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SUMMARY

The numerical calculation of unsteady two dimensional airloads
which act upon thin airfoils in subsonic ventilated wind tunnels is
studied. Neglecting certain quadrature errors, Bland's collocation
method is rigorously proved to converge to the mathematically exact
solution of Bland's integral equation, and a new three-way equivalence
is established between collocation, Galerkin's method and least squares
whenever the collocation points are chosen to be the nodes of the
quadrature rule used for Galerkin's method. The computer program
displays remarkable convergence with respect to the number of pressure
basis functions employed, amd agreement with known special cases is
demonstrated. New results are obtained for the combined effects of
wind tunnel wall ventilation and wind tunnel depth to airfoil chord
ratio, including acoustic resonance between the airfoil and wind

tunnel walls.
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nondimensional.
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51. Introduction!

Recent interest in aerodynamic testing at high subsonic and tran-
sonic speeds has increased the need for improved understanding of the
phenomena involved, and for improved computational methods to guide
experiments as well as to serve as a rational means for extrapolating
wind tunnel test data to free flight conditions.

While fundamental differences exist between two and three dimen-
sional flows, solutions of two dimensional problems provide advance
insight into three dimensional flow phenomena. Calculations for two
dimensional problems are significantly simpler, and testing can be
performed using models with constant sections extending completely
across the tunnel, or enclosed between splitter plates.

Aerodynamic interaction between the wind tunnel walls and the model,
commonly termed interference, is present in all subsonic wind tunnels
and becomes more complicated at higher subsonic and transonic speeds.
Efforts to utilize opposing interference effects associated with closed
wall and open jet tunnels have resulted in the development of ventilated
wind tunnels at various facilities. Whereas theories of interference
are highly developed for steady subsonic flow in fully closed or open
jet tunnels, relatively little is known about unsteady flow, especially

in ventilated tunnels.z'3

lThe authors wish to acknowledge the help of Dr. Sanford S. Davis,
Ms. Sara Alfont, Messrs. Tuli Haromy, Charles Doughty and Karl Kuopus.

2p comprehensive survey of the state of the art may be found in the work
by Garner, Rogers, Acum and Maskell [1,1966]. See also Goethert [2,1961],
Glauert [3,1933] and Pope and Harper [4,1966].

SNumbers in square brackets refer to the bibliography in the order of
citation, followed by the year of publication, and possibly the page,
section or chapter of interest.
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This work addresses the problem of predicting unsteady airloads on
oscillating thin planar airfoils in subsonic ventilated wind tunnels, and
extends the earlier work of Bland [5,1970] which is based on an approximate
ventilation boundary condition that is exact for only the closed wall and
open jet conditions.

We rigorously establish in Section 4 that Bland's collocation method
must converge to the mathematically exact solution of his integral equation.
The analysis is made using two sets of orthogonal polynomials, one for
downwash the other for pressure. These polynomials, called airfoil poly-
nomials, enable an elegant formulation in terms of dual generalized Fourier
series. The known closed form Sghngen and Kussner-Schwarz solutions are
reformulated in terms of airfoil polynomials, and used to evaluate the
accuracy of the computer calculations.

The computer program developed during this study is called TWODI and
will calculate pressures, section coefficients and generalized aerodynamic
forces for arbitrary combinations of Mach number, reduced frequency, tunnel
depth to airfoil chord ratio, ventilation coefficient and downwash. TWODI
is shown to be in accurate agreement with known clbsed form results and
extends previous results of unsteady flow to ventilated tunnels. Various
calculations are presented, including predictions of the combined effects of
depth to chord ratio, and of acoustic resonance between the wind tunnel walls
and the airfoil.

While the reader who wishes to avoid theoretical considerations cannot
help but be at some disadvantage, it is possible to use the TWODI program
by proceeding directly to Section 7. Other sections may then be read as

the interest arises.



§2. History of the two dimensional problems

This section presents an extensive although not complete history
of developments in the problem of predicting airloads in unsteady two
dimensional subsonic flow. Attention is given-to the emergence of
exact closed form solutions because these provide permanent and en-
during standards of comparison for numerical as well as theoretical
considerations. The integral equations relating downwash and pressure
in linearized potential flow are especially emphasized.

Three dimensional results are generally excluded except insofar as
they relate to the two dimensional problem. Nevertheless we note that
one of the most important uses of two dimensional theories is to provide
insight into the practical matters of three dimensional problems.

The most important engineering application of unsteady aerodynamics
traditionally has been to calculate forcing functions for structural
dynamics and aercelasticity. This interest is readily apparent in the
earliest papers, and it may be observed that a recurring practical
problem has been to maintain acceptable accuracy at higher frequencies.
While the physical conditions which justify linearized inviscid theories
are not satisfied at arbitrarily high frequencies, an arbitrary frequency
capability is worthy because the ability to analyze arbitrary time depen-
dence demands it mathematically.

We begin with a brief description of the airfoil equation. By 1918,
Prandtl at GOttingen had completed the theory of bound vortices, and
Ackermann had performed calculations for steady 1lift on airfoils at low
speed. Howevexr, Ackermann's work was interrupted by the war and was not
reported until afterward by Birnbaum [6,1923], then only at Prandtl's
request. Comparable calculations were performed in the United States
by Munk (7,1922], [8,1924]. Restated in terms of pressure jump rather

than vorticity, it was necessary to solve an integral equation of the form
1
w(x) = fl K(x~E)Ap(§)dg (2-1)

where the kernel is given by

2

Kix) = 4a1mx

1 (2"2)




and subject to the Kutta condition that the pressure jump vanish at the
trailing edge
lim Ap(E) = o). (2-3)
g
The downwash, assumed known, is given for steady flow by the streamwise
derivative of the vertical coordinate of the airfoil contour:

w(x) = %2~ ’ (2-4)

The coordinate system and airfoil contour are shown in Figure 1.

y = h(x)

+
a 1

Figure 1. Coordinate system and airfoil contour

We shall refer to the integral equation (2-1) with kernel given by
equation (2-2) and subject to the Kutta condition (2-3) as the airfoil
equation. It may be observed that the airfoil equation is a singular
Fredholm integral equation of the first kind and its kernel is of difference

type with a Cauchy singularity.2 Much of the difficulty encountered in

lge shall generally, but not always, follow the practice of stating values
of the downwash function in terms of x and values of the pressure function
in terms of £ for the purpose of emphasizing certain symmetries.

2an integral equation of the form
b
f(x) = fa K(x,&)u(g)dg

where £ is a known function and K is a known function (called the kernel
function) is said to be a Fredholm integral equation for u of the first
kind. 2an integral equation of the form

£(x) = u(x)+I: K (x,E)u(E)AE

is said to be a Fredholm integral equation of the second kind. If the
kernel depends upon the difference x-§, it is said to be of difference
type and we write K(x-£). If the kernel is bounded for all values of x
and £, the integral equation is said to be nonsingular, otherwise singular.
If the kernel is of difference type and of the form
C

K(x-€) = pary

where C is a constant, it is singular and is said to have a Cauchy singularity.
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solving the airfoil equation and related equations in aerodynamics may
be attributed to the fact that until recently, no general theory existed
for the solution to integral equations of the first kind. The transla- ,
tion and publication of Ivanov's book [9,1976] indicates that substantial .
activity has been taking place in the Soviet Union in this area, much of
it unreported in the Western literature. Without detailed examination
of this work its relationship (if any) to ours remains uncleax.
The airfoil equation, based upon classical linear potential flow
theory, is rigorously valid for zero Mach number steady two dimensional
flow about an airfoil with profile differing infinitesimally from the
x-axis. Noting the linearity of the airfoil equation, Birnbaum calculated
the first order effect of thickness by using the difference between the
upper and lower surface profiles, and calculated the 1lift and moment using
the centerline profile, for profiles described by third degree polynomials.
The pressure functions

1-8, T 2 Y
Tre v1-£2, EV1-E

when substituted into the airfoil equation produce downwash functions that
are constant, linear and quadratic, respectively, and satisfy the Kutta
condition. The Birnbaum-Ackermann calculations consist of integrating

in closed form each of the above basis functions (Grundfunktionen) to

obtain an induced downwash (induzierte Vertikalgeschwindigkeit), which

is integrated in turn to produce a profile function. These profile functions
are then superimposed to represent an arbitrary profile of third degree.

The general procedure is to represent the pressure as a linear combination

of NP prescribed pressure basis functions
- 1€ JiEZ NP-2 S FZ -
Ap(E) = al//1+g + ags V1-E< + ... + aNPE 1-& (2-5)

and to determine the unknown coefficients according to a prescribed profile P
which is given by a corresponding linear combination of basis functions,

in this case, powers of x,
h(x) = bjx + b2x2 + ... + bNPxNP, - (2-6)

Although no discussion was made of collocation, residual error or con-
vergence, the method of solution appearing in the Birnbaum-Ackermann paper
of 1923 is a forerunner of modern collocation solutions to the integral

equations of aerodynamics.




The first published calculations for unsteady flow are due to

Birnbaum [10,1922] and are closely connected with the Birnbaum-Ackermann
paper. Birnbaum was a doctoral student of Prandtl's and his dissertation

was devoted to extending Prandtl's theory of bound vortices to the more
difficult problem of unsteady flow. Through an analysis of free and

bound vortex sheets, Birnbaum was led to infinite series of the form

T cpn kKM(log k)T (2-7)
m>n
which d4id not converge well even for small values of reduced frequency

near k = 0.10. Birnbaum apparently coined the term reduced frequency,3

and defined it in terms of the semichord as

ub
b,

(=]

k = (2-8)
He noted that the numerical limitation
k< .1

corresponded physically to less than one structural oscillation per thirty

chordlengths of flow, and referred to this as a guasi-steady oscillation

(quasi—stationare Schwingungen). Birnbaum analyzed time dependence with
complex Fourier series and introduced into unsteady aerodynamics the con-

cept of complex amplitude of motion
h(x,t) = Re[h(x)e'®t] (2-9)

for the particular cases of plunging and pitching, but did not use complex

downwash nor complex pressure

w(x,t) = Re[w(x)eltt] = Re[(dix + ik)h(x)eiwt], (2-10)

Ap(E,t) = Re[Ap(£)ei®t], (2-11)

Lift and moment were graphed as complex vectors parameterized by reduced
frequency from k = .00 to k = .12. Birnbaum's interest in structural
dynamics was clear. He treated the static and dynamic stability of an
elastically suspended wind tunnel model using the concept of energy trans-
fer and presented damped and divergent experimental response curves

together with theoretically calculated frequencies.

3vreduzierte Frequenz", Birnbaum [10,1922, p.12], [11,1924, p.279].




It is significant that Birnbaum did not find the integral equation
between pressure and downwash for unsteady incompressible flow. This
equation is the same as the airfoil equation (2-1) except that the down-
wash and pressﬁre are complex as in (2-9) and (2-10), and the kernel"

is given by

Kix,k) = Elﬁ? - 3 emikx(ci(k|x]) + isi(kx) + T (2-12)

where Ci and Si are the cosine and sine integrals.® This equation was
not derived until 1938 by Possio as a limiting case of what we now call
Possio's integral equation for compressible subsonic unsteady flow.

The next work on unsteady flow after Birnbaum's was published by
Wagner [20,1925F based on his doctoral dissertation at Berlin under Hoff
and Hamel. Wagner used the method of conformal mapping to solve the two
transient problems of a flat plate accelerating from rest to constant
velocity, and of a step change in angle of attack. Glauert [21,1929] used
the same method to compute lift and moment on an oscillating airfoil for
reduced frequencies up to k = .5. Kussner [22,1929] extended the frequency

7

range further to k = 1.5, avoiding the slowly convergent series’ of Birnbaum

and expressing the pressure as
Ap(E) = ag /i—;% + ay VIEZ + ant VI-EZ + ag(462-1) VI<EZ + ... (2-13)

By making the coordinate transformation,

& = -cos 6, (2-14)

"w . s .
Kussner was able to simultaneously recast the pressure basis functions

as a Fourier sine series except for the first term

8 ® .
Ap(Q) = agcoty + 2n§1an sin nd (2-15)

“See, e.g., Bland [12,1968,§4.1], [5,1970,§8].

5See e.g., Abramowitz and Stegun [13,1964,55.2]. The complex setting in
Abramowitz and Stequn does not render Ci an even function. To avoid error
in the logarithmic term, the absolute value sign is necessary in (2-12),

and in this regard, it could be considered as missing or at least ambiguous
in Possio [14,1938,p.448], Dietze [15,1946,p.22], Watkins, Runyan and
Woolston [16,1955, App. Bl Bisplinghoff, Ashley and Halfman [17,1955,p.325],
Garrick [18,1957,p.710], and Fung [19,1969,p.429].

SrFor further discussion, see, e.g., Y.C. Fung [19,1969,§65.8,6.7,15.1] or
Bisplinghoff, Ashley and Halfman [17,1955,§5.7].

7see, H.G. Kussner [23,1953,83] for further information.



and the downwash as a Fourier cosine series
w(8) = by + 2 % b, cos nf. (2-16)
n=i1

He analyzed the oscillating flat plate and approximated the discontinuous
downwash of a flap with a fifth degree polynomial.

Theodorsen [24,1935] obtained the first closed form solution for the
force and moment on a flat plate undergoing pitch rotation, vertical trans-
lationand aileron rotation. Theodorsen's solution, though restricted to
rigid body motions, was valid for an arbitrary frequency range. He used
the method of conformal mapping employed earlier by Wagner. The flutter
solution for the three degree of freedom system was thus reduced to a non-
Hermitian three by three matrix eigenvalue problem, and the three special
cases called torsion-aileron, aileron-deflection, and deflection-torsion
were solved in closed form, producing flutter velocity curves vs. in vacuo
frequency ratios. Theodorsen improperly expressed his intermediate results

in terms of a quotient of nonconvergent integrals

IT e—1ikE 4 ac

VE2-
c(k) = i
© -jkg_ &+l
fl e
V£2+1
which he identified in terms of Hankel functions of the second kind
2
1{? (x)
C(k) = (2-17)

(2) (2)

Hl ! (k) + iHO (k)

where

52 (0 = a0 - iy, (0 (2-18)

and where J, and ¥, are standard Bessel functions of the first and second
kinds.® The function C(k) is called Theodorsen's circulation function.
Although his derivation of it was faulty, the result was shown later by

Schwarz to be correct.®

8see, e.g., Abramowitz and Stegun [13,1964].

9schwarz [25,1940,54]. sSee also the discussion in Bisplinghoff, Ashley
and Halfman [17,1955,p.272].
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Shortly after Theodorsen's solution in 1934 for three downwash functions,
the same problem for arbitrary downwash functions was solved independently
by Cicala [26,1935] and Kussner [27,1936]. They showed that the coefficients
of the downwash and pressure basis functions appearing in equations (2-15)
and (2-16) are related recursively:

_ borf?) () + ibyuf?) (k)

(2-19)
H{2) (k) + i Hf?) (0)

anp = %E'bn-l - bn ~ %%‘bn+17 n>1. F2—20)
The importance of the Cicala-Klissner extension to arbitrary downwash
functions is notable. While rigid body motions as discussed by Theodorsen
are important, higher flexible modes are essential to the theory of aero-
elasticity. Whereas chordwise flexibility is typically insignificant in
two dimensional flow, it has long been recognized as significant in the

design ofmodernairplanes,10

and the ability of a two dimensional aerodynamic
method to shed practical light on three dimensional methods requires that it
possess an arbitrary chordwise downwash capability.

The problem of unsteady airloads on an airfoil entering a sharp-edged
gust was solved for incompressible flow by von KArmi&n and Sears ([29,1938]
using conformal mapping. In the same year, Possio [14,1938] obtained the
kernel relating the downwash and pressure for compressible subsonic flow
about an oscillating airfoil:

Kex, g, = 25 omihox(exp (A (i sonGonf?) (el H62)(E%£¥101

i + . ik A

+ 2L 8 109 B 4 ik X exp i) (El;—l—)dx}. (2-21)
™ M 0 B B

Although Possio did not explicitly write down the integral equation,11 he

performed numerical calculations for 1lift and moment on an oscillating flat

plate at values of reduced frequency up to k = .6 and at four values of

Mach number, M = 0,.25,.50, and .70. Using the same pressure basis

10see, e.g., Turner, Clough, Martin and Topp [28,1956,p.805].

ithe possio integral equation first appears in Kussner's Allgemeine
Tragflichentheorie [30,1940,§7] as a special case of the Kussner integral
equation for three dimensional flow.
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functions as Birnbaum, Possio observed that the solution to the integral
equation required that the linear combination of downwashes induced by
the pressure basis functions must equal the prescribed downwash at all
points on the airfoil; i.e.,

NP
w(x) “nZ; anpwn (%), (2-22)

which is in general not possible. Possio resolved this difficulty by
collocating (2-22) at an equal number of discrete points according to the
system of linear algebraic equafion
NP
nglwh(xm)an =wixy); m=1,...,NP. (2-23)
This is the earliest use we have found of the method of collocation to
solve an integral arising in aerodynamics.
We note that a least square error solution of equation (2-22) in which
the overall error is integrated numerically and then minimized results in
the matrix equation
[wp () 1% [ Wy 1 [wp (xg) 1{apt = [wy(x) 150 Wy Hwlxg) ), (2-24)
NPxNQ NOxNQ NQxNP NPx1 NPxNQ NOxNQ NOx1
where xp;; m = 1,...,NQ are the nodes of the quadrature rule and
Wp; m=1,...,NQ are its weights, and where * denotes the complex con-
jugate of the transposed matrix, a fact sometimes missed.!2
Under fairly restrictive assumptions, Sohngen [32,1939] proved that

the solution to the airfoil equation is given by

_4 /18 b /lix wx) _
bpl8) =/ T3¢ [1 Tox Eox O (2-25)

which is called the Sahngen inversion formula and is a particular case of

a more general formula given in [33,1953,Ch 11]. These restrictions were
later weakened by Sohngen [34,1954] to include all downwash functions of

. 4
class LP,p>l.13 A weaker proof based on the stronger assumption that p>§

was given by Tricomi [35,1951] and appears in his book on integral equations

12g5ince the error is a real valued noncoristant function of several complex
variables, it is not differentiable. A rigorous proof of (2-24) is given
by Fromme [31,1964, Appendix A].

135 function f belongs to class LP over the interval I if Sgf(x)|Pax is
finite.
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[36,1957]. sghngen's later proof and Tricomi's proof both identify the
integral equation (2-1) with the difference kernel (2-2) as a finite

Hilbert transform.l“

We point out that these mathematical results make
essential use of the condition that the pressure be finite at the trailing
edge (and hence zero, thereby satisfying the Kutta condition (2-3)), for
otherwise the finite Hilbert transform has no unique solution in the IP

space, p>1l, and contains an additional term of the form

£
/1-g2
where C is an arbitrary constant. Therefore, if the Kutta condition is
denied, the solution to the airfoil equation is not unique.
Five important papers appeared in 1940: (1) Kﬂssner published the
integral equation relating pressure and downwash in unsteady three dim-

ensional flow;!S5

(2) xlissner and Schwarz [39], [40] analytically summed
the series (2-15), (2-16), (2~19) and (2-20) to provide in closed form

the pressure in terms of downwash for oscillatory flow as

_ 4 sin @ ik . l-cos (n+6)
bp(8) = fo{cos 6-cos n * 2 sinn log 1-cos(n-9)
+ cot %{1+cos n+(l-cos n)T(k)]}Iw(n)dn (2~-26)
where
2) - i 2)
v = MG -1 mPog Lo, (2-27)

H{?V (1) + i 8§?7 (0

(3) Kussner [41,1940] used the method of Laplace transforms to extend the
solution (2-25) to arbitrary time dependence; (4) Schwarz [25,1940] used
the Sghngen inversion formula to obtain the solution (2-26) by an independent

approach; and (5) Sghngen [42,1940] used the inversion formula (2-25),

lYThe finite Hilbert transform of ¢ is the function f with values given by

9 (E)
£=-x

See also Sneddon [37,1971,p.238,p.467].

1
£ (x) =—1—£1 ac.
m

15y4.G. Kissner [30,1940], [38,1940]. However, the kernel was not put into
a computationally tractable form until fifteen years later by Watkins,
Runyan and Woolston [16,1955].
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together with Birnbaum's method and Laplace transforms to derive the
solution for the oscillating airfoil and for an airfoil starting from

rest. Equation (2-26) is called the Kussner-Schwarz solution and in

Cartesian coordinates it is given by

_4 /I-¢ Tx, 1 T+Z.
) =% [EE S 't o lEoy + 1-CO0 1-ikh (x,E) / oy wix)ax, (2-28)
where
I+e | /L+x
A(x,E) = log | %;g %;; [. (2-29)
e~/ ix

Taking advantage of the theoretical developments principally by
Theordorsen and Klissner, Smilg and Wasserman [43,1942] published their
AFTR 4798 which was to serve for years as the standard reference in the
United States on flutter. The kernel to Possio's equation was tabulated
by Schwarz [44,1943], and Possio's numerical calculations based on the
method of collocation were extended by Fraser [45,1941], Fraser and Skan
[46,19421, and Schade.!® Dietze,!? working under the supervision of
Sghngen, introduced an iteration method to solve Possio's integral equation
approximately, making use of the known Kussner-Schwarz solution. Dietze's
iteration method consists of, given the downwash, calculating the pressure
according to the Klssner-Schwarz solution for incompressible flow, and
calculating the downwash required by that pressure according to Possio's
integral equation. The residual error in downwash furnishes the starting
point for successive iterations. Dietze's calculations were for values
of reduced frequency up to k = 1.0 for pitch rotation, vertical translation
and flap rotation. 1In a major review of the two dimensional problem, done
in two parts by Karp, Shu and Weil [52,1947], and Karp and Weil [53,1948],
it is observed that in the case of a discontinuity in downwash the Dietze
iteration will not eliminate the logarithmic singularity at the discontinuity
so that slow pointwise convergence might be found in the neighborhood of
a discontinuity. Additional calculations with Dietze's method by Turner

and Rabinowitz [54,1950] indicated that numerical values of overall section

167, gchade [47,1944]. An English translation is available as [48,1946].

17p. Dietze [49,1943], [50,1944]. English translations are available as
[15,1946] and {51,1947]. A description of Dietze's method may be found in
Y.C. Fung [19,1969,514.5].
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‘coefficients appeared to be acceptable, but that the rate of convergence

deteriorated for larger values of Mach number and reduced frequency.

Apparently no mathematical proof of convergence of Dietze's method has

ever been given. A compilation of tables from various references was

given by Luke [55,1950], and another method which approximated the continu-

ous part of Possio's kernel by a polynomial was introduced by Fettis {56,1952].
The next major advance comparable to the Kissner-Schwarz solution is

a general solution to Possio's integral equation using elliptic coordinates

and Mathieu functions. It is obtained by starting from the basic differ-

ential field equations and boundary conditions

v2p - M2 (_az_a; + ik)2¢ = 0 (2-30)
= —2(2- 4 iK) 6 (2-31)
P 9x * !
w(x) = lim g—d’, |x| < 1. (2-32)
y-0 °¥
Upon making the Kussner transformation in the form!®
~ ~ -~k kM
x=x,y=%,k=€2-,|<=87-, (2-33)
¢ = BelfXg, w = gelvxy, p = elfXp, (2-34)
there results
V2¢ + «2¢ = 0, (2-35)
p=-22% 4+ ik ¢y, (2-36)
o9x
A T
G = 1im 2, 13| < 1. (2-37)
y>0 9

Applying Green's identities, integrating (2-36), and introducing elliptic

coordinates (£,n) according to

X = —cosh & cos n, y = sinh & sin n, (2-38)

187his transformation, valid for arbitrary time dependence in three dimen-
sional flow, was first used in aerodynamics by Klussner [30,1940,§3], and is
a combination of the Galilean and Lorentz transformations. See, e.g., Miles
[57,1959,§52.3,2.4]. For the special case of steady flow, Kussner's trans-
formation reduces to the Prandtl-Glauert transformation.
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Kussner [23,1953,882-4] showed that

é(gle) = -% fT(; {Gln_(Klglole) [Gle(Klolnlﬂ)T(KI}z)—Gle(Klolnlo)]

2 1 3 .
+ (1k—;z5—;-an)G(K,E,n,e)}w(n)51n n dn, (2-39)
where
2
- Neéz)(%;vi) <2 2
G(k,&,n,0) = 2 ———— 35— sen(n)seq(7~0), (2-40)
n=1 (2) (K 4 4
Nen ("é_ro)
and
0=1 2 S
LT/ Rexp(-ik cosh £)G,ng(x,E,0,maE
Tk, k) = = . . (2-41)
£w+iﬂ/2exp(—1k cosh E)G:ne(K,EIO,O)dE

In the above, partial differentiation is denoted with a comma followed by
a subscript, and se, and Neéz) denote Mathieu functions of the first and
third kind, respectively.19 Equations (2-39), (2-40) and (2-41) reduce in
the case M = 0 to equations (2-26) and (2-27).

The application of elliptic coordinates and Mathieu functions to the
unsteady flow equations was undertaken first by Reissner and Sherman [59,1944],
followed with apparently independent work by Biot [60,1946], Timman [61,1946],
and Haskind [62,1947].20 Among these, Timman's was the most successful.
Further work was done by Billington [64,1949], Timman and van de Vooren
[65,1949], Reissner [66,1951] and [67,1951], Timman, van de Vooren and Griedanus
[68,1951], Klissner [23,1953],21 van Spiegel and van de Vooren [69,1953],
de Jager [70,1954], and Williams [71,1955]. Despite its success, the method
of elliptic coordinates and Mathieu functions has been slow in gaining the
recognition it merits.

Using successive conformal mappings and Jacobian elliptic functions,

Timman [72,1951] obtained in closed form the exact solution for pressure on

19g5ee, e.g., N.W. McLachlan [58,1947].
201y Russian. An English translation is available as [63,1947].

2lrhis contains a comprehensive and elegant discussion of the two dimen-
sional problem up to that time.
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an oscillating airfoil in a wind tunnel with parallel closed walls.
Timman's solution is for incompressible flow and reduces to the Kﬁssner—
Schwarz solution in the limiting case of infinite tunnel depth. The analysis

applies to a centrally located airfoil as shown in Figure 2.

g
y

Ny

Figure 2. Airfoil in a wind tunnel

The condition that the tunnel wall be closed is the kinematical one that

the component of velocity normal to the wall vanish at the wall.
2 + = 0 (2-42
3y ¢(xr——nH) = - )

For incompressible flow, wind tunnel wall effects tend to become
maximum at some small value of reduced frequency and to diminish as the
frequency is increased further. Disturbances produced by an oscillating
airfoil are reflected by the walls instantaneously in the sense that the
acoustic transit time for a given distance is much less than the flow transit
time for the same distance. Mathematically this ratio of transit times is

v . . .
zexro because == M = 0. However, when the fluid is compressible, a nonzero
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transit time is required and it is possible for the frequency of airfoil
oscillation to be such that succeeding disturbances arrive back at the
airfoil so as to reinforce one another, thereby causing an acoustic
resonance. Runyan and Watkins [73,1953] predicted that this resonance

phenomenon would occur at frequencies given by

=B Ly 1,2, (2-43)

w
n
bny 2
These resonant frequencies are finite for all subsonic Mach numbers in a

compressible fluid, and become lower as the Mach increases. The resonant

reduced frequencies are

-8 Ly _
kp = MnH(n 2), n=12,2,... (2-44)

and decrease rapidly at higher Mach numbers. For example,

/3

M= 7?-& ng = 10 » k; = .090690. (2-45)

Thus, acoustic resonance between the airfoil and the tunnel becomes an
important phenomenon at high subsonic speeds because it occurs at relatively
low values of reduced frequency. Furthermore, these resonant frequencies
are the same for all downwashes.

Runyan and Watkins also showed that the pressure and downwash are
related for subsonic compressible flow in a closed wind tunnel by an
integral equation of the form (2-1) where the kernel may be expressed as
the sum of the Possio kernel (2-21) plus an incremental part representing
the presence of the walls. The incremental kernel becomes singular at the
resonant frequencies (2-44) and since the kernel may be interpreted physically
as the downwash at one point due to unit pressure at another point, the
pressure should drop to zero at resonance. This effect is entirely analogous
to the elementary spring-mass system in which vanishingly small forces can
produce large amplitudes when the excitation frequency is sufficiently
close to the resonant frequency.

The above theoretical predictions were verified experimentally and
computationally by Runyan, Woolston and Rainey [74,1956]. The kernel
function was approximated by assuming the tunnel depth to chord ratio to

be large, the pressure was represented by the first three terms of the
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series (2-15), and the integral equation was collocated at three points.
Good agreement was obtained between theory and experiment for phase angles
and fair agreement was obtained for magnitudes. Resonant frequencies were
predicted accurately by the theory, and the expected drop in lift at
resonance appeared to be guite abrupt.

Bland, Rhyne and Pierce [75,1967] extended the theory to include narrow
channel flow in connection with destructive oscillations in nuclear rocket
engines. The kernel obtained previously by Runyan and Watkins was expressed
as a single function in a simpler form without using the deep tunnel

approximation:

K(x,k,M,ny) = g(l+sgn x)e'ikxtanh kny

+ exp(i%¥;§0n§1(522Hx ﬁ;in — [_Jélii -~ (2-46)
ﬂ(n-%)]
where
Ry =/ (a-57 - D2, (2-47)

At the resonant frequencies given by (2-44), the kernel (2-46) becomes
infinite because R, = 0. The kernel is singular at x = 0 and the infinite
series in (2-46) behaves in the neighborhood of 0 like a slowly convergent

geometric series. The pressure was represented in the form

I:E - sin[(n—%ﬁcos_lg]
Ap(E) = 1+€ nE dn

(2-48)
sin[%—cos'lil
but no elaboration was offered for the reason behind this choice. Never-
theless, for continuous downwash functions, this marks the first basic
improvement in the choice of pressure basis functions since 1929,22 and
as we shall see, leads to an elegant closed form generalized Fourier
solution for pressure in certain special cases.

Because the physical problem of interest to Bland, Rhyne and Pierce

involved low speed flow, numerical calculations were performed only with

22ce, equation (2-15). The singularities in pressure that must accompany
downwash discontinuities have been given by White and Landahl [76,1968],
Landahl [77,1968] and Rowe, Sebastian and Redman [78,1976].
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M = O using a form of the kernel (2-46) in which certain of the series
could be summed in closed form. The integral equation was collocated
using Hsu's technique [79,1958] in which collocation points are inter-
digitated with the quadrature points so as to minimize the error in 1ift

on the average. Flutter calculations using two degrees of freedom were

performed for depth to chord ratios from 0.06 to 2.00 and verified by
experiment.

The problem of unsteady flow in ventilated wind tunnels was under-
taken by Bland in his doctoral thesis [12,1968] and subsequently published
in the open literature [5,1970]. Bland approximated the boundary condition
at a ventilated wall by a linear combination of the boundary conditions for

open and closed walls,

p + oy %§-= 0 at y = #ny, (2-49)
where the semi-empirical constant cy is called the wall ventilation co-
efficient (D. Davis and D. Moore [80,1953} discuss an approximation of cy
for a wall with longitudinal slots.). The boundary condition (2-49) is
exact only for the two limiting cases; (1) cy = 0, which corresponds to
an open jet and, (2) cy = «®, which corresponds to a closed wall. Treating
the pressure as an odd function of y for a centrally located airfoil, Bland
applied the method of Fourier transforms to derive the kernel for the
integral equation between downwash and pressure. Bland's kernel can be

expressed as

K(x,k,M,ny, o) = 4$x - ;j; log [x| + l+sgn(x)l+CﬁF tanh kng e~ikx
CW+E tanh kng
- ﬁ[Sgn(x)F' (é{i—) - H‘B"ﬂ F(lsﬁg)]exp %Mzz—x
+ E%E{CSCh 5%%;—— ESEH-+ (exp 3.iz'gtvlvzz—:i—l) csch Egﬁg]
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where
o o ~ 1
F(8) = § {2 exp(-fn8) - —L— expl-(m-5)781}, (2-51)
=1 An T (n~=)
2
- 1
n - kn
Y H, 2
1 + 1l + (—— 2-52
[ E:T;XEYQﬂ[ (An ) <1 ( )
. Mkny
An = An/1-CZ, ¢y = B’ (2-53)
tan Apn + YApn = O, (2-54)
c
vy = 2 (2-55)
NH

Equations (2-50) to (2-55) are slightly modified from the form originally
given. Bland used two functions in place of F and F', and we have identi-~
fied one of them as the derivative of the other, resulting in a numerical
simplification. The series (2-51) has been accelerated by subtracting
asymptotic terms which can be summed analytically. Even with this im-
provement, due to Bland, the series are poorly convergent for very small
values of the argument, especially for unsteady flow.

The singularities of the kernel are confined to the first two terms.
The first term, a Cauchy singularity, is the dominant one and is present
in all two dimensional subsonic kernels. The second term is a weaker,
integrable singularity of logarithmic type and is present in all the
unsteady kernels. The remaining terms are bounded and can be accurately
integrated using an appropriate Gaussian quadrature rule. Bland's complete
kernel reduces in special cases to all kernels given previously.

The method of solution employed by Bland is unique and is particularly
interesting. From the SShngen inversion formula, Bland observed that

the function

_ S 1+E
P(E) = / E:E'AP(E) (2-56)
results in an' integral equation of the form

1 '1:5
w(x) = {1 //E:E-K(x—E)P(E)dE (2-57)
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and that in the special case of the airfoil equation if w is a polynomial,

then P is a polynomial of the same degree. This property is based on the

Bland integral transforms and will be discussed further in Section 3. Using
this result as a starting point for equations with more complicated kernels,
Bland introduced airfoil polynomials and used them to evaluate integrals
of the singular part of the kernel in closed form and integrals of the
bounded part using Jacobi-Gaussian guadrature. Collocation and quadrature
points were interdigitated following Hsu's technique, and remarkably good
numerical convergence with respect to the number of pressure basis functions
was obtained. Numerical results including flutter calculations were presented
for several problems of interest.

Of the methods considered in this study, Bland's is the most germane
to the problem of unsteady two dimensional subsonic flow in ventilated
wind tunnels, it has superior numerical characteristics, and it is the
most general.

Convergence of Bland's method is proved for the first time in Section 4.
We note that the proof of convergence of Bland's method hinges on the Cauchy
singularity and is largely independent of the particular form of the remaining

part of the kernel.
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§3. Theory of airfoil polynomials!

The theory of airfoil polymomials springs from the solution to the
airfoil equation for steady incompressible flow using the Bland trans-
form, and may be applied to the numerical solution of any problem for
which the linear transformation from pressure to downwash is a singular
integral equation of the first kind whose kernel is dominated by a
Cauchy singularity.

Let 1
cos[(n—§0c05'1x]
Xp{x) = 1 ;n=1,2,... (3-1)
cos[Ecos'lx]

sin[(n-%)cos-lil
yn(€) = 7 n

1 (3~-2)
sin[zcos‘li]

I
oy
[\%]
~
.

.

be defined on the open interval (-1,1). These functions, shown in Figure 3,

are polynomials of degree n-1:

X1(x) = 1, X2(xX) = =142%,..., Xp4p (%) = 2%Xp4q (X)=Xn(x), ... (3-3)

¥y (8) 1, va(8) 1+28,..., Yp4o(8) 28bn41 (E)-¥n(E), ... (3-4)

The above recursion formulas are neutrally stable so that computational
errors are neither damped nor magnified with increasing n.

These polynomials are orthogonal with respect to reciprocal weight

functions
1 fl /L% (%)X, (x)Ax = 8pn (3-5)
m™ -1 )/ 1-x Xm Xn r
Ly (E) Py (E)aAE = & (3-6)
T / l+f:_'. wm E an E E - mn/’

lproofs of most of the results stated in this section may be found in
Bland [12,1968, pp.79-90].
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10,

Xp (X)

0 b— N\

-8 (a) Downwash polynomials

(b) Pressure polynomials

Figure 3. Airfoil polynomials
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and lead to two generalized Fourier series, one for downwash, the other

for pressure. Let

1 .Y —

<figry =g S ——1“:: £(x) g (x)dx, (3-7)
1 b o/1-g = -

<tep =yl /iEfEEma (3-8)

denote complex inner products with respect to the above weight functions, let

€]l = <E 85y, (3-9)

Hellp = <£,85p (3-10)
denote their inner product norms, and let

L‘% = {£:]| £]|w<=}, (3-11)

L; = {£: ] g]| <=l (3-12)

The equivalence classes of Lé and Lé induced by these norms? are Hilbert
spaces and the polynomials {xn}T and {wn}T can be shown to be respective
bases for them. Thus, if feL% and geL;, then

£f =
n

lle18

| Exn Xns (3-13)

o

9= L %y g (3-14)

where we adopt the abbreviated notation

1 ! F1+x
T /o £ (x)ax, (3-15)

an = <f’Xn>w =

ERIG

_ 1 /ﬁ
W = <Ir¥n’p T T L/ g 9@ In(BIe (3-16

for the generalized Fourier coefficients. Since these polynomials are

complete, the only functions which are orthogonal to all of them are null;

2The equivalence class of feL% is the set of all functions g such that

[|f—g[|w = 0, and similarly for feL%. In general the Fourier series of a
function need not converge everywhere to the value of the function itself,
particularly in the case of a flap where the downwash function is discon-
tinuous. The notion of an equivalence class enables functions and their
Fourier series to be treated as essentially the same. Henceforth, unless
stated to the contrary, we shall not distinguish between different representa-
tives of equivalence classes.
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i.e.,
2 = =
feLw&an—OVn—>f——0, - (3-17)
geI.l%&gwn=0Vn+g=O. (3-18)

The role of airfoil polynomials in aerodynamics stems from their

being integral transform pairs of one another:

1, T :
7l VIx kg & T ¥alE) (3-19)
1 . ,IZ¢ ¥n(E) B

7l /T kg 9T ™ (3-20

and from recognizing that the airfoil equation and the S8hngen inversion

formula can be recast in the same form:

1.1 1%x 4
_1 . A-E pE)
dw(x) = p {1 / T9E =%t ds. (3-22)
From the above, it follows that
= ¥ 2 - a%¥ 2 _
w = n§1 wXn X, & PELP > P = ﬁgi YXn wn & welg. (3-23)

In other words, for steady incompressible flow, the generalized Fourier

(=]
coefficients of the nonsingular pressure function P with respect to {wn}l
are equal to four times the generalized Fourier coefficients of the downwash

0
function w with respect to {x,};: i.e.,

P¢n = <P,wn>P =4 <W’Xn>w = 4w (3-24)

Xn®

For this reason, the functions ¥, are called downwash polynomials and the

functions Yy are called pressure polynomials.

The integral transforms appearing in (3-19)-(3-22) are central to
the theory of airfoil polynomials. They appear to have been first discovered
by N.I. Akhiezer in 1945 and are discussed briefly in [9,1976,Ch 2,p.133].
However, since these insights were apparently initially applied to the
solution of practical aerodynamics problems by Bland in his thesis [12,1968],

we shall define the integral transforms




1 AE
1, 1-E £(£)
m -

HE(x) = 1 1+ x-§ ae,
1

1g _ 1 14+x f£(x)

HTO£(8) m £1 1-x x~§ dx

as Bland transforms.

The functions x, and Y, are related to Chebyshev polynomials and can
be shown to be constant multiples of Jacobi_polynomials.3 Their n-1 zeros

are given by

2im
Xn (x§) = 0; x? = -cos 2o i = i,...,n=-1; n > 2,
ny - n - 2iw .
¢n(Ei) = 0; £ = cos o1’ L= 1,...,n-1; n > 2,
are antisymmetric in the sense that EE = —x?, and are interdigitated
according to
n n n
-1 < En—l < x3 < ... < 51 < x3—1 <1,
as shown in Figure 4.
zeros of Xy, WYy
2
AB = 7 m
n L 4
£ £y £y
—= X,
-1 x? x; xg +1

Figure 4. Interdigitation of zeros

3see, Bland [.12,1968 pp. 79-80]1 and Abramowitz and Stegun [13,1964,Ch. 22].

(3-25)

(3-26)

(3-27)

(3-28)

(3-29)
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The logarithmic transforms

_ Yo (E)+(1+log 2)y; (E)
2 r

1 T+x
T2 S /l_; Xn(x)log]x-ildx = _ . (£)=Yn (E) } Yn (E) =noy (E)
2n 2(n-1) !

X2 (x)+(1+log 2)x7(x) ,
2

2 [

1/1—_5
{1//l+£ ¥y (£) log|x-£|ag Xaa1 X)X (X)) _ Xn (X) +xp-) (%)

2n 2{n-1) !

permit closed form integrations of a logarithmic singularity appearing
in the kernel, and the continuous part of the kernel may be integrated

according to the following NQ-point Jacobi-Gaussian quadrature rule:

I N
NQ
1-g - 2m b2 _rNO+1 NO+1
/ T ra ThprT o1 (IEITThEEReh.

If the generalized Fourier coefficients for the continuous factor

of pressure are known,
T p
P =
n=1 “Yn Un

then the 1lift and pitching moment coefficients"

1 1
57 be(o)ar,
-1

CL,

1.1 1
Cy =5 f, (EH3)ip(E)d

are given exactly by the first two Fourier coefficients alone:

,_

_1; @ o
CL—2_1/1+€ P1(E) B Py Un(0)dE = 3 By,
_1 .t n
cu=31 viw l+£ v2 (8) El Py, ¥n(6)AE = T Py,

=]

(3-30)

(3-31)

(3-32)

(3-33)

(3-34)

(3-35)

(3-36)

(3-37)

(3-38)

“In this definition lift is positive upward, and pitching moment is positive
counterclockwise (leading edge down) about the quarter chord and is based on

the semichord.

N P

R = 8
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Exact closed form expressions similar to (3-37) and (3-38) may be
obtained for the generalized aerodynamic force matrix. The components
Ayg of this matrix are defined as the virtual work done as the structure

deforms in mode r against the pressure corresponding to mode s:
I R
Byg = E—fl hy(E)Apg(E)dE; r, s = 1,2,... (3-39)
where {hr};=1 are structural basis functions, commonly selected in practice

as the in vacuo vibrational eigenfunctions. Expand the structural basis

functions and their corresponding pressure functions in the pressure

polynomials
B o0
hr(g) = ngl <hrlq)n>p lpn(g) = nE]_ hnr lpn(g); r = 1'2.’... (3_40)
bes(®) = /35 E| <Por¥np ¥a(®) = /T E Pas ¥n@)s s = 1,2 (3-41)
S 1+E_: n=1 s'r¥n"p n l+g n=1 ns n H 12400
and obtain
a. =L % <n >_ <p s =2 F no_p s 1.2 (3-42
rs 2 n=1 r"l’n P sllpn P 2 n=1 nr Fnsi ¥r S = 1lygeese )

The generalized aerodynamic force matrix may be considered to be the single
most important aerodynamic quantity in aeroelasticity because it completely

determines the aeroelastic coupling.
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§4. BAnalytical and numerical properties of Bland's equation

In this section we discuss some of the theoretical aspects of the
collocation method developed by Bland for the solution of (2-57). 1In
particular it will be shown that the apparent numerical convergence
observed by Bland and ourselves can be established theoretically. 1In
order to do this it is necessary to take a somewhat different viewpoint
toward collocation than has been done in the past. We regard, as did
Bland, collocation as only a secondary numerical method arising out of
somewhat different procedures. Bland, in his thesis, proposed a general-
ized least squares method for the solution of (2-57), which was shown
under certain conditions (to be discussed later) to be equivalent to
collocation. In the same spirit we approach Bland's equation by a
projection method analogous to Galerkin's method for equations of the
second kind. Here again it can be shown that this technique is numerically
equivalent to collocation. Reversing the argument, we prefer to regard
the Galerkin method as primary, since it will be shown that the theory

appears to emerge best from this viewpoint.
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4.1 Collocation

For completeness and ease of reference Bland's collocation method
is now reviewed. Since the space L% is spanned by the pressure polynomials

{wn}T, P can be expanded as

P = ngl <P’wn>P l’)n.

because of this one seeks an approximate solution Py of the form

N
Py = ,L; @n ¥nr (4-1)

where a,; n =1,2,...,N are to be determined. Letting

ry(x) = wix) - {1 J 22 xex-tymg(0)ae, (4-2)
and setting ry(x) equal to zero at the zeros of XN+1(X) gives N linear
equations in the N unknowns {an}ﬁ. Solving for these determines the approxi-
mation Py to the pressure coefficient P. This is Bland's collocation method.
The numerical examples given by Bland and by us appear to indicate that Py
converges to P.

To establish this it is convenient to regard (2-57) as an operator
equation acting between the two spaces L% and L% defined in Section 3.
Making use of the properties of the airfoil polynomials given by (3-15),
(3-16), (3-30) and (3-31) enables us to show that this equation has interesting
analytic properties which permit a detailed analysis of the above numerical

method.
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4.2. BAnalytical properties

To set the stage for our theoretical treatment of (2-57) we make
some simple preliminary observations. From (2-50) the kernel can be

written as

K(x-£) = (——0 -

b E 4TTB)loglx £| + Ko (x=£), (4-3)

where Ke(x-£) is the bounded part. Multiplying both sides of (2-57)

—-allows us to rewrite it as

B
w(x) f / E:E-K(x -g)P(£)dE, (4-4)
where ;(x) = (g)w(x) and K(x—E) = (%OK(X—E). This transformation obviously

has no effect on the solutions of (2-57). The key observation, and one
that was made by Bland in his thesis is that (4-4) is actually equivalent
to an equation of the second kind. To see this decompose K(x-£) as

R(x-8) = gy + Kec(x-£) - (4-5)

This first term in (4-5) leads to the integral operator

HP(X) =l.f k.g_ﬂg_)_

T 1+ x-¢ de

which is just the Bland transform (3-25). From (3-19) and (3-20) it is
seen that H maps the orthonormal basis {¢n}? onto the orthonormal basis
{Xn}T, and thus can be extended to a bounded invertible operator from
Lé-to L%. If one then operates on both sides of (4-4) by H™! it takes
the form of an equation of the second kind in Lé. This leads one to suspect
that the well developed numerical methods for such equations would be useful
in solving (2-57) which, as we shall see, is the case.

To proceed further, it is necessary to develop some of the analytical
properties of (4-4). For this we digress slightly and state some definitions

and theorems from functional analysis.

Notation: ©ILet H; and Ho be Hilbert spaces. The inner products on Hj,i = 1,2
will be denoted by < , >; and the corresponding norm by I Ili' The set of

bounded linear operators from H; to Hp will be denoted by [H;,H»sl.

Definition 4.1. Let H; and Hy be Hilbert spaces. Let Hel[H;,Hp]. If
[lax]l 2 =

we say that H is an isometry. In addition if

H has a bounded inverse we say that H is unitary,




3
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Theorem 4.1. Let H; be a Hilbert space with a complete orthonormal

basis {wn}z,;fa;pepgs§ary_gpﬁ;suffig}enp condition that He[H;,Hp] be unitary

=)
is that the set {Hyp}; be a complete orthonormal basis in Hp.

Proof. See [811.

Definition 4.2. ©Let H; and H; be Hilbert spaces. Let Ke[H;,H;]. We say

that K is compact if for every bounded sequence {xn}T in H; the sequence .

oo
{Kx,}; has a convergent subsequence.
nil

Theorem 4.2. (Properties of compact operators.) Let KjelHy,Hol; i =1,2

be compact. Then

(i) K1 + K, is compact.

(ii) If Te[H;,Hp] thenTKj; i = 1,2 are compact.

(iii) If C is a complex number then CKij; i = 1,2 are compact.

(iv) If K; has finite dimensional range then K; is compact.

(v) Let || || denote the operator norm on [H;,Hp]. Let {Kn}? be a sequence
of compact operators from H; to Hp such that lim HKh—K” = 0 where Ke[Hj,Hp].
n-ro

Then K is compact.

(iv) It follows from (iv) that if {Kn}T is a sequence of operators each

having finite dimensional range, and %ig ]lK—Knl| = 0 then K is compact.

Proof. See [8l].

Definition 4.3. Let He[H;,Hp]. The adjoint of H denoted by H* is the

bounded linear operator defined by
<H*x,y>; = <x,Hy>,, (4-6)
where x and y are arbitrary vectors in Hy and H] respectively.

Theorem 4.3. Let Hel[H;,Ho]l. Then H has a unique adjoint H*e[H,,Hj].

Proof. See [81].

Theorem 4.4. Let H be a unitary operator from H; to Hy. Then H* = R

("1 denotes the inverse of H.)

Proof. Note first of all that since H is an isometry it preserves inner

products; i.e., <Hx,Hy>; = <x,y>; for all (x,y)eH;. 1In fact ”H(x+y)“%
= |l(x+y)||%. But



s,

~32-

llE(x+y) ||3 = <Hx,Hx>, + 2 Re <Hx,Hy>p + <Hy,Hy>;

= <x,x>] + 2 Re <Hx,Hy>2 + <y,y>1. (4-7)

Similarly
| (x+9) [|2 = <x,x>; + 2 Re <x,y>; + <y,y>1. (4-8)

Equating (4-7) and (4-8)along with replacing x+y by x+iy gives the result.

Now
<Hx,Hy>; = <H*ery>1 = <X:Y>1, (4-9)

by the definition of adjoint and the above observation. Since (4~9) holds
for all yeH; we get that
H*Hx = X, ¥XeHj. (4-10)
Let yeH;. Then, since ! exists, y = Hx for some xeH);. Therefore
y = Hx = H(H*Hx) = (HH*)Hx = HH*y. Thus y = HH*y for all yeH;, and this
with (4-10) shows that H* is both a left and right inverse of H so that
_1_*
H = H*.

Theorem 4.5. Let H; and H, be Hilbert spaces. Let Te[H;,Ho]. Let V{yn}tf

be a complete orthonormal basis for H;. Assume that

22, lmunlld < . (4-11)

Then T is compact.

(Note: Operators satisfying (4-11) are said to have finite double or

Hilbert-Schmidt norm. See [82] for a discussion of their properties.)

Proof. From Theorem 4.2 it suffices to show that there exists a sequence

of operators {Tn}T, each having finite range, such that lim [|T-0|] = o.
Let U, = span {yy}] and define Q, by

n
an = kgl <x'l‘bk>1 lpk, erl. (4-12)

On is the operator of orthogonal projection onto Up. Let T, = TQp. From

(4-12) it is seen that

n

§1 <xX,Pr>1 TPy, XeH;. (4-13)

ThX = K
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Letting U, = span {ka}?, we see that T, has finite range. Now

| rx-Tpx||2 = ||k=§+1 <x,px>1 Tkl 2 1k=§+1 l<x,v>1] [lTwkll . (4-14)

By the Cauchy-Schwarz inequality (4-14) becomes

}_l

1 1

. 2 @ 2
Imc-zmclly, < G 8, Temonen 1270 8, Imdi D < sl E,, Inwllp?. @-s)

k— +1

From (4-15) it is seen that

1l
Ir-zall <  _E,, lTeli2?. (4-16)
Since kzl “kaH% converges the right hand side of (4-16) can be made
arbitrarily small for n large. Thus lim HT-TnH = 0 and the theorem is
n—hoo
proved.

The results of the above theorems are now applied to (2-57) (or
equivalently (4-4)). As was stated in §4.1 we wisn to regard (2-57) as
an operator equation acting between LS and L%. Using the equivalent form
(4-4) the kernel decomposition gives rise to three operators H, K; and K

defined by

1, /18 p(E)
‘n’ -

H P(x) = { / 17t %ot dag, (4-17)
K P(x) = - niekg ;= 1+g £ 1og|x-£|p(8)at, (4-18)
and
1 T
KpP() =/ i5E Ke(e)R(E)aE, (4-19)

where the integral in (4-17) is taken in the sense of a Cauchy principal
value. The basic properties of these operators are summarized in Theorem 4.6

below.

Theorem 4.6. H, K; and K, define bounded linear operators from Lﬁfto L&E

In addition H is unitary and K; and K, are compact.

Proof. As stated above H is just the Bland transform (3-25). Since
Hyx = xx where {wk}T and {xk}T are defined by (3-1) and (3-2) respectively,
H can be uniquely extended as a bounded operator from L% to L% by

BR(x)= F <P ypopiy 0 = F <Puepie
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Since {xy} is a complete orthonormal basis in L% it follows from Theorem 4.1
that H is unitary.

From (3-31) we see that

X2 {x) + (1+log 2)x; (x) n =

Koy = - 2 1
1¥n WBZ Zﬂf1+xn B (Xn+Xn_1)' LS ) .

2n 2(n-1)

Since K; is well defined on the basis elements {wn}T it can be extended

as an operator to all of L% by the formula

©
K]_P(X) = k£1 <lek>P K]wkl (4-20)

provided that the sum in (4-20) converges in the L% norm. To verify this

observe that

2 + 2 log 2 + (log 2)2
4 ’

x
IK1vnll§ = <K Kibnw = Jw | (12040 > 2
FUATNR Y n
2n<(n-1) -

Thus (4-20) converges, and since ||K1¢n|]2 is of order jﬁ-the series

nt 1 ||K1¢n||w converges and thus by Theorem 4.5 K; is compact.

Now

|K2P(x)| < f J T l+€ |kc(x-£)] |P(£)]aE

[f /1+£ IP(E)Isz]?[f /1+ | ke (%~ s)lzdz;]

by the Cauchy-Schwarz inequality. Thus

14+x

[fl /EI (x-£)|24z14 (4-21)
1x 4,/ Tog |Xelx-8)|7dbldx, B

1
Ixaplig < lleli2 )

where the integral in (4-21) exists since Ko(x-£) is bounded and the
function %;ﬁ-is integrable on [-1,1]. From this it is seen that
”KZPHW i_C”Eﬂ|P and so K, is bounded. To establish compactness we again
resort to Theorem 4.5 by showing that kzl []sznl|$ converges. For this

observe that

® 1
[Rovge|? = 2, |/ / 25 ke (x-5) Uk (£)ag |2 (4-22)
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But
1 ‘1_E
I/ 15 ¥exE)Uy (B)aE = T <my,¥ic>p, (4-23)
where ng(£) = Ko(x-g). Thus the right hand sum in (4-22) can be written as
72 W2y |<nx,¢k>P|2. (4-24)

1 Y
By Parseval's Theorem this is equal to 7 fl /-%:% |ng (£) |2dE. Multiplying

both sides of (4-22) by %;ﬁ

w 1 /1ax ® . U f14x 1 1+E
kirl )/ Tl Kbl = w2, Wil = v 1 /90 U/ plxe e [Pae]. (a-25)

—
The integral in (4-25) is finite since Kg(x-£) is bounded and V/%ég-is

and integrating with respect to x gives

integrable. Thus K; is compact since it has finite double norm.
From the results of Theorems 4.5 and 4.6, (4-4) can be written in

operator form as
(H+ K)P = w ' (4-26)

where H + K € [L%,L%] and K = K; + Ky is compact. A solution to (4-4) will
now mean an element PEL§ solving (4-26). In general such a solution will
satisfy (2-57) or (4-4) almost everywhere. If the solution is sufficiently
smooth it will satisfy (2-57) in the usual pointwise sense. Since physically
one is interested in weighted integrals of P such generalized solutions
are perfectly reasonable.

From Theorem 4.4 we know that H has an inverse. Applying u~! to both
sides of (4-26) gives the equivalent equation

p+u !l kP =81 w (4-27)
From Theorem 4.5 H™! K is a compact operator and (4-27) has the form
(1 +1)P=981w (4-28)
where I is the identity operator on L% and L = H"IK. Equation (4-28) is
now in the standard form of equations of the second kind [83]. From
this it is possible to obtain solvability theorems by appealing to the
Fredholm theory. We state only one such theorem.

Theorem 4.7. Bland's integral equation has a solution in L% iff -1 is not

an eigenvalue of a1 x.
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Proof. This is just the usual Fredholm alternative for operators of the
form I + L where L is compact. See [84] for more details.

Throughout the rest of our discussion it will be assumed that the
solvability condition in Theorem 4.7 is satisfied, and we now proceed to

a discussion of the numerical solution of (4-26).




-37-

4.3. Galerkin's method for a class of operator equations

Motivated by the results in 4.2 we now consider the numerical solution

of the class of equations
TP = w (4-29)

where Te[H;,Hs], Hij; i = 1,2 are Hilbert spaces, T = H + K where H is unitary
and K is compact. From Theorem 4.4, (4-29) can be written in the equivalent

form
(I + H*R)P = H*w. (4-30)

(4-30) is an eguation of the second kind and since there are many well
understood methods for solving such equations [84] we consider the
possibility of using them to find numerical algorithms for (4-30). For
our purposes Galerkin's method appears to make best use of the theoretical
structure of (4-30) and we now give a brief discussion of this popular
technigue.

Assume that {wn}T is a complete orthonormal basis for H; and look
for approximate solutions of (4-30) of the form

N
Py = ngl an¥n: (4-31)

where the a,'s are constants to be determined. Since in general Py will

not solve (4-30) exactly we consider the residual Ry given by
Ry = PN + H*K Py - H*w. (4-32)

If Py were the true solution of (4-30) then Ry = 0. However, this will
not be the case in general and we try to pick Py so as to make Ry small.
Galerkin's method attempts to do this by making Ry orthogonal to yp;

n=1,2,...,N. That is we require
<RN,¥p>1 = 0; n=1,2,...,N. (4-33)

Substitution of (4-32) into (4-33) gives the following set of linear equations

to determine the ap's:
N
ap + m£1 <H*KYn,,¥,>1 am = <H*W,¥Pp>1; n = 1,2,...,N, (4-34)
where the orthogonality of the Yp's has been used in the derivation of

(4-34). If the equations in (4-34) have a unique solutionthen apn; n =1,2,...,N

" can be determined and the approximation Py is well defined. The following
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- theorems, taken from Atkinson (84] justify this procedure. First we
recast Galerkin's method into a slightly more abstract form.
As in Theorem 4.5 let Uy = span {wn}§ and let Qy be the operator of
orthogonal projection onto Uy. The Galerkin equations (4-33) and (4-34)
are equivalent to the operator equation [1976,1]
ONRy = O, PyeUy. (4-35)
Or, written out in full
On (I+H*K) Py = Q H*w, PyeUy. (4-36)

Assume that (4-30) has a unique solution. Then from the Fredholm
alternative {[84] the operator I + H*K has a bounded inverse since

H*K is compact.

Theorem 4.8. Let Ky = QnH*K. Then g]})g.} HK-KNH = 0.

Proof. See Atkinson [84].

Theorem. 4.9. Let Ky be as in Theorem 4.8 and assume that N is large enough

so that |[K-Ky|| < TszgiiTr' Then the operator (I+Ky) ! exists, is bounded and
-1 || (z+m*x) =1 || -
S N (4-37)

From this it follows that the Galerkin equations (4-36) have a unique solution

and

lle-eylly < ) =] |l2-onell 1 - (4-38)

(4-38) implies that Py converges in norm to P the solution of (4-30).

Proof. See Atkinson pp. 51-52 for details of (4-37) and (4-38). The con-
vergence follows from (4-38) andlthe fact that {wn}T is complete in H; so
that “P—QNP”1 = (Ni ]<P,wn>1|2)2-which converges to zero.

Note that (4-37) and (4-38) constitute an error estimate for the approxi-
mate solution Py.

Theorem 4.9 is the basic convergence result that we will use in discussing

Bland's method. ©Note that it has the immediate consequence of showing that

the application of Galerkin's method to Bland's equation (2-57) is a con-

vergent numexrical method. That this is true follows from the fact that

the equivalent operator version (4-26) satisfies all of the hypotheses to

prove Theorem 4.9.
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As pointed out in Atkinson there exists a "dual" to Theorem 4.9.
That is, if one can establish the existence of a unigue solution to the
Galerkin equations for some sufficiently large N, then it follows that one
can prove the existence of a solution to (4-30). From a practical point
of view this is important, since we have the numerical information available
from the TWODI program, and thus the solvability of the numerical problem
can be used to infer the existence of solutions to the original problem.
Although we have established that Galerkin's method is theoretically
a reasonable procedure to use numerically, it does initially appear to have
several drawbacks, the most_important of which is the necessity of performing
the complicated integrations needed to evaluate the inner products in (4-34).
Since, practically these integrals must be done numerically it is important
to examine the effect of this on the Galerkin equations. Surprisingly, due

to the structure of T, particularly the unitarity of H, considerable simpli-

fication results, and as will be shown, under appropriate conditions Galerkin's

method becomes equivalent to collocation.
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4.4. The relation between Galerkin's method and collocation

We now proceed to examine the above mentioned relation between collo-
cation and Galerkin's method. Recall from (4-34) that the Galerkin approxi-

mation for P is obtained by solving the linear equations

N
ap + m§1 <H*K¢m,wn>1 am = <H*w,Y,>;, n=1,2,...,N.

Using the definition of adjoint, these equations become

N
ap + mgl <Ky, Hyp>2 ay = <w,Hp>, n = 1,2,...,N. (4-39)

oo
Since H is unitary {Hyp}; = {xn}T is a complete orthonormal basis

for Hy. Using this and the fact that <x,,Xx,>2 = Spun (4-39) becomes

N

N
mgl {(<HpiXp>2 + <Kip,Xp>2} am = <w,xp>2 = m£1 < {H+K)¥p,%n>2 am

= <W,Xp”>2, n =1,2,...,N.

Or, since H+K T,

mgl <TYprXpn>2 @m = <W,Xp>27 D = 1,2,...,N. (4-40)
Note that (4-40) is formulated directly in terms of the original equation

of the first kind TP = w and can be regarded as a projection method in its

own right. To see this, again look for an approximate solution to (4-29)

in the form Py = ngl an¥n. Using the same argument as for Galerkin's method

leads us to consider the residual
ry = TPy-W. (4-41)

In order to make ry "small" we pick ap; n =1,2,...,N to satisfy the or-

thogonality condition!

<rN¢Xn>2 = 0; n=1,2,...,N. (4-42)

Writing (4-42) out in full gives (4-40). If one knows {Xn}§ explicitly
then numerically it is more efficient to use (4-42) than (4-40).
Since our main interest is in Bland's equation (2-57) we now specialize

(4-40) to the case where Hj; i = 1,2 are taken to be Hilbert spaces of

lThis is sometimes called the method of weighted residuals [85].
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functions on the interval {a,b]l] and the operator T is an integral operator

of the form
TP(x) = S K(x,E)P(E)AE, (4-43)

where the integral in (4~43) is generally taken in the sense of a Cauchy
principal value. Let

L (%) = T (x) . (4-44)

Then
<Td’mlxn>2 = <Lml)(n>2- (4-45)

Since the inner product in (4-45) is an integral, we assume that it can
be approximated by a quadrature rule Qy having N nodes, denoted by xk;
k=1,2,...,N and corresponding weights W,; k = 1,2,...,N. Thus (4-45)

can be approximated by the finite sum

N
kZ; "kDm (%K) Xn (xK) -
A similar approximation applied to <w,x,>2 gives

N
W,Xp’>2 * k£1 Wrw (%K) Xp (%) «

Thus the numerical solution to the Galerkin equations (4-40) is obtained

by solving
N ~ N N
nly 2O Wn (R Xn (6)) = (&) Wew(xp)xn (%) s n = 1,2,...,N. (4-46)
Define vectors and matrices by
a={apg}t; w={wixg} (4-47)
X = IXp(x)l, L = [Lplxx)], W= diag [Wl; m,n,k = 1,2,...,N. (4-48)
Using (4-47) and (4-48), (4-46) takes the form
(xW)La = (xW)w. (4-49)

If it is assumed that the matrix x is nonsingular then XW is nonsingular
and (4-49) is equivalent to
La = W. (4-50)

Referring back to Section 4.1 it is easily seen that for Bland's equation

(4-50) are just the collocation equations resulting from (4-2). Thus it
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is seen that if the quadrature errors are ignored in the solution of
the Galerkin equations then they will give exactly the same numerical
solution as collocation, provided that the matrix x is invertible, as
will be established below. Thus from a numerical standpoint it makes
little difference whether one uses collocation or Galerkin's method in
the solution of (2-57) -- the result will be the same numerical approxi-
mation to P. However, from a theoretical point of view Galerkin's method
appears to be more desirable, since as we have seen, it gives convergence
along with computable error bounds.

To complete our equivalence proof of collocation and Galerkin's method

we now establish the nonsingularity of x.

Definition 4.4. Let {f, (x)}; n = 1,2,...,N be N functions defined on the

interval [a,b]l. We say that {fn(x)}\ are unisolvent if the matrix [Eh(xx)];

n,k =1,2,...,N is nonsingular for every set of distinct points {xk}¥ in [a,bl.

Theorem 4.10. Let {pn(x)}¥ be a basis for the polynomials of degree < N-1

on [a,b]l. Then {gnix)}¥ are unisolvent.

N-1

Proof. Let m = [pp(xk)l; n,k = 1,2,...,N. Since p(x) = kgo pnxx¥ it follows

that m = PV where P = [ppx] and V is the Vandemonde matrix given by

1 1 |
Xl X2 . ..XN
V(X],X9,.--Xy) =
17%27 N 9
2 xF ... . %}
N-1 -1 N~1
_x] x§ - - . . Xy |

Thus det m = det P det V. But det P is nonzero since {pn(x)}§ is a basis and

det v = (-1N I (x3 = x3) # 0,
i<j
i,3=1,...,N

since the points xi are distinct. Thus det 7 # 0 and 7 is nonsingular.

Corollary 1. Let {pn(x)}? be polynomials of degree < N-1 orthogonal with

respect to some inner product on the set of functions on [a,b]l. Then they

are unisolvent.
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Proof. The orthogonality implies that {pn(x)}§ are linearly independent
and thus a basis for the polynomials of degree < N-1 on [a,b]. The corollary

now follows from the theorem.

Corollary 2. Let {Xn}l be the first N downwash polynomials as defined in

Section 3. Then {Xn}l are unisolvent.

Proof. Since {xn}? are orthogonal on [-1,11 with respect to the inner

product < , >, by corollary 2 they are unisolvent.

Corollary 3. Let {Xn}l be as above and let {xk}l be the zeros of xpy;

then the matrix x = {xn{xx) 1 is non51ngular.

Proof. From (3-24) we see that XN+1 has N distinct zeros on [-1,1]. Since
{xn}¥ are unisolvent the result follows.
From Theorem 4.10 and the above discussion we arrive at our main equiva-

lence result for collocation and Galerkin's method for Bland's equation.

Theorem 4.11. Let Py be the approximate solution to (2-57) given by using

Galerkin's method based on the pressure polynomials as a complete ortho-

normal basis ﬁQF,Lﬁg ﬁ?henmiﬁuthe inpe;uproducts in (4-40) are evaluated

using the Jacobi-Gaussian guadrature rule (3-29), the resulting numerical

approximation to (2-57) is the same as one obtains using collocation with

the same ba51s and collocatlng at the zeros of x4 (%)-

Proof. From (4-49) it suffices to prove invertibility of x which was done
in Theorem 4.10.

The importance of Theorem 4.11 is that it enables us to regard collocation
as numerically equivalent to Galerkin's method. As we have seen Galerkin's
method is convergent, and since neglecting the quadrature errors in the
evaluation of the inner product in (4-40) gives Bland's collocation equations,
we can conclude that this method is convergent. We summarize this, our main

result, as Theorem 4.12.

Theorem 4.12. Let Pg be the numerlcal approximation to the solution of

(2—57) as descrlbed 1n Sectlon 4.1. Let Eﬁ be the Galerkin approximation

to P as descrlbed in Sectlon 4.3. Let éﬁVbe the approximation to Pﬁgpbtained

by evaluating the 1nne;ﬁproductsrbyrthg~ggegg}—Gaussian rule (3-29). Then

ﬁg = Pg and thus neglecting these quadrature errors %ﬁ converges in the norm

of Lg to P and thus s0 doesPﬁ The error in this approximation is given by

(4- 38) and [=Te)
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1

=<

2
le§-2llp < oy lIP-oupllp = ol &, [<2ivn>pl 2", (4-51)

Note that (4-51) shows that the rate of convergence of Pﬁ to P depends
on the smoothness of P and thus requires a knowledge of the behavior of
the generalized Fourier coefficients of functions expanded in airfoil poly-
nomials. 1In addition it requires estimates of the smoothness of the solu-
tions P. We expect to pursue these points in future work.

As we stated at the beginning of this section Bland's starting point
for the solution of (2-57) was a least squares procedure which he claimed
was equivalent to collocation. His proof of this fact [12] resided in
the assumption that the collocation matrix {ILnp(xk)} was nonsingular. As
a further consequence of the Galerkin theory we establish the validity of
this proposition.

Let G denote the matrix [<T¢m,xn>2] given in (4-40). From the proper-
ties of Jacobi-Gaussian quadrature <TYp,Xpn>2 = 9nm + ©nm Where [gppl is the
matrix WL as defined in (4-49) and [epy] = E is the matrix of quadrature
errors. Thus

G = XWL + E. (4-52)

By Theorem 4.10
L = (xw)~1(G-E). (4-53)

From (4-53) it is seen that L has an inverse if and only if G-E does. From
Theorem 4.9 we know that for all sufficiently large N, G has an inverse.
Thus G-E = G(I-G™!E) and it follows from Banach's lemma [85] that
I-G™!E has an inverse provided that HG'IEH < 1 where H I[ is any matrix
norm on the set of NxN complex matrices. Since HG'IEH §_|[G'1[||IEH it
. 1 \

ff s t h that |[E|} < = . Under the assumption that th d-
surrice O sShow a || H '|'|—a—rﬂ- n 18} a € qua
rature errors can be made arbitrarily small if N is large enough we can
pick N so that G! exists and “E“ < Tﬁsérﬂu Thus we conclude that for N
large enough the collocation matrix is nonsingular and consequently Bland's

observation that collocation is equivalent to least squares is valid.

Theorem 4.13 states this result.

Theorem 4.13. Provided that N is sufficiently large Bland's least squares

numerical approximation to the solution of (2-57).
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4.5. Conditioning of the collocation matrix

As a final application of the Galerkin approach to (2-57) we offer

a brief discussion of the conditioning of the collocation matrix L. 1In
[12,1968] and [5,1970]1, Bland remarks on the fact that L is well conditioned
without offering any proof. The accuracy of our own numerical results also
supports this observation. It also appears to be part of the folklore of
singular integral equations of the first kind that the strong Cauchy singu-
larity leads to numerical methods which are well conditioned [86,1971] and
[87,1975]. Although this is intuitively reasonable we are unaware of any
mathematical proof of this fact. For equations of the second kind there
exist fairly complete results on conditioning. A summary of these may be
found in Atkinson [84,1976]. Since we know that (2-57) is equivalent to

an equation of the second kind these results should be of use here. That

this is the case is demonstrated below.

Definition 4.5. Let A be an NxN complex matrix. Let H ]| be a matrix norm
on CN. The condition number of A relative to || |[ is given by
c) = |[a]] [a=!]]. (4-54)

A matrix is said to be well conditioned if C(A) is of order 1 and
poorly conditioned if C(A) is large [84,1976]. It follows immediately from

(4-54) that if A and B are matrices then
C(AB) < C(A)C(B) (4-55)

and

c(a™ly = c(a). (4-56)
Since L = (xW)~!(G-E) = (xW)~'G¢"!(I-G"!E), (4-55) and (4-56) give
c(L) < c(x)c(WIC(G)C(I-G™IE). (4-57)

Since W is a diagonal matrix and one can show that C(W) < ¢ E%§+¥§+-where

c is a constant independent of W. Since Wx; k =1,2,...,N are the quad-
rature weights C(W) ~ cN. Now for N large I-G"!E ~ I so that c(I-G™!E)

~ C(I) ~ 0(1). Thus C(L) -~c¢'NC(x)C(G). From Atkinson's results [1976,1]
one can show that ||G]| <c" so that C(L)~ ¢"NC(x), which gives a reasonable
estimate of the conditioning of L. It appears then, if N is not too large,
that C(L) is well conditioned. A more complete analysis will have to await

future work.
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4.6. Convergence of integrated aerodynamic forces

Although the above theory gives convergence of Py to P in the norm
of L% it is important to note that this generalized convergence of Py gives
strict convergence of integrated aerodynamic forces to their true values.

To see this we define

spy(€) = /25 pycey (4-58)
pNg—v/]_-i-gNE -
as our approximation to Ap({). Let f(£) be a real valued weighting function

as in eqguations (3-35), (3-36), (3-39), etc., and Let F represent an inte-
grated force,

F o= {1 Ap(&Y£(E)dE. (4-59)
We take as our approximation to F

Fy = {i Apy (E)E(E)dE. (4-60)
By definition of the inner product on Lg,

Fy = T <P, Ep- (4-61)

Theorem 4.14. ﬁig Fg = F.
Proof.
|F-Fn| = 7 |<P,f>p - <Py, £7p| = 7 |<P-Py,£>p]. (4-62)
By the Cauchy-Schwarz inequality
<p-py, £opl < [le-rull Il (4-63)

Thus the result follows from Theorem 4.9.
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§5.  Organization of the computer program

The computer program developed during this work is a user-oriented,
working, pilot version written in extended FORTRAN IV. To accomplish
this, several helpful guidelines were followed during its planning and
development:

(1) Input and output quantities were established first. These

were selected primarily according to the general needs of the

intended user community;

(2) A hierarchial, modularized system of executive and compu-

tational subroutines together with a complete list of all

working equations was established and iterated once prior to

actual coding; ’

(3) Coding was performed with visibility as the primary cri-

terion, facilitating changes;

(4) All computational subroutines were carefully checked against

independent calculations, using exact closed form special cases

whenever possible to verify accuracy as well as correctness;

(5) Due to the go-no go nature of unsteady kernel function pro-

grams, computational correctness was deemed more important

than algorithmic efficiency;

(6) The organization of the computer program was structured to

facilitate correctness of the pilot version and future modifi-

cations.

The calling hierarchy of the computer program is shown in Figure 5,
with arrows indicating the direction of call. The main program, named
TWODI for two dimensional, is strictly an executive program. TWODI directs
two supervisory subroutines named PREP and SOLVE, and one interim subroutine
named CHECK. If called by TWODI, CHECK systematically calls each of the
major computational subroutines and checks their current computational
results against the most accurately known results, which are stored within
CHECK. CHECK is primarily a developmental tool, secondarily a diagnostic
tool, and does not appear in released versions of TWODI.

PREP is a supervisory subroutine, whose purpose is to prepare input

data in a form acceptable to the solution process which is subsequently
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implemented by SOLVE. PREP reads and prints back all input data. A title,
supplied as input data by the user, is centered by subroutine CENTER, and
the time and date, centered title and page number are printed at the top

of each page using subroutine PAGE. PREP tests all input data except the
flow parameters (M,k,ny and cy). Data lying outside their acceptable ranges
result in the problem being deleted by PREP, with an explanatory comment.
The input data specifies mode shapés at discrete points that are selected

by the user. PREP collocates a linear combination of airfoil polynomials
through these discrete points and stores the resulting Fourier coefficients
for later use by SOLVE. Values of airfoil polynomials are calculated by
subroutine AFP using recursion formulas, and collocation is performed using
subroutine CSIMAL to solve complex (or real) simultaneous algebraic equations.
Once the input data have been read, checked, printed back and prepared for
use by SOLVE, PREP returns control of the program to TWODI, and TWODI calls
SOLVE.

SOLVE is a supervisory subroutine whose purpose is to solve the integral
equation for each M,k,ny and cy case, and to compute and print the airloads
for as many downwash modes as were given by input data. Each problem may
have numerous cases of M,k,ny and cy. These are tested individually by
SOLVE, and erroneous cases are deleted without affecting the others. The
eigenvalues appearing in equation (2-54) are calculated by subroutine PICARD
using Picard iteration. To avoid repetition, these eigenvalues are calcu-
lated at the outset and stored for later use. Subroutine WASH calculates
the matrix of downwashes at the appropriate collocation points. Subroutine
BMN calculates the collocation matrix using closed form integrations for
the Cauchy and logarithmically singular parts of the kernel, and uses Jacobi-
Gaussian quadrature for the bounded part of the kernel. The quadrature
points and collocation points are interdigitated according to equation (3-26)
and the continuous part of the kernel is calculated by subroutine KC. The
infinite series for F and F' appearing in the kernel are calculated by sub-
routine SUM. If convergence of these series requires eigenvalues beyond
those already stored, SUM calls PICARD as necessary. After the downwash
and collocation matrices have been calculated, SOLVE calls CSIMAL and the
generalized Fourier coefficients of the pressure for all downwash modes
are thereby determined. SOLVE then calls LOADS which calculates and prints
the particular combination of pressure, section coefficients and generalized

forces as stipulated by the input data. LOADS calls AFP if pressures are
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required. Output is supplied in redundant real-imaginary-magnitude-phase
angle format using subroutine ATANC. After SOLVE has completed one case
of M,k,nyg and cy, the remaining cases are solved in succession. Upon com-
pletion control returns to TWODI. TWODI then calls PREP for another problem,
the solution to which is computed by SOLVE, until eventually all problems
are solved.

In its present form, the TWODI program works, it is believed to be
free of error, and is convenient to use. Complete instructions for its

use are supplied in Section 7.
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PREP

Figure 5.
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CENTER

Calling hierarchy of the TWODI program
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§6. Some numerical considerations

This Section discusses some of the numerical considerations made in
computing Bland's kernel as given by equations (2-50) to (2-55). All compu-
tations involve elementary operations using standard FORTRAN functions
except the determination of the eigenvalues of equation (2-54) and the
summation of the infinite series of F given by equation (2-51), and its
derivative F'. Since these computations, especially the latter, are the
most difficult part of computing the kernel, they are discussed in detail.

The positive solutions {Xn}:=1 of the transcendental eguation
tan A + YA = 0 (6-1)

are depicted in Figure 6(a) as the projections onto the A-axis of the inter-
sections of a straight line with branches of the tangent function. Equation

1

(6-1) occurs elsewhere in mechanics®' with both positive and negative values

of the parameter y being physically meaningful. 1In the present study, only
nonnegative values of y are meaningful but the solution algorithm we use

is equally valid for all real values of vy:
- <y < o, (6-2)
The eigenvalues are well separated and satisfy the inequalities
(n-3) < Ay < T(naR); n = 1,2 (6-3)
m{(n— n m(nt3); no=1,2,...

Figure 6(b) depicts a natural iteration scheme. Because of the behavior
of the derivative of the inverse tangent function, if Xék) is any approxi-

mation whatsoever to A,, then the number
AR+ = gn - tan™! (ya SR (6-4)

is a better approximation, as illustrated by Figure 6(b). The following

theorem proves that this method always works.

lpor example, the buckling of a beam built in at one end and clamped at the
other is governed by the eguation

'PLZ__t PL?

J/ BT = tany Erv

where P is the axial buckling load, L is the length of the beam, E is Young's
modulus and I is the usual moment of inertia.
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Figure 6. The eigenvalue problem tan A + yA = 0
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Theorem: For arbitrary Aéo), the sequence {Aék)};=1 converges to Ap.

The convergence is geometric with rate

pp < min { L (6-5)

1
mM2n-1) " ywZ(2n-1) z}-
Proof: For fixed y and n, let
g(A) = nm - tan’l(yk)

and let In denote theclosedinterval[(n-%)ﬂ, (n+%9ﬂ]. Then g(Aéo)) e Ip,
regardless of the initial value Aﬂo). Hence all elements of the sequence
{Aék)};=1 belong to I,. It is sufficient to show that g is a contraction
mapping on Ip, because the iteration defined by (6-4) is just the usual
Picard approximation scheme applied to the fixed point eguation

An = g(Ap).

Since g is differentiable on I, it suffices to show that

}\sup {|g" (M) ]} < 1.

eln
But
FCU N NS S S G
g T T InA2 1+ 27 X 1207z
Therefore
1 1 1
sup {|g'(M) |} < = sup | } = ———
Ael, I ’ -2 eIy A m(2n-1)
and
4

1
su {jg' M) |} < su { 1 = . ED
)\elpn lg [ < Aeli |Y)\21 Y2 (2n-1) 2 Q

The above algorithm has been coded as a function subroutine named

PICARD using
Af0) = pm (6-6)
as an initial value, and using the relative error test

IR~} < e [afkeD) | (6-7)

for convergence.2

2The relative error test (6-7) is useful whenever the exact limit is not
known in advance and whenever the limits may be extremely large or extremely
small. It does not guarantee that convergence is achieved to within ¢ of
the exact value, but 1is a reasonably general test and has worked well in

the present study.
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Typically, for n = 50, ten decimal convergence is achieved in 3-4
iterations. The convergence characteristics of PICARD are shown in Table 1

for several combinations of n and € in terms of the numbers
- +
kmax (n,e) = _bax.. {max{k+1: |Aék ) Aék)l <« |Xék+1)|}} (6-8)

which represent the maximum number of iterations required for all values of Y.

Table 1. Convergence of function subroutine PICARD

n = eigenvalue no., kpax = mex no. iterations required

e = 107° e = 1078 e = 10710
n kmax n kmax n kmax
1 9 1 12 1 14
2-3 6 2 8 2 10
4-5 5 3 7 3 9
6-12 4 4-6 6 4 8
13-71 3 7-11 5 5-6 7
72-500000 2 12-31 4 7-10 6
500001- 1 32-338 3 11-21 5
339-49999990 2 22-78 4
49999991 - 1 79-1566 3
1567-5000014179 2
5000014180-» 1

The rapid convergence with large n is explained by the convergence rate
bounds given by equation (6~5). Values of kpax were estimated by comparing
results for 25 values of Yy which, to within the single precision accuracy
of a CDC 6400, were given by values of yy such that:

am

tan_lYl =54 -12 < & < 12.

Only one iteration is required for % = O because the choice (6-6) of the
initial value is then the exact eigenvalue, but the maximum number of itera-
tions usually occurred for 2 = 1. This behavior can be understood from

the graph of the eigenspectra vs. Y. Since Y can be any real number, the
domain can be mapped onto a finite interval by employing the inverse tangent
transformation. The resulting eigenspectra for all real values of Yy are
shown in Figure 7. A gradually steepening shoulder with increasing n is

observed near y = 0, which is where the maximum number of iterations should
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be expected. This shoulder is merely exhibiting the fact that

T (n-{%—) Yy <
lim Ap = {mn 1 Yy =0
[n(n-zﬂ Yy >

which is obvious from Figure 6(a).
The infinite series (2-51) and its derivative are the result of a
uniformly but slowly convergent series which has been modified for improved

convergence. Consider the infinite series

£(8 § on And 6
(8) = k1 T exp(-Apnd), (6-10)
£1(8) = —n°=z°1 an exp(-fpé), (6-11)

where an and Xn are given by (2-52) and (2-53). From (6-9), it follows
that if y > 0 the terms of the series (6-10) and (6-11) for large n approach

the corresponding terms of the series

£(8) = % exp (-7 (n-2) §) , (6-12)
n=1 2
T(n-=)
2
- - _¢9 (et -
£'(8) = ngl exp (-7 (n 2)6), (6-13)

respectively. The series (6-10)-(6-13) diverge if § < 0 and converge uni-

formly on any closed interval such that
§ > 0. (6-14)

The derived series for f' and ;‘_' are the more slowly convergent, converging
geometrically with rate which approaches 1 as § approaches 0. However,

the minimum argument needed for the collocation method is

Ixt] (6-15)

Smin = gég Bnyg '
where x is a collocation point and £ is a quadrature node. Although Hsu's
interdigitation procedure tends to maximize this difference, the argument
can still be quite small. Taking the number of quadrature points equal

to the number of pressure basis functions,
NP = NQ {6-16)

and referring to formulas (3-24) and (3-25), one finds that

min cos 2im cos2jm| _ T 2r 372 (6-17)
1<i73np 2Np+1 2N+l | ©O% Zwpel T ©©% 2wpel T eNRZ
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Consequently, applying a relative convergence criterion to the series
(6-10) to (6~13), it can be estimated that the number of terms NT required

to achieve ND decimal convergence is given by
NT = .28ny(ND) (NP) 2. (6-18)

For example if M = 0, ng = 15, ND = 10 and NP = 10, then NT =~ 3000 terms.

The series (6-10) and (6-11) appeared in the original expression for
Bland's kernel. He ‘improved their weak convergence properties by subtracting
the corresponding terms of the series (6-12) and (6-13) and adding their

closed form sums

£8) = 2 log coth 8, (6-19)
T 4
£'(8) = -2 csch Ezg (6-20)
to obtain
£(8) = % 22 exp(-Ap8) - —=—— exp(-T(n=2)6)] + = log coth -2, (6-21)
n=1 )p n(n—lﬁ 2 n 4
2
® » 1 T8
£'(8) = —ngl[an exp(-A,68) - exp(—ﬂ(n—aﬁﬁ)] - 2 csch 5 (6-22)

The infinite series appearing in (6-21) and (6-22) equal F and F' as defined
by (2-51). F and F' are nonsingular at § = 0, whereas £, f', f and f' are
all singular at § = 0. The resulting smooth behavior of F and F' vs. § is
depicted in Figure 8 for k = 0 and for vy = 0,1 and ©. In the case y = k = O,

it is possible to sum the series for F and F' in closed form:
2 md .
F(8) = - — log (L+exp(-37)) if v = k = 0, (6-23)

F'(S) = —r ify=%k=0, (6-24)

l+exp (—%)

thereby permitting an exact and independent check of numerical computations.

Table 2 shows a comparison for small values of §, including § = O.
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Table 2. Accuracy of subroutine SUM for vy = k = 0

(using a relative convergence test on F' with € = 10"10)

J Decimals of accuracy no. of terms
F(6) P (6)
.0003 5 0 60057
.001 10 6 5496
.002 10 7 2859
.003 10 8 1485
.020 10 9 323

-200 10 10 37

Thus, while the series reformulations described above have succeeded in
removing the singularity and improving the convergence somewhat, it is

apparent from Figure 8 and Table 2 that additional gains in efficiency

remain to be accomplished. Variations in frequency and Mach number are
shown in Figures 9-11.

The prospects for improving the efficiency of subroutine SUM appear
favorable for several reasons. The present version is accurate and pro-
vides a sound basis for comparison. The data presented above represent a
worst case in the sense that convergence is more rapid with increasing vy

(Y = 0 corresponds to an open tunnel, y = = to a closed tunnel).

3In the case Yy = k = 0, the series for F(0) is an alternating harmonic
series and converges slowly to

2
F(0) = —;—log 2,
but the derived series is null and does not converge to
1
' = =
F'(0) 5

This is due to the non uniform convergence of F(§) at § = 0 so that inter-
change of summation and differentiation is not valid.
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Figure

8l

F(8) and F'(8) for k=0 and y=0,1,»




Figure 9.
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Parametric behavior of F(8) vs. k for M=0, nyg=10, y=1
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87. Use of the TWODI program

This section describes the preparation of input data for the pilot
version of the TWODI program. It is assumed that the user knows the physical
meaning of all input and output guantities, and the procedure for submitting
a run at the computer facility. We reiterate that the solution is based
upon the assumption of linearized inviscid subsonic potential flow about
a thin airfoil located midway between two parallel walls using the boundary
condition (2-49).

TWODI will predict any combination of pressure, section coefficients
and generalized aerodynamic forces for the following primary parameters:

(1) mode shape,

(2) reduced frequency,

(3) Mach number,

(4) tunnel depth to airfoil chord ratio,

(5) tunnel wall ventilation coefficient.

Additional parameters are the number of pressure terms used in the solution
process, the number of points at which pressure is to be calculated, etc.
TWODI will operate in either BATCH (noninteractive card jobs) or TIMESHARE
(interactive remote terminal) modes. Input and output are fully compatible
between BATCH and TIMESHARE. A problem is defined by a set of data sufficient

to cause execution of the program, and contains from 1 to 50 combinations

of (M,k,ng,cy), called data cases. As many problems may be loaded in succession

as desired. All input data and their acceptable values are precisely defined
in Section 7.1 below. Input data are automatically checked for acceptabi-
lity and unacceptable data cases or unacceptable problems will be select-
ively deleted by TWODI with an explanatory comment. The input format is
defined in Section 7.2 consisting of six input data units. For BATCH runs
the format may be formal on a column by column basis, or it may be free

with individual data separated by a comma or blanks. Each input data unit
(and certain subunits) must begin on a new card. TIMESHARE input is prompted
in a self-explanatory fashion, and the interactive communication between
TWODI and user is described in Section 7.3. At the present time, compre-
hensive estimates of computer time and the number NP of pressure modes

required to achieve a certain accuracy are not available.
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7.1 Definition of input data

TITLE

NC

NP

NH
NX

NL

SEC

GAF

TSH

XM (M)

HM (NR, M)

XL (L)

From 1 to 72 alphanumeric characters of user-selected title.
Printed at the top of each page, with the time and date.

Number of M,k,ny,cy data cases to follow for this problem.
Each problem consists of NC cases. As many problems may be
run as desired. 1<NC<50

Number of aerodynamic pressure modes to be used in the solution
process. 1<NP<30

Number of airfoil deflection modes. 1<NH<5

Number of points at which the airfoil deflection modes are to
be collocated to the input data. 1<NX<10

Number of loading points at which pressure is to be calculated.
0<NI<50
Logical variable whose truth value is to calculate section

coefficients (1lift, pitching moment, center of pressure) for
each deflection mode. T or F

Logical variable whose truth value is to calculate the general-
ized aerodynamic force coefficient matrix. T or F

Logical variable whose truth value is interactive timesharing
remote terminal operation. T or F

Chordwise coordinate of matching point M of NX for airfoil
centerline deflections. Nondimensionalized by the semichord,
-1 at the leading edge, +1 at the trailing edge. -1<XM(M)<I1.
If M # N, XM(M) # XM(N).

Vertical coordinate of matching point M for airfoil centerline
deflection mode NR. Nondimensionalized by the semichord, posi-
tive up.

Chordwise coordinate of loading point L of NL at which pressure
is to be calculated. To be omitted if NL = 0. -I<XL(L)<+l

Mach number, M. GC<M<1
Airfoil reduced frequency, k, referred to semichord.

Tunnel wall porosity coefficient, cy. O<cy<w. Use cy = 10100
for closed wall conditions.

Tunnel semiheight nondimensionalized by the airfoil semichord.
Equals the tunnel height to airfoil chord ratio ny. Positive.
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DIGITAL COMPUTER INPUT DATA SHEETS

Programmer Date Page of Ident.
DATA SEQUENCE DESCRIPTION -~ DO NOT KEYPUNCH
1
TITLE _ L INPUT VARIABLE TITLE
13 DATA UNIT
28 1 72 ALPHANUMERIC CHARACTERS
37
49
61 73 80
1 o
-NC NP INPUT CONTROL PARAMETERS
13
NH NX DATA UNIT
28 NL SRF II SEPARATE INDIVIDUAL DATA
37 -
GAF TSH WITH A COMMA OR BLANKS
49
5 R — 73 80
1
1 MATCHING POINT
XM (1) INPUT CHIN S
13 A
XM(2) DATA UNIT
25 . ITI SEPARATE INDIVIDUAL DATA
az
XM (NX) WITH A COMMA OR BLANKS
)
3 - 73 80
1 HM(1,1)
INPUT MODE SHAPES
13
HM(2,1) DATA UNIT
s R v
o SEPARATE INDIVIDUAL DATA
37
HM (NX,1) WITH A COMMA OR BLANKS. START

E)

61

EACH MODE ON A NEW CARD
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DIGITAL COMPUTER INPUT DATA SHEETS

4 g

61

8o

Programmer Date Page of Ident.
DATA SEQUENCE DESCRIPTION - DO NOT KEYPUNCH
1
X T
. L(1) INPUT LOADING POINTS
XL(2) DATA UNIT OMIT IF NL = 0
28 een v SEPARATE INDIVIDUAL DATA
37
XL (NL) WITH A COMMA OR BLANKS
49
61 73 80
1 MACH
. N INPUT FLOW PARAMETERS
13 DA I
FREQ TA UNIT
zs ETAH VI SEPARATE INDIVIDUAI, DATA
37 At -
CW WITH A COMMA OR BLANKS. START

EACH CASE ON A NEW CARD

18

25

37

49

61

73

REPEAT INPUT DATA UNITS I-VI

FOR AS MANY ADDITIONAL

PROBLEMS AS DESIRED

13

25

49

61

73
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7.3. Prompted interactive input

The following is an example of automatically prompted interactive

communication between TWODI and its user.

underlined.

the output is presented as the APPENDIX.

ENTER TITLE.,

?COMPARISON WITH THE KUESSNER-SCHWARZ SOLUTION USING ETAH = 300
ENTER NC,NP,NH, NX;NL,SEC GAF, TSH

?1,10,5,5,20,7,1,T

ENTER _MATCHING POINTS.,

,-.5,0,.5,

ENTER MODE SHAPE FOR
?i,1,1,1,1

ENTER MODE SHAPE FOR
2-3,-2,-1,0,1

ENTER MODE SHAPE FOR

5,1,-1,-1,

ENTER MODE_ SHAPE FOR

14 [ 4 [4 ]-I

ENTER MODE SHAPE FOR
?29,-2,1,0,1

ENTER LOADING POINTS

.9,-.8,-.7,-.6,-.5,-.

ENTER MACH;FREQ,ETAH CW FOR CASE 1

?0,1,300,1E100

MODE 1
MODE 2
MODE 3
MODE 4
MODE 5

Responses by the user are

The particular data are for the problem of Section 10, and

4,-.3,-.2,-.1,0,.1,.2,.3,.4,.5,.6,.7,.8,

.9,
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§8. Convergence characteristics of TWODI

Humerical calculations with the TWODI program reflect the theoretical
convergence predicted mathematically in Section 4. Tables 3 and 4 show
for M = 0 and k = 0 the convergence of 1lift coefficient and center of pressure
vs. NP with orders of magnitude variation in tunnel depth to chord ratio
and for both the open and closed wall conditions. For the open wall condi-
tion, slower convergence of the infinite series for F and F' resulted in

our omitting some of the calculations for the deeper tunnel cases.

Table 3. Convergence of CLa vs. NP for M = 0 and k = 0

(flat plate at unit angle of attack)

Wall NP ng=1 ng=10 ng=100  ny=1000 ng=10000

1 1.91357 5.39195 6.18551 6.27333 6.28220
2 1.91357 5.39195 6.18551 6.27333 6.28220
3 1.91357 5.39195 6.18551 6.27333
4 1.91357 5.39195 6.18551
5 1.91357 5.39195

" 10 1.91357
1 9.20520 6.30906 6.28344 6.28319 6.28319
2 8.26642 6.308%94 6.28344 6.28319 6.28319
3 8.30090 6.308%94 6.28344 6.2831°9 6.28319
4 8.29957 6.30894 6.28344 6.28319 6.28319
5 8.29957 6.30894 6.28344 6.28319 6.28319
0 8.29957 6.30894 6.28344 6.28319 6.28319

Table 4. Convergence of §¢P vs. NP for M = 0 and k = 0

(flat plate at unit angle of attack)

Wall NP ng=1 ng=10 ng=100  ng=1000 nE=10000

Open 1 .250000 .250000 .250000 .250000 .250000
" 2 .110850  .247953  .249979  .250000  .250000
" 3 .111373  .247954  .249979  .250000
" 4 .111440 .247954  .249979
" 5 .111434  .247954
" 10 .111435

Closed 1 .250000 .250000 .250000 .250000 .250000
" 2 .307484  .251020 .250010 .250000 .250000
" 3 .306176 .251019  .250010 .250000 .250000
" 4 .306172 .251019 .250010 .250000  .250000
" 5 .306175 .251019 .250010  .250000 .250000
" 10

.306175 .251019 .250010
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Whereas section coefficients depend upon only the first two Fourier
coefficients P¢1 and sz, the generalized aerodynamic forces and the details
of the pressure functions depend upon all the Fourier coefficients P¢n;
n=1,...,NP. Tables 5 and 6 show, for steady and unsteady flow respectively,
the convergence of these truncated sequences of Fourier coefficients with
respect to the number NP of pressure basis functions employed, for both the
open and closed tunnel wall conditions. The convergence for steady flow

is much more rapid than for unsteady flow.

Table 5. Convergence of P¢n vs. NP for M = 0, k = 0 and ny 10

(flat plate at unit angle of attack)

Wall NP Pwl Py, Pw3 qu
Open 1 3.43262

" 2 3.43262 -.014052

" 3 3.43262 -.014047 .000023

" 4 3.43262 -.014047 .000023 .000006

" 5 3.43262 -.014047 .000023 .000006
Closed 1 4.01647

" 2 4.01640 .008194

" 3 4.01640 . 008188 -.000023

" 4 4.01640 .008188 -.000023 -.000006

" 5 4.01640 .008188 -.000023 -.000006

Table 6. Convergence of Py, VS. NP for M= .5, k = .1 and ny = 10

(flat plate oscillating about midchord-unit maximum angle of attack)

Wall NP Pl’) 1 sz Pw 3

3.60308-.2613101

3.64729-.2603061 -.007670+.5225901

3.64763-.2603451 -.007831+.523485i -.010920+.000024i
3.64772-.2603591 -.007871+.5235351i -.011029+.000015i
3.64776-.2603651i -.007853+.5235531 -.011068+.0000131
3.64779-.2603711 -.007898+.5235721i -.011106+.000012i
3.64780-.260372i -.007900+.5235741i -.011111+.000012i

Open 1
2
3
4
5
0
5

Closed 1 3.77355-.7622771
2
3
4
5
0
5

1
1} 1

3.81694-.7720651 .038394+.5197911i

3.81729-.7722031 .038279+.520718i -.010978+.0008551
3.81739-.7722451 .038244+.520744i -.011093+.0008611
3.81743-.772262i .038232+.520794i -.011134+.000865i
3.81747-.7722801 .038220+.520815i -.011174+.000869i

1
" 1 3.81747-.7722821 .038219+.5208171i ~-.011787+.000869i
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In general, we have found that the convergence of the TWODI program
with respect to the number of pressure basis functions is remarkably good
for steady flow and good for unsteady flow with the program beiné most
efficient for narrow tunnels and low frequencies. The practical utility
of the TWODI program would be improved by the incorporation of more

efficient computer algorithms for deep tunnels and higher frequencies.
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§9. Comparison with the Sahngen solution

For steady incompressible flow in an infinite atmosphere, the results

of the TWODI program can be compared against the exact closed form Sghngen

solution. This solution is given by the SShngen inversion_formula1 (2-25)

or, equivalently, by Bland's solution (3-24) in terms of airfoil polynomials.

We shall utilize the latter because of their elegant simplicity.

Since the downwash polynomials are complete, they may be used as basis

functions for deflections.

In the present comparison, airloads will be

calculated for airfoil deflections, or contours, spanned by the first five

downwash polynomials (Fig.

hn=

3):

Xni n = 1,2,3,4,5.

Written out, the first five downwash and pressure polynomials are

X1 (%)
X2 (%)
X3 (x)
Xy (%)
X5 (x)

Y1 (8)
V2 (E)
V3 (&)
Uy (&)
Vs (&)

Then the downwash functions

1,

~1+2x,

-1-2x+4x2,
l-4x—4x2+8x3,
1+4x-12x2-8x3+16x",

1,

1+2¢,

-1+2£+4E2,
-1-4£+4£2+8E3,
1-4£-1282+8£3+16E".

p— 1
wWn = Xp

lExtensive closed form integrals based on the S&hngen

solutions have been tabulated by Fromme

continuous downwash functions expressed as powers.

and Kussner-Schwarz

(9-1)

(9-2;)
(9-25)
(9-23)
(9-24,)
(9-25)

(9-31)
(9-35)
(9-33)
(9-34,)
(9-35)

(9-4)

[88,1964,App. B and C] for piecewise
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are found to be

wp = 0, ‘ (9-5)
wo = 2X1, (9-52)
w3 = 2X1+4Xo, (9-53)
W = 4X1+2X2+6X3, . (9-5y)
wg = 4x1+6X2+2X3+8Xy, (9-55)

and by equation (3-24), the corresponding pressures are

Ap; (E) = O, (9-67)
Apy (8) = - /%—E 189, (€)1, (9-65)
Bp3 (E) = - /% 1801 (£)+169, (E)1, (9-63)
bpy (§) = - % (169 (£)+80 (£)+24Y3 (£)1, (9-64)
bps () = - % (1631 (£)+24¥; (E)+803 (£)+320s () 1. (9-65)

The results in (9-6), based on the Bland transform, have been checked in-
dependently with the formulas of Fromme, and are in agreement. Numerical
values of pressure are presented in Table 7. Figure 12 depicts the deflection
basis functions and the corresponding pressure functions. These results

have been used to check the predictions of the TWODI code using six pressure
basis functions with nyg = 10% and cy = 10190, To within the six decimal
accuracy of printout,2 the pressures predicted by TWODI are correct for

all five deflections.

2In this work, we adopt a standard of six decimal accuracy as a compromise
between reasonable generality and practical utility. Greater accuracy is
attainable, but we note that six decimal accuracy is already orders of
magnitude above experimental accuracy. However, intermediate calculations,
especially those which occur many times, are performed to higher accuracies
that are established internally in the computer program.
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Table 7. Pressures for the Sohngen comparison

£ Ap; (&) Aps (8) Apg (&) Apy (8) Aps (£)

-.9 0.0060 -34.8712 20.9227 -87.8754 -2.51073
-.8 0.0000 -24.0000 4.80000 -30.7200 -67.5840
-.7 0.0000 -19.0438 -3.80876 -5.33227 -84.2498
-.6 0.0000 -16.0000 -9.60000 7.68000 -81.4080
-.5 0.0000 -13.8564 -13.8564 13.8564 -69.2820
-.4 0.0000 -12.2202 -17.1083 15.6419 -53.1823
-.3 0.0000 -10.9022 -19.6239 14.3909 ~-36.3696
-.2 0.0000 =-9.79796 -21.5555 10.9737 -21.0068
-.1 0.0000 -8.84433 -22.9953 6.01415 -8.56131
0 0.0000 ~8.00000 -24.0000 .000000 . 000000
.1 0.0000 -7.23627 -24.6033 -6.65737 4.11020
.2 0.0000 -6.53197 -24.8215 -13.5865 3.55339
.3 0.0000 -5.87040 -24.6557 -20.4290 -1.54978
.4 0.0000 -5.23723 -24.0913 -26.8146 -10.7258
.5 0.0000 -4.61880 -23.0940 -32.3316 -23.0940
.6 0.0000 -4.00000 -21.6000 -36.4800 -37.2480
.7 0.0000 -3.36067 -19.4919 -38.5805 -51.0016
.8 0.0000 ~-2.66667 -16.5333 -37.5467 -60.7573
.9 0.0000 -1.83533 -12.1132 -31.0537 -59.3324
1.0 0.0000 0.00000 0.00000 0.00000 0.00000

Values of section coefficients may be obtained by inspection of (9-6)
using (3-37) and (3-38). The results are given in Table 8. Again the

predictions of TWODI are corxrrect to within the six decimals of printout.

Table 8. Section coefficients for the Sohngen comparison

Mode Cr, CMm
i 1 0 0
2 -4 0
3 -4 -4m
4 -87 =27
5 -8m -6

To calculate the generalized aerodynamic force matrix, we expand the

deflection functions given by (9-1) in terms of the pressure polynomials.



It is easy to show that

X1 =
X2 =
X3 =
Xy =
X5 =
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Y1,

~2Y1+Yo,
2¢1-2¢o+bg,

=24 +29p~2¢3+y,

2y -29o+2Y3-2¢,+Ps.

Combining equations (9-6), (9-7) and (3-42), we have our final result.

0
0
[Argl = |0
]
0

Again, the TWODI program

-4 -4m -8m -8 |
8m 0 12w am

-8 8T =207 47w
8w -8m 327 ~1l6m
-8m 8n -32m 327 |

is correct to within the accuracy of printout.

(9-77)
(9-72)
(9-73)
(9-74)
(9-75)

(9-8)
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Figure 12, Deflections and pressures for the Sghngen-comparison
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§10. Comparison with the Kissner-Schwarz solution

This section compares the exact closed form Kussner-Schwarz solution
for unsteady incompressible flow in an infinite atmosphere against the
results of the TWODI program. Also, this section presents new and simpli-
fied expressions using airfoil polynomials for unsteady airloads based
on the Kissner-Schwarz solution.

For airfoil deflections spanned by the first five downwash polynomials,

the downwashes are
s .
Wn = (a;-+ ik) xps n =1,2,3,4,5 (10-1)

and it follows that

wy = ikxp, (10-24)
wy = 2x1+ikxg, (10-25)
w3 = 2x1+4xo+ikxs, (10-23)
wy = 4xp+2xo+6x3+ikxy, (10-24)
wg = 4y)+6)o+2)x3+8x,+ikx 5. (10-25)

To organize the calculations, we make use of the inverse of the Bland trans-

form, the Lambda transform and the Theodorsen functional, defined as follows:

a-lw(g) = %{1’ e (10-3)
1
M) =Ty T S AEueax (10-4)
1.0 T
Hw = o {1/ Ew(x)dx (10-5)
Thus,
bp(E) = 4 —;—g{-ﬂ'l - ikA + [1-C(K)]HIW(E). (10-6)

(a) The inverse Bland transform. Since

H 'Xn = ¥n, (10-7)



then

(b) The Lambda transform.
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H_]'W]_ = ik¢1,

H lwy, = 29 +ikyy,

H lwg = 29 +4y,+ikys,

H lw, = 4y1+2¢,+6y3ikyy,,

H lwg = 4P +6Y,+293+8Y,+ikis.

Afll =1 +¢,

Alxl = %ﬁ + %52'

Ax2) = %—+ %g + %ﬁz + %53'

Afx3] = %i + %Ez + %53 + %ﬁu,

Aixt) = j%—+ é%g + fzgz + i%fB + %gu
Hence,

Axy = %wl + %wz,

Axo = %¢1 - %wz + %wa,

hx3 = - %wz - §EW3 + %¢4,

Axy = '%‘”3'“21—4‘1’1++%¢5,

Mxs = - %wu = £B¢5 +

1188,1964,Appendix

C, formulas (C-45) to (C-49)].

Fromme! has shown that

-
ol

o2}
.

(10-81)
(10-8,)
(10-83)
(10-84)
(10-85)

(10-97)
(10-95)
(10-93)
(10-94)

(10-95)

(10-107)
(10-105)
(10-103)
(10-10y)

(10-105)
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Combining equations (10-2), (10-3) and (10-10), we get

hwy = Fikp + Sikyy, (10-11y)
1, 1, 1,

hwp = (1-23K)1 + (1-7dK)¥y + Tikig, (10-115)

Awz = -} - —1k¢z + (l- T7iK)vs + —m.. (10-113)

My = 0 - —1k¢3 (1= 1lk)1pLF + ik¢5, (10-114)

Aws = -y - Likg, + a-taxvs + ik (10-115)

5= 1 e dt 20K Vs *+ TikVe- 5

(c) The Theodorsen functional. Since

2 //1+x X () X, (%) dx = S

and since x1(x) = 1, it follows from (10-2) and (10-5) that

Hwy = ik, (10-127)
Hw, = 2, (10-125)
Hwg = 2, (10-123)
Hw, = 4, (10-124)
Hug = 4. (10-125)

The Fourier solution for pressure now follows.

_
0Py (€) = /125 ((-aike (k) +2k219) (6)+2K205 (€}, (10-13)

Bpa(€) = 1+5 { [-8C (k) ~4ik-2K2]1 ¥} (£) - (k2481k) U (£) +k203 ()},  (10-13)

Ap3 (E) = / l+€ { [-8C (k) +4ik] ¥ (E) ~ (16+k2) Y5 (E)

—(81k+—k2)w3(£)+~k2w4(£)}, (10-133)
Apy (&) —-/ l+£ { [-16C (k) ~41KT¥; (6) -8U; (£) = (24+2K2) 3 (£)

—(8lk+€k2)¢q(5)+5k2w5(€), (10-13,)
Apg(E) = =/ l+£ { [-16C (k) +4iklby (E)-24yPy (E) -8Bz (&)

—(32+5k2)¢u(E)—(8ik+i6k2)w5(E)+§k2w6(E)}. (10-135)
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The section coefficients follow by inspection of (10-13)

C1,
1

C
Ly
CL
3
CL
4

C
LS

™ [-2ikC (k) +k%],

m [-4C (k) -2ik-k2],
m[-4C (k) +2ik],
m[-8C(k)-2ik],

7 [-8C (k) +2ik],

1
ﬂ(ikz)r

1o ..
F(Zk -2ik),

1
ﬂ(-4-zk2),
w{-2),
ﬂ(—6)r

and the generalized aerodynamic forces follow from (3-42) using (9-7)

(10-11).

and

(10-147)
(10-145)
(10-143)
(10-14y)
(10-145)

(10-157)
(10-155)

(10-153)
(10-154)
(10-155)
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w [-2ikC (k) +k?],

n [-4C (k) -2ik-k?],

m [~4C (k) +2ik],

™ [-8C (k) -2ik],
7[-8C (k) +2ik],

™ {4ikC (k) -k?],
n[8C(k)+%k2],
n[8C(k)-8—4ik—%k2],
T[16C (k) -4+4ik],

7 [16C (k)-12~4ik],

m [-4ikc (k) 1,
ﬂ[—8C(k)+4ik-%k2],
n[—8C(k)+16+§k2]:
ﬂ[-16c(k)-4—4ik—%k2],
m[-16C(k)+20+41ik],
m[4ikc(k)],

T [8C (k) - 4ik],
ﬂ[8C(k)—16+4ik-%k2],
n[l6C(k)+l6+i%k2]y
ﬂ[l6c(k)—32-4ik-%k2],
m[-4ikc(k) ],

w [-8C (k) +4ik],

7 [-8C (k) +16~4ik],
n[—lGC(k)—16—4ik—%k2]r

9
n[—16C(k)+48+§6k2].
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(10-167)
(10-165)
(10-163)
(10-164)
(10-165)
(10-16¢)
(10-167)
(10-164)
(10-164)
(10-16, )
(10-16,7)
(10-1615)
(10-16,3)
(10-16;4)
(10-16,5)
(10-16,¢)
(10-1677)
(10-1614)
(10-161 )
(10-16,)
(10-16,;)
(10-16,5)
(10-16,3)
(10-1654)

(10-16,5)
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Numerical values of airloads based on the exact values given by (10-13)
to (10-16) are presented in Tables 9 to 11 and Figure 13. The pilot version
of TWODI will not accept ny = ~, and in its present form is most efficient
for small values of ny and k. Thus, the Kilssner-Schwarz comparison re-
presents a worthy test. Numerical values predicted by TWODI for ny = 300,

k = 1 and NP = 8, presented as the APPENDIX, are seen to be in close
agreement. The aeroelastic effect is bounded by the relative error supremum

norm of the generalized aerodynamic force matrix:

AEXACT (1 _y - aTWODI (p 300
€(a] = 122837 tns E)XACTrs (n=300) llsup _ o504 (10-17)
| ays (nH=”)”sup

This error norm represents the maximum difference between the exact solution
in an infinite atmosphere and the numerical solution by TWODI, considering
the combined effects of numerical inaccuracies, finite tunnel depth, and of

using only eight pressure basis functions.
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Table 9. Pressures for the Kussner-Schwarz comparison with k = 1

I3 Re{Ap;)’ Re (Apy) - Re {Ap3) Re (Apy) Re (Aps)

-.9 -0.00476 -22.1235 39.8542 -58.0293 31.2030
-.8 -1.19673 -17.2664 '19.0216 -10.3985 -45.0000
-.7 1.90178 -15.1291 7.87586 11.3355 -67.3412
-.6 2.39782 -13.7510 0.15838 22.4864 -68.0052
-.5 2.76939 -12.6708 -5.74258 27.4860 -58.0773

-.4 3.05338 -11.7245 -10.4536 28.3354 -43.2973
-.3 3.26916 -10.8415 ~-14.2720 26.1859 -27.2281
-.2 3.42795 ~9.98838 -17.3565 21.8174 -12.2751
-.1 3.53653 ~-9.14889 -19.7975 15.8246 -0.10282
0 3.59891 -8.31548 ~21.6488 8.70238 8.16904
.1 3.61715 -7.48545 -22.9421 0.89173 11.8675
.2 3.59169 -6.65892 -23.6943 -7.19346 10.7190
.3 3.52144 ~-5.83773 -23.9107 -15.1462 4.83414
.4 3.40348 -5.02478 -23.5855 -22.5477 ~-5.27874
.5 3.23253 -4.22359 -22.¢€988 -28.9431 -18.6663
.6 2.99945 -3.43774 -21.2084 -33.8024 -33.8236
.7 2.68808 -2.66984 -19.0296 -36.4390 -48.4592
.8 2.26630 ~1.91849 -15.9772 -35.8007 -58.8993
.9 1.65154 -1.16439 -11.5352 -29.6921 -57.9949
1.0 0.00000 0.00000 0.00000 0.00000 0.00000
I3 Im(Apy) Im(Apsy) Im(Ap3) Im(Apy) Im(Aps)
-.9 -9.,40537 13.9580 5.56891 -10.7213 40.2743
-.8 -6.47322 4.80655 15.3666 -23.1229 41.3507
-.7 =-5.13645 0.00520 19.8108 -25.0513 32.0497
-.6 -4.31548 -3.19563 21.7644 -22.5833 20.3991
-.5 -3.73731 -5.53878 22.1740 -18.0058 9.70705
-.4 -3.29600 -7.32879 21.5109 -12.5557 1.50242
-.3 -2.94050 -8.71875 20.0630 -7.01504 -3.63101
-.2 -2.64268 -9.79529 18.0309 -1.91505 -5.69315
-.1 -2.38547 -10.6108 15.5684 2.37511 -5.06828
0 -2.15774 -11.1978 12.8022 5.60437 -2.39563
.1 -1.95175 -11.5761 9.84331 7.61651 1.52646
.2 -1.76179 -11.7558 6.79503 8.33836 5.81963
.3 -1.58335 -11.7392 3.75865 7.77561 9.59778
.4 -1.41257 -11.5205 0.83939 6.01520 12.0401
.5 -1.24577 -11.0839 -1.84626 3.23568 12.4733
.6 -1.07887 -10.3989 -4.15891 -0.26982 10.4758
.7 -0.90643 -9.40897 -5.91387 -4.04442 6.03222
.8 -0.71925 -7.99927 -6.82594 -7.34788 ~0.18414
.9 -0.49502 -5.87254 -6.31302 ~-8.75717 -6.07319
1.0 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 10. Section coefficients for the Klssner-Schwarz
comparison with k = 1

Mode Cr, Cm

1 2.51156 - 3.38937i 1.57080

2 -9.92033 -~ 5.02312i -.785398 - 6.28319i

3 -6.77874 + 7.543251 -13.3518

4 -13.5575 - 3.763051 -6.28319

5 -13.5575 + 8.80332i -18.8496

Table 11. Generalized aerodynamic forces for the

Klissner-Schwarz comparison with k = 1

r =1 r =2 r =3 r =4 r=25
2.51156 -9.92033 -6.77874 -13.5575 -13.5575
-3.389371 -5.02312i +7.543253 -3.763051 +8.803321
-1.88153 18.2699 -13.1461 14.5486 -10.5842
+6.778741 -2.52013i -15.08651 +7.526111 -17.60661
~1.26007 -15.1283 39.3260 -40.7285 35.7169
-6.778741 +15.08651 +2.520131 -7.52611i +17.60661
1.26007 13.5575 -37.7520 79.2130 -74.2014
+6.778741 -15.08651 +10.04621 -5.040271 -17.60661
-1.26007 -13.5575 36.7080 -78.1658 125.095
-6.778741 +15.08651 -10.04621 +17.60661 +5.040271




v

-84~

40
Re(Apn)
20
0 /N

-40

-60
5

40

In(App)

20
3
2

0 > N
1
4

-20

L]
Figure 13. Pressures for Kussner-Schwarz comparison with k

1




-85~

§11. Verification and extension of Bland's results

Bland [5,1970] presented numerical results for a flat plate oscillating
about the 42.5% chord at M = .85 in a closed wind tunnel with nyzg = 7.5.

His published values of 1lift coefficient magnitude for various frequencies

|cg] = 12.2351 k= 0
lepl = 7.99420 k= .1
lcy] = 5.43549 k= .2

have been verified with the TWODI program, as have his values for generalized
forces, etc.

Bland's results were based on a computer program written only for the
closed tunnel condition cy = ®. We have extended these results to include
the effect of ventilating the wind tunnel walls. Table 12 shows the effect
on cLa of variations in the parameters ny and cy and indicates continuous
behavior with respect to both parameters. Values of cy 3_106 reproduce
Bland's closed wall results for ng = 7.5 and the lift coefficient for
M = .85, ng = 1000 and cy = 10% agrees to six decimals with the well known
infinite atmosphere solution Cry, = 2n1/8. We have since observed that the
numerics are not adversely sensitive to large values of cy and that the
convergence rate of the infinite series in the kernel improves somewhat
with large values of cy/ng. Consequently we now use cy = 10100 to represent
a closed wall condition.

Table 12 also indicates that the effect of ventilation is considerably
more pronounced for narrow tunnels than deep tunnels. Furthermore, for
each value of ng shown, the 1lift coefficient for an open jet tunnel is
lower than the infinite atmosphere value and increases monotonically with
increasing ventilation coefficient until the 1lift coefficient exceeds the
infinite atmosphere value. These calculation therefore indicate that for
every finite value of tunnel depth to chord ratio, there exists a unique
ventilation coefficient such that the 1lift coefficient equals the value
of the 1lift coefficient in an infinite atmosphere. 1In the case of an
infinite atmosphere, the lift coefficient is the same for all values of

ventilation coefficient as is to be expected.
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Table 12. Lift coefficient Cr, VS- "H and ¢y for M = .85 and k = 0

cw g =1 ng = 7.5 hy = 10 ng = 100

0 1.99486(5)! 8.22740(5,10) 8.98389(5) 11.5788(5) 11.8920(3)
1074 1.99506(5) 8.22744(5) 8.98391(5) 11.5788(4) 11.8920(3)
10-2 2.01449(5) 8.23118(5) 8.98630(5) 11.5788(4) 11.8920(3)
1 3.83187(5)  8.57219(5) 9.20734(5) 11.5822(4) 11.8920(3)
10%  20.1757(5)  11.8449(5) 11.7403(5) 11.7513(3) 11.8952(3)
106  21.8952(5) 12.2308(5) 12.0980(5) 11.9257(3) 11.9243(3)
10100 12.2351(5) 12.0121(5) 11.9292(3) 11.9275(3)3

©

o

12.2442(1)2
12.2351(2-20)2

!Numbers in parenthesis indicate the number of pressure basis functions used
in the calculations.

2These results are those of Bland's, which were programmed only for cy

3compare with ng = «, Cr, = 11.9275.

2n/8 =

©

to ventilation coefficient for all values of ventilation coefficient.

Table 12 indicates that section coefficients are continuous with respect

Since

cy can be any nonnegative real number, it is convenient for graphing purposes

to map the domain of cy onto a finite interval.

by the transformation

0w =

cot-lcw

which is equivalent to restating the boundary condition (2-49) as

Then 6y =

open jet tunnel.

p sin By + gs-cos 6w = 0.

Thus, we may call 6y the ventilation angle.

2

This can be accomplished

(11-1)

(11-2)

T
0 corresponds to a closed tunnel and 6y = - corresponds to an

Graphs of

section coefficients vs. ventilation angle are presented in Figures 14 to 16.

Lift and moment are seen to be monotonically decreasing functions of venti-

lation angle.

The ventilation angle at which the 1lift coefficient equals

the corresponding infinite atmosphere value differs from the ventilation

angle at which the moment coefficient equals the corresponding infinite

atmosphere value (alas).

The center of pressure, shown in Figure 16, is

aft of the quarter chord for zero ventilation angle and is forward of the

quarter chord for an open jet.
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Figure 14. Lift coefficient vs. ventilation angle for M = .85,
k=0 and ng = 7.5
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Figure 15, Moment @oefficient vs. ventilation angls for ¥ = .85,
k=0and ng= 7.5
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Figure 1l6. Center of pressure vs. ventilation angle for ® = ,85,
k =0 and ny = 7.5
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§12. Combined effects of depth to chord ratio and wall ventilation

This section presents predictions of the combined effects of tunnel
depth to chord ratio ny and wall ventilation coefficient cy. Since the
number of possible combinations of parameters can be quite large, we shall
restrict the discussion to section coefficients defined for a limited domain
of Mach number, frequency and mode shape;

(1) M =0, 1//2,

(2) x =0, .1,

(3) vertical translation (h), pitch rotation (a),
and to the doubly infinite domain of tunnel depth and wall porosity;

(4) 1 < ng < @,

(5) 0 < cy < =
The resulting section coefficients can then be graphed as surfaces defined
over a two dimensional region of tunnel depth and wall ventilation. It
is convenient for graphing purposes to transform the supporting domain onto
one of finite extent. This has already been partially accomplished in
Section 11 by introducing the ventilation angle Oy as defined by equation

(11-1). sSimilarly we define a tunnel depth angle 6y by

by = cot_lnH (12-1)

which varies from 0 for infinite depth to g—for zero depth. The depth
angle is shown in Figure 17 as the angle between the line perpendicular
to the airfoil passing through the midchord and the line from the midchord
to the point of intersection with the tunnel wall of a line perpendicular

to the airfoil passing through the trailing edge.

|

Figure 17. Wind tunnel depth angle
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For present purposes, however, we shall consider only tunnels with depth

greater than or equal to the airfoil chord. Thus,

0< 6 < (12-2)

L E

We can now represent the section coefficients for all possible values of
ventilation coefficient and tunnel depth to chord ratio as surfaces with

bounded support.

Cr,, = CLa(eH'eW)’ Crp = CLh(eH,ew), etc. (12-3)

o
Figure 18 presents in compact form the complete range of values of
1lift coefficients Cry at M = 0 and X =.0 for all tunnel depths greater
than or equal to the airfoil chord and for all possible values of wall
ventilation coefficient. Several features of this Cr, surface may be
observed. The line 8g = 0 corresponds to a tunnel of infinite depth and
indicates a constant value of Cry = 27 for all values of ventilation co-
efficient as it should, and is in keeping with the condition that the air-
foil pressure not be affected by walls if they are infinitely far away.
The line 6y = 0 corresponds to a completely closed wall and indicates that
ClLy increases as the walls are brought closer together. The amount of
increase in Cr, with depth decreases with increasing ventilation so that
beyond a certain value of 0y, Crq decreases as the walls are brought closer
together. At the present time, we have not investigated if the trend
reversal is reflected by experiment but this question is fundamental and
bears on the validity of the boundary condition (2-49).
Figure 19 shows the Cr, surface for M = l//E-and k = 0, and displays

the same trends as Figure 18 for M = 0. Along the line 6y = 0 (ng = *),
ar
B

This magnification with respect to Mach number is observed throughout the

the value of Cr, equals the expected value of for all values of 0By.
entire Cry surface, but the magnification factor is given by the well known
value %—only for the infinite depth condition 6y = 0.

Figures 20 and 21 show the CM,, surfaces for M = 0, k = 0 and M = l//f,
k = 0 respectively. Since the pitching moment is computed about the quarter
chord, Cqy = 0 along the lines 6y = 0 which correspond to the infinite

depth case ny = . For closed tunnel walls, the moment coefficients increase
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as the walls are brought closer together, the rate of increase being
greater at the higher Mach number. For intermediate values of Oy the
increase with depth angle decreases until the moment coefficients decrease
with increasing 8y, similar to the behavior of the 1lift coefficient surfaces.
Reversal occurs sooner at the higher Mach number.

Figures 22 and 23 show the center of pressure surfaces for the two
Mach numbers. In both figures the center of pressure is at the quarter
chord for infinite depth (6y = 0), as is to be expected. For closed walls,
the center of pressure moves aft as the walls are brought closer together,
more so at the higher Mach number. Again, this trend reverses for venti-
lated walls, more pronounced at the higher Mach number.

Figures 24 to 27 show the surfaces representing magnitudes of 1lift
and moment coefficients for vertical translation and pitch rotation about
midchord at M = 0 and reduced frequency k = .l. Surfaces representing

phase angles are shown in Figures 28 to 31.
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Figure 18, Lift coefficient CLa ve. depth and ventilation for
M=0and’k =0
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Figure 19. Lift coefficient C; vm. depth and ventilation for
M =1//7 aRd k = 0
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Figure 20. Moment coefficient cMa vs. depth and ventilation for

M=0and k = 0
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Figure 21. Moment coefficient Cy vs. depth and ventilation for
M=/’ and k=0
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Figure 22, Center of pressure Xqp vs. depth and ventilation for
M=0 and k=0
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Figure 23. Center of pressure §CP vs. depth and ventilation for
1l and k=0
M=d
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|k

Figure 24. Lift coefficient magnitude ICth vs. depth and ventilation
for M=0 and k=.1
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Figure 25. Lift coefficient magnitude IcLal vs. depth and ventilation
for M=0 and k=.1
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Figure 26. Moment coefficient magnitude ICMh| vs. depth and ventilation
for M=0 and k=.1
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Figure 27. Moment coefficient magnitude ]CM | vs. depth and ventilation
o
for M=0 and k=.1
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Figure 28. Lift phase angle ¢Lh vs. depth and ventilation
for M=0 and k=,1
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Figure 29. Lift phase angle ¢; vs. depth and ventilation or
a
M=0 and k=,1
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Figure 30. Moment phase angle ¢Mh vs. depth and ventilation
for M=0 and k=.1
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Figure 31. Moment phase angle ¢Ma vs. depth and ventilation
for M=0 and k=.1
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§13. _ Effect of ventilation on airfoil-tunnel acoustic resonance
Acoustic resonance between an airfoil and a ventilated wind tunnel

will occur according to the frequency spectrum which is given by
n
kn =55 n=1,2,... (13-1)

based on equation (2-53). The values of reduced frequency at which reso-
nance will occur depend upon Mach number, tunnel depth to chord ratio and
the ventilation coefficient. The effect of Mach number on the resonant
frequencies consists in the factor

B

MI
which indicates that resonance can occur only for compressible flow and
that the resonant frequencies approach zero as the Mach number approaches
one.
The effect of depth to chord ratio on the spectrum is most pronounced

in the factor
1

nH'
indicating that narrow tunnels have higher resonant frequencies whereas
deeper tunnels have lower resonant frequencies, as is to be expected.
Reversing the argument, it may be noted that for a given Mach number and
reduced frequency, there exist infinitely many values of depth to chord

ratio at which acoustic resonance will occur:
B8
ng(n) = —, n=1,2,... (13-2)

The effect of ventilation coefficient cy on the frequency spectrum is

combined with the depth to chord ratio nyg through the relation
W
Apn = Apn(—). (13-3)
n n nH

Referring to Figure 7, the effect of ventilation is to shift the spectrum

within the bounds
1
closed ~ ﬂ(n—aﬁ < Ap £ ™ ~ open

so that increasing the amount of ventilation increases the resonant frequencies.

The maximum fractional change in frequency that can be brought about by
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ventilation alone is to double the fundamental frequency in going from

a closed wall to an open jet. This is illustrated by Table 13.

Table 13. Resonant frequencies vs. ventilation

coefficient for M = ?;-and ng = 10
C = @ cy = 1 cy = 0
(closed) (ventilated) (open)

ki . 090690 .165282 .181380
ko .181380 .332586 .362760
k3 .272070 . 460648 .544140

The effect of acoustic resonance is to cause the pressure to vanish
at the resonant frequency. This is illustrated by Figure 32 for a flat
plate oscillating about the midchord at M = 7;; with three values of venti-
lation coefficient corresponding to a closed wall (cy = «), a ventilated
wall (cy = 1), and an open jet (cy = 0). For comparison, the value of
ICLal at M = 0 is shown also since resonance cannot occur in incompressible
flow. The comparison is striking. Whereas the behavior of ICLal vs. reduced

frequency is smooth for M = 0 with the three curves for cy = 0,1, 32@ ©
3

merging as the frequency increases, the behavior of |CLa| for M = 5 is
quite different. The closed wall condition begins with a relatively large
value of CLa at Xk = 0 and drops to 0 at resonance very abruptly, increasing
for values of reduced frequency beyond resonance to a maximum value of
approximately 60% of its zero frequency value, then dropping to 0 again

at the second resonant frequency, and so on. Similar behavior is evidenced
by the ventilated wall conditions, beginning with a lower value of Cr, 2t

k = 0 and displaying higher resonant frequencies. 1In all cases the drop to
Cr, = 0 at resonance is more abrupt below resonance than above, and the
abruptness appears to decrease slightly at the higher resonant frequencies.
The phase angle is shown in Figure 33 with and without resonance. No
resonance occurs for incompressible flow. 1In all cases a 90 degree phase
lag is predicted at resonance, dropping very abruptly above resonance until
the next resonant frequency, at which point a 90 degree phase lag occurs

~again, and so on.
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closed wall {cy==)
ventilated (cw=1)

open jet (cy=0)

M=0 (resonance does not occur), Ny = 10
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.1 .2 .3
closed wall (cy=w«)
~—— ventilated (cp=1)
/ 2 =10
open jet (cy=0) M= 3.y~
\\
j
|
L : X
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Figure 32. Effect of ventilation on |Cy, | vs. k with acoustic

resonance effects
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Figure 33, Effect of ventilation on ¢y vs. k with acoustic
resonance effects
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§14.  Concluding remarks

The numerical calculation of unsteady airloads on thin airfoils in subsonic
ventilated wind tunnels has been accomplished using Bland's kernel (2-50).
Additionally, we have rigorously proved that the collocation method of
solving Bland's integral equation (2-57) converges to the mathematically
exact solution, and have established a new three-way equivalence between
collocation, least squares and Galerkin's method whenever the collocation
points are chosen as the nodes of the quadrature rule used for Galerkin's
method. This convergence behavior has been demonstrated with the TWODI
program. We point out that the convergence proof, given for the first time
by this work, applies to an arbitrary kernel whose dominant singularity
is of Cauchy type, and is thereby of a general nature. Furthermore the
method of proof, based on converting the integral equation to one of the
second kind, opens up the way to methods of solution and error estimates
not otherwise available for equations of the first kind.

Results from the computer program have been compared with exact closed
form solutions in special cases. Using NP < 10, six decimal accuracy is
obtained for steady flow and three decimal accuracy or better is attained
for unsteady flow. New results are presented showing the effect of wall
ventilation and depth to chord ratio on section coefficients, and on acoustic
resonance between the airfoil and the tunnel walls. While these results
should improve the confidence and precision of wind tunnel testing, it
would be desirable to compare the predictions of the TWODI program with
known experimental data, and with future experimental data for unsteady
flow in ventilated tunnels as they become available.

Although the TWODI program is already sufficiently accurate for most
engineering purposes, large amounts of computer time are required with the
pilot version for very deep tunnels, particularly in unsteady flow. This
time is largely expended in subroutine SUM, and more efficient numerical
algorithms would probably alleviate this difficulty. At higher frequencies,
we have observed a deterioration of the rate of solution convergence with

respect to the number of pressure basis functions. Preliminary indications
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are that the kernel is evaluated accurately but may not be integrated
accurately for high frequencies. Since Hsu's interdigitation procedure
restricts the number of guadrature points to equal the number of pressure
basis functions, it is obvious that for a fixed value of NP, there is a
frequency k at which the factor

e—ikx
in the continuous part of the kernel will render the Jacobi-Gaussian
quadrature inaccurate. (This provides additional incentive for improving
the efficiency of computing the infinite series in subroutine SUM.) While
the physical justification of linearization fails at sufficiently high
frequency [89,1948], a high frequency capability enables the complete
frequency spectra to be calculated, from which point the response to

arbitrary time dependent excitation can follow. It is therefore potentially

valuable to study the problem of numerically computing

1 .
I e~1k (x-8) £ (x-£)dg

accurately for large k and continuous functions f, using a small number of
function evaluations.

Although the convergence proof applies to discontinuous downwash
functions as well, the rate of convergence for airfoils with flaps may
be expected to be weaker owing to a form of Gibb's phenomenon for general-
ized Fourier series. Therefore, as a practical matter, it would be
desirable to extend the solution method to permit the efficient analysis
of multi-control airfoil configurations.

Bland's kernel is based upon a boundary condition which is phenomeno-
logically approximate whenever the tunnel walls are other than fully closed
or an open jet. Removal of this restriction awaits a more rational theory

for ventilated wind tunnel walls.
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