NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE NASA Contractor Report 159286

CONTRACT NAS 1-14000

FLIGHT SERVICE EVALUATION OF AN ADVANCED COMPOSITE EMPENNAGE COMPONENT ON COMMERCIAL TRANSPORT AIRCRAFT

(NASA-CR-159286)FLIGHT SERVICE EVALUATIONN80-25320OF AN ADVANCED COMPOSITE EMPENNAGE COMPONENTON COMMERCIAL TRANSPORT AIRCRAFT QuarterlyUnclassTechnical Report, 1 Jan. 1976 - 31 Mar. 1976Unclass(NASA)180 p HC A09/MF A01CSCL 01C G3/0523886

QUARTERLY TECHNICAL REPORT - NO. 3

This report is for the period 1 January 1976 through 31 March 1976

Lockheed Aircraft Corporation Lockheed-California Company Post Office Box 551 Burbank, California 91520

Approved By: K. L. Vangh

R. L. Vaughn **Program Manager**

15 April 1976

Prepared for Langley Research Canter

ſ I 1 Į. U Elison IIIO ockheed TriStal Ē **Wane** 20 E I E 10 Ţ E L-1011 1 I "่อ-*heed E I I V I 1 T

CONTRACT NAS 1-14000

FLIGHT SERVICE EVALUATION OF AN ADVANCED COMPOSITE EMPENNAGE COMPONENT ON COMMERCIAL TRANSPORT AIRCRAFT

QUARTERLY TECHNICAL REPORT - NO, 3

This report is for the period 1 January 1976 through 31 March 1976

Lockheed Aircraft Corporation Lockheed-California Company Post Office Box 551 Burbank, California 91520

Approved By:

R. L. Vaughn Program Manager

15 April 1976

Prepared for Langley Research Center

FOREWORD

This report was prepared by the Lockheed-California Company, Lockheed Aircraft Corporation, Burbank, California, under contract NAS1-14000. It is the third quarterly technical report covering work completed between 1 January 1976 and 31 March 1976. The program is sponsored by the National Aeronautics and Space Administration (NASA), Langley Research Center. The Program Manager for Lockheed is Mr. Robert L. Vaughn. Mr. Louis F. Vosteen is Project Manager for NASA Langley. The Technical Representative for NASA Longley is Mr. R. Ronald Clary.

iii

SUMMARY

The technical activities performed in this reporting quarter and documented in this report are related to tasks associated with Phase II, Detail Design. These tasks include: Component Definition; Material Verification; Fabrication; and Component and Subcomponent Tooling. The discussion of technical activities related to these tasks is presented separately for each of the Advanced Composite Vertical Fin (ACVF) team members. The team member responsibilities are: Lockheed-California Company for the covers and overall design, Lockheed-Georgia Company for the spars, and the Los Angeles Aircraft Division (Laad) of Rockwell International for the ribs.

The recommended concept for the covers continues to be graphite/epoxy hats bonded to a graphite/epoxy skin. The root end joint concept for the attachment of the covers to the fuselage has been reevaluated, and a new root end joint concept selected. The hat flare-out has been eliminated; instead the hat is continuous into the joint. This design concept could utilize hats which are pultruded thereby reducing manufacturing costs. This design concept has been substantiated by test. The recommended concept for the spars continues to be graphite/epoxy caps and a hybrid of Kevlar-49 and graphite/epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs and intermediate stiffeners are planned to be fabricated as a unit. Access holes in the web will be reinforced with a donut type, zero degree graphite/epoxy wound reinforcement. A reevaluation of the recommended rib configurations resulted in a change to the upper three ribs. The miniwich design concept originally proposed has been changed to a graphite/ epoxy stiffened solid laminate design concept. Preliminary analysis indicates an added weight saving will be realized with this design change. The recommended configuration for the lower soven ribs remains as graphite/epoxy caps with aluminum cruciform diagonals.

۷

112-1

PRECEDING PAGE BLANK NOT FILMED

The indicated weight saving for the current ACVF configuration is 20.2 percent (173.4 lb) including a 24 lb growth allowance. Without the growth allowance, the weight saving is 23.0 percent. Composite material utilization is 75.2 percent of the redesigned fin box weight. The projected production cost saving is approximately 1 percent based in a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

* + F & + P

TABLE OF CONTENTS

Section		Page
	FOREWORD	111
	SUMMARY	v
	LIST OF FIGURES	ix
	LIST OF TABLES	xiii
1.	INTRODUCTION	1-1
2	PHASE II - DETAIL DESIGN - SURFACES	2-1
2.1	TASK 1 - COMPONENT DEFINITION	2-1
2.1.1	Detail Design	2-1
2.1.2	Structural Analysis	2-6
2.1.3	Ancillary Tests	2-16
2,2	TASK 2 - MATERIAL VERIFICATION	2-24
2.2.1	Laminate Property Tests	2-24
2.2.2	Mechanical Joint Tests	2-61
2.3	TASK 3 - FABRICATION	2-61
2.3.1	Ancillary Test Specimens	2-61
2.3.2	Nondestructive Inspection	2-68
2.4	TASK 4 - COMPONENT TOOLING DEVELOPMENT	2-75
2.4.1	Limited Production Tool Design and Fabrication	2-79
2.5	TASK 7 - SUBCOMPONENT TOOLING	2-82
2.5.1	Subcomponent Tool Design and Fabrication	2-84
3	PHASE II - DETAIL DESIGN - SPARS	3-1
3.1	TASK 1 - COMPONENT DEFINITION	3-1
3.1.1	Detail Design	3-1
3.1.2	Structural Analysis	3-2
3.1.3	Ancillary Tests	3-4

T

T

]

÷.ť

TABLE OF CONTENTS (Continued)

Section

Fage

3.2	TASK 2 - MATERIAL VERIFICATION	3-27
3.2.1	Laiminate Property Tests	3-27
3.2.2	Mechanical Joint Tests	3-38
3.3	TASK 3 - FABRICATION	3-43
3.3.1	Test Specimen Fabrication	3-43
3.4	TASK 7 - SUBCOMPONENT TOOLING	3-47
3.4.1	Subcomponent Tool Design and Fabrication	3-47
4	PHASE II - DETAIL DESIGN - RIBS	4-1
4.1	TASK 1 - COMPONENT DEFINITION	4-1
4.1.1	Detail Design	4-1
4.1.2	Structural Analysis	4-2
4.1.3	Ancillary Tests	4-3
4.2	TASK 3 - FABRICATION	4-13
4.2.1	Ancillary Test Specimens	4-13
4.3	TASK 4 - COMPONENT TOOLING DEVELOPMENT	4-15
4.3.1	Limited Production Tool Design and Fabrication	4-15
4.4	TASK 7 - SUBCOMPONENT TOOLING	423
4.4.1	Subcomponent Tool Design and Fabrication	4-23
	LIST OF REFERENCES	4-25

J.

·

LIST OF FIGURES

Figure		Page
1-1	L-1011 Advanced Composite Vertical Fin Program - Program Master Schedule	12
1-2	Program Responsibilities	1-3
2-1	Root B Mod 2 Configuration	2-2
2-2	Weight-Time History	2-9
2-3	Root Load Distributions	2-9
2-4	Vertical Stabilizer Bending Stiffness	2-10
2-5	Vertical Stabilizer Torsional Stiffness	8-11
2-6	Fatigue Test Spectrum, Rudder Actuator Fitting/ Composite Rib Joint	2-14
2-7	Original Configuration	2-19
2-8	Root A Configuration	2-20
2-9	Cover to Fuselage Joint Specimen	2-22
2-10	Specimen Installation in Test Machine	2-22
2-11	Failed Specimen	2-23
2-12	Close-Up View of Failure	2-23
2-13	Specimen No. 29 Mounted in Test Machine	2-25
2-14	Specimen No. 26 with End Attachments Installed	2-25
2-15	Predicted (0 ⁰) Longitudinal Compressive Stress/Strain	2-37
2-16	(0 ⁰) In-Plane Shear Stress/Strain (T300/5209)	2-38
2-17	Kevlar 49/5209 Fiber Volume and Density	2-44
2-18	Laminate Compressive Modulus for T300/5209 GR/EP	2-45
2-19	Laminate Tension Modulus for T300/5209 GR/EP	2-46
2-20	Laminate Shear Modulus for T300/5209 GR/EP	2-47

ix

LIST OF FIGURES (Continued)

Figure		Page
2-21	Poisson's Ratio in Tension and Compression T300/5209 GR/EP	2-48
2-22	Preliminary Tensile Strength - T300/5209	2-49
2-23	Preliminary Compressive Strength - T300/5209	2-50
2-24	Preliminary Shear Strength - T300/5209	2-51
2-25	Thermal Expansion Coefficient T300/5209	2-52
2-26	Thermal Expansion Coefficient T300/5209	2-53
2-27	Comparison of Moisture Weight Gain for Graphite/Epoxy Coupons Subjected to MIL-HDBK-17A Exposure	2-58
2-28	"Cookie" Fush-Thru Test	2-67
2-29	Layup of Hats for Ancillary Test Specimens, Witnessed by Inspector	2-69
2-30	Ancillary Test Specimen No. 26 Hat Runout	2-69
2-31	Layup of Skin for Specimen No. 28	2-70
2-32	Specimen No. 28 After Bonding Hats to Skin on Bonding Tool	2-70
2-33	Ancillary Test Specimen No. 28	2-71
2=34	Model 155 Bridge W/UM721 and UM710 Special Function Cabinet	2-73
2-35	Ancillary Test Specimen P/N 1606688-101	2-74
2-36	Ultrasonic C-Scan - Skin Panel (0293003) Ancillary Test Specimen	2-74
2-37	Ultrasonic C-Scan - Skin Panel (0293002) Ancillary Test Specimen	2-75
2-38	Ultrasonic C-Scans-Hat Stiffener Ancillary Test Specimen	2-76
2-39	Ultrasonic C-Scan - Stiffener/Skin Assembly Ancillary Test Specimen	2-77
2-40	X-Rays of the Stiffener/Skin Assembly Shown in Figure 2-43	2-78
2-41	Installation of Tape Dispensing Tool	2-79
2-42	Tape Dispenser Head	2-80
2-43	Roll Holding Arrangement	2-80
2-44	View of Dispensing Head Showing Material Guide Rollers	2-81

LIST OF FIGURES (Continued)

Figure		Page
2-45	View of Head Showing Pressure Roller and Paper Take-Up Roller	2-81
2-46	Construction of Inner Skin Surface Mockup	2-82
2-47	21 Ft-Long Hat Section	2-83
2-48	21 Ft-Long Hat Stiffener Nested on Mockup of Inside Skin Surface	2-83
2-49	Fabrication of Cover Bonding Tools for 100-Inch Subcomponent	2-84
250	Completed Cover Bonding Tool for 100-Inch Subcomponent	2-85
2-51	Fabrication of Substructure for Layup Table	2-86
2-52	Broadgoods Layup Table	2-86
2-53	Machining of Hat Tool for 100-Inch Subcomponent	2-87
3-1	Static and Fatigue Text. Setup for 18A	3-5
3-2	Static Tested 18A-1 Specimen	3-6
5-3	19-2 Rear Spar Splice Static Test Specimen	3-7
3-4	Stub Spar Test Specimens (Items 188 - 18E)	3-8
3-5	Test Setup and Failure Mode for Spar to Web Tension Test, 18B	3-9
3-6	Cap to Web and Stiffener to Web Shear Test, 18C and 18E	3-10
3-7	Failure Mode of Cap to Web Shear Test, 180	3-10
3-8	Test Setup and Failure Mode for 18D	3-11
3-9	Front Spar Specimen Number 20	3-16
3-10	Spar Web Test Specimen (Item 21)	3-18
3-11	Cross Section A-A of Spar Web Test Specimens	3-18
3-12	Tool Used to Mold Shear Test Panels (Test Item 21)	3-19
3-13	Test Setup and Failure Mode (Item 21, 1st Test with Resin Rich Panel)	3-20
3-14	Ancillary Test No. 21 (Panel No. 1 Retest)	3-21
3-15	Ancillary Test No. 21 (Panel No. 2)	3-21
3-16	Ancillary Test No. 21 (Panel No. 4)	3-22
3-17	Ancillary Test No. 21 (Panel No. 5)	3-23

xi

LIST OF FIGURES (Continued)

F	ligure		Page
	3-18	Strain Data for Ancillary Test No. 21 (Panel No. 2)	3-24
	3-19	Ancillary Test No. 23A - Front Spar to Fuselage Static Test	3-26
	3-20	Stub Spar Test Specimens Nos. 14A, 14B, and 14C	3-28
	3-21	Rail Shear Test Setup and Failure Mode, 14B	3-29
	3-22	Spar Cap Compression Test Setup and Failure Mode, 14C	3-30
	3-23	Mechanical Joint Specimens (Item 16B)	3-39
	3-24	Test Setup and Typical Failure Modes for Mechanical Joint Specimens (Item 16B)	3-40
	3-25	Non-Dimensional Joint Strength Curve for Mechanical Joint Specimens (Item 16B)	3-42
	3-26	Second 7' Stub Spar as Removed from Tool (Flashing Not Removed)	3-44
	3-27	Comparison of 1st and 2nd Tool Development Spars	3-45
	3-28	No. 20 Front Spar Specimen - Lay-up of Access Hole and Cured Beam	3-46
	3-29	Completed Tool Used to Mold Prototype Spars	3-47
	4-1	Typical Stress Versus Strain Plot of Strain Gage Versus Extensometer Data (T300/5209)	4-5
	4-2	Typical Stress-Strain Plot of Strain Gage Versus Extensometer Data (T300/5209)	4-6
	4-3	Longitudinal Tension Stress-Strain Curve (90) ₁₆ T (T300/5209)	4-10
	4-4	Longitudinal Tension Stress-Strain Curve for (90/ <u>+</u> 45) (T300/5209)	4-10
	4-5	Rail Shear Stress-Strain Curve for (0/ <u>+</u> 45/90) _{2s} (T300/5209)	4-12
	4-6	Rail Shear Stress - Strain Curve (<u>+</u> 45) (T300/5209)	4-12
	4-7	36-Inch Curved Simple Angle Truss Cap - Trial Element	4-22
	4-8	Baseplate Tooling Concept Truss Rib Caps	4-23

xii

* 4F W. W.

LTST OF TABLES

Table		Риде
2-1	Projected Production/Maintenance Cost	2-5
2-2	Weight Status Report	2-7
2-3	Summary of Weight Changes	2-8
2-4	Fatigue Test Spectrum, Covers and Spars	2-13
2-9	Structural Integrity Control	2-15
2-6	Nottest Month Weather Conditions	2-17
2-7	Miemi-San Juan Flight Profile	2-18
2-8	Status of Materials and Processes Engineering Documents for L-1011 Composite Vertical Fin Box	2-26
2-9	Qualification Testing Results Kevlar 49-188/5209	2-28
2-10	Design Allowables Analysis T300/5209 Longitudinal (0 ⁰) Tension - RTD	2-32
2-11	Design Allowables Analysis T300/5209 Transverse (90 ⁰) Tension - RTD	2-33
2-12	Design Allowables Analysis T300/5209 Transverse (90 ⁰) Compression - RTD	2-34
2-13	Design Allowables Analysis T300/5209 \pm 45 [°] Tension - RTD	2-35
2-14	Design Allowables for T300/5209 Graphite/Epoxy for both Bilinear and Linear Computer Programs	2-39
2-15	Preliminary Design Allowables for Kevlar 49 Fabric/Epoxy for Bilinear Computer Programs	2-39
2-16	Statistical Analysis of Kevlar 49-181/5209 Tests	2-42
2-17	Material Characterization Test Program (#1.3A)	2-55
2-18	Dimensional Change in T300.5209 6-PLY Unidirectional Tension Specimens After 40 Days Conditioning at 95%	0 57
~ * ~	RH/125°F	2-57
2-19	Physical Properties	2-59
2-20	T300/5209 Design Allowables Analysis Transverse (90°) Tension - RTD	2-62

лð

xiii

LIST OF TABLES (Continued)

Table		Page
2-21	T300/5209 Design Allowables Analysis Transverse (90 ⁰) Tension - 160 ⁰ F Wet	2-64
2-22	T300/5209 Design Allowables Analysis Transverse (90 ⁰) Compression - RTD	2-65
2-23	T300/5209 Design Allowables Analysis Transverse (90 ⁰) Compression - 160°F Wet	2-66
2-24	Fastener Push Through Test Results	2-68
3-1	Comparison of NASTRAN Design Loads with Metallic Fin Loads Used During Phase I	3-3
3-2	Spar Cap to Spar Web Tension Tests 18-B	3-12
3-3	Spar Cap to Spar Web Shear, 180	3-13
3-4	Stiffener to Web Tension, 18D	2-14 3-14
3-5	Stiffener to Spar Web Shear, 18E	3-15
3-6	Summary of Shear Panel Tests with Access Hole and Stiffener	3-1.9
3-7	Spar Cap to Spar Web Tensile Tests, 14A	3-31
3-8	Rail Shear Tests of Spar Veb, 14B	3-32
3-9	Spar Cap Compression Tests, 14C	3-32
3-10	Evaluation of Remade 14A and 14C Specimens	3-34
3-11	Evaluation of Remade 14B Rail Shear Specimens	3-36
3-12	Summary of Process Control Specimens to Evaluate Effect of Process Variables	3-37
3-13	Test Data for Mechanical Joint Specimens (Item 16B)	3-41
3-14	Test Data for Mechanical Joint Specimens (Item 16B, Configuration No. 5)	3-42
4-1	(0)6T IITRI Type Tension Coupen Test Data T300/5209	3-42 4-4
4-2	$(0_{p}/\pm45)_{s}$ IITRI Type Tension Coupon Test Data T300/5209	4-4
4-3	(0/+45/90) IITRI Type Tension Coupon Test Data T300/5209	4-5
l 4 – le	(0) $_{\rm GT}$ Longitudinal Compressive Sandwich Bending Beam Test Data T300/5209	4-7
4-5	(0 ₂ / <u>+</u> 45) _s Longitudinal Compressive Sandwich Bending Beam Test Data T300/5209	4-7

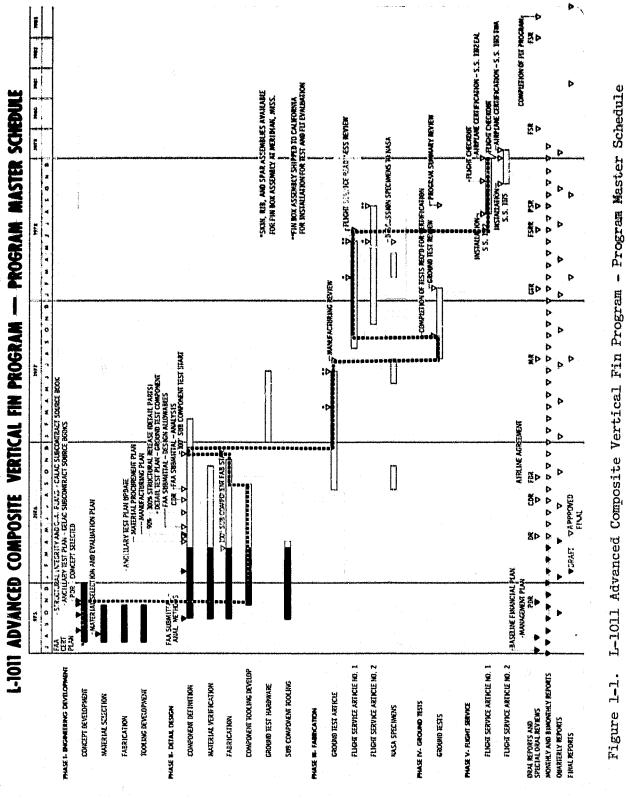
LIST OF TABLES (Continued)

Table		Page
4-6	(0/ <u>+</u> 45/90) _s Longitudinal Compressive Sandwich Bending Beam Test Data T300/5209	4-8
4-7	Tension Test Data Summary (T300/5209)	4-9
4-8	Rail Shear Test Data Summary (T300/5209)	4-11
4-9	Cocured Honeycomb Sandwich Flatwise Tensile Strength (1)	6-3.4
4-10	Cocured Honeycomb Sandwich Flatwise Tensile Strength (1)	4-14
4-11	Trial Rib Cap No. 2 Web Section Process Control Compression Test Data (T300/5209)	4-16
4-12	Laminate Compression Test Data (3) (T300/5209)	4-17
4-13	Laminate $(0/\pm45)90)_{05}$ Compression Test Data (4) (T300/5209)	4-17
1-14	Laminate Compression Test Data (1) (T300/5209)	4-18
4-15	Trial Rib Cap Web (45/0/-45/90) 3. Process Control Specimen	4-19
4-16	Process and Tool Changes	4-21

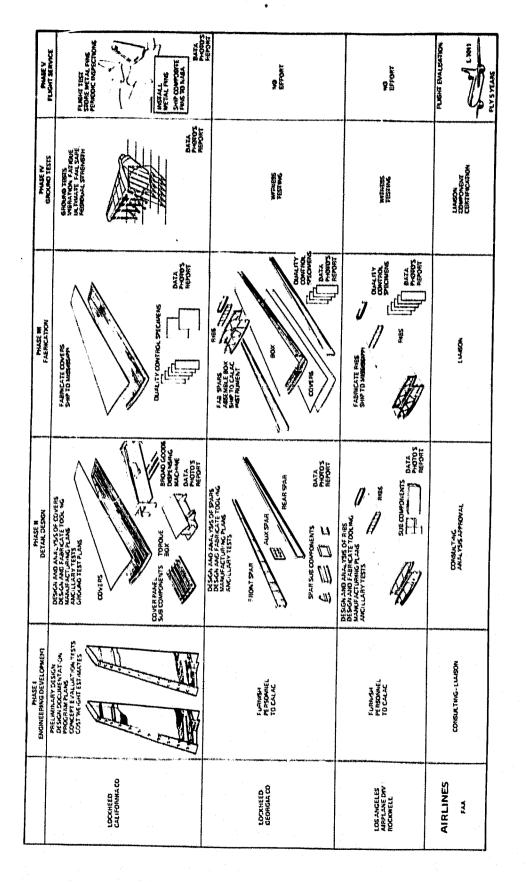
SECTION 1

INTRODUCTION

This is the third quarterly report of a program which provides for the design, development, and fabrication of three advanced composite empennage components. One component will be static and fatigue tested, and two components will be installed on commercial aircraft each for 5-year flight evaluation. This NASA contract was awarded to Lockheed-California Company, Burbank, California, in the amount of \$6,510,000. The Program Manager for Lockheed is Mr. Robert L. Vaughn. Mr. Louis F. Vosteen is Project Manager for NASA, Langley. The Technical Representative for NASA, Langley, is Mr. R. Ronald Clary.


The objective of this program is the development and flight evaluation of an advanced composite empennage component, manufactured in a production environment, at a cost competitive with those of its metal counterpart, and at a weight saving of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars; it is 25 feet tall with a root box chord of 9 feet and represents an area of 150 square feet.

The duration of this program is 106 months, with completion scheduled for March 1984. The master schedule for this program is shown in Figure 1-1. The dotted line in this figure represents the critical path for this program.


The Lockheed-California Company has teamed with the Lockheed-Georgia Company and the Los Angeles Aircraft Division of Rockwell International in the development of the Advanced Composite Vertical Fin (ACVF). Team member responsibilities are shown in Figure 1-2. Lockheed-California Company, as prime contractor, has overall program responsibility and will design and fabriciate the covers, conduct the full-scale ground tests, install the flight articles, and evaluate service experience; Lockheed-Georgia Company will design and

L

1

Program Responsibilities

Figure 1-2.

I

I

I

ſ

I.

.

Ē.

fabricate the front, rear, and auxiliary spars, and assemble the component at their plant in Meridian, Mississippi, where the present L-1011 vertical fins are assembled; and LAAD will design and fabricate all ribs.

During Phase I, various design options such as stiffened covers and sandwich covers were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration was selected in November 1975. Material screening tests were performed to select an advanced composite material system for the ACVF that would meet the program requirements from the standpoint of quality, reproducibility, and cost. The material selected for the ACVF program is Narmco T300/5209. Preliminary weight and cost analysis have been made, targets established, and tracking plans developed. Plans for subsequent phases were also developed in this phase. These include FAA certification, ancillary test program, quality control, and structural integrity control plans. The majority of the Phase I effort was concluded when the results of Phase I activities were presented to NASA at a Preliminary Design Review (PDR) held on 12 November 1975. All technical effort associated with Phase I tasks were concluded on 31 December 1975.

Phase II covers the main engineering effort. Detail design, analysis, and development testing are well under way. One significant test which will be accomplished in this phase will be on a subcomponent consisting of a major portion of the box structure. This component will be fabricated from representative production tooling and consists of 100 inches of the rear spar and 36 inches of the box chord and will include the fuselage/box joint. Limited production tooling are being designed and fabricated, and plans for the fabrication of the full-scale components are being written. Phase III provides for the fabrication of the full-scale ground test component and the two components to be used for flight service evaluation. Fabrication of the flight service articles will not begin until after certification tests on the full-scale ground test component have started. During fabrication, actual costs will be documented and components weighed to develop the weight update for the assembled structures.

Ground tests will be conducted on a full-scale vertical fin box beam structure mounted on a fuselage afterbody structure during Phase IV. The test plan will include vibration to determine modal response characteristics, static tests, spectrum fatigue tests to two lifetimes, ultimate load, damage tolerance and fail-safe, and residual strength tests. Repair techniques and procedures established for inservice maintenance and inspection will be employed throughout these tests, if necessary. The test results will be used to verify the analytical, design, and fabrication procedures, and are an essential input to the FAA for certification of the aircraft with the ACVF installed. Certification will be based on satisfying both static strength and fail-safe requirements. Phase V provides for the installation of two ACVF's on commercial aircraft for flight service evaluation for a period of 5 years. Inspection procedures and inspection intervals will be established in conjunction with the participating airlines. Prior to delivery and introduction into regular service, each aircraft will be processed through normal predelivery and other flight tests if required by Engineering and the FAA.

Throughout this program, technical information gathered during performance of the contract will be disseminated throughout the industry and Government. The methods used to distribute this information will be through Technical Highlight Bulletins, to be distributed bimonthly throughout the entire program; Quarterly Reports, which will coincide with calendar quarters; Final Reports, to be distributed at the completion of each phase; and Flight Service Reports. All test data and fabrication data will be recorded on Air Force Data Sheets for incorporation in the Air Force Design Guide and Fabrication Guide for Advanced Composites. Of particular interest are the Special Oral Reviews to be conducted at NASA, Langley, to acquaint industry and the Government with the process of the program. These reviews follow soon after the Preliminary Design Review (PDR), the Critical Design Review (CDR), and the Flight Service Readiness Review (FSRR). Specific information about the design reviews will be distributed Later in the program.

I

Surger S

Cash Party

Γ

and a second second

A second

This report describes work accomplished during the three-month period extending from 1 January 1976 to 31 March 1976. During this period all major milestones were met as scheduled. The design configuration was further refined; the design of the design of the 100-inch subcomponent test specimen was completed; the design and fab of the concept verification test specimens were initiated; and a significant portion of the design allowable coupon and element tests were completed.

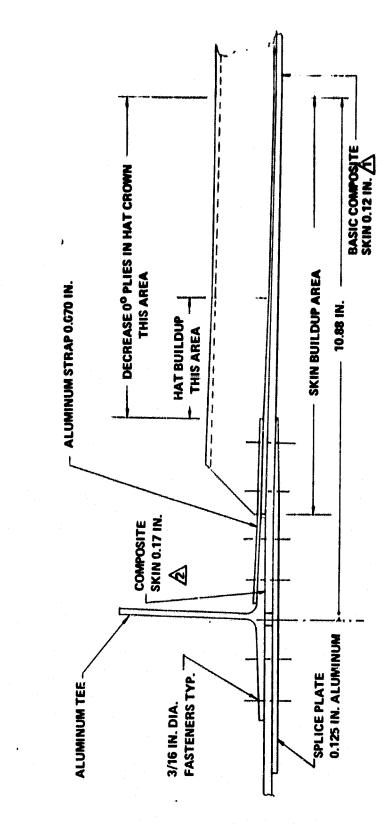
Use of commercial products or names of manufacturers in this report does not constitute official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

SECTION 2

PHASE II - DETAIL DESIGN - SURFACES

Phase II Detail Design of the Surfaces covers the main engineering effort of Lockheed-California Company in the design, development, and fabrication of the covers for the L-1011 Advanced Composite Vertical Fin. This engineering effort covers five tasks: Component Definition, Material Verification, Fabrication, Component Tooling Development, and Subcomponent Tooling.

2.1 TASK 1 - COMPONENT DEFINITION


Component Definition covers the detail design and structural analysis of the selected cover configuration and ancillary tests.

2.1.1 Detail Design

The root end joint design of the covers has been reevaluated. Several design concepts for the joint have been considered and their structural behavior, weight, and producibility compared to the original design configuration. As a result of these investigations, a new root end joint concept has been selected for the ACVF. This configuration is shown in Figure 2-1.

The cover drawing for the 100-inch test unit, the cover assembly drawing, and the 100-inch test component assembly drawing have been completed and released. Thrust link fittings required at Vertical Stabilizer Station (VSS) 113 were also designed and released, though the actual parts will be assembled at Gelac. The design of the simulated front spar for the 100-inch specimen was completed. This part will be fabricated as part of the test specimen installation.

 $\widehat{ M} = 45^{\circ} G \ 0^{\circ} 3G \pm 45^{\circ} G \ 0^{\circ} 2G \pm 45^{\circ} G \ 0^{\circ} G \mp 45^{\circ} G \ 0^{\circ} 2G \mp 45^{\circ} G \ 0^{\circ} 3G \mp 45^{\circ} G + 45^{\circ} K49$

SKIN LAMINATES:

2-2

LR 27643

Design, fabrication and interfacing/coordination problems associated with the 100-inch specimen are directly applicable to the full size articles. Major areas requiring design layout and analysis include the skin laminate buildup in the area of both front and rear spar joint areas, the design of reaction structure for the rudder damper loads at VSS 307, and design and analysis of the hinge fittings to accommodate the thermal expansion/ contraction differential along the rudder hinge axis.

Lightning Strike Evaluations

The evaluation of lightning strike hazards and attendant protection for aircraft structures is an on-going concern. The unique features associated with composite structures have re-focused development efforts to provide protection for the new aerospace concepts. To this end, the aircraft manufacturers, airlines, government sponsoring agencies and government regulatory agencies have all become involved.

A current on-going program is being conducted by the Boeing Aircraft Corporation for the Air Force (ref. 1). This program will establish: threat definition and damage assessment (unprotected), conduct protection system development, conduct full-scale hardware demonstrations and prepare a design manual for lightning protection for composite structures. One of the materials to be evaluated is Narmco T300/5208, a graphite/epoxy tape very similar to that intended for use on the L-1011 fin structure. The results of this program will be available to support Lockheed's final decisions regarding flight article protection.

Study results are also available from recent evaluations conducted by General Dynamics - Ft. Worth on the F-L6 (ref. 2) in which several composite structure protection methods were evaluated. These studies are referred to only because of their current on-going statuc and the potential applicability to the fin program. The lightning protection system currently being considered is 150 mesh aluminum screen, bonded to the outer surface of the covers.

The activities to be conducted at Lockheed in regard to lightning hazard protection are:

1. Continuing surveillance of industry and agency developments in this area

- 2. Evaluation of the fin bonding and grounding systems to assure an adequate conducting path
- 3. Evaluation of impact on adjacent antenna systems
- 4. Specimen fabrication to evaluate the mesh protection system from a producibility standpoint
- 5. Evaluation of the aluminum mesh to establish corrosion potential and maintenance and repair capability.

Close cooperation has always existed within the aircraft industry where the issues of flight safety are involved. The data available to substantiate decisions regarding lightning protection is voluminous and rests in many areas. The B-1 being fabricated by Rockwell International (a subcontractor on the fin program) is doing development work to substitute composites for metal in three separate areas of the aircraft. The lightning protection systems proposed for the three areas are: horizontal stabilizer - flame sprayed aluminum strips; avionics pay door - aluminum mesh; vertical fin - a combination of aluminum mesh and strips.

Projected Cost Status

Currently projected production/maintenance costs for the ACVF are shown in Table 2-1. The estimated production cost has increased by \$4,051 over the previous quarterly report. This change has incurred due to more in-depth analyses over ROM cost estimates. Detail analysis of the 100-inch test speciman drawing has been completed. This analysis has been projected to reflect a full scale rear spar and ratioed to the front spar. Included in the analysis are increased complexity of holes and an increase in the number of patterns requiring involved layups due to tapers and runouts. The increased complexity has occured in the skins and ribs as well as the spars.

The estimating premises have remained the same and the costs are stated in 1975 dollars. There are no data as yet to substantiate a change in the maintenance cost estimates.

TABLE 2-1. PROJECTED PRODUCTION/MAINTERANCE COST

I.

ſ.

(BASED ON CUMULATIVE AVERAGE OF 250 AIRCRAFT)

	TOTAL	18,847	13,495	424		30,755		903	Ŕ	J7,206	&.214				\$ 4.500.00	
A.C.Y.F.	MATERIAL	12,957	Å ,563	45 1		2,194		4 9	301	3,831	23,942					
	LABOR	5,890	8,927	382		8,561		854	263	13,375	38,272	*180 M/H Per	A/C Per Year			
METAL FIR	TOTAL	17,724	10,491	424		10,143		603	787	22,937	\$62,909			*******	\$ 1, 500.00	
METAL, FIR	MATERIAL	2,960	1,217	42		843		49	301	5*152	11,164					
	LABOR	<u>-</u> 4,467	9,27 ^t :	382		9,300		854	283	17,185	51,745	*130 M/H Per	A/C Per Year			
	COMPONENT	Skin Covers (L/R)	Spars (FWD/AFT)	Aux Spar	Actuator Ribs	Hinge Ribs	Intermediate	Upper Closure Ribs	Rib/Spar Fittings	Assembly	Total	Maintenance	Inspection	Repairing	Costs	

s

LR 27643

*Based on 3,000 Flight Hours Per Year

Weight Status

The current weight status is shown in Table 2-2. A weight savings of 20.2% (173.4 lb) is currently being predicted including a 24-lb growth allowance and composite material utilization is currently predicted to be 75.2 percent of the redesigned fin box weight. A summary of weight changes since the Second Quarterly Report (ref. 3) is presented in Table 2-3 and a weight-time history for the composite fin is provided in Figure 2-2.

2.1.2 Structural Analysis

MATRAN Model

The NASTRAN model was completed during this reporting period. A comparison of the load distribution in the covers at the root, between the metal fin and advanced composite fin is shown in Figure 2-3.

The SIC model run showed that the composite fin is a little stiffer in bending than the metal fin. The tip deflection was 7% less. The torsional stiffness appears to be running up to 30% higher. This is due primarily to the fact that $\pm 45^{\circ}$ plies must be maintained as increments of $(\pm 45^{\circ})_2$ for a balanced laminate, and additional plies were required for stability.

The SICs have been supplied to the Loads Department for analysis of external loads and the resulting EI and GJ plots have been supplied to the Flutter Group for their analysis. See Figure 2-4 and 2-5.

The applied loads at the rib grid points were output and stored on tape for use with the 2D rib models.

2D Rib Models

Three two-dimensional rib models have been constructed. The models are currently being debugged and all three models should be run early in April. These models are using the NASTRAN system and are being handled through DCAS (Direct Computer Access System).

TABLE 2-2. WEIGHT STATUS REPORT

ľ

東口山道

3

1

WEIGHT CHANGE -1.2 -8-1 626.7 (24.1% WEIGHT SAVED) MAT'L WT LB COMPOSITE 190.6 (74.3%) 75.2% 337.1 88.6 64.9 24.0 514.6 1 1 1 COMPOSITE DESIGN TOTAL WEIGHT 660.3 (23.0%) 684.3 173.4 20.2% 356.6 127.5 123.3 35.9 35.9 9.6 7.4 24.0 円 TARGET WEIGHT 661.0 360.0 132.4 118.5 25.0 9.6 15.5 EB METAL DESIGN TOTAL WEIGHT 95% EST, 5% CALC, 0% ACT 460.4 196.0 35.4 9.6 825.4 857.7 ГB PERCENT WEIGHT SAVED PERCENT COMPOSITE MATERIAL CURRENT INDICATED WEIGHT OF REDESIGNED COMPONENT DESIGN GROWTH ALLOWANCE TOTAL FIN CURRENT INDI-(PREDICTED LESS GROWTH) LIGHTNING PROTECTION DELIVERY WEIGHT ~ LB TOTAL FIN PREDICTED WEIGHT SAVING \sim LB CATED WEIGHT ~ LB ASSEMBLY HARDWARE PROTECTIVE FINISH TTEM WEIGHT BASIS: COVERS SPARS RIBS

LR 27643

ស	
CHANGES	
F WEIGHT	
OF	
SUMMARY	
TABLE 2-3.	

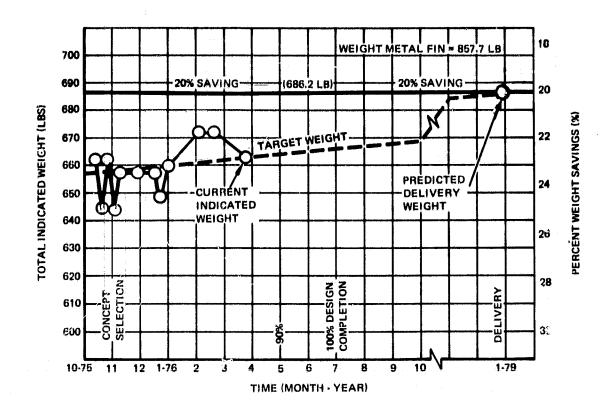


Figure 2-2, Weight-Time History

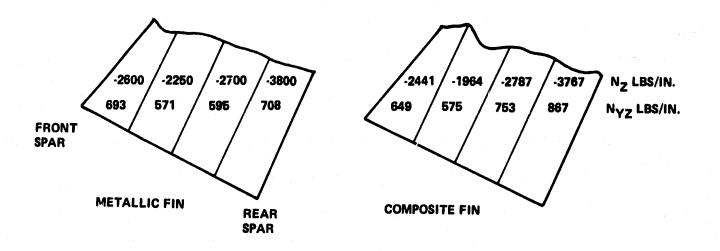
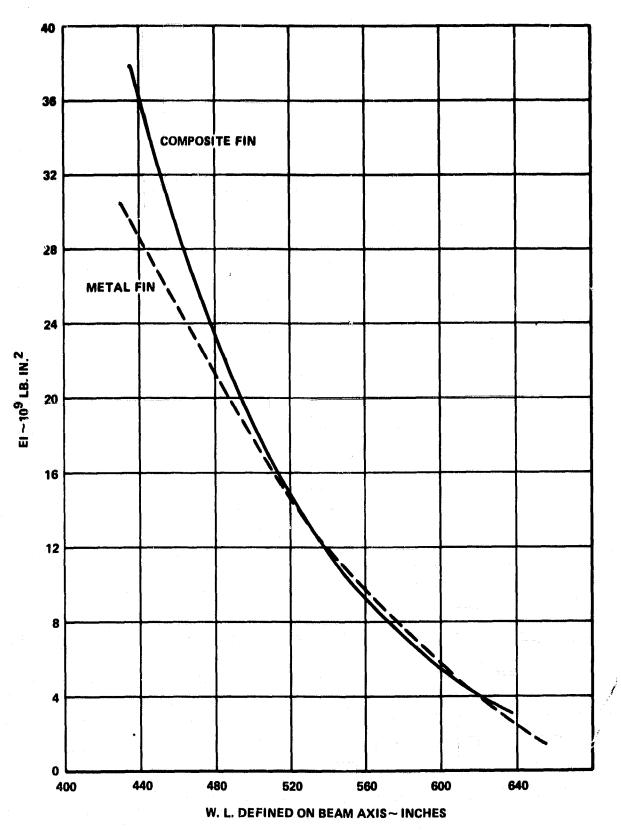
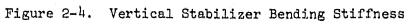




Figure 2-3. Root Load Distributions

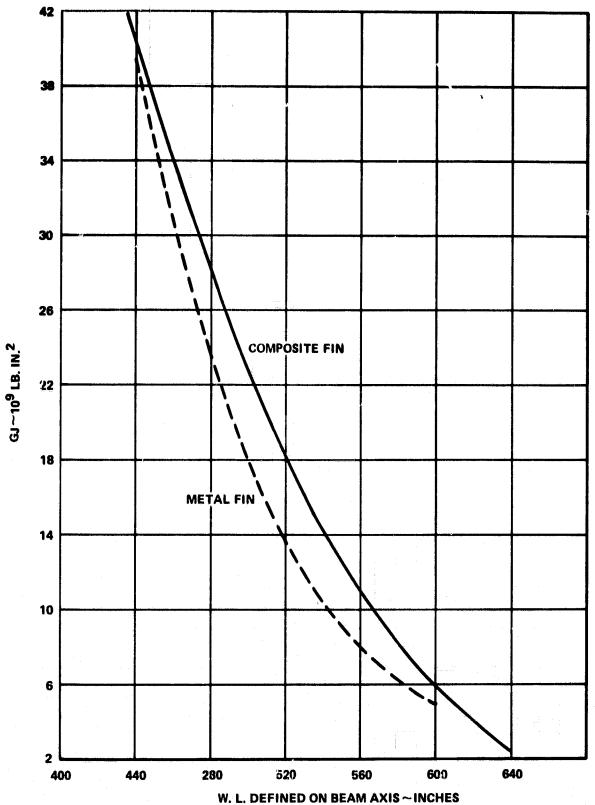


Figure 2-5. Vertical Stabilizer Torsional Stiffness

Cover Buckling

Construction of two finite element STRAP 5 buckling models representing two areas of the cover has been initiated. The models will each cover an area containing up to twelve stiffeners and running between two adjacent ribs. One model will cover the area between VSS 97.199 and VSS 121.42. The other model will cover the area between VSS 248.55 and VSS 274.26. These models will be handled through DCAS or Batch.

Cover Stress Analysis

A detailed analysis of the covers has been intiated. The skin panels are being analyzed using the HYBRID program. They will be analyzed using both the combined inplane loads from the NASTRAN model and using the spanwise loads alone. The margins of safety will be based on the lowest allowable of the two methods.

Fatigue Spectrum

Investigation of the limit loads for the subcomponent fatigue tests of cover and spar areas revealed that in all cases condition 56 was approximately 65% of condition 59. This enabled the two conditions to be combined into a normalized spectrum which contains 197,000 cycles for one lifetime. The steps on the exceedance curves for the original conditions were too shallow for the load levels applied to most specimens so that the normal tolerance in the lab equipment would cause overlap of some load steps. The modified combined spectrum eliminates this problem. The combined spectrum is shown in Table 2-4.

The actuator ribs at VSS 90.199 and VSS 97.199 are loaded primarily from the rudder actuators and hinges. The fatigue spectrum for these two ribs is thus totally different to the covers and spars. This spectrum has been developed from the rudder control system spectrum and is shown in Figure 2-6. It contains 250,000 cycles and represents two lifetimes.

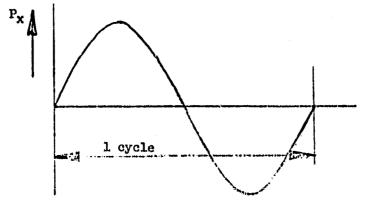
2-12

7,	LIMIT LOAD			,			FLIGH	T		
	COND 59	N	ΣΝ	l	36	360	1800	9000	18000	36000
	15	166000	197020	4	55					
	23	24860	31020		24	8	3			
	31	4328	6160		4	3	1	2		
	38	1279	1832		1	2	3	4	1	l
	46	328	553			3	1	2		
	54	134	225	-		1	1	3	lı	
	62	43	91				2		1	1
	69	28	48				1	2		
	77	9	20					2		1
	81	3	11						1	1
	85	3	8					1	1	- 1
	88	3	5		1				lı	1
	92	1	2							l
	100	l	1							1
			Count	4	51	17	12	15	6	8
		Mult	iplier	36000	1000	100	20	4	2	1

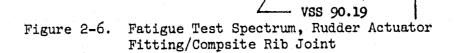
TABLE 2-4. FATIGUE TEST SPECTRUM, COVERS AND SPARS

Structural Integrity Control Review Team

The Structural Integrity Control Review Team held weekly meetings starting in February. Discussions have covered such things as process controls, accept/reject criteria test requirements, inspection methods and criteria used by other companies involved in building composite structures.


A list of factors affecting structural integrity of composite structures and the methods of verifying that the requirements have been met is shown in Table 2-5. The cover assembly drawing for the 100-inch specimen was reviewed and a draft of the Structural Integrity Control Plan for this part is being prepared.

P _X (LB)	Block "A" Cycles	Block "B" Cycles	Block "C" Cyc les	Total Cycles (Ref.)
1230 2280 3800 5320 6840 1230	695 1730 70	1).3 1 19	69,500 173,000 7,000 200 15 285
Number of Blocks	100	5	15	Sum: 250,000


1) Arrow indicates order of load application.

This truncated spectrum is representative of 72,000 flights. (2 lifetimes)

LOADING BLOCK APPLICATION SEQUENCE (Total 120 Blocks)

	had a barrier second and the second second	
"A"	³¹ B ¹¹	"C"
1-30	31	32
33-36 38-42		37
44-48	49	50
51-54		55
56-60	1	61
62-66 69-72	67	32 37 43 50 55 61 68 73 79 86 91 97 104
74-78		79
80-84	85	86
87 - 90 92-96		91
98-102	103	104
105-108		109
110-114		115
110-150	1	<u> </u>

2-14

......

TABLE 2-5. STRUCTURAL INTEGRITY CONTROL

FACTORS AFFECTING STRUCTURAL INTEGRITY OF COMPOSITE STRUCTURE	METHOD OF VERIFYING REQUIREMENTS MET
Prepreg Tape	
Concerne 1	
Strength % Vol. Rusin	
Resin Consistency	Material Spec.
Width Variation	C-22-1379/211
Thickness Variation	
Layup	
Filament Breakage	
Filament Alignment in Each Layer	Process Bulletin
Space Between Adjacent Tapes	PB 80-571
Overlaps Between Adjacent Tapes	10 00-711
Stacking Sequence	
Cured Composite	
Curing Conditions	Autoclave records
Strength Verification	Process Bulletin
% Vol. Resin	Process Bulletin
Voids (size, location, % vol.)	C-Scan
Delaminated Areas (size and location)	C-Scan
Surface Integrity	Visual
Integrity of Holes	Open item
Integrity of Machined Edges	Open item
Thickness Variation	Open item
Wrinkles	Visual
Adhesive Bonding of Members	
Bonding Material	Adhesive Spec
Curing Conditions	Autoclave or Oven records
Unbonded Areas (size, location)	C-Scan
% Voids	C-Scan
Bond Thickness Variation	Open item

[]

0

I

[]

Operational Scenario

A survey of a typical day's operations (July 15, 1975) for L-1011's in service showed a total of 255 flights between 85 city pairs.

An analysis of temperature and humidity showed that the South and Puerto Rico had the highest temperatures and humidity on an average daily basis.

A summary of the hottest month seather conditions for several Southern U.S. cities on L-1011 routes is shown in Table 2-6.

The above data led to the selection of the Miami-San Juan route as being the most adverse. A flight profile for this route is shown in Table 2-7.

A temperature profile is being prepared for this route including ground time.

2.1.3 Ancillary Tests

Cover/Fuselage Joint Development

The root end joint of the covers for the ACVF has been reevaluated. Several design concepts for the joint have been considered and their structural behavior, weight, and producibility compared to the original design configuration. As a result of these investigations, a new root end joint concept has been selected for the ACVF. A single hat stiffener/skin specimen of the selected cover to fuselage joint configuration has been fabricated and statically tested in compression to evaluate the performance of this concept. The specimen failed at 33,050 lb, 121% of design ultimate load.

Three design configurations will be discussed; the original design configuration (Figure 2-7) and two alternate concepts designated ROOT A (Figure 2-8) and ROOT B MOD 2 (Figure 2-1).

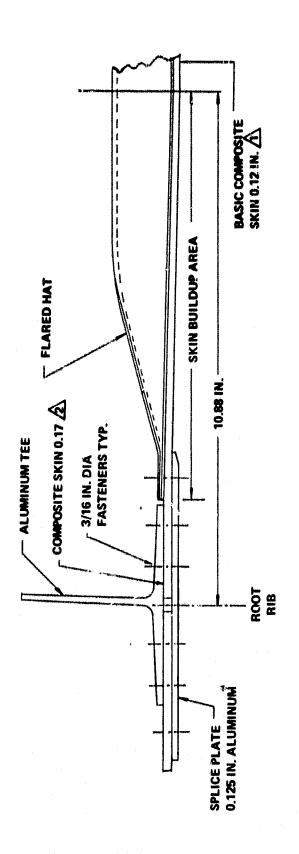
In the original design configuration, the skin laminate thickness increased from .12 in. to .17 in. within the joint region and the hat flared out terminating at the first row of fasteners. A beam column analysis of this joint indicated unacceptably high compressive stress levels within the skin laminate in the location of the first row of fasteners. This condition

	L-101-1 FLIGHTS PER DAY	82	26	9	ΟT	50	ω	26	38
DEN POINT ^O F	AVERAGE MAX. 12 HR. PERSISTING	78	78	78	78	78	78	78	
DEW P	AVERAGE	88	88	72	73	73	73	47	73
REL. HUM	AVERAGE 1 p.m.	53	1,8	59	63	60	5	43	76
¢.,	AVERAGE DATLY MIN.	70	76	73	76	73	70	71	ŢŀĻ
TEMPERATURE ^O F	AV ERAGE EXTREME	103		105	100	102	86	86	94
TB	AVERAGE DAILY MAX.	89	96	51	6	25	6	16	88
	СІТҮ	Atlanta	Dallas	Jacksonville	New Orleans	Orlando	Тапра	Miami	San Juan

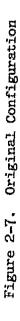
TABLE 2-6. HOTTEST MONTH WEATHER CONDITIONS

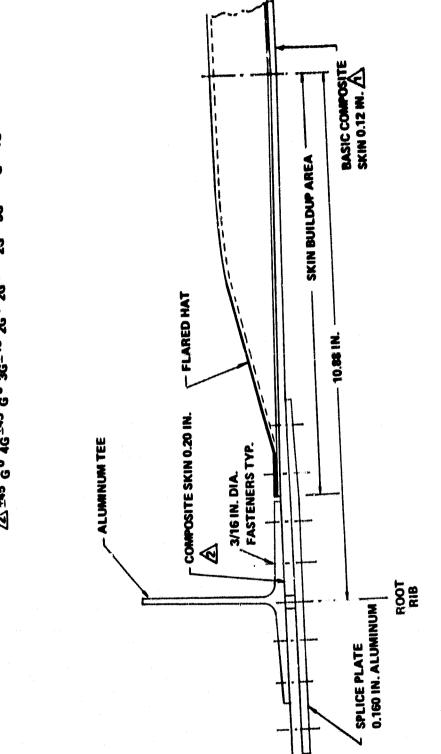
IR 27643

Segment	SPEED KEAS	AL/TITUDE FT X 103	TIME Mlab
Taxi - Ramp to Runway	20	0	3.0
Take-Off Run	0-135	0	0.4
Climb 0 to 10,000 Ft	250	0-10	5.0
Climb 10,000 to 32,000 Ft	283	10-32	17.0
Cruise M.82 283 KEAS	283	32	96.6
Descent 32,000 to 10,000 Ft	283	32-10	17.0
Descent 10,000 to 0 Ft	250	10-1	4.0
Taxi - Runway to Ramp	20	0	3.0
			146


TABLE 2-7. MAMI-SAN JUAN FLIGHT PROFILE

is a result of a low value of flexural stiffness being coincident with a large neutral axis eccentricity.


To decrease the stress levels at the critical location, the splice plate was lengthened to include an additional row of fasteners thus increasing the effectivity of the splice plate at the termination of the hat. Also, the splice plate thickness and skin laminate thickness were increased. This design was designated ROOT A (refer to Figure 2-8). These changes resulted in a dramatic increase in flexural stiffness within the joint region compared to the original design configuration. These changes also increased the compressive stability boundary of the panel to a level where the panel could carry ultimate load with no root rib rotational restraint. Structural analysis of this joint design indicated high margins of safety for the ultimate load condition. This design configuration would incur a weight penalty of +12.6 pounds compared to the original design.





2-19

LR 27643

Root A Configuration

Figure 2-8.

Although the ROOT A configuration was structurally acceptable on a static load basis, the single lap joint was considered a poor detail design which could potentially result in a premature fatigue failure. Subsequently, designs were investigated which eliminated the single lap joint and which also eliminated the hat flare-out to enhance the producibility of the assembly. Consideration of various schemes to bridge the interior surface to the aluminum TEE resulted in configuration ROOT B MOD 2 shown in Figure 2-1.

The ROOT B MOD 2 configuration is a complete redesign of the root splice area. The hat flare-out has been eliminated; instead the hat is cut off at a 45° angle. The number of 0° plies in the crown of the hat is decreased as the hat approaches termination thus providing a gradual load transition to the skin. At the end of the hat, the thickness of the flanges and webs has been increased to provide additional shear strength to the webs and to make the cut-off end of the hat less susceptible to damage during installation. Aluminum straps on both sides of the hat connect the interior of the skin to the aluminum TEE, thus resulting in a double lap joint.

Structural analysis of this joint design indicates high margins of safety for the ultimate loading condition. This joint design is 6.7 pounds heavier than the original design configuration.

From the producibility standpoint, the ROOT B MOD 2 configuration was judged superior to all the other designs considered. Note that this design could utilize hats which are pultruded thereby reducing manufacturing costs.

A single hat stiffener/skin specimen of the selected cover to fuselage joint has been fabricated and statically tested in compression to evaluate the performance of the concept. A photograph of the specimen is shown in Figure 2-9. Specimen instrumentation consisted of fourteen SR-4 strain gages oriented in the longitudinal direction. The specimen mounted in the test machine is shown in Figure 2-10.

The specimen was loaded statically in compression to failure which occurred at 33,050 lb, 121% of design ultimate load. Failure shown in Figures 2-11 and 2-12 occurred 17 inches from the root rib center line. It

Figure 2-9. Cover to Fuselage Joint Specimen

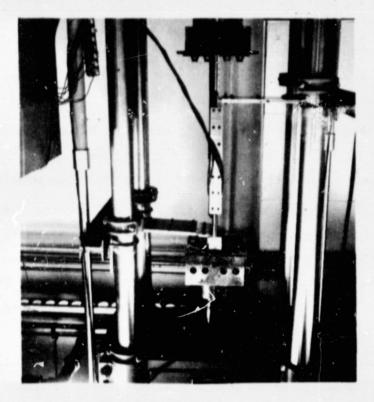


Figure 2-10. Specimen Installation in Test Machine

46

.....

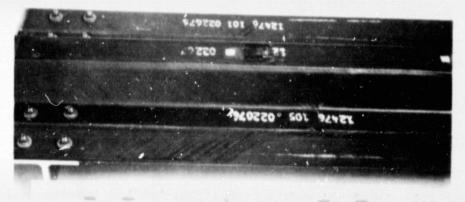


Figure 2-12. Close-Up View of Failure

L

E

[]

[]

[]

0

[]

Π

[]

I

I

LR 27643

appears that the flange debonded from the skin and buckled. The specimen is currently being segmented to allow visual inspection of the bond line at the failure location.

Ancillary Tests - Major Subcomponents

Drawings of all the major subcomponent test specimens of the covers have been released to Manufacturing Research for fabrication. Fabrication of test items No. 26, stiffener runout specimen, No. 28, surface panel failsafety specimen, and No. 29, stiffener/skin disbond speciment is complete. Design of the test fixture and instrumentation layouts are complete for specimen Nos. 26, 27, 28, 29.

Specimen No. 29 has had end attachments and instrumentation installed and is ready for fatigue testing. A photograph of the specimen mounted in the test machine is shown in Figure 2-13.

Specimen No. 26 has had end attachments installed (see Figure 2-14) and is currently being instrumented.

Specimen No. 28 is in the process of having the end attachments installed.

2.2 TASK 2 - MATERIAL VERIFICATION

The Material Verification task covers the laminate property tests and mechanical joint tests.

2.2.1 Laminate Property Tests

Materials Status

Table 2-8 shows the current status (as of 29 March 1976) of materials and processes engineering documents (specifications and process bulletins) for the ACVF. MAPSCO, Materials And Processes Scheduling Committee, is the Lockheed committee responsible for the official issuing of the document. The approval of NAVPRO is required.

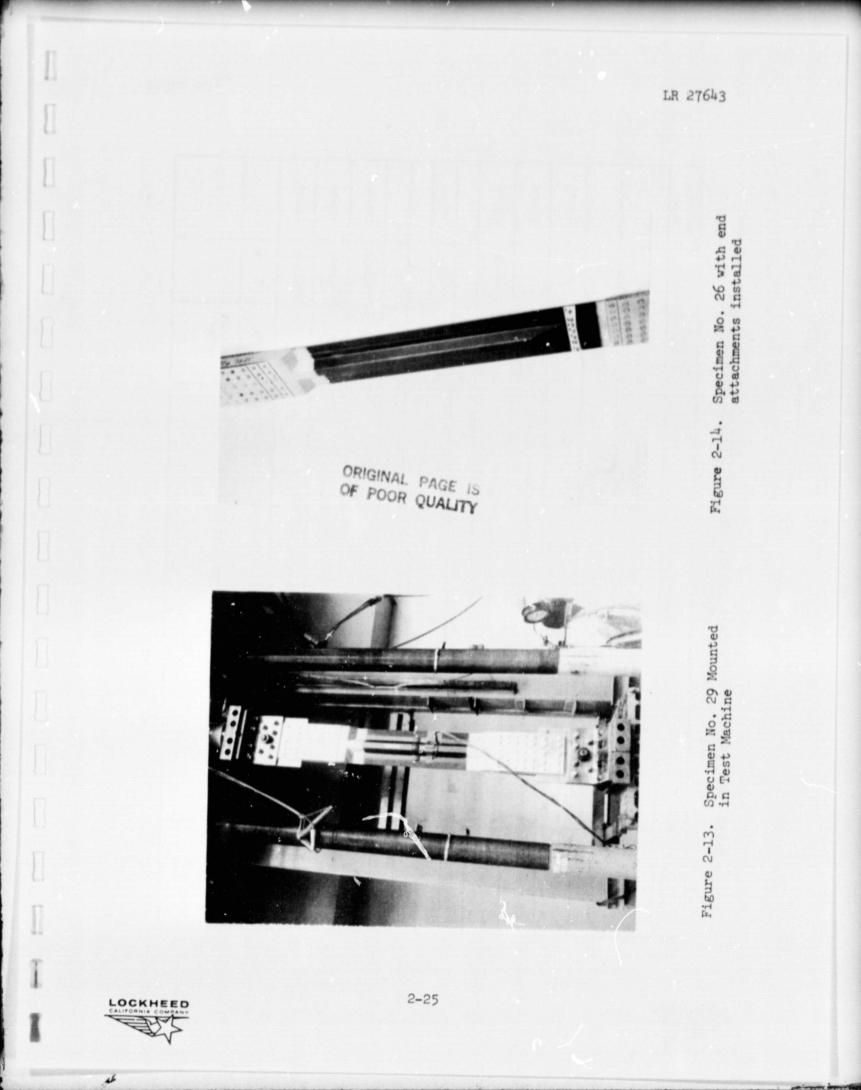


TABLE 2-8.

2-8. STATUS OF MATERIALS AND PROCESSES ENGINEERING DOCUMENTS FOR L-1011 COMPOSITE VERTICAL FIN BOX

1. unter	1.15°8031	Current Status	ECD to WAPSCO	Prod. Rel. Regd.
C+22-1379 (Basic)	Graphite Fiber Non-Woven Tage and Sheet, Fesin Impregnated, Feneral Specification For	Felezsed		
C-22-1379/211	Graphite Fiber Non-Woven Tage and Steet, 355 KSI Strength, 33 MSI Modulus, 160°F Service, Eproy Freimpregnatel	Released		
c-22-1350/131	Epoxy Freimpregnated Intermediate Modulus Organic Fiber Fabric, Type 1, 2502F Curing, 1602F Service, for Hybrid Application	In MAPETO	3-24-76	4-21-76
3-22-1350/132	Epoxy Freingregnated Intermediate Modulus Organic Fiber Fabric, Type 2, 2500F Curing, 1600F Service, for Hybrid Application	Draft Typed	4-7-76	4-21-76
C-22-1353 Amerd. 3	Organic Fiter, Intermediate Modulus, Freimpregnated, General Specification For	In Mapsco	3-24-76	4-21-76
LCM30-1085B	Adhesive, Structural Film, High Strength (250°F Jure)	Released		
22M30-1222D	Adhesive Primer, Corrosion Inhiditing	Released		
PB75-425D(6)	Environmental Sealing of Model L-1011 Aircraft	Released		
PB78-433B(1)	Application of Exterior Coating System for the L-1011 Aircraft	Released		
PBT0-575	Machining Fractices, Tolerances and Allowances, For Composite Components	Draft in Type	4-12-76	5-3-76
PB71-576	Preparation For and Installation of Mechanical Fasteners in Composite Structure	Draft in Type	4-12-76	5-3-76
PB80-571	Fabrication of L-1011 ACVF Fin Skin Components, and Assembly of	In MAPSCC	3-17-76	4-8-76
FEG0-573 LAAD	Advanced Composites, Fab. of 3r/Ep Solid Laminate Ribs, 1600F Service, Model L-1011	Avaiting Draft		
FB80-574 Lockheed- Georgia Co.	Elastomeric Molding of Vertical Fin Advanced Compusites Spar, Model L-1911	Gelac Draft in Revisa		

2-26

1.11.4

LR 27643

Table 2-9 shows the results of the qualification testing of batch 2 of Kevlar 49-181/5209 to the C22-1350/131 specification requirements. The material passed all requirements.

Environmental Effects

Lockheed has conducted an in-house (IRAD) investigation of the effects of moisture and temperature on Narmco's 5209 Epoxy (and other resins) by several different methods. The results to date indicate that 5209 has a low moisture absorption and performs satisfactorily in the transport aircraft environment.

Glass transition temperatures for T300/5209 graphite/epoxy were measured by the penetration method and the dilatometry method on dry specimens. The results were $Tg = 112^{\circ}C$ (234°F) and $110^{\circ}C$ (230°F) respectively. Penetration values on wet specimens were determined to be $Tg = 95^{\circ}C$ (203°F) and $93^{\circ}C$ (199°F) at 4.33% and 3.9% (of the resin weight) moisture gain, respectively.

Neat Resin Investigations

The percent moisture absorption of neat resin (i.e. without fiber reinforcements) castings of Narmco's 5209 is 4.9% of the dry resin at equilibrium. This is comparable to the data shown under material characterization tests. A six ply laminate of T300/5209 with 29% resin content had an equilibrium moisture content of 1.37% of the laminate weight, or 4.7% of the resin weight. By comparison, tests of U.S. Polymeric's E715 and Fiberites 934 showed equilibrium moisture gains 27% greater than 5209.

Design Allowables

Composite material design allowables for use during Phase II - Detail Design have been defined. They represent currently available test data. As test data from the design data test programs (ancillary tests 11-17) become available, these material design allowables will be suitably revised.

The data shown on Tables 2-10, 2-11, 2-12, and 2-13 are the result of a statistical analysis of qualification test data and limited results from Test 13A (transverse tension, transverse compression, and \pm 45 tension) by the methods of MIL-HDBK-5A, Section 9 (ref. 4). The stiffnesses are mean values (normalized to 63% fiber volume), and the stresses and strains are based on

TABLE 2-9. QUALIFICATION TESTING RESULTS KEVLAR 49-183/5209

Fiber Froperties

Property	Unit	Requirement
Tensile strength	psi (min)	350,000
Tensile Modulus, Nominal	psi x 10 ⁶	18
Fiber Density, Nominal	STRS/CC	1.44
Fiber Diameter, Nominal	inches	0*000#3

181 Style Fabric Properties

			×			
		Weight (oz/yd ²)		0.25		
	Thick-	ness (Inches)	0.008			
		Weave	8	har-	ness	satin
>	Yarn End Count Yarns/Inch	FIII	48 ± 2 48 ± 2			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Yarn En Yarns	Warp	48 ± 2			
		Yarn Denier	380			
	Yarn Twist,	'l'urns/ Inch	6*0			
	Plies	per Yarn	r			
	Strands	per Ply	<b> </b> 1			
	Filaments	Strand (min)	267			
		Type	Н			

LR 27643



TABLE 2-9. QUALIFICATION TESTING RESULTS REVLAR 49-181/5209 (Continued)

Uncured Properties

	Incun	uncurea Properties	
Property	Unit	Requirement	Test Results
Volatiles Test Temp 275°F Time at Temp. 10 <u>+</u> 2 min	% by wt max	5	0.8% (Ave)
Uncured Resin Content	s by wt	53 ±3	54
Flow 10 min. @ 275 ^o F and 15 psi	કર	22 - 37	34
Gel Time & 275°F	uim	Report for information only	£.
Specification C22-1350/131 Batch #2 Lab Report 325442			

2-29

LR 27643

QUALIFICATION TESTING RESULTS KEVLAR 49-181/5209 (Continued) TABLE 2-9.

Mechanical and Physical Properties

	Me	Mechanical and Physical	cal Properties		
		ľ	Reguirement	Test	Results
Property	Unit	rest Temp. ^o F	<b>A</b>	Åverage	Individual
<ul> <li>Specific Gravity</li> </ul>			1.30 - 1.39	1.33	
Cured Resin Content	žť		38 - 50	41.5	
Water Absorption	a mex		1.0	0.43	
Longitudinal Tensile Strength	ksi (min)	77 -67 160	79 70 78	85 77 85	84.5,85.5,85.5 76.0,76.7,77.4 83.5,83.8,87.0
Longitudinal Tensile Modulus	lo ⁶ psi (min)	77 -67 160	4.2 5.0 4.0	5.1 5.7 4.6	4.9,5.1,5.2 5.6,5.6,5.8 4.5,4.5,4.7
Longitudinal Compressive Strength	ksi (min)	77 -67 160 160 wet <b>A</b>	26 21 21	53 88 83 83 53 53 53 53	28.5,29.0,29.1 37.5,37.6,38.7 23.0,23.4,23.9 21.9,22.9,23.1
			ан области на области 		
Average of 3 determinations for f thickness per ply. Values for al determinations for qualification and 2 with warp face down.	eterminations ply. Values for qualific p face down.	Average of 3 determinations for fiber volume, thickness per ply. Values for all other tests determinations for qualification tests, except and 2 with warp face down.	specific g s are minin t flexural	1	absorption, and cured of a set of 3 2 with warp <b>face up</b>
After 7 days immersion		in water at 125°F.			

2-30

LR 27643

TABLE 2-9. QUALIFICATION TESTING RESULTS KEVLAR 49-181/5209 (Concluded)

ą

ſ

Property Longitudinal Compressive Modulu: Longitudinal Flexural Strength	Wnit Unit 10 ⁶ psi (min) ksi (min)	Mechanical and Physical Test Temp. ^o F T7 160 wet 160 wet 160 wet 33 33 33 35 160 wet 36 36 160 wet 36 36 36 36 36 36 36 36 36 36 36 36 36	cal Properties Requirement 3.6 3.7 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	Test Average 4.0 4.1 3.9 4.1 4.1 4.1 53 53 53	<pre>t Results Individual 3.6,4.0,4.5 3.9,4.0,4.5 3.9,4.0,4.5 3.7,3.8,4.1 4.1,4.2 55,57,60,61 66,68,68,68 52,52,53,53 51,54,54,55</pre>
Longitudinal Flexural Modulus	ksi (min)	77 -67 160 160 wet <b>&amp;</b>	4.8 4.9 9.9	3.8 3.3 3.2	3.7,3.7,3.9,3.9 3.6,3.6,3.8,3.9 3.0,3.1,3.6,3.6 3.2,3.2,3.2,3.2
Longitudinal Short Beam Shear Strength	ksi (min)	77 -67 160 160 wet <b>A</b>	6.0 5.5 6.0 5.8	6.6 5.8 6.4 6.6	6.5,6.7,6.7 5.7,5.7,5.9 6.4,6.4,6.5 6.6,6.6,6.7
(Interlaminar) Tensile Strength	ksi (min)	77 -67 160 160 wet <b>&amp;</b>	2.8 2.2 2.5 1.5	3.3 2.6 3.2 2.0	3.2,3.3,3.4 2.5,2.6,2.8 3.2,3.2,3.4 1.9,2.0,2.0
Cured Thickness per Ply	Inch		T 10 ° 0-600 ° 0	700.0	

LR 27643

SPECIMEN I.D.	FIBER VOL. %	FL Ksi	EL Msi	ε ^{tu} μIN/IN
Qual. Test 1 2 3 4 5 6 7 8 9	65	229 223 200 231 214 233 230 207 213	21.23 20.87 21.05 21.58 20.9	10800 10700 9500 10700 10220
Mean Coef. Var. No. Spec. "B" Basis	65	220 5.5% 9 191	21.13 1.4% 5	10380 5.2% 5 9000
Normalized	63	182	20	9000

# TABLE 2-10.DESIGN ALLOWABLES ANALYSIS T300/5209LONGITUDINAL (0°) TENSION - RTD

LONGITUDINAL	(00)	COMPRESSION	-	RTD
--------------	------	-------------	---	-----

SPECIMEN I.D.	FIBER VOL. %	FL Ksi	EL Msi
Qual. Test 1 2 3 4 5	65.3	241 256 258 254 261	20.12 20.86 20.75 20.48 19.26
Mean Coef. Var. "B" Basis	65.3	254 3% 228	20.29 3.2%
Normalized	63	220	19.5



SPECIMEN I.D.	DENSITY FIBER VOL. % BATCH/ROLL THICKNESS	F _T PSI	et MSI	etu T μIN./IN.
Mat'l. Characterization INC 661 (12 plies) -1 -7 -13 -19 (AVERAGE)	1.5836 gms/ec 65.5% Batch 1473 Roll 5 t = .060 <u>+</u> .001	8299 8371 7927 8247 (8211)	1.448 1.378 1.413 (1.413)	5800 5880 5680 5800 (5790)
COEF. OF VARIATION	%	2.4	2.5	1.4
INC 667 -1 -7 -15 -21 (AVERAGE)	64.7% 1.5785 gms/cc Batch 1473 Roll 5 t = .060 <u>+</u> .001	8224 7936 8268 7880 (8077)	1.441 1.407 1.417 1.486 (1.438)	5800 5800 6000 5300 (5725)
COEF. OF VARIATION	¶₀	2.4	2.4	5.2
INC 681 -14 -11 -18 (AVERAGE)	63.1% 1.5687 gms/cc Batch 1473 Roll 6 t = .058 <u>+</u> .002	5503* 8127 7789 (7958)	1.732 1.697 1.702 (1.710)	3180* 4900 4700 (4800)
COEF. OF VARIATION	%	3.0	1.1	2.9
Qualification Test (8 plies) -1 -2 -3 -4 -5 (AVERAGE)	64.5% 1.5652 gms/cc Batch 1473 Roll 7 t = .040 <u>+</u> .001	7885 8782 9295 9103 9295 (8872)	1.698 1.687 1.733 1.781 1.756 (1.731)	4591 4705 5400 5250 5500 (5089)
COEF. OF VARIATION	<i>¶</i> o	6.65	2.27	8.14
COMBINING ALL SPECIMENS	MEAN COEF. OF VARIAT. NO. OF SPECIMENS "B" BASIS ALLOW.	8362 6.2 15 7295	1.585 9.9 15	5407 8.9 15 4414

TABLE 2-11.DESIGN ALLOWABLES ANALYSIS T300-5209TRANSVERSE (90°) TENSION - RTD

NOTE: Data are from both the Material Characterization Test (13A) and from the Material Qualification Tests.

* Anomalous Failure - Data omitted from Averages



TABLE	2-12.	DESIGN ALLOWABLES ANALYSIS T300/5209	
		TRANSVERSE (90°) COMPRESSION - RTD	

SPECIMEN . I.D.	DENSITY FIBER VOL. % BATCH/ROLL/THICK.	F _T CU F _T PSI	er MSI	$\epsilon_{\rm T}^{\rm CU}$ µIN./IN.
Material Charact. 1NC 661 (12 Plies) -4 -10 -16 -22 (AVERAGE)	1.5836 gms/cc 65.5% Batch 1473 Roll 5 t = .060 <u>+</u> .001 in.	26791 26926 29680 28754 (28038)	1.445 1.381 1.382 1.389 (1.399)	-20300 -21400 -28300 -26400 (-24125)
1NC 667 -4 -11 -13 (AVERAGE)	1.5785 gms/cc 64.7% Batch 1473 Roll 5 t = .060 <u>+</u> .001	28374 27444 28723 (28180)	1.429 1.414 1.435 (1.426)	-25000 -22600 -25500 (-24433)
INC 681 -1 -7 -15 -21 (AVERAGE)	1.5687 gms/cc 63.1% Batch 1473 Roll 6 t = .058 <u>+</u> .002	283,50 27120 27043 26279 (27198)	1.531 1.640 1.622 1.570 (1.591)	-20000 -18300 -19000 -18500 (-18950)
REF. RN569204 COMBINING ALL SPECIMENS	MEAN COEF. OF VAR. NO. OF SPEC. "B" BASIS ALLOW.	27771 3.8 11 25366	1.476 6.6 11	- 22300 15.8 11 - 14300

DATA ARE FROM MATERIALS CHARACTERIZATION TEST 13A.



-

2-34

145 Karth

SPECIMEN I.D.	FIBER VOL %	FX PSI	EX MSI	* G _{lt} MSI	etu X µIN./IN.
2NC 690 -1 -4 -7 -10 (AVERAGE)	63.3	21780 23100 21650 23320 (22463)	2.5 2.34 2.5 2.2 (2.385)	.7 .65 .7 .61 (.665)	<pre>&gt; 10000 &gt; 10000 21000 &gt; 30000</pre>
INC 665-A -1A -4A -7A -10A -13A (AVERAGE)	62.7	22450 22600 23210 22520 22580 (22672)	2.75 2.5 2.65 2.5 2.5 (2.58)	.78 .7 .75 .7 .7 (.726)	> 50000 40000 > 50000 74000 70000
1NC 665-B -1A -4A -7A -10B (AVERAGE)	62.7	22200 22600 24000 23280 (23020)	2.4 2.65 2.65 2.65 (2.588)	.67 .75 .75 .75 (.73)	> 50000 > 50000 > 50000 > 50000 
ALL SPECIMENS	MEAN COEF. OF VAR. NO. SPECS. "B" BASIS	22 <b>715</b> 2.9% 13 21300	2.52 6.0% 13	.71 6.7% 13	

# TABLE 2-13.DESIGN ALLOWABLES ANALYSIST300/5209+45°TENSION-RTD

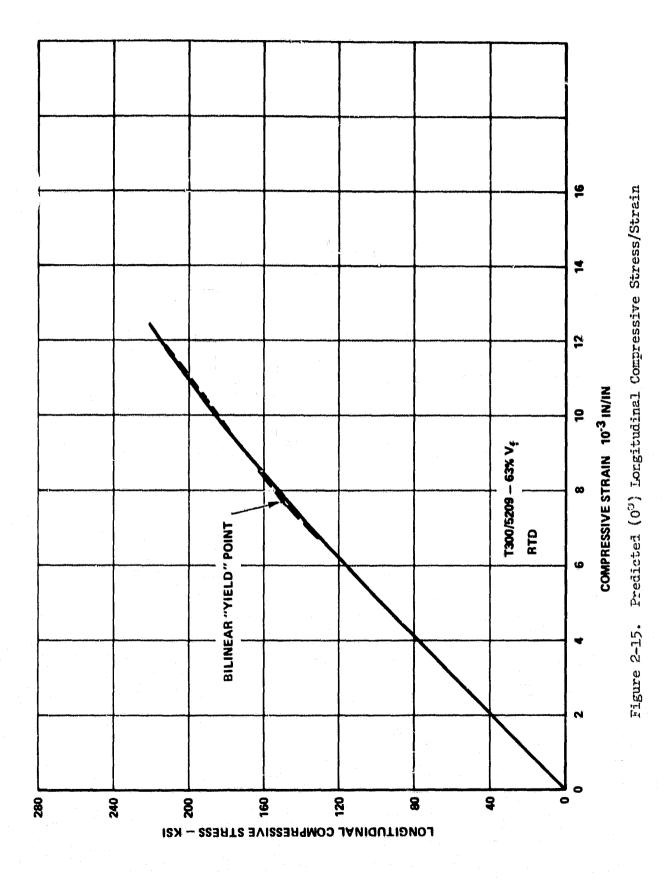
DATA FROM MATERIAL CHARACTERIZATION TEST 13A

 $*G_{LT}$  is the in-plane (0°) Unidirectional Shear Modulus Transformed by Laminated Plate Theory from  $\pm 45^{\circ}$  Tension Test.

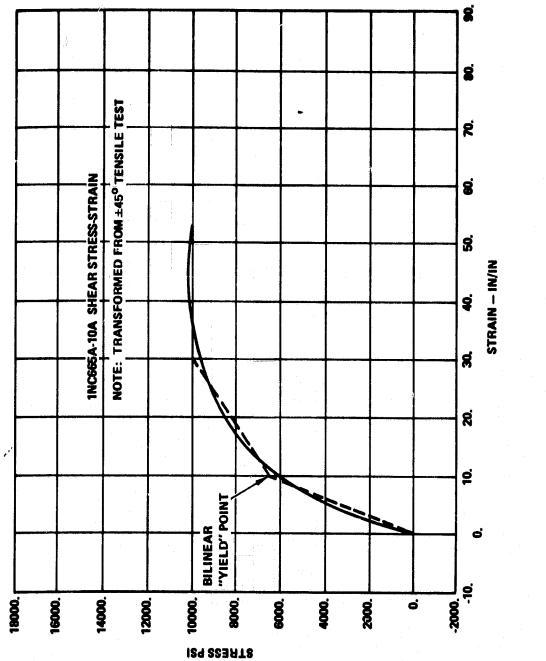


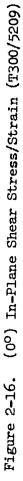
ž i i

a 90% probability of exceedance with a 95% confidence ("B" basis). The  $(0^{\circ})$ longitudinal compression (sandwich beam) tests for the material, qualification used strain gages for modulus. The strain readings were not taken to failure. To project to ultimate strain, the straips at 135.2 ksi (6,850 µin/in) and at 185.9 ksi (9720 µin/in) were used to obtain Ramberg-Osgood parameters, n = 4.097 and k = .00005313. With these parameters, E = 19.5 msi, and  $F_L^{CU} = 220$  ksi, the compressive stress/strain curve shown on Figure 2-15 was derived. The bilinear "yield" point of 150 ksi is approximately 2/3 of the ultimate strength, and the bilinear approximation is shown by dashed lines.


The  $\pm 45^{\circ}$  tensile test results are transformed to  $0^{\circ}$  in-plane shear stress/strain data by taking the shear stress as one-half the tensile stress and the shear strain as the algebraic sum of the longitudinal and transverse tensile strains. Figure 2-16 shows the computer plot for a typical specimen transformed in this manner. The bilinear approximation of the curve is also shown as a dashed line.

The first two columns of Table 2-14 contain room temperature - dry (RTD) design allowables for T300/5209 graphite/epoxy for use in both bilinear (e.g., HYBRID) and linear computer programs. With the exception of Poisson's ratio and thermal expansion (from LTV data) these data are based on Calac tests of material conforming to specification C22-1379/211.


Until further data are available, the environmental reduction factors shown on Table 2-5 of the Second Quarterly Report (ref. 3) have been applied to the RTD properties to approximate  $120^{\circ}F$  wet properties, and the results are shown in the last two columns of Table 2-1^{*h*}.


Table 2-15 contains room temperature dewign properties for Kevlar 49-181 and 1.20 style fabrics with an epoxy matrix for use with bilinear computer programs. They are based on previous tests (including wet conditioning) of PRD 49 (Kevlar 49) with Hysol's 9704, U.S.P. E715, and Hexcel F-155 and documented in Section 4.4 of ref. 5. The results of qualification and acceptance testing of Kevlar 49-181/5209 were statistically analyzed and the data summarized on Table 2-16. These data were combined with the data discussed above to give the 181 cloth data. Since these data include the effects of moisture and temperature no further reduction factors are





1





Direction, Type Of Property CONDITION		Units	Bilinear T300/5209 GR/EP	Linear T300/5209 GR/EP	Bilinear T300/5209 GR/EP	Linear T300/5209 GR/EP	
Ertensional Moduli		CONDITION L, Initial Tensile L, Initial Compres. L, Second Tensile L, Second Compres.	Psi Psi Psi Psi	RTD 20,000,000 19,500,000 20,000,000 14,900,000	RTD 20,000,000 19,500,000		120°F - WET 20,000,000 19,500,000
		T, Initial Tensile T, Initial Compres. T, Second Tensile T, Second Compres.	Psi Fsi Psi Fsi	1,585,000 1,480,000 1,585,000 1,480,000	1,585,000 1,480,000	1,189,000 1,110,000 1,189,000 1,110,000	1,189,000 1,110,000
	LT, Initial Shear Psi 650,000 E LT, Second Shear Psi 175,000		650,000	488,000 129,000	488,000		
		LT, Major Poisson's		.21	.21	.19	.19
Thern	• Ā*ਤ	L, Coef. of Exp. T, Coef. of Exp.	10 ⁻⁶ in./in./ ⁰ F	0.3 15.0	0.3 15.0	0.3 15.0	0.3 15.0
	Tensile	L, Yield Tensile T, Yield Tensile L, Ultimate Tensile T, Ultimate Tensile	10 ⁻³ in./in. 10 ⁻³ in./in. 10 ⁻³ in./in. 10 ⁻³ in./in.	9.0 (180) 4.4 (7) 9.0 (180) 4.4 (7)	9.0 (180) 4.4 (7)	9.0 (180) 4.0 (4.8) 9.0 (180) 4.0 (4.8)	9.0 (180) 4.0 (4.8)
Strains	Compr.	L, Yield Compr. T, Yield Compr. L, Ultimate Compr. T, Ultimate Compr.	10 ⁻³ in./in. 10 ⁻³ in./in. 10 ⁻³ in./in. 10 ⁻³ in./in.	7.7 (150) 14.3 (21) 12.4 (220) 14.3 (21)	11.3 (220) 14.3 (21)	6.6 (129) 15.7 (17) 10.7 (189) 15.7 (17)	9.7 (189) 15.7 (17)
	Shear	LT, Yield Shear LT, Ultimate Shear	$10^{-3}$ in./in. $10^{-3}$ in./in.	10 (6.5) 30 (10)	15.4 (10)	11 (5.4) 33 (8.2)	16.8 (8.2)
Auxil-	iary Data	Fiber Volume Density Ply Thickness	th lbs/in. ³ in.	63 .057 .0051	63 .057 .0051	63 .057 .0051	63 .057 .0051

TABLE 2-14. DESIGN ALLOWABLES FOR T300/5209 GRAPHITE/EPOXY FOR BOTH BILINEAR AND LINEAR COMPUTER PROGRAMS

NOTE: Values in Parenthesis are strengths in Ksi.



-----

TABLE 2-15.

PRELIMINARY DESIGN ALLOWABLES FOR KEVLAR 49 FABRIC/EPOXY FOR BILINEAR COMPUTER PROGRAMS

		Direction, Type of Property	Units	Bilinear Kevlar-49/EP 181 Cloth (281 Cloth) *RT-Wet	Bilinear Kevlar 49/EP 120 Cloth RT
		L, Initial Tensile L, Initial Compres. L, Second Tensile L, Second Compres.	psi psi psi	1,560,000 *1,000,000 1,560,000 * 800,000	4,480,000 3,650,000 4,480,000 280,000
	anətxA uboM	<ul> <li>T. Initial Tensile</li> <li>T. Initial Compres.</li> <li>T. Second Tensile</li> <li>T. Second Compres.</li> </ul>	psi psi psi psi	¹ 4,840,000 *1,000,000 1,840,000 * 800,000	4,480,000 3,650,000 4,480,000 280,000
	Вhear. Вhear	LT, Initial Shear LT, Second Shear	psi psi	350,000 117,000	350,000 117,000
		LT, Major Poisson's		0.15	0.15
	•dxI mredT	L, Coef. of Exp. T, Coef. of Exp.	10-6 in./in./	00	00
*Revise	đ 3/26/	*Revised 3/26/76 based on Kev 49-181/52	Kev 49-181/5209 Qualification Test Data	Data	
NOTE:	Values	in Parenthesis are streng	are strengths in Ksi.		

LR 27643

PRELIMINARY DESIGN ALLOWABLES FOR KEVLAR 49 FABRIC/EPOXY FOR BILINEAR COMPUTER PROGRAMS (Concluded) TABLE 2-15.

I.

ľ

1

Bilinear Kevlar 49/EP 120 Cloth RT	14.6 16.0 14.6 (65.4) 16.0 (71.7)	3.4 3.4 20 (17.0) 20 (17.0)	20 50 (10.5)	50 0.05 0.005-0.004
Bilinear Kevlar-49/EF 181 Cloth (281 Cloth) *RT-Wet	14.6 17.0 14.6 (66.6) *14.9 (72.1)	* 3.2 (12.8) * 3.2 (12.8) *11.0 (12.0) *11.0 (19.0)	20 50 (10.5)	50 0.05 0.010-0.009
Units	10 ⁻³ in./in. 10 ⁻³ in./in. 10 ⁻³ in./in. 20 ⁻³ in./in.	10-3 in./in. 10-3 in./in. 10-3 in./in. 10-3 in./in.	10 ⁻³ in./in. 10 ⁻³ in./in.	₹ lbs/in. ³ in.
Direction, Type of Property	L, Yield Tensile T. Yield Tensile L. Ultimate Tensile T. Ultimate Tensile	L, Yield Compr. T, Yield Compr. L, Ultimate Compr. T, Ultimate Compr.	LT, Yield Shear LT, Ultimate Shear	Fiber Volume Density Ply Thickness
	θĹżznθŢ	гатьтуг • тато)	твэй2	-іііхиА үзві вів(



s

-

Property	Temp. or	Mean KSl or, (MSl)	Number of Spec's	Coef. of Variat. %	"B" Min Strength KSl
Tensile Strength	77 -67 160D	86.6 76.7 84.8	15 <b>*</b> 3 3	3.5 0.9 2.3	80.3 72.4 72.8
Tensile Modulus	77 -67 160D	4.89 5.67 4.57	15 <b>*</b> 3 3	3.7 2.0 2.5	
Compressive Strength	77 -67 160D 160W	28.9 37.9 23.4 22.6	3 3 3 3	1.1 1.8 1.9 2.8	26.9 33.8 20.7 18.7
Compressive Modulus	77 -67 160D 160W	4.03 4.13 3.87 4.13	3 3 3 3 3	11.2 7.8 5.4 1.4	· · ·
Short-Beam Shear Strength	77 -67 160D 160W	7.13 5.77 6.83 6.63	15* 3 15* 3	4.1 2.0 3.3 0.8	6.5 5.1 6.4 6.3
Flexural Strength	77 -67 160D 160W	52.3 67.4 46.1 53.3	19* 4 19* 4	6.6 1.5 10.0 3.2	45.6 63.2 37.1 46.2
Flexural Modulus	77 -67 160D 160W	3.52 3.73 3.32 3.2	19* 4 19* 4	5.6 4.0 6.1 0	
*Indicates a combinatio others are qualificati	n of qual on test r	ification an esults only.	nd four ac	ceptance to	ests. All

TABLE 2-16. STATISTICAL ANALYSIS OF KEVLAR 49-181/5209 TESTS



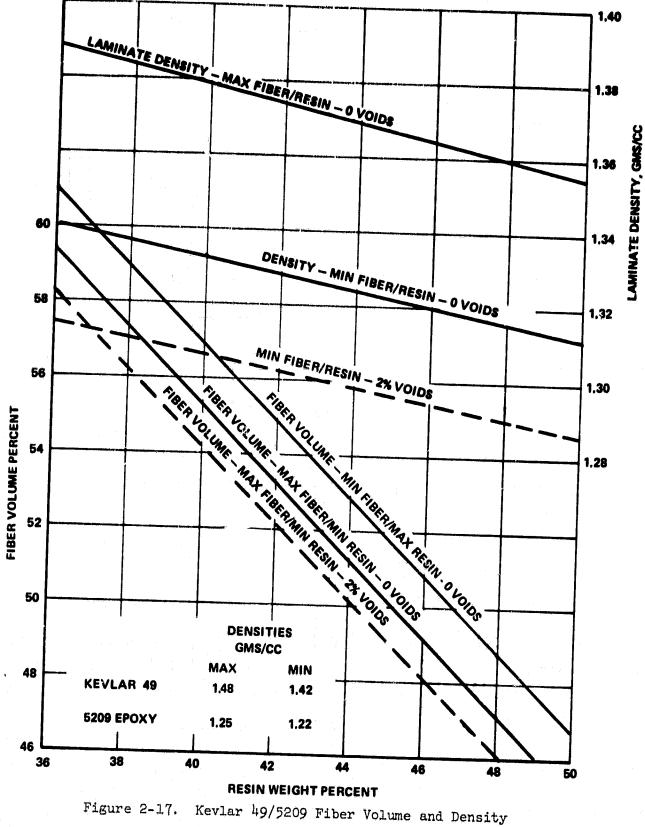
required. These data are treated as preliminary until results of current tests become available.

Figure 2-17 shows the variation of fiber volume and laminate density with resin content for Kevlar 49/5209.

Fastener bearing allowables (RTD) reported in Section 4.2 of the Second Quarterly Report (ref. 3) are being used as preliminary until further tests data become available.

As a preliminary design policy for determining laminate strengths by material characterization programs, the following criteria are established:

- 1. No ply failures in the filament direction are permitted at ultimate load.
- 2. No ply failures in in-plane shear or transverse to the filament direction are permitted at 2/3 of ultimate load.
- 3. Account must be taken of the reduction of laminate ultimate tensile and compressive strengths due to stress concentrations from holes. The method of accounting can be semi-imperical or the factors shown for cutouts in the Advanced Composites Design Guide.


#### Design Curves for Laminate Allowables

Laminate allowable curves suitable for design purposes were developed analytically for T300/5209 graphite/epoxy and are shown on Figures 2-18 through 2-26. Unless otherwise noted, the reduced properties for wet at  $120^{\circ}$ F are shown. The strength and stiffness curves were computed using the "HYBRID" program for the  $(0_i/\underline{+}45_j)_c$  family of laminates.

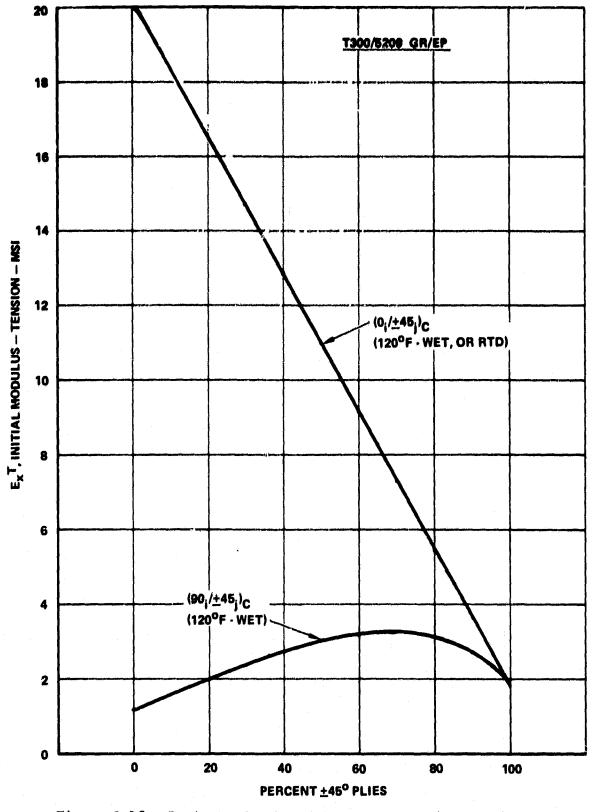
Figure 2-18 shows the initial compressive modulus for the  $(0_1/\pm45_j)_c$  and  $(90_1/\pm45_j)_c$  families of laminates as a function of percent  $\pm45$  degree plies. Based on laminated plate theory, the modulus is only a function of the proportion of plies at a given angle, not of the stacking sequence. For example, either laminate  $(\pm45/0_6/\pm45)$  or  $(45/0_3/\pm45_2/0_3/45)$  would have a modulus in the  $0^\circ$  direction,  $E_x^c = 12.6$  MSI, and in the  $90^\circ$  direction,  $E_y^c = 2.7$  MSI.

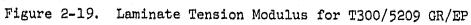


LH 27643

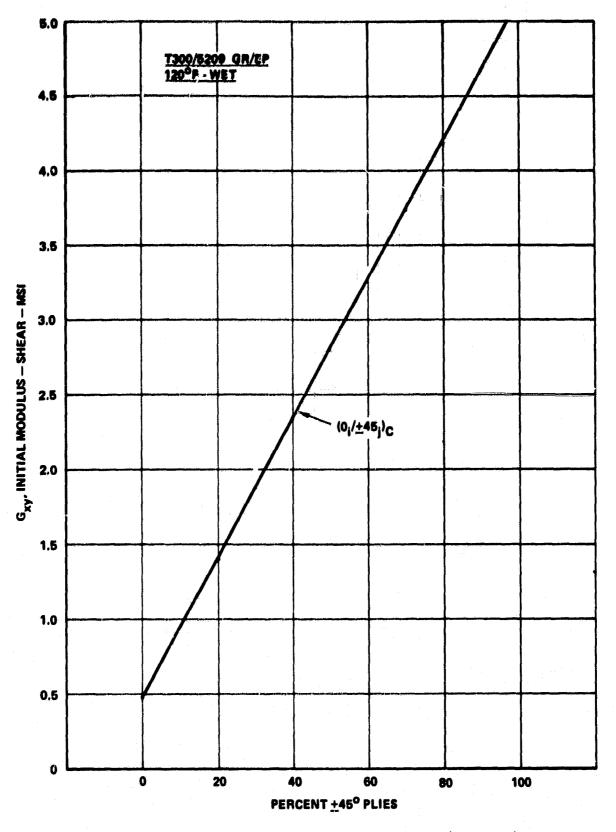


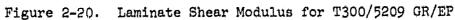


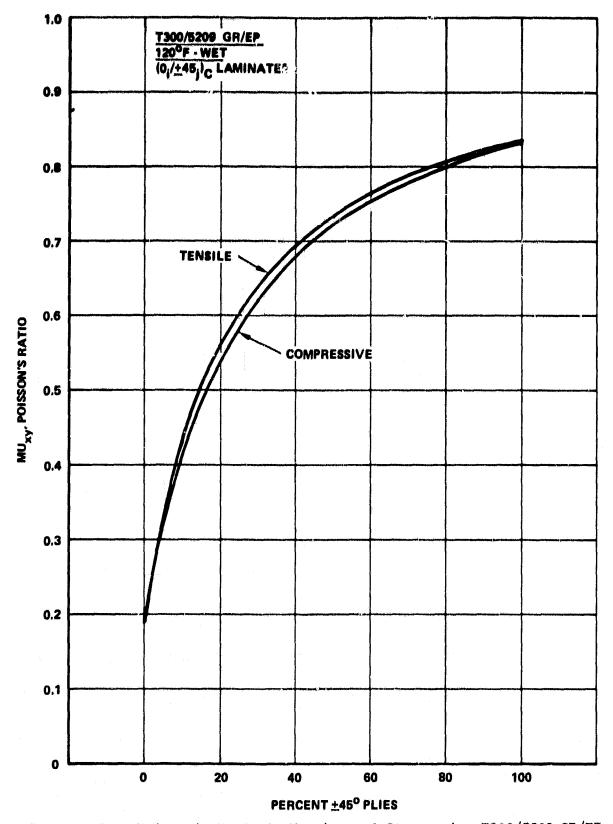

T300/5209 GR/EP  $E_{X}^{C_{z}}$  initial modulus -- compression - MSI (0₁/<u>+</u>45₁)_C (120⁰F - WET; OR RTD) · (90¦/<u>+</u>45_j)_C (120⁰F - WET) . 80 PERCENT ±45° PLIES

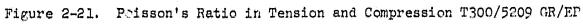

Figure 2-18. Laminate Compressive Modulus for T300/5209 GR/EP




2-45


LR 27643















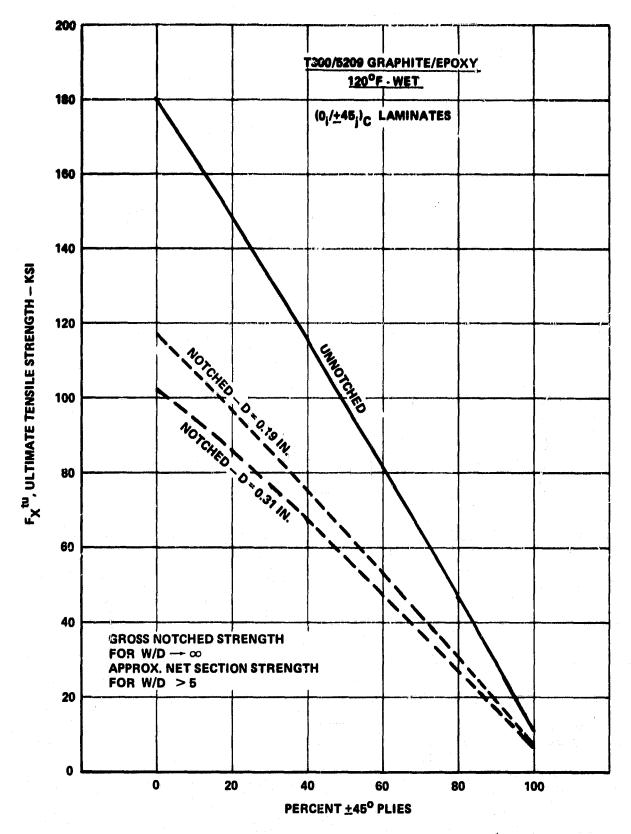




Figure 2-22. Preliminary Tensile Strength - T300/5209

町の時間市

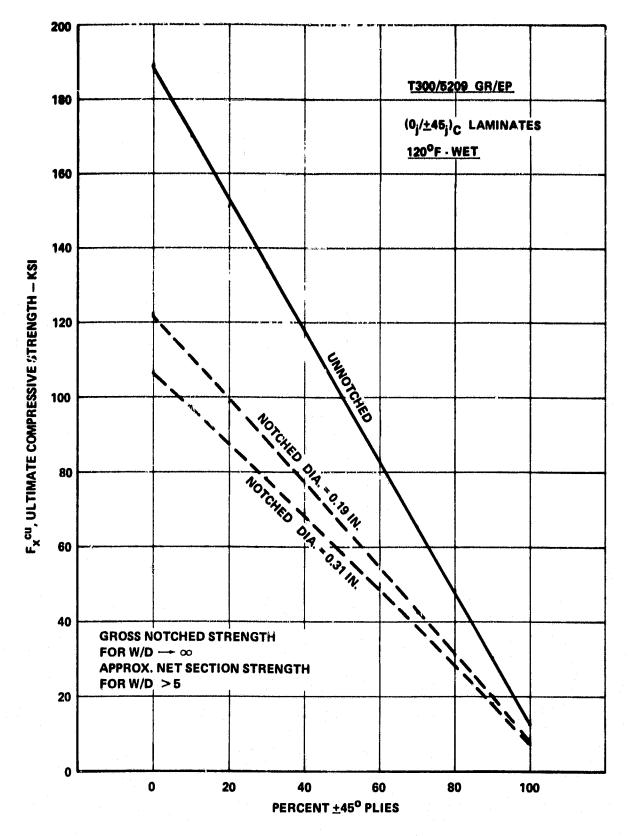
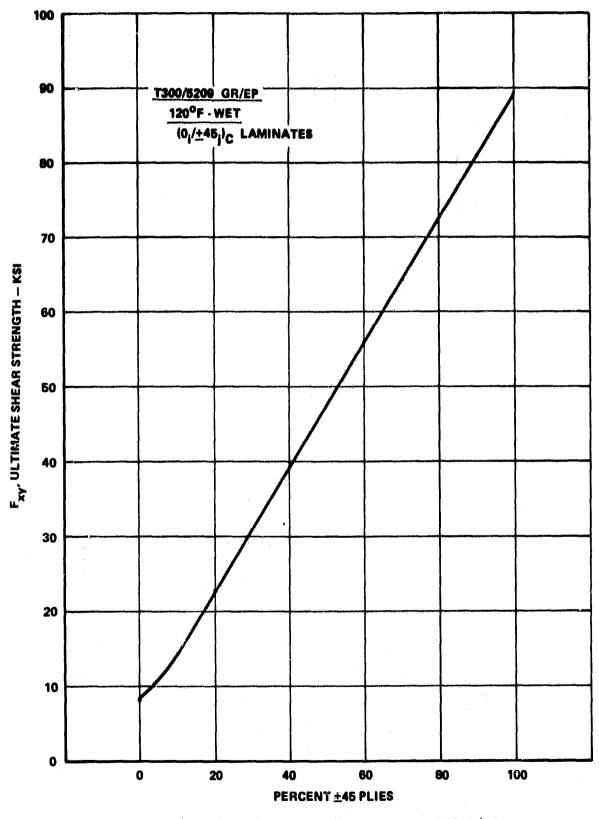
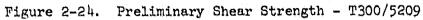
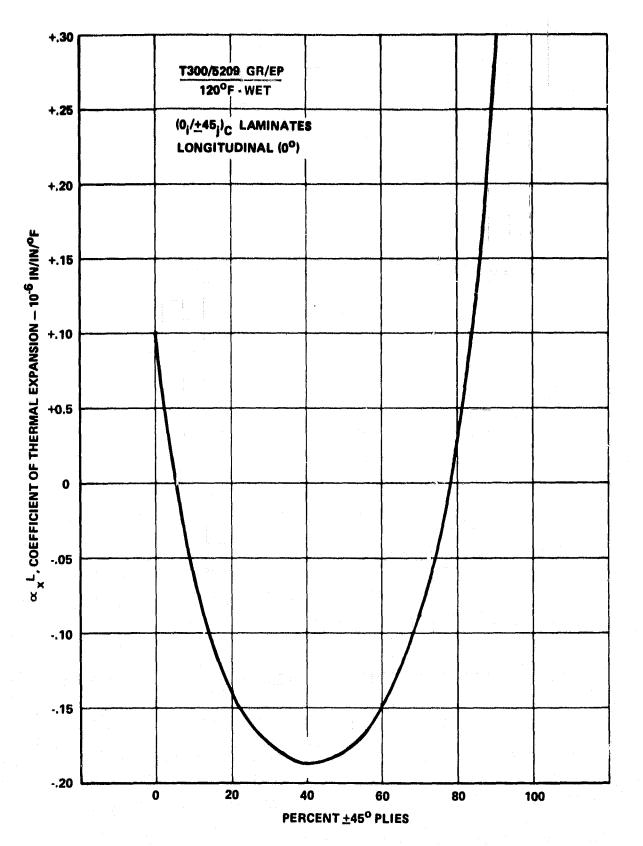
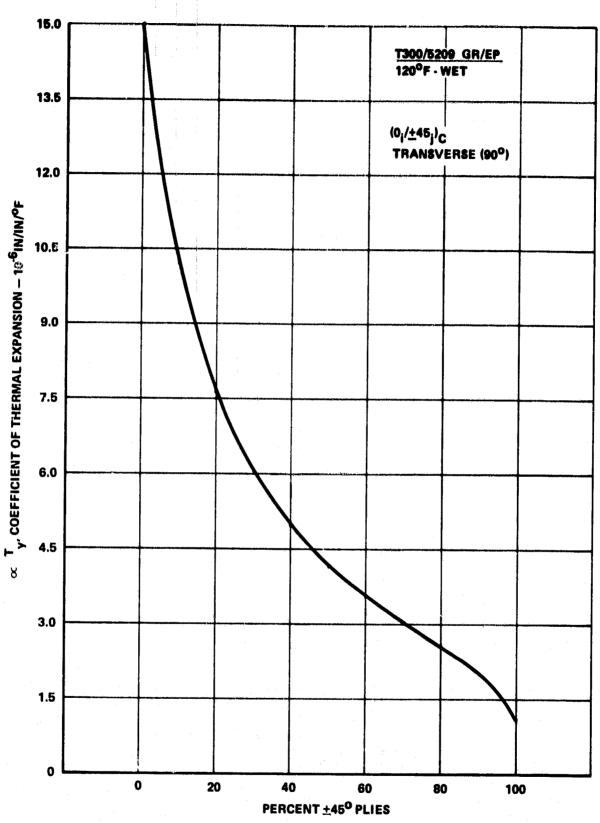
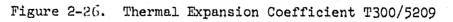






Figure 2-23. Preliminary Compressive Strength - T300/5209






### Figure 2-25. Thermal Expansion Coefficient T300-5209



LR 27643





2-53

1.1.1.1.1.1

s

1.

140

1

LR 27643

•

Figure 2-22 shows the tensile strength of  $(0_{j}/\pm 45_{j})_{j}$  laminates as a function of percent  $\pm 45^{\circ}$  plies. The unnotched strength is based on the output of the HYBRID program. The notched strengths for unloaded single holes of diameter 0.19 in. or 0.31 in. are the product of the unnotched strength and a notched strength ratio determined by the method of Nuismer and Whitney in ref. 6. This method uses the "average stress criterion" with a characteristic dimension,  $a_0 = 0.15$ . Experimental results with graphite/epoxy have shown very good correlation for small holes (D = 0.12 to 0.31 inch) in laminates of 0/90,  $0/\pm 45/90$ , and  $0_0/\pm 45$  orientations. The curve for D = 0.19 inch corresponds quite well with Figure 3-42 of ref. 7 which was used for preliminary design of the ACVF. Figure 2-22 should be used in lieu of Figure 3-42 of ref. 7. The theory is based on the gross strength for a wide plate. However, for a width-to-diameter ratio of five, the theoretical stress concentration is increased by less than 10 percent and the strength for small holes is reduced less than 1 percent. Therefore, these strengths are satisfactory for net section strengths with width-to-diameter ratios greater than five.

The notched compressive strengths are based on the same method used for notched tensile strength.

Figure 2-24 shows the unnotched shear strength. The method of computing notched tensile strength has not yet been demonstrated to be applicable to computing notched shear strength. However, for preliminary design purposes, the notched to unnotched ratios for tensile strength will be applied to the shear strengths.

It should be noted that these curves are based on the best currently available data. However, as more test data becomes available, they will be subject to revision and update.

### Material Characterization Tests

The material characterization test program is summarized in Table 2-17. Those tests that have been completed are indicated by the circled coupon numbers. The data that has been generated is being tabulated and carefully reviewed. They will be included in the next quarterly report. The 0[°] tensile



MATERIAL CHARACTERIZATION TEST PROGRAM (#13A) THRONEL 300/5209 UNIDIRECTIONAL TABLE 2-17.

ţ 1000 100

440

- - Hantler

Ġ

							*		SUSAL NOADO			
TEST TYPE	MAT'L BATCHES	PROCESS BATCHES	NO. PLIES	COUPON	NO. FIBER VOLUMES	B.T. DRY	R.T. WET	-65°F WET	+1200F WET	1160°F	TOTAL NO. TESTS	STRAIN
0 ⁰ Tension	m	ы	6	0.5 x 11	r-1	6	1	1	1	ı	6	T-Gage
		r=i	10		* N	P	1		1	t	0T	<b>4</b>
	r-1	rH	9		н	9	9	6	ł	୭	52	
	r1	r4	12		ч	9	ł	1	1	ţ	ŝ	
0 ⁰ Tension	rH	٢	16	0.5 × 11	r٦	@	ł	1	1	ł	ŝ	T-Gage
±450 Tension	м	r-1	72	11.0 x 11	rH	9	3	@	0	@	Ř	T-Gage
	1	Ъ	12	1.0 x 11	¢1	10	1	•	1	ł	10	T-Gage
90 ⁰ Tension	Ч	щ	12	Sandwich	ret	9	5	3	٩	6	R	Axial
				1.0 x 22	*	PI	1	1	1	I	OT	Acial
0 ⁰ Compression	m	rH	6	Sandwich	щ	6	1	•	•	1	6	T-Gage
	<b>r-</b> 1	r=l	9	1.0 x 22	щ	9	9	6	6	6	R	<b></b> 1
0° Compression	r-l	r*1	9		* N	0T	1	I	1	t	10	T-Gage
90 ⁰ Compression	г	-1	12	Sandwich	rri	9	9	6		@	25	2-Adal
	r~1	н	12	1.0 x 22	* N	10	1	1	1	t	10	2-Acial
0°-90° Rail Shear	rt		12	3 x 6	Ч	6	1		1	•	5	Rosette
±45° Rail Shear	Γ <b>Γ</b>	1	12	3 x 6	Ч	6	1	1	t	1	5	Bosette
0° Interlam. Shear	m	r-1	36	0.25 x 0.6	rri	9	3	3	6	Q	25	1
	T	г	16	0.25 x 0.6	* ณ	9	I	1	ţ	£	OT	ţ
					Total	153	30	Ř	20	ଚ୍ଚ	263	
* Min. & Max. Fiber Volumes	Volumes			,	** Circled tests have been completed by 3-26-76.	tests	have 1	sen cos	pleted 1	by 3-26-1	r6.	

Material Systems: 5209/T300 Graphite Determine: Density, fiber content, water gain each panel Wet Conditioning and test per MIL-HDBK-17A, Para. 4.2.6: 1,000 hours at 125<u>+</u>5⁰F and 95-100% R.H.

LR 27643

2-55

tests showed moduli approximately 10 percent below that obtained during qualification testing. It was found that the pebbled texture of the surface adjacent to the peel ply resulted in thickness errors when measured with an anvil micrometer. The specimens for qualification tests were measured with a point micrometer. When this was accounted for, the moduli were consistent between the two tests.

Table 2-18 summarizes thickness and width changes of the tensile coupons after moisture conditioning per MIL-HDBK-17A, Paragraph 4.2.6 (ref. 4): 1000 hours at 125  $\pm 5^{\circ}$ F and 95-100 percent relative humidity. These coupons had a resin content of 28.8-29.0 percent and a weight gain of 1.28 to 1.37 percent of water. The expansion in the width direction would be constrained by adjacent plies in an angle-ply laminate. This imposes a stress similar to thermal expansion stresses in angle-ply laminates. It corresponds to thermal expansion stresses resulting from a  $\pm 400^{\circ}$ F temperature differential. This effectively cancels out the stresses from contraction after cooling from curing to room temperature and puts the matrix in compression. A  $0_2/\pm 145$  laminate was analyzed with HYBRID, and this effect was found to suppress matrix crazing and to have an overall beneficial effect on laminate strength.

The results of moisture weight gain measurements after MIL-HDBK-17A exposure for 6, 12, and 16-ply T300/5209 laminates are compared with that predicted for T300/5208 laminates on Figure 2-27. The prediction for T300/ 5208 was based upon McKague's diffusion model (based on Fick's Law) and the required material parameters from a paper by Shirrell and Mahoney presented at the Air Force Workshop on Durability Characteristics of Resin Matrix Composites at Battelle's Columbus Laboratories, September 30 - October 2, 1975.

The available physical property test data for panels used for material characterization test 13A are summarized on Table 2-19. The calculated thickness per ply in mils is based on  $t = A_w/25.4(1 - C_B) D_L$ 

where:  $A_W$  = Areal Weight = 144 <u>+4</u> GMS/m²  $C_R$  = Resin Weight Fraction  $D_T$  = Laminate Density, GMS/cc



	THICKN	ESS (AVG OF 4 M	ismis)	WIDT	H (AVG OF 4 MSM	TS)
SPECIMEN NO.	INITIAL	AFTER 40 DAYS CONDITIONING	% CHANGE	INITIAL	AFTER 40 DAYS CONDITIONING	% CHANGE
2NC695A						
3	.0335	.0340	1.49	.4997	.5027	0.60
5	.0329	•0333	1.22	.4975	.5006	0.62
6	.0338	.0341	0.89	.4971	.5005	0.68
9	.0318	.0322	1.26	.4976	.5010	0.68
10	.0331	.0334	0.91	.4979	.5012	0.66
12	.0336	.0341	1.49	.5003	.5037	0.68
2NC695B						
2	.0337	.0341	1.19	.4978	.5011	0.66
3	.0334	•0337	0.90	.4982	.5011	0.60
4	.0334	.0339	1.50	.4981	.5011	0.60
8	.0336	.0341	1.49	.4978	.5007	0.58
10	.0333	.0337	1.20	.4969	.5000	0.62
13	.0332	.0334	0.60	.4969	.5001	0.64
1NC698						
2	.0336	•0338	0.59	•5035	.5067	0.64
3	.0337	.0341	1.19	.5040	.5071	0.62
4	.0334	.0336	0.60	.5043	.5073	0.59
6	.0330	.0334	1.21	.5043	.5074	0.61
7	.0334	.0339	1.50	.5041	.5072	0.61
9	.0319	.0323	1.25	.5032	.5067	0.70
11	.0341	.0346	1.47	.5030	.5061	0.62
13	.0336	.0338	0.60	.5031	.5064	0.66
14	.0336	.0341	1.49	•5035	.5068	0.66
		(1.14 <u>+</u> 0.3	4)%		(0.63 <u>+</u> 0.0	3)%

TABLE 2-18. DIMENSIONAL CHANGE IN T300/5209 6-PLY UNIDIRECTIONAL TENSION SPECIMENS AFTER 40 DAYS CONDITIONING AT 95% RH/125°F



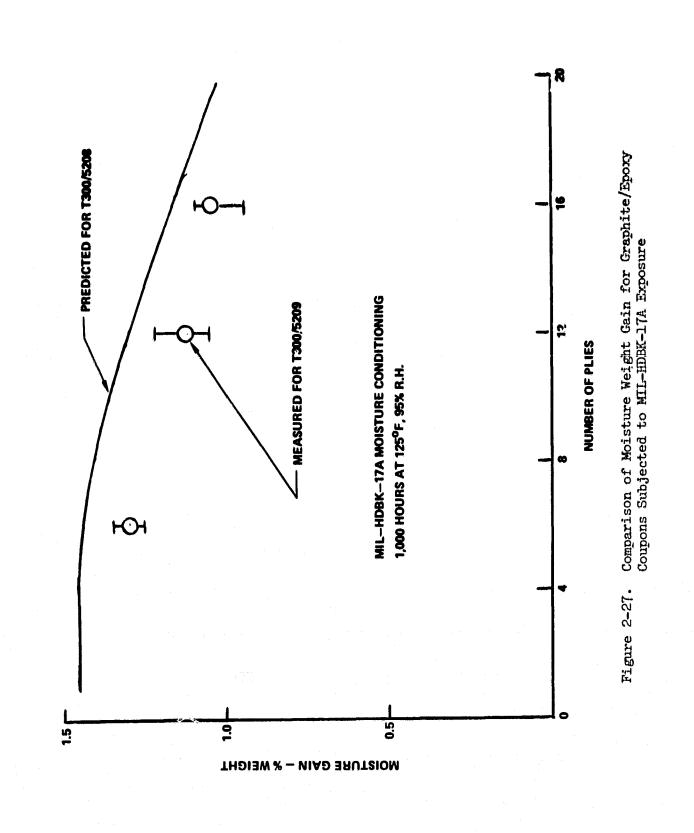





TABLE 2-19. PHYSICAL PROPERTIES

I

E

I

I

1

[]

1

[]

[]

[]

[]

[]

Į.

I

46

Fiber Volume	R	63.6	63	63	61.6	61.4	60.8	6.19	63.9	63.3	63.3	62.3	63.0	58.2	65.4	62.3
Resin Content	5	28.8	29.0	29.0	27.8	26.2	31.6	27.8	28.6	29.2	29.2	30.1	29.3	33.5	27.2	30.1
Density	GMS/CC	1.5712	1.5944	1.5944	1.5753	1.5789	1.5640	1.5825	1.5740	1.5740	1.5740	1.5681	1.5658	1.5416	1.5805	1.5681
Calculated Thickness Fer Ply	Mils	5.07	5.01		4.98	5.00	5.30	4.96	5.0k	5.09	5.09	5.17	5.12	5.53	4.93	5.17
Messured Thickness Per Ply	Mils	5.56	5.59	5.59								5.28	5.31			5.28
No. of Plies		9			12	16	9	9	9	9	9	12	12	12	12	12
Farel Specimen	_	1NC698	2NC695A	2806953	SNC659	1NC660	1100695	INC691	180698	6mm14	4NC659	1NC665	200690	11/100	INCTOL	1NC665
Orieni		00			00	00	00	00	00	0	0	545				±45
Test Description		Baseline Tension			Thick	Thick	High Resin	Low Resin	Batch Variables			±45 Tension	Baseline	High Resin	Low Resin	±45 Shear
Batch/Roll		1473/6	1473/6	1473/6	1473/5 5	1473/5	1473/6	1473/6	1476/6	1983/6	1473/5	1473/5	1473/6	1473/6	1473/6	1473/5

LR 27643



TABLE 2-19. PHYSICAL PROPERTIES (Continued)

Besin Fiber Density Content Volume	GMS/CC #5 45 65.5	i	1.5785 27.9 64.7	1.5687 29.2 63.1	30.1	1.5353 33.9 57.6	1.5854 26.7 66.1	1,5683 29-3 63-0	1.5731 28.1 65.0	1.5513 35.0 57.3	1.5887 26.9 65.9		1.5795 28.2 64.4		1.5747 27.9 64.4	27.9 28.6	27.9 28.6 6.6	27.9 28.6 30.6 27.2	27.9 28.6 27.2 20.3
Calculated Thickness Fer Fly Dem	Mits GMS L CO	i	4.98 1.5	2-10 1-5		5-59 1-5	4.88 1.5	5.11 1.5	5-01 1.5	5.62 1.5	4.88 1.5		5.00 1.5		5.95 1.5		n fill fan	adianiyaan adaan ista amaalad Josephinikaan	
of Thickness es Per Ply	slix 1 os		<b>t</b> -92	1.96				5.30	5-22	5-75	7-65					- 10			
Panel Specimen No. of I.D. Plies	C1 177041	TOODNET	INC667 IL2	1%C681 12	LNC662 12	2NC700 12	2HC701 12	4 HC660 12	346683 16	3AC700 16	34/2/01		11/2/08 6					and the second	
Orient	0000	3						06/0	0	ç	o	, O						Ö	00
Test Description		90 Tension and Compression		-		High Resin	Low Resin	(0/90) Rail Shear	Interlauinar Shear	High Resin	Low Resin	Baseline O ² Compr.					High Resin	High Resin Low Resin	High Resin Low Resin Batch Variables
Batch/Roll		1#73/5	1473/5	1473/6	1473/5	9/EL4I	1473/6	1&73/5	1473/6	1473/6	1473/6		1473/4	1473/-		1473/4	1473/4 1473/4	1473/4 1473/4 1473/4	1473/4 1473/4 1483/6 1483/6





The thickness has a tolerance of  $\pm 0.17$  mils due to the tolerance on the areal weight.

The material characterization tests for transverse  $(90^{\circ})$  tension and compression at room temperature-dry (RTD) and at  $160^{\circ}$ F wet have been analysed and the results are summarized on Tables 2-20 through 2-23. These tables supercede, include more tests, and differ slightly from those shown on Tables 2-11 and 2-12. Table 2-20 shows that including the qualification test results did not significantly alter the  $90^{\circ}$  tension RTD "B" allowables. A careful analysis of the test specimens and results showed that some had ply but splices for half of the plies in the gage length. For some of these the strain gage was located on the butt splice, and these gages showed higher strains than registered on a gage located one inch away. Consequently, the resultant modulus was not included in the analysis. In general, the allowables are slightly better than the preliminary design allowables shown in Table 2-14. Of the data analyzed to date the exception is the transverse compression strength and strain at  $160^{\circ}$ F wet which are slightly lower than the predicted  $120^{\circ}$ F-wet valves.

Poisson's ratio for  $0^{\circ}$  tension-RTD averages 0.30. At room temperature wet and  $65^{\circ}F$  wet it drops to 0.26. At  $160^{\circ}F$  wet the data has substantial scatter and is still being analyzed.

### 2.2.2 Mechanical Joint Tests

The fastener push-through dry specimen tests have been completed. The test setup is shown in Figure 2-28 and the results are shown in Table 2-24.

The single-lap shear specimens are being drilled and assembled.

#### 2.3 TASK 3 - FABRICATION

This task covers the fabrication of ancillary test items and structural components, and nondestructive inspection techniques.

### 2.3.1 Ancillary Test Specimens

Fabrication of manufacturing verification ancillary test specimens NOs. 25 through 29 has commenced. These test specimens are fabricated to

		LUNWO A FUOF	()0 / 20			
Specimen I.D.	Batch/ Roll	Fiber Vol %	rtu Fr psi	Er msi	$\epsilon_T^{tu}$ µin./in.	Comments
1NC661	1473/5	65.5				
-1 -7 -13 -19			8660 8370 8320 8320	_ (1.36)* (1.36)* (1.35)*	6080 5700 5800	No gage, 2 1, 2 1, 2 1, 2
1NC667	1473/5	64.7				
-1 -7 -15 -21			8460 8130 8500 8440	1.47 (1.41)* (1.40)* 1.52	5800 5300 6000 5300	2 1, 2 1, 2 2
1NC681	1473/6	63.1				
-4 -11 -18			(5350) <b>*</b> 8310 7670	1.64 1.66 1.60	(3180) <b>*</b> 4900 4700	5 2
1NC706	1473/3	64.2				
-h -11 -18			7100 8140 8000	(1.44)* 1.51 (1.46)*	5000 5480 5790	1, 4 2 1, 3
2NC706	1473/3	64.2				
-4 -13 -21			(4210)* 8060 7730	1.54 1.69 1.56	(2850) <b>*</b> 4840 5040	5 2 2
No. of Specimens Mean Coef. of Variat.% "B" Basis Allow			15 8150 4.9 7300	9 1.58 4,8	14 5440 8.6 4460	
2, Vali 3, Fail 4, Fail	data omi at ply d failur ed adjac ed adjac		mean e age lengt under loa butt spl	h ding pad ice		

# TABLE 2-20.T300-5209 DESIGN ALLOWABLES ANALYSISTRANSVERSE (90°) TENSION - RTD

Specimen I.D.	Density Fiber Vol. % Batch/Roll Thickness	F ^{tu} T psi	E _T msi	ε ^{tu} Ψ µin./in.
Qualification Test (8 plies) -1 -2 -3 -4 -5	64.5% 1.5652 gms/cc Batch 1473 Roll 7 t = 0.040	7885 8782 9295 9103 9295	1.698 1.687 1.733 1.781 1.756	4591 4705 5400 5250 5500
(Qual. Test Only) No. of Specimens Mean Coeff. of Variat.% "B" Basis Allow.		5 8870 6.7 6860	5 1.73 2.3	5 5090 8.1 3700
(Combing Qual. Test and Mat'l Char. Tests) No, of Specimens Mean Coeff. of Variat.% "B" Basis Allow.		20 8330 6.5 7300	14 1.63 6.1	19 5350 8.8 4430

## TABLE 2-20. T300/5209 DESIGN ALLOWABLES ANALYSIS TRANSVERSE (90°) TENSION - RTD (Continued)



È

Specimen I.D.	Batch/ Roll	Fiber Vol %	F _T ^{tu} psi	Etu msi	$\epsilon_{\rm T}^{\rm tu}$ µin./in.	Comments
1NC661 -3 -28	1473/5	65.5	7330 6870	1.38	6000 5600	1 1
1NC667 -10 -13	1473/5	64.7	6930 6490	1.28	7300 6000	1 1
1NC681 -3 -10	1473/6	63.1	6780 7170	1.39 1.36	5700 5900	1 1
1NC706 -5 -13 -21	1473/3	64.2	6080 6060 5250	1.29 1.35 1.21	5620 5600 5680	4 3 1
2NC706 -5 -15	1473/3	64.2	(4510) <b>*</b> 5470	1.23	(5000) <b>*</b> 5800	2 4.
No. of Specimens Mean Coef. of Variat.% "B" Basis Allow			10 6),40 11.0% 4800	11 1.30 4.8%	10 5900 8.6% 4700	

TABLE 2-21. T300/5209 DESIGN ALLOWABLES ANALYSIS TPANSVERSE (90°) TENSION - 160°F WET

3, Failed at ply butt splice 4, Failed outside central span



Specimen I.D.	Batch/ Roll	Fiber Vol %	F _T CU Psi	E _T CU Msi	CU ET µin/in	Comments
1NC661	1473/5	65.5				
_14	14/3/2	02.5	28 300	1.55	-20300	2
-10			26 200	(1.38)*	-21400	1,2
-16			29 700	(1.40)*	-28300	1,2
-22			29 500	1.49	-26500	2
1NC667	1473/5	64.7				
-1+			28 600	1.50	-25200	2
-11 -18			28 100	1.52	-22600	2
=10			29 600	1.51	-25500	5
1NC681	1473/6	63.1				
-1			27 800	1.62	-20000	2
-7 -15			27 700 26 600	1.81	-18300 -19000	2
-21			25 600	1.55	-18500	2
1NC-706 -8	1473/3	64.2	01.000	(1. 1.01#	00700	
-0 -14			24 290 25 310	(1.40)* (1.49)*	-20700 -20200	1,3
			27 510	14.421	-20200	4,6
2NC706	1473/3	64.2				
-2 -9			28 470 29 600	1.47	-23500 -23600	3
-17			29 760	1.56	-23000	3
No. of Specimens			16	12	16	
Mean			27 800	1.562	-22300	
Coef. of Variat. %			6.3%	5.7%	13.4%	
"B" Basis Allow			24 300		-16200	

## TABLE 2-22. T300/5209 DESIGN ALLOWABLES ANALYSIS TRANSVERSE (90°) COMPRESSION - RTD

- 2, Valid failure within gage length 3, Failed adjacent to or under loading pad

LOCKHEED

12

[]

1

0

[]

0

U

Specimen I.D.	Batch/ Roll	Fiber Vol %	F ^{CU} T Psi	E ^{CU} T Msi	CU eT µin/in	Comments
opecimen 1.01						
1NC661	1473/5	65.5				
-11			18 100	1.34	-21900	1
-14			18 100	1.35	-19400	1
	1473/5	64.7				• •
1N667	41012		17 300	1.31	-20800	1
-3 -17			19 500	1.38	-23800	1
	1.72.6	63.1				
1NC681	1473/6	03.1	17 200	1.20	-21800	1
-13			18 700	1.20	-21800	1
-17						
1NC706	1473/3	64.2	1.000	1.37	-16000	2
-1			15 /050 15 390	1.37	-18000	2 .
-9			15 390	1.32	-20000	2
-17			10 340	2.36		
2NC706	1473/3	64.2			0(200	1
-12			17 230		-26100	
-19			17 120	1.30	-18000	1
No. of Specimens Mean Coef. of Variat. % "B" Basis Allow			11 17 400 6.9% 14 600	5.3%	11 -20700 13.8% -15000	

## TABLE 2-23. T300/5209 DESIGN ALLOWABLES ANALYSIS TRANSVERSE (90°) COMPRESSION-160°F WET

LOCKHEED

2-66

NA CH

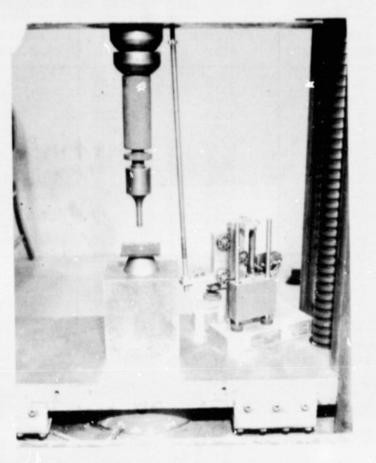



Figure 2-28. "Cookie" Push-Thru Test

shop orders which document the detailed sequence of operations required to correctly fabricate the specimens. They become the permanent record of the materials and processes used during fabrication. Appropriate entries are provided for Quality Assurance. Figure 2-29 shows the layup of hats for ancillary test specimens, with an inspector verifying compliance with the shop order.

The No. 26, No. 28, and No. 29 specimens are complete. A No. 26 specimen is shown in Figure 2-30. The No. 26 and No. 29 specimens were fabricated by Manufacturing Research personnel using Phase I development tooling. The remaining specimens, Nos. 25, 27, and 28 are being fabricated on the 100-inch subcomponent tooling in the Production clean room. Production personnel are working under Manufacturing Research guidance to learn the techniques required.



1

[

1

[]

2-67

55.50

سيركدها الأراب الأجراب كيسيشيها جامعا السال	i dana kamatan dini kalendara kana kana kana kana kana kana kana k				
LAYUP	LAMINATE THICKNESS	FASTENER SIZE	HOLE DIAM.	FAILURE INITIAL	LOAD FINAL
у 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	0.0816 0.0799 0.0795 0.0804 0.0819 0.0945 0.0935 0.0935 0.0935 0.0938 0.0929 0.1314 0.1329 0.1298 0.0948	3/16 3/16 3/16 5/32 5/32 3/16 3/16 3/16 5/32 5/32 5/32 5/32 3/16* 3/16* 3/16	0.1903 0.1930 0.1927 0.1637 0.1636 0.1638 0.1897 0.1896 0.1895 0.1635 0.1635 0.1640 0.1639 0.1905 0.1905 0.1905 0.1905	374 605 700 550 525 615 745 905 503 620 720 550 1515 1365 847 490	374** 605 700 550 525 615 810 905 503 680 720 635 1730 1695 847 490**

TABLE 2-24. FASTENER PUSH THROUGH TEST RESULTS

*Protruding head

**Laminate Bending Failure (Trial Pullthrough)

Layups: 1.  $\pm 45_2/0/\pm 45/0/\mp 45/0/\mp 45_2$ 2.  $\pm 45_2/0_2/\pm 45/0_2/\mp 45/0_2/\mp 45_2$ 3.  $(\pm 45/0_2/\pm 45/0_2/\pm 45/0_2)_2$ 

Figure 2-31 shows how the skin for Specimen No. 28 was laid up on the subcomponent tool. The graphite prepreg is being worked down with Teflon paddles to remove entrapped air. The skin was cured separately and the previously molded hats were secondarily bonded to the skin on the subcomponent tool as shown in Figure 2-32. The completed panel is shown in Figure 2-33.

Specimens No. 27A and 27B are 75 percent complete and layup of Specimen No. 25A has been started.

### 2.3.2 Nondestructive Inspection

With the initiation of Phase II - Detail Design activity, available nondestructive inspection (NDI) methods were evaluated for their potential applicability to this program. The methods considered were based on current state-of-the-art technology. Of primary interest was accurately locating and



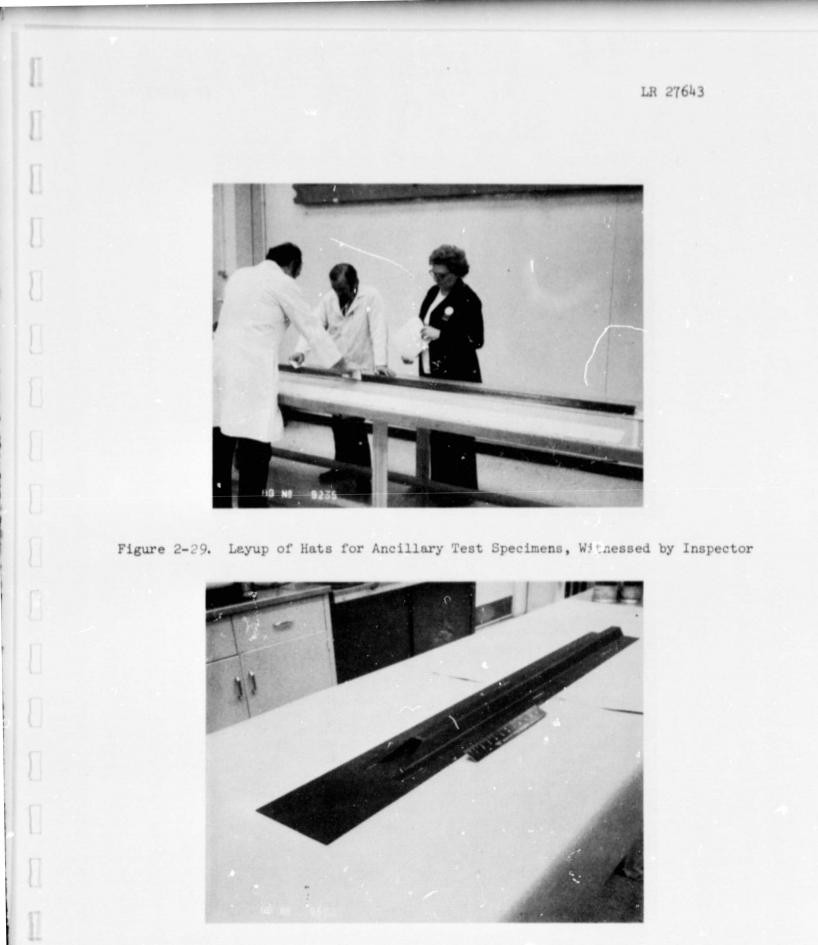



Figure 2-30. Ancillary Test Specimen No. 26, Hat Runout



1

I



Figure 2-31. Layup of Skin for Specimen No. 28

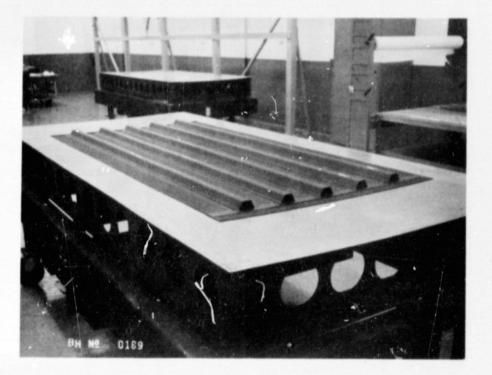



Figure 2-32. Specimen No. 28 After Bonding Hats to Skin on Bonding Tool



ORIGINAL PAGE IS OF POOR QUALITY





Figure 2-33. Ancillary Test Specimen No. 28

sizing voids, delaminations and concentrated porosity. The selected method of inspection would be required to meet the following criteria:

- · Rapid and relatively economical inspection.
- The ability to detect and locate discontinuities in multilaminate composites and adhesive bonded structures.
- · Provide a permanent record of inspection results.
- Provide a high degree of reliability.

Based on the above criteria, ultrasonic inspection utilizing an automated scanning system with C-scan capabilities was selected as the method to use in this phase of the program. The method lends itself to automation and has the capability of providing a two-dimensional plan view permanent record (i.e., C-scan recordings.).

LOCKHEED

B

1

The two basic ultrasonic techniques applicable to laminated and adhesive bonded structures are Pulse-Echo and Thru-Transmission. In the Pulse-Echo test mode, one crystal acts as both the transmitter and receiver. In this instance, it is the reflected signal from the flaw and/or the back surface that provides the pertinent data as to the presence or absence of a discontinuity.

The Thru-Transmission technique may be divided into two subcategories: two transducer and single transducer - Reflector Plate. In the two-transducer test mode, one transducer acts as the transmitter and a second transducer acts as the receiver. The amount of energy transmitted through a given section is then evaluated. In the single-transducer Reflector Plate mode, a single transducer acts as both the transmitter and receiver. The energy is transmitted through the section and reflected from a smooth surface back through the section and received by the transducer. The amount of energy received is then evaluated.

The selection of ultrasonics as the inspection method resulted in the requirement to develop suitable calibration standards. The primary objective was to obtain representative calibration standards containing planned subsurface discontinuities for specifi N.D.I. technique development. Meetings held with Engineering and Manufacturing personnel, resulted in the decision to place planned discontinuities in each specimen fabricated for the ancillary test program. Past experience indicated the use of teflon inserts to simulate internal discontinuities. Two (2) Mil teflon inserts 0.125, 0.250, and 0.500-inch diameters are placed between plies to simulate interlayer discontinuities, and 0.25-inch wide teflon strips are placed in bond lines to simulate disbonds.

Ultrasonic inspection utilizing Thru-Transmission techiques were determined to be most applicable for this program at this time. The physical size of the cover panels to be fabricated in the test program indicated the use of the single transducer, reflected Thru-Transmission technique.

Currently the facilities available for use on this program are shown in Figure 2-34 and consist of the following:

- 10 x 50 x 4 foot immersion tank
- Models 150 and 155 automated bridges with 19" Alden Recorders (1 to 1, 2 to 1, and 3 to 1 ratios)



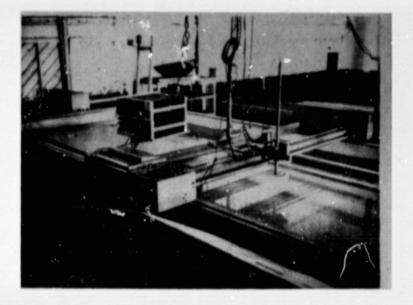



Figure 2-34. Model 155 Bridge W/UM721 and UM710 Special Function Cabinet

• UM 721 Sperry Reflectoscopes with 10N, 5N, and 1N Pulser/Receivers and Fast Transigates

The effectiveness of the N.D.I. system selected is illustrated below by reviewing the results of the inspection conducted on two identical ancillary test specimens. The test specimen (P/N 1606688-101) represents the hat stiffened cover configuration and consists of a skin panel (P/N 1606688-103) and one hat section stiffener (P/N 1606688-105) as shown in Figure 2-35. These individual components were ultrasonically inspected utilizing the single transducer reflected through transmission technique. Ultrasonic C-scans of the 2 skin panels are shown in Figure 2-36 and 2-37. The ultrasonic indication shown in Figure 2-36 is currently being sectioned for evaluation. The indications shown in Figure 2-37 were acceptable to Engineering.

Ultrasonic C-scans of 2 hat section stiffeners (0293002, 0293003) are shown in Figure 2-38. Stiffener Serial No. 0293002 was deemed unacceptable to Engineering and is currently being sectioned for evaluation.

LOCKHEED



Figure 2-36. Ultrasonic C-Scan - Skin Panel (0293003) Ancillary Test Specimen



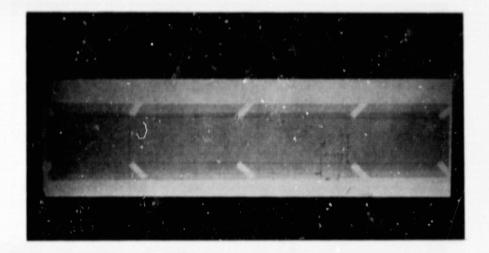



Figure 2-37. Ultrasonic C-Scan - Skin Panel (0293002) Ancillary Test Specimen

Two P/N 1606688-101 assemblies were subsequently bonded from acceptable components and submitted for ultrasonic inspection. The adhesives bond lines between the hat section stiffener and the skin were withheld for ultrasonic indications (Figure 2-39). These two areas were also X-rayed in an attempt to determine type of defects. The X-rays of S/N 0293001 shown on Figure 2-40 provided correlation to the ultrasonic results, in the detection of concentrated porosity. These assemblies have been reidentified as 1606688-201 and will be tested to evalute defect tolerance and defect repair.

As a result of this inspection, the method of support of the stiffener runout utilized during the londing operation was reviewed and found to be the primary cause for part rejection. This condition has been corrected and subsequent inspections have substantiated the revised method of support.

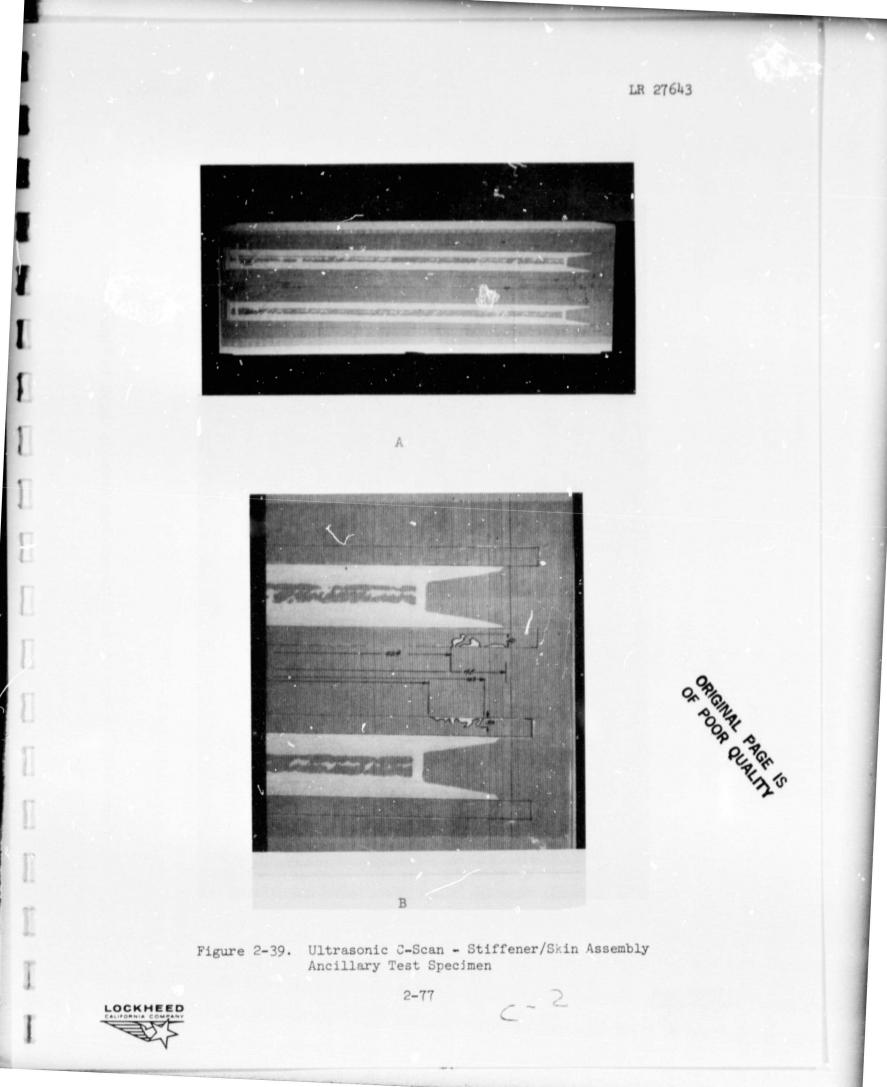
### 2.4 TASK 4 - COMPONENT TOOLING DEVELOPMENT

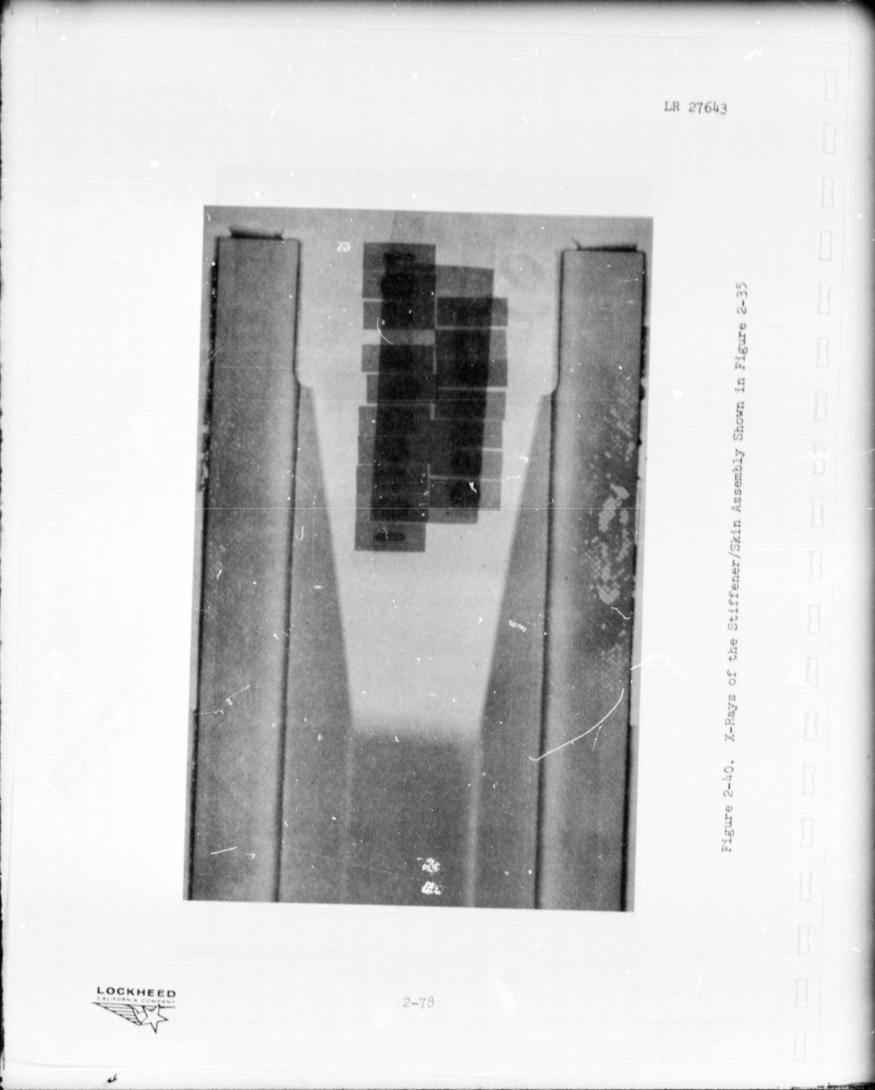
The work in this task covers the design and fabrication of tooling to be used in the fabrication of the covers.





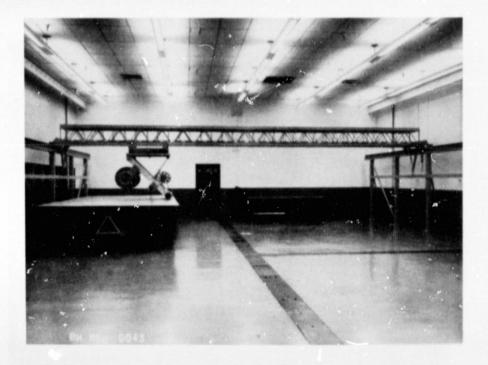
Figure 2-38. Ultrasonic C-Scans-Hat Stiffener Ancillary Test Specimen





46

2-76

diet.


LR 27643





### 2.4.1 Limited Production Tool Design and Fabrication

During this quarterly period, fabrication and installation of the tape dispensing tool was completed. The tool has been installed in the Production Clean room where all layup of fin cover and hats is now being performed. See Figure 2-41. The arrangement for the support and rotation of the head is shown in Figure 2-42. The head is moved along the gantry manually. The head can also be rotated relative to the gantry and is locked into position with a pin. The material roll holder arrangement is shown in Figure 2-43. Various material widths can be accommodated. This requirement arose from the need to dispense both Kevlar cloth in 36-inch widths and graphite prepreg in 24-inch widths. In Figure 2-45 is the laydown pressure rollers can be seen. The bottom roller in Figure 2-45 is the laydown pressure roller and the wooden roller above it is the paper backing takeup roller. The paper takeup roller is driven by the rotation of the pressure roller. The turnbuckle which can be seen in the left center of Figure 2-45 is used to make small adjustments in the height of the head.



2 igure 2-41. Installation of Tape Dispensing Tool Note gantry, dispensing head, and laminating table in Production clean room.



1



Figure 2-42. Tape Dispenser Head. Note turret track for rotation and roller for pressure application of tape on flat table.




Figure 2-43. Roll Holding Arrangement. Various material widths can be accommodated.



2-80

ORIGINAL PAGE IS OF POOR QUALITY

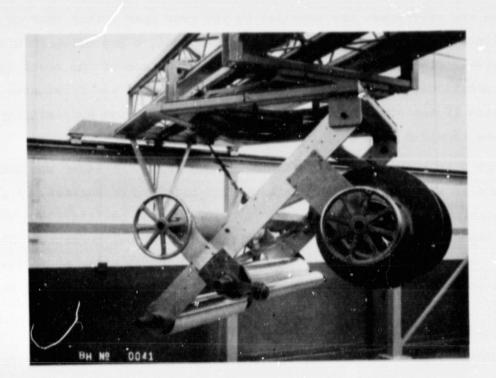







Figure 2-45. View of Head Showing Pressure Roller and Paper Takeup Roller



I

1

E

Π

I

[]

1

1

[]

[]

[]

[]

[]

1

ĩ

I

I

Since the stiffeners are parallel to the rear spar rather than on element lines and are fabricated on a straight tool, a gap of up to 0.470 inches exists between flanges of the hat and the inner surface of the cover when the hats are positioned for bonding to the cover. A mockup was fabricated and used to determine if the straight stiffeners could be deflected sufficiently to produce the required bond line contact.

Figure 2-46 shows the mockup during construction. A laser was used to set the surface of the mockup which simulated the cover inner surface. A 21-foot long straight hat section was molded (Figure 2-47) and positioned on the mockup. The hat laid into the contour without additional pressure. See Figure 2-48. This demonstrates that there will be no preloading or built-in stress in the bond line when straight tools are used to mold the hat stiffeners.

### 2.5 TASK 7 - SUBCOMPONENT TOOLING

The work in this task covers the design and fabrication of tooling to be used in the fabrication of subcomponent test specimens.

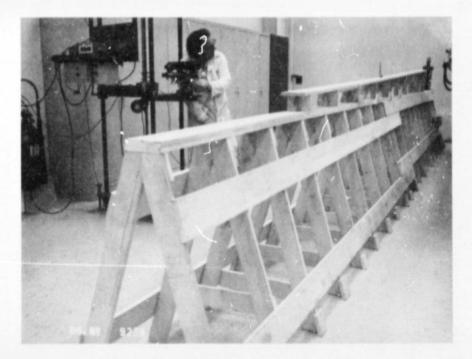



Figure 2-46. Construction of Inner Skin Surface Mockup



46



Figure 2-47. 21 Ft-Long Hat Section

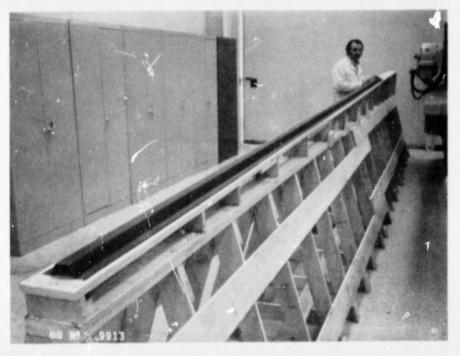



Figure 2-48. 21 Ft-Long Hat Stiffener Nested on Mockup of Inside Skin Surface



I

I

T

Π

1

0

0

[]

[]

I

[]

0

[]

1

[]

I

J.

I

I

2-83 ORIGINAL PAGE IS OF POOR QUALITY LR 27643

### 2.5.1 Subcomponent Tool Design and Fabrication

Tool designs have been released for fabrication of the master tooling templates to be used for coordinating the location of the rib cutouts with the hat stiffeners at five rib locations. Two sets of templates are being machined, one set will be sent to LAAD and the other retained by Calac.

Tool design of full-size cover bonding tool is complete and fabrication has begun.

Fabrication of the cover bonding tools (one left hand and one right hand) for the 100 inch subcomponent has been completed. These tools will be used for cure of the subcomponent cover and for the hat-to-cover bonding operation. The tools are of steel construction and are designed to minimize mass and provide ample airflow under the tool face. Figure 2-49 shows the tools under construction with the first contoured support in place. All supports were N/C cut for accuracy. The 1/4 inch steel surface plate was then mated to supports by clamping and welding in place. One of the completed tools is shown in Figure 2-50.



Figure 2-49. Fabrication of Cover Bonding Tools for 100-Inch Subcomponent





Figure 2-50. Completed Cover Bonding Tool for 100-Inch Subcomponent

Fabrication of the 300-inch broadgoods layup table is complete. This is a rigid, lightweight table designed for use with the tape dispensing tool for layup of broadgoods to be used for doublers, hats, etc. The substructure is shown in Figure 2-51 and the table with the top in place in Figure 2-52. The top is vacuum tight for debulking but is not intended for curing.

To support the requirements of the 100 inch subcomponent, a 12-foot long hat tool was fabricated. See Figure 2-53. The excess length of the tool over the requirement for the subcomponent will provide for process verification specimens.







Figure 2-52. Broadgoods Layup Table Table top in place but not yet fastened to substructure.



2-86

ORIGINAL PAGE IS OF POOR QUALITY

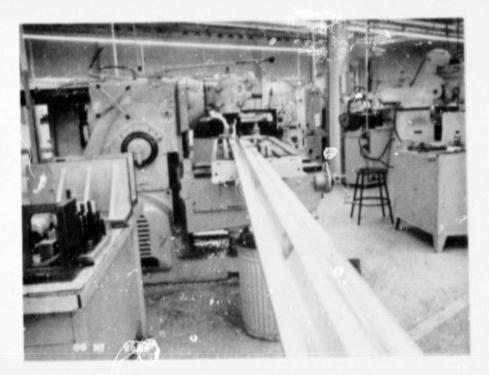



Figure 2-53. Machining of Hat Tool for 100-Inch Subcomponent



Ţ

ľ.

1

[]

[]

1

No.

LR 27643

### SECTION 3

# PHASE II - DETAIL DESIGN - SPARS

Phase II Detail Design of the Spars covers the main engineering effort of Lockheed-Georgia Company in the design, development, and fabrication of the front, rear, and stub spars for the L-1011 Advanced Composite Vertical Fin. The engineering effort during this quarter covers four tasks: Component Definition, Material Verification, Fabrication, and Subcomponent Tooling.

# 3.1 TASK 1 - COMPONENT DEFINITION

Component Definition covers the detail design and structural analysis of the selected spar configuration and ancillary tests.

# 3.1,1 Detail Design

The recommended concept for the spars continues to be graphite/epoxy caps and a combination of Kevlar and graphite epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs and intermediate stiffeners are planned to be fabricated as a unit. Access holes in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. A change in the intersection of the rib cap to spar with integral stiffener was made to allow the rib cap to fit between the spar cap and stiffener.

The design of the full size front and rear spars has continued on schedule. In the design effort of the front spar, the root area was sized first to provide data for use in the front spar auxiliary test specimen number 23. This stub spar specimen is representative of the final design of the front spar and spar to fuselage attachment. Two specimens will be fabricated for static and fatigue tests, and these will be the last specimens scheduled for the prototype tool. The detail design of the No. 23A Front Spar to Fuselage Static Test Specimen was completed and released for fabrication.



The detail design of the 100-inch rear spar test specimen has been completed and the drawing for this component has been released. The Front Spar Tool Control Drawing, the Rear Spar Tool Control Drawing, and the Auxiliary Spar Assembly Drawing have also been released, completing Lockheed-Georgia Company's design effort for the 100-inch test component.

Design of ancillary test specimen number 20, representative of the midsection of the front spar, was completed and released for fabrication.

# 3.1.2 Structural Analysis

Structural analysis of the spars and test specimens is proceeding as scheduled. A computer DEMAND Program was modified to predict local stresses and strains around the spar web access holes for use in sizing the hole reinforcements in the spars and test specimens.

Stress sizing of ancillary test specimen number 20 was completed. Specimen test loads and critical test fixture dimensions were developed and sent to the test lab. Results of the shear panel tests, ancillary test number 21, are being evaluated, and actual versus predicted panel buckling, and local stresses and strains around the holes are being determined from the strain gage data obtained during the tests. The results of this analysis are being incorporated in the design.

Structural analysis of the 100-inch rear spar specimen has been completed and checked. The final sizing of the specimen was based on the latest NASTRAN loads. Table 3-1 shows the NASTRAN internal spar design loads. The revised material allowables for Phase II were received along with the "wet" reduction factors, and the effects of these were incorporated in the sizing of the 100inch specimen. Local fitting and attachment loads were obtained from the L-1011 Fin Internal Loads Report.

The NASTRAN loads were also used to size the full length front and rear spars. The stiffness of the spars will be maintained at the present level in order to maintain the current stiffness used in the NASTRAN model.



Ö.,

LR 27643

V.S.S. (IN.)	FRONT SPAR CAP LOAD (LB)	REAR SPAR CAP LOAD (LB)	FRONT SPAR SHEAR (LB)	REAR SPAR SHEAR (LB)
07.50	23241	28284	1489	773
97.19	17834	22929	1246	1061
113.37	10637	13282	1156	1025
129.54	8378	10951	1088	1002
145.71	7489	8635	1152	759
162.85	6022	6992	1098	758
179.99	5298	6328	1024	774
197.13	5623	6730	1117	653
214.27	4685	6346	1104	672
231.41	4517	5471	910	706
248.55	4339	4908	916	610
265.69	3761	4206	852	638
282.83	2884	3674	755	682
299.97	2485	3232	650	582
317.11	1901	3018	590	627
344.25	2089	1371	489	772

TABLE 3-1. COMPARISON OF NASTRAN DESIGN LOADS WITH METALLIC FIN LOADS USED DURING PHASE I



ر <del>ک</del>ار

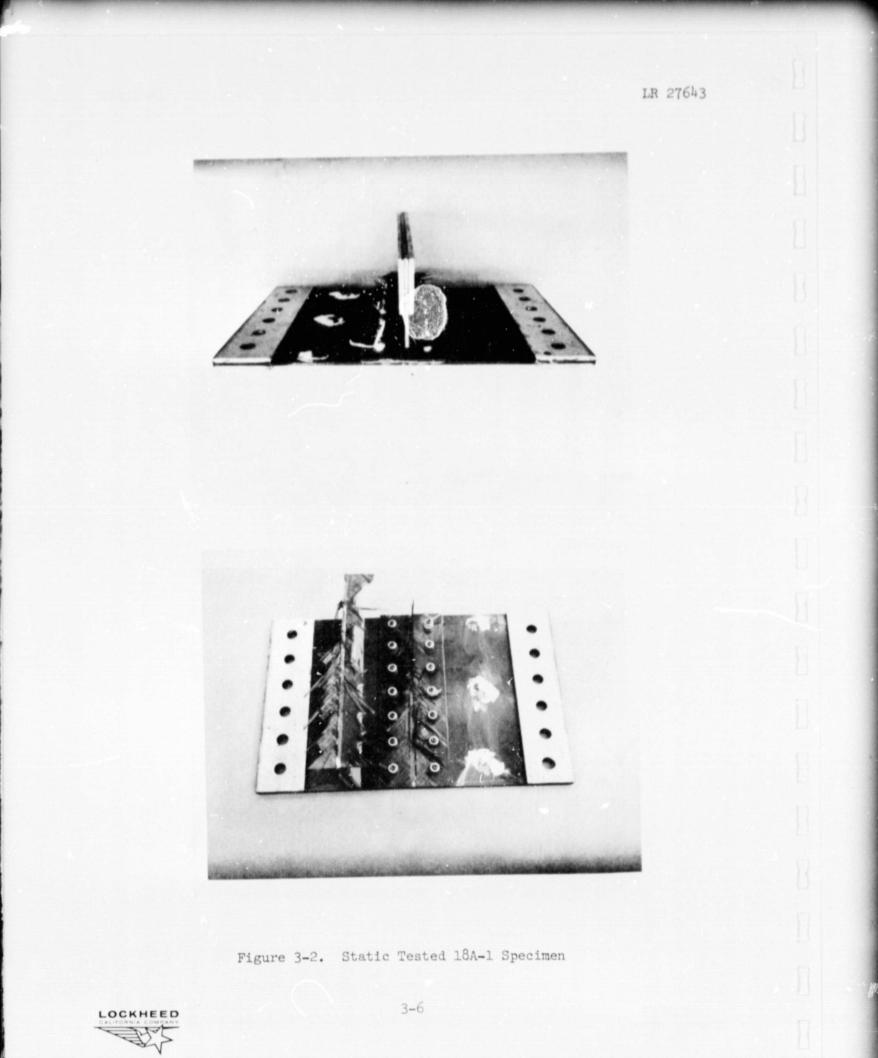
ария ||. |_.

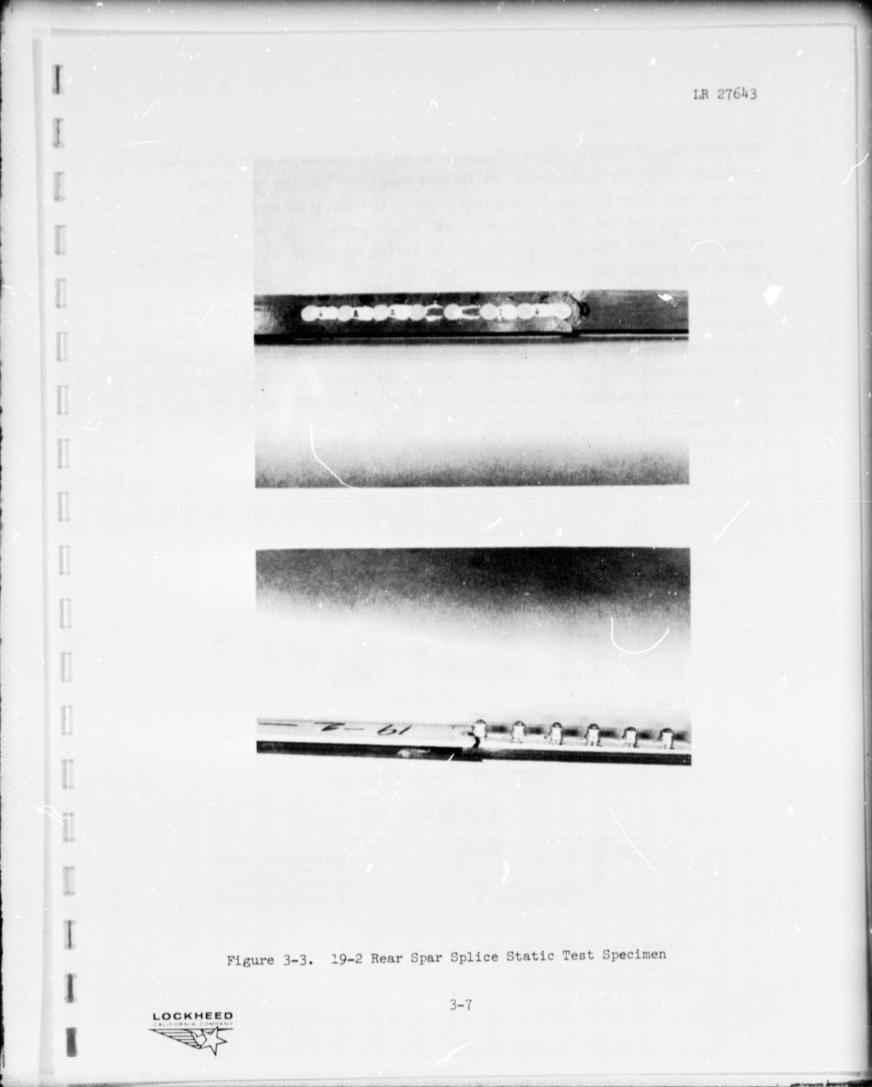
Ĩ

# 3.1.3 Ancillary Tests

Testing of specimens 18A and 19 has begun. These are the dry, fatigue test specimens representing the spar cap to cover attachment and the spar cap to fuselage joint. These are fatigue test specimens consisting of five specimens each for four different configurations. Specimen 18A-1 represents the front spar cap to cover attachment at VSS 248. Specimen 18A-2 represents the front spar cap to cover attachment at VSS 121. Specimen 19-1 represents the front spar cap to cover attachment at VSS 121. Specimen 19-1 represents the front spar cap attachment to fuselage and Specimen 19-2 represents the rear spar cap to fuselage splice. One specimen of each configuration is a static control specimen, and the other four are scheduled for four lifetimes of fatigue testing followed by a residual strength test.


Figure 3-1 shows the test setup for Specimens 18A-1 and 18A-2. Specimen 18A-1, shown in Figure 3-2, sustained a static load of 10,700 pounds. Strain readings were erratic during the 18A-1 static test, and numerous adjustments were made to the test fixture in an attempt to get more equal strains in the back-to-back strain gages. An examination of the specimen found some warpage which may explain the erratic strain readings. The failure load was less than the predicted 13,000 pounds for a uniform shear distribution along the in. section of the cap tee. Eight plies of  $\pm 45^{\circ}$  graphite-epoxy at the intersection of the tee and an ultimate shear allowable of 50,000 psi give the predicted 13,000 pounds. The design shear load at VSS 248 where the 18A-1 simulates the front spar is 900 pounds per inch versus the specimen failing shear load of 1646 pounds per inch.


Specimen Number 18A-2 representing the front spar to cover attachment at VSS 121 sustained a static load of 11,600 pounds before failure of the cover through the net section of the fasteners. The design shear at this location is 1156 pounds per inch versus the failure load of 1785 pounds per inch.


The static control specimen for the fatigue tests of the rear spar splice (No. 19-2), shown in Figure 3-3, sustained a static load of 13,300 pounds before failure. The predicted static load for this specimen was 13,260 pounds.

The testing of items 18B, 18C, and 18D has been completed. The all graphite-epoxy specimens were cut out of the first 8-foot tool development spar.









The locations of the 18 series of specimens on the prototype spar are shown in Figure 3-4. The test setups and failure modes for the 18B cap to web tension tests, the 18C cap to web shear tests, the 18D stiffener to web tension test, and the 18E stiffener to web shear tests are shown in Figures 3-5 through 3-8. The test results from the 18 series specimens are presented in Tables 3-2 through 3-5.

Test specimen number 20 representing a section of the front spar has been released for dry structural test. The specimen has been set up in the test fixture and has been prepared for the beam shear and bending tests. Figure 3-9 shows the dimensions, ply lay-up, and loads. The specimen is a constant crosssection beam simulating the front spar in the region of VSS 190 to VSS 210. It will be subjected to shear and bending and used to verify the cap, web, stiffener, and access hole design concepts.

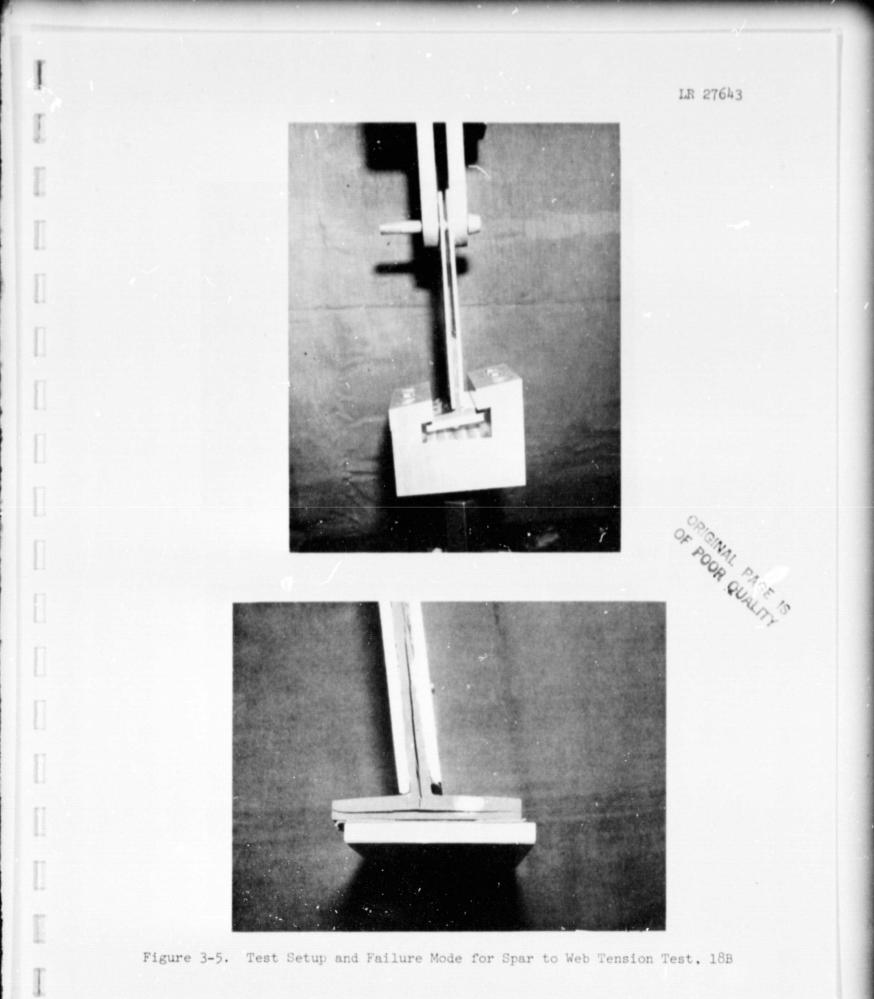




Figure 3-4. Stub Spar Test Specimens (Items 18B - 18E)







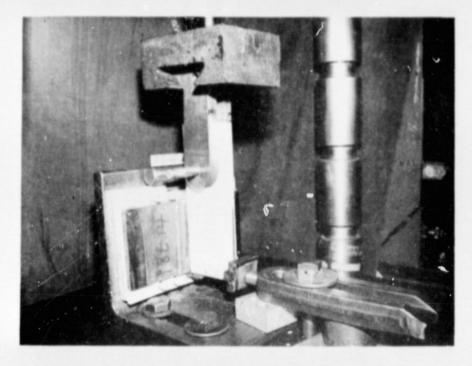



Figure 3-6. Cap to Web and Stiffener to Web Shear Test, 18C and 18E

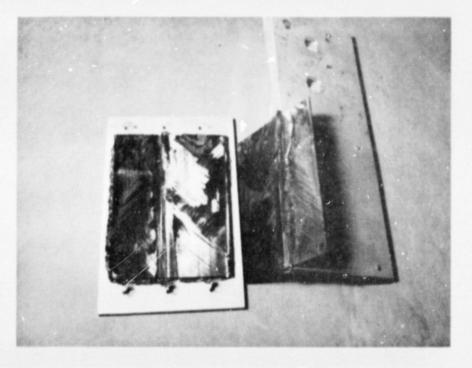



Figure 3-7. Failure Mode of Cap to Web Shear Test, 180



3-10

North.

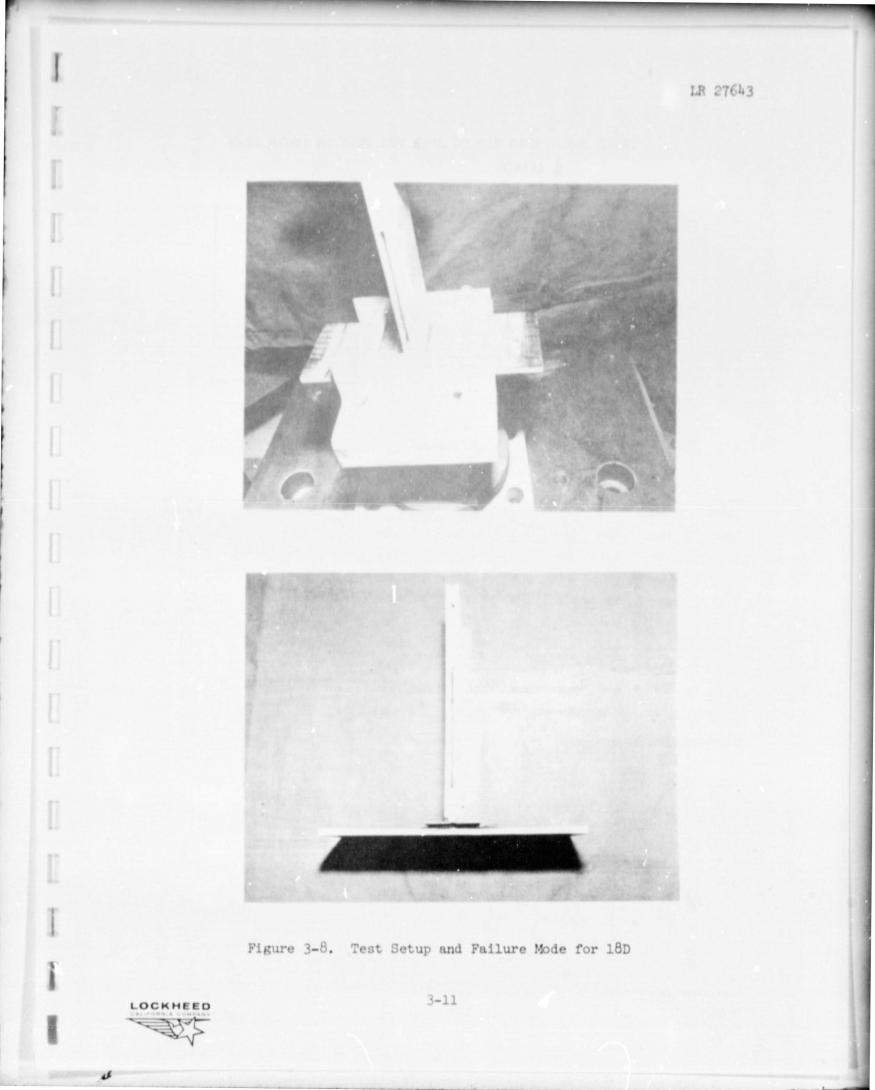



TABLE 3-2. SPAR CAP TO SPAR WEB TENSION TESTS 18-B LOAD 12 12 12 1.15 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

		TI	ICKNESS				PREDICTED	
BPECIMEN NUMBER	MAX LOAD (LBB)	t ₁ (in.)	^t 2 (in.)	^t 3 (in.)	FAILURE	FAILURE = LOAD STRESS t1 x L	FLATWISE TENSILE STRESS	EVALUATION OF REBULTS
18 <b>B-1</b>	2660	0.20	0,28	0.18	Fig 3-5	4433	4000	•
-2	3340	0.24	0.22	0.31	<b>†</b>	4639		
-3	2680	0.18	0.27	0.32		4963		
-5	3040	0.20	0.23	0.28		5067		16B Beries indicates acceptable Flatvise
-6	2445	0.21	0.23	0,30		3881		Tensile Strength
-22	5660	0.18	0.27	0.28		10481		
-23	4800	0.20	0.25	0.28		8000		
-24	4000	0.15	0.22	0,28		8889		
-26	3660	0.23	0.25	0.25	Fig 3-5	5340	•	¥ .

ROOM TEMPERATURE, DRY SPECIMENS



3-12

# $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

TABLE	3-3.	SPAR	CAP	TO	SPAR	WEB	SHEAR.	18c
			Unu -					100

Specimen Number	MAX LOAD (LES)	t ₁ (in.)	^t 2 (in.)	FAILURE MODE	$\begin{array}{l} \text{FAILURE} = \frac{\text{LOAD}}{t} \\ \text{STRESS} & 1 \times L \end{array}$	PREDICTED INTER-LAMINAR AVE BHEAR BTRESS	EVALUATION OF RESULTS
18¢-4	1360 🛆	0.21	0.24	◬	1619	2000	Bpecimen Peeled - Roller Supports did not
-7	1540 🛆	0.22	0.25	⚠	1750		react couple
-20	3960	0,20	0.23		4950		Acceptable
-21	2840 🛆	0,22	0.24	⚠	3227		Acceptable
-25	3120	0.21	0,23	♪	371);	2000	Acceptable

ROOM TEMPERATURE, DRY SPECIMENS

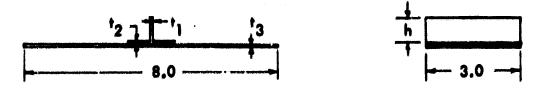
♪

HOTES :

A Roller supports did not react couple (Fig 3-4).

This specimen contained 0.9 and 0.5 inch built in boids in the shear plane for use in NDI standards.

 $\Delta$  Specimen peeled and sheared because of  $\Delta$  .


Interlaminar shear in cap approximately 0.1 inch from bondline.



يلي

العبد يرتجد

# TABLE 3-4. STIFFENER TO WEB TENSION, 18D

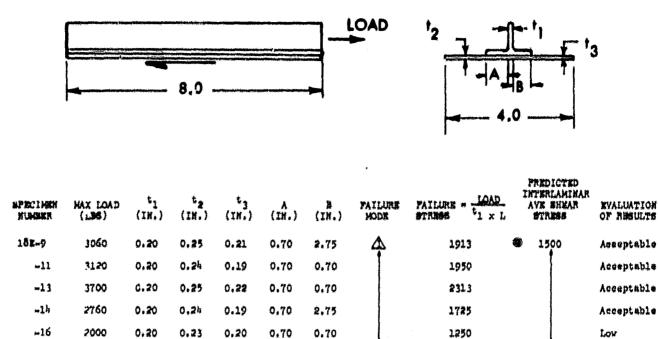


specimen Humber	MAX LOAD (LBS)	t ₁ (IN.)	t ₂ (IN.)	^т з (IN.)	ћ (IH.)	FAILURE MODE	FAILURE * LOAD STREES \$1 x L	PREDICCED Interlaminar ave Shrar Stress	RVALUATION OF REBULTS
18D-17	1200	0.190	0.238	0.808	1.0		2105		
-8	985	0,180	0,228	0.198	1.35		1824	Combined Stresses	Consistent Results -
-10	1160	0.160	0.256	0.221	1.70		<b>\$</b> 117	reduce predicted Fistwise Tensile	High Bonding and Bhear Stresses com-
-12	1155	0.190	0.225	9.195	1.00	Bee Hotes	2026	Stress	binod with Flat- vise Tensile
-15	1185	0.190	0,230	0,207	1.23		2079		Stresses indicate Acceptable Strength
-10	1150	0.150	0.248	0.213	1.60	ł	2556	Ļ	↓ 1

TEST TEMPERATURE 75°F, DRY SPECIMENS

NOTES :

Δ


◬

Ply separation in the vertical plane

Fibers pulled from the spar web at the interface of the stiffener to web



- Stand



0.70

Δ

1962

1500

Acceptable

STIFFENER TO SPAR WEB SHEAR, 18E TABLE 3-5.

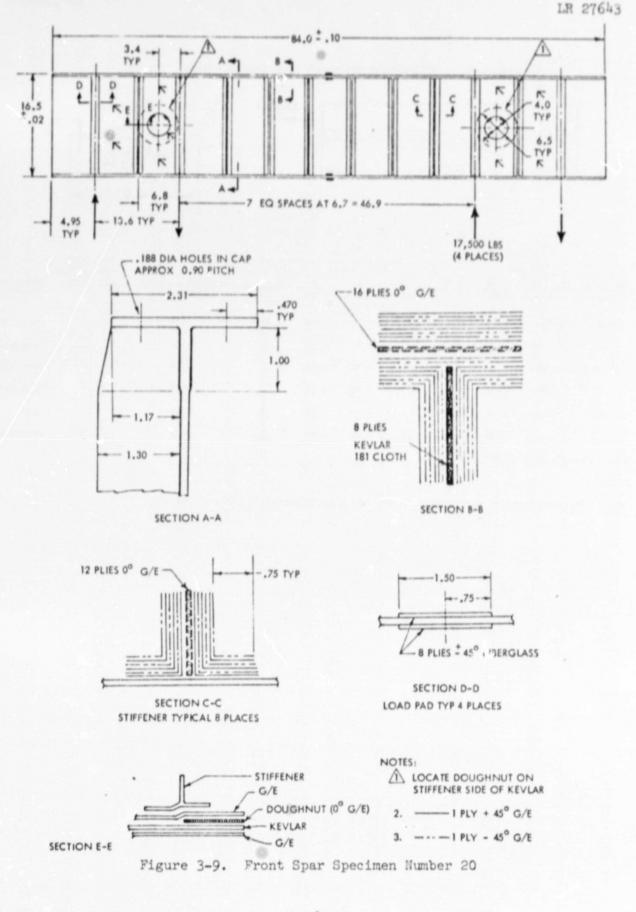
3140 NOOH TEMPERATURE, DRY SPECIMENS

0.20

0.24

NOTES:

-18


Î

Δ Stiffener sheared at interface of web taking approximately 2 plies of the web.

0.70

0.20





LOCKHEED

46

10

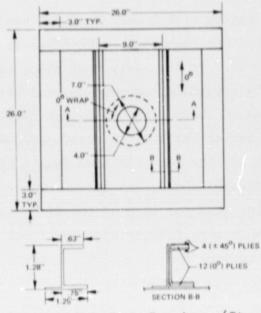
3-16

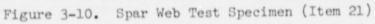
diret.

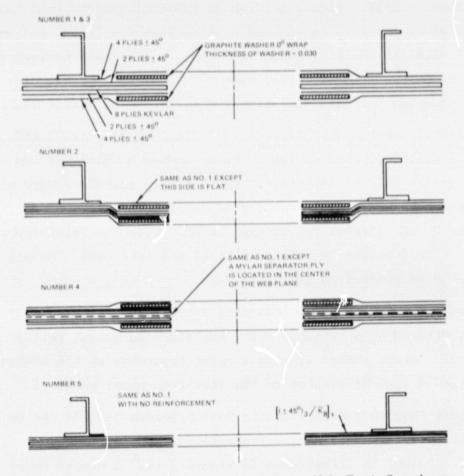
LR 27643

Testing of shear panels with access hole and two stiffeners shown in Figures 3-10 and 3-11 was completed. These panels are identified as ancillary tests number 21. In the early test plan, test number 22 called for a stiffened panel to be tested in compression, and test item 21 called for a flat panel to be tested in shear. As the design developed and the access holes and stiffeners became better defined, the test plan was revised to combine the two shear panels in 21 and the two stiffened panels in 22 into a series of five shear panels with stiffeners and access holes. These panels were identified as item 21. The failing load for each of the five panels tested is summarized in Table 3-6. Six panels were fabricated. The first was resin rich and was not considered a satisfactory panel; it did, however, sustain the highest buckling load because of its thicker web.

The tool and series of panels used for test number 21 are shown in Figures 3-12 through 3-17. Figure 3-12 shows the tool used to mold the panels. Figure 3-13 shows the test set-up and diagonal-tension (type) failure for the first panel with the thicker, resin rich web. Figure 3-14 through 3-17 show the remaining panels tested. Panel number 3 originally planned for testing after impact damage has been set aside for a test to be identified later.


Analysis of panel number 1 predicted a failure load of 73.000 pounds versus the actual 67,000 pound load. Panel number 2 which had the reinforcement around the access hole on one side of the web only sustained approximately the same load as the symmetrically reinforced panel number 1. The configuration of panel number 2 was selected for design; because with the reinforcement on one side only, it is considerably easier to tool and fabricate. Strain data for panel number 2 is summarized in Figure 3-18.

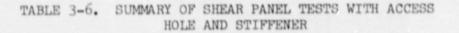

Analysis of panel number 5 indicated a predicted failure at 35,500 pounds. This panel, with no hole reinforcement, sustained an actual failure load of 49,800 pounds. Panel number 4, with a mylar separator at the midplane of the web, sustained a load equivalent to the flaw free panel number 1.


The Front Spar to Fuselage Static Test Specimen No. 23A has been released for fabrication. This specimen, representative of the front spar and spar to fuselage attachment, is illustrated in Figure 3-19. A second front spar specimen identical to 23A, No. 23B will be fabricated for fatigue tests.



LR 27643












Panel No.	Failure Lood (Lbs)	Type of Failure
1	72,000	Panel was resin rich, failed diagonally across panel in tension
I Retest	67,000	Tension diagonally across panel
2	66,400	Buckling across center bay
3		On hold for later test
4	67,000	Buckling orross center bay
5	49,800	Buciling across center bay



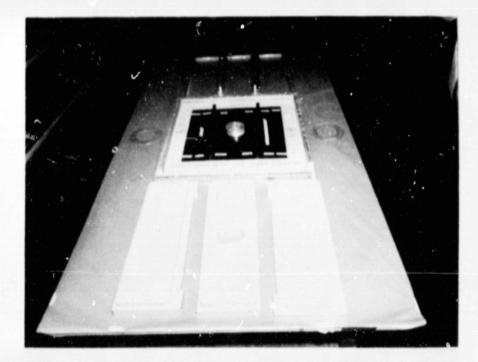





Figure 3-12. Tool Used to Mold Shear Test Panels (Test Item 21)

LOCKHEED

46

I

The second

[]

[]

[]

[]

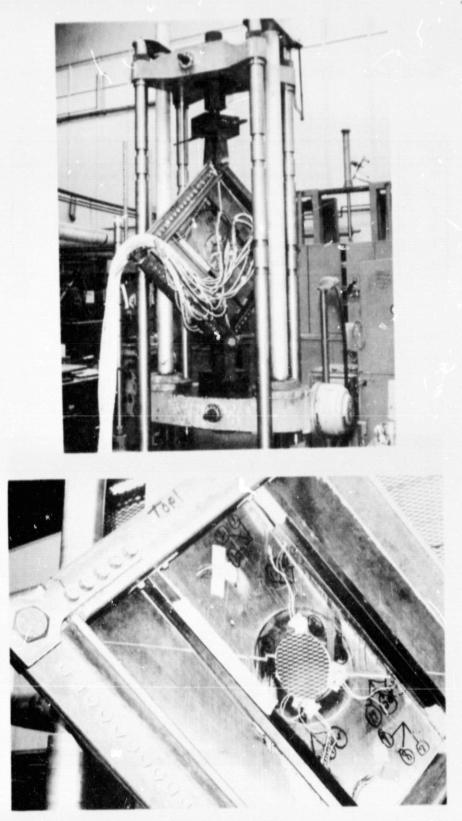
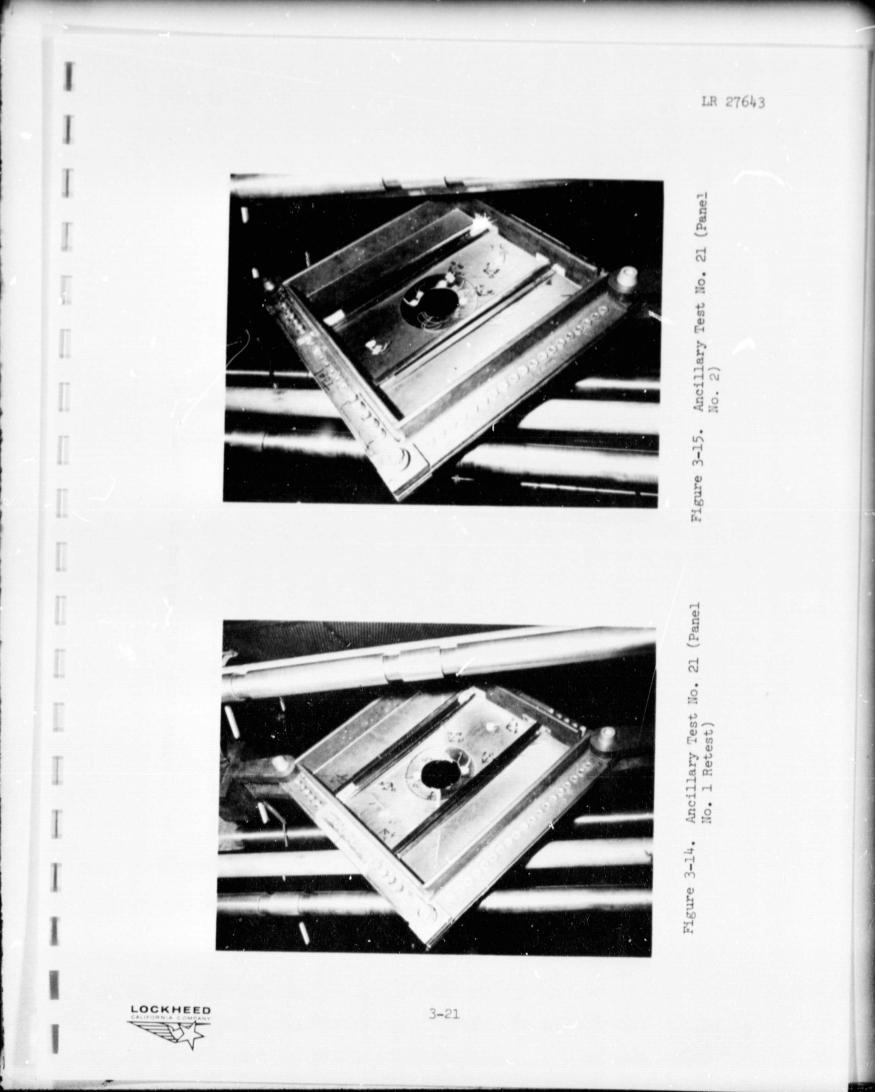
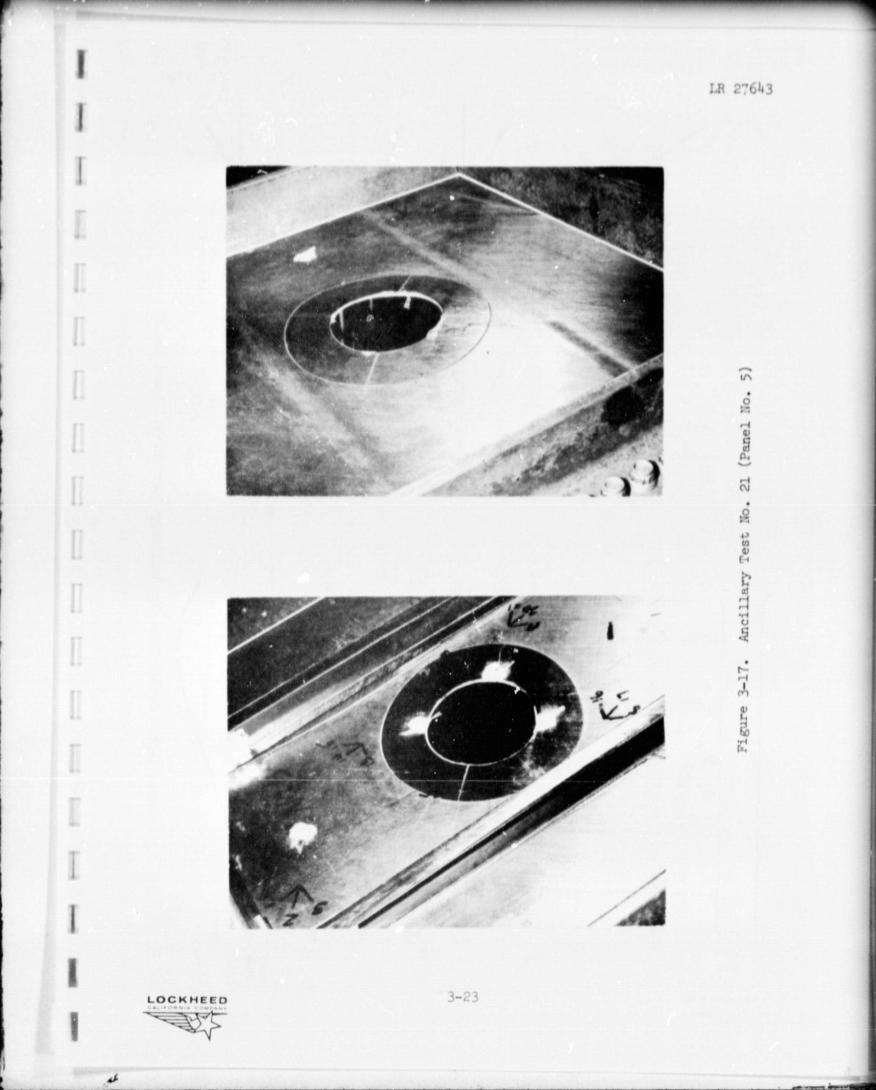
[]

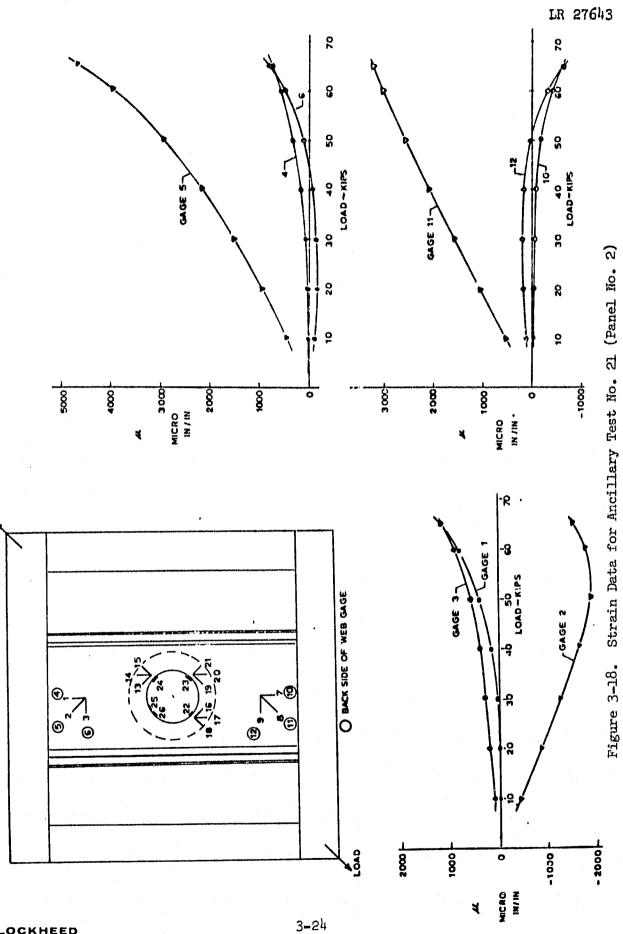
[]

[]

from the

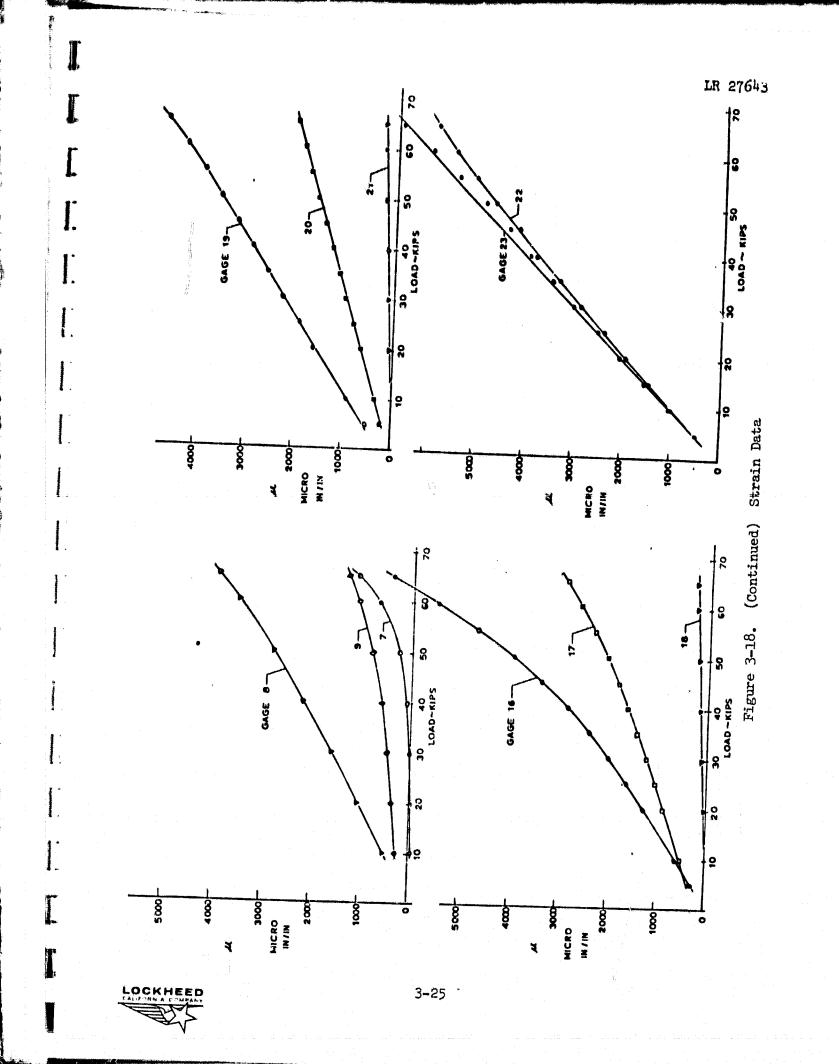
The second

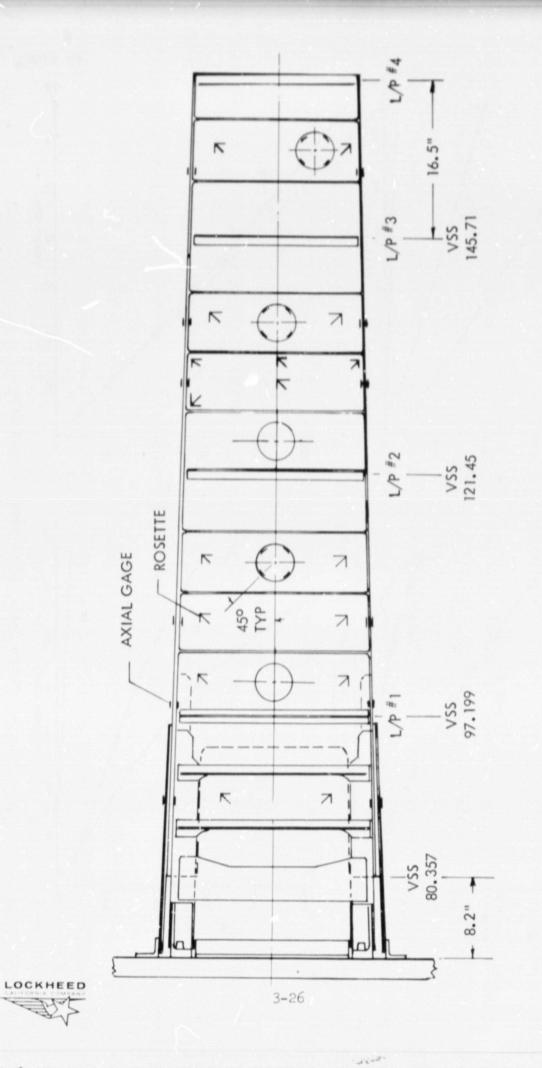






Figure 3-13. Test Setup and Failure Mode (Item 21, 1st Test with Resin Rich Panel)










Å

I WEAR





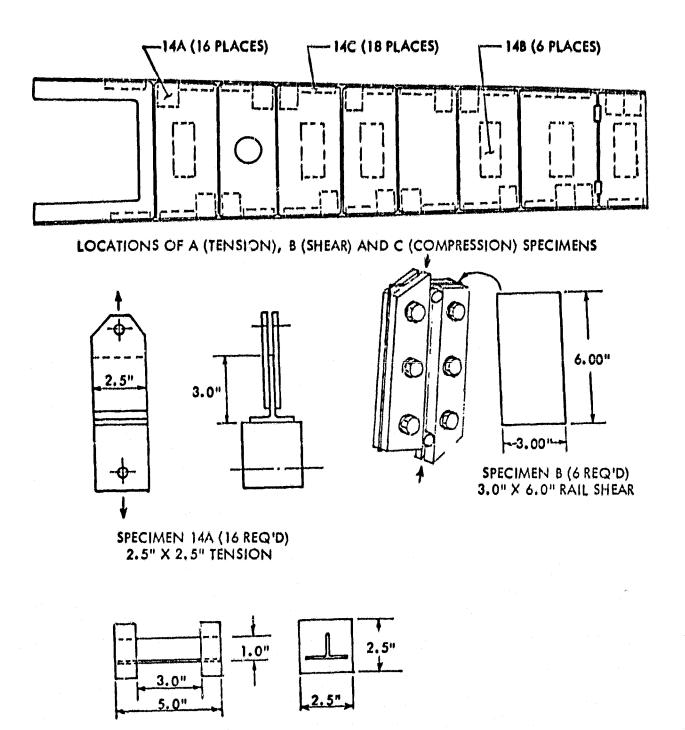
4

Figure 3-19. Ancillary Test No. 23A - Front Spar to Fuselage Static Test

LR 27643

# 3.2 TASK 2 - MATERIAL VERIFICATION

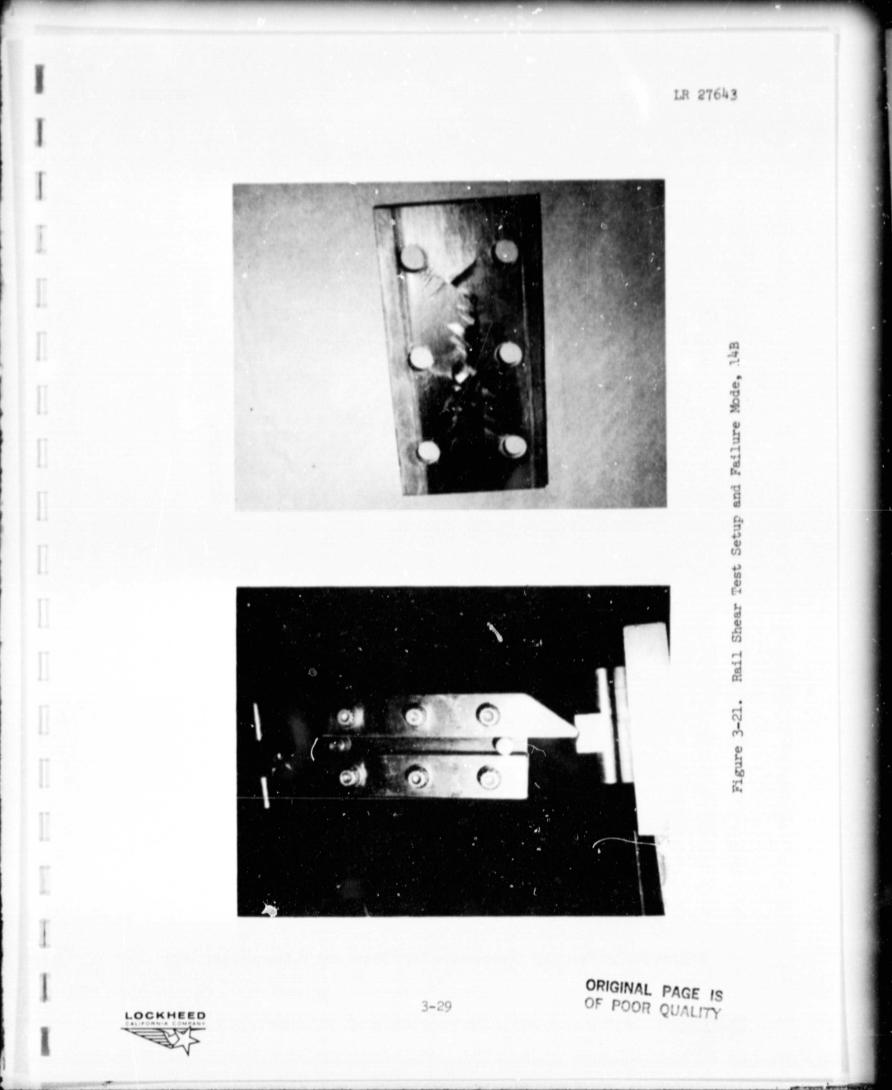
The Material Verification task covers the laminate property tests and mechanical joint tests.

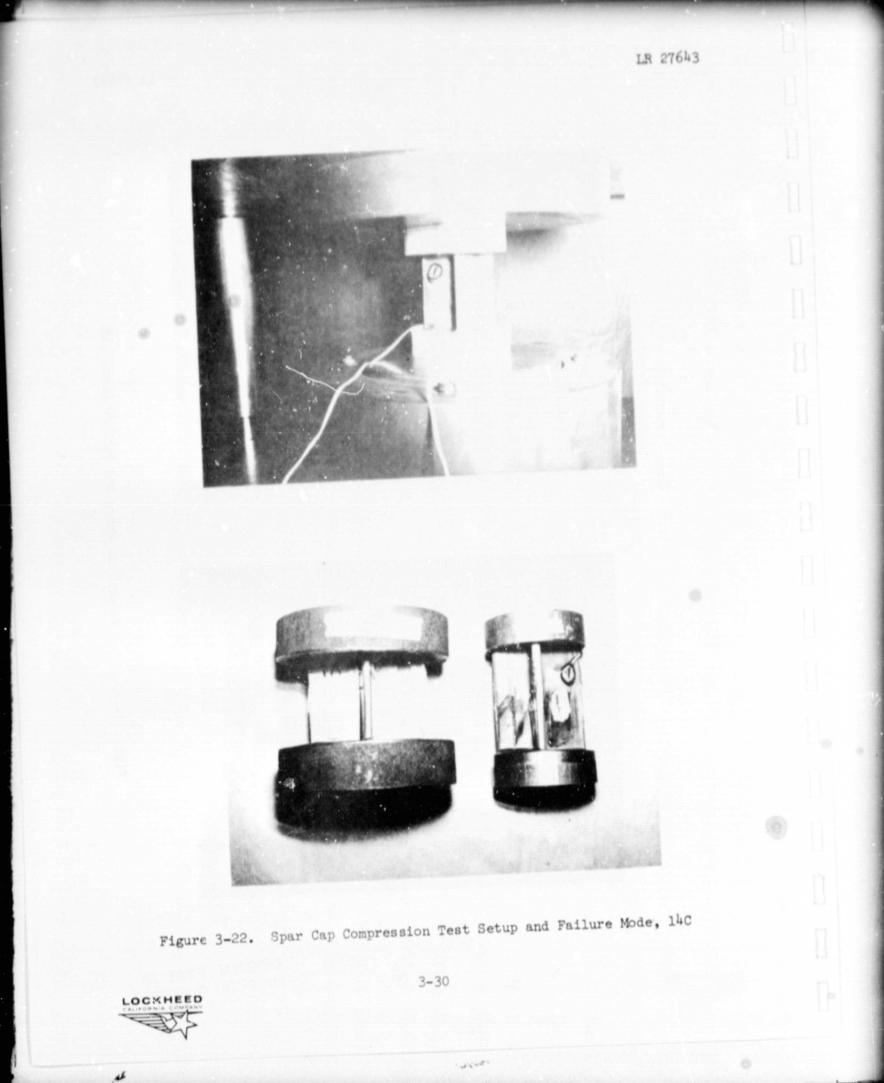

# 3.2.1 Laminate Property Tests

The testing of items 14A, 14B, and 14C has been completed. The 14 series specimens were cut out of the second graphite-epoxy 8-foot tool development spar which had Kevlar in the spar web. The locations of the 14 series specimens are shown in Figure 3-20. The test setup for the 14A spar cap to spar web specimen was identical to the test setup shown for specimen 18B in Figure 3-5. The test setups and failure modes for the rail shear specimens 14B and the spar cap compression specimens are shown in Figures 3-21 and 3-22. The test results and evaluation of the results are shown in Tables 3-7 through 3-9.

A simplified analysis was used to predict the failing stresses based on average flatwise tension stresses and average interlaminar shear stresses. Compression and shear strengths of the cross-plied caps and rail shear specimens were based on information given for Intermediate-Strength Graphite/Epoxy in the AFML Structural Design Guide for Advanced Composites (Ref. 8). An evaluation of the test data for the 14A, 14B, and 14C specimens indicated the strength of these specimens was lower than predicted.

An accelerated program was undertaken to determine what caused the low strength of the 14 Series of specimens. First, the 14 Series of specimens were remade outside the tool under laboratory-controlled conditions to conform to the specified material process and cure specifications. A typical cap cross-section identical to the mid-span of the second stub spar was fabricted with two lay-ups. The first lay-up consisted of graphite and Kevlar, the same as used in the second stub spar; but it was pre-bled and cured as specified in the material specification. The second lay-up was identical to the first except graphite was substituted in place of Kevlar. These specimens were ultrasonically inspected and prepared for cap-to-web tension (14A) and cap compression tests (14C). Results of these tests are tabulated in Table 3-10. Rail shear specimens identical to the 14B specimens were also remade in accordance with the



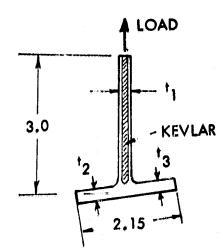


SPECIMEN 14C (18 REQ'D) 1.0" X 5.0" COMPRESSION

Figure 3-20. Stub Spar Test Specimens Nos. 14A, 14B, and 14C









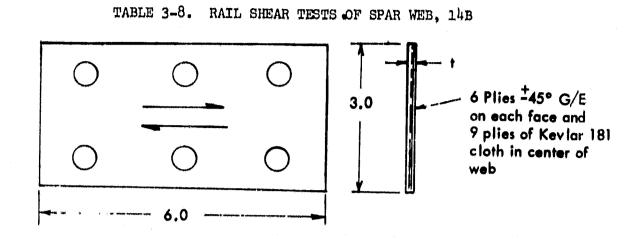
2.5

SPECIMEN NUMBER	MAX LOAD (LBS)	t1 (IN.)	^t 2 (IN.)	t3 (IN.)	FAILURE MODE	FAILURE STRESS	PREDICTED FAILURE STRESS	EVALUATION OF RESULTS
14A-1	2040	0.161	0.182	0.242	$\Delta$	5068	4000	Acceptable
-2	1260	0.215	0.262	0.212	$\Delta$	2344	1	Low
-3	1220	0.177	0.252	0.218	$\Delta$	2750		Low
-4	2075	0.173	0.253	0.255	A	4798		Acceptable
-5	900	0.168	0.247	0.257	A	2141		Low#
-6	1440	0.176	0.246	0.238	A	3273		Low#
-7	1885	0.165	0.221	0.207	A	4570		Acceptable
-8	2400	0.160	0,205	0.203	A	6000		Acceptable
-9	2450	0.172	0.230	0.218	$\Delta$	5698		Acceptable
-10	2380	0.176	0.228	0.234	$\triangle$	5409		Acceptable
-11	2760	0,179	0.242	0.237	$\Delta$	61.68		Acceptable
-12	1840	0.166	0.243	0.242	$\triangle$	4434		Acceptable
-13	2330	0.175	0.246	0.245	$\triangle$	3040		Low#
-14	1110	0.184	0.254	0.262	$\Delta$	2413		Low
-1.5	1010	0,220	0.195	0.253	$\triangle$	1836		Low#
-16	2410	0.180	0.181	0.250	$\triangle$	5356	4000	Acceptable

ROOM TEMPERATURE, DRY SPECIMENS

# NOTES :

MA


 A
 Failure Node

 A
 Failure Node

*An accelerated program was undertaken to remake 14 Series and retest.



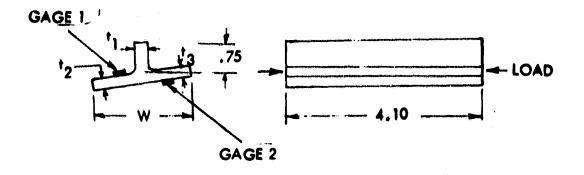
TABLE 3-7. SPAR CAP TO SPAR WEB TENSILE TESTS, 14A



AVERACE SHEAR STRESS (PSI) SPECIMEN MAX LOAD FAILURE PREDICTED FAILURE t (IN.) NUMBER (LBS) STRESS STRESS EVALUATION OF RESULTS 18400 28000 14B-1 18200 0.168 18200 -2 15100 14500 0.174 14500 **₩**3 15800 15000 0.176 15000 -4 14700 14200 0.172 1/1200 Shear Failure Appears Low 15450 -5 15800 0.163 15800 -б 13300 14300 0,155 14300 28000

ROOM TEMPERATURE, DRY SPECIMENS

NOTE:


 $\Delta$ 

G/E carries = 86% of Shear and K/E Core carries = 14% of Shear.  $F_{gu}$  of G/E is = 50,000 psi and K/E  $F_{gu}$  is 8000 psi.

Stress *  $\frac{Max Load}{6.0 t}$ .



# TABLE 3-9. SPAR CAP COMPRESSION TESTS, 14C



BPECIMEN NUMBER	MAX LOAD (LBB)	t] (IN.)	t2 (IN.)	t3 (IN.)	W	FAILURE MODE	FAILURE STRESS	PREDICTED FAILURE STRESS	EVALUATION OF RESULTS
NUMBER 14C-2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15	(LBB) 47100 51300 53900 41100 41000 37000 39100 38700 41400 38300 41500 41400 39700 41400 39700 48000	(IN.) 0.164 0.216 0.176 0.177 0.194 0.185 0.176 0.176 0.176 0.177 0.165 0.171 0.178	0.251 0.197 0.266 0.247 0.249 0.247 0.274 0.274 0.274 0.221 0.253 0.288 0.252 0.252 0.228	(IN.) 0.157 0.247 0.238 0.253 0.253 0.232 0.245 0.237 0.207 0.172 0.240 0.238 0.24h 0.26h	2.95 2.78 2.70 2.15 2.15 2.15 2.18 2.15 2.18 2.15 2.18 2.15 2.15 2.15 2.15	FAILURE MODE Compression Failure by Delamination in all Three Legs	8TRESS 75.9 80.6 76.8 72.h 73.7 68.7 68.0 74.1 86.1 80.2 78.3 76.9 72.2 70.1	STRESS 88 ksi A	EVALUATION OF RESULTS Compression failures of all caps were below predicted. A com- mittee was formed to evaluate possible causes of low strength in 14 Series. A program to retest additional specimens was initiated.
-16 -17	44300 43600	0.218 0.175	0.195 0.239	0.238	2.83 2.98		67.3 59.5	88 ksi 🛦	

ROOM TEMPERATURE, DRY SPECIMENS

AXIAL CAGES 1 and 2 were used to balance specimen in spherical head compression fixture.

NOTE:

I

I

Ľ

Ĩ.

Ι.

E

A

Cap carries  $\approx 97\%$  of Axial Load. Ply lay-up in cap is 55%  $\pm 4.5^{\circ}$  and 45% 0° giving Predicted Failure based on Design Guide for Intermediate Strength Graphite of 88 ksi.



/ {

SPECIMEN NUMBER	TYPE TEST	MAX LOAD	FAILURE STRESS	PREDICTED STRESS	EVALUATION OF RESULTS
14A-1 R	CAP TO WEB	2660	6296	4000 psi	Acceptable
-2 R	TENSION	860	2036		Low
-3 R	LOAD	2300	5444		Acceptable
-4 R	<b>A</b>	2480	5904		Acceptable
-5 R		2960	7006		Acceptable
-6 R		880	2070		Low
-7 *		890	1825		Low
-8 *		3100	6392		Acceptable
-9 *	L = 2.5"	960	1979		Low
-10 *		3280	6728		Acceptable
-11 *	$Stress = \frac{Max Load}{L x + .}$	800.	1649		Low
-12 *		No Test		4000 psi	Void at "T" Intersection
14C-1 R	L LOAD	46000	89.0	88 ksi	Marginal
-2 R		45200	87.4	<b>A</b>	Marginal
-3 R		46200	89.4		Marginal
-4 R		50000	96.7		Acceptable
-5 R		48600	94.0		Acceptable
-6 R	<b>A</b>	46200	89.4		Marginal
-7 *	Stress=Load x % in Cap Area of Cap	52500	82.5		Low
-8 *	Area or cap	47700	74.9		Low
-9 *		48200	75.7		Low
-10 *	*L = 2.6  for  -1, -2, -3, -7, -8, -9	51100	80.3		Low
-11 *	-5, -7, -0, -9 L = 1.1 for $-4, -5,$	47400	74.5		Low
-12 *	$   \begin{array}{l}                                     $	51700	81.2	88 ksi	Low

# TABLE 3-10. EVALUATION OF REMADE 14A AND 14C SPECIMENS

*All G/E

 $\triangle$  97% of Load carried in Cap  $\triangle$  78% of Load carried in Cap



material specification. One configuration was identical to the specimens made in the tool. A second series of 14B specimens was made with graphite substituted for the Kevlar, and a third set of 14B specimens was made identical to the first without bleeding. Table 3-11 summarizes the results of the 14B rail shear specimens. As noted in the table, lower than predicted values were obtained for all specimens. The low values were similar to those previously obtained from the specimens made in the prototype tool. These consistent low values indicated that the rail shear test setup was not giving good results and the data should be used for comparisons only.

In addition to the cap and web specimens, a series of process control specimens were made to evaluate all probable variables in the cure cycle. The minimum flex strength required by the material specification is 210 ksi, and the minimum short beam shear strength is 13 ksi. The results of these tests, shown in Table 3-12, indicate that the material system is tolerant of process variations and will develop acceptable strengths as long as it is cured under a reasonable positive pressure. Specimen No. 1 appeared to have been subjected to a high pressure causing fiber wash and was discounted. Specimen No. 3 processed with the No. 20 Front Spar Specimen appeared to have some fiber wash. A quality control specimen No. 4 processed according to the material specification at the same time as the specimen processed with the No. 20 spar also gave similar results indicating the quality control tests may have been suspect.

An evaluation of the test data obtained from the remade 14 Series of specimens did show some improvement, but the cap-to-web tension specimens had more scatter than the 14A specimens made in the tool. One reason for this scatter was the bond between the cap and web. Although the laboratory controlled part has a uniform pressure surrounding the "T", the force at the intersection of the cap and web is suspect because fibers tended to pull away as compared to fibers being forced into the cap in specimens made in the tool. The spar web cured inside the tool generates a magnified pressure at the intersection of the spar cap, because the web is sandwiched between steel and rubber and the spar caps.



A STREET

SPECIMEN NUMBER	TYPE TEST	MAX LOAD	FAILURE STRESS	PREDICTED STRESS	EVALUATION OF RESULTS
14B-1 RA		14500	18400	28200	Low values
-2		15000	18200	Ī	indicate pos- sible prema-
-3		1.3000	16300		ture failures
-14		21000	26900		due to insuf- ficient clamp-
-5		19250	23600		up or inter-
$-6 R^{A}$	LOAD	14100	17900	28200	laminar shear failures.
				•	1
14B-1 🖄		16750	18600	23200	
-2		21850	24400		
-3	6.0	20700	23300		
-4		21100	23400		
=5		19400	22000		
-6 🖾	- ty	21800	24700	26200	
				•	
14B-1 RA	+ +- [†] 2	19200	19900	28200	
-2	Stress = $\frac{\text{LOAD}}{6.0t}$	26250	27500		- 44 - Contractor - 14 - Contractor - 1
-3	6.0t	26250	27200		
-4	+ - O+ + +	23050	24000		ļ
-5	$t = 2t_1 + t_2$	19100	19900		
-6 R		21400	22000	28200	

TABLE 3-11. EVALUATION OF REMADE 14B RAIL SHEAR SPECIMENS

A Pre-bled Graphite-Kevlar-Epoxy

A Pre-bled All Graphite Epoxy

A No Pre-bled Graphite-Kevlar-Epoxy

VARIABLE PROCESS CONTROL SPECIMEN	HEAT UP RATE ^O F/MIN	CURE TEMP or	CURE PRESSURE PSI	FLEX. STRENGTH KSI	SHORT BEAM SHEAR KSI
1. With No. 14 Spar	0.5	200/260	⚠ /0	163*	9.9*
2. Per Material Spec.	4 - 6	260	85	251	14.7
3. With No. 20 F. Spar	0.35	200/260	⚠ /0	208*	11.5*
4. Per Material Spec.	4 - 6	260	85	210	11.4*
5. Per Material Spec.	4 - 6	260	85	223	16.0
6. Step Cure	4 - 6	260/260	85/0	206*	14.4
7. Step Cure - No Bleed	4 - 6	200/260	85/0	234	15.5
8. Low Pressure	4 - 6	260	38	235	15.0
9. Low Pressure	0,5	200/260	35+VAC	215	13.9
10. No Bleed - Stops	3.5	260		211	13.2
ll. No. Bleed - Stops	4 - 6	260		218	15.6
12. Spec - No Bleed	3.5	260	92	240	14.1
13. Spec - No Dwell	3.5	260	92	256	15.4
14. Slow Heat-up	0.5	260	150+VAC	248	15.2
15. Low Cure Temperature	0.5	200	150+VAC	21414	14.1

### TABLE 3-12. SUMMARY OF PROCESS CONTROL SPECIMENS TO EVALUATE EFFECT OF PROCESS VARIABLES

 $\triangle$ 

150 psi Autoclave Pressure; pressure on P.C. Specimen unknown-appeared to have high pressure causing fiber wash.

A

*

Forced Laminate to Specification Thickness; pressure on part unknown.

Less than minimum strength required by Material Specification C-22-1379/211.



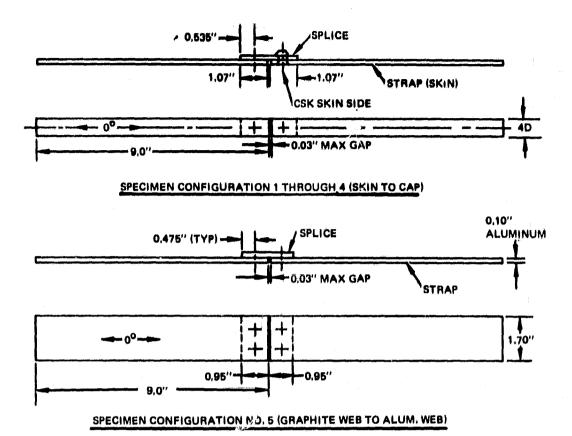
and the granted Bird Hard

s

A revision was made to the ply stacking in the spar cap to better balance the  $\pm 45^{\circ}$  and  $0^{\circ}$  plies. Six  $\pm 45^{\circ}$  plies were interspersed in the  $0^{\circ}$  plies at the center of the cap. A third set of 14A specimens was made with this revised ply lay-up and will be tested. This lay-up has been incorporated in the design of the front and rear spars.

In addition to the test specimens, temperature recordings taken during cure indicated the pressure generated by heat-up of the rubber may have lagged the resin cure in the second spar. Heat-up rates, rubber sizing, and cure temperatures were evaluated and adjustments are being made to the rubber sizes and temperature schedules.

#### 3.2.2 Mechanical Joint Tests


Test items 16B shown in Figures 3-23 and 3-24 have been completed. These specimens were mechanically-fastened joint specimens using HL13 pins in configurations 1 through 4 (Figure 3-23) and HL410-6 pins in configuration number 5. HL97V collars were used on all specimens. The fasteners were installed per specifications. The holes drilled in the specimens were clearance fit for standard fit fasteners. For example, the diameter of a -6 pin is 0.1890-0.1895 and the hole is 0.1895 to 0.1925.

Analysis of the test data for configurational 1 through 4 is presented in Table 3-13 and Figure 3-25. Figure 3-25 is a nondimensional joint strength plot for 5/32 and 3/16-inch diameter HL13 pins. These data are applicable only to specimen configurations 1 through 4 and may be used only to determine the ultimate strength per fastener within the graphite/epoxy laminate thickness range tested.

Specimen configuration number 5 (Figure 3-23) was similar to the butt joint splice used for the 16A specimens except eight plies of Kevlar were in the splice plate versus the all-graphite splice previously tested. The bearings allowable in the hybrid specimen was comparable to the data for the 16A all-graphite specimens reported previously. Table 3-14 presents the test data for configuration number 5.



LR 27643



CONFIGURATION	SPLICE LAYUP	STRAP LAYUP
1	[±45/∓45/±45/0 ₂ /∓45/0] _S	[(±45/0/∓45/0) ₂ ] _S
2	$[\pm 45/\mp 45/\pm 45/0_4/\mp 45/0_3]_{S}$	[(±45/0/∓45/0)2]s
3	[±45/ <del>7</del> 45/±45/0 ₂ ] _S	[ ^(±45/0/∓45/0) 2]s
4	[ ^{±45/∓45/0} 2] _S	[(±45/0/∓45/0)2] _S
5	[ (±45/745/±45)G/(04) KEVLAR]s	ALUMINUM

Figure 3-23. Mechanical Joint Specimens (Item 16B)



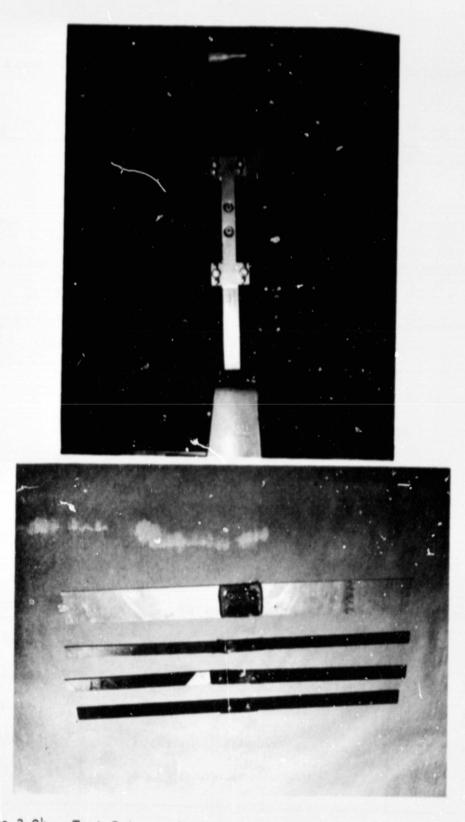



Figure 3-24. Test Setup and Typical Failure Modes for Mechanical Joint Specimens (Item 16B)

CALIFORNIA COMPANY

4

ORIGINAL PAGE IS OF POOR QUALITY

Configuration	t Splice (in)	t Strop (in)	Pin Diameter D (in)	Pu (Lbs)	Pu/D ² (Psi)	Type of Failure
1	.1115	.126	,189	1735	48571	
	,1165	.126	1	1780	47830	
	,1180	,123		1775	49690	
	.1125	.1255		1785	49970	
	,1190	.124	.107	1800	50 390	
Avg				1775		
2	.158	. 125	, 189	1800	50 390	
	,160	.125		1910	53470	
	.159	.125		1815	50810	
	,160	. 121		1820	50950	
	.160	. 125	.189	1840	51510	
Ave				1837		
3	.0845	,127	,164	1270	47219	Â
	.0805	.125		1202	44690	
	.083	,125		1245	46289	
	.0835	.127		1197	44505	
	,084	.123	.164	1180	43873	
Avg				1219		
4	.0625	,130	,164	990	36808	À
	.0650	.128		1057	39300	
	.0660	.128		1015	37738	
	.0630	, 1295		1032	38370	
	.0650	128	,164	1030	38296	
Avg				1025		

TABLE 3-13. TEST DATA FOR MECHANICAL JOINT SPECIMENS (ITEM 168)

A Countersunk head pulled through loading strap causing ply separation and tearout

A Ply separation across hole in splice plate



I

I

T

ľ

Ľ

Ī

T

Ĩ

T



Figure 3-25. Non-Dimensional Joint Strength Curve for Mechanical Joint Specimens (Item 16B)

TABLE 3-14.	TEST DATA FOR	MECHANICAL	JOINT	SPECIMENS	(ITEM 16	в,
	CONFIGURATION	NO. 5)				

Configuration	e/D	P bru (Lb)	splice (in)	D (in)	F bru (Ksi)	Failure Mode
5	2.5	3680	.114	.1905	84.8	Hole Tearout and Ply
		3800	,113	.1900	88.5	Separation in Splice Plate
		3780	.114	.1910	86.8	
		3960	.112	.1910	92.6	
	2.5	3880	,112	.1900	91.2	
Avg					88.7	
Allow					79.2	Lessen and at a seven against a reason of the control of the back of the program of the program of the control



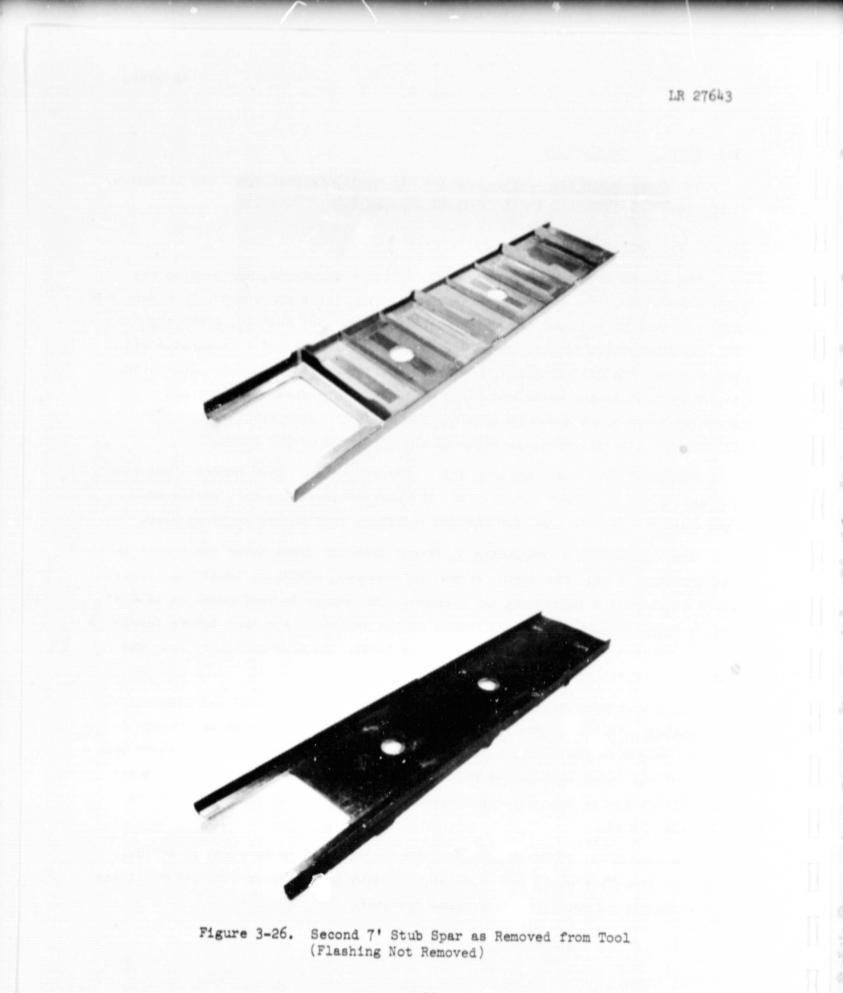
ž

#### 3.3 TASK 3 - FABRICATION

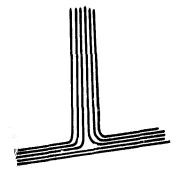
The fabrication procedures used for the ancillary test items and structural components are described in the following paragraphs.

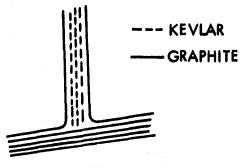
#### 3.3.1 Test Specimen Fabrication

The second stub spar was completed, cut into specimens, and sent to the test laboratory. The second spar as removed from the tool is shown in Figure 3-26. Prior to cutting the spar into test specimens 14A, 14B, and 14C, a thorough NDI and dimensional inspection were conducted. The ultrasonic inspection did not show any significant flaws, but the dimensional check did show some variation in web thickness which are being evaluated. The first spar was all graphite-epoxy and the second spar had Kevlar in the spar web. Figure 3-27 illustrates the difference in layup of the first and second spars.


Fabrication of spar number 3 and 4 were completed. Spar number 3 was used for making the added wet and dry 14A, 14B and 14C ancillary test specimens. Spar number 4 will be used for the dry ancillary test number 20 front spar.

Spar number 4 was completely different from the first three spars made in the prototype tool. The depth, width, thicknesses, stiffener locations, access holes and laminate layup were all changed. The change in configuration of the fourth spar required a complete rework of the inside of the tool before fabrication. This rework was accomplished on schedule and a satisfactory spar was made on the first try.


The fourth spar fabricated in the prototype tool was cured and prepared for testing. This was Front Spar Specimen No. 20. It is a constant crosssection beam with two access holes and four load points. Figure 3-28 shows the lay-up of the reinforced access hole and the cured spar. Closely spaced holes were drilled in the spar cap representing the holes for attaching the covers and leading edges.


The second No. 20 Front Beam Specimen is expected to be cured in April. It was originally planned for a second, dry development test; but, later, it was rescheduled for a humidity-conditioned specimen.





LOCKHEED





1st SPAR, 18 SERIES ALL GRAPHITE PLIES TURN INTO CAP 2nd SPAR, 14 SERIES KEVLAR IN WEB STOPS AT CAP

Figure 3-27. Comparison of 1st and 2nd Tool Development Spars

The cure cycle being used on the stub spars is as follows:

- heat rise rate less than 1°F/minute
- pressure full vacuum plus 150 psi during entire cure cycle
- cure 3 hours at 200°F, cool to 150°F or lower, remove spar from tool
- postcure unrestrained (no tool) but supported for 90 minutes at 260°F.

A program to evaluate the lower than expected failure loads on the 14A, B, C Ancillary Test specimens cut out the second stub spar was completed. The prime suspect causing these low strengths was the rubber temperature and resulting pressure during cure. The pressure generated by the rubber may have lagged the necessary cure pressure when the resin began to gel. Steps are being taken to adjust the rubber sizes and temperature-time schedules during cure. These adjustments are normal stages in the development of the elastomeric molding tool.





LOCH

46

North-

1

#### 3.4 TASK 7 - SUBCOMPON ANT TOOLING

The work in this task covers the design and fabrication of tooling to be used in the fabrication of subcomponent test specimens.

#### 3.4.1 Subcomponent Tool Design and Fabrication

Planning began for the last two stub spars to be fabricated in the prototype tool. These are Test Specimens Nos. 23A Static and 23B Fatigue. Both specimens will be identical, and they will conform to the requirements established for the design of the front spar. Conformity inspection is required for No. 23A. The tool used to fabricate the 21" x 84" prototype spars is shown in Figure 3-29.

Machining of the steel billets for the full size rear spar has begun. The lower part of this tool will be used to febricate the two ancillary test specimens (No. 20), rear spar specimens, and the 100-inch component spar.



ORIGINIAL PAGE IS OF POOR QUALITY

Figure 3-29. Completed Tool Used to Mold Prototype Spars

#### SECTION 4

PHASE II - DETAIL DESIGN - RIBS

Phase II Detail Design of the Ribs covers the main engineering effort of LAAD in the design, development, and fabrication of the ll ribs for the L-1011 Advanced Composite Vertical Fin. The engineering effort during this quarter covers four tasks: Component Definition, Fabrication, Component Tooling Development, and Subcomponent Tooling.

#### 4.1 TASK 1 - COMPONENT DEFINITION

Component Definition covers the detail design and structural analysis of the selected rib configuration and ancillary tests.

#### 4.1.1 Detail Design

ila

4.1

Recommended concepts for the ribs call for the use of graphite/epoxy caps with aluminum cruciform diagonals for the lower seven ribs, graphite/ epoxy caps with stiffened solid laminate web for the rear portions of the ribs at VSS 90.19, and graphite/epoxy caps with integrally stiffened solid webs for the upper three ribs.

The upper rib design concept differs from that proposed in Phase I. At the Preliminary Design Review (PDR) "a miniwich" design concept for the upper three ribs was proposed as being the preferred configuration. An evaluation of in-service inspection and repair procedures for the "miniwich ribs" indicated a potential problem associated with adequately inspecting or repairing the ribs while in service. For this reason, alternate concepts were evaluated for the upper three ribs. The concept currently under consideration is a stiffened solid laminate design. Preliminary analysis indicates an added weight saving will be realized with this change. Production cost inpact has not been determined as yet.



The detail design of the rib components for the 100-inch box has continued during this reporting period. Drawings for the ribs at VSS 90.19, 97.199, 121.45, and 145.71 respectively have been prepared and released. The actuator fitting drawing was released for the 100-inch specimen and other tests. All 100-inch specimen drawings have now been released.

Redesign efforts have begun on the ribs located at VSS 274.26, 299.97, and 323.62 due to the replacement of miniwich with solid web laminates. Work on the Production Rib Drawing for the rib at VSS 90.19 has continued on schedule. Formal release of bevel angles, spar cap offsets, and stiffener spacing has been made to manufacturing.

The detail design for the ancillary test program is progressing in accordance with the phase II schedule. Two new layup configurations  $(90_2/\pm45)_{2s}$  and  $(0_2/\pm45)_2$  for Ancillary Test 14C and two new layup configurations  $(90)_{16T}$  and  $(90_2/\pm45)_s$  for Ancillary Test 16A have been released. The ancillary test coupon drawings 18A, 18B (fastener pull-through), 19A, and 19B (single lap joint) have all been released. Element drawings for test elements 20A (rib bending), 21A (inplane shear), 22A (rib crushing), and 24A (rudder hinge attachment) have been released. Subcomponent drawing for test 24B (actuator fitting attachment) has also been completed and released.

#### 4.1.2 Structural Analysis

Phase II activities were directed primarily at continuation of the ancillary coupon tests, subcomponent test specimens detail design and test methods development, tabulation of data for Lockheed's development of substructured rib models for generation of internal loads for detail design, and refinement of joints analysis for the VSS 90.199 and VSS 97.199 shear web/spar clip/rib cap interface.

Concepts were rough sized and mini-trade studies were conducted of alternate concepts for the ribs at VSS 274.26, 299.97, and 323.62 to replace the miniwich rib design. It was determined to use the solid laminate rib configuration. Detailed sizing was done and the solid laminate change was incorporated into the ancillary test coupons and test elements. The ancillary



test plan was also updated by incorporating the impact of these changes on the environmental test requirements.

Work was done on the fail-safe analysis for the VSS 97.199, 121.45, and 145.71 ribs. The fail-safe computer run substructured models of the ribs is to be conducted prior to submittal of the analysis.

Test authorizations for mechanical joint specimens item 16, the single and double lap shear specimens, and item 19, the multiple joint single lap shear specimens, have been initiated.

#### 4.1.3 Ancillary Tests

#### Tension Test

All IITRJ type tension coupons (Test No. 14) have been fabricated and tested for the  $(0)_{6T}$ ,  $(0_2/\pm45)_s$  and  $(0/\pm45/90)_s$  laminate orientations. From the summary of data presented in Tables 4-1, 4-2, and 4-3, it appears that temperature would have little or no degradation effect on these laminate orientations average ultimate failure stresses. Figures 4-1 and 4-2 are typical plots of stress versus strain from both strain gage and extensometer data for  $(0_2/\pm45)_s$  and  $(0/\pm45/90)_s$  orientations respectively, and illustrate the good correlation of gage and extensometer data. For all tested tension coupon orientations, both ultimate tensile stresses and strains are within 2.0 percent of the published Phase II design allowables.

Additionally, good correlation is found for Poisson's ration by comparing those values generated from test data and those values generated for crossplied laminates by the linear analysis computer program AC-50.

Tables 4-4, 4-5, and 4-6 summarize the compression-bending beam data for the  $(0)_{6T}$ ,  $(0_2/\pm45)_s$  and  $(0/\pm45/90)_s$  orientations, respectively. From these tables the effect of temperature is much more readily apparent. Although all test, and calculated design values, were well above the Phase II design allowables for both ultimate stress and strain capability, it should be noted that a strength reduction of some 18 percent was experienced by the  $(0/\pm45/90)_s$  orientation laminates (avg.) at 160°F. This type of laminate strength reduction is greater than expected at this test temperature; and its



TABLE	4-1.	(0) _{6T}
-------	------	-------------------

## IITRI TYPE TENSION COUPON TEST DATA T300/5209

Speci nun Nunber	fost Tomperature (°F)	Arra (In) ²	Mux Load (Lbs)	Ultimate Stress (KSI)	Ultimute Strain (µIN/IN)
1	ĸr	,043	8950	208,0	(1)
2	RT	.043	9310	227,5	(1)
5	КТ	,040	9800	243,7	10,800
4	160	.039	9340	236.7	10,500
5	160	.042	9400	219.2	10,700
6	160	.042	8650	205.4	10,000
7	-05	.040	8900	221,4	10,600
1	+65	.042	9500	224.2	(1)
9	+65	,042	9550	223.1	(I)

(1) Extensameter slipped and specimens not strain gaged.

# TABLE 4-2. $(0_2/\pm45)_s$ IITRI TYPE TENSION COUPON TEST DATA T300/5209

Spec NG	Text Temperature (°l·)	Area (1n ² )	Max. Lond (Lbs)	Ultimate Stress (KSI)	Modulus (MSI)	Ultimate Strain (# IN/IN)	
22	RT	.044	4,690	106.6	10.66	10,000	,
25	Ri	,044	4,760	308.Z	10.61	10,200	
28	RT.	.043	5,065	117.8	10.71	11,000	j
21	-65	.043	4,945	115.0	10.95	10,500	
24	*65	.044	4,810	109.3	(J)	(1)	
27	-65	.044	4,665	106,0	10.49	10,100	
23	160	.044	4,800	109,1	8,73	12,500	
25	160	.044	5,060	115.0	11.5	10,030	
29	160	.043	4,930	114,6	10,33	11,100	

(1) Gago Failure



LR 27643

Spec No.	Test Temporaturo (°F)	Area (In ² )	Max; Loud (Lbs)	Ultimate Ströss (KSI)	Nodužus (MST)	Ultimate Strain (µ IN/IN)
12	RT	,044	2,990	67,95	6,23	10,900
15	RT	.044	3,100	70,45	6,18	11,400
18	RT	.044	2,960	67.3	6,29	10,700
11	-65	.044	3,085	70,1	6.40	10,950
14	-65	.044	3,000	68,2	7,53	9,050
17	-65	.044	2,970	67.5	6,62	10,200
13	160	,044	2,970	67.5	6,43	10,500
16	160	,044	3,135	71.25	6,95	10,256
19	160	.043	2,900	67,4	7.13	9,450

TABLE 4-3. (0/+45/90) IITRI TYPE TENSION COUPON TEST DATA T300/5209

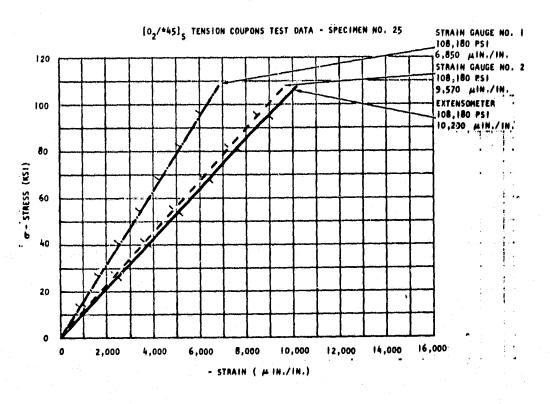



Figure 4-1. Typical Stress Versus Strain Plot of Strain Gage Versus Extensometer Data (T300/5209)



4

.

- Intel -

12.5

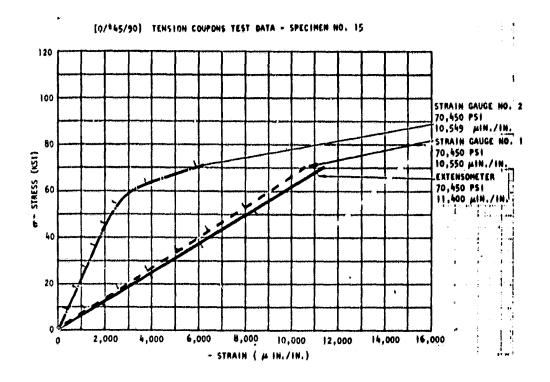



Figure 4-2. Typical Stress-Strain Flot of Strain Gage Versus Extensometer Data (T300/5209)

impact, if any, will be considered in the detail design of compression critical joints as they are encountered.

All IITRI type tension coupons have also been fabricated and tested for the  $(90)_{16T}$  and  $(90_2/\pm45)_s$  orientations with the exception of those which are being environmentally conditioned.

A summary of the tension test data is shown in Table 4-7. The test strengths were 81 and 91 percent of predicted for the  $(90)_{16T}$  and  $(90/\pm45)_s$  orientations respectively. Average modulus values were calculated to be within six percent of the predicted modulus values, from curves typical of those shown in Figures 4-3 and 4-4.

It should be noted that predicted strength values are based on calculated AC-50 design allowables increased by a 20 percent test/design allowable factor.



Spec No.	Mickness fln.)	Width (In.)	Test Tompurature (*#)	Load (155)	lli cimato Struss (KSI)	Uitimite Strain (# IN/IN)
2	.03203	1,005	<b>K</b> T	36.M	285,22	19,300
5	,07140	,985	KT .	3385	276.76	19,234
•	,03100	.985	RT	3600	296.22	21,793
1	.03063	,975	+65	3555	300.95	23,900
•	,03017	1.000	+65	3600	301.62	22,109
7	.03180	1,000	-65	3750	310.00	23,919
3	.03033	,990	160	2615	220.15	14,910
6	,03177	1,000	160	3235	257.52	18,497
9	.03067	,995	160	2885	239.01	16,504

TABLE 4-4. (0) GT LONGITUDINAL COMPRESSIVE SANDWICH BENDING BEAM TEST DATA T300/5209

TABLE 4-5.  $(0_2/\pm45)$  LONGITUDINAL COMPRESSIVE SANDWICH BENDING BEAM TEST DATA T300/5209

Spec No.	Thickness (In.)	Width (In.)	Test Temperature (*F)	Lond (Lbs)	Ultimate Stress (KS1)	Ultimate Strain (µIN/IN)
22	,04087	1.000	RT	2,330	143.235	18,460
25	.04240	1,000	ĸr	2,600	154.14	19,071
28	.04210	1,000	RL	2,400	143,28	17,455
21	.04170	1,000	-65	2,700	162.72	(1)
24	.04170	1,000	-65	2,780	167.54	21,000
27	.04140	, 995	160	2,100	128.105	16,869
26	.04210	1.000	160	2,175	129.65	17,064
29	,04200	1.000	160	2,200	131.65	17,593
						1

(3) Gage failed below ultimate

The AC-50 design allowables are developed from unidirectional design allowables. Predicted modulus values from AC-50 are compared directly with test data.

#### In-Plane Shear Test

All in-plane shear type coupon tests (Item 14C) have been completed, with the exception of those undergoing environmental exposure, for the  $(0/\pm45/90)_{2s}$ ,  $(\pm45)_{4s}$ ,  $(90_2/\pm45)_{2s}$ , and  $(0_2/\pm45)_{2s}$  orientations. These orientations are



Spec No.	Thickness (In.)	Width (In.)	Test Temperature (*F)	Load (Lbs)	Ultimate Stress (KSI)	Ultimate Strain (µIN/IN)
12	,04160	1,000	TN	1645	99,69	16,214
15	.04180	1.000	RT	1680	101.01	16,287
10	,04097	.995	RT	1665	102.62	16,398
11	,04110	1.000	•65	1970	120,435	18,600
14	,04160	1.000	-65	1910	115.38	18,400
17	.04100	1,000	-65	2000	122,56	19,486
13	.04120	1.000	160	1300	79.28	13,027
16	,04093	1,000	160	1410	86.55	14,667
19	.04090	- 1.000	160	1360	83.54	13,789

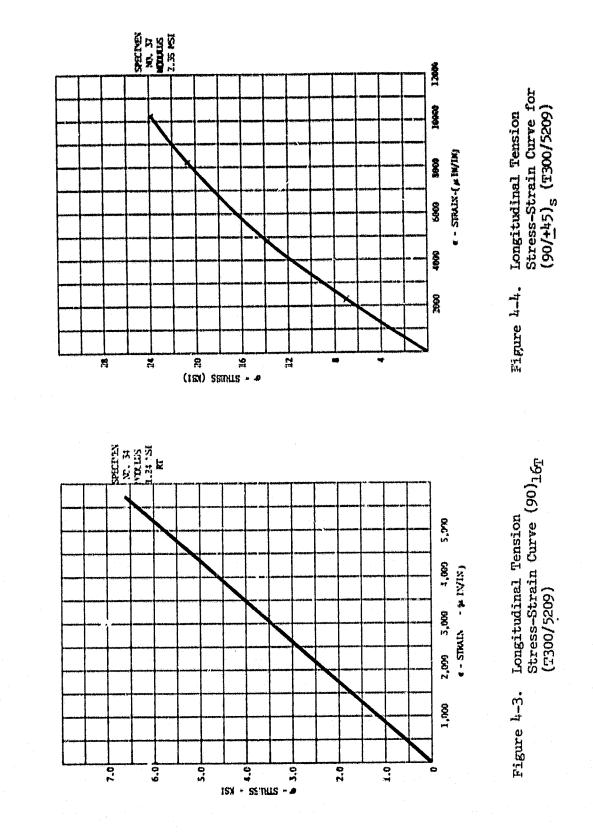
TABLE 4-6. (0/+45/90) LONGITUDINAL COMPRESSIVE SANDWICH BENDING BEAMS TEST DATA T300/5209

representative of previous and current configurations planned for use in the various rib substructures.

Due to the limited number of coupons available and the various orientations required to be tested, all tests were conducted at room temperature. A summary of the rail shear test data is presented in Table 4-8. The recorded strength values were generally less than predicted (average 70 percent of predicted discounting the  $(\pm 45)_{45}$  strength values). The modulus values for the  $(0/\pm 45/90)_{25}$  and  $(\pm 45)_{45}$  orientations were 92 percent of predicted. Typical shear stress-strain curves are presented in Figures 4-5 and 4-6. Modulus values for the  $(90_2/\pm 45)_{25}$  and  $(0_2/\pm 45)_{25}$  orientations were not obtained. The lower than expected test values are thought to be the fault of test fixturing as cracks were observed initiating from the bolt holes, indicating fixturing slippage. Additionally, it is known industry wide that full predicted shear strength is never obtained for the  $(\pm 45)_{45}$  orientation due to the inherent stress concentrations present in the rail shear type test.



TABLE 4-7. TENSION TEST DATA SUMMARY (T300/5209)


Ultimate⁽¹⁾ Strain (μin/in) 5,450 5,900 10,200 5,900 5,700 14,100 10,200 9,800 Modulus (1) (Test) (msi) 1.253 1.240 1.274 1.324 3.02 2.93 2.83 2.86 Ultimate Stress (ksi) 6.48 6.66 6.64 6.61 23.4 24.6 23.9 23.1 Maximum 580 575 1010 1040 Load (1b) 553 565 1080 1008 Tenp (°F) R RT R R RT R RT R .0439 .0853 .0863 .0435 .0877 .0851 .0431 .0437 Area (in²) Specimen Number **8**8 33 35 36 32 34 33 E Orientation [902/±45]_S [902/±45]_S [902/±45]_S [90₂/±45]_S [90]_{16T} [90]_{16T} [90]_{16T} Test [90]_{16T}

Based on Extensometer Data

Ξ

LR 27643







Ø

4-10

LR 27643

TABLE 4-8. RAIL SHEAR TEST DATA SUMMARY (T300/5209)

LOCKHEED

I

J.

I

ľ

. .

Simmer &

I

*

I

Â.

Ultimate Strain (2) (µ In/In)	16,870	14,997	19,562	8,308	7,818	9,887	× #	•	ŧ	•	•	9
Modulus(1) (NSI)	2.65	2.36	2.42	5.44	5.12	4.11	•	,	1	1	j	<b>a</b> .
Ultimate Stress (KSI)	37.28	33.55	40.09	35.81	33.70	36.51	34.39	46.81	25.86	37.60	44.27	39.19
Test Temp (°F)	RT	RT	R	RT	RT	R	RT	RT	R	RT	RT	RT
Thickness (In)	.087	.087	.087	.087	.087	.087	.085	.085	.086	.086	.087	.088
Specimen Nunber	1	2	M	IJ	Ŷ	7	G	10	Ħ	13	14	15
Test Orientation	[0/±45/90] ₂₅	[0/±45/90]2S	[0/±45/90]2S	[±45] _{4S}	[±45]4S	[±45]4S	[902/±45]2S	[90 ₂ /±45] _{2S}	$[90^{-}_{2}/45]_{2S}$	[0,7+45]25	$[0_2/\pm 45]_{2S}$	[02/±45]2S

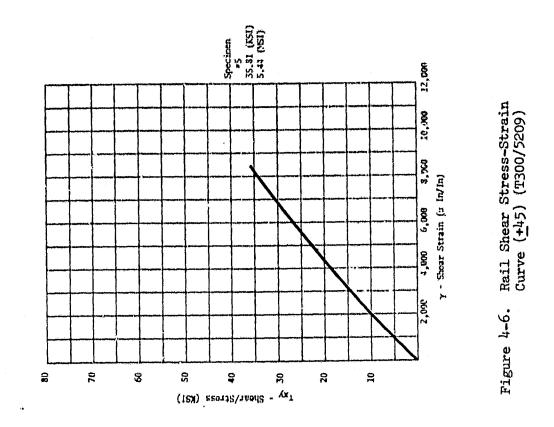
(1) Gased on strain gage data.

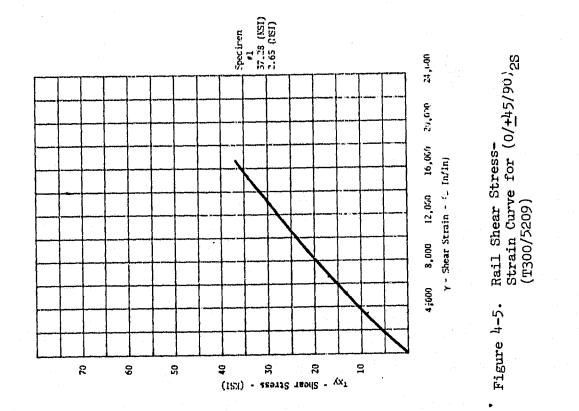
4-11

(2) Extrapolated value from strain gage data.

LR 27643

1.


ħ


LR 27643

•

÷.

* *





#### 4.2 TASK 3 FABRICATION

This task covers the fabrication of ancillary test items and structural components.

#### 4.2.1 Ancillary Test Specimens

Ancillary test specimen fabrication and testing is continuing. The fabrication of the tension and rail shear specimens (Item 14) was completed and the specimens were submitted for mechanical property static testing. The mechanical joint specimens (Item 16) were fabricated and submitted for static test. The dry tension "pull-thra" specimens (Item 18) have been completed. The fabrication of the "wet" test laminate and joint specimens is continuing. Completed specimens are being environmentally conditioned in accordance with the requirements of MIL Handbook 17A, paragraph 4.2.6 (Ref. 4).

All flatwise tensile tests for miniwich adhesive selection and materials compatibility validation were completed prior to configuration change from miniwich to solid laminate ribs. Flatwise tensile strength and failure mode for two film weights of Narmco Metlbond 1133 and 3M AF-55 adhesive utilizing two core materials are presented in Tables 4-9 and 4-10.

Specimen panels were cocure fabricated from prebled  $(0_2/\pm45)_T$  facings utilizing a hard picture frame dam around the panel and between 0.50-inch silicone-rubber blankets. The assembly was envelope-bagged and autoclave cured in this manner to simulate the planned miniwich rib fabrication method. The autoclave temperature cure schedule was in accordance with existent procedures. However, cure pressure schedule was changed from  $85\pm$  psig to  $45\pm$  psig because the 4.0-pounds per square foot core would crush during an 85 psig cure.

The flatwise tensile test results at room temperature and at 160°F in both weights favored the slightly heavier Metlbond 1133 adhesive. In general, adhesive filleting for the two adhesives were equivalent. Both adhesives demonstrated compatibility with the 5209 epoxy resin and could be utilized for the miniwich rib. The AF55 adhesive was selected as it is qualified to existing L-1011 material procurement and supporting process specifications.



LR 27643

. 1

emp (°F) RT	Stress (P51) 1300	Mode of Faiture (3)	Stross (PSI)	Mode of Failure (3)
	1100	· · · · · · · · · · · · · · · · · · ·		
	1 1000	401 COH, 201 IL	1363	501 COH, 501 IL
RT	1300	901 COH, 101 1L	1385	905 COH, 105 IL
KL.	1300	801 COH, 201 IL	1388	901 COH, 101 IL
	(1300)		(1379)	
160	817	401 COH, 101 IL, 401 AC	990	951 COH, SV IL
160	1005	504 COH, 504 II.	998	951 COH, 51 IL
160	885	50% COH, 10% 11., 40% AC	995	951 COH, 51 IL
	(902)		(994)	
RT	863	901 CT, 101 11	- 912	80% CT, 20% AF
RT	883	904 CT, 104 IL	830	70% CT, 30% AF
Rr	808	801 CF, 101 IL	890	601 CT, 401 AF
	(858)		(878)	
160	823	1001 CT	775	951 CT, 51 AF
160	845	901 CF, 101 AF	881	951 CF, 51 AF
160	810	801 CT, 201 AF	978	1001 CF
	2426)		(861)	
	160 160 160 RT RT RT 160 160	(1300)           160         817           160         1005           160         885           (902)         87           RT         883           RT         883           RT         883           (60)         823           160         845	RT         1300 (1300)         BOL COH, 208 IL           160         817         408 COH, 208 IL           160         1005         508 COH, 108 IL, 408 AC           160         1005         508 COH, 508 IL           160         885         508 COH, 108 IL, 408 AC           (902)         (902)         508 COH, 108 IL, 408 AC           RT         883         908 CT, 108 IL, 408 AC           (902)         908 CT, 108 IL         408 AC           RT         883         908 CT, 108 IL           RT         808         808 CT, 108 IL           (858)         1008 CT, 108 IL           (858)         1008 CT, 108 IL           160         845           908 CT, 108 AF           160         810           803 CT, 203 AF	RT         1300 (1300)         801 COH, 201 IL         1388 (1379)           160         817 160         408 COH, 101 IL, 401 AC         990 990           160         817 160         408 COH, 508 IL 998         990 508 COH, 508 IL 998         990 995           160         885 (902)         990 CT, 101 IL 993         991 (994)           RT         883 808         901 CT, 101 IL 800         913 (858)           RT         808 808         804 CT, 101 IL 800         800           160         823 1005 CT         1005 CT         775 881           160         845 905 CT, 105 AF         881           160         810         805 CT, 205 AF         978

#### COCURED HONEYCOMB SANDWICH FLATWISE TENSILE STRENGTH (1) TABLE 4-9.

NOTES: 1.

Specimen facesheets are Hatch #1473, roll 16 Narmoo 5209/T. 390 ( $0_2/\pm45$ )_T Gr/Ep. Core material is 3/16-5052-.003 HP x 1.000 inches thick for AL specimens and HRP 3/16-2.

GF11-4.0 x 0.5000 inches thick for HRP specimen numbers, Notation code for mode of failure: AC = Adhesive to Core COH = Cohesive 3. AF = Adhesive to facing CT = Core in Tension IL - Interlaminar in Gr/lip facing

4. Measured adhesive film weights were Metlbond 1133-0.036 PSF and AF55-0.032 PSF

COCURED HONEYCOMB SANDWICH FLATWISE TENSILE STRENGTH (1) TABLE 4-10.

Specimen	Test	Met Ibond	1133/01045 1515 (4)	AI: 55/0	.045 PSF (4)
No. (2)	Temp (4F)		Mode of failure (3)	Stress (PSI)	Mode of Failure (3)
λF45+1	RT	1698	401 IL, 601 AF	1338	801 COH, 201 1L
AF45-2	ĸr	1645	60% IL, 40% AF	1338	80% COH, 20% IL
AF15-3	ĸt	1703	401 11, 601 AF	1508	70% COH, 30% IL
		(1682)		(1395)	
AF15+4	160	1243	201 IL, 801 COH	958	951 COL, 51 11.
AF 45+5	160	1225	801 11., 201 001	980	955 000, 55 11
AF45-6	160	1275	401 IL, 601 COH	970	954 COH, 54 IL
		(1248)		(953)	
HRP45-1	ĸr	973	401 CT, 301 AF, 301 AC	825	901 CT, 101 IL
HRP45-2	RT	998	201 CF, 101 AF, 701 AC	890	954 CT, 5V 1L
HRP15-3	RL	888	100% (0)	856	955 CT, 51 IL
		(953)		(857)	
HRP45+4	160	B25	50% CT, 50% AC	805	100% CT
HRP45-5	160	843	1001 CT	815	1001 CT .
HRP45-6	160	848	801 CF, 201 AC	743	100 <b>\$ C</b> ľ
		(839)		(789)	· · ·

(1) Specimen facesheets are batch No. 1473, roll 16 Narmeo  $5209/T-300 [0_2/\pm45]_T$  graphite/epoxy (2) Core material is  $3/16-5052-.003NP \times 1.000$ -inch thick for aluminum specimens and HRP3/16-GF11 NOTES: 4.0 x 0.500-inch thick for HRP specimen numbers

(3) Notation code for mode of specimen failure: AC = Adhesion to Core, AF =*Adhesive to Facing, COH = Cohesive, CF = Core in Tonsion, 1L = Interlaminar in Graphite/Epoxy Facing
 (4) Measured adhesive film weights were Motlbond 1133-0.049 PSF and AF55-0.039 PSF



Process control compression test specimen development is continuing. Compression test results of specimens taken from the second trial rib cap section are shown in Table 4-11. These specimens were machined from the web of the rib section.

Correlation of M&P versus Quality Control Laboratory comparative testing has been performed. The test data for several laminate configurations are presented in Tables 4-12 through 4-15. Test data show the Quality Control results were generally somewhat lower than M&P test data. The reason for this discrepancy is under investigation.

Manufacturing Engineering Concept Outline (MECO) for fabrication of truss rib elements has been released. Work orders on truss type beam bending (20A), in-plane shear (21A), static compression (22A), and rudder hinge fitting elements (24A) have been initiated; work is in progress on the common rib cap shape supporting these elements.

A sketch of a truss rib cap section has been submitted to Manufacturing for fabrication with built-in defects. The test section will be evaluated by nondestructive inspection to validate proposed inspection techniques.

#### 4.3 TASK 4 - COMPONENT TOOLING DEVELOPMENT

The work in this task covers the design and fabrication of tooling to be used in the fabrication of the ribs.

#### 4.3.1 Limited Production Tool Design and Fabrication

Design for the 100-inch test article ribs was completed. Layup blocks (LUB) have been ordered from an outside source. As of 25 March, the first set of LUB's, for VSS 97.199, was 50 percent complete. Assembly tooling is in work.



CH HAR

l

]

<del>n</del> g

11

SPECIMEN NO.	THICK (IN.)	TEST SECTION AREA (IN.2)	TEST TEMP. (°F.)	ULTIMATE STRENGTH (PSI)
2-1	0.1212	0.0928	RT	79,741
2-2	0.1183	0.0899	RT	<u>79,533</u> (79,637)
2-3	0.1309	0.0995	160	71,819
2-14	0.1282	0.0970	1.60	<u>77,423</u> (74,621)

#### TABLE 4-11. TRIAL RIB CAP NO. 2 WEB SECTION PROCESS CONTROL COMPRESSION TEST DATA (T300/5209)

The layup table is complete with the exception of hard anodizing. LUB tool designs for 100-inch test article ribs are being completed to reflect recently received dimensional information on contours and spar joint step-offs.

Fabrication studies have been conducted on lay-up and integral cure of the spacers required adjacent to spar cap joint. Satisfactory dimensional control was obtained with the off-set step tooling concept employed, as demonstrated by thickness measurements made on Specimen No. 2:

Part Section	No. of Plies	Thickness, mills
Lower Clip Leg	24	121, 120.5, 121, 121.5
Lower Clip Leg plus Spacer	48	242, 246, 243
Upper Clip Leg	24	124, 122, 123, 120
Web	24	123, 118.5, 122, 121
Lower Chord Leg	32	158, 155.5, 158
Upper Chord Leg	32	156.5, 158, 158

Spiral blade band sawing has been identified as the preferred machining method for hat section cutouts in the ribs. Paperwork has been initiated to equip the bandsaw in the Composites Manufacturing area with an appropriate blade and guides. A trial layup and cure has been performed on a T-type cap



LAMINATE (0/<u>1</u>45/90)_{2S} COMPRESSION TEST DATA (T300/5209) TABLE L-13.

LAMINATE COMPRESSION

TABLE 4-12.

TEST DATA⁽³⁾ (2300/5209)

27

4 47 49

ጉሞ

4-17

4 4 49

7 9 9

1 Voltage yourse

î f

 $\mathbf{I}_{d}$ 

1 1 1

÷ F ī

	(14.)	Area (112)	test 13-0.	Streatt (csi)
· · · · ·	0.0662	0.0554	iz i	54,500 (1) (3) 76 200 (1) (3)
	0.0860	0.0645	i la	(1) 005"18
	0.0852	0.0645	RT	
•I+	0.0852	0.0645	12	
PC2-15 0.0	0.0873	0.0664	160	
-	0.0266	9.0657	3	
	0.035	2.2652	160	
	0.0656	C.C546	150	(1) 005 69
-19 [ 0.0	0.0862	0.0646	160	62,700 (1) 67,700
-20 0.065	es.		ł	63,500 (2)
	ŝ			
-	85			61,500 (2)
_	52			
-24 0.086	8		N	<u>60,100</u> (2) 62,700
PC2-25 0.085	ŝ		160	42,866 (2)
-26 0.065	ស		160	
	10		160	
-26 0.065	<b>8</b> 5		160	
	85		168	
otes: 1. Specifiens 2. Specifiens 3. Data point	ns tested ns tested int onito	Specifient tested in the M2P laboratory. Specifients tested in the Guality Control Data point omitted from average.	boratory. y Control Laboratory. e.	itory.
4. Test pe specifie	rforrek Cation	Test performed per preliminary issue of Rockwell specification LAD605-055.	issue of Pockne	I

Ultimate Strength (PSI) 25,700 (1) 89,900 (1) 88,300 (1) 77,500 (1) 79,600 (1) 75,700 (1) 77,600 75,000 (2) <u>65,900</u> (2) 70,900 29,700 (1) 29,600 (1) <u>32,000 (1)</u> 30,500 34,300 (1) 32,900 (1) 32,500 (1) 32,106 28,500 (2) 33,600 (2) 28,200 (2) 30,100 25,500 (2) 23,300 (2) 23,500 (2) 24,200 Test Temp. (°F) 160 160 160 160 160 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 09 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 19 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 100 RI 불법법 *** Test Section Area (in²) 0.0942 0.0955 0.0945 0.0963 0.0952 0.0952 0.0977 0.0968 0.0993 0.0969 0.0979 0.0964 0.0975 0.0953 0.0971 0.0966 0.1065 0.1052 0.0954 Thick (No.) 0.126 0.127 0.126 0.125 0.130 0.129 0.130 0.130 0.128 0.131 0.128 0.129 0.128 0.129 0.126 0.129 0.128 0.128 0.126 [902/±45]₃₅ PC4-1 -2 -3 [02/+45]35 Pc3-1 Specimen No.

Spectrens tested in the HSP laboratory. Spectmens tested in the Quality Control laboratory. Tests performed per preliminary issue of Rockwell specification LA0605-055. 

Notes:

972

LR 27643

LR 27643

and and a second se

TABLE 4	1-14.	LAMINATE	COMPRESSION	TEST	DATA	(1)	
		(T300/5209)					

Specimen No.	Thick (In.)	Test Soction Area (In ² )	Test Tomp. (*F)	Ultimate Strength (KSI)
(0/±45/90)35 1 2 3	0,127 0,127 0,127 0,127	0.0956 0.0956 0.0970	RT RT RT	77.2 (2) 84.2 (2) 78.3 (2) 79.3 Avg.
7 8 9	0.129 0,130 0.129	0.0973 0.0975 0.0973	RT RT RT	66.5 (3) 56.0 (3) 66.3 (3) 66.3 Avg,
4 5 6	0,129 0,130 0,130	0,0970 0,0980 0,0983	160 160 160	74,3 (2) *1.4 (2) Daraged Specimer 72.9 Avg,
10 11 12	0.130 0.130 0.129	0.0930 0.0982 0.0974	160 160 160	62.0 (3) 64.6 (3) 64.9 (3) 63.8 Avg,
(902/±45)25				
1 2 3 4	0.086 0.085 0.086 0.085	0.065 0.064 0.065 0.065	140 160 160 160	32.6 (2) 32.7 (2) 33.1 (2) <u>33.1 (2)</u> <u>32.1 (2)</u>
5 6 7 8	0,086 0,086 9,085 9,085 9,086	0.745 0.655 4.764 0.765	160 160 160 160	20.3 (3) 28.8 (3) 28.9 (3) 28.1 (3) 28.8 Avg.
[0 ₂ /±45] ₂₅				
1 2 3 4	0,084 0,083 0,086 0,086	0.063 0.064 0.064 0.065	160 160 160 160	68.0 (2) 70.5 (2) 73.7 (2) 63.2 (2) 69.1 Avg.
5 6 7 8	0,083 0,084 0,083 0,084	0,062 0.063 0.062 0,063	160 160 160 160	74.6 (3) 72.2 (3) 78.6 (3) 70.7 (3) 74.0 Avg.

Notes: 1. Tests performed per preliminary issue of Rochwell Specification LAO605-055.

2. Specimens tested in the MAP Laboratory.

3. Specimens tested in the Quality Control Laboratory.



LR 27643

SPECIMEN NO.	THICKNESS (IN.)	TEST SECTION AREA (IN.2)	ULTIMATE STRENGTH (KSI)
Web Adjacent	to Mold Line Flange		a Bailan
1 2 3	0.130 0.128 0.130	0.0976 0.0963 0.0983	77.8 (2) 75.3 (2) <u>73.2</u> (2) 75.4 Avg
4 5 6	0.126 0.130 0.131	0.0950 0.0979 0.0988	69.6 (3) 70.6 (3) <u>65.6</u> (3) 68.6 Avg
Web Adjacent	to Stiffening Flange	•	
1 2 3	0.127 0.130 0.128	0.0836 0.0842 0.0840	73.6 (2) 69.5 (2) <u>77.4</u> (2) 73.5 Avg
4 5 6	0.125 0.124 0.123	0.0934 0.0906 0.0921	67.5 (3) 72.6 (3) 66.6 (3) 68.9 Avg

## TABLE 4-15. TRIAL RIB CAP WEB (45/0/-45/90)₃₈ PROCESS CONTROL SPECIMEN 160°F COMPRESSION STRENGTH¹ (T300/5209)

NOTES:

¹Tests performed per preliminary issue of Rockwell Specification LA0605-055

²Specimens tested in the Materials and Producibility Laboratory

 3 Specimens tested in the Quality Control Laboratory



1

]

1

element representative of the VSS 97.199 rib cap configuration. This configuration requires extraction of a C-channel layup tool member from a closed angle section.

In order to check cocuring possibility for the damage protection system which will be necessary for blind fastener installations, the layup of the interior side of the rib flange included a representative array (120 Kevlar-49 barrier ply) over a portion of its run.

Tool extraction, due to the removable silicone rubber cap design, posed no problems. Integral cure of the damage protection system was achieved without difficulty. Thickness and fiber content measurements on the specimen meet stipulated requirements. Filament displacement was noted in the first two interior plies of the web sections of the C-channel layups. This is believed to be mainly associated with employment of Armalon on the silicone rubber caps of the C-channel layup members in an effort to improve building trade. Corrective action will consist of removal of Armalon and close attention to compacting practices.

The Do-All saw in D/463 was equipped with appropriate guides and a Tyler Spyral blade, 0.074 diameter was installed. Clip cutout trials showed good conformance of the cut with template dimensions. Optimum feeds, speeds, and tool wear are being determined.

Based on previous observations, the following process and tool changes, shown in Table 4-16, were instituted in fabricating another 36-inch curved simple angle truss cap trial element.

Observations made during layup and physical inspection of the cured trial element indicate that the changes made achieved their purpose. In particular, incorporation of metal core in the C-section layup member and an aluminum caul in the intensifier contributed materially to improvements in flatness and flushness of the web face. Slight crowning was still present in the trial element fabricated which is shown in conjunction with the tooling used in Figure 4-7. This tendency will be completely obviated in the future by:

a) Increasing the width of the metal caul in the intensifier to the vicinity of radius areas.



#### TABLE 4-16. PROCESS AND TOOL CHANGES

PROCESS OR TOOL CHANGE	INTENDED PURPOSE
16 reinforcing plies exterior chord cap and 8 reinforcing plies interior chord cap.	Design change to web configuration with increased number of "continu- ous fiber" plies.
-Section prebled fillers at exterior chord cap/web location.	Filler shape to accommodate new ply configuration. Prebled in lieu of straight precured filler for easier contour conformance and building tack during layup.
Elastomeric membrane with riser arrangement in lieu of conven- tional vacuum debulking.	Wiping action for better radius definition; avoidance of pinch-off tendencies.
1/4-inch silicone rubber faced aluminum core C-channel layup tool member.	Reduce distortion tendencies on all silicone rubber . Jol member.
1/16-inch aluminum flush caul embedded in silicone rubber intensifier.	Flushness of web surface with con- tinuous areas at upper chord cap locale.
Wedge clamp provisions for C-channel against caul tool member.	Avoidance of springback after clip 3-section and C-section layup and debulking operations. Positive locking at proper position of tool members.

b) Reducing the thickness of the silicone rubber facing of the C-channel layup member from 1/4 to 1/8-inch.


Figure 4-8 is a schemetic of the new arrangement, including intensifier and cover fillers.

RTV 560 is showing promise as a sealer/release system for cast ceramic tooling. More extensive testing is planned with respect to surface definition and pinholing tendencies under autoclave pressure.

The spar joint step development tool and filler mold have been received. The truss T-cap development tool is 80 percent complete.

Quality Engineering has been requested to submit a plan for fabrication of a specimen with intentional defects in order to establish NDT standards.





LOCKHE

*

OF POOR QUALITY

LR 27643

Figure 4-7. 36-Inch Curved Simple Angle Truss Cap - Trial Element

]

]

]

1

[]

0

[]

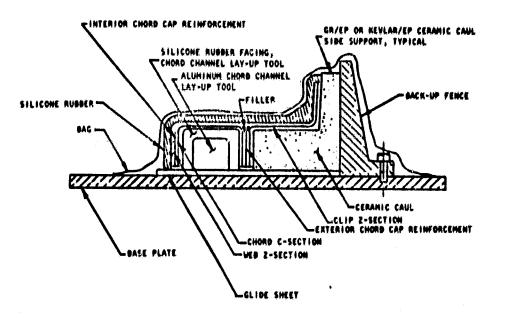



Figure 4-8. Baseplate Tooling Concept Truss Rib Caps

#### 4.4 TASK 7 - SUBCOMPONENT TOOLING

The work in this task covers the design and fabrication of tooling to be used in the fabrication of the subcomponent test specimens.

#### 4.4.1 Subcomponent Tool Design and Fabrication

The configuration of the cap shape of truss rib elements and their intended manufacturing procedure is now considered defined. Tooling has consequently been put in work for Rib Cap P/N 1606647-107 which will support the following elements and subcomponents:

Item No.	Designation	P/N
20-A	Beam Bending, Truss	1606646-111
21-A	In-Plane Shear, Truss	1606647-111
22-A	Static Compression, Truss	1606648-111
24-A	Rudder Hinge Fitting, Truss	1606649-111



.

1

A Manufacturing Engineering Concept Outline (MECO) for fabrication of these elements has been drafted and is being coordinated with the various functions involved.



LR 27643

#### LIST OF REFERENCES

- 1. Vulnerability/Survivability of Composite Structures Lightning Strike, Boeing Commercial Airplane Company, January 1976.
- 2. Wing/Inlet Composite Advanced Development, Second Quarterly Progress Report - General Dynamics, Fort Worth Division, 15 December 1975.
- 3. Flight Service Evaluation of an Advanced Composite Empennage on Commercial Transport Aircraft, Quarterly Technical Report - No. 2 NAS 1-14000, Lockheed Aircraft Corporation, 22 January 1976.
- 4. Military Standardization Handbook. Metallic Materials and Elements for Aerospace Vehicle Structures, MIL-HDBK-5B, 1 Sept. 1971.
- 5. Stress Memo Design Data, Volume I LR 20159, Lockheed California Company, Revised February 1972.
- 6. Sendeckyj, G.P., Fracture Mechanics of Composites, ASTM STP 593, 1975.
- 7. Flight Service Evaluation of an Advanced Composite Empennage on Commercial Transport Aircraft, Phase I - Final Report Engineering Development NAS 1-14000, Lockheed Aircraft Corporation, April 1976.
- 8. Air Force Materials Laboratory, "Advanced Composite Design Guide Volume I, Design," Third Edition, January 1973.

