OFT-1 Reference Flight Profile

```
(NASA-TM-74939) OFT-1 REFERENCE FLIGHT
N77-31215
PROFILE. DEORBIT THROUGH LANDING (NASA)
160 p HC A08/MF A01
CSCL 22A

\section*{Deorbit Through Landing}

\title{
Mission Planning and Analysis Division
} August 1977

\section*{N/S^}

Natıonal Aeronautics and Space Adminıstration

\footnotetext{
Lyndon B. Johnson Space Center
Houston, Texas
}

SHUTTLE PROGRAM

\section*{OFT-1 REFERENCE FLIGHT PROFILE}

DEORBIT THROUGH LANDING

By David Heath, Lazarus Gonzales, and moises Montez, Flight Analysis Branch; James M. Hot, Roger Ruda, and Howard C. Kyle, McDonnell Douglas Technical Service Co., Inc.

Approved:



Approved:


National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Mission Planning and Analysis Division
Houston, Texas
August 1977

\section*{ACKNOWLEDGMENTS}

The following organizations have contributed to this document through participation in the OFT Entry-Through-Landing Working Group.

Asțronaut Office
Avionics Systems Engineering Division
Crew Training and Procedures Division
Engineering Analysis Division
Flight Control Division
Ground Data Systems Division
McDonne LL Douglas Technical Services Company
Mission PLanning and Analysis Division
NOAA National Weather Service
Orbiter Project Engineering Office
Program Operations Office
Rockwell Internațional
Space Shuttle Program Office
Structures and Mechanics Division

\section*{CONTENTS}
Section Page
1.0 SUMMARY ..... \(1-1\)
2.0 INTRODUCTION ..... \(2-1\)
3.0 ACRONYMS ..... 3-1
4.0 PROFILE DESCRIPTION ..... 4-1
4.1 Simulation Data ..... 4-1
4.2 Deorbit ..... 4-2
4.3 Entry ..... 4-3
4.3.1 Profile shaping ..... 4-3
4.3.2 Control surface deflection schedules ..... 4-6
4.3.3 Nominal trajectory data ..... \(4-7\)
4.3.4 Aerodynamic crossrange capability ..... \(4-7\)
4.4 TAEM ..... 4-7
4.5 Approach and Landing ..... 4-9
5.0 COMMUNICATIONS AND TRACKING ..... 5-1
6.0 OPEN ISSUES ..... 6-1
7.0 CONCLUSIONS ..... 7-1
8.0 REFERENCES ..... 8-1
APPENDIX ..... A-1
Table. Page
4-I SEQUENCE OF EVENTS FOR OFT-1 ..... 4-11
4.1-I MASS PROPERTIES FOR OFT-1 ..... 4-18
4.1-II OMS LOADING PHILOSOPHY ..... 4-19
4.1-III NAVIGATION SYSTEM MISSION PARAMETERS ..... 4-20
4.1-IV NAVIGATION SYSTEM EXTERNAL MEASUREMENT CONSTRAINTS ..... 4-21
4.2-I OFT-1 LANDING OPPORTUNITIES AT EAFB ..... 4-22
4.2-II DEORBIT PARAMETERS ..... 4-23
4.3-I ORBITER SURFACE TEMPERATURE LIMITS ..... 4-25
4.3-II THERMAL PROTECTION SYSTEM (TPS) SUMMARY ..... 4-26
4.3-III ENTRY/TAEM INTERFACE CONDITIONS ..... 4-28
4.3-IV ENTRY PARAMETERS ..... 4-29
4.3-V DEFINITION OF ENTRY GUIDANCE CONSTANTS ..... 4-30
4.3-VI ENTRY CROSSRANGE CAPABILITY FOR OFT-1 ..... 4-36
4.4-I DEFINITION OF TAEM GUIDANCE CONSTANTS ..... 4-74
4.5-I TAEM/APPROACH AND LANDING INTERFACE CONDITIONS ..... 4-106
4.5-II OFT-1 FINAL APPROACH AND TOUCHDOWN CONDITIONS ..... 4-107
4.5-III definition of approach and landing constants ..... 4-108
5-I OFT-1 C-BAND AND S-BAND COMMUNICATION SEQUENCE OF EVENTS ..... 5-3
'5-II OFT-1 TACAN SEQUENCE OF EVENTS ..... 5-4
5-III S-BAND, C-BAND, AND TACAN STATION LOCATIONS USED FOR OFT-1 DEORBIT THROUGH LANDING ..... 5-5
Figure ..... Page
4-1 OFT-1 deorbit through tanding groundtrack ..... 4-17
4.2-1 Inertial velocity, inertial flightpath angle, and range target lines for orbiter OFT-1 entry interface ..... 4-24
4.3-1 OFT-1 Entry interface through landing groundtrack ..... \(4-37\)
4.3-2 Actual and commanded angle of attack versus relative velocity for orbiter OFT-1 entry ..... 4-38
4.3-3 Entry corridor and flight profile versus relative velocity for orbiter OFT-1 entry ..... 4-39
4.3-4 Surface-temperature critical control points and various panel locations ..... \(4-40\)
4.3-5 Altitude versus range at entry/TAEM interface ..... 4-41
4.3-6 Nominal elevon deflection schedule and actual elevon deflection for orbiter OFT-1 ..... 4-42
4.3-7 Nominal speedbrake deflection schedule versus relative velocity ..... 4-43
4.3-8 Nominal body-flap deflection versus relative velocity for orbiter OFT-1 ..... 4-44
4.3-9 . Delta azimuth, actual and commanded bank angles versus relative velocity for orbiter 0FT-1 ..... 4-45
4.3-10 Reference heating rate versus relative velocity for orbiter OFT-1 ..... \(4-46\)
4.3-11 Surface temperatures versus relative velocity for orbiter OFT-1 ..... 4-47
4.3-12 Altitude versus relative velocity for orbiter OFT-1 ..... 4-48
4.3-13 Actual and reference altitude rate versus relative velocity for orbiter 0FT-1 ..... 4-49
4.3-14 Range to runway threshold versus relative velocity for orbiter OFT-1 ..... 4-50
Figure Page
4.3-15 Lift/drag actual and commanded angle of attack versus relative velocity for orbiter OFT-1 ..... 4-51
4.3-16 Elevon, body flap, and speedbrake deflection versus relative velocity for orbiter OFT-1 ..... 4-52
4.3-17 Dynamic pressure versus relative velocity for orbiter -OFT-1 ..... 4-53
4.3-18 Total Load factor versus relative velocity for orbiter OFT-1 ..... 4-54
4.3-19 X- and Z-body axis components of load factor versus relative velocity for orbiter OFT-1 ..... 4-55
4.3-20 Elevon,-speedbrake, and body-flap hinge moments versus relative velocity for orbiter OFT-1 ..... 4-56
4.3-21 Earth relative flightpath angle versus earth relative velocity OFT-1 ..... 4-57
4.3-22 Entry corridor and flight profile versus time from . entry interface velocity for orbiter OFT-1 ..... 4-58
4.3-23 Relative velocity versus time from entry interface for orbiter OFT-1 ..... 4-59
4.3-24 Delta azimuth, actual and commanded bank angle versus time from entry interface for orbiter OFT-1 ..... 4-60
4.3-25 Reference heating rate versus time from entry interface for orbiter 0FT-1 ..... 4-61.
4.3-26 Surface temperatures versus time from entry interface for orbiter OFT-1 ..... 4-62
4.3-27 Altitude versus time from entry interface for orbiter OFT-1 ..... 4-63
4.3-28 Actual and reference altitude rate versus time from entry interface for orbiter OFT-1 ..... 4-644.3-29 Range-to-runway threshold versus time from entryinterface for orbiter OFT-14-65
4.3-30 Lift/drag actual and commanded angle of attack versus time from entry interface for orbiter 0FT-1 ..... 4-66
Figure Page
4.3-31 Elevon, body-flap and speedbrake deflection versus time from entry interface for orbiter OFT-1 TAEM ..... 4-67
4.3-32 Dynamic pressure versus time from entry interface for orbiter OFT-1 ..... 4-68
4.3-33 Total load factor versus time from entry interface for orbiter OFT-1 ..... 4-69
4.3-34 X- and Z-body axis components of Load factor versus time from entry interface for orbiter OFT-1 ..... 4-7.0
4.3-35 Elevon, speedbrake, and body-flap hinge moments versus time from entry interface for orbiter OFT-1 ..... 4-71
4.3-36 Earth relative flightpath angle versus time from entry interface for OFT-1 ..... 4-72
4.3-37 Altitude versus range to runway threshold for OFT-1 ..... \(4-73\)
4.4-1 TAEM through landing groundtrack ..... 4-81
4.4-2 TAEM dynamic pressure corridor ..... 4-82
4.4-3 TAEM angle of attack corridor ..... 4-83
4.4-4 Altitude and altitude reference (above landing site) versus relative velocity for orbiter OFT-1 TAEM ..... 4-84
4.4-5 Altitude rate and altitude rate reference versus relative velocity for orbiter OFT-1 TAEM ..... 4-85
4.4-6 Actual and reference dynamic pressure versus relative velocity for orbiter OFT-1 TAEM ..... 4-86
4.4-7 Lift/drag and angle of attack versus relative velocity for orbiter OFT-1 TAEM ..... 4-87
4.4-8 Bank angle versus relative velocity for orbiter OFT-1 TAEM ..... 4-88
4.4-9 Elevon, bodyflap, and speedbrake deflection versus relative velocity for orbiter OFT-1 TAEM ..... 4-89
4.4-10 Total load factor versus relative velocity for orbiter OFT-1 TAEM ..... 4-90
Figure Page
4.4-11 \(X\) - and \(Z\)-body axis components of load factor versus relative velocity for orbiter OFT-1 TAEM ..... 4-91
4.4-12 Earth relative flightpath angle versus earth relative velocity OFT-1 TAEM ..... 4-92
4.4-13 Elevon, speedbrake, and body-flap hinge moments versus relative velocity for orbiter OFT-1 TAEM ..... 4-93
4:4-14 Altitude and altitude reference (above landing site) versus time from entry interface for orbiter OFT-1 TAEM ..... 4-94
4.4-15 Altitude rate and altitude rate reference versus time from entry interface for orbiter OFT-1 TAEM ..... 4-95
4.4-16 Actual and reference dynamic pressure versus time from entry interface for orbiter OFT-1 TAEM ..... 4-96
4.4-17 Lift/drag and angle of attack versus time from entry interface for orbiter OFT-1 TAEM ..... 4-97
4.4-18 Body-axis bank angle versus time from entry interface for orbiter OFT-1 TAEM ..... 4-98
4.4-19 Elevon, body-flap, and speedbrake deflection versus time from entry interface for orbiter OFT-1 TAEM ..... 4-99
4.4-20 Total load factor versus time from entry interface for orbiter OFT-1 TAEM ..... 4-100
4.4-21 \(X\) - and Z-body axis components of load factor versus time from entry interface for orbiter OFT-1 TAEM ..... 4-101
4.4-22 Geodetic altitude versus time from entry interface for orbiter OFT-1 TAEM ..... 4-102
4.4-23 Earth relative flightpath angle versus time from entry interface for orbiter OFT-1 TAEM ..... \(4-103\)
4.4-24 Elevon; speedbrake, and body-flap hinge moments versus time from entry interface for orbiter OFT-1 TAEM ..... 4-104
4.4-25 Relative velocity versus time from entry interface for orbiter OFT-1 TAEM ..... 4-105
4.5-1 Approach and landing groundtrack ..... 4-113
4.5-2 Approach and landing geometry ..... 4-114
Figure Page
4.5-3 Altitude of center of gravity above the runway, earth relative flightpath angle, and load factor versus range to threstiold for OFT-1 approach and landing ..... 4-115
4.5-4 Altitude above runway versus altitude rate for orbiter OFT-1. approaching and Landing ..... 4-116
4.5-5 Altitude above runway versus range to runway thres- hold OFT-1 approach and landing ..... 4-117
4.5-6 Speedbrake, body-flap, elevon versus altitude above the runway for orbiter 0 FT-1 approach and Landing ..... 4-118
4.5-7 Dynamic pressure versus time from entry interface for orbiter OFT-1 approach and landing ..... 4-119
4.5-8 Lift/drag and actual angle of attack versus time from entry interface for orbiter OFT-1 approach and landing ..... 4-120
4.5-9 Body-axis bank angle versus time from entry interface for orbiter OFT-1 approach and landing ..... 4-121
4.5-10 Elevon, body-flap, and speedbrake deflections versus time from entry interface for orbiter OFT-1 approach and Landing ..... 4-122
4.5-11 Total load factor versus time from entry interface for orbiter OFT-1 approach and landing ..... 4-123
4.5-12 \(X\) - and \(Z\)-body axis components of load factor versus time from entry interface for orbiter OFT-1 approach and landing ..... 4-124
4.5-13 Elevon, speedbrake, and body-flap hinge moments versus time from entry interface for orbiter OFT-1 approach and landing ..... 4-125
4.5-1.4. Earth relative flightpath angle versus time from entry interface for OFT-1 approach and landing ..... 4-126
5-1 Buckhorn elevation versus azimuth for orbiter OFT-1 ..... 5-6
5-2 Goldstone elevation versus azimuth for orbiter OFT-1 ..... 5-7
5-3 OFT-1 entry groundtrack and TACAN events ..... 5-8
5-4 Postblackout entry groundtrack for orbiter OFT-1 ..... 5-9

\title{
OFT-1 REFERENCE FLIGHT PROFILE \\ DEORBIT THROUGH LANDING
}

\author{
By David Heath, Lazarus Gonzales, and Moises Montez, Flight Analysis Branch; James M. Hiott, Roger Ruda, and Howard C. Kyle, McDonnell Douglas Technical Services Co., Inc.
}

\subsection*{1.0 SUMMARY}

This document presents the Orbital Flight Test Number One (OFT-1) deorbit-through-landing reference flight profile. This profile updates the preliminary OFT-1 deorbit-through-landing reference flight profile (ref. 1). Detailed descriptions and the rationale for the shaping of each phase are included.

Since reference 1 was published, the projected Orbiter weight during entry has increased from 181450 pounds to 183839.8 pounds, and the circular orbital altitude prior to deorbit has increased from approximately 120 nautical miles to approximately 150 nautical miles. The deorbit-through-landing reference flight profile described in this document has been reshaped to accommodate these changes and to provide compatibility with manual flight in the approach and landing phase. In addition, the angle-of-attack profile during the transition phase of entry has been modified slightly.

The Orbiter surface temperatures during entry for this profile have been. maintained at approximately the same Orbiter surface temperatures of the previous profile (ref. 1). Consequently, the heat load during entry for this. profile has increased slightly from that of the previous profile because of the energy that must be dissipated during entry as a result of increased Orbiter weight and orbital altitude.

Providing compatibility with manual flight for the approach and landing phase results in changes to the outer and inner glideslopes from 24 degrees and 3 degrees to 22 degrees and 1.5 degrees, respectively. The modified angle-ofattack profile during the transition phase of entry provides improved trajectory control at initiation of the ramp from the 40 -degree angle of attack required for the high heating region of entry to the lower angle of attack required at the entry/terminal area energy management (TAEM) interface and provides more margin for dispersions at the entry/TAEM interface.

The TAEM flight profile has been reshaped to accommodate the 22-degree glideslope at the TAEM/approach and landing interface; to accommodate the lower dynamic pressure and higher angle of attack at entry/TAEM interface caused by
the modified angle-of-attack profile during entry, and to provide better flight control conditions in the TAEM phase.

The analysis performed in shaping the OFT-1 deorbit-through-landing profile has resulted in requirements to modify the entry and TAEM guidance software. A modification to the entry guidance software is required to provide better control of phugoid damping for the higher drag levels necessary because of increased orbiter weight and increased orbiter altitudes. A TAEM guidance software modification is necessary to provide a better match between the reference profile defined by the entry guidance logic and the reference profile defined by the TAEM guidance Logic at the entry/TAEM interface.

The modification to the entry guidance software has been approved by the Orbiter Avionics Software Control Board (OASCB). A change request for the modifications to the TAEM guidance has been submitted to the OASCB.

OFT-1 will be launched from Kennedy Space Center (KSC) into an approximate 150 -nautical mile altitude circular orbit with a 38 -degree inclination. The deorbit maneuver is initiated at 29 hours 40 minutes 03 seconds ground elapsed time (GET) during the 20 th orbit, with subsequent landing on runway 17 left on Rogers Lake bed at Edwards Air Force Base (EAFB) at 10 hours 58 minutes 50 seconds local time. The 20th orbit was selected for deorbit because this deorbit opportunity provides communications and tracking by the Guam station between deorbit and entry interface and an opportunity for backup deorbit on the following orbit. Following this backup deorbit opportunity, the next deorbit possibility is about 17.7 hours later during the 33rd orbit. The entry ground tracks are generally north of, and clear of, the densely populated Los Angeles area for deorbit during orbits 17 through 21.

The deorbit targeting is biased to provide the capability to achieve the desired entry interface state vector with two orbiter maneuvering system (OMS) engines as planned for the normal deorbit maneuver or with one OMS engine in contingency situations. The minimum deorbit \(\Delta V\) for this biased targeting is 364 fps . However, the OMS tanks are loaded and the OMS propellant is budgeted to provide a deorbit capability if the propellant in one OMS tank is unavailable for deorbit, provided a minimum \(\Delta V\) of 100 fps is available from the reaction control system (RCS) propellant. The availability of this RCS propellant for deorbit using this current loading philosophy, however, is an issue. With this OMS propellant budget, it is necessary to use 3280 pounds excess OMS propellant to achieve the desired longitudinal center of gravity position of 66.25 percent during entry with a resulting orbiter entry weight of 183839.8 pounds. This propellant wasting is accomplished by an out-of-plane component of the deorbit maneuver resulting in a total \(\Delta V\) of 528 fps . This deorbit maneuver is 4 min utes 18.4 seconds in duration with 19 minutes 38.8 seconds free-flight time from the end of the deorbit maneuver to the entry interface. For the one-OMS backup deorbit, the maneuver is 8 minutes 36.8 seconds duration with 15 minutes 18.4 seconds free-flight between the end of the deorbit maneuver and the entry interface. Nominal conditions at entry interface are 3066 nautical miles range-to-go, 25684 fps inertial velocity, and -1.527 degrees inertial flightpath angle.

The entry profile uses a 40-degree angle-of-attack profile to improve the thermal environment to accommodate potential early transition from laminar to turbulent flow on the orbiter underside. The criteria used to shape the entry profile were to ensure structural integrity by limiting the structural temperatures at the expense of higher thermal protection system (TPS) surface temperatures. This may result in the need for TPS tile replacement after the first flight in limited areas of the orbiter. The temperature control phase of the entry profile has been reshaped to accommodate the increased weight and to maintain Orbiter surface temperature to approximately the same temperature as the previous profile (ref. 1). The increased orbiter weight and the higher deorbit altitude, discussed previously, result in an increased heat load for the OFT-1 profile. To help alleviate this increase in heat load, the drag acceleration level in the constant drag phase of entry has been increased \(2 \cdot \mathrm{fps}^{2}\) to \(33 \mathrm{fps}^{2}\). The net result of these changes is an increase of \(978 \mathrm{Btu} / \mathrm{ft}^{2}\) in heat Load with about 1.6 degrees increase in backface temperature. The increase in drag acceleration during the constant drag phase resulted in the need for a modification of the entry Logic to provide a better control of the phugoid. damping after bank reversals. In addition, the entry-through-landing profile is shaped to satisfy flight control system, structural, and sonic boom guidelines and constraints, and yet provide margins to accommodate the effects of dispersions while providing for trajectory control to damp the phugoid motion induced by bank reversals required for crossrange control. The transition subphase of the entry profile is shaped to provide smooth transition into the TAEM phase and to provide runway redesignation capability as late as possible in the entry phase. The entry/TAEM interface occurs at a relative velocity of 2500 fps .

During entry, the angle-of-attack profile is ramped from 40 degrees at 14 500 fps relative velocity to 13.6 degrees at 2500 fps relative velocity. This represents a slight modification from the preliminary reference flight profile (ref. 1.) and provides a smoother drag profile at the initiation of the angle-of-attack ramp, a Lower dynamic pressure in the 6000 to 4000 fps relative velocity region, and more margin for dispersions near the entry/TAEM interface. With this angle-of-attack profile, a maximum crossrange of 550 nautical miles is achievable with margins included for first orbital flight dispersions.

The TAEM phase is shaped within the TAEM flight corridor to provide maneuver margins to compensate for winds and trajectory and aerodynamic dispersions while maintaining descent rates and trajectory turning rates acceptable for compartment venting and sonic boom overpressures. The dynamic pressure at initiation of the TAEM guidance is 215 psf and is approximately constant throughout the supersonic flight regime. The dynamic pressure in this regime is higher than that of the previous profile (ref. 1) and causes a lower angle-of-attack profile to be flown during TAEM thus providing improved flight control conditions. This update is dependent on the implementation of modification to the TAEM guidance flight software, which provides an additional linear reference dynamic pressure as a function of range. The profile is biased toward the undershoot boundary of the TAEM corridor in the transonic region to provide maneuver capability to account for dispersions at the expense of slightly higher sonic boom overpressures. The profile is then ramped to \(285 \mathrm{Lb} / \mathrm{ft}^{2}\) dynamic pressure at the end of the TAEM phase as required by the approach and landing phase. This ramp to \(285 \mathrm{lb} / \mathrm{ft}^{2}\) dynamic pressure differs from the preliminary reference flight profile (ref. 1) that was ramped to \(300 \mathrm{lb} / \mathrm{ft}^{2}\) dynamic pressure. This
change was required to accommodate an update to a 22 -degree steep glideslope in the approach and landing phase. The resulting angle-of-attack profile provides the best conditions possible for the flight control considerations of rolloff, nose slice, lateral directional hysteresis, and aileron hysteresis consistent with maneuver margins and flight corridor limits resulting from other constraints and guidelines. Shaping the TAEM flight profile required an update to the TAEM gujdance flight software to include a linear altitude versus range reference profile at the initiation of the TAEM guidance. This Logic was necessary to better match the slope of the entry profile at entry/TAEM interface thus minimizing trajectory transients at this interface.

The approach and landing phase flight profile has been completely reshaped since the preliminary reference flight profile (ref. 1) was published and is designed to provide compatibility with manual flight. The criteria used to design the approach and landing phase profile were to fly the outer glideslope as shallow as possible while maintaining adequate performance margins, to provide 10 seconds or more flight time on the inner glideslope, and to provide an energy reserve at nominal touchdown corresponding to 5 seconds of flight time. In addition, the approach and .landing phase profile has been shaped to accommodate 50-percent design headwinds and precludes conditions for tailscrape.

Based on these criteria, the approach and landing phase is designed to fly a 22-degree outer glidestope followed by a preflare maneuver onto a 1.5-degree inner glidestope. The 22-degree outer glidestope was chosen because it provides speedbrake settings near midrange capability to account for dispersions at a dynamic pressure of 285 psf. The 285 psf dynamic pressure is necessary to provide 10 seconds of flight time on the inner glideslope and the 5 seconds of energy reserve required at touchdown. Speedbrake retraction occurs at 1800 feet altitude for no-wind and at 4000 feet altitude for 50 -percent design head winds. The actual flight time on the 1.5 -degree glideslope is 9 seconds. Touchdown occurs at 202 KEAS at a 7.09-degree pitch angle for the nowind case.

The location of the outer glideslope ground intersect point was chosen to provide touchdown at about 2500 feet down the runway, which ensures that adequate microwave scanning beam landing system (MSBLS) coverage is available until stable conditions on the 1.5 -degree inner glideslope are achieved. This geometry also provides conditions for acceptable radar altimeter data when the orbiter is about 4000 feet from the runway threshold.

In shaping the OFT-1 approach and landing profile, tradeoff studies between zero- and 50-degree design headwind cases were examined. The normal load factor during the preflare maneuver for the zero-wind case using the OFT-1 autoland guidance constants is marginal. This is an issue that must be resolved.

Open issues to be resolved are OASCB decisions on the proposed guidance software modifications, reevaluation of the OMS loading philosophy, examination of the effects of trajectory variations on sonic boom overpressures, redefining angle-of-attack profiles as flight control considerations are better understood, determining the Orbiter maneuver capability during the TAEM phase, determining the TAEM heading alinement circle (HAC) geometry for optimum MSBLS acquisition and TAEM guidance performance, defining the wind criteria and the corresponding erasable memory data for the two sets of guidance constants required for the

TAEM and approach and landing phases, performing communications and tracking analysis of the deorbit-through-landing trajectory to verify that communication and tracking coverage predicted from simplified models is adequate, and performing orbiter systems analysis of the deorbit-through-landing profile to verify the orbiter's capability to fly the profile.

Issues that have been resolved since the OFT-1 Preliminary Reference Flight Profile for Deorbit Through Landing document (ref. 1) was published are to provide abort-once-around (AOA) landing capability at EAFB by providing yaw ascent steering and to provide compatibility with the manual flight mode by reshaping the approach and landing flight profile.

\subsection*{2.0 INTRODUCTION}

This document presents the Orbiter OFT-1 deorbit-through-landing flight profile that supersedes the Preliminary OFT-1 deorbit-through-landing flight profile (ref. 1). The purpose of this profile is to define the OFT-1 trajectory data for the Orbiter system and subsystem evaluation, flight and Mission Control Center software development and verification, mission techniques development, time-line development, and evaluation of operational suitability.

The OFT-1 profile development was coordinated through the OFT-1 entry-through-landing working group (ref. 2) established by the flight operations panel (FOP) for the purpose of developing the entry-through-landing profiles for the OFT flights. This profitle departs from the expected operational profiles in order to minimize the effects of the thermal environment during entry. This is to accommodate the uncertainties in the thermal environment for the first flight, particularly the uncertainty in the point of transition from laminar to turbulent flow on the Orbiter underside. To accomplish this, the 40-degree angle-of-attack profile used for the early part of entry for operational flights is maintained Longer in the entry phase for 0FT-1 so that energy can be dissipated during entry through the larger drag coefficient for the higher angle of attack, rather than through increased atmospheric density by flying at lower altitudes.

Maintaining the 40 -degree angle-of-attack profile through a longer period of the entry significantly reduces the entry crossrange capability of the Orbiter. This reduction is so large that an AOA return to EAFB requires yaw steering during ascent to reduce the crossrange for \(A O A\).

The OFT-1 mission will be launched from KSC into an approximate 150-nautical mile altitude circular orbit at 38 degrees inclination. The OFT-1 de-orbit-through-Landing flight profile will be updated periodically as open issues are resolved and to reflect the results of assessments by the systems, flight design, and flight operations groups.

Since reference 1 was published, the orbit altitude for OFT-1 has increased from an approximate 120 nautical miles to an approximate 150 nautical miles. This increased orbit altitude provides improved onorbit tracking and communications and is necessary to provide acceptable free-fall time between deorbit and entry interface for mission termination from nominal or backup deorbit opportunities if OMS propellant is loaded to provide deorbit capability using OMS propellant from only one set of tanks. The Orbiter entry weight has also increased from 181499 pounds to 183839.8 pounds. The deorbit-through-landing flight profile discussed in this document has been designed to accommodate these changes and to provide compatibility with manual flight. In addition, the ramp in the angle-of-attack profile from the 40 degrees during the high heating region of entry to the lower angle of attack required at entry/TAEM interface has been modified slightly.

The consequence of a higher orbital altitude and a heavier weight Orbiter is reflected in an increase in heat load during the entry phase, which causes slightly higher backface temperatures than those of the preliminary reference
flight profile (ref. 1). To help alleviate the increasing heat load, a higher drag acceleration level has been designed for the constant drag phase of entry.

The modification to the entry angle-of-attack profile provides better trajectory control at initiation of the ramp in the angle-of-attack profile and provides improved capability to accommodate dispersions in the 5000 fps to 2500 fps relative velocity region.

The flight profile for the TAEM phase has been reshaped to accommodate the changes in conditions at entry/TAEM interface caused by the modified entry angle-of-attack profile and the conditions at TAEM/approach and landing interface required for a 22-degree outer glideslope for the approach and landing phase. The dynamic pressure at initiation of the TAEM guidance is 215 psf and is approximately constant throughout the supersonic regime to provide improved flight control conditions. Holding the dynamic pressure constant during the supersonic regime is desirable, and a modification to the TAEM guidance software to provide an additional linear reference dynamic pressure versus range segment has been submitted to the OASCB to accommodate this update. The flight profile for the TAEM phase is based on a proposed modification to the TAEM guidance software to provide a linear reference altitude range segment at initiation of the TAEM guidance. This modification is necessary to better match the slope of the entry profile at the TAEM interface and thus minimize transients at the entry/TAEM interface. The TAEM dynamic pressure profile is ramped to 285 psf at the end of the TAEM phase to accommodate a 22-degree outer glideslope for the approach and landing phase.

Providing compatibility with manual flight has resulted in a complete update to the approach and landing flight profile (ref. 1). The outer and inner glideslopes have been changed from 24 degrees and 3 degrees, respectively to 22 degrees and 1.5 degrees, respectively. In addition, the profile is designed to provide 10 seconds of flight time on the inner glideslope with an energy reserve at nominal touchdown corresponding to 5 seconds of flight time. The approach and landing phase profile is also designed to accommodate zero to 50 percent headwinds.

Yaw steering during ascent, which has been implemented to provide AOA landing capability at EAFB, also resulted in improved postdeorbit tracking by the Guam station as reflected in an increase in maximum elevation angle from 4.3 degrees for the previous profile to 26.3 degrees for this profile and an increase in tracking time from 3 minutes 21 seconds to 6 minutes.

During the 20th orbit at 29 hours 40 minutes 02.9 seconds GET, a two-OMS deorbit maneuver targeted to provide a one-OMS backup capability is used to initiate entry with subsequent landing on runway 17 Left on Rogers Lake bed at EAFB.

\subsection*{3.0 ACRONYMS :}
\begin{tabular}{|c|c|}
\hline AOA & abort once around \\
\hline AOS & acquisition of signal \\
\hline APU & auxiliary power unit \\
\hline DAP & digital autopilot \\
\hline EAFB & Edwards Air Force Base \\
\hline FCS & flight control system \\
\hline FOP & flight operations panel \\
\hline \(f \mathrm{fp}\) & feet per second \\
\hline 9 & gravity acceleration \\
\hline GET & ground elasped time \\
\hline HAC & heading alinement circle \\
\hline HRSI & high-temperature reusable surface insulation \\
\hline JSC & Johnson Space Center \\
\hline KSC & Kennedy Space Center \\
\hline KEAS & knots equivalent airspeed \\
\hline LOS & loss of signal \\
\hline MSBLS & microwave scanning beam landing system \\
\hline NASA & National Aeronautics and Space Administration \\
\hline OFT-1 & orbital flight test number one \\
\hline OMS & Orbiter maneuvering system \\
\hline psf & pounds per square foot \\
\hline RCC & reinforced carbon-carbon \\
\hline RCS & reaction control system \\
\hline RI & Rockwell International \\
\hline RTLS & return to landing site \\
\hline
\end{tabular}

SVDS space vehicle dynamics simulation
TAEM
terminal area energy management
TPS
thermal protection system
Ve
relative velocity
\(\Delta V\)
velocity increment

\subsection*{4.0 PROFILE DESCRIPTION}

The guidelines and constraints for shaping the OFT-1 deorbit-throughlanding profile are presented in the Appendix. The guideline for landing before 1000 hours local time could not be met for a deorbit that provides tracking and communications between the end of deorbit and the entry interface.

A detailed description of the simulation and performance data used in developing the deorbit-through-landing profile is presented in section 4.1. Detailed discussion of the deorbit, entry, TAEM, and approach and landing phases is presented in sections 4.2 through 4.5. An overall sequence of events is presented in table \(4-\mathrm{I}\). The deorbit-through-landing groundtrack is presented in figure 4-1.

\subsection*{4.1 Simulation Data}

The Orbiter weights and balance data used to design the OFT-1 deorbit-through-landing flight profile are presented in reference 3 (table 4.1-I). The OMS Loading is summarized in table 4.1-II. The OMS system is loaded to provide a backup deorbit capability if the propeltant in one OMS. tank is not available for deorbit. This is achieved by using \(100 \mathrm{fps}{ }_{\Delta} V\) from the RCS propellant tanks and combining this with 82 fps extra \({ }^{V} V\) loaded in each OMS propellant tank. For a nominal deorbit with minimum iv, this extra OMS propellant results in the longitudinal center of gravity being too far aft. Therefore, the nominal deorbit maneuver has an out-of-plane component to use 3280 pounds excess OMS propellant to achieve the desired 66.25 percent longitudinal center-ofgravity position. This results in an Orbiter weight at the entry interface of 183839.8 pounds. However, since the design of the OFT-1 profile was initiated, the amount of RCS propellant available for deorbit, using the philosophy of table 4.1-II, is in the process of being revised. In addition, the amount of RCS propellant (ref. 4) used for onorbit maneuvering has increased. Hence, the OMS loading philosophy must be reevaluated.

The 0FT-1 deorbit-through-landing trajectory was generated using the space vehicle dynamics simulation (SVDS) program (ref. 5). The flight profile is based on zero winds, the 1962 United States standard atmosphere, and the aerodynamic data defined in the December 1976 Design Data Book (ref. 6). The attitude control system for the entry phase is simulated using a 3-degree-offreedom model to represent the Orbiter rotational dynamics. The sideslip angle is assumed to be zero and the angle of attack and bank angle are simulated assuming a \(5.0-\mathrm{deg} / \mathrm{sec}\) pitch rate, a \(1.0-\mathrm{deg} / \mathrm{sec}^{2}\) pitch acceleration, a \(5.0-\) deg/sec roll rate, a 3-degree deadband in entry digital autopilot (DAP), and a \(0.85-\mathrm{deg} / \mathrm{sec}^{2}\) roll acceleration. The flight control system for the TAEM and the approach and landing phase for 3 degrees-of-freedom is simulated by calculating a vehicle inertial attitude matrix and speedbrake deflection by integrating body rate response and speedbrake rate that is based on guidance commands and appropriate limits on the control surface deflection rates. The simulation program used to define the autoland guidance constants was a 6-degree-of-freedom program that utilized the December 1976 aerodynamic data (ref. 6), 50-percent design headwinds, and the flight control system defined in reference 7. Thermal models
used to define TPS surface and backface temperatures are the simplified models described in reference 8. The entry, TAEM, and approach and landing guidance used in simulating the OFT-1 profile is defined in reference 9 . The navigation simulation, used in this reference trajectory is defined in reference 10. The covariance matrix, atmospheric density model, and system constraint limits used in simulating the navigation are presented in tables 4.1 -III and 4.1-IV.

The prime landing site for OFT-1 is runway 17 left on Rogers Lake bed at EAFB. The runway azimuth and the coordinate systems origin with respect to the Fischer 1960 spheroid for runway 17 are 190.06 degrees east of north, 34.902 degrees north geodetic latitude, and 117.842 degrees west Longitude, and 2220.6 feet altitude (ref. 11).

\subsection*{4.2 Deorbit}

The nominal deorbit maneuver occurs during the 20 th orbit at 29 hours 40 minutes 02.9 seconds GET at 22.88 degrees south latitude and 103.64 degrees east longitude. At deorbit, the Orbiter is in a 38-degree inclination orbit with apogee and perigee altitudes of 149 nautical miles and 154 nautical miles, respectively. Table 4.2-I (ref. 4) presents the OFT-1 orbits that have deorbit opportunities with subsequent landings at EAFB. The 20th orbit was chosen for the deorbit maneuver because it provides 6 minutes of Guam station tracking and communications with the Orbiter following the deorbit maneuver. The backup deorbit opportunity from the 21 st orbit provides about 3 minutes postdeorbit tracking and communications with the Guam station. Deorbit from orbits 17, 18, and 19 have no postburn tracking or communications prior to entry interface. Following the 21st orbit, the next opportunity to deorbit and land at EAFB is about 17.7 hours later on the 33 rd orbit. Deorbit on the 20th orbit results in Landing at 10 hours 35 minutes 5 seconds local time, which is inconsistent with the ground rule for landing prior to 1000 hours local time (see Appendix). Landing before 1000 hours in the morning results in a higher probability of low magnitude winds and turbulence at low altitudes. Deorbit on orbits 17 through 21 results in entry groundtracks north of the densely populated Los Angeles area.

The deorbit targeting is biased to provide the capability to achieve the desired entry interface state vector with either a two-OMS nominal deorbit maneuver or a one-OMS contingency deorbit maneuver. The minimum deorbit iv for this biased targeting is 364 fps . However, the OMS tanks are loaded, and the OMS propellant is budgeted to provide a deorbit capability if the propellant in one OMS tank is unavailable for deorbit, provided a minimum \({ }_{a} V\) of 100 fps is available from the RCS propellant. Utilizing the consumable budgets that were baselined for the trajectory computation, it is necessary to use 3280 pounds excess OMS fuel to achieve the desired entry longitudinal center-of-gravity position of 66.25 percent with a resulting Orbiter entry weight of 183838.9 pounds. This propellant wasting is accomplished by an out-of-plane component during the deorbit maneuver. The deorbit maneuver, including propellant wasting, requires a total \(\quad V\) of 528 fps with a burn duration of 4 minutes 18.4 seconds. The free-fall time from the end of thrust termination to entry interface is 19 minutes 38.8 seconds. For the one-OMS contingency backup deorbit,
the maneuver is 8 minutes 36.8 seconds in duration with a free-fall time of 15 minutes 18.4 seconds. Significant. deorbit parameters are summarized in table 4.2-II. Since the design of the OFT-1 profile presented in this document was initiated, the availability of the required RCS propellant for deorbit for one OMS engine failure using the current loading philosophy has become questionable. In addition, the amount of. RCS propellant used for onorbit maneuvers has increased. Therefore, the OMS ! oading requirements will be revised.

The Orbiter attitude at thrust initiation is 166.1 degrees pitch, 47.97 degrees yaw, and 100.4 degrees roll referenced to the local vertical, local horizontal coordinate system defined in. reference 12, with a pitch, yaw, and roll sequence. The roll' attitude is attained before the APU's are started, which is about 5 minutes before the deorbit maneuver, and is maintained throughout the burn and until the preentry trim maneuver at entry interface (EI -5 minutes). This procedure results in the APU venting to be out-of-plane as much as possible to minimize the effects of venting in determining the Orbiter state vector. The aerosurfaces are cycled before entry to thermally condition the hydraulic fluid lines. The targeting criteria for OFT-1 entry are presented in figure 4.2-1. Nominal conditions at entry interface are, 3066 nautical miles range-to-go, 25 684 fps inertial velocity, and -1.527 degrees inertial , flightpath angle.

\subsection*{4.3 Entry}
4.3.1. Profile shaping.- The objective of the entry profile shaping for OFT-1'is to minimize the effects of the TPS thermal environment, maximize the flight control system performance margins, and miṇimize structural loads while providing sufficient maneuver margins to compensate for trajectory, navigation, aerodynamic, and erivironment dispersions. In some cases, these objectives result in conflicting requirements for the entry profile. For example, stortiening the entry range reduces the TPS backface temperatures but increases the TPS surface temperatures unless the angle of attack profile is altered. Increasing the angle-of-attack profile reduces both the TPS surface and backface temperatures because energy is dissipated through the Larger drag coefficient for the higher angle of attack rather than through increased atmospheric density by flying: lower altitudes. But higher angles of attack also increase the problem of damping the phugoid motion introduced by the bank reversals used for crossrange trajectory control. In general, increasing the angle of attack reduces the aerodynamic crossrange capability, reduces the flight control system margins by reducing the angular acceleration about the stability axis, and if the high angle of attack is maintained to low speeds, reduces the postblackout maneuvering capability for removing navigation and other dispersions, and for runway redesignation.

The OFT-1 entry interface through landing groundtrack is presented in figure 4.3-1.

The entry profile developed for OFT-1 is a compromise between the conflicting requirements for profile shaping. Minor modifications were made in two regions of the preliminary reference flight angle-of-attack profile (ref. 1) for this update. One change involves a more gradual quadratic transition from
the 40 -degree angle of attack to the linear ramp extending to TAEM interface. The updated pitchdown quadratic begins at 14500 fps and intercepts the linear segment at 7789 fps. This more gradual angle-of-attack transition causes the drag profile to more accurately follow the reference profile in that velocity region. The second modification involves raising the angle-of-attack profile slightly in the latter part of the transition phase from 4500 fps to TAEM interface. This improves the equilibrium glide load factor/dynamic pressure corridor in this region. Basically, the angle-of-attack profile for OFT1 differs from the design entry profile developed in order to achieve a high crossrange by maintaining the initial entry angle of attack to lower speeds, thus eliminating the ramp to the lower angle-of-attack levels required for high crossrange. The OFT-1 angle-of-attack profile is presented in figure 4.3-2.

With this angle-of-attack profile, the entry corridor as limited by TPS surface temperatures, structural loads, flight control considerations, and the equilibrium glide capability can be defined. This latter constraint must be met to ensure that the flight conditions can be sustained (i.e., no subsequent trajectory transients will necessarily occur) and that crossrange maneuvering is possible. The corridor, as limited by these considerations, is presented in figure 4.3-3 in the drag acceleration ( \(D / \mathrm{m}\) ) Earth-relative velocity plane.

The TPS backface temperature is minimized by dissipating the Orbiter kinetic and potential energy as quickly as possible within the limits defined by systems and by flight dynamic constraints as illustrated in figure 4.3-3. This is achieved by maintaining the drag acceleration as high as possible throughout entry. The higher the TPS surface temperatures, the higher the permissible drag acceleration level in the critical high-speed region of entry; therefore, to minimize the backface temperatures, the TPS surface temperatures must be as high as possible. The backface temperature is more sensitive to the drag acceleration Level at the higher speeds during entry and is relatively insensitive to the drag acceleration level at speeds below 10000 to 12000 fps. The entry trajectory shaping policy is to maintain high drag acceleration during entry consistent with the systems and flight dynamics constraints. This results in minimum entry range, entry flight time, and TPS backface temperatures.

The design drag velocity profile for this update differs from that of the preliminary reference flight profile (ref. 1) in the temperature control phase. This was accomplished to minimize the heat load increase while maintaining the same surface temperatures as on the previous profile considering the increases in vehicle weight and apogee altitude for this update. The temperature control phase of this entry profile is consistent with the philosophy used in shaping the preliminary reference flight profile to maintain margins in structural temperatures at the expense of higher surface temperatures and possible refurbishment of limited TPS surface tiles for OFT-1. In addition, the design constant drag level was increased from \(31 \mathrm{fps}^{2}\) to \(33 \mathrm{fps}^{2}\) to aid the heat load minimization The increase in weight and apogee altitude caused the heat load to increase by about \(1100 \mathrm{Btu} / \mathrm{ft}^{2}\) on the preliminary OFT-1 trajectory. Optimizing the drag-velocity profile in the temperature control phase and raising the constant drag level to \(33 \mathrm{fps}^{2}\) reduced this heat load increase to \(978 \mathrm{Btu} / \mathrm{ft}^{2}\) over the preliminary reference profile (ref. 1).

In shaping the OFT-1 entry profile, the TPS surface temperatures were , evaluated at five locations as illustrated in figure 4.3-4. The surface :temperature limit is 2800 degrees, which for the high-temperature reusable súrface insulation (HRSI) material is the limit for one-mission capability and greater than one-mission capability-for the reinforced carbon-carbon (RCC) reusable. material. Because the TPS surface temperatures are computed using a simplified TPS model, these limiting temperatures must be adjusted to account for the error in surface temperatures resulting from inaccuracies in temperature prediction. Further, in some cases, the point chosen for surface temperature evaluations in the simplified model is not the most critical point from a surface temperature standpoint; and adjustments in allowable temperatures must be made to compensate for this effect. This is true for control point 5 located at the RCC/HRSI interface on the underside of the fuselage on the Orbiter centerline. The most critical temperature in this region is not located at this interface but at the chine; thus, the allowable surface temperature at control point 5 is adjusted to ensure that the temperature at the RCC/HRSI interface at the chine remains within limits. Also, allowances must be made for the effects of trajectory dispersions and control surface (elevon and body-flap) deflection from the nominal setting required for aerodynamic trim. These effects on TPS surface temperatures and the resulting limits on the nominal value of surface-temperatures, calculated using the simplified TPS model, are presented in table 4.3-I.

These timits on the nominal surface temperatures are translated into constraints on the entry corridor in figure 4.3-3: The limiting surface temperatures are for the RCC/HRSI interface on the underside of the fuselage control point 5) and for the outboard tip of the elevon underside (control point 4): Also shown in figure 4.3-3 are the effects of the remainder of the constraints and the guidelines on the entry corridor. On the first orbital flight, it is desirable to limit the structural loads to 2.Oginormal load factor, which is 80 percent of the design value of 2.5 g 's. Also shown for information purposes is the 1.5 g normal load factor line..

The equitibrium glide lines define the minimum drag level that the time rate-of-change of.flightpath angle, \(\dot{y}\) can be maintained equal to, or greater than, zero. Thus, this line defines the limit for sustaining equilibrium flight. Although flight conditions with Lower values of drag acceleration can be achieved, this condition is temporary, and a subsequent trajectory transient to higher drag acceleration will occur. This equilibrium glide boundary is a function of bank angle as well as angle of attack and Earth-relative speed. Therefore, the boundaries were defined for the minimum bank angles used by the entry guidance to ensure a turning capability for crossrange maneuvering... This minimum bank angle is a function of entry speed with higher values required to overcome the higher inertia at high speeds. Thus, the entry guidance uses two discrete levels of minimum bank angle to achieve turning: 37 -degrees at high speeds and 20 degrees at low speeds. These bank angle limits result in significant turning capability with little loss in entry-corridor because turning capability and entry corridor are functions of the sine and cosine of the bank angle, respectively.

As mentioned earlier, this update to the OFT-1 reference trajectory reflects a weight increase to 183.839 .8 pounds and an orbital apogee altitude increase to 150 nautical miles with the objective of maintaining the same
maximum surface temperatures. The entry profile was reshaped to minimize the backface temperature increase. The resulting nominal entry profile is presented in figure 4.3-3 along with the entry corridor. The summary of the resulting thermal environment for several surface panels and the five control points is presented in table 4.3-II. The TPS panel locations are presented in figure 4.3-4.

The low-speed part of the entry profile, during transition to the low angle-of-attack and trajectory conditions at the TAEM interface, was shaped to achieve the desired TAEM initial flight conditions and to maintain the entry profile at the location in the entry corridor that maximizes the capability to compensate for navigation, aerodynamic, and environmental dispersions while providing a capability for postblackout runway redesignation. The flight conditions at this interface were defined by selecting the TAEM profile that properly positions the TAEM profile within the TAEM flight corridor and by designing the entry profile to achieve these conditions. The dynamic pressure at the interface is about \(215 \mathrm{lb} / \mathrm{ft}^{2}\) (sec. 4.4). During the transition phase, the entry profile must achieve this flight condition while maintaining the entry profile properly located within the flight corridor to provide maneuver capability to accommodate dispersions and runway redesignation. Because the bank angle essentially determines the location of the flight profile within the corridor, and hence the maneuver margins, the angle of attack is selected to achieve the desired dynamic pressure at the bank angle that provides the necessary maneuver margins. This angle of attack at the interface is compatible with the entry profile, at a higher speed, in that the angle-of-attack profile during transition provides maneuver margins for trajectory control and also results in a profile that provides good flight control characteristics. The resulting interface conditions are summarized in table 4.3-III. These flight conditions provide a smooth transition into the TAEM phase as illustrated in figure 4.3-5, which shows that the entry profile slope is the same as the desired or reference profile slope for the TAEM profile at the interface.

\subsection*{4.3.2 Control surface deflection schedules.- The nominal deflection sched-} ules of the aerodynamic control surfaces are designed to aerodynamically trim the Orbiter to minimize the attitude control moments required from the RCS system and to maximize the effectiveness of the control surfaces to provide Orbiter attitude control while maintaining aerodynamic heating on the control surfaces within limits. The nominal and actual elevon, speedbrake, and body-flap deflection schedules to accomplish this are presented in figures 4.3-6, 4.3-7, and 4.3-8, respectively. During the period of high aerodynamic heating, the speedbrakes are fully retracted to minimize the aerodynamic heating on these surfaces, and the elevon and body-flap deflection schedules are balanced to control the surface temperatures of these two control surfaces. At speeds above 12000 fps, the elevon is deflected 2 degrees up, and the body flap is deflected 5 degrees up during most of this region. There is a discontinuity in the elevon deflection at about 13700 fps , which results from a discontinuity in the aerodynamic coefficients when the use of viscous aerodynamic effects is terminated in the simulation. A linear ramp is introduced in the elevon schedule at 12000 fps to move the elevon to a 2.5-degree down deflection. This down deflection is necessary to ensure that the rolling moment, due to aileron deflection, is not balanced by the rolling moment from the yaw angle induced by the aileron deflection. This provides the capability to use the aileron to compensate for
the aerodynamic moments caused by Lateral center-of-gravity. offset and aerodynamic asymmetries.

After switching to the Late entry flight control system that uses the rudder to assist in attitude control, it is necessary to move the elevon to a small up deflection to prevent the ailerons from inducing an adverse yaw that must be compensated for by the rudder. In the subsonic speed range, the elevon is deflected down to reduce the elevon hinge moment. The transition between the different levels of constant elevon deflection is scheduled at approximately the maximum rate for which the body flap can drive to the required deflection to achieve aerodynamic trim.

The speedbrakes are deflected to a full out position at a speed of 8000 fps to induce a pitch up moment so that the elevon can normally be deflected down in this region. Conversely, at a speed of 3000 fps when the elevon is moved to an up position, the speedbrake is moved to a smaller deflection to reduce the pitch up tendency. At subsonic speeds, the nominal speedbrake deflection schedule is the midvalue to allow for modulation for speed control. The body-flap schedule is used to balance the pitching moment to trim the Orbiter.
4.3.3 Nominal trajectory data.- Significant trajectory parameters for the entry through landing are presented in tables 4.3-IV and figures 4.3-10 through 4.3-35. The constants for the entry guidance are presented in table 4.3-V.
4.3.4 Aerodynamic crossrange capability.- The aerodynamic crossrange capability for the OFT-1 is illustrated in table 4.3-VI. The maximum crossrange capability is 753 nautical miles. Allowing 95 nautical miles for entry dispersions and an additional 88 nautical miles for a first flight safety margin reduces the crossrange capability to 570 nautical miles. Allowing for a projected 20 -nautical mile increase in crossrange dispersions, the recommended crossrange limit for OFT-1 is 550 nautical miles.

\subsection*{4.4 TAEM}

The primary factors that influence the shape of the trajectory during the TAEM phase are aerodynamic maneuver capability, compartment venting, allowance for dispersions and winds, sonic boom overpressures, and flight control considerations. In some cases, these factors result in conflicting requirements on the trajectory shape. For example, the best profile for minimizing sonic boom overpressures and structural problems, which result from compartment venting, is a profile with low dynamic pressure and high angle of attack in the transonic region; whereas, the dynamic pressure should be higher and the angle of attack lower in this flight regime to optimize the flight control system performance and maneuver capability to compensate for winds and dispersions. The OFT-1 TAEM profile shaping objective is to provide flight conditions that result in a proper balance of these conflicting considerations.

The OFT-1 TAEM through landing groundtrack is presented in figure 4.4-1.
. The constraints and guidelines that define the flight corridor during the TAEM region are presented in figures \(4.4-2\) and \(4.4-3\) in the dynamic pressure

Earth-relative velocity plane and in the angle-of-attack Mach number plane, respectively. Figure 4.4-2 presents the flight limits for the structural and flight control systems, the ground level sonic boom overpressure, the minimum dynamic pressure when constrained to operate on the front side of the L/D curve, and the descent rate guidelines for minimizing pressure differentials across the Orbiter structure and skin resulting from compartment venting. The sonic boom guideline is for a \(2.0 \mathrm{lb} / \mathrm{ft}^{2}\) ground level overpressure and is based upon the data and analysis presented in reference 13. Since the preliminary profile (ref. 1) was published, an assessment (ref. 2) of compartment venting has shown that acceptable venting conditions are maintained for dynamic pressures less than 300 psf in the transonic regime and that venting is less restrictive than the flight control system limit (fig. 4.4-2) in the supersonic and subsonic regimes.

The angle-of-attack corridor presented in figure 4.4-3, defines the angle-of-attack limit for the flight control system as defined in reference 2. Also shown in this figure are the regions where the Orbiter has a tendency for roll off, nose slice, buffet onset, and lateral directional instability. Although the effect of these characteristics on the flight control system performance is not expected to be unacceptable, these regions are avoided to the extent possible for OFT-1 to obtain flight performance data before full commitment to flying in these regions.

The nominal TAEM dynamic pressure profile is also presented in figure 4.4-2. The dynamic pressure at initiation of TAEM guidance is 215 psf and is approximately constant throughout the supersonic regime. This dynamic pressure profile results in an angle-of-attack profile (fig. 4.4-3) in the supersonic regime which provides improved flight control conditions for lateral directional stability. This profile is contingent on a modification to the TAEM guidance to provide an additional reference altitude versus range segment. During the transonic flight regime, the profile was biased toward the undershoot boundary to provide maneuver capability to compensate for wind dispersions in this flight regime. Detailed analysis is required to establish the actual sonic boom overpressure profile, but because the profile is similar to the preliminary flight profile (ref. 1), the sonic boom overpressure is expected to be about 2 psf. During the subsonic TAEM region, the dynamic pressure is ramped to the \(285 \mathrm{lb} / \mathrm{ft}^{2}\) level required by the approach and landing phase. The resulting angle-of-attack profile for OFT-1 is shown in figure 4.4-3 and is consistent with the constraints and guidelines defined for flight control considerations.

Significant trajectory parameters for the TAEM and approach and landing phases are presented in figures 4.4-4 through 4.4-25. Figure 4.4-7 illustrates no significant discontinuity in the angle-of-attack profile but illustrates a change in slope of the profile to achieve low angles of attack required during the transonic region.

Figure 4.4-8 shows a discontinuity in the bank angle at the entry/TAEM interface. Actually, this discontinuity would have been larger if the crossrange trajectory control resulted in a change in the sign of the bank command across this interface. This result would be similar to the effects of bank reversals that are a normal part of the entry control mode and should present no unusual problems.

The TAEM profile was shaped assuming that the TAEM guidance software would be modified to include a Linear reference altitude segment as a function of range at initiation of the TAEM guidance. This modification is required to eliminate transients that might occur because the slope of the cubic. reference abtitude versus range relationship does not correspond to the flightpath angle at the entry/TAEM interface point. The TAEM guidance constants: required for this profile are presented in table 4.4-I.

\subsection*{4.5 Approach and Landing}

The approach and landing phase consists of a 22-degree steep glideslope followed by a preflare maneuver to a 1.5 -degree shallow glidestope with a final flare maneuver just prior to touchdown. These glideslopes and the geometric parameters associated with them are designed specifically for the weight and configuration of the OFT-1 Orbiter vehicle.

The outer glideslope is designed to be as shallow as possible to provide the lowest descent rate and the least demanding maneuver in making a transition to the shallow glideslope and yet to be steep enough to maintain sufficient speedbrake reserves to cope with varying winds and dispersions. Additionally, an airspeed is maintained that provides the velocity at preflare that provides 10 seconds of flight time on the inner glideslope and the desired touchdown conditions. The design values of a 22-degree outer glideslope and 290 KEAS (285 psf dynamic pressure) satisfy these conditions.

The inner glideslope is designed to be as shallow as possible to minimize the sink rate when close to the ground and to require only a slight.final flare prior to touchdown and yet to be steep enough. to provide reasonable ground clearance while on final approach. A 1.5-degree shal'low glideslope meets these conditions better than the 3.0 -degree inner glideslope of the OFT-1 preliminary reference flight profile (ref. 1).

Flight profile design considerations associated with the inner glidestope include providing 10. to 15 seconds of flight time after completion of the preflare, maneuver and prior to touchdown (ref. 14), both in the presence of 50percent headwinds and in a nowind condition, and to ensúre MSBLS coverage is available down to an altitude at which the Orbiter is in stable flight on the inner glideslope and is receiving radar altimeter information.

The autoland guidance routines are presently designed such that four sets of approach and landing phase geometric parameters are available to account for two ranges of Orbiter weights and for varying wind conditions. The parameters used in this profile are designed to provide acceptable conditions for the. OFT1 Orbiter weight and zero- to 50 -percent design headwinds. The geometry is designed such that with the 50 -percent design headwind, enough energy is available at the preflare position to provide the desired final. approach and touchdown conditions. For the no-wind environment, the speedbrake is held in its deployed s.tate longer to reduce the energy available at the same preflare position resulting in approximately the same final approach and touchdown conditions.

TAEM/approach and landing interface conditions are presented in table 4.5-1. The groundtrack for approach and landing is presented in figure 4.5-1.

The targeted touchdown conditions are 190 KEAS, -3.0 fps altitude rate with touchdown at 2000 to 3000 feet down the runway from the threshold. This touchdown speed was determined by defining the "tailscrape" velocity (as a function of pitch angle, weight, and configuration) for this vehicle to accommodate either a hot or cold day at EAFB and adding a delta velocity that corresponds to 5 seconds of flight time as recommended in reference 13. The tailscrape airspeed ( 168 KEAS) and the 5 -second extra flight time (about 22 KEAS) result in a targeted nominal touchdown airspeed of about 190 KEAS. The altitude rate at touchdown was chosen to assure a firm touchdown so that a "ground effect" float would not be probable. The touchdown position down the runway was chosen so that MSBLS coverage, because of its vertical coverage limitations, was available until stable flight conditions were achieved on the inner glideslope.

Since the aerodynamic drag increases when the landing gear is deployed, they are deployed as late as possible in the approach and landing phase at 300 feet altitude above the runway. This allows the energy to dissipate at a slower rate thus providing more time on the inner glideslope.

The OFT-1 autoland guidance parameters are designed for the 50-percent wind condition and were verified using a 6-degree-of-freedom simulation. Evaluation of the no-wind case has indicated that the load factor during the preflare maneuver (for the no-wind case) is marginal. The guidance constants must be refined to alleviate this problem. Touchdown conditions resulting from 6 -degree-of-freedom simulations of the zero and nowind cases are presented in table 4.5-2. Table 4.5-2 also includes the touchdown conditions resulting from the 3 -degree-of-freedom SVDS simulation used to define the OFT-1 reference flight profile for deorbit through landing.

The variable speedbrake retraction altitude logic provided by the guidance is used to control the energy at preflare to the design conditions. This retraction logic causes the speedbrake to retract at 4000 feet and 1800 feet respectively, for the 50- and zero-percent design headwinds.

The steep glideslope ground intersection and the preflare geometry were determined so that a midrange speedbrake (55- to 60-degree "hinge line") would be utilized during equilibrium conditions (no-wind) on the steep glideslope and so that the preflare maneuver with a maximum normal acceleration of approximately 1.45 g 's, would result in an initial 1.5-degree glideslope airspeed of about 250 KEAS. This airspeed provides from 10 to 15 seconds of stabilized flight on the inner glideslope prior to main gear touchdown plus the 5 seconds of reserve flight time at touchdown.

The approach and landing geometry is presented in figure 4.5-2. TAEM/approach and landing guidance constants are presented in table 4.5-III. Figures 4.5-3 through \(4.5-14\) present detailed plots from the 3-degree-of-freedom simulation for some specific parameters describing approach and landing conditions.

TABLE \(4-\mathrm{I} . \mathrm{m}^{-}\)SEQUENCE OF EVENTS FOR OFT-1
(a) Deorbit through landing
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Start time, hr:min:sec (GET)} & \multirow[b]{2}{*}{\(\Delta t\) of event, min: sec} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\begin{gathered}
\text { Altitude, }{ }^{\text {ft }} \\
\hline
\end{gathered}
\]}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Relative velocity, fps}} & \multirow[b]{2}{*}{Relative heading, deg} & \multirow[b]{2}{*}{\(\qquad\)} & \multirow[b]{2}{*}{\(\qquad\)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Geodetic \\
tatitude,
\(\qquad\)
\end{tabular}} & \multirow[b]{2}{*}{Total vehicte weight, ib} & \multirow[b]{2}{*}{\begin{tabular}{l}
c.g. \\
location, percent \(x\)
\end{tabular}} & \multirow[b]{2}{*}{QMs
propellant
used,
\(l b\)} & & \multicolumn{3}{|c|}{Maneuver parametersb} \\
\hline & & & & & & & & & & & & & & \[
\begin{array}{r}
4 v \\
f+s
\end{array}
\] & \[
\begin{aligned}
& \text { Roll, } \\
& \text { deg }
\end{aligned}
\] & Pitch, deg & Yaw, deg \\
\hline Deorbit burn initiation (TIG) & 29:40:03 & 00:00 & 918 & 905 & & 157 & 56.868 & . 011 & 103.635 & -22.881 & 193957 & 67.62 & & & \({ }^{1} 100.45\) & 166.05 & 47.97 \\
\hline Deorbit burn termination & 29:44:21 & 04:19 & 909 & 298 & 23 & 817 & 52.749 & \(-.150\) & 117.601 & -13.397 & 184057 & 67.62 & 9653 & 528 & 106.07 & 176.15 & 48.29 \\
\hline Initiate postdeorbit attitude maneuver & 29:44:51 & 04:49 & 906 & 465 & 23 & 820 & 52.354 & -. 206 & 119.129 & -12.249 & 184055 & 66.25 & & & 106.03 & 176.13 & 48.29 \\
\hline Terminate postdeorbit attitude maneuver & 29:46:21 & 06:19 & 894 & 035 & 23 & 836 & 51.398 & -. 375 & 123.631 & -8.751 & 184055 & 66.25 & & & -90.56 & - 73 & \(-40 \times 37\) \\
\hline Guam 5-band acquisition (elevation \(=3 \mathrm{deg}\) ) & 29:51:02 & 10:59 & 819 & 169 & 23 & 929 & 50.538 & --869 & 137.321 & 2.490 & 184055 & 66.25 & & & & & \\
\hline Guam s-band Los (elevation \(=3\) deg) & 29:57:09 & 17:06 & 651 & 075. & & & 54.252 & \(-1.358\) & 155.961 & 16.925 & 184055 & 66.25 & & & & & \\
\hline Initiate AFU system warmup & 29:52:53 & -11:05 & 775 & 816 & & & 51.064 & \(-1.038\) & 142.762 & 6.948 & 184055 & 66.25 & & & & & \\
\hline Maneuver to entry attitude completed & 29:58:54 & -08:59 & 591 & 085 & & & 56.495 & \(-1.458\) & 161.856 & 20.800 & 183840 & 66.25 & & & & & \\
\hline Initiate entry guidance MM304 & 29:58:58 & -04:59 & 588 & 712 & - 24 & & 56.590 & \(-1.461\) & 162.087 & 20.943 & 183840 & 66.25 & & & & & \\
\hline
\end{tabular}
\(a_{\text {Altitude }}\) of c.g. above 1960 Fischer ellipsoid.
bpitch, yaw, roll sequemce defined in reference 12.

TABLE 4-In- Continued
(b) Entry interface through landing
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & Start time, hr:min:sec (GET) & \(\Delta t\) of event, min:sec & \[
\begin{gathered}
\text { Altitude, a } \\
\mathrm{ft}
\end{gathered}
\] & Relative velocity, fps & Relative heading, deg & \(\qquad\) & Longitude +east, deg & Geodetic latitude,
\(\qquad\) deg & \[
\begin{aligned}
& \text { Total } \\
& \text { vehicle } \\
& \text { weight, } \\
& \text { lb } \\
& \hline
\end{aligned}
\] & c.g., Location, percent \(x\) & Mach
number \\
\hline Entry interface & 30:03:58 & 00:00 & 400000 & 24452 & 66.068 & -1.604 & -178.898 & 30.473 & 183840 & 66.25 & 18.52 \\
\hline Activate aerocontrol surfaces & 30:06:05 & 02:07 & 317028 & 24549 & 71.467 & -1.591 & -169.792 & 33.496 & 183840 & 66.25 & 26.35 \\
\hline Deactivate RCS roll thrusters & 30:07:24 & 03:26 & 304438 & 24559 & 72.363 & \(-1.575\) & -168.341 & 33.892 & 183840 & 66.25 & 27.16 \\
\hline Initiate temperature control phase; enter S band communications blackout & 30:07:29 & 03:31 & 264217 & 24493 & 75.532 & -1.308 & -163.300 & 35.094 & 183840 & 66.25 & 27.71 \\
\hline Deactivate RCS pitch thrusters & 30:07:59 & 04:02 & 250205 & 24318 & 77.087 & -. 870 & -160.887 & 35.576 & 183840 & 66.25 & 26.46 \\
\hline Initiate drag updating in navigation filter & 30:08:26 & 04:29 & 242806 & 24062 & 78.969 & -. 553 & -158.768 & 35.943 & 183840 & 66.25 & 25.61 \\
\hline Initiate equiLibrium glide phase & 30:11:54 & 07:56 & 218631 & 20566 & 98.429 & -. 306 & -143.161 & 36.382 & 183840 & 66.25 & 20.44 \\
\hline Initiate constant drag phase & 30:13:36 & 09:38 & 210165 & 18167 & 104.263 & -. 750 & -136.748 & 35.184 & 183840 & 66.25 & 17.72 \\
\hline Pt. Pillar C-band acquisition (AOS +60 sec ) & 30:16:24 & 12:26 & 181838 & 12914 & 91.894 & -. 775 & \(-128.300\) & 34.034 & 183840 & 66.25 & 12.06 \\
\hline Exit S-band communications blackout & 30:16:50 & 12:52 & 176848 & 12041 & . 89.009 & -. 934 & -127.203 & 34. 026 & 183840 & 66.25 & 11.19 \\
\hline
\end{tabular}

\footnotetext{
a Altitude of \(^{\text {c.g. above. } 1960 \text { Fischer ellipsoid. }}\)
}

TABLE 4-I.- Continued
(b) Entry interface through landing
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Start time, hr:min: sec (GET) & \(\Delta t\) of event, min:sec & \[
\begin{gathered}
\text { Altitude, }{ }^{\text {ft }} \\
\mathrm{ft}
\end{gathered}
\] & Relative velocity, fps & Relative heading, deg & Relative flightpath angle, deg & \[
\begin{aligned}
& \text { Longitude } \\
& \text { teast, } \\
& \text { deg } \\
& \hline
\end{aligned}
\] & Geodetic Latitude, deg & Total vehicle weight, Lb & c.g., Location, percent \(x\) & Mach number \\
\hline Vandenberg Cband acquisition (AOS +60 sec ) & 30:16:51 & 12:53 & 176470 & 11979 & 88.790 & -. 947 & -127.127 & 34.047 & 183840 & 66.25 & 11.13 \\
\hline Initiate transition phase & 30:17:16.4 & 13:19 & 171228 & 11176 & 85.744 & -1.162 & -126.183 & 34.064 & 183840 & 66.25 & 10.33 \\
\hline Exit L-band blackout & 30:17:23 & 13:25 & 169920 & 10992 & 84.999 & -1.199 & -125.974 & 34.078 & 183840 & 66.25 & 10.16 \\
\hline San Luis Obispo TACAN acquisition (range rate \(=\) 6300 kn ) & 30:17:24 & 13:26 & 169489 & 10930 & 84.768 & -1.184 & -125.906 & 34.084 & 183840 & 66.25 & 10.10 \\
\hline Buckhorn S-band acquisition (masking +30 sec ) & 30:17:55 & 13:58 & 163445 & 9968 & 80.68 & -1.146 & -124.864 & 34.193 & 183840 & 66.25 & 9.21 \\
\hline Exit UHF blackout & 30:18:01 & 14:03 & 162313 & 9795 & 79.833 & -1.197 & -124.678 & 34.219 & 183840 & 66.25 & 9.05 \\
\hline Earliest opportunity for runway redesignation (Buckhorn AOS + 15 sec ) & 30:18:11 & 14:13 & 160345 & 9514 & 78.377 & -1.306 & -124.280 & 34.267 & 183840 & 66.25 & 8.79 \\
\hline Initiate San Luis Obispo updating (range rate \(=\) 6300 kn) (Buckhorn AOS \(+30 \mathrm{sec})\) & 30:18:25 & 14:28 & 156926 & 9074 & 75.937 & -1.528 & -123.922 & 34.353 & 183840 & 66.25 & 8.38 \\
\hline Incorporate MCC update (Buckhorn AOS + 50 sec ) & 30:18:45 & 14:48 & 151569 & 8488 & 72.300 & -1.871 & -123.335 & 34.491 & 183840 & 66.25 & 7.89 \\
\hline
\end{tabular}
\(\mathrm{a}_{\text {Altitude }}\) of c.g. above 1960 Fischer ellipsoid.

TABLE 4-I.- Continued
(b) Entry interface through landing
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Start time, hr:min: sec (GET) & \(\Delta t\) of event, min:sec & \[
\begin{gathered}
\text { Altitude, a } \\
\mathrm{ft} \\
\hline
\end{gathered}
\] & Relative velocity,
\(\qquad\) & Relative heading, deg & Relative flightpath angle, deg & Longitude +east, deg & Geodetic latitude, deg & Total vehicle weight, lb & c.g., location, percent \(x\) & Mach number \\
\hline San Luis Obispo TACAN acquisition (range rate \(=\) 4500 kri ) & 30:19:13 & 15:15 & 144733 & 7757 & 67.357 & -1.823 & -122.660 & 34.695 & 183840 & 66.25 & 7.29 \\
\hline Goldstone S-band acquisition (masking +30 sec ) & 30:19:29 & 15:32 & 141332 & 7352 & 64.770 & -1.450 & -122.315 & 34.82 & 183840 & 66.25 & 6.95 \\
\hline Initiate San Luis Obispo TACAN updating (range rate \(=4500 \mathrm{kn}\) \(\mathrm{AOS}+30 \mathrm{sec}\) ) & 30:19:43 & 15:45 & 139613 & 6969 & 66.949 & -. 974 & -121.979 & 34.949 & 183840 & 66.25 & 6.61 \\
\hline San Luis Obispo elevation \(>45\) deg & 30:20:24 & 16:26 & 128526 & 6080 & 78.058 & -3.046 & -121.148 & 35.165 & 183840 & 66.25 & 5.86 \\
\hline Initiate Fellows TACAN updating & 30:21:16 & 17:19 & 115326 & 4913 & 93.849 & -2.284 & -120.208 & 35.228 & 183.840 & 66.25 & 4.85 \\
\hline Fellows elevation \(>45 \mathrm{deg}\) & 30:21:19 & 17:21 & 114880 & 4874 & 94.516 & -2.731 & -120.177 & 35.226 & 183840 & 66.25 & 4.82 \\
\hline Initiate TACAN navigation region updating & 30:21:24 & 17:26 & 113503 & 4755 & 96.603 & -2.953 & -120.085 & 35.219 & 183840 & 66.25 & 4.71 \\
\hline Pt. Pillar C-band LOS (elevation \(=\) \(3 \mathrm{deg})\) & 30:21:59 & 18:01 & 103928 & 4063 & 109.630 & -3.772 & -119.595 & 35.135 & 183840 & 66.25 & 4.09 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Altitude of \(\mathrm{c} . \mathrm{g}\). above 1960 Fischer ellipsoid.

TABLE 4-I.- Continued
(b) Entry interface through landing
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Start time, hr:min:sec (GET) & \(\Delta t\) of event, min:sec & \[
\xrightarrow{\substack{\text { Alt } 1 \text { tude } \\ \mathrm{ft}}}
\] & 'Relative velocity, fps & Relative heading, deg & Relative flightpath angle, deg & ```
\begin{array}{c}{\mathrm{ Longltude }}\\{\mathrm{ +east,}}\\{\mathrm{ deg. }}\end{array}
``` & Geodetic latitude, deg & Total vehicte weight, 16 & c.g., location, percent \(x\) & Mach number & \[
\begin{gathered}
\text { True } \\
\text { airspeed, } \\
\mathrm{kn}
\end{gathered}
\] & Equivalent airspeed, kn \\
\hline Gorman TACAN acquisition & 30:22:26 & 18:28 & 98618 & 3515 & 109.192 & -2.435 & -119.279 & 35.022 & 183840 & 66.25 & 3.55 & & \\
\hline Entry/TAEM interface & 30:23:23 & 19:25 & 84377 & 2487 & 83.518 & -5.989 & -118.716 & 34.965 & 183076 & 66.17 & 2.54 & & \\
\hline Mobil tacan acquisition & 30:23:38 & 19:40 & 80644 & 2268 & 82.099 & -6.629 & -118.604 & 34.978 & 183076 & 66.17 & 2.32 & & \\
\hline Deactivate RCS yau thrusters & 30:24:38 & 20:40 & 61128 & 1443 & 81.566 & -14.465 & -118.234 & 35.017 & 183076 & 66:17 & 1.50 & & \\
\hline Vandenberg C band LOS (elevation \(=3 \mathrm{deg}\)) & 30:25:04 & 21:07 & 52779 & 1118 & 81.315 & -16.545 & -118.145 & 35.030 & 183076 & 66.17 & 1.15 & & \\
\hline Initiate speedbrake modulation & 30:25:36 & 21:39 & 43061 & 869 & 81.310 & -18.140 & -118.034 & 35.042 & 183076 & 66.17 & . 90 & & \\
\hline Edwards TACAN acquisition & 30:25:44 & 21:47 & 41261 & 839 & 81.320 & -18.321 & -118.016 & 35.045 & 183076 & 66.17 & . 87 & & \\
\hline Initiate alr data system updating & 30:26:21 & 22:23 & 32029 & 737 & 81.848 & -19.536 & -117.926 & 35.056 & 183076 & 66.17 & . 75 & 437 & 258 \\
\hline Initlate TACAN゙ landing site region updating & 30:26:50 & 22:52 & 24541 & 671 & 115.758 & -20.724 & -117.859 & 35.055 & 183076 & 66.17 & . 66 & 398 & 270 \\
\hline Initiate MSBLS updating & 30:27:09 & 23:11 & 20464 & 645 & 146.017 & -21.029 & -117.833 & 35.037 & 183076 & 66.17 & . 62 & 382 & 277 \\
\hline Goldstone s-band LOS & 30:27:09 & 23:1 & '20 465 & 646 & 146.025 & -21.035 & -117.831 & 35:045 & 183076 & 66.17 & . 62 & 383 & * 277 \\
\hline TAEM/approach and Landing interface & 30:27:30 & 23:32 & \(15^{\prime} 552\) & 613 & -178.641 & -21.701 & -117.821 & 35.005 & 183076 & 66.17 & . 58 & 363 & 286 \\
\hline
\end{tabular}
aAltitude of c.g: above \(1960^{\circ}\) Fischer ellipsoid. .

TABLE 4-I.- Concluded
(b) Entry interface through landing
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Start time, hr:min: sec (GET) & \(\Delta t\) of event, minisec & \[
\begin{gathered}
\begin{array}{c}
\text { Altitude }, \\
f t
\end{array} \\
\hline
\end{gathered}
\] & Relative velocity, ..fps & Relative heading, deg & Relative flightpath angle, deg \(\qquad\) & Longitude teast, deg & Geodetic latitude,
\(\qquad\) & Total vehicle weight, Lb & c.g., location, percent x & Mach
number & True airspeed, kn & Equivalent airspeed, kn \\
\hline Initiate pre" flare & 30:28:24 & 24:26 & 4009 & 518 & -169.910 & -21.831 & -117.837 & 34.927 & 183076 & 66.17 & . 47 & 307 & 290 \\
\hline Landing gear deployment & 30:28:35 & 24:38 & 2544 & 488 & -169.932 & -8.206 & -117.840 & 34.913 & 183076 & 66.17 & . 44 & 289 & 279 \\
\hline Initiate radar altimeter updating & 30:28:36 & 24:39 & 2491 & 483 & -169.936 & -7.139 & -117.841 & 34.912 & 183076 & 66.17 & . 44 & 286 & 276 \\
\hline Initiate final flare & 30:28:43 & 24:46 & 2276 & 406 & -169.936 & -1.246 & -117.842 & 34.903 , & 183076 & 66.17 & . 37 & 241 & 233 \\
\hline Weight on wheels (touchdown) & 30:28:50 & 24:52 & 2238 & 353 & -169.995 & -. 053 & \[
-117.844
\] & 34.897 & 183076 & 66.17 & . 32 & 209 & 201 \\
\hline
\end{tabular}
aAltitude of c.g. above 1960 Fischer ellipsoid.

Figure 4-1.- OFT-1 deorbit through landing groundtrack.

\section*{TABLE 4.1-I.- MASS PROPERTIES FOR OFT-1}
\begin{tabular}{|c|c|c|c|c|}
\hline Event & Wt, Lb & \(\underline{x}_{\text {c. } g_{2} \text {, in. }}\) & Ye.g.ein. & \(z_{\text {c.eg. }}\), in. \\
\hline Predeorbit & 193957 & 1110.5 & 0.0 & 379.5 \\
\hline Entry interface & 183839.8 & 1092.8 & . 0 & 374.2 \\
\hline TAEM interface & 183076.8 & 1091.8 & . 0 & 373.8 \\
\hline Orbiter at landing & 183068.4 & 1093.0 & . 0 & 371.6 \\
\hline
\end{tabular}

TABLE 4.1-II.- OMS LOADING PHILOSOPHY

TABLE 4.1-III.- NAVIGATION SYSTEM MISSION PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & \begin{tabular}{l}
Data \\
Type
\end{tabular} & Precision & Value & Units & \begin{tabular}{l}
Coord \\
Frame
\end{tabular} & ' Definition \\
\hline BASE DEN & \(V(4)\) & DP & \[
\begin{aligned}
& 0.0,0.00388747, \\
& 0.0011132, \\
& 0.03955768
\end{aligned}
\] & slugs/ft \({ }^{2}\) & & Vector of base densities for each layer to modet drag \\
\hline CORR_COEFF_UPDATE* & \(V(7)\) & s & \[
\begin{aligned}
& 0.0,0.0,-.99, \\
& -.99,0.0,0.0, \\
& 0.0
\end{aligned}
\] & vary & UY4 & Correlation coefficients used to initialize covariance matrix for manual updat \\
\hline DRAG_CONST & S & S & .23652181 & \(\mathrm{ft}^{2} / \mathrm{s}\) Lugs & & Drag constant equal to vehicle reference area divided by twice the vehicle mass \\
\hline SIG diag update & \(V(6)\) & S & \[
\begin{aligned}
& \text { 4.E6, } 225 . E 6, \\
& 4 . E 6,400 ., 9 ., \\
& 9 .
\end{aligned}
\] & \(\mathrm{ft}, \mathrm{ft} / \mathrm{s}\) & UVH & Square root of diagonal elements to intialize covariance motrix for manm ual update \\
\hline DENSITY_LIMIT & \(V(4)\) & S & \[
\begin{aligned}
& 0.0,0.0, \\
& 135000,240000
\end{aligned}
\] & ft & - & Base altitude for drag model atmospheric layers \\
\hline
\end{tabular}

TACAN:
```

    Maximum slant range, n. mi. . . . . . . . . . . . . . : . }39
    Maximum range rate, kn (fps) . . . . . . . . . . . . . . 4500 (7595)
    ```
Air data system:
 Deployment, Mach no. 3.0
 Data accepted, Mach no. 0.75
MSBLS:
 Maximum slant range, n. mi. 20.7
 Maximum range rate, kn (fps) 1185 (2000)
 Maximum azimuth, deg. 15
 Maximum elevation, deg. 29:3
 Data accepted, ft. above runway 18500
Radar altimeter:
 From end of runway (ref. 10), ft. 4000

TABLE 4.2-I.- OFT-1 LANDING. OPPORTUNITIES AT EAFB
[March 30, 1979, 12:30 GMT Launch]
\begin{tabular}{|c|c|c|c|c|c|}
\hline Entry orbit \({ }^{\text {a }}\) & \[
\begin{gathered}
\text { Crossrange }{ }^{b} \\
\text { n. mi. }
\end{gathered}
\] & Time after sunrise, hr:min & Time before sunset, hr :min & GET of landing, day:hr:min & Local Landing time, P.s.t., hr :min \\
\hline 2 A & 546 & :35 & 11:53 & 0:01:44 & 6:14 \\
\hline 3A & 53 & 2:09 & 10:19 & 0:03:18 & 7:48 \\
\hline 4A & -177 & 3:44 & 8:44 & 0:04:53 & 9:23 \\
\hline 5D & -104 & 5:19 & 7:09 & 0:06:28 & 10.58 \\
\hline 60 & 259 & 6:54 & 5:34 & 0:08:03 & 12:33 \\
\hline 18A & 360 & :35 & 11:53 & 1:01:44 & 6:14 \\
\hline 19A & -54 & 2:10 & 10:18 & 1:03:19 & 7:49 \\
\hline 200 & -187 & 3:45 & 8:43 & 1:04:54 & 9:24 \\
\hline 21D & -15 & 5:20 & 7:08 & 1:06:29 & 10:59 \\
\hline 22D & 431 & 6:54 & 5:34 & 1:08:03 & 12:33 \\
\hline 34A & 198 & :40 & 11:55 & 2:01:45 & 6:15 \\
\hline 35A & -131 & 2:14 & 10:21 & 2:03:19 & 7:49 \\
\hline 36D & -164 & 3:49 & 8:46 & 2:04:54 & 9:24 \\
\hline 370 & 103 & 5:24 & 7:11 & 2:06:29 & 10:59 \\
\hline 50A & 61 & :40 & 11:55 & 3:01:45 & 6:15 \\
\hline 51A & -176 & 2:15 & 10:20 & 3:03:20 & 7:50 \\
\hline 520 & -109 & 3:50 & 8:45 & 3:04:55 & 9:25 \\
\hline 53D & 249 & 5:24 & 7:11 & 3:06:29 & 10:59 \\
\hline
\end{tabular}
aAscending (A) or descending (D) groundtrack at closest point of approach.
bLanding site north (+) or south (-) of groundtrack.
\begin{tabular}{|c|c|c|}
\hline Parameter & 2 OMS & 1 OMS \\
\hline \(\Delta V_{\text {min }}\) for equal 2 and 1 OMS solutions, fps. & 364 & 364 \\
\hline \(\Delta V_{\text {total }}\) for c.g. control, fps & 528 & 528 \\
\hline W predeorbit, lb & 193957 & 193957 \\
\hline \(W\) entry interface, lb & 183840 & 183840 \\
\hline Tig, GET, hr:min:sec . & 29:40:03 & 29:40:03 \\
\hline Longitude, deg E at tig & 103.635 & 103.635 \\
\hline Geodetic latitude, deg S at tig & -22.881 & -22.881 \\
\hline Inertial velocity, fps at tig & 25399.3 & 25399.3 \\
\hline Inertial flightpath angle, deg at tig & 0.010883 & 0.010883 \\
\hline Inertial heading, deg at tig & 58679 & 58679 \\
\hline Altitude above 1960 Fisher ellipsoid, ft at tig. & 918905 & 918905 \\
\hline \(\Delta T_{\text {burn, }}\) min:sec & 4:18.4 & 8:36.8 \\
\hline \(\Delta T_{\text {coast, }}\) min: sec. & 19:38.8 & 15:18.4 \\
\hline Entry range, n. mi. & 3066 & 3066 \\
\hline \(V_{\text {eir }}, \mathrm{fps}\). . . . & 25684.9 & 25683.8 \\
\hline \(\gamma_{\text {ei, }}\) deg & -1.527 & -1.526 \\
\hline
\end{tabular}

Figure 4.2-1.-Inertial velocity, inertial flightpath angle, and range target lines for orbiter OFT-I entry interface.

4-24

TABLE 4.3-I.- ORBITER SURFACE TEMPERATURE LIMITS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Control point & Orbiter body Location & Single mission maximum, of & Equivalent simplified model, \({ }^{\circ} \mathrm{F}\) & Trajectory dispersion margin, \(\mathrm{O}_{\mathrm{F}}\) (a) & Control surface deflection margin, \({ }^{\circ} \mathrm{F}\) & Maximum allowable nominal, of \\
\hline 1 & Nose RCC & 2800 & 2950 & 80 & -. & 2870 \\
\hline 2 & Body flap HRSI & 2800 & '2800 & 150 & 185 & 2465 \\
\hline 3 & Wing RCC & 2800 & 2950 & 85 & - & 2865 \\
\hline 4 & Elevon HRSI & 2800 & 2800 & 195 & 100 & 2505 \\
\hline 5 & Nose RCC/HRSI interface & 2800 & 2610 & 80 & - & 2530 \\
\hline
\end{tabular}
apreliminary.

TABLE 4.3-II-- THERMAL PROTECTION SYSTEM -(TPS) SUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{In-flıght Maximums} & \multicolumn{4}{|c|}{Weight/unit weight sumiaries} \\
\hline Panel
no. & Panel area, \(\mathrm{ft}^{2}\) & Heating pate, Btu/ft \(\mathrm{t}^{2} / \mathrm{sec}\) & Surface temperature, \(O_{F}\) & Surface insulation
\(\qquad\) & Total heat load. Btu/ft \({ }^{2}\) & \begin{tabular}{l}
Insutation, \\
\(\mathrm{tb} / \mathrm{n} . \mathrm{d}\).
\end{tabular} & Thickness,
\(\qquad\) in. & \begin{tabular}{l}
Total weights, \\
Lb/n.d.
\end{tabular} \\
\hline 1 & 24.00 & 29.28 & 2456.56 & RCC & 15.098 .33 & 164.08/6.84 & 4.86 & 164.08/6.84 \\
\hline 2 & 362.00 & 15.41 & \[
2024.19
\] & HRSI & 7942.37 & \(778.82 / 2.15\) & 2.13 & 778.82/2.15 \\
\hline 3 & 113.00 & 13.00 & 1920.68
-68.70 & HRSI & 6693.03 & 225.91/2.00 & 1.95 & 225.91/2.00 \\
\hline 4 & 446.00 & 12.13 & 1879.78 & HRSI & 5203.92 & 799.86/1.79 & 1.71 & 799.86/1.79 \\
\hline 5 & 559.00 & 8.85 & 1702.22 & mRSI & 4655.38 & 792.18/1.42 & 1.26 & 792.18/1.42 \\
\hline 6 & 403.00 & 6.43 & 1536.75 & HRSI & 3527.78 & 602.29/1.49 & 1.36 & 602.29/1.49 \\
\hline 7 & . 158.00 & 14.74 & 1996.73 & RCC & 8498.97 & 1663.26/10534 \({ }^{\prime}\) & . 88 & 1663.26/*\#**. \\
\hline 8 & 435.00 & 17.54 & 2105.68 & HRSI & 10459.72 & 1105.06/2.54 & 2.59 & 1105.06/2.54 \\
\hline 9 & 412.00 & 14.21 & \[
\begin{array}{r}
197.00 \\
-70.62 \\
-70.62
\end{array}
\] & HRSI & 7981.12 & 949.13/2.30 & 2.31 & 949.13/2.30 \\
\hline 10 & 641.00 & 17.68 & 2110.92 & HRSI & 7511.76 & 1410.74/2.20 & 2.19 & 1410.74/2.20 \\
\hline 11 & 165.00 & 22.07 & 2257.58 & HRSI. & 8698.40 & 398.80/2:42 & 2.44 & 398.80/2.42 \\
\hline 12 & 360.00 & 9.99 & 1768.90 & HRSI & 4059.46 & 652.91/1.81 & 1.73 & 652.91/1.81 \\
\hline 13 & 275.00 & 3.89 & 1300.39
-77.31 & HRSI & 2001.70 & 313.96/1.14 & . 94 & 313.96/1.14. \\
\hline 14 & 473.00 & 2.68 & 1144.23 & Lrsi & 1406.75 & 292.86/.62 & . 38 & 292.86/.62 \\
\hline 15 & 1631.00 & . 28 & -73.14
453.20 & L.fSI & 149.74 & 777.50\%.48 & . 20 & 777.501 .48 \\
\hline 16 & 764.00 & . 10 & 247.25 & LRSI & 63.78 & 364.20/.48 & . 20 & 364:201.48 \\
\hline 17 & 114.00 & . 52 & 604.81 & LRSI & 237.76 & 54.341 .48 & .23 & 54.34/.48 \\
\hline 18 & 631.00 & . 40 & 535.31 & LRSI & 216.21 & 300.80/.48 & . 20 & \(300.80 / .48\) \\
\hline 19 & 355.00 & 6.96 & 1576.42 & HRSI & 3762.77 & 284.27/1.83 & 1.75 & 284:27/1.83 \\
\hline 20 & 673.00 & 2.28 & \({ }_{1080.36}\) & L.RSI & 1305.81 & 433.93/.64 & . 41 & 433.93/.64 \\
\hline 21 & 242:00 & 1.01 & 795.62 & L.RSI & 568.56 & 129.69/.54 & . 28 & 129.697.54 \\
\hline 22 & 610.00 & 1.01 & 795.38 & LRSI & 517.84 & 290.791.48 & . 20 & 290.79/.48 \\
\hline 23 & 1132.00 & . 55 & -79.46 & L.RSI & 285.08 & 5,39.62\%.48 & . 20 & 539.62/.48 \\
\hline
\end{tabular}

TABLE 4.3-II.-' Concluded
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{TABLE 4.3-II.-- Concluded} \\
\hline \multicolumn{4}{|c|}{In-flight Maximums} & \multicolumn{6}{|c|}{Weight/unit weight summaries .} \\
\hline \begin{tabular}{l}
\begin{tabular}{r}
Panel \\
area,
\end{tabular} \\
Panel \\
no. \(\quad \mathrm{ft}^{2}\) \\
\hline
\end{tabular} & ```
 Heating
 rate,
Btu/ft2/sec
``` & Surface temperature,
\(\qquad\) & Surface insulation
\(\qquad\) type & & Total heat load, Btu/ft \({ }^{2}\) & & \begin{tabular}{l}
ation, \\
n.d.
\end{tabular} & Thickness in. & Total weights,
\[
\mathrm{Lb} / \mathrm{n}_{\mathrm{o}} \mathrm{~d}_{\mathrm{l}}
\]
\(\qquad\) \\
\hline \(24 \quad 372.00\) & . 59 & \[
\begin{aligned}
& 638.68 \\
& -73.53
\end{aligned}
\] & LRSI & & 305.31 & 177 & 33/.48 & . 20 & 177.33/.48 \\
\hline \(25 \quad 82.00\) & 33.82 & \[
\begin{array}{r}
2563.59 \\
-53.94
\end{array}
\] & HRSI & & 12247.67 & 220 & 77/2.69 & 2.76 & ' 220.77/2.69 \\
\hline & & & & & & & 3723.13 & & 13723.13 \\
\hline Control point surface & CP1 (nose) & CP2 (body & \(f(a p)\) & CP3 & (wing leading) & & CP4 (elevon) & CP5 (RC & RSI interface) \\
\hline Temperature maximums & . \(2686526+04\) & . 2242640 & & & . \(2754700+04\) & & . \(2431848+04\) & & 563+04 \\
\hline Relative velocity & .2329445+05 & . 2052403 & & & . \(2329445+05\) & - & . \(2004704+05\) & & 445+05 \\
\hline \begin{tabular}{l}
Temperature limit \\
Temperature margin
\end{tabular} & \[
\begin{array}{r}
2870 \\
183.5
\end{array}
\] & \[
\begin{array}{r}
2465 \\
222.4
\end{array}
\] & & & \[
\begin{array}{r}
2865 \\
110.3
\end{array}
\] & & \[
\begin{aligned}
& 2505 \\
& 73.2
\end{aligned}
\] & & \\
\hline
\end{tabular}
GET (rev 20), hr:min:sec. ..... 30:23:23
Time from entry interface, min:sec ..... 19:27
Relative velocity, fps ..... 2488.84
Altitude of c.g. above runway, ft ..... 82118
Geodetic altitude, above• 1960 -Fisher ellipsoid, ft. ..... 84339
Geodetic Latitude, \(\operatorname{deg} \mathrm{N}\) ..... 34.966
Geocentric latitude, deg ..... 34.786
Longitude, deg W ..... 118.716
Relative heading from north, deg ..... 83.250
Earth-relative flightpath angle, deg ..... \(-6.0587\)
Mach number ..... 2.538
Angle of attack, deg ..... 13.669
Dynamic pressure, psf ..... 215.56
Range-to-runway threshold, n. mi. ..... 52.08
Delta azimuth to HAC, deg ..... 0.723
Weịght, Lbs ..... 83076

\section*{TABLE 4.3-IV.- ENTRY PARAMETERS}


TABLE 4.3-V.- DEFINITION OF ENTRY GUIDANCE CONSTANTS
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Description & Value & Units \\
\hline AGN: & Time coñstant for \(h\) feedback & 50.0 & s \\
\hline AK & Factor in \(\mathrm{dD} / \mathrm{dV}\) for temperature control guidance used to define C23 & -2.460488 & nd \\
\hline AK1 & Factor in \(\mathrm{dD} / \mathrm{dV}\) for temperature control guidance used to define c23 & -2.961503 & nd \\
\hline ALFM & Desired constant drag Level & 33.0 & \(f t / s^{2}\) \\
\hline ALIM & Maximum sensed acceleration in transition & 70.84 & \(\mathrm{ft} / \mathrm{s}^{2}\) \\
\hline ALMN1 & Maximum L/D command outside of heading error deadband & 0.7986355 & nd \\
\hline ALMN2 & Maximum L/D command inside of heading error deadband & 0.9659258 & nd \\
\hline ALMN3 & Maximum L/D command below VELMN & 0.93969 & nd \\
\hline ALMN4 & Maximum L/D command above VYLMAX & 1.0 & nd \\
\hline ASTART & Sensed acceleration to enter phase 2 & 5.66 & \(\mathrm{ft} / \mathrm{s}^{2}\) \\
\hline CALPO(1) & ALPCMD constant term in VE & 0.85 & deg \\
\hline CALPO(2) & ALPCMD constant term in VE & 18.37 & deg \\
\hline CALPO (3) & ALPCMD constant term in VE & 4.47625 & deg \\
\hline CALPO(4) & ALPCMD constant term in VE & -9.933914 & deg \\
\hline CALPO (5) & ALPCMD constant term in VE & 40.0 & deg \\
\hline CALPO (6) & ALPCMD constant term in VE & 40.0 & deg \\
\hline CALPO(7) & ALPCMD constant term in VE & . 40.0 & deg \\
\hline CALP1(1) & ALPCMD rate term in VE & \(0.660 \mathrm{E}-2\) & deg-s/ft \\
\hline CALP1 (2) & ALPCMD rate term in VE & -0.242E-2 & \(\mathrm{deg}-\mathrm{s} / \mathrm{ft}\) \\
\hline
\end{tabular}

TABLE 4.3-V.- Continuéd
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Description & Value & Units \\
\hline CALP1 (3) & ALPCMD rate term in VE & \(0.31875 \mathrm{E}-2\) & \(\mathrm{deg}-\mathrm{s} / \mathrm{ft}\) \\
\hline CALP1 (4) & ALPCMD rate term in VE & \(0.6887436 \mathrm{E}-2\) & deg-s/ft \\
\hline CALP1 (5) & ALPCMD rate term in VE & 0 & deg-s/ft \\
\hline CALP1 (6) & ALPCMD rate term in VE & 0 & \(\mathrm{deg}-\mathrm{s} / \mathrm{ft}\) \\
\hline CALP1 (7) & ALDCMD rate term in VE & 0 & deg-s/ft \\
\hline CALP2 (1) & ALPCMD quadratic term in VE & -0.6E-6 & deg-s \({ }^{2} / \mathrm{ft}^{2}\) \\
\hline CALP2 (2) & ALPCMD quadratic term in VE & 0.560E-6 & deg-s \(\mathrm{s}^{2} / \mathrm{ft}{ }^{2}\) \\
\hline CALP2(3) & ALPCMD quadratic term in VE & 0 & deg-s \(s^{2} / f t^{2}\) \\
\hline CALP2(4) & ALPCMD quadratic term in VE & -0.2374978E-6 & deg-s \({ }^{2} / \mathrm{ft}^{2}\) \\
\hline CALP2(5) & ALPCMD quadratic term in VE & 0 & \(\mathrm{deg}-\mathrm{s}^{2} / \mathrm{ft}{ }^{2}\) \\
\hline CALP2(6) & ALPCMD quadratic term. in VE & 0 & degms \({ }^{2} / \mathrm{ft}^{2}\) \\
\hline CALP2(7) & ALPCMD quadratic term in VE & 0 & deg-s \({ }^{2} / f t^{2}\) \\
\hline CDDOT1 & CD velocity coefficient & 1500.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline CDDOT2 & CD velocity coefficient & 2000.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline CDDOT3 & CD velocity coefficient & 0.15 & nd \\
\hline CDDOT4 & CD alpha coefficient & 0.0783 & nd \\
\hline CDDOT5 & CD alpha coefficient & -8.165E-3 & 1/deg \\
\hline CDDOT6 & CD alpha coefficient & \(6.833 \mathrm{E}-4\) & 1/deg \({ }^{2}\) \\
\hline CDDOT7 & CD coefficient & 7.5E-5 & s/ft \\
\hline CDDOT8 & CD coefficient & 13.666E-4 & 1/deg \({ }^{2}\) \\
\hline CDDOT9 & CD coefficient & -8.165E-3 & 1/s \\
\hline CNMFS & Conversion factor from feet to nautical miles & \(1.64579 \mathrm{E}-4\) & \(n \mathrm{~m} / \mathrm{ft}\) \\
\hline
\end{tabular}

TABBLE 4.3-V.- Continued
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Description & Value & Units \\
\hline CT16 (1) & C16 coefficient & 0.1354 & \(s^{2 / f t}\) \\
\hline CT16(2) & c16 power coefficient & -0.10 & nd \\
\hline CT16(3) & Gain on C16 drag error term & 0.006 & \(s^{4} / f t^{2}\) \\
\hline CT17 (1) & C17 coefficient & \(1.537 \mathrm{E}-2\) & \(s / f t\) \\
\hline CT17 (2) & C17 power coefficient & -5.8146E-1 & nd \\
\hline CT16MN & Minimum value of C16 & 0.025 & \(s^{2 / f t}\) \\
\hline CT16MX & Maximum value of C16 & 0.35 & \(s^{2 / f t}\) \\
\hline CT17MX & Minimum value of c17 & 0.0025 & s/ft \\
\hline CT17MN & Maximum value of c17 & 0.014 & s/ft \\
\hline cyo & Constant term in heading error deadband & -0.1308996939 & rad \\
\hline CY1 & Slope of heading error deadband wrt VE & \(1.09083 \times 10^{-4}\) & \(\mathrm{rad}-\mathrm{s} / \mathrm{ft}\) \\
\hline DDLIM & Maximum delta drag for \(\dot{\mathrm{h}}\) feedback & 2.0 & \(\mathrm{ft} / \mathrm{s}^{2}\) \\
\hline DELV & Phase transfer velocity bias & 2300.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline DF & Final drag value in transition phase & 21.0 & \(\mathrm{ft} / \mathrm{s}^{2}\) \\
\hline D230 & Initial value of D23 & 23.2 & \(\mathrm{ft} / \mathrm{s}^{2}\) \\
\hline DRDDL & Minimum value of DRDD & -1.5 & \(\mathrm{nm}-\mathrm{s}^{2} / \mathrm{ft}\) \\
\hline DTEGD & Entry guidance computation interval & 1.92 & S \\
\hline DT2MIN & Minimum value of T2DOT & 0.00231 & \(\mathrm{ft} / \mathrm{s}^{3}\) \\
\hline EEF4 & Final reference energy level in transition phase & \(2.0 \times 10^{6}\) & \(\mathrm{ft}^{2 /} \mathrm{s}^{2}\) \\
\hline ETRAN & Energy level at start of transition & 60.71073E+6 & \(\mathrm{ft} 2 / \mathrm{s}^{2}\) \\
\hline
\end{tabular}

TABLE 4.3-V.- Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Symbol & Description & & Value & Units \\
\hline E1 & Minimum value of DREFP and |DREFP-DF| in transition phase & & 0.01 & \(\mathrm{ft} / \mathrm{s}^{2}\) \\
\hline GS & Earth gravitational constant & & 32.174 & \(\mathrm{ft} / \mathrm{s}^{2}\) \\
\hline GS1 & Factor in smoothing roll command & & 0.02 & \(\mathrm{s}^{-1}\) \\
\hline GS2 & Factor in smoothing roll command & & 0.02 & \(\mathrm{s}^{-1}\) \\
\hline GS3 & Factor in smoothing roll command & & 0.03767 & \(s^{-1}\) \\
\hline GS4 & Factor in smoothing roll command & & 0.03 & \(\mathrm{s}^{-1}\) \\
\hline HSMIN & Minimum value of scale height & 20 & 500.0 & ft \\
\hline HSO1 & Scale height constant term & 18 & 075.0 & \(f t\) \\
\hline HSO2 & Scale height constant term & 27 & 000.0 & ft \\
\hline HSO3 & Scale height constant term & 45 & 583.5 & \(f t\) \\
\hline HS11 & Scale height slope wrt VE & & 0.725 & s \\
\hline HS13 & Scale height slope wrt VE & & -0.9445 & s \\
\hline LODMIN & Minimum L/D ratio & & 0.5 & nd \\
\hline NALP & Number of ALPCMD velocity segment boundaries & & 6 & nd \\
\hline PREBNK & Preentry bank angle command & & 0.0 & deg \\
\hline RADEG & Radian-to-degree conversion factor & & 57.29578 & \(\mathrm{deg} / \mathrm{rad}\) \\
\hline RLM & Maximum roll command in transition & & 70.0 & deg \\
\hline RPTI & Range bias term & & 22.068 & nm \\
\hline VA & Initial velocity for temperature quadratic, \(d D / d V-0\) & 30 & 538.46 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VALP (1) & ALPCMD vs VE boundary & & 4000.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline
\end{tabular}

TABLE 4.3-V.- Continued
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Description & Value & Units \\
\hline VALP (2) & ALPCMD vs VE boundary & 4500.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VALP (3) & ALPCMD vs VE boundary & 7789.412 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VALP (4) & ALPCMD vs VE boundary & 14500.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VALP (5) & ALPCMD vs VE boundary & 30000.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VALP (6) & ALPCMD vs VE boundary & 30000.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VA1 & Boundary velocity between quadratic segments in temperature control phase & 23000 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VA2 & Initial velocity for temperature quadratic, \(\mathrm{dD} / \mathrm{dV}-0\) & 30538.46 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VB1 & Heat rate-equilibrium glide phase boundary velocity & 20000 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VC16 & Velocity to start c16 drag error term & 23000.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VELMN & Maximum velocity for limiting LMN by ALMN3 & 8000.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VEROLC & Maximum velocity for Limiting bank angle command & 8000.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VHS1 & Scale height vs VE boundary & 12310.34 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VHS2 & Scale height vs VE boundary & 19675.5 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VQ & Predicted end velocity for constant drag phase & 5000.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VROT & Velocity to start \(\overline{\mathrm{h}}\) feedback & 23000.0 & ft/s \\
\hline VSAT & Local circular orbit velocity & 25 766, 1973 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline VS1 & Reference velocity for equilibrium glide & 25744.43 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline V TAEM & Reference velocity at entryTAEM interface. & 2500.0 & ft/s \({ }^{\text {c }}\) \\
\hline
\end{tabular}

TABLE 4.3-V.- Concluded
\begin{tabular}{|c|c|c|c|c|}
\hline Symbol & Description & \multicolumn{2}{|r|}{Value} & Units \\
\hline VTRAN & Nominal velocity at start of transition phase & 10 & 500.0 & ft/s \\
\hline VYLMAX & Minimum velocity for limiting LMN by ALMN4 & 23 & 000.0 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline YLMIN & YL bias used in test for LMN & & 0.03 & rad \\
\hline YLMN2 & Minimum YL bias & & 0.07 & rad \\
\hline Y1 & Maximum heading error deadband & & 0.30543262 & rad \\
\hline Y2 & Minimum heading error deadband & & 0.17453292 & rad \\
\hline 2K1 & Gain for \(\dot{h}\) feedback & & 1.0 & s \\
\hline
\end{tabular}

\section*{TABLE 4.3-VI.- ENTRY' CROSSRANGE CAPABILITY FOR OFT-1}
Maximum crossrange available, n. mi ..... 753
Less entry dispersions RSS, n. mi. ..... 95658
Less margin for first flight safety, n. mi ..... 88
Maximum crossrange available, n. mi. ..... 570
Recommended maximum crossrange for flight design, n. mi. . . ..... 550



Figure 4.3-2. - Actual and commanded angle of attack versus relative velocity for orbiter OFT-1 entry.

4-38


Figure 4.3-3.- Entry corridor and flight profile, versus relative velocity for orbiter OFT-3 entry.


Figure 4.3-4.-Surface-temperature critical control points and various panel locations.


Figure 4.3-5.- Altitude versus range at entry/TAEM interface.


Figure 4.3-6.- Nominal elevon deflection schedule and actual elevon deflection for orbiter OFT-1.
\(4-42\)


Figure 4.3-7.-Nominal speedbrake defiection schedule versus relative velocity.


Figure 4.3-8. Nominal body-flap deflection versus relative velocity for orbiter OFT-1.
\(4-44\)


Figure 4.3-9.- Delta azimuth, actual and commanded bank angles versus relative velocity for orbiter OFT-1.


Figure 4.3-10.- Reference heating rate versus relative velocity for orbiter OFT-1.


Figure 4.3-11.- Surface temperatures versus telative velocity for orbiter OFT-1.


Figure 4.3-12.-Altitude versus relative velocity for orbiter OFT-1. ,


Figure 4.3-13.- Actual and reference altitude rate versus relative velocity for orbiter 0FT-1.


Figure 4.3-14.- Range to runway threshold versus relative velocity for orbiter OFT-1.


Figure 4.3-15.-Lift/drag actual and commanded angle of attack versus relative velocity for orbiter OFT-1.


Figure 4.3-16.- Elevon, bodyflap, and speedbrake deflection versus: relative velocity for orbiter OFT-1.


Figure 4.3-17.- Dynamic pressure versus relative velocity for orbiter OFT-1.


Figure 4.3-18.- Total load factor versus relative velocity for orbiter 0FT-1.


Figure 4.3-19.-X- and Z-body axis components of load factor versus relative velocity for orbiter OFT-1.


Figure 4.3-20.- Elevon, speedbrake and body-flap hinge moments versus relative velocity for orbiter OFT-1.


Figure 4.3-21 .- Earth relative flightpath ang ie versus earth relative velocity OFT-1.


Figure 4.3-22.- Entry corridor and flight profile versus time from entry interface for orbiter OFT-1.


Figure 4.3-23.- Relative velocity versus time from entry interface for orbiter OFT-1.


Figure 4.3-24.- Deita azimuth, actual and commanded bank angle versus time from entry interface for orbiter OFT-I.


Figure 4.3-25.- Reference heating rate versus time from entry interface for orbiter OFT-1.


Figure 4.3-26.- Surface temperatures versus time from entry interface for orbiter OFT-1.


Figure 4.3-27.-Altitude versus time from entry interface for orbiter OFT-1.


Figure 4.3-28. - Actual and reference altitude rate versus time from entry interface for orbiter OFT-1.
3. \(\sim\)


Figure 4.3-29.- Range to runway threshold versus time from entry interface for orbiter OFT-1.


Figure 4.3-30.- Lift/drag, actual and commanded angle of attack versus time from entry interface for orbiter OFT-1.


Figure 4,3-31.- Elevon, body-flap and speedbrake deflection versus time from entry interface for orbiter OFT-1 TAEM.


Figure 4.3-32.- Dynamic pressure versus time from entry interface for orbiter 0FT-1.


Figure 4.3-33.- Total load factor versus time from entry interface for orbiter OFT-1.


Figure 4.3-34.- \(X\) - and \(Z\)-fody axis components of load factor versus time from entry interface for orbiter OFT-1.


Figure 4.3-35.- Elevon, speadbrake, and body-flap hinge moments versus time from entry interface for orbter OFT-1.


Figure 4.3-36.- Earth relative flightpath angle versus time from entry interface for OFT-1, entry.


Figure 4.3-37.-Altitude versus range to runway threshold for OFT-1.
table 4.4-I.- DEFINITION OF TAEM GUIDANCE CONSTANTS
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Description & Value & Units \\
\hline CDEQD & Constant gain used to compute QBD (= EXP ( -0.4 DTG) ) & 0.68113143 & nd. \\
\hline CPMIN & Minimum value of COSPHI & 0.707 & nd \\
\hline CQDG & Constant gain used to compute QBD (= 1 - CDEQD) & 0.31886857 & nd \\
\hline CQG & Constant gain used to compute QBARD and DNZCD
\[
\left(=\left(1-\operatorname{EXP}\left(-0.08^{\circ} D T G\right)\right) / D T G\right)
\] & 0.5583958 & -1 \\
\hline \[
\underset{(1,2)^{\text {CUBIC_C }}}{ }
\] & Coefficient used to compute HREF and DHDRRF & \[
\begin{aligned}
& -4.7714787 E-7, \\
& \text { TBD }
\end{aligned}
\] & \(\mathrm{ft}^{-1}\) \\
\hline \[
\underset{(1,2)^{C}}{\text { CUBIC_C4 }}
\] & Coefficient used to compute HREF and DHDRRF & \[
\begin{aligned}
& -2.4291527 E-13, \\
& \text { TBD }
\end{aligned}
\] & \(f t^{-2}\) \\
\hline DEL_H1 & Altitude error coefficient & 0.19 & nd \\
\hline DEL_H2 & Altitude error coefficient & 900.0 & ft \\
\hline \[
\begin{aligned}
& \text { DEL R_EMAX } \\
& (1, \overline{2})^{-}
\end{aligned}
\] & Delta range used to compute EMAX & 54 000.0, TBD & ft \\
\hline DNZCG & Gain used to compute DNZC & 0.01 & \(g-s / f t\) \\
\hline DNZLC1 & Phases 0,1, and 2 Lower NZC Limit & -0.5 & g \\
\hline DNZLC2 & Phase 3 Lower NZC limit & -0.75 & g \\
\hline DNZUC1 & Phases 0;1, and 2 upper NZC limit & 0.5 & g \\
\hline DNZUC2. & Phase 3 upper NZC Limit & 1.5 & 9 \\
\hline DSBCM & Mach value to initiate speedbrake modulation & 0.9 & nd \\
\hline DSBIL & Limit on integral component of speedbrake command & 20.0 & deg \\
\hline DSBLIM & Maximum value for speedbrake command & 98.6 & deg \\
\hline
\end{tabular}

TABLE 4.4-I.- Continued
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Description & Value & Units \\
\hline DSBNOM & Nominal speedbrake command value & 65.0 & deg \\
\hline DSBSUP & Mach > DSBCM speedbrake command & 65.0 & deg \\
\hline DSHPLY & Delta range value used to compute SHPLYK & 4000.0 & ft \\
\hline DTG & TAEM guidance cycle time interval & 0.96 & s \\
\hline DTR & Degrees to radians conversion factor & 0.0174533 & deg. \({ }^{-1}\) \\
\hline \[
\begin{aligned}
& \text { EDELNZ } \\
& (1,2)
\end{aligned}
\] & Delta energy over weight used to compute EMAX and EMIN & 4000.0, TBD & ft \\
\hline \[
\begin{aligned}
& \text { EDRS } \\
& (1,2)
\end{aligned}
\] & Slope of ES with range & \[
\begin{aligned}
& 0.69946182, \\
& \text { TBD }
\end{aligned}
\] & nd \\
\hline \[
\begin{aligned}
& \text { EMEP } C 1 \\
& ((1, \overline{1}), \\
& (1,2),(2,1), \\
& (2,2))
\end{aligned}
\] & Constant energy over weight used to compute EMEP & \[
\begin{aligned}
& 2702.1202 \\
& 13859.314 \\
& \text { TBD, TBD }
\end{aligned}
\] & ft \\
\hline \[
\begin{aligned}
& \text { EMEP C2 } \\
& ((1, \overline{1}),(1,2), \\
& (2,1),(2,2))
\end{aligned}
\] & Slope of EMEP with range & \[
\begin{aligned}
& 0.5155494, \\
& 0.265521, \\
& \text { TBD, TBD }
\end{aligned}
\] & nd \\
\hline \[
\begin{aligned}
& E N C 1 \\
& ((\overline{1}, 1), \\
& (1,2),(2,1), \\
& (2,2))
\end{aligned}
\] & Constant energy over weight used to compute EN & \[
\begin{aligned}
& 6854.7826, \\
& 18272.012, \\
& \text { TBD, TBD }
\end{aligned}
\] & \(f t\) \\
\hline \[
\begin{aligned}
& \text { EN } C 2 \\
& ((1,1), \\
& (1,2),(2,1) \text {, } \\
& (2,2))
\end{aligned}
\] & Slope of EN with range & 0.60776028 , 0.44326307 , TBD,TBD & nd \\
\hline \[
\begin{aligned}
& \text { EOW SPT } \\
& (1, \overline{2})
\end{aligned}
\] & Range used for IEL selection & \[
\begin{aligned}
& 105863.43, \\
& \text { TBD }
\end{aligned}
\] & ft \\
\hline
\end{tabular}

TABLE 4.4-I.- Continued
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Description & Value & Units \\
\hline \[
\begin{aligned}
& \text { ES1 } \\
& (1,2)
\end{aligned}
\] & Constant energy over weight used to compute ES & 90 000.0, TBD & ft \\
\hline G & Gravitational acceleration at sea level & 32.174 & \(\mathrm{ft} / \mathrm{s}^{2}\) \\
\hline GAMMA COEF1 & Flightpath error coefficient & 0.0007 & deg/ft \\
\hline \[
\begin{aligned}
& \text { GAMMA } \\
& \text { COEF2 }
\end{aligned}
\] & Flightpath error coefficient & 3.0 & deg \\
\hline GAMMA ERROR & Flightpath error band & 4.0 & deg \\
\hline GAMSGS
\[
(1,2)
\] & Steep glidestope angle & -22.0, TBD & deg \\
\hline GDHC & Constant used to compute GDH & 2.0 & nd \\
\hline GDHLL & Lower limit on GDH & 0.3 & nd \\
\hline GDHS & Slope of GDH with altitude & 0.00007 & \(\mathrm{ft}^{-1}\) \\
\hline GDHUL & Upper limit on GDH & 1.0 & nd \\
\hline GEHDLL & Gain used to compute EOWNZLL & 0.01 & \(\mathrm{g}-\mathrm{s} / \mathrm{ft}\) \\
\hline GEHDUL & Gain used to compute EOWNZUL & 0.01 & g-s/ft \\
\hline GELL & Gain used to compute EOWNZLL & 0.1 & \(\mathrm{s}^{-1}\) \\
\hline GEUL & Gain used to compute EOWNZUL. & 0.1 & \(s^{-1}\) \\
\hline GPHI & Gain on heading error for phase 1 roll command & 2.5 & nd \\
\hline GR & Gain on radial error for phase 2 roll command & 0.02 & \(\mathrm{deg} / \mathrm{ft}\) \\
\hline GRDOT & Gain on radial rate error for phase 2 roll command & 0.2 & \(\mathrm{deg}-\mathrm{s} / \mathrm{ft}\) \\
\hline GSBE & Speedbrake proportional gain on QBERR & 1.5 & deg/psf \\
\hline
\end{tabular}

TABLE 4.4-I.- Continued
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Description & Value & Units \\
\hline GSBI & Speedbrake integral gain on QBERR & 0.1 & deg-s/ps.f \\
\hline GY & Phase 3 lateral error gain & 0.05 & deg/ft \\
\hline GYDOT & Phase 3 lateral rate error gain & 0.6 & deg-s/ft \\
\hline H_ERROR & Altitude error bound for transition to autoland & 1000.0 & ft \\
\hline H_REF1 & Altitude reference for transition to autoland & 10000.0 & ft \\
\hline H_REF2 & Altitude reference for transition to autoland & 5000.0 & ft \\
\hline \[
\begin{aligned}
& \text { HALI } \\
& (1,2)
\end{aligned}
\] & Altitude used to compute XALI and HREF & 10 018.0, TBD & ft \\
\hline HDREQG & Gain on HERROR to compute DNZC & 0.1 & \(s^{-1}\) \\
\hline \[
\begin{aligned}
& \text { HFTC } \\
& (1,2)
\end{aligned}
\] & Altitude used to compute XFTC & 12 018.0, TBD & ft \\
\hline MXQBWT & Constant used to compute QBLL \(=(140 . / 190000 \mathrm{psf} / \mathrm{Lb} \mathrm{m})\) & \[
\begin{aligned}
& 0.7368421 \mathrm{E}- \\
& 03
\end{aligned}
\] & psf/lb m \\
\hline \[
\begin{aligned}
& \text { PBGGC } \\
& (1,2)
\end{aligned}
\] & Lower limit on DHDRRF \(=\) (TAN (5.5 DTR), TBD) & \[
\begin{aligned}
& 0.11126660 \text {, } \\
& \text { TBD }
\end{aligned}
\] & nd \\
\hline \(\operatorname{PBRCQ}(1,2)\) & Range break point for QBREF & 89 971.082, TBD & ft \\
\hline \[
\begin{aligned}
& \text { PBHC } \\
& (1,2)
\end{aligned}
\] & Altitude reference for DRPRED = PBRC & 78 161.826, TBD & ft \\
\hline \[
\begin{aligned}
& \text { PBRC } \\
& (1,2)
\end{aligned}
\] & Maximum range for cubic altitude reference & 256 527.82, TBD & ft \\
\hline PHAVGC & Constant used to compute PHAVG & 63.33 & deg \\
\hline PHAVGLL & Lower Limit on PHAVG & 30.0 & deg \\
\hline PHAVGS & Slope of PHAVG with Mach & 13.33 & deg \\
\hline Phavgul & Upper Limit on PHAVG & 50.0 & deg \\
\hline
\end{tabular}

TABLE 4.4-I.- Continued
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Description & Value & Units \\
\hline PHİLIMŜUP & Supersonic roll command limit & 30.0 & deg \\
\hline PHILMO & Saturn roll command Limit & 50.0 & deg \\
\hline PHILM1 & Acquisition roll commànd Limit & 50.0 & deg \\
\hline PHILM2 & Heading alinement roll command Limit & 60.0 & deg \\
\hline PHILM3 & Prefinal rolil command Limit & 30.0 & deg \\
\hline PHIM & Mach value for PHILIMIT test & 0.9 & nd \\
\hline PHIP2C & Nominal roll command during phase 2 & 30.0 & deg \\
\hline P2TRNC1 & Constant used in phase 2 initiation test & 1.1 & nd \\
\hline P2TRNC2 & Constant used in phase 2 initiation test & 1.01 & nd \\
\hline QB_ERROR1 & Dynamic pressure error bound 'for transition to autoland & 24.0 & psf \\
\hline QB_ERROR2 & Dynamic pressure error bound. for transition to autoland & 24.0 & psf \\
\hline QBARDL & Limit on QBARD & 5.0 & psf/s \\
\hline \[
\begin{aligned}
& \text { QBC1 } \\
& (1,2)
\end{aligned}
\] & SLope of QBREF with DRPRED > PBRCQ. & \[
\begin{aligned}
& 3.6086999 \mathrm{E}-4 \\
& \text { TBD }
\end{aligned}
\] & \(p s f / f t\) \\
\hline \[
\begin{aligned}
& \text { QBC2 } \\
& (1,2)
\end{aligned}
\] & S.Lope of QBREF with DRPRED < PBRCQ & \[
\begin{aligned}
& -1.1613301 \mathrm{E}-3 \text {, } \\
& \text { TBD }
\end{aligned}
\] & \(p s f / f t\) \\
\hline QBG1 & Gain used to compute QBNZLL and QBNZUL & 0.1 & \(s^{-1}\) \\
\hline QBG2 & Gain used to compute QBNZLL and QBNZUL & 0.125 & s-g/psf \\
\hline QBMXS & SLope of QBMXNZ with Mach > QBM2 & 0.0 & psf \\
\hline
\end{tabular}

TABLE 4.4-I.- Continued
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Description & Value & Units \\
\hline QBMX1 & Constant used to compute QBMXNZ & 340.0 & psf \\
\hline QBMX 2 & Constant used to compute QBMXNZ & 300.0 & psf \\
\hline QBMX3 & Constant used to compute QBMXNZ & 300.0 & psf \\
\hline QBM1 & Mach breakpoint for computing QBMXNZ & 1.0 & nd \\
\hline QBM2 & Mach breakpoint for computing QBMXNZ & 1.7 & nd \\
\hline \[
\begin{aligned}
& \text { QBRLL } \\
& (1,2)
\end{aligned}
\] & Qbref lower Limit & 180.0, TBD & psf \\
\hline \[
\begin{aligned}
& \text { QBRML } \\
& (1,2)
\end{aligned}
\] & QBREF middle limit & 220.0, TBD & psf \\
\hline \[
\begin{aligned}
& \text { QBRUL } \\
& (1,2)
\end{aligned}
\] & QBREF upper Limit & 285.0, TBD & psf \\
\hline RERRLM & Limit on RERRC & 50.0 & deg \\
\hline RFTC & Roll fader time constant & 5.0 & \(s\) \\
\hline \[
\begin{aligned}
& \text { RMINST } \\
& (1,2)
\end{aligned}
\] & Minimum range to initiate Saturn phase & 152 000.0, TBD & \(f t\) \\
\hline \[
\begin{aligned}
& \text { RN1 } \\
& (1,2)
\end{aligned}
\] & Constant range used in computing EN, EMEP, and EMAX & 36 456.6, TBD & \(f t\) \\
\hline RTBIAS & Constant used in Phase 2 initiation test & 3000 & ft \\
\hline RTD & Conversion factor for radians to degrees & 57.29578 & deg \\
\hline RTURN & HAC radius & 20000.0 & ft \\
\hline \[
\begin{aligned}
& \text { TGGS } \\
& (1,2)
\end{aligned}
\] & \begin{tabular}{l}
Tangent of steep glideslope ( \(=\) TAN (GAMSGS (1)DTR), \\
TAN(GAMSGS (2) DTR))
\end{tabular} & \[
\begin{aligned}
& -0.40402623, \\
& \text { TBD }
\end{aligned}
\] & nd \\
\hline
\end{tabular}

TABLE 4.4-I.- Concluded
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Description & Value & Units \\
\hline vco & Constant used to compute GCONT (= RTD G/GQN, where GQN = GQN (FCS)) & 548.7 & \(\mathrm{ft} / \mathrm{sec}\) \\
\hline WT_GS1 & Weight used for IGS selection & 250000.0 & lb m \\
\hline \[
\begin{aligned}
& X A \\
& (1,2)
\end{aligned}
\] & Steep glideslope ground intercept & -5000.0, TBD & \(f t\) \\
\hline Y_ERROR & Crossrange error bound for autoland initiation when H > H_REF1 & 1000.0 & \(f t\) \\
\hline Y_RANGE1 & Coefficient on H used to compute crossrange error bound when H < H_REF1 & 0.18 & nd \\
\hline Y _RANGE2 & Constant used to compute crossrange error bound when \(H<H \_R E F 1\) & 800.0 & \(f t\) \\
\hline YERRLM & Limit on YERRC & 120.0 & deg \\
\hline
\end{tabular}


Figure 4.4-1.-TAEM through landing groundtrack.


Figure 4.4-2.- TAEM dynamic pressure corridor.


Figure 4.4-3.- TAEM angle of attack corridor.


Figure 4.4-4.- Altitude and altitude reference (above landing site) versus relative velocity for orbiter OFT-1 TAEM.


Figure 4.4-5.- Altitude rate and altitude rate reference versus relative velocity for orbiter OFT-1 TAEM.


Figure 4.4-6.- Actual and reference dynamic pressure versus relative velocity for orbiter OFT-1 TAEM.


Figure 4.4~7.- Lift/drag and angle of attack versus relative velocity for orbiter OFT-I TAEM.
\(4-87\)


Figure 4.4-8.-- Bank angle versus relative velocity for orbiter 0FT-I TAEM.


Figure 4.4-9.- Elevon, bodyflap, and speedbrake deflection versus relative velocity for orbiter OFT-1 TAEM.


Figure 4.4-10.- Total load factor versus relative velocity for orbiter OFT-1 TAEM.


Figure 4.4-11.~X- and Z-body axis components of load factor versus telative velocity for orbiter OFT-I TAEM.


Figure 4.4-12.- Earth relative flightpath angle versus earth relative velocity 0 FT-1, TAEM.


Figure 4.4-13.-Elevon, speedbrake, and body-flap hinge moments versus relative velocity for orbiter OFT-I TAEM.


Figure 4.4-14.- Altitude and altitude reference (above landing site) versus time from entry interface for orbiter OFT-1 TAEM.
h OL


Figure 4.4-15.- Altitude rate and altitude rate reference versus time from entry interface for orbiter OFT-I TAEM.

14-95


Figure 4.4-16.- Actual and reference dynamic pressure versus time from entry interface for orbiter OFT-1 TAEM.

4-96


Figure 4.4-17.- Lift/drag and angle of attack versus time from entry interface for , orbiter OFT-1 TAEM.


Figure 4.4-18.- Body-axis bank angle versus time from entry interface for orbiter 0FT-1 TAEM.

Time from entry interface, min

Figure 4.4-19." Elevon, body-flap, and speedbrake deflection versus time from entry interface for orbiter OFT-1 TAEM.


Figure 4.4-20.- Total load factor versus time from entry interface for orbiter OFT-1 TAEM.


Figure 4.4-21.- X- and Z-body axis components of load factor versus time from entry interface for orbiter OFT-1 TAEM.


Figure 4.4-22. - Geodetic altitude versus time from entry interface for orbiter OFT-1. TAEM.


Figure 4.4-23.- Earth relative flightpath angle versus time from entry interface for OFT-1 TAEM


Figure 4.4-24.- Elevon, speedbrake, and body-flap hinge moments versus time from entry interface for orbiter- OFT-I TAEM.


Figure 4.4-25. 4 Relative velocity versus time from entry interface for orbiter orT-1 TAEM.

4-3.03
GET (rev 21), hr:min:sec ..... 30:27:30
Time from entry interface, min:sec ..... 23:43
Ground relative velocity, fps ..... 612.72
Ground relative flightpath angle, deg ..... \(-21.65\)
Altitude above 1960 Fischer ellipsoid, ft ..... 15493
Altitude above runway, ft. ..... 13291
Geodetic Latitude, deg N ..... 35.004
Longitude, deg W ..... 117.822
Downrange, ft ..... -37 387
Heading wrt runway centerline, deg ..... \(-8.7\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|l|}{3-degree-of-freedom
\(\qquad\) simulation} & \multicolumn{2}{|l|}{6-degree-of-freedom simulation
\(\qquad\)} & \\
\hline & 50 percent wind & No wind & 50 percent wïnd & No wind & Design. value \\
\hline Speedbrake deflection after airspeed stabilized, deg. & 45.9 & 57.7 & 46.9 & 59.1 & 55-60 \\
\hline Preflare velocity, KEAS & 297 & 290 & 298 & 290 & 290 \\
\hline Initial inner glideslope velocity, KEAS & 249 & 252 & 255 & 257 & 250 \\
\hline Maximum normal acceleration during preflare maneuver, gs & 1.39 & 1.45 & 1.52 & 1.77 & 1.5 \\
\hline Time on inner glideslope, sec & 9.8 & 9 & 12.6 & 11.7 & 10-15 \\
\hline Velocity at touchdown, KEAS & 194 & 202 & 188 & 194 & 190 \\
\hline Altitude rate at touchdown, fps & -1.38 & -1.4 & -3.51 & -3.91 & -3.0 \\
\hline Alpha at touchdown, deg & 7.85 & & 8.24 & 7.86 & \(<11\) \\
\hline Range from threshold at touchdown, ft. & 1792 & 1960 & 2460 & 2655 & 2000-3000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Value & Units & Description \\
\hline A 3 & 10.0 & L/s & Final flare filter constant \\
\hline A_INT & 0.002 & \(\mathrm{deg} / \mathrm{ft-s}-1\) & Crossrange error integrator gain \\
\hline A_SBF & 0.5 & 1/s & Speedbrake command filter constant \\
\hline A_13 & 1.0 & 1/s & Airspeed filter constant \\
\hline A_14 & 1.0 & 1/s & Speed control filter constant \\
\hline A 40 & 1.0 & 1/s & Open loop filter constant \\
\hline DELTA_SB & 2.8 & deg & Speedbrake threshold angle \\
\hline DEG_TO_RAD & 0.0174533 & deg \({ }^{-1}\) & Degrees to radians conversion factor \\
\hline DSBC_TD (1,2) & 0.0, TBD & deg & Speedbrake angle at TD \\
\hline DT & 0.16 & \(s\) & Guidance sampling interval \\
\hline G & 32.174 & \(\mathrm{ft} / \mathrm{s}^{2}\) & Gravitational constant \\
\hline GAMMA_CAPTURE & 2.0 & deg & Maximum gamma error to engage steep glideslope \\
\hline GAMMA_REF_1(1,2) & \[
\begin{gathered}
-22.0, \\
T 3 D
\end{gathered}
\] & deg & Steep glideslope flight path reference \\
\hline GAMMA_REF_2 & -1.5 & deg & Shallow glideslope flightpath reference \\
\hline H_CLOOP & 1534.0 & ft & Altitude at which start closed loop pullup \\
\hline H_DECAY & 70.0 & ft & Exponential capture altitude reference \\
\hline H_ERROR_CAPTURE & 50.0 & ft & Maximum altitude error to engage steep glideslope \\
\hline H_ERROR_MAX & 300.0 & \(f t\) & Maximum altitude error \\
\hline
\end{tabular}

TABLE 4.5-III.- Continued
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Value & Units & Description \\
\hline \(\mathrm{H}_{\text {_f }}\) & 60.0 & ft & Altitude to start checking final flare altitude \\
\hline H_flare & 1784.0 & ft & Flare altitude \\
\hline H_INTMX & 50.0 & ft & Altitude error integrator maximum \\
\hline \[
\begin{aligned}
& H K((1,1),(1,2), \\
& (2,1),(2,2))
\end{aligned}
\] & \[
\begin{aligned}
& 20031.0, \\
& \text { TBD, TBD, } \\
& \text { TBD }
\end{aligned}
\] & ft & Constant G circle center altitude \\
\hline H_MIN & 30.0 & ft & Minimum altitude for final flare \\
\hline H NO_ACC & 5.0 & ft & Altitude for zero acceleration \\
\hline \[
\underset{2,3)}{\mathrm{H} \text { SBR_TABLE }(1,}
\] & \[
\begin{aligned}
& 4000.0, \\
& 3000.0, \\
& 1800.0
\end{aligned}
\] & ft & Table of speedbrake retract altitudes \\
\hline H_TD1 DOT & -30.0 & \(\mathrm{ft} / \mathrm{s}\) & Touchdown altitude rate, reference 1 \\
\hline H_TD2 DOT & \(-3.0\) & \(\mathrm{ft} / \mathrm{s}\) & Closed-Loop touchdown altitude rate \\
\hline H WL & 5000.0 & ft & Altitude reference for Limiter \\
\hline K_ALT_1 & 0.003 & \(\mathrm{g} / \mathrm{ft}\) & Altitude error gain, SGS \\
\hline K_FLR & -0.01 & \(\mathrm{g}-\mathrm{s}^{2} / \mathrm{ft}\) & Feed-forward gain, F-F \\
\hline K H & 0.0036 & \(\mathrm{g} / \mathrm{ft}\) & Altitude error gain, fSGS \\
\hline K H & 0.003 & \(\mathrm{g} / \mathrm{ft}\) & Altitude èrror gain, TC, SGS \\
\hline K_HDOT & 0.0175 & \(\mathrm{g}-\mathrm{s} / \mathrm{ft}\) & Vertical velocity gain, FF \\
\hline K_HDOT & 0.015 & \(\mathrm{g}-\mathrm{s} / \mathrm{ft}\) & Vertical velocity gain, FSGS \\
\hline X_HDOT_SGS & 0.015 & \(\mathrm{g}-\mathrm{s} / \mathrm{ft}\) & Vertical velocity gain, SGS \\
\hline K_HDOT_TC & 0.015 & \(\mathrm{g}-\mathrm{s} / \mathrm{ft}\) & Vertical velocity gain, TC \\
\hline
\end{tabular}

TABLE 4.5-III.- Continued
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Value & Units & Description \\
\hline K HINT1 & \(1.5 \times 10^{-4}\) & \(\mathrm{g} / \mathrm{ft}-\mathrm{s}\) & Integrator gain, SGS \\
\hline K IFLR & 0:0 & \(\mathrm{g} / \mathrm{ft}\) & Integrator gain, FF \\
\hline K_INT & 0.05 & s & Integral gain, FSGS \\
\hline K_R1 & 0.5 & s & Yaw rate command gain, flat turn \\
\hline K_R2 & 1.0 & s & Yaw rate command gain, touchdown \\
\hline K_SB & 2.0 & \(\mathrm{deg} / \mathrm{ft-s}{ }^{-1}\) & Speedbrake gain \\
\hline K_SBI & 0.1 & 1/ft & Speedbrake integral gain \\
\hline K_Y1 & 0.05 & \(\mathrm{deg} / \mathrm{ft}\) & Crossrange error integrator gain \\
\hline K_YDOT & 12.0 & s & Crossrange rate gain \\
\hline N_FADER & 0 & nd & Roll fader constant \\
\hline NSB & 3 & nd & Maximum value of ISB \\
\hline NZ_MAX & 1.0 & \(g\) & Max-G Limit for NZC \\
\hline PHI_M1 & 30.0 & deg & Maximum roll attitude command \\
\hline PHI_M2 & 15.0 & deg & Maximum roll attitude command \\
\hline PHI M3 & 90.0 & deg & Maximum roll attitude command \\
\hline P_MODE_INITIAL & 1 & nd & Initial pitch subphase indicator \\
\hline PSI_CAP & 2.0 & deg & Maximum heading error (RC) \\
\hline \[
\begin{aligned}
& R((1,1),(1,2) \\
& (2,1),(2,2))
\end{aligned}
\] & \[
\begin{aligned}
& 19950.0 \text {, } \\
& \text { TBD, TBD, } \\
& \text { TBD }
\end{aligned}
\] & \(f t\) & Constant-G circle radius \\
\hline RAD_TO_DEG & 57.29578 & \(\mathrm{deg} / \mathrm{rad}\) & Radian-to-degree conversion \\
\hline
\end{tabular}

TABLE 4.5-III.- Continued
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Value & Units & Description \\
\hline SB_MAX & 98.6 & deg & Maximum speedbrake angle \\
\hline SB_RATE & 10.0 & \(\mathrm{deg} / \mathrm{s}\) & Speedbrake retract rate \\
\hline SB_REF & 55.0 & deg & Speedbrake reference \\
\hline \[
\begin{aligned}
& \text { SBF } 2,3)^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 40.0, \\
& 55.0, \\
& 98.6
\end{aligned}
\] & deg & Table of reference speed brake positions for retraction altitude \\
\hline \(\operatorname{SIGMA}(1,2)\) & 837.1, & ft & Exponential distance \\
\hline T-Q & 4.0 & s & Minimum time with bounded errors for transition to steep glidestope phase \\
\hline TAU GAMMA & 2.0 & s & Time constant, FSGS \\
\hline TAU_TD & 4.88 & s & Time constant, FSGS \\
\hline TAU_TD1 & 5.0 & s & Time constant, FF \\
\hline TAU_TD2 & 4.88 & s & Time constant, fF \\
\hline TQ_LAT & 4.0 & s & Minimum time with bounded. error to engage lateral track \\
\hline V_LIMIT & 10.0 & \(\mathrm{ft} / \mathrm{s}\) & Maximum error velocity limit \\
\hline V_REF (1,2) & \[
\begin{aligned}
& 489.0, \\
& \text { TBD }
\end{aligned}
\] & \(\mathrm{ft} / \mathrm{s}\) & Reference airspeed \\
\hline WT_GS1 & 250000.0 & Lbm & Weight for glideslope selection \\
\hline X_AIM_PT & 1500.0 & ft & Aim point X-distance \\
\hline \[
\begin{aligned}
& X \operatorname{Exp}((1,1), \\
& (\overline{1}, 2),(2,1), \\
& (2,2))
\end{aligned}
\] & \[
\begin{aligned}
& -3552.0, \\
& \text { TBD,TBD, } \\
& \text { TBD }
\end{aligned}
\] & \(f t\) & Exponential capture X-distance \\
\hline
\end{tabular}

TABLE 4.5-III.- Concluded




Figure 4.5-2.- Approach and landing geometry.


Figure 4.5-3.- Altitude of center of gravity above the runway, earth relative fightpath angle, and load factor versus range to runway threshold for OFT-1 approach and landing.


Figure 4.5-4.- Altitude above runway versus altitude rate for orbiter OFT-1 approach and landing.


Figure 4.5-5.- Altitude above runway versus range to runway threshold 0FT-1 approach and landing.


Figure 4.5-6.- Speedbrake, body-flap, elevon versus altitude above the runway for orbiter OfT-1 approach and fanding.


Figure 4.5-7.- Dynamic pressure versus time from entry interface for orbiter OFT-I approach and landing.


Figure 4.5-8.- Lift/drag and actual angle of attack versus time from entry interface for orbiter 0FT-1 approach and landing.


Figure 4.5-9.- Body-axis bank angle versus time from entry interface for
orbiter 0FT-1 approach and landing. orbiter OFT-1 approach and landing.


Figure 4.5-10.- Elevon, body-flap and speedbrake deflections versus time from entry interface for orbitér \(0 \mathrm{FT} \mathrm{T}^{\mathrm{m}}\), approach and landing.


Figure 4.5-11.- Total load factor versus time from entry interface . for orbiter OFT-1 approach and landing.
```

t
4-123

```


Figure 4.5-12.- X- and Z-body axis components of load factor versus time from entry interface for orbiter OFT-1 approach and landing.


Figure 4.5-13.- Elevon, speedbrake, and body flap hinge moments versus time from entry interface for orbiter OFTT-1 approach and landing.

- Figure 4.5-14.- Earth relative flightpath angle versus time from entry interface for OFT-1 approach and landing.

\subsection*{5.0 COMMUNICATIONS AND TRACKING}
A. summary of OFT-1 S-band and C-band data is presented in table 5-I. TACAN data are presented in table 5 -II and station locations are presented in table 5-III. The data for the Buckhorn and Goldstone S-band communications stations are based on detailed analyses of terrain masking with 30 seconds allowed for lockup after clearing masking. The Pt. Pillar and Vandenberg C-Band tracking stations acquisition of signal (AOS) is based on a O-degree elevation angle with 60 seconds allowed for firm lockup using skin tracking. .

Approximately 6 minutes after the deorbit maneuver, communications and tracking by the Guam station is established with AOS based on a 3-degree elevation angle at 29 hours 51 minutes 07 seconds GET. This communication and tracking lasts for 6 minutes 07 seconds with loss of signal (LOS) based on a 3-degree elevation angle occurring 6 minutes 49 seconds prior to reaching the entry interface.

The Orbiter enters S-band blackout approximately 3 minutes 31 seconds after entry interface when the Orbiter is at an altitude of 264217 feet and an Earth-relative speed of 24493 fps. There are no S -band stations available for communications after Guam until Buckhorn acquisition.

The theoretical S-band blackout exit occurs 52 minutes 46 seconds after entry interface at an altitude of 176848 feet and an Earth-relative speed of 12042 fps . The theoretical blackout exit for L-band communication used by the TACAN station occurs about 13 minutes 25 seconds after entry interface at an altitude of 169920 feet and an Earth-relative speed of 10992 fps. Communications blackout entry and exit computations are based on the criteria presented in reference 13 and are presented in the altitude/relative velocity plane and altitude/range plane in figures 4.3-12 and 4.3-37, respectively.

Figures 5-1 and 5-2 present the OFT-1 trajectory profile in the elevationazimuth plane for the Buckhorn and Goldstone stations, respectively.

C-band tracking by the Pt. Pillar station is established at about 181838 feet altitude and an Earth-relative speed of 12914 fps and by the Vandenberg station at about 176470 feet altitude and Earth-relative speed of 11979 fps. The data from these two \(C\)-band stations are available to provide an estimate of the state vector by the Mission Control Center (MCC) before establishing the S-band communications Lockup with Buckhorn station. Fifteen seconds Later, after communication is established through the Buckhorn station, the crew could initiate a runway redesignation if given a ground command, at an altitude of 160345 feet and an Earth-relative speed of 9514 fps . The first MCC state vector update will occur about 50 seconds after the Buckhorn s-band communication at an altitude of 151569 feet and an Earth-relative speed of 8488 fps .

The TACAN acquisition logic is based on the three-tier concept. A total of 10 TACAN stations are used for navigation with acquisition and switching of
these stations based on the arrangement within three tiers or regions; the acquisition region, the navigation region, and the landing region. The acquisition region includes the San Luis Obispo, Avenal, and the Gaviota stations and is used for ranges greater that 120 nautical miles. The navigation region includes the Fellows, Gorman, Lake Hughes, and Santa Barbara stations and a mobile TACAN station and is used for ranges between 120 and 10 nautical miles. The landing region includes the Palmdale and EAFB stations and is used for ranges less than 10 nautical miles. Table 5-I and figure 5-3 present TACAN station usage and switching times. The TACAN data from San Luis obispo are inhibited in this trajectory until the altitude decreases to 129144 feet which allows time for crew evaluation prior to incorporation into the onboard navigation state vector. Since this profile was generated, the criteria for incorporating TACAN data into the onboard navigation system have changed allowing incorporation based on a range rate limit of 6300 knots provided the data have been verified by the MCC. Based on this criteria, TACAN data could have been incorporated at 156926 feet altitude, which allows 30 seconds for evaluation by the MCC after acquisition by the Buckhorn station. This 30 seconds is required for the TACAN range and bearing data to be telemetered to the MCC through the Buckhorn station.

Figures 5-3 and 5-4 present significant communications and tracking events relative to the OFT-1 groundtracks.
table 5-1.- Oft-1 c-band and s-band communication sequence of events
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Time } \\
\text { from } \\
\text { 400K, } \\
\text { min:sec }
\end{gathered}
\] & Site \({ }^{\text {a }}\) & Event & \[
\begin{gathered}
\text { G.m.t., } \\
\text { hr:min:sec }
\end{gathered}
\] & \[
\begin{gathered}
\text { g.e.t., } \\
\text { hr:min:sec }
\end{gathered}
\] & \[
\begin{gathered}
\text { Elevation, } \\
\text { deg. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Azimuth } \\
\text { from } \\
\text { north, } \\
\text { deg } \\
\hline
\end{gathered}
\] & 5 lant range, n. mi. & Range rate, fps & \begin{tabular}{l}
Surface range, \\
n. mi.
\end{tabular} & Relative velocity,
\(\qquad\) & \[
\begin{gathered}
\text { Altitudeb, } \\
\mathrm{ft}
\end{gathered}
\] & \(\xrightarrow{\begin{array}{c}\text { Longitude, } \\ \text { deg }\end{array}}\) & Geodetic latitude,
\(\qquad\) \\
\hline -13:43 & GWM & AOS contact & 42:20:15 & 29:50:15 & . 0 & 218.0 & 980. & -22 432. & 954. & 23909. & 835322. & 135.03 & . 59 \\
\hline -12:56 & GHM & AOS data & 42:21:02 & 29:51:02 & 3.0 & 214.9 & 807. & -22 130. & 782. & 23929. & 819169. & 137.32 & 2.49 \\
\hline -09:40 & GWM & Max elevation & 42:24:18 & 28:54:18 & 26.3 & 143.2 & 258. & -889. & 223. & 24 030. & 738136. & 147.00 & 10.31 \\
\hline -06:49 & GHM & LOS data & 42:27:09 & 29:57:09 & 3.0 & 70.3 & 703. & 21973. & 686. & 24138. & 651075. & 155.96 & 16.92 \\
\hline -06:13 & GWM & LOS contact & 42:27:45 & 29:57:45 & . 2 & 67.1 & 837. & 22441. & 820. & 24164. & 630829. & 157.96 & 18.28 \\
\hline 11:26 & PTP & AOS contact & 42:45:23 & 30:15:23 & . 0 & 246.1 & 465. & -11 863. & 462. & 14844. & 190515. & -130.99 & 34.22 \\
\hline 11:53 & VDB & AOS contact & 42:45:50 & 30:15:50 & . 1 & 268.4 & 458. & -13 573. & 456. & 13972. & 187 009. & -129.73 & 34.11 \\
\hline 13:06 & FRC & AOS contact & 42:46:03 & 30:17:03 & .0 & 265.3 & 441. & -11 449. & 438. & 11608. & 173134. & -126.68 & 34.04 \\
\hline 13:06 & BUC & ADS contact & 42:47:03 & 30:17:03 & . 0 & 265.3 & 441. & -11450. & 438. & 11608. & 174134. & -126.68 & 34.04 \\
\hline 13:06 & PTP & AOS data & 42:47:03 & 30:17:03 & 3.0 & 224.5 & 300. & -8098. & 298. & 11608. & 174134. & -126.68 & 34.04 \\
\hline 13:12 & VDB & AOS data & 42:47:09 & 30:17:09 & 3.0 & 264.5 & 297. & -11 287. & 295. & 11422. & 172915. & -126.47 & 34.05 \\
\hline 13:42 & GDS & AOS contact & 42:47:39 & 30:17:39 & . 0 & 262.7 & 429. & -10 342. & 426. & . 10441. & 166355. & -125.37 & 34.13 \\
\hline 14:51 & FRC & AOS data & 42:48:49 & 30:18:49 & 3.0 & 265.7 & 269. & -8 252 & 267. & 8436. & 151053. & -123.29 & 34.50 \\
\hline 14:51 & BUC & AOS data & 42:48:49 & 30:18:49 & 3.0 & 265.7 & 269. & -8 252. & 267. & 8436. & 151053. & -123.29 & 34.50 \\
\hline 15:47 & GDS & AOS data & 42:49:44 & 30:19:44 & 3.0 & 266.1 & 254. & -6 652. & 252. & 6970. & 139613. & -121.98 & 34.95 \\
\hline 15:53 & PTP & Max elevation & 42:49:50 & 30:19:50 & 6.6 & 168.8 & 165. & -1 266. & 163. & 6838. & 138763. & -121.86 & 34.99 \\
\hline 16:50 & VDB & Max elevation & 42:50:48 & 30:20:48 & 30.3 & 349.3 & 39. & -571. & 34. & 5549. & 121927. & -120.71 & 35.22 \\
\hline 18:01 & PTP & LOS data & 42:51:59 & 30:21:59 & 3.0 & 136.3 & 208. & 3511. & 207. & 4063. & 103928. & -119.59 & 35.13 \\
\hline 20:03 & GDS & Max elevation & 42:54:01 & 30:24:01 & 7.7 & 255.5 & 81. & -1925. & 80. & 1942. & 74401. & -118.45 & 35.00 \\
\hline 20:29 & PTP & LOS contact & 42:54:27 & 30:24:26 & . 2 & 126.7 & 259. & 1030. & 258. & 1601. & 65724. & -118.30 & 35.01 \\
\hline 21:07 & VDB & LOS data & 42:55:04 & 30:25:04 & 3.0 & 79.0 & 123. & 1039. & 123. & 1118. & 52779. & -118.14 & 35.03 \\
\hline 22:02 & BUC & Max elevation & 42:55:60 & 30:25:60 & 41.6 & 329.9 & 9. & -378. & 6. & 790. & 37296. & -117.98 & 35.05 \\
\hline 22:03 & FRC & Max elevation & 42:56:01 & 30:26:01 & 42.1 & 329.7 & 8. & -379. & 6. & 787. & 37053. & -117.97 & 35.05 \\
\hline 23:07 & GDS & LOS data & 42:57:04 & 30:27:04 & 3.0 & 249.7 & 51. & -239. & 51. & 653. & 21587. & -117.84 & 35.04 \\
\hline 23:12 & VDB & LOS contact & 42:57:09 & 30:27:09 & . 2 & 79.9 & 138. & 249. & 137. & 646. & 20465. & -117.83 & 35.04 \\
\hline 24:13 & GDS & L.OS contact & 42:58:10 & 30:28:10 & . 2 & 243.7 & 53. & 299. & 53. & 543. & 6908. & -117.83 & 34.95 \\
\hline 24:27 & FRC & LOS data & 42:58:25 & 30:28:25 & 3.0 & 119.1 & 4. & 146. & 4. & 519. & 3979. & -117.84 & 34.93 \\
\hline 24:27 & BUC & LOS data & 42:58:25 & 30:28:25 & 3.0 & 116.6 & 4. & 126. & 4. & 519. & 3979. & -117.84 & 34.93 \\
\hline 24:35 & FRC & LOS contact & 42:58:32 & 30:28:32 & . 2 & 126.6 & 4. & 219. & 4. & 503. & 2784. & -117.84 & 34.92 \\
\hline 24:35 & BUC & LOS contact & 42:58:32 & 30:28:32 & -2 & 124.5 & 4. & 203. & 4. & 502. & 2767 & -117.84 & 34.92 \\
\hline
\end{tabular}

\footnotetext{
ac-Band Stations
Pt. Pillar (PTP) Vandenberg (VDE
s -Band Stations
Buckhorn (BUC)
GUAM (GHM)
}
baltitude of c.g. above 1960 Fischer ellipsoid.
table \(5-\mathrm{min}-\mathrm{m}\) oft -1 tacan sequence of events
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Time from 400K, min:sec & Site \({ }^{\text {a }}\) & & Event & G.m.t., hr:min:sec & g.e.t., hr:min:sec & Elevation, deg & Az imuth from north. deg & Stant range, n. mi. & Range rate, fps & Surface range, n. mis. & ReLative velocity, fps & Altitudeb, ft & Longitude, deg & \begin{tabular}{l}
Geodetic \\
latitude, deg
\end{tabular} \\
\hline & 11:49 & SBP & H0S & contact & 42:45:46 & 30:15:46 & . 0 & 264.1 & 460. & -13 416. & 458. & 14097. & 187551. & -129.81 & 34.12 \\
\hline & 12:06 & 6*0 & dos & contact & 42:46:03 & 30:16:03 & . 1 & 269.0 & 453. & -13 240 . & 450. & 13536. & 185026. & -129.13 & 34.07 \\
\hline & 12:14 & FLIN & & centact & 42:46:11 & 30:16:11 & . 1 & 264.5 & 449. & -12 826. & 447. & 13 280. & 183806. & -128.79 & 34.05 \\
\hline & 12:14 & S8A & & contact & 42:46:11 & 30:16:11 & . 0 & 271.8 & 452. & -13 115. & 450. & 13288. & 183806. & -128.79 & 34.05 \\
\hline & 12:39 & GMN & & contact & 42:46:36 & 30:16:36 & .0 & 266.5 & 446. & -12 244. & 443. & 12478. & 179410. & -127.74 & 34.02 \\
\hline & 12:49 & LRS & AOS & contact & - \(42: 46: 46\) & 30:16:46 & .0 & 267.3 & 440. & -11998. & 438. & 12166. & 177594. & -127.36 & 34.02 \\
\hline & 13:00 & PMD & AOS & contact & 42:46:57 & 30:16:57 & . 0 & 267.8 & 443. & -11 672. & 441. & 14793. & 175319. & -126.90 & 34.03 \\
\hline & 13:10 & EDW & & contact & 42:47:07 & 30:17:07 & . 0 & 265.3 & 44. & -11 339. & 439. & 11484. & 173325. & -126.54 & 34.05 \\
\hline & 13:10 & SBP & & & 42:47:07 & 30:17:07 & 3.0 & 257.5 & 297. & -11 121. & 295. & 11484. & 173 325. & -126.54 & 34.05 \\
\hline & 13:27 & GVO & & & 42:47:24 & 30:17:24 & 3.0 & 266.3 & 293. & -10 852. & 290. & 10930. & 169489. & -125.91 & 34.08 \\
\hline & 13:38 & FLH & & & 42:47:36 & 30:17:36 & 3.0 & 259.8 & 288. & -10 418. & 285. & 10563. & -167087. & -125.50 & 34.12 \\
\hline & 13:38 & SBA & & data & 42:47:36 & 30:17:36 & 3.0 & 271.2 & 288. & -10 456. & 286. & 10563. & 167.087 & -125.50 & 34.12 \\
\hline & 14:13 & GMN & AOS & data & 42:48:10 & 30:18:10 & 3.0 & 264.9 & 278. & -9 440. & 275. & 9514. & 160345. & -124.38 & 34.27 \\
\hline & 14:25 & LHS & AOS & data & 42:48:22 & 30:18:22 & 3.0 & 267.1 & 274. & -9 055. & 271. & 9183. & 157817. & -124.03 & 34.33 \\
\hline & 14:44 & PMD & & & 42:48:41 & 30:18:41 & 3.0 & 269.2 & 271. & -8 390. & 268. & 8647. & 153103. & -123.49 & 34.45 \\
\hline & 14:59 & EDH & & & 42:48:56 & 30:18:56 & 3.0 & 266.2 & 267. & -7 992. & 265. & 8225. & 149026. & -123.09 & 35.56 \\
\hline & 76:49 & SBP & & etevation & 42:50:46 & 30:20:46 & 83.6 & 158.5 & 20. & -91. & 2. & 5593. & 122416. & -120.74 & 35.22 \\
\hline & 17:27 & Gvo & & elevation & 42:51:24 & 30:21:24 & 23.6 & \(\pm 3\) & 45. & -575. & 41. & 4755. & 113503. & -120.09 & 35.22 \\
\hline & 17:42 & FLW & & elevation & 42:51:39 & 30:21:39 & 71.8 & 5.7 & 18. & -438. & 6. & 4447. & 109376. & -119.85 & 35.19 \\
\hline Y & 17:52 & SEA & & elevation & 42:51:49 & 30:21:49 & 15.1 & 2.4 & 63. & -1030. & 61. & 4256. & 106599. & -119.72 & 35.16 \\
\hline \(\pm\) & 19:09 & GMN & Mâx & elevation & 42:53:06 & 30:23:06 & 55.8 & 358.0 & 17: & -323. & 9. & 2794. & 89080. & -118.87 & 34.96 \\
\hline & 19:31 & LHS & Max & elevation & 42:53:28 & 30:23:28 & 35.3 & 343.7 & 22. & -434. & 18. & 2410. & 83452. & -118.68 & 34.97 \\
\hline & 20:15 & PMD & Max & elevation & 42:54:12 & 30:24:12 & 22,2 & 325.3 & 29. & -864. & 27. & 1790. & 70724. & -118. 38 & 35.00 \\
\hline & 20:55 & SBP & LOS & datá & 42:54:52 & 30:24:52 & 3.0 & 95.3 & 128. & 1138. & 128. & 1260. & 56569. & \(-118.18\) & 35.03 \\
\hline & 21:32 & gvo & Los & & 42:55:29 & 30:25:29 & 3.0 & 72.5 & 105. & 826. & 105** & 904. & 45402. & -118.06 & 35.04 \\
\hline & 21:35 & SBA & & & 42:55:32 & 30:25:32 & 3.0 & 57.4 & 101. & 751. & 101. & 890. & 44608. & -118.05 & 35.04 \\
\hline & 21:50 & FLW & & & 42:55:47 & 30:25:47 & 3.0 & 91.2 & 92. & 751. & 91. & 829. & 40506. & -118.01 & 35.05 \\
\hline & 22:33 & EDH & & elevation & 42:56:30 & 30:26:30 & 26.3 & 305.3 & 10. & -549. & 9. & 718. & 29676. & -117.91 & 35.06 \\
\hline & 22:57 & GMN & & data & 42:56:54 & 30:26:54 & 3.0 & 73.0 & - 52. & 418. & 52. & 668. & 23853. & \(-117.85\) & 35.05 \\
\hline & 22:59 & SBP & & contact & 42:56:56 & 30:26:56 & . 2 & 94.0 & 144. & 539. & 144. & 665. & 23396. & \(-117.85\) & 35.05 \\
\hline & 23:10 & LHS & LOS & data & 42:57:07 & 30:27:07 & 3.0 & 59.5 & 42. & 62. & 42. & 648. & 20913. & \(-117.84\) & 35.04 \\
\hline & 23:26 & GVo & Los & contact & 42:57:23 & 30:27:23 & . 2 & 74.8 & 116. & -50. & 116. & 625. & 17103. & -117.82 & 35.02 \\
\hline & 23:27 & SBA & Los & contact & 42:57:24 & 30:27:24 & . 2 & 81.2 & 110. & -201. & 110. & 623. & 16880. & \(-117.82\) & 35.01 \\
\hline & 23:33 & FL \({ }_{\text {\% }}\) & Los & contact & 42:57:30 & 30:27:30 & . 2 & 92.4 & 101. & 12. & 101. & 613. & 15516. & \(-117.82\) & 35.00 \\
\hline & 23:56 & PFD & los & data & 42:57:53 & 30:27:53 & 3.0 & 29.8 & 23. & -512. & 23. & 575. & 10361. & \(-117.83\) & 34.97 \\
\hline & 24:05 & 6m & & contact & 42:58:02 & 30:28:02 & . 2 & 79.4 & 52. & -181. & \$2. & 558. & 8594. & -117.83 & 34.96 \\
\hline & 24:06 & L LHS & & contact & 42:58:03 & 30:28:03 & \({ }^{2}\) & 65.9 & 40. & -289. & 40. & 554. & 8227. & -117.83 & 34.96 \\
\hline & 24:28 & EDN & Los & data & 42:58:25 & 30:28:25 & 3.0 & 236.9 & 5. & 318. & 5. & 518** & 3885 \% & \(-117.84\) & 34.93 \\
\hline & 24:39 & PWD & Los & contact & 42:58:28 & 30:28:28 & . 2 & 32.5 & 21. & -451. & 2\%. & 515. & 3 354. & \(-117.84\) & 34.92 \\
\hline & 24:39 & EDH: & Los & contact & 42:58:36 & 30:28:36 & . 2 & 230.3 & 6. & 363 & 6. & 479. & 2463. & -117.84 & 34.91 \\
\hline & & & & & & & & \(\underline{+}\) & & & & & & & \\
\hline & \multicolumn{4}{|r|}{asan Luis Obispo (s8p)} & \multicolumn{2}{|l|}{Gorman (GHN)} & & & & & & & & & \\
\hline & & vioto & & & Lake Hughe & (LHS) & & & & & & & & & \\
\hline & & enal (A & VE) & & Mobil Unit & AF (MBL) & & & & & & & & & \\
\hline & & Llows & (FLH) & & Palmdale & & & & & & & & & & \\
\hline & & wards & EDW & & & & & & & & & & & & \\
\hline & & titude & & .g. above 1 & 1960 Fischer & e11ipsoid. & & & & & & & & & \\
\hline
\end{tabular}

TABLE 5-III.- S-BAND, C-BAND, and TACAN STATION LOCATIONS USED FOR
OFT-1 DEORBIT THROUGH LANDING


Tacan stations
\begin{tabular}{lllr}
\hline & & & \\
SBP, San Luis Obispo & 35.2523 N & 120.7603 W & 1433 \\
GVO, Gavioto & 34.5324 N & 120.0906 W & 2654 \\
AVE, Avenal & 35.6469 N & 119.9779 W & 670 \\
FLW, Fellows & 35.0933 N & 119.8652 W & 3903 \\
GMN, Gorman & 34.8039 N & 118.8610 W & 4875 \\
LHS, Lake Huges & 34.6831 N & 118.5766 W & 582 \\
MBL, Mobil Unit, AF & 35.0166 N & 118.1167 W & 4875 \\
PMD, PaLmdaLe & 34.6321 N & 118.0634 W & 2469 \\
EDW, Edwards & 34.9824 & 117.7542 W & 2301 \\
\hline
\end{tabular}


Figure 5-I.- Buckhorn elevation versus azimuth for orbiter OFT-1.


Figure 5-2.- Goldstone elevation versus azimuth for orbiter OFT-1.


Figure 5-3.- OFT-1 entry groundtrack and TACAN events.


\subsection*{6.0 OPEN ISSUES}

Several issues related to entry must be resolved prior to OFT-1. The OMS Loading philosophy must be finalized. The modification to the TAEM guidance software to allow matching of the slopes of the entry and T.AEM profiles at the entry/TAEM interface must be approved and verified. The autoland guidance constants for 50 -to 100 -present headwinds must be defined. Communication and tracking analysis of the deorbit-through-landing trajectory is required to determine if communications and tracking coverage is adequate. Dispersion analysis of the deorbit-through-landing trajectory and the performance evaluation of Shuttle Orbiter systems over the resulting flight regime is required to determine if the profile is adequate. Maneuver capability during TAEM must be determined and the TAEM HAC geometry defined to provide optimum MSBLS acquisition conditions consistent with TAEM guidance performance. Detailed venting and structural analysis of the TAEM profile are required. The sensitivity of sonic boom overpressure to variations in the trajectory must be defined and further optimization of the angle-of-attack profiles for the flight control constraints and limits will have to be incorporated into the OFT-1 deorbit-through-landing profile when it is reworked.

The OFT-1 deorbit-through-landing profile presented in this document has been designed to reach a good trade-off of conflicting requirements, considering all systems and operational guidelines and constraints. The 40-degree angle-of-attack profile for OFT-1 departs from the expected operational mission angle-of-attack profile in order to minimize TPS environment effects.

Two issues have been resolved since the OFT-1 Preliminary Reference Flight Profile for Deorbit Through Landing (ref. 1) was published. Flight software logic has been implemented to provide yaw steering during ascent if an AOA to EAFB is required. This reduces the crossrange-at-entry interface to within the 550 nautical mile crossrange requirement for OFT-1. The approach and Landing profile has been shaped to provide a 22-degree outer glideslope and a 1.5 -degree inner glideslope that is compatible with manual flight.

Several assumptions and simplifications in systems modeling were made in developing flight corridors and flight profiles for the OFT-1 deorbit-through-landing profile. Also, constraints and guidelines for different Orbiter systems and for operational considerations resulted in conflicting requirements in the OFT-1 flight profile development. Therefore, detailed Orbiter systems and operations evaluation of the profile is required to determine the adequacy of the profile.

The OFT-1 deorbit-through-landing profile will be refined and updated as issues are resolved.

\subsection*{8.0 REFERENCES}
1. Hiott, James M.: OFT-1 Preliminary Reference Flight Profile for Deorbit Through Landing. JSC IN 76-FM-68, Sept. 1976.
2. Minutes of the OFT Entry-Through-Landing Working Group Meeting on Feb. 2, 1977. JSC memorandum.
3. Mission Integration Branch: Preliminary Reference Profile Design Considerations and Flight Summary for OFT-1. JSC IN 76-FM-54, Aug. 1976.
4. Flight Planning Branch: Reference Flight Profile for 0FT-1 - Integrated Profile. JSC IN 77-FM-15, Mar. 1977.
5. Software Development Branch: Space Vehicle Dynamics Simulation (SVDS) Program Description, Revision 2. JSC IN 73-FM-85, Dec. 1975.
6. Rockwell International: Aerodynamic Design Data Book - Volume I, Orbiter Vehicle, Revision 5. SD72-SH-0060-1J, Dec. 1975.
7. Rockwell International: Space Shuttle Flight Control System Data Book, Volume II, Orbiter. SD 73-SH-0097-2E, June 1976.
8. Rockwell International: RI/Houston Simplified Weight Synthesis Program, Revision 3. SEH-ITA-75-192, July 1975.
9. Space Shuttle Orbiter Orbital Flight Test Level C Functional Subsystem Software Requirements Document, Guidance, Navigation and Control, Part A, Guidance, Entry through Landing. SD-76-SH1-0001, Nov. 1975.
10. Space Shuttle Orbital Flight Test Level C Functional Subsystem Software Requirements Document, Guidance, Navigation and Control, Part B, Entry through Landing Navigation, Dec. 17, 1976, SD 76-SH-0004B.
11. Lowes, Flora B.: Preliminary Coordinates of Landing Site Origins (Runway Thresholds) for Various ALT Runways. JSC memorandum FM86 (76-65), Mar. 1976.
12. Coordinate Systems for the Space Shuttle Program. NASA TM X-58153, 1974.
13. Minutes of the OFT Entry-Through-Landing Working Group Meeting on Feb. 24 and 25, 1976. JSC memorandum FM41 (76-20).
14. Trajectory Optimization/Autoland Study Report, HAD-1.6-120, McDonnell Douglas Technical Services Co., Inc., Dec. 3, 1976.

APPENDIX

OFT-1 DEORBIT-THROUGH-LANDING GUIDELINES AND

CONSTRAINTS FOR MISSION PLANNING

\section*{APPENDIX}
```

.OFT-1 DEORBIT-THROUGH-LANDING GUIDELINES AND
CONSTRAINTS FOR MISSION PLANNING

```

\subsection*{1.0 GENERAL}

Orbit inclination will be 38 degrees. The inclination has been selected to optimize insertion and onorbit Spaceflight Tracking and Data Network (STDN) coverage within limits resulting from entry crossrange and aerodynamic heating considerations.

For all゙ OFT flights, AOA Landings will be on runway 17 L on Rogers Lake bed at EAFB, and landings for RTLS will be on runway 15 at KSC.. Because of the high probability of landing on either runway 15 or 33 for RTLS, OFT performance assessment will be based on the capability to achieve either runway. for RTLS.

The time from the end of the last sleep period prior to deorbit to touchdown will not exceed 12 hours.

Nominal landing, landing following AOA, and RTLS aborts will be no earlier than 0.5 hour after sunrise nor later than 0.5 hour prior to sunset. It is desirable that landings at EAFB occur prior to 1000 hours local time.

The onorbit attitude time line and predeorbit thermal conditioning will minimize TPS backface temperature at entry interface within acceptable limits.

AOA capability and contingency deorbit capability on at least the first four revolutions following lift-off will be provided with landing at EAFB.

At all points on the ascent profile, the Orbiter will have RTLS or AOA capability, and the RTLS/AOA abort overlap will be maximized consistent with system margins and AOA crossrange limitations.

\subsection*{2.0 DEORBIT}

Propulsive maneuvers, venting, and attitude time lines shall be designed to enhance state vector determination during atmospheric descent for nominal end-of-mission flight termination and contingencies.

The IMU alinement shall be designed to minimize the IMU misalinement at the entry interface. The maximum platform misalinement at entry interface for a star tracker alinement shall be TBD.

An IMU alinement will be made as close as possible to deorbit burn but no longer than 1.5 hours before the deorbit burn.

The auxiliary power units (APU's) will be assumed to be turned on one orbit before deorbit TIG and will remain on for approximately 8.5 minutes for APU and flight control system checkout. They will then be shut down until 5 minutes before deorbit ignition and will remain on throughout landing and rollout.

The deorbit attitude will be achieved at a minimum of 5 minutes prior to deorbit burn initiation.

Deorbit burns will be targeted out of plane, if necessary, to provide acceptable center-of-gravity conditions at entry interface.

The deorbit maneuver will be performed with both OMS engines, but an acceptable deorbit must be achieved even if one of these engines does not operate successfully.

Propellant-critical contingency deorbit will be based on a shallower-thannominal targeting criteria where this targeting provides the best compromise between deorbit capability, RCS propellant availability for attitude control during atmospheric descent, and ent-ry thermal environment.

All nominal deorbit opportunities will be planned so that a backup opportunity exists on the next revolution with a crossrange of less than 550 nautical miles.

A minimum free-fall time of 15 minutes between the termination of the deorbit maneuver with one OMS failure and entry interface is required for entry preparation. .

APU hydraulic thermal conditioning will be performed between deorbit and entry interface.

In addition to satisfying the entry velocity, flightpath angle, and range requirements, the deorbit maneuver will reduce the OMS propellant remaining. to achieve an acceptable Orbiter entry weight and center of gravity.

\subsection*{3.0 ENTRY}

The entry profile will be shaped to minimize TPS bondline temperatures while maintaining surface temperatures within limits and providing acceptable systems and trajectory margins to compensate for dispersions.

The Orbiter entry weight will be minimized by reducing residual consumables, such as OMS and forward RCS propellant, within safe limits. Nominal RCS propellant allowance for attitude control for entry through landing will be 2250 pounds in the aft RCS propellant tanks. However, maximum aft RCS propellant, consistent with mission objectives and center-of-gravity considerations, will be maintained for entry-through-landing attitude control.

The entry-through-landing profile will conform to structural load Limits corresponding to a -0.8 to \(2 g\) normal load factor, to control surface hinge moment aerodynamics load limits, and to actuator rate limits.

The maximum normal load factor with Orbiter weight equal to or less than 189000 pounds shall be limited to 2 g 's nominally and 2.5 g 's for contingencies. Planned nominal entry crossrange will be \(\leq 550\) n.mi. with an angle-of-attack profile of 40 degrees.

Optimization of the entry profile will include consideration of sonic boom ground-level overpressures.

Nominal and abort targeting will be designed so that postblackout target changes are not nominally required. This does not preclude targeting to provide profile shaping to maximize the capability to redesignate after exit from voice communications blackout.

The nominal Orbiter center of gravity will be 66.25 percent Longitudinally at entry with no lateral center-of-gravity displacement. The nominal vertical center of gravity will be \(375 \pm 3\) inches.

The TAEM guidance target dynamic pressure will be based on the concept of flying directly to the HAC without employing a procedural turn in tailwind conditions. Additionally, this dynamic pressure will avoid undershoot conditions in the presence of severe headwinds. The energy control will provide conditions suitable for the initiation of autoland on the final approach.

The terminal area profile will be compatible with either a manual or an automatic mode of operation.

The maximum dynamic pressure during TAEM will be limited to 342 psf . The choice of minimum dynnamic pressure assures that terminal area maneuvers are limited to the front side of the lift/drag curve. Therefore, the minimum dynamic pressure is a function of Orbiter weight and varies from 138 psf to 161 psf as the orbiter weight varies from 188 K to 218 K lbs.

Terminal area maneuvers will not require operation on the backside of the Lift/drag curve.

Nominal touchdown speed and altitude rate will provide adequate pitch margins for structural clearance, maximum tire speed margins, and landing gear structural load margins.

The TAEM guidance will not command a bank angle greater than 30 degrees for Mach numbers above 0.9 nor 60 degrees below Mach 0.9 .

The maximum descent rate at landing shall be limited to 7 fps for an Orbiter weight \(\leq 187800\) pounds.

The design landing weight of 188000 pounds will not be exceeded for nominal landings. For AOA and RTLS 193000 pounds will not be exceeded.

It is desirable that the atmospheric descent for nominal end-of-mission flight termination and \(A O A\) have the same angle-of-attack profile of 40 degrees during the critical TPS region of entry.

AOA targeting shall be based on a zero bank angle between entry interface and a dynamic pre'ssüre of 10 psf.

JM6/Technical Library (2) JM61:/Center Data Mgmt. (3) CA3/H. M. Draughon-
CB/K. Bobko
V. D. Brand (2)
R. Crippen
H. W. Hartsfield (2)
K. Mattingly
J. Young

CF/M. P. Frank
CF3/W. Bolt
R. Epps
J. E. Ferguson
J. Greene
J. E. I'Anson
N. Griffith

CF6/H. F. Clancy
N. Hutchinson

CF7/E. I. Fendell
CG5/B. Anderson
D. L. Bentley
T. W. Hol Loway
D. K. Warren

CGó/C. R. Lewis
EJ/W. C. Bradford
EJ2/L. McWhorter
J. A. Porter

EJ3/K. J. Cox
M. C. Contella (3)
D. A. Dyer
T. E. Moore
E. E. Smith

EK/R. W. Kubicki
EK3/P. M. Deans
EP4/D. L. Connelly
ES/R. E. Vale
D. H. Greenshields

ES2/P. C. Glynn
A. C. Mackey
S. P. Weiss

ES3/D. B. Lee
R. C. Reid
G. Strouhal
J. A. Smith

EX/B. Redd
EX3/P. O. Romere
D. E. Tymms
J. M. Underwood
J. C. Young

EX4/R. L. Barton
F. Garcia
J. D. Gamble
K. M. Morrison
P. G. Thomas

FA/R. G. Rose
H. W. Tindall, Jr.

FAZ/J. P. Mayer
FE3/B. Davila
R. Duval

FM/R. L. Berry
J. C. McPherson

Branch Chiefs (5)
FM2/L. D. Davis
G. L. Hunt
B. O. McCaffety
K. A. Young

FM4/A. J. Bordano
R. D. Davis
D. Ives

FM8/B. F. Cockrell
R. E. Eckelkamp
M. L. Heck
P. T. Pixley
R. Savely

FM14/Report Control Files (100)
G. Steeley

FM15/D. A. Nelson
FM17/B. Conway
R. M. Moore

FM42/J. C. Harpold (50)
G. L. Carman
H. Garcia

Garland.
L. Gonzales
C. R. Halliman
J. A. Hansen
D. W. Heath
0. Hill

Lang
W. C. Lamey
M. N. Montez
J. D. Payne

Silvestri
J. V. West

FS5/J. W. Bormann
FS15/T. Sheehan
LN/H. E. Whitacre
LT/R. H. Kohrs
J. M. Peacock

MG/F. Littleton
WC6/E. R. Hischke
J. W. Mistrot
R. S. Morton

IBM/M. Bunde
B. Mills
A. Kuhn
D. Ramsey
T. Keller

Lockheed/Y. C. Loh G. Volentine

MDAC/G. Bell
R. Hamilton
J. Hiott (20)

Langely
H. Kyle
R. Ruda
R. Spier
J. Treybig
H. Stone (2)
W. E. Hayes
E. A. Thompson
L. J. Drapela
R. K. Hamilton
G. Bell
R. Hamilton
R. Spier
H. C. Kyle
R. R. Ruda
W. W. Hinton
J. M. Hiott (20)
J. M. Treybig
K. R. Frohme
J. R. Weyraugh
M. E. Fowler
M. A. Culp
D. E. Wade
J. Treybig
R. M. BLackstock
J. F. Dubel
J. J. Ewell


IBM/M. Bunde
B. Mills
A. Kuhn
D. Ramsey
T. Keller

Lockheed/Y. C. Loh
G. Volentine

MDAC/G. Bell
R. Hamilton
J. Hiott (20)

Langely
H. Kyle
R. Ruda
R. Spier
J. Treybig
H. Stone (2)
W. E. Hayes
E. A. Thompson
L. J. Drapela
R. K. Hamilton
G. Bell
R. Hamilton
R. Spier
H. C. Kyle
R. R. Ruda
W. W. Hinton
J. M. Hiott (20)
J. M. Treybig
K. R. Frohme
J. R. Weyraugh
M. E. Fowler
M. A. Culp
D. E. Wade
J. Treybig
R. M. Blackstock
J. F. Dubel
J. J. Ewell```

