
" 

~ I ! 

: : 
/~ ~ ( 

, I ;i " II ~ 
, , , 

" " 

'I 
II 
'''''.i I, 

\ '"", 
I' 

I,' 

/ 

\/ \ 

NASA-CR-173119 
19830027790 

/ i 

J 

,I 

'\ 

': I, 

'> 

(" 
I .. \ ) 
\' 

.. 
" r , 

" 
'r 
~, ' \ 

~\ "\ 

, 
" 

.: / yf- 'j 

). \ 

-,~~/ 

,\: I, "/, 
r ">-

/,' '" ,I I '\ 

I' ""I( ',-Iy J,\ 

1111111111111 111\ nlll IIIII 11111 IIUI IIII lUI 
NF01445 

i 
il ~ \1 

I: 

I 

,) ,~, 

'( ;, 

\i,' \ 
, , 

, 
V 

'. 

\ 

\ 

'II, 

;) Ii 

'/ 

(, l' \ 

,I 

, " 
" 

,i/ 

I ',' 

/1 
~ / 

./ J 

) .. 

'( 

,\ 1,1 
.' " \ .' 

L 
,~ 

.(' ' 

, i, 
jt \ I 

! r\", . 

'-_'c_~1 ~'~/~~~=---,--~.......:c-,-","""~~,-,~.:=".,,,,,I\~;:~ __ \- ~L_'),_,_"),)t...,;-(~,....,··=_",,_,,-,,, '-cc-'"",",~="-,"~~""",,,~,,,,,-,-,,,~,!., ''''~'';'''':''''-''J'._;_. _' _/_' ."_:~L._~~ 

; 



JPL PUBLICATION 83-46 

IProceedings of the Workshop on 
Applications of Distributed System 
"Theory to the Control of Large 
Space Structures 

G. Rodriguez 
Editor 

July 1, 1983 

NJ\SI\ 
National Aeronautics and 
Space Administration 

Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California 

Langley Research Center 
Hampton, Virginia 



This publication was prepared by the Jet Propulsion Laboratory, California Institute 
of Technology, under a contract with the National Aeronautics and Space 
Administration. 



ABSTRACT 

These proceedings report the results of a workshop on the applications of 
distributed system theory to the control of large space structures (LSS), which 
was held at the Jet Propulsion Laboratory, July 14-16, 1982. Co-sponsored by 
the Jet Propulsion Laboratory and Langley Research Center, this workshop re
sponded to a rapidly growing interest within NASA in developing the control 
technology required to make possible the large, shuttle-based space systems 
planned for the 1980s and beyond. The scope of this workshop encompassed two 
mutually complementary themes, both of which involve the notion of a dis
tributed system in some sense. One theme was the control theory for dis
tributed parameter systems, in which the traditional emphasis is on developing 
basic control principles by means of distributed or continuum models. The 
other theme is that of distributed control for systems requiring spatially
distributed multipoint sensing and actuation -- whether described by lumped 
or continuum models. Papers considering both of these control theories were 
presented in the workshop sessions on modeling and control, control and 
stabilization, distributed control, control theory for distributed systems, 
and estimation and identification. The three discussion sessions held were 
devoted to the general topics of a summary of LSS control problems, LSS 
application of distributed system theory, and future research opportunities. 
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PREFACE 

At the time this workshop was being formulated, I was the manager at NASA 
Headquarters responsible for a broad area of electronics and human factors 
research and technology that included space controls and guidance. In the fall 
of 1980, I suggested to Dr. G. Rodriguez of the NASA Jet Propulsion Laboratory 
and Dr. L. W. Taylor, Jr., of the NASA Langley Research Center that they should 
organize and conduct a workshop on this topic. My motivation and rationale are 
presented in the following paragraphs. 

In reviewing the research supported by my office, it appeared that rela~ 
tively little work was being done in the application of partial differential 
equation (PDE) control theory to the large space structure control problem. It 
is well known that certain large spacecraft configurations with rather uniform 
mass distribution can be most accurately modeled by a set of PDE's. Such equa
tions, of course, are much more difficult to treat than ordinary differential 
equations that result from a finite-element model of a structure. For the most 
part, researchers who have used PDE models have made some approximations, either 
in the formulation or in the solution to obtain attractive control law designs. 

Substantial theory existed at that time to treat control of PDE systems. 
For example, Professor A. V. Balakrishnan at UCLA had treated PDE control for 
aircraft flutter and had discussed the problem of large space structure control. 
It was not clear to me whether or not an exact PDE solution would be better than 
various approximate solutions when considering practical implementation con-· 
straints. However, it seemed most appropriate for the NASA organization respon
sible for advanced controls research to examine the state-of-the-art theories 
and applications and assess whether more research effort should be applied 
towards the PDE approach. 

My suggestion for a workshop was to bring together the key researchers from 
both schools of thought and discuss the status, problems and potential and thus 
identify important research opportunities. The workshop that resulted, the 
workshop reported herein, had somewhat broader objectives but encompasses my 
original motivation. The main objectives of the workshop were: 

1) To exchange ideas and explore the application of various control 
theories for distributed systems to large space structures; and 

2) To identify the important unsolved problems of current interest lead
ing to possible future collaborative NASA/university/industry efforts. 

Here the term distributed systems was used in two ways: 1) to mean dis
tributed parameter control theory leading to PDE control; and 2) to mean control 
for systems with spatially distributed multipoint sensors and actuators, whether 
modeled with finite elements or distributed parameters. 

The workshop covered the topics of modeling and control, control and stabil
ization, control theory for distributed systems, and estimation and identifica
tion. There was a formal discussion period scheduled at the end of each of the 
first two days and a wrap-up panel discussion on the final day. The final 
wrap-up panel discussion focused on identifying future research opportunities 
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for NASA consideration. Technical synopses of these discussion periods, as well 
as a technical evaluation of the workshop, are included in this document. 

One final note: the present NASA Administration has stated publicly that 
the permanent presence of man in space is NASA's current primary goal for the 
space program. This effort should result in the first U.S. large spCice station, 
followed by a series of other spacecraft, platforms, and satellites of very large 
dimensions. Many of the high-potential space applications, both civil and mili
tary, depend on having the technology to implement large space structures. The 
workshop addressed a very timely and important topic for the future exploitation 
of space. 

vi 

H. A. Rediess 
October, 1982 
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MODELING AND CONTROL OF 
DISTRIBUTED STRUClfURES* 

L. Meirovitch 
Department of Engineering Science and Mechanics 
Virginia Polytechnic Institute and State University 

Blacksburg, VA 24061 

ABSTRACT 

There appears to be some incongruity in the design of controls for struc
tures. Structures are basically distributed-parameter systems, described by 
partial differential equations, and control theory is concerned almost exclu
sively with discrete (in space)' systems, described by ordinary differential 
equations. The standard approach to solving this dilemma is to discretize the 
system in spaee, which precludes the use of distributed controls. A different 
approach, known as the independent modal-space control method, is designed to 
eliminate the incongruity by bringing about a closer correspondence between 
modeling and control theory. Indeed, the independent modal-space control 
method can treat distributed structures as well as discretized models and it 
permits design of both distributed and discrete-point controls. 

INTRODUCTION 

Structures are essentially distributed-parameter systems and their behav
ior is described by partial differential equations (Refs. 1,2). The diffi
culty in designing controls for distributed structures becomes immediately 
evident when it is recognized that the control theory is concerned for the 
most part with discrete systems, described by finite sets of simultaneous 
ordinary differential equations, and not with distributed systems. Through a 
modal expansion, it is possible to transform the partial differential equation 
governing the motion of a distributed structure into a set of simultaneous 
ordinary differential equations, but the set of equations is in~inite, so that 
the question as to how to compute control gains for systems of infinite order 
remains. To circumvent this difficulty, an approach commonly used is to dis
cretize the distributed structure, i.e., to represent it by a discrete model 
of finite order. This approach has several undesirable effects. In the first 
place, the control design tends to acquire all the characteristics of a dis-
crete system. For example, distributed controls and distributed sensors must 
be ruled out immediately, as they do not fit in a finite-dimensional vector 
space formulation of modern control theory. Consistent with a discrete (-in-

*Supported in part by the NASA Cooperative Agreement NAG-1-225 
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space) theory, one must control structures by means of discrete-point actua
tors and sensors (see, for example, Refs. 3-7). Another drawback is that a 
discretized model is only an approximate model, so that if discretization of a 
distributed structure is not done with care, serious errors can be introduced, 
leading to an unstable system. From the above, we conclude that the choice of 
the mathematical model is dictated by limitations in the control theory and 
not by prudent structural modeling. 

More often than not control of discrete (or discretized) systems repre
sents one form or another of modal control (Refs. 8,9). The idea behind modal 
control is that one can control the structure by controlling its modes. In 
theory, one can control all the modeled modes of a discretized system with a 
single actuator and observe all these modes with a single sensor, provided the 
controllability and observability requirements are satisfied. In practice, 
problems can arise. Some of them relate to the control system performance and 
other to the computational algorithms for the control gains. Similar problems 
exist for multi input-multi output systems. In the case in which a discre
tized model is used to design controls for a distributed structure, one can 
encounter problems of control and observation spillover (Ref. 3). These 
problems can be attributed directly to the insistence on using discrete actu
ators and sensors to control a distributed structure. 

It is standard practice in modal control to express the state of the 
system in terms of modal coordinates and velocities, in which case the formu
lation is in terms of the so-called modal equations of motion. In the case of 
open-loop controls the modal equations are decoupled. In feedback controls, 
however, the controls depend in general on all the controlled variables, so 
that the feedback controls recouple the modal equations of motion. We refer 
to this case as coupled controls. The approaches used in Refs. 3-7 belong 
basically in this category. 

Another approach to modal control, known as the independent modal-space 
control method (Refs. 10-13), remains more faithful to the original structure. 
Indeed, the method can be used for distributed structures or for discretized 
models of distributed structures. The method consists of designing controls 
so that the modal equations of motion remain decoupled, thus reducing the 
control problem to the design of modal controls for a set of independent 
second-order modal equations. Then, the actual controls are synthesized from 
the modal controls via a simple transformation. Because the controls are 
designed for second-order systems only, the method permits a wider choice of 
control techniques and most of the problems associated with coupled controls 
disappear. It should be pointed out that, in the case of the independent 
modal-control method, if one chooses to work with a discretized model, then 
this choice is dictated by the inability of computing the entire infinity of 
modes of the structure and not by the inability of designing distributed 
controls. Of course, if all the modes of the structure are known, then no 
discretization is necessary. The independent modal-space control method is 
ideally suited for distributed controls, in which case no control spillover 
exists (Ref. 13). A similar statement can be made regarding observation 
spillover, provided one is able to measure (or estimate) the state at every 
point of the distributed structure. 
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This paper begins with the derivation of the equations of motion for 
distributed structures and follows with a discussion of proper modeling, with 
special emphasis on the case in which the eigenvalue problem can be solved 
only approximately. Some fine points concerning the nature of the approximate 
eigensolution of distributed structures are presented and their implications 
in model discretization are explored. Then, attention is given to various 
problems inherent in the control of distributed structures by means of dis
crete models. Finally, the independent modal-space control method is reexam
ined in the context of control of distributed structures. 

EQUATIONS OF MOTION FOR THE STRUCTURE 

The equations of motion for a distributed structure can be. derived by 
means of the extended Hamilton principle (Ref. 1). This requires expressions 
for the kinetic energy, the potential energy and the virtual work. Denoting 
the displacement vector of any nominal point P in the structure by u(P,t), 
the kinetic energy can be written as 

1 f °To 
T = 2" m~ ~ dD 

D 
(1) 

where m = m(P) is the mass density and D is the domain of extension of the 
structure. The potential energy can be written in the symbolic form 

v (2) 

where [u,u] denotes an energy inner product (Ref. 2). Moreover, denoting the 
distrib~t~d force vector by f(P,t), the virtual work has the expression 

oW = f fT ou dD 
D 

(3) 

where ou is the virtual displacement vector. Note that in the case of feed
back co~trols, the force vector f does not depend explici~~y ~nTthe position P 
and time t but only implicitly through the state vector [u u] . 

The extended Hamilton principle has the form (Ref. 1 ) 

t2 
f (oL + oW)dt = 0, ou(P,t) 
tl 

o , t PED (4) 

where L = T-V is the Lagrangian. Inserting Eqs. (1-3) into Eq. (4) and fol
lowing the usual steps, we obtain the partial differential equation of motion 
for the structure 
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Lu + Mu = f , PED (5) 
~ ~ ~ 

where L is a differential operator matrix with entries of order 2p and 
M is a mass matrix. The displacement vector u is subject to the boundary 
conditions 

B.u = 0 , PES; i=1,2, •.. ~p 
l~ 

(6) 

where B. are differential operator matrices with entries of maximum order 2p-l 
and S i§ the set of points defining the boundary of D. 

The relatively simple formulation (5-6) may be a little misleading. In
deed, in general a structure represents an assemblage of substructures acting 
together as a whole, so that the operator L may vary from one substructure to 
another and the operators B. may vary from one boundary to another. It should 
be clear that control of a aistributed-parameter system using Eqs. (5-6) di
rectly is not possible, even for a structure of moderate complexity. This 
points to modal control as the only viable alternative. The idea behind modal 
control is that one can control a structure by controlling its modes. Before 
modal control can be implemented, it is necessary to compute the modes of the 
structure. 

STRUCTURE DISCRETIZATION 

As mentioned above, the problem defined by Eqs. (5-6) in general is too 
complex to permit closed-form solution. This applies not only to the control 
problem but also to the open-loop eigenvalue problem. Hence, we seek a solu
tion for the modes of the structure by an approximate method, which requires 
the discretization of the structure. To this end, we use the finite element 
method, which can be regarded as a variant of the Rayleigh-Ritz method, at 
least in the case of structures. 

Let us assume that the motion of the structure can be described in terms 
of n nodal coordinates q.(t) (j = 1,2, ... ,n). In general, the nodal coordi
nates consist of both translatfons and rotations. Introducing the n-vector 
q(t) = [ql(t) q2(t) •.. q (t)] , the displacement vector u(P,t) can be expres
sed in terms of the nodalncoordinates by means of the linear transformation 

u(P,t) = L(P)q(t) (7) 

where L(P) is a matrix of interpolation functions (Ref. 2). Introducing Eq. 
(7) into Eqs. (1-2), we obtain the discretized kinetic energy and potential 
energy in the form 

T 
1 oT 0 

2 q Mq , V 

where 

1 T 
- q Kq 2 ~ 

(8a,b) 
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M = JDLT(P)ML(P) dD(P), K = [L(P), L(P)] (9a,b) 

are n x n mass and stiffness matrices. Both M and K are symmetric. Moreover, 
M is positive definite and K is nonnegative, i.e., it can be either positive 
definite or positive semidefinite, the latter being the case when the struc
ture admits rigid-body modes. In addition, inserting Eq. (7) into Eq. (3), we 
obtain the discretized virtual work 

where 

T oW =9 os 

Q J LT(P)f(P,t) dD(P) 
D 

(10) 

(11) 

is a nodal force vector and oq is the virtual nodal displacement vector. 

The extended Hamilton principle remains in the 
varied path is now subject to oq = 0 , t = t

l
, t

2
• 

show that use of the principle,~in conjunction wlth 

Mq + Kq =: Q 

form (4), except that the 
It is not difficult to 
Eqs. (9) and (10), yields 

(12) 

which represents a set of simultaneous ordinary differential equations of 
motion. Hence, the effect of using the finite element method is to reduce a 
distributed structure with an infinite number of degrees of freedom to a 
discrete model with only n degrees of freedom. But, whereas Eq. (12) has the 
appearance of a discrete system it is in fact only a discretized system meant 
to represent a distributed structure. Hence, the process leading from Eq. (5) 
to Eq. (12) is a discretization and truncation process simultaneously. Indeed 
it should be very clear that a discretized model of a distributed structure is 
already a truncated model. The question remains to what extent the discre
tized model is representative of the actual distributed structure. We propose 
to examine this question in the next section. 

THE NATURE OF THE DISCRETIZED MODEL 

As pointed out above, the system described by Eq. (12) is not truly a 
discrete system but only a discretized and truncated model of a distributed 
structure. It: is commonly believed that by increasing n the discretized model 
becomes a completely faithful representation of the distributed structure. It 
turns out that: this is a mistaken belief, as we are about to show. 

Let us consider the eigenvalue problem associated with Eq. (12) and write 
it in the form 

K(n) (n) 
Sr 

,,(n) M(n) (n) 
r ~r' r=1,2, ••• , n (13) 
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where A(n) and q(n) (r=1,2, •.. ,n) are eigenvalues and eigenvectors, respec
tively.r The sup~rscript (n) indicates that the eigenvalue problem (13) cor
responds to a finite-dimensional model possessing n degrees of freedom. It is 
not difficult to show that all the eigenvalues are real and nonnegative. Next, 
let us consider a model possessing n + 1 degrees of freedom and denote the 
associated eigenvalue problem by the superscript (n+l), so that 

K(n+l) (n+l) 
~r (14) 

The question arises as to how the eigensolution of the n-degree-of-freedom 
model relates to the eigensolution of the (n+l)-degree-of-freedom model. 
The answer is provided by the inclusion principle (Ref. 2). Assuming that 
the two sets of eigenvalues are arranged in ascending order of magnitude, 

A(n)< A(n)< < A (n) and A(n+l)< A (n+l)< < A(n+l) the inclusion prin-
1 - 2 - .•. - n 1 - 2 -' .• - n+ 1 ' 

ciple stt~rS that the eigenvalues A~n+l) (r=1,2, •.. ,n+l) bracket the eigen
values A (r=1,2, •.. ,n), or 

r 

A (n+l) < A (n) <A (n+l) < A (n) < .••• A (n+l) < A (n) < A (n+l) (15) 
1 1 - 2 - 2 n n n+ 1 

The eigenvalues A~n), A;n), (n) 
••• , A , n computed on the basis of the dis-

cretized model, are only approximations to the lowest n eigenvalues AI' A2 , 
..• , A of the actual structure. Hence, the question arises as to how the 

n 

"computed eigenvalues" of the discretized model relate to the "actual eigen
values" of the distributed structure. In this regard, it can be stated that 
(Ref. 2 ) 

lim A (n) = A 1 2 r r' r= , , ..• , n (16) 

n-+ oo 

Moreover, the computed eigenvalues approach the actual eigenvalues from above 
as n tends to infinity. 

The fact that the computed eigenvalues approach the actual eigenvalues 
asymptotically as n -+ 00 is very reassuring, but in practice n is finite and 
not infinite. As it turns out, when n is finite the situation is not nearly 
as good. In particular, whereas the lower computed eigenvalues tend to be 
relatively good approximations to the actual eigenvalues, accuracy deterio
rates as the mode number increases to the extent that the higher computed 
eigenvalues can be grossly in error, sometimes the error being of the order of 
several hundred percent. Paradoxically, this is true regardless how large n 
is. Indeed, EY increasing ~~ computed eigenvalues tend!£ become accurate, 
but at the same time new computed eigenvalues are added at the upper end of 
the spectrum, and the new ones tend to be wildly in error. Hence, no dis
cretized model ~ yield ~ totally accurate representation of ~ distributed 
structure. This fact must be taken into account in designing a control sys
tem, as the object is to control the structure itself and not the model. 
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MODAL EQUATIONS OF MOTION FOR CONTROL 

In one form or another, virtually all approaches to the control of 
structures, whether distributed or discrete, are based on modal control. 
The idea is that if one controls the modes of a structure, then in essence 
one controls the structure. To design modal controls, it is convenient to 
transform the nodal equations of motion into modal equations of motion. 
This necessitates the structure eigenvalue and eigenfunctions, which in turn 
requires the solution of the eigenvalue problem for the structure. 

More often than not, no closed-form solution of the eigenvalue problem 
exists, so that an approximate solution is frequently necessary. This 
approximate eigensolution is based on a discretized system, and is expressed 
in fact by Eq. (13). Hence, dropping the superscript (n), we denote the 
computed eigenvalues by A and the computed eigenvectors by q (r=1,2, •.• ,n). 
The computed eigenvectorsrcan be used to determine the comput~d eigenfunc
tions ¢(P) associated with the n lowest modes of vibration by writing 

¢ (P) = L(P)q , r=1,2, ••• ,n 
~r ~r 

(17) 

where L(P) is the matrix of interpolation functions of Eq. (7). 

Because the structure is self-adjoint, the eigenfunctions ¢ (P)(r=1,2, 
•.• ,n) are orthogonal. The orthogonality conditions can be demo~strated by 
recalling that the eigenvalue problem (13) is defined in terms of two real 
symmetric matrices, at least one of which is positive definite. The impli
cation is that the eigenvectors q (r=1,2, ••• ,n) are orthogonal (Ref. 2). 
They can be normalized so as to s~tisfy 

(18a, b) 

where ware the computed natural frequencies. Then, considering Eqs. (9a) 
and (17) one can write 

(19) 

so that, in view of Eq. (18a), the eigenfunctions satisfy the orthonormality 
relations 

f ~~ M~r dD = 6rs ' r,s 
D 

1,2, ..• ,n 

Moreover, Eqs. (9b) and (17) permit us to write 

g![L(P), L(P)]gr = g!Kg r 

7 

(20) 

(21) 



so that, in view of Eq. (18b), the eigenfunctions also satisfy the orthorma
lity relations 

[,t.. , ,t.. ] = A 8 , r, s= 1, 2 , ..• , n 
':t:s ':t:r r rs (22) 

Observing, however, that the operator L in Eq. (5) is related to the energy 
inner product by 

J T v Lu dD [v, u] (23) 
D 

it follows that the orthormality relations (22) can be replaced by 

f cpTLCP dD = A 8 , r,s=1,2, .•• ,n 
D~s ~r r rs 

(24) 

Note that the relation (23) is obtained via integrations by parts during 
which the boundary conditions (6) are used (Ref. 2 ). 

From the computed eigenvalues A and computed eigenfunctions cP (P)(r=1,2, 
..•. ,n) only a fraction can be expected to be accurate estimates orr the true 
eigenvalues and eigenfunctions of the distributed structure. As a rule of 
thumb, less· than one half of the computed ones are accurate. We consider the 
case in which we are interested in a discretized mathematical model with N 
degrees of freedom for control design, so that we must insist that at least N 
computed eigenvalues and eigenvectors are accurate. This implies that the 
algebraic eigenvalue problem to be solved must be of order n »N. Then, we 
wish to expand the displacement vector u(P,t) into the series 

u(P,t) 
N 
L: cP (P)u (t) 

~r r 
r=l 

(25) 

where u (t) are known as modal coordinates. Equation (25) is known as the 
expansi6n theorem (Ref. 2). Introducing the modal matrix 

(26) 

and the modal vector 

(27) 

Eq. (25) can be rewritten in the matrix form 

u(p,t) ¢(P)u(t) (28) 
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The modal matrix ~(P) permits us to write all the orthonormality relations, 
Eqs. (20) and (24), in the compact' form 

(29a,b) 

where I is the unit matrix of order Nand 

(30) 

is the diagonal matrix of eigenvalues, ythere A is also of order N. Introducing 
Eq. (28) into Eq. (5), multiplying by ~", integrating over the domain D and 
considering Eqs. (29), we obtain the modal equations 

where 

u(t) + Au(t) f(t) 

f(t) = [fl(t) f
2

(t) ..• f
N

(t)]T = f ¢T(P)f(P,t) dD 
D 

(31) 

(32) 

is the N-dimensional modal control vector. Note that the components of the 
modal control vector have the explicit expressions 

f (t) = r ~T(P)f(P,t) dD , r 
r ' D ~r ~ 

l,2, ••• ,N (33) 

The control problem consists of designing a force vector f(P,t) so as to 
drive any undesirable disturbance to zero. 

COUPLED MODAL CONTROL 

Although the modal equations (31) have the appearance of a set of indepen
dent equations, they are in fact not independent. Indeed, the notation f(t) 
for the modal control vector is misleading, as for feedback control the ~ 
vector f depends only implicitly on time and it depends explicitly on the 
system state, or 

f = f(u(t), ~(t» (34) 
"V ................ ........ 

In the general case, the feedback control vector f couples the modal equations 
of motion. We refer to this case as coupled modal ,control. In using a 
discrete system to design controls for a distributed system, the controls 
acquire discrete characteristics. As a result, it ,is impossible to design ~ 
distributed control vector f(P,t) ~ control ~ system in coupled form. 
Hence, in the ~ of coupled controls ~ must ~,discrete actuators. 

In view of the above, we assume that the control is implemented by means 

9 



.of M actuators acting at the discrete points P=P.(j=1,2, .•. ,M). Discrete 
forces can be treated as distributed by writing J 

f(P,t) 
M 
L: 

j=l 
F.(t)o(P-P.) 

J J 
(35) 

where o(P-P.) are spatial Dirac delta functions and F.(t) are actuator force 
amplitude v~ctors. Introducing Eq. (35) into Eq. (323, we obtain the modal 
controls 

M T M T 
f (t)= L: f <P (P)F.(t)o(P-P.) dD= L: <P (P.)F.(t), r=1,2,... (36) 
~r j=l D ~r ~J J j=l ~r J ~J 

and we observe that the index r in ,Eqs. (36) has no upper limit, at least in 
theory. This implies that the actuator forces F. (j=1,2, ••. ,M) generate not 
only modal control forces f (r=1,2, •.. ,N) actin~ on the modeled modes but 
also modal forces f (r=N+l,N+2, .•. ) acting on the higher unmodeled modes. 
This fact is referr~d to as control spillover into the unmodeled modes. The 
assumption is that the number N of modeled modes is sufficiently large that 
control spillover into the unmodeled modes is insignificant. 

Introducing the actual control vector 

F(t) (37) 

and the modal participation matrix for the modeled modes 

(38) 

the modal control vector f can be written in terms of the actual control 
vector F in the form 

f(t) = BF(t) (39) 
~ ~ 

so that the modal equations, Eq. (31), become 

u(t) + Au(t) = BF(t) (40) 

In the above formulation, it is assumed that there are N modeled modes. 
Yet, one may wish to control only a smaller number of these modes. Hence, we 
wish to distinguish between two classes of modeled modes, namely, controlled 
modes and uncontrolled modes, where the latter are referred to at times as 
residual modes. We denote the controlled and residual modes by the subscripts 
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C and R, respectively, and assume that there are Nc controlled modes and NR 
residual modes, NC + NR = N. Hence, Eq. (40) can De written in the parti
tioned form 

(41) 

where the notation is self-evident. 

In modal control, the actual feedback control vector F is assumed to 
depend on the modal displacements and modal velocities corresponding to the 
controlled modes only, or 

The force vector F can be determined by various techniques, such as pole 
allocation (Refs.~8,9) or optimal control (Refs. 14,15). We discuss these 
techniques later in this paper. 

Although the actuators force vector F is designed so as to regulate the 
controlled modes only, in general these forces will excite the residual 
modes. Indeed, from Eq. (39), we can write 

Equation (43b) shows clearly that there are modal forces acting on the 
residual modes, giving rise to so-called control spillover into the residual 
modes (Ref. 3). Some attempts have been made to suppress the residual modes 
(Ref. 5), but questions of implementation remain. Note that to eliminate 
this spillover, one must design ~ so that ~R = ~. 

For linear controls, the actual controls are assumed to be proportional 
to the modal displacements and velocities, or 

F (44) 

where G and G
2 

are control gain matrices that can be determined by one of 
the metfiods mentioned above. This permits us to write the closed-loop modal 
equations in the form 

(45) 
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It is clear from Eq. (45) the closed-loop poles of the controlled modes are 
determined by -BCGl and AC-BCG2 and the closed-loop poles of the residual 
modes are the same as the open-loop poles of the residual modes, so that the 
latter are not affected by the controls. It follows that control spillover 
into the residual modes cannot destabilize these modes. Although not specif
ically included here, the same conclusion is valid for the unmodeled modes. 

CONTROL IMPLEMENTATION USING OBSERVERS 

As pointed out by Eq. (42), or Eq. (44), to generate the actual feedback 
forces, one must know the modal displacements and velocities associated with 
the controlled modes at all times. Sensors, however, measure actual displace
ments and velocities, so that the question remains as to how to extract the 
modal displacements and velocities from actual measurements. It is customary 
to assume that sensors are discrete devices producing measurements at discrete 
points in the structure. Later in this paper, we will reexamine this assump
tion. 

Let us consider the case in which K sensors measure displacements and 
velocities at the discrete points P=Pi (i=1,2, •.• ,K). Denoting the sensors 
signals by y.(t), we can write for displacements and velocity measurements 

~~ 

y.(t) = u(P.,t), y.(t) = ~(P.,t), i=1,2, ••• ,K 
~1 ~ ~ ~~ ~ 1 

(46a,b) 

respectively. Once again we propose to ignore the unmodeled modes on the 
grounds that their contribution to the overall motion is insignificant, so 
that the measurements are assumed to contain contributions from the controlled 
and residual modes only. Inserting Eq. (28) into Eqs. (47), we obtain 

¢(P.)~(t), i=1,2, ... ,K 
1 ~ 

(47a,b) 

where ¢(P.) is the modal matrix evaluated at P=P., u(t) is the modal displace
ment vect6r and ~(t) is the modal velocity vectot. ~Introducing the matrix 

cP (P 1) 

C 
cP (P 2) 

[CC CR] (48) 
-------

CP(PK) 

where the partitioning is obvious, as well as the measurement vector 

yet) 
T T T 

l2(t) ... lK(t)] (49) 

12 



Eqs. (47) can be rewritten as 

yet) 

For feedback control, we only need uC(t) and ~ (t), which can be extracted 
from measurements of actual displacements and ve1oc~ties by means of an 
observer, or ~;tate estimator (Ref. 16). To this end, it is convenient to re
write the equations of motion in state form. Hence, let us define the con
trolled and residual modal state vectors 

the associated modal control vectors 

TIT 
V == [f I 0 ] 
~R ~R I ~ 

the coefficient matrices 

where I are identity matrices of appropriate order, and 

Then, Eq. (41) can be rewritten in the state form 

(5la,b) 

(52a,b) 

(53a,b) 

(54a,b) 

(55) 

as indicated by Eq. (42), the actual control vector F depends on the controlled 
state, or 

F = F (v ) 
~ ~ ~C 

(56) 
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For linear control, we obtain from Eq. (44) 

(57) 

where 

(58) 

is the control gain matrix. The purpose of the observer is to extract the 
state vector ~C from the system output, namely, the measurement vector y. 
However, the output vector y contains contributions not only from the con
trolled state Vc but also from the residual state v , so that 

~ ~R 

, 
y(t) = CC~C + CR~R (59) 

, , 
where Cc and CR are matrices representing combinations of Cc and CR' respec
tively, and null matrices, depending on the type of measurements used. 

Observers are dynamical systems similar to the actual systems and receiv
ing as input the output of the actual system. The observer eigenvalues are 
chosen so that the observer state approaches the state of the actual system 
asymptotically. The term actual system must be interpreted here as the 
discretized model and not the distributed system. Observers can be designed 
in various forms, but their main features are the same for all designs. We 
choose the observer in the form 

(60a) 

,A ,A 
y(t) CC~c(t) + CRvR(t) (60b) 

A 

where ~C and ~R are estimates of ~C and ~R' respectively, Kc and KR ar~ obser

ver gain matrices, chosen so that ~C approaches ~C exponentially, and ~ 

is the observer output. An observer of the type (60) is known as a Luenberger 
observer (Ref. 16). Equations (60) are similar to Eqs. (13) of Ref. 3, with 
the exception that here the residual modes are included in the observer 
dynamics and system output, whereas they are left out in Ref. 3. Excluding 
the residual modes from the observer dynamics and system output is equivalent 
to treating them as unmodeled. We examine the implications of this shortly. 

In the feedback control vector F depends on the controlled state v . 
However, the observer produces the estimated state ~C and not the actuar 
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For linear control, we obtain from Eq. (44) 
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where 
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is the control gain matrix. The purpose of the observer is to extract the 
state vector Vc from the system output, namely, the measurement vector y. 
However, the output vector y contains contributions not only from the con
trolled state ~C but also from the residual state YR' so that 
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where ~C and YR are estimates of Yc and YR' respectively, Kc and KR ar~ obser

ver gain matrices, chosen so that ~c approaches Yc exponentially, and ~ 

is the observer output. An observer of the type (60) is known as a Luenberger 
observer (Ref. 16). Equations (60) are similar to Eqs. (13) of Ref. 3, with 
the exception that here the residual modes are included in the observer 
dynamics and system output, whereas they are left out in Ref. 3. Excluding 
the residual modes from the observer dynamics and system output is equivalent 
to treating them as unmodeled. We examine the implications of this shortly. 

In the feedback control vector F depends on the controlled state v . 
However, the observer produces the estimated state ~C and not the actuaX 
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observability matrix 

, 2N 'T] 
: (A~) C-l Cc (68) 

we can state the theorem: For the state Vc to. be completely observable, it 
is necessary ~md sufficient that the matrIx observability matrix V be of 
rank 2N (Ref. 16). In the case under consideration, the observability matrix 
reduces to 

V = [~~-!---~---!-=~:~--~---~- i ---- !--N--~-"--J o I -A CT , 0 A2CT , A C-l CT 
I CC, ~ CC I, 'C C 
, I 

(69) 

Hence, the s t1~ v C is completely observable if E£ column of Cc is zero. 
Physically, this Implies that lack of observability can occur only if all the 
sensors are located at the nodal points of a given mode. Clearly, the problem 
of observabi1:~ disappears as the number of sensors increases. 

MODAL FILTERS (IN SPACE) 

As shown earlier, the purpose of a Luenberger observer is to generate an 
estimate Vc of the modal state Vc from the system output. But a Luenberger 
observer Is strictly a discrete~system device, which does not consider the 
distributed nature of a structure. In particular, by writing the output in 
the form (50)" no advantage is taken of the structure characteristics, as 
reflected in the orthogonality of modes. It turns out that, by taking advan
tage of the orthogonality of modes, the modal state can be estimated in a 
more direct way, thus obviating the need for a Luenberger observer. Or, by 
measuring displacements alone, one can use the same direct procedure to 
estimate the modal displacements and then use a Luenberger observer to esti
mate the modal velocities. 

Equation (25), expanding the displacement vector u(P,t) in a series of 
the structure eigenfunctions multiplied by modal coordInates, is only the 
first part of the expansion theorem. The second part of the expansion theorem 
relies on the orthonormality of modes, Eqs. (20), and permits the computation 
of the modal eoordinates from the actual displacements, as follows: 

u (t) =< 

r 
J ¢T(P)Mu(P,t) dD, ~ (t) = f ¢T(P)M~(P,t) dD, r=1,2, .•. (70a,b) 
D~r ~ r D~r ~ 

Equations (70) filter out the modal coordinates u (t) and modal velocities 
• r) u (t) (r=1,2, .•• ) from measurements of the actual displacement vector u(P,t 
afrd actual velocity vector ~(P,t) at every point P of the structure ana for 
all times t. Hence, they can be regarded as (spatial) modal filters. It 
should be pointed out that in the case of distributed measurements, as postu
lated in Eqs. (70), observability is guaranteed Ex. definition. Indeed, 
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observability is a concept peculiar to discrete sensors, particularly when 
their number is small. 

In the case in which distributed measurements are not available, we must 
consider the problem of estimating u (t) and ~ (t) (r=l,2, ••• ,Ne) from discrete 
measurements. To this end, let us a§sume thatrthere are K sensors capable of 
measuring displacements, velocities, angular displacements and angular veloci
ties at the discrete points P = P. (i~1,2, .•• ,K). Then, the question can be 
posed simply as to th~number of ~easureme~ts necessary to generate accurate 
estimates u(P,t) and l1(P,t) of u(P,t) and u(P,t). This is not a new question, 
as the question has been asked trequently In the finite element method. In 
particular, the question is to the number of finite elements that must be 
used to approximate the displacement profile of a certain distributed struc
ture, given a- set of interpolation function and the values of the displacement 
function at the boundaries of the finite elements. Of course, the number 
depends on the type of functions to be approximated, the type of interpolation 
functions and the desired accuracy. In our case, we wish to generate approxi
mate functions u(P,t) and u(P,t) of sufficient accuracy to permit accurate 
estimates u (t)~and u (t) of the first Ne modal displacements u (t) and modal 
velocities fr (t). Hefrce, in the case of discrete measurements,rthe modal 
filters can ~e written in the form 

u (t) 
~r 

T A A J ¢ (p)M u(P,t)dD, ~ (t) 
D ~r ~ r 

T A J ¢ (p)M ~(P,t)dD, r=1,2, ••• ,Ne D~r -~ 

(lla,b) 

To illustrate the procedure, let us assume that the domain D is divided into 
K-1 elements D.(i=l,2, •.• ,K-l) and denote the displacement and velocity vec
tors in Di by ~i(P,t) and ~(P,t). Moreo~er, denoting the vector of nodal 
displacement measurements at the boundarles of D. by y.(t), where y.(t) 
includes translational and rotational coordinate~, we~~an write ~1 

u.(P,t) 
~1 

T -;- T· 
L (P)y.(t), u.(P,t) = L (P)y.(t), P € D., i=l,2, ••• ,K-l 

~1 ~l ~1 1 

(72a, b) 
where L(P) is a matrix of interpolation functions of the same type as that 
used in Eq. (7). Then, Eqs. (71) can be replaced by 

A K-1 
J ¢T(P)M~.(P,t)dD 

K-l T 
u (t) = L: L: I .y.(t), r=1,2, .•• ,Ne r i=l 

~r ~1 i=l~rl~l D. 
(73a) 

1 

A K-l 
J ¢T(P)M~.(P,t)dD 

K-1 . T • 
r=1,2, ..• ,Ne u (t) L: L: I .y.(t), 

~r ~r ~1 i=l ~rl~l i=l D. 
(73b) 

1 

where 
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(74) 

are integrals that can be computed off-line. Hence, the entire process of 
estimating modal coordinates and velocities has been reduced to ~ simple
summation ~ vector products. These estimates can be produced almost instant
aneously, as soon as the measurements become available. 

It is perhaps appropriate to point out that the use of discrete measure
ments in conjunction with the interpolation scheme described above results in 
estimated measurements that must be regarded as distributed. Hence, observa
bility of the first Nc modes is virtually guaranteed. 

As mentioned earlier, if only one type of measurement is available, such 
as displacements only or velocities only, then one can use NC independent 
second·-order modal Luenberger observers to estimate the other type of variables 
needed to complete the estimate ~C of the state ~C. 

A comparison between Luenberger observers and modal filters appears in 
order. Clearly, Luenberge~ observers must be used when only ~ limited number 
of sensors is available. In fact, Luenberger observers can be used in con
junction with a single sensor. Questions of observability arise, however, as 
the location of the single sensor can be critical. Then, there is the ques
tion of selecting observer gains, for which there are no good criteria. More
over, convergence requires a little time, depending on the observer poles. 
By contrast, modal filters require a larger number of sensors, the number 
depending on the highest mode targeted for control, as the number must be such 
as to permit reasonably accurate finite element approximation to that mode. 
If the number of sensors presents no objections, modal filters are likely to 
be far superior-to Luenberger observ-ers, as they ~sent ~ concept that -
takes Jull advantage ~ the dynamic characteristics of the distributed 
structure. Indeed, modal filters screen out quite efficiently contaminations 
from the higher uncontrolled modes. The reason for this lies in the orthogon
ality property, so that higher modes are filtered out regardless whether they 
are known or not. Hence, clear advantages of modal filters are that they ar~ 
virtually fre~~~ observation spillover and that the relatively large number 
of sensors ~~d precludes questions of observability. Finally, modal filters 
involve only simple on-line operations, such as additions and multiplications, 
so that they provide virtual instantaneous estimation o( the modal coordinates 
and velocities required for feedback. 

INDEPENDENT MODAL-SPACE CONTROL (IMSC) 

The independent modal·-space contract method is basically a method for con
trolling struetures, or any other system admitting independent modes. It can 
be used for distributed systems, for discretized models of distributed systems, 
or for purely discrete systems (if indeed such systems do exist). When used 
for discretized models, it is for entirely different reasons than in the case 
of coupled controls. Indeed, in coupled controls a finite-dimensional model 
must be used because the control gain matrix must have finite dimensions. On 
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the other hand, the main consideration in choosing a discretized model in the 
IMSC is whether a closed-form eigensolution for the distributed structure exists 
or not. Moreover, in the IMSC method it is possible to design distributed 
controls, whereas in coupled controls it is not. It will prove convenient to 
divide the discussion of the IMSC method according to the type of actuators 
used. 

i. Control by distributed actuators 

Let us first assume that a closed-form eigensolution for the distributed 
structure exists, so that the entire infinity of modes is known, and rewrite 
Eqs. (31) as an infinite set of second-order differential equations of the 
form 

2 
u + w u = f , r=1,2, ••• r r r r (75) 

Note that in this case the entire infinity of modes is modeled, and there are 
no unmodeled modes. 

In coupled controls, the modal feedback controls f depend in general on 
all the controlled modal coordinates and velocities, sorthat in such a case the 
feedback controls recouple the equations. Here, we wish to consider the case 
in which the feedback controls have the special form 

(76) 

Because the modal control for the rth mode depends only on the rth modal coor
dinate u and the rth modal velocity ~ , Eqs. (75) become completely decoupled, 
i.e., th~y become both internally (plaftt-) and externally (controller-) de
coupled. Hence, in this case Eqs. (75) represent an infinite set of independent 
modal equations. The essence of the independent modal-space control (IMSC) 
method is to design modal controls of the type (76). There is no restriction on 
the form of f , so that the modal controls f can be linear or nonlinear func~ 
tions of the ~odal coord~t~and/or modal veioCity-~--.- In coupled controls 
one deSIgns the actual controlsrdirectly:--BY contrast, In the IMSC method one 
designs first the modal controls and then synthesizes the actual controls from 
the modal controls. Indeed, in the case of distributed controls one can synthe
size the actual control force f(P,t) from the modal controls f by means of the 
formula r 

f(P,t) = 00 

L M(p)~ (P)f (t) 
1 

~r r r= 
(77) 

In using the IMSC method, one can control the entire infinity of modes or 
only a finite number of modes. If only NC modes are to be controlled, then one 
can simply take fr f 0 for r=1,2, .•• ,NC and fr = 0 for r=Nc + 1, NC + 2, •••• 
Clearly, because all modes are modeled, there are only two classes of modes, 
controlled and uncontrolled. Moreover, because f = 0 for r = Nc + 1, Nc + 2, 
••• , there is E£ control spillover into the uncontrolled modes. 
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It must be pointed out that ~ system subject to distributed controls is 
completely controllable .!?z definition. Indeed, controllability is strictly a 
discrE!te controls concept having no counterpart in distributed controls. 

Next, let us consider the question of modal-space control implementation. 
In the case of linear controls, the modal controls can be taken as 

. 
f = G lu + G 2u , r=1,2, ••• r r . r r r (78) 

where G I and G 2 (r=1,2, ••• ) are modal gains, ordinarily taken as real nega
tive sc~ ars. In the case of nonlinear, on-off controls, the modal controls 
have the form 

f = {-k , u > d ; 0, I~ 1< d ~k , ~ < d } , r=1,2, ••• r r r r r r r r r (79) 

where k is a control gain parameter and 2d is the magnitude of the deadband 
region. r Then, the actual distributed contr~ls are synthesized from the modal 
controls by inserting Eq. (78) or Eqs. (79) into Eq. (77). Note that in the 
case of on-off modal controls, if a finite number of modes are controlled, 
then the actual control of any point P is quantized, i.e., it has the form of 
a staircase in time. 

The control of discretized structures by distributed actuators is very 
similar to the control of distributed structures. The only difference is that 
the modes corresponding to r > N are not known with sufficient accuracy. In 
this case, it is not possible to control the entire infinity of modes. Hence, 
if only NC modes are to be controlled, NC < N, then the synthesis can be 
carried out simply by using the formula 

NC 
f(P,t) L: M(p)¢ (P)f (t) 

1 
~r r 

r= 
(80) 

But, as shown by Eq. (77), distributed controls can accommodate an infinity of 
modal coordinates and not just NC' Taking f = 0 for r = NC + 1, NC + 2, ..• , 
formulas (77) and (80) become interchangeabl~, so that it does not matter 
whether the modes corresponding to r > N are known or not. But, because dis
tributed controls of the type (80) can be interpreted to mean that f = 0 for 
r > Nc ' it can be concluded that once again control spillover into tlie uncon
trolled modes does not exist. As in the case of distributed structures, in 
the case--;;f-~l"i~t~d models controlled EY distributed actuators contro""1=" 
labil1El of !he controlled modes is guaranteed. 

ii. Control by discrete actuators 

Distributed controls have many advantages over discrete controls. In many 
cases, however, distributed controls may not be feasible, so that one must 
consider control implementation by discrete actuators. 
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In the case of discrete actuators, only a finite number of modes can be 
controlled. Let us assume that N modes are to be controlled, which makes the 
infinity of remaining modes uncon~rolled. The task is to be carried out by 
means of M discrete actuators. As shown earlier, discrete forces can be 
treated as distributed by using Eq. (35). Denoting the vector of controlled 
modes by ~C and,the vector of modal control forces by !c and using Eq. (43a) , 
the modal equat10ns for the controlled modes can be wr1ften in the form 

(81) 

where F is the M-vector of actuator forces. As pointed out earlier, in the 
IMSC method one designs first the modal control vector fC and then synthesizes 
the actual control vect?r,~ from ~C. From the right side of Eq. (81), the 
synthesis amounts to wr1t1ng 

(82) 

where B~ is the pseudo-inverse of B. However, pseudo-inverses can be quite 
inaccurate. It is possible to avoi~ the use of pseudo-inverses by taking the 
dimension of ! to be the same as the dimension of !e' M = Ne , which implies 
that the number of actuators must be the same as the number of controlled 
modes-.-In this case, Be is a square matrix, sothat Eq. (82-)-reduces to 

F (83) 

Note that the controllability of ue is guaranteed when using IMSe, because one 
has always the freedom of placing~the actuators in ~ way that Be is nonsingu
lar. 

Next, let us examine the spillover problem. Denoting the infinite-dimen
sional vector of uncontrolled modes by ~u' the modal equations for the uncon
trolled modes can be written as 

(84) 

where the notation is obvious. Whereas fe depends on ue and ~e' this does not 
imply coupling between the controlled and the uncontrolled mOdes. Indeed, as 
far as the uncontrolled modes are concerned, the vector !e is a known function 
of time, so that Eq. (84) clearly indicates that control spillover into the 
uncontrolled modes does exist, but because the frequency components of !e 
are entirely different from the natural frequencies is Au' no instability due 
to resonance is possible. Because in IMSe one has the freedom of choosing the 
location of the actuators, spillover can be reduced by placing them so as not 
to excite critical modes. Moreover, because in IMSC control of modes are 
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designed independently for every mode, it is very easy to control any other 
mode that may be critical due to external factors, no matter how high the mode 
is. For example, one is able to control the first four modes and the twelth 
mode, without controlling any intermediate mode or modes higher than the 
twelfth. 

It: should be pointed out that control spillover into the uncontrolled 
modes always e.xists when using discrete actuators, and this is true regardless 
of the method of control. The only way control spillover can be eliminated is 
through the us.eof distributed controls, and this is possible only in conjunc
tion with IMSC: and not with coupled controls. It must also be pointed out 
that the control spillover is not as serious a problem as it may seem. In the 
first place, for most realistic structures higher modes ,are extremely difficult 
to excite, as this requires large amounts of energy. In addition, all struc-
tures have a c.ertain amount of inherent damping, which tends to attenuate higher 
modes at a higher rate than lower modes. 

Control of discretized structures by discrete actuators is carried out in 
exactly the same manner as the control of distributed structures by discrete 
actuators discussed above. Indeed, as long as only N are to be controlled, 
and these modes are known accurately, it does not mat~er whether the remaining 
modes are known or not. 

COMPUTATIONAL ALGORITHMS FOR CONTROL 

When attempting to control structures by techniques of modern control, 
one must be struck by the fact that structures are basically distributed 
systems and modern control theory is concerned with discrete systems. To 
circumvent thl.s problem, the standard approach has been to discretize the 
structure, whl.ch leads to a problem of a different kind. Complicated struc
tures require discretized models of relatively high order and computational 
algorithms work well for low-order systems but experience serious difficulties 
for hl.gh-order systems. This is the situation in the case of coupled controls. 
Because the IMSC method reduces the control problem to a set of l.ndependent 
secondo-order systems, its advantages should become immediately obvious. Not 
only is the IMSC unlikely to experience computational dl.fficulties with dl.scre
tized systems, but it is also able to design controls for distributed struct-
ures, if all l.ts modes are known. 

There are two commonly used techniques for computing the control gains in 
the case of ll.near controls, namely, the pole allocation method and optimal 
controls. The methods are discussed in the following in the context of coupled 
controls and IMSC. 

i. Pole allocation 

In the pole allocation method, the closed-loop poles Pk(k=I,2, .•• ,2NC) of 
the controlled modes are selected in advance, and then the control gains are 
computed so that the coefficient matrix of the closed-loop system possesses 
eigenvalues equal to the selected poles. First, we concentrate on coupled 
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controls. The application is relatively simple for single inputs. In this 
case, the state equation for the controlled modes reduces to 

(85) 

It is shown in Ref. 9 that the single input F(t) can be expressed in the form 

F(t) (86) 

where the gain vector g has the expression 

2Ne 
2NC 

'IT 1 
(Pk-A.)V. 

I 
k=l J ~J g = (87) 

j=l 
T ' 2NC 

v.be 'IT (Ak -Aj
) 

~J~ k=l 
k=rj 

in which ~j are the left eigenvectors of AC and Aj are the open-loop poles. 

In the case of multi-input controls, one must solve a set of 2NC nonlinear 
algebraic equations for the elements of the gain matrix GC (Ref. 9). In addi
tion to being nonlinear, the set of equations is undeterm1ned, so that no 
unique solution exists. The undetermined equations can be augmented by 
additional equations, leading to special types of controllers, such as "minimum
gain modal controllers" and "prescribed-gain modal controllers" (Ref. 9). 
Both techniques are not feasible for large-order systems. 

Another approach to computing gains for multi-input controllers is referred 
to as "dyadic control" and is due to Simon and Mitter (Ref. 8). The computa
tional difficulties associated with the nonlinear equations are circumvented 
by considering a special class of systems characterized by a control gain 
matrix G

C 
in the form of an outer (dyadic) product of two vectors, one of 

which (denoted by h) is chosen arbitrarily, but in a way so as to ensure the 
controllability of~the modes, and the other (a row vector) is determined as 
the feedback gain of a single-input system by using the closed-form solution 
of Ref. 8. The resulting gain matrix GC has always rank one, as its rows are 
proportional to one another, from which it follows that the control inputs are 
proportional to one another. The required control law can be shown to have 
the form 

F(t) 

2NC T 
kTII(Pk-A.)v. - J ~J 

(88) 
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Hence, dyadic control does not represent a genuine multi-input control, as it 
restricts the freedom of designing the components of F(t) as distinct func
tions of time. It can be concluded from the above that for the case of coupled 
controls, the. pole allocation method is recommended only when a single actuator 
is used and a low number of modes is controlled. 

In contrast to coupled controls, when theIMSC method is used computation 
of the modal controls for desired closed-loop poles is very easy. Denoting 
the closed-loop poles by 

(89) 

and inserting the modal forces f as given by Eqs. (78) into Eqs. (75), it is 
not difficult to verify that thermodal controls corresponding to the poles 
defined by Eqs. (89) have the form 

f 
r 

2a ~ + (li 
r r r 1,2, ... (90) 

Then, the actual controls are obtained by inserting Eqs. (90) into Eq. (71) 
for distributed controls and into Eq. (82) for discrete controls. 

ii. I,inear optimal control 

In the 
t

f 

case of coupled controls, we consider the performance index 

J = f 
o 

(91) 

where Q and R are weighting matrices. Minimization of J leads to the optimal 
control vector 

pet) (92) 

where K(t) is a 2NC x 2NC symmetric matrix satisfying the matrix Riccati 
equation 

(93) 

Because K is
2
symmetric, the number of simultaneous nonlinear equations to be 

solved is 2Nc + Nc ' For large Nc ' computational difficulties arise. 

In the steady-state case, K = 0, we obtain the algebraic matrix Riccati 
equation. Through a series of linear transformations, the solution of the 
steady-state Riccati equation can be reduced to the eigensolution of a real 
general matrix (Ref. 17). Even though stable eigensolution algorithms for 
general matrices exist, such algorithms are likely to experience difficulties 
for relatively high-order matrices. It is estimated that the solution of the 
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matrix Riccati equation requires in excess of 600N3 multiplications for con
vergence. Hence, the computational time increases ~ramatically with the 
number of controlled modes. 

In the transient case, the nonlinear Riccati equation can be transformed 
into a 4NC x 4N linear matrix equation, which must be integrated on-line. 
For large Nc ' tRis requires ample computer capacity, so that an on-line pro
cess may noE be possible. 

In the case of the IMse method, the performance index can be expressed as 
(Ref. 13) 

00 

J = L: J 
r=l r (94) 

where J are independent modal performance indices of the form r 

t f T 2 2 
J J (~rQr~r + f R Iw )dt, r = 1,2, ... r 0 r r r 

(95) 

in which v is the rth modal state, Q is a 2 x 2 diagonal matrix and R is a 
scalar. T6 compute the control gains; one must solve now only a set ofrinde
pendent 2 x 2 matrix Riccati equations. If only N modes are controlled by 
discrete actuators, then3the number of operations ~o determine the control 
forces is of the order Ne/2, which are required primarily to invert Be for 
use in Eq. (83). Hence, the computational time required by IMse is smaller by 
a factor of 1,200 compared with coupled controls. Of course, in the case of 
distributed controls by IMSC, no matrix inversion is necessary and the compu
tational time reduces dramatically. Note that in practice one controls only a 
finite number of modes. 

As a final item.of interest, let us compute the closed-loop poles for 
optimal control designed by the IMse method. From Ref. 13, we obtain the 
modal controls 

f = w2 (1- jl+R-l)u - w [2 (-1+ J 1+R-l )+R-l ] l/2~ , r=l, 2, • . . (96) 
r r r r r r r r 

so that, comparing Eqs. (90) and (96) and considering Eq. (89), we conclude 
that the closed-loop poles are 

r = 1,2, ... (97) 

From the above, it is evident that IMSC offers a wider choice of computa
tional techniques than coupled controls, including nonlinear control. IMSC 
and coupled controls have been compared on the basis of computational effort 
and control energy and IMSC was found superior (Ref. 18). In addition, in 
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the case of IMSC the control energy is independent of the location of the 
actuators (Ref. 19). Finally, the IMSC was demonstrated to be robust with 
respect to changes in the system parameters (Ref. 20). 

SUMMARY AND CONCLUSIONS -

In designing controls for structures, one is faced with the dilemma that 
structures are basically distributed-·parameter systems and the control theory is 
concerned almost exclusively with discrete systems. To overcome this impasse, 
the approach commonly used has been to represent a distributed structure by a 
discrete model, i.e., to discretize the structure. But, in discretizing a 
distributed structure, one must exercise extreme care, as no discretized model 
is capable of representing a distributed system with complete accuracy. 

Virtually all methods used for the control of structure represent one form 
or another of modal control, whereby one attempts to control the motion of a 
structure by eontrolling its modes. To this end, it is customary to express 
the motion of the structure in terms of modal coordinates. In the case of 
open-loop control, the modal equations of motion are independent. In the case 
of feedback controls, the feedback forces depend in general on the controlled 
modal coordinates and velocities, the modal equations of motion are recoupled 
by the feedbaek controls, unless the feedback controls are designed so as to 
preserve the independence of the modal equations. 

In implementing feedback controls, it is necessary to know the modal states 
for the modes to be controlled. These states can be estimated from the measured 
output of the structure by means of a Luenberger observer. In general, however, 
a Luenberger observer does not take advantage of the orthogormality property 
of the modes. If a sufficiently large number of sensors is used, the modal 
states can be estimated more directly by means of so-called modal filters. By 
contrast, the modal filters do take advantage of the orthogomality of modes. 
As a result, observation spillover is virtually eliminated. 

In general, the feedback controls depend on all the controlled states, 
giving rise to coupled controls. In using coupled controls, one is limited to 
linear controls, as nonlinear controls are not feasible. One of the major 
problems in designing coupled feedback controls is the computation of the 
control gains. In the first place, all computational algorithms for the 
determination of the control gains lead to finite-dimensional control gain 
matrices. This implies the assumption that the actuators are discrete in 
nature, which precludes distributed controls. Secondly the computational 
algori.thms encounter di.fficulties for control gain matrices of large dimensi.ons, 
so that one is limited in the number of modes that can be controlled and in the 
number of actuators that can be used. 

Another modal approach consists of designing controls independently for 
each mode and is known as the independent-modal-space control (IMSC) method. 
One of the advantages of IMSC is that it permits design of distributed controls, 
which eliminates control spillover completely. This makes it ideally suited for 
the control of flimsy structures, such as antenna membranes, for which discrete 
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actuators are likely to produce the difficulties mentioned above. 
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SPACE STRUCTURE VIBRATION MODES: HOW 
MAN'{ EXIST? WHICH ONES ARE IMPORTANT? 

Peter C. Hughes 
University of Toronto 

Toronto, Ontario, Canada M3H 5T6 

AUTHOR'S PREFACE 

To set the context of this paper, one or two prefatory remarks may be 
helpful. 

Last summer, at the Third "Blacksburg" Conference on this subject, I was 
surprised to hear several speakers refer to the "fact" that "real" structures 
have "an infinite number of modes." These remarks were usually accompanied by 
the strong implication that any (mathematical) model of a structure that did not 
possess this essential characteristic was quite suspect, and that such models 
would therefore be difficult for sophisticated persons to tolerate. In fairness 
to the structural analysis community, I should hasten to add that this Infinite 
Modes Assertion was made chiefly by speakers who, whatever else their achieve
ments, were not distinguished as structural analysts. If pressed to guess, I 
would suppose their backgrounds to be in controls and applied mathematics. 

In any case, repeated references to the Infinite Modes Assertion at 
Blacksburg lIT prompted my recollection of a similar occasion just six years ear
lier where, at what some call the Zeroth Blacksburg Conference (organized by ProL 
Peter Likins at UCLA), the kickoff panel session was titled "Primitive Methods." 
Not wishing to offend the members of that panel, Prof. Likins explained that in 
choosing this session title he was not implying that the panel members were them
selves primitive. Instead, he said, he was using the word "primitive" in a nar
row technical sense, to refer to methods based on "first principles." In essence, 
this meant the use of partial differential equations. 

In spite of Prof. Likinsldisclaimer, however, there remained the notion 
that if one's capability to analyse the dynamics of flexible space structures did 
not extend beyond PDE's, one was rather handicapped. That notion seemed sensible 
in 1975, and it seems even more sensible today. Unfortunately, this notion tends 
in practice to be inconsistent with the Infinite Modes Assertion (for reasons to 
be reviewed in this paper) . 

To return to Blacksburg m, I had the temerity during an end-of-conference 
panel session to question not only the importance of the Infinite Modes Assertion, 
but the Assertion itself. I would like to thank Dr. G. Rodriguez of JPL, who was 
present on that occasion, for the opportunity to expand on this theme at this 
workshop. 

HOl<! r·1ANY VIBRATION t10DES DOES A REAL STRUCTURE HAVE? 

A 'vibration mode' refers to a motion that is physically possible in the 
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absence of any external influence, and in which the elastic displacements u(r,t) 
at position!:. and time t all move in unison: all displacements pass through-zero 
simultaneously, and they all attain their maxima simultaneously. The concept of 
a 'vibration mode' is, in fact, a mathematical concept and can be stated most 
precisely and succinctly in mathematical form: if a distribution of elaitic dis
placements of the form 

(1) 

is autonomously possible, itr) is called the 'mode shape' and n(t) shows the time 
dependence shared by the elastic displacements at all points in the structure. 
It is plain from (1) that the idea of 'mode shape' is a special case of the more 
general mathematical idea of 'separation of variables'. 

Realization vs. Idealization 

Much of the following argument rests on the important distinction between 
a 'real' (i.e., physical) structure and someone's mathematical model of that real 
structure. This distinction is, of course, essential on a philosophical level: 
whether dealing with hi9h-energy particle physics, black holes, or flexible space 
structures, one is wise to discriminate between a symbolic representation of rea
lity and reality itself. However. one hardly needs to evoke the Scientific 
Method to justify the distinction between the real structure and its mathematical 
representation. First. there is an almost unlimited quantity of experimental 
data on the dynamics of real structures; virtually none of this data agrees ex
actly with 'theory'. Second. if one returns to the fundamental assumptions that 
underlie 'theory', it is apparent that a large number of idealizations are made. 
These assumptions and idealizations are normally reasonable and defensible, but 
collectively they do constitute a well-documented case for distinguishing bet
ween the structure itself and its mathematical model. 

Take, for example, what is arguably the simplest structure of all--the 
long, slender, uniform, cantilevered rod. This 'structure' is shown in Fig. lao 
(Its cousin, the 'two-rod satellite', accompanies it in Fig. lb.) As is well 
known, the PDE and associated end conditions for the lateral displacements of the 
rod are 

EIu"" + pu = f(x,t) 

u(O,t) = u'(O,t) = u"(f,t) = u'''(f,t) = ° 
(A table of symbols is appended.) 

(a) Long, Slender, Uniform (b) Simple Flexible SatellMe 
Cantilevered Rod 

Fig. 1: The 'Simplest' Cases 
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Yet the followinq idealizations must be made to arrive at the Euler
Bernoulli equation (abo~e) for this 'structure': (a) material continuum, (b) 
perfectly elastic material, (c) stress proportional to strain, (d) infinitesi
mally small deflections, (e) perfectly cantilevered root, (f) negligible rota
tional inertia, (~) negligible shear deflections. This list is undoubtedly in
complete but amply 10n0 enough already to demonstrate that properties of the POE 
(2) will not likely be exactly the same as the corresponding properties of actual 
long slender uniform cantilevered rods. Experimental evidence tends to support 
this expectation; the model (2) is reasonable for many purposes if used intelli
gently, but (:2) is not in any sense an exact representation of reality. 

The Infinite Modes Assertion 

There is no doubt that the POE (2) has modes of the form (1), and that it 
has an infinite number of such modes. The question at issue is whether real rods 
also possess these properties. To state that a real structure has an infinite 
number of modes is, on reflection, to state an absurdity. How can a structure 
have more modes than it has molecules, or, for that matter, than there are mole
cules in the known universe? What does a frequency of w = 10 100 Hz mean? Does 
it mean, among other things, that particles in the structure move faster than the 
speed of light? 

At this point the reader may retort, "Wait a minute. Let's not be extreme. 
When someone asserts that a structure has an infinite number of modes, all he 
really means is that the structure has a very large (but finite) number of modes~' 
Not so, in the author's experience. The Infinite Modes Assertion is often made 
at technical meetings to an audience that includes individuals who are familiar 
with structural models that contain thousands of degrees of freedom (and there
fore thousands of modes). To make the Assertion to such an audience clearly 
means that thousands of modes is not enough (in the Assertor's opinion); nothing 
less than infinity will do. 

Yet it is clear that the Assertion is wrong, on the grounds of physical 
impossibility. 

"All right," the reader may persist, "the Assertion is indeed made (in its 
strong form) and it is indeed wrong. but it is, after all, only a harmless mis
understanding". Again not so, in the author's opinion. Million-dollar R & 0 
contract proposals on the dynamics and control of large space structures are cur
rently under technical adjudication. If the adjudicators fall prey to a corol
lary of the Assertion--namely, that any methodology that does not use POE's is 
faulty--they INill. tend to favor proposals that promise an infinite number of 
modes. In most cases, this viewpoint would be unwise and unjust. 

How Many r10des Are There? 

If a physical structure does not have an infinite number of modes, how 
many vibration modes does it have? The most precise (but not very helpful) ans
wer is: "nonle". As an approximation, the mathematical concept of a 'mode' is 
still very useful, however. This is especially true for the lower modes. On the 
other hand, as one goes higher and h"igher in mode number (past the 100th mode, 
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say, or the lOOOth) the mathematical idea of a 'mode ' tends to become increas
ingly inappropriate until, somewhere well this side of infinity, it is wholly in
appropriate. 

To emphasize this idea, we introduce the following definition in connec
tion with mode shapes as a set of basis functions: 

Definition: The absurd subspace associated with a PDE idealization 
of a structure is the subspace spanned by all but the 
first billion modes. 

All PDE structural models have an absurd subspace. This absurd subspace is a 
flaw in these models but not an important one (unless glorified by the Assertion). 

It is a curious paradox that the greatest advantage of modal analysis-
the analyst can expand the general motion of a complex structure approximately in 
terms of a few important submotions--is lost if an infinite number of modes is 
insisted upon. 

THE FINITE ELEMENT METHOD 

When one analyses structures in general, one is not bothered by the neces
sity of generating numerical information. For example, it may suffice to say 
that the small deflection u(r,t) is related to the excitation f(~,t) via an ap
propriate operator ~ that Ts~ 

(3) 

where cr is the mass density. K is a symmetric, 3 x 3, partial differential stiff
ness operator. Assuming that ~igid displacements are prevented (as in Fig. 2), 
K is positive definite. The mode shapes for Eq. (3) satisfy 
'V 

~(~) = (j)~cr~(~) (4) 

and the orthonormality conditions are 

IE ~ (~) 113 (~) dm = 0 as ( 5) 

where dm = cr(r)dV. For a system that deserves to be called a Istructure ' , there 
will be an infinite number of eigenfunctions (mode shapes). However, as we have 
seen above, the real structure that Eq. (3) represents does not share this 'in
finite-modes' characteristic. 

The modal coefficients of momentum 
and angular momentum (about 0) are defined 
as follows: 

(6) 

It can be shown (Ref. 1) that the modal 
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ident"ities in the first column of Table 1 are satisfied by these coefficients. 
These modal identities and results like Eqs. (3), (4) and (5) for the generic 
structure of Fig. 2 are powerful in that they apply to all structures that sat
isfy the genE!ral assumptions that underlie Eq. (3). 

The 'Mathematical Solution' Swindle 

Operations like the integration fE( )dm in Eq. (5), or the ~i in Table 1 
can bE~ performed with the stroke of a pen. Engineers deal ing with specific space 
structures require numerical data, not just elegant theoretical results. 

The classical method for dealing with POE's like Eq. (3) is to expand the 
solution in terms of a series of functions that are defined, named, examined, 
cataloged, and expounded upon. Usually these functions are not especially easy 
to calculate. Even worse is to define the solution of Eq. (3) in terms of a dif
ficult integy·al. This "solution" (as the mathematicians call it) is in practical 
terms often just another mathematically equivalent way of stating the problem. 
The Knotkwit function, whose origins are traced in Appendix A, furnishes an ex
ample of the different meanings that may be attached to the word 'solution' by a 
mathematician and an engineer. 

Even the functions sin, cos, sinh, cosh that make up the well-known solu
tion for the vibration modes of the simple rod in Fig. 1a require some numerical 
sophistication to calculate efficiently. For most structures of practical in
terest, 'closed-form' solutions are not available and, even if they were, they 
would not likely be much help in numerical calculations. 

The Ritz Method Revisited 

Frustrated by their difficulties in formulating POE's for complex struc
tures, and their further difficulties in extracting numerical information from 
these POE's once they have them, structural analysts began to chop up complicated 
structures (on paper) into small elements. Each of these elements could be ana
lysed and numerical data of the required accuracy extracted relatively easily. 
Initially this approach rested for its justification on physical understanding, 
but applied mathematicians (e.g., Ref. 2) have since shown that, if properly 
used, this finite element method model (FEM model) is, in fact, an ingenious im
plementation of the much older method of Ritz. A FH~ model therefore enjoys the 
same theoretical foundations as the Ritz method. In particular, the conditions 
for convergence are known. This convergence is to the so-called 'exact' solu
tion, i.e., to the elusive solution of the POE model that has the same modeling 
assumptions as the FEM. 

This property of convergence is a highly desirable one and can often be 
used to advantage--in connection with the identities of Table 1, for example. 
~ut in our celebration of this convergence to the 'exact' solution we should not 
overlook the fact that the 'exact' solution is 'exact' only for the POE model. 
It is not 'exact' at all for the actual structure because the POE model is not 
exact for the actual structure. 

This raises the following question: How can an 'error' of (say) 1% matter, 
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when the 'error' is with respect to an equation that is itself only valid to 
within (say) 10%? Yet it is this sort of error, no matter how small (and it can 
be made as small as desired by using sufficient finite elements), that seems to 
be the chief concern of the Infinite Mode Assertors. They do not trust the FEM 
model because it fails to predict the 'absurd subspace' (see earlier definition). 
In the author's opinion, however, this 'failure' is trivial and should, if any
thing, be counted as a point in the FEM model's favor because the absurd subspace 
doesn't exist physically anyway. 

Unification 

To this point in the discussion the FEM model and the POE model have been 
treated as though they were competin9 alternatives. They are in an important 
sense the same model. The FE~1 model should be viewed as a numerical treatment 
of a corresponding POE model. The finite element method must surely be one of 
the most spectacular success stories in the history of engineering analysis. 
FEM models circumvent the formulational and computational difficulties of their 
POE counterpart models, while at the same time providing a numerical approxi
mation to the latter that can be made arbitrarily accurate. If enough modeling 
elements are used, the error due to a finite number of coordinates can always be 
restricted to an 'absurd subspace'. The strength of the FEM model is that one 
can do numerical calculations for complicated structures; the weakness of the 
FEM model is that it can never be better than the associated POE model to which 
it converges. 

USES AND ABUSES OF LONG SLENDER RODS 

A lonq, slender uniform cantilevered rod appears in Fig. 1 and its PDE 
model is given by Eq. (2). The attraction of this 'structure' is its simplicity 
and this makes it ideal as a learning tool. It provides a simple example for 
students being introduced to structural dynamics. For much the same reasons it 
is often cited to help in explaining new ideas to colleagues. Moreover, many 
satellites have rod-like appendages; in such cases the closed-form characteris
tics of cantilevered rods (summarized in Appendix B) have direct practical 
utility. 

Nevertheless, because of its seductive simplicity, the slender rod struc
ture tends to be focused upon rather more often than its limited range of appli
cation would warrant. In fact, the Infinite Modes Assertion is often a symptom 
of slender-rod overemphasis. If all the structures in the world were long slen
der rods, there certainly would be no need for the finite element method, at 
least not for structures. Slender rod enthusiasts often seem to imply that FEM 
models are really only undignified 'engineering approximations'. If such an 
enthusiast also wishes to ignore the crucial distinction between a physical 
structure and its POE model, he has the right mind-set for accepting the Infinite 
Modes Assertion. 
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Modal Convergence 

As a prelude to addressin9 the question IWhich modes are important?1 we 
shall ourselves also use the 10n9 slender rod as a convenient starting point. 
Then, in the next section, a more realistic (and complicated) structure will be 
discussed. The notation and results in Appendix B will be taken for granted here. 

The modal identities of Table 1 can be used as indicators of the error in
troduced into a structural model by modal truncation (i.e., error with respect 
to the lexact l PDE representation, which is, as we have said repeatedly, not to 
be trusted too far itself). The modal parameters Pa and ha are shown for the 
first few modes in Fig. 3. It is evident that they decrease nonotonically with 

. mode number and that ha decreases with a faster than Pa' These observations can 
be made also from Fig. 4, where the model error indices 

(7) 

(8) 

have been introduced, corresponding respectively to the Pa and the ha. With no 
modes, q(O) := E2(O) = 1. For all the theoretically infinite number of modes, 
El(oo) = E2(~) = O. 
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Fig. 3: Momentum Coefficients for 
Slender Rod 
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Also shown in Fig. 4 is the third measure of error, 

N 
E
3

(N) = 1 - 1680 I A-8 
11 a=l a 

(9) 

(see last entry in Table 1). This error indicator takes both momentum coeffi
cients and-frequencies into account and is thus a more plausible measure of mo
del error than El or E2' The index E3 recognizes that, other th~ngs being equal 
('other things' in this case being Pa and ha ), the low-frequency modes are more 
important than the high-frequency modes. If one wished to have a maximum of 1% 
model error, for example, as measured by E3' only the 1st mode should be retain
ed and the rest deleted. 

LARGE DEPLOYABLE SPACE REFLECTOR 

Long, slender, uniform, cantilevered rods can be carried only so far. 
They are useful in teaching certain basic lessons, but some of these lessons are 
not true for more general structures. Therefore we now consider a typical space 
structure of current interest--a large deployable space reflector. Shown in Fig. 
5 is the wrap-rib antenna reflector developed by the Lockheed Missiles and Space 
Corporation (Ref. 3). A FEM model has been developed for this reflector by the 
Jet Propulsion Laboratory (Ref. 4) and a typical mode shape, taken from Ref. 4, 
is shown in Fig. 6. 

Fi~. 5: Lockheed Wrap-Rib Reflector Used on ATS 6 
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Fi9. 6: Typical Wrap-Rib Mode 

Shape (from Ref. 4) 

This model has several complexities that a simple rod does not have. The 
first is that a PDE model is very difficult and does not seem to have even been 
attempted. This leads to the use of a FEM model. The second complexity is three
dimensionality. For example, the model momentum coefficients £a and the modal 
angular momentum coefficients h are no longer scalars, but are 3 xl. 

-a 

A Criterion for Mode Selection 

A more subtle distinction between the wrap-rib reflector and the slender 
rod is that s"imple modal -truncation becomes generalized to a process of mode se
lection. A glance back at Fig. 3 shows that for a slender rod the p and ha 
decrease monotonically with a. In other words, whether we order theaimportance 
of the modes according to increasing frequency, or according to decreasing Pa' or 
according to decreasing ha' the order of the modes is unchanged. This lesson, 
learned well for slender rods, must be unlearned for more complex structures. 
The question of which modes to keep is not simply a question of 'keeping the 
first N' and dropping the rest. There are several ideas available (Refs. 5,6)for 
mode selection, and the ones that rely solely on the structural dynamics are 
those that depend on w , p , and h . 

a"'-(), -a 
We can. for example, take the first three modal identities in Table 1. 

These three matrix identities correspond to 18 (independent) scalar identities. 
To create a single scalar indicator of how well these 18 identities are being 
satisf"ied, it is observed that they may be written as 

00 

I ~1 = M 
a=r-a -= 

(10 ) 

where the definitions 

L~~ ~~J L
m1 _~x J ~1 ~1 = -a h T h hT ; -= cx 

-aB.a -a-a 

(11 ) 
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have been introduced. Then the following scalar quantity is a measure of how 
well these identities are satisfied after the first N modes: 

(12) 

where p[.] stands for the spectral norm of [.]. Note that 1 is here the 6x6 
unit matrix, while in Eq. (11) 1 refers to the 3 x 3 unit matrix. (In other 
words, 1 always stands for a unTt matrix of compatible size.) 

. The reasoning behind Eq. (12) is as follows: the E~ sum is normalized 
based on Eq. (10) in such a manner that symmetry is retained. The resulting 
matrix is compared to the ideal sum, 1. The cumulative sum in Eq. (12) is non
decreasing since ~ is positive semi-definite. The matrix difference in Eq. (12) 
must be positive definite for finite N. Thus its eigenvalues will be six real 
numbers between 0 and 1. The greatest of these six numbers is defined to be the 
error, EM(N). 

10% 1----

I%T-----.-----,-----.-----~~ 
o 10 20 30 40 

NUMBER OF MODES, N 

Fig. 7: Reduction of Model Error 
by First 42 Modes Using 
only Inertial Quantities 
in Error Measure, i.e., 
Using Eq. (12) 

The error EM(N) is plotted in Fig. 7 for data typical of a wrap-rib re
flector with 48 ribS and 44.4 m in diameter. Even after 42 modes, EM(42) = 0.66. 
This slow convergence prompts the following comments. 
(a) In the model used, some of the higher-wave-number modes have already been 

deleted. However, it is not expected that they would contribute materi
ally to EM' (This is, in fact, why they were deleted.) 

(b) Just because the EM(N) vs. N curve is 'flat' does not mean that intermedi
ate modes are not making a positive contribution. This behavior just 
means that they are not contributing to reducing the maximum eigenvalue of 
the matrix in Eq. (12). 

(c) A more detailed examination of the six eigenvalues of the matrix in Eq. 
(12) discloses that it is the ElEa~ = ml identity that is slow to con-
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verge. This is in accordance with the slow convergence of Pa for the 
slender rod in Fig. 3. The so-called 'breathing' modes for the wrap-rib 
reflector are few" and far betweeri; yet it is these modes that must pro
duce convergence in the (3,3) element of L:1E.a~ == mI· 

A Better Criterion for Mode Selection 

Obviously the error criterion (12) is excessively harsh. It is counter
intuitive that a 42-mode model can have a 66% error. A goodly part of the pro
blem is that the criterion (12) does not take the frequencies Wa account. One 
of the messages ih this paper is that frequency is not the only parameter of im
portance in modal selectipn. However, it would be extreme in the opposite direc
tion to exclude t~e wa entirely, as Eq. (12) does. We therefore consider instead 
the last three modal identities in Table 1. These identities may be combined in
to the single 6x 6 identity. 

00 

where the definitions 

have been used. 

= '~ 
.:::.00 

-2 
== W M 

a --a 

The modal identity (13) suggests the following model error indicator: 

I N I 

( ) --'2( I )--'2 E_ N == p[l - ~ ~ ~ ] 
H - --<X) --a -00 

~ a==l 

(13 ) 

(14 ) 

(15) 

(16a) 

This indicator is patterned after Eq. (12), and is plotted in Fig. 8. According 
to this indicator, if an error of only 2.5% were the most that could be tolerated 
in the model, the first 28 modes would have to be kept. 

There is, however, a hidden premise in this last procedure, namely, the 
premise that the modes must be selected in their natural order (i. e., by i n
creasing frequency). There is no basis for this premise or this procedure. 
Figure 3 show~; th~t, for a slender rod, Pa and ha decrease monotonically with a, 
as would p~/w~, h~/w~, etc. Thus, for a slender rod, all methods of ordering 
modes produce the same order--the 'natural' order. For more complex structures 
this is no longer true. The error indicator in Eq. (16a) can therefore be im
proved (i.e., fewer modes required for the same model accuracy) by taking the 
modes "in the cumulative sum in a different order. Thus we replace Eq. (16a) by 
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(16b) 

(17) 

(18) 

(Note, however, that the spectral radius operator does not commute in addition; 
that is 

as miqht be assumed at first sight.) 
As can be inferred from Fig. 9, p certainly does not decrease monotoni

cally with a. This would suggest that tHe re-ordering of modes required by Eq. 
(16b) should be beneficial. The second plot in Fig. 8 shows that this is indeed 
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the case. In fact, only 9 modes are now needed to give as low as 2.5% error--a 
saving of 19 modes (and a reduction in system order by 38 state variables) over 
the previous un-re-ordered scheme. Evidently mode selection can be, for complex 
structures, far superior to simple modal truncation. 

CONCLUDING REMARKS 

In summary, the main points discussed in this paper are the following: 
(a) Neither a POE model nor any other mathematical model of a structure is 

exact. 
(b) For complicated structures, POE models are very difficult to formulate and 

very difficult to extract numerical information from. 
(c) Even when a POE model does exist, the Isolution l in terms of Iknown func

tions l may still require considerable effort to extract numerical infor
mation. 

(d) Viewed as a Ritz method, a FEM model is not in competition with the cor
responding POE model; it is, instead, a very powerful numerical method for 
solving the POE model. 

(e) The idea of a Imode l is, in essence, a mathematical one. It is highly un
likely that any real structure can vibrate exactly so that all its points 
move in unison; in other words, it is highly unlikely that any structure 
has an'y modes. As an approximation, however, the idea of a mode is an ex
cellent one for many structures, especially for the Il ower modes l . The 
agreement between experiment and theory for the Ihigher modes I tends to 
become weaker. 

(f) In this approximate sense, most structures have a very large number of 
modes. It is elementary to show, however, that no real structure has an 
infinite number of modes. The Infinite Modes Assertion is false. 

(g) The only utility of the Infinite Modes idea is within the purely mathema
tical domain. See, for example, the modal identities in Table 1. 

(h) The long, slender, uniform cantilevered rod has a simplicity that is at 
once helpful and dangerous. It is a reasonable structure on which to ex
plain a new idea, or to test a new idea, but the validation or generaliz
ation of the idea must be carried out on structures of more realistic 
complexity. 

(i) Many lerror indices l can be defined as guidelines for structural modal 
order reduction. Simple modal truncation, although suggested by ex
perience with slender rods, is naive. The proper process is mode selec
tion, based on an appropriate error criterion. 

(j) The error criterion in Eq. (12) is unnecessarily pessimistic because it 
ignores frequency information. It is as naive as a Ifrequencies-onlyl 
criterion, at the opposite extreme. 

(k) The error criterion in Eq. (16) is superior to Eq. (12), especially if the 
modes are selected according to the order specified by Eq. (17). This is 
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illustrated for a wrap-rib antenna reflector in Fig. 8. 
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Appendix 'A - The, Origin of the -Knotkwit Function 

Some years ago, the eminent applied 
mathematician Professor Will Knotkwit 
encountered in his theoretical study of 
structures a certain PDE whose solution 
he could not express in closed form. 
Nor could he express the solution in 
terms of known functions. Eventually 
an important idea occurred to Prof. 
Knotkwit: he introduced a new function 
that was, by definition, the solution 
of his troublesome equation. He pro-
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ceeded to write several papers on the 
interesting mathematical properties of 
the Knotkwit function (as it became 
known shortly before his retirement). 
Professor Knotkwit even lived to see his 
function referred to, by one of his for
mer graduate students, as a 'known' 
function. 

It is not likely that the Knotkwit 
function will ever be called an 'ele
mentary' function. What is clear, how-



will be called a 'closed-form' solution. ever, is that any solution to a struct
ural dynamics problem that can be writ
ten in terms of Knotkwit functions, or 
even that can be expressed as an inte
gral whose in-tegrand involves Knotkwi t 
functions in a fairly simple manner, 

Thus, ultimately, Professor Knot
kwit achieved his 'closed-form' solu
tion in terms of 'known' functions. 

Appendix B - Long Slender Rod Modes 

The well-known solution to Eq. (2) is 

where 

and 

where 

u(x,t) = 

2 n", + W n 
u, a a 

00 

I ¢ (xln (t) 
0.=1 a a 

= Ji¢ (x)f(x,t)dx 
o a 

-k: 
¢N = (pi) 2[(coshA S - cOSA s) - K (sinhA S - sinA s)] 

u, a a a a a 

A = 
a 

204 
pw .{.. 

a 
EI 

x . 
S = I ' K 

a 
= 

S - S 
a a 

C + C a a 

with s = sinA , c 
a a a 

cosA ,S = sinhA, C = coshA 
a a a a a 

(B 1) 

(B2) 

(B3) 

(B4) 

The natural frequencies are calculated by numerical solution of the trans
cendental equation 

c C + 1 = 0 
a a 

(B5) 

The mode shapes of Eq. (B3) can readily be shown (directly from the differential 
equation) to satisfy the orthogonality conditions 

I:~"(X).B(X)dX = 0 (0 t B) (B6) 

It is more onerous to show that Eq. (B3) satisfies the normality condition 

(B7) 

This latter fact is often omitted from textbook discussions. 
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In free vibration, the force and torque on the rod at 0 are (see Fig. 1a): 
00 00 

G(t) = I h n 
a=l a a 

(B8) 

where Pa and ha are the coefficients given (in general) by Eq. (6). For our pre
sent simple 'structure', 

Pa " f.adm " pi f>ad~ " 2(pi)\/Aa (B9) 

h = fx~ dm = Pi2f1~~ d~ = 2(pi3)~/A2 (10) a a a a o 

Therefore the modal identities of the first column in Table 1, which assume the 
special form shown in the second column for a slender rod, imply the identities 
shown in the third column in Table 1. Note that the sums involve an infinitude 
of transcendental numbers. 

Roman 

c 

EI 

f(x,t) 

h -a 

m 

r 

t 

u 

x 

Appendix C - Table of Symbols 

Greek 

first moment of inertia, J~dm a 
flexural rigidity of a long 0as 
slender rod 
force per unit length, at posi
tion x, at time t 

K 
a deflection at position r, due to A 

unit force at position I a 
modal angular momentum coeffi
cient; see Eq. (6) 

(second) moment-of-inertia matrix p 

stiffness operator 

rod length 
mass 
number of modes retained 

(5 

w a 

modal index 
1 if a = s; otherwise 0 

modal coordinate associated with 
mode a 
see Eq. (B4) in Appendix B 

see Eq. (B4) in Appendix B 

xli for slender rod 
dummy position vector 
mass per unit length for slender 
rod 
mass density function 
mode shape for mode a 
natural frequency for mode a 

modal momentum coefficient; see Special Symbols 
Eq. (6) 
position vector 

time 
small elastic displacement 
distance alonq slender rod 
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p [ ] 

1 

( )' 

( . ) 

spectral radius 
unit matrix (of appropr. size) 
spatial derivative 
temporal derivative 
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TABLE I: SUMMARY OF MODAL IDENTITIES 

'MOST GENERAL' CASE 
(Linear Elastic Body) 

I p T_ 
a=l =-aEa - m 1 

I h T x 
a=l-aEa c 

I h hT -
a=l---{).---{). - o!. 

I w~2 trace f ~(£I£)dm 
a=l E 

I w~2Ea~ I I ~(£If)dm dm~ 
a=l E E £ 2. 

\' -2 T I f x L Wa ~Ea £ ~(£I~)dmrdmt; 
a=l E E - -

~ -2 T "f I x x 
L Wa ~~ =- £ ~(£If)~ dmrdmt; 

a=l E E - -

'LEAST GENERAL' CASE 

(Long, Slender. Uniform 
Cantilever Beam) 

ex> 

I p~ p.e 
a=l 

I h p = Po2 
a=l a a "2.(.. 

ex> 

I h 2 
= E..e

3 
a=l a 3 

ex> 

I W -2 = P 4 
a=l a 12EI.e 

I W -2p2 p2 5 
a=l a a 20Eri. 

ex> I W -2h P 13 p2 6 
a=l a a a 360EI.e 

I W -2h 2 11p2 7 
a=l a a 420EI.e 

TRANSCENDENTAL 
IMPlicATIONS 

"I ;l.-2
K

2 _ 1 
a=l a a - 4" 

ex> 

\' -3 
L /, K - 1 

a=l a a - "8 
00 

L ;l.-4 = .l 
a=l a 12 

L ;l.-4 = 1 
a=l a 12 

I ;l. -6 2 1 
a=l a Ka: =-80 

L ;l.-7 K 13 
a=l a a 1440 

L ;l. -8 11 
a=l a 1680 
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C()NTROL OF FLEXIBLE STRUCTURES: 
A SYSTEMATIC OVERVIEW OF THE PROBLEM 

Richard Gran 
Research and Development Center 
Grumman Aerospace Corporation 

Bethpage, NY 11714 

ABSTRACT 

In the theory of flexible structures contro'" there are two approaches 
that are usually advocated. The fir'st is based on the theory of partial dif
ferential equations and the statement of the problem is : IIIf one does not use 
a continuum approach there will always be a problem that has been overlooked 
and any des i gn will not work when impl emented on a real system. II In contrast 
the second approach is based on the tacit assumption that IIfinite is be
autiful. 1I Th'is school contends that a finite model can always be made to ap
proximate thj= original system to any desired level of accuracy. Followin9 this 
strategem, the design is based on a finite dimensional model whose order is 
determined by a scientific method such as mode truncation, residue matching 
methods (bas(~d on the partial fraction expansion or the eigenvectors from the 
diagonalizinq transformation) or using modal costs. These two schools are not 
irreconcilab'le. 

The key to developing a reduced order model that subsumes the objections 
of the first school while providing the finite model required by the second 
school is the realization that no reduced model can be specified without first 
specifying the closed loop gains. A high gain system means a large control 
bandwidth; a large bandwidth means that many more flexible modes must be re
tained. On the other hand, the controller bandwidth is determined by the de
sired performance and the disturbances that will cause performance de
gradation. It is important to realize that no control is required if the sys
tem is not being disturbed. We are confronted with a tail chasing dog syn
drome. We can't design the control until we have a model and we can't get a 
model until we've designed the control. This is the major argument used by the 
spokesmen of the distributed or p.d.e. school. 

The compromise position advocated here is to design the system using 
finite methods and verify the design's robustness using results from the con
tinuum school. Thus one should follow the recipe: 

o Determine the expected disturbances from both external and 
internal sources (including the measurement devices). 

o Determine the control bandwidth that will satisfy the desired 
specifications (i.e. reduce the disturbance amplitudes). 

o Truncate the structural model to include all frequencies 
up to some multiple of the control bandwidth. 
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o Of the structural modes retained, additionally discard 
those that have low mode costs {i.e. that are not 
excited by the disturbances because they are either 
almost uncontrollable or are not observable through 
the performance measure used for evaluating the design.} 

o Carefully evaluate the potential interactions of the 
sensors and actuators at their locations to insure that 
unstably interacting modes are not discarded even though 
they don't contribute to the cost. 

o Design the controller, the compensation and the feedforward 
control using a reduced state feedback control design algorithm. 

o Verify that the bandwidth of the controller is that assumed 
at the start of the design process. If not - redesign the 
control. 

o Verify stability, robustness and performance of the final design. 

This paper reviews each of these design steps. It is shown that without 
damping there is no finite model that can be used to design the control sys
tem. The definitions of stably and unstably interacting modes are 9;ven, and 
the design of reduced order control and compensator systems is described. The 
algorithm for the reduced order control that uses an expl icit computation of 
the gradient and Hessian of the performance index is shown. 

INTRODUCTION 

There are many concepts in the control of di stri buted systems that are 
important for practical control design. However, no matter what one thinks of 
the continuum approach, at some step in the design process it must be dis
carded to allow the designer to use a finite controller. It is not possible to 
implement a continuum design nor is it possible to compute such a design for 
any practical structure. Thus the issue in the continuum vs. finite argument 
is not whether or not one must use a finite model, but when. It is possible to 
carry a 1 inear design through to its Riccati p.d.e. form and then use a 
Galerkin method or other projection concept to develop a finite controller 
(see for example Gibson Ref. 1). The alternative is to use a finite model at 
the start. This is usually prefered by the control community whose task it is 
to design controllers for flexible structures because of the availability of 
structural analysis tools like NASTRAN. 

To minimize the number of definitions we have to introduce, the notation 
used here follows that of Ref.2. The theoretical results discussed here are 
proved in Refs. 2 and 3, and the example that is described appears in an 
INTELSAT report {Ref. 4}. The last step of the design process in which the 
spillover bounds are evaluated from the p.d.e. description of the system and 
the robustness is verified is not discussed here. These can be found in the 
papers by Balas (Refs.5 and 6) and Kosut (Ref.l). 
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FINITE DIMENSIONAL MODELS FOR STRUCTURAL CONTROL 

The onl'y reason that control is required in any system is that the dis
turbances cause the system to be perturbed away from some nominal value 
(position, velocity etc.) and this perturbation is large enough to cause the 
spec"ifications to be exceeded. Therefore the starting point for any control 
design discussion must be the disturbances and the specifications. The 
spec"ifications determine the performance index that is used to determine an 
optimal or suboptimal design. Typical performance measures include line of 
sight motion of a satellite, the line of sight motion of the optical axis of a 
telescope, or the pointing direction of an antenna. These can always be re
lated to thl~ small angle motions of a structure and through those motions to 
the displacE~ments of the structure from some nominal position. Therefore the 
criteria for which disturbances are important is the contribution to the per
formance index of those disturbances that are expected. This is the message of 
the modal cost approach of Skelton. It is not necessary to use modal costs to 
determine the modes that should be retained if the design starts with a con
tinuum approach. Therefore, the continuum model is used initially to develop a 
rough measure of the requi red bandwidth of the system subject to the di s-
turbances as they are expected. . 

If the output of a sensor is denoted by Yj then, from Fig.l, the La
place transform of the output is given by 

(1) 

where: 
Hc(s) is the control actuator transfer function 

H
Hd(Ss) is the disturbance model transfer function 

( ) is the measurement devices transfer function 
w(s) is the Laplace transform of the disturbance 
u(s) is the Laplace transform of the control input 
The remaining terms are defined in Fig. 1. 

Using (1), the infinite dimensional system has been written as an 
infinite series whose individual terms represent the Laplace transform of the 
modes of thle system. This is the resolvent of the semigroup of the system 
written as iI sum. Since the operators are bounded, this series always con
verges and becomes the actual (transcendental) resolvent. Because it more 
closely resembles the approximate transfer functions that result from fi nite 
models, the form (1) is used here to develop the arguments that follow. 

Using the form (1), it was shown in Ref. 2 that the transfer function of 
a finite approximation to (1) becomes asymptotically invariant as the number 
of modes increases. This result is useful because it says that if enough modes 

. are retained then a finite model exists that will be arbitrarily close to the 
infinite dimensional system. The unfortunate aspect of this approximation is 
that the modles are sinusoidal, and the convergence of the inverse transform of 
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Figure 1 
Block Diagram of Structural Dynamics Control Problem 

the series that results from (I) is only in L2 so we have a Gibbs phenomena 
effect. Thus the convergence is always poor at step type of discontinuities. 
This effect was noticed by Wie and Bryson (Ref. 8). Another consequen-ce of 
this approximation is that a system whose transcendental transfer function is 
minimum phase can result in a finite approximation that is non-minimum phase. 
This result also is shown in Ref. 8 and its consequences are also discussed 
in Ref.2 and Ref. 9. 

Since a finite model can always be selected that approximates the con
tinuum description to within an arbitrarily small error, the next question is 
how many modes must be kept. As was pointed out in the introduction, this 
question can only be answered based on the bandwidth of the controller. Thus 
if the control bandwidth is fc' then the highest mode frequency that must be 
retained is Ian fc' where the damping is 10-n. This result is proved in 
Ref. 2 and can be loosely justified based on the magnitude of the resonance 
peaks that appear in the transfer function (I). At resonance, the amplitude of 
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the Bode plot magnitude is given by 1/(2ti1-tP ,where the frequency of the 
mode 1s wt and the frequency at which the resonance occurs is wm=±,j1-2b~Wk • 
Thus on a log magnitude plot the ampl itude in db of the resonance is 20 
10910 H(jw), which is 20n-6 db at the resonance. Therefore, since only those 
modes that have an amplitude that exceeds 0 db can cause a loss of stability 
or performance, the criteria for discarding high frequency modes depends on 
the control bandwidth and the fact that for any well behaved control the 
closed loop response "roll s off" at least 20 db/decade after f c• Thus the 
fi rst frequency that guarantees that the resonance is always below the 0 db 
1 i ne is n de!cades away from f c or n/2 decades away if the system rolls off 
at 40 db/decade (wh ich usua lly happens for any system wi th actuators and 
sensors because of their dynamics). 

STABLE AND UNSTABLE MODE INTERACTIONS 

The question of which modes are to be retained is not completely answered 
by the criteria described above. There are many modes that should be discarded 
because they are not controllable, observable, or disturbable (when we say 
not, we shoul d strictly speaki ng say weakly, because it is almost never true 
that a mode is completely unobservable or uncontrollable in practice). However 
there is a significant caveat that must be heeded when discarding modes. This 
is the rule that one never throws away a mode that is unstably interacting. 
The criteria for determining the stability of a mode is shown in Fig.2. The 
important poi nt is that there is a phase shift between the measurement and 
control caused by the rel ative positions of the actuators and sensors. This 
phase shift is either 00 or 180 0 depending on whether the actuator and sensor 
are on opposite sides of a modes node. The best way of determining this is by 
using the pictures of the mode shapes, as is shown in Fig.2 

SENSOR 

SENSOR 

A. Stab~y Interacting B. Unstably Interacting 

Figure 2 
Mode Shapes for Stable and Unstable Interactions 
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The evaluation of which modes to discard based on mode costs can be done 
in a simple and straightforward graphical way by plotting the Laplace trans
form of the costs on a gain/phase plot for the disturbances expected. This 
plot gives a visualization of the levels of disturbance at any frequency and 
relates both the disturbance spectrum and the dynamics of the structure to the 
cost. An example of such a plot is shown if Fig. 3. This figure also shows the 
mocle nUmbE!rS that are causing significant mot"ion and the pole zero order as 
OnE! moves upward infrequency. Poles that occur before zeros near the jw axi s 
arE! unstably interacting and vice versa. Thus, a plot such as Fig. 3 can be 
USE!d to tr'uncate additional modes from the problem based on mode costs without 
a comp1 ica.ted cal cu1 at i on of the costs. 

There are several issues that arise in the debate on control of large 
structures that are resolved by the definition of stable and unstable mode 
interactions. The main issue is the question of whether or not a design ap
proach 1 eilds to spi 11 over i nstabil ity. Si nce the modes that interact stably 
can not be driven unstable by any gain change, any design result that shows no 
stclbility loss or good gain and phase margins when additional modes are added 
arE! probably adding only stably interacting modes. This is particularly true 
if the assumption is made that the actuators and sensors are co10cated. 
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Figure 3 
Mode Costs for a Structure 

31 

I 
"z 

The mode cost for this design was L.O.S. motion, and the disturbance was a 
monochromatic sinusoid at the frequency shown. 
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The second issue that is clarified by the definition of stable and un
stab lE! modes is what happens when there are geomet ry changes. The only way 
that a controller can stabilize an unstably interacting mode is to introduce 
180 0 IQf phas1e shift into the control loop at the frequency of the unstably 
interclcting mode. Thus if one were to plot the frequency response of an ob
server or Kalman fi lter from any sensor to any actuator, those modes that 
interact unstably will be notched (i.e. there will be a deliberate 180 0 phase 
shift at the mode frequency). This has di re consequences when the geometry 
changE!s. Ei ther the mode frequency change or the mode shape change can cause 
the phase shift to be introduced at the wrong frequency and the resulting de
sign will be unstable since the 180 0 phase shift introduced to stabilize the 
original design is now at the wrong frequency in the geometrically different 
structure (because of the phase sh i ft introduced by the controller in 'its 
attempt to stabil ize the interaction we now have a control with gain )1 at a 
phase of 18()O, which is unstable). The message is clear: if there are 
geometry changes and there are unstably interacting modes, some way must be 
developed to track the mode frequencies, i.e. adapt, or else the design will 
not work. 

REDUCED STATE FEEDBACK CONTROL FOR LARGE STRUCTURES 

In Ref. 2, a reduced state feedback control design algorithm developed by 
Rossi, Ref. 11 was briefly described. We have successfully used this algorithm 
to design a control system for a large structure using it to develop the 
feedback gains for a constrained cOllfiguration that connects the output of a 
particular s~~nsor to a particular actuator. Simultaneously the algorithm 
derives the poles and zeros for compensators that are required by making these 
pole-zero locations gains that are also determined by the algorithm. 

If the control system to be designed is structured as shown in Fig.4, 
then the optimal reduced state feedback algorithm is used to determine the 
feedback and feedforward gains that optimize the performance index: 

where: 

011 

J" J zTQzz + uTRu dt 
o 

(2) 

z is the output (which is not necessarily the sensor) 
u is the control 
Qz is the weight on the output 
R is the weight on the control 

The reduced state algorithm gives a solution that depends on the initial con
ditions since (2) is equivalent to xoTpxoo The minimizing feedback gain 
is determined from a search. The algorithm for determining the minimum uses an 
explicit calculation of the gradient and Hessian tensors for J and the search 
is done in four steps. The first step is to compute the gradient and Hessian 
matrices and then to diagonalize the Hessian. Since the Hessian is symmetric, 
the diagonalization can be performed by an orthogal transformation. Since in 
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general the Hessian will not be positive definite, the negative eigenvalues 
are arbitrarily changed in sign to make the step direction correspond to a 
locally quadratic curve fit. Thus if Ho represents the Hessian matrix at the 
zeroth iteration, this step consists of forming the following matrices: 

(3) 

where: 
D1,2 are diagonal matrices 
V1,2 are the elements of the orthogonal transformation 

and (4) 

The only difference between Ho and Ht is that the second matrix is now 
positive definite. 

Wl 

ACTUATORS 

"ZEROS" 

W2 
STRUCTURE 

Figure 4 

W3 
MEASUREMENTS 

DIRECT GAIN 

y 

COMPENSATOR 
GAIN 

Block Diagram of the Reduced State Feedback Control Design 
The control gains shown are selected to provide the lowest cost J 

for the configuration shown. Only the gains shown are derived b'y the 
algorithm giving both the feedback control and the compensator. 
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The second step in the algorithm is the determi nat i on of the step 
direction for the search. This is done by using the Taylor series for the cost 
as fo 11 ows: 

where: Q is the quadratic term in the artificial Hessian Ht 
K is the vector.of gains that are being optimized 
G is the gradient (in this case a vector) 

From (~;) the step direction is given by -[HtJ-1G. Thus the third part 
of the algor'ithm is the determination of this step from the .approximate 
Hessian. The fourth step before the process is repeated again is the de
termination of the step magnitude. This is accomplished using a one 
dimensional optimization so that K1 = Ko+(a)so' where So is the step 
direction determined above and II a" is the parameter that is to be determined 
by thE! one dimensional search so that J is minimized. Many different heuristic 
algorithms have been used to determine "a". One of the important aspects of 
the a"1 gorithm is that its value is never permitted to cause the ga i ns to re
sultin an unstable solution. This is done by altering the one dimensional 
search if the step size is too big. Stability is tested as a by product of the 
gradient and Hessian calculations. 

The most interesting aspect of the optimization algorithm is the fact 
that the gradient and Hessian are developed from the same equations. These are 
Lyaponov type equations and are therefore solved using the same algorithm. The 
gradient and Hessian matrices satisfy equations given in Refs. 10 and 11. 

The overall algorithm flow is shown in Fig. 5. In practice we find that 
the solutions obtained from the reduced state feedback control designs are 
within one or two percent of the full state designs with orders of magnitude 
fewer gains. The important features of this design approach is that it allows 
one to incorporate the actuator dynamics and the sensor dynamics, the noises 
on both the sensor and the disturbances exciting the structure (even if they 
are correl ated) and the specifications in terms of a pre-specified model. If 
the latter is used, the model states are included in the dynamic descript"ion 
of the system (in the A matrix, the B matrix and the measurememnt matrix) and 
are used to define the errors that are optimized in the performance index, 
but the feedback gains from the model states are not used. This becomes an 
impl i cit modE!l fo11 owi ng approach. The 1 ast feature that is important is the 
explicit incorporation of the compensator dynamics. Fig. 4 shows the way the 
compensator dynamics are included when it is desired to design a notch filter 
for removing the influence of an unstably interacting mode. 

EXAMPLE 

The spacecraft design shown in Fig. 6 is an example of a communication 
satel"lite with a large solar array, an antenna that deploys, and a requirement 
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Constrained Optimal Control Algorithm Flow Chart 

Figure 6 
Illustrative Example: Communication Satellite Finite Element Model 
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on the pointing of the antenna and the relative location of the antenna with 
respect to its feed. The finite element model shown has enough detail to allow 
the modes up to 3 Hz. to be accurately determined. Three Hertz is 20 times the 
highest frequency contained in the disturbances, which for the damping assumed 
in this model is sufficient to guarantee that the higher modes are 
unimportant. This model is the starting point for the design. The mode shapes 
are shown in Fig. 7, and of those the unstably interacting modes are indicated 
with an asterisk. These unstable interactions come about because there are two 
sets of three actuator - the first at the central or core mast which contains 
the "ri gid body" actuators whi ch are reaction wheels for the three axes of 
rotat"jon. The second set of actuators are at the antenna mast attachment 
point. There is a two degree of freedom gimbal jo"int and a worm screw device 
to deflect the boom that carries the antenna relative to the mast. This last 
control provides control of the feed horn to antenna displacement. The sensors 
are three position and rate sensors at the central core plus three position 
and rate sensors at the antenna joint, and a displacement and rate sensor that 
gives the antenna position relative to the feed. Thus there are 14 
measurments, and 6 actuators. After eliminating the modes with low mode costs 
that are stably interacting, the number that must be retained in any design 
including thE~ rigid body modes is 13. The disturbance due to the solar array 
motion is modeled as a lightly damped second order system excited by white 
noise and each actuator and sensor is modeled as a first order system with an 
associated white noise disturbance (either a measurement or an excitation). 
The combined state dimension, with all of these dynamics, becomes 42. The 
control gains were selected to provide the smallest number of gains possible. 
Thus the individual actuators were given inputs from only those sensors that 
measure the variables in the same degree of freedom (i.e. the pitch reaction 
wheel used gains only on the pitch attitude and rate, etc.). The resulting 
gains are shown in Table I. The Table also shows the full state control cost, 
which was line of sight motion of the antenna, compared with the same cost 
from the reduced control design. As can be seen, the costs are within a few 
percent of each other, even though there are only 12 gains in the reduced 
state design compared with 598 in the full state design. Not only that, but 
the reduced state design has essentially the same response to the 
disturbances, the same closed loop bandwidth, and the same robustness as the 
original full state design. 

Table I 
Gains for the reduced state design 

Sensors (Pos. then Rate) 
Rigid Body Antenna 
Sensors x y z feed 

Rigid Body x ··3E6 -2E7 
Rotation y 6E6 -2E7 
Actuators z not used -IE5 -2E5 

Antenna x 3E4 5E4 
Actuators y 7E5 4E6 

z 6E2 4E6 
Full state LOS error 6xl0-3 rad. Reduced state LOS error 35xl0-3 rad. 
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.1 Mod, II Fnq. 0.132.8 

dl Modo 10 F,eq. 0.134568 

fI Mode 12 F,eq. 0.136814 

vI Mod. 13 F,eq. 0.179146 

Figure 7 
~1ode Shapes for the Communication Satellite of Fig. 6 Showing Some 

~1odes That Have Unstabl e Interactions 
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CONCLUS IONS 

The ma"in pOint of this paper is that ther'e exists a way of desiqninq a 
control system using a finite model that accounts for the distribut{~ti nature 
of the control problem in a systematic way_ This is accomplished by usinq i"l 

mode description of the system and from that description determining the 
number of modes that must be retained based on the performance and the dis
turbance descriptions. The design then uses a full order model that includes 
an of the dynamics: sensor, actuator, disturbance and flexible motion. Th0. 
designs that result are simple, robust, perform well and have the added dis
tinction of being easy to implement. 

REFERENC ES 

1. Gibson, .J.S., liThe Riccati Integral Equations for Optimal Control Problems 
on Hilbert Spaces,"SIAM J. Contr. Opt., Vol 17 (4),July, 1979 

2. Gran, R., "Finite-Dimensional Controllers for Hyperbolic Systems",Proc. of 
Third VPI&SU/AIAA Symposium on Dynamics and Control of Large Flexible 
Spacecraft, June, 1981. 

3. Gran, R. ,"Qual itative Stabil ity of Large Space Structures with 
Non-Colocated Actuators and Sensors",Proc. of ioth IEEE Conf. on Decision 
and Control, San Diego, CA, Dec. 1981. 

4. Gran, R. and Proise, M., Final Report for INTELSAT Contract INTEL-064, in 
preparation .. 

5. Balas, M.J., "Trends in Large Space Structure Control Theory : Fondest 
Hopes Wildest Dreams,1I IEEE Trans. on A. C., Vol. AC-27 No.3, June 1982. 

6. Bal as, M.J., and Meisner, T.L. ,"Spillover and Model Error Bounding 
Techniques for Large Scale Systems", Proc. Third VPI&SU/AIAA Symposiurl, ibid. 

7. Kosut, R., IIStabi 1 i ty and Robustness of Control Systems for Larqe Space 
Structures,lI, Proc. Third VPI&SU/AIAA Symposium, ibid. 

8. Wie, B., and Bryson, A., IIModel ing and Control of Flexible Space 
Structures," Proc. Third VPI&SU/AlAA Symposium, ibid. 

9. Gran, R. and Proise, M., "Flexible Spacecraft Attitude Control-Phase 2 
Final Report for INTELSAT Contract INTEL-064," Research and Development Center 
Report RE-632, August, 1981. 

10. Jameson, A., 1I0ptimization of Linear Systems of Constrained 
Configuration," Int .J. of Cant., Vol. 11, No.3, 1970. 

11. Rossi, M., "Optimal Design of an Automatic Control System for Submerged 
Hydrofoil Boats,1I IEEE Conf on Eng. in Ocean Envs., Sept,1972. 

61 



This Page Intentionally Left Blank 



INTR()DUCTION AND SURVEY ON CONTINUUM 
MODEI./S FOR REPETI1]VE LATTICE STRUCTURES 

Larry S. Weisstein 
Lockheed Missiles and Space Company 

Sunnyvale, CA 94086 

ABSTRACT 

This paper is a brief introduction and modest survey to aid and familiarize 
researchers interested in the use of continuum modeling procedures applied towards 
large space structure technology. The use of such structural models for the 
distributed control of large flexible lattice structures offers a significant 
advantage over a numerical approach. Any references not identified jr. the 
bibliography can probably be obtained in individual articles. This survey was 
completed in the month of December 1981. 

INTRODUCTION 

A high de.gree of repetition enables a recurring bay or module to fully identify 
a structural system. If the module is composed of a moderate number of structural 
elements, an a.nalytical description of the deformation response rather than a 
numerical one may be obtained. For example, domes, barrel vaults, and booms are 
typical repetitive lattices. They exhibit high stiffness, light weight, and allow 
for architectural freedom in providing large span areas with no intermediate 
supports. 

A historical development of structural lattices is given in reference [1]. 
Domes are given as an example. In particular, it is shown that gradual changes 
in material strength and weight of lattice domes were paralleled by an increase 
in span areas and a decrease in rise to span ratios. The inevitable collapses 
which followed forced engineers to consider more scientific and systematic methods 
of analysis and design. As the number of joints and members continued to grow, a 
full exact analysis became impractical and simplifying assumptions were made. 
For instance, determinate truss systems with pin joints were easier to analyze 
than more efficient, indeterminate lattices composed of flexural members joined 
by rigid welds. Other designs may have ignored that the collapse load of a full 
structure due to buckling can be less than the load corresponding to the 
maximum stress of an individual member in the structure. Also, recursive 
procedures (known as relaxation techniques) introduced in the mid thirties could 
be carried out for only a few cycles by hand because of time and effort involved 
for many iterations required by an exact solution. It is the advent of the 
computer and computer methods of structural analysis that surmounted many of these 
early problems. 
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Currently, repetitive lattices are drawing attention for application in 
space. References [2,3] describe projects such as large antennae and space 
platforms for communication, satellite sensory recognition, solar collectors, 
and future manned space operation centers. These structures must be simple, 
light, portable, and of a highly regular design to facilitate automated production 
and assembly. The large sizes which are anticipated will also make space 
lattices very flexible. It is the flexing motion that will affect a satellite's 
orientation and performance; therefore, it is important to identify the static 
and dynamic behavior of space lattices for a variety of loading conditions. The 
large size of the problem can make full "direct" solutions more expensive than 
an approximate analytical approach which exploits the repetitive nature of the 
lattice. Analytical approaches are therefore very appealing. 

REVIEW OF CURRENT METHODS OF ANALYSIS 

Present techniques used to study space lattices fall into three categories 
[4,5]. These are 1) matrix methods, 2) discrete field techniques, and 
3) continuum modeling. The first consists of numerically solving a set of 
algebraic equations in a direct manner. The other two, discrete field techniques 
and continuum modeling, are analytical approaches. Each have attractive features; 
however, recent studies indicate that the continuum modeling approach shows great 
promise. 

Direct methods of structural analysis use matrix methods based on discrete
element idealization. Numerical methods such as the finite element technique or 
finite difference method belong to this category. In addition, matrix methods 
may be classified into displacement (stiffness) methods, force (or flexibility) 
methods,or a mixture of the two. An example of displacement and force methods 
is given in reference [6], mixed methods are treated in reference [7]. What all 
these methods have in common is the numerical solution of a set of simultaneous 
algebraic equations. Today, computer programs can quickly assemble and solve a 
system of linear equations as well as efficiently manage data within a limited 
core space. However, the preoccupation with handling data can be a major expense 
when the system of equations is too large to be: stored in central core. Obviously, 
solving an analytical system described by a feW equations is more preferrable to 
solving a large system of equations numerically, especially if it has to be done 
more than once. 

Discrete field techniques belong to one class of methods used to describe 
lattice structures or a pattern of elements analytically. The popularity for 
this approach is due to the fact that the discrete nature of the lattice is 
preserved in the governing equilibrium equations. Furthermore, exact closed 
form solutions may be obtained for simple config~rations that include continuous
discrete systems of mixed dimensionality. In comparison with direct numerical 
methods, a discrete field analysis does not increase in problem size as the 
number of basic modules in the lattice is increased. There are two approaches to 
modeling a repetitive lattice by discrete field methods. One method models the 
structural system as a whole whereas the other describes the lattice by a typical 
component. These procedures are referred to as macro and micro methods 
respectively. 

64 



Macro methods are particularly well suited for problems where continuous 
structural systems interact with discrete elements such as ribbed plates. The 
model is in the form of summation equations for discrete systems or summation
integral equations for mixed discrete-continuous systems. The limitation is 
finding suitable kernel functions that satisfy the system boundary conditions. 
In references [8-10), the method is applied to the static and stability analysis 
of ribbed plates and discrete-core sandwich plates. In reference [11], studies 
are made of a ribbed hyperbolic cooling tower. By modeling the tower as a 
surface of revolution, a two dimensional axisymmetric problem is reduced to a one 
dimensional beamlike problem. 

Micro methods apply primarily to lattice systems whose components are 
regularly arranged. The system model consists of difference equations which 
represent a recurrence relation (expressed in terms of difference operators) for 
a typical joint. The effectiveness of this method is demonstrated in references 
[12-16] for application in determining displacements and critical loads of one 
dimensional planar trusses. It is interesting to note that the author in ref. 
[13) found it easier to solve the analogous equivalent beam problem by converting 
finite difference equations into differential equations via truncated Taylor 
series rather than seek exact closed form solutions for the difference equations 
directly. 

There are a number of publications that deal with the analysis of rotationally 
symmetric shell-type lattices. In ref. [8] simple truss members are used for a 
static analysis and static-stability studies by Gutkowski broaden the problem by 
inclusion of flexural-torsional members [17-19]. Early ad hoc attempts by 
Gutkowski to achieve a pure discrete field displacement method evolve into a 
clear and systematic variational formulation that uses a discrete-element 
idealization procedure in ref. [20]. By taking advantage of the rotational 
symmetry, an exact one dimensional beamlike description is obtained. The 
procedure also includes a dynamic analysis. A similar vibration study is made 
in ref. [21] in which ring elements are used for bracing. Investigation of the 
stability of a cylindrical lattice shell under axial compression is made in ref. 
[22]. The intent of the study was to validate the range of equivalent continuous 
shell models. A noteworthy point in the study includes the use of joints with 
varying rigidity which are modeled as rotational springs. Buckling studies 
which include member imperfections are made for shell and beamlike structures 
with periodic cross sections in ref. [23]. A dynamic stability problem for the 
same lattices is addressed in ref. [24]. With the exception of ref. [20], these 
works are confined to simply supported edge constraints. 

The last group of methods consist of approximating a repetitive lattice by 
an equivalent continuum. The equivalence is designed so that the continuous 
model exhibits identical or similar response as the actual discrete lattice for 
equivalent applied loads or energies. The approximation assumes that distances 
between nodes are small compared to the structure's overall dimensions and 
therefore may be treated by differential operators. There are a number of 
reasons for using such an approach. One is the familiarity with differential 
operators and various class of methods for solving differential equations. 
Secondly, continuum theories of elasticity allow a rational equivalence based on 
qualitative decisions that reduce the dimensionality of the mathematical model 
and physically identify the nature of deformation (e.g. warping, bending, shear). 

65 



Another consideration are works by Dzieniszewski [25,26] who shows that optimization 
of lattices based on a continous model allows a straightforward comparison of 
stiffnesses with lattices of different configurations. 

Two things are noteworthy of a continuum model as the number of repeating 
modules are increased: on is that the accuracy of the response improves; and 
secondly, continuum models (like discrete field techniques) do not increase in 
problem size as the number of repeating modules are increased. However, the cost 
of approximating finite distances by infinitesimal ones isn't free, therefore the 
range of application for the continuum model must be well defined. Early continuum 
models were unreliable because there was no way of rationally assesing the 
approximation introduced. Basically, the methods range from intuitive approaches 
to more recent ones having a rational basis. 

Intuitive methods postulate the result before the analysis is undertaken. 
By assuming the response of the lattice is approximated by that of classical plate 
or shell model a priori, existing differential equations and constitutive 
relations can be used for the study. The approach may be extended so that the 
analogous gridwork contributes to the continuum by averaging or uniformly 
distributing over some area the stiffness properties belonging the families of 
parallel members or individual members within a repeating module. The stiffnesses 
for the overall effective continuum, determined by orthogonal transformation of 
each parallel set or individual members within a repeating module, are then equated 
with those of the existing plate or shell. A number of works apply this technique 
to bending and membrane problems of grid and shell-type lattices [22,27-31]. It 
should be noted that as the structure increased in complexity, intuitive methods 
can be misleading and highly impractical. (See for example ref. [32]). 

A rational approach does exist. The method basically replaces discrete field 
variables with truncated Taylor series; furthermore, the local error introduced by 
truncation can be accounted for mathematically. (See for example refs. [34,35]). 
There are two approaches: one method converts governing difference equations into 
differential equations; the second replaces strain and kinetic energies based on 
discrete parameters with continuous field variables and their derivatives obtained 
from the Taylor series. 

Converting finite difference equations into differential equations is studied 
in refs. [33-37] for single and double layered grids. In addition, one work by 
Bazant and Christiansen show by direct analogy that a lattice with rigid joints 
exhibits couple stresses and antisymmetric shear strains which is not characteristic 
of classical elasticity. This micropolar continuum theory presented by Eringen 
[44] is a generalization of elasticity theory for which classical methods of 
elasticity are a subset. Converting difference equations into differential 
equations works well for simple problems, however it is difficult to apply to 
more complicated configurations due to the complex nature of the resulting 
differential equations. 

The energy equivalence method is a rational approach that transforms 
energies of a discrete lattice into a continuum representation. This method is 
practical and simple because variational formulations allow the differential 
equations, boundary conditions, and constitutive relations to be determined for 
complicated spatial configurations. The effectiveness of this method is 
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demonstrated in a variety of works. References [38,39] apply this to beam and 
plateLike truss lattices for static, vibration and thermal analyses. 
References [36,40-42] consider beam and platelike lattices with rigid joints 
where amicropolar continuum is useful. Lastly, ref. [43] expands the range of 
application of continuum modeling to include buckling as well as vibration 
wavelengths of deformation on the order of the size of the repeating module as 
well as large. (global) wavelengths of deformation. Analysis of a repetitive 
beamlike lattice which consists of thin-wall beam members with open cross sections 
for space application is also explored. 
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MINIMUM INFORMATION MODELLING OF 
STRUCTURAL SYSTEMS WITH UNCERTAIN 

PARAMETERS * 
David C. Hyland, Massachusetts Institute of Technology Lincoln Laboratory 

Lexington, MA 02173 

ABSTRACT 

This paper reviews recent work wherein the design of active structural con
trol is formulated as the mean-square optimal control of a linear mechanical sys
tem with stochastic parameters. In practice, a complete probabilistic description 
of model parameters can never be provided by empirical determinations, and a suit
able design approach must accept very limited a priori data on parameter statis
tics. In consequence, we formulate the mean-square optimization problem using a 
complete probability assignment which is made to be consistent with available data 
but maximally unconstrained otherwise through use of a maximum entropy principle. 
The ramifications of this approach for both robustness and large dimensionality 
are illustrated by consideration of the full-state feedback regulation problem. 

1. INTRODUCTION 

Most techniques so far proposed for the design of active structural control -
even those which purport to treat the problem of modelling error (see, for example, 
Refs. [1-3]) implicitly assume, at some stage, that all the maps of the linear sys
tem model are precisely known. A nominal or base-line design (often quadratically 
optimal) is then predicated upon this deterministic model. Unfortunately, such a 
design pertains to but a single point in a suitably defined system.parameter 
space, while, due to numerous sources of modelling error (especially in construct
ing large order structural models), the actual system is almost surely to be found 
at some other point in parameter space. This fact vitiates any claim to optimal
ity for numerous current design approaches and necessitates much ad-hoc "hedging" 
about the nOTIlinal design in order to recover basic system properties that are lost 
in consequenee df parameter uncertainties. This paper reviews a recently devel
oped approach (that of minimum data/maximum entropy modelling) which directly 
incorporates the impact of modelling uncertainty in the design process by use of 
a stochastic model and seeks to achieve desirable system properties while accept
ing parameter uncertainties at their a priori levels. 

To circumvent the deficiencies of current design schemes, it is first neces
sary to recognize that any model (even a large-order "verification" model) never 
encompasses the truth but, at best, is a mathematical statement of what and how 
much :is known. Considered as such, a design model must not only specify nominal 
or expected values of the system parameters but must also contain an admission of 
prior ignorance regarding deviations from nominal values. This provides motiva
tion for the quantification of prior ignorance by the representation of the struc
tureas a linear system with random multiplicative parameters. 

* This work :ls sponsored by the Department of the Air Force. The U.S. Government 
assumes no responsibility for the information presented. 
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At this point, it is tempting to adopt a mlnlmum expected cost approach 
-i.e. assume the random parameters to be subject to some given probability law 
and then design a controller which is optimal on the average. Because of its 
simplicity and relative familiarity, we confine attention here to mean-square 
optimality, choosing the average of a quadratic functional over the parameter 
ensemble as the performance measure. 

However, the problem is more subtle than is suggested by the mlnlmum expect
ed cost approach. In practice, one is never provid~d with a complete probability 
assignment based upon empirical determinations but must rely upon a highly limit
ed set of available statistical data. Avoidance of ad hoc assumptions (and the 
invention of data which does not exist) requires that one induce a complete prob
ability model for the parameters which is consistent with the data on hand but 
admits the greatest possible prior ignorance with regard to all other data. The 
prescription for doing this is quite straightforward: first define a measure of 
prior ignorance, the entropy, and then determine the probability assignment which 
maximizes entropy subject to the constraints imposed by available data. 

Now this idea of a maximally unpresumptive stochastic design model may be 
carried still further, for we may discern a minimum set of a priori statistical 
data which is just sufficient to induce a well defined probability model, The 
maximum entropy approach to modelling and controller design consists in (1) ack
nowledging only the minimum data set as available (2) construction of the max
imum entropy model induced by this data and (3) control design through quadratic 
optimization under the maximum entropy statistics. Note that this approach ack
nowledges only the minimum data on parameter statistics because this lends to a 
particularly tractable design model and entails the greatest design conservatism 
in that the model is maximally chaotic. 

The minimum data/maximum entropy model accounts directly for a priori uncer
tainties without resort to ad hoc measures and provides a mechanism whereby the 
least possible prior information may be incorporated within the control design. 
As suggested by the specific results reviewed in the following sections, this 
approach can provide robustness levels comparable with modelled levels of uncer~ 
tainty and, most importantly, its use has profound ramifications for the problem 
of large dimensionality in connection with the burden of design computations. 

2. Stochastic Modelling and Mean-Square Optimization: General Features 

In this and the following sections, the steps, outlined above, for construc
tion of a maximally unpresumptive stochastic model are described more specifically. 
Actually, the following considerations constitute extension, originally given in 
Ref. [4J, of various initial results, Refs., [5,6J, pertaining to a very restric
ted class of parameter uncertainties. Although future developments for the treat
ment of general forms of uncertainty may be anticipated, we shall confine attention 
here to the results of Ref. [4J, wherein parameter deviafffions of a skew-hermitian 
form were treated. Accordingly, consider the linear system: 

(A + ia(t) -F)x + w (1) 
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where :K camprises the state af the plant tagether with that af any linear dynamic 
campensatian that might be emplayed. A denates the naminal ar expected value af 
the plant dynamics map, where 

A + tI < 0 (2) 

is assumed. aCt) represents that partian af the system dynamics which is subject 
to. modelling errar and a priari uncertainty, where 

(3) 

To. admit a sufficiently braad functianal class far aCt) (as it is represented in 
the design madel) we additianally assume that aCt) is a zera-mean statianary, 
randam pracess whieh is separable,af baunded tatal pawer and is such that the 
integral increments: 

a(t l , t2) ~ Itt 
tl 

da(T) 

passess maments af all arders far all finite t 2-tl . 

(4) 

The abave assumptions regarding A and aCt) permit a reasanably tractable 
po.iilt of departure and, mareaver render (1) applicable to structural systems 
canjained with a variety of cantraller forms. 

Further, wet) in (1) denates white disturbance and/or abservatian noise of 
intensity V while F represents the effect of contral action and is, in some degree, 
subj ect to. design choice. With the'se provisions, we shauld like to incarparate 
parameter uncertainties (as embadied in aCt»~ in the design formulatian by use 
af an explicitly statistical madel combined with a measure of perfarmance de
fined on the parameter ensemble. As nated in sectian 1, we adapt, as the per
farmance measure, the average of a quadratic functianal 

x Rx H ] R (5) 

where EC.J denates an average over both disturbance and parameter ensembles, the 
time invariant matrix R encampasses the desired penalty on the state and control 
inputs, and cansideratian is limited to. the steady-state case wherein F is time 
invariant. 

Here we nate that the class af time invariant F which renders (5) finite 
and (1) second-mean stable is nanempty . 

. Under the abave assumptions, it is desired to determine the uncanstrained 
parameters af F 80. as to. minimize J. This problem may be simplified somewhat 
by a restatement in terms of the co.-state matrix. Straightforward manipulatians 
give: 
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min 
F 

p 

o = 

]' = :tJt [Pv] 

pH ~ E [p] E ~nxn 

(A + ia(t) - F)H 

(6) 

P + P ("A + ia(t) - F) + R 

However, largely by vi:ttue of the linearity of system (1), it can be shown 
that: 

E[ ( i a ( t) ) H P + Pia ( t) ] H [p] (7) 

where H [.J is a linear mapping of the class of hermitian matrices onto itself. 
Thus, (6) may be recast in the form: 

min 
F 

.tJt[pv] 

o = (A - F)H P + P (A - F) + H [p] + R 

(8) 

where, at least in principle, all requisite ensemble averages have been carried 
out and the problem is posed solely in terms of the expected cost matrix, Y. 
However, (see the explicit expressions (26) and (27) of Ref. [5J), the evaluation 
of H[.J demands a complete statistical model of a(tl' t 2), i.e., knowledge of 
the joint probability distribut~ons of all orders of all countable sets of incre
ments of the form (4). But, such a complete probability assignment is never 
actually available from empirical determinations. In practice, one is provided 
(or strives to obtain) a very limited and incomplete set of statistical data on 
the uncertain parameters. Typically, this available data may comprise estimates 
of the nominal or mean values of system parameters together with various simple 
measures of statistical deviation from the nominal values. In connection with 
available data, it is well to set forth certain ground rules at this p6int by 
recognizing that however little is known regarding uncertainties in system dy
namics some pattern in a priori knowledge is almost always induced by the proced
ures used in the construction of the system model. In devising a particular model 
as the embodiment of physical law, the modelling analyst must not only estimate 
the nominal or expected values of system characteristics but must also identify 
those physical mechanisms with respect to which his analysis is prone to signif
icant error. This last step is clearly necessary since, ultimately, the validity 
of the model must be checked over the possible range of variation of the uncert
ain effects. Within the context of linear systems, the poorly modelled effects 
may often be represented by uncertainties in parameters which enter linearly into 
the system dynamics. In other words, variations in the dynamics map from its 
nominal value due to errors in the modelling of a particular physical effect 
assume the form aB, where BEe 2nx2n is a known matrix and a is an uncertain 
scalar. In total, uncertainty in the dynamics may be represented by: 

a L (9) 
k, j 
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where the a
kj 

are uncertain scalars. 

In addition to identifying the "weak spotsl1 in'; his, system de.scription~ the 
modelling analyst must ultimately estimate bounds or statistical measures of the 
magnitudes of the akj' Such estimates are usually performed with referenc:e to 
each akj separately, Le., in a statistical context, the a priori data (which 
the analyst either presumes on the basis of modelling judgement or strives to 
determine empirically) comprises assigned numerical values of linear functionals 
of p [akJ] where p [akj] denotes the probability density of akj' FOlc very large 
order systems this is perhaps the only practicable approach, since the large num
ber of uncertain parameters precludes any empirical determination of the joint 
statistics of several of the parameters; simultaneously. 

Thus, we argue that in the process of constructing a model and assessing 
its accuracy, the analyst necessarily induces a set of "directions" (that is, the 
set of the deterministic matrices, Bkj , in (9» which describes the geometric 
articulation of modelling uncertainties and a priori data. Under the stipulation 
that only marginal statistics of the akj separately are available, the Bkj; 

may be said to specify the "a prlori information pattern" arising from 
the model and constitute an essential element of available knowledge. NoN! that 
we retain for the akj(t) all the assumptions mentioned above for aCt). 

Having discerned the a priori pattern of available information" one might 
ask if it is possible to avoid ad hoc assumptions regarding unavailable parameter 
statistical data by constructing a full probability model which is consistent with 
the data at hand but which presumes as little as possible with regard to unavail
able data. Proceeding further: "Is there a set of statis,tical data which is 
just sufficient to induce any well-defined maximally unpresumptive stochastic 
model?" These are the basic modelling questions relating to the optimization 
problem (8), that we address. 

3. The Hinimum Data/Maximum Entropy Hodel 

Now consider the problem of constructing a stochastic model of system (1) 
which replicates available data while admitting the maximum degree of prior ignor
ance regarding all other data •. The successful principle enunciated by Jaynes 
[7,8J has immediate application here: the desired probability assignment is the 
one which, under the constraints imposed by available data, can be realized in 
the maximum number of ways or, equivalently, maximizes an appropriate measure of 
prior ignorance (the entropy). 

We may introduce measures of information reposed in the statistics of para
meter deviations in the following way. First, note that under the a priori pat
tern of (9), only increments of the form: 

t'l 1"- da kj (t) 

tl 
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enter the evaluation of f( [.J and thus have a bearing upon the optimization 
problem. Next, define a division 

(10) 

of the real line, where 11 is a set of ordered pairs {(k,j); k ~ j ~ n} and de
note the set of increments (over right semi-closed intervals): 

a (t(k,j) t(k,j») 
kj 0 '1 

(k,j) (k,j) (k,j) (k j) 
a

kJ
, (t l ,t2 ) ••• ak , (tN -1' t ' ) 

J kj Nkj 

(11) 

by {a;J [17J}. Finally, let P( {a;J [17J}) denote the joint probability density 
of the increments (11). Then, a measure of statistical uncertainty associated 
with the increments (11) is given by the relative entropy of these increments: 

H[P({a;J [17J})J b. -f dO'P({a;J [17J})ln P({a;J [17J}) (12) 

where dais the volume element in the sample space of (11). Although it is 
possible to define a measure of entropy for the stochastic system as a whole, 
the measures (12) defined directly on the a

k
,(t

l
,t

2
) will suffice for present 

purposes. J 

Of course we wish to work with distributions constrained by statistical data. 
Let D denote the set of available data each element of whrich consists of the 
assignment of a numerical value to a particular linear functional of P({a0[17]}) 
in a manner consistent with the a priori pattern. Let P({a:J [17J}lv) denote the 
conditional density given the data set V. Then the entropy of {a; J [17J } in the 
presence of this data is simply H[P({a~[17J}lv)J in accordance with definition 
(12) . 

With these notations we can state that the maximally unpresumptive probabil
ity assignment, Po ({a; J [17J}) , under the constraints imposed by data V is de
fined by: 

= SUP H[P({a;J[17]}IV)]; ¥J[17J (13) 
P 

and it is this probability assignment which avoids ad hoc restrictions on the 
available data. 

But further, we note the functional dependence of H[P* ( a; J [17J ) J upon 
D. Clearly, distinct data sets generally induce distinct values of maximum 

entropy and this implies an ordering of prior data sets. Thus, it is natural 
to enquire whether or not there exists a "minimum data set", V *CV , for which: 
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1< 
H[P,· ( a:J [1]J)J = 

V* 
sup[sup H[P (fa; l[1]J } 1 V) JJ 
v P 

(14) 

for aLL] [11J and for all V such that R[P ( a;j [1]J V) J 'fs bounded. If such a V * 
consistent with the a priori information can be found, then acknowledgement 
of onlyV~ as available data leads to a probability assignment which is maximum 
entlt'opy over all admissible selections of available data. The corresponding 
stochastic system model thus incorporates the minimum prior information. 

Details eoncerning the resolution of the above questions are to be found in 
Ref. [4J. Here we merely state the results. For the system considered, the mmn
imum data set" V *, may be said to comprise the nominal system maps, the matrices 
Bkj defining the prior information pattern and the so-called "uncertainty relax
ation times", Tkj: 

= !z 
00 

I dT E[cos a
k

, (O,T)J 
o J 

(15) 

These time scales correspond to essential information on the scales of parameter 
deviations from nominal values. From the assumed properties of the akj(tl, t2), 
it can be seen that the Tkj are real, non-negative and increase without bound 
as the limit of the d~termlnistic dynamics map is approached. Thus we may say 
that the reciprocal relaxation times, l/Tkj(k,j = l, ... ,n), constitute fundament
al, albeit unconventional, measures of parameter uncertainty consistent with the 
a priori information pattern. 

The above data set is minimum in the following sense. If available data 
lacks any elelnent of this set, there exists no maximum entropy probability assign
ment under which all the akj (t l , t2) possess finite even-order moments for 
finite It2 - tl I· Indeed in this circumstance, .the entropy maximum problem is 
.ill-posed in that available data imposes no bound upon H[PV~({a:J[11J})J. Thus, 
the Bkj and Tk . must be made available in order to construct a full probability 
model ln a rational manner. On the other hand, for any D ::). D ~'< arid fbI' all J [11J: 

(16) 

Thus, a truly "minimum information" model is obtained by acknowledging only the 
mlnlmum data set, V*, as available. Taking this step also results in a design 
model which is eminantly tractable in optimization computations. In fact, the 
assignment, Pv* , induced by V* yields a form of Stratonovich state dependent 
noise [9J for which system (1) has the Ito differential: 

'L; * dx(t) = (Am - F) x(t)dt + .-lk,j dakj (0, t)BkjX(t) + dW(t) 

A f:" A -!z I: 1 B
k
2

J
. 

m k, j T
kj 

(17) 
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where the a~j (o,t) are mutually independent Wiener processes with intensities, 
l/Tkj' Furthermore, under this minimum data/maximum entropy model, the operator 

H L. J appearing in the optimization problem, (8), "assumes the form: 

H [p] 

H kj[P] 

where [A,BJ denotes the 

[A,BJ /), 

L H kj 
[p] 

k, j 

1 [B
kj

, 
2Tkj 

connnutator: 

AB - BA 

[ii, BkjJJ 

a. J (18) 

b. 

(19) 

As noted in Ref. [4J, when the scale of ak . (0, t) is taken '1::0 be ~arge 
H kj [yJ represents the leading term in the asymptotic expansion of H [pJ Under 
the actual parameter statistics (as distinguished form the maximum entropy 
statistics). In other words~ the minimum data/maximum entropy model manages to 
preserve various asymptotic properties of the expected cost, P, for large levels 
of parameter uncertainty. Thus, the design consequences of very great uncertain
ties may be readily investigated. 

Combining the above results, the mean-square optimization problem, (8), 
under .the probability model (17) assumes the form: 

o 

min 
F 

;J bL[PV] 

(A - F)Hp + peA - F) + I: 
k, j 

J (20) 

vJith this result, the mlnlmum data, maximum entropy stochastic model, (17), 
may be directly applied to the mean-square optimal design of a variety of con
troller types (e.g., full state feedback regulation, dynamic compensation with 
output feedback, etc.). One such development for structural systems is described 
in the following sections. 

4. Application to Structural Systems - The Mean-Square 
Optimal Full-State Feedback Regulation Problem 

Now we illustrate the application of the above results to structural control. 
For simplicity, consideration is limited to flexible mechanical systems under
going deformations in the linear range with no rigid body degrees of freedom and 
negligible gyroscopic effects. Generalizations to include rigid body and gyro
scopic .effects are straightforward and will not be addressed here. 

To further fix ideas, we consider the case in which the mass distribu
tion, internal damping and the sensor/actuator dynamics, locations and alignments 
are precisely known. While only the elastic operator of the structure is to be 
considered subject to a priori uncertainty, this uncertainty reflects some of the 
most important sources of structural modelling errors. The elastic operator em-
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bodies detailed information on such properties as material characteristics, 
geometry, construction and structural joint conditions which, in absence of 
extensive testing, are difficult to ascertain with precision. 

It is further supposed that the original distributed parameter equations 
for the structure are resolved in the basis of N (N finite but large) modal 
coordinates associated with a set of mode shapes £or the nominal system (the 
structure with its nominal values of parameters). In this fixed modal basis 
(independent of parameter uncertainties), we may write the state-space equata:on 
in the eigen-·basis of the nominal, open-loop plant as;~ (see Ref. [llJ for a 
detailed derj~ation): 

x = I1x + fJu + w 
... 2N x € 'L (21) 

where fJ is the control input map and w is a white disturbance of intensity 'Vi ~ o. 
f.l has the form: 

[41-~n ,0_1 
o -m-77nJ 

(22) 

.where 7] and n are diagonal matrices comprising, respectively, the modal damping 
ratios.nK;K=l.. .. ,N.and the nominal or expected values, wK.; K=l. .. ,N, of the 
modal frequencies. Owing to uncertainty in the structural stiffness, n is sym-
metric and positive definite but not diagonal. However, the expected value of n 
is n so that the off-diagonal elements of n - n are zero-mean random perturb-
ations. 

Hith regard to the control optimization formulation, we explicitly consider 
here only the very simplest cont·roller form - 1. e. full state feedback regulation: 

u = - Kx (23) 

with the time·-invariant gain, K, chosen to minimize: 

J (J I;? 0 , R2 > 0 (24) 

subject to (21). This restriction is made purely for illustrative purposes - a 
companion paper, [12J, describes application of the maximum entropy approach to 
far less idealized controller forms.' 

Now, note that because an ensemble-independent functional basis is employed, 
Pis deterministic and only n is subject to statistical variation. Moreover, 

from the above definitions, it is seen that f.l- Ii, where: 

11 = E[f.lJ = diag [~l -77 1 wI'"'' rWN -77 N
w

N, 

---<-WI - 1] 1 WI' • . • , - J.iJN -1]iJN J 
(25) 

is a zero-mean skew-hermitian variation of the form appearing in (1). Thus, 
the maximum entropy modelling approach described in the preceding section can be 
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immediately applied here. 

To illustrate most simply the qualitative ramifications of the maximum entr9pv 
stochastic modelling approach, we suppose here that in the vector basis of (21), 
all the elements of ~-~ are a priori subject to significant uncertainty. Thus, 
in conformity with the notation of (9) we write: 

1 

k' 'k ~ (e J + e J ) (1 - !-z lJ kj) 

o : k > N, j < N or k < N, j > N 
(26) 

where ekj £ R2Nx2N is the matrix whose elements .are zero except for the (k,j) th 
whlich is unity. 

With this pattern of a priori information, non-trivial relaxation times 
may be given as: 

00 
Tkj Tjk :r dTE[cos[Cg kj - ,gkj) TJJ (27) 

Acknowledging only Ji , 0 fJ , v , the Bk , and the Tkj as available data, there 
immediately results a maximum entropy model of the form (17). Of more immediate 
interest, however, is the counterpart of (20) in the present context. Defining: 

Jim 
L1 11 - !-z 1 

[~ ~J 
L1 N 1 I J diag [ L J (28) 

k j=l Tkj 

and denoting the expected cost matrix by 15, the optimization problem embodied 
in (21) - (24) under the minimum data/maximum entropy model of (21) (consistent 
with the prior pattern (26» can be shown to assume the form: 

min 
K 

with P ~ 0 satisfying: 

where 

J = tr[p vJ 

j k 

with Bkj as defined in (26). 

(29) 

(30) 

+ Bk+N,j+N P Bk+N ,j+NJ ~ 0 

(31) 

We pause to note that when all the Tk~ approach zero (the limit of a deter
ministic plant) (30) reduces to the famillar Lyapunov equation. 
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Equations (29) - (31) now represent a rather tractable variational problem 
and we devote the remainder of this paper to a review of its properties. 

Denoting fJRZ1 f3 H ~ 0 by ° 2' the main results on optimality and 
stability may be summarized as follows: 

Theorem 1 1 Consider (29) - (31) with 11, JIm. f3, 01, R2 and 02 as defined 
above. If (erf ,jJ.) is reconstructible, then 

(32) 

minimizes the performance index (29), where p is the unique positive definite 
solution of 

0 -H - + P Tim + D[ P J + -P02 P (33) =!1 P °1 m 

Moreover, with (32), the closed-loop system under the mlnlmum data/maximum en
tropy statistics is second moment and almost surely exponentially stable illor 
all Tk~ ~ O. (For a discussion of this and other stochastic concepts of stab
ility sJe Ref. [13J ). 

Proof: See Theorems 1 and 2 of [llJ. 

Thus, under reasonably mild restrictions, the stochastic design approach 
yields a well posed optimization problem and affords considerable assurance of 
closed-loop stochastic stability. 

Equation (33), termed the "stochastic Riccati equation", is seen to be the 
central design equation for mean-square optimal regulation under the minimum 
data/maximum entropy model. Note that the familiar L Q gain relation, (32), is 
preserved and, in the deterministic limit (Til -+ 0, V k,j), (33) reduces to the 
standard Riccati equation. Additional qualitative properties are noted in [5J 
and [14] , moreover, Refs. [5 J and [15 J describe several numerical procedures for 
for solution of (33), most of them displaying guaranteed linear or quadratic con
vergence. Re~f. [lSJ gives illustrative numerical results which reveal dramatic 
qualitative differences between (33) and the standard Riccati equation - partic
ularly at modest to high levels of parameter uncertainty. Such properties are 
th.e subject of the next section. 

5. The Stochastic Riccati Equation - Asymptotic Properties for Large 
Uncerta:lnties 

Having determined that under the conditions of Theorem 1, a unique positive 
definite solution of (33) exists for all positive Tko; k, j = 1, ••• ,N, it is 
natural to inquire what behavior p atta!i.Jis for largeJuncertainties, Le., "for very 
small relaxation times. 
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Defining: 

(34) 

for any square matrix, H, we first consider the case wherein there is very 
great uncertainty with regard to the open loop frequencies of (21) (Tkl very 
large). 

Theorem 2 Assume the conditio.ns of Theorem 1 and introduce the positive 
scaling factor, q, into T

kk
: 

, 
Then, with 15 the positive definite solution of (33):' 

A. = 
[
{oP} 

lim j5 = Cp*} 
0'10 

where { p} is the positive definite solution to: 

o 

and where 

k 1, ... ,N 

(35) 

(36) 

(37) 

(38) 

B. With 15= {ji*}, u given by (32) is a rate feedback law under which 
system (21) is stable for all stable 11 of the form (22) such that 11 -11 is 
diagonal. 

Proof: Theorem 3 of [llJ. See also Theorem 16 of [5J. 

Thus, under very large levels of uncertainties in the open-loop frequencies, 
the solution of the stochastic Riccati equation automatically reduces to a rel
atively simple asymptotic form in which the expected cost matrix, p , is diagonal 
in the eigen-basis of the nominal system dynamics map. This asymptotic solution 
gives rise to a rate feedback control law which is stable regardless of the 
values of open-loop frequencies and structural damping ratios. Thus, inclusion 
of a class of parameter uncertainties within the stochastic design model results 
in a mean-square optimal design which is robust in the presence of the modelled 
uncertainties. The above theorem show that frequency uncertainties may always 
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be modelled with sufficient conservatism that the control approaches an inherently 
robust law arbitrarily cihosely. 

The aSYDlptotic properties of the state covariance are entirely analogous to 
those of p , and we may say that the principal effect of open-loop frequency un
certainties is to suppress cross-correlation among distinct structural modes. 
Additional effects arise when we consider the random intermodal coupling intro
duced by uncertainty in the off-diagonal elements of Q in (22). These new char
acteristics are illustrated by the case in which all the relaxation times 
approach zero: 

Theorem 3 Let p be the positive definite solution of (33) under the conditions 
of Theorem 1 and introduce the positive scaling factor, q into T

kj
: 

Then: 

A. lim p = 
(J'10 

b. 
~ is the positive scalar: 

'" T
kj 

c: (0,00) , V- k, j 

~ p= [-z;, + ( z;,2 + 

where 

- LI 1 N 
~ 1 

N 

2:: 17 k
W 0'1 L: /\. 6. =, -

O"lkk N k=l k N k=l 

and where 
/\. 

{O'l} and {~2} are as defined in (38) . 

~ 1 N 

L 0'2 N k=l 

(39) 

(40) 

(41) 

/\. 
(J 

2kk 

(42) 

B. With K = R;l{3 H ~ in (23), the control is a rate feedback law which is 
stable for all Q= QT ~ 0 in (22). 

Proof: Theorem 4 of [llJ. 

Thus, in addition to the diagonalization of /5. large uncertainties in all 
the elements of the strucuural stiffness tend to suppress differences among the 
diagonal elements of 15. As can be seen from (40) and (41), the asymptotic 
solution no longer distinguishes the separate roles of individual modes. Indeed, 
we obtain a solution corresponding to undifferentiated chaos in which the asymptotic 
mean-square optimal control seeks to minimize a performance index characterized by 
an averaged (i.e., averaged over the modes of the system) state weighing, 0'1' 
and input weighting, ?i

2
, for a system possessing an average damping, Ii . 
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Part B shows, once again, that we may always choose the relaxation times 
sufficiently small that the control approaches an inherently robust form as 
closely as desired. In contrast to Theorem 2.B, however, we now have the 
assurance of stability in the face of uncertainties in all elements of Q . 
Moreover, the asymptotic form of the control can actually be implemented. If 
one has rate sensors co-located with actuators: then 

H 
Y = f3 x 

and the asymptotic nontro1 of Theorem 3 may be written: 

u = ~ -1 H 
- P R2 f3 ~ -1 

x = - P R2 y 

(43) 

(44) 

~ -1 Since p R2 > 0 this is precisely the direct rate output feedback law dis-
cussed by Balas [16J and is known to be stable in the face of uncertainties 
in all modal parameters. 

In summary, the above results provide a new theoretical justification for 
of rate feedback in structural control and illustrate the general prin
In the presence of very great parameter uncertainty, the mean square 
control within a minimum data/maximum entropy stochastic model is a 

the use 
cip1e: 
optimal 
control which is inherently energy dissipative. 

6. Incoherence and Isotropy: Treatment of High Order Systems. 

The specific results of the last section are mainly concerned with the case 
in which the relaxation times are all uniformly small. It is more typically the 
case, however, that certain groups of modes are rather well known while the 
remaining modes are endowed with highly uncertain parameters. To fix ideas, 
suppose that the open loop modes of (21) are arranged in order of increasing 
nominal modal frequencies. Furthermore to reflect a progressive degradation in 
the modelling accuracy for higher order modes assume that the quantities: 

N 

r;k ~L 
j=l 

(45) 

increase monotonically with k. Under these circumstances, various qualitative 
features in line with Theorem 17 of Ref. [5J are to be expected and will be 
stated here without proof. 

Considering a design model of finite but arbitrarily large dimension under 
the above conditions, we have that given € > 0 there exists an Nc (€) sufficiently 
large that: 

11.0- PII < € IIPII (46) 
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where p is the solution to (33) and 

0 
I e P I P

C12 Cll 

I 
0 {~I} I 0 0 

'V 
6, I (47) P -------,------

--H 
0 I 0 P P 

C12 I C22 

0 0 I {~I} 

N xN 
with P cll' Pc12, pc22, e: C c c determined according tQ a NcxNc stochastic 
Riccati equation of the form (33) pertaining to the first Nc modes and {0I }is of 
the asymptotic form (36). In brief, if modeled uncertainty levels increase with 
increasing modal order in accordance with (45), the resulting mean~square optimal 
control for the high order, very uncertain modes apP!l1i:batih",s the asymptotic rate 
feec1bacl: form of Theorem 2. Furthermore, if the Tko; k = j are sufficiently small, 
vle Icl,'"y <If':ain assert (46) -. (47) but with: J 

{p I} 
I 

o 

o 

~ 

~ I 
I 

(48) 

In other words, the control for very high order modes may approach the asymptotic 
f6rm of Theorem 3. 

Under the conditions stipulated above, the state covariance matrix, Q will 
approximately attain the forms analogous to (47) and (48)for E sufficiently 
small. Modes or order greater than Nc (s) are said to constitute the incoherent 
range* and are approximately mutually uncorrelated. Lower order modes which re
tain significant cross-correlation are termed "coherent" modes. Of course, with 
Tkj sufficiently small, modes may be found such that a result for Q analagous to 
(40) holds, and these modes comprise the isotropic* subrange. As noted in Ref. 
[11], the values of the relaxation times not only delineate these important 
qualitative regimes but also determine the rapidity with which the system ap
proaches, from an arbitrary initial state, the special statistical states 
associated with (47) and (48). From this point of view alone, the relaxation 
times may be considered essential parameter statistical information. 

This terminology, introduced in earlier work [4-6], arose from analogies 
with wave propagation in random media. 
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Obviously, the ahove properties for p and Q have important implications for 
the treatment of high-order systems. Supposing that the parameters associated 
with only a relatively few modes may be considered well known, a priori norm 
bounds (see Ref. [5J) may be used to determine_an Nc « N sufficiently large that 
the magnitudes of all elements in the error, R21SH (p - p), incurred in the 
approximation: 

K (49) 

are as small as desired. Thus, to within a given approximation, the solution of 
(33) for N large may be obtained by solution of a reduced order (NcxNc) stochastic 
Riccati equation together with solution of N-Nc equations of the form (37) or eval
ation of closed-form expressions (41), corresponding to the incoherent and isotropic 
ranges, respectively. 

Since the sO:tution of (37) or (41) requires little or no computational effort, 
the main task is the solution of the reduced order version of (33) for the coherent 
modes. In practice, it is likely that N will be modest (-10 - 20) and thus the 
computational burden will not be excessi~e even for very high order design models. 
For uncertainties of a more restricted class than considered here, this possibility 
has already been demonstrated by specific numerical results for a variety of design 
examples. 

7. Concluding Remarks 

This paper has reviewed the basic ideas of the mlnlmum data/maximum entr.opy 
modelling approach and displayed its application to structural systems having 
significant a priori uncertainty in the stiffness operator. To illustrate the 
design consequences of the reSUlting stochastic model, the problem of mean-square 
optimal, full-state feedback regulation was oonsidered. Treatment of the less 
idealized problem of fixed-order dynamic compensator design under the maximum 
entr.opy approach is reserved for a companion paper. 

For the stochastic Riccati equation arising from the regulator problem, 
sufficient conditions were given for existence and uniqueness of solutions. 
From the results of Section 4 one has assurance of stochastic stability for 
the closed-loop system. Moreover, by virtue of the asymptotic properties given 
in Section 5, uncertainty levels may always be modelled with sufficient conser
vatism to secure stability over the actual (as distinct from the minimum infor
~ation) parameter ensemble. 

Finally, the special structure of the stochastic Riccati e"quation gives rise 
to a qualitative distinction among coherent, incoherent and isotropic modes and 
consequently permits the use of very high order models in regulator design comp
utations. These features have significant consequences for the problem of large 
dimensionality. In control design for large-order linear systems, the "curse of 
dimensionality" is manifested in the great mass of processing of fundamental data 
(of system models presuming complete information) required for the formulation of 
an optimal control policy. The results described above intimate the possibility 
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that by consi.stent use of design models incorporating limited system infor·
mation, we may so arrange matters that the processing required for control 
policy formulation may be similarly limited. 
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ABSTRACT 

A general approach for distributed parameter modeling of complex dynamical 
systems is described. The method consists of dividing the system in parts 
which can be modeled by simple partial differential equations and coupling 
the equations thus obtained by applying Hamilton's variational formalism to the 
entire system. The modeling of a large, offset-fed, wrap-rib antenna is pre
sented to illustrate the approach. Although such models are perhaps not as 
precise as finite-element models, they can be useful for initial physical 
insight and parametric design. 

INTRODUCTION 

Large space structures are traditionally modeled utilizing the finite 
element method. This procedure results in matrix representations of very high 
dimensions ranging from a few hundred to a .few tens of thousands. When used 
for control design, the high dimensionality of the model creates a gamut of 
almost insurmountable computational problems such as: the length of computing 
times, the high volume of core memory required, the numerical truncation and 
round off errors, and so forth. Furthermore, onboard computers used in space 
flights are only capable of accommodating models with dimensions of the order 
of ten or less. To use the finite element model, one has therefore to resort 
to order reduction and face all the problems thus created. 

Another undesirable aspect of finite element modeling is that the system 
representations consist of a series of numbers which provide no insight to the 
physical behavior of the system. Parametric study is thus made almost im
possible since, for each new value of each parameter, a new model of the system 
has to be computed. 

A. distributed parameter modeling, if feasible, would alleviate many of 
these difficulties. Indeed, a partial differential equation representation has 
a concise mathematical formulation, requires no order reduction, provides 
physical understanding of the system, and is very suitable for parametric 
studies. Moreover, control techniques based on partial differential equations 
have been previously developed and successfully applied to simple systems. 

In this paper, we present a general approach for distributed parameter 
modeling of complex dynamical systems. It consists of first partitioning the 
system into a number of elements which can each be modeled by simple partial 
differential equations. Hamilton's variational formalism is then applied to 
the entire system. This results in coupling the equations describing each 
part into a set of equations representing the whole system. The following 

89 



section of this paper details the procedures. The application of the method to 
the modeling of a55~, offset-fed, wrap-rib antenna is described in the last 
section to illustrate the approach. 

CONCEPT 

A large space structure can be conceptually partitioned into an assembly 
of rigid and flexible bodies, as schematized in Fig. 1. It is indispensible 
that the partitioning be conceived as to lead to flexible bodies of simple 
structure such as strings, beams, membranes, and so forth. 

The dynamical model for the structure is derived using the variational 
approach, i.e., by writing that for any virtual displacement from the system's 
trajectory 

t2 

oj (T-V)dt 
tl 

t2 

+ oj F.rdt = 0 
tl 

where T and V are the kinetic and potential energies respectively and F.r 
indicates the work of the applied forces during the displacement. 

The modeling task is therefore reduced to the computation of the different 
terms T, V, F.r and their respective variations. 

Kinetic Energy 

The kinetic energy is given by the expression 

f (} Jni PR.R dn) 
1. 

T 

where R is the vector from the origin of the inertial reference frame to an 
arbitrary point of the system (cf. Fig. 1) and P the mass density at this 
point. ni indicates the volume of the ith body, and (.) the differentiation with 
respect to time. The sununation is performed over all rigid and flexible bodies. 

Performing the indicated integrations,one obtains an expression of 
the form 

T 

The first term in this expression represents the sum of the kinetic 
energies due to the movement of the rigid bodies and to the rigid body motion 
of the flexible bodies. The second term characterizes the kinetic energy 
produced by the deformations of the flexible bodies. Xl is a vector of continuous 
time functions: Xl E C(Rn). x2i are vectors of continuous functions of time 
and space on the f1e~ibl~ ~ody i (~Bi): x2i E L2 (FBi)' Ml and M2i are self-
adjoint positive sem1.def1.n1.te matr1.ces. The physical properties of the 
structure impose a set of geometric boundary conditions involving Xl and x2i. 
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RB rigid body 

FB flexible body 

Figure 1. Conceptual Representation of a Large 
Space Structure 

Defining the state space 
n 

s = C(R
n

) x IT L 2 (FB.) 
1 

and the proper scalar product <,> on this space the kinetic energy can be 
written as 

where 

T 
1 . . 
"2 <Mx, x> 

x = (x T 
1 

T 
x2n ) s s 

and M is a self-adjoint, positive definite, linear mapping from s to s. 

The potential energy 
only. It is given by 

V "Ft } fFBi 

Potential Energy 

is stored in the distortions of the flexible bodies 

K. (x
2
., x

2
.) drl. 

1 1 1 1 

where Ki are positive semidefinite quadratic forms. It is always possible 
(Riesz repreBentation theorem) to reduce V to the form 

1 
V = "2 <Kx, x> 
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where K is a self-adjoint positive semidefinite linear mapping from s to s. 

Model 

The kinetic and potential energies evaluated, the next step is to apply 
the variational principle. Let y be an arbitrary admissible state of the 
system such that y(tl) = y(t2) = 0, and let AY, AER, be a virtual displacement 
from the trajectory x. To the first approximation, for A small, the variation 
of the time integral of the kinetic energy is given by 

or 

t2 t2 

o f Tdt = Af <M~, y> dt 
tl tl 

integrating by 

oft2 Tdt 
tl 

<Mx, y> dt 

The kinetic energy leads to 

and the virtual work to 

oJt2 F.r dt = AJt2 <F, y> dt 
tl tl 

Thus, the equations of motion are given by 

J

t
2 «M~, y> + <Kx, y> - <F, y» dt = ° 

tl 
or, since this equation must hold for all arbitrary times tl and t2 and 
arbitrary vectors YES, 

<Mx, y> + <Kx, y> = <F, y> 

which can be written symbolically 

Mx+Kx=F 

Note that M and K are matrices whose elements are scalars and functions 
of spatial variables, as well as operators with domain in FBis, the flexible 
bodies. 

MODELING OF A 55~ WRAP-RIB ANTENNA 

The modeling of a 55-m wrap-rib offset antenna will be presented in this 
section to illustrate the approach described in the previous section. The 
antenna, designed for the Land Mobile Satellite Service (LMSS) Project 
[Ref. 1] is schematized in Fig. 2. It consists of a massive spacecraft-feed 
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Figure 2. Schematic Diagram of the Antenna 



assembly and a 55-m,deployable,wrap-rib, reflector dish connected by an L
shaped frame. The longer arm of the frame, which supports the spacecraft-feed 
assembly at its free end, has a length of 80 m and the shorter ar~which 
supports the dish, a length of 33.8 m. In the sequel, the short arm will be 
referred to as the upper boom and the long arm as the lower boom. 

The following approximations and assumptions are made for the modeling: 

1) The longitudinal distortions of the booms are neglected: only lateral flexures 
and torsion about the principal axis of the boom was considered. 

2) The boom's masses are also neglected. Indeed, they constitute less than 3% 
of the total mass. 

3) The dish is assumed planar and attached to the upper boom through a rigid 
and fixed hub. 

4) The spacecraft-feed assembly is approximated by a rigid body whose center of 
gravity is placed at the extremity of the lower boom. 

Kinetic Energy 

Let mO and 10 be the mass and inertia matrix of the spacecraft-feed 
assembly and ml the reflector-dish mass. It is easily established that, 
neglecting the booms' masses, the kinetic energy of the system is given by 

where 

m is the reduced mass of the system, 

R the vector joining the spacecraft and dish mass centers (cf. Fig. 3), 

AO = the rotation vector of the spacecraft, 

Q the domain of the dish, 

p the dish mass density, and 

P the vector from the dish mass center to an arbitrary element 
of the dish surface. 

The value of the second term, in the expression for T, is directly given, 
but the other two terms have to be evaluated. 

For the first term we need the vector R. Let us define two orthogonal 
coordinate systems as follows (cf. Fig. 3): 

(gl, g2, g3) with the origin at the elbow of the booms at rest; g3 has 
the same direction and orientation as the vector rO joining the space
craft's mass center to the elbow at rest, gl orthogonal to g3 in the 
plane of the booms at rest and oriented such as to make the smallest 
angle with rl, vector coinciding with the upper boom at rest and 
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oriented towards the reflector's hub; g2 is such as to form a direct 
system with gl and g3' 

(g4, gs, g6) with the origin at the reflector's center at rest; gs is 
the outward nonnal at the center of the dish, g6 is along and in the 
same orientation as rl, and g4 forms a direct system with gs and g6' 
Let u be the displacement of the lower boom's tip expressed in the 
(gl' g2' g3) coordinate frame. 

s is the displacement of the upper boom's tip expressed in the (g4, 
gs, g6) coordinate frame. 

hO is the vector from the dish point of attachment to the dish mass 
center in the undistorted configuration. 

110 is the translation of the mass center of the dish due to the dish 
distortion only. 

Given these definitions and the assumption that the booms have no longi-· 
tudinal distortion, the vector R is given by (d. Fig. 3) 

A simple differentiation leads to 

R = ~O x R + ~lgl + u 2g2 + slg 4 + s2gS + 110 + Ylg3 x(hO+rl ) 

+ y2
g6 x hO 

where Yl is the rotation of the tip of the lower boom about g3 and Y2 the 
rotation of the tip of the upper boom about g6' 

It remains to evaluate the last term,Jg p~.~dg. Let Po be the vector 
from the mass center of the dish to some arbitrary point in the undistorted 
configuration which corresponds to P after deformation, and let 11 be the 
vector joining this point before deformation to its position after distortion 
(cf. Fig. 4) ,. To the first approximation, 

which yields 

. . 
With these values of Rand P,some simple but tedious algebraic manipula-

tions lead to the following expression: 

l'T • 1 J .. 
T = 2 x Ml x + 2 g P11.11 dg 
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Figure 3. Diagram of Antenna after Deformation 
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BEFORE DEFORMATION 
AFTER DEFORMATION 

Figure 4. Schematic Representation of 
Dish Distortion 
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The state space vector x is given by 

x = (A T 
0 

u
l 

u
2 Yl sl Y2 

T 1jJ T)T 
s2 ]10 0 

With 1)0 defined as 

1jJ =: -1 J
Q 

PPO x(]1 - ]10) dQ, 0 II 

where 

is the inertia matrix of the dish in its undistorted state, and E the identity 
matrix. 

The matrix Ml is given by 

M • 
1 

The dish is formed by N (forty-eight in our case) lenticular cross
sectional ribs attached to a central, circular,rigid,hub with equal angular 
spacing 80 (cf. Fig. 5). A pretensioned mass is stretched between the ribs. 
The dish can thus be divided in N identical sectors numbered from zero to N-l. 
Due to the nature of the material forming the mesh,the distortions of the 
dish surface are due mainly to the deformations of the ribs. The ribs are 
considered to be cantilevered at the hub. To compute the kinetic energy,the 
mass of the mesh is lumped on the ribs. For each sector, the kinetic energy 
is given by 

T =!2 (fL P ~ .~ dQ + fL P ~ .~ dQ) 
n n n n n 

o 0 

where v is the in--plane distortion, i.e., the projection of ]1 on the plane of 
the dish; w is the out-of-plane distortion, i.e., the projection of ]1 on the 
normal to the dish plane; and L is the length of the rib. 
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The kinetic energy can thus be expressed as 

1 • 1 N-l JL 
T -2 x Ml ~ + -2 L P (~ ~ +;.., .;.., ) dn 

n=O n n n n n 

Potential Energy 

The potential energy of the system is the sum of the potential energies 
stored in the booms and in the dish. 

If Ll and L2 are the lengths of the lower and upper boom respectively, and 
U

l
, U2 , and fl are the bendings and the torsion along the lower boom, sl' 8

2 
are 

N-l 
o 

1---------12 

Figure 5. Schematic Diagram of the Reflector Dish 

the bendings and the torsion along the upper boom, the potential energy stored 
in the booms is given by 
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3~1 (r,t) 
2 

3rl (r,t) 2 it [ElIl 

3 UZ(r,t) 
( Z + 

3rZ 
) + GlJ l ( 3r ) ]dr + 

0 3r 

Z Z 
3r Z(r,t) z it [EZIZ 

3 Sl (r,t) 3 SZ(r,t) 
( 

3r
2 + 2 ) + GZJ2 ( 3 r ) ]dr 

0 3r 

For each sector of the dish~neglecting the torsion of the ribs,the poten
tial energy is the sum of the following components: 

Bending energy of the rib: 

In-Plane~ 

it 3Zv (r,t) 2 
EI. ( n ) dr 

1 
3rZ 

0 

au t-of ·-Plane~ 
Z 

it 3 w (r,t) Z 
EI (n ) dr 

0 
3r

Z 
0 

Mesh shear energy: 

l t fo E 
3v (r,t) v (r,t) Z 

( n _ n ) rd8dr Z rc 
3r

2 'r o 0 

Out-oi-plane stiffness energy due to circumferential pretension: 

lJL ~ 2 Z r8 wn (r,t) dr 
o 0 

In-plane stiffness energy due to mesh stretching: 

lJL ~ 2 2 r8 v (r,t) dr 
o 0 n 

Equations of Motion 

The expressions obtained for the kinetic and potential energies lead to 
the following equations for the antenna: 

(0 
3r3 

r=O 

o 
r=O 

i 1,2 

9,9 



where 

v = 

A = 
1 

A = 
2 

·. a 2 a 2 E e 80 a a A2 v 
pv + -2 Eli :z v = XEJ Al v + 2 Ere [ax x ax A2 v - xl 

-2 

1 

1 

ax aX 0 

o 

w= , 

1 

-2 1 

1 -2 1 

2 1 

1 

o 
1 

2 

1 

1 

2 1 

1 

o 

1 

1 -2 

o 

1 

1 

2 

Boundary Conditions: 

r-L 1 

• 0 

.. 0 

or 1 or2 
a - = 0 

or r" L or r" L 
1 2 

- 0 a 1, 2 

i .. 1. 2 
a2 s. 

I 
-2- "0 

or r a 0 
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Remark: 

The equations of the in- and out-of-plane motion of the ribs are given in 
a matrix form. They can be decoupled in a set of scalar equations by noticing 
that both matrices Al and A2 have eigenvectors given by 

cos 

cos 

<Pn = 

cos 

o (n-l) 
2Tr 

+ N 

1 (n-l) 
2Tr 
N + 

(N-l)(n-:;") 2Tr + 
N 

corresponding to the eigenvalues 

4sin
2

(n-l) ~ 
and 2 n 

4 cos (n-l) N n 

for Al and A2 respectively. 

sin 

sin 

sin 

o (n-l-) 2Tr 
N 

1 (n-1) 2Tr 
N 

2Tr 
(N-l) (n-l) N 

1, ... ,N 

The decoupled equations can be written as 

Cl
2 Cl

2 T \In 
+ EI 

Pn c 
PPn 

Clx 
2 0 

-2-- x8 Pn 
Clx 0 

Cl
2 2 E Ie 8 Cl q 

Cl n c In 0 
pqn + 2 EI. 2 x8 qn + 2 E Ie [- x 

Clx 
l 

Clx 
rc 2n Clx 

0 

Computation Results 

Clq qn n 
Clx 

-] 
x 

In order to establish the accuracy of the model and its adequacy for 
simpl~ and fast computations, the modal frequencies of the reflector dish were 
evaluated ustng a Ritz approximation scheme with assumed mode shapes of the 
form 

\' (1 _ cos in E.-) 
L a i 2 L . 

The following table shows a comparison of the results to those obtained 
through finite element modeling [Ref. 2] (using 6624 modes). 
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Table 1. Comparison Between Continuum and Finite Element Models 

PDE FE 

Circumferential Wave Number 0 1 0 1 

1st out-of-plane 0.77276 0.772763 0.78971 0.78988 

2nd out-of-plane 3.33615 3.33615 - -

1st in-plane 0.175461 0.175877 0.18134 0.19082 

2nd in-plane 0.726048 0.725721 0.70185 0.70423 

The accuracy is quite satisfactory as it can be observed. As to the 
required computational effort, the difference with the finite element method 
is striking: the whole algorithm could be programmed on an intelligent 
terminal, and the computational cost was about 30 times less. 

CONCLUSION 

A general approach to partial differential equation modeling of large 
space structures was presented and its application to the modeling of a large, 
wrap-rib, offset-fed antenna was described. 

The partial differential model thus obtained has all the expected traits 
of simplicity, conciseness, and suitability for parametric studies. 

The model was used to evaluate the modal frequencies of the dish. For low 
frequencies the results are very close to those obtained from a finite-element 
model of very high dimension. The striking feature is that the required 
computational effort was more than an order of magnitude smaller. 
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MODELING OF FLEXIBLE STRUCTURES 
FO]R ACTIVE CONTROL* 

Arthul' E. Bryson, Jr. 
Stanford University 
Stanford, CA 94305 

ABSTRACT 

If a flexible structure has a plane of symmetry, the equations of motion can 
be split into two uncoupled sets, one for symmetrical motions and one for anti
symmetric motions. 

If there are m controls, it is often convenient to assign the linear com
binations of controls that enter into the m lowest frequency modes and "new" 
controls. 

As an example the feed--support structure of a spacecraft antenna is consid
ered. It is modeled as a tetrahedron made up of flexible bars and connected to 
the spacecraft by six short flexible legs containing force actuators and displace
ment sensors. Due to the three-sided symmetry of this structure, both the 
symmetric and the anti-symmetric equations of motion can be decoupled into two 
subsystems. The resulting four subsystems are: 

(1) Pitch/fore-aft motions with four degrees of freedom (DOF) , t\vO 
controls, and one output (the fore-aft motion of the feed). 

(2) Vertical motions with three DOF, one control, and one output 
(the vertical motion of the feed). 

(3) Roll/lateral motions with four DOF, two controls, and one 
output (the lateral motions of the feed). 

(4) Yaw motion with one DOF, one control, and no output (the feed 
does not move during yaw motion). 

Such a decomposition obviously simplifies the task of synthesizing active 
control logic for the structure. 

INTRODUCTION 

The example was suggested by the ACOSS (Active Stabilization of Space 
Structures) problem posed by the. Draper Laboratory a fe\-1 years ago (see Ref. 1 
and Figure 1). The only difference in the data from that problem is that we have 

,'~ 
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taken the three vertical bars of the tetrahedron to be iden tical. This results 
in four lateral modes that have identical frequencies to four lon8itudinal modes. 

The ACOSS problem may be interpreted as the problem stated in the abstract 
if one assumes that the spacecraft mass is large compared to the feed-tower mass 

• so that the spacecraft motions are negligible. 

EQUATIONS OF HOTION 

The structural model is oversimplified and was apparently only intended to 
be an example of a multi-input, multi-output system. The structure consists of 
twelve bars, six of which (10 meters long) form a regular tetrahedron with the 
feed at its apex (point 1). Two bars (each 2.828 meters long) connect each of 
the three joints at the base of the tetrahedron (points 2,3,4) to the antenna 
dish on the spacecraft. The cross-section area of the three base members is ten 
times the cross-section area of the vertical members and the legs. The mass of 
the structure is "lumped" at the four joints (equal mass at each joint). 

Since there are two actuators applying forces at each of the three base 
joints, it is possible to create independent horizontal and vertical forces at 
each of these joints. Let (Vi,lli) be the (vertical,horizontal) forces at joint 
i (i = 2 to 4) as shown in Figure 2. 

Let k(i) be the values of EA(i)/mL(i) (stiffness/mass) for the base 
members (i = 1), the vertical members (i = 2), and the legs (i = 3), where 
E = Young's modulus, A = cross-section area of the member, L = length of member, 
and m = lumped mass at each joint. He have taken m = 2, and 

f 

where 

k(l) 

k(2) 

k(3) 

50 

5 

17.6775 

2 
l/sec , 

2 
l/sec , 

2 l/sec . 

x -K"x + G"f, 

K = 12 by 12 matrix, 
G = 12 by 6 matrix. 

The matrices K and G were calculated and are given in Appendix A. 

DECOHPOSITION INTO SYHHETRIC AND ANTI-SY11METRIC MOTIONS 

Motions of the feed-tower can be decomposed into motions that are either 
symmetric or anti-symmetric with respect to the y-z plane of symmetry. The 
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decomposition can be performed by the following change of variables: 

a = (xl' (x2 + x3)/2, (Y2 - Y3)/2, (z2 - z3)/2,x4), 

S «H2 - H3)/2, (V2 + V3)/2,V4) 

A (H2 + II3) /2, (V 2 - V 3) /2, II4) 

where (s,a) are vectors of (symmetric, anti-symmetric) joint displacements, and 
(S,A) are vectors of (symmetric, anti-symmetric) actuator forces. The equations 
of motion then split into two uncoupled sets: 

s = -KS"s + GS·S, 
and 

.. 
a = -KA"a + GA"A. 

The KS, KA, GS, GA matrices were calculated and are given in Appendix A. 

DECOUPLING OF THE SYMMETRIC NOTIONS INTO PITCH/FORE-AFT AND VERTICAL HOTIONS 

Using an eigenvalue/eigenvector computer code, the symmetric equations of 
motion were put into modal form (see Appendix B). The three modes of this system 
with the lowest frequencies correspond to quasi-rigid pitching, vertical transla
tion, and fore-aft translation. Linearly-independent combinations of the 
symmetric actuator forces control each of these quasi-rigid modes, so we chose to 
regard these combinations as "new" symmetric controls. Hhen this was done, a 
further decoupling appeared, in that two of the four higher-frequency (deformation) 
modes were controllable only by the new pitch and fore-aft controls (f ,ff)' while 
the other two modes were controllable only by the new vertical controlP(f ). 
Furthermore, fp and ff control only the fore-aft motions of the feed v(Yl)' 
while fv controls only the vertical motion of the feed (zl)' . 

The modes that involve only fore-aft motions of the feed are shown in Fisure 
3. The pitch/fore-aft equations of motion in modal form are given in Figure 4. 
Figure 5 shows the combinations of the primary controls that form fp and ff' 

The modes that involve only vertical motion of the feed are shown in Figure 
6. The vertical equations of motion in modal form are given in Figure 7. Also 
shown in Figure 7 is the combination of primary controls that forms f (equal 

v values of V2 ,V 3 ,V
4
). 

DECOUPLING OF THE ANTI-SYHHETRIC NOTIONS INTO ROLL/LATERAL AND YAH NOTIONS 

A similar procedure was follmved for the anti-symmetric motions (see Appendix 
B). The three lowest frequency modes were quasi-rigid roll, lateral translation, 
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and yaw. llere the two higher frequency (deformation) modes were controllable 
only with the new roll/lateral actuator forces (fr,f

l
). 

The modes that involve only roll/lateral motions of the feed 
Figure 8. The roll/lateral equations of motion in modal form are 
9. Figure 10 shows the combinations of the primary controls that 

fl' 

are shown in 
given in Figure 
form f and 

r 

The modes that involve only yaw motion of the feed are shown in Figure 11. 
The yaw equation of motion in modal form are given in Figure 12. Also shown in 
Figure 12 is the combination of primary controls that forms f (equal values of 
H

2
,H

3
,11

4
)· y 

The natural frequencies of the roll/lateral subsystem are identical to those 
of the pitch/fore-aft subsystem, which is not surprising in view of the symmetry 
of the structure. 

SUMlfARY 

Figure 13 is a summary of the decoupling of the system into four subsystems. 
The 24th order system with six controls and three outputs has been decoupled into 
two 8th order subsystems with two controls and one output, a 6th order system with 
one control and one output, and a 2nd order system with one control and no output. 
This greatly simplifies the problem of synthesizing active control logic for the 
system. 
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APPENDIX A. EQUATIONS OF HOTION 

Let: 

x(i,k) kth component of the displacement vector of the ith joint, 

u(i,j,k) kth component of nominal unit vector from ith to jth jO~lt, 

f(i,k) kth component of control force on iLh joint 

k(1) E'A(i)/m'L(i), 

stiffness/mass, 

where i ~ I for base members, i ~ 2 for vertical members, and i ~ 3 for the 
legs, and 

E ~ Young's modulus, 
A ~ cross-section area of bar, 
m ~ lumped mass at each joint, 
L length of bar. 

Then the equations of motion are: 

where 

and 

x(l,k) ~ k(2)'u(I,2,k)'u(I,2,j)'[x(l,j) - x(2,j») 
k(2)'u(I,3,k)'u(l,3,j)'[x(1,j) - x(3,j») 
k(2)'u(l,4,k)'u(1,4,j)'[x(1,j) - x(4,j»), 

X (2, k) 

x(3,k) 

X (4 ,k) 

[(2,1) 

f(3,1) 

f(4,1) 

- k(2)'u(2,l,k)'u(2,I,j)'[x(2,j) - x(l,j») 
- k(l)'u(2,3,k)'u(2,3,j)'[x(2,j) - x(3,j») 
- k(I)'u(2,4,k)'u(2,4,j)'[x(2,j) - x(4,j») 
- k(3)'u(2,5,k)'u(2,5,j)'x(2,j) 
- k(3)'u(2,6,k)'u(2,6,j)'x(2,j) 
+ f(2,k), 

- k(2)'u(3,1,k)'u(3,1,j)'[x(3,j) - x(l,j») 
- k(1)'u(3,2,k)'u(3,2,j)'[x(3,j) - x(2,j)] 
- k(l)'u(3,4,k)'u(3,/I,j)'[x(3,j) - x(4,j») 
- k(3)'u(3,7,k)'u(3,7,j)'x(3,j) 
- k(3)'u(3,B,k)'u(3,8,j)'x(3,j) 
+ f(3,k), 

k(2)'u(4,l,~)'u(4,I,j)'[x(4,j) - x(l,j)] 
- k(1)'u(/I,2,k)'u(4,2,j)'[x(4,j) - x(2,j») 
- k(1)'u(4,3,k)'u(4,3,j)'[x(4,j) - x(3,j») 
- k(3);u(4,9,k)'u(4,9,j)'x(4,j) 
- k(3)·u(4,lO,k)·u(4.10,j)·x(4,j) 
+ [(4,k), 

-s'1I2/m, 

-S' Il3/m, 

\l4/m, 

f(2,2) 

f(3,2) 

f(4,2) 

1 s = -
2 ' 

c'Ilz'm, f (2,3) 

-c'I1/m, f(3,3) 

0 f(/I,3) 

13 c =--
2 

~ V2/m, 

V/m, 

V4/m, 

He have taken m" 2 and: 

k(l) 50 l/sec 2 

k(2) 5 1/sec 
2 

k(3) 17.6775 l/scc 2 

A BASIC computer code, TETPJi, was developed to calculate the terms in the 
equations above, and to find the terms in the symmetric and anti-symmetric equa
tions of motion. It is listed in the following pages, followed by the output. 
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100 REM ***** TETRA **W* 4/26/82 ***** 
110 REM * FINDS STIFFNESS MATRIX K. & 
120 REM * C(~TROL DISTRIBUTION MATRIX 

30 REM * 0, FOR TETRAHEDRON ON LEGS. 
140 F:EM *' HHERE 
150 REM * XDOTDOT=-K*X+G*U. 
160 FHl t. 
1 (-'0 F:Et'l W. THEN F r t·lDS f< mm G FOR 
180 REM * SYMMETRIC & ANTI-SYMMETRIC 
190 REM * MOTIONS. 
200 REM **~*+************************* 210 REt'1 
220 REM * READS DATA * 
230 F.H1 
240 DIt'1i<;'~ 1 0.3), W4., 10., :;:)., K( 12.,12) : FORI"'1 TOl 0: FOF:J=1 103: F:EAD:X;( I., J) : HD::T .1., I 
250 READK1.K2.KL:DEFFNRCS)=INTCI0000*S+.5)/10000 
260 FHl 
27'(1 REI'1 ~~ FEm:::; tlotHHAL DIf.;PLACH1EIH ' ... 'ECTOF.:S FROt1 FOUF.: TETF:AHEDROH JOHn::; 
280 REM * TO EACH OTHER & ALOHG LEGS * 
29[1 RHl 
300 FORI=IT04:FORJ=IT010:FORK=IT03:MCI,J.K)=XCI,K)-XCJ.K):HEXTK,J.I 
31 (1 FHl 
320 REM * FINDS ELEMENTS OF STIFFNESS MATRIX * 
330 FH1 
340 FORI=IT03:FORJ=4T06:KCI,J)=M(1.2.I)*MC1.2,J-3)*K2:NEXTJ,I 
350 FORI=lT03:FORJ=7T09:K(I.J)=M(1.3,I)*MC1.3,J-6)'K2:HEXTJ,l 
360 FORI=lT03:FORJ=10TOI2:KCI.J)=M(1,4.I)*MC1.4,J-9)*K2:NEXTJ.I 
370 FORI=4T06:FORJ=7T09:KCI.J)=MC2.3,I-3'*MC2,3.J-6)*Kl:NEXTJ,I 
~BO FORI=4T06:FORJ=10T012:KCI,J)=M(2,4.I-3)*M(2.4.J-9)*Kl:HEXTJ,I 
_90 FORI=7T09:FORJ=10T012:KCI,])=M(3.4,I-6)*M(3,4.J-9)*Kl:NEXTJ.I 
400 FORI=IT03:FORJ=4TOI2:KC].I)=KCI,J):NEXT],I 
410 FORI=4T06:FORJ=7T012:KCJ.I)=KCI,J):NEXTJ.I 
420 FORI=7T09:FORJ=10TOI2:KCJ,I)=K(I,J):NEXT.1,I 
430 FORI=IT03:FORJ=lT03:KCI.J)=-KCI,J+3)-KCI,J+6)-KCI.J+9):NEXTJ,I 
440 FORI=4T06:FORJ=4T06:KCI,J)=-KCI.J-3)-KCI.J+3)-KCI.J+6):NEXT.1.I 
450 FORI=4T06:FORJ=4T06:K(I,J)=KCI.J)-M(2.5.1-3)*M(2,5,J-3)tKL:HEXTJ.I 
460 FORI=4T06:FORJ=4T06:KCI.J)=KCI.J)-M(2.6,I-3)*M(2,6.J-3)*KL:NEXTJ.I 
470 FORI=7T09:FORJ=7T09:KCI.J)=-KCI,J-6)-K(I.J-3)-K(I.J+3):NEXTJ.I 
480 FORI=7T09:FORJ=7T09:KCI,J)=K(I.J)-MC3.7.I-6)tMC3.7.J-6)tKL:NEXTJ.I 
490 FORI=7T09:FORJ=7T09:KCI.J)=KCI.J)-MC3.8,I-6'*M(3.8.J-6)tKL:NEXTJ.I 
500 FORI=10T012:FORJ=10TOI2:KCI.J)=-KCI.J-9)-KCI.J-6)-KCI,J-3):NEXTJ,I 
510 FORI=10T012:FORJ=10T012:KCI.J)=KCI,J)-MC4.9.1-9)*MC4,9,J-9)*KL:NEXTJ. I 
520 FORI=10T012:FORJ=10T012:KCI.J)=KCI.J)-MC4.10.I-9)tMC4.10.J-9)*KL:NEXTJ.I 
53(1 Pf':I rHTAB ( 10).; "STIFFljE::;:3/~IA:::;:::; t'lAmr>:;., UPPEF.: LEFT OUI=iDRm-n" 
510 FORI=IT06:PRINTTAB(10); :FORJ=IT06:PRINTFNRCKCI.J»; :NEXTJ:PRINT:NEXTI 
550 PF.: HlTTFIB( 1 (1).; "UPPEF: I~: ICiHT C!UADRAt-n": FORI = 1 T06 : PF.: HlTTAE: C 10).; : FOF.:,J,-,,7TO 1:::: 
560 PRINTFNR(KCI,,J»; :HEXTJ:PRIHT:NEXTI 
570 PF: I tHTAI: 0: 10) .; II LmlEF.: F: I CiHT G!UfiDPAtH II 
580 FORI=7T012:PRIHTTAB(10); :FORJ=7T012:PRINTFNRCK(I,,J»; :NEXTJ:PRINT:NEXTI 
590 F:Hl 
600 REM * CALCULATES AHTI-S~~METRIC. SYMMETRIC STIFFNESS MATRICES * 
610 REt'1 
6:~~0 DIt1H 12.,12). TI 0: 12.12)., LJ 12.,12)., L1 C 12.12) : C=::. 5: TO:: 1.,1 )::::1: T<2 .. 6)==1 
~30 T(3.7)=1:TC4.2)=I:T(4,8)=I:T(5.3)=I:TC5.9)=1:TC6.4)~1:TC6.10)=I:TC7;2)=1 

10 T(7,8)=-I:T(8.9)=I:T(8.3)=-I:T(9.10)=I:T(9.4)=-I:TCI0.5)~1 :T(11.11)~1 
650 1(12.12)=1 :TIC1,1)=1 :TI(2.4)=C:TI(2 .. 7)=C:TI(3.5)=C:TI(3.8)~-C:TI(4.6)=C 
660 TI(4.9)=-C:TI(5.10)=1 :TI(6,2)=I:TI(7,3)=I:TI(8.4)=C:TIC8.(-,)=-C:TI(9.5)=C 
670 TIC9,8)=C:TI(10.6)=C:TI(I(1,9)=C:TIC11.11)=I:TICI2.12)=1 
680 ~ORr=lT012:FORJ=lT012:FORK=IT012:LICI.J)=Ll(I,J)+K(I.K)*TCK,J):HEXTK.J.I 
690 FORl=ITOI2:FORJ=lTOI2:FORK=lT012:L(I,J)=LCI.J)+TICI.K)*LICK.J):NEXTK,J.I 
7(10 PR I tHTFIP( 1 (3) .; II titlY I -SWlI'lETF.: leST I FFI·IES::;/I'1fi::::;S t'lATR I >:; : II 

710 FORI=IT05:PRINTTABCI0); :FC~J=IT05:PRIHTFNRCL(I.J»; :HEXTJ:PRINT:NEXTI 
720 00T0750 

3(1 PI? I HTTAf: ( 1 (1) .; II CPO::;S-C(lLlPL I IlG t'IFITR I;:': : II 
740 FORI=lT05:PRINTTAB(10); :FORJ=6T012:PRINTFNR(LCI.J»; :NEXTJ:PRINT:NEXTI 
750 PR I tfrTnI: ( 1 (1) .; II ~;'T't,1t'1ETF: I C ::;;T I FFlJE::;::;,·'t'iRS:3 t'HilT I >:; : II 
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760 FORI=6TOI2:PRINTTAB(10); :FORJ=6TOI2:PRINTFNR(L(I.J»; :NEXTJ:PRINT:NEXTI 
770 00TO::3:;:0 
780 PF.: I tJTTAB ( 1 (1;'; "CROSS-COUF'L I t~G ~HHF.: I ;":: " 
790 FORI~6T012:PRINTTRB(10); :FORJ=lT05:PRINTFNRCL(I.J»; :NEXTJ:PRINT:NEXTI 
800 F.Hi 
810 REM * COMPUTES GA & GS * 
(;:;;::(1 FHi 
830 DIMG(12.6).Gl(12,6) 
840 G( 4 .. 1. ):=:-. 25: 13(5 .. 1 ):::. 4::::::::01 : G(6. 2)=. 5: G(7, :3)::::-. 25: G(8, :;::)=-. 4:::::;::~::11 : 0(9 .. 4)=.::i 
850 G(10.5)=.5:G(12.6)=.5 
860 FORI=lT012:FORJ=lT06:FORK=IT012:Gl(I.J)=Gl(I.J)+TI(I,K)*GCK.]):NEXTK,J,r 
870 PRINTTAB(10):PRINT"ANTI-SYMMETRfC CONTROL DISTRIBUTIC~ MATRIX GA(I.J). IS:" 
8aa FORI=IT05:PRINTTABCI0); :FORJ=lT06:PRINTFNRCG1(I.J»; :NEXTJ:PRINT:NEXTI 
890 PRINTTAB(10):PRINT"S\~METRIC CONTROL DISTRIBUTION MATRIX GS(I.J). IS:" 
900 FOF~ 1==61012: PF.: I tHTAB ( 10); : FOF.:.J=1 T06: PF.:ltHFHF~(GI (I .. J».; : HE>::T.J: PF.:IHT: NEl::TI 
910 nw 
920 F~Et<i 
930 REt'l ~~ TETRA *' 
940 REt'l 
95(1 F~EN * Aeoss TETRfiHEIIROI--I.; X=(i':l. VI, ZI, )-::2, '1'2, Z2. ),;:;::. 'r'3. Z::::., )<4 .• 'r'4. 24) 
960 F£f'1 ,+: U= (H2 .. '.,12, H::: .. V3) H4 .. V4); 4/26.····82 * 
970 REN 
~9(1 REt1 *: EtnEF~ IiATA HEF~E :+: 
_ .. ~O F-Hl 
H:1~H:; HEN * ENTER X .. 'r',Z COORDIHATES OF JOINTS 1 THRU It1 :+: 
1010 DATA 0.0.10.165.-5.-2.887.2.5.-2.887.2,0.5.7735.2.-6.-1.1547.0 
1020 DATA -4,-4.6188.0.4.-4.6188.0.6.-1.1547.0,2;5.7735.0.-2.5.7735.13 
103[1 F.Hl *' ENTER STlFFNESS/t'lASS FOR HEA'·/'l" t·lEt'1E:EF~S. LIGHT t·lEt·iBERt;. 8: LEG::; *' 
1040 DATA .5 •• 05.2.2097 

F~EAD'l". 
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STIFFNESS/MASS MATRIX, UPPER LEFT QUADRANT 
-2.5 0 0 1.25 .7218 2.0413 
o -2.5001 -2E-04 .7218 .4167 1.1786 
o -2E-04 -10.0001 2.0413 1.1786 3.3334 
1.25 .7218 2.0413 -68.1694 -14.7184 -2.0413 
.7218 .4167 1.1786 -14.7184 -51.1771 -1.1764 
2.0413 1.1786 3.3334 -2.0413 -1.1764 -21.011 

UPPER RIGHT QUADRANT 
1.25 -.7218 -2.0413 0 0 0 

-.7218 .4167 1.1786 0 1.6667 -2.357 
-2.0413 1.1786 3.3334 0 -2.357 3.3334 

50 0 0 12.5 21.6513 0 
o 0 0 21.6513 37.5021 0 
o 0 000 0 

LOWER RIGHT QUADRANT 
-68.1694 14.7184 2.0413 12.5 -21.6513 0 

14.7184 -51.1771 -1.1764 -21.6513 37.5021 0 
2.0413 -1.1764 -21.011 0 0 0 
12.5 -21.6513 0 -42.6776 0 0 

-21.6513 37.5021 0 0 -76.6709 
o 0 0 0 2.357 -21.011 

~ ~~~ 
~.~~t 

ANTI-SYMMETRIC STIFFNESS/MASS MATRIX: 
-2.5 2.5 1.4435 4.0825 0 

1.25 -18.1694 -14.7184 -2.0413 12.5 
.7218 -14.7184 -51.1771 -1.1764 21.6513 
2.0413 -2.0413 -1.1764 -21.011 0 
o 25 43.3025 0 -42.6776 

SYMMETRIC STIFFNESS/MASS MATRIX: 
-2.5001 -2E-04 1.4435 .8335 2.3572 1.6667 -2.357 
-2E-04 -10.0001 4.0825 2.3572 6.6667 -2.357 3.3334 

.7218 2.0413 -118.1694 -14.7184 -2.0413 21.6513 0 

.4167 1.1786 -14.7184 -51.1771 -1.1764 37.5021 0 
1.1786 3.3334 -2.0413 -1.1764 -21.011 0 0 
1.6667 ~2.357 43.3025 75.0043 0 -76.6709 2.357 

-2.357 3.3334 0 0 0 2.357 -21.011 
ANTI-SYMMETRIC CONTROL DISTRIBUTION MATRIX GA(I,J), IS: 
o 0 0 0 0 0 

-.125 0 -.125 0 0 0 
.2165 0 .2165 0 0 0 
o .25 0 -.25 0 0 
o 0 0 0 .5 0 

SYMMETRIC CONTROL DISTRIBUTION MATRIX GS(I,J), 
o 0 000 0 
o 0 0 000 

-.125 0 .125 0 0 0 
.2165 0 -.2165 0 0 0 
o .25 0 .25 0 0 
o 0 000 0 
o 0 0 0 0 .5 
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APPENDIX B. MODAL FORHS 

An eigenvalue/eigenvector code was used to find the natural frequencies and 
mode shapes from the symmetric and anti-symmetric equations of motion determined 
in Appendix A.. The results are shown below and on the next page. 

x=(xlJx2J~2Jz2Jx4);u=(h2Jv2Jh4) 
Units sec; 4/26/82 

D'::trl.!:!IfJ i cs t'1a.tt-· i x F., is: 
- 2.500 + 2.500 + 1.443 + 4.082 + .000 
+ 1.250 -18.169 -14.718 - 2.041 +12.500 
+ .721 -14.718 -51.177 - 1.176 +21.651 
+ 2.041 - 2.041 - 1.176 -21.011 + .000 
+ .000 +25.000 +43.302 + .000 -42.677 
Contr'o 1 II i str' i b,-~t ion t'1.9.tt-· i ::< .' G., is: 
+ .000 + .000 + .000 

.250 + .000 + .000 
+ .433 + .000 + .000 
+ .000 + .500 + .000 
+ .000 + .000 + .500 

E i ·:~1en'·.·'·!:!. lues .:Elre: 
Re.!:!.l I m·:EI::'i i n.9,t"·,::! Hade 

- 85.5753 + .0000 11 
- 21.7350 + .0000 8 
- 17.6775 + .0000 6 

8.7462 + .0000 5 
1 • :::009 + • t10~30 2 

E i ·;,en' ... 'ectot"· t'1.9.tr· i >:: .' T .' is: 
+ .0256 - .2286 - .0001 - .2761 +1.0000 
- .3579 + .1300 - .4998 +1.0000 + .1188 
- .7840 - .0068 + .8659 + .0874 + .0165 
- .0264 +1.0000 + .0004 - .2207 + .0926 
+1.0000 + .1409 +1.0000 + .8483 + .0901 
Th€~ Nod.9.1 Contr'o 1 V:..I::. iIi t'::! t'1.9.tt-· 1 ::< .' I t"l' .... .:: T::':+:G .' 
- .2010 - .0106 + .2010 
- .0336 + .4748 + .0334 
+ .3333 + .0001 + .1667 
- .1458 - .0759 + .1458 
- .0427 + .0878 + .0427 

ll7 

Yl 
0 

zl 0 

x3 x2 
Y3 -Y2 
z3 -z2 

Y4 
0 

z4 0 

-------
H3 = H 

2 
V =-V 3 2 
V = 4 

1· .'-' .= .. 

0 



x=(yl.zl.x2.y2.z2.y4.z4);u=(h2.v2.V4) 
Urri t.s sec.; 4/26.····:;::2 

n·::tt"I.~I(1 i cs N.~.t.t-· i ::{ F.. is: 
- 2.500 - .000 + 1.443 + .833 + 2.357 + 1.666 - 2.357 

.000 -10.000 + 4.082 + 2.357 + 6.666 - 2.357 + 3.333 
+ .721 + 2.f.141 -:+::+:.:+::+:* -14.718 - 2.~~141 +21.651 + .(100 (-118.1694) 
+ .416 + 1.178 -14.718 -51.177 - 1.176 +37.502 + .000 
+ 1.178 + 3.333 - 2.041 - 1.176 -21.011 + .000 + .000 
+ 1.666 - 2.357 +43.302 +75.004 + .000 -76.670 + 2.357 
- 2.357 + 3.333 + .000 + .000 + .000 + 2.357 -21.011 
CQrrtt-·o 1 n i stt-· i but. i on th:tt-· i ::<. 13 .' is: 
+ .000 + .000 + .000 
+ .000 + .000 + .000 

.250 + .000 + .000 
+ .433 + .000 + .000 
+ .000 + .500 + .000 
+ .000 + .000 + .000 
+ .000 + .000 + .500 

E i ·:'iet-II.}·~. It-les ·~.t"·e: 
Re.~. 1 I ril.~::'i i n.~.t"··:;:1 

-151.8372 + .0000 
- 85.5752 + .0000 
- 23.3728 + .0000 
- 21.7345 + .0000 
- 8.7467 + .0000 

7.4719 + .0000 
1 . ;;::(n)::! + . (10(1(1 

E 1 ·:'1en' ... 'ect.m-· t·1.~.t.t-· i ::{.' T .' is: 

Hade 
12 
10 

9 
7 

3 
1 

x = 0 
1 

x = 0 
4 

1-1 =-H 
3 2 

v = V 
3 2 

1-1 = 0 
4 

+ .0000 - .0317 + .0000 + .1980 - .2629 - .0000 +1.0000 
+ .0512 - .0000 - .7309 + .0000 - .0007 +1.0000 - .0000 
- .8659 + .9673 - .0275 + .0057 + .0832 + .0107 + .0165 
- .5000 - .6753 - .0159 - .1190 + .8557 + .0064 + .0997 
- .0193 + .0188 + .9998 - .5001 - .1214 + .2440 + .0534 
+1.0000 +1.0000 + .0316 - .1091 +1.0000 - .0120 + .1283 
- .0193 - .0376 +1.0000 +1.0000 + .2425 + .2441 - .1069 
The t·1od.9.1 Contr·o 1 l.~.b iIi t':;:I t·1.~.tt-· i ::{.' I t-".) (T):+:G.. i;;::: 
- .0000 - .0064 - .0032 
- .2821 + .0049 - .0049 
- .0000 + .2826 + .1413 
- .0670 - .3165 + .3165 
+ .2653 - .0460 + .0460 
+ .0002 + .2069 + .1035 
+ .0741 + .0507 - .0507 
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VIBRATION SUPPRESSION IN LARGE 
SPACE STRUCTURES 

T.K. Caughey* and c.J. Goh** 
California Institute of Technology 

Pasadena, CA 91109 

I. INTRODUCTION 

The need of active control of large space structures is well-known hence 
needs no reiteration here. The highly complex and interactive nature of the 
problem gives rise to numerous difficulties v.Jhich have been vJell documented by 
BALAS (Ref. 1). Due to the inherently high order of the structure and the 
fact that only a finite number of sensors and actuators is available, the use of 
modern optimal control theory for vibration suppression purposes seems unjusti
fied as it inevitably encounters the problem of control and observation spill
over. ;lore specifically, active control of low frequency modes by such 
techniques causes intermediate or high frequency modes to become unstable, as 
demonstrated both in theory and in experiment (see Refs. 2 and 3). Sophisticated 
compensation techniques can be used to overcome this problem but nevertheless 
lead to further complication. Another much simpler technique is the use of 
colocated velocity (rate) feedback control (see Refs. 4 and 5) which guarantee 
that all modes remain stable. Spillover still exists in this case but rather 
than being detrimental, can stabilize the uncontrolled and unmodelled modes. 
However, there still remains a crucial problem, unfortunately ignored by most 
researchers in this field, namely the interaction of actuator dynamics with the 
structure. It is thus the central objective of this paper to point out that 
actuator dynamics, if not properly treated, may give rise to instability. \~e 
shall also suggest a couple of ways to overcome this. The analysis will be 
carried out in the context of colocated feedback control though it can be 
carried out in terms of optimal control just as well. In the present paper, 
we shall present only a brief summary of the concepts and theory involved; 
interested readers may like to refer to Refs. 6 and 7 for further details. 

II. NATURE OF THE PROBLEM 

A large but finite order (N) vibrating system with colocated rate feed
back control can be modelled by a second order equation: 

.. T 
Mx + Dx + Kx = -S CSx 

*Professor of Applied Mechanics **Graduate Student 
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[M is the inertia matrix including the inertia of the sensors and actuators] 

where the sensor/actuator (S/A) location matrix S is defined by 

(S) .. ={l 
lJ 0 

if S/A pair i 

otherwise 

is located at element j 

Applying the appropriate orthogonal transformation 

(2 ) 

(3) 

such that ~TM~ = I, ~TD~ = V, ~TK~ = Q, where V is in general non-diagonal 
but diagonally dominant and Q is diagonal with the square of the modal 
frequency down the diagonal. Eqn. (1) is reduced to 

..' T T· . 
~ + V~ + ~~ = -~ S CS~~ = -B~ 

Thus, the addition of feedback simply modifies the closed loop damping 
matrix to 

~ 

V = V + B 

(4) 

(5) 

It is easy to prove that (see Refs. 6 and 4) if V and Q are positive 
definite matrix, then the system is stable. Furthermore, if the elements of 
V are relatively small compared to Q, then the dynamical behavior of the 
coupled system is basically dominated by the diagonal elements of V. This 
can be shown easily using perturbation theory. If we rewrite Vas: 

(6) 

where V* is of the same order of magnitude as Q and E is a representative 
small parameter, then the eigen values of the close loop system is given as 
the zeroes of 
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2 -* (s + sdlls 

-* £d 21 

det 

-* £dN1 

or 

2 + (Dl ) 

N 
IT 

i = 1 

-* -* -* sd12 sd13 
... sdlN 

(S2 -* 2 -* -* + £d 22s + w2 ) £d23 sd2N 
= 0 

-* 2 -* sdN2 (s + €dNNS + (I)N2)) 

2 - 2 2 (s + d .. s + w· ) + O(€ ) = 0 
11 1 

(7) 

where lower case letters denote elements of corresponding upper case matrix. 
Hence to 1st order accuracy, the system decoupled into N scalar vibrating 
system with damping dictated by the diagonal term dii' Subsequently if NA 
SjA pairs are available, we can approximately assign the closed loop poles 
arbitrarily. One way of doing such is to decide on what the closed loop 
damping of the first NA modes are, which is equivalent to prescribing the 
first NA diagonal elements of the modal gain matrix B. Thus if we choose 
the first NAxNA top left corner block of B as 

b 1 b2 0 B" = 
b. > 0 

1 
(8) 

0 
'b 

NA 

then the gain matrix C can be computed uniquely as 

(9 ) 

where (10) 

and C is positive definite by virtue of the positive definiteness of Bll , 
the modal gain matrix B must therefore be positive-semi-definite also, and 
it takes the form 
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(ll) 

Note in passing that controllability and observabi1ity of the system are 
equivalent in this case by virtue of the co1ocation, and is identical to the 
invertibi1ity of the matrix (S~l)' This is easily achieved by placing the S/A 
pairs away from the nodes of the controlled ~odes. In the space structure K 
is only positive ~emi-definite. However, if yT(D+B}y is positive definite for 
any vector y orthogonal to NK. (D+B)Z=Q for Z ENK, then the vibrational modes 
are Liapunov asymptotic stable. . 

~Ie have in essence furnished a brief review of the theory of co1ocated 
rate feedback control. Further details will be found in ref. 5. We shall concern 
ourselves more with the interaction of actuator dynamics. In practice, the 
actuators inevitably possess inertia hence cannot be regarded as memory1ess 
devices. This leads to a finite actuator bandwidth. BALAS [ref. 8] argues 
that by ignoring the fast modes, the actuator dynamics can be ignored if it is 
sufficiently fast. This argument is questionable since firstly, omittance 
of fast modes is not justifiable and secondly, no matter how fast the actuator 
dynamics are, they cannot be faster than all the system modes whose bandwidth 
eventually become infinite. This is one of the many fallacies which arises 
in flexible spacecraft control to date, in that we are using finite resources 
to control an infinite dimensional system and hence ignorance or truncation of 
the infinite dimensionality is never justifiable. 

~Iith the presence of actuator dynami cs, eqn. (1) is modifi ed to be: 

Mx + Dx + Kx = -5 T Cz 

. • + S • + 2] = w 2sx 
IN [z aZ wal a 

A 

Applying the appropriate canonical transformation and letting 

z = S~n 

eqns. (12) and (13) are equivalent to 

.. • T T 
~ + OF; + n~ = -Bn = "'~ S CS~n 
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As beforl~, if the damping matrices V and B are relatively small, we can 
regard, to first order accuracy, the coupled system as N decoupled scalar 

Cl6} 

system. This is a useful concept which will enable us to investigate instability 
via classical control technique. A typical reduced scalar system is governed by 

. 2 l;. + B· l;. + wi ~i = .. b·n· (1?) 
1 1 1 1 1 

.. . 2 ' 
n· + 8 n· + w (n· -l; .) = 0 (18) 

1 a 1 all 

For notational convenience we shall discard the index i from ~i and n;. 
Henceforth the symbols l; and n are regarded as scalars quantities until otherwise 
specif'ied. By taking Laplace Transform, the combined system-actuator dynamics can 
be shown easi lly to be governed by the characteri sti c equati on: 

2 2 2 2 2 (s + 8.s + w.)(s + B s + W ) + b. w s = 0 
1 1 a a 1 a 

Using conventional Nyquist diagram methods, it can be shown that, for 
stabi l"ity, thE! scalar gain bi has to be upper and lower bounded by 

YL < b. < Y 1 U 

where 

Y - 41' r '(r W + r ) (wi) + (r (j) _ l'" w.) (1 _ (wi) 2) 
u - "'n""a "'n i "'a wd wa "'a~a "'n 1 Wa 

+ (r; W. + 1; W ) n 1 a a 

- (1; w. + 1;; w ) n 1 a a 
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These are fairly mess~ expressions but nevertheless can be slightly 
simplified if terms in O(~ ) are neglected. A typical plot of these bounds as 
a function of 001 with ~a~C~~wa as fixed parameters is shown in Fig. 1. For 
non-trivial ~n' the shaded Brea defines the stable region, i.e., for any fre
quency mode of frequency w! to be stable, the gain (positive or negative) is 
required to be bounded by 1 

* * * YL (w.) < b. (w.) < Y (00.) 
1 1 1 1I 1 

(23) 

For' trivial ~n' the stability boundaries are shown by broken lines, part 
of which coincides with the wi axis. They also partition the stability region 
[for a system of non-trivial ~nJ into four sectors. We shall defer the significance 
of these sectors ti 11 1 ater but as ~n decreases, the stabil ity regi on shri nks 
correspondingly. It is now easy to see why instability can occur. Suppose 
in the process of designing the gain matrix C, large values of scalar gain b.ls 
occur on the diagonal of B, so much so that it lies outside the stability bo~ndary, 
then the corresponding mode will result in instability. Such large b. can result 
in sevey'a 1 ways, e. g. ~ the prescri bed dampi ng is too hi gh, the matri Xl (S<I>l) is 
near singular due to a poor choice of S/A location, or simply because the 
natural damping is so low that the stability region 'is not large enough to accom
modate even reasonably small gain. One has to bear in mind that this argument 
is only accurate to first order since coupling terms have been ignored, nevertheless 
it works pretty well even in actual simulation. It is also obvious from Fig. 1 
that those modes whose frequencies are around 00 to roughly 200 are most vulnerable 
~o instability as the stability boundary hu) ;g relatively lo~ in this range 
[we sha 11 ca 11 it the IIcriti ca 1 frequency range ll henceforth], For zero ~n and 
positive gain, it is also true that all modes with frequency greater than 00 

are unconditionally unstable. Fortunately actual ~ occurring in space is ~ot 
zero even thougrh it may be very sma 11 indeed. The ~ma 11 er ~ is, the 1 a rger 'i s 
the critical frequency range and the more likely instabilitynis to occur. In 
any case the resulting closed loop damping of all higher modes will be lower than 
their natural damping. This can be explained, qualitatively in terms of root 
locus diagram but instead we shall provide a more quantitative analysis. 

Suppose WE! equate the characteristic equation (19) to the closed form 
expression 

(24) 

If we expand both eqns, (19) and (24) and equate coefficients in powers of s, 
four algebraic equations will result which enable us to solve for the four unknown 
,,(, S , ttl , oog with S prescribeda-priorily. After some algebra it can be shown 
thatqtheP gain corre~ponding to a prescribed damping Sp is 

"( :: -B±JB
2
-4AC , 82 _ 4AC > a 

2A 

124 

(25) 



where 

Bq 

Gl 
G2 

. - B . + f~ Bp 1 a 

:= W? + lJJ2 + B. B 
1 a 1 a 

2 2 .- B.w + B w. 
1 a a 1 

- BpBq 

(26) 

(27 ) 

(28) 

(29) 

(30 ) 

(31) 

Since wp. is expected to be close to w. for sufficiently low gain, the damping 
Bp can be related to the prescribed dampin~ ratio sp approximately by 

(32) 

The locus of y vs wl for fixed ~ are plotted in Fig. 2. For (p = 0%, 
the locus coincide with the stabilityPboundaries. For sp = ~n, the lOCUS coin
cide with the stability boundary for l; = 0 and "'Jithin each of the 4 sectors 
divided by this locus n 

In Sector I , y > 0, ~ > 0 p 

In Sector II, y > O. sp < 0 

In Sector III, y < 0, l; < 0 p 

In Sector IV, y < 0, l; > 0 
p 

We also see that as wl gets closer to w , the maximum attainable damping 
gets sma 11 eY'. Furthermore for wl > W • 1 essathan natural dampi n9 wi 11 always 
result if positive gain is used. EveR if negative gain is used, very high gain 
is required just to achieve reasonable low damping. 

Now that sufficient physical insight to the problem has been gathered, we 
shall consider ways of overcoming these difficulties. 
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III. RATE FEEDBACK WITH LEAD COMPENSATION 

Lead compensation has been used extensively in classical control theory to 
increase the phase margin of marginally stable system, but is usually applicable 
for single-input-single-output system whereby scalar transfer junction is 
realizable. In our multi-dimensional case, however, scalar lead compensation 
is generalized to vector lead compensation, again by involving the argument 
that the Nth order coupled system can be approximated by N decoupled scalar 
systems. There is no rigorous theoretical justification to such but we only 
know that it works fairly well in actual simulation. 

The concept of lead compensation as applied to scalar system is well-known 
hence needs no elaborati on here. In parti cul ar it works very well in thi s case 
because of the highly resonant nature of the system (due to small sn). The 
increase in gain by compensation only leads to very small change of cross-over 
frequency but the corresponding increase in phase is substantially high enough 
to reverse the phase margin of critical modes from negative to positive. A very 
detailed discussion of this can be found in[6]by means of Bode's diagram argument. 
We shall only generalize the scalar argument into the multivariate case. With 
the inclusion of a vector lead compensation network, the combined dynamics are 
modi fied to 

INE; + VE; + ~E; - - <l>TSTCn ~ E RN (33) 

.. . 2 
= I 2 P 

NA 
(34) INA[n + Ban + wan] NA wa n, p ER 

. 
IN [T1P + ~J = T2(S<l>E;) + (S<l>E;) T 1 ' T 2 ER , Tl < T 2 (35) 

A 

Conceivably, T and T can be generalized to be positive definite matrices 
for perhaps better perform&nce but for the moment we sha 11 assume them to be 
scalars. The choice of T, and T2 is a debatable art, the complete behavior of 
eqns. (33) - (35) is extremely complicated; the best we can do is to guess by 
scalar inference. Intuitively, we would like the increasf in phase shift to 
start from wl = wa ' hence T2 is chosen to be around T2 = wa' The choice of Tl 

is related to the size of the increase in phase shift, the larger T, is the more 
the increase. If T is too small~ then the increase in gain will be too high 
but if T is too lafge, the increase in phase shift will not be sufficient to 
createTP6sitive phase margin for the critical modes. As a good rule of thumb, the 
ratio 2 is chosen to be between 5 and 10. 

II 
In section V we shall demonstrate by simulation the feasibility of this 

technique. 
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IV. POSITIVE POSITION FEEDBACK WITH TUNING FILTERS 

As before, WE! shall look at the concept of positive position feedback from 
the scalar point of view. Here again regard sand n as scalar representing the 
states of the system and the actuator respectively. as described by 

. 2 
b.n) r, + S.p, + w.(p' 

1 1 1 

n + 
. 2 

Ban + wa(n - r,) = 

which has the characteristic equation 

2 2 (s2 + B s + ( 2) (s +B.s+w.) 1 , a a 

= 0 

0 

2 2 - b.w.w 
, 1 a 

b.> 0 
1 

= 0 

(36) 

(37) 

(38 ) 

It is trivial to show that a sufficient and necessary condition for stability 
in this case is 

b. < 1 , (39) 

which is also the stability boundary. This obviously is much simpler than the 
stability boundary of the rate feedback case. Furthermore, it has the nice 
property that it is independent of all the system and actuator's dynamics! 
To examine the closed-loop damping characteristic of position feedback, we com
pute the eigen values of eqn. (38) and plot the re~l part [represent damping] of 
the eigen values vs w for fixed b .• ~ ~ ~ , and w. The resulting closed-loop 
dampinq characteristit is as shown'in Pig. a3. It ~an be shown [see ref. 7J that 
the characteristic consists of two parts, the upper and the lower locus which 
correspond to the actuator and the system, respectively. For sufficiently low 
gain, the system locus exhibits a resonance peak to the left of w. For higher 
gain the two locus meet at a cusp which can be shown to be at appfoximately 

(w J 1 - s2~ ;a[~ + ~ jl;!j). Thus for modes near the resonance peak. the 
c18sed-looBdarnpi"n~ cannbe ma~y times that of the natural damping [the lower asymp-: 
totes] while modes away from the peak only have slightly higher than natural 
damping. 

It is such a property that motivates us to the use of "Tuning Filters". 
Basically these are band-limited electronic devices with dynamics similar to 
that of the actuator but with a frequency "tuned" to the controlled mode frequency 
in order to enhance its closed loop damping. 

Suppose that there are as many filters as controlled modes, then the damping 
and frequency of each filter is carefully chosen so that its corresponding con
trolled frequency "lies near the resonance peak [or the cusp]. 
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The overall system is now described by 

System (40} 

Filters (41) 

Actuator (42) 

where CTf 2 C~f2 : c. (43) 
1 1 1 

is the gain matrix for the ith filter which has natural frequency wf . and damping 
1 

ratio sf the same for all filters. 

Eqn. (42) implies that: 

N
f 

(i) Lim z = E wf . CTf 2 y. 
i=l 1 1 1 

t-+oo 

. 
(ii) If z(o) = Z ( 0) = y. ( 0) = y. ( 0) = 0 'Vi 

1 1 

-= ~f cTf2 z(t) L.. W 
i=l fi i Yi 

(44) 

so for sufficiently large Sa' Z converges to the RHS of (44) rapidly and con
sequently the actuator dynamics falls out of the picture completely. Equations 
(40)-(4.3) just reduce to, after appropriate canonical transformation, 

N 

System ~ + V~ + Q~ = ~TST [E
f 

W CTf 2 y.] (45) 
i=l f; 1 1 

Filter IN [Y,. + 2sf wf . ;',. + w2 y,.] = W C~f2 S~~, i=l,-... ,N 
A 1 f; f; 1 f 

(46) 
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I 

or 

~ r ~2'f~flI~~· 0 

r;l y, 

I I • 

+ I · N + NA x Nf i l ~Nf I 

YN
f 

lo 2~fwf IN 
Nf 

( T I 
~ -El wf I 

! 1 

r. W 2 
-'-1 f wf IN 

1 1 A 

-E~ wf l ~ 

l ~ 
f Nf 

I 
I I 

0 Yl 

+ 
== 0 (47) 

I 
w2 I J YN fN NA f 

-EN wN 0 
f f 

... 
'----- y .I 

(48) I-'/here E; C~/2 Sw 
P 

== 
1 

The symmetrical structure now enables us to prove for conditional stability 
as in the following theorem. 

Theorem 1: The combined system-filters dynamics are stable if 

where 

Nf 
~ - L (1 + €;) B; is positive definite 

i == 1 

B. == w T S T C. Sw 
1 1 

and E. are some arbitrarily small positive quantities. 
1 
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Proof: Define the Liapunov function 

1 • l' Nf . T . Nf 2 T 
V = -2 [~ ~ + I y. y.J + 1 [~T~~ + I [w

f 
y.y. 

'1 11 2 '1 .11 1 = 1 = 1 

Cauchy Schwartz inequality implies that 

hence 
N N 

T y. y. 
1 1 

1 'T' f· T • 1 T f V > -2 [~ ~ + r, y. y.] + -2 [~ (~~ L (1 +E.)B.)~] 
;=1 1 1 ;=1 1 1 

Nf + lz; 2 E; T 
2 . 1 wf . 1 +E:. y; y; 

1= 1 1 

T T 
2~ E. Wf y.J] 

1 • 1 
1 

Differentiating eqn. (51) with respect to time, we obtain 

N
f • ·L· \' • T· 

V = - ~V~ - L. 2 r; fW f y. Y .:;; 0 . 1 ' '. 1 1 1 = 1 

V:: 0 iff ~=O, y. =0 '+/. 
1 1 . 

(51) 

(52) 

(53) 

(54) 

Thus if the assumption is true, V is strictly positive with V negative semi
definite and hence the combined dynamics is stable by invoking the well-known 
Liapunov direct method. 

It can be shown further [see ref. 7J that a both sufficient and necessary 
condition for stability is that the matrix P in eqn. (47) be positive definite. 

To specify EXACT damping for all the controlled modes will result in solving 
an unmanageably large set of simultaneous non-linear algebraic equations. For not 
so large prescribed damping, however, we can ignore the coupling effects from the 
uncontrolled modes and the first N modes can be reduced to N decoupled scalar 
systems with small perturbation er~or. Suppose that one filtar t~ available for 
each controlled mode, then the characteristic equation for the i mode is,approx
imately 

2 22 2 22_ 
(s + Bis + wi)(s + Bf.s + wf .) - biwi wf . - 0 (55) 

1 1 1 
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Consequently if the closed~loop damping Sf. is specified, the four unknowns , 
W ,w ,S ,b. can be computed by comparing eqn. (55) with the closed~loop ex
qi Pi qi 1 

pression 

(s2 + S s + w2 )(s2 + S s + w2 ) = 0 (56) 
Pi Pi qi q'j 

After some algebra, the solutions are, 

Sq. = S· .,.. 
Sf. - So . 1 

1 1 ' 1 

(57) 

Gl . 
2 2 + S'Sf Sp. Sq. = w. + w -, f. 1 . 

1 1 1 1 1 

(58) 

G2. S· 
2 + 2 = Lllf. Sf W. 1 . 1 , 1 1 

(59 ) 

2 
(G2" Sp. Gl)/(Sq. Sp) w = 

P'j 'J 1 1 1 1 

(60) 

2 
(G2. - S Gl )/ (Sp. - S ) w = 

q'j q. qi 1 1 1 1 

(61) 

2 

b. = _ [WPi Wqi 1 
1 Wi wf . 

1 

(62) 

Once the scalar gain b. for the ith controlled mode is obtained, the cor
responding gain matrix C. c~n be computed from 

1 

0 0 . , 
0 

C. (¢ T S T ) -1 B (s¢) -1 (¢TST)-l 2 (S¢l)-l (63 ) = w.b. 
1 1 11 1 1 1 1 

0 

0 '0 
..-

The gains for the uncontrolled modes will subsequently be by-products of 
these b. 's. 

1 
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Hitherto, the choice of ~f and wf . has remained arbitrary. However~ they 
can be chosen such that the following 6ptimum criteria are achieved, 

(i) For a fixed prescribed closed~loop damping, the corresponding scalar gain 
is to be as small as possible. 

(ii) The design should be robust in the sense that slight change in the 
modal structure will not cause high gain to occur which consequently causes in
stability. 

(iii) If instability ever occurred, we prefer it to occur in the filter 
[which has inherent saturation characteristics] and not in the system. In other 
words, crashworthiness is desired. 

The first criterion can be easi.ly achieved by designing wf . and sf such that 
the damping for a controlled mode be exactly on the cusp of the damping character
istic. However, this is not a very safe thing to do since slight change in the 
controlled mode frequency is likely to cause high gain (and consequently in
stability) to occur. Thus the first and second criteria are unfortunately in 
conflict. A reasonable compromise is to place the damping of the mode 20% below 
the cusp to allow for some lateral clearance. The third criterion can be 
achieved by placing the cusp slightly to the left of the controlled frequencies. 
This can be explained very simply by means of Root Locus diagram as shown in 
Fig. 4(i),(ii) and (iii). 

VJith these facts in mind, a reasonably "optimum" choice of the filter's 
characteristics can be shown to be 

(64) 

(65) 

Note in passing that even though b. < 1 is required for stability, we in 
general want to keep b. to be less than' about 0.8 to avoid the degeneration into 
2 real roots as shown 1n Fi9. 4, because then one root will be less stable than 
the other. 

Lastly, we have so far assumed that a full complement of filters are avail
able; this is in general not necessary. If less than NA filters are available, we 
would use one filter each for the lower modes since they are more vulnerable to 
instability, and several higher controlled modes will share the remaining filters. 
The damping specification still works out the same except that now we expect 
slightly poorer performance since we are using less resources to do more work. 

132 



IV. NUMERICAL SIMULATION AND RESULTS 

For illustration, we shall consider the control of a simply supported dis
crete shear beam of N elements. The corresponding mass and stiffness matrix 
take the form 

K = 

M = m I o N 

2 .,.1 

-1 2 

-1 

0 

-1 

2 

0 ... 

(66) 

0 0 

0 

-1 (67) 

-1 

-1 2 

We do not know the exact form of the damping matrix 0 but do know that the 
canonical damping matrix V is diagonally dominant, so for simulation purpose we 
shall assume that 

(V) .. =2s w.o .. 
lJ n 1 1J 

where w. is the natural frequencies of the modes, and is easily shown to be 
1 

2 . ni . 1 N 
wi = 1m Sln 2(N+l) 1= ,---

o 

with corresponding modal matrix given by 

() -rz· i j7f ." - 1 N 
¢ i j -J Ff+T s 1 n TN+TT ' I ~ J - • - ~- , 

(68) 

(69) 

(70) 

As we would like the first NA modes to decay at a same rate (as opposed to 
having the same damping ratio) we shall prescribe an approximate closed-loop damping 
ratio of s to the first mode, and then set the damping of all controlled modes 
to be the ~ame as the first, i.e., 

Q - 2 ' W 
i-J P'

j 
- 'op 1 ' i=l,---NA (71) 

Fol(' compal"i son purposes, we shall carry out s imul ati on for each of the four 
follo~ing cases, In each case, the common parameters are N=20, NA = 4. SjA 
locatlon at {3,8.l3,19}, sn = 0.01, sp = 0.3, mo=O.25. 

Case 1: Colocated rate feedback. no actuator dynamics present, feedback gain com
puted accordin~j to eqns. (8) and (9). The closed-loop damping and frequency for 
each mode are computed from the eigen values of the system in eqn. (4). 
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Case 2: Colocated rate feedback with actuator dynamics given by wa = 1.0, 
S = 0.7; No compensation; The feedback gains are the same as in Case 1; the 
c~osed-loop damping and frequency are computed from the eigen values of the system 
in eqns. (15) - (16) . 

Case 3: Colocated rate feedback with same actuator dynamics as Case 2; com
pensation with T = 0.2, and T = 1.0 is included; the feedback gains are the 
same as in Case i and 2; the c~osed-loop damping and frequency are computed 
from the eigen values of the system in eqns. (33)-(35). 

Case 4. Colocated positive position feedback with actuator dynamics eliminated, 
4 tuning filters are used to control first 4 modes; the filter's characteristics 
are computed from equations (64)-(65); the closed-loop damping and frequency are 
computed from the eigen values of the system in eqns. (45)-(46). 

The outcome of these simulations are tabulated in Tables 1 and 2. 

The outcome of the simulations can be summarized by the following points: 

(l) In Case 1 where actuator dynamics are absent, colocated rate feedback 
control works very well and the controlled modes closed-loop damping is fairly 
close to the prescribed value. Furthermore, all uncontrolled land expectedly, un
modelled] modes result in higher than natural damping of 1%. 

(2) In Case 2 where actuator dynamics are included, we found that the 4th, 
5th and 6th modes are unstable. If the scalar gains for these modes are plotted 
onto Fig. 1, they are found to lie outside the stability region. Hence, this 
justifies the fact that we can predict stability of a higher order coupled 
system just by looking at the diagonal elements of~, at least up to first 
order accuracy anyway. Furthermore, the uncontrolled modes are found to have 
less than natural closed-loop damping B again consistent with our previous theory. 

(3) In Case 3, a lead compensation network is used to raise the phase 
margins of the unstable modes and it was found that all modes which are previously 
unstable are now stable. Furthermore, the controlled modes also result in sub
stantially higher damping than the uncompensated case. Unfortunately, this is 
upset by the decrease in damping of the higher uncontrolled modes, 

(4) In Case 4 where positive position feedback with 4 tuning filters is 
used, the closed-loop performance surpasses the previous case significantly. 
The closed-loop damping of the first mode is slightly less than specified 
[within 6% anyway] but all 4 controlled modes have fairly uniform damping. 
Better still, all uncontrolled land expectedly, unmodelled] modes result in 
higher than natural damping. 

In addition to what has been observed, position feedback has several 
advantages over rate feedback as summarized below; 
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Rate Feedback with Compensation 

1. No theorem can be proven to guarantee 
global stability. 

2. Stability is highly dependent on the 
natural damping of the structure, 
which remains quite uncertain. 

3. Maximum attainable closed-loop damp
ing is limited depending on the stabi-
1 i ty boundary. 

4. Uncontrolled and unmodelled modes 
result in lower than natural damping. 

5. Instability. if ever exiSts.occurs 
in the intermediate uncontrolled modes. 

6. Requires rate sensing. 

7. Requires accurate knowledge of struc
ture than is available in practice. 

Position Feedback with Tuning Filters 

Theorem pertaining to conditional 
global stability can be proven. 

Stability is almost independent of any 
small natural damping, thus a priori 
design of the control needs no knowledge 
of the natural damping. 

Maximum attainable damping is, at least 
in principle, much higher. The resonance 
peak of the filters damping character
istics is responsible for this. 

Uncontrolled and unmodelled modes result 
in higher than natural damping. 

Instability can only occur in ill-designed 
fi lters. 

Requires position (relative) sensing. 

Only accurate knowledge required is the 
rigid body mode, which is nevertheless 
trivial. 

V. CONCLUDING REMARKS 

In retrospect, the problem of vibration suppression in large space struc
ture has been a complex one, in view of the highly complicated and interactive 
structure and the vast number of design parameters to be decided upon. In 
this paper, we specifically address the problem of potential instability caused 
by actuator dynamics and two ways of overcoming it. Due to restriction in 
space allocation, we can only present a brief outline of the theory but any 
missing details can be found in refs. 6 and 7. It is hoped that this paper will 
stimulate future research to improve existing techniques and dig out finer details 
which we may have unfortunately neglected. 
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TABLE I 

. 
Scalar No Actuator Actuator Dynamics 

Open 100p gain Case 1 Dynamics Case 2 w =1 0 1;; =0 7 
B •• 

a . a . 

Mode freg. 11 C-L C-L C-L C-L C-L C-L 
same for a 11 4 cases damping freq. 1;;(%) damping freq. d%) 

1 0.299 0.1794 -0.0944 0.287 31.28 ·-0.1105 0.345 30.51 

2 0.596 0.1794 -0,0977 0.597 16.16 -().O468 0.673 6.94 
3 0.890 0.1794 -0.1001 0.902 11.03 -0.0127 0.951 1. 33 
4 1.179 0.1794 -0.1020 1.179 8.62 +0.00158 1. 227 ·-0.13** 
5 1.461 0.1816 -0.1085 1.462 7.40 +0.00355 1.494 -0.24** 
6 1.736 0.2616 -0.1612 1. 732 9.27 +0.00789 1.766 -0.45** 
7 2.000 0.2203 -0.1307 1.989 6.56 -0.0003 2.018 0.02 
8 2.253 0.0692 -0.0544 2.247 2.42 -0.0169 2.251 0.75 
9 2.494 0.2150 -0.1376 2.488 5.52 -0.0107 2.503 0.43 

10 2.721 0.1312 -0.0932 2.721 3.42 -0.0196 2.725 0.72 
11 2.932 0.1245 -0.0931 2.924 3.18 -0.0229 2.935 0.78 
12 3.127 0.1336 -0.0996 3.129 3.18 -0.0252 3.130 0.80 
13 3.305 0.0735 -0.0635 3.314 1.92 -0.0301 3.306 0.91 
14 3.464 0.0244 -0.2215 3.485 6.35 -0.0254 3.468 0.73 
15 3.604 0.0220 -0.1309 3.551 3.68 -0.0281 3.607 0.78 
16 3.723 0.1702 ~O.1272 3.708 3.43 -0.0315 3.726 0.85 
17 3.822 0.3004 -0.1823 3.779 4.82 -0.0285 3.826 0.75 

·18 3.900 0.1696 -0.0880 3.853 2.28 -0.0336 3.901 0.86 
19 3.955 0.1493 -0.1012 3.914 2.59 -0.0350 3.957 0.88 
20 3.989 0.1560 -0.0962 3.963 2.43 -0.0352 3.990 0.88 

Actuator 1 -0.6367 0.518 77.55 
** Unstable mode Actuator 2 -0.7310 0.476 83.78 

Actuator 3 -0.7208 0.534 80.33 
1;;n =1% 'in all cases Actuator 4 -0.7263 0.625 75.78 
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Table 2 

Case 3, Compensated Rate Feedback Case 4. Positive Position Feedback 
Tfl.0, T~=0.2, Compensator roots 
a e -5.20 , -5.141, -5.135, -5.079J 

sf=O.6076 b1 = 0.3430 wh=O.369 
I 

b2 = 0.2288 W·f{0.736 
b3 = 0.1639 wf3=1.·099 
b4 = 0.1255 wf·{1.455 

C-L C-L C-L C-L --r-L C-L 
damping frequency d%) damping frequency d%) 

I til 
I s.. .s -0.5572 0.676 63.58 til -0.1396 0.249 48.85 s.. 

rcl -0 6530 0.651 70.82 OJ -0.3565 0.508 57.47 :::s • +> t -0.5892 0.585 70.94 ..- -0.5523 0.746 59.50 ..... 
ex: -0.5799 0.604 69.25 LL. -0.7972 1.093 58.92 

Mode 

1 -0.1111 0.303 34.45 -0.0875 0.296 28.389 
2 -0.0978 0.660 14.65 -0.0931 0.584 . 15.742 
3 -0.0505 0.964 5.23 -"0.0964 0.883 10.854 
4 -0.0359 1.252 2.86 -0.0918 L158 7·.898 
5 -0.0226 1.523 1.49 -0.0365 1.473 2.478 
6 -0.0164 1.809 0.91 -0.0220 1.742 1.263 
7 -0.0136 2.055 0~66 -0.0218 2.001 1.091 
8 -0.0190 2.269 0.84 -0.0242 2.255 1.072 
9 -0.0143 2.533 0.57 -0.0260 2.495 1.042 

10 -0.0202 2.742 0.74 -0.0279 2.722 1.024 
11 -0.0221 2.950 0.75 -0.0302 2.934 1.030 
12 -0.0239 3.144 0.76 -0.0336 3.131 1.073 
13 -0.0294 3.313 0.89 -0.0334 3.306 1.010 
14 -0.0220 3.490 0.63 -0.0350 3.465 1.011 
15 -0.0231 3.627 0.64 -0.0364 3.604 1.010 
16 -0.0277 3.740 0.74 -0.0377 3.725 1.013 
17 -0.0202 3.851 0.53 -0.0387 3.823 1.013 
18 -0.0271 3.916 0.69 -0.0394 3.901 1.010 
19 -0.0302 3.969 0.76 -0·0398 3.956 1.006 
20 -(J.0293 4.003 0.73 -0.0403 3.990 1.010 

138 



SCALAR 
GAIN bi 

_ STABLE REGION 

--- ~n"#- 0 
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Figure 1. Stability boundary for scalar rate feedback system. 
wa = 1.0, ~a = 0.7, ~n = 0.01, ~p = 2~PWi 
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Figure 2. Closed-loop gain characteristic for scalar rate feedback system. 
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Figure 3. Closed-loop damping characteristics for scalar position feedback 
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LIST OF SYMBOLS (in Chronologi~al Order) 

number of modelled system states 

number of sensor/actuator pair = number of controlled modes 

system state vector 

system mass matrix 

system damping matrix 

system stiffness matrix 

sensor/actuator location matrix 

feedback gain matrix 

Canonical (modal) state vector 

Canonical (orthogonal) transformation or modal matrix 

Canonical damping matrix 

Canonical stiffness matrix 

modal gain matrix 

small scalar parameters 

null space of matrix K 

Laplace transform domain variable 

natural frequency of the ith mode 

scalar gain, diagonal elements of B 

system natural damping ratio 

twice the open loop damping of the ith mode 

actuator damping ratio 

twice the open loop damping of the actuator 

actuator natural frequency 

actuator state vector 

Canonical actuator state vector 
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Wfi 

A 0 

1 

v 

prescribed (approximate) damping ratio 

lead compensator time constants 

tuning filter damping ratio 

natural frequency of the ith tuning filter 

o th 0 1 f 1 1 elgen va ue 0 re evant systems 

Liapunov function 

time derivatives of (0) 
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C~ONTROL OF ANTENNA-FEED ATTITUDE AND 
REFLEC:TOR VIBRATIONS IN LARGE SPACEBORNE 
Ar~TENNAS BY MECHANICAL DECOUPLING AND 

MOVABLE DAMPERS 
P.K.C. Wang*, Jet Propulsion Laboratory, California Institute of Technology, 

Pasadena, CA 91109; E.C. Hong and J.S. Sarina**, Department of System Science, 
University of California, Los Angeles, Los Angeles, CA 90024 

ABSTRACT 

Simple, practical methods for damping reflector vibrations and for design
ing antenna-feed attitude contLol systems in large deployable spaceborne anten~ 
nas are proposed. The former involves a movable damper which is positioned so 
that the rate-of-change of total vibrational energy is minimized. The latter 
introduces a mechanical decoupler between the flexible boom and the antenna-feed, 
whereby the feed-attitude control system can be designed independent of boom 
dynamics. The validity of these approaches are substantiated by analytical 
studies, computer simulation, and experimental studies. 

I. INTRODUCTION 

In the design of deployable spaceborne antennas with large flexible dish 
reflectors and long flexible feed-support booms (see Fig.l), it is of importance 
to quickly dalnp out the dish vibrations induced by external disturbances and/or 
spacecraft motions, and to accurately control the attitude of the antenna-feed 
with respect to a specified reference frame [1]-[4]. Here, we propose practical 
design methods which lead to simple implementable feedback systems for control
ling the dish vibrations and antenna-feed attitude. For clarity, we shall use 
simple mathematical models to illustrate the basic ideas and the detailed deve
lopment and justification of the mathematical results will be omitted. 

II. DISH-REFLECTOR VIBRATION CONTROL BY MEANS OF MOVABLE DAMPERS 

Consider a circular dish whose vibratory motions about a given static equi
librium configuration (for example, a parabolic cross sectional profile) is de
scribable by the following wave equation in polar coordinates: 

*Consultant,Jet Propulsion Laboratory. 
**E.C.Hong and J.S.Sarina contributed to Sections III and II respectively. 
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-1 -1-1 
P w = (Tw) + Tr w + r (r TW8)8 + f tt r r r 

(1) 

defined on the spatial domain Sl = {(r, 8): 0 ( 8..; 2n, 0 < r. < r < r } as shown in 
Fig.2, where w is the displacement about the static equiI£brium;op = p(r,8) is 
the mass density; T = T(r,8) is the tension and f corresponds to the control or 
a damping force. The lettered subscripts denote partial differentiation. 

Assuming that the dish is clamped at the inner and outer rims, the boundary 
conditions are: 

w(t,r ,8) = w(t,r. ,8) = 0 
o 1n 

for all t and 0 (8 ..; 2n. (2) 

In addition to (2), we have the periodicity requirement: 

w(t,r,O) = w(t,r,2n) for r. < r < r . 
1n 0 

(3) 

The total energy of the dish at any time t is given by 

(4) 

Using (1)-(3) and integration by parts, it can be readily verified that the time 
rate-of-change of energy is 

f 2n f. r 0 

f(t,r,8)wt (t,r,8) r dr d8. 

Orin 

~(t) (5) 

A possible approach to vibration damping is tO,choose the control or damping 
force f in a given admissible class such that &(t) is minimized [5],[6]. Con
sequently, the vibrational energy 8(t) is reduced as quickly as possible. A 
simple choice for f is a spatially distributed feedback control in the form of 
a linear damping force given by 

f(t,r,8) = -g(t,r,8)wt (t,r,8), (6) 

where g is a positive damping coefficient. Unfortunately, such a distributed 
control or damper cannot be readily implemented. Therefore, we shall consider 
a more restricted form of (6) which is amenable to physical implementation. 

Let Sl (t) be a proper subset of Sl denoting the effective region for the con
trol at tiilie t. We assume that 

= I-og 
w t (t, r, 8) 

f(t,r,8) 
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on Sl (t), 
c 

on Sl - Sl (t), 
c 

(7) 



where g is a specified positive real number. Let l1ad be the set of all admissi
ble Si v s. We wish to find a Si (t) E 11 d such that 

c c a 

(8) 

takes on its m1n1mum value. This problem is analogous to that of silencing a 
large drum as quickly as possible by means of movable damping pads which are 
effective only over certain portions of the drum surface. 

In what follows, we shall consider a special form of movable damper which 
is suitable for the dish reflector (see Fig.3). Let Si = {(r,8): O<r. <r<r; 
0:;:: 8 < 8

0 
< 2n} , where 80 is a given aperture angle. co We define the 1n 0 

effective region Si (o(t» for the control (3) as a rotation of Si given by 
c co 

~l (o(t» 
c 

{ (r, 8): 0 < r. < r < r ; 6 (t) < 8 < 8 +6 (t) } . 
1n 0 0 

(9) 

The rotation angle oCt) is to be chosen such that ~(t) given by (8) is minimized. 
Let o'~(t) denote an optimum angle, then 

,'~ 8
0
+0 (t) ro 

t~(t,Oi~(t» = -f,~ f glwt (t,r,8)1
2
rdrd8. 

o (t) r. 
1n 

(10) 

Evidently, o*(t) corresponds to a rotation angle at which the average kinetic 
energy over the effective control region is maximized. It is of interest to 
obtain estimates of the total energy decay of the dish with the foregoing opti
mized movable damper. Unfortunately, useful a priori estimates of the energy 
decay are not readily obtainable directly from-(1)-(3) and the optimized control 
(7). Therefore, we shall resort to computer simulation at this point. 

Consider a dish with constant p and T. In this case, we can express the 
solutions of (1)-(3) with the optimized movable damper in the form: 

00 

w(t,r,8) a (t) ¢ (r,8), 
mn mn 

(11) 

m,n=l 

where ¢ is the orthonormalized eigenfunction of the Laplacian operator with 
boundaro/nconditions (2) and (3) corresponding to the eigenvalue -A given by 

mn 
the n-th root of the equation: 

J (A r. 1'1) Y (A r 1'1) = J (A r 1'1) Y (A r. 1'1), m= 1,2 , ... , (12) 
m 1n mom 0 m 1n 

where '12 = Tip> 0; J and Y denote the m-th order Bessel functions of the first 
d d k · d m. 1m 

an secon 1n respect1ve y. 
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It can be verified that the modal coefficients a (t) satisfy the following 
countab1y infinite dimensional system of ordinary dif~~rentia1 equations: 

amn(t) + gp-
1
6m(t)amn (t) + A~n amn(t) 

m,n=1,2, ... , (13) 

where 

cp (r,e) 
mn R (r)8 (e), mn m 

R (r) = A {J (A r/y)-[J (A r. /y)/Y (A r. /y)]Y (A r/y)}, mn mn m mn m mn ln m mn ln m mn 
_1 

8 (e) = (TI) 2cos(me + ~ ), 
m m 

A = 12/[r per ) - r. per. )], mn 0 0 ln ln 
(14) 

1 { -1 2 * - e -m sinme sin[2(m8(t)+~)] 
2TI 0 0 m 

-1 2 ~~ 
+ (2m) sin(2me )[1 - 2 sin (m8 (t) + ~ )]}. 

o m 

-1 ( It is evident that for large m, the damping coefficient gp ~m t) tends to 
g6 /(2TIp) as m + 00. 

o 
To gain some idea on the performance of the optimized movable damper, com

puter simulations are made ysing truncated versions of (13) with additional small 
residual damping terms g p- a (t), where g = 0.001. The numerical values for 

• 0 mn 0 the dlsh parameters are: 
2 2 P = 0.05 kg./m, T = 8.9 kg./sec ,r. = 1 m., r =51 m., and g = 0.1. 

ln 0 

Fig.4 shows the energy decay for various initial kinetic energy distributions 
and different forms of movable dampers including a damper sweeping at a constant 
rate of 20o/sec., a randomly positioned damper and the optimally positioned 
damper as discussed earlier. In the computer simulations, the dish is parti
tioned into 36 10o-sectors. The optimal damper position is determined by locat
ing a sector with the highest kinetic energy. In the case of the randomly 
positioned damper, the damper position at any time is determined by a random 
number generator. From the numerical results, it is apparent that in all cases, 
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the total modal energy (first 25 modes) decays monotonically with time. As ex
pected, the fastest energy decay is achieved by the optimally positioned damper. 
However, it can be seen from Fig.4c that the effectiveness of the optimally posi
tioned damper decreases when all the vibrational energy is concentrated in the 
high-frequency modes. This is consistent with the fact that the damping coef
ficient gp- 16 (t) -+ g8 /(2np) as m -+ 00 as mentioned earlier. 

m 0 

Although the foregoing results are based on a highly simplified model for 
the dish, the proposed approach may also be applied to more complex realistic 
situations where the dish is constructed from elastic ribs covered with thin 
flexible material. In this case, optimally positioned patch dampers may be 
more suitable. Finally, the movable dampers proposed here can be implemented 
either by passive dampers in contact with the dish surface or by active velocity 
feedback controls. However, passive dampers are preferred from the reliability 
standpoint, since there is no danger of pumping energy into the dish in case of 
controller failure. 

II 1. ANTENNA-FEED AnnUDI: CONTROL BY MECHANICAL DECOUPLING 

For a typical spaceborne antenna shown in Fig.l, the antenna-feed is rigidly 
attached to the tip of a flexible boom which could undergo both torsional and 
bending vibrations. It is required to control the antenna-feed attitude with 
respect to a given reference frame on the spacecraft. In the usual situation, 
a control torque and/or force are introduced at the boom-root. Consequently, 
any control action on the antenna-feed must be transmitted through the flexible 
boom which is an infinite dimensional system. This greatly complicates the de·
sign of the feed-attitude control system. Here, we propose to mechanically de
couple the antenna-feed from the boom so that the feed-attitude control system 
can be designed without taking the boom dynamics into consideration. 

To illustrate the basic idea, we consider the special case where the boom 
vibrations are strictly torsional in nature. The antenna-feed is represented 
by a rigid disk (with mass polar moment of inertia J ) attached to the boom-tip 
as shown in Fig.5. Let P be a point on the disk wh8se angular position with 
respect to the fixed y-axis is denoted by 8. First, let the control torque T 
be applied at x=O, and it is required to ch80se T such that 8 (t) is as close c 
to a specified reference angle 8

R 
(say 8

R
=0) as p2ssible at al~ times. Here,we 

observe that any control action T =T (t) will excite boom vibrations. Hence, 
T must be manipulated in such a wa~ tHat the desired effective control torque 
a~pears at the boom-tip for controlling the feed motion. Moreover, any tor
sional motion of the boom due to external disturbances will affect 8. These 
undesirable features greatly complicate the design of the feed-attit8de control 
system. Here, we note that since the relative angle 8

R
-8 is to be controlled, 

the foregoing undesirable features can be bypassed by intr8ducing a rotary actu
ator {for example, an electric servomotor with stator moment of inertia J

1
) at 

the boom-tip to decouple J from the boom (see Fig.6). In absence of acEuator 
friction and an actuating ~ignal to the actuator, J rotates freely. Thus, the 
angular-position control for J can be achieved by ~pplying an appropriate actu
ating signal depending only on

o
(8

R
-8

0
), independent of the boom motion. Note 
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that a control torque applied to J generated by the actuator is always accompa
nied by a reaction torque on the b8om. However, in absence of actuator fric
tion, there is no feedback from the boom motion to J. Consequently, the boom 
motion has no effect on 8. In real physical situa~ions, friction coupling 
between J and J

1 
always ~xists. Its effect on the overall system is studied 

using theOfo11owlng simplified mathematical model: 

(a) Torsional vibrations of boom: 

Ib81 = (GJ81 ) - <5 81 tt x x t (15) 

with boundary conditions: 

(16) 

where 8 is the torsional angle of the boom with respect to the fixed y-axis;I 
and GJ aenote the mass moment of inertia and torsional rigidity per unit lengtR 
of the boom respectively; 8 is a positive damping coefficient; c is the actuator 
stator-rotor friction coupling coefficient, and T is the control torque. As in 
Section II, the lettered subscripts denote partia~ differentiation and 8 =d8 /dt. 

o 0 

(b) Antenna-feed (J ) motion: 
o 

(17) 

For simplicity, we assume that the reference angle 8
R

=O and the actuator 
action is instantaneous. Thus, we can introduce the usual proportiona1-p1us
rate feedback control for positioning J 

o 

T 
c 

. 
- (a8 + S8 ), 

o 0 
(18) 

where a and S are given real positive constants. Thus, the complete mathe
matical model is given by (15)-(18) which can be reformulated as a linear evolu
tion equation defined on a suitable infinite dimensional state space. It is of 
interest to establish nontrivial sufficient conditions for asymptotic stability 
of equilibrium in the sense of Lyapunov with respect to the "energy norm" Ilwll 
defined by 

Unfortunately, this task is not straightforward. However, it can be verified 
[7] that the determination of the eigenvalues or poles of the complete system is 
reducible to solving the following nonlinear eigenvalue problem: Find all non
trivial pairs (8,A)EH2 (fJ) EE> C satisfying: 
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(GJ8) - A(8 + AI
b

)8 = 0, 
x x 

8(0) = 0, (GJ8
x

) IL = -A
2
q(A)8(L), 

where H2(st) denotes the complex Sobolev space of order 2 on st 
the field of complex numbers and 

q (A) = 
J

o
J l A2 + [Jl(S+c) + CJo]A + Jla 

J A2 + (S+C)A + a 
o 

(20) 

(21) 

]O,L[; ~ denotes 

(22) 

For this problem, we can deduce the following result [7],[8]: ~ll un~table eige~
valueE~ A = AR + j AI are complex and they lie inside the half-disk: 

{AEC: A~ + A~ < a/Jo ' AR>O}. 

This result gives an upper bour~d for the growth rates and natural frequencies of 
the unstable modes. Note that this bound is independent of the boom parameters. 

Another aspect having practical importance is the determination of sensiti
vity of the eigenvalues with respect to the friction coefficients c and 8. This 
can be studied by a perturbation analysis. Fig.7 shows the loci of eigenvalues 
with variable parameters 8 and c for a lO-meter uniform boom with Ib = 0.64 x 10-

3 

kg.m., GJ = 25 kg.m3/sec~ , and angular position-control system parameters: J
l -4 2 -2 2 2 2 

6.4xlO kg.m., J =1.2xlO kg.m. ,a=0.474kg.m. /sec., andS=0.0754 
kg.m~ /sec. It cag be seen from Fig.7 that the control system poles for the 
indicated variations of parameter values for 8 and c are clustered around the 
poles A = -3.14 + 5.43j corresponding to 8 = 0 and c = O. This shows that the 
control system poles are insensitive to variations in the friction coefficients. 

The effectiveness of the decoupling is revealed in the computer simulation 
results given in Figs.8 and 9. Fig.8 shows that for the indicated initial con
ditions, the ratio of peak magnitudes of the control system positional angle 8 
and the boom-tip deflection is approximately 0.035, which corresponds to a 0 

significant reduction in vibration amplitude. 

To verify the validity of the proposed decoupling approach, a small scale 
model of the foregoing system is constructed (see Fig.lO). The boom is simu
lated by a thin steel wire. The effectiveness of the decoupling is clearly 
shown in Fig.ll. Here, the ratio of the peak magnitudes of 8 and the boom-tip 
deflection is approximately 0.02. Fig.12 shows the boom vibr~tions induced by 
the positional control system motion for different boom stiffnesses. From the 
experiments, it is found that the friction torques in the servomotor and the 
sensing potentiometers are predominately static in nature. However, their pre
sence does not alter the effectiveness of decoupling. A more detailed descrip
tion of the sensitivity analysis and experimental results are given in [9]. 

The foregoing discussions have been limited to the simplest case with tor'~ 

sional motion only. In an actual antenna system, the flexible boom could under
go both torsional and bending vibrations. It is required to keep a given point 
on the antenna-feed aligned with a specified point on a reference plane at the 
boom-root. Here, we may mechanically decouple the boom motion from the feed 
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positioning control system by introducing a composite rotary and linear actuator 
as shown in Fig.13. Thus, the antenna-feed may be aligned by a combination of 
linear and rotary motions of the actuators. Analytical studies and computer 
simulation for this system are described in reference [8]. 

From the analytical studies, computer simulation, and experimental studies, 
the introduction of the proposed mechanical decoupling appears to be a simple 
and effective approach to the design of implementable antenna-feed attitude con
trol systems for large spaceborne antennas. This approach avoids the consider
ation of an infinite dimensional model in control system design. To maximize 
the effectiveness of decoupling, the actuator friction should be as low as pos
sible, and to avoid instability problems, the boom must have sufficient stiff
ness and structural damping. 
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Figure 1. Typical configuration of a spaceborne antenna 
system with antenna-feed rigidly attached to 
the tip of a flexible boom. 
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Figure 2. Spatial domain of the dish reflector. 

ANTENNA 
FEED 

DAMPERINCONTACT~~~======~~ 
WITH DISH SURfACE 

Figure 3. Sketch of dish reflector with a movable 
damper (The damper may also be placed on 
the backside of the refiector for reducing 
its effect on the antenna characteristics). 
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Figure 4. Energy decay for various ini.tial kinetic 
energy distributions and different forms 
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Figure 5. Attitude control of antenna-feed which is 
rigidly attached to the tip of a flexible 
boom. 

z 

FLEX lBLE Boa-1 

X=o 

z 

Figure 6. Proposed mechanical decoupling of the antenna
feed from the flexible boom with torsional 
motion only. 
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Figure 7. Loci of eigenvalues with variable parameters 6 
and c for a 10-meter uniform boom. 

x -- 6 = o. , c = 0.; 
• -- 6 = o. , c = 0.005; 
• -- 6 = 0.00625, c = 0.005; 
• -- 6 = 0.0125, c = 0.005; 
• -- 6 = 0.025, c = 0.005. 

Other parameter values are given in text. 
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Angular displacements of boom-tip [8
1

(t,L)] and J 
[8 (t)] due to initial torsional def ection of thg 
bo8m [8

1 
(O,x) = 0.001x2 rad., 8

lt
(0,x) :: 0 rad./sec. 

O~x~lOm.] with J initially at rest. Ib = 0.64x 
10- 3 kg.m.; J

1 
= 6?4 x 10-4 kg.m.2 

; J = 1.2 X 10-2 

kg.m~ ; GJ = 25 kg.mY /sec~ ; 6 = 0.825 kg.m./sec.; 
a. = 0.474,13= 0.0754 and c = 0.005 kg.m.2 /sec. 
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ment of J [8 (0) = 0.05 rad., 8 (0) = O. rad./ 
sec.] witH bo8m initially at res~. The system 
parameter values are given in Figure 8. 
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Figure 10. Experimental setup for a small scale model of 
the proposed antenna-feed angular-position 
control system with decoupler. 

160 



Figure 11. Angular displacements of J (upper trace; scale: 
2o /div.) and boom--tip (low2r trace; scale: SO/div.) 
due to initial boom displacement"with angular posi
tion-control system initially at rest. Time scale: 
0.1 sec./div. Equivalent spring ~onstant for boom: 
0.1362 kg.m~/sec., J l = 2.41 x 10- kg.m~ and J = 
1. 32 X 10-

4 kg.m~ ° 

(a) (b) 

Figure 12. Angular displacements of J (upper traces) and boom
tip (lower traces) due to ~nitial displacement of J , 
with boom initially at rest. (a) Equivalent springO 

constant for boom: 0.1362 kg.m~/sec2.; scale: upper 
trace lO/div., lower trace SO/div.; (b) Equivalent 
spring constant for boom: 4.S2 xlO- z kg.m~ /sec~ ; 
scale: upper trace SO/div., lower trace SOo/div. 
The values for J 1 and J are identical to those in 
Fig.ll. ° 
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Figure 13. Proposed mechanical decoupling of the antenna-feed 
from the flexible boom with torsional and bending 
motions. 
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A C]~OSED-LOOP PRINCIPAL COMPONENT 
ANALYSIS OF A TETRAHEDRAL TRUSS* 

Edmond A. Jonckheere 
Department of Electrical Engineering - Systems 

University of Southern California 
Los Angeles, CA 90007 

ABSTRACT 

In this paper, a tetrahedral truss, representative of a fairly broad class 
of large space structures, is considered. A new method, measuring the 
dynamical jmportance of each elastic mode when the structure is under feedback 
control, iEI presented. 

I. INTRODUCTION 

The Tetrahedral Truss devised by Charles Stark Draper labs (Ref. 21) has 
the simple geometric structure of a tetrahedron, and, despite its simplicity, 
it models the feeding tower of a large cassegrain antenna (Fig. 1.1). It is 
conBidered as the simplest non planar structure capable of representing a ;Iarge 
~~ Structure. The nodes of the tetrahedron are assumed to be torque free, 
so that the connecting rods are only undergoing traction/compression efforts. 
The three nodes of the tetrahedral basis are connected to the (inertially 
stabilized) antenna dish via three bipeds, containing a total of six 
co-located sensors/actuators. The tetrahedral apex represents the position of 
the seconiary reflector whose motion, because of the nature of the 
electromagnetic problem, must be controlled extremely accurately. Hence the 
problem iB - control the motion of the tetrahedral apex , ~ mean~ of 
actuators ~Located in the 'b':ijBds, ESing sensor information from the bipeds. 

The deBign of the control system for such a.. distributed parameter, 
vibrating mechanical structure faces an old, yet not completely resolved, 
problem _. how many vibration !llodes should the control system take into 
account to guarantee (robust) stab il i ty? 

Using Moore's "open-loop principal component analysis" (Ref. 7), the author 
and Silverman (Refs. 15,16) have shown that the open-loop importance (more 
prec isely , the singular value <r 2' -1 z:;.(f 2i ) of each vibrating mode decreases 
with increasing eigenfrequency, ~ that the spectrum of the singular values 
becomes infinitely spread as the relative damping goes to zero. 

A delicate issue is whether or not the above conclusion can be extended to 

* 'l"his research was supported by the USC/TRW University/Industry NSF Gr.ant 
:EDS-8112327. 
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the closed-loop case. Practical experience ("spillover" problem, Ref. 17) has 
shown that this is not always the case. 

To tackle the closed-loop problem, Skelton (Ref. 9) developed the "cost 
analysis". More recently, the author and Silverman (Refs. 11,12) have 
developed a "closed-loop principal canponent analysis" which is aimed at 
measuring how much each mode is important when the system is closed-up by .§: 
LOO feedback loop. This technique assigns a measure, or "closed-loop singular 
value", to each mode. The main purpose of this p3.:p3r is to look at the 
tetrahedral truss control--pTobTeiIl in the light of this "clO'Sed=Ioop prrncipaI 
component analysis. Ii Surprisingly enough, the conclusions of the closed-loop 
principal canponent analysis do not quite well corroborate the results of the 
op:m-loop analysis. While the s:p3ctrum of the o:p3n-loop singular values is 
infinitely spread, the spectrum of the closed-loop singular values is 
surprisingly concentrated. In more intui ti ve but less precise terms, this 
means that, while the modes appear disparately important open-loopwise, they 
are about equally important closed-loopwise. This discrep3.l1cy between the 
open-loop and. the closed-loop analyses can be interpreted as a tentative 
theoretical explanation of the spillover problem. Also, it turns out that the 
closed-loop importance of each mode depends on the robustness requirements on 
the LOO feedback loop. For example, some seemingly Ul'limportant modes can 
become very important under stringent feedback performance requirements (Refs. 
13, 14) . This p3.:p3r basically addresses such issues. 

II. THE TETRAHEDRAL TRUSS 

The motion of the tetrahedral truss is most conveniently represented by its 
modal state equations: 

dx(t)/dt ~ Ax(t) + Bu(t) 

Yr(t) ~ CrX(t) 

(11.1 ) 

In the above, x is the modal state vector; x2i-1 is the position of the ith 
mode, while x2i is the rate of the same mode. A is a block-diagonal matrix 
with blocks of the form 

0 
A ~ 

i 2 
-w 2zw 

i i 

Wi is the ith modal eigenfrequency; the eigenfrequencies are classified in 
increasing order. 1 is the relative damping. u is the vector of the six 
axial forces acting along the legs of the bipeds; the rows of B with odd 
indices are vanishing, while the rows with even indices contain the 
coefficients of influence of the actuators on the corresponding mode. Yr is 
the six-dimensional output vector of the rate sensors located in the bipeds, 

164 



Some more outputs can be defined: The six-dimensional output y of the 
position sensors located in the bipeds, and the two-dimensional o~tput Ya 
givil1g displacement of the tetrahedral apex: 

Yp(t) "" CIfC(t) 

Ya ( t) "" Cax( t) 

Define the transfer functions: 

Gr ( s) :,.; Cr(sI-A )-1 B 

Gp(s) :,.; Cp(SI-A)-1 B "" (1/s)Gr (s) 

Ga(s) :,.; Ca (sI-A)-1B 

Regardless of mode frequencies and shapes, ISS transfer functions enj oy 
sane rEmarkable properties (Refs. 18,19). By a fairly general result, the 
(square) transfer matrix Gr (s) from the (co-located) force actuators to the 
rate sensor:s is positive real (or dissipative). Further, the same transfer 
function is lossless if the relative damping 1 vanishes. Finally, observe 
that Gr(s) is reciprocal, i.e., Gr(s)"",G;(s). 

The finite element method (NASTRAN) was used by Draper labs to derive the 
secol1d order, modal equations of the truss (Refs. 19-21). These equations 
were further put into the first order, state equation form (11.1) by TRW (Ref. 
20). The modal state equatiol1S (II. 1) cOl1tain 12 eigermodes. Both "naninal" 
and "perturbed" modal data are available to tryout and evaluate cOl1trol 
design techniques on the truss. The naninal data is available to the design 
engirJeer, while the perturbed data represents a realistic derarture from the 
nanirJal data. In the naninal and perturbed cases, the eigenfrequencies are, 
respE~cti vely, 

" 1 "" '1.3420108, 1.1706554 rad/sec 

'''' 2 "" 
'I • 6647234, 1.4667812 

,. 3 "" ;2.8907117, 2.9646145 

" 4 "" ;~. 9574139, 3·5577479 
\f 5 "" :5.3931 995, 3.8483893 
,,, 6 "" 4.2044821, 5.1494174 
,. 7 "" 4.6620682, 5.6759052 
\L' 8 "" 4.7552602, 5.7108055 
'f 9 "" e.5394174, 8.9396286 
~10 "" 9.2505638, 10.303582 
~.11 "" 1 o. 284775 , 10.923379 
~~1 2 "" 1;~. 905111 13.966664 
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III. CLOSED-LOOP PRINCIPAL CCNPONENT ANALYSIS 

Consider a minimaI state space representation 

dx/ dt ;:: Ax + Bu (III. 1 ) 

y z:= Cx 

of the plant transfer matrix 

Y is an output available for feedback purIX>ses, while u is the available 
control action. 

The basic phiJ.osophy of the "closed-loop principll comronent analysis" is 
to measure how much each "mode" (more generally, each state ccmronent) 
p:trticipltes in the inherent closed-loop behavior of the system. ~10del 
reduction and reduced ccmpensation then follow by deletinF:; the unessential. 
mooes. There are many ways, dep:md ing on the specifications, of closinp, up a 
system by a feedback loop, but it is attractive to do this in an optimaI ltJaY 

using the Linear-Quadratic-Gaussian approach. This approach is indeed 
systEmatic and fairly well understood. It aIso has the advantage of endowing 
the design with fairly general robustness prorerties. More interestingJ.y, the 
LQG design can be tuned to optimal sensi tivity properties by· correct 
adjustment of the the quadratic criterion and the noise covariances. To 
formulate the problem within the LQG setup, a disturbance Gaussian white noise 
d( t) is added at the inp.lt and a measurement Gaussian white noise n( t) is 
added at the output, as depicted in Fig. III. 1 . To tune the LQG design to 
optimaI robustness proIBrties , it is convenien.t to introduce the quadratic 
criterion 

together with the noise statistics 

E(d(t)d'(~)) z:= ~I&(t-~) 

E(d( t)n' (~) z:= 0 

E(n(t)n'(~)) z:= rmI5(t-~) 

(III. 2) 

(III. 2) 

The q's and the r's are (positive) rarameters which must be tuned so as to 
reach satisfactory robustness properties. To understand how this can be done, 
let K(s) be a causal, stabilizing, strictly proIBr comIBnsator. A crucial 
result, apparently due to Youla (Refs. 1,2), connects up the performance 
E(~y'y + rou'u) of the comIBnsator K(s) with robustness matrices as follows: 
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]~(~Y'y + rou'u) :: 

1 /(2lftj) .t-g~ Trace { 

qorm(I-GK)-1 GKK*G*(I-K*G*)-1 

+ qo'lm(I-GIc)-1 GG*(I-K*G*)-1 

+ r o'lm(I-KG )-1 KGG~*(I-G*K*)-1 

+ rorm(I-KG)-1KK*(I-G*~)-1 I ds (III. 3) 

(~(s) ::: KV(-s), that is, the paraconjugate transpose of K(s).) The matrices 

are well lmown to be related to the robustness prop:3rties of the loop; the 
enaller they are" the better the robustness properties. Intuitively speaking, 
:Equality (111.3) says that minimizing the eXIBcted value E(<loY'Y + rou'u) is 
equivalent to minimizing the integral over all frequencies of "sizes" of 
"robustness" matrices. MoTe intui ti.vely, this says that minimizing a quadratic 
criterion boosts robustness. In the W~ighted average 10f the right side of 
Equation (III.3) , the matrices (I-GK)- GK and (I-KG)- KG are of particular 
importance; they are indeed related to the stability margin of the feed'back 
system (Ref,. 3); the enaller these matrices, the more the feedback system can 
accotnnodate variations of G:< and KG, respectively, before the loop becomes 
unstable. In closed-loop model reduction, the reduction error is considered as 
plant variation and is eXp:3cted to be taken care of by the stability margin 
property of the loop. Hence, for this to be the case, it is imperative that 
the W problem underlyi.ng model reduction boosts the stability margin. This, 
can be accomplished by assigning the following values to the parameters: 

and by taking ( arbitrarily small. Yet this technique can be further refined 
by considering colored noises d and n and also by inj ecting them at other 
nodes along the loop (Refs. 1,2,3); we postpone these topics to a further 
paper. 

Invoking the Separation Principle, one can split the design into an optimal 
fil tering and an optimal control problem. It is well known (Refs. 4,5) that 
these optimization problems involve in a crucial way the filtering algebraic 
Riccati equation 

and the control algebraic Riccati equation 
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The optimal LOG controller consists in the cascade of the optimal filter 

and the optlinal control gain 

This leads to the following state space representation of the compensator 
K(s) : 

dw/dt s:: FW + Gz 

us::Hw 

where 

F .- A - Br-1B'P - P C'r-1C .~ 0 0 m m 

G :s:: PmC'/rm 

H :s:: -B'Po/ro 

The following is a fundamental result (Refs. 8,10-12): 

Theorem. let (A,B,C) be a minlinal realization of G( s). Then the eigenvalues 
of POP,ll! are similarity inv~y;~ts. further, these eigenvalues are real and 
strict.J..y positive. If "1~ii~... denote the eigenvalues of PoPm in 
decreasing order, then there exists a "balanc~ng" tr~sformation T and a 
"balanced" state space realization (~,B,Q)::;::(!A,!- ,!B,C,!- ) in which 

where 

The physical interpretation of the above-defined quanti ties ( the 
"closed-loop singular values") should be clear. Assume, for example, that Ilk 
is "snall" ; then the balanced state canponent ~k is "easy" to fil ter (Rm 
"snall" along the kth direction) and "easy" to control (Ro "snall" along the 
kth direction); hence, intuitively, ~ is an unessential state canponent; it 
is not significantly involved in the closed-loop LQG behavior of the system, 
and it can be discarded. Technically, this model reduction is done as follows: 
Assume 

M s:: block diag 1 M11 , M22 } 
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withM11 "mueh larger than" M22 . Partition both the plant state equations 

~~1/dt s= ~11~1 + ~12!2 + ~1u 

~?S2/dt s: ~1~1 + ~2!:.2 + ~u 

y s: Q.1~1 + ~ 

and the controller state equations 

d.~1/dt s= ~11~1 + F1 ~ + Q1 z 

~~/dt s= ~1~1 + ~2~ + ~z 

u s: !!1~1 + ~ 

conformably with' M. The obvious reduced-order model is (~11' ~1 ,Q1 ), and it is 
easily provEd that its optimal LQG controller is the obvious reduced-order 
compensator (~11' Q1 '.!!1 ). The problem of the stability of the full plant G(s) 
closed up by the reduced compensator is tackled in the p3.per of the author and 
Silverman (Ref. 12). It is there proved that stability is guaranteed provided 
M22 is "sufficiently small". 

Besides this stability result, the closed-loop principal component analysis 
yields other remarkable results (Ref. 12), relevant to LSS: 

Thforem. let (A,B,C) be a minimal realization of G(s). Take ~""r~1 and 
qo""r~;. Then G(s)is a reciprocal, lossless transfer matrix if and only if mk 
s: 1, ks:1,2, ... FUrther, in that case, the balanced state sp3.ce realization is 
unique wi thin orthogonal similari ties and in any such realization As:-A' and 
C""B' • 

A few words about computations. The main computational burden is the 
solution to both algebraic Riccatj. equations. However, there is a fast and 
reliable procedure for solving the algebraic Riccati equation: the technique 
of Iaub (Ref. 6), which proceeds via the quasi-upper triangular form of the 
Hamiltonian matrix. Once Pm and Po are computed, their simultaneous 
diagonalization proceeds via the factorization of one of them, say, Pm""LL', 
followed by the eigenanalysis of L'PoL; see Ref. 8. 

IV. RE3ULTS 

In this section, the tetrahedral truss is analysed in the light of the 
closed-loop princip3.l component analysis. Several plant transfer matrices, 
corresponding to different canbinations of sensors and actuators, are 
considered. In each case, the mooes are classified by order of closed-loop 
importance. The p3.rameters q and I' of the quadratic criterion and the noise 
stati.stics aTe varied so as to determine how the classification is affected by 
the Btability margin requirements. Tentative conclusions for model reduction 
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are derived. 

IV.1. force actuator/rate sensor transfer matrix; nominal data; no 
damping; 9o""ro""9uFrm""1 

The 6x6 transfer matrix from the (co-located) force actuators to the rate 
sensors is lossless and reciprocal; hence all of the ,IS must be equal to 1. 
Since we know in advance the result, this case is rather a good test of how 
well the nunerical software rel~orms. The software has given the right values, 
up to a relative error of 10- ; see Table IV.1. This is quite satisfactory. 
Regarding the balancing matrix T, which transforms the modal state space 
representation (A,B,Cr.) into the t>alanced state space representation (~,~,~), 
it is easily f01md that this transformation can be taken as block diagonal 
with blocks of the form 

-1/2 
0 (w ) 

i 
T "" 1 /2 
-i (w ) 0 

i 

However, the balancing transformation is uniquely defined up to orthogonal 
transformations, and the software does not pick up precisely the above 
transformation (there are no reasons why it should). 

Thus, the closed-loop principal ccmponent analysis does not manage to make 
any discrimination between essential and nonessential modes, when the undamped 
truss is closed up by a feedback loop frem the rate sensors to the force 
actuators. Intuitively, the reason is that the rate sensors differentiate the 
modal displacEments; this is roughly equivalent to multiplying the modal 
displacements by their respective eigenfrequencies, thereby boosting the 
contribution of the high frequency modes and leveling up everything. 

IV.2. force actuator/rate sensor transfer matrix; nominal data; nonzero 
damping; 9o~ro~9m~rm~1 

Since a ISS exhibits a structural damping, which is poorly known, it is 
important to determine how the above analysis is affected by the damping and 
to make sure that the results are consistent over a realistic range of 
relati ve damping values. 

The results of the closed-loop principal component anaJ_ysis for l~. 01 and 
0.001 are given in Table IV.2. The introduction of this damping clearly 
spreads the srectrum of the Ii's. A distinction between essential and 
nonessential state cemponents is now possible. Observe that the Ii's appear by 
pairs of roughly equal values (this was also the case for the open-loop 
analysis (Ref. 15)); it is therefore tempting to associate each such pair with 
a particular mode. This intuitive conclusion is validated by the "pattern" of 
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the balancing transformation shown in Table IV.2. The balancing 
transfonnation is very "sp3I'se"; in other words, the balancing transfonnation 
merely relabels the modal coordinates. Observe that the p3.ttern of the 
balancing transfonnation is not significantly affected by the relative 
damping. In other words J the closed--loop princip3.1 component analysis does not 
depend too much on the ~ poorly known) structural damping. Surprisingly enough, 
observe that the modes are classified by decreasing order of importance as 
follows: 

6,7,8,5,4,3,9,10,2,11,1,12 

IV.3. force actuator/rate sensor transfer matrix; nominal _9-~~a; nonzero 
damping; 90:<::(, ro:<::1, 9m:<::1, rrrf'€ 

We now examine how the above classification is affected when the quadratic 
criterion and the noise st~fistics are chosen so as to boost the inverse 
return difference I-(KG) , the size of this matrix being somehow 
pro}x)rtional to the stabiiity margin. The results are shown in Table IV.3. 
Somehow they are not quite different from the preceding case. The relative 
spread of the Ii's is about the same. The balancing transformation is still 
sp3I'f:le, thereby relabeling the modal coordinate. The whole analysis is not 
that much al~ected by the p3.rameter €. In all of these cases, the closed-loop 
principal ccmponent analysis consistently classifies the modes by order of 
decreasing importance as follows: 

6,7,8,5,4,3,9,10,2,11,1,12 

that is, the same as for the preced ing case. 

IV. 4.. force actuator/IDsi tion sensor transfer matrix; nominal data; no 
dampj.ng; 9o,;::ro~9m:<::rm~ 1 

We now look at the case where the controller utilizes the output yp of the 
IDsi tion sensors located in the bipod legs, that is, in the qUadratiC 
criterion (1II.2) we take y:<::yp. We are not yet quite concerned about the 
stab:llity margin, that is, we normalize the perfonnance criterion and the 
noise stati:3tics as ~r!t<Jm:<::rrrF1. The results of the closed-loop princip3.J. 
comIXment analysis of 'G,p-Zs) are given in Table IV. 4. All of the II's are very 
clOB:) to onE~, wi thin 10 . The spectrum of the closed-loop singular values of 
the transfer function from the force actuators to the displacanent sensors is 
surprisingly concentrated, while the spectrum of the op9n-loop singular values 
is much broader (Refs. 15,16). It is thus difficult to classify the modes by 
order of imrortance. The balancing transfonnation is not quite sp3.rse, simply 
because it is hard to make a distinction between the modes. 

IV. 5.. force actuator/IDsition sensor transfer matrix; nominal data; 
nonZt~ro damping; 9o:<::ro:<::9m:<::rm:<::1 

We now look at how the closed-loop principli comIDnent analysis of Gp(s) is 
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affected by the damping. The results are summarized in Table IV.5. Clearly, 
the introduction of a relative damping somehow spreads the II's, and a 
classification is now p::>ssible. As a result, the balancing transformation is 
"sparse"; however, the balancing transformation does not exactly relabel the 
modal coord inates. For example 9 for 1",0.01 9 the balanced coord inates 
~'.!6'.!7' and ~ depend on the modal coordinates of both eigermodes 4 and 7; 
somehow, the eigenmodes 4 and 7 are intercoupled in the balanced coordinates 
and can hardly be dicriminated importancewise. Also, the balanced coordinates 
!q, !10' !11' and !12 depend on the eigenmodes 3 and S. Thus the 
classiflCation of the eigenmodes in decreasing order of imp::>rtance is as 
follows: 

6,5,(4,7),(3,S),2,1,9,10,11,12 

The parentheses ind icate that the modes are intercoupled in the balanced 
coordinates and cannot be discriminated. This classification is not the same 
as for the case of rate sensor output feedback. Further, this classification 
is slightly affected by the damping, though an "invariant" feature is that 
eigermodes 9,10, 11, and 12 are always classified as non important . 

1V.6. force actuator/p::>sHon sensor transfer matrix; nomin~ dat.B:.; nonzero 
damping; 90>=1, 1'0>=(' %rt , ruf1 

The quadratic cri tel' ion and the noise statistics are nfw chosen so as to 
boost the stability margin, that is, the "size" of 1-(GJ()- , for the !Osition 
sensor output feedback case. The results are summarized in Table IV.6. The 
II's are about as well spread as for the preced ing case. Further, the 
balancing transformation is about as "sparse" as for the preceding case, which 
means that the balancing does not exactly reorder the modal coordinates. For 
(~. 1, the classification is as follovlS: 

(5,6) ,(4,7) , (3,S), 2, '1,9,10,11,12 

FbI' (~.01, the classification becomes 

(3,4,5,6,7,8),2,1,9,10,11,12 

Thus, the classification depends on the stability margin requirement. As the 
stability margin increases, the couPling of serne modes, for example, 6, 7, and 
S, increases; this is because these modes have very close eigenfrequencies. As 
the stability margin requiranent varies, the only "invariant feature" is that 
eigenmodes # 9, 10, 11, and 12 are consistently decoupled from the others and 
classified as nonimp::>rtant i this can be justified by the big gap between Ws 
and w9 ' 
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IV.7. force actuator/position sensor transfeJ:'_-..E!~trix; nominal dat~i 
nonzero damping; 9os::(, ros::1, 9m,s::1, rn:f€ 

WE! still look at the case of a displacement feedback, but we are now 
concElrned about the inverse-return difference matrix I-(KG )-1. The "size" of 
this inverslrreturn difference matrix is boosted if the Pquadratic criterion 
and the noiBe covariances are taken as above. The results are shown in Table 
IV. 7. For €s:O.1, the classification, by decreasing order of importance, is the 
following: 

( 5,6) , (4·,7) , (3,8) ,2, 1 ,9, 10, 11 , 12 

Under the more striDgent stability margin requirement (s:O.01, this 
classificati.on becomes 

(3,4,5,6,7,8),2,1,9,10,11,12 

Thus the classificatioD is the same as for the preced ing case. Further, 
comp:tring Tables IV.6 and IV.7 shows that this case is very close to the 
precEld ing. This observatioD is reassuring. Indeed, in the

1 
multi variablr feedback loc,p, the stability of both transfer matrices (I-G:J<)- and (I-KGp)

is involved, and their stability margins re given by :me "sizes" of the 
inverse-return difference matrices I-(G.,.;K)-f and I-(KGp)- , respectively. It 
is reassuring to observe that the boosting of both stability margins is 
nonconflicting in this approach. 

IV. 8.. force actuator/position sensor transfer matrix; perturbed data; 
nonzero damping; 9os::€, ros::1, <ws::1, rms::€ 

Needless to say, the modal data of a ISS is highly uncertain. It is 
therefore uBeful to determine the extent to which the above analysis, say case 
# IV.7, is affected by a variation of the mode eigenfrequencies and sha:p3s. 
The results of the principal component analysis in the perturbed data case are 
summarized :Ln Table IV.8. Observe that the results are close to those of case 
study # IV.B. If €s:O.1, the classification is as follows: 

6,5,(4,7,8),3,2,1,10,11,9,12 

Now, if the stability margin requirement is more stringent, i.e., (s:O.01, the 
classificati.on becomes: 

(4,5,6,7,8,),3,2,1,10,11,9,12 

Thus increasing the stability margin requirement produces more intercoupling 
between sanE~ modes, that is, the same tendency as for the naninal data case. 
It s~3ems, therefore, that the closed-loop princip:11 component analysis picks 
up the "fine" structure of the systEm, and does not rely too much on mode 
eigenfrequencies and shaIBs. This is reassuring. 
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IV.9. force actuator/IX>sition sensor;. nominal data; __ ~on~ro damping; 
E(~~YQ±90Ypyp+rou'u) 

In all of the previous cases, we have stabili2'Ed the whole system, without 
particular attention to the deviation of the tetrahedral apex. Here we 
introduce a quadratic criterion Which explicitly penalizes the deviation Ya of 
the apex. We have taken <la:>:1. 0; the other parameters are taken so as to take 
care of the stability margin, i.e., qo""€, 1'0",,1, ~""1, rm""g(e), with (s:O.1.The 
resul ts are shown in Table IV. 9. Observe tl1at the fI' s are fairly well spread, 
and that the balancing transformation has a much more diagonal structure. 
This means that, if one is primarily" concerned with the deflection of the 
apex, the modes are sanehow classified "by decreasing frequencies. Rananber, 
however, that because of the penalty on Ya we lose on the stability margin. 
There thus appears to be a conflict between precise control of the apex and 
good stability margin. 

V. CONCLUSIONS 

We have presented in this paper a procedme for evaluating the "dynamical 
importance" of each vibration mode in a Large Space Structme operating under 
feedback control. The main conclusion we have drawn is that the closed-loop 
imIX>rtance of each vibration mode depends on the robustness requirements. 
Also, there appears to be a conflict between precise control of a given node 
of the structme and stability margin, these two requirements leading to 
contradictory classifications of the modes by order of imIX>rtance. A refined 
version of this analysis, using frequency-dependent weightings (Refs. 1-3) to 
take care of nOise, sensor, and actuator bandwidths, is IX>stponed to a further 
paper. 
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CONTROL OF LARGE SPACE ANTENNAS BASED ON 
ELECTROMAGNETIC-STRUCTURAL MODELS 

Massih Hamidi and Farzin Manshadi, Jet Propulsion Laboratory, 
California Institute of Technology 

Pasadena, CA 91109 

ABSTRACT 

A general approach to the optimal control of large space antennas based 
on their RF/structural characteristics is described. The approach consists 
of defining a cost functional based on the degradation of the RF performance 
of thE" antenna and using the structural model as the dynamic system. The method 
is applied to the design of an optimal controller for a 55-m,wrap-rib offset
fed antenna. The controller's goal is to minimize the variations of the peak 
electric field of the antenna due to feed displacements. 

INTRODUCTION 

The control of the RF properties of antennas is traditionally achieved by 
implementing and following a set of geometrical considerations such as 
pointing accuracy, shape distortion, feed position, stability, etc. These 
geometrical requirements are very stringent because of the way in which they 
are conceived. The relative importance of different parameters of a geo
metrical configuration in RF performance degradation usually can not be 
deteDmined. Each parameter is therefore considered separately and uniform 
criteria are derived which, in order to meet a worst-case situation, 
lead to very restrictive conditions. This study aims to use the RF performance 
degradation directly as the means of defining the controller, and thus to 
circumvent the stringency of the geometrical methods. 

This paper is organized into three sections. The first describes the 
methods used for the computations of the "far-field" electromagnetic proper
ties of the antenna and for the derivation of the "sensitivity" of these 
properties to different parameter variations. The second section briefly 
discusses a general approach to deteDmining quadratic cost functionals based on 
the RF characteristics of the antenna system. This reduces the RF optimal 
controller design to a subclass of the linear quadratic optimal controller 
design problem whose solution is well-known. To illustrate the method, the 
design of an RF optimal controller for the 55-m, offset-fed, wrap-rib antenna 
considered in the LMSS [Ref. 1] project is presented in section 3. The 
goal of the controller is to minimize the variations of the peak electric 
field of the antenna, caused by feed d'isplacements. 

RF MODEL DEVELOPMENT 

Consider the reflector antenna shown in Figure 1. The reflector surface 
E is constructed by intersecting a circular cylinder with an arbitrary curved 
surface. The cylinder axis is taken as the z axis; the x-y plane is perpen
dicular to the z axis. The projection of E on the x-y plane is the circular 
region a with radius a. The feed is assumed to be located at some arbitrary 
point. 

181 



X(X'I 

" 
\ 

\ , , 
I 

\ I 
Y(Y')', i~ 

~ _____________ ~ __________ ~~_/ a 

SOURCE 

Figure 1. Offset Shaped Reflector Antenna 

-r 

Z(Z'I 

The far-field approximations for the scattered electric and magnetic 
fields of the offset-fed antenna are readily evaluated using a technique 
developed by Y. Rahmat-Samii and V. Galindo-Israel [Ref. 2]. A brief summary 
of this technique is presented in the following paragraphs. 

The electromagnetic fields E and H are given by 

{

H=VlXA 

E = -.- V x H 
JWE 

A is the vector potential expressed as: 

J 
-jklr-r'l 

A = L: J ~7f I r-r ' Ids' 
where J is the induced current on the reflector surface due to the magnetic 
field Hs radiated by the source, It is given by [Ref. 3] 

J = 2n x H 
s 

where n is the unit vector normal to the reflector's surface and directed 
towards the positive direction of the z axis. 

Introducing the far-field approximations in the expressions for E and H, 
one obtains [Ref. 2] 

. -jkr 

{

H = jk \n (Tep 

-jkr 
E =-jkn e (T

8 47fr 
8 + Tep ep) + O(r-

2
) 
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where n = I~ , the parameters (r,8 ,<jJ) are the coordinates of the observation 
A E: A 

point, 8 and <jJ the unit vectors corresponding to 8 and ~, and T the radiation 
integral given by 

T = JI: J(r') ejkr'.r ds' 

It has been found that the radiation integral provides a very accurate 
solution for predicting the far-field radiations of reflector antennas. The 
necessity of having an efficient technique for the evaluation of this integral 
stems from the fact that it has to be computed accurately each time the observa
tion angles change. Moreover, the integrand of the radiation integral 
oscillates rapidly and thus makes the integration more strenuous 
for large reflectors. 

To circumvent the difficulties in the integration, the radiation integral 
is first expressed in terms of a sununation of Fourier Tr,ansforms of an 
"effective" aperture distribution 

P+oo 21f a 

T = I G (8) I f Q (p',<jJ')ejkP'BCOS(~-~')p 'dp'd<jJ' 
p=O p 0 0 p 

where Band q, are functions of the observation angles 8 and ~. 

The Fourier Transform integrals are then expanded in terms of Jacobi-Bessel 
series by writing that 

[cosn~ 'J F n (s ') 
sinn<p' m 

where F n (.) are the modified Jacobi polynomials defined by 
m 

n 
x 

(_l)m2-m dm 2 
m! (I-x) -n [(l-x )m(l._x)n] 

dx
m 

and the coefficients pC and D are given by nm p nm 

r J21f Jl {J C E ' cosn<p ' 
P urn} = ~ Q (as I ,<P I ) 

1 C 21f 0 0 P • <p ' 
P Slnn urn 

E: 
n {~ n=O 

n~O 
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Finally, the radiation integral is expressed as 

T 
[

cosn<I>J 
D ] /z (n+2m+l)'. 

p nm sinn<I> 

where J (.) indicates the Bessel function of order n. 
n 

I n+2m+l (kaB) 

kaB 

The method has several important features which may be summarized as 
follows: 

1) Higher order coefficients pCnm and pDnm can be calculated from zero 
order coefficients oCnm and oDnm and by use of recursion relations. 

2) Once pCnm and pDnm are determined they can be used for all observa
tion angles. 

3) The numerical integrations involved in the computation of oCnm and 
oDnm do not contain the highly oscillatory Fourier Transform kernel of the 
original expression. 

To illustrate the variation of the RF pattern of a reflector antenna as 
a function of its feed location, the far fields of a 55-m parabolic reflector 
antenna are plotted for four different feed locations: (1) feed at focal 
point, (2) feed displaced in the x direction with y and z constant. 
(3) feed displaced in the y direction with x and z constant, and (4) feed 
displaced in the z direction with x and y constant. (Figures 2 through 5) • 
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As can be noticed, displacements along the x and y axes produce signifi
cant variations in the gain while displacements along the z axis have almost 
negligible effects. It can thus be observed that to optimize the gain most 
of the effort should be concentrated on controlling the feed displacements 
along the x and y directions and that the control along the z direction can 
be relatively loose. 

COST FUNCTIONAL DERIVATION 

Let P be an RF performance parameter to be optimized e.g., gain, band
width, magnitude of the electric or magnetic field); Let xl, x2, •.. xn 
be the independent variables whose variations affect P: P = P(xI' x2 • ... xn); 
and let x = (xl x2 •.• xn)T. Suppose P assumes its optimal value at 
xO = (xIO x20 .•. xno)T. Around this point P can be expressed as 

P(x) P(xo ) + vplx • ~x + ~ ~xT Hlx ~x + ... 
o 0 

where P and H denote the gradient vector and the Hessian matrix of P with 
respect to x and ~x = x - Xo. 

Since P is optimum at x 
o 

vP\x
o 

o 

and Hlx is positive definite or negative definite depending on whether P is 

minimumoor maximum at x • 
o 

Hence, around the given point, 

I T 
P(x) = P(xo ) + 2 ~x H ~x + 

and we can approach the optimum value of P by minimizing I} ~xT H~xl. Note 
that if this minimum reduces to zero,we actually attain the optimum value of p. 
Note also that if H > 0, 

and if H < 0 

and that in both cases, 

where A is a positive definite matrix. 
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The antenna is modeled by an equation of the form 

My + Ky = Bu yet ) = y 
o 0 

It is always possible to relate ~x to y by an equation of the form 
~x Ty. Hence, minimizing 

and reducing it to zero is equivalent to minimizing 

We can thus formulate a linear quadratic optimal control problem by writing, 
minimize 

1 Joo T T T 
J =2 (y T ATy + u Ru) dt 

o 
subj E!ct to 

My + Ky Bu yet ) 
o Yo' yet ) 

o 

The term 

} Joo 
o 

T 
u Ru dt 

where R is a positive definite matrix, is added to account for the restrictions 
in energy consumption for the control. 

. 
The rest of the procedure is classical. A damping term Dy is added to 

the equation, and the system is augmented by considering the state vector 
W = (y y)T. This leads to the system 

W + (0 .) u ~ FW + Gu 
M-lB 

associated with the cost functional 

where 

J ! Joo(WTQW + uTRu) dt 
o 
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The optimal control is given by 

u(t) = - CW(t) 

with 

where K is the positive definite solution of the Riccati equation 

FEED-DISH MOTION COMPENSATION FOR A 
55-m,WRAP-RIB,OFFSET-FED ANTENNA 

To illustrate the application of the method, in the sequel we describe 
the design of an RF optimal controller for the 55-m,offset-fed,wrap-rib antenna 
considered in the LMSS [Ref. 1] project. The controller is designed to minimize 
the relative feed-dish motion of the antenna. 

A schematic diagram of the antenna is given in Figure 6. It is composed 
of a 55-m diameter reflector dish, a massive feed array, and a long L-shaped 
boom connecting the dish and the feed. The antenna's operation frequency is 
871 MHz which leads to the values of 159.68A for the dish's diameter and 
239.6A for the focal length (A is the wavelength at 871 MHz). 

Construction of the State Cost Matrix 

Let rO be the vector from the center of gravity of the spacecraft's bus 
to the boom's elbow and r1 the vector from the elbow to the center of gravity 
of the reflector's dish. The position of the feed is characterized by the 
vector. 

FEED 
(Spacecraft's bus) 

S 

CG of the 
dish 

INERTIAL FRAME 
z( @ x 

y 

Figure 6. Schematic Diagram of the Antenna 
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Let So ,= (xo Yo zo)T be the position for which the electric field is 
maximized. For the neighborhood of this point 

since 

E = E(so) + VsElso • ~S +} ~ST H(so) ~S + ... 

+} ~STH(So) ~S + '0' 

v E/ = 0 s s 
o 

E(s ) 
o 

The value of the electric field was evaluated using the algorithm 
described in the first section of this paper for different feed positions. The 
following Hessian matrix H(so) was obtained through numerical differentiation of 
the electric field (as a function of feed position) : 

( -26.0966 .00344 
- .0076) 

H(S)= - ,00344 -24.231 6.396 
0 

,0076 6.396 -1.96 

To evaluate ~S, we interpret the feed-dish motion by considering the 
feed and the lower boom, r o ' fixed,and the dish, hence rl, rotating about 
the coordinate axes. Thus, 

The antenna's distortions are supposed to be small. This leads to 

~rl = r 1 x r 

where 
r (y 1 Y2 

designates the rotation of rl about the x, y and z axes of the inertial frame. 
Writing ~rl in a matrix form, we obtain 

with 

D 

where a, b, and c are the components of the vector r
l

: r l 
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Thus, 

~E = E - E(S ) = l rTnTHDr ~ l rTH'r 
o 2 2 

E has a maximum at S . H is therefore negative definite and so is H'. 
Consequently, the state c8st is given by 

Antenna Model 

The antenna is modeled by the linear system 

My + Ky = Bu 

where the state vector y has 12 components as follows: Yl to Y3 represent the 
attitude ex, ey , and e z of the spacecraft; Y4 to Y6 the rotations Yl, Y2, and 
Y3; and Y7 to Y12 the six most important modes of the reflector dish. 

The values of the matrices M, K, and B are listed in the appendix. The 
system has a damping of zero on the first three components (rigid body motions) 
and 0.005 for the rest. 

Thus, the state cost weighting matrix takes the form 

{

Qij = 0- H(i_3) (j -3) 

Q .. 
1J 

elsewhere 

Optimal Feedback Computation and Simulation 

The OPTSYS [Ref. 4] program package was used to determine the optimal gain 
for the case where a three-dimensional control is applied at the spacecraft's 
bus. The control cost weighting matrix was taken to be the 3 x 3 identity 
matrix. The resulting gain matrix is also given at the end of this paper. 

The optimal feedback control thus obtained was used to drive the antenna 
system in simulation studies. The results are given in Figure 7. 

CONCLUSION 

The RF performance of large flexible antennas is traditionally achieved by 
. imposing stringent geometric restrictions on the structural distortions from a 
nominal optimum configuration. In this paper, we have presented an approach 
to alleviate the stringency of the geometrical criteria of satisfactory 
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performance. The approach consists in generating a linear optimal control 
problem with quadratic cost functional where the cost functional is obtained 
from the RF characteristics of the antenna and the dynamic system constraint 
is given by the structural model of the antenna. 

The method was applied to the feed-dish motion compensation for a 55-m, 
wrap-rib,offset~fed antenna and the time simulations presented. 
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APPENDIX 
THE MASS MATRIX IS 

COL "ft. 2 COL :I COL " COL 5 ..... 6 .. ,,' '7 COL e >Ow,", .. ,"U," \. ..... 
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ROlf 1 000000000 .. 4.9897100-01 0.0000000 6,94984155_18 
ROM 8 5.Znn4S-U 0,0000000 .. 1.UIJ93U-06 2.8158218 .. 03 ROM " 9,69811351-01 0.0000000 -2.8158211"01 -I. UIJCJU8.0fl 
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\0 THE STt"N[SI MATRtX II w 

COL COL 2 COL 3 CO\. " COL '5 COL 6 COL T COL 8 

RON 1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0,0000000 0,0000000 0.0000000 
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COL 9 COL 10 COL 11 COL 12 
QOW I 0.0000000 0.0000000 0.0000000 0.0000000 
litO'" 2 0.0000000 0.0000000 0.0000000 0.0000000 
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ROW , I e420864O+Oo 0.0000000 0.0000000 0.0000000 
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ACTIVE CONTROL OF SPACE STRUCTURES 
(ACOSS) MODEL 2 

Timothy C. Henderson 
Charles Stark Draper Laboratory, Inc. 

Cambridge, MA 02139 

1.0 Introduction 

In order to assess the performance, sensitivity, and hardware requirements 
of the various active structural control methods which are being developed, a 
universal system model is required. This report contains a complete description 
of ACOSS Model #2 which is a simple but realistic evaluation model. The design 
of this system was driven by the desire to incorporate certain attributes into 
the overall system characteristics. The desired features were 

• structural design based on realistic sizes and weights 

• a simple unclassified optical system with associated performance 
measures and tolerances 

• a set of disturbances typical of equipment vibration and attitude 
control (slew). 

The resulting model is described in detail in section 2.0 along with the result
ing mode shapes and natural frequencies of the system. Section 4.1 contains a 
description of the,:line-of-s;ght (LOS) performance measure including theory and 
implementation. 

2.0 Structural Design 

ACOSS nodel #2 is shown in Figure 1. It consists of two subsystems. The 
optical support structure and the equ'ipment section, which are connected by 
springs at three points to allow either passive or active vibration isolation. 
The optical support structure contains the four optical surfaces which are 
assumed to be a rigid central section with two flexible solar panels cantilevered 
from it. 

2.1. Optical Support Structure 

The optical support structure consists of the upper mirror support truss, 
the lower mirror support truss and the metering truss which maintains mirror sep
aration. The finite element model of this subsystem is shown in Figure 2. The 
model contains 35 node points and 117 beam elements. The structure is desiqned 
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Figure 1. ACOSS Model No.2 

196 



..... 
-0' 
-.\ 

32 

uPPER OPTICAL SUppORT TRUSS 

11 
LOWER OPTICAL IiUft'ORT TRUSS 

Figure 2. ACOSS tlodel No.2 - Finite Element Model 
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Figure 2. ACOSS ~1odel No.2 - Finite Element f·1odel (Continued) 



to act as a truss but it is assumed that all joints allow a full moment connec
tion. Thus, both bending and axial stiffness are included for all members. All 
structural elements are assumed to be hollow graphite epoxy tubes. Four differ
ent sizes of tubes are used in this model and their dimensions and section prop
erties are listed in Table 1. The optical surfaces are assumed to be rigid and 
k i nema ti ca 11 y mounted on the s tru cture so that they wi 11 have no effect on the 
overall stiffness. The mass of the mirrors will increase the inertia of the 
system and has been included in the model. The total mass of this subsystem. 
5084 kg which includes the structure, optical surfaces, and equipment, has been 
lumped at 18 node points as shown in Figure 3. 

2.2.2 Equipment Section 

" The equipment section is modelled as a central rigid body with two flexible 
solar panels cantilevered from it. The finite element model:;sgiven in Figure 4. 
It has been assumed that the rigid body portion contains all of the equipment, 
guidance and navigation, control systems, power. supplies, that are necessary for 
operation of the system. Therefore, a relatively large portion of the to~al mass, 
3500 kg, is concentrated in the rigid section at node 44. Also included at node 
44 are the rotational inertias due to distribution of the mass over the triangu
lar area. These inertia terms are listed in Figure 7. 

The solar panels are assumed to have an area of 120 m2 each and are sup
ported by graphite epoxy support booms. The mass and rotational inertia of the 
solar panels are lumped at three nodes on each boom. The lumped masses are 
listed in Figure 4. 

2.2.3 Isolation System 

The opti ca 1 support structure and the eqld pment secti on are connected by a 
paSSiVE! isolator at three points by springs acting in an three translational 
directions. The isolator is designed to reduce the amount of force transmitted 
from the equipment section to the optics. This is accomplished by designing an 
isolator with the natural frequency much lower than expected disturbance frequen
cies. In addition, the isolator frequency should be lower than the optical 
structure bending frequency. A passive isolator consists of a spring and a vis
cous dashpot in parallel as shown in Figure 5. 

PRECISION SECTION 

EQUIPMENT SECTION 

F 1 
isol .. 211 

Figure 5. Passive isolator. 

199 



N 
o 
o 

Table 1: Member properties 

TYPE 200 TYPE 300 

20 em dia. x .1 em Round Tube 20 em dia x .05 em Round Tube 

A = 6.250 x 10-4 m2 A ;:: 3.133 x 10-4 m2 

I 
-6 4 

I -6 4 = 3.075 x 10 m = 1. 559 x 10 m 

J -6 4 
J 3.118 x 10-6 m4 = 6.1,89 x 10 m = 

TYPE 400 TYPE 500 -
25 em dia x .05 em Round Tube 40 em dia x .075 em ROund Tube 

A -4 2 = 3.919 x 10 m A = 9.407 ·x 10-4 m2 

I 3.0496 x 10-6 m4 I -5 4 = = 1.874 x 10 m 

J -6 m4 
J -S 4 = 6.099 x 10 = 3.749 x 10 m 



TOTAL MASS .. 5084 Kg 

2 

NODE MASS (Kg) 

9 500 
10 500 
11 500 
12 500 
14 8 
15 17 
16 17 
17 17 
18 17 

3 19 8 
27 375 

• Lumped Mass Location 
28 375 
29 375 
30 375 
32 500 
33 500 

I 34 250 

I 35 250 

Figure 3. Optical ~upport structure mass distribution 
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Figure 4. 

EQUIPMENT SECTION & SOLAR PANELS 

NODE LOCATIONS (m) 

NODE X Y z 

42 0.0 5.0 0.0 

43 -2.0 o.n 0.0 

44 0.0 0.0 0.0 

45 2.0 0.0 0.0 

46 -4.0 -5.0 0.0 

47 4.0 -5.0 0.0 

48 -26.0 0.0 0.0 

49 -21.0 0.0 0.0 

50 -1.6.0 0.0 0.0 EQUIPMENT SECTION - ELEMENT CONNECTIONS 
51 -11.0 0.0 0.0 

- NODES 42-47 RIGID PLATE 
52 -6.0 0.0 0.0 

53 6.0 0.0 0.0 
- SOLAR PANEL BOOMS 

54 11.0 0.0 0.0 

55 16.0, 0.0 0.0 ELEMENT /I NODE A NODE B PROPERTY # 
56 21.0 0.0 0.0 

57 26.0 0.0 0.0 
131 48 49 500 
]]2 49 50 
113 50 5'1 
134 51 52 
135 52 If) 
136 45 53 
137 53 54 
U8 54 55 
J 39 55 ,56 
140 56 57 

LUMPED MASSES. ----_.-. 
NODE H(Kg) Ixx Iyy Izz 

----- ------
44 3500 2JOO 2100 4200 
l.g 90 270 0 0 
50 180 540 0 0 
52 90 270 0 0 
53 90 270 0 0 
55 180 540 0 0 
57 90 270 0 0 

'---------'----------'------ -L. .-J 

Equipment section and solar panels 



If the isolator frequency is lower than the lowest natural frequencies of the two 
sections, they can be modelled by their inertia properties only. For this sys
tem, the isolator was sized to have a frequency of 0.5 Hz. The dashpot size has 
not been specified as it is assumed to be part of the overall control design. 
The spring constants are given in Table 2. 

3.0 Structural Analysis 

A model analysis was performed using the NASTRAN finite element program. 
This model contains 84 dynamic degrees of freedom, thus 84 frequencies and mode 
shapes were extracted. Table 3 gives a list of frequencies and descriptions of 
the fi rst fifty mode shapes. . 

4.~ System Performance Evaluation 

The performance of this system is measured by the ability to maintain line. 
of-sight (LOS) rotation and defocus within specified tolerances. By making some 
simplifying assumptions a set of linear equations relating the LOS rotations and 
defocus to the displacements of node points in the finite element model have been 
developed. This results in a performance evaluation model which has the same 
level of accuracy as the finite element model. 

4.1 . LOS Enor Algorithm 

The optical system used in ACOSS model #2 is shown in Figure 6. The pri
mary and tertiary mirrors are off axis sections of rotationally symmetric coaxial 
surfaces. The secondary mi rror and the focal surface are fl at ~ We assume that 
the mirrors maintain their nominal shape and that their motion is a linear func
tion of the displacements of the nodes at the support points. Using these as
sumptions and first order optics equations, expres~ions relating mirror transla
tions and rotations to the translation and rotation of the image are given. 
Translations and rotations of the mirrors are assumed to. be th~ displacements of 
the vertices of the surfaces, located on the optical axis (Figure 7). The dis
placements of the vertices can be extrapolated from the displacements of the no~~ 
points at the mirror supports. 

The general form of the expressions for LOS rotation and defocus is 

LOS)( = Y/F LOSY = X/F DEFOCUS ::; Z (4-n 
Where 

X = ["-X + Xt - Rp eYp + 2eY ~ tl - 2 YtT] 
Rt 

. p s 2 + 2T-R 
t 

+ X -t Xf + eOfY I 

Y = ["-Y + Yt + R eX - 2ex ~ tl + 2eXt T] 
Rt 

. p p p s R + 2T-R t 

+ Y - Y - ezox t f f I 
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Table 2. Isolator spring connectivities 

SPRING A NODE A DOF NODE B DOF 

1 4 1 42 1 

2 4 2 42 2 

3 4 3 42 3 

4 3 1 46 1 

5 3 2 46 2 

6 3 3 46 3 

7 6 1 47 1 

8 6 2 47 2 

9 6 3 47 3 

K • 5790 NITA 
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Table 3. Frequencies and mode shapes 

,----
~'req. Freq. 
(Hz) Description (Hz) O •• cription 

1~6 0.0 rigid body 17 1. 72 torsion 

7 .145 Isolator Y-rotation IS 1.82 2nd S.P. x-z plane 

8 .263 Isolator z-rotation 19 1. 82 2nd S.P. X-Y plane 

9 . 317 1st S.P • x-z plane 20 1. 89 1st S.P. torsion asym 

10 .333 1st 
S.P. X-Y plane 21 2.36 1

st 
bending 

11 .443 Isolator Z-trans 22 2.99 1st 
S.P. torsion syr:. 

12 .577 Isolator Y-trans 23 3.18 3rd S;P. X-Y plane 

13 .581 Isolator X-trans 24 3.39 3rd S.P. X-Z plane 

14 1. 22 2nd S.P. X-Z plane 25 5.16 2nd S.P. torsion 
) 

15 

~ 
2nd S.P. X-V plane 26 5.26 2nd S.P. torsion 

16 1. 35 Isolator x-rotation 27 7.87 lrd" S.P. torsion 

FRP.O(HZ) DESCRIPTION FREO(HZ) DESClliPTIat 

28 8.11 LF.G TORSION 39 15.65 LEG , LOIfER TRUSS BENDING 

29 8.36 )rd S.P. TORSION 40 16.07 LEG BENDING 

30 8.51 LEG TORSION 41 16.52 UPPER TRUSS BENDING 

31 8.81 3rd S.P. X-Y PLANE 42 16.75 UPPER TRUSS BEHDING 

32 0.81 )rd S.P. X-Z PIJlNP. 43 17.16 UPPER liND LOIIER BENDING 

33 11.)5 4th S.P. X-Y PLIINE 44 11.83 STRUCTURIIL BENDING X-Y 

34 11. 50 LEG BENDING 45 19.07 LOWER TRUSS BENDING 

35 12.13 LEG .BENDING 46 23.71 UPPER TRUSS BENDING 

"36 13.58 4th S.P. x-z PLI\NE 41 24.41 UPPER • LOWER BENDING 

37 lJ.7l LEG BENDING 40 25.91 UPPER TRUSS AXIAL 

38 14.16 LEG & IlMER mJSS BmlJING 49 26.36 UPPER TRUSS BENDING 

'>0 26.43 S.P. AXIAL 
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Figure 6. Optical system 
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Figure 7. Three-mirror system 
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[R R + 2(t - t
2

).J2 + Zt - Zf p - t 1 

R 2 
t (4-4) 

the terms Xi' Yi , Zi' ex i , eZi refer to the translations and rotations in the glo
bal X, V, and Z directions of the primary (p) and secondary (s), tertiary (t), 
and focal plane (f). The variables in the equations which relate to the size of 
the optical system are 

R = radius of curvature of the primary p 

Rt = radius of curvature of the tertiary 

tl = axi al distance between the primary and the secondary 

t2 = axial distance between the secondary and the tertiary 

Xl ' VI = location of a point on the focal plane 

F = focal length 

= 
RtRe 

2(2T-Rt ) 

T + ~ 2 + tl + t2 

the location of the image plane is a function of the parameters of the three-mir
ror optical system. The distance BF between the tertiary mirror and the image 
plane (see Figure 7) is given by 

BF (4-5) 

and for all cases the focal surface must be placed at this location, or, alter
nately the radius Of curvature of the tertiary should be calculated using 
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2T· BF 
Rt :;: T +·BF 

so that the final image coincides with the focal plane. 

(4-6) 

To simplify implementation we can rewrite the previous equations in matrix 
form. Equation 4-1, relating the line-of-sight errors to the translational de
focus terms becomes 

{

LOSX} 
LO~Y . = (4-7) 

where: X, Y, Z - translational defocus terms defined in Eq~.(4-2) to (4-4) 

[A] = [~/F l~F ~ 
o 0 1 

Equations (4-2), (4-3), and (4-4) can be rewritten in matrix form as 

( 4-8) 

where: Um = vector of mirror vertex motions 

B = matrix relating Um to translational defocus terms (X, Y, Z) 

The optical system used in ACOSS model #2 has the following parameters: 

Rp = 53.9 m 

Rt = 30.8 m 

tl = t2 = 20.0 m 

XI = Y = 0.0 m 
I 

F = 8.051 m 

T = 66.95 m 

The radius of curvature of the tertiary, Rt , was found using Eq. (4-6) and the 
requirements that BF = 20.0 m. 
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These parameters are then used to form the terms in matrices A and B. 

4.2 LOS Error Algorithm Implementation 

The motion of the vertex of each mirror can be extrapolated from the dis
placements of the support points since all mirrors are assumed to be rigid. The 
mirrors are supported by kinematic mounts so that there is no elastic deformation 
in the mirrors. A displacement transformation matrix which relates the motion of 
each mirror to the displacements of the support points in the global coordinate 
system can be constructed. The relationship is of the form 

Um 
,- C Un (4-9) 

wh~re: Um 
,- vector of mirror displacements and rotati ons 

Un ,- vector of displacements at support node points 

C- displacement transformation matrix 

The final form of the equations relating LOS errors to displacements at the 
support node points is 

{

LOSX1 
LOSY 

:~ 

= [A] [B] [C] {Un} (4-10) 

using terms that have been previously defined. If modal superposition is used in 
the analysis, Eq. (4-10) can be rewritten as 

rSX

\ 

LOSY = [</JLOS] {n} (4- 11] 
Z 

where: {n} = modal displacements 

[</JLOS] = [A] [B] [C] [</J] 

This matrix, [</JLOS] is a simple way to relate LOS errors to the modal displace
ments which will be the result of the analysis if a modal model is used. 

5.0 Conclusion 

Further information on this model is contained in CSDL Report C-5437. 
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'TRAVELLING WAVE EFFECTS IN LARGE 
SPAC]E STRUCTURES 

Abstract: 

Andy von Flotow 
Stanford University 
Stanford, CA 94305 

This paper investigates several aspects of travelling waves in Large Space Structures(LSS). The 
dynamic similarity among LSS's, electric power systems, microwave circuits and communications 
networks is noted. The existence of time lags between actuation and response is illuminated with the 
aid of simple examples, and their prediction is demonstrated. To prevent echoes, communications 
lines have matched terminations; this idea is applied to the design of dampers of one dimensional 
structures. Periodic structures act as mechanical band pass filters. Implications of this behaviour 
are examined on a simple example. It is noted that the implication is twofold; continuum models of 
periodic lattice structures may err considerably; on the other hand, it is possible to design favourable 
transmi:3sion (and resonance) characteristics into the structure. 

Introduction: 

Large space structures have been proposed with dimensions of many kilometers (1), (2). More 
realistically, for the near future, reflectors and antennas with dimensions as large as 100 metres 
are planned (3). Some of these structures will be composed entirely of networks of long, slender, 
essentially one dimensional structural members. Others will have their flexibility concentrated 
predominantly in one dimensional appendages and components. These components will be flexible 
to the point where several of the member's frequencies of free vibration will be within the frequency 
range of interest. For such structures, it becomes reasonable to visualize the response to a disturbance 
as consisting of elastic waves, slowly travelling along structural members, reflecting and transmitting 
at nodes and discontinuities. This view becomes ever more valid as the disturbance is concentrated 
in space and time. 

The limit of several free vibration frequencies of individual elements being within the frequency 
range of interest has been reached in several relevant fields within electrical engineering. Microwave 
circuits (4) typically operate at wavelengths of a few millimetres with circuit elements as large as 
a few centimetres. Power distribution networks (5), have electrical wavelengths of 3000 miles (at 
60 Hz), while circuit dimensions of the same scale are being used. Communications lines, with 
wavelengths as small as a few miles (conesponding to a 10 KHz voice transmission) and line lengths 
of many hundreds of miles are an extreme example (6). In these fields, a balanced approach to 
dynamic analysis is used. System behaviour is investigated with both travelling wave and modal 
methods. The importance of travelling wave concepts is greatest in communication line analysis, 
where the wavelength to circuit dimension ratio is smallest. 

There is a relatively clear c'onceptual relationship between travelling wave and modal analysis. 
Modes of free vibration are derivable from a travelling wave analysis by invoking the phase closure 
principle (7). A travelling wave, in one complete circumnavigation of the structure, must close on 
itself with a total phase change (due to travelled distance and reflections) of 2n7l'. For one-dimensional 
problems the phase closure principle can yield the modes and frequencies of free vibration with 
minimum effort. This paper concerns itself with insights gained into the dynamic behaviour of 
one-dimensional structural elements when considered from a travelling wave perspective. 
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Travelling Wave Concepts 

Aftideal one-dimensional structural member is described by a system of partial differential 
equations together with appropriate boundary conditions. The system of PDE's may have arbitrarily 
high order in space and time. The simplest well known equation 

(1) 

modelling torsion and longitudinal compression of solid sections and transverse motion of cables, 
is second order in space and time. The weII known BernouIli-Euler beam model is fourth order in 
space, second order in time, while the Timoshenko beam model is fourth order in both space and 
time (8). Continuum models for lattice beams have been proposed (9, 10) which are large as eighth 
order in space and eighth order in time. 

Assumption of a travelling wave solution of the form 

U(x, t) = Uoei(K:t-wt) 

(where U is a vector of deflection variables, K is the wave number, w the circular frequency) and 
substitution into the homogenous system of partial differential equations yields a polynomial matrix 
equation 

The condition det [Pijl = 0 yields a polynomial frequency equation in wand K, and the 
associated eigenvectors Uo give participation of the various deformation variables in the travelling 

wave. The identity w = K cp (where cp is phase speed) can be used in the frequency equation above 
to arrive at the equivalent dispersion equation, a polynomial in cp and K. 

To clarify the above discussion, and to introduce the phenomenon of dispersion, the following 
two examples are given. 

Cable on Elastic Foundation (8): 

GoverningPDE: 

Frequency equation: K2 + ~ - w2 = 0 (figure 1 ) 

Dispersion equation: 

Also indicated in figure 1 is the use of the phase-closure principle to determine modal fre
quencies of a finite structure, directly from the frequency vs wave number curve. 

Timoshenko Beam (8): 

Governing PDE's : 
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(36) 

where "I is relative shear flexibility, y is lateral deflection, t/J - ~ is shear deformation. 

Shear deformat.ion effects may be neglected by setting "I = O. The resulting system is that 
studied by Hayleigh, the rotary inertia term being instrumental in producing a more realistic 
dispersion curve than the Bernoulli-Euler equation (figure 3b). 

Assumption of 

leads to the matrix equation: 

Thus the frequency equation is (figure 2 ); 

FREQUENCY VS WAVE tlffiER FOR A CABLE (l'; Atl 

ELASTIC F(X.JNDATlOO (EQUATION J) 

A>O (dispersive) 

resonances 
of finite 
free-free 
structure 

A-O (non dispersive) 

tofW..lZED WAVE tU13ER K 

FIGtIlE ] 

1>=0 A>O 
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and the dispersion equation is (figure 3b); 

The comparison in figures 2 and 3b with the Bernoulli-Euler beam model should be noted. 
The Bernoulli-Euler beam model predicts infinite phase speeds for infinitesimal wave numbers. Since 
the phase speeds determine the model frequencies (Crom the phase-closure principle), the higher 
frequencies tend to be over-predicted. Timoshenko models of typical built-up beams (11) have sl)own 
them to have non-dimensional shear stiffness ~ much less than unity. Thus, for these structures, the 
shear deCormation included in the Timoshenko beam model becomes important surprisingly early. 
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\ 
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FOR 6-0 
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~ALlZED WAVE NtffiER K 

FIGURE 3A 

Dispersion, Velocity Definitions 
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\ 
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--
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°o~------------~-------+ 
tm-'ALIZf] WAVE NLmER K 
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A medium Cor which the phase speed cp = w/K is dependent on frequency (or wavelength) 
is called dispersive. For such a medium the concept of signal propagation may become poorly 
defined. The signal distorts as it propagates, and may become unidentifiable. For these media, 
other velocities may be meaningfully defined. Group, signal, and energy transmission velocities 
have all been studied in the literature (12). Group velocity, also a function of frequency, is the 
velocity with which a group of harmonic disturbances of almost identical frequency will propagate. 
Signal velocity is loosely defined as the speed at which the first detectable portion oC a disturbance 
propagates. Energy transmission velocity, also loosely defined, is the average speed at which the 
bulk of the energy in a disturbance is propagat.ed. For a non-dispersive medium, all velocities are 
equal to the phase velocity, and independent of frequency. 

It has been shown (12) that the signal and energy transmission velocities are equal to the 
group velocity when the frequency equation is linear in wand K. Moreover, when this restriction 
is almost satisfied, or when the disturbance has a frequency decomposition primarily restricted to 
the linear portions of the frequency equation, the group velocity determines speed of propagation of 
disturbances. Only in case of anomalous dispersion characteristics must other speeds be considered. 
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As has been stated, the group velocity is the speed of propagation of a group of harmonic 
waves of only slightly varying frequencies. It is defined as CG = ~k and can be calculated from the 
frequency equation. The group velocity of the two examples introduced above is graphed in figures 
3a and .3b. 

Exact solutions exist for some loading conditions in both these examples. The impulse response 
of the cable on an elastic foundation is a travelling, distorting Bessel function, whose discontinuous 
front travels with the maximum group velocity (8), C = 1 (refer to fig. 3a). The transient response 
of the Timoshenko beam model admits some closed-form solutions (13). Two limiting velocities are 
identified; discontinuities in shear force and lateral velocity propagate with nondimensional velocity 
C = 1, while discontinuit.ies in bending moment and angular velocity travel with non-dimensional 
velocity C = I/Ji (refer to fig 3b). Although no proof is known, it is proposed to generalize these 
results, and to make the following claim for media with smooth, quasi-linear frequency-wave number 
relationships: disturbances travel with a velocity no greater t.han the maximum group velocity. 

Time~,ags: 

An effect clearly illuminated by a travelling wave approach is the existence of finite time lags 
between actuation and response when actuator and sensor are not co-located. Actually, due to 
multiple wave paths and reflection, many time lags will be present, however, experience indicates 
that in most real, dissipative and dispersive structures, only the first lag will be clearly observable. 
Since the response time lags depend on the structure's dimension and on group velocity, while 
modal periods depend on dimension, boundary condition, and phase velocity, one can expect lags 
independent of modal periods, possibly much larger than the period of the lowest mode. 

Recent experiments with flexible structures have demonstrated significant lags. on the order 
of modal periods of the second and third modes (2, 14). A flexible built-up beam at Stanford 

Universiity (1.1 metre long) exhibited lags in tip deflection response to root torques of approximately 
100 milliseconds (14). This compares with the period of the third flexible mode, measured as 110 
milliseconds. Figure 4a gives a rough description of the beam and relevant experimental results. 
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Figure 4b shows the dispersion curve of a Timoshenko model of the Stanford beam. The four beam 
parameters were estimated by smearing stiffness, mass and rotary inertia, then adjusted to predict 
the first two experimentally measured clamped-free modes of vibration. 

The applied root torque enters the beam as a bending moment, and the disturbance can be 
expected to travel (13) with non-dimensional limit velocity c = 1/ y'7, or from figure If, c = 8.5 
metre/sec. Thus, the calculated lag is 129 milliseconds. 

Matched Terminations: 

An idea which originates in the field of communications is that of a matched termination for a 
transmission line (6). Such a termination prevents reflection (echoes) by imitating the behaviour of a 
semi-infinite continuation of the transmission line. The resulting response lacks modes of vibration 
entirely, and the line's transfer function may be simplified to that of a single integrator. 

The idea of matched terminations can be extended to the design of active or passive dampers at. 
the boundaries of structural elements. For the one-dimensional structures considered in this paper, 
the matched termination is expressed as a set of transfer functions relating tip displacements and 
applied forces. The practical implementation of the required transfer functions may be difficult; 
however the idea provides a basis for passive damper design. Two examples involving simple 
structural models follows. 

Matched Termination Example 1: 

Simple wave equation; model of torsion and longitudinal compression of solid section, transverse 
motion of tensioned cable; 

INCIDENT 
--__ --":I>..... U -iKx+st 
~=e 

----------------,i--+ F(s) 

~ 

" REFLECTED U = R e iKx+st 

~U(o.s) 

F(s) 

LET H(s) = U(O.s) 

PDE: 

BC: 

a2 U p a2u 
Bx2 = E at 2 

EA GU(O, S) = F(S) 
ax . 

where p is the material mass density, E is the modulus of material, and A is the cross-sectional 
area. 

Application of boundary condition yields for the reflection coefficient 

R = H(S) + iKEA 
iKEA-H(S) 

but the PDE imposes the frequency equation; 

so 

iK = Jp/E S 

R = H(S) + A.j(i£S 
A..fjiES - H(S) 

for H(S) = -A.jEpS (a daspot) R = 0 (no reflection occurs). 
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FIGURE 5 "B 

Thus, a properly sized dash pot yields a matched termination for this class of problems. To 
study the effect of mismatched terminations on the transfer function of a finite structure, the state
vector transition matrix method of PesteR (15) is employed. This method proves valuable in the 
analysis of' periodic structures and is introduced in this example. With reference to figure 5, the 
deformation of a rod (of length l, area A, modulus E) in longitudinal compression is described by 
state vector (U, N)T where U is non-dimensional displacement U / l, N is non-dimensional internal 
force N/EA. 

The state vectors at two points in a structure are related by the transition matrix 

For the rod, the transition matrix is given by 

[

cosh S 

TAB = t ~ .' .inhl 

sinh s] -r-
cosh l!' where 5 c si~ 

Note that the state vector at points Band C may be related by another transition matrix (15): 

So, multiplication of matrices yields the global transition matrix: 

~)= 
h - + s sinh s 

cos s y + s t, 

_2 ( h - + ii sinh s ) 5 ~ cos S ---

y + i 6 

+ s sinh 's 

where Jl = m/ pAl (mass fractiolll) 
"y = Kill/ EA (stiffness ratio) 

si~h S + cosh S 
s y + 5 t, 

-2 ( sinh 5 + eosh s) 
s~ -_- --

s y + S 6 

+ cosh s 

~ = d/A.fEP (non-dimensional damping constant) 

(~) 

~rious transfer functions can be extracted from the above matrix equation. In the present 
case, Nc =: 0, so the second row gives the transfer function 
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1 ~(y + S )8 sinh ~ + (~s2 + b~ + y) cosh s 
- i ~(y + S )8 cosh s + ( _2 + bs + y) sinh s 

~s 

For the matched termination calculated above, h = O,.to = 1, Il ~ 00), this becomes 

a single integrator, also (with a redefinition of the length non-dimensionalisation) the transfer 
function or a semi-infinite rod. 

The poles and zeroes of the transfer function (1) are shown in figures 6. Figures 6a, b show the 
effect of dampE'r mismatch, with an inertial reference point available (infinite mass ratio). Figure 6c 
uses more realistic mass ratios of 1% and 5% and shows the root locus versus damper strength. The 
optimum damper strength is seen to be a runction or mass ratio and mode to be damped. Modal 
damping ratios as large as 1% can be obtained with a 1% mass penalty. The picture could be 
complicated by inclusion of a spring 'Y =\= 0, however, such a search for an optimum tuned damper 
has been described elsewhere (16,17). 

roLE ZEro PAlHS (f * vslJ. (O<[)<1) 
'A 

f .... - (INERTlAU.Y FASTENED»)¥:O 

+---------

rot.E ZERO PAlHS (f UA V'$~ <l<.1<oD) 
NA 

f ...... oO (INERTlAU.Y FASTENED), t=O 
---~-----

t----- ----~----

WITCHED T~INATION <WITCHED T~INATlON) 

~- - -- -----+-----
'~A1 f~fl 

-~- -

FIG~E 6A 
FIGURE 6B 

Matched Termination Example 2: 

Bernoulli-Euler beam model: L 
Mf ~ 

E I ~ + ~ = 0 ~ f r""1 _~x ----------
axli at 2 \.. _ 

~ 

It¥;IDENT 
" y = e-1 (Kx+wt) 

BC' sl (at x-O) 
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Note that the PDE admit.s two types of time-harmonic solutions, one a travelling unattenuated 
wave, the other a near field effect, attenuated with distance. Assume that an external moment M 
and force f can be applied in response to end deflection and slope 

ay 
M(w) = Mo(w)y(O,w) + Mdw) ax(O, w) 

ay 
I(w) = /0 (,,-')y(O, w) + II (w) ax (0, w) 

This assumption is in the interest of practicality. If moments proportional to curvature and 

forces proportional to ~~ could be applied, it would become easy to imitate the behaviour of a 

semi-infinite continuation. Using the assumed solution 

y(x, t) = e-i(Kz+wt) + Bei(Kz-wt) + Ce-Kze-iwt 

3>nd application of the above boundary line yields 

Combinations of boundary transfer functions Mo. M1 , 10, II, which yield B = C = 0 are 
perfectly matched boundary conditions. If C =0, reflection occurs, however the reflected signal 
does not propagate. Figure 7 presents some candidate combinations. All choices involve springs 
or dashpolts which are dependent on disturbance frequency. A square root frequency dependence 
is approximated by many types of ru bber (17), however, an lJ3/2 dependence is likely to present 
difficulties. A practical implementation of these ideas would likely use the above matched termina
tions only as guidelines in a more comprehensive damper design. 
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Periodic Structures 

A periodic one-dimensional wave guide exhibits anomalous dispersion characteristics (18). The 
frequency-wave number relationship has a banded structure, with passing and stopping bands. Ther~ 
will be as many passing bands as there are degrees of freedom in the elementary cell, disturbances 
at frequencies outside these passing bands are spacially attenuated. A continuous wave guide with 
periodically attached resonators will exhibit two types of structure; there wiII be stopping bands due 
to the periodicity, and stopping bands due to the poles and zeroes of the attached resonant systems. 

These effects can make continuum modelling of periodic lattice beams difficult. Figure 8, 
taken from a paper by Anderson, (19) compares modal frequencies for a pinned-pinned lattice 
beam calculated in two ways. The equivalent continuum beam model, adequate for description of 
static deformation, errs seriously (by 300% in mode 4), in predicting modal frequencies. Anderson 
discovered that "the reason for this result is that the clamped end frequency of the diagonal members 
is 12.3 Hz which becomes an upper limit for the lowest frequency for each n number." 

The essential features of wave propagation and resonances in a continuous-periodic structure 
are demonstrated by the following example. The system to be studied consists of a uniform rod in 
longitudinal compression. 

. . , 
N~U 

i-I 

ELEMEMENTARY CELL 

N; < • ~N~ 

t-+U~Ui'i ~itl 
NirJ. 

). 

H =~1 RESONATOR TRANSFER FlKTION 
Uit.!. 

~ 

Hz 10 

FIGURE 8 
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It is loaded by identical resonant systems periodically attached. Using the state vector representation 
and symbols of a previous example, the transition matrix corresponding to an elementary cell is 

cos s s 28 § s 2.2 

( 

-U) [ h - + H-( -) sinh s sinh s _ -H(-) (1 - cosh 8)] 

N i~ S sinh ~ + ~)(1 + cosh s) cosh s + H(s) I;~h s 
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Symbolically, the approach to obtaining the poles and zeroes of a finite periodic structure would 
cOlllsist of the same steps used in the previous example. The global transition matrix is obtained 
by multiplication of local matrices. The boundary conditions are used to extract the frequency 
determinant or transfer function from the global matrix. The transfer function is searched for its 
poles and zeroes. This approach leads to numerical difficulties, and a more intuitive method using 
th,e phase-closure principle is described. 

Wave Propagation along Second Order Periodic-Continuous Structures: 

A second order continuous structure with periodically attached resonant systems will have a 
2x2 elementary transition matrix 

A sinl~le wave that propagates along this infinite structure is characterized by the fact that the 
state vector is multiplied by a complex factor e as the wave passes through the cell 

Thus, the transmission coefficient e may be determined as the eigenvalues of the local transition 
matrix 

e - (Tn + T22 )e + 1 = 0 

(where the energy conservation property, det [T] = 1, valid for conservative systems, has been used). 
This quadratic has the property that its two roots satisfy el e2 = 1. Thus, if 6 = e-"f = e-c>-i/3 

tlhen e2 = ec>+ip. Here a is the attenuation coefficient per cell, f3 the phase change. Unattenuated 
propagation occurs if a = 0 i.e. ITn + T221 < 2. When spacial attenuation occurs, resonances in 
finite structures are prevented. 

In the second order case described above, it is interesting to note the exact analogy with Floquet 
theory and Hill's equation (20). 

The procedure outlined above was used to calculate the frequency-wave number relationship 
for the example structure. Point transfer functions H(S) representing rigidly attached masses and 
elastically attached masses were considered. Results are graphed in figures 9. These figures display 
the banded frequency distribution. The first branch of the curve in figure 9b should be compared 
with Anderson's results in figure 8. Anderson also mentions the existence of the higher branches, but 
does not show them. The existence of this banded resonant structure is a hindrance to continuum 
modelling oC lattice beams. However, it also provides opportunities to the designer. With prescribed 
tuning, the stopping bands may be placed where desired. Resonance-free frequency ranges may be 
dl~signed into structural members and used for vibration isolation or control spillover amelioration. 
In this model the width oC the first stopping band depends on the mass ratio and on the tuning. 

Since the elastically attached mass is a simplified representation oC internal lattice members, 
it is difficult to speak oC a weight penalty. However, in this model, a mass penalty of 5% (figure 9c) 
yielded a resonant-Cree frequency range of relative bandwidth 15%. Inclusion of light damping in 
the spring-mass system would potentially double the effective resonant-free range. 
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Summary: 

This paper has examined various aspects or travelling wave effects in one-dimensional struc
tures. The existence or time lags was indicated, and a simple method or their prediction was 
demonstrated. The possibility or passive damper design based on the matched terminations or 
communications engineering was explored with the help or two examples. Insight was gained into 
the continuum modelling of periodic lattice beams and the possibility of custom-designing desirable 
transmission-resonance characteristics was pointed out. 
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ABSTRACT 

In this paper, a systematic way to choose control design parameters and to 
evaluate performance for large space antennas is presented. The structural 
dynamics and control properties for a Hoop and Column Antenna and a Wrap-Rib 
Antenna are characterized. Some results of the effects of model parameter 
uncertainties to the stability, surface accuracy, and pointing errors are 
presented. Critical dynamics and control problems for these antenna 
configurations are identified and potential solutions are discussed. 

I. INTRODUCTION 

Large space antennas and other large space structures will play an impor
tant role in the coming decades as commercial applications of space become 
feasible - espeCially in the area of communications. Structures from 10 m to 
120 m and larger have been considered by NASA and other government agencies for 
future missions (Reference 1). As the structural size and mass distribution 
change drastically from that of conventional spacecraft, many difficult control 
problems arise. The basic problem, however, comes in modeling highly flexible 
structures. Structures of this type are known to have a large number of packed 
modes at very low frequencies; mode shapes and frequencies can not be accurately 
predicted or measured even for a small number of modes at preflight time. 
This means that there are always model uncertainties. Model uncertainties in 
the control loop can cause serious consequences including the possibility of 
making the system unstable. Model order is another problem with great impact 
in control design. Using today's inflight computer capability, one can only 
expect to have a modest low order controller - which often means model trunca
tion .and will cause further performance deterioration. Dynamics. and control 
problems for specific configurations must be characterized and evaluated in 
terms of incomplete knowledge of the system dynamiCS so that the reqUired per
formance can be ensured and risk reduced. 

In this paper, the structural dynamiCS and the control properties for a 
64~eter dimneter center fed antenna and a 55-meter offset fed antenna are 
investigated. Some interesting results are presented on the effects of model 
parameter uncertainties to the syste~ stability, surface accuracy, and pointing 
accuracy, Critical control problems are identified and potential solutions 
are recommended. In Section II the antenna configurations and the structural 
dynamic properties are briefly described, The control design, disturbance 
assessment, and construction of weighting matrices are summarized in Section 
III. Finally, numerical results and conclusions are given in Sections IV and 
V, respectively. 
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II. ANTENNA CONFIGURATIONS AND STRUCTURAL DYNAMIC PROPERTIES 

A. Antenna Configurations 

Several antenna concepts are under development (References 1,2,3). However, 
there are two concepts that have drawn particular attention in recent years; 
they are the structurally balanced center fed quad aperture hoop and column 
antenna and the offset fed wrap-rib antenna. The hoop and column antenna chosen 
for analysis is a pretensioned mesh deployable structure. Figure 1 shows 
the deployed 100 mD antenna and the major components are depicted in Figure 2. 
The basic structural components are the feed assemblies, the mast, the hoop, 
and the reflector mesh surface. The mast and the support cables suspend the 
hoop and together the assembly provides the stiffness of the structure. The 
mesh is suspended by the hoop and the mast and the surface shape is controlled 
by the shape cables through a secondary draw surface and tie cords. The cables 
are stranded quartz cords. The hoop consists of 48 hollow sections made of 
graphite fiber. The adjacent sections are joined together through hinges. The 
reflector is made of gold plated poly-wire mesh. The four circular surface 
areas are separately illuminated by the feed elements that form the offset 
feed quad-aperture arrangement. 

Figure 1. Deployed 100 mD Hoop and Column Antenna. 
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FEED ASSEMBLY 
(4 REQUIRED) 

UPPER MAST 

FEED MAST 

/"HOOP 
/ SUPPORT CABLE 

LOWER MAST HUB 

HOOP 
SUPPORT CABLE 

100 m DIA 
~--ffi--r'--- (3937 in.) 

SURFACE 
CONTROL 
CABLES 

Figure 2. Side View of 100 mD Hoop and Column Antenna. 

The wrap-rib antenna consists of a 55-meter diameter mesh reflector, a 
feed array mounted on a spacecraft bus, and a long L-shaped boom connecting 
the reflector and the bus. A typical configuration is shown in Figure 3. 

The reflector consists of a number of radial ribs which are cantilevered 
from a central hub structure. For parabolic or other curved shape reflectors, 
the ribs are formed in accordance with the required surface shape, and the mesh 
gores are attached between the ribs. 

B. Structural Dynamic Properties 

The total weight of the hoop and column antenna system is 2790 kg of which 
the feed assembly weighs approximately 30%, the hoop and the mast, 20%, and the 
solar panels and the spacecraft weigh 50%. Since mass distribution affects 
modal frequencies, it is appropriate to point out that based on a subsequent 
study of a 122 mD LMSS (Land Mobile Satellite Service) antenna a much heavier 
(approximately 50%) mass concentration at the feed area is more realistic. 

To assess performance, a finite element model of a 64 mD hoop and column 
antenna (Reference 4) has been adopted. The reflector and the hoop were modeled 
by a two-for·-one model with 24 gore and hoop sections and 120 grid points. 
The feeds, the solar panels, the mast, etc., were represented by 86 grid points. 
Bar elements were used to model the mast and the feed and solar panels; and rod 
elements for the hoop jOints, hoop support and surface shaping cables. 

The finite element analysis revealed that the lowest mode is the first 
torsional mode which has a frequency of 0.10 Hz; the next higher modes are the 
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TOTAL MASS 9695lBS 

MOMENTS 

{ 
Ix • 2.91 x 106 SlUG-Fr2 
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PRODUCTS 

{ 
Ixy • -3.56 x ur 

OF Ixz • -4.22 x 103 
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I • 0.72 x 106 
yz 

• 
EARTH 

Figure 3. The Wrap-Rib Offset Fed Antenna Configuration 

two orthogonal mast bending modes with frequencies 0.43 Hz; the next two modes 
are the second and third mast torsion modes which are followed by two orthogonal 
second mast and dish bending modes. Figure 4 shows the modal and mass proper
ties. It is interesting to note that the antenna has relatively high bending 
stiffness and weak torsional stiffness. The high radial separation of the hoop 
and the mast, the large hoop moment of inertia. and the small moment arm of 
the hoop cables at the mast make the mast very loosely coupled to the hoop so 
that the mast alone dominates the torsional modes. 

The total weight of the wrap-rib antenna system is 4,407 kg (9695 Ib), 80% 
of which is concentrated at the feed/bus area. The remaining 20% is attributed 
to the reflector and the hUb. Moments of inertia are 3.95xl06 , 3.58xl06 , 
.502xl06 kg~2. The largest cross product of inertia is .976xl06 kg~2, which 
is due to the inherent imbalance of the offset feed configuration. The axis of 
least moment-of-inertia is approximately along an imaginary line connecting the 
bus and the reflector hUb. This results in a 16° offset between the least 
moment-of-inertia axis and the local vertical. 

Mode shapes and mode frequencies of the wrap-rib antenna system were 
obtained in two steps. First. reflector modes and offset boom modes were 
obtained from finite element methods. Second. the modes of these two substruc
tures were then combined through the process of modal synthesis on the assumption 
that the interface at the hub structure is rigid. Figure 5 provides the first 
seven flexible mode frequencies and mode shape description of the wrap-rib 
antenna system. 
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• MODAL FREQUENCIES 

NO. FREQ, HZ DESCRIPTIONS 

7 0.10 1ST MAST TORSION 
-.. - ..... . ... - ... __ ... .. --_ ... - -_. 

8 0.43 1ST MAST ROLL BENDING 
.. . ... 

9 0.43 1ST MAST PITCH BENDING 
- .. "'_. .._. .. 

10 0.58 2ND MAST TORSION 
.. 

11 1.07 3RD MAST TORSION 
BEAM 

.... . ... 

12 1.83 2ND MAST/DISH ROLL BDG 
-_ .. . -----

13 1.90 2ND MASTI DISH PITCH BDG 
-- .. .... .... _- .. -

14 3.20 DISH WARPING 

15 3.28 DISH WARPING 
.. 

16 3.36 DISH WARP MAST BENDING • 64 mD ANTENNA 
.. _.-

17 3.37 DISH WARP MAST BENDING 
• QUAD-APERTURE 

.-.'" 

18 4.43 DISH WARP MAST BENDING 

• MASS PROPE.RTY • MAX DISTURBANCE TORQUES 

• MASS: 27S'0 Kg • GRAVITY GRADIENT 1.89 x 10-3 Nm 
• MOMENT OF INERTIA 

6 2 
1.42 x 10 Kg-m 

• GYROSCOPE 6.30 x 10-4 

• SOLAR PRESSURE 6.23 x 10-3 

1.42 x 106 

2.73 x 105 

• BALANCED CONFIGURATION 

Figure 4. Structural Properties for the 64 mD Hoop and Column Antenna 

FI£X 
MODE FREQ (Hz) DESCRIPTION 

1 0.0872 SHORT BOOM TORS ION 

2 0.1473 DISH TORSION, LONG BOOM TWIST 

DISH 3 0.1965 D ISH TORS ION, LONG BOOM BEND ING 

4 0.2062 DISH BENDING 

5 0.2201 DISH BENDING, LONG BOOM BENDING 

6 0.2906 DISH TORSION 

7 0.6644 DISH ROTATION, LONG BOOM BENDING 

~11~_~:~:_!l!!l\l!!l!ll __ FEED/BUS 
\; LONG BOOM 

Figure 5. Wrap-Rib Antenna Mode Frequencies/Shapes 
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III. ATTITUDE AND STRUCTURAL CONTROL SYSTEMS 

A. Equations of Motion 

For small perturbations about the equilibrium, the dynamics of this system 
may be described by the finite element method. For the hoop and column system, 
let q be the l8~odal amplitude vector, ~ the l236x18-eigenvector matrix, and f 
the vector of the applied forces. The dynamic equations are, in component form 

k= 1, •.• ,6 (la) 

k = 7 •.•• ,18 (lb) 

where the modal frequencies, wk, may be obtained from Figure 4 and the estimated 
values for the damping ratios, sk, are, .01 for k = 7, ... ,10 and .02 for 
k = 11, .•. ,18. 

Due to the existence of numerical sensitivity problems the rigid modes 
were not used and instead Euler's equations were used to describe the rigid 
body motion. Referring to Figure 4, let X, Y, Z be the body-fixed coordinates. 
Consider a nadir pointing configuration with the satellite moving in a circular 
synchronous orbit. The Euler's equations for the rigid body rotation are 

I ~ 
2 + W (I -I -I ) ~ = (2a) + 4w (I -I H Tdx + T x o y z o y x z cx 

I e + 3w 2 (I -I ) e Tdy + T (2b) 
y o x z cy 

2 
W (I -I +1 ) $ (2c) I 1/J + W (I -I )1/J + = T + T z o y x o x y z dz cz 

where Ix, I , I z , wo ' ~, e, and 1/J are the principal moments of inertia, the 
orbital rat~, and the roll, pitch, and yaw angles, respectively. Tdx , Td , 
Tdz, Tcx, Tcy, and Tcz are the disturbance and control torques, respectively. 
Note that since the gravity gradient torques and the gyroscopic torques are 
already included in the left-hand side of Eq. (2), they are excluded from Td. 
The angles ~, e, 1/J and their derivatives in Eq. (2) are assumed small and they 
are related to inertial angular rates by the following approximate relations. 

Wx <P 1/Jw 
0 

(3a) 

w e w (3b) 
y 0 . 

(3c) w 1/J + ~w z 0 

The equations of motion of the wrap-rib antenna system were developed in 
Reference 5. The approach there was based on LaGrange's formulation. The set 
of equations developed reproduces mode shapes and frequencies very close to those 
generated using finite element methods (Figure 5). However, the approach in 
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Ref erence 5 permits convenient and inexpensive model parameter changes. 

The equations of motion have the following general form: 

Mx + Kx F (4) 

where x consists of 3 rigid-body rotations, and boom and reflector flexible 
modes" M and K are the mass and the stiffness matrices, respectively. And 
F represents all non-conservative forces on the antenna system. In this study, 
3 boom modes and 6 reflector modes were selected for analysis, and therefore 
Eq. (4) is a 12 x 12 second order system. 

To consider natural damping of the system, the following equation was 
adopted: 

Mx + D~ + Kx = F (5) 

T 
where D = ¢ [2Z~]¢; ¢ and ~ are the eigenfunctions and eigenvalues of Eq. (4). 
And Z represents the diagonal matrix of damping ratios: 

Z = d iag (1';.) 
1 

(6) 

where. in this study, ~i = 0 for i = 1,2,3, and ~i = .005 for all other i. 

B. Control Hardware Placement 

The beroIl pointing accuracy is determined by the orientations of the feed 
and the dish and their relative motions. Sensor and actuator placement is 
dictated by the observabi1ity and controllability properties and the structural 
constraints. By examining the eigenvectors of the elastic modes at various 
potential locations, it can be seen that sensors and actuators placed at the 
feed assembly and the spacecraft bus can most effectively control the attitude 
and the important elastic modes. Figure 6 shows the two-site 3-axis attitude 
and structural control system for the hoop and column configuration considered 
in this paper. Basic control devices are the inertial sensors and momentum 
wheels. Reflector shape control can be achieved with the addition of optical 
sensors such as SHAPES (Reference 6) and shape-cable actuators. Hoop motion can 
be controlled with a SHAPES sensor and thrusters on the hoop sections. 

Three options in control hardware placement have been considered for the 
wrap-rib antenna. Option 1 has all attitude sensors and actuators lumped to
gether and mounted on the bus. This concept represents current attitude 
controllers for 3-axis spacecraft stabilization. 

Option 2 represents a departure from option 1 in that it calls for an 
additional optical sensor mounted on the bus to perform multi-point distributed 
sensing of the relfector as shown in Figure 7. The purpose of having this 
optical sensor is to obtain distortion and vibration information of the reflector 
and boom directly by measurements. 
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Option 3 is option 2 plus additional control devices at the reflector hUb. 
It represents a spatially distributed control scheme for the antenna such that 
the distortions of the short boom can also be controlled effectively with 
actuators located at the reflector hUb. 

SHAPE/VIBRA TION .-/ 
SENSOR 

HOOP MOTION 4 

CONTROL 
• SINGLE AXIS 

THRUSTERS 

SOLAR ARRAY 

FEED BASED CONTROL 

• INERTIAL SENSORS 
• MOMENTUM WHEELS 

HOOP SECTION 
., HOOP MOTION 
• CONTROL 

• SINGLE AXIS 
THRUSTERS 

BUS BASED CONTROL 

• INERTIAL SENSORS 
• MOMENTUM WHEELS 

Figure 6. Two-Site Control System for Hoop and Column Antenna 

OPTICAL 
SENSOR 

/ 
(}) I 

/ 
/ 

/ 
1/ 
// 

300F 
ACTUATORS 
(HU B) 

3 DOF ACTUATORS (BUS) 

Figure 7. Wrap-Rib Control for Option 3. 

C. Characterization of Disturbances 

The disturbances discussed here are limited to the gravity gradient and 
gyroscopic torques due to nonprincipal axis pointing, solar pressure torques, 
and torques caused by thruster firings for wheel dumping and station keeping. 
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Consider tha LMSS antenna applications. With the current hoop and column 
antenna design, the body z-axis must tilt 60 from nadir in order to provide 
the necessary communication coverage. The orbital configuration is shown in 
Figure 8a. A gravity gradient torque and gyroscopic torque of -2.52xlO-3 N-~ 
is created about the x-axis. Since this torque is noncyclic, a periodic wheel 
dumping at the rate of 217.73 N~-s for every 24 hours is required. The solar 
pressure torques, on the contrary, are cyclic. With the availability of a 
detailed configuration for a 122 mD antenna, the solar pressure torques for the 
latter have been computed for arbitrary sun inclination and orbital position. 
The solar pressure torques for the 64 mD antenna are obtained by scaling and 
considering the shift of the center of mass. The projected solar pressure 
torques are shown in Figure 8b. 

For the wrap-rib antenna, due to the structurally imbalanced configuration 
a ~16°tilt of the principal axis results. This pronounced non-principal axis 
pointing has created a non-cyclic x-axis gravity gradient and gyroscopic torque 
of 2.06xlO-2 N-m. The solar pressure torques are cyclic. Figure 9 shows 
these torques over a 24-hour period. 

ORBIT NOON 

P = 9.6073 x 10-8 Ib/ft2 

(4.6 x 10-6 N/M2) 

Figure 8a. Orbital Configuration (a 

MIDNIGHT 

EQUATORIAL 
PLANE 

./ SYNCHRONOUS 
, ORBIT 

L.£...L~I''''' 6PM 

~~ 
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Figure 8b. Solar Pressure Disturbance Torques for Hoop and Column Antenna 
(a. = 6" and 8r = 0°). 
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Figure 9. Solar Pressure Disturbance Torques for Wrap-Rib Antenna 
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D. Control Design 

Consider the steady state stochastic linear optimal Ol,.ltput feedback 
regulator problem. The following formulation applies to both the hoop and 
column and the wrap-rib configurations; the only differ~nces are in the assign
ment of variables and coefficient matrices. Let x and x be the state vector 
and the state estimate and let z be the measurement vector. Let F, G, f, and 
H be the assumed state matrix, control influence matrix, disturbance distribu
tion matrix, and the measurement distribution matrix ~ respectively. The state 
and the state estimator equations are: 

. 
x Fx + Gu + fw 

z=Hx+v 

u = -K x 
c 

A 

X = Fx + Gu + K (z - Hx) 
e 

The cost index to be minimized is 

1 Joo T T J = 2 E{ (x Ax + u Bu) dt} 
o 

The optimal c.ontrol gains K and the filter gains K are, respectively 
c e 

K 
c 

K 
e 

where Sand P satisfy the following algebraic equations, respectively 

o 

(7a) 

(7b) 

(7 c) 

(7d) 

(8) 

(9a) 

(9b) 

(lOa) 

(lOb) 

where A and II are the state and the control weighting matrices and u is the 
control vector; and wand v are the plant disturbances and the measurement 
noise vector" respectively. Q and R are the power spectral density matrices 
for the plant: disturbances and the measurement noises, respectively. The F 
matrix is block diagonal and can be constructed from the equations of motion; 
the G, H, and. r matrices can be obtained. from the eigenvector data. 

For the hoop and column antenna, consider the three rigid body modes and 
the first seven elastic modes. Examination of the eigenvectors of the elastic 
modes reveals that for small deformations and attitude excursion, the inter
actions between the pitch axis and the roll and yaw axes are negligible. 
Therefore, the pitch controller can be treated separately from the roll and yaw 
controller. Let p be the subscript for the pitch controller, and y for the 
roll and yaw controller, then the state vectors, the measurement vectors, 
etc., for the hoop and column controllers are assigned as follows: 
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and 

x 
p 

z 
p 

w 
p 

v 
p 

u 
p 

x 
y 

z 
y 

u y 

• • • T 
(6,6; Q9,q9; Q13,Q13) 

• • T 
(8 pb ,8pb ; 8pf ;8pf ) 

(v v .v v ) T 
yab' yrb' yaf' yrf 

(T
yb 

,Tyf ) T 

• • • • T 
(¢yb'¢yb; ~yb'~yb; ¢yf'¢yf; ~yf'~yf) 

T 
(Tdxb,Tdxf;Tdzb,Tdzf\Fyb,Fyf) 

(vxab,vxrb; vzab,vzrb; 
T 

(Txb,Txf;Tzb,Tzf) 

T 
vxaf,vxrf;' vzaf,vzrf) 

(lla) 

(lIb) 

(l1c) 

(lId) 

(lIe) 

(12a) 

(12b) 

(12c) 

(12d) 

(12e) 

where in EQs. (11) and (12), f refers to feed base, b refers to spacecraft bus, 
a and r refer to attitude and rate, respectively. 

Hardware sizing allows for assessment of onboard disturbances. Using 
the subscripts SK for station keeping and WD for wheel dumping, the estimated 
power spectral density (PSD) matrices for the random disturbances are 

-3 -4 Diag (,02, .02;4.82xlO ,9.68xlO ) 

Diag (,02, .02) 

-3 -4 
QySK = Diag (.02,.02~.02,.02;4.82xlO ,9.68xlO ) 

-4 -4 
QyWD = Diag (.02,.02;.02,.02;9.68xlO ,9.68xlO ) 

The PSD for the measurement noises are assumed as follows: 

and 

. -10 -9 -10 -9 
R = Diag (3.2xlO ,3.06xlO ;3.2xlO ,3.06xlO) 

p 

R 
Y 

-10 -9' -10 -9 Diag (3.2xlO ,3.06xlO ; ... ;3.2xlO ,3.06xlO ) 
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The selection of the state and control weighting matrices determines the 
control design. The state weighting matrix must reflect the control objectives 
such as requirements on stability, surface and pointing errors, etc. Consider 
the pitch control. Let ~ = Diag (a1,a2;a3,a4;a5,a6). The odd elements, in 
general, contribute to the stiffness of the closed-loop state and the even terms 
affect the damping. 

The a2n+1 terms are determined by the weighted normalized mean square 
structural attitude angles. feed displacements. and dish deformations; or more 
specifically, they may be expressed as follows: 

ge 
a

1 (S ) 2 
e 

(17a) 

gF 

? (~9Xi 2 2 2 
a 3 2 + ~9yi + ~9zi ) 

n F (SF) IF 

gD 

? (~9Xi 2 2 2 
+ 

2 + ~9yi + ~9zi ) 
~(SD) lD 

(17b) 

gF 

? (~13Xi 2 
~13Yi 

2 2 
a 

2 + + ~13zi ) 5 
nF(SF) IF 

gD 

? (~13xi 2 
~13Yi 

2 2 (17c) -I-
2 + + ~13Zi ) 

~(SD) lD 

where the subscripts F and D refer to feed and dish, respectively; nD is the 
number of grid points on the dish, iD means grid point i on the dish, ~9xi is 
the translational mode shape for mode 9 at grid i; SD is the specified rms 
surface displacement. Other parameters are similarly defined. The weighting 
factors ge, gF' and gD reflect the relative importance of the individual require
ments. The values for the weighting factors were chosen to be 10, 20, 5, 
respectively. This selection was gUided by the feed and reflector optical 
properties. The construction of the roll and yaw state weighting matrix is 
similar. 

For the wrap-rib antenna control design, the state vector contains 24 
elements representing the 12 modal amplitudes and the 12 modal rates. In 
the first half of the state vector, the first three states are the antenna 
attitude Croll, pitch, yaw), the next three are associated with boom distortions, 
and the last six are dish vibration modes. 
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Similar to the hoop-column antenna control designs. the development of 
control and estimator gains requires good engineering judgment in selecting 
weighting matrices A, B. Q, and R, Here A is a 24 x 24 matrix of the form 

A = Block diag (Ae , AB• Au, AS' AB, An) (1S) 

where 

Ae is 3 x 3 weighting for attitude 

AB is 3 x 3 weighting for boom distortion 

Au is 6 x 6 weighting for dish distortion 

AS' AB, and An are corresponding rate weightings, 

For all wrap-rib antenna control designs, matrix A stays fixed through
out, elements of which are chosen as discussed in the following paragraphs, 

Ae is chosen with weighting matrix B such that the closed-loop rigid 
body modes have equivalent frequencies of about 1/5 of the lowest open-loop 
vibration frequency of the system (which is 0,55 rad/sec), To achieve this, 
the following relation has been used to define Ae 

A T = ITBIU b 4 (19) e w 

where 

I represents the 3 x 3 inertia tensor of system 

B is the 3 x 3 control weighting matrix 

U is the 3 x 3 identity matrix 

b is the desired bandwidth 
w 

AB is. chosen as a 3 x 3 diagonal matrix. with each element equal to the 
inverse of the required boom distortion error squared, For this study, boom 
distortion is given in terms of angles at the boom joint and the requirement 
is set at 0.019 for each axis. Therefore, 

777 Diag (3.27xlQ • 3.27xlQ • 3.27xlQ ) (20) 

Au is the weighting for dish modes and is chosen to minimize dish RMS 
surface errors. The following relation is used to determine AD: 

- T x
7 

x
7 (21) 

Xs 
Au 

Xs [dish RMS surface err~.r in ~m~ters] 2 

[dish RMS surface required accuracy in meters] 
x

12 x12 
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( -3)2 the denominator is set at l2xlO for the 12 mm dish RMS surface accuracy 
requiI:ement. The dish RMS surface error is given by 

~6~24 
T - 1/2 x

7 <p T 
<PD 

x
7 

Xs D Xs (22) 

1 Xl x
12 

where <PD is the 6 selected mode shapes of the dish and thus its dimension 
is 6624 X 6, with 6624 being the number of nodes of the dish. 

From Eq. (21) and Eq. (22), Au is given by 

1 1 T 
~ = 6624 • (12xlO-3)2 • <PD <PD 

(23) 

The valu.es for AD, AB, and AD have been set to zero. Matrix B is diagonal 
and each element is the inverse of the square of the maximum control torque 
specified for each axis. 

After choosing A and B, weighting matrices Q and R were selected 
to obtain desired closed-loop estimator poles for the rigid body modes. The 
relation used was 

(24) 

Due to the use of the above relation in designing the estimator, the power 
spectral density matrix Q assumes different values in the design than in the 
perfolmance evaluation. For system performance evaluation, the actual process 
disturbance PSD was used. However, sensor measurement noise PSD is identical 
for design and evaluation processes. In particular, the Q matrix for perfor
mance evaluation of systems 1 and 2 is given by 

. ( -5 -5 -5) Q = D~ag 9.8xlO ,7.688xlO .3.52SxlO (25) 

and for System 3 by 

( -5 -5 -5 -9 -9 -9 Q = Diag 9.SxlO ,7.688xlO ,3.528xlO ,9.SxlO ,7.68xlO ,3.52xlO ) 
(26) 

The R matrix for design and evaluation is given by 

R = Diag (3*1.52XlO-13 , 3*1.8SxlO-13) (27) 

for 3 angular and 3 rate measurement noises. If an optical sensor is used 
for dish measurement of 15 points, R has 15 additional terms, Le., 

R = Diag (3*1.52xlO-13 ,3*1.88xlO-13 ,15*8.0xlO-9) (28) 
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E. Model Parameter Error Problem and Performance Evaluation Model 

In Section IIID the control system has been defined with the assumption 
that the structural parameters were known. However, in reality large space 
system parameters can not be accurately predicted on the ground. The result of 
this model error could seriously destabilize the system. Let F' be the 
actual state matrix and F be the modeled state matrix. Let e be the estimator 
error, ~-x. The closed-loop system may be represented as 

[~ j= 
[P' -GKc 

F-F' 
(29) 

---y-....) y 

Xc FC 

In the absence of model errors, i.e., F'=F, the eigenvalues of the closed-loop 
system are those determined by det (F-GKc) and det (F-KeH). For this type of 
controller, the system is asymptotically stable. However, when F' ~ F, stability 
can not be guaranteed and destabilization can occur if F' is sufficiently 
different from F as demonstrated in the next section. Note in Eq. (29) 
the gain matrices are designed based on the modeled syst.em parameters. 

The control system performances that are of particular interest are (1) the 
attitude and surface accuracy achievable in the projected disturbance environ
ment, (2) the relative stability, and (3) the robustness of the controller in 
the presence of model parameter errors. These performance measures may be 
evaluated through computer simulations of the transient responses or the steady 
state analysis of the statistical averages. The relative stability can be 
obtained from the closed-loop eigenvalues. The parameter error sensitivity 
problem can be evaluated using Eq. (29) and the following formulation. In the 
remainder of this subsection we shall concentrate on the development of the 
evaluation models for the attitude errors, surface deformations, etc. using the 
state covariance matrix, XC' 

Let XCP and XCY be the augmented state covariance matrices for pitch and 
roll and yaw control and estimation, respectively. The values for XCP and XCY 
may be obtained by solving the following matrix algebraic equations: 

T T 
FCp XCP + XCP FCp + rcp Qcp rcp = 0 (30) 

X X F T + r Q r T 
FCY cy + cy cy Cy Cy Cy o (31) 

where FCp, FCl' rCp, and fCY are defined in Eq. (29) and QCP and QCY are the 
power spectra densities of wCP and WCy' respectively, also defined in Eq. (29). 
The rms attitude error aA for the structure, the rms dish deformation aD, and 
the rms feed displacement aF may be defined in terms of the covariance matrices 
as follows: 
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o = 
A (X~ + Xe + x )1/2 

1); 
(32) 

1 
(~Dp 

T 
~D X ) 

1 T X ) ] 1/2 o = [- tr + - tr (~Dy . ~ D ~ P qp nD Dy qy 
(33) 

1 
(~Fp 

T 
X ) 1 T X )]1/2 

of [- tr ~FP + - tr (~ " ~FY n
F 

qp n
F 

Fy qy 
(34) 

whereX~, Xe, X~. X g, and X yare submatrices of X and Xy; and ~Dp, ~DY' ~Fp' 
and ~FY are submat~1.ces of ~he eigenvector matrix~. For instance, Xqp and 
~Dp al:e 

and 

x 
qp 

~9zl5"'~9zl34 ]T 

~13zl5' • ~13z134 

360x2 

and in Eqs. (33) and (34) tr is the trace of the matrix in the argument. 

~Dp r 
~ 9x15 .•. ~ 9x134 

~13x15' '~13x134 

~9y15" '~9y134 

~13y15' '~13y134 

(35) 

(36) 

The rms control effort is also of interest and can be obtained from the 
control covariance matrices as follows: 

U K X K 
T 

P pc P pc 
(37a) 

U K X K 
T 

Y yc Y yc 

U = [tr (U + U )]1/2 
rms p y 

(37c) 

The rms attitude error in Eq. (32) is the attitude of the entire structure or 
the rigid body attitude. It is, therefore, not the beam pointing attitude. 
The ac:tual beam pointing error is a function of the relative motions of the 
feed, the dish, and the dish surface deformation in addition to the structural 
attitude defined in Eq. (32). 

The attitude errors at the feed and at the bus can be easily defined, 
however, in terms of the variables discussed in this section. 

IV. DISCUSSION OF RESULTS 

A. Hoop and Column Control Performance 

Designs discussed in the preceding SUbsections have yielded reasonable 
perf01:mance. Figure 10 shows the feed and the bus pointing errors with parameter 
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error varying from 70% to 130%. The controller be.comes unstable if parameter 
errors exceed these boundaries. Figure 11 shows a similar result for the feed 
displacement. In all cases when the actual frequencies increased, the perfor
mance has improved somewhat. This is because when frequency increases, the 
structure becomes stiffer. 

One important questi~n that needs to be addressed here is how much a two~ 
site control is better than a one-site control sys tem. Figure 12 demonstrates 
that the two-site control system is more robust than either of the two one-site 
control systems. 
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Figure 10. RMS Pointing Accuracy for Hoop and Column Antenna. 
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Figure 11. RMS Feed Displacement for Hoop and Column Antenna. 
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Figure 12. Stability Regions for Three Control Systems for Hoop and Column 
Antenna 

Further comparisons for the three control concepts are in Figure 13 where 
the identifications of critical modal parameters are made. The bending modes 
are less critical to all but the single-site feed control system. The torsional 
modes are critical to all the systems and they set the stability limits for both 
the single-site bus control and the two-site control systems, 
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Figure 13, Stability Regions Subject to Parameter Errors for Hoop and Column 
Antenna 
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B. Wrap-Rib Control Performance 

Consider the first case where actual boom frequencies are the same as the 
boom frequencies used in the control designs. Figure 14 shows the dish LOS 
(Line-of-Sight) stability error as a result of having 1 newton-meter sinusoidal 
disturbance torque applied to the antenna. For example. in cases where the 
disturbing sinusoidal torque has the same frequency as the first vibration 
frequency of the antenna at 0.55 rad/sec. the dish LOS error will be 0.03° for 
control system 1, 0.015° for control system 2, and 0.002° for control system 3. 
This means that having capabilities of optical sensing and extra control at 
dish hub, system 3 is able to bring peak errors down by an order of magnitude 
and distribute the errors more uniformly. 

In addition, system 3 prOVides more stable and robust performance than 
the other two systems as actual boom frequencies decrease. This is illustrated 
in Figures 15 and 16. As actual boom frequencies decrease to 62,5% of the 
design frequencies, the peak LOS errors for system 3 is about 2,5 times better 
than that of system 2, whereas system 1 is already unstable. Similarly. in 
the last case where actual boom frequencies are 60% of the design boom frequen
Cies, the peak LOS error for system 3 is at about 0.02°, and both system 1 and 
system 2 are unstable. 
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Figure 14. Wrap-Rib Dish Line-of-Sight Error with Exact Boom Frequency in 
Model. 
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Figure 17 shows the peak dish LOS error for the three systems as fUnctions 
of boom frequency errors which has further illustrated the superior performance 
of System 3 than those of Systems 1 and 2. 
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Figure 17. Wrap-Rib Peak Dish Line~of-Sight Error vs, Boom Frequency Error. 

V. CONCLUSIONS 

1. Structural uncertainties and model error Can Cause serious performance 
deterioration and can even destabilize the controllers. 

2. For the hoop and column antenna, large hoop and long mast and the lack 
of stiffness between the two substructures result in low structural frequencies. 
Performance can be improved if this design can be strengthened. 

3. The two-site control system is more robust than either single-site 
control systems for the hoop and column antenna. The two-site control concept 
has resulted in reasonable hardware requirements when applied to LMSS communi-
cation missions. 

4. For the wrap-rib antenna, the uncertainties in boom dynamiCS and its 
stiffness are critical to the control design. 

5. By adding hub sensor and hub actuators, System 3 has out performed 
Systems 1 and 2 by a great margin in the wrap-rib configuration. 

6. Flight tests and in-orbit system identifiCation of critical structural 
modes will insure performance and reduce risk for large space antenna missions. 
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SESSION III: DISCUSSION - LSS 
CONTROL PROBIJEMS 

Moderator: R.R. Strunce, Charles Stark Draper Laboratory, Inc. 
Pan.el Members: N.K. Gupta, Integrated Systems, Inc., J. Sesak, General Dynamics, 

and A.F. Tolivar, Jet Propulsion Laboratory 

SYNOPSIS* 

Each panel member gave an opening statement, then a general discussion with 
the audience followed. 

N. K. GUPTA: The problem may be divided into three areas for discussion: 
analytical developments, real-time processing, and actuators and sensors. 

In analytical developments, insufficient emphasis has been placed on 
numerical techniques. Adequate numerical processing techniques do not exist 
to deal with the hiBh-order models used in control of large space structures. 

Real-time processing will be needed at very high computation rates, perhaps 
10 million to 100 million operations per second. The DoD Very High Speed 
Integrated Circuits (VHSIC) program may provide a partial solution. It may be 
necessary to look into other techniques involving both analytical and real-time 
processor developments. 

Reliability will be extremely important in these very complex systems. The 
problem of developing high-order languages, etc., that will allow convenient 
and reliable real-time processing and verification of control laws must be 
looked into. 

Actuators and sensors that have to operate in the space environment for 
several years are very important. Basic actuator and sensor limitations should 
be taken into account in analytical developments. For example, some robustness 
proofs are not valid when actuator and sensor dynamics are considered. 

It is a very big jump going from analytical studies to full space flight 
experiments. It seems that intermediate steps of simulation and laboratory 
experiments would be very useful and cost-effective before going into flieht 
experiments. 

J. SESAK: I1y discussion focuses on experiments for large space structures 
technology. Most laboratory experiments conducted to date have been with very 
simple examples, such as beams and flat plates. Nothing tested resembles, even 

*This synopsis attempts to capture the main points discussed but has not been 
reviewed or endorsed by the speakers. 



remotely, an actual space structure. More complex structures and tests that 
closely represent actual space structures should be used in experiments. 
Flight experiments will be necessary to achieve realistic data, parti.cularly 
with respect to damping, in the space environment. 

There is the need for actuator technology for operation at very low 
frequencies (fractions of Hz). Flight tests are needed not only for verifying 
theories but also for actuator and sensor hardware. 

A. F. TOLIVAR: The problem with large space structures is not just one of high 
frequencies, but of extending the actuator and sensor hardware capability down 
into the very low frequency ranges, essentially to quasi-static conditions. 

In several technical areas, the theory that has been developed to date needs 
to be made ready for flight. The theory should be developed to the point where 
efficient packages exist that can operate on-board the spacecraft with confi
dence. For example, if one were asked for an autonomous system identification 
program for a complex lOO-meter space system, it would not be possible to 
accomplish that in a cost-effective manner with today's level of technology. 

How do we convince a project manager that the technology is . indeed ready 
for mission applications? It is through demonstrating the technology both with 
laboratory and f.light experiments on realistic articles. 

R. R. STRUNCE: The fundamental issue is how to design a finite compensator to 
control infinite-dimensional structures. There are four major technology areas 
to pursue: simultaneous achievement of performance and robustness; system 
identification; reduced-order compensators; and sensor/actuator technology. An 
important question for this workshop is: do we have a solution looking for a 
problem or do we have a real problem that needs solution? Maybe it is time to 
move into a technology demonstration activity. 

A. N. MADIWALE, MIT Lincoln Lab: Major problems in control of large structures 
are the parameter uncertainties or inaccuracies in the large scale models. The 
uncertainties could be from 20% to 100%. A workshop paper by Hyland and 
Madiwale presents a technique that directly incorporates the parameter uncertain
ties into the modeling process and designs an optimum controller around these 
uncertainties. Certain robustness properties are obtained by this process. 

V. KOHKOV, West Virginia University: There certainly are problems with modeling 
large structures with very slender members. ~10deling that represents the 
physical reality has not been developed very well. The assumptions used in 
modeling, for example in the Euler-Bernoulli theory, are not looked at very 
carefully and often do not apply. One might throw in all kinds of uncertainties 
but it really does not solve the problem of having a reasonable theory. 

L. Y-llirSSTEIN, Lockheed Hissiles and Space Co. (LMSC): There are available 
analytical models that have parameters of real space structures far beyond the 
simple problems characterized by the experiments discussed here. Some conti
nuum models have been developed for such structures as two-layer tetrahedral 
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trusses, hexagonal trusses, periodic trusses, and framework structures. These 
would certainly aid in applying control theories to more real-life structures. 
The manuscript listed below presents an extensive bibliography.'~ 

A. M. MEYSTEL, University of Florida: There are two different areas which 
apply to large space structures: control in the small and control in the large. 
The only topics covered here have been linked with small motions. Large, quick 
motions should also be considered for which neither linear quadratic gaussian 
(LQG) nor other approaches discussed here apply. Research should concentrate on 
other approaches than LQG that can treat "control in the large." 

He should separate in our discussions "theory for design" 
control." They are two different topics and should be treated 
model used for preliminary system design may be very different 
in real-time, on-line control. 

from "theory 
differently. 
from the one 

for 
The 

used 

There are many methods for decoupling control, but special techniques must 
be developed for on-line decoupling for large scale systems. 

The issues of actuator resolution and dynamics in the zero-g environment 
should be given more attention. 

Probably the 'most important step that should be taken is for NASA to define 
future applications and specifications for control of large space structures so 
that the control community can focus on the same problems. 

A. F. TOLIVAR: In response to Professor Leonard Meirovitch's question about the 
state of the art of distributed actuation and sensing, I have the following 
comments. 

The problem of including actuator dynamics in the model of a large space 
structure has not been addressed to any great extent. Instrumentation hardware 
and associated measurement algorithms that satisfy the performance requirements 
that are space-qualified are not available. Similarly, for the actuation area, 
there does not exist a technology for a space-qualified actuator that operates 
at very low frequencies, perhaps l/lOOth of 1 Hz. Hundreds of sensors and 
actuators may be needed for a single space system and there is basically no 
space-·qualified hardware available in this area. 

R. R. STRUNCE: Fault tolerance becomes a major issue when considering systems 
with hundreds of sensors and actuators. How will the wires (or fiber optics) be 
run? How will failures be accommodated? How will the control laws perform with 
internal failures? It seems that this major area is being overlooked. 

B. R. HANKS, Langley: It is surprising to find that in this workshop, as in 
most others on control of large flexible structures, there are so few structural 
dynamicists. Keep in mind that stiffening up the structure may be the best 

1<L. S. Ueisstein, Continuum Models for Repetitive Beamlike Structures, 
unpublished master's thesis, George \rJashington University, 1982. 
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solution in many cases. If actuators required for rigid-body control are not 
adequate for flexible-mode control, then maybe they are being designed the wrong 
way. Maybe passive stiffening and damping are better. 

R. S. GRAN, Grumman Aerospace: The structural dynamics people first of all find 
our problem boring because we all talk about linear systems and they stopped 
talking about them 20 years ago. The structural dynamics research problems nOyl 
are very complicated and involve nonlinear partial differential equations and so 
on. Control engineers like linear models and those are boring. The issue of 
doing control has to be divided into two parts: Open-loop control of the non
linear system to give a nominal trajectory; then, closed-loop linear control of 
perturbations about the nominal trajectory. If the control law does a good job, 
then the motion will always consist of small perturbations, and the linear model 
will be valid. 

B. R. Hanks has a very good point. A piece of wire is a lot cheaper than a 
control system. 

H. A. REDIESS, Milco: There is a clear need to perform large-scale flight 
experiments in space, but has everything been done in laboratory experiments that 
is possible to develop and verify techniques? 

B. R. HANKS, Langley: You can not practically do laboratory experiments of large 
flexible structures that have mod~s on the order at 0.1 liz or less because the 
suspension systems become an inherent part of the structure. Also, damping in a 
structure is very dependent on the frequency, so scaling of stiffer structural 
models down to the very low frequencies will not work. Laboratory experiments 
cannot solve the total problem. 
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NlfMBE,R AND PLACEl\/][ENT OF CONTROL SYSTEM 
SENSORS CONSIDERING POSSIBLE FAILURES 

Wallace E. Vander Velde* and Craig R. Carignan** 
Department of Aeronautics and Astronautics 

Massachusetts Institute of Technology 
Cambridge, MA 02139 

ABSTRACT 

In the future design of active control systems for large, flexible space 
structures there is likely to be some freedom as to the placement of the control 
system sensors and actuators. Certainly the designer will have some choice over 
the number 9f these components which he specifies. The answer to the question 
of how many control system components should be used and where they should be 
placed on the structure is not likely to be obvious. The matter becomes even 
more obscure when one considers the likelihood that some of these components 
will fail during the operating lifetime of the system. 

This paper presents a methodology which is intended to assist the designer 
in this process with respect to sensors. The suggested approach begins with 
definition of a Degree of Observability of the system for a given set (number 
and location) of sensors. This measure of observability is a quantitative indi
cator of how well the system can be observed with a given set of sensors. The 
issue of component unreliability is then introduced by computing an average 
Degree of Observability over the operating lifetime of the system accounting 
for the likelihood of various combinations of component failures. This measure 
reflects the basic capability of the sensor set to observe the system state in 
the context of the failures which will probably occur. Having defined this 
average measure of the performance capability of the set of sensors, one can 
optimize the locations of a given number of components by maximizing the 
measure, and one can see how this optimized measure varies with the number of 
components. This provides the designer with a meaningful basis for choice of 
number and location of control system sensors. 

INTRODUCTION 

The dimensions of space structures being considered for future applications 
are on the order of several hundred meters to several kilometers and will re
quire a large number of actuators and sensors for attitude and shape control. A 
solar power satellite, for instance, may require hundreds of control moment 
gyros and thrusters to damp out surface vibrations caused by periodic disturb-

*Professor **Graduate Student 
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ances such as ~olar and gravity gradient torques. One of the first decisions a 
designer of the control system for such an assembly must make is how many sen
sors and actuators to use and where to place them on the structure. Placement 
represents a substantial degree of freedom available to the designer and is 
usually not a very straightforward question. It is even less apparent when one 
considers redundancy in the system to allow for 'failures; even if the "optimal" 
position of ,a sensor is known, it may not be so clear where a backup sensor 
should be placed. The number of components. to be used must reflect the trade
off of cost, weight, power, etc. vs. system performance---and the evaluation of 
performance should recognize the likelihood of some component failures during 
the lifetime of the system. 

The effect of component failures is emphasized here because even an elemen
tary analysis demonstrates that component unreliability will have a dominating 
influence on the behavior of these systems. The control system must be con
figured with the capability to accommodate component failures, and the likely 
effect of these failures on the performance of the system must be anticipated 
from the beginQing of the design process. As one example of this, suppose a 
system is to operate for three years between visits for maintenance and re
supply. If the control system utilizes a total of 400 sensors and actuators
each with an exponential distribution 0.£ time to failure with a mean time to 
failure of 100,000. hours (optimistic by today's standards)-the probability that 
none of these components will fail in this interval is about 2 . 10-46 , which 
indicates virtual certainty that one or more failures will occur. In fact, many 
failures are likely to occur--about one every 10 days on average! 

In this work we develop.a methodology for measuring the performance of a 
system which reflects the type, number and placement of the sensors on the struc
ture. The measure also reflects the expected loss of performance due to compo
nent failures. This performance measure is intended to be especially useful as 
a guide to the choice of sensor number and placement in the earliest phase of 
system design. 

Problem Definition 

It would be most helpful to the control engineer to have some criterion at 
his. disposal for placing sensors. Unfortunately, modern control theory does not 
provide any such measure of "observability." Observability is simply a tinary 
concept-either a system is observable or it is not. It does not say how ob
servable a system is with a given set of sensors. 

Some work has appeared in recent literature which addresses this question. 
Juang and Rodriquez (Ref. 1) formulate the linear quadratic regulator problem 
with an infinite time horizon. The solution defines the optimal cost as an 
explicit function of the initial state, and indirectly as a function of the 
number and location of the actuators and sensors. The expectation is taken 
over a defined distribution of initial conditions-producing the expected cost 
as a function of the actuator and sensor set only. While this approach has some 
appeal, we found several objections to the method: (1) The weighting of control 
effort versus state excursions in the cost function is rather arbitrary; (2) If 
there is a particular direction in the state space in which the state is not 
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very observable, this fact is largely lost when the cost is averaged over the 
distribution of initial states; (3) The expected cost is an inverse measure in 
which larger cost means poorer observability and becomes infinite when the sys
tem is unobservable; and (4) The expected cost depends on both the actuator set 
and the sensor set whereas it may be more useful to have separate measures of 
observability and controllability. 

Skelton and Hughes (Ref. 2) define measures in terms of controllability and 
observability "norms" which apply to the individual modes of a system rather 
than to the system as a whole. Their approach is also tailored to "linear 
mechanical systems" which have a special form of representation as a second 
order matrix differential equation. Although that form applies to space struc
ture dynamics" we prefer to define measures which have a physical interpretation 
in terms of control or estimation error characteristics for general linear sys
tems. 

What we seek, then, is a quantitative measure of how well the system state 
can be observed with a given set--number and location--of sensors. This measure 
should have as clear an interpretation as possible, be easy to compute, and 
should not depend on the design of the control system. Moreover, it should 
properly reflect the loss of capability due to the sensor failures which are 
likely to occur over the mission period. 

Dynamic Measure of Observability 

Any measure of the observability of a dynamic system should reflect as dl
rectly as possible the amount of information which can be derived about the sys
tem states from the sensor outputs in a given amount of time. The means of ob
taining this tnformation is by attaching to the system an obs,erver whose states, 
X, are estimates of the true states of the system. 'The more information that is 
obtained about: the system, the smaller the estimation error becomes. 

In the parallel problem of indicating the controllability of a system with 
a given set of actuators it is not obvious how the control should be used so as 
to realize the best possible co·ntrol of the system. What is "best" might be de
fined in a number of reasonable ways. But in this case, if we use a linearized 
description of the system dynamics from the outset, then the best way to process 
the sensor data so as to minimize estimation error is obvious. The linear esti
mator which minimizes the state estimation error vector, e =x - x, in a mean 
square sense, i.e., minimizes 

T 
S = e Me (1) 

where M is some weighting matrix, is the Kalman Filter. 

With the state dynamics and measure111ent relation given as 

x Ax + Bu + w (2) 

y ex + v (3.) 
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the estimation error covariance matrix with Kalman filtering obeys the equation 

. TTl 
P = AP + PA - PC N- CP + Q (4 ) 

where P is the estimation error covariance matrix, and Nand Q are the measure
ment and driving noise intensity matrices, respectively. But the estimation 
error, or i~scovariance matrix, is an inverse indication of the amount of in
formation one has about the state. We wish the measure of observability to be 
a direct indicator of information, so to that end we introduce the information 
matrix--the inverse of the error covariance matrix. 

(5 ) 

One other consideration istha'tthe observability measure should be a 
property of the system and a set of sensors--nothing els'e. Since the measure
ment noise is a property of the set of sensors being evaluated, we retain its 
inclusion in (4) in the form of N but do not include the effect of state driving 
noise, because that is an external influence not related to the sensor set. 
Thus, if we set Q 0, then (4) in terms of J becomes 

(6) 

Take as the standard situation the case in which there is no information about 
the state .. initially and data is collected up to 'a: specified time T. Then 
J(O) = a and one is interested in J(T). 

Having the information matrix at time T, we need some scalar measure of how 
large the matrix is as an indication of how much information has been generated 
by optimal processing of the sensor data. One way of measuring the size of 
J(T) is by reference to the quadratic surface 

T -1 
v J v = 1 (7) 

Equation (7) defines an ellipsoidal surface in v-space. If J is a diagonal 
matrix (one can always transform to principal coordinates), one observes that 
increasing an element Jii will expand the ellipsoid in the direction Vi' Thus 
the larger J becomes, the larger the volume encompassed by the surface in (7) 
so that the more information obtained about the system, the larger the volume 
becomes. 

Typically, however, 'some components of x will be of greater concern than 
others--especially considering that different units will apply to different 
components. Regardless of how one were to approach the definition of a measure 
of observability, it is clear that a scaling of the state variables to reflect 
their relative importance to the success of the mission would be required. To 
that end, define the transformation 
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z = Fv 

Ie 0 1 max 

F (8) 

0 Ie n 
max 

where e· is the maximum error one is willing to tolerate in the direction x .. 
~u l 

The more error one is willing to tolerate in that direction, the greater the 
transformed state so the larger the volume becomes. Thus the scaling is con
sistent with the requirement that the more important a variable is 
(smaller le l· I) the smaller it will appear in the transformed space and 

max 
the less observable it appears unless the sensor set is adjusted to favor that 
variable. Also note that v has units of reciprocal error, so z is dimensionless. 

Now that the 'axes have been scaled so that it is equally important to ob
tain information in each direction, one can interpret the size of the surface 
generated by the information matrix in terms of the volume enclosed by that sur
face. But the volume alone does not reflect the shape of the surface. An ideal 
allocation of sensors would produce a sphere in the space of equally important 
variables. Thus if two sensor sets produce surfaces enclosing equal volume, we 
would favor the iet which produced the more nearly spherical surface. 

After considering a number of alternatives, the degree of observability was 
chosen to be the following: 

(9) 

where VE is the n-dimensional volume of the ellipsoid.in the transformed space 
and Vs is the volume of the largest inscribed sphere; n is the dimension of the 
state space. The first term on the right side of (9) is the predominant term in 
the observability measure; it reflects the smallest magnitude of reciprocal 
error relative to the maximum tolerabie error (largest value of error relative 
to e i max) which remains after optimal processing of the sensor data for time T 
starting with no initial information. If the sensors were ideally allocated, 
the surface would be a sphere and Vs would be the observability measure. The 
second term in (9) adds a smaller amount .to DO to recognize the additional in
formation derived about the other variables if the surface is not spherical. 
The additional volume, VE - Vs ' is scaled by VS/VE so that the most this term 
can add, as VE + 00, is Vs and so that DO is zero if there is any direction in 
which the system does not derive information at all. This is the case of 
traditional unobservabiiity, and Vs = O. The nth root of the weighted volume 
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is taken as the observability measure to make it proportional to the linear di
mensions of the region in which information is produced. The volume weighting 
scheme for a two-dimensional case (volumes are areas) is depicted in Figures 
l(a-c). 

Once one accepts (9) as a reasonable assessment of the observability of the 
system, what remains to be shown are the mechanics of computing the n-dimension
al volumes Vs and VE. The volume enclosed in any quadratic surface is propor
tional to the product of the reciprocals of the square roots of the eigenvalues 
of the matrix which generates the quadratic surface. Since volume has little 
intuitive significance in spaces of dimension greater than 3, we omit the con
stant of proportionality and the volume is taken to be simply 

n -1 

V =(~ ~) 
1=1 . 

(10) 

To apply this result to the case at hand, first substitute (8) into (7) to 
obtain the equation of the ellipsoidal surface in the space of z: 

-1 
1 = zT (FJ(T)FT) z (ll) 

-1 
VE is then given by (10) where A. are the eigenvalues of (FJ(T)F

T
) More 

simply, if vi denotes the eigenv1lues of FJ(T)FT, the ellipsoidal volume is also 
given by 

n 

= 1f (12) 

i=l 

and the spherical volume is the shortest distance to the surface, l/~, to max 
the nth power, or alternatively, 

(l3) 

The rema1nlng issue is computation of J(T). It is always possible to 
integrate (6) for an interval T starting from a zero initial condition. But in 
Ref. 3 an analytic solution is given for the case of flexible space structure 
dynamics expressed in decoupled modal form. Since it is always possible to ex
press the dynamics in this form it is always possible to compute the Degree of 
Observability, DO, by evaluating closed-form expressions ·and solving for the 
eigenvalues of a real, symmetric matrix. 

RECOGNITION OF COMPONENT FAILURES 

Because of the realistic possibility of components failing during the 
operating lifetime of the system, one would like the Degree of Observability to 
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be averaged in some way over the set of component failure combinations which 
the system may: experience. To this end, let· f be an indicator of the state of 
failures of the ·components, and let the vector! represent their locations .. 
Then for a given set of oper~ting sensors, one can compute the Degree of Obser
vability. DO(L,f), using the method previously described. 

The component locations indicated by ! are deterministic; they will subse
quently be adjusted to optimize the Degree of Observability. But f is a random 
variable with a time-dependent probability distribution. Thus DO(9.,f) is also 
a random variable with a time-dependent probability distribution d~fined by the 
distribution of f. To define a meaningful deterministic performance measure, 
one would logically use the expected value of DO(!,f) with the expectation taken 
over the distribution of f, the failure s·tate for the system components. This 
yields a performance measure which depends on time, t. It represents a measure 
of the expected performance of the system at time t in view of the probabilities 
of the various failure states at that time. 

But this control system is required to operate over a certain period Tm 
which might represent the time between maintenance visits. Rather than optimize 
the Degree of' Observability at anyone time, such as the end of that period, it 
would seem more meaningful to optimize the average Degree o·f Observability over 
the whole period .. In this average, the performance resulting from failure states 
which are likely over longer periods would be weighted more heavily than those 
likely to exist over shorter pe.riods. And a probability-weighted measure of 
performance over the whole operating period !s obtained rather than just a 
measure of performance at one time. 

The average of the expected Degree of Observability over the mission period 
T is taken as the final measure: 

m 

DOAVE (!) 
1 

T 
m 

T 

fro DO (~, f) dt (14) 

o 

But the expected DO is simply a weighted sum over the different failure states, 

~ DO(9.,f.) P.(t) 
- 1 1 

(15) 

i 

where Pi(t) :Ls the probability of failure state fi at time t. The final measure 
can be expressed as 

DOAVE(E) 
1 

~ DO (9" f .) T 
i - 1 m 

T r 
o 

P.(t) dt 
1 

(16) 

and depends on Tm and the component failure statistics as well as the locations. 
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To illustrate the calculation of the average probabilities for the failure 
states, take the usual assumptions of independence of component failures and 
the exponential distribution of time to failure for each component. Then for 
the jth component, the probability that it is working at time t is 

-A t 
p(jth component working at t) = e j (17) 

where Aj is the failure rate for this component, the reciprocal of its mean time 
to failure. Let the i th failure state be characterized by two sets of indices, 
J W and J F , ~ith all components having indices j in the set JW working and al'l 
components having indices j in the set JF failed.' Note that the index of each 
component in the system must be contained in one or the other of JW or J F, but 
not both. Then the probability of this failure state at t is 

P.(t) = [II 
1 . J . JE W 

(1 - (18). 

With the definition 

Aw ~ A. 
jElW 

J 
(19) 

this can be written as 

-A t -A.t 
p. (t) 

W 
II (1 - J ) e e 

1 jE:JF 

(20) 

The average, over the mission period TM, of this probability--as is required for 
the calculation of the Degree of Observability given in Eq. (16)--can be ex
pressed as 

l 
o 

where 

P.(t) dt 
1 

k 
(-1) Sum(k) (21) 
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Sum(k) 1 

Q,=l 

NF = the number of elements in J F (the number of failed components) 

Q, 

(2.2) 

~: A. 
k J 

for each Q" the sum of a different combination of k Aj with jEJ
F 

The first term in the sum of Eq. (21) requires interpretation in the case of no 
working components. In the usual case with some components working, AW given 
by Eq. (19) is' greater than zero and 

1 Sum(O) = -- (1 - e 
AW™ 

AW > 0 (23) 

If there are no working components, define AW = 0, and Sum(O) = 1. 

These expressions can be simplified 
failure rates equal. Call the number of 
of failed components NF as before. Then 

in the special case of all component 
workirig components NW and the number 
if all A. = A, 

J 

TM NF k NF 

~-
e-(N,,+klATM] : J Pi (t)dt 

(-1) (k) 
;:: 

~ (NW + k)ATM M 0 k=O 

(24) 

As before, if NW = 0, the term corresponding to k 0 is 1. 

OPTIMUM SENSOR PLACEMENT 

Having a. computable measure of how well the structure can 'be observed with 
any given set of sensors, with the expected effect of component failures 
throughout the,mission reflected in the measure, one can 'then seek to optimize 
the choice of 'component locations, for a given number, so as to maximize the 
performance measure. This task may be computationally burdensome when dealing 
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with a large number of components but it is conceptually straightforward. 

A constraint which will likely apply in most applications is that sensor 
placement will be restricted to a discrete set of permissible locations. Struc
tural considerations, for example, may require that ins,trument packages be 
mounted only at the joints of a truss structure. If this is true of all the 
components, then the placement optimization problem is in the nature of an inte
ger programming problem. Many algorithms have been described in the literature 
for solving integer programming problems; nothing has been added to that art in 
this work. The examples which follow are intended only to illustrate the nature 
of this step. They were restricted to a small number of components and optimi
zationwas accomplished by global search~by testing all admissible combinations 
of component locations. 

CHOICE OF COMPONENT NUMBER 

Having the optimum set of sensor locations and the corresponding maximum 
Degree of Observability for a given number of components, one can compute this 
maximum performance measure for several choices of component number. The 
choice of how many sensors to use in the system cannot be resolved as an 
optimization problem, unless additional factors are incorporated in the cri
terion. The Degree of Observability will always improve with additional sen
sors if the best locations are used in each case. 

However, it should be informative to observe the trend of the performance 
measure with number of components. Some locations are more advantageous than 
others--such as the placement of rate gyros near the nodes of important modes. 
With the realistic restriction that only one component can be placed at any 
one of the allowable locations, one should expect to see diminishing returns 
in perfbrmancewith increasing number as the more favorable locations are 
occupied. This information should be helpful to the designer in making the 
trade-off between improved performance and increased cos,t, power required, etc. 

APPLICATION TO BEAM 

To illustrate the methodology defined above, senSOT placement and number 
were considered for the Case of a free-free beam. The beam was modeled as in 
Reference 3 with the states representing the modal amplitudes and rates of 
the first three flex modes; translation rate sensors were used for observation. 
In all trials the amplitude rate states were scaled by the factor Wi relative 
to the amplitude states where Wi is the corresponding modal frequency. The 
sensors were assumed equally noisy (N = I). As an aid to interpretation of 
the results that follow, the mode shapes for the three modeled modes are shown 
in Figure 2. 

The Degree of Observability as a function of the position of a single 
translation rate sensor along the length of the beam is shown in Figure 3 with 
the beam modeled by the dynamics of the first mode only. This case is shown 
to demonstrate that the computed DO gives the resl,llt that is 'intuitively ob
vious in this instance---the DO reflects the shape of the first mc1e and is zero 
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when the sensor is located at either node because the mode is unobservable by 
this type of sensor placed at a node. The use of the observability measure 
will be more important when dealing with more complex systems where the results 
will not be so predictable. A suggestion of this is given in Figure 4 which 
shows the DO as a function of the location of a single sensor with the beam 
modeled by the dynamics of the first three flex modes. In this case the pat
tern is more complex with the measure going to zero at each node of any mode-
because unobservability of any decoupled mode constitutes unobservability of 
the system. No sensor failures have been considered in these results. 

The Degree of Observability achieved with two sensors is shown in Figure 5 
with the beam. represented by the dynamics of the first two flex modes. In this 
case one sensor is fixed at the end of the beam and DO is shown as a function 
of the location of the other sensor. At no point does DO become zero because 
both modes are observable by the sensor at the end. The observability measure 
is dominated by the observability of the first mode as is indicated by the 
similarity of this curve to that of Figure 3 for first mode dynamics only. 

The effect of possible sensor failures on the observability measure is 
indicated in Figure 6 which shows the Degree of Observability for a two-mode 
representation of the dynamics of the beam as a function of the location of one 
sensor with another fixed at the end of the beam. The upper curve is the same 
as Figure 5 in which no failures are accounted for. The lower curve in Figure 
6 is the average expected DO with the mean time to failure for each sensor 
equal to the mission period. This gives a probability of 0.63 that each sensor 
will fail before the end of the mission. This· system i'8 unobservable if both 
sensors fail or if one sensor is located at a node of either mode and the other 
sensor fails. These possibilities .are accounted for with the proper probabili
ties in the measure of observability. 

As in Figure 5, the DO in Figure 6 is dominated by the observability of the 
first mode. ,In this case the maximum tolerable error" in the estimate of both 
modal amplitudes was taken equal (el = e3 ). This characteristic is , max max 
changed ifthe;relative importance of the two modes is different. This is il-
lustrated in Figure 7 which is the same case as in Figure 6 except that the 
second mode has been declared 5 'times more sensitive than the first mode 
(e3 = 1/5 el ). The relative weighting of each rate state to the corre-

max max 
sponding amplitude state has been retained as wi' the modal frequency, as be-
fore. In this figure, the DO asa function of 'the loc·ation of the variable 
sensor has essentially the character of the magnitude of the second mode s:1ape. 
This is because of the greater importance that has been assigned to that mode. 

Figure 7 also illustrates a very important point related to the importance 
of account~ng for the possibility of component failures early in the design 
process. That point is the fact that recognition of the likely effects of com
ponent failures can alter the optimal locations for those components. The . 
quantitative significance: of, this point is small in this example but the quali
tative truth of the proposition is established. Looking at the.upper curve in 
Figure 7 one can see that if the possibility of sensor failures is ignored, the 
Degree of Observability is nearly the same with one sensor at the end of the 
beam Hnd a second sensor located either at test position 2 or 7-actually, the 
observability is slightly better at position 7. So without considering failures 
one would say that the optimum locations for two sensors on the beam are at 
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test positions 1 and 7. But from the lower curve which accounts for the likely 
failures it is clear that locations 1 and 2 are optimal in that case. In draw
ing these conclusions we hold the constraint that only one sensor can be al
lowed at one location and only the test positions shown in Figure 2 are per
mitted. In particular, we search only half the length of the beam; sensors 
located on the other half of the beam would give symmetric results. 

The interpretation of the results on optimum sensor placement is that po
sition 7 is near the antinode of mode 2 and so is a good location for observing 
that mode which has been given great importance in this example. But position 
7 is near the node of mode 1 and so is not a good choice of location for observ
ing that mode. If no failures are admitted, the optimal sensor locations rep
resent the risky choice of placing one sensor at location 7 to gain good ob
servability of mode 2 because mode 1 is well observed by the sensor at position 
1, the end of the beam. But if failures are anticipated, the failure of the 
sensor at position 1 leaves mode 1 so poorly observed by a sensor at position 7 
that the more conservative choice of placing the second sensor at position 2 is 
preferable. At position 2, the sensor does not observe the second mode quite 
as well, but has better observability of mode 1 compared with a sensor at posi
tion 7. 

Finally, the variation of Degree of Observability with optimized sensor 
locations as th~ number of sensors is increased is shown in Figure 8. In gene
ral one would expect to see diminishing returns of observahility with more sen
sors as the more favorable locations are occupied. The designer must then base 
his choice of number of sensors to use on the trade-off of increased performance 
against increased cost, weight, power, etc. In this case diminishing returns 
are not evident in Figure 8 because there are several locations which are near
ly equally effective after the position at the end of the beam has been occupied. 
If the curve were extended to a larger number of sensors it would surely begin 
to flatten out. 

CONCLUSIONS 

A methodology has been presented which is .intended to assist the designer 
of a control system for a large sp.ace structure to decide how many sensors 
should be incorporated in the system and where they should be placed on the 
structure. This approach is intended to be especially useful in the early 
stages of the evolution of the system, before a complete control system con
cept has been defined. This methodology is based ona quantitative measure of 
the observability of the system for a given set of senSQrs. The effect of pos
sible component failures during the mission period was incorporated in the 
measure. The question of sensor placement is then resolved by finding the lo
cations which maximize the p.erformance measure. The number of components to 
use cannot be determined by optimizing the measure because the observability 
always improves with increased number of sensors if they are optimally located. 
However, the improvement in the measure with component number can be deter
mined, arid this information can be used along with data on cost, power required, 
etc. to decide how many sensors to use. 
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. FIGURES 

(a) (b) (c) 

Figures 1a-·c: Volume weighting scheme for computing degree of 
observability - (a) ideal distribution t (b) slightly distorted 
distribution, (c) very distorted distribution. Shading indicates 
relative weighting. 
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THE TOYSAT STRUCTURAL CONTROL EXPERIMENT 
J .A. Breakwell and G.J. Chambers 

Lockheed Missiles and Space Company 
Sunnyvale, CA 94304 

ABSTRACT/FOREWORD 

This paper describes in detail the Lockheed TOYSAT experiment. Theexperiment 
was designed to test hypothesis concerning the application of optimal control 
theory to flexible spacecraft. The theory is presented, and results described. 

Hardltlare Set.!!e.' A drawing of the TOYSAT experimental setup is shown in Fig. 1. 
The test setup consists of a 12-ft. flexible beam fastened to the side of a 
1.3-ft. square block of aluminum. To accentuate bending, a 2-lb. weight is 
attached to each end of the beam. The beam is suspended from the ceiling in 
such a way as to allow free motion in the horizontal plane. 

Control of the motion of the specimen is provided by two linear actuators. 
When the actuators act together, translational motion results, and when equal 
but opposite commands are given, pure rotational motion results. Sensing is 
provided by accelero~eters mounted at the ends of the flexible beam and by 
linear position sensors mounted in tandem with the linear actuators. The 
average of the two accelerometer measurements indicates the translational 
motion, and their difference measures the rotational motion. The same holds 
true for the position sensors. The separation of rotation and translation in 
both controller and sensor, as well as in the physical behavior of the TOYSAl, 
allows independent and separate design of translational and rotational control 
1 aws. 

Figure 2 shows how the rOYSAT is connected by way of A/D and D/A converters to 
a computer where the digital control law is implemented. The large number of 
computations necessary to carry out the control law is handled by an array 
processor which allows a sampling rate of 80 Hz. 

The frequencies, dampings, and mode shapes for the assembled system are shown 
in Table 1. These data result from a judicious combination of analysis and 
testing. The rigid body modes and the first two bending modes in both trans
lation and rotation are used in controls synthesis and implementation. The 
remaining modes are used to evaluate the effect of spillover. The frequencies 
and dampings (wi, t i ) are assembled in the usual block diagonal form to 
give the F lTIatrix, the I'li give the G matrix, and the ~i (0) and t>i (.e) 
give the HI and H2 matrix components corresponding to the linear sensors 
and accelerometers respectively. (These matrices are defined by their use in 
Eq. 2~). 

Controls Synthesis. The controller implemented in the hardware has the form: 

1\ q, .'\ + rlu + Kz xn';1 = xn n n 

un = Cx n' (I) 
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Table 1 TOYSAT MODAL FREQUENCIES, DAMPINGS, MODE SHAPES, 
AND INFLUENCE COEFFICIENTS 

Wi (Hz) t. ( %) 0i (0) o i (R,) ni 1 

Trans 
'If:B:" 0.19 70.0* 1.0 1.0 3.24 

1 0.98 0.58 0.0842 -0.952 4.21 
2 9.06 0.29 0.0365 0.365 1.83 
3 28.02 0.54 0.0210 -0.229 1.05 
4 57.69 0.74 0.0147 0.0164 0.735 
5 98.15 0.1 0.0113 -0.128 0.565 
6 149.38 0.1 0.0092 0.105 0.460 

RT 
R:"S. 0.0 0.0 1.0 72.0 0.00712 

1 2.64 0.33 0.252 -0.471 1.54 
2 9.87 0.30 0.127 0.335 0.774 
3 28.4 0.54 0.055 -0.226 0.335 
4 57.94 0.88 0.033 0.163 0.201 
5 98.33 0.1 0.022 -0.127 0.134 
6 149.53 0.1 0.017 0.104 0.104 

Total Mass = 2.708 slugs 
Total Inertia = 140.37 in.-lb-s2 

*An approximation for a phenomenon that cannot be 
accounted for by modal damping. 

where ~I denotes the transition matrix, and r', K, C are constant matrices to 
be determined. This deceptively simple form conceals a multitude of com
plexities involved in choosing the gains K and C. The controller separates 
naturally into a part which estimates the modal amplitudes and another part 
which outputs these estimates, mult"iplied by some gain, to the control 
actuators. In accordance with this separation we will present first the 
estimator synthesis and then the control gains synthesis. 

Filter Srnthesis. The problem is defined in the continuous domain by Eq. 2 
below. The state covariance is specified in the continuous domain). 

x = Fx + Gu + W 
C 
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Wc is white noise, zero mean, covariance Qc; 
Vc is white noise, zero mean, covariance Rc. 

The extra term H2 is necessary because the standard form does not allow for 
acceleration measurements. The specific entries in the matrices for the 
separate translation and rotation plants are given in Table 1. 

The first step in the synthesis process is to convert the continuous system 
given in Eq. 2 to a discrete system, 

wd is zero mean white noise, covariance Qd; 
v is zero mean white noise, covariance R. 

T 

Qd = E {wdw~} = J ~(t) Qc~T(t) dt 
o 

(3) 

(4) 

~ and A are derived from F and lG using standard numerical matrix exponential 
procedures. T is the step length. The covariance of the discrete noise R is 
taken as an input and is not derived from the continuous measurement noise 
Rc. Eq. 3 is put into standard Kalman filter form in two steps. First xn 
equation by means of Eq. 2, leaving 

Then to the first of Eq. 3 we add the identically zero quantity 

L {zn - H1x n - H2Fxn 

- H2Gu n - H2wc - v} 

where L is to be determined later. The result is 

= [~- LHI - LHllXn 

+ [r- LH2G J un + ~zn 
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Equations 5 and 7 together constitute the usual Kalman filter problem 
chosen so that the measurement noise (H2Wc + v) and the state noise 
(wd - LH2wc - Lv) are uncorrelated. Equation 8 shows the choice of L 
that accomplishes this. 

if Lis 

(8) 

Standard optimal techniques may now be used to obtain the filter gains K. The 
resulti ng f"il ter has the form 

xn+1 = [<1>- (L +K)(H1 + Hl)] xn • 

+ [r - (L + K) H 2G] un + (L + K) Z n 

<1>1 and rlshown in Eq. 1 are just the appropriate coefficients of xn and un 
from Eq. 9. 

Control Gains. The control segment of the problem is specified by 

x = Fx + Gu 

with the cost functional 

00 

J = I (xTAX + uTBU) dt • 
o 

Again, as with the filter, this problem is converted to a discrete problem 

Xn+1 = <l>x + ru 
n n ' 

but now the cost function is specified by 

00 

J 2: (x~ OXn + U~ SUn + 2 U~ fixn). 
n=1 

where the weights Q, S, R, of the discrete problem are given by 

-T 

Q = J <l>T (t) A <I>(t) dt 
o 
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T 

- J rT (t) A ~(t) dt S = 
0 

T 

R = J {B + rT (t) A r(t)} dt (13 ) 

0 

Equations 11 and 12 specify a standard discrete optimal control problem that is 
easily solved by standard methods. The resulting gains C are those implemented 
in the controller specified by Eq. 1. 

Evaluation of Controller. When the six-state controller for either translation 
or rotation is completed, it is tested on an augmented fourteen-state 
evaluation model. The eigenvalues of the six-state controller operating on the 
fourteen-state plant are investigated for signs of spillover. These 
eigenvalues are those of the matrix shown in Fig. 3 The superscripts 14 in 
this figure refer to the fourteen-state evaluation model. 

Specific Controls Design. The actual gain selection procedure, like the 
theory, divides into separate estimator and control gains selections. First a 
filter was designed and tested on the open-loop system. When that seemed to be 
working, the loop was closed with an appropriate set of control gains. 

To obtain filter gains, the parameters to be selected were the continuous state 
noise covariance matrix Qc (defined in Eq. 2) a six-by-six matrix for either 
translation or rotation, and the state noise covariance matrix R (defined in 
Eq. 3), a two-by-two matrix assumed to be diagonal. 

The approach to choosing Qc and R was to pick Qc so as to maximize the 
separation of the estimator poles. When done correctly, this assures that the 
separate states in the Kalman filter contain just the intended modal amplitude 
and very little of the others. That is, Qc is picked to minimize crosstalk 
between modes in the Kalman filter. 

~14 1 

1 
1 

- - - - - - - - - - - - - -1- - - - - - - - - - - - - - - - - - - - - - - -

1 

(K + L) [Hi4 
+ H~4 F14] : ~ - (K + L) [HI + H2 F + (K + L) H2 G] C 

1 
1 

Fig. 3 Matrix For Eigenvalues of Six-State Controller 
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Figure 4 shows the time history of the estimates of the state vector for a good 
choice of Qc• The specimen had been excited by a four-second chirp (a fast 
sine sweep varying linearly in frequency), and the outputs of the estimator 
were recorded. The rigid body channels contain all the low frequency movement, 
whilE~ the modal channels separate the remaining frequencies nicely. 

The measurement covariance matrix R was chosen to force good convergence of 
modaol reconstruction of the measurements with the actual measurements. That 
is, individual components of R are increased until corresponding components of 
Hx converge with the actual measurements fairly quickly. Figures 5 and 6 show 
that the modal reconstruction of the rotational displacement and tip 
acceleration converge quite quickly with the actual measurements. Again, in 
this case the specimen had been perturbed by a four-second chirp and then 
allowed to settle. 

Once a filtE!r design has been established, the selection of control gains is 
straightforward. Since there was no obvious physical quantity such as a line 
of sight on the TOYSAT, the control weights were picked to give fast and 
roughly equal settling times for all modes. The values for the covariance 
matrices and control weighting matrices which generated the nominal controller 
are shown in Table 2 for the translation controller and in T~ble 10 for the 
rotation controller. Also shown are the resulting filter and control pole 
locations. 

TOYSAT Experimental Results. The hardware tests of the control system 
described in the previous section are slight variations of a standard modal 
identification tests. A four-second chirp containing frequencies from a to 
40 Hz is applied simultaneously in rotation and translation through the 
Electroseis shakers. This open-loop command is superimposed upon any feedback 
commands whjich may be generated by the control law given in Eq. 1. The 
openo-loop chirp command is also communicated to the estimator. Data are taken 
for twelve seconds. Since the chirp begins sometime in the first second, this 
allows for l"oughly eight seconds of data after the chirp has expired. Data 
saved durin!J the test run include the open- and closed-loop control commands, 
all four measurements, and the twelve Kalman filter states during the run. 
Posto-experiment processing allows analysis of the data in the frequency domain 
as well as in the time domain. 

Figures 7 through 12 illustrate various forms of results from the control 
system test described in Tables 2 and 3. Figures 7 and 8 show comparisons of 
the four measurements taken during two separate test runs; one without con
trols, and one with the control system loop control. The closed-loop data show 
much faster settling time than do the data from the open-loop test. Also, peak 
excursions during the chirp excitation are considerably smaller. Figure 9 
shows the Kalman filter states during the closed-loop test. This may be 
compared with Fig. 4 which describes the same states during the open-loop test. 

Figures 10 and 11 present frequency domain comparisons of open- and closed-loop 
transfer functions for tip accelerations to inputs through the central shakers. 
Figure 10 shows that the translation controller reduces the response of the 
first two bending modes (at 1 and 9 Hz) to below the level of the third 
unmodeled bl~nding mode (28 Hz). The first mode amplitude is reduced by a 
factor of eight, a number which is proportional to the increase in damping. 
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The damping was measured by fitting second order models to the transfer 
function. The closed-loop was roughly 4 percent for the first mode (versus 
0.29 percent open-loop) and 11 percent for the second mode (versus 0.54 percent 
open-loop). For the rotation controller, the first and second modes (2.6 and 
9.8 Hz) were also reduced below the level of the third mode (28 HZ). Again, 
the ratio of the reduced amplitude was proportional to the increase in 
damping. The first mode closed-loop damping was roughly 6 percent (versus 0.33 
percent open-loop), and the second mode was 12 percent (versus 0.3 percent 
open-loop). 

The damping measured from test data does not agree with the analytically 
predicted pole locations shown in Tables 2 and 3. The predictions for the 
second mode behaviour were reasonably close, but the first mode predictions 
were quite inaccurate. These differences are dramatically illustrated by the 
charts in Fig. 12. 

Figure 13 shows the result of a deliberate attempt to provoke the phenomena 
commonly known as spillover. A new control system was generated by reducing 
the weight on the translation cO,ntrol by a factor of one hundred from that 
given in Table 2. The analysis predicted that this controller would cause the 
first unmodeled mode (at 29 Hz) to go unstable. Test results given in Fig. 13 
demonstrate that indeed something did go unstable. The frequency domain 
transfer function in Fig. 14 confirms that it was the 29 Hz mode which 
dominated the instability. 

Finally, two quick test runs were made, more as demonstrations to suggest 
further work than to prove any point in themselves. The first was a 
demonstration of a low sample rate Kalman filter; it ran at 20 Hz while 
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Table 2 80 Hz CONTROLLER DESIGN PARAMETERS 

1 0 -2 
0 0 

A = :3.8 

TRANSLATION 

B = 3 x 10-3 

0 
0 
0 
0 

-3.7 
0 

-0.71 
0 

833 

o 
o 
o 
o 
o 

----------------------------
Qc = Diag. (0.5 x 10-3, 0, 0.02, 3 x 10-6 

R = Diag. (8 x 20-5, 8 x 10-1) 

CONTROL POLES 

-4.2 :I: i 0.808 
-5.1 :I: i 9.1 
-6.7 :I: i 56.7 

FILTER POLES 

5.2 :I: i 5.3 
-9.8 :I: i 5.8 

-28.7 :I: i 50.2 

Table 3 80 Hz CONTROLLER DESIGN PARAMETERS 

ROTATION 

71tj 
A = C: .22 

o 
12 

B = 1 x 10-5 
o 

Qc = Diag. (0, 1.0 x 10-3, 0, 1.0, 0, 3 x 10-3) 
R = Diag. (5 x 10.-4,5 x 10-4 

CONTROL POLES FILTER POLES 

-4.5 :I: i 4.9 -2.4 :I: i 2.5 
-6.4 :I: i 17.1 -12.3 :I: i 10.4 
-5.7 :I: i 60.1 -33.8 :I: i 54.9 
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estimating behavior up to 10 Hz. The results were not spectacular, but they 
are shown in Fig. 15. It shows a comparison of the filter prediction (z) 
with the actual measurement of the central body rotation. Theory suggests that 
the filters should work at even lower frequencies, but we were unable to make 
this happen in the test. 

The last figure, Fig. 16 shows a test devised in response to criticisms 
claiming that the optimal control theory is too sensitive to knowledge of the 
system parameters. A two pound weight was removed from one of the tips of the 
flexible beam. This destroyed the symmetry of the TOYSAT, and changed its 
rotational inertia by 70 percent. Yet the control system designed to work on 
the original system did not do badly, as the figure shows. Admittedly, this is 
not a rigorous test of robustness, and there are some parameters that the 
control system must know very accurately in order to function properly. 
However, it is a dramatic exhibition of the control system working despite a 
massive perturbation. 
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Fig. 15 Measured and Predicted Open-Loop Central Body Rotation for a 20 Hz 
Sample Rate Kalman Filter 
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Conclusion. Long after concluding the testing, we found an analytical 
"oversight" which could very well have caused the discrepancy between test and 
prediction of the lowest bending mode (Fig. 12). Not mentioned in the filter 
synthesis was what we used as noise statistics to get the gains for the filter 
is Eq. 7. 1t 1 s rather straight forward to obtain the state covariance as 

However the measurement covariance should be taken as 

1 HT + Rc) 6t (H2 Q 2 

where 6t is the sample time. 

We haa carelessly taken it as 

1 HT + R 6t H2 Q 2 

until Herb Rauch corrected our error. 
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The result of choosing the latter value is that the lower frequency modes will 
rely e)(cessively on the accelerometer measurement to the exclusion of the 
position measurements. Thus, two integration constants are lost (or two poles 
are trappea at the origin). This is particularly disastrous for the lower 
frequency modes, and could easily have caused the discrepancy between the 
predicted lamping result and that obtained by test. A further correction is 
that the right hand side of Eq. 8 should be preceded by a 1/2. But this has 
little effect on the outcome. 
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LARGE SPACE STRUC1rURE MODEL REDUCTION 
A.ND <:ONTROL SYSTEM DESIGN BASED UPON 

ACTUA1'OR AND SENSOR INFLUENCE FUNCTIONS 
Y. Yam, J.n. Lang, T.L. Johnson, S. Shih, and D.H. Staelin, Research Laboratory of 

Electronics, Massachusetts Institute of Technology 
Cambridge, MA 02139 

ABSTRACT 

A model reduction procedure based on aggregation with respect to sensor 
and actuator influences rather than modes is presented for large systems of 
coupled second-order differential equations. Perturbation expressions which 
can predict the effects of spillover on both the aggregated and residual 
states are derived. These expressions lead to the development of control 
system design constraints which are sufficient to guarantee, to within the 
validity of the perturbations, that the residual states are not destabilized by 
control systems designed from the reduced model. A numerical example is pro
vided to illustrate the application of the aggregation and control system 
design method. 

INTRODUCTION 

The model reduction issue for large space structures is particularly 
acute because model reduction is essential for easy finite-dimensional control 
system design, yet its use introduces the possibility of inadvertent system 
destabilization. Ordinary methods of model truncation result in control energy 
being coupled to the neglected system through spillover. This makes a priori 
performance estimation difficult. Furthermore, the control gains enter the 
coupling coefficients so that the control system design and evaluation processes 
must be iterated. By contrast, the model reduction method presented here, based 
on aggregation with respect to sensor and actuator influence functions rather 
than the system dynamic matrix, results in spillover coupling that is indepen
dent of the control system. As a consequence, the effect of spillover can be 
more readily predicted and is done here using perturbation theory. 

Aggregation with respect to sensor and actuator influence functions was 
developed for first-order systems by Johnson and Lin [lJ. In this paper, the 
method is applied to systems in second-order form which are representative of 
iarge space structures. The use of perturbation theory to estimate pole shifts 
due to spillover has been developed by Balas [2] and Lang [3]. However, their 
expressions involve the controller gains in a way which is more difficult to use 
for design purposes than the expressions presented here. Aubrun [4] applied 
perturbation theory to evaluate. the effects of small control gains on stability. 
In the limit of small control gains and small spillover, his approximation 
agtees with the one given in this paper. 

The present model reduction procedure has numerical advantages. Further, 
it allows the perturbation results to be extended in special cases to yield 
control system design constraints sufficient to guarantee, to within the 
validity of the perturbations, the non-destabilization of the residual system. 

287 



Accordingly, a control system should be designed t9 produce acceptable aggre
gated system behavior, and to satisfy the residual-system stability conditions. 
The design of such control systems is more complex. The compensating advantage 
is that more reliable performance estimates can be obtained. 

AGGREGATION OF LSS MODELS 

In modal analysis, the dynamic model for many large space structures 
(LSSs) can be written as 

. 
n + ~n + ~2n - D n 

e 

. 
y Cn + Dn 

Bu 

where n is an no-vector of modal deflections, u is an 
n 

n -vector of control 
u 

(1) 

(2) 

o forces and y is an n -vector of modal deflections and 
y 

velocities. The matrices 

~ and n2 are assumed to satisfy 

d iag [ B, •••• , B] ; ~2 = diag[w 2 
•••• w2 ) l' , n 

n 
(3) 

where B is a uniform modal damping coefficient, a~d w~ > 0, i = l, ••• ,nn are the 

squared modal frequencies. The matrix D represents the destabilizing forces in 
e 

the system, and is assumed here to be of the form D = diag[d,···,d). A general 
. e 

D can actually be put in a form readily treated with the present analysis. The 
e 

ability to handle open-loop unstable systems is important to certain LSSs [5]. 
The open loop poles of the system (1) are 

+ ~±j(~)2 w~ pi - - + d - i l,···,n. 
1 n 

(4) 

Let 

C TICBB 
T + C C·B 0 (5) 

D TIDBB 
T + TIDCC +15 f5·B 0, 

~ ~T 
D·C 0 (6) 

T T ~ 
be projection decompositions of C along B , and D along Band C, where a super-
script T de~otes algebraic transposition. Assuming C and 15 are of full rank, 
the partitioned matrix 
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(7) 

can be formed where E is n x nand E is n x n ,n = n + 2n , and n 
a a a r r r a· u y r 

nn - na' If C and D are not of full rank, only their significant and indepen-

dent rows are retained and n can be reduced. C represents the component of 
a 

displacement measurement which is not .collocated with the actuators, and D 
represents the component of velocity measurement which is not collocated with 
either the a~tuators or displacement sensors. Next, let the ordering of the 
modes in (1) be such that E is invertible. In this case, it is possible to 

a 
define the similarity transformation U such that 

with 

where 

u 

-1 
U 

M 
a 

M 
r 

S 

= [Ea _ST][M~l 0_ J 
SE 10M 1 

a r 

-1 
- E E . 

r a 

Here, S is termed the spilloyer matrix. 

(8) 

Defining n = Un, the original system of (1) and (2) can.be transformed into 
a particularly favorable form. 

. 
n + ·SIn + TI2n - dIn Bu (9) 

y Crj+Dn (10) 
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where 

:Q2 = 

B 

c 

D 

[w IT' J [ .T(Q' aa ar a 1 

IF :Q2 (-SS')2 
ra rr 1 

[:aJ B 
a 

[c 0] 
a 

C 
a 

[D' 0] 
a 

D 
a 

with S')I and S')~ given by 

+ STS')2S)E M-1 ET(_Q'ST + STQ')M-1] 
2 a a a 1 2 r 

+ S')2S)E M-1 (S')2 + SS')2 ST)M-1 
2 a a 2 1 r 

" [ B~B 1 

S')2 
1 diag[wI····w~ ]; diag[w2 •••• w2 ]. 

n +1' , n 
a a n 

(11) 

If n is partitioned such that where n : n x 1 and n : n x 1, then 
a a r r 

the aggregated and residual models associated with the transformation U are 

na + SIn + ~2 n - dIn B u 
a aa a a a 

(12) 

y = c n + D n a a a a 
(13) 

. 
and nr + SIn" + ~2 n dIn o. 

r rr r r 
(14) 

Note that spillover has been transformed from control and observation spill
over, as in modal truncation, into the present form of dynamic coupling matrices, 
~2 and ~2 , between the aggregated and residual models. Any other aggregation 
. ra ar 
procedures will generally result in spillover appearing in both forms. The set 
of states included in the aggregated model is solely a reflection of the sensor 
and actuator influences. A reasonable design of sensors and actuators, for 
instance, should effectively sense and excite only certain critical modes. As a 
result, the aggregated states would be primarily composed of the critical modes 
and the spillover matrix S. would be numericallY' small. 

Denote the eigenvalues and left and right eigenvectors of I22 and rF as aa rr 
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:\2 , 9, , 
a. a. 

1 I, 

Then, the 

i = 1,···, nand 
a 

open loop poles of the 

+ ~ ± j(~) P~ 
1 

+ ~ + J(i?) p;. 2 - 2 
1 

A 2 9, 
r ' r' Yr ' 
iii 

aggregated and 

+ d - >..2 
a. 

1 

+ d - :\2 
r

i 

i = n + 1 ••• n respectively. a ' , n' 
residual model are 

i=l,···,n 
a 

i=n+l··· n a ' , n 

+ 

(15) 

(16) 

The sensors and actuators should be so designed that the p;. are stable. Note 
1 

that in this case the margin of stability for the residual states is ~, the same 
+ 

as that for stable' p~. 
1 

Consider a compensator for (1) and (2) having the form 

z = Fz + Gy 
(17) 

u = Hz + Ky 

so that 

z Z 
A A 

na A A na aa ar 
d . ...!.. -
dt na na (18) 

n 
A A' nr r . A A ...!.. - ra rr 

nr nr 

where 

F GC GD 
a a 

A 

A = 0 0 I (19a) aa 

B H dI - ~i2 + B KC -I3I + BKD a aa a a a a 

0 0 

A 0 0 (19b) 
ar 

-2 
-~ 0 ar 
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A 

= [ : 

0 

:J A 
ra -2 

-~ 
ra 

(19c) 

A 
= [ dr _Oil' -:r] rr 

rr 

(19d) 

Denote the ith eigenvalues and left and r,ight eigenvectors of A as s ~ aa ' a...a.' a i 1. 
It . No,te that A is the closed loop dynamic matrix of compensator (17) 

a i aa 

applied directly to aggregated model (12)-(13) and A is the untouched residual 
rr 

model dynamic matrix. The compens'ator A thus has a direct effect on the a~gre-' 
gated model and an indirect effect on A through the coupling matrices A and 

rr ar 
A The effect of this coupling on the original eigenvalues of A and A can 
ra aa rr 

be approximated by perturbation techniques, see Appendix A. The original eigen-

values of A and A , which are sand p± , are shifted by 1'Ir,;(2) and l'Ip±(2), 
aa rr a . r . a . r . 1. 1. 1. 1. 

respectively, where the superscript 2 denotes that the shifts are second order 

in the elements of the coupling matrices. The terms l'I r (2) and l'Ip±(2) are given 
by ?a i r i 

[dI _ ~2 
rr 

[0 0] R a. 
(20) 

1. 

(21) 

where K - R(F (22) 

~ + 
. Q(p~.) 

+-
C + p- D • 

a r. a 
(23) 

1. 1. 

±c + A ±(2) h h . dId _ P up are t en t e approx1.mate c ose 
r. r. 1. 1. 

loop poles of 
actual values 

the overall system. They would be an adequate approximation of the 
if the coupling between A and A were weak. Such a weak 

aa rr 
coupling condition can be 
shifting the poles of A aa 

achieved by designing a reasonably small S and by 
away from those of A by means of feedback. 

rr 
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EquatiOns (20) and (21) do not conveniently allow.§:. quick estimation of the 
effect of spillover because they contain quantities as n2 , ~ , A , etc. which 

ar r. r. 
1 1 

require appreciable computation. For simplified expressions, one can retain in 
(20) and (21) only terms quadratic in S; see Appendix B. In this case aggregated 
and residual pole placement is given by 

where S 
r. 

1 

denotes the ith row of S and the superscript S2 indicates that (24) 

and (25) retain only terms quadratic in S. Equations (24) and (25) contain only 
+ 

readily availa.ble quantities such as n~, pi, etc. and yield quick estimates of 

the effect of spillover. Furthermore, since the next higher order are terms 
proportional to S4, they can come quite close to equations (22) and (23) in 
value for spillover that is not too strong. 

COLLOCATED SENSORS AND ACTUATORS 

In the case of collocated sensors and actuators, C 

[II 1 so that B = II:' Only n independent columns are used in forming U. 
u 

T 
M IF 

r rr = "52 M rr r 

it follows from the symmetry of nf and n~ that 

M ~T 
r r. 

1 

In this case, (21) can be solved for the real part of 6p±(2), giving 
r

i 

where 
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and a superscript * denotes complex conjugation. 
+ 

It is a concern in designing F, C, R, K that p;. not be destabilized. Sup-
1 

pose that F has distinct roots and that T is its transformation to Jordan form. 

F = T ,H T-l 
(29) 

where H = diag[~l'···'~n J. Then sufficient conditions for the shift (27) to 

be non-positive can be dertved for several feedback forms. 

For displacement measurement, 

(1) KITCB be symmetric 

(2) (RT) * = (T,-lCIT
CB

) 

(3) 
1, + -1 2 (s+ 2pi;.) I ::: ImC~k) < 

1 

For velocity measurement, 

k 

i 

I}(S + 2P:.) 1 

1 

n + 1 ••• n 
u ' 'n 

1 ••• n , ~ z· 

(1) KITDB be symmetric and negative semi-definite, and either 

(2a) 

(2b) 

F, C, R = 0 
or 
(RT) ~~ -1 -(T CIT

DB
) 

1 
Re(~ ) < - -s 

k - 2 

1 + 1 -12CS+2p~.) 
1 

k = 1 ••• n , , 'z 

< Im(~ ) < Il(S + 2P± ) 1 
k - 2 r. , 1 

i 

k 

n +1,···, n 
u n 

1 ••• , , n . z 

For displacement and velocity measurement, 

(2) 

(3a) 

(3b) 

where a is a scalar 

KITDB be symmetric and negative semi-definite,and either 

F,C, R = 0 

or if a - ~ < 0 , 2' 
-1 

(RT)* = -(T CIT ) 
1 DB 

ReC~k) 2 - 2S k = 1,···, nz 

-It(S+ 2p± ) 1 < Im(~k) ::: Itcs + 2P:.) 1 

r i 1 

i n + 1 ... n 
u ' 'll 

k 1 ••• n , , z' 

(30) 

(31) 

(32) 

It is interesting to observe that for displacement measurement, nonzero F, C, R, 
e.g. a velocity observer, are needed to introduce additional damping into the 
residual states. With velocity measurement, no additional dynamics are required. 
Because of (16), the condition ' 
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k 1 ••• n , , z 
(33) 

requires only the knowledge of the smallest eigenvalues of n2 The shift ~s(2) 
rr a. 

usually generates less concern since the designed s should have a large margifi 
of stability. ai 

EXAMPLE 

For the case of collocated sensors and actuators with the displacement 

measurement y = BT, nCB = I, choose F,· G, H, K of the following form: 

n = n n 
z ua 

F ~. > 0 for i=l, ... ,n 
1 Z 

G = 

H 

K 

(34) 

where R 
a 

_ columns[y ••• 
a

l 
Y ]. 

a 
n 

Equation (34) satisfies the sufficient condi-

u 
tions (30) for displacement measurements. Substituting (34) into (19a), the 
eigenvalues of the resulting A can be seen to be tbe union of the eigenvalues . aa 
of the matrices a i = 1,"', nu' where aa

i 

-~. 
1 gi 

A 

aaa. 0 0 
1 

gi d - >-2 - k. 
a. 1 

1 

see Appendix C. 
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The compensator of the form (34) affects different eigenmodes of the aggre
gated model independently so that ~., g., and k. can be separately designed for 

~ l t l 

each i. Denote the three poles of a by P , t = 0,+,-, where 0 represents aai a
i 

the real eigenvalue and + and - represent the complex conjugate pair. The neces

sary and sufficient conditions for pt to be stable are 
a. 

l 

g~ + ~.(d - A2 - k.) < 0 
l l a. l 

(36) 
l 

which necessarily requires (d - A 2 - k.) < O. 
scaled quantities can be defined. a i l 

With k. so chosen, the following 
l 

t 
P 

~i ~t 
a. gi l ~ . ~i Pa 

_ k.l l / 2 _ k.l l / 2 gi 
_ k 1

3/ 4 
l Id - A2 Id - A2 Id - A2 

i a. l a. l a. 
l l l (37) 

Figure 1 shows the eigenvalues pO and 
a

i 

~+ ~ 

Pa. for different values of ~i and gi' 
l 

Only the case for S = 0 is shown since 
tems would be swamped by the feedback. 

weak inherent damping typical of LSS sys-

The important result from the figure is that the eigenvalues 
t 1 2 1/2~t . "-by P = d - A - k. I p ,hence those of A , are indeed on 
a. a. l a. aa 

l l l 

A 

of aaa.' given 
l 

the left half 

plane and can in principle be pushed arbitrarily to the left by choosing an 
arbitrary large k .. Such a compensator given by (34) would therefore stabilize 
the aggregated moael, preserve the validity of the perturbation technique and 
guarantee the non-destabilization of the residual states. 

As a numerical example, consider a vibrating string with fixed ends in the 
region 0 < r < 1, with two collocated sensor and actuator pairs. For simplicity, 
the syste; model consists of 3 modes, includes only displacement measurement 
(nCB = I, nDB = 0), and exhibits a destabilizing mechanism. Thus, 

r 0 0] rll b

1

:1 
.. . 4n 2 

n = -~. o n + dn + b21 b22 U o 
0 9n2 b

3l 
b

32 

~rll 
b

2l 
b

31]n (38) 

Yo 
b

l2 
b

22 
b

32 

where b .. = 12 flf.(r)Sin inrdr, f. (r) is the influence function of the jth 
lJ 0 J J 

sensor actuator pair, and 12 sin inr is the eigenfunction of the ith mode. 
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Defining the new control u = 

[:11 br 21 
Yo' (38) 

b 22 12 

where (8182) = [b31 
determined to be 

becomes 

r' .. 
ri = - ~ 

[b11 bI21 and the new measurement y b
22 

Uo 
=: 

b21 

0 0] dn + [~ ~} 4n2 o n + 
0 9~n'2 81 82 

Y = [: 

0 l 1 8
2 

b
12

]-1 The aggregation transformation U is 
b22 

(39) 

U :; [ ~ ~ :~l (40) 
-81 -82 1 

and the transformed system is given by 

n 
--2-- ~ n + dn + Bu 

(41) 
y C n 

where 

B = 

o 

1 

For this example, d = 2n4 so that the lowest mode in the system is destabilized. 
Choose the compensator F, G, H, and K as in (34). Let k1= k2 = kn 2 be the only 
undetermined compensator parameter and 

~ ~ 

i;l = i;2 = 1. 4, 1. 0412. 
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Then from Fig. 1, with ; = r-r, 

P!2 = - 0.39523 ± 0.60164; . 

" The eigenvalues of the closed loop aggregated matrix A are thus, t=O,+,-
aa 

pt = pt 12n2 _ 1..2 _ k:n'2I l/2 and pt = pt 12n2 _ 1.. 2 _ kn2ll/2 
al al al a2 a2 a2 

and the eigenvalues of the residual.model 

1+ S2+ S2 
1 2 

Due to the nonzero coupling matrices A and A , these eigenvalues will be 
ar ra t + 

shifted. Figures 2 through 5 show the designed poles p , Pr3' the perturbation 
tc +c tS 2 +S2 al 

corrected poles Pa ' p and p , p for different values of k for the cases of 
1 r3 al r3 

weak spillover, Sl = S2 = 0.2, and strong spillover, Sl = S2 = 0.8. For compari
son, the exact value of the corresponding poles are also included. On comparison, 
several points are noted. First, as k is increased, the validity of the pertur
bation result is enhanced due to the growing distance between the poles of A 

aa 
and A , this is most apparent in Figs. 4 and 5. Second, as expected, the 
validity of the perturbation technique increases with decreasing spillover. 
However, the damping introduced to the residual states increases as Sf and s~. 

Third, for very large k, the beneficial spillover damping in the residual states 
is reduced. This is again a result of the increasing distance between the poles 

f A" d A" F· h i h' fl' h tS
2 

d ±S2 o an. . ourt, g ven t elr ease 0 eva uatlon, t e p an p ex-
aa rr al r3 

pressions yield quite reasonable estimates of the exact values, especially for 
the weak spillover case. Finally, and most importantly, it is indeed possible, 
as illustrated by this example, to have a reduced order compensator designed 
based on the aggregated model and still guarantee the stability of the overall 
system. 

CONCLUSIONS 

. Spillover cannot be eliminated by aggregation procedures. The present 
method merely transforms control and observation spillover into the form of dy
namic coupling matrices. The effect of spillover in this form can then be more 
readily approximated using' perturbation techniques. Two sets of perturbation
corrected pole shifts were derived. The first set gives very close approximation 
to reality if the validity of the perturbation technique is preserved. Further, 
it yields sufficient conditions that guarantee the non-destabilization of the 
residual stat~s. The second set of pole shifts, obtained by truncating the first 
set to retain only quadratic terms in the. spillover matrix S, enables quick 
estimations of the pole shifts. 

As illustrated by a numerical example for the collocated sensor and actua
tor case with displacement measurement, a reduced order compensator which yields 
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stability for the overall system can be obtained adopting the present approach. 
Damping is indeed introduced to the residual states through spillover. The 
amount of damping introduced is proportional to spillover squared. Thus proper 
actuator and sensor design should result in spillover values such that rela
tively large damping can be introduced while the validity of the perturbation 
technique at the designed control gains is still maintained. Spillover need not 
always be minimized. 

The present method yields an aggregated model order related to the number 
of sensors and actuators. Further control of aggregation model order can be ob
tained using combined (synthetic) sensors and actuators in the design procedure. 
This topic is presently under study. 

The authors wish to thank the Lockheed Missiles and Space Company and the 
U.S. Joint Services Electronics Program (Contract DAAG-29-78-C-0020) for their 
support during the course of this research. 

REFERENCES 

1. Johnson, T. L., and Lin, J. G., "An Aggregation Method for Active Control of 
Large Space Structures," Proceedings of the 18th IEEE Conference on Decision 
and Control, December 1979, pp. 1·-3. 

2. Balas, M. J., "Feedback Control of Flexible Systems," IEEE Trans. Automat. 
Control, Vol. 23, 1978, pp. 673-679. 

3. Lang, J. H., "A Perturbation Analysis of Spillover in Closed-Loop 
Distributed-Parameter Systems," Proceedings of the IEEE Conference on 
Decision and Control, December 1980, pp. 991-993. 

4. Aubrun, J. N., "Theory of the Control of Structures by Low-Authority Control
lers," J. Guidance and Control, Vol. 3, No.5, September 1980, pp. 444-451. 

5. J. H. Lang and D. H. Staelin, "Electrostatically Figured Reflecting Membrane 
Antennas for Satellites," IEEE Trans. Automat. Control, Vol. 27, No.3, June 
1982, pp. 666-670. 

APPENDIX A: EIGENVALUE PERTURBATION DUE TO COUPLING MATRICES 

AA __ I AA:aa AA~arl· Consider the matrix "Denote the ith eigenvalue, left and 
A A ra rr + A+ A+ 

right eigenvector of A and A by 1';; ;J. 112 and p- , 9,- , y- , respec-· 
aa rr ai' ai' ~ai ri ri ri 

A A + A 

tively. If A and A were zero, the ~ and p- would be the eigenvalues of A. 
ar ra ai ri 

A A A 

However, due to the coupling between Aaa and Arr through the partitions Aar and 
A + 
Ara , 1';;a i and P~i will be shifted. According to perturbation theory, the shifts, 

denoted. by ""s~~) and ""p~~2), are given to second order in the elements of the 

coupling matrices by 

£, A [A 
a. ar rr 

1 
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(43) 

A A+ A+ 
With Arr as given in (19) , r Y~, are related to ~ r, ' Yr , as follows: r, ' 

1 1 1 1 

[ + [p~::J 
(S+P~ ) 

1 ] 
A± i A+ 
~r' = + ~r, + .Q,r, Yri 

1 (S+2 -) . 1 (S+2p-) 1 Pri ri 

(44) 

Equations (20) and (21) are then obtained by substituting (19) into (42) and (19) 
and (44) into (43), respectively, and applying the matrix identity 

APPENDIX B: EXPRESSIONS OF SECOND ORDER ACCURACY IN S 

To reduce ~~uation~ (20) and (21) to second order accuracy in S, notice 
from (11) that ~ar and ~:a each have lowest order terms first order in S. 
Their products are second order in S, thus the quantities ~ri' Yri , \:i' etc. in 

(20) and (21) can be replaced by their zero order values in S. As a result, 
substitutions in (20) and (21) can be made as follows: 

T ±. ± 
+ [0,···,0,1,0,···,0]; Y + [O,···,O,l,O,···,O];p +P

i
' 

r i r
i 

Th 'Yl'eld Ar
a
(2
i

)S2 e new equatlons 0.., and 6P~~2)S2, which denote equations (20) 
1 S2 

in S, respectively. The relation S a' 
1 

(21) reduced to quadratic terms 
(2)S2 

sa, + 6sa , is then (24) while the relation 
1 1 

± 
p -
r, 

1 
[I] J-l - + - + T T 

E 0 K(p~)Q(p~)E (~12-W:I)S , 
a 0 1 1 a 1 r i 

and 

(45) 

with Sr' denoting the ith row of S, can be further manipulated to become (25). 
1 

For F, G, H, K = 0, 

(46) 

+ 
It is known that the exact eigenvalues of the system without feedback are pi. 

+ 
Thus (46) is P~ expressed to second order in S, and the approximation 

1 
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+ 1 
p~. + + 

1 (S+ZPi) 
(47) 

introduces an error by terms which are fourth order in S. Since the expressions 
of concern are to second order in S, this error can be neglected. Putting (47) 
into (45) and making use of the matrix identity 

-1 -1 -1 -1 -1-1 
(M1 + MZ) = M1 ,- M1 MZ(I + M1 MZ) M1 · 

results in (Z5). In this manner, (47) acts as an "initial condition" in that it 
±S2 

provides equality between P and the exact values in the absence of feedback. 
ri 

APPENDIX C: EIGENVALUES OF A WITH F, G, H, K AS GIVEN IN (34). 
aa 

Two relations between Ya~ and i a . should be noted. First, as in (26), 
T .L 1 

Ya1' = Mia" Second, the orthonorma1ization condition ia Ya 0iJ' is adopted. 
a IT i 'j 

With M = B B for the collocated sensor and actuator case, R 
a T T T a 

co1umn[y "',y and L co1umn[i "',i ], it can be shown that 
a 1 an a a1 an 

u u 

R BTBLT 
a a 

R 
a 

-1 
L 

a 

(48) 

Substitute (34) into (19), apply a similarity transform to the resultant A with 
aa 

V [~ ~a :a] and 
and make use of (48). The result is that 

o 

o o I (49) 

[
gl... ] [d_A!l -k~.. . 1 

'g d-A 2 -k nan 
u n u 

u 

-131 

By rearranging the columns and rows of (48), it can be seen that the eigenvalues 
A 1 A of VA V- , hence those of A , are given by the union of the eigenvalues of aa aa 

A A 

aaai' i = 1,' .. ,nu ' with aaai as given by (35). 
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A ])ESI(;N PROCEDURE FOR ACTIVE CONTROL OF 
BEAM VIBRATIONS 

Stephen L. Dickerson and George Jarocki 
Mechanical Engineering, Georgia Institute of Technology 

Atlanta, GA 30332 

ABSTRACT 

This work analyzes the transverse vibrations of beams and presents a 
methodology for the design of an active damping device. 

The Bernoulli-Euler equation is used to derive a transcendental transfer 
function, which relates a torque applied at one end of the beam to the rota
tional position and velocity at that point. The active damping device consists 
of a wire, a linear actuator and a short torque arm attached to one end of the 
beam. The action of the actuator varies a tension in the wire and creates a 
torque which opposes the rotation of the beam and thus damps vibration. 

A contribution of the paper is a design procedure for such an active 
damper. This procedure shows the relationships and trade-offs between the 
actuator stroke, power required,· stress levels in the wire and beam and the 
geometry of the beam and wire. 

It is shown that by consideration of the frequency response at the beam 
natural frequencies, the aforementioned relationships can be greatly simplified. 
Similarly, a simple way of estimating the effective damping ratios and eigen
value locations of actively controlled beams is presented. 

SYMBOLS 

A cross sectional area of a beam (or wire if sub w) 

b feedback gain 

d length of moment arm 

E modulus of elasticity 

f tension in wire 

G open loop transfer function 

H closed loop transfer function 

J moment of cross section of beam 
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L length of beam (or wire. if sub w) 

p open loop poles 

P power 

s d/dt operator 

x beam length coordinate 

y beam displacement 

z extension of wire 

z open loop zeros 
n 

8 normalizing factor for time 

n normalized length coordinate 

o rotational angle 

~cn closed loop damping ratio 
th 

of n pole pair 

a negative of real part of eigenvalue 

T normalized time 

w frequency of oscillation 

MODEL OF BEAM WITH RATE FEEDBACK 

A beam of constant cross-section and material properties with no internal 
damping and shear deformation may be described by the Bernoulli-Euler equation. 

EJ a4y + Ap ly2 = 0 

ax 4 at 2 (1. 1) 

If the beam is of length L it is convenient to normalize this equation using 

1 
n - LX and T - ot 

where 0 :: I EJ /pAL 4 to obtain the partial differential equation 

4 2 
~£y 
. 4 + 2 
an OT 

o 
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For the case of a beam pinned at both ends the boundary conditions y = 0 and 
o2y/r;T2 = 0 at n = 0 and n = 1 yields the modal solutions 

yen,,) = C sin (w ,+~) sinfw n n n n 
(1. 4) 

2 2 
where wn = 'IT n , n = 1,2,3, ... 

Such a beam if excited oscillates with frequency components wn . These 
oscillations can be damped by applying a moment at either or both ends that 
opposes the rotational rate. That is, the boundary condition at n = 0 becomes 

M(O, t) 
d 

-b - 0(0 t) 
dt ' 

0.5) 

. 2 
where 0 = 8y/on and M = -82y/8n. The sign convention on M is necessary to 
make a positive moment result in a positive e and y. 

A moment opposed to rotational velocity will damp oscillations because 
it removes energy. Points other than n = 0 are acceptable but examination of 
Eq. 1.4 shows that there are values of n on the modal solution where 
oZy/oxot (Le., d0/dt) is zero. Such modes will not be damped if the moment 
is applied at these points. 

To examine the effect of variation of the damping constant b in Eq. 1.5 
it is possible to consider b as a gain in a feedback control system as shown 
in Fig. 1. The transfer function G(s) is derived relating the input moment 
M to the rotational velocity at n = O. The result is 

G(s) = ns(sinns - sinhns) 0.6) 

2 (cos ns - cosh ili) 

where s can be interpreted as the derivative operator, d/dt. The "poles" of 
the transfer function are the zeros of the denominator or 

.22 
J'IT n , n= 1,2,3 ... (1. 7) 

There is also a pole at infinity since the numerator is of order greater than 
the denominator. The "zeros" are given by the zeros of the numerator or 

z 
n 

n= 1,2,3 ... 
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Actually the zn expressions (n>O) are slight approximations. zl=15.418 instead 
of 15.421 as given by Eq. 1.8. The approximation for n>l is much better. From 
the zero and pole locations one can write 

00 

s n~O (1 + 
G(s) 

2 
s 

4 4 ) 
1T (n+0.25) 

2 
s 

+44") 
n rr 

(1.9) 

\vhere the 1/3 comes from Eq. 1. 6 using the limit as s approaches zero of 
G(s)/s= 1/3. With feedback as shown in Fig. 1 or as suggested by Eq. 1.5 the 
overall transfer function is 

R(s) 

or 

R(s) 

G(s) 
1+bG(s) 

2 
~ IT (1+ s ) 
3 n=l rr4 (n+0.25)4 

which can be written as 

R(s) 

co s2 
s n~l (1+ I ·4) 

rr'+(n+O.25) 

3(1+Ts) ill1 (1+ 2~n s + (;!-)2) 
wcn cn 

(1. 10) 

(1.11) 

0.12) 

where the closed .loop natural frequencies wcn and damping ratios are evident. 
The form of the denominator is arrived at by consideration of the root locus 
discussed in subsequent sections. 

VARIATION OF SYSTEM EIGENVALUES WITR FEEDBACK GAIN 

The characteristic equation of R(s) is l+bG(s)=O. A numerical solution 
for the root locus for the first few branches is presented in Fig. 2. This 
numerical solution uses the transcendental form of G(s), Eq. 1.6, and finds 
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values of s for which the imaginary part of G(s) is zero and then calculates 
b from "minus inverse b = real part of G(s)." 

For light damping (small b) a good approximation for the closed loop 
damping ratios, 1;n, can be found by (1) assuming wcn = wn ' (2) realizing that 
H(jwn) = lib and (3) neglecting the complex portion of most of the denominator 
terms as follows. 

(2.1) 

Now if the imaginary terms in the denominator above are neglected except for 
n = m then 

Thus t; 
m 

1 
b 

2 2 
m 7f 

C! 

61; 
n 

2 2 
m 1T ba 

m !:;!----
6 

where 

From numerical calculation this reduces to 

1: C! b sm m= 1,2,3, ... 

IT 11 ( m )4 I 
n=l - n+0.25 

00 I m 41 IT 1--(-) 
n=l n 
n:Fm 

From Fig. 2 it is apparent that this approximation is good for small b. 

(2.2) 

(2.3) 

"Small" b appears to depend, on the m value. From numerical results the 
maximum possible damping ratio for the mth eigenvalue is apparently given 
approximately by 

0.28 
n 

(2.4) 

From Fig. 2 and Table 1 it is apparent that "low" values of b damp 
higher frequency oscillations better while "high" values of b (but not greater 
than 0.3) damp the low frequency oscillations which are more important to damp 
actively. 

An approach similar to the above can be used to estimate the closed loop 
eigenvalues for "large" b. From Eq. 1.11 the characteristic equation is 
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2 2 
00 s 00 s 

3n~1 (1 + 44) + bSn!h ( 1 + 4 4 ) = 0 (2.5) 
n 1f 1f (n+0.25) 

Let a solution be s = j1f2 (m + O. 25) 2 - am where am is "small" and positive. Then 
substituting into Eq. 2.5 the magnitude part becomes 

- j 20' 
m 

2 
(m+ 0.25) 
2 4 

1f (n+0.25) 

(2.6) 

= 0 

2 If the imaginary parts (except for m = n in the second product) and the am 
terms are neglected, then 

(2.7) 

which by numerical calculation reduces to 

(2.8) 

From Fig. 2 and Table 2 it is apparent that this approximation is good for 
"large" b and is better for large m for a given value of b. 

Incidentally, the time constant associated with the real closed loop 
eigenvalue is approximated by T = b/3 for "large" b. For "small" b the time 
constant approaches zero and in most cases is thus unimportant. 

To summarize, the eigenvalues associated with mode m (m= 1,2,3, .•. ) have 
damping ratios approximated by Eq. 2.3 for "small" b. Eq. 2.4 and Table 1 
provide a dividing line between "large" and "small" b which depends on m. 
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Eq. 2.8 gives the approximate real part of the eigenvalue (negative) for "large" 
b. A graphical interpretation of eigenvalue placement is given by Figure 3. 

ACTIVE DAMPER CHARACTERISTICS 

An active damper construction is illustrated by Fig. 4. A linear 
actuator varies the tension in a wire stretched between the beam ends. The 
tension force f(t) developed by the linear actuator acting on the torque arm 
of length d creates a moment which opposes the angular velocity at the beam 
end and thus damps vibrations by removing energy from the beam. The resulting 
control loop at the beam support where the torque is applied is depicted in 
Fig. 1. 

The moment equation, no longer normalized, is 

. 
M -be -fd (3.1) 

Note that b (normalized) must be multiplied by EJ/Lo to get the actual feedback 
gain b. If z is defined as the extension of the actuator then z has two com
ponents--that due to rotation of the moment arm and that due to elongation 
of the wire. Thus 

z = 
(3.2) 

Using Eq. 3.1 we have 

z = (d - Bbs)e where 
(3.3) 

and as before s stands for d/dt. 

For simplicity any initial tension in the wire has been excluded from 
this analysis but is necessary in a practical application. The reader should 
imagine a constant tension device in parallel with the dynamic actuator to 
provide this tension. Naturally, this affects the force variations allowed 
in the wire to prevent breakage or slackness. 

The instantaneous power is given by -(sz)(f) or 

bs P = -[s(d-Bbs)e] [-e] 
d 

(3.4) 

Suppose for now that the moment provided by the actuator is a known amount at 
a frequency Ul. 
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M Mo sin oot (3.5) 

Then 

. 
8 = s8 

Mo 
b sin oot, 8 

Mo 
boo cos oot, 

2 -Mow 
and s 8 = -b- cos wt 

Substitution into Eqs. 3.1, 3.3 and 3.4 gives 

Mo 
f

MAX d -fMIN 

zMAX. Mo /B 2 + ( .--!. ) 2 
boo -zMIN 

M 2 
P

MAX 
----2- [11 + ( Bb l- 1] (3.6) 
2b d 

-M 2 
0 [11 + ( Bb ) 2 + 1] P

MIN 2b d 

M 2 
0 

PAVE --
2b 

Each of f, z and P are sinusoidal at frequency 00 exceptP is at frequency 200. 

To apply the above relationships one needs to interpret the significance 
of f MAX , zMAX' PMAX ' etc. 

f MAX is the greatest force which the actuator must deliver. It plus any 
initial tension in the wire is the greatest tension in the wire. An initial 
tension would usually exceed f

MAX 
in order that the wire never go slack. 

Two times zMAX is the stroke required of the actuator. 

PMAX is the greatest instantaneous power required from the actuator. It 
is zero if the wire is inelastic or B = O .. The average work done by the actuator 
over a cycle is always negative since the actuator is being used to remove 
energy from the beam. PMIN is always negative and represents the maximum energy 
absorption rate of the actuator. 

Mo sin (wt) could be interpreted as a moment applied at x = 0 if W = wn . 
Under these conditions the actuator must, in the steady state, absorb exactly 
the moment applied by an external excitation. 

Alternatively for a lightly damped case where the motion associated with 
any mode is approximately sinusoidal Mo can be related to an initial displace
ment or velocity of the beam. For instance, referring to Eq. 1.4 if the 
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maximum midpoint displacement of a mode is 1, then 

e fl. ~ sin W T 
an n 

sel MAX 
~ [w ] 3/2 3 3 n 'If 
dn<1T n 

3 3 from which M==bn 'If , b normalized. 

NUMERICAL EXAMPLE 

Consider the American Standard S6x17.25 I-beam for which 

E 

p 

29 x 106 psi 

7.36 x 10-4 lb 2/, 4 sec In 

J 26.3 in4 

A 5.07 in 

Suppose the active damper applies a maximum moment of 20,000 in. lb. and that 
the length of the torque arm is 6 in., in this case equal to the depth of the 
beam, and that the wire is 0.375 inches in diameter of carbon steel with 
E = 29 x 10 psi. This gives a maximum stress of 30,193 psi which must be 
approximately doubled to prevent slack. 

If the initial displacement in the beam, which needs to be damped, is 
taken as that which results from a 50,000 psi max stress in the beam from the 
first mode shape, then the mode shape is given by 

y(x,O) C sin ( 6'1fO~ ) 

where C = 20.96 inches. 

from 
from 

2 
Since ElMAX = 0.1098 rad and 0 = 1.256/sec, wI = 'If 0 = 12.39 rad/sec, 

'vhich 0
MAX 

= 1.361 rad/sec. The maximum b allowed is 1.47 x 10 in.lb.sec. 
the relatlOnship1.361 b = 20,000. In normalized terms 

b b La 
EJ 0.0145 

This can be interpreted as adding a damping ratio of 1.45% to the low frequency 
modes and moving the "high" frequency modes to 

-0 
-2 
~ = -138 (normalized) -173/sec. 
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The "high" frequency modes in this case begin at about the 20th mode and are 
probably unimportant. However, the same wire and actuator could be used to 
provide much greater low frequency damping ratios if the amplitude of oscilla
tion were greatly less than 21 inches. 

SOME PRACTICAL CONSIDERATIONS 

Unfortunately, no real control system--measurement, computation, actuation 
--can realize a simple gain b at all frequencies. Fortunately, no real beam 
can realize zero damping at any frequency and as a rule that damping expressed 
as a damping ratio increases for higher modes. From root-locus arguments it is 
possible to conclude that as b realizes a phase lag at higher frequencies some 
of the loci will tend toward the imaginary axis--a generally undesirable 
situation. The,amount of motion toward the imaginary axis is reduced by the 
magnitude attenuation of b at higher frequencies. If the beam has no inherent 
or passively supplied damping the system would be unstable. Thus as a practical 
matter the actuator must have a "flat" frequency response up to a frequency at 
which the beam has a high inherent damping or the magnitude of b must be re
stricted by considerations of effects on high mode eigenvalues. 
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Figure 1. Block Diagram of Feedback Control System 

Table 1. Maximum Damping Ratio and 
Corresponding Value of b 
(Numerically Determined) 

IMAGINARY 

Mode,m 
1 
2 
3 
4 
5 
6 

10 

~m ,\\1AX 
0.289 
0.143 
0.0946 
0.0707 
0.0565 
0.0471 
0.0282 

b 

0.378 
0.201 
0.139 
0.107 
0.0866 
0.0784 
0.0441 

TORQUE ARM 

DISTURBANC E 
INPUT 

EQ. 2.8 

cos</>= b 

---4--~~~~REAL 

-2/b 

Figure 3. Eigenvalue Placement 
Asymtotic Values 

WIRE 

BEAM 

~-----------------I--------'----------~ 

Figure 4. Construction of Active Beam Damper 
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values of b.) 
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ABSTRACT 

The general dynamics of a shuttle supported tethered subsatellite sys
tem taking into account the longitudinal and three dimensional transverse vibra
tions is considered. It is noted that control of inherently unstable dynamics 
durin~1 retrieval of the subsatellite can be carried out by letting the rate of 
change of length depend on the state variables in an appropriate manner. Cdntrol 
laws using linear feedback of inplane state variables and nonlinear feedback of 
out-of-plane state variables are proposed. 

I NTRODUCTI ON 

Tether connected multibody systems have various potential applications. 
A description of these applications is given in a report l by the Preliminary de
sign Office of the Marshall Space Flight Center. A shuttle surported tethered 
subsatellite system similar to theSkyhook 2 proposed by the Smithsonian Institu
tion for low altitude scientific experiments is be'ing considered by NASA. To en
sure successful operation, analysts and control of the dynamics of the system 
durin~l deployment, stationkeeping and retrieval stages must be carried out. The 
general dynamics of tethered satellites is rather complex. The degrees of free
dom involved are: 
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a) three dimensional rotational motions, of the endbodies; 
b) three dimensional rotations of the tether; 
c) longitudinal oscillations of the tether; and 
d) three dimensional transverse vibrations. 

The major environmental effect in the case of shuttle supported systems is that 
due to the aerodynamic drag. A comparison of the models used in various investi
gations of the shuttle supported tethered subsatellite systems has been carried 
out by ~lisra and t1odi3. 

Control of the dynamics of the tethered subsatellite systems is likely 
to be carried out by using either a tension control law or a length rate law 
i.e., by letting either the tension in the tether or rate of change of its 
length to depend on the state variables in specific ways~ RUpp4 formulated a 
control procedure in which the tension was proportional to the actual and com
manded lengths and the length rate. However, only the rotation of the tether in 
the orbital plane was considered. Baker et al: and Bainum and Kumar 6 improved 
the control performance by choosing a superior set of gains. A simulation using 
a Rupp type control during deployment and retrieval was carried out by Kulla 7 . 
Although the transverse vibrations of the tether were included, the longitudinal 
oscillations and the out-of-plane motion of the system were ignored. Kalaghan et 
also analyzed the Skyhook system in detail, taking various environmental effects 
into account. The tether was not treated as a continlJum,but longitudinal oscil
lations were considered. Although References 7 and 8 incorporated certain vibra
tions in the dynamical models, the cdntrol laws had no vibration~l feedback. Du
ring retrieval and under certain circumstances during deployment the vibrations 
of the tether increase gradually indicating that appropriate vibrational feed
back must be used. The objective of this paper"is to do just that. 

DESCRIPTION OF THE SYSTEM 

The Shuttle/Tethered Subsatellite System is shown in Figure 1. The 
subsatellite having a mass m is supported by the shuttle through a tether hav~ 
ing a mass per unit length p~ and instantaneous nominal length L. The instan
taneous centre of mass S of ~he system may be assumed to coincide with the cen-Y 
tre of mass of the shuttle, since the mass of the subsatellite or the tether is 
very small compared to that of the shuttle. S can be located with respect to the 
centre of the Earth E by the radial distance Ro ' inclination iof the orbit to 
the equatorial plane, argument of the perigee 8 and true anomaly 8. The te
ther is nominally along the local vertical. The ~nstantaneous orien.tation of the 
line joining the two ends of the tether is defined by two rotations, roll yand 
pitch ex, in that order. The tether is stretched longitudinally due to the gravity 
gradient and aerodynamic drag. This longitudinal strain varies along the tether, 
but for short tethers, this variation is small. Since most of the problems in 
controlling the system are associated with short tether lengths during retrieval, 
it is assumed that the longitudinal strain is uniform and the instantaneous 
stretched length L~ given by 

L =L(l+E) (1) 
~ 
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The transverse vibrations u and v peroendicular to and in the plane of the orbit, 
respectively, are superposed on the stretched tetherline. These transverse vi
brations may be expanded in ser'ies form in terms of a set of admissible func'-
tions: 00 

00 

where 
<P k (L ,y) = /2 sin (k7ry /L ) 

It may be noted that <Pk is not invariant with time. 

(2a) 

(2b) 

(2c) 

The equations of motion corresponding to the generalized co-ordinates 
a. y, E, Ak, Bk; k = 1,2, ... 00, are obtained using a Lagrangian formulation.Line
arizi·ng the vioratory terms, but retaining the non-linearities in rotations which 
may be large, one gets a set of nonlinear equations with time dependent coeffi
cients. For example,' the equation for Bk degree of freedom is 
.. . . 
Bk + (L/L) Bk + [ook

2-oo 2 
_00

2 +(~/R3)(1-312 )] Bk xc ,yc 0 zc 
.. . 

+ I [(B -00 A )(L/L)(C k-Ck ) - (L/L)2 0 kB + (L/L) C kB ] n=1 n yc n n n n n n n 
. . . 

- 200 Ak - {oo ~oo 00 +(3~/R3)1 1 +(L/L)oo } Ak yc yc . zc xc 0 ~c xc yc 
. . 

- [OkL {(oo +00 00 -(3~/R3)1 1 )(I+E)+2oo ~} + 28 kL(I+E)ooX ] = Qbk/r L,(3) xc .yc zc 0 yc zc xc c t 

where ~, ok' ok' Cnk, DQk' wk, ooxc' ooy~' ooz~' 1xc ' 1yc ' 1zc ' are as d~fined in 
AppendIx A. Otner ~quatlons are also glven 1n Appendlx A. The generallzed forces 
are due to the atmospheric drag. The equations are nondimensionalized by chan
ging the independent variable from time t to true anomaly e, using a new set of 
vibrational variables 

and definihg a nondimensional length 
n = 1n(L/Lre f) , 

(4a) 

(4b) 

(4c) 

where Lref is an arbitrary reference length. Note that a, y, and E are nondimen
sional to start with. It was found convenient to use the final unstretched te
ther length as Lref .J-Eq.3 can now be rewritten as 
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"'II ~ I .~ II 2 I I I ~ 

Bk + (3n'-F) Bk + [wk+n +2n ' -Fn -(a +cy)2_(y sa-syca)2+G(1-3s 2ac2y)] Bk 
00 'I _ _ ~ 2 ~ ~ 

+,~ [{BJr+n'B.-(y'sa-syca) A.}(C·k-Ck·) n l 
- nIDjkBj+(nlltnI2-Fnl:) C·kB.] 

;:;,;1 J . J J J - J J 

- 2(y'sa-syca) Ak - [yllsa-2y 1 cacy.,.(3G+l)sasyCY+(3nl-F)(y lsa-syca)] Ak 

- ok [( l+E ){a ll -2y 1 syc 2a-F( a I +cy )+y I 2saca+( 3Gc2y-s 2y) saca}+2 (a I +cy} E I] 

+ 20k n'(l+E)(a'+cy) = Qbk (5) 

where F = 2 e s8 G 

G = (l+e C8)_1 

w2 = (Wk/rt2) {(1-e 2)3/(1+e C8)4} 
k 

rt = mean orbital rate 

e = eccentricity of the orbi t. 

Nondimensional equations corresponding to the other degrees of freedom are 
omitted here for brevity. Defining x as the state vector comprising of the gene
ralized co-ordinates and their derivatives, the equations of motion can be 
abbrevi ated as 

A Xl = f . (6) 
~ ~ 

If Ni and No are the number of admissible functions retained in the modelling of 
inplane and out-of-plane transverse vibrations, respectively, then there would 
be 2(3+r~i+No) elements in x. Note that!l is a square matrix dependent on x as 
well as dimensionless time~8 and f is a vector of rather lengthy nonlinear~ 
functions of x and 8. 

DYNAMICS AND CONTROL DURING RETRIEVAL OF THE SUBSATELLITE 

Deployment of the tethered subsatell i te to the requi red altitude and 
its subsequent retrieval can be carried out by either providing appropriate ten
sion in the tether or controlling the rotation of the tether feedout spool, 
thereby control 1 ing the rate of change of the undeformed length of the tether. 
The second approach is followed here, i.e., ql is specified. 

Deployment is basically a stable operation 3
• Hence, attention is fo

cused on the dynamics and control during retrieval. Figure 2 shows the out-of
plane por,tion of the uncontrolled retrieval dynamics using 

L = CL (7) 
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where c = -2xlO- 4 sec 1 (c = cxl0 4 = -2). The shuttle is in a polar orbit with 
its major axis 220 km larger than the earth's radius and having an eccentricity 
0.001. The mass of the subsatellite is 150 kg and that of the tether per unit 
length is 1.5 kg/km. One may note the growth of roll and transverse vibrations. 
Numerical integration was terminated when the displacements became too large. 

Clearly. some sort of control is required to eliminate the dynamical 
instability associated with retrieval of the subsatellite. It must be pointed 
out that it is not necessary to have stringent shape and attitude control during 
retrieval. The objective of a control procedure is to arrest the unlimited 
growth of the displacements and bound them to reasonable limits. For nonlinear 
systems having time varying coefficients, it is difficult to devise such a con
trol procedure. Hence, to gain some insight linearized system equations valid 
for zero eccentricity are examined, although subsequent numerical simulation is 
carried out without any approximation. Considering Ak and Bk degrees of free
dom one has 

A~" 3 1;1 ( "2121 ""2) "'A 00 [, I(C C )A~' {"C 12('1C C D )}r J k + n t-' k + n + n + +w k k \ ~ 1 n j k - k j j + n j k +n L j k - k r k j t-i j 

- ok(/+4y) -'- 26n ' y' = Q k (8a) 
k a 

~II ~I 2~2~ 00 ~I" 12 _ 

Bk + 3n'Bk +(n"+2n' +Wk)Bk +j~l[n'(Cjk-Ckj)Bj+{nCjk+n (2Cjk-Ckj-Dkj)}BjJ 

- 0k(a"+2E ' +3a) + 2okn'(a ' +E) = Qbk-2okn' (Sb) 

and 
~2 2 00 _I I~ 

+[wE+jJl(n"+n
l 

)JE - 2jJ2j~lOj(Bj+3n Bj) 

jJl = (ms+!2ptL)/(ms+1h PtL) 

- 2a ' Q + 3 + ( lit 12) = E 111 n n , 
(8c) 

where 

an d jJ2 = ptL/(ms+1/3PtL) 

Similar equations for a and yare omitted here for brevity. The presence of the 
terms 2okn' and n" in the right hand side of Eqs. (8b) and (Sc) ,respectively 
suggests that: inplane transverse vibrations and oscillations may be reduced by 
letting the length rate n

l 

depend linearly on transverse vibrational rate and 
longitudinal strain. However, no such term is present for out-of-plane vibra
tions and a nonlinear control law in conjunction with nonlinear equations must 
be cons ide recl for that case. Thi s concl us i on of 1 i near s ta te feedback of out
of-plane vibrations is parallel to the case of rotational control for which it 
has been shown 9 that nonlinear equations of motion must be considered and an ap-
propriate control law is 2 

I [ I I ] n = Ke l+Kaa +Kyy (9) 

where Ka and Ky are negative constants and Ke is, in general, a negative func
tion of e deflning the commanded or nominal retrieval rate. 

It may be noted that 'modal decoupl"ing' is possible only for a cons-' 
tant 'length tether (i.e., n'", 0), but not dur,ing retrieval. This is due to the 
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fact that there are no conventi onal normal modes for a tether having a time va
rying length and the modal co-ordinates (loosely termed) are coeffi cents of ad
missible functions which are time dependent. This coupling turns out to be use
ful due to the following: ok and hence 20kn' is zero for an even k and without 
coupling vibrational feedback to n' would have no effect (except of second or
der) on even modes. 

The length rate chosen 
form as Eq. (9) and is gi ven by 

n' 

to control the general dynamics is of similar 
T T 

= Ke [l+K;~i+~o~(~o)J (10) 

where ~i and ~o are the i np 1 ane and out-of-p 1 ane porti on of the state vector, K; 
and ~o are a set of gain vectors and 9 is a nonlinear vector function cf xo' -
There are no standard procedures to determine Ki and Ko' Here,they are chosen so 
that in approximated forms of Eq(8), the negative damplng due to negative n' is 
eliminated. 

The pitch and roll behaviour of the system during retrieval of the 
subsatellite usi~g 

n' = c(1-a'-9y'z) ,c = -2xlO- lt sec- 1 

JL 
( 11) 

is shown to be stable limit cycles in Reference 9. The vibrational behaviour 
using the same length rate is shown in Figure 3. The longitudinal oscillation 
grows rather fast and the transverse vibrations are building up slov/ly. Numeri'"' 
cal integration was stopped when the longitudinal oscillation became too large. 

Figure 4 shows the response of the system when the length ,rate is: 
T] = ~(1-Y'-9y,Z-KsE:) ,Ks=30, c=-2xlO- 4 sec- I ,'(12) 

.1L 
,Axial vibrations are more or less eliminated. The transverse displacements repre
sented by AI' Az' B1 , and Bz and the resultant transverse deflection of the mid
point of the tether denoted by R qlso are small towards the end of retrieval.The 
dimensionless modal' co-ordinates A ~ A , ~, , and § are bounded within reasona-, 
ble limits,although they have gro~n d6tin6 retrieGal. Using a length rate 

n l = c(1-a ' -9y,Z-Kb B') (1'3) 
A I 1 

with Kb =,10 and employing a viscous damper to provide a force proportional to 
the longitudinal strain rate)one obtains the system response shown in Figure 5. 
This response is very similar to that in Figure 4, except that the transverse 
vibrations are slightly smaller. The retrieval dynamics up to a tether length 
of 250 musing Eq.(12) is described in Figure 6. Ks is 30 for L>1.2km, but is 
300 for L<1.2km. It may be noted that the vibrations remain small up to the end 
of retrieval. 

CONCLUDING REMARKS 

The salient features of the analysis may be summarized as follows: 

(i) Control of longitudinal and transverse vibrations of a shuttle supported 
tethered system during its retrieval can be carried out by letting the 
length rate depend on the vibrational state variables. 

(ii) Linear feedback of inplane state variables and nonlinear feedback of out
of-plane state variables are used. 

(i i i) Several control procedures wi th reasonable success are proposed. 
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(iv) It is sU~lgested that some effort s.hould Qe directed towards developing sui
fable procedures for control of flex-ible systems where nonliriearities and time
dependence of system parameters cannot be ig-nored. 
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APPENDIX A 

Equati ons for Ak and E degrees of freedom are as follows: 
• • • • 00 • • 

Ak +(L/L)Ak +[w2
k-w2 -w

Z
2 +(lJ/ R6)(1-3,Q,2xc )]Ak +.~ [(AJ'+wYCBj)(Cjk-Ckj)(L/L) 

yc c J= 1 , 
• • • • 3 

-(L/L)2DjkA/(L/L)CjkAj] + 2wycBk +{Wyc+wxcwzc-(3lJ/Ro),Q,xc,Q,zc+(L/L)wyc}Bk 

(A-I) 
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'i + 211
1
(L/L)( +[w~+jJJL/L)]E; -[w~C+W~C-(11/R~)(1-3Q,~C) -l1(L/L)] 

co •• •• 

-2(112/L)k~lak[wXC{Bk+2(L/L)Bk} - wzc{Ak+2(L/L)Ak}] 
. 00 

-(1l2/L)[WXC-WYCWZC-(311/R~)Q,YCQ,ZC]k~lakAk = QE;/Q,2(m.s+ 1
/ 3 ftL) 

where 11 = gravitational constant of the earth 

11 = 
2 

(ms +~PtL) /(mS'+Y 3 PtL) 

ptL/(mS+1/3 PtL) 

/2( -1) k-l /kTI 

o for even k 

Wk = (kTI/L)2(EAE/pt) 

W! = EA/(ms +1/3 ptL)L 

W = a + eCY xc 

Wyc= ysa - 6syca 

Wzc= yca + 6sysa 

Q,xc= sr 

Q,yc = wcy 

Q,z;c= -sacy 

j 1- k 

j = k 

j 1- k 

j = k 

. Equations for a and yare given in Reference 9, 
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Figure.I. Geometry of motion. 

Figure 2. Typical out-of-plane response 
duririg uncontrolled retrieval. 
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ORBITING CHAINS AND RINGS 
J obn V. Breakwell 

Department of Aeronautics/Astronautics 
Stanford University 
Stanford, CA 94305 

ABSTRAcr 

This paper summarizes some recently published analyses of the hanging chain and 
the orbiting ring. 

1. INTRODUCTION 

This paper describes two very different. highly flexible. space structures which have 
been proposed during the last decade and which involve analytical solution of certain par
tial differential equations. 

The first structure is an array, or "hanging chain" of aluminum beads [1] which would 
serve as a convenient communicator (see Fig. 1) if. under the influence of the earth's grav
ity gradient, it assumes a local vertical orientation as it circles the earth. The analysis for 
small deviations from vertical uses a continuous-chain model, and pitch and roll frequen
cies and mode shapes are readily obtained. Except for the lower, rigid, modes, damping is 
provided by fluid in the joints (see Fig. 2) between the aluminum beads. Two passive 
schemes have been proposed for damping the rigid modes: (i) twist the wire at theenuS10 
provide non-zero moment of inertia about the vertical [1], thereby inducing relative 
motion of the two Ups during rigid pitch or roll, and thus exercising a damper; (U) intro
duce weak lossy springs [2] between the end sections and the main section; thereby pro
viding linear coupling between the springs and all the in-plane (pitch) modes. Damping of 
the rigid roll is achieved by tuning the spring constant so that one of the in-plane combi
nation modes has frequency 4 times orbital frequency. Nonlinear coupling then provi.des 
slow energy transfer back and forth between rigid roll and the particular in-plane combi
nation mode, and hence, eventually, damping of the rigid roll. 

The second structure, for some future generation(!), is a complete ring of satellites 
cabled together at synchronous altitude [3]. By a slight increase in altitude, the cable is 
in tension. This configuration is, however, unstable, and an active feedback control 
scheme is required to stabilize it. A possible scheme [3] involves local cable length adjust
ment based on measurement of local altitude and shape variations and their rates. 
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2. THE HANGING CHAIN 

For launch, the array is coiled in a container. Deployment consists in driving the 
array out of the container, one end first. If the scattering elements were supported by a 
wire, the array would retain an unacceptable residual curvature. A freely jointed, bead
chain construction, on the other hand, would rely on the rather weak gravity gradient at 
synchronous altitude for straightening. Some inaccuracy, however, in deployment could 
result in an initially tumbling motion, and as this tumbling motion is slowed by damping 
(see later), there will be periods of compression rather than tension in the chain (see Fig. 
3), which could result in the chain tying itself into knots. A happy compromise consists in 
a support structure of about 100 sections of relatively stiff wire connected by joints that 
are free up to about 3° of motion (see Fig. 2). Residual curvature of the sections is now 
tolerable, and knotting is impossible. Gravity gradient and damping can be relied upon to 
align and straighten the array. 

Modeling the chain as a perfectly flexible cable of length L and linear density a, the 
tension in a vertical equilibrium position is: 

(1) 

where n is the (constant) orbital angular rate. 

Adopting the coordinate system of Fig. 4 and a dimensionless independent variable, 
~ = 2x I L , the partial differential equations of motion become: 

(2) 

The mode-shapes are Legendre polynomials: 

and the frequencies are given by: 

(3) 
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Damping in the joints may be represented by small additions to the equations of 
motion. In-plane, for example: 

(4) 

where rJ is 2l small dimensionless damping parameter, and the rate of energy loss in the 
lth mode is approximately 

providing damping of all but the rigid mode: l = 1 . 

The first passive scheme proposed [lJ for damping the rigid pitch and roll modes is 
illust.rated in Figs. 5, 6 and 7. For a chain of length 150 m and "tip inertias" of radius 5 m, 

it wa.s estima.ted that in-plane libration could be decreased by a factor 2 in 5 ~ days, and 

out-of-plane libration a little faster. 

The second passive scheme requires the tuning of springs inserted between the end 
portions of the chain and the main portion. The spring constants must be adjusted so that 
one of the odd in-plane combination modes has frequency at or close to twice that of rigid 
roll, i.e., 4l:ITnes orbital frequency n. This provides for a slow interchange of energy 
between the rigid roll and the particular in-plane mode. The necessity for choosing an odd 
rather than an even in-plane mode. The necessity for choosing an odd rather than an even 
in-plane mode arises from the requirement that the two springs act together rather than 
in opposition. It was estimated that, if the time-constant of the in-plane mode was 10 
days, due to energy loss either in the spring or in the cable joints, a 2 1/2% mismatch to 
the frequency 4n could still reduce a rigid roll amplitude from 30° (unacceptable) to 4° 
(acceptable?) in about 60 days. 

3. TIlE: ORBITING RING 

Treating the ring [3] as a continuous, perfectly flexible, chain with longitudinal elasti
city in circular orbit at radius R about a spherical planet, the equilibrium tension is: 

(5) 

proportional to the difference between centrifugal and gravitational acceleration. The ten
sion in a displaced pOSition is: 
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a(l\s) = 
oex 

(6) 

where ex is the angular position of an element of the ring. Introducing two non
dimensional parameters: 

(7) 

typically much less than unity, and 

(8) 

typically much greater than unity, and the non-dimensional time: 

r = nt , (9) 

the equations of motion are: 

Modal solutions have x ,y ,2 proportional to e i (mCl+Om,7') , m being an integer, yield
ing the following characteristic equations: 

( 10) 

arising from the in-plane coupled x ,y equations, and 
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(11) 

arising from the out-of-plane z equation. 

The ring ils unstable unless both characteristic equations lead to real. distinct, values 
of Om. , for each m ~ O. The out-of-plane motion is thus clearly linearly stable. 

In the limiting case (CJf = 00) of the inextensible ring, the in-plane characteristic 

equation for m = 1 yields 0 1 = 1 ± j ~i:7 , leading to instability, corresponding in 

fact [3] to a growing rigid translation out of position. Numerical investigation of the exten
sible case, CJil < 00 , revealed that, although the mode m = 1 could become stable in the 
unlikely case that CJf were sufficiently small in comparison to CJ2, some other mode 
would always go unstable. 

Stability for m = 1 is, moreover, impossible when elastic damping is taken into 
account. To see this, we replace k by k (1+(3j 0 1) , where (3 is real and positive, and 
hence CJf by j (3K(01-j / (3) ,where K is the undamped value of CJf. A typical root-locus 
vs K, for fixed (3 greater than zero, is sketched in Fig. 8. Since one branch immediately 
enters the lower half Ol_plane, instability occurs for all K> 0 . 

It has been shown [3] that, at least for CJf» 1 and CJ2« 1 , the following control law 
stabilizes all modes: 

T = To + k (x + Ya - u) (12) 

u being a local cable length change, given by: 

(13) 

where the Laplace variable s indicates differentiation w.r.t. time. Indeed, the resulting 
chara.cteristic equation takes the form: 

(14) 

where 
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(15) 

and where the polynomials 6i (Om) have zeros as indicated in Fig. 9. Since the zeros of 
~(Om) , like those of 6s(Om), always separate those of ~(Om)' the root-locus vs A has 

all branches entering the upper half Om-plane as soon as A > 0 , and some damping of all 
modes is assured. 

It is interesting to note that the system is not completely controllable: an initial error 
in total ring angular momentum cannot be removed. Nevertheless, the control law (13), 
applied to the "uniform" mode m = 0 , removes the angular error y of all points of the 
ring by adjusting the cable length and hence the radial increment x. 
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Fig. 5 Array of inertial tips. 
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HARDWARE VERIFICATION OF 
DISTRIBUTED / ADAPTIVE CONTROL 

Daniel B. Eldred and David B. Schaechter 
Jet Propulsion Laboratory 

California Institute of Technology 
Pasadena, CA 91109 

ABSTRACT 

Adaptive control techniques are being studied for their future application 
to the control of large space structures, where uncertain or changing para
meters may destabilize standard control system designs. The approach used in 
this paper is to examine an extended Kalman filter estimator, in which the 
state vector is· augmented with the unknown parameters. The associated Ricatti 
equation is linearized about the case of exact knowledge of the parameters. 
By assuming that parameter variations occur slowly, the filter complexity is 
reduced further yet. Simulations on a two degree-of-freedom oscillator 
demonstrate the parameter-tracking capability of the filter, and an implemen
tation on the JPL Flexible Beam Facility using an incorrect model shows the 
adaptive filter/optimal control to be stable wher~ a standard Kalman fi1ter/ 
optimal control design is unstable. 

INTRODUCTION 

This paper contains the derivation of a simplified, state space adaptive 
filter/controller, which can be used in real time to adapt to changing or 
uncertain dynamic models. The application of the simplified extended Kalman 
filter approa.ch to a two degree-of-freedom oscillator is compared to the more 
comp1E~x complete extended Kalman filter. It will be seen that the simplified 
filter compares quite well with the full order filter. In addition, the 
simplified filter has been implemented on an experimental facility consisting 
of a large, flexible hanging beam. Experiments on the facility show that the 
adaptive filter/optimal control can stabilize a system whereas the Kalman 
filter/optimal control destabilizes it, if the system model is incorrect. 

As usual, the problem formulation begins with a dynamic system in state 
variable format 

x Fx + Gu + fw 

z Hx + v 

In the case that the dynamic system in (1) is precisely known, a state 
estimator of the following form may be constructed . 

. 
A 

x 
A A 

Fx + Gu + K(z - Hx) 
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Optimal estimator gains K ma~)e selected b:t: minimizing the trace of the 
estimate error covariance, P = E(xxT). Letting x = x-~, differencing (1) and 
(2) gives 

x = (F - KH)x + rw - Kv 

then 

. 
P 

"'~T ! T 
E(xx ) + E(xx ) (F-KH)P + P(F_KH)T + fQfT + KRKT 

Picking K to minimize the trace of the estimate error covariance gives the 
usual result 

. 
P 

(3 ) 

(4) 

(5) 

Notice that for the case of a precisely known dynamic system, the estimator 
gain may be precomputed, even in the event of a time varying system. The 
analysis used in the case of unknown system parameters closely parallels the 
preceding development. 

Adaptive Control Formulation 

Adaptive control may be required in the case that the model in (1) is 
unknown, uncertain, or dependent upon the system configuration. The modifica
tions that need to be made in (1) in order to include the effects of an uncertain 
parameter are given below 

~ F(a)x + G(a)u + rw 

a (6) 

z=Hx+v 

As can be seen from (6), the system dynamics are now a function of the 
vector of parameters, a. Furthermore. these parameters are assumed to be 
randomly varying constants, so that they may be adjoined to the state vector. 
An adaptive state estimator may now be written as 

x . 
~ 

a 

F(a)x + G(a)u + K (z x 

K (z 
a 

Hx) 
(7) 

Hx) 

Now, both the state vector and the vector of parameters is updated using the 
measurements. Determination of the adaptive gains ~ and Ka still remains. 
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Proceeding as before, and assuming a = a - a is small 

! ~ ClF A ClG -
x (F (a) ~H)x + (~x + F U ) a + fw ~- Kv 

x 
a a 

!. 

a K H x 
+w ~- K v a z a 

An optimal choice of gains may be selected by minimizing the trace of the 
estimate error covariance. 

and 

• p 
x 

p 
ax 

T 

= 

aF A aG j (F x + F u) 
a a 

o lp P J x ax 

P P 
ax a 

p 
a 

~x :~J 
FT 0 

+ aF'" aG'" T 
Pax (F x + F u) 0 

a a 

+ ~ :J ~ :J ~T :1 
i' [H 0] T -1 [H 0] .p P P R 

x ax x 

p P P 
ax a ax 

(8) 

(9) 

P 
T 

ax 

P 
a 

In addition to the increased dimension of (9) over (5), the feature that 
distinguishes these two cases is the appearance of x term in (9), x is the 
estimate of the state, and therefore cannot be known a priori. Therefore. 
both the state estimator and the augmented order matrix Riccati equation must 
be solved in real time in order to implement the extended Kalman filter, On 
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line solution of the matrix differential equation tremendously increases the 
required computation. Several approximations will be made in an attempt to 
reduce this computational complexity. 

Extended Kalman Filter Approximation (EKF) 

In the case when there are no uncertain parameters (and. of course, under 
suitable observability conditions), the estimator gains tend to a steady state 
value. A reasonable choice for simplifying the EKF is to linearize the solution 
about the case of perfectly known parameters. Toward this end, it will be 
assumed that P = Po + sPl + s2P2 "', where Po is a constant matrix and S is 
a small parameter, and that the process noise driving the parameters has a 
spectral density Qa of order 8 2 In the limiting case, for 8 = 0, the solution 
reduces to the familiar steady state gains for a perfectly known system. 
Letting 

F x 
a 

'iF "G a x+_o-u 
d ~ d A • 

a a 

expanding (9) and coll~cting like powers or 8 gives the following intermediate 
results: 

zeroth order 

0 FP + P FT + F ~ P + P 
T (F ;)T + rQrT _ P HTR-1HP = x x a ax ax a x x (lOa) 

0 0 0 0 0 0 

0 = P FT + P (F ~)T P HTR-1HP 
ax a a ax x 

(lOb) 
0 0 0 0 

0 P HTR-~ T 
= 

ax ax" 
(lOc) 

0 0 

first order 

(lla) 

• FT + P (F ~)T HTR-~ P ... P P axl axl al a ax xl 0 
(llb) 

. HTR-1HP T HTR-~ T P .. -p p al ax axl aXl ax 0 0 

(llc) 
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From (10c), Paxq = O. Using this result in (lOb) gives P a = O. 
Using both these results ln (lOa) gives the familiar steady state re~u1ts for 
a plant with known parameters, as was expected. The results obtained from (10) 
can now be used to simplify (11). A summary of the simplified results is 
given below: 

where 

o = FP 

CI = P 

(} = p 

x o 

ax 
0 

a 
0 

zeroth order 

+ P FT + rQrT _ P HTR-1HP 
Xo Xo Xo 

first order 

" T" T 
+ P (F-K H)T + (F x)P +P (F x) 

X X a aX1 ax1 a 
"l • 0 

• l? = 0 • 
a1 

(12a) 

(l2b) 

(12c) 

(13a) 

(Ub) 

(Be) 

ENen after simplification. (12) and (13) require an on line integration 
of a matrix equation in order to generate the adaptive gains. A further 
simpli.fication that can be made (and later be verified with simulation) is to 
assume the derivatives on the left hand side of (13) are identically zero. 
This allows for computation of the adaptive gains in terms of the current value 
of the state using a simple matrix multiplication. rather than a matrix 
integration. The final results of this simplification are shown in (14) 
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Adaptive Control Simulation 

(14) 

The extended Kalman Filter (EKF) and the approximation to the EKF derived 
in the previous simulation are compared using a simplified model for the 
computer simulation. The model used is shown below. 

M 

The equations of motion are: 

mX2 

k 

m 

I-----IO--"'t-_..J 
b 

The simulation consists of modeling the system shown in the previous 
schematic by simply: 

M 
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At t := 2 on the computer generated c.harts shown in Figures 1-6, a step change 
in the natural frequenc.y from 1. 0 to 1. 25; i. e. at 25% error in natural 
frequency is made. The adaptive filters are supposed to detect this error 
in the presence of process noise wI. a truncated mode, and measurement noise 
in the position of M. Virtually indistinguishable results are obtained for 
the estimator using the full EKF, VB. the estimator using the simplified EKF. 
On the computer charts, true values are shown by solid lines. and dashed lines 
show the corresponding estimated value. 
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The JPL Flexible Beam Facility 

Figure 4. Adaptive 
Filter 

Figure 5. Adaptive 
Filter 

Figure 6. Adaptive 
Filter 

A facility has been constructed to experimentally validate a variety of 
control technologies associated with large, flexible space structures and to 
gain insight into their implementation. To date, Kalman filter/optimal control. 
distributed control, and static figure control have been demonstrated using the 
Flexible Beam. 
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The facility consists of a 12-1/2 foot long, by 6 inch wide, by 1/32 inch 
thick, hanging stainless steel beam. A large tower was constructed for the 
sole purpose of supporting the beam and isolating it from vibrations in the 
ground. Sensing with a range of + 1 inch is performed by up to four eddy 
current sensors, and actuation is-by three D.C. brushless motors capable of 
output.ting 5 ounces to the beam. 

All control functions are handled by a SYM microcomputer, which uses a 
6502 microprocessor operating at 1 megahertz. Four l2-bit digita1-to-analog 
converters on two circuit boards allow interfacing between the microcomputer 
and the sensors and actuators. In addition, a 9511 floating-point arithmetic 
processor performs the mathematical computations associated with digital 
filtering. Previously, computations were performed in software using two-byte 
fixed point precision; the 9511 executes four-byte floating point precision 
calculations in approximately 1/5 the time, allowing the implementation of more 
complex control laws. 

Additional features of the facility include an ASCII keyboard, a video 
moniter, and a small printer. The microcomputer features an advanced moniter, 
for machine language debugging; an editor-assembler, for program development; 
and BASIC, which provides the interface between the user and machine language 
programs. Commonly used routines are stored on either erasable, programmable 
read-only memories (EPROMS), or digitally on inexpensive audio cassettes. 

-== 
HINGED 
-FREE 
FLEX I BLE 
BEAM 

201----1.1 

CRANE CARRIAGE 
FOR HOISTINGI 
LOWERING OF 
BEAMITOWER 

Figure 7. The JPL Flexible Beam Facility 
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A general purpose machine - language program has been written for the 
purpose of implementing control algorithms, Due to the predominance of 
matrices in digital control design, the program treats matrices as the primary 
data type. Single instructions allow matrices to be multiplied, added, stored, 
or recalled from memory. Additional instructions sample sensors, output 
controls, or set a timer (to maintain a constant control loop time). Every 
effort has been made to make the program fast and easy to use. 

Additional documentation of the facility can be found in the references. 

Beam Analysis 

An exact solution to the partial differential equation for the beam 

,,2 ,,2 2 
a ( ) + a (EI~) --2- y x,t --2- 2 
dt dX dX 

d (pg (JI,-x) dY) 
dX dX 

f (x) (16) 

was unobtainable due to the presence of gravity. An approximation scheme, where
by the mode shapes were assumed to be a superposition of beam modes and hanging
chain modes, yielded the correct eigenvalues only approximately. A finite 
element model was therefore developed to obtain normal mode frequencies and mode 
shapes. From Table 2, it is clear that the predicted eigenvalues are very close 
to their experimental values. 

Variable Value Description __________ .. __ .. _ ... _________ J....~ ___ , 

P 

EI 

Table 1. Beam Parameters 

n Finite 

0 

1 

2 

3 

4 

5 

149.875 in. 

.6444 Ib/ft 

424,352 1b_in2 

Element Model 

.308 Hz 

.755 

1.38 

2.21 

3.24 

4.47 

Table 2. Normal Mode Frequencies 
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Beam Length 

Linear Density 

Beam Stiffness 

Experimental 

.34 

.75 

1.37 

2.15 

3.16 

4.38 



Implementation of Adaptive Estimation/Control 

A three mode (six state), plus the highest frequency, adaptive filter/ 
controller using one sensor and one actuator (at the lower end of the beam) 
was developed for experimental testing. A digital implementation of (7) should 
take into account the time delays associated with discrete-time sampling and 
actuation, (in this case, .030 sec). An attempt to derive a digital analog 
of (7) proved fruitless; instead, the filter gain Kx was obtained from a 
discrete Kalman filter analysis and the simple approximation 

A 

a
1
.+l = a. + K (z. - HX.)8T 

1 all 
(17) 

was made for the parameter updating. Since parameter variations are very slow 
compared to system response (by assumption), this approximation should not 
present any problems. In addition. the control gains were obtained from a 
discrete optimal control analysis. 

The following plots show the beam response to an impulse at its lower end, 
and the control effort exerted, for the adaptive estimator/optimal control and 
the Kalman filter/optimal control. In one case. the assumed model is the 
correct model, and the other case, the third eig~nvalue was intentionally 
made 20% too large to reflect an uncertain model. A discussion of each plot 
is included. 

SUMMARY AND CONCLUSIONS 

Although in theory, the extended Kalman filter is quite complex to 
imple~ent in real time, this paper has shown that suitable apprOXimations can 
make implementation quite tractable, while at the same time yielding excellent 
results. Of course, the virtues of adaptive estimators/control must be weighed 
against the extra computation time required; however, if the system is evolving 
in time or the model is inaccurate, then an adaptive estimator/controller is 
ideal. 
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Figure 8. Natural Structural Damping 

An impulse was applied to the beam and 
the resulting open-loop response 
recorded. Note the. light structural 
damping which is characteristic of 
large. flexible space structures. The 
slight displacement offset of the beam 
is caused by a slight curvature (due 
to hard use). 

Figure 9. Kalman Filter/Optimal 
Control 

In this case. a six-state Kalman 
filter/optimal control was switched 
on immediately following the impulse. 
The resulting closed-loop response 
damps out much more rapidly than the 
open loop system. Residual oscilla
tions are due to the unmodeled 2.2 Hz 
mode. The particular Kalman filter/ 
optimal control design has the best 
performance of any tried to date. 
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Figure 10. Adaptive Filter/Optimal 
Control 

The Kalman filter was replaced by an 
adaptive filter which estimates the 
third modal frequency in addition to 
the state. Since the initial model 
was exact, the beam response is 
virtually identical to the Kalman 
filter/optimal control response . 

Figure 11. Kalman Filter/Optimal 
Control with Model Error 

The initial value for the third 
eigenvalue was set 20% too large, 
The Kalman filter/optimal control 
design cannot cope with the erroneous 
model and the system goes unstable. 



'-:--c-l--'---j ... - .---~--- ~- "- .. 
BEAM RESPONSE 

-----'-----I. ----'--;--:----:--'-:--,-+--,-__ -1. ______________ _ 

.. ----.-~ ._-----_._-_._----;. 

-.----.-~-~--~--.- -------;----

350 

Figure 12. Adaptive Filter/Optimal 
Control with Model Error 

Again, the initial value of the third 
eigenvalue was 20% too large. Unlike 
the Kalman filter/optimal control, 
which was unstable, the adaptive filter 
effectively damps the system after an 
initial identification period. 

Figure 13. Memory Effect of the 
Adaptive Filter 

Once the model has been correctly 
identified, the closed loop response 
is virtually identical to that using 
the correct model initially . 



SOME REMARKS ON TH[E CURRENT STATUS OF THE 
COINTR~OL THEORY OF SINGLE SPACE DIMENSION 

HYPERBOLIC SYSTEMS* 
D.L Russell** 

Department of Mathematics, University of Wisconsin 
Madison, WI 53706 

ABSTRACT 

We review various aspects of the control theory of hyperbolic systems, 

including controllability, stabilization, control canonical form theory, etc. To 

allow a unified and not excessively technical treatment, we restrict attention 

to the case of a single space variable; the multi-dimensional case is treated in 

our more extensive review [36]. The paper concludes with a short discussion 

of the newly developed procedure of canonical augmentation. 

SOME ASPECTS OF THE CONTROL THEORY OF THE WAVE EQUATION 
AND RElATED SYSTEMS 

The systematic study of control systems governed by partial differential 

equations, a special, but exceptionally important, subcategory of distributed 

parameter systems began in the early 19601 s with the work of the Soviet 

scientists A. G. Butkovskii [ 3], [4], Yu. V. Egorov [11] and others. These 

works were primarily concerned with the extension of Pontyagin l s Maximum 

Principle [26] to certain classes of processes which could not be satisfactorily 

modelled by finite dimensional mathematical systems. Controllability questions, 

were raised but were usually subsidiary to questions of optimality. One of the 

first systematic controllability studles, in connection with the heat equation, 

was presented by Gal' chuk in [14]. One of the most important of the early 

AmerJlcan contributions to the subject was the 1963 thesis of Fattorini [13] , 

which also treated parabolic systems and was one of the first works to 

reco~Jnize the strong relationship between distributed parameter control studies 

>:< 
Supported jln part by the Air Force Office of Scientific Research under Grant: 

AFOSR 79-0018. 
>'< >'< 
.. Also associated with Mathematics Research Center, University of Wisconsin, 

Madison. 
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and classical results in analytic function theory. 

The author's own interest in distributed parameter control theory arose 

out of consulting experience with Honeywell, Inc., and NASA, starting around 

1965 or 1966. In developing the Saturn launch vehicle for the Apollo program, 

NASA has encountered the problem of transverse vibrations of the booster 

structure and interaction of those vibrations with liquid sloshing modes in the 

immense Saturn fuel tanks. While the eventual treatment of that problem was 

based on finite modal approximations, the problem stimulated a great deal of 

research aimed at an understanding of the control of vibrations in various 

distributed parameter settings. 

First looking at this problem, under Honeywell-NASA auspices, we 

thought of modelling the booster structure as an "Euler" beam, the displacement 

w (x, t), which we may take to be scalar here, satisfying 

Flw f/ a2w p (x) --2 + ---z (EI (x) -::-z ) = 0 (1. 1) 
at ax ax 

along with appropriate boundary conditions including the control inputs, at the 

longitudinal extremities x = 0, x = L • We got nowhere with our study of 

this problem initially because the equation (1. 1) is not particularly well 

understood from the mathematical standpoint. There seemed to be no "handles" 

to grasp. It would not be until the 1969 thesis of Quinn [27] that we would 

understand how this system works and that it is, in fact, controllable in a 

rather strong sense. 

We knew about the control theory of ordinary differential equations from 

various papers and from notes and lectures which would later be incorporated 

into the 1967 treatise on control theory by Lee and Markus [20]. We also 

knew that hyperbolic partial differential equations in two independent variables 

reduce to ordinary differential equations satisfied along the characteristics. It 

was natural, therefore, to look for hyperbolic models which might fit our purpose. 

Such was provided by the Timoshenko beam equations 

I (x) a
2

2
tV - k(x) (2Y. -tj;) - .2-. (EI(x) ~) = 0 (1.2) 

P at ax ax ax 

2 
p (x) 4- - :x (k(x)( ~i - tj;» = 0, (1.3) 

at 

which may be viewed as two .coupled wave equations. By "wave equations" 

here, we mean the equation 
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a2z a az r (x) ~ - ax (s (x) - ) = o. 
atG ax 

(1.4) 

All cOE~fficient functions shown in (1.2), (1.3), (1.4) are positive on O::SX S 1. 

It may be veri.fied that (1.2), (1.3) a.nd (1.4) are hyperbolic in the sense 

described in [8], [25] , e. g. . Si.nce (1.4) is conceptually simpler, it was 

studied first, with accompanying boundary conditions 

z(O,t) = 0 

az ax (1, t ) = u ( t ) , 

the latter incorporating the control force u (t) • 

(1. 5) 

(1. 6) 

While the practical goal in mi.nd was appropriate form of stabilization, 

we knHw that in the case of finite dimensional systems . 
x = Ax + Bu 

an affi.rmative resolution of the controllability problem, steering from a given 

x(O) = Xo to a given x(T) = xl' implied the property of stabilization; hence 

we felt justifi,ed in first looking at the state to state controllability problem for 

(1.4), (1.5), (1. 6). The "energy" form for (1. 4) 1s 

8z 1 f1 8z 2 az 2 
e(z, "ht ) = 2" 0 r(x)(llt" (x,t» + s(x)( ax (x,t» dx. (1. 7) 

Given initial and terminal states 

8z Z(X,O) = ZO(x) , at (x, O) = yo(x} (1. 8) 

8z 
z(x,T) = zl(x), 8't(x,T) = YI(x) (1.9) 

of finite ener~w, i. e. 

exists u E: L2[ 0, T] 

e(zO' vO) < co, e(zl' VI) < co, we asked if there 

for which the solution of (1. 4), (1.5), (1. 6) correspond-

ing to the init.ial state (1. 8). assumes the desired terminal state (1. 9) at time 

t = T. The answer, a qualified "yes", came from two different approaches to 

the problem. The relationship between these two approaches has, over the 

years, grown ever more fundamental and has led to a great many very interesting 

developments. See [34] and [45] in particular. 

The first method explored was, as we have already indicated, the method 

of cha:racteristic s. If we let 
,....... ........... -

c (x) = J ~ (1.10) rex) 
and consider families X+, X- of "characteristic" curves satisfying 
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x = 0 

dx + dx-
""'dt + c (x) = 0, ~ - c (x) = 0, (1. 11) 

respectively, and then set 

+ 8z 8z v (x, t) = ~t ( x, t) + c (x) ax (x, t ) , 

- 8z 8z v (x, t) = at (x, t) - c (x) ax (x, t) , 

we see readily that on X+ = {(x + (t), t)} , X- = {(x - (t), t)}, respectively, 

we have 

t=T<2T
l 

(x, t) .... , 
-.". " 

+ -
3t v+(x+(t), t) = c'(x+(t» v (x+(t),t

2
) - v (x+(t),t) (1.12) 

+ -d,~ v-(x- (t), t) = c'(x- (t» v (x- (t),~) - v (x- (t), t) (1.13) 

t = t> 2T1 

x= 0 

t = T = 2T1 
~l X- (L, 'I') 

x=o 

1 

p 

Ao '\ 
\ 

--"-

" t = 0 x=L t = 0 x= L t = 0 x= L 

Fig. 1.1: The Method of Characteristics 
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Because these differential equations are satisfied on different families of 
characteristics, the coupling between them is more complicated than for the 

usual system of ordinary differential equations. Nevertheless there is a method 

of successive approximations, described in [30], [36], which enables solution 

of these equations in certain regions provided with appropriate boundary data. 

Such a region is the roughly triangular domain Ao shown in Fig. 1.1, bounded 

by t = 0, X = 0 and the characteristic X+ (L, 0 ), of the first family 

described by (1. ll), pas sing through the point (L, 0). Together with the 

boundary data provided by (1.5) and (lo 8), it may be seen that the differential 

equations (1. 12), (1. 13) determine v + and v -, and hence z (x, t ), through-

out th~9 domain Ao. Similarly, the se equations together with the data 

provided by {lo 5). and (1. 9) determine z (x, t) in the domain A 1 bounded 

by X = 0, t = T and the characteristic curve X- (L, T ), described by the 

second equation in (1.11) and passing through the point (L, T). Thus the 

initial and terminal states, described by (1. 8), (1. 9), together with the 

boundary condition (1. 5) determine z (x, t) in both AO and AI. 

Whether AO and Al are diSjoint, or have a region, °0 , of over

lap, depends on the time T allotted for control. The time required for the 

curve X+(O, L) to pass from X = L to X = 0 is 

JL dx 
T 1 = 0 c (x) (1. 14) 

and this is also the time required for X- ( L, T) to pas s from x = 0 to x = L. 

We summarize the control situation, depending on the relationship between T 

and T 1 • 

Case T < 2~: Here AO and Al overlap and the determinations of 

z (x, t) in the overlap region 00= 1.10 U Al provided by (1.8) and (1. 9) need 

not and, in general, will not agree. There can, in such cases of disagreement, 

be no solution of (1. 4), equivalently (1.12), (1. 13), in the region 

Rr = {(x, t) 1 0 :::; x :::; L, 0:::; t :::; T }. The control function u (t), shown in 

(1. 6), never enters the picture because it cannot affect the solution of (1. 4) in 

AO or Al if (1.8), (1.9) are satisfied at t = 0, t= T, respectively. 

Case T = 2T. Here the two "domains of determinacy", AO and AI' 

just felil to overlap; their boundaries have exactly one point in common, t = Tl , 

x = O. The initial and terminal conditions (1.8) and (1.9) determine z (x, t) 

respectively. Another process of integration of the coupled 
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differential equations (1. 12) and (1. 13) permits unique extension of z(x, t), 
+ -equivalently v (x, t), v (x, t), into the domain n. The control steering 

(1. 8) to (1. 9) is then uniquely determined from this extension and (1. 6). 

The determinations of z( x, t) in AO and Al may fail to match 

smoothly at the point p: x = 0, t = Tl . This results in discontinuities of 

v + along X+ ( L, 0) and of v - along X- (L, T ) in general. 

Case T :> 2T. The only difference between this case and the case 

T = 2Tl lies in the line segment P.: x = 0, Tl < t < T - T l' which replaces 

the pOint p of the case T = 2Tl . Extension of z (x, t) from Aa U Al 

into n cannot be carried out until the boundary condition (1. 5), which 

yields ~z/~t (0, t) = 0, is augmented by arbitrary data 

~~ (0, t) = ( t ) , ( 0, t) € 1. • (1. 15) 

Once this is done, extension of z (x, t ) into n proceeds much as before. 

(See [30], [36] for details of the extension process. ) The arbitrary 

function ( (t) can be designed so as to eliminate discontinuities of the 

solution along X+ (L, 0 ) and X- ( L, T ), to satisfy some criterion of 

optimality (see [30] e. g.) or to fulfill any other appropriate design objective. 

If the partial differential equation (1. 4) is combined with boundary 

conditions different from (1. 5), (1. 6), but still admissible for (1. 4), the 

cases T < 2T1, T:> 2Tl remain as above. The rather delicate situation 

at T = 2T 1 depends on the specific form of the boundary conditions. For 

example, the boundary conditions 

z ( 0, t) = 0, z (L, t) = u (t ) 

lead, in case T = 2T l' to a situation where the desired control is not unique; 

it has the form 
A '" u(t) = u(t) + "(u(t) 

'" where u (t) is a non-zero control steering the zero initial state into the zero 

final state and "{ is an arbitrary constant. By contrast, the boundary 

conditions 

~~(O,t)=o, ~~(l,t)=u(t) (1.16) 

lead, in case T = 2T l' to a situation where the desired control u (t) does 

not, in general, exist. (See [31], [37] for more details.) 

The analysis of more complicated systems of hyperbolic equations, such 
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as the Timoshenko system (1. 2), (1.:3), is in general rather complicated but 

there are some special cases, including appropriate boundary conditions, for 

which the analysis is fairly simple. In [M] a discussion is given permitting 

analysis of the free boundary case 

a tP _ 2.l.-ax (0, t) - 0, tP (0, t) - ax (0, t) - 0, (1. 17) 

atP !z ax (L,t) = ul(t), tP (L,t) - ax (L,t) = u2(t) • (1.18) 

It may be shown that all cross-coupl.ing is of low order and the problem is 

essentially equivalent to two problems (1.4) with boundary conditions (1.16). 

Two critical times are involved. With (cf. (l. 14}) 
1 

EI (x) 2" 
cl(x) = ( Ip(x») , 

1 
~2 c 2(X)=(p(x») , 

it may be shown that finite energy states are controllable if and only if 

T 2: 2 max {T l' T 2} • 

(1. 19) 

(1. 20) 

The essential details of the analysis are given in [30] and are quite similar 

to what we have briefly outlined here for (1. 4), (1. 5), (1. 6) . 

It is i.mmediately clear that the method of characteristics is specially 

adapted to controls u (t) acting at a point, as in (1. 6). This is true 

because the control determination occurs at the very last stage of the analysis, 

after the controlled solution has been computed. If the control u (t), itself 

scalar, acts on the system through a "control distribution function" g (x), as 

in (cf. (1. 4» 
a2z a az r (x) - - - (s (x) -) = g (x) u (t) , 
at2 ax ax 

(I. 21) 

homogeneous boundary conditions (cf. (1. 5), (1. 6» 

z ( 0, t) = 0, ~~ (L, t) = 0 (1. 22) 

applylng at the boundaries, we face what appears at first glance to be a rather 

different situation than what obtains in (1.4), (1. 5), (I. 6), for even the 

equations cOITesponding to (1. 12), (l.13) will involve the unknown control u(t) 

in this Situation; one cannot proceed by filling out z (x, t) in successive 

domains as before; a completely different approach is required. Such an 

approach can be found in the study of moment problems - a technique developed 

357 



by several authors (see [ 3 ], [12] , [15] , [14], [23] ). The technique has 

the advantage, from the point of view of approximation of being intimately 

connected with the modal representation of the system based on the natural 

modes of vibration, or eigenfunctions of the operator -r(x)-1(a/aX)(S(X)(8z/ax)). 

It is known (see [1], [7]) that the operator 

-1 a az 
Lz = -rex) ax (s (x) ax ) (1.23) 

with boundary conditions conformable with (1.22) has eigenvalues 
2k-l 2 TI2 

A.k = ( 2 ) -2- + ek ' k = 1, 2, 3, •.• (1. 24) 
Tl 

where the ek are uniformly bounded and T 1 is related to c(x) by (1.14). 

The corresponding eigenfunctions, CPk(x), k = 1,2,3, ••• , form an ortho-

normal basis for L2 [0, L] (which consists of the same functions as 
r 

L 2[ 0, L] but has the inner product 
L 

( cP, t\J) = J r (x) cP (x) t\J (x) dx) • (1. 25) 
r 0 

Every finite energy solution z (x, t) of (1.21), (1.22), i. e. every solution 

for which the integral (1. 7) is bounded fot all t, can be expanded in the form 
(II) 

z (x, t) = L: zk (t ) CPk (x ) 

k=l 

where, if we assume the control distribution function f (x) has the expression 

convergent in 

Letting 

(II) 

g (x) = ~ gk <Pk (x) 

k=l 
2 

Lr[ 0, L], the zk(t) 

1 

satisfy 

k = 1, 2, • •• • 

_ '\ 2" 
wk - I\.k ' k = 1, 2, 3, ••• 
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(1.26) 

(1.27) 

(1. 28) 



It may be seen that finite energy states are those for which 
co 

L: [(Zk}2 + ~ (Zk}2] < co 

k::l 
and this becomes, in terms of ilk' ~k' 

co 

L (I il k 12 + 1 ~k 12) -< co • 

k::l 

Integrating (1. 28), we have, for T > 0 , 
ieJJkT gk T iWk(T-t) 

il k (T) - e il k (0):: '""2 J e u (t ) dt 
o 

iwkT gk T -iwk(T-t) 
~k (T) - e ~ k (0) :: 2 J e u (t) dt • 

o 
Assuming the controllabili!,y condition 

gk f 0, k:: 1,2,3, •.• 

(1. 29) 

we see that the problem of steering between the given states at times 0 and T 

reduces to the moment problem 
T iWks f e f (s) ds :: 

° 
Oik g' k:: J., 2, 3, 
k 

JT e -iwks ~k 
k :: 1, 2, 3, f (s) ds :: -g-, 

° k 

where s :: T -t , f(s):: u(T-s), and 

_ iwkT 
a k - 2(il k (T) - e il k (0»1 ~k :: 2( ~k(T) - e 

are square summable. 

(1. 30) 

... (1. 31) 

-iwkT 
~k (0» (1. 32) 

To solve the moment problem we resort to the theory of nonharmonic 

Fourier serie s as developed by Paley and Wiener [ 24], 1evinson [ 21] , 

Schwartz [42] and many others. (An excellent expository treatment [49] by 

R. Young has recently appeared.) The following is known; the three cases 

being divided in a manner conformable with the three cases discussed earlier. 

iWk t -i wkt 
Case T < 2Tl. The functions e ,e k :: 1,2,3, •• " are 

linearly dependent in 12[0, T] in a rather strong sense. Anyone of these 

functi,ons, indeed, any finite number of them, lie in the closed span of the 
2 remaining functions (which, in fact, is equal to the whole space 1 [0, T] ). 

As a result the moment problem (1. 30), (1.31) cannot, in general, be solved. 
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Suppose, e. g., all but finitely many of the a k' 13k , say k = K + 1, K + 2, ••• , 

were equal to zero, while some of the a k , 13k, k = 1,2,···, K, are non-zero. 

The linear dependence just referred to shows that such a problem can have no 

solution; the equations 
T iWks T iWks J e f (s) ds = J e f (s) ds = 0, k > K 
o 0 

imply that the same equations must hold for k:$ K • 

Case T = Tl. 
iwks -iwks 

Here the functions e e , k = 1, 2, 3, ••• 

form a Rie sz ba sis for L 2 [0, 2T 1]' Every function h € [0, 2T1] has the 

unique convergent expansion 
00 iwks -iwkS 

h (s) = ~ [hk e + h _ k e ] 

k=l 
and there are positive numbers c, C, such that 

00 

c- 21lh1l 2 :$ ~ (Ih 12+lh 12 :$ C21lhll2 
L2[0,2T] k=l k -k L2[0,2T] 

Further, there is a unique dual basis of biorthogonal elements Pk' p -k € 

L 2[ 0, ZTI ] such that 
2T 1 iw s k = ± 1, ± 2, ••• 

J e k P£ (s) ds = ok £ ' 
o ' £ = ± 1, ± 2, ••• 

{
I, 

0, 

k = £ 

k f £ 

(1. 33) 

(1.34) 

(1.35) 

which engenders expansions similar to (1.33), 

inequalities parallelling (1. 34) being reversed. 

(1. 31) is then uniquely given by 

the roles of c, C in the 

The formal solution of (1. 30), 

If we have 

00 

f (s) = ~ g~ [a k Pk (s) + 13k p -k (s)] • 
k=l 

lim = 0 , 
k-co 

(1.36) 

(1.37) 

2 as would be the case, e. g., if g € L [0, L], then the conditions for 

convergence of (1. 36) are more stringent than just the square summabilityof 

the O!k' 13k given by (1.32). We need 
co a 2 13 
~ (I f-I + 1 gk 12) < 00 • 

k=l k k 
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As a consequence we can steer (1. 21) from any finite energy initial state to a 

dense (in the energy norm) subspace of final states, or vice versa, but we 

cannot steer between arbitrary finite energy states during [0, 2T l ] if (1.37) is 

true. The case of boundary control (l. 6), already treated by the method of 

characteristics, will be discussed more extensively below. In that case the 

coefficients gk in (1. 26) are bounded and bounded below. The result is, 

in that situation, that we obtain the same result this way as by the method of 

characteristics - given finite energy initial and terminal states, there is a 

unique control u € L 2 [ 0, 2T 1] steering the one to the other. 

Case T > 2TI. The main differeJ;1.ce between this case and the preced-
iWks -lwks 

ing is that here the functions e ,e , k = 1, 2, 3, ••• , form a 

Riesz basis for a proper subspace, E, of L 2 [0, T]. The biorthogonal 

functions p,~, p exist, but are unique only if we require that they lie in 
t. ·,k 

rv rv 

E - or we impose some comparable condition. If we agree that Pk' P-k 

belon~J to E, then any elements 
rv rv 

Pk = Pk + qk' P -k = P -k + q .. k 

with qk' q-k € El. C L 2[ 0, T] still form a biorthogonal set relative to the 
i wks -iwks 

e ,e . The convergence properties of series involving the Pk' 
rv 

p -k are much the same as in the preceding case. As a result we have the 

same control capability as in the case T = 2TI but controls are not unique. 
,..., 

Indeed, if u is a control steering between two given states, the family of 

controls u + ~, ~ € EI, all realize the same control objective. Again, 

this non-uniqueness should be compared with the similar property observed for 

T > 2T 1 in applying the method of characteristics. 

U sing the theory of distributions and related material, boundary value 

control situations such as (1. 6) can be included in the same framework as 

(1. 26) but with g in a larger space than L 2[ 0, L]; 9 should be a linear 

functional (in general unbounded on L 2[ 0, L]) whose domain includes the 

domain, ~(L), of the self adjoint operator L, given by (1. 23), with the 

given homogemeous boundary conditions. The gk are the values which 9 

assumes at the eigenfunctions CPk € ~ (L). A detailed study of these 

"admissible jlnput elements" is provided in [17]. In this way a unification 

of the boundary and distributed control cases may be achieved. One consequence 

of this is that the biorthogonal functions Pk, p -k which play such an 
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important role in the method based on the moment problem (1.30), (1.31) can 

actually be obtained through the more constructive method of characteristics as 

controls steering from a zero initial state (say) to final states constructed 

using a single eigenfunction CPk of L. 

We began our discussion here with the Euler beam equation (1.1). For 

definiteness, let us add a distributed control term (scalar input) and specific 

boundary conditions so that we have 

a2w a2 
p (x) ---z + 2 (EI (x) 

at ax 
2 

a ~ (0, t) = 
ax 

(O,t) = 0, 

a3w --:r (L,t) = o. ax 

g (x) u (t) (1. 38) 

(I. 39) 

{I. 40) 

In 1969 J. P. Quinn, in his doctoral thesis [27], studied the controllability 

properties of a class of systems including this one. Here the operator 

1 a2 2 
Aw = "PlXT ax2 (EI (x) :x;:r ) 

on the domain in H4[ 0, L] consisting of functions obeying boundary 

conditions conformable with (1.39), (1.40) has eigenfunctions CPk (x) forming 

an orthonormal basis for L 2 [0, L ] and the corresponding eigenvalues \. 
4 P l 

grow like k as k - 00 • With W k = A.k we obtain a system similar 

to (1.28), using a transformation like (1. 27) applied to the second order 

differential equations resulting from the eigenfunction decomposition: 

wk + A.k wk = gk u (t), k = 0, 1, 2, 3, ••• 

(a slight modification of (1.27), (1. 28) is necessary for A.o = 0; see [34]). 

Again there results 

= + u (t) (1. 41) 

and the energy expression for (1. 38) is, equivalently, 

L 2 2 2 
i f [p (x) ( :;r) + EI (x)( a ~) ] dx 

o oX 
or 
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00 

~ L [(Wk )2 + ~(Wk)2] 
k=O 

or 
00 

:~ L I 'f1kI2 + l~kl2 , 

k=O 

all «: 00 for "finite energy" state s. 
iWks -iwkS 

Quinn was able to show in this case tl;J.at the functions e , e 
lWks -iwks 

k = 0,1, 2, 3, ,> • • (for k = 0 replace e , e by 1, s) are 

linearly independent in L 2[ 0, T] for every T > 0 (this re suIt by itself 

had already been obtained much earlier by Ingham [18] who shows, in effect, 

that these functions form a Riesz basis for a closed subspace of L 2 [0, T] for 

every T > 0) and, additionally, that there is a positive number, M(T), 

such that if the (non-uniqueJ biorthogonal functions Pk(s), p _k(s) are 

appropriately selected in L [0, T], the se functions are continuous and 

satisfy the pointwise bounds 

The fact that the 

I Pk(s) I, ~ M(T), , 1 p _k(s) I ~ M(T), 
lWk s -lwks 

e ,e 

sE[O,T]. (1. 42) 

form a Riesz basis for a closed subspace 
2' of L '[ 0, T], T > 0, implie s that initial state s and terminal state s with 

(in terms of (1.41» expansion coefficients 11k 0' ~ k 0 and 11k l' ~k 1 
can be steered, one to the other, during [ 0, T]' with' u E L 2[ 0, T j , , 
provided that 

00 11. 2 ~ 2 00 11 2 ~ 2 2: (I ~lWL 1 + 1 kz 0 1 ) < 00, L (I k,l 1 + 1.Js.J:.. I ) < 00 • 

~ ~ ~ ~ k=O k=O 

The boundedness property (1.42) shows we can also control states for which 

00 11 ~ 
L' (I k,O I + 1 k,O I) < 00, 

k=O 
gk gk 

00 11 ~ L (I k, 1 1 + 1 k, 1 I) < !XI, 

k=O gk gk 

this being possible with a control function u (t) uniformly bounded and 

continuous on [0, T] • 

We ha.ve noted in connection with the Timoshenko beam system (1. 2), (1.13) 
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{I. 17), (1.18), that an adequate control theory, based on the method of character

istics, exists when we have two separate control functions, ul (t) and u2 (t), 

with which to control the lateral deflection and shear deformation separately. 

An open question is the adequacy of control using a single control input, so 

that (1.17), (1.18) becomes, e. g., 

:: (L,t) = au(t), tj;(L,t) - ~ (L,t) = f3u(t) 

with a2 + 13 2 1= 0 • This problem is a special case of the more general 

question of the controllability of linear hyperbolic systems of dimension n = 2m, 

involving m pairs of characteristics, each pair describing a given wave mode 

propagating in two opposite directions, by means of fewer than m control 

inputs. Some work has been done in this direction by R. G. Teglas in his 

thesis [45] and by N. Wick [47], but it is safe to say that no very general 

criteria for this problem have yet appeared. Particularly valuable, it seems 

to this author, would be a study of the Timoshenko beam system from the 

singular perturbation standpoint, elucidating the behavior of solutions and 

controllability properties as the modulus of elasticity in shear, 

(1. 3), tends to infinity. 

STABILIZATION, CANONICAL FORMS, EIGENVALUE 

PIACEMENT, etc. 

k (x) in (1.2), 

As all practicing engineers will know, controllability in itself is rarely 

the prime goal of control system design. Stability, and related criteria such as 

robustness, insensitivity to particular input frequency bands, etc., are more 

commonly uppermost in mind. Additionally, there is the question of state 

estimation from lower dimensional, noisy observations in order to implement 

linear feedback control policies. These subjects have been pursued almost ad 

nauseum for linear, finite dimensional systems. In the case of distributed 

parameter systems, and hyperbolic systems in particular, the literature on this 

subject remains rather sparse and spotty in its coverage. 

As in the case of linear finite dimensional systems, stability and stabili

zation studies for linear partial differential equations have tended to cluster 

around two dominant approaches: the Liapounov approach, primarily carried out 

in connection with systems involving some form of "conservation of energy" law, 

and the spectral approach, determining if, or making certain that, the 
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eigenvalues of the system lie in an appropriate subset of the left half plane. The 

spectral approach suffers from the disadvantages of greater intricacy of 

computation and the need to show that the spectrum location does, in fact, 

determine the asymptotic behavior of the system. The latter brings in questions 

of completeness and linear independence of the eigenvectors of the system. 

We will begin with a short discussion of what has been done with 

Liapounov methods. On the theoretical side one can start with a system 

:X = Cx, (2.1) 

C generating a strongly continuous semigroup Set) in the Hilbert space X 

(we may hav(9 started with a control system :X = Ax + Bu, set u = Kx, then 

C = A, + BK) '. We set up a quadratic functional 

V (x) = (x, Qx) , 

where Q is a bounded, positive, self adjoint operator on X with Q :::: qI 

for some q > 0, to serve as a Uapounov function. One may then show that 

for t2 > tl and x (t) = S (t) Xo a 11 solution" of (2. 1), that 

(x(t2), Qx(t2» - (x (tl ), Qx(t1)) 

t2 ::: -J (x (8), Wx (s»ds 
t1 

for some pos:Ltive self adjoint operator W so that, in some sense which one 

needs to make precise in individual cases, 
C>:< Q + QC + W = 0, (2.2) 

the Uapounov operator equation, is satisfied. An important result, due to 

Datko [10], state s that if 
(lQ 

f (x (t), Q x (t»dt < (lQ (2.3) 
o 

for every initial state Xo € X, then the semigroup S (t) is exponentially 

dampHd, i. e. 

II S (t) II :s Me -yt t ~ 0 , 

for positive numbers M, y • The condition (2.3) is satisfied if W:::: wI 

for some w > 0 , as may easily be verified. 

Consider the linear symmetric hyperbolic system in L;[ 0, L] = 
(L2[0I, L] )n 

oW oW E (x) at = A (x) oX + B (x) w + f (x, t) (2.4) 

wherE! E (x), A (x), B (x) are continuously differentiable mX m matrices 

defined for x € [0, L], E (x) symmetric and positive definite, A (x) 
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symmetric. The wave and Timoshenko equations can be written in this form. 

The l1energy11 usually is expressed as 
1 

e(t) = i J (w (x, t), E (x) w (x, t»dx • 
o 

With appropriately 11conservative11 or 11dissipative11 boundary conditions at 

x = 0, x:: L, one finds that for t z > tl 

j
t z j1 ,,_ . 

e (tz) - e (tl ) :: {i (w(x, t), [B (x) + B (xl'" - A(x)] w(x, t» dx 
tl 0 

... 1... • 

1 
+ J ( w ( x, t ), f (x, t » dx } dt • 

o 
If B (x) + B (x) "~ - A (x) is uniformly negative definite or if the n dimensional 

control function f (x, t ) may be arbitrarily specified as a function of x and 

t, one may use feedback 

f ( x, t) = K (x) w (x, t ) (Z. 5) 

in such a way that t 
Z L 

e(tZ)-e(tl)=-J J (w(x,t),W(x)w(x,t»dxdt (Z.6) 
tl 0 

with W(x) uniformly positive definite and symmetric on [0,1]. Then one 

can apply Datko's result, or more simple arguments, to show that solutions of 

(Z. 3), (Z. 4) are uniformly exponentially damped in 1 Z [0, 1] norm • .. ,J.... n 
Note, however, that if B (x) + B (xl'" - A (x) = 0 or for some other 

reason fails to be positive definite, and if 

f(x,t) = D(x)u(x,t) or f(x,t) = D(x)u(t) 

with dim u (x, t) = r < R in the first instance, u a function of t only in 

the second instance, then we cannot, in general, achieve (Z.5) with W(x) 

uniformly positive definite. Comparable difficulties arise when boundary 

control is employed. In such C,:i ses it is a form of the La Salle "invariance 

principlel1 (see, e. g. [19]) which must be appealed to, rather than the basic 

Liapounov theory, for an analysis of presumed asymptotic stability properties of 

the system. This has been discussed in some detail in [36] and [33] and 

we give only the briefest outline here. 

The "invariance principle", as it applies to finite dimensional systems, 

relies heavily on the compactness of the 11 w-limit set11 of the system in order to 

reach the final conclusion of asymptotic stability. Comparable compactness 

properties associated with the solutions of an infinite dimensional system are 
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generi:l.lly difficult to realize but the initial attempts to extend the theory nonethe

less relied on establishing some sort of compactness property. One of the first 

contributions in this direction was due to Dafermos [9] who studied weak 

damping of the wave equation, relying on the almost periodic nature of the 

system solut:lons to provide the required compactness. Slemrod [43] studied 

the boundary damped wave equation by introducing suitably weakened topologies 

- as compared with the usual topology associated with the energy norm - and 

was able to conclude a correspondingly weakened form of asymptotic stability. 

Know:ing that controllability implies stabilizability in the case of autono

mous finite dimensional linear systems, we are not surprised to find control-· 

lability playing a role in the study of asymptotic stability and stabilization 

properties of autonomous infinite dimensional linear systems. This is discussed 

in some detaH in the paper [28] by J. P. Quinn and the author and al so in 

[ 33]. Systems of the form (2.3), but with the control appearing in the bound

ary conditions, are studied in [28] prior to the main discussion on the boundary 

dampE~d, higher dimensional wave equation. We can give an idea of the flavor 

of the arguments employed using a s:tmple example based on the wave equation 

(1.4) with control appearing in the boundary conditions (1. 5), (1.6). If in this 

system one employs the feedback law 

oW 
u(t) = -'I Tt- (L,t), (2."{) 

the closed loop system is (1.4), (1. 5) together with the "closed-loop" Robin 

type boundary condition 

oW oW 
f)x ( L, t) + 'I -at ( 1, t) = 0 • (2.8) 

Here .a short computation shows that with the energy e (t) defined by the 

expres sion (1. 7) we have, for t2 > t l , 

t2 oW 2 
e(t2} - e(tl} = -YP (L) J at (L,t) dt. (2.9) 

It is not feasible to fit this situation into the general pattern based on the 

Liapounov operator equation (2. 2) but, since we expect (correctly) that, along 

with (1.4), (1.5), (2.8) 

~~ (L, t ) == 0 =9 v; (x, t) == 0, 

an "invariance principle" type of argument appears to be in order. But we 

will use a variation on this procedure which makes use of the controllability 

already established in Section 1. Let v (x, t) be a controlled solution of 
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(1. 4), (1. 5), (1. 6), u (t) being selected so as to steer the initial state 

avow v (x, 0) = w (x, 0), at (x, 0) = at (x, 0), (2.10) 

agreeing with the initial state of the solution w (x, t) of (1.4), (1.5), (2. 8), 

to the zero final state 

(2.11) 

TI as described earlier. Defining the "energy inner product" 

L ~ ~ ~ ~ 
(w ( • , t ), v (. , t» = J [p ex) at (x, t) at (x, t) + p(x) ax (x, t)a:x (x, t)] dx 

o 
it is found, using (1.5), (2.8), (2.10), (2.11), that 

(w(.,O), v(·,O» -(w(.,2T l ), v(·, 2T l » = liw(., O)II~ = 
. 2Tl 

J [ 8w 8v 8v aw ] = -pel) "§X (L,t)ar(L,t) +rx (L,t) l)t(L,t) dt 
o 

J2TI 8w 8v 8v = p (L) 0 at ["{ at ( L, t) + ax (L, t )] dt 

J
2Tl 8w 8v = p (L) at (L, t) ["{ at (L, t) + u (t)] dt • 

o 
2 

Here II w (. , ° ) II e ' 
Schwartz inequality 

the energy norm at t = 0, 

2'1' 
4e(0)2 :s pel) J ~I ~~ (L,t)2 dt 

° 

is 

2Tl 8v 2 . f ("{ at ( L, t) + u (t ) ) dt. 
o 

2e(0) • Applying the 

(2.12) 

A slightly more detailed study of the control problem for (1.4), (1.5), (1.6) in 

the case T = 2TI (or T::> 2Tl ) shows that control from an initial state 

w (x, ° ), ~~ (x,O) to 0, 0 at time 2T 1 is realized with a control u(t) 

which satisfies 
2Tl 

J u(t)2 dt SKoe(O) 
o 

and, for the resulting controlled solution we have 
2T J 1 ~~ (L, t)2 dt S KI e (0) 

o 
for certain positive constants Ko and KI • Then (2.12) easily yields 

~l 2 
,,{p(L)J aw (L,t)2 dt 2:: e(O) == Ke(O) 

o 8t 2 (Ko +,,{2Kl ) e(O) 
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and, setting tl = 0, t2 = 2Tl in (2.9), we have 

e(2Tl ) s e(O) - Ke(O) = (l-K) e(O) • (2.13) 

Since e( 2T1) is, from (2.9), (2.13), positive and less than or equal to e(O) 

we conclude 0 < 1 - K < 1 • 

Repeating the above argument on successive intervals [0, 2TI ] , [2Tp 

4Tl ] , •. [2kTI, 2(k+l)T
l
],. o. and using the monotonicity of e(t), as 

implied by (2.9), we conclude that e (t) decays exponentially to 0 as t - QQ. 

The same general argument can be used with a fairly wide class of boundary 

dampE~d linear symmetric hyperbolic systems (2.4) and with many other systems 

which are enl9rgy conserving in the uncontrolled situation and suitably strong 

controllabHity properties. The Timoshenko system (1.2), (1.3), vlith appropriate 

boundary conditions, is in this class. As far as the author is aware, the Euler 

beam model (1.1) has not yet been studied from this point of view. 

The spectral approach, as we have already indicated, involves a direct 

analysis of the eigenvalues and eigenfunctions or, more generally, the spectrum 

and invariant subspaces, of the generating operator e for a given system . . 
x = ex, possibly derived from a control system x = Ax + Bu by the use of 

linear feedback u = Kx so that e = A + BK. A fairly common case, which 

can be treated with minimal difficulty, arises when all but finitely many of the 

eigenvalues of e have negative real parts. Under generically valid control

lability-type conditions it is then possible to move the unstable eigenvalues 

into the left half plane while either keeping the stable eigenvalues fixed or else 

maintaining a certain margin of stability. Work of this sort has been carried out 

by Tr:i.ggiani [46], Sakawa [40] , [41] and others. 

A somewhat more challenging task arises when one starts with a system 

having infinitely many eigenvalues in the closed right half plane (usually one 

considers a conservative system wherein all of the eigenvalues of e are purely 

imaginary) a.nd one attempts to devise a feedback law to move all of these 

eigenvalues over into the open left half plane. A number of procedures have been 

examIned in this connection. 

In [32] a second order system with scalar control 

x + Ax = bu, x, b € X , (2.14) 

is studied, :x: being a real Hilbert space and A an unbounded positive self 

adjoint operator on X. Assuming that A has a Riesz basis of eigenvectors 

¢k' k = 1, Z, 3, • • • , in X, and corresponding positive eigenvalues A..k , 
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increasing with k, k = 1,2,3, • • • , x and b may be expanded as 

(2.15) 

convergent in X , with square summable coefficients. We assume the 

minimal condition for approximate controllability 

k = 1, 2, 3, • •• • 

The energy form is i [ (~, ~) + (x, Ax )] = e and elementary computations 

show that for (2.14) and for any T > 0 
T • 

e(T) - e(O) = f (x(t),b)u(t)dt. (2.16) 
o 

It follows that with . 
u (t) ::: -y (x (t), b ) (2.17) 

the energy e (t ) is non-increasing with increasing t. So far this is 

basically a Liapounov approach employing what is known in the engineering 

literature as an ILAF (Identical Location of Accelerometer and Forces) 

approach. The resulting closed loop system is, still in second order form, . . . 
x + Bx + Ax ::: 0 (2. 18) 

with B defined by 

Bx::: y (x,b)b. (2.19) 

Wifu y = x, ( ~y=may :("~yfu: :qf-~ale~t~ r~ orner system in x:~:O) 

and ask: what are the eigenvalues and eigenvectors of C? It is here that 

one leaves the second method of Liapounov and returns to his first. In [32] 

a perturbation analysis is carried out, valid for small values of y in (2.17), 

(2.19). It is shown that, under the separation assumption 

wk+l - wk 2: d > 0, wk ::: tVTk ' (2.21) 

the eigenvalues of C, which for y::: 0 are ±iwk' k::: 1, 2,3, ••• , all 

have negative real parts for y > 0 and, moreover, designating the perturbed 

eigenvalues by (k(y), k::: ±l, ±2, ±3, •• ·, (k(O)::: iwk , ek(O)::: -iwk , 

we have (cf. (2. 21» 

}I (). Y jb j2+n-(,\/2 1 ) k 
sk y ::: lWk - 2' k g I j wkj2' - co (2.22) 
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S-k(Y) = -iwk - ~ I bkl2 + ~ (y2 1 2), k - = . (2.22) 
IWkl 

It is also pos sible to show that the perturbed eigenvectors continue to form a 

Riesz basis for the space X X X • From this it follows that all solutions of 

(2. 18) tend strongly to zero in the energy norm, though not at a uniform expon

ential rate. 

Following Wonham' s initial results [48] on the finite dimensional case, 

there has been considerable interest displayed in the question of spectral 

determination via linear feedback for distributed parameter systems. In terms 

of the system (;y= e(~vale~), (:)+ (:) u, (2.23) 

with :lnitial (u = 0) eigenvalues ± iwk, k = 1, 2,3, ••• , the question may 

be phrased as follows: we suppose use of a linear feedback functional 
1 

U = (A2X, k l ) + (y, k 2), k l, k2 € X, (2.24) 
1 1 

bounded relative to the energy norm (x, Ax) + (y, y) = (A2x, A2X) + (y, y) in 

XXX. With 
1 

Klx = (A2X, k l ) b, K2y = (y, k2 )b (2. 25) 

the closed loop system is 

(2.26) 

One can now ask: What eigenvalues can be achieved for the closed loop 

system (2.24) by appropriate selection of k l , k2 in (2.25)? For some 

time the author was under the impression that his approach via canonical forms 

[ 35] (more on this below) wa s the first treatment of this que stion but, in 

fact, it appears that this credit must go to Prof. Sun S. -H. of Szechuan 

University who treated this problem by a more sophisticated application of the 

perturbation technique used by the author in [32] to obtain the result. 

Sun was able to show, with an assumption Similar to (2.21) and the Riesz 

basis assumption on the open loop eigenvectors, that the totality of spectra, ~, 

achievable by use of (2.25) coincides with sequences ~k' ~-k' k = 
1,2,3, •• . for which, assuming the bk /: 0 as before, 
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£ (' ~2; iWk ,2 +, Ck +iwk ,2) < CI:I • 

k=l k bk 

His very important paper has been translated by Ho L. -F. in [44]. Some 

comparable, but necessarily weaker, results have been obtained by Reid in his 

thesis [29] for the equation of linear surface waves where (2.21) is not 

satisfied and, in fact, lim (wk+l - wk ) = 0 • Other results in this 
k-CI:I 

direction, for hyperbolic systems of various types, have been obtained by Clark 

[ 5] , [6] and by Ho in his thesis [16]. 
Much of the initial impetus for the study of control canonical forms, 

both for finite and infinite dimensional systems, came from the spectral 

determination question discussed above, but the subject is interesting in its 

own right and shows some promise of being adaptable for "real world" control 

implementation. The reader will recall that a finite dimensional controllable 

system 

x = Ax + bu, x € Rn , 

with scalar control u is equivalent, via a state space similarity transform

ation (see [20], [35] ) to a system in rational canonical form corresponding· 

to the n-th order scalar equation 

yen) + a y(n-l) + . •• + a y' + a y = ~ 
1 n-l n ' (2.27) 

where 
... n ... n-l ... p (A) = det (I\, I -A) = A + all\. + • • • an_II\. + an 

is the characteristic polynomial of the matrix A • Comparable, but somewhat. 

more intricate, results are available for systems with higher control dimension 

[ 20] , [2]. In [38] we note that if one employs a scalar linear observation 

y = h*x = (x, h), (2. 28) 

there is exactly one observation vector h € Rn for which (2. 28) satisfies 

(2.27); for general h the right hand side will involve the derivatives of u 

of order :s u - I • Systems (2.27) are particularly easy to deal with. 

Closed loop eigenvalues ~l' ~2' .• " ~n may be realized simply by forming 

the polynomial 

n n n-1 
q ( A) = ~ (A - ~k) = A + c1 A + . .• + cn _1 A + cn 

and determining u by linear feedback on the ob servation y and it s 
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derivative s , 
n 

u = ~ (a
k 

- c
k 

) y(n-k) • 

k=l 
Apparently less well known, but quite obvious, is that the control problem for 

(2. 27') is, in a sense, trivial. Let us suppose the initial instant is taken to 

be t = 0 and control is to be effected during 0 S t sT. Let the initial 

state be specified by 

y(n-k) (0) = 
Yn-k+l' 

and the term.inal state by 

y(n-k) (T) = Yn-k+l' 

If y (t) satisfies (2. 29) and 

k = 1, 2, ••. , n 

k = 1, 2, ••• , n • 

y(n)(t) = vet), 0 S t s T 

then we see readily that for k = 1, 2, ••. , n 

and 

(n-k) k t k .. £ 
y (t) = ~ Yn-£+l (k-ITI 

t k-l + J (t - s ) v (s) ds 
o 

R. = 1 

(2. 30) is achieved just in case 

T k-£ J (t-s) v(s)ds = 
o 

k 
Y _\' 
n-k-l L.J 

£=1 
k = 1, 2, ••• , n • 

Tk -£ 

Yn-£-l (k-R.) ~ , 

(2.29) 

(2.30) 

(2.31) 

This is easily solved for v in various function classes, e. g. polynomials of 

degree S n - 1, etc. and, it should be noted, the solution has nothing to do 

with the coefficients in (2.27) so the calculation can be carried out once for 

any given T and recorded for use ever after. Then in a given canonical 

system (2.2:7) we need only set 
n 

u (t) = v (t) - L: ~ y(n-k) (t) (2. 32) 

k=l 
to realize the desired control objective. 

Since, in a given control context, it is not likely that the available 

observation (2. 28) will be the particular one for which (2.27) obtains, the 

above result might seems to be a generally useless curiosity. It turns out, 

however, that in canonical form theory there is a counterpart to the more widely 

known observer theory. If C is any nX n matrix whose minimal and 
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characteristic polynomials coincide, it is pos sible to select (non-uniquely) r, 

d andj such that the augmented system . 
x = Ax + bu (2.33) 

. * z = ry + Cz + du (= rh x + Cz + du since * y = h x) (2. 34) 

with augmented observation 
~:< ~:< >:< 

w=y+jz=hx+jz (2.35) 

is in canonical form, so that for some coefficients O! l' O! 2' 

w(2n) + O! w(2n-1) + • •. + O! WI + O! w = u 
1 2m-12m· 

The adjoined system (2. 34) can be realized electronically, just as an observer· 

system is, and the considerable freedom in choice of C, r, d and j 

provides much design flexibility. In some cases the dimension of (2.34) can 

be reduced. The proof that (2.33), (2.34), (2. 35) can be made a canonical 

system appears in [38] . 

A parallel control canonical form theory has been developed for certain 

hyperbolic distributed parameter systems, involving neutral functional equations 

in place of the n-th order scalar equation (2.27). The theory is quite comp1exj, 

especially as it applies to partial differential equations with variable 

coefficients (see [35], [16] , [38] , [39] e. g.). To give an idea how the 

theory is developed we will consider the constant coefficient case of (1. 4) 

which, without 1088 of generality, we can take to be 

a2w a2w -;z- -;z = 0, t 2: 0, (2.36) 

w(O,t) = 0, 
aw ax (1, t) = u (t) • (2. 37) 

The normalized eigenfunctions of the corresponding homogeneous system are 

'" () . r-::;-2 . 2k-1 k 1 2 3 (2 38) 'P k x = '" c. Sln -2- TT x , =", • 
2k-l Setting wk = ~ TT and forming the expansions 

00 

w (x, t ) = L wk (t ) ¢ k ( x) , 

k=l 
00 

~~ (x, t) = L vk ( t) ¢k ( x) , 

k=l 

followed by the transformation 
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= (2. 41) , 

we have, for k = 1, 2, 3, ••. 

+ 
(_1)k-1 

TJ k = iWk T}k u (t), 
~ 

(_1}k-1 
~k = -iwk~k + u (t) • 

~ 
(2. 42) 

Consider now the neutral delay equation 

y(t+2} +y(t} = u(t+2}. (2.43) 

The characteristic function of the homogeneous equation is 

2A. A. 
P (A.) = e + 1 = 2e cosh A. 

and the zeros of 'p (A.) are precisely the eigenvalues ± iW
k 

appearing in 

(2. 42). The transfer function for (2. 43) is 

e 2 A. 1 sinh A. 1 
TO ( A. ) = e 2 A. + 1 = '2 co sh A. + '2 

which can be rewritten as 

-1. 1 2k-1 , '2' wk = --z 1T • 

If we define an observation y (t) on (2.42) by 

yi[t)= L [hkT}k(t}+gk~k(t}] +~U(t) 
k=l 

the transfer function for y is, formally, 

I [hk ( _1}k-1 7z + gk( -1 }k-1 -d=z J 
k = 1 A. - iWk A. + i Wk 

which :may be seen to agree with (2. 44) just in case 

= _( -It 
rf2 

(2.44) 

(2. 44) 

USing (2. 38), (2. 39), (2.41), (2.42) it may be seen that this choice of hk , gk! 

corresponds to I 
1 oW 1 1 oW ow (2. 45) II y (t) = '2 at (1, t) + '2 u (t) = '2 (at ( 1, t) + ax (1, t )} • 

I 
This observaUon on (2. 42}, and no other, satisfies the scalar equation (2. 43~ 

I 
which serves as the control canonical form for (2.42). The details of the abov, 

! 
! 

375 



calculations and some idea of the form of a general theory appear in [38] and 

[ 39] • 
If the canonical observation (2. 45) were actually available, so that 

we have (2.43), its usefulness is quite clear. For, with the causal feedback 

law 

(2.43) 

2 
u (t + 2) = (1- y) y ( t) - f c (s) y (t + s) ds 

o 
tran sforms to 

2 
y (t + 2) + y y ( t) + 1 c (s) y (t + s) d s = 0 

o 
and it is known from [35], [44] that the exponential solution 

of (2. 47) can be made such that 

.~k = iWk+a+~, Ck=iwk+a+c_k' 

(2.46) 

where is a complex number (ordinarily negative) determined by y and 

Ck' c_k 
that 

are arbitrary complex numbers, determined by 

co 
\' 2 2 
L1 (I 9<: I + I C -k I ) < co • 

k=l 

2 cEL[O,2], such 

It may be shown that these are the eigenvalues of the closed loop system (2.36), 

(2.37), (2.45), (2.46). 

In a given application, however, it is entirely likely that the particular 

"canonical" observation (2.46) will not be available. Indeed, in the example 

indicated, since this observation is taken at the same point where control is 

applied and might, therefore, be subject to a certain amount of noise 

disturbance, it might not be desirable to use this observation in practice. To 

illustrate the use of the technique of canonical augmentation (or "canonical 

compensationll , perhaps) let us consider the same system (2.36), (2.37), 

but suppose the available observation is 

oW 
yet) = ax (O,t). (2.48) 

It is not hard to show in this case that y (t) satisfies 

y(t+2) +y(t) = u(t+l) (2.49) i 

rather than (2.43). This Ilcentralll control canonical form is not as usable as 

the I Ibackwardl I form (2.43) because, unlike (2.46), 
2 

u(t+l) = (1-y)y(t) - J c(s)y(t+s)ds 
o 
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is not a causal feedback law and cannot be implemented. But now couple (2.49) 

with 

and let 

z (t + 2) + P z (t) = au (t + 2) + bu (t + 1 ) 

+ cy ( t + l) + dy (t ) 

wet) = yet) + z (t) • 

(Z.50) 

One ordinarily will take I p I < 1 so that the homogeneous part of (Z.50) is 

asyrnptoticcllly stable, thus avoiding the growth of parasitic solutions in the 

compensator. Since 

[y(t+4) +y(t+Z) - u(t+3)] + p [y(t+Z) +y(t) - u(t+l)] = 0 

while 

[z(t+4)+pz(t+2) - au(t+4) - bu(t+3)-cu(t+l)-cy(t+3)-dy(t+Z)] 

+[z(t+2)+ pz(t)-au(t+2)-bu(t+l)-cy(t+l)- dy(t)] = 0 

we find that 

w(t+4)+(1+ p)w(t+2)+ pw(t) = au (t+4) + [l+b] u(t+3) 

+au(t+2) +[p+b] u(t+l) +c[y(t+3) +y(t+l)] 

+ d[y(t+2) +y(t)] = (using (2.49» 

au (t + 4) + [ 1 + b] u (t + 3) + [ a + c] u (t + 2) + [ p + b + d] u (t + I) • 

Then it is easy to see that with 

a = 1, 1 + b = a + c = P + b + d = 0 , 

i. e. with 

a = 1, b = -1, c = -1, d = 1 -. P , 
we arrive at the "backward" canonical form satisfied by w (t) : 

w(t+4) +(l+p) w(t+2) + pw(t} = u(t +4) 

for which causal feedback bws 

u(t+4) = -'Ylw(t+3) +[1+p -'YZ]ifl(t+Z) -Y3w(t+1) 
4 

+ [p -Y4] wet) - f c (s) w{t+s) ds 
o 

may be implemented, yielding overall closed loop systems 
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w (t +4) + "lw (t +3) + "2w (t +2) + Y3w (t +1) + Y4w (t) 
4 (2.52) 

+ J c (s) w (t +8) ds = o. 
o 

It is necessary to check separately that the system (2.49), (2.50), (2.51) is 

observable in any given case. 

The exponential solutions of (2.52), and hence the eigenvalues of 

(2.36), (2.37), (2.48), (2.50), (2.51) may be determined with the same , 

flexibility as already noted for (2.47). This is discussed in some detail in thel 

thesis of R. G. Teglas [45]. A complete theory of canonical compensation 

for hyperbolic systems remains to be developed but, we hope, the example 

given here gives reason to believe that the method is a promising one. It is 

clear that there are some connections with observer theory as developed in 

[22] and elsewhere; these connections remain to be worked out. 

1. 
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)~PPROXIMATION IN CONTROL OF FLEXIBLE 
STRUCTURES, THEORY AND APPLICATION 

J.S. Gibson 
University of California, Los Angeles 

Los Angeles, CA 90024 

1. Introduction 

Several recent papers by the present Hilbert space H and the control vector 
author have applied the modern theory of u(t) is a real m-vector for some finite 
the infinite dimensional regulator m. The linear operator A is a sel£-

. 0 
problem to problems in active control of adjoint operator in H with compact re-
flexible structures ([2], [3], [4], [5], solvent, C = C* :2: 0 and C is A -
[6]).· bounded, a~d B is bounded.

o 
With

O 

We study the sense in which the 
feedback control law based on an approxi
mate finite dimensional model of a con
tinuous structure approximates a control 
law which is optimal for the distributed, 
or infinite dimensional, model of the 
structure. From the analysis of the 
various control and stability issues 
associated with this basis question, we 
can gain useful information for design
ing finite dimensional compensators 
which produce near-optimal performance 
in infinite dimensional systems. 

Our most important analytical tools 
are the properties of the infinite 
dimensional Riccati equation and ap
proximation theory for its approximate 
solution by means of finite dimensional 
Riccati matrix equations. In this paper, 
we hope to indicate some of the impor
tant predictions that can be made about 
large-order finite dimensional control 
laws, using the theory of infinite 
dimensional Riccati equations. 

2. The Infinite Dimensional Problem 

We consider an abstract second order 
(in time) linear system 

(1) ~ + C X + A x = B u , 
0 0 0 

where the state vector x(t) is in a real 
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y = (x,i), (l)Otakes the first order 
form 

( 2) 
. 
y = Ay + Bu . 

See [2] for details. The state vector 
yet) is cast in a Hilbert space E such 

that -ill yet) II ~ is essentially the 
total energy in the system. 

In the infinite dimensional opti
mal control problem, we choose u to 
minimize 

(Xl 

(3) J = f 0 «Vy, y> E + II u 112 ) d t, 

where V V*:2: 0 and V is bounded. 

If J can be made finite for each 
yeo), then an optimal control exists 
for each yeo) and has the feedback form 

(4) u(t) = -B*Py(t) , 

where P = p* is nonnegative and bounded 
and satisfies the infinite dimensional 
Riccati equation 

(5) A *p + PA- PBB*P + V ::;: o. 

See [1], [2] . 

When P exists for V positive definite, 
then the closed-loop semigroup generated 



by A- BB*P is uniformly exponentially 
stable. 

3. Approximation 

To approximate (4) and (5), we 
define En to be the subspace of E 
spanned by the first n eigenvectors of 
Ao' and project the infinite dimensional 
problem onto E to obtain the nth'finite 
dimensional prgblem. Again, see [2] 
for details. 

A-BB* P A approximates the semigroup 
n n n 

generated by A-BB*P in norm, and hence 
is uniformly exponentially stable for n 
sufficiently large. 

4. Example 

We take a simply-supported beam 
whose first natural frequency is 10 hz.; 
i.e., the lowest eigenvalue of the 
operator A in (1) is 100. The control 

o 
force is distributed over a pad whose 

The eigenvectors of A are the length is five per cent of the beam's 
natural mode shapes of fre~ vibration, length. k For damping, we assume 
so that we are using modal approximation.Co = COA2, which~ield the same damp

ing ratio for each mode. We denote by 
and x(t,n) the displacement of a point a 

distance n from the left end at time t. 
Projecting the operators A, B, 

V onto En yield the corresponding 
operators A , B , and D. For the nth 

n n n 
probl~m, we then obtain the Riccati 
equatlon 

(6) A*P + P A - P B B*P+ D n n n n n n n n n o. 

This equation amounts to an 2nx 2n 
Riccati matrix equation because the 
operators involved are all finite di
mensional. Our analysis hinges on when 
and in what sense P approximate P if P 

n exists. 

From here on, we will assume that 
Ao is positive definite and that 

In the optimal control problem, we 
take 

(7) 

where E(t) is the total energy in the 
beam. When a solution to (3) exists, 
(4) becomes 

(8) u(t) = 

L 

-f f"(n)x"(t,n)dn 
o 

- fLg(n)x(t,n)dn , 

o 

ill yet) II~ is equal to the total energy 
. where (0)" 
ln the structure. According to [2], if 

(Details are in [7].,) 

V is positive definite (coercive) and 
Co 0 (no damping in the free structure), From the nth approximate problem 

obtain approximations f and g to then P does not exist and II P II we 
n n n 

increases without bound as n increases. 
On the other hand, if C is positive 
. , 0 

definite, then P exists and P A 
n n 

f and g by using the solution to the 
Riccati equation (6). We should note 
that f and g give graphical repre-

n n 

converges strongly to P, where A is the 
. . n 

sentations of the modal control law 

prO]ectlon operator mapping E onto E 
n 

Also when C is positive definite 
o ' 

the 
closed-loop semigroup generated by 

(9) u = -B* P Y (t) 
n n It n 

that would be used in a finite dimen-
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sional compensator based on an n-mode 7. 
model of the beam (see [2], [7]). 

Figures 1, 2, and 3 show our numer
ical results for f and g with increas-

n n 
ing n. Note the important role of 
inherent system damping when large 
numbers of modes are modeled. Perhaps 
our most significant results pertain to 
the importance of modeling damping in 
large numbers of modes. 
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SIMUI.JTANEOUS CONTROL AND OPTIMIZATION 
FOR ELASTIC SYSTEMS* 

Vadim Komkov 
Department of Mathematics, West Virginia University 

Morgantown, WV 26505 

ABSTRACT 

We consider the dynamic response of beams and plates to loads which are 
extreme within a certain class of admissible loads. Two approaches to this 
problem are suggested. In approach one, Pontrjagin's maximal ity principle is 
regarded as an additional constraint. The optimality of design is then 
determined by standard numerical techniques. 

Secondly, we' proceed with the "adjoint variable approach" to sensitivity 
of structural design for a given inhomogeneous term. The inhomogeneous term 
is an extremal element of admissible load vectors, which constitute a closed 
subspace of a Sobol~v space. Again, we invoke the maximal ity principle. While 
only beam and plate theory problems are used as examples, general izations are 
easy to perceive. 

O. NOTATION AND SOME BASIC ASSUMPTIONS 

Symbols used in the discussion of beam theory have the following meaning: 

p denotes the material density per 6nit length., 

E denotes Young's modulus, which is assumes to be constant (E > 0) in our 
discussion. 

A is the cross-sectional area (A(x) > 0, \7'XE[-£, +£]). 

is the moment of inertia of the cross-sectional area about the neutral 
axis of bending, i.e., aline whose length remains unchanged lotally as the 
beam undergoes deformation. I is not assumed to be constant, but is a positive 
function. 

t denotes time. 

The Cartesian coordinate system is used. The x-axis coincides with the 
underformed axis of the beam, which occupies the interval g = [-£, +£]. W(x,t) 

.-. 
"This research was supported by NSF Grant CMS 80-05677. 
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denotes the displacement function which is an element of Sobol~v space H 
determined by the existence of the following integrals: 

for all values of t in a given time interval [0,1]. The inner product in H is 
given by 

(0. 1) 

l +9,t (aWl (x, t) aW2 (x, t))] 
+ pA(x) at . at dx. 

-9, 

This is distinguished from the usual L2 (inner) product 

(f,g) ~ 1 [f(x,t) g(x,t)]dx. 

The total energy of the beam is identified with the energy norm 

(0.2) I'" W(x,t) III 
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which differs from L2(rt) norm II WII
Lz

= (W,W)rt
I/2

• We assume that A(x) and I(x) 

depend uniquely on the choice of m-tuple of design parameters 

S' ~ , 

that is, 

and 

The vector ~(x) consists of m-design functions, such as thickness of the web, 
width of the -Flanges, etc., which are to be determined an optimal, or near
optimal design. The functions Si(x), i = 1,2, ... , m, -1 ~ x ~ +1, obey 
certain constraints, such that ° < Gi ~ 5i(x) ~ Li, where Gi, Li are some 
constants determined by manufacturing limitations. The set /7 of designs 
obeying these constraints is called admissible. The set of admissible loads 
includes all bounded (Lebesgue) measurable functions in rt, and 1 inear 
combinations of the spatial Dirac delta function and its first derivative 
concentrated at finite number of points in rt multiplied by an L2 (O,T) 
function of time; that is, an admissible load q(x,t) is of the form: 

(0.3) q(x,t) = g(x,t) - C) <p. (t) 
I I 

b.6-'(x - C) 1jJ.(t) , 
J J J 

where g(x,t) is a bounded measurable function on rt x [O,T]; ai' i = 1', 2, ... , 
nl' and bi' i = 1, 2, ... , n2, are constants while the <Pj(t), <Pj(t) are bounded 
LZ [O,T] functions. 
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Ilq(x,t)IiQ is the H-l{(~)} x L2[0,T] norm given by 

Ilq(x,t) IIQ = sup I (q,W) I 

The admissible loads q(x,t) E Q obey the constraint Ilq(x,t)11 Q ::; M for some 
fixed constant M > O. 

The deflection function W(x,t) obeys the state equation 

(0.4) ( ) ( 
'iw (s (x); x, t) 

L w(~(x); x,t) = p A ~(x) ,x) - 2 
at 

= q(x,t), 

where q(x,t) is an admissible load, and ~(x) an aclmissible design. Equation 0.4 
can be rewritten as a system 

M(x,t) = 

(0.5) 

q(x,t) 

The boundary conditions are 

W (~(x); X, t) - O} for all t E [0. T] , 

(0.6) 

M (x, t) - 0 x = -fI" or x = + !I" 
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The initial conditions in most real istic problems are not known. Here, we 
assume for the sake of simpl icity that 

(0.7) W (~(x) ,x,O)= O. 

M (x,O) _ O. 

1. STATEMENT OF THE PROBLEM 

We consider a cost functional J (~(x); w(~(x)); q(x,t); t) and we wish to 

find a design ~(x) € 1)', such that 

~(x) min[ max {sup (J(~(x); w(~(x));q(x,t);~\\}J . 
- . -+- §e9 t€ [0, T] q€Q 7/ 

For example, we may wish to minimize the total energy 

Our problem consists in finding ~(x) € 9'such that 

(1. 1) £. (S, q , t) = ~'€!F t€ [0 , t] 
A A - - min 1 max 

In what follows we shall always assume that the set Q of admissible loads is 
bounded in the Q-norm and convex. For the sake of convenience let subscripts, 
from now 'on, denote partial differentials, i.e., 

'dW 
at' etc. 

To prove some prel iminary lemmas we need the following known identity 
(for stated boundary conditions) 

( I .2) 
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Hence, 

(1. 3) 

Clearly, if sign q(x,t) = sign Wt (x,t) for some x € g on a set of positive 
measure in n, and q (x,t) = ° elsewhere in n, we must have 

( I .4) 

Of course, we do not know whether such design exists. However, the following 
lemma is easy to prove. 

Lemma 

For any fixed t € [O,T] and fixed ~ €,9? sup d~;q,t) exists and for a 
fixed § q€Q 

max (sup d~ ,q, t)) 
t€[O,T] q€Q 

Proof 

sup s(~,q,T). 
q€Q 

The first statement follows trivially from boundedness of the set of all 
numbers s(~,q,t), ~ €!J7, q € Q, t € [O,T]. 

The second statement can be proven as follows. Suppose that for some 
choice of q € Q, S E [J? E = max dS,q,t) > 0 occurs at some time t = ,<T. 

o t€[O,t] 
Let us suppose that force q = 0 is applied to the beam on a time interval 
(t,tl), t < tl < T. Clearly, tl can be chosen so that Wt(X,tl) # ° on some 
~ubset of g containing an int~rval [xl' x2] € n. Applying an admissible load 
q(x,t) such that either sign q(x,t) = sign wdx,t) on [xI,X2] and 
q(x,t) = ° otherwise, or q(x,t) = Oon some subset of [xl,x2] for 
t ~ [tl ,t2] C [tl,T] with [tl,t2] chosen sufficiently sma] I, we obtain 
E(~,q,t2) > EO which is a contradiction, proving o~r contention that, = T. 
Hence, the problem is reduced to finding a design ~ € [J? such that 

min (sup E (§,q,T)) 
?€[J? q€Q 
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2. PONTRJAGINIS PRINCIPLE 

For a fixed design ~ E 9' the extremal control q E Q satisfies Pontrjaginls 
maxima'iity principle in the form given in References I and 2. Specifically, 
let WH(~,x,t) be a solution of the homogeneous equation 

(2. 1 ) 

" 
where WH obeys the boundary conditions of Equation 0.6 at x = ±f, and satisfies 
an energy condition 

(2.2) 

for any other solution_WH (i(x) ;x,t} satisfying the same boundary conditions. 
(Note that the design ~(x) is fixed!) 

Then the following inequal ity must be true for all values of time on the 
interval [O,T] 

(2.3) 

for an extremal control ~(x,t). Let us make the following comments. For a 
fixed ~~.E 9' the.final state w(~(x),x,T), which maximizes the total energy at 
t = T, I S not un I que. 

3. DUHAMELls PRINCIPLE 

This differs sharply from the theorem establ ished in Reference 2 for 
optimal controls minimizing the final energy. The reason for this difficulty is 
the nonconvexity of final states. To prove some properties of extremal energy 
states we proceed to postulate a strong form of Duhamel IS principle. There 
exists a kernel function G(X,~,t,T), which depends only on the coefficients p, 
E, I, and A of the Equation 0.4 and on the assign~d boundary conditions, but 
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is independent of the initial data and of the inhomogeneous term q(d,t), and 
such that the solution of Equation 0.4 can be written as 

(3.1) 1
,;1;=+£ J t=T 

W(x,t) = 
1;=-£ t=O 

For example, in the static deflection case for a freely supported beam, 
th i s kerne 1 is of the form 

(3.2) 
2 

n mnr dn 

e- (1 X)lx (1 - n/£) dn 
+ c, - n e-

x, c, EI(n) 

2 
(1 - n/£) 

E I ( n) dn , 

with the kernel G(I;,x) defined on [0,£] x [0,£] by the relation: 

G(I;,x) if 0 ::; I; ::; x :>: Q, 

and 

G(E;,x) dx,I;) if 0 ::; x :>: I; ::; £ 

The solution of the homogeneous equation WH(x,t) satisfies the stated boundary 
conditions. 
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Lemma 3.1 

We assume a fixed design ~ E ~. Suppose that ql(x,t), q2(X,t) are 
extremal admissible loads maximizing the energy € at the time t = T, with zero 
initial conditions. Then the corresponding extremal displacements Ql(x,t), 
W2(X,t) obey the condition <WI' W2> ~ I t=T ::: O. 

Proof 

We use the co~vexiEY of the set of admissible loads. Hence, if ql, q2 
are admissible 1/2(ql + q2) is admissible. _Using Formula 3:1, ~e conclude 
that the corr~spo~ding displacement is 1/2(Wl + Q2), where WI' W2 correspond 
to the loads ql' q2' respectively. (We recall that WH(x,t) :: 0 in the 
Formul;a 3.1 because of our assumption concerning initial conditions.) Suppose 
;hat qdS), q2(~) are two external loads such that dql~) .tT) = ~(q2(~) ,T) 
- € (qt~),T) for any admissible lo~d g(x,t) E Q. Let vJl(S(x),x,t) be the dis
elacement corresponding to ql and W2 (S(x) ,x,t) displacement corresponding to 
q2' We compute 

l (; + 2 WA WA A) 2 ~ < I' 2> + € t=T 

Since E(T) is the maximal attainable energy level at t = T, we have 

A A 

<WI' W > I 2 ~ t=T 
~ O. 

Lemma 3.2 

The final state at t = T corresponding to a maximal optimal control with 
zero initial condition results in a first eigenmode vibration if the beam 
vibrates freely on any interval [T, Tl ] (with q :: 0). 

Outline of Proof 

We sha 11 assume A that q E Q imp] i es III q III Q ::; 1. Let us suppose that the 
final state {W(x,T), Wt(x,T)} cannot be attained as a state corresponding to 
the first eigenfunction of the system ¢l(x,t). 
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The h~mogeneous solution WH(x,t) such that WH(x,T) = W(x,T) and 
WHt(x,T) = Wt(x,T) can be expanded in terms of eigenfunctions of the operator 

given by Equation 0.4 on the ray 

00 

= " c.¢. (d,t), L.J I I 

i=l 

where {¢.(x,t)} form an orthonormal system. 
I 

We only need to show that some extremal admissible load (i.e., 
Ilqll= 1) brings the system to rest at t = 2T starting at energy level E: = €. at 
t = T, but that system with identical initial energy is controllable on [T,2T] 
if the initial state corresponded to the second (or higher) eigenfunction. 

This is a technical computation comparing the work done by opposing 
maximal velocity point with a Dirac delta force over the interval [T,2T] as 
the beam vibrates in a second fundamental mode. The key to this argument is 
the fact that the mean velocity over one cycle of vibration is lower at the 
point of maximum velocity than the one measured in the fundamental mode of 
vibration. The proof of this technical lemma follows some arguments of 
D. L. Russell and will be publ ished elsewhere. 

Theorem 3.1 

Let us assume a design ~ which does not correspond to the coalescing 
point of first two fundamental frequencies. Then the (maximal) optimal control 
q(x,t), x €~, t € [O,T], maximizing the total energy of a beam at t = T, 
with the state function W(x,t) satisfying zero initial conditions, results in 
a unique finite condition {W(x,T), Wt(x,T} at t = T within a plus or minus 
sign. 

Proof 

This theorem can be regarded as a corollary to Lemmas 3.1 and 3.2. 
Clearly, if q(x,t) is optimal, then so is -q(x,t). Consequently, it is easy to 
show that any optimal displacements W2 , W2 corresponding to linearly 
independent controls ql and q2 satisfy orthogonal ity condition 

O. 
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A 

Choosing -q2 as an admissible control, the displacement -W2 corresponding to 
-q2 satisfies the inequal ity 

O. 

Hence, 

(W
2 , W

2) = O. 
. rG I 

t=T 

A A 

Lemma 3.2 indicates that either WI or W2 is the state corresponding to a funda-
mental frequency rG l • Hence, without any loss of general ity suppose that 
WI (x,T) = <PI (><,t)1 t=T' <PI (x,t) corresponding to fundamental frequency rGl' Then 
W2(X,t) cannot be optimal unless it corresponds to the same eigenvalue, i.~., 
the same frequency rGl' Since this case is precluded, the proof is complete. 

4. SIMULTANEOUS OPTIMIZATION AND CONTROL 

The Direct Approach 

As before we seek a minimum over the set of optimal designs S of the 
maximal total energy s(T) attained by an admissible control q E Q.- We assume 
Ilq \I ::; 1. The theorem on uniqueness of the finite state is crucial in establ ish-
ing ~ direct computational technique and in estimating errors. For a given 
design ~ e:Jl let C(t,~(x)) denote the 

where WH(x,t) obeys the unique finite conditions at t = T. 
compactness of the set of admissible finite states for each 
assert the existence of C(t,s(x)) for almost all t ~ [O,T]. 
are of the form 

We make use of weak 
des i gn ~ € 9' to 

If constraints 

(4. 1 ) = 1,2, ... , r, 
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then at each So and t 8 [O,T], which is a regular point of 

use of Lagrangian multipl iers can be justified and we could consider minimiza
tion over JP of the functional 

(4.2) 

r 

J(~) = ~(?(x), ~(x,t) ,T) + L ]1i<P(~(x) ,t) + ]1o(t)C(t;?(x)) 

i=l 

with ]1i < 0 = 1,2, ••. , r, and]1o 2: 0, at each regular point t € [O,T]. 

Note 

A number of known "tricks of the trade" can be employed to change local 
constraints to a global form Equation 4.1. (See References 3 or 4.) 
If one assumes the existence of a simple fundamental frequency wl(~)' 
then using recent results of Haug and Rousselet (Reference 5) one 
can prove Frechet differentiability of the differential operator L with 
respect to the design vector. (Actually, one can prove more than that, 
but detailed results are not needed here.) Therefore, it is legal to 
proceed with formal differentiation with respect to the design vector 
function ~ = {Sl(x) ",Sn(x)}. Regarding c5~ = {c5Sl' ... , c5Sn} as an 
arbitrary increment, such that So + 65 is admissible, we could copy the 
approach given by Komkov and Coleman Tn Reference 6. 

The formal differentiation procedure produces incorrect designs if the two 
lowest eigenvalues coalesce, thus leading to erroneous conclusions. This is a 
crucial point in the computational techniques based on heuristic arguments. 
Optimization results in numerical minimization of weight at constant eigen
frequency led in the past to many difficulties including appearance of singu
larities, discontinuities in design, and questionable local optima. 

Bearing this in mind, we now proceed to optimize the design in the 
simplest possible case, when the structural system (in our case a single beam) 
is statically determinate. The bending moment M(x,t) does not depend on the 
design 5; it depends only on the load ~(x,t), which maximizes 8 (T). 
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Identifying the potential energy with strain energy, we use the Hooke's 
law formula to evaluate E (t). 

(4.3) 
_ 1 M (x, t) 1 2 1£[ 2 j 1£ 

E (,) - If 0 I (~(x) ;x) dx + 2: 0 P[A(X)W,) }x. 

Since M is independent of S(x) we can evaluate the sensitivity vector dJ/dSE B* 
(the dua 1 of the normed space B of wh i ch [jJ is a bounded, closed convex subset). 

where 

We compute formally 

dJ 
<CiS' oS> 

1 1£ ~(A2(A ) -2(( ) dl(§(X)))\\ = 'IT 0 ~ t-1 q(x,T) ,x,T) x, T I ~(X};X d§ ~ o~ 

d 
d"S= 

d 
CiS n 
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Since the last term contains only design constraints which are time-independent 
and the first term is specifically evaluated at t = T, we conclude that the 
term 

is also time independent and can be evaluated at t = T. Hence, for statically 
determinate cases we can design a fairly simple computational algorithm similar 
to the one offered in Reference 6 allowing us to compute iteratively the 
optimal control and the improvements in design. A simple example of such 
computation was carried out in Reference 6 for the case of energy minimizing 
contro 1 . 

Our results ofi Sections 2 and 3 indicate that this technique is appro
priate to optimal excitation, that is, to energy maximizing controls. The 
lack of convexity apparently does not destroy the effectiveness of the basic 
theory based on Pontrjagin's principle. Basically, these results duplicate the 
conclusions made in Reference 6, but in a theoretically more difficult case. 
However, a check must be maintained on absence of multiple eigenvalues when a 

1\ 
change in design causes a corresponding change in WHt(X,t). 

5. THE ADJOINT VARIABLE TECHNIQUES 

We consider a weak form of the state Equation 0.4, i.e., 

(5. 1) 0, 

subject to boundary conditions and spatial constrains 

¢. (x,S(x) ,W(x,t)) = ¢. (x) = 0, 
I - I 

= 1,2, ... , r. 

It is known that solutions exist to Equation 0.4 in the Sobolev space H whose 
structure is determined by energy inequal ities of Equations 0.2 and 0.3, if 
one prescribes Cauchy data, such as W(x,O) = ¢(x) E Cl (~), Wt(x,O) = 
~(x) E Cl(~), and suitable boundary conditions, such as, for example, free sup
port at x = ±£. Hence, Equation 5.1 is satisfied for any choice of sufficiently 
smooth A(x,t). Let J denote the functional given by Equation 4.2. 
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A satisfies the equation 

(5.2) 

in ~ x [O,T] and satisfies terminal condition A (x,T) = o. 

The invariance of state equation when the design is perturbed is 
expressed by the condition 

Since A does not depend on S, Equation 5.3 can be rewritten as a system 
of r-equations 

(5.4) 

where 

Recalling Equation 5.2, we note that 

da (M., </>., J, ?) '\ 
1 1- 3a + ~ 

-----'---d":-:S:'------ = 3 W W S 3 S 

Hence, 

da 3a = --dS 3~ 
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The very important term da/dS is essential in deciding sensitivity of the cost 
functional, in this case of the total energy at final time. We observe da/dS 
can be computed if one knows the state function W(x,t) , the solution A of the 
adjoint Equation 5.2 and the multipliers ~. 

The most troublesome term Ws has been removed. One could immediately 

apply gradient projection technique perfected for this problem by Haug, 
Arrora, and Feng (Reference 7), if we apply a fixed control q(x,t). For 
example, choosing a specific design, computing the natural frequency, fixing 
a maximum weight of the beam, the maximum permissible displacement, and the 
minimum sizes of the beam, we adopt a load which is a Dirac delta function 
applied to the free end of a cantilevered beam, with frequency input 
cos (80 ~t), for t > O. The constants were taken to be E = 30.106 psi, 
a A2 = I, a = . 3, Q, = 40". 

This problem was analyzed at the University of Iowa on an IBM 360/65 
computer. The beam was divided into ten finite element sections. 

The optimal shape of the beam is illustrated above. Changes due to the 
term C(§,t), which is absent in the Iowa analysis, do not appear to affect 
seriously the optimal shape. We recall that the term 

e(s,t) - W
H 

(x,t) . q(x,t) 
t 

is independent of time and only depends on frequency and, therefore, on §. 
Small changes in design and small changes in optimal control, particularly if 
the first two eigenvalues of the operator L are not close to each other, do 
not affect seriously the sensitivity, or the iterative techniques incorporating 
changes in control. 

Numerical studies indicate that assignment of constraints on minimum 
sizes of admissible designs prevents this difficulty. However, any numerical 
studies must incorporate the study of changes in spectrum of the operator L. 
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6. A BRIEF DISCUSSION OF APPLICATIONS 

A question which engineers find hard to answer concerns the design of a 
system. Is the design "good"? Generally, a check is made to determine 
whether the design is safe and reasonably economical. Traditionally, 1 ittle 
effort was made to improve a "satisfactory" design. However, in the last 
ten years a concentrated effort was made to develop a theory and algorithms 
for iterative improvements of even very complex mechanical and structural 
systems, particularly of systems modelled by equations with distributed 
parameters. Some of the most difficult theoretical problems arise almost 
casually in any consideration of what is a "good" design. Questions of 
identification (i .e., how good is the mathematical model), of reI iabil ity of 
data, of our knowledge of physics of the basic processes, and specifically of 
the loads applied to the system can never be answered completely or satis
factorily. In most structural systems, at least in some part, the loads are 
unknown or random. When designing structures to withstand random wind gusts, 
earthquake loads, ~r unpredictable dynamic loading from other causes, one must 
design the structure for the worst set of conditions encountered in past years 
or expected in the foreseeable future. 

Clearly one cannot design for some average loads or average winds. A 
reasonable assumption is to study the "worst" data available. The techniques 
outl ined In this paper apply to basic concepts of engineering design if it is 
assumed that Mother Nature conspires to present the worst possible set of 
controls over a reasonable time period [O,T] corresponding to a duration of 
extreme wind gusts, of an earthquake, or of some other extreme dynamic loads. 
Even then our assumptions are open to many criticisms; but so are other 
assumptions when one tries to model and predict physical phenomena. 
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FIXED-ORDER DYl\rAMIC COMPENSATION 
rrHROUGH OPT][MAL PROJECTION* 

David C. Hyland and Appasaheb N.l\1adiwale 
Massachusetts Institute of Technology Lincoln Laboratory 

Lexington, MA 02173 

ABSTRACT 

This paper reviews a formulation for the design of fixed-order dynamic com
pensation for flexible mechanical systems which is based upon explicit optimality 
conditions derived under the minimum data/maximum entropy stochastic modelling 
approach. The optimality conditions give rise to the novel concept of "optimal 
projection" which provides significant insight with regard to the compensator 
structure and permits earlier, more restricted and/or ad hoc design schemes to be 
seen as special cases of the present formulation. 

1. INTRODUCTION 

A satisfactory theory of structural control design for large, flexible space 
systems must secure desirable system properties in the face of inevitable errors 
arising in the construction of large order structural models and should success
fully address the optimization of implementable dynamic compehsation. Ref. [1] 
reviewed recent developments leading to the minimum data/maximum entropy approach 
to modelling and mean-square optimization. Accepting system parameter uncertain
ties at their a priori levels, this formulation incorporates such uncertainties 
directly within the design process by the use of an explicitly stochastic design 
model of the plant. By virtue of the underlying maximum entropy principle, the 
resulting stoehastic design approach acknowledges the minimum possible prior 
information on parameter statistics and is capable of directly securing robust 
stability and mean-square optimality. 

The design ramifications of this modelling approach in the case of full-state 
feedback regulation are summarized in the companion paperl. This paper addresses 
further optimization issues. In particular, we review the development, under the 
minimum data/maximum entropy model, of optimality conditions for fixed-order 
dynamic compensation. It will be seen that, quite apart from the inclusion of 
parameter uncertainties, the present formulation of mean-square optimal, fixed
order compensation is nove1. In particular, explicit optimality conditions are 
made available, and a rigorous and tractable design scheme for implementable com
pensation is obtained. The compensator form which naturally emerges from this 
formulation is fully defined by the gains and by a projection (an idempotent 
matrix) whose row and column spaces are the observation and eontrol subspaces of 
the compensator. The optimality conditions given herein are of such a form that 
they determine this "optimal projection" together with the optimal gains. Since 

* This work is sponsored by the Department of the Air Force. The U.S. Government 
assumes no responsibility for the information presented. 
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the compensator control and observation subspaces are not restricted at the outset 
to consist only of selected modal coordinates, the present formulation achieves 
greater design fl~xibility than the more conventional approaches. 

After setting forth the basic maximum entropy design model in the following 
section, we present the main optimality and stability results in Section 3. 
Section 4 describes the relations between the formulation considered here and 
earlier treatments of more idealized controller forms. The remaining sections 
offer various geometric interpretations and elucidate the approximate character 
of the "modern modal control" approach (modal truncation followed by LQG design) 
in the light of the present, more general developments. 

2. MAXIMUM ENTROPY MODELLING AND MEAN-SQUARE OPTIMIZATION 

Consider cont.rol design for a structural system modelled by n of its elastic 
modes. Extensions needed to include rigid body modes are straightforward and will 
not be explicitly considered here. The system equation assumes the form: 

. 
t;, a. 

n b. (1) 

m2n £ P t;, € ~ ,u € R , n € rt c. 

where t;, is the plant state. ]1 is the plant dynamics map and Band yare the con
trol input and sensor output maps, respectively. Also, WI is a white disturbance 
noise with intensity matrix VI ~ 0 and w2 is observation noise with intensity 
v 2 > O. 

Due to various sources of error arlslng in the process of structural model
ling. there may exist a priori uncertainties in ]1, Band y. It is supposed here 
that (1) is written in the eigenbasis of the structural system with the nominal 
or expected values of the parameters. In this case as Refs. [2,3] show, a wide 
class of parameter uncertainties (embracing errors in the structural stiffness 
matrix and in actuator and sensor placement) may be represented by skew-hermitian 
perturbations in ]1 alone. Thus, arranging the state vector appropriately, ]1 

assumes the form: 

]1 ]1 + v(t) , v H -v 

where v is a zero-mean random matrix and ]1 is the expected value: 

]1 diagLDl(i-nl),lDl(-i-n l ), ... ,w (i-n ),W (-i-n )} n n n n 

(2 ) 

(3) 

with lJJ
k 

and n
k 

the nominal modal frequencies and damping ratios, respectively. 

While explicitly recognizing the stochastic character of the plant dynamics 
map, it is desired to secure a controller which is optimal in an averaged sense 
by selecting the input, ~(t), to minimize the mean-square (steady-state) perform
ance: 
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J 
s 

r
l 

~ 0 , r
2 

> 0 

where the ensemble average, E [. ], embraces the v-ensemble. 

(4) 

In addressing this stochastic design problem, it must be recognized that a 
complete probabilistic description of ,i (t) is never accessible to the design 
analyst from the necessarily incomplete empirical statistical data. To resolve 
this difficulty, Refs. [4,5] introduced the use of a maximum entropy principle 
for the construction of a full probability model which is consistent with avail
able data while being maximally unconstrained otherwise. Moreover, the work 
reviewed in Ref. [1] identified a minimum set of parameter statistical data which 
must be acknowledged as empirically available in order that a well-defined prob
ability model may be induced via the maximum entropy principle. The minimum datal 
maximum entropy model is thus literally the maximum entropy model induced by this 
minimum data set. 

Since the maximum entropy modelling approach entails a measure of design 
conservatism and implicitly imposes robustness constraints without recourse to 
ad hoc procedures, we adopt its use here for the modelling of vet) in (2). 
Although all of the following results can be obtained or trivially extended to 
the general formulation outlined in Ref. [1], we limit consideration, for sim
plicity in the exposition, to uncertainties in the open loop frequencies of 
system (1): 

v (t) diag [i Im(vkk)ok(t)] 
k 

where [m(,) denotes the imaginary part. 

(5) 

Within the maximum entropy model, and by virtue of (5), system (1) has the 
It~ differential representation: 

ds:(t) ]JmS( t) dt + (3u dt + dv(t)s:(t) + dWl(t) 

} (6) 
dn(t) yds:(t) + dW2 (t) 

where: 
I'!, - 6, d~ag [ ikJ 

(7) ]Jm ,= ]J -~[ , [ = 

where Tk is the so-called "relaxation time" associated with the 0k(t) in (5). 
Assignea numerical values for the Tk constitute the minimum data set in this 
case and, referring to the expressions given in Ref. [1], it is seen that the Tk 
are real, non--negative and inversely proportional to the overall magnitudes of 
the frequency deviations. 

Within the above conditions, the stochastic design approach consists in 
accepting (6) as the plant model and then determining u(t) to minimize J s of (4). 
This plan has been elaborated for a variety of specific controller forms. In 
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particular, for full-state feedback regulation as well as full-order dynamic com
pensation, Refs. [6,7] succeeded in showing various desirable properties of the 
stochastic design approach - notably, guaranteed closed-loop stochastic stability 
under the stochastic design model and the automatic emergence of an inherently 
robust control law for high levels of modelled uncertainty. These and additional 
results described in Ref. [1] strongly motivate extension of the approach to con
sideration of fixed-order compensation. 

3. FIXED-ORDER COMPENSATION: BASIC FORMULATION AND OPTIMALITY CONDITIONS 

Quite apart from the issues connected with parameter uncertainty, there is a 
need for re-examination of previous methods for fixed-order compensator design. 
Perhaps the earliest approach to the design of fixed-order compensation for flex
ible mechanical systems involves the retention, in the design model, of relatively 
few modal coordinates and the use of familiar LQG techniques for the reduced-order 
model. As is presently well known, this scheme spawns a host of spillover insta
bility problems. Furthermore, various techniques advanced over the past few years 
which retain the use of modal-coordinate space decompositions (i.e., reduced-order 
modal coordinate models) for the purpose of spillover suppression8 ,9 or model 
reductionlO,ll are themselves subject to unwanted spillover effects and cannot 
guarantee stability or robustness for the full order system. 

From the above considerations, increasing attention has been directed to the 
general approach (originated by Newton, Gould and Kaiser12) which accepts a high 
order model of·the system while limiting the compensator order to some fixed number. 
Using the technique recommended by Kwakernaak and Sivan for gradient computations 
together with a parameter optimization algorithm, Martin and Bryson13 have recently 
applied this approach to flexible spacecraft control. The formulation of Martin 
and Bryson assumes a positive definite weight (in the usual quadratic performance 
index) on the control input and permits feedthrough only for the non-noisy portion 
of the sensor output. In marked contrast, Johnson14 allows unrestricted sensor 
output feed through and places no weight on the control input. Actually, these two 
formulations are extreme cases of a more general scheme which allows limited feed
through combined with limited control input weighting in a manner which avoids 
singularity in the performance index. This general situation is certainly of 
interest, but. to fix ideas, we consider the problem formulation of Martin and 
Bryson under non-singular observation noise. 

Thus, consider the closed-loop system equations comprising (6) for the plant 
together with: 

U -Kq a. 

q aq + fn b. (8) 
N 

q € rt q ; N ::; 2n c. 
q 

where K and f are the (time-invariant) compensator gains, q is the compensator 
state (of dimension Nq ::; 2n) and a the corresponding dynamics map. With these 
restrictions, we should like to determine K. f and a to minimize J . 

s 
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Although the parameter optimization approach to this problem is reasonably 
well developed (at least for the case of a deterministically parametered plant) 
and its computational burden does not seem prohibitive. it yields little theo
retical insight and no guarantee of global optimality. Thus there is a need for 
explicit optimality conditions of a form analogous to the results of Levine, 
Athans and Johnson15 for the optimal output feedback problem. 

Such conditions were derived, for the first time, in Ref. [16]. Of course, 
the stationary conditions initially obtained comprised a system of non-linear 
matrix equations of formidable complexity. However, the condition that the gradi
ent of the performance index with respect to elements of the compensator dynamics 
matrix vanish results in an identity. In fact, the stationary conditions furnish 
no determination of the compensator dynamics matrix and there is thus considerable 
latitude of choice. It was shown that by judicious choice of the compensator 
dynamics, the originally very complex stationary conditions may be reduced to 
relatively simple forms. Defining: 

{M} (9.a) 

f M ~2nx2n and' d' or any € ~ lntro uClng the notation: 

o (9.b) 

the final results of Ref. [16] which are the object of the present discussion may 
be summarized as follows: 

Theorem 1 - Consider: 

0 
- H (ll -OPe) 

m 
P + P (jl -oP,) 

m 
HA 

+ I{P + , Pc} 

- - H A H 
0 (ll -,Qo)Q + Q(ll -,Qo) + I{Q + ,Q, } 

m m 

0 
H - - H HA HA - -

PoP] , [(ll -Qo) , p, + , P'(ll -Qo) + m m 
- AH AH- H 

0 '[(ll -oP),Q, + ,Q, (ll -oP) + QoQ] 
m m 

where: 
{J gHr 

N x2n , ; g,r € ct q 

such that rand g satisfy: 

rgH 

A A 

H + r
l + , PoP, a. 

l - H (10) 
+ vI + ,QoQ, b. 

a. 

l (11) 
b. 

(12.a) 

(12.b) 

If r, g and positive semi-definite P, P, Q and Q exist satisfying (10)--(12), 
then with the choice: 

for a in (8.b), the gains: 

K 
A H 
Kg, f 

A 
rf 
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where: 
A 
K 

-1 H A 
r

2 
S P , f (15) 

determine an extremum of the performance index (4) under the constraints imposed 
by (6) and (8). Th~_extremum value, J* of J is given by: 

s s 

J* 
s 

Proof: See Theorem 2 and Corollary 1 of Ref. [16]. 

(16) 

As is evident from (13) the present approach does not fix the structure of 
the compensator dynamics in advance but, rather, determines it together with the 
gains. The consequent form of the closed-loop system under the maximum entropy 
model of the plant is seen to be: 

q 

A H 
ll~ -SKg q + Wl 
. - A A H 
r(ll -fy -SK)g q 

m 

where II is to be interpreted in accordance with (2), (5) and (6). 

(17) 

Equations (10)-(12) clearly form the core of the design formulation and these 
relations indicate that the projection T (note: T = T2 and rankT = Nq are implied 
by (12)) plays a central role. With the exception of the results of Theorem 4 
below, necessary and sufficient conditions for the existence of solutions to (10)
(12) remain the object of research. It is possible, however, to illustrate the 
consequences of existence, particularly with regard to stochastic stability and 
the minimum property. 

N xN 

> tl>q q To facilitate the statement of the following result, denote by <TMT E ~ 
the matrix of the map, M, restricted to the subspace upon which T is the projection 
with restricted codomain. Then we have: 

Theorem 2 - Given Nq , suppose that full rank g and r and positive semi-definite 
P, Q, TRpT and TQTH exist satisfying (10)-(12) with «THp0PT>~, <T(; -Qa)T») 

m 
detectable. Then: 

A. System (17) under the mlnlmum data/maximum entropy model for II is ~econd 
mean and almost surely exponentially stable. Also, (17) with II = II (that 
is, the system with nominal values of parameters) is exponentially stable. 

B. The gains, (14), determine a minimum of the performance index (4) under 
the constraints imposed by (6) and (8). 

Proof: See Theorem 2 of Ref. [17]. 

Thus, under mild restrictions the formulation of Theorem 1 not only secures 
stability for the nominal system but also guarantees a considerable degree of 
stochastic stability. The above results, particularly part B, now justify use 
of the term "optimality conditions" in connection with (10)-(12). Accordingly, 
we now devote the remainder of the paper to discussion of various properties of 
relations (10)-(12). 
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4. QUALITATIVE FEATURES ~. RELATIONS TO PREVIOUS RESULTS 

The principal requirements of Theorem 1 are seen to consist of two modified 
Riccati equations, (10), and two modified Lyapunov equations, (11). The Riccati
like equations, (0). are each similar in structure to the stochastic Riccati 
equation arising in the case of full-state feedback regulation. To recapitulate, 
earlier work,Refs. 14,6], the time invariant gain, K, where 

which 

u -Kt; 

extremalizes J is given by 
s 

K r -ISH p. 
2 

(18) 

where P is the positive semi-definite solution to the stochastic Riccati equation: 

o (~ _oP)H P + P():t- -oP) + I{P} + r
l 

-I- PoP 
m m (19) 

Now examine the qualitative features of this equation. The modifications which 
distinguish (19) from the standard Riccati equation are the term -~I in Jlm as 
defined in (7) and the term I{P}. Both of these obviously arise from the influ
ence of frequency uncertainty and are responsible for important effects. 

To better understand the properties of (19) described in Ref. [1], let us 
re-write (19) in the form: 

o (20) 

where [A,B] denotes the commutator (AB -BA) and the matrices B
k

: 

,Q, = m = k 
(21) 

otherwise 

are the "direction matrices" for uncertainties of the form (5). The structure of 
the modification term in (20) suggests that for large uncertainty in the kth open
loop frequency (Tk small), the commutator [P,Bk] will be suppressed - and this is 
indeed the case. As noted in Refs. [4,5], if all uncertainty levels are made to 
increase without bound (all the Tk approach zero), then P approaches an asymptotic 
solution which commutes with all the Bk - i. e., it is diagonal (and is given in 
closed analytical form). Precisely because all the [P,Bk] vanish, a simple 
Lyapunov argument shows that the resulting rate-feedback control is stable regard
less of the values of modal frequencies. In the more general case in which lower 
order modes are well known while frequency uncertainty increases with modal order, 
analogous results are obtained and the third term in (20) leads to robustness 
levels comparable to modelled uncertainty levels and reduced computational burden 
for the high order, poorly-known modes. With regard to the explicit appearance 
of terms connected with uncertainty, Eqs. (10) have the same structure as (20) and 
similar effects are to be expected. 
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Now, previous developments proceeded in generalizing results obtained under 
the regulator problem by first removing the assumption of full-state feedback. 
Supposing state information to be available only through a finite number of sen
sors (with non-singular observation noise), Ref. [7] derived optimality conditions 
for full-order dynamic compensation under the maximum entropy model. Let us first 
note that both the conditions of Ref. [7] and standard LQG theory can be obtained 
as special cases of the conditions given in Theorem 1: 

Lemma 1 

A. 

B. 

Under the problem formulation of Section 3, supposellthat 
(12) are satisfied by T = I

2n 
= r = g and by P, Q, P and 

N A 2n. Then (10)
q Q satisfying: 

o ~:P + P~m + I{P + p} -PoP + r
l 

-H II 
0 ~mQ + Q~m + I{Q + Q} -QoQ + v

l 

- HII A-
0 (~ -Qo) P + P(~ -Qo) + PoP 

m m 
II II - H 

0 (~ -oP)Q + Q(~ -oP) + QoQ m m 

and the extremalizing gains are given by: 

II -1 H II H -1 
K = K = r S P , f = f = Qy v

2 2 

If, in addition to Nq. 2n, there is no parameter 
then the extremal galns are (24) but with P and Q 

0 ~P+ P~ -PoP + r
l 

0 ~Q + Q~ -Q0Q + vI 

uncertainty, 
satisfying 

a. I (22) 
b. 

a. I (23) 
b. 

(24) 

i. e. , I = 0, 

I (25) 

(Thus, LQG theory is seen to be a very special case in the formulation of 
Theorem 1). 

Proof: Immediate from Theorem 1. 

Of course, (22) and (23) are precisely the conditions first obtained in 
Ref. [7]. Observe that in the absence of the terms I{P} and I{Q}, (22) are of 
the form of the stochastic Riccati equation, (19). In general, however, (22.a) 

A A 
and (22.b) are coupled through I{P} and I{Q} so that the effects of modal fre-
quency uncertainty preclude the separation principle. Also, the coupling terms 
effectively augment the diagonal elements of rl and vl' thexeby demanding greater 
control authority and stabilization. Moreover, from (23), P and ~ tend to 
increase with controller input, KHR2K and its dual fHv2f. We may say that ~ and 
Q represent the effect of error "leaking through" the regulator to the observer 
and vice versa by virtue of parameter uncertainty. 

Additional properties of the full-order compensation formulation together 
with illustrative numerical results are presented in Ref. [7]. In particular, 
the behavior of solutions to (22,23) for large uncertainties is analogous to the 
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regulator case and a closed-form asymptotic solution (which is inherently robust) 
can again be obtained. 

Finally, Ref. [16] removed the restriction Nq = 2n to obtain the results 
stated in Theorem 1. Clearly (10) and (11) are very similar in structure to (22) 
and (23) and exhibit all the features noted above. A fundamentally new element, 
however, is introduced by the appearance of the projection ,. Note particularly, 
that in the present formulation, the compensator dynamics matrix as well as the 
gains are determined by the optimality conditions (10)-(12). Furthermore, these 
conditions also determine the Nq-dimentional row spaces of rand g which serve to 
complete the definition of the compensator. Thus, we shall attempt to clarify 
the central role played by , in the following section. 

5. GEOMETRIC INTERPRETATIONS: THE OPTIMAL PROJECTION 

The geometric structure of the compensator of Theorem 1 is best illustrated 
by the quasi-full-order compensator interpretation given in Ref. [16]. Specifi-

A 
cally, if we introduce the quasi-full-state estimate, t;,: 

1\ fj H t 2n t;, g q t: (26. a) 

1\ 1\ 
so that ,t;, = t;, and: 

1\ N 
q rt;, E: t q (26.b) 

then, the closed-loop system, (17) • may be written: 

. 
t;, 

} (27) 

1\ N 
Thus, although the implemented compensator has the state q = rt;, E: t q, it 

may be viewed as a quasi-full-order compensator whose structure is defined by the 
projection ,. Clearly, sensor inputs, tn, are annihilated unless they are con
tained in Im(,H) (the row space of r), while the quasi-full-order state estimate, ..... 
,t;" employed in control input is contained in Im(,) (the row space of g). In 
consequence, we may call Im(,) and Im(,H) the control and observation (respectively) 
subspaces of the compensator. Complements of these spaces are, of course, Im(,H) 

1. and Im(,1.), where 

I'!. 
(28) 

To distinguish these subspaces, we shall term 1m (,H) and Im(,1.) the "secondary" 
control and observation (respectively) subspaces. 1. 

As can be seen from the above discussion, the optimality conditions of 
Theorem 1 determine a projection which, in turn, induces all of the important 
subspaces of the problem. For this reason, we may call the approach of Theorem 1 
that of "optimal projection". 

Now consider in what manner the optimality conditions (10)-(12) specifically 
determine ,. First note that (10) are analogous to the corresponding relations, 
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(22), determining P and Q for full-order compensation and do not constrain, 
directly. Next examine (11). For convenience, denote the quantities within 
brackets on the right of (ll.a) and (ll.b) by Ap and AQ respectively. Then (11) 
require that Ker[,HAp ] = Ker[,AQ] = t2n. But since C2n = Im(,)~Im(,~) = 
Im(,H) (±)Im(,H) , (ll) gives rise to the four conditions: 

~ 

o (29.a,b) 

o H 
, Ap'~ , 0 (30.a,b) 

Expanded out, (29) assume the form of Lyapunov equations (very similar to (23» 
which serve to determine (,Hp,) and (,~,H) but not ,. On the other hand, with 
Ap and AQ dictated primarily by (10) and (29), conditions (30) require that 1) 
the secondary control subskace, Im(,~), be Ap-invariant and 2) the secondary 
observation subspace, Im(, ), be AQ-invariant. Thus, (30) do constrain ,. 

~ --

Actually, (30) are the only direct requirements on , since (12) merely demand 
that there exist a basis in t2n (the "canonical basis") for which the matrix of , 
assumes the projection canonical form: 

:] (31) 

In other words (see Lemma 1 of Ref. [17]), there exists a non-singular ~ E t2nx2n 
such that: 

, (32) 

Thus, solution of (10)-(12) is tantamount to determination of non-singular cp 
and positive semi-definite P, Q, P and ~ with, defined by (31) and (32). Further 
consideration reveals that the total number of unknown parameters to be determined 
exceeds the number of independent conditions implicit in (10)-(12) with (31) and 
(32) by N~. This merely reflects the fact that (10)-(12) can determine, only to 
within an arbitrary transformation of the compensator state. In particular, we 
may re-state Lemma 2 of Ref. [17]: 

N xN 
Lemma 2 - Let u E t q q be non-singular. Under the transformation: 

g uH-l g; fgH IN 
~ 

r ur , 
q 

relations (10)- (12) retain their form except for the substitutions: 

g -+ g r -+ r 

Moreover with (34) and: 

f'.. -1 
q u q 

the closed-loop system equations for (~) retain the form of (17). 
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Thus, there is still some latitude with regard to the choice of T and we may 
impose N~ additional conditions upon g and r so as to simplify their form. One 
represenfation of T which is particularly useful in applications is given as fol
lows. Assuming that there exist T, P and Q satisfying (10)-(12), they may be 
written in the forms! 

T [I :~GH] [I, L] (36) 

" l:H ] C P [I, L] a. 

[I _LGH] ~ 
(37) 

" -GLH Q . Q [I G] b. 
GH 

, 

where 
N x(2n -N ) 

G, L € t q q l 
~ ~ N xN (38) 
P, Q € t q q ;:::: 0 ~ 

Moreover, the transformation cp of (32) is! 

l-:H _LG'\J cp-l [I _LGH 

-IL] cp 
GH (39) 

I 

where I denotes either IN or I
2n

-
N 

' according to context. 
q q 

With (36), (12) are seen to be satisfied identically. Furthermore, the 
explicit equations obtained upon substitution of (36) and (37) into (10) and (11) 
are given in Lemma 3 of Ref. [17]. Here we note that the relations corresponding 

::::. ~ 
to (29) consist of two NqxNq Lyapunov equations determining P and Q. Equations 
(30) give rise to two asymmetric Riccati equations for Land G. As will be illus
trated in the next section, when I ILl I and I IGI I are small, these equations may be 
approximated by two Lyapunov equations which, in essence, determine first order 
corrections to cp such that (32) is more nearly satisfied. 

6. ALMOST IGNORABLE STATES - RELATIONSHIPS TO MODERN MODAL CONTROL 

To further illustrate the relations of the present approach with earlier, 
more conventional formulations, we now consider a situation in which control and 
observation subspaces are well approximated (in some sense) by Nq-dimensional, 
]..I-invariant subspaces. Specifically, let all system matrices be expressed in the 
eigenbasis of the nominal system dynamics, as in Section 2 and suppose that: 
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[ VI £:"2] 
EJ12 E V2 

a,b [ Rr £:"2 ] 
ER~2 E R2 

° [ "1 £012] 
-H 2-

€0 l2 E 02 
° ["" 

£~121 
E0~2 E 02 

c,d (40) 

N xN 
Rl , VI' 01' 01 E t q q (Nq even) e 

where E ~ 0 and all sub-blocks Rl' R12"" etc. are bounded and independent of E. 
Clearly, for E sufficiently small, (40) implies that the last 2n-Nq states are 
only slightly weighted in the performance index, weakly disturbed and nearly 
unobservable and uncontrollable - whence the term "almost ignorable" may be 
applied to these states for 0 < E « 1. 

First, we consider the case E = 0 and determine a solution to (10)-(12) 
which corresponds to the familiar "modern modal control" approach wherein the 
last 2n-Nq states are dropped and a full-order compensator is designed for the 
reduced-order model. For E = 0, the main result is: 

Theorem 3 - Assume conditions (40) with E = O. Partitioning all matrices in 
accordance with (40), suppose that ~2 is asymptotically stable (in accordance 
with the assumptions of Section 2) and: 

controllable 
} (41) 

reconstructible 

Then the fixed-order compensator optimality conditions (10)-(12) are satisfied by 

'[ [> : 1 (42) 

p [:~ :1 Q l:~ :] a,b 

I!.. I!.. (43) 
A [:0 :1 A [ :0 :1 p Q c,d 

po 0 ~ ~ 
where Ql' 

po and QO are the unique positive definite solutions to: 
l' 

-H 0 0-
+ I1{P~ 

~ o 0 

J 

0 ~m1P1 + P1~m1 + po} + Rl -P10lPl 

o--H ~ (44) 
0 

- 0 
+ Il{Q~ + QO} + VI 

0- 0 
~mlQl + Ql~ml -QlolQl 
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~ h. 
- 0- H i"io - ey- o 0 

0 (\lml-Qlol) 
po + P (\lml-Qlol) + PlolPI } /!:. ~o - 0 H 

(45) 

0 
- 0 7\0 0- 0 

(\lml-oIPI)Q + Q (\lml-oIPI) + QlolQl 

Proof: See Theorem 3 0 f Ref. [17] . 

Conditions (44) and (45) are simply the full-order compensation optimality 
conditions (22)-(23) for the reduced order model comprising the first Nq states. 
Since N~ is even, T also assumes the canonical form (31) in the usual modal coor
dinate Dasis. Thus the modern modal control approach (which proceeds by modal 
truncation) amounts to the assumption that (42) is a decent approximation for T. 

For € > 0, this simple state of affairs no longer prevails. However, it 
should be expected that solutions of (10)- (12) "in the vicinity" of (42) and (43) 
do exist provided € is sufficiently small. Under modest restrictions, this is 
the case - as the following emphasizes: 

Theorem 4 - Suppose that E > 0, but otherwise retain the conditions of Theorem 3. 
Expressing T, P and ~ according to (36) and (37), consider the formal series 
expansions: 

00 00 

G(k) L L k L (k) G L: k 
(46) E € 

k=l k=l 
and ~ 00 

k ~(k) 
P L: E P (47) 

k=O 

~ ~ 
with similar expressions for Q, P and Q. Here, the leading terms for P, Q, P and 
* Q are given by (43)-(45), and all remaining terms are obtained by regular pertur-
bation expansion applied to (10) and (11). 

Under these conditions, there exists an E > 0 such that for all, E :s; E, the 
series (46)-(47) are absolutely convergent to solutions of (10)-(12). 

Proof: See Le:rnrnas 4 and Sand Theorem 4 of Ref. [17]. 

This result confirms the expectation that the problem is well posed in some 
neighborhood of E = O. Of course, the radius of convergence of (46)-(47) remains 
to be determined. However, this question will be deferred to a subsequent report 
since our main interest here is the qualitative behavior of solutions for E suf
ficiently small but non-zero. 

7. SMALL E-SOLUTIONS - SPILLOVER ACCOHMODATION THROUGH OPTUfAL PROJECTION 

Supposing that € is sufficiently small in the case of almost ignorable states, 
the last theorem above guarantees existence of solutions to the optimality condi
tions of Theorem 1 and provides a perturbation expansion which has the modern 
modal control approximation of Theorem 3 as its po.int of departure. Although 
more general existence results and more satisfactory computational methods will 
be presented subsequently, let us persue the developments of the last section in 
order to illustrate the manner in which the present formulation modifies the 
usual modern modal control approach. 
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To simplify the algebra somewhat in developing explicit expressions, con
sider only the case of a deterministic plant: 

I o )lm )l (48) 

and suppose the primary and secondary modes to be independently weighted and dis
turbed: 

V12 
o (49) 

With these restrictions, the results of Theorem 3 would apply were it not 
for the non-zero values of 012 and 012 in (40.c,d). These terms arise from the 
controllability and observability of the almost ignorable states. 

To illustrate the effects of non-zero 012 and 012' let us develop the series 
solutions of Theorem 4 up to and including terms of order E2. The results (see 
Corollary 1 of Ref. [17]) may be summarized as follows: P ~ 0, Q ~ 0 and L sat
isfying (10)-(12) may be approximated by: 

P P + 0(E 3
) Q Q + O(E 3

) 

[
I -LGHl 

H [I, 
G 

where P, Q, Land G are determined by: 

0 
-H~ 

)l P + 
f'..l-- rv Of"V 
P)l -Po P + R 0 

-rv ~H """"-of'V rv 

)lQ + Q)l -Qo Q + V 

/\ /\ 1\0-1 - 0- H 1\0 0-
0 L)lm2 + P ()l 1 -Qlol) P L -E Ql ol2 /\ m /\ 

0 
-H "0-1 - o /\0 0 

G)lm2 + Q ()lml -oIPl) Q G -E Pl o12 
where: 

R r
l 

+ [ 
0

0 
V 

a, b 1 
c. 

(50) 

a,b (51) 

a. } (52) 

b. 

a,b (53) 

and where 0
0 and ~o denote ° and 0, respectively, with E 0 in (40.c,d) while 

Pl ' Q~, ~o and ~o are determined according to (44) and (45) with ~l = O. 

(50)-(53) now give an explicit, approximate solution of (10)-(12) for suf
ficiently small E which incurs errors of order E3. For E > 0 and, in contrast to 
the modern modal control approximation of Theorem 3, (50.c) and (52) show that 
the optimal projection is not in the canonical form in the modal coordinate basis. 
Rather, the vectors spanning the com~ensator observation and control subspaces 
(the row vectors of [I,L] and [I -GL ,G], respectively) have small (O(E» compo
nents along the almost ignorable states, represented by Land G. As (52) shows, 
the magnitudes ~f these are dictated by the control and observation spillover 
terms, 012 and °12 , respectively. Thus, some accommodation is made for spillover 
effects by "rotating" the compensator subspaces in the direction of the almost 
ignorable states. The manner in which this directly enhances stabilization for 
the last 2n-Nq states is described more fully elsewhere. 
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A second major qualitative feature can be seen from (51) and (53). It is 
evident that the present optimality conditions effectively augment the state 
weighting and disturbance noise intensity for the almost ignorable states. This 
augmentation occurs through the terms LHP~alP~L and GHQ~alQ~:C appearing in (53). 
In consequence, conditions (10)-(12) automatically impose additional control 
authority on the almost ignorable states in direct proportion to the magnitudes 
of observation and control spillover effects. 

Thus, in summary, rather than demanding the suppression of spillover, the 
optimality conditions (10)-(12) automatically accommodate for spillover effects 
so as to achieve overall closed-loop stability. 

8. CONCLUDING REMARKS 

The approach, presented here, for design of mean-square optimal, fixed-order 
dynamic compensation is seen to possess the following salient aspects! 

(1) The formulation is predicated upon a maximum entropy stochastic model 
of the plant which not only recognizes the design impact of structural parameter 
uncertainties but 'also incorporates a minimum of a priori statistical informa
tion. Such a maximally unpresumptive stochastic modelling approach provides an 
implicit mechanism for the attainment of robust stability. 

(2) The approach eschews both ad hoc model reduction schemes and the purely 
computational parameter optimization technique and is based upon explicit opti
mali ty conditions presented in Theorem 1. Such conditions reveal that the 
"optimal projection" defining the compensator structure plays a crucial role and 
provides significant theoretical insight. Moreover, under mild restrictions, 
existence of solutions to the optimality conditions guarantees closed-loop 
stochastic stability under the maximum entropy design model. 

Furthermore, we attempted in Sections 4 and 5 to provide insight into the 
significance of the fixed-order compensation optimality conditions and their 
relation to earlier, more restricted formulations. In particular, the last two 
sections aboVE~ presented explicit resul ts revealing the familiar modern modal 
control approach as a special approximation under the present formulation. Most 
importantly, it was seen that the optimality conditions of Theorem 1 can secure 
global stability without necessitating suppression of observation and control 
spillover. 

Clearly, the above features tend to remedy many of the deficiencies of cur
rent design methods. Computational techniques and illustrative numerical results 
will be given in a subsequent publication. Finally, just as in the case of full
order compensation considered previously, we may anticipate that the optimality 
conditions (10)-(12) possess simple asymptotic solutions associated with the 
high-order, poorly-known modes. This feature tends to reduce the burden of design 
computation and permits the use of very high order design models. 
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ABSTRACT 

Large space structures, or any mechanically flexible structures, are in
herently distributed parameter systems (DPS) whose dynamics are modeled by 
partial, rather than ordinary, differential equations. Such DPS are described 
by operator equations on an infinite-dimensional Hilbert (or Banach) space. 
HO~lever, any feedback controller for such a DPS must be a finite-dimensional 
(and discrete-time) system in order to be implemented with on-line digital 
computers and a finite (small) number of actuators and sensors. There are many 
ways to synthesize such controllers; we will emphasize the Galerkin or finite
element approach. 

Although the overall performance of finite-dimensional controllers is 
important, the first consideration is their stability in closed-loop with the 
actual DPS. The analysis of DPS makes use of the theory of semigroups on the 
infinite-dimensional state space. We will present stability bounds in both the 
time and frequency domains for infinite-dimensional systems. Presently, the 
frequency-domain approach appears to yield more easily tested stability con
ditions than the time-domain approach; however, we will show some relationships 
betweEm these_ two methods and emphasize the role played by the DPS semigroup 
and its properties. It seems to us, that such stability conditions are essential 
for the planning and successful operation of complex systems like large aerospace 
structures. 

1.0 INTRODUCTION 

Almost every engineering system will exhibit some distributed parameter 
behavior if one looks at its dynamics in great detail. Consequently, the dynami
cal behavior of such-a distributed parameter system (DPS) would need to be modeled 
by partial, rather than ordinary, differential equations to be correctly repre
sented. Of c.ourse, in many cases, such detail is not necessary for the successful 

*AssociateProfessor 
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operation of the system, and a lumped parameter (ordinary differential equation) 
model is satisfactory. Nevertheless, a large number of current and newly pro
posed systems, such as industrial processes and mechanically flexible spacecraft 
and satellites, are so thoroughly distributed parameter in nature that it is 
impossible to ignore this in modeling and control. 

There are many new problems (and some compounding of old ones) in feedback 
control of DPS. The main questions which concern us are (1) how to synthesize 
finite-dimensional controllers which can be implemented by a small number of 
actuators and sensors and on-line computers of limited word-length; (2) how to 
assess the stability and performance of these controllers in closed-loop with 
the actual DPS which is infinite-dimensional. Presently, a great deal of thought 
has gone into DPS control because of the proposed construction and operation on
orbit of large flexible spacecraft and satellites in the near future. Quite a 
large number of control schemes have been considered for these large space 
structures (e.g,. see the survey [1]) and new ones (or major revisions of the old 
ones) are being developed almost daiiy. This kind of activity has been helpful, we 
believe, because it has called the control systems community's attention to 
systems whose high performance and reliability is essential for successful 
operation and has focused it on some of the important "gaps" between control 
theory and engineering practice. To be sure other applications, e.g. Tokomak 
fusion reactors and large-scale electric power distribution networks, are having 
a similar effect. 

In past work, we have been strongly in favor of a more practical theory 
of DPS control which incorporates some of the natural system constraints and uses 
ideas in infinite-dimensions that appeal to the intuition and experience of the 
modern control engineer. We have taken some (although not necessarily the only) 
definitive steps in that direction [2]. In this paper, we intend to continue in 
that spirit and focus on the stability question of finite-dimensional controllers 
in infinite-dimensional DPS. Our analysis here will emphasize stability results 
in both the time and frequency domains and some of the relationships between 
these results. The unifying concepts of operator equations on Hilbert spaces 
and the C -semigroup for DPS will be stressed; however, the resulting stability 

o 
tests will only involve data which, it is reasonable to assume, would be available 
or could be estimated. 

This infinite-dimensional approach can be used effectively in large-scale 
finite-dimensIonal systems, as well. One very important consideration in large
scale or DPS is to avoid a dependence on precise knowledge of (a) the total system 
dimension and (b) the full system parameters, especially those residual parameters 
not used in the synthesis of the controller. Using an infinite-dimensional 
approach obviates (a), and for (b) we shall only need to be able to estimate 
the norms of certain of the residual data. 

In previous work, we have emphasized the internal or time-"domain view
point of exponential stability of the closed-loop system, i.e. the effect of 
impulsive disturbances on the state decay exponentially to zero. However, 
another viewpoint is the external or frequency-domain view which describes the 
effect of persistent disturbances on the system outputs. Here our main results 
in the frequency domain give conditions undeZ which thz closed-loop sy~tem is 
bounded input-bounded output stable in the L sense (L -BIBO stable). 
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This means any persistent 1
2
-disturbance, which is bounded, can only produce 12_ 

outputs which are also bounded. While the former looks at the DPS from a state
space viewpoint, the latter looks at it from an input-output standpoint. Both 
approaches have their strengths and weaknesses, and they are interrelated, as we 
shall point out later. 

In lumped parameter systems, the BIBO approach is very popular (e.g. see 
[3]-[7]) where it appears to lead to easily verified stability tests. For 
infinite-dimensional systems, see [8]-[9]. These ideas were applied to modal 
control of large space structures in [10]. There is also some use of positivity 
concepts for structures [11]; these yield special conditions under which the 
closE~d-loop system is "dissipative" and hence BIBO stable. Much is made of the 
"robustness" of the BIBO designs, i.e. their placidity in the presence of 
uncertain system parameters. However, it should be pointed out that the BlBO 
approach involves one of several very useful perturbation methods and has no 
intrinsic robustness properties; robustness under uncertainty can be assessed 
with all perturbation techniques with varying degrees of difficulty. The 
relative ease accomplished with BIBO methods is what recommends them in lumped 
parameter systems and suggests their utility for DPS, as well. 

In Sec. 2.0, the general DPS mathematical framework of this paper is· 
presented. Basic ideas of reduced-order modeling and control appear in Sec. 3.0 
and the concepts of stability for DPS appear in Sec. 4.0. Our main results on 
time--domain (exponential) stability tests for the closed-loop appear in Sec. 5.0 
and the new results on frequency-domain (ElBO) stability are in Sec. 6.0. Our 
conclusions form Sec. 7.0. 

2.0 DPS DESCRIPTIONS 

We will consider linear distributed parameter systems (DPS) with the 
following form: 

{ 

d;~t) Av(t) + Bf(t) + ffD(t) 

y(t) =Cv(t); v(O)=v 
o 

(2.1) 

The system state v(t) will lie in a Hilbert space H with inner product denoted 
by (".) and corresponding norm denoted by i 1·11. The operator A is an unbounded, 
closed, time-invariant, linear differential operator whose domain D(A) is dense 
in II; furthermore, A generates a C -XEmigroup U(t). This semigroup is the 
analogue of the matrix exponentialoe for finite-dimensional systems. The input 
operators Band C are both finite rank Hand P respectively. The external dis
turbances on the system are represented by the persistent term ffD(t), where f 

has rank ~, and the impulsive term va. This is becoming a standard representation 

for many DPS applications involving interior control and measurement. 
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From the Hille-Yoshida Theorem (e.g. [12J or [13]), the operator A 
generates a C -semigroup U(t) satisfying: 

o 

IIU(t)II2.Ke-Ot (2.2) 

where K > I and 0 is real, when 

II (R(A,A»nll < K ; n=1,2,... (2.3) 
(A+a)n 

for all real A>-O in the resolvent set of A. The operator R(A,A)=(AI-A)-l is 
the resolvent operator for A; by definition, it is a bounded linear operator 
for each A in the resolvent set of A. In the special case, where A is dissi
pative, i. e. 

{ 

(Av,v)+a(v,v)20 

'(A*v,v)+a(v,v)<O 
(2.4) 

for all v in D(A) or D(A*) where A* is the adjoint of A, the constant K=l in 
(2.2); see [13] Theo. 3.2. 

When 0>0 in (2.2), A generates an exponentially stable semigroup U(t) 
whose stability margin is o. The pair of operators (A,B) is exponentially 

stabi1izable when there is a (bounded) linear gain operator G:H+RM such that 
the operator A+BG generates an exponentially stable semigroup. There are other 
types of mathematical stability and stabilizability defined for DPS; some of 
these ideas will be discussed in Sec. 4.0. 

When (A,B) and (A*,C*) are exponentially stabilizable, and there are no 
persistent disturbances (i.e., fD(t)=O), it has been shown in [2] that the 

infinite-dimensional controller: 

f(t) = G ~(t) 

a~~t) = L ~(t) + K yet) 

~(o) = 0 

(2.5) 

where L = A+BG - KC with domain D(L) = D(A), exists, and ,in closed-loop with 
(2.1), it produces an exponentially stable system. The gain operators G & K 
exist and stabilize the operators A+BG and A-KC. This controller is mathemati
cally interesting but not very useful from an engineering standpoint since (2.5) 
cannot be implemented with a finite-dimensional system. In the next section, 
the concepts of model reduction and reduced-order control are reviewed from [2]. 

Before closing this section, we want to point out that without any loss 
of generality we can and will assume in (2.1): 

r = B (2.6) 

430 

, , 



This is possible because F(t)=Bf(t)+I'fD(t) can be rewritten: 

F(t) = B(f(t)+fD(t» (2.7) 

fD(t). Therefore, we will 

assume (2.6) and, henceforth, (2.1) will be given b"l: 

{ d~~t) = A vet) + B(f(t)+fD(t» 

yet) = C vet); v(o) = v 
o 

(2.8) 

where now the rank M of B reflects the total number of actuators and disturbance 
inputs. This representation will be very convenient later. 

3.0 MODEL REDUCTION AND FINITE-DIMENSIONAL DPS CONTROL 

In order to produce finite-dimensional controllers for the DPS (2.8), we 
must make a lumped parameter approximation of it. This is done when numerical 
methods such as finite elements or finite differences are used to discretize the 
spacial variables. In general, such an approximation or reduced-order model (ROM) 
is a (not necessarily orthogonal) projection of (2.8) onto an appropriate finite
dimensional subspace HN of H; usually, we will assume H~ D(A). The ROM sub-

~pace HN has dimension N and its projection is denoted by P
N

; the residual sub

space HR associated with HN completes the decomposition H=HN$HR, and its 

projection is denoted by PRo The total DPS state v can be written: 

where vN=PNv and vR=PRv. 

dictated by the physical 
for integrating the DPS. 
model reduction, certain 

(3.1) 

The choice of the subspaces HN and HR is usually 

application and/or the numerical procedures available 
When feedback control is the ultimate purpose of the 

choices of subspaces will yield advantages. 

A modal subspace HN consists of linear combinations of a finite number of 
modes or eigenfunctions of the operator A. Modal subspaces have very spE~cial 
properties in control applications. e.g., ~R=O and ARN=O in (3.2) later. 

However, since most engineering applications are too complex for the exact modes 
to be known, these subspaces are more conceptually, rather than practically, 
useful. The Galerkin (or finite element) method is the most often used approach. 

The projection of the DPS (2.8) onto the subspaces HN and HR decomposes 

the system into the following: 
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dV
R 
~ = ARNvN+ARvR+BR(f+fn») 

y = CNvN+CRvR 

(3.2a) 

(3.2b) 

(3.2c) 

where ~=PNAPN' ~R=P~R' etc. The terms ~RvR and ARNvR are called modeling 

error and the terms BR(f+fn) and CRvR are called control and observation spill

over, respectively [2]. The reduced-order model (ROH) is obtained from (3.2) by 
ignoring the residuals: 

(3.3) 

in any choice of model reduction scheme it makes no sense if the residuals are 
unstable; therefore, we will assume that ~ generates a Co-semigroup DR(t) with 

the property: 
-(5 t 

II DR (t) II 2. ~e R, t>O (2.4) 

with KR2:.1 and (5R>O. Such a condition is naturally satisfied in practice, as 

long as one is careful of the selection of HN and HR; in theory, one would obtain 

KR and (5R from the Hille-Yosida or dissipativity tests (2.3)-(2.4). 

In order to control the nps (2.8), a finite-dimensional controller is 
generated from the ROM (3.3): 

dVN 
~ = ~vN+BNf+~(Y-Y) (3.5) 

Y = CNvN; vN(O)=O 

This is the most obvious candidate for a feedback controller; however, there are 
many ways in which (3.5) can be modified and improved, as pointed out in [2]. 
Nonetheless, (3.5) is a good starting point for the controller synthesis; it is, 
in fact, what most control system designers do with both large-scale and dis
tributed parameter systems. The conditions under which a reasonable controller 
design can take place are essentially that (~,BN,CN) be controllable and obser-

vable in the finite-dimensional sense. Such conditions indicate the minimum 
number of control devices necessary for the task and also the possible locations 
for these devices. 
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Another approach is to obtain a finite-dimensional controller by performing 
a model reduction on the infinite-dimensional controller (2.5). But this yields [2] 
a controller whose form is the same as (3.5); hence, our later analysis will be 
unchanged. 

4.0 STABILITY AND STABILIZABILITY CONCEPTS FOR DPS 

In infinite-dimensional spaces there are many ways to define the concepts 
of stability. In this section we shall emphasizZ the two most useful ones for 
engineering systems: exponential stability and L -BIBO. 

4.1 Exponential Stability 

The linear DPS (2.8) is said to be exponentially stabilizable when there 
exists a full'-state feedback law: 

f(t) = G v(t) 

with G:H+RM a linear finite-rank gain operator such that (2.8) becomes: 

{ ov(t) = A v(t)+Bf (t) at 0 D 

y(t) = C v(t); v(o)=v 
o 

(4.1) 

(4.2) 

with A =A+BG 
o 

generating a C -semigroup 
0_0' t 

U (t) which is exponentially stable, i.e. 
o 

II U (t) II < K eO, t>O 
o - 0 -

with constants K >1 and a >0. This is a time-domain or state-space concept 
0-- 0 

which says that, in the absence of any persistent disturbances (Le. fD(t)=O) 

the effects of all impulsive disturbances decay to zero exponentially, Le. 
-a t ' 

Ilv(t) II < K e 0 + 0 as t-+oo (It.4) 
-, 0 

The rate of convergence or stability margin is a in (4.3). 
o 

There are other types of stabilizability for (2.8); these depend on the 
different types of convergence possible in infinite-dimensional spaces. For 
example, (2.8) is strongly stabilizable when (4.1) yields an A which generates 

o 
Uo(t) such that v(t) converges stronill to zero (when fD(t)=O) , Le. 

lim II U (t) v II = 0 o 0 
(/+.5) 

t-+oo 
for all v in. H. 

o 
Alternatively, (2.8) is weakly stabilizabie when (4.1) causes 

v(t) to conv€!rge weakly to zero, L e. 

lim (U (t)v ,v) = 0 
o 0 t-+OO 

(4.6) 
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for all v and v in H. In these last two types of mathematical stabiljzability, o 
no rate of convergence is available; consequently, they are not of much practical 
interest for engineering systems. Therefore, we will emphasize the exponential 
stability of (4.3). with its stability margin 00' which becomes essential, as we 

shall see later. When H is finite-dimensional, all of the above stability con
cepts are equivalent. 

Note that the feedback law (4.1) is only of theoretical interest. It 
cannot be implemented in practice since it requires instantaneous knowledge of 
the infinite-dimensional state vet); except for a few very special gain operators 
G, this is never practical. The actual control law must be generated by a finite
dimensional system (3.5); for this we need the concept of stabilizing subspaces. 

We will say (A,B) in (2.8) has a pair of stabilizing subspaces HN and HR' 

if, in addition.to the model reduction requirements of Sec. 3.0, they also satisfy: 

A =A+BG exponentially stable with a desired stability margin ° for some 
MOO 

G:H+R such that: 

Note that (4.7) says that GR=GPR=O, i.e., Ao is stabilized by a gain that is 

restricted to the finite-dimensional subspace~. This situation often occurs 

when modal reducing subspaces are used in "parabolic" or "hyperbolic" problems, 
but it can also occur in other model reduction schemes for DPS. It means that 
all but a finite number of the states of the system have the desired stability 
margin ° and those that do not may be stabilized by the gains (4.7). Further-

o 
more, using (4.7), we obtain: 

(4.8) 

From (4.8), it is easy to see that, if (~,BN) is controllable and I I~RI I is 

small, then the model reduction subspaces HN and HR are stabilizing subspaces. 

Furthermore, it seems highly unlikely that a finite-dimensional controller (3.5) 
can ever stabilize (exponentially) an infinite-dimensional DPS without the 
existence of stabilizing subspaces. 

The stabilizing subspace idea was used in [14] to unify stability and 
controller synthesis for discrete and continuous-time DPS. As we shall see, 
it is also useful for interrelating time and frequency domain stability bounds. 

4.2 2 L -Bounded Input Bounded Output Stability 

In the previous subsection, stability is treated as an internal or state space 
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property of the DPS. Alternatively, the stability of (4.2) may be looked at from 
an external or input-output viewpoint, i.e. what is the behavior of the output 
yet) for a given disturbance input fn(t). The concepts of LP-bounded input, 

bounde,d output (LP -BIBO) stability have been used for both lumped and distributed 
parameter systems; see e.g. b7J Chapt. 5, [8], [9], or [15] Chapt. 6. Following 
[9], we shall say (4.2) is L -BIBO stable for l<p<oo when, for v =0, ,.,e have 

- 0 

(a) i.f f D(') is in LP(R,RN
), then y(.) is in LP(R,RP) and (b) there exists a 

constant H <00 such that 
o 

IIY(')ll p < Mo IlfD(')ll p 

where, for any positive integer q, LP(R,Rq)::{g(') 
00 

g:R+Rq and 

00 (4.9) 

J II g (t) ! I p d t<oo} 

with II g ( .) II :: ( f p , 

_00 

Ilg(t) IIPdt)l/p for l.:::p<oo for Loo(R,Rq)::{g(') Ig:R+R
q 

and 
_00 

sup Ilg(t) II <oo} with Ilg(·) 1100:: sup Ilg(t) II. These LP spaces are Banach 
tER tER 
with the given n9rms 11'll p and the Rq norm taken to be Ilg(t)11 :: (gT(t)g(t»1/2; 

when p=2, L2 is a Hilbert space. 

In much of the finite-dimensional control literature, bounded input, 
bounded output stability is a fundamental concept; see e.g. [16] Chapt. 4. The 
version that is often seen is Loo-BIBO stability where a bounded disturbance pro
duces a bounded output when the initial condition is zero. It is shown in [16], 
Theo. 3 p 197, that exponential stability of A implies Loo-BIBO stability; the 

o 
proof is for finite-dimensions but it extends directly to infinite-dimensions. 
In fact, for finite-dimensions, the two concepts are equivalent when (A,B,C) is 
controllable and observable. 

Howeve.r, in more recent literature, e.g. [3]-[11], L2-BIBO stability is 
much more popular. The main reason for this is the Fourier-Plancherel Theorem 
which says that the Fourier transform: 

00 

U •. lO) 

2 is a uni tary operator on L , i. e. 

(4.11) 

where the integral in (4.10) is taken in the sense of "limit in the mean". Le. 
it is taken over the bounded interval [-N,N] and converges to (4.10) in the 

2 L -norm as N-~. The proof of this result (sometimes known as Parseval's Thorem) 
is given in [17] p 259 or [7] App B.2. Furthermore, the inverse Fourier trans
form is given by: 
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00 

get) - A:rr J g(W)ejwtdw (4.12) 
_00 

This provides a way to transform from time to frequency domain and return without 
2 changing the L -nor~; hence, we have the following result: 

Theorem 1: The DPS (4.2) is L2-BIBO stable if 

liT (w) II < M < 00 o _. 0 (4.13) 

where 

(4.14 ) 

with T (w) the P X M transfer matrix for (4.2) and M is the same constant as in o 0 

(4.9) when p=2. 

Proof: 2 M 
Let fDCo) be in L (R,R). Consider, from (4.11) and (4.14), that 

00 00 

Use (4.13) in (4.15) to obtain: 

00 00 

and the desired result follows. # 

where 

Therefore, the sufficient condition (4.13) for L2-BIBO stability is 

M for all real w 
o 

I IT (w)1 I = Al/2 (T *(w) T (w» o max 0 0 

(4.16) 

(4.17) 

and A (Q) is the largest eigenvalue of the Hermetian matrix Q and T *(w) is the max 0 

conjugate transpose (or adjoint) of the matrix T (w) for each w. The singular 
o 

values of a matrix L are the square-roots of the eigenvalues of the Hermetian 
matrix L*L (see, e.g. [3]), and they can be efficiently numerically calculated. 
Therefore, (4.16)-(4.17) can be written: 

II T (w) II = sv (T (w» < M for all real w o 0 - 0 
(4.18) 
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where sv(Q) indicates the largest singular value of Q. This makes the determin

ation of L2-BIBO stability a simple matter even for DPS; so, (4.18) is a fre
..9.uency domain condition for stability- of (4.2). 

where 

We can obtain the transfer matrix T (w) for (4.2) from 
o 

T (w) = C R(jw,A ) B 
o 0 

R(A,A ) = (AI-A )-1 
o 0 

is the resolvent operator for A which is a bounded linear operator on H for each 
o 

A in the resolvent set 

peA ) - {AE IR(A,A) is bounded operator on H}. The spectrum of 
o 0 

Ao is given by d'(Ao) = P(Ao)c; in infinite-dimensional spaces it can be quite 

complicated since A is an unbounded operator, in general. 
o 

Furthermore, the resolvent operator is the Laplace transform of the 
Co-sendgroup Uo(t) generated by Ao (I17] p 482): 

00 

o 

-At U (t) edt, ReA> 0 
o 

This leads to a relationship between exponential and L2-BIBO stability: 

(L~. 21) 

Theorem 2: If the DPS (4.2) is exponentially 
K 

stable, then jwis in peA ) and 
o 

II R(jw,Ao) II 2. (/' for all 'real W (/+.22) 
o 

where the constants (K ,a ) are obtained from (4.3) and, from (4.22), the DPS 
o 0 

is L 2_-BIBO with M in (4.9) given by 
o 

M = Ilcll o liB II K /a 
o 0 

(4.23) 

Proof:: Take A = E+jW, with E>O, and A is in peA ) by the Hi1le-Yosida 
o 

Theo. From (4.21), we obtain: 
00 

II R(E+ jw,A ) II < 
o I 

o 

00 

< K 
o J 

-(a +E)t 
e .0 dt < 

o 

IIU(t)1I 
o 

K 
o 

E+a 
o 

-Et -jwt e e dt 
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Now, let E+O, to obtain (4.22). 
operators, we have 

From (4.19), since B & e are bounded linear 

IIR(jw,A ) II o 

< Ilell IIBIIK /a o 0 

By (4.16) a.nd Theo. l~ we have the desired result. 11 

See also the inequality (1.39) in [17) p 485. It is not clear under what con
ditions. the converse of Theo. 2 holds for DPS. 

Later, we shall need to consider L2-BIBO stability for feedback forms, 
i.e. , 

H(W) = (I_Q(W»-l (4.24) 

where Q(w) is a bounded linear operator for each real W on an appropriate Hilbert 

space. Stability of H(W) in the L
2
-BIBO sense translates into H(W) causal and 

bounded. However, we shall not need to worry about causality ([7] or [8]) because 
our control systems will be designed to be causal in the time-domain; hence, our 
analysis of stability win only need to verify the boundedness of H(W). Almost 
all results in BIRO stability make use of the following result (sometimes known 
as the Small Gain Theorem): 

Theorem 3: If Q(w):H+H is a bounded linear operator on the normed space H for 
each real wand 

I IQ(w)1 I < l~ for all real w, (4.25) 

where 

II Q II :: inf {M I II Qv II .::. M II v II for all v in H} (4.26) 

then H(w) :: (I_Q(w»-l is also a bounded linear operator on H for each real W 
and 

IIH(W) II.::. [l-IIQ(w) II ]-1 (4.27) 

The proof of this result can be obtained from [17] p 30. It uses the 
Neumann series: 

00 

(4.28) 

which is absolutely convergent when (4.25) is satisfied; (4.27) follows also from 
(4.28) when Q(w) is an N X N matrix (i.e. dimH=N), then (4.25) becomes: 

sv Q(w) < 1, for all real W (4.28) 

438 



4.3 Robustness of Stability to Regular Perturbations 

Thea. 3 is used in much of the literature to study the effect of regular 

perturbations on L2-BIBO stability. Consider 

Q(w) = Q (w) + ~Q(w) (4.29) 
o 

where (I-Q (W»l is known to be bounded, then (I_Q(w»-l is also bounded from 
o 

Theo. 3 when the parameter uncertain!:,y ~Q (w) satisfies: 

II~Q(w)11 < (4.30a) 

or, for matrices, 

sv (~Q(w» < sv (I-Q (w» (4.30b) 
- 0 

for all real w, where sv(') denotes the s.mallest singular value and sv(·) the 
largest one. The· inequality (4.30b) follows from (4.30a)~ the definition of 
singular values, and the property [3] that 

- -1 
sv [(I-Q) ] 1 

(L~. 31) 
sv (I-Q) 

In lumped parameter systems, (4.30b) is particularly easy to evaluate; hence, 
the popularity of this approach for robust control design under parameter 
uncertainty. However, for DPS, the effect of parameter uncertainty or other 

pertm:bations on L2-BIBO stability can be assessed with (4.30a). Loosely stated: 
(4.30) is "gain stabilization" of the feedback system. 

The corresponding situation with robustness of expo!lential stability is 
given by the well-known result: 

~ 

Theorem 4: Let A generate the C -semigroup U (t) satisfying the exponential 
o 0 0 

stability property: 

liD (t)11 < o -

~ 

K e 
o 

-0 t 
o 

t > 0 

where K > land 0 >0. Then the perturbed operator: 
0- 0 
"" ~v ...... 

(4.32) 

A = A + ~A (4.33) 
c 0 

where 6.A is a bounded op=rator, generates the C -semigroup 11 (t) satisfying: .- a c 
-0 t 

liD (t)11 < K e c t > 0 (4.34) 
c c 

~ 

K 
~o ~ 
o -K 

o 0 
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with the constants (Ko,ao) given in (4.32). The perturbed system (4.33) is 

exponentially stable if 

a fIr 
oq (4.36) 

The proof of this theorem is given in [12] p 210; it is a direct consequence of 
the well-known Gronwall Inequality. To us, Theo. 4 seems to be one of the 
essential tools for establishing closed-loop stability of DPS with finite
dimensional controllers, e.g. [2]. In the next two sections., we shall use 
Theos. 3 and 4 to establish and interrelate some closed-loop stability results 
for DPS. 

5.0 CLOSED-LOOP STABILITY FOR DPS: TIME DOMAIN CONDITIONS 

In Sec. 3.0, model reduction is used to obtain a finite-dimensional 
controller (3.5) for the infinite-dimensional DPS (2.8). In this section, we 
consider the closed-loop stability of the DPS with the controller (2.8); this 
stability is not always guaranteed as various computer simulations and labora
tory experiments with flexible structures have demonstrated [1]. We want to use 

Theo. 4, of course, but the main difficulty is to obtain K and a in (4.32); 
o 0 

our stability lemma in this section gives some reasonable bounds for this data. 

We make the following assumptions: 

(a) the ROM (~,BN,CN) in (3.3) is controllable and observable; 

(b) the estimator gain ~ in (3.5) is chosen so that the spectrum of ~-KNCN 

is to the left of a vertical line through (-ON' 0) in the complex plane; 

i.e. ~-~CN generates the matrix exponential UN(t) satisfying: 
-a t 

IIUN(t)ll.2. ~e N ,t > 0 (5.1) 

where ~ ~ 1 and aN > O. 

(c) the residual subsystem satisfies (2.4); 
(d) the subspaces HN and HR used in the model reduction procedure are 

stabilizing subspaces for (A,B), as described in Sec. 4.0; hence, A 
o 

generates the C -semigroup U (t) satisfying (4.3); 
o 0 

(e) ao<aN by the choice of ~ in (3.5); 

(f) fD(t) = 0, i.e. no persistent disturbances. 

The controller (3.5) can be designed by standard finite-dimensional techniques. 

Let eN=vN-vN and obtain, from (2.8) and (3.5): 
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{ 
f(t)=GvN(t) = GvN(t)+GNeN(t) 

3e
N

(t) 

at =(~-~CN) eN(t)+(~CR-~R) PRv(t) 

Note that we may omit P
R 

from (S.2b) since it is already incorporated 

and A~m' The closed-loop system (2.8) and O.S) can be written (from 

{ 
dV(t) 
at = Aov(t) + B GNeN(t) 

aeN(t) 
= (~CR-~R) v(t)+(~-~CN) eN(t) at 

We have the following closed-loop stability result: 

(S.2a) 

(S.2b) 

into C
R 

(5.2»: 

(5.3) 

TheorE~m 5: If assumptions (a)- (f) are satisfied, then the gain ~ may be 

chosen so that the finite-dimensional controller (3.5) produces an exponentially 
stable closed-loop system (5.3) when II~cR-~RII is sufficiently small. 

The proof of Theo. 5 is obtained directly by t,aking All=A
O

' A12=BG
N

, 

A2l=K]~CR-~R" and A22=~-~CN in the following stability lenuna whose proof uses 

Theo. 4 and appears in [2]: 

Lennna 1: 

Consider aw ~ - = A w 
at c 

(5.4) 

where A .. are bounded for i :f j and A .. generates the C -semigroup U. (t) with 
1J 11 0 1 

the growth property: 

Ilu.(t)11 < K.e 
1 1 

-0' t 
i 

t > 0 

for i:=1,2. Assume 0'1 :f 0'2' 

growth property: 

Then A generates the C -semigroup U (t) with 
c 0 c 

II U (t) II < K e c - c 

-0 t 
c 

where, for exponential stability, 

with 

, t > 0 
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and 

{ -00 = min (01'02) 

Kc = KIK2(1~+ ~2)1/2 ~ KlK2(1~) 

II A1211 2 2 1/2 
~ = ° -0 where II w II =: (II wIll + II w211) • 

I 1 21 

(5.8a) 

(5.8b) 

The dual result with A12 and A21 interchanged in (5.7) is true, also. The in

equality in (5.8b) follows from (1+a+a2) ~ (1+a)2 when a > O. 

Due to assumption (e) and (5.8a), we have 

0=0 
o 0 

and the exponential stability bound of Theo. 5 becomes: 

with K given by (5.8b) and 
c 

< ° /K o c 

{ 
~ = II BG II . (0 -0 )-1 

N N 0 

(5.9) 

(5.10) 

(5.11) 

where (~,ON) and (Ko'Oo) are given in (5.1) and (4.3), respectively. These 

constants can either be obtained from the finite-dimensional controller design 
or from the stabilizing subspace ca.lculations of Sec. 4.0. The stability test 
(5.10) involves the norm 

(5.11) 

Hence, with only a knowledge of the norms of CR and ~, we can assure closed

loop exponential stability when: 

Note that K involves the norm 
c 

+ 
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6.0 CLOSED-LOOP STABILITY FOR DPS: FREQUENCY DOMAIN CONDITIONS 

In Sec. 5.0, the internal stability of the closed-loop system was guaranteed 
by a test of the form (5.12) involving the norms of the residual data. In this 
section, we consider the closed-loop stability from an external standpoint and 
use Theo. 3. We assume here (a)-(e) of Sec. 5.0 and also (g) v :: 0 in (2.8), 

o 
Le. no impulsive disturbances. The finite-dimensional controller (3.5) remains 
unchanged. 

The closed-loop system consisting of (2.8) and (3.5) may be written: 

a~~t) = Aov(t) + BGNeN(t) + BfD(t) 

aeN(t) 
at = (~CR-~R) v(t) + (~-KNCN) eN(t) - BNfD(t) 

y(t) = C v(t) 

The initial conditions are (g) and 

(6.1a) 

(6.lb) 

(6.1c) 

(6.2) 

Note that the term BNfD appears in (6.lb) because the controller does not know 

the persistent disturbance; this seems to be the most realistic (and the most: 
difficult) situation to analyze. From (6.1a) and (g), by taking Fourier trans
forms we have: 

{ v(w) = R(jw,Ao) B[GN@N(w) + fD(W)] 

y(w) C v(w) 

-1 where R(jw,A) == (jw-A) . Also, (6.lb) and (6.2) yields: 
o 0 

where 

1 

@N(w) = ~(w) [~R v(w) - BNfD(W)] 

~(w) :: R(jW,~-~CN) 

R(A,AN-~CN) :: [AIN-(~-~CN)J-1 

6NR :: ~CR-~R 

This is illustrated in Fig. 1 which suggests defining 

From (6.3) and (6.6), we have 
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{ ~(W) R(jW,A ) B E(W) o 

= T (w) E(W) 
o 

yeW) 

where 

T (w) - C R(jW,A ) B 
o 0 

Also, from (6.4) and (6.7a) in (6.6), we obtain: 

E(w) = 1~(w) + GNL(W) E(W) 

where 

L(W) :: ~(w) 6NR R(jW,Ao) B 

E and the equivalent disturbance fD(W) is 

Therefore, from (6.9), 

A "E 
E(W) = Sew) fD(w) 

where 

(6.7a) 

(6.7b) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

which is the inverse of the return difference operator IM-GNL(W). Furthermore, 

from (6.7b) and (6.12), we have the.c1qsed-1oop input-output relationship: 

(6.14) 

where the P X M closed-loop transfer matrix is 

T (w) :: T (w) Sew) 
c 0 

(6.15) 

whenever Sew) exists. 

Note that, even in the most ideal case when 6NR=O, (6.14) becomes: 

9 (w) = T (w) ~DE(W) (6.16) 
o 0 

"E with To(W) given by (6.8) and fD(W) given by (6.11). This is not surprising 

because there is still a term due to the unknown disturbance fD(t) entering the 

444 



state-e:s.timator error equation (6 .lb) • If this disturbance were completely known, 
then a counteracting term could be added to the controller (3.5),and (6.11) would 

"E " reduce to fn(W) = fn(W). However, in most practical problems, the disturbance 

would not be completely known; hence, we must have (6.11). It is clear that, if 

fn(t) fs an L2-bounded disturbance, then so is the equivalent dis.turbance f~(t); 
this CELn be obtained from (4.11) and the fact that (using Theo. 2): 

II ~(W) II.::. ~/aN for all real W (6.17) 

where (~,aN) are given in (5.1). 

This 1e:ads to our main result for nps stability in the frequency domain: 

Theorem 6: If the assumptions (a)-(e) in Sec. 5.0 and (g) in Sec. 6.0 are 
satisfied and if 

(6.18) 

where (KN,aN) are given in (5.1) and (K ,a ) are given in (4.3), then the finite
o 0 2 

dimensional controller (3.5) produces an L -BIBO stable closed-loop system 
(6.1). 

Proof: From the discussion preceding the statement of this theorem, we need 
only show that: the operator S(w) in (6.13) exists and is bounded uniformly for 
all real w. Then, by Theo. 1 and the condition (4.16), the desired result will 
follow. 

However, by Theo. 3, we need only show that 

IIGNL(W) II < 1 for all rea1'w 

in order that S(w) exists and is bounded. But, from Theo. 2, we have 
K 

II R (j W ,Ao II.::. a 
0 

o 

(6.19) 

(6.20) 

becausle A generates an exponentially stable semigroup due to assumptions (c) and 
o 

(d). Also, from assumptions (a) and (b), (6.17) is satisfied. Note that the 
spectra of Ao and ~-~CN are in the open left-half of the complex plane; hence 

jw is in the resolvent set of both operators. Therefore, 
~ , Ko 

II GNL (w) II.::. II GN II a II L'lNR II a liB II < 1 by (6.18) and 
N 0 

the desired result holds. # 
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E(W) = fD(W) + GNL(W) E(w) 

FIGURE 1: CLOSED-LOOP STABILITY FOR DPS IN THE FREQUENCY DOMAIN 

v(W) 
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Of course, when (5.10) holdR, the closed-loop system is exponentially 
2 stable by Theo. 5, and, consequently by Theo. 2, it is also L -BIBO stable. 

However, we would like to compare (5.10) with (6.20) to see if the condition 
for Theo. 6 JLs easier to satisfy than that for Theo. 5. The answer is: yes, 

if we bound K 
c 

in (5.10) by 

(6.21) 

which is obtained from (5.8b), (5.11.), and (5.13). Then (5.10) is satisfied 
when 

(6.22) 

Now, the right-hand side of (6.22) is less than or equal to the right-hand side 
of (6 .. 18), Le. £rom assumption (e) we have: 

o -0 0 -0 
No> No 

ex - ex+(o -0 ) N 0 

where ex - liB II II GN II and, therefore, 

o > ___ -=0 ___ . 

-~ ex 
~Ko(l + -0---0 ) 

N 0 

(6.23) 

(6.24) 

This says that, when (6.21) is used in (5.10), the resulting condition (6.22) 
for exponential stability is more stringent than the condition (6.20) for 

L 2-BIBO stability of the closed-loop DPS. 

7.0 CONCLUSIONS 

Our main results Theos. 5 and 6, prese~ted in Sec. 5.0 and 6.0, give tests 
for exponential stability (time-domain) and L -BIBO stability (frequency domain) 
of closed-loop DPS with finite-dimensional controllers. For the time-domain test, 
an internal view of the system is taken and exponential decay of the effects of 
any impulsive disturbance on the full infinite-dimensional state is required. 
However, for the frequency domain test~ an external view is taken and bounded 
input·-bounded output behavior in the L -sense is expected for any square-inte
grable persistent disturbance. The time-domain result is a consequence of 
regular perturbation of the C -semigroup generated by the system. The frequency 

o 
domain result: is obtained via the Fourier-Plancherel (or Parseval) Theorem for 
Fourier transforms and a version of the Small Gain Theorem; in this case, the 
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system resolvent operator, which is the Laplace trans.form of the semigroup, 
becomes the important concept. 

It was expected that L
2
-BIBO stability would yield a less stringent test 

since it is weaker for DPS than exponential stability (see Theo. 2). This was 
shown to be true for some choices of bounds on the data used for Theo. 5; however, 
it may not always be so. It should he noted that both approaches are regular 
perturbation methods where a nominally stable system (e.g., the closed-loop DPS 
with ~R=O and CR=O) is perturbed by a bounded term; bounds on the size of this 

term, for which stability is maintained, produce the closed-loop stability tests. 

The stability results presented here for the time and frequency domain are 
related by: 

(a) 

(b) 
(c) 

the C -semigroup of the system and its Laplace transform, the resolvent o 
operator; 
regular perturbation theory; 
the concept of stabilizing subs,paces for DPS. 

It seems to us that, without the property (c), a DPS ~ould have little or no 
chance of being stabilized (either exponentially or L -BIBO) by a finite
dimensional controller. 

Finally, we note that the controller design was not considered the focus 
of this paper. The designs can all be based on finite-dimensional reduced-order 
models; hence, many time or frequency domain techniques are available. Further
more, to be implementable with a digital computer, the controller (3.5) should 
be discrete (rather than continuous) time. However, the main conclusions, with 
which we hope the reader will agree, are that closed-loop stability analysis 
should be an intrinsic part of any attempt to produce finite-dimensional, 
practical controllers for infinite-dimensional DPS, and that such analysis can 
be carried out with perturbation techniques in many disguises. 
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AF·PROXIMATION OF THE OPfIMAL COMPENSATOR 
FOR A LARGE SPACE STRUCfURE*,** 

Michael K. Mackay 
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Los Angeles, CA 90024 

ABSTRACT 

This paper considers the approximation of the optimal compensator for a 
Large Space Structure. The compensator is based upon a solution to the Linear 
Stochastic Quadratic Regulator problem. Colocation of sensors and actuators is 
assumed. A small gain analytical solution for the optimal compensator is obtained 
for a single input/single output system, i. e., certain terms iIi the compensator 
can be neglected for sufficiently small gain. The compensator is calculated in 
terms of the kernel to a Volterra integral operator using a Neumann series. The 
calculation of the compensator is based upon the Co semigroup for the infinite 
dimens:lonal system. A finite dimensional approximation of the compensator is, 
therefore, obtained through analysis of the infinite dimensional compensator 
which :ls a compact operator. 

1.0 INTRODUCTION 

One of the distinguishing properties of a Large Space Structure (LSS) is 
that it is a distributed parameter system and, hence, an infinite dimensional 
mathematical model is required for its description. In most applications, 
active control of shape, attitude, and structural vibrations will be necessary. 
For sueh problems, formulation of the control problem as a steady-state (infinite 
time) linear quadratic regulator is natural. The main advantage for considering 
the infinite time case is, of course, that the optimal control gain is time 
imariant. Implementation of the optimal feedback control will generally require 
an estimate of the system state. For the stochastic problem, the optimal state 
estimate is provided by an infinite dimensional Kalman filter. However, it is 
at this point where a significant gap exists between theory and practice in that 
impleml:!ntation of an infinite dimensional filter, is not generally possible. 

The most popular solution to this dilemma at the present t.ime seems to be 
reduced order modeling of the system, see for example [1],[2],[3], and [4]. 
Usually, a modal representation of the system is assumed. The basic idea is then 
to evaluate various computable criteria representing the significance of various 
modes and then select some finite subset of modes to represent the dominant 
dynamies of the system. A linear quadratic regulator (controller/estimator com
bination) for this finite dimensional model is then designed using standard 
methods. The stability of the system using the resulting compensator is usually 
checked by computing the eigenvalues of the closed loop system using a high order 
"truth model" to represent the LSS dynamics, where the truth model is of finite 
order, but of much higher order than the compensator. 

* Research supported in part under Grant No. 78-3550, AFOSR, USAF, Applied Math 
Division. 

*'1( Papl:!r has been revised (8/6/82) from version distributed at workshop (7/15/82). 
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There are two basic problems with the above approach. The first is that the 
approximation is performed upon the system rather than the compensator. In 
effect, the truncation of an infinite number of modes is tantamount to "approxi
mating" an unbounded, infinite dimensional operator by one that is bounded and 
finite dimensional. Thus, the infinite dimensionality of the problem is never 
used in designing the compensator. The second problem is that the stability of 
the closed loop system is also checked against a finite order model and the 
closed loop stability of the actual infinite dimensional system is inferred 
essentially on faith. 

To avoid these pitfalls essentially requires that we have a partial differ
ential equation (PDE) to represent the system. For complicated structures this 
may be asking too much. Hence, the method of reduced order modeling may be as 
viable an approach as any in those cases. However, we can, and should, study the 
problem of approximating the optimal compensator for appropriate systems where 
the PDE is known, since we may gain insight into the approximation problem that 
would apply to more general and more complicated systems. 

This paper considers the compensator design and approximation for a class of 
systems representative of large space structures. An analytical solution for the 
compensator is obtained using the infinite dimensional model of the system. A 
finite dimensional approximation of the compensator is then derived based upon 
analysis of the infinite dimensional compensator. 

2.0 SYSTEM MODEL 

We will consider the following system 

M;(t) + Aow(t) bu(t) + bnd(t) (2. 1) 

y ( t ) fb , w ( t) 1 + e ( t) (2.2) 

(2.1) is the inhomogeneous equation of motion of an undamped oscillator and 
(2.2) is the system measurement equation. w(t) is an element of a separable 
Hilbert space H and represents the small displacements of the system (transla
tion and rotational) relative to its equilibrium position. The operator M con
tains the mass and inertia properties of the system. M maps H to H, is linear 
bounded, self-adjoint, and positive definite. Ao represents the stiffness of 
the structure and maps V(Ao) , the domain of Ao which is dense in H, to H. Ao is 
linear, self-adjoint, closed (or can be closed) and generally unbounded. We 
assume there exists E>O such that 

The spatial domain of Ao ' ~, is bounded and, thus, the resolvent of Ao is com
pact for each A in the resolvent set of Ao. Since Ao is closed and has a com
pact resolvent, its eigenvalues are isolated (countable), have finite multipli
cities, and have infinity as the only limit point ([5], p.187). In addition, 
the modes {¢k, k=1,2 ..• } of Ao are orthogonal and form a basis in H. 

A single white noise disturbance nd(t) is present with a spatial force dis
tribution defined by b E H. The support of b is assumed to be small compared to 
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the measure of rl, so that bnd(t) represents a physical realization of a point 
disturbance. A single control u(t) and rate sensor yet) are co10cated at the 
sight of the disturbance. The measurement error e(t) is a white noise process 
uncorre1ated with nd(t). u(t), nd(t), yet), and e(t) are all elements of R for 
each t E: [0,00). Note also that the control, measurement, and disturbance are 
all compact, since they are each finite in number. 

In order to utilize semigroup theory, (2.1) and (2.2) will be put in first 
order form. Let xl(t) wet) and x2(t) = ~(t) then, the system (2.1) and (2.2) 
can be written as 

~(t) = Ax(t) + Bu(t) + Fnd(t) (2.3) 

y (t) Cx(t) + e(t) (2.4) 

where 

[Xl (t)] ~~:Ao :] x(t) A 
x2 (t) 

B F [M-:b- c [0, (W 1b)*] 

Note that OrA) = O(Aa) x V, where V 
a compact resolvent since Ao does. 

{w IA~ w E: H}. Note also that A will have 

As a function space, it is natural to use the energy space E 
by the inner product 

V x H defined 

(2.5) 

It is easy to verify that A = -A* under the inner product (2.5). Hence, 
by [6" Corollary 4.3. 1], A generates a norm preserving, strongly continuous 
group" T(t). 

The semigroup can be represented using the modes of M- 1Ao . The modes ¢k 
are orthogonal under the inner product [M·,·] and are complete in H. Using the 
¢k'S, a set of basis vectors in E can be defined by ¢lk = [¢k,O]T, ¢2k = [O,¢k]T, 
k=1,2" ... The set {¢1k' ¢2k' k=1,2, ... } is complete in E and orthogonal under 
[·,·]r' Thus, any x E: E can be written as 

00 

xL:. x1k ¢lk + x2k ¢2k 
k=l 

where [¢lk,x]E = wf xlk' [¢2k,x]E = x2k· 

A representation for the semigroup, can be obtained from the homogeneous 
solution to (2.3). Writing (2.3) as 

x - Ax 
00 

~ (~1k-x2k) ¢1k + (x2k + w~ x 1k) ¢2k 
k=1 
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we see that xlk and x2k solve 

. [ ] [ ~::] ~~ : [:::] 
for each k. Thus the semigroup can be expressed as 

x(t) T(t) x(O) 

00 

L:. (2.6) 
k=l 

3.0 STOCHASTIC CONTROL PROBLEM 

Given the system (2.3) and (2.4), we want to find a control u(t) to minimize 

J[u] lim 
T-+«> 

1 ~ST 2! 2 2 l T E 1 0 [y B*x(t)! + !u(t)! ] dt~ (3.1) 

where y>O and E{.} denotes expected value. Let the noise covariances be given 
by E nd(t) n~(t) = aa I and E e(t) e*(t) = O'~. For (A,B) controllable*, the 
minimum of (3.1) is attained for 

u (t) 
o 

-B* P i(t) 
c 

where ~(t) satisfies 

~(t) 
A 

= Ax(t) + Buo(t) + PfB* [yet) + Bx(t)], 
A 

x(O) 

and Pc and Pf satisfy, respectively, 

and 

* Approximately 

2 [P x,Ax] + [Ax,P x] + y [B*x, B*x] 
c c 

- [B* P x, B* P x] 
c c 

0, X E: V(A) 

1 - - [B* 2 
0' 

S 

controllable, 

X E: V(A*) 

see [6, Theorem 4.9.2]. 
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o (3.3) 

(3.4) 

(3.5) 



It is easily verified by direct substitution that under the energy inner product 

thus (3.2) and (3.3) become 

P 
c 

yI and P
f 

as 
I 

A 

.u (t) 
o 

- yB* x(t) 

A 

x(t) 
as 

Ax(t) + Bu (t) + -- B[y(t) 
o ad 

A 

B*x(t)] , 

The corresponding minimal cost is 

(3.6) 

A 

x(O) o (3.7) 

Remark 3.1. The above solution requires that the steady-state Riccati equa-· 
tions (3.4) and (3,5) have unique positive definite solutions and that i(t) 
be asymptotically stationary. Regarding (3.4) and (3.5), since we have ana-· 
lytical solutions, the only concern is uniqueness and this is guaranteed by 
(A,B) controllability [8]. The asymptotic stationarity of i(t) follows easily 
through application of [6, Theorem 6.7.1]. 

~emar!~. For more general problems, where for example we replace B in (3.1) 
with another operator R, which is Hilbert-Schmidt, exponential stabilizabili_ty 
of the system is sufficient to guarantee solutions to the infinite time, sto
chastic regulator (ITSR) problem [6, Theorem 6.9.1]. However, when compact 
controls are employed, as is the case here, the system cannot be given a uni
form exponential decay rate* unless the open loop system is already uniformly 
exponentially stable. Note that, here, the open loop system (2.3) is unitary, 
i.e., IIT(t)11 = 1. Hence, the closed loop system can only be strongly stable**. 

Remark 3.2. The existence of solutions to the ITSR problem for systems that are 
only strongly stabilizable is largely an open problem. Recent results concern
ing strong stability and the steady-state Riccati equation are given in [8], but 
the sufficient conditions for existence are quite strong, requiring in particu
lar IIR*xll.2 Ml IIB*xll for the control problem and IIF*xll.2 M211Cxli for the filter
ing problem. where Ml and M2 are constants~* One possible physical interpretation 
of these requirements is that we only attach a performance penalty to those 
points where we have located actuators and that we locate a sensor at each dis
turbance source. 

* A semigroup T(t) is uniformly exponentially stable if 3 w>O, M>13 
I~(t) II .2 Me-wt , t~O. 

** A semigroup is strongly stable if IIT(t)xll -+ 0 as t-+oo, xsE. 
***R is the state weighting operator, F is the disturbance input operator, and C 

is the observation operator. 
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4,0 OPTIMAL COMPENSATOR 

Let T(t) be the Co semigroup generated by A. 
given by 

Then, the solution to (3.7) is 

(4.1) 

Using (3.6), we can rewrite (4.1) as 

t 
~ yu (T) 

a 
B*~(T)]~ u(t) - S B* T(t-T) B s 

[rY(T) - dT +-
0 ad 

t 

1(:+ ::) U(T) 
yas ~ . - S B* T(t-T) B + - yeT) dT 

0 ad 

Therefore 

t t 

u(t) + kuS B* T(t-T) BU(T) dT 
o 

k J B* T(t-T) By(,) dT (4.2) 
y 0 

where ku y + as/ad' ky = yas/ad' Observe that (4.2) is a Volterra equation. 
Define the Volterra operator L as 

t 

Lf = h; SO B* T(t-T) Bf(T) dT h(t) 

Then (4.2) can be written as 

u + k Lu 
u 

- k Ly 
y 

Solving for u we obtain the optimal compensator in abstract form 

where K is also a Volterra 

Kf 

"~ 

u k [1 + k L]-l 
c y u 

= k [1 + K] Ly 
Y 

operator of the form 

h; st K(t,T) f(T) dT 
o 

Ly 

h 

From [6, p.102-103], K(t,,) can be computed iteratively and is given by 

where 

g (t,T) 
n 

K(t,,) 

g (t-T) 
n 

00 

n+l 
(-1) g (t,T) 

n L 
n=l 

t 

S get-d) gn_l(a-T) da , 
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(4.3) 

(4.4) 

(4.5) 

(4.6) 



gl (t-c) g(t-T) B* T(t-c) B (4.7) 

Noting that 

Lnf st g (t-c) f(c) de 
n 

0 

(4.4) c.an also be written as 

u k {I k + k
2 L2 _ k3 L3 + ... } L y 

c y u u u 

k ~tl (-k )n-l 
L
n ~ y y u U+. 8) 

Since B* T(t-c) B is uniformly continuous and (4.3) is a Volterra equation, the 
iteration defined by (4.5)-(4.7) and, hence, the series (4.8) converge for 
te[O,T"i,'l"<t,T< 00, . [6]. The series (4.8) is sometimes called a Neumann series, 
[9]. Thus, the optimal compensator is of the form 

u(t) - k 
y 

g (t-c) yeT) de 
o 

(1+. 9) 

where the kernal go(t-c) is given by the bracketed term in (4.8). Note that 
(4.8) utilizeE: the infinite dimension system model via (4.7) which is given in 
terms of the open loop semigroup operator, T(t), and we have a representation 
for T(t), (2.6), using the modes of M-1Ao ' In particular, expanding (4.7) on the 
orthonormal basis for E, as defined in Section 2, gives 

Properties 

i) g(O') 

ii) g(O') 

iii) g (0') 

B* T(t-c) B 

of g(O') 

-+ 0 as 0' -+ 00 

is uniformly continuous 

is compact for each t ~ O. 

00 

~ b~ coswk(t-c) 
k=l 

Condition i) follows since g(o) = B* 8(0) Band 8(0) is the Co semigroup 
generated by A - kuBB* which is strongly stable. Note that S(o') is also a con
traction, Le., \\S(o')\\ < 1. The second condition results from the strong con
tinuity of 8(0'). For coodition iii), g(O") is compact since B is compact and 
8 (0") is a bounded operator. 
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5.0 SMALL GAIN APPROXIMATION TO OPTIMAL COMPENSATOR 

Using the procedure outlined in Section 4.0, four complete iterations and 
a partial fifth iteration were performed. This yielded an approximation for the 
kernal of the optimal filter given by 

g (cr) 
o 

where 

00 00 

-E1 j~l . rlkj 

k#j 

. [1 - 'oj" + ~('Ok")2J! + k~ o (k • l-
4 u' w

k 
cr) (5.1 ) 

cr = t - '( 

2 1 
The remainder term ku 04(ku ; w ; cr) is given in the appendix and is composed 
of terms of second order or gre~ter in ku. 

It is apparent that the terms in the square brackets in (5.1) are the first 
few terms of the Taylor series expansion for exp (-~ckt). Thus, the limiting 
form of the kernel is 

g (cr) g (cr) + k
2 O(k . 1 cr) 

0 0 u u' wk 
(5.2) 

where 

00 00 00 
A 

L L L g (cr) glk (cr) - k g2kj (0) 0 k=l u k=l j=l 
(5.3) 

k#j 

(5.5) 

Note that the component filters glk(cr) have second order dynamics while the fil
ters gZkj(cr) have fourth order dynamics. Also, all the parameters in glk(cr) are 
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related to the kth open loop mode, while g2k,(a) is related to the cross-coupling 
between the kth and jth modes. Due to the ptesence of the factors l/Wk and l/wj 
in g2kj(a) , the cross-coupling terms are attenuated relative to the "diagonal" 
terms glk(t-T) as wk and Wj become large. Thus, at high frequencies the dominant 
filter dynamics are due to the diagonal terms glk(a). Since the iteration con
verges and sinee go(cr) and go(a) are continuous in cr, k~ O(ku ;l/wk;cr) is 
continuous in cr. Also k3IO(ku;1/wk;a) I + 0 as ku + 0 for each cr€[O,T]. Therefore, 
for any e > 0, we can find ku sufficiently small such that 

I 2 1 
max k O(k; --;a) 1 < € 

O<t<T u u wk 

The argument l/wk is used to indicate that \O(ku;l/wk;a) \ + 0 as wk +ClO. Therefore, 
assuming ku is small, the approximate optimal control is given by 

~(t) 

00 t 

-k,\T L S glk (t-T) yeT) dT + k 
7 k=l 0 Y 

k 
u 

(5.6) 

Since ky and ku are both small, as crude first approximation, the double sunr 
mation in (5.6) could be neglected. In this case, the filter takes a particularly 
simple form, namely, 

where 

-k 
y 

~(t) (5.7) 

st glk(t-T) yeT) dT 
o 

Here, the basic structure of the compensator is an infinite bank of second order 
filters, each operating on the sensor output and the control is simply the sum 
of their outputs. The component filters glk(t-T) in this case have a rather 
special property. Letting G1k(s) denote the Laplace Transform of glk(t-T), we 
have 

S 2 + 2" +"2 + 2 C,cks C,ck wk 

Such a filter is strictly positive real, [11], [12]. Note that the phase shift 
of the filter never exceeds ±~/2. According to [13], strictly positive real fil
ters have robust stability properties in the sense that they will stabilize any 
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positive real system (in an input/output sense). The system considered 
here is positive real since it is an undamped oscillator. Note that any finite 
sum of positive real filters is also positive real. Therefore, we can truncate 
the summation (5.7) at any finite number of terms and the compensator will still 
stabilize the system. It would be expected that the more terms retained in the 
summation the closer the resulting performance would be to the optimal performance 

Returning to the filter defined by (5.6) another approximation will be 
obtained. First, consider the Laplace Transform of ku g2kj(t) given by 

Using the definitions of 1;ck' rlkj' etc, this becomes 

2 
b. rI' k J ] 

2 
1;cj) 

(5.8) 

2 2 
where Glk(s) is the Laplace Transform of glk(t) (neglecting 1;ck' 1;cs in the denom-
inator). Thus the Laplace Transform of the compensator is 

2 b 2 b2 2 00 bks 00 00 k . s 
G (s) -k ~ + k k L L: J 

Y £...J 2 2 2 u y (s2 +k b 2 2 2 2 2 0 k=l s +kubks-+wk 
k=l j=l + w

k
) (s +k b.s + w.) 

kfj 
u k u J J 

(5.9) 

In the time domain, the approximation to the optimal control is now given by 

~(t) 
00 t 00 00 

-ky kL=l So glk(t-T) yeT) dT + kyku ~ L 
k=l j=l 

kfj 

gl·(0-T)dcr lY(T)dt 
J ~ 

(5.10) 

This representation is interesting in that the basic building blocks of the fil
ter are the positive real component filter glk(t-t). Note, however, that the con
volutions 
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or, equivalently, the products 

G3kj (s) := G1k (s) G
1j 

(s) 

are not positive real. However, since the diagonal terms dominate at high fre
quencies, the high frequency component filters approach a positive real form. 
Since we would expect a close (finite dimensional) approximation to the optimal 
filter to stabilize the system, it is interesting that the limiting structure 
is posi.tive real, Le., a structure that is compatible with truncation. 

6.0 CONCLUSIONS 

It has been shown that the optimal compensator can be represented in terms 
of a kernal of an integral operator. The results demonstrate that the integral 
representation provides considerable insight into the structure of the compen
sator. This is due to the compensator being compact and, hence, something that 
is inherently approximatib1e by a finite dimensional operator, i.e., the compen
sator parameters go to zero as k + 00. For the system considered here, the opti
mal filter can be constructed of basic building blocks which are second order 
positive real filters. The first (low gain) approximation is a diagonal array 
of these component filters and there is a one to one correspondence with the 
open loop modes. The second (low gain) approximation adds in the cross-coupling 
effects in the form of fourth order filters which are convolutions between the 
various component filters taken two at a time. At high frequencies, the dynamics 
of the compensator approach the diagonal form of the first approximation whieh 
should have advantages when the filter dynamics are truncated in order to obtain 
a finite dimensional approximation for the compensator. The results also seem 
to suggest tha.t higher gains will require increasingly higher order convolutions 
of the component filters. 
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APPENDIX 

The following defines 04(ku ;t), the remainder term for the optima.l compen
sator, after four complete iterations and part of a fifth iteration: 
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where 

c
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c2 (k.j) 
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" ___ ,, [_~k:":':Jo!..-' _b,;;;.;,~_S 1_' n_w,;;;.;,k:.....t ( tb~ ~ ~ j k b ~ sinw • t 
I..JI..J C 1 (k,j)+ -8 (1 -t; k t ) + J 
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3
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4
(k,j,i)+k

u
c

S
(k,j,i)t) 

u J k:fj:fi • 

• cO'""k t + (c4 (j ,k, i)+kucS (j ,k, ilt) coswl + (c 4 (i,j ,k)-+kuc
S 
(i,j ,k» coswi tl/ 

+k 
u 

00 

L: 
k=l 

bk2bJ2.bi2 [ (k") c 6 ,J,1 sinwkt 

+ c 6(j,k,i) sinw.t+c6(i,j,k)sinw.t] -LLZ:Lb~b:b~b~ [c7(k,j,i,~) sinwkt 
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+ c 7 (j,k,i,t) SillWjt + c
7
(i,j,k,t) sinwit + C7(t,j,i,k) Siuwtt1/ 

21 2 2 [2(W~-2W~) 
(wk-w.) 

. J 

2 2 
wkbk 

Cs (k,j ,i) = 
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ANALYSIS OF STRUC1"URAL PERTURBATIONS IN 
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Abstract 

It has long been common practice to analyze linear dynamic systems by decomposing the total response 
in terms of individual contributions which are easier to analyze. Examples of this philosophy include the 
expansion of transfer functions using: (i) the superposition principle, (ii) residue theory and partial 
fraction expansions, (iii) Markov parameters, Hankel matrices, and (iv) regular and singular perturbations. 
This paper summarizes a new and different kind of expansion designed to decompose the norm of the response 
vector rather than the response vector itself. This is referred to as "cost-decomposition" of the system. 
The notable advantages of this type of decomposHion are: (a) easy application to multi-input, multi
outPLlt systems, (b) natural compatibility with Linear Quadratic Gaussian Theory, (c) applicability to the 
ana lysi s of more general types of structural perturbati ons invol vi ng inputs, outputs, states, parameters. 
Property (c) makes the method suitable for problems in model reduction, measurement/actuato'r selections, 
and sensitivity analysis. . 

1.0 Introduction 

For many Y'easons it is convenient and often necessary to characterize dynamic system behavior in 
terms of an expansion of the system response into terms which are indi vidually easier to analyze than the 
total response. For example, it is common practice in the study of linear systems to take advantage of 
the superposition principle to separately analyze the effect of each input uj on each output Yi of the 
system, 

m 
L G. ,(s) u .(s) 

j=1 1J J 
(1.1 ) 

or to analyze the contribution of each mode of the system by using the partial fraction expansion 

y(s) G( s) u(s) 
n R. 

.L ~u(s) 
1=1 1 

(1.2) 

In lieu of poles and residues the expansion can take on many other forms including the use of Markov 
parameters, Hankel matrices, and various other moments. In time domain analysis, y(t) may be expanded 
in the power series form 

(1.3) 

. h th d . where E is a small parameter in the system and y (t), n = 0,1, ... , const1~ute ten. or er approx1ma-
tions of y(t) in perturbation analysis. The regOlar and singular pertu~bat10n an~lys1s O.3)has.been 
developed extensively in both open-loop and ~losed-loop problems embrac1ng both 11near and non~lnear 
systems [1]-[2]. In the presence of structural perturbations in the state (singu~ar perturbat10ns) ~he 
expa.nsions of the form (3) can be readi~y employed.to predict th~ perturbed behavlOr, whereas (1.2) 15 
useful only if the structural perturbat10ns occur 1n modal coordlnates. Other types ?f structural 
perturbations occur if the number of inputs or outputs change. The effects of these 1nput or output 
perturbations can be approximated by expansion (1.1) or (1.3). 

The purpose of this paper is to investigate a different kind of expansion of the response y in the 
analysis of dynamic systems subject to al~ ~yp~s ?f st~uc~ural perturbations; state, input, output. 
Thi~. expansion is called a "cost decompos1t10n Slnce 1t lnvolves expansion of a scalar> function of the 
output y, denoted by the inner product 

t. 
V = <y,y> = 

n 

I Vi 
i=l 

(1.4) 

where V· are the "component costs" denoting the contribution of the ith system "~omponent" in the overall 
perform~nce ~!tric V. The motivation for the decomposition of the scalar (1.4) 1S that 

(a) the overall system performance metric is often characterized in a quadratic form and 
the expansion (1.4) allows one to determine the relative si9nificance of t~e components 
of the system. This relative significance is easily establ1shed by companng the 
scalars VI ~ V2 ~ ... , etc. 
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(b) the component costs Vi provide information which can be used to advantage in 
these problems: 

1. Model Reduction 
2. Construction of Reduced Controllers 
3. Construction of Reduced Estimators 
4. Sensor/Actuator Selection 
5. Parameter Sensitivity Analysis (detennining "critical" parameters) 

This paper shows how to exploit cost decomposition methods (4) to generate suboptimal solutions to problems 
1-4. 

The paper is organized as follows. Section 2.0 describes cost decomposition procedures for determining 
"component costs," "input costs," and "output costs." Section 3.0 applies these ideas to model reduction. 
Section 4.0 applies these ideas to controller reduction. Section 5.0 applies these ideas to sensor/actuator 
selection. Some concluding remarks appear in Section 6.0. 

All of the ideas in this paper can be (some have been) extended to time-varying plants with finite 
time performance metrics .. However, in the interest of brevity only the stationary, infinite time results 
will be presented. 

2.0 Cost-Decomposition 

Consider the linear system 

x 

y 

Ax + Ow 

Cx 

n 
x£R x 

n 
y£R y 

n 
w£R w (2.1 ) 

where the matrix pair (A,D) is controllable and the matrix pair (A,C) is observable. The input w(t) is a 
zero-mean white noise with intensity W(Ew(t)) = 0, Ew(t)wT(T) = WIi(t-.)). The model (2.1) exists for the 
purpose of accurately describing the outputs, Yl' ... , Yn' Therefore, a suitable measure by which to 
quantize the performance of (2.1) is y 

V ~ lim EIIYII~, 
t--

(2.2) 

The matrix Q weights the outputs according to their importance in the performance criteria. 

n' 
It is of interest to know how sub-state xiER 1 contributes to the cost function V. 

The "componen t costs" Vi associated lJith components xi' i-I, ... , n of the state vector> must r>epr>esent the 
contribution of Xi in V in such a way that the sum of all the "component costs" Vi equa~s the total system 
cost V. 

n 

V = i~l Vi I 
n = x 

n 
I ni i=l 

(2.3) 

For linear systems (2.1) with quadratic costs (2.2) this Vi qualifies as a component cost definition, 

(2.4) 

This definition of component cost Vi reduces to the calculation [4] 

(2.5a) 

o = XAT + AX + DWDT (2.5b) 

where the "cost decomposition" property (2.3) holds. 

It will also be of interest .in Section 5 to know how each inrut wi and each out Yi contribute to the 
cost function V. 

The input costs V/ ("our;put costs" Viol associated with wi' i=l, 
the contribution of wi(Yi) in V in such a way that the sum of the 

equals the total system cost V. 
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... , nw(Yi' i=1, ... , n ) ~st r>epr>esent 
I y 

"input-costs" Vi ("output costs" Vi 0) 



nw 
v. I V L (2.6) 

i=l 1 

ny 
V = r 

;=1 
v. ° 

1 
(2.7) 

For linear systems (2.1) with quadratic costs (2.2) this ViI(ViO) qualifies as an "input cost." "output 
cost" definition. 

V. I t:. ally 112 
lim E(~wi) 1 t- 1 

(2.8) 

V. ° '" lim (~ ) E a y. 1 t- Yi 1 
(2.9) 

These definitions reduce to the calculations 

V. I 
1 

tr[oTKOW]ii (2 . lOa ) 

0 KA + A \ + CTQC (2.10b) 

V. ° T 
1 [CXC Q]i i (2.11a) 

0 XAT + AX + OWOT (2.11b) 

where the cost-decomposition properties (2.6), (2.7) of ViI and Vi o hold. 

The component cost Vi, the input cost viI,a'ndthe output cost Vio quantize the "value" of the state 
xi' the input wi' or the output Yi while all components, inputs, and outputs are in-place and interacting. 
Indeed, the very definition of a dynamic system is described in terms of "interconnected components casually 
related in time." It is only natural, then to describe the total system behavior in terms of the contri
butions from each of the individual components. Component Cost Analysis (CCA) serves this purpose and, as 
such. it should be interpreted as a diagnostia tool to gain insight into system behavior. 

If Vi > Vj for all j~i, then the jth component is the critical performance limiting component. This 
component might be redesigned to be less dominant in the system performance. Such a "cost-balancing" 
strategy for system design is under consideration. The critical components from CCA also suggest which 
component$ should be made more reliable for minimizing the performance degradation in the presence of the 
"most-likely" component failure. 

The next Section 3.0 will exploit (2.5) in its application to the model reduction problem. 

3.0 P,pp1ication of CCA to Model Reduction 

In Section 2.0 it was shown that Vi represents the in situ value of Xi in the cost V. Component costs 
(2.5) may be computed in physical or any other coordinates. Ifa component Xj is deleted from (2.1), the 
cost V will not generally be perturbed by amount Vi' It will be of interest. therefore, to know in what 
coordinates the cost perturbation is Vi. In other words, when do the Vi satisfy the "cost-superposition" 
property 

where VR is the value of V with nor components deleted from the system (2.1). 

Definition 1: 

(3.1) 

Components Xi, i=l, .•.• n whiah satisfy the aost-8uperposition property (3.1) for aU 1.::. r.::. n are 
said to be"aost-deaoupled.aomponents." 

C:ost-decoupled components are of obvious interest in model reduction problems since the exact 
pertur'bation of V resulting from the truncation of nor components can be predicted a priori. There are 
many c:ost-decoupled components. Three different choices will be disclAssed in what follows. 

3.1 "odal Cost Analysis 

JI "component" Xi is called a "coordinate" when ni=1. Let A be diagonal in (2.1). Then X'. ni=l. 
i=1, , .. , n are mca.'ll coordinates. The corresponding component cost analysis (2.5) is then re}erred to 
as Modal Cost Analysis (MCA) and the following results. are known [3]-[6]. 
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Theorem 1: 

If A is diagonal in (2.5) and if eithep (i), (ii),op (iii) hold 

(i) * di Wd j 0 

(ii) * ci QCj 0 

(iii) -Re Ail1 m Ai 

then 

< £ 

r j 

r j 

* D ... , 

C ... , 

£ apbitpaPily small > 0 

Theorem 2: Modal Cost Analysis of Lightly Damped Systems 

(3.2) 

If the system of intepest is descpibed by the modal coordinates of a matpix-second opdep system 

;=1, ... , N 

N 
y \' ( I' ) 

i~l Pini + Pini 

then the modal costs associated with the ovepall cost (2.2) ape 

, i =1, •.• , N 

whepe the equality holds in (3.4) if (1) d/Wdj = 0, irj, op if (ii) PiTQPj + Pi,TQPj = 0, irj, OP 

(iii) in the limit as ~i + O. 

(3.3) 

(3.4) 

The formulas (3.2) or (3.4) are useful in determining critical modes of the special class of 
systems satisfying either (i), (ii), or (iii). Otherwise, numerical solutions of (2.5) are required to 
compute the modal costs. Both coordinates described by Theorems 1 and 2 are "cost-decoupled" in the 
sense of Def. 1. As a result, those r modes which should be deleted in order to minimize "he cost 
perturbati on 

llV = V - V
R (3.5) 

are indicated by the r smallest values of the modal costs Vi' 

The use of Modal Cost Analysis for reduced order modeling of large space structures is discussed in 
[7J, [8J. The use of Modal Cost Analysis for diagnosing matrix-second-order systems is presented in [9J. 
It is clear from (3.2) and (3.4) ~hat the modal cost Vi is the product of three properties of a mode: 
the weighted observability I ICi I IQ' the weighted disturbability I Idi I I~, and the time constant -l/ReAi. 

3.2 Cost-Equivalent Realizations 

Another important set of coordinates which possess the cost-superpositi~n property (3.1) is presented 
in this section. In this set of coordinates, derived in [10J, the matrix XC QC is diagonal. Hence, in 
these coordinates 

XCTQC (3.6) 

Theorem 3: Coopdinates which satisfy (3.6) ape "cost-decoupled" in the sense of definition 1. 

Now in order to reduce the model (2.1) so as to make the smallest possible perturbation in the cost V, one 
can rely on Theorem 3 to obtain 'the following result, [4J. 

Theorem 4: 

Suppose the coopdinates of (2.1) ape appanged so that (3.6) holds with VI ~ V2 ~ ••. ~ Vn . The 
peduced model of opdep r which minimizes (3.5) is obtained by deleting the last nx-r states inX(2.1), 
and the pesulting cost peptuPbation is equal to 

(3.7) 
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Assume that C in (2.1) has rank [C] = ny, and that Q > 0, W > O. Then, by assumption of control
lability of (A,D), (2.5b) has a positive definite solution X > O. The assumption of stable A is added to 
ensure that X is bounded from above. (However, CCA is not limited to the analysis of stable systems, 
[12]). Under these conditions, the matrix XCTQC in (3.6) has rank in ny. Hence, nx-ny of the Vi in 
(3.6) are zero. This leads to the following result, [10]. 

Coro 11 a ry to Theorem 4: 

Let 

(3.8) 

~ep~esent the ~eduaed o~de~ model obtained by t~naating the last nx-r states of (2.1). Theil if AR is 
stable, (3.8) is a "aost-equivalent" ~eaZization of (2.1) (in the sense that t,V = 0) if r ~ ny • 

It remains to be shown whether AR is stable. For this task a particular set of coordinates are 
described which yield (3.6). Define n by the Cholesky square root of XO

, 

(3.9) 

and e as the orthonormal matrix of eigenvectors of nTCoTQCon. Hence,the transformation of the origina'i 
states XO hav'ing parameters {AO, Co, D°, XO} by XO = nex yields 

(3.10) 

(3.11) 

Hence, (3.6) is satisfied and the states xi qualify as cost-decoupled coordinates. In these coordinates 
thE! last nx-r states are deleted to form the reduced order model (3.8). The following is known concerning 
thE! cost-decoupled coordinates described by (3.10), (3.11) and the resulting reduced order model (3.8) of 
oreler r. 

The!orem 5: 

The aost-deaoupled aoo~dinates desa~ibed by (3.10), (3.11),and the ~eduaed model (3.8) have the 
following p~ope~ties [12]. 

(al Vi ~ 0 fo~ aU i=l, ... , n 

(b) ReAi[AR] ~ 0 if r ~ ny 

(c) ReAi[AR] < 0 <~> (AR, DR) aont~ollable 

nx 
(d) t,V = I v. 

i =r+ 1 1 

(e) t,V is minimized by (3.8) fo~ any given r 

(f) 

(g) 

t, V = 0 if r > nand (c) ho lds - y 

lim E y(t) itt) = lim EYR(t)y~(t). 
t-+o> t-

Property (f) gives the conditions under which (3.8) is a "cost-equivalent realization" (CER) of (2.1). 
Th'is result shows that Kalman's minimal realization is not necessarily minimal with respect to cost 
functions. That is, if the pair (A,D) is controllable and (A,C) is disturbable then (2.1) is minimal in 
thE! sense of Kalman. However, (3.8) can be a lower order equivalent realization of (2.1) in the sense of 
equivalent cost V = VR' According to the examples given in [4], the order of CER (3.8) is usually r=ny' 
There is a known exception, however. 

ThE!Orem 6 [1,~]: 

The CER is cf odel" r > ny if the fil"st Ma~kov pammete~ of (2.1) is ze~:J (CD=O). 
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A "stochastic equivalent realization" (SER) is defined in [13] as any realization which matches the 
first two moments of the output yet): 

(3.12) 

The CER has been compared to the SER of Anderson. The significant results are these. 

Theorem 7: 

Let 

G(s) = C(SI-A)-lD (3.13) 

describe the transfer matrix for (2.1) and· let 

(3.14) 

describe the transfer matrix foy· (3.8). Eq. (3.8) describes an SER of (2.1) if G(s) can be factored into 
the fom 

G(s) (3.15) 

where U(s) describes an "all-pass" network 

U(jw) WU*(jw) = W (3.16) 

and any SER is also a CER. For all single-input single-output systems the minimal order SER and CER are 
the same. 

The SER can be of lower order than Kalman's minimal realization, and the CER can be of lower order 
than the SER (except for single-input, single-output systems). The price paid for this advantage is that 
the CER matches only the cost (V = VR) and steady state covariance (property (g) of Theorem 5), whereas 
the SER matches the cost (V = VR) and the covariance for all time (3.12). 

The weighting matrix Q in (2.2) often contains some arbitrariness. It is appropriate to ask, 
therefore, whether the component cost Vi is highly sensitive to the choice of Q or the choice of C in 
(2.1), (2.2). This sensitivity result is summarized as follows. 

Theorem 8: 
avo 

There is no choice of coordinates which yields a smaller value of the sensitivity I I~I I, 
than the cost-decoupled coordinates satisfying (3.10), (3.11). dC QC 

Proof: 

The proof relies on a result from [14] which states that 

dA. 
II~II > 1 

if Ai is an eigenvalue of ~ and th3t 
dA. 

II~II = 1 

if w = wT. The proof is concluded by noting from (3.11) that Vi is the ith eigenvalue of cTQC and that 
CTQC is symmetric. 

It may be observed that the entire set of cost decoupled coordinates as defined by (3.6) dges not 
have the minimum sensitivity result of Theorem 8, since (a) Vi is an eigenvalue of XCTQC in general, and 
(b) Vi is an eigenvalue of XCTQC which is not generally symmetric, as it is with the choice of (3.10), 
(3.11) . 

The cost-decoupled coordinates defined by (3.10), (3.11) are not unique when n ~ rank [C] < n. In 
this (usual) case there is some degree of flexibility in the choice of n-k coordinates. The coordinates 
are arranged in [15] to place the states xi, i > k in order of their degree of observability in y. (It 
has already been established from Theorem 4 that the CER truncates some observable subspaces,) The details 
are described in [15], and the resulting form of the modified cost-decoupled coordinates is 
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Xl AU A12 o ... 0 xl 01 

x2 A21 A22 A
23 

. 0 x2 O2 

+ w (3.1?) 
Ap_1,p 

Xp Ap1 Ap2 Ap3 App Xp Op 

y = [C1 0 0 0] X 

n xn 
where A £R Y Y and U ' 

IIA1211 ~ IIA2311 ~ ... ~ IIAp_1,pll (3.18) 

The representation (3.17) is similar in structure to the Generalized Hessenberg Representation (GHR) of 
[16] with these notable differ>enaes: 

(i) C1 in (3.17) is not identity 

(ii) the transformations leading to (3.17) involve the matrices 
n, e in (3.10), (3.11), as described in [15]. 

Thus, if a CER is desired of any specified order r > n , the choice for r=ny does not involve the modified 
representation (3.17), whereas for the choice r > ny t~e representation (3.17) is useful. In this later 
case, the CER will have one property in addition to cost equivalence (V = VR): it will retain those 
substates {xi, i>k} which, among the zero cost states (Vi = 0), are most observable in the sense of (3.18). 

4.0 Controller Reduction 

Controller reduction using Component Cost Analysis (CCA) is based upon participation of the optimal 
controller states in the cost function 

The optimal controller for 

is described by 

where 

X Ax + 8u + Ow 

y Cx 

z = Mx + v , Ev = 0, Ev(t)T(T) V6(t-T) 

x = (A + BG - FM) X + Fz 

u = Gx 

G = _R- 1BTK , 0 = KA + ATK. - KBR- 1BTK + CTQC , 

F = PMTV- 1 ,0 = PAT + AP - PMTV- 1MP + OWOT 

Now delete a subset of the states of (4.2) to obtain the reduced controller of dimension r 
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(4.1) 

(4.2) 

(4.3a) 

(4.3b) 

(4.3c) 

(4.4) 



where matrices w}th subscript.R have a specified set of~rows and/or columns deleted, corresponding to the 
deleted states, x .. To determine the participation of x. in ~.3a) consider that the plant (2.1) and the 
controller (4.3) ltogether form the closed loop optimal ~ystem with cost V given by 

w~ere X satisfies 

V 

V ~ 
y 

V ~ 
u 

V + V Y u 

lim EIIYII~ = lim Ellcxl16 = tr[XCTQC] 
t-- t-

2 A 2 A T 
lim EllullR = lim EllGxllR = tr[XG RG] , 
t- t-

o = X(A+BG)T + (A+BG)X + FVFT 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

Since .on1y controller states xi (and not plant states xi) are considered for truncation in the controller 
reduction problem, the controller-cost decoup1ed (CCD) coordinates are defined as follows. 

Definition 2: 

Contl'ollel'-cost-decoupled (CCD) cool'dinates al'e defined by the cost-super>posit;ion pl'oper'ty (3.1) 
fOI' the system 

A 

X = (A+BG) x + Fv 

u = Gx 

As a result of this definition, (4.5c), (4.5d),and (4.6) reveal that CCD coordinates have the 
property 

The coordinates satisfying (4.7) are not unique and for reasons similar to Section 3, (4.7) will be 
satisfied by the choice 

X 

Hence,these properties hold for the CCD coordinates of (4.6). 

Theorem 9: 

(a) The l'educed ol'del' system of ol'del' r 

uR GRxR 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

is a cost-equivalent l'ealiaation of (4.6) (Vu ~ i.im Ellull~ = i~ ElluRII~ = 

fl'om (4.6) and VUR !l'om (4.10)), if r~m1 and (AR+BRGR) is stable. 

VUR ' whel'e Vu is caloulated 

In addition, (4.6) and (4.10) have these properties: 

(b) Vi (;) ? 0 

(c) ReAi[AR+BRGR] ~ 0 if r ~ m1 
(d) Re\i[AR+BRGR] < 0 <~> (AR+BRGR, FR) is oor.tl'ollable 
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(e) 6Vu Q v .. V is minimised by (4.10) for> ,7>Zy given r. 
u uR 

(f) lim E u(t) uT(t) = lim E uR(t)u~(t) if (d) holds. (In this aase the r>eduaed system (4.10) is ~<1?7,.'3 
t- t-
an Ener>gy Equivalent of (4.6).) 

(g) If the fir>st Mar>kov par>ameter> of (4.6) is zer>o (GF = 0). pr>oper>ty (f) holds only if r > mI' 

aVi (~) [[-T-II is minimized by the ahoiae of aoor>dinates (4.8), (4.9). 
aG RG 

(h) 

Proof: 

By the substitution of 

A + A+BG 
0 + F 
C + G 
x + x 
Q + R 
Y + u 

all of the results of Section 3 as applied to (2.1) and (3.8) now apply to (4.6) and (4.10). Hence. 
Theorems 5. 6. and 8 readily yield the above results (a)-(h) by use of the dual (4.11). 

(4.11) 

The next logical step is to put (4.10) in the modified controller cost-decoupled coordinates suggested 
by (:3.17). These details need not be repeated since the dual (4.11) has been established. The modified 
contro 11 er-cost-decoupl ed coordi nates to be used. therefore. employ the Hessenberg-type structure (3.17) 
applied to (4.10). 

The important conclusion concerning component cost analysis is applied to open or closed loop systems 
is this: even though a realization (A.D.C) may be minimal in the sense of Kalman. there may still be 
states Xi in the realization which do not contribute to the cost function V. The theory of cost equivalent 
realizations (CERs) identifies those states. 

5.0 Input/Output Perturbations 

The input (output) costs ViI(ViO) of Section 2 describe the contribution of the ith input wi (the ith 
output Yi) in the performance matrix (2.2). The following are properties of ViI and Via' 

Theorem 10: Input/Output Cost Analysis [17]. [18] 

For> the system desar>ibed by (2.1). (2.2) with input (output) aosts V/ (Vi 0) given by (2.9) -(2.11) : 

nw . ny 
1. 1/ = L V. l = L V.O 

i=1 1 i=l 1 

2. 1/.1 > 0 if W .. > 0 for> aU j=1 
1 - lJ - • .... m 

3. 1/.0 > 0 if Q •• > 0 "or> aU J'=1 .... k 1 - lJ - J' • 

4. "iI > 0 if (A.C) is obser>vable and (2) holds. 

5. Vi ° > 0 if (A.D) is aontr>oZZable and (3) holds. 

6. 2~e input aost ViI and the output aost Vi o ar>e invar>iant under> state tr>ansformation. 
~ 

7. The aatuaZ per>tur>bation of the aost V due to the deletion of Wi is 

8. The aatual per>tur>bation of the aost V due to the deletion of Yi is 

and -,<Vi ° = Vi ° if Q is diagonal. 

Theorem 10 suggests the solution to the following input (output) selecting problem. 
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The Input (output) Selection Problem: 

From an admissibLe set of m inputs (k outputs) in (2.1) find the set of m < m inputs (k < k outputs) 
which cause the smaLLest perturbation in the cost V in (2.2). 

The solution to this problem 'is obtained by the deletion of those m - m inputs (k - k outputs) having 
the smallest ViI, Via in Theorem 10. In [17] it was shown that this approach turns out to be identical 
to the results of the integer programming approach [19] for solving the output selection problem. 

The closed-Loop application of the input/output cost analysis for actuator/sensor selection is 
treated in [18], [20], and,in the interest of brevity these results are not summarized here. The 
distinctions to be noted, however, are that the closed loop ICA/OCA algorithm is iterative, unlike the 
open-loop version suggested by Theorem 10. The required iterat'ion is due to the fact that the selection 
of inputs and outputs changes the closed-loop plant matrix, unlike the open loop version (2.1), (2.2). 
Further research is required to describe bounds on cost perturbations in the closed-loop situation. 

6.0 Conclusions 

Concepts of cost-decomposition are described to treat problems where structural perturbations in 
inputs, outputs, and states may occur. 

The input-cost analysis (ICA) and output cost analysis (OCA) determine the inputs/outputs making the 
largest contribution in a quadratic cost function of the outputs. The component cost analysis (CCA) 
determines the states making the largest contribution in a quadratic cost function of the outputs. In 
this setting it is shown that even though a realization (A,B,C) may be minimal in the sense of Kalman, 
it may contain states which make no contribution to the quadratic cost function of the outputs. A theory 
of cost-equivalent realization (CER) is developed to find and delete those innocuous states making no 
contribution. In the open-loop the CER theory is used for model reduction. In the closed-loop the CER 
theory is used for controller reduction. 
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FlrNITE DIF'FERENCE NUMERICAL METHODS FOR 
B()UNDARY CONTROL PROBLEMS GOVERNED BY 

HYPERBOLIC PARTIAL ][)IF'}'ERENTIAL EQUATIONS* 
GOOlllg Chen, Quan Zheng, Matthew Coleman, and Sunethra Weerakoon, Department of 

Mathematics, Pennsylvania State University 
University Park, PA 16802 

ABSTRACT 

This paper briefly reviews convergent finite difference schemes for hyper
bolic initial boundary value problems and their applications to boundary control 
systems of hyperbolic type which arise in the modelling of vibrations. We show 
how these difference schemes are combined with the primal and the dual approach
es to compute the optimal control in the unconstrained case, as well as the case 
when the control is subject to inequality constraints. Some of our preliminary 
numerical results are also presented. 

§1. Introduction 

Many problems in controlled vibration can be modelled by a first order 
hyperbolic partial differential system of the following type 

{

ddt y(x,t) = A dd
X 

y(x,t) + By(t) + f(x,t), OSxS1,OStST, 

(1.1) 
y(x,O) = YO(x), OSxSl, 

where the state y(x,t) = (Y1(x,t), ..• ,y (x,t»Tr is a vector function of (x,t) 
and without loss of generality it is asDumed that A is a constant diagonal matrix 
of the form 

° (1. 2) A 

° aQ, 
Q,xQ, 

A + = ia 

Q,+ 
1 

. J 
lo an (n-Q,)x(n-Q,) 

Sa. 
n 

B [b'k] is an n x n constant matrix. Associated with the decomposition of A, 
J 

* Supported in part by National Science Foundation Grant MCS 81-01892 
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B can be written as 

The boundary conditions and control are 

(1. 3) - + + y (O,t) = SlY (O,t), y (l,t) = S2y-(1,t) + Cu(t), u = control, 

where y- = (Yl' ... 'Yt)Tr and y+ = (Yt+l' ... 'Y )Tr are defined according to the 
partition of Y and Sl' S2 and C are constant gatrices of size t x (n-t), (n-t) 
x t, (n-t) x m, -respectively. We wish to minimize a quadratic cost 

(1. 4) 
T 1 

J(y,u) = f ° [f ° <y(x,t), \W(x)y(x,t»dx + <u(t), 1N(t)u(t»]dt, 

where the matrix 1N is positive definite, and \W is positive semi-definite. The 
above cost is associated with the vibration energy and the control cost of the 
system. Quadratic regulator problems of this and similar type have been consid
ered in [1], [4], wherein the main emphasis is on the synthesis of optimal con
trols and existence proofs of solutions of Riccati equations. 

Numerical analysis of optimal control problems governed by ordinary differ
ential equations has been very well studied. Nevertheless, for control systems 
governed by hyperbolic partial differential equations, there has been, to our 
knowledge, very little systematic investigation on the numerical methods for 
such problems. In this presentation we wish to make a preliminary study of this 
topic. 

§2. Smoothness of State and Control 

Before one conducts any numerical study, it is important to know the answers 
to the following basic questions. 

(Ql) In what sense is the partial differential equation (1.1), (1.3) well-posed? 

(Q2) Does the optimal regulator (1.4) subject to (1.1) and (1.3) have a unique 
optimal control u? 

(Q3) How smooth is the control u and the corresponding state y? 

(Ql) can be answered in terms of the following theorem [2, Theorem 2.3] 

Theorem 2.1 

For any f E L2 «0,1)X(0,T», YO E L2 (0,1) and u-E L
2

(0,T), the solution y 
2 of (1.1), (1.3) exists uniquely in L «O,l)x(O,T». Furthermore, there exists 

K > 0, independent of f, YO and y, such that 

2 2 2 - 2 
(2.1) IIyl12 S K(IIYoll 2 + lI u l1 2 + Ilfll 2 ). 0 

L «O,l)x(O,T» L (0,1) L (O,T) L «O,l)x(O,T» 
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Using Theorem 2.1, Duhamel's formula and the standard primal theory (cf. 
[5], e.g.), we easily answer (Q2) in 

2 2 
Assume that f E L «0,1) x (0, T)), YO E L (0,1). Then the optimal regulator 

problem (1.4), (1.1) and (1.3) has a unique optimal control U. 0 

In fact, [2, Theorem 2.3] gives an a priori bound which is even stronger 
than (2.1) and can probably be used to prove existence of optimal controls on 
[0,(0) . 

Theorems 2.l,and 2.2 only guarantee the minimal regularity of the optimal u 
and the corresponding state y. Assume that the inhomogeneous forcing term f in 
(1.1) is cO continuous in [O,l]x[O,T]. One can solve (1.1) by the method of 
characteristics. In fact, the k-th component Yk of y satisfies a first order 
linear ordinary differential equation 

n 
(2.2) 

along the characteristic curve x = xk(t) , along which is satisfied 

(2.3) -a
k

, k=1,2, ... ,n, 

where fk in (2.2) is the k-th component of f. 

Assume now that the initial condition YO is piecewise smooth on [0,1] and 
u is also piecewise smooth on [O,T]. One can solve y by converting (2.3) into 
a system of integral equations. Such a system has a solution y (as the fixed 
point of an integral operator) which is easily seen to be also piecewise smooth 
in [O,l)x[O,T]. Since y depends linearly on f,yO and u, we write 

(2.4) 

where L is an integral operator. Substituting (2.4) into (1.4) and minimizing 
with respect to u, we get another new integral equation for a. This equation 
has a unique solution u which is easily seen to be piecewise smooth on [O,T]. 
Thus v.7e state 

Theorem 2.3 

° Assume that f E C ([O,l]x[O,T]) and YO is piecewise smooth on [0,1]. Then 
the optimal control u of (1.4) is piecewise smooth on [O,T]. 0 

In Theorem 2.3, even if YO is assumed to be in Coo([O,l]), the smoothness of 
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of u will not necessarily be improved to CO([O,l]). For u to be CO([O,T]), 
compatibility conditions at (x,t) = (0,0) and (x,t) = (1,0) must be met: 
necessarily, 

- + + - A 

(2.5) yO(O) SlYO(O), yo(l) = S2Yo(1) + Cu(O). 

For U to be Cl([O,T]), one must further have Yo E Cl([O,l]) and 

_ dyO - + 
dy+ 

+ - ++ A dx (0) + B=y~(O) + B+YO(O) + f-(O,O) S [A+ ~ (0) + B_yO(O) + B+yO(O) 1 dx 

+ f+(O,O)] 
(2.6) + 

+ dyO 
(1) +'B~y~(l) + B+ +(0) + f+(l,O) S2[A 

- dy; 
(1) + B=y~(l) 

- + A - + B+YO(l) dx +yo dx 

+ f (1,0)] + C du (0) 
dt . 

In practice, we find that u E CO([O,T]) is probably the best we can get. 
Thus if (2.5) is satisfied, the corresponding state 9 will be CO([O,l]x[O,T]) 
smooth, but not Cl([O,l]X[O,T]). Thus, discontinuities of first order partial 
derivatives of y will propagate along characteristics (2.3). 

§3. Finite Difference Approximations 

The main objective of this section is to introduce several commonly used 
stable finite difference schemes and different ways of defining boundary condi
tions. 

In computing the optimal control and the governing partial differential 
equation, one introduces a time-step k > 0, a spatial mesh width h > ° by 
dividing the [0,1] interval into N = t segments, then approximates the partial 
differential equation (1.1) by a consistent single or multi-step difference 
scheme 

(3.1) 
{

(I + QO)wv(t+k) = 

w(x ,0) = wO(x ), v v 

where the notations [2,3] 

x = vh 
v 

Q. == 
1 

w(xv,t), 
p .. 
L; A lEJ 

j=-r j 

t I-Lk, I-L 
T 

0,1,2, ... , k 

v -r+l,-r+2, ... ,N+p-l, 
v -r+l,-r+2, ... ,N+p-l; 

fv (t) = f(xv' t), 

i=O,l; Ai _ A~(h,k) 
j J 

are constant n x n matrices; 
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Ew
V 

= wv+1 ' i.e., E is the right translation operator; 

are adopted. The initial condition Wo in (3.1.2) is determined by (3.1.2) and 
the equation (1.1), and the boundary conditions (1.3) are discretized into 

(3.2) 

where 

w (Uk) 
\--L 

w (t+k) 
\--L 

q 
Z 

j=O 

\--L =-r+ 1, ... ,0, 

\--L = N,N+1, ... ,N+p-1, 

We define the central, forward and backward difference operators, respectively, 
as 

D 1 (E E-1) 1 ( 0) D ~ -h1 (EO_E-1). o = 2h - , D + = 11 E-E, -

The most often used finite difference schemes are listed below: 

(L-W) Lax-Wendroff: 

k2 2 
y(x,t+k) = y(x,t) + k(ADO+B)y(x,t) + 2 A D+D_y(x,t) + kf(x,t); 

(L.F.) Leap Frog: 

y(x,t+k) = y(x,t-k) + k(2AD
O
+B)y(x,t) + kf(x,t); 

(C-N) Crank-Nicolson: 

k 
(I - 2 ADO)y(x,t+k) 

k 
(I + 2 ADO+kB)y(x,t) + kf(x,t); 

for x = h,2h, ... ,(N-1)h. 

Note that although L.F. is a multi-step scheme, it can be written as a single 
step scheme (3.1) by doing as in [3, p. 62]. All the above three schemes are 
accurate of order (2.2) [3, pp. 54,62]. In addition, the L-W scheme is dissipa
tive of order 4[3, p. 62]. The L. F. and C-N schemes are non-dissipative, but 
they can be made dissipative by adding some small "higher order" terms. 

The stability theory of difference schemes for purely initial value problems 
is very well understood. The question of stability can usually be answered by 
the standard Fourier transform technique. For initial-boundary value problems, 
however, their stability theory is not as well developed as its counterpart for 
purely initial value problems. The difficulty lies in the fact that boundary 
discretizations also affect the overall stability in a very important way -- a 
boundary discretization may be stable for one scheme but may not be stable for 
another. To determine the stability of the overall finite difference scheme, 
one must analyze the eigenvalues of the resolvent operator induced by the 
difference schemes as in [2]. Following [2], assume that f = 0 in (1.1) and let 
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(3.3) 

(3.4) 

(3.5) 
+ + + + 

'''O(t+k) + w1 (t+k) - kA D+wO(t+k) 
+ + + + 

wO(t) + w1 (t) + kA D+wO(t), 

w;(t+k) + w;_l(t+k)-kA-D_w;(t+k) w;(t)+ w;_l(t) + kA-D_w;(t), 

(3.6) 
.+ .+ 

(-6+)J wO = 0, (-6 )J wN = 0 j = a natural number, 

* In [2, p. 671], it is suggested that the above boundary discretizations, 
along with (1.3), when combined with the L-W, L.F. or C-N schemes on the inter
ior nodes, yields stable approximations with no exponentially growing eigenso1u
tions** in the following cases: 

Boundary discretization Approximations with no exponentially growing 
eigensolutions 

(3.3) , j 1 L-W; C-N for N even 

(3.3) , j 2 C-N for N even 

(3.3) , j 3 L-W; C-N for N even 

~,** *** 
(3.4) L-W; L.F. ; C-N 

1,** *** 
(3.5) L-W for N odd; L.F. , C-N 

(3.6) L.F. for N even; C-N for N even 

It is also pointed out in [2] that, e.g., for L-W, using (1.3) and (3.3) 
with j = 2 or 3, the finite difference scheme is stable but has exponentially 
growing eigenso1utions. However, such exponential solutions can be avoided by 
adding two more dissipative boundary conditions 

A standard consequence here is that stability plus consistency yields con
vergence (for T < 00). This is mentioned in [2] without proof. Meanwhile, it 

* 

** 

This is justified for a specific (but quite standard) example only. Its 
general validity remains to be investigated. 

Those eigenso1utions generate large errors as T~ 00. 

The stability eigenvalue analysis was carried out by computer calculations 
(instead of a rigorous proof). 
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should also be mentioned that although the accuracy of any of L-W, L.F. and C-N on 
the interior nodes is (2,2), the overall accuracy (i.e., taking into account of 
the boundary discretization) still needs careful analysis. Rates of convergence 
are then determined by the accuracy of the overall finite difference scheme. 

§4. Computational Approaches to the Quadratic Regulator Problem (I): Primal 
and Dual Methods for the Unconstrained Case 

Once a finite difference scheme is chosen, it is a rather straightforward 
matter to compute the optimal control u and the corresponding state. We first 
replace the quadratic cost integral (1.4) by a suitable quadrature 

(4.1) H., < w,(jk),W,w,(jk) >1 + Z Ho < u(tk),Nou(tk) >2' 
1J 1 1 1 v v 

O<t<! - -k 

where < , >1 and <, >2 are inner products in appropriate Euc1idena spaces, 
and {H, "H o } are weights of quadrature. For simplicity, we assume that r = 1 

1J v 

and p = 1 in (3.1). 

Since it is a common practice in the method of finite differences to choose 
equal grids in the space variable and in the time variable, one is forced to do 
the same for the quadrature in (4.1). This has the disadvantage of decreasing 
the accuracy of the entire problem ~±nce such quadrature accuracy is limited 
only to O(h+k). We are still trying to improve the accuracy for (4.1). 

(4.2) 

We now use (3.1) and (3.2) to represent w as 

T 
aVju(jk) + Fv(t), v=O,1, ... ,N-1,N; t=~k for ~=O,1,2" .. ,~, 

where Fv(t) denote the sum of all inhomogeneous terms depending on the initial 
condition Yo and the inhomogeneous term f in (1.1), and the coefficients a , are 
determined iteratively from the related coefficients in 0.1) and (3.2). vJ 
For explicit schemes (QO=O) such as L-W and L.F., the iterative computations of 
a j can be directly carried out on a computer. For the C-N scheme which is 
i~p1icit, an additional matrix inversion (I+QO)-l(I+Ql) is needed at each time 
step in the iterative computations of a " 

vJ 

Now, we substitute (4.2) into (4.1). This yields a 
J

hk 
depending on u(O), u(k), u(2k), ... ,u(T) only: 

1 T/k 
J hk = 2 Z < u(jk),D,tu(tk) 

j , t=o J 
(4.3) + 

T/k 
Z 

j=O 

quadratic expression 

<y"u(jk) > + Z::. 
J 

To compute the optimal discrete control u(O),u(k), ... ,u(T), we set 
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a 
J 

au(jk) hk u(jk) 

this gives a linear matrix equation 

0, T 
j=O, 1, ... , k ' 

u~~ = (u(O),u(k), ... ,u(T», 

where ~. is a full (t + 1) x (~ x 1) stiffness matrix, and 8h is a (~+ 1) 

vector depending on the initial condition YO and inhomogeneous forcing term f 
only. Thus 

(4.4) 
-1 

M 8
hk hk 

We state the following theorem without proof. 

Theorem 4.1 

Assume that the scheme (3.1) and (3.2) be convergent. Let f E CO([O,I] 
x [O,T]) and let YO"be piecewise continuous on [0,1]. Then uhk as obtained in 
(4.3) converges to u, the unique optimal control of (1.4); (1.1), (1.2), in 
L2(0,T). 

(4.5) 

where 

(4.6) 

and 

(4.7) 

o 

Next, we discuss the duality approach: we consider the max-min problem 

max min 
p W,u 

[Jhk(w,u) + L: 

l<]'<! - -k 
OsvSN 

< p (j k), CONSTRAINT >] , 
v 

CONSTRAINT = {(3.l.l) if (xv,t) = (vh,jk) is an interior node, 

(3.2.1) or (3.2.2) if (x ,t) = (vh,jk) is a boundary node, v 

p (jk) = p(vh,jk) v 
-1 S v S N + 1, 1 

are the discrete dual variables defined at each nodal point. 

Problem (4.5) is equivalent to the primal problem (4.1), (3.1) and (3.2). 

In (4.5), for each given {pv(jk)}, we first minimize with respect to Wv and 
u(jk), obtaining minimizing solutions 

(4.8) 

(4.9) 

" w v,p 
A 

U. 
],p 

2;1(p) 
v 

2;~(p) 
] 
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where in the above, {3l
} and {3:} are affine linear operators of the discrete 

dual variable p. The ~elation J(4.9) is explicit, but (4.8) is usually implicit 
unless the matrix t.J in (1. 4) is positive definite. 

Substituting (4.8) and (4.9) into (4.5) for all the w,U, we obtain a new 
quadratic functional Ihk(p) of the dual variable. We maximize Ihk(P) with re
spect to p and obtain p, which is unique provided that W is positive definite. 
From (4.9) and (4.8), we obtain the discrete optimal control 

(4.10) 

and the corresponding discrete state 

(4.11) A 

W v 

§5. Computational Approaches to the Quadratic Regulator Problem (II): 
Quadratic Programming Methods for the Constrained Case 

Suppose that the class of admissible controls is constrained by linear 
inequalities 

(5.1) { 

Ku (t) ::: g (t) , 

u(t) ::: 0, 
o ::: t ::: T, 

where K is a constant s Xm matrix and g is a continuous s-vector valued function 
on [O,T]; (5.1) is meant in the sense of componentwise inequalities. We assume 
that there exists at least one control u(t) satisfying (5.1). 

(5.2) 

After discretizations, (5.1) becomes 

f Ku(jk) ::: g(jk) 

u(jk) ::: 0 
, 0 

Thus, from (4.3), we are faced with a discrete quadratic programming problem 

(5.3) 

T/k T/k 
~ < u(jk),DJ,tu(tk) > + ~ < y.,u(jk) > + ~ 

j ,t=O j=O J 

subject 
T 

to (5.2) for 0 ::: j ::: ~ 

We wish to use the simplex method of P. Wolfe [6] to solve (5.3). Let u(jk) 
(O::::j:::T/k) be the unique minimizing solution of (5.3)~ Fr~m the~Kuhn-Tucker 
conditions, there exists a (discrete) dual variable A = {A(jk)!A(jk) E ~s, 
o ::: j ::: T/k} such that the following relations hold simultaneously: 
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(S.4) (primal feasiblity) Ku(jk) S g(jk) , u(jk) ::: 0 
T/k 

(S.S) (dual feasibility) Z D.tu(tk) + y. + KTr ~(jk) ::: 0, \(jk) ::: 0, 

(S.6) 

t=O J J 
\-I. O. T 

(complementary slackness) 

vJ SJS k ' 

~. (jk) [Ku(jk)-g(jk)]. 0, ViI: OSilSs, 
11 11 

T/k 
[Z D.tu(tk) + y. + KTr~(jk)]. U. (jk) 0, 
t=O J J 12 12 

O<i <m, - 2-

where the subscripts i
l 

and i2 denote, respectively, the il-th and i 2-th 
component of each vector. 

Now define the slack variables 

(S.7) ~(jk) = g(jk) - Ku(jk) E lR
s 

T/k T A 

Z D.tu(tk) + y. + K r \(jk) E lR
m 

j=O J J 
(S.8) fl(jk) 

for all j = 0 S j S ~ In the new variables ~, ~, the complementary slack-
ness conditions (S.6) become 

A A 

(S.9) \. (jk) ~. (jk) 0 0 S i l ::: s, 
11 11 

(S.lO) fl. (jk)u. (jk) = 0 0 S i2 S m. 
12 12 

The problem now becomes one of finding a feasible solution (u,~,~,fl) of the 
following system: 

(S .11) 

Ku(jk) + ~(jk) = g(jk) 

ZDjtu(tk) + KTr\(jk) - ~(jk) 

u(jk) ::: 0 

A(jk) ::: 0 

~(jk) ::: 0 

~(jk) ::: 0 

\. (jk)~. (jk) 0 
11 11 
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which is a linear programming phase I problem. 

One then proceeds to solve (5.11) by the simplex technique with the 
restricted-entry rule. 

§6. Example: a Regulator Problem Governed by the One-Dimensional Wave Equation 

Consider a quadratic regulator problem governed by the one-dimensional wave 
equation: 

(6.1) 

subject to 

(6.2) 

T 1 
min J J 

2 az2 T 2 
[~(x,t) + -(x,t) ]dxdt + p J u (t)dt , 
ax at ° ° ° 

a2z 2 
2 (x,t) a z (x,t) 

at - ax2 ° ° s x S 1, ° S t < T, 

z (x, 0) a(x) ~ (x 0) 
at ' 

~ (x) , ° s x S 1, (initial conditions) 

z(O,t) 0, ~ (1, t) = u(t) ° S t S T. (boundary condition and 
ax control). 

The quadratic index (6.1) is associated with the vibration energy and control 
cost,which are to be minimized. 

Letting 

(6.3) 

we transform (6.2) into a first order 

(6.4) 

Yl (O,t) + Y2(0,t) 

1 (~+ ~ ), 
Vi ax at 

hyperbolic equation 

[~~~:: :~] , 0 ~ x ~ 1, 0 ~ t ~ T, 
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with cost index 

(6.5) 
T 1 2 2 1 2 

J J [Yl(x,t) + Y2(x,t)]dxdt + p J u (t)dt. 

o ° ° 
The new form of the problem agrees with (1.1), (1.3) and (1.4) in §l. 

Let T 1 and h
2

(x) = 0 in (6.4) and (6.5). Using the method of character
istics, we find that the optimal control is 

u(t) 
-Vz(l-t)·h (l-t) 

1 
p + 2(1-t) , ° < t S 1, 

and the corresponding state is 

t > x, 
if 

t < x, 

{
o , 

h
l

(2-x-t) + VI u(t+x-l), 

t + x-I < 0, 
if 

t + x-I> 0, 

for (x,t) E (0,1) x (0,1). 

We have computed a set of examples using the primal method. The Lax
Wendroff scheme is adopted, with boundary discretization (3.4). The number 
p is set to 1 in (6.5). 

In Figures 1, 2 and 3, hl(x) = sin rrx is used; the compatibility condition 
(2.5) is satisfied, so the optimal control u is Cl([O,T]). The corresponding 
state y is CO([O,l] x [0,1]). 

In Figures 4,5 and 6, hl(x) = 1 (OSx<0.5) and h1 (x) = -1 (0.5<xSl) is used; 
none of the compatibility conaitions (2.5) and (2.6) are satisfied. The optimal 
control u and state yare both discontinuous, but are piecewise smooth. 

In each of the above two cases, the numerical results show good agreement 
with the exact solutions. 

We have also computed two examples using the dual method, with the leap 
frog scheme and boundary discretization (3.4); h1 (x) = sin (rrx) and h1 (x) = 

. rr A Sln 2 x are used. The numerical results for u are shown in Figure 7 and Figure 
8, respectively. At this stage, numerical results are still not very satisfac
tory and the computer program is currently being improved. 

For the constrained case studied in (§5), we have computed two examples 
with the same Lax-Wendroff scheme and boundary discretization (3.4) as in the 
primal method. Figure 9 is the numerical solution for h1 (x) = sin rrx, with 
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control constrained by -0.3 S u(t) S 0 (OStSl). Figure 10 is the numerical so
lution for hl (x) = 1 (OSx<0.5) and --1 (0.5<xS1.0) , with constraint -0.3Su(t)SO. 
For these tW() examples, no exact solutions are known which can be used for com
parison. We have managed to test the optimality of these numerical solutions 
through other means and have found that they are indeed very satisfactory. 

§7. Concluding Remarks 

Although the order of convergence of our numerical results has not been 
tested, we believe that for Cl([O,T]) optimal controls and Cl([O,l] x [O,T]) 
states, the Tate is O(h+k). As indicated in §2, the control and the state in 
general do not have such smoothness. Thus, the rates of convergence can be ex
pected to be quite slow for hyperbolic control problems. If we know a priori 
where the locations of discontinuities of u and yare, then using high accuracy 
difference schemes can usually increase the rate of convergence. 

In using the dual method, the preliminary calculations for (4.8), (4.9) and 
the subsequent programming work are much larger in amount than the total work 
in the primal method. Consequently, errors tend to occur more often and are 
harder to correct, and computation costs are much higher. It seems to us that 
the primal method is more preferable. 

In applications, only feedback controls are used. To obtain such closed 
loop controls, one must solve or compute the (nonlinear hyperbolic) Riccati 
partial differential equation first. Unfortunately, work in this area is in
complete [1]. This remains challenging research work for control theorists in 
the future. 
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SESSI~DN VI: DISCUSSION - LSS APPLICATIONS 
()F DISTRIBUTED SYSTEM THEORY 

Moderator: R.S. Gran, Grumman Aerospace Corporation 
Panel Members: J.S. Gibson, University of California, Los Angeles, V. Komkov, 

West Virginia University, D.L. Russell, University of Wisconsin, 
and D.C. Washburn, A.F. Weapons Lab 

SYNOPSIS* 

R. S. GRAN: The title of this session is LSS Applications of Distributed System 
Theory, and we are to discuss what the role of this theory is in future large 
space structure (iSS) designs. The theme for the discussion is set by address
ing the question: Is the LSS finite or infinite? That question has been 
addressed a lot today and yesterday. How can we treat it as an infinite system? 
If we treat it as an infinite system, can we say something that we cannot say if 
we treat it as a finite system? 

D. C. WASHBURN: The Air Force Weapons Laboratory (AFWL) interests in large 
space structures are a little different than those of NASA. AFWL is interested 
in high-energy laser applications in space. The systems have very large deform
able mirrors that are controlled with perhaps thousands of actuators. The laser 
looks a lot like a rocket engine as far as vibrations go. There are isolation 
mechanisms which kill many of the vibrations. The coolant flow is probably the 
single largest source of vibration to the forward structure where the mirrors 
are located. Another significant source of vibration to the structure is intro
duced through controlling the mirrors to shape the wavefront. The control per
formance requirements for the optics are extremely tight, much tighter than 
anything mentioned yesterday. 

Everybody seems to be using NASTRAN modeling to define the models, which 
are then truncated for designing the controller. The design is then patched up 
to take care of the "spillover" problem. The idea of this conference was to 
bring together the partial-differential-equations (PDE) and finite-element people 
to discuss other approaches. 

Finite-element and PDE models are both approximate and it is not necessary 
to argue over whether the system is really finite or infinite. Clearly, only so 
many modes are of interest in the final design. It seems that the finite
element approach has been thoroughly investigated. The point I would like to 
make is that there should be a little more investigation of PDE modeling. Not 
because it is going to be better or worse, but because it has not been investi
gated very deeply. It may give us some new insight or have other attributes to 
offer. 

*This synopsis attempts to capture the main points discussed but has not been 
reviewed or endorsed by the speakers .. 
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Some research at JPL using a PDE model to design an infinite-dimensional 
controller, which was then truncated for implementation, showed that it auto
matically took care of the spillover problem. The point is that you are trun
cating at a different point in the problem. Truncating in the finite-element 
approach, in which you throwaway modes, implies throwing away a whole differ
ent kind of information. You might expect different results with PDE and pos
sibly more robustness. That was a simple example but it provided an initial 
indication of the PDE methods' potential. 

The bottom line is that it seems to me that a certain percentage of our 
effort ought to go into investigating all avenues, including applications of 
approximate PDE models to controller design. 

G. IANCULESCU, JPL: The finite-element method has some advantages over the PDE 
approach, but it cannot be used for parametric studies. In controller design, 
we really do not want to solve only one problem, but a class of problems with 
various applications toward various designs. That is not easy with a finite
element model because you have to arrange for new data sets and new models for 
each application. The PDE method can result in analytical solution to perform 
parametric studies. 

A lot of very useful work on PDE control exists, especially regarding neces
sary conditions for optimality, existence of solutions, and uniqueness. One can 
use these techniques on the PDE solution, then apply some approximation to imple
ment the control law. Hathematicians know so much more about PDE theory than 
has been used thus far in designing large space structures. More research is 
needed to explore these types of things. 

L. S. WEISSTEIN, Lockheed Missiles and Space Co.: Most of the comments made 
here come to the same conclusion: the models in general are pretty crummy. 
There are mathematical engineering works that have addressed modeling of lattice 
structures with the complexities of large space platforms, large ant.enna booms, 
and parabolic dishes. The basic two approaches that are used are the discrete
field method and the continuum modeling technique. In certain classes of prob
lems, it is possible to obtain analytical closed-form solutions. 

J. N. JUANG, Martin Marietta Aerospace: Our experience would indicate that you 
can achieve about the same accuracy with finite-element and PDE models and the 
solution should be about the same. 

V. KOMKOV: I am concerned about how badly both finite-element and continuum 
models generally represent the real physical systems. It seems that people 
really pay no attention to the physics of the problem and check all the assump
tions made. 

A second concern is that the models must include damping because the effects 
can be very serious. 

A third criticism is that millions of dollars are spent on experiments 
before an adequate theoretical basis has been established. Good experimental 
data can tell you why an experiment is being performed and what is expected to 
be proved or disproved by the experiment. 
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It is surprising that so little attention is given at this workshop to 
adaptive control. It is an important subject in the control of large space 
structures. 

Finally? we should ask the question: .Dowe always really need to suppress 
vibrations in large· space structures? In some cases, it may not be necessary to 
suppress vibrations to achieve the mission objectives. 

B. R. HANKS, :Langley: I generally agree with the comment that most of the time 
the errors in modeling are directly related to the failure of the structure to 
obey the assumptions used. Simple structures can be modeled well by either PDE 
or finite-element methods, but the difficult problem comes from trying to model 
a real vehicle such as Voyager, for example. PDE's are regularly used in struc
tures to do parametric studies, and I would think that controls people would do 
the same. When you get ready to design or analyze a complicated system that is 
to fly, then you should turn to the finite-element approach. Nonlinearities, 
joints, and damping present the teal difficulties in complicated systems. 

D. ELDRED, JP:L: It is disturbing the way people neglect damping in large space 
structure models. Damping is very important, and I do not see a lot of effort 
on modeling damping effects or using parameter identification techniques to 
estimate damping coefficients. 

DISCUSSION: A discussion followed among the audience, Eldred, Gran, and Gibson 
concerning adaptive control and identifying damping parameters. A question was 
raised as to whether damping uncertainties would be of much importance if adap
tive control was used. One response was essentially that it is important to know 
quite a bit about the space structure characteristics, including damping, in 
order to design an effective adaptive controller. Part of the reason that you 
do not hear much about adaptive control is that it is highly nonlinear and dif
ficult to design. 

A specific question from the audience was addressed to Gibson on the use of 
the semigroup framework in parameter estimation and adaptive control. Would it 
be possible to use very sophisticated off-line estimation algorithms based on 
semigroup theory to determine changes in the space structure characteristics, 
and then change the control gains in a linear optimal control law? The control 
would still be linear and the adaptation would be in the form of a moving window 
around the Riccati equation. Gibson responded that he thought it would be pos
sible and that he is beginning to study parameter estimation in the semigroup 
context. The semigroup theory is quite useful in providing convergence results. 
If you look at the adaptive control literature, all of the global stability 
results that are available for adaptive control schemes generally rely on know
ing the structure, and the dimension of the system. That translates into having 
to know something about the structure of the semigroup when the system is 
infinite-dimensional. Gibson thought that the semigroup theory will be useful 
certainly in off-line parameter estimation and expected that it will be useful 
in on-line adaptive parameter estimation and control. 

D. L. RUSSELL: There are several reasons by PDE models are needed. First of 
all, PDE's are free from an arbitrary dimensionality imposed through discretiza
tion. We need to recognize that discretization is an error that we impose, 
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externally, into our model, and to the extent that we can avoid in analysis, we 
certainly should. 

PDE models are also free from the qualitative differences that arise when 
we try to decide what sort of elements to use, whether we are going to use piece
wise linear elements or cubic splines or what have you. They are not, of course, 
free from all sorts of qualitative differences. If you look at all the models 
that are available for modeling beams -- the Euler beam, the Bernoulli beam, and 
the Timoshenko beam -- certainly there are plenty of qualitative differences 
among these. To the extent possible, we should not compound that with the kinds 
of differences that arise through the discretization procedures, even though, in 
the end, you are going to have to discretize. 

The third point, a very serious one, is that the control properties may be 
radically different for a distributed system from those that are exhibited by 
any finite-dimensional system of ordinary differential equations. Prime exam
ples are the hyperbolic systems in which all finite-dimensional models are, in 
principle, controllable in an arbitrarily short length of time, whereas the 
infinite-dimensional models, at least for point control as distinct from dis
tributed control, require a certain minimum time before control can be carried 
out. If you go to the parabolic systems, there are very severe limitations 
with regard to the smoothness of final states that actually can be achieved with 
controls, none of which show up in discrete models. Indeed, I am not sure -
just based on discrete models -- whether the fundamental differences between 
hyperbolic and parabolic systems could be formulated and perceived, in the exact
ness that we have them, based on partial differential equations. 

The fourth point, of particular relevance here, is that the control based 
on finite-dimensional approximation may take advantage of what I would call 
"accidental" relationships between coefficients. Accidental, in the sense that 
they are a consequence of the particular discretization, or particular dimension 
chosen, or whatever. And if the control law takes advantage of these more or 
less accidental variations and coefficients, we may very well arrive at a false 
conclusion and lack of robustness, and so on, simply because those relationships 
will not hold if you change the dimension a little bit or change the type of dis
cretization. So, while we have granted that, in the end, the finite~dimensional 
models must be used, nevertheless the control law itself should, if at all pos
sible, be formulated in such a way that it is relatively free from the effects 
of discretization. 

The fifth point is that partial differential equations are very intimately 
related to conservation laws and, in most cases, the parallel conservation laws 
should be taken advantage of when discrete models are employed. The discrete 
models should be as close as possible to the kind of things we would do if we 
were going to develop a partial differential equation for the same system. 

There is another important point to make here: in early 20th-Century 
physics, the idea of a thought experiment was very important, and it is certainly 
still important. One conceived an experiment in one's mind, which was not actu
ally to be carried out, but which clarified the mental processes that were being 
applied to the problem at hand. A partial differential equation model can be 
thought of as a gedankenexperiment in that sense. What we have sitting out 
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there in the world are distributed processes, distributed plants for which no 
finite-'dimensional model is going to be completely accurate. Now the point with 
a partial differential equation is that it is a relatively manageable conceptual 
model that has some of the same properties. Also, it is such that no finite-
dimensional approximation is go ing to be completely accurate in describing its 
behavior. If we seriously expect to control these very complex objects in the 
real world with relatively simple control strategies, those same strategies ought 
to work, mathematically, in handling partial differential equations, whose rela
tionship to finite-dimensional systems is much better understood than is the 
relationship between physically distributed processes and finite-dimensional 
systemE!. So, there is this thought-experiment side to partial differential equa
tions, which, in fact, I think is one of the stronger points. 

The seventh point is the relative manipulative simplicity of partial differ
ential equations. We all know that one of the reasons for the success of the 
calculus is that it is a lot easier to do calculus than it is to do the parallel 
discrete mathematics. Part of the thinking process is manipulative and being 
able to work with equations. It is difficult to work with the vast mass of equa
tions that result from finite-element methods, valuable though they are in 
numerical procedures. It is unimaginable that they could be used very effectively 
in conceptual studies, which are very important. Can you imagine M.axwell' s 
equations being developed from the beginning in terms of three-dimensional cubic 
splines or something of that sort? There are very important general principles 
in control theory of distributed systems that simply are not going to emerge or 
become apparent unless continuous models are used. 

A final point that should be made is that PDE's are not sacred in any 
respect. You must consider what you need based on the physical system. For 
example, to obtain structural damping in a linear oscillatory system, in which 
the rate of attenuation is proportional to the magnitude of the frequency, one 
has to put in nonlocal operators, not differential operators, in order to real
ize that type of behavior of the spectrum, Right away you are dealing with a 
class of objects that no longer is, strictly speaking, in the set of partial 
differential equations. 

L. MEIROVITCH" Virginia Polytechnic Institute and State University (VPI): I 
fully agree with Professor Russell. Hany of the problems now in control theory 
are caused by trying to apply finite-dimensional control theory to infinite
dimensional systems. People like to talk about large structures; in fact, they 
quote that future spacecraft will be the size of Hanhattan, and by that they 
automatically shift attention to size rather than order. When we are talking 
about :Large structures, we should think in terms of large-order systems, not in 
terms of physical dimensions. What is really needed is a control theory which 
will close the gap between the finite-dimensional modern control theory and the 
infinite-dimensional systems that we really have. 

R. S. GRAN: This discussion is reminiscent of the fight not too long ago between 
classical and modern control engineers. As we know, some of the recent research 
on robustness has helped fill the gap between the two. Actually the gap was 
more perceived than real. The research provided the understanding to remove the 
perceptual problems. When we consider the large space structure problem, we 
should really work on filling the gap, real or perceived, between finite-element 
and continuum--model approaches. 
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J. S. GIBSON: In modeling large space structures, we have been discussing 
primarily two methods: finite-dimensional discrete models and PDE models. 
,Those are not the only possibilities. It is not true that if you want to use 
an infinite-dimensional model that it must be PDE. For example, if you want a 
model that has the same damping ratio for every mode of a beam or plate, there 
are no PDE models that can provide that. However, semigroup theory would handle 
that case. Those of us who advocate treating the problem in the infinite
dimensional context, using semigroup theory, are not necessarily talking about 
PDE's. Semigroup theory includes both finite-dimensional and infinite
dimensional situations. 

D. C. WASHBURN: I don't think the discussion should center around the differ
ence between PDE and finite-element modeling. We should be looking at whether 
we are going to make approximations along modal lines or along some other lines. 
Using PDE you can make approximation in other ways. 

R. S. GRAN: One class of engineers that are not really represented at this 
workshop are those on the firing line to design and build the space systems that 
actually fly. Those people have been designing systems for years, very success
fully, and they would not know a BDE if they tripped over it. What do we tell 
those people about why they should use PDE models? (There were no direct 
responses to this question.) 

Comments and Questions from the Audience 

R. P. IWENS, TRW: It seems the consensus of the panel is that we should be 
looking more at partial differential equations. I would like to ask the people 
who advocate the use of partial differential equations, how do we model the 
structure flexibility in the Voyager? We may learn a lot from the theory by 
studying control of simple structures using partial differential equations, but 
the question still remains: if we look at real structures, how are we going to 
model something as complex as the Voyager with PDE's? 

V. KOMKOV: Well, it has been done recently. There's a group at the University 
of Iowa that have taken some extremely complex, very large structures and devel
oped a combined finite-element and PDE model. Of course, it is a computer algo
rithm in which they worked for a long time, but it can be done. 

G. RODRIGUEZ, JPL: There is no alternative to the partial differential equation 
approach, in that the finite-element model is itself based on partial differ
ential equations. To obtain a finite-element model we partition the structure 
into a number of segments, subassemblies, or substructures, and within each sub
assembly we assume a simple, partial differential equation. It could be a beam, 
it could be a plate, membrane, whatever. But nonetheless, there is a partial 
differential equation model. For complicated structures, this process results 
in a very complicated set of partial differential equations coupled by inter
element or interface conditions. We have been very successful in implementing 
approximate solutions to these complicated equations to the extent that finite
element techniques, which involve approximating the solutions by interpolating 
polynomials, have been very successfully developed and implemented in computer 
programs such as NASTRAN. So the mechanism to obtain the eigenvalues and eigen
functions of that complicated partial differential equation model has been 
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automated, and that is what was used in the Voyager spacecraft and is used in 
many other spacecraft. There is the possibility of going beyond the computation 
of eigenvalues and eigenfunctions and determine control and estimation gains 
directly by means of the finite element method. In other words, we would start 
with the complicated partial differential equation model, which we do not even 
have to write, just as we do not have to write the model for NASTRAN. We just 
assume that it exists, and proceed to use the approximating polynomials, to 
solve not only for the eigenvalues, but to solve also for the control gains and 
the feedback matrices. So I think that the issue is not really whether there 
is an option to the partial differential equation -- there really is not. The 
question is whether we can develop numerical algorithms or numerical techniques, 
approximation techniques, to compute directly more than the eigenvalues and the 
eigenfunctions of a complicated structure. 

L. HEIROVITCH, VPI: There is a method that is called Component-Mode. which was 
developed by Professor Walter G. Rurty from UCLA, that can be regarded as 
envisioning the spacecraft as a collection of PDE's, each member being repre
sented by a set of so-called modes, which could be obtained by solving a partial 
differential equation for each of the members. 

A. N. MEYSTEL, University of Florida: I would prefer to have as complex a model 
as possible. There is no rush during design, and it is possible to have a very 
complex model of the system being designed with all the partial differential 
equations necessary to describe the system. Then the control person can try 
this model and find out which simplified models can be built for control. 

B. R. HANKS, Langley: I want to reiterate in a slightly different way what I 
said earlier. I think the argument between finite-element models and partial 
differential equation models is academic because the real errors come about due 
to the structure not obeying any sort of equation. 

For example, on Voyager, the problems were that the joints have motion and 
that pieces on the arm move about, rattle, and cause all sorts of problems that 
are not modeled in anybody's model. The error in truncating one model versus 
truncating another model is not going to be anything like what it is in the real 
structure. So use whichever one is necessary and actually design something, but 
you can not guarantee stability in any case until you put it in hardware and fly. 
Take something like the Voyager and extend it to 30 times its size. The little 
arms out there that did not have ,to be controlled in the Voyager case will have 
to be controlled. So we do have that prob1er.l to work with, and component-mode 
synthesis, everything we have available to use will not solve the problem by 
itself . 
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ABSTRACT 

We discuss theoretical and computational results for spline based ap
proximation schemes used in parameter estimation algorithms for distributed 
systems. Specific applications include beam-like structures described by the 
Euler-Bernoulli and Timoshenko theories and antenna surfaces such as that in 
the deployable Maypole Hoop/Column model. 

INTRODUCTION 

With the use of composite materials in large space structures and the 
exotic shapes and configurations for antennae, space stations, etc., the need 
for analysis with distributed system models to describe complex structures in 
changing environments has become evident. The expected fatigue, degradation, 
and changes in material properties due to ageing and environmental stress 
increase the importance of parameter and state estimation techniques for such 
models. We report here on our investigations of methods for parameter estima
tion. The ideas involve spline based approximation schemes to reduce the 
distributed system problem to approximate finite dimensional state system 
problems where existing algorithms can be employed. Our goals have been to 
guarantee convergence of our methods and to test their numerical feasibility. 
As we shall outline, the methods ca.n be successfully used with both static and 
dynamic systems data. 

DYNAMIC MODEL PARAMETER ESTIMATION 

1,Je present a brief summary of our joint efforts with J .M. Crowley 
(U.S. Air Force Academy) reported in more detail in [1], [2], [3]. We consider 
the following problem: In a dynamical model (e.g. Euler-Bernoulli or Timoshen
ko theories) for elastic structures, estimate parameters (such as flexural 
rigidity~ shear rigidity, structural damping, loading, etc.) in the model from 
observations of the system. 
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Theory 

For convergence results, we have developed a semigroup approximation 
framework for these higher order models that is related to that given for 
second order distributed systems in [4],[5]. A rather concise series of 
steps can be used to describe these efforts. 

(i) We write the system (partial differential equation with boundary 
and initial data) to be investigated as an abstract evolution 
equation 

(ii) 

(S) z(t) A(q)z(t) 

in an appropriately chosen Hilbert space. Here the operator A 
(and possibly the initial data zO) depend on the vector of 
parameters q to be estimated, for example, by a least-squares 
fit to the observation data. 

W-N choose a~proximation subspaces ZN to Z and operators 
A :: pNAP, where pN is the orthogonal projection of Z onto 
ZN, This gives rise to an approximating system 

N N = A (q)z (t) 

in a finite dimensional space ZN. (We have found it very 
profitable to use linear spans of spline basis elements - linear, 
cubic, quintic - for these subspaces.) An associated sequence 
(N :: 1,2, ... ) of estimation problems for (SN) is solved, 
yielding approximate parameter estimates qN. 

(iii) A convergence theory for qN + q,q a solution of the estimation 
problem for (S), is obtained by employing general linear semigroup 
approximation results (the Trotter-~ato theorem) along with funda
mental estimates on how ZN and A approximate Z and A 
respectively (i.e. how (SN) approximates (S». (In our efforts 
these estimates are obtained from basic approximation theorems in 
spline analysis - e.g. [6], [7].) 

We note that while most of our efforts in problems for elastic struc
tures have dealt with estimation of constant parameters, our theoretical 
ideas (as well as the associated computational packages) are readily extend-

ed to treat problems with spatially varying coefficients. Our initial 
computational findings for these more difficult problems indicate that the 
resulting algorithms are very efficient. 
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Implementation 

In p'ractice we have used the spline approximation schemes with a 
standard package (IMSL-ZXSSQ) for the Levenberg-Marquardt finite dimensional 
optimization technique. The resulting algorithms have proved (as predicted 
by the theory) quite efficient in our program of extensive numerical testing. 
We have developed and tested algorithms based on quintic, cubic, and linear 
spline generated subspaces (the choices we used in each example depending to 
some extent on the particular system, the desired accuracy, and the amount 
of computational effort we were willing to expend). 

In our testing of the algorithms we have focused on dynamic beam models. 
Our emphasis here has been largely motivated by the interest of engineers at 
NASA and elsewhere in the analysis of large complex structures through the 
use of equivalent simple continuum models (e.g. see [8],[9],[10]). 

Examples 

We have developed the theory and carried out numerical testing for a 
number of situations including the following. 

(A) Viscoelastic models (the Euler-Bernoulli theory): Equations such as 

(
EI d2~ + 

dX 
+ dU 

Yat f 

'~ith various types of boundary conditions (combinations of fixed, 
simple and free) have been investigated and parameters such as 
EI (flexural rigidity), cI (structural damping), and Y 
~ m m 
(viscous damping) have been successfully estimated. Schemes with 
quintic and cubic spline elements were employed. 

(B) Models with shear and rotatory inertia (the Timoshenko theory): 
Equations studied include those for the transverse displacement 
y and angle ~ of cross sectional rotation 

~)+f dX 

B('~ dX 
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with a = k'AG/m, 6 = aA/l, y = EA/m (E,G,l,k' ,A represent the 
usual Young's modulus, shear modulus, moment of inertia, shear 
coefficient, and cross sectional area respectively) among the 
parameters estimated. For a fixed end beam, cubic elements were 
employed while both cubic and linear element schemes were tested 
for the cantilever beam. 

STATIC MODEL PARAMETER ESTIMATION 

Our efforts on static estimation have involved at various stages joint 
efforts with P. Daniel (Southern Methodist University), E. Armstrong (NASA 
Langley), andR. Teglas (ICASE, NASA Langley). In this case the semigroup 
formulation for the theory underlying our algorithms is not needed. Instead 
we use a weak or variational equation formulation 

of the equation of state in a Hilbert space. However the general steps (i)
(iii) outlined above in the dynamic case are again followed. In this case 
we also use spline subspaces (linear and cubic elements) for the approxima
tions, combining standard spline theory estimates with variational inequali
ties to obtain the convergence theory of (iii). 

In our implementation we have again used spline schemes with the 
Levenberg-Marquardt to generate and test our algorithms. We are presently 
still testing the methods on examples, but our initial computational findings 
are very promising. 

Examples 

We have developed the theory and are testing our algorithms on a 
distributed model for the antenna surface in the deployable Maypole Hoop/ 
Column configuration under development by the Harris Corp. Our investigations 
have focused on the variational form state equation 

fv}rdrd8 o 

where u is the vertical displacement (from hoop level u=O) , E = E(r,8) is 
the stiffness (elastic) coefficient, and f represents the applied distri
buted load (e.g. through the control stringers and catenary cord elements). 
In a simplified I-dimensional test example (for which the convergence theory 
is rather easily obtained) where we assume angular symmetry, we have employed 
with success both cubic and linear element approximation schemes. Convergence 
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results in the 2-dimensional model can be obtained but require somewhat more 
effort than in the 1-dimensiona1 case. We are currently in the process of 
numerically testing the algorithms for this more general model. 
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Abstract 

T\10 fi1€~thods for identifying the mass, damping and stiffness matrices of a 
linear vibrating system are presented. Both methods require the measurement of 
acceleration, v~locity and displacement at various locations of the system. In 
the first method, the response of the system subjected to known forces is used 
whil e the second method emploY5 the free vi brati on data. The unknown 
parameters are recnvered through the standard least squares procedure. 
Numerical results are presented for several examples. 

Tnt roduct ion 

M~ny proposed space missions for the coming decades involve large space 
structures (L.SS). Typical applications are large communication antenna, manned 
orbiting stations, astronomical telescopes and solar power stations. All these 
structures need to be actively controlled to realize their mission 
objectives. A fundamental problem, which poses a Significant obstacle to 
realizing the missions for LSS is that the mass, damping and stiffness 
characteri sti cs wi 11 not be accurately known apri ori. The structures are made 
flexible to meet the weight constraints and hence fully erected or deployed 
ground vibration tests are not generally possible. The use of composite 
materials results in uncertain time variations of the structural parameters. 
Further variations result from vehicle re-configuration, thermal environment 
and fuel consumption. Active control of LSS necessitates an accurate estimate 
of the parameters so that control laws can be tuned on-orbit to permit less 
control effort to be expended. 

The LSS are described by partial differential equations and are associated 
with infinite number of modes of vibration. Usually a finite element method is 
used to obtaiin a finite dimensional model for LSS. Accordingly, two approaches 
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to the identification problem can be found in the literature. One approach 
(Ref. 1-5) is to identify the discrete or lumped parameter model of the 
system. The other approach (Refs. 6-9) is to identify the distributed model 
i.e., the partial differential equation along with the boundary conditions. In 
this paper we adopt the first approach. Here, we first formulate a forced 
response problem to identify the mass, damping and stiffness matrices. The 
free response problem based on this formulation degenerates to the method 
discussed in Ref. (1). The methods proposed in this paper require the 
measurements of acceleration, velocity and displacement at various locations of 
the system. The ~8known parameters are recovered through a standard least 
squares procedure • Numerical examples to illustrate the concepts are also 
presented. 

Forced Vibration Method 

Consider a LSS whose dynamics is governed by the following linear matrix 
differential equation 

.. 
M~ + C~ + K~ = £ 

where 

~: 

M: 

K: 

c: 

F: 

nxl configuration vector of physical 
displacement 

nxn symmetric positive definite mass 
matrix 

nxn symmetric, positive semi-definite 
stiffness matrix 

nxn symmetric, positive semi-definite 
damping matrix 

nxl force vector 

Equation (1) can be rewritten as 

T: transpose 

(1) 

(2) 

Now we consider a measurement process wherein the position, velocity, 
acceleration and the forces are measured at discrete instants (t 1, t 2, ••• 
t m). Also, we consider the worst case in which the apriori M, C and K matrices 
are felt unreliable and we seek to establish best estimates of all elements of 
M, C and K. Upon writing m equations identical to Eqn. (2), one for each 
measurement time, the resulting m matrix equations can be recollected in the 
foll owi ng form 
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AP = U (3) 

where A is a mx3n matrix whose jth row contains measurements of the system 
response at time tj. 

jttl row of' A = [~T(tj) ~T(tj) ,eT(tj)] (4) 

U is a mxn matrix containing the forcing functions 

jttl row of U = [fT(t j )] 

P is a 3nxn matrix containing the unknown mass, damping and stiffness 
parameters. 

p = [~J 

(5 ) 

(6) 

Letting { }. denote the ith column of a rectangular matrix, Eq. (3) can be 
written as 1 

i=1,2, ••• n (7) 

Since t.he number of elements in {P}. is 3n, if m ~ 3n, then Eqs. (7) over
determ'ine {P}". The only requiremeh ;s that the A matrix has full rank. 
Assume that tIle least squares solution minimizes the residual sum square error 

1 T 
lj!'j = 2 {R}i{R}i (8) 

where 

{R} i = lUI· - AlP}. 
1 1 

Then Wl~ can wl'i te 

i=1,2, ••• n 

where the least square operator 

L= (ATA)··lAT 

( 9) 

(10) 

( ll) 

Notice that L is invariant so that it can be calculated once and re-used n 
times to calculate the n columns of P. Obviously the method is straight 
forward. HOWE~ver it requires a large number of sensors. Also the number of 
forces must be equal to the order of the system. 

Now consider partitioning the configuration space so that equations of 
motion are 
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= (12) 

~ and ~ are (nlxl) and (n2xl) vectors respectively. Note nl+n2 = n. The 
d~grees 6f freedom in ~l are excited directly through the external forces. 
~? refers to the degrees of freedom that are excited through the coupling 
terms. The question is whether we can obtain all the parameters by using 
forces less than the number of degrees of freedom. Equation (12) can be 
written as 

M" 

C" 

K" 
oOT -T xT oOT -T xT] T Ui] [~1 ~1 ~2 ~2 M12 = ~1 ~2 

T C12 (13) 
T 

K12 

One can easily observe that ~2 is a linear combination of ~1' ~1' ~1' ~2 
and x. Hence the A matrix is rank deficient and the least squares process 
fai1s~ This difficulty can be overcome if we assume that the matrix M12 is 
known apriori. Then the A matrix can be formed such that 

jth row of A = 

oOT -T T - T T 
[~1 (tj) ~1 (tj) ~1 (tj) ,C2(t j ) ,C2(t j )] 

Also, jth row of U matrix = 

T -T T [E1 (tj) - ~2(tj )M12] 

The P matrix is given as 

Ml1 
Cl1 , 

P = Kl1 
T C12 
T 

K12 

(14) 

(15) 

(16) 

We can solve for P as before. The matrices M22 , C22 and K22 are obtained in 
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where M, e and K are as defined earlier. G is the gyroscopic matrix and H'is 
the circulatory matrix. G and H are skew symmetric. Premultiplying Eq. (25) 
by M-

! + M-l(G + e)i + M-l (K + H)! = D (26) 

Equation (26) can be written as 

[x x] = -.0 
,.T T [(G + C)TM-TJ ~T 
- - (K + H)TM-T 

Thus we can solve for M-l(G + C) and M-l(K + H). 
solved from a single matrix 0 given as11 

D" [M-
1 (~ + C) _M-

1 (~ + H) J 

( 27) 

The eigenvalue problem is 

The free response data can therefore be used to determine the eigenvalues and 
eigenvectors of a general dynamic system 

Numerical Examples 

Example 1: Figure (1) shows a five degree of freedom mass-spring damper 
system. The system matrices are 

kl+k2 -k2 0 0 0 

-k2 k2+k3 -k3 0 0 

K = 0 -k3 k3+ k4 -k4 0 

0 0 -k4 k4+k5 -k5 

0 0 0 -k5 k5 

c1+c2 -c2 0 0 0 

-c.~ c2+c 3 -c3 0 0 
1-

C = () -c3 c3+c4 -c4 0 

I) 0 -c4 c4+c,-
,) 

-c5 
I) 0 0 -c5 c5 

515 



the following manner. The estimated C12 and K12 are substituted into the 
matrix Eq. (12) to form 

[B] [~~~l = -[V] [~:~l (17) 

K22 K12 
B and V are constructed from the measurements as 

(18) 

(19) 

The linear system of Eqns. (17) can be solved through least squares to get M22 , 
C22 and K22 • Usually the mass matrix is diagonal and hence M12 is zero. 

Free Vibration Method 

Consider the free vibration problem for an undamped system 

,M~ + K~ = Q 

Since M is positive definite M- 1 exists 

~ + M-1 K~ = Q 

Equation (21) can be rewritten as 
T 1 oOT 

~ [M- K] = -~ 

(20) 

( 21) 

(22) 

Let 0 = M- 1K. As before we can solve for D by least squares method. The 
A matrix in this case is formed such that 

jth row of A = ~T(tj) 
.th .OT 

Also, J row of U = - ~ (tj) 

(23) 

(24) 

Notice that all modes should participate in the frje response. Otherwise A 
matrix becomes rank deficient. Also, note that M- K is the eigenvalue matrix 
for the system. Hence the system eigenvalues and eigenvectors can be obtained 
from D. Even for low dimensioned systems failure to excite a particular mode 
obviously means that the corresponding eigenvalues and eigenvectors cannot be 
obtained. Broad-band random initial excitation at several stations is 
recommended in Ref. (2). In case we need to estimate M and K explicitly, we 
should have apriori knowledge of the mass matrix. 

Now we can generalize the free vibration method. Consider a general 
dynamic system expressed as 11 

M~(t) + (G+C)~(t) + (K+H)~(t) =,Q (25) 
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Figure 1. Mass Spring Damper System. 

(X3 1 Y'3) (X3 1 Y3) (X4 1 Y 4) 
m Y m m 

k t ~ x k k 

m _----.JvV'---._ m m_--.JVVV--.... m 

Figure 2. Triangular Plane Truss. Figure 3. Four Mass Plane Truss. 

f 

T/2 T 
TIME 

Figure 4. Forcing Function. 
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The following sets of forcing functions are used 

Set 1 Set 2 

Fl cost t 

F2 cos2t t 2 

F3 cos3t cost 

F4 cos4t cos2t 

F5 cos5t cos3t 

For simulation we assumed 

m1 = m2 = m3 = m4 = m5 = 100 kg 

kl = k2 = k3 = k4 = k5 = 36 N/m 

.c l = c2 = c3 = c4 = c5 = 1.2 N· sec/m 

All the parameters are recovered very well for both the sets of excitation. 

Example 2: A triangular plane truss (Fig. 2) is used as a second 
example. The masses and spring constants are assumed to be the same. The 
equation of motion for small displacements takes the form 

Mx + Kx = F ,.. ,.. ,.. 

where 

~T = [x 1 Yl x2 Y2 x3 

IT = [F1 F2 F3 F4 F5 

M = mI 

2 0 -2 0 
o 1 0 0 

-2 0 3 -1 
K = k/2 o 0 -1 1 

o 0 -1 1 
o -2 1 -1 

y3J, 

F6J 

o 0 
o -2 

-1 1 
1 -1 
1 -1 

-1 3 

After considerable effort, the following forcing functions proved to be useful 
to recover the parameters. 
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FI = sint 

F2 = cost 

F3 = sin O.2t 

Fq. = 1 + (sin3t)2 

F5 = cos!5t 

F6 = cos6t 

Simple harmonic functions such as sint, sin2t, ••• sin6t are not useful. 

Example 3: A four mass five spring planar truss as shown in Fig. 3 is 
used as the third example. Assuming small deflection, the mass and stiffness 
matrices are given as 

M = mI 

2 0 -2 0 0 0 0 0 
0 2 0 0 0 -2 0 0 

-2 0 3 -1 -1 1 0 0 
0 0 -1 3 1 -1 0 -2 

K = kj:2 0 0 -1 1 3 -1 -2 0 
0 ··2 1 -1 -1 3 0 0 
0 0 0 0 -2 0 2 0 
0 0 0 -2 0 0 0 2 

T 
[xl Yl x2 Y2 Y3 Y4] ~ = x3 x4 

T [F
1 F2 F3 F4 F5 F6 F7 F8] f = 

Simple harmon"ic functions as forces are not suitable to recover all the 
parameters. Hence we decided to use square-wave type excitation as shown in 
Fig. 4. Eight forcing functions of different period ITI are used. The 
amplitude of the forces, f is made equal to 0.078 N. Defining w. = 2rr/T., = 
1,2, ••• 8, we set w. = (i + 1)/2. All the parameters (for zero m~asureme~t 
noi se) were rE~cove~ed to thei r exact values. The important factor appears to 
be the type of excitation. 

The free vibration method worked very well with Example 1. 

Conclusions 

Two methods are presented to identify the vibration parameters of a linear 
system. The forced vibration method recovers all the parameters of the 
system. Further research is needed to determine the optimal excitation of the 
structure to maximize observability and computability of the system parameters. 
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JOINT STATE AND PARAMETER ESTIMATION 
N. Carmichael, University of Warwick, Coventry, U.K. CV4 7AL 

M.D. QUlinn, Sheffield City Polytechnic, Sheffield, U.K. S 1 1 WB 

ABSTRACT 

Rlecent results are described concerning the problem of 
state reconstruction for a class of nonlinear distributed systems. 
The methods are then applied to the problem of joint state and 
param1eter estimation. An example with the wave equation is 
presented. ' 

1. INTRODUCTION 

An observed semi-linear system of evolution equations can be 
described by 

• z = Az + f(z), z(O) = zo 

y = Cz J (1) 

where z denotes the system state lying in an appropriate Banach 
space, Zo is the initial state, A is a linear operator, f is a 

non-linear operator, y denotes the output and C is a linear output 
operator. The objective is to consider the state reconstruction 
problem for infinite dimensional systems of this form. There is a 
substantial theory already available for state reconstruction in 
linear systems described by 

• z = Az } (2) 
y = Cz 

In this paper we use the results from linear theory together 
with suitable fixed-point theorems to find a solution to the state 
reconstruction problem for (1). We apply these results to the 
joint. state and parameter estimation problem where the parameters 
are assumed to be constants, and the system has nonlinearities in 
both state and parameter. (see [1], [3]) 
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2. STATE RECONSTRUCTION 

Consider the linear system (2) and assume that A generates 
a strongly continuous semigroup S(t). Then (2) is said to be 
initially observable if the map from the initial state to the 
output trajectory 

is injective, i.e. Ker H = {a}. The system (2) is said to be 
continuously initially observable if Ker H = {a} and Range H 
is closed. This latter definition means that we are able to 
reconstruct the initial state Zo given the output trajectory 

y(.). That is to say we may construct a linear bounded inverse 
of H, denoted H-1, which has as its domain space the chosen 
space of output trajectories (this space is usually larger than 
the range of H). Of course, as elsewhere in partial differential 
equations much depends on the particular function spaces used. 

We proceed formally by writing down the mild solution of system (1) 

t 

z(t) = S(t)zO + S S(t-s)f(z(s» ds 
o 

t 
y(t) = CS(t)z +CJ S(t-s)f(z(s» ds 

o 0 

Then the map H is defined by 

H z = y(.) - C S' S( -s)f(z(s» ds 
o 0 

therefore 
1 . 

z = H- (y(.) - C( S('-s)f(z(s» ds) o Jo 

Now substituting (6) into (3) we obtain 

(3) 

(4) 

(5) 

(6) 

l' st z(t) = S(t)H- (y(o) - C f S~ -s)f(z(s»ds)+ S(t-s)f(z(s»ds 
o 0 

(7) 
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(c:) 

Proof 

B 
a 

and 

A 

for z, ZE Ba ; and where R is defined by 

Ilcf S(·-t)f(z(t"»d(;"11 ~ RllzllLs(o t 'Z) 
o 1j. , l' 2 

(~ denotes the space in which the output trajectories 
he) 

then: the state of the system described by (1) can be 
reconstructed given an observation, y(.), satisfying 

(l-K) a 

c211H-ll ~(~JZ) 

See [1]. 

3. JOINT STATE AND PARAMETER ESTIMATION 

Consider a nonlinear system of the form 

. 
z = g(z,a, t) z(O) = Zo } (8) 

y = h(z,a, t) 

where z is the state, y is the output and a is a vector of, 
a priori unknown, parameters. Taking a local approximation of 
these equations about an initial guess (z('),<X) we assume that 
WE~ can obtain a system 

z = Az + Ala + f(z,a) 

y = Cz 

where A, AI' C are time-independent linear operators. 
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The right-hand side of (7) defines a map ~ operating on the 
space of trajectories z(')' A fixed point of this map ~ 
will be consistent both with the state equations (3) and 
the output equation y = Cz (since of z* is such that 
z* = ~z* then Cz* = C~z* = y). Thus we have reduced the 
reconstruction problem to finding fixed points of the nonlinear 
map~. In general, the results obtained are local, both in 
the space of trajectories and in time . 

. There are several fixed-point theorems available for use 
(see [1], [3]) but here we state a theorem using a local 
version of the contraction mapping theorem. 

Theorem 

Suppose that A generates a strongly continuous semigroup 
Set) and that the linear system (2) is continuously initially 
observable. Let Z, Zl' Z2 be Banach spaces and 

/0+ • 1 1 1 p,r,q,s,a,c
l
,c

2,K,R £I~ w1th r >, 1, p >, q >, 1, - = - + - - 1, s ~ 1. r q s 

Assume 

with 

= c < 00 

1 

(b) for some a : fR+ x fR+ -+1R+ which is continuous and 

symmetric with 0.(8,0) -+ Oas 8 -+ ° we have 

r s) f : L (O,tl;Zl) -+ L (0,t l ;Z2 satisfying 

11Hz) - Hz) IILsco,tl;Z2) ~ 0.( II z II , IIzll)lIz ~ I' - z I 

the norms on the right-hand side computed in LrCO,tl,Zl)' 
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In practice, however, we may have a time varying linear part, 
a non-linear part in the output equation and known functions 
in both the state and output equations. All these factors 
entail modifications to the detail, but not necessarily the 
essence, of the present approach. 

Assume that the parameters are constant and finite-dimensional 

so that eX = ° and CiEIRP• Let [~] denote the augmented state 

and so the system is described by 

:t[~]= [: :1][~1+[f(~·")] 

y =[c,ol[:] 

(10) 

(11) 

The joint state and parameter estimation problem is to reconstruct 
the state z(t) (t ~ 0) and the parameters Ci, given y(.) on [O,t

l
]. 

This has now been reduced to the state estimation (for the 
augmented state) case of Section 2. To apply the result of 
Section 2 we require that the linear part of (10), (11) be 
continuously observable. 

Lemma 

Suppose that the pair (A,C) is continuously initially observable 
and that the linear part of (10), (11) describes a well-defined 
dynamical system. If the map 

is inj ective 

then the linear part of (10), (11) is continuously initially 
obsl~rvable • 
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Proof 

Consider the linear part 

• (12) Z = Az + A a 
1 

y = Cz 

and the corresponding initial state-to-output map given by 
t 

yet) = CS(t)zo +C J s(t-s) Al a ds (13) 
o 

Denote the right hand side of (13) by F(e~ 1), a linear 

map acting on the augmented initial state, and suppose 
that yet) :: 0 for all tE[O, tlJ. Then for ZOED(A) (the 

domain of A) differentiation yields 

CS(t) (AZ
O 

+ Al a) = 0 

and so, since (A,C) is initially observable, 

Azo + Al a = o. 

Let t = 0 then Cz
O 

= O. Hence CzO = Azo + Al aO = 0 

which, by the injectivity assumption, is only possible 
when Zo = 0, a = o. Therefore the map defined by (13) 

(14) 

is injective and so the linear part of the augmented system 
is initially observable. Since we have assumed that (A,C) 
is continuously initially observable and the parameter-space 
is finite dimensional then, by (13), the range of F is closed. 
Hence the linear augmented system is continuously initially 
observable. • 

The theorem of Section 2 can now be applied with the 
additional assumption that 

Ker = {O} • 
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This will provide (at least in the contraction mapping case) 
both conditions for the existence of a fixed point and an 
algorithm (successive approximation) for finding it. 

Further development of this method will consider the case 
when the original system (A,e) is only initially observable and 
also the case when the parameter-space is not finite 
dimensional (e.g. spatially varying parameters). 

4. EXAMPLE 

Here we apply the results of the preceding sections to the 
observed one ... dimensional wave equation 

w = w + aw 
tt xx 

w(O,t) = w(l,t) = 0 
(15) 

where aE IR is the unknown parameter, and the observation 
is 

yeo) = Jl c(x) w(x,.)dx = <c,w> 
o 

Ta.king initial guesses for state and parameter as w, a 
respectively (i does not depend on t, i(O) = i(l) = 0 
and a = 0 for simplicity) we then make the usual local 

-approximation w = w + w', a = a + a' to obtain 

I 

w tt WI + wat + w + a'w t 
xx xx 

with w'(O,t) = w'(l,t) = 0 

The observation is now given by 

yeo) = <c,w'(o»L2(O,1) + <c,w>L2(O,1) 

Substituting z = [:: ] , in the usual way, we obtain a 

t 
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system in the form 

• z = Az + Ala + f(z,a) + u 

y Cz + v 

where u,v are known inputs 

A standard result shows that (A,C) is continuously 
initially observable if y, the space of output trajectories, 
consists of functions of the form 

00 

yet) = L 
n=l 

(a cosn i\t + b sin ni\ t) 
n n 

normed by 

00 

L 
2.,...2 ( 2 b 2) n" an +n 

n=l c 2 
n 

Now, using the lemma in Section 3, continuous initial 
observability for the linear part of the augmented system 
obtained if 

00 

L 
n=l 

c w 
n n 

2 
n 

::f 0 

where cp = h sin n 7\x. Hence we may apply the theorem of 
n 

Section 2 (suitably modified 
u and v) to jointly identify 
the present example we have 

to account for the known inputs 
initial state and parameters. In 
a(8

l
,82 ) = c(8

l 
+ 8

2
) for part (b) 

of the theorem, where c is some constant. The principles 
illustrated here can be extended to create joint and parameter 
estimators for other hyperbolic-type equations. 
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PA.RAMETER ESTIMATION IN TRUSS BEAMS USING 
TIMC)SHENKO BEAM[ MODEL WITH DAMPING 

C.T. Sun, 
School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907 

J.N. Juang* 
Guidance and Control Section, Martin Marietta Aerospace, Denver, CO 80201 

ABSTRACT 

Truss beams with members having viscous damping are modeled witha 
Timoshenko beam. Procedures for deriving the equivalent bending rigidity, 
transverse shear rigidity, and damping are presented. Explicit expressions 
for these equivalent beam properties are obtained for a specific truss beam. 
The beam model thus established is then used to investigate the effect of 
damping in free vibration. Finally, the beam is employed in the estimation 
of structural parameters in a simply-supported truss beam using a random 
search algorithm. 

INTRODUCTION 

Many methods currently employed for the dynamic analysis of structures 
such as the finite element method are adequate and accurate. However, as 
the system becomes large, direct application of the finite element method 
is found to be computationally expensive and its accuracy degenerates. 
Moreover, as each individual structural component is taken into account in 
the formulation, the number of structural parameters is large which makes 
the system identification very difficult. 

In view of the fact that many large space structures, although large 
in size and complex in detail, often appear grossly as a beam, plate, or 
thin shell, some researchers have derived equivalent combinuum models for 
dynamic analyses [1-3]. These simple continuum models have proven to be 
quite accurate in predicting natural freqUencies and mode shapes for a 
significant number of modes. Since these equivalent continuum models have 
few structural parameters, they are particularly useful in system 
identification problems [4]. 

* Now with NASA Langley Research Center, Hampton, Virginia 23665 
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Structural damping plays an important role in the prediction of space
craft structural responses and loads [5] which are needed in the structural 
and control design. As the aerodynamic damping is absent in the space 
environment, damping in a spacecraft results from the deformation in each 
structural member and joint. The contribution to the overall structural 
damping from each member with known damping properties can be theoretically 
estimated. In this paper, procedures are presented for deriving the gross 
damping properties for the simple beam model which is used to represent 
beam-like trusses. The beam model with damping thus constructed is then 
used to study the effect of damping in free vibration of a simply-supported 
truss beam. Finally, this model is employed in the estimation of structural 
parameters of the truss beam by using a random search algorithm. 

BEAM MODEL WITH DAMPING 

Detailed procedures for deriving the equivalent beam rigidities from 
a turss beam were given by [1]. Among the three beam models, shear beam, 
Bernoulli-Euler beam, and Timoshenko beam, the Timoshenko beam theory was 
found to be most accurate and most suitable to represent general trusses. 
In this study, the Timoshenko beam model is used. 

For simplicity, consider a beam which is symmetric with respect to the 
mid-plane so that the extension is not coupled with the flexural deforma
tion. The shear force Q and bending moment M are related to the transverse 
displacement wand the rotation ~ as 

n23] 
EI 

(1) 

where GA is the transverse shear rigidity, Ef the bending rigidity, and 
n23 is the bending-shear coupling coefficient. 

The displacement-equations of motion are [1] 

II ~'xx -GA(w,x + ~) = PI $ 
GA (w'xx + ~'x) = m w - q 

(2) 

where PI is rotatory inertia, m is mass per unit length, and q is transverse 
load per unit length. 

The bending rigidity Ef and shear rigidity GA are obtained from a 
typical substructure by applying a bending moment and shear force, respec
tively, as shown in Fig. 1. They are expressed as [1] 
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f 
Lg 

£ 

Substructure in Shear Substructure in Bendin~ 

Fig 1 Substructure in transverse shear and bending deformations. 

(3) 

The deformations <j>,and e,can be calculated analytically or numerically using 
the matrix method. From the solutions for the substructure, we also obtain 
the uniaxial strains in the truss members as 

£:1 a, 

£:2 = a2 1jJ,x (4) 

£:6 a6 

for the bending deformation, ahd 

£:1 bl 

£:2 
(w'x + 1jJ) = (5) 

£:6 

for the transverse shear deformation. In Eqs. (4-5), the rotation gradient 
1jJ,x and thl:! transverse shear strain w.l\)J are approximated by 
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(6) 

and 

(7) 

respectively. 

Consider truss member i for which the stress-strain relation is given 
by 

a. = E. E· + d. £. 
1 1 1 1 1 

(8) 

in which the viscous damping i's included. In Eq. (8), a is the normal 
stress, E is the Young's modulus, E is the normal strain, d is the damping 
coefficient, and a subscript i denotes member i. 

It is assumed that the damping is small so that the damping force is 
much smaller than the elastic force. As a result of this assumption, the 
elastic relations given by Eqs. (4-5) are taken also for nonvanishing 
strain rates, i.e., 

(9) 

(10) 

The resulting damping forces in the truss members computed according to 
Eqs. (8-10) are then added to the elastic forces. Equation (1) then takes 
the new form 

(11 ) 

where the equivalent global damping coefficient C .. are functions of the 
damping coefficients and elastic properties of th~Jtruss members. 

As an illustration, consider the substructure shown in Fig. 1 with 

Al = A2 , A3 = A4 , A5 = A6 

dl = d2 , d3 = d4 , d5 = d6 

and that all the members have the same elastic constants. The simple 
bending and transverse shear deformations yield the following axial strains 
in the truss members as 
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£:1 lL 
2 9 
1 

£:2 .- .- L 
2 9 

£:3 0 
= l/I,x 

£:4 0 
(12) 

85 0 

86 0 

81 0 

82 0 

83 L L /(L2+L2) 
9 c 9 c (W'X+l/I) = 
-LgL/(L~+L~) 84 

(13) 

85 0 

t.6 0 

From the above relations, we obtain the equivalent elastic transverse 
shear force and bending moment: 

jQ = 

1M elastic 

o 

o 

(14 ) 

for which we have 

(15 ) 

(16 ) 
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The additional transverse force and bending moment due to damping are 
calculated using Eqs. (12-13). L~e obtain 

2 
2 Lg Lc A d 

0 
. . 

(L2 + L2)3/2 3 3 \'1 'x +1jJ 

= g C (17) 

M 0 
1 2 

damping 2" Lg Aldl 1jJ,x 

Thus, the equivalent global damping coefficients for the beam model are 

Combining Eqs. (14) and (17), we obtain 

The corresponding displacement-equations of motion are 

(ff 1jJ,x) 'x - GA(w'x+1jJ) + (C33 ~'x)'X 

- C22(w,x+~) = PI ~ 
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PARAMETER ESTIMATION - RANDm1 SEARCH METHOD 

The Timoshenko beam equations, Eqs. (20-21), and the measurement equa
tion can be expressed in the form 

Z = .Dz + Kz + Bu, Xd1, tsT 
(22) 

y = Cz 

where z = (zl' z2)T = (w, ~)T is the distributed state vector, u = (~ -lq,O) 

is a p-vector control input, tET( = (to' tf)is time, x is the spatial 
coordinate in domain D, D and K arE~ linear matrix differential operators 
in D given Iby 

!3 D2 
4 

D = , D = a/ax (23) 
- !3 D 5 

!3 D2 
1 

K = (24) 

- /3 2D 

in which 

6 ~ (61, (32' /33' 64, 65, (36) T 

= (GA/m, GA/Pl, EI/Pl, C22/~' C22/Pl, C33/Pf)T 

is a vector of all the parameters 'in the simple continuum model, and Band 
C are finite-dimensional influence matrix functions or integral operators. 

where 

Of practica"1 interest are the following boundary conditions: 

(1) Fixed-Fixed Beam: 

z(o, t) = z(t, t) = 0 

(2) Simply Supported Beam: 

rz(O,t) =rz(t, t) = 0 
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(3) Cantilever Beam: 

z(~, t) = rz(o, t) = 0 

where 

The output error is given by 

A 

where y is the actual measurement vector. 

The error cost function is defined by 

t 
J(S) = 2~ f f eT Re dt 

f 0 

(27) 

(28) 

(30) 

in which R is a positive definite weighting matrix. The objective of up
dating the simple model is to adjust B so that J(S) achieves the minimum. 

The estimation procedure of the random search method has been success
fully employed for parameter estimation for the Timoshenko beam model with
out damping [4]. The procedure is briefly outlined as follows. We start 
with an initial estimate of parameter B obtained from the simple model. 
Then, an iterative process follows to match the test data by updating the 
ana lyti ca 1 mode 1. Specifi ca lly, at the i th iterati on, the parameter 
vector 131 i is gi ven by 

where the increment ilB is given by 

ilS ~ {± ~1131'± a2132' •.. , ± a6S6)T (32) 

in which a. (=N(cr, y)) is a Gaussian distributed random number with mean cr 
and standa~d deviation y which are determined by the accuracy requirement 
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of parameter estimation. For example~ the (1+0.25)% error limit can be 
provided by selecting cr = 0.01 and y = 0.0025:- The values of ai (i = 1-6) 
are fixed for each iteration. The constant a. should be carefully chosen , 
as this scheme may diverge if a i are too large. On the other hand, if ai 
are too small, then s would converge to trye values very slowly. Note that 
the plus and minus signs in ~s result in 26 trial samples of sl .. , 

For each iteration~ the following steps are carried out. 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Step 8: 

Compute Gaussian distributed random numbers aj 

Discretize the continuum model (22) with given parameters sl· to 
obtain a finite dimensional model including all the chosen nJtural 
modes. 

Compute cost function J(sl.) (see Eq. (30)) by integrating the 
square of the measurement 'error between the analytical model 
and the actual system. 

Go back to step 2 with different a resulting from the different 
plus and minus combinations in Eq. (32) until 26 trial samples 
of ali run out. 

Obtain the direction ~Ss of the smallest Js(sli) in the group of 

26 cost function J(al i ). If JS(al i ) > Js(sli-l)' go to step 8. 

Perform a one-dimensional minimization of J(S) along the direction 
~Ss until the slop of the cost function J(S) changes sign. 

Update ali at which cost function J(a) is minimum and return to 
Step 1. 

Minimization is completed. 

EXAMPLE 

Consider a simply-supported truss beam for which the dimension and 
properties of the truss members are given in Fig. 2. In this figure, Ac' 
Ag, and Ad indicate the member cross-sectional areas, E is the modulus of 
elasticitYl' and p is the mass density. The damping coefficients will be 
assumed as v~riables. 

The equivalent bending and transverse shear rigidities for the 
Timoshenko beam model are computed from Eqs. (15-16). and the equivalent 
mass iii and rotatory inertia PI are obtained using the procedure suggested 
by [1]. WE~ have 
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7.5M X 20 = 150M 

r 1 ~ 
adZIXIXIXIXIXIfIXfltlfIXIXlXIXIXIXlXIX~ ffi 
~ _·····m-ht 

Ac Ag ... Ad 

E = 71.7 x 10 9 [N/m2] 

Ac = 80 X 10- 6 [m 2 ] 

Ad = 40 X 10- 6 [m 2 ] 

, p = 2768 [kg/mS] 

, Ag = 60 X 10- 6 [m 2 ] 

Fig. 2 Simply-supported truss beam. 

Damped Free Vibration 

GA = 1.468xl06 N 

ET = 7.17xl07 N-m2 

iii = 0.875 

PI = 3.55 

(33) 

Free vibration (q=O) of the simply-supported Timoshenko beam can be 
studied using Eqs. (20-2l) or Eq. (22) with the boundary conditions, 
Eq. (26). The frequency equation is obtained as 

where 

A4 + h A3 + h A2 + h,A + h = 0 (34) 3 2 . 0 

w~ = {rn/t)2, r = 1, 2, ... 

2 hl = (S,B6 + B3S4)wr 

h2 = (6, + 63)wr + 62 + 6466 wr
2 

h3 = (64 + 66)wr + 65 
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The biquadratic equation, Eq. (34), can be solved numerically yielding an 
infinite number of solutions A in the form 

:: ;,;.;,; i = ;:, (35) 

(36) 

where nr and wr are positive quantities. The two roots A~l) and A~2) 
replresent two different branches of deformation with one frequency w~2) 
much larger than w~l). The branch with the lower frequency is of practical 
intl~rest and henceforth will be taken for further discussions. 

Corresponding each eigenvalue Ar , we obtain the mode shape of deflec
tion as 

A t 
w = W e r sin (rnx/~) r 

Art W = 0/ e cos (rnx/~) r 

where the amplitudes W.and 0/ are related by 

For the following three sets of damping coefficients, 

C2'1 = 0 N-sec C33 4xl04 2 = N-m -sec .-
C22 200 N-sec C33 0 2 

= = N-m -sec 

C2:2 100 N-sec C33 4xlO4 2 = = N-m -sec 

(37) 

(38) 

the frequencies of the lowest branch and the corresponding damping ratios 
are presented in Table 1. Only the modes of odd numbers are listed. 

The numerical results shown in Table 1 reveal an interesting damping 
characteristic in Timoshenko beam, i.e., the amount of damping due to bend
ing increases initially as the frequency increases, but decreases after 
the eleventh mode. On the other hand, the amount of damping due to the 
transverse shear deformation is larger for higher modes. For the lower 
modes, the transverse shear damping is negligible as the bending deforma
tion dominates in the lower mode vibration. When both bending and trans
verse shear dampings are present, the former is dominant in the lower 
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Table 1 Natural Frequencies and Damping Ratios 

Damping C33 = 4xl04, C22 = 0 C33 = 0, C22 = 200 C33 = 4xl04, C22 = 100 

~ Frequenc) Damping Frequenc) Damping Frequency Damping 
Mode (rad/sec Ratio(%) (rad/sec Ratio(%) (rad/sec) Ratio(%) 

1 3.691 0.094 3.691 0.00051 3.691 0.094 

3 30.66 0.673 30.66 0.032 30.66 0.689 

5 74.99 1.303 74.99 0.169 74.99 1.388 
7 127.4 1.699 127.4 0.422 127.4 1.910 

9 182.8 1.869 182.6 0.753 182.7 2.246 

11 239.0 1.891 238.6 1.126 239.0 2.458 

13 295.0 1.834 294.4 1.519 295.0 2.599 

15 322.9 1.789 349.8 1.918 350.4 2.707 

17 406.0 1.626 404.7 2.318 406.0 2.801 

19 460.8 1.512 459.2 2.716 433.0 2.845 

modes and the latter is dominant in the higher modes as revealed by the 
results for the third set of damping coefficients. 

Since a truss beam has been shown to behave like a Timoshenko beam 
[1J, its motion at higher modes is dominated by transverse shear deformations. 
Thus, there may exist a lower bound frequency which could give rise to 
enough damping ratio specified by the control designer. r~oreover, the 
control and observation spillover may be overcome by the material damping 
and no complicated control compensations are needed. In that case, control 
designs based upon discrete mode~without residual modes may be justified. 

Parameter Estimation 

In the undamped or purely elastic case, the truss beam (see Fig. 2) 
can be analyzed by using the finite element method to model each individual 
truss member as a rod element. The solution thus obtained can be regarded 
as the "exact solution" except for very high modes .. This exact solution 
can be used as a basi s for estimating the accuracy of the simple continuum 
model. For the simply-supported beam shown in Fig. 2, the first five 
undamped natural frequencies obtained from the finite element program SAPIV 
and from the Timoshenko beam model are presented in Table 2. The corres
ponding modal displacements at the mid-span are a1s-o given in this table. 
It is evident that the simple model yields excellent frequency and displace
ment predictions. It is reasonable to say that the simple model provides 
a good initial estimate of the structural properties of the actual system. 
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I~ode 

1 
2 
3 

4 
5 

Table 2 Actual and Updated Simple f4ode"' 
Solutions for the Truss Beam 

Finite Element Simp 1 e Mo de 1 Updated Simple Model 
-" --.----------------

Ft'equency Modal Frequency r~oda 1 Frequency Modal 
( t'ad/sec) Oi sp 1 . (rad/sec) Oispl. (rad/sec) Oi spl . 

3.684 0.124 3.564 0.121 3.692 0.121 
14.32 0.0 13.84 0.0 14.32 0.0 
30.84 -0.123 29.75 -0.121 30.75 -0,'121 

51.87 0.0 49.95 0.0 51.69 0.0 
76.30 0.123 73.20 0.121 76.08 0.121 

When damping is present, we will still take the finite element solu
tion as the actual solution and the simple model (with damping) will be 
updated using the random search algorithm described in the previous sec
tion. A single noise-free displacement sensor and a force actuator are 
chosen and co-located at the center of the span for input and output 
measurements. 

For a unit impulse applied at the mid-span, the response of displace
ment at the mid-span can be written in the form 

n A2 n.t 
y == I ~. e J ( sin w

J
' ty W . 

j=l J J 
(39) 

where nj + iWj == Aj' i == ycr, ;j is the transverse modal displacement at 
the mid-span of the beam corresponding to the eigenvalue Aj' and n is 
the total mode number to be included in the simulation. 

The cost function J(S) given by Eq. (30) with R chosen as a unity 
matrix is obtained by exciting both the actual system and the simple 
model with the same impulse input. For the purpose of simulation, the 
full-scale finite element modeling of the actual truss beam (without 
clamping) is regarded as the actual system. In updating the simPle model, 
on 1 y the bendi ng ri gi dity IT and the trans verse shea r ri gi dity GA are 
varied while the damping coefficients, C22 == 100 C33 = 4xl04, are kept 
constant. By using the random search algorithm, the bending and trans-
verse rigidities which minimize the cost function are found to be 

rr == 7.7xl07 N-m2 

~ == 1,499xl06 N 
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The natural frequencies and modal displacements for the first five modes 
calculated using these updated beam rigidities are shown in the last 
column in Table 2. It is evident that these frequencies of the updated 
simple model are all within 0.3% of the actual solutions. The mode 
shapes remain unchanged since they do not depend on the bending and shear 
rigidities which are represented by the parameters Sl' S2' and S3' 

It is noted that in the updating process, the bending rigidity is 
modified more than the transverse shear rigidity. However, one should 
expect a greater modification on the transverse shear rigidity when 
more higher modes are included. 

CONCLUDING REMARKS 

In this paper, a simple Timoshenko beam model is developed for re
presenting truss beams. Viscous damping in truss members is included in 
the formulation. This model makes it feasible to perform the control 
analysis by either using partial differential equations or systems of 
ordinary differential equations obtained from the discretization of the 
simple model. 

The simple model thus constructed is shown to yield quite accurate 
predictions in natural frequencies and mode shapes. Moreover, with much 
fewer parameters than the finite element model. it also provides 
an efficient way for performing system identification when actual 
measurements on the system are available. This feature of the 
simple model is particularly attractive if in-flight tests are to 
be implemented and results used for updating the structural model. 

The random search algorithms used in this study is efficient 
when the number of parameters to be identified is small. The 
Newton-Raphson method [6J will be employed and compared with the 
random search method in a future report. 
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:MODEL ERROR ESTIMATION FOR ELLIPTIC SYSTEMS 
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ABSTRACT 

AIl approach is advanced for the concurrent estimation of the state and 
of the model errors of a system described by elliptic equations. The 
estimates are obtained by a deterministic least-squares approach that seeks 
to minimize a quadratic functional of the model errors, or equivalently, to 
find the vector of smallest norm subject to linear constraints in a 
suitably defined function space. The minimum norm solution can be obtained 
by solving either a Fredholm integral equation of the second kind for the 
case with continuously distributed data or a related matrix equation for 
the problem with discretely located measurements. Solution of either one 
of the!;e equations is obtained in a batch-processing mode in which all of 
the data is processed simultaneously or, in certain restricted geometries. 
in a spatially scanning mode in which the data is processed recursively. 
After the methods for computation of the optimal estimates are developed, 
an analysis of the second-order statistics of the estimates and of the 
corresponding estimation error is conducted. Based on this analysis. 
explicit expressions for the mean-square e stima tion error associated with 
both the state and model error estimates are then developed. While this 
paper focuses on theoretical developments. applications arising in the area 
of large structure static shape determination are contained in a closely 
related paper [1] also included in these proceeding~ 

I. INTRODUCTION 

Ob j ectives 

The main obj ectives of the paper are: 1) to outline an approach to 
estimate the state of a system modeled by means of single or multiple 
elliptic partial differential equations or, for complex structures, by 
fine-resolution piecewise-continuum models, and 2) to advance a closely 
related approach to estimate the errors inherent in such models. 

Mathemdica1 Statement of State and Model Error Estimation Problems 

A general statement of the estimation problems is provided by the 
following equations: 

System Model Au = f. ( 1) 

Ob serva tions y Hu + n, (2) 

Boundary Conditions Bu = 0, (3) 
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where u and yare respectively the state and observations, and A is an 
elliptic differential operator defined over the spatial domain O. As 
outlined in Ref. [1J, the operator A could represent symbolically a large 
number of interconnected partial differential equations defined over a 
mul tiplici ty of sub-domains that together make up the overall structural 
domain O. Such fine-resolution piecewise-continuum models would be 
appropriate for complex structures that cannot be modeled completely by a 
single partial differential equatio~ The boundary conditions Bu = 0 are 
specified at the boundary of the domain, where B is a differential operator 
that characterizes the geometric and natural boundary conditions applicable 
to the system model. The range of the operator H could be finite
dimensional, corresponding to the case of discretely located observations. 

The traditional state estimation problem consists of estimating the 
state u of the system from the observations y. A related estimation 
problem, and one that is less commonly addressed, is that of estimating the 
model errors f and n, which reflect the combined effect of a large number 
of uncertainties and error sources. In many cases, these two terms cannot 
be fully determined in advance of the model's app1icatio~ The traditional 
'white-noise' model does not always lead to useful results. Consequently, 
estimation is the only viable means to establish knowledge of the model 
errors. 

Specific cases in which the problem of model error estimation occurs 
include: determining the quasi-static gravity loads in a ground antenna, 
estimating internal disturbances (forces and moments) due to attitude and 
shape control actuators, and evaluating the lumped effect of nonlinear 
terms, governing nonlinear elastic behavior, which have been neglected by 
the approximate linear model in (1). 

The estimation approach advanced here provides a solution to both of 
the foregoing problems simultaneously, in that the same computations 
required to determine the state estimates can be used (with minor 
modifications) to determine the corresponding model error estimates. 

Least-Squares Approach to Estimation 

The method of least-squares seeks to minimize the following quadratic 
functional of the model errors: 

( 4) 

subject to the constraints imposed by the state equations (1) and (2). The 
solution of this problem provides an optimal pair 8

9 
= [fo,no]' consisting 

of a process error estimate fo and a corresponding observation error 
estimate no' that is the least-squares estimate of the actual model errors 
8 = [f,n]. The state estimate, satisfying Auo. = f o' also arises from the 
least-squares formulation. In Ref. [2J, a similar least-squares 
formulation has been used to develop a combined state and model error 
estimation approach for time-dependent causal systems. The aim of this 
paper is to extend these results to infinite-dimensional elliptic systems. 
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Elliptic Models for Estimator Design 

Central to the shape determination schemes under development here is 
the selection of a mathematical model to represent the elastic behavior of 
the structure. Three classes of models, useful at three distinct stages of 
the design process, that are applicable to this selection are: 1) single 
partial-differential-equation models defined over a single domain for 
development of initial physical insight and understanding, 2) mul tiple PDE 
models defined over multiple spatial domains for more in-depth parametric 
studies and estimator design, and 3) piecewise-continuum models. defined 
over a possibly fine structural-element grid (exact finite-elements). for 
detailed design and evaluation. A more complete description of these 
models with typical examples are provided in Ref. [1]. 

The Observation Model 

To, complete a description of the models used for estimator design. it 
is of interest to make a few brief comments about the observation equation 
(2). This equation is characterized by the operator H defining the state
to-obs,ervations map. By appropriate definition of this operator. it is 
possible to encompass within the observation model, a wide range of data 
collection strategies of practical interes~ 

TYPE OF MEASUREMENT 

(a) Full Domain 
(b) Boundary 

(c) Discrete 

STATE-TO-OBSERVATION MAP 

Hu = u(x) xsQ 
Hu u(x) xsr (T) 

Hu = [u(xl) •••• ,u(xN)] 

rm SENSOR -

I 
I / 
I / 
t I' 

-....._~I(...----

___ .-/1\______.. ...- ~ 't '0 . 
/ \ 

/ \ 
, I \ 

~ 

Fig. 1 Illustration of Sensing Strategies 

( 5) 

Some typical distributed sensing strategies are illustrated in Fig.l. 
Out of the three types of measurement strategies shown above. perhaps most 
commonly encountered in practice is the one corresponding to discretely 
distributed sensing. Consequently, the estimation methodology advanced 
here will ul tima tely be implemented for this case. However. investigation 
of the schemes involving sensing either at the boundary or within the 
entire spatial domain is also of interest at times (in this paper), because 
such an investigation can lead to valuable insight and understanding about 
the estimation problem and its corresponding solution. 
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The function space approach to estimation advanced below encompasses 
within the same general framework all of the three cases, provided that an 
appropriate interpretation of H is used. Other schemes, such as those 
based on spatial-slope data (as opposed to the deflection measurements 
discussed so far) can also be investigated within the same formulation or, 
at most, with possible minor modifications. 

2. OUTLINE OF FUNCTION SPACE APPROACH TO ESTIMATION 

One of the major objectives of the paper is to advance a function 
space approach to estimation for elliptic systems that extends resul ts 
reported previously [2], applioable primarily to time~evolving causal 
systems. Because of its length, it is convenient to partition the 
presentation of the approach into the following major pivotal steps (see 
illustration in Fig. 2): 

1. Showing that the least-squares estimation problem is equivalent to 
that of finding a vector of smallest norm subject to linear 
constraints (Sec. 3). 

2. Establishing that the optimal estimate (of smallest norm) can be 
determined in terms of the generalized inverse of the operator 
characterizing the linear constraints (Sec. 3). 

3. Computing the generalized inverse above from the solution of a 
Fredholm integral equation of the second kind, for the case with 
continuously distributed measurements, and from the solution of a 
closely related matrix equation, for discretely distributed data (Sec. 
3). 

4. Specifying a number of alternative methods (direct matrix inversion, 
eigenfunction expansions, etc.) for solving either the integral 
equation or the related matrix equation. These methods can be 
classified into the two broad categories of batch solutions (Sec. 4). 
in which all of the data is processed simultaneously, and 
scanning ahorithm.l. (Sec. 5). in which the data is processed 
recursively. 

s. Developing a statistical analysis that results on explicit formulas 
for the second-order statistics of the important variables (state and 
model-error estimates, estimation error. etc.) in the problem 
formulation (Secs. 6-7). 

MINIMIZE 
GENERALIZED 

INVERSE 
COVARIANCE 

KERNEL 

I ~:.:~ I ~ EO' h'Ihh'rly ~ hh" U+HLL'H') 

MUST SOLVE 

no(xl + Idx/O no((ld( = y(xl 

n = II+HLL"'H",)-ly 
o 

Fig. 2 Illustration of Function Space Approach to Estimation 
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3 0 MINIMUM NORM PROBLE~ GENERALIZED INVERSE AND FREDHOLM EQUATION 

To develop the estimation approach» it is convenient to first 
introduce notation necessary to define suitable function spaces for the 

estimation problem. Let H1, H2 and H3 denote respectively the function 
spaces to which the process €lrrOr f, the state Up and the observations y 
(and the observation error n) belong. For example, H1=H2=H3=L2(Q) would be 
appropriate for the problem with continuously distributed data, while 
H1=H2=L2<Q) and Hs=RN would be applicable to the situation with discrete 
measurements. The model error 8 is then defined to be the pair 8 = [f,n] 
belonging to the Cartesian :product space [3] HI x HS" This space is 
endowed with the inner product <81' 82> = (f1 ,f2 )1 + (n1'n2)3' where 
81 = [fp n l] and 82 = [f2 ,n2] are two arbitrary vectors in the space, and 
( .,.) i is the inner product in Hi on. 

Bued on these definitions. the optimization problem can be recast as 
follows: 

minimize <8,8>. (6) 

stLbj ect to he = y. ( 7) 

where h = [HL I] is a linear operator mapping HI x HS-+- H3 that 
characterizes the linear constraints under which the optimization problem 
must be solved. This operator h is defined in terms of the integral 
operator L specified by 

(8 ) 

where ~~ is the Green's function for A in (1). If A is symmetric. as is the 
case in most elastic models representing practical structures. then 
~ (x/~) = ~ (~/x) is also symme tric, and the corresponding operator L=L is 
self-adjoint with respect to the inner product (.,0)2" 

The model error estimates 8
0 

=[fo,no ] are the solutions of this 
minimum norm problem. The unique element of smallest norm is given by [3]: 

(9) 

where :b.'" mapping D3 --r HI x H3 is the operator adj oint to h with respect to 
the in.ner product <. ,.>. Since hh* == [1 + HLL*H*l, the model error 
estimates (and the corresponding state estimate) can be expres sed as 
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fo = L*H* 

no = [I+ 

Uo = LL*H* 

[I + HLL*H*r1 

HLL*H*]-l y, 

[I + HLL*H*]-l 

y, 

y, 

(10) 

(11) 

(12) 

where the state estimate Uo specified by (12) has been obtained by 
substi tution of (10) into (8). 

The above are the most general equations to be presented here for 
evaluation of the model error and state estimates. The key computation 
required by these equations is the inversion of the operator [I + HLL*H*]. 
Because this inversion takes place in the Hilbert space H3 • the 
computations required to conduct the inversion depend on the measurement 
scheme under investigation (see Fig. 1). For continuously distributed 
measurements, as in Figs. l(a) and l(b). the inversion of [I + HLL*H*] can 
be achieved by solving a Fredholm integral equation of the second kind. 
With discretely located data as in Fig. 1(c). [I + HLL*H*] is a matrix 
whose dimensions are equal to the number of data points. 

Inversion of [I + HLL*H*] with Continuously Distributed Data 

This case corresponds to that of Fig. l(a) and assumes that H in (1) 
is the identity. With this assumption. a direct computation of LL* using 
(8) leads to the following Fredholm integral equation of the second kind: 

for x in n. (13) 

specified in terms of its kernel r(x/~) given by 

(14) 

Because the kernel is the one key element characterizing the integral 
equation, it is of interest to explore some of its major properties. 
First, observe that r(x/~) is a Green's function for A*A, i.e., 

(15) 

where 6 is the impulsive 'delta' function. and the subscript x in Ax 
implies that the spatial differentiations embedded in A are conducted with 
respect to x (as opposed to being performed with respect to ~). This 
result can be obtained readily by operating on (14) with A*A and using 
twice the condition A l{j = 6, which follow s from the observa tion that rJ is a 
Green's function for A. This result implies that r(x/~) can be computed 
directly using (15). without necessarily solving first for an approximation 
to l{j and then using (14) to approximate r. Such a direct method could 
potentially be more accurate as discussed further in Ref. [1]. 
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Another important property of r(x/~) is its interpretation as the 
covariance E[u(x)u(~)] of the state u, under the assumption (used only 
infrequently in this paper) that the actual errors & = [f,n] in (1) and (2) 
are spatially distributed white noise. This property will be investigated 
further as an integral part of the statistical analysis provided in Sec. 7. 

The immediate aim here, however. is to first state the matrix equation 
related to (13) that must be l.olved for the case with discretely located 
data. 

Inversion of [I '" (m,) (m..) .1Ilt] with Discretely Spaced Data 

This case corresponds to Fig. 1(c) where the data is collected only at 
a finite number of spatial locations distributed throughout the domain. 
The matrix equation analogous to (13) that must be solved for this cue is 

N 

n~ + ~ r(xk/~m)n~ = yk. (16) 

m=l 

where n~ denotes the value of the observation error estimate at the 
location xk' and where N denotes the number of spatial measurements. Note 
that in both (13) and (16) the kernel r(x/~) plays a key role in 
characterizing the equation to be solved. For the problem with 
continuously distributed data in Fig. 3(a), the kernel r(x/~) is defined 
over the square region [x.~]dl x (!. For the case with discrete data ill 
Fig. 3(b). the kernel r(x/~) needs to be evaluated only over a finite
dimensional grid to specify the matrix equation that needs to be solved. 
In both of these cases A*Ar has a singularity along the diagonal as 
indicated by Eq. (15). 

In the foregoing, it has been established that. depending on the type 
of data. available, inversion of [1 '" HLL *11*] can be achieved by either 
solving a Fredholm integral equation or a related matrix equation. A 
number of potential batch and recursive processing methods to conduct this 
computa tion are developed in the following two sections. 
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Fig. 3 Domains of Definition of State Covariance Kernel 
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4. BATCH SOLUTIONS 

The aim of this section is to convert equa tions (10)-(12), which are 
based on a somewhat abstract operator notation, into a more explicit form 
that more directly represents the computations that must be performed in a 
batch-processing estimation mode. The following three major batch
processing alternatives are explored: 

o Direct inversion of the matrix (HHLL *H*). a solution primarily 
applicable to the discrete-data case and only applicable as an 
approximation to the continuous-data problem 

o Expansion of the estimates in terms of the eigenfunctions CPk of 
R = DLL*H* defined by RCPk = A.~CPk with A.~ being the eigenvalues 

o Solutions based on the Fredholm resolvent G of R defined by 
(HR)-:-l = (I-G) 

Estimates Based on Inversion of (I+HLL*H*) Matrix for Discrete Data Problem 

This approach involves a direct solution to the matrix equation in 
(16) which resul ts initially in a set of observation error estimates no = 

[n~, ••• ,n~]. Then, to complete the estimation process involving also the 
state estimate Uo and the process error estimate f o' Eqs. (10) and (12) are 
converted into 

N 

fo(x) = L: <G(xk/x) k (17) no' 
k=l 

N 

uo(x) = ~ r(xk/x) 
k 

no' (18 ) 

where <G and r are as before the Green's function for A in (1) and the state 
covariance kernel in (14). 

The computations required by this sequence of equations can be 
summarized as follows. First, the value of the kernel r (xk/~m) must be 
determined at the grid points in Fig. 3(b) corresponding to the discrete 
spatial locations xk and ~m where the measurements are being taken. For 
complicated structures, obtaining the kernels rand <Grequires a non
trivial computation that is best achieved by using the finite-element 
method [lJ. After rand <G are determined, the matrix inversion required to 
solve (16) must be conducted to arrive at the observation error estimates 
no. Finally, fo and Uo are determined by (17) and (18) based on the 
kernels <G and r. Note that if knowledge of fo and Uo is required at 
a point x where a measurement is not available, then the kernels <G(xk/x) 
and r(xk/x) must a1 so be eval ua ted at that point in conduc ting the 
computa tions in (17) and (18). 

One of the main advantages of the above approach is the conceptual 
simplicity of the required computations. However, in situations with many 
discrete measurements, the required matrix inversion may limit the 
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appli(:ability of the method (although this limitation may be alleviated 
somewhat by performing the inversion in an off-line processing mode). 

While the approach is most useful for the discrete-data problem. it 
can also be viewed as an approximate method to solve the case with 
continuously distributed data. With continuous data. HLL *H* is an integral 
operator and the equation that Must be solved is an integral equation. An 
approximate solution to this equation could consist of first discretizing 
the in,tegral equation to obtain a corresponding rna trix equa Han and then 
solving the matrix equation.. 

Although the approach is computationally convenient, it generally does 
not lead to much insight and understanding about the problem of inverting 
(1+ HLI,*H*) d f . . h 1 . d d I an 0 1nterpret1ng t e resu hng state an mo e error 
estimates. A more thorough understanding of the inversion problem is best 
obtained by investigating the two methods outlined below. 

Eigenfunction Expansions for the State and Model Error Estimates 

This approach is generally applicable to both the continuous and 
discrete problems, although minor differences may exist between the two 
problems. For both of these cases. the eigenvectors R = HLL*n* are defined 
as the nontrivial solutions of 

(19 ) 

where Ai are the 
R is a matrix. 
eigenvectors <Pke 

corresponding eigenvalues. For the discete-data problem, 
and there is a finite number of finite-dimensional 

For the continuous-data problem, R is an integral operator (that ill 
most practical cases satisfies the property of compactness [3]) with an 
infinite number of function-space eigenvectors <Pk' With R compact, the 
corresponding eigenvalues A~ + 0 as k + <X,. Note finally, as a point of 
interest, that in cases withH in (2) equal to the identity and L=L* self
adjoillLt. then Ak in (19) are also the eigenvectors of Land L <P k =Ak <P k' 

In terms of <Pt' the process error and state estimates can be e:x:pressod 
as 

f 0 .- ~ f~ <P k' 
k 

I u~ <Pk' 
k 

where the 'modal' coefficients fk and uk are given by o 0 
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).2 
uk k = Yk' 0 1 + ).2 

k 1 + ).~ 
(22) 

and Yk = (CPk'Y)3 represents the corresponding modal coefficient of the data 
y. 

Note that while (20) and (21) constitute expansions for fo and u , no 
attempt has been made so far to obtain a similar expansion for the re~ated 
observation error est}mate no. In general, such an expansion is not 
possible because (in somewhat imprecise mathematical terms) no can exhibit 
a 'wild' spatial behavior that cannot adequately be represented by nicely 
behaved functions Pk" To illustrate the possible pitfalls. consider 

(23) 

an equation that in the same spirit as (20) and (21) attempts to expand no 
in terms of the eigenvectors CPk. Routine manipulations based on the 
integral equation (13) can be used to show that 

1 
(24) 

where. as before. Yk is the modal coefficient of the data y. 

This equation can be used to show the problems inherent with the 
attempted expansion. Recall first that for typical cases ).~+ 0 as k+ CD , 

and the coefficient 1/(1+).~) in (24) approaches unity. This implies that 
unless Yk + 0 sufficiently fast (which would be the case if the data y is 
well-behaved), then n~ may be such that the corresponding expansion (23) 
does not converge. Consequently. the expansion (23) must be used with care 
because its validity is guaranteed only in cases where the data y is well
behaved. Note parenthetically that in the discrete-data case, the number 
of eigenvalues is finite and the above convergence problem does not occur. 

One way to avoid the convergence problem is to express no as 

(25) 

where the state estimate U o can be obtained from (21). This expression. 
which does not involve a direct expansion of no as in (23), provides a more 
reliable means to compute the observation error estimate no. 
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Expressions for the Estimates Based on the Fredholm Resolyent 

It has been established in the previous section that inversion of the 
operator (I + R) is equivalent to the solution of the Fredhom integral 
equation (13). If the Fredholm resolvent G defined by (I+R)-l == (I-G) is 
introduced in conducting this inversion, then the solution to the integral 
equa tion is: 

( 26) 

an equation that determines the observation error estimate in terms of the 
data y and of the yet to be determined Fredholm resolvent kernel g. If for 
the moment it is assumed that g is available (see below for me thods that 
can be! used f01' its computation). then (26) is all that is needed to 
compute the observation error estimates. The related estimates fo and U o 
can be comp~ted by means of 

fo(x) == ~ ~(x/~)no(~)d~. 

uo(x) == l r(x/~)no(~)d2;. 

( 27) 

(28 ) 

which are the continuous-data versions of the discrete-data equations (17) 
and (18). 

A useful alternative method for computation of uo (for the caSf' where 
H=!) is to use 

(29 ) 

an eqtllation that can be readily established by the following sequence of 
mathematical steps: U o == LL*n:*(I+ HLL *H*)-ly = U. *(I+LL *)-ly = R(ItR)-ly == 

Gy. Because it provides a direct solution for the state estimate U o in 
terms of the data, this equation provides a preferrable alternative to the 
indirl3ct computation of U o using (26) and (28). However. as noted above, 
(29) is limited to cases where the observ&tions are available throughout 

the entire spatial domaiL 

An important element of the expressions outlined above is the Fredholm 
resolvent which must be determined before computations based on (26) can be 
carried out. Some remarks about how to achieve this computation are 
outliDLed below. Note first that (I+R)-l=(I-G) implies that R=G+RG which in 
terms of the corresponding integral operator kernels rand g becomes 

(30) 
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This represents an integral equation for the unknown resolvent kernel g 
with the known state covariance kernel r given by (14). One approach to 
its solution is to otain an expansion in terms of the eigenfunctions ~k of 
R in (19). To this end, it is useful to first recall the following Mercer 
expansion [3] for the kernel r 

(31) 

which can be obtained routinely from the integral representation for r in 
(14) or. equivaJ.ently. from. the boundary-value problem in (15). 
Substitution of (31) in (30) leads to the following expansion for the 
Fredholm resolvent kernel g 

g(x/~) = 2: (32) 
k 

This summation constitutes the desired solution g of (30). Note that the 
summation is very well-behaved because as k-+ "'."'i -+ 0 and consequently 
Ai/(1+"'~) -+ o. 

The above method of solution applies primarily in cases where all of 
the data is processed simultaneously in a batch-processing mode. In the 
following section, an alternative (sequential) method for computation of 
the Fredholm resolvent will be used to develop, in certain restricted 
geometries and coordinate systems. a class of scanning algorithms where 
recursive processing of the data is used to generate the desired state and 
model error estimates. 

s. SCANNING SOLUTIONS FOR CIRCULAR REGIONS 

The scanning algorithms developed here provide an interesting 
alternative to the batch solutions just presented because of two 
fundamental reasons: 1) they have the potential for avoiding inversion of 
large-dimension matrices, as is necessary if many measurements are 
available, and 2) they solve the problem of how to process additional 
data (for instance, the N+l measurement) after estimates based on a fixed 
data-set with N measurements have been determined. Additional motivation 
for investigating the scanning solutions, of course. is due to the 
possibility of gaining further insight into the estimation problems which 
constitute the central theme of this paper. 

Definition of Simple PDE Model to Illustrate the Scanning Solutions 

Consider a simple PDE model consisting of V2u=f defined over the 
circular region 0 = {(p.9): o:s p:S P, O:S 9:S 2n} with the free-boundary 
condition au(R,e)/ar=O at the edge of the region and the internal condition 
u(O,9)=O at the origin. The observation equation. illustrated in Fig. 1, 
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y(e)=u(P.e) + n(S). (33) 

is basj~d on the assumption that data is available only over the cilccular 
arc r (T) = {(PIe): p=R. 0 ~e::s T}. Partial boundary data (as opposed to 
data over the entire circumference) is assumed because the estimation 
problem will be solved first with a fixed and prescribed data interval 
o ::; S ::; T. Then. the scanning al g or i thm s will be deve lope d by exam ining the 
dependence of the fixed-interval solution on incremental changes of the 
upper JLimit of observation T. 

The Frc,dholm Integral E,guat!.m:l With Partial Boundar,y: Data 

It has been shown that the integral equation (13) is central to the 
estima.tion schemes under development in this paper. For the particular 
example involving the circular region described above, this equation 
assumes the following form: 

T 

n.,(T;S) +f r(R.e;R.ljJ)no (T;l/J)dl/J=y(9) for O::;e::ST. 

o 
(34) 

where the dependence of the observation error estimate no on T has been 
indicated by the explicit notation no(T;S). As before. one of the key 
features of this integral equation is the kernel r(R,9;R.l/J) which for 
this particular problem has the following interesting properties. 

Statio]l1a1'it:\1: and. Periodic,itY...J)f the State Covariance Kernel 

F,or the example under study here. the partial differential equa tion 
for the state covariance kernel becomes 

(35) 

where V2 == a 2/ ap2 + p-1 a / as + p-2a 2/ ae2 is the Laplacian operator in polar 
coordinates. In order to compute r, this equation must be solved with 
both r and V 2r Simultaneously satisfying the free boundary conditions and 
the internal conditions specified for the original problem in the previous 
subsection. Note parenthetically that the kernel r(p,9,:q, l/J) corresponds to 
the solution of (35) evaluated at an arbitrary point with polar coordinates 
(p,S) under the assumption that the forcing term represented by a 'delta' 
functi,on is applied at the noncoincident point (q.l/J). The solution of (35) 
is very conveniently obtained using a trigonometric expansion along the 
e dire·etion. Use of suoh an expansion for r(PPG;q.l/J) and evaluation along 
the raKlial bounda.ry p=q=R results in the following expression 

cos k (9- l/J) 

k 2 0dl) 
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This provides a trigonometric expansion for the kernel involved in the 
integral equation (34). Inspection of the above expansion reveals that the 
kernel r is stationary, periodic and irrational as discussed in more detail 
below. 

The kernel r is azimuthallY stationary in the sense that it is a 
function of the difference /3=9- 1/J of its two azimuthal arguments 
e and 1/J. Hence, the simplified notation r o (/3) = r(R,9;R,1/J) can be used, 
and the resulting function r o (/3) investigated. Note from (36) that when 
r o(/3) is viewed as a function of /3, it can be interpreted as a correlation 
function with symmetry ro(p)=ro(-p) about the origin /3=0, and with its 
maximum value ro(O) being achieved at /3=0. The kernel ro(f3} is the 
correlation r (13) = E [u(R;9)u(R,9+p)] of the boundary values u(R,9) and 
u(R,9+/3) of t~e displacement u, under the assumption that the actual 
process error is spatially distributed white noise (see Sec. 7 of this 
paper for a more complete discussion of this interpretation). 

Stationarity of the kernel r o (/3) is closely related to the circular 
symmetry and homogeneity of the model equations and of the circular domain. 
Usually, kernels that possess this property lead to special cases of the 
integral equation (34) that are easier to solve than the general case in 
which stationarity of the kernel does not exist. One of the interesting 
areas requiring further investigation involves the development of solutions 
to (34) that make optimum use of the stationarity of the kernel. However, 
these solutions are not yet available. The scanning algorithms to be 
developed in a subsequent subsection do not make use of this property. 
Consequently, such algorithms may not be the most efficient solutions in 
cases where stationarity holds. On the other hand, however, their range of 
applicability is much broader since they apply to general types of kernels 
without being constrained to integral equations where the stationarity 
condition is satisfied. 

An additional property of the kernel r o (/3) is that it is irrational, 
in the usual sense that its double-sided Laplace transform 
ro(s)= J _: exp(-sf3}ro(/3)d/3 is not a ratio of finite-order polynomials in 
s. This property is a direct consequence of the infinite dimensionality of 
the mapping u=HLf from f(·.·) .-...u(R,·). The main implication of this 
property is that the scanning solutions to be developed will necessarily 
involve infinite-dimensional models (which in the end may nonetheless have 
to be approximated by finite-dimensional computations). 

The final major condition of the kernel is its azimuthal periodicity 
r (/3)=ro(/3+2n). This property will turn out to have an important impact on 
t~e reSUlting scanning algorithms. 

A more detailed investigation of the foregoing stationarity, 
periodicity, and irrationality properties of the kernel ro(P). as well as 
the development of corresponding estimation schemes that make optimum use 
of these properties, is currently under way but definitive results are not 
yet available. For now. the paper turns to the development of scanning 
solutions where such properties are not fully exploited, with the 
understanding that the more refined schemes are yet to come. 
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A Partial Differential Eguat!gn for the Fredholm Resolyent 

In the particular example under consideration here. the integral 
equation (30) for the Fredholm resolvent g becomes 

T 

ro (&- l/J ) =g (Tie, l/J) + f ro (6-11) g (T;11, l/J)d11, 

o 
(37) 

where the notation g(T;9.l/J ) indicates explicitly the dependence of g on 
the uPI,er limit of observation T. The immediate aim here is to use (37) to 
develoll the celebrated [4] Krein-Bellman equation 

ag(T.;6, l/J)/aT + g(T;6.T)g(T;T,l/J) = O. (38) 

by mea:ns of the following sequence of manipulations. Differentiation of 
(37) with respect to T leads to 

o = 
ag 

(T;e. l/J ) (39 ) 
aT 

Evaluation of (37) at l/J =T iml~1ies that the last term in (39) is given by 

T 

r()(6-T)g(T;T,l/J)=g(T.e,T)g(T;T,l/J) + f r o (6-rt)g(T;11. T)g(T;T.l/J )d'l}. (40) 

o 
and s~,stitution of (40) in (39) leads to 

T 

o = Q(T;e, l/J) + f r o (e-11l)Q(T;'l.l/J)d'l. 

o 
( 41) 

where Q(T.;9,l/J)=i)g(T;9,l/J)/aT + g(T;9.T)g(T;T,l/J). Since (I+R) is 
nonsingular. (41) implies that Q=O thereby establishing the identity (38). 
This is the central result needed to establish the Gohberg--Krein 
factorization for this problem as outlined below. 

Gohberg-Krein Factorization 

TIle factorization states that 

(42) 
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where H~and ~*H* are the mutually adjoint operators 

t 

H~y = fa g(t;t,'t')y('t')d't' , (43) 

!E"n". = I Tg
(tl<.t)e«)d<. (44) 

'" * This result can be established by first computing .P H H,P from (43) and 
(44) and then using (38) to obtain the identity 

( 45) 

th,ft relates the Fredholm resolvent G and the Volterra operators H~and 
~ H*. This equation implies that [I+HLL *n"']-l = (I-G) = I-UP- .fZ'*H* 
+P*H*H~ = (1- ~*H*) (I-H~). which is the desired result. 

The State and Model Error Estimates 

A direct implication of (42) is that the model error estimate 
8 0 =[fo,Do] can be expressed as 

* * * 8
0

=h (1- ,P H ) (I-H~)y, (46) 

or more explicitly as no = (I-~·H*)(I-H'p)y and fo=L*H*no. This equation 
defines no (and fo as well) in terms of a linear transformation operating 
on the data y. This overall transformation can be viewed as the product of 
the two terms (1- .P*H*) and (I-H~) which specify a two-stage scheme for 
processing of the data y. The first stage, corresponding to (I-HP), leads 
to a 'filtered' estimate H.!i'y together with a residual (innovations) 
process e=(I-H~)y. The residual process e is then operated upon by the 
second factor (1- ~*H*) to obtain the desired observation error 
no=(I-~*H*)e. The process error fo and the state estimates U o 
corresponding to no can be obtained by means of the equa tions (10) and 
(12) • 

An illustration of the foregoing two-stage process defined by the 
consecutive transformations (I-HP) and (I-~*H*) in (46) is shown in Fig. 
4. The sketch on the left corresponds to the operator (I-H~), whereas the 
one on the right illustrates its adjoint (I-,P*H*). The clockwise 
operation on the left leads first to an estimate H~y and then to an 
innovations process e=(I-H~)y. The innovations process e is obtained by 
substracting the observed-state estimate (in this particular case, the 
value of the state estimate at the boundary) from the boundary data y. The 
innovations process e, defined by e=(I-H~)y, is then used in the counter
clockwise stage, illustrated on the right-side sketch, to obtain the 
desired observation error estimate no. 
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Figure 4. Scanning Solutions Based on Azimuthal Sweeps 

Computation of Volterra Kernels 

The one missing ingredient in the forward-backward azimuthal sweep 
just described is the specification of the kernels g(t,:t,'c) and g(t,-:-r,t) in 
H.Pand.P*H* in (43) and (44). For causal time-evolving systems. it is 
known [2] that the kernels can be computed as g(t,:t,.d = H<!? (t,'t')p('dH* and 
g(t;'t'"t)=Hp(t) <!?T('t',t)H*, where <!? is the transition matrix for a Kalman 
filter, and j is the solution to the related Ricatti equation. 
Unfortuna tely, such general. results for computation of the kernels are not 
yet available for the class of elliptic systems under investigation here, 
where the causal structure generated by the azimuthal sweep is introduced 
somewhat artificially. Anal.ysis to date indicates that, contrary to the 
time-'evolving causal case, the kernels cannot be generated by means of a 
simpl.e Kalman filter (even one of infinite dimensionality). The main 
reaSOlll for this lack of simplicity is the periodicity of the kernel r o(J3) 
in (3 16). However, the kernels g(t;t,"d and g(t;'t',t) in (43) and (44) are 
well-'defined functions of the running variable 't' and the upper limit of 
obser'V'ation t. Hence. even though they most likely cannot be generated by 
means of straight-forward Killman fil tering, al terna tive me thods for their 
computation should be effective. Such, methods are currently under 
invest iga tion. 

6 • RELATIONSHIPS BETWEEN ACTUAL AND ESTIMATED ERRORS 

One of the key results of the previous sections is that in equation 
(9), 8 o=h*(hh*)-1y , which relates the model error estimates eo to the 
available data y. By substitution of (7) in (9). it is possible to 80 one 
step beyond and obtain the following relationship between the actual and 
estimated errors: 

(47) 

where W=h*(hh*)-lh is a linear transformation whose mathematical properties 
are important to understand. 

Resullt 6.1 W is a self-adjoint projection operator. This result can be 
estalllished readily by the following sequence of statements W2 = 
[h*(llLh*)-1 h ][h*(hh*)-1h ] = h*(hh*)-lh =: W. Hence, W2=W and W is a 
proj «lction operator. Sel f-adj ointness of W can be established by 
inspection of the definition W = h*(hh*)-1~ 
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Result 6i (I-W) is a self-adjoint projection operator. Note that (I_W)2 
= (I-2~W )=(I-W). thereby establishing the result. 

Define now the model-error estimation error sp=s-so as the difference 
between actual and estimated errors. Since so=Ws, then Sp=S-W8 and 

(48 ) 

an equation that relates the model-error estimation error and the actual 
error s. 

Result 6.3 ~o and 8p are ,orthogonal complements. This result follows 

immediately from <so,sp) = <Ws,(I-W)s) = <s,(W-W2)s) = O. This last result 

is extremely .interesting because it establishes a decomposition of the 

actual error vector s as a sum of orthogonal complements which can be 

interpreted geometrically as outlined below. 

Geometrical Interpretation 

The horizontal axis in the figure denotes conceptually the process 
error f, while the vertical axis corresponds to the observation error n. 
These two variables comprise the two-component model error vector s=[f,n]. 
Consequently, an arbitrary error vector can be represented as a point on 
the two-dimensional surface shown in the figure. Those pairs s=[f,n] which 
satisfy the system model equation (7) define conceptually a straight-line 
segment characterized by the relation hs=y. The observation y is 
represented as a single point appearing at a prescribed location along the 
vertical axis. The minimum norm problem in (6) and (7) can be thought of 
as that of finding the shortest vector So from the origin to the straight
line segment hs=y. The corresponding minimum distance <8

0
,8

0
)1/2 equals 

the norm of the minimum error vector 80 =[fo,no ] representing the model 
error estimates. By simple geometry (see Fig. 5), the shortest vector So 
joining a point and a straight line is orthogonal to the line. This also 
implies that an arbitrary actual error vector 8 (one that satisfies hs=y, 
but whose norm may not be minimum) can be decomposed as the sum of the 
minimal error vector 8

0 
and its orthogonal complement 8p' i.e., 

n OBSERVATION 
ERROR 

Y MEASUREMENT 

E = ACTUAL 
EO = OPTIMAL 
Ep = ORTHOGONAL 

COMPLEMENT 

CONSTRAINT hE = Y 

f PROCESS ERROR 

Fig. 5 The Actual Error Vector as a Sum of Orthogonal Complements 
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s=s + s (49) o p' 

where <so,sp>=O. The square of the 'length' of the vector s of non-minimum 
norm can be expressed as 

an equation that can be interpreted as a mathematical statement of the 
ancient geometrical theorem that the square of the length of the hypotenuse 
of a right triangle equals the sum of the squares of its sides. 

Result 6.4 Azimuthal factorization of W in circular regions. The objective 
here is to show that, in cases where the Gohberg-Krein factorization (42) • holds, W can be factored as the product·W=w w of the yet to be defined 
operator wand its adjoint w·. 

To establish this result, it is convenient to begin by recalling that 
by definition W=h·(hh·)-1 h =: h·(I+HLL "'H·r-1 h. Use of the Gohberg-Krein 
factorization in this equation implies that 

• W:=w W. (51) 

where w is the operator w:=(I-HP)h. A block diagram illustrating this 
factorization is shown in Fig. 6. The diagram shows the two maJ·or stages w .. .. 
and w that together constitute the overall transformation W=w w. The 
first stage w=(I-H~)h, shown on the left portion of the diagram. maps the 
actual error vector s=[f.n] into the residual process e=ws. This first 
stage characterized by w involves first the generation of the data y by 
means of the equation y=hs=HLf+n followed by the use of this data to 
generate the re~idual process e=(I-H~)y. The second stage. represented by 
the operator w , operates on the residual proiess in order to obtain the 
model error estimates so=w*e. Because wand ware mutually adjoint, the 
first and second stages can be viewed as being mirror images of each other, 
wi th l:'espect to the dotted vertical line in the diagram representing the 
innov81tions process. 

w I ~ 
ACTUAL ERRORS : ESTIMATED ERRORS 

f~L I I~f 11 -H£ ~ - 1'.H"~ _ 0 

n I --no 
1 

I 
INNOVA TlONS 

Fig. 6 Factorization of W 

Another very interesting result is that if the above two-stage process 
is reversed. and w· is performed before w. then the identify transformation 
results. 
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Result 6.5 ww*=I. This identity can be established by the following 
, * * ** ** sequence of operatlons ww =(I-HP)hh (1-9;' H )=(I-H.P)(I+HIL H ) 

(I-P*H*)=I. 

Result 6.6 The 'lengths' of the minimal error vector and of the innova
tions nrocess are equal. This result follows from <so,so>=<we,we>=(e,w*we)3 
which implies that 

( 52) 

Both of these last two results are intimately related to the 
'whiteness' of the innovations process in cases where the actual errors s 
are assumed to be spatially distributed white-noise, as will be discussed 
in more detail in Sec. 7. 

An Eigenfunction· Expansion for W 

Although an eigenfunction expansion is possible in both the continuous 
and discrete cases, only the continuous-data problem is discussed here, 
because the notation is much simpler for this problem. For the continuous
data problem, the transformation W can be viewed as a mapping from the 
product space L2 (Q) x L2 (Sl) into itself. The transformation can be more 
explicitly characterized by the following set of equations 

(53 ) 

( 54) 

where Wi' are integral operator kernels that characterize the 
transformation. By means of routine manipulations, it can be shown that 
these kernels can be expressed as 

2 
",2 

Wll (x/~) = W22 (xn) = k 
<Pk(x) <Pk(~)' 

lH.2 
k k 

( 55) 

W12(x/~) = W21(x/~) = 2 ~ <Pk (X)<Pk (~), 
1+",2 

k k 
( 56) 

in terms of the eigenfunctions <Pk of the operator R in (19) • 
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Reorientation 

TIlis concludes the development of a number of important relationships 
between actual and estimated errors. In the following section. these 
relationships will be shown to be fundamental to the study of a 
probabilistic interpretation of the deterministic least-squares estimates 
previously describe~ 

7. COYARIANCE ANALYSIS WITH WHITE-NOISE MODEL ERRORS 

TIle estimation approach presented so far is based on the principle of 
least-squares, which involves the deterministic minimization of a quadratic 
functional of the model errors. This deterministic approach does not 
requ1t'e that probabilistic notions be introduced in order to derive the 
state and model error estimates. Equations (10)-(12) can be viewed as 
~stablishing a totally deterministic rule by which the data may be 
processed to obtain the desired estimates. Here, the objective is to 
explore a probabilistic interpretation of the estimates. This is done 
under the assumption, not previously used in the paper. that the actual 
errors possess the properties of a yet to be defined spatially distributed 
white-noise process. 

T~e specific objectives of the section are: 

o to investigate the second-order statistical properties (the 
covariance primarily, since all processes are zero-mean) of the 
state and model error estimates U o and So and of the corresponding 
state estimation error up=u-uo and model-error estimation error 
sp=s-so· 

o To obtain explicit expressions for the covariance of the estimation 
errors up and sp and to obtain related expressions for the mean
square estilUation erI'ors E(up'up) and E <sp,sp>. 

o To show that the state and model error estimates U o and &0 can be 
interpreted probabilistically as the conditional expectations 
so=E(s/y) and uo=E(u/y). 

Since these results are based on the assumption that the actual errors 
s are spatially distributed white-noise, it is of interest to first make 
somewhat more precise the notion of such a process. 

Definition of a Spatially Distributed White'-Noise Process 

Intuitively (see [3] for a more precise definition), a spatially 
distributed white-noise process f is characterized by an impulsive 'delta
funct:ton' covariance, i.e., 

E:[f(x)f(~)] (57 ) 
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This def inition, which is in the same spirit as that used for time
dependent causal systems. implies that the values f(x) and f(~) of the 
process at the two distinct points x and ~ are totally uncorrelated. The 
definition also reflects the fact that, if the points x and ~ are 
coincident, the correlation becomes infinite. Based on this definition, it 
is possible to state that, if s=[f,n] are assumed to be white-noise, then 
the corresponding covariance is 

(58 ) 

where U is an appropriately dimensioned unit matrix that accounts for the 
possibility that s(x) may be a vector of a finite number of dimensions. 

The foregoing is only a formal definition of the covariance of 
spatially di~tributed white-noise, because it attempts to define in a 
pointwise sense a quantity (the spatial covariance) that cannot be defined 
precisely in this sense. A somewhat more rigorous notion is that of a 
covariance operator for a white-noise process as defined below. 

Definition of the Covariance Operator of a White-Noise Process 

In approximate terms, the covariance operator is the 'integrated' 
version of the covariance function in (57). For example. the covariance 
operator E[ss"'] for the process s is defined to be that integral operator 
whose kernel is the covariance function in (58). Since the covariance 
function of white-noise is impulsive, the corresponding covariance operator 
is the identity. This can be observed from the following sequence of 
operations: E[88"']V= f OE[s(x)e(~)]v(~)d~=v, which is valid for all 
admissible functions v. Consequently, the covariance operator E(ss"') of 8 

satisfies the condition 

... 
E(u )=1, ( 59} 

where I is the appropriately dimensioned identity operator. £q. (59), 
which can be viewed as the integrated version of (58), represents the key 
assumption needed to compute the corresponding covariances of the estimates 
and of the related estimation errors. 

'" The Covariance Operator E[uu ] of the State no The following sequence of 
• • • • ••• steps E[uu ] = E[Lff L ] = LE[ff]L = LL imply that 

(60) 

... Note that the kernel of LL is r(x/~) implying that 
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E[u(x)u(~)l = r(x/~), (61) 

which justifies the earlier i.nterpretation of r as the state covariance 
kernel. 

$ 
The Covariance Operator E[yy 1 of the Data y~ This operator is given by 

. * * * *. * * * as can be establ1shed by E[yy l=E[hss h ]=hE[ss lh =hh =I+BLL H • 

The Covariance Operators~o!~l and E[sp-.!;l of So and 

The following sequence of steps E[sos:l=E[Wss*W*l=WE[ss*]W*=W2 =W 
* * * E[spspl=E[ (I-W)s8 (I-W)l=(I-W)E:[ 88 ](I-W)=(I-W) imp ly tha t 

(62) 

(63) 

(64) 

where W is the projection operator defined in (47) that relates the actual 
and estimated errors 8 and 80 , 

Whitene:ss of the Innovations Process. This result 

E(ee *) = I, (65) 

valid :in cases where the Gohberg-Krein factorization holds, follows from 
* * * * the following sequence of steps E(ee )=E[W88 w l=ww = I. 

The Covariance Operator E[up!;l of the State Estimation Error upL The 

state estimation error up is defined as the difference up=u-uo of the 

actual and estimated state u and uo' Since u=Lf and uo=Lfo' then 

up =L( f'-fo)=Lf p ' where fp is the proces s--error e s tima tion error that 
together with np forms the two-component model-error estimation error 

* * * sp=[fp.npl. Hence, E[upup]=LE[fpfplL and 

(66) 
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where E[fpf;l has been co~puted by taking that component of E[sps;l in (64) 
that corresponds to E[fpfp]. 

* An alternative expression for E[upupl can be found by rearranging (66) 
to obtain 

(67) 

Note that (66) requires inversion of the operator (I+HLL *H*). whereas (67) 
involves inversion of the related but distinctly different operator 
(I+L *H*HL). The availability of the two options in (66) and (67) provides 
the po ss ibi! i ty of us ing whichever option turns out to be simples t in a 
given si tua tion. 

The Mean-Square Sta te Est ima Hon Error E(up!..!1p~ The mean-square sta te 
estimation error. defined as E(up.up). is related to the trace of the 
covariance operator E[Upu;] by means of the following identity 

(68) 

where the trace Tr of an operator is defined in the sense of Ref. [3]. 
Substitution of (67) in (68) leads to the following expression for the 
mean-square state cstiLlation error 

(69) 

An alternative expression for E(up'up)' of course, can be obtained by 
substitution of (66) in (68). 

An eigenfunction expansion can also be found for E(up'up) in terms of 
the orthonormal basis <Pk in (19). For simplicity, the assumption is made 
that H=H*=I, corresponding to the case with observations over the entire 
domain. For this case, it can readily be shown that 

E(up'up)= ~ Ai/(l+Ai)· 
k 

where Ai are the eigenvalues of R=LL*. 

(70) 

The Mea:-Square Model-Error Estimation Error E<sp!.!p~ Since E<sp'sp>= 
TrE[spsp]. Eq. (64) implies that 

E<sp,sp>=Tr(I-W). (71) 
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or, in terms of the components fp and np of 8 p ' 

E(lIp .8p >=E(fp ,fp ) + E(np,Dp )' 

E(fp,fp)=Tr[I-L *H* (ItHLL *H*)-1HL], 

E(up ' np) =Tr [1-(1+ HLL *H*) -1] , 

(72) 

(73) 

(74) 

The last two terms E(fp,f ) and E(n ,n ) are the mean-square estimation 
. nh . h P P Pd b' . "T ,errors 1 erent ln t e process-error an 0 servatl0n-error estlmates. 1'lote 

:parenth.etically that by use of the identity (I+HLL *H*)-1=I-G, where G is 
the Fredholm resolvent in (26), the condition (74) can be converted to 

an equation which is somewhat more convenient than (74). 

EigenfRnction expansions for E(fp,fp ) and E(np,np ) can also be found as 

E( fp' f p )= ~ 11 (1+Ai), 
k 

E(:np,np )= ~ Ail (1+ Ai). 
k 

(75) 

(76) 

(77) 

where, for simplicity, it has been assumed that H=H*=I in (73) and (74). 

Unboundedness of the Process--Error Mean-Square Estimation Error 

Under the assumption used in this section that the actual err.ors s 
are white-noise and that the corresponding covariance operator E[ss*] is 
the identity as in (59), the mean-square estimation error E(f ,f ) of the 
process error becomes unbounded. This unboundedness can be asEerFained by 
inspec1i;ion of the right-hand side of (76). By an argument similar to the 
one used to analyze the summation in (23), it can be established that the 
term 1/(1+A~)-1 as k-oo. This implies that the summation in (76) does not 
converge, and, in fact, becomes unbounded. 

T.b.is lack of convergenc4~ is due to the fact that the process-error 
estimation error fp=f-fo is a spatially distributed process that for large 
k retains many of ~he spatial characteristics of the white-noise process f. 
This similarity between f and fp at large k can follow from the fact that 
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f is a 'smoothed' estimate in the sense that it is domina ted primarily by 
t~e spatial characteristics associated with small values of k. Since fo is 
being subtracted from f to obtain f p ' the resulting process f =f-f will 
tend to be dominated at large k by the spatial characterisfics 8f the 
initial white-noise process f. 

Although it should be kept in mind at all times, the problem of 
unboundedness of E(fp.f ) is not as serious as it may seem initially. since 
the white-noise assum~tion used for f is never satisfied in practice. In 
physical situations. the actual errors are never white and the 
corresponding model error estimates fo and the process error estimation 
error f are well-behaved. The white-noise assumption (59) is a 
mathemafical fiction that generally is useful because it leads to a 
relatively simple 'a priori' covariance analysis as represented by (60)
(77). However. the results obtained by such an analysis should be used 
only if they make sense and should be discarded otherwise. The 
unboundedness of E(fp.fp ) is therefore a property that is primarily of 
mathematical interest tiut that can be ignored in practice because the 
assumptions under which the lack of boundedness occurs are seldom 
sa tisfied. 

The State and Model-Error Estimates as Conditional Expectations 

The aim here is to reinterpret the state and model-error estimates uQ 
and So in (9) and (12) as the conditional expectations sQ=E(s/y) and 
uo=E(u/y). To this end, consider the general formula L3] for the 
conditional expectation of u given y: 

(78 ) 

• expressed in terms of the 'cross-covariance' operator E[uy ] and the 'auto-• covariance' 0/erat0f; E[yy 1 •• Direct ,f0*mputation of these two operators 
leads to E[uy ]=LL Hand E[yy l=I+HLL H. These last two equations imply 
that 

* * * * -1 uo = E(u/y) = LL H [I+HLL H] y, (79) 

an equation that has previously been recorded as (12). but that can now be 
used to observe the equivalence of Uo and E(u/y). 

Similar arguments can be used to show that 

where E(sy)*=E(ss*h*)=h* and E(yy*)=E(hss*h*)=hh*. Consequently, 

8 0=E(s/y)=h*(hh*)-ly , (81) 
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an equation previou~ly recorded as (9) but that now makes explicit the 
equivalence of eo and E(e/y). 

The above equivalence has been established using a somewhat indirect 
approach where the deterministic solutions eo and U o in (9)-(12) were first 
obtainod using a least-squares formulation. The deterministic solutions 
were then re-interpreted probab ilistically as the conditional expectations 
E(e/y) and E(u/y) in (79) and (81). An alternative and more direct 
approach to establish that eo=:E(e/y) and uo=E(u/y) would be to introduce a 
probabilistic framework with u, e and y assmed to be random-fields from the 
outset. and then to use a direct computation of the conditional 
expectations to arrive at (79) and (81). Such an approach is currently 
under investigation and will be reported on elsewhere by the author. 

8. CONCLUDING REMARKS 

Th.is paper has advanced an approach to the concurrent estimation of 
the state and of the model errors for a system described by elliptic 
equations. The approach is based on the principle of least-squares that 
seeks to find the model error vector with smallest norm subj ect to linear 
constr:aints in a sui tab ly defined function space. Sol ution of the 
optimization problem leads to state and model error estimates that c~an be 
computed either in a batch-processing mode where all of the data is 
processed simultaneously or ill a scanning mode where the data is processed 
recursively. A probabilistic l.nterpretation of the deterministic least
squares solutions makes possible an 'a priori' covariance analysis of the 
estimation error associated with the estimates. The covariance analysis 
also provides formulas to evaluate the mean-square estimation error 
corresponding to both the state and the model error estimates. 
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STA1"E AND MODE1L ERROR ESTIMA'fION FOR 
lELLIPTIC SYSTEMS: APPLICATIONS TO LARGE 

AN'fENNA STATIC SHAPE DETERMINATION 
G. Rodriguez and R.E. Scheid, Jr. 

Jet Propulsion Laboratory, California Institute of Technology 
Pasadena, CA 91109 

ABSTRACT 

This paper outlines the application of the estimation approaches of 
Ref. [1] to the problem of static shape determination for large antenna 
systems. The problem consists of estimating the shape of an antenna sur
face from measurements of its static deflection. The estimation schemes 
are based on anyone of the modeling options of a single PDE for early 
insight and understanding, coarse-resolution mu1tip1e-PDE models for para
metric studies and fine-resolution piecewise-continuum models for detailed 
design. For anyone of these three models, estimator design can be devel
oped using an infinite-dimensional approach, where the necessary finite
element truncation and approximation is conducted after the analytical 
design has taken place, or it can be based on a finite-dimensional approach, 
where the model is truncated before the estimation problem is formulated. 
One of the main objectives of the paper is to develop both approaches while 
simultaneously investigating their differences and similarities. Simulation 
results of an application of the finite-dimensional approach to a large 
parabolic reflector are presented. Similar large antenna simulations for 
the infinite-dimensional approach are currently being carried out. 

1. INTRODUCTION 

The problem of static shape determination consists of finding the shape 
of an antenna surface from mu1ti--point spatially distributed measurements of 
the structural deflections, as illustrated in Fig. lea). A large flex-
ible antenna will be perturbed from a nominal shape by disturbances due, 
for example, to control actuation and external loads. To meet future an
tenna performance requirements, it will be necessary to determine these de
flections quite accurately, and in some cases, to apply control forces and/ 
or moments to restore the desired antenna shape. The estimation methods 
described here would constitute a fundamental element of such a combined 
shape determination and control capability. 

Current methods for antenna calibration entail a painstaking survey of 
the entire surface of the structure, usually accomplished by a technician 
armed with a theodolite as in Fig. l(b). Once the survey is complete, a 
least-squares fit of the data to the parameters of a paraboloid is per
formed. The entire process can take on the order of days and is clearly 
inadequate for systems requiring real-time autonomous operation. 
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0) PROBLEM b) CURRENT SOLUTION c) FUTURE SOLUTION 

SHAPE 

Fig. 1. Static Shape Determination Problem 

An improved solution to the shape determination problem is provided by 
an integrated system in Fig. l(c), currently under development at JPL, that 
combines the two mutually complementary technologies of electro-optical 
sensing for shape determination and estimation/identification methodology 
for processing of the sensor data. Sensing is provided by SHAPES [2], a 
sensor capable of the real-time, simultaneous measurement of the three
dimensional deflections of about 50 points on a structure at a sawpling 
rate of 10 hz. While Fig. l(c) illustrates the full system capability for 
static and dynamic shape estimation and for parameter identification, this 
paper focuses primarily on the static shape estimation algorithms as 
described below. 

2. ELLIPTIC MODELS FOR SHAPE ESTIMATOR DESIGN 

Central to the shape determination schemes under development here is 
the selection of a mathematical model to represent the elastic behavior of 
the structure. The following types of models (Fig. 2) are useful at three 
distinct stages of the design process: 1) single PDE models defined over a 
single domain for development of initial physical insight and understanding, 
2) coarse-resolution multiple-PDE models for parametric studies and design 
and 3) fine-resolution piecewise-continuum models, defined over a possibly 
fine structural-element grid, for detailed design and evaluation. 
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0) SINGLE PDE b) MULTIPLE PDE c) FINE RESOLUTION 

Fig. 2. Models for Estimator Design 

Single PDF: Models 

Such models are most useful in the early stages of a design, when one 
of the main objectives is to create physical understanding and insight about 
the design problem. An example of such a model, one that would be applicable 
as a simple approximation to a parabolic antenna system, is illustrated in 
Fig. 2(a). This model has been used to develop the scanning solutions for 
data-processing outlined in [1]. The model consists of the following equa
tions for the out-of-plane displacement of a membrane in tension: 

'l . (T'lU) f, 
(R 12n 

Jo 0 frd8dr 0, (1) 

Y (8) u(R,8) + n(8), for 0 :: 8 < 2n, (2) 

defined over a circle of radius R in terms of the polar coordinates rand 8. 
The symbol T denotes the membrane tension for unit area. The free-boundary 
condition (v . 'l)u = 0 is assumed at the outer boundary, where v denotes the 
corresponding unit normal. The "internal" condition u(0,8) = 0 is 
assumed to hold at the origin r :, 0 to account for the fact that the sensor 
is assumed to measure the relative displacement between the boundary and the 
origin. The observation equation (2), in this particular case, assumes that 
the data is available continuously at the boundary of the domain. This 
assumption, however, is not a major restriction, as other types of observa
tions (such as discrete measurements along the boundary) can be encompassed 
with a similar formulation as described in Re ~. [1]. 
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An alternative approach to describing the model, which will be useful 
later in applying the finite-element method, is based on the following vari
ational formulation. The potential energy a(u,u) associated with the 
model is a(u,u)=(1/2)fQ T Vu . Vu dQ. A variational (weak) solution to 
0) is obtained by solving the following minimization problem 

min J(u) a(u,u) - (u, f), for u in V, (3) 

where V, commonly referred to as the space of admissible functions, 
consists of those functions which possess square-integrable first-order 
spatial derivatives and which satisfy the geometric boundary conditions 
u(O, e) = 0 of the problem. The boundary condition (v· Vu) = 0 at the 
circumference of the domain emerges as a natural condition by solving the 
minimization problem in (3). Ref. [3] contains a more precise statement 
of the above variational formulation. 

Closely related to the minimization problem in (3) is the principle of 
virtual work stating that 

2 a(u, v) (v, f) , for v in V, 

which is obtained readily from (3) as a necessary condition for 
minimization. 

(4 ) 

The value of introducing the variational model-statements in (3) and 
(4) is that they can be readily extended to describe complicated multiple
PDE models. While in the simple case of a single equation, it is equally 
convenient to write either the explicit form (1) or the variational forms 
(3) and (4), in more complicated cases described below, the variational 
formulation results in a somewhat simpler statement of the model. 

Coarse-Resolution Multiple-PDE Hodels 

These models involve first subdividing a structure into a few major 
substructures, describing each substructure by means of a simple set of par
tial differential equations, and then specifying appropriate continuity con
ditions at the interfaces between substructures. The models that result 
from this process are specified in terms of a few coupled partial differen
tial equations together with the corresponding boundary and interface 
conditions. 

An example of such a model is illustrated in Fig. 2(b). The structure 
consists of an antenna dish with a prescribed number N of ribs emerging 
from a central rigid hub. The ribs provide the necessary tension to support 
a membrane-like mesh. In the interest of obtaining a relatively simple 
model, the antenna dish is assumed to be flat, and only the out-of-plane 
deflection is considered. Additional simplifying assumptions are that the 
mesh can be described by the equations for a membrane in tension and that 
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the deflection of each rib is governed by a simple beam-equation model. 
The out-of-plane deflection of the dish is described by the composite N
veclor u(r,8) = [u1(r,8), ... ,uN(r,8)], where ui(r,8) is the displace
ment of the dish within each subdomain. In terms of this displacement 
field, the total potential energy can be expressed as: 

a (u, u) 
2
1 lR (08NT )0 'Vu(r,8)' 'Vu(r,e) rd8dr -

dr, 

where 'Vu "". ['Vu l' ... , 'VuN ], and T and EI are respectively the membrane
tension and beam-stiffness coefficients. 

(5 ) 

The variational principles in (3) and (4) above apply to the multiple 
PDE models once the potential energy (and the corresponding space V of ad
missible functions) has been specified. For the example in Fig. 2(b), the 
potential energy is given by (5). The related admissible space V consists 
of those displacements that are sufficiently differentiable so that the 
potential energy (5) is well-defined and that, in addition, 
satisfy the following geometric boundary and interface conditions. The 
inner-boundary geometric conditions u(O,6N) = du(O,8N)/ar = 0 for the rib 
elements correspond to the assumption that the ribs are pinned at the hub. 
For the mesh elements, the inner-boundary condition uCO,e) = 0 corresponds 
to a similar assumption. The natural boundary conditions for the ribs 
a2u(R, 6N)/ar2 = a3u(R,6N)/ar 3 = 0 and for the mesh au(R,e)/ar = 0 for 
o < e :::. 6N emerge from the variational formulation. 

To complete a specification of the admissible displacements, it is 
necessary to determine interface conditions. These conditions, based on 
the assumption that the displacement field is continuous at the interfaces 
between rib and mesh elements, can be stated as ui(r,8N) = ui+l(r,O) for 
o < r < R or in the more convenient matrix form 

C u(r,O), C 

010 

o 0 1 0 

o 0 

1 0 
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It is of interest to note that C is a periodic matrix with all of its 
eigenvalues equally spaced on the unit circle, a property that can be used 
very efficiently to analyze the model by means of cyclic symmetry as outlined 
in Ref. [4]. 

A more explicit form, analogous to (1), of the above coarse-resolution 
multiple-PDE model can be obtained by a set of analytical manipulations 
(closely related to integration-by-parts). Use of the divergence theorem 
and of the geometric boundary conditions (6) in (4) results in 

i
R

(08
N In {f(r,8) - V· [T Vu(r,8)]}' v(r,8) rd8dr + 

f
8
N 

o T[Clu(r,8)/Clr] • v(r,8) 

2 2 -1 J
R 

[Cl vCr, 8~)/Clr ] dr + 0 T r [Clu(r,8N)/Cl8' v(r,8N) 

- Clu(r,0)/Cl8 . v(r,O)] dr 0, (7) 

which must be valid for all admissible virtual displacements v. This con
dition, after two integrations by parts in the third term and use of the 
geometric constraints (6) in the last term, results in the following more 
explicit set of equations describing the model: 

v . (T Vu) f, (8) 

together with the 
Cl3(R,8N)/Clr3 = O. 
form of (1), with 
investigation. 

T a r 88 [C u (r, 0) - u (r, 8
N
)] , (9) 

natural boundary conditions au(R,8)/Clr = a
2
U(R,8

N
)/dr

2 = 
As expected, this set of equations are in the general 

perhaps the exception of (9) which requires further 
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Equation (9) is an interface condition reflecting the forces that the 
mesh membrane applies at each of the beam elements. Some physical insight 
can be gained by transforming (9) into the following scalar notation: 

8
2 

8
2 

2 [EI -2 u.(r,8 )] 
8r 8r 1 N 

(10) 

in terms of the scalar displacements u. of the individual rib elements. 
Note that the term on the right reflecfs the forces that the adjacent mem
brane elements apply on the ith rib element. This force is dependent on 
the difference in the circumferential slope (the partial derivative of the 
displacement with respect to 8) of the membrane deflection at the interface. 
A different way to interpret this equation is based on the observation that 
a rib deflection, as represented by the left side of (10), would cause a 
"jump" discontinuity in the circumferential slope of the membrane. 

The foregoing equations represent the sought-after multiple-PDE model 
for the structure. While the model as developed here involves only out-of
plane deflections, a similar approach can also be used for the in-plane 
deflections as described in more detail in Ref. [4]. 

Some remarks are appropriate about the potential uses and limitations 
of such coarse-resolution models. Because of their relative simplicity, the 
models are usually a very coarse approximation to the actual structure. For 
instance, the dish has been assumed to be flat, whereas, in more complete 
models, the parabolic dish geometry has to be taken into account. Also, 
the ribs have been modeled as simple beam elements, while, in reality, each 
rib is in itself a complicated structure (of variable cross-section and 
curved geometry) that would require a more complete model for its full 
description. Because of these and other limitations (such as the use of a 
linear elastic model to approximate the actual nonlinear mesh behavior), it 
is necessary to use caution in applying these models. 

Most of the applications of the piecewise-continuum models result from 
their ability to describe many of the basic features of the actual structure, 
while still retaining a relative simplicity. Since the models typically in
volve only a few parameters, they can be quite useful in conducting para-
metric design studies. For example, they can be used to establish the 
sensitivity of estimator performance to changes in the structural stiffness 
properties. For the same reasons, the models can also be used in non-modal 
parameter-identification approaches to estimate such parameters as the 
average mesh tension T that, in a global somewhat approximate sense, char
acterize the stiffness properties of the structure. 

In summary, while the coarse-resolution multiple PDE models can be use
ful in many cases, their inherent limitations must be understood in order 
for the models to be applied correctly. In cases where more reso-
lution is required, the models described below have a better potential (by 
no means always achieved) for characterizing accurately the behavior of 
complicated structures. 

581 



Fine-Resolution Multiple PDE Models 

Development of these models begins by first partitioning a structure 
into a possibly large number of elements, as in the finite-element approach 
to structural modeling. After this element grid has been specified, the 
deflection within each of its elements is described by the relatively simple 
PDE's used in the traditional elements (beams, plates, membranes, etc.) 
in structural analysis. To complete the model, interface conditions re
flecting continuity of the displacement field and possibly some of its spa
tial derivatives are then specified. An illustration of the grid for repre
senting an antenna-reflector model is contained in Fig. 2(c). 

A fine-resolution piecewise-continuum model would be obtained as fol
lows. The structural deflection within each element would, as in the previ
ous model, be described by the symbol ui(xi)' where xi are the local spatial 
coordinates within each grid element ~i' The total potential energy of the 
system can be expressed as: 

a(u,u) 
1 
2 1:.1 

1 . 
1 

c. [D.u .. D.u.] d~., 
1 II II 1 

(11) 

where Di are appropriately defined partial differential operators, and ci 
are constants characterizing the elastic properties of each element. Note 
that while the local element stiffness has been characterized by a single 
scalar (for the sake of simplicity), the formulation can be extended readily 
to cases where the stiffness properties are specified by several scalars. 

This definition of the potential energy is the key step required to 
apply either one of the variational principles in (3) and (4) t(; the fine-
resolution PDE models. The corresponding space V of admissible displace
ments is, as before, based on the peculiarities of the problem under inves
tigation. In general terms, however, the displacements in this space are 
selected so that the potential energy makes sense and so that the geometric 
boundary conditions (and also the inter-element conditions) are satisfied. 

Fine-Resolution Hatrix Differential Operator Models 

A more explicit matrix-differential-operator model, similar to that in 
Eq. (8), can be developed for complicated structures requiring a fine
resolution grid description as in Fig. 2(c). To this end, consider the 
identity 

[ D . u. ' D . u .] d~. 
1 1 1 1 1 

r [u. 'B.li.] Jr 1 1 1 
r. 

1 
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dr. 
1 

'le 
, D . c . D • u . ] d~ . , 

1 1 1 1 1 
(12) 



where Bi denotes a matrix differential operator defined over the boundary 
ri of ~i, and Di is for formal adjoint of Di. For specific cases of prac
tical interest, this identity can be obtained readily by a process analo
gous to integration-by-parts, as in the case of Eq. (8). Use of (12) in 
(11) implies that Au = f, where u is the composite vector u = [uI, ... ,UN], 
and A is a matrix-differential operator whose diagonal elements are D~ciDi 
in (12). In some cases, it is convenient to replace this model Au = f with 
the more general model 

Au Bf, (13) 

where the operator B has been added to reflect the fact that the forcing 
term f = [fl, ... ,fNl may not be applied at all elements 0i' 

The operator A in (13) may appropriately be referred to as the "stiff
ness operator" because it is a generalization of the traditional stiffness 
matrix of structural mechanics. This equation must be satisfied together 
with a set of inter-element conditions (emerging as natural conditions from 
the first term on the right side of (12», which reflect the continuity of 
the quantity B.u. at the interelement boundaries rio 

1 1 

Discussion 

The piecewise-continuum models just described simultaneously retain 
both the conceptual completeness of partial differential equations and the 
versatility of the finite-element approach to modeling of complicated struc
tures. Retention of the infinite·-dimensionality of the continuum models 
implies that the model has the potential for describing many of the impor
tant physical characteristics (which may be important to estimation accur
acy) of the structure. For example, in the antenna shape determination 
problem, it is necessary to have an accurate description of the antenna de
flection inside each grid element in order for the shape estimates to be 
consistent with the relatively short wavelength (4 cm for a typical electri
cal operating frequency of 2.5 Ghz) of intended operations. The ability to 
retain such resolution makes the model potentially more accurate, although 
finer resolution does not necessarily imply improved accuracy. It is quite 
possible that the additional information being retained by the fine
resolution model is corrupted by inevitable model errors. However, in spite 
of these errors, the models can still be quite useful if they retain quali
tatively the significant effects of the structure response. 

One of the main objectives of developing 8uch models of course is to 
conduct the shape estimator designs. As will be discussed in Sec. 3, thi.s 
design can be based on the abstract-operator model in (13), without having 
to convert this model into scalar PDE notation. Obtaining such a scalar 
model would be impossible for structures of even reasonable complexity, be
cause of the large number of coupled differential equations, inter-element 
boundary conditions and coordinate transformations which would be involved. 

However, before introducing the design approach based on the operator 
models (to be done in Sec. 3), it is of interest to develop first a finite
dimensional version of (13) as described below. 
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Finite-Dimensionai 110dels 

An alternative to the above infinite-dimensional models is obtained by 
solving approximately the minimization problem (3) by means of the finite
element method [5]. The finite-element solution is obtained by solving (3) 
within an approximation subspace VN typically consisting of piecewise poly
nomial functions defined over a finite-element structural grid. Every 
function u within this subspace VN can be expressed as 

u = L (14) 

k 

where ¢k is ~ piecewise-polynomial basis, and xk are the corresponding co
efficients. Substitution of (14) in (3) and performance of the indicated 
minimization results in 

KX F, (15) 

where K is a stiffness matrix whose general element Kkm = 2a(¢k'¢m); F is 
a vector whose elements Fk = (¢k,f), and X is a vector formed by the coef
ficients xk in (14). 

Orientation 

One of the central themes of this paper is to understand the relation
ship between the following two approaches to estimator design: 

• an approach where an infinite-dimensional model is retained as 
long as possible throughout the design process while delaying 
the necessary truncation until the analytical design has taken 
place. 

• a finite-dimensional design approach where the structural model 
is first truncated and the subsequent estimator design is based 
on the approximate model. 

Although in the first approach the design is obtained first and then trun
cated, in the second approach these two steps of design and approximation 
are reversed. A development of the two approaches, together with illustra
tive examples and applications, is contained in the next three sections of 
the paper. 
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3. INFINITE-DIMENSIONAL APPROACH TO ESTIMATION 

The infinite-dimensional approach to estimator design begins from the 
basic goal of minimizing the following quadratic functional of the model 
errors: 

min J (f) (y - Hu,y - HU)3 + (f,f)2' (16 ) 

where the inner product notation is defined in Ref. [1]. The optimization 
problem must be solved subject to the constraints specified by the model 
equations Au = Bf in (13), emerging from a single PDE, a coarse-resolution 
multiple PDE model, or a fine-resolution piecewise-continuum model. These 
constraint equations must be satisfied together with interelement condi
tions, similar 'to (9) above, reflecting continuity of the displacements 
and possibly a finite number of its spatial derivatives. The observation 
equation is again specified by y = Hu + n. 

Application of a calculus of variations approach [3] leads to the fol
lowing boundary-value problem 

Au 
o 

A*'A 

(17) 

(18) 

whose solution is specified in terms of the optimal estimates u and the 
adjoint variables 'A. The corresponding model error estimates ~o and no 
are provided by 

f 
o 

n 
o Y - Hu 

0' 

in terms of the previously determined variables u and 'A. 
o 

(19) 

(20) 

The above is a boundary-value problem of the type traditionally en
countered [3] in solving optimal control and estimation problems with quad
ratic criteria. Its solution leads to the state and model error estimates 
U o and Eo = [fo ' no]' This boundary-value problem provides an equivalent 
alternative to the integral equation approach of Ref. [1] for computation 
of the optimal estimates. 
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Equivalence of Boundary-Value Problem and Fredholm Integral Equation 

To show the equivalence, first solve (18) for A to obtain A = L*H*no ' 
where L* is the integral operator whose kernel is the Green's function for 
A*. Substitution of this equation in (17) implies that Uo = LBB*L*H*no , 
and use of this in the observation equation y = Huo + no leads to 

(I -:- y, (21 ) 

which, upon setting B I, can be recognized as the integral equation in 
[ 1] . 

An Alternative Form for the Boundary-Value Problem 

An alternative form of the above boundary-value problem is obtained, 
in cases where B = I, by eliminating the adjoint variables A in (17) and 
(18). First, operate on (17) by A* to obtain the intermediate equation 
A*Auo = A*A. Then; use this in (18) to arrive at (A'l<A + H*H)uo = H~~y, 
which implies that 

u 
o 

(22) 

It is of interest to explore the relationship between this state
estimate solution and that obtained in [1]. Recall that in [1] u has been 

o specified as 

u 
o 

LL*H*(I + HLL*H*)-l y. (23) 

Since both (22) and (23) determine Uo in terms of the data y, these 
equations together imply the interesting identity: 

(A*A + H*H)-l H* = LL*H*(I + HLL*H*)-l. (24) 

Solution of Boundary-Value Problem by Finite-Element Method 

The finite-element method [6] is applied here to obtain an approximate 
solution to the boundary-value problem in (17) and (18) that characterizes 
the optimal estimates. While the general methodology of finite-element 
analysis can be applied in a number of ways to this problem, an approach 
involving the consecutive solution of (18) and (17) is perhaps the most 
appropriate. 
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Consider first the following minimization problem whose solution 
corresponds to that of (18): 

min J (A) ao.,),.) - (H),.,n ) , 
o 3 

(25) 

where a(),.,),.) is the potential energy. To obtain an exact variational 
(weak) solution to this problem requires that the minimization in (25) be 
conducted in a space V of admissible functions. A finite-element approxi·
mate solution, however, is obtained by conducting the minimization in an 
approximation subspace V~. The functions in V~ can be expressed as 

(26) 

where ¢k form a piecewise polynomial basis in v~, and Ak are the corres
ponding cOE~fficients. Substitution of (26) in (25) leads to 

n , 
o 

(27) 

where A = [),.I, ... ,\N] is the vector of nodal-point adjoint variables, 
and HI = [H¢!, ... , H¢N] is a "modified" observation matrix. A stiffness 
matrix Kl with a general element K~m = 2a(¢k, ¢m), has been assembled using 
the approximation subspace V~. 

This equation determines the values of the adjoint variables at the 
nodal coordinates, whereas the closely related Eq. (26) provides the neces
sary interpolation inside the elements themselves. Consequently, (26) and 
(27) together provide the sought-after solution of (18), and there remains 
only the task of solving (17) in order to compute the state estimates u . 

o 

The variational form of (17) is 

min J(u ) 
o 

a(u ,u) - (Bu ,B\), 
000 

where the minimization takes place in an approximation 
general, may be distinctly different from the subspace 
(25). The functions in V~ can be expressed as 

u 
o L x~ ~k' 

k 
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(28) 

N subspace V2 that, in 
V~ used to solve 

(29) 



where ~k is a piecewise polynomial basis in V~, and xk are the corresponding 
coefficients which form the composite nodal-point state estimates X 
[x1, ... ,xN]. Substitution of (Z9) in (Z8) results in 0 

o 0 

o 
(30) X 

where the stiffness matrix KZ and the related matrix Cz are specified in 
terms of their general elements K~m = Za(~k' ~m) and c2km = (B~k,BCPk)' 
Eqs. (Z7) and (30), when used in the observation equatlon 
y = Huo + no HZXo + nO' imply 

y, (31 ) 

where HZ = [H~l, ... ,H~N]' This equation determines the observation esti
mates no from the data y, while the related nodal coordinate state esti
mates are determined from (Z7) and (30). The interpolation formulas (Z6) 
and (29) provide the value of the estimates in that part of the spatial do
main within the individual finite elements. 

Illustrative Example 

Consider the following example illustrated in Fig. 3: 

f (0, (3Z) 

with the boundary conditions u(O) = u(9..) = 0, where 9.. is the length of the 
structure. The objective of the estimation process is to minimize the func
tional 

J (f) (33) 

which is a special case of (16) above. Note that for completeness a weight
ing coefficient 0 has been introduced that can be varied as a parameter in 
the estimator design. 

The boundary-value problem, analogous to (17) and (18), whose solution 
determines the optimal estimates is 

d
2

u (O/ds
Z 

,\ , o < s :2. 9." 
0 

(33) 

d
Z

,\ (0 /d s
2 0, s+ < 

k- S.:.. sk+1 ' (34) 
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(35) 

with the boundary conditions u(O) = u(£) = A(O) = A(£) = O. The symbols 
dA(~R)/d~ and dA(~k)/d~ denote the upper and lower limits of the slope 
dA/d~ at the measurement location ~k' 

MODEL d2u/d~2 = f 
OBSERVATION Yk = u(~k) + nk 

~----------------------1 --------.--------------~ 

MEASUREMENT 
LOCATIONS 

[

FINITE-ELEMENT 
NODE 

r · .. ~ ... ® '_®AA-____ ~~------J+ 
u(O) = 0 . I tk u(1) = 0 

Fig. 3. Example to Illustrate Estimation Approaches 

To obtain the solution of this problem by means of the finite-element 
method, it is necessary to first convert the problem statement to variational 
form as in (25). Consider the following minimization problem 

min J (A) (36) 

(31) 
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where Ak = A(Sk) denotes the value of the adjoint variable A at the 
measurement location Sk; and Qk = [Sk+l,Sk] is a subinterval whose length 
is the distance between measurement points. To obtain an exact solution, 
the minimization in (36) is to be conducted in the space VI of continuous 
functions whose derivative is piecewise continuous. While for this simple 
example it is possible to obtain the exact solution to (36), the aim here 
(in order to illustrate an approach that applies to cases where the exact 
solution cannot be obtained) is to instead obtain an approximate solution 
based on the finite-element method. 

Define first a finite-element grid (see Fig. 3) with the nodal points 
[SI, ... ,SN], where N is the total number of nodes. For convenience, the 
finite-element partitions are selected so that M ~ N and the set of nodal 
points contains the set of measurement points. The finite-element method 
solves (36) within an approximation subspace V~ consisting of piecewise 
linear functions A with continuity of the function at the nodal points. 
The assumption that A is piecewise linear implies that 

(38) 

where Ai are the nodal-point values of the adjoint variable A. Substitu
tion of (38) in (36) results in a matrix equation, similar to (27) above, 
with a N-by-N stiffness matrix Kl given explicitly by 

2 "' -1 , , 
-1 2 -1 , 0 , , , , 

, -1 2 -1, , , 
Kl 

1 , , 
(39) 

/:, , , , , , , , , , , , , , , 
0 ,-1 2 -1 ' , , 

" -1 2 

where the subscript 1 denotes that the displacement function used in form
ing Kl belongs to the approximation subspace V~. It is necessary to be 
that precise about the approximation subspace used to form this stiffness 
matrix because in subsequent discussions a different stiffness matrix will 
be formed for this example that is based on piecewise-cubic interpolations, 
as opposed to the piecewise-linear functions used above. 
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Specification of the stiffness matrix KI is the key ingredient required 
to carry out the computations in (27) that determine the adjoint variables 
A in terms of the observation error estimates no' The objective now is to 
determine the state estimates lio in terms of the adjoint variable A, a ~oal 

which is accomplished by a finite--element solution of (17) above. Consi
der the variational problem equivalent to (17): 

min J(u ) 
o 

a(u ,u ) -- (u ,A), 
o 0 o· 

(40) 

where the potential energy is specified in (37). While (LfO) is apparently 
very similar to (36), an important difference between the two problems 
is that the last term in (40) involves a function A which has already, in 
(38), been determined to be piecewise-linear, whereas the last term in (36) 
involves only values of this function at the measurement locations. Because 
of this, accurate solution of (40) requires use of an approximation sub
space that is more refined than that used to solve (36). 

A convenient approximation subspace V2 consists of the Hermite 
piecewise-cubic polynomials [5] which possess continuity of the function 
and its first derivative at the nodal points. The functions in this 
approximation subspace can be expressed as 

xi(l 3~2 + 2~3) + ~ei (1 _ 2~ + ~3)~ 

+ xi+l (3 _ 20 ~2 + 68 i +l (~ _. 1) ~2 , (41) 

where xi = u (~.) and 8
i 

= du (C) / d~ are respectively the value of the a l 0 1. .. 
function and its slope at the nOdal points ~., Use of (41) and of the 
piecewise--linear approximation (38) in (40) fesults in an equation similar 
to (30) with the matrices C

2 
and K2 in (30) specified by 

-
26/15 -1/10 -8/30 " , 

76/10 . -1/10 12/56 0 -6/56 1/10 

-A/30 0 4A/15 -1/10 -A/30 

1-
36/20 -6/56 -1/10 12/56 0 , , 

K = 2 

, 
1/10 -A/30 0 46/15 , 
" , , , , 

" . 
" 

. , 12/56 0 1/10 , . , 
0 

, , , , , 
" 

1/10 -A/30 28/ 15 
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The vector X in (30) for this example is X = [x\el, ... ,xN,eN] 
c9nsisting o~ the nodal deflections xi and ghe corresponding nodal slopes 
e~. The vector A on the right side of (40) consists of the previously 
determined values of the adjoint variables at the nodal points. 

The solution for the nodal-point state estimates X then proceeds as 
. 0 
follows. Eqs. (39) and (42) specify the necessary ingredients to form the 
matrix (I + H2KZ1C2Kl-1HI) in (31), from which the nodal-point observation 
error estimate no is evaluated in terms of the data y. Once no is determined, 
Eq. (30) provides the desired nodal-point state estimate Xo' 

Simulation Results for Illustrative Example 

Assume that the model in Fi~. 3 is bein~ perturbed from its nominal 
shape by a force of unit amplitude. The actual deflection, illustrated 
in Fig. 4(a), due to this forcing function is described by the formula 
u(~) = (1/8)£2 - (1/2)[~ - (1/2)£]2. A total of three equally spaced measure
ments at the tocations (1/4)£, (1/2)£ and (3/4)£ produce the data Yl = Y3 = 
3£2/32 and Y2 = £2/8 to be used for estimation. 

Fig. 4(a) shows a comparison between the actual deflection and the 
related estimates for three distinct values of the coefficients 0 in'(33). 
Note that as the weighting on the observation error is increased (by select
ing larger values of 0), estimates that are closer to the actual deflection 
result. The reason for this improvement is that the forcing function of 
f = -1 represents a relatively large process error, whereas the observation 
error has been assumed to be zero. Consequently, estimator designs based 
on a large weighting for the observation error are more consistent with 
the relatively high degree of confidence that can be placed on the measure
ments. Note also that because of the piecewise-cubic interpolation in 
Eq. (41) the estimated displacement can, by appropriate selection of 0, 

be made quite close to the actual displacement. 

Fig. 4(b) shows a comparison between the actual process error f and 
the corresponding estimate fo for the same three distinct values of the 
weighting coefficient o. The actual error f is a force of unit map.nitude, 
whereas fo = A is an estimate based on the piecewise-linear approximation 
(38). Note that the best process-error estimate is achieved for the case 
where the weighting coefficient in (33) is large, so that the estimates 
are more heavily dependent on the data than they are on the model equations 
(32). Note also that close to the ends of the domain, the boundary condi
tions A(O) = A(£) = 0 cause the process-error estimate fo = A to differ 
substantially in a point--wise sense from the actual process error. This 
discrepancy at the boundaries can be easily reduced by use of additional 
measurements close to the edges of the domain. 
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Fig. 4. Comparison Between Actual and Estimated Deflections and Forces 

Discussion 

While for the simple example above, solution of (17) and (18) by 
means of the finite-element method can be readily achieved, obtaining 
similar solutions for structures of even relatively moderate complexity 
is a nontrivial undertaking. A key challenge is that there is currently 
no widely available automated means to assemble the matrices K2 and C2 in 
(30), for the approximation subspaces that are specifically tailored to the 
solution of the boundary-value problem (17) and (18). Current finite-
element codes assemble a stiffness matrix based on an approximation subspace 
that is consistent with obtaining accurate eigenvalues and eigenfunctions. 
The approximations used to compute eigenvalues, however, mayor may not be 
appropriate for the estimation (and the control) problem. The appropriate 
choices for approximation subspaces must depend on the properties of the solu
tion as outlined below. 
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Examine the boundary value problem derived from (17) and (18) with 
B = I: 

Let uk and Ak be the solutions of the corresponding systems 

where, as in the illustrative example, 

Then, by the principle of superposition the solution of (42) can be 
expressed as 

where the coefficients ak are determined by the system (21). 

(42) 

(43) 

(44) 

(45) 

From (43), (44) and (45), it follows that the solution to the estimation 
problem is a superposition of fundamental solutions (Green functions) 
derived by considering the response to an impulse force at each of the 
measurement points. Thus, for the antenna models considered here, loga
rithmic singularities will be present in the impulse forces if measure-
ments are to be taken on the mesh. Standard modal approximations cannot 
adequately cope with this difficulty when it is a physically significant 
feature of the estimation problem. 

The infinite-dimensional approach provides the framework by which 
finite-element approximations that are consistent with good estimation and 
control accuracy can be systematically specified. In spite of its poten
tial, however, application of this approach to complicated structures is 
not readily achieved now and may only be possible in the future if software 
that automates the required computations becomes available. 
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4. ESTIMATOR DESIGNS BASED ON FINITE-DI~illNSIONAL MODELS 

Since in this approach the system model is first truncated to a 
finite number of dimensions, the least-squares method for estimation has 
to be modified somewhat in order to apply to the finite-dimensional model 
(15). The key modification involves the least-squares criterion (16), 
which for finite-dimensional models becomes an ordinary function (as 
opposed to a functional for the infinite-dimensional problem). The least
squares function applicable to the finite-dimensional model (15) is 

min J(F) 

whereF and X are constrained by (15). The finite-dimensional approach to 
estimator design is based on minimizing (46) subject to these constraints. 
The observation equation corresponding to this model is assumed to be 
Y =, HX + N, where as before Y is the data, N is the observation error, and H 
is the observation matrix. 

Application of a variational approach to (46) leads to the following 
solutions for the state and model error estimates Xo and So = [Fo,No ]: 

where h [HK-
1 i I], or in more explicit notation, 

F 
o 

N 
o 

(48 ) 

These equations, involving finite-dimensional matrices, are analogous 
to the linear operator formulas presented in Ref. [1] for the infinite
dimensional problem. For instance, Eq. (10) in Ref. [1] states that 
the observation error estimate no is specified by n = (I + HLU~H1~)yl in 
terms of the data y. The similarity between this e~uation and (43) can be 
aseertained by inspection. Similar analogies can be drawn between (47) .
(48) and the infinite-c1imensional solutions. The main difference between 
the two sets of equations is that (47) and (50) involve matrices, whereas 
[1] eontains their infinite-dimensional counterparts. 

These are also close similarities between Eqs. (47) and (48) specifying 
the estimates based on a finite-dimensional model and (27), (30) and (31) 
which apply to the infinite-dimensional approach. The main difference 
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between the two sets of equations is that the stiffness matrices in (31) 
are formed using an approximation subspace that is consistent with the 
estimation problem, whereas the stiffness matrix in (47) and (48) was deter
mined prior to the problem formulation. 

~djoint Variable Approach 

An alternative method for solving the constrained minimization problem 
in (46) involves adjoining the constraints (15) to (46) by means of a set 
of adjoint variables A to obtain 

min J(F,X,A) = (Y - HX)T (Y - HX) + FTF + AT(KX - F). (49) 

Use of the adjoint variables converts the original constrained minimization 
problem to one involving no constraints. A set of conditions for opti
mality for this problem is 

KX 
o 

A, (50) 

(51 ) 

whose solution results in the nodal-point state estimate X. The related 
o 

nodal-point model error estimates are specified by Fo = A and No = Y - HX. 

To show equivalence of (50) and (51) with (47) first solve (51) for 
A in terms of N as A = K-lHT No' Substitution of this equation in (50) 
leads to Xo = KQ2HT No' Since Y = HXo + No, then [I + HK-2HT]No = Y , 
an equation previously recorded in (48). 

If a different set of manipulations is applied to (50) and (51), a 
distinctly different set of equations results. t1u1tip1ication of (50) by 
K and substitution in (51) imply that 

(52) 

an equation that can be used as an alternative to (47) in solving for the 
nodal-point state estimates Xo in terms of the data Y. Solution of (52) 
requires, however, inversion of the matrix (K2 + HTH) whose dimensions 
are equal to the total number of degrees o·f freedom in the finite-element 
model. The inversion of (I + HK- 2HT) required by (47) is typically easier 
to carry out because this matrix has dimensions equal to the number of 
data points, and this number is usually smaller than the number of nodes. 
Eq. (47), on the other hand, is not totally free from inversion of matrices 
of large dimension because of the need to invert the stiffness matrix K in 
forming the matrix (I + HK-2HT). Note parenthetically the similarities 
between the matrix equation Eq. (52) and the previous1" dp.ve10ped operator 
equation (22). 
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A final alternative to (47) in solving the minimization problem (46) 
is to observe that (50) and (51) can be rearranged as 

K 
1 
1 
1 

-I 

_. ______ 1 ______ _ 

1 
1 

l?H : K 
I 

x 
o 

o 

Y. (53) 

Upon inversion of the matrix on the left side of this equation, it is pos·
sible to solve simultaneously for the nodal-point state estimates and the 
corresponding adjoint variables. However, an undesirable feature of (53) 
is that it involves inversion of a matrix of dimensions equal to twice the 
nuaber of degrees-of-freedom in the finite-element model. An additional 
possibly undesirable feature of (53) is that the matrix that must be inverted 
is not symmetrical, whereas both (47) and (52) involve inversion 
of symmetric matrices. 

Int,=rpolat:lon Within Finite-Elements 

The foregoing provides the values of the estimates Xo only at the finite 
number of nodal points. Interpolation in regions inside the finite-
elements is provided by Eq. (14), which has been used originally to form 
the stiffness matrix K in (15) associated with the finite-dimensional model. 

~ov.arian<::~.Analysis with Hhite-Noise Hodel Errors 

An "a prioril! covariance analysis of the estimation errors inherent in 
the state and model error estimates (47) above can be conducted in 
the same spirit as that of Secs. 6-7 of Ref. [1]. The analysis is based 
on the assumption, not used in the deterministic least-squares approach 
applied to arrive at (47), that the actual errors s = [F, N] are white-noise 
with a unit covariance-matrix. In other words, it is assumed that E(ssT) = I, 
vJhere I is the appropriately dimensioned unit matrix. 

It is convenient to first review the relationships between actual and 
estimated errors developed in Sec. 6 of Ref. [1] as they apply to the 
finite-dimensional problem in this section. Note that (47) implies that 
So = Ws .and sp = (I - W)s, where W is the matrix W = h'1' (hhT)h-l . As in [1], 
Wand (I - W) are projection matrices in the sense that W2 = Wand (I - W)2 
= (I - ~n. This implies that the optimal error estimates So and the model 
error estimation error s = s - So are orthop:onal complements since 
ETEp = O. The orthogona£ity of EO and Ep implies that the square of the 
ngrm sTs of a model error vector s of nonminimum norm can be expressed 
as sTs = sT s + ETSp ' a relationship that has been illustrated graphically o 0 p 
in Fig. 5 of R~f. [l]~ These are the key relationship required to 
conduct the covariance analysis of the estimation errors. 

The covariance matrix of the model-error estimation error sp 
is given by 
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T 
E[E E ] 

P P 

T 
E[(1 - W)EE (I - W)] 

or in more explicit notation 

E[F FT] T 
I E [F N ] 

P P P P 
I - - - -. -

E[N FT] 
p p 

E[N NT] 
p p 

(I - W), 

The diagonal terms in this last equation imply that 

(54) 

(55) 

(56) 

(57) 

which correspond respectively to the mean-square estimation error of the 
process-error e~ripate F ~~dTt~l o£1ervation eEror Ts!!mate. Use of the 
identity [I - K H (I + ftK H) HK ] = [I + K H H K ]-1 in (56) results 
in the following more convenient expression for Ell F - F \I 2: 

o 

(58 ) 

To evaluate the state estimation error X X - X , note first that 
F and KXo = F imply that KX = F and X:~ K-1Fp~ Hence, E[X X T] 
[F FT]K-~ whigh together witR (58) leads to p p p p 

(59) 

Note the similarity between (59) and its infinite-dimensional counterpart 
(67) of Ref. [1]. 

Illustrative Example 

Consider again the example in Fig. 3. By application of the finite
element method, it is possible to arrive at the model KX = F, where 
X = [xl, ... ,xN] is a vector of nodal deflections; K is a stiffness 
matrix given in (39); and F = [Fl, ... ,FN] is a vector of applied forces. 
This truncated model can be obtained readily by a process quite similar 
to that used in arriving at Eq. (39). The interpolation inside elements 
is provided by the following linear interpolation, u(~) = xi + (~ - ~.) 
(xi+1 - xi )//'." for E;t.:::.. E;':::"C+l , which is identical to the one used iii (38). 
The estimation problem to be1 solved consists of obtainin~an estimate of 

598 



the static deflection and of the applied force from the three equally spaced 
measurements of the deflection. 

Fig. 5 shows a comparison between the deflection estimates obtained 
from the two approaches. The key difference between the estimation ap
proaches becomes apparent upon inspection of Figs. Sea) and s(b). In 
Fig. Sea), the estimated deflection is obtained by first solving for the 
nodal-paint deflection estimates and then using a piecewise-linear inter
polation to arrive at the estimates within the finite-element. On the 
other hand, Fig. s(b) is based on a piecewise cubic approximation within 
each element. Whether the loss accuracy inherent in the lower-order 
approximation in Fig. Sea) can be overcome by use of a finer subdivision 
of the domain is an option that should be investigated for each particular 
problem. For this example, the intuitive notion has been verified that 
increasing the number of nodes in the finite-dimensional approach results 
in estimated solutions that become closer to those obtained with the 
infinite-dimensional technique. This has been done by computing the root-· 
mean-square (RMS) value of the estimation error associated with the 
infinite-dimensional and finite-dimensional solutions. The infinite
dimensional solution results in an RMS estimation error of 1.2 mm, whereas 
the finite-dimensional approach with 4 finite elements has an error of 
5.9 mm. Increasing the number of elements to 12 results in an estimation 
error of 1.5 mm, which compares quite favorably with that obtained using 
the infinite-dimensional method. 

V') ,,15 .... 
Z 
~ 
UJ 
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« ,,10 
~ 
!a 
o 
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0::: o 
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b) INFINITE- DIMENSIONAL 

.50 

NORMALIZED POSITION 

.75 

Fig. 5. Comparison of Estimated Solutions With Four Finite Elements 

Discussion 

1.00 

The key feature of the finite-dimensional approach to estimator design 
is that it is based on a model that h~8 heen truncated without taking into 
account the subsequent problem to which the model is to be applied. For 
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example, Eq. (15), which constitutes the finite-element model, was devel
oped before the estimation problem in (46) was formulated. Selection of the 
grid size as well as the order of the interpolating polynomials in the 
approximation subspace has been made without prior knowledge of the esti
l'.Iation problem (46). In the case of the illustrative example, the piecewise-· 
linear interpolation (38) is not necessarily optimal in solving the estima
tion problem, whereas it may be completely satisfactory to obtain a char
acterization of the structural static response. Note also that because 
the finite-dimensional approach uses a truncated model (15) as its basic 
premise, the corresponding estimation problem (46) must also be finite
dimensional. This finite-dimensional problem (46) is not necessarily the 
most appropriate estimation problem that can be solved to obtain the best 
static shape estimates for a given structure. The one ingredient missing 
in (L.6) that is important to the problem of static shape estimation is the 
ability to account for the behavior of the structure within each finite
element. The quadratic functional in (16), on the other hand, is a more 
complete criterion because through its last term (f, f) and by use of the 
infinite-dimensional model (13), it is able to account tor this behavior. 

In some cases, the difference between the two approaches can be reduced 
where it is feasible to select a sufficiently fine finite-element grid in 
forming the finite-dimensional model (15). In other words, the two approaches 
can probably be made to yield substantially the same results. However, even 
if in the end the finite-dimensional formulas (47) are used, it is convenient 
to keep in mind the approximations inherent in those formulas; 

5. APPLICATION TO A LARGE ANTENNA HODEL 

Simulations are currently being conducted to apply the foregoing esti
mation methodology to the problem of large antenna static shape determina
tion. While both approaches are under development, most of the numerical 
work to date has focused initially on the finite-dimensional approach. 

The model used for simulation is that of a 55-m diameter parabolic 
reflector formed by a total of 48 rib elements emerging from a common cen
tral hub. A membrane-like mesh is supported in tension by the rib elements. 
Such reflectors have been under recent intensive investigations for poten
tial communication, radiometry and radio-astronomy missions as well as for 
possible shuttle-attached flight experiments. The finite-element model 
used in the simulations is that of Ref. [7]. 

The simulations involved reconstructing the antenna surface from a set 
of discrete measurements as shown in Fig. 6. In each simulation, a defor
mation of a nominal antenna shape was produced by a linear combination of 
the first 18 modes provided by a finite-element model of the antenna, as 
illustrated in Fig. 6(a). The estimator performance in a batch mode was 
then investigated for several sensor-placement configurations. Fig. 6(b) 
shows an illustration of the estimator performance for a case where a total 
of 12 discrete measurements of the deflection around the circumference of 
the reflector are available for estimation. Parenthetically, it should be 
pointed out that a parallel investigation (based on methods similar to the 
ones outlined in this paper) of the problem of figure control has also been 
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under way. Illustrations of figure control performance with a total of 
eight actuators mounted at the central hub is shown in Fig. 6(c). Most of 
the estirimtion results presented here and in Ref. [1] have a parallel (dual) 
interpretation in terms of figure control. 

DI STaRTED ESTIMATED CORRECTED 

Fig. 6. Shape Estimation and Control Performance 
for 55-m Diameter Antenna Model 

One of the uses that can be made of the "a priori" covariance analysis 
of the previous section is to analyze the problem of sensor placement. For 
example, Fig. 7 illustrates the sensitivity of the mean-square state esti
mation error as given by Eq. (59) to small repositionings of a set of 12 
sensors mounted on the circumference of the dish. Note that the estimation 
error is significantly reduced by a 5° rotation in 8 of the targets at the 
boundary or by selecting a nonuniform placement. The reason for this sensi
tivity is the presence of spatial correlations in the displacement at the 
boundary of the type discussed in detail in Sec. 5 of Ref. [1]. Sensitivity 
to sensor placement is one of the areas currently under intensive investi
gation as will be discussed in more detail in a forthcomi.ng publicati.on [7]. 
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Fig. 7. Estimation Error Sensitivity to Sensor Placement 

6. SUHHARY AND CONCLUDING REHARKS 

The paper provides a complement to Ref. [1] by describing in detail 
how the general state and model error estimation methodology can be applied 
to specific structures. For structures modeled by a single PDE, multiple 
PDE's or a fine-resolution piecewise-continuum model, two approaches for 
estimator design have been developed. The first approach involves the solu
tion by means of the finite-element method of the boundary-value problem 
associated with the optimal estimates. The second approach is based on ob
taining a finite-element model first and then conducting the estimator de
sign based on the truncated model. The similarities and differences between 
the two approaches have been outlined in a general framework and with a 
simple illustrative example. Simulation results of the application of the 
finite-dimensional approach to the problem of static shape determination of 
a large antenna model have been presented. While the analytical foundation 
for both approaches has been established, large-scale numerical simulations 
for the infinite-dimensional approach are still under development. 
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SICSSION VIII: DISCUSSION - FUTURE 
RESEARCH OPPORTlJNITIES 

Moderator: H.A. Rediess, Milco International, Inc. 
Panel Members: A.V. Balakrishnan, University of California, Los Angeles, 

J.A .. Breakwell, Lockheed Missiles and Space Company, A.E. Bryson, Jr., Stanford 
University, P.C. Hughes, University of Toronto, and W.E. Vander Velde, Massachusetts 

Institute of Technology 

SYNOPSIS* 

The intent in this session was to provide views on the state of distributed 
control systems' theory and application and to draw together a collection of 
suggested research opportunities to present to NASA. Each panel member gave an 
opening statement, then a general discussion with the audience followed. 
Rediess concluded the session by stating a synthesized set of recommendafions. 

H. A. REDIESS: In Holt Ashley's talk last night, there was one particular law 
of Augustine's that he presented, the one about it taking one-third more time to 
complete a task than is estimated at any point in time in the project. I think 
there is a corollary to that of sorts: "Project managers always freeze the 
control system design before the controls engineer feels it is ready to be 
frozen." In spite of that, the systems usually work reasonably well. There are 
often minor, sometimes even major, problems that are found in ground testing, 
in closed-loop tests, in vibration tests, or on into flight testing. But quite 
often the design flaws that are found later have to be fixed with notch filters 
or other type of changes in the compensation. And this goes all the way up into 
the flight-test phase of the program. Changes late in the development process 
are usually very expensive, particularly if we are talking about reverification 
of the software. Hany times, the changes that one would like to make because of 
problems found well down into the process do not get made because it is just too 
costly or too time-consuming. An interesting point about many of these problems 
is that they are generally not a surprise to the control engineer. The problems 
often arise in areas where he knew that he was using an outdated model. Some
times the structural model is several iterations back in the configuration by 
the time that the controls person gets it for his analysis and design work. 
Another possibility is that the controls design engineer has had to accept a 
compromise solution in his design, one that he does not particularly like 
because of constraints that are beyond his control or because he has literally 
run out of time or resources to iterate further. 

That brings me to my point. In considering partial differential equations 
(PDE's), ordinary differential equations, or other theory in this workshop, it 
seems to me that the primary thing we are talking about is providing a set of 
tools which designers/analysts can use to achieve a better design at the point 
where the project manager freezes it. I mean better in several ways, certainly 

*This synopsis attempts to capture the main points discussed but has not been 
reviewed or endorsed by the speakers. 
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in terms of just being able to achieve a higher degree of confidence in the 
design when it goes into flight. If PDE models can provide a better physical 
understanding of the process, as suggested by Professor Russell, they might help 
us .to recognize essential differences of the control process in the early con
ceptual design phase of the problem in which you would like to do some parametric 
studies and interact with other disciplines. 

If PDE approaches can provide a better, more structured approach to estab
lishing or developing robustness in the system,they might give us much better 
confidence that the final system will perform in the presence of component uncer
tainties and variations. And if we are really fortunate and come up with a 
totally different design approach that is in some way better through PDE's, as 
suggested by Colonel Washburn, we might be able to simplify the design process 
greatly. It seems like there are several good theoretical concepts in the com
munity that have promise. Most of these will not probably lead to practical 
tools, but maybe a few will. That is the nature of research. 

A. V. BALAKRISHNAN: I formally suggest that some part of the effort of large 
space systems research be directed toward the use of continuum models. To me 
this is almost an obvious statement, but after listening to some renowned 
experts here, who apparently do not recommend this point of view, I will add 
some reasons why this direction may not be totally useless. 

In the continuum-model approach, the structure is modeled by a partial 
differential equation, and the crucial fact is that the optimal controller 
design is based on the PDE model. Then that optimal system is approximated. 
This, of course, is in contrast to discretizing the system first by truncating 
at the modal level or at the finite-element level, and then designing a control 
system for that truncated model. Everybody knows how to develop designs, at 
least in theory, based on this second approach. However, in doing so, you are 
subject to what I would like to suggest are serious drawbacks. The truncation 
in the second approach is natural if you are considering the calculations of 
the open-loop response. But if optimal control is your design objective then 
it is not necessary to solve those equations characterizing the open-loop 
response. One can go directly to calculating the control gains. Discretizing 
first can obscure fundamental phenomena as referred to earlier, such as the 
impossibility of guaranteeing a stability margin unless the system is already 
exponentially stable. But I think the most compelling reason is that of robust
ness which, in the light of discussions here, is clearly one of the important 
issues in the control of large space structures. It is generally agreed that 
there are always uncertainties in the model. The remedy suggested is that we 
have on-line identification to update the parameters. In that case, we are 
then talking about an identification phase and then the controller based on the 
identification. It is here that the problem of modeling becomes crucial. The 
one advantage that the PDE model has is that of simplicity. This simplicity is 
more than a qualitative simplicity. It is reflected in the fact that if you 
estimate parameters of the PDE model rather than all the modes and the modal 
frequencies, it is far more efficient. Furthermore, we do have now considerable 
experience on such on-line identification. So the point is that if robustness 
is a main criterion, then the description of the system itself should be simple 
enough, because the larger the number of parameters you have to estimate, as is 
well known, the more the error you introduce. Moreover,. you only need to 
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estimate those parameters that affeet the eontrol gain, nothing else. I think 
we can perhaps substantiate this claim theoretically, but I know that will not 
satisfy many of you, so we should also try to satisfy this in practice. 

And so I think that some part of the large-space-structures effort should 
be directed toward the use of continuum models. I do not mean merely the token 
support to universities with graduate students doing the work, but I mean a 
real substantial practical model, the results of which would be acceptable. 

J. A. BREAKWELL: I would like to advocate two small fields that I have brushed 
up against. It is fairly clear that there is an immense collection of tools 
assembled to attack the problem and I think that it is about time we used some 
of them. The ACOSS program is a good example of the customer providing a real 
model and requirements to the controls community and asking them to solve the 
problem. That is a very good idea and NASA would do well to follow suit. I 
also advocate small experiments, which are becoming more feasible because they 
are becoming cheaper. The reason that I advocate actually getting your hands 
dirty is that a lot of the problems that are anticipated might turn out to be 
not such bad problems after all, but you might find other problems that are 
more important. In the former category, I think there are several paper tigers 
that, once you have a specific example in mind, tend not to be quite as big a 
problem as you might imagine. Global stability is the first thing that comes 
to mind. Robustness is another popular subject right now which you may find is 
not as much of a problem when you go to experimentation. 

To tell, in general, what kind of mode you want to keep and what you do not 
want to keep in model reduction is a rather difficult question. But when you 
have the modes in hand and .you can put your fingers on them, I think you could 
tell quite easily. So those are the category of problems that might go away 
once you start doing experimental work. There will also be other problems that 
come up. There are two that I have seen and would really like to see attacked. 
The first is the selection of the weighting matrices, or, for filters, the 
covariance matrices. There is not much that has been said about this, but the 
assumption of a white-noise covariance in a truncated system is a fiction. I 
would like somebody to develop a rather good theoretical test procedure for 
developing covariance inputs to the filter. 

The second unexpected problem I have seen is large variations in the low 
frequency modes. In laboratory experiments, you will see rather large varia
tions in the position of the very low frequency modes well within your filter 
bandwidth, as much as you will see perturbations in the first unmodeled modes 
(spillover) ,. That is a problem that I have not seen addressed theoretically. 

Having taken a very pragmatic approach to some of the things I advocate, I 
would now like to turn to partial differential equations. There may be times 
when it is appropriate to use partial differential equations to model large 
systems, soraetimes not. That is not the question. The partial differential 
equation, the sophisticated mathematics that we have seen in the last couple 
of days, provides a much more convenient formulation of the problem. It allows 
a much more direct attack to the control problem and to the modeling problem. 
It takes away the burden of the notation, the infinite number of subscripts that 
we are saddled with in the discrete approach, and allows you to think about the 
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problem. It is entirely conceivable to me that there may never be a successful 
application directly of this theory. But still, if any breakthroughs in basic 
control theory, which later will be passed along to the engineers, are to be 
made, they must be made there. There is no chance that the old calculus of 
variations, or the Weiner approach, is going to yield very much more in the way 
of new useful theoretical approaches. I say that we must not let the control 
theory stagnate. 

A.E. BRYSON, JR.: Well, I very much like the ideas expressed the first day by 
Dick Gran and Peter Hughes. I have been advocating ideas similar to those. 
There is a finite bandwidth for any system that you are trying to design. The 
idea of having an infinitely wide bandwidth is sort of ridiculous. When you do 
decide what the disturbances are and what your criteria are you can pretty well 
establish the closed-ioop bandwidth required, and any structural mode that has 
a frequency of say 10 times that does not have anything to do with the problem. 
I like Dick Gran's idea of the unstably interacting modes. That is a very nice 
concept and very easy to understand. The ideas of Skelton, Gran, and others of 
leaving out terms that do not have much to do with the problem, such as small 
residues or well-damped or very high frequencies, is also very important. I 
think we have made a beginning, but only a beginning, on the problem of robust 
control synthesis. The first thing you have to realize is that robustness has 
a trade·-off with performance. If you want to have a system that is robust over 
a wide range of some parameter, you are not going to have as good a performance 
at the nominal value of that parameter. We have a program at Stanford now that 
was put together by Leroy Lee, a young man from Boeing who came to study with 
us, that I think is a very important forward step in this direction. The idea 
is to use multiple performance indices. If you have parameters that vary over 
a wide range, you minimize a sum of quadratic performance indices evaluated for 
the different values of those parameters. To do that you have to use a non
linear programming technique for the parameters and feedback gains. With this 
technique you can get output feedback or low-order compensator designs for 
rather high-order systems very rapidly and efficiently. In cases where a robust 
controller design gives poor system performance, you are going to have to go to 
adaptive control, which involves some kind of identification, to get better per
formance. One of the first steps toward actually doing this with a piece of 
hardware was presented in the paper by Eldred and Schaechter yesterday, which I 
thought was a very interesting paper. But this is only a beginning. They were 
identifying one frequency and the problem has three frequencies. The problem 
also has mode shapes which affect the modal control distribution matrices. So 
we have got some way to go yet. Finally, I certainly agree with Breakwell that 
ground experiments can give us a lot of information cost-effectively as compared 
to putting things up in orbit. We ought to explore that much harder than we 
have. Vacuum chambers could be used perhaps to get rid of the damping due to 
the air. Large enough experiments should be used so that we do not have big 
scaling effects, which are very hard to extrapolate. 

P. C. HUGHES: I think one possibly can identify four times when partial differ
ential equations are appropriate to use. The first one is when you are dealing 
strictly symbolically with the equation. We saw that in the very first paper 
by L. Meirovitch, the last paper by G. Rodriguez, and many papers in between. 
It is just as easy to write down the differential operator as it is to write 
down a matrix. If you feel more comfortable with PDE's, or if it gives you an 
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analytic result that you are aiming for, then I certainly would have no 
objections to such a thing. 

The second case is where the system is very simple. In those cases, you 
can write down partial differential equations that are relatively tractable and 
even get solutions to them. 

Then a third possible case I can see is when one has a fairly complicated 
structure, but one wants to do some feasibility and parametric studies. This 
has been mentioned by other people and we have seen examples of it at this work
shop -- for example, a large antenna reflector, which contains a lot of ribs and 
mesh. If you neglect a number of things, you can get an approximate partial 
differential equation, which has some characteristics that are nicer than a 
finite-element model. Namely, the PDE model usually has two or three very 
simple parameters, which makes it very nice for parametric studies. But, it is 
usually a rough approximation, unless it is made more exact for the first two or 
three modes by comparison to some more accurate model. 

The fourth case is where one has dense periodic structures, such as the 
example presented by J. N. Juang this morning, where you have a truss which has 
hundrE~ds or thousands of little tiny members all in a periodic lattice. You can 
smear that into a continuum, with very little loss in accuracy. 

These are four cases for which I personally feel that partial differential 
equations are quite reasonable. The thing that I am trying to speak out against 
particularly is a feeling expressed by some people that partial differential 
equations are more advanced than discrete models, or that they are automatically 
more accurate, or that they will disclose all sorts of extremely important new 
phenomena that discrete models will not. 

There are a couple of more comments on control of large space structures 
that I would like to make. I would draw an analogy with cancer research, but 
not in the way you might think. In spite of all the significant research being 
reported on in hundreds and hundreds of papers every year, there does not seem 
to be a tremendous amount of progress. I think the reason for that, in part, 
may be that the progress is not necessarily in the right direction, although 
that is very hard to judge. Another reason that I think we may not be making as 
much progress is that the problem keeps getting harder, because we keep making 
it harder. Holt Ashley referred to it several times last night in his talk, 
and several other people have mentioned it at this workshop. I would like to 
mention some specific examples of where we are making the problem too hard. 

The first one is disturbance models, which are not mentioned very often in 
technical papers. The control system in the first instance is supposed to con
trol against the disturbance. In fact, the disturbances in space tend to be 
quasi·-steady. Solar radiation pressure and gravity gradient disturbances, for 
example, tend to have a frequency content with a period of one orbit. So what 
is causing the disturbance? In most cases, the control system itself. What 
happens in space is that the rigid-body modes are the things that are unstable. 
They are very gently perturbed by quasi-steady forces, and, in an attempt to 
control them,. we unwittingly or unintentionally excite the spacecraft structural 
modes. Therefore, our aim should be to control rigid modes, without exciting 
the structural modes. 
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we ignore the 
about damping. I 
We tend to ignore 

Another way we make things hard for ourselves is that 
inherent stability of the system. Everybody is very fuzzy 
would say half of the control papers assume zero damping. 
simple passive solutions like passive damping. Composite 
tremendous opportunity to design passive damping ipto the 

materials provide a 
system. 

Lastly, we make things difficult with our actuator schemes that tend to 
excite the system more than they really should. If the disturbances are really 
so low in magnitude, and are so nearly constant, then the ideal actuator would 
be one with a very low force and very nearly constant. I will give you a very 
specific example of that. Suppose you are north/south station-keeping one of 
these satellites. The major force on the satellite is due to the moon. The 
magnitude of the force is very, very gentle but acts continuously over a long 
period of time. The ideal control system would be an actuator force acting 
constantly with that very low force to exactly counteract the force of the moon. 
We do not do that. We wait until the motion builds up and then we fire at a 
node of the orbit with a big bang and get everything all shaken up. 

I would like to make specific recommendatiQns. Firstly -- and this is the 
wrong group to mention this to because it is not primarily a structural dynamics 
audience -- we have to get good damping models. Secondly, we should instrument 
all possible satellites to get information on structural modeling, particularly 
damping information. Thirdly, we should continue, and intensify, ground experi
ments, particularly the ones that have the rigid-body modes. And lastly, we 
have to develop some very benign variable-force, linear actuators. 

W.E. VANDER VELDE: My first area will be the issue ·of dealing with unreliabil
ity in these control systems. Of the thirty some papers that were presented in 
this workshop, only one dealt even with one small aspect of that problem. Maybe 
that was justified because the principal focus of this workshop was on distrib
uted system issues. But this was also essentially true of the other workshops 
that have taken place during the course of this summer. I think this really is 
a true indication of the amount of research support that is being given to the 
question, as it applies specifically to large space structure control. There is 
some work going on related to fault-tolerant computers, and in the past there 
has been a reasonable amount of research support for failure detection and 
isolation as it applied in the context of aircraft flight control systems. But 
the large space structure control problem really is different. Take failure 
detection just as one part of what one needs to do; the same problems of inade
quate modeling that make control difficult make failure detection difficult 
also. In fact, modeling inadequacy is even a more serious problem in failure 
detection than it is in designing a control system. 

The number of components in these large space structure controls is simply 
overwhelming and assures that we will suffer failures. It is clear that we 
have to do something about it. This whole area is one that ought to be empha
sized much more in NASA's research planning. The other area that seems to me 
important and probably insufficiently addressed at the moment is the question 
of system identification after deployment in orbit. That strikes me as a very 
difficult problem. 

For some cases, it may not be necessary. However, there will be mission 
situations wherein the a priori information that we have obtained may not be 
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adequate. I envision an initial period in orbit during which the system is 
exercised in one way or another for system identification which would allow us 
to tune up our knowledge of the system dynamic parameters. 

The first step in addressing it would be to determine the most efficient 
way to parametrize the system. It is at that step that continuum modeling may 
have a role to play. It strikes me that, however the parametrization is done, 
there may well be thousands of parameters to fully characterize the system 
dynamics at all the sensor and actuator locations. It may be almost an unfea
sible problem to solve. At the beginning of the mission, the spacecraft would 
only have minimal capability because it would not be controlled very well due 
to model uncertainties. Most of the onboard data--processing resources, or the 
telemetry resources, may be available for the identification problem during that 
period, and later on, of course, they can serve what is ultimately a more useful 
function. I would like to suggest that, in addition to that initial period of 
full-up identification, there be a second mode of identification to periodically 
monitor the dynamic performance of the system throughout the mission. It would 
have to be done with an approach which is far less demanding on computational 
resources. The idea would be to do a test which would indicate when something 
had gone wrong, perhaps identifying what parameter had changed enough to require 
a new system identification test. This approach is very much like the 
component-failure detection problem. In effect, you are identifying that a 
particular component sensor or an actuator has changed its performance charac
teristics significantly. 

Comments and Questions from the Audience 

D. C. WASHBURN, Air Force Weapons Laboratory (AFWL): Dr. Breakwell has recom
mended that NASA perhaps go the DARPA route of creating a model and distributing 
it to the community for control of large space structure research. I think that 
is a good idea, and I am planning to do a similar thing for AFWL problems. I 
would recommend that they create a PDE model so that people can treat it with 
several approaches, including NASTRAN. The current DARPA model absolutely 
forces modal control, because that is the only thing it provides. 

I would like to add another area where PDE's might be useful: that of 
controller design. I certainly do not advocate that an exact PDE model be 
built for any structure. But just from a strictly philosophical point of view, 
our controllers are extremely simple and involve 10, 20 states, or whatever. 
The controllers finally designed are generally very simple and, philosophically, 
it might be appropriate to base those on a simple model which is an approxi
mate PDE. 

In the case of AFWL large space structures with large beam expanders for 
space laser applications, there are very real disturbances that are not just 
created by the controller. I think in most applications you have disturbances 
induced by Eilewing. For AFWL applications, slew-induced disturbances will be 
severe. There is also broadband coolant-induced jitter on the secondary mirror, 
which will feed into the primary structure. It will go out to 200 Hz practi
cally flat. So you will have continual excitation of modes up to at least 
200 lIz. The whole thing is hooked to a rocket engine, called a laser, sitting 
back behind it, which is shaking everything pretty violently. So, at least for 
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some applications there are genuine broadband disturbances that you are just 
going to have to deal with. 

This is the first time I have come in contact with this group, but it is 
almost unbelievable that nobody has sat down and taken the simplest possible 
example, and worked through and designed a controller based on PDE theory, and 
then designed a modal controller and compared results either analytically by 
simulation or experimentally. We are all offering opinions as to the merits 
and drawbacks of each method, but we have not even worked through this simple 
example to provide a common basis for comparison. I recommend that NASA under
take such a task. 

Question from the Audience -- Would Dr. Hughes expand on his reasons not to use 
PDE? I think he said that when the structure is simple, then the PDE's are 
okay, but when the structure is complex, then PDE' s are not useful. There are 
two parts to my question: 

a) What do you mean by complex? Do you mean a large number of PDE's, 
or a large number of boundary conditions that need to be matched? 
Why is the system being complex a reason not to use the PDE model 
per se? Is it numerical algorithm problems? 

2) Can you give me an example of a project or some reference in the 
literature in which PDE overkill has occurred? 

P. C. HUGHES: Well, there are several sources of complexity: one is complex 
boundaries; a second one is a large number of individual structural members; and 
a third one is where you have spatially varying inertia or stiffness properties 
that lead to variable coefficients. If you put all these complexities together, 
which is the case in most structures, you find that you have a real mess on your 
hands, and I for one would not use partial differential equations to get what 
might be called the most exact model. If you want to do some simple approxi
mations and get an approximate model for some feasibility studies or perhaps 
some simple parametric variations, that is different. After you have got these 
partial differential equations, how are you going to solve them? Are you going 
to use hundreds of hyperbolic sines and cosines, or what are you going to do 
with them? Your second question was, have I an example of overkill? No. The 
people that advocate them are smart enough not to use them in cases where I 
would not use them. 

A. V. BALAKRISHNAN: May I point out that in control system theory we do not 
solve PDE equations. That is a common misunderstanding. We do not solve par
tial differential equations in control systems design, any more than we do 
ordinary differential equations. 

A. N. MEYSTEL, University of Florida: I would like to attract attention to one 
of the problems that has not yet been mentioned. All of our control systems 
work well for stabilization, but any slewing will create something unexpected 
and all these stabilizers will be ruined. Any slewing of position of an antenna 
in space, especially quick changes, will require a type of controller that we 
are now not thinking about. 
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Now let us consider another matter. The door of the shuttle, as we all 
know, warped due to thermal gradients. The same will happen to large space 
structures. Some parts are in the sun, and some parts are shadowed. These 
temperature fields will create something unexpected and difficult to model. I 
believe that we are dealing with a future set of systems in which it will be 
impossible to determine the parameters with the accuracy required to meet the 
performance objectives. It may be necessary to use a new class of systems, 
called intelligent control systems, which are not only self-organizing but also 
involve special modeling of unpredictability of behavior. There are several 
groups in the United States. including the University of Florida, who are work
ing in this direction. 

A. N. MAD IWALE, MIT Lincoln Laboratory: I would like to recommend an emphasis 
on a particular topic. It is generally acknowledged that there are going to 
be large uncertainties in the modeling process. There should be more effort on 
stochastic models and designs that account for uncertainties. 

R. R. STRUNCE, Charles Stark Draper Laboratory, Inc. (CSDL): There are some 
very important lessons to be learned from history. The concept of feedback, 
for example, was motivated by a real problem. That was to design low-output 
distortion for transmission-line amplifiers. It was the extensive interaction 
between laboratory experiments and theoretical development that resulted in the 
Bode frequeney response diagrams and the Regeneration Theory by Nyquist for 
example. If we are going to resolve some of these large space structure prob
lems, we will need that same type of natural interaction between laboratory 
experiments and the theoretical development. Take, for example, the Explorer I. 
It is intuitively obvious to the most casual observer that it is a relatively 
rigid body. Yet those four very flimsy antennas destabilized that vehicle and 
resulted in a plethora of structural dynamic interaction research. I think that 
some of these very large space structures may be headed for some unforeseen 
problems that could result in catastrophic failures. This particular community 
must seek out those people who hold the purse-strings within DoD and NASA and 
educate them as to the necessity for an evolution of integrated experimental 
and theoretieal development to give us the necessary knowledge to bring these 
large space structures to fruition. 

Comment from the Audience -- At this workshop, it has been tacitly assumed that 
you will eventually discretize to implement any control that you generate with 
a PDE analysis or some other distributed system analysis. That seems to be 
based on the assumption that the processing will be digital. The evolution of 
high-speed digital processing has been overtaken by developments in optical 
processing which are not digital or discrete in time at all. Is it not possible 
that the estimators and, perhaps, some other parts of the control might remain 
in the continuous domain and be implemented by analog processing? 

H. A. REDIESS: The question of real-time processing was brought up earlier by 
Gupta. It certainly is true that there are some new optical processing tech
niques that perform vector/matrix operation directly in real-time, which will 
make certain types of modern control theory computations very attractive. 

A. E. BRYSON, JR.: In Breakwell's thesis, he took the partial differential 
equation approach to design a controller for the simple beam equation. His 
full-state feedback solution amounts to an integral of a gain kernel against a 
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deflection as a function of distance along the beam, plus another integral of 
a gain and the velocities times the velocities along the beam. So the problem 
becomes one of finding the gain kernel as a function of the distance along the 
beam. You can imagine performing this integration optically with a TV camera 
and an optical integration device. However, if you compare it with taking a few 
finite elements, it is pretty easy to convince yourself that you are not going 
to get a significant improvement going into this integral, with a nice smooth 
kernel, compared to one with a few discrete elements. 

W. E. VANDER VELDE: One application that might be a good experiment of continu
ous modeling would be the electrostatically-shaped mesh antenna that we heard 
about Thursday morning. That is a case in which the geometry might be simple 
enough so that a PDE description would be tractable. And, in fact, you could 
approximate a distributed force on that antenna quite closely. 

H. A. REDIESS: It would be difficult, if not impossible, to draw a consensus 
viewpoint from a group of such a diverse nature. I will attempt to synthesize 
what appear to be the most generally endorsed recommendations for future research 
resulting from this workshop: 

1) Develop control law design and analysis methodology for continuum 
and piecewise-continuum models for large space structures. Addi
tional research is needed to mature the continuum model methodology 
to a point where it can be applied effectively on realistic 
configurations. 

2) Conduct or sponsor a comparative study of controllers designed using 
continuum and finite-element models. Use a simplified model of a 
realistic structure that could be tested in a laboratory. Compare 
the results of both designs with experimental data obtained by a 
third party. 

3) NASA should create one or preferably more "benchmark" generic models 
representative of configurations for potential future NASA missions 
that can be used to develop and evaluate system identification and 
control law methodologies. Both continuum and finite-element models 
should be constructed for each "benchmark" configuration. 

4) Develop and validate system identification techniques suitable for 
identifying a large space structure in the initial phase of operation 
and for continuous monitoring during the entire mission to detect 
changes. Both continuum and finite-element model approaches should 
be investigated. 

5) Conduct and/or sponsor experiments for system identification and 
control law methodology development and evaluation. Use simple 
laboratory experiments to evaluate identification techniques and 
control laws. Consider larger-scale experiments in a vacuum chamber 
to minimize the effects of air on damping. Use all possible space 
flights as experiments to increase knowledge of structural dynamics 
in' space, e. g., instrument satellites or the Shuttle Remote Manipula
tor System to measure damping. Proceed with space shuttle flight 
experiments with flexible structures. 
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6) Develop adaptive and/or reconfigurab1e control laws for large space 
structures to compensate for model errors, spacecraft configuration 
changes, or system failures. 
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INTRODUCTION 

The ability to stabilize and control large structures in space is vital to 
establishing efficient earth-orbiting systems of the size required for many of 
the future applications and science missions. Large space systems' configura
tions with low mass densities are more accurately modeled as a continuously dis
tributed mass over the entire structural area (distributed parameter system or 
continuum model) rather than a sequence of finite mass elements coupled together 
(lumped parameter system or finite-element model). By far, the most effort put 
forth in studying these challenging control problems to date has been based on 
the finite-element model, which can be addressed using ordinary differential 
equations control theory. Substantial theory now exists to treat distributed 
parameter systems and some effort is directed towards control of large space 
structures. This approach involves formulation of the problem in partial 
differential equations and results in solutions in infinite>-dimensional Hilbert 
space which must be approximated. Fewer control analysts are familiar and 
comfortable with the distributed parameter systems approach; hence, it.,~ has not 
been explored to the same degree as the finite-element approach. 

The term distributed systems was used in two different senses at the 
workshop. One sense was control theory for distributed parameter system 
modeling as discussed above. The second sense was control theory for systems 
requiring spatially distributed multipoint sensing and actuation. Many'large
space-structure configurations being considered will require multisensors and 
actuators distributed in some fashion throughout the structure. One must 
consider the spatial distribution of sensors and actuators whether treating 
the problem from the finite-elements or continuum model approach. 

The main objectives of the workshop were: 

. to provide a forum for exchanging ideas and exploring the application 
of the control theory for distributed systems to the control of large 

• I 
flexlble multibody spacecraft; and 

*Prepared by Hilco International, Inc., Avionics and Software Division. 

619 



• to identify the important unsolved problems of current interest 
leading to possible future collaborative NASA/university/industry efforts. 

The workshop was organized with several sessions addressing the major 
technical issues through invited and contributed papers by leading researchers, 
panel discussions and a final wrap-up session to extract the key unsolved 
problems and recommendations for future research. The workshop agenda is 
presented in Appendix A. The list of attendees and participants is presented 
in Appendix B. 

The purpose of this report is to present a technical evaluation of the 
workshop that synthesizes the most important results, conclusions and recommen
dations Jor future research. The future research recommendations are presented 
in the next section followed by the technical evaluation. 

FUTURE RESEARCH RECOMMENDATIONS 

The major recommendations presented here are believed to represent a 
consensus view from the workshop and draw heavily on the results of the wrap-up 
panel discussion. One should not conclude, nor is there any intent to imply, 
that all participants of the workshop or the wrap-up panel discussion endorsed 
these recommendations. However, the recommendations listed under the heading 
of "Major" were those summarized at the end of the wrap-up panel discussion and 
were generally endorsed by the workshop participants. 

Several additional recommendations that were made by 
are listed under the heading of "Other Recommendations.1t 
address directly the theme of the Workshop, but do apply 
and were felt to be of sufficient importance to include. 

various 
Some of 

to large 

Major Recommendations for Areas of Future Research 

participants 
those do not 
space systems 

1. Control law design and analysis methodology for continuum and piecewise 
continuum models for large space structures. 

Rationale: Proponents of the continuum model approach believe that it will 
provide a better physical insight to the control problem and solution since it 
is based on physical laws governing structural dynamics rather than a functional 
representation of the dynamics that may obscure some fundamental properties 
of the problem, e.g., stability and robustness. It may be a better way to 
assure robustness of the controller design because it does not arbitrarily 
limit the number of modes included as in the finite-element approach. Further
more, the proponents state that the mathemat~cal formulation of the model and 
control problem is simpler, even for piecewise continuum models in which there are 
combinations of distributed and lumped parameters. Aduitional research is 
needed to mature the continuum model methodology to the point where it can be 
applied effectively on realistic configurations. 
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2. Comparative s,tudy of controllers designed using continuum and finite-element 
models. 

Use a simplified model of a realistic structure that could be tested 
in a laboratory. 

• Have each controller designed by experts in the corresponding method. 

• Compare results of both with experimental data obtained by a third 
party. 

• Assess results based on controller peiformance robustness, plant 
identifiability, compuD,ational efficiency and other appropriate measures. 

Rationale: A well-structured study of this nature is needed to assess the 
relative advantages and disadvantages of each approach. Many claims and 
concerns are voiced at workshops and conferences about both approaches without 
appropriate c:omparative data to substantiate the positions voic:ed. 

3. NASA should create one or preferably more "benchmark" generic models 
representative of configurations for potential future NASA missions that can be 
used to develop and evaluate systems identification and control law methodologies. 

• Both continuum and finite-,element models should be constructed for 
"benchmark" configuration. 

RC!tionale: There are currently no realistic models available for potential 
NASA missions that are developed in sufficient detail to use in advanced iden
tification and control theory for both continuum and finite-element models. The 
DARPA ACOSS models are finite-element models and preclude the oontinuum model 
approach. If such models were developed and distributed to universities and 
industry as vTell as NASA centers, a large amount of research would be focused on 
NASA'i3 type of problems. 

4. Systems identification research for large space structures. 

• Apply to realistic type configurations (NASA benchmarks, for 
example). 

• Consider both continuum and finite element model approaches. 

• Obtain experimental space flight data to assess methods. 

Develop techniques suitable for identifying a space structure in the 
initial phase of operation and for monitoring it during the remainder 
of the mission to detect changes. 

~ationale: It will not be possible to obtain valid experimental test data on the 
ground for large, flexible space-structures. It is highly likely that modeling 
errors of a structure to be deployed in space will be sufficiently large to ser
iously affect the controller performance. Appropriate systems identification 
techniques must be developed and assessed with whatever limited flight data that 
are available before they are needed in an actual mission. (See Appendix C for 
an expanded statement on systems identification research by Professor H.E. Vander 
Velde of the Massachusetts Institute of Technology (MIT). 
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5. Experiments for systems identification and control law methodology develop
ment and evaluation. 

• Simple laboratory experiments to evaluate identification techniques 
and control laws. 

• Consider larger-scale experiments in a vacuum chamber to minimize the 
effects of air on damping. 

• Use all possible space flights as experiments to increase knowledge 
of structural dynamics in space, e.g., instrument satellites to measure 
damping. 

• Consider using the space shuttle Remote Manipulator System (RMS) in 
an on-orbit experiment to compare predicted dynamic characteristics to 
flight data. 

• Proceed with space shuttle flight experiments with flexible structures 
(i.e., MAST, SAFE, DAFE, and SADE) to obtain structural dynamics data and 
experience with stabilization and control. 

Rationale: Experimentation is the surest way to develop confidence in design 
and analysis methodologies. Simple laboratory experiments can be very useful 
in understanding the control problem. Some anticipated problems turn out not to 
be problems at all and other new problems may arise that were not anticipated. 
It is extremely important to determine the damping of structures in space because 
of the effect on the controller design. Tests in a vacuum chamber may help 
get some initial data. Ultimately, it is necessary to obtain space flight data. 
Both continuum and finite-element models should be used in the analyses, control
ler designs and systems identification methods associated with the flight 
experiments. 

6. Adaptive and/or reconfigurable control laws. 

• Adaptive control laws to compensate for model errors, spacecraft 
configuration changes or system failures. 

• Reconfigurable control laws to compensate for spacecraft configuration 
changes or system failures. 

Rationale: Certain large structures considered for space, such as a modular 
space platform, would have major configurational changes over its lifetime. 
Modules will be transported to space via multiple shuttle flights, then 
assembled in space. Once a basic platform is assembled, other masses may be 
attached periodically, such as the shuttle docking with the platform, attaching 
an Orbital Transfer Vehicle (OTV), adding or subtracting fuel, adding or sub
tracting experiments and/or satellites. The inertial characteristics and 
dynamics would vary widely with these changes. Control laws that self-adapt or 
that reconfigure (either automatically or through manual software changes) 
should be investigated that could cope with these wide variations. A second 
motivation is to compensate for failures in the control system. There are likely 
to be a large number of components in a large space structure control system. 
If a component fails, or if a fault occurs in software that can affect the con
troller performance, it may be possible to reconfigure the remaining healthy 
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elements of the system to maintain a.dequate, though nonoptima.l, control until 
the faulty elements can be corrected. An alternate approach and further discus
sion of reliability issues are presented in the next recommendation. 

7. Control system fault tolerance research. 

• Choice of number, location and control laws to accommodate likely 
faults over the expected operational lifetime (including effects of 
periodic: component repair or replacement). 

• Systems performance and fault monitoring (hardware and software), 
failure detection and isolation (FDI) , fault-tolerant processing and data 
distribution and control law reconfiguration. 

Rationale: The control and stabilization system for large space structures is 
likely to have several hundreds of components dispersed over the structure and 
linked together by some form of data distribution networks. Even with extremely 
reliable components, there are bound to be numerous component failures or even 
software faults that have the same effect as a hardware failure over the life
time of the spacecraft. The system must have the capability of accommodating 
these faults in some manner. (See Appendix D for an expanded statement of 
reliability issues by Professor W.E. Vander Velde of MIT.) 

Other Recommendations 

1. Finite-dimensional compensator design methodology 

• Model order reduction 

• Reduced order compensator design 

• Robustness techniques with truncated modes 

• Direct digital design and implementation 

Fixed-form, low-order compensator design via nonlinear programming 

2. Sensor and actuator technology 

• Very low frequency 

• Very broad bandwidth 

• Proportional actuator from very small to large forces (benign 
actuators) 

• Long life, low mass, and low power 

3. Real-time processor control laws 

• Need 10 to 100 million-operation-per-second capability 

• High reliability 

• Software languages, verification, validation, and fault tolerance 
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4, Hardware-in-the-loop simulation 

• Digital, analog or hybrid 

• Partial or complete system 

5. Modeling accuracy for large space structures 

• Upper atmosphere model 

• Disturbance model 

6. Rendezvous and docking control and guidance 

7. Control laws for very large amplitudes due to slewing or major disturbance. 

8. On-orbit vibration tests of operational spacecraft to determine model 
characteristics similar to ground vibration tests on aircraft. 

9. Systematic method for selecting the weighting matrices in estimation and 
filtering problems. 

TECHNICAL EVALUATION OF WORKSHOP 

The workshop must be considered an unqualified success. There were over 150 
attendees and participants (see Appendix B) who included most of the key re
searchers in the U.S. concerned with this subject. In general, the technical 
papers were of excellent quality and pertinent to the theme. Structuring the 
workshop to have discussion panels each day was an important factor to achieving 
lively participation of the audience in discussions. 

The workshop was designed to stimulate a strong exchange of views between 
two segments of the control research community: those supporting the use of 
finite-element models and those supporting the use of continuum models. It was 
very effective in doing just that. Strong viewpoints were expressed on the 
advantages and disadvantages of both approaches. It appeared to bring out all 
the major issues associated with applications of distributed system theory to 
the control of large space structures. The workshop was also very effective in 
surfacing important unsolved problems worthy of future research. 

A very stimulating and entertaining after-dinner talk was given by Professor 
Holt Ashley of Stanford University. He drew heavily on his experience in air
craft structural dynamics and aeroelasticity to project what he believes are the 
key factors to address in large, flexible space-structures. 

The following sections discuss each session of the workshop in sequence. 
The final section gives some general observations and comments developed over 
the three-day workshop. 
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Session I: Modeling and Control 

This session addressed the fundamental questions of mathematical modeling 
of large space structures for control purposes, The papers were largely 
tutorial in nature and identified what the authors believed to be the major 
features of each modeling and control law design approach. 

Meirovitch's paper recommends the independent modal-space control (IMSC) 
method, which was illustrated for control of distributed and discretized struc
ture models. Several advantages are listed for the IMSC approach as compared 
to coupled controls, including lower control energy and provable robustness. 
Robustness was only discussed in terms of spillover modes and not with respect 
to uncertainties 6f changes in the overall structure or controller. It would be 
of interest for the IMSC method to be applied to a more realistic example, 

Hughes' paper presents strong arguments against the "Infinite Modes 
Assertion" as being the true characterization of structures, in terms of both 
its importance and the assertion itself. It is a very readable exposition on 
what the author believes are absurd assertions made by certain control 
theorists and applied mathematicians: that physical structures actually have 
an infinite number of modes. Much of the argument centers around the concept 
of a mathematical model vs, the real physical structure. The main point 
is that models based on partial differential equations or ordinary differential 
equations are both mathematical approximations to the real structure and either 
is only as good an approximation as is shown to be useful in a practical 
application. The paper expresses the viewpoint that a modal representation with 
relatively few modes is the most effective method for realistic large space 
structures. A very effective criterion for selecting the modes to include 
in an analysis of control design problems was presented. The paper, however, 
does not seem to recognize that a continuum model may be a better mathematical 
model of the physical system than a finite-element model for certain situations. 
The author did acknowledge that point in a later panel discussion. 

Gran's paper presents an interesting middle ground position between the 
continuum and finite-element model enthusiasts. The paper advocates designing 
large space structures using finite element methods and verifying the design's 
robustness using a continuum model. The paper presents a concept of stable 
and unstable interactive modes that is very important in selecting which modes 
should be retained in a truncated model. A pole-zero set near the jw-axis in 
the complex plane is unstably interacting if the zero is above the pole. The 
paper states that stably interacting modes with small contribution to the cost 
may be discarded, but beware of unstably interacting modes because of potential 
robustness problems. Several other practical suggestions and guidelines are 
presented for designing satellite control systems in a systematic way. 

The final paper of the session by Hamidi, Rodriguez and Schaechter presents 
a soLid case for modeling complex large space structures as coupled rigid and 
flexible bodies using discrete models for the rigid bodies and continuum models 
for the flexible bodies. Contrary to statements by other participants that one 
could not use a continuum model for complex spacecraft, this paper shows that a 
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very simple and compact mathematical model can be constructed. The model 
retains sufficient dynamics, provides good physical insight to the problem, and 
is suitable for parametric studies. The technique was illustrated by modeling 
a 55-meter wrap-rib antenna with an L-shape boom connecting the dish to the 
feed. The model was in good agreement with a finite element model and required 
very little computational effort. 

A participant from the audience, Larry Weisstein, supported the idea of 
continuum models for even complex space structures. He referred to his masters 
thesis~ which presents a continuum modeling approach for lattice-type structures 
that are very common elements in space systems. The reference also includes 
an extensive bibliography of continuum models for space structures. 

Session II: Control and Stabilization 

Session II consisted of eight papers presenting a series of examples of 
modeling and/or'control for a variety of configurations. Rather than reviewing 
each paper individually, some of the major points made are highlighted here. 

Bryson's paper makes a simple, but potentially very important, point. If 
a flexible structure has a plane of symmetry, it may be possible to split the 
control problem into two uncoupled sets. The example used resulted ina greatly 
simplified task of synthesizing the active control logic. 

The paper by Hamidi and Manshadi addresses developing a control law that 
optimizes the overall performance objective of a large space antenna, that is, 
the resulting RF pattern, rather than an intermediate objective of controlling 
dish shape and feed position. By including an RF electromagnetic model as 
well as the structural model in the design loop, the control of the relative 
feed/dish motion can be synthesized to maximize the peak electric field. 

Considerable discussion was generated over Henderson's presentation of the 
ACOSS** Model #2. Most participants were generally familiar with ACOSS and 
endorsed the idea of such models. Several requests were made about how to 
acquire the model. Interested parties can contact Timothy C. Henderson at the 
Charles Stark Draper Laboratory (CSDL). The discussions led to recommendations 
that NASA develop similar Benchmark models for its potential missions. 

Two realistic examples of distributed control of large space antennas 
(hoop/column and wrap-rib) were presented in the final paper of this session 
by Cameron, Hamidi, Lin and Wang. They found that distributed sensing and 
control provides significant performance improvement. The study also indicates 
that, for the linear optimal controller, system parameter errors could result 

*Weisstein, Larry S., Continuum Models for Repetitive Beamlike Lattice 
Structures, masters thesis, George Washington University, Washington, D.C., 
1982. 

**ACOSS stands for Active Control of Space Structures, which is a DARPA
sponsored program. 
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in significant performance degradat:lon and even instability. The paper recom
mends the use of in-flight systems identification for certain critical model 
parameters. 

Session III: Discussion - LSS Control Problems 

The panel discussion was aimed at further definition of the control prob
lems of large space structures. The moderator was R.R. Strunce of CSDL and the 
panel members were: J. Sesak of General Dynamics, N.K. Gupta of Integrated 
Systems, and A.F. Tolivar of the Jet Propulsion Laboratory (JPL). The panel 
and participants from the audience focused primarily on what they believed to 
be the major technology needs and recommended research. The following are what 
appeared to be the most important comments: 

· The control theory and control law design methodology have not yet 
been developed to the stage where one could design with confidence a 
stabilization and control system for a large, flexible space-structure 
to meet both the performance and robustness requirements. There are still 
issues of modeling, model order reduction, robustness of stability, and 
systems identification. It will be necessary to demonstrate the 
technology, probably in the flight environment, to assure confidence in 
the methods. 

· There are very little experimental data for identification and control 
of large, flexible space-structures. The data available are for simple 
experiments which are not very representative of a real space structure. 
It is extremely important to obtain better experimental data from more 
realistic ground tests and on-orbit flight tests. 

· The robustness problem has not been solved when one considers the 
total problem including actuator and sensor dynamics and realistic 
parameter uncertainties. The problem of uncertainty management through 
systems identification techniques and/or adaptive control should be given 
more attention. 

There is a real need for research to develop actuator and sensor 
technology for low frequency operations that are appropriate for space 
applications. Actuators will be needed with force ranges from very small 
to very large. 

· Many of the control concepts being studied for 1arge-saa1e systems 
would challenge the real-time processing technology. Better ana1ytical/ 
numerical techniques, as well as much higher processing capacity devices, 
must be developed. It may be necessary to have computational capability 
of from 10 to 100 million operations per second. It is not clear that 
VHSIC (Very-High-Speed Integrated Circuits) will even solve this problem. 

· More attention must be paid to the question of assuring adequate 
performance of a stabilization and control system in the presence of 
component failures. Systems must be made fault-tolerant to some level. 
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Session IV: Distributed Control 

Session IV continued addressing the issues involved in control and sta
bilization of large space structures. 

The paper by Vander Velde is an excellent treatment of a very important 
practical aspect of distributed control of large space structures, that of 
selecting the sensor set (number and location) considering possible failures. 
A methodology is presented that would assist the designer in the process of 
selecting the sensor set that maximizes the degree of observability over the 
operating lifetime of the system accounting for the likelihood of failures. 
The sensor set that one selects considering the possibility of component failures 
can be quite different from that one would select considering only optimizing 
performance. The author has treated the companion topic for actuators in a 
separate paper presented elsewhere. A discussion of reliability issues by 
Vander Velde is presented in Appendix D of this report. 

J.A. Breakwell's paper presents a strong case for using laboratory experi
ments for gaining a better understanding of the control problem with flexible 
structures. Through his experiment with TOYSAT, Breakwell found that some 
problems he anticipated from theory never materialized, but new ones arose. 
The TOYSAT experiment was designed to test hypotheses concerning the application 
of optimal control theory to flexible spacecraft. Breakwell suggests that 
with the relatively low cost of microcomputers, almost anyone can afford to 
conduct simple laboratory experiments that can be very useful. 

The last paper of this session, by Schaechter and Eldred, also addresses 
laboratory experimentation for verification of control laws. Two major points 
demonstrated are that model parameter errors can cause an optimal control 
design to drive a system unstable and that adaptive control can stabilize a 
system with an uncertain model. The experiment proved useful in validating 
the analytical techniques. 

Two special kinds of flexible space structures were analyzed by J.V. 
Breakwell: orbiting chains and rings. Another special case, vibration 
control of a tethered satellite, was discussed in the paper by Xu et al. 

Session V: Control Theory for Distributed Systems 

Nine papers were presented in this session which reviewed and treated 
primarily control theory of distributed parameter systems and approximation 
methods to achieve finite-dimensional controllers. This session and the 
following discussion panel stimulated a lively discussion of the pros and cons 
of partial differential equation (PDE) control theory for large, flexible space
structures. 

An excellent review of the control theory of hyperbolic systems was given 
by Russell. The paper covers important questions of controllability, stabili
zation, robustness, canonical forms and eigenvalue placement. The paper 
presents a very promising method for canonical compensation for hyperbolic 
systems. 
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Gibson's paper illustrates how conceptually easy it is to treat continuum 
systems in infinite-dimensional space rather than being more complex as some 
have suggested. Once the infinite-dimensional compensator is designed concep
tually, then a finite-dimensional approximation is made. This approach provides 
more insight into the nature of the control problem than the finite-element 
approach. A simple example is presented to illustrate the method. It now 
needs to be applied to a model more representative of real space structures. 

The paper by Hyland and Madiwale presents a new look at a fixed order 
controller design method which allows for incorporating system parameter 
uncertainties directly in the design process. It is based on a finite-dimen
sional (modal truncation) model. Explicit optimality conditions are derived 
for minimum data/maximum entropy stochastic model of the system parameter 
uncertainties. A major feature of this approach seemed to be the ability to 
directly secure robust stability and mean~square performance optimality. 

Mackay's paper solves for the optimal compensator of a distributed param
eter system in terms of the kernel of a Volterra integral operator. A firiite
dimensional approximation to the optimal compensator is thus obtained. 

The paper by Chen et al. addresses the very important and little-studied 
problem of numerical methods for solution of control systems governed by 
hyperbolic PDE. The discussion that followed the paper recognized the impor
tance of the problem, not only for PDE, but also for finite-element control 
laws because of the high dimensionality. There was substantial support ex-· 
pressed for much more research in numerical techniques. 

The two main results of Balas' paper are stability criteria in both the 
time and frequency domains for closed-loop distributed parameter systems with 
finite-dimensional controllers. The stability analysis of the system uses the 
theory of semigroups on the infinite-dimensional state space. The criteria is 
not constrained by the controller design approach, e.g., finite-dimensional 
reduced-order models. The author stresses the point that closed-loop stability 
analysis must be a part of any attempt to produce finite-dimensional controllers 
for infinite-dimensional systems. 

Skelton* was unable to attend the workshop and present his paper. Peter 
Hughes graciously offered to summarize the main points of Skelton's "Analysis 
of Structural Perturbations via Cost Decomposition Methods," since he was a 
close associate and familiar with Skelton's work. The paper presents a method 
of analysis of linear dynamical systems by decomposition of some functional ex
pansion of the system such that it is possible to measure the contribution of 
each component to the cost function. It would be effective, for example, in 
model order reduction of a modal representation of a large space structure or in 
constructing a reduced-order controller from an optimal regulator design. The 
discussion of this method generally concluded that it was very effective. One 
cautionary note was raised with respect to what Gran termed "unstably interacting" 
modes. The cost decomposition method might indicate that such a mode could be 
discarded, because of insignificant contribution to the cost with nominal system 
parameters, but a small change in some parameter could lead to the control system 
driving that mode unstable. 

*Skelton's paper was in Session VII, not V, but is niscussed here because it fits 
this topic better. 
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Session VI: Discussion - LSS Applications of Distributed System Theory 

The panel discussion was aimed at identifying the role that the control 
theory for distributed systems can play in the control of large space structures. 
The moderator was R.S. Gran of Grumman Aerospace and the panel members were: 
D.G. Washburn of the Air Force .Weapons Labs (AFWL), V. Komkov of West Virginia 
University, D.L. Russell of the University of Wisconsin and J.S. Gibson of 
the University of California, Los Angeles (UCLA).. The following are what 
appeared to be t"he most important comments: 

· In selecting a model to represent a large space structure one must 
consider what the purpose is of the model. One may want a different model 
for design and analysis than for real-time control. All mathematical 
models are approximations. A major objective of research is to attempt to 
determine what are the best models for various purposes. Considerable 
research has been conducted on finite-element models. More research is 
needed on PDE modeling to determine where and for what purposes they are 
most useful. 

Truncating a PDE model before solving the control problem may be 
throwing away important information and obscuring some of the fundamental 
properties of the problem. If the PDE control problem is solved and then 
approximated, one might expect something different, e.g., robustness may 
be achieved more easily. 

· If a PDE model or a compound PDE/ODE model best describes the physi
cal laws of the structural dynamics, and one chooses to use some form of 
a functional expansion or finite-element model, then one may lose the 
physical insight into the control problem. Fundamental phenomena may be 
lost and the control properties may be very different. Once a controller 
is designed, the closed-loop performance should be analyzed using the 
best physical law model and should assure that assumptions have not been 
violated. 

· There is a real need to estimate better the damping in large space 
structures and include realistic damping in controller designs. 

· Structural dynamicists regularly use PDE models to do parameter studies 
of relatively simple structures. Finite-element models are used in the 
final design of complicated systems such as,for example, Voyager. When the 
hardware is built, vibration testing is conducted to verify the dynamics and 
update the controller, if necessary. Predicting the damping is particularly 
difficult for real, complex systems because of joints and nonlinearities. 
The argument between finite element and continuum models may be academic be
cause the real errors come about due to the structure not obeying any sort 
of equation. 

· PDE models can be very useful in "thought experiments" which can help 
clarify the mental processes that one would apply to the analysis or 
control of a distributed parameter system. They help in the thinking 
process before doing massive number crunching on a computer. 
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Session VII: Estimation/Identification 

The last session of formal papers dealt with the questions of systems 
identification, parameter estimation and model error estimation. There were 
five papers presented on these subjects and all but one addressed continuum 
models. 

The importance of this subject was emphasized several times during the 
workshop. A statement of systems identification in large space structure 
control by Vander Velde is included in Appendix C. A consensus of the workshop 
participants appeared to support the need for increased research to assure that 
techniques are adequately developed and tested before a large structure is 
deployed in space. 

The paper by Hendricks et al. presents a simple study of two methods 
(forced and free vibrations) and a standard least-squares numerical procedure 
to extract damping and stiffness parameters for a lumped parameter model. A 
more interesting study would have been to include unmodeled effects (spillover) 
and measurement noise. 

Banks' paper presents a good theoretical discussion of spline-based approx
imation schemes for parameter estimation algorithms for distributee_ parameter 
systems. Several numerical examples have been conducted to show the effective
ness of the schemes although these were not reviewed in much detail at the 
workshop. The technique now needs to be tried on a more realistic model of a 
space structure. 

One of the most impressive papers of this session, and possibly the entire 
workshop, was the Juang and Sun paper, "Parameter Estimation in Truss Beams 
Using Timoshenko Beam Model with Damping." Simple continuum models to represent 
large truss beams and truss platforms are formed, then discretized for use in a 
least square identification problem. This results in a greatly reduced number 
of parameters that have to be identified over using a truncated finite-element 
model of the entire structure. A numerical example for a truss beam shows 
excellent comparison between the actual model and the simple continuum model. 

The final paper of the workshop by Rodriguez formulates a model 
error estimation technique for elliptic systems with a specific application to 
a large space antenna static shape determination. The simple geometric shape 
of the antenna allowed a simple PDE formulation and sequential solutions which 
are combinations of "forward" filtering and "backward" smoothing. The paper 
shows how conceptually simple the PDE formulation is. 

Session VIII: Discussion - Future Research Opportunities 

The wrap-up panel discussed the state of distributed system theory and 
applications to the control of large space structures and identified potential 
research opportunities for NASA consideration. It also provided a forum for all 
participants to comment on the workshop topics and contribute to recommendations. 
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The moderator was H.A. Rediess of Milco and the panel members were: 
A.V. Balakrishnan of UCLA, A.E. Bryson, Jr., of Stanford, J.A. Breakwell of 
LMSC, P.C. Hughes of the University of Toronto, and W.E. Vander Velde of MIT. 
Some of the discussion and conclusions reached were reiterations of comments 
made during the first two panel discussions. At the conclusion of the panel, 
Rediess summarized the major recommendations to NASA, which are listed in the 
section on future research recommendations and are not repeated here. The 
following are what appeared to be the most important comments: 

• On the central question of the workshop on the use of continuum 
models vs. finite-element models, there were three principal questions--

I. Most practical large space structure configurations are 
too complicated to model as a distributed parameter 
system and it is best to use a finite-element one. 

2. Practical large space structures cannot only be modeled as 
distributed parameter systems (or in combination with lumped 
parameter elements) but also the PDE control theory results 
in a simpler formulation, potentially better control laws 
and better physical insight into the problem. 

3. Finite-element models have proven to be effective in 
designing spacecraft whereas continuum models have not 
yet been proven to be as useful. Research should 
continue on the continuum model approach because if 
there is to be a major advancement in control theory, 
it most likely will come from that approach. 

• On the question of bandwidth and controller complexity, there were 
two distinctly different viewpoints expressed--

1. There is only a limited bandwidth that needs to be 
considered in any real system; hence, a reduced order 
model is sufficient. Linear Quadratic Gaussian (LQG) 
design is always too complex. A reduced-order controller 
or a fixed, low order compensator is a better approach. 

2. A truncated model with limited bandwidth may throwaway 
important information needed for robustness considerations 
and obscure certain fundamental characteristics of the 
system. It is preferable to design a controller based on 
infinite-dimensional LQG to assure performance and robust
ness, and then to discretize for implementation . 

. PDE estimation and control theory is at the state of development when 
it should be tested on major, realistic space-structure problems and com
pared to the finite-element approach. The comparison should include ex
perimental evaluation, if possible. 
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• The problem of assuring robustness in the controller design, 
\olhether based on continuum or finite~element models, is still a major 
concern and needs much more study. Several participants believed PDE 
is the best approach for treating robustness. 

• Simple laboratory experiments are now affordable and can be very 
useful in understanding the control problem and model order reduction. 

• Systems identification for large space structures in orbit is going 
to be a very difficult task. Because of modeling uncertainties, it will 
be necessary to identify key parameters in space when the structure is 
first deployed in order to "tune up" the control laws before the system 
goes into operation. Another kind of identification will be needed to 
nlonitor the system's characteristics throughout the mission lifetime to 
detect changes that could cause control system instabilities (see 
Appendix C). 

• Reliability issues for large space structure distributed control and 
stabilization systems have not been adequately addressed in considering 
control law design. Such systems are expected to have hundreds of 
components, and failures are likely to occur. Controller designs that 
account for potential failures may be quite different from those that 
assume no failures (see Appendix D). 

· The space environment is, for the most part, very benign, and natural 
disturba.nces tend to be quasi-static within a period of one orbit. The 
major disturbances that excite structural modes tend to be man-made: im
pulsive actuators, slewing, orbit changes, docking, mass changes and 
astronaut operations. 

• One of the most important technology developments needed for large 
space structure control is an accurate method to predict and model 
damping. Passive damping should not be ignored in design of a large 
space structure. 

General Observations of the Reviewer 

During the course of the workshop, and in preparing this evaluation 
report, the reviewer developed the following general observations about the 
state of distributed system theory and applications to control of large space 
structures: 

• Deficiencies in control theory are probably not critical in the 
development of near-term space structures. However, advances in control 
theory and technology have the potential of providing design methods and 
control laws which could result in more efficient large space systems 
in the future and may be necessary for structures exceeding a few 
hundred meters in dimension. 
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• One should not argue that distributed parameter control theory is 
better or worse than lumped parameter control theory but rather think of 
them as complementary methodologies. They are both tools which the 
designer/analyst should use where they are most useful. It appears that 
distributed parameter control theory may be very useful in the early 
conceptual analysis and investigating control law concepts. It appears 
that finite-element models may be a most effective way to design and 
analyze the extremely complicated final space system to be deployed. 
Where appropriate, one should use a compound model of finite-elements and 
distributed parameter. 

In view of the fact that distributed parameter system control theory 
has not been developed to anywhere near the same level as lumped parameter 
system control technology, it seems wise to accelerate research in the 
applications of distributed parameter control for large space structures. 
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APPENDIX A - WORKSHOP AGENDA 

WEDNESDAY, JULY 14 

8:00 a.m. 

10:00 -
12:00 noon 

12:00 noon 

1:00 -
4:00 p.m. 

Registration 

Welcome to JPL - General C.H. Terhune, Jr. 
Acting Director, Jet Propulsion Laboratory 

Introduction to Workshop - H.A. Rediess, Mi1co International, Inc. 

NASA LSS Missions and Control Requirements - A.F. To1ivar, Jet 
Propulsion Laboratory 

Break 

SESSION I: MODELING AND CONTROL 
CHAIRMAN: P.K.C. Wang, University of California, Los Angeles 

Modeling and Control of Distributed Structures 
L. Meirovitch, Virginia Polytechnic Institute and State 
University 

Space Structure Vibration Modes: How Many Exist? Which Ones 
Are Important? 
P.C. Hughes, University of Toronto 

Control of Flexible Structures: A Systematic Overview of the 
Problem 
R.S. Gran, Grumman Aerospace Corporation 

Distributed System Modeling of a Large Space Antenna 
M. Hamidi, G. Rodriguez, and D.B. Schaechter, Jet Propulsion 

Laboratory 

Lunch 

SESSION II: CONTROL AND STABILIZATION 
CHAIRMAN: R.R. Strunce, Charles Stark Draper Laboratories, Inc. 

Modeling of Flexible Structures for Active Control 
A.E. Bryson, Jr., Stanford University 

Vibration Suppression in Large Space Structures 
T.K. Caughey and C.J. Goh, California Institute of Technology 

Control of Antenna-Feed Attitude and Reflector Vibrations in Large 
Spaceborne Antennas by Mechanical Decoupling and Movable Dampers 
P.K.C. Wang, Jet Propulsion Laboratory; and E.C. Hong and J.C. 
Sarina, University of California, Los Angeles 

635 



4:45 -
6:00 p.m. 

A Closed-Loop Principal Component Analysis of a Tetrahedral Truss 
E.A. Jonckheere, University of Southern California 

Control of Large Space Antennas Based on Electromagnetic -
Structural Models 
M. Hamidi and F. Manshadi, Jet Propulsion Laboratory 

Break 

Active Control of Space Structures (ACOSS) Model 2 
T.C. Henderson, Charles Stark Draper Laboratories, Inc. 

Travelling Wave Effects in Large Space Structures 
A. von Flotow, Stanford University 

Distributed Control of Large Space Antennas 
J. Cameron, M. Hamidi, Y.H. Lin, and S.J. Wang, Jet Propulsion 
Laboratory 

Break 

SESSION III: DISCUSSION - LSS CONTROL PROBLEMS 
Participants: R.R. Strunce, Charles Stark Draper Laboratories, 
Inc., Moderator; J. Sesak, General Dynamics; N.K. Gupta, Inte
grated Systems, Inc.; and A.F. Tolivar, Jet Propulsion 
Laboratory 

THURSDAY, JULY 15, 1982 

8 :00 a. m. -
11:20 a.m. 

SESSION IV: DISTRIBUTED CONTROL 
CHAIRMAN: A.F. Tolivar, Jet Propulsion Laboratory 

Number and Placement of Control System Sensors Considering 
Possible Failures 
W.E. Vander Velde, and C.R. Carignan, Massachusetts Institute 

of Technology 

The TOYSAT Structural Control Experiment 
J.A. Breakwell and G.J. Chambers, Lockheed Missiles and Space 

Company 

Large Space Structure Model Reduction and Control System Design 
Based upon Actuator and Sensor Influence Functions 
Y. Yam, J.H. Lang, T.L. Johnson, S. Shih, and D.H. Staelin, 

Massachusetts Institute of Technology 

A Design Procedure for Active Control of Beam Vibrations 
S.L. Dickerson and G. Jarocki, Georgia Institute of Technology 

On Vibration Control of Tethered Satellite Systems 
D.M. Xu and A.K. Misra, McGill University; and V.J. Modi, 
University of British Columbia 
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12:30 p.m. -
3:20 p.m. 

Break 

Orbiting Chains and Rings 
J.V. Breakwell, Stanford University 

Hardware Verification of Distributed/Adaptive Control 
D. Eldred and D.B. Schaechter, Jet Propulsion Laboratory 

Lunch 

SESSION V: CONTROL THEORY FOR DISTRIBUTED SYSTEMS 
CHAIRMAN: Lt. Col. D.C. Washburn, Kirtland Air Force Base 

Some Remarks on the Current Status of the Control Theory of 
Single Space Dimension Hyperbolic Systems 
D.L. Russell, University of Wisconsin 

Approximation in Control of Flexible Structures, Theory and 
Applications 
J.S. Gibson, University of California, Los Angeles 

Simultaneous Control and Optimization for Elastic Systems 
V. Komkov, West Virginia University 

Robust Control of Higher Order Systems Using Positivity 
R.J. Benhabib and R.P. Iwens, TRW Space Technology Group 

Fixed-Order Dynamic Compensation through Optimal Projection 
D.C. Hyland and A.N. Madiwale, Massachusetts Institute of 

Technology Lincoln Laboratory 

Approximation of the Optimal Compensator for a Large Space 
Structure 
M.K. Mackay, University of California, Los Angeles 

Finite Difference Numerical Methods for Boundary Control Problems 
Governed by Hyperbolic Partial Differential Equations 
G. Chen, Q. Zheng, M. Coleman and S. Weerakoon, Pennsylvania 
State University 

*Stable Feedback Control of Distributed Parameter Systems: Time 
and Frequency Domain Conditions 
M.J. Balas, Rensselear Polytechnic Institute 

*Analysis of Structural Perturbations in Systems via Cost 
Decomposition Methods 
R.E. Skelton, Purdue University 

Break 

*These papers were presented in Session VII but the subjects are more suitable 
for Session V. 
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6:30 p.m. -
9:30 p.m. 

SESSION VI: DISCUSSION - LSS APPLICATIONS OF DISTRIBUTED SYSTEM 
THEORY 

Participants: R.S. Gran, Grumman Aerospace Corporation, 
Moderator; D.C. Washburn, Air Force Weapons Laboratory; V. 
Komkov, West Virginia University; D.L. Russell, University of 
Wisconsin; and J.S. Gibson, University of California, Los 
Angeles 

SOCIAL HOUR AND BANQUET (Pasadena Holiday Inn) 
Speaker: H. Ashley, Stanford University 

FRIDAY, JULY 16, 1982 

8:00 a.m. -
11:30 a.m. 

1:00 p.m. -
3:00 p.m. 

SESSION VII: ESTIMATION/IDENTIFICATION 
CHAIRMAN: L.W. Taylor, Jr., Langley Research Center 

Algorithms for Estimation in Distributed Models with Applications 
to Large Space Structures 
H.T. Banks, Brown University 

Identification of Large Flexible Structures Mass/Stiffness and 
Damping from On-Orbit Experiments 
S.L. Hendricks, S. Rajaram, M.P. Kamat and J.L. Junkins, Virginia 
Polytechnic Institute and State University 

Break 

Joint State and Parameter Estimation 
N. Carmichael, University of Warwick, and M.D. Quinn, Sheffield 

City Polytechnic, United Kingdom 

Parameter Estimation in Truss Beams Using Timoshenko Beam Model 
with Dauiping 
C.T. Sun, Purdue University; and J.N. Juang, Martin Marietta 
Aerospace 

A Function Space Approach to State and Model Error Estimation 
for Elliptic Systems 
G. Rodriguez, Jet Propulsion Laboratory 

Lunch 

SESSION VIII: DISCUSSION - FUTURE RESEARCH OPPORTUNITIES 
Participants: H.A. Rediess, Mi1co International, Inc., 
Moderator; A.V. Balakrishnan, University of California, Los 
Angeles; A.E. Bryson, Jr., Stanford University; J.A. Breakwel1, 
Lockheed Missiles and Space Company; P.C. Hughes, University 
of Toronto; and W.E. Vander Velde, Massachusetts Institute of 
Technology 
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APPENDIX B 

WORKSHOP ON APPLICATIONS OF DISTRIBUTED SYSTEM THEORY 

TO THE CONTROL OF LARGE SPACE STRUCTURES 

ATTENDEES/PARTICIPANTS 

A.K. Agrawal 
JPL M/S 130-117 

J.L. Allen 
Office of Director for Projects 
LaRC 

H. Ashley 
School of Aero & Astro 
Stanford University 
Stanford, CA 94305 

W. E. Bachman 
JPL M/S 198-112D 

A.V. Balakrishnan 
System Science Dept. 
UCLA 
Los Angeles, CA 90024 

M.J. Balas 
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APPENDIX C - STATEMENT ON SYSTEM IDENTIFICATION IN 

LARGE SPACE STRUCTURE (LSS) CONTROL 

W.E. VANDER VELDE, MIT 

One of the most unsettling aspects of the prospect of controlling flexible 
structures in space is the fact that many configurations will not permit 
experimental tests on the ground to verify or improve the models of their 
dynamic properties. In some mission situations, then, depending on the band
width of the controlled system necessary to meet the performance specifications, 
it is virtually certain that the modeling errors upon initial deployment of the 
assembly in space will be great enough to preclude the successful operation of 
the required control system. In that case, there will have to be an initial 
period of operation under the control of a more tolerant system during which 
the dynamics of the structure are identified. 

It is suggested that dynamic model identification in the large space 
structure (L88) context be visualized as having two modes. 

1. Complete system identification during the initial phase of operation. 

2. Dynamic model monitoring during the remainder of the mission period 
with selected parameters updated as necessary. 

The first mode of initial system identification is a massive undertaking whose 
purpose is to estimate the large number of parameters necessary to define the 
dynamic model required for the control function. Because only elementary 
control can be exercised during this period, and special test inputs may be 
necessary to enhance the identifiability of system parameters, the system will 
not be able to perform its primary mission(s) during this time. Thus a large 
part of the system's data processing capability can be devoted to the identifi
cation function in this initial phase. Later, when the system is in full 
operation, the data processors will be devoted largely to mission requirements 
such as sensor signal processing and thus the need for the second mode of 
dynamics monitoring which must be designed to place only a small demand on the 
data processor. 

A considerable amount of research has been done on the mode 1 type of 
problem--complete system identification--but the'LS8 identification task is 
far more demanding in that such a large number of parameters will have to be 
identified. It is not clear that this task is computationally feasible; specific 
research should be directed at the L88 identification problem with the objective 
of formulating an approach with the best possible computational efficiency. 
The mode 2 task of monitoring the dynamics and improving the estimates of 
selected parameters as necessary is a new concept which deserves research 
support. 
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APPENDIX D - STATEMENT ON RELIABILITY ISSUES IN 

LARGE SPACE STRUCTURE (LSS) CONTROL 

W.E. VANDER VELDE, MIT 

One aspect of active control of large space structures that is receiving 
too little attention is the importance of the unreliability of control system 
components. This is not to say that unreliable components, according to our 
best standards, will be utilized. Rather, it is the sheer number of these 
components, notably sensors and actuators, which will likely be required to 
effect good control over the structure which assures that we will have to deal 
with failures. As one example, if the system has a total of 400 sensors and 
actuators, each with a mean time to failure of 100,000 hours (optimistic by 
today1s standards), one may expect to experience a component failure about 
every 10 days on average. Obviously, the system must be designed to accommodate 
these failures and continue to function. 

There are several aspects to the overall problem of designing a control 
system for fault tolerance. The most important of these are: 

1. Choose the number of sensors and actuators to be incorporated in 
the system, and decide to place them on the structure, with recognition 
of the fact that many of them are likely to fail during the mission 
period. 

2. Incorporate a fault-monitoring function in the control system to 
detect the events of a component failure and isolate the faulty 
component. 

3. Utilize a fault-tolerant signal transmission and data processing 
system to implement the controller and fault-monitoring functions. 

4. Implement a method of reconfiguring the control system, upon isolation 
of a component failure, so as to function without the faulty component. 

5. Devise means for evaluating the likely performance of a proposed 
system configuration including its failure accommodating functions. 

Some research has been performed on all of these subjects, but most of 
it was in the context of other applications than LSS control. Some current 
research is being funded on fault-tolerant computers, item 3 above, but very 
little, support is being given to work on the other items. Failure detection 
and isolation (FDI), item 2 above, has been developed largely in the context of 
aircraft flight control systems. But the LSS application is different. The 
same characteristics that make control of LSS difficult, such as high dimension
ality and inadequate modeling, also make FDI difficult. But given that 
component failures are virtually certain to occur, these aspects of dealing 
with component unreliability should be given high priority in NASA planning for 
research. 
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