457.212 Statistics for Civil & Environmental Engineers In-Class Material: Class 08 Total Probability Theorem & Bayes Rule (A&T: 2.3)

1. Total probability theorem: " " and " " approach

(a) Example: Under seismic hazard from multiple faults surrounding a building site, what is the probability of the event *E*: the peak ground acceleration of a earthquake is greater than 0.3g, i.e. PGA > 0.3?

P(E) is needed to determine the appropriate level of seismic design (new) or retrofit (existing).

https://www.shakeout.org/california/bayarea

Issue: each fault has different distance from the site, length, depth, geological characteristics although they affect the intensity of ground motion significantly.

Solution: tackle one by one.

Seoul National University Dept. of Civil and Environmental Engineering Instructor: Junho Song junhosong@snu.ac.kr

(b) **Theorem:** If E_i 's, i = 1,...,n, are () and (

$$P(E) = P(\bigcup \bigcup \dots \bigcup)$$

= P() + P() + \dots + P()
= P(|) P(E_1) + \dots P(|) P(E_n)
= $\sum_{i=1}^{n} P(E | E_i) P(E_i)$

Example 1 (A&T 2.25): Consider landfalls of hurricanes at a particular area in the southern coast of Louisiana (assume: at most one hurricane landfall per year)

Saffir/Simpson Hurricane Category	C1	C2	C3	C4	C5
Velocity (mph)	74-95	96-110	111-130	131-155	≥156
Probability (/yr)	0.35	0.25	0.14	0.05	0.01
Conditional Prob.of Damage, P(D C _i)	0.05	0.10	0.25	0.60	1.00

C0: Velocity < 74 mph P(C0)?

Note P(D|C0) = 0

The annual probability of wind damage of the building, P(D)?

Seoul National University Dept. of Civil and Environmental Engineering Instructor: Junho Song junhosong@snu.ac.kr

2. Bayes theorem: $P(E_i | E)$ from $P(E | E_i)$'s and $P(E_i)$'s – an inverse formula

$$P(E_i \mid E) = \frac{P(E \mid E_i)}{P(E)} \cdot P(E_i)$$

(a) Proof?

- (b) P(E)?
- (c) Bayes theorem is everywhere pattern recognition (face, fingerprint, hand-writing, customer behavior), model parameter estimation, decision-making, etc.
- (d) Represents a philosophy or definition of probability: _____ of _____ (d) CEE Example 1: Identification of structural damage from indirect measurement data Lee, S.-H., and J. Song (2017). System identification of spatial distribution of structural parameters using modified Transitional Markov Chain Monte Carlo (m-TMCMC) method. ASCE Journal of Engineering Mechanics. Vol. 143(9), 04017099-1~18. E_i: Damage pattern E: Measured displacement under loads Method: modified version of transitional Markov Chain Monte Carlo method (m-TMCMC) (a) Reference (b) Bayesian estimation scenario

(e) CEE Example 2: Monitoring and prediction of deterioration

Yi, S., and J. Song. Particle filter based monitoring and prediction of spatiotemporal deterioration using successive measurements of structural responses. *Mechanical System and Signal Processing*, Under Review.

E_i: Deterioration model parameter

E: Measured displacement/strain under loads

Method: Bayesian filters, e.g. particle filter

Example 2 (A&T 2.29): Aggregates are supplied by two companies (A & B) for the construction of a reinforced concrete (RC) building.

- Company A: 600 truck loads/day, 3% disqualification rate
- Company B: 400 truck loads/day, 1% disqualification rate

Consider the events

- A: a load of aggregate picked at random came from Company A
- B: a load of aggregate picked at random came from Company B
- E: a load of aggregate picked at random is substandard and thus disqualified

- (a) P(A) and P(B)
- (b) If the load of aggregate picked at random is substandard, what is the probability that it came from Company A?

Example 3: Consider a water purification system consisting of three major components. Assume at most one component can be out of order at a time. Suppose they use a water quality index, X that ranges from 0 (clean) to 100 (contaminated).

Suppose we know			
Failed Component	$P(E_i)$	$P(0 \le X \le 20 \mid E_i)$	$P(70 \le X \le 100 \mid E_i)$
1^{st} comp. (E_1)	0.3	0.9	0.05
2^{nd} comp. (E_2)	0.2	0.3	0.4
3^{rd} comp. (E_3)	0.1	0.1	0.8
No failures (E_0)		1.0	0

(a) $P(0 \le X \le 20)$

(b) $P(70 \le X \le 100)$

(c) If $0 \le X \le 20$, what is the probability that the *i*-th component has failed, i = 0,1,2,3?

(d) If $70 \le X \le 100$, what is the probability that the i-th component has failed, i = 0,1,2,3?

Failed	
Component	
1 st comp. (E_1)	
2^{nd} comp. (E_2)	
3^{rd} comp. (E_3)	
No failures (E_0)	