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ABSTRACT

This publication contains the preliminary agenda and summaries for the Third Annual JPL
Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on
June 1-5, 1992. This main workshop is divided into three smaller workshops as follows:

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on
June 1 and 2. The summaries for this workshop appear in Volume 1.

The Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3. The
summaries for this workshop appear in Volume 2.

The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5.
The summaries for this workshop appear in Volume 3.
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AGENDA

THIRD ANNUAL JPL AIRBORNE GEOSCIENCE WORKSHOP:

AIRBORNE VISIBLE/INFRARED IMAGING SPECTROMETER
(AVIRIS)

June 1 and 2, 1992
Von Karman Auditorium

Jet Propulsion Laboratory
Pasadena, California 91109

MONDAY, JUNE 1, 1992

7:15 a.m. Shuttle bus departs Pasadena Ritz-Carlton Hotel for JPL.

7:30 a.m. Registration and continental breakfast at JPL.

8:00 a.m. Welcome

8:30 a.m. In-Flight Calibration of the Spectral and Radiometric Characteristics of AVIRIS
in 1991

Robert O. Green, James E. Conel, Carol J. Bruegge, Jack S. MargoIis,

Veronique Carrere, Gregg Vane, and Gordon Hoover

9:00 a.m. Using AVIRIS Images To Measure Temporal Trends in Abundance of
Photosynthetic and Nonphotosynthetic Canopy Components
Susan L. Ustin, Milton O. Smith, Dar Roberts, John A. Gamon, and

Christopher B. Field

9:30 a.m. Unmixing AVIRIS Data To Provide a Method for Vegetation Fraction
Subtraction
J.A. Zamudio

10:00 a.m. Break

10:30 a.m. Mapping the Mineralogy and Lithology of Canyonlands, Utah With Imaging
Spectrometer Data and the Multiple Spectral Feature Mapping Algorithm
Roger N. Clark, Gregg A. Swayze, and Andrea Gallagher

11:00 a.m. Spatial Resolution and Cloud Optical Thickness Retrievals
Rand E. Feind, Sundar A. Christopher, and Ronald M. Welch

11:30 a.m. Evaluation of Spatial Productivity Patterns in an Annual Grassland During an
AVIRIS Overflight
John A. Gamon, Christopher B. Field, and Susan L. Ustin

12:00 noon Lunch

1:00 p.m. Hyperspectral Modeling for Extracting Aerosols From Aircraft/Satellite Data
G. Daniel Hickman and Michael J. Duggin

1:30 p.m. The Spectral Image Processing System (SIPS)--Software for Integrated Analysis
of AVIRIS Data

F A. Kruse, A _. Lefkoff, J.W. Boardman, K.B. Heidebrecht, A.T. Shapiro,
P J. Barloon, and A.F.H. Goetz
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2:00 p.m.

2:30 p.m.

3:00 p.m.

3:30 p.m.

4:00 p.m.

4:30 p.m.

5:00 p.m.

5:30 p.m.

5:45 p.m.

6:30 p.m.

9:00 p.m.

AGENDA (CONTINUED)

THIRD ANNUALJPL AIRBORNEGEOSCIENCEWORKSHOP:
AIRBORNEVISIBLE/INFRAREDIMAGINGSPECTROMETER

(AVmIS)

First Results From Analysis of Coordinated AVIRIS, TIMS, and ISM (French)
Data for the Ronda (Spain) and Beni Bousera (Morocco) Peridotites
J.F. Mustard, S. Hurtrez, P. Pinet, and C. Sotin

AVIRIS Study of Death Valley Evaporite Deposits Using Least-Squares Band-

Fitting Methods
J.K. Crowley and R.N. Clark

Break

A Field Measure of the "Shade" Fraction
Alan R. Gillespie, Milton O. Smith, and Donald E. Sabol

A Linear Spectral Matching Technique for Retrieving Equivalent Water
Thickness and Biochemical Constituents of Green Vegetation

Bo-Cai Gao and Alexander F.H. Goetz

Poster Previews

Poster Previews

End of session.

Shuttle bus departs JPL for the Pasadena Ritz-Carhon Hotel.

Reception and poster sessions at the Pasadena Ritz-Carlton Hotel.

Close of reception and poster sessions.
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AGENDA

THIRDANNUALJPLAIRBORNEGEOSCIENCEWORKSHOP:
AIRBORNEVISIBLE/INFRAREDIMAGINGSPECTROMETER

(AVIRIS)

June1and2, 1992
Von KarmanAuditorium
JetPropulsionLaboratory
Pasadena,California91109
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7:15a.m. ShuttlebusdepartsPasadenaRitz-CarltonHotel for JPL.

7:30a.m. Registrationandcontinentalbreakfastat JPL.

8:00a.m. MappingtheSpectralVariability in PhotosyntheticandNon-Photosynthetic
Vegetation,SoilsandShadeUsingAVIRIS
Dar A. Roberts, Milton O. Smith, Donald E. Sabol, John B. Adams, and

Susan Ustin

8:30 a.m.

9:00 a.m.

9:30 a.m.

Volcanic Thermal Features Observed by AVIRIS

Clive Oppenheimer, David Pieri, Veronique Carrere, Michael Abrams,
David Rothery, and Peter Francis

Retrieval of Biophysical Parameters With AVIRIS and ISM--The Landes Forest,
South West France

F. ZagoIski, J.P. Gastellu-Etchegorry, E. Mougin, G. Giordano, G. Marty,
T. Le Toan, and A. Beaudoin

Ground-Truthing AVIRIS Mineral Mapping at Cuprite, Nevada
Gregg Swayze, Roger N. Clark, Fred Kruse, Steve Sutley, and Andrea Gallagher

10:00 a.m.

10:30 a.m.

11:00 a.m.

11:30 a.m.

Break

Exploring the Remote Sensing of Foliar Biochemical Concentrations With
AVIRIS Data
Geoffrey M. Smith and Paul J. Curran

Seasonal and Spatial Variations in Phytoplanktonic Chlorophyll in Eutrophic
Mono Lake, California, Measured With the Airborne Visible and Infrared

Imaging Spectrometer (AVIRIS)
John M. Melack and Mary Gastil

AVIRIS Calibration and Application in Coastal Oceanic Environments
Kendall L. Carder

12:00 noon

1:00 p.m.

Lunch

Mapping Vegetation Types With the Multiple Spectral Feature Mapping
Algorithm in Both Emission and Absorption
Roger N. Clark, Gregg A. Swayze, Christopher Koch, and Cathy Ager

xvii



1:30p.m.

2:00p.m.

2:30p.m.

3:00p.m.

3:30p.m.

4:00p.m.

4:30p.m.

5:00p.m.

5:30p.m.

5:45p.m.

AGENDA(CONTINUED)

THIRDANNUALJPL AIRBORNEGEOSCIENCEWORKSHOP:
AIRBORNEVISIBLE/INFRAREDIMAGINGSPECTROMETER

(AVIRIS)

Multiple DatasetWater-QualityAnalysesin theVicinity of anOceanWastewater
Plume
Michael Hamilton, Curtiss O. Davis, W. Joseph Rhea, and
Jeannette van den Bosch

MAC Europe 91: Evaluation of AVIRIS, GER Imaging Spectrometry Data for
the Land Application Testsite Oberpfaffenhofen
F. Lehmann, R. Richter, H. Rothfuss, K. Werner, P. Hausknecht, A. Mailer, and
P. Strobl

Using Endmembers in AVIRIS Images To Estimate Changes in Vegetative
Biomass

Milton O. Smith, John B. Adams, Susan L. Ustin, and Dar A. Roberts

Break

Atmospheric Correction of AVIRIS Data in Ocean Waters
Gregory Terrie and Robert Arnone

The 1991 AVIRIS/POLDER Experiment in Camargue, France
F. Baret, C. Leprieur, S. Jacquemoud, V. Carrdre, X.F. Gu, M. Steven,
V. Vanderbilt, J.F. Hanocq, S. Ustin, G. Rondeaux, C. Daughtry, L. Biehl,
R. Pettigrew, D. Modro, H. Horoyan, T. Sarto, C. Despontin, and
H. Razafindraibe

AVIRIS Sensor and Ground Data System: Status and Plans
Thomas Chrien and Earl Hansen

Wrap up.

End of AVIRIS Workshop.

Shuttle bus departs JPL for the Pasadena Ritz-Carlton Hotel.
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WEDNESDAY,

7:15 a.m.

7:30 a.m.

8:00 a.m.

8:30 a.m.

9:30 a.m.

10:00 a.m.

10:30 a.m.

11:00 a.m.

11:30 a.m.

12:00 noon

1:00 p.m.

1:30 p.m.

2:00 p.m.

AGENDA

THIRD ANNUAL JPL AIRBORNE GEOSCIENCE WORKSHOP:

THERMAL INFRARED MULTISPECTRAL SCANNER

(TIMS)

June 3, 1992
Von Karman Auditorium

Jet Propulsion Laboratory
Pasadena, California 91109

JUNE 3, 1992

Shuttle bus departs Pasadena Ritz-Carlton Hotel for JPL.

Registration and continental breakfast at JPL.

Welcome

TIMS Performance Evaluation Summary
Bruce Spiering, G. Meeks, J. Anderson, S. Jaggi, and S. Kuo

A Quantitative Analysis of TIMS Data Obtained on the Learjet 23 at Various
Altitudes

S. Jaggi

Analysis of TIMS Performance Subjected to Simulated Wind Blast
S. Jaggi and S. Kuo

Sensitivity of Blackbody Reference Panels to Wind Blast
Gordon Hoover

Break

Preliminary Analysis of TIMS Performance on the ER-2
S.J. Hook, V.I. Realmuto, and R.E. Alley

Comparison of Preliminary Results From Airborne ASTER Simulator (AAS)
With TIMS Data
Yoshiaki Kannari, Franklin Mills, Hiroshi Watanabe, Teruya Ezaka,
Tatsuhiko Narita, and Sheng-Huei Chang

Simulation of ASTER Data Using AVIRIS Images
Michael Abrams

Lunch

Application of Split Window Technique to TIMS Data
Tsuneo Matsunaga, Shuichi Rokugawa, and Yoshinori Ishii

Atmospheric Corrections for TIMS Estimated Emittance
T.A. Warner and D.W. Levandowski

An Algorithm for the Estimation of Bounds on the Emissivity and Temperatures
From Thermal Multispectral Airborne Remotely Sensed Data
S. Jaggi, D. Quattrochi, and R. Baskin

xix



2:30p.m.

3:00p.m.

3:30p.m.

4:00p.m.

4:30p.m.

5:00p.m.

5:30p.m.

5:45p.m.

AGENDA(CONTINUED)

THIRDANNUALJPLAIRBORNEGEOSCIENCEWORKSHOP:
THERMALINFRAREDMULTISPECTRALSCANNER

(TIMS)

Multi-ResolutionProcessingfor FractalAnalysisof AirborneRemotelySensed
Data
S. Jaggi, D. Quattrochi, and N. Lam

Break

Preliminary Analysis of Thermal-Infrared Multispectral Scanner Data of the Iron
Hill, Colorado Carbonatite-Alkalic Rock Complex
Lawrence C. Rowan, Kenneth Watson, and Susanne H. Miller

The Use of TIMS for Mapping Different Pahoehoe Surfaces: Mauna Iki, Kilauea
Scott K. Rowland

Ejecta Patterns of Meteor Crater, Arizona Derived From the Linear Un-Mixing of
TIMS Data and Laboratory Thermal Emission Spectra
Michael S. Ramsey and Philip R. Christensen

The Use of TIMS Data To Estimate the SO2 Concentrations of Volcanic Plumes:
A Case Study at Mount Etna, Sicily
Vincent J. Realmuto

End of TIMS Workshop.

Shuttle bus departs JPL for the Pasadena Ritz-Carlton Hotel.
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AGENDA

THIRD ANNUAL JPL AIRBORNE GEOSCIENCE WORKSHOP:
AIRBORNE SYNTHETIC APERTURE RADAR

(AIRSAR)

June 4 and 5, 1992
Von Karman Auditorium

Jet Propulsion Laboratory
Pasadena, California 91109

THURSDAY, JUNE 4, 1992

7:15 a.m. Shuttle bus departs Pasadena Ritz-Carlton Hotel for JPL.

7:30 a.m. Registration and continental breakfast at JPL.

8:00 a.m. Welcome

8:30 a.m. The NASA/JPL Three-Frequency AIRSAR System
J. van Zyl, R. Carande, Y. Low, T. Miller, and K. Wheeler

9:00 a.m. A Snow Wetness Retrieval Algorithm for SAR

Jiancheng Shi and Jeff Dozier

9:30 a.m. Comparison of JPL-AIRSAR and DLR E-SAR Images from the MAC Europe '91
Campaign Over Testsite Oberpfaffenhofen: Frequency and Polarization
Dependent Backscatter Variations From Agricultural Fields
C. Schmullius and J. Nithack

10:00 a.m. Break

10:30 a.m. Monitoring Environmental State of Alaskan Forests With AIRSAR
Kyle C. McDonald, JoBea Way, Eric Rignot, Cindy Williams, Les Viereck, and
P hylis Adams

11:00 a.m. Comparison of Modeled Backscatter With SAR Data at P-Band
Yong Wang, Frank W. Davis, and John M. Melack

11:30 a.m. SAR Backscatter From Coniferous Forest Gaps
John L. Day and Frank W. Davis

12:00 noon Lunch

1:00 p.m. Panel Discussion on Future Emphasis of the AIRSAR System
J. van Zyl, Moderator

1:30 p.m. Retrieval of Pine Forest Biomass Using JPL AIRSAR Data
A. Beaudoin, T. Le Toan, F. Zagolski, C.C. Hsu, H.C. Han, and JA. Kong

2:00 p.m. Characterization of Wetland, Forest, and Agricultural Ecosystems in Belize With
Airborne Radar (AIRSAR)

Kevin O. Pope, Jose Maria Rey-Benayas, and Jack F. Paris

2:30 p.m. Strategies for Detection of Floodplain Inundation With Multi-Frequency
Polarimetric SAR
Laura L. Hess and John M. Melack

xxi



3:00p.m.

3:30p.m.

4:00p.m.

4:30p.m.

5:00p.m.

5:30p.m.

5:45p.m.

6:30p.m.

9:00p.m.

AGENDA(CONTINUED)

THIRDANNUALJPLAIRBORNEGEOSCIENCEWORKSHOP:
AIRBORNESYNTHETICAPERTURERADAR

(AIRSAR)

Break

SupervisedFully PolarimetricClassificationof theBlackForestTestSite: From
MAESTRO1to MAC Europe
G. De Grandi, C. Lavalle, H. De Groof, and A. Sieber

Relating Multifrequency Radar Backscattering to Forest Biomass: Modeling and
AIRSAR Measurement

Guoqing Sun and K. Jon Ranson

Poster Previews

Poster Previews

End of session.

Shuttle bus departs JPL for the Pasadena Ritz-Carlton Hotel.

Reception and poster sessions at the Pasadena Ritz-Carlton Hotel.

Close of reception and poster sessions.
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AGENDA

THIRD ANNUAL JPL AIRBORNE GEOSCIENCE WORKSHOP:
POSTER SESSION

Thursday, June 4, 1992
6:30 to 9:00 p.m.

Pasadena Ritz-Carlton Hotel

Processing of AIRSAR Polarimetric Data for Soil Moisture Estimation Over

Mahantango Watershed Area
K.S. Rao

Evaluation of Polarimetric SAR Parameters for Soil Moisture Retrieval

Jiancheng Shi, Jakob J. van Zyl, and Edwin T. Engman

Interaction Types and Their Like-Polarization Phase-Angle Difference Signatures
Jack F. Paris

Application of Modified VICAR/IBIS GIS to Analysis of July 1991 Flevoland
AIRSAR Data

L. Norikane, B. Broek, and A. Freeman

Radar Analysis and Visualization Environment (RAVEN): Software for
Polarimetric Radar Analysis
K.S. Kierein-Young, A.B. Lefkoff, and F_4. Kruse

Measuring Ocean Coherence Time With Dual-Baseline Interferometry
Richard E. Carande

A Bibliography of Global Change, Airborne Science, 1985-1991
Edwin J. Sheffner and James G. Lawless

ATTIRE (Analytical Tools for Thermal Infrared Engineering)---A Thermal
Sensor Simulation Package
S. Jaggi

Kilauea Data Set Complied for Distribution on Compact Disc
Lori Glaze, George Karas, Sonia Chernobieff, Elsa Abbott, and Earnie Paylor

The JPL Spectral Library 0.4 to 2.5 Micrometers
Simon J. Hook, Cindy I. Grove, and Earnest D. Paylor H

Lossless Compression of AVIRIS Data: Comparison of Methods and Instrument
Constraints

R.E. Roger, J.F. Arnold, M.C. Cavenor, and J.A. Richards

Simulation of AVHRR-K Band Ratios With AVIRIS
Melanie A. Wetzel and Ronald M. Welch

Soil Conservation Applications With C-Band SAR
B. Brisco, R.I. Brown, J. Naunheimer, and D. Bedard

,.,
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14.

15.

AGENDA

THIRD ANNUAL JPL AIRBORNE GEOSCIENCE WORKSHOP:

THURSDAY POSTER SESSION (CONTINUED)

Comparison of Edges Detected at Different Polarisations in MAESTRO Data
Ronald G. Caves, Peter J. Harley, and Shaun Quegan

Identification of Erosion Hazards in a Mediterranean Environment
M. Altherr, J. Hill, and W. MehI
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FRIDAY,JUNE

7:15a.m.

7:30a.m.

8:00a.m.

8:30a.m.

9:00a.m.

9:30a.m.

10:00a.m.

10:30a.m.

11:00a.m.

11:30a.m.

12:00noon

1:00p.m.

1:30p.m.

2:00p.m.

AGENDA

THIRDANNUALJPLAIRBORNEGEOSCIENCEWORKSHOP:
AIRBORNESYNTHETICAPERTURERADAR

(AIRSAR)

June4 and5, 1992
VonKarmanAuditorium
JetPropulsionLaboratory
Pasadena,California91109

5,1992

ShuttlebusdepartsPasadenaRitz-CarltonHotel for JPL.

RegistrationandcontinentalbreakfastatJPL.

OceanicFeaturesDetectedby SARin theMediterraneanSeaDuring theMAC
Europe'91 Campaign
Werner Alpers

SAR Observations in the Gulf of Mexico
David Sheres

Investigation of AIRSAR Signatures of the Gulf Stream
G.R. Valenzuela, J.S. Lee, D.L. Schuler, G.O. Marmorino, F. Askari, K. Hoppel,
J.A.C. Kaiser, and W.C. Keller

Mapping of Sea Bottom Topography
C.J. Calkoen, G J. Wensink, and G.H.F.M. Hesselmans

Break

Sea Bottom Topography Imaging With SAR
M.WA. van der Kooij, G J. Wensink, and J. Vogelzang

AIRSAR Surveys of Upper-Ocean Fronts Off California and Hawaii
P. Flament

Preliminary Results of Polarization Signatures for Glacial Moraines in the Mono
Basin, Eastern Sierra Nevada
Richard R. Forster, Andrew N. Fox, and Bryan lsacks

Lunch

Detecting Surface Roughness Effects on the Atmospheric Boundary Layer Via
AIRSAR Data: A Field Experiment in Death Valley, California

Dan G. Blumberg and Ronald Greeley

Extraction of Quantitative Surface Characteristics From AIRSAR Data for Death

Valley, California
K.S. Kierein-Young and F_4. Kruse

The TOPSAR Interferometric Radar Topographic Mapping Instrument
Howard A. Zebker, SCren N. Madsen, Jan Martin, Giovanni Alberti,

Sergio Vetrella, and Alessandro Cucci

xxv



2:30 p.m.

3:00 p.m.

3:30 p.m.

4:00 p.m.

4:30 p.m.

5:00 p.m.

5:30 p.m.

5:45 p.m.

AGENDA (CONTINUED)

THIRD AN_AL JPL AIRBORNE GEOSCIENCE WORKSHOP:

AIRBORNE S YNTHETIC APERTURE RADAR

(AIRSAR)

Evaluation of the TOPSAR Performance by Using Passive and Active Calibrators
G. Alberti, A. Moccia, S. Ponte, and S. Vetrella

Break

Fitting a Three-Component Scattering Model to Polarimetric SAR Data
A. Freeman and S. Durden

Application of Symmetry Properties to Polarimetric Remote Sensing With JPL
AIRSAR Data

S.V. Nghiem, S.H. Yueh, R. Kwok, and F.K. Li

External Calibration of Polarimetric Radar Images Using Distributed Targets
Simon H. Yueh, S.V. Nghiem, and R. Kwok

Wrap up.

End of AIRSAR Workshop.

Shuttle bus departs JPL for the Pasadena Ritz-Carlton Hotel.
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IN-FLIGHT CALIBRATION OF THE SPECTRAL AND
RADIOMETRIC CHARACTERISTICS OF AVIRIS IN 1991

Robert O. Green, James E. Conel, Carol J. Bruegge, Jack S. Margolis,

Veronique Carrere, Gregg Vane, and Gordon Hoover

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive

Pasadena, California 91109

SUMMARY

On March 7, 1991, an in-flight calibration experiment was held
at the Ivanpah Playa in southeastern California for the AVIRIS imaging

spectrometer. This experiment was modeled on previous work for the
in-flight calibration of imaging spectrometers (Conel et al., 1987,
Green et al., 1988, Conel et al., 1988, Green et al., 1990, and Green et

al., 1992).

Five AVIRIS overflights were acquired of a calibration target
designated on thelvanpahPlaya surface. At the time of the overflights,
the reflectance of the calibration target was measured with a field
spectrometer. In addition, the atmospheric optical depths and water
vapor abundance were measured from a radiometer station adjacent to
the calibration target. These in situ measurements were used to
constrain the MODTRAN radiative transfer code (Berk et al., 1989) to
model the upwelling spectral radiance incident to the sensor aperture
during the overflights. Analyses of this modeled radiance in
conjunction with the laboratory-calibrated radiance were used to
determine the spectral and radiometric calibration of AVIRIS while in
flight. Figure 1 gives the comparison of one of the MODTRAN-
modeled and AVIRIS-laboratory-calibrated radiance for the overflights
of the Ivanpah Playa calibration target.

The modeled and measured spectra used in this experiment are
generated through independent pathways allowing direct validation of
AVIRIS performance in flight. The MODTRANspectrum is derived
from a measured solar irradiance spectrum imbedded in the computer
code. The AVIRIS-laboratory-calibrated spectrum is derived from toa
National Institute of Standards and Technology (NIST) traceable

standard lamp maintained at JPL.

The in-flight radiometric calibration of AVIRIS is validated by
the agreement between these spectra. This agreement is better than 7%
excluding the opaque regions of the terrestrial atmosphere. To generate
the in-flight calibration directly, radiometric calibration coefficients
were calculated from the MODTRAN-modeled radiance and the AVIRIS

digitized signal for the Ivanpah Playa calibration target.

Spectral calibration was validated by the agreement between the
modeled and the laboratory-calibrated data in spectral regions of strong
atmospheric gas absorption features. For example, the oxygen band at
760 nm is expressed equivalently in these two independently derived
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Figure 1. Comparison of the MODTRAN radiative transfer code
modeled and AVIRIS laboratory calibrated radiance from the Ivanpah

Playa calibration target.

spectra. Quantitative analysis of the 14 strong absorption features
present in the AVIRIS spectral range with a nonlinear least squared
fitting algorithm was used to validate the calibration across the spectral
range. Acomplete in-flight spectral calibration was generated for all
224 AVIRIS channels through interpolation between the spectral

absorption feature analyzed.

Data from this calibration experiment were used to determine

the precision or signal-to-noise of AVIRIS in-flight. Sensor noise was
determined as the root mean squared deviation (RMSD) of the AVIRIS

dark signal spectra measured for the overflight of the calibration target.
The AVIRIS measured signal from the calibration target was normalized
to the AViRIS reference radiance to allow comparison with previous

signal-to-noise determinations. In-flight signal-to-noise was calculated
as the ratio of normalized-signal to the RMSD noise and is shown in

Figure 2.

Based on this experiment, AVIRIS was shown to be well
calibrated at the beginning of the operational season in 1991.

Experiments in May and late June showed the calibration to be
maintained with the exception of the 1900- to 2450-nm spectral region.
Damage to the sensor caused throughput reduction in this spectral
region in early June. Radiometric calibration of this 1900- to 2450-nm
region was reestablished using the late June in-flight calibration

experiment.
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Figure 2. In-flight determined signal-to-noise at the AVIRIS reference
radiance for the March 7, 1991, calibration experiment.
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USING AVIRIS IMAGES TO MEASURE TEMPORAL TRENDS IN

ABUNDANCE OF PHOTOSYNTHETIC AND NONPHOTOSYNTHETIC
CANOPY COMPONENTS

SUSAN L. USTIN, DEPARTMENT OF LAND, AIR, AND WATER

RESOURCES,

UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA 95616

MILTON O. SMITH, DAR ROBERTS, DEPARTMENT OF GEOLOGICAL

SCIENCES, UNIVERSITY OF WASHINGTON, SEATTLE,
WASHINGTON 98519

JOHN A. GAMON, DEPARTMENT OF BIOLOGY,
CALIFORNIA STATE UNIVERSITY, LOS ANGELES, CALIFORNIA 90032

AND

CHRISTOPHER B. FIELD, DEPARTMENT OF PLANT BIOLOGY,
CARNEGIE INSTITUTION OF WASHINGTON, STANFORD,

CALIFORNIA 94035

INTRODUCTION

The Jasper Ridge Biological Preserve, Stanford, California is a good

example of hardwood rangeland ecosystems in California. Structurally, it

is composed of a mosaic of serpentine grasslands, oak savannah, coastal

chaparral, and mixed evergreen woodland, representing a broad cross-

section of physiognomic classes. The Mediterranean climate produces an

extended seasonal drought lasting throughout most of the growing season

and has significant impact on the expression of divergent phenological

patterns related to contrasting ecological strategies of these taxa. The

region is well understood biologically due to the rich history of ecological

research at the site. Thus, community characteristics, physiological

characteristics, phenology, and temporal dynamics are reasonably well
understood for many of the dominant species. Because of its proximity to
NASA Ames Research Center, it has been subject to a large number of

aircraft data acquisitions over many years. A more complete examination

of this database would provide an opportunity to test current remote

sensing hypotheses for measurement and detection of ecological

attributes, particularly those involving canopy chemistry and physiology.

Better definition of ecological rules might permit development of

remotely sensed surrogate variables for biological properties that cannot

be directly measured or measured with sufficient accuracy.

RESEARCH

An AVIRIS image of Jasper Ridge was acquired May 15, 1991

(910515B, run 10, segment 2) under clear sky conditions. Linear and non-

linear spectral mixture analysis was performed and four spectral

endmembers were identified. These endmembers corresponded with



thosereported for JasperRidgein 1989and 1990and included a green

photosynthetic canopy component, a non-photosynthetic canopy

component, greenstone soil, and shade. This cross-calibration among
multidate AVIRIS scenes implies that analyses can be examined for

temporal trends (changes in endmember proportions and residuals) using

a consistent reference base. In 1991, plant characteristics and surface
reflectance measurements were made at 20m intersections over a 6 ha.

permanently staked grid referenced to known coordinates. Additional

points were located using Trimble Navigation Pathfinder Basic and

Professional GPS. We examined spatial patterns for the photosynthetic

and nonphotosynthetic canopy fractions in the grasslands in relation to
field data and from aerial photography and their temporal trends.

RESULTS

Our field studies show that when a high fraction of the canopy is

nonphotosynthetic, NDV| from field data underestimates the abundance

of the photosynthetic fraction. Interactions among the photosynthetic and

nonphotosynthetic vegetation fractions, subpixel shade, and residuals,

derived in mixture analysis provide a basis for further evaluation. Foliar

chlorophyll and nitrogen concentrations in the grasslands varied within

limited ranges and were proportional to the foliar biomass per unit

surface area (Gamon et al., this proceeding). Preliminary results indicate

that the abundance of the photosynthetic endmember fraction in the

grasslands approximates spatial abundance patterns in the green foliar
biomass (and other correlated measures, gLAl, chlorophyll, and nitrogen).

This relationship results because the enzyme for carbon fixation, RUBP

carboxylase, is the largest foliar pool of soluble nitrogen. The summation

of photosynthetic and nonphotosynthetic fractions provides a basis for
estimating total canopy biomass, which for grasslands represents a

measure of the net primary productivity, and over time, the magnitude of

change in carbon storage. The ratio of photosynthetic fraction : total

canopy fraction provides a basis to measure canopy N:C ratios.

We examined the patterns of endmember abundances and

residuals for temporal trends related to site conditions (Fig. 1). One

example of the temporal and spatial patterns we observed is shown for

the three endmember models for July and October 1989. This figure

shows endmember abundances from 10 sites including grasslands,

chaparral, oaks, forest and a golf course. During this period

photosynthetic endmember abundances did not indicate appreciable

changes except in the evergreen oak and forested areas (sites 7,8) where

photosynthetic fraction decreased, Grasslands and chaparral had lowest

photosynthetic fractions, forest and the golf course had the highest. These

results demonstrate that for a given region, the same endmembers can

model images from different seasons and produce consistent fractional

conditions that follow expected ecological trends. We believe that this

approach has promise for providing an internally consistent basis for

interpreting environmental gradients and temporal changes.
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Figure 1. Endmember abundances for two AVIRIS images of Jasper Ridge, California. The endmembers

are labeled npv (non-photosynthetic vegetation), GVF ( green vegetation fraction), and shade. The 10

sites correspond to 1) non-serpentine grassland, 2) serpentine grassland, 3) serpentine chaparral, 4) non-

serpentine chaparral, 5) non-serpentine chaparral of lowest cover, 6) blue oak, 7) evergreen oak, 8) forest

wetland, 9) Webb Ranch grassland, and 10) golf course. The endmembers from the two different times
indicate similar endmember fractions. The greatest changes are in the evergreen oak and the forest

wetland.
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1. DATA CHARACTERISTICS AND CALIBRATION

Five flight lines of AVIRIS data were acquired over the Dolly Varden
Mountains in northeastern Nevada on June 2, 1989 (Zamudio and Atkinson, 1990).
Signal-to-noise ratio values are given in figure t.

The empirical line method (Conel et al., 1987) was used to convert AVIRIS
radiance values to reflectance. This method involves calculating gain and offset values for
each band. These values are based upon a comparison of the imaging spectrometer data
and field reflectance measurements, both taken over the same ground targets. The targets

used in this study were a dark andesite flow and a bright playa.

2. STUDY AREA

The study area contains a variety of geologic materials, including sedimentary,
volcanic, plutonic and contact metamorphic rocks. Carbonate-dominated formations
underlie much of the area.

Other than some high relief areas of 100% outcrop, vegetation cover typically

ranges from about 10% to 50%, with some places along drainages and on high, north-
facing slopes where vegetation cover approaches 100%. Vegetation is primarily
sagebrush at lower elevations, with pifion pine and juniper prevalent from about 2000
meters on up. Little soil is found in the area.

3. ANALYSIS TECHNIQUES
Three-band color composites were made of the AVIRIS segments in order to

view different rock types in their spatial context. Also, in order to produce geologic maps
derived from spectral data, pixels with spectra characteristic of various rock types were
selected from the reflectance data and then, using a binary encoding algorithm (Goetz ctal.,
1985), other pixels whose spectra matched within a certain tolerance were selected and
color coded.

A linear unmixing routine (Boardman, 1991) was also applied to the data to
aid in the mapping of rock units. A spectral library of materials found on the ground was
compared to each spectrum in a particular scene. The proportions of each library

endmember found in each pixel were then calculated. The result is a scales of fraction
images showing, in gray levels correlating with abundance, the areal distribution of each
library endmember. Noisy bands, located in the atmospheric water absorption regions
around 1.4 and 1.9 larn, were not used in the unmixing. Using the unmixing results, a
routine to subtract out the vegetation fraction on a pixel-by-pixel basis was applied to the
AVIRIS data.

4. RESULTS

Three-band color composites were linearly stretched to enhance the contrast
between various rock units. Deformation of the rock units is apparent in some of these

scenes.
The AVIRIS reflectance spectra were analyzed and various minerals were

identified, including goethite, calcite and dolomite. Binary encoding enabled the



delineationofcertainlimestone-dominatedanddolomite-dominatedformations.Insome
areas,faultsthatdidnotappearonpublishedmapsare evident in the encoded data.

The unmixing routine was applied to an area where the limestone-dominated
Gerster Formation, the dolomite-dominated Plympton Formation and Triassic shale and

limestone of the Thaynes Formation crop out. The library of materials used in the
unmixing includes limestone, dolomite, chert, brown limestone from the Thaynes,
intermediate volcanic rocks and a mix of materials from the Thaynes Formation. Because

the Thaynes is comprised of limestone and shale commonly interbedded on a f'mer scale
than the AVIRIS pixel size, the Thaynes library spectrum was obtained from a mix of
those materials. The Thaynes also includes a sizeable section of distinctive brown
limestone which was used as another endmember. The Plympton contains abundant chert
as well as dolomite, so chert was included in the library. The library spectra were
obtained in the laboratory from samples collected in the field. The resulting six fraction

images generally show good differentiation between rock types.
Also calculated in the unmixing is the sum of all endmember fractions for

each pixel. If the sum for any pixel is less than one, then it is likely that either that
pixel contains some material not represented in the library, or that the remaining fraction
is a measure of how much the illumination conditions vary from 100%. Figure 2 shows
the distribution of significant amounts of the limestone, dolomite and Thaynes fractions.
As can be seen by comparison with figure 3, which shows formational contacts as

mapped in the field, the differentiation between the three formations is good. In some
places, the contacts in figure 2 reflect the extent of significant amounts of colluvium and
alluvium, and therefore do not exactly match the bedrock contacts in figure 3. The
distribution of the three formations in figure 2 suggests that they are deformed.

5. VEGETATION SUBTRACTION

Using the unmixing results and a vegetation spectrum obtained in the field, a
routine was applied which subtracts the vegetation fraction from each pixel in a scene.
This is accomplished by first multiplying the field vegetation spectrum by the fraction
that represents the amount of vegetation present in a particular pixel. Then, this resulting
fractional vegetation spectrum is subtracted from the pixel in the original scene. For
example, if the unmixing routine showed that a certain pixel in the scene contains 50%
vegetation, then the vegetation spectrum (100% vegetation) would be multiplied by 0.5,
resulting in a fractional vegetation spectrum. Then, this spectrum would be subtracted
from the spectrum for that pixel. Figure 4 compares a spectrum from a pixel containing
vegetation to the resulting spectrum after the fraction of vegetation present has been
subtracted. The vegetation removal can be viewed in a spatial context as well. A color
image was made using a band near 0.8 I.tm displayed as green. Some areas of the scene
have a green tint due to the high reflectance of vegetation at that wavelength. After
vegetation subtraction, another color image was made using the same band combination.
This scene is less green and drainages which contain close to 100% vegetation are almost
black.

Color composite images made in this manner consequently show just
geologic information. Any worker considering that some part of the data is masking
what is important, either in a spatial or a spectral context, could consider using this
technique. The ability to subtract out part of the spectrum might enable one to see
features that are hidden in the total spectral signature.
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The sedimentary sections exposed in the Canyonlands and

Arches National Parks region of Utah (generally referred to

as "Canyonlands") consist of sandstones, shales, limestones

and conglomerates. Reflectance spectra of weathered sur-
faces of rocks from these areas show two components: I)

variations in spectrally detectable mineralogy and 2) varia-
tions in the relative ratios of the absorption bands between

minerals. Both types of information can be used together to

"map each major lithology and we are applying the Clark et

al. (1990, 1991) spectral features mapping algorithm to do

the job.

AVIRIS was flown over Upheaval Dome in Canyonlands

National Park and over Arches National Park in May 1991.

The data were calibrated to ground reflectance using multi-

ple ground calibration sites to derive the offset due to

path radiance as well as a set of multipliers to correct to

ground reflectance. The resulting data set (about II km

wide by 30 km in length for each of two flight lines) shows

reflectance spectra of well exposed sedimentary units.

Several vegetation communities, microbiotic soils, lichens,
and desert varnish are also present and add to the diffi-

culty of mapping lithologies.

In the Canyonlands region, several formations of

Pennsylvanian through Cretaceous age are exposed (Table I).

Many of the same minerals are present in the different for-
mations, with variable band strengths, usually related to

abundance changes. Mapping these different lithologles

requires not only the detection of the individual minerals
but also their relative proportions. Such analysis can be

accomplished by mapping specific minerals (e.g. Clark et

al. 1990, 1991) and examining the ratios of the band depths

of indicator minerals. Another approach is to use spectra

representative of each unit as a reference spectrum. The
minerals in these spectra display absorption bands in their

different proportions, and the "Multiple Spectral Feature

Mapping Algorithm" weights each feature according to the
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area between the continuum and the reflectance curve, thus

restricting allowable mineralogy. Examples of the success

of this method in mapping the above units will be presented.

Table I

Detectable (0.4-2.5 _m) Mineralogy of Geologic

Formations in Canyonlands, Utah, as Indicated by

Reflectance Spectroscopy
.................................................

Mancos Shale: (S) calcite (M) kaolinite

(W) gypsum (t) goethite

Dakota Sandstone: (M) illite (M) goethite

(W) kaolinite (t) calcite

Morrlson Formation: (S) Fe-illite

(M) hematite

(W) V-illite

(M) Chert

(W) calcite

Entrada Sandstone: (M) kaolinite (M) hematite

Navajo Sandstone: (M) hematite (t) kaolinite

(M) illite/smectite

Kayenta Formation: (M) hematite (M) calcite

(t) kaolinite

Wingate Sandstone (S) hematite (M) kaolinite

(W) muscovite

Chinle Formation (S) muscovite (S) hematite

(W) kaolinite (W) calcite

Moenkopi Formation (M) hematite (M) muscovite

(W) kaolinite (t) calcite

Cutler Formation (S) kaolinite (W) goethite

(t) calcite

Paradox Formation (S) illite/smectite

(M) goethite (M) Gypsum

.................................................

Spectral band intensity:

(S)= strong, (M)= medium, (W)= weak (t)= trace
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I. INTRODUCTION

In this study, we investigate the impact of sensor spatial resolution and

accurate cloud pixel identification on cloud property retrievals. Twelve fair weather

cumulus (FWC) scenes of high spectral and spatial resolution Airborne Visible and

Infrared Imaging Spectrometer (AVIRIS) data are analyzed. A variation of the 3-band

ratio technique of Gao and Goetz is used to discriminate clouds from the background,

and then a discrete ordinate radiative transfer model is used to obtain optical thickness

of cloudy regions for each scene. To study the effect of spatial resolution upon

retrieved optical thickness, the 20 m AVIRIS data was spatially degraded to spatial

resolutions ranging from 40 to 960 m. Cloud area, scene average optical thickness, and

distribution of retrieved optical thickness are determined at each spatial resolution.

Finally, a comparison between the 3-band ratio technique and monospectral reflectance

thresholding, using 20 m spatial resolution data, is presented.

2. METHODOLOGY

Gao and Goetz (1991) developed a method that takes advantage of high

spectral resolution imagery and greatly facilitates the ability to distinguish between
cloud and background pixeis. The method for cloud pixel identification employs a

3-band ratio and is computed as the sum of the radiance from the imagery at 0.94 and

1.14/_m divided by twice the radiance at 1.04 #m. In the 3-band ratio imagery, the

land background is somewhat homogenized, while the clouds retain their features.

Identification of cloud pixels at a non-absorbing wavelength (such as 0.74/_m) is a

three-step process: 1) the selection of a threshold for water/shadow background areas;

2) the selection of a 3-band ratio threshold in the 3-band ratio image; and 3) the appli-

cation of a cloud pixel mask (determined by the first two steps) to the appropriate

wavelength imagery.

Each cloud pixel in the masked 0.74 #m radiance image is assigned one of

18 different optical thickness values based on the results of a discrete ordinate radiative
transfer model (Stamnes et al., 1988). Lower spatial resolution instrument imagery is

emulated through spatial averaging of the 20 m AVIRIS data. Three-band ratio masks

are obtained at lower spatial resolutions and are applied to like imagery at 0.74 #m.

Estimates of average optical thickness and cloud area are then obtained at all spatial
resolutions.

3. RESULTS

Figure 1 shows the percent change in cloud area as a function of spatial

resolution for the 12 images used in this investigation. There is a large dependence

upon spatial resolution. Of interest is the fact that there is a great deal of scatter in the
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results,especially as spatial resolution is degraded, suggesting no precise way to correct
for these errors. The effect of spatial resolution upon cloud average optical thickness

retrieval is shown in Fig. 2. The results are expressed in terms of the percent change in

average cloud optical thickness, relative to 20 m resolution imagery, as a function of

spatial resolution. Figure 2 shows that cloud optical thickness decreases monotonically

with decreasing spatial resolution. Figure 3 shows the product of optical thickness and

cloud area as a function of spatial resolution. One would expect the curves to be rela-

tively flat and they are relatively flat out to spatial resolutions on the order of 300 m;

however, the curves still decrease with decreasing spatial resolution.

Histograms of cloud optical thickness for one of the analyzed scenes appear in

Fig. 4. It shows that the distribution of cloud optical thickness changes with spatial

resolution; however, it does not change in a predictable manner. Perhaps the most

notable trend is that the frequency of occurrence of the largest values of optical

thickness decreases with decreasing spatial resolution.

We examine the consequences upon cloud optical depth retrieval when

applying simple reflectance thresholds. First we compute the monospectral (0.74 #m)

reflectance threshold which produces the same cloud area as obtained by the 3-band

ratio technique. The results for the 12 scenes, in % above background albedo, are

as follows: A - 3.2, B - 5.5, C - 4.1, D - 4.3, E - 3.2, F - 4.5, G - 5.8, H - 3.1, I - 8.4,

J - 8.0, K - 3.7, L - 5.0. These results indicate that the required reflectance threshold

is scene dependent. Shown in Fig. 4 is the impact of assigning a monospectral reflec-

tance for optical thickness retrievals. The optical thickness histogram is shown for both

the 3-band ratio technique and for the aforementioned monospectral reflectance thres-

holds. Differences in the optical thickness retrievals are found in the optically thinner

areas of the cloud, t < 4. These differences are found at all spatial resolutions. In

addition, the distribution of gray levels for cloud edges is determined by histo-

gramming the edge maps of the masked 0.74 #m images. Results (not presented
herein) show that the distributions are relatively broad (approximately 10% of the

available scene reflectance), indicating that a single monospectral reflectance

threshold is inadequate for identifying cloud edge pixels.

4. CONCLUSIONS

The present results demonstrate that both spatial and spectral resolution
significantly impact our ability to retrieve cloud optical thickness properties accurately.

Decreasing spatial resolution from 20 m to 960 m dramatically affects estimates of

cloud area, average optical thickness, and the distribution of retrieved optical thickness.

The change in these estimates with change in spatial resolution is scene dependent. It is
shown that some of the error in estimates for average optical thickness is due to the

error in estimates of cloud area; however, when the effect of increasing cloud area with

decreasing spatial resolution is removed, average optical thickness still decreases with

decreasing spatial resolution. It is also shown that the use of a single, monospectral
reflectance threshold is inadequate for identifying cloud pixels in FWC scenes, pointing

to the necessity of using high spectral resolution data, combined with appropriate

processing algorithms. In a monospectral image, not only is the optimum threshold

(with respect to background albedo) scene dependent, but also the edge around a single

cloud cannot be located by using a single threshold. Although cloud edges are, in

general, optically thin, they can significantly impact estimates of average optical

thickness. These results have potentially important consequences because most

commonly used cloud retrieval algorithms apply a single reflectance threshold.
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As a caveat, it should be noted that the results reported here are only for FWC

over land, perhaps one of the most difficult cloud types to retrieve accurately using

satellite imagery. Obviously, stratiform cloud properties are retrieved with far greater

certainty. Nevertheless, even a cursory examination of a GOES image demonstrates

that a large fraction of cloudiness is inhomogeneous. Problems with correct cloud edge

identification and spatial resolution can be expected for all inhomogeneous cloud fields.
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1. BACKGROUND

In May, 1991, coincident with an AVIRIS overflight, we completed a ground-
based study covering 9 hectares of an annual grassland. There were two goals to this
ground study:

1) Obtain ecologically and physiologically meaningful data for relating AVIRIS images
to canopy structure, biochemistry and physiology.

2) Evaluate the suitability of the 20-m AVIRIS pixel size for depicting detailed spatial
patterns of productivity.

2. MATERIALS AND METHODS

A 9-hectare annual grassland at Stanford University's Jasper Ridge Biological
Preserve was sampled every 20 m for biomass, leaf area index (LAD, intercepted
photosynthetically active radiation (PAR), chlorophyll, nitrogen, surface temperature and
spectral reflectance. These measurements coincided with the May 14 and 15, 1991,
AVIRIS overflights, providing a basis for biological interpretations of the AVIRIS
images. Measurements of photosynthetic fluxes by eddy correlation were also completed
during the overflight.

Three 20x20 m pixels were chosen for detailed ground sampling (every 5-m).
The goal was to evaluate the 20-m AVIRIS pixel size by examining the semivariance in
productivity estimates as a function of between-sample distance.

3. RESULTS

Images derived from ground-based measurements at the 20-m scale depict the
influence of topography, soil and vegetation type on productivity in the grassland (Fig.
1). Preliminary geostatistical tests of the ground data also indicate that the 20-m
between-sample distance (comparable to the AVIRIS pixel size) is suitable for studying
spatial productivity patterns in this relatively uniform grassland. Different results might
have been obtained if the study had been conducted on adjacent chaparral and woodland,

*CIW DPB publication #1134
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composed of complex mosaics of individual canopies 1-10 meters in diameter.

Good correlations were obtained between ground-based reflectance indices (SR
and NDVI) and several ecologically or physiologically significant indicators of
productivity, including biomass, LAI, canopy chlorophyll and nitrogen content (Fig. 2).
Ground data will be compared with endmember and residual images derived from mixture
models to estimate productivity patterns from AVIRIS images (Ustin et al., this volume).

Results from this study will be compared with AVIRIS images obtained at other
dates and at other sites and will be compared to CO2 flux measurements that were made
concurrently with the overflight. These studies should assist in development and
validation of ecological and physiological models for AVIRIS image interpretation.

4. ACKNOWLEDGEMENTS

This work was partly supported by the A.W. Mellon Foundation, and by the enthusiastic
efforts of Nona ChiarieUo, Geeske Joel, Barbara Mortimer, Robert Rousseau and Riccardo
Valentini.

Fig. 1.

Interpolated image derived from ground-_LAImeasurements of 9 hectares of
the Jasper Ridge grassland at a 20-m s,_npiingd_mric-6._es ranged_m0_i
(light) to 3.5 (dark)i _w-produciivity areas are either hilltops or regions o_ serpentine-
derived soil. High productivity areas are valley bottoms or patches with perennial
vegetation.
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Fig. 2.

Relationships between NDVI and indicators of canopy structure (A and B) or total

canopy chlorophyll (C) and nitrogen (D). Correcting for canopy "greenness" improves the
correlations (A and B) and indicates the presence of standing dead biomass.
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1.0 INTRODUCTION:

The upwelling radiance due to aerosols (LA)

detected by satellite sensors is related to the

aerosol optical depth (6 A) through the approxi-

mation given by Durkee, 1984, equation (i).

o oFo P (0) 6 (i)
LA i "4COS_ A

where

_O

P(@)

fo

= SINGLE SCATTERING ALBEDO

= SATELLITE ZENITH ANGLE

= SCATTERING PHASE FUNCTION AT ANGLE O

= INCIDENT SOLAR IRRADIANCE

The above equation is valid for relatively

thin optical depths (<0.3). Also, to first

approximation LA is approximately linear with

(6A). The value of P(8) is dependent upon the
size and distribution of the aerosol particles

(given in part by the ratio S n identified below).

Currently the National Oceanic and Atmos-

pheric Administration (NOAA) uses channel 1 (0.58 -

0.68 _m) of the Advanced Very High Resolution

Radiometer (AVHRR) sensor to produce weekly global

maps of aerosol optical depths. Durkee (1984)
showed that a measure of the type and distribution

of aerosols could be determined by the ratio S n

given by equation (2).

L A (Channel I) AVHRR (2)
$12= L A (Channel 2) A VHRR
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where

Channel 1

Channel 2

= 0.58 - 0.68 _m

= 0.725 - i.I0 _m

It is noted that the calculations for 8A and S n

are performed after subtraction of the Rayleigh

optical depth.

For large values of S n the aerosols are

identified as continental origin (high concen-

tration of small particles). For smaller values

of S n the aerosols are closer to marine origin

(higher. concentration of large particles).

2.0 PRESENT RESEARCH

Sensitivity studies using the AVIRIS bands

are currently under investigation. The objective

of this research is to develop improved algorithms

for the determination of aerosol type (e.g., pres-

ently described by Sn).

Preliminary computer calculations have been

made using LOWTRAN 7, which is the most advanced

atmospheric code of the Air Force Geophysics Labo-

ratory. LOWTRAN 7 permits the calculation of

atmospheric transmission and absorption caused by

aerosols and molecules along a non-homogenous path

for a variety of aerosol models. The calcula-

tions used the Navy Aerosol Model (NAM) (Gathman,

1983), which was constructed for the marine

environment using a three component size

distribution model.

Calculations of the total transmittance

(LT) , the path radiance (Lp) and the reflected

radiance (L r) were made as a function of wave-

length (k) from 0.4 to 2.4 _m for each of the 224
i0 nm wide AVIRIS bands. These calculations were

made for various types of atmospheres for the

troposphere (0-2 km).

3.0 RESULTS

Figure 1 is a typical LOWTRAN 7 curve of

upwelling total radiance (surface albedo = O; 23

km horizontal visibility) at an altitude of 2 km.

These curves were generated for the AVIRIS bands

for the marine boundary layer of the troposphere

using two different aerosol models: a) the Navy

aerosol model (NAM) - open ocean type aerosols,
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and b) no aerosols. The lower (no-aerosol) curve

shows the typical Rayleigh distribution following

the ll_ decay, going to zero at approximately 0.9

_m. Superimposed on this curve are the gas

absorption bands. The upper (navy aerosol) curve

shows the combined contribution due to Rayleigh

scattering, gas absorption and aerosols. The

middle curve is the result of subtracting these

two curves. This subtractive technique removes

the Rayleigh scattering, thereby leaving the

radiance due to aerosols. The ratio S n is

calculated after convolving the spectral radiance

with the AVHRR bands. The AVIRIS bands will now

be used in calculations to obtain the optimum band

ratios for describing various types of aerosols.
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FIG. 1 LOWTRAN CALCULATIONS OF RADIANCE AT ALT =

2KM AND SURFACE ALBEDO = 0 FOR AVIRIS BANDS.

24

4.0 References:

Durkee, P. A. (1984), The relationship between

marine aerosol particles and satellite-detected

radiance, Ph.D. dissertation, 124pp. Colo. State

university, Fort Collins.

Gathman, Stuart G. (1983), optical properties of

the marine aerosol as predicted by the Navy

aerosol model, optical Engineering 22 (1):057-062.

22



N94-16674

THE SPECTRAL IMAGE PROCESSING SYSTEM (SIPS) -
SOFTWARE FOR INTEGRATED ANALYSIS OF AVIRIS DATA

F. A. Kruse 1, 2, A. B. Lefkoff 1, j. W. Boardman 1, 2, 3

K. B. Heidebrecht 1, A. T. Shapiro 1, p. j. Barloon 1, and A. F. H. Goetz 1, 2

1 Center for the Study of Earth from Space (CSES)

Cooperative Institute for Research in Environmental Sciences (CIRES)
University of Colorado, Boulder, Colorado 80309

2 Department of Geological Sciences
University of Colorado, Boulder, Colorado 80309

1. INTRODUCTION

The Spectral Image Processing System (SIPS) is a software package developed

by the Center for the Study of Earth from Space (CSES) at the University of Colorado,
Boulder, in response to a perceived need to provide integrated tools for analysis of

imaging spectrometer data both spectrally and spatially (Kruse et al., 1992a). SIPS was
specifically designed to deal with data from the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but has
been tested with other datasets including the Geophysical and Environmental Research

Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was
developed using the "Interactive Data Language" (IDL) (Research Systems, 1991). It
takes advantage of high speed disk access and fast processors running under the UNIX

operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS
allows analysis of single or multiple imaging spectrometer data segments at full spatial

and spectral resolution. It also allows visualization and interactive analysis of image
cubes derived from quantitative analysis procedures such as absorption band
characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities,

SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below.

2. SIPS UTILITIES

The SIPS utilities module contains tools that prepare data for input to

SIPS_View, the analysis programs, and other image processing software. These tools are
written in IDL and C. Utilities are provided for reading AVIRIS tapes to band sequential

(BSQ), band interleaved by pixel (BIP), or band interleaved by line (BIL) format files;
creating a wavelength file and a histogram file; calibrating to reflectance; creating spectral
libraries; and converting to various output file formats. The utilities all have command
line interfaces, and some also have interactive graphical interfaces. A complete list of
tools and detailed usage instructions are given in the SIPS User's Guide (CSES 1992).

3. SIPS_VIEW

3.1 GENERAL

SIPS_View is an interactive IDL program that allows the user to visualize and
work with imaging spectrometer data both spectrally and spatially. It uses "widgets" such
as menus, buttons, and slider-bars along with mouse and keyboard input to create a user-

3 Present address, CSIRO, Division of Exploration Geoscience, N.S.W., Australia 2113
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friendly interface. Interaction by the user with a given widget produces an "event" to
which the software is able to respond by performing a specific function.

SIPS_View requires a minimum of one image file in any storage order; BSQ,
BIP, or BIL. If the same image data is present in more than one storage order,
SIPS_View chooses the best f'de for efficient data extraction. Additional files including
wavelength, histogram, bad-bands, and spectral libraries enhance the performance and
utility of the program.

3.2 SIPS VIEW DISPLAY FUNCTIONS

The display functions operate on the image data in its spatial format. The
"Image Window" displays the full resolution image in a 512 line x 614 sample window
with a default 2% linear contrast stretch applied. The displayed image can be a gray-scale
or density-sliced image of a specific band, or a color composite image of three bands. If
the image is larger than 512 x 614, SIPS_View displays part of the image at full
resolution, and allows scrolling to other parts of the image. Possible actions associated
with the Image Window include selecting which band is displayed, selecting the color
mode, and saving the current image to a data file or a color PostScript file.

In addition to the main window, SIPS_View creates and manages many other
windows throughout its execution. The "Status Window" displays useful information
about the current processing status of SIPS_View. The "Zoom Window" contains a
subset of the image zoomed from 1 to 16 times. The "Current Spectrum Window" and
"Saved Spectra Window" are used for viewing, extracting and saving spectra. Other
windows such as "Contrast Stretch", "View Spectra", "Spectral Profiles" and the "SAM
Viewer" are created only when accessed by the menu functions.

3.3 SIPS VIEW SPECTRAL FUNCTIONS

SIPS_View spectral functions are those items that deal with imaging
spectrometer data primarily in its spectral format. Spectral functions include browsing,
region-of-interest extraction, profile extraction, viewing, and spectral matching.

The browse spectra capability allows the user to roam around the Image window
displaying the current spectrum in real-time. The "Class Extraction" function allows the
user to interactively define and extract spectral characteristics for user-defined groups of
spectra for regions of interest. The mean, standard deviation, minimum, and maximum
spectra for each class are displayed in the Saved Spectra window. View Spectra is a
utility used for spectral display and analysis. When the View Spectra function is selected,
SIPS_View creates a separate window to plot the spectra currently in the Saved Spectra
Window as well as access and plot other ASCII and binary library spectra. The user can
then manipulate this plot in a number of different ways, produce a PostScript output file
of the plot, or import the plotted spectra back into the Saved Spectra Window for
subsequent use in other SIPS functions. The "Spectral Angle Mapper" (SAM) is an
analysis tool that permits rapid mapping of the spectral similarity of image spectra to
reference spectra (Boardman 1992a). The algorithm determines the spectral similarity
between two spectra by calculating the "angle" between the spectra, treating them as
vectors in a space with dimensionality equal to the number of bands.

4. SIPS ANALYSIS PROGRAMS

The analysis module provides tools that perform complex calculations on an
entire image and are too time consuming for interactive use. Currently, only the unmix
analysis tool which performs linear spectral unmixing is available in this module. A
knowledge-based, expert system analysis utility is presently undergoing testing and
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revision (Kruse et al., 1992b) and will be released in the next version of SIPS. Other
analysis modules are being developed and will be added at a later date.

The SIPS unmixing program, written in IDL, uses a simple linear mixing
model. This model assumes that observed spectra can be modeled as linear combinations
of endmembers contained in a spectral mixing library (Boardman 1992b). The unmixing

approach seeks to determine the fractional abundance of each endmember within each

pixel.

5. SOFTWARE AVAILABILITY

SIPS is provided free of charge or royalties. CSES plans, however, to continue

development of these programs and retains the title and copyright to the software,
documentation, and supporting materials. Recipients of this software are required to
execute a Memorandum of Understanding (MOLl) provided by CSES that specifies in

detail all of the associated conditions. Send requests for an MOU to:

e-mail: sips@cses.colorado.edu
voice: (303) 492-1866
fax: (303) 492-5070
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Introduction

Uhramafic rocks are relatively rare at the Earth's surface but constitute the vast

majority of the Earth by volume. Exposures of ultrarnafic bodies are therefore crucial for
deducing many important processes that occur in the Earth's mantle. An important
science question regarding the spatial distribution, abundance, and composition of mafic
minerals in ultramafic bodies that can be examined with advanced sensor data is the

melting process. When a lherzolite melts, clinopyroxene (cpx) melts first and therefore
variations in the modal amo_t of cpx remaining in the mantle are a reflection of the
amount of fractional melting that has occurred. Fe goes preferentially into the melt

during melting but a 20% batch melting (i.e. closed system) acquires less Fe relative to
20% fractional melting (i.e. open system). Since the strength and wavelength of

diagnostic absorptions is a strong function of Fe content, it is possible to make maps of
the variation in Fe:Mg ratios which can be related to the general melting process.
Accurate ground-truth information about local mineralogy provides internal calibration
and consistency checks. Investigations using imaging spectrometer are very
complementary to field studies because advanced sensor data can provide a synoptic view
of modal mineralogy and chemical composition whereas field studies focus on detailed
characterization of local areas.

Two excellent exposures of ultramafic lithologies are being investigated with visible
to mid-infrared imaging spectrometer data: the Ronda peridotite near Ronda, Spain and the
Beni Bousera ophiolitic fragment in northern Morocco (Figure la). Although separated

by the Alboran Sea, these bodies are thought to be related (Bonini et al, 1973, Frey et al,
1985) and represent fertile sub-continental mantle. The Ronda peridotite, shown in

Figure lb, is predominantly spinel lherzolite but grades into harzburgite and shows
considerable variation in major and trace element compositions (Frey et al., 1985). Mafic
layering and dykes (i.e. olivine gabbro) are also observed. This indicates some sections of

the peridotite have experienced greater degrees of partial melting. The Beni Bousera
peridotite, shown in Figure lc, also contains mafic layers and dykes and grades into
harzburgite representing similar fundamental shifts in the bulk chemistry of this
ultramafic body probably related to an episode of partial melting (Lorand, 1985). The
specific mode of emplacement of these bodies is controversial(aUocthonous thrust related
bodies, Frizon de Lamotte et al, 1990: mantle core complexes, Doblas and Oyazun, 1989;

1990) and important for understanding the tectonic evolution of this region. Our
investigations are not necessarily designed to help resolve this controversy. Rather, these

exposures provide excellent and unusual examples of fertile mantle which have undergone
variable degrees of partial melting.

ISM-AVIRIS Cross Calibration

A significant aspect of the European deployment of the NASA aircraft is the unique

opportunity for cross calibration of the ISM and AVIRIS sensors. ISM data were
obtained over the Ronda peridotite in July 1991, two weeks before the AVIRIS flight, and
were also obtained over the Beni Bousera peridotite. However NASA chose not to fly

over any targets in Africa during this deployment. The ISM instrument contains two
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arraysof64PbSdetectorseachforthe0.76to1.51lainand1.63to3.16lamwavelength
regionswhichhavespectralresolutionsof 12.5and24nmrespectively.Theinstrument
hasanIFOVof 10'crosstrackand40'alongtrack. Fromatypicalflightaltitudeof
6000metersthistranslatestoapixelsizeof 18x 75meters.Thescanningmirrorhasa
displacementof+20 ° which corresponds to a 4.5 km swath from 6000 meters. Although
the instrument is not directly comparable to AVIRIS in spectral and spatial resolution,

the predicted signal to noise of ISM is -500:1 with a 50% reflective target and the ISM
wavelength range extends to longer wavelengths. Therefore these instruments have

important complementary characteristics.

Data Reduction and Analysis

The calibration and reduction of the AVIRIS, TIMS, and ISM data is just beginning

but wil proceed in a series of well defined steps. Upon acquisition of AVIRIS data tapes
from JPL all bands will be inspected for data quality and channels with unacceptably low

signal to noise levels (less than 40:1 for spectrometers A, B, C, and less than 20:1 for
spectrometer D) will be identified and removed from the analysis. The precise ground
coverage will be determined and a library of field and laboratory spectra for these areas will
be assembled for reference. Additional spectra from the extensive RELAB library

established in previous investigations (i.e. Moses Rock Dike, Kings-Kaweah ophiolite
melange) which are pertinent to this investigation will be included. A sub area from each
field site containing several homogeneous targets will be selected for initial calibration

and a linear mixing analysis of the raw data will be performed to determine the
dimensionality of the raw data. The image endmembers determined from this analysis
will be passed through the spectral library to determine a set of gains and offsets to
calibrate the raw data to reflectance (e.g. Smith et al, 1990). Estimates of atmospheric

scattering determined with the field spectrometer will be compared to the offsets
determined by this method. The calibrated AVIRIS data will then be inspected to validate
the calibration procedure and compared to field and laboratory spectra. Once we are
satisfied with the calibration we will expand the analysis to the entire field site at both

locations.

TIMS data are a measure of the surface temperature in the 8-12 I.tm region. Preliminary

analysis of the standard decorrelation stretched images clearly distinguishes the mafic,
ultramafic, and felsic rock types exposed in the Ronda peridotite. However, emittance is the

parameter that is desired. This will be estimated by assuming an emittance of 0.93 for
channel 6 of TIMS (approximately 11.5 lain) for silica rich targets or channel 1 for silica

poor targets. Using these assumptions, an estimate of the surface temperature at the
other wavelengths can be calculated and the emittance is the difference between the
estimated temperature and the TIMS data. This calibration process reduces the number of
TIMS channels from 6 to 5. The calibrations will be checked to establish that

topography, slope, and other local surface temperature effects ate completely removed.
These data will then be co-registered with the AVIRIS data.

Cross-calibration of the NASA acquired AVIRIS data with the ISM data acquired by

CNES is an important part of this investigation. The ISM data are complementary to the
AVIRIS data. Although AVIRIS has a higher spectral resolution (approx. 9.75 nm
between 0.4 and 2.45 lain) than ISM (approx. 12.5 between 0.76 and 1.51 gin: 24 nm
between 1.63 and 3.16 _tm), the signal to noise anticipated from ISM is very high
(>500:1). Also, since the spectral range of ISM extends to 3.16 Ima, the spectral range of
AVIRIS can be extended to the saturated atmospheric water band near 2.7 lain. The ISM

instrument is configured with a comparable spatial resolution to AVIRIS from a 6000
meter altitude and data were collected over the Ronda and Beni Bousera peridotites in July
of 1991. These data are currently being calibrated in France using internal calibration
sources. The AVIRIS and ISM data will then be co-registered and the two calibrations
evaluated. Drawing on the strengths of each instrument (higher spectral resolution,

greater visible coverage of AVIRIS: higher signal to noise and extended wavelength range
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ofISM)wewillconvergeonaconsistentsetofcalibrationparametersandagreater
understandingofthetwoinstruments.
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I. INTRODUCTION

Minerals found in playa evaporite deposits reflect the

chemically diverse origins of ground waters in arid regions.

Recently, it has been discovered that many playa minerals exhibit

diagnostic visible and near-infrared (0.4-2.5 #m) absorption

bands that provide a remote sensing basis for observing important

compositional details of desert ground water systems (Crowley,

1991). The study of such systems is relevant to understanding

solute acquisition, transport, and fractionation processes that

are active in the subsurface. Observations of playa evaporites

may also be useful for monitoring the hydrologic response of

desert basins to changing climatic conditions on regional and

global scales. This paper describes ongoing work using Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) data to map

evaporite minerals in the Death Valley salt pan. The AVIRIS data

point to differences in inflow water chemistry in different parts

of the Death Valley playa system and have led to the discovery of

at least two new North American mineral occurrences.

Seven segments of AVIRIS data were acquired over Death

Valley on July 31, 1990, and were calibrated to reflectance by

using the spectrum of a uniform area of alluvium near the salt

pan. The calibrated data were subsequently analyzed by using

least-squares spectral band-fitting methods, first described by

Clark and others (1990). In the band-fittlng procedure, AVIRIS

spectra are fit compared over selected wavelength intervals to a

series of library reference spectra. Output images showing the

degree of fit, band depth, and fit times the band depth are

generated for each reference spectrum. The reference spectra

used in the study included laboratory data for 35 pure evaporite

minerals (Crowley, 1991) as well as several vegetation and rock

spectra extracted from the AVIRIS image cube. Additional details

of the band-fitting technique are provided by Clark and others

elsewhere in this volume.

2. RESULTB AND DISCUSSION

Playa minerals occur under a broad range of moisture

conditions and accordingly present special remote sensing

problems. In particular, it is necessary to distinguish water

coatings on grain surfaces from water that is structurally bound

in different mineral species. The band-fltting technique can be

used to make this distinction for a number of strongly hydrated

minerals by examining the shape and position of a reflectance

maximum observed near 1.66 _m. Figure i shows laboratory spectra

in the 1.5- to 1.8- ,m wavelength interval for the hydrate

minerals antarcticite (CaCI2.6H20), bischofite (MgCI2.6H20), and

mirabilite (Na2S_.I0_O) and for a_hydrous halite (NaCl). All

the samples consist of coarse (-250 _m) powders, and a small

amount of water was added to slightly dampen the halite (dry

halite is spectrally featureless). The reflectance maximum in

mirabilite and bischofite occurs at longer wavelengths and is
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narrower than the halite+water feature. The antarcticite reflec-

tance peak lies near the halite+water feature position but again

is somewhat narrower. At Death Valley, mirabilite has been

mapped successfully by careful analysis of the 1.66 _m reflec-

tance feature in the AVIRIS data. Antarcticite and bischofite

were not expected to occur in Death Valley and do not appear to

be present.
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Figure I. Laboratory reflectance spectra of antarcticite (A),

bischofite (B), mirabilite (M), and damp halite (H).

Reflectance maxima and minima can also be used in combin-

ation to aid in identifying evaporite species. For example,

owing to the signal-to-noise limitations of the AVIRIS "D"

spectrometer, gypsum was not mapped accurately when using only

the gypsum 2.2-_m absorption feature in the band-fitting proce-

dure. However, good mapping results were obtained with the

band-fitting method by using the 2.2-_m band minimum together

with the reflectance maximum near 2.1 _m.

Six different evaporite minerals have been mapped in the

Death Valley salt pan with a reasonable degree of confidence.

The minerals are bloedite (Na_g(S_)2.4H20), gypsum (CaS_.2H20),

halite, syngenite (K2Ca(SO4)7.HzO), rivadavite (Na_gB_O_.22H20),

and mirabilite. X-ray diffraction analyses of efflorescent crust

samples collected near the old Eagle Borax works indicate the

occurrence of rivadavite and pinnoite (Mg_04.3H20), two rare

magnesium borate minerals. Both minerals are spectrally distinc-

tive (Fig. 2), and neither has been previously reported to occur

in North America.
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Figure 2. Laboratory spectra of rivadavite (R) and pinnoite

(P).
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The Eagle Borax area is one of several spring deposits

located along the margins of the Death Valley salt pan. Active

springs in Death Valley typically have well-developed efflor-

escent crusts and mineral assemblages that reflect the water

compositions. For example, springs that are relatively low in

calcium exhibit thenardite (Na2S04) and mirabilite-rich efflor-

escent crusts, whereas higher calcium inflow waters generate

gypsum-rich crusts. The evaporite assemblages at springs can be

quite complex, as at Eagle Borax, where bloedite, gypsum,

eugsterite (Na4Ca(S_)_.2H20), thenardite/mirabilite, rivadavite,

and pinnoite occur in various combinations. All of these

minerals exhibit diagnostic VNIR spectral bands, and a spectral

unmixing study of this area may result in better definition of

the mineral distributions. Given the difficulty in studying such

deposits with traditional sampling techniques, we believe that

the detailed spatial/spectral information provided by imaging

spectrometry will improve understanding of evaporite minerals and

associated ground water processes in Death Valley and in other

arid regions.
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"Shade" has a technical definition peculiar to linear spectral mixture analysis of

imaging spectrometer data: it is the reduction in radiance from a surface due to lighting
conditions and geometry, and includes topographic shading described by photometric
functions as well as shadowing at all scales. "Shade" is an important constituent of

nearly all remotely sensed images, and is one endmember resolved in spectral mixture
analysis, where it is represented as a fraction of the measured radiance and a characteristic
spectrum. This spectrum is typically the null vector, provided the data have _en cor-
rected for atmospheric and instrument effects: i.e., "shade" is the radiance from an ideal
black surface.

In topographic shading, irradiance is reduced -- typically in proportion to cos(i),
where i (incidence angle) is the angle between the sun and the local surface normal vec-
tors. Therefore, the radiance is lowered by a multiplicative factor. Shadowing occurs
when i>90 °, or when sunlight is blocked by adjacent high terrain; the only irradiance is
down-welling skylight and bounce light from adjacent terrain. In spectral mixture anal-
ysis, "shade" is regarded as an additive term. In this regard, it is an accurate description of
the proportion of a scene that consists of ideal shadows ("checkerboard mixing"); how-
ever, "shade" represents the multiplicative cos(i) factor as well, and here it should be
interpreted as the proportion of shadow that would darken the scene an equivalent amount.
In either case, the "shade" fraction is lessened by adjacency effects, because the scene has a
non-zero reflectivity instead of the ideal black surface generally assumed.

In spectral mixture analysis, field and laboratory reflectance spcctra are utilized to
represent endmembers other than "shade." Laboratory measurements are typically made at
i=0 °, such that darkening due to shade is minimal. However, field measurements are

typically made at grcatcr incidence anglcs, and arc affcctcd by both shading and shadows
at a "subpixel" scale, due to roughness of the measured surface. This darkening leads to
an underestimation of the scene reflectivity, and this underestimation is related to the
"shade" fraction, F s, sought in spectral mixture analysis. Therefore it appears that field

radiance data can be interpreted to yield a reflectance spectrum less affected by "shade," in
greater agrcemcnt with laboratory measurements, and also to yield F s, which is a measure

of scene roughncss at the scale of measurement.

Field spectra are commonly acquired by measuring the radiance from a small (101

- 103 cm 2) area of natural surface, and comparing this to the radiance from a flat smooth
standard, such as halon, of known reflectance and at the same viewing geometry. For the

target, assumed to be Lambertian,

Rt(_.) _- S(_.) cos(i) rt(_.) + D(_,) rt(_) (1)

where Rt(k) is target radiance at wavelength L, S is the solar irradiance filtered by the

atmosphere, rt is the target reflectance, and D is the downwelling irradiance from the sky,

assumed to be isotropic. When the halon or other standard is placed in front of the
spectrometer, the measured radiance is
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Rh(_.) = S(_.) cos(i) rh(X) + D(_,) rh(_.) (2)

where r h is the halon reflectance. For S(_,) >>D(X), it is assumed that

rt(_.) -- rh(_.) Rt(_.)/Rh(_-). (3)

However, in the visible spectrum D(_.) is variable but may be several percent of S(_.), so
that this value of rt(_.) is in error. Furthermore, for a textured target "shade" must also be

considered. Thus,

Rt(_, ) = S(_.) cos(i) rt(_) (1 - Fs) + D(_,) rt(k). (4)

It is clear that, even if S(k) _ D(_,), the apparent value of rt(_,) is reduced in proportion to

F s, such that

rh(_. ) Rt(k)/Rh(_. ) _- rt(k ) (1 - Fs). (5)

Equations (3) and (4) are underdetermined, and it is not possible to calculate both

rt and Fs from them. However, it is possible to do this by making two additional
radiance measurement-,;, Rt' and Rh', in the field. For these measurements, the target and
halon standard are both shadowed (for instance, by holding up a sheet of cardboard), such

that S(_.) = 0:

Rh'(_. ) = D(_.) rh(k) (6)

Rt'(_.) --- D(_.) rt(_). (7)

Substituting Rh' and Rt' for Rh and R t in equation (3) produces a more correct

estimate of rt. The "shade" fraction may be also calculated:

F s = 1 - Rh' (Rt- Rt') / (Rt' (Rh - Rh'))

where the L notation has been dropped for simplicity.

It should be noted that the apparent value of Fs will be independent of _.,

provided the simplifying assumptions are valid. An important refinement is to consider
adjacency factors, which affect primarily the terms containing D(k) but can have an
impact of several percent on Fs. We have incorporated a simplistic model of adjacency
effects that assumes that: (1) the downwelling skylight is diminished according to i/n (i

in radians), and (2) the measured radiance is increased by bounce light from adjacent
terrain. It is assumed that the adjacent terrain is fiat (i = 0) and partially shadowed

according to some nominal value Fs* of Fs (e.g., 10%). The adjusted expression for

target radiance is

R t = r t S (cos(i) (1 - Fs) + rt (1 - Fs*) (i/n)) + rt D ( (1 - i/n) + r t (1 - Fs*) ).

(8)

(9)

We have calculated the sensitivity of Fs to measurement error by evaluating the

above equations. We have also investigated the effect of viewing geometry on F s and the

magnitude of adjacency effects, using simulated surfaces having different roughness scales.
This involved integration over a grid of 2500 cells, for which a digital terrain model was

specified by a randum number generator. In addition, we have determined Fs for
constructed surfaces, using a CCD to measure radiance images. Finally, we have

determined Fs in natural field settings.
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WediscusstheuseofFsinunderstandingVNIRimages.Aninteresting
ramificationof thisresearchisthatFsisrelatedtothesurfacetextureatthesubpixel
level,adifficultcharacteristictoestimateotherwise.Invegetatedterrainssuchasthe
Amazonrainforest,Fsdeterminedremotelymaybeanimportantparameterfor
estimatingcanopyarchitectureoverlargeareas.It isalsopossiblethattheFsparameter
mayproveusefulinrelatingVNIRandRadarimages.

Measurementof Fsata range of field scales (i.e., 10 -3 to 100 m) may provide a

way to overlap with textural or roughness measurements made by microtopographic or
stercometric surveys (10 -1 to 102 m). Such data have been used to characterize surface
roughness as a fractal dimension for correlation with Radar backscatter coefficients and use
in forward mattering models.
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1. INTRODUCTION

Over the last decade, technological advances in airborne imaging spectrometers, having a

spectral resolution comparable with laboratory spectrometers, have made it possiblc to
estimate biochemical constituents of vegetation canopies. Wessman et al. (1988) have

estimated lignin concentration from data acquired with NASA's Airborne Imaging
Spectrometer (AIS) over Blackhawk Island in Wisconsin. In this study, a stepwise linear
regression technique was used to determine the single spectral channel or channels in the
AIS data that best correlated with measured lignin contents using chemical methods. The

regression technique does not lake advantage of the spectral shape of the lignin reflectance
feature as a diagnostic tool nor the increased discrimination among other leaf components

with overlapping spectral features.

A nonlinear least squares Slr_tral matching technique (Gao and Goetz 1990) has recently
been reported for deriving both the equivalent water thicknesses of surface vegetation and
the amounts of water vapor in the atmosphere from contiguous spectra measured with the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (Vane, 1987). The same

technique has been applied to a laboratory reflectance spectrum of fresh, green leaves
(Goetz et al. 1990). The result demonstrates that the fresh leaf spectrum in the 1.0-2.5
grn region consists of spectral components of dry leaves and the spectral component of
liquid water. In this paper, we describe a linear least squares spectral matching technique
for retrieving equivalent water thickness and biochemical components of green vegetation.

2. METHOD

At present, the prediction of vegetation reflectances based on rigorous radiative transfer
modeling and the subsequent retrieval of biochemical components of vegetation are
difficult. To simplify the problem, we have assumed that the vegetation reflectance
spectrum has the same shape as the transmittance spectrum (Knipling 1970). With the

assumption, the reflectance spectrum, R(A), can be expressed as:

)R(A ) = (a + b ,71.) exp - kiu i (1)

where n is the total number of end members (such as liquid water, lignin, or cellulose)

used in the modeling, k i is the absorption coefficient of the i th end member, u i is the

absorber amount of the i th end member. The background level of the transmittance

spectrum is assumed to be a linear function of wavelength and represented by the term

(a+ b A). This assumption is typically justified for small wavelength intervals

(McMahon and Simmons 1980).
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Figures la-lf illustrate our linear least squares fitting method for retrieving equivalent
water thickness and chemical components of vegetation. Fig. la shows a reflectance
spectrum in the 1.5-1.74 lam wavelength interval. This spectrum was obtained by
removing atmospheric effects using the technique described by Gao et al. (1991) from an
AVIRIS spectrum measured over an area covered by pine trees in the Oregon Transect on
June I, 1989. Fig. lb shows the spectrum of the absorptances, the fitted straight line, and
the difference specman.

Fig. lc is similar to Fig. lb but for the end member of liquid water. For clarity, both the
minus log curve and the fitted straight line were shifted upward by the same amount in
the plot. The water reflectance spectrum was obtained by measuring reflectances of water
mixed with glass beads, which have no absorption features near 1.7 lam. Fig. ld is also
similar to Fig. lb, but for lignin. The lignin reflectance spectrum was supplied by D.
Peterson (private communication, 1990).

Fig. le shows an example of spectral matching using only water. The solid curve in this
figure is the difference spectrum in Fig. lb. The dashed curve is the fitted spectrum with
one end member - water. In this case, the abundance vector, X, has one element. The
value of x is the derived equivalent water thickness relative to the liquid water amount
from the reflectance spectrum of water mixed with glass beads. The sum of the squared
differences between the observed and the fitted spectra is 0.0066. Fig. If shows an
example of spectral matching with two end members - water and lignin. In this case, the
abundance vector, X, contains two elements, the equivalent thicknesses of water and
lignin relative to the water spectrum and the lignin spectrum, respectively. The fit
between the two curves in the 1.65-1.74 lain region in this figure is better than that in
Fig. le. The sum of the squared differences between the two curves in Fig. If is 0.0036,
almost half of that of Fig. le.

3. DISCUSSION

In the 1.3-2.5 lain region, absorption features of chemical components, such as lignin and
cellulose, overlap (Curran 1989). Because of this, the derived equivalent thickness of
lignin, for example, may be affected by other components using our linear spectral
matching technique.

Differences do exist in shapes of absorption features of different chemical components
CElvidge 1990). For example, both lignin and cellulose have absorption features near 1.7
grn; the peak positions of the features are slightly offset. Also, the fignin absorption
feature is sharper than the cellulose absorption feature. By comparing Figures le and If,
one can see that if water and lignin are included in the fitting of the spectrum over pine
trees, the overall fit is improved. This lends some credibility to the derived fignin amount
using our technique. Furthermore, if water and cellulose are included in the fitting, the
overall fit, particularly in the 1.65-1.75 Ilm region, is not as good as that with water and
lignin.
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Fig. 1. Illustration of the linear least squares spectral matching technique. See text for
details.
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The primary objective of this research was to map as many spectrally distinct

types of green vegetation (GV), non-photosynthetic vegetation (NPV), shade and soil
(endmembers) in an AVIRIS scene as is warranted by the spectral variability of the data.
Once determined, a secondary objective was to interpret these endmembers and their

abundances spatially and spectrally in an ecological context.

- Primarily, imaging spectrometer data has been viewed as a means for making

direct measurements of canopy chemistry, such as protein, lignin and nitrogen (e.g.
Wessman et al., 1988). The data also have potential for direct measurements of vegetation

liquid water thickness and atmospheric water vapor (Gao and Goetz, 1990; Green et al.

1991).These approaches focus on the presence of subtle absorption features, some of

which, in the context of a spectral mixture and canopy complexity, may not be readily

detectable in imaging spectrometry data. Furthermore, they neglect much of the
information inherent in spectral continua (Gillespie et al., 1990).

In previous papers (Roberts et al. (1990, 1991, 1992)), it was found that most

(over 97%) of the spectral variability in an AVIRIS scene collected over Jasper Ridge could

be described by 3 or 4 endmembers, GV, soil and shade (with a 4th endmember consisting

of NPV). In a three-endmember model, NPV was distinguished from soil based on

wavelength-specific residuals attributed to lignin and cellulose. Different types of GV were

distinguished on the bases of different degrees of non-linearity, changes in the spectral

quality of shade (canopy shade) and changes in the GV fraction when the analysis was

applied separately to visible, near-infrared and short-wave-infrared subsets of the total

spectrum.

In this paper we report upon a new approach to the problem of interpreting

imaging spectrometry data. This is accomplished by extending the spectral mixture concept
to allow the endmembers, as well as their abundances, to vary on a pixel-to-pixel basis.

This approach has the potential of providing a large suite of ecologically significant
variables, including reflectance spectra of multiple types of vegetation (GV and NPV), soil

and shade (canopy and photometric) and maps showing the spatial distribution of each

endmember type as well as the endmember abundances. It has further advantages over the

approach of applying a single suite of endmembers to an entire image in that it provides a

greater number of endmembers and optimizes endmember detectability (Sabol et al.,

1991,1992).

The new approach was tested on two AVIRIS scenes collected in the vicinity of

the Jasper Ridge Biological Preserve on July 27, 1990 and October 3, 1990. The results
for the October scene am presented in this paper. A comparison between the July and

October data is presented in a companion paper (see Sabol et al., this issue). The AVIRIS



datawerecalibratedtoreflectance using an empirical line calibration and three non-

photosynthetic targets to avoid non-linear effects (Roberts et al., 1991). Sets of two and
three image endmembers were selected automatically from the scene. Based on two criteria,

a RMS threshold of 8 DN and required endmember fractions between 0 and 1, over 92% of

the scene was modeled by 12 endmember pairs. The endmember pairs consisted primarily
of mixtures of shade and either GV or NPV. The total number of endmember pairs included

several shades, GVs, NPVs and soils. Representative GV and NPV spectra are shown in

Figures 1A and lB. The three endmember case provided little additional information above
the two endmember case. For most pixels two endmembers were adequate. This result is

not surprising considering the analysis was restricted to image endmembers, which
themselves can be complex mixtures. The next step is to interpret these image-

endmembers in terms of laboratory reference endmembers (see Gillispie et al., 1990 for a

description of this procedure).

Spatially, the endmember pairs corresponded to the dominant cover types in the

region. As an example, the most abundant pair, which was categorized as a shade-GV
mixture, corresponded to Forested Wetland, Evergreen Broadleaf Forest, Conifer Forests
and water. In this instance water was a spectral analog of photometric shade. The second

most abundant pair, which was categorized as a shade-NPV/GV mixture, corresponded to

chaparral and forested/urban areas. In this case the NPV/GV image endmember is most

likely a mixture of several photosynthetic and non-photosynthetic materials.

Conclusions

A new spectral mixture approach, in which the endmembers vary from pixel to

pixel across an AVIRIS image was tested using data collected over the Jasper Ridge
Biological Preserve on October 3, 1990. A preliminary analysis of the image endmembers
determined that most of the scene could be described as mixtures of two endmembers,

primarily shade and either GV or NPV.The endmember pairs were spatially coherent,

varying broadly with community types. Near-term objectives include extending the

analysis to reference endmembers and new criteria for selecting endmembers, including the

use of wavelength specific-residuals in addition to an RMS error.
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1. INTRODUCTION

In July 1991, AVIRIS was flown over Mount Etna and Stromboli, Italy. Lava-
filled vents were then present within summit craters of both volcanoes. Since surfaces at

magmatic temperatures radiate strongly over the wavelength ranges of the AVIRIS C- and
D-spectrometers, it was hoped that the data collected would reveal clear thermal
signatures, even of sub-pixel sized features, as have been observed in the 1.65 and 2.22
_rn bands of Landsat Thematic Mapper images (Rothery et al. 1988). This would
provide an opportunity to explore the potential of imaging spectrometers for deriving
temperature distributions of hot volcanic surfaces. Such research has implications for
volcano monitoring in the EOS era, and also for any future AVIRIS deployments above
active lava flows, lakes and domes, where understanding of their behaviour may be

advanced by detailed thermal observations (Pieri et al. 1990, Oppenheimer 1991).

2. DATA INTERPRETATION

AVIRIS recorded useful data of Stromboli on July 8, 1991 (910708B run 8 seg-

ment 1) and Mount Etna on July 19, 1991 (910719B run 7 segment 3). Despite a seven-
fold loss of throughput in the D-spectrometer resulting from faulty fiber-optics (R. Green,

pers. commun. 1992), there are pronounced thermal responses in this part of the spectrum
(1.8-2.45 _tm), as well as in the C-spectrometer output (1.2-1.8 Ixm), to summit features
at both volcanoes. No sensor saturation occurred, reflecting the wide dynamic range of

AVIRIS (up to about 20 mW cm -2 sr -1 I.tm1 for the healthy D-spectrometer).

The radiometrically calibrated data were processed in the following manner. It is
assumed that the measured spectral radiance, RX, in each AVIRIS channel is the sum of

partially transmitted reflected sunlight and skylight, any path radiance, and partially
transmitted thermal radiation from one or more components of the surface:

R z = z_jgzR_,D + Ra, v +z_. Zea.if/L(2,Ti)
1

(1),

where zz is the atmospheric transmittance at wavelength 2, PZ the spectral reflectivity of
the surface, R_D the downwelling atmospheric radiance, RX. U the upwelling path
radiance, tx, i the spectral emissivity of the ith surface thermal component, f/its pixel-
filling fraction, and L(_Ti) the spectral radiance from the ith thermal component with a
surface absolute temperature T i, which is given by the Planck distribution law as follows:

L(_,Ti) = c 1_-5 (2),
exp(c2/;tTi) - 1]

where Cl and c2 have the values 1.19 x 10 -16 W m2 and 1.44 x 10 -2 m K, respectively.
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For a "hot" pixel, the radiated component of the spectrum was isolated by first
subtracting, band-by-band, the spectrum of a neighbouring "cool" pixel. This was
deemed to be optimized when the residual spectrum showed the least net signal between
0.4 and 1.2 l.tm. Next, the "difference" spectrum was divided, band-by-band, by a file
containing atmospheric transmission coefficients (obtained using LOWTRAN 7)
convolved with the AVIRIS spectral response file. Figure 1 shows a spectrum thus
corrected for a single pixel over Stromboli; channels for which the modelled atmospheric
transmittance was below 0.5 were excluded. The solid curve shows the best Planck curve

fit, found using the Simplex algorithm (Caceci and Cacheris 1984), for a single temp-
erature hot spot surrounded by ground too cool to radiate significantly in this region of
the infrared. The solution represents a pixel containing approximately 12 m2 (f=3.72%
of a nominal 320 m2 IFOV) of ground at 598 °C (_0.95). This would be consistent
with a region of recently erupted spatter, or crusted lava inside a small intracrater bocca,
both characteristic of Stromboli's activity at the time (Smithsonian Institution 1991).
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Figure 1. Corrected AVIRIS spectrum and Planck curve fit for a pixel over Stromboli.
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Corrected AVIRIS spectrum for pixel of Northeast Crater, Mount Etna.

Not all the spectra examined have been resolved so convincingly into the sum of
Pianck radiation curves. Figure 2 shows the most intense thermal anomaly over the
Northeast Crater of Mount Etna. This spectrum was derived following the procedure
outlined above. Again, the D-spectrometer range is very noisy. Furthermore, the
shape of the 1.2-1.8 I.tm spectrum is not readily interpretable in terms of superposition of
different thermal components. In addition to its broadly concave upwards form, there are
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marked drops in the spectrum at about 1.52 and 1.76 I.tm. These could represent either
false positive-noise-spike corrections, uncorrected dropouts, or genuine absorption
features. At the time the image was recorded, the only hot spot within the Northeast

Crater was a funnel-shaped pit on its floor. This vent emitted high temperature gases,

glowed, and probably contained magma close to the surface (Smithsonian Institution
1991). We note that HCI is infrared-active around 1.76 lam but have yet to calculate the
concentrations necessary to attenuate emitted radiation to the extent suggested by the
AVIRIS data. We plan also to examine the raw AVIRIS data which could exclude the

possibility that a noise-spike correction was applied erroneously.

4. DISCUSSION

AVIRIS takes 87 las to record a spectrum in each detector array. This is about

6 orders of magnitude faster than conventional field spectroradiometers. However, even
this brief time is equivalent to approximately one cross-track pixel displacement on the
ground. This is corrected for by a linear interpolation of the recorded DN in each detector
element between adjacent cross-track samples (Green et al. 1991). This will tend to blur
thermal anomalies in the cross-track direction and, more worryingly, distort the shape of

the spectrum according to the size and position of the thermal feature relative to the
instrumental instantaneous field of view. Some of the difficulty experienced in fitting
Planck radiation curves to the recorded spectra probably reflects this latter point.

Unfortunately, going back to the raw image which has not been resampled presents the
original problem that each detector element within a given spectrometer has sampled a
different piece of ground. However, corresponding detector elements in each spectrometer
are nominally spatially coregistered; perhaps by selecting a few neighbouring data points
and plotting them along with those at the same position in adjacent detector arrays, one
might derive more reliable thermal results. This problem with interband spatial
registration should be less significant for large features with uniform surface temperatures.
It would be solved altogether by enabling AVIRIS to record all bands simultaneously;

such a proposal is under review (R. Green, pers. commun. 1992).

AVIRIS may be in Hawaii in November 1992, which would, in all likelihood,
offer a tremendous opportunity to record data above areally extensive lava flow fields and

lava ponds. By deriving radiative properties of such features from the AVIRIS data, one
might hope to refine models for, and thereby our understanding of, their eruption.
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RETRIEVAL OF BIOPHYSICAL PARAMETERS WITH AVIRIS AND ISM

- THE LANDES FOREST, SOUTH WEST FRANCE -
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Zagolski F.,Gastellu-Etchegorry J.P., Mougin E., Giordano G.,

Marty G., Le Toan T., Beaudoin A.

Centre d'Etude Spatiale Des Rayonnements Universit6 Paul Sabatier, Toulouse.

!. Introduction

This paper presents the first steps of an experiment for investigating the capability of

airborne spectrometer data for retrieval of biophysical parameters of vegetation, especially

water conditions. AVIRIS and ISM (Table 1) data were acquired in the frame of the 1991

NASA/JPL and CNES campaigns on the Landes, South west France, a large and fiat

forest area with mainly maritime pines (Le Toan et al., 1991). In-situ measurements were

completed at that time; i.e reflectance spectra, atmospheric prof'des, sampling for further

laboratory analyses of elements concentrations (lignin, water, cellulose, nitrogen,...). All

information was integrated in an already existing data base (age, LAI, DBH, understory

cover,...). A methodology was designed for (1) obtaining geometrically and atmospherically

corrected reflectance data, for (2)registrating all available information, and (3)for

analyzing these multi-source informations. Our objective is to conduct comparative studies

with simulation reflectance models, and to improve these models, especially in the MIR.

II. Methodology and preliminary results

High resolution reflectance spectra obtained under different cxperimental

configurations ( in-situ, laboratory., and remote sensing) are retrieved and compared (Fig. 1).

'n-_ Aitlx)n'_e cllltl

....,I l

Models of radiative transfers (multi-spectral) I ] Spatialization of spectral iflformationCalibration/validation: emphasis on MIR Calibration/validation/simulation of airborne data

_: Schematic presentation of the methodology.
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-laboratory:. spectral analyses (19 bands from 1445 to 2348nm) to assess most valuable

wavelengths for biochemical elements of vegetation (dry powder). Stepwise analyses

showed that middle infrared bands are mostly efficient (Zagolski et al., 1992).

- in-situ: directional reflectance spectra are displayed on figure 2.

- low to medium altitude (very large to large scale): ISM surveys (Fig. 3) at 700m, 1000m,

2000m and 3000m altitudes, and with different confgurations (Zagolski et al., 1992).

-high altitude (medium scale): AVIRIS derived spectral reflectances (Fig. 3) are

encouraging in the way they show important differences for different age classes

(biomass) of pine stands (Gastellu-Etchegorry, 1991).

Retrieval of biophysical parameters is based on intercalibrated high resolution reflectance

spectra. Preliminary steps to obtain these spectra are presented below.

* Radiometric corr¢ctio_:

- AVIRIS digital counts were transformed into radiance values by calibration coefficients.

- Calibration procedures are being implemented for correction of ISM data.

* Geometric correcti?n_:

- AVIRIS: only corrections of panoramic effects were applied.

-ISM: because surveys took place at low altitude levels geometric corrections are

absolutely necessary. These corrections are currently being applied.
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* Atmospheric corrections:

Systematic atmospheric correction of airborne data (Fig. 4), with the inversion of 5S

atmospheric model (Taur6 et al., 1990), leads to apparent reflectances p.. A Gauss Seidel

based iterative approach leads to convergence with only 5 iterations.

p.(O,,O,,cb,) a, + p; + p; P,(0,,0,,_v) + ",, T(0,) e"rIg, + p,i_.td(0,)].Tp,= = LP=.l_p=.. - .

with p,: intrinsic atmospheric reflectance,

p;: "direct" apparent reflectance, partly due to the environment,

p..: environment contribution (atm. condition = = > neighborhood of radius 50),

s and v: for sun and viewing angles,/h = cosine(sun zenith angle),

r, S, E,: atmospheric optical depth and albedo, and sun constant,

T(0,)/ta(0,): total/dlffuse transmission coeffidents, independent of T_,.
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IV. Concluding remarks

The 1991 NASA/J'PL and CNES campaigns over The Landes test site provide a great

opportunity for studying the potential of high spectral resolution for forest areas. Up to

now, only basic processings were performed. Preliminary results already show the

potential of high spectral resolution for discriminating different classes of vegetation. In a

second step, once available information is calibrated and input into a data base,

comparative analyses will be conducted for studying how those biophysical parameters that

can be spectralty observed in the field and in laboratory can be assessed with airborne

spectrometers at different altitude levels. The evolution of information at different spatial

and spectral scales will be particularly considered. Our effort will concentrate on the

explanation of results with the help of models.
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Mineral abundance maps of 18 minerals were made of the

Cuprite Mining District using 1990 AVIRIS data and the Mul-

tiple Spectral Feature Mapping Algorithm (MSFMA) as dis-

cussed in Clark et al. (1991). This technique uses least-

squares fitting between a scaled laboratory reference spec-

trum and ground calibrated AVIRIS data for each pixel. Mul-

tiple spectral features can be fitted for each mineral and

an unlimited number of minerals can be mapped simultane-

ously. Quality of fit and depth from continuum numbers for

each mineral are calculated for each pixel and the results

displayed as a multicolor image.

Cuprite consists of two acid-sulfate hydrothermal

alteration centers straddling highway 95 in southwestern

Nevada, with alteration involving Tertiary volcanic host

rocks in the eastern center and Cambrian metasedimentary

host rocks in the western center. Cuprite spectral mineral

abundance maps of the area show two elliptical zonation pat-

terns. The western center is zoned progressively inward

from sericite, to halloysite-dickite, kaolinite, Na-alunite,

through K-alunite with halloysite in the interior. While

the eastern center is zoned inward from halloysite to kao-

linite, intermediate alunite, through K-alunite, with a cen-

tral core of siliceous sinter.

Many of these minerals had never been mapped before or

in such detail. We have subdivided kaolinite group minerals

into grades of crystallinity, alunites and montmorillonites

into solid solution endmembers, and have differentiated

between jarosite, goethite, hematite, and ammonium minerals.

We collected 60 field samples using the mineral abundance

maps as guides to locate areas with the strongest mineral

signatures. The PIMA II field spectrometer t was used to do

preliminary mineral identification in the field. Natural

weathered surfaces were marked and were measured, along with

rock chips from sample interiors, in reflectance on a

laboratory Nicolet t 740 Fourier transform IR spectrometer.

In all cases the mineralogy of the interior matched that of
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the weathered surface indicating that we are mapping the
rock units themselves. An example of a library reference
and field sample spectra for Dickite at lab and AVIRIS spec-
tral resolution is shownalong with an AVlRIS spectrum (avg=
8 pixels) extracted from the collection location of the
field sample (Figure I). This 2.2-#m feature was used to
identify Dickite with the MSFMA.Twenty-eight field samples
of 17 mineral types were submitted for X-Ray Diffraction
(XRD) analysis to verify or disprove our spectral identifi-
cations (Table I).
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Figure I. Reflectance spectra of a reference dickite and

field sample, from Cuprite, identified as dickite from

analysis of AVIRIS data. Lab spectra (dash-dot and dash-

dash curves).collected on an Fourier transform IR spectrome-

ter at 4 cm resolutzon. Dotted curve is the field sample

spectrum convolved (cv) to AVIRIS spectral resolution.

Solid curve is an average of eight pixel spectra extracted

from AVIRIS data corresponding in location to the field sam-

ple collection locality. Spectra have been vertically

offset for clarity.

At the time of writing 12 spectrally identified

minerals were confirmed by XRD. Since spectroscopy is more

sensitive for identifying small quantities of Fe-oxides and

clays than XRD, we expect that nontronite is present along

with Fe-Chlorite. Chemical analysis will be used to
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determine the cation content of K-aluaite and Na-

montmorillonite samples. The wavelength position of the

2.2-_m band in muscovite appears to be a function of its

AI/Fe ratio (Jim Post, pers. comm.) and may explain why we

mapped two different muscovites as Na-montmorillonlte and

paragonlte at some locations in the western center. More

details on this will be presented. We have also realized

that opal and hydroxyl-bearlng chalcedony both have Si-OH

bands and that we identified chalcedony instead of opal at

Cuprlte. Overall, our mineral identifications have proven

very accurate in those cases where we have adequate refer-

ence spectra. Our difficulties arise from subtle wavelength

shifts in spectral features of solid solution series

minerals, because the MSFMA is sensitive to small band

shifts. Such sensitivity to band position coupled with

great sensitivity to band shape indicates that the MSFMA may

open up a new frontier in remotely sensing subtle chemical

changes in surface materials.

#Any use of trade names is for descriptive purposes only and

does not imply endorsement by the U.S. Geological Survey.

Clark, R.N., G.A. Swayze, A. Gallagher, N. Gorelick, and F.

Kruse, Mapping with Imaging Spectrometer Data Using the Com-

plete Band Shape Least-Squares Algorithm Simultaneously Fit

to Multiple Spectral Features from Multiple Materials,

Proceedings of the Third Airborne Visible�Infrared Imaging

Spectrometer (AVIRIS) Workshop, JPL Publication 91-28, p.

2-3, 1991.

K-Alunite

Na-Alunite

Buddingtonite
Calcite

Fe-Chlorite

Dickite

Goethite

Halloysite
Hematite

NH4 lll/Smectite
Jarosite

Kaolinite (wxl)

Kaolinite (pxl)
Na-Montmorillonite

Ca-Montmorillonite

Nontronite

Opal

Paragonlte

Table I: Minerals detected by AVIRIS and identified with XRD
............................................................

AVIRIS Identified X-Ray Diffraction
............................................................

Na-Alunite (submitted for K/Na analysis)
Na-Alunite

Buddingtonite

Not Submitted (occurs as limestone)

Probably Fe-Chlorite
Dickite

Goethite

Halloysite (moderately crystallized)
Hematite

Montmorillonite + tr. lllite

K-jarosite

Kaolinite (well crystallized)

Kaolinite (still resolving crystallinity)

Ca-Montmorillonite (submitted for anal.)

tr. Smectite and muscovite

Possibly Nontronite ,
Quartz (SEM: Qtz + chalcedony )

K-Muscovite (submitted for analysis)
............................................................

Opal and chalcedony are both OH-bearing quartz.
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1. INTRODUCTION

AVIRIS data shows promise for the estimation of foliar biochemical
concentrations at the scale of the canopy (Committee on Earth Science 1989,
Wessman et aL 1988, Curran 1989). There are, however, several problems
associated with the use of AVIRIS data in this way and these are detailed in a
recent Plant Biochemical Workshop Report (Peterson 1991). The research
reported here has concentrated upon three of these problems: field sampling of
forest canopies, wet laboratory assay of foliar chemicals and the visualisation of
AVIRIS data.

2. STUDY SITES

Two study sites were used in this research. The first is north east of
Gainesville, Florida, , is NSF funded and is maintained by the University of
Florida (UF). This site is covered by a slash pine (Pinus elliottil) plantation and
contains 8 fertilised and 8 control plots, each 50m x 50m in size. These were
overflown by AVIRIS in March and September 1990, with multiple overpasses
on each date (Curran et aL 1991). The second study site is around Llyn Brianne
in Wales, UK. The upland site is covered by a Sitka spruce (Picea sitchensis)
plantation with small areas of other plantation species (japanese larch, Larix
kaempferi; Iodgepole pine, Pinus contorta var. latifolia) and contains 51, 50m x
50m plots. These were overflown twice by AVIRIS in July 1991 as part of the
NASA MAC Europe (Curran and Plummer 1992).

3. PROBLEMS

3.1. Field sampling of forest canopies

The five main stages were: choosing the study site, choosing the study
plots, locating the plots, collecting forest mensuration data and finally sampling
the foliage. These will be discussed in turn.

The two study sites have a history of environmental research. The site in
Florida has a homogeneous canopy on a flat site and the site in Wales has a
heterogeneous canopy on a rugged site.

The Florida study site contained established plots. At the Welsh study
site the establishment of plots was made difficult by windthrow and drains. In
addition, flat areas were seasonally waterlogged and suffered from large
variations in tree growth over small distances. Collecting ground data in such
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areas would mean sampling virtually every tree within the plot. Therefore, the
range of plots chosen to represent relative levels of tree vigour were all on
drained, slightly sloping land where neighbouring trees were similar. Sitka
spruce plantations afford limited access to their interior and so a network of
access paths had to be cut, by the removal of lower branches.

The Global Positioning System (GPS) was to be used to locate the plots.
Unfortunately, hand-held systems when used within the forest could not pick up
the signals from the GPS transmitters. Any future use of GPS for plot location
within forest stands would require an external aerial that could be placed above
the canopy. Classical surveying techniques were therefore used to locate the
plots on both study sites.

UF collected forest mensuration data for each plot at the Florida study
site (Gholz et aL 1991). During NASA MAC Europe, a wide range of forest
mensuration data (diameter at breast height, leaf area index, tree height) were
collected for each plot at the Welsh study site.

The open canopy and lack of low level branches at the Florida study site
meant the canopy could be sampled by shooting small branches from the
canopy which then fell to the ground. The Sitka spruce at the Welsh study site
had a very dense canopy and retains its dead branches on lower whorls
preventing sample branches from reaching the ground. Two methods were used
to sample this canopy. At some points within the plots the lower dead branches
from the tree were cleared until the live canopy was reached. A ladder and
pruning pole were then used to remove the selected live branches from the
canopy. At other points within the plots a tree was felled. Once the tree was
horizontal hand pruners could be used to remove the required parts of the
canopy. In total 539 foliage samples were collected, 384 for the study site in
Florida and 155 from the study site in Wales.

3.2. Wet laboratory analysis of foliar chemicals

The sampled foliage was begged by age class and frozen for return to
the University College of Swansea (UCS). The samples were then analyzed
using standard wet laboratory techniques for chlorophyll, moisture, lignin,
cellulose, nitrogen and carbon, with replication. So far the chlorophyll and
moisture analyses have been completed and these show statistically significant
differences between the fertilised and control plots at the Florida site and the
relative level of tree vigour at the Welsh site.

3.3. Visualisation of AVIRIS data

The Department of Geography at UCS was oriented towards the analysis
of broad band remote sensing data and so initial analysis of the AVIRIS data
cube was slow and relatively unproductive. This early processing was divided
into two sections: spatial analysis and spectral analysis. The original data cube
remained on a VAX 8820 and the required data were displayed spatially on a
GEMS image processing system, running GEMSTONE software and spectrally
on a 386PC, running in-house software. This separation of the data made it
hard to link images and spectra together. Effective processing was achieved
using SUN SPARC stations running PV-Wave software which is designed for
the visualisation of multi-dimensional data sets. A set of routines is being
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developedin thePV-WaveCommandLanguageto performthenecessary
processingassociatedwithAVIRISdata.

4. FUTURE RESEARCH

The work described above continues in an effort to better understand the

relationships between foliar biochemical concentrations and remotely sensed
spectra. The NASA MAC Europe involved other sensors. Broad band
multispectral scanners provide estimates of the foliar biomass and the All:tSAR
provides estimates of the amount of wood within forest stands. These data sets
will be integrated and applied to ecosystem simulation models to derive
estimates of net primary productivity at a regional scale.

5. CONCLUSIONS

The remote sensing of foliar biochemical concentrations is an important
contribution to the development of ecosystem models on regional to global
scales. Field campaigns are vital if it is to be demonstrated that the AVIRIS can
provide such information. This paper has emphasised the complexity of such
campaigns, in particular the need for meticulous site preparation and a large
number of foliar samples, backed up by the facilities necessary for wet
laboratory assay and the visualisation of AVIRIS data.
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SEASONAL AND SPATIAL VARIATIONS IN PHYTOPLANKTONIC

CHLOROPHYLL IN EUTROPHIC MONO LAKE, CALIFORNIA, MEASURED

WITH THE AIRBORNE VISIBLE AND INFRARED IMAGING

SPECTROMETER (AVIRIS)

John M. Melack and Mary Gastil

Department of Biological Sciences and Marine Science Institute
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1. INTRODUCTION

The principal problem with application of airborne imaging spectrometers to
lakes is the weak upwelling signal, especially when narrow spectral bands with high

spatial resolution are sought. Furthermore, atmospheric path radiance dominates the

signal received from dark targets such as lakes. Once atmospheric effects have been
removed from the radiance received at the sensor, semi-empirical relationships can be

developed to extract information about phytoplankton pigment concentrations for
different underwater optical conditions (Carder, et al. 1986). In lakes where

concentrations of dissolved organics and suspended detritus may not co-vary with

phytoplankton pigments, the many spectral channels of an imaging spectrometer such a

AVIRIS are likely to be required to distinguish the various aquasols.

The objectives of our study are two-fold: (1) We estimate the chlorophyll
content of a lake with hundred-fold seasonal ranges in chlorophyll concentration using

atmospherically corrected upwelling radiances derived from AVIRIS imagery. (2) After
reduction of the coherent noise in the imagery by filtering techniques, we examine spatial

patterns in chlorophyll.

2. STUDY SITE

Mono Lake is a large (150 km2), moderately deep (mean depth, 17 m),

hypersaline (total dissolved solids, ca. 90 g L- 1) lake lying in the North American Great

Basin just east of the Sierra Nevada, California (38"N, 119°W; elevation ca. 1942 m

above sea level) (Melack 1983). A decade-long, ongoing limnological study
has included examination of spatial variability of the plankton (Lenz 1986) and primary

productivity (JeUison and Melack 1988). The phytoplankton is dominated by very small

(2-3 l;tm diameter) coccoid cells that vary in abundance from <1 to ca. 90 mg chlorophyll
a m--'. The offshore waters are largely uncontaminated by suspended particles from

inflows but contain considerable dissolved organic matter.

3. METHODS

AVIRIS imagery of western and southern regions of Mono Lake was acquired

on four dates: 26 May 1989, 27 March 1990, 10 August 1990 and 30 September 1991.

On each date samples were collected at multiple stations for analysis of chlorophyll a and

other photosynthetic pigments. Filtered water was obtained for laboratory absorption

spectra. Up and downweiling photosynthetically available irradiance (PAR, 400 - 800

nm) was measured on each date.
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The radiometrically corrected AVIRIS images were obtained from the AVIRIS

project at the Jet Propulsion Laboratory (JPL). Atmospheric corrections were performed

with LOWTRAN 7 using a multiple-scattering, mid-latitude, rural model. The

atmospheric path radiance spectra, binned to the midpoints of the AVIRIS wavelengths,

were subtracted band by band from radiance spectra averaged over subsets of the image

containing only water to yield atmospherically corrected radiance spectra.

Chlorophyll a concentrations were estimated using a CZCS-type algorithm

developed for coastal waters. To identify and reduce coherent noise, along-track and

across-track power spectra were calculated for selected bands.

4. RESULTS

In-situ measurements of chlorophyll a concentrations ranged widely among
dates and within the lake on individual days: 26 May 1989, 13 - 31 mg m'3; 23 March

1990, 28 - 91 mg m-3; 10 August 1990, 1 - 4 mg m-3; 30 September 1991, 3 - 7 mg m -3.

Application of CZCS-Iype algorithms underestimated chlorophyll concentrations by a

factor of about 2 for concentrations above 20 mg m-3. Further research in progress will

utilize more spectral information to develop new algorithms appropriate for eutrophic
lakes.

Atmospherically corrected reflectance _spectra have a signature for chlorophyll a
when concentrations are above about 20 mg m -3. However, the conspicuous reflectance

maximum at about 570 nm and distinct minima at about 680 nm and 480 nm reported by

Melack and Pilorz (1990) were less well defined for the other scenes.

Radiances from the surface as measured at the sensor, for bands near 570nm,

were low (1 - 3 I.tW cm-2nm-lsr-1) as expected for inland waters. Coherent noise in the

form of 0.1 to 0.2 I.tW cm-2nm-lsr-I undulations oriented diagonally to the flight line

were present in the 26 May 1989 image. Removal of most of the coherent noise by a

simple ratio of two spectral bands revealed regional variation in brightness possibly

related to differences in chlorophyll content. Coherent noise was detected in the other

images and removal by ratioing and filtering is progressing. Hence, measurements of

spatial patterns of chlorophyll concentrations are most likely obtainable.
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AVIRIS CALIBRATION AND APPLICATION

IN COASTAL OCEANIC ENVIRONMENTS

by

Kendall L. Carder

Department of Marine Science

University of South Florida
140 Seventh Avenue South

St. Petersburg, Florida 33701

I. OVERVIEW

The Airborne Visible-Infrared Imaging

Spectrometer (AVIRIS) is a test-bed for future

spacecraft sensors such as the High-Resolution

Imaging Spectrometer and the Moderate-Resolution

Imaging Spectrometers planned for the Earth

Observing System. To use this sensor for ocean

applications, S/N was increased by spatial

averaging of images. Post-flight recalibration was

accomplished using in situ the water-leaving

radiance measured at flight time, modelling

radiance transmission to the aircraft, and adding

modelled atmospheric radiance to that value. The

preflight calibration curve was then adjusted

until aircraft and modelled total radiance values

matched. Water-leaving radiance values from the

recalibrated AVIRIS imagery were consistent with

in situ data supporting the validity of the

approach. Imagery of the absorption coefficient at

415 nm and backscattering coefficient at 671 nm

were used to depict the dissolved and particulate

constituents of an ebb-tidal esturance plume on

the West coast of Florida.

2. METHODS

Sixteen AVIRIS data scenes were collected at

about 1515 Eastern Standard Time on 4 March 1990

on a flight line across the west Florida shelf

into the mouth of Tampa Bay. The following

parameters were measured on the same transect

covered the same day by the R/V BELLOWS of the

Florida Institute of Oceanography: Chlorophyll a,

pheophytin a, remote sensing reflectance Rrs ,

above-water downwelling irradiance Ed(0÷),

subsurface downwelling irradiance Ed(Z), and

subsurface upwelling irradiance Eu(Z ) and radiance

Lu(Z ) data. Particle absorption coefficients

(Mitchell 1990), detritus absorption coefficients

(Roesler et al. 1989), and absorption coefficient
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due to colored dissolved organic matter (Bricaud
et al. 1981) were determined.

Remote-sensing reflectance measurements
(Carder and Steward 1985, Peacock et al. 1990)
provided measurements which, when multiplied with
modelled (Lowtran 7) total irradiance entering the
sea, resulted in water-leaving radiance LW
calculations that were consistent with the Lowtran
7 solar and atmosphere parameters. These modelled
data were atmospherically attenuated and combined
with radiance contributions due to reflected
skylight, direct-path radiance and path radiance
scattered from reflected sunlight as would be
viewed by the aircraft, all calculated using
Lowtran 7 code.

Diffuse transmissivity t d of ocean scenes
from the surface to altitude can be calculated
using gas absorption plus molecular and aerosol
backscattering (Gordon et al. 1983). These were
calculated using Lowtran 7 multiple-scattering
code with a marine aerosol and a horizontal-path,
boundary-layer visibility of 70 km. Direct
atmospheric path radiance, LD(8.,I), skylight that
is specularly reflected by the sea surface and
diffusely transmitted to the sensor,
p(8)td(8,_)Lpr(8÷,_), and path radiance scattered
from specularly reflected, diffusely transmitted
solar irradiance, p(80)td(8o, l)Lpr(8÷,l), were also

calculated using Lowtran 7. T_ese were summed to

provide the calculated total radiance L t available

at AVIRIS:

Lt(8,1 ) = Lpr(8÷,l ) {p(@)t_(8,1) + p(80)t_(8_,l) } (i)

+ td(8,A)L,(8,1 ) + Lp(8.,X)

where p(8) and p(80) are the Fresnel reflectance
values of the sea surface for reflected skylight

and sunlight, respectively, and 8o, the solar and

8 pixel-sensor zenith angles, respectively. 8÷.._-

are the forward (+) and backward (-) scatterlng

angles involved in viewing reflected skylight and

direct path radiance, respectively. Note that the

observation geometry must be chosen to avoid

direct sun glint into the sensor.

The reflected skylight reaching AVIRIS was

determined by applying Lowtran 7 as if the sensor

were on the ocean, viewing space at a zenith angle

8. The reflecte d , downwelling path radiance,

Lpr(8÷,_), viewed from this configuration is due to
forward scattering through an angle 8÷ relative to

the downwelling sunlight. This radiance was
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subsequently reduced by specular reflectance and
diffuse transmittance before reaching the AVIRIS.
The upwelling skylight scattered from specularly
reflected sunlight is also due to forward
scattering. It is similar to reflected skylight
reaching AVIRIS except that it has been reduced by
diffuse transmittance of the downwelling solar
irradiance and by its specular reflectance prior
to being scattered as path radiance to AVIRIS.

The total radiance measured by AVIRIS,
Ltm(St.3), at Station 3 was adjusted to correspond
to the radiance calculated, L_(St.3), at Station
3 by multiplying by a calibration adjustment
factor CAL. At all other stations AVIRIS radiance
values Ltm(_) were multiplied by CAL, where

CAL(1) = Ltc(St.3,1 )/Ltm(St.3,A). (2)

The water-leaving radiance for each pixel in
each scene was calculated by solving Eq.l for
Lw(1), using Ltm(1)*CAL(l ) for Lt(l ). Lowtran 7
parameters determined at St.3 for the atmosphere
were used along the entire flight line to provide
the atmospheric correction terms. The water-
leaving radiance values determined for wavelengths
greater than 800 nm were examined to ensure that
these values did not differ significantly from
zero. Had non-zero values occurred, they would
have suggested that a change in visibility or
aerosol optical thickness had occurred, since with
water molecular absorption coefficients greater
than 2.4 m°I for these wavelengths (Smith and
Baker 1981), negligible radiance leaves the water
except under unusually turbid conditions.

Applications of this method will be
illustrated and results shown.
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Vegetation covers a large portion of the Earth's land

surface. Remotely sensing quantitative information from

vegetation has proven difficult because in a broad sense,

all vegetation is similar from a chemical viewpoint, and

most healthy plants are green. Plant species are generally

characterized by the leaf and flower or fruit morphology,

not by remote sensing spectral signatures. But to the human

eye, many plants show varying shades of green, so there is

direct evidence for spectral differences between plant

types. Quantifying these changes in a predictable manner

has not been easy. We have applied the Clark et al., (1990,

1991) spectral features mapping algorithm to mapping spec-

tral features in vegetation species.

The human eye sees different plant leaves as shades of

green, as characterized by the "green peak" in reflectance

spectra (Figure I). The eye/brain color system is able to

differentiate shades of green under different lighting con-

ditions. For example under indoor incandescent light there

is a strong red slope to the spectral signal received by the

eye due to the red spectral shape of the light source (as

compared to the same plant in direct sunlight), but we are

still able to distinguish the plant as green and distinguish

different plants as various shades of green.

The spectral feature mapping algorithm referenced above

has been extended to map simultaneously both absorption and

emission features. Strictly speaking, in reflectance spec-

tra of rocks, soils, and vegetation in the 0.4 to 2.5 #m

region, there are no emission features. However, there are

"relative reflectance maxima," hereafter called "emission"

features. Thus the reflectance spectrum of any material can

be thought of as a combination of absorption and "emission"
features.

We consider the green peak in vegetation spectra to be

an "emission" feature (Figure I). A continuum is drawn at

the minimum on each side of the peak, and the continuum

F=



removed by division. Removal of a continuum reduces the

effects of background materials in the plxel analyzed. To
further characterize the vegetation, additional features in

the vegetation spectrum are analyzed (e.g. Figure I,

features B, C and D). We have found that the spectral

feature mapping algorithm is very sensitive to the shape of
the features and has the potential to distinguish more sub-

tle differences in the visible spectrum of plants than can

the human eye. An example of the variation in the shape of

the "green peak" is illustrated in Figure 2. With the addi-
tional information in the near infrared, the algorithm can

be used to differentiate the subtle spectral differences

between them.

We have applied this method, along with reference spec-

tra of plants, to map vegetation in AVIRIS scenes.
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Figure i. Example spectrum of green vegetation. Sample
continua used to define "emission" (A) and absorption (B, C,

and D) features.
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Figure 2. The normalized "emission" strengths of the green
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pine, and juniper are all in the Pine family and grow in the

same area, yet have spectral structure that may be used to

distinguish between them. The spectra are at AVIRIS spec-
tral resolution.
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1. INTRODUCTION

The White's Point ocean outfall is the method of disposal for

approximately 374 millon gallons of treated wastewater per day from Los

Angeles County. The photosynthetic characteristics and particle distributions
have well-defined properties that can be exploited to yield information on

transport of the plume, mixing dynamics, and resuspension of bottom sediments

during periods of bottom current velocity in excess of ca. 0.1 m/s. This plume of

particles serves as a conservative tracer, which has been studied using a number

of sampling platforms and strategies, including underway sawtooth, or "tow-

yo" sampling, moored arrays of instruments, stationary profiling, and now for
the first time with remotely-sensed multispectral color imagery.

Research in this area has previously focused on examination of the

plume as it relates to the local current field and transport of particles, and on

the resuspension of bottom sediments during periods of increased currents
(Washburn et al, 1992). In addition, Wu et al (unpublished graduate work)

have elucidated techniques for separating the particle signal into

photosynthetic and nonphotosynthetic components, based on the beam
attenuation to chlorophyll fluorescence ratio. High-frequency time series
measurements of the current field and bio-optical characteristics at a site close
to the waste diffusers have also been collected. These are being analyzed for

the spectral characteristics of the longer-timescale variability, in order to

predict particle transport through simple meteorological measurements

(Dickey et al., unpub.). With the advent of high spectral and spatial
resolution imaging spectrometers such as AVIRIS, it is now possible to construct

causal relationships between particle distributions and signature of the

upwelled radiance from the surface. The availability of a constant and well-
characterized source of material lends itself well to models which predict

upwelled light as a function of particle distributions, photosynthetic pigments,
colored dissolved organic material, and detrital and degradation products of

photosynthesis. In addition, the spatial coverage provided by the tow-yo
sampling device, combined with the profile measurements of the light field,
should facilitate the best inverse modeling attempts possible thus far.

2. STUDY SITE

The White's Point/San Pedro Channel data were collected March 21,

1991, between the Palos Verdes Peninsula and Catalina Island off the coast of

Southern California, at 33 ° 41.2' N, 118 ° 20.41' W. The day of the overflight

was subsequent to several days of storms, and the sea state was somewhat

rough. A few clouds are observed in the images, but overall visibility was quite
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good. For this analysis, only the two images closest to White's Point are

examined, for a total of 805 lines of image data.

3. IN-SITU MEAS UREMENTS

The primary in-water instrument was a "tow-yo" platform operated by

researchers at USCB and USC. Towed behind a ship, it is constantly raised and

lowered to produce a sawtooth sampling pattern. Data collected in this manner

can be interpolated to produce a grid of sampled points, at a spatial resolution
that coincides with the SNR requirements of the analyses. Measurements

collected with this instrument are: percent attenuation of a collimated beam of

light at 660nm (transformed to beam attenuation coefficient, hereafter beam c),

which is proportional to the concentration of particles in the size range 1-50_tm;

stimulated fluorescence of chlorophyll (chl-fl), where chl-containing particles
in the sample volume are excited by a blue-green light, after which the

emission of red light is collected and is proportional to the concentration of chl

and chl-like pigments; photosynthetically available radiation (PAR), or

broadband spectral irradiance, integrated from 400 to 700nm;

microconductivity, used as a measure of small-scale turbulent processes that are

proportional to the rate and intensity of mixing; and the underway current
field.

Shipboard measurements were simultaneously carried out by a team
from the Jet Propulsion Laboratory. Their measurements included the

downwelling irradiance at 13 wavelengths, upwelling irradiance at 8

wavelengths, and upwelling radiance at 8 wavelengths, using a Biospherical

Instruments MER-1048 bio-optical profiling system. Additional profiled
measurements were PAR, chl-fl and beam c. Bottle samples for HPLC

determination of chlorophyll and accessory pigments were collected for later
analysis.

For the two months preceding the overflight, a physical and bio-
optical mooring was placed near the location of the outfall by the USC Ocean

Physics Group, with four instrument packages placed from 10m to 50m in the

water column. The instrument packages contained suites of sensors measuring

beam c, chl-fl, conductivity, dissolved oxygen, and orthogonal components of

current. Each instrument at each depth collected a datapoint once per minute.

Additionally, archived meteorological data were obtained from several

sources for parameterization of the atmospheric correction to the images.

4. ANALYSES ANDRESULTS

The images were processed by first modeling the propagation of surface

measurements of water-leaving radiance to the aircraft, and determining

recalibration coefficients that overcome the limitations of the laboratory

calibration in the blue end of the spectrum (e.g. Carder et al., in press). The

recalibrated images were then corrected for the effects of the atmosphere, using

a combination of the CIBR (Carrere et al. 1990 ) water vapor parameterization,
and the aerosol parameterization of Gordon et al. (1980). The SNR of the

scenes was then increased by spatial averaging, depending on the requirements

of the different analyses.

The in-situ data were resampled to a 100m X 100m grid of surface

concentrations of particles, PAR, and chlorophyll. This grid was then used to
either condition empirical models, parameterize an inverse model, or provide

control to independent model estimates. Mooring data were examined to judge



the effect of -48 h current history on observed oddities in the spatial

distribution of suspended particle load.
The analyses then carried out describe the characteristics of a particle

front in terms of its photosynthetic versus nonphotosynthetic components,

separation of co-absorbing chlorophyll and colored dissolved organic matter,
and the variation in the diffuse attenuation coeffient. Good agreement between
measurements and model estimates was achieved, and strategies for improving

the models were determined.
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MAC Europe 91: Evaluation of AVIRIS,

GER Imaging Spectrometry Data for the Land Application

Testsite Oberpfaffenhofen.

F. Lehmann, R. Richter, H. Rothfuss, K. Weruer,

P. Hausknecht, A. Miiller, P. Strobl.

During the MAC Europe 91 Campaign the area of Oberpfaffenhofen including the land

application testsite Oberpfaffenhofen was flown by the AVIRIS imaging spectrometer,

the GER II imaging spectrometer (63 band scanner), and two SAR systems (NASA/JPL

AIRSAR and DLR E-SAR).

In parallel to the overflights ground speclrometry (ASD, IRIS M IV) and atmospheric

measurements were carried out in order to provide data for optical sensor calibration.

Ground spectrometry measurements were carried out in the runway area of the DLR

research center Oberpfaffenhofen. This area was used as well during the GER II

European flight campaign EISAC 89 (ref 1,3) as a calibration target (ref 2).

The land application testsite Oberpfaffenhofen is located 3 km north of the DLR

research center. During the MAC Europe 91 Campaign a ground survey was carded out

for documentation in the ground information data base (vegetation type, vegetation

geometry, soil type, soil moisture). Crop stands analysed were corn, barley and rape.

The DLR runway area and the land application testsite Oberpfaffenhofen were flown

with the AVIRIS on July 29 and with the GER II on July 12, 23 and Sept. 3.

AVIRIS and GER II scenes have been processed and atmospherically corrected for

optical data analysis and integrated analysis of optical and radar data.

For the AVIRIS and the GER II scenes SNR estimates have been calculated (ref 4,5,6).

Fig. 1 gives an example of the reflectance of 6 calibration targets inside a GER II scene

of Oberpfaffenhofen. SNR values for the GER II for a medium albedo target are given

in Fig. 2.

The integrated analysis for the optical and radar data has been carded out in

cooperation with the DLR Institute for Microwave Technologies.
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Field techniques for estimating vegetative biomass arc labor intensive, and

rarely are used to monitor changes in biomass over time. Remote-sensing offers an
attractive alternative to field measurements; however, because there is no simple

correspondence between encoded radiance in multispectral images and biomass, it is
not possible to measure vegetative biomass directly from AVIRIS images. We are
investigating ways to estimate vegetative biomass by identifying community types
and then applying biomass scalars derived from field measurements.

Field measurements of community-scale vegetative biomass can be made, at

least for local areas, but it is not always possible to identify vegetation communities

unambiguously using remote measurements and conventional image-processing
techniques. Furthermore, even when communities are well characterized in a single
image, it typically is difficult to assess the extent and nature of changes in a time
series of images, owing to uncertainties introduced by variations in illumination

geometry, atmospheric attenuation, and instrumental responses.

Our objective is to develop an improved method based on spectral mixture

analysis to characterize and identify vegetative communities, that can be applied to
multi-temporal AVIRIS and other types of images. In previous studies we analyzed
multi-temporal data sets (AVIRIS and TM) of Owens Valley, CA (Smith et al.,
1990) and (TM) of Manaus, Brazil (Adams et al., 1990, and in prep), and defined
vegetation communities in terms of fractions of reference (laboratory and field)
endmember spectra. An advantage of converting an image to fractions of reference
endmembers is that, although fractions in a given pixel may vary from image to

image in a time series, the endmembers themselves typically are constant, thus

providing a consistent frame of reference.

In the Owens Valley we found that several shrub, riparian and conifer
communities could be characterized by the fractions of two types of green vegetation
and of shade, in addition to two types of soil. On the shrub-covered bajada the
fraction of vegetation (GVF) and the fraction of shade correlated linearly with

vegetation cover and with biomass, as determined on the ground. However, the
fractions of these endmembers also varied predictably with seasonal changes,

emphasizing that any estimates of biomass from AVIRIS or TM images must take
into account the season of measurement.

In TM images of Manaus we found that several vegetation communities
could be identified by the fractions of the endmembers green vegetation, non-

photosynthetic vegetation (NPV), shade and soil. For example, primary forest has a
high proportion of NPV (from branches and stems exposed in the canopy) and shade
(from shade and shadow associated with canopy roughness). Using fractions of
reference endmembers, we were able to consistently identify vegetation communities

and changes in communities in TM images over time. The importance of NPV
endmembers was further demonstrated in an analysis of AV1RIS images of Jasper

Ridge, CA (Roberts et a1.,1992).

To further test the identification of a range of vegetation communities using
fractions of reference endmembers (Figure 1), we analyzed two sets of multi-temporal
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AVIRISimages,one of Jasper Ridge, CA (see Roberts et al., this volume) and
Shasta, CA (see Ustin et al., this volume). Six images of the same area near Shasta
were obtained on one day at 45 minute intervals about solar noon, providing an
opportunity to test how endmember fractions behaved with changing illumination

geometry.

In addition to studying multi-temporal AVIRIS data sets we have developed
a way to expand the number of endmembers applied to AVIRIS images. In previous
analyses we have characterized all of a scene by a few (usually 3-5) endmembers and
the residuals for each pixel (e.g. Gillespie et al., 1990). We have now applied a new
technique to the above AVIRIS scenes that produces different sets of endmembers for
each pixel, in addition to the residuals. This approach expands the potential number
of endmembers, while at the same time specifying no more than the number of
endmembers needed to fit each pixel. (Sabol et al, 1992 have shown that fitting

image data with endmembers that are not present introduces noise and lowers
detectability.) The mulfiple-endmember approach has significantly improved our
ability to characterize vegetation communities in AVIRIS and other images. Different
communities are fit by different endmembers and by different numbers of
endmembers. For example, a pine-forest community near Shasta is fit by spectral
mixtures of green vegetation, woody material and shade. In the same scene, shrub and
grass communities are fit by the spectra of different green vegetation, NPV and shade,
and by characteristic fractions of these endmembers.

Although the fraction of green vegetation in images of the Owens Valley
shrubland correlated well with cover and biomass, we emphasize that in general,

single parameters such as the fraction of green vegetation, or proxies for the green
vegetation fraction (e.g., the normalized-difference vegetation index, NDVI), are not
always reliable indicators of biomass. For example, a green pasture and a closed-
canopy forest both have high fractions of green foliage but differ substantially in
biomass. However, our recent results using reference endmembers indicate that many

types of vegetation communities can be identified in sets of AVIRIS images,
independent of illumination geometry, and atmospheric and instrumental effects.
Measurements of biomass in the field can be linked to vegetation communities that

are well characterized by fractions of different types of green foliage and NPV. In
addition, the shade fraction is influenced by plant size, spacing and architecture, and
can assist in defining the community type.
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Figure 1.
The Gvf and shade fraction for 20 areas of diverse vegetation communities of AVIRIS

images of Jasper Ridge and Shasta, CA. The areas are 1) 1st clear cut area 2) 2nd
clear cut area 3) 1st recent clear cut area 4) 2nd recent clear cut area 5) second growth

ponderosa pine plantation 6)1 st mature ponderosa pine forest 7) 2nd mature ponderosa
pine forest 8) 2nd young second growth ponderosa pine stand 9) 1st young second
growth stand 10) meadow 11) ungrazed non serpentine drygrass, 12) serpentine
grassland, 13) serpentine chaparral, 14) nonserpentine chaparral, 15) nonserpentine
chaparral with dieback, 16) blue oak ,17) evergreen oak, 18) forest wetland, 19)
grassland at Webb ranch, and 20) golf course. The Gvf does not provide a reasonable
estimate of biomass over all communities. The vegetation fractions do not

correspond to a ranking that coincides with the biomass. The meadow, for example,
has a higher vegetation fraction than any of the forested areas but has a lower
biomass. Even when shade is normalized out of the remainder of fractions the forest

contains other nonphotosynthetic endmembers not part of the Gvf.
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1. INTRODUCTION

Hyperspectral data offers unique capabilities for characterizing the ocean
environment. The spectral characterization of the composition of ocean waters can

be organized into biological and terrigenous components. Biological photosynthetic

pigments in ocean waters have unique spectral ocean color signatures which can be

associated with different biological species (Arnone et al, 1986). Additionally,

suspended sediment has different scattering coefficients which result in ocean color

signatures. Measuring the spatial distributions of these components in the maritime

environments provides important tools for understanding and monitoring the ocean

environment. These tools have significant applications in pollution, carbon cycle,

current and water mass detection, location of fronts and eddies, sewage discharge
and fate etc.

Ocean color has been used from satellite for describing the spatial

variability of chlorophyll, water clarity (k490), suspended sediment concentration,

currents etc. Additionally, with improved atmospheric correction methods, ocean

color results have produced global products of spectral water leaving radiance (1__)
(Feldman 1989). Ocean color results have clearly indicated strong applications for

characterizing the spatial and temporal variability of bio-optical oceanography

(Arnone et al, 1991).

These studies have been largely the results of advanced atmospheric

correction techniques applied to multispectral imagery. The atmosphere contributes

approximately 80% - 90% of the satellite received radiance in the blue-green
portion of the spectrum. In deep ocean waters, maximum transmission of visible

radiance is achieved at 490nm. Conversely, nearly all of the light is absorbed by the

water at wavelengths greater than about 650nm and thus appears black. These

spectral ocean properties are exploited by algorithms developed for the atmospheric
correction used in satellite ocean color processing.

The objective of this study was to apply atmospheric correction techniques

that were used for processing satellite Coastal Zone Color Scanner (CZCS) data to
AVIRIS data. Quantitative measures of I__ from AVIRIS will be compared with

ship ground truth data and input into bio-optical models.

2. METHODS

Atmospheric correction of CZCS assumes a linear summation of the total

radiance, L,()0, sensed at the sensor (Gordon et al, 1983, Gordon and Clark, 1979).

The atmospheric contribution is divided into the Rayleigh, Lr()0, component

(molecular scattering) and the aerosol, L,(),), component (Mie scattering). The

volume scattering of the water, I__(_) (ocean color) is transmitted through the air

sea interface, t(,_). All of these parameters are related to the total radiance, Lt(_ )
by

Lt(_) =Lr(J.) +L.,(J.) +t(J.)L_(J_). (1)
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Assumingthatthesignalat670nmisdueentirelytoatmosphericeffectsandthe
aerosolopticalthicknessr,(670)isproportionalto r,(),), equation (1) can be

written in terms of L_()_), at nadir, by

tLw(_.)=L,(_.)-L,(_ ) F°(Jt)-( _---_-)'(L,(670)-L,(670)),
F0(670) 670

(2)

where F 0 is the solar flux and n is the angstrom coefficient.

This relationship was applied to AVIRIS data by expanding this

generalized nadir equation to account for the angular atmospheric path radiance
from the sensor altitude. The rayleigh component L,(_.) was computed using a

multiple scattering model (Gordon et al, 1988). Both solar and sensor zenith and

azimuth angles were computed for each pixel in the scene according to the date,
time and location of data collection. The solar fluxes were assumed constants and

the angstrom coefficient was varied.

Four spectral channels were used in processing CZCS ocean color data
which were centered at 443nm, 520nm, 550nm, and 670nm with a bandwidth of 20

nm. The 443nm channel represents the chlorophyll absorption wavelength which is

inversely proportional to concentration (Clark 1980). The 520nm and 550nm

channels characterize the hinge point in bio-optical ocean waters and are rclatcd to

sediment scattering. These bands were simulated using AVIRIS bands by averaging

the two adjacent bands for each wavelength. Additionally, a 750nm channel,

analogous to the CZCS 750nm band, was used as the atmospheric reference channel

because of a problem with bottom reflectance at 670nm, especially in the shallow

coastal regions. Each of the channels were calibrated for spectral radiance and for

vignetting effects using the supplied correction data.

The atmospheric model was applied to an AVIRIS scene collected off

Tampa Bay on April 3, 1990. This image has many different ocean regimes
characterizing, shallow coastal waters with a uniform bottom reflectance, suspended

sediment in the water, absorbing "yellow substance", and variability of coastal

phytoplankton and clear waters. Ship measurements were collected by the
University of South Florida (Carder et al, 1991) coincident with the overflight at

three stations in which L_()_), chlorophyll, and the diffuse attenuation coefficient
were measured.

3. _S_TS

The 443nm channel is severely contaminated by the atmosphere and sensor

noise such that little ocean features are observed. Atmospheric scattering

diminishes in the 520nm and 550nm channels and ocean features can be recognized

although not quantitative. Atmospheric correction using the 670nm channel as the
reference was applied to the scene ranging from clear waters to the coastal
environments. In the near shore coastal waters, the AVIRIS data was shown to be

correlated with the bathymetry since the reflectivity of the white bottom clearly

dominated the water leaving radiance signal. The 670nm channel was shown to be

correlated with bottom reflectivity and therefore is not a good channel for only

characterizing the atmosphere. Because of these non-zero 670nm components,

these is an overcorrection for the atmosphere. This results in negative radiance in
areas where the bottom reflectance dominates the 670nm channel. Since this is not

possible the images were processed and negative values clipped to zero. The
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resultingatmosphericcorrected443radiancewassignificantlyimproved and agreed

favorably with the ship radiance data. Similarly, the 520nm and 550nm radiances

were clipped to zero radiances in the shallow coastal waters. Comparison with the

ship ground truth showed comparable results. Use of the 750nm channel for

aerosol correction in the coastal waters showed improvement versus the 670nm.

The atmospherically corrected data was then used to compute chlorophyll

and k490distributions. Results compared favorably with ship data and spatial

distribution is clearly evident.

4. CONCLUSIONS

Because the atmosphere contributes a high percentage of the signal, the

low signal to noise of AVIRIS limits the atmospheric removal process for deep
ocean waters. The atmospheric correction techniques on CZCS can be applied to

AVIRIS imagery to obtain quantitative estimates of the water leaving radiance.

These results appear comparable with ship measurements. The high bottom

reflectance observed in shallow waters severely restricts the conventional

atmospheric correction technique of CZCS processing. Improved techniques are

required to separate the volume scattering ocean color and the bottom reflectance
radiance. The removal of the atmospheric contamination using the CZCS

techniques can be improved substantially by using other spectral channels which are

available using AVIRIS. Future efforts are focused on identifying optimal channels

for atmospheric removal.
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1. INTRODUCTION.

Airborne campaigns during the eighties have provided high spectral resolution

data, collected with imaging instruments such as AIS, AVIR/S, FLI, CAESI and ISM,

in order to investigate the relationship with canopy biophysical characteristics. The

statistical approaches used to analyze these data do not allow investigation of the

causality and the applicability of the observed correlations. Further, statistical studies

have demonstrated the high degree of redundancy of the spectral information (Ferns et

al, 1984; Price, 1991 amongst many others). And for retrieving vegetation biophysical

characteristics, few results demonstrate the real information gain attributable to the high

spectral resolution capability as compared to the use of a few wide wavelength bands.

With several new imaging spectrophotometers scheduled for launch during the

next 10 years (MERIS, MODIS, HIRIS), progress in the description and understanding

of the mechanisms that drive the spectral variation of canopy reflectance is required.

Most of these new sensor systems will also have the capability to observe the target

under differing view directions. The problem of the combination and the use of the

synergy between both the spectral and the directional sources of canopy reflectance
variations has to be addressed.

Apart from the atmospheric effects, the spectral variation of the light reflected

by canopies originates from the leaves, the soil or the other vegetation elements such as
branches and fruits. At leaf level, both diffuse reflectance and transmittance may be

simulated by simple models (Jacquemoud and Baret, 1990), although no accurate

information exists on the absorption features of the biochemicals (except water) in the

900-2500nm wavelength range. Many models mimic the directional variability of

canopy reflectance at a given wavelength (see the review by Goel, 1988 for example).

Combining a leaf spectral model with a canopy directional model provides a powerful

tool to analyze this problem. Some of us have initiated such a study (Baret et al, 1991,

Jacquemoud, 1992), but our approach and theory remain to be tested using canopy data

with their complexity, associated experimental error, and atmospheric effects.

Aimowledgements. This study has been funded by the PNTS (France), the PACA regional council, and was

part of the 1991 NASA MAC Europe campaign. Many thanks also to the LOA and JPL teams who were

participating to the simultaneous AVIRIS, POLDER and SPOT calibration experiments.
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The main objective of the 1991 POLDER/AVIRIS experiment in Camargue
was to provide a consistent data set over various canopies in order to test the
applicability of the theory. The experiment, part of the 1991 MAC Europe experiment,
involved simultaneous data collection using two sensors: AVIRIS (Vane, 1987) and
POLDER (Deschamps et al, 1990) which measures the bidirectional and polarization

properties of the targets at 670 and 880rim wavebands.

3. THE EXPERIMENT

The topographically flat flightiine, located near the Camargue region in the
south of France, included diverse crops planted in fields having dimensions from 100 to
500m.

3.1. The flights
The altitude of each sensor, 20,000m for AVIRIS flown on the NASA ER-2

and 3,000m for POLDER on the ARAT airplane, provided a ground spatial resolution
of approximately 20m for each sensor. Simultaneous data were collected on June 24,
1991. In addition POLDER data were collected on 18, 19, and 21 June 1991 and AVIRIS
data on July 16, 1991. The POLDER flights were designed to sample the directional
variability due to both sun and view orientation.

3.2. _e ground measurements.
The characteristics of the atmosphere, monitored during collection of aircraft

data, will allow retrieval of calibrated reflectance values. Retrieval will be facilitated by
the availability of additional atmospheric data collected at the AVIRIS/SPOT
calibration experiment at La Crau (about 30Kin distance from our test sites). Three
types of sunphotometers (Reagan, Cimel, spectral hygrometer) were used to measure
solar irradiance throughout the day. During AVIRIS flights, the reflectance of two
contrasted fields was recorded using SPOT simulation Cimel radiometers and a
spectrophotometer. These measurements will provide tests of the accuracy of
atmospherical corrections.

The ground measurements were designed to provide information about canopy

biophysical parameters. Two data sets were gathered:
One Intensive data set included 28 individual fields planted primarily in

sunflower, corn, sorghum and rice. On each field, the leaf area index, the fresh and dry
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biomass and its partition between leaf and stem were measured. A subsample of the
leaves was later analyzed for chlorophyll, accessory pigments and biochemical

constituents such as lignin, starch and proteins. Other characteristics such as the plant

height, row orientation, vegetation coverage, soil surface characteristics were also
noted. On 21 of the 28 plots, the zcnithal variation of the gap frequency was evaluated

using the LAI2000 device developed by LiCor. This measurement is particularly

important in radiative transfer models and allows computation of the PAR balance for
the canopies. Except for sunflower canopies, the leaf area index computed from gap

frequency data showed good agreement with LAI values which were directly measured.
(The heliotropism common to sunflower canopies might violate the hypotheses that
leaves are distributed randomly in azimuth.) Optical properties of the leaves were

measured using both laboratory (Varian Cary D17) and field portable

spectrophotometers.
The second, extensive data set, which includes per field species information

for the entire flightline, was developed during an exhaustive, ground level enquiry. This
information will be available for resolving questions linked to the spatial scale.

$. CONCLUSION

This experiment will provide a consistent data set which includes the spectral,

directional and polarization variations of canopy reflectances. The next step in the data

processing is to build a data base for the 28 plots which contains the atmospherically
corrected ground level reflectances linked to the biophysical measurements of the

canopies. This will permit us to apply and test the relationships, developed during
model simulation, to aircraft data. Ultimately, results from this experiment will allow

better estimates of plant canopy biophysical properties through improved extraction of

the spectral, directional and polarization information contained in data collected by

spaceborne sensors.
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1. INTRODUCTION

Over the past five years the AVIRIS engineering team has worked to
improve the performance, reliability and calibration accuracy of the
AVIRIS sensor. Recent modifications to the instrument include a new

tape recording subsystem and an improved blocking filter for the D

spectrometer. Maintenance activities during the 1992 engineering cycle
include the recoating of the spectrometer spherical mirrors, replacement
of the fiber optic harness and routine noise reduction tuning and optical
alignment.

2. TAPE RECORDER UPGRADE

The Ampex AHBR 1700 tape recorder system has been replaced by a
Metrum VLDS. The VLDS provides a number of advantages over the old
Ampex unit. The lower cost of the VLDS has made it possible to purchase
a field replaceable spare. The T120 VHS cassette tape format eliminates

the need for preflight tape threading. The 10 Gigabyte storage capacity
enables the acquisition of approximately 70 AVIRIS scenes per flight.

3. SIGNALTHROUGHPUT

The AVIRIS scan mirror has been re-coated. The new coating has a 10%
improvement in reflectivity at 400 nanometers. A new fiber harness has
been installed and will return the D spectrometer to full service. A new,
more resilient IR fiber material was used. An additional anti-reflection
coating has been added at the foreoptics end of the new fiber harness. The

recoatmg of the spherical spectrometer mirrors has increased signal
throughput and eliminated the scattering caused by a previous incident of
water damage.

A new blocking filter has been installed in the D spectrometer. The old
blocking filter impacted the signal level of the last five spectral channels.
The new blocking filter will enable good signal out to 2500 nanometers.
The channel positions will be shifted to take advantage of this fact. The
new filter also has a 20% better transmittance in the pass band.

4. SYSTEM NOISE

A detailed study of sensor related noise was useful in identification of a

number of noise reduction actions. The result is reduced system noise and
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betterexternalnoiserejection.Modificationsinclude(1) timing signa_
opto-isolatorswith lowerjitter, (2) nestedtiming of theclock driver
signals,(3) RFI shieldedtiming cables,(4) betterroutingof dewarinternal
wiring, and(5) reroutingof thefocalplanetemperaturesensorwiring.

5. PREDICTED PERFORMANCE

The current instrument performance as assessed by the preseason

laboratory calibration and inflight calibration experiment will be
presented. Performance will be stated in terms of signal-to-noise ratio for
a standard reference radiance and in terms of noise equivalent radiance for

each of the spectral channels.

6. FUTURE MAINTENANCE WORK

The primary maintenance activity for the 1993 engineering cycle will be
the replacement of the focal plane arrays. The A spectrometer FPA
experienced a wire debond immediately after the 1991 flight season. Other
FPAs have shown an increase in the number of noisy pixels. Each FPA

has over 1000 liquid nitrogen cool down cycles in which the temperature

goes from 300 K to 77 K in less than one minute.
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1. INTRODUCTION

During the last year and a half, February, 1991 to June, 1992, a major

upgrade of the AVIRIS ground data processing system has taken place. Both the

hardware and software components have been changed significantly to improve the

processing capacity and performance and to structure a data facility capable of
handling the projected work load into the near future.

This paper will provide a summary report of these changes and some

projections for the future.

2. OBJECTIVES

The objectives of the AVIRIS data facility are to decommutate and archive

AVIRIS data and to provide raw or radiometrically calibrated data products to the

science investigator. These primary objectives have not changed from the initial

concepts (Reimer et al. 1987). The upgrade effort has greatly improved the processing
system. These objectives can now be accomplished in a more timely fashion at a

reasonable cost and there is sufficient capacity to manage the current processing load

and provide for future growth. The method of implementation has added the flexibility

to provide better service to the investigator and allow for future changes.

3. HARDWARE DESCRIPTION

The data facility hardware system has been changed significantly. The original

system was a VAX 11/780 processor with 2.4 GB of disk, two 1/2 inch tape drives, a
35ram camera for quicklook production and an AMPEX HBR3000 high density tape

drive for playback of the instrument tape. This system became too slow to handle the

processing load in a timely manner.

The new system consists of two UNIX based server platforms and two UNIX

based workstations. The archiving process runs on a SUN 4/490 server with 32 MB of

memory, 8 GB of disk, two 4mm DAT tape drives, one 8 mm tape drive, a Kodak

XL7700 image printer, and a Metrum VLDS tape subsystem to provide playback of
the instrument tape, The 4mm DAT tape drives are used as the archive media and the

Kodak image printer replaces 35mm photography prints as the quicklook production
method.

The hardware system for retrieval processing is a Solbourne 5E/900 server

with two SPARC processors running in a symmetric multiprocessing mode. This

system has 128 MB of memory, 8 GB of disk, two 1/2 inch tape drives, three 4mm

DAT tape drives, two 8ram tape drives, and two IVAS image processing subsystems.

The 1/2 inch, 4ram DAT, and 8ram tape drives provide the means to deliver data
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productstotheinvestigators.TheIVASprocessorsareusedasanalysisdisplaydevices
providing24-bitcolorcapability.ThissystemalsoservesasthehostfortheRDBMS
whichstoresthearchivecatalog,the retrieval audit trail and quality control tables and

the instrument performance statistical tables.

Two SUN SPARC 1 workstations provide the software maintenance and

testing capabilities. In addition these workstations support the calibration process, data

analysis and scientific visualization.

4. OPERATION

The major impacts the upgrade has made on operations are in the areas of

performance and capacity. The archival process has been improved to perform the
archiving of one scene in twenty minutes with the production of quicklooks on the

same day as archiving using the image printer. The use of a dedicated server allows

the archiving of AVIRIS data in quantities of runs, as it is acquired. Each run can be
archived in one to two hours depending on the run size. This makes possible the

archiving of four to eight runs per day. The quicklooks for these runs are available for

mailing the next day. The system as implemented has a capacity to archive 3600
scenes per year allowing for system maintenance and down time. It will also provide

for a one week time span from data acquisition to delivery of quicklooks.

Retrieval processing performance has also been improved. The system as

implemented permits processing of each scene in thirty to forty minutes depending

upon the processing options. This new system will allow two retrievals to be run

concurrently. The capacity of the new system is then comparable to the archiving

system, capable of producing 3600 retrieval data products annually. In addition, the

new system will permit the creation of data products on additional media and in UNIX
format. Retrieval products will be available on 1/2 inch, 8mm, or 4mm DAT tapes and

in both VAX and UNIX formats.

5. FUTURE PLANS

With the implementation of the new data processing system a major

improvement in th_ data handling capabilities for AVIRIS has been accomplished. This

system should provide a stable, flexible and maintainable facility for processing

AVIRIS data today and into the near future.

Additional improvements are being explored and will be implemented as they

are approved. Next to be explored is the possible use of CD-ROM as a delivery media
for retrievals. In the near future the means to master CD-ROM disks in the data

facility will become available at reasonable cost and performance. This media would

be added to the choices for data product delivery.

We look forward to supporting the science community in delivering high

quality data in a timely fashion and ask that any suggestions on how we can improve

our service to you, the investigator, be forwarded to the AVIRIS support team.
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The Advanced Thermal Emission and Reflectance

Radiometer (ASTER) is a joint Japanese/US imaging in-

strument scheduled to fly o11 the first EOS platform in

1998. The complement of scanners includes a visible, three

channel module with forward-looking stereo capability, a

six channel short wavelength infrared module, and a five

channel thermal module. As part of the definition phase

for the instrument design, we used AVIRIS data to simu-

late the SWIR bands to investigate the effects of widening

two of the bands to increase the signal-to-noise ratio

(SNR) versus loss of spectral separability due to uncertain-

ty in the post-launch band positions.

The six SWIR bands (channels 4 to 9) are located in

the region between 1.60 and 2.43 _m. The nominal band

positions and widths (FWHM) are shown in Table i. Zhese
bands were selected to maximize separability of ce[tain

important minerals or mineral groups. Band 8, for exam-

ple, is centered over a major absorption feature f_r car-

bonates. Bands 5, 6 and 7 are located to allow sep, ration of

absorption features of hydrous minerals: alunite in band 5,

sericite/montmorillonite in band 6, kaolinite in bands 5

and 6, and chlorite in band 7, for example. At the time of

thin study, there was still freedom to modify the ,_idths of

bands 5 and 6. Increasing the widths from 40 to 50 nm

would increase the SNR by about 25%, but would cause

increased overlap between the bands, and hence a decrease

of spectral separability for minerals whose major absorp-

tion features Were in these two bands. In addition, there is

a potential post-launch uncertainty of i7 nm in the band

positions, so they could possibly overlap even mor_ than

from just widening.

/

AVIRIS data over Cuprite, Nevada were chosen to

create simulated ASTER bands to study the trade-off

between SNR and spectral separability. These data were

flown on July 19, 1990.

Four simulations of the ASTER bands were .reated:

nominal bands, wider bands, and each of these shJ_'=ed 7
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nm closer together (the worst cases). ASTER bands were

produced by fitting gaussian band shapes to the AVlRIS

channels, then amalgamating the appropriate number of

AVlRIS bands. SNR was calculated by a similar procedure

using the dark current file for the noise, and locating areas

on the images for signal computation.

Simulated images were processed using ratioing,

principal components, etc. for visual examination and

evaluation. Additionally, known mineralogically homogene-

ous area were extracted from the images, and the point

spectra plotted for evaluataon of spectral separability.

These examples will be shown, during the presentation.

The results of this study confirm that widening

bands 5 and 6 from 40 to 50 nm would increase the _NR

by about 25%. On the other hand, spectral separability of

kaolinite and sericite suffers as a result of the combined

effects of widening the bands and the (worst case scenario)

further overlap caused by a 7 run shift in band positions.

The recommendation was made to maintain the bands at 40

nm width to maximize spectral separability, at the expense
of increased SNR.

Tabl_ I. ASTER nominal SWIR bands

Band Range (_m) Width (nm)

4 1.600-1.700 i00

5 2.145-2.185 40

6 2.185-2.225 40

7 2.235-2.285 50

8 2.295-2.365 70

9 2.360-2.430 70
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Recent experience with airborne imaging spectrometers has
demonstrated the advantages of narrow band sensors over broad band
scanners for characterising the nature, extent and physical status of

typical land surfaces. Information on key spectral features associated
with various land surfaces can be obtained from the data of such

instruments, which can be used to simulate spaceborne imaging

spectrometer data and to assess their information content if

comprehensive underpinning is provided by ground data.
The collection of such information has been an issue of airborne

imaging spectrometer campaigns like the NASA MAC-Europe 1991.
In the presented study airborne and ground data obtained from
different test sites in Europe are utilised for a comparative analysis of

the spectral signatures of various land surfaces (vegetation, bare soils
and rocks, mixed soil/rock - vegetation) as seen from different imaging

spectrometers like AVIRIS, GERIS 63 band scanner and CASI. The
following items are discussed:

- the significance of different spectral regions within the wavelength
interval between 0.4 m and 2.5 m for the differentiation of

different land units.

- recommendations on the optimum band selection and band-widths to

be used for the application of future satellite-based imaging

spectrometers for land applications.

- the boundaries for the detection of plant features in mixed-soil plant

spectra and the influence of different soil properties on the mixture of

the spectra.

- recommendations on the optimum spatial resolution and recording
dates for the discrimination of spectral features of various surface

types.

- evaluation of different data compressing techniques for the optimum

extraction of spectral information from imaging spectrometry data.
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Our primary results in Jasper Ridge Biological

Preserve indicate that high spectral resolution

AVIRIS data may provide a substantial advantage in

the detection of trace quantities of green

vegetation, based on the chlorophyll red edge

feature from 700-780 nm. The chlorophyll red edge

was detected for green vegetation cover as low as

4.8%. The objective of our studies in Mono Lake

area is to continue the experiments performed in

Jasper Ridge and to examine the persistence of red

edge feature of trace quantities of green

vegetation for different plant communities with

non-uniform soil backgrounds.

Mono Lake area contains a wide variation in

both rock and soil spectral signatures and

vegetation density levels, ranging from sparse

desertscrub to pine forests and dense canopies of

riparian corridors. High quality AVIRIS data of

this area was acquired in 1990. Low altitude aerial

photography was used to assist in the location of

the field sites in the field and on the AVIRIS data

sets. Two types of field sites were selected for

the investigation: calibration targets and

vegetation test sites. A series of calibration

targets covers a spread in ground reflectance from

about 0% in NIR (open water) to nearly 70% (salt

shell on open sediment) over the AVIRIS bands. The

vegetation test sites chosen have all major

Presented at the Third JPL Airborne Geosciences

Workshop, Pasadena, California, June 1-5, 1992.
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backgrounds versus vegetation combination present
in the AVIRIS flight area. The AVIRIS DN spectra
for each test site were calibrated to ground
reflectance by using an empirical linear regression
equation: Reflectance =A+B*DN- The coefficients of
A, B were generated from calibration targets. The
primary results of this research have shown that
the red edge magnitude persistently decrease as
green cover densities decrease. But this research
is still underway. The detailed results and
analyses will be available later.
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This paper reports recent activities of JPL in the development of a
new type of imaging spectrometers for earth observation and

planetary exploration. This instrument uses the acousto-optic
tunable filter (AOTF) as high resolution and fast programmable
bandpass filter. AOTF operates in the principle of acousto-optic
interaction in an anisotropic medium. This filter can be tuned in

sequential, random, and multiwavelength access modes, providing
observational flexibility. The diffraction process in the filter generates
two diffracted monochromatic beams with polarization orthogonal to
each other, creating a unique capability to measure both polarimetric
and spectral properties of the incoming light simultaneously with a
single instrument. The device gives wide wavelength operations with
reasonably large throughput. In addition, it is in a compact solid-
state structure without moving parts, providing system reliability.
These attractive features give promising opportunities to develop a
new generation of airborne/spaceborne and ground, real-time,
imaging spectrometer systems for remote sensing applications.

The operation principle of the AOTF imaging spectrometer is
different from that of current airborne multispectral imaging
instruments, such as the airborne visible/infrared imaging
spectrometer (AVIRIS). The AOTF instrument gives a two-
dimensional image at a desired wavelength at one time, whereas
AVIRIS takes a spectrum over a predetermined wavelength range at
one pixel at a time and the image is constructed later. Each

technique has its own merit. AVIRIS is an excellent tool for high
spectral resolution remote sensing of earth. AOTF instrument has
its unique properties. For example, AOTF allows observations to be

tailored in real time to perform the desired experiments and to collect
only required data. For example, an AOTF imaging spectrometer
has the potential to monitor distributions of several gaseous
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pollutants in air and its time variation in real time. In addition, the
flexibility enables the instrument to address a wide range of

objectives and permits the observation parameters to be modified in
flight as new objectives are developed. Consequently, the

performance in each mission can be increased with minimal
resources.

Up to now, two microcomputer-controlled AOTF multispectral imaging
breadboards were designed, assembled, and demonstrated at Jet

Propulsion Laboratory(JPL) (Chao, et al. 1990; Yu, et al, 1990; Chao,
et a1.1991; Cheng, et al. 1992). One operates in the wavelength

range of 0.48-0.76 microns and the other between 1.2 and 2.5
microns. The optical system of the visible/near-infrared breadboard

has foreoptics, an AOTF, imaging optics, and a silicon charge
coupled device (CCD) camera. An ordinary camera zoom lens is
used for foreoptics. A field lens is placed behind the AOTF. The
combination of the field lens and the camera lens generates the

diffracted image at the CCD detector array. The optical system
design and analysis of this breadboard were reported previously.

Two types of the CCD cameras are used in the system, an electrical-
ly cooled integrating CCD camera for precision measurements in the
laboratory and an ordinary CCD video camera for real-time
observations. The breadboard system consists of a 386 IBM-PC

compatible computer for control and data acquisition, a RF

generator, a RF power supply, and an image grabber.

Several experiments to demonstrate the feasibility of using the
visible/near-infrared AOTF-based breadboard for a number of

applications were done. They include: identification and mapping of
mineral contents; observations of botanical objects; demonstration of

using optical fiber bundle to make observational flexibility; real-time
spectral imaging at the video rate; and measurements of polarized

signatures.

The optical system architecture of the infrared breadboard is the
same as that of the visible/near-infrared breadboard, except that a

liquid nitrogen-cooled HgCdTe detector array and a set of ZnSe
lenses are used. Limited experiments using this breadboard system
were carried out. They included identification and mapping of
mineral contents as well as observation of botanical objects.
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In this workshop presentation, results of experiments with the
objective to demonstrate potentials of the AOTF instrument for

remote sensing applications will be presented. The technology issue
associated with the development of AOTF imaging spectrometers will
be addressed. Finally, current JPL activities on the subject will be
given.
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INTRODUCTION

Grasslands, savannah, and hardwood rangelands are critical

ecosystems and sensitive to disturbance. Approximately 20% of the Earth's

surface are grasslands and represent 3 million ha. in California alone.

Developing a methodology for estimating disturbance and the effects of

cumulative impacts on grasslands and rangelands is needed to effectively

monitor these ecosystems. Estimating the dry biomass residue remaining on

rangelands at the end of the growing season provides a basis for evaluating the

effectiveness of land management practices. The residual biomass is indicative

of the grazing pressure and provides a measure of the system capacity for

nutrient cycling since it represents the maximum organic matter available for

decomposition, and finally, provides a measure of the erosion potential for the

ecosystem.

Remote sensing presents a possible method for measuring dry residue.

However, current satellites have had limited application due to the coarse

spatial scales (relative to the patch dynamics) and insensitivity of the

spectral coverage to resolve dry plant material. Several hypotheses for

measuring the biochemical constituents of dry plant material, particularly

cellulose and lignin, using high spectral resolution sensors have been proposed.

We have investigated the use of AVIRIS to measure dry plant residues over an

oak savannah on the eastern slopes of the Coast Range in central California

and have asked what spatial and spectral resolutions are needed to

quantitatively measure dry plant biomass in this ecosystem.

MEASUREMENTS

The study site is located west of Winters, CA (38°30'N lat, 122°00'W

long.) near Lake Berryessa on 260ha. private land that is part of an

undeveloped block that includes the University of California Stebbins Preserve

and the Quail Ridge Nature Conservancy. Although historically grazed, these
lands are currently managed to promote native perennial grasslands. Other

private lands within the scene are currently grazed. The study area was

stratified by aspect (principally NE and SE facing slopes), soil type (three soil

units identified on 1:24,000 maps), and position (lower, mid, and upper

elevation) on the hillside and 45 sites were chosen for sampling. Aboveground
biomass (fresh and dry weights) on 3m x 3m plots were harvested in spring (at

peak growth) and in late summer, 1991. Spring biomass ranged between 27 and
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7757 g. on the plots, late summer residue from 13 to 2457 g.. Spring biomass was

a poor predictor of late summer residue (r2=0.12). Locations of plots were
recorded using a Trimble Navigation Pathfinder Basic and Pathfinder

Professional base station. Nominal slope and aspect were recorded with field

measurements, correlated with a DEM created by scanning contours, then used to
correct the data. Mean (n=20) field spectra (450-850nm) of about 1.5 m

resolution were obtained adjacent to each plot using an Analytical Spectral
Devices Perspec II in fall of 1991. Additional spectra of soils, dry plant litter,

and green foliage were measured to obtain library endmember spectra. In
addition, soil (n= 20) and litter (n=8) samples were analyzed in the lab (400-

2500nm) using a Perkin-Elmer Model 330 spectrophotometer with lnm
wavelength resolution.

Two nonradiometrically and nongeometrically corrected AVIRIS scenes

of the area were acquired on August 20, 1992 (910820, run 5 scenes 1,2) with a
nominal pixel resolution of 20m. The fourth (D) spectrometer was not

functioning at the time of acquisition. Images were nominally radiometrically
calibrated using Modtran and spectral mixture analysis. Additional AVIRIS
images were available from 23 March 1990, 31 July 1990 and used for

comparisons. For all AVIRIS scenes, coincident high spatial resolution CIR

photos using the RC-10 camera were obtained. Additionally, low alititude
aerial CIR photography was obtained at 3665m elevation from NASA C-130

aircraft with a Zeiss camera concurrent with a NS001 (TMS) on 31 May 1991.
All aerial photographs were digitized using the Eikonix model EC 78-99

scanner creating a 4096 x 4096 RGB image.

COMPARISONS

AVIRIS images were analyzed using GenIsis and IDIMS software for pixel

extractions and exploratory comparisons. Spectral mixture analysis software

was provided by J. Adams and M. Smith of the University of Washington.

Spatial patterns

Field plots were identified in the low altitude scanned photos and
corresponding AVIRIS pixels were selected for analysis by manual

interpretation without resampling. Numerous distinct ground targets made it

possible to visually locate points without coregistration. The analysis was

repeated after registering the AV|RIS image to a map base, integrating the
GPS coordinates, and then examining the effects of resampling. This low

altitude scanned photo was later degraded to 10 and 20 m pixels to permit
comparisons between spatial resolutions of the other sensors. Scanned CIR

photos at 10m resolution closely approximated the NS001 band 4 and at 20 m

resolution a synthetic AVIRIS NIR band. The topographically determined

major features related to larger scale patterns are maintained throughout the
spatial degredation from 1 to 20m although the fine-scale variance related to
tree shape and bare patches was lost.

In late summer, annual grasslands in the area are completely dormant

and NDVI values are low and indistinguishable from patches of bare soil.

Albedo variation was due principally to topography. Irriadiance was adjusted
for local slope and aspect using a cosine correction and regressed against biomass
during late summer.
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Spectralpatterns

AVIRISspectral signatures from each of the sample sites were

analyzed using GenIsis software. Similiarity indexes were generated from
these signatures and the spectral homogeneity of the study area was mapped

and compared to field measures.

Several SWIR wavelengths have been shown in previous studies to be

useful for identifying cellulose. We have begun to investigate the use of

wavebands in the third (C) spectrometer as predictors of dry plant biomass

through regressions against field measurements. These results will be
contrasted with those derived from mixture modeling. We have used spectral

mixture analysis to identify the dominant scene components as an alternative

method for identifying and quantifying dry plant material in the AVIRIS

images. We examined the AVIRIS images under two mixture models; a three
member model of soil, green vegetation and shade and examined high residuals

at wavelengths indicating presence of dry plant material (e.g., lignin and
cellulose features) and a four endmember mixture model that included dry

vegetation. Preliminary analysis indicates that we are able to derive a better
relationship using spectral mixture analysis although many uncertainties
remain. We contrast the results of this study with those of Jasper Ridge, CA

presented by Roberts et al., Gamon et al. and Ustin et ai., in this workshop, to
evaluate the consistency of green and dry biomass predictions using images

acquired in different seasons over savannah landscapes composed of similar

ecosystems.
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The U.S. Navy has and/or is developing imaging spectrometers for remote

sensing of deep ocean and coastal waters. The AVIRIS test program provides a

unique opportunity to evaluate the performance of so-called hyper-spectral
systems in marine environments. Data used for this study were collected over San

Pedro, California in March 1991 and obtained from the Oceanography Group at the

Jet Propulsion Laboratory in Pasadena. Much of what will be presented here is
work in progress. Technical pre-prints and software tools will be available from
the author at conference time.

Remote sensing of marine environments can be significantly more challenging
than surveillance of terrestrial phenomena. This is primarily due to the coupling
of low contrast targets and complicated hydro-optic interactions. Therefore, a

successful maritime program requires high signal-to-noise ratios, a realistic

atmospheric correction, and suitable metrics for hydro-optic analysis.

The initial calibration of AVIRIS data depends upon dark current, vignetting,
navigation, and spectral response data. Each is a potential source of error,

particularly if the calculation is performed in the domain of integers. Further, the

numerical resolution of these data are poor--although proposed sensor upgrades
offer substantial improvements. A calibration method based upon dark current

smoothing, vignetting curve fits, navigational aberration, spectral overlap, and
standard calibration data will be presented.

There are currently many efforts underway to model atmospheric effects in

AVIRIS data. Here we present a unique approach involving the recursive tuning of
unknown atmospheric parameters via simulated annealing while holding fixed

those few parameters measured in situ. This method has potential use for

measurements involving joint radar and long-wave IR data sans ground truth.

Hydro-optic metrics related to suspended sediment content and other marine

phenomena require signal-to-noise ratios near 300:1 at spatial resolutions less than

100 meters. To meet these requirements, neighboring pixels were ganged together in

both the spatial and spectral directions. The variance spectra of turbulent

structures and chlorophyll concentrations are then compared to previous studies.

The ability of AVIRIS to meet marine sensing requirements and implications for
HIRIS will also be discussed.
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1. BACKGROUND

Narrow-waveband spectroradiometry presents the possibility of detecting subtle

signals closely related to the current physiological state of vegetation. In this paper we
discuss one such signal related to the epoxidation state of the xanthophyll cycle pigments,
violaxanthin, antheraxanthin and zeaxanthin. Recent advances in plant ecophysiology
have demonstrated a close relationship between these pigments and the regulatory state of

photosystem II in photosynthesis (Demmig-Adams 1990). Our recent field studies of
sunflower (Helianthus annuus) and oak (Quereus agrifolia) have demonstrated that a
"xanthophyll signal" can be isolated from the diurnal reflectance spectra of intact
canopies. Furthermore, the xanthophyll signal can be used to derive a "physiological
reflectance index" (PRI) that closely correlates with the actual photosynthetic efficiency

(defined as the photosynthetic rate divided by the incident PAR) in closed canopies
(Gamon et al. in press). If these signals were detectable in AVIRIS images, they could

lead to improved remote estimates of photosythetic fluxes.

2. MATERIALS AND METHODS

Spectral reflectance was measured by positioning a Spectron spectroradiometer
with 15 degree FOV optics (model SE590 with detector model CE390WB-R, Spectron
Engineering, Denver, CO) approximately 4 meters above intact sunflower or 2 meters
above oak canopies. Reflectance was presented as a "physiological reflectance index"
(PRI) analogous in formulation to NDVI, for comparison with physiological
measurements.

,_

PRI = (R531-Rref) / (R53 l+Rref) (1)

Where "R" indicates reflectance, the subscript "531" indicates the wavelength (in rim) of

the xanthophyll signal, and the subscript "ret" indicates a reference wavelength (either 550
or 570 rim).

Physiological assays included leaf-level gas exchange (LI-6200, Li-Cor Inc.,
Lincoln Nebraska) and chlorophyll and carotenoid determinations by HPLC. Incident

photosynthetic photon flux density (PFD) was used to calculate photosynthetic efficiency
from net CO2 uptake rates.

*CIW DPB Publication #1133
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Photosyntheticefficiency= Net CO2 uptake rate / incident PFD

Methods are further described in Gamon et al. 1990 and Gamon et al. in press.

3. RESULTS AND DISCUSSION

(2)

The PRI correlated well with photosynthetic efficiency in both sunflower and
oak (Fig. 1). Photosynthetic efficiency, analogous to the photon (quantum) yield of
photosynthesis or the conversion efficiency of PAR to biomass (Monteith 1977), is an
indicator of the shoO-term efficiency of converting PAR to fixed carbon through
photosynthesis. This reflectance index may be useful in remotely detecting conditions of
reduced photosynthetic activity associated with a number of stresses.

Narrow waveband s'pectroradiometry could "also be used to assess other aspects of
physiologically imporlant plant pigments (e.g. chlorophylls, carotenoids and
anthocyanins). For example, subtle changes in chlorophyll to carotenoid ratios associated
with reduced photosynthetic performance could be detectable with narrow-band reflectance.

Narrow-waveband indices of vegetation function may be particularly useful in conditions
where broad-band indices are insensitive to current physiological status (e.g. in evergreen
vegetation lacking strong diurnal or seasonal changes in canopy display).

Estimation of pigment content from AVIRIS images could lead to improved
estimates of photosynthetic fluxes at the landscape scale. In AVIRIS images, pigment
contents may be accessible via reflectance indices analogous to the PRI; another approach
would be to use a mixture model to isolate component and residual images (Ustin et al. in
press), which could then be compared with pigment spectra.

In our ground-based studies, validation of physiological interpretations required
detailed physiological assays (e.g. of pigment conlent and photosynthetic flux) that were
lx)th expensive and time consuming. These direct "physiological calibrations" of spectral
reflectance would be even more difficult at the 20 m scale of the AVIRIS pixel, and
atmospheric effects may further obscure relationships between photosynthetic fluxes and
speclral reflectance. Ground validation of possible physiological signals in AVIRIS
imagery should include flux and reflectance measurements at a range of scales between the
leaf and the landscape.

4. ACKNOWLEDGEMENTS

This study was supported by the A.W. Mellon Foundation (to the Carnegie
Institution of Washington) The participation of Drs. W. Bilger, O. Bjorkman, and J.
Penuelas in various aspects of this work is gratefully acknowledged.

5. REFERENCES

Demmig-Adams, B. (1990) Carotenoicts and photoprotection in plants: a role for the
xanthophyll zeaxanthin. Biochimica et Biophysica Acta 1020:1-24.

Gamon J.A., Field C.B., Bilger W., Bjorkman O., Fredeen A.L., and Penuelas J. (1990)
Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower
leaves and canopies. Oecologia 85:1-7.

Gamon JA, Penuelas J, Field CB (In press) A narrow-waveband spectral index that tracks
diurnal changes in photosynthetic efficiency. Remote Sensing of Environm¢nl.

Monteith JL (1977) Climate and the efficiency of crop production in Britain. Phil. Trans,
R. Soc. Lond, B, 281:277-294,

96



UstinSL,SmithMO, Adams JB (In press) Remote sensing of ecological processes: a
strategy for developing and testing ecological models using spectral mixture analysis.
In: Ehleringer JR, Field CB (eds) Ecological Scalin_ r h L h n .

Academic Press, San Diego.

X

(-

0

rr

0.115-

0.110-

0.105-

0.100-

0.095 -

0.090 -

0.085 -

0.080 -

0.0

sunflower

• fertilized I • •e&• nitrogen-deficient

I I I I I I

0.5 1.0 1.5 2.0 2.5 3.0 3.5

X

"10
t-

t-

O

m

n"

0.08 -

0.06 -

0.04 -

0.02 -

0.00 -

-0.02 -

-0.04 -

-0.06 -

-0.08 -

0.0

1=
oak

I I I I I I

0.5 1.0 1.5 2.0 2.5 3.0

Photosynthetic Efficiency (%)

3.5

Fig. 1.

Comparison of the physiological reflectance index (PRI; eq. 1) with photosynthetic
efficiency (eq. 2) for sunflower (+ nitrogen) and oak. Reference wavelengths were
550 and 570 nm for sunflower and oak, respectively. Points represent measurements
taken at different times in a single day.

97



b SEPARATION OF CIRRUS
AVIRIS DATA USING

N94- 16699 t
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1. INTRODUCTION

Cirrus clouds play an important role in climate systems because of their large
area coverage, persistence and radiative effects (Starr 1987). Thin citrus clouds are
difficult to detect in visible images and infrared images in the 10-12 lain atmospheric
window region, particularly over land, because these clouds are partially transparent.
Ackerman et al. (1990) have recently developed a method for detecting citrus clouds using
three narrow channels centered near 8, 11, and 12 Bm, respectively, based on the analysis
of IR emission spectra measured with a high SlX_tral resolution interferometer. Barton
(1983) has also described a method for estimating cirrus cloud height and amount from

measurements with two narrow channel radiometers of the Selective Chopper Radiometer
on Nimbus 5. Both channels are located within the strong 2.7 pm water vapor band

absorption region. One of the channels includes additional carbon dioxide absorption. A
differential absorption technique with sets of empirical coefficients has been used in the
estimation of cirrus cloud heights and amounts.

In this paper a technique using narrow channels in the strong 1.38 l.tm water
vapor band absorption region for detecting cirrus clouds from spectral imaging data
acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (Vane 1987) on
December 5, 1991 during the FIRE (The First International Satellite Cloud Climatology
Project (ISCCP) Regional Experiment) Phase II Field Experiment (Starr 1987) is
described.

2. METHOD

The method for the detection of cirrus clouds using channels near the center of

the strong 1.38 _tm water vapor band is straight forward. Cirrus clouds are typically
located at altitudes greater than 6 km. Most of the atmospheric water vapor is located
below 6 km. AVIRIS channels near 1.38 Pm receive little radiance resulting from
scattering of solar radiation by the surface, because the solar radiation is mostly absorbed
by water vapor in the lower atmosphere. When cirrus clouds are present, however, the

AVIRIS channels near 1.38 tam receive a large amount of radiance resulting from
scattering of solar radiation by the cirrus clouds. The radiance contrast in AVIRIS images
near 1.38 lutm allows the detection of cirrus clouds.

3. RESULTS

The method described above has been applied to AVIRIS data measured over
Coffeyville in the southeastern part of Kansas and over the Gulf of Mexico on December

5, 1991 during the FIRE Phase II Field Experiment. Figure 1 shows a 0.56 Bm AVIRIS

image over Coffeyville. The surface area covered by the image is approximately 12x17
km. Various types of surface features are seen. For example, the town of Coffeyville in
the upper left, triangular runways of the Coffeyville Airport in the middle left, and roads

and rivers in several parts of the image are all seen. At the time of the AVIRIS overflight,
thin cirrus clouds were seen from the ground. Figure 2 shows a 1.37 Bm
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Fig. 1: A 0.56_mAVIRISimageover
Coffeyville,Kansas.Surfacefeaturesare
seenin thisfigure.

...........

Fig. 2: A 1.37 lain AVIRIS image over
the same area as that of Figure 1. Only
cirrus clouds are seen in this figure.

Fig. 3: A 0.56 lam AVIRIS image over
the Gulf of Mexico. Both the upper
level extensive cirrus clouds and the
lower level smaller cumulus clouds are

seen.

Fig. 4: A 1.38 I.tm AVIRIS image over
the Gulf of Mexico. Only the upper
level extensive cirrus clouds are seen.

AVIRIS image over the same area as that of Figure 1. Cirrus clouds are seen clearly in
this figure. The surface features visible in Figure 1 disappear completely in this figure.
This demonstrates that the 1.37 lain channel is useful for detecting thin cirrus clouds.

Figure 3 shows a 0.56 lam AVIRIS image over the Gulf of Mexico. Extensive
cirrus clouds in the upper level and smaller cumulus clouds in the lower level are seen.

Figure 4 shows a 1.38 _m AVIRIS image over the same area. The smaller cumulus
clouds disappear completely in this figure. Only cirrus clouds are seen. This demonstrates

again the usefulness of channels located near the center of the strong 1.38 _m water vapor
band for detecting cirrus clouds.
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4. DISCUSSION ......

Figures 1 and 3 show that the visible channels are contaminated by reflection
from land surfaces and from lower level clouds when viewing thin cirrus clouds. This
implies that it is difficult to derive accurate optical parameters of thin cirrus clouds from
measurements with visible channels.

The availabifity of AVIRIS data allowed us to fm_fulne_0rdetectlng
cirrus clouds using narrow spectral channels near the center of the strong 1.38 Bm water

vapor band, as demonstrated in Figures 2 and 4. These channels are also expected to have
small sensitivity to mid-level clouds with top altitudes between approximately 4 and 6
km.

The 1.38 Pm channel has some advantages over the 2.7 Bm channels described
by Barton (1983). The solar energy at 1.38 Pm is 10 times as great as that at 2.7 pm.
The ice particle absorption near 1.38 l.tm is significantly smaller than that near 2.7 Bm.
Also, the 1.38 _rn region is not affected by emission from the Earth, while the 2.7 Bm
region is slightly contaminated by Earth's emission. The 8, 11, and 12 IJ.m narrow IR
channels described by Ackerman et al. (1990) have been proposed for a future polar-
orbiting satellite for monitoring clouds. This IR emission technique has an advantage that
it works both day and night. A disadvantage is that it requires a large field of view because
of the weakness of the atmospheric and surface emission.

5. CONCLUSION

Narrow spectral channels near the center of the 1.38 Pm strong water vapor band
are useful for monitoring cirrus clouds. It is expected that our ability to determine cirrus
cloud amounts using space-based remote sensing will be improved if channels near the
center of the 1.38 I.tm water vapor band are added to future satellites.
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1. INTRODUCTION

An operational software program is now available for deriving "scaled surface
reflectances" from spectral data collected by the Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) (Vane, 1987). The program simulates both the atmospheric
scattering and absorption effects. Brief descriptions of the algorithm, inputs, outputs, the
limitations of the software, and procedures for obtaining the software are given.

2. FUNCTIONAL OVERVIEW

The program derives scaled surface reflectances using an approximate
atmospheric radiative transfer model. Horizontal surfaces having Lambertian reflectances
are assumed. The scaled surface reflectances can be converted to the real surface
reflectances if the slopes and aspects of the surfaces are known. For simplicity, the scaled
surface reflectances are referred to as "surface reflectances" in this document.

The atmospheric scattering effects are modeled using the Simulation of the

Satellite Signal in the Solar Spectrum (5S) code (Tanre et al. 1986). The transmittances
of seven gases are calculated based on an assumed atmospheric model, the solar and
observational geometries, and using the Malkmus (1967) narrow band spectral model.
Water vapor values are derived from AVIRIS data in the 0.94 lain and 1.14 lam regions

using a 3-channel ratioing technique and a look-up table procedure. The derived water
vapor values are used in the process of removing atmospheric gaseous absorption effects
from AVIRIS data. Fig. la shows an AVIRIS spectrum over a vegetated area. Fig. lb

shows the corresponding derived surface reflectance spectrum.

3. INPUT DATA

The program requires an input file containing information on the AVIRIS scene
including geometric parameters, spectral parameters, atmospheric parameters, and
input/output parameters. Table 1 shows a sample input file. The input values are based
on information provided with the AVIRIS data and knowledge of the aerosol condition
when the data were collected. The program can be executed without the need of any field

measurements as inputs. However, a measurement of the aerosol optical depth when the
AVIRIS data were collected will improve the accuracy of the derived surface reflectances.

The input data are described further below:

1. Geometric Parameters
• Date and Time: the date and time in GMT that the AVIRIS data was measured.
• Latitude and Longitude: the latitude and longitude of the center position of the

AVIRIS scene.

2. Spectral Parameters
• Wavelength File: the name of the AVIRIS wavelength t'de.

N 94-16700
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Figure 1. (a): An AVIRIS spectrum over a vegetated area, and (b) the corresponding
derived surface reflectance spectrum.

Table 1. An example input file.

Input Comment

07 23 1990 20 58 32
37 30 08
N
117 13 17
W

/tmp/aviris.wav
10.
1

0.8630 1.0550 3 3 0.9398 7
1.0550 1.2470 3 3 1.1414 7
2

1111111
0.34

1 100
1.5

/tmp/aviris.cub
0

/tmp/aviris_atm.cub
10.

/tmp/aviris.vap
/tmp/aviris.lib

date and time
latitude

hemisphere of the earth (N or S)
longitude

hemisphere of the earth (E or W)
wavelength t-de
spectral resolution of AVIRIS data

channel ratio parameters (if "0", defaults used)

atmospheric model number
gas selectors

total column ozone amount (atm-cm)
aerosol model and visibility
average elevation of the surface scene
input AVIRIS dam
input AVIRIS dimensions
output image l-de
output data resolution
output water vapor f'fie
output spectral library file

• Spectral Resolution: the AVIRIS spectral resolution in nanomctcrs.

• Channel Ratio Parameters: the center positions and widths of window channels and
absorption channels for the 0.94-1am and the 1.14-1am water vapor bands.

3. Atmospheric Parameters
• Atmospheric Model: a model atmosphere close to the measurement condition.

• Gas Selectors: indicators for determining which of the seven gases that have
absorption features in the 0.4-2.5 lain will be included in atmospheric gaseous
transmission calculations. The seven gases are water vapor, carbon dioxide,

ozone, nitrous oxide, carbon monoxide, methane, and oxygen.
• Total Ozone: the vertical column amount of ozone (in units of atm-cm) that is

contained in the atmosphere (typically 0.34 atm-cm).

• Aerosol Model and Visibility or Optical Depth at 0.55 t.tm: a model of the aerosol
conditions and the visibility or the optical depth at 0.55 lJ-m when the AVIRIS
measurements were made.

=
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• Average Elevation: the average elevation (in units of km) of the scene.

4. Input/Outtmt Parameters
• Input AVIRIS Image: the path and fde name of the input AVIRIS data.
• Input AVIRIS Image Dimensions: the dimensions of the input AVIRIS image

including the header size in bytes, the number samples, the number of lines, the
number of channels, and the storage order.

• Output Image File: the path and file name of the output surface reflectan.ce data.
• Output Spectral Resolution: the desired resolution of the output spectra m

nanomcters. If the output spectral resolution is coarser than the input spectral
resolution, then the output spectra will be smoothed using a gaussian function.

• Output Water Vapor File: the path and f'dename of output water vapor image file.
• Output Spectral Library File: the path and file name of output spectral library file.

4. OUTPUT DATA

1. Surface Reflectance Image
a surface reflectance image that has the same size as the input AVIRIS image.

2. Water Vapor Image
a single spatial image containing the column water vapor amount at each pixel.

3. Transmittance Lookup Table
a file containing atmospheric transmittance spectra and band ratios for each of the 60
column water vapor values.

5. LIMITATIONS

The elevations within an image are not allowed to vary. As a result, the program

is mostly applicable to images with surface elevation variations less than about 1 km.
The atmospheric adjacency effect and the topographic adjacency effect me not modeled.
When using our program for surface reflectance retrievals, the band positions between
observed and calculated spectra must be matched to 0.5 nm or better.

6. SOFTWARE AVAILABILITY

The source code and user documentation is provided free of charge or royalties.
However, CSES retains the title and copyright to the software and documentation.
Recipients of Otissoftware are required to execute a memorandum of understanding
(MOU) provided by CSES that specifies in detail all of the associated conditions. Send
requests for an MOU to:

e-mail: sips@cses.colorado.edu
voice: (303) 492-1866
fax: (303) 492-5070
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1.0 Introduction

The Cuprite mining district in southwestern Nevada has become a test site for

remote sensing studies with numerous airborne scanners (Abrams et al. 1977; Nobel

et al. 1984; Goetz and Srivastava 1985; Carrere 1989; Kruse et al. 1990; and Hook

and Rast 1990) and ground sensor data sets (Goetz and Curtiss, personal

communication; Shipman and Adams 1987; and Kruse et al. 1990) collected over the
past fifteen years.

Structurally, the Cuprite region can be divided into two areas with slightly
different alteration and mineralogy. These zones lie on either side of a postulated low-

angle structural discontinuity that strikes nearly parallel to US Route 95.

Hydrothermal alteration at Cuprite has been classified into three major zones:

silicified, opalized, and argillized (Hook and Rast 1990). These alteration types form
a bulls-eye pattern east of the highway and are more linear on the west side of the

highway making a striking contrast from the air and the imagery. Cuprite is therefore

an ideal location for remote sensing research as it exhibits easily identified

hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive,

spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite,

several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal.

This present study brings a new dimension to these previous remote sensing

and ground data sets compiled for Cuprite. The development of a higher resolution
field spectrometer now provides the capability to combine extensive in-situ

mineralogical data with a new geologic field survey and detailed AVIRIS images. This
paper discusses the various data collection methods and the refinement of the

integrated techniques.

2.0 AVIRIS Data

AVIRIS data from the 1990 season were evaluated utilizing Genlsis © and

ERDAS © software on a personal computer. False color composite images and

principal component images were generated using bands selected for optimum

mineralogic discrimination. Bands were interactively selected by examination of the

AVIRIS spectra on a pixel by pixel basis. Spectra of individual pixeis in known

altered areas were examined for diagnostic mineral absorption features. Bands were

selected which showed maximum variation between alunite, kaolinite, buddingtonite,
illite, and iron absorption features. Good mineralogic differentiation can be seen on

both the false color composite and the principal component images. Similarity Index

maps of alunite, kaolinite, buddingtonite, illite, and iron stained rocks were generated
using Genlsis ©. The Similarity Index maps gave a more specific indication of the

distribution of each mineral and greatly aided the selection of field sampling sites.

Figure 1 shows a Similarity Index map of alunite occurrences in the study area.

i
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Fig. 1. Similarity Index for Alunite, Cuprite, NV - Darker

Values Indicate Increasing Alunite.

3.0 Geologic Alteration Mapping and Sampling

The field sampling for this project was carried out in two separate phases.

Thematic Mapper (TM) data were utilized to guide the first phase of sampling. A

color ratio composite (CRC) was generated using TM ratios TM5/7, TM514 and

TM3/1. Scatter plots were generated from TM517 vs. TM5/4 and TM5/4 vs. TM3/1.

The scatter plots were used as an aid in the classification of the CRC data. A GIS

character print map was then generated showing the areas most likely to contain

hydrothermal alteration types. The sites delineated in the GIS were then visited and

sampled.

AVIRIS data were used to guide the second phase of the field sampling.

False color composite images, principal component images, and Similarity Index maps

generated from the comparison of spectral plots derived from the AVIRIS data and

those in the spectral library were used to guide the sampling to localities showing

specific alteration assemblages.

The samples collected from the field visit were analyzed by three different

methods. These include spectral analysis utilizing the PIMA-II spectrometer, thin

section analysis, and x-ray diffraction.

The analytical results, combined with further field checks and field mapping,

were used as an aid in the interpretation of the AVIRIS data. This allowed a refined

geologic and mineralogic map of the alteration zones to be created which delineates

the mineralogy in a detail not previously presented.
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4.0Field Spectroscopy Data

Spectral ground truthing was done at Cuprite using the PIMA-II portable

spectrometer. With an internal light source and 5-7nm resolution, PIMA-II provides

near-laboratory quality spectra within minutes and can be used exclusive of solar

illumination and under most weather conditions. Therefore, the atmospherically

masked bands, at 1.4#m and the 1.9#m, which provide invaluable information on

hydroxyl and water content, can now be utilized.

With the field spectrometer, crystalline examples of alunite, buddingtonite,

kaolinite, smectite, illite, and opal were observed in the eastern alteration zone, while

spectra of illite, dickite, natro-alunite, and jarosite, among other minerals, were

collected from the western alteration zone. This method is unique as it provides

detailed mineralogy and multiple phase identification capabilities easily and almost

instantly in the field. An example of this is shown in Figure 2. Spectrum (A) was

collected from the "Buddingtonite Bump" and contains kaolinite, alunite, illite, and

buddingtonite, all of which have identifiable features. Spectrum (B) is from the

western alteration zone and shows dickite and natro-alunite. The ability to differentiate

numerous species and solid solution phases, with confidence, has not been possible in-
situ before now.
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Fig. 2. PIMA-II Spectra from Cuprite, NV. (A) is from the Buddingtonite Bump; (B)
from the Alteration Zone West of U.S. Highway 95. Key for the Minerals in the

Spectra: K = Kaolinite, A = Alunite, N = natro-alunite, D = dickite, I = Illite.
Spectra Collected with thePIM=A-iI Portable Short Wave infrared (SWlR)

Spectrometer, Integrated Spectronics, Pry Ltd., Sydney, Australia.
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5.0Discussion

The field spectrometer provided the ability to investigate the alteration zones
distribution and subtle mineralogical changes at Cuprite, in detail not documented

before. The ability to discriminate, in the field, ordering and chemical substitution
within the mineral series, such as kaolinites and alunites, coupled with the

hyperspectral data from AVIRIS and TM alteration mapping offers the field geologist
an invaluable tool for sampling, geological interpretation, and exploration.
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1. INTRODUCTION

On 5th of July 1991 at 2.10 p.m. the multidisciplinary testsite Rigi in Central Switzer-
land was covered by the ER-2 and its sensors, the AVIRIS, TMS and RC-10 within the NASA
MAC Europe 1991 deployment.

Our focus of research is the evaluation of the applicability of hyperspectral data over
rugged alpine terrain. The utility of imaging spectrometry under highly complicated terrain
and atmospheric conditions shall be investigated with a team that has some experience in high
precision adoption of airborne and satellite data through geomctric and radiometric correc-
tions and subsequent task-adapted classification procedures.

2. SUPPORTING MEASUREMENTS

A multidisciplinary team of specialists in remote sensing, image processing, geogra-
phy, landuse, agronomy and botany, forestry, limnology and atmospheric research enabled a
multitude of parallel measurements concurrent to the AVIRIS overflight. Synergism with an
athmospheric research project "POLLUMET" which took place at the same time, and within
the same area, yielded a wealth of measurements of meteorological and atmospheric parame-
telS.

Concurrent to the ER-2 overflight, for instance vertical spectroradiometric profiles of
the atmosphere were measured from helicopter descending from 3000 m GND to water level,
and at the same time subsurface underwater spcctroradiometric profiles were taken as wcll.

Simultaneously hundreds of water samples were taken and measurements of chlorophyll, phy-
toplankton concentration, optical thickness of the water, acidity etc. acquired. Several teams
were active assessing horizontal visibility along mountain profiles. Agrarian landuse mapping

was carried out at specific testsitcs totalling 124 fields. Soil samples as well as forest cuttings
were taken and stored for laboratory tests. This brief summary of course cannot give an in-

depth insight into all the gathered information and the extensive activities of the involved ap-
proximately one hundred specialists on the ground.

The following table gives an overview on the activities in data capturing for the
AVIRISwiss-91 campaign.
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Platform

Satellite

Aircraft

Balloon /

Sonde

Helicopter

Radar

Ground

Boat

Table 1: Instruments and Data Collection during the AVIRISwi_'91 Campaign

System

SPOT

La_alsal

NOAA

F_R-2

engine powered

glider

radiosonde

captive balloon

constant level

balloon

spectrometer

photography

ground radar

specuon_ter

analysts

underwater

spectrometer

Seccidisk

specific sondes

Instrument Target

central Swit-
tiRV-PAN zerland

central Swit-

|IRV-XS zerland

central Swit-

TM zerland

central Swit-
AVHRR zerland

AVIRIS Rigi testsite

TMS Rigi testsite

RC- 10 Rigi testsite

central Swit-
by MetAir zerland

testsite almos-

by LAPETI I phere

testsite almos-
by KLIMEF

phere

by PSI atmosphere

Spectron SE- selected test-
590 areas

video (VIIS) selected areas

camera

ADOUR

GER IRIS

selected tar-

gets

F_-2

Mark V

LI-COR selected refer-

Li- 1800 ence largets

Spectron SE-
590

Magellan GPS

selected tar-

gets, fields,
etc.

LI-COR water
UWI.i- 1800

disk waler

ME. WTW water

Mea.surement

1 band, VIS

3 bands, VIS,

NIR

7 bands VIS,

NIR,IR

Use

landuse

landtLse

landuse

5 bands rneleorology

220 bands VIS, applied in_ging

NIP. spectrometry

12 bands, VIS, cross referencing

NIR,IR to AVIRIS

color IR )hotogrammetry

P, T, M, O 3, NO 2, at mospheric

H202 constit uenls

atmospheric
T, WD, WV parameters

WE), WV, P, T, atmospheric

M, O 3 parameters

atmospheric
P,T, M, WD

parameters

spectral radiome-

256 bands try of targets and

atmosphere

color referencing

color referencing

2 frequency tracking of the

C-band FLR-2 flight line

875 bands

161 bands

256 bands

target spectral ra-

diometry, calibra-
lion

landnse, cover classification
stale

161 bands optical properties

% of light optical thickness

T, Tr, Vis, Art, waler chemistry
Chl

Legend: P = Pressure, T = Temperature, M = Moisture, Tr= up/down trans, WD = Wind Direction, WV = Wind
Velocity, Vis = Visibility, Art = Attenualion, Chl = Chlorophyll (Scor)
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3. ANALYSIS APPROACH

A fully integrated analysis approach is pursued in handling all datascts, scnsor data as
well as ground truth measurements, in a digital database. For this purpose most of the ground
truth is already converted into digital form and ready for modelling.

A first analysis step is a thorough data quality assessment where sensor and scene re-
lated effects are investigated. Among them geomclric factors such as distortions and errors are
handled and radiometric influences due to blurring, striping and calibration problems etc. are
analyzed and corrected as a prcproccssing stcp. Scene rclatcd factors such as the ones due to

sensor geometry and terrain as well as radiomctric effccts due to topography, viewing angle
and atmosphere are investigated and removed using a high precision DEM (ltten et aL 1992).
Georegistration in a mountainous cnvironmcnt is a ch:dlcnge in itself, and slope-aspect cor-
rections as well as atmospheric modelling, using 5S, LOWTRAN and MODTRAN, are tested.

In processing we propose an information bas_ approach with a general broad aim in

mind to considerably improve landuse mapping and detailed land cover state analysis. New
ways for classifying scenes are foreseen by using an information based approach (Meyer
1992). Symbolic description is applied in spatial and spcctral me,des; segmcntation procedures
will be tested and rules generated for an application orientcd automatic fcature extraction.

Teams of hydrologists, botanists, geographcrs, foresters, agrarian engineers, climatol-
ogists as well as image processing and remote sensing specialists are actively involved. Since
corrected data have only been received by tile end of Marclf92, the investigation based on the
RSL-DIPS and IDL/SIPS (by CSES/CIRES University of Colorado, Boulder) on a DECSta-
tion 5000 workstation is in full progress.
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AVIRIS INVESTIGATOR'S GUIDE

Howell Johnson

Jet Propulsion Laboratory
4800 Oak Grove Drive, Pasadena, California, 91109

1. INTRODUCTION

The purpose of the AVIRIS Investigator's Guide is to provide Investigators with
a uniform, structured approach to conducting AVIRIS experiments and interacting with
the AVIRIS project. It is not a guide for designing experiments; rather, it is simply a

guide for planning these experiments and carrying them out.

The motivation for writing this guide stems from an ever-increasing demand for

experiments with the AVIRIS instrument. The guide will introduce new investigators to
the fundamentals of AVIRIS activities in the domains of science, engineering, and

operations. It will also serve as a useful reference for "old-timers," as it will contain
background information on the instrument, data processing facility, and the ER-2 aircraft.
As a reference, it will also serve as a written description of the roles and responsibilities

of investigators in their interaction with the AVIRIS project.

2. APPROACH

The growing necessity for simultaneous ground truth measurements, combined
with the random nature of operations dictated by weather conditions, creates a serious

challenge for an investigative team to carry out an experiment with limited resources.
For this reason a major portion of the Investigator's Guide will be devoted to the planning
and logistics of field measurements that must be coordinated with the ER-2 aircraft.

This aspect of AVIRIS operations - the coordination of field measurements with
the aircraft - has been a source of friction between investigators, the AVIRIS project, and

the High Altitude Missions group. This situation can be improved only by educating
people on the realities of aircraft operations and establishing sound, secure agreements
that address the needs of each party involved.

The remainder of the guide will be devoted to technic',d descriptions of the
instrument and aircraft, background information on operations and weather prediction, and

tips on filling out paperwork associated with flight requests and retrieval of AVIRIS data.

3. CONTENT

The guide will be divided into five sections:

1) Back_ound information - descriptions of those aspects of the instrument, the

aircraft, and operations that are most pertinent to investigators. This
information will give some idea of the complexity of aircraft operations and

hopefully provide insight into the reasons why events unfold as they do during
and after a deployment.

2) Requesting acquisition of AVIRIS data - guidelines on properly filling out a

flight request form for AVIRS/ER-2 experiments.
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3)Preparingfor data afquisition - how to plan for successful field operations that
will maximize scientific objectives at minimum cost. This information will

culminate the techniques of the most successful investigators and point out
common errors that result in failure or compromised objectives.

4) Data acquistion - what to expect during a dcploymcnt, daily procedures,

communications protocols for investigators, role of AVIRIS experiment
coordinator during deployment.

5) Reauesting AVIRIS data - how to request a retrieval of AVIRIS data from the
archive after receiving quick-look data products.

5) Appendices - detailed information on characteristics and performance of the
AVIRIS instrument and the ER-2 aircraft. Fundamentals of visible and ncar-

infrared remote sensing through the atmosphere. Calibration of the AVIRIS
instrument. Recommendations for ground truth measurements and
instrumentation.

4. GENERAL

The Investigator's Guide will be available Ibr distribution prior to the Airborne

Geoscienee Workshop and may differ slightly from the format indicated in this summary.
It will be distributed as a loose-leaf booklet booklet in which sections may be augmented
or updated over time.

L_
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I. INTRODUCTION

The Oregon Transect Ecosystem Research (OTTER) project
involves the collection of a variety of remotely-sensed and in-
situ measurements for characterization of forest biophysical and
biochemical parameters. The project includes nine study plots
located along an environmental gradient in west-central Oregon,

extending from the Pacific coast inland approximately 300km.
These plots represent a broad range in ecosystem structure and
function. Within the OTTER project, the sensitivity of the AVIRIS

signal to absorption by foliar biochemicals is being examined
(Johnson and Peterson, 1991). AVIRIS data were acquired over all
plots in conjunction with four OTTER Multi-sensor Aircraft
Campaigns spanning the growing season. Foliage samples were
gathered during each campaign for biochemical determination
(at Ames Research Center), to estimate stand-level constituency at

each plot.

Directional-hemispheric leaf reflectance throughout the
400-2400nm region was measured in the laboratory as an aid to

interpreting concurrent AVIRIS data. Obtaining leaf spectra in
this manner reduces or eliminates the confounding influences of

atmosphere, canopy architecture, and reflectance by woody
components, understory, and exposed soils which are present in
airborne observations. These laboratory spectra were compared
to simulated spectra derived by inverting the PROSPECT leaf-level
radiative-transfer model (Jacquemoud and Baret, 1990), and to

canopy reflectance derived from AVIRIS data by use of the
LOWTRAN-7 (Kneizys et al., 1989) atmospheric radiative-transfer

model.
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2. LEAF REFLECTANCE MEASUREMENT

Five foliage samples were collected by shotgun or pruning
pole from mid-to-upper canopy at each of four OTTER plots in
early June, 1991. Red alder (Alnus rubra), a broadleaf, was
collected at one plot; the other plots contained western hemlock

(Tsuga heterophylla), a conifer. Each sample was divided into two
sub-samples, one for biochemical analysis and another for
spectral analysis.

The biochemistry sub-samples were maintained in a frozen

state until analysis. These samples were assayed by wet chemical

techniques for total nitrogen, total phosphorus, total chlorophyll,

amino acids, sugar and starch. Specific leaf area (cm 2 leaf area/g
dry wt) was also measured.

Each spectral sub-sample was immediately inserted into an
airtight transparent plastic bag along with a moist paper towel.
These bags were grouped and placed inside a black bag to shield
from light exposure, and refrigerated for a period of 10-14 days.

Reflectance measurement (bandwidth 6 nm, sampling
interval 2 nm) was performed on a Perkin-Elmer 330
spectrophotometer (Norwalk CT), resident at Ames Research

Center. For each conifer sample, several needles attached to twig
were placed in the instrument sample holder, and scanned. For

the broadleaf samples, one entire leaf without woody material was
scanned. Calibration standards were used to convert raw channel

response into absolute reflectance and to verify accuracy of
spectral response to within +2nm.

3. LEAF REFLECTANCE VS. SIMULATED REFLECTANCE

The PROSPECT model simulates leaf reflectance (and
transmittance) in the 400-2400nm region as a function of

chlorophyll concentration (txg/cm 2) and water content
(equivalent water thickness). The model was inverted to estimate
chlorophyll concentration by fitting to the diffuse leaf
reflectance component of each measured spectrum. Predictions
from inversions with low root mean square error between the

simulated and measured spectra were significantly (.01 level)

correlated with assay values (r=0.93, n=6, se=4.2 _tg/cm2).
Measured reflectance was consistently lower than modelled
reflectance in the 1500-1800nm region, possibly as a result of

biochemical absorption, with the largest residuals occurring
between 1690 and 1710nm.

4. LEAF REFLECTANCE VS. CANOPY REFLECTANCE

The LOWTRAN-7 code was used to convert AVIRIS at-sensor
radiance acquired 22-May-91 into canopy reflectance. Total
atmospheric optical depth at each plot at or near the time of
AVIRIS overflight was measured by sun-photometer. These
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optical depths were used to estimate horizontal visibility by
fitting to LOWTRAN-calculated total transmittance throughout the
400-1000nm range (Green, 1990). Using this visibility, the
Continuum Interpolated Band Ratio technique (Carrere et al.,

1990) was then applied to the 940nm absorption feature to
estimate water vapor abundance. Subsequently, canopy
reflectance (p) was retrieved from at-sensor radiance (after

Green, 1990) by:

p = (Lr/Lra)O_
(i)

where Lr is the net canopy-reflected radiance in the AVIRIS

signal, and Lra is the modelled radiance reflected from a surface
with albedo ct for the given solar zenith and surface elevation.

These spectra were compared with the mean leaf spectra at
each site. The canopy spectra are similar in shape to the
measured leaf spectra for both broadleaf and conifer. The degree
of similarity increases with greater leaf-area-index (LAI), as
background exerts less influence on the signal. Conifer leaf
reflectance exceeds canopy reflectance by a factor of two along

the NIR plateau, and by a factor of three in the shortwave IR.
Less disparity is observed in the alder, where leaf reflectance
exceeds canopy reflectance by a factor of less than two along the

NIR plateau, and by a factor of two in the shortwave IR. AVIRIS
reflectance spectra from canopies with high LAI will be used to
test an adaptation of the PROSPECT model to canopy level
simulation.
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AVIRIS AS A TOOL FOR C_ONATITE EXPLORATION:
COMPARISON OF SPAM AND MBANDMAP DATA

ANALYSIS METHODS

Marguerite J. Kingston and James K. Crowley
U.S. Geological Survey, Reston, VA 22092

INTRODUCTION

Data acquired with the Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS) of the Mountain Pass, San Bernadino County, California, area were
analyzed to evaluate the use of narrow-band imaging data for carbonatite
exploration. Carbonatites are igneous carbonate-rich rocks that are

economically important in part because they are the major source for rare-
earth minerals. Because the 224 AVIRIS spectral channels have a nominal

spectral resolution of 10 nm, narrow absorption features such as those

displayed by the rare-earth elements neodymium (Nd) and samarium (Sm)
may be detected.

The Mountain Pass region encompasses a well-exposed sequence of
sedimentary, metamorphic, and igneous rocks, including an alkalic carbonatite

intrusion. The carbonatite was emplaced in Precambrain granitic rocks that

are fault bounded by a thick suite of Paleozoic sedimentary rock,

predominantly dolomite. The carbonatite stock, the major source of light

rare-earth elements (REE) in the United States, affords the opportunity to test
AVIRIS capabilities for detecting REE absorption features. Nd-bearing

minerals display narrow, sharp and distinctive spectral features at 580, 740,

800, and 870 nm (Kingston, 1989). Minerals bearing Sm display similarly
sharp features near 1090, 1250, 1410, and 1550 nm. The more common

REE, lanthanum and cerium, do not display absorption features in the
visible/near-infrared region in their natural oxidation states.

RESULTS AND DISCUSSION

This study compares two "curve-matching" techniques designed
to locate spectrally similar pixels in an AVIRIS image cube (lines, pixels,

channels). The two techniques are the SPectral Analysis Manager (SPAM)

binary-encoding approach developed at the Jet Propulsion Laboratory

(Mazer et al., 1988) and Mbandmap (multiple band mapping), a least squares

band-fitting method recently developed at the U.S. Geological Survey
(Clark et al., 1990).
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TheSPAMsoftwareprogramusesabinary-encodingalgorithmto classify
materialspresentin thesceneby comparingamplitudeandslopesimilarityof
spectralcurvespointby point. Digitalnumbersaboveandbelowthemeanfor
eachreferencespectrumarestoredasbinaryvalues0 or 1. Thespectrumfor
eachpixel is encodedin thesamewayandcomparedto thereference
spectrum.Materialsmaybemappedby matchingimagespectrato plots
extractedfromtheimageor to plotsselectedfrom aspectrallibrary. Noisein
AVIRISdataimpartsasawtoothpatternin thespectra,whichcommonlyleads
to spectralmismatcheswhenthebinary-encodingtechniqueisused.This
sawtootheffectcanbereducedby smoothing;however,smoothingseriously
reducesthespectralcontrastof narrowabsorptionfeatures,suchastheNd
features.At MountainPass,theSPAMalgorithmwaseffectivefor mapping
distributionsof somematerials,like carbonates,whichhavebroadabsorption
features,butmappingof REE-bearingmaterialswaslesssuccessful,being
limitedto a fewof themajorminedumps.

TheMbandmapprogram allows the discrimination of spectrally unique

materials by use of a least squares band-fitting method. Mbandmap clusters

materials by fit-comparing calibrated AVIRIS spectra to selected image spectra
or to library reference spectra. Multiple absorption bands for each mineral

may be compared in a single mapping run. Images showing band depth,
degree of fit, and band depth fit are generated. Clark and others discuss

details of this technique elsewhere in this volume.

Prior to Mbandmap analysis, AVIRIS radiance digital numbers were

converted to approximate ground reflectance by use of laboratory reflectance
measurements of samples collected from a highway borrow pit that was easily

identified on the image. The Mbandmap reference library consists of

laboratory reflectance data of pure minerals as well as representative rock and

soil samples collected in the field area. The REE reference sample is a
Mountain Pass REE-enriched sample from the U.S. National Museum

Collection. The composition of two REE-bearing minerals in this sample,

bastnaesite and synchysite, was determined by microprobe analysis. Weight

percent Nd averaged 9% in bastnaesite and 8% in synchysite. Because of the
lack of a Sm standard, that element could not be examined by microprobe.

Comparison of laboratory spectral reflectance measurements of the samples
with Nd_O3 and Sm203 spectra corroborated the Nd and Sm composition.

By using Mbandmap, several areas of rare-earth enrichment not previously
discriminated by AVIRIS data were identified in the Mountain Pass mine area.
One small area of REE response occurs south of the active mining area and

may correspond to a carbonatite dike. Spectra extracted from the mapped
area display the four distinctive Nd bands between 580 nm and 870 nm.
Some of the spectra also displayed Sm bands between 1090 and 1550 nm,

although these occur in a wavelength region of greater atmospheric
interference. Dolomite, calcite, and muscovite-bearing granite in rocks near

the carbonatite were also mapped.
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CONCLUSION

SPAM provides the capabilky to _as_ify Spectral-ly simil_ materials by
comparing image spectra to reference spectra, but it is relativeiy insensitive to

narrow features and to subtle band shapedifferences. As a result, only high
concentrates of Nd-bearing minerals could be identified in the Mountain Pass

mine area. However, SPAM is particularly useful for mapping materials that

can only be discriminated by overall curve shape, including the relatively
featureless alkalic rocks associated with carbonatites. Mbandmap allows
improved mapping of carbonate and REE minerals characteristic of

carbonatites because shapes and depths of multiple features can be compared
simultaneously.

For remote sensing detection of specific REE-absorption features,
Mbandmap alone was highly effective. When a more general spectral
classification of surface materials is the objective, a combination of the SPAM

and the Mbandmap methods should provide increased information.
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1. INTRODUCTION

Integrated analysis of imaging spectrometer data and field spectral measurements
were used in conjunction with conventional geologic field mapping to characterize
bedrock and surficial geology at the northern end of Death Valley, California and Nevada.
A knowledge-based expert system was used to automatically produce image maps from
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data showing the principal

surface mineralogy. The imaging spectrometer data show the spatial distribution of

spectrally distinct minerals occurring both as primary rock-forming minerals and as
alteration and weathering products. Field spectral measurements have been used to verify
the mineral maps and field mapping has been used to extend the remote sensing results.

Geographically referenced image-maps produced from these data form new base maps from
which to develop improved understanding of the processes of deposition and erosion

affecting the present land surface.

The "northern Grapevine Mountains" (NGM) study area has been reported on in

numerous papers (Kruse et al., 1992, and references therein). This area is an unnamed
northwestward extension of the range. Most of the research here has concentrated on

mapping of Jurassic-age plutons and associated hydrothermal alteration 0Vrucke et al.,
1984; Kruse, 1988), however, the nature and scope of these studies is much broader,

pertaining to the geologic history and development of the entire Death Valley region.

AVIRIS data for the NGM site were obtained during May 1989. Additional

AVIRIS data were acquired during September 1989 as part of the Geologic Remote
Sensing Field Experiment (GRSFE) (Evans and Arvidson, 1990). The area covered by
these data overlaps slightly with the May 1989 data. Three and one-half AVIRIS scenes

total were analyzed.

2. MINERAL MAPPING WITH AN EXPERT SYSTEM

Many naturally occurring materials can be identified and characterized based on
their reflected-light spectral characteristics. In geology, the exact positions and shapes of
visible and infrared absorption bands are different for different minerals, and reflectance

spectra allow direct identification. The objective of this work was to use an expert
system approach based on known mineral absorption bands to perform automated mineral
mapping using AVIRIS as the first step to detailed geologic mapping and analysis.

Because of the large volume of data that is generated by imaging spectrometers

and its unique spectral/spatial nature, development of automated data reduction and

analysis capabilities is required to allow extraction of useful information. As part of the
research described here, an expert system was developed that allowed automated
identification of Earth surface materials based on their spectral characteristics in imaging

spectrometer data. A spectral library of laboratory spectral reflectance measurements was

119



usedtodevelopageneralizedknowledgebaseforanalysis of visible and infrared
reflectance spectra. Spectral features were digitally extracted from a spectral library
containing a suite of 28 common mln_rais- _Kh_e, unpublished daifi)a-nd_ green and
dry vegetation. Numerical analysis and characterization of the digital reflectance

measurements were used to establish quantitative absorption band criteria (wavelength
position, band depth, FWHM, and asymmetry) for identifying minerals, mineral
mixtures, and vegetation. These procedures are described in detail in Kruse (1990).

The expert system was used to analyze the AVlRIS data to automatically identify
minerals and to map their spatial distributions. The absorption feature positions and

shapes of each reflectance spectrum for each pixel were characterized using the automated
techniques. The features attributed to a specific mineral were assigned weighting factors
between 0 and 1 depending upon whether they were required to identify the mineral (must-
have, weight=l), were likely to occur in the specific mineral (should-have, weight=0.6) or
might be present (may-have, weight--0.3). The weights chosen were arbila'ary and have no
direct physical meaning. The features found in a particular pixel were then compared to
the expected features for each speclrum in the library. For example, if a specific mineral

was expected to have three absorption features with respective weights of 1.0, 0.6, and
0.3 (must-have, should-have, and may-have) and it only had two of the features (say the
1.0 and the 0.3 features) then the probability of occurrence of that specific mineral could
be represented as (1.0+0.3)/(1.0 + 0.6 + 0.3) = 0.68.

To help deal with some of the noise in the AVIRIS data, the results of the
spectral features analysis were then assigned a weight of 0.67 in the final decision images
while the results of binary encoding (Mazer et al., 1988) were assigned a weight of 0.33.
The final products of the expert system analysis were a "continuum-removed" cube with
224 bands containing all of the continuum-removed spectra calculated from the reflectance
data, a "feature" cube containing the wavelength positions, depths, FWHMs, and
asymmetries for each pixel for the ten strongest absorption features, and an "analysis
cube" showing the location and probability of occurrence of 30 minerals based on the
weighted combination of binary encoding, and feature analysis in the expert system.
Given calibrated data, automated analysis using the expert system described above can be
used to produce a preliminary mineral map for the 30 endmembers in less than one hour
for a standard 614 line by 512 pixel AVIRIS scene (on a 30 MIPS-class computer).

3. DISCUSSION OF RESULTS

The expert system and spectral unmixing were run on the NGM and the GRSFE
AVIRIS data. In the one area of overlap (at the northern end of the flightlines) there is
good agreement in the mineral identifications between the two flightlines. Minerals
identified in this area include calcite, dolomite, goethite, hematite, and sericite. The
middle one third of the GRSFE AVIRIS flightline consists primarily of Tertiary volcanic
rocks (Wrucke et al.,1984). This area is dominated in the AVIRIS data by the mineral
hematite, likely the result of surface weathering of mafic minerals in the volcanic rocks.
The expert system also identified occurrences of montmorillonite, and jarosite in this
region. One possible explanation for the montmorillonite concentrations, which appear

oval in shape, is that they are associated with small intrusions. This still requires field
verification. The southern one third of this area is dominated by Paleozoic sediments
(takes, 1977; Wrucke et al., 1984). Detailed examination of the AVIRIS image spectra
combined with the expert system, linear unmixing, and photointerpretation were used to
subdivide these rocks into several different classes. The most obvious of these are nearly
pure dolomite and pure calcite units. Alluvial fans derived from these units show similar

spectral features. Several additional dolomite and calcite and mixed carbonate/iron oxide
units were defined based on their spectral signatures in the AVIRIS data. The distribution
of all these units is remarkably similar to lithologies mapped using classical techniques
for a portion of the range (takes, 1977). The AVIRIS mapping, however, extends over a
much larger region and resulted in high quality mineral maps with a minimum of field
work.

m
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4. CONCLUSIONS

An expert system has been developed that allows automated identification of
Earth surface materials based on their spectral characteristics in imaging spectrometer data.
Automated techniques were developed for the extraction and characterization of absorption

features by analyzing a suite of laboratory spectra of some of the most common minerals.
Critical absorption band characteristics for identification were defined and these were used
to develop facts and rules defining a generalized knowledge base for analysis of reflectance

spectra that allowed the computer to make decisions similar to those that would be made
by an experienced analyst. The expert system produced image maps from AVIRIS data
showing the predominant surface mineralogy. Analysis of the AVIRIS data using the

expert system provides a rapid means of assessing surface mineralogy and the maps

produced accurately represent the surficial geology.

5. ACKNOWLEDGMENTS

Development of the expert system was funded by NASA under grant NAGW-
1601. Additional support for analysis of the AVIRIS data was provided under NASA

grant NAGW-1143. Initial field mapping and acquisition of field spectral measurements
was partially funded by the U. S. Geological Survey while the first author was employed
by that organization. Additional field work was also supported by NAGW-1601.

6. REFERENCES

Evans, D. L., and Arvidson, R. E., 1990, The Geologic Remote Sensing Field
Experiment (GRSFE): Overview of initial results: in proceedings. IGARSS '90,
University of Maryland, College Park, Md., The Institute of Electrical and

Electronics Engineers, Inc. (IEEE), New York, p. 1347.

Kruse, F. A., 1988, Use of Airborne Imaging Spectrometer data to map minerals
associated with hydrothermally altered rocks in the northern Grapevine
Mountains, Nevada and California: Remote Sensing of Environment, v. 24, no.

1, pp. 31-51.

Kruse, F. A., 1990, Artificial Intelligence for Analysis of Imaging Spectrometer Data:
Proceedings. ISPRS Commission VII. Working Group 2: "Analysis of High

Spectral Resolution Imaging Data", Victoria, B. C., Canada, 17-21 September,

1990, p. 59-68.

Kruse, F. A., Lefkoff, A. B., and Dietz, J. B., 1992, Expert-system based mineral
mapping in northern Death Valley, California/Nevada using the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS): Remote Sensing of

_, Special issue on AVIRIS, (in press).

Mazer, A. S.,Martin, M., Lee, M., and Solomon, J. E., 1988, Image processing software
for imaging spectrometry data analysis: Remote Sensing of Environment. v.

24, no. 1, pp. 201-210.

Oakes, E. H., 1977, Geology of the northern Grapevine Mountains, northern Death
Valley, California: Unpublished M.S. Thesis. Universi _tyof Wyoming.

Laramie.

Wrucke, C. T., Werschkey, R. S., Raines, G. L., Blakely, R. J., Hoover, D. B, and
Miller, M. S., 1984, Mineral resources and mineral resource potential of the
Little Sand Spring Wilderness Study Area, Inyo County, California:

Geological Survey Open File Re_tmrt 84-557.20 p.

121



j,222 / ._-

THE EARSEC PROGRAMME IN RELATION TO THE 1991 MAC-EUROPE
CAMPAIGN

Wim J. Looyen, Jean Verdebout, Benny M. Sorensen, Giancarlo Maracci,

Guido Schmuck, Alois J. Sieber

Commission of the European Communities
Joint Research Centre

Institute for Remote Sensing Applications

Advanced Techniques Unit

I-21020 Ispra (Varese)

Italy

1. INTRODUCTION

The Joint Research Centre (JRC) of the European Commission and the

European Space Agency (ESA) have initiated airborne remote sensing

activities through a multi-year experiment plan. The project is called:

EARSEC (European Airborne Remote Sensing Capabilities). The key-element

within EARSEC is the establishment of an operational airborne system
which includes:

- a fully polarized high spatial resolution C-and L-band SAR system;
- a multi-channel high spectral resolution imaging spectrometer.

The objectives are:

to test and verify these highly innovative system types with respect to
data processing, calibration and data interpretation;

to test and verify the SAR system and the imaging spectrometer in

support of (operational) projects (e.g. monitoring of agricultural
production and tropical biomass burning);

to complement and support ERS-1 pilot projects over European test
sites.

2. EARSEC 1991 PROGRAMME

In 1990 JRC sent out a Call for Proposals for:

the acquisition of remotely sensed data;
campaign management;

the improvement in existing airborne imaging spectrometers and
airborne imaging radars;

the improvement in existing imaging spectrometry and imaging radar
data processors;
collaborative contributions.

tn t991 EARSEC undertook the following activities:

an airborne campaign using the GER Ii imaging spectrometer, flown by
the German Aerospace Research Establishment (DLR), the CAESAR

multispectral scanner (Ccd Airborne Experimental Scanner for

Applications in Remote Sensing), flown by the Dutch National
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Aerospace Laboratory (NLR). The campaign included aerial

photography and ground measurements;

improvement of the GER II imaging spectrometer to a new generation;
state-of-art sensor called DAIS-7915;

improvement to full polarization of the single polarized C-band SAR

owned by the Technical University of Denmark.

2.1. EARSEC AIRBORNE CAMPAIGN 1991

The EARSEC airborne campaign took place simultaneously with the

MAC Europe campaign to make use of the acquired AIRSAR data and
AVIRIS and TMS data for intercalibration Two test sites are of specific

interest:

The Villingen-Schwenningen area, near Freiburg, in the German Black

Forest, where major research is conducted with respect to the effects on
restabilisation measures and atmospheric deposition on N- and S-

cycling of the eco- and hydrosphere;
The Ardeche area, in France, where basic research is conducted with

respect to the identification of basic soil types, estimation of canopy

biochemistry of mediterranean woods and detection of relative

amounts of vegetation and soils present in a ground resolution cell.

This paper only discusses the Villingen-Scwenningen area.

An extensive ground-truth measurement campaign was set up to
accommodate both the airborne measurements acquired within the

framework of the MAC-Europe and EARSEC campaigns.

The main objectives for the optical data analysis of the campaign are:

to assess the data quality and calibration of the different sensors in

terms of Signal-to-Noise ratio (SNR) and Noise-Equivalent-Radiance

(NER), to gain experience of importance for the improvement of an

European i magi ng spectrometer;
to assess CAESAR's bidirectional reflectance properties for canopy

structure evaluation by studying the sun-target interaction, validating

physically based bidirectional reflectance models for homogeneous and

i nhomogeneous surfaces, and by retrieving biological parameters;
to assess the capabilities of the imaging spectrometer for the extraction

of biochemical components in vegetated areas.

2.2. IMPROVEMENT OF THE GER II IMAGING SPECTROMETER

The new European sensor will be a significant improvement of the

GER It imaging spectrometer. It will consist of 79 channels covering the

spectral range from 0.4 to 12.3 lam in semicontiguous intervals. The
absolute calibration accuracy of the system is guaranleed 1o be lessthan 5

percent. Results from the 1991 campaigns will be used to steer the

improvement with respect to data quality and data processing.

3. DATA COLLECTION

During July 1991 the following airborne data were acquired:

Date Sensor

July 5 AVIRtS, TMS, ER-2 aerial photography
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July 18

July 22

July 23

July29

August 21

CAESAR

AVIRIS, TMS, ER-2 aerial photography
GER tl

AVIRIS, TMS, ER-2 aerial photography
Aerial photography

Ground-truth measurements were collected from 7 to 22 June and from 7 to

22 July.

4. DATA ANALYSIS

Preliminary results regarding the three research objectives are shown

below. As far as the data quality is concerned: the SNR and NER [p W cm-2

sr _1pm-1] were calculated for three sensors, AVIRIS (only July 5), GER II and

CAESAR using a high reflectance calibration target, a homogeneous sandy
sports field.

sensor ._ [nm] SNR NER resolution [m]

AVI RIS 548.6 68 0.104 20

GER I1 549.5 137. 0.028 10

CAESAR 550 38 0.098 1.25
AVIRIS 667.5 30 20

GER II 669 73 0.053 10

CAESAR 670 63 0.086 1.25

AVI RIS 872 70 0.108 20

GER II 860 66 0.064 10

CAESAR 870 73 0.074 1.25

AVIRIS 2030 5 0.136 20
GER II 2030 17. 0.033 10

AVIRIS 2209 7.4 0.088 20

GER II 2212 22 0.033 10

AVIRIS 2406 0.79 0.229 20

GER II 2412 6.5 0.634 10

More detailed results will be presented during the workshop.

5. CONCLUSIONS

The current data set allows only for a study of data quality and calibration
aspects. However, for that purpose, we consider this data set to be of

importance. Especially with regard to the improvement of the GER

imaging spectrometer, useful conclusions can be drawn to further improve
the capabilities of the European spectrometer. The SNR's and NER's need to

be improved in order to achieve the design goals of SNR's higher than 150
for the VISINIR region and higher than 80 for the SWIRIMIRITIR region.

The data set also allows for a study of bidirect!onal information. Research in
this area contributes to the development of MODIS-T and MISR.

The extraction of biochemical components in vegetated areas can be
achieved by using the high spectral resolution of the AVIRIS. Research

should be conducted into the area of atmospheric modelling, to fully
explore the benefits of the AVIRIS data_

At present, the final results are not yet available. Major research in the area

is established by a program exchange with U.S. scientists, this summer. By
that time, all the ground truth data will be available.
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1. INTRODUCTION

In the framework of the MAC Europe campaign, conducted in the summer of 1991, the

Matera test site, located in southern Italy, has been overflown by the NASA ER-2, equipped with
the TMS and AVIRIS sensors, and the NASA DC-8, equipped with AIRSAR and TOPSAR. The

Matera test site extends over an area of about 128 km 2 and includes a fiat area that is partially
bounded in the northern and southern part by a hilly region.

Due to a tacan error, which caused the plane to go slightly off course, and to scene obscu-

ration by 30% cumulus, only a limited number of images are useful for the test site analysis. Con-
sequently, one image taken on June 20 and two images on July 20 have been requested.

This paper is intended to present the preliminary analysis of TMS/AVIRIS data, which is

performed in order to integrate these data with those obtained by the SAR system.

2. GROUND TRUTH

During the airborne campaign, a ground-truth campaign has been conducted

(CO.RI.S.T.A. 1991) to get the following information:
• Land cover over 50 different test areas (Fig. 1).

• Type, state, and texture of the vegetation.
• Phenology and diseases.
• Soil humidity and rugosity (Table 1 and Fig. 2).

• Photographs to show the main aspects of the test areas (Fig. 3).

Table 2 lists the main species existing over the areas, with the exception of those covered

by bare soil, where the active and passive calibrators were deployed. A digital elevation model has
been obtained at a scale of 1:25,000, using the digital data produced by the Italian Geographic

Military Institute, and has been registered with respect to the ground-truth maps.

3. TMS/AVIRIS DATA ANALYSIS

Several papers have already emphasized the need to integrate morphological and textural

land information with remotely sensed multispectral data, in order to improve classification results.

In the first part of our paper, the geographic information system of the area will be sum-

marized and the procedure for geometric correction and co-registration of TMS and AVIRIS data
will be described, taking into account the geometry of the observation and the ancillary data of the

airplane. The images will then be introduced in the geographic information system as additional

layers, in order to proceed in the classification and statistical analysis of the data and to obtain the

spectral signature of different covers.

The experience has shown that there are many different techniques for obtaining the

training statistics and for integrating spectral with textural data (G. Asrar 1989). In addition to the
need for improving the knowledge of the spectral signature of different land covers, there is also the

need for identifying the optimal combination of bands for land cover classification. It is well-
known that two basic techniques exist for defining training classes (supervised and unsupervised)

and they represent extremes both in terms of the method of defining the training sample and in
terms of the method of grouping the training sample into unimodal training classes. Due to this

contrast, the possibility exists for four intermediate steps between the two extremes in both parts of

the training procedure (P.H. Swain).

In this paper, a multicluster blocks approach will be used with multiple clustering of

heterogeneous blocks. This requires the division of the training sample into a series of areas, each

containing a mixture of several cover types, which are clustered separately. The different cluster
classes must then be combined into meaningful training classes, using a bispectral plot with differ-

ent transformed divergence values, as a measure of the distance between classes in multidimen-
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sionalspace.Following the classification of the test area, a statistical analysis will be conducted of
the AVIRIS 224 channels.
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Table 1. Table for Analysis of Soil Profiles

Digitalized
Point Number

Maximum

Value
Mean Value

|

26.927

Standard

Deviation
Variation

Coefficient

6A 673 45.14 11.278 0.419

6B 660 68.86 26.249 17.403 0.663
98610A

10B 1097

llA 800

lIB

21A

1292

1080

902

1294

980

1329

1250

21B

105.04 45.683 22.771 O.498

82.35 43.511 21.281 0.489

39.37 19.01 9.576 0.504

91 33.336 17.163 0.515
87.7

96.28

76.823A

23B 64.3
41A

50.333

47.375

40.829

33.6

33.225

40.368

84.2
41B

21.028

25.394

17.09

12.65

22.534

22.805

_rofile.

94.8

Note: A = parallel profile and B = perpendicular

0.418

0.536

0.419

0.376

0.678

0.565

Table 2. Main Species Existing Over the Areas

Where Calibrators Were Deployed

Refl. # [

1

2

3

4

5

6

7

8

9

10

11

12

13

General Description [

Grass meadow of clover

Physiological, maturating, distichous, i

barley growing

Physiological, maturating, distichous

barley growing

Lacteal-waxy, maturating, hard
_owing

Waxy, maturating, hard wheat
growing

NNE-SSW furrow soil

Waxy, maturating, scattered seed

broadcast, oat growing

Waxy, maturating, hard wheat

growing

Waxy, maturating, hard wheat

growing
Naturally grassed soil

Naturally grassed soil

Lacteal-waxy, maturating, hard

wheat growing

Lacteal-waxy, maturating, hard

wheat growing

Refl. #

15

16

18

21

23

25

26

27

29

31

39

40

41

General Description

Waxy, maturating, hard wheat
growing

Physiological, maturating,

distichous, barley growing

Physiological-waxy, maturating,
distichous, barley growing

Ploughed soil

N-S climbed olive-grow

Physiological, maturating, barley
growing

Physiological, maturating, hard

wheat owin

Waxy-physiological, maturating,

oat growing

Physiological, maturating,

distichous, barley growing

Waxy, maturating, hard wheat

growing

Waxy, maturating, hard wheat
growing

Waxy, maturating, hard wheat

growing

E-W ploughed soil
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Fig. I, Locations of test areas.
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Fig. 2. Variation for each profile of the four
parameters: maximum value, mean value,
standard deviation, and variation coefficient.
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Fig. 3. Photographs of a test area.
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1.0 INTRODUCTION

Urbanization is expanding on every continent. Although
urban/industrial areas occupy a small percentage of the total landscape of the
earth, their influence extends far beyond their borders, affecting terrestrial,

aquatic, and atmospheric systems globally. Yet little has been done to
characterize urban ecosystems or their linkages to other systems horizontally

or vertically. With remote sensing we now have the tools to characterize,
monitor, and model urban landscapes world-wide. However, the remote

sensing performed on cities so far has concentrated on land-use patterns as
distinct from land-cover or composition. The popular Anderson system

(Anderson et. al. 1976) is entirely land-use oriented in urban areas.

This paper begins with the premise that characterizing the

biophysical composition of urban environments is fundamental to
understanding urban/industrial ecosystems, and, in turn, supports the
modeling of other systems interfacing with urban systems. Further, it is
contended that remote sensing is a tool poised to provide the biophysical

composition data to characterize urban landscapes.

2.0 A V-I-S MODEL

A Vegetation-Impervious Surface-Soil (V-I-S) model has been

proposed (Ridd, in press) to characterize urban environments. These three
components represent a basic distinction of urban biophysical variables,
which exhibit highly contrasting influences on energ.y and moisture flux.
They provide a basis for many science and engineenng models, such as
runoff, transpiration, heat island, etc. Figure I shows the V-I-S model.
Figure 2 suggests the V-I-S composition for some familiar urban and near-
urban environments. If remote sensing can distinguish these compositional

variables with accuracy, from the pixel on up to landscape aggregations,
urban ecosystem modeling will be advanced substantially.

TM and SPOT data have been inadequate in this effort. Neither

system has been shown to distinguish soil and impervious surface
adequately. This paper explores the use of AVIRIS data, coupled with a
neural network classifier toward a better distinction and mapping of V-I-S

composition of urban places.

3.0 AVIRIS and NEURAL NETWORKS

In an effort better to distinguish soil from impervious surfaces both

the spectral resolution and the classification procedure are explored. Using
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WTJ GenIsis software, characteristic spectral bands were selected from an

AVIRIS data set collected over Pasadena on 20 September 1989. By
examining the spectral reflectance curves from sample sims, signatures were
generated to represent eight categories of cover composition in the urban
and nearby environments: Vts (trees and shrubs), Vgg (green grass), Vgd
(dry grass), Id (dark impervious), I1 (light impervious), Ib (building roofs),
S (soil), and W (water). The spectral bands deemed most diagnostic were
selected, namely: AVIRIS 12-13 (508-518 nm), AV 29-31 (675-695 nm),
AV 50-52 (844-863 nm), AV 99-I00 (1263-1273 nm), AV 128-130 (1550-
1569 nm), AV 145-147 (1718-1728 nm), AV 180-182 (2020-2040 nm),
AV 200-202 (2219-2238 nm). To keep processing time within reason,
these were combined and entered into the classifier as follows: channel 1
AV 12-13; channel 2, AV 29-31; channel 3, AV 50-52; channel 4, AV 99-
100; channel 5, ratio of AV 145-147/AV 128-130; channel 6, ratio of AV
200-202/AV 180-182.

4.0 RESULTS

Preliminary results are promising. To begin with, merely displaying
the Pasadena AVRIS data in a three-channel composite image, using
combinations of the above bands, and some others, draws a distinction

between soil and impervious surfaces. Clearly the narrow-band sensor is
able to distinguish these common urban substances more effectively than
broad-band TM and SPOT sensors.

Neural network classification is more than a clustering procedure. It
involves a sophisticated internal reiterative process on the basis of spectral
signatures per pixel, plus a textural evaluation of pixel groups to derive the
final classes. The paper summarizes and displays the results.
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Figure 1. The V-I-S model.
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Figure 2. Some familiar urban and ne_x-urban environments placed in
the ternary V-I-S model.

131



b

Temporal Variation in Spectral Detection Thresholds
of Substrate and Vegetation in AVIRIS Images

N94-16706 '

Donald E. Sabol Jr., Dar Roberts, Milton Smith, and John Adams

Department of Geological Sciences, AJ-20
University of Washington

Seattle, WA 98195

The ability to map changes over large surface areas over time is one of the

advantages in using remote sensing as a monitoring tool, Temporal changes in the
surface may be gradual, making them difficult to detect in the short-term, and because

they commonly occur at the subpixel scale, they may be difficult to detect in the long-
term as well. Also, subtle changes may be real or merely an artifact of image noise. It is,
therefore, necessary to understand the factors that limit the detection of surface materials

in evaluating temporal data. In this study, we evaluated and compared the spectral

detectability of vegetation and soil in the 1990 July and October AVIRIS data of Jasper
Ridge, CA.

The spectral detectability of subpixel material in an image depends upon its
spectral contrast with background materials, its relative abundance, instrumental noise,
and local atmospheric/topographic effects (Sabol et al. 1992). Spectral mixture analysis
was used in this study to identify spectral endmembers and determine their spectral
fractions for each image pixel. The minimal requirements for potentially physically
meaningful fractions are: 1) the fractions are between 0 and 1, and 2) the residuals are

low (within the level of system noise) (Smith et al., 1985; Adams et al., 1989). However,
Smith et al. [1990] noted that the band residuals decrease as the number of endmembers

increases, even when the additional endmcmbcrs are not actually present in the image. In
this case, the endmember fractions may or may not be realistic, depending on the spectra
involved. Additionally, Sabol et al. [1992] noted that the spectral detectability of targets
generally decreases as the number of endmembers increases. Therefore, fractions are
more physically meaningful, and detectability is enhanced, when the image is modeled
using the minimal number of endmembers that result in realistic fractions and low
residuals.

In past applications of spectral mixture analysis, only a few endmembers
(usually fewer than five) have been used to model a large scene to preclude inclusion of
extraneous endmembers. This, however, does not take into account the spectral

variability of the surface components that each endmember represents. For example,
earlier images of Jasper Ridge have been modeled as mixtures of a soil, green vegetation,
senescent vegetation, and shade endmembers (Roberts et al. [1990, 1991], Sabol et al.
[1991]). These endmembers, in fact, are "representative" of a type of surface component.
In this study, to allow for spectral variability of the components in the scene, a number of
spectra representing the range of spectral variation of each component were included in
the spectral library and organized as classes. The library (466 spectra) included a green
vegetation class, as well as soil, senescent vegetation and shade classes. To find the

appropriate endmembers, each pixei was modeled as mixtures of 2 and 3 components,
allowing a maximum of one spectrum from each class. The endmembers for each pixel
were indicated when the fewest number of endmembers was needed to have realistic
fractions and low residuals.

The resultant endmembers were then used to determine the best-case detection

threshold of each component (excluding shade). A general outline of the analysis
follows:

1) the images were calibrated to reflectance using the methods described by Roberts et
al. [1991],
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2) theimagesweremodeledasmixturesofendmembergroups(describedabove),
3) thesignal-to-noiseratiosforeachimageweredeterminedusingthemethoddescribed

bySaboleta1.[1991],
4) thedetectionthresholdsforthedifferentsoilandvegetationspectrainthegrasslands

weredeterminedforeachcombinationofendmembersusingthemethodsdescribed
Saboleta1.[1990,1992].

5) thefractionsanddetectionthresholdsfromthetwodatasetswerethencomparedto
ascertainactualchangesinsurfacecompositionandchangesduetoothereffectssuch
asthe change in solar illumination angle.

Two general types of shade were found in the image: photometric shade and

vegetation shade. Photometric shade, spectrally fiat (near zero reflectance) at all but the
lower wavelengths, typically occurred in areas where the fraction of green vegetation was
minimal (i.e. senescent grasslands, roads, lakes), while vegetation shade, spectrally
similar to green vegetation, but with greatly reduced reflectance (maximum reflectance of

-30 %), was a prominent endmember in areas containing significant fractions of green
vegetation. Roberts et al. (1991) showed that vegetation-shade is caused by the
transmission and scattering of incident radiation through the leaves, and by solving for
the shade component, the spectral signature of vegetation-shade for a given area can be
determined. To get a more appropriate shade spectrum and to account for the non-
linearities in spectral mixing due to green vegetation, we used the methods described by
Roberts et al. [1991] to determine the vegetation-shade endmember for the several areas

in the image. These spectra were incorporated into the detectability analysis.

A preliminary analysis indicates that for much of the July and October images,

2 image-endmember combinations yielded the most reasonable models. Although the
fractions and endmembers are similar between the two images, some subtle differences

were observed. For example, a portion of the grasslands at the crest of Jasper Ridge were
modeled as a mixture of vegetation shade and senescent vegetation in the July image.

This is interpreted as short, shadowed green grass among the taller dry grass. In the
October image, the same area was modeled as a mixture of photometric shade and
senescent vegetation, indicating that the green grass in the July image had senesced.
The spectral signature of the exposed soil in this area was not included as an endmember
because it was mimicked by mixtures of the endmembers. Therefore, band residuals
were still necessary for detection of materials that were spectrally unique at only a few

bands.

By allowing each pixel to be modeled by the most appropriate endmembers in

the spectral library, the spectral variability of each surface component throughout an
image can be more closely approximated in image analysis. The detectability of any
endmember in a pixel, therefore, varied across the image. Soil, for example, which can

be represented by a different spectrum in other image pixels, had a different detection
threshold from pixel to pixel due to: 1) varying fractions, and 2) varying background
endmembers. This data, when combined with spectral mixture analysis in evaluating

temporal data, provides a methodology for separating actual changes in surface
composition from uncertainties due to system noise and local temporal changes, such as

change in the angle of solar illumination.
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1. INTRODUCTION

An AVIRIS data set acquired over Canal Flats, B.C., on August 14, 1990, was

used for the purpose of developing methodologies for surface reflectance retrieval using

the 5S atmospheric code (Tanr6 et al., 1990). A _ene of Rogers Dry Lake, California

(July 23, 1990), acquired within three weeks of the Canal Flats scene, was used as a

potential reference for radiometric calibration purposes and for comparison with other
studies using primarily LOWTRAN7 (Green et al., 1991). Previous attempts at surface
reflectance rctrieval indicated that reflectance values in the gaseous absorption bands had

the poorest accuracy (Teillet et al., 1991). Modifications to 5S to use a 1 nm step size,
in order to make fuller use of the 20 cm ' resolution of the gaseous absorption data,

resulted in some improvement in the accuracy of the retrieved surface reflectance.

Estimates of prccipitable water vapour using non-linear least squares regression (Gao and

Goctz, 1990) and simple ratioing techniques such as the CIBR (Continuum Interpolated

Band Ratio) technique (Green et al., 1989) or the narrow/wide technique (Frouin et al.,

1990), which relate ratios of combinations of bands to prccipitable water vapour through
calibration curves, were found to vary widely. The estimates depended on the bands used

for the estimation; none provided entirely satisfactory surface reflectance curves.

2. METItODOLOGY

The original intent was to use the Rogers Dry Lake scene and a corresponding

PIDAS (Portable Inslant Display and Analysis Spectrometer) reflectance curve to provide
calibration coefficients for the Canal Flats scene. Radiometric calibration factors were

derived by assuming that all of the discrepancy between the 5S predicted radiance and the
AVIRIS radiance data could be attributed to calibration uncertainties, as a multiplicative

gain factor. Application of these derived calibration coefficients to the AVIRIS data
resultecl in very smooth reflectance curve retrievals throughout the Rogers Dry Lake
scene, liowevcr, the effects of even small variations in water vapour within that scene

were detectable. Though the reflectance curves retrieved from the Canal Flats scene were

smoother using the Rogers Dry Lake calibration coefficients, irregularities were
introduced. While some of the irregularities were again in the water vapour absorption

regions, others were attributable to image to image differences in calibration.

The nalure of these calibration irregularities would indicate that, as a first

approximation, calibralion uncertainties could be assumed to be constant over the

wavelength interval used to estimate water vapour amount. Should such an assumption
be reasonable, it would facilitate reliable estimation of water vapour despite these

_mccrtainties. This assumption, along with the assumption that the surface reflectance

curve varies linearly over the interval, and with the intrinsic atmospheric reflectance

varying linearly as well, results in a combined linear curve. The slope and intercept are
unknown and require cslimation, together with the estimation of water vapour. Since the
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individualeffects are not distinguishable, the parameters can not necessarily be interpreted
as truc surface reflectance unless optical depth and calibration are known. Since the 5S

code treats scattering and absorption separately, uncertainties in optical depth have not

significantly altered the estimate of water vapour amount. Combining the intrinsic
atmospheric reflectance curve with the linear surface reflectance curve, for estimation

purposes only, produces a slightly better fit for dark targets, such as water, and is in better

agreement with the corresponding CIBR type calculation. This can be explained by the
treatment of calibration uncertainties.

Least squares regression achieves optimal parameter estimates when the

underlying error distribution is Gaussian. However, the method becomes unreliable with

even one outlier present. Since outliers and non-Gaussian noise are common occurrences,
robust regression methods with a maximum breakdo'wn point as low as 50% have been

developed (Roussceuw and Leroy, 1987), and applied to image analysis (Mcer et al.,
1991). These methods are suitable if the researcher has confidence that at least 50% of the

(l_tta points are "good". "Good" data points are those for which the above assumptions

hold, and for which the explanatory model (i.e., the 5S atmospheric code and the gaseous

model in particular) is valid. Since gaseous transmittance is poorly modelled in the

wings of the water vapour absorption region (Frouin ctal., 1990), only a limited number
of"good" bands are likely; i.e., the 940 nm, 1130 nm, anti bands on the shoulder where

gaseous absorption is negligible. Assuming that this small set of bands is "good",

robust methods were used to identify other potential bands. This resulting set of
consislent bands is dependent on the 5S gaseous model, as well as the AVIRIS calibration

at the time of the overflight, and on any deviations from a linear reflectance curve

assumplion for the targets under investigation.

3. RESULTS

First, a strong shift in calibration was found between the 1131 and 1141 nm

bands in both scenes, making it impossible to bridge the ! 130 continuum. Next, other

bands within the 940 continuum were excluded due to poor fit (outliers), leaving the
following candidates (used for subsequent comparisons): 872, 882,939, 1035, 1045, and

1055 nm. When considering signatures where liquid water absorption is minimal, one

finds that the set of consistent bands is larger, and for the opposite extreme of irrigated

fickts, the 1035 and possibly the 1045 nm bands should be removed. Since the 939 nm

band is the only band from the above set influenced by water vapour absorption, it is nol

possible to test it as an outlier. Hence, the water vapour estimates based on the

consistent set were compared to the estimate with the 1131 nm band included, and found

,_ be within 3% of the original estimate for all sample signaturcs tested (minimum of

10xl0 spatial pixels in each case). That the estimates were consistently lower when the

1131 nm band was included indicates that calibration or the gaseous absorption model is a

more serious shortcoming than that of atmospheric scattering and absorption being
calculaled separately by 5S. For the Canal Flats scene, the 930 nm band could be added

Io the consistent set, though not for the Rogers Dry Lake scene. This variation in

consislent bands is attributed to calibration differences, rather than to the gaseous mr×]el.

With both the 920 and 949 nm bands identified as extremely significant outliers,

whose effects do not cancel, the narrow/wide technique (911 - 959 nm) would not bc
expected to perform well. Comparing the estimates based on the narrow/wide bands to

the above estimates, we found that they were within the 20% accuracy between the

narrow/wide estimate and radiosonde data reported by Frouin ct al. (1990). The CIBR

uses the 997 nm band, which was found to bc unsuitable for the forested targets studied,

due to liquid water absorption. Water vapour estimates based on the CIBR bands differed

by only 1% for the Rogers Dry Lake scene, but larger diffcrences of up to 4% in forested
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sectionsof CanalFlatsand8%foranirrigatedfieldwereobserved.Oncethebandsare
selected,estimatedvaluesforwatervapourwerecomparableforthedifferentmethodolo-
gies:simpleratioing(1 equationand1unknown);linearreflectanceassumption(3
equationsand3 unknowns,but ignorescalibrationuncertainties);combinedlinear
assumption(3equationsand3unknowns);non-linearestimationusingmorebandsthan
unknowns.

4. CONCLUSIONS

Due to irregularities in calibration, the appropriate bands for water vapour

estimation may differ from scene to scene. The linearity of the surface reflectance curves

for targets within the scene, and the choice of atmospheric code, may also influence the
selection. The quality of the water vapour estimate is limited by the accuracy of the

gaseous transmittance model used. While the identification of a set of "good" bands and
robust estimation techniques provide the tools for band selection, a three-band calculation

would be satisfactory for the purpose of studying spatial variation in water vapour. For
surface reflectance retrieval, improvements in the gaseous transmittance model and

methods to address the calibration problem in the AVIRIS data are required.
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1.0 Introduction

Measurement noise and imperfect atmospheric correction translate directly into errors in ;
the determination of the surficial abundance of materials from imaging spectrometer !

data. The effects of errors On abundance rec0v_ have b_ investigatedpr_ousiy ._
using Monte Carlo simulation methods by Sabol et. al. [1]. The drawback of the Monte

Carlo approach is that thousands of trials are needed to develop good statistics on the __

probable error in abundance recovery. This computational burden invariably limits the

number of scenarios of interest that can practically be investigated.

A more efficient approach is based on covariance analysis. The covariance analysis

approach expresses errors in abundance as a function of noise in the spectral

measurements and provides a closed form result eliminating the need for multiple trials. :

In this paper, Monte Carlo simulation and covariance analysis are used to predict

confidence limits for abundance recovery for a scenario which is modeled as being
derived from AVIRIS.

2.0 Abundance Recovery Error Derivation

The visible and near infrared reflectance vector of a surface, R, is the product of an n x

m matrix M of endmember spectra and an m x 1 abundance vector A

R = MA

For simplicity, we assume Lambertian properties for the modeled pixel surface, and we

also assume that the surface is level. With these assumptions, we use the n x n diagonal

matrices L and T to represent the surface irradiance and atmosph_ic transmission

between the surface and the sensor respectively. The ground reflected radiance at the

sensor is represented by the n x 1 vector LTR = LTMA.

In addition to the multiplicative effects on the reflectance vector, upwelling light from

thermal radiation and atmospheric scattering is represented by an additive term given by

the n x 1 vector __U. The total upward radiance (represented by the n x 1 vector D) is

now given as

e_

_J

s_

E_
m

r

D=TLMA+U+N

where N is an n x 1 zero mean additive white Gaussian noise vector with covariance

ZN = 021 where I is the n x n identity matrix and o 2 is the noise variance.

The first step in the recovery process is estimation of the atmospheric contributions,

denoted by "Ff_ and _. Errors in estimation of these quantities will tend to bias

abundance recovery results as well as increase the size of the resultant error distribution.
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From a theoretical standpoint, it is useful to consider the case where the atmospheric

contributions are perfectly estimated, and the only error is due to random effects such as

sensor noise. The equation with the atmospheric effects removed becomes

(TL) -I (D-_U) = MA+(TL) -I N

The least squares estimate _ is given by the well known result [2]

_,= (MTM) -]M T ((TL) -t(D-U)) = A+(MTM) -'MT (TL)-' N

The variance_covariance matrix of_ is given by

Var(8) =(MTM)-I M T(TL) -I Xlq ((MTM) -I M T (TL)-')T

The square roots of the eigenvalues of this matrix are the semi-axes of a

hyperdimensional ellipsoid which describes the error distribution of the recovered
abundances. The eigenvectors determine the orientation of the ellipsoid. This

representation of the abundance estimation error provides a closed form solution for
assessing the confidence that the true abundance vector lies within particular limits.

3.0 Simulation Results
Laboratory spectra of a red soil, creosote leaves and dry grass were used to simulate a

mixed pixel. The resulting mixed pixel reflectance spectrum was convolved with gains

and offsets previously calculated by a simulated empirical line method calibration [3] of

the same pixel. The earlier simulation convolved the mixed pixel with the
multiplicative and additive effects of a mid-latitude summer atmosphere illuminated
with a solar zenith angle of 30 ° as calculated by the LOWTRAN 7 radiative transfer

code. The instrumental response of AVIRIS was simulated for the input radiance vector

with the output vector consisting of 224 digital numbers corresponding to AVIRIS

channels. Additive noise with standard deviation of 5 DN (representing AVIRIS

performance circa 1987-1988) was added to the simulated raw AVIRIS data, and the
same gains and offsets were used to convert the data back to reflectance providing a

perfect atmospheric correction. Finally, the abundances were solved for using singular
value decomposition based least squares techniques [4].

Figure la shows the projection of the simulation derived error distribution onto 2D

planes relating errors in pairs of abundance measurements. Figure lb shows the
theoretical 95% confidence ellipsoid projected onto 2D planes for the same scenario. In

order to obtain results comparable to the theoretical error distributions, approximately

10000 trials were needed to obtain the required statistics. The run-time for 10000 trials

is approximately two orders of magnitude greater than the theoretical calculation (e.g.

1000 sec vs. 10 sec on a 486 PC).

4.0 Conclusion

The example shown here demonstrates that the orientation and size of an abundance

recovery error ellipsoid can be determined accurately with covariance analysis. Tiffs

approach eliminates the need to generate statistics from which to calculate the error
covariance matrix reducing the calculation to a small fraction of the computational

burden of the Monte Carlo simulation approach. In further investigations that simulated

the current, higher SNR configuration of AVIRIS, the abundance recovery error is
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significantlyreduced. Thus, given a higher SNR sensor system, greater confidence can
be invested in spectral mixture studies.
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INTRODUCTION
F

Both physiological and ecosystem structural information may be
derived from diurnal images. Structural information may be inferred from

changes in canopy shadows between images and from changes in spectral

composition due to changes in proportions of subpixei mixing resulting from the
differences in sun/view angles. Physiological processes having diurnal scales

also may be measurable if a stable basis for spectral comparison can be
established. Six diurnal images of an area east of Mt. Shasta, CA were

acquired on September 22, I989. This unique diurnal data set provided an

opportunity to test the consistency of endmember fractions and residuals. We

expected that shade endmember abundances would show the greatest change as

lighting geometry changed and less change in the normalized fractional

proportion of other endmembers. Diurnal changes in spectral features related

to physiological characteristics may be identifiable as changes in wavelength

specific residuals.

METHODS

Muititemporal images of AVIRIS data were acquired at 9.97, 10.36,

10.96, 12.97, 13.36, and 13.96 hr local solar time. This resulted in three pairs of

images (flight 17; runs 2, 3, 5, 11, 23, 14; segment 1) roughly matched in time
before and after local solar noon (A 4.2rain, M6.8 min, and A4.2min). The flight

schedule was chosen to maximize the diurnal separation between the first and

last flightlines (3.99hr) but to minimize the changes in canopy shading due to
the diurnal trajectory of the solar zenith angle. The study area included

discontinuous ponderosa pine forests, recent clear cuts, Great Basin sagebrush
communities, meadows, and narrow riparian zones along drainages. The terrain

is relatively fiat over most of the area. Sky conditions measured with a Regan
Radiometer were clear with optical depth at the theoretical maximum

(389km), with low aersols (876.7mbar, 255.8matm 03). Overflights were

acquired at the end of the dry Mediterranean summer about one week after a
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relatively heavy precipitation event. Leaf area index was determined from

three sites within the flightline from fisheye photographs. Tree height,
DBH, and stand density was measured in several stands and biomass estimated

from allometric relationships.

Spectral mixture analysis was performed on each of the six AVIRIS

images. The iterative mixture analysis resulted in the selection of the same set

of library endmembers for each image and converged upon similar gains and
offsets for each calibration.

RESULTS

We found that most of the region could be modeled by four endmembers,

a green vegetation type characteristic of ponderosa pine foliage in the library,
shade, and two nonphotosynthetic endmembers: one having the characteristics
of "stems," i.e., resembling bark or having a redish-brown cast, and the other

having spectral characteristics consistent with weathered litter. In all cases,

dry plant material rather than soils or mineral samples was selected from the

spectral library as the best fit to the image endmembers. This is the first

example that we are aware of in which more than one nonphotosynthetic

canopy component has been identified in AVIRIS images. The

nonphotosynthetic fractions are generally negatively correlated, although

different community types (dry meadows to mature forests) characteristically

fall within restricted regions of the data volume. The two nonphotosynthetic

fractions exhibit independent relationships with the green vegetation fraction.

Thus, the fraction patterns of these endmembers are independent and appear to
be community specific. This suggests that endmember fractions can provide a
good method for differentiating communties.

As expected, the shade endmember showed the largest magnitude of
diurnal change, although patterns were not symmetric about solar noon and

appeared to relate more consistently to community types and structure

differences, Normalized green and nonpyhotosynthetic vegetation fractions

(rescaled without the shade fraction) exhibited a smaller range of diurnal

variation. Figure 1 shows the diurnal pattern in the green vegetation

endmember abundances we observed for ten community types. The magnitudes of

diurnal patterns were community specific and consistent for given types. They

did not exhibit diurnal symmetry expected from sun angle changes. Least

evidence of diurnal changes was found in dry meadows and greatest in mature
forests. Forests exhibited a trend for decreasing green vegetation fraction

during the four hour period. The magnitude of the fraction change appears to be

greater than can be explained by calibration errors, although the basis is not

understood. These patterns may possibly result from different canopy

components being illuminated as sun angles change.
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Figure 1. Changes in GVFS in six AVIRIS images of ten areas near Shasta, California. The numbered
times correspond to 1) 9.97, 2) 10.36, 3) 10.96, 4) 12.97, 5)13.36, and 6) 13.96 local solar time. The
numbered areas correspond to 1) 1st recent clear cut 2) 2nd recent clear cut, 3) 1st older clear cut, 4) 2nd
older clear cut, 2) 1st mature second growth ponderosa pine forest, 6) 2nd mature ponderosa pine forest,

7) ponderosa pine plantation, 8) Ist young ponderosa pine forest, 9) 2nd young ponderosa pine forest, and

10) meadow.
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1. Introduction

Atmospheric correction of imaging spectroscopy data is required for quantitative
analysis. Different models have been proposed for atmospheric correction of these data,
refer to (Bosch et a1.1990 and Conel et al. 1987) for discussion of LOWTRAN
atmospheric correction model and other models. LOWTRAN-7 is a low-resolution model
and computer code for predicting atmospheric transmittance and background radiance from

0 to 50,00 cm -1 which was developed by the Air Force Geophysics Laboratory. The
AVIRIS data (Portor et al. 1987) used here are radiometrically calibrated and include the
09/28/1989 Providence Fan flight line segment 07, California. It includes a dark gravel
surface defined as a calibration site by the Geologic Remote Sensing Field Experiment
(GRSFE) (Arvidson et al. 1989). Several ground measurements of portable spectrometer
DAEDALUS AA440 Spectrafax were taken during the GRSFE July, 1989 field
campaign. Comparisons of the LOWTRAN-7 corrected AVIRIS data with the pound
spectrometer measurement were made in this study.

2. LOWTRAN.7 atmospheric correction of AVIRIS data

Eight pixels of the dark target were chosen from the AV1RIS image. "Noisy"
data from AVIRIS bands (1-5, 32-33, 108-I 17, 153-174, 216-224) were removed. The
median value of eight pixel DNs of each band was calculated to represent the data at that
band. Medians were used because the median is a more robust estimator of central value
than means. The input parameters for the LOWTRAN-7 were mid-latitude summer
profile, radiance mode, multiple scattering, surface albedo 0.1, desert aerosols, ground
altitude 0.863 km which was read from a topographic map, and local climatological data
at the time of the AVIRIS flight (Table 1).

Table 1. l.x)cal Weather Data

(Data from Metromonitoring Services F.C.W.O.S. Daggett, CA)

Air Temp. Relative Wind Speed Visibility
(oc) Humidity'(%) (m/sec) (kin)

34.4 16 9.26 56.3

The equation used to calculate the reflectance is

01
p = "_g o-Lps)

where Lo =observed radiance, i.e. AVIRIS radiance data

B
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Lps=observed radiance due to path scattering
Lg =observed radiance due to ground-reflected radiation
p = gmundreflectance

assuming horizontally homogeneous atmosphere and fiat surface (Bosch et a1.1990).

3. Calibrating DAEDALUS data

The DAEDALUS instrument measures radiances in 280 channels between 0.45

and 2.4 micrometers. The spectral resolution of the channels varies from 0.01
micrometers in the visible to ~ 0.04 micrometers in the infrared. The raw DAEDALUS
data of the dark target is from the GRSFE CD-ROM. Reflectance values are derived by
ratioing the measurement of a sample to that of a pressed and bonded halon standard
viewed at the same angle. The median values of several measurements were used to
estimate the reflectances of the dark surface. The "noisy" data were removed before

interpolating the data to AVIRIS wavelength center using the cubic spline technique.

4. Results and conclusion

The LOWTRAN-7 corrected AVIRIS spectral dam and calibrated DAEDALUS

spectral data were plotted against wavelength (Fig. 1). In general, the differences between
two spectra are larger after 1.3 _m wavelength than before that. The histogram of _e.
differences between DAEDALUS data and LO_-7 corrected ctata (AVlKL__L l) ts
shown in Fig.2. From the histogram, most bands of the two data sets agree within 6.0%
reflectance. At some bands the data deviated more than 6.0% reflectance. In most bands,
DAEDALUS reflectances are higher than LOWTRAN-7 corrected AVIRIS reflectances.
Table 2 shows the statistics of the differences between two spectra. The differences
between the data sets may be due partly to different seasons of data acquisition.

Table 2.Statistics of the Differences

Minimum -6.1971402
Maximum 9.0017633
Points 152
Mean 2.3132297
Median 2.2561876
Std Deviation 2.54485100
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1. INTRODUCTION

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) dam were acquired

during three consecutive seasons of the year (26 September 1989, 22 March 1990, and 7
August 1990) over an area of the High Plains east of Greeley, Colorado. This region
contains extensive eolian deposits in the form of stabilized dune complexes (small scale

parabolic dunes superimposed on large scale longitudinal and parabolic dunes). Due to the
dunes' large scale (2-10 kin) and Iow relief (1-5 m), the scaling relationships that
contribute to the evolution of this landscape are nearly impossible to understand without
the use of remote sensing. Additionally, climate models indicate that the High Plains
could be one of the first areas to experience changes in climate caused by either global

warming or cooling (Hansen et al., 1988). During the past 10,000 years there were at
least three periods of extensive sand activity, followed by periods of landscape stability, as
shown in the stratigraphic record of this area (Forman, et al., 1992). Therefore, if the

past is an indication to the future, the monitoring of this landscape and its sensitive
ecosystem is important for early detection of regional and global climate change.

2. STUDY AREA CHARACTERISTICS

The dune complexes found along the South Platte River are currently stabilized

by a thin cover of shortgrass prairie vegetation species. These include blue grama, sand
bluestem, and sandreed bunchg_sses, along with other graminoids and perennial forbs

(yucca, sage, cacti). Because there is very little, if any, topsoil over the sands, the land is
used primarily for gr_ing. There are sites along the terraces and floodplain of the South
Platte River where the soils are thicker and where either dryland or irrigated farming is
conducted. The_'efore, a wide range of percent vegetation cover occurs in each image (from

0% in overgr_ed or blowout areas to 100% in irrigated fields). In order to fully describe
each scene, image endmembers in three categories (vegetation, soil, and water) were
chosen. Up to ten total image endmembers were used (see figure 1).

3. SPECTRAL ANGLE MAPPER ALGORITHM

AVIRIS radiance values were converted to reflectance using the scaled surface

reflectance method of Gao (Gao, et al., 1991, 1992). This method derives atmospheric

water vapor radiance values for each pixel of a scene using the water vapor features found
at 0.94 and 1.14 lam. The atmospheric water vapor values are then subtracted from the
radiance value of each pixcl, resulting in an atmospherically corrected image across the

entire 0.4-2.5 lam region.
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AtmosphericallycorrectedimageswerethenimportedintotheSpectralImage
ProcessingSystem(SIPS)developedatCSES(Kruse,et al., 1992). This package allows
one to extract spectra from individual or groups of pixels and compute statistics for
regions of similar composition (i.e., the image endmembers). The mean spectra of up to
ten endmembers can then be processed using the Spectral Angle Mapper (SAM)
algorithm.

This technique, developed by J.W. Boardman, determines the spectral similarity
between given reference spectra, r, (i.e., the image endmember in this case) and the spectra
found at each pixel, t (Kruse, et al., 1992). The result of the comparison is reported as
the angular difference (in radians) between the two spectra according to the equation:

which can also be written as,

/ ttir /

Here nb is the number of bands in the image. Each pair of spectra is treated as a vector in
nb-space, allowing the similarity of the spectra to be determined without regard to their
relative brightness values. The result of the SAM calculation is an image for each
reference spectrum, with high values (displayed in brighter values) corresponding to a
better match between reference and test spectra.

!t

4. RESULTS

When the ten image endmembers shown in figure 1 were processed via the SAM
algorithm, excellent discrimination between the different endmembers was found. Figures

2 and 3 show the SAM results for image endmembers located on the sparsely vegetated
dune limbs and the more densely vegetated dune depressions, respectively. We believe
these results show the sensitivity of the method since the difference in percent vegetation
cover between the two areas indicated above is no greater than 20%. Traditional
Normalized Difference Vegetation Index (NDVI) methods show no such discrimination,
and only minor discrimination occurs using linear unmixing techniques. Because
vegetation cover density is critical to the stability of the landscape, and any climate

change would cause this to also change, the SAM algorithm may provide the sensitivity
needed to discriminate between minor changes of vegetation cover that could lead to major
changes in the landscape, and thus, allow early detection of global climate change.

5. ACKNOWLEDGEMENTS

This work was supported under NASA award NAGW-270.

6. REFERENCES

Forman, S.L., A.F.H. Goctz, and R.H. Yuhas, 1991. Large-scale stabilized dunes on the
High Plains of Colorado: Understanding the landscape response to Holocene
climates with the aid of images from space: Geology 20, pp. 145-148.

148



Gao,B.-C.,A.F.H.Goetz,andJ.A.Zamudio,1991.Retrievalsofsurfacereflectances
fromAVIRISdam:inProceedings,IGARSS'91,UniversityofMaryland,
CollegePark,MD,TheInstituteofElectricalandElectronicsEngineers,Inc.,
NewYork,2,pp.669-672.

Gao,B.-C.,K.H.Heidebrecht,andA.F.H.Goetz.Derivationofscaledsurface
reflectancesfromAVIRISdata:Remote Sensing of Environment (submitted),

February 1992.

Hansen, J., I. Fung, A. Lacis, D.S. Rind, R. Ruedy, and G. Russell, 1989. Global
climate changes as forecast by Goddard Institute for Space Studies three-
dimensional model: Journal of Geophysical Research 93, pp. 9341-9364.

Kruse, F.A., A.B. Lefkoff, J.B. Boardman, K.B. Heidebrecht, A.T. Shapiro, P.J.
Barloon, and A.F.H. Goetz, 1992. The Spectral Image Processing System
(SIPS)--Interactive visualization and analysis of imaging spectrometer data:
Remote Sensing of Environment (in press, for release July 1992).

/J
0.5 1.0 1.5 2.0

Wavelength (micrometers)

Figure 1. Spectra of the ten image endmembers used as input to SAM.
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Fig. 2 and 3. SAM images for dune limb (left) and dune depression endmembers (right).
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:5 EMPIRICAL RELATIONSHIPS AMONG ATMOSPHERIC VARIABLES FROM

(j...RA_NSONDE AND FIELD DATA AS SURROGATES FOR AVIRIS MEASUREMENTS:

ESTIMATION OF REGIONAL LAND SURFACE EVAPOTRANSPIRATION
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Ron Alley and Jack Margolis
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Empirical relationshipsbetween variablesarc ways of securing estimatesof quantities

difficultto measure by remote sensing methods. We explore the use of empirical functions

between: (I) atmospheric column moisture abundance W (gm H20/cm 2)and surface absolute

water vapor densitypq (gm H20/cm3), with p densityof moist air(gm/cm3), q specifichumidity

(gm H20/gm moist air) and (2) column abundance and surface moisture flux E (gm

H20/(cm_sec)) to inferregional evapotranspirationfrom AVIRIS water vapor mapping data.

AVIRIS provides,via analysisof atmospheric water absorptionfeatures,estimatesof column

moisture abundance at very high mapping rate (--100 kin2/40sec) over large areas at 20 m
ground resolution.

To generate surrogates in place of direct AVIRIS observations that represent

climatological regimes more diverse than have been available with existing AVIRIS data sets,

we examined large collections of rawinsonde soundings - nearly 8500 flights, 1985-1991 - from

San Nicholas Island (marine), Pt. Mugu (marine/coastal) and Edwards Air Force Base (arid

interior), California, and more than 400 radiosonde soundings taken as part of FIFE (Konza tall

grass prairie) in eastern Kansas (Brutsaert and Sugita, 1990). From each of these data sets,
empirical relationships were derived between total column water abundance and surface absolute

humidity, with correlation coefficients between these variables of - 0.90 and standard errors of

20%. In addition, for the very important Kansas data sets, Brutsaert and Sugita (1990) and

Sugita and Brutsaert (1990) assembled more than 120 observations of surface latent heat flux

(moisture flux) derived from the FIFE network of eddy correlation and Bowen ratio measurement

stations that are correlative in time with their radiosonde flights. We calculated the total column

moisture from the FIFE radiosonde data and sought further empirical relationships between these

column abundances and the observed latent heat (LE) and sensible (H) heat fluxes, as well as

friction velocity u,, and the O15ukhov length-L, both-of-which haci been-ca_ated from the

correspondingradiosonde profiles and surface fluxes by sugita and Brutsaert (i 990) and Brutsaert
and Sugita (1990). We expected a good correlation between what we term the net column

=

abundance (difference between the column abundance derived from the surface specific humidity

integrated over the column and the observed column abundance) and the surface flux, to emerge

if net moisture in the column was derived from local fetchs. This view was reinforced by good

to excellent correlations found by Brutsaert and Sugita (1990) and Sugita and Brutsaert (1990)

between surface fluxes derived from individual profiles and the observed surface fluxes. In

practice, we got poor correlations between W and LE suggesting that the bulk of atmospheric

water present over Konza Prairie during these observations represented advected moisture, and

m_
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was therefore not of "local" origin. The anticipated simple strategy of using column moisture

abundances to estimate surface flux was not applicable to this data set.

Some approximate atmospheric diffusion calculations of column abundance vs fetch,

based on atmospheric moisture distributions above surfaces with concentration and with flux

boundary conditions and power law vertical dependences of horizontal wind speed and vertical

eddy diffusivity, will also be illustrated.

References:
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temperature and humidity above complex hilly terrain, Boundary-Layer Meteorology, 51, 383-
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The JPL Spectral Library 0.4 to 2.5 Micrometers

Simon J. Hook, Cindy I. Grove and Earnest D. Paylo:r II

Jet Propulsion Laboratory / California Institute of Technology
4800 Oak Grove Drive, Pasadena, California

91109

During the 1980's the Geology Group at the Jet Propulsion Laboratory (JPL)
gradually acquired a large collection of mineral specimens. The hemispherical reflectance

of these specimens in the 0,4 to 2.5 micrometer wavelength region was measured with a

Beckman UV5240 Spectrophotometer. In addition, the purity of each specimen was

evaluated by X-ray diffraction CXRD) and the chemical composition of certain samples

known to deviate strongly from idealized end-member compositions was determined by
electron microprobe analysis. The results from 160 of the purest minerals, as determined
by XRD, were presented in Grove et at. 1992.

The spectral data for 135 of the minerals in Grove et al. 1992 were presented at
three different grain sizes to demonstrate the effect of particle size. These were 125-

5001.tm, 45-1251.tm and <45btm. Ancillary information, which included the mineral

name, mineralogy, supplier and sampling locality, was provided with each mineral

spectrum. The compositional information obtained by microprobe analysis and accessory
minerals identified by XRD were noted with the ancillary information.

In addition, the spectrum acquired from the coarsest grain size available for each

sample was processed with a feature-finding algorithm to quantify the characteristics of
the spectral absorption features.

All the reflectance spectra presented in Grove et al. 1992 were provided in digital

form on IBM-compatible 3.5" diskettes included with the publication together with a

program for displaying the spectral data and searching for spectral features. The program
runs on an IBM-compatible PC with standard VGA graphics.

This presentation summarizes the results presented in Grove et al. 1992 and

discusses, in detail, the software for displaying and analyzing the spectral data.

Copies of Grove et al. 1992 are available free of charge from:

JPL PLDS User Support Office

Geology and Planetology Section

Mail Stop 183-501
JET PROPULSION LABORATORY

4800 Oak Grove Drive

Pasadena, California, 91109

Phone: (818) 354-6363

Facsimile: (818) 354-0966

=
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LOSSLESS COMPRESSION OF AVIRIS DATA:
COMPARISON OF METHODS AND INSTRUMENT CONSTRAINTS

R.E. Roger, J.F. Arnold, M.C. Cavenor, and J.A. Richards.

Department of Electrical Engineering, University College,
Australian Defence Force Academy, CANBERRA ACT 2600, Australia.

1. INTRODUCTION

:

A family of lossless compression methods, allowing exact image reconstruction,
are evaluated for compressing AVIRIS image data. The methods are based on Differential

Pulse Code Modulation (DPCM). The Compressed data have an entropy of order 6
bits/pixel. A theoretical model indicates that significantly better Iossless compression is
unlikely to be achieved because of limits caused by the noise in the AVIRIS channels.

AVIRIS data differ from data produced by other visible/near-infrared sensors, such
as Landsat-TM or SPOT, in several ways. Firstly, the data are recorded at a greater
resolution (12 bits, though packed into 16-bit words). Secondly, the spectral channels are
relatively narrow and provide continuous coverage of the spectrum, so that the data in
adjacent channels are generally highly correlated. Thirdly, the noise characteristics of the
AVIRIS are defined by the channels' Noise Equivalent Radiances (NERs), and these NERs

show that, at some wavelengths, the least significant 5 or 6 bits of data are essentially
noise.

2. COMPRESSION SCHEME

The overall scheme adopted for lossless compression comprises three main
elements:

(])
(2)
(3)

prediction of the current pixel's value from prior pixels' values;
differencing to form a residual;

encoding the residual using a variable or fixed rate code.

The residuals are represented using NBIT bits. Any residual outside the range

-(2 NBIT-I-1) to +(2NBIT'I-1) is an exceedance. For variable rate coding, the residuals

falling within this range are Huffman-encoded. The resulting codebook is optimal for

each data set. An exceedance is indicated by the value -2 NBIT-I, and its value is
transmitted in full (16 bits).

For the methods using optimised predictors, there is an overhead caused by the
need to transmit prediction coefficients, and this is set at 32 bits per coefficient. This
overhead is significant.

3. PREDICTION SCHEMES

14 prediction schemes have been evaluated. Let xi,j,_, represents the value of the
A

pixel in row (line) i, column j, channel (band) L, and xi,j,_, be its predicted value.
Residuals are formed according to the expression:

residual = xi,j,Z. - nearest integer to( _'i,j,k ).
For schemes using optimised coefficients, the coefficients (variously a, b, c, or d) are

i

=

!

t1

=
!

_=

__-=

=

!
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calculated by the least-squares mmtm_satton of Y-,(xi,j,k - xij,Z.) 2, where the summation

is taken along a line (j varies, i and _ fixed).

_patial Methods. Fixed CoefficienAs

Row: J_i,j,Z. = xi,j-1 ,_,.
^

Column: xi,j,_ = xi- 1 ,j,;_.

Two-point Row-Column: _ti_j,_. = (Xi-l,j,k + xi,j-l, _,)]2"
A

Three-point Row-Column: xi,j,_. = (3xi- 1 ,j,_. + 3xi,j- 1,k - 2xi-1 ,j- 1 ,k)/4.

Spatial Methods. Optimised Coefficients

Optimised Row:

Optimised Column:

Optimised Two-point Row:
Optimised Two-point Row/Column Row:

_iO,k = a + bxid-l,k.

_'ij,_. = a + bxi-ljA.

_i,j,Z. = a + bxij-l,k + cxid-2,_..

kij,X, = a + bxij-l,Z. + cxi-l,jA.

_hod, Fixed Coefficients

Channel:
A

xi,j,k = xi j,_.- 1.

Spectred M¢thods. Optimised Coefficients

Mean-corrected:

One-point channel:

Two-point channel:
^

Three-point channel: xi,j,_. =

_i,j,_. = a + xi,j,_.-1.

_i,j,k = a + bxij,_.-1.

_i,j,k = a + bxi,j,_,-1 + cxi,j,_.-2.

a + bxi,j,_.-I + cxi,j,_.-2 + dxij,_.-3.

Spectral-Spatial Method. Optimised Coefficients
^

Channel-Row: xi,j,_. = a + bxi,j,k-1 + cxi,j-l,Z..

4. TEST DATA SETS

The schemes have been evaluated using 3 data sets: the complete radiometrically

rectified data set for a Jasper Ridge image (Run 05, 07/23/90), and the first six and the
last six lines of a Moffett Field image (Run 013, 07/23/90). All 224 channels were used.
Some values of the 16-bit pixels fall outside the nominal 12-bit range. Negative values

are thought to be caused by radiometric rectification, and values above 4095, by noise.
The entropies of the three data sets are 9.82, 9.20 and 9.85 bits/pixel, respectively.
Straight application of a UNIX-like compress algorithm to the two Moffett Field data sets

yields compressed files of 10.73 and 11.53 bits/pixel, respectively.

5. RESULTS

Number of bits per residual: The variation of the compressed image

entropy as NBIT (see §2) varies from 13 down to 3 bits has been studied, for both
variable and fixed rate coding. As NBIT decreases, the number of exceedances increases,

and the compression worsens for variable rate coding. Results below are for 8-bit
residuals, which entail losses mostly in the range 0.1-0.25 bit/pixel compared with 13-bit
residuals. The pattern of loss is similar for all the methods. Optimal values of NBIT are

found for fixed rate coding.

Spatial Methods: Of the 8 methods using spatial prediction, the one

named "Two-point Row-Column" provided the best performance (6.88, 6.46, 7.10
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bits/pixelrespectively).Toindicatethespreadofperformance,theworstmethod for each
data set produced 7.42, 6.84 and 7.57 bits/pixel, respectively. The optimised methods
produced residuals with lower standard deviations but any reduction in the residuals'
entropy was negated by the coefficient overhead.

Spectral Methods: Of the 6 methods using spectral prediction, that called

"Two-point Channel" was best (5.90, 5.81, 5.89 bits/pixel). Residuals Coded with

NBIT=I3 improve the compression by no more thafi 0,i0 bit/pixel. The "One-point
Channel" method was only marginally worse, by 0.|1 bit/pixe| for the worst of the three
data sets. The compression given by the "Channel-Row" method, which uses both
spectral and spatial data, was intermediate between these two methods. Fixed-coefficient
Channel DPCM was the worst of all the i5 methods. The "Mean-corrected" method was

the second worst method for one M0ffett Field data set, but it performed better than all the
spatial methods for the other two data sets.

Fixed- vs. Variable-Rato (:_;ling: A similar pattern of results holds for fixed-

rate coding. For the best spatial meth-od, "Two-point Row-Column", allocating 8 bits to
the residuals provides the best compression overall (8.33, 8.24, 8.45 bits/pixel for the
respective data sets). For the spectral methods, 6 bits is the optimum, giving compressed
data of, respectively, 7.38, 7.39, 7.47 bits/pixel. Fixed-rate coding is worse than
variable-rate coding by about 1.5 bits/pixel.

Dependence of Re_ll|$ on Data: The results for the best spatial method show
a spread in compression of 0.64 bit/pixel depending on the data set for variable-rate
coding, and of 0.21 bit/pixel for fixed-rate coding. For the best spectral method, the
comparative figures are 0.09 and 0.09 bit/pixel. The results for the spectral method are
more consistent, varying less across different data sets.

Noise Sensitivity: The variations in the data in Channels 1-4 and

Channel 223-224 are dominated by the channel noise (the standard deviation of the data in
each of these channels is very close to that channel's NER). If these channels are excluded

from the compression evaluation, then the compressions are improved by about 0.2
bit/pixel. There are no exceedances for NBIT=12 and NBIT=I3 when these channels are
disregarded.

6. ENTROPY LIMITS DUE TO INSTRUMENT NOISE

The noise in each channel causes a spread in values, and so contributes to the
entropy of the data. The noise entropy of a single channel can be calculated by using its
NER and assuming a probability distribution. The entropy caused by the noise alone has
been modelled numerically, by constructing a univariate probability distribution for all
224 channels. Using the NERs given in the Jasper Ridge and Moffctt Field ancillary data
sets, this noise entropy is found to be 5.28 bits/pixei for a Gaussian distribution of noise
in each channel, and 5.03 bits/pixel for a Laplacian distribution. For the three data sets,
the entropies of the residuals produced by the "Three-point channel" spectral method are
the lowest. For a value of NBIT=8, the entropies are 5.45, 5.36 and 5.45 bits/pixel
respectively.

The similarityof the results for the three data sets, and the closeness of these
results to the theoretical values supports the suggestion that lossless compression using

spectral information is almost limited by the AVIRIS's channel noise. If the probability
distribution of the residuals is similar to that of noise, then a Huffman codebook for

variable rate coding might be designed on the basis of instrument parameters, and not
have to be derived during the compression process.

|

=
|

i

i£_

|

2-

i

|

156



SIMULATION OF AVHRR-K BAND RATIOS WITH AVIRI8

f
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P.O. Box 60220 Reno, Nevada 89506

Ronald M. Welch

Institute of Atmospheric Science

South Dakota School of Mines and Technology

Rapid City, South Dakota 57701

1.0 INTRODUCTION

The AVHRR-K polar-orbiting imager scheduled

for launch by the mid-1990's will include two new

near-infrared narrowband detectorsp Band 3A, 1.58-

1.64 ,m, and a modified (narrower) Band 2, 0.84-

0.87 ,m. The AVIRIS is an ideal testbed for these

bands. This paper summarizes the results of a

comparison between AVIRIS band ratio values and
AVHRR-K radiances simulated from AVIRIS.

Prior analysis of AVIRIS multispectral data
has shown that channel ratios can aid in the

estimation of scene type and other physical

parameters (Gao and Goetz,1990; Berendes et al.,

1991). Figure 1 demonstrates the discrimination

of surface and cloud types with the ratio of two

window-channel radiances corresponding to AVHRR-K.

Shown here is the ratio of pixel radiance in a

sequence of AVIRIS channels, to the radiance at

0.85 ,m (the center of the AVHRR-K Band 2). The

largest values are observed for a growing cumulus

cloud (A) which undoubtedly contains a large

concentration of liquid water. An altostratus
cloud area (D) which visually appears glaciated
has the lowest ratio value. This is consistent

with ice cloud due to the larger absorption

coefficient for ice (four times larger than for

water at 1.6 ,m). The ratio values for two

altocumulus scenes (B,C; more likely to contain a

mixture of ice and water) fall between A and D.
Snow-covered surfaces have the lowest values in

Fig. 1, particularly a sun-illuminated sample (H).
The ratios are largest in magnitude and show the

best separation near the 1.62 _m center of AVHRR-K

Band 3A. Thus, the ratio of AVHRR-K Band3A/Band 2

band center wavelengths appears to contain

information on cloud properties. However, the

AVHRR-K has both a wider bandpass and larger field

of view than AVIRIS.
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Fig. i. Ratio of AVIRIS radiance at the wavelength
indicated on the abscissa, to that at 0.85 _m, for

isolated growing cumulus (A), altocumulus (B,C),

glaciated altostratus (D), exposed land (E), snow

under shadow (F,G), and sunlit snow (H).

2.0 SIHULATION OF AVHRR-K _I_CES

The AVHRR-K spectral bandpasses were

simulated with four consecutive AVIRIS channels

for Band 2, and eight consecutive channels for

Band 3A. The channel radiances were numerically

integrated, and a spectral transmittance function

was applied which is similar to the existing AVHRR

shortwave channels. The ratios of these band

radiances are seen as the values in Figure 2, for

a one-pixel field of view. The differences between

these single-pixel values and the 1.62 _m/0.85 _m

AVIRIS radiance ratios at the same points are 1.4%

or less. The effect of the larger field of view

for AVHRR is simulated by successively increasing

the pixel averaging area from ixl to 55x55, where

the largest area represents the i.i km field of

view of AVHRR. As we note in Figure 2, the

magnitudes and separation of the band ratio values

for the various cloud types are preserved as the

averaging area increases. While the land and snow

surface scenes tend toward a ratio value of 0.08,

the value is distinct from those of the cloud

scenes. This analysis procedure will be carried

out for a large set of image pixels to obtain

statistical results for differing scene types.
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Fig. 2. Ratio of AVHRR-K Band 3A/Band 2 radiances

simulated from AVIRIS at a varying field of view

(AVIRIS pixels), for the scenes in Fig. I.

3.0 DISCUSSION

This analysis indicates that predominant

particle phase near cloud top may be observable in

the AVHRR-K band ratios. Particle size and phase

retrievals, using the Adding Model to calculate

arrays of cloud spectral reflectance (Wetzel and

Vonder Haar, 1991) and LOWTRAN7 to correct AVIRIS

reflectance for path radiance and extinction, are

being developed and tested against coincident

ground-based radar and microwave radiometer

observations, and aircraft measurements of in-

cloud droplet and crystal size distributions.
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