7 ey 7 Na

NASA-CR-162032 ' WAsg CE- /62) IRSZ

19840021430

[S
[—

A Reproduced Copy

OF

Reproduced for NASA
by the
'NASA scientific and. Technical Information Facility

LIBRARY GGPY
Ry

LANGLEY RESEARCH GENTER
LISRARY, NASA
HAMPTON, VIRGINIA

FFNo 672 Aug 65

lllll!lllllllllqllymlllﬂljl[_)ll||l||||||||||

BEST
AVAILABLE

COPY

LI

Gawr 7

NASA CONTRACTOR
REPORT
AUG\“B‘D
- CEWE '
%‘,‘, NSAES“ FAC\UW
NASA CR-162032 2. yput BRANCH '°/
(bAdA-Lu-IUZUJJ) JIVATAL S5YS1ths VESIGN QdﬁfZQQQQ

wasvdaokbe WUES.ud SIMIAESIS CF DIGITAL
~2loiaMS LOLtLACLIL muport, 1 Cct. 1978 - . .

T 3Y Gipe 1375 (AlaLaBda ULLV., . diuntsviiled) ' Juclas
Tce p ue aulyzli 401 ¢SCL 09% GJ/LI 19754

DIGITAL SYSTEMS DESIGN LANGUAGE - DESIGN SYNTHESIS OF
DIGITAL SYSTEMS

By Sajian G. Shiva
University of Alabama
Computer Science Department
Huntsville, AL 35807

Technicual Report

Qctober 1979

Prepared for:

NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama 35812

o PRI - — . — . - ol S i e

e

TECHNICAL REPORT STANDARD TITLE PAGE

t. REPORT NO, 2. GOVERNMENT

-ESSION NO,

3. RECIPIENT'S CATALOG NO,

NASA_CR-162032
&, TITLE AND SUBTITLE

Digital Systems Design Language
Design Synthesis of Digital Systems

8. REPORT DATE
October 1979

6, PERFORMING ORGANIZATION C(OE

7. AUTHOR(S)
Sajjan G. Shiva

8.PERFORMING ORGANIZATION REPORTI &

9. PERFORMING ORGANIZATION NAME AND ADDRESS
University of Alabama
Computer Science Department
Huntsville, AL 35807

10. WORK UNIT NI,

11. CONTRACT OR GRANT NG.
“INAS8=33096
13, TYPE OF REPOR. 8 PERIOD COVLRED

12, SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space Administration
Washington, DC

Contractor Report
Oct. 1, 1978 - Sept. 30, 79

14, SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

Contract Monitor: Robert E. Jones

168. ABSTNACT

Digital Systems Design Language (DDL) has been implemented on the SEL-32 Computer

Systems of the Electronics and Controls Laboratory.

details of the language; the translator and the simulator programs.
example descriptions and a tutorial on hardware description languages are provided,

to guide the user.

Date for General Release: October 1983

17. KEY WORDS
Pigital Systems Design Language
Digital COmputer Implementation
Translator and Simulator
Tutorial Examples

This document provides the
Several

—— - -

L
20. SECURITY CLASSIF, (of this

Uncl

19, SECURITY CLASSIF, (of this reparty

Uncl

21. NO. OF PAGED>

122

page)

28, Frive
STIS) ‘l

MIFC - Form 3292 (May §96¢)

egh, AT o R O P

- - e e T SNy

LS SR

A

LA TYHE T PR Y

G

FOREWORD
This is a technical summary of the research work conducted during
October 1, 1978 to September 30, 1979 by The University of Alabama in

Huntsville towards the fulfillment of the Contract NAS8-33096 from the

George C. Marshall Space Flight Center, Alabama. The NASA technical

officer for this contract is Mr. Robert E. Jones.

The author greatfully acknowledges the numerous discussions with
and helpful comments of Mr. John M. Gould during this resea—ch work,
and thanks Professor Donald Dietmeyer of the University of Wisconsin-

Madison for providing the DDL Software.

11

} j
TABLE OF CONTENTS
LIST OF TABLES-- 1V
- LIST OF FIGURES v
.- 1 . INTRODUCTION - 1
. 2. THE LANGUAGE (DDL) 2
2.1 Syntax Rules—==~-- 5
2.2 Declaration Statements -—- 5
2.3 Operations 8
2.4 1f-vValue Clause 10
2.5 Identifier 11
2.6 Opcrator Declarations 11
2.7 State Declaration- 13
2.8 Automaton and System Declarations 14
3. THE TRANSLATOR (DDLTRN) 19
3.1 The Translation Process 20
3.2 An Example 23
4. THE SIMULATOR (DDLSIM) 31
4.1 Simulation Models 32
4.2 Simulator Command Language 37
4.3 Simulation Algorithm---- 61
4.4 Errors 64
5. EXAMPLES
) Example 1: A Serial Twos Complementer 66
Example 2: The Serial Twos Complementer (variation 1)------ 77
Example 3: Twos Complementer (variation 2) 84
Example 4: Multiplier-- 94
- Example 5: Minicomputer - 99
6. CONCLUSIONS === =mmmmmmmm e oo 102

APPENDIX

o

111

2.1

3.1

2.1
5.1
5.2
5.3
5.4
5.5

LIST OF TABLES

OPERATORS 18
FLAG INTEGERS 20
LIST OF FIGURES
Local and Global Facilities 4
A Serial Twos Complementer 70
The Serial Twos Cumplementer (variation 1) 78
The Serial Twos Complementer (variation 2) 85
Multiplier - 96
Minicomputer - —=101 -

v

1. INTRODUCTION

Hardware Description Languages (HDL) provide a convenient medium of
inputting the design details into a design automation system. This re-
port gives the details of one such language, Digital Systems Design
Language (DDL), selected for integration into the Computer Aided Deéign
and Test System (CADAT) of the Electronics and Controls Laboratory.

Chapter 2 provides the language details, Chapter 3 discusses the

translator program and Chapter 4 discusses the Simulator Program. Some

'example descriptions are provided in Chapter 5. A tutorial on Hardware

Description Languages is p;ovided in the Appendix. An exhaustive bibli-
ography for some of the literature in this area 1s also provided in the
Appendix. Readers not familiar with any HDL are referred to the Appendix
before reading the rest of the report.

The Simulator and Translator Programs are currently being tested on
SEL-32 Computer System and hence, the complete deck set up details for

£he use of these programs is not included in this manual.

2. THE LANGUAGE [31]%

DDL was introduced in 1967 by Duley and Dietmeyer [33]. A trans-
lator and a simulator are written for a subset of this language in IFTRAN,

an extended version of FORTRAN [35,36]. These programs are implemented

in FORTRAN on SEL 32 Computer System. The translator (DDLTRN). translates

a DDL description into a set of Boolean equations and register-transfer
statements., The simulator (DDLSIM) enables the system designer to verify
his design. The output of the translator is an input to the simulator.

Simulation parameters are to be input by the designer. In DDL the struc-

tural elements are explicitly declared. At the lower_lgyg{‘qg_dqsggiptiqn;

functional and structural elements correspond directly to the actual
elements of the system. DDL is highly suitable for describing the system
at the gate, register transfer and major combinational block level.

The logical statements can be formed using the available primitive
operators. The functional specification of the system consists of these
logical statements, in blocks. The statements describe the state tran-
sitions of a finite state machine controlling the processes of the in-
tended algorithm. 7The block then appears as an automaton.

Parallel operations are permitted. Synchronous behavior 1s described
by either identifying the pulses or by including delay elements described
in terms of multiples of clock pulses. Asynchronous behavior is modelled
by using conditional statements. Data paths can be explicitly declared

by using terminal declarations.

*The numbers in brackets point to the references listed in the Appendix.

ST

~3-

DDL is a "block-oriented" language; the blocks of a DDL description
usually correspond to natural divisions (blocks) of the hardware being
described. Thus a computer may have a major block called an "ALU,"
which contains a block called "adder,'" which c;ﬁsigéglof inﬁerconnected
logic blocks calied "full-adders." This nested view of the hardware can
be directly reflected in the DDL description of the computer.

Both facility declarations and operations can appear within the body
of the more complex declarations that have a heading part. 1ldentifiers
declared within such complex declarations are said to be local facilities
of that declaration, and are global facilities of complex declarations
that appear in the body of the encompassing declaration. Other complex
declarations that parallel the encompassing declaration cannot control
or sense such facilities. Operations can reference only facilities that
are local or global to the block in which they appear. Thus the same
identifier may be declared in more than one parallel block without
ambiguity.

Figure 2-1 illustrates some of the possibilities. Facilities A, B,
and C are declared facilities of the overall block named SYSTEM. These
facilities are global to all blocks within SYSTEM; any or all of these
blocks may control or sense the states of facilities A, B, and C. Hence
A, B, and C are said to be public facilities. Facilities D and E are
local to SUBSYSTEM 1, global to PART 1 and PART 2. SUBSYSTEM 2 and its
inner blocks are not aware that facilities D and E exist; no reference
to D and E may appear in the description of SUBSYSTEM 2.

Facilities H and I are local to PART i; no other block of Fig. 2-1
may control or sense these facilities. PART 2 has its own facility I

which may be of a very different hardware nature than facility I of

e

=
SYSTEM
Faciities A,B,C
SUBSYSTEM | SUBSYSTEM 2
Facihties D,E Facihties F,G
PART I PART 2 ASSEMBLY
Focilities| { Facitities Facihties
H,1 I.J J, K
CARD
Facilities
K, L
Fig. 2-1. § ocid and global faobines.

PART 1. PART 1 and PART 2 each control and sense their own facilityI.

Similarly, PART 2 controls and senses its local facility J as does
ASSEMBLY for its local facility J, which is global to CARD and hence can
be controlled and sensed by CARD. References to K within CARD pertain to
the most locally declared facility K, e.g., the one declared within CARD.

Permitting the same identifier to be used in parallel blocks allows
designers working in parallel on the blocks to select without restriction
names that appeal to them. If parallel blocks must communicate, facilities
global to them must be established and assigned unique names. The de-
signers of the parallel blocks must know and use these global names. Thus
in Fig. 2-1 SUBSYSTEM 1 and SUBSYSTEM 2 may communicate via A, B, or C.

PART 1 and PART 2 may communicate via D or E, or via A, B, or C.

it

L w3

2.1 SYNTAX RULES

VARIABLES:

Variable name may contain 1 to 8 characters, the first of which must

be alphabetic. The remaining characters must be letters or digits.

Examples: MULT
SYS1
COMPLMNT
CONSTANTS :

Constants take the general form nRk.

n is the number in base R (R=D for

decimal, O for octal). k is the number of bits required for the repre-

sentation,k £ 32. k is decimal.
Examples:

Representation

1D2

5D4

20D5

203

2006
0

1

Binary equivalant

ol
0101
10100
010
010000
0

1

2.2 DECLARATION STATEMENTS

The general format of a declaration statement is <DT> body.

The declaration type (device) is enclosed in angle brackets and the period

terminates the declaration. Body consists of a list of items separated by

commas. Following devices are allowed:

~-6-
TErminal Sets of wires
REgisters Sets of synchronized flip-flops
MEmory . _ Setsrof synchronized'flip-fiops
LAtches Sets of asynchronous latches
TIme Clock
DElay ' Delay elements
BOolean Combinational logic
ELement Of f-the-shelf components

The device type can be abbreviated to the first two characters.
Examples:
<TE> X, Y(4), 2(0:2), W(3,4:1), A(12) = B ¢ C(0:10) identifies
a single wire X, four wires Yl, YZ, Y3; Y4 with Yl on the left, 3
wires 2, Zl’ Z, and 12 wires corresponding to W, placed in 3 rows, ith

0 2

row of wires numbered W The subscripts always have a

i4° w13’ wiZ’ wil'
left to right interpretation. A single subscript n 1indicates the range
1 to n while a range n:m indicates n to m left to right. 1In the above
declaration, Al is also named B, A(2:12) aré named C(0:10). ¢ is the
concatenation operator. The concatenation of B and C is a 12 bit
terminal A with the most significant bit same as that of B and the

least significant 11 bits same as those of C.

REgister and LAtch DECLARATIONS

<RE> IR(16) = OP(0:3) ¢ IX(1:3) ¢ ADRS(9), X(12). declares
a 16 bit register IR and a 12 bit register X.
IR is identified with 3 subregisters OP, IX and ADRS.

<LA> BUF(4).

declares a set of 4 latches BUF.

OG- IR bl U S B b A 6

DRI M DT N

TR IMNORS ol e 2

EELA S N L S0 s 1 TR o ot e i

| e anpot

<RE> A(8).

declares an 8 bit register , bits numbered from 1 to 8, left to right.

MEmoxry DECLARATION

<ME> M(X:Y).
declares X words (numbered from O to X-1) of Y bits each (numbered 1
through Y).

<ME> MP(256:8).
declares a 256 word memory, 8 bits/word.

References to the memory must be of the form M(MAR) where MAR is

the same register in all references to M. MAR is declared in a RE
declaration., Only full words may be accessed from memories.

TIme DECLARATION

<TLI> A(lE-6), Q(20E-9) $2§.
declares a single phase clock A with a 1 microsecond period and a two-
phase clock Q with 20 nanosecond period.

<TI> P.
declares a single phase clock with an arbitrary time period (unit).

DElay DECLARATION

<DE> P(10E-9), Q(SE—?).
declares two delays P with 10 nanoseconds and Q with .5 microsecond.
The context in which the DElay element is referenced determines whether
its input or output terminal 1is used.

BOolean DECLARATION

<B0> Identifier = Boolean expression.
Examples:
<TE> A, B(5), C(0:4), D(6, 5:1).

<BO> D(4) = B+C, D(5) = A*B.

QAT S LS8 PO NI AT I

HESR A ORIeeRs a4

0 Sk P P &) S T T B 0 0 SO VI 00 03 R B s oo

) Qb 2o i s KSoh

i.e. (D[.5 =B

‘AND‘of A and B. Since A is 1 wire and B is a set of 5 wires, A is fanned

declares that the fourth row of D is formed by ORing terminals B and C

1t C0 etc.) bit by bit; the fifth row of D is a bit by bit

out to combine with each bit of B. . .

ELement DECLARATION

Enables the description of an element in the system whose logical
specifications are unknown or impertinent;
For example,

<EL> JKFF (QL,NQl: C, J1, K1), COUNT (K(5:1), ZERO:
UPDWN, CLK).
declares an element JKFF with 3 inputs C,J1,K1 and two output Ql and
NQl; and zit element COUNT with two inputs and 6 outputs. ‘The only
information available on these black boxes is the input/ocutput terminals.
2.3 OPERATIONS

Table 2.1(a) shows the operations allowed and their hierarchy;
Table 2.1(b) shows three special operators. "=" is used to show the
connections while <- indicates a data transfer from one facility to the
other -> is equivalent to a "GOTO', used to show a state transition.

The extension operator "$" creates k copies of the terminal or
terminal set offered as its left operand.

The selection operator '

, selectively complements, or not comple-~
ments the bits of the facility (left hand operand) depending on the

value of the corresponding bit in kDn is a 0 or 1.

ORIGINAL PAGE I3
OF POOR QuALITY

For example A' 10D5 is equivalent to

1 e
2
A3 [>e A'01010
4
5 >

The operator preceding the reduction operator (/) determines the
nature of the reduction on the right hand operand of /. Six types of
reductions are possible. For example, given a signal A,

*/A implies

If A is a 3 bit signal,

x/A' 2D3 inmplies

Selection

N

;
|
[>e
[>-
~

Reduction

v}

ORIGINAL PAGE 19
OF POOR QUALITY
10~

+/A'3D5 implies

; ‘. . H
! d Wy
: !

VYY
-

(S
VI s W N =

Boolean expressions (Be) can be formed by using the operators and

variables in the usual rmanner, Paranthesis could be used where there is
an ambiguity. The expressions are evaluated from left to right follow-
ing the operator hierarchy.

Conditional operations have the format

'BE! OPI. or

tppt N
IBE! 0P, ;0P,.

The first form implies: If the value of BE is 1, perform OPI; the

second form implies: 1If BE is 1, perform OPl_else perform OP "If ...

2°

_then" operations can be nested:

PALIBIOP.; I CLOP...
2,4 1F - VALUE CLAUSE_
" " is used for "IF" and "#va" is used for the value in an IF-value
clause, For example;
B =" C #0 DO #1 D1 #2 D2.
irmplies that DO is connected to B if the value of C is 0, D1 is connected
to B if the value of C is 1, etc. |

As another example,

{x #0D2 A<~B #1D2 A<-C #2D2 A<-AB #13D2 A<~/C.

"describes a 4 way conditional transfer operation into A depending on the

R A .« ?

PO ST e ————p——r e~ @) b - erem e

=

~11-

value of X.
2.5 IDENTIFIER
IDentifier declaration enables the naming of a group of operations

so that they do not have to be written repeatedly (equivalent to MACROs).
The general format of IDentifier declaration is,

<ID> list.
wheré list takes the form

id = compound facility

id = (CSOP)
For example, <ID> X = C(2:10) £l. names the compound facility £(2:10)¢1
to be X. Then, any reference to X is expanded into C(2:10)¢.
For example, S = R ® X. is equivalent to S = R & C (2:10) ¢1.

(A compatible set of operations (CSOP) is a set of operations

separated by commas. It must be possible for the hardware to perform
all these operations simultaneously.)
The order in which the operations are listed ﬁs of no consequence.
For exarmple,
<ID> A= (Y <= X, Z <= Z(2:5) ¢AZ(1)),
B = (Y <~ X, Z<-Y).
names two CSOPS, Note that the operations Y <- X and Z <~ Y in B are
simultaneous and are compatible,
2.6 OPERATOR DECLARATION
Blocks of combinational circuitry can be defined with the OPerator
declaration. The body of the OPerator declaration consists of a BOolean
declaration and perhaps a TErminal declaration. ﬁoolean equations in

the body of the BOolean declaration include Boolean expressions which

]2~

may involve conditions and be relatively complex. References in these

_Boolean equations may be made to (1) facilities global to the OPerator

t declaration. (2) local terminals declared within the OPetatofHAecléra-

tion by a TErminal delcaration, and (3) terminals delcared and dimension-
ed in the head of the OPerator declaration. The TErminal declaration
may be used to define local terminals of the operator, and must be used
to dimension "dummy' identifiers listed in the heading, if any.

The head of the Operator declaration consists of oneﬂbf anliéf‘
(separated by commas) of identifiers with or without an argument list
enclosed in Ss, with or without parenthetic subscript ranges. Permitted
syntactic forms for heads are:

idl, idz(iz), 1d3 $ Xl, XZ,...XkS. 1d4 (i“)s

Xl. Xz... XkS
wher2 subscript ranges can also be placed within the parenthesis. The
identifiers name the combinational logic blocks and their output termi-
nals. Parenthetic integers dimension the output terminal sets with the
same Syntax and semantics as in TErminal declarations. The arguments
are local dummy identifiers of input terminals of the combinational
blocks, Such dummy identifiers must be dimensioned via a local terminal
declaration within the OPerator body.

As an example of a time-shared operator block, ALU is declared
below. This combinational block is able to add two 16-bit binary
sequences presented to it on lines X and Y or form their bit-by-bit
EXCLUSIVE~OR, Input signal F determines which task is performed. The
carry into rightmost full-adder must also be presented to the unit.

<OP> ALU(16) § X,Y, CIN, FS

<TE> X(16), Y(16), CIN, F, C(16) = CXZCC(15).

PR

-13-

<BO> C=X*Y 4+ CCE CIN* (X+Y),
| ALU = (!F! XY@ CCZCIN; X@Y..(:nd of BO, end of OP)

Note the inline comment capability of DDL (endrbf BO; end of OP).
Suppose the following declaration is global tovALU,

<RE> ACC(16), MBR(16), COUNT (12),
we can define several operations using ALU as following:

!LDA! ACC <~ ALUSO,MBR,0,0$

!ADD! ACC <- ALUSACC,MBR,0,1$

!SUB! ACC <~ ALUSACC,AMBR,1,1$

'KNT! COUNT<-ALU(5:16) SOD4fCOUNT,0,1,1$

!XOR! ACC <~ALUSACC,MBR,0,0$

. 2.7 STATE DECLARATION

DDL views the operation sequencing (control) circuitry as a finite
state machine. Each state (step) of the control circuitry is described
by a STate declaration: |

<ST>State List,

State list consists of a list of state statements (without separa-

ting commas)., Each state statement has one of the following forms:
Sid (n): csop.
Sid (n): Be: csop.

Sid is a simple unsubscripted identifier. n is the decimal state
assignment.csops include the state change operations using the state
ttansition operator ->,

In the first form, csop is performed whenever the automaton is in
the state Sid.

In the second form, cgop is performed when the automaton is in Sid

and also Be is satisfied. The automaton waits in the state till Be is

-14-

satisfied.

A 15 bit multiplier control can be described as following:
<ST> S0(0) :MPY:ACC<-0, CNT<-15D4,->Sl.
S1(1):=->S2, DECRS CNT$!'Q(15) ! ACC<-ACC+R..
- §2(2) :SHRSACCLQS, {+/CNT} ->S1;50 ...
(end of conditional, end of S2, end of ST)
SHR is shifc right (zero fill) operator and DECR is a decrement
_ operator assumed to be defined using <OP> declaration.
2.8, AUTOMATON and SYSTEM DECLARATIONS
Relatively independent disjoint portions of a digital system are
identified as automata in DDL with syntax.
<AU> head body.
The AUtomaton declaration {s the most complex type of declaration
of DDL. 1Its head may take any of four forms, for example;
auid:
auid:csop
auid:Be:
auid:Be:csop
First, an automaton identifier, auid, may be subscripted, but may
not include parenthetical arguments; it names the block only. A compat-
ible set of operations may be included in the head of an automaton.
These operations are to be performed whenever the Be of the heading, if
any, 1is satisfied. Conditional as well as unconditional operations may
be included in this heading csop, so whether a specific operation is
performed or not may depend on conditions throughout the automaton or
system,

Be in the heading of the AUtomaton declaration is a condition on

B

t ' -15-

all operations declared throughout the body of the declaration except
L connection operations. Usually Be is the clock signal that synchronizes
the automaton., It {is géneraliy unnecessary and undesirable to include
such global conditions as clock signals in combinational circuits; in
fact, signal propagation in combinational networks usually precedes
clock pulses. If a clock with n phases is used to synchronize an autom-
aton, then a dimensional Be or a concatenation.of n Bes appears in place
of the single Be in the AUtomaton declaration head,
The body of an AUtomaton declaration consists of other declarations.
. Each of these declarations is terminated with its own period; punctuation
is not placed between them. The following declaration types may appear:
<ME>, <RE>,<LA>, <TE>
<T1>, <DE>, <0P>,<EL>,<ID>,<B0>,<ST>
ME, RE, LA, TE, TI, DE, AND EL declarations are used to declare the
existence of local facilities of the automaton. The OPerator and BOolean
declarations specify combinational blocks and interconnections of facil-
ities., The IDentifier declaration may be used to simplify or clarify the
overall AUtomaton declaration. The STate declaration is usually used to
specify the operations of the automaton. If the STate declaration is not
used, then all operations appear in the csop of the AUtomaton declaration

head.

The SYstem declaration has syntax identical to the AUtomaton decla-

ration. The system is identified in the head. Global conditions and
csop may be specified also. The body of a SYstem declaration may contain
AUtomaton declarations as well as all other types of declarations, but
STate declarations must appear within AUtomaton declarations. Public

facilities are declared with ME, RE, TE, etc., declarations outside of all

TR

N
}

1
™

g e g e

-16-

L e A SIS SV S ISR 0 i i

AUtomaton or OPerator declarations.

I :Examgle:

o A multiplier controller is described below to illustrate 4

ate S

the SYstem and AUtomaton facilities. The counter is

treated as a separate automaton. Perhaps other unspec-

-
Miasrthte g

ified automaton of SYSTEM 1 can use the counter when
automaton MC is not.
<SY> SYSTEM 1:

<RE> ACC(15), Q(15), R(15).

<TE> SET, DEC, DONE, MPY.

<TI> P(1lE-7).

<AU> CPU: P:

<ST> .

Q17: DONE: Q <~ Multiplier,

S

. R <~ Multiplicand, MPY = 1,
.. (end CPU)
?AU> MC: P:
<ST> 50: MPY: ACC <- 0, SET =],-> §1,
S1: -> S2, DEC = 1,!Q (15)! ACC <- ACC#R..
$2: ACC£Q <- SHR$ACCLQS !DONE! -> S1 ,,,
<AU> K: P:
<ST> [1=1:15] T(i): DEC: ->T(i-1)..
T(0): DONE = 1, !SET! -> T(15); -> T(0)...

(end SY)

e 7

B TSN G, Dok « o

-17-

Automaton CPU is shown only as placing the multiplier and multipli-
cand in public registers and issuing command MPY to multiplier contrcl
MC. 1If the counter autdmaton K is idle, it will be issuing DONE = |,
CPU waits in its state Q17 until this condition is satisfied (perhaps K
is still doing a job for some other automaton). MC clears ACC, but the
counter is initialized by SET = 1. Specifically SET = } will cause K to
go from its state T(0) to T(15) where it will remain until it is told to
decrement via public terhinal DEC. MC tests the multiplier, adds or not
and shifts repeatedly until it is informed by K via public terminal DONE
that all multiplier bits have been examined. In the example above inter-
acting automata MC and K operate in parallel.

NOTE: The "For clause" shown in the Automaton K for the decrement
operation [i=1;15] T(1):DEC: -> T(i~1) is not allowed in the present
version of the DDL software. This statement has to be broken up into;

T(l): DEC: ~>T(0)

T(2): DLC: ->T(1)

T(15):DEC:=>T(14)
SHR is a single argument operator (assumed to be declared earlier)

that shifts the argument one bi; right, and fills zero on the left,

AL A L I o SRR A it

. W d

. - .- P T T T e I nt g
-18- E

TABLE 2.1(a) : OPERATORS

OPERATOR SYMBOL TYPICAL SYNTAX COMMENTS
Extension $ ASk k copies of A z
-

Concatenation ¢ A¢B Bit by bit :
Complementation A AA Bit by bit complement f
Selection ' A'kDn Selective comple- kN
mentation ‘

g

Reduction / p/A A1PAsp...PA , where p
is one of theset*, Ak,

A+, AQ,Q,+.

AND * A*B Bit by bit
NAND A* AM%B Operations 4
NOR M AMB : L
XNOR Ae ANGB .
XOR e AGB
OR + AtB
TABLE 2.1(b) : SPECIAL OPERATORS a-

CONNECTION = F
TRANSFER <= 3

GO TO -> 1

NOTE: Refer to Chapter 3 (The Translator)for wvariations of these ;
Operators.

4

i

W W 9 NN AP 6

PR PO W T R - e ——— v - PSPPIy
v 2 I . A

3. THE TRANSLATOR (DDLTRN) [36]
DDLTRN is a program that translates a DDL description of a digital

system to 1) a DDL description that consists of Boolean equations and

register transfer statements in the heading of a system declaration only,

aﬁd 2)a tablation of facilities and subfacilities declared in the DDL
description and/or defined in the translation process. Some modifica-~
tions of DDL recognized by DDLTRN are listed below. The translation
process is briefly discussed and illustrated in Section 3.1.

1) The following operators are changed to accomodate the SEL-32 periph-

erals:

DDL Operator Key Punch CRT Terminal Printer
Concatenation ¢ ¢ L [
Complement A L A 4

IF - THEN : :]]
IF - VALUE | ‘ ! '

1 '
The other operators of DDL are compatible with the peripherals of SEL-32
and remain the same.

2) COmment declarations end with a left angle braékgt<.

3) Values in "If-value" clauses are limited to a single integer values.

Ranges, lists and else (;) values are not permitted.

4) Concatenation operands must be simple‘facilities with or without sub
scripts, or binary strings.

5) State assignments are specified in decimal following the state iden-
tifier of each state statement, e.g., "S1(2):..."

6) Automata names are used as state sequencing register names and thus

should be dimensioned in the <AU> declaration héad, e.g., "<AU> CPU (5):

P:..."

-19-

g RT-Tty

i e g

T

i nydrae MRS

SAion

T

LAY NG R o o)

53wt e -

L or il iatng

PSR

A Gt L 44 T

TR

. =20~

7) DDLTRN accepts FLag declarations with syntax: <FLag> 1ist. List

_consists of integers, and/or integers preceded by the complement symbol

(A), separated by commas. Each integer specifies the setting of a flag.

Each complemented integer specifies that the corresponding flag is to be

reset. Table 3.1 summarizes the significance of set flags and the de-

fault states of the flags.

8) Identifiers defined in IDentifier declarations must not be subscript-

“ed.
TABLE 3.1 FLAG INTEGERS

Flag Significance Default
1 Print Source Card Images ' Set
2 Print Declared Facilities and Operations "
3 Print DDL string after Pass 2 Reset
4 won " " "3 "
5 v " " " " o4 "
6 won " " "s "
7 "o " " "6 Set
8 Print F Table after Last Pass Reset
9 Print Encoded string after Last Pass "

10 Execute through Pass 2 only

1 1 " " " 3 ” "
12 ” " " 4 " "
13 " " " 5 " n
14 " " " 6 " Set

3.1. THE TRANSLATION PROCESS
DDLTRN is the result of a research effort to develop efficient

language translation algorithms, As a result it emphasizes translation

AP I LR iAo, STIR T R L s AN

Pt AR oA R Gl

3
3

Es Yok e

M 2 o st gk s Pt

T T

=21~

efficiency rather than error detection and coﬁtroi. Neither the syntax
of supplied DDL descriptions nor the translation process itself are
checked in detail.

A DDL description is stored as a single string in a singly linked
list in memory. Operator and punctuation symbols are represented by
codes. As processing proceeds facility names and subscript ranges are
also encoded to shorten the string and hence the time required to pass
over it.

Facts about declared facilities such as name, subscript range, type,
etc. are recorded in a facility table F., Translation consists of passing
over the ﬁDL string a number of times. With each pass the DDL string and
F table are modified according to unique rules. Six main passes may be
identified by the user: The DDL string and F table may be printed after
any of these main passes.

Pass 1 -- Facilities Identified

Data cards bearing a DDL description are read and echo printed. All
blank columns are ignored; all card columns 1 - 80 are examined. Declared
facilities are entered in the F table. TIme, REgister, MEmory, LAtch,
TErminal and DElay declarations are removed from the DDL description, as
are all COmment declarations and parenthesized comments. Identical pri-
mary names declared in nested or parallel blocks are made unique by
appending a double quote (1) and integer. Identical names declared in
the same block are rejected, of course,.

Pass 2 =-- Syntax Reduced

Names and binary strings in connection and register transfer opera-
tions are encoded. Secondary names (names appearing on the right of an

equal sign in a TErminal, REgister, etc. declaration) are replaced with

AN

g
al!

NI BRI LTI G R T N)

ARV R M S S

N

R

PR Ol LN PG R Y T iR

e

et AL g

RED AR DI SOHLA A

ANt |

oo T b

i gt

[3¢

-22-

their subséripted primary name equivalents. Identifiers from IDentifier
declarations are replacad in operations and expressions serving as.con-
ditions o; operations with the symbol string tney represent. The gyntax
of OPerator, BOolean and STute declarations is removed, the connection
operations being transferred to the head of the encloéing Alitomaton or
SYstem declaration., STate statement syntax is replaced with "if-then"
conditions on operations. OPerator call arguments are transformed to
connection statements; Compound Boolean expressions serving as coﬂdi-
tions on operations are replaced with terminals of unit dimension. These
new terminals are connecfed to the Boolean expressions via connection
operations inserted in the head of the enclosing AUtomaton or SYstem
declaration, |

Pass 3 -~ Conditions Distributed

"If-then" and "if-value" conditions on sets of operations are com
bined and distributed over the members of the set so that each operation
appears as the body of a simple "“if-then" claqse. "Go-to" operations
are converted to conditional transfers of a constant (the state assign-
ment) to the state sequencing register (the enclosing automaton). Autom-
aton syntax is eliminated by recognizing the glpbal condition, if any,
and <istributing it as a clocking condition on all register transfer and
memory operations within the AUtomaton declaration.

Pass 4 ~- Concatenation Removed

All concatenation operations except those that form operands for
reduction operators are eliminated by breaking operatioﬁs into operations
on subfacilities formed by partitioning operand facilities according to

the dimensions of the concatenation operands.

R

]

";'l e e (e

o YL R LT
,1‘W. i H
n g -

-23-

Pass 5 -- Operations Gathered

All connection and}:ransfcr operations with the same data sink (left
operand) are gathered into one compound operation.)

Pass 6 -- Subfacilities Disjoined

Facilities with subfacilities serving as data sinks of connection
and transfer operations arc broken into disjoint subfacilities and a
right-hand side of a connection or transfer operation is formed for each
new subfacility,

3.2 AN EXAMPLE

System EX1 {llustrates the use of secondary names and IDentifier
declarations. Registers A and D of automaton Al are each broken into sub-
registers via secondary names in the REgister declaration. Ascending and
descending subscripts are illustrated. Identifiers X, Y and Z name a new
concatenation of the subregisters of D, a portion of one of these sub-
registers, and a NOR reduction, respectively. A register A is declared in
autoraton A2 also. The operations of A2 all appear in the head portionl
of its AUtomaton declaration.

Tﬁe listing obtained after Pass ! summarizes the declared facilities
and their relations. Since two A registers are declared in parallél
blocks, the name of one is changed to A"l so that the two may be distin-
guished. The declared operations are listed with indentation used to
indicate the nested relations of blocks. Block structure errors would be
easily identified.

Pass 2 replaces secondary names and identifiers with their primary
equivalents, A careful examination of the results after Pass 2 indicates

that operation A+X in state S becomes A+FJE when X is replaced. Then

secordary names are removed giving A«D(4:1)gD(8:5). The operations of

state T require that secondary names F, B, C and E be replaced with their

primary equivalents. Then Z within "if-then" punctuation is réplaced with

—+/Y is replaced with -1+/F(3:2) 1is replaced with -++/D(2:1). Note that
state statement syntax is also converted to "if-then" svntax in Pass 2.
A state decoder network on automaton register A1 is prescribed by equa-
tions in the head of the SYstem declaration at this point.

Pass 3 distributes conditions over sets of operations and removes
AUtoraton declaration syntax. The results listed indicate that five
internal signals named 'double-quote~integer' have been formed in order
to sirplifyv the expression of conditions on operations. Each of the
conditioned operations can be traced back to the sourcé DDL description,
"Go to" operations are converted to conditioned transfers to the automa-
ton register.

Pass 4 climinates the concatenation operations, As a first example
observe that

IPAS! A<-S*D(4:1)¢D(8:5).
is broken to
IP*S! A(1:4)<-5*D(4:1).,

tPAS! A(5:8)<-S*D(8:5).

Pass 5 gathers operations with the same left operand. The operations

IPAS! A(1:4)<-S*D(4:1).,
IPAUS! AC1:4)<="S4D(4:1).
are gathered to
IPASHPAYS! A(1:4)<-S*D(4:1) + "5*0(4:1).
No logic minimization or even simnlification is performed as part of the

gathering process.

i

-25-

In Pass 6 the A and D registers of automaton Al are partitioned and
transfer statements are developed for each subfacility. Pass 5 provides
the following transfers to the A register or some part of it.

SPAS + PA"S5] A(1:4)<=S*D(4:1) + "S5*D(4:1).,

IPAS + PA"S5! A(5:8)<-S*D(8:5) + "5*0(8:5).,

IPA"3! A<"3kD,

The las; ofvthese operations involves the entire A register; the others
involve a part of it. Pass 6 partitions the A register to A(l:4) and
A(5:8), and forms the correct transfers to each of these subfacilities.

The F table as it appears after Pass 6 is listed as the final result
of this example. Facility names are followed by left and right subscripts
and facility dimensions, The next colurn indicates the type of the facil-
ity with negative entries (-1 for SYstem, -6 for REgister, ~9 for TErminal,
etc.). Positive entries point to the row of the parent facility. The -
final columms point to the beginning and ending points of facility opera~

tion statements in the DDL string.

123

132

<CO>AN EXAMPLE SYDTEM ThAY ENMFHASIZES SECUNCARY NAMES
AnD 1VENTIFIERS<
<SY>EX1: <l1I>p,
<AU>al1(2) bk
<kE>A(B)=b(230)(C(S5:7),0(n3t)=k(Q) (F(522),
<ii>x=kit, Y = FL322)s2 = t¢/Y, |
<S1> S(0):A <=x, «>T,
TC1)3F <=d(C(T7)y E<=1004,)2) =>8:=d>U..,
Ut2)2=>8, 1Y 8YC2 A<=D alp2 U<=A
82072 A<=X 4400
<AU>A23P: A<eb,b<=A ;
<RE>A(cd)rB(2U)eee (EnU UF SYSlt?)

<tL>3,4,5,6,8,

-9 z-

Belrn-

.

=27~

P e

Ct.".'.'. ftee woelw -'
OF #CLIt QuaLili.

PASS1==FACILITIES IDENTIFIED

DECLAKED FACILITIES

<SY> EXx1
<TI> P(1:1)
<AU> Al
<RE> A(1:8)
vdsy)
<ID> x(1:1)
Y(l:1)
20(121)
<ST> §
T
¥}
<Au> A2

B(2:0)IC(3:7)
ECisa) LF(5:2)

A => A"}
<KE> A™](1:24)
b(1:24)

OECLARED OPERATIONS

0)
<SY> Exi
<AU> Al: B
<ST>
S: A<-X' -)1.

Te Fe=B8{C(7), E<=1004,
J2) =>8:; =>U,.

u: =>S§,
iy
s80D2A<=L
slu20<c=4
“202&"1.0..

<Al> A2: P A<=H, H<=A oo

<SY>

-28-

PASS2==SYNTAX REOUCED

<SY> tx1:

<AU> : P

S2e/8100027, T=a/a1'iLe

Al
18) A<c=D(421)YL(B:S), =>1,,
1

v LEr/sal'lue

b Dlas)<=A(133)(a(E), L(E:S)<=1ULG

Jt+e/0(2:1))

Jul] =>»§,
$0(221)
8002
8102
8202

<AU>

PASS3==CONDITIONS DISTRIBUTED

Ex1: S=*/A1'00¢ ,
Tsx/41%102
Usw/AL'2p2
"1=1=2tes0(221),
rezTxr(T¢/C(221)),

"3zus(x/D(221)'002),
"dsux(w/D(2:1)%102),
“"Ssus(x/0(221)°202),

JP2S8) A<=52D(421)I0(b6:S),.,
1P*S} Al«<=Sx1D2 .,

1Px1) D(dsl)<=T2a(1:3) (A(B).s
1P27] D(b:S)<=T*]1004u
JPa"1) Aj<="120D2 ,,
JIP#®"2] Al<="2x2D2
J1P®xU) Al<=UxQ0¢?
JPa"3]) A<="3ap,,
JPr%"u] pD<="ura,,
JP2"S) A<="52D(421)(D(8:Y).,
JF) A‘l"bol

1P} B<=aA"],,

2 o

L4

->b; .>U.¢0

A<=|)
U<=2A

A<-o(u:1)(0(o:S).....

AZ: P: A'l<.dl H"A.lol .

PASSU==CONCATENATJUN KHEMUVECD

Lx1e: S=w/AttQLe
1=x/21'8D2
uss/al1tene
"i1sixte/0(221),
woziat(t4sN(221))

"l=us(x/0(2s1)0 002),
Sgzyur(=/0(2:1)'102),
"Szus(*/D(2:t)'cve),

A(1:4)<=Sxu(uzl),,
A(SsE)<=S*D(8:5) 4y
Al<c=S#102 o)
U(as2)<=TrA(123) .,
D(1)<=TxA(8).,
U(HLS)<=[*10Ly
JPa®1) Af<="120D2
JPx%2) Aj<c=%222[2
JP*U) Af<=U%0D?2
1Pa"3) Ace"3xl,,
1Px"u] L<="yna,,
IP2"S) a(f:4)<="9x0(ust),,
JP&"5] A(S:8)<="52D(8:5).,
’Pl A'l(-aoi

1P) de=a®y,,

1P28)
}P2S)
1PxS)
1PnY)
J1Px1)
)Pﬁ]] o
o
of
e!

<SY>

-29- Cingeny oo - o

LTI

Cr POL{:éé;qu¥

PASSS==0OPERATIONS GATHEKED

Exts S=x/7A1%'002

Tsx/a1'102

usw/attope .

“izInxtes(221),

n2zTx1T(1+/0(2:21)),

“izys(rsutest)tole),

"azys(x/D(221)'102).,

*Hzuk(n/b(cs1)'202),

J1PxS ¢ P2"S) A(124)<=5x0(us]) ¢ "HrD(42l).,
JFxS ¢ Fa"b) A(S5:8)<=5S»2b(Y:5) + "S#((82D).

JP2S ¢ Px"1 ¢ Px"2 ¢+ PaU) A}<=SxllL¢ + "lxun2 + "arele ¢ yrUNl

JPaT) O(usl)<c=Tna(123) .
1P2T) D(1)<=124(8),,.
JPeT) U(HES)<=[21004 o,
JPx"3] A<="3xD,,

1Pe"y] D<="ura,,

1P) A"1<e=},,

’P] 6"‘“‘.'

PASS6==SUBFACILITIES ULISJUINEU

EX1s Sza/Al1'wDe
[=x7A1'302
ysw/a3'202 ,
"1zixte/D(221),
N2=Txt(te/0(221)),
*szux(x/D(221)0D2),
®gzux(x/p(221)102),
"ozUr(x/0(231)'2Ve),

lPt*} + PaS ¢ Pa"5) A(1:34d)<="34D(8:5) + S*0(Gs1) ¢+ "SeC(4ds1).,
IP*x™3 ¢ PaS ¢+ Pa"9] A(5:8)<~="3#D(Us)) + S2D(3:5) + "S*xL(v2:%).,
JPxS ¢ Pa"] ¢+ Pa"2 ¢ Pay) Al<=S=1D? + "1%QD2 + “2x2(e + uUry0e

JPa™U ¢ Pxl) D(8:5)<="4rA(13d) ¢+ 121004 .,
1P*%d ¢+ PaT) C(4:2)<="Uxa(537) + T=A(1:3),.,
IPA™G ¢+ P27} D(1)<="dna(lB) ¢+ I1xA(B).,

JF] A"1<=5,,
JP) b<ea"y,,

(R4

(N4

X

CXNTNE WN -

AN

SR R X1 ¥ U

BNk

-30- S

FACILITY TABLE

Ext 1 1 1 -] 0 3uY v 0
P | 1 1 -5 v v} Q 0
Al 1 2 2 -6 ¢ 18y 2oy 263 .
A 1 8 8 =6 v L T | O v
] 1 i 1 -9 v 21} v 2ee
"2 1 1 1 -9 J 233 V] 24s
0 8 1 =b -6 v 0 J (]
3 1 1 1 -9 0 2006) 279
"y 1 1 1 -9 1] on6 v c9Y
"5 1 1 1 -9 v su7 0 32¢
D 1 1 1 7 v S1¢t 52> S1le
U 4 ¢ =3 7] sS4y 951 Sa2
s 21 /] 1 -13 U 154 v 103
T 22 1 1 13 v 165 v 17¢
U 23 2 1 13 v 17¢ 0 1717
Al 1 i 1 -6 J 0 v J

v 0 1] v V) \ 0 0

A" 1 24 24 -0 v 329 350 342
b 1 24 2u =-h v 533 334 336
100y 10 M -17)] v 1]
0Ce 0 2 -17 U 9 v 0
e i P-4 -17 v v J v
eie 2 P4 -17 Y U] [V 9
0 (1] 1] v v v v v

0 0 0 v 0 0 (V] 0

A 5) d 4 0 459 406 453
A 1 4 i 4 9 4v] Sue 4Ky
)] 8 5 =4 7 .Y Y60 575 Soh

b‘»«.»_. —a e s

N N W . - cepearee - o

4. THE SIMULATOR (DDLSIM) [35]

DDLSIM is a program for simulating digital systems described using
DDL. The simulator has a simple, powerful and completely free-format
command language that provides the user with complete control over ghe
simulation process without requiring that the DDL system description be
modified. DDLSIM aoes very extensive error-checking of described
systems, simulation control cards, and the simulation process itself.
Self-explanatory messages that pin-point errors are issued.

Digital systems to be simulated are first described in DDL. This
description is translated by DDLTRN into a set of Boolean equations and
Register Transfer expressions. These can be used for implementation or
simulation of the digital system. They, together with other data
structures and tables established by DDLTRN constitute the system de-
scription required by DDLSIM. This description is pre-processed by the
simulator to establish data structures and tables that permit more
efficient and controlled simulation.

| The original and translated DDL descriptions of a system neither
contain any information for controlling simulation nor do they supply
any input data for simulation. These items are supplied by a second
source to DDLSIM, a simulation deck. This Aeck consists of simulator
control declarations described using a simulator command language that
is not unlike DDL. Twelve different declarétion types are available for
selecting options and supplying control information, parameters, and
data for simulation. Every simulation job consists of:

1. processing the system description,

2, processing the simulation deck, and

3. simulation of the system.

=31~

-32-

The following notational conventions are used in subsequent sections
to describe the syntax of translated DDL and to define control language
syntax. ' _ ’
Script characters - an item of the language. Item a will be defined

in terms of items B and Yy with notation

a:B, Y
which is read "an a is a B or a v."
[] - appearance of the enclosed syntatic structuréniéﬂ
optional
[]n - the enclosed syntatic structure may be repeated

an arbitrary number of times or not at all.
Blanks have no significance in syntax descriptions just as they have no
significance in DDL or the DDLSIM control language.
4.1 SIMULATION MODELS

As mentioned earlier, Boolean equations (BE) and Register Transfer
Expressions (RTE) generated by DDLTRN constitute the system description
required by DDLSIM. The models of combinational networks and registers
used by DDLSIM is the subject of this section.

4.1.1 Terminals, Element Inputs, and State Terminals

The terminals, element inputs, and state terminals declared in a
system are described using BEs. 1In addition, DDLTRN generates BEs for
a number of intermediate signals. All such BEs constitute the
combinational portion of a system. They are first sorted into an
ordered list according to the level of theilr operands, i.e., if a terminal
A 1is used in the BE for another terminal B, A will appear before B in
the sorted list. However, if the system contains loop(s) in it's

combinational portion. it is not possible to sort the equations in this

| X SV

~33-

manner. In such cases the BEs constituting the lcop(s) (or loop

equations) are separated from other BEs., The remainder of the BEs

" are then sorted into an ordered list as described. Loop equations are

then added to the sorted list at an appropriate point.

During simulation the combinational portion of a system is
simulated at the BE level. BEs can vary from a simple suﬁ—of-products
form to the most complex and compound of forms. The BEs are evaluated
in the order established by sorting with the loop equations being
simulated repeatedly until their output values stabilize. Failure of
a loop to stabilize after a fixed number (determined by the character-
istics of the loop equations) simulations, indicates instability in the
loop. In such a case a warning is issued to the user and the simulation
is continued with the last computed values for the loop equations taken
as their final values. Thus DDLSIM also permits the simulation of
systems having lcops in their combinational portion.

4.1.2 Delays

The delays declared in a system(using <DE> declarations of DDL or
DDLSIM) are also described using BEs. These delays are assigned their
delay time periods (As) using <DElay> declaration of DDLSIM (see Sec.

4.2.4). All the delay facilities are assumed to be inertial delays,

i.e., an output signal(s) will assume a new value(s) A time units after
it's input prescribes that change, if and only if the input signal

prescribes that value for at least A consecutive time units. Unlike the

e o e i o e

BEs discussed above, the BEs for delays are not sorted in any particular

order.
During simulation each deléy is simulated at the BE level with

specified inertial delay assigned to it's output. The new computed

(' o

™

]

P 1 Y S-S 1y W

RS ..

PP S

—34~

value(s) for each delay is compared with its present output value(s).

If they are different, a future event at A time units from present
simulation time T ;s scheduleé to carry out the change(s) inbthe output
value(s). However, 1f the BE does not continue to prescribe the change
for at least the next A time units, the scheduled event is cancelled and

the output(s) of the delay remains unchanged.

It is possible to assign the same delay time [td/ZJ (see Sec. 4.2.2,
4.2.5) té all the BEs for the combinational portion (see Sec. 4.2.1) of the
system by setting flag number 13 (see Sec. 4.2.14) In such a case all
these facilities become equivalent to delays. It is important to note
that the delay time assigned to these BEs is the same for all of thenm,
irrespective of their complexity.

4.1.3 Registers
~The registers declared in a system are described using RIEs.
RTE consists of a Condition Expression (CE) followed by a Transfer

Expression (TE). RTEs generated by DDLTRN have the following general

syntax:
RTE : | CE| TE.
CE:c [+
Condition term C: Cc *Cp CL
Clock condition Cc : global condition in the heading of an <AU>

declaration of DDL, a clock declared in a

<TI> declaration of DDL.

Load condition C£ : § with 6w =1, (see Sec. 4.2.1)
TE : § « E
Load expression E:e [-H?.]yl

| ga 4 VUSRS VU N —— A et Ame e m———a e o e 2y — .- - ——— e
=35-
Expression term €: Ct * Ve
- Load value Ve: an expression

Example: | P*LDX + P*ORXY + P*LDY | ACC « LDX*X + ORXY* (X+Y) + LDY*Y.
In the example P is a clock; ACC, X, and Y are all registers having
dimensions of 24; LDX, ORXY, and LDY are terminals declared using
appropriate declarations. The CE in this example has three condition
terms specifying the conditions for performing different register
transfers on ACC, All the register transfers in this case are carried
out under the control of the same clock P. 1In the RTE for registers
declared as global facilities and used in different automata, each
having a separate clock or global condition, the CEs may have different
clock conditions Cc' For each condition term C in the CE, there is a
corresponding expression term ¢ in the TE. When a load condition CZ
becomes true (logic 1) and the corresponding clock condition C performs
a O-to-1l transition, the next-output value for the register is computed
using the load value Ve from corresponding expression term €. On the
next O-to-l transition of the Cc, this next-output value becomes the
present-output value.

During simulation CEs for all the registers are evaluated only at
certain event-times (see Sec. 4.3). On a O-to-l transition in the value
for a CE, the corresponding E is evaluated and the computed vaiue is
stored as the next-output value for the register. On a l-to-0 transition
of the same CE at some future evaluation, the next-output value for the
register becomes it's present-output value. In order to make simulation
fast and efficient, CEs are evaluated onfy at event-times at which 0-to-1
or 1-to-0 transitions of clock conditions take place. It is not possible

to have a 1-to-0 and O-to-1 transitions for the same CE at the same

F

Rl ds s W o i A BT A 2]

ORIGINAL PAGE \¥'
~36- OF POOR QUALITY

simulation time T. It is possible to simulate asynchronous sequential

systems using DDLSIM. /
Thé simulation model used for a register is very similar ﬁo 5 GL

(gate and latch) flip-flop. A logical OR of load conditions CE from

CE constitutes the Boolean equation for the GATE of the flip-flop, E

from R constitutes the LATCH equation for the flip-flop, and a logical

OR of the clock conditions Cc from CE constitute the CLOCK of the flip-

" flop. (See the figure below)

4.1.4 Memories

The memories declared in a system are also described using RTEs.
A RTE for a memory is similar to that for a register with an address
specified for the facility §, i.e., .

memory § : f(a)

address expression a@ : an expression

The simulation model used for memories is also similar to that used
for registers. For memory-write operations the address expression 1 is
evaluated on a 0-to-1l transition of the ass&ciated CE and £he computed
value is stored as the address of the memory location. On the next
l-to-0 transition of the condition expression CE, the contents of the
addressed location are changed to the suppliéd value. Memory-read
operations are instantaneous, i.e., contents of the referenced memory

location are fetched immediately.

Goted Latch

1
1_52&" A o] '—L : Am GLEF Aot

clock b

| Gate f | _ Gate
I Ao'uv

J

G

o

necy

ot

ALy

i w‘;’"m

-37-

4.2 SIMULATOR COMMAND LANGUAGE AND DECLARATIONS
The DDLSIM command language consists of twelve different types of
declarations for supplying parameters, inmput data, options and other

control information necessary for simulation. The language is largely

free of format restrictions. Card images are scanned in turn from left
to right. Any declaration may start at any point and end at any later
point in the card deck. A declaration can be continued on as many cards
as necessary; more than one declaration can be supplied on the same
card. The start of a declaratgg; automatically ends the prévioﬁsr
declaration. The last declaration in a sinmulation deck is ended by an
End-0f-File (normally a card having '$"' in the first column). In general,
the order in which the declaraticns are specified 1s not important. It
is possible to have more than one declaration of the same type. Every-
thing following the vertical line character () on a card is treated as
a comment, and is not processed as a part of a declaration. Scanning
continues on the next card. This provides the capability of having in-
line comments in a simulation deck.

Each card from a simulation deck is processed sequentially by the
simulator. First it is printed together with it's sequence number. It
is possible to suppress echo prinﬁing of the simulaticn deck by turning
the 1list option off, i.e., resetting Flag 1.

Each simulator declaraiion has the general syntax

<Declaration-id> Body

Each declaration begins with a left angle (<) followed by a Declaration-

id that identifies the type of the declaration. Only the first two char-
acters of the Declaration-id are examined by the simulator. The Declaration-

id is terminated by a right angle (>). All declarations except the

=38~

<SImulate> declaration have a Body following the heading.
4.2.1 Facilities
Facilities are defined here aé in DDL to be any piece of hardware

declared in a digital system including terminals, registers, memories,

and assemblage of hardware, clocks, delays, etc, If a facility name 6n
exceeds 8 characters, only the last 8 characters are retained. If a
facility has dimension greater than one, individuval eclements are identi-
fied by appending a non-negative integer subscript 31 enclosed in
parentheses to ﬂn. A range of elements of a facility is identified by
using a DDL subscript range, i.e., 6n(S1 : 52)' A script letter § will
be used to represent a facility or a part of it.
$: 5n(51 : 52). Sn(sl), én where
By (Sy) = 4,05 = S
§ = 8,(S; : S)
S£ = subscript for leftmost element of 6”'
= gubscript for rightmost element of sn.

Facility width 5w of a facility 4 is defined as the total number of

elements in it, i.e.,
hw = m.ax(S1 . Sz) - min(Sl . SZ) +1

During simulation one machine word is used to store the values of
facility §. The SEL 32 machine has 32 bits per werd. Hence it is
necessary that the facility width 5w for any facility ﬁw in the system
not exceed 32. i.e., Sw S 32. However, S£ and S& pay have larger values;
only their difference is restricted.

A facility list Zﬁ is defined as a list of facilities { separated by

conmas, i.e.,

n
1—6 : 5[:5]

-39~

Whether a specific facility can be used in a facility list for a specific
type of declaration is determined by both the typeAﬂt of -the facility and
the type of the declaracion; The following facility types exist for
DDLSIM.
5(: Sygtem clock, Register, Memory, Teruinal, System delay,
"Element input, Elecment output, State terminals, Trigger,
Simulation delay, Simulation clock, List name.
Every facility 4 used in a 5DLSIM declaration must satisfy exactly one
of the following conditions:
1. 4 is declared in the DDL description of the systenm.
2. 4 1is declared during the present sinulation run using a
<CLock>, <DElay>, <TRigger>, or <LIst> declaration. The
type of declaration in which § appears determines its type
ét which cannot be changed for the remainder of the simulation
job.
3. 4 is declared during any previous simulation run as discussed

in 2 above.

4.2.2 Numbers and Data Lists

Tqu - a decimal integer having the value (231 - 1).

pHAX - a decimal integer having the value (216 -1).

n; i - adecimal integer n In the range 4$n?s § where 4 and §
are each non-negative decimal integers. Whenever § is not
specified § = TMAX ts assumed; whenever { {s not specified
{ =0 is assumed.

n. .= n. . enclosed in parentheses

£

. 4
~roast e B |
. .

M e .
I
c ol Gunsliy,

-40- o

nf s (n.

Lo ° Lsd
R -'Repeat factor, a positive decimal integer

)

R : n

A repeat factor R can be used before a data value or parameter
value, i.e.,
R*value,
to indicate that the same value is to be repeated R times
in the list.
T - Simulation time
T : n

td - Default time period

td 2 ony Puax
Data is described with the following syntatic structures.
dB - a binary digit
dB : 0,1
d0 - an octal digit

da : 0,1,2,3,4,5,6,7

dD - a decimal digit

dD : 0,1,2,3,4,5,6,7,8,9

dH - a hexadecimal d1g1£
- dH : 0,1,2,3,4,5,6,7,8,9,A,8,C,D,E,F
dG - a general digit excluding the hexadecimal digits B and D.
dG : 0,1,2,3,4,5,6,7,8,9,A,CE,F
B - a binary number

8 [+,-Iadg [dg)", ([+,-]ndg [Bdg [dg)")

r-u—m-—.umw-..'.(.li T.1 >

B L ALY R ARy S

[T LA R O

oy ———

A TR AT R AN T T TR

crRIc . AR
e oo GLALVY
-41- Ci PO K

0 - an octal number
n n
0 & [r.-lody [dg]", (Do-Tody [dy]"
D - a decimal number e
n n
D : [+t-]de[dD] 3 ([""“]de [dD])
H - a hexadecimal number
n n
H = ["'c‘]“du[dH] ’ ([+”]Hdﬂ [dH])
N - a binary, octal, decimal or hexadecimal number.
n n
N : [+i"]dG [dH.It ([+1"] dG ldH])
Optional leading minus signs (-) before any of above five types of
numbers specifies the 2's ccomplement of the number. 1's complement
encoded negative numbers are obtained by setting Flag 10 (see Sec. 4.2.13).
N, - Data value

2

N2 : B, 0, D, H, N,

N1 - Data spec

N1 : [Rx] N2
' ld ~ a data list consisting of data specs separated by commas.

£ : Nl [,Nl]” |
Whenever a data value is specified as a number N without leading radix
specification, the default radix is used for computing the value of
number. The default radix of 8 (octal) can be changed to 2 (binary),
8 (octal), 10 (decimal), or 16 (hexadecimal) by setting flag numbers
2 thru 5 (see Seé. 4.2.14 respectively. Resetting these flags returns
the radix to the default value of 8 (octal).

4.2.3 <CLock> Declarations

This declaration provides a means for specifying or changing the
time period, pulse width and phase of clock facilities. It also permits

users to declare new clocks to be used to control simulation input and

s

B LT

-42-

output activities. Syntax for this declaration is as follows:

<CLock> Body

Body s Lo, el/]
List e chﬁt
Clock list éc s ié where

Facility type 5t : system clock, simulation clock

Time list ft : t[,t]n
Time spec t : [rRx] P [wW[e]]
Time period P : n ,

2, uax
Pulse width w ni P-1
Phase e : ng P-W

Example: <CL> CLOCK1(1:5), CLOCK2/2%100(30) (50)/,
CLOCK1(6:10), CLOCK3/100,100(30)/
Time period P - the P field specifies the time period of a clock. In the

above example each clock has a time period of 100 in some arbitrary units.

Pulse widtﬁ W - This is an optional field specifying the time W for which
a clock remains at logic 1 during any clock period P. For the remaihing
time (P-W) the clock remains at logic 0. When the pulse width is not
specified along with the time period, the following defauit value W is
used,
W= LP/2)]

In the example a pulse width of 30 units is supplied for both
CLOCK(1:5) and CLOCK2. CLOCK3 is assigned a pulse width of 30 units.
No pulse width is explicitly specified for CLOCK1(6:10), hence a default

value of [100/2j = 50 units is used as the pulse width.

Phase @ - At the start of a simulation run, f.e., T = 0 a clock with a

(-3

-43- ORIGINAL PAGE 19
OF POOR QUALITY

period P and the pulse width W is set to start at logic O. It remains

at logic 0 for the next (P-W) time units; then a O-to-l transition takes

place. For the next W/ time units, it stays at logic 1; then a 1l-to-0

transition takes place and the cycle is repeafed. The occurrence of the
first and every subsequent O-to-1 transition can be advanced relative

to the starting of simulation by specifying the phase 6.

1. For phase 6§ < P - (! a clock starts at logic O and has it's first
0-to-1 transition at (P-W-8)time units after the start of
simulation.

2. For phase 0 = P - W, a 0-to-1 transition takes place at T = 0,

The default value for @ is zero. In the example a phase of 50 units

15 specified for CLOCK1(l:5) and CLOCK2. Since no phase specification is

given for CLOCK1(b:10) and CLOCK3, 6 = O is assumed for them. Waveforms

for these clocks are shown below. tote that it is necessary to specify

pulse width W, if it is desired tc¢ specify phase 6.

During a simulation run, none of the parameters, P, W, and 8 can be
respecified for a clock facility. These parameters remain effective in

all subsequent runs until respecified.

CLOCKL (1:5)

CLOCK2
P ——— it v — ..1 r————.—
P =100, W= 30, 6§ = 50 !
CLOCKL (6:10) P =100, W =50, § = 0: e
CLOCK P - 100, W= 130, 8=0 . _J
— ; e | e fntinme
0 20 50 70 100 120

I L
Ol

-4d- OF PO Gu . al Y

As mentioned earlier thls declaration allows new facilities to be
declared as simulation clocks. Since these clocks cannot affect the
activity within the system itself, they are a source of. periodic. signals
which can be used to control input, reinitialization, ﬁutput,vetc.,
during simulation. They can be used in realizing signals with complex
waveforms that are needed to control various activities dﬁring simulation.
Simulation clocks may also be used as sources of input signals to the
networks being simulated.

Each facility § from clock list Zcis assigned parameters £ from
associated time list Kt. Insufficient or excess data in time list Zt
will result in a non-fatal error (see Sec. 4.4 for errors). In the case
of insufficient data, default parameters are assigned to facilities
remaining in Cc.

4.2.4 <DElay> Declarations

This declaration provides a means for specifying delay time A for
delay facilities. Syntax for thic declaration is very similar to that of

the <CLock> declaration.

<DElay> Body
Body [&/,1" 2 [/]

list L Zdllt

Delay list ld : 26 where

Facility type St : system delay, simulation delay
Time list Kt : t[L2e"

Time spec , t : [Rx]a

Delay time A :ony

Example: <DElay> DELAY1(1:2), DELAY2, DELAY1(3:5)/2%100,50/

ar TV Nt

I

———]

o i e ——— -

0

Qoo oot e
OF Pl X \,'(P 4
=45- ,

DELAY1(1:2) and DELAY2 are each assigned a delay time of 100 units.
DELAY1(3:5) 1is assigned a delay time of 50 units.

All the delay facilities are assumed to be inertial deléys, il.e.,

an output signal(s) will assume a new value(s) 3 time units after its
input signal prescribes that change, if and only if the input signal
prescribes that new value for at least A consecutive time units. As an

example of inertial delay assume that waveform A below serves as the

input signal to both DELAY1(l) and DELAY1(3). Waveforms B and C

represent the actual output of DELAY1(l) and DELAY(3) respectively.

N R T B

'
i ' A = 100 :
B —— .- 4 ";
P
‘ A= 50
c
p——t—t-—t-—t—-{ - | >tine
0 100 200 300

Delay time period A can not be respecified within a simulation run.

Once specified, A remains effective in all subsequent simulation runs
until respecified.
Like the <CLock> declaration, this declaration also allows a user

to declare new delay facilities that may also be used for controlling

various activities during simulation.

~

46—

Every delay facility from Zd is assigned, in turn, delay times from
?;he associated time list Lt' Insufficient or excess data in Et will
Eresult in a non-fatal error. In the case of insufficient data, the de-
fault delay time (4.2.5) is used for remaining facilities in Kd;

4,2.5 Default Values for Clock Parameters and Delay Times

Before any simulation can be performed, it 1is necessary to assign
clock parameters to every clock facility and delay time to every delay
'facility. Values specified through <CLock> and <DElay> declarations are
used for specified facilities. For the remaining clock and delay
facilities, default values are used. A default time period td is used
in determining the default values.

1. Default clock parameters
Default time period P = td
Default pulse width W= Ltd/ZJ
Default Phase =0

2. Default delay time period = LtdIZJ

At the start of a simulation job td is set to a value of 2. If
any <CLock> or <DElay> declaration is encountered in the simulation
deck, the value td is changed to

td = min(P, 24) where

P is any clock period specified, if none P = 2, and A is any delay

time specified, if none A = 1.

4.2.6 <INitialize> Declaration

This declaration provides a means for initializing the output
value(s) of delays, registers, memories, element outputs, primary input
signals, terminals and triggers with delays. Syntax for this declaration

is as follows:

™ G

Pl ainte IS0

ey e e - - ——— .

-47-

<INitialize> Body

Body : [e7,1" 2]
Initialize List ti : £6 where

Facility type 6t system delays, simulation delays, registers,
memories, element outputs, primary inputs,
terminals, and triggers with delays.
£d : Data list (see Sec. 4.2.2.)
Every facilicf § from ﬂﬁ is initialized to a specified value
obtained from the associated Ld' Insufficient or excess data in Zd
will result in a non-fatal error. 1f data in Zd is insufficient,
remaining facilities from ZL are initialized to default values.
EXAMPLE: <IN> INPUT, MEM({0:1023)/B1011,1024%0/
INPUT (declared as register having width 4) is initialized to the binary
value 1011 and the first 1024 locations of MEM are all initialized to O.
Before any simulation can be performed during a run, it is necessary
to define output values or initialize all the facilities. For all the
facilities initialized through an <INitialize> declaration(s), specified
values are used. For remaining facilities initial values are determined
as follows:
1. Delays, Registers, Element outputs, Primary inputs, Terminals, or
Triggers with delays are all initialized to zero.
2. Memory locations are not initlalized at all. They will have the
same contents as at the termination of previous simulation run.
For the first simulation run their contents are unpredictable.
3. Initial values for Terminal, Triggers, and Element inputs without

delays are determined by using intitial values for other facilities

et e N e . g g

—48-

and simulating the system at T = O.

4.2.7 <REad> Declarations

This declaration provides a means for establishing input data values

for various facilities. Syntax for this declaration is as follows:

<REad> Body

Body : [£/,1" £[/]
List e m/ln/ld
Mode m: X, Y, 2
Triggered or Mode, X : § where 6w =1
Periodic or Mode, Y : P[6]

P
Period P:n
=L Puax
Phase @ :nO,P

Specific Time or Mode Z : n

Read List 2&: 26 where
Facility type 61: registers, system delays, simulation delays,
memory locations, element outputs, terminal
or triggers or element inputs with delays
Data List ld: same as in <INitialize>
Example: " <TR> TR/EXINP+EXBIN1/ (see Sec. 4.2.15)
<CL> P/100(30)/
<RE> TR/INPUT/1,2,3,4,-5/

As shown in the syntax, the READ operation may be carried out in
three different modes:
1. Mode X -- Triggered Mode

In this mode a 0-to-l transition of the triggering signal establishes

a new set of input values, obtained sequentially from the associated data

e o o o ey—— - e R TR S T e S R - S r -

-49-

list ﬂd, for the facilities specified in the ass&ciated read list Zn.
At any simulation time input values are established before any other
simulation activity except for updating of clocks and delay outputs,
Hence, 1f the triggering signal 1itself 1s not a clock or delay facility,
input values will be established at a time later than the actual O-to-1
transition time of the triggering signal. In fact they are established
at the next event time.
2. Mode Y -- Periodic Mode

This mode provides an easy means for establishing input values
periodically. P specifies the time period for performing the READ
operation, The first READ operation is performed at T = P, the next
at T = 2P, and so on. However, the first and all subsequent READ
operations may be advanced relative to the beginning of simulation
i.e., T = 0, by optionally specifying the phase #. Thus, in the case
of P =100, and 8= 30, the first READ operation will be performed at
T = 70 (advanced by 30), the the next at T = 170, and so on. When § = P,
the first READ operation is performed at T = 0. This is equivalent to
initializing the associated facilities using an <INitialize> declaration.

In all cases except for P = 1, an identical periodic READ operation
can be obtained using a clock with period P, any valid pulse-width W
and appropriate phase # as a triggering signal in mode X.
3. Mode Z -- Specific Time Mode:

In this mode the READ operation is performed only once at the
specified time.

In Mode X and Mode Y READ operations, data values are supplied in

sets. The first set of values are used for the first READ operation,

(3N

-50-

and the néxt set 1s used for the second READ operation. These sets are
not separated by.any special delimiter. Instead they are grouped in the
form of a éingle data list Ed.-,In Mode Z only one set of data values
are neceésary.

4.2.8 <LOad> Declarations

This declaration provides a means for establishing the same input
values repeatedly on specified facilities. Syntax for this declaration
is as follows:

<LOad> Body
Body : same as in the <REad> except that the Load list ££ is used in

place of the Read list Zn.

Three modes of LOAD operation function in the same way as the three
modes of READ operation. The only difference bethen LOAD and READ
operations is the input data values used during successive operations.
In the case of READ operations, a new set of data values is used for
each successive operation. The LOAD operation uses the same data set
repeatedly, requiring only one set of data values. This peculiar
property of the LOAD operation provides an easy means for establishing

identical conditions in the system at desired times. If the READ ojera-

tion were used to achieve the same results, the same daﬁa set wou]d.have
to be repeated for every occurrence of READ operation. The Mode Z or
specific time LOAD operation is identical in all respects to the Mode Z
READ operation.

The three modes available for READ and LOAD operations give a high
degree of freedon in setting up data sets in an effiéient manner. Each
of these modes may be used more. than once. More than one mode may be

used in a simulation. All the data lists Zd specified in <REad> and

#

3
A
3
F.

K

e
per

2

L R T RS

B
oy
aag
pre 4
3
23
e}

s

1 bk b, o S

~51-

<Load> declarations are transferred to an incore buffer (1if necessary

to a disk data file) and retrieved from there whenever needed. This

facility of having ﬁuptiple input strecams for simulation is very helpful

to the user.

More than one READ and/or LOAD operation may take place at the same

sinulation time. Simultaneous operations may attempt to establish input

values on the same facilities. As long as they do not atteapt to es-

tablish conflicting values, simulation will proceed, otherwise a fatal

error condition results in an immediate termination of the current simy-

lation run. A similar situation may arise with <INitialize>

declarations. In this case remaining declarations for the simulation

run are processed before terainating that simulation run. This fatal
error condition may be avoided by setting Flag 12 (see Sec. 4.2.14).

The following order is used in performing various input operations

during sinulation:

1. Periodic REad

2. Specific Time READ

3. Periodic LOAD

4. Specific Time LOAD

S. Triggered READ

6. Triggered LOAD
1f nore than one operations of the same type and same mode take place at
the same time, they are performed according to their order in the simu-

lation deck. This is one case in which the order of declarations may be

important.
Insufficient data to complete a READ or LOAD operation during

sizulation will result in an immediate termination of the run. This

et i e A b

=52~

provides a means to terwinate a simulate run without using the <STop>

(see Sec¢. 4.2.11) declaration.

4.2.9 <0Utput> Declarations

This declaration provides a means for printing the values of various
facilities at various instants during simulation. Syntax for this de-
claration is as follows:

<0Utput> Body

Body = [ef,)" ¢[/]

List £: m/Lo
Mode ms: X, VY, 2
Trigzgered or Mode X : § where 5w = 1
Periodic or Mode Y s P[d]
Period P: n

%'PMAX
Phase) 0 : "O.P
Specific Time or Mode I :on
Output List - ﬁo: Zé where 6t # memory

Like <REad> and <LOad> declarations, this declaration has three
modes of operation. Values are printed when a specific output operation
takes place. It is important to note that in the case of triggered or
Mode X output, O-to-l transition of the triggering signal causes the
output values to be printed at the same time rather than the next event
time as in case of READ or LOAD operations. This is due to the fact that
output operations are performed after all other operations in a simulation
step. More than one <OUtput> declarations may be specified. Any
combination of the three <0Utput> modes may be used.

Values are normally printed in an octal format., They may be printed

- var vy

I
v

G Y T R S

1

-53-

in binary, octal, decimal or hexadecimal by setting the appropriate flag

number from 5 to 9 (5ee Sec. 14.2.1-’0)- All values are priﬂtcd in the saxe

tormat.

Out put formatting is done by the sinulator with the objective of
vaximizing the total no. of facilities than can be printed. If one or
more output operations occur at a sinulation time only a single line of
output is ﬁtinted. The f£irst entry in each line printed is the simula-
tion time in decimal. Values for each facility specified In any output
Yists £ are printed in fixed columns. Facilities are allocated columns
from left to right in the following way:

1. Triggered or Mode X OUTPUT lists
2. Periodic or Mode Y OUTPUT lists
3. Specific time or Mode Z OUTPUT lists

If zore than one lists of a mode are specified, they are allocated
columns in the order of their specification in the simulation deck. If
output values for all specified facilities cannot be printed due to lack
of room, excess facilities are ignored and a message listing them is
printed. Output values for two neighboring facilities are always printed.
Output values for two nelghboring facilities are always separated by at
least one blank column. A heading of the names of the facilities along
with the subscript(s), if necessary, whose values appear below is printed
on alternate pazes of the simulation report. If a complete facility is
included in éa' no subscripts are printed in the heading. When the value
of a partial facility is to be printed, a subscript range is included in
the heading. The naze of a facility is normally printed in a horizontal

format in the heading. A vertical format (in a column) is used if doing

va

=54

s0 saves rooa on output line. A subscript range is indicated by two suc-
scripts separated by a colon (:).

Whenever an output operation occurs, only the output values for
facilities fronm the Associated output list lbate printed. Other columns
in the line are left blank. This tends to increase the readability of
results. This feature of multiple output lists with each list having it's
own output control may be used to make simulation reports look more in-
formative. If the output values for one group of facilities change less
frequently than those of another group, both groups can be printed with
different periods. Such an output will clearly illustrate the actual
activity within the system.

4,2.10 <DUmp> Declarations

This declaration provides a means for dumping the contents of
specified memory locations at various instants during simulation. Syntax
for this declaration is given below:

<DUmp> Body

Body : same as for <QUtput> except 6t : memory

A DUMP operation functions in a manner identical to the OUTPUT
operation. The print format is different, however. First, values for
each specified memory facility are érinted separately. For each facility,
the first line printed indicates the facility name, locations dumped and
simulation time. Following tﬁis line a heading that separates addresses
and contents of locations is printed. One or more lines of DUMP output
follows. In each line the first entry represents the octal address of
the first location in the line. The rest of the line contains the octal
contents of the next eight locations. Various DUMP operations are carried

out in the following order:

o AR SN W TR T MO TN TSI

!
]
{
i

-55-

1. Triggered or Mode X DUMPS
2. Periodic or Mode Y DUMPS
: 3. Specific thﬁe or Mode I DUMPS
DUMP operations are performed before any OUTPUT operations within a
simulation step.

4.2,11 <STop> Declarations

This declaration provides a means for stopping or terminating a -
simulation run at a specified simulation time or on a 0O-to-1 transition
of a triggering signal. Syntax for this declaration is as follows:

<STop> Body

Body : m[,m)"
Mode m;: X, 2
Triggered or Mode X : § where hw =1
Specific Time or Mode Z : n

It is clear froam the syntax that more than one triggering signal
or specific time may be specified to stop the simulation. More than one
<STop> declarations may be specified. In any case the occurrence of a
first stop event will cause the simulation for that run to be terminated.
At a given simulation time stop eveats are simulated after all other
events have been simulated. 1If no <STop; declaration is supplied for
the current simulation run stop events, if any, from a previous simulation
run are uscd for the current run.

Insufficient data to complete a READ or LOAD operation will result
in an immediate termination of the simulation run. This condition fs
described as "END-OF-FILE 0N NPUT." 1If one is sure of EOF terminations,

<STop> declarations may be omitted altogether. Whenever simulation {is

[VPSSR S

=56=

stopped or terminated a message describing the reason for termination

(a stop event or EOF on input) is printed and the simulator moves to the
next simulation run. At the end:of all simulation rﬁns an "END OF
SIMULATION" message is printed.

4.2.12 <LIst> Declarations

When a list of same facilities 26 is used in a number of different

declarations, it is convenient *o identify the entire list with a single

‘name. This name can then replace the list of facilities in all of the

declarations. This is achieved by using a <LIst> declaration. This
declaration provides a means for assigning a unique name to a list of
facilities. Syntax for this declaration is as follows:

<LIst> Body .

Body : [£/,]" €[/]
List L: L’ZA
List Name L : § where 5w =1

A lisf—name can be included in the facility list £6 for a declaration

only if the list of facilities identified by it can be directly used
there. It is also possible to use list-names in defining new list-names.
Nesting of list-names can be done up to any desired level. List recursion,
i.e., using a list-name in defining itself, is not permitted. Once de-

clared for a simulation run, list-name cannot be redefined in the same

run.

For large systems, use of list-names will result in reduction of data
structure storage space. List-names are most commonly used in <REad> and
<LOad> declarations since it is necessary to respecify these declarations

for each simulation run, if a <REad> or <LOad> declaration requires a

R N

~57-

long facility list, it is very worthwhile to assign a list-name to these
facilities and use the list-name in their place.

4.2.13 <SIlmulate> Declarations

As discussed earlier this declaration is used to separate different
gimulation runs in a simulation job. Syntax for this declaration is
very simple!

<SImulate>

On encountering a <SImulate> deciaration, simulation is performed
for current run. If this simulation is terminated'normally i.e., through
a <STop> command or EOF on input condition, processing for the next run
is initiated. If the termination is abnormal, the entire simulation jodb

is terminated. Declarations and parameters effective during one run are

. carried over to the next run as described below. Modifications and

additions are easily made with appropriate declarations.

1. Parameters for clock and delay facilities remain effective from one
simulation run to the next; any parameter may be changed by using
the appropriate declaration. New clocks and delays may also be

declared.

2. Trigger expressions remain unchanged from run to run unless they
are respecified. New trigger facilities may be declared for a
simulation run.

3. <REad> or <LOad> declarations do not carry from one run to the next.
<REad> and <L0Oad> declarations must be respecified for each run or
replaced with new declarations. .

4. <OUTPUT>, <DUmp>, and <STop> declarations are carried from run to
run. However, supplying one of these declaration with a specified

mode (X, ¥, or Z) will nullify all declarations from previous run

Yy

-58-

‘of that type and mode.

5, All flags are carried from run to run. Flags can be changed in any

way bx including a new <FLag> declaration.

6. Lists are carried from run to run. If it is necessary to redefine
a list the new definition must be declared before the list is used
directly or indirectly in any declaration for the current run.

4,2.14 <FLag> Declarations

This declaration provides a means for selecting va:iqusloptiong for
simulation runs by setting or resetting associated flags. A flag number
is associated with each option. Syntax for this declaration is as follows:

<FLag> Body
n
Body : Uo ['Vo]
Option Value V, : [~]F
Flag Number F : nl,14

If the flag number F is not preceded by a complement sign (—), the

associated option is set, otherwise it is reset. An option may be set

or reset as many times as desired. The Flag table provides a description

of the option controlled by each flag number and the default value for the

option., As shown in the table flag numbers 2 thru 5 are used to select
the radix for input data. This option applies only to data values not
having any explicit radix specification (see Sec. 4.2.2). Data values
having explicit radix specifications are interpreted accordingly. If
more than one of these options is set, only the last set option 1is used,
i.e., <FL> 2, 4 is equivalent to <FL> 4. Moreover, resetting any of these
options brings the default radix specification to it's default value of 8

(octal). Similar action is taken for output format selection flags 6

thru 9.

-59-

FLAG TABLE

Flag Significance - Default
1 Print soufce card images ' Set

2 Binary data input ' Reset
3 Occ§1 data input . Set

4 Decimal data input » Reset
5 - Hexadecimal data input Reset
6 Binary output format Reset
7 Octal output format Set

8 Decimal output format _ Reset
9 Hexadecimal output format . Reset
10 Use 1's complement notation Reset
11 Write processed system to file Reset
12 Do not abort on "conflicting inputs" error Reset
13 Simulate comb. portion of the system with delay Reset

14 Not used

4.2.15 <TRigger> Declarations

As discussed earlier, a triggering signal is used to control
triggered or mode X READ, LOAD, OUTPUT, DUMP, and STOP operations. Any
element of a declared facility, except a list-name, may be used as the
triggering signal for these operations. Appropriate triggering signals
to control the simulation may not be available in the DDL description of
a system. The <TRigger> declaration provides a means for deciaring new

facilities that can be used as triggering signals to control simulation

=60~

without requiring that the DDL system description be ﬁodified. The
,-syntax for this declaration is as follows:
<TRigger> Body
Body : [tg/,]" ; [/]
Trigger expression tE : tﬁlf
Trigger facility tﬂ : § whera 6w =1
Expression E ¢ an expression
' Example: <TR> TR/EXINP+EXBINL
The expression E in the above syntéx is a logical expression which
can vary from simple sum~of-products form to the most complex and com-
pound of forms. It defines the associated trigger facility tﬂ. A
trigger facility may be used in defining other trigger facilities.
Looping or trigger facilities, i.e., using a trigger facility directly or
indirectly to define itself, is not permitted, however. In the example
trigger TR is defined as the logical OR of EXINP and EXBIN1. Both EXINP
and EXBINl have been declared to be states of an automaton. The auto-
maton waits in each of these states for data from an input device. The

input device can be simulated using a triggered <REad> operation with TR

as the triggering signal as shown in the example in Sec. 4.2.7.

A trigger facility éannot be redefined during a simulation run.
The definition of a trigger facility remains effective in all subsequent
runs until respecified. A trigger facility may be assigned a delay time
4 using a <DElay> declaration. Similarly a delay declared during simu-
lation may also be defined using a <TRigger> declaration. For such
facilities, both the delay time A and the expression E remain effectlive

in subsequent runs until respecified.

D St
Pt peton-ali N

BL S O]

e ————— A PTG A 4T Y

hn e - A 4 s i o 1e T : - , N -

-61~

4.3 SIMULATION ALGORITHM

' DDLSIM is a table~driven, event-oriented simulator. Time is treated

as a discrete quantity and advanced from event time to event time where

the following actions are considered by the simulator to be events:

1, Zero-to-one transitions of clocks. During these events data input
signals to registers and memories are sampled, and next values of
register and memory contents are computed and saved.

2, One-to-zero transitions of clocks. During these events register and
memory contents are updated to new values.

3. Delay lines taking new values.

4, Simulator input, output and control events.

The simulator maintains a list of events to be executed in the
future. Simulation is performed only at event-times. The simulation
clock is always stepped from one event-time to the nex. event-time, no
simulation being performed for the intermediate time interval. The
absence of any event during these intermediate time intervals implies
that no change is taking place in the system. For eacﬁ event-time tests
are performed to establish the need for simulation. Simulation is per-
formed at event-time only if needed. A periodic event causes a future
event to be scheduled.

Event time simulation makes the units used for time specification
unimportant. Any arbitrary units can be used. The number of events
simulafed and not the number of time units elapsed determine the computer
time consumed by a simulation run. Since the largest integer handled. by
the SEL 32 machine {is (232-1), it is necessary to keep the simu-

lation termination time within this limit. It is suggested that smaller

U
s A

e e m o s iee e o A ————p qE s -

-62-

time periods be used for long simulation runs to avoid overflow of the

simulation clock.

1o0.
11.

12,

At a given event-time various events, if present, are processed in

following ordgr:

Zero-to-one transitions
One-to-zero transitions
Change of output values
Periodic or Mode Y READ
Specific time or Mode Z
Periodic or Mode Y LOAD
Specific time or Mode Z
Periodic or Mode Y DUMP

Specific time or Mode I

of clocks
of clocks
fos delays
operations
READ operations
operations
LOAD operations
operations

DUMP operations

Periodic or Mode Y OUTPUT operations

Specific time or MODE Z

OUTPUT operations

Specific time STOP operation

.After processing these events different simulations steps, 1f necessary,

are performed in the following order:

1.

2.

3.

Triggered or Mode A <REad> operations are completed

Triggered or Mode A <LOad> operations are completed

If there were any new one-to-zero transitions of clocks declared in

the DDL description or combinational clocks, 1.e., signals generated

using combinational logic and used as clocks for registers, output

values for affected Registers or memory locations are changed to

their new values.

6.

s K S S [e e g 1 o Ay e e ¢ B s Ry

T ~63-

If necessary, the combinational portion of the system is simulated.
If any new one-to-zero transitions of combinational clocks are
detected, Step 3 and 4 are repeated until no more one-to-zero
transitions occur.

If any one-to-zero transitions of system clocks or combinational
clocks were registered, new output values are computed and saved
for affected registers and memory locations.

If necessary, delays are simulated to compute new future output
values.

Triggered or Mode X DUMP operations are completed

Triggered or Mode X OUTPUT operations are completed

Triggered or Mode X STOP operations are completed

This procedure is repeated until the simulation is terninated.

— " e e e p—— iy e e e i e Yy

—64-

! 4.4 FERRORS

DDLSIM performs very extensive error checking. On detection of an

error, an error message is printed. Whenever possible an attempt is

made to pin-point the error., Error messages are printed in one of the

two formats discussed below.

1.

Error messages which can be assoclated with a card in the simulation
deck resulting from syntax errors are printed in the following
format. The card containing the error is printed (if not already
printed) with a vertical bar (:) placed under the column containing
the error or the column next to the item containing ervor. A dotted
line starting from the column next to vertical bar (:) and termina-
ting with the error message on right end of the page is printed.
Example: <CL> CLOCK1(185) CLOCK (6:10)/2%100/
eeeeeeneesesaneosses INVALID DELIMITER
Processing of the remainder of the declaration and the simulation
deck is continued by skipping to an appropriate position In the
declaration.
Errors which cannot be easily associated with a particular card in
the simulation deck are printed in this format. The error message
preceded by three asterisks, i.e., "***' {5 printed on the left end
of the line. Error messages printed in this format normally contain
an error description with associated parameters, i.e., facility
name Qith appropriate subscripts, simulation time, etc., to help in
locating the error. Some of the error messages require more than
one line.

Example: ***RESPECIFICATION OF DATA FOR INPUT{l:5)

***AT TIME = 200

-65-

Errors are generally classified as fatal or non-fatal depending
upon the nature, position and stage of simulation during which they
occur. Fatal errors normally result in an immediate termination or
abort of the simulation job. However, up to 10 fatal errors are allowed
during the processing of the simulation deck for a simulation run. If
any fatal errors were detected during the p;occssing of the simulation
deck, the entire simulation job is aborted., Whenever a simulation job
is terninated due to fatal error(s) a message identifying the action is
printed, i.e.,

**ATQ MANY FATAL ERRORS - SIMULATION TERMINATED.

Non-fatal errors do not cause the termination of the simuylation job. 1In
this regard they are warnings rather than errors.

DDLSIM performs complete syntax checking on the BEs and RTEs
describing a digital system. Any errors detected during the processing
of system description are treated as fatal errors. However, the simu-
lation job is not terminated immediately. Since the errors detected
during this stage cannot be easily asscciated with the DDL deck, they
are printed using the second format described above. During the simula-
tion stage complete error-checking is performed on the simulation
process itself looking for errors such as:

1. invalid memory addressing,
2, instability in networks containing loops, and

3. attempts to input conflicting data on a facility.

b 5. EXAMPLES
This chapter provides some example DDL descriptions. The examples
range from small synchronous circuits to a simple, but complete computer.
These examples do not {llustrate all the capabilities of DDL, buﬁ provide
a good iﬁtroduction to the user unfamiliar with DDL.

Example 1: A Serial Twos Complementer

The serial twos complementer uses the familiar copy/complement
algorithm: starting from the least significant end of the number, copy
the bits as they are till and including the first non-zero bit; complement

the remaining bits till the most significant end. As an example,

001010:100 Nunber
1101011100 Twos complement
complement . copy

This algorithm is implemented using a shift register and right
circulating its contents while copying or complementing as required. The
nunber of shifts is equivalent to the number of bits {n the registe-. A
flip-flop can be used to store the copy or complement state.

Figure 5-1(a) shows the description of the serial twos complementer
in DDL. The content of the six bit tegister' R 1is to be feplaced by its
twos complement. Register C (3 bits) counts the number of shifts. S
is a state flip-flop to indicate the copy or complement state. T is a
control flip-flop to indicate RUN/STOP state for the complementer. The
complementer waits for SW to be ON, to start complementing. There is
a clock P. An OPerator ADD {s described in lines 5-8. This is a 3 bit
adder to inérement the contents of the argument register by 1. The

AUtomaton COMP has two states: a waiting state I, and a processing

-66-

-67-

state Sl. Setting of SW is required for the transition to Sl state. 1In
S1l, the register R 1is circulated right 1 bit with the least signi-
ficant bit copied or complemented, depending on the state of 'S being

0 or l. 1f register C has reached a value of S, the complementation
is stopped by setting T to O and returning to state I. 1If c¢5,
COMP stays in Sl state and increments C. The FLag statement (line 13)
sets the flags of the translator to provide the outputs at each of its
six phases. Figure 5.1(b) shows these outputs. A detailed description
of Figure 5.1(a) follows:

Line 1: The name of the system is COMPLEMENTER. Only the last 8
characters ¢f this name are retained by DDLTRN. There is no period at
the end of this line, since the system description is not complete yet.
Line 2: REgister R has 6 bits numbered 1 through 6, left to right;

C has 3 bits numbered 2 through 0; S and T are single bit registers.

C counts the shifts; S is the copy (0)/COMPLEMENT (1) state flip-flop.

T is a flip-flop indicating that the complementing process is underwvay.
It is not recally required, but included to illustrate some DDL fcatures.
Period terminates the REgister description.

Line 3: A LAtch by name SW

Line 4: A single phasé Clock (Time) P.

Line 5: A special OPerator by name ADD. The output of the operator is

a 3 bit number. The input 1is through the argument X (X is a formal
parameter). No period to terminate, since the cperator description is
not complete yet.

Line 6: Declares the TErminal X to be of 3 bits and a new 3 bit

register C. DDLTRN changes this name to C"1.

e

L]

—-68-

Line 7: Declares a new IDentifier for the concatenation of the last two

bits of C and a i.

Line 8: Declares the CARRY and SUM bits of an adder consisting of 3

half adders. C has the carry bits from each hal{ adder, CC consists of

carry bits from previous stages along with a 1 for the least significant

bit. ADD consists of the SUM bits output., Note that ADD is the name of

the operator, which is simply an ADD 1 circuit. The circuit implied

(modelled) by lines 5-8 is:

X(1)

1=
“ |

|
'Y ADD (1)

|

T T
() v

X(2) 3)

— 1

{

HA

HA

Note the periods at the end of line 8.

the second terminates <OP>.

Carry Sum

ADD (2) ADD (3)

The first terminates <BO> and

Line 9: AUtomaton COMP is controlled by the clock P. Since COMP is not

subscripted (by parenthesis) it 1s assumed to be having only two states

(1 bit). (1If there are more than 2 states, then the number of bits re-

quired for state identification must be shown)

Line 10: STate (Step) I with identification 0. AUtomaton COMP waits in I

till SW is 1. When SW is 1, T is set to 1, C and S are set to 0, and a

transition is made to state S 1 (all in parallel). The period terminates

I.

-~ Td

AW waw W - 8 !

L

=69~

Line 11: State S1 with the designation 1. waits for T to be 1. If S {is
1, R is circulated right one bit with the bit R(6) complemented; other-
wis; R is simply circulated. S receives R(6) if S= 0. Also in this
state, the value of C is checked to be equivalent to 5(-1012). If C=5,
T is set to 0 and a transition to I is made; if not, C is incremented and
S 1 state continues. The periods at the end of line 12 terminate the

If THEN on C, S 1, ST, AU and SY declarations respectively.

Line 13: Sets the FLags of DDLTKN to output results of each of the six
passes.

Figure 5.1(c) shows the input commands for DDLSIM. FLags for DDLSIM
are set for decimal data input (4) and binary output (6) in Line 1. SW
i5 initialized to 1 in line 2.. Two values are read into R one each time
state I is reached (line 3). An output trigger OUTTR is declared to be

N at the falling edge of clock P (line 4). The values of COMP, R, S, C,
T are to be OUtput when OUTTR is ON and that of R when in I state (line 5).
The simulation is started with <ST> in line 6. Figure 5.1(d) shows the
simulation output., The TIME starts with the rafsing edge of clock. Each
edge is a tine evenﬁ. At time 0, all registers are zerced and the circuit
is in state I. At 1 SW 1is set to 1. At 2, R receives 5. 12 more tine
slots (6 clock pulses) are required for R to have its twos complement
(time 14). At time 16, the new value for R (20) is received and its twos
conplement is ready at time 28. Since all the Inputs are exhausted, the

simulator stops at time 29.

DIGITAL MLESIGHN

e

LANGUAGE TRANSLATCHR

<SY>COMPLEMFMTER
<RE>K(136),C(2:0),S,1.

<LA>SA,

[

<1]>P,
V<OP> ADD(3) ¥ xS
<TE> x(3).,C(3),
<1D> €C=(C(2:3)1101),
<H> C=x2CC,A0D=xaCl.,
<AU>COvMPIP:
<ST>I(0):S5nsT1<=1,(<=0,S<=0,=>S},
S1(1)27218) K(1)<=tR(6),R(2:6)<=R(125) 3S<=N(6),k<=R(E) [R(1:5).,
JC(2)*t((1)2C(0))T1<=N,=>]3C<=ANDICY.0ecs

<FL>3,4,5,6,8,

FIGURE 5.1(a): DDLTRN INPUT

-OL-

CIGITAL CESIGN LANGUBAGE TRANSLATUN

PLSS 1=~ TILITIES IDENTIFIEL

NFCLANER FACILITIES

<SY> LEMEMTER
<FE> ~(1:6)
£(22¢)
S(1:1)
1(1:1)
<t.w> S$2(1:1)
<VI> P(1s1)
<CF> &RL(1:3)
<1E> x(1:3)
. C => C"1
c"1(1:3)
<I> CC(1:1)
<aU> COwP
- <8T> 1
Si

CECLAKRED UPERATINNG

<SY> LEMESTENS
<(:F> AlPnEx i
<t(.> C=x*CC, AND=¥ACC..

<Lu> CLMPe P
<Si>
I: Sa: Te=1, C<=0, S<=0, =>»Si,

Figures,l(b) DDLTRN Output

18) P(1)<=th(n), R(2: £)<=K(1: 5); Sc=NH(E), R<=R(6)(R(1g

JC(2)»tC(1)2C(U)) V<=0, =>]; C<~AC03SCHe00ee

RYwaN. o]

)
BN s

™
-

5}ﬁ?ﬂﬁ ¥00d 40

[
-

5)0'

(R}

DIGITAL DESIRN LANGUAGE TRANSLAICK

PASS2==SYNTAX RENUCED S

<SY> LFMENTER: J==x/CCMP'O, S1av/CUMP*1DY e C™1zxsC™1(223)(1CY ADD=xaC"1(223)(101
<Al1> CCMPs b
11
JSn] T<=1D} ¢ C<=0, S<=0, =>S51,.,
181)
17 o
1S§) P(1)<=tR(6), N(2:6)1<=Kk(1:5); S<=R(6), R<=R(6)(R(1:5).,
JC(2)*1C(1)*C(0)) T<=0, «>13 C<=apD , XZ2Cases

el o

Figures,1(b)(Continued)

-ZL-

A am

DIGITAL DESIGN LAAGUAGE TRANSLAILR

PASS3==CONDITIONS DISTRIBUTED

<SY> LEMENTERS

I1=x/CONMPYO,

S1=+/COMP' 1G] ’

"1=1=xSvr,

"2=51x1,

n3zkoxs,

nu="oxts,

"oz n2xC(2)xtC(1)*C(0).,
"z "2xt(C(2)x1C(1)*C(0)),
C"1=x=C"1(2:3) 11N ’
ADD=(XaC"1(2:3) (10D}),
1Px"1] T<="1#101 .
1Px"1) (C<="1xG,,

JPx"]1) S<="ixu,,

1Pa"1}) COMP<c="1n{(t .t
1Px"3) K(1)<="3xTR(6).,.,
1Px"3) K(2:E)<="32R(12:5),.,
1Px"u)] S<="u*R(6),.,
1P2"y) Ke="drr(6)(R(129).,
JFa"8) T<="S5%0,,

1Px"S) CUMP<="520,,
1Px"e] C<="6*xiND,.,
x="6xC, ,

PASSu--CLﬁcAIEnAjlnn REMOCVED

LEMEANTERS

l=2/CUNFY O,

Si=r/COMP'1DL1

"1z=IxSe,

"P=S1w1,

"iz"exSs,

Yuz"2xrts],
"oz="2«((2)x2C(1)*C(0),
"ez="2+t(C(2)*1C(1)=C(0)),
C"1(122)=x(132)*C*1(2:3),
C"1(2)=x(3)=101

EnC(1:2)=(x(122)aC"1(2:3)),

acL(3)=(x(3)eatnl),
IPa®1]) Tc="1xip] .r
JPe"1]) C<c="1r0,,

JB=2"11 S<c="1x0,,

IPe™1} COLMP<="12101 ,
1Px*3) K(1)<="3xtR(h).,
JP*®3] R(2:€)<="3ar(1:5),,
JPa"4) Sc="42u(b),,

JP2"u) k(3)c="urk(6).,
JPa"4) KH(2:6)<="urk(]1:%),,
1P%"5) 1<="S#0,,

1P*"S) COrP<c="920,,

JP2"¢] Cc="exrainn,,

:“6‘(; .

Figure 3.1(b) *(Continued)

-EL_

OIGITAL DESIGN LANGUAGE TRANSLATICR

PASSS==DPERATIONS GATHERED

<SY> LEMENTFR:

I=x/C0MP'O,

Si=»x/COMP'1D1 ,

*1=I#35w,

"2=S81xT7,

*3zMpors,

"az"exts,
*S="2+C(2)*1C(1)*xC(0),
"E="24T(C(2)x1C(1)2C(0)),
C"1(1:2)=x(ts2)*C"1(2:3),
C"1(3)=x(3)+1D1)
ADDC(1z22)=(Xx(1:2)AC"1(2:3)),
ADD(3)=(Xx(3)a1DY IS :

<SY>

JPx"1 + Px"S) Tc="{x|D] + "S*0.,

IP*"1 ¢ Pa"6) C<c="1%x0 + "624C0,,

1Px"] ¢+ P*™4] Sc<="1+0 + "u*R(6).,

JPx"1{ 4+ Pa"5) COMP<="1%{D1} "520,,

1P*"3 ¢ Px"d4} R(1)<="3%xtR(6) + "uxR(6).,
JPx"3 4+ Pa"y4) N(236)<="3xR(125) + “UrR(1:5).,
X='6'Co [}

PASSH==SUBFACILIVIES RISJUIMNEL

LEMER TENS

I=x/Cenmp o,

Slzx/CrPYIDL

"1z=]1+Sen,

"e=S1xT,

"3z="oxs,

"yu=P2ats,

"Gz 2xC(2)x1C(1)*C(V),

"o="Zxt(C(2)x1C(1)%xC(0)),
C"1(1:2)=x(1:2)*C"1(223),

C"1(3)=Xx(3)x1ix1
ARDN(122)=(Xxt122)aC™1(223)),

AnBC(3)=(x(3)alDYt),

1Pa"] ¢ Pa"S] Tce"1x1p] + "5=0,.,

JPa®1 ¢ P2Me] C<="1+0 ¢+ "p»al(D,.,
1Fe™1 ¢ P2"y) S<="{20 + "Urk(t).s
1Pa™] ¢+ Pu"S) COVMP<="1x1D} *

1E4"3 ¢ P2%d] R(1)<="321R(6) + "UrK(A) .,

Q)

N0

R}

1
Lhdet =

—"L-

JIP2"3 ¢ Pa"d) R(2:6)<="32P(1:5) ¢+ "unk(129).,

xz="exC, .

Figure 3.1(b): Continued

o0 mANt Lt
K T e
P e

¥

41 -

DIGITAL DESIGN LANGUAGE TRANSLATOR

FACILITY TAELE

LEMENMTEN
R
c
S
T

w»
0 %

aro

"1
c"1

cowvrpP

O ™ = 0t e et e et et ek St e) e e

-

S1
101

"3
"y
"9
"6

c"1
"1
A1D
age

K

) =t s OO et s gt s

_=r VWUV NGC O re e e e

D e e O e e N LN e e bt b D O e

Ladi VAN VL i VI R R il R P B P N P I Y B 2

-1
-6
-6
-5
-6
-8
-5
-9
-9
-9
-9
-Q
-6
-13
-13
-17
-17
-9
-9

-9

et
NN D E OO

COO0OCOOCOOCOOOOTOLOCOLOCOLDOOLODTCDOLCOO

Figur. 5.1(b) {Contirued)

339

2217
235
216

191
213

252
24y
196
203

25%
280
304
337

513
521
489
499
456
480

(=~

358

w N
[AVIRY +)
-

OO0V OOOCOOODOODOCODOOOOOO

& £
<> o
-3 W

0
0
302
295
3128

164
219

258
340
201
208

264
287
318
354

519
53t
497
511
454
478

—SL_

~ W .

OIGITAL DFSiG" LANGUBGE SINMULATCK VERSION MSFC 1979 SIMULATION RUN 1

1 <FL>4,6
22 <In>Sn/1 ’
3 <RE>T/R/S,20 t
u: <TR>QUTVR/TP/
S: <OUDQUITK/COMP,R,S,CoT/4s 17K/
6 <SI>
figures.l(C) DDLSIM Input
€
0 3
: ot } i 4
TIVE P R S8 C T R , L NI
0 0 000000 O 00O O 000000
2 1 000101 0 000 1
4 1100010 1 0Ot 1
6 1 110001 1 010 1
8 1 011000 1 011 1 -
1¢ 1 101100 1 100 1
12 1 110110 t 101 1 -
14 0 111081 % 101 0 11101}
16 1 010100 0 000 1
ié 1 001010 0 001 1
20 1 000101 0 010 1
22 1 100010 1 011 1
24 1 110001 1 100 1§
26 1 011000 1 101 1
28 0 101100 1 101 0 101100
-\vD OF FILt wEACHEL ON INPUT
IMULATION TERMINATED AT TIMNE = 29

Figure 5,1(d) DDLSIM Output

2

Bty 4

o TTE

ooy

Wy ay -

=77~

Example 2: The Serial Twos Complementer (variation 1)

Figure 5.2(a) illustrates another version of the twos complementer.
Two operators are used. The six bit COM operator circulates register X.
The bit fed into X(1) during circulation is either X(6) or X(6) depending
on- the value of Y is 0 or 1. respectively. The CNTUP operator is the
same as the ADD operator in example 1, This version just illustrates
the use of operators. Figures 5.2(b) shows the DDLTRN output, 5.2(C)

shows DDLSIM input and 5.2(d) shows the DDLSIM output.

el

OIGITAL OESTGA

oo
mZ
LANLUALE THANSLATLK o 0
E;EE
]
<SY>COVPLEMFNTEN: FeXa')
S3
<HE>R(135),C(230),8,1. . £l
<LA>Swn, iﬁ o
<TI>P,
<0P>COM(6)SX,Y$
<TE>X(6),Y.
<BO>CUM(1)=() YD TX(h)3X(A)) CLM(220)=X(1:5)..
<UP>CNTUP(3) X ' h '
¥
<iE> X(3),C(3),

<ID> CC=(C(2:3)(1C1).
<AG>C=x*CC,CATLP=XACC.,
<hy> COMP:P:
<S1>1(0):Susl<=],C<=0,%<=0,->51,

S1(1):Ter<=COVIk, S8, J1tS) S<=K{6).,1C(2)%1C(1)2C(0)) T<=0,->1}

C<OC|\'TUPSCSQ XXX

<FL>3,4,5,6,R,

FIGURE 5.2(a) DDLTRN INPUT

e

Tl B S S TP
oy . .

-79-

WIGITAL LESIGM LentuanE Tha! SLATLW

LASSYeeF T LLEJES INESTIFIRD

DeCusven FLCILITIFS

<€SY> LFVETEW
<wt> r(124)
ceesn)
s(121)
T(121)
<L&> Se(1s)
 P{121)
<I ¥ Cuv(lss)
<TF> x(1:R)
Y(1:1)
' ’, H
P> CrIyp(1ed) o> xo1
- .
cif> x"1(1:3) o> cny
C"1(1:3)
<It> CcC(1e21)
cat:> COvP
<S1> |
s1

CECLEARETN LPERBTIUNS

<Sy> LEVE® TR :
P> (s x, Y2
cn(> (Cviy)=(
1Y) tx(h): x(m).), LOM(2: E£)=X(1: S)..

<y CATimgxt
<’ Czx2CCe CHRTLUPZXa({ o0

<i;>» Clrwwe O3
<ST>
s Ses <=1, (C<=C, S<=L, =>§1,

S1: T: WeeCUMEK, &%,

118) S<=R(e).,
JC(2)#1C(1)»C(0)) <=y =>]} C<=CNTUPSCScccss

FIGURE 5.2(b): DDLTRN OUTPUT

<SY>

<SY>

[} 4

#AaSSe==SYNTaXx REDUCED

LEMENTERE 12a/CONMP G, Siz=e/z(CGMP'ILL
JY) tx(e): afe)), CCM(Petn)=x(1:9),

<Ali> CCrPe P2

cev i) =(
("1=x"

1#C"1(2:3){1C1 , CANTUP2X"1dC"1(2283) (10}

11)
154) T<=10t ¢+ C<=0, S<=0, *>51..»)
1S
T 1T) R<=Cum™ , X=N, Y=S,
1181 S<=h(bl).,
JC(2) a0 (1)2C(0)) T<=0, =>13 C<=CANTUP , X®12Coeer o¢ o

PISS3e=CADITIUNS DLISTHItITER

LEMFPrTER e

I=e/CtrFV0,

Sl=e/COMF Py} v

"I1StY, %Pz IwSe,

"IzS1e4,

Yuz"3atg,
"E=MERC(2)2tC (1) eC (D),
"Oez=M3Int(C(2)nTC(1)2C(0)),
COMOLII=(Yrtx(6) + "1eX(hH)),

Cus(eel=x(1:%),

Co1=x"1=C"1(2:3)01D]Y ’

ColPz(x"1aC™1(223) 1111 |
Irea"2) Tce"2a1nt .
PP2%2) (<="2ay,,

Jre®2}) Scefoa(,,

lbeng) COvie="2e1l .,
1Fe™48)] we="3s(nn,,
3238k, Y="iaS,

IPeRy] Sc="UuarH(h),.,
Ie™S] [<e®g9g,,

JPe"8) (v ie="%2),,

JPe"er] C<="pr(AliuP,,

A"1z"ee(,

4 .

FIGURE 5.2(b) (Continued)

P85Su==CUONCATFNATTON WEMQVE(

<SY> LEMEANTER:
Ise2/CuvEr0,
Sise/CrvF 101,
"l=tY, "2=]25a4, -
"3=S1*7,
"uz*iests,
"Sz"3aC(2)21C(1)2C(D),
"hI 3« (C(2)2tC(1)2C(0)),
COMCIIS(Y*TX(6) + "12X(6)),
COv(2:6)=x(1:9),
C71(1:2)2x"1(1:2)2C"1 (2230,
C"1(3)=x"1(3)=1n} ,
CATLP(122)=(x*1(132)aC"1(223)),
CrILP(R)=(x"1(3)a1ny),
JPa®2) Te="22101 ,,
1Pa"2) (<="2ng,,
TPa"2) S<c="2s0,,
JPe 2] rOovPc="2#101 .,
JPe"3} kc="32((wv,,
X="3ek, Y="32S,
19"y Sc=""uerk(h),,
JFa"5]) Tc="Seyp,,
JFPe"S) COvPc=a""5a9,,
IFep) Cce™paCnlup,,
x*1=%p2(C, :

-0g-

RIS B

Ed

e

<SY>

3809 ==Prr Bl RS GAIMENED

LEMFLTFS:

I=se/C0080 0,

St=a/CHvPY D .

“1z1Y, "P=z]agw,

"3zS1eT,

vYaz"inty,
"hE"3aC(2)etC1INC (O,
"ozt (L (2)rTC(1)eC(I)),
CO-(1)=(Yatx(6) ¢ "12X(6)),

Chr (eced)z=x(125),
C1(f122)=x"1(1:2)2C"1(2:3),
C"1(38)sx"1(3)»101 .
Criukb(ls2)s(X" (1:2)5C"1(223)),
CoTuP(R)=(r"1(3)a1N]), '
Jre"2 o Fa"S) Tc="2«iD} + "G

0.'

JPA"2 ¢ rate] (<2240 + "or(rine,,

1Pe"2 ¢ +8%"4) S<c="Pa(¢ “"Uarr(p)
IFe% s ¢ Pa"hy) CunmPc="2x1111 *
1Ea"3) we="3s(iwv,,

Az ey, ="3«S5,

xMizvew(,

FIGURE 5.2(b)

-t
"b'ool

(Continued)

PASSe==SurFACILITIES DISJUINED

LEVMENTEHR
j==/C0sP0Q,
Stz=x/C0MF' 1) ’
"1ztY, "2=]12SaA,
"Iz51nT, .
Puzyntrys,
"S53l (P)rTC(1)eC(V),
"Hz"Iat(C(2)e1C(1)2C(0)),
COM(l)Is(YxTX (b)) ¢ "12xX(6)),
Cov(2er)=x(1:5),
C"1C1:2)=x"1(1:2)=2C"1(223).,
C"1(3)=x"1(3)210D1 ,
CrvIkP (Y e2)=(x™11ls2)mC™Y(223)),
CrTUP(3)=(x"1(3)a101),
JHa®"2 ¢ Pe™S) T<="22101 + "Se0,,
1re®2 ¢ Pe"p) Cce™220 ¢+ "He(CrTUP,,
JEe e ¢+ Pe™u) S<c="220 ¢+ "UYntk (b)),
JE*"2 ¢ Pa"S] CUMP<="2¢1D1 + "S«0,,
1P2"3) heo"3aCDr,,
3¢k, Y="3rS,
x"1z"¢C,

Te)

Sl

i .
;

2 .0

‘\" r:'\-'n‘:.' t
Tl

-'[8-

1

.

CG’N‘_O‘U\DV-"\J-‘

FACILITY TABLE

LEMENTEN

(s R
CATUP

c"1
c"1
cev
cnw~

MAn e omer o Y

N = =

LVIRY
O e vt s h s b e T S B b e e ws el

D) e ip OO N e e -

P T T Tl TS W e P S e R T T DO T e

—Q\J,‘o:'\)w—-.——c-.-o—-._,‘—-w—-w-‘)o-o”—-obo-.

-ou',.'\;-oo:.\j--—-o-’-—-—-a-o-ow—w—-'ﬂ-—‘).3--—a.—-\,.g—-

-1
-h
-
-6
-t
-l
-t
-9
-Q
-G
-9
-°
=iy
-G
-C
-Q
-
-13

-17

TIeUPT 5.2(b) (Continued)

DL 2500 OVODIICODODIDOTCOT

L

0

3el
29¢
2hR
276
257

21k
2e0

245
22°
PAY

D)
293
2RS
221
254

311
326
399
4488
das

479
unl
441
439

0
3n2
340

[V RV J
& N
[vear

OSOOOOSCOCOOOOOONSOOOOOOCODO

0

C30e

Sku
32%
3a17

137
140

250
2es
260

296
362
232
239

1A
346
376
463
a17

a4Bs
uQ?
w37
4y

LTI '.:.—7_'.—."'.,"'."._.‘"‘_'\".*.'4‘_'" T

_zg-

OIGITAL DESIGN LANGUAGE SIMULATCH VERSIUN NSFC 1979 SIvLLATION RUN

<FL>U,b

<IA>Sa/t

<RE>T/E/5,20

CTR>NIITTR/ TP/
CUUPOUTTR/ZCUNF JF o SsC e T701787
<SI>

TL BN -
8 60 00 0 0 o0

FIGURE 5.2(c) DDLSIM ILPUT

c
n
N
TIvE P ks €T R
O 0 000000 0 €00 ¢ 000000
2 1000101 0 000 1}
4 1 .10C010 1 00y 1
6 1 110C01 1 010 1
8 1 011060 1 011 1
10 1 101160 1 100 1
12 1 110110 1 101 1
14 0 111011 1 101 0 111011
16 1 016100 0 GO0 1
1A 1 6010610 0 001 1
20 1 000101 0 C10 1
22 1 1000610 1 011 1%
241 110661 1 100 1
26 1 011000 1 101 1
2R 0 101100 1 101 0 101100
D OF FILE SEACWED OM [MPUT
[MULATIUN TEHMINATED AT TINE = 29

'FIGURE 5.2(d): DDLSIM OUTPUT

—Cg-

4

.

hahdaaiins A o inena 3 Sne A ¢

I AR SN A S St ae i/ 4 nURaTR Shy

- S

YT Ty

[

AT

AR T CEL Y NI C

g

84—

Example 3: Twos Complementer (varjation 2)

Figure 5.3(a) shows a version of twos complementer description with
the use of sevéral AUtomata., Automaton CNT adds 1 to C, checks if it is
5 and sets DONE to 1.1£ C=5. It is activated by COUNT. AUtomaton
CMP is activated by CPT; performs the one bit circulation of R; sets
COUNT to 1 to qctivate CNT. COMP is the controlling AUtomaton, activated
by SW and in turn activates CMP in sfate S1 and waits for CCT to be 1
(for CNT completed) in S2. If DONE i{s 1, goes into wait state.

Figure 5.3(b) shows the DDLTRN output. Figure 5.3(c) and (d) show
the DDLSIM input and output respectively. Note the effect of this version

of description (AUtomata interaction) on simulation time.

~—

P

g

e
-

- W ETvemTrre- g
»

-

PA

21

Pl

I H

A\
N
.

-85~

<SY>COMPLEMEMTEFR S
<HE>R(1:6),C(2:0),5,T,
<TF> COUNI,ENNF,CFT,
<TF>CCT,
<T1>P,
< A>Sw,
<OP> ARR(3)4Xxs
CIFs X (3,008,
<IN> CC=(L(2s3)1my),
<hi> C=xe(C,aMNzxalC,.
<CAL>CnNTewe

<ST>CL(N)2Crlr Tele=P*YCS,=>CP.

CPO1IECT21,1C0(2)*CUL1)2TC(N)) LONF]IRUNESG, ,=>C1 ..

<CAt'>(MPerve

<QI>S(0)eCkTe

JST PU1)<mth(p) k(2261 C=k(1355)35¢=R(A),NCuR(b)IN(]125)e,=>ST.

S1(1):cyn Y2y ,=580, .
SAL> CUMP ()Y
€CSTI>1(G) 2R 2Tc=), <N, 5<=y, =331,
S101)sT20kT2], =282,
fS2(2): CLle YLD Fle>];e3S81,,,.,

<FIL>3,4,%,0,R,

Figure 5.3(a):DDLTRN Input

ORIGINAL PAGE 19
OF POOR QuALITY

PASSt==FACILITIFES INDENTIFTED

OFCLARED FACILITIES

<SY>
<KF>

<TE>

<1]>
<L ?t>

LEMFNTEW
P16}
Ce2:0)
S(1:1)
TC121)
COUNT(1:1)
CCNEC(L2Y)
CFT(1:1)
CCTitzt)
P(1:1)
Se(121)
<(iP> ACD(1:3)
<TF> X(3:3)

<iP> CC(1
<8t > CAT
<S5T>

<Aly>d CvP
<ST>» S0

<Alid> COvpP
<81> T

Figure.S.B(b)

-86-
AN)
Cvee 'y
'l & 'y '

: DDLTRN Output

c

S1

-> C"1

=> S1"1

DECLARED (FERBTICAS

<SY> LEMEANTER:
<PP> AT sx %
<FN> C=xxCC. 4DN=XRCC..’

<fil>d (AT P
<ST>
Ct: COUNT? C<=ADTSCY, =>CZ.

ce: cCi=1,)
1C(2)2C(1)*1C(0)) DPunF=13 COMNF=0,.. ->Cl..t

CAU> (vPy P
<S7>»
Ste CHIe
181 P(1)<=tR(6), W(2: 6)<=R(12 H); S<e=n(€), Rec=rR(6) [K(1: S).,

tn
-~
..

D]

CUNTS1, =>SC...

<> CNYP: P
<ST>

T2 S22 Te=1, (<=0, S<=Q, =>S1,
S1™1: T2 CPYI=1, =>872.

Se: CLT: ,
1LOME) ->1; *>Sleecee

Figure 5.3(b) : Continued

->31 [

-Lg—

<SY>

W ¢ R T R Lo

PASS2=«SYNTAX RENDUCEN

LEMENTFR: Cl=*x/CNT'0, C2=2/CAT"IRL
S2=x/CONMP*2N2, C*1=XaC"™1(2:3)11P1
<BU> CuTe P
1C1)
JCOUNT] C<=APD , X=C, =>C2.
1C2) CCcT=1M ’
1C(2)*C(1)=x1C(0)) NUANE=1D)

<AU> CMP: P
1501
i1CPT)

JS1) COUANT=1D1 v =>S0., o

<AU> COMP: P

11

}Sw) T<=101 » C<=0, S<=0,
1si1"1)

1T CPT=101 e =>82,..0
182!}

JCCT)

JNONE]) =317 «>S51"1,..»

SO0=z2/CMP'0, Si1=x/CMPYICY
ADO=x3C"1(22:3) (101,

LN 4

s CCnNE=O.s =>Cl., o

JS) R(1)<=th(6), R(2:6)<=R(1:5): S<=R(6), P<=R(6)(R(125)es «>S1.4s

->sl'100'

Figure 5.3(b) : Continued

o I=x/CCVP'OR2, S1™1=e/CCMP'1D2,

‘.88-

s

<Sv>

:i;;;} -89~

PASS3=«(OANITIONS PISTRIRUTFP

LEMENTFR
Cize/ChT'0,

Co=»/CNMT1DY)
S0=+/CNP'G,
Stze/CoP'1ny
I=x/CO¥FtON2,
Si"1=ss/CvpR Y02,
S2=x/(CHnpr 21D,
"1=C1rCCUMT,
"2zCP*C(2)+C (1) 210 (D),
TIS2RT(C(2)2C(1IRTC(0)),
"uzQOxCPT,

"s:ﬂu‘s'

"b:"Ui?Q,

*7=12Sv,

"ezSt"1eg,

"azSe2a (T,

"10="ax000E,
“t1z="9utrneF,
CHf=xeC"1(223) 1111 v
LNz (aaC"1(2:3) 1101),
1P*"™1} Cec="12iitl,,
rz"1x(C,

I1P2")) (*T<ce"1aily .t
Cri=Ce»13y ’

RIRLESE A RS EAR ’
PAMEz®Sen,

1vaCP) - Tc=lCP20,,
JP*"S) k(1)<="Satw(s),,
1P»"5) w(Psh)<="9u(1:5),,
JPale] Sce"ra(h),,
15476) Ge=rrn(p) [R(]29),,
IP*»"6) (b c="un{i} .t
COunT=S1*10y ’

1P%51) Crbc=St1en,,
18#%"7) T<="7210D} .
YRR t<="7%0,,

Trke" 7] Qee"7+0,,

1F4"7) Fa~vBem™"T211,0,,
Criz"e»1101 ’

JPe"E) (NLpcauarpny,,
Jre"tod Chvekc="10e0np,,
jes"1 1 Cvec="11x1nr2,,

Figure 5.3(b)

<Sy>

PASSUe=lCUNCOTE VAT TN

LENMENTEN

Ct=»/CtT1¢,

(2z=*/CN1%111 ’
SO:tIFFP'O,

St=x/Cverycy
I=e2/CCv0Yonp,
SI"t=w/C0CvEY 1D,
Sosa/Cunprppng,

“1=C1*COln T,
"2=C2nC(2)+C(1)n1C(y),
”$=CP'T(C(2)*C(1)-?C(0)).
"uzSOxCHT,

"5:"“‘5'

Yez"ynts,

“T=lx8v,

PHISLI"1eT,

"az82a((1T,

“10:"9*5P3F,
"fiz"satiponge,
C"l(1:21:1(1:2)¢C“l(2:5).
C"1(3)=x(R)=1n} ’
A“D(l:?):(x(l:8)4C”1(?:3)).
AHP(3)=(1(3)01“‘)
JEa"1) Ce="faann,,

=",

TE2"1) (rTe="yaypy .
(CT1=C2a1ny ’

Coar="oeq ’
cOeE="3a 0,

JP+C2) (Nlce(ongp,,
TFeng) ={1) ="t (n),,
Fhs®G) FlR1h)<="Sewl128),,
Theve] Sceean(n),,
RS Fl1)<="n*u(ny,,
Jatp] Fleie)c="hek(]:8),,
VP2%"u) (vFeausyiiy .e
ClnaTa81ayng R

1+281] («FceST20,,
1P*"71 1<="7+11 .
1P+ 7) C<=a"72n),,

Jtan7) L<c="720,,

1°s"7) FO~ve="7at1pp,,
(Y= rwy. g ’

lwtp) Cr-FeaMgsgipo,,
1P () Citvea="rueqip,,
1Pe"1 1) COMPca®1 e,

Continued

<SY>

PASSS==0PERPAT |

Lerknlews
Ciz==/CAT's,
L2Se/CAT IR
Stz*/CvF'0,
Size/CvPY 101
T=s«/CLUrPYQDY,

OnS GATHERED

S1"1=s/0G07" 102,

S2=+/C0~e' 202,
"1=CINLGLAT,
"esCexC(P)xC M

JrtC(0) .,

"I=Cext(C(2)+C(1)x10(0)),

"yz=SOrCPT,
"Hztues,
”(z"u‘TS'
“7:]!5»,
"“351""‘:
"Gz=gorlCT,
"10="9+ L ONE,
"11=NerthONgE,

C"1(1:2)1=x(1:2)*C"1(2:3),
C"1(3)=x(3)~1661 ,
ALD(12:2)=(x(122)AC"1(2:3)),

anD(3)s(x(3)at
10a™) 4+ pPan7)
Ys"ijx(,

122" ¢« FsC)
CCT=Cer 1y ’
NONE="P 21D
JPx"Y 4+ pPa"g)
JEx"Yy ¢+ Petg)
JP2 e ¢+ +a%7)
IPx"y ¢+ PxS1)
CCunTI=Si~1i)
162"7) Tc="72}

1EaR7 ¢ Pa"e ¢ Pa"10 ¢ Pa"1y)

CPT="Ax10y ,

105 B I
C<="12aD0D

+ "7

CNTec="1x10}}

¢+ "3an,

*0.'

+ C?*Ool

K(1)<="Set(6) + "6rh(6).,,
R(2:H)<="5aF (125) + "6e2R(1:S).e
S<="prtk(b) + *
CVP<c="421D1}

’
1D .o

,*r}.l

+ SI'O.;

Figure 5.3(b) : Continued

-06_

COMP<c="T#IC2 4 "Ax202 + "J10=0D2 + "1121D2.,

PASSh==SURFACILITIES NISJNINE]

LENFATER S

Ciz=+/CrT*C,
Ce=»/7C0atT V1D
MIEIVAGTANIR
Siz==/Cvrt 1Y

I=a/C0rP'OR2,

’

’

S1¥1s*/(0MPY Y102,

Se=a/Lrevpioge,

"12C1RCCLNT,
"2=C2xC(2)sC(1)%1C(0),

"32C241(C(2)*C(1)*1C(0)),
"u=S0xCPT,

"Sz*uxs,

"ez¥nuwts,

”7=I*S“c

ﬂ&:s]hl"'
"9=82x((T,
"{10="QenF,

"11="9«200ONF,

C'1(1e2)=x(122)=C"1(P28),
C"1(2)=x(3)»1001 ,

LDO(1:2)=(x(1:2)aC"1(P23)),
AGD(3)=(Xx(3)a D1),

TFe")

+

xz="1a2(,

1Pa")

CCT=Co=1)

+

Fe®7)

Px(2)

NOME="P 1D

JPaks
JPang
1halg
JP2"y

+
+
+
+

P»"a]
Pe"g)
p‘vl7]
Pall)

COUMT=STI» I

1Px"7}

14

C<="12AND ¢ "7x0,,
CATc="121T1

+ "3Ix0,

+ (2*0.,

R{1)<="S2xTn(t) ¢+ "orr(6),,

w(2:h)c="Ka()128) ¢
S<="hrk(b6) + "720,,
CvP<="ux1n1

Te="72101 .,
1P*"7 4 Pe"k 4 Fe"1Q 4+ Ba"i)]
CrT="re1n]

Figure 5.3(b)

"6‘*(1:':).:

¢ Six(,.,

¢ Continued

CONP<="T2102 ¢ "re202 ¢+ "102002 + "11%102.,

—'[6_

"

TN ND NN -

E LD CEL Ll B 'NW HNBCGWWINWANWBANNVYUNNYNNYN VY= = ca e e
PATPUOVELE WA =D L TNT NE WY DO0TNITITUSIOCWYLY=T20T~NTNE NN =D

FLOILITY TARLE

LEVESTRW

- pf X

Ceralnd
[N PLN
Ce1
LrT

Se
rC

[I Wy

02
("1 1
11:2
cr1 {

C1 oY
e P8
CMb 1
£¢ 29
31 PR
Cl~vF 1

el:2
S1" tk
g 25
11
Q
" ‘
e
"3
"y
"5
"6
L] 7
“e
rQ
"10
"1

N Y I R T I I - .. Y o e

Figure 5.3(b) + Continued

[N PO T T

Rand V]

D -

- AN NDO O s =t o s et et e e et e et D e Y e) DY e D e e

DO et wh h st s e s eh s rd s e b e M\ 0t \J e b o e o e NN NN N e e e e w el e e e N P e

—
=

- AN N -

-1
-f
-6
-6
-hQ
-Q
-Q
-y
-G
-t
-F

1Y)
-G

-17
-y

-17
-k

-13

-13

-12
-13
-h
-13
-17
-]l
-13
-17
-17
-Q
-9
-Q
-Q
-Q
-Q
-
-Q
-9
=Q
-Q

15
15
12
17

o o

- DD LD D

(== R~ =]

P .0
U 0
370 530
477 S 4R
‘Stie S22
162 0
161 [V
°19 v
7R o
(7] 4]

¢ G

J h]
PAT 0
0 0

0 0

i) V]
Irna 436
15 0
327 0
u9y 504
379 0
33 0
Saa G2
343 0
n 4]
35 V]
357 n
0 v

\ Q
LX) G
394 0
413 0
yut 0
qua Q
469 0
513 0
852 0
S5AY [4]
572 0
599 0
0)

. 0 QO
755 n
763 0
731 0
741 0
69°F 708
722 729

I

0

0
534
Lau?
526
169
11¢
2ud

uuQ
3P0
327
Ste
334
141
hO&
3us

35¢%
162

373
49k
430
ug?
4s53
4716
519
S5R
57S
581
597

761
173
73
753
696
72v

~—

-93-

DIGITAL DFSIGN LANGUARE SIMULATOH

1¢
2
13
as
S
62

<FL>8,6
<IN>Sw/1

<RE>I/R/5,20
<TR>NQUTITR/ TP/

COUSONTTR/CONP ,HyS,CoToCNT,COUNT,UNF,CPT,CHT, CvP/,1/R/

<S1>

Y

1y

M
TIvVF W
6 0O
e N
4 10
6 ¢
& 03
10 10
12 10
14 (11
16 10
18 1¢
20 - 01%
22 10
U 10
er ()
PH 16
30 10
312 (01
14 10
16 L i)
A O
ah 0}
u 1C
ay i1 6
4n ()
LK 10
56 1
PYA O |
Y] 10
Sn 1C
LY] a1
34 10
Y4 16
LY’ 1
e 16
&M 16
76 0t
72 1¢
74 30
7~ 90

?

0630000
000101
100010
100010
100016
110009
1106001}
1100018
011000
011C00
011000
161100
161300
1013100
116116
110110
116110
11161}
11101
11101}
vicion
061010
apiete
001010
00160y
NOGIOY
G610y
jonnto
106010
10¢010
110601
116601
110004
011660
ay1ong
o1100¢0
161100
10100
101106

N

- s Mt b e b v M m s et s T D D DN D D e s s b wh bt b il D s s e b et b b b e D O

0G0
000
000
[0}
001
unt
¢10
c10
010
011
01}
G11
100
100
100
101
101
1¢1
110
110
0eo
0yc6
ouvy
ont
(XD}
c10
[RV
c10
0yl
(]
11
{100
109
6O
101
101
ot
110
110

- e P G P S Tl seh s i b b P Gub h h Gud pud D b Pmb G b b b md Pl G b o Teh G A b et A b D)

--20

C = OC = OO0 =D DO

>

>

D e D D= D

-0 D= OO RO C =S D DD DO 0O

-2ZQD
PaA - i B

D C Dt DD D D DO SO OO

> D= O

SO C O, 0O O0O~C9D

© DO 33O59DmMOSILOHSQ0

-“TO

VFRSIONN NM3FC 1979

-0
v TN

LI 23N Jod

CF PSR QUALITY

a8

S et DO T e DT DD D C T DD = O D DO D

-

L

O e ©

s R S BT A B S TR L N e R A A o

Dva DO DD DY DO D DD

~ .

D D . YD -

oD

DAT 4.24

Figure 5.3(c)
SR DDLSIM Input

000000

Figure 5.3(d)
DDLSIM Output

111011

1011006

O

-94-

Example 4: MULTIPLIER [35]

A MULTIPLIER unit that calculates the product of two 8-bit numbers
1s described in Figure 5.4(a). A listing of the deck used for simulating
the MULTIPLIER system along with the simulation report is given in Figure
5.4(b). The <FlLag> declaration in the simulation deck specifies that all
data-values specified without radix specification be interpreted in
‘decimal (Flag 4), and that output values be printed in binary (Flag 6).
The control unit MPY of the system waits idly in state Sl until it receives

a START command. A <INitialize> declaration is used to initialize the
START signal to 1 and start the MULTIPLIER unit. On receiving the START

command in state S1, the control unit proceeds to load the R register
with the multiplicand obtaiﬁed from the BUS and prcceeds to state S2. 1In
state S2 the B register is loaded with the multiplier obtained from the
BUS. A triggered READ operation with state terminal S1 as the triggering
signal is used to supply the BUS with the multiplicand. VDuring simulation,
whenever the control unit reaches state Sl, the BUS is supplied with a
new value of the multiplicand. The multiplier is supplied to the BUS in
a similar manner with another triggered READ operation using state
terminal S2 as the triggering signal. After loading the multiplicand and
‘the multiplier, the control unit proceeds to state S3. In state S3 the
multiplicand is added to the partial product, if the multiplier bit is a
logic 1. The control proceeds to state S4 in any case. The A and B
registers are shifted right together and the multiplication cycle counter
MCOUNT is incremented. If the count has been completed, status line

DONE 13 set to logic 1 and the control unit'teturns to its idle state Sl.
1f not all bits of the multiplier have been tested, the contr§1 unit

returns to state S3.

A triggering signal OUTTR defined using a <TRigger> declaration

is used in a triggered OUTPUT operation to control the printing of the

values for MPY, MCOUNT, A, and B. These values are printed in binary

on every trailing edge of the clock P signal. Another triggered OUTPUT

operation using state terminal Sl as the triggering signal controls the

printing of the vélues for the multiplicand, multiplier and the final

product. Note that these values are printed only once, i.e., when the

final product {s available, during a given multiplication operatibn. The

two output lists printed with different frequency make the simulation

report more informative and readable. Since no <CLock> declaration is

included in the simulation deck, default values are used for P, , and

0. Note that for a single simulation run a <SImulate> declaration is not

required. Since an EOF condition is expected no explicit <STop> decla-

ration {s included in the simulation deck to terminate the simulation.

OIGITAL DESIGN LANGUAGE TRANSLATOR

13
es
f ; 33
a3
S
63

8:
9
103
113
122
133
14
15:

16¢

Mg a
Oh:’:';sn’\t. rf‘.f‘)?{ 53

56 OF PUSE Qutlery

<CO>MULTIPLIERC

<SSY>MULTIPLIERS<T[>P,<RE>A(038),8(8),R(8),MCOUNT(3),

<RE>ZERO, ONE, ' ' '

<TE>START,BUS(8),00NE,

<TE>SUM(8),COUI(8),CSUM(3),CCOUT(3),

<I10>CIN=COUT(2:8) (ZEKD,

<10>CCIN=CCOUT(223) (OME.

<BO>COUT=R*A(1:8)+R*CIN+A(128)*CIN,SUMSRGA(138)aCIng
CCOUT=MCOUNT*CCIN,(SUFSMCOUNTICCIN,

<CAU>MPY(2):P3

<ST>31(0)tSTART tK<=BUS,)MCOUNIC=0, 2ERVC=0,0AE<=],=>S52.
52(1)3B<=BUS,A<=0,=>S3,

§3(2):)u(8)]1A<=CLUT(}1) [SuM,,=>S4d,

SU(3)sA(128) (B<=A(B(1:7),A(0)<=u,

MCUUNT<=CSUM,] #/MCUUNIJ DUNESL,=>515>S3000ee

<FL>3,4,5,6,48,

Figure 5.4(a) : DDLTRN Input

onIainy

OF POGR QUALITY

~a -
=t
AT S

-97-

DIGITAL DESIGN LANGUAGE SIMULATOK vERSIUN MSFC 1979

|] <FL>4,b

2 CIN>START/

3: <KE>S1/8US/6,10

4t <RE>S2/BUS/5,13

S: <TR>0UTIR/%tP/

62 SOUSOUT IR/MPY , MCOUNT R ,18/

7 S1/k,8US,A(1:8),0

B <51>

Figure 5.4(b) : DDLSIM Input

N

[

(o

) (4

Moy

P N

TIve Y
0 VU O00v
¢ 01 000
4 106 0vo
6 11 0uv
8 10 001
10 11 0Ov}
12 10 010
14 11 03V
16 10 011
18 11 011
20 10 100
22 11 100
24 10 vl
26 11 101
28 10 110
30 11 10
32 10 111
34 11 111
36 0v 000
38 01 000
40 10 0vo
42 11 000
44 106 001}
46 11 001
48 10 010
S0 11 010
s2 10 011
54 11 011
56 10 100
S8 11 1uo
60 10 101
62 11 101
64 10 110
66 1t 110
68 10 11
70 1t 111
= 72 00 000

END

A

00000u000
vo0000VUOY
0uLL0GOovVoo
0000001130
vooeduovtl
000000011
vo00000LOL
000000111
000000011
000000011
000000001
oooovo001
0006000000
000000000
00000000V
000000000
000000000
000000000
000000000
000000000
000000v00
000001010
000000101
000000101
000000010
000001100
000000110
000010000
000001000
000001000
000000100
000000100
000000010
000000010
000000001
00000vV0O0!
000000000

OF FILE REACHED ON

~98-
DIGITAL UESIGN LANGUAGE SIMULATUK

B

k

VEKSIUN MSFC 1979

sus

D ee o P

f

00000000 00000000 0v000000 0LO000GO wW0UOUO000

Uuo0V0000
yuoouatoy
0000ULUY
ovLouol1o
0u00uU0l0
10000001}
1000000
11000vV00
11000000
11100000
11100000
11110000
11110v00
01111000
01111000
vuitilloo
00111100
ouotitio
00011110
00001101
0vg01101
00000110
00v00110
10000011
1000001
0100000¢
01000001
00100000
00100000

00080000

00010000
00001000
00001000
00000100
00000100

10000010 00001010 000011Vl

INPUT

SIMULATION TERMINATED AT TIME =

00000110 00000101 0V000000 vOUI1110

73

Figure 5.4(b) : DDLSIM Output

00000000 10000010

1£>)

o

-99~

Example 5: MINICOMPUTER [52]

A description of a simple minicomputer is given in Figure 5.5. The
details of the minicomputer are given 1in the Appendix. Lines
2-4 1in Fighre 5.5 describe the registers. Lines 5 declares a memory bus.
Line 6 declares a START latch. Line 7 declares a four phase clock. Lines
8-11 declare a Increment (by 1) circuit. Lines 12-16 declare a 12 bit
adder. Lines 18-19 are CPU initialization. Lines 20-23 show the FETCH
cycle. Lines 24~25 show the DEFER state for Indirect Address calculation.
Lines 26-27 show the OPCODE decoding. Lines 28-43 show the microperations

for each instruction.

)

GLIAL DESTGw LAMNGUALE TWAMSLAIUK moe- - 7

1e <SY>M[nl:

e '<rt>vnn(o:7).~bk(u:1lJ.PL(O:I),ACC(uzll), X(o:lO--
3 SRE>IN(USLII)SUP(S) LIRIYEGURCE) o0,

4 o Edm(2S5h312), |
5: <le>~vnuS(ie),
- <La>Stawi,

/3 P(u), | i

83 CUPOCNIUF(N)2ay

"y <TE>x(B),C(H),
10¢ <jortL=(r(éesr) tivy),
11 <€IEdCza*Cl,LiilurzalL, . :
* Figure 5.5(a): .
te: ErhuBlle)ax,vs Minicomputer
133 CSIE>Xx(12),008¢)pY (1) o i(l1e). Description
lag <lusdtlv=tuLlwesiceyton).,
§os <CBUdCULTSXRYexxCIreyalfn,
1e: aLlisxaYalln,,.
172 CAUSCPUCU) P (1) +r(2)+F(3)+P(u):
<Sl>1~(0):SlAhT:ALC<-u,»o~<-PL,~nn<-o,;<-o,
16 FUL <> | ,=>FF,
eus Ft(l):th:lPlI)JNAN<-PC.'JPk8)lrC<-Lulengb.
el: rous=~(mhh),mnk<-«uus.alf(jl)Ln<-Nnh.'
ce? lPlaJJJuﬁ(l)tuP(éituP(AJJnu~<-u'->tw;
¢3: VInEV) =opbbimdtr,.,.
LN vtr(2):)P(l)J*Ak<-ALh.,JP(d)J~nua=h(~Ak).MnN<-wvuS.'
5 JE(3)Iabr<=rEen(Asll)os)P(d))=>Er, .,
€6 EX(3)3ILPMUDS=>ANLA IO =>aN82L8=>]150d L fm>rCa
el BUCS=>YShaL3=>dmbaps=d>RE], .
2o ANUCU) TP 1) I X<=ACLL)P () INaRSmagh,, T F($)]Mnusze (han),
.29 _ MHRCoMEUS,,

.o & e, B s nlP I W sV T,

e AL TS LR
Om';u.v.-.. el e VT

1ol OF PGCR GUALETY

lP(a)llUP(5))ACC<-NUR'13ACC<-ADDSMBR1XS.p->fE..
152(5)21P (1)) MAR<=AGN,, |
lP(e)lvaS:r(MAki,Nsn<-~eus.'
JP(3))MERC=ADUSMER, 1012,
JP(U)IMBUSINER,) MM(VAR) K=NMBUS,] T(+/MBK))
PC<=CATUBIPCIer=>Ft,.
DCA(6):IP(1))Ivpr<=ACC,,)P(2))MARC=ADN,,
JP(3))ALL<=0,MBUSSMhN,M(MAK)<=MEUS,,IP(d))=>FE,,
JSH(T7)3)P(1))rERC=CLU(PCos)P(2)INMARK=0.,
1K (3))NBUSIMER MM BH) <=MBUS 4/
JP(4)}FC<=ACh,y=>Ft,
RET(B)s)P(1)IMARK=(,,)P(2)i#nUSSNV(MAR)), YdRC=NUS.,
JP(u))PC<=rpr(4311)s=>FE,.
JVE(9) I F(1))PC=ADN,pJFP(4)]}=>FEacasns

<FL>3,4,5,0,8,

Figure 5.5(a) : (Continued)

.- o " . - - SR S. WP R, RV A e

6. CONCLUSIONS
; DDLTRN and DDLSIM programs are currently being tested on SEL-32
Computer System. The output of the DDLTRN is suitable for logic genera-
‘tion. The output at PASS 6 and the Facility table are now being analyzed
;to derive the algorithms for logic synthesis. With the logic synthesis

; programs complete, CADAT will be a true automatic design system.

-102-

Wl W B - SV V.CW Asmm w

APPENDIX

This is a preprint of the article to be published in the

December 1979 issue of the "Proceedings of IEEE."

-103-

s d

~-104-

OHIGINAL PAGE 14
OF POOR QUALITY

Computer Hardware Description
Languages—A Tutorial

SAJJAN G. SHIVA. mEmpER. 1ELE

Abstract-Just 33 soltware desegners use high bevel languages (1ILL}
10 express the sigonthms in terms of language statements, digital hard.
ware ¥ uee k é » ! (HDL) 10 4
the sysiem they are desgring. Although HDL's were ongunated a1 a
medium of precue yet concue denplion of dptal Bardwae, they
have (ound s vanety of sp ach as user
teaching logic Gesgn. sChing 83 A IApul medium for an aviomaus de-
Bgn system, ¢tc. This tutonal paper mtrodwces HDL's as waeful 100ls
for hardware deugn and 4 The capabi and himits-
tons of HDL's are discussed, siong with the gusdelines 10 select 3n
HOL The durectums for fuiwre otk and au exiensive Sibhiography
are provided.

L InTroODUCTION

NY dipstal system can be descnbed 1n the Mslowing ux
levels of complex:ty [1]-{4):

§) sgorithmic level which specifies only the algonthm used
by the hardware for the problem solution.

2} Processor memory switch (PMS) Jevel which describes
the system in terms of processing umits. memory com-
‘ponents, penipherals, and switching networks:

3) nstructionat level (programmung leve!) where the instruce
tions and thew interpretation rules are specified.

4) sepster transfes level where the sepisters ate system ele-
ments and the data trarsfer betweer these repsters are
specified according to some rule.

£) switching circut level where the system structure con-
ss1s of an interconnection of gates and fhip-Nlops and the
oehavior 13 given by a set of Boolean equations,

6) circuit level where the gates and Mip-fiops are replaced
by the circuit elesnents such as transstors, diodes, re-
sistors, etc.

Lope diagr and Bool q have been used ss mednn
of hardware description. The complexity of these media in-
creases rapidly as the system complexsty increases and they are
not convenient to suppress the details and stil! provide ac-
curate descniplions as we move into (he Ligher levels from the
switching curcuit level Hardware description lanpusges
(HDL’s) evolved a3 a solution. Although the use of computer
oriented languages to describe digital system design can be
traced back to Shannon’s work on switching circuits 1n 1939,
Aiken's work on swilching theory 1a the 1940's. the logie
disgrams at M.1.T. and NBS 1n the late 1940's and the flip-flop
equalions in the 1950's [S], Iverson's wosk (6] on & formal
HDL probably iitiated the contemporary interest in this area
of research. An HDL is similat to any other high-evel pro-
pamming language (HLL) and provides » mean, of

Monuscript recerved Mav 33, 1979 revined Aupuul 26, 1979, This
wort wes supported by the Nalivas: Aeronsutscs and Space Adminns-
S7atvon wnder Grants NSG-8057 and NASS-33096. The submuson of
thn papet was encouraged after review of sn advance pronossl.

The author n with the D of € Scmace, U y
of Alsbome ia Huntaville, Huntoville, AL 33807,

1} precise yet concise descniption of the system.

2) convenment documentation 10 gencrate users manuals,
service manuals, e13..)

3) input of the system descnption into s computer for
stmuiation snd design venfication at vanous levels of
detay;

4) software generation at the preprototype level. thus bndg-
ing the hardware'software development ume gap,

$) wncorporation of design changes and corresponding
changes 1n documentation. efliaently.

63 desigaer/user (teacher,studer.t) communcation nterface
2t the desued Jevel of complexsty.

HDL's are capable of d bing the parallel ve
nature, 3nd timung issues in the hardware more naturaily. and
thus differ from the pure sequential nature of a general HLL.
(Some exizting HLL's provide concurrency or simulated con-
currency constructs in thewr language elements, for example,
PFOR on PEPE [7).)- An HDL can be classified as a pro-
cedural or 8 nonprocedural language (4] Each statement 1n
8 nonprocedusal HDL descnption wouls contain a labe! which
descnbes the condition under which the activities descnbed by
the statement are to be performed. Thus the sequential order-
ing of the statements does not impose the ordening of the ac-
trvides. In a procedural HDL descnption, the activities are
performed following the sequential ordenng of the statcments.

HDL's are designed 1o describe both the structural and be-
havioral charactenstics of 2 digatal system The fundamestal
properes of hardware systems and the an of hardware design
process dictate the essentie} festuses of an HDL. Foran HDL
to be a useful tool, it has to possess the following propertiess

1) 1t has to have a natural way of desenbing the parabielism,

' nonresursive pature, and ©iming issues an digatal hardware,

2} The structure and control parts of the hardware should

be easily descnbed and preferably the descniption of the two~

parts be separated (of such 8 dy enhances the descnption)
30 that 3 user interested 19 the behavior of the system need not
concers humself with the structure of the system. Thus division
provides the flexibility to use hasdware, software, of finmware
for the control part, vhichever 15 economical. X

3) The language should serve as a medium at all levels of
system description. .

4) The design changes should easily be incorporated into the
description and corresponding translation should be done
preferably without s complete retranslation. This feature wil)
be usefut for the i ve env (At t trans-
lates the HDL description into an intermediate code {rom
which the sunulator and other programs can be driven (see
Fig. 1) The intermediate code couid be a set of Boolean and
registegiransfer equations {31] or s computer executable code
like polish stnngs {23].)

£) The language should be casy to Jearn and remember, 10
sccommodate the softwareshy hardware designer, aithough
the hardware enpineer cannot neglect the software aspects any-
more, due to the impact of microprocessors. The design sys-
tem should be portable, thus necesmitating the t] and
simulstors of HDL be wntten in hagher level languages.

6) Two approsches to system design are often proposed:
the bottom-up spproach where the elementary componesnts
are combdined to form more complex ones and the top-down
spproach, where the system is decomposed into a collection of
subsystems until ths el ary ponents gre hed. In
practice, the designer may choose a combination of the two
approaches. The structural detail at any design leve! vanes
from designer to desipner. The HDL should allow the denigner
to control the amount of detail during cach design phase.

7) The description of the jarge and medium scale integrated
circuit (LS] and MS!) modules as system components should
be straightforward, so should be the inclusion of newer mod-
ules. If the system is partitioned by the designer o sccommo-
date standard modules, this partiiorung should be retained by
the HDL transistors and smulators,

- = e e .-

£

-105-

ORIGINAL PAGE 19
OF POOR QUALITY.

Several HDL's have been reported 19]-[76) since Jverson's
proposal of an 11DL. Translators to convert the descniption
Lo an intermediate executabie code and simulators to exe-

All the variables in a CDL descnption are plobal. The sysiem
description car be only at one level, and there 1s no subroutine
facihty in CDL, thus making it unsutable for descnbing hard-
ware in a modular fashion. 1t is not possible to include special

cute thus code have been wntten for some of these
No singie HDL has met all the sbove charactenstics. The
tendency has been to invent s new MDL to sunt 3 parucular
design environment, basically due to the difficulty 1n trans.
porting the translators and simulators on 1o the new comput-
ing systems and extending them 1o accommodate the require-
ments of the new design environment. Table | {B) lists the
implementation detads of several HDL's reported. This Lst is
by no means exhaustive

Section 1] discusses the utility of HDL's in system design. A
bnief di of one popular HDL, the p design
language, is given 1n Section (1l along with two example
descniptions. Two case studies are presented: one {o select an
HDL far an integrated circuit desipn environment (Section 1V)
and the other 1o show the utibty of HDL% in concurrent
hardware-sofiware development (Section V). Future work re-
qQuired and current sesearch topics are discussed in Section V.

- {I. HDL's 1N SysTem DEStGN |

Fig. 1 shows the utility of an HDL in a digstal system design
environment. The designer uses the HDL to describe his de-
sign. This description is translated 1nto 8 computer executable
data base, which serves ss the source for vanous other oper-
ations. The design can Le refined by simulating at the descrip-
tion level (Loop 1), before proceeding to a more detailed imu-
lation {Loop 2) at the logic level. The data-base also serves as
a source for Jogie diagram generation, microcode and test set
generation. The physical construction of the system follows
the smulation and refinement at the logic level.

Teanslation and mulation of HDL% have been well defined
[91-176]. Physical construction aspects have also been auto-
mated and are widely used in industry {77]. Test generation
78] and hardware compila®on [12}. [39) need further in-
vestigation. The vanety of design methodologies, the artistic
nature of the design process. and the ambiguity posed by the
variety of components avaiiable make the hardware compila-
tion 8 tedious task.

111, CoMPUTER DESIGN LANGUAGE

A hardware programming language (AHPL), computer de-
sign language (CDL), dipital systems design language (DDL)
and the instruction set processor (1SP) have been the most
popular languages, partly due to their early introduction as
general purpose HDL%. These languages were developed in
university environments and are used in teaching digital lopc
design. New features are being added to these languages to
make them more versatile, Well-tested translators and simu-
lators are available for these languages (see Table [for refer-
ences). Although several HDL have been designed for an tn-
dustrial use [59), (64]. the design process bewng propnetary
in nature, the use of HDL® 1s not widely reported [79]).

This section provides & brief introduction to CDL. Example
descriptions in CDL are provided. CDL was chosen over the
others due to its simple structure and the author's familianty
with the language.

CDL was proposed originally by Chu [20]-122]. A trans-
lator and simulator were wntten for a subset of this language
1231, Several modificstions were made to this translator and
simulator {26)~[29].

CDL describes the structural and functions! parts of a digital
system. The structural components like memory, registers,
clocks, switches, etc. are declared explicitly at the beginning
of the descnption. The functional behavior of the element it
described by the commonly used operstors and uses deflined
operators. Valid deta paths are declared smplicitly whenever
there is 2 data transfer. Both paraticl and sequential operations
are allowed. Synchronous operations require a conditional
test for an appropriate nignal. The language 13 eaty to under-
stand and is highly readable.

hardware P like integrated circuits {1C's)n a descnp-
tion. However, 1ts simplicity of structure and its portability
resulting from the FORTRAN impiementation. have made
CDL a popular language. The description of CDL svntax and
semantics as accepted by the present version of translator and
sumulstor [29] 1s given below, Table JI shows the standard
operators in CDL. Facilities are declared at the beginming of
the svstem descnption with declaration siatements of the
format

DEVICE. list

where DEVICE can be 3 REGISTER, SUbxLSISTER, MEM-
ORY, DECODER. SWITCH, TERMINAL, BUS. BLOCK, and
CLOCK. Some example declarstions are shown below.
REGISTER.A(0- 2))R.l'"6-l)
SUBREGISTER. FIOP)=£(3-1), FIOR)-F(6-4)
MEMORY, M(R)=M{0-77.0-10) Memon with 78, 11 bit
words, Address repster

4 bits of G are decoded
intoly....,Lys.

DECODER, L(0-15)=G(2-5)

CLOCK. F(2) A clock with 3 phases

. P(O), PQLY, P(2)e

SWITCH. STRT (OFF, ON) A switch with 2 posi-

tions. A maximum of
10 positions allowed.

TERMINAL, 5=4", C=4+B1,
Di=Aeg

BUS, Z(0~7) A8lne BUSYZ

BLOCK, SERCOM (A=4(1)' -A(5-2)) SERCOM is an al-
ternste name for the
operations within the
parentheses.

A DO,’SéRCOM statement is used io invoke the set of state-
ments dzclared by BLOCK, SERCOM.
An unconditionai microstatement has the form

Variable = Expression
Example: A=, B(13-5)=C*D + £(2,0-2)
A randuu;nsl microstatemeni has the forms
IF texpression) THEN (microstatements)
1F (exp) THEN (mic)
ELSE (microstatements)

Examples: IF (A-£Q-8) THEN (R=0)
IF (C-NE'D) THEN (R=0, Z=1) ELSE (R=])

Conditional ststements may be nested to any number.
Aladeled statement has the format

[label/microstatements
where
label = expressioneciock
Example: /K(0)sF/A=B B=A

Special operetors can be established by the user through s
separate subprogram. The format 1s

OPERATOR; Parameters-Name
Jimicrostatements, RETUR!
END :

r m it

e

e B

7

-106-

A count operatov 18 delined delow.

SOPERATOR, X11-4)COUNT-
JF (X)) EQOTHEN(A -3 1)
ELSE AF (M FQO THEN £V(1- 2)-1-01
ELSE (IF(Y (I EQOTHEN(V(10-1-0-0)
ELSE (X¢11-0-0-0.RETURN

END
Severa] commonty used operations (Tabie 1§) are ancluded 1n
the curreat COL software

Examples As4 CNTLP, O 4'ADD B

The CDL TRANSLATOR periorns o syntan chech of the
descnption and trangates 1t 1nto 2 s3t of tadles and a polsh
stnng progam

The COL SIMULATOR exezutes the output of the trans.
fator and can sccept simulation parameters through the fol-
jowirg command set-

LOAD Used 1o 1mstialize regssten ané memory.

orTn'T Prov.des » hesadezima: pnntout of the specs
fied repuster and memory contents and swilch
portions at the degired ciok of label

SWITCH Lasbies setung seiich positions

RESEY Resets the eatuer settungs of the sumulation
panametenn

SIMULATE Proviaes the start and stop conditions for
simulstior

CDL can de used 1o descnbe sumpie to vers complea digital
systems Two exampic descnplions are provided below to
wustzate thus feature.

Exgmple | 4 Senal Tue 1 Compiemerier

A ciruit 1o repisce the contents of a 6-b:t reguster K by ats
two's complement will be descnidhed The complementation is
done by the wed-bnown ¢cQpy complement aigonthm istarting
from the leas: ugruficant ®ut cf &, copy the bits as the)y are
1} the fust nonzero bit. complement the bits after the fint
ronzero bit, (L. the most ugruficant end of the repuier)
Fig 2 shows the curcuntl and ats CDL descnption. A 3-bit
regster C 15 used 1o count the number of sufts Flipflop §
1ndicates the COPY (5205 and COMPLEMENT (53)) states A
switch SW s used o stant the compiementation process States
ments 2.3, and & describe these factinies. The control cucutry
includes 2 unglt phase Slonk F and a 10t state repster T
(Statements 6 and S} Fig 3 shows the state duagram for the
control curcuitry. The controlier wans in 720 siate as long as
the SW s off Wher SW i on, the C ané § are cleared, and 2
state change occurs (Statement 81 Asltong ss C <l & the shift
sanal 8 on. Statement 9 descnbes the pracess of copying or
complementing sccording to S=C or 1 Note that the cucula-
tion of the repster K 15 descnined using the concatenatior
operstor. When the count reaches $ the controliet goes to
T=0 state. thus complet:ng the complementation

CDL. being a nonprocedural language, evaluates labels and
performs the sctivities corresponding to the active label Each
such evaluation 1 a label cycle During tmulation, the values of
R, C.S.3nd T are requested 1o be OUTPUT #t each label cycle
(Statement 11). The switch s turned onan cycle i (Statement
121 R 1 loaded with (5)y (subscapts indicate the base of the
number, the number 15 decamal 1f not subscr:pted) mitally
(Statements 13.14) and umulation 13 requested for 20 fabel
cycles with 6 label cycie ¢valuation repetitions to seeh an ac-
tive label before terminating Fig 4 showys the imulation re-
sults. The contents of K (34, a1 the end of the label cycle 6
sre the two's complement of the orgiral contents (03 1y, thus
indicating the vahidity of the design

The clock and labe: cycles are RESET and R was loaded
with (21)y. Fig. 4(2) shows the conesponding umulateon
results

The CDL descniption tn Fig O serves as 3 compast snd pre.
cise descnplion of the structure snd behavior of the hardware

ORIGINAL PAGE 19
OF POOR QUALITY

Exemple 2 A Mimicomputer

Fig $ shove (he structural detads. instruction set, and the
CDL descnption of @ muncomputer |21 The minkemputer
has a 286 wotd 12:bit memory. with an 8-bit memon address
register (MAR) and o 13-t memon butfer regates (MBR)
There 1s an 3.0t program counter (PC) and a1 accumulator
(ACC) of 12 bits The anthimens Top: unt (ALU) receves
the operands from MBR and 3 12-tat X register, and puts the
tesults on to the 1201t BUS The instrucuions corust of 8
3-bi: operation code, 8 indisect address flag bit, anl B aodress
bits The regusieraet description is provided by the Statements
1=3 of Fig Sd) The BLS ts not explicatly descnbed to retun
the high level descnption nature Fig Sicr shows the details
of the instruction set Statement & ar. Fig S(dr decnbes 8
START switch, & RUN gwitch 10 indizate the RUS STOP
state, and & three state switch for indscating anstruction fetch
(F), indarect address compulation (Defer, D1 and Execution
(F) phases Statements § and 6 provide the :natructinn decod-
ing ¢etals There 1 2 4-phase clock [iStatement ¥ which
sctivates the sy achionous control unct Fach mavwor ¢ycle cone
suts of 4 munor ¢veles The comments un the CDL decriplion
1dentids the Feth oycle, Defer cycle, and the Execution orcle
for eazh imiruction Fig $(d) shows a progrem 1c add the
four numben 1n memory locations 0-3 and place the sum in
jocaton 7 The progam will be 1ocated in memory locations
10-16 Location & 8 irutialized 10 =) and incremented by |
each tune through the loop. and tested for zere to termunate
the summing operation The dats values are scceswed by an -
&re:t refrrence ¢TADs €1 10 location 6 which waniremented
from O by | cach t:me through the loop Fig. {(dishewn the
program n aswembly. tunary, and ceama! forms Fig. Sich
shows the memary map rust before the executior o!f Lhe pro-
gam TR memon map s umulsted by the LOAD commane
for the CDL simuistor 1Statements 43+45)n Fig St The
program counter i3 set to 10 1Statement 460, the switih 18
turned ON (Statement 423 and the umulstor 1s reguested for
200 ladel cyzier (Statemalk 47), cutputlting several repster
contents (Statement 411 3% esch lade cvcle. The nmubator re-
sults are fumuar to the two's complementer example and are
not shown for the sake of ttevity It B evident that the CDL
detsnption of the mumcomputes 13 concise and mote precise
than any r.2tural language descnpuion could be.

IV. Sniectioy or HDL

Due 10 the large number of HDL's pzoposed. the selection of
an HDL for s particwla: deugn eavironment besomes a non-
tnvial task Although the structure of the language. the oper-
ators svadatic, the capsb:lities of the lanpuage 1o desznbde the
design a2 logcal manner are important conudentions. the
implementation nsues seers 1o overnde them One such selece
tior process i descnded here along waith the system Jewnption

Fig & shows the detads o° the computer a.ded desgn and
teat (CADAT, svetem of the NASA Marshall Space Fight
Center {50] The dewgnet inputs the detass of the IC to
CADAT as 2 set of star2ard cells and their iateriornesuons.
The standard cell selection ts done manually from 2 standard
cell Lbrany. This descnptron s at the logic disgram leve! De-
1aded Jopic umulation and refinements are carn=d cut on the
design The final design 15 10put to the aulomatic teatwector
generation and placemert and routing programs. The IC mash
patiern gereration it done interactively and 8 mask aralyus
and performance uimalation are done before fabncating the
mask The Lt two steps in the IC fabrication are the wafer
procesung and the final testing

Al present. the generahion of lopc diagrams and chooning
the standard cells from the cell Lbrary for the deupn are done
manually Integration of » high-evel design language would
help the deugner 10 nmulate hus des:gn snd refline it st 2 hugh
leve! before entening hus design into the current svstem This
requites a0 HDL with 2 smulator and lopc sy nthesger (hard-
ware compiler) that graerates the logic net anput required by

i)

-167-

OF FUTX

odologses and nonportadbie HDL sofiware. The problem of
nonunfurm notauons and structures will be reduced by the
wtroduction of a consensus larguage (CONLANY (M, [52].
The folowing guidelines are used in arvving st CONLAN
1) CONLAN must support design, descnption. snd sumula-
tion 0 at Jeast the foliowing cizsses of syatems gate netword,
restt PEtwotks, PLOCESSON. MEMONES, PLOCEISON SYSiems.
) Any sysiem may be dusplaved vis esther
8} 2 petworh structure Jescniplion or
©) a hebavior description
31 CONLAN 10 service
a) computer archutects and logac designens for purpom of
trade-cff enplotation and optimization, design venfication, and
desugn documentation
b) systems, micto-. and application programmen
€) electronics production engineers.
4) muntenance engineen
4) CONLAN sy nta) and semantics must support
8} welidelined descnpuions
b) machine parung. interPietation, and umulation with
errot detection
¢} comprehenuon of complex gysiem structure and
function
4) dimmion of desgn efforts
€) control over the level of abstraction st whach b~
systems are dexcnbed
) umulation control
$) CONLAN 18 to be evalusted in tesms of benchmarks such
a8 st3ndard funclion declantions, ume Operator declarstions,
1C descnptions Lundluding MICTOPIOCEEsOrt), and desgn descnp-
tons (including & muluprocessor system)

The dasic aum of CONLAN s 10 pronde s venatde uniform
base lanpuage with the capsblities of sugmenting the dasc
fyntax with the specific constructs with ther own semantic
nterpretation, as tequired by the envirenment.

The efficiency of the PIOL soliware depends on its efficrent
use of the hott computer on which it was developed. Hence,
the software tends 10 be mactune dependent, maaang st [aurly
ronportabie, Although the effiziency suffers | 28] of the soft.
wite ¥ made poruble, a well-documented software package
(along with a good discumion of the sigonthms used) s 8
necesury. Several other sreas of investgations could be
1entified

Procedures 1o analyze the HDL descnptions of diptal sys-
tems {4] sre to be developed in ordet 1o svoid mulation of
at Jeast mumimite nmulation costs HDL/s art 10 be desgned
tmproved 1o accommodsate easier descmiption of LSI cucuiry
and mucroprocessors |83]. {84]. Switabiity of HDL a
fanguages for microprocessor software development [85] and
srchitecture companson needs tnveshigation ’

Companson studies of HLL and 11DL with respect to ease of
progammang. ease of understanding, descnplion length, sumy-
latiof cost and efficiency are reqaed

Logic synthens from the HUL cescnplion i3 not well Je-
weloped (121, £391,1791.1586) Decomposition of the d:pital
sysiem to accommodate the LS! and MS1 components and re-
tatnarg thus decomputiion till the final stage 1n the devgn are
of paramount importance The atulity of the procedures to
search through a Lbrary of svadable 1Cs and the capabilities
to accommodate newer modules 13 nccessary.

The avgdabiity of inexpensive processors has incressed the
populanty of dutnbuted processing sysiems. The HOU/s have
traditionally been demgned {or 8 single processor envionment
and lack the facilities 10 desinbe the interprocessor commusn-
cation Such ahiity will make the HDL more attzactive [87)

The acceptatlity of an HDL for a particular enviroament
depends on its capabilitics 10 dccommodate the operations
the environment Since the majonty of HDL’ are designed
fot s patticulsr envnironmen?, they tend 1. te less sustabie for
othet envzonments. For exampic, 8 HDL developed with »
gosl of efficaent highlevel description and sunulation would
hardly suit a Jogse synthess envuonment. A ciunificatirs of
svadable HDU/s sccotding 1o theu underlying mndsiy jof be-
havior is peeded.

VII Cowcrusions
The capabibtms of HUL s were discussed A bried introduc.
on tv one such language (CDL) along with example descnp-
tons mere pven. Case studies for selection of an HDL and the

use of HOL 1o hasdware software development were pven,’

The sreas for furthes investigations were ideatifsed.

ACKNOWLL DGUINT

The suthor wishes to thank } M Gould and P. Hua for help-
ful discussions dunng the preparation of this paper. Michigan
Technological Unwvernaty Computer Center for providing the
CDL Software. ané C Chandler for the sssstance 1n prepars-
Lon of the manuscnpt

RLFERINCES

References 111-13) ate coliecuons of papers References
1310, 177], and {83} 110 provide extensive bidbogrphies.

Prow Int Svmp CHDL's Applecution .. §9°4

Computte, vo! 3. 0a 13 (Special Imwr on CHOLY). Lec 1994,

MR Betbaces © A compermn of repuiet transler languages for
Srutibing computecs 048 Syt syt " JELE Trons Comput ,
ot €36 £p I3T-380 het e

51 1 S meed “Svemboin sratheses nf ggnat computers ~ o Prax
Ass Compus Macn . pp w0-04 1847

[6] R L Irerson, A commun lergusgs lr Rardwars, salte sre. and
:::l;ulnu.' w Proc Fel. Jomt Comput Conf . ¢p 121-12¢

19 K 1 Tawber. La s Scase Covpurer Arthitecturne Pochesie
Yok N Haveer 1o cL 3 pp 3)5e8)

181 S C Sheen. “Marfmare desgh langusges -3 Bithography ™ Asn
:::; AL M Lo, Siaivs Rep NSC4037, Rorenst. AL, Mar

F0) L M Badner snd) M Traces. *An pvaihionow cucwi desgs
L ¢ (ACDLL" IZEL Treas Comput vo! C 13 pp 841

nt

(2]

:ll Compunr.vol 16 34 & {HDL ApPphtatsons) Jume 19°7
4)

976,50 1976

110] F 1 HUl and G R Prenon, Dhngitas Systrmg Merdmery Ov-
goniotion and Depgn New York Wies 168

S130 ¢+ T Mo "tpdsiing AHPL." w8 Proc Int Svemp CNDL 1§ Apphe
anonr Fp 3330 0

(120 R T Seanson 2 Navede and t | Hdl “An AHYL compuer/
:-n;.-lu;-:.:wo-.'mhm Siam Tesas Con! Comput Svst py.

1131 7. D Frmdmos. "ALTNT A peugrem 1o compie derges from
®re cOmpute e Fenr 4 ompe
et g Fornr 4au IEEL C 1 Conf, pp

{141 1 D tresmangas $ C Yong. “Methods wmd 30 sulvmetic
W Genpn gemernior (ALLRT)™ /EEL Troms Compat , vel
Cld.cp 3v3-613.1ur, 1948

11S1) A Derrnger. “Tore desonpiion. mmulstion. sad sutomatse

. of Jgug proctua.” F'a 0 dmeerty-

ll":; Cormegor Mot en Lan , Yhibuigh, FA. ALIT00 (64, Moy

1
F181 ~—. “A langusgr tor 1he deacrepison of 6igiiat Sompuist proces.
ws.” n Proc [aggen Auie Brsanop TP 185138 (3]
1w & 1 and % K Criwn, "AFLeDS A Mprdmare grutipteon
1engusge lor Sesgn ond Lmuielovn ~ 10 Prne [at Con? CHDL S
1 l"::x;no:u e 43.57 vy
O £1 o . Cumpeler i0¢d srs1emn dasgn.” a Prot
Foll Jouns Comput Conf . pp 307-294 1970
110] 8o Guvor. Lea. Mermot. ond Yarpa. “CASSANURE and the
ComPuter saded JoRKl sriems gergh.” TA ¢ Jo. Proc IFIP
Congr , 19%}
1261 Y Che “An ALGOL lae compuier esgn loaguags.” 1 Com.
- ~un :_n (M'-vo'tl.rh Svd 3PP 607-018 . (at 1%e8
H . Compuser 2eNSehir enS Myr renm nsn .
WoOS Chtls. NI Prenmtae Hall Jo13 i o feee
1331 =, “Deugr. sutomatca By the compurer droign Lrguspe.”
tl'-:;u-l Computet Scwnce Centor. Toech Jep 49-96. Mor.

L1231 € % Messtesyr “Teansator snd umplator for INe compuier de-

GRSl smuisteon Pogram wemon 1 Compeitr Scwnce
Comtar Linrn Maryland Tech Rep o3-43, June 1988

{34) Y Chu. A migneracder longvage fur Sesctiting Mictomo-
[tomp 1. Comp Scunce Cemier. Uan Motriond,
Tech. Rep 83-78. Sepe 1048

128] —. “Structwse of (DL programs " Pep Computer Sownce,
Lo Muryiond. Tech. Moo 74.43, Mov (9°4

1261 } R Hestn 8 UL (Cateati, web. "CDL A oo for
Mvdasre and soltmare deveivpment.” o Proc Innge Asio
Conf.gp 688-449 June 1917

1270 1T 7 (b “Muliprotenng smuistud of fLe satet 2080 anéd
152 POP S wung CUL," Mosier s torss. Aubuie Lnin.. Audburs.
AlL.Mar. 19%¢ .

(200 L K St and 1 . Monbe, A pritn paret o8 Caieasons 1o
.ITO (‘.217.’ s Proc Inr Conf CHDL s Appixenions, P 10)-

-108-

the CADAT System The breadbosrd umpiementiion and
testing ©f 2 compien targe scale infeprated circwit (LSIC) e
BEN 48 Aul feautic wACe 11 LaNDRUt he pruperiv dreadtderded
with any thing bat tne LSIC staeit Waip an HDL this bread
boarding proves cen be substituted wifh 3 computer uumuls:
Lon of the LSIU dewgn. tRUs TuniRuing The Jev.gn Chorpes
and. Bence, the « w2 o made (ahnatiun and e alcr Pruesung

The foliuow.ng live criens were used oy seiecting a suitabie
npuage (A1}

1) actunty

Se level of e g tior

I softwmare avaderisy and portatialy
41 tase of bopy peneration

$) modulanty

14 Actniry 1t s essential 10 thoose 2 languzge which 1 te-
1ng used elsewhere 10 receve the penelils of the eatens-ons ¢
the larguage Motz of th: HDL's preposed de not have 2
translator and a umuletor thet 1s up-1o-date ansd fa.ny versetac.
though the Larguage strelt 1 veratue The pracess of 1mpros:
1rg the HDL so:tware 893 capabitities wouid B¢ aisec by the
ve interest of the othe! Prouds i I languags

& levet of Desr proo- Toe seiected HOL showsd sciem:
Mmodate 8 desmniftion at the repaict irsnsfer Jevel and of Seive
1o facilitate the iop. generatior. A higher w.anregster trans.
feg lese! SescTiptizn ma) not be needed 1or the {C devpr er-
vsonment of CADAT

X Soctman Avg gmaty gad Fortatish The Zeseiopment
of 3 HDL & incompicte without a uimulator and & tranvator
eritlen {07 1t wnze Thay softwage drvelopment Process refines
the langusge siructure The softeare snouid be portadie 1o
commodate (e geners. portabuaty of the CADAT raftwire

€ base 0! Lopie Genergtion Any HUL transator onerted
towards providing intormation 107 a aumulator collects and re-
antangey tht Combnatione: INgic and regaies anslen Trs
iermediste trannsted ovipul should be amenadie to ivgs
stnerstion

Moduiarite The HDlasewcnption shouid be modular enough
te reflect the modularf™ of the bardwsre, 10 enable caner
untderstanding and modular desigh venfication

A companson of the fovt prominent HDL's wuih respect 1o
the above cntena s shown :n Tadle 111 ISE. although verss-
tic. does not dend 1isel! 1o the logic generation level very well
CDL s sustable for mictoprogram: generation The noamodular
description leature of CDL and the difficulty ua uung the
polsh stnng outpul of the L1aralator to generate it dugram
leve: descriptior mabe 1t unsuitadle for the CADAT svstem
envwonment AHPL and DDL werc the strong contenden
Both have & fawty ponabie software pazkage and are suitabie
for the lesel of desanption needed for CADAT The moda-
lanty © brought sbout by the sudroutuung feature in AMPL.
whetens the s structute of DDL 13 closes 1o the hardware
modulanty. From a traditional hardware designer ¢ pownt of
view, programm:ng an either language 1 €qusliv Juflnult Al
though 8 hardware compuder 1s avalable tor ANFL 112
SNOBOL impiementation (a2 newer imriementalion nsues
for CADAT. stuch it predommnantiv in FORTRAN The DDL
tzansistor prondes 3 sel of booiean eguations and repster
transler exprewmons which car be used for hardeare com-
piation [39]. (79] though not very casly The block struc-
ture and the software of DDL msde it 3 belier chowe over
AHPL for the CADAT system

e e oot

LA EAE R B XY W L -dl (o
. ‘e Vre L e e

- l‘ * ' ;;‘I!.;‘l.Y

Sote thet the selection of the HDL b onented more 10w ards
the irfaementation usues. rather than a tigorous snaivas of
N Capaduditres and the Jharacterstucs of the HDL suck o the
structure of the Jaaguage. opetaton sraisbie, catc 0 under:
elc Such 8 nigurous eralyss Bithough valuadle wili
MOt 21 If the wirclie Of the lanpasge sinie the imriementa-
Uot 1uueh overniae the other cRaractensting - Aty the selece
tien cietens grored the posutloy of Jdereliping 2 new
argaage to eadtiy Lt the CADAT environment The o rrerte
antens aiso ciminated severss other HOL s Lhe LCL 124] gng
SDL 172) from conderativn

Vo Coviunmint Hakpaart ass Sortwang
Divtrorugse

The use of HDL's 1n Rardware Jerciopment i odvicus The
recent advarses 1n IC technoiogy have tremendoutiv increaned
the speed of new |,\uuv] anruuncements But the suitware
geveiopment for the new 1)stem has not caugh: thn paie
Witk the abulty of the HLL tc descrte and sumulete the Rarde
ware ¢cutateny, 3t 13 Puasitue to develop the o ate tor the
digitel $rsten, consurterntiy to t1idge the soltw
desciopment gar Tha section dossntes ar eafers
measurr tne performame of CINL v suftware develope
men: {2l

A mwtprocewang system consintng of 3 Diglts’ Fquipment
Cerpotatior PDI-E Maiccmpatet and 82 INTEL AOAl Myr0-
PInessor way used The twc processors were sirmuiates e
Aviduals, toliowed ty 'he sumulation of the shared memon
3143 the anput device for the svstem The nput Cevwce g8 an
orn-Line pectior statior whach interTupts the 8GR0 atter each
pert 15 examuned 10 enter the messatements of the par nto s
o4-word K-bit memory. irtel 5050 hardles the bovabeeping
of these measurements for use by POF-R Several programs
were written both for 6020 and PDP-E. The grograms on
FDP-$ accept the measurement from 8080, determane if they
are withir speafications. and transvgt the cunditior of the
rant to 8050 The 050 grograms handie this intermupt and
keep 4 1e:01d of the aumttt of parts insrecied and 1heir con-
diion The programs were wnitter 14 assembhy language of the
PaArtn viar processor and were stored ur the shartd mem.nan
the ma:hune language form. The deiads 0f the sumulatidns can
be found in {27

AR imporisat connderst:ion in developung programs s the
amembly time required by the hot! processor runnung the CDL
umwation of PDF-b and Intel-8080 Table IV shows the CPU
times required for typical programs on ar IBM JT0°185
Clearly. the cost of fuch sumuwsthons 15 profubitne However,
sssuming that the cross assembiers are svailable on (he host
mactune, developing an spplcation program uung CDL simula-
Lor would not be very expenuve, unse thest progrems will
utaihy be shorter than an assembier 07 8 compuer A reisted
wve would be the pertormance compazison of sucr uimula-
sons using hugh level laaguages fur the Jescnption of the hard-
ware. rather than an HDL Much of the overhesd of the HDL
tranalatorsumulatof softeare could be reduced > uurg a0
HLL for describang and simulaling the parriculer hardware A
companson of such HIL versus HDL descnptions and theu
run times 13 needed

VI Futukg Work

Alibough (he swiadbiity of en HDL for hardware system
desciption u well recognuzed. the HDLA are rot used ex-
tenavely, pantly due 1o the vanety of structures and notations
wied in these Mbl'nnuhn; them hatder 1o undentand Many
structuzes found v HDI4 are sumple for 8 soltware pro-
fessonal to undersiand and ve But 8 hardware desgner not
famuiar with programmung finds them hard 10 use Thus prob-
Jem will be parusily solved by the populanty of the micro-
processors g3 design elements, requinng the hardware demgner
to understand software.

The dilferences 1n motations and structures used by HDL/s
make it difficult 10 borrow g language deveioped elsewhere.
Thus dfficulty 1 sug d by the desd devgr. meth-

=3

.~y

-~

[T e

»

158

11

133

144

(1]}

1241
0
1304
19!

leo} i

14t

1434

(L]
[L13]

fas}

ey}

(Y]
o0}
130}
i1

1521
{33}

134}
(1 1}]
1361

(L]
[£1]]
153}

feo)
1611
[}

{63}

e4]

[L]]

~105-

} Boro ong ¥ Pora, “A CDL cumpeier for desgamg and umulat
el o Peag fng

e.” w Proe jat Conf

CHUL s Appixcatont tp 133-100 1978

D L Deteerer gad) K Douiey. “Reguter irsmeter langunger
and thew transsnop T n Depitel Syarem Depgn Autometion
Lanpuatrs Simuianon and Uete Base M S Bewet. 18 Woud

-2
"D én

tand Hitts CA Lomevier Scmace Prese. 1815 (0 3
J R Uity “DOL A dgne e devgn 1angueg
srrtptesn. Unte of MooRun Maduoa, os?

I &k Deiey a0d D L Dwetmever A dogital sspiem devign lan
Fesge (DDOL)." IELE Trens Cumput. vl C 17, pp 850-B01,
Sept 1008

stwa of o DDL dyitsl prsiem specrfncaton to
:anltu equatons,” JLEE Trems Comput. sol C-18. pp)0S.
13

R L Amdt 388 D L. Duesmeyer, “DDLSIM - A degital dosgn
tanguage sumeiston.” Proc Net Liecmoaicy Conf, vol 26, PP
die-it® 19%

D L Dwtmeyer. “DDL TR N.vorrs manual ™ Dep blet Comput
Eag.Lan Wuionnn Madnon

== "Transatwa of DL descriptions of drgital sy
of Wrscunsn-Madinoa. ep No. LCF 2713 Sopt, |0

" LA,

= “DD.SIM-usrti, masusl.” Dep Liec Compet. Lrg., Uan of
Waiinne Madnon.

M S Duthiand D L Dwtmever. “Avtomsied FLA Svathesn of
1he comBmateuns! 1ugi of DITL sescrprons.” Lan Weuconun.

e il d

PF -84 vy
A W Detpun. “'Tae vse of two CHDL 5. PMS and DIDL 0 the
#rugn of 3 Joutws smimem procewor.” m Prce Int Symp
CHUL s Appircations pp Y6-34 1974
1 L Houie A tnrmsl leag foe INE P g
restizatoon of digstal LT PRD dusrtigtnes, Usie Witerioo,
Watarton. Ont , Cong
$ S Changand i H Trocey “Am interaitive compater graphics
tanguage for (he desgn pnd ovvisnion of gl svstems * Com.
puser, vol 10.pp 33-41, Jume 10°7
F A Fronke “Aviomaird functionst Sengn nf Sugaal srsiems.™
P> [duserigion Cawe Westorn Kesrror Umis . Mo
A C Pordrrand) W Gault, A lsngusge fur the specifcation of
Sxarta) interfacing prodiems.” oa Proc Int. Symp CHDL 3 Appis-
conont. pp 05-90 107S
A Gwos, “HARGOL - A Rarémare orwnted sigol lasguege.” A'S
Bepnaconiraien. interns) Kep VAS, Corenhagra, Denmors, Avg
1448 “
P L Flebe, G Musgryve. sad M Shorland. “The HILO togx
swmulation pactape.’ - Moc Inr Symp CHDL'3 applicanons,
PP 561-17}, 0078
€ C bell.) Grpsoe, snd A N ell, Demguing Computer and
Duitsl Sysmrm Maynard MA Digral Prem. 197)
G belt pnd A Newell. C v Svrucreres R, g Es-
smpies Kew York MeGrgw Hull, 1973,
==. “The PMS 058 I5F beacriptson systems (of compuler prue.
teres.” 18 Prox Spmng Jownt Compuscr Con/ . pp 331-3%4 1970
M R Bardacciond U P Swrwroreh. “Apphcstons of an ISP com-
Prier st 2 dergn SLIUMMI0GOR WDOISTNY.,” 18 Proc Int Symp
CHDL's Appiscations, pp 49-%. 197Y
M R Bardsccreral T
Dep of CS and [r..C
MR Babecci. G I b
“The 1SPS comDuier descreption language
Rep Cormegre-Metion Unmersity, Aug 1917
M K Berbect) s8d A W hagel. “AS 151'S umulster,” Dep. of
CSand FL Rep . Cormegie-Melloa Universsy, Mov 1979
™ modehng pad ge-

P 23] 1

e D T Sewrorek,
Ip of C$ ond LE

P langusge
S YHS
» 4 &t the b xnpnve

Rutgers Unrvernity Newm brungwich. N) (Sept 0-7,497))

$Y H Se.M b Berar.ong K L Corherny. “A sritem moudehag
languapt transstor.” an Mroc Demgn Awio Bosksrop. pp)3
LT

D Burrone, “LASCAR A for 1 of P
echitsciwe, on Proc Jal Symp CHOL'S aAppluconons. pp. 145~
182,107

C. 2 Evangeints. C. Jeonizet, snd H Ofeb “Drsgring with LCD
Languaps lor conp.ise desgn.” 1a Proc Desgn Auto Conf . pp
388-316. 1977

D F Gormen and) I Anderson, “A 1opi énrign transietor,” tn
Proc FelJaunt Comput. Conf . pp. 241281, 1982,

3 Lund. “LOGAL .jogx aigurithmic Isrguege.” Univee Tech.
Memo AGOIIT. Massvilie. MK, Mar 1.197)

H P Schaepps. “A tarmal languspe 1n¢ desc I ong maching bogsc.
taming s8d seyvencng (LOTIS), JEEE Trens Comput.. vol
$C 1), Aug 1944

C. 1 Lipomks amang conventon (8 mudulsr drsgn lan-
guages.” preseasnd gt one Fowst Workshop on Computer Nard ware
u:vvlo- Lanpwages, Rotgers Unrv., Now Iraaswuh. M) (Sepd.
~7.197))

1 Lawra ond A. M Posiin. “The MODFLILINDA ¢oagn -
1oa system, n Proc Int Symp CHOL) Appixcanons. $3-
). 1974

W Merctvmehi. W T Puicrvn, end ! M Sechacks. “OSM-
microptogrammed hardwere ifuciuty descriptinn languege,’ o
Proc Ini Symp CHDL s Applscanans, pp 161173, 1918

R Peaty. “KTS) thegt rneferepsac 3 Aefl, jnsintet
Tut Nochitchienverapesiung, TH Dermusdl, 1849

langusge {1 putomated togu an
o Co De,

ER Y 45+l Fod
I PO =

OF PCC Cul\LiTY

16°1 U Blumenschen sad % Langaer. “Fotmscbivag oad Sefmation
ot ragisteritemiersprache RTS 117 NVSI 83, lastnet fur Nach
tchienverabeitung TH Lirmetadi. 19%0 .

1881 R Pusty, “Rechnerorganaation | vag 11 (ectore haley).” jne
10t fur Naewichteaserspenvag T Lprmeiadl 1974

189] R Puuts. “Segmentsteon tomstrwsts for HTL 1117 w Proc jas
Symp CHDL) Apphcenons. ¢ 113-136 1v°3

1701 L P Stebler, “Svsiem Srmisption lsnguages = IECE Trans Com
put.vol C 19, pp 1160-137) D¢ jeto .

171 D R Gormen. “A pyuem dacniptne language and Ns wess
PR D gumertation Unre of Pennsyivine 1808

1731 W% M VanCleemput. “As Ruvarchucs! aaguage for Ihe siruciwrel
gecnption of & “ s Proc Demgn Awto Conf . ¥
3%7-388. 1977 S A 1811

1)) SMITE Trameng Masual. TRW Inc . Awg N

=u| “w Georhe snd W J fimaa. =S of su cwceny
By SSM-2 hew Dardware unuulu’l;u:u”o. w Proc lat
Syms CHOL's Appiscencns.pp 133-133.1

[R11} l.”: N Lev. VDL =8 datimnwnst 1ystem (ot att ievels.” m Proc
First Anau Symp Comput Arch .pp 4i-43. Dec 1973

190) 0. L Fessas. ~A Sengusge for deacrieng (he functoas of s
CWOROWs 17810ms.” Commun Ass Comput Mech .vel $.80 3.
feb. 198s

1] W M VaaCleempul. Compurer Asded Depgn of Drgrrel Svgvems.
A 14 dlend Huils. CA.Comp Scences Prew,

"
1°8) :- M Huey ond §. 1 Hill, “Foull tes1 genststeos wing & $rigs
Isngusge.” s Proc Jas Symp CHDLT Appixemeons 9.).,
1078
1190 K lawein T Sarte, F Ueryen D>
venfucatson of isrge scale computers By wmag DDL.
Lesgm Auto Conf . .pp I80-388. 1079
180 J WM Gould, “The large sisle Murueieciionds Tompter arded
Sevipn pad vt system T KASA 1M-78502. Marshall Space Flght
. Center, AL.Out 187
(91] € C Shrs. “A comparmon of hardw e descrntios lengusge
NASA CP 189767, Marahall Spece tlaght Center, AL. Oct 28°
1821 Frogress Hepont of ihe Working (rowp of tne Conlarence om
CHLD's Ot 1972
T 183) L 4. Lipovsks, “On gray bor & of .
sa Proc int Symp CHOL S Appiiconcas. pp 188-18e. 1973
184] ¥ Chu. “Concepts of o murocompeier Sesga longuage. o Proc
Destgn Awio Conf . pp 43-30.197¢
188 R A Muclior gad G K Johason. “A genetstor (0F M rOPr oCeTIand
smemblers pad smvwislon.” Proc ILEL, voi 64, pp 11-814.
June 1978
[86) L 7 Holer ang A C Porher. "Immqn_um tevet Sgntal Se-
48 eviommnion !n..mocmu proxon.” Proc Demgn Awto.
- 313-218.1¢%8
181} f\w{c '):u- sad (PP Swwiover, “latrmadule protocol for
segester tremsfer bevel LY, snd iy
tools.” Proc Symp Comput. Arch .pp $6-43 1875,
188} M A trewes “General survey ol Grsgn swtomation of dugns!
computers,” Proc IELE . vol. 34, 09. 5708-3 111, Dec. 1000

and T Ledars. “Derge sad
» Prec

hai

t‘-‘

P T S WU e
110 I O AL -
- - . - PRI NS
O, L RN f..b_\\.!o [
L
.
/ TABLE
lurtrsnzation Devans of HDLY
Implemented implementation
Language Reference Adapted f1om Machine Langusge
ACOL 1 - - -
AXPL 10-12 APt CDC4400 SNOBOL
. prc.1o TORTRAN
ALERT 1314 APL 1M 7094 -
APDL 13-16 ALGOL CDC-G20 ALGOL 40
APL 7 - many saembly
APLeDS 1" ArL - -
CASSANDRE 18 i 18M 360 i
CASSANDRE 1 ALGOL 13M 360.370 amembly
oL 20-29 ALGOL IBM 310 FORTRAN ASSEMBLY
Cst » ALGOL I8M 370'18$ KL .
DDL 33-39 - Harre 602473 -
DICITEST It 40 [TIH - S e ‘
’ petry Nety
DoL 41 - - -
DSDL @ boL 1BM 360 xre
FLOWWARE 4) fowch.ts IBM 360/50 rnn
coL NOVA-300 NOVA ASSEMBLY
1219 a“ - 1BM 360 TORTRAN IV
GLIot 43 - - -
HARGOL 4% ALGOL - -
HILO L)) - ICL 1900 -
Isr
:Sﬂ. 45-54 ALGOL 0P-10 sLISS
P
LALSD 3557 - IBM 36079) nn
COC 6400 SNOBOL
LASCAR 1] CASSANDRE - -
ico 39 (R} - -
T (4] RTL Burtoughs ALGOL-SS
LOGAL () RTL UNIVAC 1108 FORTRAN IV
LoTis 62 ALGOL - -
wOoL) ArPL - -
MODEL/LINDA [] - - -
osM (1] ODRA-1308 PLAN
™s 49 ALGOL PDP-10 SNOBPOL
RTL L] - COC1604 ALCOL
RTSI (1] ALCOL Swmens 4004/1 51 TORTRAN
rTS N 4768 RTS4 - -
RTS U [34 CDLRTS U - -
f308 10 RTL - -
SBi 1t n ALCOL - -
DL WL - - -
SMITE I - CYBER 14 -
$SM 74 - - -
VDL 1 - - -
vIus k] s - -

NOTES: 1) “~" [adicates that the deiail » erther Bot avmiladie of a0t knowa.
2) No scouracy © churaed (o1 the contents of thus tabis.

ASN

-«

——— e e

-lll=- .
i
TABLE 11
CDL Micscorsasaions
itor Exampie Expunsstion
QA ALQR Eapressson u) iff (4) = (8)
g ANLS Expremon u 1 i1 (A) @ (8)
g. AGT.2 Expreswon v | UTUA) > (B)
. ALTS Lxpresmon 18) 1fT (4) < (8)
N AGLS Expressonu | T (A) > (B)
LE. ALL S Expressonu § T (4) € (B)
AND.» AAND.B A8 Performs lopcal AND bt Dy dit
OR. AORBAS Pesforms logical mclumve OR bet by it
ERA. AERAD Performs lopcal excluave OR bit by bat
’ A Performs 1's complement of 4
ADD. AADDS Binary sum of (4) and (B) of (4} + (B)
SUB. ASUBS Binary difference of (4) and (F) o8
)-8
CNTUP. ACNTUP Increments A by Lot U) —=4) @)
LNTDN. ACNTDN. Decrements A by Lot id)e=4) ~)
- A-2 Cascades repisten A and 8
SHR A SHR Shifts A nght one bst powtion, enters 0
8t left
SHL. ASHL Shifts A Jeft one bit poution. entess 0
o1 nght
ar ACIR Circulas (closed) right shift of A | bat
[o]8 ACIL Cucular (closed) iefrshufi of 4 1 bat
SHRA® ASHRA, Anthmetic rght shdt of A | bit, no
change 1n left most bit (sen bat)
. A8 Contents of A ase replaced by conteats
of 8
TABLE 113
HDL Courantson
(114 oL AHPL DDL
1) Software
translator PDP.10 BLISS Many - Fortran/Asembly CDC 6400 Forinan Harrie 6024 Lfinan
nmulsior PDP-10 BLISS Nuy-FowmmNy Hams 6024 Huan
hardware compier o [CDC 6400 Anobol tpanul)
portability a0 {airly favty fouty
21 Level of Descrpion nstruction set bevel reputer tzansior feve) repstes trangfer and bedow repster tranifer and bolow
3) Modulanty yes no yes yes
4) Logx Generstion no ot very well yos yes
$) Propramming Lase Sullicult ety dufficult difficult
TABLE IV

IBM 370°133 CPU Times ror CDL SmsutaTion

POPS INTEL 2020

Average time to sumulate an instruction 02353 15
Number of mstructionsy pass 10 sssemble an

nsiruction [74 1.6X
CPU time for amembling a 20 instruction

program . 8000 96000

Mote' K = 1024

Eeg

-112-

R
top
* (Shift Right)
Y
IECIear
I:oum
9
Clock
Q
D s
— |
Q
T !
A Clear

Shift

Figure 2(a) : Serial Twos Complementer Hardware Structure

-113- Gt i , e

winAlistnle

T KAteSLATILI O,

srindid

. 2L TORWOL»4 &
WLOISTLR P (L=0) 1y
SudTLlirow (Dle GF I)
. 24CUHIOL a4
keLisieheCle=U) o
CLOCR P

(" A4 RULLOSUR*#

AV I VA NI TR
ZI3P/ZAF(SEQeu) Nt s h(u)ou-l(u)“h(l-u))nLJL

(KSR =it L=}) e IF(Cobueu) THLw(1=0)
LLSE{CECeliniUP)

Ll

W 0NN W

-
(=]

»LlhULATE

S1L UL AT 10 o

11 tuU!Pul Labte (o) o gree sy)
12 aouile deSuzoy

13 sLuAD
14 K=Y
15 a5im 0o

Figure 2(b) : cDL Description

swion) y

P ;

(. o {..-" * .'l
eI
Control
c _>Cloar
C=5/shift=
OFF
T f——> Shift
Figure 3 : Controller for the Twos Complementer

SW(ON)/Cleor

C#5/Shif1=ON

-
F

e B Py e o

115- ORIGINAL PAGE 19 |
OF POOR QUALITY ‘

WUTRULT OF SuamULATLIUN = OuTAu

LaLlTCH THARSITION o LAbLL CYele

S -> UN
iR =0y c=0 S=zu 1 =1
FE Y A S Y Y N PG Y ey L N S L ey L R L YA A FOU R ST SN I VS Y A RVE PSS SN S W'Y
LALEL CLYCLE 1 TRUL LALELS CLuCihn Tl L
/T410/
R = 42 C=1 S =1 r=1
Y e Y PR P ey N S R Y Y S N LY L e VPR F I I I Y Oy YRR VYR Y S I Y L
LALEL LYCLE 2 IKUEL LAGELS CLOCK TlmME 2 |
/Tee/ 1
R = o6l C = 5= I =1 !
P Y R N e S Y Y Y T Ye Y R S Y Y Y Y YL ST IS UYL SR L VY PEY FYT L X
LAkl CYCLE 3 TRUL LAoelS CLULK Ti4E &
712/
ik = 30 v =3 S =1 T =1
FEYSE IR IV IV Ve F VYT FY PO F R PN VR Y S P Y Y I TS L Y PR TN SR P IR PP YR S TS TE T F¥ T2
LAuiL LrCle & 112U Lnoels CLOCK TimE 4
VAR 74 .
R = 94 C =y S =1 T<=1
Y N L Y Y Y e e R NS P N N P U Y P F T PRV VY P XX TS
LALLL LYeLL 5 IRUL Laocld CLUCK TimME o
7/ F¥v/ .
R = oo L - U S = I =1
Y Z IR XY T 2 FS VY YN U Y PPN Y Y Ny Y N ITI Y YUY P S P Y PN VR Y FPFE VY YT Y Y
Lapbki LYlle L 1L Labeld CLOCKh TIME L
/Tae/ .
R =70 L= Sz I 2w

Y LI R R NS L L N W N Y R P A N Y R . R PV P IR VS N NS VY Y Y Fa Y YRR WS

SIMULATION LlddS wFTLR o HePel1ITivigs
' Felbine LARGeL Cyovik IS:

18
ARESET CYCLerLun
+LUAD
izl
2510 olrw

Figure 4(a) : Twos Complementer Simulation Results for R = (05)8

>~

[AXIE TSI
[]

AR

.
AR

-116-

vulrul OF SirULatioty = o lnL

|
!

onlTCh Thakbllivn AT wiblel Cicin 1
-TH => il :
R =21 L =u 5=y I =1
YL IV Y VS Y S e Y Y Y Y Yy R X R R N R E Y SN YR RN SRR SR A VY ¥
Lol CYLe 1 InuL Laotls CLOCK TLML_l
/T1Ar/
R = 50U C -1 > =1 1 =1 |
R S R Y e N S Y N Y S R P L NN S YR Y S R TN
LabEL CYLLE ¢ TRUL LaoieS CLUCK Tlre ¢ |
1%/ . -
H = 6y C =& i =1 i =1 . '%
44»4t‘v4#4;#44447;44t44¢¢«4444t4¢b4¢'41-#4&&44‘441.'4t*.440¢qcoa»4tooo*t00Af*4
Lapbkl Crili o . 1Lt Labibo CLOCA Tiwk & }
/Tx1/ |
K= T C =0 5= 1 =1
P YT R Y L N e VTP PE . N L R Sy Y R XY A R NN N P R YR F IV
tapbl LrCLe 4 UL LhabelDd Cuoen Tarie o
/T4e/
R =75 Lz S = T=1 ,
IS Y PR Y Y N VR Y e e Yy I AN L Y A N YRR VYA IV NE RN AN RN FFI
LALEL CYCLL & UL LaoklS CLOCK Tirie b
/T8 /
K = 30 C =~y D = 41 1 =1
YRV VLYY Y PN N Y Y P T Y Y R A R N PR AN N I N RSP EV SN L RN Y M
Laokd CreLt o 1V Laoeld CLUCK Tyl v
/1*-/
Kt = 57 C = 5= 1 1 = G

PR g s Y Y e P P N e N R I N Y PR Y PN AN R AN L N RN L SRR ZY R RS PR RS W

1
SIRULATION ShDYS AFTLie o RePLaliload {
FINAL LaBel CYCLE Iy:
w

;
|
i
!
|
|
i
\
1

Figure 4(b) : Twos Complementer Simulation Results for R = (21)8

-

=117~

('-.\..- e,
._'._" LI S * ot
OF pub'l Svre -4

¢ QuaLiry

R/W BUS
o b
0
MAR ; '
= MP le—1 PC Jt—
) 7
) ACC
i]
255 0 234 "
0. T T op || aors |
of MR | BT
N
X P
ALU

Figure 5(a) : Minicomputer Bus Structure

INC

PIN

1
2
3
4
5
6

-~

10
11

12

13

14
15
16
17

18
19
20
21
22

-118- O?‘r\'a--n Nﬂo"‘ [1e)

17500 FRE SR

OF PCCH (; LY

fnhvtont I 0

J-I“ll\l“
RLOLSTER e AKCG=7) 1 mibh (0=11) 2 1’Clu=7) 2 ALC(O=10) rannly=11) r X(y=12})
bbUhLulethln(uP)zlk(C-n)rln(lull)ZLH(J)rIu(AuK):Ih(Q-ll)
PLORY s (AR) SM (D= ey e 0-11)
OnITChte STARTIURE oGl o KU (OTF o Gud) o STATE (R v vl)
ULCOULR R (U=7) =21 (3=
teliienb s ALZREO) e TaL=K (1) pa02on{2) rCnan (3) s Jdork=i (U)o JMP-K(b) ’
i RLTI=K(u) e ISt)
LLUCR P L)
.
L oek%y INITEnLaZnlain
. .
79V ARY (O ZRCESU ppaav=PL e IRSU L Tu e AZL oS TARIZORF o p Ui Z0iNe S TA T L SH
"
Y Y ¥ FLIRST lomee eilhuil Crobliy OF Folon
.
UM o) 25 Tal (e) 2B L) ZlniadSre
ZRUN(UN) ASTRIc(r) +P UL /1P Caclullit, prph S Colan)
ZRLN(UN) ASTATL (P) AP)/ L E ML

"3

Atk Fullkib Feton mbuGin vt Fut v a1 20, 5TiUCT Lo

L k¥k%xs DLFEK Sipmin 1F LidInaCle Eaeivule 5Talt L BUT

. .

U (U} ASTALL R 4P A 0L T) i (iR libi 1) oEuwe 1) TNt lISIATLED)
LLOSE(STATL=L)

-

T YT FY HALTY (Lot CCLL)

"
ZRUI(U) aSTATE () 4P G Al /U= oFE
[
L EFRR veFtl SlaTwe LIUIRCCTY ALty CUGPUIATLIONS
C
Ui (ue) 2S5 TATL (o) 212 L) Zimie=tin (AL)
ZRUH{ON) ASTAILIL) 4P L) 2=l (Enin)
ZuU L) 2oTriclu)ab) Zanlatag) =mitn(u=1 4}
ZUHUI) 25 TATE () 4P () /0 TATLEE
\
L 144 chLCUlaw, Vb Yl v g Yian?
-
e (Ut D ASTAIL (L) sl s vt Eau i /7 <l
i {uidd 25 TAlL(L) 4020 L) 2 G by A Zoaan= L L)
ZAUN (U STl L)+ () # e TaL) Ziacn=a$e)
ZRUN(Un) #STATE (L) #H v o) 2 paib/ZALCmintit e Ar S i =
ZRUN (L) 2T e) P (o) » i nZpel=r el o ar 5T T =0

Figure 5(b) : CDL Description

P e W e e e Sor G 8 -

23
24
25
126

27
28
29
30

31
32
33
34

35
36
37

38
39
40

41
42
43
44
45
4A
47

Cwem—:

Ledtx *i%he

L

-119-

ORICGINL

ranen -
FASE 1S

OF PCCR QUALITY

LAY Luly

ZnUR L) ¥ STATE () 4P L) 205 /mAK=a R L)
ZIUILU) 4STRIE (L) 412 (1) £ 1527100605=0 G nag)
ZIUN(ON)Y 25TATE (L) 42l) 2152/t RS cevidl L
ZUN(UHD) 2STATE (L) 22 (o) 4452 /ZmlisAn) Smune ik (Ao eERe) Tkt
(PCZFCoCINTUI) e ST RIILEF

-

.

R Y ¥ 7Y TUCATY tarcUllun

Uniun) 25Talb (L) #P G) 2uLA/MOK=RCC

Zrud (O #5Trnle () »P il auln/Zinmit= 1 Cawuid)
ZUN(UH RSTATE (L) aP U) v uLAZRLCE g e Geidih) SR
/iU (O 25 Thic(e) 4Pt o) suln/STA LS

L
L 34y

L

rUSHY

LALCU Ly

/U Ui 2L TATL () AP L) AUDIh/unr=stivevu=t L
ZuUrd urnd) ®*STATC (L) 4P L L) UL/ mnii=uy

Ui (Ul #STATE (L) 4P (o) 0SSR/ Uhtad) Siriun
/nUn(uin) s STalu (e) s o) roSnsee=ah {nund s bl aTES)

L ¥
W ARk

RETULid eaLurivw

[.
UL e aSsTran Ly 12 (u) 4t T /hiAid=y
ZaUind (uid) saTrl (L) 4P Cad oLl Zios=1 G _
Ui () s Tall (o) 4Pl e T/Peze (=11) o STAIT =F

o
L A%k .

L

LIVIE IR]

LALCUT 2yl

VATV RICVE P E S S P FIS YL I NN LA LIS YO HYOIT
RGN Vi) 45T {e) 4l) romb /ol ATezr

RNV

L5 3MUCATL

ALUTPUl
aonlitn
tLuhy

mlU'u)$D'UOVlH'439¢'U'O . .
h(lU-lo)ZbOTIdtLqu'deo'Lbl;vLcdy

PL= Y
Aol

LAﬁLL(;):MML'lnoPL'HCLo

G 1 bl

M e Al

1S ihnl=uld

200D

v odah

Figure 5(b) (Continued)

i v

Soredlie STAKRT (7)) ristlo)

-120-

~var - - Y

.
LN . - .
s s,y

.
2

) T
OF PLTL ARty

Operation
Code Mnemonic Comments
AND (ACC) * (Mem) -+ ACC AND Memory
TAD (ACC) + (Mem) -+ ACC ADD
2 182 Increment memory and skip next instruction, if
zero.
3 DCA Deposit and clear ACC.
; 4 JSR Jump to Subroutine, (PC) -+ MP(0)
. 5 JMP Jump
¢ 6 RET Return
7 HLT Halt

NOTE: () indicates ''Contents of™

Figure 5(c) : Instruction Set

-121-

Gl FIGC S
C.‘-llc‘.r'..‘.‘. D : |' ..
oF PCLI GUALTY

PROGRAM
Memory Assembly Binary Decimal
Location
L1i]
10 AND 5 000 0 00000101 5
11 LL TAD* 6 000 1 00000110 774
12 ISZ 6 010 0 00000110 1030
13 ISz 4 © 010 0 00000100 1028
14 JMP L1 101 0 00001011 2571
15 DCA 7 0ll 0 00000111 1543
16 HLT 111 0 00000000 3584

Figure 5(d)

s Program to Add Four Integers

rer

-122-
Ch
AL LLOIFTRR M

! Memory

;Addrcss Contents . -
0 5 l .

g 1 6 DATA

o2 7 l '

! 3 8
4 -3 COUNT (-4092 in ones
5) complement 12 bits)
6 |
7 - ,RESULT
8 T /NOT USED
9 - _
10 S \
11 176 |
12 1030 |
13 1028)
14 2571 | | PROGRAM
15 1543
16 3584 /

Figure 5(e) : Memory Map

Standard
Call
Library
Logic Diagram
Standard Cell Aytomatic Interactive Mask
Selection &4Placement and ————P» Grophics L’ Pattern
A (Manual) Routing Generation
¢33 l
' Pe.rformonce G Mask
| Logic Simulation Simulation Anulysisr

: Co:;:rif:v?c:: ; Automatic Test
. \ Vector Generdation Mosk
|(LogicSymhealsL| Fabrication
| B 'T" D &
t High Level |
: Simulation :——— Wafer Processing
l \
L.-_-_f.._.._..l Refine t%
e 4—] .
\ HDL : Testing

: Description —

Figure 6 : CADAT Systenm

Completed Device

~—

Rls)
.....;ls.v

o ta W

R &

XA

Sy

E v

b 3T

)

End of Document

