

TECHNICAL NOTES

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

No. 633

SPINNING CHARACTERISTICS OF WINGS

V - N.A.C.A. 0009, 23018. AND 6718 MONOPLANE WINGS

By M. J. Bamber and R. O. House Langley Memorial Aeronautical Laboratory

THIS DOCUMENT ON LOAN FROM THE FILES OF

NATIONAL ADVISORY COMMITTEE FOR AEROMALTICS LANGLEY AERONAUTICAL LABORATORY LANGLEY FIELD, HAMPTON, VIRGINIA

RETURN TO THE ABOVE ADDRESS.

Washington January 1938 REQUESTS FOR PUBLICATIONS SHOULD BE ADDRESSED AS FOLLOWS:

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 1724 F STREET, N.W., WASHINGTON 25, D.C.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 633

SPINNING CHARACTERISTICS OF WINGS

V - N.A.C.A. 0009, 23018, AND 6718 MONOPLANE WINGS

By M. J. Bamber and R. O. House

SUMMARY

Three rectangular monoplane wings having rounded tips were tested on the N.A.C.A. spinning balance in the 5-foot vertical wind tunnel. The airfoil sections used were the N.A.C.A. 0009, 23018, and 6718.

The aerodynamic characteristics of the models and a prediction of the angles of sideslip for steady spins are given. There is included an estimate of the yawing moment that must be furnished by parts of the airplane to balance the inertia couples and wing yawing moments for spinning equilibrium. The predicted angles of sideslip and yawing moments required for spinning equilibrium for a Clark Y wing with the same plan form are included for comparison.

INTRODUCTION

In order to provide necessary data for predicting airplane spinning characteristics from the design features, the N.A.C.A. is conducting an extensive investigation to determine the aerodynamic characteristics of airplane models and models of airplane parts in spinning attitudes.

The investigation to determine the spinning characteristics of wings, in which the N.A.C.A. spinning balance was used, included variations in airfoil section, plan form, and tip shape of monoplane wings and variations in stagger of biplane cellules. The first and third series of tests reported were made of Clark Y monoplane wings with rectangular plan forms, with square and rounded tips, and with a 5:2 tapered plan form having rounded tips (references 1 and 2). The second and fourth series were made of a rectangular Clark Y biplane cellule with -0.25, 0, and 0.25 stagger and are reported in references 3 and 4.

This report gives the aerodynamic characteristics in spinning attitudes of N.A.C.A. 23018, 6718, and 0009 rectangular monoplane wings with rounded tips. Data for the Clark Y wing previously tested are included for comparison. The discussion of the data is based on the method of analysis given in reference 1.

APPARATUS AND MODELS

The tests were made on the spinning balance in the N.A.C.A. 5-foot vertical wind tunnel. The tunnel is described in reference 5 and the 6-component balance in reference 6.

The wings were made of laminated mahogany to the N.A.C.A. 0009, 23018, and 6718 airfoil sections. They are rectangular in plan form with rounded tips, and have an aspect ratio of 6. The tip plan form is composed of quadrants of similar ellipses. The section profile is maintained to the end of the wings and, in elevation, the maximum upper-surface section points are in one plane. This tip shape, as shown in figure 1, has been designated the "Army" tip. Figure 2 shows the N.A.C.A. 6718 model mounted on the balance.

TESTS

In order to cover the probable spinning range, tests were made at angles of attack of 30° , 40° , 50° , 60° , and 70° . At each angle of attack tests were made with sideslip angles of 10° , 5° , 0° , -5° , and -10° for the N.A.C.A. 0009 and 6718 airfoils and of 5° , 0° , -5° , and -10° for the N.A.C.A. 23018 airfoil. At each angle of attack at each angle of sideslip, tests were made with values of $\Omega b/2V$ of 0.25, 0.50, 0.75, and 1.00. The angles of attack were referred to the chord of the section in the plane of symmetry. The angles of sideslip were measured at the quarter-chord point in the plane of symmetry of the wing, which was the center of rotation for all tests. Because of variations between individual balance readings, at least one repeat test was made for each condition and an average of the individual measurements was used to compute the coefficients.

The tunnel air speed was 70 feet per second for tests

with $\Omega b/2V = 0.25$ and 0.50, and 60 and 45 feet per second for $\Omega b/2V = 0.75$ and 1.00, respectively. The Reynolds Numbers of the tests were about 210,000 for the highest air speed and 140,000 for the lowest air speed. Previous tests showed no appreciable change in scale effect for this range.

RESULTS AND DISCUSSION

The data were converted to coefficient form by the following relations:

 $C_{X} = \frac{X}{qS} \qquad C_{Y} = \frac{Y}{qS} \qquad C_{Z} = \frac{Z}{qS}$ $C_{Z} = \frac{L}{qS} \qquad C_{n} = \frac{M}{qbS} \qquad C_{n} = \frac{M}{qbS}$

All coefficients are standard N.A.C.A. coefficients except C_m, which is based on the span instead of the chord of the wing, and it may be converted to the standard coefficient by multiplying by 6. All coefficients are given conventional signs for right spins (references 1 and 6). The coefficients and moments are given about the quarter-chord point of the lower surface of the wing.

The coefficients of longitudinal force in the earth system of axes $C_{X^{\parallel}}$ and of all six components of the forces and moments in the body system of axes are given in tables I, II, and III. Sample curves of $C_{X^{\parallel}}$, C_l , C_m , and C_n are given in figures 3 to 6.

The data are believed to be correct to within the following limits:

X 11 >	±0.02	C _X ,	±0.02		с _ү ,	±0.01
ζ,	±0.02	C _m ,	±0.002		c _z ,	±0.001
in,	±0.001			·		

No corrections have been made for the effects of jet boundary, scale, or interference of the balance.

4

Variation of the coefficients with airfoil section .-The longitudinal-force coefficients Cy generally decrease in the order N.A.C.A. 6718, Clark Y, N.A.C.A. 0009, and N.A.C.A. 23018 (fig. 3). The values of the rollingmoment coefficients Cl generally are algebraically less for the wings in the following order: N.A.C.A. 6718, Clark Y, N.A.C.A. 23018, and N.A.C.A. 0009 (fig. 4). The variations in Cy with angle of attack, angle of sideslip, and $\Omega b/2V$ are about the same for all the wings. The absolute values of the pitching-moment coefficients Cm generally decrease in the order N.A.C.A. 6718, Clark Y, N.A.C.A. 0009, and N.A.C.A. 23018 (fig. 5). The variations in C_m with angle of attack, angle of sideslip, and $\Omega b/2V$ are about the same for all the wings. The values of the yawing-moment coefficients Cn generally decrease algebraically in the order Clark Y, N.A.C.A. 6718, N.A.C.A. 0009, and N.A.C.A. 23018 except at the low angles of attack and at large values of $\Omega b/2V$, in which cases the values for the N.A.C.A. 6718 wing are the lowest (fig. 6). The variations of Cn for each wing are small with changes in angle of sideslip and are somewhat larger with changes in Ωb/2V.

For the coefficients of all wings to be exactly comparable, the angles of attack for each wing should have been measured from the angle of zero lift and not from the chord line. The following coefficients may be corrected to the absolute angle of attack by the relations

 $C_{X_{O}} = C_{X} = \alpha - \Delta \alpha$ $C_{I_{O}} = C_{I} \quad \text{at} \quad \alpha - \Delta \alpha$ $C_{m_{O}} = C_{m} \quad \text{at} \quad \alpha - \Delta \alpha$ $C_{m_{O}} = C_{m} \quad \text{at} \quad \alpha - \Delta \alpha$ $C_{n_{O}} = C_{n} - C_{I} \quad \text{sin} \quad \Delta \alpha$

where $C_{X^{II}}$, C_{I} , C_{m} , and C_{n} are the values given in the tables and $\Delta \alpha$ is the angle of attack for zero lift measured from the chord line. The values of C_{I_0} and C_{n_0} obtained in this way will be approximate, but the actual errors involved will be negligible. This same method may be used to transfer the data to airplane axes, since the wing is usually set to give some lift when the thrust line

of the airplane has zero angle of attack. For this case $\Delta \alpha$ will be the angle between the chord line of the wing and the thrust line when the wing is set to give the required lift.

ANALYSIS

The data were analyzed to show the effects of some of the important parameters on the spinning characteristics of an airplane using wings similar to those tested. The method of analysis with the assumptions used and the errors involved is given in references 1 to 6.

<u>Parameters</u>.- The characteristics of the particular airplane determine the values of wing loading, aspect ratio, radii of gyration, and pitching moments. The characteristics of airplanes have changed appreciably since the investigation reported in reference 1; therefore, in the present analysis the two sets of parameters given in the table (p. 6) were used. The previous values are the same as those used in references 1 to 4 and are included to allow the results in this report to be compared with the earlier investigations. The present values are used to cover the range for present-day airplanes.

The values of μ cover the range for airplanes that are normally spun. The early values of $\frac{b^2}{(k_Z^2 - k_X^2)}$ and $\frac{k_Z^2 - k_Y^2}{k_Z^2 - k_X^2}$ cover the range for the ll airplanes given in $k_Z^2 - k_X^2$ reference 7.

In each set, all the parameters were varied, one at a time, while the others were kept at the mean values, except $C_{\rm L}$, which was set equal to $C_{\chi^{\parallel}}$ for all cases.

<u>Discussion of results of analysis.</u> The angles of sideslip at which the pitching and the rolling moments balance in a steady spin and the yawing moment that must be furnished by the other parts of the airplane to balance the inertia couples and the wing yawing moments are plotted against the first set of parameters in figures 7 to 14 and against the second set of parameters in figures 15 to 22. Negative values of C_n required show the amount of yawing moment opposing the spin that must be supplied to balance the resultant aiding moment given by the wings and the inertia couples. It is obvious that, in order to insure against a dangerous spin, an additional opposing moment must be supplied as a margin of safety.

Parameters	Previous values	Present values								
Slope of assumed pitching- moment curve $\frac{-c_m^2}{\alpha - 20^0}$	0.0010, 0.0015, (0.0020) ^a , 0.0025, and 0.0030	0.0010, 0.0020, (0.0030) ^a , 0.0040, and 0.0050								
Pitching-moment inertia parameter $\frac{b^2}{k_z^2 - k_x^2} \left(\frac{mb^2}{c-A}\right)$	60, (80) ^a , 100, and 120	40, (60) ^a , 80, and 100								
Relative density of airplane to air, μ $\left(\frac{m}{\rho S b}\right)$	2.5, (5.0) ^a , 7.5, and 10.0	2.5, 5.0, (7.5) ^a , 10.0, and 12.5								
Rolling- and yawing- moment inertia parameter $\frac{k_{Z}^{2}-k_{Y}^{2}}{k_{Z}^{2}-k_{X}^{2}} \left(\frac{C-B}{C-A}\right)$	0.5, (1.0) ^a , 1.5, and 2.0	0.15, 0.30, (0.50) ^a , 1.00, and 1.50								
Lift coefficient, C _L	$G^{\Gamma} = G^{X_{\Pi}}$	$C_{L} = C_{X''}$								
aValues in parentheses are mean values of the parameters.										
$A = mk_X^2$, the moment of inertia about the X axis.										
$B = mk_{Y}^{2}$, the moment of in	nertia about the Y	axis.								

 $C = mk_Z^2$, the moment of inertia about the Z axis.

the second state of a state of a state of a state bank and a state of a second state

Increasing the pitching-moment parameter $\frac{-C_m}{\alpha - 20^\circ}$ increases the aerodynamic diving moment. An increase may be accomplished by increasing the area of the horizontal tail surfaces, putting the elevators down, or moving the center of gravity of the airplane forward. Increasing the pitching-moment inertia parameter $\frac{b^2}{k_v^2 - k_v^2}$ decreases the inertia pitching moment, which has about the same effect as increasing the aerodynamic pitching moment. An increase may be accomplished by increasing the aspect ratio of the wing or by so distributing the weights in the airplane that $k_{Z}^{2} - k_{X}^{2}$ will be reduced without changing the ratio $\frac{k_{Z}^{2} - k_{Y}^{2}}{k_{Z}^{2} - k_{Y}^{2}}$ Increasing $\frac{-C_m}{\alpha - 20^\circ}$ or $\frac{b^2}{k_z^2 - k_x^2}$ algebraically decreases the sideslip (changes it in the direction from inward toward outward) for all wings and all parameters used. (See figs. 7, 9, 15, and 17.) The rate of change of the sideslip depends upon the angle of attack, the airfoil section, and the other parameters used. The effect of increasing $\frac{-C_m}{\alpha - 20^\circ}$ or $\frac{b^2}{k_Z^2 - k_X^2}$ on C_n required is about the same for each wing with each set of parameters. With the first set of parameters the algebraic values of Cn required generally decrease as $\frac{-C_m}{\alpha - 20^\circ}$ and $\frac{b^2}{k_7^2 - k_y^2}$ increase (figs. 8 and 10). With the second set of parameters, C_n required increases to a maximum at about $\frac{-C_m}{\alpha - 20^{\circ}} = 0.0030$ and then generally decreases as $\frac{-C_m}{\alpha - 20^{\circ}}$ increases further (fig. 16).

The parameter μ may be increased by increasing the wing loading or the span loading and by flying at higher altitudes. Increasing μ algebraically increases the sideslip for all wings with both sets of parameters, the rate of change being very large when μ is less than 5.0 (figs. 11 and 19). There is a slight tendency for C_n to increase algebraically with μ (figs. 12 and 20).

The rolling- and yawing-moment inertia parameter $\frac{k_{Z}^{2} - k_{Y}^{2}}{k_{Z}^{2} - k_{X}} \text{ may be increased by moving weight from the cen$ ter of gravity out along the wing. Increasing this parameter algebraically decreases the sideslip except for theN.A.C.A. 0009 and N.A.C.A. 23018 wings at 50°, 60°, and70° angle of attack. The rate of decrease is greatest forthe Clark Y and N.A.C.A. 6718 wings (figs. 13 and 21). $The algebraic value of <math>C_{n}$ decreases as $\frac{k_{Z}^{2} - k_{Y}^{2}}{k_{Z}^{2} - k_{X}^{2}}$ increases except for the N.A.C.A. 0009 and N.A.C.A. 23018 wings at 50°, 60°, and 70° angle of attack. The rate of change of C_{n} with $\frac{k_{Z}^{2} - k_{Y}^{2}}{k_{Z}^{2} - k_{X}^{2}}$ is largest for the N.A.C.A. 6718 wing (figs. 14 and 22).

The results show that, generally, the algebraic value of the sideslip will increase for the wings in the following order: N.A.C.A. 0009, N.A.C.A. 23018, Clark Y, and N.A.C.A. 6718. It is interesting to note that the amount of camber of the wing sections increases in this same order (fig. 1). It appears, then, that the sideslip is more dependent upon the camber than upon the thickness of the wing section.

The general indications are that the algebraic values of C_n required decrease in the following order: N.A.C.A. 23018, N.A.C.A. 0009, N.A.C.A. 6718, and Clark Y when $\frac{k_Z^2 - k_Y^2}{k_Z^2 - k_X}$ is greater than 1.0; and N.A.C.A. 6718, N.A.C.A. 23018, N.A.C.A. 0009, and Clark Y when $\frac{k_Z^2 - k_Y^2}{k_Z^2 - k_X^2}$ is less than 1.0 (figs. 8, 10, 12, 14, 16, 18, 20, and 22). The reason for the order to change when $\frac{k_Z^2 - k_Y^2}{k_Z^2 - k_X^2}$ is greater or less than 1.0 is that the inertia yawing moment changes sign at that value.

Prediction of the spinning characteristics of an airplane from the analysis. - Prediction of the spinning char-

actoristics of an airplane in which any of these monoplane wings is used depends largely upon the aerodynamic yawingmoment characteristics of the particular airplane. The value of Cn required, as given in this report, is numerically equal and of opposite sign to the sum of the wing yawing moments and the inertia couples. At any angle of attack, when this value of Cn is supplied by the empennage, fuselage, and interference effects a steady spin will result provided that the equilibrium is stable; for any other value of Cn the airplane will not spin at that attitude. In order to insure against a steady spin in any attitude, a value of Cn opposing the spin must be provided that is larger than any attainable value of Cn required for that particular loading condition. The yawing moment supplied by the empennage, fuselage, and interference effects depends upon the sideslip, the size and shape of the fuselage and tail surfaces, the location of the horizontal tail surfaces with respect to the fuselage, fin, and rudder, the amount of fin area ahead of the center of gravity, the interference effects between the wing and the rest of the airplane, and the limits of the control movements. Data on some of these effects are reported in reference 6 and in references 8 to 13. The geometry of the spin indicates that the vertical tail surfaces should become more effective in producing a yawing moment opposing the spin as the sideslip becomes more outward. Fin area ahead of the center of gravity will give yawing moments aiding the spin if the sideslip is outward. (See reference 12, fig. 2.)

If the values of C_n for all parts of the airplane were known, the prediction of the spin would depend on the algebraic sum of the individual values of C_n for each part for each angle of attack. In any estimate, for normal airplanes, it will be found that a change in some factors will change the yawing moment for some parts in a sense to oppose the spin; whereas, for other parts, the effect will be reversed so that the magnitude of the change in C_n for each part must be considered.

The airplane least likely to spin is one with a wing having large algebraic values of C_n required and small algebraic values of sideslip.

The foregoing discussion shows the manner in which the value of C_n given by the fuselage and tail surfaces may be expected to vary with sideslip.

The results of the analysis indicate that the Clark Y wing, if used on a conventional monoplane, would always be more liable to give a dangerous spin than some one of the three wings investigated. The N.A.C.A. 0009 and the N.A.C.A. 23018 wings would generally be equally good. The N.A.C.A. 0009 wing usually gives a lower algebraic value of C_n required than the N.A.C.A. 23018 wing but it also has a lower algebraic value of sideslip (more outward). The N.A.C.A. 6718 wing may be superior to the other wings investigated

when the value of $\frac{k_z^2 - k_y^2}{k_z^2 - k_x}$ is less than about 0.6 and

(1) the airplane has large fin area ahead of the center of gravity or (2) the fuselage and tail are so arranged that the change in yawing moment with sideslip is small.

CONCLUSIONS

The following conclusions are indicated by the analysis presented for a conventional monoplane having a rectangular wing with rounded tips:

1. A monoplane having either the N.A.C.A. 0009 wing or the N.A.C.A. 23018 wing appears to be less liable to spin dangercusly than with either of the two other wings

tested except the N.A.C.A. 6718 wing when $\frac{k_Z^2 - k_Y^2}{k_Z^2 - k_X^2} <$

about 0.6 and the yawing moment produced by the fuselage and tail surfaces does not change much with sideslip.

2. For all conditions investigated, one or more of the three wings tested was always superior to the Clark Y.

3. The algebraic value of the sideslip required for equilibrium in a spin increases (changes from an outward to an inward direction) as the camber increases.

Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., December 23, 1937.

REFERENCES

- Bamber, M. J., and Zimmerman, C. H.: Spinning Characteristics of Wings. I - Rectangular Clark Y Monoplane Wing. T.R. No. 519, N.A.C.A., 1935.
- Bamber, M. J., and House, R. O.: Spinning Characteristics of Wings. III - A Rectangular and a Tapered Clark Y Monoplane Wing with Rounded Tips. T.N. No. 612, N.A.C.A., 1937.
- 3. Bamber, M. J.: Spinning Characteristics of Wings. II - Rectangular Clark Y Biplane Cellule: 25 Percent Stagger; O^o Decalage; Gap/Chord 1.0. T.N. No. 526, N.A.C.A., 1935.
- 4. Bamber, M. J., and House, R. O.: Spinning Characteristics of Wings. IV - Changes in Stagger of Rectangular Clark Y Biplane Cellules. T.N. No. 625, N.A.C.A., 1937.
- 5. Wenzinger, Carl J., and Harris, Thomas A.: The Vertical Wind Tunnel of the National Advisory Committee for Aeronautics. T.R. No. 387, N.A.C.A., 1931.
- 6. Bamber, M. J., and House, R. O.: Spinning Characteristics of the XN2Y-1 Airplane Obtained from the Spinning Balance and Compared with Results from the Spinning Tunnel and from Flight Tests. T.R. No. 607, N.A.C.A., 1937.
- 7. Miller, Marvel P., and Soulé, Hartley A.: Moments of Inertia of Several Airplanes. T.N. No. 375, N.A.C.A., 1931.
- 8. Irving, H. B., Batson, A. S., and Warsap, J. H.: The Contribution of the Body and Tail of an Aeroplane to the Yawing Moment in a Spin. R. & M. No. 1689, British A.R.C., 1936.
- 9. Irving, H. B.: A Simplified Presentation of the Subject of the Spinning of Aeroplanes. R. & M. No. 1535, British A.R.C., 1933.
- 10. Stevens, A. V.: Recent Research on Spinning. R.A.S. Jour., vol. XXXVII, no. 275, Nov. 1933, pp. 944-955.

- 11. Bamber, M. J., and Zimmerman, C. H.: Effect of Stabilizer Location upon Pitching and Yawing Moments in Spins as Shown by Tests with the Spinning Balance. T.N. No. 474, N.A.C.A., 1933.
- 12. Scudder, N. F.: The Forces and Moments Acting on Parts of the XN2Y-1 Airplane during Spins. T.R. No. 559, N.A.C.A., 1936.
- Zimmerman, C. H.: Effect of Changes in Tail Arrangement upon the Spinning of a Low-Wing Monoplane Model. T.N. No. 570, N.A.C.A., 1936.

anternande gelandet and a land and at a taken at a second and a second and a second at a second at a second at a

and add to make a new bolting a fer at a new a

Table 1

TABLE I.

AERODYNAMIC CHARACTERISTICS OF THE N.A.C.A. 0009 MONOPLANE WING WITH ROUNDED TIPS ICoefficients and moments given about the guestersbord point of the lawer surface of the wing]

2by	(deg.)	C _{X"}	Cx	CY	Cz	C ₂	Cm	Ch	c		0002000330003300033	0012 0051 0058 0058	00055 00098 00098 00093	00005 0010 0010 0010 0010 00020
			1-	3 =-10°					0		11111 0	1111	11111	000000
0.25	30 40 50 60 70	0.861 .794 .819 .703 .592	-0.021 023 .043 .048 .122	0.010 .009 .001 .005 .003	-1.006 -1.055 -1.223 -1.325 -1.394	0.0051 .0029 .0111 .0191 .0279	-0.0229 0253 0307 0432 0507	-0.0008 0028 0018 0018	Cm Cm		1373 - 0.016 1419 - 0.27 1423 - 0.34 1434 - 0.39 1434 - 0.39	1539 - 025 1574 - 0310 1543 - 0310 1418 - 0347 1255 - 0347	099 - 031 0877 - 040 0766 - 045 07669 - 045 0559 - 0555 0559 - 0555	7129 - 047 1408 - 062 1129 - 0662 1129 - 065 1129 - 075 0521 - 085
.50	30 40 50 70	. 927 . 942 . 886 . 759 . 591	023 .000 .037 .045 .091	009 008 006 007 006	-1.083 -1.230 -1.335 -1.440 -1.478	0368 0134 0120 0018 .0071	0283 0276 0341 0488 0545	0028 0021 0049 0051 0045	CZ C				2687	8182 - 182 -
.75	30 40 50 60 70	1.014 1.150 1.174 .970 .659	033 .025 .105 .134 .087	.016 .011 .002 001	-1.190 -1.480 -1.702 -1.707 -1.684	1147 0614 0343 0297 0161	0313 0380 0561 0597 0624	0007 0007 0055 0074 0055	Cy] (3 = 10°	0.002	-000.000.000.000.000.000.000.000.000.00	0002	.0012 .005 .0012
1.00	30 40 50 600	1.1C4 1.455 1.347 1.259 .701	004 .069 .234 .221 .017	.024 .025 .013 .007	-1.278 -1.841 -2.128 -2.135 -2.003	2 324 14 36 0940 0649 0476	0340 0522 0779 0751 0792	.000 3100 900 1000	C×	X	- 0.019 - 0.012 003 003 003	017 008 030 043 058	- 001 0399 040	015 0622 0880 0880
-			1-	3=-5	•	·			- "×		779 805 769 634 466	893 871 834 730	096 125 833 621	290 295 295 028
0.25	30 40 50 60	0.855 .822 .807 .732	- 0.002 002 .035 .073	C.004 .004 .004 .003	- 0.989 - 1.075 - 1.214 - 1.337	-0.0053 0070 .0002 .0058	- 0.0215 0260 0333 0439	- 0.0011 0023 0031 0028	(deg.)		30 50 600 70	30 50 70 50	30 50 70 70	30 50 50 70
.50	30	.935	016	.004	- 1.089	0413	0267	.0027	210		0.25	.50	.75	1.00
	40 50 60 70	.879	.040 .057 .067	005	-1.321 -1.434 -1.469	0224 0120 0044	0383 0502 0565	0055 0049 0044	-	1	228022	50 50 50 51	003 05 74 74	009 88 80 80 80 80 80 80 80 80 80 80 80 80
.75	30 40 50 60	1.1.4 1.224 1.139 .962	.012 .067 .093	.018 .012 .008	-1.279 -1.542 -1.662 -1.707	1170 0686 0433 0383	0311 0437 0508 0594	.0009 0017 0058 0068	U F	-	16 - 0.00 40000 46000 34000 34000	62 - 000 16 - 000 172 - 000 172 - 000 172 - 000	16 - 00 37 - 00 80 - 00 78 - 00 73 - 00	77 6600 1400 8200 8200
1.00	30	.697 1.222	.018	.005	-1.401	2338 1427	0460 0516	0000	U		0.0111	1 1 1 0 3 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40.11
	50 60 70	1.514 1.220 .732	. 92 .180 .036	.015 .010 .009	-2.126 -2.128 -2.042	0964 0708 0518	0757 0798 0798	0060 0078 0078	15		.0262 .0292 .0271 .0271	0492 0492 0454 0367 0200	.1154 .0806 .0634 .0591 .0376	1396 1042 0839
			1-	3 = 0°					_	-	0 1 1 1 1 1	11111 NO 000	01000	11111
0.25	30 400	0.825	- 0.009 002 005	0.004 003 .002	- 0.958 - 1.065 - 1.182	- 0.0146 0163 0121	-0.0233 0285 0347	- 0.0012 0022 0025	10	10	- 0.94		25	38 90 - 2.06 - 2.05
.50	70 30	.522	015	002	- 1.381	0099 0005 0450	0528	0028	5	3 = 1	0.005	.004 .005 .003 .003	005 005 005	015 008 008
	40 50 60 70	.848 .736 .591	.017 .035 .083	002 002	- 1.300 - 1.412 - 1.503	0321 0258 0147	0393 0488 0578	0054 0051 0047	X		.006 .015 .028 .028	.023 .023 .023 .025 .026	.002 .041 .041 .041 .03	.006 .081 .087 .153
.75	30 40 50 60	1.125 1.142 1.145 .856	.006 .010 .102 .044	.012 .004 .002	- 1.295 - 1.483 - 1.661 - 1.634	1160 0732 0524 0469	0334 0446 0496 0566	.0005 0025 0067 0075		-	812 821 794 649 722 1	8358 11 120 120 120 120 261	000 00 00 00 00 00 00 00 00 00 00 00 00	- 197 - 197
1.00	30	.635	.054	.003	- 1.706	0347 2309	0665 0495	0070	0	1	0			
	40 50 60 70	.562 .585 .123 .726	.101 .254 .097 .029	.015 .008 .004	- 1.954 - 2.164 - 2.076 - 2.042	1411 1010 0782 0569	0656 0721 0771 0850	0040 0079 0094 0094	20 ac		5.25 30 50 50 70	.50 30 40 50 70	.75 30 40 50 60 70	1.00 30 50 50 70

	[Coefficients and moments given about the quarter-chord point of the lower surface of the wing]																		
2V 2V	OC (deq)	C _X "	Cx	CY	Cz	G	Cm	Cn		2V VD	(deg.)	C _X "	Cx	CY	Cz	Cz	Cm	Cn	
	$/3 = -10^{\circ}$									ß=0°									
0.25	30 40 50 60 70	0.704 .704 .688 .612 .401	-0.037 012 .017 .046 002	0.008 .007 .009 .004 .003	-0.806 929 -1.050 -1.145 -1.179	0.0108 .0008 .0082 .0167 .0244	-0.0151 0207 0270 0341 0435	0.0036 0030 0040 0034 0028		0.25	30 40 50 60 70	0.677 .701 .700 .608 .468	-0.039 012 .020 .041 .059	-0.006 007 006 005 002	-0.804 926 -1.064 -1.145 -1.206	-0.0099 0175 0135 0101 0037	-0.0160 0208 0297 0364 0460	0.0007 0035 0045 0044 0041	
.50	30 40 50 60 70	.877 .843 .770 .678 .501	.011 .013 .023 .047 .059	.005 .003 .002 .006	-1.006 -1.089 -1.171 -1.274 -1.302	0287 0131 0133 0014 .0080	0201 0255 0329 0423 0489	.0053 -0011 0081 0084 0076		.50	30 40 50 60 70	.869 .825 .753 .667 .496	.001 .001 .007 .051 .051	002 800 500 500 200	-1.004 -1.076 -1.163 -1.247 -1.311	0325 0374 0330 0236 0156	0214 0272 0345 0424 0512	.0024 0045 0086 0086 0076	
.75	30 40 50 60 70	.994 1.124 1.010 .754 .536	009 069 061 004 150	.011 .012 .007 .004 .006	-1.143 -1.410 -1.499 -1.501 -1.512	1047 0528 0243 0217 0135	0253 0364 0461 0547 0609	.0008 .0010 0049 0104 0101		.75	30 40 50 60 70	1.046 1.151 .936 .764 .469	.016 .082 .030 .025 .042	.005 .002 004 .000 .002	-1.199 -1.433 -1.420 -1.485 -1.485	1107 0684 0575 0435 0305	-0316 -0443 -0458 -0524 -0524	.0000 -0040 -0097 -0120 -0097	
1.00	30 40 30 40 50	1.145 1.375 1.213 .848 .596	.0 48 .0 97 .0 69 0 61 0 28	210. 820. 910. 110. 210.	-1.295 -1.7 12 -1.806 -1.801 -1.820	2168 1381 0868 0562 0405	-0312 -0469 -0601 -0742 -0802	0005 0009 0034 0104 0112		1.00	30 40 50 60 70	1.283 1.425 1.175 .812 .536	.077 .085 .009 087 096	.004 .007 .005 .002	-1.438 -1.789 -1.817 -1.773 -1.832	21 45 1385 0965 0801 0479	0451 0528 0682 0709 0809	0001 0037 0076 0123 0094	
				ß=-	-5°					/3 = 5°									
0.25	30 40 50 70	0.692 .700 .687 .628 .502	-0.038 016 .011 .054 .088	0.001 .002 .002 .001 .000	-0.821 926 -1.056 -1.162 -1.227	0.0000 0078 0017 .0044 .0115	-0.0169 0238 0319 0406 0482	0.0016 0041 0050 0046 0042		0.25	30 40 50 60 70	0.680 .675 .693 .608 .469	-0.030 016 .021 .043 .064	-0.007 005 006 002 001	-0.802 895 -1.052 -1.141 -1.197	-0.0226 0298 0278 0273 0226	-0.0167 0188 0301 0356 0447	0.0002 0035 0045 0046 0043	
.50	30 40 50 60 70	.846 .819 .762 .673 .495	017 008 .013 .045 .051	.005 001 001 001 001	987 -1.074 -1.170 -1.269 -1.308	0343 0254 0232 0123 0030	0205 0286 0353 0438 0515	.0039 -,0038 -,0088 -,0095 -,0095		.50	30 40 50 60 70	.856 .809 .760 .661 .508	.000 .006 .025 .049 .062	002 006 004 003 003	989 -1.051 -1.153 -1.236 -1.315	0 495 0 483 0 440 0 382 0227	0214 0267 0338 0438 0533	.0014 0051 -:0082 0086 0074	
35.	30 40 50 60 70	1.102 1.162 1.010 .731 .467	.041 .080 .074 002 072	.000 .006 .002 .005 .012	-1.249 -1.450 -1.483 -1.465 -1.564	1079 0587 0398 0360 0197	-0320 -0377 -0430 -0535 -0617	.0003 0018 0081 0112 0095		.75	30 40 50 60 70	1.003 1.056 .914 .722 .501	500 7E0. 5E0. 210.	.004 .000 .000 .000	-1.159 -1.348 -1.384 -1.422 -1.491	-1139 -0797 -0712 0558 -0383	-0301 -0389 -0425 -0530 -0635	0003 50053 0106 0119 0107	
1.00	30 40 50 70	1.343 1.449 1.259 .837 .516	.11 6 .10 6 .084 072 109	.006 .014 .007 .005 .014	-1.484 -1.802 -1.858 -1.799 -1.807	2158 1374 0905 0638 0444	0393 0535 0605 0715 0786	0024 0034 0067 0113 0105		1.00	30 40 50 60 70	1.218 1.408 1.128 .862 .564	e50. 280. 900- 650- 220-	.005 .009 .004 .001 .006	-1.387 -1.767 -1.765 -1.763 -1.800	2149 1416 1054 0862 0617	0428 0594 0635 0690 0783	7000. 0700- 5010- 5610- 1110-	

TABLE I. AERODYNAMIC CHARACTERISTICS OF THE N.A.C.A. 23018 MONOPLANE WING WITH

N.A.C.A. Technical Note No.633

> Table N

Table 3

TABLE III.

AERODYNAMIC CHARACTERISTICS OF THE NA.C.A. 6718 MONOPLANE WING WITH ROUNDED TIPS

[Coefficients and moments given about the quarter-chord point of the lower surface of the wing]

20 2V	Q(cdeg.)	Cx"	Cx	Cy	Cz	Cz	Cm	Cn	5	Ι	036	024	000000000000000000000000000000000000000	091 084 0355
$\beta = -10^{\circ}$										-	01111	1111	11111	1111
0.25	34500	1.070 1.020 .942 .941	0.036	-0.006	-1.215 -1.286 -1.356 -1.391	0.0270 181 0. 7050. 7050.	-0.0392 0450 0497 0547	0.0077 0022 0028 0016	Ů		13 - 0.035 13 - 0.035 17 - 045 17 - 054 12 - 054	540426 960426 580446 580446 510660 510650	4054 66064 640799	20683 20683 140673 20906 3880906
.50	70 0000		.104 .045 .056 .075 .099	005 005 006 001	-1.328 -1.416 -1.495 -1.524	.0339 0171 .0040 .0123 .0138	0596 0424 0509 0563 0607	0040 .0026 0003 0052 0050	z Cz		- 000 - 02 - 02 - 02 - 02 - 02	74 - 02	633 - 084 855 - 084 855 - 085 875 - 085 875 - 085 885 - 005 885 -	956 - 191 955 - 191 392 - 08 39 1 - 05 39 1 - 05 39 1 - 05 39 2 - 05 30 2 - 05 2 - 05 2 2 - 05 2 2 - 05 2 2 - 0 2 2 2 2 2 - 05 2 2 2 2 2 2
.75	3000	1.300 1.341 1.264 1.057	.040 .070 .130 .146	012 006 010 004 003	-1.478 -1.692 -1.812 -1.861 -1.784	0896 0390 0082 0082 .0082	0538 0607 0607 0653 0735 0772	0063 0031 0023 0035 0035	C C	9 = 5	11- 200. 2000 21- 200 21- 200 21- 200 21- 200 21- 200 21- 200 21- 200 21- 200 21- 200 200 200 200 200 200 200 200	000 000 1-1-2 000 1-1-5 00 00 1-5 1-5 00 00 00 00 00 00 00 00 00 00 00 00 00	2000 2000 2000 2000 2000 2000 2000 200	010 - 1-7 000 - 2-1-7 000 - 2-1-7 000 - 2-1-7 000 - 2-1-1-7
1.00	30000	1.449 1.625 1.522 1.242 .772	.062 .09.5 .14.5 .14.5 .020	020 006 011 011	-1.637 -2.043 -2.194 -2.233 -2.233 -2.205	2005 1178 0608 0282 .0039	0629 0728 0832 0912 0979	0128 0076 0018 .0013 .0035	Č		0.023 -0.023 -0.0065 -0.0065	0357 0557 1066 1-366	1 1 2200,000,000,000,000,000,000,000,000,00	- 133 128 128
				B=	- 5°				.×.		975 1945 1945 1945 1948	122 122 122 122 122 122 122 122 122 122	338- 316 9669 673	595 664- 1084 1084
0.25	34500	1.033 .978 .938	0.030 .048 .094	-0.010 005 002	-1.175 -1.237 -1.347	0.0167 .0022 .0083 .0127	- 0.0385 0434 0482 0551	0.0050	Q (500 500 700 700 700 700 700	1000 1000 1000	10000	
50	70	.610	.131	001	-1.425	.0198	0608	0016	975	1	0.25	-50	:75	1.00
	40 50 670	1.104 1.033 .857 .624	.103	011 004 . 002 .002	-1.390 -1.484 -1.523 -1.527	0058 0009 .0034 .0097	0475 0539 0618 0660	0011 0048 0053 0031			043 034 040 0337 0337	017 034 068 062 030	045 0649 075 035	086 082 106 061 012
.75	30000	1.304	-043 -084 -133 -126 -059	005 007 015 008 002	-1.481 -1.696 -1.788 -1.825 -1.774	0869 0434 0201 0041 .0013	0594 0625 0707 0745 0792	0052 0039 0037 0031 0031 0023	C		355 0.0 4120 5300 5930	430 457 5510 5630 6470	5290 5960 6210 6980	6880 6820 1030 1030
1.00	34500	1.473	.05406	010 011 013 017	-1.667 -2.122 -2.225 -2.239	1977 1175 0662 0366	0683 0835 0892 0992	0102 0084 0033 .0013	z C		163 -0.0 35550 3690 3690	247 - 0 386 - 0 344 - 0 240 - 0 128 - 0	8510 56450 5800 4-330 1810	111 - 0 164 0 148 - 0 634 - 0 313 - 0
-	70	.747	011	B =	0°	0035	1028	.0026	C		00000	11111	11111	1111
0.2.5	30 40 50	1.008	0.021	- 0.008 001 001	-1.152 -1.226 -1.331	0.0069 0074 0059	-0.0370 0428 0483	0.0036 0031 0040	CZ	.01 =	-1.083 -1.16 -1.313 -1.313 -1.313 -1.313 -1.313 -1.313	-1.250	-1.575 -1.575 -1.628 -1.713 -1.779	-1.132
.50	60 70 30	.795 .597	211. BIL. 550.	001 001 005	-1.396 -1.421 -1.293	0036 2400. 0213	0572 0597 0410	0031 0024 .0018	C	B	010.0-000.0-00000.0-00000.0-00000.0-000000	005 005 005 005	001 .000 .000	020 110. 1004 013
	40 50 60 70	1.010 .844 .641	.087 .104 .115	00B 005 .000 .002	-1.371 -1.467 -1.508 -1.659	0101 0129 0123 0123	0551 0593 0661	0055 0055 0030	Cx		190. 190. 490.	.040 .041 .063 .063	790. 1067 106 101. 10501.	1001. 101. 551. 551.
.75	345000	1.344 1.330 1.205 1.036 .686	.052 .073 .114 .142 .078	002 006 009 006 .000	-1.522 -1.675 -1.740 -1.825 -1.792	0855 0495 0325 0142 0110	0589 0624 0661 0738 0784	0043 0048 0047 0043 0036	C'x"		0.450 .911 .941 .767 .767	103 1410 1410 108 108 108	1.328 1.257 1.128 .948	1.550 1.616 1.375 1.168 1.168
1.00	30000	1.525 1.653 1.484 1.732 809	.070 .100 .126 .144 .054	007 005 006 011 001	-1.72.1 -2.074 -2.158 -2.214 -2.218	1964 1172 0746 0443 0127	0666 0799 0865 0930 0930	0088 0090 0058 0005 .0017	16 deg.)		25 30 40 60 70	50 30 50 50 70 70	75 30 40 50 70 70	00 30 50 50 50

H

Figure 2.- The rectangular N.A.C.A. 6718 wing with rounded tips mounted on the spinning balance.

.8

.6

. .4

1.6

1.4

1.2

1.0

.8

.6

Longitudinal-force coefficient, $\sigma_{\chi\,\pi}$

 $\alpha = 70^{\circ}$ Clark Y N.A.C.A. N.A.C.A. N.A.C.A. 0 23018 6718 0009 + 50° 1.6 1.4

Figure 3. - Variation of longitudinal-force coefficient $C_{\chi \, "}$ (earth axes) with angle of sideslip and $\frac{\Lambda b}{2V}$.

Angle of sideslip, β , deg.

Fig. 4

Up/2A

Figs. 5,6

μ = 5

Figure 7. - Effect of pitching-moment coefficient upon sideslip necessary for equilibrium in a spin.

$$C_{L} = C_{X} = \frac{k_{Z}^{2} - k_{Y}^{2}}{k_{Z}^{2} - k_{X}^{2}} = 1.0$$

 $\frac{b^{2}}{k_{Z}^{2} - k_{X}^{2}} = 80$

Figure 8. - Effect of pitching-moment coefficient upon yawing-moment coefficient that must be supplied by parts other than the wing for equilibrium

n a spin.
$$\mu = 5$$
 $C_L = C_X = \frac{k_Z^2 - k_Y^2}{k_Z^2 - k_X^2} = 1.0$ $\frac{b^2}{k_Z^2 - k_X^2} = 80$

Fig. 8

N.A.C.A. Technical Note No. 633

Figure 9. - Effect of pitching-moment inertia parameter upon sideslip necessary for equilibrium in a spin. $\mu = 5$ $C_L = C_X * C_m = -0.0020 (\alpha - 20^{\circ})$ $\frac{k_Z^2 - k_Y^2}{k_Z^2 - k_X^2} = 1.0$

.01 0 Yawing-moment coefficient, $0_{\rm II}$ -.01 N.A.C.A. 23018 N.A.C.A. 0009 - 30 - 40 - 50 - 60 - 70 .01 d ,deg. 0 -.01 N.A.C.A. 6718 Clark Y -.02 60 80 100 100 120 60 80 120 ъ2 Pitching-moment inertia parameter, $\frac{1}{k_Z^2 - k_X^2}$

N.A.C.A. Technical Note No. 633

F1g. 10

Figure 11. - Effect of relative density of airplane upon sideslip necessary for

CL = CI.

equilibrium in a spin.
$$C_{m} = -0.0020 (\alpha - 20^{\circ})$$

 $\frac{k_{z}^{2} - k_{y}^{2}}{k_{z}^{2} - k_{x}^{2}} = 1.0$ $\frac{b^{2}}{k_{z}^{2} - k_{x}^{2}} = 80$

.01 - -0 Yawing-moment coefficient, Cn 0 N.A.C.A. 0009 N.A.C.A. 23018 $\begin{array}{c} -30 \\ -40 \\ -50 \\ -60 \\ -70 \end{array} \right\} d , deg.$ -.01 Clark Y N.A.C.A. 6718 -.022.5 10.0 5.0 7.5 2.5 5.0 7.5 10.0 m Relative density, $\mu = \frac{1}{\rho Sb}$

N.A.C.A. Technical Note No. 633

 $\mu = 5$ $C_{L} = C_{X} = C_{R} = -0.0020 (d - 20^{\circ})$

 $\frac{b^2}{k_z^2 - k_x^2} = 80$

.01 0 ----a -.01 N.A.C.A. 23018 N.A.C.A. 0009 Yawing-moment coefficient, -30 -40 -50 -60 -70 a, deg. .01 0 -.01 N.A.C.A. 6718 Clark Y -.02 1.5 2.0 .5 1.0 Rolling and yawing-moment inertia parameter, $\frac{k_Z^2 - k_Y^2}{k_Z^2 - k_X^2}$ 1.5 2.0 1.0 1.5

N.A.C.A. Technical Note No. 633

Effect of pitching-moment coefficient upon sid

$$\mu = 7.5$$
 $C_L = C_{X''}$ $\frac{k_Z^2 - k_Y^2}{k_Z^2 - k_X^2} = 0.5$

.01 0 N.A.C.A. 23018 N.A.C.A. 0009 5-.01 - 30 - 40 - 50 a, deg: 70 .01 0 -.01 N.A.C.A. 6718 Clark Y -.03.0010 .0050 .0050 .0058 .0066 .0010 .0018 .0026 .0034 .0042 .0018 .0026 .0034 .0043 $\frac{-c_m}{\alpha - 30^\circ}$ Slope of assumed pitching-moment coefficient curve,

Yawing-moment coefficient,

Figure 16. - Effect of pitching-moment coefficient upon yawing-moment coefficient that must be supplied by parts other than the wing for equilibrium in a spin. $\mu = 7.5$ $C_L = C_{\chi H}$ $\frac{k_Z^2 - k_Y^2}{k_Z^2 - k_\chi^2} = 0.5$ $\frac{b^2}{k_Z^2 - k_\chi^2} = 60$

N.A.C.A. Technical Note No. 633

 $\mu = 7.5$ $C_{L} = C_{X^{H}}$ $C_{m} = -0.0030 (\alpha - 20^{\circ})$

 $\frac{k_{\rm Z}^2 - k_{\rm Y}^2}{k_{\rm Z}^2 - k_{\rm X}^2} = 0.5$

Figure 19. - Effect of relative density of airplane upon sideslip necessary for equilibrium in a spin. $\frac{k_Z^2 - k_Y^2}{k_Z^2 - k_X^2} = 0.5$ $\frac{b^2}{k_Z^2 - k_X^2} = 60$ $C_{\rm m} = -0.0030 (\alpha - 20^{\circ}) \quad C_{\rm L} = C_{\rm X} +$

 $C_{L} = C_{X}$ " $C_{m} = -0.0030 (\alpha - 20^{\circ})$

F1g. 21

N.A.C.A. Technical Note No. 633

30 40 50 60 70 d, deg. .01 > 0 == c n Yawing-moment coefficient, -.01 N.A.C.A. 23018 N.A.C.A. 0009 .01 0 -.01 N.A.C.A. 6718 Clark Y 1.5 0 $\frac{5}{k_Z^2 - k_Y^2}$ Rolling-and yawing-moment inertia parameter, $\frac{k_Z^2 - k_Y^2}{k_Z^2 - k_X^2}$ -.020 1.0 1.5 1.0 .5

Figure 22. - Effect of rolling-and yawing-moment inertia parameter upon yawing-moment coefficient that must be supplied by parts other than the wing for equilibrium in a spin. $\mu = 7.5$ $C_m = -0.0030 (\alpha - 20^{\circ})$ $C_L = C_{X''}$ $\frac{b^2}{k_Z^2 - k_X^2} = 60$