions. GAA is the largest company in Zestaphoni. GAA produced over 187,000 metric tons of silicomanganese in 2012, however the mining and production of the manganese is not without its environmental problems, including impacts to air quality and impacts to the water quality of the Kvirila River. The Project road passes almost adjacent to the north of the plant for around 2 kilometers between KM 9.7 and KM 11.8.

34. Agricultural land plots cover 7,027 ha of the municipality or 46% of the whole territory. 5,159 ha out of the above-mentioned area are arable lands. Other than grapes, melon and maize are predominant crops grown in the region and have been noted within the Project corridor, specifically from KM 7.0 onwards.

35. Zestaphoni is not considered an important or significant area for tourism and recreation. A recent study of foreign visitors to Imereti region indicated that less than 2% of the visitors visited Zestafoni for recreation or vacation.

36. The road network in the Project area is dominated by the existing E-60 which links Tbilisi with Batumi. Numerous local roads feed onto the E-60 in Zestafoni, and these roads vary in condition from good to very poor. The main railway line from Tbilisi to Batumi runs broadly parallel with the Project road until it reaches Zestafoni. In fact, in the first section of the road, between KM 0.0 and KM 6.0 the railway line and the road are only separated by a couple of hundred meters, with the road running south of the railway line. At one location, the new road alignment passes within 20 meters of the railway line (KM 2.5) and eventually passes over the railway line at KM 6.3 as the road heads northwest to start its bypass around Zestafoni.

37. The Project road is located within Zestaphoni Municipality, which covers a total area of 423 square kilometers and includes the towns of Zestaphoni and Shorapani as well as numerous small villages. The following settlements have been identified within the Project area.

• Kveda Tseva (KM 0)

- Shorapani (KM 4.0 6.0)
- Zestaphoni (KM 6.0 11.0)
- Kveda Sakara (KM 11.0 12.0)
- Argveta (KM 13.0 15.0)

38. According to the most recent census data (2014), Imereti has a population of 533,906, which is a significant decrease from the 2002 census when the population was recorded as 699,666.

39. Data provided by the Road Department of the Ministry of Regional Development and Infrastructure (RD), shows that during the period 2012 – 2016 there were 2,713 collisions, 471 persons killed and 4,913 persons injured spread over the E-60 corridor. Focusing the analysis on the Khevi – Argveta section, 351 collisions occurred, 78 persons were killed and 648 persons were injured. Finally, along the F4 section 130 collisions occurred, with 30 persons killed and 218 persons injured.

40. The social survey undertaken as part of this Project found that the average wage of the population in the target villages is 650 GEL. The majority (70%) of those surveyed state that the main source of income is wage, 20% of the surveyed families said that main source is pension / allowance, only 5 % said that it is self-employment.

41. Previously there was a landfill site in Zestafoni adjacent to Kvaliti village. The area of the site was 2.2 hectares and received 15,000 m³/year of waste. However, the Solid Waste Management Company of Georgia closed the Zestaphoni municipal landfill in 2016 due to the fact that it was overloaded. No other landfill has been observed in Zestaphoni.

42. Within the Project area a number of physical cultural resources (PCR) have been identified including the Shoropani Fortress. None of the identified PCR, including the Shoropani Fortress is within close proximity of the Project road itself, with the exception of a cemetery and a small natural spring located to the north of the GAA.

43. Noise and vibration within the Project corridor can be discussed in two parts, firstly the parts of the corridor that broadly follow the existing alignment, and secondly the part of the corridor that bypass to the north of Zestafoni more than 500 meters north of the existing road. Noise levels within the first part are predominantly a result of vehicle traffic on the existing road. Very little commercial, residential or industrial activities can be observed in these areas that would give rise to significant noise levels. In the second part of the corridor the alignment traverses a predominantly rural / residential landscape with the exception being the portion of the alignment that passes just to the north of the GAA facility. Noise and vibration monitoring has been undertake in both parts of the road for this EIA. Vibration values in the monitoring locations are currently too low to cause any structural or cosmetic damage and/or cause nuisance of the residents. According to the national standard the values are ranked as weak and non-perceptible. Noise monitoring results show that noise levels close to the existing road are elevated above IFC daytime and nighttime standards. However, as the Project corridor enters the rural bypass around the north of Zestafoni noise levels get lower and are within IFC guideline limits for daytime and nighttime noise.

6. Impact Identification

44. The following provides a summary of the potential impacts associated with the roads:

Design / Preconstruction Phase

45. <u>Air Quality</u> – lack of foresight in the siting of construction camps, rock crushing plants, concrete batching plants and borrow pits in the pre-construction phase could lead to significant air quality impacts in the construction phase, especially to sensitive receptors.

Soils - Productive soils can also be impacted without due consideration of their value 46. when locating borrow pits, access roads, camps, plant, etc. Soil erosion can also occur on embankments and around structures if adequate consideration of this issue is not taken into account in the design phase. Soil samples taken to the north of the GAA plant have indicated that this area does not comprise levels of soil contamination above Dutch Intervention Levels or Italian standards for residential areas. Arsenic and Lead were identified in the samples above the current national limits, but within proposed new national limits and other international limits (UK and Italy). However, only two soil samples were taken in this location and it is possible that soil contamination could still exist in the area north of the GAA. The Project road runs parallel to the GAA plant for approximately 1.3 kilometers, but the potential for any additional pollution is considered to be confined to a smaller area, around 500 meters in length, and is focused around large two piles of waste material sited on the northern boundary of the GAA. In this portion of the Project road the road level will be raised on an embankment. An average of 50 cm of topsoil will be stripped from an area more than 40 meters wide over this 500 meter section, that equates to around 10,000 m³ of top soil to be removed. Although the two soil samples taken as part of this EIA did not show significant levels of contamination it is considered prudent to undertake additional sampling of these soils to determine if any additional actions for soil monitoring and disposal would be needed during the construction phase.

47. <u>Natural Hazards</u> - Generally, landslides in the Project area do not affect the project alignment, except for the mass movements identified above around KM 0.6 affecting TUN 4.0.01-TA/AT and its eastern and western portals. The impacts from the landslides are not expected to be significant enough to warrant major mitigation measures as part of the detailed design. However, minor mitigation measures e.g. safety nets have been included in the design. The project is located in a seismically active area. The Detailed Design Consultants have experience of designing roads in seismically active areas and have ensured that all designs are compliant with the relevant seismic standards of the GoG.

48. <u>Land Use</u> - As the road involves construction of an almost entirely new alignment land acquisition and resettlement could be anticipated to be extensive. However, the approach to design the road bypassing to the north of Zestaphoni and the fact that large portions of the road run beneath ground reduces the level of resettlement and compensation that would otherwise be expected if the existing alignment was being upgraded.

49. <u>Hydrology</u> - Inadequate assessment of the hydrological conditions in the Project Area and poor design could result in the failure of some of the Project structures, including bridges and culverts. This in turn would result in several impacts including cost to rebuild the structures, potential flooding and impacts to surface water quality.

50. <u>Health safety</u> – Failure to incorporate a full range of safety measures into the road design may result in accidents and even deaths on the road, especially close to schools.

Construction Phase

51. <u>Air Quality</u> - During construction of the road, air quality may be degraded by a range of operational activities including; exhaust emissions from construction machinery; open burning of waste materials; and dust generated from borrow pits, haul roads, unpaved roads, exposed soils, material stock-piles, etc. This can lead to health impacts to locals and impacts to ecology and crops.

52. <u>Soils</u> - Potential soil contamination is a possibility in the construction phase resulting from poorly managed fuels, oils and other hazardous liquids used during the project works. It is also possible, that without adequate protection measures soil erosion could occur on road and bridge embankments.

53. <u>Surface Water</u> – Impacts to surface water and groundwater could occur through improper operation of construction camps, asphalt plants, etc. Poor construction management around bridges and close to surface watercourses could also lead to pollution incidents. Without due care temporary drainage structures may also fail, or get obstructed with construction debris, leading to flooding of property and access roads. Technical water may be sourced from the Dzirula and Kvirila rivers. The required amounts, potentially 200 m³ per day (0.002 m³/s) are insignificant given the flow rates of these major rivers.

54. <u>Groundwater</u> – Impacts to groundwater include spills and leaks of hazardous liquids used at construction sites and camps and potential impacts to groundwater resources during tunnel construction (discussed in more detail below).

55. <u>Bridge Construction</u> - Bridge construction activities may increase silt load in the river during construction at bridge sites and may result in accidental spillage of concrete and liquid waste into the river. This may impact upon the ecology of rivers and aquatic wildlife.

56. <u>Flora</u> & State Forest Fund – A number of trees will need to be cut within the Project area, both on private land and within State Forest Fund areas. In addition, other trees (potentially including Georgian red-listed species) are located adjacent to the boundary of the site and may be damaged accidentally by construction works. A total of 7,232 trees have been identified in State Forest Fund areas. Of these, 204 are Georgian Red-listed species greater than 8cm in diameter and 411 are Georgian Red-listed species less than 8cm in diameter. The trees cut in these areas will need to follow the procedures for de-listing, cutting and removal as described below. Trees that will be cut located on private land will require compensation to be paid to the landowners. The compensation will be made according to the Project LARP.

57. <u>Fauna</u> - Impacts during the construction phase may occur, including; a) As a result of vegetation cover removal and earthworks habitats (nests, holes) may be lost. Tree and vegetation cutting will also affect the food base, b) Small-sized animals may fall in trenches and pits and may be injured, c) During the movement of construction vehicles and construction equipment, collision with animals may be expected, d) Emission of noise, dust and combustion products, as well as human intensive activities will cause Fanimal disturbance and migration to other places, e) Unsystematic spread of waste, improper management of waste (change in environmental quality Findicators) will cause a further deterioration of the living conditions of terrestrial and aquatic animals, f) Night lighting systems at construction camps may cause disturbance of animals and disorientation of Fibrids, g) There may be the cases of poaching by staff, h) Temporary impacts on fish may occur due to sedimentation and water turbidity in the immediate vicinity of the construction work area, and the potential for minor introduction of pollutants from construction operations; and i) Bridge works could impact upon the habitat of otters.

58. <u>Protected Areas</u> - The nearest protected area to the Project road is the Ajameti Managed Reserve, which is located approximately 5 kilometers south west of the end point of the road and is unlikely to be impacted by Project works.

59. <u>Infrastructure</u> - The main impacts resulting from Project works will be road diversions and some temporary blocking of access routes. However, the road has been designed in a

way so that it has relatively little impact upon the existing road, or other local roads due to the fact that it is a new alignment often passing through tunnels and over bridges. In some locations road closure will be needed and may occur for periods between one and two hours and as such is not a significant issue as long as the local population are given notice of the delays and suitable detours are provided. The new alignment also crosses above and adjacent to the existing railway line at a number of locations. The bridge works above the railway line at KM 13.1 may cause specific issues due to its close proximity to railway.

60. <u>Utilities</u> - Medium and low voltage power lines, water supply and gas pipes are located within the Project corridor. It is possible that these utilities will need to be temporarily removed during construction.

61. <u>Waste</u> - Road construction will inevitably generate solid and liquid waste products including inert waste (e.g. concrete, wood, plastics, etc.) and hazardous waste (e.g. waste oils, batteries, etc.). In addition, uncontrolled discharges of sewage and 'grey water' (e.g. from washrooms and canteens) from construction sites and worker's camps may also cause odors and pollute local water resources.

Tunnel & Embankment Spoil Material - A large volume of spoil material will be 62. generated from the tunneling works. Estimates provided by the Projects Tunnel experts indicate that as around 1,027,200 m³ of spoil material will be generated from the tunneling. Another 1,184,100 m³ of cut will be generated from excavation works on slopes, etc. Where practical the spoil will be re-used as embankment material at the Project site (for example on the embankments behind Zestaphoni). Estimates indicate that approximately 1,519,800 m³ can be re-used as embankment material, which would leave approximately 691,500 m³ as static balance. Assuming that most of the embankments associated with the Project are located in the bypass area to the north of Zestaphoni, the average journey distance to transport the spoil material from tunnels to the embankment areas may be around 8 kilometers. To transport material to the embankment areas approximately 250,000 truck journeys will be required, or an average of 277 a day over the 30 month construction period. Disposal of the static balance would require an area of 82,980 m² with a height of 10 meters if they were to be disposed of in one spoil disposal location. Preliminary investigations with the RD indicate that the spoil material could be re-used as embankment material at the Kutaisi Bypass where material is required to construct a further two lanes of the bypass. A field visit to the Kutaisi area did not indicate any sensitive land uses in this area which has already been acquired by the RD for the future construction works in this area. Disposal of spoil material in this location will require close coordination between the contractors of both projects and the RD. To transport this volume of material to Kutaisi Bypass over 115,250 truck journeys will be required, or an average of 128 per day over the 30 month construction period. The distance to the Kutaisi site is around 35.5 kilometers.

63. <u>Construction Camps</u> - Construction camps constitute a temporary land use change and raise issues related to activities such as impacts to air quality; poor sanitation arrangement and improper methods used for disposal of solid wastes and effluent; and transmission of communicable diseases to the local people by the construction workers due to inappropriate health monitoring facilities.

64. <u>Borrow Pits</u> - Opening and operating of borrow pits can result in multiple environmental and social impacts, including degradation of productive soils, elevated levels of noise, degradation of air quality, etc.

65. <u>Tunnel Construction</u> - The main typical environmental problems linked to the construction of underground works are; a) Triggering of surface settlements, structures collapses and slope instabilities, b) Drying up of springs and groundwater alterations, c)

Storage and use of excavated materials, d) Noise, e) Vibrations, f) Pollution of groundwater, mainly after the realization of stabilization works by injections.

66. <u>Community Health and Safety</u> – Construction activities may result in an increase in road traffic accidents between vehicles, pedestrians and vehicles and livestock and vehicles. There will also be short term impacts to noise and air quality, which may impact upon health. Migrant workers may also increase community health and safety risks, for example, through the spread of sexually transmitted diseases.

67. <u>Occupational Health and Safety</u> - Workers' rights including occupational health and safety need to be considered to avoid accidents and injuries, loss of man-hours, labor abuses and to ensure fair treatment, remuneration and working and living conditions.

68. <u>Physical and Cultural Resources</u> - No physical cultural resources have been identified within the Project corridor that are likely to be significantly impacted by Project works with the exception of one cemetery identified approximately 50 meters south of tunnel TUN 4.0.06-AT/TA and a small natural spring located to the north of the GAA.

69. <u>Noise</u> - The potential noise related issue during construction of the project is disturbance to sensitive receptors in the Project area. The main sources of noise and vibration during construction of the project included; a) Construction machinery, b) Drilling activities, c) Haulage and general vehicle movements, d) Concrete mixing and aggregate production systems; and e) Construction Camps / Ancillary Facilities.

70. <u>Vibration</u> - Vibration from the construction activities is a cause for concern to the community. The effects of vibration varies and depends on the magnitude of the vibration source, the particular ground conditions between the source and receiver, presence of rocks or other large structures in the area. The intensity, duration, frequency and number of occurrences of a vibration all play an important role in both the annoyance levels caused and the strains induced in structures. It is likely that construction works will impact upon structures within the Project area, potentially causing cosmetic damage and in extreme cases possibly structural damage.

Operational Phase

71. <u>Climate Change</u> - The transport sector is vulnerable to changes in climate variables, expected changes in the frequency and intensity of extreme weather events, and increased sea level. The following are a few examples of the potential effects; a) Changes in temperature—both a gradual increase in temperature and an increase in extreme temperatures—are likely to impact road pavements (for example, heat-induced heaving and buckling of joints), b) Changes in temperature will also impact the behaviour of permafrost and thus the infrastructure lying on permafrost, c) Changes in precipitation and water levels will impact road foundations, d) Extreme weather events such as stronger and/or more frequent storms will affect the capacity of drainage and overflow systems to deal with stronger or faster velocity of water flows, e) Stronger or faster velocity of water flows will also impact bridge foundations, f) Increased wind loads and storm strengths will impact long span bridges, especially suspension and cable-stayed bridges, g) High levels of precipitation may threaten embankment stability and h) Increase in scouring of roads, bridges, and support structures.

72. <u>Hydrology</u> – Run-off from bridge decks could pollute the waterways beneath them if they are allowed to drain freely without any filtration system.

73. <u>Noise</u> – A noise model developed for the EIA shows that there are many locations where IFC guideline limits for daytime and nighttime noise would be exceeded in 2037 given the predicted increase in traffic over this period. The model also shows that noise abatement, in the form of a 4 meter high solid noise barrier does help reduce noise levels, but in many instances, even with the noise barrier the road noise still exceeds IFC guideline limits, particularly the strict 45 dBA nighttime limit. The model is however, based on a range of variables, including traffic forecasts which may change in the future. Vehicle noise levels may also reduce with the advent of electric cars. Accordingly, while the model is useful in providing an indicator of areas where noise is likely to be an issue, it is not an end in itself.

74. <u>Vibration</u> - Highway traffic is not likely to have any measurable impact on the structures or on comfort.

75. <u>Air Quality</u> – The main source of air pollution during the operational phase will be vehicles moving on the highway. The main pollutants are: CO; NO_X ; hydrocarbons (HC); SO_2 ; carbon dioxide (CO₂); and particulate matter (PM). An air dispersion model was prepared for this EIA to assess the potential operational impacts of the road on air quality in the future. The analysis suggests that there are no negative impacts on the environment. In addition to the fact that the maximum allowable limits are not surpassed, it must be taken into account that the road provides benefits in term of vehicular emission due to the smoother drive and optimized alignment. If a similar traffic flow should transit via the existing road, the emissions would be almost 20% higher. The new road will have a positive impact on the air quality in term of reduced emissions compared to a similar flow of traffic along the existing one. In addition it is reasonable to consider that in the next years a large part of the obsolete and aging vehicles now in circulation will be substituted by less polluting ones with additional benefits to air quality.

76. <u>Health and safety</u> – Rehabilitation of the road will result in numerous beneficial health and safety impacts, including; reduced dust levels, faster emergency response times; improved pedestrian crossing facilities and improved road geometry. However, higher speeds on the road could give rise to more traffic accidents, especially as speeds increase along with vehicle numbers.

77. <u>Induced Impacts</u> – Potential induced impacts include conversion of agricultural land to commercial, industrial and residential property, this in turn may lead to; a) Increased population living within the corridor which may lead to stress on social services, such as schools, hospitals, etc, b) Required upgrading or expansion of utilities, such as electricity supply, and c) Stresses on water availability, specifically groundwater.

7. Mitigation Actions

78. The summary mitigation measures for the potential impacts identified above for the Roads include:

Design / Preconstruction Phase

79. <u>Site Specific Environmental Management Plan</u> – To ensure that all of the potential mitigation measures are applied during the construction phase, the Contractor shall be responsible in the pre-construction phase for the preparation of his Site Specific Environmental Management Plans (SSEMP). The SSEMP shall include the following plans:

- a) Waste Management Plan.
- b) Traffic Management Plan.
- c) Occupational Health and Safety Plan.
- d) Emergency Response Plan.

- e) Borrow Pit Management Plan.
- f) Air Quality Plan.
- g) Spill Response Plan.
- h) Vibration Monitoring Plan.
- i) Clearance, Re-vegetation and Restoration Management Plan.
- j) Groundwater Management Plan.
- k) Tunnel Blasting Plan.

80. The Construction Supervision Consultant (forthwith known as the 'Engineer') shall be responsible for reviewing and approving the SSEMP and its associated plans.

81. <u>Permits</u> – The Contractor shall be responsible for obtaining all of the required environmental permits prior to the start of construction. All permits will be reviewed by the Engineer before construction work commences.

82. <u>Siting of Facilities</u> – Locations for borrow pits, rock crushing facilities, concrete batching yards and asphalt plants will require approval from the Engineer, MoENRP and the RD during the Pre-construction phase. Efforts will be made to ensure that these facilities are as near to the Project road as practical to avoid unnecessary journeys and potential dust issues from vehicle movements during construction works on unpaved roads in urban areas. Haul routes will be prepared and submitted to the Engineer as part of his Traffic Management Plan (TMP). To prevent impacts arising from asphalt plants, construction camps, batching plants and rock crushing plants, they will be prohibited within 500 meters of any urban area or sensitive receptor (school, hospital, etc).

83. <u>Air Quality</u> - To adequately manage air quality impacts the Contractor will be responsible for the preparation of an Air Quality Plan.

84. <u>Climate Change</u> - Most climate change impacts are projected to occur slowly over a long period of time and as such providing mitigation measure for topics such climate change impacts on pavement design need to be taken over time and cannot be determined in a study like this. Notwithstanding the above a number of simple measures can be taken to ensure that in the short term that extreme precipitation events do not result in significant impacts to the Project, they include; a) Increase ditch and culvert capacity, b) Maintain positive cross slope to facilitate flow of water from surface, c) Increase resistance to rutting, d) Reduce splashing/spray through porous surface mixtures, e) More frequent use of elevated pavement section, f) Improve visibility and pavement marking demarcation, and g) Ensure that all embankments are seeded to help increase stability.

85. <u>Contaminated Soils</u> – An additional four samples will be taken as part of this EIA (from recently excavated boreholes close to the GAA) and the results presented as an addendum to this report. If the results show that the monitored parameters are within the proposed national limits and the Dutch target values no further soil sampling will be considered necessary. Should the results of the monitoring indicate any elevated levels of contamination further testing of the excavated soils in this area will be required during the construction phase by the Contractor. The procedure for any construction phase testing is as follows:

- 1. The Contractor shall identify a temporary storage area for excavated material.
- 2. The Contractor shall strip the topsoil in batches of 2,500 m² and store the mixed material in the temporary storage area (the stockpile).
- 3. The Contractor shall then divide the stockpile into quadrants of 250m³.
- 4. The Engineer will hire a certified laboratory to take a soil sample from each of the quadrants for further chemical analysis.

- 5. If the results show the all of the samples are within the proposed national limits and the Dutch target values the material can be removed from the stockpile area and disposed of as non-hazardous material.
- 6. If any of the ten samples show elevated levels of contamination the material from the respective contaminated quadrants will be disposed of as hazardous waste. Any other non-contaminated quadrants may be disposed of as non-hazardous waste.

85. Alternatively, the Contractor may wish to explore alternative methods to treat the contaminated waste so that it can be disposed of as non-hazardous waste. If the Contractor chooses this option he will be responsible for the preparation of a Contaminated Spoil Treatment Plan that will outline the procedures and methods for treating the waste. spoil

86. <u>Bridge Design</u> - Bridge designs should ensure that drainage from bridge decks over 50 meters does not discharge directly to the watercourses beneath the bridges. Discharge waters should lead to an oil/grease interceptor tank or filter pond adjacent to the bridge in order to trap oil and grease run-off. In addition, the bridge design and layout must be aesthetically pleasing and in harmony with the existing environment.

87. <u>Drainage Design</u> - Consideration in the design phase has be given to the issue of drainage and culverts to ensure that drainage patterns are improved from the existing conditions and that increased run-off does not occur or result in flooding of areas previously undisturbed or in those areas identified as flood prone by the Project FS. During design, all drainage works have been designed based on the historical flood data and flood forecasting. A design discharge of 50 years return period is considered for culverts, and 100 years of bridges.

<u>88.</u> <u>General Tree Protection</u> - Prior to the commencement of works the Contractor shall stake the boundary of the entire work site, including intersections and areas under bridges (this excludes within rivers and tunnels, but not tunnel portals). The Contractor shall then identify through a site survey if any Georgian Red-listed tree species are located within 5 meters of the site boundary. This survey will form part of the Contractors Clearance, Revegetation and Restoration Management Plan. If any of these trees are identified the contractor will be required to place wood fencing around the tree in order to protect the tree during construction works, including its root zones. The Engineer will inspect all of the tree protection measures on a regular basis.

89. Cutting of Trees – Cutting of trees can be addressed under two headings:

- <u>Private Land</u> Compensation shall be paid to all affected tree owners as per the Project LARP.
- State Forest Fund An inventory of the species to be de-listed has been prepared as part of this EIA. The RD is responsible for supplying this information to the National Forest Agency in writing in order to complete the de-listing process. The RD shall also apply to the MoENRP in writing regarding the identified Red-List species in the project area so that they may also be de-listed from the SFF. The RD have estimated that a compensation payment of approximately 10,400 GEL (4,200 USD) will be made for the trees cut as part of the Project. This payment is based on the criteria of Table 2 of Appendix 7 of The Resolution No.242 of Government of Georgia on Approval of Rules for Forest Use taking into account the area of used land. The payment shall be made before beginning of forest usage. No compensation in the form of re-planting is required under this resolution unless specified by the MoENRP in the Conclusion of Ecological Expertise.

<u>90.</u> Infrastructure - A road condition survey will also be conducted by the Engineer prior to construction in order to gauge the damage to the road as a result of the intensive heavy

traffic. Before completion of the Project the Engineer shall repeat the survey to determine which, if any roads need to be repaired by the Contractor.

91. <u>Waste Management</u> – The Contractor shall prepare and submit a waste management plan outlining measures to manage and disposal of all waste streams, including hazardous waste and methods for recycling waste. The plan will clearly identify how and where hazardous wastes will be disposed of.

92. <u>Spoil Disposal</u> – The responsibility for identifying the final disposal areas for tunnel and embankment spoil material lies with the Contractor. Initial consultations with the RD indicate that the remaining static balance of 691,500 m³ could be re-used at the Kutaisi Bypass. However, Spoil material from F4 will be generated at different times and in different volumes throughout the construction phase. At this stage of the Project the construction schedule for F4 is not known and as such it is not possible to draw up plans for the disposal of spoil material at the Kutaisi bypass. If the Contractors for F4 and Kutaisi bypass can, in coordination with RD, agree to re-use the materials F4 Contractor will be responsible for preparing a Spoil Disposal and Re-use Plan specifically for the Kutaisi bypass site.

93. If there is no agreement between the Contractors of F4 and the Kutaisi Bypass regarding the re-use of the materials the Contractor will be responsible for the preparation of a separate Spoil Disposal Plan for Arrangement of Spoil Disposal Area and a Re-cultivation Plan for a separate site which will be indicated and provided by the RD. The Plan will also be provided to the RD and the Engineer as part of his SSEMP. No spoil storage will be allowed until the RD and the Engineer have approved the plan.

94. <u>Borrow Pits</u> - If the Contractor intends to use borrow pits operated by an independent organization then a due diligence review will be carried out by the Engineer to confirm that the new site identified for use by the Contractor is indeed operating or operable in an appropriate manner. For any new borrow pit to be opened and operated by the Contractor, the Contractor will be responsible for the preparation of a Borrow Pit Action Plan (BAP).

95. <u>Tunnels</u> – The Contractor will develop a ground water management plan for each tunnel under which shall be submitted for approval by the Engineer at least four weeks prior to the start of tunnelling works. The plan shall include routine monitoring of the groundwater levels in wells against baseline water levels (measured by the Contractor before the start of tunnel works) in the Project area which will be undertaken on a weekly basis by the Engineer within the vicinity of each tunnel he is excavating.

<u>96. Emergency Response</u> - The Contractor will be responsible for preparation of an Emergency Response Plan (ERP) which will include sections relating to; a) Containment of hazardous materials, b) Oil and fuel spills, c) Fire, gas leaks and explosions, d) Work-site accidents; and e) Earthquake and other natural hazards.

97. Loss of Land and Property - Under JICA Guidelines for Environmental and Social Considerations (April, 2010), the Employer must prepare the Land Acquisition and Resettlement Plan (the LARP) before dispatching the appraisal mission of JICA. Then, the Employer will implement the plan and acquire the land before the commencement of the construction works at any part of the site.

98. <u>Noise</u> - Correct siting of construction camps and ancillary facilities will reduce the potential for elevated noise levels to affect sensitive receptors. Locating these facilities more than 250 meters from residential or sensitive receptors will mean that the noise generated by these facilities will be lower than IFC daytime and night-time guideline limits at this distance. Locating these facilities more than 500 meters downwind of sensitive receptors will further

limit potential noise impacts. In addition to the above, prior to the start of construction, and as part of his SSEMP, the Contractor will develop a noise management plan.

99. <u>Vibration</u> - The Contractor will develop a detailed Tunnel Blasting Plan (TBP) as part of the overall construction schedule. The TBP shall specify, to a reasonable level of accuracy, the schedule for boring of each tunnel and will include the results of all of the surveys undertaken. The TBP will also include a vibration monitoring plan to monitoring vibration levels and frequency around the blasting sites.

Construction Phase

100. <u>Air Quality</u> - Proper control, siting and maintenance of equipment, including concrete batching plants, shall mitigate emissions impacts. Spraying of roads with water during dry periods and covering of friable materials will also help prevent dust impacts.

101. <u>Soils</u> – Standard measures are outlined within the EMP to reduce the impacts of potential spills and leaks. They include storing hazardous liquids in special storage areas within concrete bunds and the provision on spill kits in these areas. Erosion control measures and measures to preserve topsoil are also recommended within the EMP.

102. <u>Surface water</u> – Proper design, siting and management of facilities (including construction camps and concrete batching plants) will help reduce impacts to water quality. Accidental spills could occur and provisions are recommended in the EMP to manage such accidents. Temporary drainage in villages will be kept clear of construction debris to prevent flooding at work sites.

103. <u>Drainage and Flooding</u> - During the construction phase the Contractor will be required to construct, maintain, remove and reinstate as necessary temporary drainage works and take all other precautions necessary for the avoidance of damage to properties and land by flooding and silt washed down from the works. Should any operation being performed by the Contractor interrupt existing irrigation systems, the Contractors will restore the irrigation appurtenances to their original working conditions within 24 hours of being notified of the interruption. The Contractor will also be responsible for ensuring that no construction materials or construction waste block existing drainage channels within the Project corridor. The Engineer will be responsible for routine monitoring of drainage channels to ensure they remain free of waste and debris.

104. <u>Flora</u> – it is recommended that re-planting of the 615 red-list species is undertaken as an additional compensation measure. The Contractor should coordinate with the National Forest Agency to identify a site, or sites, within the Project area where these trees can be replanted. Plant maintenance will be carried out for at least two years. The Contractor will be responsible for the maintenance. If the maintenance period extends after the completion of the Contractors contract period the RD will be responsible for contracting an operator to maintain the trees for the remaining period. During the Construction phase the Engineer will undertake monthly monitoring of the re-planted areas and report on the success rate of the re-planted trees, which should be above 80%. If the success rate falls below 80% the Contractor will re-plant on a 1:1 basis to compensate for losses. The Contractor will be responsible for paying for any compensational re-planting.

105. <u>Fauna</u> - Prior to the start of construction in river beds, or close to river embankments (within 10 meters), the Contractor shall undertake a site survey (using a local ecologist) to ensure that there are no otter burrows in these areas. If burrows are found in these areas the Contractor will prepare a method statement for the management of these areas which will be sent to the Engineer for review and approval. Poaching of wildlife shall be strictly prohibited.

106. <u>Protected Areas</u> - No construction activities, including camps, borrow pits, haul routes, etc. will be allowed within, or through protected areas, or reserves.

107. <u>Infrastructure</u> - To mitigate the potential impacts the Contractor will submit a Traffic Management Plan to local traffic authorities prior to mobilization and include the plan as part of his SSEMP. The Contractor will also provide information to the public about the scope and schedule of construction activities and expected disruptions and access restrictions and allow for adequate traffic flow around construction areas via diversions or temporary access roads. To prevent potential environmental, health and safety issues arising whilst working in the area above the railway line at KM 6.3 and at Bridge BR 4.0.1.AT/TA, the Contractor will be responsible for the preparation of an Environmental, Health and Safety Method Statement for working in these areas.

108. <u>Utilities</u> - During construction all utilities in the Project area shall be kept operational, particularly during the winter months.

109. <u>Waste Management</u> - The Contractor will be responsible for the safe collection and removal of all waste materials from his site. Accordingly, he shall prepare contracts with a suitably licensed waste management contractor for the removal of inert and hazardous wastes from his sites. The Contractor as proof of the shipment of these wastes shall also keep waste manifests.

110. <u>Borrow Pits</u> – The Contractor will be responsible for following all of the borrow pit requirements outlined in this EIA along with the borrow pit regulations of the GoG.

111. <u>Asphalt Plants, Concrete Batching Plants and Construction Camps</u> – The EMP provides a range of detailed mitigation and management measures for these facilities. All of these measures are based on international best practice.

112. <u>Bridge Construction</u> – A range of measures are provided in the EIA to prevent impacts occurring at bridge construction sites, including for example; ensuring no waste materials are dumped in the river, including re-enforced concrete debris, ensuring that no hazardous liquids are placed within ten meters of the river, providing portable toilets at bridge construction sites to prevent defecation by workers into the river and provision of areas where concrete mixers can wash out leftover concrete in the form of a lined settling pond at each bridge site. In addition, the Contractor, through his Environmental Manager, will be responsible for consulting with MoENRP to establish the fish spawning period in relation to the bridge construction works to ensure that all works are undertaken in periods least likely to affect the fish spawning period.

113. <u>Tunnels</u> - Routine monitoring of the groundwater levels in well in the Project area will be undertaken on a weekly basis by the Contractor within the vicinity of each tunnel he is excavating. The monitoring shall continue for a two month period after the tunnel is sealed. If drawdown levels in wells are significant the Contractor will provide a temporary source of potable water to the affected persons until the groundwater levels are recharged. The Contractor will pass all drainage water from the tunnel through a settlement tank. Weekly monitoring of the water quality from the tank will be undertaken by the Contractor to assess for any pollution. If the drainage water meets drinking water standards it can be considered for re-use in any potentially depleted wells during the construction phase. The Contractor shall continue to monitor the water levels in the affected wells for a period of two months after construction is completed. If the wells begin to recharge to their pre-construction levels no further actions will be necessary. However, if the water fails to re-charge to pre-construction levels new boreholes will be constructed for the affected persons.

114. <u>Blasting</u> - The Project will conduct construction blasting consistent with Georgian and international safety standards. Blasting will be conducted using standard mining industry practices and procedures to ensure safety of personnel and equipment. This includes establishing a safety zone around the blast area, say to a distance of 500 m (actual distance will be established by the Contractor and approved by the Engineer based on the safety standards) and evacuating it. In addition, no blasting will be carried out within 100 m of the portal of the tunnel, blasting will be scheduled during the day only and local communities will be informed of blasting timetable in advance.

115. <u>Community Health and Safety</u> – The Contractor will be responsible for holding monthly community meetings within the Project area throughout the construction period. The monthly meetings will be held in the villages along the alignment and will provide a forum for locals to discuss specific issues, such as noise and dust, with the Contractor before making complaints formal through the Grievance Redress Mechanism.

116. <u>Occupational Health and Safety</u> - Health and safety plans, training and HIV/AIDS and vector borne disease awareness programs will be provided by the Contractor. The Contractor shall also be responsible for providing adequate Personal Protective Equipment for all workers, including sub-contractors and site visitors. If groundwater is to be used as potable water it will be tested weekly to ensure that the water quality meets the GoG drinking water standards.

117. <u>Physical and Cultural Resources</u> - The cemetery identified close to the Project road is unlikely to be impacted by construction works, however, it is required that during the construction phase the northern boundary of the cemetery be fenced off to ensure that there is no encroachment into this area by construction workers or equipment. A short section of noise barrier is recommended around KM 10.1 if it is not to be included as part of general noise mitigation measures. During the construction works the spring shall be fenced on the northern side to prevent construction works impacting upon the spring. In the event of any chance finds during the construction works procedures shall apply that are governed by GoG legislation and guidelines.

118. <u>Noise & Vibration</u> – The Contractor will be responsible for implementing the range of good practice measures outlined in this EIA and its EMP to limit construction noise impacts, including time and activity constraints. Specific measures have been proposed in this EIA to manage vibration issues during the construction phase, they include building surveys, consultations, real time monitoring, choice of tunneling techniques and defining damage risk zones..

Operational Phase

119. <u>Noise</u> - A review of the noise model results and the anticipated impacts to identified receptors in the Project area indicates that noise barriers in various locations along the alignment would help reduce noise levels below IFC limits (or very close to the limits) over the lifecycle of the Project. However, in other locations, even with the installation of a noise barrier, noise generated by traffic will still be elevated above IFC nighttime standards. Alternative noise abatement measures need to be considered for these locations, including for example:

- Fencing around individual properties;
- Planting of vegetation around the border of properties;
- Construction of earth embankments around groups of properties;
- Installation of sound proof windows in properties; and
- Expropriation.

120. However, it is also possible that residents may not be willing to accept these measures as they may consider them an inconvenience and would rather accept the elevated noise levels, especially in the case of expropriation.

121. Given that the noise model has been prepared based on a 2037 operating scenario the following mitigation measures are recommended for operational phase noise levels:

- Noise barriers As part of the Detailed Design, ensure that the road is designed to accommodate all of the noise barriers recommended in this EIA. Within the first six months of operation (during the Defects Liability Period) daytime and nighttime noise monitoring will be undertaken by the Engineer at all of the identified receptors within the vicinity of these noise barriers. If noise levels are measured above IFC daytime or nighttime standards at these receptors the Engineer and RD will consult with the affected persons to determine if they want the noise barrier to be constructed. If any of the affected persons confirm they wish the barriers to be constructed the Contractor will be responsible for constructing the barrier. A budget shall be set aside from the Project to pay for the detailed design (which would specify the precise locations, dimensions and barrier material) and construction of these noise barriers. Noise monitoring at these receptors shall be undertaken and the same procedure will be undertaken every six months for the remaining eighteen months by the Engineer during the defects liability period.
- Alternative noise abatement some properties are located in areas where, according to the model, noise barriers will not be able to reduce noise levels below 45 dBA by 2037. In these areas the Engineer (during the two year defects liability period) shall undertake annual noise monitoring at all of the potentially affected receptors in the Project area to determine actual noise levels at the receptors. If the noise levels in these areas are elevated above IFC guideline limits during this two year period the Engineer and RD shall consult with the affected receptors to determine what mitigation measures would be suitable for them, including the option of expropriation. In total around 120 receptors, or properties, could be affected, although in theory this figure will be lower (over 59 of the affected receptors are only between 1 and 5 dBA above the IFC nighttime guideline limit by 2037). A budget shall be set aside to pay for any potential expropriation of properties and will be included in the Project RAP.
- Other areas Some of the barriers proposed in the model will only benefit one or two properties. The Engineer (during the two year defects liability period) shall monitor noise levels at each of these receptors annually, and if noise levels are above IFC guideline limits they shall consult with the affected receptor to determine what type of alternative mitigation is preferable, including noise proof windows, fencing, etc. Again, a budget shall be set aside for these minor items.

122. <u>Induced Impacts</u> – Although the EMP contains provisions controlling direct impacts of land takings for both the road and ancillary functions (asphalt plants, construction camps, etc.), control of the induced impacts is largely beyond the scope of the Project.

8. Monitoring Actions

123. To ensure that all of the above mitigation actions are completed according to the requirements of this EIA, monitoring shall be undertaken of Project works by the Engineer and by independent monitoring specialists. Specifically, both observational monitoring and instrumental monitoring shall be undertaken as follows:

124. <u>Instrumental Monitoring</u> – This shall be completed by independent specialists and will include:

- Routine air quality, water quality soil sampling and noise monitoring during the construction phase;
- Bi-annual noise and air quality monitoring during the first two years (with reporting to JICA); and
- Annual noise monitoring throughout the Project operational lifecycle at the receptors identified as part of the noise model.

125. Schedules, parameters, locations are indicated by the EMP. The Engineer shall be responsible for contracting independent monitoring specialists during the construction phase. In addition, the Contractor will be responsible for real time monitoring of vibration during the Construction phase of the Project. The RD will be responsible for operational monitoring, e.g. hiring independent monitoring specialists.

126. <u>Observational Monitoring</u> – The Contractors actions shall be continually monitored by the Engineer throughout the Projects Construction phase. This will be achieved through weekly inspections of the Contractors environmental performance and his SSEMP by national and international environmental specialists engaged by the Engineer throughout the construction period. The Engineer shall have the right to suspend works or payments if the Contractor is in violation of any of his obligations under the EMP and this EIA.

9. Consultations

127. Two rounds of stakeholder consultations were undertaken in Zestaphoni. The first round of consultations helped define the scope of the EIA. The second round of consultations were then undertaken on the draft EIA. During the consultations a number of issues were raised, such as disposal of tunnel spoil material, tree cutting and replanting, access to properties during construction and identification of sites of cultural heritage.

128. All of the issues identified in the consultations have been included within the impact assessment portion of the EIA and where practical, measures have been proposed to reduce the significance of, or mitigate impacts. **Section 7** of the Report provides details of the consultation procedures and the main comments received.

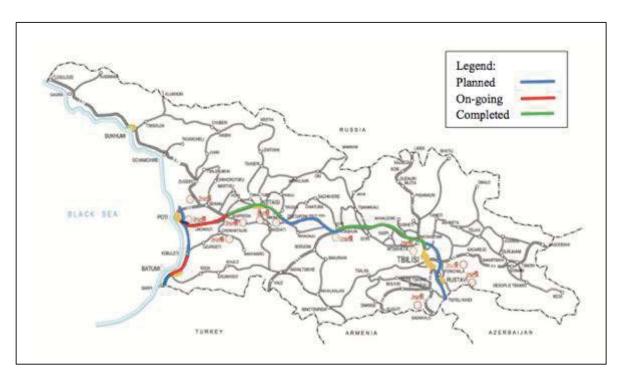
10. Implementation

129. The EMP, its mitigation and monitoring programs, contained herewith will be included within the Project Bidding documents for project works. This ensures that all potential bidders are aware of the environmental requirements of the Project and its associated environmental costs.

130. The Bid documents state that the Contractor will be responsible for the implementation of the requirements of the EMP through his own Site Specific Environmental Management Plan (SSEMP) which will adopt all of the conditions of the EMP and add site specific elements that are not currently known, such as the Contractors final list of borrow pit locations.

131. The EMP and all its requirements will also be added to the Contractors Contract, thereby making implementation of the EMP a legal requirement according to the Contract. He will then prepare his SSEMP which will be approved and monitored by the Engineer. Should the Engineer, through routine monitoring by his national and international environmental specialists, note any non-conformance with the SSEMP the Contractor can be held liable for breach of the contractual obligations of the EMP. To ensure compliance with the SSEMP the Contractor will employ a national environmental specialist to monitor and report Project activities throughout the Project Construction phase.

132. A grievance redress mechanism (GRM) has also been prepared as part of the Project. The GRM provides a structure for stakeholders to make complaints and a mechanism for the complaints to be resolved both locally and centrally.


A. Introduction

A.1 General

133. This section of the report outlines the purpose of the EIA and provides a summary of the project identifies and the project proponent. In addition, this first section of the report describes the scope of the EIA and the methodology used to complete the assessment.

A.2 Overview

134. The Government of Georgia is endeavoring to make Georgia a regional and logistics hub and more attractive for businesses. The East West Highway (EWH), stretching 410 km from Sarpi on the Black Sea, at the border with Turkey, through the center of the country to the capital Tbilisi and on to the border with Azerbaijan, is the main inter-regional and international route between western and eastern Georgia, as well as its neighboring countries. Representing about 2% of Georgia's road network and one fourth of its international roads, the EWH serves 8,000 to 10,000 vehicles per day and carries over 60% of the country's international trade. In anticipation of admission of Georgia to the Central Asia Regional Economic Cooperation (CAREC) program in 2016, the EWH will be an integral part of one of the six key CAREC corridors providing the shortest transit link to connect Central Asia with Europe and East Asia. **Figure A-1** illustrates the current status of road construction and rehabilitation projects in Georgia.

135. In light of the traffic growth on EWH, the high percentage of truck traffic, and the difficult terrain and resulting geometric profiles, capacity expansion of the current 2-lane mountainous section between Chumateleti and Argveta is crucial to realizing full potential of the EWH with improvements to the highway either completed or underway on each side of this section.

136. Therefore, the Government has requested the Asian Development Bank (ADB) and several other development partners to finance the remaining bottleneck sections (Chumateleti - Argveta) on the EWH. A feasibility study financed under a World Bank project for the Chumateleti Argveta section (comprising four sections F1 through F4) of the EWH was completed in 2015.

Road Section	Location	Length (km)	Funding Agency
F1	Chumateleti-Khevi	11.10	World Bank
F2	Khevi-Ubisa	15.40	ADB
F3	Ubisa - Shoropani	10.50	EIB
F4	Shoropani - Argveta	15.80	JICA

Table A-1: Chumateleti – Argveta Road Sections

137. The detailed design of Section F1 has been completed and selection of the construction Contractor is on-going. Detailed design of sections F2, F3 and F4 is currently on-going. This EIA focuses on Section F4.

A.3 Purpose of the EIA report

138. This Environmental Impact Assessment (EIA) is part of the process of compliance with the ADB guidelines and JICA Guidelines for Environmental and Social Considerations (April, 2010) in relation to Section F4 of the Khevi-Ubisa-Shorapani-Argveta (E60 Highway route) Construction Project, or the "Project". The Project road is approximately 14.7 kilometers long and for construction purposes will be divided into two construction packages, or 'Lots'. The first Lot extends from KM0.00 to KM5.6 with the second Lot covering KM5.6 to the end of the Project road at KM14.7.

139. The EIA provides a road map to the environmental measures needed to prevent and/or mitigate negative environmental effects associated with the Project. The EIA provides a detailed description of the direct and indirect environmental effects associated with the proposed Project during key periods of work.

140. More specifically, the EIA:

- Describes the extent, duration and severity of the impacts;
- Analyzes all potential impacts, both positive and negative;
- Formulates the mitigation actions and presents it all in the form of an Environmental Management Plan (EMP).

A.4 Category of Project

141. Based on the existing ADB Environmental Safeguards Policy (2009), this Project falls under ADB's project **Category A** and under Category A the JICA Guidelines for Environmental and Social Considerations (April, 2010). According to ADB this category is defined as "A proposed project is classified as category A if it is likely to have significant adverse environmental impacts that are irreversible, diverse, or unprecedented. These impacts may affect an area larger than the sites or facilities subject to physical works. An environmental impact assessment is required."

142. According to JICA "Proposed projects are classified as Category A if they are likely to have significant adverse impacts on the environment and society. Projects with complicated or unprecedented impacts that are difficult to assess, or projects with a wide range of impacts or irreversible impacts, are also classified as Category A. These impacts may affect

an area broader than the sites or facilities subject to physical construction. Category A, in principle, includes projects in sensitive sectors, projects that have characteristics that are liable to cause adverse environmental impacts, and projects located in or near sensitive areas."

A.5 Scope of the EIA

143. Scoping is the process of determining which are the most critical issues to study in the EIA and involve community participation. The scope of the EIA in hand is based upon four factors; 1) the EIA requirements of the ADB and specifically the IRD/SPEA Terms of Reference (ToR) for the Project; 2) the findings of scoping consultations; 3) the defined Project Area; and 4) other best practice guidelines, e.g. IFC EHS Guidelines. The following section provides further details of each of these aspects.

A.5.1 Scoping Consultations

144. Scoping consultations were held in June, 2017 in Zestafoni. Participants in the consultations were given an overview of the proposed project and then asked what they thought may be the significant issues that would require detailed study as part of an EIA. The following summarizes the key comments received:

- In previous road projects in the region there were bad experiences with disposal of spoil
 material, especially from tunnels. Locations were selected, but there was too much spoil
 material and as such locals were paid to allow spoil material to be dumped on their land.
 This issue needs to be carefully managed.
- Landslides are a problem in this region, the project must carefully manage this issue.
- For every tree cut, at least three must be replanted as part of the project.
- Access to properties and land needs to be maintained during both phases.
- Will the Contractors repair access roads after construction works are completed?
- There are lots of cultural heritage sites along the corridor. They need to be protected.

145. **Section I** provides the full details of the scoping consultations. **Section F** discusses these potential impacts in more detail and provides mitigation measures where warranted.

A.5.2 EIA Project Area

146. The Project area **Table A-2** indicates the assessment boundaries, or the 'Project area' adopted for the EIA.

 Table A-2: Assessment Boundaries adopted for this EIA

Terrestrial Environment	Aquatic Environment	Air Shed	Acoustic & Human Environment
 200 m on either side of the road. 50 m around construction camps and ancillary facilities, e.g. asphalt plants. 5 m either side of new access roads. 	50 m upstream and 250m downstream of any project road crossing a river (not including irrigation or drainage channel) and of construction camps and ancillary facilities.	200 m from center line of road (and rising 100 m from the road centerline). 500 meters from construction camps and ancillary facilities.	250 m from centerline of road.250 meters from construction camps and ancillary facilities.

A.5.3 ADB Requirements

147. According to the ADB Terms of Reference (ToR) for the Detailed Design (DD) Consultants (IRD/SPEA), the following actions are required:

1/ Based on the findings of the feasibility study, the Consultant shall identify the nature and scale of the potential environmental and social impacts of the road construction and operation and confirm that the proposed works fall under Environmental Category A as defined. The output of the Consultant's work will be an EIA report, including Environmental Management Plan (EMP). The Consultant shall review relevant sources of information to identify presence of any known archaeological sites within the road corridor.

The Consultant's assignment will comprise of the following tasks for preparation of EIA report:

- Identify sensitive environmental, social, and cultural heritage receptors within the corridor of East-West highway Khevi-Ubisa Shorapani -Argveta, point out risks to the natural and social environment and to the cultural assets associated with the anticipated construction works in this section, and describe their nature and scope;
- Cooperate with the engineers in the process of defining exact alignment of the highway with the purpose of integrating environmental, social, and cultural heritage perspectives into the selection of the optimal route;
- Provide a set of detailed mitigation measures aimed at avoiding or decreasing expected negative impacts of construction on the natural, social, and cultural environment, and develop an environmental management plan including mitigation and monitoring plans;
- Produce an EIA report, including an environmental management plan, satisfactory to the RD and the ADB; and
- Assist the RD, as requested, during public consultations on the draft EIA report and through the process of obtaining an environmental permit from the Ministry of Environment and Natural Resources Protection (MoENRP).

2/ Key issues environmental and social issues may include:

- Describe Noise and Air emissions modeling using the traffic projections of the detailed design;
- Impacts of noise, vibration and air pollution near inhabited areas during construction and operation;
- Risks of uncovering archaeological material during excavation works;
- Risks related to temporary storage and final disposal of construction waste and excess material;
- Risks of soil degradation and erosion from cutting slopes and borrowing construction materials;
- Identify the territories for spoiled soil disposal temporary and constantly storage, according to the Georgian Legislation;
- Risks of Landslide;
- Risks of ground water flows; and
- Risk of water pollution from construction near rivers and streams.

A.5.4 Best Practice

148. The International Finance Corporation (IFC) have prepared Environmental, Health and Safety Guidelines for a range of topics including noise, water quality, air quality, occupational health and safety, community health and safety, etc. Where relevant, the Project will include the recommendations of the IFC guidelines to ensure that the Project meets international best practice.

A.5.5 Scope of the Report

149. Given the findings of the scoping consultations, the recommendations of the ToR, best practices guidelines and the defined Project area the following scope has been followed as part of the EIA:

1. Overview of the Legal and Institutional Framework

Prepare an overview of the legal and institutional framework based on recent EIA reports prepared for the previous East West Highway Improvement Projects (EWHIPs).

2. Collection of Baseline Data

Collect baseline data describing the existing biophysical environment in the area likely to be affected by the proposed project including:

- **Physical**: geology; topography; soils; climate; air quality; noise; surface water; groundwater; seismicity and natural hazards.
- **Biological**: flora and fauna; rare and/or endangered species (Red List species); critical habitats and ecosystems; protected areas. Particular attention shall be given to the presence of land plots registered as the State Forest Fund.
- **Human**: population; communities; demographics; employment and socio-economics; land use; infrastructure (including local access roads); transport; public health; cultural heritage; archaeology; waste management; tourism.

Surveys shall be conducted to address important gaps in the existing data and to collect upto-date information on topics and areas where significant negative impacts are expected, specifically, flora, fauna, noise, air quality and water quality.

3. Impacts and Mitigation

Internationally accepted best practice shall be used throughout the EIA study, including in the process of identifying impacts and assessing their significance. This shall include numerical modeling of noise, vibration and air quality to assist in predicting impacts and planning mitigation in these fields. The consultant should also ensure that the design team is informed in a timely manner of mitigation measures that need to be included in construction contracts. For each identified risk a set of mitigation measures explaining how these impacts will be mitigated or/and avoided will be provided. In the case of legal/institutional weaknesses, recommendations of ways for closing the gaps will be made.

4. Analysis of Alternatives

The EIA shall include a systematic comparison of the feasible project alternatives (in terms of location, technology, design and operation), including the "no project" scenario.

5. Cost Estimates

EIA report shall include an estimated cost according to the "**Environmental risks and impacts**" (if any), which should be considered in Bill of Quantities.

6. Grievance Redress Mechanism

A section describing the grievance redress framework (both informal and formal channels), setting out the time frame and mechanisms for resolving complaints about environmental performance will be provided.

7. Environmental Management Plan

The EIA report shall include an environmental management plan comprising of an Environmental Mitigation Plan and an Environmental Monitoring Plan. The Environmental Mitigation Plan shall:

- Clearly identify what specific potential impacts may various types of works have on the sensitive receptors;
- Provide concrete actions prescribed for managing these impacts, including location and timing of these actions;
- Provide cost estimates for the main discrete mitigation measures (those that are unlikely to be part of a construction company' corporate policy and will not necessarily be included into general pricing of the contract);
- Give measurable criteria for identifying how adequately are the mitigation measures being applied and how effective they are; and
- Specify responsibility for the implementation of each mitigation activity.

The Environmental Monitoring Plan shall:

- List out of all prescribed mitigation measures by types of construction activities;
- Provide selected criteria of monitoring implementation of mitigation measures;
- Specify methods for measuring outcomes of applied mitigation measures (visual, instrumental, survey, etc.);
- Identify location and timing/frequency of monitoring mitigation measures by the prescribed criteria;
- Give cost estimates of monitoring mitigation measures by the prescribed criteria;
- Specify responsibility for tracking each monitoring criterion.
- 8. Disclosure, Stakeholder Consultation and Participation

Disclosure and stakeholder consultation on the draft EIA report will be conducted according to national legislation and the ADB policies.

A.6 Methodology

150. The methodology is based on the ADB, Safeguard Policy Statement (2009) and the joint experience of the International and National environmental consultants involved in the EIA. Background data and information was obtained from published and unpublished sources, e.g., on: climate, topography, geology and soils, natural resources, flora and fauna, agriculture, and socio-economic data.

151. Several site inspections were conducted by the International Environmental Specialist during 2017. The project area was reviewed and areas of potential environmental significance assessed carefully.

152. In addition, several surveys were undertaken to collect additional baseline data by a Local Consulting Firm (LCF) specializing in environmental and social studies. They include:

- Instrumental Noise and Vibration Monitoring.
- Instrumental Air Quality Monitoring.
- Instrumental Water Quality Surveys.
- Soil sampling and analysis.
- Flora and Fauna Surveys.
- Physical and Cultural Resources Surveys.
- Socio-economic Surveys.

153. Modeling of noise and air quality was also undertaken by a firm of international experts.

154. Formal discussions were held with a number of stakeholders (see **Section H**) in order to determine their perceptions of the level of impact from road works. Data and information obtained have been included where appropriate in the EIA Report, and also as Appendices to this report.

155. **Table A-3** provides a summary of the methodology used for this EIA.

Socio- environmental aspects	Methodology for collection of baseline data	Methodology for Impact Assessment and Mitigation Measures
Physical Resou	irces	
Geology	Geological maps were collected and geological information from the FS reviewed and incorporated into the report. Discussions with the Engineering team were also undertaken to discuss the geological conditions within the Project area based on information collected during the detailed design phase.	Where potential problems were identified, appropriate mitigation measures were developed to minimize the impacts.
Topography	The topography of the project area was assessed using Google Earth and Topographical maps.	Where potential problems were identified, appropriate mitigation measures were developed to minimize the impacts.
Soils	Soils maps were collected and soils information from the FS reviewed, including areas prone to landslides. Soil samples were also taken around the Georgian American Alloys factory (GAA) to determine the presence or otherwise of contaminated soils.	Project activities were assessed for their potential impacts on soil erosion, soil contamination and impacts to productive soils. Mitigation measures were determined wherever necessary.
Climate & Climate Change	Meteorological data, including atmospheric pressure, air temperature, relative humidity, precipitation, wind speed and direction, were collected from secondary sources. Recently completed climate change studies compiled by USAID and the World Bank were collected and reviewed.	An assessment of GHG emissions for the construction and operational phases of the Project was undertaken. Potential impacts relating to increased precipitation, flooding, and increased temperatures were assessed. Mitigation measures were determined wherever necessary.
Air Quality	Instrumental air quality monitoring was undertaken at multiple locations within the Project area to determine baseline conditions. NO ₂ , SO ₂ , CO, Hydrocarbons and PM were monitored over a 24 hour period. Sensitive receptors were identified in the Project area and mapped.	An air dispersion model was prepared to determine the nature and extent of any air pollution from the operational phase of the Project. A review of construction equipment was undertaken to determine potential air quality impacts. Mitigation measures were determined wherever necessary.
Hydrology	Maps and locations of surface water courses were reviewed and discussions with the Engineering team undertaken. Instrumental monitoring of surface water quality and groundwater quality was undertaken at several locations to determine baseline conditions in the Project area. Parameters monitored included pH, electrical conductivity (EC), turbidity, BOD, COD, dissolved oxygen (DO), Temperature, Total suspended solids (TSS), Total	Where potential problems were identified, appropriate mitigation measures were developed to minimize the impacts.

Table A-3: Summary of Methodology of Environmental Assessment

Socio- environmental aspects	Methodology for collection of baseline data	Methodology for Impact Assessment and Mitigation Measures		
	Coliform Bacteria, Oil and Grease, Total Phosphorus, Total Nitrogen, Total Ammonium, Petroleum Hydrocarbons, Total Residual Chlorine, Total Zinc, Magnesium, Dissolved Copper.			
Natural Hazards	The FS was reviewed to determine areas where flood events occur. In addition, consultations with the Engineering Team were undertaken to determine areas where natural hazards exist, such as landslides.	Where potential problems were identified, appropriate mitigation measures were developed to minimize the impacts.		
Biological Resou	rces			
Flora	A flora survey was undertaken including the following tasks; 1) Desk-top review of existing regional data; 2) Systematic transect search. A survey of state forest fund areas was also undertaken and an inventory of species prepared along with a shape file of the state forest fund within the Project corridor.	As part of the flora survey an assessment report was completed providing; a) description of survey methodology; b) justification for the timing of the survey and any limitations of the survey; c) Baseline conditions (including; detailed map of the habitat types and locations of any IUCN and Georgian red list plants within the project area; List of habitat types and plants identified during desk top studies; List of habitat types and plants identified during site surveys); d) assessment of impacts (construction and operational phase); and e) mitigation measures.		
Fauna	A fauna survey was prepared by a National Ecologist. The survey included a desk-top review of existing regional data and two site walkovers	As part of the fauna survey an assessment report was prepared providing; a) description of survey methodology; b) justification for the timing of the survey and any limitations of the survey; c) Baseline conditions (including; detailed map of the habitat types and locations of any IUCN red list fauna within the project area; List of habitat types and species identified during desk top studies; List of habitat types and species identified during site surveys); d) assessment of impacts (construction and operational phase); and e) mitigation measures.		
Protected Areas	Maps and data relating to Important	No protected areas or IBAs were		
and Important Bird Areas	Bird Areas (IBAs) and protected areas were collected and reviewed.	identified within the immediate Project area.		
Socio-economic Resources				
Demographics	A review of existing data, including information provided by GEOSTAT as well as the information collected as part of the social surveys provided by the Social Team.	Where potential problems were identified, appropriate mitigation measures were developed to minimize the impacts.		
Economic Conditions	A review of existing data, including information provided by GEOSTAT	Where potential problems were identified, appropriate mitigation		

Socio- environmental aspects	Methodology for collection of baseline data	Methodology for Impact Assessment and Mitigation Measures
	as well as the information collected as part of the social surveys provided by the Social Team.	measures were developed to minimize the impacts.
Infrastructure	The existing infrastructure in the Project area was identified during site visits and in consultation with the Engineering Team.	Where potential problems were identified, appropriate mitigation measures were developed to minimize the impacts.
Land Use	A review of the land uses was undertaken based on existing maps of the project area, satellite images, aerial photos and site visits.	Where potential problems were identified, appropriate mitigation measures were developed to minimize the impacts.
Waste Management	A review of the existing waste management situation in the region was undertaken and local waste management facilities were identified.	Where potential problems were identified, appropriate mitigation measures were developed to minimize the impacts.
Education and Educational Facilities	Site visits identified the health and educational facilities within the Project area. This was confirmed by a web-based search on the Ministry of Health and Ministry of Education and Science.	Where potential problems were identified, appropriate mitigation measures were developed to minimize the impacts.
Cultural Resources	Existing data was reviewed and a site walkover was undertaken to determine what PCR was present within the Project area.	Where potential problems were identified, appropriate mitigation measures were developed to minimize the impacts.
Noise & Vibration	Baseline noise monitoring was undertaken according to EU directive 2002/94-CE. Parameters included L _{Aeq} , L _{AMAX} , L _{AMIN} , PPV.	Reviewed Project description concerning noise and vibration created by equipment used during construction. Prepared a noise model based on the baseline noise levels and traffic projections over the next 30 years. Where potential problems were identified, appropriate mitigation measures were developed to minimize the impacts.

A.7 Structure of the Report

155. The report is organized as follows:

- Section A: Introduction The section in hand provides the introductory information.
- Section B: Legal, Policy and Administrative Framework This section presents an overview of the policy/legislative framework as well as the environmental assessment guidelines of GoG that apply to the proposed project.
- Section C: Analysis of Alternatives This portion of the report provides an analysis of alternatives, including the 'no project' option.
- Section D: Description of the Project Section D describes the Category of the Project, the Project need and its environmental setting. A scope of works is also provided indicating the type of engineering works required.
- Section E: Description of the Environment This section of the report discusses the regional and local environmental baseline conditions. This section is divided into subsections relating to physical environment, biological environment and socio-economic conditions.

- Section F: Environmental Impacts and Mitigation Measures Section F outlines the potential environmental impacts and proposes mitigation measures to manage the impacts.
- Section G: Environmental Management Plan This section provides the EMP for the design, construction and operational phases of the Project.
- Section H: Public Consultations Section H provides a summary of all of the stakeholder consultation activities undertaken.
- Section I: Conclusions and Recommendations The final section of the report provides the report conclusions and recommendations.

B. **Project Description**

B.1 Section Layout

156. This section of the EIA provides the Project description. More specifically it provides:

- Summary of the type and location of the Project, including detailed site location maps;
- Confirmation of the Project environmental category according to the ADB SPS (2009);
- A summary description of the need for the Project;
- The scope of work for the Project, including a description of the construction works required.

B.2 Type and Location of project

157. The Project is a road construction project located in Imereti Region of central Georgia. The Project road comprises Section F4 (Shoropani – Argveta) of the Khevi-Ubisa-Shorapani-Argveta Road (E-60).

158. The alignment passes hilly-mountainous relief from KM 0.0 to KM 1.3, on the left side of the existing road both as exposed road and through two tunnels. The alignment runs in the gorge of the river Dzirula from KM 1.3 to KM 3.0, crosses the river Dzirula several times. The alignment runs on the left side of the existing road, crosses the river Borimela, enters the tunnel and joins the existing road in Shorapani from KM 3.0 to KM 4.3. The alignment follows the existing road from KM 4.3 to KM 5.6. Widening of the road takes place at the expense of cutting into the slope on the left, then the alignment turns to the right, crosses the river Kvirila and the railway twice, then the alignment turns northward of Zestaphoni through three tunnels. From KM 9.6 to the end of the route design road bypasses Zestaphoni, joins the interchange under construction at km KM 14.7 at the village Argveta located on Zestaphoni-Kutaisi motorway.

159. The length of Project road is:

- Right lane **(TA)**¹ 14.778 km;
- Left lane **(AT)** 14.726 km.

160. **Figure B-1** indicates the location of the Project within the context of Georgia and **Figure B-2** illustrates the location in a local context. **Figure B-3 to B-12** provide a set of twelve detailed maps of the site including locations of tunnels and bridges.

B.3 Category of project

161. Based on the existing ADB Environmental Safeguards Policy (2009), this Project falls under ADB's project **Category A** and under Category A the JICA Guidelines for Environmental and Social Considerations (April, 2010). According to ADB this category is defined as "A proposed project is classified as category A if it is likely to have significant adverse environmental impacts that are irreversible, diverse, or unprecedented. These impacts may affect an area larger than the sites or facilities subject to physical works. An environmental impact assessment is required."

162. According to JICA "Proposed projects are classified as Category A if they are likely to have significant adverse impacts on the environment and society. Projects with complicated or unprecedented impacts that are difficult to assess, or projects with a wide range of impacts or irreversible impacts, are also classified as Category A. These impacts may affect

¹ TA meaning Tbilisi – Argveta direction, AT meaning Argveta – Tbilisi direction.

an area broader than the sites or facilities subject to physical construction. Category A, in principle, includes projects in sensitive sectors, projects that have characteristics that are liable to cause adverse environmental impacts, and projects located in or near sensitive areas."

B.4 Environmental Setting

163. **Figure B-13** provides an overview of the F4 Section environmental setting.

Figure B-1: Road Location Map

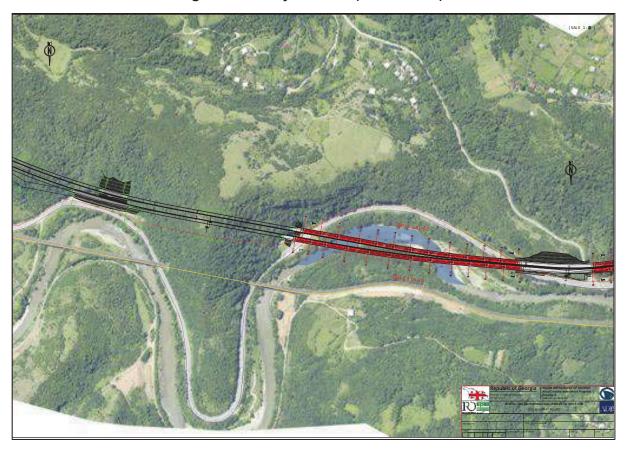

Figure B-2: Project Road

Figure B-3: Project Road (KM0 – 0.6)

Figure B-4: Project Road (KM0.4 – 2.1)

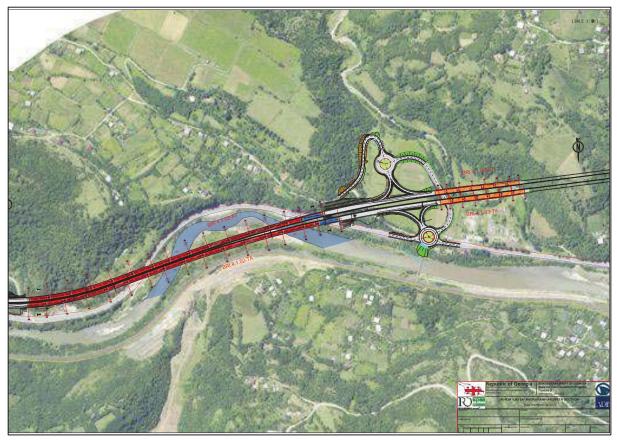


Figure B-5: Project Road (KM2.1 – 3.7)

Figure B-6: Project Road – KM3.7 – 5.5

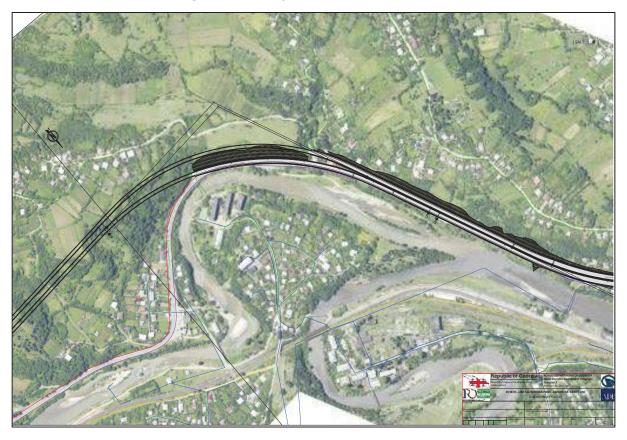
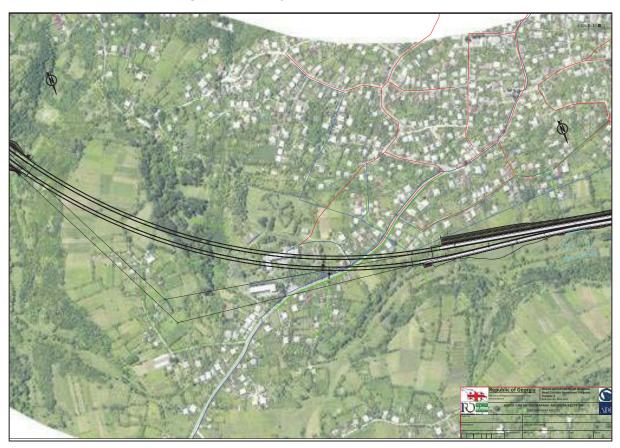



Figure B-7: Project Road (KM5.5 – 7.0)

Figure B-8: Project Road (KM7.0 – 8.7)

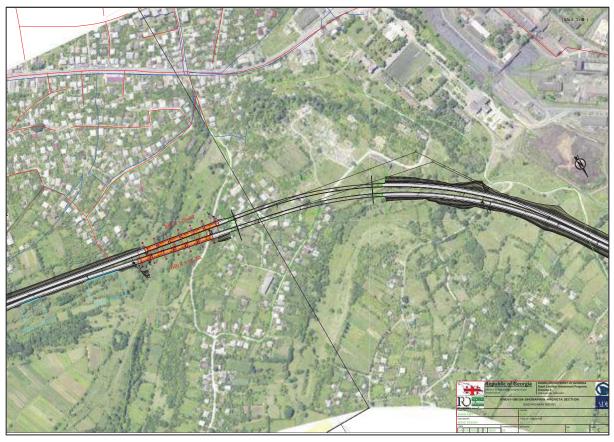



Figure B-9: Project Road (KM8.7 – 10.3)

Figure B-10: Project Road (KM10.0-11.6)

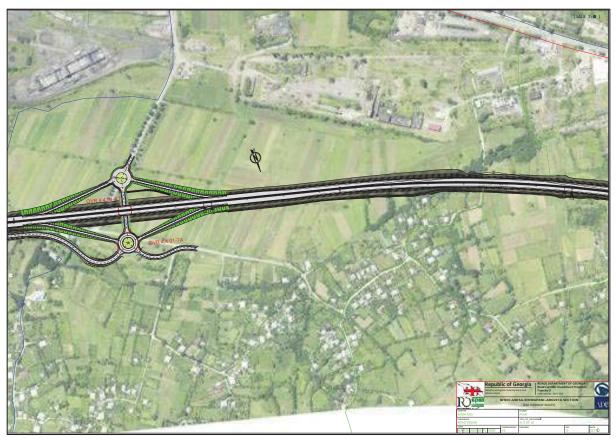
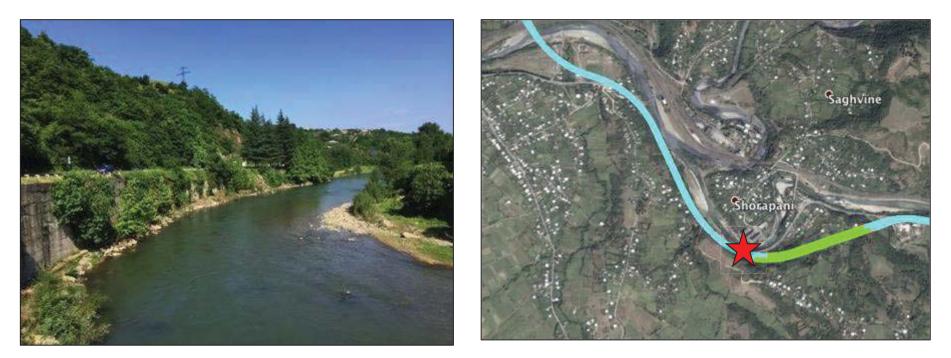
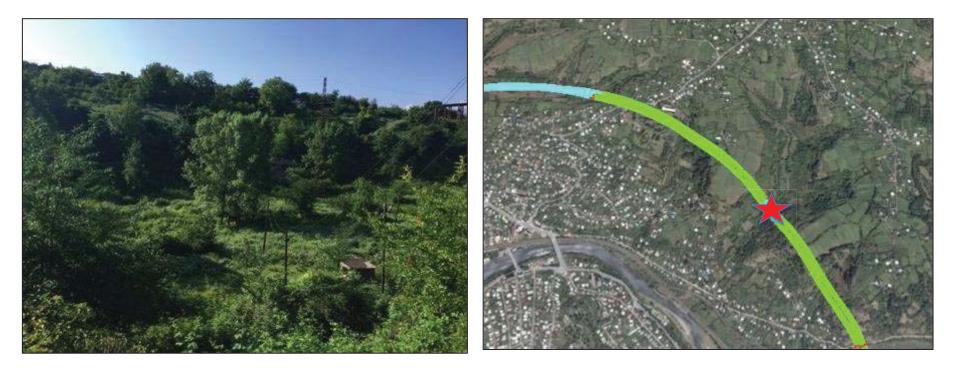


Figure B-11: Project Road – KM11.5 – 13.0


Figure B-12: Project Road – KM13.0 – 14.7

KM0 - The F4 section starts on the south bank of the Dzirula river, approximately 8km east of Zestafoni and opposite the settlement of Kveda Tseva. The south bank of the river is dominated by forest. However, the start of section F4 almost immediately disappears into a set of two tunnels thereby limiting impacts to vegetation. The road emerges from the tunnel to broadly follow the alignment of the existing road just to its south. The road will pass just behind the restaurant pictured opposite, one of very few properties in this portion of the road. The road then crosses back and forth across the Dzirula river before coming to a proposed interchange on the outskirts of Shorapani. The photo above is taken looking east.

KM4.3 - After the interchange the road enters a tunnel emerging on the south side of the Dzirula river opposite the 'center' of Shorapani. A number of residential properties and apartment blocks are located in this area as well as a school. The photo above is taken from a small pedestrian bridge crossing the Dzirula looking west. The new road will be constructed on the existing road, with further cut into the slopes on the left side of the road required.


KM4.4 - The existing road follows the Dzirula river and the new road will follow almost the same alignment, or just to the south. Some small stalls selling items for tourists can be noted (see photo opposite). Few residential properties will be affected by construction works, although noise may be an issue during the construction and operational phases of the project here. The photo above is taken looking east towards the tunnel portal – TUN 4.0.03-TA/AT (tunnel shown in green on the plan).

KM6.0 - The road continues west towards Zestafoni. In this area a few residential buildings can be observed as well as some light industrial and commercial properties. At this point the Kvirila river joins with the Dzirula River. The alignment will then cross the Kvirula river and enter directly into a long tunnel (TUN 4.0.04-AT/TA) bypassing the north east of Zestafoni. The photo above is taken looking north east from across the Kvirila at the location where the new road will split from the existing pavement.

KM6.3 - The alignment will then cross the Kvirula river and enter directly into a long tunnel (TUN 4.0.04-AT/TA) bypassing the north east of Zestafoni. The photo above is taken looking south east across the river in the direction of the bridge, almost adjacent to the proposed tunnel portal.

KM9.3 - After existing the tunnel the road traverses a mix of woodland, agricultural land and pastureland avoiding impacts to residential properties. The road then passes through a small residential area to the north of Zestafoni. A bridge is planned in this location (BRI 4.1.05-TA/AT)

KM11.5 - The road continues west through agricultural land (mostly corn) on the north side of the GAA manganese processing plant. The road may encroach on the GAA property and as such soil samples have been taken in this area to assess if there is any soil contamination from the plant. The road crosses existing local roads and comes very close to a small medical clinic. Low and medium voltage transmission lines and residential gas pipelines are also located in this area. The photo above is taken looking south towards the GAA plant.

KM14.7 - The Project road ends at the junction with the new road (Argveta – Kutaisi) which is currently under construction. The topography of the road is flat in this portion which traverses agricultural land. The existing alignment is located approximately 50 meters to the south of the new road. The photo above is taken looking east from the end point of the road.

B.5 Road Standards and Profiles

164. Geometric design standards have been selected based on traffic flow, road category and relief to ensure safe and unimpeded traffic flow. The road design is based on the Georgian National Standard SST 72: 2009 "Standard on Geometrical and Structural Requirements for the Public Motor Roads of Georgia" and TEM (Trans-European North-South Motorway) Standards. The main technical parameters adopted in the detailed design are as follows:

- Design speed 100 km/h;
- Number of traffic lanes 4;
- Width of traffic lane 3.75 m;
- Width of each carriageway 7.5 m;
- Width of paved shoulder (emergency lane) 2.5 m;
- Width of verge 1.0 m;
- Width of central reserve- 5.0 m;
- Width of paved shoulder at the central reserve 1.0 m;
- Total width of each paved platform 11.0 m
- Width of road bed 27.0 m;
- Carriageway cross-fall on straight sections 2.5%;
- Minimum radius of horizontal curve 400 m;
- Maximum longitudinal gradient 4%;
- Minimum convex curve 15 000 m;
- Minimum concaved curve 15 000 m.

165. A minimum radius of horizontal curve 400 m for the design speed 100 km/h is adopted based on Austrian standards and Russian standards (SNiP 2.05.02-85) for mountainous relief. The road axis has been designed separately for two independent right and left lanes. The axis is located on the outer edge of the paved section (1.0 m) of the central reserve: Tbilisi-Argveta direction **TA**, Argveta-Tbilisi direction **AT**.

B.5.1 Cross Sections

166. In all the section of the motorway, the cross section is arranged in two carriageways with two traffic lanes each (2+2 lanes); the carriageways may be divided and independent according to the terrain characteristics. Traffic lanes in this proposal are always 3.75m, to guarantee enhanced and homogeneous safety level across the road.

Cross Section on Embankment and Cuts – The cross section includes:

- 2.50m wide paved external shoulder (hard shoulder) on the outmost of each carriageway this element may be widened on the internal carriageways, where sight analysis requires widening;
- 1.00m verge on the outmost of the external shoulders, where external safety barrier may be located according to needs;
- 5.00m wide central reserve (median), composed by:
 - 3.00m space for the safety barrier (typically reinforced concrete, dual) and related workspace.
 - 2x1.00m paved internal shoulders (or wider on the external carriageway only, where sight analysis requires widening).

167. The verge may also be 5-10cm above the pavement level, to protect embankment from erosion (should be interrupted every 25m to permit water flow, in dedicated channels with lining on embankments).

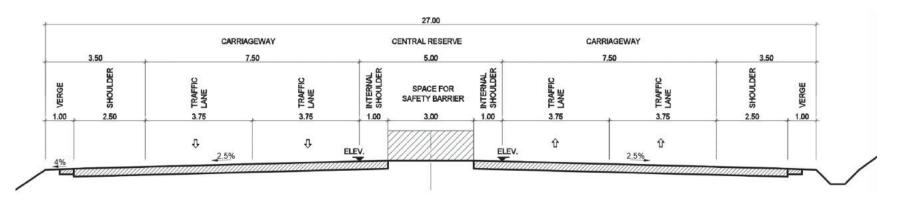
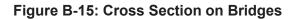
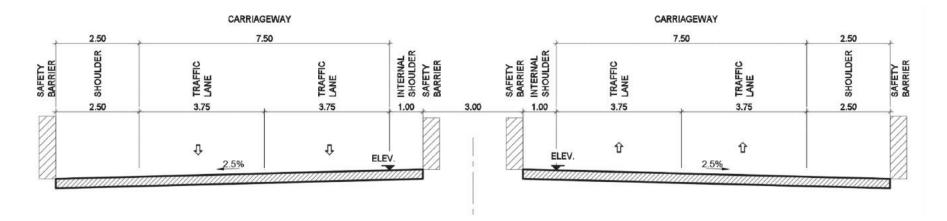
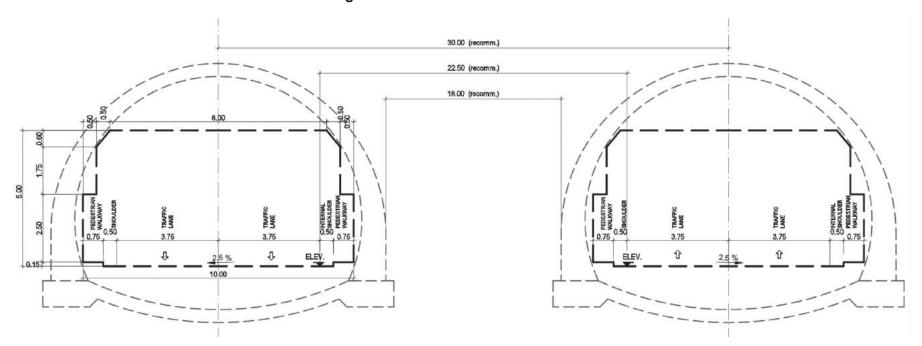





Figure B-14: Cross Section on Embankment and Cuts

Figure B-16: Cross Section in Tunnels

Cross Section on Bridges - This is a functional cross section, so the structural part is not shown. The minimum width for the paved area is 11.00m (2x3.75+2.50+1.00). Safety barriers (internal and external) shall always be included, positioned outside of the shoulders (no element shall invade the shoulder space) and may be installed according to the manufacturer's specification. Side walkways shall be added, with a minimum clear width of 0.6m. Walkway may be also built with a cantilever metal structure, with external pedestrian parapet.

Cross Section in Tunnels - This is a functional cross section including the clear area (gabarit), so the structural part is not shown but shall be organized out of the dashed boundary line; the minimum vertical clearance is 5.00m, which is 1m more than the height of the standard trucks. All the structural parts and additional system (lighting, fans, cable ducts, etc.) shall be positioned outside the dashed boundary line. Minimum width for the paved area is 8.50m (2x3.75+2x0.50), pedestrian walkways are 0.75m wide, on both sides. There is no need of widening in the curves, since when the radius is minimum (400 m) the maximum speed allowed is 80 km/h.

B.6 Bridges

168. Five long span bridges and one short span bridge will be constructed during the project works (throughout the report we will refer to five bridges, although from a technical perspective there are ten bridges as the AT lane and TA lane on each 'bridge' are not joined, but are standalone structures). **Table B-1** below provides summary details of the bridges and their locations.

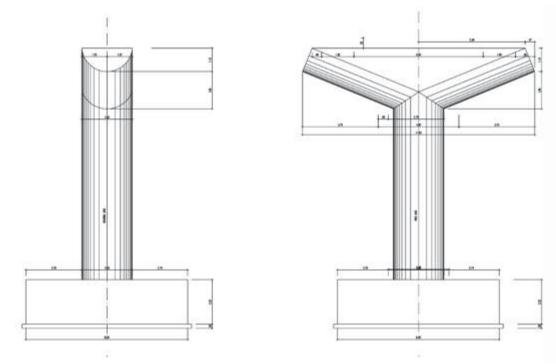
Bridge #	Chainage Start (m)	Chainage finish (m)	Watercourse Type / Name	Bridge length (m)
BRI 4.1.01-AT	1,256	1,846	Dzirula River	589
BRI 4.1.01-TA	1,250	1,890	Dzirula River	640
BRI 4.1.02-AT	2,039	2,980	Dzirula River	941
BRI 4.1.02-TA	2,050	2,930	Dzirula River	880
BRI 4.1.03-AT	3,230	3,485	Borimela River	255
BRI 4.1.03-TA	3,210	3,470	Borimela River	260
BRI 4.1.04-AT	5,862	6,317	Kvirila River	455
BRI 4.1.04-TA	5,853	6,273	Kvirila River	420
BRI 4.1.05-AT	9,044	9,240	None	196
BRI 4.1.05-TA	9,018	9,214	None	196
BRI 4.1.06-AT	7,061	7,101	None	40
BRI 4.1.06-TA	7,031	7,071	none	40
	TOTAL			4,912

Table B-1: Bridges

169. The bridges are grouped into the following main typologies:

- Steel-concrete bridges bridges 1,2,4: maximum span length up to 60 m for bridges 1 and 2 and up to 72 meters for bridges 4-AT and 4-TA.
- Precast concrete bridges bridges 3 and 5: maximum span up to 34m

170. The following presents a short description of each bridge:


• Bridges 1-TA and 1-AT – Bridges are composed of spans with length 42, 48, 54 and 60 meters. Structural scheme is a continuous deck.

- Bridges 2-TA and 2-AT Bridges are composed of spans with length 42, 48, 54 and 60 meters. Structural scheme is a continuous deck.
- Bridges 3-TA and 3-AT Bridges are composed of spans with maximal length 34 meters.
- Bridges 4-TA and 4-AT Bridges are composed of spans with lengths 48, 54, 60 and 72 meters.
- Bridges 5-TA and 5-AT Bridges are composed of spans with maximal length 34 meters.

171. Both bridge types have their advantages and disadvantages as follows:

- Precast concrete In this method a crane moves the precast concrete girder up to the top of substructure. The weakness of this method is the requirement of installation of temporary plant for prefabrication of precast girder and difficulty of span arrangement over 40 m in a span length, but the strength is short construction period due to using crane method and economic efficiency.
- Steel-concrete bridges will be constructed using staging construction method using temporary steel bent to place the cast-in place concrete of superstructure. The weakness is relatively difficult in construction due to long period of construction to place cast-in-situ concrete of superstructure and requirement of temporary steel bent to support the formwork of concrete.
- 172. There are two types of pier geometry in elevation, as follows:

Figure B-17: For steel-concrete bridges – type 1:

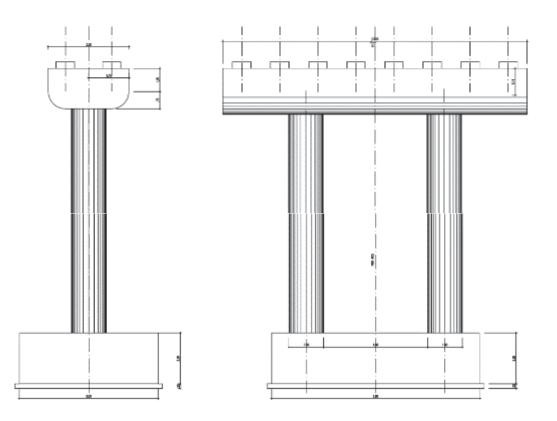
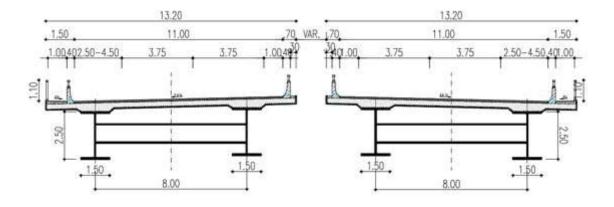



Figure B-18: For pre-stressed precast PSC beams bridges – type 2

173. The bridge decks will be two main beams connected by a trasversal beam and with the slab cast on a steel plate, more or less as is shown in **Figure B-19** below.

Figure B-19: Bridge Cross Section

174. For foundation of substructures, installation of piles will be done through boring using cast-in-place bored pile with reinforced concrete was adopted due to local field condition, environment effect, and supply of materials. This construction method has minor noise and vibration impacts compared to precast driving methods.

B.7 Tunnels

175. In Section F4 six tunnels will be constructed with double tubes with length from 399 m to 1166 m. In this Section, the ground thickness over the tunnel are generally limited and crossed clusters rock shown poor mechanical characteristics.

Tunnel #	Length (m)	Chainage		Maximum Overburden	Lithology
		Start (m)	End (m)		
TUN 4.0.01-AT	560	165	725	59.85	Medium sound rock
TUN 4.0.01-TA	399	226	625	63.97	
TUN 4.0.02-AT	510	725	1,235	141.49	Medium sound rock
TUN 4.0.02-TA	445	725	1,220	149.23	
TUN 4.0.03-AT	1,165	3,472	4,637	83.51	Medium sound rock
TUN 4.0.03-TA	804	3,490	4,294	86.06	
TUN 4.0.04-AT	715	6,330	7,045	76.76	From moderately
TUN 4.0.04-TA	723	6,300	7,023	74.83	weak to medium
					sound rock
TUN 4.0.05-AT	1,193	7,137	8,330	59.74	From moderately
TUN 4.0.05-TA	1,152	7,107	8,259	58.81	weak to medium
					sound rock
TUN 4.0.06-AT	450	9,277	9,727	-	From moderately
TUN 4.0.06-TA	444	9,265	9,709	-	weak to medium
					sound rock

Table	B-2 :	Tunnels	in	Section F4	
IUNIO		1 annoi0		0000001114	

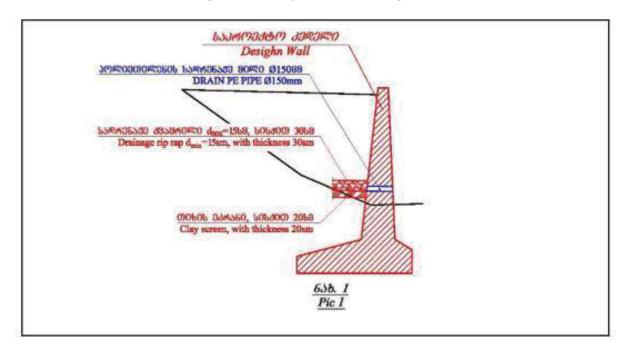
Table B-3: Typical Tunnel Dimensions

Parameter	Value
Width of pavement	7.50 m
Width of sidewalk	0.75 m
Width of Shoulder	0.50 m
Total width of tunnel	10.00 m

176. Ventilation - The primary ventilation for the tunnels having length >1000m (TUN 4005 TA/AT and TUN 4003 AT) will be of the longitudinal type. Ventilations is guaranteed by the use of axial Jet-Fans, having rotor's diameter 1.250mm, stainless steel box, with reversible flow, fire resistant for 2h at 400°C. Moreover, Jet-Fans cables and switching for fan's wiring have the same fire resistance characteristics.

177. Escape Routes - Escape routes are provided for tunnels which length is >1000m, which in case of fire will allow users to reach the other tube of the tunnel, and from there they will go to the nearest portal. Escape routes are accessible only through specific filter areas with fire doors REI 120 in order to avoid the propagation of the fire or smoke inside bypass and pressurized by ventilation systems.

178. Fire Protection - Tunnels having length >500m are equipped with the fire protection system. Pump stations and the related tanks are installed next to the substations ES3, ES4 and ES5. The electrical plant supply are realized according to standard EN 12845. Fire protection network will supply the 120l/min hydrants located inside the niches of the tunnel next to the SOS every 150m along the slow lane. Next to the portals will be posed 300l/min hydrants above the ground. SOS stations and inside the substations are equipped with fire extinguishers. Fire detection inside the tubes is realized with the heat sensitive cable or double conductor cable with insulation sensitive to temperature, protected by a special outer sheath. This system is added to the smoke detection inlet system, to the opacimeters and to the ccTV plant (obscuration function).


179. SOS Emergency Phone System - Tunnels longer than 300m SOS emergency phone at portals, inside the tunnels (every 150 m) and into pedestrian bypass allow service users to calls for roadside and emergency medical assistance.

B.8 Retaining Walls

180. To construct the roadbed in the project section concrete retaining walls and reinforced concrete support structures will be required on several sections due to the difficult relief conditions of the project section. Reinforced concrete retaining walls are required at the beginning of the project section from:

- KM 0.00 to KM 0.25
- KM 8.63 to KM 8.71
- KM 8.84 to KM 8.94

181. A reinforced concrete support structure wall is required at Shorapani, on the section of the road from KM 4.36 to KM 4.43.

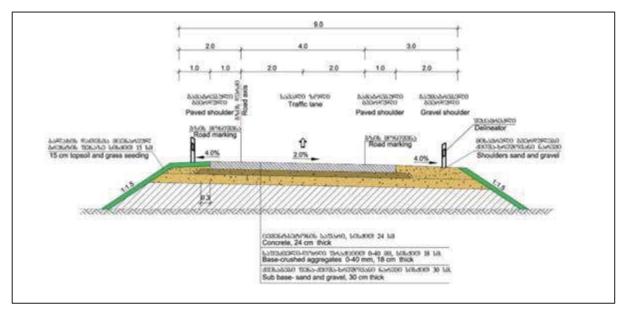


Figure B-20: Typical Retaining Wall

B.9 Interchanges

182. There are four interchanges planned in F4 Section. **Figure B-3** to **B-12** provide plans of the Project road including all interchanges.

- 183. The pavement structure for interchanges includes:
- Pavement cement-concrete, thickness 24 cm.
- Base course crushed aggregates 0-40 mm, thickness 20 cm.
- Sub-base sand and gravel mix, thickness 30 cm.

Figure B-21: Road Pavement Structure for Interchanges

B.10 Culverts and Underpasses

184. Culverts, cattle passes and underpasses crossing the project motorway are designed in compliance with standard design practices for motorways using box type culverts. Culverts on the Project road ensure uninterrupted discharge of precipitations, water from ravines and water from drain channels. The Project road passes inhabited areas, arable lands, pastures and other rural territory. Thus box section underpasses shall be constructed to pass cattle, pedestrians and vehicles and ensure uninterrupted crossing of the Project road.

185. The following types of culverts will be constructed:

- Underpasses for rural roads, which are construction of cast in situ reinforced concrete structures of closed contours cross sections 6.0x4.5 m - 6 units for passing rural roads is envisaged in the design.
- Cattle passes, which ensure cattle cross the project road. Construction of cast in situ reinforced concrete structures of closed contours cross sections 4.0x2.5 m - 4 units is envisaged in the design.
- Culverts, for which cast in situ reinforced concrete culverts cross section 2.0x2.5 m 17 units, 4.0x2.5m - 2 units is envisaged in the design to provide water discharge from ravines and canals.
- 186. **Table B-4** indicates the type and number of culverts.

#	Chainage (m)
CUL 4.5.01-AT	50
CUL 4.5.01-TA	50
CUL 4.5.04-AT	190

Table B-4: F4 Culvert Requirements

#	Chainage (m)
CUL 4.5.04-TA	190
CUL 4.5.06-TA	620
CUL 4.5.08-AT	755
CUL 4.5.08-TA	760
CUL 4.5.06-AT	615
CUL 4.5.10-TA	4,639
CUL 4.5.10-AT	4,661
CUL 4.5.12-TA	5,021
CUL 4.5.12-AT	5,049
CUL 4.5.14-TA	5,391
CUL 4.5.14-AT	5,408
CUL 4.5.16-TA	8,333
CUL 4.5.16-AT	8,344
CUL 4.5.18-TA	8,683
CUL 4.5.18-AT	8,694
CUL 4.5.20-TA	9,923
CUL 4.5.20-AT	9,954
CUL 4.5.22-TA	10,172
CUL 4.5.22-AT	10,197
CUL 4.5.24-TA	10,534
CUL 4.5.24-AT	10,558
CUL 4.5.26-TA	10,794
CUL 4.5.26-AT	10,817
CUL 4.5.28-TA	11,223
CUL 4.5.28-AT	11,245
CUL 4.5.30-TA	11,567
CUL 4.5.30-AT	11,579
CUL 4.5.32-TA	12,183
CUL 4.5.32-AT	12,204
CUL 4.5.34-TA	12,428
CUL 4.5.34-AT	12,449
CUL 4.5.36-TA	12,489
CUL 4.5.36-AT	12,510
CUL 4.5.38-TA	12,975
CUL 4.5.38-AT	12,997
CUL 4.5.40-TA	13,236
CUL 4.5.40-AT	13,259
CUL 4.5.42-TA	13,405
CUL 4.5.42-AT	13,427
CUL 4.5.44-TA	13,568
CUL 4.5.44-AT	13,591
CUL 4.5.46-TA	13,818
CUL 4.5.46-AT	13,842
CUL 4.5.48-TA	13,955
CUL 4.5.48-AT	13,979
CUL 4.5.50-TA	14,188
CUL 4.5.50-AT	14,213
CUL 4.5.52-TA	14,349
CUL 4.5.52-AT	14,274

187. Eight underpasses will be constructed using reinforced concrete culverts. **Table B-5** below indicates their locations.

Table B-5: F4 Underpasses

#	Chainage (m)
UND 4.3.01-AT	10,293
UND 4.3.01-TA	10,269
UND 4.3.02-AT	12,770
UND 4.3.02-TA	12,749
UND 4.3.03-AT	13,222
UND 4.3.03-TA	13,200
UND 4.3.04-AT	13,636
UND 4.3.04-TA	13,614

B.11 Overpasses

188. One overpass will be constructed at km 11+854 with a length of 40 meters.

B.12 Construction Process

189. During the construction phase the following activities will be undertaken:

- Land Acquisition Under JICA Guidelines for Environmental and Social Considerations (April, 2010), the Employer must prepare the Land Acquisition and Resettlement Plan (the LARP) before dispatching the appraisal mission of JICA. Then, the Employer will implement the plan and acquire the land before the commencement of the construction works at any part of the site.
- Site Specific Environmental Management Plan (SSEMP) Ensure that the Site Specific EMP is submitted to the Engineer for review at least 10 days before taking possession of any work site. No access to the site will be allowed until the SSEMP is reviewed by the Engineer and approved by the Project Management Consultant.
- Site Clearing Works The Works include the following site clearing works within or adjacent to the RoW of the Project Road, in accordance with the Drawings or instructions of the Engineer:
 - Clearing and grubbing.
 - Removal and disposal of traffic signs, sign posts and their foundations.
 - Demolition, removal and disposal of existing bridges including foundations, abutments, piers, retaining walls, riverbank and waterway protection works.
 - Demolition, removal and disposal of existing culverts, inlet and outlet structures, headwalls, concrete drains, channel lining, and erosion protection works.
 - Removal of and any other natural or artificial objects within the RoW.
 - Removal and disposal of all vegetation and debris within the designated limits of the Right-of-Way.
- **Relocation of Existing Services** The Works include the relocation of all services affecting the construction of the Project Road within the Right-of-Way. The services include the following
 - water mains
 - overhead electric supply lines
 - gas pipelines
 - underground telephone cables
 - sewer mains
- Construction Activities

 The main construction phase aspects are described in detail below.

B.12.1 Bridges

190. The construction of the new bridges includes but is not limited to the following parts of the structures and associated works:

- Foundations.
- Substructure including bridge bearings.
- Superstructure, including construction of expansion and deformation joints and footpaths.
- Deck pavement including hydro isolation, drainage, hand railing, and conduits for services.
- Approach slabs.
- Slope treatments in front and around the abutments.
- Construction and maintenance of traffic detours.
- Scour and erosion protection of the waterway areas and river bank protection upstream and downstream of the bridge crossing, and removal of old foundations and substructure from the waterways.
- All necessary and incidental items required for a complete bridge.
- All new and widened bridges will be designed for the life expectancy of 100 years.
- Oil and grease interceptor tanks.

B.12.2 Tunnels

191. The actual development of the tunnel design follows the principles of ADECO RS method and is summarized in the following table.

Phase	ADECO RS		
Survey phase	Analysis means first of all researching the medium to be tunneled from a geological and geomechanical point of view, especially by taking into consideration its resistance and deformability.		
Diagnosis phase	And later forecasting by means of analytical and numeric instruments, what sort of stress-strain behavior will take place (Expected Deformation Response) when excavating (Categories A, B, C), in the hypothetical lack of stability operations.		
Therapy Phase	 The composition, in function of the foreseen behavior of the medium during excavation, of typical sections, defining the best type of stabilization operations for the expected operative context as well as phases, cadences, timing of implementation and any possible variability. Control of the Expected Deformation Response may come about by: Defining the type of pre-confinement actions or confinement actions that are necessary to manage and control the Expected Deformation Response of the medium to excavation; Choosing the type of stabilization operations from those available with today's technology, on the base of pre- confinement and confinement actions that each one is capable of guaranteeing; Sizing and verification, by means of mathematical models, of the operations chosen to reach the medium's desired behavior under excavation with the necessary safety coefficient; and Forecast, again using mathematical models, of the medium's stress-strain behavior under excavation when so stabilized. 		

Table	B-6 :	ADECO	Tunnelling	Method
IUNIO	D V .	ADEGO	rannoning	mounou

B.12.3 Culverts

192. Project works include the construction of culverts and underpasses, including inlet and outlet structures and associated works in accordance with the Specification. The scope of the cross drainage works includes:

- Complete replacement of existing culverts which are old, structurally deficient or undersized;
- Extension of existing culverts which are of adequate design and in good condition;
- Construction of new culverts at locations where no cross drainage structure existed before;
- Cleaning of existing culverts which are partially or completely silted;
- Miscellaneous repair of the existing culvert joints, headwalls, wing walls, and scour and erosion protection works; and
- Construction of new scour protection and channel lining works.

B.12.4 Other Drainage Structures

193. Surface runoff from the carriageway and all other pavements, and any cut and embankment slopes must be discharged through longitudinal drains designed for adequate cross section, bed slopes, invert levels and the outfalls. The Works include construction of the drainage system components in urban and rural areas according to the types, dimensions, classes and material requirements for this work.

B.12.5 Earthworks

194. The Works include the following types of earthworks necessary for the construction of the Project Road and all associated works:

- Removal of topsoil.
- Construction of embankments.
- Construction of subgrade.
- Excavation and removal of the existing pavement materials and the existing road embankment.
- Removal and replacement of unsuitable materials.
- Structural excavation.
- Excavation for the construction of side drainage and cross-drainage works.
- Excavation for the removal and relocation of the existing utilities.
- All backfilling necessary for the construction of bridges, retaining walls or other earth retaining structures, cross drainage structures and associated works, side drains and erosion protection work.
- Preparation of beddings and filters for all structural, cross drainage, side drains or pavement works.
- Excavation, filling or backfilling necessary for the execution of any other incidental works.

195. **Table B-7** indicates the approximate earthworks and pavement quantities for the Project Road.

Description	Unit	Quantity
Stripping of topsoil	M ³	132,420
Road bed excavation and excavation in cut	M ³	1,250,000
Embankment Construction for roads and associated works up to bridge pay lines	M ³	1,600,000
Subgrade Preparation	M ³	320,00
Preparation of the underlying granular pavement layer	M ³	100,000
Dismantling of existing concrete structures	M ³	2,500

Table B-7: Estimated Earthworks for Section F4

Description	Unit	Quantity
Removal and transportation of existing bituminous pavement	M ³	30,500
Structural excavation for culverts, headwalls & wingwalls and retaining walls	M ³	50,000
Granular backfill to culverts, headwalls, wingwalls and bedding for culverts	M ³	35,000

B.12.6 Pavement

196. Two different pavement structures will be used:

- Concrete pavement structure for the motorway and interchanges; and
- Asphalt pavement structure for all Slip Roads and all Minor Roads and bridges.

197. The following shall apply to the motorway, concrete pavement structure, construction category I:

- 28 cm Concrete;
- 30 cm Crushed Aggregate Course;
- 27 cm Granular Base Course;
- 85 cm Total Pavement Construction.

198. The following shall apply to slip roads and minor roads, asphalt pavement structure, construction category III:

- 4cm Asphalt Wearing Course;
- 4cm Asphalt Binding Course;
- 14 cm Asphalt Bearing Course;
- 58 cm Granular Base Course;
- 80 cm Total Pavement Construction.

199. For bridges, following the best practices all around the world and for durability reasons (total waterproofing and protection of the concrete slab), asphalt pavement is envisaged, precisely 11 cm of thickness.

200. Concrete pavements are already constructed on preceding sections of the highway. The pavement designs for the constructed sections were carried out in accordance to the German pavement design standard RStO 01.

201. The proposed pavement structure was designed according to "AASHTO, Guide for Design of Pavement Structures" and according to "RStO 01 the German Guideline for determination of Pavement Structures". Traffic load and other design parameters were evaluated for a 20 year design life cycle. At this stage of the project the pavement design and determination of the layer thicknesses aims at a constant pavement structure along the full length of the road which is suitable for the varying traffic loads.

B.12.7 Removal of Asphalt

202. The Contractor shall remove the existing bituminous pavement layers and stockpile this material at locations that will be specified by the RD and instructed by the Engineer. The asphalt will be re-used, where practical, for access roads and temporary roads, after which it will be re-used for shoulder material.

B.12.8 Construction Equipment

203. **Table B-8** provides indicative lists of the key equipment required in the construction phase (not including tunneling equipment).

No.	Equipment Type and Characteristics	Minimum Number required
1	Bulldozer (>245HP)	4
2	Excavator (>100HP)	12
3	Crushing and screening plant – mobile type at least 150 m3/h including rock material washing machinery	2
4	Concrete Paving Machinery width not less than 9.0 m for 2-layer concrete placing including film-forming machinery	2
5	Small Concrete Paving Machinery width not more than 5.0 m including film- forming machinery	1
6	Front Loader (>135HP)	15
7	Concrete batching plant (>150m3/hr)	2
8	Motor grader (>135HP)	10
9	Vibratory roller (> 13T)	8
10	Tipper truck (10T)	30
11	Tipper truck (16T)	30
12	Mobile concrete carriers (>25T)	25
13	Transit mixer (>6m3)	6

Table	B-8 :	Key	Equipment	Section F4
-------	--------------	-----	-----------	------------

B.13 Source of Materials

B.13.1 Borrow Material

204. Where practical cut will be balanced with fill. An assessment of the volumes of cut and fill are provided in **Section F.8.3** which discusses the management of spoil material. In addition, specific conditions are contained within this EIA for the correct siting and management of borrow pits.

B.13.2 Concrete Batching and Asphalt

205. Bitumen and bituminous products are not produced locally in Georgia and is mainly imported from Iran, Azerbaijan and Romania. Bituminous products, which are necessary for the project (production and construction) must be imported and comply with European standards.

206. Cement is produced locally by companies such as Saqcementi and Kartuli Cementi in Kaspi (approximately 80 km east of the Project area), other sources of cement may also be found closer to the site.

207. The Contractor will be responsible for ensuring the concrete batching facilities and asphalt plant comply with the conditions outlined in **Section F.8.5**. The Contractor will source concrete and asphalt from existing batching plants or from his own dedicated plant.

Section F.7.4 provides explicit conditions for operating batching plants and asphalt plants and the conditions for sourcing concrete and asphalt from existing plants.

B.13.3 Technical and Potable water

208. Approximately 200 m³ of technical water will be needed per day during the construction phase and around 15 m³ of potable water per day. Most technical water will be sourced from the rivers adjacent to the construction sites. Potable water will be sourced from existing water supply pipelines, or will be provided to camps in bottles. The final locations of the extraction points (for both technical and potable water) will require the approval of the Engineer and the RD prior to the start of extraction to ensure that over extraction of water resources does not happen. Potable water will also need to be tested regularly throughout the construction period to ensure it meets the drinking water standards of GoG.

B.14 Camps and Storage Areas

B.14.1 Construction Camps

209. Camp sites will be selected keeping in view the availability of an adequate area for establishing campsites, including parking areas for machinery, stores and workshops, access to communication and local markets, and an appropriate distance from sensitive areas in the vicinity. The final locations of the camps will be selected by the Contractor after the approval from the RD and the Engineer.

210. The area requirement for construction camps will depend upon the workforce deployed and the type and quantity of machinery mobilized. For example, the camps may include rock crushing plant and concrete batching facilities. In view of the area required, it will not be possible to locate campsites within the RoW and the contractors will have to acquire land on lease from private landowners. The construction camp will also have facilities for site offices, workshop and storage yard, and other related facilities including fuel storage.

211. The Contractor will provide the following basic facilities in the construction camps:

- Safe and reliable water supply.
- Hygienic sanitary facilities and sewerage system.
- Treatment facilities for sewerage of toilet and domestic wastes
- Storm water drainage facilities.
- Sickbay and first aid facilities.

212. Detailed criteria for siting of construction camps and establishment of facilities are given in **Section F.7.4**.

B.14.2 Storage Areas

213. Temporary storage areas will be required for certain activities, such as the storage of sand and gravels and construction equipment. These storage areas may range in size from anything between 50 m² to more than a hectare. The precise locations of these temporary facilities is not known at this stage, as such mitigation measures shall be prepared to ensure that these areas are sited in approved locations.

B.15 Road Safety

214. The following elements are provided for traffic control and security on road:

• Road signs and indicators;

- Fences;
- Signal posts;
- Traffic markings;
- Lighting;
- Traffic lights;
- U-turns;
- Ground for short time stops for vehicles;
- Sidewalks;
- Bus stops.

215. The main road safety benefits the project will deliver are the following:

- Reduced risk of vehicles leaving their lane to avoid potholes and surface deformations;
- Improved sight distances;
- Better separation between pedestrians and vehicles; and
- Better night driving conditions due to wider carriageway and improved pavement centerline markings.

216. Some of these advantages could be partially offset by the higher speeds that may lead to accidents, which will be possible after the road improvements.

B.16 Traffic Projections

217. Traffic forecasts for Dzirula and Argveta are presented below by **Figure B-22** and **Figure B-23**. The figures indicate that traffic volumes are set to more than double over the next 30 years between Dzirula and Argveta.

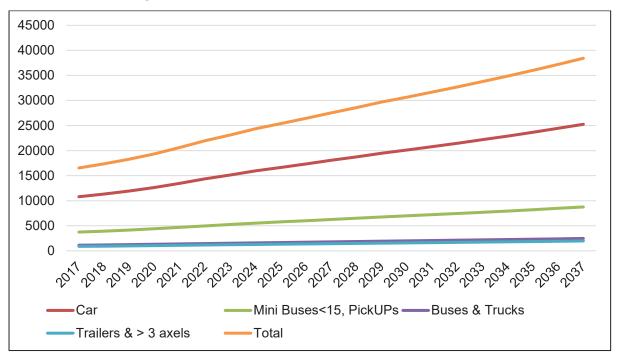
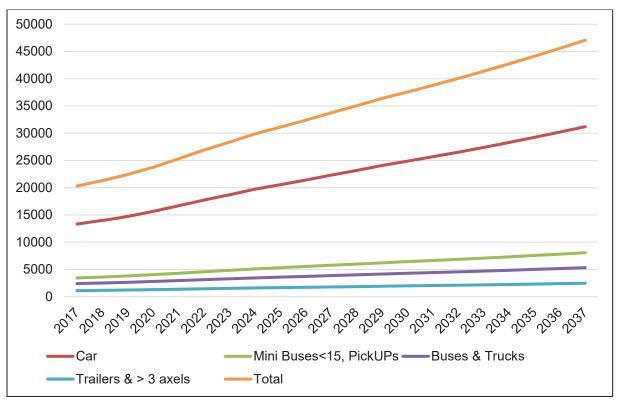



Figure B-22: Forecasted Traffic, Dzirula, 2017 - 2037

C. Alternatives

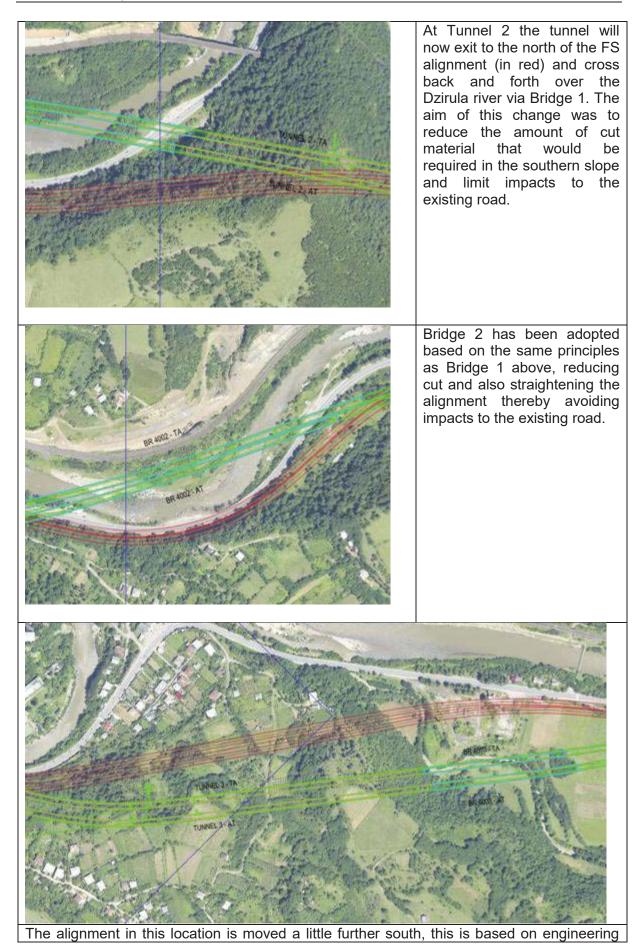
C.1 General

218. One of the objectives of an EIA is to investigate alternatives to the Project. In relation to a proposed activity "alternatives" means different ways of meeting the general purposes and requirements of the proposed activity. The following section provides an assessment of alternative corridors, alignments, transport modes and technologies, as well as the 'no action' alternative.

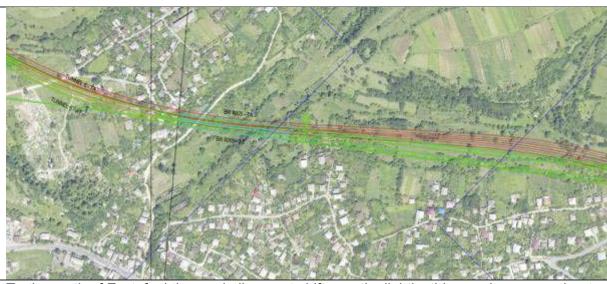
C.2 The No Action Alternative

219. The "No Action" Alternative in this instance is defined as a decision not to undertake the proposed construction of the Project Road. The "No Action" Alternative would result in the continued deterioration of the road, bridges and drainage structures along the RoW, thereby impeding the economic development of the Project Area and the Imereti region. All positive benefits would be foregone. The relatively minor, less than significant environmental impacts (such as noise and short-term air quality impacts due to maintenance activities) and inconveniences (such as traffic diversions) would be avoided in the short-run. In the long run, however, the steadily declining state of the roadway would severely hamper economic development in the area. In light of these considerations, the "No Action" Alternative is deemed to be neither prudent nor in the best interest of Georgia or those with an interest in, and attempting to assist restoration of, Georgia's well being.

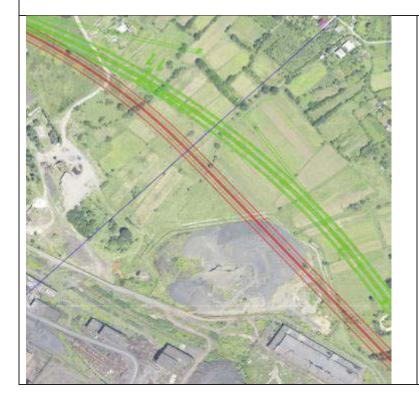
C.3 Alternative Road Corridors


220. Given the complex topography of the region and Georgia in general, there are no other feasible alternative corridors that would be able to compete with the existing corridor in terms of travel times. In addition the Project forms part of the overarching program to upgrade the E-60 motorway which includes many sections that have recently been upgraded, or are in the process of upgrading (or detailed design), including the sections of road joining the start and end points of the Project road.

C.4 Alternative Transport Modes


221. As noted above, the Project forms part of a program upgrading the E-60. The Khevi – Argveta section of the E-60 (including section F4) if one of the last remaining sections of the road requiring upgrading. Accordingly, the Project is focusing on the upgrading of the E-60 and will not consider any other transport mode as an alternative.

C.5 Alternative Alignments


222. During the Projects Feasibility Phase a number of alignments were considered that broadly follow the existing E-60 corridor. The result of the Feasibility Report was a draft final corridor which the detailed design would use as a basis for the final road alignment (horizontal and vertical). During the detailed design phase a number of factors were taken into account to determine the final alignment, they included the consideration of potential resettlement issues and social aspects such as access and noise. The following figures indicate where alternatives have been adopted in the final alignment.

requiremnets rather than any specific environmental or social aspect.

To the north of Zestafoni the road alignment shifts south slightly, this may have a moderate impact upon residential properties in terms of noise, but not in resettlement. However, the small settlement in the upper left hand side of the photo will now under passed by a tunnel (Tunnel 6), thereby reducing resettlement impacts in this area.

The section to the north of the Alloy works has been moved slightly to the north to avoid passing through a large slagheap located within the works boundary. This slagheap probably contains high levels of pollutants and as such moving around this area reduces the need for disposal of hazardous waste.

C.6 Alternative Pavement Types

223. Only one pavement type was considered for the motorway and interchanges; rigid concrete.² The rigid pavement structure is recommended for the following reasons:

² Asphalt pavement structure will however be used for all Slip Roads, bridges and all Minor Roads and bridges.

- Concrete pavements are already constructed on preceding sections of the E60 Highway. The pavement designs for the already constructed sections were carried out in accordance to the German pavement design standard RStO.
- The high traffic load over the design life with heavy truck traffic requires a high strength to prevent rutting. The concrete pavement has a flexural strength and is less dependent on variations in subgrade strength. Deformation in the subgrade is not transferred to the subsequent layers.
- Along the alignment extreme varying surface temperatures of the pavement are expected from hot summer temperature to freezing in winter. Also contraction and expansion of the concrete slabs have to be considered by expansion joints, the integrity of the concrete is not reduced. Asphalt pavements may become soft in summer leading to rutting and hard and brittle in winter.
- The concrete surface is not damaged by the unavoidable oil and grease leaking from passing vehicles. The life span of a concrete pavement is general higher compared to a flexible pavement and maintenance cost might be also lower as the initial construction costs could be higher.
- For the actual situation in Georgia with no local bitumen production which requires all bituminous products to be imported, the concrete production from local available sources (gravel and cement) seem to be in more than one respect advantageous.

D. Environmental Laws, Standards and Regulations

D.1 General

224. This section of the EIA provides a summary of:

- Environmental Legislation of Georgia;
- The Administrative Framework;
- Environmental Regulations and Standards of Georgia;
- National Technical Regulations Relevant to the Project;
- Environmental Permitting Procedure;
- Permit and Licenses Required for Off-site Works During Construction;
- International Conventions Relevant to the Project Ratified by Georgia;
- An overview of the ADB safeguard policies.

D.2 General

225. Georgian legislation comprises the Constitution, environmental laws, international agreements, subordinate legislation, normative acts, presidential orders and governmental decrees, ministerial orders, instructions and regulations. Along with the national regulations, Georgia is signatory to a number of international conventions, including those related to environmental protection.

226. The Ministry of Environmental and Natural Resources Protection (MoENRP) of the Government of Georgia is responsible for regulating the activities that affect the natural environment.

D.3 Environmental Legislation of Georgia

227. A list of Georgia's environmental legislation as it pertains to the proposed project is given in **Table D-1**.

Year	Law / Regulation	Last revision	Code
1994	Law on soil protection	16/07/2015	370.010.000.05.001.000.080
1995	Constitution of Georgia	03/05/2017	010.010.000.01.001.000.116
1996	Law on subsoil	26/12/2014	380.000.000.05.001.000.140
1996	Law on environmental protection	01/06.2017	360.000.000.05.001.000.184
1996	On the system of protected areas	17/02/2016	360.050.000.05.001.000.127
1997	Law on wildlife	01/06.2017	410.000.000.05.001.000.186
1997	Law on water	26/12/2014	400.000.000.05.001.000.253
1999	Law on protection of atmospheric air	01/06.2017	420.000.000.05.001.000.595
1999	Forestry code of Georgia	01/06.2017	390.000.000.05.001.000.599
1999	Law on compensation of damage from	06/06/2003	040.160.050.05.001.000.671
	hazardous substances		
2000	Law on regulation and engineering protection	05/05/2011	400.010.010.05.001.000.830
	of the sea and river banks		
2003	Law on Red List and Red Book of Georgia	01/06.2017	360.060.000.05.001.001.297
2005	Law on licences and permits	29/06/2017	300.310.000.05.001.001.914
2003	Law of Georgia on conservation of soil and	19/04/2013	370.010.000.05.001.001.274
	restoration-amelioration of soil fertility		
2007	Law on environmental impact permit	01/06/2016	360.160.000.05.001.003.078

Table D-1: List of environmental laws and regulations relevant to the project

2007	Law on ecological expertise	01/06.2017	360.130.000.05.001.003.079
2014	Waste code	01/06.2017	360160000.05.001.017608
2017	Environmental Assessment Code	01/06.2017	360160000.05.001.018492

228. Brief summaries of the listed documents are given below:

229. **Constitution of Georgia** states the basic rights of people to live in a healthy environment and obligation to protect it. According to constitution everyone has the right to obtain complete, objective, and timely information about environmental conditions (Article 37 Part 3). It assures that the state shall protect environment and foster sustainable development (Article 37 Part 4). It establishes a legal framework that guarantees public access to information about the condition of the environment (Article 37 Part 5, Article 41 Part 1).

230. Law on Environmental Impact Permit determines the list of the activities and projects subject to the ecological examination as well as provides the legal basis for public participation in the process of issuing an environmental impact permit. The mentioned permit is obtained through Ecological Examination. Below we provide very brief description of EIA process as defined by the aforementioned laws. The law will be substituted with Environmental Assessment Code from January 1, 2018.

231. **Environmental Assessment Code (EAC).** The Code establishes a legal basis for regulating issues related to projects and strategic documents, which implementation may have significant impact on the environment, human life and health. It regulates the procedures related to environmental impact assessment, strategic environmental assessment, public participation in decision-making, trans boundary environmental impact assessment; defines rights and obligations of the developer, the planning authority, the public and the competent authorities in the course of decision-making envisaged by this Code; describes procedures of issuing Environmental Decision; exemption rules. The law includes two annexes. Annex I lists activities subject to EIA, Annex II - lists activities/projects that require screening procedure. Screening is responsibility of the Ministry. Under the EAC construction of international and interstate roads; construction and operation of tunnels and/or bridges on the international and interstate roads belongs to activities subject to EIA. According to the document, the main stages of environmental impact assessment include:

- Scoping procedure;
- Preparation of the EIA Report by the developer or the consultant;
- Ensuring public participation;
- Examination of the information presented in the EIA Report and any supplementary information provided by the developer to the Ministry as well as assessment of the information received through the public participation and consultation processes;
- Expertise procedure;
- Implementation of transboundary environmental impact assessment procedure (weather appropriate);
- Issuance of Environmental Decision or the decision on refusal to implement the project by the Minister.

232. **Law on Licenses and Permits** regulates legally organized activities posing certain threats to human life/health, and addresses specific state/public interests, including usage of resources, regulates activities requiring licenses/permits, determines types of licenses/permits required, and defines the procedures for issuing, revising and cancelling of licenses and permits. The law is generic law and refers to the law on Environment Impact Permit for details of environmental permitting procedures.

233. Law on Ecological Expertise. The expertise is conducted by the Ministry of Environment and Natural Resources Protection, for activities requiring environmental impact permits. The list of such activities is given in the Law of Georgia on Environmental Impact Permits. An environmental impact permit is issued only in the event of a positive conclusion by ecological expertise. Conclusion of ecological expertise is an integral part of an environmental impact or construction permit (in case activity requires construction permit). Its conditions are mandatory for permit holders.

Law on Environmental Protection regulates the legal relationship between the 234. bodies of the state authority and the physical persons or legal entities (without distinctionlegal form) in the field of environmental protection and in the use of nature on all Georgia's territory including its territorial waters, airspace, continental shelf and special economic zone. The law defines the principles and norms of legal relations, rights and obligations and responsibilities, awareness raising, education and scientific research in the field of environment, key players and principles of environmental management; describes economical mechanisms and levers; ecological insurance; basics of environmental audit; environmental requirements during privatization; justifies needs of environmental standards and limits (air, water, soil, noise, vibration, fields, radiation) and ecological requirements for production, transportation and storage of goods and food products; ecological requirements applicable to waste; states necessity of environmental impact assessment (with reference to the law on Environmental Impact Permit) and related issues (strategic environmental protection and transboundary environment assessment); defines general principles of environmental protection; considers different aspects on protection of ecosystems, protected areas, issues of global and regional management, protection of ozone layer, biodiversity, protection of Black Sea and international cooperation aspects. As stated in the law, in order to protect the climate against the global changes, the subject of the business activity is obliged to observe the limits to green-house gas emissions as well as to take measures for mitigating this emission. The emission of the green-house gases is regulated on the basis of integrated control of pollution of environment (Article 51). Besides, the subject of the business activity is obliged to reduce or stop production and use of such chemicals, which are likely to have effects on the ozone, layer of the earth and cause depletion of it (Article 52).

235. The status, of natural resources, study and usage of mineral resources is regulated by the **Law of Georgia on Subsoil**. The law describes rights and obligations of the users (Including re-cultivation after expiration of the license term), duration of the licenses (for energy resources – up to 45 years; for metal ores – up to 40 years; up to 30 years for construction materials and other non-ore mineral resources; ground water and gas (except for the natural gas) – up to 25 years); protection of natural resources and safety requirements; termination of license; state supervision and control over the use of mineral resources; general requirements during mining. With regards to the issues related to the licenses for use of the natural resources the law gives reference to the law on Licenses and Permits, Law on Oil and Gas and related regulations. The law states the need for protection of environment and OHS during operation (mining), including requirements for waste (including waste water) management. According to the law extraction and treatment of mineral resources from deposits both of natural and technogenic origin (soil disposal areas) are subject to state supervision and control.

236. The **Waste Management Code** (2015) provides the legal conditions for implementation of measures aiming at prevention of generation of waste and increased reuse, environmentally-sound treatment of waste (including recycling and extraction of secondary raw materials, energy recovery from waste, as well as safe disposal). The following summarizes the key points of the code.

Article 7 - General waste management requirements

- Waste, depending on its type, properties and composition, shall be collected, transported and treated in a manner not impeding its further recovery.
- Waste shall be collected, transported and treated in a manner which excludes, to the maximum extent possible, pollution of the environment and risks for human health.
- In case of waste pollution caused by waste transport activities, the waste transporter shall be responsible for taking clean up measures.
- The producer and holder of waste is obliged to treat their waste
- on their own or hand it over for collection, transport and treatment to persons entitled to carry out such operations in accordance with this Law and legislation of Georgia.
- Where waste has been submitted for recovery or disposal, the original producer's and/or holder's responsibility shall remain until recovery or disposal is completed.
- Persons who collect and transport waste shall hand it over for treatment to appropriate facilities, holding the relevant permit or registration.
- The burning of waste outside permitted incinerators shall be prohibited.

Article 14 - Company waste management plan

• Legal and natural persons that produce more than 200 tonnes of non-hazardous waste or 1000 tonnes of inert waste or any amount of hazardous waste annually, shall prepare a company waste management plan.

Article 15 – Environmental Manager

• The persons under Article 14 of this Law shall nominate a suitable person as a company environmental manager.

Article 17 - General obligations for hazardous waste management

- The production, collection and transportation of hazardous waste, as well as its storage and treatment, shall be carried out in conditions providing protection for the environment and human health. It shall be prohibited to
 - a) discard hazardous waste outside waste collection containers;

b) discharge it into the sewerage systems or underground or surface waters, including the sea;

c) burn it outside waste incinerators permitted for that purpose;

d) treat it outside waste treatment facilities permitted to treat such type of waste

Article 18 - Special obligations for hazardous waste management

- Waste producers that produce more than 2 tons of hazardous waste per year shall
 - a) create and implement a suitable separation and collection system for such waste;
 - b) designate an environmental manager, pursuant to Article 15 of this Law, responsible to make arrangements for the safe management of said waste;
 - c) make arrangements for briefing and training for staff handling hazardous waste.
- Until the exact content of waste is unknown, the waste shall be regarded as hazardous.
- Hazardous waste for which no appropriate treatment techniques and/or technologies are available in accordance with the requirements of this Law within the territory of Georgia shall be exported for treatment. Until the export is carried out, the waste shall be safely stored at temporary storage facilities.
- The Ministry may exceptionally once allow for an extended storage period of up to one year if this is justified and does not harm human health or the environment.
- Hazardous waste may only be collected and transported by a natural or legal person after its registration pursuant to this Law.

Article 29 - Obligations for keeping records and reporting on waste

• Records on waste shall be kept and waste reports shall be submitted to the Ministry by

natural and legal persons:

a) dealing professionally with collection, transport and/or treatment of waste;

b) which produced more than more than 2 tones non-hazardous (excluding municipal waste) waste or any amount of hazardous waste per year.

237. Law on Protection of Atmospheric Air. The law regulates protection of atmospheric air from man-caused impact. Pollution of atmospheric air is emission of hazardous substances originating from activities which are able to have negative impact on human health and environment. Four types of pollution are considered (Part II, Chapter IV, Article II.2): Pollution of environment with hazardous matter, Radiation pollution of atmospheric air. Pollution with microorganisms and biologically active matter of microbial origin, Noise, vibration, electromagnetic fields and other physical impact. Maximum permitted limits for concentration of hazardous substances into the atmospheric air are defined for each contaminants and represent maximum concentration of hazardous pollutants, in averaged time span, recurring action of which has not have negative impact on human health and environment. Maximum permitted levels of emission of hazardous matters into the atmospheric air are defined with allowance of prospective of development of the enterprise, physical. geographical and climatic conditions, dispersion of emitted substances, background concentration of pollutants emitted from other neighboring enterprises, taking into account inter-location of existing or planned dwellings, sanatoria and recreation zones. In compliance with the law (Clause 28), in order to restrict pollution from the stationary sources3 of hazardous emissions the limits of emissions are to be set. The limit of pollution from the stationary source of emission is permitted quantity (mass) of emitted hazardous matters (Clause 29). Maximum annual emission level means the maximum permitted limit of discharge. This is annual permitted quantity of emission predetermined by technology in conditions of standard permitted capacity of discharge. Annual maximum capacity is defined for each hazardous substance and is calculated so that for each stationary source of emission cumulative emission from all registered sources of discharge does not exceed relevant maximum permitted value. Discharge of hazardous emissions from the stationary sources of emission without approved limits of discharge is forbidden. The standards of emissions (Clause 30) are to be worked out by the enterprise itself. According to the law (Clause 38) the enterprise is responsible for conducting selfmonitoring which includes measurement of emission (evaluation), recording/registration and accounting. Emission which has not been recorded in self-monitoring record is considered illegal. As mentioned in the Clause 51 results of the monitoring and information on pollution of the air with hazardous substances is transparent and accessible for the public.

238. Law on Water regulates water use, defines rights and obligations of water users, sets out the types of licenses for the use of water, the rules and conditions of their issuance, considers conditions of suspension, withdrawal and deprivation of license, regulates water flows. The law states liability of all natural and legal persons to prevent pollution of catchment basins, water reservoirs, snow and ice covers, glaciers, permanent snow cover with industrial, household and other wastes and emissions which may cause deterioration of the underground water quality; prohibits piling of industrial and household wastes near the public water headwork's and in their sanitation zones, bans construction of facilities and implementation of any other activity which may cause water pollution; sets requirements for forest use within water protection zones. The state management of water protection and use is exercised through accounting, monitoring, licensing, control and supervision.

1. State monitoring of water is implemented by the Legal Entity under Public Law - the National Environmental Agency under the Ministry of Environment and Natural

³ Stationary source of pollution of the atmospheric air is stationary device or construction with a special emission unit. Any stationary device or construction which, proceeded from its technological peculiarities, is not fitted with sputtering device is also considered as a stationary source of emission.

Resources Protection. Bv virtue of the law when locating/designing/constructing/commissioning of a new or reconstructed enterprise, or other facility, as well as in introducing of new technological process capable to affect the state of water, the rational water use is to be secured. At the same time, attention is to be paid to the measures ensuring due accounting of water abstracted from and returned to water bodies; protection of water from contamination, pollution-and depletion; avoidance of the unfavorable water impact; restriction of land flooding up to minimum necessary level, protection of land from silting, swamping or drying up; as well as environmental protection and landscape preservation.

- 2. Under the law required is purification, up to the fixed standard, of the waste water discharged in a water body. In order to protect the quality of water resources, the law requests creation of sanitary protection zone that consists of three belts, each having a special regime. The procedure fixing the water quality standards, the maximum permissible rates of emission of harmful substances (including microorganisms) into ambience, the water abstraction quotas and the temporary rates (limits) of emission of harmful substances (including microorganisms) into ambience, the water abstraction guitas and the temporary rates (limits) of emission of harmful substances (including microorganisms) into water is defined by the Law of Georgia on the Environmental Protection.
- 3. Georgian legislation may provide liability for other violations of law in the water protection and use sphere. Water users shall compensate for damages caused by violation of the law on Water in the amount and under procedure established by legislation of Georgia. Under the Article 17 (Protection of natural resources of the Black Sea) anadromous fish species (fish species seasonally migrating upstream of a river against the current) within the rivers of Georgia shall be protected by creation of conditions necessary for their reproduction, through conservation of the habitat, determination of procedures for regulating the fishing industry, determination of a total permissible amount of catching these species within the territorial waters, and within and outside special economic zones of Georgia, also through implementation of other measures defined by the legislation of Georgia. Article 20 (River water protection zone) defines protection zone of a river shall be its adjacent territory, where a special regime is established to protect water resources from pollution, littering, fouling, and depletion. This zone may include its dry bed, adjacent terraces, natural elevated and steep riversides, as well as gullies directly adjacent to riversides. 3. The width of a river water protection zone shall be measured in meters from the edge of a riverbed to both sides under the following procedure:
 - 10 meters in the case of a river up to 25 kilometers long,
 - 20 meters in the case of a river up to 50 kilometers long,
 - 30 meters in the case of a river up to 75 kilometers long,
 - 50 meters in the case of a river over 75 kilometers long.
- 4. Within this zone, prohibited is to: a) construct, expand or reconstruct functioning enterprises, except for cases directly determined by law; b) spray, by air atomisation, perennial plants, sown crops and forest lands with toxic chemicals; c) keep, collect or place toxic chemicals and mineral fertilizers, as well as any other wastes as defined in the legislation of Georgia. It is requested that hydraulic structures located within a water protection zone shall be normally equipped with appropriate technical facilities to completely exclude the possibility of river pollution and littering.

239. **Law on Wildlife.** The law regulates wildlife protection and use including hunting and fishing. The main goal of the law is to ensure protection and restoration of wildlife, its habitats, preservation and sustainability of species diversity and genetic resources, creation of conditions for sustainable development, taking into account the interests of present and future generation; legal ensuring of wildlife protection (including in-situ and ex-situ

conservation, translocation and reproduction of wildlife) and state-based provision of use of wildlife objects. In addition to this law, Georgian legislation on the wildlife is based on the Constitution of Georgia, Georgia's international agreements and treaties, laws on Environmental Protection and on the System of Protected Areas, law of Georgia on Wildlife and law of Georgia on the "Red List" and "Red Book". It is one of the main goals of the Environmental Protection Law to support the preservation of biodiversity of the country, the preservation of rare, endemic and endangered species, the protection of the marine environment, and the maintenance of the ecological balance (Art. 3.1 (d)). The Law contains regulations on both wild animals and plants which are threatened by extinction and those which are not. Two main legal acts regulating the issues of species protection in Georgia.

240. **Law on Red List and Red Book** which gives the legal definitions of Red List and Red Book (relevant recommendations and methodological issues) of endangered species of Georgia. The Red List structure was also legally defined, as well as the relevant procedures for including species in the Red List, procedures for revising, and updating of it. The Law also regulates issues related to planning and financial matters connected with the protection, taking of, rehabilitation and conservation of endangered species. The Red List of Georgia was approved by Order of President of Georgia No. 303 (2006), later - by the Resolution of the Georgian Government No. 190, dated 20-Feb-14. The law defines special cases when removal of individuals of the Georgian Red List species from their habitats is allowed. Decisions are made by the Government of Georgia.

241. **Forestry Code** regulates relations and state policy in the area of forestry management, use and protection. The code specifies all activities, which may be carried out in Forestry Fund. It allows only those activities, which are related to forest resource protection or use such as timber logging, collection of non-timber resources, use of area for agriculture or recreation, establishment of hunting farms, etc. State forestry fund may be used for a special purpose in urgent cases. Decisions are made by the Government of Georgia.

242. **Law on Soil Protection.** The law provides the policy requirements and principles of the protection and preservation of fertility soil resources against negative impacts. Soil protection is the state problem since correct and rational use of all types of soil, including barren soil, saline soils, swamped soil, alkali soil and aqueous soil are the main reserve of dynamic development of agriculture and of the national economy as a whole. The purpose of the present Law is to establish the rights and the duties of landholders, landowners and the state in the field of soil protect. The law defines soil protection measures and methods and prohibits certain activities, e.g. use of fertile soil for non-agricultural purposes; implementation of non-agricultural activity without topsoil removal and conservation; any activity, which results in deterioration of soil properties, etc. In addition to this law soil protection issues are regulated by order #2-277 (25.11.2005) of the Minister of Agriculture on approving Recommendations for Complex Measures for Soil Protection from the Erosion.

243. Law of on Conservation of Soil and Restoration-Amelioration of Soil Fertility is to ensure conservation and improvement of soil in the territory of Georgia, define the legal principles, measures, limitations and prohibitions to that end; soil conservation and fertility restoration improvement measures. It prohibits unregulated grazing, removal of windbreaks, application of non-registered fertilizers or other substances, soil contamination and any activity, which results in deterioration of soil properties and facilitates desertification, swamping, salinization, etc. Businesses that use soil or conduct activities upon soil that have the potential to negatively impact soil conservation are required to follow the Law and related normative documents and regulations, including Order #113 (27.05.2005) of the Minister of Environment and Natural Resources' Protection on affirming regulation on "Removal, Storage, Use and Re-cultivation of the Fertile Soil Layer" and 2) Resolution of the GoG #424

(31.12.2013) on affirming technical regulations on "Removal, Storage, Use and Recultivation of the Fertile Soil Layer". These documents consider issues of land resources protection and rational use and issues related to removal, storage, use and re-cultivation of the fertile soil layer during different activates. According to the regulation, restoration of degraded soil fertility must be implemented using re-cultivation (technical and biological) methods.

244. **Law on System of Protected Areas**. Forms a legal basis for planning, establishment and maintenance and assignment of categories of protected areas, described funding issues for each category. It specifies ownership forms of land and other natural resources in protected areas, allowed and prohibited activities.

245. Law on Regulation and Engineering Protection of Seacoasts and Riverbanks of **Georgia** provides general principles and requirements for protection of coastal areas and riverbanks from negative environmental impacts.

246. Law on Compensation for Damage Caused By Hazardous Substances Includes principles and procedures for compensating the negative impacts caused by discharge of hazardous substances into environment.

247. Laws and regulations related to social aspects and land ownership applicable to the project are presented in **Table D-2**.

Year	Law / Regulation	Last	Code
		revision	
1996	Law on agricultural land ownership	16/06/2017	370.030.000.05.001.000.132
1997	Civil code of Georgia	22/06/2016	040.000.000.05.001.000.223
1997	Law on compensation of land substitute costs and damages due to allocating agricultural land for non-agricultural purposes	25/12/2014	370.020.000.05.001.000.244
1999	Law on rules for expropriation of property for public needs	06/09/2013	020.060.040.05.001.000.670
2007	Law on cultural heritage	25/09/2013	450.030.000.05.001.002.815
2007	Law on public health	21/06/2017	470.000.000.05.001.002.920
2010	Law on state property	03/06/2016	040.110.030.05.01.004.174
2010	Labour Code	12/06/2013	27000000.04.001.016012

Table D-2: List of social and land ownership related laws relevant to the project

248. Brief summaries of the listed documents are given below:

249. **Civil Code** regulates contractual relations, describes the rights and responsibilities of natural and legal persons, defines the penalties in the case of violations of the requirements set out in the document. The Civil Code differentiates between movable and immovable property and provides rules for acquiring title over property, as well as any proprietary or obligatory rights thereto. This piece of legislation must be taken into account when entering into contracts in Georgia.

250. **Labour Code** regulates employment relations, unless such relations are otherwise regulated by international treaties that have been implemented in Georgia. Employers are obliged to comply with requirements and clauses of the document for the purpose of ensuring that the rights of employees are protected.

251. **Law on Public Health** regulates legal relations for ensuring a safe environment for human health. It indicates quality norms of for air, soil and water pollution and restrictions

related to ionized radiation, noise and vibration. The limits must be complied with. Section 7 of the law is dedicated to safety of technological processes.

252. Law on Compensation of Land Substitute Costs and Damages due to Allocating Agricultural Land for Non-agricultural Purposes defines compensation amounts, required at the time of allocation, use or disposal of agricultural land parcel for non-agricultural purpose; the payment procedure and the procedure for changing the agricultural land category, including payment of losses to landowners or land users, as a result of restricting their rights or reducing the quality of their land.

253. **Law on agricultural land ownership.** Objective of the law is to ensure improvement of the structure of agricultural land based on rational use of resources, avoidance of splitting and unsustainable use of the land plots. The law defined the rules for acquisition and selling the land, participation of the state in agricultural land related relations. The law deals with land ownership issues, restrictions of land alienation in case of co-ownership, sets priority of the state in buying out the agricultural land plots.

254. **Law on rules for expropriation of property for public needs** outlines respective procedures and conditions for expropriation of private property as well as procedures for compensation payment for expropriated property or the transfer of other property with the same market value.

255. **Law on State Property** regulates relationships on state property management and transfer for use by others, defines special requirements and procedures for transfers. The Ministry of Economy and Sustainable Development is the state authority in charge of the property.

256. **Law on cultural heritage** sets out procedures for protection of cultural heritage and permitting arrangements for archaeological investigations.

D.4 Administrative Framework

257. **Ministry of Environment and Natural Resources Protection (MoENRP)** - The Ministry of Environment and Natural Resources Protection is responsible for all environmental protection issues and natural resources. The responsibilities of the Ministry as the competent authority are: a) to intermit, limit, or stop any activity having or likely to have adverse impact on the environment, b)to issue a series of licenses and permits (including for environmental impact), c) to control the execution of mitigation measures by the developer, d)to receive free and unrestricted information from the developer about the utilization of natural resources, monitoring systems, waste management and explanations from authorities concerning the Project. Connected with projects of the actions presented to ecological examination, department of the mentioned ministry of ecological examination organizes discussion of an estimation of influence on environment and prepares the documentation (the project of the order of the minister) to let out the permission to influence to environment.

258. **Ministry of Economy and Sustainable Development (MoESD)** - MoESD is responsible for carrying out the review of technical documentation (including conclusion of independent experts) and issuing Permits on Construction for projects, as well as for supervision over constructing activities and for arranging Acceptance Commission after completion of construction. State supervision of construction and compliance monitoring is provided by the Main Architecture and Construction Inspection (MACI), which is operating under the Ministry of Economy and Sustainable Development of Georgia.

259. The Roads Department (RD) - The Roads Department of the Ministry of Regional

Development and Infrastructure (RD) is responsible for elaboration of policy and strategic plans related to developing motor roads, management of road and traffic related issues and construction, rehabilitation, reconstruction and maintenance of the roads of public use of international and national significance, utilizing funds from the state budget, lawns, grants and other financial sources. Thus, the RD is responsible for the procurement of design and EIA studies, as well as works on construction and rehabilitation of roads and is responsible for ensuring compliance with the Georgian legislation and environmental and social requirements of the relevant donor organizations. Control of implementation of the Environmental Management Plan (EMP) is direct responsibility of the Roads Department. Within the RD there is Environmental Division dealing with the environmental issues. This division is supposed to review the EIAs and EMPs related to the Roads Department projects and perform monitoring of compliance of the contractor's performance with the approved EMPs, EIAs, environmental standards and other environmental commitments of the contractor.

260. **The Ministry of Culture, Monument Protection and Sports** - responsible on supervision of the construction activities in order to protect archaeological heritage. In case if construction is to be carried out in a historic sites or zones of cultural heritage, consent of the Ministry of Culture, Monument Protection and Sport is also required for issuing construction permit.

261. The "National Service for the Foodstuffs Safety, Veterinary and Plant **Protection**" of the Ministry of the Agriculture - responsible for implementation of complex sanitary protection measures in case of identification burial sites during earthworks. Information about suspicious burial sites should be delivered to the "National Service for the Foodstuffs Safety, Veterinary and Plant Protection" of the Ministry of the Agriculture by the Construction Contactor (field environmental officer) and RD field officer.

D.5 Environmental Regulations and Standards

262. Georgia has a large set of specific standards that refer to emission, effluent, and noise standards, as well as standard to handle and dispose specific wastes ranging from sewage to hazardous wastes. The following summarizes these laws and standards.

D.5.1 Ambient Air Quality Standards

263. Maximum permissible concentrations (MPC) for **air** born pollutants are set by the hygienic standards on Maximum Permissible Concentrations of Air Born Pollutants for Settlements (HN 2.1.6. 002-01), see **Table D-3**. This project will also ensure compliance with IFC guideline values (not interim targets) as these values are, in some instances, more stringent than the national standards (see **Table D-4**).

Parameter	Maximum Permissible Concentration (MAC) for Air Quality			
	Averaging Period Period	Limit (mg/m ³)		
Nitrogen Dioxide	30 minutes	0.2		
(NO ₂)	24 Hours	0.04		
Sulphur Dioxide	30 minutes	0.5		
(SO ₂)	24 Hours	0.05		
Carbon Monoxide	30 minutes	5.0		
(CO)	24 Hours	3.0		
Total Suspended	24 Hours	0.15		
Particulates (TSP) / Dust	30 minutes	0.5		

 Table D-3: Georgian Standards for Ambient Air Quality

Parameter	Averaging Period	Guideline Value (µg/m ³)
SO ₂	24 hour	20
	10 minute	500
NO ₂	1 year	40
	1 Hour	200
PM10	1 year	20
	24 hour	50
PM2.5	1 year	10
	24 hour	25
Ozone	8-hour daily maximum	100

Table D-4: IFC Ambient Air Quality Guidelines

D.5.2. Surface Water Quality Standards

264. The values of Maximum Admissible Concentrations of the harmful substances in surface are provided in the Environmental Quality Norms approved by the Order #297N (16.08.2001) of the Ministry of Labour, Health and Social Protection (as amended by the Order No 38/n of the same Ministry of 24.02.2003). The admissible level of pollutants in surface water is given in **Table D-5**. All effluents shall comply with the Georgian National Standards. However certain parameters are not specified in the national standards for these IFC Guidelines are being used as shown in the Table.

Table D 5: Applicable	Standarda f	For Surfage	Water Quality	
Table D-5: Applicable	Stanuarus i	or Surface		

Parameter	Units	Maximum Permissible concentration
рН		6.5-8.5
Sodium, Na	mg/l	200
Chloride	mg/l	350
Cyanide (total)	mg/l	0,17
Boron	mg/l	0.53
Chemical oxygen demand, COD	mg/l	30
Biological oxygen demand, BOD	mg/l	6
Total petroleum hydrocarbons	mg/l	0.3
Arsenic, As	mg/l	0.053
Chromium, Cr ⁶⁺	mg/l	0.05
Copper, Cu	mg/l	1.03
Mercury, Hg	mg/l	0.00053
Nickel, Ni	mg/l	0.13
Lead, Pb	mg/l	0.03
Selenium, Se	mg/l	0.013
Zinc, Zn	mg/l	1.03
Phenols (total)	mg/l	0.001
Benzene	mg/l	0.5
Toluene	mg/l	0.5
Ethylbenzene	mg/l	0.01
Benzo(a)pyrene	mg/l	0.000005

265. Quality requirements depend on category of water body (ref. Technical regulations of protection of surface water from pollution, approved by decree #425 of the government of

Georgia, 31/12/2013). The categories are: a) household water use, b) domestic water use and c) fisheries. The latter, in its turn, splits in highest, first and second categories.

	Water use category				
	Household	Domestic water			
	water use	use	Highest and first	Second	
	Increase not higher	that listed below is a			
Suspended	0.25mg/l	0.75 mg/l	0.25mg/l	0.75 mg/l	
solids	For rivers with natu is allowed	ral content of suspe	nded solids 30mg/l, a	around 5% increase	
	0.2mm/sec discharg containing suspend prohibited.	ge in water reservoir ded particles with	particles with dep rs is not allowed. Dis deposition rate ab	scharge of effluents ove 0.4mm/sec is	
Floating matter			ucts, fats must not be		
Colour	Must not be visible i		Water must not have	e unusual colour	
	20cm	10cm	-		
Odour, taste	Water must not hat of higher than 1 unit		Water must not res and taste in fish	ult in unusual odour	
	After chlorination of other treatment	Without treatment	-		
Temperature	After discharge of waste water, temperature in water reservoir must not exceed by more than 5% compared to the natural value			nd (<i>Acipenseridae,</i> aximum allowable ummer and winter spectively, for other	
рН		Must be in 6.	5-8.5 interval		
Water mineralisation	<1000mg/l, Incl. chlorides – 350mg/l; sulphates - 500mg/l	To comply with requirement given in section related to taste (see above)	In accordance with taxation		
Dissolved	Must not be lower th	nan			
oxygen	4mg/l	4mg/l	6mg/l	6mg/l	
Biological	At 20C must not exc	ceed			
oxygen demand	3mg/l	6mg/l	3mg/l	6mg/l	
Chemical	Must not exceed				
oxygen demand	15 mg/l	30 mg/l	-	-	
Chemical substances	Must not exceed maximum permissible limits				
Pathogens	Must be free for pathogens, including viable helmint eggs, tenia oncosperes and viable cysts of pathogen organisms				
Toxicity	-	At the point of discharge and contract of the river toxic impact municipalities of the river toxic impact municipalitie			

Table D-6: Water quality requirements by water use category

D.5.3 Groundwater Quality Standards

266. Groundwater quality standards are not set under Georgian law. Drinking water quality standards are commonly used instead as assessment criteria for groundwater. Quality of drinking water is determined by the Technical Regulations for Drinking Water (approved by order №58 of the government of Georgia, (15.01.2014).

Parameter	Units	Value
Odour	Unit	2
Taste	Unit	2
Colour	Grad	15
Turbidity	Turbidity units (formazine) or mg/l	3.5 or 2
	(kaolin)	
Metals and Miscellaneous		
Boron, B	mg/kg	0.5
Arsenic, As	mg/kg	0.01
Cadmium, Cd	mg/kg	0.003
Copper, Cu	mg/kg	2
Mercury, Hg	mg/kg	0.006
Nickel, Ni	mg/kg	0.07
Lead, Pb	mg/kg	0.01
Selenium, Se	mg/kg	0.01
Zinc, Zn	mg/kg	3
Total Petroleum	mg/kg	0.1
Hydrocarbons, TPH		0.1
Cyanide	mg/kg	0.07
Sulphate	mg/kg	250
Chloride	mg/kg	250
рН	pH value	6-9
Sodium, Na	mg/kg	200
Microbiological characterist	ics	
Thermotolerant coliforms	Bacteria in 100cm ³	not allowed
Tota; coliforms	Bacteria in 100cm ³	not allowed
Mesophylic aerobes and	Colony forming units in 1cm ³	< 50
facultative anaerobes		
Colifagues	Negative colonies in 100m ³	not allowed
Sulphitereducing clostridia	Spores in 20cm ³	not allowed
Lamblias and cysts	Cysts in 50dm	not allowed

Table D-7	Drinking	water	quality	criteria
-----------	----------	-------	---------	----------

D.5.4 Noise Standards

267. Admissible noise standards of the IFC and Georgian national standards for residential areas are similar. The standards for noise are set according to the Decree # 297/N of Georgian Ministry of Health, Labor and Social Affairs about "Noise at workplaces, in houses and public buildings and at the places of nonsing buildings, SN 2.2.4/2.1.8. 000 – 00" issued on August 16, 2001. There are defined as the admissible norms of noise as the maximum of the admissible norms for several zones of the territories, see **Table D-8**.

268. For IFC noise impacts should not exceed the levels presented in **Table D-9** and **Table D-10** or result in a maximum increase in background levels of 3 dB at the nearest receptor location off site. This project will comply with both IFC Guidelines and Georgian Standards.

	Receptor	Time	Sound level, max, dBA
1	Areas bordering residential houses, schools, and other	7:00-23:00	55
	educational institution buildings	23:00-7:00	45
2	Areas adjacent to residential; houses, outpatient buildings, dispensaries, rest houses, elderly and disabled living facilities, preschool, school and other education facilities, library	7:00-23:00	70
	buildings facilities	23:00-7:00	60
3	Areas adjacent to sanatoria and hostels	7:00-23:00	75
		23:00-7:00	65

Table D-8: Georgian Standards for Noise Levels

Note: +10dBA can be used for the areas in 2 metres from the fencing/enclosing structures of first row of buildings (outer building envelope) facing the main road for lines 2 and 3.

Table D-9: IFC Noise Level Guidelines

Receptor	One hour Laeg (dBA)	
	Daytime Night-time	
	07.00-22.00	22.00 – 07.00
Residential; institutional;	55	45
educational		
Industrial; commercial	70	70

Table D-10: IFC Work Environment Noise limits

Type of Work, workplace	IFC General EHS Guidelines
Heavy Industry (no	85 Equivalent level Laeq,8h
demand for oral	
communication)	
Light industry	50-65 Equivalent level Laeq,8h
(decreasing	
demand for oral	
communication)	

D.5.5 Vibration Standards

269. The Georgian Standards for vibration are designed for human comfort. These are shown in **Table D-11**. Note that no standards for building damage exist.

Table D-11: Georgian General Admissible Vibration Values in Residential Houses,Hospitals and Rest Houses, Sanitary Norms 2001

Average Geometric	Allowable Values X0,Y0, Z0			
Frequencies of	Vibro-acceleratio	Vibro-acceleration Vibro-speed		
Octave Zones	m/sec ²	dB	m/sec 10 ⁻⁴	dB
(Hz)				
2	4.0	72	3.2	76
4	4.5	73	1.8	71
8	5.6	75	1.1	67
16	11.0	81	1.1	67

Average Geometric	Allowable Values X0,Y0, Z0				
Frequencies of	Vibro-acceleration	on	Vibro-speed		
Octave Zones	m/sec ²	dB	m/sec 10 ⁻⁴	dB	
(Hz)					
31.5	22.0	87	1.1	67	
63	45.0	93	1.1	67	
Corrected and equivalent corrected values and their levels	4.0	72	1.1	67	

Note: It is allowable to exceed vibration normative values during daytime by 5 dB during daytime In this table of inconstant vibrations, a correction for the allowable level values is 10dB, while the absolute values are multiplied by 0.32. The allowable levels of vibration for hospitals and rest houses have to be reduced by 3dB.

D.5.6 Soil Quality

270. Soil quality is currently assessed by Methodological Guides on Assessment of Level of Chemical Pollution of Soil (MG 2.1.7.004-02). However, these limits will soon be replaced as Georgia harmonizes its regulations with the EU and moves away from the outdated standards prepared while part of the Soviet Union. The national standards for soil quality are given in **Table D-12** along with the proposed new standards developed by the Ministry of Environment and Natural Resources Protection of Georgia in close cooperation with the National Environment Agency (NEA), Ministry of Agriculture and Ministry of Labour, Health and Social Affairs and with support from the United Nations Development Programme (UNDP) and Global Environment Facility (GEF).

Compound	Units	Current Limit	Proposed Limit
Metals and Miscellaneous			
Arsenic, As	mg/kg	2	30
Cadmium, Cd	mg/kg	2*	0.5** - 1.0***
Copper, Cu	mg/kg	3-132*	60**-100***
Mercury, Hg	mg/kg	2.1	
Nickel, Ni	mg/kg	4-80*	60**- 80***
Lead, Pb	mg/kg	32-130*	100** - 140***
Zinc, Zn	mg/kg	23-220*	130** - 200***
Total Petroleum Hydrocarbons	mg/kg	1000	-
Cyanide	mg/kg	0,2	-
Volatile Organic Compounds	·		
Benzene	mg/kg	0.3	0.05
Toluene	mg/kg	0.3	-
Total xylenes	mg/kg	0.3	0.05
Semi Volatile Compounds	•		
Benzo(a)pyrene	mg/kg	0.02-0.2	0.1
Isopropylbenzene	mg/kg	0.5	-
Pesticides			
Atrazine	mg/kg	0.01-0.5	-
Lindane	mg/kg	0.1	-
DDT (and its metabolite)	mg/kg	0.1	0.075

Table D-12: Soil screening values

* Note: Sodium and neutral (clay and clayey) pH >5.5 - No screening value available, ** Light Soils, ***Other Soils

D.6 National Technical Regulations Relevant to the Project

271. Technical (national) regulations applicable to the road project in Georgia include:

- Law on Roads (310.090.000.05.001.000.089, last amended in 2013);
- Construction norms and regulations 2.05.03-84 Design of bridges, viaducts, overpasses and pipes;
- Construction norms and regulations 2.05.02-85 Motor roads (regulate traffic safety, environmental issues, set forth main technical and traffic operation norms, crossings and intersections, paving aspects, etc.)

272. According to these documents:

- International and national importance roads should be built bypassing the settlements. Access roads to the settlements should be provided. To allow modernisation, the distance between the residential area (settlement) and the edge of the carriageway must be not less than 200m, distance to agricultural land - 50m. If because of technical or economical purposes the road is to cross the settlement, minimum distance to the residential area must be 50m, in case noise barriers are provided – 25m. For local roads minimum distance to residential area must be 50m, distance from agricultural land – 25m.
- To protect residential area from noise and emission impact, 10m wide green barrier must be arranged;
- Along with technical and economic aspects environmental impacts must be taken into account during design and construction;
- Prior to arrangement of temporary infrastructure and preparation of road embankment, topsoil must be removed and stockpiled until subsequent use for re-cultivation after completion of construction and removal of all temporary facilities;
- Roads along the rivers, lakes and reservoirs must be built with consideration of protection zone boundaries for the surface water bodies.

D.7 Environmental Permitting Procedures

273. The permit application/issuance procedure for the planned development, including Environmental and Social Impact Assessment coordination, timeframes for information disclosure and public review are set in the law of Georgia on Environmental Impact Permit and include the following steps (Procedure described below is valid until January 1, 2018):

Table D-13: Environmental impact permit issuance procedure (valid until January 1,2018)

Step	Action	Comment	Timeframe
1	Publication of information on the project in central and regional newspapers.		Day 0
2	• Submission of the draft ESIA report to the Ministry of	Hard copy and electronic version of the report	within 3 days after announcement in the

Step	Action	Comment	Timeframe
	Environment and Natural Resources Protection (MoENRP)	delivered to MoENRP	newspapers
	Feedback	Receiving public comments on the disclosed EIA	45 days from announcement in the newspapers
	 Meetings with stakeholders including local community, NGOs, local authorities, etc. 	All comments and questions must be documented and answers, minutes of the meeting(s) written up.	Between 50 and 60 days after publication of the advert
3	Development of final version of the ESIA and submission to the MoENRP (together with Non- technical Summary, Technical Summary, reports on emissions and allowable limits) for the state ecological examination.	Comments received from the stakeholders considered in the report. Minutes of meeting(s) enclosed to the document as attachment.	After arranging a public review of the EIA report and development of final version of the EIA, the developers is authorised to submit, within one year, an application to the permit issuing administrative body for a permit
4	Consideration of the documents by MoENRP and issuance of conclusion		20 days after registration of an application for a permit and submission of the EIA package to the MoENRP.

Note: According to the national regulations (Law on Licenses and Permits and in compliance with Resolution of the GoG on rules and conditions for issuance of construction permit (N57, 24 March 2009, with amendments) construction/ modernization of highways requires Construction Permit. According to the national legislation, administrative body issuing the permit (the Ministry of Economy and Sustainable Development) ensures involvement of the other Ministries including the Ministry of Environmental Protection in the permitting process. For the project subjected to the construction permit, the authorization (construction permit) incorporates elements of environmental impact permit.

274. After January 1, 2018, the procedure described below will be applicable (but not to this Project).

Step	Action	Comment	Timeframe
1	Written application to the Ministry submitted by developer.	 The application submitted by the developer shall be accompanied with the following documents and/or data: a. EIA report; b. Projects on estimation of the limits for emission of harmful substances into the atmospheric air and for the injection of polluting substances into the surface waters together with the waste waters. c. Notification about a confidential part of a submitted application, if applicable; d. Copy of the document evidencing payment of the fee (500 GEL) in accordance with the existing legislation. e. Electronic copy of above mentioned 	Day 0

Table D-14: Environmental impact permit issuance	procedure (after January 1, 2018)

Step	Action	Comment	Timeframe
		documents.	
2	Ministry ensures publication of submitted application and attached documents on its official website as well as on the notice board of the relevant local authorities and/or representative bodies and upon request, provides paper copies of abovementioned documentation.	The Developer is entitled to request the Environmental Decision on several activities through a single application, if the activities are significantly interconnected.	within 3 days after submission of the application
3	Minister sets up the Expert Commission		within 5 days after registration of the application
4	Expert commission prepares and submits the expertise conclusion on the EIA report to the Ministry		within 40 days
5	Ministry takes decision on the finding of a deficiency in application		within 15 days after registration of the application
6	Feedback from stakeholders		within 40 days after the publication of the application
7	Publication of announcement on the public hearing	 The announcement on public hearing shall include the information on: a. The content and brief description of the issue to be discussed, format of the discussion; b. The time, place and rules of the public hearing; c. The web address where the respective application, the EIA report and any other information relevant to decision-making will be available as well as indication about the opportunity of accessing the paper copies of these documents during the public hearing. 	no less than 20 days prior to organizing the public hearing
8	Public hearing	The Ministry is responsible for organizing and conducting the public hearing. It is chaired and protocoled by a representative of the Ministry. The public hearing is organized in the closest appropriate administrative building to the site of the planned project or within its vicinity. If the project is planned to be implemented within the administrative borders of a self- governing community, the public hearing is organized in the closest appropriate administrative building to the site of the	no earlier than 25th day and no later than 30th day after the publication of the application

Step	Action	Comment	Timeframe
		project or within its vicinity and if the project is planned to be implemented within the administrative borders of a self-governing city, the public hearing is organized in the appropriate administrative building determined by the Ministry, or within its vicinity. The public hearing is open to the public and any person has a right to participate in it.	
9	the project, the Ministry ensur Protection of Georgia, within i	nmental Decision or the decision on the refusal res involvement of the Ministry of Culture and M ts competence, in the administrative procedures e envisaged by Article 84 of General Administra	onument s as other
10	The Minister issues individual administrative legal act on issuance of the Environmental Decision or the decision on the refusal to implement the project		no less than 51 and no more than 55 days after registration of the application
11	Ministry ensures publication of the EIA report, the Expertise Conclusion, the Environmental Decision or the legal act on the refusal to implement the project and the results of public participation on its official website as well as on the notice board of the relevant local authorities and/or representative bodies and upon request, provides paper copies of abovementioned documentation		within 5 days after issuing the Environmenta I Decision or the legal act on the refusal to implement the project

D.8 Licenses, Permits, and Approvals

275. The Project will also be required to obtain a number of permits and consents, of which the main permits and the implementing national legislation are described in **Table D-15**. The Law on Licences and Permits governs the issue of all permits and consents. Subject to satisfaction of application requirements, all the permits are issued within 30 days from application submission.

Permit Required Activity	Permit / License/ Approval Title	Issuing Authority	Implementing Law	Responsible Party for Obtaining License
		Pre-construct	ion	
Construction Construction activities Permit		Ministry of Economy and Sustainable Development	Law No.1775 on Licenses and Permits; Government	RD

 Table D-15: Permits / Licences and Approvals Register

	1	1		
			Resolution N57 "On Terms and Conditions of issuance of Construction Permit"	
Construction activities	ESIA Approval	MoENRP	Law No.519 on Environmental Protection Law No.5603 on Ecological Expertise Law No 890-II Environmental	RD
			Assessment Code Order No.515 of Minister of Environmental Protection and Natural Resources on Rules of Conduction of Ecological Expertise	
Construction activities	Cultural Heritage Clearance	National Agency of Cultural Heritage	Law No 4708 "On Cultural Heritage" Law No.1775 on Licenses and Permits; Government Resolution N57 "On Terms and Conditions of issuance of Construction Permit"	RD
Construction activities	Visual geological- engineering conclusion	National Environmental Agency	Government Resolution N57 "On Terms and Conditions of issuance of Construction Permit"; Order N7 of the Minister of Environment Protection	RD
Asphalt Plant	ESIA Approval	MoENRP	Law No.519 on Environmental Protection Law No.5603 on Ecological Expertise Law No 890-II Environmental Assessment Code Order No.515 of Minister of Environmental	RD

		[· · · · · · · · · · · · · · · · · · ·
			Protection and Natural Resources	
			on Rules of	
			Conduction of	
			Ecological Expertise	
		Construction P		
Tree felling in	Forest use	Ministry of Energy	Law No.2124 on	Contractor
state forest lands for ROW and permanent facilities	agreement	& Natural Resources	Forestry Code of Georgia; Resolution No.242 of Government of Georgia on Approval of Rules for Forest Use	
			Resolution No.132 of Government of Georgia on Approval of Regulations on Rules and Conditions of Issuance of Forest Usage License	
Tree felling in state forest lands for Temporary Facilities	Forest Use Agreement	Ministry of Energy & Natural Resources	Resolution No.242 of Government of Georgia on Approval of Rules for Forest Use; Order N10/61 of the Chairman of State Department of Forestry	Contractor
Construction material extraction from borrow pits	Mineral extraction licence	Ministry of Energy & Natural Resources	Decree of the Government of Georgia N136 of August 11, 2005; Law N 946 "On Fees for Use of Natural Resources"	Contractor
Underground water abstraction	Mineral extraction licence	Ministry of Energy & Natural Resources	Decree of the Government of Georgia N136 of August 11, 2005; Law N 946 "On Fees for Use of Natural Resources"	Contractor
Water abstraction from river, lake	Surface water abstraction approval	MoENRP	Order of the Minister of Environment Protection & Natural Resources N745; Order of the Minister of Environment Protection N 16	Contractor
Exhaust from stationary sources	Air emission limit approval	MoENRP	Order of the Minister of Environment Protection & Natural	Contractor

	I	1		
			Resources N745; Order N667 of the Minister of Environment Protection and Natural Resources; Law "On Ambient Air Protection"	
Treated sewerage, hydro-test water etc. discharge into river, lake	Approval of liquid discharge into surface water body	MoENRP	Order of the Minister of Environment Protection & Natural Resources N745; Order of the Minister of Environment Protection N 16	Contractor
Construction or upgrade of access roads	Approval of construction or upgrade activities	Ministry of Infrastructure and local municipalities	Government Resolution N57 "On Terms and Conditions of issuance of Construction Permit"	Contractor
Transportation of oversized and overweight cargo	Transportation permit	Ministry of Internal Affairs	Joint Order N956/1- 1/746 of the Minister of Internal Affairs and Minister of Economic Development; Law N 700 "On Road Transport"; Law "On Road Traffic"	Contractor
Spoil disposal	Spoil disposal approval	MoENRP	Law "On Subsoils", May 8, 2012	Contractor
Import of explosives	Permit to import explosives	Ministry of Internal Affairs	Tax Code of Georgia; Decree of the Government of Georgia N420; Law N2911 "On Control of Technical Hazard"; Order N 1- 1/2502 of the Minister of Economy and Sustainable Development	Contractor
Use of explosives	Permit to use explosives	Ministry of Energy	Tax Code of Georgia; Decree of the Government of Georgia N420; Law N2911 "On Control of Technical Hazard"; Order N 1- 1/2502 of the Minister of Economy and	Contractor

	Sustainable Development	
--	----------------------------	--

D.8.1 Construction Permit

276. The Law on Licences and Permits defines protocols for the issue, amendment and withdrawal of permits. For projects such as this, a construction permit is

needed. The responsible authority (the Road Department) must obtain the following approvals before it will grant a construction permit:

- Geological conclusions to be issued by National Environmental Agency;
- Cultural heritage clearance to be issued by National Agency of Cultural Heritage;
- ESIA approval (ecological expertise) to be issued by MoENRP;
- Project design approval to be issued by MoESD; and
- Project's registered rights to land.

277. The conclusion of the ecological assessment (i.e. MoENRP expert examination of the EIA) is a part of the construction permit and its recommendations are compulsory for the developer.

D.8.1.1 Material Extraction

278. In addition, Off-site works will include extraction of construction materials or purchase of material from already existing licensed quarries. (The latter option is preferable).

279. Licensing is of these areas is regulated by the law of Georgia on Licenses and Permits. The body responsible for licensing is the MoENRP. Terms and rules of a license for material extraction are specified in the license along with the exact location of a site, volume of permitted extraction and maturity of a license. Licenses are issued through auctioning. According to the law, the license is granted to the proponent presenting the best proposal that shall meet the criteria stipulated for resources and environmental protection, and recognized as the most economical acceptable. The validity of the license for abstraction of construction materials may be up to 30 years, while short term licenses may vary from 2 to 5 years. A license holder is obliged to ensure sustainable use of the resources with due regard of environmental and resource protection rules; guarantee safety of works with consideration of ambient air, water, soil, forest, protected areas, protection norms for historical and cultural monuments and buildings. A license holder is obliged to stop operation if any rare plant or object of aesthetic value is found. The fact must be immediately communicated to relevant governmental authorities.

280. Due diligence check will be made by the Engineer to ensure that any quarry is utilizing the land within the cadastral land listed on the quarry.

281. The license holder is responsible for restoration and reinstatement of the used plot. The license can be terminated in case of non-compliance with license conditions, including environmental requirements. Liquidation or conservation costs are covered by the resource user. In case of license termination the owner automatically loses right to the land plot.

282. If the contractor decides to use own borrow pit/quarry the following requirements must be met:

• Sufficient resource in the proposed quarry must be insured to make a site financially viable; including rehabilitation expenses;

- Topsoil must be removed and stockpiled until reintroduction. The topsoil should not be buried, driven on, excessively handled, contaminated or stockpiled so as to hinder final land-use;
- If required, erosion protection must be provided;
- To ensure safe operation the access tracks must be of adequate width: the track should be twice the width of the widest vehicle in the case of one-way traffic and three times the width of the widest vehicle in the case of two-way traffic;
- Gates and fences should be designed, regularly inspected and repaired to prevent unauthorised entry; signs at any insecure locations on a site indicating the risk must be provided;
- Operation and decommissioning of the quarry/borrow pit must be performed in compliance with the conditions of the quarrying license and with due regard to environmental standards;
- Upon completion of the licence term, the quarry/borrow pit area affected by the development should be re-cultivated: the topsoil reinstated, the status of the site restored to the state close to the initial state (for instance, the site may be planted with vegetation).

283. Should material be abstracted from the riverbed, the riverbed and the landform may not be adversely affected. Abstraction of gravel should not be carried out in high water period. The operation site must be protected by a gravel mound (up to 2m wide). In compliance with the national legislation (Law on Natural Resources) abstraction of inert material from a riverbed is prohibited in case the activity violates stability of any hydro technical structures (a dam, a retaining wall). Sourcing is not allowed from sections where solid drift is not sufficient for 'feeding' the banks. In such areas, inert material abstraction from the river terrace within 50 m strip from the riverbed and directly from the stream is strictly prohibited.

D.9 State Forest Fund

284. According to The Resolution No.242 of Government of Georgia on Approval of Rules for Forest Use, Article 27₁ State forest land (or State Forest Fund (SFF)) may be used for the purposes of construction of motorways, as well as for other activities which are deemed as special use of forest lands. Article 27 states that if the activity that is deemed as special use of forest land and is subject to Ecological Expertise then the Client (in this case the RD) is obliged to apply to remove all trees identified in the affected SFF area from the SFF register or "de-list" them before they can be cut. The decision to de-list trees and plants from the State Forest Fund of Georgia is issued by the National Forest Agency excepting the vegetation species protected by the Red List of Georgia. A decision to de-list trees and plants from the Red List of Georgia is made by MoENRP. The client must apply to the MoENRP in writing regarding the presence of the Red-Listed species in the project area.

D.10 International Conventions and Agreements

285. Important international environmental treaties that have been signed by Georgia and may have relevance to the Project are listed in **Table D-16**. They concern: climate change, depletion of the ozone layer, biological diversity and trade in wild flora and fauna, desertification; waste and pollution; cultural heritage, and preservation of the ecology of the Black Sea.

Agreement Date	Agreement Name	Ratification	Entry into Force
6/4/1999	Agreement on cooperation in the area of preservation		6/4/1999

Table D-16: International Agreements and Treaties

Agreement Date	Agreement Name	Ratification	Entry into Force
	and use of genetic resources of cultured plants of member states of the CIS		
6/16/1995	Agreement on The Conservation of African-Eurasian Migratory Waterbirds		8/1/2001
11/24/1996	Agreement on The Conservation of Cetaceans of The Black Sea, Mediterranean Sea and Contiguous Atlantic Area	5/31/2001	
12/4/1991	Agreement on The Conservation of Populations of European Bats	7/25/2002	8/24/2002
4/12/1996	Agreement on The Control of Transboundary Shipments of Hazardous and other Wastes Between States Members of The Commonwealth of Independent States	4/12/1996	
6/14/2002	Black Sea Biodiversity and Landscape Conservation Protocol to the Convention on the Protection of the Black Sea Against Pollution	9/22/2009	6/20/2011
1/29/2000	Cartagena Protocol on Biosafety to the Convention on Biological Diversity	2/2/2009	2/2/2009
3/22/1985	Convention for The Protection of The Ozone Layer	3/21/1996	6/19/1996
11/23/1972	Convention for The Protection of The World Cultural And Natural Heritage		11/4/1992
6/25/1998	Convention on Access to Information, Public Participation in Decision-Making and Access to Justice in Environmental Matters	4/11/2000	10/30/2001
6/5/1992	Convention on Biological Diversity	6/2/1994	8/31/1994
3/3/1973	Convention on International Trade in Endangered Species of Wild Fauna and Flora	9/13/1996	12/12/1996
11/13/1979	Convention on Long-Range Transboundary Air Pollution	2/11/1999	5/12/1999
5/22/2001	Convention on Persistent Organic Pollutants	10/4/2006	1/2/2007
9/19/1979	Convention on The Conservation of European Wildlife and Natural Habitats	11/19/2009	3/1/2010
6/23/1979	Convention on The Conservation of Migratory Species of Wild Animals		6/1/2000
3/22/1989	Convention on The Control of Transboundary Movements of Hazardous Wastes and Their Disposal	5/20/1999	8/18/1999
4/21/1992	Convention on The Protection of The Black Sea Against Pollution	9/1/1993	1/15/1994
2/2/1971	Convention on Wetlands of International Importance Especially as Waterfowl Habitat	2/7/1997	6/7/1997
6/17/1994	Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa	7/23/1999	10/21/1999
12/2/1961	International Convention for The Protection of New Varieties of Plants		11/29/2008
11/17/1997	International Plant Protection Convention (1997 Revised Text)	3/8/2007	3/8/2007
9/16/1987	Montreal Protocol on Substances that Deplete The Ozone Layer	3/21/1996	6/21/1996
4/21/1992	Protocol on Cooperation in Combating Pollution of The Black Sea Marine Environment By oil and other Harmful Substances in Emergency Situations	9/1/1993	1/15/1994
4/21/1992	Protocol on The Protection of The Black Sea Marine Environment Against Pollution by Dumping	9/1/1993	1/5/1994
4/21/1992	Protocol on The Protection of The Black Sea Marine Environment Against Pollution from Land-Based Sources	9/1/1993	1/15/1994

Agreement Date	Agreement Name	Ratification	Entry into Force
4/17/2009	Protocol on the Protection of the Marine Environment of the Black Sea from Land-Based Sources and Activities	9/24/2009	
12/11/1997	Protocol to The United Nations Framework Convention on Climate Change	6/16/1999	2/16/2005
12/10/1982	United Nations Convention on The Law of The Sea	3/21/1996	4/21/1996
5/9/1992	United Nations Framework Convention on Climate Change	7/29/1994	10/27/1994

D.11 Asian Development Bank Safeguard Policies 2009

286. The ADB has three safeguard policies that seek to avoid, minimize or mitigate adverse environmental impacts and social costs to third parties, or vulnerable groups as a result of development projects⁴.

287. **Safeguard Requirements 1: Environment** – The objectives are to ensure the environmental soundness and sustainability of projects, and to support the integration of environmental considerations into the project decision-making process. Environmental safeguards are triggered if a project is likely to have potential environmental risks and impacts. Eleven 'Policy Principles' have been adopted as part of the SPS, including:

- Use a screening process for each proposed project, as early as possible, to determine the appropriate extent and type of environmental assessment so that appropriate studies are undertaken commensurate with the significance of potential impacts and risks. (The Project was initially screened by the ADB and classified as a Category A project).
- 2. Conduct an environmental assessment for each proposed project to identify potential direct, indirect, cumulative, and induced impacts and risks to physical, biological, socioeconomic (including impacts on livelihood through environmental media, health and safety, vulnerable groups, and gender issues), and physical cultural resources in the context of the project's area of influence. Assess potential transboundary and global impacts, including climate change. Use strategic environmental assessment where appropriate. (The EIA herewith provides the environmental assessment for the Project, including an assessment of climate change. Transboundary impacts are not applicable).
- Examine alternatives to the project's location, design, technology, and components and their potential environmental and social impacts and document the rationale for selecting the particular alternative proposed. Also consider the no project alternative. (Alternatives have been considered, including the 'no project' alternative in Section C – Alternatives).
- 4. Avoid, and where avoidance is not possible, minimize, mitigate, and/or offset adverse impacts and enhance positive impacts by means of environmental planning and management. Prepare an environmental management plan (EMP) that includes the proposed mitigation measures, environmental monitoring and reporting requirements, related institutional or organizational arrangements, capacity development and training measures, implementation schedule, cost estimates, and performance

⁴ ADB. 2009. Safeguard Policy Statement, Manila

indicators. Key considerations for EMP preparation include mitigation of potential adverse impacts to the level of no significant harm to third parties, and the polluter pays principle. (An EMP has been prepared for the Project and is outlined in detail in **Section G – Environmental Management Plans and Institutional Requirements**).

- 5. Carry out meaningful consultation with affected people and facilitate their informed participation. Ensure women's participation in consultation. Involve stakeholders, including affected people and concerned nongovernment organizations, early in the project preparation process and ensure that their views and concerns are made known to and understood by decision makers and taken into account. Continue consultations with stakeholders throughout project implementation as necessary to address issues related to environmental assessment. Establish a grievance redress mechanism to receive and facilitate resolution of the affected people's concerns and grievances regarding the project's environmental performance. (Consultations were held to discuss environmental issues, the findings of the consultations (and a description of the Project grievance redress mechanism) are presented in Section H Public Consultation, Information Disclosure & Grievance Mechanism).
- 6. Disclose a draft environmental assessment (including the EMP) in a timely manner, before project appraisal, in an accessible place and in a form and language(s) understandable to affected people and other stakeholders. Disclose the final environmental assessment, and its updates if any, to affected people and other stakeholders. (This EIA and its EMP will be disclosed on the JICA and RD websites).
- Implement the EMP and monitor its effectiveness. Document monitoring results, including the development and implementation of corrective actions, and disclose monitoring reports. (The EIA and its EMP outline a plan to monitor the implementation of the EMP and the institutional responsibilities for monitoring and reporting throughout the Project lifecycle: Section G EMP Institutional Responsibilities).
- 8. Do not implement project activities in areas of critical habitats, unless (i) there are no measurable adverse impacts on the critical habitat that could impair its ability to function, (ii) there is no reduction in the population of any recognized endangered or critically endangered species, and (iii) any lesser impacts are mitigated. If a project is located within a legally protected area, implement additional programs to promote and enhance the conservation aims of the protected area. In an area of natural habitats, there must be no significant conversion or degradation, unless (i) alternatives are not available, (ii) the overall benefits from the project substantially outweigh the environmental costs, and (iii) any conversion or degradation is appropriately mitigated. Use a precautionary approach to the use, development, and management of renewable natural resources. (No critical habitats have been identified that would be significantly impacted by the Project).
- **9.** Apply pollution prevention and control technologies and practices consistent with international good practices as reflected in internationally recognized standards such as the World Bank Group's Environmental, Health and Safety Guidelines. Adopt cleaner production processes and good energy efficiency practices. Avoid pollution, or, when avoidance is not possible, minimize or control the intensity or load of pollutant emissions and discharges, including direct and indirect greenhouse gases emissions, waste generation, and release of hazardous materials from their production, transportation, handling, and storage. Avoid the use of hazardous materials subject to international bans or phase-outs. Purchase, use, and manage

pesticides based on integrated pest management approaches and reduce reliance on synthetic chemical pesticides. (The EIA and its EMP outline specific mitigation and management measures to prevent and control pollution: **Section G** – **Environmental Management Plans and Institutional Requirements.** No pesticides will be used during the lifecycle of the Project).

- 10. Provide workers with safe and healthy working conditions and prevent accidents, injuries, and disease. Establish preventive and emergency preparedness and response measures to avoid, and where avoidance is not possible, to minimize, adverse impacts and risks to the health and safety of local communities. (The EIA and its EMP outline the requirement for specific health and safety plans and emergency response plans: Section G Environmental Management Plans and Institutional Requirements).
- 11. Conserve physical cultural resources and avoid destroying or damaging them by using field-based surveys that employ qualified and experienced experts during environmental assessment. Provide for the use of "chance find" procedures that include a pre-approved management and conservation approach for materials that may be discovered during project implementation. (No physical and cultural resources have been identified that would be significantly impacted by the Project. Chance finds are discussed in Section G Physical and Cultural Resources) and a sample chance finds procedure is provided in Appendix E.

Safeguard Requirements 2: Involuntary Resettlement.

288. The objectives are to avoid involuntary resettlement wherever possible; to minimize involuntary resettlement by exploring project and design alternatives; to enhance, or at least restore, the livelihoods of all displaced persons in real terms relative to pre-project levels; and to improve the standards of living of the displaced poor and other vulnerable groups. The safeguard requirements underscores the requirements for undertaking the social impact assessment and resettlement planning process, preparing social impact assessment reports and resettlement planning documents, exploring negotiated land acquisition, disclosing information and engaging in consultations, establishing a grievance mechanism, and resettlement monitoring and reporting.

289. The involuntary resettlement requirements apply to full or partial, permanent or temporary physical displacement (relocation, loss of residential land, or loss of shelter) and economic displacement (loss of land, assets, access to assets, income sources, or means of livelihoods) resulting from (i) involuntary acquisition of land, or (ii) involuntary restrictions on land use or on access to legally designated parks and protected areas. Resettlement is considered involuntary when displaced individuals or communities do not have the right to refuse land acquisition that results in displacement. A land acquisition and resettlement plan (LARP) has been prepared for the Project to ensure compliance with the safeguard on Involuntary Resettlement.

Safeguard Requirements 3: Indigenous Peoples.

290. The objective is to design and implement projects in a way that fosters full respect for Indigenous Peoples' identity, dignity, human rights, livelihood systems, and cultural uniqueness as defined by the Indigenous Peoples themselves so that they (i) receive culturally appropriate social and economic benefits, (ii) do not suffer adverse impacts as a result of projects, and (iii) can participate actively in projects that affect them.

291. The Project does not involve impacts to Indigenous Peoples and therefore no further actions relating to this safeguard are required.

D.12 JICA Guidelines for Environmental and Social Considerations (April, 2010)

292. Standards and References – When undertaking a Project, JICA guidelines state that the following conditions must be applied with regards to environmental and social aspects:

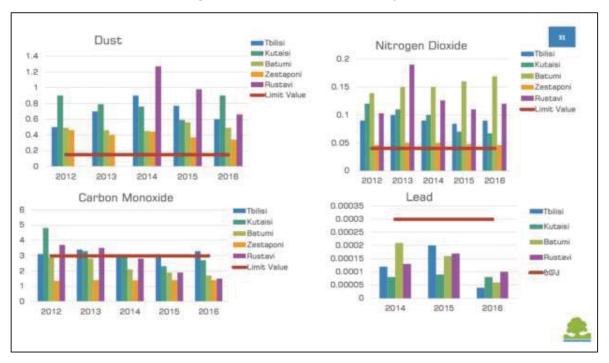
- Host country's laws, standards, policies and plans ESC in a JICA project must comply with the laws, standards, policies, and plans of the host country. If the standard set by the host country differs from the international standard, the project proponents are advised to adopt the standard that better serves the purpose of attaining a higher level of ESC.
- The World Bank's Safeguard Policies ESC in a JICA project must be in line with the World Bank's Safeguard Policies including Operational Policy on Environmental Assessment (OP 4.01), Natural Habitats (OP 4.04), Involuntary Resettlement (OP 4.12), Indigenous Peoples (OP 4.10), and other relevant policies.
- Internationally accepted standards International standards, treaties, and declarations should also be applied as appropriate.

293. Classification - Each project is classified by JICA in to one of the following Environmental Categories based on the magnitude of its potential impact on the environment or society. In other words, the category indicates the level of ESC required.

- Category A The project is likely to have significantly adverse impacts on the environment or society. For example:
 - A project with a wide range of impacts, impacts that are irreversible,
 - complicated, or unprecedented, and impacts that are difficult to assess.
 - A project for a sector that requires special attention (e.g., a sector that involves large-scale infrastructure development), involves activity that requires careful consideration (e.g., large-scale involuntary resettlement), or takes place inside or adjacent to a sensitive area (e.g., protected natural habitat). Examples of sectors, activities, and areas that require special attention are listed in 'Appendix 3' of the ESC Guidelines.
- Category B The project may have adverse impacts on the environment or society, but these impacts are less significant than those of Category A projects. These impacts are site-specific; few, if any, of them are irreversible; in most cases, they can be mitigated more readily than Category A projects. Responsibilities of the project proponents include the planning and monitoring of necessary ESC activities. ESC procedures such as Initial Environmental Examination and stakeholder participation may be required, depending on the scale and nature of the adverse impacts.
- Category C The project is likely to have minimal or no adverse impact on the environment or society.
- Category FI JICA provides funds to a Financial Intermediary, which in turn implements sub-projects that may have adverse impacts on the environment or society, but these impacts cannot be identified in detail prior to JICA's approval. If there is a sub-project that can be categorized as Category A, it needs to go through the same procedure as a Category A project including JICA's environmental review and information disclosure prior to its implementation.

294. EIA is mandatory for projects whose environmental category is A, and an EIA Report must be disclosed to the public through JICA's website for at least 120 days before the project proponents and JICA agree to implement the project. Requirements for the EIA Report of a Category A project are described in Appendix 2 of the ESC Guidelines.

E. Description of the Environment


295. This section of the report discusses the existing environmental and social conditions within the Project area under the following headings:

- Physical Resources (air quality, hydrology, topography, etc.);
- Ecological Resources (flora, fauna, protected areas);
- Economic Resources (infrastructure, land use, etc.);
- Social and Cultural Resources (health, education, noise, cultural resources, etc.)

E.1 Physical Resources

E.1.1 Air quality

296. The National Environmental Agency has recently published air quality statistics for five cities in Georgia. Of particular relevance to the Project is the data from Zestaphoni. **Figure E-1** indicates that in general Zestaphoni is the least polluted city of those monitored. However, ambient levels of dust and NO₂ currently exceed the national limits in Zestaphoni but levels of CO and Lead are well below the limits.

Figure E-1: Ambient Air Quality Data

E.1.1.1 Site Observations

297. Within the Project area the main sources of air emissions are from transport, including vehicles on the existing E-60, and large scale industrial facilities including the GAA manganese processing plant which is located almost adjacent to the southern boundary of the Project road between KM 11 and KM 12.

298. The main environmental issue concerning the GAA involves the lack of modern and efficient filters to reduce and control air emissions, in particular manganese dioxide emissions. **Figure E-2** illustrates high levels of emissions from GAA smoke stacks during a site visit in July, 2017. An emissions reduction program is being implemented by the plant in

order to meet the existing environmental regulations. However, according to the UN Environmental Performance Review ambient air quality monitoring in Zestafoni indicated that manganese concentration in air exceeded the MAC. Concentrations were 2.5 to 4-fold higher than the MAC, varying from 4.04 μ g/m³ MnO₂ at 500 m distance from the plant to 2.5 μ g/m³ MnO₂ at 300 m distance from the plant. Manganese concentrations in dust collected in residential houses or in the hospital at Zestafoni are characterized by higher levels compared with the Tbilisi control sample.

299. In addition, it is assumed that some rural households cook with wood burning stoves and they may also use wood for household heating. This can also generate emissions to air although they are not anticipated to be significant given the fact that the population within the Project corridor is quite limited.

Figure E-2: Visible Air Emissions from GAA Plant, 2017 (taken from boundary of the Project road around KM 11.1)

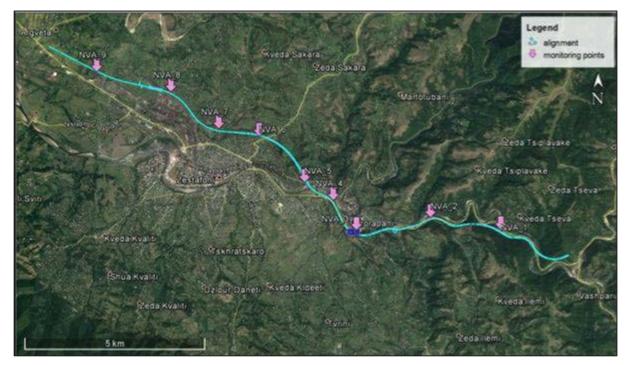
E.1.1.2 Sensitive Receptors

300. The Project road passes close to a number of residential properties and sensitive receptors around Zestafoni and Shorapani. Those within 200 meters have been mapped and are included as part of the air quality assessment provided in **Section F** of this EIA.

E.1.1.3 Baseline Ambient Air Quality

301. Air quality monitoring was carried out at nine different locations during August, 2017 to characterize the current air quality within the Study Area.

302. The pollutants selected for evaluation are based on the expected emissions from the Project activities and the level of risk to human health posed by these pollutants. They include:


- Total Suspended Particulates (TSP), or Dust;
- Carbon Monoxide (CO);
- Nitrogen Dioxide (NO₂);
- Sulfur Dioxide (SO₂); and
- Particulate Matter (PM₁₀ and PM_{2.5})

303. A description of sampling locations and the rationale of selection is given in **Table E-1**. The locations of the sampling points are indicated by **Figure E-3**. The ambient air quality data was compared against applicable IFC and Georgian Standards.

Sample ID	Coordinates	Approximate Location	Rationale for Site Selection
AQ01	42 ° 05'31.75"N / 43° 07'47.68"E	KM0.0	Start of F4, opposite a small cluster of residential properties.
AQ02	42 ° 05'42.77"N / 43° 06'23.19"E	KM2.2	Adjacent to a roadside restaurant. Site of embankment cutting.
AQ03	42 ° 05'31.72"N / 43° 04'53.87"E	KM4.3	Shorapani residential area, location of a school and exit of Tunnel 3.
AQ04	42 ° 05'58.49"N / 43° 04'26.10"E	KM5.5	Adjacent to residential properties.
AQ05	42 ° 06'14.75"N / 43° 03'51.79"E	KM6.3	At the portal to Tunnel 4.
N06	42 ° 06'56.22"N / 43° 02'57.23"E	KM8.3	Close to the portal to Tunnel 5 adjacent to residential properties.
AQ07	42 ° 07'02.90"N / 43° 02'08.61"E	KM9.5	Residential area at the portal to Tunnel 6 and at the end of Bridge 4.
AQ08	42 ° 07'36.01"N / 43° 01'11.19"E	KM11.0	North of the GAA facility and south of a residential cluster.
AQ09	42 ° 07'54.20"N / 42° 59'41.87"E	KM13.4	Adjacent to a small cluster of residential properties.

Table E-1: Ambient Air Quality Monitoring Locations

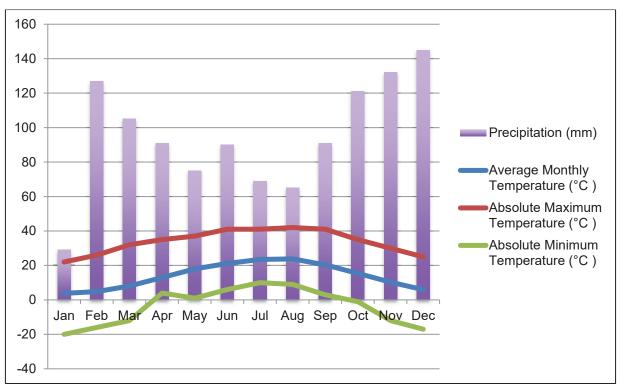
Figure E-3: Ambient Air Quality Monitoring Locations

304. The results of the ambient air quality monitoring are provided in **Table E-2**. In all instances the parameters monitored were below national, and where applicable, IFC standards with the exception of sampling locations NVA-1 and NVA-2 adjacent to the existing road. The most noticeable factor was the higher levels of PM recorded at the first four monitoring stations which are adjacent to the existing road. This suggests that these levels PM_{10} and $PM_{2.5}$ are attributable to vehicle movements on the existing road.

#	Time	Wind speed, m/s	Wind direction	CO, µg/m3	NO₂, μg/m3	SO ₂ , μg/m3	ΡΜ ₁₀ , μg/m3	ΡΜ _{2.5} , μg/m3	TSP, μg/m3	Comment
					N	VA-1				
1	12:30 -13:50	1.3	W	<1000	376	<500	28	26	<100	Edge of the E-60 highway
2	19:30-19:50	1.4	W	<1000	<200	<500	91	61	200	
3	01:30 -01:50	1.0	W	<1000	<200	<500	18	15	<100	
4	06:55–07:15	1.0	W	<1000	<200	<500	10	9	<100	
				1	N	VA-2	1			
1	13:00-13:20	2.0	SW	<1000	550	<500	48	32	120	14.9m from the centerline of E-60
2	18:50-19:10	1.6	SW	<1000	376	<500	72	39	170	highway
3	01:00 -01:20	1.0	SW	<1000	<200	<500	18	15	<100	
4	06:50-07:10	1.0	SW	<1000	<200	<500	10	9	<100	
				-	N	VA-3				
1	10:30 -10:50	2,0	SW	<1000	<200	<500	12	9	<100	Next to internal road in Shorapani
2	18:20-18:40	1.6	SW	<1000	<200	<500	29	21	<100	
3	00:30-00:50	1.2	SW	<1000	<200	<500	10	7	<100	
4	06:20 -06:40	1.0	SW	<1000	<200	<500	5	4	<100	
				1	N	VA-4	1			
1	12:00-12:20	2.0	W	<1000	<200	<500	36	24	110	15.2m from the centerline of E-60
2	17:50-18:10	1.2	W	<1000	<200	<500	35	25	120	highway
3	24:00-24:20	1.1	W	<1000	<200	<500	11	8	<100	
4	05:50-06:10	1.0	W	<1000	<200	<500	<1.0	<1.0	<100	
		1	-	r	N	VA-5				
1	10:00 -10:20	1.6	NW	<1000	<200	<500	5	4	<100	Next to the local road
2	17:20-17:40	1.2	NW	<1000	<200	<500	25	16	<100	
3	23:30-23:50	1.1	NW	<1000	<200	<500	<1.0	<1.0	<100	
4	05:20-06:40	1.0	NW	<1000	<200	<500	<1.0	<1.0	<100	
		1		1	1	VA-6	1			
1	09:10-09:30	1.0	SW	<1000	<200	<500	<1.0	<1.0	<100	87.5m from the centerline of Gomi- Sachkhere-Chiatura-Zestaphoni road,
2	16:40-17:00	1.0	SW	<1000	<200	<500	16	11	<100	in about 30m from the street -
3	23:10-23:30	1.2	SW	<1000	<200	<500	<1.0	<1.0	<100	Zestaphoni

 Table E-2: Ambient Air Quality Monitoring Results

#	Time	Wind speed, m/s	Wind direction	CO, µg/m3	NO ₂ , μg/m3	SO ₂ , μg/m3	ΡΜ ₁₀ , μg/m3	ΡΜ _{2.5} , μg/m3	TSP, μg/m3	Comment
4	04:10-04:30	1.0	SW	<1000	<200	<500	<1.0	<1.0	<100	
		• •			N	VA-7				
1	08:30-08:50	1.5	NW	<1000	<200	<500	9	6	<100	Next to existing internal road – Kvemo
2	16:10-16:30	1.1	NW	<1000	<200	<500	16	12	<100	Sakara
3	22:50-23:10	1.0	NW	<1000	<200	<500	<1.0	<1.0	<100	
4	04:10-04:30	1.1	NW	<1000	<200	<500	<1.0	<1.0	<100	
					N	VA-8				
1	07:30-07:50	2.2	S	<1000	<200	<500	12	8	<100	Next to existing internal road – Kvemo Sakara
2	15:30-15:50	1.1	S	<1000	<200	<500	26	19	<100	Sakara
3	22:30-22:50	1.1	S	<1000	<200	<500	<1.0	<1.0	<100	
4	03:30-03:50	1.3	S	<1000	<200	<500	<1.0	<1.0	<100	
					N	VA-9				
1	07:00-07:20	2.0	SW	<1000	<200	<500	17	15	<100	Next to existing internal road –
2	15:00-15:20	1.1	SW	<1000	<200	<500	21	10	<100	Argveta
3	22:10-22:30	1.0	SW	<1000	<200	<500	16	10	<100	
4	03:00-03:20	1.2	SW	<1000	<200	<500	<1.0	<1.0	<100	
	MPC/guideline v		Aver.period	СО, µg/m3	NO₂, μg/m3	SO₂, µg/m3	PM10, μg/m3	PM 2.5, μg/m3	TSP, μg/m3	Comment
1	National limit – max.		24 h	3000	40	50	n/a	n/a	150	One time (volley) maximum
	time (volley) concent µg/m ³	ration (MPC),	30 min	5000	200	500	n/a	n/a	500	permissible concentration is the maximum concentration of hazardous
2		d 2016) –	1 year	n/a	40	50	20	10	n/a	substance determined in 20-30 minute
	guideline value, µg	ı/m3	8h	10000	n/a	n/a	n/a	n/a	n/a	interval based on one-time (volley) concentrations (ref. Technical
			24 h	n/a	n/a	20	50	25	120	Regulation – On approval of technical
			1h	30000	200	n/a	n/a	n/a	n/a	regulations for calculating threshold
			30 min	60000	n/a	n/a	n/a	n/a	n/a	limit values of emission of harmful substances into the ambient air",
			10 min	100000	n/a	500	n/a	n/a	n/a	approved by governmental decree
3	EU limit, µg/m3		1 year	n/a	40	n/a	40	25	n/a	#408, Document code:
			8h	10000	n/a	n/a	n/a	n/a	n/a	300160070.10.003.017622). The measured values are in line with
			24 h	n/a	n/a	125	n/a	n/a	n/a	30min aver.period values – see text in
			1h	n/a	200	350	n/a	n/a	n/a	red.


E.1.2 Climate

305. Due to the peculiar geographical position of Georgia between the Black and Caspian seas and the presence of powerful natural climatologic in the North of the Main Caucasus Range, and also owing to the large range of elevations above sea level, the climate of Georgia is varies quite widely for a small country. Climates of all types, ranging from subtropical, characteristic of the coastal zone of the Black sea, to the Arctic, prevailing in the most mountainous region of the Caucasus range can be found.

306. According to technical document GOST 16350-80 the Project road is located in district II9, which is characterized by a temperate warm climate with mild winters.

E.1.2.1 Precipitation & Temperature

307. Annual precipitation in Zestafoni is around 1,200 mm. Rainfall is highest in the Winter, Autumn and Spring, although rainfall can still be observed during the hotter summer months (see **Figure E-4**).

308. >0.2 mm/day are considered sufficient to effectively suppress wind-blown dust emissions^{5 6}. **Figure E-5** details the number of days showing >0.2 mm/day rainfall. On average each year, around ten such days occur between November and June and rarely in the months of July to August.

⁵ IFC (2007). Environmental, Health and Safety Guidelines. General EHS Guidelines: Environmental. Air Emissions and Ambient Air. April 2007.

⁶ Office of the Deputy Prime Minister (2005). *Planning Minerals Policy Statement 2: Controlling and Mitigating the Environmental Effects of Minerals Extraction in England. Annex1: Dust.*

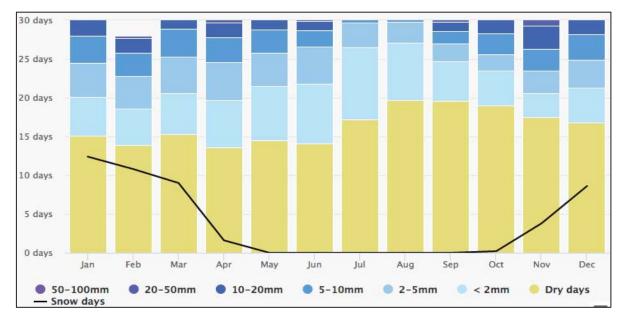
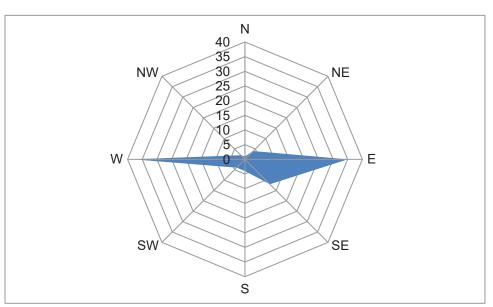


Figure E-5: Precipitation Levels (mm), Zestafoni

309. Snow cover is not formed every year, as winter precipitation often falls as rain. The average duration of snow cover is an average of 6-20 days. Snowstorm in the mountains to the north of Zestafoni are possible from November to April. The average total duration of snowstorms per year is 8 hours. Average per year number of days with Blizzard is three, maximum – ten. Most often blizzards occur in the winter months, in which the average duration of snowstorms per day snowstorm is 2.7 hours


310. Thunderstorms occur in all months of the year. The maximum number of days with thunderstorms refers to June (6 days), and the average duration of thunderstorms in the afternoon with thunderstorm is 1.5 hours and the maximum continuous – 12.3 hours.

311. **Figure E-4** illustrates the monthly temperature for Zestafoni which ranges on average, from 5 °C in the winter months to around 25 °C in the summer. Absolute maximum and minimum temperatures show that it is possible for the temperatures to reach as low as 20 °C and more than 40 °C in the summer.

E.1.2.2 Prevailing Winds

312. Wind strength, direction and frequency is shown in **Figure E-6**. The wind rose illustrates that the dominant wind direction is from the east. However, strong winds from the west are also experienced quite frequently.

E.1.2.3 Climate Change

313. <u>General</u> - Georgia is a mountainous country with diverse physical geography and climates, has a history of natural disasters, making the nation particularly susceptible to global environmental changes.

314. Climate trends observed since the 1960s include:

- Increased temperatures in the west by 0.3°C, and by 0.4°–0.5°C in the east (see Figure E-7).
- Increase in the number of hot days, particularly in the lowlands. Number of dangerously hot days in Tbilisi increased 14 days (1986–2010).
- Increased precipitation in the west (the mountain areas of Svaneti and Adjara. Both saw increases of 14%);

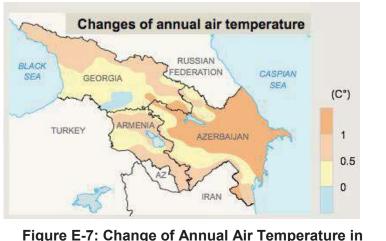
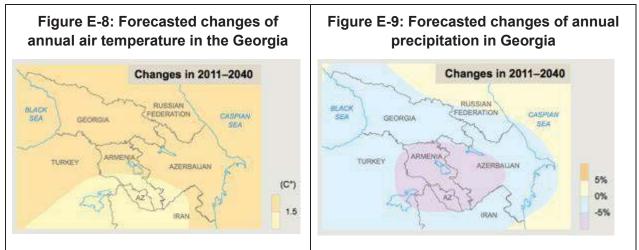


Figure E-7: Change of Annual Air Temperature in Georgia (1936-2005)

Source - Climate Change in the South Caucuses. Zoï Environment Network, 2011


decreased precipitation along the Likhi Ridge and to the east.

- Decrease in glacier mass by 30 %.
- Increased number of extreme events such as extreme precipitation, which cause
- landslides, mudflows and droughts; as well as more frequent floods in the west.

315. Projected climate changes include:

- Increased average annual temperatures by 0.8°-1.4°C by 2050 and 2.2°-3.8°C toward 2100; greatest increase in northwest mountains.
- Precipitation data less certain, but general increase expected up to 2050, and potential decreases of up to 24 % by 2100 (However, other data provided seems to seems to indicate that there will be a general decrease in precipitation, see **Figure E-9**).

- Increase in the number of hot days (which may double in some mountain areas) and more frequent heat waves June – August.⁷
- Decrease in both days and nights with frost.
- Complete loss of Georgia's 637 glaciers projected by 2160 due to higher temperatures.

Source - Climate Change in the South Caucuses. Zoï Environment Network, 2011

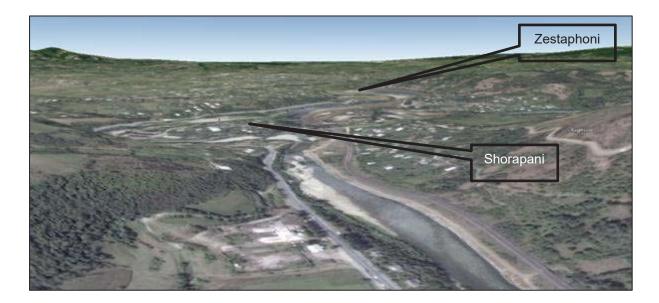
316. No site specific data has been found relating to climate change. However, given the general overview above it can be assumed that there will be an increase in average annual temperatures of between 1 and 1.5 °C over the next 30 years and that precipitation will decrease. The number of hot days may increase, and as such, consideration of suitable pavement types shall be given.

Greenhouse Gases (GHGs)

317. General - According to the World Resources Institute Climate Analysis Indicators Tool (WRI CAIT), Georgia's 2011 GHG profile was dominated by emissions from the energy sector, which accounted for 71% (7.5 MtCO₂e) of Georgia's total emissions. Land-use change and forestry (LUCF) was the second most significant sector. Of the 7.5 MtCO₂e % of emissions from the energy sector approximately 2 of the 7.5 MtCO₂e was attributable to the transport sector (resulting from purchases of large, inefficient, aging used cars, as well as economic growth and improved living conditions overall. From 2001-2009, the number of vehicles doubled, and the number of buses and minibuses tripled.⁸ In 2013 emissions data complied by the World Resources Institute (WRI) indicated that Georgia produced around 14 MtCO₂e or 0.0003% of global GHG emissions. 2 MtCO₂e represents 0.00004% of global GHG emissions.

E.1.3 Topography

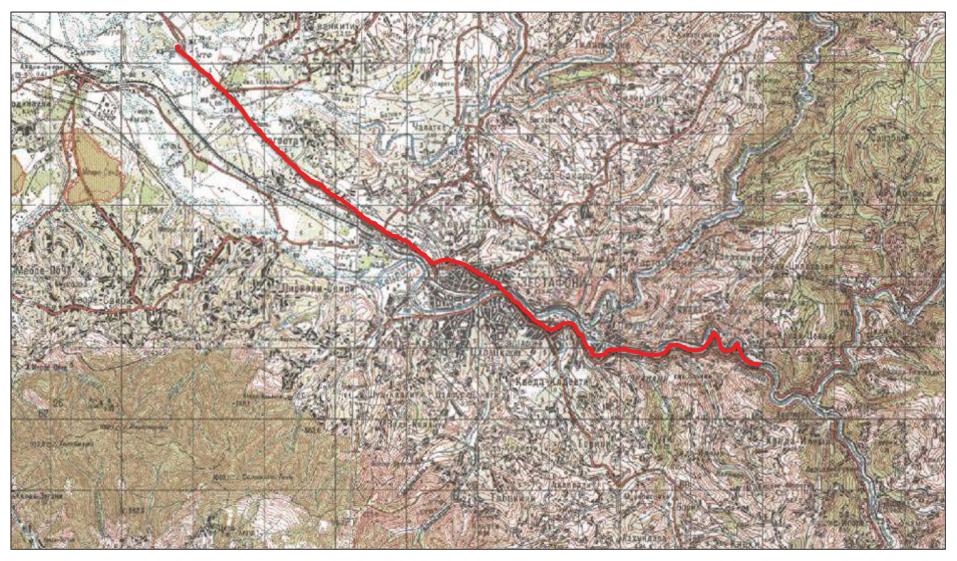
318. The Project area is located to the west of the Likhi Range which connects the Greater and Lesser Caucus Mountains. The Project corridor is set within a landscape of mountains, rolling hills and valley plain (see **Figure E-12** for a Topographical Map of the Project area). The existing road is located within the bottom of the river valley and as such elevation only varies between 200 and 170 meters above sea level. **Figures E-10** and **Figure E-11** illustrate the mountainous / rolling landscape in the first and middle portion of the road.

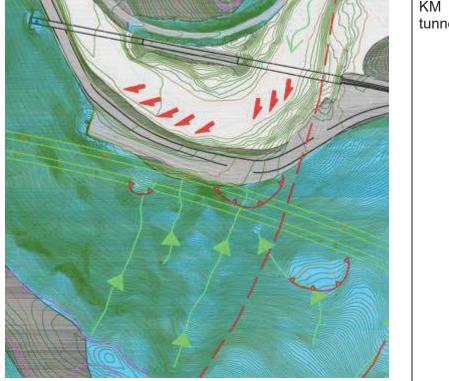

⁷ Climate Risk Profile – Georgia. USAID, 2015

⁸ Greenhouse Gas Emissions in Georgia. USAID, July, 2016

Figure E-10: Topography of the Road Corridor (existing road can be observed to the left of the valley)

Figure E-11: Topography looking over Shorapani towards Zestafoni




Figure E-12: Topography of the Project Area with Existing Road

E.1.4 Natural Hazards

319. <u>Regional Context</u> - Georgia is one of the more complex mountainous regions living through the development of natural disasters, in which multi-spectral natural hazards are distinguished by their high recurrence rates and negative consequences for the population and infrastructure, as well as high rates of land resource losses and economic damage. Among the different types of natural disasters that periodically cause significant damage to the country's economy and often cause human casualties, the most relevant to the Project are landslides.

320. Almost all morphological-climatic zones in Georgia, starting with the sea coastline up to the high altitude mountain alpine-nival zone, have experienced damage to different extents. Over 50,000 landslides of different sizes and over 3,000 mudflow-transforming watercourses (rivers, canyons) have been identified in the country, as well as hundreds of kilometers of eroded riverbanks and coastline. Up to 70% of the territory and around 63% of the population are permanently at risk of natural disasters of different intensities.

321. <u>Landslides</u> – Within the Project area a few areas prone to landslides have been identified. **Table E-3** provides the locations of the landslides.

Table E-3: Landslide Locations Within the Project Area

KM 0.6 – Located above a tunnel.

	KM 2.8 – This landslide area is located above the existing road which the new alignment bypasses to the north.
<image/>	KM 3.1 – Located above a cut slope on a steep embankment.

Between KM 4.8 and 5.2 – located immediately above the new alignment.
KM 8.7 – located immediatel== to the north of the new alignment.

	LEGEND					N scale 1:2,000
Lithology			Fluvial activity	and landforms	Forms rela	ated to mass movement and landslide
	Eluvial and colluvial de slopes, fine to coarse.	pos i ts, debris at the base of the QUATERNARY	Secondary riv	er system Perennlal rivers and stream		Edge of natural escarpment
\sim	Alluvial and terraced d	eposits, coarse. QUATERNARY		Temporary rivers and stream	\frown	Edge of landsllde
\sim	Limestones, sandstone weak thinly bedded. M	es and marls from very hard to IDDLE MIOCENE	Small valleys :	shape Small flat bottomed valley	<u> </u>	Edge of rock landlside
\sim	porphytitic brecclas, la	iff and tuff brecclas, porphyrites, vas, lava brecclas, bedded tuffites, nassive. MIDDLE JURASSIC	<<<<	Small V shaped valley	Anthropic	activity and forms
	Tectonic and ge	ologic elements	رددر	Small valley with concave bottom	\sim	Railway, main motor road and other soil embankments, mainly coarse
		Faults	Edge of alluvia	a <i>l terrace</i> First above river bed		Anthropic structures, industrial plants and deposits areas
		Inferred faults		Second above river bed		Edge of anthropic escarpment
	\frown	Stratigraphic contact	~~	River flow direction	C	Railway and road gallery entrance
	-18-	Layer strike and dip angle		River bank erolson		
	+	Horlzontal layers Alluvial fan				Carriageways 8

322. Generally, the landslides do not affect the project alignment, except for the mass movements identified above around KM 0.6 affecting TUN 4.0.01-TA/AT and its eastern and western portals.

323. <u>Seismicity</u> - According to the Seismic Hazard Map of Building Norms and Rules effective in Georgia "Earthquake-resisting construction (SSM III, 21.10.2009 N 128, article 1477) PN 01.01-09)", the study area is located in the 8-point earthquake zone (MSK 64 scale) with the dimensionless coefficient of seismicity (A) equaling 0.16 (village Khevi) under the same document. **Figure E-13** illustrates the seismic conditions in Georgia.

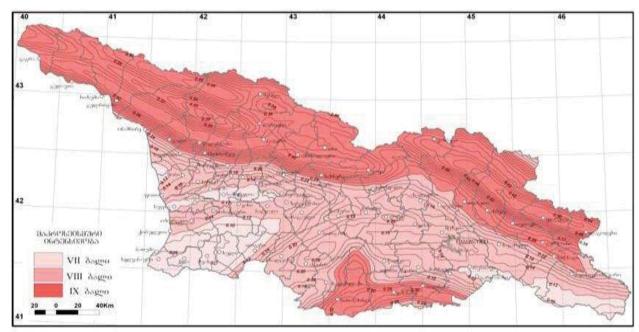
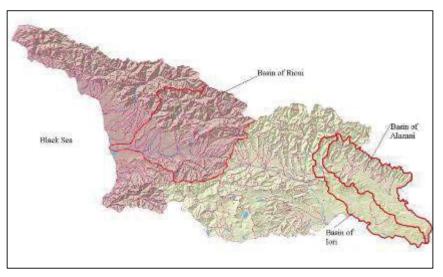



Figure E-13: Seismicity Map of Georgia (MSK Scale)

E.1.5 Hydrology

E.1.5.1 Surface Water

324. 60,000 km. They belong both to the Caspian and Black Sea basins, 25.075 (99.4%) of the rivers are small (less than 25km length), with total length of 54,768 km. More than 18,109 (70%) of the rivers belong to the Black Sea basin, and 7,951 (30%) belong to the Caspian Sea basin. Fiaure E-14 below illustrates the division on the Caspian and Black Sea basins.

<u>Regional Context</u> – In Georgia there are 26,060 rivers and stream with a total length of

Figure E-14: Rioni Sub-basin

325. The Project

road is located within the Black Sea basin in the Rioni sub-basin. The Rioni sub-basin dominates western Georgia and has a total catchment area of 13,400 km², which is approximately 20% of the whole Georgian territory.

326. <u>Local Context</u> – Two main rivers can be found within the Project area, the Kvirila and the Dzirula. The confluence of the two rivers is in Shorapani adjacent to the Project road at Km 5.0, see **Figure E-15**.

327. **Kvirila** - The river Kvirila heads from Ertso basin on the southern slope of Racha Ridge. It flows out of Ertso Lake at 1,711 m altitude and into Vartsikhe water reservoir. Before the water reservoir was created, it flowed into the river Rioni from its left bank. The length of the river is 140 km, its total fall is 1628 m, its mean slope is 11,6‰, the area of the rivers basin is 3,598 km² and the mean height of the basin is 790m. The river comprises 2,906 tributaries of different ranges with the total length of 5,254 km.

328. The upper part of the basin is located on the southern slope of Racha ridge and western slope of the Likhi range, its middle course is located over Kartli-Imereti crystal massif, while the lower reaches flow across Kolkheti Plain. The upper part of the basin is characterized by deep gorges and gullies typical to the mountainous region. There are milder relief forms spread over the crystal massif, and the river flows out across Kolkheti Plain past Zestafoni.

329. The upper part of the Kvirila basin is structured with the Upper and Middle Jurassic limestones, marls, sandstones, porphyries and slates. The Upper and Middle Miocene clays, marls, sandstones and conglomerates dominate in the middle part. The Upper and Middle Jurassic rocks are spread in the environs of Zestafoni, and there are Cretaceous limestones, marls and sandstones spread over the same location and past it. The part of the middle course of the basin and surface of its lower course is mostly covered with the Quaternary deposits, which are partially presented by alluvial and fluvio-glacial deposits. Alluvial and alluvial-prolluvial deposits are also in bulk. The humus calcareous soils are spread over Racha ridge. A great part of the basin is occupied by brown forest soils, and zheltozem dominate on Kolkheti Plain. The percentage of forest land in the basin is over 50%.

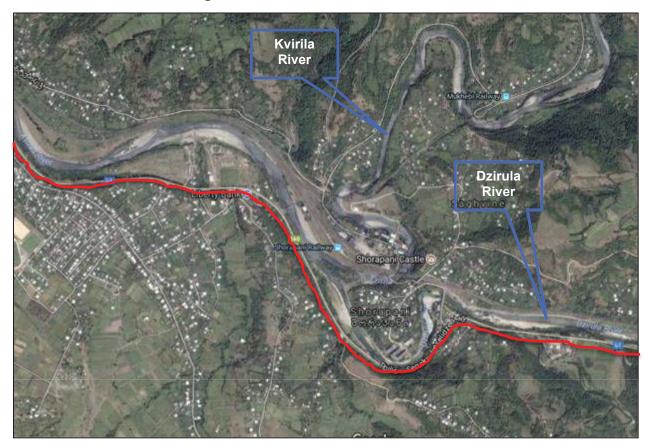


Figure E-15: Dzirula and Kvirila Rivers

330. The river is fed with rain (45,0%), snow (31,8%) and underground (23,2%) waters. The water regime of the river is characterized by spring floods, autumn-and-winter freshets and summer unstable low- water periods. Floods mainly start at the beginning of March, reaching their maximum at the end of April or at the beginning of May and are over at the end of June. The course of floods is frequently disturbed by the freshets caused by rains. The freshets caused by rains are quite frequent even during the summer low-water periods. Particularly intense freshets are observed in autumn as a result of continuous rains. Such cases take place 4 or 5 times annually and last from 2 to 15 days. The level of the autumn freshets in the lower reaches of the river exceed that of spring floods, with their annual maximums more frequently fixed in autumn. In winter, the river has unstable levels due to rainfalls and warming. 24.3% of the annual flow flows in spring, 24.4% flows in summer, 22.1% flows in autumn and 29.2% of the annual flow flows in winter.

331. **Dzirula** - The river Dzirula heads at 1,252 m above sea level where several brooks merge on the western slopes of Likhi Range and flow into the river Kvirila from its left bank. The length of the river is 89 km, its total fall is 1,052 m and the area of its catch basin is 1,270 km².

332. The river comprises 1,386 tributaries with the total length of 1,677 km. The major tributaries are the Dumala (34 km), Chkherimela (39 km) and Khelmosula (16 km).

Figure E-16: Dzirula River, KM 4.4, June 2017

333. The river basin is located on Imereti Plateau and is bordered by Likhi Range from east and south-east and by the river Kvirila basin from north and north-west. The river basin is well developed in the lower zone due to the confluence with the river Chkherimela. The relief of the river basin within the limits of the Likhi Range is strongly dissected with deep gorges of the river tributaries. The geology of the river basin is represented by granites, gneisses, limestones and sandstones. The soil cover of the basin is represented by loamy soils, and the vegetation cover in almost all basin is presented as a dense hardwood forest.

334. The river gorge is winding and mostly V-shaped. The width of the gorge bed varies from 20-25 m to 300-350 m. The slopes of the river gorge merge with the slopes of the adjacent ridges. The river has terraces only in its middle and lower reaches. The width of the terraces varies from 50 to 400 m; their height is from 2-3 m to 7-8 m. The river floodplain is weakly developed.

335. The river bed is moderately winding and mostly non-branched. The bed in the upper reaches is stony giving the current a mountainous character. The width of the current varies from 10 to 30 m, its depth is 0,5-1,8 m, and its speed is within the limits of 0,8 and 1,5 m/sec.

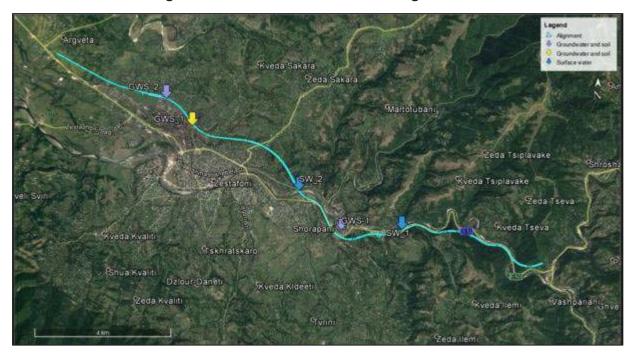
336. The river is mostly fed with snow and rain waters. Its water regime is characterized by spring flood often accelerated by freshets caused by rains, non-stable low-water periods in summer and freshets in autumn and winter caused by rains and rapid air warming. The yearly distribution of the river flow is extremely uneven. On average, 48% of the annual flow flows in spring, 9-12% flows in summer and autumn and 30% flows in winter. Short icy events mostly as icy edges are fixed only at the river mouths.

337. Other small tributaries within the are include the Borimela River (which the Project road crosses at KM 3.5), and the Ajamura and Samanishvilisghele rivers, both of which located on the south bank of the Kvirila river more than 1.3 km from the Project road.

River	Station	Catchment (km²)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Dzirula	Tseva	1190	21.6	33.5	54.0	58.2	29.8	19.4	13.5	9.59	8.93	16.0	20.1	25.9
Kvirila	Zestafoni	2490	45.3	70.6	10.4	12.6	83.0	55.7	35.3	26.5	23.6	39.2	45.6	53.7

Table E-4: Average monthly discharges of the Kvirila and Dzirula Rivers

River	Station	Catchment (km ²)	Reoccurrence Year						
			1000	100	50	20	10	5	
Dzirula	Tseva	1190	965	670	575	455	380	315	
Kvirila	Zestafoni	2490	2130	1430	1245	1000	850	695	


Surface Water Quality – Water quality monitoring has been undertaken previously on the 338. Kvirila river due to the presence of mining activities near the town of Chiatura which is approximately 28 kilometers north east of Zestafoni. One of the world's richest manganese (Mn) deposits and largest Mn mining areas lies in the foothills of the Caucasus Mountains, near the city of Chiatura. The monitoring revealed that the Kvirila River is contaminated with Mn and Fe. Total Mn levels were almost 15 times the MAC downstream of the discharge from the Central Keeping Facility (CKF, which is the main ore processing facility). Concentrations of total Mn were 2-12 times the MAC in Darkveti, Shugruti, and Rgani streams, and total Fe values were 8–55 times the MAC in these tributaries. The primary sources of Mn and Fe in the Kvirila River are the untreated industrial wastewater discharged from the CKF, tailings and waste rock associated with the Mn ore disposed of on the Kvirila River floodplain, and the main tributaries (primarily Darkveti and Shugruti streams). The monitoring report concluded that use of the Kvirila River before and after the CKF, for drinking, economic, cultural, and household purposes should be prohibited. Based on Mn concentrations, these areas are extremely highly polluted water, according to Georgian regulations.9

339. To further assess the status of water quality in the Project area, including the Kvirila and Dzirula rivers monitoring was undertaken in September, 2017. A total of two surface water samples were collected and analyzed to determine the baseline water quality levels. **Table E-5** describes the sample locations and rationale for their selection. The sampling locations are mapped in **Figure E-17**.

Sample ID	Coordinates	Rationale for Site Selection
SW01	42 ° 05'37.36"N / 43° 06'09.45"E	At location of Bridge BRI 4.1.01-AT/TA, Dzirula River
SW02	42 ° 06'12.29"N / 43° 03'57.67"E	At location of Bridge BRI 4.1.04-AT/TA, Kvirila River

 Table E-5: Surface Water Quality Monitoring Locations

⁹ Effects of Manganese Mining on Water Quality in the Caucasus Mountains, Republic of Georgia. Caruso, et al. Mine Water Environ. 2011

340. The results of the water quality monitoring are presented in **Table E-6** below show that both the Dzirula and Kvirila rivers meet the national MACs for surface water quality at the sampling locations, although the levels of manganese in the Kvirila sample was above the recommended standards for drinking water. This reflects the findings of the study on manganese in the Kvirila river mentioned above.

#	Parameter	Units	SW-1 (Dzirula)	SW-2 (Kvirila)	Method/standard	National, maximum allowable concentration
1	рН	-	8.2	8.1	ISO 10523-08	6.5-8.5
2	Electrical conductivity (EC)	S/m	0.027	0.0248	ISO 7888-85	n/a
3	Turbidity	FTU	3.87	176	ISO 7027-99	n/a
4	BOD _{5,}	mg/IO ₂	2.7	1.7	ISO 5815-03	6
5	COD	mg/IO ₂	<15	<15	ISO 6060-89	30
6	Dissolved oxygen (DO)	mg/l	9	7.6	ISO 5815-03	≥4
7	Total suspended solids (TSS)	mg/l	26	96	ISO 11923-97	increase by no more than 0.75
8	Oil and grease	mg/l	<5.0	<5.0	EPA 413,1-97	n/a
9	Total Phosphorus	mg/l	<0.1	0.1	ISO 6878-04	2
1 0	Total Nitrogen	mg/l	0.25	0.3	GOST 18826-73	n/a
1 1	Total Ammonium	mg/l	<0.1	<0.1	GOST 4192-82	0.5 mg/l NH4
1 2	TPH	mg/l	<0.04	<0.04	EPA 48,1-97	0.3
1 3	Total residual chlorine	mg/l	<0.05	<0.05	GOST 18190-72	n/a

Tahle	F-6.	Surface	Water	Quality	Monitoring	Results
I UNIC	L-0.	ounace	Tutor	Quanty	monitoring	Results

#	Parameter	Units	SW-1 (Dzirula)	SW-2 (Kvirila)	Method/standard	National, maximum allowable concentration
1	Total Zinc	mg/l	<0.003	<0.003	ISO 8288-A-86	1
4						
1	Dissolved	mg/l	<0.003	<0.003	ISO 8288-A-86	1
5	Copper	_				
1	Manganese	mg/l	<0.02	0.28	EPA 3005 A-92	1
6	_	_				
1	Total Coliform	100ml	680	800	ISO 9308-1:2014	≤10 000
7	Bacteria					

341. No fisheries are known to exist within the Project area, although recreational fishing was observed during surveys performed by the LCF.

1.5.2 Groundwater Water

342. Local Context – The water bearing strata is of contemporary alluvial deposits characterized by a free groundwater table declining along the general flow of the rivers. The shallow ground water level is 1.5m - 1.8m below ground and anticipated amplitude of groundwater level fluctuation is below 1m. At some locations near the riverbeds and groves, groundwater is very shallow depths (0.3m). Aquifers are mainly fed from rivers and precipitation.

343. As part of the Projects Geological study a number of boreholes were excavated within the Project area. Groundwater levels between generally ranged between 0.3 and 8.8 meters in depth. A number of groundwater wells and natural springs are present within the Project area and according to a recent World Bank study groundwater and springs are main sources of water supply for the Imereti population.¹⁰

344. <u>Groundwater Quality</u> - A total of two groundwater samples were collected from two wells to assess the baseline groundwater quality in the Project area. Sampling was originally intended close to Shorapani, but the monitoring team had difficulties accessing this location and as such sampled at two locations close to the GAA plant instead. **Table E-7** provides a summary of the results.

Sample ID	Coordinates	Rationale for Site Selection
GW1	42 ° 07'11.23"N / 43° 01'40.06"E	Behind GAA Site
GW2	42 ° 07'36.52"N / 43° 01'06.14"E	Behind GAA Site

Table E-7: Groundwater Quality Monitoring Locations

345. Results – The results of the groundwater monitoring indicate all parameters in sample location GWS-1 meet the national MACs and where applicable, WHO standards. GWS-2 however exhibited high hardness, total dissolved solids, calcium, manganese and sulfates.

#	Parameter	Units	GWS- 1	GWS- 2	Method/standard	National limit, maximum allowable concentration	WHO, guidance values, mg/l
1	pН	-	7.35	7	ISO 10523-08	6.5-8.5	n/a
2	Dissolved oxygen (DO)	mg/l	7.1	5	ISO 5815-03	n/a	n/a

Table E-8: Groundwater Quality Monitoring Results

¹⁰ Second Regional Development Project, Imereti Regional Development Program, Imereti Tourism Development Strategy. Strategic Environmental, Cultural, Historical and Social Assessment. World Bank, 2014

#	Parameter	Units	GWS- 1	GWS- 2	Method/standard	National limit, maximum allowable concentration	WHO, guidance values, mg/l
3	Electrical conductivity (EC)	S/m	0.0478	0.178	ISO 7888-85	n/a	n/a
4	Alkalinity	mg- eq/l	<0.2	<0.2	Gost 23268.3-78	n/a	n/a
5	Hardness	mg- eq/l	5.38	22.5	Gost 23268.5-78	7-10	n/a
6	Total suspended solids (TSS)	mg/l	<2.0	<2.0	ISO 11923-97	n/a	n/a
7	Total dissolved solids	mg/l	466	1946.7	Calculated	1000-1500	n/a
8	Arsenic, As	mg/l	<0.005	<0.005	Gost 4152-89	<0.01	0.01
9	Chlorides	mg/l	17	41.1	Gost 23268,17-78	<250	n/a
10	Iron, Fe	mg/l	<0.02	<0.02	EPA 3005 A-92	<0.3	n/a
11	Nitrates	mg/l	8.91	8.86	Gost 18823-73	<50	50
12	Sodium, Na	mg/l	17.1	125.4	ISO 9964-3-93	<200	n/a
13	Potassium, K	mg/l	1.05	3.08	ISO 9964-3-93	n/a	n/a
14	Calcium, Ca	mg/l	80	245	Gost 23268,5-78	<140	n/a
15	Magnesium, Mg	mg/l	16.8	124	Gost 23268,5-78	<85	n/a
16	Lead, Pb	mg/l	<0.01	<0.01	ISO 8288-A-86	<0.01	0.01
17	Sulfates	mg/l	36	960	Gost 23268,3-78	<250	n/a
18	Manganese, Mn	mg/l	<0.02	<0.02	EPA 3005 A-92	<0.4	0.4*

E.1.6 Geology & Soils

E.1.6.1 Geology

346. In the Project area, along the highway alignment, three major geological units can be identified:

- 1. Effusive volcanic rocks covering the crystalline basement (not exposed in Lot F4), dated Middle Jurassic. They are represented by the porphyritic complex including the following geological formations:
 - a. J2b2 (A) Tuff and tuff breccias, from moderately hard to hard. Mainly massive.
 - b. J2b2 (B) Irregular succession of porphyrites, porphyritic breccias, lava breccias, bedded tuffites, tuff and tuff breccias; mainly hard. From thinly bedded to massive.
- 2. Sedimentary rocks covering the volcanic units, dated Middle Miocene and represented by the following geological formations:
 - a. N1² (m) Marls.
 - b. N1² Limestones and sandstones. From very hard to weak, thinly bedded.
- 3. Quaternary soils, covering both the volcanic and the sedimentary rocky units, represented by:
 - a. eQ Eluvial cover deposits on the upper plains. Coarse and/or fine.
 - b. cdQ Colluvial deposits in the valley floors and debris at the slope bases. Coarse and/or fine.
 - c. aQ Recent alluvial and terraced deposits. Coarse.
 - d. aaQ Current alluvial deposits. Coarse.

347. From a geo-lithological point of view, along the alignment, three main homogeneous sections can be identified, depending on similar lithological conditions (**Table E-9**, below):

- a) From km 0+000 to 6+350 outcropping formations are represented by volcanic rocks of the porphyritic complex, including both the mainly effusive rocks of the J2b2 (B) formation and the mainly pyroclastic rocks of the J2b2 (A) formation. The contact between this two geological units is generally a stratigraphic contact, being tuffs above lavas. In some cases, important faults cause tectonic contacts between them. In this section, tunnels are expected to be excavated in J2b2 (B) formation; bridges are expected to have their abutments and piers on quaternary deposits (aQ, aaQ and mQ with a variable thick) covering the J2b2 (B) formation; cuts are expected to be mainly in the porphyritic complex, sometime affecting the thin covering quaternary deposits.
- b) From km 6+350 to ~ 10+200 outcropping formations are mainly represented by carbonate sandstones of N1² formation, overlaying with a stratigraphic limit the J2b2 (A) formation, exposed in the major valleys. Covering quaternary deposits are widespread in this area. Several faults are observed. In this section, tunnels are expected to be excavated in the porphyritic complex (both J2b2 (A) and (B) formations) and in the N1² formation; one bridge crosses a colluvial deposit overlaying the N1² formation; one cut is expected to be excavated in the N1² formation.
- c) From km ~ 10+200 to 14+726 in this area, colluvial and alluvial deposits (cdQ and aQ) outnumbers the not-outcropping rocky formations.

Bridges	from km	to km	length	lithology
T-TA-1	260,00	590,00	330	Irregular succession of porphyrites, porphyritic breccias, lava breccias, bedded tuffites, tuff and tuff breccias; mainly hard. From thinly bedded to massive
T-TA-2	830,00	1200,00	370	Irregular succession of porphyrites, porphyritic breccias, lava breccias, bedded tuffites, tuff and tuff breccias; mainly hard. From thinly bedded to massive
T-TA-3	3510,00	4270,00	760	Irregular succession of porphyrites, porphyritic breccias, lava breccias, bedded tuffites, tuff and tuff breccias; mainly hard. From thinly bedded to massive
	6320,00	6622,00	302	Tuff and tuff breccias, from moderately hard to hard. Mainly massive
T-TA-4	6622,00	6759,00	137	Irregular succession of porphyrites, porphyritic breccias, lava breccias, bedded tuffites, tuff and tuff breccias; mainly hard. From thinly bedded to massive
	6759,00	7020,00	261	Tuff and tuff breccias, from moderately hard to hard. Mainly massive
T TA 5	7130,00	7496,00	366	Tuff and tuff breccias, from moderately hard to hard. Mainly massive
T-TA-5	7496,00	8250,00	754	Limestones and sandstones from very hard to weak, thinly bedded
T-TA-6	9280,00	9640,00	360	Limestones and sandstones from very hard to weak, thinly bedded

Table E-9: Lithology – Rikoti - Argveta

T-AT-1	200,00	610,00	410	Irregular succession of porphyrites, porphyritic breccias, lava breccias, bedded tuffites, tuff and tuff breccias; mainly hard. From thinly bedded to massive
T-AT-2	770,00	1220,00	450	Irregular succession of porphyrites, porphyritic breccias, lava breccias, bedded tuffites, tuff and tuff breccias; mainly hard. From thinly bedded to massive
T-AT-3	3490,00	4600,00	1110	Irregular succession of porphyrites, porphyritic breccias, lava breccias, bedded tuffites, tuff and tuff breccias; mainly hard. From thinly bedded to massive
	6345,00	6639,00	294	Tuff and tuff breccias, from moderately hard to hard. Mainly massive
T-AT-4	6639,00	6776,00	137	Irregular succession of porphyrites, porphyritic breccias, lava breccias, bedded tuffites, tuff and tuff breccias; mainly hard. From thinly bedded to massive
	6776,00	7030,00	254	Tuff and tuff breccias, from moderately hard to hard. Mainly massive
TATE	7145,00	7504,00	359	Tuff and tuff breccias, from moderately hard to hard. Mainly massive
T-AT-5	7504,00	8300,00	796	Limestones and sandstones from very hard to weak, thinly bedded
T-AT-6	9290,00	9720,00	430	Limestones and sandstones from very hard to weak, thinly bedded

E.1.6.2 Soils

348. The soils in the Project area are very productive and range of crops are grown in the region which is well known for is wine production. Soil temperatures from Zestafoni and topsoil thicknesses along the road alignment are shown in **Table E-10** and **Table E-11**.

Table E-10: Soil Temperature

Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average Monthly												
Temperature (°C)	2	3	8	15	21	26	29	28	22	15	9	4

Chainage (km)	Topsoil Thickness (m)
10+100 - 10+450	0.50
10+450 – 10+820	0.70
10+820 – 11+240	0.40
11+240 – 11+620	0.30
11+620 – 12+400	0.40
12+400 – 12+625	0.20
12+625 – 12+990	0,20
12+990 – 13+445	0.35
13+445 – 13+835	0.30
13+835 - 14+080	0.25
14+080 - 14+730	0.60

349. Hazardous wastes generated by the GAA, Chiatura manganese enrichment plant, and many small-size smelters operating in various settlements of Imereti have been identified as potential sources of soil pollution. ¹¹

350. To assess the status of soil quality in the Project area soil sampling and analysis was undertaken in September, 2017. A total of two soil samples were collected and analyzed to determine the existing soil quality. **Table E-12** describes the sample locations and rationale for their selection. The sampling locations are mapped in **Figure E-18**.

Table E-12: Soil Monitoring Locations

		•
Sample ID	Coordinates	Rationale for Site Selection
GW_S-1	42 ° 05'36.08"N / 43° 04'52.36"E	Behind the GAA Factory
GW_S-2	42 ° 07'36.52"N / 43° 01'06.14"E	Behind the GAA Factory

Programa (Programa (Progra

Figure E-18: Soil Monitoring Locations

¹¹ Integrated Natural Resources Management in Watersheds of Georgia Program. USAID, 2011

#	Parameter	Units	GWS- 1	GWS-2	Method/standard	National limit, maximum allowable concentration	Proposed National Limit, MAC	Proposed National Preventive limits of risk elements in agricultural soil	Italian Standard For Residential Areas	UK Soil Guidelines for Residential Areas ¹²
1	Copper, Cu (mobile)	mg/kg	1.35	2.30	GOST P50683-1994	3-132	60-100	60	120	
2	Zinc, Zn (mobile)	mg/kg	<0.5	3.6	GOST P50686-1994	23-220	130-200	120	150	
3	Nickel, Ni (mobile)	mg/kg	1.0	0.25	GOST P50683-1994	4-80	60-80	50	120	
4	Chromium, Cr (mobile)	mg/kg	<0.5	<0.5	GOST P50683-1994	6	100-200	90	150	
5	Lead, Pb (total)	mg/kg	41.5	47.0	ISO 148691-2001	32-130	100-140	60	100	
6	Arsenic, As (total)	mg/kg	14.4	16.2	GOST 4152-89	2-10	30	20	20	32
7	Cadmium, Cd(total)	mg/kg	<2.0	<2.0	ISO 148691-2001	2	0.5 – 1.0	0.5	2	
8	Polychlorinated biphenyl PCB	mg/kg	<7.0	<7.0	EPA 8082 A-2007	60	10	-	5	
9	Asbestos		nd	nd	NIOSH 9002 -1989	3-132	-	-	100 (next law)	

Table E-13: Soil Sampling Results

¹²http://webarchive.nationalarchives.gov.uk/20140328153727/http://www.environment-agency.gov.uk/static/documents/Research/SCHO0409BPVY-e-e.pdf

Parameter	Unit	GWS-1	GWS- 2	Proposed Georgian Standard,	Canadian SQG, residential	Dutch Target Value ¹³	Dutch Intervention Values ¹⁴	Italian Standard for Soils in Residential	Italian Standard for Soils in Industrial / Commercial Areas
				MAC				Areas	
Naphthalene	ug/kgdm	1.51	2.15	100	600				
Acenaphthylene	ug/kgdm	<0.5	1.98						
Acenaphthene	ug/kgdm	1.11	4.42						
Fluorene	ug/kgdm	1.20	3.29						
Phenanthrene	ug/kgdm	11.30	28.08	100	100				
Anthracene	ug/kgdm	2.16	5.81	10					
Fluoranthene	ug/kgdm	29.40	93.3	100					
Pyrene	ug/kgdm	20.50	72.2		100			5,000	50,000
Benzo(a)anthracene	ug/kgdm	15.30	51.9	1,000	100			500	10,000
Chrysene	ug/kgdm	17.70	53.08	10				5,000	50,000
Benzo(b)fluoranthene	ug/kgdm	35.80	382		100			500	10,000
Benzo(k)fluoranthene	ug/kgdm	12.20	133		100			500	10,000
Benzo(a)pyrene	ug/kgdm	26.20	270	100				100	10,000
Indeno(123cd)pyrene	ug/kgdm	11.70	207		100			100	5,000
Benzo(ghi)perylene	ug/kgdm	10.80	179					100	10,000
Dibenzo(ah)anthracene	ug/kgdm	2.44	41.6		100			100	10,000
Sum – 16 PAH	ug/kgdm	200	1,530						
Sum – 16 PAH	mg/kgdm	0.20	1.53						
Sum – 10 PAH	ug/kgdm	138.27	1,023.32			1,000	4,000		
Sum - 10 PAH	mg/kgdm	0.14	1	1		1	40		

Table E–14: US EPA 16 PAHs Results

* Parameters highlighted in green used for Dutch Sum 10 PAH Values.

¹³ The target values indicate the level at which there is a sustainable soil quality. In terms of curative policy this means that the target values indicate the level that has to be achieved to fully recover the functional properties of the soil for humans and plant and animal life. Besides this the target values give an indication of the benchmark for environmental quality in the long term on the assumption of negligible risks to the ecosystem.

¹⁴ The soil remediation intervention values indicate when the functional properties of the soil for humans, plant and animal life, is seriously impaired or threatened. They are representative of the level of contamination above which there is a serious case of soil contamination.

* (PAH tests by ultrasonic extraction and GC/MS-SIM detection)

Table E-15: Mercury report

Sample origination	Hg, mg/kgdm	Georgian regulations, mg/kg			
GWS- 1	0.024	2.1 *			
GWS-2	0.089	(MPC with consideration of the background)			

* Qualitative norms of the status of environment – Hygiene assessment of soil in residential areas, guidelines 2.1.7.003-02

**(Hg measured by Varian SpectrAA 220FS with Vapour Generation Accessory VGA-77 on the basis of SOP AEL 2003 (ISO17025 accredited) complied with EPA245.1 Standard Method.)

351. The results of the general soil sampling show that all parameters are within the current Georgian limits with the exception of Arsenic and Lead. However, as noted in **Section D.5.6**, these limits are considered outdated, stemming from old regulations developed during the Soviet times.

352. Assessing the results against EU limits (Italy and the UK), we can see that the results of all parameters sampled, including arsenic and lead, are well within the limits for residential areas, which are significantly lower than the ones for industrial areas, which should be the reference in this case. This, it should be said, is a direct effect of the precise choice, made by the Design Team, to move the alignment far from two piles of waste material sited on the northern boundary of the GAA, an area considered as hazardous. In addition, the results are also well within the recently proposed maximum allowable concentrations that have been developed by the MoENRP. Discussions with the UNEP indicate that these proposed limits will come into force some time in 2018. The UNEP stated that the purpose of the new limits is to harmonize them with the requirements of the Product Safety and Free Movement Code and Georgia's obligations undertaken under the Association Agreement with the European Union. Most importantly, all parameters are also below the proposed national Preventive limits of risk elements in agricultural soil, which is an important facor considering that much of the spoil material may be disposed of at the Kutaisi bypass which borders on an area of agricultural land.

353. Analysis of the PAHs shows that both samples meet the Dutch target levels meaning that the soil is considered a sustainable soil quality and will have negligible risk to the ecosystem. Levels of mercury were recoded below Georgian limits.

E.1.7 Geomorphology

354. From a morphological point of view three geomorphological structures can be recognized in the Project area:

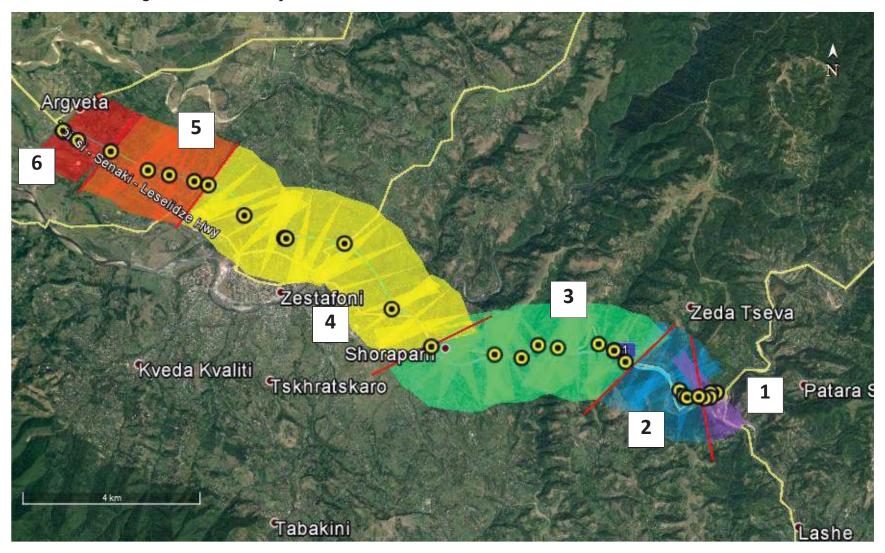
- Zemo Imereti Highland (Plateau);
- Kolkheti piedmont undulated zone; and
- Kolkheti Lowland (alluvial plain).

355. A detailed description of the alignment of the project road in terms of geomorphology is given below.

- KM 0.0 1.5. On this segment, the river Dzirula has a sharply meandering channel and the valley acquires a narrow canyon-like shape. The valley floor width varies from 40 m to 80 m. Compared with the right slope, the left one is steeper. Slope grades varies from 27° to 43°. The valley slopes are dissected with lateral inflows and small erosion gullies. The right slop is characterized by edges of both natural and anthropic escarpment, mainly related to the old and actual railway lines. Left slope is forested and not at all stable above the road profile: important natural escarpments are reported, and landslides have been detected between km 0+450, and km 0+750, affecting the western portal of TUN 4.0.01-TA and eastern portals of TUN 4.0.02 TA/AT.
- KM 1.5 2.3. On this segment the river Dzirula valley is narrow and V-shaped. The river runs in the narrow channel the width of which is 40 60 m. Above-flood-plain terraces are registered fragmentally. On both sides of the valley, slopes have equal grade and are

dissected with lateral erosion gullies. The slope grade varies from 16° to 37°. Also in this section, right slopes are characterized by anthropic escarpment, while the left forested steep slopes exhibit natural escarpments, but appear to be stable.

- KM 2.3 3.5. On this segment, from south-eastern direction, the river Dzirula is joined by the river Borimela which is its left tributary. It is deeply cut into the V-shaped canyon-like narrow valley. The river Dzirula valley slopes are steep and dissected with lateral erosion gullies. The slope grades vary from 150° to 41°. Above-flood-plain terraces are registered fragmentally. In the right side of the river, many anthropic landforms are observed (railroad line embankment, escarpment, slope stabilization), while in the left slopes are noticed natural escarpment and a series of small and shallow landslides affecting the actual motor road, but not affecting the future project road.
- KM 3.5 5.3. Within this segment, the river Dzirula is sharply meandering. The width of the valley floor varies from 40 m to 300 m; the flood-plain and above-flood-plain terraces are well- defined; the left slope of the river valley is relatively steep, with its grade changing from 25° to 45° and the grade of the right slope changing from 10° to 25°. The valley slope surfaces are dissected with lateral inflows and numerous small erosion gullies. On this segment, the river Dzirula joins the river Kvirila, its right main tributary. Steep natural escarpment with well-defined edge are widespread on the left side of the river; from km 4+800 to 5+300 the slope is unstable, since landslide scarps and deposits are observed.
- KM 5.3 6.3. This segment is located within the western end of the Zemo Imereti Highland, in the river Kvirila valley that in this section is wide. The valley slopes are steep and partly dissected with lateral erosion gullies. The valley floor is represented with the river channel, the flood-plain and above-flood-plain alluvial terraces. The height of the second terrace surface is 7 17 m above the river level. Within this segment, one shallow left tributary flows into the river Kvirila from the south. On both sides of the valley, angle of gradient of the slopes varies from 15° to 40°. The slopes are mainly forested and stable.
- 1. KM 6.30 10.1. In the Colchis Piedmont Undulated Zone, the middle part of the route will run from the northern periphery of the city Zestafoni to the north-western part of village Argveta. Within this zone, there are several streams and gullies, with a general NE-SW orientation, deeply cut into relief. Between the valleys' bottom and the slope crests, the difference between absolute elevations varies between 20 and 70 m. The slopes grade varies between 14° and 27°. The slopes of the above-said gullies are covered with vegetation and stable. The valleys are characterized by a concave or flat bottom.
- 2. KM 10.1 14.7. The last part of the Project road will run on the Colchis alluvial plain, which has absolute elevations of 145-150 m. The relief is slightly sloped (1° 6°) south-westward. This section is characterized by the presence of 3 alluvial fans, wide from 350 m to 800 m. Natural stable escarpments are detected. In this area several anthropic landforms are present, including road embankment, edges of anthropic escarpment, deposit areas and the GAA industrial area of Zestafoni.


E.2 Ecological Resources

356. The project corridor crosses forest areas, agricultural land plots, hilly forest slopes, residential areas and riparian ecosystems. 17.3 hectares (ha) of the municipality of Zestaphoni is covered by forest and shrubbery.

357. Due to human pressures natural vegetation has been taken over by agricultural crops and other human development. In these areas arable lands and pastures have developed. Some of the animal species typical for the area have moved to other areas in away from human activity. Over the time the fauna of the region has changed significantly. Animals currently found in the area of interest are mainly presented by those species that live in forested areas and/or can tolerate presence of humans. The natural forest massifs have significant value from biodiversity protection viewpoint, because of their importance as migration route for the local animal species. 358. Biodiversity Study – To fully understand the biodiversity in the Project area a biodiversity study was carried out by the LCF. The study was based on two aspects, firstly existing data was collected and analyzed in the form of a 'desk-top' study'. This was then followed up with field surveys carried out on August 8-9 and September 22-23, 2017. The aim of the study was to identify of animal species within the study area; to reveal significant habitats for inhabitant species; to determine possible impact on animal biodiversity on construction and operation phases and to develop impact mitigation measures.

E.2.1 Flora

359. <u>Habitat in the Project Area</u> - The study area has been divided in 6 sections according to the habitats types based on collection of desk-top data and also field surveys undertaken in August 8-9 and September 22-23, 2017. **Figure E-19**, below illustrates the six sections and describes the flora observed during the site visit.

(coordinates X=4660943.97, Y=347314.70; X=4660861.22, Y=346918.69) Conservation Status of the Habitat = HIGH

Located near Kveda Tseva village, in the neighboring forest massif. Is situated on limestone hill of the southern slope of the valley. Natural vegetation is heavily altered and only units of original forest remains are observed in the form of young and middle-aged trees of Georgian oak (*Quercus iberica*), Common maple (*Acer campestre*), European ash (*Fraxinus excelsior*), young and mid-term Sweet chestnut (*Castanea sativa*) trees. In the underwood Common hazel (*Corylus avellana*) shrubs dominate. Plants typical for dry ecotopes mainly Oriental hornbeam (*Carpinus orientalis*) are registered. Other species are seldom met. In the understory Butcher's-broom (*Ruscus colchicus*) and mosses are present. In the areas where hornbeam growth is not dense Hawthorn (*Crataegus sp.*), Gaiter-tree (*Thelycrania australis*), *Pomegranate* (*Punica granatum*), Black locust (*Robinia Fseudoacacia*); Ailanthus (*Ailanthus altissima*), etc are registered.

In this section of alignment forest density accounts for (0.3-0.4); canopy density 21-30%; slope tilt 10-20-25^o. Two young trees Persian walnut trees (*Juglans regia*) – protected species under the Georgia Red List (VU category) have been registered. The trees are planted in the fenced in area. A number Georgian Red List species were identified during the State Forest Fund Inventory, some of which can be found in this habitat area.

The transects surveyed within the habitat:

Y	Х
4667087	332826.9
4666866	333159.7
4666602	333887.2
4666163	335707.3
4666160	334710.6

(coordinates X=4660861.22, Y=346918.69; X=4661669.72, Y=345296.51) Conservation Status of the Habitat = HIGH

The forested zone bordering to the first site – near Kveda Tseva village; the southern slope of the forest, which is bordered by railway line from the south-west; the specie composition of the vegetation is as follows: common hornbeam (*Carpinus caucasica*), Georgian oak (*Quercus iberica*), Norway maple (*Acer platanoides*), common maple (*Acer campestre*), sweet chestnut (*Castanea sativa* VU), European pear (*Pyrus caucasica*), Oriental hornbeam (*Carpinus orientalis*). On the south slope two samplings of European Yew trees (*Taxus baccata*, Red List of Georgia VU category) have been registered (GPS X 42.086772 Y 43.114246 and X 42.086170; Y 43.143955). In the understory the following shrubs and grasses have been found: February daphne (*Daphne mezereum*), Blackberry (*Rubus*), English ivy, (*Hedera helix*), Butcher's-broom (*Ruscus colchicus*), Solomon's seal, (*Poligonatum glaberrimum*), Bracken (*Pteridium tauricum*), common fern (*Dryopteris filix mas*).

The forest is young with inclusion of individual mid-term and mature (old-growth) trees. Density is low (0.3-0.4); canopy density percentage 30-40-%; slope tilt 21-30-35⁰. Trees belong to C category (timber).

Moderately modified habitat; man-caused impact medium. Of protected species two young Chestnut trees (*Castanea sativa* – VU) and two European Yew trees (*Taxus baccata* – VU). A number Georgian Red List species were identified during the State Forest Fund Inventory, all of which can be found in this habitat area.

The transects surveyed within the habitat:

Х
332857.4
333889.0
335182.4

(coordinates X=4661669.72, Y=345296.51; X=4662103.27, Y=340960.28)

Conservation Status of the Habitat = LOW

Located on rocky massif of the north slope, near the central highway, where the forest is sparse (0.1-0.2) and belongs to the young forest grove group; the gradient of the slope is 25-350. Mixed vegetation types are distributed mainly of mezo-xerophilous type: Oriental hornbeam (*Carpinus orientalis*), Black locust (*Robinia Fseudoacacia*), Hawthorn (*Crataegus sp.*), Common plum (*Prunus divaricate*), Common maple (Acer campestre), Ailanthus (*Ailanthus altissima*), Common alder (*Alnus barbata*), Willow (*Salix*), Persimmons (*Diospyrus*), Fig tree (*Ficus carica*), Common hazel (*Corylus avellana*). In the upland meadows grasses are represented by: Wormwood (*Artemisia phyllostachys*), Astrodaucus orientalis, Foxtail (*Alopekurus*), (*Sambucus ebulus*), Milfoil (*Achilea setacea*), Creeping Savory (*Satureia spicigera*), Common chicory (*Cichorium intybus*), etc.

The quantity and density (0.3-0.4) increases farther in the forest. Slope tilt is 10-200. In the edges Deodar cedar (*Cedrus deodora*) is planted in rows. The trees are young and midterm.

Moderately modified habitat. Impact – tree felling, grazing. Protected species not found.

The transects surveyed within the habitat:

Х
335515.5
335577.8
335758.3
336053.2
337726.5
339069.7
340094.0

Habitat Area 4

(coordinates X=4662103.27, Y=340960.28; X=4665805.66, Y=336053.21)

Conservation Status of the Habitat = LOW

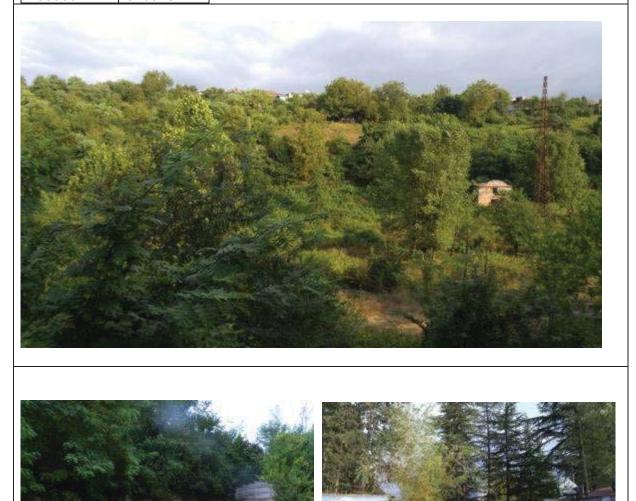
Shorapani village, left bank of the river, riparian floodplain meadow (0-5⁰), where only ruderal grassland and shrubbery is distributed. Middle-aged cedar trees are grown in rows according to age composition between floodplain and highway. Shrubs are presented by Blackberry (*Rubus*), European dwarf elder (*Sambucus ebulus*), Greenbrier (*Smilax excelsa*), Hawthorn (*Crataegus sp.*), stc. Between the forest and existing road mid-term Deodora Cedar (*Cedrus deodora*) trees. Construction is not likely to affect these plantations.

The habitat is strongly modified. The area is uses as a pasture. Grasses are represented by Blackberry (*Rubus*), Wormwood (*Artemisia phyllostachys*), Astrodaucus orientalis, Milfoil (*Achilea setacea*), Creeping Savory (*Satureia spicigera*), Common chicory (*Cichorium intybus*), Foxtail (*Alopekurus*), European dwarf elder (*Sambucus ebulus*), etc.

Similar habitats are found in riparian forest located close to the residential area/settlement.

The transects surveyed within the habitat:

Y	Х
4664580	337729.4
4662103	340960.3
4661897	342373.0
4661807	342973.6


Habitat Area 5

(coordinates X=4665805.66, Y=336053.21; X=46666602.41, Y=333887.24) Conservation Status of the Habitat = LOW

the road goes through overpass from the left bank of Dzirula river to the right river bank, crosses the road leading to Zeda Sakara via tunnel that ends near the ruins of former cognac factory, on the forested and abandoned plot (0-5-15⁰), which borders with a hill from the south. Trees and bushes are represented by: Persimmon (*Diospyros*), Ailanthus (*Ailanthus altissima*), Persian walnut (*Juglans regia* VU), Black locust (*Robinia fseudoacacia*), Honey locust (*Gleditschia triacanthos*), Oriental plane (*Platanus orientalis*), Pomegranate (*Punica granatum*), Oriental hornbeam (*Carpinus orientalis*), Hawthorn (*Crataegus* sp.), Plum (*Prunus divaricata*), Fig tree (*Ficus carica*), Pokeweed (*Phytolacca americana*), European dwarf elder (*Sambucus ebulus*) and invasive species Canadian goldenrod (*Solidago canadensis*).

The transects surveyed within the habitat:

Y	Х
4661924	345048.6
4662077	344703.7
4662013	343789.9
4660842	347179.8
4660943	347181.2
4660861	346918.7

(coordinates X=4666602.41, Y=333887.24; X=4667086.80, Y=332826.86) Conservation Status of the Habitat = HIGH

This is the marginal line of urban zone of Zestaphoni city, bordered by GAA from the southwest. The project corridor will cross the meadow (0-5⁰) and the motorway, which connects the city to the suburbs. Along the road plantations of Poplar are registered. The corridor goes west towards Argveta, crosses homestead plots (vineyards, orchards), turns south – to a meadow. The meadow is bordered by mature and over mature Elm Zelkova (*Zelcova carpinifolia*, VU) groves with Persian walnut trees (*Juglans regia*, VU), mature Oriental hornbeam (*Carpinus orientalis*), Plum (*Prunus divaricata*), Black locust (*Robinia*) *fseudoacacia*). In the last section of the road near Argveta the interchange construction is in process.

In the limits of the section 6 of alignment corridor corn, grapes, fruits are cultivated. Part of the area is used as a pasture. Two protected species Persian walnut trees (*Juglans regia*, VU) and Elm Zelkova (*Zelcova carpinifolia*, VU) are found to be in the project impact zone. No areas of State Forest Fund are found in this area.

The transects surveyed within the habitat:

Y	Х
4661670	345296.5
4661010	346491.5
4660879	346583.8
4660944	347314.7

360. <u>State Forest Fund</u> – The State Forest Fund (SFF) is a state-managed/controlled forest area under the management of the MoENRP but is not a protected area. Though it is not protected, for the purpose of controlling its use, the MoENRP requires all trees to be taken of the SFF registration or "de-listed" before they can be cut.

361. According to the ToR for this EIA:

"Particular attention should be given to the presence of land plots registered as the State Forest Fund (SFF). If the right of the way of the selected alignment of the road section overlaps with the territory of the SFF, The consultant should prepare:

- 1. Cadastral measurement drawing for the relevant plot of the alignment (.shp files);
- 2. According to the effective law, conduct preliminary inventory of timber resources existing at the territory, which should be taken of the SFF registration, or 'de-listed';
- 3. In accordance with the Georgian legislation, provide relevant information on obtaining a cutting permit for species included in the Red List (if any);
- 4. Prepare Tree Compensation Plan according to the de-listing documentation"

362. The Project area has been surveyed to determine the extent of the SFF that will be affected by the Project. Cadastral drawings are provided as part of **Appendix G**.

363. An inventory of the timber resources has also been prepared. A total of 1,428 trees more than 8cm in diameter were recorded for de-listing, including the following Georgian red-listed species:

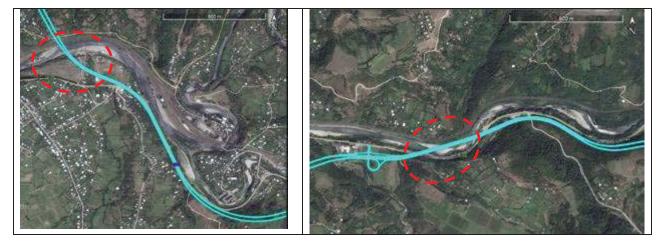
- 77 Zelkova (greater than 8cm in diameter)
- 85 Chestnut (greater than 8cm in diameter)
- 38 Bladder Nut (greater than 8cm in diameter)
- 1 Yew Tree (greater than 8cm in diameter)
- 3 Circassian walnut (greater than 8cm in diameter)

364. In addition a further 5,804 trees less than 8cm in diameter were recorded for de-listing including the following Georgian re-listed species.

- 159 Zelkova (less than 8cm in diameter)
- 2 Chestnut (less than 8cm in diameter)
- 250 Bladder Nut (less than 8cm in diameter)

365. All of these species identified in the SFF inventory were located in Habitat Area 1 or 2. The full list of the trees to be de-listed is presented in **Appendix G** along with a map of the area.

366. Information relating to the compensation for tree cutting according to national legislation is outlined in **Section F-6.1**.


E.2.2 Fauna

E.2.2.1 Mammals

367. Information available from references (primary and secondary data sources) have been used as a basis for description of the area. According to available information there are two species (Caucasian squirrel and Eurasian otter) considered as vulnerable in Georgia (Georgian Red List) that may be found within the Project area. The Otter is also included in the IUCN red list as near threatened (NT) (see **Table E-16**).

368. During the site visit the list of species listed above was taken as guidance. The objective of the survey was to double check available information on the site. Particular attention was paid to detection of the species listed under protected category. Therefore, specific focus was on the study of the habitats suitable for these mammals.

Otter (Lutra lutra) is known to be found in Kvirila river, however the sources does not provide any information on community structure and number of species in the area of interest. The Otter is river associated species mainly met in slow flowing sections of the streams/rivers. It isn't uncommon for them to travel great distances on land or through the water. This can be up to 26 km³. However, it is important to remember that otters home range differs from their territory. The actual territory that is distinctly their own is very small. Otters mark their habitat with droppings. So, they can be registered by smell (smell of fresh cut hay). Generally the otters are not afraid of people and can be met in the limits of residential areas. The aquatic habitats of otters are extremely vulnerable to man-made changes. Canalization of rivers, removal of bank side vegetation, dam construction, draining of wetlands, aquaculture activities and associated man-made impacts on aquatic systems are all unfavorable to otter population. The bridge locations areas (**Figure E-19**) have been checked with particular care. No presence of otter has been registered.

Caucasian squirrel (Sciurus anomalus) can be met in the deciduous forest. Their nests are usually found in the tree hollows, under rocks, inside heaps of stones, and in residential areas, such as graveyards and abandoned cattle sheds. They are diurnal, are not active in winter. The peak of activity is in summer Caucasian squirrels become most active during the early morning to morning and during the two hours before sunset in early summer. Like other tree squirrels, they are territorial. The animal marks territories with urine and feces. The marks are renewed several times every day. There is no information available regarding home range. Caucasian squirrels are herbivorous; they eat seeds and fruits and therefore, likely have an important influence on the forest ecosystem as seed dispersers. The main hazard for this specie is Siberian/red squirrel - invasive species. During the site visit the trees within the RoW of the new alignment (with exclusion of the areas where tunnels are planned) have been checked. Neither burrows, nor squirrels have been registered in the studied area. The review of the habitat along the alignment is not optimum for existence of the Caucasian squirrel. Therefore construction and subsequent presence (operation) of the highway will not change the population trend.

Bats (order Chiroptera) are considered as vulnerable group. They are rather limited in selection of nesting shelters. Favourable shelters are hollow trees, caves and abandoned buildings. All species of bats observed in Georgia are included in the Annex II of Bonn Convention and protected by the agreement of EUROBATS. Based on this agreement, Georgia is mandatory to protect all bats inhabiting within the project area and in its vicinities.

Lesser horseshoe bat (*Rhinolophus hipposideros***Bechstein)** It forages close to ground within and along the edges of broadleaf deciduous woodland, which represents its primary foraging habitat, but also in riparian vegetation, Mediterranean and sub-mediterranean shrubland. Its prey consists mainly of midges, moths and craneflies. Foraging activities take place nearly exclusively within woodland areas, while open areas are avoided. Habitat loss and fragmentation may therefore reduce the amount of suitable habitats for the Lesser Horseshoe Bat and pose a threat to this species. Summer roosts (breeding colonies) are found in natural and artificial underground sites in the southern part of the range, and in attics and buildings in the northern part of it. In winter it hibernates in underground sites (including cellars, small caves and burrows). A sedentary species, winter and summer roosts are usually found within 5-10 km (longest distance recorded 153 km). Recommended conservation measures include protecting maternity roosting sites, hibernation caves and foraging habitats.

Particoloured bat (Vespertilio murinus) forages in open areas over various habitat types (forest, semi-desert, urban, steppe, agricultural land). It feeds on moths and beetles. Summer roosts tend to be situated in houses or other buildings; also rarely hollow trees, nest boxes, or rock crevices. Winter roost sites include rock fissures, often (as a substitute) crevices in tall buildings (including, or especially, in cities), occasionally tree holes or cellars. Winter roosts are usually in colder sites that are exposed to temperature changes. Migrations of up to 1,780 km have been recorded, although the species is sedentary in a large part of its range. This nocturnal species appears late in the evening, sleeping in narrow crevices during the day. It lives in small colonies and often single individuals are sighted. It hibernates throughout the winter. Young are born in June/July, generally two at a time, and are stuck onto the chest of the mother during flight.

Common pipistrelle (*Pipistrellus pipistrellus* Schreber) forages in a variety of habitats including open woodland and woodland edges, Mediterranean shrublands, semi-desert, farmland, rural gardens and urban areas. It feeds on small moths and flies. Summer roosts are mainly found in buildings and trees, and individuals frequently change roost site through the maternity period. Most winter roost sites are located in crevices in buildings, although cracks in cliffs and caves and possibly holes in trees may also be used. It is not especially migratory in most of its range, but movements of up to 1,123 km have been recorded. In at least parts of its range it seems to benefit from urbanization.

369. Indirect and short term impact is expected on the above-mentioned species. Indirect impact means damage of the section of the ecosystem, which is significant for animals for receiving energy in the form of the food; also replacement of migration corridors is meant under it, which will increase the background stress for fauna representatives, living in the neighboring habitats.

370. During the transect surveys within the studied corridor no mammals have been observed. Only traces of activity of the European pine marten have been registered.

E.2.2.2Reptiles

371. According to the literary sources, 8 species of reptiles are known to be present in the Project area, out of which 2 are lizards, 2 – turtles and 4 – snakes (see **Table E-17**). From reptiles worth to mention is endemic lizard met in the Mtkvari valley. The only Red-Listed species that is recorded on the nearby territory of the Project area is the Mediterranean turtle.

Nº	Latin name	Common name	Georgian Red List	IUCN	Other protection	Section N
1.	<i>Testudo graeca</i> Linnaeus	Mediterranean turtle	VU	VU	-	1/4/
2	Emys orbicularis	European Pond Turtle	LC	NT	-	4
3.	Natrix natrix Linnaeus.	Ring snake	LC	LR/LC	Bern Convention	4/5
4.	Natrix tessellate Laurenti.	Dice snake	LC	LC	Bern Convention	4/5
5.	<i>Coronella austriaca</i> Laurenti.	Smooth snake	LC	LC	Bern Convention	1/2/
6.	Xerotyphlops vermicularis Strauch.	Blind Snakes	DD	LC	-	1/2/3/
7.	Darevskia derjugini	Artwin Lizard	LC	LC	Bern Convention	1/2/3/
8.	Darevskia rudis	Spiny-Tailed Lizard	LC	LC	Bern Convention	1/2/3/

Table E-17. Reptiles, known within the project area based on literary sources

N⁰	Latin name	Common name	Georgian Red List	IUCN	Other protection	Section N
9.	Anguis fragilis	Caucasian Slow Worm	LC	LC	Bern Convention	2/

VU = Vulnerable; NT = Near Threatened and LC = Least Concern, LR = Low risk, DD-Data Deficient

Table E-16: Mammals, identified within the project area based on literary sources

No	No Latin name Common Other protection Number of						
N⁰	Latin name	name	Red List of Georgia	IUCN	Other protection	section	
1	Erinaceus concolor Martin.	Southern whitebreasted Hedgehog		LC		1/2/3/4/5/	
2	Suncus etruscus Savi.	Pygmy whitetoothed shrew		LC	Appendix III of the Bern Convention.	1/2/3/	
3	Rhinolophus hipposideros Bechstein.	Lesser horseshoe bat		LC	Bonn Convention (Eurobats); Bern Convention; Annex II (and IV) of EU Habitats and Species; Some habitat protection through Natura 2000	1/2/3	
4	Pipistrellus pipistrellus Schreber.	Common pipistrelle		LC	Bonn Convention (Eurobats); Bern Convention in parts of its range where these apply, and is included in Annex IV of the EU Habitats and Species Directive.	1/2/3/	
5	Eptesicus serotinus Schreber.	Serotine		LC	Bonn Convention (Eurobats); Bern Convention in parts of range where these apply. It is included in Annex IV of EU Habitats and Species Directive, and there is some habitat protection through Natura 2000.	1/2/3	
6	Vespertilio murinus Linnaeus.	Particoloured bat		LC	Bonn Convention (Eurobats); Bern Convention, in parts of its range where these apply. It is included in Annex IV of EU Habitats and Species Directive	1/2/3//5/	
7	Dryomys nitedula Pallas.	Forest dormouse		LC	Bern Convention (Appendix III); EU Habitats and Species Directive (Annex IV), in parts of its range where these apply.	1/2/3/	
8	Arvicola terrestris Linnaeus.	Eurasian water vole		LC		4	
9	Microtus arvalis Pallas.	Common vole		LC		1/2/3/4/5/	
1 0	Terricola nasarovi Shidlovsky.	Nazarov pine vole		LC		1/2/3/	
1 1	Sylvaemus uralensis Pallas.	Pygmy wood mouse				1/2/3/	
1	Mus musculus	House mouse		LC		1/3/4/5/	

№ 2		Common name	Red List of Georgia	IUCN	Other protection	Number of section
2	Linnaeus. Sciurus	Caucasian	VU	LC	EU Habitats Directive (92/43) IV	1/2/3
3	anomalus Gmelin.	squirrel			21/05/92; Bern Convention II 01/03/02, in parts of its range where these apply. Occurs in protected areas. Population monitoring is recommended, particularly in parts of the range where declines have been noted.	
1 4	Lutra lutra Linnaeus.	Eurasian otter, Common otter	VU	NT	Appendix I of CITES, Appendix II of the Bern Convention, Annexes II and IV of the EU Habitats and Species Directives.	4
1 5	Mustela nivalis Linnaeus.	Least weasel		LC	Appendix III of the Bern Convention.	1/2/3/4/5
1 6	Felis silvestris Shreber.	Wild cat		LC	CITES Appendix II (http://www.cites.org/eng/app/app endices.php); is fully protected across most of its range in Europe and Asia, but only some of its African range; is listed on the EU Habitats and Species Directive (Annex IV) as a "European protected species of animal"; listed in Appendix II of the Bern Convention. It is classed as threatened at the national level in many European range states (IUCN 2007).	1/2/3/
1 7	Canis aureus Linnaeus.	Golden jackal		LC		1/2/3/4
1 8	Vulpes vulpes Linnaeus.	Red fox		LC		1/2/3/4
1 9	Canis lupus	Wolf		LC	Bern, CITES Appendix II	1/2/3/
2 0	Sus scrofa Linnaeus.	Eurasian wild boar		LC		1/2/3/
2	Martes martes	European pine marten		LC	Appendix III of the Bern Convention and Annex V of the European Union Habitats Directive, and it occurs in a number of protected areas across its range.	1/2/3/

VU = Vulnerable; LC = Least Concern; NT = Near Threatened

372. Due to the fact that it was extremely hot during the surveys, activity of reptiles was low as they were avoiding overheating. During the site survey only the Artwin lizard has been registered (see **Figure E-20**).

Figure E-20: Darevska derhugini (coordinates 346891.28; 4660857.92)

Figure E-21: Pelophylax ridibundus (coordinates 340072.18; 4662963.5)

E.2.2.3 Amphibians

373. According to the literary sources, the main amphibian species present in the area include:

			3001003			
Nº	Latin name	Common name	Georgian Red List	IUCN	Other protection	Section N
1.	<i>Hyla arborea</i> Linnaeus	European Tree Frog	LC	LC	Bern Convention	4/5/
2.	Pelophylax ridibundus Pallas.	Lake frog	LC	LC	Bern Convention	4/5
3.	Rana macrocnemis camerani Boulenger.	Longlegged Wood Frog	LC	LC	Bern Convention	3/4/

Table E-18. Amphibians, known within the project area based on literary

LC = Least Concern

374. During the site survey the listed species have one individual Lake frog has been registered near Shorapani crossing (see **Figure E-21** above).

E.2.2.4 Insects

375. The insects know to be present in the project area are listed below (**Table E-19**).

Nº	Latin Name	Common name	Georgian Red List	IUCN	Section N
1.	Mylabris quadripunctata	Four-spotted blister beetle	NE	NE	1/2/3/5/6/
2.	Dorcus parallelipipedus	Lesser stag beetle	NE	NE	1/2/3/

Table E-19. Insects known within the project area based on literary sources

N⁰	Latin Name	Common name	Georgian Red List	IUCN	Section N
3.	Libellula depressa	Broad-bodied chaser	NE	NE	2/
4.	Morimus verecundus	Longhorn beetle	NE	NE	2/3
5.	Pieris napi	Green-veined white butterfly	NE	NE	1/2/3/5
6.	Pieris rapae	European cabbage butterfly	NE	NE	1/2/3/4/5
7.	Plebeius argus	Silver-studded blue butterfly	NE	NE	1/2/3/4/5/
8.	Nimphalis antiopa	Mourning-cloak butterfly	NE	NE	1/2/3/4/5/6/
9.	Lampyris noctiluca	Glow-worm	NE	NE	1/2/3/4/5/
10.	Geotrupes spiniger	Dumbledor beetle	NE	NE	1/2/3/5/
11.	Purpuricenus budensis	Red long-horned Beetle	NE	NE	1/2/3/4/
12.	Polyommatus amandus	Amanda's blue butterfly	NE	NE	5/6
13.	Polyommatus corydonius	False chalkhill blue butterfly	NE	NE	1/2/3/4/5/6/
14.	Polyommatus thersites	Chapman's blue butterfly	NE	NE	1/2/3/4/5/6/
15.	Cercopis intermedia	Froghopper	NE	NE	1/2/3/4/5/6/
16.	Vanessa atalanta	Red admiral butterfly	NE	NE	1/2/3/4/5/6/
17.	Vanessa cardui	Painted lady butterfly	NE	NE	3/4/5/6/
18.	Ischnura elegans	Blue-tailed damselfly	NE	NE	3/4/
19.	Panorpa connexa	Scorpionfly	NE	NE	4/5/
20.	Apis melifera	European honey bee	NE	NE	4/5
21.	Bombus lapidarius	Red-tailed bumblebee,	NE	NE	4/5/
22.	Aphis urticata	Dark green nettle aphid	NE	NE	1/2/3/
23.	Pieris brassicae	Cabbage butterfly	NE	NE	1/3/5/6
24.	Pyrrhocoris apterus	Firebug	NE	NE	1/2/3/4/5/6/
25.	Lymantria dispar	Gypsy moth	NE	NE	1/2/3/
26.	Gryllus campestris	Field cricket	NE	NE	4/5/
27.	Decticus verrucivorus	Wart-biter	NE	NE	4/5/6/
28.	Tettigonia viridissima	Great green bush-cricket	NE	NE	5/6/

NE = not evaluated

376. Within the project area Red cricket, blue railed damselfly have been met. No butterflies were registered.

Figure E-22: Gryllus campestris (coordinates 337730.19; 4664604.82)

Figure E-23: Ischura elegans (coordinates 339946.92; 4662915.10)

377. The spiders know to be present in the project area are listed below (**Table E-20**).

N⁰	Latin name	Common name	Georgian Red List	IUICN	Section No.
1.	Misumena vatia	Goldenrod crab spider	NE	NE	1/2/3/
2.	Pisaura mirabilis	Nursery web spider	NE	NE	1/2/3/
3.	Alopecosa schmidti	Wolf spiders	NE	NE	1/2/3/
4.	Micrommata virescens	Green huntsman spider	NE	NE	1/2/3/4/5
5.	Agelena labyrynthica	Eurasian grass spiders	NE	NE	1/2/3/
6.	Asianellus festivus	Jumping spiders	NE	NE	1/2/3/
7.	Araniella dispcliata	Orb-weaver spider	NE	NE	1/2/3/
8.	Dysdera crocata	Sowbug hunter	NE	NE	1/2/3/
9.	Phialeus chrysops	Jumping spiders	NE	NE	3/4/5/
10.	Argiope lobata	Silver-faced	NE	NE	1/2/3/
11.	Menemerus semilimbatus	Jumping spiders	NE	NE	1/2/3/4/
12.	Pardosa hortensis	Wolf spiders	NE	NE	1/2/3/4/
13.	Larinioides cornutus	Furrow orb spider	NE	NE	1/2/3/4/5

Table E-20. Insects, known within the	project area based on literary sources
---------------------------------------	--

NE = not evaluated

378. During the walkover several spider species have been registered as noted by **Figure E-24** to **Figure E-25**.

Figure E-24: Pisaura mirabilis (coordinates 347288.84; 4660981.14)

Figure E-25: Pardosa hortensis (coordinates 344707.22; 4662074.4)

Figure E-26: Asinelllus festivus (coordinates 345050/30; 4661910.7

379. The round worms, bristle worms and beetles know to be present in the project area are listed below (**Table E-21** and **Table E-22**).

 Table E-21. Round Worms (Nematodes), known within the project area based on literary sources.

Nº	Scientific Name	English Name	Georgian Name	National Red List	International Red List
1.	Tripylina arenicola	-	-	NE	NE
2.	Plectus annulatus	-	-	NE	NE
3.	Anaplectus granulosus	-	-	NE	NE
4.	Mesodorylaimus bastiani	-	-	NE	NE
5.	Eudorylaimus acutus	-	-	NE	NE
7.	Pungentus silvestris	-	-	NE	NE
8.	Enchodelus microdorus	-	-	NE	NE
9.	Bursilla monhystera	-	-	NE	NE

NE = not evaluated

Table E-22. Bristle Worms (Polychaetes), known within the project area based on literary sources

Nº	Scientific Name	English Name	Georgian Name	National Red List	International Red List
1.	Aelosoma hemprichi	-	-	NE	NE
2.	Stylaria lacustris	-	-	NE	NE
3.	Aulophorus furcatus	-	-	NE	NE
4.	Specaria josinae	-	-	NE	NE
5.	Ophidonais serpentine	-	-	NE	NE
6.	Potamotrix bedoti	-	-	NE	NE
9.	Lumbricus terrestris	-	-	NE	NE
10.	Dendrodriloides grandis	-	-	NE	NE
11.	Eiseniella tetraedra	-	-	NE	NE
13.	Helodrilus cartlicus	-	-	NE	NE

Table E-23. Oribatida, known within the project area based on literary sources

Nº	Scientific Name	English Name	Georgian Name	National Red List	International Red List
1.	Epilohmannia cylindrica	-	-	NE	NE
2.	Rhysotritia ardua	-	-	NE	NE
5.	Tectocepheus velatus	-	-	NE	NE
6.	Oppiella fallax	-	-	NE	NE
7.	Quadroppia quadricarinata	-	-	NE	NE
8.	Suctobelbella falcate	-	-	NE	NE
9.	Achipteria nitens	-	-	NE	NE
10.	Sphaerozetes piriformis	-	-	NE	NE
12.	Chamobates cuspidatus	-	-	NE	NE

E.2.3 Avi Fauna

380. The majority of birds found on the study area are presented by forest, shrubbery and other species, birds related to rocky places and waterfowls. The list of bird species potentially available in the project area (based on the desk top analysis of available data) is given in **Table E-24** below. None of these species are protected.

The territory is not significant habitat for birds and does not include priority habitats for avian species (see **Figure E-27**).

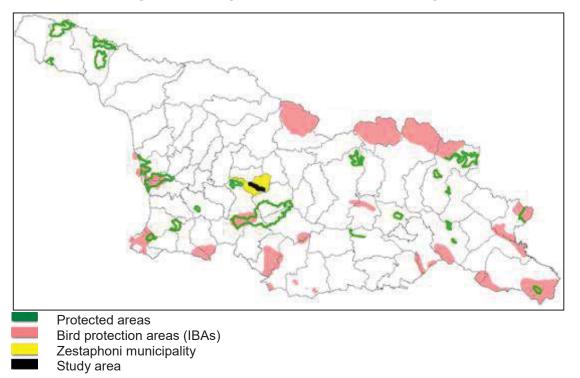


Figure E-27: Significant Bird Habitat in Georgia

Table E-24: Birds within the study area, kn	nown according to literary sources
---	------------------------------------

#	Latin name	Common name	Georgian Red List	Season	IUCN	Other protection	Section
1.	Motacilla alba	White	-	YR-R,	LC	Bern	1/2/3/4/5/
		Wagtail		М		Convention	6
2.	Apus apus	Common	-	BB, M	LC	Bern	1/2/3/4/5/
		Swift				Convention	6
3.	Merops	European	-	BB, M	LC		1/2/3/4/5/
	apiaster	Bee-eater					6
4.	Corvus cornix	Hooded	-	YR-R	LC		1/2/3/4/5/
		Crow					6
5.	Garrulus	Eurasian Jay	-	YR-R	LC		1/2/3/4/5/
	glandarius						6
6.	Turdus	Eurasian	-	YR-R	LC	Bern	1/2/3/4/5/
	merula	Blackbird				Convention	6
7.	Delichon	House-	-	BB, M	LC	Bern	1/2/3/4/5/
	urbicum	Martin				Convention	6
8.	Sturnus	Common	-	YR-R,	LC		1/2/3/4/5/
	vulgaris	Starling		М			6
10	Columba livia	Rock Dove	-	YR-R	LC		1/2/3/4/5/
							6
11	Columba	Stock Dove	-	YR-R	LC		1/2/3/4/5/
	oenas						6
12	Columba	Wood-	-	YR-R	LC		1/2/3/4/5/
	palumbus	Pigeon					6
13	Hirundo	Barn	-	BB, M	LC	Bern	1/2/3/4/5/
	rustica	Swallow				Convention	6
15	Oriolus	Golden	-	BB, M	LC	Bern	1/2/3/4/5/
	oriolus	Oriole				Convention	6

#	Latin name	Common name	Georgian Red List	Season	IUCN	Other protection	Section
16	Turdus viscivorus	Mistle Thrush	-	YR-R, M	LC	Bern Convention	1/2/3/4/5/ 6
17	Erithacus rubecula	European Robin	-	YR-R	LC	Bern Convention	1/2/3/4/5/ 6
18	Fringilla coelebs	Chaffinch	-	YR-R, M	LC	Bern Convention	1/2/3/4/5/ 6
19	Cuculus canorus	Common Cuckoo	-	BB, M	LC	Bern Convention	1/2/3/4/5/ 6
20	Phoenicurus phoenicurus	Common Redstart	-	BB, M	LC	Bern Convention	1/2/3/4/5/ 6
21	Passer domesticus	House Sparrow	-	YR-R	LC		1/2/3/4/5/ 6
22	Carduelis carduelis	European Goldfinch	-	YR-R, M	LC	Bern Convention	1/2/3/4/5/ 6
23	Carduelis chloris	Greenfinch	-	YR-R, M	LC	Bern Convention	1/2/3/4/5/ 6
25	Parus major	Great Tit	-	YR-R	LC	Bern Convention	1/2/3/4/5/ 6
26	Lanius collurio	Red-backed Shrike	-	BB, M	LC	Bern Convention	1/2/3/4/5/ 6
38	Turdus philomelos	Song Thrush	-	YR-R, M	LC	Bern Convention	1/2/3/4/5/ 6
30	Aegithalos caudatus	Long-tailed Tit	-	YR-R, M	LC	Bern Convention	1/2/3/4/5/ 6
36	Falco tinnunculus	Common Kestrel	-	YR-R, M	LC	Bonn Convention , Bern Convention	1/2/3/4/5/ 6
37	Buteo buteo	Common Buzzard	-	YR-R, M	LC	Bonn Convention , Bern Convention	1/2/3/4/5/ 6
38	Phalacrocora x carbo	Great Cormorant	-	YR-R, M	LC		4
39	Ardea cinerea	Grey Heron	-	YR-R	LC	Bonn Convention , Bern Convention	4
41	Egretta garzetta	Little Egret	-	YR-R	LC		4
42	Nycticorax nycticorax	Night-Heron	-	BB, M	LC	Bonn Convention , Bern Convention	4
44	Tadorna ferruginea	Ruddy Shelduck	-	YR-R	LC		4
45	Anas platyrhynchos	Mallard	-	YR-R, M	LC	Bonn Convention , Bern Convention	4
46	Milvus migrans	Black Kite	-	YR-R, M	LC	Bonn Convention , Bern Convention	1/2/3/4/5/ 6
47	Accipiter nisus	Sparrowhaw k	-	YR-R, M	LC	Bonn Convention , Bern	1/2/3/4/5/ 6

#	Latin name	Common	Georgian	Season	IUCN	Other	Section
		name	Red List			protection	
						Convention	
48	Accipiter	Goshawk	-	YR-R,	LC	Bonn	1/2/3/4/5/
	gentilis			М		Convention	6
	0					, Bern	
						Convention	
51	Charadrius	Little Ringed	-	YR-R,	LC	Bonn	4
	dubius	Plover		M		Convention	
						, Bern	
						Convention	
52	Larus	Black-	-	YR-R,	LC		4
	ridibundus	headed Gull		Μ			
55	Upupa epops	Common	-	BB, M	LC	Bern	1/2/3/4/5/
		Ноорое				Convention	6
57	Corvus	Rook	-	YR-R,	LC		1/2/3/4/5/
	frugilegus			Μ			6
60	Luscinia	Luscinia	-	BB, M	LC		1/2/3/4/5/
	megarhyncho	megarhynch					6
	S	os					
61	Phylloscopus	Common	-	BB, M	LC		2/
	collybita	Chiffchaff					

YR-R = nests and reproduces in the area, can be found all year round; YR-V = visitor to these areas. It does not reproduce but is here throughout the year. BB = visits the area only for reproduction M = Migratory; it can get to the area during migration (in autumn and spring) LC = Least Concern.

#	Latin name	Common name	Georgian Red List	Season	IUCN	Other protection	Section
1.	Motacilla alba	White Wagtail	-	YR-R, M	LC	Bern Convention	1/2/3
2.	Apus apus	Common Swift	-	BB, M	LC	Bern Convention	1/3/4/5
3.	Merops apiaster	European Bee-eater	-	BB, M	LC	-	2/3/
4.	Charadrius dubius	Little Ringed Plover	-	YR-R, M	LC	Bonn Convention, Bern Convention	4
5.	Larus ridibundus	Black-headed Gull	-	YR-R, M	LC	Bern Convention	4
6.	Corvus cornix	Hooded Crow	-	YR-R	LC	-	3/4/5/6
7.	Garrulus glandarius	Eurasian Jay	-	YR-R	LC	-	2/3/4/5
8.	Turdus merula	Eurasian Blackbird	-	YR-R	LC	Bern Convention	1/2/3/4
9.	Delichon urbicum	House-Martin	-	BB, M	LC	Bern Convention	2/3/4/
11.	Upupa epops	Common Hoopoe	-	BB, M	LC	Bern Convention	2/3/4/5
14.	Luscinia megarhynchos	Luscinia megarhynchos	-	BB, M	LC	-	1/2/3/
15.	Turdus viscivorus	Mistle Thrush	-	YR-R, M	LC	Bern Convention	1/2/3
16.	Erithacus rubecula	European Robin	-	YR-R	LC	Bern Convention	2/
17.	Fringilla coelebs	Chaffinch	-	YR-R, M	LC	Bern Convention	1/3/

#	Latin name	Common name	Georgian Red List	Season	IUCN	Other protection	Section
19.	Phoenicurus	Common	-	BB, M	LC	Bern	1/2/3
	phoenicurus	Redstart				Convention	
20.	Passer	House	-	YR-R	LC	-	1/3/5/6/
	domesticus	Sparrow					
21.	Carduelis	European	-	YR-R,	LC	Bern	1/2/3/
	carduelis	Goldfinch		М		Convention	
24.	Parus major	Great Tit	-	YR-R	LC	Bern	2/3/5
						Convention	
25.	Lanius collurio	Red-backed	-	BB, M	LC	Bern	2/3
		Shrike				Convention	
26.	Phylloscopus	Common	-	BB, M	LC		2/
	collybita	Chiffchaff					
27.	Turdus	Song Thrush	-	YR-R,	LC	Bern	2/3
	philomelos	-		М		Convention	

YR-R = nests and reproduces in the area, can be found all year round.; YR-V = visitor to these areas. It does not reproduce but is here throughout the year. BB = visits the area only for reproduction; M = Migratory; it can get to the area during migration (in autumn and spring) LC = Least Concern.

E.2.4 Fish

381. <u>General</u> - A fish study has been undertaken on the sites where construction of bridges/river crossings is planned. The objective of the survey was to:

- Study and assess the baseline environmental condition within the project section;
- Survey of hidrobionts, fin particular, ichthyofauna living in the project area;
- Development of mitigation measures, taking into account the impact factors.

382. The study was prepared based on existing literature sources and the results of field study conducted from 18.07.2017 to 28.07.2017. In the field research information was used from the local population and amateur fishermen.

383. Methodology - The ichtyofauna study included desk top study, visual audits, field surveys, anamnesis (interview of the local population and amateur fishermen) and laboratory processing of the obtained material. The research methodology is fully coincided with the methods used in international practice.

384. Fish stock status has been be judged upon based on the following data:

- general mass of fish caught in the recent years;
- quantitative ratio of age groups;
- age of reaching the first and overall puberty of the population;
- direct influence of fish growth rate versus maturity;

385. Desktop Study - Work plan, survey route, locations for control catches and hydrochemical-hydrobiological sampling have been selected. A questionnaire for the local population and amateur fishermen was prepared.

386. Visual Audit - The visual audit to identify habitats for ichthyofauna species (geomorphology of the river bed in question, general hydrological characteristics, habitat hipsometria, relief, the river bottom hipsometria, visual - landscape background) has been carried out. Based on these data species theoretically present in the study area have been identified.

387. Field study - The field study method included:

- biological analysis of fish (length; weight; gender, maturity stage; collection, fattening coefficient, meristic and plastic characteristics, the digestive tract content);
- collection, labeling and preservation of scales for subsequent lab analysis;
- study of food base hydroflora and hydrofauna; identification of macroinvertebrates and insects used for feeding;
- study of the status of living environment of both fish and invertebrates;
- determination of suspended solids; dissolved oxygen (using filed tester Oxi 330i); water and air temperature; pH measurements - on-site;
- sampling of water for lab analysis;
- assessment of species composition of zoobenthos and protozoa periphyton species composition and biomass.

388. For control catches cast nets (weight 7.0 kg, mesh size 14 mm) were used. The catches were performed in control points selected along 50 m and 100 m sections. Sports-amateur fishing tools were used during the study. (No special permit or license was required). Research parameters include research of all biotic and abiotic factors related to the ecological niche.

389. During the survey catch and release principle was kept to. Every fish in the catch was registered in a special field log.

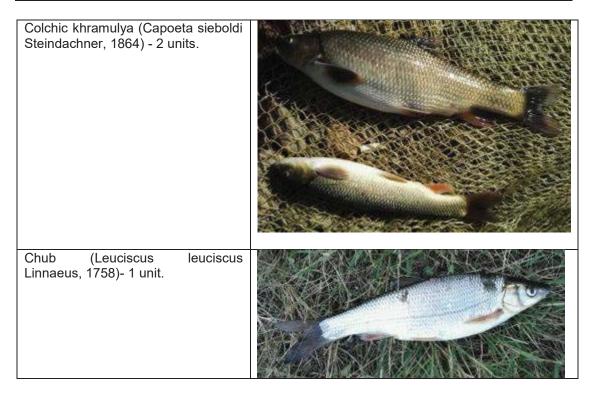
390. Interviews - The interview of local population and amateur fishermen was carried out to highlight the full picture of the Kvirila River and the Dzirula River ichthyofauna species composition. For this purpose, amateur fishermen with at least 5-10 years of fishing experience have been selected. The questionnaire was drawn up so to reduce the risk of false information (overestimation/bragging). Information confirmed by three or more respondents was assumed as reliable. During the entire study period, 5 fishermen were interviewed. (For results see **Table E-28**).

391. Laboratory Research - Study of age, growth and growth rate were identified through laboratory analysis of fish scales collected during the field survey.

392. **Tables E-26** and **Table E-27** indicate the fish species found in both rivers.

Туре	Kvirila River	Dzirula River
Brown trout (Salmo trutta morfa fario Linnaes, 1758)	+	-
Colchic barbel (Barbus tauricus rionica Kamensky, 1899)	+	+
Chub (Leuciscus leuciscus Linnaeus, 1758)	+	+
Colchic chondrostoma (Chondrostoma colchicum Derjugin, 1899	+	+
Colchic khramulya (Capoeta sieboldi Steindachner, 1864)	+	+
monkey goby (Neogobius fluviatilis, Pallas 1814)	+	+
Spined loach (Cobitis taenia Linnaeus, 1758)	+	+
Common bleak (Alburnus alburnus, Linnaeus, 1758)	+	+

Table E-27: Species found as the result of fishing in the project area


Common name	Latin name
Colchic khramulya	Capoeta sieboldi Steindachner, 1864
Common dace	Leuciscus leuciscus Linnaeus, 1758

393. Five fishermen were interviewed within the framework of the baseline survey: Amiran Gegetashvili; Beso Kalandadze; Misha Macharashvili; Tengo Kapanadze; Giorgi Tsertsvadze. **Table E-28** provides a list of the questions asked and the answers received during the interview.

Ν	Question	Interview results
1	What species of fish are spread in Kvirila and the Dzirula Rivers?	Mainly: trout (only in the head of Kvirila), barbel, chub, chondrostoma, khramulya, goby, cobitis, albunus.
2	Which fishing equipment do the local fishermen prefer?	The places are good for the throw nets and for fishing-rods, thus, it is hard to say which is of higher priority.
3	How many fishes can a skilled fisherman catch in 6 hours?	It depends on the situation, sometimes you may not catch at all, or sometimes you can easily catch 10-20 fish.
4	What local fishermen use as a squid when fishing with a fishing rod?	Mostly, earthworms as well as worms found under the stones.
5	Is fishing for personal consumption or for sale?	Just for personal consumption.
6	How often are the facts of poaching and how are they fighting against them?	Poachers appear either at night or very early so that no one can notice them. There are sanctions for poaching, thus, people try not to poach.
7	Which restrictive measures do the poachers use?	They use mainly electrofishing devices.
8	Do you remember the case of catching a mature fish (with a hard roe) and was there a brown trout among them?	Seldom. The trout spawn can be seen in the head of the rivers, and the rest fish lay their eggs in spring and summer.
9	Can you describe the obtaioned hard roe?	In autumn-winter period the trout roe is quite large, tasty, of orange colour, or sometimes red. Some mentioned that khramulya roe is toxic, therefore they do not eat it. The roe of the other fish is used.
10	Have you ever seen alevins with a yolk sac or a yellow shining spawn?	The trout alevins can be seen before the spring floods, but in the head of rivers. In the project area alevins of the other fish spawning in spring and summer period can be seen near the banks.
11	How popular is the project section for fishermen?	Fairly popular. One can see 2-3 fishermen on the edge of the river. In the section after Dzirula - Kvirila confluence, turbidity of water is high.Fish avoid the turbd water, therefore fishin in that area is pointless. The main fishing sites are in the Dzirula before the Dzirula-Kvirila confluence.
12	Whan does fish spawn in the project area?	Fish spawns in spring and summer.

Table E-28:	Results of t	he interview	of local	population.

394. The following species have been found in the catch during the study in the Dzirula River:

395. On the bottom of the Dzirula River, in the project area, colonies of invertebrate species (food base for fish) have been registered. Hydroflora, represented by perythiton, the main food base for khramulya was found. Hydroflora and hydrofauna of the Kvirila River is sparce. This is conditioned by high concentration of suspended solids. In this section fish was not registered.

E.2.5 Protected Areas

396. The nearest protected area to the Project road is the Ajameti Managed Reserve, which is located approximately 5 kilometers south west of the end point of the road (km14.7), see **Figure E-28**.¹⁵

397. In April of 1928, 20 ha of Kutaisi forested area was declared a nature reserve and in 1935 Ajameti Botanical Reserve was established at the ground level of the Ajameti forest massif. Ajameti was formed as a strict nature reserve in 1946 to preserve rare and relict Imeretian Oak and Elm Zelkova trees. The famous oaks of Ajameti are ancient natural treasures, with some of the trees being over 250 years old.

¹⁵ Managed nature reserves were created in 1997, according to the Law on Animals, on the basis of forest and hunting farms.

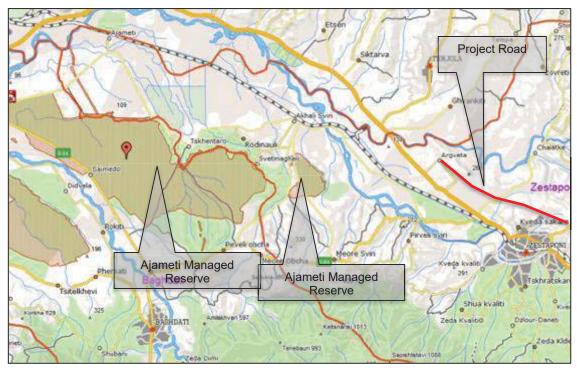
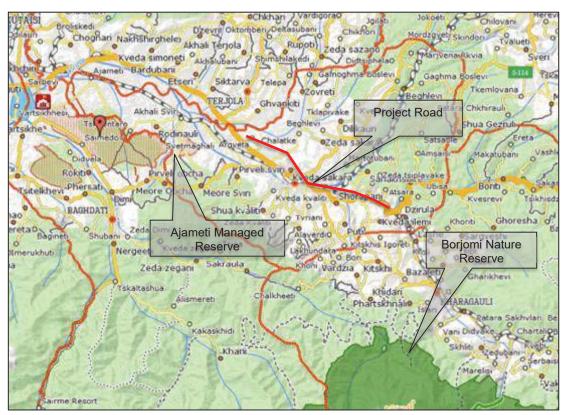



Figure E-29: Ajameti Managed Reserve

398. The only other protected area in the region is the Borjomi Nature Reserve which is located more than 20 kilometers south of the start point of the Project road, see **Figure E-30**.

399. The nearest Important Bird Area (IBA) to the Project road is the Adjara-Imereti Ridge more than twenty kilometers south of the Project road which overlaps with the Borjomi Nature Reserve. The IBA comprises populations of the following IBA trigger species:

- Caucasian Grouse Lyrurus mlokosiewiczi (IUCN Category NT)
- Corncrake Crex crex (IUCN Category LC)
- Great Snipe Gallinago media (IUCN Category NT)
- Eastern Imperial Eagle Aquila heliaca (IUCN Category VU)

E.3 Economic Development

E.3.1 Industries & Agriculture

400. Viticulture is the main economic activity in the municipality of Zestaphoni providing 80% of agricultural output. Its development is supported by favorable soil-climatic conditions. Vineyards occupy 5,000 hectares within the municipality. There are two active wine producing factories in the municipality.

401. The Rioni River Basin is abundant with mineral resources. The upper courses of the basin are rich in non-ferrous metal and non-metal mineral deposits, specifically manganese which can be found in large deposits in mines close to Chiatura some 20km north east of Zestaphoni. The manganese ore deposits near Chiatura, first discovered in 1849, have been exploited since 1879. The ores include pyrolusite and psilomelane (oxide ores) and rhodochroisite (carbonate ore). The country's largest producer, Chiaturmarganets, mines manganese ores from open cast and underground operations in Chiatura, which are supplied to the nearby GAA plant in Zestaphoni.

402. Founded in 1933 by Georgian scientist Giorgi Nikoladze, Georgian Manganese's Zestafoni Ferroalloy Plant has grown to become Georgia's largest silicomanganese processing plant and was recently purchased by an American company renaming the plant Georgian American Alloys. GAA produced over 187,000 metric tons of silicomanganese in 2012, however the mining and production of the manganese is not without its environmental problems, including impacts to air quality and impacts to the water quality of the Kvirila river, both issues are discussed above. The Project road passes almost adjacent to the north of the plant for around 2 kilometers between KM 9.7 and KM 11.8. As noted above soil samples and groundwater samples have been taken in this area to determine if contaminated the land exists within the vicinity of the GAA factory.

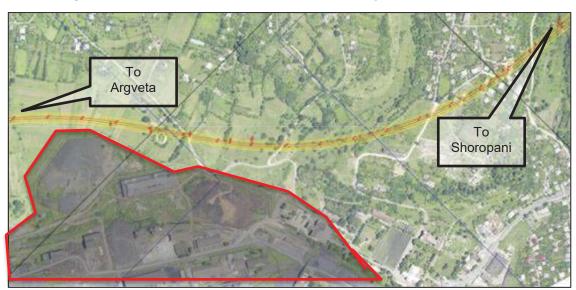
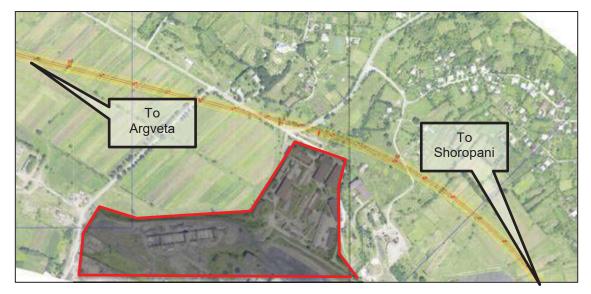



Figure E-31: Location of GAA – Approximately Km 9.5 – Km 10.7

Figure E-32: Location of GAA – Approximately Km 10.7 – Km 12.5

403. Other important industrial facilities plants in the Project area include "Saqkabeli" in Zestaphoni and "Elektroelementi" in Shorapani.

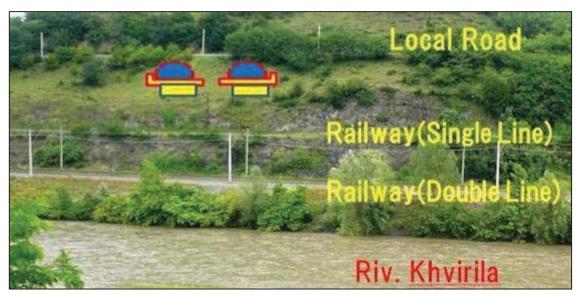
404. Agricultural land plots cover 7,027 ha of the municipality or 46% of the whole territory. 5,159 ha out of the above-mentioned area are arable lands. As for

greenhouse areas, it totals approximately 6 ha. Detailed information on Imereti region and Zestaphoni Municipality is given in **Table E-29**. Other than grapes, melon and maize are predominant crops grown in the region and have been noted within the Project corridor, specifically from KM 7.0 onwards.

	Imereti	Zestaphoni
Total Agricultural	65,737	7,027
Arable	51,033	5,159
Pasture	5,410	363
Greenhouse	462	6

Table E-29: Agricultural Areas (Hectares)

Source: www.geostat.ge


E.3.2 Infrastructure and Transportation facilities

E.3.2.1 Road, Rail and Air

405. <u>Roads</u> – The road network in the Project area is dominated by the existing E-60 which links Tbilisi with Batumi. The key issue with the existing road within the Project corridor is the route through Zestafoni which often becomes choked with traffic. The existing road does not bypass the town, rather it creeps through the town in a rather strange fashion, including a specific pinch point around the GAA factory. In the summer this point becomes extremely congested and long traffic delays can be experienced as people make their way too and from Tbilisi and Batumi for summer vacations. Numerous local roads feed onto the E-60 in Zestafoni, and these roads vary in condition from good to very poor.

406. <u>Rail</u> – The main line from Tbilisi to Batumi runs broadly parallel with the Project road until it reaches Zestafoni. In fact, in the first section of the road, between KM 0.0 and KM 6.0 the railway line and the road are only separated by a couple of hundred meters, with the road running south of the railway line. At one location, the new road alignment passes within 20 meters of the railway line (KM 2.5) and eventually passes over the railway line at KM 6.3 (see **Figure E-33**) as the road heads north west to start its bypass around Zestafoni.

Figure E-33: Location of Road Crossing Railway Line

407. Georgian Railways own and operate the rail services in Georgia. There are two live lines on this route, one on a higher elevation and one on a lower elevation. The line on the higher elevation operates 4 trips per day, the lower line accommodates approximately 40 journeys per day.

E.3.2.2 Utilities

408. Networked water supply and sewage systems only exist within the main towns and cities of Georgia, including Zestaphoni. Power is provided to villages in the region and is supplied by the company "EnergoProGeorgia". Villages mainly use groundwater resources for potable and home use.

E.3.2.3 Housing Stock

409. The housing stock in the Project area comprises mainly one or two storey houses that are distributed mainly along the local roads that weave their way around the valley slopes. The only multiple storey residential buildings observed within the Project area are located in Shoropani at KM 4.3 (within 100 meters), see **Figure E-34**, and KM 7.9 (road passes beneath these buildings in a tunnel).

E.3.3 Tourism and Recreation

Figure E-34: Buildings at KM 4.3

410. Zestaphoni is not considered an important or significant area for tourism and recreation. A recent study of foreign visitors to Imereti region indicated that less than 2% of the visitors visited Zestafoni for recreation or vacation. ¹⁶

411. According to RD environmental division, there are no exceptional landscapes requiring special attention along the project corridor.

E.4 Social and Cultural Resources

E.4.1 Socio-economic conditions

E.4.1.1 Administrative Issues

412. The Project road is located within the Region of Imereti. Imereti occupies a territory of approximately 6,552km² (9.4% of Georgia's area). Imereti consists of twelve administrative districts: Kutaisi (the Capital of the region), Tkibuli, Tskaltubo, Chiatura, Baghdati, Vani, Zestaponi, Terjola, Samtredia, Sachkhere, Kharagauli, Khoni. There are 542 settlements in the region of which: 10 cities (Kutaisi, Tkibuli, Tskaltubo, Chiatura, Baghdati, Vani, Zestaponi, Terjola, Samtredia, Sachkhere, and Khoni); 3 towns (Shorapani, Kulashi and Kharagauli); and 529 villages.

¹⁶ Second Regional Development Project, Imereti Regional Development Program, Imereti Tourism Development Strategy. Strategic Environmental, Cultural, Historical and Social Assessment. World Bank, 2014

413. The Project road is located within Zestaphoni Municipality which covers a total area of 423 km² and includes the towns of Zestaphoni and Shorapani as well as numerous small villages as illustrated by **Figure E-35**. Of its total areas 7,027 ha is occupied by agricultural land plots and 16,500 ha area – by forest.

414. The following settlements have been identified within the Project area.

- Kveda Tseva (KM 0)
- Shorapani (KM 4.0 6.0)
- Zestaphoni (KM 6.0 11.0)
- Kveda Sakara (KM 11.0 12.0)
- Argveta (KM 13.0 15.0)

E.4.1.2 Demographics

415. According to the most recent census data (2014), Imereti has a population of 533,906 which is a significant decrease from the 2002 census when the population was recorded as 699,666. The population of Zestafoni was 58,401 in 2014 of which the majority was classified as rural population (see **Table E-29** below).

	Total Population	Urban	Rural
Imereti	533,906	258,510	275,396
Kutaisi, City of	147,635	147,635	-
Baghdati Municipality	21,582	3,707	17,875
Vani Municipality	24,512	3,744	20,768
Zestafoni Municipality	58,401	20,917	37,124
Terjola Municipality	35,563	4,644	30,919
Samtredia Municipality	48,562	27,020	21,542
Sachkhere Municipality	37,775	6,140	31,635
Tkibuli Municipality	20,839	9,770	11,069
Tskaltubo Municipality	56,883	11,281	45,602

Table E-29:	Population	of Imereti and i	its Municipalities
	· opalation		

	Total Population	Urban	Rural
Chiatura Municipality	39,884	12,803	27,081
Kharagauli Municipality	19,473	1,965	17,508
Khoni Municipality	23,570	8,987	14,583

416. According to statistics provided by Geostat, there are 12,700 pensioners, 8,200 socially unprotected people and 780 Internally Displaced People (IDPs) registered as living in Zestaphoni.

417. 99.4% of the population of Imereti are Georgians, the remaining 0.6% is made up of Abkhazians (0.1%), Russians (0.3%), Armenians (0.1%) and Osetians (0.1%). ¹⁷ There are no ethnic minorities or indigenous people in the project area.

E.4.2 Community Health & Education

E.4.2.1 Health

418. Several medical facilities have been identified in the Project area, see **Table E-30** below.

#	Name	Location	Distance from the new alignment (m)
1	Shorapin Medical Faculty	Kveda	450
		llemi	
2	Ilmis Medical Faculty	Shorapani	1,000
3	Tskhratskaro Medical Faculty	Zestafoni	210
4	Geo Hospital's Zestafoni	Zestafoni	340
	Outpatient Center		
5	Lower Sector Medical	Zestafoni	10
	Outpatient		

Table E-30: Medical Facilities in the Project Area (within 1 km)

Figure E-36: Lower Sector Medical Outpatient

¹⁷ www.geoxtati.ge. 2014

E.4.2.2 Safety

419. According to data provided by the RD, during the period 2012 – 2016 there were 2,713 collisions, 471 persons killed and 4,913 persons injured spread over the E-60 corridor, from km 18 to km 302 (284 km in total, from Tbilisi to Khobi) with some notable cluster locations. In other words, it means 1 collision every 16 hours, 1 person killed every 4 days and 1 person injured every 9 hours. Focusing the analysis on the Khevi – Argveta section, 351 collisions, 78 persons killed and 648 persons injured. Finally, along the F4 section 130 collisions occurred, with 30 persons killed and 218 persons injured. These data are summarized in the **Table E-31**, whereas **Tables E-32** shows the collisions rates in terms of "crashes per km". Finally the **Table E-33** shows the details of the F4 section.

E-60 Road Section	km	Collisions	Injured	Killed
Tbilisi – Khobi	284	2,713	4,913	471
Khevi – Argveta	50	351	648	78
F4	16	130	218	30

Table E-31: Collisions and Casualties in the Period 2012 – 2016

Table E-32: Collisions and Casualties Rates in t	the Period 2012 – 2016 (per km)

E-60 Road Section	km	Collisions	Injured	Killed
Tbilisi – Khobi	284	9.55	17.30	1.66
Khevi – Argveta	50	7.02	12.96	1.56
F4 16		8.13	13.63	1.88

Year	Collisions	Injured	Killed
2012	25	43	11
2013	26	40	6
2014	19	38	2
2015	29	49	5
2016	31	48	6

Table E-33: Collisions and Casualties in Section F4

420. As regards the collisions in the section F4, there was a low peak in 2014, but in the last two years the trend is negative. In 2016, 31 collisions occurred in this stretch, that is the highest value observed in the observed period.

421. The figures below summarize collisions by type and cause. The most part of collisions (56%) occurs between 2 or more motor vehicles; 7% of them result in the overturning of a vehicle. 24% of collisions involve pedestrians, thus showing that the protection of vulnerable road users is a major issue in this section. Another relevant category of collisions are those with obstacles (18%). As regards the causes of the crashes, according to data, the main one is defined as "wrong maneuver" (55%). It is interesting to underline that 30% of collisions are caused by dangerous overtaking and 7% by tailgating. These causes are strictly related to the type of cross-section (2 lanes) and the geometry (curvy alignment with few straight sections for safe overtaking).

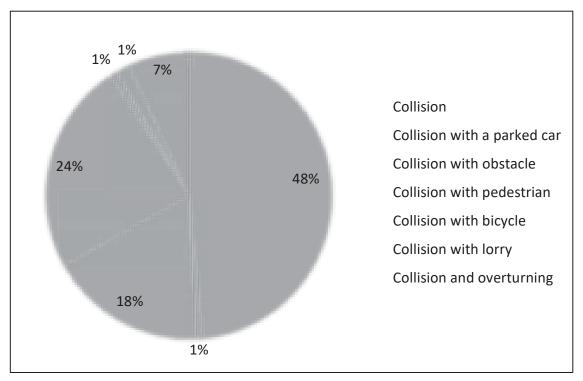
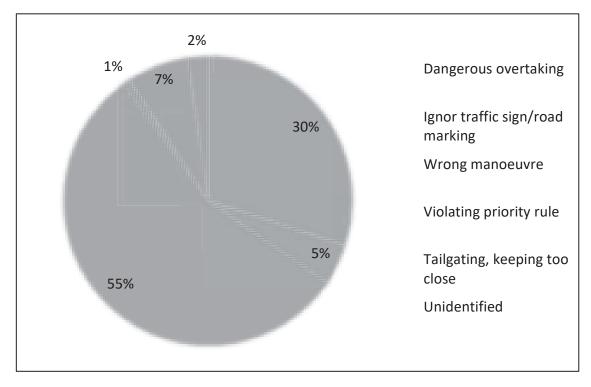



Figure E-37: Collisions by type (section F4, period 2012 – 2016)

Figure E-38: Collisions by cause (section F4, period 2012 – 2016)

E.4.2.3 Education and Educational Facilities

422. There are 33 public schools in Zestaphoni municipality, with 8,700 pupils. The nearest schools to the Project road are listed in **Table E-34** below.

Table E-35: Schools in the Project Area (within 1 km)

#	Name	Location	No. of Pupils	Distance from the new alignment (m)
1	Shorapani School	Shorapani	350	245
2	Public School of Shorpani	Shorapani	250	430
3	LEPL Zestaponi N1 School	Zestafoni	811	564
4	LEPL Zestaponi N6 School	Zestafoni	432	650
5	Public school of Keda Sakare	Keda Sakare	214	1,000

E.4.3 Economy and Employment

423. According to the social survey undertaken for this Project, it is found that the average wage of the population in the target villages is 650 GEL. The majority (70%) interviewed in the social survey stated that the main source of income is wage, 20% of the surveyed families said that main source is pension/allowance, only 5 % said that it is self-employment.

424. According to the survey results on employment status, 34% of surveyed people are employed, almost 22% is unemployed, 11% are housewives, 17% students or pupils and 15% pensioners.

E.4.4 Waste Management

425. Waste management, in compliance with international standards, has been playing an increasingly important role for Georgia after the country signed the Association Agreement with the European Union (EU). Currently solid waste disposal at the landfill is the only form of waste management in Georgia. The situation in regards to domestic and industrial wastewater management is complicated, as in most cases industrial and non-industrial wastewaters are discharged into surface waters without prior treatment.

426. Inert waste, including construction waste, is partially disposed at nonhazardous waste landfills and is used for filling/leveling activities in the construction of infrastructure facilities. There are no management systems for specific waste, including separated collection systems. However, recycling of specific waste, such as tires, batteries, packaging waste, etc., or disposal (such as asbestos waste) does occur in fragmented and uncoordinated way.

427. Presently, 56 landfills are recorded in Georgia. Only four of them, one private and three state-owned landfills, comply with international standards and have an Environmental Impact Assessment (EIA) permit. These are:

- Tbilisi Norio landfill;
- Rustavi landfill;
- Borjomi landfill;
- Privately owned BP landfill.

428. According to the active legislation (Waste Management Code), construction and management of non-hazardous (municipal) landfills (excluding Tbilisi and Adjara Autonomous Republic landfills) is the responsibility of the Waste Management Company of Georgia owned by the Ministry of Regional Development and Infrastructure. The company conducts active measures to improve the conditions of the old/current landfills and construct new regional landfills. As of 2016, the Solid Waste Management Company manages the existing landfills. Twenty of them were closed and 30 of them were improved. The company continues work to construct new regional non-hazardous waste landfills. Tbilservice Group (municipal company established in 2007) manages Tbilisi's landfills.

429. Despite the above, the waste management problem remains very acute. There are still many illegal dumpsites in Georgia. Almost every rural settlement has one or more small dumpsites. They are often located on river banks or near the populated areas, thus posing a threat to human health and the environment.

430. One of the main causes of the above problem is related to the existing waste management system, especially in the rural areas. Specifically, no waste collection and removal services are provided in some of the rural areas, especially in remote villages located far from the municipal centers. Many villages are not equipped with waste containers, which forces local residents to dump their waste in the areas of their choosing. Around 18% of waste generated in the country is dumped into ravines, river banks and other illegal, spontaneously formed, dumpsites near residential areas.

431. Previously there was a landfill site in Zestafoni adjacent to Kvaliti village. The area of the site was 2.2 hectares and received 15,000 m³/year of waste. However, the Solid Waste Management Company of Georgia closed the Zestaphoni municipal land fill in 2016 due to the fact that it was overloaded. As such there appears to be no landfill in Zestaphoni anymore.

E.4.5 Physical and Cultural Resources

432. Regional Context - Imereti is an important historical and cultural region of Western Georgia. There are more than 450 historical, archaeological, architectural and natural monuments in the region, which give a full picture of ancient settlements, its cultural development and history. The region is home to 78 Churches, 13 Castles, 39 Archaeological Monuments and 27 Museums.

433. Findings of archaeological excavations show that the first human being in Imereti lived during the lower Palaeolithic period. Numerous flint and obsidian items, including cutting instruments and knives have been discovered in caves and settlements. During the VIII century Kutaisi became the capital of west Georgia and the capital of all Georgia in the X-XII centuries. It was during this period that Imereti had its renaissance. Unique masterpieces of Georgian architecture were created at this time – Bagrati Cathedral and Gelati Monastery Complex (UNESCO heritage site). During the XV century, after the fall of the Georgian feudal monarchy, Imereti became a separate feudal kingdom.

434. Project Corridor – Within the Project corridor the following physical cultural resources have been identified:

 <u>Shorapani Fortress</u> - Shorapani fortress is a monument of ancient times and of the Middle Ages. In historical sources, the fortress is mentioned by Strabo (I-BC - I AD), according to whom Shorapani fortress was so enormous that it contained the entire city population. According to Leonti Mroveli (IX century), the original fortress was built by the King Parnavaz I of Kartli in the III century BC. In the VI century, during the battle between Persia and Byzantium, the fortress passed from hand to hand, but it did not lose its strategic importance. The fortress was occupied by the Ottomans in 1730, and was recaptured by the King Solomon I of Imereti in 1770. Since 1983, excavations began here; the nearby territory was completely cleared and the eastern, western and northern parts of the wall became visible. Under the structures, earlier buildings of previous times were discovered. Structures of antiquity covered with flat and curved tiles and Colchis Amphorae were found. Archaeological artifacts from Shorapani fortress and adjacent area are preserved in Janashia National Museum funds. Today, arched support column of the ancient fortress are found. From the fortress to the river Kvirila passes a 60 meter tunnel of the VI century. The tunnel was restored in the late feudal era.

Figure E-40: Shorapani Fortress

• <u>Other Archaeological Sites</u> – Argveta is also another area of archaeological importance. Artifacts from this area are preserved in the State museum. Archaeological finds were unearthed in 1980 during construction of a house in Argveta. These artifacts (iron axes, iron dagger, arrow heads) are now preserved in Givi Jaoshvili Zestafoni Ethnographic Museum. According to the register these artifacts belong to early ancient period. The area seems to be an interesting area

from archaeological point of view. However the area is remote from the new alignment. Archaeological materials were also found in the Zestafoni area during construction of the GAA facility and are kept in Zestafoni Ethnographic Museum. These items include pottery from early ancient to late ancient time. In the same area bronze dagger was found.

Visual surveys of the alignment near the west portal of the passage

Figure E-41: Stonework in Zestafoni

under the Zestaphoni-Chiatura road detected some stonework which may have some archeological importance. In addition, a mound located 200m north to the plant may be the site of ancient settlement, while in the flatland, between the hill and the plant and old burial may be present. Finds from the area preserved in Zestafoni museum allow to assume this possibility. Maps indicating the locations of these potential archeological sites are indicated in **Figure E-44**.

- Churches Only one church has been identified within the vicinity of the Project road, St Ninos, which is located approximately 300 meters south of the exit to tunnel 6, close to the boundary of the GAA facility. Numerous other churches are dotted around Zestafoni, and Shorapani, but none of them are close enough to be impacted by the Project. Maps indicating the locations of the churches are indicated in Figure E-44.
- Cemeteries Only one cemetery has been identified within 250 meters of the Project road. The cemetery is located approximately 50 meters south of tunnel TUN 4.0.06-AT/TA, see Figure E-42.

Figure E-42: Cemetery close to Tunnel TUN 4.0.06-AT/TA.

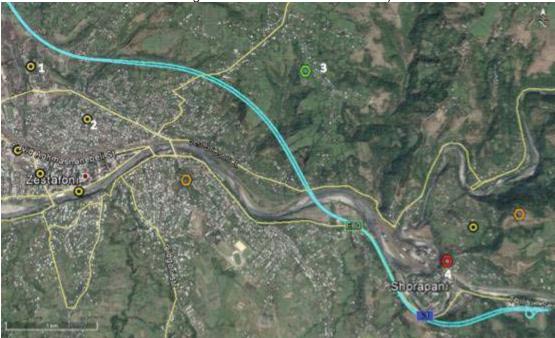

 Other Sites of Potential Cultural Value – A small natural spring is located around km 10, close to the northern boundary of the GAA facility (see Figure E-43). Several visitors to this area were noted during site visits.

Figure E-43: Natural Spring Adjacent to the GAA Facility (KM 10.1)

Figure E-44. Churches, cemeteries and places of worship in the region

(yellow circle- church, red circle – Shorapani fortress, greed hexagons – cemeteries, orange hexagons – cemeteries with churches)

1.St Nino church, approximate distance 260m; 2 – St Nickolas church, approximate distance 650m, 3 – cemetery, approximate distance 630m; 4 – Shorapani fortress , approximate distance 590m

E.4.6 Noise & Vibration

E.4.6.1 General

435. Noise and vibration within the Project corridor can be discussed in two parts, firstly the parts of the corridor that broadly follow the existing alignment, and secondly the part of the corridor that bypass to the north of Zestafoni, more than 500 meters from the existing road.

436. Noise levels within the first part are predominantly a result of vehicle traffic on the existing road. Very little commercial, residential or industrial activities can be observed in these areas that would give rise to significant noise levels. In the second part of the corridor the alignment traverses a predominantly rural / residential landscape with the exception being the portion of the alignment that passes just to the north of the GAA facility. Noise and vibration monitoring has been undertake in both parts of the road for this EIA to determine baseline noise levels which will be used as part of the noise and vibration model presented later in this report.

E.4.6.2 Existing Noise & Vibration Levels

437. Baseline noise and vibration monitoring was undertaken in September, 2017 at a nine locations. **Table E-36** describes the sample locations and rationale for their selection. The sampling locations are mapped in **Figure E-37**.

Sample ID	Coordinates	Approximate Location	Rationale for Site Selection
N01	42 ° 05'31.75"N / 43° 07'47.68"E	KM0.0	Start of F4, opposite a small cluster of residential properties.
N02	42 ° 05'42.77"N / 43° 06'23.19"E	KM2.2	Adjacent to a roadside restaurant. Site of embankment cutting.
N03	42 ° 05'31.72"N / 43° 04'53.87"E	KM4.3	Shorapani residential area, location of a school and exit of Tunnel 3.
N04	42 ° 05'58.49"N / 43° 04'26.10"E	KM5.5	Adjacent to residential properties.
N05	42 ° 06'14.75"N / 43° 03'51.79"E	KM6.3	At the portal to Tunnel 4.
N06	42 ° 06'56.22"N / 43° 02'57.23"E	KM8.3	Close to the portal to Tunnel 5 adjacent to residential properties.
N07	42 ° 07'02.90"N / 43° 02'08.61"E	KM9.5	Residential area at the portal to Tunnel 6 and at the end of Bridge 4.
N08	42 ° 07'36.01"N / 43° 01'11.19"E	KM11.0	North of the GAA facility and south of a residential cluster.
N09	42 ° 07'54.20"N / 42° 59'41.87"E	KM13.4	Adjacent to a small cluster of residential properties.

 Table E-36: Noise and Vibration Monitoring Locations

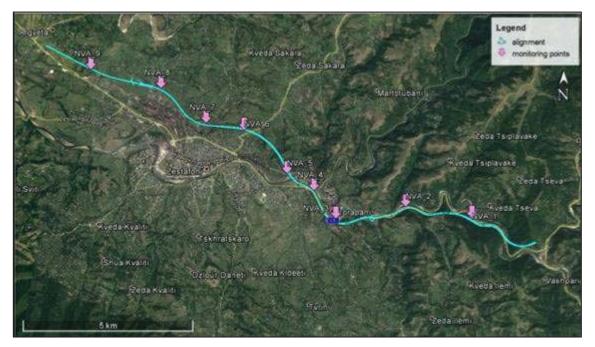


Figure E-44: Noise and Vibration Monitoring Locations

438. <u>Vibration Results</u> – **Table E-37** provides the baseline vibration monitoring results. Vibration values in the control points are currently too low to cause any structural or cosmetic damage and/or cause nuisance of the residents. According to the national standard the values are ranked as weak and non-perceptible.

		cement, r ak values		Velocit	y, mm/s; RMS		Transver sal	Comment
	Longit udinal X	Trans versal Y	Vert ical Z	Longit udinal X	Trans versal Y	Vert ical Z	vibration value in dBV	
NV A-1	0.001	0.051	0.00 0	0.000	0.440	0.00 0	78	Edge of the E-60 highway
NV A-2	0.005	0.002	0.00 0	0.000	0.010	0.00 0	40	14.9m from the centerline of E-60 highway
NV A-3	0.000	0.000	0.00 0	0.000	0.000	0.00 0		Next to internal road in Shorapani
NV A-4	0.033	0.010	0.00 1	0.000	0.000	0.00 0		15.2m from the centerline of E-60 highway
NV A-5	0.000	0.000	0.00 0	0.000	0.000	0.00 0		Next to the local road
NV A-6	0.000	0.000	0.00 0	0.000	0.000	0.00 0		87.5m from the centerline of Gomi-Sachkhere-Chiatura- Zestaphoni road, in about 30m from the street - Zestaphoni
NV A-7	0.000	0.000	0.00 0	0.000	0.000	0.00 0		Next to existing internal road – Kvemo Sakara
NV A-8	0.000	0.000	0.00 0	0.000	0.000	0.00 0		Next to existing internal road – Kvemo Sakara
NV A-9	0.000	0.000	0.00 0	0.000	0.000	0.00 0		Next to existing internal road – Argveta

Note:

Vibration velocity level (Lv) in dB has been defined as follows: Lv = 20 x log10(V/Vref) Where: Lv = velocity level in decibels, mm/s (dBV) V = RMS velocity amplitude, mm/s Vref = reference velocity amplitude, mm/s (Vref=0.00005 mm/s. Reference – Order #297/5 of the Minister of Labour, Health and Social Affairs on Approval of Standards of Quality of the State of Environment, Document ID 470.230.000.11.119.004.920)

Lv = 20 x log10(0.44/0.00005)=20x3.9=78dB (NVA-1) Lv = 20 x log10 (0.01/0.00005)=20x2=40dB (NVA-2)

439. <u>Noise monitoring results</u> – **Table E-38** provides the baseline noise monitoring results. The monitoring results show that noise levels close to the existing road are elevated above IFC daytime and nighttime standards. However, as the Project corridor enters the rural bypass around the north of Zestafoni noise levels get lower and are within IFC guideline limits for daytime and nighttime noise.

#	Time	nd , m/s	nd tion	L _{eq} , dBA	L _{min} ,, dBA	L _{max} , dBA	L _{eq} , dBA	L _{DN} , dBA	L _{DEN} , dBA	L10, dBA	L50, dBA	L90, dBA	National limit (residential), Leg,dBA	IFC/WHO limit (residential), LAeq, dBA	EU limit, Leq, dBA	Comment
		Wind speed, m/s	Wind direction											,		
1	12:30 -13:50	1.3	W	65.0	52.3	80.0	72.2	72.3	77.1	50.13	60.3	74.1	55 (Day)	55 (Day)	60 (Day)	Edge of the E-60 highway
2	19:30-19:50	1.4	W	78.0	55.0	85.0							45 (Night)	45 (Night)	55 (Evening) 45 (Night)	
3	01:30 -01:50	1.0	W	47.8	45.0	65.0									45 (Night)	
4	06:55-07:15	1.0	W	55.5	50.0	68.0										
										١	IVA-2					•
1	13:00-13:20	2.0	SW	68.3	54.0	75.0	62.4	62.6	62.8	46.1	50.3	63.4	55 (Day)	55 (Day)	60 (Day)	14.9m from the centerline of
2	18:50-19:10	1.6	SW	52.0	49.0	80.0							45 (Night)	45 (Night)	55 (Evening)	E-60 highway
3	01:00 -01:20 06:50-07:10	1.0 1.0	SW SW	45.0 48.5	42.0 44.0	65.0 68.4									45 (Night)	
4	00.30-07.10	1.0	300	40.5	44.0	00.4	1				IVA-3					
1	10:30 -10:50	2,0	SW	49.0	46.0	56.0	54.2	58.4	60.5	48.3	50.0	56.6	55 (Day)	55 (Day)	60 (Day)	Next to internal road in
2	18:20-18:40	1.6	SW	59.0	54.0	78.0	-						45 (Night)	45 (Night)	55 (Evening)	Shorapani
3	00:30-00:50	1.2	SW	48.0	46.0	56.0									45 (Night)	
4	06:20 -06:40	1,0	SW	51.0	50.0	55.0										
	10.00.10.00					0.5.0		70.4	= 0 4		IVA-4					
1	12:00-12:20 17:50-18:10	2.0 1.2	W	76.0 76.0	70.0 53.0	85.0 83.0	73	73.1	73.1	46.62	63.3	76.0	<mark>55 (Day)</mark> 45 (Night)	55 (Day)	<mark>60 (Day)</mark> 55 (Evening)	15.2m from the centerline of E-60 highway
3	24:00-24:20	1,1	W	50.5	48.0	60.0							45 (Night)	45 (Night)	45 (Night)	E-00 Highway
4	05:50-06:10	1,1	W	45.0	43.0	55.0									40 (Right)	
	00.00 00.10	1,0		10.0	10.0	00.0	1	J		1	IVA-5					
1	10:00 -10:20	1.6	NW	57.0	54.0	61.0	72.0	72.0	72.0	43.4	50.7	71.7	55 (Day)	55 (Day)	60 (Day)	Next to the local road
2	17:20-17:40	1.2	NW	78.0	55.0	82.0							45 (Night)	45 (Night)	55 (Evening)	
3	23:30-23:50	1.1	NW	44.4	40.0	50.0									45 (Night)	
4	05:20-06:40	1,0	NW	43.0	41.0	55.0										
											IVA-6					1
1	09:10-09:30	1.0	SW	32.3	31.7	40.7	33.2	40.0	40.0	31.9	32.2	34.2	55 (Day)	55 (Day)	60 (Day)	87.5m from the centerline of
2	16:40-17:00	1,0	SW	35.0	33.0	40.0							45 (Night)	45 (Night)	55 (Evening)	Gomi-Sachkhere-Chiatura-
3	23:10-23:30	1.2 1.0	SW SW	32.0	30.6	38.3									45 (Night)	Zestaphoni road, in about 30m from the street -
4	04:10-04:30	1.0	500	31.9	31.0	47.7										Zestaphoni
										١	IVA-7					· · ·
1	08:30-08:50	1.5	NW	33.0	29.0	38.0	41.3	47.3	47.3	32.7	39.3	50.1	55 (Day)	55 (Day)	60 (Day)	Next to existing internal road
2	16:10-16:30	1.1	NW	45.4	42.0	50.0							45 (Night)	45 (Night)	55 (Evening)	– Kvemo Sakara
3	22:50-23:10	1.0	NW	42.0	39.5	46.0									45 (Night)	

Table E-38: Baseline Noise Monitoring Results

Section F4 of the Khevi-Ubisa-Shorapani-Argveta Road (E60 Highway) Environmental Impact Assessment

4	04:10-04:30	1.1	NW	32.5	30.0	35.3										
	NVA-8															
1	07:30-07:50	2.2	S	42.0	38.0	44.0	43.8	48.0	48.0	35.0	42.0	46.2	55 (Day)	55 (Day)	60 (Day)	Next to existing internal road
2	15:30-15:50	1.1	S	48.0	45.0	55.1							45 (Night)	45 (Night)	55 (Evening)	– Kvemo Sakara
3	22:30-22:50	1.1	S	42.0	40.0	44.2									45 (Night)	
4	03:30-03:50	1.3	S	32.0	30.0	35.0										
										1	VA-9					
1	07:00-07:20	2.0	SW	39.0	35.0	48.0	44.9	49.7	49.7	35.5	41.5	47.8	55 (Day)	55 (Day)	60 (Day)	Next to existing internal road
2	15:00-15:20	1.1	SW	49.4	45.0	55.0							45 (Night)	45 (Night)	55 (Evening)	– Argveta
3	22:10-22:30	1.0	SW	44.0	42.0	52.0									45 (Night)	
4	03:00-03:20	1.2	SW	34.0	31.0	38.0										

Note:

Daytime values are marked in red

Orange highlight indicated the sites where registered noise was found to be in allowable limits L90, L50, L10 – statistical level = level exceeded 90%, 50% 10% of time respectively

L_{eq} - equivalent sound level

LDEN – equivalent sound level/average equivalent level over 24 hr period. 5dBA is added for the interval from 19:00 to 23:00; 10dBA added for the time interval from 23:00 to 07:00

LDN- average equivalent sound level over a 24 hour period, with a penalty added for noise during the nighttime hours of 22:00 to 07:00

F. Environmental Impacts and Mitigation Measures

F.1 Introduction

440. During the initial stage of the EIA process, several potential environmental and social impacts of the project were identified. The baseline surveys were conducted keeping in consideration the potential impacts. In this chapter, the potential environmental and social impacts are evaluated. The impacts have been identified based on consideration of the information presented in previous chapters. To avoid unnecessary repetition of supporting information, cross referencing to previous sections is given where necessary. Following the impact assessment, the mitigation measures related to each impact category is presented.

F.2 Impact Assessment Methodology

441. The general methodology used for impact assessment is described in this section. It describes the process of impact identification and definition, significance rating, the mitigation, management and good practice measures.

F.2.1 Identification of Significant Environmental Aspects

442. The description of each impact will have the following features:

- Definition of the impact using an impact statement identifying the Project activity or activities that causes the impact, the pathway or the environmental parameter that is changed by the activity, and the potential receptors of the impact (aspect-pathwayreceptor).
- Description of the sensitivity and importance value of the receiving environment or receptors.
- Extent of change associated with the impact.
- Rating of the significance of the impact.
- Description of appropriate mitigation and management measures and potential effectiveness of the proposed measures.
- Characterization of the level of uncertainty in the impact assessment.
- The significance of an impact is determined based on the product of the consequence of the impact and the probability of its occurrence. The consequence of an impact, in turn, is a function primarily of three impact characteristics:
 - magnitude
 - spatial scale
 - timeframe

443. Magnitude is determined from quantitative or qualitative evaluation of a number of criteria including:

- Sensitivity of existing or reasonably foreseeable future receptors.
- Importance value of existing or reasonably foreseeable future receptors, described using the following:
 - inclusion in government policy.
 - level of public concern.
 - number of receptors affected.
 - intrinsic or perceived value placed on the receiving environment by stakeholders.

- economic value to stakeholders
- Severity or degree of change to the receptor due to impact, measured qualitatively or quantitatively, and through comparison with relevant thresholds:
 - legal thresholds—established by law or regulation
 - functional thresholds if exceeded, the impacts will disrupt the functioning of an ecosystem sufficiently to destroy resources important to the nation or biosphere irreversibly and/or irretrievably
 - normative thresholds established by social norms, usually at the local or regional level and often tied to social or economic concerns
 - preference thresholds—preferences for individuals, groups or organizations only, as distinct from society at large
 - reputational thresholds—the level of risk a company is willing to take when approaching or exceeding the above thresholds

444. Spatial scale is another impact characteristic affecting impact consequence. The spatial scale of impacts can range from localized (confined to the proposed Project Site) to extensive (national or international extent). They also may vary depending on the component being considered.

445. The impact timeframe is the third principal impact characteristic defining impact consequence and relates to either its duration or its frequency (when the impact is intermittent). Impact duration can range from relatively short (less than four years) to long (beyond the life of the Project). Frequency ranges from high (more than 10 times a year) to low (less than once a year). These timeframes will need to be established for each Project based on its specific characteristics and those of the surrounding environment.

446. Once the impact consequence is described on the basis of the above impact characteristics, the probability of impact occurrence is factored in to derive the overall impact significance. The probability relates to the likelihood of the impact occurring, not the probability that the source of the impact occurs. For example, a continuous Project activity may have an unlikely probability of impact if there are no receptors within the area influenced by that activity.

447. The reversibility of each impact at the end of construction and operation are important, as these impacts may need on-going management after operation. The reversibility of each impact at the end of construction and operation will be noted and described alongside the three primary characteristics of magnitude, spatial scale and duration.

448. The characteristics are outlined in **Table F-1**.

Characteristic	Sub-components	Terms Used to Describe the Impact
Туре		Positive (a benefit), negative (a cost) or neutral
Nature		Biophysical, social, cultural, health or economic
		Direct, indirect or cumulative or induced

Table F-1: Characteristics Used to Describe Impact

Phase of the Project		Construction, operation,					
		decommissioning or post closure					
Magnitude	Sensitivity of Receptor	High, medium or low capacity to accommodate change					
		High, medium or low conservation importance					
		Vulnerable or threatened Rare, common, unique, endemic					
	Importance or value of receptor	High, medium or low concern to some or all stakeholders					
		High, medium or low value to some or all stakeholders (for example, for cultural beliefs)					
		Locally, nationally or internationally important					
		Protected by legislation or policy					
	Severity or degree of change to the receptor	Gravity or seriousness of the change to the environment					
		Intensity, influence, power or strength of the change					
		Never, occasionally or always exceeds relevant thresholds					
Spatial Scale	Area affected by impact - boundaries at local and regional extents will be different for biophysical and social impacts	Area or Volume covered Distribution Local, regional, transboundary or global					
Timeframe	Length of time over which an environmental impact occurs or frequency of impact when intermittent	Short term or long term Intermittent (what frequency) or continuous Temporary or permanent					
		Immediate effect (impact experienced immediately after causative project aspect) or delayed effect (effect of the impact is delayed for a period following the causative project aspect)					
Probability - likelihood or chance	Probability - likelihood or chance an impact will occur						
		Possible (impact may occur but could be influenced by either natural or project related					

	factors) Unlikely (impact unlikely unless specific natural or Project related circumstances occur)
Reversibility/Sustainability	Potential for recovery of the endpoint from a negative impact Reversible or irreversible Sustainability for positive impacts
Confidence in impact evaluation (degree of certainty in the significance ascribed to the impact)	Scientific uncertainty – limited understanding of ecosystem (or community) and processes governing change
	Data uncertainty – restrictions introduced by incomplete or incomparable information, or by insufficient measurement techniques
	Policy uncertainty – unclear or disputed objectives, standards or guidelines

F.2.2 Impact Significance Rating

449. The impact significance rating process serves two purposes: firstly, it helps to highlight the critical impacts requiring consideration in the approval process; secondly, it serves to show the primary impact characteristics, as defined above, used to evaluate impact significance. The impact significance rating system is presented in **Table F-2** and described as follows:

- **Part A**: Define impact consequence using the three primary impact characteristics of magnitude, spatial scale and duration.
- **Part B**: Use the matrix to determine a rating for impact consequence based on the definitions identified in Part A; and
- **Part C**: Use the matrix to determine the impact significance rating, which is a function of the impact consequence rating (from Part B) and the probability of occurrence.

450. Using the matrix, the significance of each described impact is rated.

Table F-2: Method for Rating Significance

PART A: DEFINING	G CONSEQUENCE IN T	ERMS OF MAGNITUDE, DURATION AND SPATIAL SCAL	E				
Definition		Criteria					
MAGNITUDE		Negative	Positive				
	Major	 Large number of receptors affected Receptors highly sensitive and/or are of conservation importance Substantial deterioration, nuisance or harm to receptors expected Relevant thresholds often exceeded Significant public concern expressed during stakeholder consultation Receiving environment has an inherent value to stakeholders 	 Large number of receptors affected Receptors highly amenable to positive change Receptors likely to experience a big improvement in their situation Relevant positive thresholds often exceeded 				
	Moderate	 Some receptors affected Receptors slightly sensitive and/or of moderate conservation importance Measurable deterioration, nuisance or harm to receptors Relevant thresholds occasionally exceeded Limited public concern expressed during stakeholder consultation Limited value attached to the environment 	 Some receptors affected Receptors likely to experience some improvement in their situation Relevant positive thresholds occasionally exceeded 				
	Minor	 No or limited receptors within the zone of impact Receptors not sensitive to change Minor deterioration, nuisance or harm to receptors Change not measurable or relevant thresholds never exceeded Stakeholders have not expressed concerns regarding the receiving environment 	 No or limited receptors affected Receptors not sensitive to change Minor or no improvement in current situation Change not measurable Relevant positive thresholds never exceeded No stakeholder comment expected 				

TIMEFRAME		Duration of Continuou	is Aspects	Frequency of Intermitte	nt Aspects			
	Short term / low frequency	Less than 4 years	from onset of impact	Occurs less than or	nce a year			
	Medium term / medium		s from onset of impact up to	Occurs less than 10 times a year but more				
	frequency		ect (approximately 30 years)	than once a year				
	Long term / high frequency		nced during and beyond the (greater than 30 years)	Occurs more than 1	l0 times a year			
SPATIAL SCALE		Biophysical		Socio-economic				
	Small		d 'area of influence'	Within the defined '	area of influence'			
	Intermediate	Within the district located	in which is the facilities are	Within the municipa occurs	lity in which the activity			
	Extensive	Beyond the distric located	ct in which the facilities are	Beyond the municip occurs	pality in which the activity			
	IING CONSEQUENCE RATIN	G						
MAGNITUDE	TIMEFRAME		SPATIAL SCALE					
			Small	Intermediate	Extensive			
Minor	Short term / low frequence	су –	Low	Low	Medium			
	Medium term / medium f	requency	Low	Low	Medium			
	Long term / high frequen	су	Medium	Medium	Medium			
Moderate	Short term / low frequence	N/	Low	Medium	Medium			
Moderate	Medium term / medium fi		Medium	Medium	High			
	Long term / high frequen		Medium	High	High			
Major	Short term / low frequence		Medium	Medium	High			
	Medium term / medium f		Medium	Medium	High			
	Long term / high frequen		High	High	High			
TANTO, DETERMIN	ING SIGNIFICANCE RATING		CONSEQUENCE					
			Low	Medium	High			
PROBABILITY (of ex	posure to impacts)	Definite	Low	Medium	High			
(,	Possible	Low	Medium	High			
		Unlikely	Low	Low	Medium			

F.3 Mitigation, Management and Good Practice Measures

451. Wherever the Project is likely to result in unacceptable impact on the environment, mitigation measures are proposed (over and above the inherent design measures included in the Project description). In addition, good practice measures may be proposed however these are unlikely to change the impact significance. In the case of positive impacts, management measures are suggested to optimize the benefits to be gained. Where mitigation measures are required the impact will be rated again to show the residual impact after implementation of management controls.

452. The following mitigation hierarchy will be utilized in selecting practical mitigation measures for unacceptable impacts as follows (in order of preference):

- Avoid the impact wherever possible by removing the cause(s).
- Reduce the impact as far as possible by limiting the cause(s).
- Ameliorate the impact by protecting the receptor from the cause(s) of the impact.
- Providing compensatory measures to offset the impact, particularly where an impact is of high significance and none of the above are appropriate.

F.4 Screening of Impacts

453. Based on the impact assessment methodology discussed above, **Table F-3** presents the possible impacts of the proposed Project. Each impact is discussed further in this chapter.

Aspect	Phase	Impact	Receptors	No. of Receptors Affected	Sensitivity of Receptors	Level of Public Concern	Risk of Exceeding Legal Threshold	Magnitude	Timeframe	Spatial Scale	Consequence	Probability	Significance
Air Quality	С	Emissions from stationary sources	Nearby communities	L	L	L	М	Minor	Short	Small	Medium	Definite	М
	С	Exhaust Emissions from construction vehicles and generators	Nearby communities	М	L	L	L	Minor	Short	Inter.	Low	Definite	L
	С	Dust from the movement of vehicles, stockpiles, etc.	Nearby communities / Agric. crops	M	M	M	М	Moderate	Short	Inter.	Medium	Definite	M
	0	Vehicle Emissions from traffic using the road.	Nearby communities	М	L	М	М	Moderate	Medium	Inter.	Medium	Definite	М
Climate Change	С	GHG Emissions from road construction.	Global	Н	L	L	L	Minor	Short	Ext.	Low	Definite	L
5	0	GHG Emissions from vehicle emissions.	Global	Н	L	L	L	Minor	High	Ext.	Low	Definite	L
Soils	С	Loss / degradation of topsoil through land clearing, borrow pits, etc.	Overall EQ	M	M	M	М	Moderat w	Short	Inter.	Low	Possible	L
	С	Soil erosion on unstable slopes caused by poor construction works.	Overall EQ	M	L	M	L	Minor	Short	Small	Low	Possible	L
	0	Soil erosion caused by	Overall EQ	L	L	М	L	Minor	Medium	Small	Low	Possible	L

Table F-3: Impact Screening

Aspect	Phase	Impact	Receptors	No. of Receptors Affected	Sensitivity of Receptors	Level of Public Concern	Risk of Exceeding Legal Threshold	Magnitude	Timeframe	Spatial Scale	Consequence	Probability	Significance
		poorly designed erosion protection measures, drainage, etc.											
	С	Soil contamination via spills and leaks of hazardous liquids from construction camps.	Overall EQ	M	M	L	M	Moderate	Short	Small	Low	Possible	L
	PC	Existing contaminated land behind GAA.	Overall EQ	L	М	L	М	Moderate	Medium	Small	Medium	Definite	М
Hydrology	С	Flooding caused by blocking existing drainage structures.	Nearby communities	М	М	М	L	Moderate	Short	Small	Low	Possible	L
	0	Flooding caused by poorly designed drainage structures.	Nearby communities	L	М	М	L	Moderate	Medium	Small	Low	Possible	L
	С	Water contamination from construction camps, etc.	Overall EQ	М	М	L	М	Moderate	Short	Small	Low	Possible	L
	С	Excessive water extraction affecting local water supplies.	Water users / Aquatic Life	L	М	L	М	Moderate	Short	Inter.	Medium	Possible	М
	0	Ground water supply degraded by new tunnels.	Water users	L	Н	L	М	Moderate	Long	Inter.	Medium	Possible	М
Natural Hazards	С	Landslides caused by poor construction works on slopes.	Overall EQ	L	L	Μ	L	Minor	Short	Small	Medium	Unlikely	Ĺ

Aspect	Phase	Impact	Receptors	No. of Receptors Affected	Sensitivity of Receptors	Level of Public Concern	Risk of Exceeding Legal Threshold	Magnitude	Timeframe	Spatial Scale	Consequence	Probability	Significance
	0	Landslides caused by poor design of slope protection works.	Overall EQ	L	L	М	L	Minor	Long	Small	Medium	Unlikely	L
Flora & Fauna	С	Degradation of habitat caused during site clearing.	Overall EQ	L	М	L	М	Moderate	Medium	Small	Low	Possible	L
	С	Tree cutting.	Overall EQ	М	М	L	М	Moderate	Medium	Small	Low	Definite	L
	0	Blocking migration routes of animals.	Overall EQ	L	L	L	L	Minor	Long	Small	Low	Unlikely	L
Protected Areas	С	Degrading the habitat of protected areas through haul routes.	Overall EQ	L	Н	L	L	Minor	Short	Inter.	Low	Unlikely	L
Infrastructu re and Transport	С	Damage to access roads caused by construction vehicles.	Road users	М	L	М	L	Minor	Short	Inter.	Low	Possible	L
	С	Traffic delays due to road works.	Nearby communities	М	М	М	L	Moderate	Short	Small	Medium	Definite	Μ
	С	Limited accessibility to properties as road works block access.	Nearby communities	М	М	L	М	Moderate	Short	Small	Medium	Possible	М
	С	Damage to utilities which may not have been identified.	Nearby communities	М	М	L	L	Moderate	Short	Small	Low	Possible	L
	С	Temporary disruption to utilities while they are removed to make way for construction works.	Nearby communities	M	M	L	L	Moderate	Short	Small	Low	Definite	L

Aspect	Phase	Impact	Receptors	No. of Receptors Affected	Sensitivity of Receptors	Level of Public Concern	Risk of Exceeding Legal Threshold	Magnitude	Timeframe	Spatial Scale	Consequence	Probability	Significance
Land Use	С	Loss of land and property due to the new road.	Land / Property owners	М	Н	Н	М	Major	Long	Small	High	Definite	Н
	С	Disruption to businesses caused by reduced access to the business.	Nearby communities	М	Н	Н	М	Major	Short	Small	Medium	Possible	M
	0	Reduced income for businesses no longer located by the road.	Nearby communities	М	Н	Н	М	Major	Medium	Small	High	Definite	н
	0	Induced changes.	Nearby communities	М	L	L	L	Minor	Long	Inter.	Low	Possible	L
Waste	С	Pollution from hazardous waste from construction camps, etc.	Overall EQ	М	М	L	М	Moderate	Short	Small	Low	Possible	L
	С	Pollution from inert waste from construction camps, etc.	Overall EQ	М	L	L	L	Minor	Short	Small	Low	Possible	L
	С	Tunnel and embankment spoil dumped in unauthorized locations.	Overall EQ	Μ	М	Н	M	Major	Medium	Inter.	Medium	Possible	М
OHS	С	Accidents and injuries to workers during the construction phase.	Contractors staff	М	M	L	М	Moderate	Short	Small	High	Definite	Н
	С	Lack of workers rights.	Contractors staff	М	L	L	М	Minor	Short	Small	Low	Possible	L
	С	STD's contracted and	Contractors	L	Н	L	L	Minor	Long	Inter.	Medium	Possible	М

Aspect	Phase	Impact	Receptors	No. of Receptors Affected	Sensitivity of Receptors	Level of Public Concern	Risk of Exceeding Legal Threshold	Magnitude	Timeframe	Spatial Scale	Consequence	Probability	Significance
		spread by workers.	staff / Nearby communities										
Emergency s	С	Fires, explosions, etc, at site.	Contractors staff / Nearby communities	M	M	L	M	Moderate	Short	Small	Medium	Possible	Μ
PCR	С	Damage to PCR caused during construction.	PCR site and its users	L	М	L	М	Moderate	Long	Small	Medium	Possible	М
	0	Effects to PCR in terms of elevated noise, dust, etc.	PCR site and its users	L	L	L	М	Minor	Long	Small	Low	Unlikely	L
Noise	С	Elevated noise levels from construction equipment.	Contractors staff / Nearby communities	Н	Н	L	M	Moderate	Short	Small	Medium	Definite	Μ
	0	Elevated noise levels from vehicles using the road.	Nearby communities	Н	Н	М	Н	Major	Long	Small	High	Definite	Н
Vibration	С	Damage to properties caused during blasting and piling.	Nearby communities	М	Н	М	Н	Major	Short	Small	High	Possible	Н
	0	Damage to properties from vehicle movement vibration.	Nearby communities	L	Н	Μ	L	Minor	Long	Small	Low	Unlikely	L