457.212 Statistics for Civil \& Environmental Engineers In-Class Material: Class 08
 Total Probability Theorem \& Bayes Rule (A\&T: 2.3)

1. Total probability theorem: "
" and "
" approach
(a) Example: Under seismic hazard from multiple faults surrounding a building site, what is the probability of the event E : the peak ground acceleration of a earthquake is greater than 0.3 g , i.e. $P G A>0.3$?
$P(E)$ is needed to determine the appropriate level of seismic design (new) or retrofit (existing).

https://www.shakeout.org/california/bayarea/
Issue: each fault has different distance from the site, length, depth, geological characteristics although they affect the intensity of ground motion significantly.

Solution: tackle one by one.

(b) Theorem: If $E_{i}{ }^{\prime} s, i=1, \ldots, n$, are (
) and (
),

$$
\begin{aligned}
P(E) & =P(\quad \cup \quad \cup \cdots \cup) \\
& =P(\quad)+P(\quad)+\cdots+P(\quad) \\
& =P(\quad \mid \quad) P\left(E_{1}\right)+\cdots P(\quad \mid \quad) P\left(E_{n}\right) \\
& =\sum_{i=1}^{n} P\left(E \mid E_{i}\right) P\left(E_{i}\right)
\end{aligned}
$$

Example 1 (A\&T 2.25): Consider landfalls of hurricanes at a particular area in the southern coast of Louisiana (assume: at most one hurricane landfall per year)

Saffir/Simpson Hurricane Category	C1	C2	C3	C4	C5
Velocity (mph)	$74-95$	$96-110$	$111-130$	$131-155$	≥ 156
Probability (/yr)	0.35	0.25	0.14	0.05	0.01
Conditional Prob.of Damage, $\mathrm{P}\left(\mathrm{D} \mid \mathrm{C}_{\mathrm{i}}\right)$	0.05	0.10	0.25	0.60	1.00

C0: Velocity < 74 mph $\mathrm{P}(\mathrm{CO})$?

Note $P(D \mid C 0)=0$

The annual probability of wind damage of the building, $P(D)$?

2. Bayes theorem: $P\left(E_{i} \mid E\right)$ from $P\left(E \mid E_{i}\right)$'s and $P\left(E_{i}\right)$'s - an inverse formula

$$
P\left(E_{i} \mid E\right)=\frac{P\left(E \mid E_{i}\right)}{P(E)} \cdot P\left(E_{i}\right)
$$

(a) Proof?
(b) $P(E)$?
(c) Bayes theorem is everywhere - pattern recognition (face, fingerprint, hand-writing, customer behavior), model parameter estimation, decision-making, etc.
(d) Represents a philosophy or definition of probability: \qquad of \qquad
(d) CEE Example 1: Identification of structural damage from indirect measurement data

Lee, S.-H., and J. Song (2017). System identification of spatial distribution of structural parameters using modified Transitional Markov Chain Monte Carlo (mTMCMC) method. ASCE Journal of Engineering Mechanics. Vol. 143(9), 04017099-1~18.
E_{i} : Damage pattern
E : Measured displacement under loads

(a) Reference scenario

(b) Bayesian estimation
(e) CEE Example 2: Monitoring and prediction of deterioration

Yi, S., and J. Song. Particle filter based monitoring and prediction of spatiotemporal deterioration using successive measurements of structural responses. Mechanical System and Signal Processing, Under Review.
E_{i} : Deterioration model parameter
E : Measured displacement/strain under loads
Method: Bayesian filters, e.g. particle filter

Example 2 (A\&T 2.29): Aggregates are supplied by two companies (A \& B) for the construction of a reinforced concrete (RC) building.

- Company A: 600 truck loads/day, 3\% disqualification rate
- Company B: 400 truck loads/day, 1% disqualification rate

Consider the events

- A: a load of aggregate picked at random came from Company A
- B: a load of aggregate picked at random came from Company B
- E: a load of aggregate picked at random is substandard and thus disqualified
(a) $P(A)$ and $P(B)$
(b) If the load of aggregate picked at random is substandard, what is the probability that it came from Company A?

Example 3: Consider a water purification system consisting of three major components. Assume at most one component can be out of order at a time. Suppose they use a water quality index, X that ranges from 0 (clean) to 100 (contaminated).

Suppose we know

Failed Component	$P\left(E_{i}\right)$	$P\left(0 \leq X \leq 20 \mid E_{i}\right)$	$P\left(70 \leq X \leq 100 \mid E_{i}\right)$
$1^{\text {st }}$ comp. $\left(E_{1}\right)$	0.3	0.9	0.05
$2^{\text {nd }}$ comp. $\left(E_{2}\right)$	0.2	0.3	0.4
$3^{\text {rd }}$ comp. $\left(E_{3}\right)$	0.1	0.1	0.8
No failures $\left(E_{0}\right)$		1.0	0

(a) $P(0 \leq X \leq 20)$
(b) $P(70 \leq X \leq 100)$
(c) If $0 \leq X \leq 20$, what is the probability that the i-th component has failed, $i=0,1,2,3$?
(d) If $70 \leq X \leq 100$, what is the probability that the i-th component has failed, $i=0,1,2,3$?

Failed		
Component		
$1^{\text {st }}$ comp. $\left(E_{1}\right)$		
$2^{\text {nd }}$ comp. $\left(E_{2}\right)$		
$3^{\text {rd }}$ comp. $\left(E_{3}\right)$		
No failures $\left(E_{0}\right)$		

