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The  numerical  calculation  of  unsteady  two  dimensional  airloads 

which  act  upon  thin  airfoils  in  subsonic  ventilated  wind  tunnels  is 

studied.  Neglecting  certain  quadrature  errors,  Bland's  collocation 

method  is  rigorously  proved  to  converge  to  the  mathematically  exact 

solution  of  Bland's  integral  equation,  and  a  new  three-way  equivalence 

is  established  between  collocation,  Galerkin's  method  and  least  squares 

whenever  the  collocation  points  are  chosen to be  the  nodes  of  the 

quadrature  rule  used  for  Galerkin's  method.  The  computer  program 

displays  remarkable  convergence  with  respect  to  the  number  of  pressure 

basis  functions  employed,  and  agreement  with  known  special  cases  is 

demonstrated.  New  results  are  obtained  for  the  combined  effects of 

wind  tunnel  wall  ventilation  and  wind  tunnel  depth to airfoil  chord 

ratio,  including  acoustic  resonance  between  the  airfoil  and  wind 

tunnel  walls. 
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§l. Introduction' 

Recent  interest  in  aerodynamic  testing  at  high  subsonic  and  tran- 

sonic  speeds  has  increased  the  need  for  improved  understanding of  the 

phenomena  involved,  and  for  improved  computational  methods  to  guide 

experiments as  well  as  to  serve  as  a  rational  means  for  extrapolating 

wind  tunnel  test  data  to  free  flight  conditions. 

While  fundamental  differences  exist  between  two  and  three  dimen- 

sional  flows,  solutions of two  dimensional  problems  provide  advance 

insight  into  three  dimensional  flow  phenomena.  Calculations  for  two 

dimensional  problems  are  significantly  simpler,  and  testing  can  be 

performed  using  models  with  constant  sections  extending  completely 

across  the  tunnel,  or  enclosed  between  splitter  plates. 

Aerodynamic  interaction  between  the  wind  tunnel  walls  and  the  model, 

commonly  termed  interference,  is  present  in  all  subsonic  wind  tunnels 

and  becomes  more  complicated at higher  subsonic  and  transonic  speeds. 

Efforts  to  utilize  opposing  interference  effects  associated  with  closed 

wall  and  open  jet  tunnels  have  resulted  in  the  development  of  ventilated 

wind  tunnels at  various  facilities.  Whereas  theories  of  interference 

are  highly  developed  for  steady  subsonic  flow  in  fully  closed or open 

jet  tunnels,  relatively  little  is  known  about  unsteady flow, especially 

in  ventilated  tunnels. 1 

'The  authors  wish to  acknowledge  the  help  of  Dr.  Sanford S. Davis , 
Ms.  Sara  Alfont,  Messrs.  Tuli  Haromy,  Charles  Doughty  and  Karl  Kuopus. 

'A comprehensive  survey  of  the  state  of  the  art  may  be  found  in  the  work 
by  Garner,  Rogers,  Acum  and  Maskell  [1,19661.  See  also  Goethert  [2,19611, 
Glauert  [3,1933]  and  Pope  and  Harper  [4,19661. 

3Numbers  in  square  brackets  refer  to  the  bibliography  in  the  order of 
citation,  followed  by the  year  of  publication,  and  possibly  the  page, 
section  or  chapter  of  interest. 
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This  work  addresses  the  problem of predicting  unsteady  airloads on 

oscillating  thin  planar  airfoils  in  subsonic  ventilated  wind  tunnels,  and 

extends  the  earlier  work  of  Bland  [5,19701  which  is  based  on  an  approximate 

ventilation  boundary  condition  that  is  exact  for  only  the  closed  wall  and 

open  jet  conditions. 

We  rigorously  establish  in  Section 4 that  Bland's  collocation  method 

must  converge  to  the  mathematically  exact  solution  of  his  integral  equation. 

The  analysis  is  made  using  two  sets  of  orthogonal  polynomials,  one  for 

downwash  the  other  for  pressure.  These  polynomials,  called  airfoil  poly- 

nomials,  enable  an  elegant  formulation  in  terms  of  dual  generalized  Fourier 

series.  The  known  closed  form  Sghngen  and  KGssner-Schwarz  solutions  are 

reformulated  in  terms  of  airfoil  polynomials,  and  used  to  evaluate  the 

accuracy of the  computer  calculations. 

The  computer  program  developed  during  this  study  is  called TWODI and 

will  calculate  pressures,  section  coefficients  and  generalized  aerodynamic 

forces  for  arbitrary  combinations of Mach  number,  reduced  frequency,  tunnel 

depth  to  airfoil  chord  ratio,  ventilation  coefficient  and  downwash. TWODI 

is  shown  to  be  in  accurate  agreement  with  known  closed  form  results  and 

extends  previous  results  of  unsteady  flow  to  ventilated  tunnels.  Various 

calculations  are  presented,  including  predictions  of  the  combined  effects  of 

depth  to  chord  ratio,  and of acoustic  resonance  between  the  wind  tunnel  walls 

and  the  airfoil. 

While  the  reader  who  wishes  to  avoid  theoretical  considerations  cannot 

help  but  be  at  some  disadvantage,  it  is  possible  to  use  the TWODI program 

by  proceeding  directly  to  Section 7. Other  sections  may  then  be  read  as 

the  interest  arises. 
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12. History  of  the  two  dimensional  problems 

This  section  presents  an  extensive  although  not  complete  history 

of  developments  in  the  problem  of  predicting  airloads  in  unsteady  two 

dimensional  subsonic  flow.  Attention  is  given  to  the  emergence  of 

exact  closed  form  solutions  because  these  provide  permanent  and  en- 

during  standards  of  comparison  for  numerical  as  well  as  theoretical 

considerations.  The  integral  equations  relating  downwash and pressure 

in  linearized  potential  flow  are  especially  emphasized. 

Three  dimensional  results  are  generally  excluded  except  insofar  as 

they  relate  to  the  two  dimensional  problem.  Nevertheless  we  note  that 

one  of  the  most  important  uses of two  dimensional  theories  is  to  provide 

insight  into  the  practical  matters of three  dimensional  problems. 

The  most  important  engineering  application  of  unsteady  aerodynamics 

traditionally  has  been  to  calculate  forcing  functions  for  structural 

dynamics  and  aeroelasticity.  This  interest is  readily  apparent  in  the 

earliest  papers,  and  it  may  be  observed  that a recurring  practical 

problem  has  been  to  maintain  acceptable  accuracy  at  higher  frequencies. 

While  the  physical  conditions  which  justify  linearized  inviscid  theories 

are  not  satisfied  at  arbitrarily  high  frequencies,  an  arbitrary  frequency 

capability is worthy  because  the  ability  to  analyze  arbitrary  time  depen- 
dence  demands  it  mathematically. 

We  begin  with a brief  description  of  the  airfoil  equation.  By 1918, 

Prandtl  at  Gattingen  had  completed  the  theory of bound  vortices,  and 

Ackermann  had  performed  calculations  for  steady  lift  on  airfoils  at low 

speed.  However,  Ackermann's  work  was  interrupted  by  the  war  and  was  not 

reported  until  afterward  by  Birnbaum [6,19231, then  only  at  Prandtl's 

request.  Comparable  calculations  were  performed  in  the  United  States 

by  Munk [7,1922], [8,1924]. Restated  in  terms  of  pressure  jump  rather 

than  vorticity,  it  was  necessary  to  solve  an  integral  equation of the  form 

where  the  kernel  is  given  by 

(2-2) 

i 

I . _  . .  
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and subject  to  the  Kutta  condition  that  the  pressure jump vanish a t  the 

t r a i l i n g  edge 

lim Ap(<) = 0'. 
5-tl 

The  downwash,  assumed known, is given for  steady  flow by the streamwise 

derivative  of  the  vertical  coordinate of t h e   a i r f o i l  contour: 

The coordinate system and a i r f o i l  contour are shown i n  Figure 1. , 

Yt 

Figure 1. Coordinate  system and a i r f o i l  contour 

We sha l l  refer to  the  integral   equation (2-1) with  kernel  given by 

equation (2-2) and subject  to  the  Kutta  condition (2-3) as t h e   a i r f o i l  

equation. It may be observed that   the   a i r foi l   equat ion is a singular 

Fredholm integral  equation of t h e   f i r s t  kind and its kernel is of difference 

type  with a Cauchy singularity.2 Much of the   d i f f icu l ty  encountered i n  

'We shall  generally,  but  not always,  follow the  practice of stating  values 
of the downwash function  in  terms of x and values of the  pressure  function 
i n  terms of 5 for   the purpose of  emphasizing certain symmetries. 

2An integral  equation of the form 

f ( x )  = la K(x,E.)u(S)dC 
b 

where f is a known function and K is a known function  (called  the  kernel 
function) is said to be a Fredholm integral  equation  for u of t h e   f i r s t  
kind. An integral  equation of the form 

f ( X )  = u(x)+la  K(XrE)U(S)dE 
b 

is sa id   to  be a Fredholm integral  equation of the second kind. I f   the  
kernel depends upon the  difference x-Sr it is sa id   to  be of difference 
type and we write K(x-E). If   the  kernel i s  bounded for   a l l   va lues  of x 
and 5 ,  the  integral  equation is sa id   t o  be nonsingular,  otherwise  singular. 
If   the  kernel is  of difference  type and of the form 

C 
K(x-5) = 

where C is a constant, it is singular and is sa id   to  have a Cauchy singularity. 
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solving  the  airfoil  equation  and  related  equations  in  aerodynamics  may 

be  attributed  to  the  fact  that  until  recently,  no  general  theory  existed 

for  the  solution  to  integral  equations  of  the  first  kind.  The  transla- 

tion  and  publication  of  Ivanov's  book  [9,1976]  indicates  that  substantial 

activity  has  been  taking  place  in  the  Soviet  Union  in  this  area,  much  of 

it  unreported  in  the  Western  literature.  Without  detailed  examination 

of  this  work  its  relationship  (if  any)  to  ours  remains  unclear. 

The  airfoil  equation,  based  upon  classical  linear  potential  flow 

theory,  is  rigorously  valid  for  zero  Mach  number  steady  two  dimensional 

flow  about  an  airfoil  with  profile  differing  infinitesimally  from  the 

x-axis.  Noting  the  linearity  of  the  airfoil  equation,  Birnbaum  calculated 

the  first  order  effect  of  thickness  by  using  the  difference  between  the 

upper  and  lower  surface  profiles,  and  calculated  the  lift  and  moment  using 

the  centerline  profile,  for  profiles  described  by  third  degree  polynomials. 

The  pressure  functions 

when  substituted  into  the  airfoil  equation  produce  dormwash  functions  that 

are  constant,  linear  and  quadratic,  respectively,  and  satisfy  the  Kutta 

condition.  The  Birnbaum-Ackermann  calculations  consist  of  integrating 

in  closed  form  each  of  the  above  basis  functions  (Grundfunktionen)  to 

obtain  an  induced  downwash  (induzierte Vertikalgeschtrindigkeit) , which 
is  integrated  in  turn  to  produce a profile  function.  These  profile  functions 

are  then  superimposed  to  represent an arbitrary  profile  of  third  degree. 

The  general  procedure is to  represent  the  pressure as a linear  combination 

of Nl? prescribed  pressure  basis  functions 

and  to  determine  the  unknown  coefficients  according  to a prescribed  profile 

which is given  by a corresponding  linear  combination  of  basis  functions, 

in  this  case,  powers  of  x, 

Although  no  discussion  was  made  of  collocation,  residual  error  or  con- 

vergence,  the  method  of  solution  appearing  in  the  Birnbaum-Ackermann  paper 

of  1923  is a forerunner  of  modern  collocation  solutions to the  integral 

equations  of  aerodynamics. 
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The  first  published  calculations  for  unsteady  flow  are  due  to 

Birnbaum  [10,19221 andare closely  connected  with  the  Birnbaum-Ackermann 

paper.  Birnbaum  was a doctoral  student  of  Prandtl's  and  his  dissertation 

was  devoted  to  extending  Prandtl's  theory  of  bound  vortices  to  the  more 

difficult  problem  of  unsteady  flow.  Through  an  analysis  of  free  and 

bound  vortex  sheets,  Birnbaum  was  led to  infinite  series  of  the  form 

C kn(log  kIn  (2-7) 
mln 

which  did  not  converge  well  even  for  small  values  of  reduced  frequency 

near k = 0.10. Birnbaum  apparently  coined  the  term  reduced  frequency,3 

and  defined  it in terms  of  the  semichord as 

k = wb- 
Val 

He noted  that  the  numerical  limitation 

corresponded  physically  to  less  than  one  structural  oscillation  per  thirty 

chordlengths  of  flow,  and  referred  to  this as a quasi-steady  oscillation 

(quasi-station&e  Schwingungen) . Birnbaum  analyzed  time  dependence  with 
complex  Fourier  series  and  introduced  into  unsteady  aerodynamics  the  con- 

cept  of  complex  amplitude  of  motion 

h (x,  t) = Re  [h (x) eiwt] 

for  the  particular  cases  of  plunging  and  pitching,  but  did  not  use  complex 

downwash  nor  complex  pressure 

w(x,  t) = Re  [w(x)  eiwt] = Rd(- + ik) h (x)  eiwt] , d 
dx (2-10) 

Lift  and  moment  were  graphed as complex  vectors  parameterized  by  reduced 

frequency  from k = .OO to k = -12.  Birnbaum's  interest  in  structural 

dynamics  was  clear.  He  treated  the  static  and  dynamic  stability of an 

elastically  suspended  wind  tunnel  model  using  the  concept of energy  trans- 

fer  and  presented  damped  and  divergent  experimental  response  curves 

together  with  theoretically  calculated  frequencies. 

3"reduzierte  Frequenz",  Birnbaum  [10,1922,  p.121,  [11,1924,  p.2791. 
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It is  significant  that  Birnbaum  did  not  find  the  integral  equation 

between  pressure  and  downwash  for  unsteady  incompressible  flow.  This 

equation is the  same as the  airfoil  equation (2-1) except  that  the  down- 

wash  and  pressure  are  complex as in  (2-9)  and  (2-10) , and  the  kernel4 
is given  by 

K(x,k) = - - - 1 ik 
4ax 47T e-ikx[Ci(klxl) + iSi(kx) + +] (2-12) 

where Ci and Si are  the  cosine  and  sine  integrals.5  This  equation  was 

not  derived  until  1938  by  Possio as a  limiting  case of what  we  now  call 

Possio's  integral  equation  for  compressible  subsonic  unsteady  flow. 

The  next  work  on  unsteady  flow  after  Birnbaum's  was  published  by 

Wagner  [20r1925P  based  on  his  doctoral  dissertation  at  Berlin  under  Hoff 

and  Hamel.  Wagner  used  the  method  of  conformal  mapping  to  solve  the  two 

transient  problems  of  a  flat  plate  accelerating  from  rest  to  constant 

velocity,  and  of  a  step  change  in  angle  of  attack.  Glauert  [21,1929]  used 

the  same  method  to  compute  lift  and  moment  on  an  oscillating  airfoil  for 

reduced  frequencies  up to k = .5. Kksner [22,19291  extended  the  frequency 

range  further  to  k = 1.5, avoiding  the  slowly  convergent  series7  of  Birnbaum 

and  expressing  the  pressure  as 

(2-13) 

By  making  the  coordinate  transformation, 

E = -COS e , (2-14) 

K h m e r  was  able  to  simultaneously  recast  the  pressure  basis  functions 

as a  Fourier  sine  series  except  for  the  first  term 

e Ap(8) = aocot- + 2 C an  sin  ne 
m 

2 n=1 (2-15) 

'See,  e.g. , Bland  [12,1968,§4.11,  [5,1970,§81. 
5See,  e.g. , Abramowitz  and  Stegun  [13,1964,55.21.  The  complex  setting  in 
Abramowitz  and  Stegun  does  not  render  Ci an even  function.  To  avoid  error 
in  the  logarithmic  term,  the  absolute  value  sign  is  necessary  in  (2-12) , 
and  in  this  regard,  it  could  be  considered  as  missing  or  at 
in  Possio  [14,1938,p.448],  Dietze  [15,1946,p.22Ir  Watkins, 
Woolston  [16,1955,  App. B] Bisplinghoff,  Ashley  and  Halfman 
Garrick [18r1957,~-7101, and  Fung  [19,1969,p.4291. 

'For further  discussion,  see,  e.g. , Y.C. Fung  [19,1969,§§5.8 
Bisplinghoff,  Ashley  and  Halfman  [17,1955,§5.71. 

7See, H.G. Kksner [23,1953,531  for  further  information. 

r 

east  ambiguous 
Runyan  and 
17,1955,p.3251, 

6.7,15.11  or 
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and  the  downwash as a  Fourier  cosine  series 

w ( 0 )  = bo + 2 C bn COS ne. 
m 

n= 1 (2-16) 

He  analyzed  the  oscillating  flat  plate  and  approximatdtihe  discontinuous 

downwash  of  a  flap  with  a  fifth  degree  polynomial. 

Theodorsen  124,19351  obtained  the  first  closed  form  solution  for  the 

force  and  moment  on  a  flat  plate  undergoing  pitch  rotation,  vertical  trans- 

lationand  aileron  rotation.  Theodorsen's  solution,  though  restricted  to 

rigid  body  motions,  was  valid  for  an  arbitrary  frequency  range.  He  used 

the  method  of  conformal  mapping  employed  earlier  by  Wagner.  The  flutter 

solution  for  the  three  degree  of  freedom  system  was  thus  reduced  to  a  non- 

Hermitian  three  by  three  matrix  eigenvalue  problem,  and  the  three  special 

cases  called  torsion-aileron,  aileron-deflection,  and  deflection-torsion 

were  solved  in  closed  form,  producing  flutter  velocity  curves  vs.  in  vacuo 

frequency  ratios.  Theodorsen  improperly  expressed  his  intermediate  results 

in  terms  of  a  quotient of nonconvergent  integrals 

which  he  identified  in  terms  of  Hankel  functions  of  the 

H1(') (k) 

H1(2'  (k) + iHA2)  (k) 
C(k) = 

where 

second  ki .nd 

HL2)  (k) = Jn(k) - iYn(k) 
and  where Jn and  Yn  are  standard  Bessel  functions  of  the  first  and  second 

kinds.' The  function  C(k)  is  called  Theodorsen's  circulation  function. 

Although  his  derivation of it  was  faulty,  the  result  was  shown  later  by 

Schwarz  to  be  correct. 

(2-17) 

(2-18) 
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Shortly  after  Theodorsen's  solution  in  1934  for  three  downwash  functions, 

the  same  problem  for  arbitrary  downwash  functions  was  solved  independently 

by  Cicala  [26,1935]and Kksner [27,1936].  They  showed  that  the  coefficients 

o f  the  downwash  and  pressure  basis  functions  appearing  in  equations  (2-15) 

and  (2-16)  are  related  recursively: 

boHf2) (k) + iblHA2)  (k) a0 = - 
Hi2)  (k) + i  Hh2)  (k) ' 

(2-19) 

(2-20) 

The  importance  of  the Cicala-Khsner extension  to  arbitrary  downwash 

functions  is  notable.  While  rigid  body  motions  as  discussed  by  Theodorsen 

are  important,  higher  flexible  modes  are  essential  to  the  theory  of  aero- 

elasticity.  Whereas  chordwise  flexibility  is  typically  insignificant  in 

two  dimensional  flow,  it  has  long  been  recognized  as  significant  in  the 

design  of  modern  airplanes,  and  the  ability  of  a  two  dimensional  aerodynamic 

method  to  shed  practical  light  on  three  dimensional  methods  requires  that  it 

Possess  an  arbitrary  chordwise  downwash  capability. 
The  problem  of  unsteady  airloads  on  an  airfoil  entering  a  sharp-edged 

gust  was  solved  for  incompressible  flow  by  von  Kdrmdn  and  Sears  [29,19381 

using  conformal  mapping.  In  the  same  year,  Possio  114,19381  obtained  the 

kernel  relating  the  downwash  and  pressure  for  compressible  subsonic  flow 

about  an  oscillating  airfoil: 

+ - B log - + ik  exp (9 HA2) (+)dA]. 2i 1+ B k M x  
TT M 0 (2-21) 

Although  Possio  did  not  explicitly  write  down  the  integral  equation, l1  he 

performed  numerical  calculations  for  lift  and  moment  on  an  oscillating  flat 

plate  at  values  of  reduced  frequency  up  to  k = .6 and  at  four  values  of 

Mach  number,  M = 0,.25,.50,  and  .70.  Using  the  same  pressure  basis 

"See,  e.g.,  Turner,  Clough,  Martin  and  Topp  [28,1956,p.8051. 

"The  Possio  integral  equation  first  appears  in Kksner ' s  Allgemeine 
Tragflzchentheorie  [30 I 1940,571 as  a  special  case  of  the  Kzssner  integral 
equation  for  three  dimensional  flow. 
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functions as Birnbaum,  Possio  observed  that  the  solution  to  the  integral 

equation  required  that  the  linear  combination  of  downwashes  induced  by 

the  pressure  basis  functions  must  equal  the  prescribed  downwash  at  all 

points  on  the  airfoil; i.e., 

NP 
W(X) anwn(x) r 

which  is  in  general  not  possible.  Possio  resolved  this  difficulty  by 

collocating  (2-22)  at  an  equal  number  of  discrete  points  according  to  the 

system  of  linear  algebraic  equation 

NP 
1 wn(xm)an = ~(5); m = 1,. . . ,NP. n= 1 

(2-22) 

(2-23) 

This  is  the  earliest  use  we  have  found  of  the  method  of  collocation  to 

solve  an  integral  arising  in  aerodynamics. 

We  note  that  a  least  square  error  solution  of  equation  (2-22)  in  which 

the  overall  error  is  integrated  numerically  and  then  minimized  results  in 

the  matrix  equation 

where x,,,; m = l,...,NQ  are  the  nodes  of  the  quadrature  rule  and 

Wm;  m = l,...,NQ  are  its  weights,  and  where * denotes  the  complex  con- 
jugate  of  the  transposed  matrix,  a  fact  sometimes  missed. l 2  

Under  fairly  restrictive  assumptions,  S6hngen  [32,19391  proved  that 

the  solution  to  the  airfoil  equation  is  given  by 

(2-24) 

(2-25) 

which  is  called  the  Sghngen  inversion  formula  and  is  a  particular  case  of 

a  more  general  formula  given  in  [33,1953,Ch  111.  These  restrictions  were 

later  weakened  by  S6hngen  [34,19541  to  include  all  downwash  functions  of 

class e,p>1. l 3  A  weaker  proof  based  on  the  stronger  assumption  that  p>- 
4 
3 

was  given  by  Tricomi  [35,19511  and  appears  in  his  book  on  integral  equations 

12Since  the  error  is  a  real  valued  nonconstant  function  of  several  complex 
variables,  it  is  not  differentiable.  A  rigorous  proof  of  (2-24)  is  given 
by Frome [31 , 1964,  Appendix  A] . 
1 3 A  function  f  belongs  to  class @ over  the  interval I if ldf (x)  lpdx  is 
finite. 
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[ 36,19571 . S&mgen's  later  proof  and  Tricomi's  proof  both  identify  the 
integral  equation (2-1) with  the  difference  kernel (2-2) as  a  finite 

Hilbert  transform.14  We  point out that  these  mathematical  results  make 

essential  use of the  condition  that  the  pressure  be  finite  at  the  trailing 

edge  (and  hence  ,zero,  thereby  satisfying  the  Kutta  condition (2-3)), for 

otherwise  the  finite  Hilbert  transform  has  no  unique  solution  in  the I? 

space, p>1, and  contains  an  additional  term  of  the  form 

where C is  an  arbitrary  constant.  Therefore,  if  the  Kutta  condition  is 

denied,  the  solution  to  the  airfoil  equation  is  not  unique. 

Five  important  papers  appeared  in 1940: (1) Ktssner  published  the 

integral  equation  relating  pressure  and  downwash  in  unsteady  three  dim- 

ensional  flow;' (2)  Kiissner  and  Schwarz [391  [401 analytically  summed 

the  series (2-15) , (2-16) , (2-19) and (2-20) to  provide  in  closed  form 

the  pressure  in  terms  of  downwash  for  oscillatory  flow  as 

where 

(2-26) 

(2-27) 

(3)  Kussner [41,19401 used  the  method  of  Laplace  transforms  to  extend  the 

solution (2-25) to  arbitrary  time  dependence; (4 )  Schwarz [25,19401 used 

the  Sohngen  inversion  formula  to  obtain  the  solution (2-26) by  an  independent 

approach;  and (5) Sghngen [42,19401 used  the  inversion  formula (2-251, 

I ,  

I4The  finite  Hilbert  transform  of I$ is  the  function  f  with  values  given  by 

See  also  Sneddon [37 ,1971,p .238 ,~ .4671.  

15H.G.  KGssner [30,19401,[38,19401. However,  the  kernel  was  not  put  into 
a  computationally  tractable  form  until  fifteen  years  later  by  Watkins, 
Runyan  and  Woolston t16r19551- 
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together  with  Birnbaum's  method  and  Laplace  transforms  to  derive  the 

solution  for  the  oscillating  airfoil  and  for  an  airfoil  starting  from 

rest.  Equation  (2-26)  is  called  the  Kzssner-Schwarz  solution  and  in 

Cartesian  coordinates  it is given  by 

where 

(2-28) 

(2-29) 

Taking  advantage  of  the  theoretical  developments  principally  by 

Theordorsen  and  Kiissner,  Smilg  and  Wasserman  [43,19421  published  their 

AFTR  4798  which  was  to  serve  for  years as the  standard  reference  in  the 

United  States  on  flutter.  The  kernel  to  Possio's  equation  was  tabulated 

by  Schwarz  [44,19431,  and  Possio's  numerical  calculations  based on the 

method  of  collocation  were  extended  by  Fraser  [45,1941],  Fraser  and  Skan 

[46,19421 , and  Schade.  Dietze, l 7  working  under  the  supervision  of 

Sohngen,  introduced  an  iteration  method  to  solve  Possio's  integral  equation 

approximately,  making  use  of  the  known  KGssner-Schwarz  solution.  Dietze's 

iteration  method  consists  of,  given  the  downwash,  calculating  the  pressure 

according  to  the Kksner-Schwarz solution  for  incompressible  flow,  and 

calculating  the  downwash  required  by  that  pressure  according  to  Possio's 

integral  equation.  The  residual  error  in  downwash  furnishes  the  starting 

point  for  successive  iterations.  Dietze's  calculations  were  for  values 

of  reduced  frequency  up  to  k = 1.0 for  pitch  rotation,  vertical  translation 

and  flap  rotation.  In  a  major  review  of  the  two  dimensional  problem,  done 

in  two  parts  by  Karp,  Shu  and  Weil  [52,19471,  and  Karp  and  Weil  [53,19481, 

it  is  observed  that  in  the  case  of  a  discontinuity  in  downwash  the  Dietze 

iteration  will  not  eliminate  the  logarithmic  singularity  at  the  discontinuity 

so that  slow  pointwise  convergence  might  be  found  in  the  neighborhood  of 

a  discontinuity.  Additional  calculations  with  Dietze's  method  by  Turner 

and  Rabinowitz  [54,19501  indicated  that  numerical  values of overall  section 

I ,  

I6T.  Schade  [47,1944]. An English  translation  is  available  as  [48,1946]. 

I7F.  Dietze  [49,19431,  [50,1944].  English  translations  are  available  as 
[15,19461  and  [51,1947]. A description  of  Dletze's  method  may  be  found  in 
Y.C. Fung  [19,1969,§14.5]. 
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coefficients  appeared  to  be  acceptable,  but  that  the  rate  of  convergence 

deteriorated  for  larger  values of Mach  number  and  reduced  frequency. 

Apparently  no  mathematical  proof of convergence  of  Dietze's  method  has 

ever  been  given.  A  compilation  of  tables  from  various  references  was 

given  by  Luke  [55119501,  and  another  method  which  approximated  the  continu- 

ous  part  of  Possio's  kernel  by  a  polynomial  was  introduced  by  Fettis  [56,19521. 

The  next  major  advance  comparable  to  the  K&ssner-Schwarz  solution is 

a  general  solution  to  Possio's  integral  equation  using  elliptic  coordinates 

and  Mathieu  functions.  It  is  obtained  by  starting  from  the  basic  differ- 

ential  field  equations  and  boundary  conditions 

p = -2(- + ik)$, a 
ax 

Upon  making  the Kksner transformation  in  the  form" 

there  results 

Applying  Green's  identities,  integrating  (2-36),  and  introducing  elliptic 

coordinates ( 5  , 0 )  according  to 

x = -cosh € cos 0 ,  y = sinh 5 sin 
~ 

18This  transformation,  valid  for  arbitrary  time 
sional  flow,  was  first  used  in  aerodynamics  by  K 

(2-30) 

(2-31) 

(2-32) 

(2-33) 

(2-34) 

(2-35) 

(2-36) 

(2-37) 

(2-38) 

dependence  in  three  dimen- 
Gssner  [30,1940,§31 , and  is 

a  combination  of  the  Galilean  and  Lorentz  transformations. :eel  e.g., Miles 
[57,1959,§§2.3,2.4].  For  the  special  case  of  steady  flow,  Kussner's  trans- 
formation  reduces  to  the  Prandtl-Glauert  transformation. 



-14- 

Kksner [ 23,1953,I  52-41  showed  that 

where 

and 

(2-39) 

(2-40) 

(2-41) 

In  the  above,  partial  differentiation is denoted  with  a coma followed  by 

a  subscript,  and  sen  and Ne:') denote  Mathieu  functions  of  the  first  and 

third  kind,  respectively. l9 Equations  (2-39),  (2-40)  and  (2-41)  reduce  in 

the  case  M = 0 to  equations  (2-26)  and  (2-27). 

The  application  of  elliptic  coordinates  and  Mathieu  functions  to  the 

unsteady  flow  equations  was  undertaken  first  by  Reissner  and  Sherman  [59,1944], 

followed  with  apparently  independent  work  by  Biot  160,19461,  Timman  [61,19461, 

and  Haskind  [62,1947].20  Among  these,  Timman's  was  the  most  successful. 

Further  work  was  done  by  Billington  164,19491,  Timman  and  van  de  Vooren 

[65,19491,  Reissner  [66,19513  and  [67,19511,  Timman,  van  de  Vooren  and  Griedanus 

[68,1951],  Kfissner  [23,1953],21  van  Spiegel  and  van  de  Vooren  [69,1953], 

de  Jager  [70,1954],  and  Williams  [71,19551.  Despite  its  success,  the  method 

of  elliptic  coordinates  and  Mathieu  functions  has  been  slow  in  gaining  the 

recognition  it  merits. 

Using  successive  conformal  mappings  and  Jacobian  elliptic  functions, 

Timan 172,19513  obtained  in  closed  form  the  exact  solution  for  pressure on 

19~ee, e.g., N.W. 

201n Russian. An 

*'This contains  a 
sional  problem  up 

McLachlan [ 58,19471 . 
English  translation  is  available as [63,19471. 

comprehensive  and  elegant  discussion  of  the  two  dimen- 
to  that  time. 
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an  oscillating  airfoil  in a wind  tunnel  with  parallel  closed  walls. 

Timman's  solution is for  incompressible  flow  and  reduces  to  the  KGssner- 

Schwarz  solution  in  the  limiting  case  of  infinite  tunnel  depth.  The  analysis 

applies  to a centrally  located  airfoil  as  shown  in  Figure 2. 

Figure 2. Airfoil  in a wind  tunnel 

The  condition  that  the  tunnel  wall  be  closed  is  the  kinematical  one  that 

the  component  of  velocity  normal  to  the  wall  vanish  at  the  wall. 

(2-42) 

For  incompressible  flow,  wind  tunnel  wall  effects  tend  to  become 

maximum  at  some  small  value  of  reduced  frequency  and  to  diminish  as  the 

frequency  is  increased  further.  Disturbances  produced  by  an  oscillating 

airfoil  are  reflected  by  the  walls  instantaneously  in  the  sense  that  the 

acoustic  transit  time  for a given  distance  is  much  less  than  the  flow  transit 

time  for  the  same  distance.  Mathematically  this  ratio  of  transit  times is 

zero  because - = M = 0. However,  when  the  fluid  is  compressible, a nonzero V 
C 
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transit  time  is  required  and  it is possible  for  the  frequency of airfoil 

oscillation  to  be  such  that  succeeding  disturbances  arrive  back  at  the 

airfoil so as  to‘reinforce  one  another,  thereby  causing  an  acoustic 

resonance.  Runyan  and  Watkins  [73,19531predicted  that  this  resonance 

phenomenon  would  occur  at  frequencies  given  by 

(2-43) 

These  resonant  frequencies  are  finite  for  all  subsonic  Mach  numbers  in  a 

compressible  fluid,  and  become  lower as  the  Mach  increases.  The  resonant 

reduced  frequencies  are 

(2-44) 

and  decrease  rapidly at higher  Mach  numbers.  For  example, 

6 M = - - & v  2 H = 10 + kl = -090690. (2-45) 

Thus,  acoustic  resonance  between  the  airfoil  and  the  tunnel  becomes  an 

important  phenomenon  at  high  subsonic  speeds  because  it  occurs  at  relatively 

low  values  of  reduced  frequency.  Furthermore,  these  resonant  frequencies 

are  the  same  for  all  downwashes. 

Runyan  and  Watkins  also  showed  that  the  pressure  and  downwash  are 

related  for  subsonic  compressible  flow  in  a  closed  wind  tunnel  by  an 

integral  equation of the  form  (2-1)  where  the  kernel  may  be  expressed  as 

the sum of the  Possio  kernel  (2-21)  plus  an  incremental  part  representing 

the  presence  of  the  walls.  The  incremental  kernel  becomes  singular at  the 

resonant  frequencies  (2-44)  and  since  the  kernel  may  be  interpreted  physically 

as the  downwash  at  one  point  due  to  unit  pressure  at  another  point,  the 

pressure  should  drop  to  zero  at  resonance.  This  effect  is  entirely  analogous 

to  the  elementary  spring-mass  system  in  which  vanishingly  small  forces  can 

produce  large  amplitudes  when  the  excitation  frequency  is  sufficiently 

close  to  the  resonant  frequency. 

The  above  theoretical  predictions  were  verified  experimentally  and 

computationally  by  Runyan,  Woolston  and  Rainey  [74,19561.  The  kernel 

function  was  approximated  by  assuming  the  tunnel  depth  to  chord  ratio  to 

be  large,  the  pressure  was  represented  by  the  first  three  terms  of  the 
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series (2-15), and  the  integral  equation  was  collocated at three  points. 

Good  agreement  was  obtained  between  theory  and  experiment  for  phase  angles 

and  fair  agreement  was  obtained  for  magnitudes.  Resonant  frequencies  were 

predicted  accurately  by  the  theory,  and  the  expected  drop  in  lift  at 

resonance  appeared to be  quite  abrupt. 

Bland,  Rhyne  and  Pierce  [75,19671  extended  the  theory  to  include  narrow 

channel  flow  in  connection  with  destructive  oscillations  in  nuclear  rocket 

engines.  The  kernel  obtained  previously  by  Runyan  and  Watkins  was  expressed 

as a  single  function  in  a  simpler  form  without  using  the  deep  tunnel 

approximation: 

K(x,k,M,~H) = z(l+sgn  x)e-ikxtanh  knH k 

where 

(2-46) 

(2-47) 

At  the  resonant  frequencies  given  by  (2-44) , the  kernel  (2-46)  becomes 
infinite  because  Rn = 0. The  kernel  is  singular  at  x = 0 and  the  infinite 

series  in  (2-46)  behaves  in  the  neighborhood  of 0 like  a  slowly  convergent 

geometric  series.  The  pressure  was  represented  in  the  form 

but  no  elaboration  was  offered  for  the  reason  behind  this  choice.  Never- 

theless,  for  continuous  downwash  functions,  this  marks  the  first  basic 

improvement  in  the  choice  of  pressure  basis  functions  since  1929,22  and 

as we  shall  see,  leads  to  an  elegant  closed  form  generalized  Fourier 

solution  for  pressure  in  certain  special  cases. 

Because  the  physical  problem  of  interest  to  Bland,  Rhyne  and  Pierce 

involved  low  speed  flow,  numerical  calculations  were  performed  only  with 

(2-48) 

22Cf.  equation  (2-15).  The  singularities  in  pressure  that  must  accompany 
downwash  discontinuities  have  been  given  by  White  and  Landahl  [76,196811 
Landahl  [77,19681  and  Rowe,  Sebastian  and  Redman  [78,19761. 
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M = 0 using  a  form  of  the  kernel (2-46) in  which  certain  of  the  series 

could  be  summed  in  closed  form.  The  integral  equation  was  collocated 

using  HSU'S  technique [79,19581 in  which  collocation  points  are  inter- 

digitated  with  the  quadrature  points so as  to minimize  the  error  in  lift 

on the  average.  Flutter  calculations  using  two  degrees  of  freedom  were 

performed  for  depth  to  chord  ratios  from 0.06 to 2.00 and  verified  by 

experiment. 

The  problem  of  unsteady  flow  in  ventilated  wind  tunnels  was  under- 

taken  by  Bland  in  his  doctoral  thesis [12,19681 and  subsequently  published 

in  the  open  literature [5,1970:. Bland  approximated  the  boundary  condition 

at  a  ventilated  wall  by  a  linear  combination  of  the  boundary  conditions  for 

open  and  closed  walls, 

p + cw - aP = 0 at  y = + n H #  
aY 

(2-49) 

where  the  semi-empirical  constant  cw  is  called  the  wall  ventilation  co- 

efficient  (D.  Davis  and  D.  Moore  [80,19531discuss  an  approximation of cw 

for  a  wall  with  longitudinal  slots.).  The  boundary  condition (2-49) is 

exact  only  for  the  two  limiting  cases; (1) cw = 0, which  corresponds  to 

an open  jet  and, (2) cw = m, which  corresponds  to  a  closed  wall.  Treating 

the  pressure as an  odd  function  of  y  for  a  centrally  located  airfoil,  Bland 

applied  the  method  of  Fourier  transforms to derive  the  kernel  for  the 

integral  equation  between  downwash  and  pressure.  Bland's  kernel  can  be 

expressed as 

(2-50) 
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where 

(2-51) 

(2-52) 

(2-53) 

tan An + YAn = 0, (2-54) 

y = -. cw 
'IH 

(2-55) 

Equations (2-50) to (2-55) are  slightly  modified  from  the  form  originally 

given.  Bland  used  two  functions  in  place of F and  F',  and  we  have  identi- 

fied  one  of  them  as  the  derivative  of  the  other,  resulting  in  a  numerical 

simplification.  The  series (2-51) has  been  accelerated  by  subtracting 

asymptotic  terms  which  can  be  summed  analytically.  Even  with  this  im- 

provement,  due  to  Bland,  the  series  are  poorly  convergent  for  very  small 

values  of  the  argument,  especially  for  unsteady  flow. 

The  singularities of  the  kernel  are  confined  to  the  first  two  terms. 

The  first  term,  a  Cauchy  singularity,  is  the  dominant  one  and  is  present 

in  all  two  dimensional  subsonic  kernels.  The  second  term  is  a  weaker, 

integrable  singularity  of  logarithmic  type  and is present  in  all  the 

unsteady  kernels.  The  remaining  terms  are  bounded  and  can  be  accurately 

integrated  using  an  appropriate  Gaussian  quadrature  rule.  Bland's  complete 

kernel  reduces  in  special  cases  to  all  kernels  given  previously. 

The  method  of  solution  employed  by  Bland  is  unique  and  is  particularly 

interesting.  From  the  S6hngen  inversion  formula,  Bland  observed  that 

the  function 

results  in  an'integral  equation  of  the  form 

(2-56) 

(2-57) 
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and  that  in  the  special  case  of  the  airfoil  equation  if w is a  polynomial, 

then P is  a  polynomial  of  the  same  deqree.  This  property  is  based  on  the 

Bland  integral  transforms  and  will  be  discussed  further  in  Section 3 .  Using 

this  result  as  a  starting  point  for  equations  with  more  complicated  kernels, 

Bland  introduced  airfoil  polynomials  and  used  them  to  evaluate  integrals 

of the  singular  part  of  the  kernel  in  closed  form  and  integrals  of  the 

bounded  part  using  Jacobi-Gaussian  quadrature.  Collocation  and  quadrature 

points  were  interdigitated  following  HSU'S  technique,  and  remarkably  good 

numerical  convergence  with  respect  to  the  number  of  pressure  basis  functions 

was  obtained.  Numerical  results  including  flutter  calculations  were  presented 

for  several  problems  of  interest. 

Of  the  methods  considered  in  this  study,  Bland's  is  the  most  germane 

to  the  problem  of  unsteady  two  dimensional  subsonic  flow  in  ventilated 

wind  tunnels, it has  superior  numerical  characteristics,  and  it  is  the 

most  general. 

Convergence  of  Bland's  method  is  proved  for  the  first  time  in  Section 4. 

We  note  that  the  proof  of  convergence of Bland's  method  hinges  on  the  Cauchy 

singularity  and  is  largely  independent  of  the  particular  form  of  the  remaining 

part  of  the  kernel. 
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§3. Theory  of  airfoil  polynomials' 
". . .~ 

The  theory  of  airfoil  polynomials  springs  from  the  solution  to  the 

airfoil  equation  for  steady  incompressible  flow  using  the  Bland  trans- 

form,  and  may  be  applied  to  the  numerical  solution  of  any  problem  for 

which  the  linear  transformation  from  pressure  to  downwash  is  a  singular 

integral  equation  of  the  first  kind  whose  kernel  is  dominated  by a 

Cauchy  singularity. 

Let 1 cos [ (n-y)  cos-1x1 
xn(x) = 1 ; n = l,2r... 

cos t~os-lxl 

sin [ (n7) c0s-l~ I 

sin [-cos-1~1 

1 

$n(S) = 1 
2 

; n = 1,2, ... 

be  defined on the  open  interval (-lrl). These  functions,  shown  in  Figure 3 ,  

are  polynomials  of  degree  n-1: 

The  above  recursion  formulas  are  neutrally  stable so that  computational 

errors  are  neither  damped  nor  magnified  with  increasing  n. 

These  polynomials  are  orthogonal  with  respect  to  reciprocal  weight 

functions 

lproofs  of  most  of  the  results  stated  in  this  section  may  be  found  in 
Bland [12,1968, pp.79-901. 
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Figure 3. Airfoil  polynomials 
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and  lead  to  two  generalized  Fourier  series,  one  for  downwash,  the  other 

for  pressure.  Let 

denote  complex  inner  products  with  respect  to  the  above  weight  functions,  let 

I l f l l ,  = J<f,, (3-9) 

l l f l l p  = 9 (3-10) 

denote  their  inner  product  norms,  and  let 

The  equivalence  classes  of Li and L2 induced  by  these  norms2  are  Hilbert P 
spaces  and  the  polynomials  and  {$n}l  can  be  shown  to  be  respective 

bases  for  them. Thus, if  feL$  and gcL2 then 

W W 

P' 

where  we  adopt  the  abbreviated  notation 

(3-11) 

(3-12) 

(3-13) 

(3-14) 

for  the  generalized  Fourier  coefficients.  Since  these  polynomials  are 

complete,  the  only  functions  which  are  orthogonal to all of them  are  null; 

(3-15) 

(3-16 

2The  equivalence  class  of  fel$  is  the  set  of  all  functions g such  that 
1 1  f-g[I, = 0, and  similarly  for  feLi.  In  general  the  Fourier  series  of  a 
function  need  not  converge  everywhere  to  the  value  of  the  function  itself, 
particularly  in  the  case  of  a  flap  where  the  downwash  function is discon- 
tinuous.  The  notion  of  an  equivalence  class  enables  functions  and  their 
Fourier  series  to  be  treated as essentially  the  same.  Henceforth,  unless 
stated  to  the  contrary,  we  shall  not  distinguish  between  different  representa- 
tives  of  equivalence  classes. 
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i.e., 

(3-17) 

g E G  & gQn = o B n + g = 0. (3-18) 

The  role  of  airfoil  polynomials  in  aerodynamics  stems  from  their 

being  integral  transform  pairs  of  one  another: 

and  from  recognizing  that  the  airfoil  equation  and  the  Sijhngen  inversion 

formula  can  be  recast  in  the  same  form: 

From  the  above,  it  follows  that 
m 

w =  wxn x, E,  PEL^ - P = 4~ wx JI, & WE<. 
m 

P n=l  n 

(3-19) 

(3-20) 

(3-21) 

(3-22) 

(3-23) 

In  other  words,  for  steady  incompressible  flow,  the  generalized  Fourier 

coefficients  of  the  nonsingular  pressure  function P with  respect  to {$,I1 

are  equal  to  four  times  the  generalized  Fourier  coefficients of the  downwash 

function  w  with  respect  to {xn)l: i.e., 

m 

00 

P = <P,$n’p = 4 <W,Xn>, = 4w 
$n  Xn * 

(3-24) 

For  this  reason,  the  functions xn are  called  downwash  polynomials  and  the 
functions $n are  called  pressure  polynomials. 

The  integral  transforms  appearing  in  (3-19)-(3-22)  are  central  to 
the  theory  of  airfoil  polynomials.  They  appear to have  been  first  discovered 

by N.I. Akhiezer  in  1945  and  are  discussed  briefly  in  [9,1976,Ch  2,p.1331. 

However,  since  these  insights  were  apparently  initially  applied  to  the 

solution  of  practical  aerodynamics  problems  by  Bland  in  his  thesis  [12,19681, 

we  shall  define  the  integral  transforms 
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as Bland transforms. 

The functions xn and Jln are r e l a t e d   t o  Chebyshev polynomials and  can 

be shown t o  be  constant  multiples  of  Jacobi  polynomial^.^ Their n-1 zeros 

are given by 

zeros  of ~ 4 .  $ 4  

-1 u 
Figure 4 .  Interdigitation  of  zeros 

(3-25) 

(3-26) 

(3-.27) 

(3-28) 

(3-29) 

3See, Bland [.12,1968gp. 79-801 and Abramowitz and Stegun  [13,1964,Ch. 221.  
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The  logarithmic  transforms 

permit  closed  form  integrations  of  a  logarithmic  singularity  appearing 

in  the  kernel,  and  the  continuous  part  of  the  kernel  may  be  integrated 

according  to  the  following  NQ-point  Jacobi-Gaussian  quadrature  rule: 

If the  generalized  Fourier  coefficients  for  the  continuous  factor 

of pressure  are  known, 
m 

P = nzl P Q ~  +n 
- 

then  the  lift  and  pitching  moment  coefficients4 

1 1  
CL E 7 /1 Ap(S)dSt - 

are  given  exactly  by  the  first  two  Fourier  coefficients  alone: 

(3-32) 

(3-33) 

(3-34) 

(3-35) 

(3-36) 

(3-37) 

41n  this  definition  lift  is  positive  upward,  and  pitching  moment  is  positive 
counterclockwise  (leading  edge  down)  about  the  quarter  chord  and  is  based  on 
the  semichord. 
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Exact  closed  form  expressions  similar  to (3-37) and (3-38) may  be 

obtained  for  the  generalized  aerodynamic  force  matrix.  The  components 

A,, of  this  matrix  are  defined  as  the  virtual  work  done  as  the  structure 

deforms  in  mode r against  the  pressure  corresponding  to  mode s: 

1 1  
Ars E y J1 hr(S)APs(S)dE; r, s = 1,2,... (3-39) - 

where  IhrIr=l  are  structural  basis  functions,  commonly  selected  in  practice 

as the  in  vacuo  vibrational  eigenfunct'ions.  Expand  the  structural  basis 

functions  and  their  corresponding  pressure  functions  in  the  pressure 

polynomials 

m 

and  obtain 

A,, = - l m  1 T m  

2 n=l C <hr,$n>p  <Ps,$n>p = n& hnr Pnsi r, s = 1,2,. . . (3-42) 

The  generalized  aerodynamic  force  matrix  may  be  considered  to  be  the  single 

most  important  aerodynamic  quantity  in  aeroelasticity  because  it  completely 

determines  the  aeroelastic  coupling. 



54. Analytical  and  numerical  properties of Bland's  equation 

In  this  section we discuss  some of the  theoretical  aspects of the 

collocation  method  developed  by  Bland  for  the  solution of (2-57). In 

particular  it  will  be  shown  that  the  apparent  numerical  convergence 

observed  by  Bland  and  ourselves  can  be  established  theoretically.  In 

order  to  do  this  it  is  necessary  to  take a somewhat  different  viewpoint 

toward  collocation  than  has  been  done  in  the  past.  We  regard,  as  did 

Bland,  collocation as only  a  secondary  numerical  method  arising  out  of 

somewhat  different  procedures.  Bland,  in  his  thesis,  proposed  a  general- 

ized  least  squares  method  for  the  solution of (2-571, which  was  shown 

under  certain  conditions  (to  be  discussed  later)  to  be  equivalent  to 

collocation.  In  the  same  spirit  we  approach  Bland's  equation  by  a 

projection  method  analogous  to  Galerkin's  method  for  equations of the 

second  kind.  Here  again  it  can  be  shown  that  this  technique is  numerically 

equivalent  to  collocation.  Reversing  the  argument,  we  prefer to regard 

the  Galerkin  method  as  primary,  since  it  will  be  shown  that  the  theory 

appears  to  emerge  best  from  this  viewpoint. 
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4.1 Collocation 

For  completeness  and  ease of reference  Bland's  collocation  method 

is  now reviewed.  Since  the  space $ is  spanned  by  the  pressure  polynomials 
{ $,>:, P  can  be  expanded as 

P = <P,Jln>p 9,. m 

n= 1 

because of this  one  seeks  an  approximate  solution PN of the form 

N 
n= 1 PN = an $nr 

where  an;  n = 1,2, ..., N are to be  determined.  Letting 

and  setting  rN(x)  equal  to  zero  at  the  zeros  of X ~ + ~ ( X )  gives N linear 

equations  in  the N unknowns {an)l.  Solving  for  these  determines  the  approxi- 

mation PN to  the  pressure  coefficient P. This  is  Bland's  collocation  method. 

The  numerical  examples  given  by  Bland  and  by  us  appear to indicate  that PN 

converges  to P. 

N 

To establish  this  it  is  convenient  to  regard (2-57) as  an  operator 

equation  acting  between  the  two  spaces Li and  defined  in  Section 3. 

Making  use  of  the  properties  of  the  airfoil  polynomials  given  by (3-15), 

(3-16) , (3-30) and (3-31) enables  us  to  show  that  this  equation  has  interesting 
analytic  properties  which  permit  a  detailed  analysis  of  the  above  numerical 

method. 
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4.2 .  Analytical  properties 

To set  the  stage  for  our  theoretical  treatment of (2-57)  we  make 

some  simple  preliminary  observations.  From  (2-50)  the  kernel  can  be 

where k ( x - 6 )  is the  bounded  part.  Multiplying 

by - allows us to  rewrite  it as 4 
B 

- - 
where  w(x) = (-)w(x)  and  K(x-S) = (-)K(x-C). This 4 4 

B B 
has  no  effect  on  the  solutions  of  (2-57).  The  key 

that  was  made  by  Bland  in  his  thesis  is  that (4-4)  

both 

(4-3) 

sides  of  (2-57) 

transformation  obviously 

observation,  and  one 

is  actually  equivalent - 
to  an  equation of the  second  kind. To see  this  decompose  K(x-6) as 

- 
K(x-C) = ~ 

1 
Tf ( X-S ) + KSC  (x-S - (4-5) 

This  first  term  in (4-5)  leads  to  the  integral  operator 

which  is  just  the  Bland  transform (3 -25) .  From (3-19) and  (3-20)  it is 

seen  that  H  maps  the  orthonormal  basis {$,I1 onto  the  orthonormal  basis 

{ x ~ } ~ ,  and  thus  can  be  extended to a  bounded  invertible  operator  from 

m 

m 

to L& If  one  then  operates  on  both  sides  of (4-4) by  H-l  it  takes 

the  form  of  an  equation  of  the  second  kind  in  L2  This  leads  one  to  suspect 

that  the  well  developed  numerical  methods  for  such  equations  would  be  useful 

in  solving  (2-57)  which, as we  shall  see,  is  the  case. 

P' 

To  proceed  further,  it  is  necessary  to  develop  some  of  the  analytical 

properties  of ( 4 - 4 ) .  For  this  we  digress  slightly  and  state  some  definitions 

and  theorems  from  functional  analysis. 

Notation:  Let  H1  and  H2  be  Hilbert  spaces.  The  inner  products  on  Hi,i = 1,2 

will  be  denoted  by < , >i and  the  corresponding  norm  by 1 1  ( 1  i.  The  set  of 
bounded  linear  operators  from  H1  to  Hz  will  be  denoted  by  [Hl,Hz]. 

Definition 4 . 1 .  Let H1  and  H2  be  Hilbert  spaces.  Let HE[H~,H~]. If 

I I H x [ ( 2  = llxlll for  all XEH, we  say  that  H  is  an  isometry.  In  addition  if 

H  has  a  bounded  inverse  we  say  that  H  is  unitary, 
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Theorem 4.1. LeLH1- be  a  Hilbert " space  with  a  complete  orthonormal 

basis {$Jl)l .;_A necessary  and  sufficient  condition  that HE [HI  ,H7]  be  unitary 

is  that  the  set CH$n]-l  be a  complete  orthonormal  basis  in  H7. 

Proof.  See [811. 

Definition 4.2. Let  H1  and  Hz  be  Hilbert  spaces.  Let  K€[HlrH2].  We  say 

that  K  is  compact  if  for  every  bounded  sequence {xn]l in  H1  the  sequence 

{Kxn)l has  a  convergent  subsequence. 

Theorem 4.2. (Properties of compact  operators.)  Let  KiE[H1,H?I;  i = 1,2 

be  compact.  Then 

(i)  K1 + K7  is  compact. 
(ii)  If TE "" [Hl  ,H7] . then  T  Ki;  i = 1,2 are  compact. 

(iii)  If  C  is  a  complex  number  then  CKi;  i = 1,2 are  compact. 

(iv)  If  K1  has  finite  dimensional  range  then  K1  is  compact. 

(VI Let I ]  1 1  denote  the  operator  norm  on  [HlrH7].  Let {K,); be  a  sequence 

of  compact  operators  from  H1 to Hz  such  that  lim IIKn-KII = 0 where KE [HI  ,Hz]. 

Then  K  is  compact. 

(iv)  It  follows  from  (iv)  that  if { Kn) 1 is  a  sequence  of  operators  each 

having  finite  dimensional  range,  and lim 1 1  K-Kn 1 1  = 0 then  K  is  compact. 

m 

. . . .~. ". i ~ .  ~ 

m 
" c _ ~ "  ~ 

m 

m 

~ 

n+co 

m 

n-m 

Proof.  See  [811 . 
Definition 4.3. Let HE[H~,H~I. The  adjoint of H  denoted  by  H*  is  the 

bounded  linear  operator  defined  by 

Theorem 4.3. Let HE [HI ,H2].  Then  H  has  a  unique  adjoint  H*€[H?,Hl]. 

Proof.  See  [Sll . 
Theorem 4.4. Let  H  be  a  unitary  operator  from HI to  H7.  Then  H* = H-l. 

(H-l  denotes  the  inverse  of H.) 

Proof.  Note  first  of  all  that  since  H  is  an  isometry  it  preserves  inner 

products; i.e., <Hx,Hy>z = < x  ,y>1  for  all (X,Y)EH~. In  fact  I~H(X+Y) 1 1 5  
= 1 1  (x+y) 11:. But 
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Similarly 

by  the  definition  of  adjoint  and  the  above  observation.  Since (4-9) holds 

for  all Y E H ~  we  get  that 

H*Hx = x, VXEH~. (4-10) 

Let YEHI. Then,  since  H-l  exists,  y = Hx for  some XEH~. Therefore 

y = Hx = H(H*Hx) = (HH*)Hx = HH*y. Thus  y = HH*y for  all y~H2, and  this 

with (4-10) shows  that  H*  is  both  a  left  and  right  inverse of H so that 
H-l = H*. 

Theorem 4.5. Let H1 and  H7  be  Hilbert  spaces. Let TE [HI  ,H7].  Let  {$Jn}y 

be  a  complete  orthonormal  basis  for HI. Assume  that 
~ 

Then  T  is  compact. 

(Note:  Operators  satisfying (4-11) are  said to  have  finite  double  or 

Hilbert-Schmidt nom. See 1821 for  a  discussion ~~ ~ of  their  properties. ) 

Proof.  From  Theorem  4.2  it  suffices  to  show  that  there  exists  a  sequence 

of  operators 1 Tn)  1,  each  having  finite  range,  such  that  lim 1 1  T-Tn 1 1  = 0. 

Let  Un = span {$k)T and  define  Qn  by 

m 

n-tco 

Qn  is  the  operator  of  orthogonal  projection  onto  Un.  Let  Tn = TQn. From 

(4-12)  it  is  seen  that 
n 
k= 1 TnX = <X,$k>l  T$k, XEH~. 

(4-11) 

(4-12) 

(4-13) 
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(4-14) 

From (4-15) it  is 

Since c IIT$kll$ 

arbitrarily  small 

proved. 

m 

k= 1 

seen  that 
1 
2 
- 

IIT-TnII <_ (k=z+1  IITJlkIIz) - 
converges  the  right  hand  side  of (4-16) can  be  made 

for  n  large.  Thus  lim 1 1  T-Tn 1 1  = 0 and  the  theorem  is n- 

(4-16) 

The  results  of  the  above  theorems  are  now  applied  to (2-57) (or 

equivalently (4-4)). As was  stated  in 54.1 we  wisn  to  regard (2-57) as 

an  operator  equation  acting  between L$ and L$. Using  the  equivalent  form 

(4-4) the  kernel  decomposition  gives  rise to three  operators  H, K1  and  Kg 

defined  by 

(4-17) 

and 

(4-19) 

where  the  integral  in (4-17) is  taken  in  the  sense  of  a  Cauchy  principal 

value.  The  basic  properties  of  these  operators  are  summarized  in  Theorem 4.6 

below. 

Theorem 4.6. H, K1 and  Kg  define  bounded  linear  operators  from L$ to G. 
In  addition H is  unitary  and K1 and  K7  are  compact. 

Proof. As stated  above  H  is  just  the  Bland  transform  (3-25).  Since 

H$k = Xk  where {$k)l and  {Xk)l are  defined  by (3-1) and  (3-2)  respectively, 

H can  be  uniquely  extended as a  bounded  operator  from Lg to  by 

m m 

HP(x)= 1 <P,$k>pH$k(X) = kzl <p,qk'pxk- m m 

k= 1 
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Since {xk} is  a  complete  orthonormal  basis  in  it fo~lows from  Theorem 4.1 

that H is unitary. 

From (3-31) we  see  that 

Since  K1 is  well  defined  on  the  basis  elements {$,I1 it  can  be  extended 

as  an  operator  to  all  of < by  the  formula 
m 

by the  Cauchy-Schwarz  inequality.  Thus 
" . -  

(4-21) 

where  the  integral  in  (4-21)  exists  since ~ ( x - S )  is bounded  and  the 

function E is integrable  on [-1, 11. From  this  it  is  seen  that 

IIK2PIIw 5 CllPllp  and so K2  is  bounded. To  establish  compactness  we  again 
resort  to  Theorem 4.5 by  showing  that C 1 1  K2$,11; converges.  For  this 

observe  that 

m 

k= 1 

(4-22) 
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But 
" 

(4-23) 

where n x ( 5 )  = %(x-5). Thus  the  right  hand sum in  (4-22)  can  be  written as 

(4-24) 

By  Parseval' s Theorem  this  is  equal  to IT I' @ I '1, ( 5 )  I Multiplying 

both  sides  of  (4-22)  by  and  integrating  with  respect  to  x  gives 
-1 

1-x 

The  integral  in  (4-25)  is  finite  since  %(x-5)  is  bounded  and J- is 

integrable.  Thus K2 is  compact  since  it  has  finite  double  norm. 

'l+x 
1-x 

From the  results  of  Theorems  4.5  and  4.6, (4-4) can  be  written  in 

operator  form as 

(H + K ) P  = (4-26) 

where  H + K E [ L z , G ]  and K = K1 + K2 is  compact.  A  solution  to  (4-4)  will 

now  mean  an  element PEL; solving  (4-26).  In  general  such  a  solution  will 

satisfy  (2-57)  or (4-4) almost  everywhere.  If  the  solution  is  sufficiently 

smooth  it  will  satisfy  (2-57)  in  the  usual  pointwise  sense.  Since  physically 

one  is  interested  in  weighted  integrals  of P such  generalized  solutions 

are  perfectly  reasonable. 

From  Theorem  4.4  we  know  that  H  has  an  inverse.  Applying  H-l  to  both 

sides  of  (4-26)  gives  the  equivalent  equation 

P + H-l K P = H-l w. (4-27) 

From  Theorem  4.5  H-l K is a compact  operator  and  (4-27)  has  the  form 

(I + LIP  = H-l w (4-28) 

where I is  the  identity  operator  on L6 and L = H-'K. Equation  (4-28)  is 

now in  the  standard  form of equations of the  second  kind [831. From 

this  it  is  possible  to  obtain  solvability  theorems  by  appealing  to  the 

Fredholm  theory.  We  state  only  one  such  theorem. 

Theorem 4.7. Bland' s integral  equation  has  a  solution  in  iff -1 is  not 

an  eigenvalue  of ~ - 1  K. 
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Proof. This is just the usual Fredholm alternative for operators of  the 

form I + L where L is compact. See [841 for more details. 

Throughout the rest of our discussion it will be assumed that  the 

solvability condition in Theorem 4.7 is satisfied, and we  now proceed to 

a discussion of the numerical solution of (4 -26) .  
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4.3. G-alerkin's ~ " method  for a class  of  operator  equations 

Motivated  by  the  results  in 4.2 we  now  consider  the  numerical  solution 

of  the  class  of  equations 

TP = w (4-29) 

where TE[H~,H~], Hi; i = 1,2 are  Hilbert  spaces, T = H + K where H is  unitary 
and K is compact.  From  Theorem 4.4, (4-29) can  be  written  in  the  equivalent 

form 

(I + H*K) P = H*w. (4-30) 

(4-30) is  an  equation  of  the  second  kind  and  since  there  are  many  well 

understood  methods  for  solving  such  equations [84] we  consider  the 

possibility  of  using  them  to  find  numerical  algorithms  for (4-30). For 

our  purposes  Galerkin's  method  appears  to  make  best  use  of  the  theoretical 

structure  of (4-30) and  we  now  give a brief  discussion  of  this  popular 

technique. 
01 

Assume  that {$,I1 is a complete  orthonormal  basis  for  H1  and  look 

for  approximate  solutions  of (4-30) of  the  form 

N 
PN = 1 anJln, n= 1 (4-31) 

where  the  an's  are  constants  to  be  determined.  Since  in  general PN will 

not  solve (4-30) exactly  we  consider  the  residual  given  by 

RN = pN + H*K PN - H*W. (4-32) 

If PN were  the  true  solution  of (4-30) then RN = 0. However,  this  will 

not  be  the  case  in  general  and  we  try  to  pick PN so as to  make  small. 

Galerkin's  method  attempts  to  do  this  by  making RN orthogonal  to  Jln; 

n = 1,2, ..., N. That  is  we  require 

<RN,$~>~ = 0; n = 1,2, ..., N. (4-33) 

Substitution  of (4-32) into (4-33) gives  the  following  set  of  linear  equations 

to  determine  the  an's: 
N 
Z <H*KJlm,Qn>1  am = <H*w,Qn>1; n = 1,2,. ..,N, (4-34) an + m=1 

where  the  orthogonality  of  the  Jln's  has  been  used  in  the  derivation  of 

(4-34). If  the  equations  in (4-34) have a unique  solutionthen  an; n = 1,2,..-,N 

can  be  determined  and  the  approximation PN is  well  defined.  The  following 
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theorems,  taken  from  Atkinson [841 justify  this  procedure.  First  we 

recast  Galerkin's  method  into  a  slightly  more  abstract  form. 

As in  Theorem 4.5 let  UN = span {$n]l and  let QN be  the  operator  of 

orthogonal  projection  onto  UN.  The  Galerkin  equations (4-33) and (4-34) 

are  equivalent  to  the  operator  equation [1976,1] 

N 

Or,  written  out  in  full 

(4-35) 

& (I+H*K) PN = QN H*W,  PNEUN. (4-36) 

Assume  that (4-30) has  a  unique  solution.  Then  from  the  Fredholm 

alternative I841 the  operator  I + H*K has a bounded  inverse  since 

H*K is  compact. 

Theorem 4.8. Let  KN = QNH*K.  Then  im  IIK-KNII = 0 .  A- 
Proof.  See  Atkinson [84]. 

Theorem. 4.9. Let  KN  be  as  in  Theorem 4.8 and  assume  that N is  large  enough 

SO that  [IK-KNII < 
1 

1 1  I+H*KII. Then  the  operator  (I+KN)  exists,  is  bounded  and 
. . - - . . . - . . . . . . . . . . . . . ." . 

(4-37) 

From  this  it  follows  that  the  Galerkin  equations (4-36) have  a  unique  solution 

and - 
IIp-pNII 1 5 II (I+KN)-~ I1 I I P - Q N P I I  1 - (4-38) 

(4-38) implies  that PN converges  in  norm  to  P  the  solution  of (4-30). 

Proof.  See  Atkinson  pp. 51-52 for  details  of (4-37) and (4-38). The  con- 

vergence  follows  from (4-38) and  the  fact  that {$-,I1 is  complete  in H1 so 

that 1 1  P-QNP 1 1  1 = I <  P, $n>l 1 2 ) 2  which  converges  to  zero. 

m 

m 1 

Note  that (4-37) and (4-38) constitute  an  error  estimate  for  the  approxi- 

mate  solution  PN. 

Theorem 4.9 is  the  basic  convergence  result  that  we  will  use  in  discussing 

Bland's  method.  Note  that  it  has  the  immediate  consequence  of  showing  that 

the  application  of  Galerkin's  method  to  Bland's  equation (2-57) is  a  con- 

vergent  numerical  method.  That  this  is  true  follows  from  the  fact  that 

the  equivalent  operator  version (4-26) satisfies  all of the  hypotheses  to 

prove  Theorem 4.9. 
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As pointed  out  in  Atkinson  there  exists  a  "dual"  to  Theorem 4.9.  

That  is,  if  one  can  establish  the  existence  of  a  unique  solution  to  the 

Galerkin  equations  for  some  sufficiently  large N, then  it  follows  that  one 

can  prove  the  existence  of  a  solution  to (4-30). From  a  practical  point 

of  view  this  is  important,  since  we  have  the  numerical  information  available 

from  the TWODI program,  and  thus  the  solvability  of  the  numerical  problem 

can  be  used  to  infer  the  existence  of  solutions  to  the  original  problem. 

Although  we  have  established  that  Galerkin's  method  is  theoretically 

a  reasonable  procedure  to  use  numerically,  it  does  initially  appear  to  have 

several  drawbacks,  the  most  *portant  of  which  is  the  necessity  of  performing 

the  complicated  integrations  needed  to  evaluate  the  inner  products  in (4-34). 

Since,  practically  these  integrals  must  be  done  numerically  it  is  important 

to  examine  the  effect  of  this  on  the  Galerkin  equations.  Surprisingly,  due 

to  the  structure  of T, particularly  the  unitarity  of H, considerable  simpli- 

fication  results,  and as will  be  shown,  under  appropriate  conditions  Galerkin's 

method  becomes  equivalent  to  collocation. 
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4.4. The  relation  between  Galerkin’s  method  and  collocation 

We  now  proceed  to  examine  the  above  mentioned  relation  between  collo- 

cation  and  Galerkin’s  method.  Recall  from  (4-34)  that  the  Galerkin  approxi- 

mation  for  P  is  obtained  by  solving  the  linear  equations 

N 
an + mil <H*K$mr$n>l = <H*w,$~>~, n = 1,2 ,...,N. 

Using  the  definition  of  adjoint,  these  equations  become 

N 
an + mzl <KI/I~,H$~>~ am = <w,H$,>2,  n = 1,2,.--,N. (4-39) 

Since  H  is  unitary {HIJ,}~ = is  a  complete  orthonormal  basis 
m m 

for  H2.  Using  this  and  the  fact  that <xn,xm>2 = 6, (4-39)  becomes 

N  N 
m= 1 1 C <  W m  8 xn>2 + am = <WIXn>2 = m& < ‘:H+K)$m,::n’2  am 

= <WtXn>2r  n = 1,2,...,N. 

Or,  since  H+K = T , 

N 
m= 1 

Z <TGm,xn>2 am = <w,xn>2; n = 1,2,...,N. (4-40) 

Note  that (4-40) is  formulated  directly  in  terms  of  the  original  equation 

of  the  first  kind  TP = w  and  can  be  regarded as a  projection  method  in  its 

own right.  To  see  this,  again  look  for  an  approximate  solution  to  (4-29) 

in  the  form PN = !! an$n.  Using  the  same  argument as for Galerkin’s method 

leads us to  consider  the  residual 
n= 1 

rN = TPN-W. 

In  order  to  make  rN  “small“  we  pick  an;  n = 1,2, ..., N  to  satisfy  the  or- 
thogonality  condition’ 

<rN,xn>2 = 0; n = 1,2, ..., N. 

(4-41) 

(4-42) 

Writing  (4-42)  out  in  full  gives (4-40). If  one  knows {xn}f: explicitly 
then  numerically  it  is  more  efficient to  use  (4-42)  than (4-40). 

Since  our  main  interest  is  in  Bland’s  equation  (2-57)  we  now  specialize 

(4-40) to  the  case  where  Hi;  i = 1,2  are  taken  to  be  Hilbert  spaces  of 

‘This  is  sometimes  called  the  method  of  weighted  residuals [85J. 
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functions on  the  interval  ia,b]  and  the  operator T is  an integral  operator 

of the  form 

TP(x) = /; K(x,S)P(S)dE, (4-43) 

where  the  integral  in (4-43) is  generally  taken  in  the  sense of a  Cauchy 

principal  value.  Let 

%(X) = TJlm(X) - 
Then 

< T ' 4 ~ ~ r ~ ~ > 2  = <&tXn>2- 

Since  the  inner  product  in (4-45) is an  integral,  we  assume  that  it  can 

be  approximated  by  a  quadrature  rule & having N nodes,  denoted  by  xk; 
k = 1.2, ..., N and  corresponding  weights  wk;  k = 1,2, ... ,N. Thus (4-45) 

can  be  approximated  by  the  finite sum 

N 
k= 1 1 W k h  (xk)  Xn  (xk) - 

(4-44) 

(4-45) 

(4-46) 

(4-47) 

(4-46) 

(yW)% = (yW,w. (4-49) 

If  it  is  assumed  that  the  matrix x is  nonsingular  then xW  is nonsingular 
and (4-49) is  equivalent  to 

" 

La = w. (4-50) 

Referring  back to Section 4.1 it  is  easily  seen  that  for  Bland's  equation 

(4-50) are  just  the  collocation  equations  resulting  from (4-2). Thus  it 
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is  seen  that  if  the  quadrature  errors  are  ignored  in  the  solution of 

the  Galerkin  equations  then  they  will  give  exactly the  same  numerical 

solution  as  collocation,  provided  that  the  matrix x is  invertible, as 
will  be  established  below.  Thus  from  a  numerical  standpoint it  makes 

little  difference  whether  one  uses  collocation  or  Galerkin's  method  in 

the  solution of (2-57) -- the  result  will  be  the  same  numerical  approxi- 
mation  to P. However,  from  a  theoretical  point  of  view  Galerkin's  method 

appears  to  be  more  desirable,  since  as  we  have  seen,  it  gives  convergence 

along  with  computable  error  bounds. 

To complete  our  equivalence  proof  of  collocation  and  Galerkin's  method 

we  now  establish  the  nonsingularity  of x. 
Definition 4.4. Let  {fn(x)};  n = 1,2,...,N  be  N  functions  defined on the 

interval  [a,bl . We  say  that  fn(x) jy are  unisolvent  if  the  matrix  [fn(xk) 1 ; 
n,k = 1,2,. . . ,N is  nonsingular  for  every  set  of  distinct  points  {XkjT  in  [arb]. 
Theorem 4.10. Let  {pn(X) } y  be  a  basis  for  the  polynomials  of  degree 5 N-1 
on [arb]. Then (p,(x) are  unisolvent. 

Proof.  Let n = [pn(xk)];  n,k = 1,2,.. . ,N.  Since  p(x) = c PnkXk  it  follows 

that n = PV  where P = [Pnk]  and  V  is  the  Vandemonde  matrix  given  by 

N- 1 

k= 0 

1 1 ""1 

X1 x2 . . .  - XN 
2 x?  x$ - - . - XN 

xy-1  xy-1 . . . 1 - XN N- 

But  det P is  nonzero  since cpn  (x) 1 1  is  a  basis  and N 

i,j=l ,...,N 

since  the  points  xk  are  distinct.  Thus  det n # 0 and TI is nonsingular. 

Corollary 1. Let { pn (x) 1: be  polynomials  of  degree 5 N-1  orthogonal  with 
respect  to  some  inner  product  on  the  set of functions on [a,bl.  Then  they 

are  unisolvent. 
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Proof.  The  orthogonality  implies  that  {pn(x) } y  are  linearly  independent 
and  thus  a  basis  for  the  polynomials  of  degree <_ N-1 on [a,b]. The  corollary 
now  follows  from  the  theorem. 

Corollary 2. Let {x 1 be  the  first N downwash  polynomials as defined  in 

Section 3. Then {x,  1 I are  unisolvent. 

N 
. - . .  -n-! "_ 

N 
~~~ ~~ ~ ". . . - " 

Proof.  Since {xn>? are  orthogonal  on  [-1,1]  with  respect  to  the  inner 
product , >w by  corollary  2  they  are  unisolvent. 

Corollary 3. Let {xn}? be as above  and  let {xk]? be  the  zeros  of 

then  the  matrix x = {xn (xk) 1 is  nonsingular. 
- . -  . i_ - ~. ~ "" ~ " .- -. 

Proof.  From  (3-24)  we  see  that xN+l has N distinct  zeros  on [-1,1]. Since 

{xn}y are  unisolvent  the  result  follows. 

From  Theorem 4.10 and  the  above  discussion  we  arrive  at  our  main  equiva- 

lence  result  for  collocation  and  Galerkin's  method  for  Bland's  equation. 

Theorem  4.11.  Let PN be  the  approximate  solution  to  (2-57)  given  by  using 

Galerkin's.,_method- .. . . ~ .  . . . basad. on  the  pressure  polynomials as  a complete  ortho- 

~0-fl-a:.  ba-sj-s- for -Lg... = Then- , i f  the innerproducts in  (4-40)  are  evaluated 

using . . the . ." . - Jacobi-Gaussian . quadrature  rule  (3-29),  the  resulting  numerical 

approximat$on . . .. . to -(2--57) - is  the,  saame-._a_Lnre-obtains  using  collocation  with 

the  same  basis  and  collocating  at  the  zeros  of x N + l  (x). 

Proof.  From  (4-49)  it  suffices  to  prove  invertibility of y which  was  done 

in  Theorem  4.10. 

. -  . -  ~ _ _  

. ." - .  

The  importance of Theorem  4.11  is  that  it  enables  us  to  regard  collocation 

as numerically  equivalent  to  Galerkin's  method. As we  have  seen  Galerkin's 

method  is  convergent,  and  since  neglecting  the  quadrature  errors  in  the 

evaluation  of  the  inner  product  in (4-40) gives  Bland's  collocation  equations, 

we  can  conclude  that  this  method  is  convergent.  We  summarize  this,  our  main 

result,  as  Theorem  4.12. 

Theorem  4.12.  Let  PC  be  the  numerical  approximation  to  the  solution  of 

(2-57) as described  in  Section 4.1. Let P$ be  the  Galerkin  approximation 

to P  as  described  in  Section 4.3.~-Let Pkbe the-approximation  to P$ obtained 

". N.~...." _ .  . ~ ~ ~ ~ .  ~~ 

. . ." . . . . . -  ~. . . .~ . ~ . _  ~ 

. . . - . ~ . . . . . - " . 
by " evalu~atln-gp~he  inner-products~ by-thz  JEcogk-Gaussian  rule (3-29) . Then 
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I 

. .. 

(4-51) 

Note  that  (4-51)  shows  that  the  rate  of  convergence  of Pk  to P depends 

on  the  smoothness of P  and  thus  requires  a  knowledge of the  behavior  of 

the  generalized  Fourier  coefficients  of  functions  expanded  in  airfoil  poly- 

nomials.  In  addition  it  requires  estimates  of  the  smoothness  of  the  solu- 

tions P. We  expect  to  pursue  these  points  in  future  work. 

As we  stated at  the  beginning  of  this  section Bland‘s starting  point 

for  the  solution  of  (2-57)  was  a  least  squares  procedure  which  he  claimed 

was  equivalent  to  collocation.  His  proof  of  this  fact  [12]  resided  in 

the  assumption  that  the  collocation  matrix  {Ln(Xk)}  was  nonsingular. As 

a  further  consequence  of  the  Galerkin  theory  we  establish  the  validity  of 

this  proposition. 

Let  G  denote  the  matrix  [<TIJJm,xn>?]  given  in (4-40). From  the  proper- 

ties  of  Jacobi-Gaussian  quadrature  <TIJJm,xn>2 - g, + e, where [g,] is  the 

matrix xWL as defined  in (4-49) and [e,] = E is  the  matrix  of  quadrature 

errors.  Thus 

- 

G = XWL + E. (4-52) 

By  Theorem 4.10 

- L = (xW)”  (G-E).  (4-53) 

From  (4-53)  it  is  seen  that L has  an  inverse  if  and  only  if  G-E  does.  From 
Theorem 4.9 we  know  that  for  all  sufficiently  large N, G  has  an  inverse. 

Thus  G-E = G(I-G-lE)  and  it  follows  from  Banach‘s  lemma [851 that 

I-G-IE  has  an  inverse  provided  that  IIG-lEII < 1 where 1 1  1 1  is  any  matrix 
norm on the  set  of  NxN  complex  matrices.  Since  IIG-lEII 5 IIG” 1 1  IIElI  it 

suffices  to  show  that IIE 1 1  < m. Under  the  assumption  that  the  quad- 
rature  errors  can  be  made  arbitrarily  small  if  N is large  enough  we  can 

pick  N so that  G-l  exists  and IlEll < I&. Thus  we  conclude  that  for N 

large  enough  the  collocation  matrix  is  nonsingular  and  consequently Bland’s 

observation  that  collocation  is  equivalent  to  least  squares  is  valid. 

Theorem  4.13  states  this  result. 

Theorem  4.13.  Provided  that  N  is  sufficiently large  Bland’s least 5quares 

method,  his  collocation  method  and  our  Galerlcln__method  all  giLe-t=he-zee 

numerical  approximation to the  solution  of  (2-57). - 

1 
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4.5. Conditioning of the  collocation  matrix 

As  a  final  application  of  the  Galerkin  approach  to (2-57) we  offer 

a  brief  discussion of  the  conditioning  of  the  collocation  matrix L. In 

[12,19681 and [5,1970], Bland  remarks on  the  fact  that L is  well  conditioned 

without  offering  any  proof.  The  accuracy of our own numerical  results  also 

supports  this  observation. It also  appears  to  be  part  of  the  folklore  of 

singular  integral  equations of the  first  kind  that  the  strong  Cauchy  singu- 

larity  leads  to  numerical  methods  which  are  well  conditioned 186,19711 and 

[87,19751. Although  this  is  intuitively  reasonable  we  are  unaware  of  any 

mathematical  proof of  this fact.  For  equations  of  the  second  kind  there 

exist  fairly  complete  results  on  conditioning.  A  summary  of  these  may  be 

found  in  Atkinson 184,19761. Since  we  know  that (2-57) is  equivalent  to 

an  equation  of  the  second  kind  these  results  should  be  of  use  here.  That 

this  is  the  case  is  demonstrated  below. 

Definition 4.5. Let  A  be  an  NxN  complex  matrix.  Let 1 )  1 1  be  a  matrix  norm 
on  CN.  The  condition  number of A  relative  to 1 1  1 1  is  given  by 

C(A) = IlAll  1IA-l 1 1 .  (4-54) 

A  matrix  is  said to be  well  conditioned  if  C(A)  is  of  order 1 and 

poorly  conditioned  if  C(A)  is  large [84,19761. It  follows  immediately  from 

(4-54) that  if  A  and B are  matrices  then 

C (AB) 5 C  (A)  C (B) (4-55) 

and 

C(A-') = C(A). (4-56) 

Since - L = (xW)-'  (G-E) = (xW)-'G" - (I-G-lE), (4-55) and (4-56) give 

C(L) - 5 c(~)c(w)c(G)c(I-G-~E). (4-57) 

Since  W  is  a  diagonal  matrix  and  one  can  show  that  C(W) <_ c  where 
c  is  a  constant  independent  of W. Since  Wk;  k = 1,2, ..., N  are  the  quad- 
rature  weights  C(W) - cN.  Now  for  N  large  I-G-IE - I so that C(I-G"E) 
- C(1) - O ( 1 ) .  Thus C(&)  -c'NC(x)C(G).  From  Atkinson's  results [1976,11 

one  can  show  that  [[GI[ LC" so that  C(L)- - c"'NC(x) , which  gives  a  reasonable 
estimate of the  conditioning of 5. It  appears  then,  if N is  not  too  large, 

that  C(L)  is  well  conditioned.  A  more  complete  analysis  will  have to await 

future  work. 

min  Wk 

- 
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4.6. Convergence  of  integrated  aerodynamic  forces 

Although  the  above  theory  gives  convergence of PN to P in  the  norm 

of I,; it  is  important  to  note  that  this  generalized  convergence  of PN gives 

strict  convergence  of  integrated  aerodynamic  forces to their  true  values. 

To see  this  we  define 

11-5 
ApN(S) = v /  - PN(S) 

1 +E 
(4-58) 

as our  approximation  to Ap(C). Let f ( S )  be  a  real  valued  weighting  function 

as in  equations  (3-35),  (3-36),  (3-39),  etc.,  and  Let F represent  an  inte- 

grated  force, 
1 

We  take as  our  approximation  to F 
1 

- 1  
FN = J ApN(S)f(S 

By  definition  of  the  inner  product  on Ip' 
FN = n < P N , ~ > ~ .  

Theorem 4.14. big FN = F. 

Proof. 

(4-59) 

(4-60) 

(4-61) 

IF-FNI = n I<P,fjp - = TI I<P-PN,~>~~. 

By  the  Cauchy-Schwarz  inequality 

I<P-PNrf,'pI 5 I/p-pNIIplIf/lp- 

Thus  the  result  follows  from  Theorem 4.9. 

(4-62) 

(4-63) 
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55. Organization  of  the  computer  program 

The  computer  program  developed  during  this  work  is  a  user-oriented, 

working,  pilot  version.written  in  extended  FORTRAN  IV. To accomplish 

this,  several  helpful  guidelines  were  followed  during  its  planning  and 

development: 

(1) Input  and  output  quantities  were  established  first.  These 

were  selected  primarily  according to  the  general  needs  of  the 

intended  user  community; 

(2) A hierarchial,  modularized  system  of  executive  and  compu- 

tational  subroutines  together  with  a  complete  list  of  all 

working  equations  was  established  and  iterated  on.ce  prior to 

actual  coding; 

( 3 )  Coding  was  performed  with  visibility  as  the  primary  cri- 

terion,  facilitating  changes; 

(4) All computational  subroutines  were  carefully  checked  against 

independent  calculations,  using  exact  closed  form  special  cases 

whenever  possible  to  verify  accuracy  as  well as correctness; 

(5) Due  to  the  go-no go nature  of  unsteady  kernel  function  pro- 

grams,  computational  correctness  was  deemed  more  important 

than  algorithmic  efficiency; 

(6) The  organization  of  the  computer  program  was  structured  to 

facilitate  correctness  of  the  pilot  version  and  future  modifi- 

cations. 

The  calling  hierarchy  of  the  computer  program  is  shown  in  Figure 5, 

with  arrows  indicating  the  direction  of  call.  The  main  program,  named 

TWODI  for  two  dimensional,  is  strictly  an  executive  program.  TWODI  directs 

two  supervisory  subroutines  named PREP and SOLVE, and  one  interim  subroutine 

named CHECK. If  called  by  TWODI, CHECK systematically  calls  each  of  the 

major  computational  subroutines  and  checks  their  current  computational 

results  against  the  most  accurately  known  results,  which  are  stored  within 

CHECK.  CHECK is  primarily  a  developmental  tool,  secondarily  a  diagnostic 

tool,  and  does  not  appear  in  released  versions of TWODI. 

PREP is a supervisory  subroutine,  whose  purpose  is  to  prepare  input 

data  in  a  form  acceptable to the  solution  process  which is subsequently 

I .  . 
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implemented  by  SOLVE.  PREP  reads  and  prints  back  all  input  data.  A  title, 

supplied as input  data  by  the  user, is centered  by  subroutine  CENTER,  and 

the  time  and  date,  centered  title  and  page  number  are  printed at the  top 

of each  page  using  subroutine  PAGE.  PREP  tests  all  input  data  except  the 

flow  parameters (M,k,rlH  and CW). Data  lying  outside  their  acceptable  ranges 

result  in  the  problem  being  deleted  by  PREP,  with  an  explanatory  comment. 

The  input  data  specifies  mode  shapes at discrete  points  that  are  selected 

by  the  user.  PREP  collocates  a  linear  combination  of  airfoil  polynomials 

through  these  discrete  points  and  stores  the  resulting  Fourier  coefficients 

for  later  use  by  SOLVE.  Values  of  airfoil  polynomials  are  calculated  by 

subroutine  AFP  using  recursion  formulas,  and  collocation  is  performed  using 

subroutine  CSIMAL  to  solve  complex  (or  real)  simultaneous  algebraic  equations. 

Once  the  input  data  have  been  read,  checked,  printed  back  and  prepared  for 

use  by  SOLVE,  PREP  returns  control  of  the  program  to TWODI, and  TWODI  calls 

SOLVE. 

SOLVE  is  a  supervisory  subroutine  whose  purpose  is  to  solve  the  integral 

equation  for  each  M,k,uH  and  cw  case,  and to compute  and  print  the  airloads 

for as many  downwash  modes as were  given  by  input  data.  Each  problem  may 

have  numerous  cases of M,k,qH  and  cw.  These  are  tested  individually  by 

SOLVE, and  erroneous  cases  are  deleted  without  affecting  the  others.  The 

eigenvalues  appearing  in  equation (2-54) are  calculated  by  subroutine  PICARD 

using  Picard  iteration. To avoid  repetition,  these  eigenvalues  are  calcu- 

lated  at  the  outset  and  stored  for  later  use.  Subroutine  WASH  calculates 

the  matrix of downwashes at the  appropriate  collocation  points.  Subroutine 

BMN calculates  the  collocation  matrix  using  closed  form  integrations  for 

the  Cauchy  and  logarithmically  singular  parts of the  kernel,  and  uses  Jacobi- 

Gaussian  quadrature  for  the  bounded  part  of  the  kernel.  The  quadrature 

points  and  collocation  points  are  interdigitated  according  to  equation (3-26) 

and  the  continuous  part  of  the  kernel  is  calculated  by  subroutine  KC.  The 

infinite  series  for F and  F'  appearing  in  the  kernel  are  calculated  by  sub- 

routine  SUM.  If  convergence of these  series  requires  eigenvalues  beyond 

those  already  stored,  SUM  calls  PICARD as necessary.  After  the  downwash 

and  collocation  matrices  have  been  calculated,  SOLVE  calls  CSIMAL  and  the 

generalized  Fourier  coefficients of the  pressure  for  all  downwash  modes 

are  thereby  determined.  SOLVE  then  calls  LOADS  which  calculates  and  prints 

the  particular  combination  of  pressure,  section  coefficients  and  generalized 

forces as stipulated  by  the  input  data.  LOADS  calls AFP if  pressures  are 
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required.  Output  is  supplied  in  redundant  real-imaginary-magnitude-phase 

angle  format  using  subroutine ATANC. After SOLVE has  completed  one  case 

of M,k,nH  and  cw,  the  remaining  cases  are  solved  in  succession.  Upon  com- 

pletion  control  returns  to  TWODI.  TWODI  then  calls PREP for  another  problem, 

the  solution  to  which  is  computed  by SOLVE, until  eventually  all  problems 

are  solved. 

In  its  present  form,  the  TWODI  program  works,  it is believed  to  be 

free  of  error,  and is convenient  to  use.  Complete  instructions  for  its 

use  are  supplied  in  Section 7. 
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Figure 5. Calling hierarchy of the TWODI program 
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56. Some  numerical  considerations 

This  Section  discusses  some of  the  numerical  considerations  made  in 

computing  Bland's  kernel as given  by  equations (2-50) to  (2-55). All compu- 

tations  involve  elementary  operations  using  standard  FORTRAN  functions 

except  the  determination of the  eigenvalues of equation  (2-54)  and  the 

summation of the  infinite  series of F  given  by  equation  (2-511,  and  its 

derivative  F'.  Since  these  computations,  especially  the  latter,  are  the 

most  difficult  part of computing  the  kernel,  they  are  discussed  in  detail. 

The  positive  solutions {Xn),,, of  the  transcendental  equation 
m 

t a n X + y A = O  (6-1) 

are  depicted  in  Figure  6(a) as  the  projections  onto  the  A-axis  of  the  inter- 

sections of a  straight  line  with  branches  of  the  tangent  function.  Equation 

(6-1) occurs  elsewhere  in  mechanics'  with  both  positive  and  negative  values 

of  the  parameter y being  physically  meaningful.  In  the  present  study,  only 

nonnegative  values of y are  meaningful  but  the  solution  algorithm  we  use 

is  equally  valid  for  all  real  values  of y: 

The  eigenvalues  are  well  separated  and  satisfy  the  inequalities 

n(n--) < An < n(nt-1;  n = 1,2, ... 1 1 
2 2 (6-3) 

Figure  6(b)  depicts  a  natural  iteration  scheme.  Because  of  the  behavior 

of  the  derivative  of  the  inverse  tangent  function,  if Aik) is  any  approxi- 

mation  whatsoever  to  An,  then  the  number 

A (k+l) = 7111 - tan-1 (y~Ak)) n (6-4) 

is  a  better  approximation,  as  illustrated  by  Figure  6(b).  The  following 

theorem  proves  that  this  method  always  works. 

'For  example,  the  buckling of a  beam  built  in  at  one  end  and  clamped at  the 
other  is  governed  by  the  equation 

where P is  the  axial  buckling  load, L is  the  length  of  the  beam,  E  is  Young's 
modulus  and I is  the  usual  moment of inertia. 
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?I 

y = -yx 

(a) Eigenvalues of t a n  X + yl = 0 

(b) I t e r a t i o n  by A, = m-tan”  ( y h n  (k) (k+l) 

Figure  6. The e igenvalue   p roblem  tan  1 + Y1 = 0 
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Theorem: For  arbitrary A A o )  , the  sequence { converges  to An. 
The convergence  is  geometric  with  rate 

1 
pn < min f d x )  ; y,+(2n-l) 21- 

Proof:  For  fixed y and n, let 

g(A) = nr - tan-1 ( y ~ )  

and  let  In  denote  the  closed  interval c (n-) r , ("3) a]. Then g ( A i o )  ) E In, 

regardless of the  initial  value A A o ) .  Hence  all  elements of the  sequence 

{ XAk) belong to In. It  is sufficient  to  show  that  g  is  a  contraction 

mapping on I,, because  the  iteration  defined  by (6-4) is  just  the  usual 

Picard  approximation  scheme  applied  to  the  fixed  point  equation 

1 1 
2 

Since  g  is 

But 

Therefore 

and 

The  above  algorithm  has  been  coded  as  a  function  subroutine  named 

PICARD using 

as an  initial  value,  and  using  the  relative  error  test 

for  convergence. 

*The  relative  error  test (6-7) is  useful  whenever  the  exact  limit  is  not 
known  in  advance  and  whenever  the  limits  may  be  extremely  large  or  extremely 
small.  It  does  not  guarantee  that  convergence  is  achieved  to  within E of 
the  exact  value,  but  is  a  reasonably  general  test  and  has  worked  well  in 
the  present  study. 
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Typically,  for  n = 50, ten  decimal  convergence  is  achieved  in 3-4 

iterations.  The  convergence  characteristics of PICARD  are  shown  in  Table 1 

for  several  combinations of n  and E in  terms  of  the  numbers 

kmax(n,E) = -e max y< m (max(k+l: - AISk) I 5 E IAAk+l) I}} (6-8 1 

which  represent  the  maximum  number  of  iterations  required  for  all  values  of y. 

Table 1. Convergence  of  function  subroutine  PICARD 

n = eigenvalue  no.,  kmax = max  no.  iterations  required 
Y 

n 

1 
2-3 
4-5 
6-12 

13-71 
72-500000 
500001-m 

kmax 
9 
6 
5 
4 
3 
2 
1 

n 

I 
2 

4-6 
7-11  

12-31 
32-338 

339-49999990 
49999991-m 

kmax 
1 2  

8 
7 
6 
5 
4 
3 
2 
1 

n %ax 
1 14 
2 10 
3 9 
4  8 

5-6  7 
7-10  6 

11-21 5 
22-78  4 

79-1566  3 
1567-5000014179  2 

5000014180-m 1 

The  rapid  convergence  with  large  n  is  explained  by  the  convergence  rate 

bounds  given  by  equation (6 -5) .  Values  of  kmax  were  estimated  by  comparing 

results  for 25 values  of y which,  to  within  the  single  precision  accuracy 

of  a CDC 6400, were  given  by  values  of y g  such  that: 

tan-lyi = 2 4 ;  -12 < R < 12. 
R.rr 
" 

Only  one  iteration  is  required  for R = 0 because  the  choice (6-6) of  the 

initial  value  is  then  the  exact  eigenvalue,  but  the  maximum  number  of  itera- 

tions  usually  occurred  for R = 1. This  behavior  can  be  understood  from 

the  graph of the  eigenspectra  vs. y. Since y can  be  any  real  number,  the 

domain  can  be  mapped  onto  a  finite  interval  by  employing  the  inverse  tangent 

transformation.  The  resulting  eigenspectra  for  all  real  values  of y are 

shown  in  Figure 7. A  gradually  steepening  shoulder  with  increasing  n  is 

observed  near y = 0, which  is  where  the  maximum  number  of  iterations  should 
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n.rr 
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4.rr 
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2.rr 

"""" 
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0 

n= 5 

n= 4 

n= 3 

n= 2 

n= 1 

tan -'y 

Figure 7 .  Spectra of tan X + yX = 0 vs. tan"y 
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be  expected.  This  shoulder is merely  exhibiting  the  fact  that 

which  is  obvious  from  Figure 6(a). 

The  infinite  series (2-51) and  its  derivative  are  the  result  of  a 

uniformly  but  slowly  convergent  series  which  has  been  modified  for  improved 

convergence.  Consider  the  infinite  series 

m 
f'(6) = - c an exp(-inG) , n= 1 

where  an  and  in  are  given  by (2-52) and (2-53).  From (6-9) , it follows 
that  if Y > 0 the  terms  of  the  series (6-10) and (6-11) for  large  n  approach 

the  corresponding  terms  of  the  series 

(6-10) 

(6-11) 

(6-12) 

A 

f ' ( 6 )  = - C exp(-r(n-)d), 
m 1 
n= 1 2 (6-13) 

respectively.  The  series (6-10)-(6-13) diverge  if 6 5 0 and  converge  uni- 
formly  on  any  closed  interval  such  that 

6 > 0. (6-14) 

The  derived  series  for f'  and  f'  are  the  more  slowly  convergent,  converging 

geometrically  with  rate  which  approaches 1 as 6 approaches 0. However, 

the  minimum  argument  needed  for  the  collocation  method  is 

(6-15) 

where  x  is  a  collocation  point  and 5 is  a  quadrature  node.  Although HSU'S 
interdigitation  procedure  tends  to  maximize  this  difference,  the  argument 

can  still  be  quite  small.  Taking  the  number  of  quadrature  points  equal 

to  the  number  of  pressure  basis  functions, 

NP = NQ 

and  referring  to  formulas (3-24) and (3-25) , one  finds  that 

min /cos - 2 in 2lI 3n2 
l<i, J<NP 2NP+1  2NP+1  2NP+1 cos - 2NP+1 8Np2' 
" 

(6-16) 

(6-17) 
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Consequently,  applying  a  relative  convergence  criterion  to  the  series 

(6-10) to (6-13), it  can  be  estimated  that  the  number  of  terms  NT  required 

to  achieve  ND  decimal  convergence  is  given  by 

NT .26r)~(NJl) (NPl2. (6-18) 

For  example  if M = 0 ,  r ) ~  = 15, ND = 10 and  NP = 10, then  NT ̂. 3000 terms. 

The  series (6-10) and (6-11) appeared  in  the  original  expression  for 

Bland's  kernel.  He  .improved  their  weak  convergence  properties  by  subtracting 

the corresponding  terms  of  the  series (6-12) and (6-13) and  adding  their 

closed  form sums 
A 

f ( 6 )  = log  coth -, 4 716 
4 

f' ( 6 )  = -2 csch 7 716 
L 

to  obtain 

(6-19) 

(6-20) 

(6-21 

The  infinite  series  appearing  in (6-21) and (6-22) equal  F  and  F'  as  defined 

by (2-51). F and F' are  nonsingular  at 6 = 0, whereas  f, f', f̂  and f^' are 
all  singular  at 6 = 0. The  resulting  smooth  behavior  of  F  and  F'  vs. 6 is 

depicted  in  Figure 8 for  k = 0 and  for y = 0,1 and m. In  the  case y = k = 0, 

it  is  possible  to sum the  series  for F and  F'  in  closed  form: 

2 
F ( 6 )  = - ; log (l+exp(--)) if y = k = 0, ll6 

2 (6-23) 

F'(6) = 
1 

l+exp (--I 
i € y = k = O ,  TI6 

2 

(6-24) 

thereby  permitting  an  exact  and  independent  check  of  numerical  computations. 

Table 2 shows  a  comparison  for  small  values of 6, including 6 = 0. 
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Table 2. Accuracy  of  subroutine SUM for y = k = 0 

(using  a  relative  convergence  test  on F' with E = lo-'') 
. .  . ~- 

6 Decimals  of  accuracy  no.  of  terms 
F(6) E''(&) 

-0003 5 0 60057 

-001 10 6  5496 

* 002 10 7  2859 

-003 10 8  1485 

-020  10 9 323 

- 2  00 10 10 37 
~ . . . .  

Thus,  while  the  series  reformulations  described  above  have  succeeded  in 

removing  the  singularity  and  improving  the  convergence  somewhat,  it  is 

apparent  from  Figure 8 and  Table 2 that  additional  gains  in  efficiency 

remain  to  be  accomplished.  Variations  in  frequency  and  Mach  number  are 

shown  in  Figures 9-11. 

The  prospects  for  improving  the  efficiency  of  subroutine SUM appear 

favorable  for  several  reasons.  The  present  version  is  accurate  and  pro- 

vides  a  sound  basis  for  comparison.  The  data  presented  above  represent  a 

worst  case  in  the  sense  that  convergence  is  more  rapid  with  increasing y 

(y = 0 corresponds  to  an  open  tunnel, y = m to  a  closed  tunnel). 

31n  the  case y = k = 0, the  series  for P ( 0 )  is  an  alternating  harmonic 
series  and  converges  slowly  to 

F(0) = -L log 2, 

but  the  derived  series  is  null  and  does  not  converge  to 

F' ( 0 )  = -. 1 
2 

This  is  due  to  the  non  uniform  convergence  of F ( 6 )  at 6 = 0 SO that  inter- 
change  of  summation  and  differentiation  is  not  valid. 
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F ( 6 )  
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Figure 9. Parametric  behavior of F ( 6 )  vs. k for  M=O, nH=10, y = l  
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Figure 11. Parametric  behavior of F ’ ( 6 )  vs. M f o r  k=2.rr, nH=lO, y = l  
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§?-..- Use of the  TWODI  program 

This  section  describes  the  preparation of input  data  for  the  pilot 

version of  the  TWODI program. It  is assumed  that  the  user  knows  the  physical 

meaning  of  all  input  and  output  quantities,  and  the  procedure  for  submitting 

a  run  at  the  computer  facility. We reiterate  that  the  solution  is  based 

upon  the  assumption of linearized  inviscid  subsonic  potential  flow  about 

a  thin  airfoil  located  midway  between  two  parallel  walls  using  the  boundary 

condition (2 -49) .  

TWODI  will  predict  any  combination of pressure,  section  coefficients 

and  generalized  aerodynamic  forces  for  the  following  primary  parameters: 

(1) mode  shape, 

(2)  reduced  frequency , 
( 3 )  Mach  number, 

( 4 )  tunnel  depth  to  airfoil  chord  ratio, 

(5) tunnel  wall  ventilation  coefficient. 

Additional  parameters  are  the  number  of  pressure  terms  used in the  so,lution 

process,  the  number of points  at  which  pressure  is  to  be  calculated,  etc. 

TWODI  will  operate  in  either  BATCH  (noninteractive  card  jobs)  or  TIMESHARE 

(interactive  remote  terminal)  modes.  Input  and  output  are  fully  compatible 

between  BATCH  and  TIMESHARE. A problem  is  defined  by  a  set of data  sufficient 

to  cause  execution  of  the  program,  and  contains  from 1 to 50 combinations 

of (M,k,qH,cw),  called  data  cases. As many  problems  may  be  loaded  in  succession 

as desired.  All  input  data  and  their  acceptable  values  are  precisely  defined 

in  Section 7.1 below.  Input  data  are  automatically  checked  for  acceptabi- 

lity  and  unacceptable  data  cases  or  unacceptable  problems  will  be  select- 

ively  deleted  by  TWODI  with  an  explanatory  comment.  The  input  format  is 

defined  in  Section 7.2 consisting  of  six  input  data  units.  For  BATCH  runs 

the  format  may  be  formal on a  column  by  column  basis, or it  may  be  free 

with  individual  data  separated  by  a  comma or blanks.  Each  input  data  unit 

(and  certain  subunits)  must  begin  on  a  new  card.  TIMESHARE  input  is  prompted 

in  a  self-explanatory  fashion,  and  the  interactive  communication  between 

TWODI  and  user  is  described  in  Section 7 . 3 .  At  the  present  time,  compre- 

hensive  estimates of computer  time  and  the  number NP of  pressure  modes 

required  to  achieve  a  certain  accuracy  are  not  available. 
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7.1 Definition  of  input  data 

TITLE 

NC 

NP 

NH 

NX 

NL 

SEC 

GAF 

TSH 

XM (MI 

HM (MR,M) 

XL  (L) 

MACH 

FREQ 

cw 

ETAH 

- From 1 to 72 alphanumeric  characters of user-selected  title. 
Printed  at  the  top  of  each  page,  with  the  time  and  date. 

- Number of M,k,qH,cw  data  cases  to  follow  for  this  problem. 
Each  problem  consists  of  NC  cases. As many  problems  may  be 
run  as  desired.  1<Nc<_50 

- Number  of  aerodynamic  pressure  modes  to  be  used in the  solution 
process.  1LNW-30 

- Number  of  airfoil  deflection  modes. 1'JH<5 
- Number  of  points  at  which  the  airfoil  deflection  modes  are  to 
be  collocated  to  the  input  data. l<NXLlO 

- Number  of  loading  points  at  which  pressure  is to be  calculated. 
O< NL< 5 0 
" 

- Logical  variable  whose  truth  value  is  to  calculate  section 
coefficients  (lift,  pitching  moment,  center  of  pressure)  for 
each  deflection  mode.  T or F 

- Logical  variable  whose  truth  value is  to calculate  the  general- 
ized  aerodynamic  force  coefficient  matrix.  T  or F 

- Logical  variable  whose  truth  value  is  interactive  timesharing 
remote  terminal  operation. T or F 

- Chordwise  coordinate  of  matching  point  M  of  NX  for  airfoil 
centerline  deflections.  Nondimensionalized  by  the  semichord, 
-1 at  the  leading  edge, +1 at  the  trailing  edge.  -1LXM(M)Ll. 
If  M # N,  XM(M) # XM(N). 

- Vertical  coordinate  of  matching  point  M  for  airfoil  centerline 
deflection  mode  NR.  Nondimensionalized  by  the  semichord,  posi- 
tive  up. 

- Chordwise  coordinate  of  loading  point  L of NL  at  which  pressure 
is  to  be  calculated. To be  omitted  if  NL = 0. -1<XL(L)<"1 

- Mach  number, M. C<M<1 

- Airfoil  reduced  frequency, k, referred  to  semichord. 
- Tunnel  wall  porosity  coefficient, CW. EcW'm. Use cw = lo1'' 

- 

for  closed  wall  conditions. 

- Tunnel  semiheight  nondimensionalized  by  the  airfoil  semichord. 
Equals  the  tunnel  height  to  airfoil  chord  ratio T~H. Positive. 
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7.2. Input  data format 

D I G I T A L  COMPUTER I N P U T  DATA S H E E T S  

Programmer D a t e  Page of Ident.  

DATA  SEQUENCE 

TITLE I N P U T  
I3  DATA U N I T  

; I  7 3   0 0  

I N P U T  
DATA U N I T  

NH NX 
! S  

NL SFU? 
17 

I1 

GAF T S H  
19 

81 7 3  e o  
1 . - - . , . . 

! 5  ... I11 

I 7  

7 3  e o  

I N P U T  
DATA U N I T  

... I I V  

-~ 

D E S C R I P T I O N  - DO  NOT  KEYPUNCH 

VARIABLE TITLE 

3 72 ALPHANUMERIC  CHARACTERS 

CONTROL  PARAMETERS 

SEPARATE  INDIVIDUAL DATA I 
WITH  A COMMA OR BLANKS - 

m MATCHING P O I N T S  

SEPARATE  INDIVIDUAL DATA I 
WITH  A COMMA OR  BLANKS I 

MODE SHAPES 

SEPARATE  INDIVIDUAL DATA 

EACH MODE ON A NEW CARD I 
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D I G I T A L  COMPUTER  INPUT  DATA  SHEETS 

Programmer D a t e  Page of Ident.  

I DATA SEQUENCE 

XL (1) 

X L ( 2 )  DATA U N I T  
I N P U T  

2 5  ... V F{ XL  (NL) 

9 7  1 - .  
XL  (NL) 

14 9 

6 1  7 3  B O  e'/ DATA I N P U T   U N I T  

ETAH V I  
3 9  

cw J F,73 B O  

l 1  
2 5  

3 7  

4 9  

6 1  7 3  e o  

- - _  

2 5  

3 7  

4 9  

6 1  7 3  e o  

D E S C R I P T I O N  - DO  NOT  KEYPUNCH I 
LOADING  POINTS I 
OMIT IF NL = 0 I 

~~ ~~ 

SEPARATE  INDIVIDUAL  DATA 
~~~ ~ 

WITH A COMMA OR  BLANKS I 

I FLOW  PARAMETERS 

EACH  CASE ON A NEW CARD 

-______- 

REPEAT  INPUT DATA U N I T S   I - V I  

F O R   A S  MANY 

PROBLEMS  AS  DESIRED 

I 
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7.3. Prompted  interactive  input 

The following is an  example of automatically  prompted  interactive 

communication  between TWODI and its  user.  Responses by the user  are 

underlined. The particular  data  are  for the problem of Section 10,  and 

the output  is  presented as the APPENDIX. 

ENTER T I T L E  I 

?COMPARISON WITH THE K U E S S N E R ~ W A K  
ENTER NC,  NP,  NH, NX, NL,  SEC,  GAF, TSH 

?1,10,5,5,2o,TJTJT 
ENTER MATCH I NG  PO I NTS I 

?-1,-.5,0,.5,1 

?1,1,1,1,1 
ENTER MODE SHAPE 

ENTE 
?COMPARISON WITH THE K U E S S N E R a W A K  

ENTER NC,  NP,  NH, NX, NL,  SEC,  GAF, TSH 
?1,10,5,5,2o,TJTJT 

ENTER MATClj I NG  PO I NTS I 

?-I,- - - 
?1,1,L,L,L 

- 
ENTE 

ENTER MODE SHAPE 

ENTER MODE SHAPE 

ENTER MODE SHAPE 

?-3,-2,-1,0,1 

?5,1,-1,-1,1 

?-7,1,1,-1,1 ~ _ _ _ _  

FOR  MODE 1 

FOR  MODE 2 

FOR  MODE 3 

FOR  MODE 4 

FOR  MODE 5 

SOLUTION 

ENTER MODE SHAPE 

ENTER LOADING  POINTS 
?9,-2,1,0,1 

?- .g , - .a , - .7 I - .6~.~-~5. , -~~~~- . .3 , - .2 , - .~ Io, . l , .2 , .3 , .4 , .5 , .6 , .7 , .a , .g , l  - 
ENTER MACH, FREQ, ETAH,CW FOR CASE 1 

?0,1,300,1E100 
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18. Convergence  characteristics of TWODI 

IJumerical  calculations  with  the TWODI program  reflect  the  theoretical 

convergence  predicted  mathematically in Section 4. Tables  3  and 4 show 

for M = 0 and k = 0 the  convergence  of  lift  coefficient  and  center of pressure 

vs.  NP  with  orders of magnitude  variation  in  tunnel  depth to chord  ratio 

and  for  both  the  open  and  closed  wall  conditions.  For  the  open  wall  condi- 

tion,  slower  convergence of the  infinite  series  for F and  F'  resulted  in 

our  omitting  some  of  the  calculations  for  the  deeper  tunnel  cases. 

1 1.91357 
2 1.91357 
3 1.91357 
4 1.91357 
5 1.91357 
10 1.91357 
1 9.20520 
2 8.26642 
3 8.30090 
4 8.29957 
5 8.29957 
10 8.29957 

5.39195 
5.39195 
5.39195 
5.39195 
5.39195 

6.30906 
6.30894 
6.30894 
6.30894 
6.30894 
6.30894 

6.16551 
6.18551 
6.18551 
6.18551 

~ ~~~~ 

6.28344 
6.28344 
6.28344 
6.28344 
6.28344 
6.28344 

6.27333 
6.27333 
6.27333 

6.28319 
6.28319 
6.28319 
6.28319 
6.28319 
6.28319 

. - . - 

6.28220 
6.28220 

6.28319 
6.28319 
6.28319 
6.28319 
6.28319 
6.28319 

Table 4. Convergence  of  xcp  vs.  NP  for M = 0 and k = 0 

(flat  plate  at  unit  angle  of  attack) 

- 
. . . . . . - 

Open 1 
2 
3 
4 
5 
10 

Closed 1 
2 
3 
4 
5 
10 

I, 

1 

I ,  

I, 

I, 

I ,  

I ,  

.250000 

.110850 

.111373 

.111440 

.111434 

.111435 

.250000 

.307484 

.306176 
-306172 
.306175 
.306175 

.250000 

.247953 

.247954 

.247954 

.247954 

.250000 
-251020 
.251019 
.251013 
.251019 
.251019 

.250000 
-249979 
.249979 
-249979 

.250000 

.250010 

.250010 

.250010 

.250010 

.250010 

.250000  .250000 

.250000  .250000 

.250000 

.250000 .250000 

.250000 .250000 

.250000 .250000 

.250000 .250000 

.250000 .250000 
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Whereas  section  coefficients  depend  upon  only  the  first  two  Fourier 

coefficients  PQ  and  PJI , the  generalized  aerodynamic  forces  and  the  details 
of the  pressure  functions  depend  upon  all  the  Fourier  coefficients  PJI ; 

n = I, ..., NP.  Tables 5 and 6 show,  for  steady  and  unsteady  flow  respectively, 
the  convergence  of  these  truncated  sequences  of  Fourier  coefficients  with 

respect  to  the  number NP of pressure  basis  functions  employed,  for  both  the 

open  and  closed  tunnel  wall  conditions.  The  convergence  for  steady  flow 

is much  more  rapid  than  for  unsteady  flow. 

. 1  2 

n 

Table  5.  Convergence  of  Pa-  vs.  NP  for M = 0, k = 0 and TIH = 10 

(flat  plate at unit  angle  of  attack) 

Wall  NP P J I ~  pa2 pJI 3 pQ4 

Open 1 
2 
3 
4 
5 

Closed 1 
2 
3 
4 
5 

,I 

I 

, I  

I, 

I, 

I, 

3.43262 
3.43262 
3.43262 
3.43262 
3.43262 
4.01647 
4.01640 
4.01640 
4.01640 
4.01640 

-. 014052 -. 014047  .000023 
-.014047  .000023  .000006 
-.014047  .000023 .000006 

.008194 
-008188 -.000023 
-008188 -.000023 -.000006 
-008188 -.000023  -.000006 

Table 6. Convergence  of  PJI*  vs.  NP  for M = .5, k = .1 and OH = 10 

(flat  plate  oscillating  about  midchord-unit  maximum  angle of attack) 

Wall  NP 

Open 1 
2 
3 
4 
5 

" 10 
" 15 

Closed 1 
2 
3 
4 
5 

" 10 
I t  15 

,I 

,I 

II 

I, 

I, 

11 

I, 

,I 

3.60308-.261310i 
3.64729-.260306i 
3.64763-.260345i 
3.64772-.260359i 
3.64776-.260365i 
3.64779-.260371i 
3.64780-.260372i 
3.77355-.762277i 
3.81694-.772065i 
3.81729-.772203i 
3.81739-.772245i 
3.81743-.772262i 
3.81747-.772280i 
3.81747-.772282i 

-.007670+.52259Oi 
-.007831+.523485i 
-.007871+.523535i 
-.007853+.523553i 
-.007898+.523572i 
-.007900+.523574i 

.038394+.519791i 

.038279+.520718i 

.038244+.520744i 

.038232+.520794i 

.038220+.520815i 

.038219+.520817i 

-.010920+.000024i 
-.011029+.000015i 
-.011068+.000013i 
-. 011106+.  000012i 
-.011111+.000012i 

-.010978+.000855i 
-.011093+.000861i 
-.011134+.000865i 
-.011174+.000869i 
-.011787+.000869i 
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In  general,  we  have  found  that  the  convergence  of  the  TWODI  program 

with  respect  to  the  number  of  pressure  basis  functions is remarkably good 

for  steady  flow  and  good  for  unsteady  flow  with  the  program  being  most 

efficient  for  narrow  tunnels  and  low  frequencies.  The  practical  utility 

of the  TWODI  program  would  be  improved  by  the  incorporation  of  more 

efficient  computer  algorithms  for  deep  tunnels  and  higher  frequencies. 
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59. Comparison  with  the  Sghngen  solution 

For  steady  incompressible  flow  in  an  infinite  atmosphere,  the  results 

of  the TWODI program  can  be  compared  against  the  exact  closed  form  Sghngen 

solution.  This  solution is  given  by  the Shngen inversion  formula'  (2-25) 

or,  equivalently,  by  Bland's  solution  (3-24)  in  terms  of  airfoil  polynomials. 

We  shall  utilize  the  latter  because  of  their  elegant  simplicity. 

Since  the  downwash  polynomials  are  complete,  they  may  be  used  as  basis 

functions  for  deflections.  In  the  present  comparison,  airloads  will  be 

calculated  for  airfoil  deflections,  or  contours,  spanned  by  the  first  five 

downwash  polynomials  (Fig.  3) : 

hn = xn; n = 1,2,3,4,5. 

Written  out,  the  first  five  downwash  and  pressure  polynomials  are 

Then  the  downwash  functions 

~ 

'Extensive  closed  form  integrals  based  on  the  SGhngen  and Kksner-Schwarz 
solutions  have  been  tabulated  by  Fromme  [88,1964,App. B and C]  for  piecewise 
continuous  downwash  functions  expressed as powers. 
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are  found  to  be 

w1 = 0, (9-51) 

w2 = 2x1,  (9-52) 

w3 = 2X1+4X2,  (9-53) 

w4 = 4X1+2X2+6X3,  (9-54) 

w5 = 4X1+6X2+2X3+8X4,  (9-55) 

and  by  equation  (3-24),  the  corresponding  pressures  are 

A P ~  (5)  = 01 (9-61 1 

(9-64 

Ap5 (5) = - [16$1 (5)+24$2(5)+8$3 (5)+32$4 (5)  I .  1+5 (9-6 5 

The  results  in (9-61, based  on  the  Bland  transform,  have  been  checked  in- 

dependently  with  the  formulas  of  Fromme,  and  are  in  agreement.  Numerical 

values  of  pressure  are  presented  in  Table 7. Figure 12 depicts  the  deflection 

basis  functions  and  the  corresponding  pressure  functions.  These  results 

have  been  used  to  check  the  predictions of the  TWODI  code  using  six  pressure 

basis  functions  with 'IH = l o 4  and cw = lo1 O 0 .  To  within  the  six  decimal 

accuracy of printout12  the  pressures  predicted  by  TWODI  are  correct  for 

all  five  deflections. 

21n  this  work,  we  adopt  a  standard  of  six  decimal  accuracy  as  a  compromise 
between  reasonable  generality  and  practical  utility.  Greater  accuracy  is 
attainable,  but  we  note  that  six  decimal  accuracy  is  already  orders  of 
magnitude  above  experimental  accuracy.  However,  intermediate  calculations, 
especially  those  which  occur  many  times,  are  performed to higher  accuracies 
that  are  established  internally  in  the  computer  program. 
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Table -~ 7. Pressures  for  the  Sghngen  comparison 

-. 9 
-. 8 -. 7 -. 6 -. 5 
-.4 -. 3 -. 2 
-. 1 

0 
.1 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
-9 

1.0 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

-34.8712 
-24.0000 
-19.0438 
-16.0000 
-13.8564 
-12.2202 
-10.9022 
-9.79796 
-8.84433 
-8.00000 
-7.23627 
-6.53197 
-5.87040 
-5.23723 
-4.61880 
-4.00000 
-3.36067 
-2.66667 
-1.83533 

0.00000 

20.9227 
4.80000 
-3.80876 
-9.60000 
-13.8564 
-17.1083 
-19.6239 
-21.5555 
-22.9953 
-24.0000 
-24.6033 
-24.8215 
-24.6557 
-24.0913 
-23.0940 
-21.6000 
-19.4919 
-16.5333 
-12.1132 

0.00000 

-87.8754 
-30.7200 
-5.33227 
7.68000 
13.8564 
15.6419 
14.3909 
10.9737 
6.01415 
.oooooo 

-6.65737 
-13.5865 
-20.4290 
-26.8146 
-32.3316 
-36.4800 
-38.5805 
-37.5467 
-31.0537 

0.00000 

-2.51073 
-67.5840 
-84.2498 
-81 -4080 
-69.2820 
-53.1823 
-36.3696 
-21.0068 
-8.56131 

.oooooo 
4.11020 
3.55339 

-1.54978 
-10.7258 
-23.0940 
-37.2480 
-51.0016 
-60.7573 
-59.3324 

0.00000 
" 

Values of section  coefficients  may  be  obtained  by  inspection  of (9-6) 

using (3-37) and (3-38). The  results  are  given  in  Table 8. Again  the 

predictions  of  TWODI  are  correct  to  within  the  six  decimals  of  printout. 

Table ~8-.. Section  coefficients  for  the Shngen comparison 

Mode CL CM 

1 0 0 

2  -4r 0 

3 -4a -4r 

4 -8r -2n 

5  -8r -6r 

To calculate  the  generalized  aerodynamic  force  matrix,  we  expand  the 

deflection  functions  given  by (9-1) in  terms  of  the  pressure  polynomials. 

. 
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It is easy to  show that 

0 -4Tr  -4Tr -8Ti -8n 

0 8 ~ i  0 12Ti 4Tr 

[Ars] = 

9 an  - 8 ~  3 2 ~ i  - 1 6 ~  

0 -8~r a n  - 2 0 ~  4Ti 

0 -8~r 8~r - 3 2 ~   3 2 ~  

Again, the TWODI program is correct to within the accuracy  of  printout. 
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(a) Deflect ions 

Figure 1 2 .  Deflect ions and pressures for the Sghngen- comparison 
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5 10.  Comparison  with  the  Ksssner-Schwarz  solution 

I t  

This  section  compares  the  exact  closed  form  Kussner-Schwarz  solution 

for  unsteady  incompressible  flow  in  an  infinite  atmosphere  against  the 

results  of  the  TWODI  program. Also, this  section  presents  new  and  simpli- 

fied  expressions  using  airfoil  polynomials  for  unsteady  airloads  based 

on  the Kksner-Schwarz solution. 

For  airfoil  deflections  spanned  by  the  first  five  downwash  polynomials, 

the  downwashes  are 

and it follows  that 

To  organize  the  calculations,  we  make  use  of  the  inverse  of  the  Bland  trans- 

form,  the  Lambda  transform  and  the  Theodorsen  functional,  defined as follows: 

Thus, 

(a)  The  inverse  Bland  transform.  Since 

H-lXn = $nr 

(10-3) 

(10-4) 

(10-5) 

(10-6) 

(10-7) 
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then 

H-lwl = ik$lr 

H-’w~ = 2$l+ik$lr 

H-lw3 = 2$11+4$~+ik$3, 

H-’w~ = 4$1+2$2+6$3ik$4 

H-lws = 4$1+6$2+2$3+8$4+ik$5. 

(b) The Lambda  transform. Frome’ has  shown  that 

A[11 = 1 + E ,  

A[xl = 2 + $21 1 1  

A[x2] = 6 + 2 + $2 + $’, 

A[x3] = f + -E2 + -53 + 

/\[x4] = = + $ + # + 3 3 + $ + + $ 5  3 3  1 1 1 1 

1 1  1 1 

1 1  1 1 
8 8  4 

Hence 

[88,1964,Appendix C1 formulas  (C-45) to (C-49) ] . 
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- Lik14~ + (l-”ik)$5 + +k$6- 1 1 
8 40 

(c) The  Theodorsen  functional.  Since 
” 

and  since x1 (x) = 1, it  follows  from  (10-2)  and (10-5) that 

Hwl  = ik, 

HW2 = 2, 

HW3 = 2, 

H w ~  = 4, 

Hw, = 4. 

The Fourier  solution for pressure  now  follows. 
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and the generalized  aerodynamic forces follow from  (3-42)using (9-7) and 

(10-11). 
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AI = 71 [-2ikC  (k)  +k21, 

A1 2 = TI [-4C (k)  -2ik-k2] , 
A1 3 = 'IT [-4C (k )   +2 ik l ,  

A1 4 = TI [-8C (k)  -2ik1, 

A1 5 = TT [-8C (k)   +2ik l ,  

A21 = TI [4ikC(k)  -k21, 

A22 = TI 18C(k)+p21 ,  3 

A23 = 'IT [8C(k)   -8-4ik-p21,  1 

A24 = 'IT [16C (k)   -4+4ik l ,  

Az5 = 71 [16C  (k)  -12-4ik3, 

A31 = ' 1 ~ [ - 4 i k C ( k ) l ,  

A32 = TI [ -8C(k)+4ik-p21,  1 

A33 'IT [-8C (k)   +16+2 ' ] ,  5 

A34 = 'IT [ -16C(k)-4-4ik-p21,  1 

A35 = TI [-16C(k)  +20+4ikl, 

h1 = ~ 1 [ 4 i k C ( k ) l ,  

A42 = . r r [8C(k)-4ikl ,  

h3 = 'IT [ 8 C  ( k )   - 1 6 + 4 i k y 2 1  1 , 

A44 = 71 [16C (k)  +16Q21, 
7 

h5 = TI [16C(k)  -32-4ik-p21, 1 

As1 = 'IT [-4ikC(k) 1, 

A52 = TI I-8C (k) +4ik3 , 

A53 = 'IT [-8C(k)  +16-4ikl, 

AS4 = TI [- 16C (k)   -16-4ik-p21 1 , 

A55 = 'IT [-16C(k)+48tZTjk21. 9 
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Numerical  values  of  airloads  based  on  the  exact  values.given  by (10-13) 

to (10-16) are  presented  in  Tables 9 to 11 and  Figure 13. The  pilot  version 

of  TWODI  will  not  accept nH = m, and  in  its  present  form  is  most  efficient 

for  small  values  of n~ and k. Thus?  the  Kiissner-Schwarz  comparison  re- 

presents  a  worthy  test.  Numerical  values  predicted  by  TWODI  for qH = 300, 

k = 1 and NP = 8, presented  as  the  APPENDIX,  are  seen  to  be  in  close 

agreement.  The  aeroelastic  effect is bounded  by  the  relative  error  supremum 

norm  of  the  generalized  aerodynamic  force  matrix: 

(10-17) 

This  error  norm  represents  the  maximum  difference  between  the  exact  solution 

in  an  infinite  atmosphere  and  the  numerical  solution  by  TWODI,  considering 

the  combined  effects  of  numerical  inaccuracies,  finite  tunnel  depth,  and  of 

using  only  eight  pressure  basis  functions. 
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Table 9. Pressures for the K{ssner-Schwarz cgmparison- with k -=- 1 

-. 9  -0.00476 
-. 8  1.19673 
-. 7  1.90178 -. 6  2.39782 -. 5  2.76939 
-. 4  3.05338 
-. 3  3.26916 -. 2  3.42795 
-. 1 . 3.53653 

0 3.59891 
.1 3.61715 
.2  3.59169 
.3  3.52144 
.4  3.40348 
.5  3.23253 
.6  2.99945 
- 7  2.68808 
.8  2.26630 
.9  1.65154 

1.0 0.00000 

-22.1235 
-17.2664 
-15.1291 
-13.7510 
-12.6708 
-11.7245 
-10.8415 
-9.98838 
-9.14889 
-8.31548 
-7.48545 
-6.65892 
-5.83773 
-5.02478 
-4.22359 
-3.43774 
-2.66984 
-1.91849 
-1.16439 

0.00000 

39.8542 
19.0216 
7.87586 
0.15838 

-5.74258 
-10.4536 
-14.2720 
-17.3565 
-19.7975 
-21.6488 
-22.9421 
-23.6943 
-23.9107 
-23.5855 
-22.E988 
-21.2084 
-19.0296 
-15.9772 
-11.5352 

0.00000 

-58.0293 
-10.3985 

11.3355 
22.4864 
27.4860 
28.3354 
26.1859 
21.8174 
15.8246 
8.70238 
0.89173 

-7.19346 
-15.1462 
-22.5477 
-28.9431 
-33.8024 
-36.4390 
-35.8007 
-29.6921 

0.00000 

31.2030 
-45.0000 
-67.3412 
-68.0052 
-58.0773 
-43.2973 
-27.2281 
-12.2751 
-0.10282 

8.16904 
11.8675 
10.7190 
4.83414 

-5.27874 
-18.6663 
-33.8236 
-48.4592 
-58.8993 
-57.9949 

0.00000 

"9  
-.8 
-. 7 
-. 6 
-. 5 
-.4 
-. 3 
"2 
-. 1 

0 
.1 
.2 
.3 
- 4  
.5 
.6 
.7 
.8 
.9  

1.0 

-9.40537 
-6.47322 
-5.13645 
-4.31548 
-3.73731 
-3.29600 
-2.94050 
-2.64268 
-2.38547 
-2.15774 
-1.95175 
-1.76179 
-1.58335 
-1.41257 
-1.24577 
-1.07887 
-0.90643 
-0.71925 
-0.49502 

0.00000 

13.9580 
4.80655 
0.00520 

-3.19563 
-5.53878 
-7.32879 
-8.71875 
-9.79529 
-10.6108 
-11.1978 
-11.5761 
-11.7558 
-11.7392 
-11.5205 
-11.0839 
-10.3989 
-9.40897 
-7.99927 
-5.87254 

0 .00000  

5.56891 
15.3666 
19.8108 
21.7644 
22.1740 
21.5109 
20.0630 
18.0309 
15.5684 
12.8022 
9.84331 
6.79503 
3.75865 
0.83939 

-1.84626 
-4.15891 
-5.91387 
-6.82594 
-6.31302 

0.00000 

-10.7213 
-23.1229 
-25.0513 
-22.5833 
-18.0058 
-12.5557 
-7.01504 
-1.91505 

2.37511 
5.60437 
7.61651 
8.33836 
7.77561 
6.01520 
3.23568 

-0.26982 
-4.04442 
-7.34788 
-8.75717 

0.00000 

40.2743 
41.3507 
32.0497 
20.3991 
9.70705 
1.50242 

-3.63101 
-5.69315 
-5.06828 
-2.39563 

1.52646 
5.81963 
9.59778 
12.0401 
12.4733 
10.4758 
6.03222 

-0.18414 
-6.07319 

0.00000 
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Table 10. Section  coefficients  for  the Kksner-Schwarz 
comparison  with k = 1 

~" - - " ~. "_ . 

Mode CL =M 

1 2.51156 - 3.38937i 1.57080 
2 -9.92033 - 5.02312i -.785398 - 6.28319i 
3 -6.77874 4- 7.54325i -13.3518 
4 -13.5575 - 3.763053. -6.28319 
5 -13.5575 + 8.80332i -18.8496 

Table 11. Generalized  aerodynamic  forces  for  the 
Kksner-Schwarz comparison  with k = 1 

1 2.51156  -9.92033  -6.77874  -13.5575  -13.5575 
-3.38937i  -5.023123.  +7.54325i  -3.763053.  +8.80332i 

2 -1.88153  18.2699  -13.1461  14.5486  -10.5842 
+6.77874i  -2.52013i  -15.0865i  +7.52611i  -17.6066i 

3 -1.26007  -15.1283  39.3260  -40.7285  35.7169 
-6.77874i  +15.0865i  +2.52013i  -7.52611i  +17.6066i 

4 1.26007  13.5575  -37.7520  79.2130  -74.2014 
+6.77874i  -15.08653.  +10.0462i  -5.040273.  -17.6066i 

5 -1.26007  -13.5575  36.7080  -78.1658  125.095 
-6.77874i  +15.0865i  -10.0462i  +17.6066i  +5.04027i 
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Figure 13. Pressures f o r  Kussner-Schwarz comparison  with k = 1 
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111. Verification  and  extension of Bland's  results 

Eland [5,1970] presented  numerical  results  for  a  flat  plate  oscillating 

about  the 42.5% chord  at M = -85 in  a  closed  wind  tunnel  with 1 7 ~  = 7.5. 

His published  values of lift  coefficient  magnitude  for  various  frequencies 

l C ~ l  = 12.2351 k = 0 

l C ~ l  = 7.99420 k = .1 

ICL\ = 5.43549 k = -2 

have  been  verified  with  the TWODI program,  as  have  his  values  for  generalized 

forces,  etc. 

Bland's  results  were  based on a  computer  program  written  only  for  the 

closed  tunnel  condition cw = 00. We  have  extended  these  results  to  include 

the  effect  of  ventilating  the  wind  tunnel  walls.  Table 12 shows  the  effect 

on CL  of  variations  in  the  parameters T ~ H  and cw and  indicates  continuous 

behavior  with  respect to both  parameters.  Values  of cw 2 l o 6  reproduce 
Bland's  closed  wall  results  for nH = 7.5 and  the  lift  coefficient  for 

M = -85, qH = 1000 and cw = l o 6  agrees  to  six  decimals  with  the  well  known 
infinite  atmosphere  solution CLo, = 2.rr/B. We  have  since  observed  that  the 

numerics  are  not  adversely  sensitive  to  large  values  of cw and  that  the 

convergence  rate  of  the  infinite  series  in  the  kernel  improves  somewhat 

with  large  values  of CW/QH. Consequently  we  now  use  cw = 1 O 1 O 0  to  represent 

a closed  wall  condition. 

e. 

Table 12 also  indicates  that  the  effect  of  ventilation  is  considerably 

more  pronounced  for  narrow  tunnels  than  deep  tunnels.  Furthermore,  for 

each  value  of T ~ H  shown,  the  lift  coefficient  for  an  open  jet  tunnel  is 

lower  than  the  infinite  atmosphere  value  and  increases  monotonically  with 

increasing  ventilation  coefficient  until  the  lift  coefficient  exceeds  the 

infinite  atmosphere  value.  These  calculation  therefore  indicate  that  for 

every  finite  value of tunnel  depth  to  chord  ratio,  there  exists  a  unique 

ventilation  coefficient  such  that  the  lift  coefficient  equals  the  value 

of  the  lift  coefficient  in  an  infinite  atmosphere.  In  the  case  of  an 

infinite  atmosphere,  the  lift  coefficient  is  the  same  for  all  values  of 

ventilation  coefficient  as  is  to  be  expected. 
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Table  12.  Lift  coefficient  CL  vs. T-~H and cw for M = -85 and k = 0 
c1 - -~ ~ "_ . . . . . . . . " .. 

0 1.99486(5)' 8.22740(5,10) 8.98389(5) 11.5788(5) 11.8920(3) 
1.99506(5) 8.22744(5) 8.98391(5) 11.5788(4) 11.8920(3) 
2.01449  (5) 8.23118  (5) 8.98630(5) 11.5788(4) 11.8920(3) 

1 3.83187  (5) 8.57219  (5) 9.20734(5) 11.5822(4) 11.8920(3) 
lo4 20.1757(5) 11.8449(5) 11.7403  (5) 11.7513  (3) 11.8952  (3) 
lo6  21.8952(5) 12.2308(5) 12.0980(5) 11.9257(3) 11.9243(3) 
10100 12.2351(5) 12.0121(5) 11.9292(3) 11.9275(3)3 

m 12.2442 (1) 
m 12.2351  (2-20) 
'Numbers  in  parenthesis  indicate  the  number  of  pressure  basis  functions  used 
in  the  calculations. 

2These  results  are  those  of  Bland's,  which  were  programmed  only  for cw = m. 

3Compare  with 'IH = -, C L ~  = 2v/B = 11.9275. 
~ ~ . . ~ ". "" ~. "" - 

Table 12 indicates  that  section  coefficients  are  continuous  with  respect 

to ventilation  coefficient  for  all  values  of  ventilation  Coefficient.  Since 

cw can  be  any  nonnegative  real  number,  it is  convenient  for  graphing  purposes 

to  map  the  domain of cw onto  a  finite  interval.  This  can  be  accomplished 

by  the  transformation 

ew = (11-1) 

which  is  equivalent to  restating  the  boundary  condition  (2-49)  as 

p  sin ew + * cos ew = 0. 
aY 

(11-2) 

Then Ow = 0 corresponds  to  a  closed  tunnel  and Ow = - corresponds  to  an 

open  jet  tunnel.  Thus, we may  call Ow the  ventilation  angle.  Graphs of 
section  coefficients  vs.  ventilation  angle  are  presented  in  Figures 14 to 16. 

Lift  and  moment  are  seen to be  monotonically  decreasing  functions  of  venti- 

lation  angle.  The  ventilation  angle  at  which  the  lift  coefficient  equals 

the  corresponding  infinite  atmosphere  value  differs  from  the  ventilation 

angle  at  which  the  moment  coefficient  equals  the  corresponding  infinite 

atmosphere  value  (alas).  The  center  of  pressure,  shown  in  Figure 16, is 

aft  of  the  quarter  chord  for  zero  ventilation  angle  and  is  forward  of  the 

quarter  chord  for  an  open  jet. 

TI 

2 
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Figure 1 4 .  L i f t  c o e f f i c i e n t   v s .   v e n t i l a t i o n   a n g l e  for M = .85 ,  
k = 0 and OH = 7 . 5  
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Figure 15 .  Moment = e f f i c i e n t  VS. v e n t i l a t i o n . a n g l s + o r  lW= - 8 5 ,  
k = 0 and nu - 7 . 5  
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Figure 1 6 .  Center of pressure   vs .   vent i lat ion anQ&e for M = .85, 
k = 0 and qH = 7.5 
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This  section  presents  predictions of the  combined  effects of tunnel 

depth  to  chord  ratio nH and  wall  ventilation  coefficient  cw.  Since  the 
number  of  possible  combinations  of  parameters  can  be  quite  large,  we  shall 

restrict  the  discussion  to  section  coefficients  defined  for  a  limited  domain 

of Mach  number,  frequency  and  mode  shape; 

(1) M = 0, l/A, 
( 2 )  k = 0, .l, 

(3) vertical  translation  (h),  pitch  rotation (a), 

and tothedoubly infinite  domain  of  tunnel  depth  and  wall  porosity; 

(4) 1 2 '1H < m q  

(5) 0 < cw < m.  - 
The  resulting  section  coefficients  can  then  be  graphed  as  surfaces  defined 

over  a  two  dimensional  region  of  tunnel  depth  and  wall  ventilation.  It 

is  convenient  for  graphing  purposes  to  transform  the  supporting  domain  onto 

one  of  finite  extent.  This  has  already  been  partially  accomplished  in 

Section 11 by  introducing  the  ventilation  angle Ow as defined  by  equation 

(11-1). Similarly  we  define  a  tunnel  depth  angle  OH  by 

OH = Cot-lQH (12-1) 

which  varies  from 0 for  infinite  depth  to  for  zero  depth.  The  depth 

angle  is  shown  in  Figure 17 as  the  angle  between  the  line  perpendicular 

to  the  airfoil  passing  through  the  midchord  and  the  line  from  the  midchord 

to  the  point  of  intersection  with  the  tunnel  wall  of  a  line  perpendicular 

to  the  airfoil  passing  through  the  trailing  edge. 

2 

Figure 17. Wind  tunnel  depth  angle 
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For  present  purposes,  however,  we  shall  consider  only  tunnels  with  depth 

greater  than or equal to  the  airfoil  chord.  Thus, 

n 
4 

0 5 OH (-- 

We  can  now  represent  the  section  coefficients  for  all  possible  values  of 

ventilation  coefficient  and  tunnel  depth  to  chord  ratio  as  surfaces  with 

bounded  support. 

CL, = cL,(eH,eW) I CLh = CLh(BH,BW) I etc. 

Figure 18 presents  in  compacl; form the  complete  range of values  of 

(12-2 

(12-3) 

lift  coefficients C h  at M = 0 and  k = 0 for  all  tunnel  depths  greater 

than  or  equal  to  the  airfoil  chord  and  for  all  possible  values of wall 

ventilation  coefficient.  Several  features  of  this CL, surface  may  be 

observed.  The  line OH = 0 corresponds  to  a  tunnel  of  infinite  depth  and 

indicates  a  constant  value  of CL, = 2n for  all  values  of  ventilation  co- 

efficient  as  it  should,  and  is  in  keeping  with  the  condition  that  the  air- 

foil  pressure  not  be  affected  by  walls  if  they  are  infinitely  far  away. 

The  line Ow = 0 corresponds  to  a  completely  closed  wall  and  indicates  that 

C b  increases  as  the  walls  are  brought  closer  together.  The  amount  of 

increase  in C b  with  depth  decreases  with  increasing  ventilation so that 

beyond  a  certain  value  of Ow, C L ~  decreases  as  the  walls  are  brought  closer 

together.  At  the  present  time,  we  have  not  investigated  if  the  trend 

reversal  is  reflected  by  experiment  but  this  question  is  fundamental  and 

bears  on  the  validity  of  the  boundary  condition (2-49). 

Figure 19 shows  the C h  surface  for  M = 1 / 6  and k = 0, and  displays 

the  same  trends  as  Figure 18 for  M = 0. Along  the  line OH = 0 (QH = m ) ,  

the  value  of CL, equals  the  expected  value of - for  all  values  of Ow. 
This  magnification  with  respect  to  Mach  number  is  observed  throughout  the 

entire C h  surface,  but  the  magnification  factor  is  given  by  the  well  known 

value - only  for  the  infinite  depth  condition OH = 0. 

2n 
B 

1 
B 

Figures  20  and 21 show  the C% surfaces  for M = 0, k = 0 and M = 1/fi, 

k = 0 respectively.  Since  the  pitching  moment  is  computed  about  the  quarter 

chord,  CQ = 0 along  the  lines OH = 0 which  correspond to  the  infinite 

depth  case qH = a. For  closed  tunnel  walls,  the  moment  coefficients  increase 
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as  the  walls  are  brought  closer  together,  the  rate of increase  being 

greater  at  the  higher  Mach  number.  For  intermediate  values of Ow the 
increase  with  depth  angle  decreases  until  the  moment  coefficients  decrease 

with  increasing OH, similar to the  behavior of the  lift  coefficient  surfaces. 

Reversal  occurs  sooner at  the  higher  Mach  number. 

Figures 22 and 23 show  the  center o'f pressure  surfaces  for  the  two 

Mach  numbers.  In  both  figures  the  center of pressure  is  at  the  quarter 

chord  for  infinite  depth (e, = 0), as  is  to  be  expected.  For  closed  walls, 

the  center  of  pressure  moves  aft  as  the  walls  are  brought  closer  together, 

more so at  the  higher  Mach  number.  Again,  this  trend  reverses  for  venti- 

lated  walls,  more  pronounced  at  the  higher  Mach  number. 

Figures 24 to 27 show  the  surfaces  representing  magnitudes of lift 

and  moment  coefficients  for  vertical  translation  and  pitch  rotation  about 

midchord  at  M = 0 and  reduced  frequency k = -1. Surfaces  representing 

phaseangles  are  shown  in  Figures 28 to 31. 
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Figure 18. Lift  coefficient CL vg;. depth and Ventilation  for 
M = O a n d k = O  a 
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Figure 19. L i f t  coefficient CL VS. depth and  ventilation f o r  
M = 1/a .agd k = 0 
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Figure 20. Moment  coefficient CM VS. depth and ventilation  for 
a 

M = O a n d k = O  
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Figure 21. Moment  coefficient CM vs. depth and  ventilation  for 
l a  M= R and k=O 



I -  

-97- 

Figure 22 .  Center of pressure q p  vs..  depth and vent i la t ion  for 
" ". . M=O and k=O - 
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F i g u r e  23. Center of pres depth and ventilation for 
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Figure 2 4 .  Lif t   coef f ic ien t  magnitude IC, I vs. depth and vent i la t ion h 
for M=O and k=.l 
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Figure  25. L i f t  coe f f i c i en t   magn i tude  ICL I v s .   d e p t h   a n d   v e n t i l a t i o n  
for M=O and k=.l 

a 
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Figure 26. Moment  coefficient  magnitude ~ C M  I VS. depth and ventilation 
for M=O and k=.l 

h 
__ 



-102- 



-103- 

“ 
TI 

2 J  

I 
I 
I 

I 
- $  I 

/-””,” 
/ /,”” 

/ 

/ / ” 7  
C’ / / 

/ 

/ / /”””“ / 

/ // 

-7“”” 

Figure 2 8 .  L i f t  phase  angle Q vs. depth and vent i la t ion  

for M=O and ke.1 
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Figure 29. L i f t  phase  angle @ vs. depth  and  ventilation &S L, 
M=O and k=.l 
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Figure 30 .  Moment phase  angle 4~ vs.   depth and v e n t i l a t i o n  
for M=O and k=.l 

h 
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Figure 31. Moment  phase  angle $M vs. depth and ventilation a 
for M=O and k=.l 
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§=1-33.: = Ef=fec& . o f .  ZeynL:ilation= on airfoil-tunnel  acoustic  resonance 

Acoustic  resonance  between  an  airfoil  and  a  ventilated  wind  tunnel 

will  occur  according to  the frequency  spectrum  which  is  given  by 

kn = -; n = 1,2,... BAn 
M'IH 

based on equation (2-53). The  values of reduced 

nance  will  occur  depend  upon  Mach  number,  tunnel 

the  ventilation  coefficient.  The  effect  of  Mach 

frequencies  consists  in  the  factor 

0 
M' 
- 

(13-1) 

frequency at  which  reso- 

depth  to  chord  ratio  and 

number  on  the  resonant 

which  indicates  that  resonance  can  occur  only  for  compressible  flow  and 

that  the  resonant  frequencies  approach  zero  as  the  Mach  number  approaches 

one. 

The  effect  of  depth to chord  ratio  on  the  spectrum  is  most  pronounced 

in  the  factor 
- 
'IH 

indicating  that  narrow  tunnels  have  higher  resonant  frequencies  whereas 

deeper  tunnels  have  lower  resonant  frequencies,  as  is  to  be  expected. 

Reversing  the  argument,  it  may  be  noted  that  for  a  given  Mach  number  and 

reduced  frequency,  there  exist  infinitely  many  values  of  depth  to  chord 

ratio  at  which  acoustic  resonance  will  occur: 

(13-2) 

The  effect  of  ventilation  coefficient cw on  the  frequency  spectrum  is 
combined  with  the  depth  to  chord  ratio QH through  the  relation 

Referring  to  Figure 7, the  effect  of  ventilation  is  to  shift  the  spectrum 

within  the  bounds 

closed - 71 (n-") < An 5 Tln - open 1 
2 -  

so that  increasing  the  amount  of  ventilation  increases  the  resonant  frequencies. 

The  maximum  fractional  change  in  frequency  that  can  be  brought  about  by 
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ventilation  alone  is to double  the  fundamental  frequency  in  going  from 

a  closed  wall  to  an  open  jet.  This is  illustrated  by  Table 13. 

Table 13. Resonant  frequencies vs. ventilation 

coefficient  for M = 7 and n~ = 10 6 

cw = m cw.= 1 cw = 0 
" 

(closed) (ventilated) (open) ~. 

kl .090690 -165282 -181380 

k2 -181380 .332586 .362760 

k3 .272070 .460648 -544140 

The  effect  of  acoustic  resonance  is  to  cause  the  pressure  to  vanish 

at  the  resonant  frequency.  This  is  illustrated  by  Figure 32 for  a  flat 

plate  oscillating  about  the  midchord  at M = -, with  three  values  of  venti- 

lation  coefficient  corresponding  to  a  closed  wall (CW = m), a  ventilated 

wall (CW = 11, and  an  open  jet (CW = 0). For  comparison,  the  value  of 

ICLa I at M = 0 is  shown  also  since  resonance  cannot  occur  in  incompressible 

flow.  The  comparison  is  striking.  Whereas  the  behavior  of lC~,l vs.  reduced 

frequency  is  smooth  for M = 0 with  the  three  curves  for cw = 0,1, and m 

merging as  the  frequency  increases,  the  behavior of ICL I for M = - is 
quite  different.  The  closed  wall  condition  begins  with  a  relatively  large 

value  of CL, at  k = 0 and  drops  to 0 at  resonance  very  abruptly,  increasing 

for  values of reduced  frequency  beyond  resonance to  a  maximum  value  of 

approximately 60% of  its  zero  frequency  value,  then  dropping  to 0 again 

at  the  second  resonant  frequency,  and so on.  Similar  behavior  is  evidenced 

by  the  ventilated  wall  conditions,  beginning  with  a  lower  value  of C L ~  at 

k = 0 and  displaying  higher  resonant  frequencies.  In  all  cases  the  drop  to 

C L ~  = 0 at  resonance  is  more  abrupt  below  resonance  than  above,  and  the 

abruptness  appears  to  decrease  slightly  at  the  higher  resonant  frequencies. 

The  phase  angle  is  shown  in  Figure 33 with  and  without  resonance. No 

resonance  occurs  for  incompressible  flow.  In  all  cases  a 90 degree  phase 

lag is predicted  at  resonance,  dropping  very  abruptly  above  resonance  until 

the  next  resonant  frequency,  at  which  point  a 90 degree  phase  lag  occurs 

again,  and so on. 

Js- 
2 

6 
a 2 
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I CL, I 

I CL, I 

Figure 

closed w a l l  ; [ C W = ~ )  
v e n t i l a t e d  (cW=l) 
apen j e t  (cw=O) 

4 

M=O (resonance  does  not  occur),  qFT = 10 

2 

O I  - k  
.1 . 2  . 3  

0 .1 . 2  . 3  

32. E f f e c t  of v e n t i l a t i o n  on ICL,I vs.  k wi th   acous t ic  
resonance effects- 
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CPlosed wall (cW=m) 

ventilated ( c ~ l )  M=OI T~H = 10 

open j e t  (cw=O) 

closed  wall  (cw-) 

-open j e t  (cw=O) 

.1 . 2  . 3  

Figure 3 3 .  Effect of vent i la t ion on @L vs. k w i t h  acoustic 
resonance  effects 

CL 
~~ 



-111- 

514,; go_ncludincr  remarks 

The  numerical  calculation  of  unsteady  airloads  on thinairfoilsinsubsonic 

ventilated  wind  tunnels  has  been  accomplished  using  Bland's  kernel (2-50) .  

Additionally,  we  have  rigorously  proved  that  the  collocation  method  of 

solving  Bland's  integral  equation (2-57) converges  to  the  mathematically 

exact  solution,  and  have  established  a  new  three-way  equivalence  between 

collocation,  least  squares  and  Galerkin's  method  whenever  the  collocation 

points  are  chosen as the  nodes  of  the  quadrature  rule  used  for  Galerkin's 

method.  This  convergence  behavior  has  been  demonstrated  with  the  TWODI 

program.  We  point  out  that  the  convergence  proof,  given  for  the  first  time 

by  this  work,  applies to  an  arbitrary  kernel  whose  dominant  singularity 

is  of  Cauchy  type,  and is thereby  of  a  general  nature.  Furthermore  the 

method  of  proof,  based  on  converting  the  integral  equation  to  one  of  the 

second  kind,  opens  up  the  way to methods  of  solution  and  error  estimates 

not  otherwise  available  for  equations  of  the  first  kind. 

Results  from  the  computer  program  have  been  compared  with  exact  closed 

form  solutions  in  special  cases.  Using NP 5 10, six  decimal  accuracy  is 
obtained  for  steady  flow  and  three  decimal  accuracy  or  better  is  attained 

for  unsteady  flow.  New  results  are  presented  showing  the  effect  of  wall 

ventilation  and  depth  to  chord  ratio  on  section  coefficients,  and  on  acoustic 

resonance  between  the  airfoil  and  the  tunnel  walls.  While  these  results 

should  improve  the  confidence  and  precision  of  wind  tunnel  testing,  it 

would  be  desirable  to  compare  the  predictions of the  TWODI  program  with 

known  experimental  data,  and  with  future  experimental  data  for  unsteady 

flow  in  ventilated  tunnels as they  become  available. 

Although  the  TWODI  program  is  already  sufficiently  accurate  for  most 

engineering  purposes,  large  amounts of computer  time  are  required  with  the 

pilot  version  for  very  deep  tunnels,  particularly  in  unsteady  flow.  This 

time is largely  expended  in  subroutine SUM, and  more  efficient  numerical 

algorithms  would  probably  alleviate  this  difficulty.  At  higher  frequencies, 

we  have  observed  a  deterioration  of  the  rate  of  solution  convergence  with 

respect to the  number  of  pressure  basis  functions.  Preliminary  indications 
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are  that  the  kernel is evaluated  accurately  but  may  not  be  integrated 

accurately  for  high  frequencies.  Since  HSU'S  interdigitation  procedure 

restricts  the  number of quadrature  points  to  equal  the  number  of  pressure 

basis  functions,  it  is  obvious  that  for  a  fixed  value of NP, there is  a 

frequency  k  at  which  the  factor 
,-ikx 

in  the  continuous  part of the  kernel  will  render  the  Jacobi-Gaussian 

quadrature  inaccurate.  (This  provides  additional  incentive  for  improving 

the  efficiency of computing  the  infinite  series  in  subroutine SUM.) While 

the  physical  justification  of  linearizat$on  fails  at  sufficiently  high 

frequency  [89,19481,  a  high  frequency  capability  enables  the  complete 

frequency  spectra  to  be  calculated,  from  which  point  the  response  to 

arbitrary  time  dependent  excitation  can  follow.  It  is  therefore  potentially 

valuable  to  study  the  problem  of  numerically  computing 

accurately  for  large  k  and  continuous  functions f, using  a  small  number  of 

function  evaluations. 

Although  the  convergence  proof  applies  to  discontinuous  downwash 

functions  as  well,  the  rate  of  convergence  for  airfoils  with  flaps  may 

be  expected  to  be  weaker  owing  to  a  form  of  Gibb's  phenomenon  for  general- 

ized  Fourier  series.  Therefore, as  a  practical  matter,  it  would  be 

desirable  to  extend  the  solution  method  to  permit  the  efficient  analysis 

of  multi-control  airfoil  configurations. 

Bland's  kernel  is  based  upon  a  boundary  condition  which  is  phenomeno- 

logically  approximate  whenever  the  tunnel  walls  are  other  than  fully  closed 

or  an  open  jet.  Removal  of  this  restriction  awaits  a  more  rational  theory 

for  ventilated  wind  tunnel  walls. 
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