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ABSTRACT

These proceedings report the results of a workshop on the applications of
distributed system theory to the control of large space structures (LSS), which
was held at the Jet Propulsion Laboratory, July 14-16, 1982. Co-sponsored by
the Jet Propulsion Laboratory and Langley Research Center, this workshop re-
sponded to a rapidly growing interest within NASA in developing the control
technology required to make possible the large, shuttle-based space systems
planned for the 1980s and beyond. The scope of this workshop encompassed two
mutually complementary themes, both of which involve the notion of a dis-
tributed system in some sense. One theme was the control theory for dis-
tributed parameter systems, in which the traditional emphasis is on developing
basic control principles by means of distributed or continuum models. The
other theme is that of distributed control for systems requiring spatially-
distributed multipoint sensing and actuation -- whether described by lumped
or continuum models. Papers considering both of these control theories were
presented in the workshop sessions on modeling and control, control and
stabilization, distributed control, control theory for distributed systems,
and estimation and identification. - The three discussion sessions held were
devoted to the general topics of a summary of LSS control problems, LSS
application of distributed system theory, and future research opportunities.
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PREFACE

At the time this workshop was being formulated, I was the manager at NASA
Headquarters responsible for a broad area of electronics and human factors
research and technology that included space controls and guidance. In the fall
of 1980, I suggested to Dr. G. Rodriguez of the NASA Jet Propulsion Laboratory
and Dr. L. W. Taylor, Jr., of the NASA Langley Research Center that they should
organize and conduct a workshop on this topic. My motivation and rationale are
presented in the following paragraphs.

In reviewing the research supported by my office, it appeared that rela-
tively little work was being done in the application of partial differential
equation (PDE) control theory to the large space structure control problem. It
is well known that certain large spacecraft configurations with rather uniform
mass distribution can be most accurately modeled by a set of PDE's. Such equa-
tions, of course, are much more difficult to treat than ordinary differential
equations that result from a finite-element model of a structure. For the most
part, researchers who have used PDE models have made some approximations, either
in the formulation or in the solution to obtain attractive control law designs.

Substantial theory existed at that time to treat control of PDE systems.
For example, Professor A. V. Balakrishnan at UCLA had treated PDE control for
aircraft flutter and had discussed the problem of large space structure control.
It was not clear to me whether or not an exact PDE solution would be better than
various approximate solutions when considering practical implementation con-
straints. However, it seemed most appropriate for the NASA organization respon-
sible for advanced controls research to examine the state-of-the-art theories
and applications and assess whether more research effort should be applied
towards the PDE approach.

My suggestion for a workshop was to bring together the key researchers from
both schools of thought and discuss the status, problems and potential and thus
identify dimportant research opportunities. The workshop that resulted, the
workshop reported herein, had somewhat broader objectives but encompasses my
original motivation. The main objectives of the workshop were:

1) To exchange ideas and explore the application of various control
theories for distributed systems to large space structures; and

2) To identify the important unsolved problems of current interest lead-
ing to possible future collaborative NASA/university/industry efforts.

Here the term distributed systems was used in two ways: 1) to mean dis-
tributed parameter control theory leading to PDE control; and 2) to mean control
for systems with spatially distributed multipoint sensors and actuators, whether
modeled with finite elements or distributed parameters.

The workshop covered the topics of modeling and control, control and stabil-
ization, control theory for distributed systems, and estimation and identifica-
tion. There was a formal discussion period scheduled at the end of each of the
first two days and a wrap-up panel discussion on the final day. The final
wrap-up panel discussion focused on identifying future research opportunities



for NASA consideration. Technical synopses of these discussion periods, as well
as a technical evaluation of the workshop, are included in this document.

One final note: the present NASA Administration has stated publicly that
the permanent presence of man in space is NASA's current primary goal for the
space program. This effort should result in the first U.S. large space station,
followed by a series of other spacecraft, platforms, and satellites of very large
dimensions. Many of the high-potential space applications, both civil and mili-
tary, depend on having the technology to implement large space structures. The
workshop addressed a very timely and dmportant topic for the future exploitation
of space.

H. A. Rediess
October, 1982
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MODELING AND CONTROL OF
DISTRIBUTED STRUCTURES*

L. Meirovitch
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

" ABSTRACT

There appears to be some incongruity in the design of controls for struc-
tures. Structures are basically distributed-parameter systems, described by
partial differential equations, and control theory is concerned almost exclu-
sively with discrete (in space) systems, described by ordinary differential
equations. The standard approach to solving this dilemma is to discretize the
system in space, which precludes the use of distributed controls. A different
approach, known as the independent modal-space control method, is designed to
eliminate the incongruity by bringing about a closer correspondence between
modeling and control theory. Indeed, the independent modal-space control
method can treat distributed structures as well as discretized models and it
permits design of both distributed and discrete-point controls.

INTRODUCTION

Structures are essentially distributed-parameter systems and their behav-
ior is described by partial differential equations (Refs. 1,2). The diffi-
culty in designing controls for distributed structures becomes immediately
evident when it is recognized that the control theory is concerned for the
most part with discrete systems, described by finite sets of simultaneous
ordinary differential equations, and not with distributed systems. Through a
modal expansion, it is possible to transform the partial differential equation
governing the motion of a distributed structure into a set of simultaneous
ordinary differential equations, but the set of equations is infinite, so that
the question as to how to compute control gains for systems of infinite order
remains. To circumvent this difficulty, an approach commonly used is to dis-
cretize the distributed structure, i.e., to represent it by a discrete model
of finite order. This approach has several undesirable effects. In the first
place, the control design tends to acquire all the characteristics of a dis-
crete system, For example, distributed controls and distributed sensors must
be ruled out immediately, as they do not fit in a finite-dimensional vector
space formulation of modern control theory. Consistent with a discrete (-in-

*Supported in part by the NASA Cobperative Agreement NAG-1-225



space) theory, one must control structures by means of discrete-point actua-
tors and sensors (see, for example, Refs. 3~7). Another drawback is that a
discretized model is only an approximate model, so that if discretization of a
distributed structure is not done with care, serious errors can be introduced,
leading to an unstable system. From the above, we conclude that the choice of
the mathematical model is dictated by llmltatlons in the control theory and
not by prudent structural modeling.

More often than not control of discrete (or discretized) systems repre-
sents one form or another of modal control (Refs. 8,9). The idea behind modal
control is that one can control the structure by controlling its modes. 1In
theory, one can control all the modeled modes of a discretized system with a
single actuator and observe all these modes with a single sensor, provided the
controllability and observability requirements are satisfied. 1In practice,
problems can arise. Some of thém relate to the control system performance and
other to the computational algorithms for the control gains. Similar problems
exist for multi input-multi output systems. In the case in which a discre-
tized model is used to design controls for a distributed structure, one can .
encounter problems of control and observation spillover (Ref. 3). These
problems can be attributed directly to the insistence on using discrete actu-
ators and sensors to control a distributed structure.

It is standard practice in modal control to express the state of the
system in terms of modal coordinates and velocities, in which case the formu-
lation is in terms . of the so-called modal equations of motion. In the case of
open-loop controls the modal equations are decoupled. 1In feedback controls,
however, the controls depend in general on all the controlled variables, so
that the feedback controls recouple the modal equations of motion. We refer
to this case as coupled controls. The approaches used in Refs., 3-7 belong
basically in this category.

Another approach to modal control, known as the independent modal-space
control method (Refs. 10-13), remains more faithful to the original structure.
Indeed, the method can be used for distributed structures or for discretized
models of distributed structures, The method consists of designing controls
so that the modal equations of motion remain decoupled, thus reducing the
control problem to the design of modal controls for a set of independent
second-order modal equations. Then, the actual controls are synthesized from
the modal controls via a simple transformation. Because the controls are
designed for second-order systems only, the method permits a wider choice of
control techniques and most of the problems associated with coupled controls
disappear. It should be pointed out that, in the case of the independent
modal-control method, if one chooses to work with a discretized model, then
this choice is dictated by the inability of computing the entire infinity of
modes of the structure and not by the inability of designing distributed '
controls. Of course, if all the modes of the structure are known, then no
discretization is necessary. The independent modal-space control method is
ideally suited for distributed controls, in which case no control spillover
exists (Ref. 13). A similar statement can be made regarding observation
spillover, provided one is able to measure (or estimate) the state at every
point of. the distributed structure,




This paper begins with the derivation of the equations of motion for
distributed structures and follows with a discussion of proper modeling, with
special emphasis on the case in which the eigenvalue problem can be solved
only approximately. Some fine points concerning the nature of the approximate
eigensolution of distributed structures are presented and their implications
in model discretization are explored. Then, attention is given to wvarious
problems inherent in the control of distributed structures by means of dis-
crete models. Finally, the independent modal-space control method is reexam-
ined in the context of control of distributed structures.

EQUATIONS OF MOTION FOR THE STRUCTURE

The equations of motion for a distributed structure can be derived by
means of the extended Hamilton principle (Ref. 1 ). This requires expressions
for the kinetic energy, the potential energy and the virtual work. Denoting
the displacement vector of any nominal point P in the structure by u(P t),
the kinetic energy can be written as

T = %-f m&TG dD (D
p ~~

where m = m(P) is the mass density and D is the domain of extension of the
structure. The potential energy can be written in the symbolic form

(2)

<i
i
N[
(=
=~

where [u,u] denotes an energy inner product (Ref. 2). Moreover, denoting the
distributed force vector by £(P,t), the virtual work has the expression

W= [ £ Sudp ~ (3)
D

where Su is the virtual displacement vector. Note that in the case of feed-
back controls, the force vector f does not depend exp11c1t%y %n the position P
and time t but only implicitly through the state vector [u u

The extended Hamilton principle has the form (Ref. 1 )

)

[ (6L + 8Wydt = 0, Su(P,t) =0, t =t

&

t, ; PeD (4)

where L = T-V is the Lagrangian. Inserting Eqs. (1-3) into Eq. (4) and fol-
lowing the usual steps, we obtain the partial differential equation of motion
for the structure



Lu + Mi = £ , PeD (5)

where L 1is a differential operator matrix with entries of order 2p and
M is a mass matrix. The displacement vector u is subject to the boundary
conditions T

Biu =0, PeS; i=1,2,....p (6)
where Bi are differential operator matrices with entries of maximum order 2p-1
and S is the set of points defining the boundary of D.

The relatively simple formulation (5-6) may be a little misleading. In-
deed, in general a structure represents an assemblage of substructures acting
together as a whole, so that the operator L may vary from one substructure to
another and the operators B, may vary from one boundary to another. It should
be clear that control of a éistributed—parameter system using Eqs. (5-6) di-
rectly is not possible, even for a structure of moderate complexity. This
points to modal control as the only viable alternative. The idea behind modal
control is that one can control a structure by controlling its modes. Before
modal control can be implemented, it is necessary to compute the modes of the
structure,

STRUCTURE DISCRETIZATION

As mentioned above, the problem defined by Egs. (5-6) in general is too
complex to permit closed-form solution. This applies not only to the control
problem but also to the open-loop eigenvalue problem. Hence, we seek a solu-
tion for the modes of the structure by an approximate method, which requires
the discretization of the structure. To this end, we use the finite element
method, which can be regarded as a variant of the Rayleigh-Ritz method, at
least in the case of structures.

Let us assume that the motion of the structure can be described in terms

of n nodal coordinates q.(t) (j = 1,2,...,n). In general, the nodal coordi-
nates consist of both trénslat%ons and rotations. Introducing the n-vector
q(t) = [ql(t) q2(t),... qn(t)] , the displacement vector u(P,t) can be expres-

sed in terms of “the nodal coordinates by means of the linear transformation
u(P,t) = L(P)q(t) (N

where L(P) is a matrix of interpolation functions (Ref. 2 ). Introducing Eq.
(7) into Eqs. (1-2), we obtain the discretized kinetic energy and potential
energy in the form

T=>qM , V= %*q Kq (8a,b)



M= [LT(@MUL(P) dD(P), K = [L(P), L(P)] (9a,b)

are n X n mass and stiffness matrices. Both M and K are symmetric. Moreover,
M is positive definite and K is nonnegative, i.e., it can be either positive
definite or positive semidefinite, the latter being the case when the struc-
ture admits rigid-body modes. In addition, inserting Eq. (7) into Eq. (3), we
obtain the discretized virtual work

8W =Q"6q (10)

where

o=/ L'®iE,t) d@) (1)
D

is a nodal force vector and dq is the virtual nodal displacement vector.

The extended Hamilton principle remains in the form (4), except that the
varied path is now subject to 8§q = 0 ,. t = t,, t,. It is not difficult to
show that use of the principle, in conjunction with Eqs. (9) and (10), yields

Mg + Kgq = Q (12)
which represents a set of simultaneous ordinary differential equations of
motion., Hence, the effect of using the finite element method is to reduce a
distributed structure with an infinite number of degrees of freedom to a
discrete model with only n degrees of freedom. But, whereas Eq. (12) has the
appearance of a discrete system it is in fact only a discretized system meant
to represent a distributed structure. Hence, the process leading from Eq. (5)
to Eq. (12) is a discretization and truncation process simultaneously. Indeed
it should be very clear that a discretized model of a distributed structure is
already a truncated model. The question remains to what extent the discre-
tized model is representative of the actual distributed structure. We propose
to examine this question in the next section.

THE NATURE OF THE DISCRETIZED MODEL

As pointed out above, the system described by Eq. (12) is not truly a
discrete system but only a discretized and truncated model of a distributed
structure. It is commonly believed that by increasing n the discretized model
becomes a completely faithful representation of the distributed structure. It
turns out that this is a mistaken belief, as we are about to show.

Let us consider the eigenvalue problem associated with Eq. (12) and write
it in the form

K(n)gin) = AE“) M(n)gén), r=1,2,..., 0 (13)



where X(n) and q(n) {r=1,2,...,n) are eigenvalues and eigenvectors, respec-
tively.” The suﬁgrscript (n) indicates that the eigenvalue problem (13) cor-
responds to a finite~dimensional model possessing n degrees of freedom. It is
not difficult to show that all the eigenvalues are real and nonnegative. Next,
let us consider a model possessing n + 1 degrees of freedom and denote the
associated eigenvalue problem by the superscript (n+l), so that

K(n+l)q (n+l) _ X(n+l) (n+l) (n+l)

q, 4, , T=1,2,...,0n+1 (14)

The question arises as to how the eigensolution of the n-degree-of-freedom
model relates to the eigensolution of the (n+l)-degree-of-freedom model.
The answer is provided by the inclusion principle (Ref. 2 ). Assuming that
the two sets of eigenvalues are arranged in ascending order of magnitude,

Xin)f_X(n)f_... f_X(n) and A(n+l)< K§n+l) coe j_kﬁiil), the inclusion prin-
ciple st%t?s that the eigenvalues X( n+l) (r=1,2,...,n+l) bracket the eigen-
values X (r=1,2,...,n), or
(n+1) (n) (n+1) (n) (n+1) (n) (n+l)
Xl j_%l 5}2 5_%2 < iee Xn f'kn -xn+l (15)
The eigenvalues X(n), Aén), . Kén), computed on the basis of the dis-

cretized model, are only approximations to the lowest n eigenvalues A., Xz,
ey Xn of the actual structure. Hence, the question arises as to how the

"computed eigenvalues" of the discretized model relate to the "actual eigen-
values" of the distributed structure. In this regard, it can be stated that
(Ref. 2 )

Lim A = A, r=1,2,....n (16)
r r
n —+— «

Moreover, the computed eigenvalues approach the actual elgenvalues from above
as n tends to infinity.

The fact that the computed eigenvalues approach the actual eigenvalues
asymptotically as n = ®© is very reassuring, but in practice n is finite and
not infinite. As it turns out, when n is finite the situation is not nearly
as good. In particular, whereas the lower computed eigenvalues tend to be
relatively good approximations to the actual eigenvalues, accuracy deterio-
rates as the mode number increases to the extent that the higher computed
eigenvalues can be grossly in error, sometimes the error being of the order of
several hundred percent. Paradoxically, this is true regardless how large n
is. 1Indeed, by increasing n more computed eigenvalues tend to become accurate,
but at the same time new computed eigenvalues are added at the upper end of
the spectrum, and the new ones tend to be wildly in error. Hence, no dlS-
cretized model can yield a totally accurate representation of a distributed
structure. This fact must be taken into account in de31gn1ng a control sys-
tem, as the object is to control the structure itself and not the model.




MODAL EQUATIONS OF MOTION FOR CONTROL

In one form or another, virtually all approaches to the control of
structures, whether distributed or discrete, are based on modal control.
The idea is that if one controls the modes of a structure, then in essence
one controls the structure. To design modal controls, it is convenient to
transform the nodal equations of motion into modal equations of motion.
This necessitates the structure eigenvalue and eigenfunctions, which in turn
requires the solution of the eigenvalue problem for the structure,

More often than not, no closed-form solution of the eigenvalue problem
exists, so that an approximate solution is frequently necessary. This
approximate eigensolution is based on a discretized system, and is expressed
in fact by Eq. (13). Hence, dropping the superscript (n), we denote the
computed eigenvalues by A_ and the computed eigenvectors by q (r=1,2,...,n),
The computed eigenvectors can be used to determine the compuEgd eigenfunc-
tions ¢(P) associated with the n lowest modes of vibration by writing

6 (P) = L(®)q_, r=1,2,...,n (17)

where L(P) is the matrix of interpolation functions of Eq. (7).

Because the structure is self-adjoint, the eigenfunctions ¢_ (P)(r=1,2,
...,0n) are orthogonal. The orthogonality conditions can be demonstrated by
recalling that the eigenvalue problem (13) is defined in terms of two real
symmetric matrices, at least one of which is positive definite. The impli-
cation is that the eigenvectors q (r=1,2,...,n) are orthogonal (Ref. 2).
They can be normalized so as to satisfy

T _ _ _ 2 _
qg Mgr = érs Kq = Xré = wrérs’ r,s=1,2,...,0 (18a,b)

where w_ are the computed natural frequencies. Then, considering Eqs. (9a)
and (l7§ one can write

[ 0g Mo a0 = [ g LTEML(PYG, 0D = q g, 19)

so that, in view of Eq. (18a), the eigenfunctions satisfy the orthonormality
relations

[ 9 Mp_dD =8 __, r,s=1,2,...,n (20)
5 ‘

Moreover, Egs. (9b) and (17) permit us to write

[, » 9.1 = qLlL(®), L), = q.Kq_ | (21)

(3=



so that, in view of Eq. (18b), the eigenfunctions also satisfy the orthorma-
lity relations

[?S’ ?r] = xrérs’ r,s=l,2,...,n 5 _ (22)

Observing, however, that the operator L in Eq. (5) is related to the energy
inner product by

[ v'te > = [y, u] | (23)
D
it follows that the orthormality relations (22) can be replaced by

f q~>TLq~>r dD = A8, r,5=1,2,...,m (24)

Note that the relation (23) is obtained via integrations by parts during
which the boundary conditions (6) are used (Ref. 2 ).

From the computed eigenvalues A_ and computed eigenfunctions ¢_(P) (r=1,2,

...,n) only a fraction can be expecEed to be accurate estimates of the true
eigenvalues and eigenfunctions of the distributed structure. As a rule of
thumb, less than one half of the computed ones are accurate. We consider the
case in which we are interested in a discretized mathematical model with N
degrees of freedom for control design, so that we must insist that at least N
computed eigenvalues and eigenvectors are accurate. This implies that the
algebraic eigenvalue problem to be solved must be of order n >> N. Then, we
wish to expand the displacement vector u(P,t) into the series

N
u@,t) = 2 ¢ (P)u (t) (25)
r=1

where ur(t) are known as modal coordinates. Equation (25) is known as the
expansion theorem (Ref. 2). Introducing the modal matrix

() = [9;(B) ¢,(B) ... ¢ (B)] (26)

and the modal vector

w(e) = [u)(0) uy(e) wov uy(®1 @n
Eq. (25) can be rewritten in the matrix form
u(P,t) = ®(P)u(t) (28)



The modal matrix ®(P) permits us to write all the orthonormality relations,
Eqs. (20) and (24), in the compact form

T T
fD Mo dD = I, [D ®°Ld dD = A (29a,b)
where I is the unit matrix of order N and

2

- 4 = d4 2
A= diag [A, A, ...A ] = dlag[u)l W N]

12 N (30)

2 W
g v
is the diagonal matrix of eigenvalues, yhere A is also of order N. Introducing
Eq. (28) into Eq. (5), multiplying by ¢, integrating over the domain D and
considering Eqs. (29), we obtain the modal equations

;(t) + Mu(t) = £(t) (31)
where

£(6) = [£,(t) £,(0) .. F (017 = [ ¢'®)E@,0) (32)
D

is the N-dimensional modal control vector. Note that the components of the
modal control vector have the explicit expressions

£(0) = [ 0 (BE(R,0) dD , r = 1,2,...,N (33)
p "t

The control problem consists of designing a force vector f(P t) so as to
drive any undesirable disturbance to zero.

COUPLED MODAL CONTROL

Although the modal equations (31) have the appearance of a set of indepen-
dent equations, they are in fact not independent. Indeed, the notation £f(t)
for the modal control vector is misleading, as for feedback control the ~
vector f depends only implicitly on time and it depends explicitly on the
system state, or

£ = £(u(®), 4(t)) (34)
In the general case, the feedback control vector f couples the modal equations
of motion. We refer to this case as coupled modal controcl. In using a
discrete system to design controls for a distributed system, the controls
acquire discrete characteristics. As a result, it is impossible to design a
distributed control vector f(P,t) to control a system in coupled form.

Hence, in the case of coupled controls we must use discrete actuators.

In view of the above, we assume that the control is implemented by means



.of M actuators acting at the discrete points P=P, .(j=1,2,...,M). Discrete
forces can be treated as distributed by writing

Fj(t)S(P—Pj) (35)

M
£(P,t) = X
< -1

3

where §(P-P,) are spatial Dirac delta functions and F,(t) are actuator force
amplitude vectors. Introducing Eq. (35) into Eq. (373, we obtain the modal
controls .

T M T :
[ ® (P)F,(t)S(P-P.) dD= I & (P,)F.(t), r=1,2,... (36)
p ~T 3 3 ~r o 30~

M
f (£)= 1%
~r . j=1

j=1

and we observe that the index r in .Egqs. (36) has no upper limit, at least in
theory. This implies that the actuator forces F, (j=1,2,...,M) generate not
only modal control forces f_ (r=1,2,...,N) acting on the modeled modes but
also modal forces f (r=N+l,ﬁ+2,...) acting on the higher unmodeled modes.
This fact is referred to as control spillover into the unmodeled modes. The
assumption is that the number N of modeled modes is sufficiently large that
control spillover into the unmodeled modes is insignificant.

Introducing the actual control vector

F(t) = [F(t) Fp(t) ... Fy(e)]" (37)

and the modal participation matrix for the modeled modes

_ T T T
BN = [® (Pl) ¢ (PZ) oo @ (PM)] (38)

the modal control vector f can be written in terms of the actual control
vector F in the form -

£(t) = BF(t) (39)

so that the modal equations, Eq. (31), become

;N;(t) + A1~1(t) = Blj‘(t) . (40)

In the above formulation, it is assumed that there are N modeled modes.
Yet, one may wish to-control only a smaller number of these modes. Hence, we
wish to distinguish between two classes of modeled modes, namely, controlled
modes and uncontrolled modes, where the latter are referred to at times as
residual modes. We denote the controlled and residual modes by the subscripts

10



C and R, respectively, and assume that there are N
residual modes, N

controlled modes and N
+ NR = N. Hence, Eq. (40) can ge written in the parti-

tioned form c
]
Yc Ao v o |l % Bq
SR Y} R N— | =] F (41)
Yp R | Br ’

where the notation is self-evident.

In modal control, the actual feedback control vector F is assumed to
depend on the modal displacements and modal velocities corfesponding to the
controlled modes only, or

F=F (4 up) (“2)

The force vector F can be determined by various techniques, such as pole
allocation (Refs. 8,9) or optimal control (Refs. 14,15), We discuss these
techniques later in this paper.

Although the actuators force vector F is designed so as to regulate the
controlled modes only, in general these forces will excite the residual
modes. Indeed, from Eq. (39), we can write

£, = BF , fo = B.F (43a,b)

Equation (43b) shows clearly that there are modal forces acting on the
residual modes, giving rise to so-called control spillover into the residual

modes (Ref., 3). Some attempts have been made to suppress the residual modes
(Ref. 5), but questions of implementation remain. Note that to eliminate
this spillover, one must design F so that f_ = 0.

For linear controls, the actual controls are assumed to be proportional
to the modal displacements and velocities, or

F =G + G (44)

1%¢ T F2%c
where G, and G, are control gain matrices that can be determined by one of
the metﬁods meiitioned above, This permits us to write the closed-loop modal
equations in the form

! i
u -B G, 1+ O u A~-BG, 0 u
¢ + m_g_l_% _____ _~C_ + mg__g_g_4___ ~C_|= 0 (45)
L] ' ~
- - A
“R BgGp 1 O IR Bpl v M| Ur

11



It is clear from Eq. (45) the closed-loop poles of the controlled modes are
determined by -B.G. and A_.-B_.G, and the closed-loop poles of the residual
modes are the same as the opén-loop poles of the residual modes, so that the
latter are not affected by the controls. It follows that control spillover
into the residual modes cannot destabilize these modes. Although not specif-
ically included here, the same conclusion is valid for the unmodeled modes.

CONTROL IMPLEMENTATION USING OBSERVERS

As pointed out by Eq. (42), or Eq. (44), to generate the actual feedback
forces, one must know the modal displacements and velocities associated with
the controlled modes at all times. Sensors, however, measure actual displace-
ments and velocities, so that the question remains as to how to extract the
modal displacements and velocities from actual measurements. It is customary
to assume that sensors are discrete devices producing measurements at discrete
points in the structure. Later in this paper, we will reexamine this assump-

tion.

Let us consider the case in which K sensors measure displacements and
velocities at the discrete points P=Pj (i=1,2,...,K). Denoting the sensors
signals by yi(t), we can write for displacements and velocity measurements

Zi(t) = E(Pi’t)’ zl(t) = E(Pi’t)’ i=1,2,...,K (46a,b)

respectively. Once again we propose tc ignore the unmodeled modes on the
grounds that their contribution to the overall motion is insignificant, so
that the measurements are assumed to. contain contributions from the controlled
and residual modes only. Inserting Eq. (28) into Eqs. (47), we obtain

75(8) = @)U, y;(0) = o(P )u(t), 1=1,2,...,K (47a,b)

where ®(P,) is the modal matrix evaluated at P=P_., u(t) is the modal displace-
ment. vector and u(t) is the modal velocity vecto¥. Introducing the matrix

9(R))
$(®y) . .
¢ =1 . = [CC: CR] (48)
| o
where the partitioning is obvious, as well as the measurement vector
_.T T T T
y(&) = [y;(e) y,(t) «.o yp(o)] _ (49)

12



Egqs. (47) can be rewritten as

y(t) = Cult) = Cou.(t) + Cpup(t), y(&) = cu(t) = Cou

For feedback control, we only need u (t) and u

(t)+C uR(t)

~

(50a,b)

(t), which can be extracted

from measurements of actual displacements and Velocgtles by means of an
observer, or state estimator (Ref. 16). To this end, it is convenient to re-
write the equations of motion in state form, Hence, let us define the con-

trolled and residual modal state vectors

v. = X vaT v = aE T
~C ~C 1 .C > R ~R ; ~R

the associated modal control vectors

T T.T T T
Vo= 10717, Vp = [£5107]
the coefficient matrices
0 ! - 0 1 -A
[ U
AC = | mem———— J.__._.g._ , A’R = ___.:___.1}_
I ! oo Iy 0

L) B ] 1 r n u
]
I R | e + Ve
. - l_—__ T _V
R 0 vAp YR | L ~R
[~ ' T ™ = ~ ]
A, 1t O v B
- __.QM;. SR | NESy DY PR )
0 1A v B ~
i VRIJLR LR

(51a,b)

(52a,b)

(53a,b)

(54a,b)

(55)

as indicated by Eq. (42), the actual control vector F depends on the controlled

state, or

13
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For linear control, we obtain from Eq. (44)

F =06 | | (57)
where
— i .
G = [614 6,1 | (58)

is the control gain matrix. The purpose of the observer is to extract the
state vector v, from the system output, namely, the measurement vector y.
However, the output vector y contains contributions not only from the con-

trolled state Ve but also from the residual state Vs 8O that
\i 1
Z(t) = CCYC + CRYR | (59)

| 1
where C, and C, are matrices representing combinations of C, and CR’ respec-—
tively, and nuﬁl matrices, depending on the type of measurements used.

Observers are dynamical systems similar to the actual systems and receiv-
ing as input the output of the actual system. The observer eigenvalues are
chosen so that the observer state approaches the state of the actual system
asymptotically. The term actual system must be interpreted here as the
discretized model and not the distributed system. Observers can be designed
in various forms, but their main features are the same for all designs. We
choose the observer in the form

A ~ 1
v @] | a1 o [fvo] | 3 K, )
|| | e [ - e - o (602)
O] 0 Ag|lRr®| | By KR
y(£) = Covy(e) + Coup () (60b)

where VC and v_ are estimates of v, and v

R ~C
ver gain matrices, chosen so that ¥

R’ respectively, KC and KR are obser-

approaches v, exponentially, and y

C C
is the observer output. An observer of the type (60) is known as a Luenberger
observer (Ref. 16). Equations (60) are similar to Eqs. (13) of Ref. 3, with
the exception that here the residual modes are included in the observer
dynamics and system output, whereas they are left out in Ref. 3. Excluding
the residual modes from the observer dynamics and system output is equivalent
to treating them as unmodeled. We examine the implications of this shortly.

In the feedback control vector F depends on the controlled state v

However, the observer produces the estimated state GC and not the actuég
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Eqs. (47) can be rewritten as

y(t) = Cu(t) = Cou, () + Cpup(£), y(£) = Cu(t) = Cou,(£)+Cup(£)

~

(50a,b)

For feedback control, we only need u, (t) and u (t), which can be extracted
from measurements of actual displacements and velocities by means of an
observer, or state estimator (Ref. 16). To this end, it is convenient to re-
write the equations of motion in state form. Hence, let us define the con-
trolled and residual modal state vectors

T

«T ' T.T T LT
Vo = lug tunl™ s ve = fup :gR] (51a,b)
the associated modal control vectors
_ T?! T,T _ T4 T
Vo= 10717, Vp = [fp107] (52a,b)
the coefficient matrices
- \ \
0 , -AC 0 —AR ‘
AC = | e e s AR = ~——1 ————— (53a,b)
’ I ! o I, 0
where 1 are identity matrices of appropriate order, and
v B: 1] BR
BC =|-—1, BR = | ~~== (54a,b)
’ 0 0
Then, Eq. (41) can be rewritten in the state form
. = ! - F - -
]
Yo |1 Ay O Ve N Je
ol I _mg_j___ I V_
YR O AR LR ] LR
™ ] T [ - o |
A, 1 O v B
= _...g_.:. ———|]-=C. + _...g_ F (55)
O | N I
b - e

as indicated by Eq. (42), the actual control vector F depends on the contrplled
state, or

F = F(v) | (56)
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For linear control, we obtain from Eq. (44)

F = Gv | (57)
where
= ' \ ’ .
Gc = 1617 6,1 (58)

is the control gain matrix. The purpose of the observer is to extract the
state vector ¥, from the system output, namely, the measurement vector y.

However, the ouUtput vector y contains contributions not only from the con-
trolled state Yo but also from the residual state Vps SO that

z(t) = C Vo + C v (59)

R
) 1]

where C, and C, are matrices representing combinations of C, and C_, respec-—
tively, and nuﬁl matrices, depending on the type of measurements used.

Observers are dynamical systems similar to the actual systems and receiv-
ing as input the output of the actual system. The observer eigenvalues are
chosen so that the observer state approaches the state of the actual system
asymptotically. The term actual system must be interpreted here as the
discretized model and not the distributed system. Observers can be designed
in various forms, but their main features are the same for all designs. We
choose the observer in the form

X

| ~ !
Ve | A v 0 fve(e) ] | By Ke n
" = T + F(t) +{——— | [y(t) - y(O)] (60a)
A ' ~ B ~ ~
]
VR 1 0 v Apllvg(®)] | By Kz
N A | Y
Z(t) = CCYC(t) + CRVR(t) (60Db)
where Ve and v, are estimates of Ve and Vgo respectively, KC and KR are obser-
ver gain matrices, chosen so that GC approaches Mo exponentially, and y

is the observer output. An observer of the type (60) is known as a Luenberger
observer (Ref. 16). Equations (60) are similar to Egs. (13) of Ref. 3, with
the exception that here the residual modes are included in the observer
dynamics and system output, whereas they are left out in Ref. 3. Excluding
the residual modes from the observer dynamics and system output is equivalent
to treating them as unmodeled. We examine the implications of this shortly.

In the feedback control vector F depends on the controlled state v .,
However, the observer produces the esStimated state ¥, and not the actuag
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observability matrix

- - -

T I ! T
_ T v, T 2!
0= [Cc A Cg :(AC) c,

2N T
T,”C-1 '

we can state the theorem: For the state v, to be completely observable, it
is necessary and sufficient that the matriX observability matrix 0 be of

rank 2N (Ref. 16). In the case under consideration, the observability matrix
reduces to

N ‘ (69)

Hence, the state v, is completely observable if no column of C, is zero.
Phy81cally, “this implies that lack of observability can occur only if all the
sensors are located at the nodal points of a given mode. Clearly, the problem

of observability disappears as the number of semnsors increases.

MODAL FILTERS (IN SPACE)

As shown earlier, the purpose of a Luenberger observer is to generate an
estimate ¥, of the modal state v, from the system output. But a Luenberger
observer 1S strictly a discrete system device, which does not consider the
distributed nature of a structure. In particular, by writing the output in
the form (50), no advantage is taken of the structure characteristics, as
reflected in the orthogonality of modes. It turns out that, by taking advan-
tage of the orthogonality of modes, the modal state can be estimated in a
more direct way, thus obviating the need for a Luenberger observer. Or, by
measuring displacements alone, one can use the same direct procedure to
estimate the modal displacements and then use a Luenberger observer to esti-
mate the modal velocities,

Equation (25), expanding the displacement vector u(P,t) in a series of
the structure eigenfunctions multiplied by modal coordinates, is only the
first part of the expansion theorem. The second part of the expansion theorem
relies on the orthonormality of modes, Egqs. (20), and permits the computation
of the modal coordinates from the actual displacements, as follows:

u (t) = [ oL(P)Mu(P,t) dD, w_(t) = [ oL (P)Ma(P,t) dD, r=1,2,...(70a,b)
is D~r ~ i Dwr ~

Equations (70) filter out the modal coordinates u_(t) and modal velocities
ur(t) (r=1,2,...) from measyrements of the actualrdlsplacement vector u(P,t)
aild actual velocity vector u(P t) at every point P of the structure and for
all times t. Hence, they can be regarded as (spatial) modal filters. It
should be pointed out that in the case of distributed measurements, as postu-~
lated in Eqs. (70), observability is guaranteed by definition. Indeed,
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observability is a concept peculiar to discrete sensors, particularly when
their number is small.

In the case in which distributed measurements are not available, we must
consider the problem of estimating u_(t) and u (t) (r=1,2,...,N,) from discrete
measurements, To this end, let us assume that there are K sensors capable of
measuring displacements, velocities, angular displacements and angular veloci-
ties at the discrete points P = P, (i=1,2,...,K). Then, the question can be
posed simply as to thg number of measurements necessary to generate accurate
estimates G(P,t) and 4(P,t) of u(P,t) and u(P,t). This is not a new questionm,
as the queStion has been asked frequently in the finite element method. 1In
particular, the question is to the number of finite elements that must be
used to approximate the displacement profile of a certain distributed struc-
ture, given a set of interpolation function and the values of the displacement
function at the boundaries of the finite elements. Of course, the number
depends on the type of functions to be approximated, the type of interpolation
functions and the desired accuracy. In our case, we wish to generate approxi-
mate functions G(P,t) and 4(P,t) of sufficient accuracy to permit accurate
estimates (0 (t) and u (t) of the first N, modal displacements u_(t) and modal
velocities u_(t). Hefice, in the case of discrete measurements,rthe modal
filters can Fe written in the form

C
(71a,b)

u (1) = fD LM u(p,t)dD, u_(t) = fD?z(P)M (P, £)dD, =1,2,...,N

To illustrate the procedure, let us assume that the domain D is divided into
K-1 elements D, (i=1,2,...,K-1) and denote the displacement and velocity vec-
tors in D, by &.(P,t) and 4(P,t). Moreover, denoting the vector of nodal
displacement méasurements at the boundaries of Di by z.(t), where Zi(t)
includes translational and rotational coordinates, we can write

~ T @ T, . » .
u (P,0) = L (®)y, (8), u;(B,t) = L (R)y,(t), P € Dy, i=1,2,...,K-1

(72a,b)
where L(P) is a matrix of interpolation functions of the same type as that
used in Eq. (7). Then, Eqs. (71) can be replaced by

A K""l T ~ K—l T
u (£) = I [ ¢ (®Mu;(P,t)dD = T Iy (), r=1,2,...,N, (73a)
i=1 D, i=1
1
/.\ K—l T ® K“'l T .
u (t) = I [ e (®Mu;(P,0)dD = T Iy (t), r=1,2,...,Ng (73b)
i=1l D, i=1
i
where
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= fDi o_(P)ML" (P)dD (74)

are integrals that can be computed off-line, Hence, the entire process of
estimating modal coordinates and velocities has been reduced Eg_g_simglé_ﬂ
summation of vector products. These estimates can be produced almost instant-
aneously, as soon as the measurements become available.

It is perhaps appropriate to point out that the use of discrete measure-~
ments in conjunction with the interpolation scheme described above results in
estimated measurements that must be regarded as distributed. Hence, observa-
bility of the first NC modes is virtually guaranteed,

As mentioned earlier, if only one type of measurement is available, such
as displacements only or velocities only, then one can use N, independent
second-order modal Luenberger observers to estimate the other type of variables
needed to complete the estimate ¥, of the state Ve

A comparison between Luenberger observers and modal filters appears in
order. Clearly, Luenberger observers must be used when only a limited number
of sensors is available. 1In fact, Luenberger observers can be used in con-
junction with a single sensor. Questions of observability arise, however, as
the location of the single sensor can be critical. Then, there is the ques-
tion of selecting observer gains, for which there are no good criteria. More~-
over, convergence requires a little time, depending on the observer poles.

By contrast, modal filters require a larger number of sensors, the number
depending on the highest mode targeted for control, as the number must be such
as to permit reasonably accurate finite element approximation to that mode.
If the number of sensors presents no objections, modal filters are likely to
be far superior to Luenberger observers, as they represent a concept that
takes full advantage of the dynamic characteristics of the distributed
structure. Indeed, modal filters screen out quite efflclently contaminations
from the higher uncontrolled modes. The reason for this lies in the orthogon-
ality property, so that higher modes are filtered out regardless whether they
are known or not, Hence, clear advantages of modal filters are that they are
virtually free of observation spillover and that the relatively large number
of sensors used precludes questions of observability. Finally, modal filters
involve only simple on-line operations, such as additions and multiplications,
so that they provide virtual instantaneous estimation of the modal coordinates
and velocities required for feedback.

INDEPENDENT MODAL-SPACE CONTROL (IMSC)

The independent modal-space contract method is basically a method for con-
trolling structures, or any other system admitting independent modes. It can
be used for distributed systems, for discretized models of distributed systems,
or for purely discrete systems (if indeed such systems do exist). When used
for discretized models, it is for entirely different reasons than in the case
of coupled controls. Indeed, in coupled controls a finite-dimensional model
must be used because the control gain matrix must have finite dimensions. On
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the other hand, the main consideration in choosing a discretized model in the
IMSC is whether a closed-form eigensolution for the distributed structure exists
or not. Moreover, in the IMSC method it is possible to design distributed
controls, whereas in coupled controls it is not. It will prove convenient to
divide the discussion of the IMSC method according to the type of actuators
used,

i, Control by distributed actuators

Let us first assume that a closed-form eigensolution for the distributed
structure exists, so that the entire infinity of modes is known, and rewrite
Eqs. (31) as an infinite set of second-order differential equations of the
form

. 9
u + wou, = fr’ r=1,2,... (75)

Note that in this case the entire infinity of modes is modeled, and there are
no unmodeled modes.

In coupled controls, the modal feedback controls f_ depend in general on
all the controlled modal coordinates and velocities, so that in such a case the
feedback controls recouple the equations. Here, we wish to consider the case
in which the feedback controls have the special form

fr = fr(ur’ ur), r=1,2,... (76)

Because the modal control for the rth mode depends only on the rth modal coor-
dinate u. and the rth modal velocity uos Eqs. (75) become completely decoupled,
i.e., théy become both internally (plant-) and externally (controller-) de-
coupled. Hence, in this case Egs. (75) represent an infinite set of independent
modal equations. The essence of the independent modal-space control (IMSC)
method is to design modal controls of the type (76). There is no restriction on
the form of f_, so that the modal controls f_ can be linear or nonlinear func-

tions of the modal coordinate u_ and/or modal velocity u.. 1In coupled controls
one designs the actual controls®directly. By contrast, in the IMSC method one

designs first the modal controls and then synthesizes the actual controls from
the modal controls. Indeed, in the case of distributed controls one can synthe-
size the actual control force f(P,t) from the modal controls fr by means of the
formula -

£(P,t) = ¥ M(P)d (P)f (t) (77)
~ r=l ~T s

In using the IMSC method, one can control the entire infinity of modes or
only a finite number of modes. If only N, modes are to be controlled, then one
can simply take f_# O for r=1,2,...,N, and £ = 0 for r=N_, + 1, N, + 2,....
Clearly, because 811 modes are modeled, there are only two classes of modes,
controlled and uncontrolled. Moreover, because £ = 0 for r = NC + 1, NC + 2,
..., there is no control spillover into the unconfrolled modes.
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It must be pointed out that a system subject to distributed controls is
completely controllable by definition., Indeed, controllability is strictly a
discrete controls concept having no counterpart in distributed controls.

Next, let us consider the question of modal-space control implementation.
In the case of linear controls, the modal controls can be taken as

tr = Grlur + Gr2ur’ r=1,2,... (78)
where Gr and G 2 (r=1,2,...) are modal gains, ordinarily taken as real nega-
tive sca}ars. If the case of nonlinear, on-off controls, the modal controls

have the form

£,= {-k_, u_>d; 0, [ur|< d sk, u <d},r1,2,... (79)

where kr is a control gain parameter and 2dr is the magnitude of the deadband
region. Then, the actual distributed controls are synthesized from the modal
controls by inserting Eq. (78) or Egs. (79) into Eq. (77). Note that in the
case of on-off modal controls, if a finite number of modes are controlled,
then the actual control of any point P is quantized, i.e., it has the form of
a staircase in time.

The control of discretized structures by distributed actuators is very
similar to the control of distributed structures. The only difference is that
the modes corresponding to r > N are not known with sufficient accuracy. In
this case, it is not possible to control the entire infinity of modes. Hence,
if only N, modes are to be controlled, N, < N, then the synthesis can be
carried out simply by using the formula

N

fF(P,t) = I M(P)® _(P)f (t) (80)
~ r=1 ~Y r

(@]

But, as shown by Eq. (77), distributed controls can accommodate an infinity of
modal coordinates and not just N,. Taking f = 0 for r =N, + 1, N, + 2,...,
formulas (77) and (80) become interchangeablg, so that it does not matter
whether the modes corresponding to r > N are known or not, But, because dis-~
tributed controls of the type (80) can be interpreted to mean that £ = 0 for
r > N,, it can be concluded that once again control spillover into the uncon-
trolléd modes does not exist. As in the case of distributed structures, in
the case of discretized models controlled by distributed actuators control-
lability of the controlled modes is guaranteed.

ii. Control by discrete actuators

Distributed controls have many advantages over discrete controls. In many
cases, however, distributed controls may not be feasible, so that one must
consider control implementation by discrete actuators.
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In the case of discrete actuators, only a finite number of modes can be
controlled. Let us assume that N, modes are to be controlled, which makes the
infinity of remaining modes uncongrolled The task is to be carried out by
means of M discrete actuators. As shown earlier, discrete forces can be
treated as distributed by using Eq. (35). Denoting the vector of controlled
modes by u, and the vector of modal control forces by £, and using Eq. (43a),
the modal”€quations for the controlled modes can be wriften in the form

uC + A clc = £C = BCE (81)

where F is the M-vector of actuator forces. As pointed out earlier, in the
IMSC method one designs first the modal control vector f, and then synthesizes
the actual control vector F from fC From the right sidé of Eq. (81), the
synthesis amounts to writing

_ .t
F =Bl (82)

where B+ is the pseudo-inverse of B,. However, pseudo-inverses can be quite
inaccurate. It is possible to avoig the use of pseudo-inverses by taking the
dimension of F to be the same as the dimension of f., M = N,, which implies
that the numbeér of actuators must be the same as thé number of controlled
modes. In this case, B is a square matrix, so that Eq. (82) reduces to

F=3 g

C ~C (83)

Note that the controllability of u, is guaranteed when using IMSC, because one
has always the freedom of placing the actuators in a way that Bc is nonsingu-
lar.

Next, let us examine the spillover problem. Denoting the infinite-dimen-
sional vector of uncontrolled modes by Upps the modal equations for the uncon-
trolled modes can be written as

uU + A oy = BUE = BUBC EC _ : : (84)

where the notation is obvious. Whereas f, depends on u and u , this does not
imply coupling between the controlled and the uncontrolfed mod¥s. Indeed, as
far as the uncontrolled modes are concerned, the vector f, is a known function
of time, so that Eq. (84) clearly indicates that control spillover into the
uncontrolled modes does exist, but because the frequency components of f

are entirely different from the natural frequencies is A_, no instability due
to resonance is possible. Because in IMSC one has the freedom of choosing the
Tocation of the actuators, spillover can be reduced by placing them so as not

to excite critical modes. Moreover, because in IMSC control of modes are
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designed independently for every mode, it is very easy to control any other
mode that may be critical due to external factors, no matter how high the mode
is. TFor example, one is able to control the first four modes and the twelth
mode, without controlling any intermediate mode or modes higher than the
twelfth,

It should be pointed out that control spillover into the uncontrolled
modes always exists when using discrete actuators, and this is true regardless
of the method of control. The only way control spillover can be eliminated is
through the use of distributed controls, and this is possible only in conjunc-
tion with IMSC and not with coupled controls. It must also be pointed out
that the control spillover is not as serious a problem as it may seem. In the
first place, for most realistic structures higher modes are extremely difficult
to excite, as this requires large amounts of energy. In addition, all struc-
tures have a certain amount of inherent damping, which tends to attenuate higher
modes at a higher rate than lower modes.

Control of discretized structures by discrete actuators is carried out in
exactly the same manner as the control of distributed structures by discrete
actuators discussed above. 1Indeed, as long as only N, are to be controlled,
and these modes are known accurately, it does not matger whether the remaining
modes are known or not,

COMPUTATIONAL ALGORITHMS FOR CONTROL

When attempting to control structures by techniques of modern control,
one must be struck by the fact that structures are basically distributed
systems and modern control theory is concerned with discrete systems. To
circumvent this problem, the standard approach has been to discretize the
structure, which leads to a problem of a different kind. Complicated struc-—
tures require discretized models of relatively high order and computational
algorithms work well for low-order systems but experience serious difficulties
for high-order systems. This is the situation in the case of coupled controls.
Because the IMSC method reduces the control problem to a set of independent
second-order systems, its advantages should become immediately obvious. Not
only is the IMSC unlikely to experience computational difficulties with discre-
tized systems, but it is also able to design controls for distributed struct-
ures, if all its modes are known.

There are two commonly used techniques for computing the control gains in
the case of linear controls, namely, the pole allocation method and optimal
controls. The methods are discussed in the following in the context of coupled
controls and IMSC.

i. Pole allocation

In the pole allocation method, the closed-loop poles p (k=l,2,...,2NC) of
the controlled modes are selected in advance, and then the control gains are
computed so that the coefficient matrix of the closed-loop system possesses
eigenvalues equal to the selected poles. First, we concentrate on coupled
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controls. The application is relatively simple for single inputs. In this
case, the state equation for the controlled modes reduces to

o '
Vo = A Vo + E F(t) | (85)
It is shown in Ref. 9 that the single input F(t) can be expressed in the form

F(t) = g v (t) (86)

where the gain vector g has the expression

~

2N,
Mo L ey
g= 1 (87)
j=1 TN
v, 1C (A -AL)
~j~C k=1 k j
k#j

in which v, are the left eigenvectors of AC and Aj are the open-loop poles.

In the case of multi-input controls, one must solve a set of 2N, nonlinear
algebraic equations for the elements of the gain matrix G, (Ref. 9). In addi-
tion to being nonlinear, the set of equations is undetermined, so that no
unique solution exists. The undetermined equations can be augmented by
additional equations, leading to special types of controllers, such as "minimum-
gain modal controllers" and "prescribed-gain modal controllers" (Ref. 9).

Both techniques are not feasible for large-order systems,

Another approach to computing gains for multi-input controllers is referred
to as "dyadic control" and is due to Simon and Mitter (Ref. 8). The computa-
tional difficulties associated with the nonlinear equations are circumvented
by considering a special class of systems characterized by a control gain
matrix G, in the form of an outer (dyadic) product of two vectors, one of
which (dénoted by h) is chosen arbitrarily, but in a way so as to ensure the
controllability of the modes, and the other (a row vector) is determined as
the feedback gain of a single-input system by using the closed-form solution
of Ref, 8. The resulting gain matrix G, has always rank one, as its rows are
proportional to one another, from which it follows that the control inputs are
proportional to one another. The required control law can be shown to have
the form

2N

2N v_rc(p —>\.)vr'F
F(t) =h 3 <1 K 37~
~ < v, (t) (88)
3=1 2N ~C
' “Ne '
ViBchly Gyry)

k#j
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Hence, dyadic control does not represent a genuine multi~input control, as it
restricts the freedom of designing the components of F(t) as distinct func-
tions of time. It can be concluded from the above that for the case of coupled
controls, the pole allocation method is recommended only when a single actuator
is used and a low number of modes is controlled.

In contrast to coupled controls, when the IMSC method is used computation
of the modal controls for desired closed-loop poles is very easy. Denoting
the closed-loop poles by

]

p. =0 1B, T = 1,2,... (89)

T
and inserting the modal forces fr as given by Eqs. (78) into Eqs. (75), it is
not difficult to verify that the modal controls corresponding to the poles

defined by Egs. (89) have the form

. 2 2 2 _
fr = Zocrur + (wr o —Br)ur , T =1,2,... (90)

Then, the actual controls are obtained by inserting Eqs. (90) into Eq. (71)
for distributed controls and into Eq. (82) for discrete controls,

ii, Linear optimal control

In the case of coupled controls, we consider the performance index
be T T

J=[" (v,Qu, + F RF)dt (91)
0 ~C*<C ~ o~

where Q and R are weighting matrices. Minimization of J leads to the optimal
control vector

1

B(6) = - KB K(D)yy (t) (92)

where K(t) is a ZNC X ZNC symmetric matrix satisfying the matrix Riccati
equation
1'T

. .
K = KA, - ArgKQ - KB R "B K (93)

Because K iszsymmetric, the number of simultaneous nonlinear equations to be
solved is ZNC + Nc. For large NC’ computational difficulties arise.

" In the steady-state case, K = 0, we obtain the algebraic matrix Riccati
equation. Through a series of linear transformations, the solution of the
steady-state Riccati equation can be reduced to the eigensolution of a real
general matrix (Ref. 17). Even though stable eigensolution algorithms for
general matrices exist, such algorithms are likely to experience difficulties
for relatively high~order matrices. It is estimated that the solution of the
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matrix Riccati equation requires in excess of 600N multiplications for con-
vergence, Hence, the computational time increases gramatlcally with the
number of controlled modes.

In the transient case, the nonlinear Riccati equation can be transformed
into a 4N X 4N, linear matrix equation, which must be integrated on-line.
For 1arge N ﬁls requires ample computer capacity, so that an on-line pro-
cess may nog be possible.

In the case of the IMSC method, the performance index can be expressed as
(Ref. 13)

J =
r

3 (94)

™8

1
where Jr are independent modal performance indices of the form

t
J = fo (VrQrVr + f R /w )dt, r=1,2,... (95)

in which v_ is the rth modal state, Q_ is a 2 X 2 diagonal matrix and R_ is a
scalar. 76 compute the control gains, one must solve now only a set of inde~
pendent 2 X 2 matrix Riccati equations. If only N, modes are controlled by
discrete actuators, then the number of operations go determine the control
forces is of the order N./2, which are required primarily to invert B, for

use in Eq. (83). Hence, the computational time required by IMSC is smaller by
a factor of 1,200 compared with coupled controls. Of course, in the case of
distributed controls by IMSC, no matrix inversion is necessary.and the compu-
tational time reduces dramatically. Note that in practice one controls only a
finite number of modes.

As a final item.of interest, let us compute the closed-loop poles for
optimal control designed by the IMSC method. From Ref. 13, we obtain the
modal controls

_ 2 -1 / -1.1/2 _
f = wr(l— 1+Rr )ur - wr[Z(—l+ 1+R )+R ] u, =1,2,... (96)

r

so that, comparing Egs. (90) and (96) and considering Eq. (89), we conclude
that the closed-loop poles are

-1,1/2

L 1+,

p, = =5 w [2(-1+ J 4R LTt

ll/2+i%wr[2(l+ 1+R_ )R

r=1,2,... 97)

From the above, it is evident that IMSC offers a wider choice of computa-
tional techniques than coupled controls, including nonlinear control. IMSC
and coupled controls have been compared on the basis of computational effort
and control energy and IMSC was found superior (Ref. 18). 1In addition, in
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the case of IMSC the control energy is independent of the location of the
actuators (Ref. 19). Finally, the IMSC was demonstrated to be robust with
respect to changes in the system parameters (Ref. 20).

SUMMARY AND CONCLUSIONS -

In designing controls for structures, one is faced with the dilemma that
structures are basically distributed-parameter systems and the control theory is
concerned almost exclusively with discrete systems. To overcome this impasse,
the approach commonly used has been to represent a distributed structure by a
discrete model, i.e., to discretize the structure. But, in discretizing a
distributed structure, one must exercise extreme care, as no discretized model
is capable of representing a distributed system with complete accuracy.

Virtually all methods used for the control of structure represent one form
or another of modal control, whereby one attempts to control the motion of a
structure by controlling its modes. To this end, it is customary to express
the motion of the structure in terms of modal coordinates. In the case of
open—loop control, the modal equations of motion are independent. In the case
of feedback controls, the feedback forces depend in general on the controlled
modal coordinates and velocities, the modal equations of motion are recoupled
by the feedback controls, unless the feedback controls are designed so as to
preserve the independence of the modal equations.

In implementing feedback controls, it is necessary to know the modal states
for the modes to be controlled., These states can be estimated from the measured
output of the structure by means of a Luenberger observer. In general, however,
a Luenberger observer does not take advantage of the orthogormality property
of the modes. 1If a sufficiently large number of sensors is used, the modal
states can be estimated more directly by means of so-called modal filters. By
contrast, the modal filters do take advantage of the orthogomality of modes.

As a result, observation spillover is virtually eliminated.

In general, the feedback controls depend on all the controlled states,
giving rise to coupled controls. In using coupled controls, one is limited to
linear controls, as nonlinear controls are not feasible. One of the major
problems in designing coupled feedback controls is the computation of the
control gains. 1In the first place, all computational algorithms for the
determination of the control gains lead to finite-dimensional control gain
matrices, This implies the assumption that the actuators are discrete in
nature, which precludes distributed controls. Secondly the computational
algorithms encounter difficulties for control gain matrices of large dimensions,
so that one is limited in the number of modes that can be controlled and in the
number of actuators that can be used.

Another modal approach consists of designing controls independently for
each mode and is known as the independent-modal-space control (IMSC) method.
One of the advantages of IMSC is that it permits design of distributed controls,
which eliminates control spillover completely. This makes it ideally suited for
the control of flimsy structures, such as antenna membranes, for which discrete
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actuators are likely to produce the difficulties mentioned above.
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SPACE STRUCTURE VIBRATION MODES: HOW
MANY EXIST? WHICH ONES ARE IMPORTANT?

Peter C. Hughes
University of Toronto
Toronto, Ontario, Canada M3H 5T6

AUTHOR'S PREFACE

To set the context of this paper, one or two prefatory remarks may be
helpful.

Last summexr, at the Third "Blacksburg" Conference on this subject, I was
surprised to hear several speakers refer to the "fact" that "real" structures
have "an infinite number of modes." These remarks were usually accompanied by
the strong implication that any (mathematical) model of a structure that did not
possess this essential characteristic was quite suspect, and that such models
would therefore be difficult for sophisticated persons to tolerate. In fairness
to the structural analysis community, I should hasten to add that this Infinite
Modes Assertion was made chiefly by speakers who, whatever else their achieve-
ments, were not distinguished as structural analysts., If pressed to guess, I
would suppose their backgrounds to be in controls and applied mathematics.

In any case, repeated references to the Infinite Modes Assertion at
Blacksburg IIT prompted my recollection of a similar occasion just six years ear-
lier where, at what some call the Zeroth Blacksburg Conference (organized by Prof.
Peter Likins at UCLA), the kickoff panel session was titled "Primitive Methods."
Not wishing to offend the members of that panel, Prof. Likins explained that in
choosing this session title he was not implying that the panel members were them-
selves primitive. Instead, he said, he was using the word "primitive" in a nar-
row technical sense, to refer to methods based on "first principles." In essence
this meant the use of partial differential equations.

In spite of Prof. Likins®disclaimer, however, there remained the notion
that if one's capability to analyse the dynamics of flexible space structures did
not extend beyond PDE's, one was rather handicapped. That notion seemed sensible
in 1975, and it seems even more sensible today. Unfortunately, this notion tends
in practice to be inconsistent with the Infinite Modes Assertion (for reasons to
be reviewed in this paper).

To return to Blacksburg II, I had the temerity during an end-~of-conference
panel session to question not only the importance of the Infinite Modes Assertion,
but the Assertion itself. I would like to thank Dr. G. Rodriguez of JPL, who was
present on that occasion, for the opportunity to expand on this theme at this
workshop.

HOW MANY VIBRATION MODES DOES A REAL STRUCTURE HAVE?

A 'vibration mode' refers to a motion that is physically possible in the
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absence of any external influence, and in which the elastic displacements u(r,t)
at position r and time t all move in unison: all displacements pass through zero
S1mu1taneous1y, and they all attain their maxima simultaneously. The concept of
a 'vibration mode' is, in fact, a mathematical concept and can be stated most
precisely and succinctly in mathematica] form: if a distribution of elastic dis-
placements of the form '

u(r,t) = ¢(r)n(t) (1)

is autonomously possible, ¢(r) is called the 'mode shape' and n(t) shows the time
dependence shared by the elastic d1sp1acements at all points in the structure.

It is plain from (1) that the idea of 'mode shape' is a special case of the more
general mathematical idea of 'separation of variables'.

Realization vs. Idealization

Much of the following argument rests on the important distinction between
a 'real' (i.e., physical) structure and someone's mathematical model of that real
structure. This distinction is, of course, essential on a philosophical Tevel:
whether dealing with hiah-energy particle physics, black holes, or flexible space
structures, one is wise to discriminate between a symbolic representation of rea-
lity and reality itself. However, one hardly needs to evoke the Scientific
Method to justify the distinction between the real structure and its mathematical
representation. First, there is an almost unlimited quantity of experimental
data on the dynamics of real structures; virtually none of this data agrees ex-
actly with 'theory'. Second, if one returns to the fundamental assumptions that
underlie 'theory', it is apparent that a large number of jdealizations are made.
These assumptions and idealizations are normally reasonable and defensible, but
collectively they do constitute a well-documented case for distinguishing bet-
ween the structure itself and its mathematical model.

Take, for example, what is arguably the simplest structure of all--the
long, slender, uniform, cantilevered rod. This 'structure' is shown in Fig. la.
(Its cousin, the 'two-rod satellite', accompanies it in Fig. 1b.) As is well
known, the PDE and associated end conditions for the lateral displacements of the

rod are
EIu™ + pu = f(x,t)

u(0,t) = u'(0,t) = u"(e,t) =u'(L,t) =0

(2)

(A table of symbols is appended.)

(a) Long, Slender, Uniform (b) Simple Flexible Satellite
Cantitevered Rod

Fig. 1: The 'Simplest' Cases
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Yet the followina idealizations must be made to arrive at the Euler-
Bernoulli equation (above) for this 'structure': (a) material continuum, (b)
perfectly elastic material, (c) stress proportional to strain, (d) infinitesi-
mally small deflections, (e) perfectly cantilevered root, (f) negligible rota-
tional inertia, (a) negligible shear deflections. This Tist is undoubtedly in-
complete but amply Tong enough already to demonstrate that properties of the PDE
(2) will not 1likely be exactly the same as the corresponding properties of actual
long slender uniform cantilevered rods. Experimental evidence tends to support
this expectation; the model (2) is reasonable for many purposes if used intelli-
gently, but (2) is not in any sense an exact representation of reality.

The Infinite Modes Assertion

There is no doubt that the PDE (2) has modes of the form (1), and that it
has an infinite number of such modes. The question at issue is whether real rods
also possess these properties. To state that a real structure has an infinite
numbeyr of modes is, on reflection, to state an absurdity. How can a structure
have more modes than it has molecules, or, for that matter, than there are mole-
cules in the known universe? What does a frequency of w = 10199 Hz mean? Does
it mean, among other things, that particles in the structure move faster than the
speed of 1ight?

At this point the reader may retort, "Wait a minute. Let's not be extreme
When someone asserts that a structure has an infinite number of modes, all he
really means is that the structure has a very large (but finite) number of modes!
Not so, in the author's experience. The Infinite Modes Assertion is often made
at technical meetings to an audience that includes individuals who are familiar
with structural models that contain thousands of degrees of freedom (and there-
fore thousands of modes). To make the Assertion to such an audience clearly
means that thousands of modes is not enough (in the Assertor's opinion); nothing
less than infinity will do.

Yet it is clear that the Assertion is wrong, on the arounds of physical
impossibility.

"A11 right," the reader may persist, “"the Assertion is indeed made (in its
strong form) and it is indeed wrong, but it is, after all, only a harmless mis-
understanding”. Again not so, in the author's opinion. Million-dollar R & D
contract proposals on the dynamics and control of large space structures are cur-
rently under technical adjudication. If the adjudicators fall prey to a corol-.
lary of the Assertion--namely, that any methodology that does not use PDE's is
faulty--they will tend to favor proposals that promise an infinite number of
modes. In most cases, this viewpoint would be unwise and unjust.

How Many Modes Are There?

If a physical structure does not have an infinite number of modes, how
many vibration modes does it have? The most precise (but not very helpful) ans-
wer is: "none". As an approximation, the mathematical concept of a 'mode' is
still very useful, however. This is especially true for the Tower modes. On the
other hand, as one goes higher and higher in mode number (past the 100th mode,
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say, or the 1000th) the mathematical idea of a 'mode' tends to become increas-
ingly inappropriate until, somewhere well this side of infinity, it is wholly in-
appropriate.

To emphasize this idea, we introduce the following definition in connec-
tion with mode shapes as a set of basis functions:

Definition: The absurd subspace associated with a PDE idealization
of a structure is the subspace spanned by all but the
first billion modes.

A11 PDE structural models have an absurd subspace. This absurd subspace is a
flaw in these models but not an important one (unless glorified by the Assertion).

It is a curious paradox that the greatest advantage of modal analysis--
the analyst can expand the general motion of a complex structure approx1mate1y in
terms of a few important submotions--is lost if an infinite number of modes is
insisted upon.

THE FINITE ELEMENT METHOD

When one analyses structures in general, one is not bothered by the neces-
sity of generating numerical information. For example, it may suffice to say
that the small deflection u(r,t) is related to the excitation f(r,t) via an ap-
propriate operator K that is,

Ku + ou = f(r,t) (3)

where o is the mass density. K is a symmetric, 3x 3, partial differential stiff-
ness operator. Assuming that r1q1d displacements are prevented (as in Fig. 2),
K is positive definite. The mode shapes for Eq. (3) satisfy

Ko (r) = w’og_(r) - (4)

and the orthonormaTity conditions are

EXGINGEEEN (5)
where dm = o(r)dV. For a system that deserves to be called a 'structure', there
will be an infinite number of eigenfunctions (mode shapes). However, as we have
seen above, the real structure that Eq. (3) represents does not share this 'in-
finite-modes' characteristic. ‘

The modal coefficients of momentum
and angular momentum (about O) are defined

as follows: Y
el g o = | X &
E“—L%m’h“—Lﬁ%m (6)
It can be shown (Ref. 1) that the modal Fig. 2: General L[lastic Structure
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identities in the first column of Table 1 are satisfied by these coefficients.
These modal identities and results Tike Egs. (3), (4) and (5) for the generic
structure of Fig. 2 are powerful in that they apply to all structures that sat—
isfy the general assumptions that underlie Eq. (3).

The 'Mathematical So]ution' Swindle

Operations Tike the integration f )dm in Eq. (5), or the Zl in Table 1
can be performed with the stroke of a pen Engineers dealing with specific space
structures require numerical data, not just elegant theoretical results.

The classical method for dealing with PDE's like Eq. (3) is to expand the
solution in terms of a series of functions that are defined, named, examined,
cataloged, and expounded upon. Usually these functions are not especially easy
to calculate. Even worse is to define the solution of Eq. (3) in terms of a dif-
ficult integral. This "solution" (as the mathematicians call it) is in practical
terms often just another mathematically equivalent way of stating the problem.
The Knotkwit function, whose origins are traced in Appendix A, furnishes an ex-
ample of the different meanings that may be attached to the word 'solution' by a
mathematician and an engineer.

Even the functions sin, cos, sinh, cosh that make up the well-known solu-
tion for the vibration modes of the simple rod in Fig. la require some numerical
sophistication to calculate efficiently. For most structures of practical in-
terest, 'closed-form' solutions are not available and, even if they were, they
would not 1ikely be much help in numerical calculations.

The Ritz Method Revisited

Frustrated by their difficulties in formulating PDE's for complex struc-
tures, and their further difficulties in extracting numerical information from
these PDE's once they have them, structural analysts began to chop up complicated
structures (on paper) into small elements. FEach of these elements could be ana-
lysed and numerical data of the required accuracy extracted relatively easily.
Initially this approach rested for its justification on physical understanding,
but applied mathematicians (e.a., Ref. 2) have since shown that, if properly
used, this finite element method model (FEM model) is, in fact, an ingenious im-
plementation of the much older method of Ritz. A FEM model therefore enjoys the
same theoretical foundations as the Ritz method. In particular, the conditions
for convergence are known. This convergence is to the so-called 'exact' solu-
tion, i.e., to the elusive solution of the PDE model that has the same modeling
assumptions as the FEM.

This property of convergence is a highly desirable one and can often be
used to advantage--in connection with the identities of Table 1, for example.
But in our celebration of this convergence to the 'exact' solution we should not
overlook the fact that the 'exact' solution is 'exact' only for the PDE model.
It is not 'exact' at all for the actual structure because the PDE model is not
exact for the actual structure.

This raises the following question: How can an 'error' of (say) 1% matter,
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when the 'error' is with respect to an equation that is itself only valid to
within (say) 10%? Yet it is this sort of error, no matter how small (and it can
be made as small as desired by using sufficient finite elements), that seems to
be the chief concern of the Infinite Mode Assertors, They do not trust the FEM
model because it fails to predict the 'absurd subspace' (see earlier definition).
In the author's opinion, however, this 'failure' is trivial and should, if any-
thing, be counted as a point in the FEM model's favor because the absurd subspace
doesn't exist physically anyway.

Unification

To this point in the discussion the FEM model and the PDE model have been
treated as though they were competing alternatives.  They are in an important
sense the same model. The FEM model should be viewed as a numerical treatment
of a corresponding PDE model. The finite element method must surely be one of
the most spectacular success stories in the history of engineering analysis.

FEM models circumvent the formulational and computational difficulties of their
PDE counterpart models, while at the same time providing a numerical approxi-
mation to the latter that can be made arbitrarily accurate. If enough modeling
elements are used, the error due to a finite number of coordinates can always be
restricted to an ‘absurd subspace'. The strength of the FEM model is that one
can do numerical calculations for complicated structures; the weakness of the
FEM mode]l is that it can never be better than the associated PDE model to which
it converges.

USES AND ABUSES OF LONG SLENDER RODS

A Tong, slender uniform cantilevered rod appears in Fig. 1 and its PDE
model is given by Eq. (2). The attraction of this 'structure' is its simplicity
and this makes it ideal as a learning tool. It provides a simple example for
students being introduced to structural dynamics. For much the same reasons it
is often cited to help in explaining new ideas to colleagues. Moreover, many
satellites have rod-Tike appendages; in such cases the closed-form characteris-
tics of cantilevered rods (summarized in Appendix B) have direct practical
utility.

Nevertheless, because of its seductive simplicity, the slender rod struc-
ture tends to be focused upon rather more often than its limited range of appli-
cation would warrant. In fact, the Infinite Modes Assertion is often a symptom
of slender-rod overemphasis. If all the structures in the world were long slen-
der rods, there certainly would be no need for the finite element method, at
Teast not for structures. Slender rod enthusiasts often seem to imply that FEM
models are really only undignified 'engineering approximations'. If such an
enthusiast also wishes to ignore the crucial distinction between a physical
structure and its PDE model, he has the right mind-set for accepting the Infinite
Modes Assertion.
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Modal Convergence

As a prelude to addressing the question 'Which modes are important?' we
shall ourselves also use the long slender rod as a convenient starting point.
Then, 1in the next section, a more realistic (and complicated) structure will be
discussed. The notation and results in Appendix B will be taken for granted here.

The modal identities of Table 1 can be used as indicators of the error in-
troduced into a structural model by modal truncation (i.e., error with respect
to the 'exact' PDE representation, which is, as we have said repeatedly, not to
be trusted too far itself). The modal parameters p, and h, are shown for the
first few modes in Fig. 3. It is evident that they decrease nonotonically with
-mode number and that h, decreases with o faster than p,. These observations can
be made also from Fig. 4, where the model error 1nd1ces

N

() = 1-2 ] aTAE (7)
a=] & @
N 4

ep(N) = 1-12 ] 2 (8)
a=1 ¢

have been introduced, corresponding respectively to the p, and the hy. With no
modes, €1(0) = e5(0) = 1. For all the theoretically infinite number of modes,

ey (=) = ep(w) = 0
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Also shown in Fig. 4 is the third measure of error,

N
- 1680 -8
SUREEE SHRY (9)

(see last entry in Table 1). This error indicator takes both momentum coeffi-
cients and-frequencies into account and is thus a more plausible measure of mo-
del error than €7 or ep. The index e3 recognizes that, other things being equal
('other things' in this case being p, and h,), the lTow-frequency modes are more
important than the high-frequency modes. If one wished to have a maximum of 1%
model error, for example, as measured by €3, only the 1st mode should be retain-
ed and the rest deleted. '

LARGE DEPLOYABLE SPACE REFLECTOR

Long, slender, uniform, cantilevered rods can be carried only so far.

They are useful in teaching certain basic lessons, but some of these Tessons are
not true for more general structures. Therefore we now consider a typical space
structure of current interest--a large deployable space reflector. Shown in Fig.
5 is the wrap-rib antenna reflector developed by the Lockheed Missiles and Space
Corporation (Ref. 3). A FEM model has been developed for this reflector by the
Jet Propulsion Laboratory (Ref. 4) and a typical mode shape, taken from Ref. 4,
is shown in Fig. 6.

Fia. 5: Lockheed Wrap-Rib Reflector Used on ATS 6
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This model has several complexities that a simple rod does not have. The
first is that a PDE model is very difficult and does not seem to have even been
attempted. This Teads to the use of a FEM model. The second complexity is three-
dimensionality. For example, the model momentum coefficients p, and the modal
angular momentum coefficients hu are no longer scalars, but are 3x1.

A Criterion for Mode Selection

A more subtle distinction between the wrap-rib reflector and the slender
rod is that simple modal truncation becomes generalized to a process of mode se-
lection. A glance back at Fig. 3 shows that for a slender rod the p, and h
decrease monotonically with o. In other words, whether we order the importance
of the modes according to increasing frequency, or according to decreasing p,, or
according to decreasing h,, the order of the modes is unchanged. This Tesson,
learned well for slender rods, must be unlearned for more complex structures.

The question of which modes to keep is not simply a question of 'keeping the
first N' and dropping the rest. There are several ideas available (Refs. 5,6)for
mode selection, and the ones that rely solely on the structural dynamics are
those that depend on w,s Py and ha.

We can, for example, take the first three modal identities in Table 1.
These three matrix identities correspond to 18 (independent) scalar identities.
To create a single scalar indicator of how well these 18 identities are being
satisfied, it is observed that they may be written as

Moo= M (10)
a=1
where the definitions
T T X
p h ml  -c
M= R“‘g". 7. Moo=y (11)
o hp h h > C J
00 0 _ -

39



have been introduced. Then the following scalar quantity is a measure of how
well these identities are satisfied after the first N modes:

M7 | (12)

where p[+] stands for the spectral norm of [-]. Note that 1 is here the 6x6
unit matrix, while in Eq. (11) 1 refers to the 3x 3 unit matrix. (In other
words, 1_a1ways stands for a unit matrix of compatible size.)

; The reasoning behind Eq. (12) is as follows: the zq sum is normalized
based on Eq. (10) in such a manner that symmetry is retained. The resulting
matrix is compared to the ideal sum, 1. The cumulative sum in Eq. (12) 1is non-
decreasing since M, is positive semi- -definite. The matrix difference in Eq. (12)
must be positive definite for finite N. Thus its eigenvalues will be six real
numbers between 0 and 1. The greatest of these six numbers is defined to be the

error, eM(N).
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The error ey is plotted in Fiq. 7 for data typical of a wrap-rib re-
flector with 48 r1%s and 44 .4 w in diameter. Even after 42 modes, eM(42) = 0.66.
This slow convergence prompts the following comments.

(a) In the model used, some of the higher-wave-number modes have already been
deleted. However, it is not expected that they would contribute materi-
ally to ey (This is, 1in fact, why they were deleted.)

(b) Just because the ey(N) vs. N curve is 'flat' does not mean that intermedi-
ate modes are not making a positive contribution. This behavior just
means that they are not contributing to reducing the maximum eigenvalue of
the matrix in Eq. (12).

(c) A more detailed examination of the s1x eigenvalues of the matrix in Eq
(12) discloses that it is the EIEuEa = ml identity that is slow to con-
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verge. This is in accordance with the sTow converqence of p, for the
slender rod in Fig. 3. The so-called breath1ng modes - for the wrap-rib
reflector are few and far between; yet it is these modes that must pro-
duce convergence in the (3,3) e]ement of ElEaEu

A Better Criterion for Mode Selection

Obviously the error criterion (12) is excessively harsh. It is counter-
intuitive that a 42-mode model can have a 66% error. A goodly part of the pro-
blem is that the criterion (12) does not take the frequencies wy account. One
of the messages in this paper is that frequency is not the only parameter of im-
portance in modal selection. However, it would be extreme in the opposite direc-
tion to exclude the w, entirely, as Eq. (12) does. We therefore consider instead
the Tast three modal identities in Table 1. These identities may be combined in-
to the single 6x 6 identity.

N (13)
a=1
where the definitions
5 = o M (14)
— o —a
1 17!
B, = UE X F(r.g) o dm,.dm, (15)
have been used.
The modal identity (13) suggests the following model error indicator:
a,, N -y
e.(N) = o[l - 8% ) 2 )5 7 (16a)

This indicator is patterned after Eq. (12), and is plotted in Fig. 8. According
to this indicator, if an error of only 2.5% were the most that could be tolerated
in the model, the first 28 modes would have to be kept.

There 1is, however, a hidden premise in this last procedure, namely, the
premise that the modes must be selected in their natural order (i.e., by in-
creasing frequency). There is no basis for this premise or this procedure.
Figure 3 show) that for a slender rod, p, and h, decrease monotonically with a,
as would p§/w§, he /w2, etc. Thus, for a s]ender rod, all methods of ordering
modes produce the same order--the 'natural' order. For more complex structures
this is no Tonger true. The error indicator in Eq. (16a) can therefore be im-
proved (i.e., fewer modes required for the same model accuracy) by taking the

modes 1in the cumulative sum in a different order. Thus we replace Eq. (16a) by
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certainly does not decrease monotoni-
This would suggest that the re-ordering of modes required by Eq.

The second plot in Fig. 8 shows that this is indeed



the case. In fact, only 9 modes are now needed to give as Tow as 2.5% error--a
saving of 19 modes (and a reduction in system order by 38 state variables) over
the previous un-re-ordered scheme. Evidently mode selection can be, for complex
structures, far superior to simple modal truncation.

CONCLUDING REMARKS

In summary, the main points discussed in this paper are the foTlowing:

Neither a PDE model nor any other mathematical model of a structure is
exact.

For complicated structures, PDE models are very difficult to formulate and
very difficult to extract numerical information from.

Even when a PDE model does exist, the 'solution' in terms of 'known func-
tions' may still require considerable effort to extract numerical infor-
mation.

Viewed as a Ritz method, a FEM model is not in competition with the cor-
responding PDE model; it is, instead, a very powerful numerical method for
solving the PDE model.

The idea of a 'mode' is, in essence, a mathematical one. It is highly un-
Tikely that any real structure can vibrate exactly so that all its points
move in unison; in other words, it is highly unlikely that any structure
has any modes. As an approximation, however, the idea of a mode is an ex-
cellent one for many structures, especially for the 'Tower modes'. The
agreement between experiment and theory for the 'higher modes' tends to
become weaker. _

In this approximate sense, most structures have a very large number of
modes. It is elementary to show, however, that no real structure has an
infinite number of modes. The Infinite Modes Assertion is false.

The only utility of the Infinite Modes idea is within the purely mathema—
tical domain. See, for example, the modal identities in Table 1.

The Tong, slender, uniform cantilevered rod has a simplicity that is at
once helpful and dangerous. It is a reasonable structure on which to ex-
plain a new idea, or to test a new idea, but the validation or generaliz-
ation of the idea must be carried out on structures of more realistic
complexity.

Many 'error indices' can be defined as- guidelines for structural modal
order reduction. Simple modal truncation, although suggested by ex-
perience with slender rods, is naive. The proper process is mode selec-
tion, based on an appropriate error criterion.

The error criterion in Eg. (12) is unnecessarily pessimistic because it
ignores frequency information. It is as naive as a 'frequencies-only'
criterion, at the opposite extreme.

The error criterion in Eq. (16) is superior to Eq. (12), especially if the
modes are selected according to the order specified by Eq. (17). This is
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illustrated for a wrap-rib antenna reflector in Fig. 8.

"Modal Identities for Elastic Bodies, With Application to

Vehicle Dynamics and Control", Jour. Appl. Mech., Vol. 47,

An Analysis of the Finite Element Method, Prentice-Hall,1973

"Final Report for Study of Wrap-Rib Antenna Design", Lock-

heed Missiles and Space Company, Space Systems Division,

a.
Characteristics of Large Deployable

Space Reflectors", AIAA Paper 81-0503-PC, 22nd Structures,

and Materials Conference, April 6-8, -

"Appendage Modal Coordinate Truncation Criteria in Hybrid
Coordinate Dynamic Analysis", Jour. Spacecraft and Rockets,

pp 611 -617.

REFERENCES
1. Hughes, P. C.
No. 1, March 1980, pp. 177 - 184.
2. Strang, G.
Fix, G. J
3. Woods, A.
Sunnyvale, Californi
4. ET1-Raheb, M. "Static and Dynamic
Wagner, P.
' Structural Dynamics
1981.
5. Likins, P. W.
Ohkami, Y.
Wong, C. Vol. 15, Oct. 1976,
6. Hughes, P. C.

Skelton, R. E. Control, Vol. 4, No.

"Modal Truncation for Flexible Spacecraft,"J. Guid. and

3, May - June 1981, pp. 291 - 297.

Acknowledgements

This paper was supported in part by the Natural Sciences and Engineering Re-

search Council of Canada under Grant No.

A4183, in part by the Industrial Re-

search Funding program of the Canadian Department of Communications (through

Dynacon Enterprises Ltd.),
The numerical calculations were made

and in part by the Jet Propulsion Laboratory.

by Dr. G. B. Sincarsin; the plots were

computed by David MaclLaren; and the figures were prepared by Ida Krauze.

Appendix A - The Origin of. the Knotkwit Function

Some years ago, the eminent applied
mathematician Professor Will Knotkwit
encountered in his theoretical study of
structures a certain PDE whose solution
he could not express in closed form.
Nor could he express the solution in
terms of known functions. Eventually
an important idea occurred to Prof.
Knotkwit: he introduced a new function
that was, by definition, the solution
of his troublesome equation. He pro-

b

ceeded to write several papers on the
interesting mathematical properties of

"the Knotkwit function (as it became

known shortly before his retirement).
Professor Knotkwit even lived to see his
function referred to, by one of his for-
mer graduate students, as a 'known'
function.

It is not likely that the Knotkwit
function will ever be called an 'ele-
mentary' function. What is clear, how-



ever, is that any solution to a struct- will be called a 'closed-form' solution.
ural dynamics problem that can be writ-
ten in terms of Knotkwit functions, or
even that can be expressed as an inte~ .
gral whose integrand involves Knotkwit
functions in a fairly simple manner,

Thus, ultimately, Professor Knot-
kwit achieved his 'closed-form' solu-
tion in terms of 'known' functions.

Appendix B - Long Slender Rod Modes

The well-known solution to Eq. (2) is

o«

u(,t) = T ,00m(t) (81)
a=1
where
L
4wl = f 6 (x)F(x,t)dx (82)
0
and
_ -4 . .
¢, = (p£) *[(cosha g - coskag) - Ka(s1nhxag - s1nxu€)] (B3)
where pw2£4 Sa"sa 0
_ 0 ) - X3 K == B4
xa ) &= £ @ Cu-%cu

with s =sinx , ¢ =cosx , S = sinhx , C = coshx .
Qo ol o [62 [ o o [0

The natural frequencies are calculated by numerical solution of the trans-
cendental equation

cC +1=0 (B5)
oo

The mode shapes of Eq. (B3) can readily be shown (directly from the differential
equation) to satisfy the orthogonality conditions

£
[, 00850080 = 0 (« t 8) (86)
0
It is more onerous to show that Eq. (B3) satisfies the normality condition
£ 1
2. _ 2. _
fo¢udm = ok fo¢adg =1 (B7)

This latter fact is often omitted from textbook discussions.
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In free vibratioh, the force and torque on the rod at O are (see

a=]

where p, and h, are the coefficients given (in general) by Eq. (6).
sent simple 'structure',

1 L
Py = fcbudm = pzfo%da = 2(08)% /2

1 L
h, = fx¢adm = pﬂzjog¢ad£ = 2(@13)2/A§

Therefore the modal identities of the first column in Table 1, which
special form shown in the second column for a slender rod, imply the
shown in the third column in Table 1. Note that the sums involve an
of transcendental numbers.

Appendix C - Table of Symbols

Fig. la):

(B8)

For our pre-

(B9)

(10)

assume the
identities
infinitude

Roman Greek
c first moment of inertia, [rdm o modal index
EI flexural rigidity of a long 6@8 : 1 if o = B3 otherwise 0
slender rod . . .
n modal coordinate associated with
f(x,t) fqrce per unjt length, at posi- @ mode o
t1on X, at time t K, see Eq. (B4) in Appendix B
Frac) deflection at posttion £ due 0 1 e k. (34) in Appendi
hu modal angular momentum coeffi- 2 x/£ for slender rod
cient; see Eq. (6) g dummy position vector
J (second) moment-of-inertia matrix o mass per unit length for slender
K stiffness operator rod
] rod Tength o mass density function
m mass [ mode shape for mode o
N number of modes retained Yo natural frequency for mode o
P, modal momentum coefficient; see  Special Symbols
Eq. (6)
r position vector o[ 1 spectral radius
+ time 1 unit matrix (of appropr. size)
u small elastic dispTacement (.) spatial der1Yat1Ye
X distance along slender rod () temporal derivative
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TABLE |: SUMMARY OF MODAL IDENTITIES

'LEAST GENERAL' CASE

‘MOST GENERAL' CASE ) . TRANSCENDENTAL
(Linear Elastic Body) (Long, Slender, Uniform IMPLICATIONS
Cantilever Beam)
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CONTROL OF FLEXIBLE STRUCTURES:
A SYSTEMATIC OVERVIEW OF THE PROBLEM

Richard Gran
Research and Development Center

Grumman Aerospace Corporation
Bethpage, NY 11714

ABSTRACT

In the theory of flexible structures control, there are two approaches
that are usually advocated. The first is based on the theory of partial dif-
ferential equations and the statement of the problem is : "If one does not use
a continuum approach there will always be a problem that has been overlooked
and any design will not work when implemented on a real system." In contrast
the second approach is based on the tacit assumption that "finite is be-
autiful." This school contends that a finite model can always be made to ap-
proximate the original system to any desired level of accuracy. Following this
strategem, the design is based on a finite dimensional model whose order is
determined by a scientific method such as mode truncation, residue matching
methods (based on the partial fraction expansion or the eigenvectors from the
diagonalizing transformation) or using modal costs. These two schools are not
irreconcilable.

The key to developing a reduced order model that subsumes the objections
of the first school while providing the finite model required by the second
school is the realization that no reduced model can be specified without first
specifying the closed loop gains. A high gain system means a large control
bandwidth; a large bandwidth means that many more flexible modes must be re-
tained. On the other hand, the controller bandwidth is determined by the de-
sired performance and the disturbances that will cause performance de-
gradation. It is important to realize that no control is required if the sys-
tem is not being disturbed. We are confronted with a tail chasing dog syn-
drome. We can't design the control until we have a model and we can't get a
model until we've designed the control. This is the major argqument used by the
spokesmen of the distributed or p.d.e. school.

The compromise position advocated here is to design the system using
finite methods and verify the design's robustness using results from the con-
tinuum school, Thus one should follow the recipe:

0 Determine the expected disturbances from both external and
internal sources (including the measurement devices).

0 Determine the control bandwidth that will satisfy the desired
specifications (i.e. reduce the disturbance amplitudes).

0 Truncate the structural model to include all frequencies
up to some multiple of the control bandwidth.
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0 Of the structural modes retained, additionally discard
those that have low mode costs (i.e. that are not
excited by the disturbances because they are either
almost uncontrollable or are not observable through
the performance measure used for evaluating the design.)

0 Carefully evaluate the potential interactions of the
sensors and actuators at their locations to insure that
unstably interacting modes are not discarded even though
they don't contribute to the cost.

0 Design the controller, the compensation and the feedforward
control using a reduced state feedback control design algorithm.

0 Verify that the bandwidth of the controller is that assumed
at the start of the design process. If not - redesign the
control.

o} Verify stability, robustness and performance of the final design.

This paper reviews each of these design steps. It is shown that without
damping there is no finite model that can be used to design the control sys-
tem. The definitions of stably and unstably interacting modes are given, and
the design of reduced order control and compensator systems is described. The
algorithm for the reduced order control that uses an explicit computat1on of
the gradient and Hessian of the performance index is shown.

INTRODUCTION

There are many concepts in the control of distributed systems that are
important for practical control design. However, no matter what one thinks of
the continuum approach, at some step in the design process it must be dis~
carded to allow the designer to use a finite controller. It is not possible to
implement a continuum design nor is it possible to compute such a design for
any practical structure. Thus the issue in the continuum vs. finite argument
is not whether or not one must use a finite model, but when. It is possible to
carry a linear design through to its Riccati p.d.e. form and then use a
Galerkin method or other projection concept to develop a finite controller
(see for example Gibson Ref. 1). The alternative is to use a finite model at
the start. This is usually prefered by the control community whose task it is
to design controliers for flexible structures because of the availability of
structural analysis tools like NASTRAN.

To minimize the number of definitions we have to introduce, the notation
used here follows that of Ref.2. The theoretical results discussed here are
proved in Refs. 2 and 3, and the example that is described appears in an
INTELSAT report (Ref. 4). The last step of the design process in which the
spillover bounds are evaluated from the p.d.e. description of the system and
the robustness is verified is not discussed here. These can be found in the
papers by Balas (Refs.5 and 6) and Kosut (Ref.7).
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FINITE DIMENSIONAL MODELS FOR STRUCTURAL CONTROL

The only reason that control is required in any system is that the dis-
turbances cause the system to be perturbed away from some nominal value
(position, velocity etc.) and this perturbation is large enough to cause the
specifications to be exceeded. Therefore the starting point for any control
design discussion must be the disturbances and the specifications. The
specifications determine the performance index that is used to determine an
optimal or suboptimal design. Typical performance measures include line of
sight motion of a satellite, the line of sight motion of the optical axis of a
telescope, or the pointing direction of an antenna. These can always be re-
lated to the small angle motions of a structure and through those motions to
the displacements of the structure from some nominal position. Therefore the
criteria for which disturbances are important is the contribution to the per-
formance index of those disturbances that are expected. This is the message of
the modal cost approach of Skelton. It is not necessary to use modal costs to
determine the modes that should be retained if the design starts with a con-
tinuum approach. Therefore, the continuum model is used initially to develop a
rough measure of the required bandwidth of the system subject to the dis-
turbances as they are expected.

If the output of a sensor is denoted by Y;j then, from Fig.1l, the La-
place transform of the output is given by

‘ & ¢ . mycf d m oyt
. = k“’ks‘*“"k
where:
Hc(s) is the control actuator transfer function
Hdgsg is the disturbance model transfer function
H,(s) is the measurement devices transfer function
w?s) is the Laplace transform of the disturbance
u(s) is the Laplace transform of the control input
The remaining terms are defined in Fig. 1.

Using (1), the infinite dimensional system has been written as an
infinite series whose individual terms represent the Laplace transform of the
modes of the system. This is the resolvent of the semigroup of the system
written as a sum. Since the operators are bounded, this series always con-
verges and becomes the actual (transcendental) resolvent. Because it more
closely resembles the approximate transfer functions that result from finite
models, the form (1) is used here to develop the arguments that follow.

Using the form (1), it was shown in Ref. 2 that the transfer function of
a finite approximation to (1) becomes asymptotically invariant as the number
of modes increases. This result is useful because it says that if enough modes
-are retained then a finite model exists that will be arbitrarily close to the
infinite dimensional system. The unfortunate aspect of this approximation is
that the modes are sinusoidal, and the convergence of the inverse transform of
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Figure 1
Block Diagram of Structural Dynamics Control Problem

the series that results from (1) is only in L, so we have a Gibbs phenomena
effect. Thus the convergence is always poor at step type of discontinuities.
This effect was noticed by Wie and Bryson (Ref. 8). Another consequence of
this approximation is that a system whose transcendental transfer function is
minimum phase can result in a finite approximation that is non-minimum phase.
This result also is shown in Ref. 8 and its consequences are also discussed
in Ref.2 and Ref. 9.

Since a finite model can always be selected that approximates the con-
tinuum description to within an arbitrarily small error, the next question is
how many modes must be kept. As was pointed out in the introduction, this
question can only be answered based on the bandwidth of the controller. Thus
if the control bandwidth is f., then the highest mode frequency that must be
retained is 10n f., where the damping is 10~". This result is proved in
Ref. 2 and can be loosely justified based on the magnitude of the resonance
peaks that appear in the transfer function (1). At resonance, the amplitude of
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the Bode plot magnitude is given by 1/12zg1»-§9 » where the frequency of the
mode is @i and the frequency at which the resonance occurs is w,=+vVI~2E2w, .
Thus on a log magnitude plot the amplitude in db of the resonance is 20
logig H(jw), which is 20n-6 db at the resonance. Therefore, since only those
modes that have an amplitude that exceeds 0 db can cause a loss of stability
or performance, the criteria for discarding high frequency modes depends on
the control bandwidth and the fact that for any well behaved control the
closed loop response "rolls off" at least 20 db/decade after f.. Thus the
first frequency that guarantees that the resonance is always below the 0 db
line is n decades away from f. or n/2 decades away if the system rolls off
at 40 db/decade (which usually happens for any system with actuators and
sensors because of their dynamics).

STABLE AND UNSTABLE MODE INTERACTIONS

The question of which modes are to be retained is not completely answered
by the criteria described above. There are many modes that should be discarded
because they are not controllable, observable, or disturbable (when we say
not, we should strictly speaking say weakly, because it is almost never true
that a mode is completely unobservable or uncontrollable in practice). However
there is a significant caveat that must be heeded when discarding modes. This
is the rule that one never throws away a mode that is unstably interacting.
The criteria for determining the stability of a mode is shown in Fig.2. The
important point is that there is a phase shift between the measurement and
control caused by the relative positions of the actuators and sensors. This
phase shift is either 0° or 180° depending on whether the actuator and sensor
are on opposite sides of a modes node. The best way of determining this is by
using the pictures of the mode shapes, as is shown in Fig.2

ACTUATOR

\ | / I /\ | /\!/Acwmnz /
NS A TN

SENSOR

SENSOR

A. Stably Interacting B. Unstably Interacting

Figure 2
Mode Shapes for Stable and Unstable Interactions

53



The evaluation of which modes to discard based on mode costs can be done
in a simple and straightforward graphical way by plotting the Laplace trans-
form of the costs on a gain/phase plot for the disturbances expected. This
plot gives a visualization of the levels of disturbance at any frequency and
relates both the disturbance spectrum and the dynamics of the structure to the
cost. An example of such a plot is shown if Fig. 3. This figure also shows the
mocle numbers that are causing significant motion and the pole zero order as
one moves upward in frequency. Poles that occur before zeros near the jw axis
are unstably interacting and vice versa. Thus, a plot such as Fig. 3 can be
used to truncate additional modes from the problem based on mode costs without
a complicated calculation of the costs.

There are several issues that arise in the debate on control of large
structures that are resolved by the definition of stable and unstable mode
interactions. The main issue is the question of whether or not a design ap-
proach leads to spillover instability. Since the modes that interact stably
can not be driven unstable by any gain change, any design result that shows no
stability loss or good gain and phase margins when additional modes are added
are probably adding only stably interacting modes. This is particularly true
if the assumption is made that the actuators and sensors are colocated.

NOTE: POLE ZERO ORDER

.. Z~P=ZEROPOLE-
- © P-Z«POLE-ZERO
-0 -
-100 }—
130 }—
3
Z 0
3
=180 =
-.-|W f—
l— r2 4
20 : T BISTURBANCE
FREQUENCY RESPONSE FOR DISTURBANCE » - SHOWING MODE :
|~ RESONANCES (MODE NUMBER} AND MODES WITH LARGE MODAL COSTS :
R T R R N A
)
w0~ 10 FREQ RAD/SEC 10 . . ow

Figure 3
Mode Costs for a Structure
The mode cost for this design was L.0.S. motion, and the disturbance was a
monochromatic sinusoid at the frequency shown.
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The second issue that is clarified by the definition of stable and un-
stable modes is what happens when there are geometry changes. The only way
that a controller can stabilize an unstably interacting mode is to introduce
180° of phase shift into the control loop at the frequency of the unstably
interacting mode. Thus if one were to plot the frequency response of an ob-
server or Kalman filter from any sensor to any actuator, those modes that
interact unstably will be notched (i.e. there will be a deliberate 180° phase
shift at the mode frequency). This has dire consequences when the geometry
changes. Either the mode frequency change or the mode shape change can cause
the phase shift to be introduced at the wrong frequency and the resulting de-
sign will be unstable since the 180° phase shift introduced to stabilize the
original design is now at the wrong frequency in the geometrically different
structure (because of the phase shift introduced by the controller in its
attempt to stabilize the interaction we now have a control with gain >1 at a
phase of 180°, which 1is unstable). The message is clear: if there are
geometry changes and there are unstably interacting modes, some way must be
developed to track the mode frequencies, i.e., adapt, or else the design will
not work.

REDUCED STATE FEEDBACK CONTROL FOR LARGE STRUCTURES

In Ref. 2, a reduced state feedback control design algorithm developed by
Rossi, Ref. 11 was briefly described. We have successfully used this algorithm
to design a control system for a large structure using it to develop the
feedback gains for a constrained configuration that connects the output of a
particular sensor to a particular actuator. Simultaneously the algorithm
derives the poles and zeros for compensators that are required by making these
pole-zero locations gains that are also determined by the algorithm.

If the control system to be designed is structured as shown in Fig.4,
then the optimal reduced state feedback algorithm is used to determine the
feedback and feedforward gains that optimize the performance index:

J= j zTQZz + ulRu dt (2)

o

where:
z is the output (which is not necessarily. the sensor)
u is the control
Q; is the weight on the output
R is the weight on the control

The reduced state algorithm gives a solution that depends on the initial con-
ditions since (2) is equivalent to xoTPxo. The minimizing feedback gain
is determined from a search. The algorithm for determining the minimum uses an
explicit calculation of the gradient and Hessian tensors for J and the search
is done in four steps. The first step is to compute the gradient and Hessian
matrices and then to diagonalize the Hessian. Since the Hessian is symmetric,
the diagonalization can be performed by an orthogal transformation. Since in
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general the Hessian will not be positive definite, the negative eigenvalues
are arbitrarily changed in sign to make the step direction correspond to a
locally quadratic curve fit. Thus if H, represents the Hessian matrix at the
zeroth iteration, this step consists of forming the following matrices:

Dy O viT

Ho= V1 V2l (3)
0 =Dyl |VoT|
where:
D1,2 are diagonal matrices
V1,2 are the elements of the orthogonal transformation
Dy O viT
and Hi= [Vy V5] (4)
0 Do V2T

The only difference between H, and HT is that the second matrix is now
positive definite.

u Xa = A X+ X, = Axe + X = A o
: BAu +CAv/j BS -I-SCS +BM x+CMXM""" Sy
AP1T~AY] s*A T sV MZS ~M%3
W] w9 w3 y
ACTUATORS _ __ STRUCTURE_ _ _ MEASUREMENTS
3 | -
% 2 DIRECT GAIN
» Z
IIZEROSII 3
8}
2
oo [ | Ii i Ke |
K XX
P1 COMPENSATOR
. sz GAIN
"POLES" GAINS
Figure 4

Block Diagram of the Reduced State Feedback Control Design
The control gains shown are selected to provide the lowest cost J
for the configuration shown. Only the gains shown are derived by the
algorithm giving both the feedback control and the compensator.
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The second step in the algorithm is the determination of the step
direction for the search. This is done by using the Taylor series for the cost
as follows:

J(K1)= I(Kg) + (K1-Ko)T6 + Q(Kg,K1,HT) + ... (5)

where: Q is the quadratic term in the artificial Hessian Ht
K is the vector ,of gains that are being optimized
G is the gradient (in this case a vector)

From (5) the step direction is given by -[HT]1-1G. Thus the third part
of the algorithm is the determination of this step from the approximate
Hessian. The fourth step before the process is repeated again is the de-
termination of the step magnitude. This 1is accomplished using a one
dimensional optimization so that Ki = Ko+(a)so, where s, is the step
direction determined above and "a" is the parameter that is to be determined
by the one dimensional search so that J is minimized. Many different heuristic
algorithms have been used to determine "a". One of the important aspects of
the algorithm is that its value is never permitted to cause the gains to re-
sult in an unstable solution. This is done by altering the one dimensional
search if the step size is too big., Stability is tested as a by product of the
gradient and Hessian calculations.

The most interesting aspect of the optimization algorithm is the fact
that the gradient and Hessian are developed from the same equations. These are
Lyaponov type equations and are therefore solved using the same algorithm. The
gradient and Hessian matrices satisfy equations given in Refs. 10 and 11.

The overall algorithm flow is shown in Fig. 5. In practice we find that
the solutions obtained from the reduced state feedback control designs are
within one or two percent of the full state designs with orders of magnitude
fewer gains. The important features of this design approach is that it allows
one to incorporate the actuator dynamics and the sensor dynamics, the noises
on both the sensor and the disturbances exciting the structure (even if they
are correlated) and the specifications in terms of a pre-specified model. If
the latter is used, the model states are included in the dynamic description
of the system (in the A matrix, the B matrix and the measurememnt matrix) and
are used to define the errors that are optimized in the performance index,
but the feedback gains from the model states are not used. This becomes an
implicit model following approach. The last feature that 1is important is the
explicit incorporation of the compensator dynamics. Fig. 4 shows the way the
compensator dynamics are included when it is desired to design a notch filter
for removing the influence of an unstably interacting mode.

EXAMPLE

The spacecraft design shown in Fig. 6 is an example of a communication
satellite with a large solar array, an antenna that deploys, and a requirement
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on the pointing of the antenna and the relative location of the antenna with
respect to its feed. The finite element model shown has enough detail to allow
the modes up to 3 Hz. to be accurately determined. Three Hertz is 20 times the
highest frequency contained in the disturbances, which for the damping assumed
in this model is sufficient to guarantee that the higher modes are
unimportant. This model is the starting point for the design. The mode shapes
are shown in Fig. 7, and of those the unstably interacting modes are indicated
with an asterisk. These unstable interactions come about because there are two
sets of three actuator - the first at the central or core mast which contains
the "rigid body" actuators which are reaction wheels for the three axes of
rotation. The second set of actuators are at the antenna mast attachment
point. There is a two degree of freedom gimbal joint and a worm screw device
to deflect the boom that carries the antenna relative to the mast. This last
control provides control of the feed horn to antenna displacement. The sensors
are three position and rate sensors at the central core plus three position
and rate sensors at the antenna joint, and a displacement and rate sensor that
gives the antenna position relative to the feed, Thus there are 14
measurments, and 6 actuators. After eliminating the modes with Tow mode costs
that are stably interacting, the number that must be retained in any design
including the rigid body modes is 13. The disturbance due to the solar array
motion is modeled as a lightly damped second order system excited by white
noise and each actuator and sensor is modeled as a first order system with an
associated white noise disturbance (either a measurement or an excitation).
The combined state dimension, with all of these dynamics, becomes 42. The
control gains were selected to provide the smallest number of gains possible.
Thus the individual actuators were given inputs from only those sensors that
measure the variables in the same degree of freedom (i.e. the pitch reaction
wheel used gains only on the pitch attitude and rate, etc.). The resulting
gains are shown in Table I. The Table also shows the full state control cost,
which was line of sight motion of the antenna, compared with the same cost
from the reduced control design., As can be seen, the costs are within a few
percent of each other, even though there are only 12 gains in the reduced
state design compared with 598 in the full state design. Not only that, but
the reduced state design has essentially the same response to the
disturbances, the same closed loop bandwidth, and the same robustness as the
original full state design.

Table 1
Gains for the reduced state design

Sensors (Pos. then Rate)

Rigid Body Antenna

Sensors X Yy z feed
Rigid Body x -3E6 -2E7
Rotation y 6E6 -2E7
Actuators z not used -1E5 =-2EH
Antenna X 3E4 5E4
Actuators y 7JE5 4E6

z 6E2 4E6

Full state LOS error 6x10-3 rad. Reduced state LOS error 35x10-? rad.
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‘ Figure 7
Mode Shapes for the Communication Satellite of Fig. 6 Showing Some
Modes That Have Unstable Interactions
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CONCLUS IONS

The main point of this paper is that there exists a way of designing a
control system using a finite model that accounts for the distributed nature
of the control problem in a systematic way. This is accomplished by using a
mode description of the system and from that description determining the
number of modes that must be retained based on the performance and the dis-
turbance descriptions. The design then uses a full order model that includes
all of the dynamics: sensor, actuator, disturbance and flexible motion. The
designs that result are simple, robust, perform well and have the added dis-
tinction of being easy to implement.
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INTRODUCTION AND SURVEY ON CONTINUUM
MODELS FOR REPETITIVE LATTICE STRUCTURES

Larry S. Weisstein
Lockheed Missiles and Space Company
Sunnyvale, CA 94086

"ABSTRACT

This paper is a brief introduction and modest ‘survey to aid and familiarize
researchers interested in the use of continuum modeling procedures applied towards
large space structure technology. The use of such structural models for the
distributed control of large flexible lattice structures offers a significant
advantage over a numerical approach. Any references not identified ir the
bibliography can probably be obtained in individual articles. This survey was
completed in the month of December 1981.

INTRODUCTION

A high degree of repetition enables a recurring bay or module to fully identify
a structural system. If the module is composed of a moderate number of structural
elements, an analytical description of the deformation response rather than a
numerical one may be obtained. For example, domes, barrel vaults, and booms are
typical repetitive lattices. They exhibit high stiffness, light weight, and allow
for architectural freedom in providing large span areas with no intermediate
supports.

A historical development of structural lattices is given in reference [1].
Domes are given as an example. In particular, it is shown that gradual changes
in material strength and weight of lattice domes were paralleled by an increase
in span areas and a decrease in rise to span ratios. The inevitable collapses
which followed forced engineers to consider more scientific and systematic methods
of analysis and design. As the number of joints and members continued to grow, a
full exact analysis became impractical and simplifying assumptions were made.
For instance, determinate truss systems with pin joints were easier to analyze
than more efficient, indeterminate lattices composed of flexural members joined
by rigid welds. Other designs may have ignored that the collapse load of a full
structure due to buckling can be less than the load corresponding to the
maximum stress of an individual member in the structure. Also, recursive
procedures (known as relaxation techniques) introduced in the mid thirties could
be carried out for only a few cycles by hand because of time and effort involved
for many iterations required by an exact solution. It is the advent of the
computer and computer methods of structural analysis that surmounted many of these
early problems,
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Currently, repetitive lattices are drawing attention for application in
space. References [2,3] describe projects such as large.antennae and space
platforms for communication, satellite sensory recognition, solar collectors,
and future manned space operation centers. These structures must be simple,
light, portable, and of a highly regular design to facilitate automated production
and assembly. The large sizes which are anticipated will also make space
lattices very. flexible. It is the flexing motion that will affect a satellite's
orientation and performance; therefore, it is important to identify the static
and dynamic behavior of space lattices for a variety of loading conditions. The
large size of the problem can make full "direct" solutions more expensive than
an approximate analytical approach which exploits the repetitive nature of the
lattice. Analytical approaches are therefore very appealing.

REVIEW OF CURRENT METHODS OF ANALYSIS

Present techniques used to study space lattices fall into three categories
[4,5]. These are 1) matrix methods, 2) discrete field techniques, and
3) continuum modeling. The first consists of numerically solving a set of
algebraic equations in a direct manner. The other two, discrete field techniques
and continuum modeling, are analytical approaches. Each have attractive features;
however, recent studies indicate that the continuum modeling approach shows great
promise.

Direct methods of structural analysis use matrix methods based on discrete-
element idealization. Numerical methods such as the finite element technique or
finite difference method belong to this category. In addition, matrix methods
may be classified into displacement (stiffness) methods, force (or flexibility)
methods, or a mixture of the two. An example of displacement and force methods
is given in reference [6], mixed methods are treated in reference [7]. What all
these methods have in common is the numerical solution of a set of simultaneous
algebraic equations. Today, computer programs can quickly assemble and solve a
system of linear equations as well as efficiently manage data within a limited
core space. However, the preoccupation with handling data can be a major expense
when the system of equations is too large to be:stored in central core. Obviously,
solving an analytical system described by a féw equations is more preferrable to
solving a large system of equations numerically, especially if it has to be done
more than once.

Discrete field techniques belong to one class of methods used to describe
lattice structures or a pattern of elements analytically. The popularity for
this approach is .due to the fact that the discrete nature of the lattice is
preserved in the governing equilibrium equations. Furthermore, exact closed
form solutions may be obtained for simple configurations that include continuous-
discrete systems of mixed dimensionality. In comparison with direct numerical
methods, a discrete field analysis does not increase in problem size as the
number of basic modules in the lattice is increased. There are two approaches to
modeling a repetitive lattice by discrete field methods. One method models the
structural system as a whole whereas the other describes the lattice by a typical
component. These procedures are referred to as macro and micro methods
respectively. '
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Macro methods are particularly well suited for problems where continuous
structural systems interact with discrete elements such as ribbed plates. The
model is in the form of summation equations for discrete systems or summation-
integral equations for mixed discrete-continuous systems. The limitation is
finding suitable kernel functions that satisfy the system boundary conditions.

In references [8-10], the method is applied to the static and stability analysis
of ribbed plates and discrete-core sandwich plates. In reference [11], studies
are made of a ribbed hyperbolic cooling tower. By modeling the tower as a
surface of revolution, a two dimensional axisymmetric problem is reduced to a one
dimensional beamlike problem,

Micro methods apply primarily to lattice systems whose components are
regularly arranged. The system model consists of difference equations which
represent a recurrence relation (expressed in terms of difference operators) for
a typical joint. The effectiveness of this method is demonstrated in references
[12-16] for application in determining displacements and critical loads of one
dimensional planar trusses. It is interesting to note that the author in ref.
[13] found it easier to solve the analogous equivalent beam problem by converting
finite difference equations into differential equations via truncated Taylor
series rather than seek exact closed form solutions for the difference equations
directly.

There are a number of publications that deal with the analysis of rotationally
symmetric shell-type lattices.. In ref. [8] simple truss members are used for a
static analysis and static-stability studies by Gutkowski broaden. the problem by
inclusion of flexural-torsional members [17-19]. Early ad hoc attempts by
Gutkowski to achieve a pure discrete field displacement method evolve into a
clear and systematic variational formulation that uses a discrete-element
idealization procedure in ref. [20]. By taking advantage of the rotational
symmetry, an exact one dimensional beamlike description is obtained. The
procedure also includes a dynamic analysis. A similar vibration study is made
in ref. [21] in which ring elements are used for bracing. Investigation of the
stability of a cylindrical lattice shell under axial compression is made in ref.
[22]. The intent of the study was to validate the range of equivalent continuous
shell models. A noteworthy point in the study includes the use of joints with
varying rigidity which are modeled as rotational springs. Buckling studies
which include member imperfections are made for shell and beamlike structures
with periodic cross sections in ref. [23]. A dynamic stability problem for the
same lattices is addressed in ref. [24]. With the exception of ref. [20], these
works are confined to simply supported edge constraints.

The last group of methods consist of approximating a repetitive lattice by
an equivalent continuum. The equivalence is designed so that the continuous
model exhibits identical or similar response as the actual discrete lattice for
equivalent applied loads or energies., The approximation assumes that distances
between nodes are small compared to the structure's overall dimensions and
therefore may be treated by differential operators. There are a number of
reasons for using such an approach. One is the familiarity with differential
operators and various class of methods for solving differential equations,.
Secondly, continuum theories of elasticity allow a rational equivalence based on
qualitative decisions that reduce the dimensionality of the mathematical model
and physically identify the nature of deformation (e.g. warping, bending, shear).
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Another consideration are works by Dzieniszewski [25,26] who shows that optimization
of lattices based on a continous model allows a straightforward comparison of
stiffnesses with lattices of different configurations.

Two things are noteworthy of a continuum model as the number of repeating
modules are increased: on is that the aceuracy of the response improves; and
secondly, continuum models (like discrete field techmiques) do not increase in
problem size as the number of repeating modules are increased. However, the cost
of approximating finite distances by infinitesimal ones isn't free, therefore the
range of application for the continuum model must be well defined. Early continuum
models were unreliable because there was no way of rationally assesing the
approximation introduced. Basically, the methods range from intuitive approaches
to more recent ones having a rational basis.

Intuitive methods postulate the result before the analysis is undertaken.
By assuming the response of the lattice is approximated by that of classical plate
or shell model a priori, existing differential equations and constitutive
relations can be used for the study. The approach may be extended so that the
analogous gridwork contributes to the continuum by averaging or uniformly
distributing over some area the stiffness properties belonging the families of
parallel members or individual members within a repeating module. The stiffnesses
for the overall effective continuum, determined by orthogonal transformation of
each parallel set or individual members within a repeating module, are then equated
with those of the existing plate or shell., A number of works apply this technique
to bending and membrane problems of grid and shell-type lattices [22,27-31]. It
should be noted that as the structure increased in complexity, intuitive methods
can be misleading. and highly impractical. (See for example ref. [32]).

A rational approach does exist. The method basically replaces discrete field
variables with truncated Taylor series; furthermore, the local error introduced by
truncation can be accounted for mathematically. (See for example refs. [34,35]).
There are two approaches: one method converts governing difference equations into
differential equations; the second replaces strain and kinetic energies based on
discrete parameters with continuous field variables and their derivatives obtained
from the Taylor series.

Converting finite difference equations into differential equations is studied
in refs., [33~37] for single and double layered grids. In addition, one work by
Bazant and Christiansen show by direct analogy that a lattice with rigid joints
exhibits couple stresses and antisymmetric shear strains which is not characteristic
of classical elasticity. This micropolar continuum theory presented by Eringen
[44] is a generalization of elasticity theory for which classical methods of
elasticity are a subset. Converting difference equations into differential
equations works well for simple problems, however it is difficult to apply to
more complicated configurations due to the complex nature of the resulting
differential equations.

The energy equivalence method is a rational approach that transforms
energies of a discrete lattice into a continuum representation. This method is
practical and simple because variational formulations allow the differential
equations, boundary conditions, and constitutive relations to be determined for
complicated spatial configurations. The effectiveness of this method is
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demonstrated in a variety of works. References [38,39] apply this to beam and
platelike truss lattices for static, vibration and thermal analyses.

References [36,40-42] consider beam and platelike lattices with rigid joints
where a micropolar continuum is useful. Lastly, ref. [43] expands the range of
application of continuum modeling to include buckling as well as vibration
wavelengths of deformation on the order of the size of the repeating module as
well as large. (global) wavelengths of deformation. Analysis of a repetitive
beamlike lattice which consists of thin-wall beam members with open cross sections
for space application is also explored.
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MINIMUM INFORMATION MODELLING OF
- STRUCTURAL SYSTEMS WITH UNCERTAIN
PARAMETERS*

David C. Hyland, Massachusetts Institute of Technology Lincoln Laboratory
Lexington, MA 02173

ABSTRACT

This paper reviews recent work wherein the design of active structural con-
trol is formulated as the mean-square optimal control of a linear mechanical sys-
tem with stochastic parameters. In practice, a complete probabilistic description
of model parameters can never be provided by empirical determinations, and a suit-
able design approach must accept very limited a priori data on parameter statis-
tics. TIn consequence, we formulate the mean-square optimization problem using a
-complete probability assignment which is made to be consistent with available data
but maximally unconstrained otherwise through use of a maximum entropy principle.
The ramifications of this approach for both robustness and large dimensionality
are illustrated by consideration of the full-state feedback regulation problem.

1. INTRODUCTION

Most techniques so far proposed for the design of active structural control -
even those which purport to treat the problem of modelling error (see, for example,
Refs. [1~3]) implicitly assume, at some stage, that all the maps of the linear sys-
tem model are precisely known. A nominal or base-line design (often quadratically
optimal) is then predicated upon this deterministic model. Unfortunately, such a
design pertains to but a single point in a suitably defined system-.parameter
space, while, due to numerous sources of modelling error (especially in construct-
ing large order structural models), the actual system is almost surely to be found
at some other point in parameter space. This fact vitiates any claim to optimal-
ity for numerous current design approaches and necessitates much ad-hoc "hedging"
about the nominal design in order to recover basic system properties that are lost
in consequence df parameter uncertainties. This paper reviews a recently devel-
oped approach (that of minimum data/maximum entropy modelling) which directly
incorporates the impact of modelling uncertainty in the design process by use of
a stochastic model and seeks to achieve desirable system properties while accept-
ing parameter uncertainties at their a priori levels.

To circumvent the deficiencies of current design schemes, it is first neces-
sary to recognize that any model (even a large-order 'verification'" model) never
encompasses the truth but, at best, is a mathematical statement of what and how
much is known. Considered as such, a design model must not only specify nominal
or expected values of the system parameters but must also contain an admission of
prior ignorance regarding deviations from nominal values. This provides motiva-
tion for the quantification of prior ignorance by the representation of the struc-
ture as a linear system with random multiplicative parameters.

* This work is sponsored by the Department of the Air Force. The U.S. Govermment
assumes no responsibility for the information presented.
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At this point, it is tempting to adopt a minimum expected cost approach
-i,e. assume the random parameters to be subject to some given probability law
and then design a controller which is optimal on the average. Because of its
simplicity and relative familiarity, we confine attention here to mean-square
optimality, choosing the average of a quadratic functiondl over the parameter
ensemble as the performance measure.

However, the problem is more subtle than is suggested by the minimum expect-
ed cost approach. 1In practice, one is never provided with a complete probability
assignment based upon empirical determinations but must rely upon a highly limit-
ed set of available statistical data. Avoidance of ad hoc assumptions (and the
invention of data which does not exist) requires that one indice a complete prob-
ability model for the parameters which is consistent with the data on hand but
admits the greatest possible prior ignorance with regard to all other data. The
prescription for doing this is quite straightforward: first define a measure of
prior ignorance, the entropy, and then determine the probability assignment which
maximizes entropy subject to the constraints imposed by available data.

Now this didea of a maximally unpresumptive stochastic design model may be
carried still further, for we may discern a minimum set of a priori statistical
data which is just sufficient to induce a well defined probability model, The
maximum entropy approach to modelling and controller design consists in (1) ack-
nowledging only the minimum data set as available (2) construction of the max~
imum entropy model induced by this data and (3) control design through quadratic
optimization under the maximum entropy statistics. Note that this approach ack-
nowledges only the minimum data on parameter statistics because this lends to a
particularly tractable design model and entails the greatest design conservatism
in that the model is maximally chaotic.

The minimum data/maximum entropy model accounts directly for a priori uncer-
tainties without resort to ad hoc measures and provides a mechanism whereby the
least possible prior information may be incorporated within the control design.
As suggested by the specific results reviewed in the following sections, this
approach can provide robustness levels comparable with modelled levels of uncer=
tainty and, most importantly, its use has profound ramifications for the problem
of large dimensionality in connection with the burden of design computations.

2. Stochastic Modelling and Mean-Square Optimization: General Features

In this and the following sections, the steps, outlined above, for construc-
tion of a maximally unpresumptive stochastic model are described more specifically.
Actually, the following considerations constitute extension, originally given in
Ref. [4], of various initial results, Refs., [5,6], pertaining to a very restric-
ted class of parameter uncertainties. Although future developments for the treat-
ment of general forms of uncertainty may be anticipated, we shall confine attention
here to the results of Ref. [4], wherein parameter deviations of a skew-hermitian
form were treated. Accordingly, consider the linear system:

%= (A+ia(t) -Bx+w , x e ftele,t] (1)

1
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where x comprises the state of the plant together with that of any linear dynamic
compensation that might be employed. A denotes the nominal or expected value of
the plant dynamics map, where

A+ <0 (2)
is assumed. a(t) represents that.portion'of.the system dynamics which is subject
to modelling error and a priori uncertainty, where

a(t) = a’(t) e REY (3)

To admit a sufficiently broad functional class for a(t) (as it is represented in
the design model) we additionally assume that a(t) is a zero-mean stationary,
random process whdich is separable, of bounded total power and is such that the
integral increments: :

) | |
aty, t) A f da(r) | W
| L |

possess momenté of all orders for all finite t2—tl.

The above assumptions regarding A and a(t) permit a reasonably tractable
point of departure and, moreover render (1) applicable to structural systems
conjoined with a varilety of controller forms.

Further, w(t) in (1) denotes white disturbance and/or observation noise of
intensity V while F represents the effect of control action and is, in some degree,
subject to design choice. With these provisions, we should like to incorporate
parameter uncertainties (as embodied in a(t)) in the design formulation by use
of an explicitly statistical model combined with a measure of performance de-
fined on the parameter ensemble. As noted in section 1, we adopt, as the per-
formance measure, the average of a quadratic functional

— ' L1 . '
J = 1lim 1 E dt XHRX R = RH >0 - (5)
' ‘t]"tdfoo 'tl‘to I » to . '

where E[ . ] denotes an average over both disturbance and parameter ensembles, the
time invariant matrix R encompasses the desired penalty on the state and control
inputs, and consideration is limited to the steady-state case wherein F is time
invariant.

Here we note that the class of time invariant F which renders (5) finite
and (1) second-mean-stable is nonempty.

.Under the above assumptions, it is desired to determine the unconstrained
parameters of F gso as to minimize J. This problem may be simplified somewhat
by a restatement in terms of the co-state matrix. Straightforward manipulations
give:

73



min .3 - [BV]

F
7 = PN AE [p] € (™0 (6)
o= (&+ia(t) -BT P + P &+Lalt) - F) +R

However, largely by vitrtue of the linearity of system (1), it can be shown
that:

L iaeN P+ P fa(e)] = #[P] 7)

where H [[.] is a linear mapping of the class of hermitian matrices onto itself.
Thus, (6) may be recast in the form:

m§“ s T = a[PV]
(8)
0 = G-MHIF + PGP +H[P] + R

where, at least in principle, all requisite ensemble averages have been carried
out and the problem is posed solely in terms of the expected cost matrix, P,
However, (see the explicit expressions (26) and (27) of Ref. [5]), the evaluation
of H[.] demands a complete statistical model of a(ty, t2), i.e., knowledge of
the joint probability distributions of all orders of all countable sets of incre-
ments of the form (4). But, such a complete probability assignment is never
actually available from empirical determinations. In practice, one is provided
(or strives to obtain) a very limited and incomplete set of statistical data on
the uncertain parameters, Typically, this available data may comprise estimates
of the nominal or mean values of system parameters together with various simple
measures of statistical deviation from the nominal values. 1In connection with
available data, it is well to set forth certain ground rules at this point by
recognizing that however little is known regarding uncertainties in system dy-
namics some pattern in a priori knowledge is almost always induced by the proced-
ures used in the construction of the system model. In devising a particular model
as the embodiment of physical law, the modelling analyst must not only estimate
the nominal or expected values of system characteristics but must also identify
those physical mechanisms with respect to which his analysis is prone to signif-
icant error. This last step is clearly necessary since, ultimately, the validity
of the model must be checked over the possible range of variation of the uncert-
ain effects. Within the context of linear systems, the poorly modelled effects
may often be represented by uncertainties in parameters which enter linearly into
the system dynamics. In other words, variations in the dynamics map from its
nominal value due to errors in the modelling of a particular physical effect
assume the form aB, where BE€C 2nx2n ig a known matrix and a is an uncertain
scalar., In total, uncertainty in the dynamics may be represented by:

T kEJ x5 Pk | ©)
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where the akj are uncertain scalars.

In addition to identifying the "weak spots" in)his system déscription, the
modelling analyst must ultimately estimate bounds or statistical measures of the
magnitudes of the apq . Such estimates are usually performed with reference to
each ay 5 separately, i.e., in a statistical context, the a priori data (which
the analyst either presumes on the basis of modelling judgement or strives to
determine empirically) comprises assigned numerical values of linear functionals
of p [akj] where p [akj]denotes the probability demsity of apjy. For very large
order systems this is perhaps the only practicable approach, since the large num-
ber of uncertain parameters precludes any empirical detérmination of the joint
statistics of several of the parameters, simultaneously.

Thus, we argue that in the process of constructing a model and assessing
its accuracy, the analyst necessarily induces a set of "directions" (that is, the
set of the deterministic matrices, Bkj’ in (9)) which describes the geometric
articulation of modelling uncertainties and a priori data. Under the stipulation
that only marginal statistics of the ay separately are available, the Byrys

may be said to specify the "a priori information pattern" arising from

the model and constitute an essential element of available knowledge. Noté that
we retain for the akj(t) all the assumptions mentioned above for a(t).

Having discerned the a priori pattern of available information, one might
ask if it is possible to avoid ad hoc assumptions regarding unavailable parameter
statistical data by constructing a full probability model which is consistent with
the data at hand but which presumes as little as possible with regard to unavail-
able data. Proceeding further: "Is there a set of statistical data which is
just sufficient to induce any well-defined maximally unpresumptive stochastic
model?" These are the basic modelling questions relating to the optimization
problem (8), that we address.

3. The Minimum Data/Maximum Entropy Model

Now consider the problem of constructing a stochastic model of system (1)
which replicates available data while admitting the maximum degree of prior ignor-
ance regarding all other data.. The successful principle enunciated by Jaynes
[7,8] has immediate application here: the desired probability assignment is the
one which, under the constraints imposed by available data, can be realized in
the maximum number of ways or, equivalently, maximizes an appropriate measure of
prior ignorance (the entropy).

We may introduce measures of information reposed in the statistics of para-
meter deviations in the following way. First, note that under the a priori pat-
tern of (9), only increments of the form:

Lo

v A
akj (tl, t2) 2 L dakj ()
1
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enter the evaluation of H [.] and thus have a bearing upon the optimization
problem. Next, define a division

Cle G D)

. 1 V”,%“) ; &J)en]éJ[m]v (10)

kj

of the real line, where n is a set of ordered pairs {(k,j); k<j<n} and de-
note the set of increments (over right semi-closed intervals):

(k,3) . (k,3) (k,3) (&, 3)
(e, £, )  ty 7). e

g L3)G0)

€ ,
k3 Nkj 1 Nkj

b

kj
(11)

by {a ;J [mJ]}. Finally, let P({a;J [1]}) denote the joint probability density
of the increments (11). Then, a measure of statistical uncertainty associated
with the increments (ll) is given by the relative entropy of these increments:

1P ({a;J [(nIH7] 2 ~f doP({a;J (1D 1n P({a3;J [(MIhH (12)

where do is the volume element in the sample space of (11). Although it is
possible to define -a measure of entropy for the stochastic system as a whole,
the measures (12) defined directly on the akj(tl’tZ) will suffice for present
purposes.,

0f course we wish to work with distributions constrained by statistical data.
Let U denote the set of available data each element of which consists of the
assignment of a numerical value to a particular linear functional of P({a:J[n]1})
' 'in a manner consistent with the a priori pattern. Let P({a:J [M1}p) denote the
conditional density given the data set p . Then the entropy of {a; J[7]} in the
presence of this data is simply H[P({a;][ﬂ]}lp)] in accordance with definition
(12).

With these notations we can state that the maximally unpresumptive probabil~
. . * . . .
ity assignment, PD ({a; J[m]}), under the constraints imposed by data P is de-
fined by:

ES
HPrp{a; ImI 3} )1 = sup wlp({a;Jm1Y0Y]; wim] (A3
P
and it dis this probability assignment which avoids ad hoc restrictions on the
available data. :

But further, we note the ‘functional dependence of H[P*( a; J[(M] )] upon

V. Clearly, distinct data sets generally induce distinct values of maximum

entropy and this implies an ordeéring of prior data sets. Thus, it is natural
to enquire whether or not there exists a "minimum data set'", D *CD , for which:
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HEP ( a:J m1)H]1 = sgP[SUP HCP@@;dn] } |0)]] (14)
P

for allJ[n] and for allD such that H[P( a;7[®] ©D)] fs bounded. If such a D*
consistent with the a priori information can be found, then acknowledgement

of only P” as available data leads to a probability assignment which is maximum
entvopy over all admissible selections of available data. The corresponding
stochastic system model thus incorporates the minimum prior information.

Details concerning the resolution of the above questions are to be found in
Ref. [4]. Here we merely state the results. For the system considered, the min-
imum data set, D*, may be said to comprise the nominal system maps, the matrices
By 4 deflnlng the prior information pattern and the so-called "uncertainty relax-
atlon times', TkJ

00
T,. =% fd'r Elcos a, .(o,7)] (15)
kj 0 kj

These time scales correspond to essential information on the scales of parameter
deviations from nominal values. From the assumed properties of the akj(tl, to),
it can be seen that the Ty: are real, non-negative and increase without bound

as the limit of the deterministic dynamics map is approached. Thus we may say
that the reciprocal relaxation times, I/Tk (k,j =1,...,n), constitute fundament-
al, albeit unconventional, measures of parameter uncertainty consistent with the
a priori information pattern.

The above data set is minimum in the following sense. If available data
lacks any element of this set, there exists no maximum entropy probability assign-
ment under which all the ey (tl, tp) possess finite even-order moments for
finite |t2 - tl| . Indeed 1n this circumstance, the entropy maximum problem is
ill-posed in that available data imposes no bound upon H[BP*({a:J[®]})] . Thus,
the By: and T) . must be made available in order to comstruct a full probability
model in a ratilonal manner., On the other hand, for any‘D‘D’D and for all J[7n]:

Sg H(P( {a:J (01 }p)] < sye uCR({a: JO71Ho")] (16)

Thus, a truly '"minimum information" model is obtained by acknowledging only the
minimum data set, D*, as available, Taking this step also results in a design
model which is eminantly tractable in optimization computations. 1In fact, the
assignment, P%# , induced by D* yields a form of Stratonovich state dependent
noise [ 9] for which system (1) has the Tto differential:

dx(t) = (A - ) x(t)dt + LZ da (0, 0By x () + W (e)

(17)
A A 1 _j;_ 2
Am__A_A-2 1§j 7 Bkj

kj
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where the ak (o,t) are mutually independent Wiener processes with intensities,
1/t Furthermore, under this minimum data/maximum entropy model, the operator
E ] appearing in the optimization problem, (8),assumes the form:

HIFD = D Hyy [P a
k,j (18)
ij[P] = —~—-2Tkj [Bkj,:[P, Bkj]] b.
where [A,B] denotes the commutator:
ra,8] A aB - Ba | (19)

As noted in Ref. [4], when the scale of ay (o,t) is taken to be large
H xj [P represents the leading term in the asymﬂtotlc expansion of H [P] under
the actual parameter statistics (as distinguished form the maximum entropy
statistics). In other words. the minimum data/maximum entropy model manages to
preserve various asymptotic properties of the expected cost, P, for large levels
of parameter uncertainty. Thus, the design consequences of very great uncertain-
ties may be readily investigated,

Combining the above results, the mean-square optimization problem, (8),
under the probability model (17) assumes the form:

m%n : I = tn[Pv]
0 = G-DF+FE-1 + Y —r— 8,75 T1+R (20)
L3 B I )

With this result, the minimum data, maximum entropy stochastic model, (17),
may be directly applied to the mean-square optimal design of a variety of con-
troller types (e.g., full state feedback regulation, dynamic Compensation with
output feedback, etc.). One such development for structural systems is described
in the following sections.

4, Application to Structural Systems - The Mean-Square
Optimal Full-State Feedback Regulation Problem

Now we illustrate the application of the above results to structural control.
For simplicity, consideration is limited to flexible mechanical systems under-
going deformations in the linear range with no rigid body degrees of freedom and
negligible gyroscopic effects. Generalizations to include rigid body and gyro-
scopic .effects are straightforward and will not be addressed here.

To further fix ideas, we consider the case in whith the mass distribu-
tion, internal damping and the sensor/actuator dynamics, locations and alignments
are precisely known. While only the elastic operator of the structure is to be
considered subject to a priori uncertainty, this uncertainty reflects some of the
most important sources of structural modelling errors. The elastic operator em-
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bodies detailed information on such properties as material characteristics,
geometry, construction and structural joint conditions which, in absence of
extensive testing, are difficult to ascertain with precision.

It ig further supposed that the original distributed parameter equations
for the structure are resolved in the basis of N (N finite but large) modal
coordinates associated with a set of mode shapes fior the nominal system (the
structure with its nominal values of parameters). In this fixed modal basis
(independent of parameter uncertainties), we may write the state~space eguatdon

in the eigen-basis of the nominal, open-loop plant as ¢ (see Ref. [11] for a
detailed derivation):

X = Ux +Bu+ w; xeﬁJZN (21)

where B is the control input map and w is a white disturbance of intensity ¥2 0.
i has the form:

£4Q-1Q 0
o= _ (22)
. o ~AQ-N
where 7 and () are diagonal matrices comprising, respectively, the modal damping
ratios, Ny;K=l...,N, and the nominal or expected values, @y; K=1...,N, of the

modal fréquencies. Owing to uncertainty in the structural stiffness, () is sym-
metric and positive definite but not diagonal. However, the expected value of Q

is {) so that the off-diagonal elements of ) — () are zero-mean random perturb-
ations,

With regard to the control optimization formulation, we explicitly consider
here only the very simplest controller form - i.e, full state feedback regulation:

N (23)

with the time-invariant gain, K, chosen to minimize:

: - H T

J Elx o.x +u Ryu ] a_lzo, R,>0 (24)
subject to (21). This restriction is made purely for illustrative purposes - a
companion paper, [12], describes application of the maximum entropy approach to
far less idealized controller forms,'

Now, note that because an ensemble-independent functional basis is employed,
Bis deterministic and only () is subject to statistical variation. Moreover,
from the above definitions, it is seen that - i, where:

# = E[p] = diag [ i& ,{E)N—na_)

N N
~AB) = N D5y ADND ]

=N, Wiseees
1 171 (25)

is a zero-mean skew-hermitian variation of the form appearing in (1). Thus,
the maximum entropy modelling approach described in the preceding section can be
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immediately applied here. .

To illustrate most simply the qualitative ramifications of the maximum entropy
stochastic modelling approach, we suppose here that in the vector basis of (21),
all the elements of U-H are a priori subject to significant uncertainty. Thus,
in conformlty with the notation of (9) we write:

kj k
BN ISR NEET HS
Bo: = (26)
J 0: k>N, <N or k<N, j>N
where ekJ € R2NX2N is the matrix whose elements are zero except for the (k,j)th

whiich is unity.

_ With this pattern of a priori information, non-trivial relaxation times
may be given as:

00 ) _
Tkj = Tjk = l/f/ d’L’E[COSL(.ij —_ij)'r]] (27)

= 0
Acknowledging only U, B, v , the By. and the Ty: as available data, there
immediately results a maximum entropy model of the form (17). Of more immediate
interest, however, is the counterpart of (20) in the present context. Defining:

J
diag [ ), = (28)
k =1 “kj

—
!
Ol
o o
—
[}
It

and denoting the expected cost matrix by p, the optimization problem embodied
in (21) - (24) under the minimum data/maximum entropy model of (21) (consistent
with the prior pattern (26)) can be shown to assume the form:

min : J = tr[pv] (29)
” .

with 5 20 satisfying:

I - _ H
0 = ~ﬁx) p(um ~BK) +D[p]+al+;<R2K (30)
where
2: 1 - _
o[p] 4 T, [BiPBiy * By qaw PP, i4n] > 0
jk K
with Bkj as defined in (26). ' (31)

We pause to note that when all the Tkl approach zero {(the limit of a deter-
ministic plant) (30) reduces to the famillar Lyapunov equation.
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Equations (29) - (31) now represent a rather tractable variational problem
and we devote the remainder of this paper to a review of its properties.

Denoting BREl B i 20 by oy, the main results on optimality and
stability may be summarized as follows:

Theorem 1

Consider (29) - (31) with I, Iy, B, ©1, R2 and o9 as defined
above. If (g

', ) is reconstructible, then

5
1
c = Rgl ghip (32)

minimizes the performance index (29), where p is the unique positive definite
solution of

0 =fip +p H_ + gl + o -po,p (33)

Moreover, with (32), the closed-loop system under the minimum data/maximum en-
tropy statistics is second moment and almost surely exponentially sthble for
all Tzl > 0. (For a discussion of this and other stochastic concepts of stab-
ility sée Ref, [13] ).

Proof: See Theorems 1 and 2 of [11].

Thus, under reasonably mild restrictions, the stochastic design approach
yields a well posed optimization problem and affords considerable assurance of
closed~loop stochastic stability.

Equation (33), termed the "stochastic Riccati equation', is seen to be the
central design equation for mean-square optimal regulation under the minimum
data/maximum entropy model, Note that the famlllar L Q gain relation, (32), is
preserved and, in the deterministic limit (Tk — 0,¥k,j), (33) reduces to the
standard Riccati equation. Additional qualitadtive properties are noted in [ 5]
and [14] , moreover, Refs. [5] and [15] describe several numerical procedures for
for solution of (33), most of them displaying guaranteed linear or quadratic con-
vergence. Ref, [15] gives illustrative numerical results which reveal dramatic
qualitative differences between (33) and the standard Riccati equation - partic-
ularly at modest to high levels of parameter uncertainty. Such properties are
the subject of the next section.

5. The Stochastic Riccati Equation - Asymptotic Properties for Large
Uncertainties

Having determined that under the conditions of Theorem 1, a unique positive
definite solution of (33) exists for all positive Tps + ky J =1,...,N, it is
natural to inquire what behavior p attaims for large-uncertainties, i.e., for very
small relaxation times.
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Defining:
(y 4 diag v, ] (34)

for any square matrix, M, we first consider the case wherein there is very
great uncertainty with regard to the open loop frequencies of (21) (TE% very
large). '

Theorem 2 Assume the conditions of Theorem 1 and introduce the positive
scaling factor, ¢ , into Tkk:

1
Then, with 7 the positive definite solution of (33):

A
{P} 0
A, lim p ={p*} = s (pred™ (36)
ol0 0 {P}].
where{i)\} is the positive definite solution to:
— 1 A A A A A2
0=-2n 8 P, + 2 ~5— (Pyp-Py) + 0~ G P
k "k Tkk Ik Tkﬂ £2e kk 1kk 2kk Tkk
(37)
;s k=1,...,N
and where
38
©38 (o} (8,1 = {0y} 39

— =% '
B. With p={p },u given by (32) is a rate feedback law under which
system (21) is stable for all stable M of the form (22) such that y — U is
diagonal.

Proof: Theorem 3 of [11]. See also Theorem 16 of [5].

Thus, under very large levels of uncertainties in the open-loop frequencies,
the solution of the stochastic Riccati equation automatically reduces to a rel-
atively simple asymptotic form in whdch the expected cost matrix, ﬁ', is diagonal
in the eigen-basis of the nominal system dynamics map. This asymptotic solution
gives rise to a rate feedback control law which is stable regardless of the
values of open-loop frequencies and structural damping ratios. Thus, inclusion
of a class of parameter uncertainties within the stochastic design model results
in a mean-square optimal design which is robust in the presence of the modelled
uncertainties. The above theorem show that frequency uncertainties may always
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be modelled with sufficient conservatism that the control approaches an inherently
robust law arbitrarily cdosely.

The asymptotic properties of the state covariance are entirely analogous to
those of ﬁ , and we may say that the principal effect of open-loop frequency un-
certainties is to suppress cross—-correlation among distinect structural modes.
Additional effects arise when we consider the random intermodal coupling intro-
duced by uncertainty in the off-diagonal elements of £ in (22). These new char-
acteristics are illustrated by the case in which all the relaxation times
approach zero:

Theorem 3 Let p be the positive definite solution of {33) under the conditions
of Theorem 1 and introduce the positive scaling factor, @ into Tkj:
TkJ = o kj 2 Tkj € (O’w) > V'ka N (39)
Then:
B
A, lim p= p I, (40)
g0
A
p is the positive scalar:
A - =2 - -k -
p= L-A + (&2 + &35, /5, (41)
where
N N N
- A1 — - A1l A - A 1 2~
I (7] = = = — (o}
A=y Zalnk K 01 =¥ 1?;1 kK o = ¥ El 2Kk

and where {fﬁ} and {62} are as defined in (38).

B. With Kk = R-lB
27

A
2 6 in (23), the control is a rate feedback law which is
stable for all 2% 0

H
> in (22).
Proof: Theorem 4 of [11].

Thus, in addition to the diagonalization of p, large uncertainties in all
the elements of the structural stiffness tend to suppress differences among the
diagonal elements of p . As can be seen from (40) and (41), the asymptotic
solution no longer distinguishes the separate roles of individual modes. Indeed,
we obtain a solution corresponding to undifferentiated chaos in which the asymptotic
mean-gquare optimal control seeks to minimize a performance index characterized by
an averaged (i.e., averaged over the modes of the system) state weighing, 61,

and input weighting, '52, for a system possessing an average damping, A
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Part B shows, once again, that we may always choose the relaxation times
sufficiently small that the control approaches an inherently robust feorm as
closely as desired. In contrast to Theorem 2.B, however, we now have the
assurance of stability in the face of uncertainties in all elements of £ .
Moreover, the asymptotic form of the control can actually be implemented. If
one has rate sensors co-located with actuators: then

y = BHX (43)

and the asymptotic control of Theorem 3 may be written:

AN o-1 H A -1
u=—;’)‘R2ﬂ x=—f)\R2 y (44)

A . .
Since ﬁ R 1 > 0 this is precisely the direct rate output feedback law dis-
cussed by Balas [16] and is known to be stable in the face of uncertainties
in all modal parameters.

In summary, the above results provide a new theoretical justification for
the use of rate feedback in structural control and #llustrate the general prin-
ciple: In the presence of very great parameter uncertainty, the mean square
optimal control within a minimum data/maximum entropy stochastic model is a
control which is inherently energy dissipative.

6. Incoherence and Isotropy: Treatment of High Order Systems.

The specific results of the last section are mainly concerned with the case
in which the relaxation times are all uniformly small. It is more typically the
case, however, that certain groups of modes are rather well known while the
remaining modes are endowed with highly uncertain parameters. To fix ideas,
suppose that the open loop modes of (21) are arranged in order of increasing
nominal modal frequencies. Furthermore to reflect a progressive degradation in
the modelling accuracy for higher order modes assume that the quantities:

nwe>

N
Z A (45)
T > Ckt+tl 2 Tk
j=1 kj

increase monotonically with k. Under these circumstances, various qualitative
features in line with Theorem 17 of Ref. [ 5] are to be expected and will be
stated here without proof

Considering a design model of finite but arbitrarily large dimension under

the above conditions, we have that given €>0 there exists an Ne (€) sufficiently
large that:

18- Pl < €|1P|| (46)
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where p is the solution to (33) and

— | —

0
pCIl 0 I Ci12

|
0 {_/p\I} | 0 0
O B (47)

R 0o 1 p 0
C12 | Ca2

A
0 0 | {pI}
N xN

with Pclls Pcl2s Pc22s € c® ¢ determined according to a NoxNg stochastic
Riccati equation of the form (33) pertaining to the first N, modes and {61}15 of
the asymptotic form (36). Imn brief, if modeled uncertainty levels increase with
increasing modal order in accordance with (45), the resulting mean-square optimal
control for the high order, very uncertain modes appmwoacdhes the asymptotic rate
feedbacl: form of Theorem 2. Furthermore, if the T k = j are sufficiently small,

we mny acain assert (46) - (47) but with: k]
1
R {pI} 0
b A (48)
D1
0 T

In other words, the control for very high order modes may approach the asymptotic
form of Theorem 3.

Under the conditions stipulated above, the state covariance matrix, Q will
approximately attain the forms analogous to (47) and (48)for € sufficiently
small. Modes or order greater than N. (e) are said to constitute the incoherent
range® and are approximately mutually uncorrelated. Lower order modes which re-
tain significant cross-correlation are termed '"coherent" modes. Of course, with
Tk sufficiently small, modes may be found such that a result for Q analagous to
(40) holds, and these modes comprise the isotropic* subrange. As noted in Ref.
[L1], the values of the relaxation times not only delineate these important
qualitative regimes but also determine the rapidity with which the system ap-
proaches, from an arbitrary initial state, the special statistical states
associated with (47) and (48). From this point of view alone, the relaxation
times may be considered essential parameter statistical information.

* This terminology, introduced in earlier work [4~6], arose from analogies
with wave propagation in random media.
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Obviously, the above properties for P and Q have important implications for
the treatment of high-order systems. Supposing that the parameters associated
with only a relatively few modes may be considered well known, a priori norm
bounds (see Ref. [5]) may be used to determine an N, << N sufficiently large that
the magnitudes of all elements in the error, R2 BH (® - D), incurred in the
approximation:

K R2 B 5’ (49)

are as small as desired. Thus, to within a given approximation, the solution of
(33) for N large may be obtained by solution of a reduced order (NCXNC) stochastic
Riccati equation together with solution of N-N. equations of the form (37) or evak-
ation of closed-form expressions (41), correspondlng to the incoherent and isotropic
ranges, respectively.

Since the solution of (27) or (41) requires little or no computational effort,
the main task is the solution of the reduced order version of (33) for the coherent
modes. In practice, it is 1likely that N will be modest (~10 - 20) and thus the
computational burden will not be excessive even for very high order design models.
For uncertainties of amore restricted class than considered here, this possibility
has already been demonstrated by specific numerical results for a variety of design
examples.

7. Concluding Remarks

This paper has reviewed the basic ideas of the minimum data/maximum entropy
modelling approach and displayed its application to structural systems having
significant a priori uncertainty in the stiffmness operator. To illustrate the
design consequences of the resulting stochastic model, the problem of mean-~square
optimal, full-state feedback regulation was considered. Treatment of the less
idealized problem of fixed-order dynamic compensator design under the maximum
entropy approach is reserved for a companion paper.

For the stochastic Riccati equation arising from the regulator problem,
sufficient conditions were given for existence and uniqueness of solutions.
From the results of Section 4 one has assurance of stochastic stability for
the closed-loop system. Moreover, by virtue of the asymptotic properties given
in Section 5, uncertainty levels may always be modelled with sufficient conser-
vatism to secure stability over the actual (as distinct from the minimum infor-
mation) parameter ensemble.

Finally, the special structure of the stochastic Riccati equation gives rise
to a qualitative distinction among coherent, incoherent and isotropic modes and
consequently permits the use of very high order models in regulator design comp-
utations. These features have significant consequences for the problem of large
dimensionality. In control design for large~order linear systems, the "curse of
dimensionality" is manifested in the great mass of processing of fundamental data
(of system models presuming complete information) required for the formulation of
an optimal control policy. The results described above intimate the possibility
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that by consistent use of design models incorporating limited system infor-
mation, we may so arrange matters that the processing required for control
policy formulation may be similarly limited.

4
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DISTRIBUTED SYSTEM MODELING OF A
LARGE SPACE ANTENNA

M. Hamidi, G. Rodriguez, and D.B. Schaechter
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

ABSTRACT

A general approach for distributed parameter modeling of complex dynamical
systems is described. The method consists of dividing the system in parts
which can be modeled by simple partial differential equations and coupling
the equations thus obtained by applying Hamilton's variational formalism to the
entire system. The modeling of a large, offset-fed, wrap-rib antenna is pre-
sented to illustrate the approach. Although such models are perhaps not as
precise as finite-element models, they can be useful for initial physical
insight and parametric design.

INTRODUCTION

Large space structures are traditionally modeled utilizing the finite
element method. This procedure results 1n matrix representations of very high
dimensions ranging from a few hundred to a Jfew tens of thousands. When used
for control design, the high dimensionality of the model creates a gamut of
almost insurmountable computational problems such as: the length of computing
times, the high volume of core memory required, the numerical truncation and
round off errors, and so forth. Furthermore, onboard computers used in space
flights are only capable of accommodating models with dimensions of the order
of ten or less. To use the finite element model, one has therefore to resort
to order reduction and face all the problems thus created.

Another undesirable aspect of finite element modeling 1s that the system
representations consist of a series of numbers which provide no insight to the
physical behavior of the system. Parametric study i1s thus made almost im-
possible since, for each new value of each parameter, a new model of the system
has to be computed.

A distributed parameter modeling, if feasible, would alleviate many of
these difficulties. Indeed, a partial differential equation representation has
a concise mathematical formulation, requires no order reduction, provides
physical understanding of the system, and is very suitable for parametric
studies. Moreover, control techniques based on partial differential equations
have been previously developed and successfully applied to simple systems.

In this paper, we present a general approach for distributed parameter
modeling of complex dynamical systems. It consists of fdirst partitioning the
system into a number of elements which can each be modeled by simple partial
differential equations. Hamilton's variational formalism is then applied to
the entire system. This results in coupling the equations describing each
part into a set of equations representing the whole system. The following
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section of this paper details the procedures. The application of the method to
the modeling of a 55-m, offset-fed, wrap-rib antenna is described in the last
section to illustrate the approach.

CONCEPT

A large space structure can be conceptually partitioned into an assembly
of rigid and flexible bodies, as schematized in Fig. 1. It is indispensible
that the partitioning be conceived as to lead to flexible bodies of simple
structure such as strings, beams, membranes, and so forth,

The dynamical model for the structure is derived using the variational
approach, i.e., by writing that for any virtual displacement from the system's
trajectory ‘
2 2
6J (T-v)dt + GJ F.rdt = 0 Ve ,t

tl tl 1°72

where T and V are the kinetic and potential energies respectively and F.r
indicates the work of the applied forces during the displacement.

The modeling task is therefore reduced to the computation of the different
terms T, V, F.r and their respective variations.

Kinetic Energy

The kinetic energy is given by the expression

T= ) (—21— IQ PR.R dQ)
i 1

where R is the vector from the origin of the inertial reference frame to an
arbitrary point of the system (cf. Fig. 1) and p the mass density at this

point. @4 indicates the volume of the ith body, and (') the differentiation with
respect to time. The summation is performed over all rigid and flexible bodies.

Performing the indicated integrations, one obtains an expression of
the form

'y T . ]_ ° T . ’
X, M. x, + Z (—-J KXo, M,. X,., d2.)
1 171 FBi 2 FB4 21 721 721 i

T:

No|

The first term in this expression represents the sum of the kinetic
energies due to the movement of the rigid bodies and to the rigid body motion
of the flexible bodies. The second term characterizes the kinetic energy
produced by the deformations of the flexible bodies. Xy is a vector of continuous
time functions: x; e C(R"). x9; are vectors of continuous functions of time
and space on the flexible body i (FB;): X94 € LZ(FBj). M; and Mp; are self-
adjoint positive semidefinite matrices. " The physical properties of the

structure impose a set of geometric boundary conditions involving x1 and x9i.
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FB

RB1
R32 FB2
Ry Te
R 2
RB = rigid body
FB = flexible body

Figure 1, Conceptual Representation of a Large
Space Structure

Defining the state space
n
s = C(RY) x I L2(FBi)

and the proper scalar product <,> on this space the kinetic energy can be
written as

T = %—<M§, x>
where .= T T T T) .
Xl XZl X22 veo in

and M is a self-adjoint, positive definite, linear mapping from s to s,
Potential Energy

The potential energy is stored in the distortions of the flexible bodies
only. It is given by

1

V=) —-J K, (x,., x,.) d9,
FB, 2 FB; i°721 21 i

where K; are positive semidefinite quadratic forms. It is always possible

(Riesz representation theorem) to reduce V to the form

V= %—<Kx, x>
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where K is a self-adjoint positive semidefinite linear mapping from s to s.
Model

The kinetic and potential energies evaluated, the next step is to apply
the variational principle. Let y be an arbitrary admissible state of the
system such that y(ty) = y(tp) = 0, and let Ay, AeR, be a virtual displacement
from the trajectory x. To the first approximation, for A small, the variation
of the time integral of the kinetic energy is given by

t

2 2 . .
S J Tdt = AJ <Mx, y> dt
t1 t1
or integrating by part
t2 t2 .
SJt Tdt = - Ajt <Mx, y> dt
1 1

The kinetic energy leads to

t t
6J 2 Kdt = k[tz <Kx, y> dt

£ 1

and the virtual work to

t t
ajtz F.r dt = AJ 2 <F, y> dt

1 t

Thus, the equations of motion are given by

t .-
Jtz (<Mx, y> + <Kx, y> - <F, y>) dt = 0
1

or, since this equation must hold for all arbitrary times t; and t; and
arbitrary vectors y € s,

<M;, y> + <Kx, y> = <F, y>
which can be written symbolically
M; + Kx = F
Note that M and K are matrices whose elements are scalars and functions

of spatial variables, as well as operators with domain in FBjs, the flexible
bodies.

MODELING OF A 55-m WRAP-RIB ANTENNA
The modeling of a 55-m wrap-rib offset antenna will be presented in this
section to illustrate the approach described in the previous section. The

antenna, designed for the Land Mobile Satellite Service' (IMSS) Project
[Ref, 1] 1is schematized in Fig. 2, It consists of a massive spacecraft-feed
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assembly and a 55-m, deployable, wrap-rib, reflector dish connected by an L-
shaped frame. The longer arm of the frame, which supports the spacecraft-feed
assembly at its free end, has a length of 80 m and the shorter arm, which
supports the dish, a length of 33.8 m. In the sequel, the short arm will be
referred to as the upper boom and the long arm as the lower boom.

1)
2)
3)

4)

The following approximations and assumptions are made for the modeling:

The longitudinal distortions of the booms are neglected: only lateral flexures
and torsion about the principal axis of the boom was considered.

The boom's masses are also neglected. Indeed, they constitute less than 3%

of the total mass. .

The dish is assumed planar and attached to the upper boom through a rigid

and fixed hub. ,

The spacecraft-feed assembly is approximated by a rigid body whose center of
gravity is placed at the extremity of the lower boom.

Kinetic Energy

Let my and Iy be the mass and inertia matrix of the spacecraft-feed

assembly and m; the reflector-dish mass. It is easily established that,
neglecting the booms' masses, the kinetic energy of the system is given by

where

- l L » l ._ T . l . N
Mo ™ |
m = ———— 1s the reduced mass of the systemn,
my + my

R = the vector joining the spacecraft and dish mass centers (cf. Fig. 3),
A, = the rotation vector of the spacecraft,

2 = the domain of the dish,

p = the dish mass density, and

P = the vector from the dish mass center to an arbitrary element
of the dish surface,

The value of the second term, in the expression for T, is directly given,

but the other two terms have to be evaluated.

For the first term we need the vector R. Let us define two orthogonal

coordinate systems as follows (cf. Fig. 3):

(21, 82, 83) with the origin at the elbow of the booms at rest; g3 has
the same direction and orientation as the vector rg joining the space-
craft's mass center to the elbow at rest, g orthogonal to g3 in the
plane of the booms at rest and oriented such as to make the smallest
angle with ry, vector coinciding with the upper boom at rest and
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oriented towards the reflector's hub; gy is such as to form a direct
system with g1 and g3.

(g4, 85, 8¢) with the origin at the reflector’s center at rest; g5 is
the outward nommal at the center of the dish, gg is along and in the
same orientation as ry, and g4 forms a direct system with g5 and gg.
Let u be the displacement of the lower boom's tip expressed in the
(81, 8y, 83) coordinate frame.

s is the displacement of the upper boom's tip expressed in the (g4,
g5, 8&g) coordinate frame,

hg is the vector from the dish point of attachment to the dish mass
center in the undistorted configuration.

Mo is the translation of the mass center of the dish due to the dish
distortion only,

Given these definitions and the assumption that the booms have no longi-
tudinal distortion, the vector R is given by (cf. Fig. 3)

R=r, + + h, + M +u

0 r1 0 + u + s

181 T U8y t 518, t So85

A simple differentiation leads to

R = AO x R + u 8, + u,8, + 5184 + Sy85 + 1 + YlgB x(h0+rl)
+ y2g6 X hO

where y; is the rotation of the tip of the lower boom about g5 and yy the
rotation of the tip of the upper boom about gg.

It remains to evaluate the :last ﬁerm,IQ pP.PdQ. Let Py be the vector
from the mass center of the dish to some arbitrary point in the undistorted
configuration which corresponds to P after deformation, and let p be the
vector joining this point before deéformation to its position after distortion
(cf. Fig. 4). To the first approximation,

P - PO = U - Hg
which yields

S . . -
p (0+Ylg3+Y2g6)x Py + 1 = ¥y

With these values of ﬁ and ﬁ,some simple but tedious algebraic manipula-
tions lead to the following expression:

_ 1T .
T = E-X Ml x +

0| =

J ou.u df
Q
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The state space vector x is given by

x = ()\OT u, ou, Y

1 2 1

With ¢0 defined as
-1

= — Q

wo I JQ PP, x (M uo) dst,

where

= T T
I, Lz P[Py PyE - PPy ] dR

is the inertia matrix of the dish in its undistorted state, and E the identity
matrix,

The matrix Ml is given by

T . T T Te T T [ oo Te
%(IIHOZ)_ngﬁthl m g5 fig 9 96"1*'12’93_Lm96“094 m g Ny 9 96"1*'22’96_Lm96“0 %4

g tfa pRy Glgs (nRe ek iy eE b
mg{ﬁ:T [ m 0 mg.{'r';g3 |mg{g4 mgl-q5 mg{ﬁ;gé Img{ 0
mg;ﬁiT | 0 m mg;F;g.’ :mggg4 mg;g5 mg;ﬁ;gﬁ {mg; 0
Gily + g ng;FZgl LR ‘-‘;“1*'11’93:“‘9;594 ne 5 9;“1*'21’96“‘“;72 5
(8 Rt o F P E
o oy wdy ndiy (0 o edily (ed o
l

ST ~T
l]mg1 mg, mE, g, !mgd mgg m Ny ge [(m-ml)E 0
i |

The dish is formed by N (forty-eight in our case) lenticular cross-
sectional ribs attached to a central, circular, rigid, hub with equal angular
spacing 05 (cf. Fig. 5). A pretensioned mass is stretched between the ribs.
The dish can thus be divided in N identical sectors numbered from zero to N-1.
Due to the nature of the material forming the mesh, the distortions of the
dish surface are due mainly to the deformations of the ribs. The ribs are
considered to be cantilevered at the hub. To compute the kinetic energy, the
mass of the mesh is lumped on the ribs. For each sector, the kinetic energy
is given by :

1 L « . L .«
Tn = E—(J p Vn'vn‘dQ + J p W W dn)
0 0
where v is the in--plane distortion, i.e., the projection of W on the plane of
the dish; w 1is the out-of-plane distortion, i.e., the projection of u on the
normal to the dish plane; and L is the length of the rib.
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The kinetic energy can thus be expressed as

.1

T=%§:M
n=0

N—l L [ ] [ ] . L ]
J o (v. v. +w w ) dQ
n n n* ' n

1 Q

Potential Energy

The potential energy of the system is the sum of the potential energies
stored in the booms and in the dish,

If L; and Ly are the lengths of the lower and upper boom respectively, and

and Fl are the bendings and the torsion along the lower boom, sy, S, are

U
2

l’ U2’

Figure 5. Schematic Diagram of the Reflector Dish

the bendings and the torsion along the upper boom, the potential energy stored
in the booms is given by

98



L a%lu,m 3%2@30 oT, (.0
E’J [ElIl ( 5 + 5 ) + GlJl(———S;—~—J ldr +
0 or or
2 2
1 L ) Sl(r,t) d Sz(r,t) 8F2(r,t) 9
E‘J [E212 ( 5 + 5 ) + G2J2 (——5;7———9 ldr
o or or .

For each sector of the dish,neglecting the torsion of the ribs, the poten-

tial energy is the sum of the following components:

Bending energy of the rib:

In-Plane:
2
L F EI (3_f2ff:f392 dr
2 i 2
o ot
Out—of -Plane:
2
L 0w (r,t)
1 n 2
0 or

1. (0 ov_(r,t) v _(r,t)
L J J °©p (2 - )2 rdodr
re Y

Out—of-plane stiffness energy due to circumferential pretension:

L T

1 c 2

§~J o (r,t) dr
o o

In-plane stiffness energy due to mesh stretching:

L E

1 c 2

?J 6 Yo (8O
0 (o}

Equations of Motion

The expressions obtained for the kinetic and potential energies lead to
the following equations for the antenna:

. 53y 53y ' ar 535 535 or
ME - 0 2 7 I |
1 3r3 8r3 or 8r3 ar3 or
r=0 r=0 r=0 r=0 r=0 r=0
34Ui 8431 ] Fi
= —= =0 i=1,2
or oY or

0)



9 ] c
pw + EI w o=
8x2 ° 9X X6
. 2 2 E
ov + &~ EI J 5V = g
9x ox X
where - ' e -
Yo ] 0
V1 :
v = , W= .
YN-1 LfN-l
2 1 |
1 -2 1
1 -2 1
A =
0
1
e
2 1
1 2 1
1 2 1
A, =
0
| 1
Boundary Conditions:
2%, U,
_.L = ! = 0
2 3
or . or .
r L1 r L1
a%s, a%s.
i . i - 0
? 3
or relp or relp
ar | .. or | .
r L1 r L2

w
eO
vt B
1]
1
)
1
1 Z_J
azui
=0
2
or r=0
az§
ar? "0
r=0
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Remark:

The equations of the in- and out-of-plane motion of the ribs are given in
a matrix form., They can be decoupled in a set of scalar equations by noticing
that both matrices A, and A2 have eigenvectors given by

1
cos 0 (n-1) 2m + gin 0 (-1 %1
N N
27 2n
- s : -1 il
cos 1 (n-1) & + sin 1(n-1) £
o, =

- 27
cos (N-1)(n-1) 25+ sin (N-1) (a-1) £~
corresponding to the eigenvalues
_ , 2 T
Aln = ~ 4gin” (n-1) 5
and 5 .
AZn = 4 cos (n-1) N n=1,...,N
for A.L and A? regpectively.
The decoupled equations can be written as
2
N + 82 BT 0 Py - Tc Kln
oPy 2 o) 2 %0 n
X X o]
2
2 0
+ EI ’ qn = EC In 4 9 [g_. EEE._ ﬂgq
pqn 2 i 2 %0 4y 2 rc 2n 9x X X
Ix X o

Computation Results

In order to establish the accuracy of the model and its adequacy for
simple and fast computations, the modal frequencies of the reflector dish were
evaluated using a Ritz approximation scheme with assumed mode shapes of the
form

im r
a, (1 - cos 5— ).
z i ( 2 L)

The following table shows a comparison of the results to those obtained
through finite element modeling [Ref. 2] (using 6624 modes),
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Table 1.

Comparison Between Continuum and Finite Element Models

PDE FE
Circumferential Wave Number 0 1 0 1
1st out-of-plane 0.77276 | 0.772763 0.78971 0.78988
2nd out-of-plane 3.33615 | 3.33615 - -
1st in-plane 0.175461} 0,175877 0.18134 0.19082
2nd in-plane 0.726048| 0,.725721 0.70185 0.70423
The accuracy is quite satisfactory as it can be observed. As to the

required computational effort, the difference with the finite element method
is striking: the whole algorithm could be programmed on an intelligent
terminal, and the computational cost was about 30 times less.

CONCLUSION

A general approach to partial differential equation modeling of large
space structures was presented and its application to the modeling of a large,
wrap-rib, offset-fed antenna was described.

The partial differential model thus obtained has all the expected traits
of simplicity, conciseness, and suitability for parametric studies.

The model was used to evaluate the modal frequencies of the dish. For low
frequencies the results are very close to those obtained from a finite-element
model of very high dimension. The striking feature is that the required
computational effort was more than an order of magnitude smaller.
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MODELING OF FLEXIBLE STRUCTURES
FOR ACTIVE CONTROL*

Arthur E. Bryson, Jr.
Stanford University
Stanford, CA 94305

ABSTRACT

If a flexible structure has a plane of symmetry, the equations of motion can
be split into two uncoupled sets, one for symmetrical motions and one for anti-
symmetric motions.

If there are m controls, it is often convenient to assign the linear com-
binations of controls that enter into the m lowest frequency modes and '"new"
controls.

As an example the feed-support structure of a spacecraft antenna is consid-
ered. It is modeled as a tetrahedron made up of flexible bars and connected to
the spacecraft by six short flexible legs containing force actuators and displace-
ment sensors. Due to the three-sided symmetry of this structure, both the
symmetric and the anti-symmetric equations of motion can be decoupled into two
subsystems. The resulting four subsystems are:

(1) Pitch/fore-aft motions with four degrees of freedom (DOF), two
' controls, and one output (the fore-aft motion of the feed).

(2) Vertical motions with three DOF, one control, and one output
(the vertical motion of the feed).

(3) Roll/lateral motions with four DOF, two controls, and one
output (the lateral motions of the feed).

(4) Yaw motion with one DOF, one control, and no output (the feed
does not move during yaw motion).

Such a decomposition obviously simplifies the task of synthesizing active

control logic for the structure.

INTRODUCTION

The example was suggested by the ACOSS (Active Stabilization of Space
Structures) problem posed by the Draper Laboratory a few years ago (see Ref. 1
and Figure 1). The only difference in the data from that problem is that we have

)
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taken the three vertical bars of the tetrahedron to be identical. This results
in four lateral modes that have identical frequencies to four longitudinal modes.

The ACOSS problem may be interpreted as the problem stated in the abstract
if one assumes that the spacecraft mass is large compared to the feed-tower mass
so that the spacecraft motions are negligible.

*

EQUATIONS OF MOTION

The structural model is oversimplified and was apparently only intended to
be an example of a multi~input, multi-output system. The structure consists of
twelve bars, six of which (10 meters long) form a regular tetrahedron with the
feed at its apex (point 1). Two bars (each 2.828 meters long) connect each of
the three joints at the base of the tetrahedron (points 2,3,4) to the antenna
dish on the spacecraft. The cross—section area of the three base members is ten
times the cross-section area of the vertical members and the legs. The mass of
the structure is "lumped" at the four joints (equal mass at each joint).

Since there are two actuators applying forces at each of the three base
joints, it is possible to create independent horizontal and vertical forces at
each of these joints. Let (Vi,Hi) be the (vertical, horizontal) forces at joint
i (i=2 to 4) as shown in Figure 2.

Let k(i) be the values of EA(i)/mL(i){stiffness/mass) for the base
members (i=1), the vertical members (i=2), and the legs (i=3), where
E = Young's modulus, A= cross-section area of the member, L= length of member,
and m =lumped mass at each joint. We have taken m =2, and

k(1) = 50 1/sec2,

k(2) =5 l/secz,

K(3) = 17.6775 1/sec?.

Using the vectors x (x »Y15295 XosY X33Y35295 X,5¥,52, )!
f=(,,H,; V,,H ;3 V,,E)", the equa 1ons o) motlon may %hen be wrltten as:
2’72 3’73 474
X = -Kex + G°f,

where

K= 12 by 12 matrix,
G 12 by 6 matrix.

The matrices K and G were calculated and are given in Appendix A.
DECOMPOSITION INTO SYMMETRIC AND ANTI-SYMMETRIC MOTIONS

Motions of the feed-tower can be decomposed into motions that are either
symmetric or anti-symmetric with respect to the y=-z plane of symmetry. The
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decomposition can be performed by the following change of variables:
S = (yl,zl: (X2 - X3)/29 (yZ + yB)/Z’ (22 + 23)/2’}74324)’

a = (xl, (x2 + x3)/2, (y2 - y3)/2, (22 - 23)/2,x4),

wn
il

<(H2 - 1)/2, (U, + v3)/2,v4)

A

«Hz /2, (V, - V3)/2,H4)

where (s,a) are vectors of (symmetric, anti-symmetric) joint displacements, and
(S,A) are vectors of (symmetric, anti-symmetric) actuator forces. The equations
of motion then split into two uncoupled sets:

W
li

~-KS*s + (S-S,
and

a ~KAsa + GA<A.

The KS, KA, GS, GA matrices were calculated and are given in Appendix A.

DECOUPLING OF THE SYMMETRIC MOTIONS INTO PITCH/FORE-AFT AND VERTICAL MOTIONS

Using an eigenvalue/eigenvector computer code, the symmetric equations of
motion were put into modal form (see Appendix B). The three modes of this system
with the lowest frequencies correspond to quasi-rigid pitching, vertical transla-
tion, and fore-aft translation. Linearly-independent combinations of the
symmetric actuator forces control each of these quasi-rigid modes, so we chose to
regard these combinations as '"mew'" symmetric controls. When this was done, a
further decoupling appeared, in that two of the four higher—frequency (deformation)
modes were controllable only by the new pitch and fore-aft controls (f ,f_), while
the other two modes were controllable only by the new vertical controlp(f ).
Furthermore, f and f control only the fore-aft motions of the feed V(yl),
while fV controls only the vertical motion of the feed (zl). ’

The modes that involve only fore-aft motions of the feed are shown in Figure
3. The pitch/fore-aft equations of motion in modal form are given in Figure 4.
Figure 5 shows the combinations of the primary controls that form f and ff.

The modes that involve only vertical motion of the feed are shown in Figure
6. The vertical equations of motion in modal form are given in Figure 7. Also

shown in Figure 7 is the combination of primary controls that forms f (equal
values of VZ,V3,V4). v

DECOUPLING OF THE ANTI-SYMMETRIC MOTIONS INTO ROLL/LATERAL AND YAW MOTIONS

A similar procedure was followed for the anti-symmetric motions (see Appendix
B). The three lowest frequency modes were quasi-rigid roll, lateral translation,
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and yaw. lere the two higher frequency (deformation) modes were controllable
only with the new roll/lateral actuator forces (fr,fl).

The modes that involve only roll/lateral motions of the feed are shown in
Figure 8. The roll/lateral equations of motion in modal form are given in Figure
9. Figure 10 shows the combinations of the primary controls that form fr and
f..

1

The modes that involve only yaw motion of the feed are shown in Figure 11.
The yaw equation of motion in modal form are given in Figure 12. Also shown in
Figure 12 is the combination of primary controls that forms f (equal values of
HyHy,H,) . - y

The natural frequencies of the roll/lateral subsystem are identical to those
of the pitch/fore-aft subsystem, which is not surprising in view of the symmetry
of the structure.

SUMMARY

Figure 13 is a summary of the decoupling of the system into four subsystems.
The 24th order system with six controls and three outputs has been decoupled into
two 8th order subsystems with two controls and one output, a 6th order system with
one control and one output, and a 2nd order system with one control and no output.
This greatly simplifies the problem of synthesizing active control logic for the
system,
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APPENDIX A. EQUATIOHNS OF MOTION

Let:
x(1i,k) = kth component of the displacement vector of the ith joint,
u(i,j,k) = kth component of nominal unit vector from ith to jth joint,
f(i,k) = kth component of control force on ith joint
k(i) = E<A(i)/m-L(i),
= stiffness/mass,
where i=1 for base members, i=2 for vertical members, and i=3 for the
legs, and
E = Young's modulus,
A = cross-section area of bar,
m = lumped mass at each joint,
L = length of bar.
Then the equations of motion are:
%(1,k) = ~ k(2)*u(l,2,k)-u(l,2,3)*[x(1,3) - x(2,3)]
- k(2)+u(l,3,k)u(1,3,3) [x(1,7) x(3,3)]
- k(2)'u(l,l;,l;)'u(l,lo,j)'[x(l,j) X(l*,j)]9
$(2,k) = - k(2)+u(2,1,k) u(2,1,3) [x(2,3) ~ x(1,1)]
- k() u(2,3,k)u(2,3,3) [x(2,3) x(3,3)1
~ k(1) u(2,4,k)u(2,4,3) [x(2,3) - x(4,3)]
- k(3)'u(2)59k)'u(2’5,j).X(Z’j)
- k(3)-u(2,6,k)°u(2,6,j)'x(2,j)
+ f(2,k),
%(3,k) = - k(2)-u(3,1,k)*u(3,1,5)*[x(3,3) - x(1,3)]
- k() -u(3,2,k)+u(3,2,3) {x(3,1) ~ x(2,3)]
- k(l)'U(Baz’,k)'Ll(:}’[*sj).[X<3’j) X(A’j)]
- k(3)+u(3,7,k)*u(3,7,3)*x(3,3)
- k(3)°u(3,8,k)*u(3,8,3)"x(3,3)
+ £(3,k),
5(([',k) = - k(z)'u(l’)l;k)'u(Aylsj).[X([“,j) X(l’J)]
- k(1) rul4,2,k)u4,2,3) [x(4,5) - x(2,3)]
- k(1) +u(4,3,k)*u(4,3,5) [x(4,3) - x(3,9)]
- k(3 u(4,9,k)*u(4,9,3) x4, 1)
- k(3) u(4,10,k)u(4.10,3)*x(4,3)
+ £(4,k),
where
£(2,1) = —s-Hz/m, £(2,2) = c°H2/m, £(2,3) = V2/m,
£(3,1) = —s‘HS/m, £(3,2) = —c'H3/m, £(3,3) = V3/m,
£(4,1) = HA/m, f(4,2) =0 f(4,3) = Vé/m’
and
s =1 ¢ =73
2? 2
We have taken m=2 and:
- 2
k(1) = 50 1/secc
k(2) =5 l/sec2
K(3) = 17.6775  1/scc’

A BASIC computer code, TETRA, was developed to calculate the terms in the
equations above, and to find the terms in the symmetric and anti-symmetric equa-—
tions of motion. It is listed in the following pages, followed by the output.
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168 REM $$¢+¢ TETRA #&d 4#;:'“? *#v#%

116 REM #& FIHDS STIFFH b

128 REM #% COMTROL DS TRIELTIOH HHTPL
3 REM # G, FOR TETRAHEDROM O LEGE,
148 REM #% WHERE

156 REM SDOTIOT =K+ G,

166 FEM

176 REM & THEM FINDS K AMD G FOR

186 REM ¥ SYHNETRIC & ANTI-SYMMETRIC
196 REM # MOTIOHS.

200 REN BEFEREERE RO R PR
218 REM

226 REM % RERDS DATR #

236 REM

240 DIMKCIE, 30, MO, 168, 20 KA 212 FORT=1TOLE  FORI=1T03  READXC L. T3 T HEMTI, I

250 hEHDVi K2 KL DEFFHRC S =1HT ¢ [ ARBEES+, 50,4 1 DEoe

268 FEM

278 REM # FIHDS HOMIMAL DISPLACEMEHT YECTORS FROM FOUR TETRAHEDEOH JOIMTS

208 REM ¥ TU EACH OTHER & ALOMG LEGS %

290 REM

200 FORI=1TO4  FORI=1TOLIG: FORK=1TOS MO L Jo R =s L Ka=H T Ky THERTE. T,

18 REM

226 EEM # FIMDS ELEMEMTS OF STIFFHESS MATRIN %

A58 REM

346 FORI=1TOZ FORI=4TOS kT, Jo=MCL, 2, T ML,

2568 FDRIﬁITDﬁiFHFT=“T031K{I-JJ—Hkl,g IaspMod

268 FORI=1TO2:FORI=16TO1Z2 K. (
A FORI=4TOS  FORI=FTTOS &

TOS FORI=18TO12:

FORI=18TO

CFORJ=4 T

416 FORI=4TOS: FORI=7TOL:

428 FORI=PTOR: FORI=10TO1=

426 FORI=1TO2:FORI=1T03 SarHERTIL ]
448 FORI=4T08  FORI=4T08 CHERTIL

LHERTTL T

458 FORI=47(
HESRTI, I

GE8 FORT=4705:
478 FORI=FT03:
4368 FORI=¥TO3:
498 FORI=yVTOI:

FORJI=4TOS

G116 FORI=16TC
S28 FORI=18T01:
SEE PRINTTREC1GY "G ! HFFEF LEFT UADEANT "

S48 FORI=1TC I i 1ED FO G PRIHTEHRCE L T tHEST I FRIMT tHESTT
SEE PRINTTH SN GHT UHHUFHHT” FORI=1TOS: PRIMTTAE LG T FORI=FTOLZ
G668 FRIMTFHREC f'I T tHEXTT:PRINT  HESTI

S7E PRIMTTARC LG "LOWER RIGHT QUADRANT

S8R FORI=FTOL2: PRINTTABC LG tFORI=FTOLIZ  PRIMNTFHRCE O, Toy s tHERTI PRIMT tHERTI
S REM

GO0 REM # CALCULATES ANTI-SYMMETRIC, SYMMETRIC STIFFHESS MATRICES #

61@ REM
Rl DIMTOLIS, 120, TICEE, 12
38 T, P74, 20=1 T,
3 TC?. H‘w“l qu;4‘ 1:7¢3,:
- Ttlh ) . :

10, 16, T=m kL HERT T, T

.L; 1&, 12

EFI RS o b

leI T‘+}'I-

FUPI 1TUI“=FUHJMITOIE~FURR~1TU12-L ~I;J3:
CTLTd+TICT KD

SFORI=1TOL2  FORK=1TOI 2 LT 0
! LA TANTI-SYMMETRIC STIFFHESSAMAZS MATRIN: "
"£I=1TﬂJ-FRINTTﬂB(1@);:FDRJ=1TUS5PRIHTFHR(L(I;J})£5HEHTJ3PRIHT:HEHTI
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APPENDIX B.

MODAL FORMS

An eigenvalue/eigenvector code was used to find the natural frequencies and
mode shapes from the symmetric and anti-symmetric equations of motion determined

in Appendix A.

The results are shown below and on the next page.
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VIBRATION SUPPRESSION IN LARGE
SPACE STRUCTURES

T.K. Caughey* and C.J. Goh**
California Institute of Technology
Pasadena, CA 91109

I. INTRODUCTION

The need of active control of large space structures is well-known hence
needs no reiteration here. The highly complex and interactive nature of the
problem gives rise to numerous difficulties which have been well documented by
BALAS (Ref. 1). Due to the inherently high order of the structure and the
fact that only a finite number of sensors and actuators is available, the use of
modern optimal control theory for vibration suppression purposes seems unjusti-
fied as it inevitably encounters the problem of control and observation spill-
over. ilore specifically, active control of low frequency modes by such
techniques causes intermediate or high frequency modes to become unstable, as
demonstrated both in theory and in experiment (see Refs. 2 and 3). Sophisticated
compensation techniques can be used to overcome this problem but nevertheless
lead to further complication. Another much simpler technique is the use of
colocated velocity (rate) feedback control (see Refs. 4 and 5) which guarantee
that all modes remain stable. Spillover still exists in this case but rather
than being detrimental, can stabilize the uncontrolled and unmodelled modes.
However, there still remains a crucial problem, unfortunately ignored by most
researchers in this field, namely the interaction of actuator dynamics with the
structure. It is thus the central objective of this paper to point out that
actuator dynamics, if not properly treated, may give rise to instability. We
shall also suggest a couple of ways to overcome this. The analysis will be
carried out in the context of colocated feedback control though it can be
carried out in terms of optimal control just as well. In the present paper,
we shall present only a brief summary of the concepts and theory involved,
interested readers may lTike to refer to Refs. 6 and 7 for further details.

IT. NATURE OF THE PROBLEM

A large but finite order (N) vibrating system with colocated rate feed-
back control can be modelled by a second order equation:

Mx + Dx + Kx = -S1CSx

*Professor of Applied Mechanics **Graduate Student
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[M is the inertia matrix including the inertia of the sensors and actuators]

where -the sensor/actuator (S/A) location matrix S s defined by

(8);5 = (2)

{1 if S/A pair 1 is located at element j
J

0 otherwise

Applying the appropriate orthogonal transformation

X=0F (3)

such that ¢TM¢ =1, @TD@ =D, @TK¢ = Q, where D s 1in general non-diagonal

but diagonally dominant and @ is diagonal with the square of the modal
frequency down the diagonal. Egn. (1) is reduced to

E+Di+aE = -0 SICSet = -BE (4)

Thus, the addition of feedback simply modifies the closed Toop damping
matrix to

D=D+3B8 (5)

It is easy to prove that (see Refs. 6 and 4) if D and q are positive
definite matrix, then the system is stable. Furthermore, if the elements of
D are relatively small compared to @, then the dynamical behavior of the
coupled system is basically dominated by the diagonal elements of D. This
can be shown easily using perturbation theory. If we rewrite 0 as:

D = eD* (6)

where D* is of the same order of magnitude as © and e is a representative
small parameter, then the eigen values of the close loop system is given as
the zeroes of
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- A
-

2k 2 k ~k ke
(s +€dHS + w1 ) Ed]Z edy 4 edyy
~% 2 ~ % 2 I o
| adz1 (s + sdzzs + Wy ) €d23 €d2N
det : . M : =0
~ % ok 2 % ]
ed ed (s“+ edy s + wy2) |
§ N1 N2 NN N J
N2 2 2
or m (s“ + dyjs *ow;”) ¥ 0(e") =0 (7)
i=1

where Tower case letters denote elements of corresponding upper case matrix.
Hence to 1st order accuracy, the system decoupled into N scalar vibrating
system with damping dictated by the diagonal term d;i. Subsequently if N
S/A pairs are available, we can approximately assign the closed loop poles
arbitrarily. One way of doing such is to decide on what the closed Toop
damping of the first N, modes are, which is equivalent to prescribing the
first N, diagonal elements of the modal gain matrix B. Thus if we choose
the first NAxNA top left corner block of B as

then the gain matrix C can be computed uniquely as

- =1
T -1
N N-N
where 9 = N[zﬁ] ' ®2A] (10)

and C 1is positive definite by virtue of the positive definiteness of 811,
the modal gain matrix B must therefore be positive-semi-definite also, and
it takes the form
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| -1
1T . B1](S¢1) (S@Z)

TT NA
Presees T -T | (11)
(s2,)"(58,) "8, (52,) (S2;)7 By (S2;)7 (S8,),

Note in passing that controllability and observability of the system are
equivalent in this case by virtue of the colocation, and is identical to the
invertibility of the matrix (S®,). This is easily achieved by placing the S/A
pairs away from the nodes of thl controlled modes. In the space structure K
is only positive semi-definite. However, if yT(D+B)y is positive definite for
any vector y orthogonal to N,. (D+B)Z=0 for Z €Ny, then the vibrational modes
are Liapunov asymptotic stab%e. ’

We have in essence furnished a brief review of the theory of colocated
rate feedback control, Further details will be found in ref, 5, We shall concern
ourselves more with the interaction of actuator dynamics, In practice, the
actuators inevitably possess inertia hence cannot be regarded as memoryless
devices. This leads to a finite actuator bandwidth. BALAS [ref, 8] argues
that by ignoring the fast modes, the actuator dynamics can be ignored if it is
sufficiently fast. This argument is questionable since firstly, omittance
of fast modes is not justifiable and secondly, no matter how fast the actuator
dynamics are, they cannot be faster than all the system modes whose bandwidth
eventually become infinite, This is one of the many fallacies which arises
in flexible spacecraft control to date, in that we are using finite resources
to control an infinite dimensional system and hence ignorance or truncation of
the infinite dimensionality is never justifiable.

With the presence of actuator dynamics, eqn, (1) is modified to be:

Mx + DX + Kx = -S'CZ - (12)

I [%' + saé + wgz] - wlsy ’ (13)

a
Na
Applying the appropriate canonical transformation and letting

Z = Son » (']4)

egns, (12) and (13) are equivalent to

Ig' + v?; + QE =-Bn = —@TSTCS<I>n (15)
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Iyln +8.n + wgnJ = wgi | (16)

As before, if the damping matrices D and B are relatively small, we can
regard, to first order accuracy, the coupled system as N decoupled scalar
system. This is a useful concept which will enable us to investigate instability
via classical control technique. A typical reduced scalar system is governed by

. . 2
gi + 81 Ei + wigi' ”bini (]7)

. * 2 1] -
ni + Ba ni + wa(ni~€ﬁ) 0 ) (]8)

For notational convenience we shall discard the index i from £ and nj.
Henceforth the symbols £ and n are regarded as scalars quantities until otherwise
specified. By taking Laplace Transform, the combined system-actuator dynamics can
be shown easily to be governed by the characteristic equation:

2 2

(s© + BiS *+ mf)(s2 +Bys * wg) thyuws=0 . (19)

Using conventional Nyquist diagram methods, it can be shown that, for
stability, the scalar gain bi has to be upper and lower bounded by

YL < b_i < YU (20)
where
o w; o : W2
Yy © 4‘:nt;a(':nwi * Ca“b)(5go * (Ca@a h ani)(] h (E;) )
w. T e W ' W W, !
: V242 2. 2/~1\2 | on i i\2

+ (ani + Cawa)/(]-(ag) -+ 16 ;'nga(E;) + 8cn§a(5;)[1 + (q) 1 (21)
0 N %iy2
v = AR (s g ) (=) + (B - w1 - (=9)7]

a a

. . B W P 0 0 0. v
oy ~i4y242 2.2,79y2 , i 1,2
(an.i + cawa)/[] - (E;) 1=+ 16 CnCa(‘(;)'-a’) + 8Cn€a(a);—)[1 + (w—a') 1 (22)
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These are fairly mess¥ expressions but nevertheless can be slightly
simplified if terms in 0(z%) are neglected. A typical plot of these bounds as
a function of Wy with Ca,zn,wa as fixed parameters is shown in Fig, 1. For

non-trivial tn, the shaded area defines the stable region, i.e., for any fre-
quency mode of frequency w¥ to be stable, the gain (positive or negative) is
required to be bounded by = -

v () < bylog) < v, () (23)

For trivial ¢y, the stability boundaries are shown by broken lines, part
of which coincides with the wj axis. They also partition the stability region
[for a system of non-trivial z,] into four sectors., We shall defer the significance
of these sectors till later but as tpn decreases, the stability region shrinks
correspondingly. . It is now easy to see why instability can occur, Suppose
in the process of designing the gain matrix C, large values of scalar gain b,'s
occur on the diagonal of B, so much so that it lies outside the stability bo&ndary,
then the corresponding mode will result in instability. Such large b, can result
in several ways, e.g., the prescribed damping is too high, the matrix1(S¢1) is
near singular due to a poor choice of S/A location, or simply because the
natural damping is so low that the stability region is not Targe enough to accom-
modate even reasonably small gain, One has to bear in mind that this argument
is only accurate to first order since coupling terms have been ignored, nevertheless
it works pretty well even in actual simulation, It is also obvious from Fig, 1
that those modes whose frequencies are around _ to roughly 2w_ are most vulnerable
to instability as the stability boundary (Yu) i8 relatively Tof in this range
fwe shall call it the "critical frequency range" henceforth], For zero &, and
positive gain, it is also true that all modes with frequency greater than w
are unconditionally unstabie, Fortunately actual z_ occurring in space is flot
zero even though it may be very small indeed., The Smaller ¢ is, the larger is
the critical frequency range and the more likely instability is to occur. In
any case the resulting closed loop damping of all higher modes will be lower than
their natural damping. This can be explained, qualitatively in terms of root
locus diagram but instead we shall provide a more quantitative analysis.

Suppose we equate the characteristic equation (19) to the closed form
expression

P4 2\ 2 2
+ + + + =
(s Bps wp) (s qu wq) 0 (24)

If we expand both egns, (19) and (24) and equate coefficients in powers of s,
four algebraic equations will result which enable us to solve for the four unknown
Yo B w_» wg With 8_ prescribeda-priorily. After some algebra it can be shown
that%theP gain correEponding to a prescribed damping Bp is

52
= ZByBT-AAC B2 40 g (25)

Y ZA 2
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where

4
A = wy (26)
2
B = -wa(BpG1 + BqG] - 262) (27)
. 2 2 2
C = (sps1 - G2)(BqG]-GZ) + (sp - eq) Wi o (28)
By = Bi * By - By (29)
2,2
Gy = wy + ul + BB - BoBq (30)
.22
Gy = Bywy B 03 (31)

Since wp 1s expected to be close to w, for sufficiently Tow gain, the damping
Bp can be reiated to the prescribed dampiné ratio Cp approximately by

Bp =2 pri (32)

The locus of y vs w, for fixed z_ are plotted in Fig. 2. For Lp = 0%,
the locus coincide with 1he stabi]itypboundaries. For ¢y = tp, the locus coin-
cide with the stability boundary for ¢ = 0 and within each of the 4 sectors
divided by this Tocus n

In Sector I, v > 0, ;p >0

In Sector II, v > O, gp <0

In Sector III, vy < 0, cp <0

In Sector IV, v < 0, cp >0

We also see that as w, gets closer to w_, the maximum attainable damping
gets smaller. Furthermore for w; > w_, less than natural damping will always
result if positive gain is used. Evefl if negative gain is used, very high gain

is required just to achieve reasonable low damping.

Now that sufficient physical insight to the problem has been gathered, we
shall consider ways of overcoming these difficulties.
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IIT. RATE FEEDBACK WITH LEAD COMPENSATION

Lead compensation has been used extensively in classical control theory to
increase the phase margin of marginally stable system, but is usually applicable
for single-input-single-output system whereby scalar transfer junction is
realizable. In our multi-dimensional case, however, scalar lead compensation
is generaliﬁed to vector lead compensation, again by involving the argument
that the NN order coupled system can be approximated by N decoupled scalar
systems. There is no rigorous theoretical justification to such but we only
know that it works fairly well in actual simulation.

The concept of lead compensation as applied to scalar system is well-known
hence needs no elaboration here. In particular it works very well in this case
because of the highly resonant nature of the system (due to small z,.). The
increase in gain by compensation only leads to very small change of cross-over
frequency but the corresponding increase in phase is substantially high enough
to reverse the phase margin of critical modes from negative to positive. A very
detailed discussion of this can be found in[6]by means of Bode's diagram argument.
We shall only generalize the scalar argument into the multivariate case. With
the inclusion of a vector lead compensation network, the combined dynamics are
modified to

i +DE+08=- oSt ge R\ (33)
. L, . Ny
Iy [n+8n+wnl=1I o b n,p €ER (34)
A A
Iy [T + 01 = Tp(598) + (s0%) T T, €R, T, <T, (35)

Conceivably, T, and T, can be generalized to be positive definite matrices
for perhaps better ﬁerformgnce but for the moment we shall assume them to be
scalars. The choice of T, and T, is a debatable art, the complete behavior of
egns. (33) - (35) is extremely complicated; the best we can do is to guess by
scalar inference. Intuitively, we would like the increas? in phase shift to
start from Wy = Wy, hence T, is chosen to be around T, = -—. The choice of T

a 2 2 Wy 1
is related to the size of the increase in phase shift, the larger T; is the more
the increase. If T, is too small, then the increase in gain will bé too high
but if T, is too 1a}ge, the increase in phase shift will not be sufficient to
createTpssitive phase margin for the critical modes. As a good rule of thumb, the
ratio 2 is chosen to be between 5 and 10.
T
1

In section V we shall demonstrate by simulation the feasibility of this

technique.
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IV. POSITIVE POSITION FEEDBACK WITH TUNING FILTERS

As before, we shall look at the concept of positive position feedback from
the scalar point of view. Here again regard £ and n as scalar representing the
states of the system and the actuator respectively. as described by

£+ 81:5 + w?(& -bin) =0 b,> 0 (36)
o+ Baﬁ + wg(n -£)=0 (37)

which has the characteristic equation
(s2 + Bis + w?) (52 * Bt mi) - biw§w§ =0 (38)

It is trivial to show that a sufficient and necessary condition for stability
in this case is

bi <1 (39)
which is also the stability boundary., This obviously is much simpler than the
stability boundary of the rate feedback case. Furthermore, it has the nice
property that it is independent of all the system and actuator's dynamics:
To examine the closed~loop damping characteristic of position feedback, we com-
pute the eigen values of egn. (38) and plot the regl part [represent damping] of
the eigen values vs w, for fixed b.,, ¢z, ¢., and w-, The resulting closed-loo0p
damping characteristi& is as shown'in Pig.a3. It 2an be shown [see ref. 7] that
the characteristic consists of two parts, the upper and the lower Tocus which
correspond to the actuator and the system, respectively. For sufficiently low
gain, the system locus exhibits a resonance peak to the left of w_, For higher
gain the two locus meet at a cusp which can be shown to be at app?oximate1y

T W
(w1 - 52, §§{c +z 1-;2]). Thus for modes near the resonance peak, the
c185ed-1008dampﬁh% can"be mahy times that of the natural damping [the Tower asymp-
totes] while modes away from the peak only have slightly higher than natural
damping.,

It is such a property that motivates us to the use of "Tuning Filters".
Basically these are band-Timited electronic devices with dynamics similar to
that of the actuator but with a frequency "tuned® to the controlled mode frequency
in order to enhance its closed loop damping.

Suppose that there are as many filters as controllied modes, then the damping

and frequency of each filter is carefully chosen so that its corresponding con-
trolled frequency Ties near the resonance peak [or the cusp].
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The overall system is now described by

System Mx + DX + Kx = S'z (40)
Filters Lo Ly + 2e.we 3. + ol y]= e CM2S¢. isl. N (41)
[Mad B e MRS B TR aie MR RN =
.. L Ne 72 .. L
Actuator  z + B,z +w z= 121 wfi Ci Lyj *+ By y; + wy v, (42)
N Na
xeR"; y. ,2€R
T/2 1/2
where Ci ;"% = Cy (43)

h

is the gain matrix for the 1t filter which has natural frequency We and damping

i
ratio Ce the same for all filters,

Eqn. (42) implies that:

N
(1) Limz=z% w C/2y
i=1 4 1 7]
tro
(11) I z(0) = z(0) = y;(0) =§;(0) = 0 Vi
N
(e) = of 1/2
2(t) =1 w, C; (44)
i=1 T T

so for sufficiently large By, z converges to the RHS of (44) rapidly and con-
sequently the actuator dynamics falls out of the picture completely. Equations
(40)-(43) just reduce to, after appropriate canonical transformation,

N
L f
System & + D& + Qf = a's [z We C1/2 y1] (45)
i=1 T '
Filter I, [y, + 2c.0, y. +we y.]=w, C/2 soE, i=1,-<,N (46)
Ny - RS A TR IR LS M P ~
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or

(] (02, - 0 T(g
y “rf, Ina y
1 . ‘ ]
] M {0 N ¢ M
IN+NA X Nf ) + ‘ K
y 0 20w I Yy
L NfJ L f fo NAJ~N Ny
.
[ T ™ ’ ~
i Q -E; w -Ey, w g
f 17, N fo
2
~Ew we I 0 y
! 1°f) f, "Ny 1
+
o ; =0 (47)
“Ey o 0 - w% Iy I
fOf NCA
\\A - -
where Ei = C}/Z So P , (48)

The symmetrical structure now enables us to prove for conditional stability
as in the following theorem.

Theorem 1: The combined system-filters dynamics are stable if

N
.F
Q-3 1+ 81) B is positive definite (49)
=1
where ‘
B, = 0's' C. S (50)

and €, are some arbitrarily small positive quantities.
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Proof: Define the Liapunov function

N N
£ or . f
R S I T 1 . T 2 T T T
Veglee+ yyyl+sleoe+1 [y, - 28 Epwe y,11 (1)
i=1 i=1 i i
Cauchy Schwartz inequality implies that
of
T T T.T i T
hence
N : N
LETE e Ty e b n (s s e
2 c Vit T2 " i’
N
f €,
1 2 i T
+ 5L W o Y: Vs (53)
2 5 Ty ey T
Differentiating egqn. (51) with respect to time, we obtain

Ne

- L) - QTI
U=-EDi- ] 2rqug yi9;s 0
. 1"1 . 1. (54)
V=0 1'ff€=0,y1-=0 Vi
Thus if the assumption is true, V is strictly positive with V negative semi-
definite and hence the combined dynamics is stable by invoking the well-known
Liapunov direct method.

It can be shown further [see ref. 7] that a both sufficient and necessary
condition for stability is that the matrix P in eqn. (47) be positive definite.

To specify EXACT damping for all the controlled modes will result in solving
an unmanageably large set of simultaneous non-linear algebraic equations. For not
so large prescribed damping, however, we can ignore the coupling effects from the
uncontrolled modes and the first N, modes can be reduced to N, decoupled scalar
systems with small perturbation eréor, Suppose that one filter Eﬁ available for
gacr $ontro11ed mode, then the characteristic equation for the i~ mode is,approx-
imately

2 2

(s2 + Bys + w?)(s tBe St 2 2.9
1

) - b.w; =
fi id f1

(55)

130



Consequently if the closed-loop damping Bf. is specified, the four unknowns
i

Vg, *%p ’Bq ’bi can be computed by comparing eqn. (55) with the closed-loop ex-
i i i

pression
2 2 2 2
+ + + + =0
(s Bpis wpi)(s qus wqi) (56)
After some algebra, the solutions are:
B, =B, +Bs -8B (57)
a1 Ty Ty
G, = w: +ws +B.8: -8B B (58)
]1 fi iy Py 9
G2 =B We + Bf‘w (59)
i i i
2
= (G, - G - 60
O T RUCHES (60)
2
= (G, - G - 61
g, (21 a, ]1_)/(Bp1 Bq1) (61)
o 2
w
p. q
i %f

Once the scalar gain b, for the 1th controlled mode is obtained, the cor-
responding gain matrix Ci cdn be computed from

ISh b, (s6,)”" (63)

The gains for the uncontrolled modes will subsequently be by-products of
these b.'s.
i
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Hitherto, the choice of Ce and e has remained arbitrary. However, they
can be chosen such that the following &ptimum criteriaare achieved,

(i) For a fixed prescribed closed-loop damping, the corresponding scalar gain
is to be as small as possible.

(ii) The design should be robust in the sense that slight change in the
modal structure will not cause high gain to occur which consequently causes in-
stability.

(111) If instability ever occurred, we prefer it to occur in the filter
[which has inherent saturation characteristics] and not in the system. In other
words, crashworthiness is desired.

The first criterion can be easily achieved by designing We

the damping for a controlled mode be &xactly on the cusp of t%e damping character-
istic, However, this is not a very safe thing to do since slight change in the
controlled mode frequency is Tikely to cause high gain (and consequently in-
stabjlity) to occur. Thus the first and second criteria are unfortunately in
conflict. A reasonable compromise is to place the damping of the mode 20% below
the cusp to allow for some lateral clearance, The third criterion can be

achieved by placing the cusp slightly to the left of the controlled frequencies.
This can be explained very simply by means of Root Locus diagram as shown in

Fig. 4(i),(ii) and (iii),

and Te such that

With these facts in mind, a reasonably "optimum” choice of the filter's
characteristics can be shown to be

2 1/2
(1.02 ¢z.)
- p s (64)
0.16 + (1.02 cp)

Wy (65)
(L)_F. = g .
Ty - c?

Note in passing that even though bi < 1 is required for stability, we in
general want to keep b, to be less than about 0.8 to avoid the degeneration into
2 real roots as shown 1n Fig. 4, hecause then one root will be less stable than
the other.

Lastly, we have so far assumed that a full complement of filters are avail-
able; this is in general not necessary. If less than N, filters are available, we
would use one filter each for the lower modes since they are more vulnerable to
instability, and several higher controlled modes will share the remaining filters.
The damping specification still works out the same except that now we expect
slightly poorer performance since we are using less resources to do more work.

132



IV. NUMERICAL SIMULATION AND RESULTS

For illustration, we shall consider the control of a simply supported dis-
crete shear beam of N elements, The corresponding mass and stiffness matrix
take the form

M= m Iy (66)
f N
2 -1 0 -0
-1 2 -l ,
K = 12 -] ' (67)

0 -0 -1 2]

We do not know the exact form of the damping matrix D but do know that the
canonical damping matrix D is diagonally dominant, so for simulation purpose we
shall assume that

(D)ij = 2 Ty W5 Sij (68)
where w; is the natural frequencies of the modes, and is easily shown to be

o, = ;Z/rﬁ; sin ey s A=TaeeoN (69)
with corresponding modal matrix given by

(@);5 =[ney sin Ty 5 1h3 = Vame, (70)

As we would Tike the first N, modes to decay at a same rate (as opposed to
having the same damping ratio) we shall prescribe an approximate closed-loop damping
ratio of ¢z _ to the first mode, and then set the damping of all controlled modes
to be the Bame as the first, i.e.,

B = 2 Z; w'l [} 1=]9““'N (7])

A

For comparison purposes, we shall carry out simulation for each of the four
following cases, In each case, the common parameters are N=20, NA =4, S/A
location at {3,8,13,19}, Ty = 0.01, Cp = 0.3, m,=0.25.

Case 1: Colocated rate feedback, no actuator dynamics present, feedback gain com-
puted according to egns. (8) and (9). The closed-loop damping and frequency for
each mode are computed from the eigen values of the system in egn. (4).
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Case 2: Colocated rate feedback with actuator dynamics given by wy = 1.0,
t, = 0.7; No compensation; The feedback gains are the same as in Case 1; the
c?osed-]oop damping and frequency are computed from the eigen values of the system

in egns. (15)-(16).

Case 3: Colocated rate feedback with same actuator dynamics as Case 2; com-
pensation with T, = 0,2, and T, = 1.0 is included; the feedback gains are the
same as in Case 1 and 2; the c%osed-]oop damping and frequency are computed
from the eigen values of the system in egns., (33)-(35).

Case 4, Colocated positive position feedback with actuator dynamics eliminated,
4 tuning filters are used to control first 4 modes; the filter's characteristics
are computed from equations (64)-(65); the closed-loop damping and frequency are
computed from the eigen values of the system in eqns, (45)-(46), _

The outcome of these simulations are tabulated in Tables 1 and 2,
The outcome of the simulations can be summarized by the following points:

(1) 1In Case 1 where actuator dynamics are absent, colocated rate feedback
control works very well and the controlled modes closed-loop damping is fairly
close to the prescribed value, Furthermore, all uncontrolled [and expectedly, un-
modelled] modes result in higher than natural damping of 1%.

(2) 1In Case 2 where actuator dynamics are included, we found that the 4th,
5th and 6th modes are unstable, If the scalar gains for these modes are plotted
onto Fig, 1, they are found to lie outside the stability region, Hence, this
justifies the fact that we can predict stability of a higher order coupled
system just by looking at the diagonal elements of B, at least up to first
order accuracy anyway, Furthermore, the uncontrolled modes are found to have
less than natural closed-loop damping, again consistent with our previous theory,

(3) In Case 3, a lead compensation network is used to raise the phase
margins of the unstable modes and it was found that all modes which are previously
unstable are now stable. Furthermore, the controlled modes also result in sub-
stantially higher damping than the uncompensated case. Unfortunately, this is
upset by the decrease in damping of the higher uncontrolied modes,

(4) 1In Case 4 where positive position feedback with 4 tuning filters is
used, the closed-Toop performance surpasses the previous case significantly,
The closed-loop damping of the first mode is slightly less than specified
[within 6% anyway] but all 4 controlled modes have fairly uniform damping,
Better still, all uncontrolled [and expectedly, unmodelled] modes result in
higher than natural damping,

In addition to what has been observed, position feedback has several
advantages over rate feedback as summarized below;
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Rate Feedback with Compensation

Position Feedback with Tuning Filters

1. No theorem can be proven to guarantee
global stability.

2. Stability is highly dependent on the
natural damping of the structure,
which remains quite uncertain,

3. Maximum attainable closed-loop damp-
ing is limited depending on the stabi-
lity boundary.

4. Uncontrolled and unmodelled modes
result in lower than natural damping.

5. Instability, if ever exists,occurs
in the intermediate uncontrolled modes.

6. Requires rate sensing.

7. Requires accurate knowledge of struc-
ture than is available in practice.

Theorem pertaining to conditional
global stability can be proven.

Stability is almost independent of any
small natural damping, thus a priori
design of the control needs no knowledge
of the natural damping.

Maximum attainable damping is, at least
in principle, much higher. The resonance
peak of the filters damping character-
istics is responsible for this.

Uncontrolled and unmodelled modes result
in higher than natural damping.

Instability can only occur in ill-designed
filters.

Requires position (relative) sensing.
Only accurate knowledge required is the

rigid body mode, which is nevertheless
trivial.

V. CONCLUDING REMARKS

In retrospect, the problem of vibration suppression in large space struc-
ture has been a complex one, in view of the highly complicated and interactive
structure and the vast number of design parameters to be decided upon. In
this paper, we specifically address the problem of potential instability caused

by actuator dynamics and two ways of overcoming it.

Due to restriction in

space allocation, we can only present a brief outline of the theory but any

missing details can be found in refs. 6 and 7.

It is hoped that this paper will

stimulate future research to improve existing techniques and dig out finer details

which we may have unfortunately neglected.
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TABLE I

Scalar : Actuator Dynamics

Open Toop ga1n Case 1 g;ngﬁgggtor Case 2 wa=1.0 ;a=0.7

Mode freq. ii C-L C-L C-L C-L c-L C-L
same for all 4 cases| damping  freq. z{%) | damping freq. z{(%)

1 0.299 | 0.1794 | -0.0944 0,287 31.28 |-0.1105 0.345 30.51
2 0.596 | 0.1794 | -0,0977 0.597 16.16 | -N.N4E8 0.673 6.94
3 0.890 | 0.1794 { -0.1001 0.902 11.03 | -0.0127 0.951 1.33

4 1.179 | 0.1794 | -0.1020 1.179 8.62 |+0.00158 1.227 -0.13**

5 1.461 | 0.1816 | -0.1085 1.462 7.40 | +0.00355 1.494  -0.24**

6 1.736 | 0.2616 | -0.1612 1.732 9.27 |+0.00789 1.766  -0.45**
7 2.000 | 0.2203 | -0.1307 1.989 6.56 | -0.0003 2.018 0.02
8 2.253 | 0.0692 | -0.0544 2.247 2.42 | -0.0169 2.251 0.75
9 2.494 | 0.2150 | -0.1376 2.488 5.52 | -0.0107 2.503 0.43
10 2.721 | 0.1312 | -0.0932 2.721 3.42 | -0.0196 2.725 0.72
11 2.932 | 0.1245 | -0.0931 2.924 3.18 | -0.0229 2.935 0.78
12 3.127 | 0.1336 | -0.0996 3.129 3.18 | -0.0252 3.130 0.80
13 3.305 | 0.0735 { -0.0635 3.314 1.92 | -0.0301 3.306 0.91
14 3.464 | 0.0244 | -0.2215 3.485 6.35 | -0.0254 3.468 0.73
15 3.604 | 0.0220 | -0.1309 3.551 3.68 | -0.0281 3.607 0.78
16 3.723 | 0.1702 | =0.1272 3.708 3.43 | -0.0315 3.726 0.85
17 3.822 { 0.3004 | -0.1823 3.779 4.82 | -0.0285 3.826 0.75
-18 3.900 | 0.1696 | -0.0880 3.853 2.28 | -~0.0336 3.901 0.86
19 3.955 | 0.1493 | -9.1012 3.914 2.59 | -0.0350 3.957 0.88
20 3.989 | 0.1560 | -0.0962 3.963 2.43 | -0.0352 3.990 0.88
Actuator 1| -0.6367 0.518 77.55
** Unstable mode Actuator 2| -0.7310 0.476 83.78
o Actuator 3| -0.7208 0.534 80.33
5, =1% in all cases Actuator 4| -0.7263 0.625 75.78
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Table 2

gas$,g, Comgensated Rate_Feedback Case 4, Positive Position Feedback
=1.0, T,=0.2, Compensator roots T
afe -5.20%, -5.141, -5.135, -5.079, | 5¢°0-6076 b =0.3430  wp,=0.369
: b, =0.2288  wf,=0.736
b3 = 0.] 639 wf3=] .099
by =0.1255  wg,=1.455
C-g C-1. C-L C-L C-L C-L
damping frequency z(%) damping frequency z(%)
t ' S
S ~-0.5572 0.676 63.58 Y -0.1396 ~0.249 48.85
© -0.6530 0.651 70.82 8 -0.3565 0.508 57.47
+ -0.5892 0.585 70.94 — -0.5523 0.746 59.50
< -0,5799 0.604 69.25 - - -0.7972 1.093 58.92
Mode
1 -0.1111 0.303 34.45 -0.0875 0.296 28.389
2 -0.0978 0.660 14.65 -0.0931 0.584 . 15.742
3 -0.0505 0.964 5.23 -0.0964 0.883 10.854
4 -0.0359 1.252 .2.86 -0.0918 1.158 7.898
5 -0.0226 1.523 1.49 -0.0365 1.473 2.478
6 -0.0164 1.809 0.91 -0.0220 1.742 1.263-
7 -0.0136 2.055 0.66 -0.0218 2.001 1.091
8 -0.0190 2.269 . - 0.84 -0.0242 2.255 1.072
9 -0.0143 2.533 0.57 -0.0269 2.495 1.042
110 -0.0202 2.742 0.74 -0.0279 2.722 1.024
11 -0.0221 2.950 0.75 -0.0302 2.934 1.030
12 -0.0239 3.144 0.76 ~-0.0336 3.131 1.073
13 -0.0294 3.313 0.89 -0.0334 3.306 1.010
14 -0.0220 3.490 0.63 -0.0350 3.465 1.011
15 -0.0231 3.627 0.64 -0.0364 3.604 1.010
16 -0.0277 3.740 0.74 -0.0377 3.725 1.013
17 -0.0202 3.851 0.53 -0.0387 3.823 1.013
18 -0.0271 3.916 0.69 -0.0394 3.901 1.010
19 -0.0302 3.969 0.76 -0.0398 3.956 1.006
20 -0.0293 4.003 0.73 -0.0403 3.990 1.010
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Figure 1. Stability boundary for scalar rate feedback system
W, = 1.0, {a =0.7, ¢
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n

= 0.01, 8. = 2€ .
0.01, B, fpo%

\
Figure 2. Closed-Tloop gain characteristic
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Figure 3. Closed-Toop damping characteristics for scalar position feedback
w, = 1.0, §a = 0.5, ;n = 0.01. .
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Figure 4. Root locus diagram for 3 situations.
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LIST OF SYMBOLS (in Chronological Order)

N number of modelled system states
NA number of sensor/actuator pair = number of controlled modes
xERN system state vector
MGRNXN system mass matrix
DERNXN system damping matrix
KERNXN system stiffness matrix
) NAxN ) .
SER sensor/actuator Tocation matrix
N,x N

cer VA feedback gain matrix
gERN Canonical (modal) state vector
¢€RNXN Canonical (orthogonal) transformation or modal matrix
DERNXN Canonical damping matrix
Q&RNXN Canonical stiffness matrix
BERNXN modal gain matrix
€5 small scalar parameters

NK null space of matrix K

S Laplace transform domain variable

wy natural frequency of the ith mode

bi’Y scalar gain, diagonal elements of B

Z, system natural damping ratio

By = 2gnwi twice the open loop damping of the ith mode
Za actuator damping ratio

By = 2€awa twice the open loop damping of the actuator
wy \ actuator natural frequency
Z€R A actuator state vector

nGRN ' Canonical actuator state vector
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prescribed (approximate) damping ratio
Tead compensator time constants

tuning filter damping ratio

natural frequency of the 1th

ith eigen value of relevant systems

tuning filter

Liapunov function

time derivatives of (-)
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CONTROL OF ANTENNA-FEED ATTITUDE AND
REFLECTOR VIBRATIONS IN LARGE SPACEBORNE
ANTENNAS BY MECHANICAL DECOUPLING AND
MOVABLE DAMPERS

P.K.C. Wang*, Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109; E.C. Hong and J.S. Sarina**, Department of System Science,
University of California, Los Angeles, Los Angeles, CA 90024

ABSTRACT

Simple, practical methods for damping reflector vibrations and for design-
ing antenna-feed attitude contiol systems in large deployable spaceborne anten-
nas are proposed. The former involves a movable damper which is positioned so
that the rate-of-change of total vibrational energy is minimized. The latter
introduces a mechanical decoupler between the flexible boom and the antenna-feed,
whereby the feed-attitude control system can be designed independent of boom
dynamics. The validity of these approaches are substantiated by analytical
studies, computer simulation, and experimental studies.

I. INTRODUCTION

In the design of deployable spaceborne antennas with large flexible dish
reflectors and long flexible feed-support booms (see Fig.l), it is of importance
to quickly damp out the dish vibrations induced by external disturbances and/or
spacecraft motions, and to accurately control the attitude of the antenna-feed

with respect to a specified reference frame [1]-{4]. Here, we propose practical
design methods which lead to simple implementable feedback systems for control-
ling the dish vibrations and antenna-feed attitude. For clarity, we shall use

simple mathematical models to illustrate the basic ideas and the detailed deve-
lopment and justification of the mathematical results will be omitted.

[T, DISH-REFLECTOR VIBRATION CONTROL BY MEANS OF MOVABLE DAMPERS

Consider a circular dish whose vibratory motions about a given static equi-
librium configuration (for example, a parabolic cross sectional profile) is de-
scribable by the following wave equation in polar coordinates:

*Consultant,Jet Propulsion Laboratory.
**%E,C.Hong and J.S.Sarina contributed to Sections TIII and II respectively.

143



-1 -1 -1
pw, = (Twr)r + Tr v +r (r Twe)e + f (1)

tt

defined on the spatial domain Q = {(r,0): 0<6<2m, 0<r, <r<r } as shown in
Fig.2, where w is the displacement about the static equiigbrium;op = p(r,0) is
the mass density; T = T(r,0) is the tension and f corresponds to the control or
a damping force. The lettered subscripts denote partial differentiation.

Assuming that the dish is clamped at the inner and outer rims, the boundary
conditions are:

w(t,ro,e) = w(t,rin,e) =0 for all t and 0< 6 < 2T. 2
In addition to (2), we have the periodicity requirement:
w(t,r,0) = w(t,r,2m) for rin<<r<<ro. (3)

The total energy of the dish at any time t is given by
o 2T r
1 © 2 2 -1 42
8y = = {olw |2 + T(|w |2 + |t 'w,|2)} rdrde. (4)
2 0 . t T 0
in ‘

Using (1)-(3) and integration by parts, it can be readily verified that the time
rate-of-change of energy is

27 rO
&) = I f f(t,r,e)wt(t,r,e) r dr de. (5)
0 Yin
A possible approach to vibration damping is to, choose the control or damping
force f in a given admissible class such that &(t) is minimized [5],[6]. Con~-
sequently, the vibrational energy &(t) is reduced as quickly as possible. A

simple choice for f is a spatially distributed feedback control in the form of
a linear damping force given by

f£(t,r,0) = -g(t,r,0)w, (t,r,9), (6)
where g is a positive damping coefficient. Unfortunately, such a distributed
control or damper cannot be readily implemented. Therefore, we shall consider

a more restricted form of (6) which is amenable to physical implementation.

Let @ (t) be a proper subset of () denoting the effective region for the con-
.C
trol at time t. We assume that

—ngt(t,r,e) on Qc(t),

f(e,r,0) = (7

0 on  ~— Qc(t),
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where g is a gpecified positive real number. Let'u.ad be the set of all admissi-
ble QC"s. We wish to find a Qc(t)e lgd such that

(1) = f f(t,r,0)w, (t,r,0)dQ = -f g]wt(t,r,6)|2 dQ (8)
0 9 (t)

takes on its minimum value. This problem is analogous to that of silencing a
large drum as quickly as possible by means of movable damping pads which are
effective only over certain portionsof the drum surface.

In what follows, we shall consider a special form of movable damper which
is suitable for the dish reflector (see Fig.3). Let §2 = {(r,0): 0<r, <r<r ;
0< GSIGOSIZW} , where B, is a given aperture angle. “© We define the ™ ©
effective region QC(S(t)) for the control (3) as a rotation of Qco given by

Q(8(6)) = {(r,0): 0<r, <r<r_; 6(t)<0<6 +6(t)}. (9)
c in o o

The rotation angle 8(t) is to be chosen such that §(t) given by (8) is minimized.
Let 8*(t) denote an optimum angle, then

x
90+6 (t) r,
¢ *
E(t,8" (1)) = _I f glwt(t,r,e)|2rdrde. (10)
*
§ (t) L
Evidently, dﬂ(t) corresponds to a rotation angle at which the average kinetic
energy over the effective control region is maximized. It is of interest to
obtain estimates of the total energy decay of the dish with the foregoing opti-
mized movable damper. Unfortunately, useful a priori estimates of the energy
decay are not readily obtainable directly from (1)-(3) and the optimized control
(7). Therefore, we shall resort to computer simulation at this point.
Consider a dish with constant p and T. In this case, we can express the
solutions of (1)-(3) with the optimized movable damper in the form:
[ee]
w(t,r,0) = E amn(t) ¢mn(r,6), (11)
m,n=1

where ¢ is the orthonormalized eigenfunction of the Laplacian operator with

m s ) . .
boundary conditions (2) and (3) corresponding to the eigenvalue —an given by
the n-th root of the equation:

Jm(Arin/y)Ym(Aro/y)= Jm(ArO/Y)Ym(Xrin/y), m=1,2,..., (12)

where Yz = T/p>0; Jm and Y denote the m-th order Bessel functions of the first
and second kind respectively.
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It can be verified that the modal coefficients a__(t) satisfy the following
countably infinite dimensional system of ordinary differential equations:

e -1 » 2

® r, 80
- —gp™ Z ékz(t){f Rmn(r)RM(r)rdrf 0 (8+8" (£))0, (6+6” (£))a0

k,0=1 Tin 0

k#m
m,n=1,2,..., (13)

where
6 (r,8) = R_(£)6_(8),

R () = A U O 0= 13, Qe Y, O AOTE O/ 3,
em(e) = (ﬂ).-%cos(mG + wm),

A = /f/[rop(ro) - rinp(rin)], (14)

p(r) =3 QA v/N=-13 O e/V/Y O e/ O /Y,

6 +8%(t)
o)

A () =f* () [as
§ (t)

= 5= (68 - n 'sin’m0_ sin[2(m"(£) + )]
+ (2m) 'sin(2m6 ) [1 - 2 sin® (@8 (£) + ¢ )1}

. -1
It is evident that for large m, the damping coefficient gp Am(t) tends to
‘gGO/(Zﬂp) as m + =,

To gain some idea on the performance of the optimized movable damper, com-
puter simulations are made ?sing truncated versions of (13) with additional small
residual damping terms gop_ a n(t), where By = 0.001. The numerical values for
the dish parameters are: m

p=0.05 kg./m”>, T = 8.9 kg./sec?, r, =lm,r=51m, and g=0.1.
Fig.4 shows the energy decay for various initial kinetic energy distributions

and different forms of movable dampers including a damper sweeping at a constant
rate of 200/sec., a randomly positioned damper and the optimally positioned

damper as discussed earlier. In the computer simulations, the dish is parti-
tioned into 36 10%-sectors. The optimal damper position is determined by locat-
ing a sector with the highest kinetic energy. In the cdase of the randomly

positioned damper, the damper position at any time is determined by a random
number generator. From the numerical results, it is apparent that in all cases,
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the total modal energy (first 25 modes) decays monotonically with time. As ex-—
pected, the fastest energy decay is achieved by the optimally positioned damper.
However, it can be seen from Fig.4c that the effectiveness of the optimally posi-
tioned damper decreases when all the vibrational energy is concentrated in the
high- frequency modes. This 1s consistent with the fact that the damping coef-
ficient gp~ A (£) - ge /(21p) as m > » as mentioned earlier.

Although the foregoing results are based on a highly simplified model for
the dish, the proposed approach may also be applied to more complex realistic
situations where the dish is constructed from elastic ribs covered with thin
flexible material. In this case, optimally positioned patch dampers may be
more suitable. Finally, the movable dampers proposed here can be implemented
either by passive dampers in contact with the dish surface or by active velocity
feedback controls. However, passive dampers are preferred from the reliability
standpoint, since there is no danger of pumping energy into the dish in case of
controller failure.

[I1. ANTENNA-FEED ATTITUDE CONTROL BY MECHANICAL DECOUPLING

For a typical spaceborne antenna shown in Fig.l, the antenna-feed is rigidly
attached to the tip of a flexible boom which could undergo both torsional and
bending vibrations. It is required to control the antenna~feed attitude with
respect to a given reference frame on the spacecraft. In the usual situation,

a control torque and/or force are introduced at the boom-root. Consequently,
any coantrol action on the antenna-feed must be transmitted through the flexible
boom which is an infinite dimensional system. This greatly complicates the de-
sign of the feed-attitude control system. Here, we propose to mechanically de-
couple the antenna-feed from the boom so that the feed-attitude control system
can be designed without taking the boom dynamics into consideration.

To illustrate the basic idea, we consider the special case where the boom
vibrations are strictly torsional in nature. The antenna-feed is represented
by a rigid disk (with mass polar moment of inertia J ) attached to the boom-tip
as shown ‘in Fig.5. Let P be a point on the disk whose angular position with
respect to the fixed y-axis is denoted by 6 . ‘First, let the control torque T
be applied at x=0, and it is required to ch8ose T such that 0 (t) is as close
to a specified reference angle 6_ (say 6_=0) as p0551b1e at al? times. Here,we

observe that any control action T =T (%) will excite boom vibrations. Hence,
T must be manipulated in such a way thiat the desired effective control torque
appears at the boom-tip for controlling the feed motion. Moreover, any tor-
sional motion of the boom due to external disturbances will affect 6 . These
undesirable features greatly complicate the design of the feed- attitude control
system. Here, we note that since the relative angle 0 6 is to be controlled,

the foregoing undesirable features can be bypassed by 1ntrodu01ng a rotary actu-
ator (for example, an electric servomotor with stator moment of inertia J,) at
the boom-tip to decouple J from the boom (see Fig.6). In absence of ac%uator
friction and an actuating signal to the actuator, J rotates freely. Thus, the
angular-position control for J can be achieved by gpplylng an appropriate actu-
ating 1gnal depending only on (9 -0 ) independent of the boom motion. Note
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that a control torque applied to Jo generated by the actuator is always accompa-
nied by a reaction torque on the boom. However, in absence of actuator fric-
tion, there is no feedback from the boom motion to J . Consequently, the boom
motion has no effect on O . In real physical 81tuat10ns, friction coupling

0
between J and J, always exists. Its effect on the overall system is studied
using the® following simplified mathematical model:

(a) Torsional vibrations of boom:

TpOee = (69810, — 00, (15)
with boundary conditions:
- =g 4 A - -
0,(t,0) =0, (IO, )| = =33 578y, [) + @ - 6.0 - T (16)

where 6, is the torsional angle of the boom with respect to the fixed y-axis;I
and GJ gienote the mass moment of inertia and torsional rigidity per unit 1engtﬁ
of the boom respectively; § 1s a positive damping coefficient; c¢ is the actuator
- stator-rotor friction coupling coefficient, and T 1is the control torque. As in
Section II, the lettered subscripts denote partiai differentiation and éo=d60/dt.

(b) Antenna-feed (JO) motion:

oo o ltl )+ T ) | (17)

For simplicity, we assume that the reference angle 6_=0 and the actuator
action is instantaneous. Thus, we can introduce the usual proportional-plus-
rate feedback control for positioning JO

T = - + BE '
L= - (0 +80), (18)
where 0 and B are given real positive constants. Thus, the complete mathe-
matical model is given by (15)-(18) which can be reformulated as a linear evolu-
tion equation defined on a suitable infinite dimensional state space. It is of
interest to establish nontrivial sufficient conditions for asymptotic stability
of equilibrium in the sense of Lyapunov with respect to the "energy norm" ||w|
defined by
1 L
2 _ L 2 2 2 A2 2

[|wl|?= 2{‘1) (T o, 1%+ crfe, |*) dax + 316 L1 + 382 + ao] ¢ (19)

Unfortunately, this task is not straightforward. However, it can be verified

[7] that the determination of the eigenvalues or poles of the complete system is
reducible to solving the following nonlinear eigenvalue problem: Find all non-
trivial pairs (6,\)€H?(Q) @ € satisfying:
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'(GJ@X)X - A(S + AIb)e = 0, (20)

6(0) =0, (6JO)| = -2"q)B), (21)

where HZ(Q) denotes the complex Sobolev space of order 2 on = ]0,L[; € denotes
the field of complex numbers and

2
JOJl)\ + [J1(8+c) + cJO]x + Jloc

q(A) =

(22)
JOAZ + (B+c)A + a

For this problem, we can deduce the following result [7],[8]: All unstable eigen-
values \ = KR + jXI are complex and they lie inside the half-disk:

.12 2
{rec: AR+ >\I < oc/JO, >\R>0}.

This result gives an upper bound for the growth rates and natural frequencies of
the unstable modes. Note that this bound is independent of the boom parameters.

Another aspect having practical importance is the determination of sensiti-
vity of the eigenvalues with respect to the friction coefficients ¢ and §. This
can be studied by a perturbation analysis. Fig.7 shows the loci of eigenvalues
with variable parameters § and c¢ for a 10-meter uniform boom with I, = 0.64x 10
kg.m., GJ = 25 kg.m®/sec? , and angular position-control system parameters: J, =
6.4 x 10 kg.m? , J = 1.2x10 kg.m? ,0 = 0.474 kg.m? /sec?, and B = 0.0754 1
kg.m? /sec. It can be seen from Fig.7 that the control system poles for the
indicated variations of parameter values for § and ¢ are clustered around the
poles A = =3.14 + 5.43j corresponding to § = 0 and ¢ = 0. This shows that the
control system poles are insensitive to variations in the friction coefficients.

The effectiveness of the decoupling is revealed in the computer simulation
results given in Figs.8 and 9. Fig.8 shows that for the indicated initial con-
ditions, the ratio of peak magnitudes of the control system positional angle §
and the boom-tip deflection is approximately 0.035, which corresponds to a
significant reduction in vibration amplitude.

To verify the validity of the proposed decoupling approach, a small scale
model of the foregoing system is constructed (see Fig.10). The boom is simu-
lated by a thin steel wire. The effectiveness of the decoupling is clearly
shown in Fig.11. Here, the ratio of the peak magnitudes of 6 and the boom-tip
deflection is approximately 0.02. Fig.12 shows the boom vibrations induced by
the positional control system motion for different boom stiffnesses. From the
experiments, it is found that the friction torques in the servomotor and the
sensing potentiometers are predominately static in nature. However, their pre-
sence does not alter the effectiveness of decoupling. A more detailed descrip-
tion of the sensitivity analysis and experimental results are given in [9].

The foregoing discussions have been limited to the simplest case with tor~
sional motion only. In an actual antenna system, the flexible boom could under-
go both torsional and bending vibrations. It is required to keep a given point
on the antenna-feed aligned with a specified point on a reference plane at the
boom-root. Here, we may mechanically decouple the boom motion from the feed
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positioning control system by introducing a composite rotary and linear actuator
as shown in Fig.13. Thus, the antenna-feed may be aligned by a combination of
linear and rotary motions of the actuators. Analytical studies and computer
simulation for this system are described in reference [8].

From the analytical studies, computer simulation, and experimental studies,
the introduction of the proposed mechanical decoupling appears to be a simple
and effective approach to the design of implementable antenna-feed attitude con-
trol systems for large spaceborne antennas. This approach avoids the consider-
ation of an infinite dimensional model in control system design. To maximize
the effectiveness of decoupling, the actuator friction should be as low as pos-
sible, and to avoid instability problems, the boom must have sufficient stiff-
ness and structural damping.
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ANTENNA-FEED
PLATFORM

Figure 1. Typical configuration of a spaceborne antenna
system with antenna-feed rigidly attached to
the tip of a flexible boom.
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MOVABLE DAMPER ARM

DAMPER IN CONTACT
WITH DISH SURFACE

Figure 3. Sketch of dish reflector with a movable
damper (The damper may also be placed on
the backside of the reflector for reducing
its effect on the antenna characteristics).
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Figure 5. Attitude control of antenna-feed which is
rigidly attached to the tip of a flexible

boom.
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Figure 6.Proposed mechanical decoupling of the antenna-
feed from the flexible boom with torsional

motion only.
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THIN STEEL WIRE
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0 ANGULAR POSITION

SENSOR

Figure 10. Experimental setup for a small scale model of
the proposed antenna-feed angular-position
control system with decoupler.
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2°/div.) and boom-tip (lower trace; scale: 5°/div.)
due to initial boom displacement,, with angular posi-
tion-control system initially at rest. Time scale:
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Figure 12.

Angular displacements of J (upper traces) and boom-
tip (lower traces) due to fnitial displacement of J ,
with boom initially at rest. (a) Equivalent springO
constant for boom: 0.1362 kg.m%/secz.; scale: upper
trace 1°/div., lower trace 5°/div.; (b) Equivalent
spring constant for boom: 4.52 X10~ kg.m% /sec? ;
scale: upper trace 5°/div., lower trace 50°/div.
The values for J. and J are identical to those in

. 1 o
Fig.11.
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A CLOSED-LOOP P’RI-NCIPAL COMPONENT
ANALYSIS OF A TETRAHEDRAL TRUSS*

Edmond A. Jonckheere
Department of Electrical Engineering — Systems
- University of Southern California
Los Angeles, CA 90007

ABSTRACT

In this paper, a tetrahedral +truss, representative of a fairly broad class
of large space structures, is considered. A new method, measuring the
dynamical importence of each elastic mode when the structure is under feedback
control, is presented. :

I. INTRODUCTION

The Tetrahedral Truss devised by Charles Stark Draper Iabs (Ref. 21) has
the simple gemmetric structure of a tetrahedron, and, despite its simplicity,
it models the feeding tower of a large cassegrain antemna (Fig. I.1). It is
considered as the simplest nonplanar structure capable of representing a large
Space Structure. The nodes of the tetrahedron are assumed to be torque free,
So that the comnecting rods are only undergoing traction/compression efforts.
The three nodes of the tetrahedral basis are comnected to the (inertially
stebilized) antenna dish via three bipeds, containing a total of six
co-located sensors/actuators. The tetrahedral apex represents the position of
the secordary reflector whose motion, because of the nature of the
electromagnetic problem, must be controlled extremely accurately. Hence the
problem is — control the motion of the tetrahedral apex, by means of
actuators located in the bipeds, using sensor information from the bipeds.

The design of the control system for such as distributed parameter,
vibrating mechanical structure faces an o0ld, yet not completely resolved,
problem — how many vibration modes should the control system take into
account to guarantee (robust) stebility?

Using Moore's "open-loop principal component analysis" (Ref. 7), the author
and Silverman (Refs. 15,16) have shown that the open-loop importance (more
precisely, the singular value &5 =6 1) of each vibrating mode decreagses
with increasing eigenfrequency, a_n%l that™ the spectrum of the singular values
becomes infinitely spread as the relative damping goes to zero.

A delicate issue is whether or not the above conclusion can be extended to

*This research was supported by the USC/TRW University/Industry NSF Grant
HCS-8112327.
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the cloéed—loop case. Practical experience ("spillover" problem, Ref. 17) has
shown that this is not always the case.

To tackle the closed-loop problem, Skelton (Ref. 9) developed the "cost
analysis". More recently, the author and Silverman (Refs. 11,12) have
developed a '"closed-loop principal component analysis" which is aimed at
measuring how much each mode is important when the system is closed-up by a
LQG feedback loop. This technique assigns a measure, or "closed-loop singular
value", to each mode. The main urpose of this paper is to look at the

component analysis." Surprlsmgly enough the conclusions of the closed—loop
principal component analysis do not quite well corroborate the results of the
open-loop analysis. While the spectrum of the open-loop singular values is
infinitely spread, the spectrum of the closed-loop singular values is
surprisingly concentrated. In more intuitive but less precise terms, this
means that, while the modes appear disparately important open-loopwise, they
are sbout equally important closed-loopwise. This discrepancy between the
oper~loop and the closed-loop analyses can be interpreted as a tentative
theoretical explanation of the spillover problem. Also, it turns out that the
closed-1loop importance of each mode depends on the robustrness requirements on
the IQG feedback loop. For example, some seemingly unimportant modes can
become very important under stringent feedback performance requirements (Refs.
13,14). This paper basically addresses such issues.

IT. THE TETRAHEDRAL TRUSS

The motion of the tetrahedral truss is most conveniently represented by its
modal state equations:

dx(t)/dt = Ax(t) + Bu(t) (I1.1)

yp(t) = Cx(%)

In the sbove, x is the modal state vector; x,;_4 is the position of the ith
mode, while X,:; is the rate of the same mode.” A is a block-diagonal matrix
with blocks of the form

-W 22w
i i
L. -

W; is the ith modal eigenfrequency; the eigenfrequencies are classified in
increasing order. ¥ is the relative damping. u is the vector of the six
axial. forces acting along the legs of the bipeds; the rows of B with odd
indices are vanishing, while the rows with even indices contain the
coefficients of influence of the actuators on the correspording mode. y,. is
the six-dimensional output vector of the rate sensors located in the bipeds,
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and Cr::B ',

Some more outputs can be defined: The six-dimensional output y,, of the
position sensors located in the bipeds, and the two-dimensional o%tput Vs
giving displacement of the tetrahedral apex:

yp(t) = Cpx(t)

¥o(t) = Cgx(t)
Define the transfer functions:
Go(s) := Cr(sI—A)"1B

Y .o —1n _

(rp(S) s Cp(sI-A) B = (1/s)Gr(s)
Gy(s) = Cy(sI-A)-1B

Regardless of mode frequencies and shapes, ISS transfer functions enjoy
some remarksble properties (Refs. 18,19). By a fairly general result, the
(square) transfer matrix G.(s) from the (co-located) force actuators to the
rate sensors is positive real (or dissipative). Further, the same transfer
function is lossless if the relative damping § vanishes. Finally, observe
that Gr(s) is reciprocal, i.e., Gr(s)sGl'.(s).

The finite element method (NASTRAN) was used by Draper Iabs to derive the
second order, modal equations of the truss (Refs. 19-21). These equations
were further put into the first order, state equation form (II.1) by TRW (Ref.
20). The modal state equations (II.1) contain 12 eigermodes. Both "nominal
and "perturbed" modal data are availeble to try out and evaluate control
design techniques on the truss. The nominal data is available to the design
engineer, while the perturbed data represents a realistic departure from the
nominal data. In the nominal and perturbed cases, the eigenfrequencies are,

respectively,
w4 = 1.3420108,  1.1706554 rad/sec
Wo = 1.6647234,  1.4667812
W= 2.8007117, 2.9646145
Wy o= 2.9574139, 3.55T7479
W= 3.398199%, 3.848389%
W= 4.2044821, 5.1494174
W o o= 4.6620682, 5. 6759052
W= 4.7552602, 5. 7108055
W g = 8.53%174, 8. 9596286
Wi = 9.2505638, 10.30%582
Wﬂ11 = 1()-284775 ] 10-923379
W, = 12.905111 ,  13.966664
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ITI. CIOSED-LOOP PRINCIPAL, COMPONENT ANALYSIS
Consider a minima: state space representation

dx/dt = Ax + Bu (I11.1)

y = Cx
of the plant transfer matrix
&(s) := C(sI-A)"'B

y 1is an output available for feedback purposes, while u is the available
control. action.

The basic philosophy of the "closed~loop principal component analysis" is
to measure how much each "mode" (more generally, each state component)
participates in the dinherent closed~loop behavior of the system. Model
reduction and reduced compensation then follow by deleting the unessential
modes. There are many ways, depending on the specifications, of closing up =2
system by a feedback loop, but it is attractive to do this in an optimal way
using the ILinear-Quadratic-Gaussian approach. This approach is indeed
systematic and fairly well understood. It also has the advantage of endowing
the design with fairly general robustness proverties. More interestingly, the
IQG design can be tuned +to optimal sensitivity properties by correct
adjustment of the the quadratic criterion and the noise covariances. To
formulate the problem within the LQG setup, a disturbance Gaussian white noise
d(t) is added at the input and a measurement Gaussian white noise n(t) is
added at the output, as depicted in Pig. IIL.1. To tune the IQG design to
optimal robustnegs properties, it is convenient to introduce the quadratic
criterion

rou'u + q.y'y (I11.2)
together with the noise statistics

E(a(t)a' (1)) = g, I8(t-1) (I1I.2)

The q's and the r's are (positive) parameters which must be tuned so as to
reach satisfactory robustness properties. To urderstand how this can be done,
let K(s) be a causal, stabilizing, strictly proper compensator. A crucial
result, apparently due to Youla (Refs. 1,2), comnects up the performance
E(q,y'y + rou'u) of the compensator K(s) with robustness matrices as follows:
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Blqoy'y + rou'u) =
1/(2%;5 joo
/ "ﬁ';])..f_fJOO Trace {

0 Ty (1=K )™ ORR o (1K)~

+ QU (T-GK) ™1 GG (T-KGrx) ™!
¥ o O (T KE) ™ KOG K (TG ) ™!

+ 1ot (1K) KKy (I-GxKe) ™!} ds (I11.3)

(Kx(s) := K'(-s), that is, the paraconjugate transpose of K(s).) The matrices
(1-ax)~'ex, (1-cx)'e, (1-xa) ke, (k&)

are well known to be related to the robustness properties of the loop; the
amaller they are, the better the robustness properties. Intuitively speaking,
Bguality (III.3) says that minimizing the expected value E(qy'y + rpu'u) is
equivalent to minimizing the integral over all frequencies of "sizes" of
"robustness" matrices. More intuitively, this says that minimizing a quadratic
criterion boosts robustrness. In the wgighted average ,of the right side of
Fquation (III.3), the matrices (I-GK)~'GK and (I—KG)"1KG are of particular
importance; they are indeed related to the stability margin of the feedback
system (Ref. 3); the smaller these matrices, the more the feedback system can
accommodate variations of GX and KG, respectively, before the loop becomes
unstable. In closed-loop model reduction, the reduction error is considered as
plant variation and is expected to be taken care of by the stability margin
property of the loop. Hence, for this to be the case, it is imperative that
the IQG problem underlying model reduction boosts the stability margin. This.
can be accomplished by assigning the following values to the parameters:

a1 To=€ €, Tl

and by taking € arbitrarily small. Yet this technique can be further refined
by considering colored noises d and v and also by injecting them at other
nodes along the loop (Refs. 1,2,3); we postpore these topics to a further

payper.

Invoking the Separation Principle, one can split the design into an optimal
filtering and an optimal control problem. It is well known (Refs. 4,5) that
these optimization problems involve in a crucial way the filtering algebraic
Riccati equation

AP, + BoA" + quBB' - P,C'CPy/1y = O

and the control algebraic Riccati equation

AP + PLA + quC'C ~ PgBB'B, /1, = O
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The optimal ILQG controller consists in the cascade of the optimal filter
dw/dt = Aw + Ba + 3P C' (z-Cw)

and the optimal control gain
u:—r51B'Pow

Tlf(li§ leads to the following state space representation of the compensator
K(s):

dw/dt = B + Gz

us=Hw
where
F:=A-B;B'P, - PC'rIC
G = PC'/ry
H:= B'P/r,
The following is a fundamental result (Refs. 8,10-12):

Theorem. Iet (A,B,C) be a minimal realization of G(s). Then the eigenvalues
of Polim are similarity 1nva§‘ aSts Further, these eigenvalues are real and
gtrictly positive. denote the elgenvalues of PP, in

decreasing order, then there ex1sts a "balanc%ng" a{sformatlon T and a

"balanced" state space realization (A B C) = TAT ,IB,CT™ ) in which —
By = By =M

where
M := diag { ¥y, My, ... }

The physical interpretation of the above-defined quantities (the
"closed-loop singular values") should be clear. Assume, for example, that
is "emall"; then the balanced state component x. is "easy" to filter (_13m
"small" along the kth direction) and "easy" to control (_13O "amall" along the
kth direction); hence, intuitively, X, is an unessential state component; it
is not significantly involved in the closed-loop LQG behavior of the systenm,
and it can be discarded. Technically, this model reduction is done as follows:
Assume

M = block diag { Myq, Mo }
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with ¥y "much larger than" M,,. Partition both the plant state equations

f

dx/dt = Ayxqy + Aqpxp + Bju

dxo/dt

1l

AonXy + AgoXp + Bou
y = _0_51 + CoXxo

and the controller state equations
dwy /At = Pyqwy + Fyowo + Gyz

Qup/ At = Foquy + Fppiy + Goz
u = E1E1 + H2W2

conformably with M. The obvious reduced-order model is (A1, By,Cy), and it is
easily proved that l.tS optlmal IQG controller is the ObVLOIlS reduced-order
compensator (F The problem of the stability of the full plant G(s)
closed up by the recluced compensator is tackled in the paper of the author and
Silverman (Ref. 12). It is there proved that stability is guaranteed provided
Myo is "sufficiently small".

Besides this stability result, the closed-loop principal comporent analysis
yields other remarkable results (Ref. 12), relevant to ISS:

Theorem. Iet (A,B,C) be a minimel realization of G(s). Take qm"r’1 and
qg=Ty - Then G(s)is a reciprocal, lossless transfer matrix if and only if my
=1, k=1,2,... Further, in that case, the balanced state space realization is
unique thhnn orthogonal similarities and in any such realization A=-A' and
C=B'.

A few words about computations. The main compubtational burden is the
solution to both algebraic Ricecati equations. However, there is a fast and
reliasble procedure for solving the algebraic Riccati equation: the technique
of Isub (Ref. 6), which proceeds via the quasi-upper triangular form of the
Hamiltonian matrix. Once and P, are computed, their simultaneous
diagonalization proceeds via I%he factorization of one of them, say, Pm:LL' y
followed by the eigenanalysis of L'P L; see Ref. 8.

. RESULTS

In this section, the tetrahedral truss is analysed in the light of the
closed-loop principal component analysis. Several plant transfer matrices,
correspording to different combinations of sensors and actuators, are
considered. In each case, the modes are classified by order of closed-loop
importance. The parameters q ard v of the quadratic criterion and the noise
statistics are varied so as to determine how the classification is affected by
the stability margin requirements. Tentative conclusions for model reduction
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are derived.

IV.1. force actuator/rate sensor transfer matrix; nominal data: no
damping; Q.= =0m=I=1

The 6x6 transfer matrix from the (co-located) force actuators to the rate
sensors 1s lossless and reciprocal; hence all of the p's must be equal to 1.
Since we know in advance the result, this case is rather a good test of how
well the nmerical software pelﬁorms. The software has given the right valuves,
up to a relative error of 107'"; see Table IV.1. This is quite satisfactory.
Regarding the balancing matrix T, which transforms the modal state space
representation (A,B,C.) into the balanced state space representation (A,B,C.),
it is easily found fhat this transformation can be taken as block diagonal
with blocks of the form

- —
-1/2
0 (w)
i
T = 1/2
-1 (w) 0
L _

However, the balancing transformation is wniquely defined up to orthogonal
transformations, and the software does not pick up precisely the above
transformation (there are no reasons why it should).

Thus, the closed-loop principal component analysis does not manage to make
any discrimination between essential and nonessential modes, when the undamped
truss is closed up by a feedback loop from the rate sensors to the force
actuators. Imtuitively, the reason is that the rate sensors differentiate the
modal. displacements; this is roughly equivalent to multiplying the modal
displacements by their respective eigenfrequencies, thereby boosting the
contribution of the high frequency modes and leveling up everything.

IV.2. force actuator/rate sensor transfer matrix; nominal data; nonzero
demping; 9.=T.=0p=Tp=1

Since a ISS exhibits a structural damping, which is poorly known, it is
important to determine how the above aralysis is affected by the damping and
to make sure that the results are consistent over a realistic range of
relative damping values.

The results of the closed-loop principal component analysis for ¥=0.01 and
0.001 are given in Table IV.2. The introduction of this demping clearly
spreads the spectrum of the #'s. A distinction between essential and
nonessential state comporents is now possible. Observe that the §'s appear by
pairs of roughly equal values (this was also the case for the open-loop
analysis (Ref. 15)); it is therefore tempting to associate each such pair with
a particular mode. This intuitive conclusion is validated by the "pattern" of
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the TDbalancing transformation shown in Table IV.2. The balancing
transformation is very "sparse'"; in other words, the balancing transformation
merely relabels the modal coordinates. Observe that the pattern of the
balancing transformation is not significantly affected by the relative
demping. In other words, the closed-loop principal component analysis does not
depend too much on the ( poorly known) structural damping. Surprisingly enough,
observe that the modes are classified by decreasing order of importance as
follows:

6,7,8,5,4,3,9,10,2,11,1,12

IV.3. force actumtor/rate sensor transfer matrix; nominal data; nonzero
damping; q.=¢, r =1, q.=1, 1r,=¢

We now exemine how the above classification is affected when the quadratic
criterion and the noise statistice are chosen so as to boost the inverse

return difference I-(XG..) 1, the size of +this matrix being somehow
proportional to the stabﬁity margin. The results are shown in Table IV.3%.
Somehow they are not quite different from the preceding case. The relative
spread of the #'s is about the same. The balancing transformation is still
sparse, thereby relabeling the modal coordinate. The whole analysis is not
that much affected by the parameter €. In all of these cases, the closed-loop
principal component analysis consistently classifies the modes by order of
decreasing importance as follows:

6,7,8,5,4,3,9,10,2,11,1,12
that is, the same as for the preceding case.

IV.4. force actuator/position sensor transfer matrix; naninal data; no
damping; 0= &0= =1

We now look at the case where the controller utilizes the output y, of the
position sensors located in the bipod legs, that is, in the qgadlamc
criterion (III.2) we take =Yp- We are not yet quite concerned about the
stability margin, that is, we nomalize the perfommance criterion and the
noise statistics as = Q=1 The results of the closed-loop principal
component analysis of pfs) are given in Table IV.4. All of the p's are very
close to one, within 10 The spectrum of the closed-loop singular values of
the transfer function frcm the force actuators to the displacement sensors is
surprisingly concentrated, while the spectrum of the open~loop singular values
is much broader (Refs. 15,16). It is thus difficult to classify the modes by
order of importance. The balancing transformation is not quite sparse, simply
because it is hard to make a distinction between the modes.

IV.5. force actuator/position sensor transfer matrix; nominal data;
nonzero damping; qn» = Oy Ty |

We now look at how the closed-loop principal component amnalysis of Gp(s) is

171



affected by the damping. The results are summarized in Table IV.5. Clearly,
the introduction of a relative damping somehow spreads the #'s, and a
classification is now possible. As a result, the balancing transformation is
"sparse'; however, the balancing transformation does not exactly relabel the
modal. coordinates. For example, Tfor %=0.01, +the balanced coordinates

1X69%75 and X3 depend on the modal coordmateg of both eigermmodes 4 and 7;
somehow, the eigermodes 4 and 7 are intercoupled in the balanced coordinates
and can hardly be dicriminated importancewise. Also, the balanced coordinates
Xq _% X919, and Xy, depend on the elgenmodes 5 and 8. Thus the
c?assi ication of the eigemmodes in decreasing order of importance is as
follows:

6,5,(4,7),(%,8),2,1,9,10,11,12

The parentheses dindicate that the modes are intercoupled in the balanced
coordinates and cannot be discriminated. This classificabtion is not the same
as for the case of rate sensor output feedback. Further, this classification
is slightly affected by the damping, though an "invariant" feature is that
eigemmodes 9, 10, 11, and 12 are always classified as nonimportant.

1V.6. force actuator/p051ton gengor transfer matrlx' nominal data; nonzero
damping; q.=1, r.=t, q.=€, r =

The quadratic criterion and the noise statistics are n1ow chosen so as to
boost the stability margin, that is, the "size" of I-(G , for the position
sensor output feedback case. The results are summari ed in Teble IV.6. The
p's are about as well spread as for the preceding case. PFurther, the
balancing transformation is about as “"sparse" as for the preceding case, which
means that the balancing does not exactly reorder the modal coord:mates For
€=0.1, the classification is as follows:

(5,6),(4,7),(3,8),2,1,9,10,11,12
For €=0.01, the classification becomeg
(3,4,5,6,7,8),2,1,9,10,11,12

Thus, the classification depends on the stability margin requirement. As the
stebility margin increases, the coupling of some modes, for exemple, 6, 7, and
8, increases; this is because these modes have very close eigenfrequencies. As
the stability margin requirement varies, the only "invariant feature" is that
eigenmodes # 9, 10, 11, and 12 are consistently decoupled from the others and
classified as nommportant this can be justified by the big gap between Wg
and W

9-
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IV.7. force actuator/pos:Ltlon sensor _transfer matr:Lx, nominal dataj;
nonzero demping; q.=¢, r=1, q=1, r,=¢

We still look at the case of a displacement feedback,, but we are now
concerned agbout the inverse-return difference matrix I—(KGp) . The "size" of
this inverse-return difference matrix is boosted if the “quadratic criterion
and the noise covariances are taken as above. The results are shown in Table
IV.7. For €0.1, the classification, by decreasing order of importance, is the
following:

(5,6),(4,7),(3,8),2,1,9,10,11,12

Under +the more stringent stability margin requirement €=0.01, this
clasgification becomes

(3,4,5,6,7,8),2,1,9,10,11,12

Thus the classification is the same as for the preceding case. Purther,
comparing Tables IV.6 and IV.7 shows that this case is very close to the
preceding. This observation is reassuring. Indeed, in the multﬂvarlablg
feedback loop, the stability of both transfer matrlces (I-G )"'1 and ( -KGp
is involved, and their stability margms pre given by ﬁl{e "sizes" of “the
inverse-return difference matrices I-(G.K)™' and I—(KGp)" , respectively. It
is reassuring to observe that the b st.mg of both” stability margins is
nonconflicting in this approach.

IV.8. force actuator/position sensor transfer matrix; perturbed data;
nonzero demping; q.=t, r=1, q=1, r,=%t

Needless to say, the modal data of a ISS is highly wcertain. It is
therefore useful to determine the extent to which the above analysis, say case
# IV.7, is affected by a variation of the mode eigenfrequencies and shapes.
The results of the principal component analysis in the perturbed data case are
summarized in Table IV.8. Observe that the results are close to those of case
study # IV.8. If €0.1, the classification is as follows:

6’ 5’(4’9F{78),3’2’1,1O’11 ’9’12

Now, if the stability margin requirement is more stringent, i.e., €0.01, the
classification becomes:

(4,5,6,7,8,),3,2,1,10,11,9,12

Thus increasing the stability margin requirement produces more intercoupling
between some modes, that is, the same tendency as for the nominal data case.
It seems, therefore, that the closed-loop principal component analysis picks
up the "fine" structure of the system, and does not rely too much on mode
eigenfrequencies and shapes. This is reassuring.
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IV.9. force actuator/position sensor; nominal data; nonzero demping;

BlQyayat0pypyptrgu’)

‘ In ail of the previous cases, we have stabilized the whole system, without

particular attention to the deviation of the tetrahedral apex. Here we
introduce a quadratic criterion which explicitly penalizes the deviation y, of
the apex. We have taken q,=1.0; the other parameters are taken so as to %ake
care of the stability margin, i.e., q€, r=1, q=1, ry=g(e), with €0.1. The
results are shown in Table IV.9. CObserve that the p's are fairly well spread,
and that the balancing transformation has a much more diagonal structure.
This means that, if one is primarily concerned with the deflection of the
apex, the modes are somehow classified by decreasing frequencies. Remember,
however, that because of the penalty on y, we lose on the stability margin.
There thus appears to be a conflict between precise control of the apex and
good stability margin.

V. CONCLUSIONS

We have presented in this paper a procedure for evaluating the "dynamical
importance" of each vibration mode in a Large Space Structure operating under
feedback control. The main conclusion we have drawn is that the closed-loop
importance of each vibration mode depends on the robustness requirements.
M so, there appears to be a conflict between precise control of a given node
. of the structure and stability margin, these two requirements leading to
contradictory classifications of the modes by order of importance. A refined
version of this analysis, using frequency-dependent weightings (Refs. 1-3) to
take care of noise, sensor, and actuator bandwidths, is postpored to a further

raper.
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CONTROL OF LARGE SPACE ANTENNAS BASED ON
ELECTROMAGNETIC-STRUCTURAL MODELS

Massih Hamidi and Farzin Manshadi, Jet Propulsion Laboratory,
California Institute of Technology
Pasadena, CA 91109

ABSTRACT

A general approach to the optimal control of large space antennas based
on their RF/structural characteristics is described. The approach consists
of defining a cost functional based on the degradation of the RF performance
of the antenna and using the structural model as the dynamic system. The method
ig applied to the design of an optimal controller for a 55-m, wrap-rib offset-
fed antenna. The controller's goal is to minimize the variations of the peak
electric field of the antenna due to feed displacements,

INTRODUCTION

The control of the RF properties of antennas is traditionally achieved by
implementing and following a set of geometrical considerations such as
pointing accuracy, shape distortion, feed position, stability, etc. These
geomeltrical requirements are very stringent because of the way in which they
are conceived. The relative importance of different parameters of a geo-
metrical configuration in RF performance degradation usually can not be
determined. Each parameter is therefore considered separately and uniform
criteria are derived which, in order to meet a worst-case situation,
lead to very restrictive conditions. This study aims to use the RF performance
degradation directly as the means of defining the controller, and thus to
circumvent the stringency of the geometrical methods.

This paper is organized into three sections. The first describes the
methods used for the computations of the "far-field" electromagnetic proper-
ties of the antenna and for the derivation of the '"sensitivity'" of these
properties to different parameter variations. The second section briefly
discusses a general approach to determining quadratic cost functionals based on
the RF characteristics of the antenna system. This reduces the RF optimal
controller design to a subclass of the linear quadratic optimal controller
design problem whose solution is well-known. To illustrate the method, the
design of an RF optimal controller for the 55-m, offset-fed, wrap-rib antenna
considered in the IMSS [Ref. 1] project is presented in section 3. The
goal of the controller is to minimize the variations of the peak electric
field of the antenna, caused by feed displacements.

" RF MODEL DEVELOPMENT

Consider the reflector antenna shown in Figure 1. The reflector surface
Z is constructed by intersecting a circular cylinder with an arbitrary curved
surface. The cylinder axis is taken as the z axis; the x-y plane is perpen-
dicular to the z axis. The projection of I on the x-y plane is the circular
region o with radius a. The feed is assumed to be located at some arbitrary
point, ‘
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Xix’)

. SOURCE

Figure 1. Offset Shaped Reflector Antenna

The far-field approximations for the scattered electric and magnetic
fields of the offset-fed antenna are readily evaluated using a technique
developed by Y. Rahmat-Samii and V. Galindo-Israel [Ref. 2]. A brief summary
of this technique is presented in the following paragraphs.,

The electromagnetic fields E and H are given by
H=V x A

Tl—-V X H
jwe

il

A is the vector potential expressed as:

—jk|r~r'|
- e
A= JZ J

4ﬂ|r—r' ds'

where J is the induced current on the reflector surface due to the magnetic
field Hg radiated by the source., It is given by [Ref. 3]

J=2n x H
s

where n is the unit vector normal to the reflector's surface and directed
towards the positive direction of the z axis.

Introducing the far-field approximations in the expressions for E and H,
one obtains [Ref. 2]

: . e—jkr " ~ -2

H = jk - (T¢ 6 - Te $) + 0(r )
e_‘jkr - - -2

E =-jkn - (Te 6 + T¢ ) + o(r M)
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—
where n /f%-, the parameters (r,0,$) are the coordinates of the observation

A

point, 6 and ¢ the unit vectors corresponding to 6 and ¢, and T the radiation
integral given by

~

- 1
T = JZ J(") eJkr T ds?

It has been found that the radiation integral provides a very accurate
solution for predicting the far-field radiations of reflector antennas., The
necessity of having an efficient technique for the evaluation of this integral
stems from the fact that it has to be computed accurately each time the observa-
tion angles change. Moreover, the integrand of the radiation integral
oscillates rapidly and thus makes the integration more strenuous
for large reflectors.

To circumvent the difficulties in the integration, the radiation integral
“is first expressed in terms of a summation of Fourier Transforms of an
"effective" aperture distribution

e 2m .a

P
r- Gp(e)J J Qp (o "0yl KP BEOS (=0T 145 14
p=0 0J0

where B and ¢ are functions of the observation angles 6 and ¢.

The Fourier Transform integrals are then expanded in terms of Jacobi-Bessel
series by writing that

>0 0 cosﬁ¢' N
Q (as',6") = ] ) [,C ] F o (s")

D
n=0 m=0 © M P nm o iing

where an (.) are the modified Jacobi polynomials defined by

an(x) = /EZE;QEIIT Pmn(l—sz) X
m,,—m m
p e = L2 o™ Z*H [ @)™ (100"
X

and the coefficients _C  and _D are given by
P nm P nm

2r 1l .
fpcnm en : cosng 0
= 50 Q (as',9") F (s")s'ds'd¢'
c m ‘0 0 *p . ' m
pCam sinn¢
_ 1 n=0
En =
2 n#0
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Finally, the radiation integral is expressed as

9 P N0 M0 n “cosnd Jn+2 +l(kaB)
T=2ra” ] 6 () ] [ i"(c D I V2mtontl). e
p=0 P n=0 m=0 pomo P Mmoo ing a

where Jn(.) indicates the Bessel function of order n.

The method has several important features which may be summarized as
follows:

1) Higher order coefficients pChpy and pDyy can be calculated from zero
order coefficients oCppy and oDpy and by use of recursion relations.

2) Once pCnm and pDpp are determined they can be used for all observa-
tion angles,

3) The numerical integrations involved in the computation of oCppm and
oDnm do not contain the highly oscillatory Fourier Transform kernel of the
original expression.

To illustrate the variation of the RF pattern of a reflector antenna as
a function of its feed location, the far fields of a 55-m parabolic reflector
antenna are plotted for four different feed locations: (1) feed at focal
point, (2) feed displaced in the x direction with y and z constant,
(3) feed displaced in the y direction with x and z constant, and (4) feed
displaced in the z direction with x and y constant. (Figures 2 through 5).

NN
NENEN
AL

-52.5

MAGNTITUDE (DB)

-60,0
-1.5 -1.0 -5 0 S 100 1.5

OBSERVATION ANGLE (degrees)

Figure 2. Feed at Focal Point
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As can be noticed, displacements along the x and y axes produce signifi-
cant variations in the gain while displacements along the z axis have almost
negligible effects. It can thus be observed that to optimize the gain most
of the effort should be concentrated on controlling the feed displacements
along the x and y directions and that the control along the z direction can
be relatively loose.

COST FUNCTIONAL DERIVATION

Let P be an RF performance parameter to be optimized e.g., gain, band-
width, magnitude of the electric or magnetic field); Let X1y X9, se. Xp
be the independent variables whose variations affect P: P = P(xy, X9, ... Xn);
and let x = (xl b3, NP xn)¥. Suppose P assumes its optimal value at
X0 = (X10 X290 +.. Xno) . Around this point P can be expressed as

1., T
= v . A £
P(x) P(xo) + VP x x + 5 Ax™ H x Ax + ...

where P and H denote the gradient vector and the Hessian matrix of P with
respect to x and Ax = x - xq.

Since P is optimum at X

and H'x is positive definite or negative definite depending on whether P is

. o .
minimum or maximum at Xo'
Hence, around the given point,

P(x) = P(x) + 3 0x H bx+ ...
. e e 1.,.T

and we can approach the optimum value of P by minimizing |-Ax HAx|. Note

that if this minimum reduces to zero,we actually attain thé optimum value of P,

Note also that if H > 0,

1T 1 ,.T
|—2—Ax HAX|——2—AX H Ax
and if H< 0
Il-AxT H Ax| = 1vAxT (-H) Ax
2 2
and that in both cases,
l%-AxT H Ax| = %—AXT A Ax

where A is a positive definite matrix.
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The antenna is modeled by an equation of the form
My + Ky = Bu y() =y ., v() =y,

It is always possible to relate Ax to y by an equation of the form
Ax = Ty, Hence,minimizing

T
}-Ax A Ax
2
and reducing it to zero is equivalent to minimizing

1{° T
E“Jo y T ATy dt

We can thus formulate a linear quadratic optimal control problem by writing,
minimize

00
J =‘%.J (yTTTATy + uTRu) dt
0
subject to
-+ = . = o = >
My + Ky = Bu y(E) = v, y(t)) =y,
The term
%-J uTRu dt
0

where R is a positive definite matrix, is added to account for the restrictions
in energy consumption for the control.

The rest of the procedure is classical. A damping term D§ is added to
the equation, and the system is augmented by considering the state vector
W= (y y)T. This leads to the system

g

W= W+ u = FW + Gu

associated with the cost functional

J = %»J (WTQW + uTRu) dt
o
where T
A T AT 0
Q:
0 0

187



The optimal control is given by
u(t) = - CW(t)

with

¢ = RYCTK

where K is the positive definite solution of the Riccati equation

FK + K F + Q - K 'R k = 0

FEED-DISH MOTION COMPENSATION FOR A
55-m, WRAP-RIB, OFFSET-FED ANTENNA

To illustrate the application of the method, in the sequel we describe
the design of an RF optimal controller for the 55-m, offset-fed,wrap-rib antenna
considered in the IMSS [Ref. 1] project. The controller is designed to minimize
the relative feed-dish motion of the antenna.

A schematic diagram of the antenna is given in Figure 6., It is composed
of a 55-m diameter reflector dish, a massive feed array, and a long L-shaped
boom connecting the dish and the feed. The antenna's operation frequency is
871 MHz which leads to the values of 159.68)\ for the dish's diameter and
239.6) for the focal length (A is the wavelength at 871 MHz).

Construction of the State Cost Matrix

Let rp be the vector from the center of gravity of the spacecraft's bus
to the boom's elbow and ri the vector from the elbow to the center of gravity
of the reflector's dish., The position of the feed is characterized by the
vector.

INERTIAL FRAME

T
S=(xyz) =-(c,+71,)
0 1 Z< @X
CG of the
dish
v
. y
-
s .~
4 =
FEED
(Spacecraft's bus) Figure 6, Schematic Diagram of the Antenna
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Let S, = (x4 Vo zo)T be the position for which the electric field is
maximized. For the neighborhood of this point

- 1T -
E = E(so) + VSE s AS + E'AS H(so) AS + ... E(so)
1 T
+§-AS H(SO) AS + e o
since
V E =0
s s
o)

The value of the electric field was evaluated using the algorithm
described in the first section of this paper for different feed positions. The
following Hessian matrix H(so) was obtained through numerical differentiation of
the electric field (as a function of feed position):

-26.0966 - .00344 - ,0076
H(SO)= - .00344  -24.231 6.396
- .0076 6.396 -1.96

To evaluate AS, we interpret the feed-dish motion by considering the
feed and the lower boom, r,, fixed, and the dish, hence rj, rotating about
the coordinate axes. Thus,

As = Arl

The antenna's distortions are supposed to be small. This leads to

where T
I==G«y v2 vg)

designates the rotation of r; about the x, y and z axes of the inertial frame.
Writing Arj in a matrix form, we obtain

As = DT
with
"0 +c -b
D = —-C 0 +a
b -a 0

r. = (ab C)T.

where a, b, and ¢ are the components of the vector ry: 1

189



Thus ,

AE = E - E(SO) = = "D HDT a %—P H'T

N

H' = D HD

E has a maximum at So' H is therefore negative definite and so is H'.
Consequently, the state cost is given by

| = 2 T (anT
Antenna Model
The antenna is modeled by the linear system
My + Ky = Bu
where the state vector y has 12 components as follows: y; to y3 represent the
attitude 6y, 0, and 6, of the spacecraft; y,; to yg the rotations yy, vy, and

vY3; and yy to yj1p the six most important modes of the reflector dish.

The values of the matrices M, K, and B are listed in the appendix. The
system has a damping of zero on the first three components (rigid body motions)

and 0.005 for the rest.

Thus, the state cost weighting matrix takes the form

Qs = = Bli3)(5-3) b<i<6, 4<j<6b

If

0 elsewhere

Qij

Optimal Feedback Computation and Simulation

The OPTSYS [Ref. 4] program package was used to determine the optimal gain
for the case where a three-dimensional control is applied at the spacecraft's
bus. The control cost weighting matrix was taken to be the 3 x 3 identity
matrix. The resulting gain matrix is also given at the end of this paper.

The optimal feedback control thus obtained was used to drive the antenna
system in simulation studies. The results are given in Figure 7,
CONCLUSION
The RF performance of large flexible antennas is traditionally achieved by
_imposing stringent geometric restrictions on the structural distortions from a

nominal optimum configuration, In this paper, we have presented an approach
to alleviate the stringency of the geometrical criteria of satisfactory
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performance, The approach consists in generating a linear optimal control
problem with quadratic cost functional where the cost functional is obtained
from the RF characteristics of the antenna and the dynamic system constraint
is given by the structural model of the antenna.

The method was applied to the feed-dish motion compensation for a 55-m,
wrap-rib, offset-fed antenna and the time simulations presented.
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ACTIVE CONTROL OF SPACE STRUCTURES
(ACOSS) MODEL 2

Timothy C. Henderson
Charles Stark Draper Laboratory, Inc.
Cambridge, MA 02139

-

1.0 .Introduction

In order to assess the performance, sensitivity, and hardware requirements
of the various active structural control methods which are being developed, a
universal system model is required. This report contains a complete description
of ACOSS Model #2 which is a simple but realistic evaluation model. The design
of this system was driven by the. desire to incorporate certain attributes into
the overall system characteristics. The desired features were

0 structural design based on realistic sizes and weights

e a simple unclassified optical system with associated performance
measures and tolerances

o a set of disturbances typical of equipment vibration and attitude
control (slew).

The resulting model is described in detail in section 2.0 along with the result-
ing mode shapes and natural frequencies of the system. Section 4.1 contains a
description of thei.line-of-sight (LOS) performance measure including theory and
implementation.

2.0 Structural Design

ACOSS Model #2 is shown in Figure 1. It consists of two subsystems. -The
optical support structure and the equipment section, which are connected by
springs at three points to allow either passive or active vibration isolation.
The optical support structure contains the four optical surfaces which are
assumed to be a rigid central section with two flexible solar panels cantilevered
from it.

2.1.  QOptical Support Structure

The optical support structure consists of the upper mirror support truss,
the Tower mirror support truss and the metering truss which maintains mirror sep-
aration. The finite element model of this subsystem is shown in Figure 2. The
model contains 35 node points and 117 beam elements. The structure is desianed
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Figure 2. ACOSS Model No. 2 - Finite Element Model (Continued)



to act as a truss but it is assumed that all joints allow a full moment connec-
tion. Thus, both bending and axial stiffness are included for all members. A1l
structural elements are assumed to be hollow graphite epoxy tubes. Four differ-
ent sizes of tubes are used in this model and their dimensions and section prop-
erties are listed in Table 1. The optical surfaces are assumed to be rigid and
kinematically mounted on the structure so that they will have no effect on the
overall stiffness. The mass of the mirrors will increase the inertia of the
system and has been included in the model. The total mass of this subsystem,
5084 kg which includes the structure, optical surfaces, and equipment, has been
lumped at 18 node points as shown in Figure 3.

2.2.2 Equipment Section

. The equipment section is modelled as a central rigid body with two flexible
solar panels cantilevered from it. The finite element model’is given in Figure 4.
It has been assumed that the rigid body portion contains all of the equipment,
guidance and navigation, control systems, power supplies, that are necessary for
operation of the system. Therefore, a relatively large portion of the total mass,
3500 kg, is concentrated in the rigid section at node 44. Also included at node
44 are the rotational inertias due to distribution of the mass over the tr1angu-
lar area. These inertia terms are listed in Figure 7.

The solar panels are assumed to have an area of 120 m2 each and are sup-
ported by graphite epoxy support booms. The mass and rotational inertia of the
solar panels are lumped at three nodes on each boom. The lumped masses are
listed in Figure 4.

2.2.3 Isolation System

The optical support structure and the equipment section are connected by a
passive isolator at three points by springs acting in all three transliational
directions. The isolator is designed to reduce the amount of force transmitted
from the equipment section to the optics. This is accomplished by designing an
isolator with the natural frequency much Tower than expected disturbance frequen-
cies. In addition, the isolator frequency should be Tower than the optical
structure bending freauency. A passive isolator consists of a spring and a vis-
cous dashpot in parallel as shown in Figure 5.

PRECISION SECTION

EQUIPMENT SECTION

Fieop = ;Lv/(f!El__i_fEl
iso M
MM,

Figure 5. Passive isolator.
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Table 1: Member properties

TYPE 200 TYPE 300

20 cm dia. x .1 cm Round Tube 20 cm dia x .05 cm Round Tube
A = 6.250 x 104 m? A = 3.133 x 1074 m?

I = 3.075 x 10°¢ m? I = 1.559 x 10~ % m?

J = 6.189 x 10°° m? ‘ J = 3.118 x 10”8 n?

TYPE 400 TYPE 500

25 cm dia x .05 cm Round Tube 40 cm dia x .075 cm Round Tube
A = 3.919 x 10”4 n? A = 9.407 x 10~% m?

I = 3.0496 x 10 ° m? I = 1.874 x 102 mt

6 4 -5

J = 6.099 x 107 m J = 3.749 x 1072 m?



e Lumped Mass location

TOTAL MASS = 5084 Kg

NODE | MASS(Kg)
9 500
10 500
11 500
12 500
14 8
15 17
16 17
17 17
18 17
19 8
27 375
28 375
29 375
30 375
32 500
33 500
34 250
35 250

Figure 3. Optical support structure mass distribution

201




¢0?T

48

Figure 4.

EQUIPMENT SECTION & SOLAR PANELS

NODE LOCATIONS (m)

NODE X ¥ 2
42 6.0 5.0 0.0
43 -2.0 [ ] 0.0
4“ 0.¢ 0.0 0.0
45 2.0 0.0 0.0
4% -4.0 ~5.0 6.0
47 4.0 -5.0 6.0
48 ~26.0 0.0 6.0
49 -21.0 0.0 6.0
50 ~16.0 6.0 0.0
51 ~11.0 0.0 0.0
52 -6.0 6.0 0.0
53 6.0 0.0 0.0
54 11.0 0.0 0.0
55 16.0 0.0 0.0
56 21.0 0.0 0.0
57 26.0 0.0 0.0

EQUIPMENT SECTION - ELEMENT CONNECTIONS

- NODES 42-47 RIGID PLATE

~ SOLAR PANEL BOOMS

ELEMENT # NODE A NODE B PROPERTY #
131 48 49 500
132 49 50
133 50 51
134 51 52
135 52 43
136 45 53
137 53 54
138 54 55
139 55 56
140 56 57

LUMPED MASSES

NODE M(Kg) Txx iyy Izz
44 3500 2100 2100 4200
48 90 270 0 ]
50 180 540 0 0
52 90 270 0 0
53 90 270 0 0
55 180 540 1] 4]
57 90 270 0 0

Equipment section and solar panels




If the isolator frequency is lower than the lowest natural frequencies of the two
sections, they can be modelled by their inertia properties only. For this sys-
tem, the isolator was sized to have a frequency of 0.5 Hz. The dashpot size has
not been specified as it is assumed to be part of the overall control design.

The spring constants are given in Table 2.

3.0  Structural Analysis

A model analysis was performed using the NASTRAN finite element program.
This model contains 84 dynamic degrees of freedom, thus 84 frequencies and mode
shapes were extracted. Table 3 gives a list of frequencies and descr1pt1ons of
the first fifty mode shapes.

4.0~ System Performance Evaluation

The performance of this system is measured by the ability to maintain Tine-
of-sight (LOS) rotation and defocus within specified tolerances. By making some
simplifying assumptions a set of linear equat1ons relating the LOS rotations and
defocus to the d1sp1acements of node points in the finite element model have been
developed. This results in a performance evaluation model which has the same
level of accuracy as the finite element model.

4.1 © LOS Error Algorithm

The optical system used in ACOSS model #2 is shown in Figure 6. The pri-
mary and tertiary mirrors are off axis sections of rotationally symmetric coaxial
surfaces. The secondary mirror and the focal surface are flat. We assume that
the mirrors maintain their nominal shape and that their motion is a Jinear func-
tion of the displacements of the nodes at the support points. Using these as-
sumptions and first order optics equations, expressions relating mirror transla-
tions and rotations to the translation and rotation of the image are given.
Translations and rotations of the mirrors are assumed to be the displacements of
the vertices of the surfaces, located on the optical axis (Figure 7?- "The dis-
placements of the vertices can be extrapolated from the displacements of the nouc
points at the mirror supports.

The general form of the expressions for LOS rotation and defocus is

LOSX = Y/F LOSY = X/F DEFOCUS = Z (4-1)
Where
. Rp R
X = [_-xp + X - Rp er t20Y, o+t -2 YtT_] —2~T—._-ﬁt— (4-2)
tXp = Kp t 00Ty
‘ Ry Ry
Vo= LYy YRy OXy - 20X -+t 26X, T] g (4-3)
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Table 2. Isolator spring connectivities

SPRING A NODE A DOF NODE B
1 4 : 1 42
2 4 2 42
3 4 3 42
4 3 1 46
5 3 ' 2 , 46
6 3 3 46
7 6 1 47
8 6 2 47
9 6 3 47

K = 5790 N/m
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Table 3. Frequencies and mode shapes

Freq. Freq.
(Hz) Description (Hz) Description
1-6 0.0 rigid body 17 1.72 torsion
7 . 145 Isolator Y-rotation 18 1.82 an S.P. X-2 plane
8 .263 Isolator z-rotation 19 1.82 2" 5.p. X-¥ plane
9’ . 317 lBt .P. X-2 plane 20 1.89 lst S.P. torsion asym
10 .333 1%% 5.p. X-Y plane 21 2.36 1%t bending
1) . 443 Isolator Z-trans 22 2.99 1“’ §.P. torsion syn
12 .577 Isolator Y-trans 23 .18 39 5:p. X-Y plane
13 .581 Isolator X-trans 24 3.39 er 8.P, X-Z plane
14 1.22 2™ 5 p. x-2 plane 25 5.16 2"% 5.p. torsion
3
15 1.30 2" §.p. x-v plane 26 5.26 2" 5. p. torsion
16 1.35 Isolator X-rotation 27 7.87 3“’}3.». torsion
FREQ (HZ) DESCRIPTION FREQ(HZ) DESCRIPTION
28 8.11 LFG TORBION 9 15.65% LEG & LOWER TRUSS BENDING
29 8.36 3¢ 5.p. ToRSION 40 16.07 LEG BENDING
0 8.57 LEG TORSION 4 16.52 UPPER TRUSS BENDING
31 8.81 3% s.p. x-v PLANE 42 16.75 UPPER TRUSS BENDING
32 8.81 3" 5.p, x-2 PLANE 43 17.16 UPPER AND LOWER BENDING
33 11.35 4P g.p. x-v pLANE 44 17.83 STRUCTURAL BENDING K-Y
34 11,50 LEG BENDING - 45 19.07 LOWER TRUSS BENDING
35 12.73 LEG .BENDING 46 23.77 UPPER TRUSS BENDING
36 13.58 4% g.p, x-z pPLANE 47 24.41 UPPER & LOWER BENDING
‘37v 13.711 LEG BENDING 4n 25,91 UPPER TRUSBS AXIAL
38 14.16 LEG & LOWER TRUSS PENDING 49 26,36 UPPER TRUSS BENDING
50 26.43 $.P. AXIAL
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2
Rt

) +7, -1
t [Rp - Rt + 2(t] - tz)]Z t f

L = (Zp - ZZS + 7

+ oY - 0X, Y

A B

the terms Xi’ Yi’ Zi’ OXi, @Zi refer to the translations and rotations in the glo-

bal X, Y, and Z directions of the primary (p) and secondary (s), tertiary (t),
and focal plane (f). The variables in the equations which relate to the size of
the optical system are

-

Rp = radius of curvature of the primary

Rt = radius of curvature of the tertfary

t] = axial distance between the primary and the secondary
t2 = axial distance between the secondary and the tertiary

X], YI = Tocation of a point on the focal plane

F = focal length
2 2T—Rt
R
_P

T + 5 + t] + t2

the location of the image plane is a function of the parameters of the three-mir-
ror optical system. The distance BF between the tertiary mirror and the image
plane (see Figure 7) is given by

R.T

.t ]
R = (4-5)

and for all cases the focal surface must be placed at this location, or, alter-
nately the radius of curvature of the tertiary should be calculated using
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2T BF |
Ry = T+BF (4-6)

so that the final image coincides with the focal plane.

To simplify implementation we can rewrite the previous equations in matrix
form. Equation 4-1, relating the line-of-sight errors to the translational de-
focus terms becomes

LOSX X
LOSY » = [A] <Y (4-7)
VA A A

where: X, Y, Z - translational defocus terms defined in Eq..(4-2) to (4-4)

o 1/F o]
Al = |1/F o 0
o 0 1

Equations (4-2), (4-3), and (4-4) can be rewritten in matrix form as

X
Yy = [B] {Um} (4-8)
Z
where: Um = vector of mirror vertex motions
B = matrix relating U, to translational defocus terms (X, Y, Z)

The optical system used in ACOSS model #2 has the following parameters:

= 53,
Rp 9m
Rt = 30.8m
t] = t2 = 20.0m
XI = Y = 0,0m
I
F = 8.051m
T = 66.95m

The radius of curvature of the tertiary, Rt’ was found using Eq. (4-6) and the
requirements that BF = 20.0 m.
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These parameters are then used to form the terms in matrices A and B,

4.2 LOS Error Algorithm Implementation

The motion of the vertex of each mirror can be extrapolated from the dis-
placements of the support points since all mirrors are assumed to be rigid. The
mirrors are supported by kinematic mounts so that there is no elastic deformation
in the mirrors., A displacement transformation matrix which relates the motion of
each mirror to the displacements of the support points in the global coordinate
system can be constructed. The relationship is of the form

Um = C Un (4_9)
where: Um = vector of mirror displacements and rotations

Un = vector of displacements at support node points

C = displacement transformation matrix

The final form of the equations relating LOS errors to displacements at the
support node points is

LOSX
LOSY = [A] [B] [C] {Un} (4-10)
Z

using terms that have been previously defined. If modal superposition is used in
the analysis, Eq. (4-10) can be rewritten as

LOSX
LOSY = [¢LOS] {n} (4-11]
z
where: {n} = modal displacements
[o,0s] = [A] [B] [C] [4]

This matrix, [¢LOS] is a simple way to relate LOS errors to the modal displace-
ments which will be the result of the analysis if a modal model is used.

5.0 Conclusion

Further information on this model is contained in CSDL Report C-5437.
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TRAVELLING WAVE EFFECTS IN LARGE
SPACE STRUCTURES

Andy von Flotow
Stanford University
Stanford, CA 94305

Abstract:

This paper investigates several aspects of travelling waves in Large Space Structures(LSS). The
dynamic similarity among LSS’s, electric power systems, microwave circuits and communications
networks is noted. The existence of time lags between actuation and response is illuminated with the
aid of simple examples, and their prediction is demonstrated. To prevent echoes, communications
lines have matched terminations; this idea is applied to the design of dampers of one dimensional
structures. Periodic structures act as mechanical band pass filters. Implications of this behaviour
are examined on a simple example. It is noted that the implication is twofold; continuum models of
periodic lattice structures may err considerably; on the other hand, it is possible to design favourable
transmission (and resonance) characteristics into the structure.

Introduction:

Large space structures have been proposed with dimensions of many kilometers (1), (2). More
realistically, for the near future, reflectors and antennas with dimensions as large as 100 metres
are planned (3). Some of these structures will be composed entirely of networks of long, slender,
essentially one dimensional structural members. Others will have their flexibility concentrated
predominantly in one dimensional appendages and components. These components will be flexible
to the point where several of the member’s frequencies of free vibration will be within the frequency
range of interest. For such structures, it becomes reasonable to visualize the response to a disturbance
as consisting of elastic waves, slowly travelling along structural members, reflecting and transmitting
at nodes and discontinuities. This view becomes ever more valid as the disturbance is concentrated
in space and time.

The limit of several free vibration frequencies of individual elements being within the frequency
range of interest has been reached in several relevant fields within electrical engineering. Microwave
circuits (4) typically operate at wavelengths of a few millimetres with circuit elements as large as
a few centimetres. Power distribution networks (5), have electrical wavelengths of 3000 miles (at
60 Hz), while circuit dimensions of the same scale are being used. Communications lines, with
wavelengths as small as a few miles (corresponding to a 10 KHz voice transmission) and line lengths
of many hundreds of miles are an extreme example (6). In these fields, a balanced approach to
dynamic analysis is used. System behaviour is investigated with both travelling wave and modal
methods. The importance of travelling wave concepts is greatest in communication line analysis,
where the wavelength to circuit dimension ratio is smallest.

There is a relatively clear conceptual relationship between travelling wave and modal analysis.
Modes of free vibration are derivable from a travelling wave analysis by invoking the phase closure
principle (7). A travelling wave, in one complete circumnavigation of the structure, must close on
itself with a total phase change (due to travelled distance and reflections) of 2n7. For one-dimensional
problems the phase closure principle can yield the modes and frequencies of free vibration with
minimurn effort. This paper concerns itself with insights gained into the dynamic behaviour of
one-dimensional structural elements when considered from a travelling wave perspective.
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Travelling Wave Concepts

Anideal one-dimensional structural member is described by a system of partial differential
equations together with appropriate boundary conditions. The system of PDE’s may have arbitrarily
high order in space and time. The simplest well known equation

3?U  d*U

52 gz /@Y (1)

modelling torsion and longitudinal compression of solid sections and transverse motion of cables,
is second order in space and time. The well known Bernoulli-Euler beam model is fourth order in
space, second order in time, while the Timoshenko beam model is fourth order in both space and
time (8). Continuum models for lattice beams have been proposed (9, 10) which are large as eighth
order in space and eighth order in time.

Assumption of a travelling wave solution of the form
U(z, t) = U, elKe—vh)

(where U is a vector of deflection variables, K is the wave number, w the circular frequency) and
substitution into the homogenous system of partial differential equations yields a polynomial matrix
equation

[P,-_,-(w,K)]U,, =0

The condition det [Pij] = 0 yields a polynomial frequency equation in w and K, and the
associated eigenvectors U, give participation of the various deformation variables in the travelling

wave. The identity w == K¢, (where ¢, is phase speed} can be used in the frequency equation above
to arrive at the equivalent dispersion equation, a polynomial in ¢, and K.

To clarify the above discussion, and to introduce the phenomenon of dispersion, the following
two examples are given.

Cable on Elastic Foundation (8):

. 8%u 82u
Governing PDE ; Froh AU = B (Q)
Frequency equation : K24+A—-w?=0 (figurel)
Dispersion equation : K*(1-&)+A=0

Also indicated in figure 1 is the use of the phase-closure principle to determine modal fre-
quencies of a finite structure, directly from the frequency vs wave number curve.

Timoshenko Beam (8):

Governing PDE’s :

0%y  1f dy %y .
w*;(a—z“”)“ar" (3a)
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where 7 is relative shear flexibility, y is lateral deflection, ¢ — g% is shear deformation.

(3b)

Shear deformation eflects may be neglected by setting v = 0. The resulting system is that
studied by Rayleigh, the rotary inertia term being instrumental in producing a more realistic

dispersion curve than the Bernoulli-Euler equation (figure 3b).

( d’) . (’1)0 )ei(kz—ut)
) Yo

Assumption of

leads to the matrix equation:

~K?+w?—1/y iK [y (%)_0
iK [y —w?+ K% [y\go)

Thus the frequency equation is (figure 2 );

K*— K% 1+ 9)+ w?(wiy—1)=0

FREQUIENCY VS WAVE NUMBER FOR A CABLE ON AN
BEAY MDELS

3

resonances
of finite
free-free
structure

A>0 (dispersive)

4=0 (non dispersive)

NRWLIZED FREQUENY o)

-

- , 5~0 >0
4‘ ELASTIC FOUNDATION (EquaTiOonND) A FREQUENCY VS WAVE NUMBER FOR CONTINUM

TIMOSHENKD

TIMOSHENKO
(BENDING MODE)

(SHEAR MODE)

NORMALIZED WAVE NUMBER
FIGURE 2

NORMALIZED WAVE NMBER = K

FIGWRE ]
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NORALIZED

\

and the dispersion equation is (figure 3b);

K*(1-c(1+7)+ 1) - K =0

The comparison in figures 2 and 3b with the Bernoulli-Euler beam model should be noted.
The Bernoulli-Euler beam model predicts infinite phase speeds for infinitesimal wave numbers. Since
the phase speeds determine the model frequencies (from the phase-closure principle), the higher
frequencies tend to be over-predicted. Timoshenko models of typical built-up beams (11) have shown
them to have non-dimensional shear stiffness % much less than unity. Thus, for these structures, the
shear deformation included in the Timoshenko beam model becomes important surprisingly early.

PHASE - - - - - AND GROUP ———  VELOCITY PHASE
VS WAVE NOMBER FOR CABLE ON ELASTIC FOUNDATION

----- AND GROVP ~---—-—  VELOCITY
VS WAVE MMBER FOR CONTINUM BEAM MODELS

Gs, Cp

\

\ (PHASE VELOCITY FOR 4>0

\ E
< S 7
=0 ~S o ALL VELOCITIES
FOR 4=0 .
11 il
E (SHEAR MODE)
g TIMOSHENKO
GROUP VELOCITY FOR 40 L
il (BENDING MODE)
_ —> 0,4 » >
NORMALIZED  WAVE NUMBER K NORVALIZED  WAVE NUMBER K
FIGURE  3A FIGWRE 3B

Dispersion, Velocity Definitions

A medium for which the phase speed ¢, = w/K is dependent on frequency (or wavelength)
is called dispersive. For such a medium the concept of signal propagation may become poorly
defined. The signal distorts as it propagates, and may become unidentifiable. For these media,
other velocities may be meaningfully defined. Group, signal, and energy transmission velocities
have all been studied in the literature (12). Group velocity, also a function of frequency, is the
velocity with which a group of harmonic disturbances of almost identical frequency will propagate.
Signal velocity is loosely defined as the speed at which the first detectable portion of a disturbance
propagates. Energy transmission velocity, also loosely defined, is the average speed at which the
bulk of the energy in a disturbance is propagated. For a non-dispersive medium, all velocities are
equal to the phase velocity, and independent of frequency.

It has been shown (12) that the signal and energy transmission velocities are equal to the
group velocity when the frequency equation is linear in w and K. Moreover, when this restriction
is almost satisfied, or when the disturbance has a frequency decomposition primarily restricted to
the linear portions of the frequency equation, the group velocity determines speed of propagation of
disturbances. Only in case of anomalous dispersion characteristics must other speeds be considered.
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As has been stated, the group velocity is the speed of propagation of a group of harmonic
waves of only slightly varying frequencies. It is defined as ¢ = %% and can be calculated from the
frequency equation. The group velocity of the two examples introduced above is graphed in figures
3a and 3b.

Exact solutions exist for some loading conditions in both these examples. The impulse response
of the cable on an elastic foundation is a travelling, distorting Bessel function, whose discontinuous
front travels with the maximum group velocity (8), ¢ = 1 (refer to fig. 3a). The transient response
of the Timoshenko beam model admits some closed-form solutions (13). Two limiting velocities are
identified; discontinuities in shear force and lateral velocity propagate with nondimensional velocity
¢ = 1, while discontinuities in bending moment and angular velocity travel with non-dimensional
velocity ¢ = l/\/'T (refer to fig 3b). Although no proof is known, it is proposed to generalize these
results, and to make the following claim for media with smooth, quasi-linear frequency-wave number
relationships: disturbances travel with a velocity no greater than the maximum group velocity.

Time Lags:

An effect clearly illuminated by a travelling wave approach is the existence of finite time lags
between actuation and response when actuator and sensor are not co-located. Actually, due to
multiple wave paths and reflection, many time lags will be present, however, experience indicates
that in most real, dissipative and dispersive structures, only the first lag will be clearly observable.
Since the response time lags depend on the structure’s dimension and on group velocity, while

modal periods depend on dimension, boundary condition, and phase velocity, one can expect lags
independent of modal periods, possibly much larger than the period of the lowest mode.

Recent experiments with flexible structures have demonstrated significant lags, on the order
of modal periods of the second and third modes (2, 14). A flexible built-up beam at Stanford

University (1.1 metre long) exhibited lags in tip deflection response to root torques of approximately
100 milliseconds (14). This compares with the period of the third flexible mode, measured as 110
milliseconds. Figure 4a gives a rough description of the beam and relevant experimental results.

T A BWPLE
(STANFORD  FLEXIBLE MANIPULATOR) Y
a 1.1 semes — P 4 SNRRD BN DISPERSION RV
elm‘ A I 1 T 7 TIMOSHENG BEAY  MIEL
(BENDING MODE  ONLY)
BUILT-UP  BEAM
CONTROLLED RESPONSE TO STEP COMMAND IN
TiP POSITION
o e as
0 e
TP -1 sec —nl -
POSITION g
Y % 04\[ E P ,
TiP /7 VEUXITY fA-[],le KoM
11,7 #1= 0005 i M
L El = 555 N
I E A= 30.7 N
0 > g
HiB T PINED-FRE. FREUENCIES
AGLE (BPERIMENTAL)
W «19H
W, =38H
9“ wy = 9.0k R
% 1 1 4
FIGIRE 4a WMVE LEGTH (MeTRES)

Flame Up

215



Figure 4b shows the dispersion curve of a Timoshenko model of the Stanford beam. The four beam
parameters were estimated by smearing stifiness, mass and rotary inertia, then adjusted t,o predict
the first two experimentally measured clamped-free modes of vibration.

The applied root torque enters the beam as a bending moment, and the disturbance can be
expected to travel (13) with non-dimensional limit velocity ¢ = 1/,/7, or from figure#, ¢ = 8.5
metre/sec. Thus, the calculated lag is 129 milliseconds.

Matched Terminations:

An idea which originates in the field of communications is that of a matched termination for a
transmission line (6). Such a termination prevents reflection (echoes) by imitating the behaviour of a
semi-infinite continuation of the transmission line. The resulting response lacks modes of vibration
entirely, and the line’s transfer function may be simplified to that of a single integrator.

The idea of matched terminations can be extended to the design of active or passive dampers at
the boundaries of structural elements. For the one-dimensional structures considered in this paper,
the matched termination is expressed as a set of transfer functions relating tip displacements and
applied forces. The practical implementation of the required transfer functions may be difficult;
however the idea provides a basis for passive damper design. Two examples involving simple
structural models follows.

Matched Termination Example 1:

Simple wave equation; model of torsion and longitudinal compression of solid section, transverse
motion of tensioned cable;

INCIDENT
~AAA = 7t ' 8u  p 8%
Fee) . PPE: 2 =Eam
| U(O,s)
RerLECTED U= R eMx+et F(s) BC: EA—————-——augO;S) = F(S)
LET H(s) = 00.9)

where p is the material mass density, E is the modulus of material, and A is the cross-sectional
area.

Application of boundary condition yields for the reflection coefficient

H(S)+ iKEA

R=KEA=H({)

but the PDE imposes the frequency equation;

iK =\/pJE S

SO

H(S) + A\/oES
= AVPES — H(9)

for H(S) = —AVEDpS (a daspot) R == 0 (no reflection occurs).
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Thus, a properly sized dashpot yields a matched termination for this class of problems. To
study the effect of mismatched terminations on the transfer function of a finite structure, the state-
vector transition matrix method of Pestel (15) is employed. This method proves valuable in the
analysis of periodic structures and is introduced in this example. With reference to figure 5, the
deformation of a rod (of length ¢, area A, modulus E) in longitudinal compression is described by
state vector (7, N)T where U is non-dimensional displacement U/¢, N is non-dimensional internal
force N/EA.

The state vectors at two points in a structure are related by the transition matrix

(%), =),

For the rod, the transition matrix is given by

cosh § sigh F

TAB s - Vd
[ ] s sinh § cosh ¥ vhere 5 = Bﬂ‘(:l;

Note that the state vector at points B and C may be related by another transition matrix (15):

Uc 1 Ks-l-sd UB
S I O

Ks+sd NE

So, multiplication of matrices yields the global transition matrix:

Tl - , 8 sinh § sinh § |, cosh & o
cosh 5 + — —_— + =
Uc _ y+ 84 8 Y+ 5L UA
Nc gzu( cosh & + _s_sini B §2u( si;h A eosh_s) NA
y+s b Y+8A

+ & sinh § 4+ cosh s

where p = m/pA¢ (mass fraction)
7 = K ¢/EA (stiffness ratio)
A = d/AEp (non-dimensional damping constant)

Various transfer functions can be extracted from the above matrix equation. In the present
case, N, = 0, so the second row gives the transfer function
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4O
N, (3)

For the matched termination calculated above, (y=0,A =1,p —> 00), this becomes

s
5

_1lu(y + 5 )8 sinh 8 + (
5 u(y +35 )s cosh § + (

Ua(8) _ 1
Na(B) ™ 7%

a single integrator, also (with a redefinition of the length non-dimensionalisation) the transfer
function of a semi-infinite rod.

The poles and zeroes of the transfer function (1) are shown in figures 6. Figures 6a, b show the
effect of damper mismatch, with an inertial reference point available {(infinite mass ratio). Figure 6¢
uses more realistic mass ratios of 1% and 5% and shows the root locus versus damper strength. The
optimum damper strength is seen to be a function of mass ratio and mode to be damped. Modal
damping ratios as large as 1% can be obtained with a 1% mass penalty. The picture could be
complicated by inclusion of a spring v 4= 0, however, such a search for an optimum tuned damper .
has been described elsewhere (16,17).
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Note that the PDE admits two types of time-harmonic solutions, one a travelling unattenuated
wave, the other a near field effect, attenuated with distance. Assume that an external moment M
and force f can be applied in response to end deflection and slope

M(w) = My(w)y(0,6) + M (0) 22(0, )

1) = Jo(lu(0,0) + () 52(0, )

This assumption is in the interest of practicality. If moments proportional to curvature and
3
forces proportional to %5% could be applied, it would become easy to imitate the behaviour of a
semi-infinite continuation. Using the assumed solution
y(x, t) — —i(K z4wt) +Bei(K:-—-wt) + Ce-—-Kze—iwt

and application of the above boundary line yields

Mot s +ET  No-Mx-E1&) (B |4 +um-E1¢

Btk +E TR g - eR+ETE | \C iyt if +ELE

Combinations of boundary transfer functions My, My, fo, f1, which yield B = C = 0 are
perfectly matched boundary conditions. If C = .0, reflection occurs, however the reflected signal
does not propagate. Figure 7 presents some candidate combinations. All choices involve springs
or dashpots which are dependent on disturbance frequency. A square root frequency dependence
is approximated by many types of rubber (17), however, an w3/2 dependence is likely to present
difficulties. A practical implementation of these ideas would likely use the above matched termina-
tions only as guidelines in a more comprehensive damper design.
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Periodic Structures

A periodic one-dimensional wave guide exhibits anomalous dispersion characteristics (18). The
frequency-wave number relationship has a banded structure, with passing and stopping bands. There
will be as many passing bands as there are degrees of freedom in the elementary cell, disturbances
at frequencies outside these passing bands are spacially attenuated. A continuous wave guide with
periodically attached resonators will exhibit two types of structure; there will be stopping bands due
to the periodicity, and stopping bands due to the poles and zeroes of the attached resonant systems.

These effects can make continuum modelling of periodic lattice beams difficult. Figure 8,
taken from a paper by Anderson, (19) compares modal frequencies for a pinned-pinned lattice
beam calculated in two ways. The equivalent continuum beam model, adequate for description of
static deformation, errs seriously (by 300% in mode 4), in predicting modal frequencies. Anderson
discovered that “the reason for this result is that the clamped end frequency of the diagonal members
is 12.3 Hz which becomes an upper limit for the lowest frequency for each n number.”

The essential features of wave propagation and resonances in a continuous-periodic structure
are demonstrated by the following example. The system to be studied consists of a uniform rod in
longitudinal compression.
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4
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It is loaded by identical resonant systems periodically attached. Using the state vector representajtion
and symbols of a previous example, the transition matrix corresponding to an elementary cell is

where & = sffz‘

U cosh B + H(-) Sinh § Bigh B _ H(;) 1 ;-(2:081’\ B) U U -
- P ?
B |5 ston 5+ BP0 + cosh 5) cosh & + fics) ZimhE N/, _l‘_l= N/EA
H = HI/EA
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Symbolically, the approach to obtaining the poles and zeroes of a finite periodic structure would
consist of the same steps used in the previous example. The global transition matrix is obtained
by multiplication of local matrices. The boundary conditions are used to extract the frequency
determinant or transfer function from the global matrix. The transfer function is searched for its
poles and zeroes. This approach leads to numerical difficulties, and a more intuitive method using
the phase-closure principle is described.

‘Wave Propagation along Second Order Periodic-Continuous Structures:

A second order continuous structure with periodically attached resonant systems will have a
2x2 elementary transition matrix

T T
7] = 2
[ ] Ty Ty

A single wave that propagates along this infinite structure is characterized by the fact that the
state vector is multiplied by a complex factor £ as the wave passes through the cell

u 0
-} = 5__
Nisew s

Thus, the transmission coeflicient £ may be determined as the eigenvalues of the local transition
matrix

28— (Ti + T2} +1=0

(where the energy conservation property, det [T] = 1, valid for conservative systems, has been used).
This quadratic has the property that its two roots satisfy £, = 1. Thus, if £ = ¢~V = ¢~
then &, = e+ Here « is the attenuation coefficient per cell, 8 the phase change. Unattenuated
propagation occurs if @ = 0 i.e. |Ty; + Tpz| < 2. When spacial attenuation occurs, resonances in
finite structures are prevented.

In the second order case described above, it is interesting to note the exact analogy with Floquet
theory and Hill's equation (20).

The procedure outlined above was used to calculate the frequency-wave number relationship
for the example structure. Point transfer functions H(§) representing rigidly attached masses and
elastically attached masses were considered. Results are graphed in figures 9. These figures display
the banded frequency distribution. The first branch of the curve in figure 9b should be compared
with Anderson’s results in figure 8. Anderson also mentions the existence of the higher branches, but
does not show them. The existence of this banded resonant structure is a hindrance to continuum
modelling of lattice beams. However, it also provides opportunities to the designer. With prescribed
tuning, the stopping bands may be placed where desired. Resonance-free frequency ranges may be
designed into structural members and used for vibration isolation or control spillover amelioration.
In this model the width of the first stopping band depends on the mass ratio and on the tuning.

Since the elastically attached mass is a simplified representation of internal lattice members,
it is difficult to speak of a weight penalty. However, in this model, a mass penalty of 5% (figure 9c)
yielded a resonant-free frequency range of relative bandwidth 15%. Inclusion of light damping in
the spring-mass system would potentially double the effective resonant-free range.

221



FEXENY ORE RR RD WITH PERICDIC WSS DISTRINNION FREUENY ORE FR RD WITH PERIDICALLY ATIACHED RESONATURS

- - - P T o

O s tAp  k— | —il E')F
‘)\ NI DIMENSIONALIZATICK ,‘.,mf ) NON-DIVENSIONALIZATION i
3 o= WPl (wss matio) ] 4= NPAL  Gwss RaTIO)
™3 . -
r" N%E' ,J s B
ATTENMTION - ”
weFicien B %— ’,/v\r__z
'd
Oy R
/’I 3
h 4} STOPPING,
rl /J BDp=2 1
’ 3
/’ A
l/ kK
/4
‘4
3
¥
‘l
5 +
0 1 _ L
ATTENRTION COEFFICIENT o< ATTENATION COSFFICIENT P—4
FlGRE G Flame %
FREOENCY CRE FOR RD WITH PERICDICALLY ATTACHED RESCHATORS
Ko
pwe e WS
tAF ke— | —i »
15 NON-DIMENSTCRALIZATION 1
2 =ML (wss RATIO)
=
S
wc-%@ £ (w,=1)
13 E Y
V. -
T\ r STOPPING
1Dy p=0 ;»102 r
! ,J:Q-f" a J
ATTENUATION #=.05 L
COEFF JCIENT p=.2
[45-1
’l
%0 1 2
WOE NIEER B
ATENATIN COBFFICIENT &
flare %
Summary:

This paper has examined various aspects of travelling wave effects in one-dimensional struc-
tures. The existence of time lags was indicated, and a simple method of their prediction was
demonstrated. The possibility of passive damper design based on the matched terminations of
communications engineering was explored with the help of two examples. Insight was gained into
the continuum modelling of periodic lattice beams and the possibility of custom-designing desirable
transmission-resonance characteristics was pointed out.
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DISTRIBUTED CONTROL OF LARGE
SPACE ANTENNAS

J.M. Cameron, M. Hamidi, Y.H. Lin, and S.J. Wang
Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA 91109

ABSTRACT

In this paper, a systematic way to choose control design parameters and to
evaluate performance for large space antennas is presented. The structural
dynamics and control properties for a Hoop and Column Antenna and a Wrap-Rib
Antenna are characterized. Some results of the effects of model parameter
uncertainties to the stability, surface accuracy, and pointing errors are
presented. Critical dynamics and control problems for these antenna
configurations are identified and potential solutions are discussed,

I, INTRODUCTION

Large space antennas and other large space structures will play an impor-
tant role in the coming decades as commercial applications of space become
feasible - especially in the area of communications. Structures from 10 m to
120 m and larger have been considered by NASA and other government agencies for
future missions (Reference 1). As the structural size and mass distribution
change drastically from that of conventional spacecraft, many difficult control
problems arise, The basic problem, however, comes in modeling highly flexible
structures. Structures of this type are known to have a large number of packed
modes at very low frequencies; mode shapes and frequencies can not be accurately
predicted or measured even for a small number of modes at preflight time.

This means that there are always model uncertainties. Model uncertainties in
the control loop can cause serious consequences including the possibility of
making the system unstable, Model order is another problem with great impact
in control design. Using today's inflight computer capability, one can only
expect to have a modest low order controller - which often means model trunca-
tion .and will cause further performance deterioration. Dynamics and control
problems for specific configurations must be characterized and evaluated in
terms of incomplete knowledge of the system dynamics so that the required per-
formance can be ensured and risk reduced,

In this paper, the structural dynamics and the control properties for a
64-meter diameter center fed antenna and a 55-meter offset fed antenna are
investigated., Some interesting results are presented on the effects of model
parameter uncertainties to the system stability, surface accuracy, and pointing
accuracy, ' Critical control problems are identified and potential solutions
are recommended, 1In Section II the antenna configurations and the structural
dynamic properties are briefly described, The control design, disturbance
assessment, and construction of weighting matrices are summarized in Section
III. Finally, numerical results and conclusions are given in Sections IV and
V, respectively.

3
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II, ANTENNA CONFIGURATIONS AND STRUCTURAL DYNAMIC PROPERTIES
A, Antenna Configurations

Several antenna concepts are under development (References 1,2,3), However,
there are two concepts that have drawn particular attention in recent years;
they are the structurally balanced center fed quad aperture hoop and column
antenna and the offset fed wrap-rib antenna. The hoop and column antenna chosen
for analysis is a pretensioned mesh deployable structure, Figure 1 shows
the deployed 100 mD antenna and the major components are depicted in Figure 2,
The basic structural components are the feed assemblies, the mast, the hoop,
and the reflector mesh surface. The mast and the support cables suspend the
hoop and together the assembly provides the stiffness of the structure, The
mesh is suspended by the hoop and the mast and the surface shape is controlled
by the shape cables through a secondary draw surface and tie cords. The cables
are stranded quartz cords, The hoop consists of 48 hollow sections made of
graphite fiber. The adjacent sections are joined together through hinges. The
reflector is made of gold plated poly-wire mesh., The four circular surface
areas are separately illuminated by the feed elements that form the offset
feed quad-aperture arrangement.

Figure 1. Deployed 100 mD Hoop and Column Antenna,
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Figure 2, Side View of 100 mD Hoop and Column Antenns,

The wrap-rib antenna consists of a 55-meter diameter mesh reflector, a
feed array mounted on a spacecraft bus, and a long L-shaped boom connecting
the reflector and the bus. A typical configuration is shown in Figure 3,

The reflector consists of a number of radial ribs which are cantilevered
from a central hub structure, For parabolic or other curved shape reflectors,
the ribs are formed in accordance with the required surface shape, and the mesh
gores are attached between the ribs,

B, Structural Dynamic Properties

The total weight of the hoop and column antenna system is 2790 kg of which
the feed assembly weighs approximately 30%, the hoop and the mast, 20%, and the
solar panels and the spacecraft weigh 50%. Since mass distribution affects
modal frequencies, it is appropriate to point out that based on a subsequent
study of a 122 mD IMSS (Land Mobile Satellite Service) antenna a much heavier
(approximately 507%) mass concentration at the feed area is more realistic,

To assess performance, a finite element model of a 64 mD hoop and column
antenna (Reference 4) has been adopted. The reflector and the hoop were modeled
by a two-for-one model with 24 gore and hoop sections and 120 grid points.

The feeds, the solar panels, the mast, etc,, were represented by 86 grid points.
Bar elements were used to model the mast and the feed and solar panels; and rod
elements for the hoop joints, hoop support and surface shaping cables,

The finite element analysis revealed that the lowest mode is the first
torsional mode which has a frequency of 0.10 Hz; the next higher modes are the
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Figure 3., The Wrap-Rib Offset Fed Antenna Configuration

two orthogonal mast bending modes with frequencies 0,43 Hz; the next -two modes
are the second and third mast torsion modes which are followed by two orthogonal
second mast and dish bending modes, Figure 4 shows the modal and mass proper-
ties, It is interesting to note that the antenna has relatively high bending
stiffness and weak torsional stiffness. The high radial separation of the hoop
and the mast, the large hoop moment of inertia, and the small moment arm of

the hoop cables at the mast make the mast very loosely coupled to the hoop so
that the mast alone dominates the torsional modes,

The total weight of the wrap-rib antenna system is 4,407 kg (9695 1b), 80%
of which is concentrated at the feed/bus area, The remaining 20% is attributed
to the reflector and the hub. Moments of inertia are 3.95x106, 3.58x106,
.502x106 kg-m2. The largest cross product of inertia is .976x106 kg—mz, which
is due to the inherent imbalance of the offset feed configuration, The axis of
least moment-of-inertia is approximately along an imaginary line connecting the
bus and the reflector hub, This results in a 16° offset between the least
moment —of ~inertia axis and the local vertical,

Mode shapes and mode frequencies of the wrap-rib antenna system were
obtained in two steps. First, reflector modes and offset boom modes were
obtained from finite element methods. Second, the modes of these two substruc-
tures were then combined through the process of modal synthesis on the assumption
that the interface at the hub structure is rigid. Figure 5 provides the first
seven flexible mode frequencies and mode shape description of the wrap-rib
antenna system,
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e MODAL FREQUENCIES

NO. | FREQ, HZ DESCRIPTIONS
7 0.10 1ST MAST TORSION
8 0.43 1ST MAST ROLL BENDING |
9 0.43 1ST MAST PITCH BENDING
10 0.58 2ND MAST TORSION \
0 R BEAM
n 1.07 3RD MAST TORSION
L R EARTH
12 1.83 2ND MAST/DISH ROLL BDG z
13 1.90 2ND MAST/ DISH PITCH BDG N
14 3.20 DISH WARPING
15 3.28 DISH WARPING
16 3.36 DISH WARP MAST BENDING e 64 mD ANTENNA
17 3.37 DISH WARP MAST BENDING ® QUAD-APERTURE
18 4.43 DISH WARP MAST BENDING
o MASS PROPERTY o MAX DISTURBANCE TORQUES
o MASS: 2750 Kg o GRAVITY GRADIENT 1.89 x 10™° Nm
o MOMENT OF INERTIA « GYROSCOPE 6.30 x 104
: .
1.42 x 10° Kg-m o SOLAR PRESSURE  6.23 x 1072
1.42 x 10°
2.73 x 10°

e BALANCED CONFIGURATION

Figure 4, Structural Properties for the 64 mD Hoop and Column Antenna

FLEX
MODE FREQ (Hz) DESCRIPTION
1 0.0872 SHORT BOOM TORSION
2 0.1473 DISH TORSION, LONG BOOM TWIST
DISH 3 0.1965 DISH TORSION, LONG BOOM BEND ING
4 0. 2062 DISH BENDING
5 0.2201 DISH BENDING, LONG BOOM BEND ING
0. 2906 DISH TORSION
DISH ROTATION, LONG BOOM BENDING

X FEED/BUS

Figure 5, Wrap-Rib Antenna Mode Frequencies/Shapes
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III, ATTITUDE AND STRUCTURAL CONTROL SYSTEMS
A, Equations of Motion

For small perturbations about the equilibrium, the dynamics of this system
may be described by the finite element method. For the hoop and column system,
let q be the 18-modal amplitude vector, ¢ the 1236x18-eigenvector matrix, and f
the vector of the applied forces. The dynamic equations are, in component form

b £ k=1,...,6 (1a)

+ow ? T Kk =7.....18 (1b)

+ 2z, w qu=¢kf, s

T ™ “o %k
where the modal frequencies, Wy, may be obtained from Figure 4 and the estimated

values for the damping ratios, Z, are.,0l for k= 7,...,10 and .02 for
k=11,...,18,

>

Due to the existence of numerical sensitivity problems the rigid modes
were not used and instead Fuler's equations were used to describe the rigid
body motion., Referring to Figure 4, let X, Y, Z be the body-fixed coordinates,
Consider a nadir pointing configuration with the satellite moving in a circular
synchronous orbit, The Euler's equations for the rigid body rotation are

. 2 . |

Ix¢ + 4wo (Iy-Iz)¢ + wo(Iy_IX—Iz)w = de + Tcx (2a)
- 2, _

Iye + 3wo (1X—IZ)9 = Tdy + Tcy (2b)
ve 2 -

Izw_+ wo (Iy-IX)w + wo(Ix-Iy+Iz)¢ = sz + Tcz (2¢)

where I,, I _, I,, w,, ¢, 6, and ¥ are the principal moments of inertia, the
orbital rat%, and the roll, pitch, and yaw angles, respectively. Tgyx, T4y,
Tdz, Tex, Tey, and Tez are the disturbance and control torques,respective{y.
Note that since the gravity gradient torques and the gyroscopic torques are
already included in the left-hand side of Eq. (2), they are excluded from Tg.
The angles ¢, 6, ¥ and their derivatives in Eq. (2) are assumed small and they
are related to inertial angular rates by the following approximate relations.

w, = b - wwo , (3a)
wy'= 6 - w, ‘ (3b)
w = b+ ¢wo ' (3e)

The equations of motion of the wrap-rib antenna system were developed in
Reference 5., The approach there was based on LaGrange's formulation. The set
of equations developed reproduces mode shapes and frequencies very close to those
generated using finite element methods (Figure 5). However, the approach in
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Reference 5 permits convenient and inexpensive model parameter changes.
The equations of motion have the following general form:
Mx + Kx = F (4)

where x consists of 3 rigid-body rotations, and boom and reflector flexible
modes, M and K are the mass and the stiffness matrices, respectively. And

F represents all non-conservative forces on the antenna system. In this study,
3 boom modes and 6 reflector modes were selected for analysis, and therefore
Eq. (4) is a 12 x 12 second order system,

To consider natural damping of the gystem, the following equation was
adopted;

MXx + Dx + Kx = F (5)
where D = @T[ZZQ]Q; ¢ and Q are the eigenfunctions and eigenvalues of Eq. (4).
And Z represents the diagonal matrix of damping ratios:

z = diag () , (6)

where, in this study, ¢; = 0 for i = 1,2,3, and ¢y = .005 for all other i.

B, Control Hardware Placement

The beam pointing accuracy is determined by the orientations of the feed
and the dish and their relative motions. Sensor and actuator placement is
dictated by the observability and controllability properties and the structural
constraints, By examining the eigenvectors of the elastic modes at various
potential locations, it can be seen that sensors and actuators placed at the
feed assembly and the sgpacecraft bus can most effectively control the attitude
and the dimportant elastic modes, Figure 6 shows the two-site 3-axis attitude
and structural control system for the hoop and column configuration considered
in this paper. Basic control devices are the inertial sensors and momentum
wheels, Reflector shape control can be achieved with the addition of optical
sensors such as SHAPES (Reference 6) and shape-cable actuators. Hoop motion can
be controlled with a SHAPES sensor and thrusters on the hoop sections,

Three options in control hardware placement have been considered for the
wrap-rib antenna. Option 1 has all attitude sensors and actuators lumped to-
gether and mounted on the bus, This concept represents current attitude
controllers for 3-axis spacecraft stabilization.

Option 2 represents a departure from option 1 in that it calls for an
additional optical sensor mounted on the bus to perform multi-point distributed
sensing of the relfector as shown in Figure 7., The purpose of having this
optical sensor is to obtain distortion and vibration information of the reflector
and boom directly by measurements,
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Option 3 is option 2 plus additional control devices at the reflector hub,
It represents a spatially distributed control schem